1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Bitcode/BitcodeReader.h" 10 #include "MetadataLoader.h" 11 #include "ValueList.h" 12 #include "llvm/ADT/APFloat.h" 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallString.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/ADT/StringRef.h" 20 #include "llvm/ADT/Twine.h" 21 #include "llvm/Bitcode/BitcodeCommon.h" 22 #include "llvm/Bitcode/LLVMBitCodes.h" 23 #include "llvm/Bitstream/BitstreamReader.h" 24 #include "llvm/Config/llvm-config.h" 25 #include "llvm/IR/Argument.h" 26 #include "llvm/IR/Attributes.h" 27 #include "llvm/IR/AutoUpgrade.h" 28 #include "llvm/IR/BasicBlock.h" 29 #include "llvm/IR/CallingConv.h" 30 #include "llvm/IR/Comdat.h" 31 #include "llvm/IR/Constant.h" 32 #include "llvm/IR/Constants.h" 33 #include "llvm/IR/DataLayout.h" 34 #include "llvm/IR/DebugInfo.h" 35 #include "llvm/IR/DebugInfoMetadata.h" 36 #include "llvm/IR/DebugLoc.h" 37 #include "llvm/IR/DerivedTypes.h" 38 #include "llvm/IR/Function.h" 39 #include "llvm/IR/GVMaterializer.h" 40 #include "llvm/IR/GetElementPtrTypeIterator.h" 41 #include "llvm/IR/GlobalAlias.h" 42 #include "llvm/IR/GlobalIFunc.h" 43 #include "llvm/IR/GlobalObject.h" 44 #include "llvm/IR/GlobalValue.h" 45 #include "llvm/IR/GlobalVariable.h" 46 #include "llvm/IR/InlineAsm.h" 47 #include "llvm/IR/InstIterator.h" 48 #include "llvm/IR/InstrTypes.h" 49 #include "llvm/IR/Instruction.h" 50 #include "llvm/IR/Instructions.h" 51 #include "llvm/IR/Intrinsics.h" 52 #include "llvm/IR/IntrinsicsAArch64.h" 53 #include "llvm/IR/IntrinsicsARM.h" 54 #include "llvm/IR/LLVMContext.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/IR/ModuleSummaryIndex.h" 58 #include "llvm/IR/Operator.h" 59 #include "llvm/IR/Type.h" 60 #include "llvm/IR/Value.h" 61 #include "llvm/IR/Verifier.h" 62 #include "llvm/Support/AtomicOrdering.h" 63 #include "llvm/Support/Casting.h" 64 #include "llvm/Support/CommandLine.h" 65 #include "llvm/Support/Compiler.h" 66 #include "llvm/Support/Debug.h" 67 #include "llvm/Support/Error.h" 68 #include "llvm/Support/ErrorHandling.h" 69 #include "llvm/Support/ErrorOr.h" 70 #include "llvm/Support/MathExtras.h" 71 #include "llvm/Support/MemoryBuffer.h" 72 #include "llvm/Support/ModRef.h" 73 #include "llvm/Support/raw_ostream.h" 74 #include "llvm/TargetParser/Triple.h" 75 #include <algorithm> 76 #include <cassert> 77 #include <cstddef> 78 #include <cstdint> 79 #include <deque> 80 #include <map> 81 #include <memory> 82 #include <optional> 83 #include <set> 84 #include <string> 85 #include <system_error> 86 #include <tuple> 87 #include <utility> 88 #include <vector> 89 90 using namespace llvm; 91 92 static cl::opt<bool> PrintSummaryGUIDs( 93 "print-summary-global-ids", cl::init(false), cl::Hidden, 94 cl::desc( 95 "Print the global id for each value when reading the module summary")); 96 97 static cl::opt<bool> ExpandConstantExprs( 98 "expand-constant-exprs", cl::Hidden, 99 cl::desc( 100 "Expand constant expressions to instructions for testing purposes")); 101 102 namespace { 103 104 enum { 105 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 106 }; 107 108 } // end anonymous namespace 109 110 static Error error(const Twine &Message) { 111 return make_error<StringError>( 112 Message, make_error_code(BitcodeError::CorruptedBitcode)); 113 } 114 115 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) { 116 if (!Stream.canSkipToPos(4)) 117 return createStringError(std::errc::illegal_byte_sequence, 118 "file too small to contain bitcode header"); 119 for (unsigned C : {'B', 'C'}) 120 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) { 121 if (Res.get() != C) 122 return createStringError(std::errc::illegal_byte_sequence, 123 "file doesn't start with bitcode header"); 124 } else 125 return Res.takeError(); 126 for (unsigned C : {0x0, 0xC, 0xE, 0xD}) 127 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) { 128 if (Res.get() != C) 129 return createStringError(std::errc::illegal_byte_sequence, 130 "file doesn't start with bitcode header"); 131 } else 132 return Res.takeError(); 133 return Error::success(); 134 } 135 136 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) { 137 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart(); 138 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize(); 139 140 if (Buffer.getBufferSize() & 3) 141 return error("Invalid bitcode signature"); 142 143 // If we have a wrapper header, parse it and ignore the non-bc file contents. 144 // The magic number is 0x0B17C0DE stored in little endian. 145 if (isBitcodeWrapper(BufPtr, BufEnd)) 146 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 147 return error("Invalid bitcode wrapper header"); 148 149 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd)); 150 if (Error Err = hasInvalidBitcodeHeader(Stream)) 151 return std::move(Err); 152 153 return std::move(Stream); 154 } 155 156 /// Convert a string from a record into an std::string, return true on failure. 157 template <typename StrTy> 158 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 159 StrTy &Result) { 160 if (Idx > Record.size()) 161 return true; 162 163 Result.append(Record.begin() + Idx, Record.end()); 164 return false; 165 } 166 167 // Strip all the TBAA attachment for the module. 168 static void stripTBAA(Module *M) { 169 for (auto &F : *M) { 170 if (F.isMaterializable()) 171 continue; 172 for (auto &I : instructions(F)) 173 I.setMetadata(LLVMContext::MD_tbaa, nullptr); 174 } 175 } 176 177 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the 178 /// "epoch" encoded in the bitcode, and return the producer name if any. 179 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) { 180 if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 181 return std::move(Err); 182 183 // Read all the records. 184 SmallVector<uint64_t, 64> Record; 185 186 std::string ProducerIdentification; 187 188 while (true) { 189 BitstreamEntry Entry; 190 if (Error E = Stream.advance().moveInto(Entry)) 191 return std::move(E); 192 193 switch (Entry.Kind) { 194 default: 195 case BitstreamEntry::Error: 196 return error("Malformed block"); 197 case BitstreamEntry::EndBlock: 198 return ProducerIdentification; 199 case BitstreamEntry::Record: 200 // The interesting case. 201 break; 202 } 203 204 // Read a record. 205 Record.clear(); 206 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 207 if (!MaybeBitCode) 208 return MaybeBitCode.takeError(); 209 switch (MaybeBitCode.get()) { 210 default: // Default behavior: reject 211 return error("Invalid value"); 212 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N] 213 convertToString(Record, 0, ProducerIdentification); 214 break; 215 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 216 unsigned epoch = (unsigned)Record[0]; 217 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 218 return error( 219 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 220 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 221 } 222 } 223 } 224 } 225 } 226 227 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) { 228 // We expect a number of well-defined blocks, though we don't necessarily 229 // need to understand them all. 230 while (true) { 231 if (Stream.AtEndOfStream()) 232 return ""; 233 234 BitstreamEntry Entry; 235 if (Error E = Stream.advance().moveInto(Entry)) 236 return std::move(E); 237 238 switch (Entry.Kind) { 239 case BitstreamEntry::EndBlock: 240 case BitstreamEntry::Error: 241 return error("Malformed block"); 242 243 case BitstreamEntry::SubBlock: 244 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) 245 return readIdentificationBlock(Stream); 246 247 // Ignore other sub-blocks. 248 if (Error Err = Stream.SkipBlock()) 249 return std::move(Err); 250 continue; 251 case BitstreamEntry::Record: 252 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 253 return std::move(E); 254 continue; 255 } 256 } 257 } 258 259 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) { 260 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 261 return std::move(Err); 262 263 SmallVector<uint64_t, 64> Record; 264 // Read all the records for this module. 265 266 while (true) { 267 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 268 if (!MaybeEntry) 269 return MaybeEntry.takeError(); 270 BitstreamEntry Entry = MaybeEntry.get(); 271 272 switch (Entry.Kind) { 273 case BitstreamEntry::SubBlock: // Handled for us already. 274 case BitstreamEntry::Error: 275 return error("Malformed block"); 276 case BitstreamEntry::EndBlock: 277 return false; 278 case BitstreamEntry::Record: 279 // The interesting case. 280 break; 281 } 282 283 // Read a record. 284 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 285 if (!MaybeRecord) 286 return MaybeRecord.takeError(); 287 switch (MaybeRecord.get()) { 288 default: 289 break; // Default behavior, ignore unknown content. 290 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 291 std::string S; 292 if (convertToString(Record, 0, S)) 293 return error("Invalid section name record"); 294 // Check for the i386 and other (x86_64, ARM) conventions 295 if (S.find("__DATA,__objc_catlist") != std::string::npos || 296 S.find("__OBJC,__category") != std::string::npos) 297 return true; 298 break; 299 } 300 } 301 Record.clear(); 302 } 303 llvm_unreachable("Exit infinite loop"); 304 } 305 306 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) { 307 // We expect a number of well-defined blocks, though we don't necessarily 308 // need to understand them all. 309 while (true) { 310 BitstreamEntry Entry; 311 if (Error E = Stream.advance().moveInto(Entry)) 312 return std::move(E); 313 314 switch (Entry.Kind) { 315 case BitstreamEntry::Error: 316 return error("Malformed block"); 317 case BitstreamEntry::EndBlock: 318 return false; 319 320 case BitstreamEntry::SubBlock: 321 if (Entry.ID == bitc::MODULE_BLOCK_ID) 322 return hasObjCCategoryInModule(Stream); 323 324 // Ignore other sub-blocks. 325 if (Error Err = Stream.SkipBlock()) 326 return std::move(Err); 327 continue; 328 329 case BitstreamEntry::Record: 330 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 331 return std::move(E); 332 continue; 333 } 334 } 335 } 336 337 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) { 338 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 339 return std::move(Err); 340 341 SmallVector<uint64_t, 64> Record; 342 343 std::string Triple; 344 345 // Read all the records for this module. 346 while (true) { 347 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 348 if (!MaybeEntry) 349 return MaybeEntry.takeError(); 350 BitstreamEntry Entry = MaybeEntry.get(); 351 352 switch (Entry.Kind) { 353 case BitstreamEntry::SubBlock: // Handled for us already. 354 case BitstreamEntry::Error: 355 return error("Malformed block"); 356 case BitstreamEntry::EndBlock: 357 return Triple; 358 case BitstreamEntry::Record: 359 // The interesting case. 360 break; 361 } 362 363 // Read a record. 364 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 365 if (!MaybeRecord) 366 return MaybeRecord.takeError(); 367 switch (MaybeRecord.get()) { 368 default: break; // Default behavior, ignore unknown content. 369 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 370 std::string S; 371 if (convertToString(Record, 0, S)) 372 return error("Invalid triple record"); 373 Triple = S; 374 break; 375 } 376 } 377 Record.clear(); 378 } 379 llvm_unreachable("Exit infinite loop"); 380 } 381 382 static Expected<std::string> readTriple(BitstreamCursor &Stream) { 383 // We expect a number of well-defined blocks, though we don't necessarily 384 // need to understand them all. 385 while (true) { 386 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 387 if (!MaybeEntry) 388 return MaybeEntry.takeError(); 389 BitstreamEntry Entry = MaybeEntry.get(); 390 391 switch (Entry.Kind) { 392 case BitstreamEntry::Error: 393 return error("Malformed block"); 394 case BitstreamEntry::EndBlock: 395 return ""; 396 397 case BitstreamEntry::SubBlock: 398 if (Entry.ID == bitc::MODULE_BLOCK_ID) 399 return readModuleTriple(Stream); 400 401 // Ignore other sub-blocks. 402 if (Error Err = Stream.SkipBlock()) 403 return std::move(Err); 404 continue; 405 406 case BitstreamEntry::Record: 407 if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 408 continue; 409 else 410 return Skipped.takeError(); 411 } 412 } 413 } 414 415 namespace { 416 417 class BitcodeReaderBase { 418 protected: 419 BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab) 420 : Stream(std::move(Stream)), Strtab(Strtab) { 421 this->Stream.setBlockInfo(&BlockInfo); 422 } 423 424 BitstreamBlockInfo BlockInfo; 425 BitstreamCursor Stream; 426 StringRef Strtab; 427 428 /// In version 2 of the bitcode we store names of global values and comdats in 429 /// a string table rather than in the VST. 430 bool UseStrtab = false; 431 432 Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record); 433 434 /// If this module uses a string table, pop the reference to the string table 435 /// and return the referenced string and the rest of the record. Otherwise 436 /// just return the record itself. 437 std::pair<StringRef, ArrayRef<uint64_t>> 438 readNameFromStrtab(ArrayRef<uint64_t> Record); 439 440 Error readBlockInfo(); 441 442 // Contains an arbitrary and optional string identifying the bitcode producer 443 std::string ProducerIdentification; 444 445 Error error(const Twine &Message); 446 }; 447 448 } // end anonymous namespace 449 450 Error BitcodeReaderBase::error(const Twine &Message) { 451 std::string FullMsg = Message.str(); 452 if (!ProducerIdentification.empty()) 453 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " + 454 LLVM_VERSION_STRING "')"; 455 return ::error(FullMsg); 456 } 457 458 Expected<unsigned> 459 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) { 460 if (Record.empty()) 461 return error("Invalid version record"); 462 unsigned ModuleVersion = Record[0]; 463 if (ModuleVersion > 2) 464 return error("Invalid value"); 465 UseStrtab = ModuleVersion >= 2; 466 return ModuleVersion; 467 } 468 469 std::pair<StringRef, ArrayRef<uint64_t>> 470 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) { 471 if (!UseStrtab) 472 return {"", Record}; 473 // Invalid reference. Let the caller complain about the record being empty. 474 if (Record[0] + Record[1] > Strtab.size()) 475 return {"", {}}; 476 return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)}; 477 } 478 479 namespace { 480 481 /// This represents a constant expression or constant aggregate using a custom 482 /// structure internal to the bitcode reader. Later, this structure will be 483 /// expanded by materializeValue() either into a constant expression/aggregate, 484 /// or into an instruction sequence at the point of use. This allows us to 485 /// upgrade bitcode using constant expressions even if this kind of constant 486 /// expression is no longer supported. 487 class BitcodeConstant final : public Value, 488 TrailingObjects<BitcodeConstant, unsigned> { 489 friend TrailingObjects; 490 491 // Value subclass ID: Pick largest possible value to avoid any clashes. 492 static constexpr uint8_t SubclassID = 255; 493 494 public: 495 // Opcodes used for non-expressions. This includes constant aggregates 496 // (struct, array, vector) that might need expansion, as well as non-leaf 497 // constants that don't need expansion (no_cfi, dso_local, blockaddress), 498 // but still go through BitcodeConstant to avoid different uselist orders 499 // between the two cases. 500 static constexpr uint8_t ConstantStructOpcode = 255; 501 static constexpr uint8_t ConstantArrayOpcode = 254; 502 static constexpr uint8_t ConstantVectorOpcode = 253; 503 static constexpr uint8_t NoCFIOpcode = 252; 504 static constexpr uint8_t DSOLocalEquivalentOpcode = 251; 505 static constexpr uint8_t BlockAddressOpcode = 250; 506 static constexpr uint8_t FirstSpecialOpcode = BlockAddressOpcode; 507 508 // Separate struct to make passing different number of parameters to 509 // BitcodeConstant::create() more convenient. 510 struct ExtraInfo { 511 uint8_t Opcode; 512 uint8_t Flags; 513 unsigned Extra; 514 Type *SrcElemTy; 515 516 ExtraInfo(uint8_t Opcode, uint8_t Flags = 0, unsigned Extra = 0, 517 Type *SrcElemTy = nullptr) 518 : Opcode(Opcode), Flags(Flags), Extra(Extra), SrcElemTy(SrcElemTy) {} 519 }; 520 521 uint8_t Opcode; 522 uint8_t Flags; 523 unsigned NumOperands; 524 unsigned Extra; // GEP inrange index or blockaddress BB id. 525 Type *SrcElemTy; // GEP source element type. 526 527 private: 528 BitcodeConstant(Type *Ty, const ExtraInfo &Info, ArrayRef<unsigned> OpIDs) 529 : Value(Ty, SubclassID), Opcode(Info.Opcode), Flags(Info.Flags), 530 NumOperands(OpIDs.size()), Extra(Info.Extra), 531 SrcElemTy(Info.SrcElemTy) { 532 std::uninitialized_copy(OpIDs.begin(), OpIDs.end(), 533 getTrailingObjects<unsigned>()); 534 } 535 536 BitcodeConstant &operator=(const BitcodeConstant &) = delete; 537 538 public: 539 static BitcodeConstant *create(BumpPtrAllocator &A, Type *Ty, 540 const ExtraInfo &Info, 541 ArrayRef<unsigned> OpIDs) { 542 void *Mem = A.Allocate(totalSizeToAlloc<unsigned>(OpIDs.size()), 543 alignof(BitcodeConstant)); 544 return new (Mem) BitcodeConstant(Ty, Info, OpIDs); 545 } 546 547 static bool classof(const Value *V) { return V->getValueID() == SubclassID; } 548 549 ArrayRef<unsigned> getOperandIDs() const { 550 return ArrayRef(getTrailingObjects<unsigned>(), NumOperands); 551 } 552 553 std::optional<unsigned> getInRangeIndex() const { 554 assert(Opcode == Instruction::GetElementPtr); 555 if (Extra == (unsigned)-1) 556 return std::nullopt; 557 return Extra; 558 } 559 560 const char *getOpcodeName() const { 561 return Instruction::getOpcodeName(Opcode); 562 } 563 }; 564 565 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer { 566 LLVMContext &Context; 567 Module *TheModule = nullptr; 568 // Next offset to start scanning for lazy parsing of function bodies. 569 uint64_t NextUnreadBit = 0; 570 // Last function offset found in the VST. 571 uint64_t LastFunctionBlockBit = 0; 572 bool SeenValueSymbolTable = false; 573 uint64_t VSTOffset = 0; 574 575 std::vector<std::string> SectionTable; 576 std::vector<std::string> GCTable; 577 578 std::vector<Type *> TypeList; 579 /// Track type IDs of contained types. Order is the same as the contained 580 /// types of a Type*. This is used during upgrades of typed pointer IR in 581 /// opaque pointer mode. 582 DenseMap<unsigned, SmallVector<unsigned, 1>> ContainedTypeIDs; 583 /// In some cases, we need to create a type ID for a type that was not 584 /// explicitly encoded in the bitcode, or we don't know about at the current 585 /// point. For example, a global may explicitly encode the value type ID, but 586 /// not have a type ID for the pointer to value type, for which we create a 587 /// virtual type ID instead. This map stores the new type ID that was created 588 /// for the given pair of Type and contained type ID. 589 DenseMap<std::pair<Type *, unsigned>, unsigned> VirtualTypeIDs; 590 DenseMap<Function *, unsigned> FunctionTypeIDs; 591 /// Allocator for BitcodeConstants. This should come before ValueList, 592 /// because the ValueList might hold ValueHandles to these constants, so 593 /// ValueList must be destroyed before Alloc. 594 BumpPtrAllocator Alloc; 595 BitcodeReaderValueList ValueList; 596 std::optional<MetadataLoader> MDLoader; 597 std::vector<Comdat *> ComdatList; 598 DenseSet<GlobalObject *> ImplicitComdatObjects; 599 SmallVector<Instruction *, 64> InstructionList; 600 601 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits; 602 std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInits; 603 604 struct FunctionOperandInfo { 605 Function *F; 606 unsigned PersonalityFn; 607 unsigned Prefix; 608 unsigned Prologue; 609 }; 610 std::vector<FunctionOperandInfo> FunctionOperands; 611 612 /// The set of attributes by index. Index zero in the file is for null, and 613 /// is thus not represented here. As such all indices are off by one. 614 std::vector<AttributeList> MAttributes; 615 616 /// The set of attribute groups. 617 std::map<unsigned, AttributeList> MAttributeGroups; 618 619 /// While parsing a function body, this is a list of the basic blocks for the 620 /// function. 621 std::vector<BasicBlock*> FunctionBBs; 622 623 // When reading the module header, this list is populated with functions that 624 // have bodies later in the file. 625 std::vector<Function*> FunctionsWithBodies; 626 627 // When intrinsic functions are encountered which require upgrading they are 628 // stored here with their replacement function. 629 using UpdatedIntrinsicMap = DenseMap<Function *, Function *>; 630 UpdatedIntrinsicMap UpgradedIntrinsics; 631 632 // Several operations happen after the module header has been read, but 633 // before function bodies are processed. This keeps track of whether 634 // we've done this yet. 635 bool SeenFirstFunctionBody = false; 636 637 /// When function bodies are initially scanned, this map contains info about 638 /// where to find deferred function body in the stream. 639 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 640 641 /// When Metadata block is initially scanned when parsing the module, we may 642 /// choose to defer parsing of the metadata. This vector contains info about 643 /// which Metadata blocks are deferred. 644 std::vector<uint64_t> DeferredMetadataInfo; 645 646 /// These are basic blocks forward-referenced by block addresses. They are 647 /// inserted lazily into functions when they're loaded. The basic block ID is 648 /// its index into the vector. 649 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 650 std::deque<Function *> BasicBlockFwdRefQueue; 651 652 /// These are Functions that contain BlockAddresses which refer a different 653 /// Function. When parsing the different Function, queue Functions that refer 654 /// to the different Function. Those Functions must be materialized in order 655 /// to resolve their BlockAddress constants before the different Function 656 /// gets moved into another Module. 657 std::vector<Function *> BackwardRefFunctions; 658 659 /// Indicates that we are using a new encoding for instruction operands where 660 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 661 /// instruction number, for a more compact encoding. Some instruction 662 /// operands are not relative to the instruction ID: basic block numbers, and 663 /// types. Once the old style function blocks have been phased out, we would 664 /// not need this flag. 665 bool UseRelativeIDs = false; 666 667 /// True if all functions will be materialized, negating the need to process 668 /// (e.g.) blockaddress forward references. 669 bool WillMaterializeAllForwardRefs = false; 670 671 bool StripDebugInfo = false; 672 TBAAVerifier TBAAVerifyHelper; 673 674 std::vector<std::string> BundleTags; 675 SmallVector<SyncScope::ID, 8> SSIDs; 676 677 std::optional<ValueTypeCallbackTy> ValueTypeCallback; 678 679 public: 680 BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 681 StringRef ProducerIdentification, LLVMContext &Context); 682 683 Error materializeForwardReferencedFunctions(); 684 685 Error materialize(GlobalValue *GV) override; 686 Error materializeModule() override; 687 std::vector<StructType *> getIdentifiedStructTypes() const override; 688 689 /// Main interface to parsing a bitcode buffer. 690 /// \returns true if an error occurred. 691 Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 692 bool IsImporting, ParserCallbacks Callbacks = {}); 693 694 static uint64_t decodeSignRotatedValue(uint64_t V); 695 696 /// Materialize any deferred Metadata block. 697 Error materializeMetadata() override; 698 699 void setStripDebugInfo() override; 700 701 private: 702 std::vector<StructType *> IdentifiedStructTypes; 703 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 704 StructType *createIdentifiedStructType(LLVMContext &Context); 705 706 static constexpr unsigned InvalidTypeID = ~0u; 707 708 Type *getTypeByID(unsigned ID); 709 Type *getPtrElementTypeByID(unsigned ID); 710 unsigned getContainedTypeID(unsigned ID, unsigned Idx = 0); 711 unsigned getVirtualTypeID(Type *Ty, ArrayRef<unsigned> ContainedTypeIDs = {}); 712 713 void callValueTypeCallback(Value *F, unsigned TypeID); 714 Expected<Value *> materializeValue(unsigned ValID, BasicBlock *InsertBB); 715 Expected<Constant *> getValueForInitializer(unsigned ID); 716 717 Value *getFnValueByID(unsigned ID, Type *Ty, unsigned TyID, 718 BasicBlock *ConstExprInsertBB) { 719 if (Ty && Ty->isMetadataTy()) 720 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 721 return ValueList.getValueFwdRef(ID, Ty, TyID, ConstExprInsertBB); 722 } 723 724 Metadata *getFnMetadataByID(unsigned ID) { 725 return MDLoader->getMetadataFwdRefOrLoad(ID); 726 } 727 728 BasicBlock *getBasicBlock(unsigned ID) const { 729 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 730 return FunctionBBs[ID]; 731 } 732 733 AttributeList getAttributes(unsigned i) const { 734 if (i-1 < MAttributes.size()) 735 return MAttributes[i-1]; 736 return AttributeList(); 737 } 738 739 /// Read a value/type pair out of the specified record from slot 'Slot'. 740 /// Increment Slot past the number of slots used in the record. Return true on 741 /// failure. 742 bool getValueTypePair(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 743 unsigned InstNum, Value *&ResVal, unsigned &TypeID, 744 BasicBlock *ConstExprInsertBB) { 745 if (Slot == Record.size()) return true; 746 unsigned ValNo = (unsigned)Record[Slot++]; 747 // Adjust the ValNo, if it was encoded relative to the InstNum. 748 if (UseRelativeIDs) 749 ValNo = InstNum - ValNo; 750 if (ValNo < InstNum) { 751 // If this is not a forward reference, just return the value we already 752 // have. 753 TypeID = ValueList.getTypeID(ValNo); 754 ResVal = getFnValueByID(ValNo, nullptr, TypeID, ConstExprInsertBB); 755 assert((!ResVal || ResVal->getType() == getTypeByID(TypeID)) && 756 "Incorrect type ID stored for value"); 757 return ResVal == nullptr; 758 } 759 if (Slot == Record.size()) 760 return true; 761 762 TypeID = (unsigned)Record[Slot++]; 763 ResVal = getFnValueByID(ValNo, getTypeByID(TypeID), TypeID, 764 ConstExprInsertBB); 765 return ResVal == nullptr; 766 } 767 768 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 769 /// past the number of slots used by the value in the record. Return true if 770 /// there is an error. 771 bool popValue(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 772 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal, 773 BasicBlock *ConstExprInsertBB) { 774 if (getValue(Record, Slot, InstNum, Ty, TyID, ResVal, ConstExprInsertBB)) 775 return true; 776 // All values currently take a single record slot. 777 ++Slot; 778 return false; 779 } 780 781 /// Like popValue, but does not increment the Slot number. 782 bool getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 783 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal, 784 BasicBlock *ConstExprInsertBB) { 785 ResVal = getValue(Record, Slot, InstNum, Ty, TyID, ConstExprInsertBB); 786 return ResVal == nullptr; 787 } 788 789 /// Version of getValue that returns ResVal directly, or 0 if there is an 790 /// error. 791 Value *getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 792 unsigned InstNum, Type *Ty, unsigned TyID, 793 BasicBlock *ConstExprInsertBB) { 794 if (Slot == Record.size()) return nullptr; 795 unsigned ValNo = (unsigned)Record[Slot]; 796 // Adjust the ValNo, if it was encoded relative to the InstNum. 797 if (UseRelativeIDs) 798 ValNo = InstNum - ValNo; 799 return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB); 800 } 801 802 /// Like getValue, but decodes signed VBRs. 803 Value *getValueSigned(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 804 unsigned InstNum, Type *Ty, unsigned TyID, 805 BasicBlock *ConstExprInsertBB) { 806 if (Slot == Record.size()) return nullptr; 807 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 808 // Adjust the ValNo, if it was encoded relative to the InstNum. 809 if (UseRelativeIDs) 810 ValNo = InstNum - ValNo; 811 return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB); 812 } 813 814 /// Upgrades old-style typeless byval/sret/inalloca attributes by adding the 815 /// corresponding argument's pointee type. Also upgrades intrinsics that now 816 /// require an elementtype attribute. 817 Error propagateAttributeTypes(CallBase *CB, ArrayRef<unsigned> ArgsTys); 818 819 /// Converts alignment exponent (i.e. power of two (or zero)) to the 820 /// corresponding alignment to use. If alignment is too large, returns 821 /// a corresponding error code. 822 Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment); 823 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 824 Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false, 825 ParserCallbacks Callbacks = {}); 826 827 Error parseComdatRecord(ArrayRef<uint64_t> Record); 828 Error parseGlobalVarRecord(ArrayRef<uint64_t> Record); 829 Error parseFunctionRecord(ArrayRef<uint64_t> Record); 830 Error parseGlobalIndirectSymbolRecord(unsigned BitCode, 831 ArrayRef<uint64_t> Record); 832 833 Error parseAttributeBlock(); 834 Error parseAttributeGroupBlock(); 835 Error parseTypeTable(); 836 Error parseTypeTableBody(); 837 Error parseOperandBundleTags(); 838 Error parseSyncScopeNames(); 839 840 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 841 unsigned NameIndex, Triple &TT); 842 void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F, 843 ArrayRef<uint64_t> Record); 844 Error parseValueSymbolTable(uint64_t Offset = 0); 845 Error parseGlobalValueSymbolTable(); 846 Error parseConstants(); 847 Error rememberAndSkipFunctionBodies(); 848 Error rememberAndSkipFunctionBody(); 849 /// Save the positions of the Metadata blocks and skip parsing the blocks. 850 Error rememberAndSkipMetadata(); 851 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType); 852 Error parseFunctionBody(Function *F); 853 Error globalCleanup(); 854 Error resolveGlobalAndIndirectSymbolInits(); 855 Error parseUseLists(); 856 Error findFunctionInStream( 857 Function *F, 858 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 859 860 SyncScope::ID getDecodedSyncScopeID(unsigned Val); 861 }; 862 863 /// Class to manage reading and parsing function summary index bitcode 864 /// files/sections. 865 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase { 866 /// The module index built during parsing. 867 ModuleSummaryIndex &TheIndex; 868 869 /// Indicates whether we have encountered a global value summary section 870 /// yet during parsing. 871 bool SeenGlobalValSummary = false; 872 873 /// Indicates whether we have already parsed the VST, used for error checking. 874 bool SeenValueSymbolTable = false; 875 876 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 877 /// Used to enable on-demand parsing of the VST. 878 uint64_t VSTOffset = 0; 879 880 // Map to save ValueId to ValueInfo association that was recorded in the 881 // ValueSymbolTable. It is used after the VST is parsed to convert 882 // call graph edges read from the function summary from referencing 883 // callees by their ValueId to using the ValueInfo instead, which is how 884 // they are recorded in the summary index being built. 885 // We save a GUID which refers to the same global as the ValueInfo, but 886 // ignoring the linkage, i.e. for values other than local linkage they are 887 // identical (this is the second tuple member). 888 // The third tuple member is the real GUID of the ValueInfo. 889 DenseMap<unsigned, 890 std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID>> 891 ValueIdToValueInfoMap; 892 893 /// Map populated during module path string table parsing, from the 894 /// module ID to a string reference owned by the index's module 895 /// path string table, used to correlate with combined index 896 /// summary records. 897 DenseMap<uint64_t, StringRef> ModuleIdMap; 898 899 /// Original source file name recorded in a bitcode record. 900 std::string SourceFileName; 901 902 /// The string identifier given to this module by the client, normally the 903 /// path to the bitcode file. 904 StringRef ModulePath; 905 906 /// For per-module summary indexes, the unique numerical identifier given to 907 /// this module by the client. 908 unsigned ModuleId; 909 910 /// Callback to ask whether a symbol is the prevailing copy when invoked 911 /// during combined index building. 912 std::function<bool(GlobalValue::GUID)> IsPrevailing; 913 914 /// Saves the stack ids from the STACK_IDS record to consult when adding stack 915 /// ids from the lists in the callsite and alloc entries to the index. 916 std::vector<uint64_t> StackIds; 917 918 public: 919 ModuleSummaryIndexBitcodeReader( 920 BitstreamCursor Stream, StringRef Strtab, ModuleSummaryIndex &TheIndex, 921 StringRef ModulePath, unsigned ModuleId, 922 std::function<bool(GlobalValue::GUID)> IsPrevailing = nullptr); 923 924 Error parseModule(); 925 926 private: 927 void setValueGUID(uint64_t ValueID, StringRef ValueName, 928 GlobalValue::LinkageTypes Linkage, 929 StringRef SourceFileName); 930 Error parseValueSymbolTable( 931 uint64_t Offset, 932 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 933 std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record); 934 std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record, 935 bool IsOldProfileFormat, 936 bool HasProfile, 937 bool HasRelBF); 938 Error parseEntireSummary(unsigned ID); 939 Error parseModuleStringTable(); 940 void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record); 941 void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot, 942 TypeIdCompatibleVtableInfo &TypeId); 943 std::vector<FunctionSummary::ParamAccess> 944 parseParamAccesses(ArrayRef<uint64_t> Record); 945 946 template <bool AllowNullValueInfo = false> 947 std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID> 948 getValueInfoFromValueId(unsigned ValueId); 949 950 void addThisModule(); 951 ModuleSummaryIndex::ModuleInfo *getThisModule(); 952 }; 953 954 } // end anonymous namespace 955 956 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx, 957 Error Err) { 958 if (Err) { 959 std::error_code EC; 960 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) { 961 EC = EIB.convertToErrorCode(); 962 Ctx.emitError(EIB.message()); 963 }); 964 return EC; 965 } 966 return std::error_code(); 967 } 968 969 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 970 StringRef ProducerIdentification, 971 LLVMContext &Context) 972 : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context), 973 ValueList(this->Stream.SizeInBytes(), 974 [this](unsigned ValID, BasicBlock *InsertBB) { 975 return materializeValue(ValID, InsertBB); 976 }) { 977 this->ProducerIdentification = std::string(ProducerIdentification); 978 } 979 980 Error BitcodeReader::materializeForwardReferencedFunctions() { 981 if (WillMaterializeAllForwardRefs) 982 return Error::success(); 983 984 // Prevent recursion. 985 WillMaterializeAllForwardRefs = true; 986 987 while (!BasicBlockFwdRefQueue.empty()) { 988 Function *F = BasicBlockFwdRefQueue.front(); 989 BasicBlockFwdRefQueue.pop_front(); 990 assert(F && "Expected valid function"); 991 if (!BasicBlockFwdRefs.count(F)) 992 // Already materialized. 993 continue; 994 995 // Check for a function that isn't materializable to prevent an infinite 996 // loop. When parsing a blockaddress stored in a global variable, there 997 // isn't a trivial way to check if a function will have a body without a 998 // linear search through FunctionsWithBodies, so just check it here. 999 if (!F->isMaterializable()) 1000 return error("Never resolved function from blockaddress"); 1001 1002 // Try to materialize F. 1003 if (Error Err = materialize(F)) 1004 return Err; 1005 } 1006 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 1007 1008 for (Function *F : BackwardRefFunctions) 1009 if (Error Err = materialize(F)) 1010 return Err; 1011 BackwardRefFunctions.clear(); 1012 1013 // Reset state. 1014 WillMaterializeAllForwardRefs = false; 1015 return Error::success(); 1016 } 1017 1018 //===----------------------------------------------------------------------===// 1019 // Helper functions to implement forward reference resolution, etc. 1020 //===----------------------------------------------------------------------===// 1021 1022 static bool hasImplicitComdat(size_t Val) { 1023 switch (Val) { 1024 default: 1025 return false; 1026 case 1: // Old WeakAnyLinkage 1027 case 4: // Old LinkOnceAnyLinkage 1028 case 10: // Old WeakODRLinkage 1029 case 11: // Old LinkOnceODRLinkage 1030 return true; 1031 } 1032 } 1033 1034 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 1035 switch (Val) { 1036 default: // Map unknown/new linkages to external 1037 case 0: 1038 return GlobalValue::ExternalLinkage; 1039 case 2: 1040 return GlobalValue::AppendingLinkage; 1041 case 3: 1042 return GlobalValue::InternalLinkage; 1043 case 5: 1044 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 1045 case 6: 1046 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 1047 case 7: 1048 return GlobalValue::ExternalWeakLinkage; 1049 case 8: 1050 return GlobalValue::CommonLinkage; 1051 case 9: 1052 return GlobalValue::PrivateLinkage; 1053 case 12: 1054 return GlobalValue::AvailableExternallyLinkage; 1055 case 13: 1056 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 1057 case 14: 1058 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 1059 case 15: 1060 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 1061 case 1: // Old value with implicit comdat. 1062 case 16: 1063 return GlobalValue::WeakAnyLinkage; 1064 case 10: // Old value with implicit comdat. 1065 case 17: 1066 return GlobalValue::WeakODRLinkage; 1067 case 4: // Old value with implicit comdat. 1068 case 18: 1069 return GlobalValue::LinkOnceAnyLinkage; 1070 case 11: // Old value with implicit comdat. 1071 case 19: 1072 return GlobalValue::LinkOnceODRLinkage; 1073 } 1074 } 1075 1076 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) { 1077 FunctionSummary::FFlags Flags; 1078 Flags.ReadNone = RawFlags & 0x1; 1079 Flags.ReadOnly = (RawFlags >> 1) & 0x1; 1080 Flags.NoRecurse = (RawFlags >> 2) & 0x1; 1081 Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1; 1082 Flags.NoInline = (RawFlags >> 4) & 0x1; 1083 Flags.AlwaysInline = (RawFlags >> 5) & 0x1; 1084 Flags.NoUnwind = (RawFlags >> 6) & 0x1; 1085 Flags.MayThrow = (RawFlags >> 7) & 0x1; 1086 Flags.HasUnknownCall = (RawFlags >> 8) & 0x1; 1087 Flags.MustBeUnreachable = (RawFlags >> 9) & 0x1; 1088 return Flags; 1089 } 1090 1091 // Decode the flags for GlobalValue in the summary. The bits for each attribute: 1092 // 1093 // linkage: [0,4), notEligibleToImport: 4, live: 5, local: 6, canAutoHide: 7, 1094 // visibility: [8, 10). 1095 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 1096 uint64_t Version) { 1097 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 1098 // like getDecodedLinkage() above. Any future change to the linkage enum and 1099 // to getDecodedLinkage() will need to be taken into account here as above. 1100 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 1101 auto Visibility = GlobalValue::VisibilityTypes((RawFlags >> 8) & 3); // 2 bits 1102 RawFlags = RawFlags >> 4; 1103 bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3; 1104 // The Live flag wasn't introduced until version 3. For dead stripping 1105 // to work correctly on earlier versions, we must conservatively treat all 1106 // values as live. 1107 bool Live = (RawFlags & 0x2) || Version < 3; 1108 bool Local = (RawFlags & 0x4); 1109 bool AutoHide = (RawFlags & 0x8); 1110 1111 return GlobalValueSummary::GVFlags(Linkage, Visibility, NotEligibleToImport, 1112 Live, Local, AutoHide); 1113 } 1114 1115 // Decode the flags for GlobalVariable in the summary 1116 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) { 1117 return GlobalVarSummary::GVarFlags( 1118 (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false, 1119 (RawFlags & 0x4) ? true : false, 1120 (GlobalObject::VCallVisibility)(RawFlags >> 3)); 1121 } 1122 1123 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 1124 switch (Val) { 1125 default: // Map unknown visibilities to default. 1126 case 0: return GlobalValue::DefaultVisibility; 1127 case 1: return GlobalValue::HiddenVisibility; 1128 case 2: return GlobalValue::ProtectedVisibility; 1129 } 1130 } 1131 1132 static GlobalValue::DLLStorageClassTypes 1133 getDecodedDLLStorageClass(unsigned Val) { 1134 switch (Val) { 1135 default: // Map unknown values to default. 1136 case 0: return GlobalValue::DefaultStorageClass; 1137 case 1: return GlobalValue::DLLImportStorageClass; 1138 case 2: return GlobalValue::DLLExportStorageClass; 1139 } 1140 } 1141 1142 static bool getDecodedDSOLocal(unsigned Val) { 1143 switch(Val) { 1144 default: // Map unknown values to preemptable. 1145 case 0: return false; 1146 case 1: return true; 1147 } 1148 } 1149 1150 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 1151 switch (Val) { 1152 case 0: return GlobalVariable::NotThreadLocal; 1153 default: // Map unknown non-zero value to general dynamic. 1154 case 1: return GlobalVariable::GeneralDynamicTLSModel; 1155 case 2: return GlobalVariable::LocalDynamicTLSModel; 1156 case 3: return GlobalVariable::InitialExecTLSModel; 1157 case 4: return GlobalVariable::LocalExecTLSModel; 1158 } 1159 } 1160 1161 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { 1162 switch (Val) { 1163 default: // Map unknown to UnnamedAddr::None. 1164 case 0: return GlobalVariable::UnnamedAddr::None; 1165 case 1: return GlobalVariable::UnnamedAddr::Global; 1166 case 2: return GlobalVariable::UnnamedAddr::Local; 1167 } 1168 } 1169 1170 static int getDecodedCastOpcode(unsigned Val) { 1171 switch (Val) { 1172 default: return -1; 1173 case bitc::CAST_TRUNC : return Instruction::Trunc; 1174 case bitc::CAST_ZEXT : return Instruction::ZExt; 1175 case bitc::CAST_SEXT : return Instruction::SExt; 1176 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 1177 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 1178 case bitc::CAST_UITOFP : return Instruction::UIToFP; 1179 case bitc::CAST_SITOFP : return Instruction::SIToFP; 1180 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 1181 case bitc::CAST_FPEXT : return Instruction::FPExt; 1182 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 1183 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 1184 case bitc::CAST_BITCAST : return Instruction::BitCast; 1185 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 1186 } 1187 } 1188 1189 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) { 1190 bool IsFP = Ty->isFPOrFPVectorTy(); 1191 // UnOps are only valid for int/fp or vector of int/fp types 1192 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1193 return -1; 1194 1195 switch (Val) { 1196 default: 1197 return -1; 1198 case bitc::UNOP_FNEG: 1199 return IsFP ? Instruction::FNeg : -1; 1200 } 1201 } 1202 1203 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 1204 bool IsFP = Ty->isFPOrFPVectorTy(); 1205 // BinOps are only valid for int/fp or vector of int/fp types 1206 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1207 return -1; 1208 1209 switch (Val) { 1210 default: 1211 return -1; 1212 case bitc::BINOP_ADD: 1213 return IsFP ? Instruction::FAdd : Instruction::Add; 1214 case bitc::BINOP_SUB: 1215 return IsFP ? Instruction::FSub : Instruction::Sub; 1216 case bitc::BINOP_MUL: 1217 return IsFP ? Instruction::FMul : Instruction::Mul; 1218 case bitc::BINOP_UDIV: 1219 return IsFP ? -1 : Instruction::UDiv; 1220 case bitc::BINOP_SDIV: 1221 return IsFP ? Instruction::FDiv : Instruction::SDiv; 1222 case bitc::BINOP_UREM: 1223 return IsFP ? -1 : Instruction::URem; 1224 case bitc::BINOP_SREM: 1225 return IsFP ? Instruction::FRem : Instruction::SRem; 1226 case bitc::BINOP_SHL: 1227 return IsFP ? -1 : Instruction::Shl; 1228 case bitc::BINOP_LSHR: 1229 return IsFP ? -1 : Instruction::LShr; 1230 case bitc::BINOP_ASHR: 1231 return IsFP ? -1 : Instruction::AShr; 1232 case bitc::BINOP_AND: 1233 return IsFP ? -1 : Instruction::And; 1234 case bitc::BINOP_OR: 1235 return IsFP ? -1 : Instruction::Or; 1236 case bitc::BINOP_XOR: 1237 return IsFP ? -1 : Instruction::Xor; 1238 } 1239 } 1240 1241 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 1242 switch (Val) { 1243 default: return AtomicRMWInst::BAD_BINOP; 1244 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 1245 case bitc::RMW_ADD: return AtomicRMWInst::Add; 1246 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 1247 case bitc::RMW_AND: return AtomicRMWInst::And; 1248 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 1249 case bitc::RMW_OR: return AtomicRMWInst::Or; 1250 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 1251 case bitc::RMW_MAX: return AtomicRMWInst::Max; 1252 case bitc::RMW_MIN: return AtomicRMWInst::Min; 1253 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 1254 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 1255 case bitc::RMW_FADD: return AtomicRMWInst::FAdd; 1256 case bitc::RMW_FSUB: return AtomicRMWInst::FSub; 1257 case bitc::RMW_FMAX: return AtomicRMWInst::FMax; 1258 case bitc::RMW_FMIN: return AtomicRMWInst::FMin; 1259 case bitc::RMW_UINC_WRAP: 1260 return AtomicRMWInst::UIncWrap; 1261 case bitc::RMW_UDEC_WRAP: 1262 return AtomicRMWInst::UDecWrap; 1263 } 1264 } 1265 1266 static AtomicOrdering getDecodedOrdering(unsigned Val) { 1267 switch (Val) { 1268 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 1269 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 1270 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 1271 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 1272 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 1273 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 1274 default: // Map unknown orderings to sequentially-consistent. 1275 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 1276 } 1277 } 1278 1279 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 1280 switch (Val) { 1281 default: // Map unknown selection kinds to any. 1282 case bitc::COMDAT_SELECTION_KIND_ANY: 1283 return Comdat::Any; 1284 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 1285 return Comdat::ExactMatch; 1286 case bitc::COMDAT_SELECTION_KIND_LARGEST: 1287 return Comdat::Largest; 1288 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 1289 return Comdat::NoDeduplicate; 1290 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 1291 return Comdat::SameSize; 1292 } 1293 } 1294 1295 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 1296 FastMathFlags FMF; 1297 if (0 != (Val & bitc::UnsafeAlgebra)) 1298 FMF.setFast(); 1299 if (0 != (Val & bitc::AllowReassoc)) 1300 FMF.setAllowReassoc(); 1301 if (0 != (Val & bitc::NoNaNs)) 1302 FMF.setNoNaNs(); 1303 if (0 != (Val & bitc::NoInfs)) 1304 FMF.setNoInfs(); 1305 if (0 != (Val & bitc::NoSignedZeros)) 1306 FMF.setNoSignedZeros(); 1307 if (0 != (Val & bitc::AllowReciprocal)) 1308 FMF.setAllowReciprocal(); 1309 if (0 != (Val & bitc::AllowContract)) 1310 FMF.setAllowContract(true); 1311 if (0 != (Val & bitc::ApproxFunc)) 1312 FMF.setApproxFunc(); 1313 return FMF; 1314 } 1315 1316 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) { 1317 // A GlobalValue with local linkage cannot have a DLL storage class. 1318 if (GV->hasLocalLinkage()) 1319 return; 1320 switch (Val) { 1321 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 1322 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 1323 } 1324 } 1325 1326 Type *BitcodeReader::getTypeByID(unsigned ID) { 1327 // The type table size is always specified correctly. 1328 if (ID >= TypeList.size()) 1329 return nullptr; 1330 1331 if (Type *Ty = TypeList[ID]) 1332 return Ty; 1333 1334 // If we have a forward reference, the only possible case is when it is to a 1335 // named struct. Just create a placeholder for now. 1336 return TypeList[ID] = createIdentifiedStructType(Context); 1337 } 1338 1339 unsigned BitcodeReader::getContainedTypeID(unsigned ID, unsigned Idx) { 1340 auto It = ContainedTypeIDs.find(ID); 1341 if (It == ContainedTypeIDs.end()) 1342 return InvalidTypeID; 1343 1344 if (Idx >= It->second.size()) 1345 return InvalidTypeID; 1346 1347 return It->second[Idx]; 1348 } 1349 1350 Type *BitcodeReader::getPtrElementTypeByID(unsigned ID) { 1351 if (ID >= TypeList.size()) 1352 return nullptr; 1353 1354 Type *Ty = TypeList[ID]; 1355 if (!Ty->isPointerTy()) 1356 return nullptr; 1357 1358 Type *ElemTy = getTypeByID(getContainedTypeID(ID, 0)); 1359 if (!ElemTy) 1360 return nullptr; 1361 1362 assert(cast<PointerType>(Ty)->isOpaqueOrPointeeTypeMatches(ElemTy) && 1363 "Incorrect element type"); 1364 return ElemTy; 1365 } 1366 1367 unsigned BitcodeReader::getVirtualTypeID(Type *Ty, 1368 ArrayRef<unsigned> ChildTypeIDs) { 1369 unsigned ChildTypeID = ChildTypeIDs.empty() ? InvalidTypeID : ChildTypeIDs[0]; 1370 auto CacheKey = std::make_pair(Ty, ChildTypeID); 1371 auto It = VirtualTypeIDs.find(CacheKey); 1372 if (It != VirtualTypeIDs.end()) { 1373 // The cmpxchg return value is the only place we need more than one 1374 // contained type ID, however the second one will always be the same (i1), 1375 // so we don't need to include it in the cache key. This asserts that the 1376 // contained types are indeed as expected and there are no collisions. 1377 assert((ChildTypeIDs.empty() || 1378 ContainedTypeIDs[It->second] == ChildTypeIDs) && 1379 "Incorrect cached contained type IDs"); 1380 return It->second; 1381 } 1382 1383 #ifndef NDEBUG 1384 if (!Ty->isOpaquePointerTy()) { 1385 assert(Ty->getNumContainedTypes() == ChildTypeIDs.size() && 1386 "Wrong number of contained types"); 1387 for (auto Pair : zip(Ty->subtypes(), ChildTypeIDs)) { 1388 assert(std::get<0>(Pair) == getTypeByID(std::get<1>(Pair)) && 1389 "Incorrect contained type ID"); 1390 } 1391 } 1392 #endif 1393 1394 unsigned TypeID = TypeList.size(); 1395 TypeList.push_back(Ty); 1396 if (!ChildTypeIDs.empty()) 1397 append_range(ContainedTypeIDs[TypeID], ChildTypeIDs); 1398 VirtualTypeIDs.insert({CacheKey, TypeID}); 1399 return TypeID; 1400 } 1401 1402 static bool isConstExprSupported(uint8_t Opcode) { 1403 // These are not real constant expressions, always consider them supported. 1404 if (Opcode >= BitcodeConstant::FirstSpecialOpcode) 1405 return true; 1406 1407 // If -expand-constant-exprs is set, we want to consider all expressions 1408 // as unsupported. 1409 if (ExpandConstantExprs) 1410 return false; 1411 1412 if (Instruction::isBinaryOp(Opcode)) 1413 return ConstantExpr::isSupportedBinOp(Opcode); 1414 1415 return Opcode != Instruction::FNeg; 1416 } 1417 1418 Expected<Value *> BitcodeReader::materializeValue(unsigned StartValID, 1419 BasicBlock *InsertBB) { 1420 // Quickly handle the case where there is no BitcodeConstant to resolve. 1421 if (StartValID < ValueList.size() && ValueList[StartValID] && 1422 !isa<BitcodeConstant>(ValueList[StartValID])) 1423 return ValueList[StartValID]; 1424 1425 SmallDenseMap<unsigned, Value *> MaterializedValues; 1426 SmallVector<unsigned> Worklist; 1427 Worklist.push_back(StartValID); 1428 while (!Worklist.empty()) { 1429 unsigned ValID = Worklist.back(); 1430 if (MaterializedValues.count(ValID)) { 1431 // Duplicate expression that was already handled. 1432 Worklist.pop_back(); 1433 continue; 1434 } 1435 1436 if (ValID >= ValueList.size() || !ValueList[ValID]) 1437 return error("Invalid value ID"); 1438 1439 Value *V = ValueList[ValID]; 1440 auto *BC = dyn_cast<BitcodeConstant>(V); 1441 if (!BC) { 1442 MaterializedValues.insert({ValID, V}); 1443 Worklist.pop_back(); 1444 continue; 1445 } 1446 1447 // Iterate in reverse, so values will get popped from the worklist in 1448 // expected order. 1449 SmallVector<Value *> Ops; 1450 for (unsigned OpID : reverse(BC->getOperandIDs())) { 1451 auto It = MaterializedValues.find(OpID); 1452 if (It != MaterializedValues.end()) 1453 Ops.push_back(It->second); 1454 else 1455 Worklist.push_back(OpID); 1456 } 1457 1458 // Some expressions have not been resolved yet, handle them first and then 1459 // revisit this one. 1460 if (Ops.size() != BC->getOperandIDs().size()) 1461 continue; 1462 std::reverse(Ops.begin(), Ops.end()); 1463 1464 SmallVector<Constant *> ConstOps; 1465 for (Value *Op : Ops) 1466 if (auto *C = dyn_cast<Constant>(Op)) 1467 ConstOps.push_back(C); 1468 1469 // Materialize as constant expression if possible. 1470 if (isConstExprSupported(BC->Opcode) && ConstOps.size() == Ops.size()) { 1471 Constant *C; 1472 if (Instruction::isCast(BC->Opcode)) { 1473 C = UpgradeBitCastExpr(BC->Opcode, ConstOps[0], BC->getType()); 1474 if (!C) 1475 C = ConstantExpr::getCast(BC->Opcode, ConstOps[0], BC->getType()); 1476 } else if (Instruction::isBinaryOp(BC->Opcode)) { 1477 C = ConstantExpr::get(BC->Opcode, ConstOps[0], ConstOps[1], BC->Flags); 1478 } else { 1479 switch (BC->Opcode) { 1480 case BitcodeConstant::NoCFIOpcode: { 1481 auto *GV = dyn_cast<GlobalValue>(ConstOps[0]); 1482 if (!GV) 1483 return error("no_cfi operand must be GlobalValue"); 1484 C = NoCFIValue::get(GV); 1485 break; 1486 } 1487 case BitcodeConstant::DSOLocalEquivalentOpcode: { 1488 auto *GV = dyn_cast<GlobalValue>(ConstOps[0]); 1489 if (!GV) 1490 return error("dso_local operand must be GlobalValue"); 1491 C = DSOLocalEquivalent::get(GV); 1492 break; 1493 } 1494 case BitcodeConstant::BlockAddressOpcode: { 1495 Function *Fn = dyn_cast<Function>(ConstOps[0]); 1496 if (!Fn) 1497 return error("blockaddress operand must be a function"); 1498 1499 // If the function is already parsed we can insert the block address 1500 // right away. 1501 BasicBlock *BB; 1502 unsigned BBID = BC->Extra; 1503 if (!BBID) 1504 // Invalid reference to entry block. 1505 return error("Invalid ID"); 1506 if (!Fn->empty()) { 1507 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 1508 for (size_t I = 0, E = BBID; I != E; ++I) { 1509 if (BBI == BBE) 1510 return error("Invalid ID"); 1511 ++BBI; 1512 } 1513 BB = &*BBI; 1514 } else { 1515 // Otherwise insert a placeholder and remember it so it can be 1516 // inserted when the function is parsed. 1517 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 1518 if (FwdBBs.empty()) 1519 BasicBlockFwdRefQueue.push_back(Fn); 1520 if (FwdBBs.size() < BBID + 1) 1521 FwdBBs.resize(BBID + 1); 1522 if (!FwdBBs[BBID]) 1523 FwdBBs[BBID] = BasicBlock::Create(Context); 1524 BB = FwdBBs[BBID]; 1525 } 1526 C = BlockAddress::get(Fn, BB); 1527 break; 1528 } 1529 case BitcodeConstant::ConstantStructOpcode: 1530 C = ConstantStruct::get(cast<StructType>(BC->getType()), ConstOps); 1531 break; 1532 case BitcodeConstant::ConstantArrayOpcode: 1533 C = ConstantArray::get(cast<ArrayType>(BC->getType()), ConstOps); 1534 break; 1535 case BitcodeConstant::ConstantVectorOpcode: 1536 C = ConstantVector::get(ConstOps); 1537 break; 1538 case Instruction::ICmp: 1539 case Instruction::FCmp: 1540 C = ConstantExpr::getCompare(BC->Flags, ConstOps[0], ConstOps[1]); 1541 break; 1542 case Instruction::GetElementPtr: 1543 C = ConstantExpr::getGetElementPtr(BC->SrcElemTy, ConstOps[0], 1544 ArrayRef(ConstOps).drop_front(), 1545 BC->Flags, BC->getInRangeIndex()); 1546 break; 1547 case Instruction::Select: 1548 C = ConstantExpr::getSelect(ConstOps[0], ConstOps[1], ConstOps[2]); 1549 break; 1550 case Instruction::ExtractElement: 1551 C = ConstantExpr::getExtractElement(ConstOps[0], ConstOps[1]); 1552 break; 1553 case Instruction::InsertElement: 1554 C = ConstantExpr::getInsertElement(ConstOps[0], ConstOps[1], 1555 ConstOps[2]); 1556 break; 1557 case Instruction::ShuffleVector: { 1558 SmallVector<int, 16> Mask; 1559 ShuffleVectorInst::getShuffleMask(ConstOps[2], Mask); 1560 C = ConstantExpr::getShuffleVector(ConstOps[0], ConstOps[1], Mask); 1561 break; 1562 } 1563 default: 1564 llvm_unreachable("Unhandled bitcode constant"); 1565 } 1566 } 1567 1568 // Cache resolved constant. 1569 ValueList.replaceValueWithoutRAUW(ValID, C); 1570 MaterializedValues.insert({ValID, C}); 1571 Worklist.pop_back(); 1572 continue; 1573 } 1574 1575 if (!InsertBB) 1576 return error(Twine("Value referenced by initializer is an unsupported " 1577 "constant expression of type ") + 1578 BC->getOpcodeName()); 1579 1580 // Materialize as instructions if necessary. 1581 Instruction *I; 1582 if (Instruction::isCast(BC->Opcode)) { 1583 I = CastInst::Create((Instruction::CastOps)BC->Opcode, Ops[0], 1584 BC->getType(), "constexpr", InsertBB); 1585 } else if (Instruction::isUnaryOp(BC->Opcode)) { 1586 I = UnaryOperator::Create((Instruction::UnaryOps)BC->Opcode, Ops[0], 1587 "constexpr", InsertBB); 1588 } else if (Instruction::isBinaryOp(BC->Opcode)) { 1589 I = BinaryOperator::Create((Instruction::BinaryOps)BC->Opcode, Ops[0], 1590 Ops[1], "constexpr", InsertBB); 1591 if (isa<OverflowingBinaryOperator>(I)) { 1592 if (BC->Flags & OverflowingBinaryOperator::NoSignedWrap) 1593 I->setHasNoSignedWrap(); 1594 if (BC->Flags & OverflowingBinaryOperator::NoUnsignedWrap) 1595 I->setHasNoUnsignedWrap(); 1596 } 1597 if (isa<PossiblyExactOperator>(I) && 1598 (BC->Flags & PossiblyExactOperator::IsExact)) 1599 I->setIsExact(); 1600 } else { 1601 switch (BC->Opcode) { 1602 case BitcodeConstant::ConstantVectorOpcode: { 1603 Type *IdxTy = Type::getInt32Ty(BC->getContext()); 1604 Value *V = PoisonValue::get(BC->getType()); 1605 for (auto Pair : enumerate(Ops)) { 1606 Value *Idx = ConstantInt::get(IdxTy, Pair.index()); 1607 V = InsertElementInst::Create(V, Pair.value(), Idx, "constexpr.ins", 1608 InsertBB); 1609 } 1610 I = cast<Instruction>(V); 1611 break; 1612 } 1613 case BitcodeConstant::ConstantStructOpcode: 1614 case BitcodeConstant::ConstantArrayOpcode: { 1615 Value *V = PoisonValue::get(BC->getType()); 1616 for (auto Pair : enumerate(Ops)) 1617 V = InsertValueInst::Create(V, Pair.value(), Pair.index(), 1618 "constexpr.ins", InsertBB); 1619 I = cast<Instruction>(V); 1620 break; 1621 } 1622 case Instruction::ICmp: 1623 case Instruction::FCmp: 1624 I = CmpInst::Create((Instruction::OtherOps)BC->Opcode, 1625 (CmpInst::Predicate)BC->Flags, Ops[0], Ops[1], 1626 "constexpr", InsertBB); 1627 break; 1628 case Instruction::GetElementPtr: 1629 I = GetElementPtrInst::Create(BC->SrcElemTy, Ops[0], 1630 ArrayRef(Ops).drop_front(), "constexpr", 1631 InsertBB); 1632 if (BC->Flags) 1633 cast<GetElementPtrInst>(I)->setIsInBounds(); 1634 break; 1635 case Instruction::Select: 1636 I = SelectInst::Create(Ops[0], Ops[1], Ops[2], "constexpr", InsertBB); 1637 break; 1638 case Instruction::ExtractElement: 1639 I = ExtractElementInst::Create(Ops[0], Ops[1], "constexpr", InsertBB); 1640 break; 1641 case Instruction::InsertElement: 1642 I = InsertElementInst::Create(Ops[0], Ops[1], Ops[2], "constexpr", 1643 InsertBB); 1644 break; 1645 case Instruction::ShuffleVector: 1646 I = new ShuffleVectorInst(Ops[0], Ops[1], Ops[2], "constexpr", 1647 InsertBB); 1648 break; 1649 default: 1650 llvm_unreachable("Unhandled bitcode constant"); 1651 } 1652 } 1653 1654 MaterializedValues.insert({ValID, I}); 1655 Worklist.pop_back(); 1656 } 1657 1658 return MaterializedValues[StartValID]; 1659 } 1660 1661 Expected<Constant *> BitcodeReader::getValueForInitializer(unsigned ID) { 1662 Expected<Value *> MaybeV = materializeValue(ID, /* InsertBB */ nullptr); 1663 if (!MaybeV) 1664 return MaybeV.takeError(); 1665 1666 // Result must be Constant if InsertBB is nullptr. 1667 return cast<Constant>(MaybeV.get()); 1668 } 1669 1670 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1671 StringRef Name) { 1672 auto *Ret = StructType::create(Context, Name); 1673 IdentifiedStructTypes.push_back(Ret); 1674 return Ret; 1675 } 1676 1677 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1678 auto *Ret = StructType::create(Context); 1679 IdentifiedStructTypes.push_back(Ret); 1680 return Ret; 1681 } 1682 1683 //===----------------------------------------------------------------------===// 1684 // Functions for parsing blocks from the bitcode file 1685 //===----------------------------------------------------------------------===// 1686 1687 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) { 1688 switch (Val) { 1689 case Attribute::EndAttrKinds: 1690 case Attribute::EmptyKey: 1691 case Attribute::TombstoneKey: 1692 llvm_unreachable("Synthetic enumerators which should never get here"); 1693 1694 case Attribute::None: return 0; 1695 case Attribute::ZExt: return 1 << 0; 1696 case Attribute::SExt: return 1 << 1; 1697 case Attribute::NoReturn: return 1 << 2; 1698 case Attribute::InReg: return 1 << 3; 1699 case Attribute::StructRet: return 1 << 4; 1700 case Attribute::NoUnwind: return 1 << 5; 1701 case Attribute::NoAlias: return 1 << 6; 1702 case Attribute::ByVal: return 1 << 7; 1703 case Attribute::Nest: return 1 << 8; 1704 case Attribute::ReadNone: return 1 << 9; 1705 case Attribute::ReadOnly: return 1 << 10; 1706 case Attribute::NoInline: return 1 << 11; 1707 case Attribute::AlwaysInline: return 1 << 12; 1708 case Attribute::OptimizeForSize: return 1 << 13; 1709 case Attribute::StackProtect: return 1 << 14; 1710 case Attribute::StackProtectReq: return 1 << 15; 1711 case Attribute::Alignment: return 31 << 16; 1712 case Attribute::NoCapture: return 1 << 21; 1713 case Attribute::NoRedZone: return 1 << 22; 1714 case Attribute::NoImplicitFloat: return 1 << 23; 1715 case Attribute::Naked: return 1 << 24; 1716 case Attribute::InlineHint: return 1 << 25; 1717 case Attribute::StackAlignment: return 7 << 26; 1718 case Attribute::ReturnsTwice: return 1 << 29; 1719 case Attribute::UWTable: return 1 << 30; 1720 case Attribute::NonLazyBind: return 1U << 31; 1721 case Attribute::SanitizeAddress: return 1ULL << 32; 1722 case Attribute::MinSize: return 1ULL << 33; 1723 case Attribute::NoDuplicate: return 1ULL << 34; 1724 case Attribute::StackProtectStrong: return 1ULL << 35; 1725 case Attribute::SanitizeThread: return 1ULL << 36; 1726 case Attribute::SanitizeMemory: return 1ULL << 37; 1727 case Attribute::NoBuiltin: return 1ULL << 38; 1728 case Attribute::Returned: return 1ULL << 39; 1729 case Attribute::Cold: return 1ULL << 40; 1730 case Attribute::Builtin: return 1ULL << 41; 1731 case Attribute::OptimizeNone: return 1ULL << 42; 1732 case Attribute::InAlloca: return 1ULL << 43; 1733 case Attribute::NonNull: return 1ULL << 44; 1734 case Attribute::JumpTable: return 1ULL << 45; 1735 case Attribute::Convergent: return 1ULL << 46; 1736 case Attribute::SafeStack: return 1ULL << 47; 1737 case Attribute::NoRecurse: return 1ULL << 48; 1738 // 1ULL << 49 is InaccessibleMemOnly, which is upgraded separately. 1739 // 1ULL << 50 is InaccessibleMemOrArgMemOnly, which is upgraded separately. 1740 case Attribute::SwiftSelf: return 1ULL << 51; 1741 case Attribute::SwiftError: return 1ULL << 52; 1742 case Attribute::WriteOnly: return 1ULL << 53; 1743 case Attribute::Speculatable: return 1ULL << 54; 1744 case Attribute::StrictFP: return 1ULL << 55; 1745 case Attribute::SanitizeHWAddress: return 1ULL << 56; 1746 case Attribute::NoCfCheck: return 1ULL << 57; 1747 case Attribute::OptForFuzzing: return 1ULL << 58; 1748 case Attribute::ShadowCallStack: return 1ULL << 59; 1749 case Attribute::SpeculativeLoadHardening: 1750 return 1ULL << 60; 1751 case Attribute::ImmArg: 1752 return 1ULL << 61; 1753 case Attribute::WillReturn: 1754 return 1ULL << 62; 1755 case Attribute::NoFree: 1756 return 1ULL << 63; 1757 default: 1758 // Other attributes are not supported in the raw format, 1759 // as we ran out of space. 1760 return 0; 1761 } 1762 llvm_unreachable("Unsupported attribute type"); 1763 } 1764 1765 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) { 1766 if (!Val) return; 1767 1768 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; 1769 I = Attribute::AttrKind(I + 1)) { 1770 if (uint64_t A = (Val & getRawAttributeMask(I))) { 1771 if (I == Attribute::Alignment) 1772 B.addAlignmentAttr(1ULL << ((A >> 16) - 1)); 1773 else if (I == Attribute::StackAlignment) 1774 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1)); 1775 else if (Attribute::isTypeAttrKind(I)) 1776 B.addTypeAttr(I, nullptr); // Type will be auto-upgraded. 1777 else 1778 B.addAttribute(I); 1779 } 1780 } 1781 } 1782 1783 /// This fills an AttrBuilder object with the LLVM attributes that have 1784 /// been decoded from the given integer. This function must stay in sync with 1785 /// 'encodeLLVMAttributesForBitcode'. 1786 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1787 uint64_t EncodedAttrs, 1788 uint64_t AttrIdx) { 1789 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1790 // the bits above 31 down by 11 bits. 1791 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1792 assert((!Alignment || isPowerOf2_32(Alignment)) && 1793 "Alignment must be a power of two."); 1794 1795 if (Alignment) 1796 B.addAlignmentAttr(Alignment); 1797 1798 uint64_t Attrs = ((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1799 (EncodedAttrs & 0xffff); 1800 1801 if (AttrIdx == AttributeList::FunctionIndex) { 1802 // Upgrade old memory attributes. 1803 MemoryEffects ME = MemoryEffects::unknown(); 1804 if (Attrs & (1ULL << 9)) { 1805 // ReadNone 1806 Attrs &= ~(1ULL << 9); 1807 ME &= MemoryEffects::none(); 1808 } 1809 if (Attrs & (1ULL << 10)) { 1810 // ReadOnly 1811 Attrs &= ~(1ULL << 10); 1812 ME &= MemoryEffects::readOnly(); 1813 } 1814 if (Attrs & (1ULL << 49)) { 1815 // InaccessibleMemOnly 1816 Attrs &= ~(1ULL << 49); 1817 ME &= MemoryEffects::inaccessibleMemOnly(); 1818 } 1819 if (Attrs & (1ULL << 50)) { 1820 // InaccessibleMemOrArgMemOnly 1821 Attrs &= ~(1ULL << 50); 1822 ME &= MemoryEffects::inaccessibleOrArgMemOnly(); 1823 } 1824 if (Attrs & (1ULL << 53)) { 1825 // WriteOnly 1826 Attrs &= ~(1ULL << 53); 1827 ME &= MemoryEffects::writeOnly(); 1828 } 1829 if (ME != MemoryEffects::unknown()) 1830 B.addMemoryAttr(ME); 1831 } 1832 1833 addRawAttributeValue(B, Attrs); 1834 } 1835 1836 Error BitcodeReader::parseAttributeBlock() { 1837 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1838 return Err; 1839 1840 if (!MAttributes.empty()) 1841 return error("Invalid multiple blocks"); 1842 1843 SmallVector<uint64_t, 64> Record; 1844 1845 SmallVector<AttributeList, 8> Attrs; 1846 1847 // Read all the records. 1848 while (true) { 1849 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1850 if (!MaybeEntry) 1851 return MaybeEntry.takeError(); 1852 BitstreamEntry Entry = MaybeEntry.get(); 1853 1854 switch (Entry.Kind) { 1855 case BitstreamEntry::SubBlock: // Handled for us already. 1856 case BitstreamEntry::Error: 1857 return error("Malformed block"); 1858 case BitstreamEntry::EndBlock: 1859 return Error::success(); 1860 case BitstreamEntry::Record: 1861 // The interesting case. 1862 break; 1863 } 1864 1865 // Read a record. 1866 Record.clear(); 1867 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1868 if (!MaybeRecord) 1869 return MaybeRecord.takeError(); 1870 switch (MaybeRecord.get()) { 1871 default: // Default behavior: ignore. 1872 break; 1873 case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...] 1874 // Deprecated, but still needed to read old bitcode files. 1875 if (Record.size() & 1) 1876 return error("Invalid parameter attribute record"); 1877 1878 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1879 AttrBuilder B(Context); 1880 decodeLLVMAttributesForBitcode(B, Record[i+1], Record[i]); 1881 Attrs.push_back(AttributeList::get(Context, Record[i], B)); 1882 } 1883 1884 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1885 Attrs.clear(); 1886 break; 1887 case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...] 1888 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1889 Attrs.push_back(MAttributeGroups[Record[i]]); 1890 1891 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1892 Attrs.clear(); 1893 break; 1894 } 1895 } 1896 } 1897 1898 // Returns Attribute::None on unrecognized codes. 1899 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1900 switch (Code) { 1901 default: 1902 return Attribute::None; 1903 case bitc::ATTR_KIND_ALIGNMENT: 1904 return Attribute::Alignment; 1905 case bitc::ATTR_KIND_ALWAYS_INLINE: 1906 return Attribute::AlwaysInline; 1907 case bitc::ATTR_KIND_BUILTIN: 1908 return Attribute::Builtin; 1909 case bitc::ATTR_KIND_BY_VAL: 1910 return Attribute::ByVal; 1911 case bitc::ATTR_KIND_IN_ALLOCA: 1912 return Attribute::InAlloca; 1913 case bitc::ATTR_KIND_COLD: 1914 return Attribute::Cold; 1915 case bitc::ATTR_KIND_CONVERGENT: 1916 return Attribute::Convergent; 1917 case bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION: 1918 return Attribute::DisableSanitizerInstrumentation; 1919 case bitc::ATTR_KIND_ELEMENTTYPE: 1920 return Attribute::ElementType; 1921 case bitc::ATTR_KIND_FNRETTHUNK_EXTERN: 1922 return Attribute::FnRetThunkExtern; 1923 case bitc::ATTR_KIND_INLINE_HINT: 1924 return Attribute::InlineHint; 1925 case bitc::ATTR_KIND_IN_REG: 1926 return Attribute::InReg; 1927 case bitc::ATTR_KIND_JUMP_TABLE: 1928 return Attribute::JumpTable; 1929 case bitc::ATTR_KIND_MEMORY: 1930 return Attribute::Memory; 1931 case bitc::ATTR_KIND_NOFPCLASS: 1932 return Attribute::NoFPClass; 1933 case bitc::ATTR_KIND_MIN_SIZE: 1934 return Attribute::MinSize; 1935 case bitc::ATTR_KIND_NAKED: 1936 return Attribute::Naked; 1937 case bitc::ATTR_KIND_NEST: 1938 return Attribute::Nest; 1939 case bitc::ATTR_KIND_NO_ALIAS: 1940 return Attribute::NoAlias; 1941 case bitc::ATTR_KIND_NO_BUILTIN: 1942 return Attribute::NoBuiltin; 1943 case bitc::ATTR_KIND_NO_CALLBACK: 1944 return Attribute::NoCallback; 1945 case bitc::ATTR_KIND_NO_CAPTURE: 1946 return Attribute::NoCapture; 1947 case bitc::ATTR_KIND_NO_DUPLICATE: 1948 return Attribute::NoDuplicate; 1949 case bitc::ATTR_KIND_NOFREE: 1950 return Attribute::NoFree; 1951 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1952 return Attribute::NoImplicitFloat; 1953 case bitc::ATTR_KIND_NO_INLINE: 1954 return Attribute::NoInline; 1955 case bitc::ATTR_KIND_NO_RECURSE: 1956 return Attribute::NoRecurse; 1957 case bitc::ATTR_KIND_NO_MERGE: 1958 return Attribute::NoMerge; 1959 case bitc::ATTR_KIND_NON_LAZY_BIND: 1960 return Attribute::NonLazyBind; 1961 case bitc::ATTR_KIND_NON_NULL: 1962 return Attribute::NonNull; 1963 case bitc::ATTR_KIND_DEREFERENCEABLE: 1964 return Attribute::Dereferenceable; 1965 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1966 return Attribute::DereferenceableOrNull; 1967 case bitc::ATTR_KIND_ALLOC_ALIGN: 1968 return Attribute::AllocAlign; 1969 case bitc::ATTR_KIND_ALLOC_KIND: 1970 return Attribute::AllocKind; 1971 case bitc::ATTR_KIND_ALLOC_SIZE: 1972 return Attribute::AllocSize; 1973 case bitc::ATTR_KIND_ALLOCATED_POINTER: 1974 return Attribute::AllocatedPointer; 1975 case bitc::ATTR_KIND_NO_RED_ZONE: 1976 return Attribute::NoRedZone; 1977 case bitc::ATTR_KIND_NO_RETURN: 1978 return Attribute::NoReturn; 1979 case bitc::ATTR_KIND_NOSYNC: 1980 return Attribute::NoSync; 1981 case bitc::ATTR_KIND_NOCF_CHECK: 1982 return Attribute::NoCfCheck; 1983 case bitc::ATTR_KIND_NO_PROFILE: 1984 return Attribute::NoProfile; 1985 case bitc::ATTR_KIND_SKIP_PROFILE: 1986 return Attribute::SkipProfile; 1987 case bitc::ATTR_KIND_NO_UNWIND: 1988 return Attribute::NoUnwind; 1989 case bitc::ATTR_KIND_NO_SANITIZE_BOUNDS: 1990 return Attribute::NoSanitizeBounds; 1991 case bitc::ATTR_KIND_NO_SANITIZE_COVERAGE: 1992 return Attribute::NoSanitizeCoverage; 1993 case bitc::ATTR_KIND_NULL_POINTER_IS_VALID: 1994 return Attribute::NullPointerIsValid; 1995 case bitc::ATTR_KIND_OPT_FOR_FUZZING: 1996 return Attribute::OptForFuzzing; 1997 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1998 return Attribute::OptimizeForSize; 1999 case bitc::ATTR_KIND_OPTIMIZE_NONE: 2000 return Attribute::OptimizeNone; 2001 case bitc::ATTR_KIND_READ_NONE: 2002 return Attribute::ReadNone; 2003 case bitc::ATTR_KIND_READ_ONLY: 2004 return Attribute::ReadOnly; 2005 case bitc::ATTR_KIND_RETURNED: 2006 return Attribute::Returned; 2007 case bitc::ATTR_KIND_RETURNS_TWICE: 2008 return Attribute::ReturnsTwice; 2009 case bitc::ATTR_KIND_S_EXT: 2010 return Attribute::SExt; 2011 case bitc::ATTR_KIND_SPECULATABLE: 2012 return Attribute::Speculatable; 2013 case bitc::ATTR_KIND_STACK_ALIGNMENT: 2014 return Attribute::StackAlignment; 2015 case bitc::ATTR_KIND_STACK_PROTECT: 2016 return Attribute::StackProtect; 2017 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 2018 return Attribute::StackProtectReq; 2019 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 2020 return Attribute::StackProtectStrong; 2021 case bitc::ATTR_KIND_SAFESTACK: 2022 return Attribute::SafeStack; 2023 case bitc::ATTR_KIND_SHADOWCALLSTACK: 2024 return Attribute::ShadowCallStack; 2025 case bitc::ATTR_KIND_STRICT_FP: 2026 return Attribute::StrictFP; 2027 case bitc::ATTR_KIND_STRUCT_RET: 2028 return Attribute::StructRet; 2029 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 2030 return Attribute::SanitizeAddress; 2031 case bitc::ATTR_KIND_SANITIZE_HWADDRESS: 2032 return Attribute::SanitizeHWAddress; 2033 case bitc::ATTR_KIND_SANITIZE_THREAD: 2034 return Attribute::SanitizeThread; 2035 case bitc::ATTR_KIND_SANITIZE_MEMORY: 2036 return Attribute::SanitizeMemory; 2037 case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING: 2038 return Attribute::SpeculativeLoadHardening; 2039 case bitc::ATTR_KIND_SWIFT_ERROR: 2040 return Attribute::SwiftError; 2041 case bitc::ATTR_KIND_SWIFT_SELF: 2042 return Attribute::SwiftSelf; 2043 case bitc::ATTR_KIND_SWIFT_ASYNC: 2044 return Attribute::SwiftAsync; 2045 case bitc::ATTR_KIND_UW_TABLE: 2046 return Attribute::UWTable; 2047 case bitc::ATTR_KIND_VSCALE_RANGE: 2048 return Attribute::VScaleRange; 2049 case bitc::ATTR_KIND_WILLRETURN: 2050 return Attribute::WillReturn; 2051 case bitc::ATTR_KIND_WRITEONLY: 2052 return Attribute::WriteOnly; 2053 case bitc::ATTR_KIND_Z_EXT: 2054 return Attribute::ZExt; 2055 case bitc::ATTR_KIND_IMMARG: 2056 return Attribute::ImmArg; 2057 case bitc::ATTR_KIND_SANITIZE_MEMTAG: 2058 return Attribute::SanitizeMemTag; 2059 case bitc::ATTR_KIND_PREALLOCATED: 2060 return Attribute::Preallocated; 2061 case bitc::ATTR_KIND_NOUNDEF: 2062 return Attribute::NoUndef; 2063 case bitc::ATTR_KIND_BYREF: 2064 return Attribute::ByRef; 2065 case bitc::ATTR_KIND_MUSTPROGRESS: 2066 return Attribute::MustProgress; 2067 case bitc::ATTR_KIND_HOT: 2068 return Attribute::Hot; 2069 case bitc::ATTR_KIND_PRESPLIT_COROUTINE: 2070 return Attribute::PresplitCoroutine; 2071 } 2072 } 2073 2074 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent, 2075 MaybeAlign &Alignment) { 2076 // Note: Alignment in bitcode files is incremented by 1, so that zero 2077 // can be used for default alignment. 2078 if (Exponent > Value::MaxAlignmentExponent + 1) 2079 return error("Invalid alignment value"); 2080 Alignment = decodeMaybeAlign(Exponent); 2081 return Error::success(); 2082 } 2083 2084 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) { 2085 *Kind = getAttrFromCode(Code); 2086 if (*Kind == Attribute::None) 2087 return error("Unknown attribute kind (" + Twine(Code) + ")"); 2088 return Error::success(); 2089 } 2090 2091 static bool upgradeOldMemoryAttribute(MemoryEffects &ME, uint64_t EncodedKind) { 2092 switch (EncodedKind) { 2093 case bitc::ATTR_KIND_READ_NONE: 2094 ME &= MemoryEffects::none(); 2095 return true; 2096 case bitc::ATTR_KIND_READ_ONLY: 2097 ME &= MemoryEffects::readOnly(); 2098 return true; 2099 case bitc::ATTR_KIND_WRITEONLY: 2100 ME &= MemoryEffects::writeOnly(); 2101 return true; 2102 case bitc::ATTR_KIND_ARGMEMONLY: 2103 ME &= MemoryEffects::argMemOnly(); 2104 return true; 2105 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 2106 ME &= MemoryEffects::inaccessibleMemOnly(); 2107 return true; 2108 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 2109 ME &= MemoryEffects::inaccessibleOrArgMemOnly(); 2110 return true; 2111 default: 2112 return false; 2113 } 2114 } 2115 2116 Error BitcodeReader::parseAttributeGroupBlock() { 2117 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 2118 return Err; 2119 2120 if (!MAttributeGroups.empty()) 2121 return error("Invalid multiple blocks"); 2122 2123 SmallVector<uint64_t, 64> Record; 2124 2125 // Read all the records. 2126 while (true) { 2127 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2128 if (!MaybeEntry) 2129 return MaybeEntry.takeError(); 2130 BitstreamEntry Entry = MaybeEntry.get(); 2131 2132 switch (Entry.Kind) { 2133 case BitstreamEntry::SubBlock: // Handled for us already. 2134 case BitstreamEntry::Error: 2135 return error("Malformed block"); 2136 case BitstreamEntry::EndBlock: 2137 return Error::success(); 2138 case BitstreamEntry::Record: 2139 // The interesting case. 2140 break; 2141 } 2142 2143 // Read a record. 2144 Record.clear(); 2145 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2146 if (!MaybeRecord) 2147 return MaybeRecord.takeError(); 2148 switch (MaybeRecord.get()) { 2149 default: // Default behavior: ignore. 2150 break; 2151 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 2152 if (Record.size() < 3) 2153 return error("Invalid grp record"); 2154 2155 uint64_t GrpID = Record[0]; 2156 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 2157 2158 AttrBuilder B(Context); 2159 MemoryEffects ME = MemoryEffects::unknown(); 2160 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 2161 if (Record[i] == 0) { // Enum attribute 2162 Attribute::AttrKind Kind; 2163 uint64_t EncodedKind = Record[++i]; 2164 if (Idx == AttributeList::FunctionIndex && 2165 upgradeOldMemoryAttribute(ME, EncodedKind)) 2166 continue; 2167 2168 if (Error Err = parseAttrKind(EncodedKind, &Kind)) 2169 return Err; 2170 2171 // Upgrade old-style byval attribute to one with a type, even if it's 2172 // nullptr. We will have to insert the real type when we associate 2173 // this AttributeList with a function. 2174 if (Kind == Attribute::ByVal) 2175 B.addByValAttr(nullptr); 2176 else if (Kind == Attribute::StructRet) 2177 B.addStructRetAttr(nullptr); 2178 else if (Kind == Attribute::InAlloca) 2179 B.addInAllocaAttr(nullptr); 2180 else if (Kind == Attribute::UWTable) 2181 B.addUWTableAttr(UWTableKind::Default); 2182 else if (Attribute::isEnumAttrKind(Kind)) 2183 B.addAttribute(Kind); 2184 else 2185 return error("Not an enum attribute"); 2186 } else if (Record[i] == 1) { // Integer attribute 2187 Attribute::AttrKind Kind; 2188 if (Error Err = parseAttrKind(Record[++i], &Kind)) 2189 return Err; 2190 if (!Attribute::isIntAttrKind(Kind)) 2191 return error("Not an int attribute"); 2192 if (Kind == Attribute::Alignment) 2193 B.addAlignmentAttr(Record[++i]); 2194 else if (Kind == Attribute::StackAlignment) 2195 B.addStackAlignmentAttr(Record[++i]); 2196 else if (Kind == Attribute::Dereferenceable) 2197 B.addDereferenceableAttr(Record[++i]); 2198 else if (Kind == Attribute::DereferenceableOrNull) 2199 B.addDereferenceableOrNullAttr(Record[++i]); 2200 else if (Kind == Attribute::AllocSize) 2201 B.addAllocSizeAttrFromRawRepr(Record[++i]); 2202 else if (Kind == Attribute::VScaleRange) 2203 B.addVScaleRangeAttrFromRawRepr(Record[++i]); 2204 else if (Kind == Attribute::UWTable) 2205 B.addUWTableAttr(UWTableKind(Record[++i])); 2206 else if (Kind == Attribute::AllocKind) 2207 B.addAllocKindAttr(static_cast<AllocFnKind>(Record[++i])); 2208 else if (Kind == Attribute::Memory) 2209 B.addMemoryAttr(MemoryEffects::createFromIntValue(Record[++i])); 2210 else if (Kind == Attribute::NoFPClass) 2211 B.addNoFPClassAttr( 2212 static_cast<FPClassTest>(Record[++i] & fcAllFlags)); 2213 } else if (Record[i] == 3 || Record[i] == 4) { // String attribute 2214 bool HasValue = (Record[i++] == 4); 2215 SmallString<64> KindStr; 2216 SmallString<64> ValStr; 2217 2218 while (Record[i] != 0 && i != e) 2219 KindStr += Record[i++]; 2220 assert(Record[i] == 0 && "Kind string not null terminated"); 2221 2222 if (HasValue) { 2223 // Has a value associated with it. 2224 ++i; // Skip the '0' that terminates the "kind" string. 2225 while (Record[i] != 0 && i != e) 2226 ValStr += Record[i++]; 2227 assert(Record[i] == 0 && "Value string not null terminated"); 2228 } 2229 2230 B.addAttribute(KindStr.str(), ValStr.str()); 2231 } else if (Record[i] == 5 || Record[i] == 6) { 2232 bool HasType = Record[i] == 6; 2233 Attribute::AttrKind Kind; 2234 if (Error Err = parseAttrKind(Record[++i], &Kind)) 2235 return Err; 2236 if (!Attribute::isTypeAttrKind(Kind)) 2237 return error("Not a type attribute"); 2238 2239 B.addTypeAttr(Kind, HasType ? getTypeByID(Record[++i]) : nullptr); 2240 } else { 2241 return error("Invalid attribute group entry"); 2242 } 2243 } 2244 2245 if (ME != MemoryEffects::unknown()) 2246 B.addMemoryAttr(ME); 2247 2248 UpgradeAttributes(B); 2249 MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B); 2250 break; 2251 } 2252 } 2253 } 2254 } 2255 2256 Error BitcodeReader::parseTypeTable() { 2257 if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 2258 return Err; 2259 2260 return parseTypeTableBody(); 2261 } 2262 2263 Error BitcodeReader::parseTypeTableBody() { 2264 if (!TypeList.empty()) 2265 return error("Invalid multiple blocks"); 2266 2267 SmallVector<uint64_t, 64> Record; 2268 unsigned NumRecords = 0; 2269 2270 SmallString<64> TypeName; 2271 2272 // Read all the records for this type table. 2273 while (true) { 2274 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2275 if (!MaybeEntry) 2276 return MaybeEntry.takeError(); 2277 BitstreamEntry Entry = MaybeEntry.get(); 2278 2279 switch (Entry.Kind) { 2280 case BitstreamEntry::SubBlock: // Handled for us already. 2281 case BitstreamEntry::Error: 2282 return error("Malformed block"); 2283 case BitstreamEntry::EndBlock: 2284 if (NumRecords != TypeList.size()) 2285 return error("Malformed block"); 2286 return Error::success(); 2287 case BitstreamEntry::Record: 2288 // The interesting case. 2289 break; 2290 } 2291 2292 // Read a record. 2293 Record.clear(); 2294 Type *ResultTy = nullptr; 2295 SmallVector<unsigned> ContainedIDs; 2296 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2297 if (!MaybeRecord) 2298 return MaybeRecord.takeError(); 2299 switch (MaybeRecord.get()) { 2300 default: 2301 return error("Invalid value"); 2302 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 2303 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 2304 // type list. This allows us to reserve space. 2305 if (Record.empty()) 2306 return error("Invalid numentry record"); 2307 TypeList.resize(Record[0]); 2308 continue; 2309 case bitc::TYPE_CODE_VOID: // VOID 2310 ResultTy = Type::getVoidTy(Context); 2311 break; 2312 case bitc::TYPE_CODE_HALF: // HALF 2313 ResultTy = Type::getHalfTy(Context); 2314 break; 2315 case bitc::TYPE_CODE_BFLOAT: // BFLOAT 2316 ResultTy = Type::getBFloatTy(Context); 2317 break; 2318 case bitc::TYPE_CODE_FLOAT: // FLOAT 2319 ResultTy = Type::getFloatTy(Context); 2320 break; 2321 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 2322 ResultTy = Type::getDoubleTy(Context); 2323 break; 2324 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 2325 ResultTy = Type::getX86_FP80Ty(Context); 2326 break; 2327 case bitc::TYPE_CODE_FP128: // FP128 2328 ResultTy = Type::getFP128Ty(Context); 2329 break; 2330 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 2331 ResultTy = Type::getPPC_FP128Ty(Context); 2332 break; 2333 case bitc::TYPE_CODE_LABEL: // LABEL 2334 ResultTy = Type::getLabelTy(Context); 2335 break; 2336 case bitc::TYPE_CODE_METADATA: // METADATA 2337 ResultTy = Type::getMetadataTy(Context); 2338 break; 2339 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 2340 ResultTy = Type::getX86_MMXTy(Context); 2341 break; 2342 case bitc::TYPE_CODE_X86_AMX: // X86_AMX 2343 ResultTy = Type::getX86_AMXTy(Context); 2344 break; 2345 case bitc::TYPE_CODE_TOKEN: // TOKEN 2346 ResultTy = Type::getTokenTy(Context); 2347 break; 2348 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 2349 if (Record.empty()) 2350 return error("Invalid integer record"); 2351 2352 uint64_t NumBits = Record[0]; 2353 if (NumBits < IntegerType::MIN_INT_BITS || 2354 NumBits > IntegerType::MAX_INT_BITS) 2355 return error("Bitwidth for integer type out of range"); 2356 ResultTy = IntegerType::get(Context, NumBits); 2357 break; 2358 } 2359 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 2360 // [pointee type, address space] 2361 if (Record.empty()) 2362 return error("Invalid pointer record"); 2363 unsigned AddressSpace = 0; 2364 if (Record.size() == 2) 2365 AddressSpace = Record[1]; 2366 ResultTy = getTypeByID(Record[0]); 2367 if (!ResultTy || 2368 !PointerType::isValidElementType(ResultTy)) 2369 return error("Invalid type"); 2370 ContainedIDs.push_back(Record[0]); 2371 ResultTy = PointerType::get(ResultTy, AddressSpace); 2372 break; 2373 } 2374 case bitc::TYPE_CODE_OPAQUE_POINTER: { // OPAQUE_POINTER: [addrspace] 2375 if (Record.size() != 1) 2376 return error("Invalid opaque pointer record"); 2377 if (Context.supportsTypedPointers()) 2378 return error( 2379 "Opaque pointers are only supported in -opaque-pointers mode"); 2380 unsigned AddressSpace = Record[0]; 2381 ResultTy = PointerType::get(Context, AddressSpace); 2382 break; 2383 } 2384 case bitc::TYPE_CODE_FUNCTION_OLD: { 2385 // Deprecated, but still needed to read old bitcode files. 2386 // FUNCTION: [vararg, attrid, retty, paramty x N] 2387 if (Record.size() < 3) 2388 return error("Invalid function record"); 2389 SmallVector<Type*, 8> ArgTys; 2390 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 2391 if (Type *T = getTypeByID(Record[i])) 2392 ArgTys.push_back(T); 2393 else 2394 break; 2395 } 2396 2397 ResultTy = getTypeByID(Record[2]); 2398 if (!ResultTy || ArgTys.size() < Record.size()-3) 2399 return error("Invalid type"); 2400 2401 ContainedIDs.append(Record.begin() + 2, Record.end()); 2402 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 2403 break; 2404 } 2405 case bitc::TYPE_CODE_FUNCTION: { 2406 // FUNCTION: [vararg, retty, paramty x N] 2407 if (Record.size() < 2) 2408 return error("Invalid function record"); 2409 SmallVector<Type*, 8> ArgTys; 2410 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 2411 if (Type *T = getTypeByID(Record[i])) { 2412 if (!FunctionType::isValidArgumentType(T)) 2413 return error("Invalid function argument type"); 2414 ArgTys.push_back(T); 2415 } 2416 else 2417 break; 2418 } 2419 2420 ResultTy = getTypeByID(Record[1]); 2421 if (!ResultTy || ArgTys.size() < Record.size()-2) 2422 return error("Invalid type"); 2423 2424 ContainedIDs.append(Record.begin() + 1, Record.end()); 2425 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 2426 break; 2427 } 2428 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 2429 if (Record.empty()) 2430 return error("Invalid anon struct record"); 2431 SmallVector<Type*, 8> EltTys; 2432 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 2433 if (Type *T = getTypeByID(Record[i])) 2434 EltTys.push_back(T); 2435 else 2436 break; 2437 } 2438 if (EltTys.size() != Record.size()-1) 2439 return error("Invalid type"); 2440 ContainedIDs.append(Record.begin() + 1, Record.end()); 2441 ResultTy = StructType::get(Context, EltTys, Record[0]); 2442 break; 2443 } 2444 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 2445 if (convertToString(Record, 0, TypeName)) 2446 return error("Invalid struct name record"); 2447 continue; 2448 2449 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 2450 if (Record.empty()) 2451 return error("Invalid named struct record"); 2452 2453 if (NumRecords >= TypeList.size()) 2454 return error("Invalid TYPE table"); 2455 2456 // Check to see if this was forward referenced, if so fill in the temp. 2457 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 2458 if (Res) { 2459 Res->setName(TypeName); 2460 TypeList[NumRecords] = nullptr; 2461 } else // Otherwise, create a new struct. 2462 Res = createIdentifiedStructType(Context, TypeName); 2463 TypeName.clear(); 2464 2465 SmallVector<Type*, 8> EltTys; 2466 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 2467 if (Type *T = getTypeByID(Record[i])) 2468 EltTys.push_back(T); 2469 else 2470 break; 2471 } 2472 if (EltTys.size() != Record.size()-1) 2473 return error("Invalid named struct record"); 2474 Res->setBody(EltTys, Record[0]); 2475 ContainedIDs.append(Record.begin() + 1, Record.end()); 2476 ResultTy = Res; 2477 break; 2478 } 2479 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 2480 if (Record.size() != 1) 2481 return error("Invalid opaque type record"); 2482 2483 if (NumRecords >= TypeList.size()) 2484 return error("Invalid TYPE table"); 2485 2486 // Check to see if this was forward referenced, if so fill in the temp. 2487 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 2488 if (Res) { 2489 Res->setName(TypeName); 2490 TypeList[NumRecords] = nullptr; 2491 } else // Otherwise, create a new struct with no body. 2492 Res = createIdentifiedStructType(Context, TypeName); 2493 TypeName.clear(); 2494 ResultTy = Res; 2495 break; 2496 } 2497 case bitc::TYPE_CODE_TARGET_TYPE: { // TARGET_TYPE: [NumTy, Tys..., Ints...] 2498 if (Record.size() < 1) 2499 return error("Invalid target extension type record"); 2500 2501 if (NumRecords >= TypeList.size()) 2502 return error("Invalid TYPE table"); 2503 2504 if (Record[0] >= Record.size()) 2505 return error("Too many type parameters"); 2506 2507 unsigned NumTys = Record[0]; 2508 SmallVector<Type *, 4> TypeParams; 2509 SmallVector<unsigned, 8> IntParams; 2510 for (unsigned i = 0; i < NumTys; i++) { 2511 if (Type *T = getTypeByID(Record[i + 1])) 2512 TypeParams.push_back(T); 2513 else 2514 return error("Invalid type"); 2515 } 2516 2517 for (unsigned i = NumTys + 1, e = Record.size(); i < e; i++) { 2518 if (Record[i] > UINT_MAX) 2519 return error("Integer parameter too large"); 2520 IntParams.push_back(Record[i]); 2521 } 2522 ResultTy = TargetExtType::get(Context, TypeName, TypeParams, IntParams); 2523 TypeName.clear(); 2524 break; 2525 } 2526 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 2527 if (Record.size() < 2) 2528 return error("Invalid array type record"); 2529 ResultTy = getTypeByID(Record[1]); 2530 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 2531 return error("Invalid type"); 2532 ContainedIDs.push_back(Record[1]); 2533 ResultTy = ArrayType::get(ResultTy, Record[0]); 2534 break; 2535 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] or 2536 // [numelts, eltty, scalable] 2537 if (Record.size() < 2) 2538 return error("Invalid vector type record"); 2539 if (Record[0] == 0) 2540 return error("Invalid vector length"); 2541 ResultTy = getTypeByID(Record[1]); 2542 if (!ResultTy || !VectorType::isValidElementType(ResultTy)) 2543 return error("Invalid type"); 2544 bool Scalable = Record.size() > 2 ? Record[2] : false; 2545 ContainedIDs.push_back(Record[1]); 2546 ResultTy = VectorType::get(ResultTy, Record[0], Scalable); 2547 break; 2548 } 2549 2550 if (NumRecords >= TypeList.size()) 2551 return error("Invalid TYPE table"); 2552 if (TypeList[NumRecords]) 2553 return error( 2554 "Invalid TYPE table: Only named structs can be forward referenced"); 2555 assert(ResultTy && "Didn't read a type?"); 2556 TypeList[NumRecords] = ResultTy; 2557 if (!ContainedIDs.empty()) 2558 ContainedTypeIDs[NumRecords] = std::move(ContainedIDs); 2559 ++NumRecords; 2560 } 2561 } 2562 2563 Error BitcodeReader::parseOperandBundleTags() { 2564 if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 2565 return Err; 2566 2567 if (!BundleTags.empty()) 2568 return error("Invalid multiple blocks"); 2569 2570 SmallVector<uint64_t, 64> Record; 2571 2572 while (true) { 2573 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2574 if (!MaybeEntry) 2575 return MaybeEntry.takeError(); 2576 BitstreamEntry Entry = MaybeEntry.get(); 2577 2578 switch (Entry.Kind) { 2579 case BitstreamEntry::SubBlock: // Handled for us already. 2580 case BitstreamEntry::Error: 2581 return error("Malformed block"); 2582 case BitstreamEntry::EndBlock: 2583 return Error::success(); 2584 case BitstreamEntry::Record: 2585 // The interesting case. 2586 break; 2587 } 2588 2589 // Tags are implicitly mapped to integers by their order. 2590 2591 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2592 if (!MaybeRecord) 2593 return MaybeRecord.takeError(); 2594 if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG) 2595 return error("Invalid operand bundle record"); 2596 2597 // OPERAND_BUNDLE_TAG: [strchr x N] 2598 BundleTags.emplace_back(); 2599 if (convertToString(Record, 0, BundleTags.back())) 2600 return error("Invalid operand bundle record"); 2601 Record.clear(); 2602 } 2603 } 2604 2605 Error BitcodeReader::parseSyncScopeNames() { 2606 if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID)) 2607 return Err; 2608 2609 if (!SSIDs.empty()) 2610 return error("Invalid multiple synchronization scope names blocks"); 2611 2612 SmallVector<uint64_t, 64> Record; 2613 while (true) { 2614 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2615 if (!MaybeEntry) 2616 return MaybeEntry.takeError(); 2617 BitstreamEntry Entry = MaybeEntry.get(); 2618 2619 switch (Entry.Kind) { 2620 case BitstreamEntry::SubBlock: // Handled for us already. 2621 case BitstreamEntry::Error: 2622 return error("Malformed block"); 2623 case BitstreamEntry::EndBlock: 2624 if (SSIDs.empty()) 2625 return error("Invalid empty synchronization scope names block"); 2626 return Error::success(); 2627 case BitstreamEntry::Record: 2628 // The interesting case. 2629 break; 2630 } 2631 2632 // Synchronization scope names are implicitly mapped to synchronization 2633 // scope IDs by their order. 2634 2635 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2636 if (!MaybeRecord) 2637 return MaybeRecord.takeError(); 2638 if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME) 2639 return error("Invalid sync scope record"); 2640 2641 SmallString<16> SSN; 2642 if (convertToString(Record, 0, SSN)) 2643 return error("Invalid sync scope record"); 2644 2645 SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN)); 2646 Record.clear(); 2647 } 2648 } 2649 2650 /// Associate a value with its name from the given index in the provided record. 2651 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 2652 unsigned NameIndex, Triple &TT) { 2653 SmallString<128> ValueName; 2654 if (convertToString(Record, NameIndex, ValueName)) 2655 return error("Invalid record"); 2656 unsigned ValueID = Record[0]; 2657 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 2658 return error("Invalid record"); 2659 Value *V = ValueList[ValueID]; 2660 2661 StringRef NameStr(ValueName.data(), ValueName.size()); 2662 if (NameStr.find_first_of(0) != StringRef::npos) 2663 return error("Invalid value name"); 2664 V->setName(NameStr); 2665 auto *GO = dyn_cast<GlobalObject>(V); 2666 if (GO && ImplicitComdatObjects.contains(GO) && TT.supportsCOMDAT()) 2667 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 2668 return V; 2669 } 2670 2671 /// Helper to note and return the current location, and jump to the given 2672 /// offset. 2673 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset, 2674 BitstreamCursor &Stream) { 2675 // Save the current parsing location so we can jump back at the end 2676 // of the VST read. 2677 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 2678 if (Error JumpFailed = Stream.JumpToBit(Offset * 32)) 2679 return std::move(JumpFailed); 2680 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 2681 if (!MaybeEntry) 2682 return MaybeEntry.takeError(); 2683 if (MaybeEntry.get().Kind != BitstreamEntry::SubBlock || 2684 MaybeEntry.get().ID != bitc::VALUE_SYMTAB_BLOCK_ID) 2685 return error("Expected value symbol table subblock"); 2686 return CurrentBit; 2687 } 2688 2689 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, 2690 Function *F, 2691 ArrayRef<uint64_t> Record) { 2692 // Note that we subtract 1 here because the offset is relative to one word 2693 // before the start of the identification or module block, which was 2694 // historically always the start of the regular bitcode header. 2695 uint64_t FuncWordOffset = Record[1] - 1; 2696 uint64_t FuncBitOffset = FuncWordOffset * 32; 2697 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 2698 // Set the LastFunctionBlockBit to point to the last function block. 2699 // Later when parsing is resumed after function materialization, 2700 // we can simply skip that last function block. 2701 if (FuncBitOffset > LastFunctionBlockBit) 2702 LastFunctionBlockBit = FuncBitOffset; 2703 } 2704 2705 /// Read a new-style GlobalValue symbol table. 2706 Error BitcodeReader::parseGlobalValueSymbolTable() { 2707 unsigned FuncBitcodeOffsetDelta = 2708 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2709 2710 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2711 return Err; 2712 2713 SmallVector<uint64_t, 64> Record; 2714 while (true) { 2715 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2716 if (!MaybeEntry) 2717 return MaybeEntry.takeError(); 2718 BitstreamEntry Entry = MaybeEntry.get(); 2719 2720 switch (Entry.Kind) { 2721 case BitstreamEntry::SubBlock: 2722 case BitstreamEntry::Error: 2723 return error("Malformed block"); 2724 case BitstreamEntry::EndBlock: 2725 return Error::success(); 2726 case BitstreamEntry::Record: 2727 break; 2728 } 2729 2730 Record.clear(); 2731 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2732 if (!MaybeRecord) 2733 return MaybeRecord.takeError(); 2734 switch (MaybeRecord.get()) { 2735 case bitc::VST_CODE_FNENTRY: { // [valueid, offset] 2736 unsigned ValueID = Record[0]; 2737 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 2738 return error("Invalid value reference in symbol table"); 2739 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, 2740 cast<Function>(ValueList[ValueID]), Record); 2741 break; 2742 } 2743 } 2744 } 2745 } 2746 2747 /// Parse the value symbol table at either the current parsing location or 2748 /// at the given bit offset if provided. 2749 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 2750 uint64_t CurrentBit; 2751 // Pass in the Offset to distinguish between calling for the module-level 2752 // VST (where we want to jump to the VST offset) and the function-level 2753 // VST (where we don't). 2754 if (Offset > 0) { 2755 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 2756 if (!MaybeCurrentBit) 2757 return MaybeCurrentBit.takeError(); 2758 CurrentBit = MaybeCurrentBit.get(); 2759 // If this module uses a string table, read this as a module-level VST. 2760 if (UseStrtab) { 2761 if (Error Err = parseGlobalValueSymbolTable()) 2762 return Err; 2763 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2764 return JumpFailed; 2765 return Error::success(); 2766 } 2767 // Otherwise, the VST will be in a similar format to a function-level VST, 2768 // and will contain symbol names. 2769 } 2770 2771 // Compute the delta between the bitcode indices in the VST (the word offset 2772 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 2773 // expected by the lazy reader. The reader's EnterSubBlock expects to have 2774 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 2775 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 2776 // just before entering the VST subblock because: 1) the EnterSubBlock 2777 // changes the AbbrevID width; 2) the VST block is nested within the same 2778 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 2779 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 2780 // jump to the FUNCTION_BLOCK using this offset later, we don't want 2781 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 2782 unsigned FuncBitcodeOffsetDelta = 2783 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2784 2785 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2786 return Err; 2787 2788 SmallVector<uint64_t, 64> Record; 2789 2790 Triple TT(TheModule->getTargetTriple()); 2791 2792 // Read all the records for this value table. 2793 SmallString<128> ValueName; 2794 2795 while (true) { 2796 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2797 if (!MaybeEntry) 2798 return MaybeEntry.takeError(); 2799 BitstreamEntry Entry = MaybeEntry.get(); 2800 2801 switch (Entry.Kind) { 2802 case BitstreamEntry::SubBlock: // Handled for us already. 2803 case BitstreamEntry::Error: 2804 return error("Malformed block"); 2805 case BitstreamEntry::EndBlock: 2806 if (Offset > 0) 2807 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2808 return JumpFailed; 2809 return Error::success(); 2810 case BitstreamEntry::Record: 2811 // The interesting case. 2812 break; 2813 } 2814 2815 // Read a record. 2816 Record.clear(); 2817 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2818 if (!MaybeRecord) 2819 return MaybeRecord.takeError(); 2820 switch (MaybeRecord.get()) { 2821 default: // Default behavior: unknown type. 2822 break; 2823 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 2824 Expected<Value *> ValOrErr = recordValue(Record, 1, TT); 2825 if (Error Err = ValOrErr.takeError()) 2826 return Err; 2827 ValOrErr.get(); 2828 break; 2829 } 2830 case bitc::VST_CODE_FNENTRY: { 2831 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 2832 Expected<Value *> ValOrErr = recordValue(Record, 2, TT); 2833 if (Error Err = ValOrErr.takeError()) 2834 return Err; 2835 Value *V = ValOrErr.get(); 2836 2837 // Ignore function offsets emitted for aliases of functions in older 2838 // versions of LLVM. 2839 if (auto *F = dyn_cast<Function>(V)) 2840 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record); 2841 break; 2842 } 2843 case bitc::VST_CODE_BBENTRY: { 2844 if (convertToString(Record, 1, ValueName)) 2845 return error("Invalid bbentry record"); 2846 BasicBlock *BB = getBasicBlock(Record[0]); 2847 if (!BB) 2848 return error("Invalid bbentry record"); 2849 2850 BB->setName(StringRef(ValueName.data(), ValueName.size())); 2851 ValueName.clear(); 2852 break; 2853 } 2854 } 2855 } 2856 } 2857 2858 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2859 /// encoding. 2860 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2861 if ((V & 1) == 0) 2862 return V >> 1; 2863 if (V != 1) 2864 return -(V >> 1); 2865 // There is no such thing as -0 with integers. "-0" really means MININT. 2866 return 1ULL << 63; 2867 } 2868 2869 /// Resolve all of the initializers for global values and aliases that we can. 2870 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 2871 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist; 2872 std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInitWorklist; 2873 std::vector<FunctionOperandInfo> FunctionOperandWorklist; 2874 2875 GlobalInitWorklist.swap(GlobalInits); 2876 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 2877 FunctionOperandWorklist.swap(FunctionOperands); 2878 2879 while (!GlobalInitWorklist.empty()) { 2880 unsigned ValID = GlobalInitWorklist.back().second; 2881 if (ValID >= ValueList.size()) { 2882 // Not ready to resolve this yet, it requires something later in the file. 2883 GlobalInits.push_back(GlobalInitWorklist.back()); 2884 } else { 2885 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 2886 if (!MaybeC) 2887 return MaybeC.takeError(); 2888 GlobalInitWorklist.back().first->setInitializer(MaybeC.get()); 2889 } 2890 GlobalInitWorklist.pop_back(); 2891 } 2892 2893 while (!IndirectSymbolInitWorklist.empty()) { 2894 unsigned ValID = IndirectSymbolInitWorklist.back().second; 2895 if (ValID >= ValueList.size()) { 2896 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 2897 } else { 2898 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 2899 if (!MaybeC) 2900 return MaybeC.takeError(); 2901 Constant *C = MaybeC.get(); 2902 GlobalValue *GV = IndirectSymbolInitWorklist.back().first; 2903 if (auto *GA = dyn_cast<GlobalAlias>(GV)) { 2904 if (C->getType() != GV->getType()) 2905 return error("Alias and aliasee types don't match"); 2906 GA->setAliasee(C); 2907 } else if (auto *GI = dyn_cast<GlobalIFunc>(GV)) { 2908 Type *ResolverFTy = 2909 GlobalIFunc::getResolverFunctionType(GI->getValueType()); 2910 // Transparently fix up the type for compatibility with older bitcode 2911 GI->setResolver(ConstantExpr::getBitCast( 2912 C, ResolverFTy->getPointerTo(GI->getAddressSpace()))); 2913 } else { 2914 return error("Expected an alias or an ifunc"); 2915 } 2916 } 2917 IndirectSymbolInitWorklist.pop_back(); 2918 } 2919 2920 while (!FunctionOperandWorklist.empty()) { 2921 FunctionOperandInfo &Info = FunctionOperandWorklist.back(); 2922 if (Info.PersonalityFn) { 2923 unsigned ValID = Info.PersonalityFn - 1; 2924 if (ValID < ValueList.size()) { 2925 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 2926 if (!MaybeC) 2927 return MaybeC.takeError(); 2928 Info.F->setPersonalityFn(MaybeC.get()); 2929 Info.PersonalityFn = 0; 2930 } 2931 } 2932 if (Info.Prefix) { 2933 unsigned ValID = Info.Prefix - 1; 2934 if (ValID < ValueList.size()) { 2935 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 2936 if (!MaybeC) 2937 return MaybeC.takeError(); 2938 Info.F->setPrefixData(MaybeC.get()); 2939 Info.Prefix = 0; 2940 } 2941 } 2942 if (Info.Prologue) { 2943 unsigned ValID = Info.Prologue - 1; 2944 if (ValID < ValueList.size()) { 2945 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 2946 if (!MaybeC) 2947 return MaybeC.takeError(); 2948 Info.F->setPrologueData(MaybeC.get()); 2949 Info.Prologue = 0; 2950 } 2951 } 2952 if (Info.PersonalityFn || Info.Prefix || Info.Prologue) 2953 FunctionOperands.push_back(Info); 2954 FunctionOperandWorklist.pop_back(); 2955 } 2956 2957 return Error::success(); 2958 } 2959 2960 APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2961 SmallVector<uint64_t, 8> Words(Vals.size()); 2962 transform(Vals, Words.begin(), 2963 BitcodeReader::decodeSignRotatedValue); 2964 2965 return APInt(TypeBits, Words); 2966 } 2967 2968 Error BitcodeReader::parseConstants() { 2969 if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2970 return Err; 2971 2972 SmallVector<uint64_t, 64> Record; 2973 2974 // Read all the records for this value table. 2975 Type *CurTy = Type::getInt32Ty(Context); 2976 unsigned Int32TyID = getVirtualTypeID(CurTy); 2977 unsigned CurTyID = Int32TyID; 2978 Type *CurElemTy = nullptr; 2979 unsigned NextCstNo = ValueList.size(); 2980 2981 while (true) { 2982 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2983 if (!MaybeEntry) 2984 return MaybeEntry.takeError(); 2985 BitstreamEntry Entry = MaybeEntry.get(); 2986 2987 switch (Entry.Kind) { 2988 case BitstreamEntry::SubBlock: // Handled for us already. 2989 case BitstreamEntry::Error: 2990 return error("Malformed block"); 2991 case BitstreamEntry::EndBlock: 2992 if (NextCstNo != ValueList.size()) 2993 return error("Invalid constant reference"); 2994 return Error::success(); 2995 case BitstreamEntry::Record: 2996 // The interesting case. 2997 break; 2998 } 2999 3000 // Read a record. 3001 Record.clear(); 3002 Type *VoidType = Type::getVoidTy(Context); 3003 Value *V = nullptr; 3004 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 3005 if (!MaybeBitCode) 3006 return MaybeBitCode.takeError(); 3007 switch (unsigned BitCode = MaybeBitCode.get()) { 3008 default: // Default behavior: unknown constant 3009 case bitc::CST_CODE_UNDEF: // UNDEF 3010 V = UndefValue::get(CurTy); 3011 break; 3012 case bitc::CST_CODE_POISON: // POISON 3013 V = PoisonValue::get(CurTy); 3014 break; 3015 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 3016 if (Record.empty()) 3017 return error("Invalid settype record"); 3018 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 3019 return error("Invalid settype record"); 3020 if (TypeList[Record[0]] == VoidType) 3021 return error("Invalid constant type"); 3022 CurTyID = Record[0]; 3023 CurTy = TypeList[CurTyID]; 3024 CurElemTy = getPtrElementTypeByID(CurTyID); 3025 continue; // Skip the ValueList manipulation. 3026 case bitc::CST_CODE_NULL: // NULL 3027 if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy()) 3028 return error("Invalid type for a constant null value"); 3029 if (auto *TETy = dyn_cast<TargetExtType>(CurTy)) 3030 if (!TETy->hasProperty(TargetExtType::HasZeroInit)) 3031 return error("Invalid type for a constant null value"); 3032 V = Constant::getNullValue(CurTy); 3033 break; 3034 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 3035 if (!CurTy->isIntegerTy() || Record.empty()) 3036 return error("Invalid integer const record"); 3037 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 3038 break; 3039 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 3040 if (!CurTy->isIntegerTy() || Record.empty()) 3041 return error("Invalid wide integer const record"); 3042 3043 APInt VInt = 3044 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 3045 V = ConstantInt::get(Context, VInt); 3046 3047 break; 3048 } 3049 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 3050 if (Record.empty()) 3051 return error("Invalid float const record"); 3052 if (CurTy->isHalfTy()) 3053 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(), 3054 APInt(16, (uint16_t)Record[0]))); 3055 else if (CurTy->isBFloatTy()) 3056 V = ConstantFP::get(Context, APFloat(APFloat::BFloat(), 3057 APInt(16, (uint32_t)Record[0]))); 3058 else if (CurTy->isFloatTy()) 3059 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(), 3060 APInt(32, (uint32_t)Record[0]))); 3061 else if (CurTy->isDoubleTy()) 3062 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(), 3063 APInt(64, Record[0]))); 3064 else if (CurTy->isX86_FP80Ty()) { 3065 // Bits are not stored the same way as a normal i80 APInt, compensate. 3066 uint64_t Rearrange[2]; 3067 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 3068 Rearrange[1] = Record[0] >> 48; 3069 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(), 3070 APInt(80, Rearrange))); 3071 } else if (CurTy->isFP128Ty()) 3072 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(), 3073 APInt(128, Record))); 3074 else if (CurTy->isPPC_FP128Ty()) 3075 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(), 3076 APInt(128, Record))); 3077 else 3078 V = UndefValue::get(CurTy); 3079 break; 3080 } 3081 3082 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 3083 if (Record.empty()) 3084 return error("Invalid aggregate record"); 3085 3086 unsigned Size = Record.size(); 3087 SmallVector<unsigned, 16> Elts; 3088 for (unsigned i = 0; i != Size; ++i) 3089 Elts.push_back(Record[i]); 3090 3091 if (isa<StructType>(CurTy)) { 3092 V = BitcodeConstant::create( 3093 Alloc, CurTy, BitcodeConstant::ConstantStructOpcode, Elts); 3094 } else if (isa<ArrayType>(CurTy)) { 3095 V = BitcodeConstant::create(Alloc, CurTy, 3096 BitcodeConstant::ConstantArrayOpcode, Elts); 3097 } else if (isa<VectorType>(CurTy)) { 3098 V = BitcodeConstant::create( 3099 Alloc, CurTy, BitcodeConstant::ConstantVectorOpcode, Elts); 3100 } else { 3101 V = UndefValue::get(CurTy); 3102 } 3103 break; 3104 } 3105 case bitc::CST_CODE_STRING: // STRING: [values] 3106 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 3107 if (Record.empty()) 3108 return error("Invalid string record"); 3109 3110 SmallString<16> Elts(Record.begin(), Record.end()); 3111 V = ConstantDataArray::getString(Context, Elts, 3112 BitCode == bitc::CST_CODE_CSTRING); 3113 break; 3114 } 3115 case bitc::CST_CODE_DATA: {// DATA: [n x value] 3116 if (Record.empty()) 3117 return error("Invalid data record"); 3118 3119 Type *EltTy; 3120 if (auto *Array = dyn_cast<ArrayType>(CurTy)) 3121 EltTy = Array->getElementType(); 3122 else 3123 EltTy = cast<VectorType>(CurTy)->getElementType(); 3124 if (EltTy->isIntegerTy(8)) { 3125 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 3126 if (isa<VectorType>(CurTy)) 3127 V = ConstantDataVector::get(Context, Elts); 3128 else 3129 V = ConstantDataArray::get(Context, Elts); 3130 } else if (EltTy->isIntegerTy(16)) { 3131 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 3132 if (isa<VectorType>(CurTy)) 3133 V = ConstantDataVector::get(Context, Elts); 3134 else 3135 V = ConstantDataArray::get(Context, Elts); 3136 } else if (EltTy->isIntegerTy(32)) { 3137 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 3138 if (isa<VectorType>(CurTy)) 3139 V = ConstantDataVector::get(Context, Elts); 3140 else 3141 V = ConstantDataArray::get(Context, Elts); 3142 } else if (EltTy->isIntegerTy(64)) { 3143 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 3144 if (isa<VectorType>(CurTy)) 3145 V = ConstantDataVector::get(Context, Elts); 3146 else 3147 V = ConstantDataArray::get(Context, Elts); 3148 } else if (EltTy->isHalfTy()) { 3149 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 3150 if (isa<VectorType>(CurTy)) 3151 V = ConstantDataVector::getFP(EltTy, Elts); 3152 else 3153 V = ConstantDataArray::getFP(EltTy, Elts); 3154 } else if (EltTy->isBFloatTy()) { 3155 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 3156 if (isa<VectorType>(CurTy)) 3157 V = ConstantDataVector::getFP(EltTy, Elts); 3158 else 3159 V = ConstantDataArray::getFP(EltTy, Elts); 3160 } else if (EltTy->isFloatTy()) { 3161 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 3162 if (isa<VectorType>(CurTy)) 3163 V = ConstantDataVector::getFP(EltTy, Elts); 3164 else 3165 V = ConstantDataArray::getFP(EltTy, Elts); 3166 } else if (EltTy->isDoubleTy()) { 3167 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 3168 if (isa<VectorType>(CurTy)) 3169 V = ConstantDataVector::getFP(EltTy, Elts); 3170 else 3171 V = ConstantDataArray::getFP(EltTy, Elts); 3172 } else { 3173 return error("Invalid type for value"); 3174 } 3175 break; 3176 } 3177 case bitc::CST_CODE_CE_UNOP: { // CE_UNOP: [opcode, opval] 3178 if (Record.size() < 2) 3179 return error("Invalid unary op constexpr record"); 3180 int Opc = getDecodedUnaryOpcode(Record[0], CurTy); 3181 if (Opc < 0) { 3182 V = UndefValue::get(CurTy); // Unknown unop. 3183 } else { 3184 V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[1]); 3185 } 3186 break; 3187 } 3188 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 3189 if (Record.size() < 3) 3190 return error("Invalid binary op constexpr record"); 3191 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 3192 if (Opc < 0) { 3193 V = UndefValue::get(CurTy); // Unknown binop. 3194 } else { 3195 uint8_t Flags = 0; 3196 if (Record.size() >= 4) { 3197 if (Opc == Instruction::Add || 3198 Opc == Instruction::Sub || 3199 Opc == Instruction::Mul || 3200 Opc == Instruction::Shl) { 3201 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3202 Flags |= OverflowingBinaryOperator::NoSignedWrap; 3203 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3204 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 3205 } else if (Opc == Instruction::SDiv || 3206 Opc == Instruction::UDiv || 3207 Opc == Instruction::LShr || 3208 Opc == Instruction::AShr) { 3209 if (Record[3] & (1 << bitc::PEO_EXACT)) 3210 Flags |= SDivOperator::IsExact; 3211 } 3212 } 3213 V = BitcodeConstant::create(Alloc, CurTy, {(uint8_t)Opc, Flags}, 3214 {(unsigned)Record[1], (unsigned)Record[2]}); 3215 } 3216 break; 3217 } 3218 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 3219 if (Record.size() < 3) 3220 return error("Invalid cast constexpr record"); 3221 int Opc = getDecodedCastOpcode(Record[0]); 3222 if (Opc < 0) { 3223 V = UndefValue::get(CurTy); // Unknown cast. 3224 } else { 3225 unsigned OpTyID = Record[1]; 3226 Type *OpTy = getTypeByID(OpTyID); 3227 if (!OpTy) 3228 return error("Invalid cast constexpr record"); 3229 V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[2]); 3230 } 3231 break; 3232 } 3233 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands] 3234 case bitc::CST_CODE_CE_GEP: // [ty, n x operands] 3235 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x 3236 // operands] 3237 if (Record.size() < 2) 3238 return error("Constant GEP record must have at least two elements"); 3239 unsigned OpNum = 0; 3240 Type *PointeeType = nullptr; 3241 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX || 3242 Record.size() % 2) 3243 PointeeType = getTypeByID(Record[OpNum++]); 3244 3245 bool InBounds = false; 3246 std::optional<unsigned> InRangeIndex; 3247 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) { 3248 uint64_t Op = Record[OpNum++]; 3249 InBounds = Op & 1; 3250 InRangeIndex = Op >> 1; 3251 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 3252 InBounds = true; 3253 3254 SmallVector<unsigned, 16> Elts; 3255 unsigned BaseTypeID = Record[OpNum]; 3256 while (OpNum != Record.size()) { 3257 unsigned ElTyID = Record[OpNum++]; 3258 Type *ElTy = getTypeByID(ElTyID); 3259 if (!ElTy) 3260 return error("Invalid getelementptr constexpr record"); 3261 Elts.push_back(Record[OpNum++]); 3262 } 3263 3264 if (Elts.size() < 1) 3265 return error("Invalid gep with no operands"); 3266 3267 Type *BaseType = getTypeByID(BaseTypeID); 3268 if (isa<VectorType>(BaseType)) { 3269 BaseTypeID = getContainedTypeID(BaseTypeID, 0); 3270 BaseType = getTypeByID(BaseTypeID); 3271 } 3272 3273 PointerType *OrigPtrTy = dyn_cast_or_null<PointerType>(BaseType); 3274 if (!OrigPtrTy) 3275 return error("GEP base operand must be pointer or vector of pointer"); 3276 3277 if (!PointeeType) { 3278 PointeeType = getPtrElementTypeByID(BaseTypeID); 3279 if (!PointeeType) 3280 return error("Missing element type for old-style constant GEP"); 3281 } else if (!OrigPtrTy->isOpaqueOrPointeeTypeMatches(PointeeType)) 3282 return error("Explicit gep operator type does not match pointee type " 3283 "of pointer operand"); 3284 3285 V = BitcodeConstant::create(Alloc, CurTy, 3286 {Instruction::GetElementPtr, InBounds, 3287 InRangeIndex.value_or(-1), PointeeType}, 3288 Elts); 3289 break; 3290 } 3291 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 3292 if (Record.size() < 3) 3293 return error("Invalid select constexpr record"); 3294 3295 V = BitcodeConstant::create( 3296 Alloc, CurTy, Instruction::Select, 3297 {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]}); 3298 break; 3299 } 3300 case bitc::CST_CODE_CE_EXTRACTELT 3301 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 3302 if (Record.size() < 3) 3303 return error("Invalid extractelement constexpr record"); 3304 unsigned OpTyID = Record[0]; 3305 VectorType *OpTy = 3306 dyn_cast_or_null<VectorType>(getTypeByID(OpTyID)); 3307 if (!OpTy) 3308 return error("Invalid extractelement constexpr record"); 3309 unsigned IdxRecord; 3310 if (Record.size() == 4) { 3311 unsigned IdxTyID = Record[2]; 3312 Type *IdxTy = getTypeByID(IdxTyID); 3313 if (!IdxTy) 3314 return error("Invalid extractelement constexpr record"); 3315 IdxRecord = Record[3]; 3316 } else { 3317 // Deprecated, but still needed to read old bitcode files. 3318 IdxRecord = Record[2]; 3319 } 3320 V = BitcodeConstant::create(Alloc, CurTy, Instruction::ExtractElement, 3321 {(unsigned)Record[1], IdxRecord}); 3322 break; 3323 } 3324 case bitc::CST_CODE_CE_INSERTELT 3325 : { // CE_INSERTELT: [opval, opval, opty, opval] 3326 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 3327 if (Record.size() < 3 || !OpTy) 3328 return error("Invalid insertelement constexpr record"); 3329 unsigned IdxRecord; 3330 if (Record.size() == 4) { 3331 unsigned IdxTyID = Record[2]; 3332 Type *IdxTy = getTypeByID(IdxTyID); 3333 if (!IdxTy) 3334 return error("Invalid insertelement constexpr record"); 3335 IdxRecord = Record[3]; 3336 } else { 3337 // Deprecated, but still needed to read old bitcode files. 3338 IdxRecord = Record[2]; 3339 } 3340 V = BitcodeConstant::create( 3341 Alloc, CurTy, Instruction::InsertElement, 3342 {(unsigned)Record[0], (unsigned)Record[1], IdxRecord}); 3343 break; 3344 } 3345 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 3346 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 3347 if (Record.size() < 3 || !OpTy) 3348 return error("Invalid shufflevector constexpr record"); 3349 V = BitcodeConstant::create( 3350 Alloc, CurTy, Instruction::ShuffleVector, 3351 {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]}); 3352 break; 3353 } 3354 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 3355 VectorType *RTy = dyn_cast<VectorType>(CurTy); 3356 VectorType *OpTy = 3357 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 3358 if (Record.size() < 4 || !RTy || !OpTy) 3359 return error("Invalid shufflevector constexpr record"); 3360 V = BitcodeConstant::create( 3361 Alloc, CurTy, Instruction::ShuffleVector, 3362 {(unsigned)Record[1], (unsigned)Record[2], (unsigned)Record[3]}); 3363 break; 3364 } 3365 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 3366 if (Record.size() < 4) 3367 return error("Invalid cmp constexpt record"); 3368 unsigned OpTyID = Record[0]; 3369 Type *OpTy = getTypeByID(OpTyID); 3370 if (!OpTy) 3371 return error("Invalid cmp constexpr record"); 3372 V = BitcodeConstant::create( 3373 Alloc, CurTy, 3374 {(uint8_t)(OpTy->isFPOrFPVectorTy() ? Instruction::FCmp 3375 : Instruction::ICmp), 3376 (uint8_t)Record[3]}, 3377 {(unsigned)Record[1], (unsigned)Record[2]}); 3378 break; 3379 } 3380 // This maintains backward compatibility, pre-asm dialect keywords. 3381 // Deprecated, but still needed to read old bitcode files. 3382 case bitc::CST_CODE_INLINEASM_OLD: { 3383 if (Record.size() < 2) 3384 return error("Invalid inlineasm record"); 3385 std::string AsmStr, ConstrStr; 3386 bool HasSideEffects = Record[0] & 1; 3387 bool IsAlignStack = Record[0] >> 1; 3388 unsigned AsmStrSize = Record[1]; 3389 if (2+AsmStrSize >= Record.size()) 3390 return error("Invalid inlineasm record"); 3391 unsigned ConstStrSize = Record[2+AsmStrSize]; 3392 if (3+AsmStrSize+ConstStrSize > Record.size()) 3393 return error("Invalid inlineasm record"); 3394 3395 for (unsigned i = 0; i != AsmStrSize; ++i) 3396 AsmStr += (char)Record[2+i]; 3397 for (unsigned i = 0; i != ConstStrSize; ++i) 3398 ConstrStr += (char)Record[3+AsmStrSize+i]; 3399 UpgradeInlineAsmString(&AsmStr); 3400 if (!CurElemTy) 3401 return error("Missing element type for old-style inlineasm"); 3402 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr, 3403 HasSideEffects, IsAlignStack); 3404 break; 3405 } 3406 // This version adds support for the asm dialect keywords (e.g., 3407 // inteldialect). 3408 case bitc::CST_CODE_INLINEASM_OLD2: { 3409 if (Record.size() < 2) 3410 return error("Invalid inlineasm record"); 3411 std::string AsmStr, ConstrStr; 3412 bool HasSideEffects = Record[0] & 1; 3413 bool IsAlignStack = (Record[0] >> 1) & 1; 3414 unsigned AsmDialect = Record[0] >> 2; 3415 unsigned AsmStrSize = Record[1]; 3416 if (2+AsmStrSize >= Record.size()) 3417 return error("Invalid inlineasm record"); 3418 unsigned ConstStrSize = Record[2+AsmStrSize]; 3419 if (3+AsmStrSize+ConstStrSize > Record.size()) 3420 return error("Invalid inlineasm record"); 3421 3422 for (unsigned i = 0; i != AsmStrSize; ++i) 3423 AsmStr += (char)Record[2+i]; 3424 for (unsigned i = 0; i != ConstStrSize; ++i) 3425 ConstrStr += (char)Record[3+AsmStrSize+i]; 3426 UpgradeInlineAsmString(&AsmStr); 3427 if (!CurElemTy) 3428 return error("Missing element type for old-style inlineasm"); 3429 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr, 3430 HasSideEffects, IsAlignStack, 3431 InlineAsm::AsmDialect(AsmDialect)); 3432 break; 3433 } 3434 // This version adds support for the unwind keyword. 3435 case bitc::CST_CODE_INLINEASM_OLD3: { 3436 if (Record.size() < 2) 3437 return error("Invalid inlineasm record"); 3438 unsigned OpNum = 0; 3439 std::string AsmStr, ConstrStr; 3440 bool HasSideEffects = Record[OpNum] & 1; 3441 bool IsAlignStack = (Record[OpNum] >> 1) & 1; 3442 unsigned AsmDialect = (Record[OpNum] >> 2) & 1; 3443 bool CanThrow = (Record[OpNum] >> 3) & 1; 3444 ++OpNum; 3445 unsigned AsmStrSize = Record[OpNum]; 3446 ++OpNum; 3447 if (OpNum + AsmStrSize >= Record.size()) 3448 return error("Invalid inlineasm record"); 3449 unsigned ConstStrSize = Record[OpNum + AsmStrSize]; 3450 if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size()) 3451 return error("Invalid inlineasm record"); 3452 3453 for (unsigned i = 0; i != AsmStrSize; ++i) 3454 AsmStr += (char)Record[OpNum + i]; 3455 ++OpNum; 3456 for (unsigned i = 0; i != ConstStrSize; ++i) 3457 ConstrStr += (char)Record[OpNum + AsmStrSize + i]; 3458 UpgradeInlineAsmString(&AsmStr); 3459 if (!CurElemTy) 3460 return error("Missing element type for old-style inlineasm"); 3461 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr, 3462 HasSideEffects, IsAlignStack, 3463 InlineAsm::AsmDialect(AsmDialect), CanThrow); 3464 break; 3465 } 3466 // This version adds explicit function type. 3467 case bitc::CST_CODE_INLINEASM: { 3468 if (Record.size() < 3) 3469 return error("Invalid inlineasm record"); 3470 unsigned OpNum = 0; 3471 auto *FnTy = dyn_cast_or_null<FunctionType>(getTypeByID(Record[OpNum])); 3472 ++OpNum; 3473 if (!FnTy) 3474 return error("Invalid inlineasm record"); 3475 std::string AsmStr, ConstrStr; 3476 bool HasSideEffects = Record[OpNum] & 1; 3477 bool IsAlignStack = (Record[OpNum] >> 1) & 1; 3478 unsigned AsmDialect = (Record[OpNum] >> 2) & 1; 3479 bool CanThrow = (Record[OpNum] >> 3) & 1; 3480 ++OpNum; 3481 unsigned AsmStrSize = Record[OpNum]; 3482 ++OpNum; 3483 if (OpNum + AsmStrSize >= Record.size()) 3484 return error("Invalid inlineasm record"); 3485 unsigned ConstStrSize = Record[OpNum + AsmStrSize]; 3486 if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size()) 3487 return error("Invalid inlineasm record"); 3488 3489 for (unsigned i = 0; i != AsmStrSize; ++i) 3490 AsmStr += (char)Record[OpNum + i]; 3491 ++OpNum; 3492 for (unsigned i = 0; i != ConstStrSize; ++i) 3493 ConstrStr += (char)Record[OpNum + AsmStrSize + i]; 3494 UpgradeInlineAsmString(&AsmStr); 3495 V = InlineAsm::get(FnTy, AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 3496 InlineAsm::AsmDialect(AsmDialect), CanThrow); 3497 break; 3498 } 3499 case bitc::CST_CODE_BLOCKADDRESS:{ 3500 if (Record.size() < 3) 3501 return error("Invalid blockaddress record"); 3502 unsigned FnTyID = Record[0]; 3503 Type *FnTy = getTypeByID(FnTyID); 3504 if (!FnTy) 3505 return error("Invalid blockaddress record"); 3506 V = BitcodeConstant::create( 3507 Alloc, CurTy, 3508 {BitcodeConstant::BlockAddressOpcode, 0, (unsigned)Record[2]}, 3509 Record[1]); 3510 break; 3511 } 3512 case bitc::CST_CODE_DSO_LOCAL_EQUIVALENT: { 3513 if (Record.size() < 2) 3514 return error("Invalid dso_local record"); 3515 unsigned GVTyID = Record[0]; 3516 Type *GVTy = getTypeByID(GVTyID); 3517 if (!GVTy) 3518 return error("Invalid dso_local record"); 3519 V = BitcodeConstant::create( 3520 Alloc, CurTy, BitcodeConstant::DSOLocalEquivalentOpcode, Record[1]); 3521 break; 3522 } 3523 case bitc::CST_CODE_NO_CFI_VALUE: { 3524 if (Record.size() < 2) 3525 return error("Invalid no_cfi record"); 3526 unsigned GVTyID = Record[0]; 3527 Type *GVTy = getTypeByID(GVTyID); 3528 if (!GVTy) 3529 return error("Invalid no_cfi record"); 3530 V = BitcodeConstant::create(Alloc, CurTy, BitcodeConstant::NoCFIOpcode, 3531 Record[1]); 3532 break; 3533 } 3534 } 3535 3536 assert(V->getType() == getTypeByID(CurTyID) && "Incorrect result type ID"); 3537 if (Error Err = ValueList.assignValue(NextCstNo, V, CurTyID)) 3538 return Err; 3539 ++NextCstNo; 3540 } 3541 } 3542 3543 Error BitcodeReader::parseUseLists() { 3544 if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 3545 return Err; 3546 3547 // Read all the records. 3548 SmallVector<uint64_t, 64> Record; 3549 3550 while (true) { 3551 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 3552 if (!MaybeEntry) 3553 return MaybeEntry.takeError(); 3554 BitstreamEntry Entry = MaybeEntry.get(); 3555 3556 switch (Entry.Kind) { 3557 case BitstreamEntry::SubBlock: // Handled for us already. 3558 case BitstreamEntry::Error: 3559 return error("Malformed block"); 3560 case BitstreamEntry::EndBlock: 3561 return Error::success(); 3562 case BitstreamEntry::Record: 3563 // The interesting case. 3564 break; 3565 } 3566 3567 // Read a use list record. 3568 Record.clear(); 3569 bool IsBB = false; 3570 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 3571 if (!MaybeRecord) 3572 return MaybeRecord.takeError(); 3573 switch (MaybeRecord.get()) { 3574 default: // Default behavior: unknown type. 3575 break; 3576 case bitc::USELIST_CODE_BB: 3577 IsBB = true; 3578 [[fallthrough]]; 3579 case bitc::USELIST_CODE_DEFAULT: { 3580 unsigned RecordLength = Record.size(); 3581 if (RecordLength < 3) 3582 // Records should have at least an ID and two indexes. 3583 return error("Invalid record"); 3584 unsigned ID = Record.pop_back_val(); 3585 3586 Value *V; 3587 if (IsBB) { 3588 assert(ID < FunctionBBs.size() && "Basic block not found"); 3589 V = FunctionBBs[ID]; 3590 } else 3591 V = ValueList[ID]; 3592 unsigned NumUses = 0; 3593 SmallDenseMap<const Use *, unsigned, 16> Order; 3594 for (const Use &U : V->materialized_uses()) { 3595 if (++NumUses > Record.size()) 3596 break; 3597 Order[&U] = Record[NumUses - 1]; 3598 } 3599 if (Order.size() != Record.size() || NumUses > Record.size()) 3600 // Mismatches can happen if the functions are being materialized lazily 3601 // (out-of-order), or a value has been upgraded. 3602 break; 3603 3604 V->sortUseList([&](const Use &L, const Use &R) { 3605 return Order.lookup(&L) < Order.lookup(&R); 3606 }); 3607 break; 3608 } 3609 } 3610 } 3611 } 3612 3613 /// When we see the block for metadata, remember where it is and then skip it. 3614 /// This lets us lazily deserialize the metadata. 3615 Error BitcodeReader::rememberAndSkipMetadata() { 3616 // Save the current stream state. 3617 uint64_t CurBit = Stream.GetCurrentBitNo(); 3618 DeferredMetadataInfo.push_back(CurBit); 3619 3620 // Skip over the block for now. 3621 if (Error Err = Stream.SkipBlock()) 3622 return Err; 3623 return Error::success(); 3624 } 3625 3626 Error BitcodeReader::materializeMetadata() { 3627 for (uint64_t BitPos : DeferredMetadataInfo) { 3628 // Move the bit stream to the saved position. 3629 if (Error JumpFailed = Stream.JumpToBit(BitPos)) 3630 return JumpFailed; 3631 if (Error Err = MDLoader->parseModuleMetadata()) 3632 return Err; 3633 } 3634 3635 // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level 3636 // metadata. Only upgrade if the new option doesn't exist to avoid upgrade 3637 // multiple times. 3638 if (!TheModule->getNamedMetadata("llvm.linker.options")) { 3639 if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) { 3640 NamedMDNode *LinkerOpts = 3641 TheModule->getOrInsertNamedMetadata("llvm.linker.options"); 3642 for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands()) 3643 LinkerOpts->addOperand(cast<MDNode>(MDOptions)); 3644 } 3645 } 3646 3647 DeferredMetadataInfo.clear(); 3648 return Error::success(); 3649 } 3650 3651 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 3652 3653 /// When we see the block for a function body, remember where it is and then 3654 /// skip it. This lets us lazily deserialize the functions. 3655 Error BitcodeReader::rememberAndSkipFunctionBody() { 3656 // Get the function we are talking about. 3657 if (FunctionsWithBodies.empty()) 3658 return error("Insufficient function protos"); 3659 3660 Function *Fn = FunctionsWithBodies.back(); 3661 FunctionsWithBodies.pop_back(); 3662 3663 // Save the current stream state. 3664 uint64_t CurBit = Stream.GetCurrentBitNo(); 3665 assert( 3666 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 3667 "Mismatch between VST and scanned function offsets"); 3668 DeferredFunctionInfo[Fn] = CurBit; 3669 3670 // Skip over the function block for now. 3671 if (Error Err = Stream.SkipBlock()) 3672 return Err; 3673 return Error::success(); 3674 } 3675 3676 Error BitcodeReader::globalCleanup() { 3677 // Patch the initializers for globals and aliases up. 3678 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3679 return Err; 3680 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 3681 return error("Malformed global initializer set"); 3682 3683 // Look for intrinsic functions which need to be upgraded at some point 3684 // and functions that need to have their function attributes upgraded. 3685 for (Function &F : *TheModule) { 3686 MDLoader->upgradeDebugIntrinsics(F); 3687 Function *NewFn; 3688 if (UpgradeIntrinsicFunction(&F, NewFn)) 3689 UpgradedIntrinsics[&F] = NewFn; 3690 // Look for functions that rely on old function attribute behavior. 3691 UpgradeFunctionAttributes(F); 3692 } 3693 3694 // Look for global variables which need to be renamed. 3695 std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables; 3696 for (GlobalVariable &GV : TheModule->globals()) 3697 if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV)) 3698 UpgradedVariables.emplace_back(&GV, Upgraded); 3699 for (auto &Pair : UpgradedVariables) { 3700 Pair.first->eraseFromParent(); 3701 TheModule->insertGlobalVariable(Pair.second); 3702 } 3703 3704 // Force deallocation of memory for these vectors to favor the client that 3705 // want lazy deserialization. 3706 std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits); 3707 std::vector<std::pair<GlobalValue *, unsigned>>().swap(IndirectSymbolInits); 3708 return Error::success(); 3709 } 3710 3711 /// Support for lazy parsing of function bodies. This is required if we 3712 /// either have an old bitcode file without a VST forward declaration record, 3713 /// or if we have an anonymous function being materialized, since anonymous 3714 /// functions do not have a name and are therefore not in the VST. 3715 Error BitcodeReader::rememberAndSkipFunctionBodies() { 3716 if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit)) 3717 return JumpFailed; 3718 3719 if (Stream.AtEndOfStream()) 3720 return error("Could not find function in stream"); 3721 3722 if (!SeenFirstFunctionBody) 3723 return error("Trying to materialize functions before seeing function blocks"); 3724 3725 // An old bitcode file with the symbol table at the end would have 3726 // finished the parse greedily. 3727 assert(SeenValueSymbolTable); 3728 3729 SmallVector<uint64_t, 64> Record; 3730 3731 while (true) { 3732 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3733 if (!MaybeEntry) 3734 return MaybeEntry.takeError(); 3735 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3736 3737 switch (Entry.Kind) { 3738 default: 3739 return error("Expect SubBlock"); 3740 case BitstreamEntry::SubBlock: 3741 switch (Entry.ID) { 3742 default: 3743 return error("Expect function block"); 3744 case bitc::FUNCTION_BLOCK_ID: 3745 if (Error Err = rememberAndSkipFunctionBody()) 3746 return Err; 3747 NextUnreadBit = Stream.GetCurrentBitNo(); 3748 return Error::success(); 3749 } 3750 } 3751 } 3752 } 3753 3754 Error BitcodeReaderBase::readBlockInfo() { 3755 Expected<std::optional<BitstreamBlockInfo>> MaybeNewBlockInfo = 3756 Stream.ReadBlockInfoBlock(); 3757 if (!MaybeNewBlockInfo) 3758 return MaybeNewBlockInfo.takeError(); 3759 std::optional<BitstreamBlockInfo> NewBlockInfo = 3760 std::move(MaybeNewBlockInfo.get()); 3761 if (!NewBlockInfo) 3762 return error("Malformed block"); 3763 BlockInfo = std::move(*NewBlockInfo); 3764 return Error::success(); 3765 } 3766 3767 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) { 3768 // v1: [selection_kind, name] 3769 // v2: [strtab_offset, strtab_size, selection_kind] 3770 StringRef Name; 3771 std::tie(Name, Record) = readNameFromStrtab(Record); 3772 3773 if (Record.empty()) 3774 return error("Invalid record"); 3775 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 3776 std::string OldFormatName; 3777 if (!UseStrtab) { 3778 if (Record.size() < 2) 3779 return error("Invalid record"); 3780 unsigned ComdatNameSize = Record[1]; 3781 if (ComdatNameSize > Record.size() - 2) 3782 return error("Comdat name size too large"); 3783 OldFormatName.reserve(ComdatNameSize); 3784 for (unsigned i = 0; i != ComdatNameSize; ++i) 3785 OldFormatName += (char)Record[2 + i]; 3786 Name = OldFormatName; 3787 } 3788 Comdat *C = TheModule->getOrInsertComdat(Name); 3789 C->setSelectionKind(SK); 3790 ComdatList.push_back(C); 3791 return Error::success(); 3792 } 3793 3794 static void inferDSOLocal(GlobalValue *GV) { 3795 // infer dso_local from linkage and visibility if it is not encoded. 3796 if (GV->hasLocalLinkage() || 3797 (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())) 3798 GV->setDSOLocal(true); 3799 } 3800 3801 GlobalValue::SanitizerMetadata deserializeSanitizerMetadata(unsigned V) { 3802 GlobalValue::SanitizerMetadata Meta; 3803 if (V & (1 << 0)) 3804 Meta.NoAddress = true; 3805 if (V & (1 << 1)) 3806 Meta.NoHWAddress = true; 3807 if (V & (1 << 2)) 3808 Meta.Memtag = true; 3809 if (V & (1 << 3)) 3810 Meta.IsDynInit = true; 3811 return Meta; 3812 } 3813 3814 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) { 3815 // v1: [pointer type, isconst, initid, linkage, alignment, section, 3816 // visibility, threadlocal, unnamed_addr, externally_initialized, 3817 // dllstorageclass, comdat, attributes, preemption specifier, 3818 // partition strtab offset, partition strtab size] (name in VST) 3819 // v2: [strtab_offset, strtab_size, v1] 3820 StringRef Name; 3821 std::tie(Name, Record) = readNameFromStrtab(Record); 3822 3823 if (Record.size() < 6) 3824 return error("Invalid record"); 3825 unsigned TyID = Record[0]; 3826 Type *Ty = getTypeByID(TyID); 3827 if (!Ty) 3828 return error("Invalid record"); 3829 bool isConstant = Record[1] & 1; 3830 bool explicitType = Record[1] & 2; 3831 unsigned AddressSpace; 3832 if (explicitType) { 3833 AddressSpace = Record[1] >> 2; 3834 } else { 3835 if (!Ty->isPointerTy()) 3836 return error("Invalid type for value"); 3837 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 3838 TyID = getContainedTypeID(TyID); 3839 Ty = getTypeByID(TyID); 3840 if (!Ty) 3841 return error("Missing element type for old-style global"); 3842 } 3843 3844 uint64_t RawLinkage = Record[3]; 3845 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 3846 MaybeAlign Alignment; 3847 if (Error Err = parseAlignmentValue(Record[4], Alignment)) 3848 return Err; 3849 std::string Section; 3850 if (Record[5]) { 3851 if (Record[5] - 1 >= SectionTable.size()) 3852 return error("Invalid ID"); 3853 Section = SectionTable[Record[5] - 1]; 3854 } 3855 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 3856 // Local linkage must have default visibility. 3857 // auto-upgrade `hidden` and `protected` for old bitcode. 3858 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 3859 Visibility = getDecodedVisibility(Record[6]); 3860 3861 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 3862 if (Record.size() > 7) 3863 TLM = getDecodedThreadLocalMode(Record[7]); 3864 3865 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3866 if (Record.size() > 8) 3867 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); 3868 3869 bool ExternallyInitialized = false; 3870 if (Record.size() > 9) 3871 ExternallyInitialized = Record[9]; 3872 3873 GlobalVariable *NewGV = 3874 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name, 3875 nullptr, TLM, AddressSpace, ExternallyInitialized); 3876 if (Alignment) 3877 NewGV->setAlignment(*Alignment); 3878 if (!Section.empty()) 3879 NewGV->setSection(Section); 3880 NewGV->setVisibility(Visibility); 3881 NewGV->setUnnamedAddr(UnnamedAddr); 3882 3883 if (Record.size() > 10) { 3884 // A GlobalValue with local linkage cannot have a DLL storage class. 3885 if (!NewGV->hasLocalLinkage()) { 3886 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 3887 } 3888 } else { 3889 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 3890 } 3891 3892 ValueList.push_back(NewGV, getVirtualTypeID(NewGV->getType(), TyID)); 3893 3894 // Remember which value to use for the global initializer. 3895 if (unsigned InitID = Record[2]) 3896 GlobalInits.push_back(std::make_pair(NewGV, InitID - 1)); 3897 3898 if (Record.size() > 11) { 3899 if (unsigned ComdatID = Record[11]) { 3900 if (ComdatID > ComdatList.size()) 3901 return error("Invalid global variable comdat ID"); 3902 NewGV->setComdat(ComdatList[ComdatID - 1]); 3903 } 3904 } else if (hasImplicitComdat(RawLinkage)) { 3905 ImplicitComdatObjects.insert(NewGV); 3906 } 3907 3908 if (Record.size() > 12) { 3909 auto AS = getAttributes(Record[12]).getFnAttrs(); 3910 NewGV->setAttributes(AS); 3911 } 3912 3913 if (Record.size() > 13) { 3914 NewGV->setDSOLocal(getDecodedDSOLocal(Record[13])); 3915 } 3916 inferDSOLocal(NewGV); 3917 3918 // Check whether we have enough values to read a partition name. 3919 if (Record.size() > 15) 3920 NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15])); 3921 3922 if (Record.size() > 16 && Record[16]) { 3923 llvm::GlobalValue::SanitizerMetadata Meta = 3924 deserializeSanitizerMetadata(Record[16]); 3925 NewGV->setSanitizerMetadata(Meta); 3926 } 3927 3928 return Error::success(); 3929 } 3930 3931 void BitcodeReader::callValueTypeCallback(Value *F, unsigned TypeID) { 3932 if (ValueTypeCallback) { 3933 (*ValueTypeCallback)( 3934 F, TypeID, [this](unsigned I) { return getTypeByID(I); }, 3935 [this](unsigned I, unsigned J) { return getContainedTypeID(I, J); }); 3936 } 3937 } 3938 3939 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) { 3940 // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section, 3941 // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat, 3942 // prefixdata, personalityfn, preemption specifier, addrspace] (name in VST) 3943 // v2: [strtab_offset, strtab_size, v1] 3944 StringRef Name; 3945 std::tie(Name, Record) = readNameFromStrtab(Record); 3946 3947 if (Record.size() < 8) 3948 return error("Invalid record"); 3949 unsigned FTyID = Record[0]; 3950 Type *FTy = getTypeByID(FTyID); 3951 if (!FTy) 3952 return error("Invalid record"); 3953 if (isa<PointerType>(FTy)) { 3954 FTyID = getContainedTypeID(FTyID, 0); 3955 FTy = getTypeByID(FTyID); 3956 if (!FTy) 3957 return error("Missing element type for old-style function"); 3958 } 3959 3960 if (!isa<FunctionType>(FTy)) 3961 return error("Invalid type for value"); 3962 auto CC = static_cast<CallingConv::ID>(Record[1]); 3963 if (CC & ~CallingConv::MaxID) 3964 return error("Invalid calling convention ID"); 3965 3966 unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace(); 3967 if (Record.size() > 16) 3968 AddrSpace = Record[16]; 3969 3970 Function *Func = 3971 Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage, 3972 AddrSpace, Name, TheModule); 3973 3974 assert(Func->getFunctionType() == FTy && 3975 "Incorrect fully specified type provided for function"); 3976 FunctionTypeIDs[Func] = FTyID; 3977 3978 Func->setCallingConv(CC); 3979 bool isProto = Record[2]; 3980 uint64_t RawLinkage = Record[3]; 3981 Func->setLinkage(getDecodedLinkage(RawLinkage)); 3982 Func->setAttributes(getAttributes(Record[4])); 3983 callValueTypeCallback(Func, FTyID); 3984 3985 // Upgrade any old-style byval or sret without a type by propagating the 3986 // argument's pointee type. There should be no opaque pointers where the byval 3987 // type is implicit. 3988 for (unsigned i = 0; i != Func->arg_size(); ++i) { 3989 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet, 3990 Attribute::InAlloca}) { 3991 if (!Func->hasParamAttribute(i, Kind)) 3992 continue; 3993 3994 if (Func->getParamAttribute(i, Kind).getValueAsType()) 3995 continue; 3996 3997 Func->removeParamAttr(i, Kind); 3998 3999 unsigned ParamTypeID = getContainedTypeID(FTyID, i + 1); 4000 Type *PtrEltTy = getPtrElementTypeByID(ParamTypeID); 4001 if (!PtrEltTy) 4002 return error("Missing param element type for attribute upgrade"); 4003 4004 Attribute NewAttr; 4005 switch (Kind) { 4006 case Attribute::ByVal: 4007 NewAttr = Attribute::getWithByValType(Context, PtrEltTy); 4008 break; 4009 case Attribute::StructRet: 4010 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy); 4011 break; 4012 case Attribute::InAlloca: 4013 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy); 4014 break; 4015 default: 4016 llvm_unreachable("not an upgraded type attribute"); 4017 } 4018 4019 Func->addParamAttr(i, NewAttr); 4020 } 4021 } 4022 4023 if (Func->getCallingConv() == CallingConv::X86_INTR && 4024 !Func->arg_empty() && !Func->hasParamAttribute(0, Attribute::ByVal)) { 4025 unsigned ParamTypeID = getContainedTypeID(FTyID, 1); 4026 Type *ByValTy = getPtrElementTypeByID(ParamTypeID); 4027 if (!ByValTy) 4028 return error("Missing param element type for x86_intrcc upgrade"); 4029 Attribute NewAttr = Attribute::getWithByValType(Context, ByValTy); 4030 Func->addParamAttr(0, NewAttr); 4031 } 4032 4033 MaybeAlign Alignment; 4034 if (Error Err = parseAlignmentValue(Record[5], Alignment)) 4035 return Err; 4036 if (Alignment) 4037 Func->setAlignment(*Alignment); 4038 if (Record[6]) { 4039 if (Record[6] - 1 >= SectionTable.size()) 4040 return error("Invalid ID"); 4041 Func->setSection(SectionTable[Record[6] - 1]); 4042 } 4043 // Local linkage must have default visibility. 4044 // auto-upgrade `hidden` and `protected` for old bitcode. 4045 if (!Func->hasLocalLinkage()) 4046 Func->setVisibility(getDecodedVisibility(Record[7])); 4047 if (Record.size() > 8 && Record[8]) { 4048 if (Record[8] - 1 >= GCTable.size()) 4049 return error("Invalid ID"); 4050 Func->setGC(GCTable[Record[8] - 1]); 4051 } 4052 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 4053 if (Record.size() > 9) 4054 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); 4055 Func->setUnnamedAddr(UnnamedAddr); 4056 4057 FunctionOperandInfo OperandInfo = {Func, 0, 0, 0}; 4058 if (Record.size() > 10) 4059 OperandInfo.Prologue = Record[10]; 4060 4061 if (Record.size() > 11) { 4062 // A GlobalValue with local linkage cannot have a DLL storage class. 4063 if (!Func->hasLocalLinkage()) { 4064 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 4065 } 4066 } else { 4067 upgradeDLLImportExportLinkage(Func, RawLinkage); 4068 } 4069 4070 if (Record.size() > 12) { 4071 if (unsigned ComdatID = Record[12]) { 4072 if (ComdatID > ComdatList.size()) 4073 return error("Invalid function comdat ID"); 4074 Func->setComdat(ComdatList[ComdatID - 1]); 4075 } 4076 } else if (hasImplicitComdat(RawLinkage)) { 4077 ImplicitComdatObjects.insert(Func); 4078 } 4079 4080 if (Record.size() > 13) 4081 OperandInfo.Prefix = Record[13]; 4082 4083 if (Record.size() > 14) 4084 OperandInfo.PersonalityFn = Record[14]; 4085 4086 if (Record.size() > 15) { 4087 Func->setDSOLocal(getDecodedDSOLocal(Record[15])); 4088 } 4089 inferDSOLocal(Func); 4090 4091 // Record[16] is the address space number. 4092 4093 // Check whether we have enough values to read a partition name. Also make 4094 // sure Strtab has enough values. 4095 if (Record.size() > 18 && Strtab.data() && 4096 Record[17] + Record[18] <= Strtab.size()) { 4097 Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18])); 4098 } 4099 4100 ValueList.push_back(Func, getVirtualTypeID(Func->getType(), FTyID)); 4101 4102 if (OperandInfo.PersonalityFn || OperandInfo.Prefix || OperandInfo.Prologue) 4103 FunctionOperands.push_back(OperandInfo); 4104 4105 // If this is a function with a body, remember the prototype we are 4106 // creating now, so that we can match up the body with them later. 4107 if (!isProto) { 4108 Func->setIsMaterializable(true); 4109 FunctionsWithBodies.push_back(Func); 4110 DeferredFunctionInfo[Func] = 0; 4111 } 4112 return Error::success(); 4113 } 4114 4115 Error BitcodeReader::parseGlobalIndirectSymbolRecord( 4116 unsigned BitCode, ArrayRef<uint64_t> Record) { 4117 // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST) 4118 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 4119 // dllstorageclass, threadlocal, unnamed_addr, 4120 // preemption specifier] (name in VST) 4121 // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage, 4122 // visibility, dllstorageclass, threadlocal, unnamed_addr, 4123 // preemption specifier] (name in VST) 4124 // v2: [strtab_offset, strtab_size, v1] 4125 StringRef Name; 4126 std::tie(Name, Record) = readNameFromStrtab(Record); 4127 4128 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 4129 if (Record.size() < (3 + (unsigned)NewRecord)) 4130 return error("Invalid record"); 4131 unsigned OpNum = 0; 4132 unsigned TypeID = Record[OpNum++]; 4133 Type *Ty = getTypeByID(TypeID); 4134 if (!Ty) 4135 return error("Invalid record"); 4136 4137 unsigned AddrSpace; 4138 if (!NewRecord) { 4139 auto *PTy = dyn_cast<PointerType>(Ty); 4140 if (!PTy) 4141 return error("Invalid type for value"); 4142 AddrSpace = PTy->getAddressSpace(); 4143 TypeID = getContainedTypeID(TypeID); 4144 Ty = getTypeByID(TypeID); 4145 if (!Ty) 4146 return error("Missing element type for old-style indirect symbol"); 4147 } else { 4148 AddrSpace = Record[OpNum++]; 4149 } 4150 4151 auto Val = Record[OpNum++]; 4152 auto Linkage = Record[OpNum++]; 4153 GlobalValue *NewGA; 4154 if (BitCode == bitc::MODULE_CODE_ALIAS || 4155 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 4156 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 4157 TheModule); 4158 else 4159 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 4160 nullptr, TheModule); 4161 4162 // Local linkage must have default visibility. 4163 // auto-upgrade `hidden` and `protected` for old bitcode. 4164 if (OpNum != Record.size()) { 4165 auto VisInd = OpNum++; 4166 if (!NewGA->hasLocalLinkage()) 4167 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 4168 } 4169 if (BitCode == bitc::MODULE_CODE_ALIAS || 4170 BitCode == bitc::MODULE_CODE_ALIAS_OLD) { 4171 if (OpNum != Record.size()) { 4172 auto S = Record[OpNum++]; 4173 // A GlobalValue with local linkage cannot have a DLL storage class. 4174 if (!NewGA->hasLocalLinkage()) 4175 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(S)); 4176 } 4177 else 4178 upgradeDLLImportExportLinkage(NewGA, Linkage); 4179 if (OpNum != Record.size()) 4180 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 4181 if (OpNum != Record.size()) 4182 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); 4183 } 4184 if (OpNum != Record.size()) 4185 NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++])); 4186 inferDSOLocal(NewGA); 4187 4188 // Check whether we have enough values to read a partition name. 4189 if (OpNum + 1 < Record.size()) { 4190 NewGA->setPartition( 4191 StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1])); 4192 OpNum += 2; 4193 } 4194 4195 ValueList.push_back(NewGA, getVirtualTypeID(NewGA->getType(), TypeID)); 4196 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 4197 return Error::success(); 4198 } 4199 4200 Error BitcodeReader::parseModule(uint64_t ResumeBit, 4201 bool ShouldLazyLoadMetadata, 4202 ParserCallbacks Callbacks) { 4203 this->ValueTypeCallback = std::move(Callbacks.ValueType); 4204 if (ResumeBit) { 4205 if (Error JumpFailed = Stream.JumpToBit(ResumeBit)) 4206 return JumpFailed; 4207 } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 4208 return Err; 4209 4210 SmallVector<uint64_t, 64> Record; 4211 4212 // Parts of bitcode parsing depend on the datalayout. Make sure we 4213 // finalize the datalayout before we run any of that code. 4214 bool ResolvedDataLayout = false; 4215 // In order to support importing modules with illegal data layout strings, 4216 // delay parsing the data layout string until after upgrades and overrides 4217 // have been applied, allowing to fix illegal data layout strings. 4218 // Initialize to the current module's layout string in case none is specified. 4219 std::string TentativeDataLayoutStr = TheModule->getDataLayoutStr(); 4220 4221 auto ResolveDataLayout = [&]() -> Error { 4222 if (ResolvedDataLayout) 4223 return Error::success(); 4224 4225 // Datalayout and triple can't be parsed after this point. 4226 ResolvedDataLayout = true; 4227 4228 // Auto-upgrade the layout string 4229 TentativeDataLayoutStr = llvm::UpgradeDataLayoutString( 4230 TentativeDataLayoutStr, TheModule->getTargetTriple()); 4231 4232 // Apply override 4233 if (Callbacks.DataLayout) { 4234 if (auto LayoutOverride = (*Callbacks.DataLayout)( 4235 TheModule->getTargetTriple(), TentativeDataLayoutStr)) 4236 TentativeDataLayoutStr = *LayoutOverride; 4237 } 4238 4239 // Now the layout string is finalized in TentativeDataLayoutStr. Parse it. 4240 Expected<DataLayout> MaybeDL = DataLayout::parse(TentativeDataLayoutStr); 4241 if (!MaybeDL) 4242 return MaybeDL.takeError(); 4243 4244 TheModule->setDataLayout(MaybeDL.get()); 4245 return Error::success(); 4246 }; 4247 4248 // Read all the records for this module. 4249 while (true) { 4250 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 4251 if (!MaybeEntry) 4252 return MaybeEntry.takeError(); 4253 llvm::BitstreamEntry Entry = MaybeEntry.get(); 4254 4255 switch (Entry.Kind) { 4256 case BitstreamEntry::Error: 4257 return error("Malformed block"); 4258 case BitstreamEntry::EndBlock: 4259 if (Error Err = ResolveDataLayout()) 4260 return Err; 4261 return globalCleanup(); 4262 4263 case BitstreamEntry::SubBlock: 4264 switch (Entry.ID) { 4265 default: // Skip unknown content. 4266 if (Error Err = Stream.SkipBlock()) 4267 return Err; 4268 break; 4269 case bitc::BLOCKINFO_BLOCK_ID: 4270 if (Error Err = readBlockInfo()) 4271 return Err; 4272 break; 4273 case bitc::PARAMATTR_BLOCK_ID: 4274 if (Error Err = parseAttributeBlock()) 4275 return Err; 4276 break; 4277 case bitc::PARAMATTR_GROUP_BLOCK_ID: 4278 if (Error Err = parseAttributeGroupBlock()) 4279 return Err; 4280 break; 4281 case bitc::TYPE_BLOCK_ID_NEW: 4282 if (Error Err = parseTypeTable()) 4283 return Err; 4284 break; 4285 case bitc::VALUE_SYMTAB_BLOCK_ID: 4286 if (!SeenValueSymbolTable) { 4287 // Either this is an old form VST without function index and an 4288 // associated VST forward declaration record (which would have caused 4289 // the VST to be jumped to and parsed before it was encountered 4290 // normally in the stream), or there were no function blocks to 4291 // trigger an earlier parsing of the VST. 4292 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 4293 if (Error Err = parseValueSymbolTable()) 4294 return Err; 4295 SeenValueSymbolTable = true; 4296 } else { 4297 // We must have had a VST forward declaration record, which caused 4298 // the parser to jump to and parse the VST earlier. 4299 assert(VSTOffset > 0); 4300 if (Error Err = Stream.SkipBlock()) 4301 return Err; 4302 } 4303 break; 4304 case bitc::CONSTANTS_BLOCK_ID: 4305 if (Error Err = parseConstants()) 4306 return Err; 4307 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 4308 return Err; 4309 break; 4310 case bitc::METADATA_BLOCK_ID: 4311 if (ShouldLazyLoadMetadata) { 4312 if (Error Err = rememberAndSkipMetadata()) 4313 return Err; 4314 break; 4315 } 4316 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 4317 if (Error Err = MDLoader->parseModuleMetadata()) 4318 return Err; 4319 break; 4320 case bitc::METADATA_KIND_BLOCK_ID: 4321 if (Error Err = MDLoader->parseMetadataKinds()) 4322 return Err; 4323 break; 4324 case bitc::FUNCTION_BLOCK_ID: 4325 if (Error Err = ResolveDataLayout()) 4326 return Err; 4327 4328 // If this is the first function body we've seen, reverse the 4329 // FunctionsWithBodies list. 4330 if (!SeenFirstFunctionBody) { 4331 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 4332 if (Error Err = globalCleanup()) 4333 return Err; 4334 SeenFirstFunctionBody = true; 4335 } 4336 4337 if (VSTOffset > 0) { 4338 // If we have a VST forward declaration record, make sure we 4339 // parse the VST now if we haven't already. It is needed to 4340 // set up the DeferredFunctionInfo vector for lazy reading. 4341 if (!SeenValueSymbolTable) { 4342 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset)) 4343 return Err; 4344 SeenValueSymbolTable = true; 4345 // Fall through so that we record the NextUnreadBit below. 4346 // This is necessary in case we have an anonymous function that 4347 // is later materialized. Since it will not have a VST entry we 4348 // need to fall back to the lazy parse to find its offset. 4349 } else { 4350 // If we have a VST forward declaration record, but have already 4351 // parsed the VST (just above, when the first function body was 4352 // encountered here), then we are resuming the parse after 4353 // materializing functions. The ResumeBit points to the 4354 // start of the last function block recorded in the 4355 // DeferredFunctionInfo map. Skip it. 4356 if (Error Err = Stream.SkipBlock()) 4357 return Err; 4358 continue; 4359 } 4360 } 4361 4362 // Support older bitcode files that did not have the function 4363 // index in the VST, nor a VST forward declaration record, as 4364 // well as anonymous functions that do not have VST entries. 4365 // Build the DeferredFunctionInfo vector on the fly. 4366 if (Error Err = rememberAndSkipFunctionBody()) 4367 return Err; 4368 4369 // Suspend parsing when we reach the function bodies. Subsequent 4370 // materialization calls will resume it when necessary. If the bitcode 4371 // file is old, the symbol table will be at the end instead and will not 4372 // have been seen yet. In this case, just finish the parse now. 4373 if (SeenValueSymbolTable) { 4374 NextUnreadBit = Stream.GetCurrentBitNo(); 4375 // After the VST has been parsed, we need to make sure intrinsic name 4376 // are auto-upgraded. 4377 return globalCleanup(); 4378 } 4379 break; 4380 case bitc::USELIST_BLOCK_ID: 4381 if (Error Err = parseUseLists()) 4382 return Err; 4383 break; 4384 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 4385 if (Error Err = parseOperandBundleTags()) 4386 return Err; 4387 break; 4388 case bitc::SYNC_SCOPE_NAMES_BLOCK_ID: 4389 if (Error Err = parseSyncScopeNames()) 4390 return Err; 4391 break; 4392 } 4393 continue; 4394 4395 case BitstreamEntry::Record: 4396 // The interesting case. 4397 break; 4398 } 4399 4400 // Read a record. 4401 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 4402 if (!MaybeBitCode) 4403 return MaybeBitCode.takeError(); 4404 switch (unsigned BitCode = MaybeBitCode.get()) { 4405 default: break; // Default behavior, ignore unknown content. 4406 case bitc::MODULE_CODE_VERSION: { 4407 Expected<unsigned> VersionOrErr = parseVersionRecord(Record); 4408 if (!VersionOrErr) 4409 return VersionOrErr.takeError(); 4410 UseRelativeIDs = *VersionOrErr >= 1; 4411 break; 4412 } 4413 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 4414 if (ResolvedDataLayout) 4415 return error("target triple too late in module"); 4416 std::string S; 4417 if (convertToString(Record, 0, S)) 4418 return error("Invalid record"); 4419 TheModule->setTargetTriple(S); 4420 break; 4421 } 4422 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 4423 if (ResolvedDataLayout) 4424 return error("datalayout too late in module"); 4425 if (convertToString(Record, 0, TentativeDataLayoutStr)) 4426 return error("Invalid record"); 4427 break; 4428 } 4429 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 4430 std::string S; 4431 if (convertToString(Record, 0, S)) 4432 return error("Invalid record"); 4433 TheModule->setModuleInlineAsm(S); 4434 break; 4435 } 4436 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 4437 // Deprecated, but still needed to read old bitcode files. 4438 std::string S; 4439 if (convertToString(Record, 0, S)) 4440 return error("Invalid record"); 4441 // Ignore value. 4442 break; 4443 } 4444 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 4445 std::string S; 4446 if (convertToString(Record, 0, S)) 4447 return error("Invalid record"); 4448 SectionTable.push_back(S); 4449 break; 4450 } 4451 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 4452 std::string S; 4453 if (convertToString(Record, 0, S)) 4454 return error("Invalid record"); 4455 GCTable.push_back(S); 4456 break; 4457 } 4458 case bitc::MODULE_CODE_COMDAT: 4459 if (Error Err = parseComdatRecord(Record)) 4460 return Err; 4461 break; 4462 // FIXME: BitcodeReader should handle {GLOBALVAR, FUNCTION, ALIAS, IFUNC} 4463 // written by ThinLinkBitcodeWriter. See 4464 // `ThinLinkBitcodeWriter::writeSimplifiedModuleInfo` for the format of each 4465 // record 4466 // (https://github.com/llvm/llvm-project/blob/b6a93967d9c11e79802b5e75cec1584d6c8aa472/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp#L4714) 4467 case bitc::MODULE_CODE_GLOBALVAR: 4468 if (Error Err = parseGlobalVarRecord(Record)) 4469 return Err; 4470 break; 4471 case bitc::MODULE_CODE_FUNCTION: 4472 if (Error Err = ResolveDataLayout()) 4473 return Err; 4474 if (Error Err = parseFunctionRecord(Record)) 4475 return Err; 4476 break; 4477 case bitc::MODULE_CODE_IFUNC: 4478 case bitc::MODULE_CODE_ALIAS: 4479 case bitc::MODULE_CODE_ALIAS_OLD: 4480 if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record)) 4481 return Err; 4482 break; 4483 /// MODULE_CODE_VSTOFFSET: [offset] 4484 case bitc::MODULE_CODE_VSTOFFSET: 4485 if (Record.empty()) 4486 return error("Invalid record"); 4487 // Note that we subtract 1 here because the offset is relative to one word 4488 // before the start of the identification or module block, which was 4489 // historically always the start of the regular bitcode header. 4490 VSTOffset = Record[0] - 1; 4491 break; 4492 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4493 case bitc::MODULE_CODE_SOURCE_FILENAME: 4494 SmallString<128> ValueName; 4495 if (convertToString(Record, 0, ValueName)) 4496 return error("Invalid record"); 4497 TheModule->setSourceFileName(ValueName); 4498 break; 4499 } 4500 Record.clear(); 4501 } 4502 this->ValueTypeCallback = std::nullopt; 4503 return Error::success(); 4504 } 4505 4506 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 4507 bool IsImporting, 4508 ParserCallbacks Callbacks) { 4509 TheModule = M; 4510 MetadataLoaderCallbacks MDCallbacks; 4511 MDCallbacks.GetTypeByID = [&](unsigned ID) { return getTypeByID(ID); }; 4512 MDCallbacks.GetContainedTypeID = [&](unsigned I, unsigned J) { 4513 return getContainedTypeID(I, J); 4514 }; 4515 MDCallbacks.MDType = Callbacks.MDType; 4516 MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, MDCallbacks); 4517 return parseModule(0, ShouldLazyLoadMetadata, Callbacks); 4518 } 4519 4520 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 4521 if (!isa<PointerType>(PtrType)) 4522 return error("Load/Store operand is not a pointer type"); 4523 4524 if (!cast<PointerType>(PtrType)->isOpaqueOrPointeeTypeMatches(ValType)) 4525 return error("Explicit load/store type does not match pointee " 4526 "type of pointer operand"); 4527 if (!PointerType::isLoadableOrStorableType(ValType)) 4528 return error("Cannot load/store from pointer"); 4529 return Error::success(); 4530 } 4531 4532 Error BitcodeReader::propagateAttributeTypes(CallBase *CB, 4533 ArrayRef<unsigned> ArgTyIDs) { 4534 AttributeList Attrs = CB->getAttributes(); 4535 for (unsigned i = 0; i != CB->arg_size(); ++i) { 4536 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet, 4537 Attribute::InAlloca}) { 4538 if (!Attrs.hasParamAttr(i, Kind) || 4539 Attrs.getParamAttr(i, Kind).getValueAsType()) 4540 continue; 4541 4542 Type *PtrEltTy = getPtrElementTypeByID(ArgTyIDs[i]); 4543 if (!PtrEltTy) 4544 return error("Missing element type for typed attribute upgrade"); 4545 4546 Attribute NewAttr; 4547 switch (Kind) { 4548 case Attribute::ByVal: 4549 NewAttr = Attribute::getWithByValType(Context, PtrEltTy); 4550 break; 4551 case Attribute::StructRet: 4552 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy); 4553 break; 4554 case Attribute::InAlloca: 4555 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy); 4556 break; 4557 default: 4558 llvm_unreachable("not an upgraded type attribute"); 4559 } 4560 4561 Attrs = Attrs.addParamAttribute(Context, i, NewAttr); 4562 } 4563 } 4564 4565 if (CB->isInlineAsm()) { 4566 const InlineAsm *IA = cast<InlineAsm>(CB->getCalledOperand()); 4567 unsigned ArgNo = 0; 4568 for (const InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 4569 if (!CI.hasArg()) 4570 continue; 4571 4572 if (CI.isIndirect && !Attrs.getParamElementType(ArgNo)) { 4573 Type *ElemTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]); 4574 if (!ElemTy) 4575 return error("Missing element type for inline asm upgrade"); 4576 Attrs = Attrs.addParamAttribute( 4577 Context, ArgNo, 4578 Attribute::get(Context, Attribute::ElementType, ElemTy)); 4579 } 4580 4581 ArgNo++; 4582 } 4583 } 4584 4585 switch (CB->getIntrinsicID()) { 4586 case Intrinsic::preserve_array_access_index: 4587 case Intrinsic::preserve_struct_access_index: 4588 case Intrinsic::aarch64_ldaxr: 4589 case Intrinsic::aarch64_ldxr: 4590 case Intrinsic::aarch64_stlxr: 4591 case Intrinsic::aarch64_stxr: 4592 case Intrinsic::arm_ldaex: 4593 case Intrinsic::arm_ldrex: 4594 case Intrinsic::arm_stlex: 4595 case Intrinsic::arm_strex: { 4596 unsigned ArgNo; 4597 switch (CB->getIntrinsicID()) { 4598 case Intrinsic::aarch64_stlxr: 4599 case Intrinsic::aarch64_stxr: 4600 case Intrinsic::arm_stlex: 4601 case Intrinsic::arm_strex: 4602 ArgNo = 1; 4603 break; 4604 default: 4605 ArgNo = 0; 4606 break; 4607 } 4608 if (!Attrs.getParamElementType(ArgNo)) { 4609 Type *ElTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]); 4610 if (!ElTy) 4611 return error("Missing element type for elementtype upgrade"); 4612 Attribute NewAttr = Attribute::get(Context, Attribute::ElementType, ElTy); 4613 Attrs = Attrs.addParamAttribute(Context, ArgNo, NewAttr); 4614 } 4615 break; 4616 } 4617 default: 4618 break; 4619 } 4620 4621 CB->setAttributes(Attrs); 4622 return Error::success(); 4623 } 4624 4625 /// Lazily parse the specified function body block. 4626 Error BitcodeReader::parseFunctionBody(Function *F) { 4627 if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 4628 return Err; 4629 4630 // Unexpected unresolved metadata when parsing function. 4631 if (MDLoader->hasFwdRefs()) 4632 return error("Invalid function metadata: incoming forward references"); 4633 4634 InstructionList.clear(); 4635 unsigned ModuleValueListSize = ValueList.size(); 4636 unsigned ModuleMDLoaderSize = MDLoader->size(); 4637 4638 // Add all the function arguments to the value table. 4639 unsigned ArgNo = 0; 4640 unsigned FTyID = FunctionTypeIDs[F]; 4641 for (Argument &I : F->args()) { 4642 unsigned ArgTyID = getContainedTypeID(FTyID, ArgNo + 1); 4643 assert(I.getType() == getTypeByID(ArgTyID) && 4644 "Incorrect fully specified type for Function Argument"); 4645 ValueList.push_back(&I, ArgTyID); 4646 ++ArgNo; 4647 } 4648 unsigned NextValueNo = ValueList.size(); 4649 BasicBlock *CurBB = nullptr; 4650 unsigned CurBBNo = 0; 4651 // Block into which constant expressions from phi nodes are materialized. 4652 BasicBlock *PhiConstExprBB = nullptr; 4653 // Edge blocks for phi nodes into which constant expressions have been 4654 // expanded. 4655 SmallMapVector<std::pair<BasicBlock *, BasicBlock *>, BasicBlock *, 4> 4656 ConstExprEdgeBBs; 4657 4658 DebugLoc LastLoc; 4659 auto getLastInstruction = [&]() -> Instruction * { 4660 if (CurBB && !CurBB->empty()) 4661 return &CurBB->back(); 4662 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 4663 !FunctionBBs[CurBBNo - 1]->empty()) 4664 return &FunctionBBs[CurBBNo - 1]->back(); 4665 return nullptr; 4666 }; 4667 4668 std::vector<OperandBundleDef> OperandBundles; 4669 4670 // Read all the records. 4671 SmallVector<uint64_t, 64> Record; 4672 4673 while (true) { 4674 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 4675 if (!MaybeEntry) 4676 return MaybeEntry.takeError(); 4677 llvm::BitstreamEntry Entry = MaybeEntry.get(); 4678 4679 switch (Entry.Kind) { 4680 case BitstreamEntry::Error: 4681 return error("Malformed block"); 4682 case BitstreamEntry::EndBlock: 4683 goto OutOfRecordLoop; 4684 4685 case BitstreamEntry::SubBlock: 4686 switch (Entry.ID) { 4687 default: // Skip unknown content. 4688 if (Error Err = Stream.SkipBlock()) 4689 return Err; 4690 break; 4691 case bitc::CONSTANTS_BLOCK_ID: 4692 if (Error Err = parseConstants()) 4693 return Err; 4694 NextValueNo = ValueList.size(); 4695 break; 4696 case bitc::VALUE_SYMTAB_BLOCK_ID: 4697 if (Error Err = parseValueSymbolTable()) 4698 return Err; 4699 break; 4700 case bitc::METADATA_ATTACHMENT_ID: 4701 if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList)) 4702 return Err; 4703 break; 4704 case bitc::METADATA_BLOCK_ID: 4705 assert(DeferredMetadataInfo.empty() && 4706 "Must read all module-level metadata before function-level"); 4707 if (Error Err = MDLoader->parseFunctionMetadata()) 4708 return Err; 4709 break; 4710 case bitc::USELIST_BLOCK_ID: 4711 if (Error Err = parseUseLists()) 4712 return Err; 4713 break; 4714 } 4715 continue; 4716 4717 case BitstreamEntry::Record: 4718 // The interesting case. 4719 break; 4720 } 4721 4722 // Read a record. 4723 Record.clear(); 4724 Instruction *I = nullptr; 4725 unsigned ResTypeID = InvalidTypeID; 4726 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 4727 if (!MaybeBitCode) 4728 return MaybeBitCode.takeError(); 4729 switch (unsigned BitCode = MaybeBitCode.get()) { 4730 default: // Default behavior: reject 4731 return error("Invalid value"); 4732 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 4733 if (Record.empty() || Record[0] == 0) 4734 return error("Invalid record"); 4735 // Create all the basic blocks for the function. 4736 FunctionBBs.resize(Record[0]); 4737 4738 // See if anything took the address of blocks in this function. 4739 auto BBFRI = BasicBlockFwdRefs.find(F); 4740 if (BBFRI == BasicBlockFwdRefs.end()) { 4741 for (BasicBlock *&BB : FunctionBBs) 4742 BB = BasicBlock::Create(Context, "", F); 4743 } else { 4744 auto &BBRefs = BBFRI->second; 4745 // Check for invalid basic block references. 4746 if (BBRefs.size() > FunctionBBs.size()) 4747 return error("Invalid ID"); 4748 assert(!BBRefs.empty() && "Unexpected empty array"); 4749 assert(!BBRefs.front() && "Invalid reference to entry block"); 4750 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 4751 ++I) 4752 if (I < RE && BBRefs[I]) { 4753 BBRefs[I]->insertInto(F); 4754 FunctionBBs[I] = BBRefs[I]; 4755 } else { 4756 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 4757 } 4758 4759 // Erase from the table. 4760 BasicBlockFwdRefs.erase(BBFRI); 4761 } 4762 4763 CurBB = FunctionBBs[0]; 4764 continue; 4765 } 4766 4767 case bitc::FUNC_CODE_BLOCKADDR_USERS: // BLOCKADDR_USERS: [vals...] 4768 // The record should not be emitted if it's an empty list. 4769 if (Record.empty()) 4770 return error("Invalid record"); 4771 // When we have the RARE case of a BlockAddress Constant that is not 4772 // scoped to the Function it refers to, we need to conservatively 4773 // materialize the referred to Function, regardless of whether or not 4774 // that Function will ultimately be linked, otherwise users of 4775 // BitcodeReader might start splicing out Function bodies such that we 4776 // might no longer be able to materialize the BlockAddress since the 4777 // BasicBlock (and entire body of the Function) the BlockAddress refers 4778 // to may have been moved. In the case that the user of BitcodeReader 4779 // decides ultimately not to link the Function body, materializing here 4780 // could be considered wasteful, but it's better than a deserialization 4781 // failure as described. This keeps BitcodeReader unaware of complex 4782 // linkage policy decisions such as those use by LTO, leaving those 4783 // decisions "one layer up." 4784 for (uint64_t ValID : Record) 4785 if (auto *F = dyn_cast<Function>(ValueList[ValID])) 4786 BackwardRefFunctions.push_back(F); 4787 else 4788 return error("Invalid record"); 4789 4790 continue; 4791 4792 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 4793 // This record indicates that the last instruction is at the same 4794 // location as the previous instruction with a location. 4795 I = getLastInstruction(); 4796 4797 if (!I) 4798 return error("Invalid record"); 4799 I->setDebugLoc(LastLoc); 4800 I = nullptr; 4801 continue; 4802 4803 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 4804 I = getLastInstruction(); 4805 if (!I || Record.size() < 4) 4806 return error("Invalid record"); 4807 4808 unsigned Line = Record[0], Col = Record[1]; 4809 unsigned ScopeID = Record[2], IAID = Record[3]; 4810 bool isImplicitCode = Record.size() == 5 && Record[4]; 4811 4812 MDNode *Scope = nullptr, *IA = nullptr; 4813 if (ScopeID) { 4814 Scope = dyn_cast_or_null<MDNode>( 4815 MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1)); 4816 if (!Scope) 4817 return error("Invalid record"); 4818 } 4819 if (IAID) { 4820 IA = dyn_cast_or_null<MDNode>( 4821 MDLoader->getMetadataFwdRefOrLoad(IAID - 1)); 4822 if (!IA) 4823 return error("Invalid record"); 4824 } 4825 LastLoc = DILocation::get(Scope->getContext(), Line, Col, Scope, IA, 4826 isImplicitCode); 4827 I->setDebugLoc(LastLoc); 4828 I = nullptr; 4829 continue; 4830 } 4831 case bitc::FUNC_CODE_INST_UNOP: { // UNOP: [opval, ty, opcode] 4832 unsigned OpNum = 0; 4833 Value *LHS; 4834 unsigned TypeID; 4835 if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) || 4836 OpNum+1 > Record.size()) 4837 return error("Invalid record"); 4838 4839 int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType()); 4840 if (Opc == -1) 4841 return error("Invalid record"); 4842 I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 4843 ResTypeID = TypeID; 4844 InstructionList.push_back(I); 4845 if (OpNum < Record.size()) { 4846 if (isa<FPMathOperator>(I)) { 4847 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4848 if (FMF.any()) 4849 I->setFastMathFlags(FMF); 4850 } 4851 } 4852 break; 4853 } 4854 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 4855 unsigned OpNum = 0; 4856 Value *LHS, *RHS; 4857 unsigned TypeID; 4858 if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) || 4859 popValue(Record, OpNum, NextValueNo, LHS->getType(), TypeID, RHS, 4860 CurBB) || 4861 OpNum+1 > Record.size()) 4862 return error("Invalid record"); 4863 4864 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 4865 if (Opc == -1) 4866 return error("Invalid record"); 4867 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 4868 ResTypeID = TypeID; 4869 InstructionList.push_back(I); 4870 if (OpNum < Record.size()) { 4871 if (Opc == Instruction::Add || 4872 Opc == Instruction::Sub || 4873 Opc == Instruction::Mul || 4874 Opc == Instruction::Shl) { 4875 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 4876 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 4877 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 4878 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 4879 } else if (Opc == Instruction::SDiv || 4880 Opc == Instruction::UDiv || 4881 Opc == Instruction::LShr || 4882 Opc == Instruction::AShr) { 4883 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 4884 cast<BinaryOperator>(I)->setIsExact(true); 4885 } else if (isa<FPMathOperator>(I)) { 4886 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4887 if (FMF.any()) 4888 I->setFastMathFlags(FMF); 4889 } 4890 4891 } 4892 break; 4893 } 4894 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 4895 unsigned OpNum = 0; 4896 Value *Op; 4897 unsigned OpTypeID; 4898 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) || 4899 OpNum+2 != Record.size()) 4900 return error("Invalid record"); 4901 4902 ResTypeID = Record[OpNum]; 4903 Type *ResTy = getTypeByID(ResTypeID); 4904 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 4905 if (Opc == -1 || !ResTy) 4906 return error("Invalid record"); 4907 Instruction *Temp = nullptr; 4908 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 4909 if (Temp) { 4910 InstructionList.push_back(Temp); 4911 assert(CurBB && "No current BB?"); 4912 Temp->insertInto(CurBB, CurBB->end()); 4913 } 4914 } else { 4915 auto CastOp = (Instruction::CastOps)Opc; 4916 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 4917 return error("Invalid cast"); 4918 I = CastInst::Create(CastOp, Op, ResTy); 4919 } 4920 InstructionList.push_back(I); 4921 break; 4922 } 4923 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 4924 case bitc::FUNC_CODE_INST_GEP_OLD: 4925 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 4926 unsigned OpNum = 0; 4927 4928 unsigned TyID; 4929 Type *Ty; 4930 bool InBounds; 4931 4932 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 4933 InBounds = Record[OpNum++]; 4934 TyID = Record[OpNum++]; 4935 Ty = getTypeByID(TyID); 4936 } else { 4937 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 4938 TyID = InvalidTypeID; 4939 Ty = nullptr; 4940 } 4941 4942 Value *BasePtr; 4943 unsigned BasePtrTypeID; 4944 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr, BasePtrTypeID, 4945 CurBB)) 4946 return error("Invalid record"); 4947 4948 if (!Ty) { 4949 TyID = getContainedTypeID(BasePtrTypeID); 4950 if (BasePtr->getType()->isVectorTy()) 4951 TyID = getContainedTypeID(TyID); 4952 Ty = getTypeByID(TyID); 4953 } else if (!cast<PointerType>(BasePtr->getType()->getScalarType()) 4954 ->isOpaqueOrPointeeTypeMatches(Ty)) { 4955 return error( 4956 "Explicit gep type does not match pointee type of pointer operand"); 4957 } 4958 4959 SmallVector<Value*, 16> GEPIdx; 4960 while (OpNum != Record.size()) { 4961 Value *Op; 4962 unsigned OpTypeID; 4963 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 4964 return error("Invalid record"); 4965 GEPIdx.push_back(Op); 4966 } 4967 4968 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 4969 4970 ResTypeID = TyID; 4971 if (cast<GEPOperator>(I)->getNumIndices() != 0) { 4972 auto GTI = std::next(gep_type_begin(I)); 4973 for (Value *Idx : drop_begin(cast<GEPOperator>(I)->indices())) { 4974 unsigned SubType = 0; 4975 if (GTI.isStruct()) { 4976 ConstantInt *IdxC = 4977 Idx->getType()->isVectorTy() 4978 ? cast<ConstantInt>(cast<Constant>(Idx)->getSplatValue()) 4979 : cast<ConstantInt>(Idx); 4980 SubType = IdxC->getZExtValue(); 4981 } 4982 ResTypeID = getContainedTypeID(ResTypeID, SubType); 4983 ++GTI; 4984 } 4985 } 4986 4987 // At this point ResTypeID is the result element type. We need a pointer 4988 // or vector of pointer to it. 4989 ResTypeID = getVirtualTypeID(I->getType()->getScalarType(), ResTypeID); 4990 if (I->getType()->isVectorTy()) 4991 ResTypeID = getVirtualTypeID(I->getType(), ResTypeID); 4992 4993 InstructionList.push_back(I); 4994 if (InBounds) 4995 cast<GetElementPtrInst>(I)->setIsInBounds(true); 4996 break; 4997 } 4998 4999 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 5000 // EXTRACTVAL: [opty, opval, n x indices] 5001 unsigned OpNum = 0; 5002 Value *Agg; 5003 unsigned AggTypeID; 5004 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB)) 5005 return error("Invalid record"); 5006 Type *Ty = Agg->getType(); 5007 5008 unsigned RecSize = Record.size(); 5009 if (OpNum == RecSize) 5010 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 5011 5012 SmallVector<unsigned, 4> EXTRACTVALIdx; 5013 ResTypeID = AggTypeID; 5014 for (; OpNum != RecSize; ++OpNum) { 5015 bool IsArray = Ty->isArrayTy(); 5016 bool IsStruct = Ty->isStructTy(); 5017 uint64_t Index = Record[OpNum]; 5018 5019 if (!IsStruct && !IsArray) 5020 return error("EXTRACTVAL: Invalid type"); 5021 if ((unsigned)Index != Index) 5022 return error("Invalid value"); 5023 if (IsStruct && Index >= Ty->getStructNumElements()) 5024 return error("EXTRACTVAL: Invalid struct index"); 5025 if (IsArray && Index >= Ty->getArrayNumElements()) 5026 return error("EXTRACTVAL: Invalid array index"); 5027 EXTRACTVALIdx.push_back((unsigned)Index); 5028 5029 if (IsStruct) { 5030 Ty = Ty->getStructElementType(Index); 5031 ResTypeID = getContainedTypeID(ResTypeID, Index); 5032 } else { 5033 Ty = Ty->getArrayElementType(); 5034 ResTypeID = getContainedTypeID(ResTypeID); 5035 } 5036 } 5037 5038 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 5039 InstructionList.push_back(I); 5040 break; 5041 } 5042 5043 case bitc::FUNC_CODE_INST_INSERTVAL: { 5044 // INSERTVAL: [opty, opval, opty, opval, n x indices] 5045 unsigned OpNum = 0; 5046 Value *Agg; 5047 unsigned AggTypeID; 5048 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB)) 5049 return error("Invalid record"); 5050 Value *Val; 5051 unsigned ValTypeID; 5052 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 5053 return error("Invalid record"); 5054 5055 unsigned RecSize = Record.size(); 5056 if (OpNum == RecSize) 5057 return error("INSERTVAL: Invalid instruction with 0 indices"); 5058 5059 SmallVector<unsigned, 4> INSERTVALIdx; 5060 Type *CurTy = Agg->getType(); 5061 for (; OpNum != RecSize; ++OpNum) { 5062 bool IsArray = CurTy->isArrayTy(); 5063 bool IsStruct = CurTy->isStructTy(); 5064 uint64_t Index = Record[OpNum]; 5065 5066 if (!IsStruct && !IsArray) 5067 return error("INSERTVAL: Invalid type"); 5068 if ((unsigned)Index != Index) 5069 return error("Invalid value"); 5070 if (IsStruct && Index >= CurTy->getStructNumElements()) 5071 return error("INSERTVAL: Invalid struct index"); 5072 if (IsArray && Index >= CurTy->getArrayNumElements()) 5073 return error("INSERTVAL: Invalid array index"); 5074 5075 INSERTVALIdx.push_back((unsigned)Index); 5076 if (IsStruct) 5077 CurTy = CurTy->getStructElementType(Index); 5078 else 5079 CurTy = CurTy->getArrayElementType(); 5080 } 5081 5082 if (CurTy != Val->getType()) 5083 return error("Inserted value type doesn't match aggregate type"); 5084 5085 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 5086 ResTypeID = AggTypeID; 5087 InstructionList.push_back(I); 5088 break; 5089 } 5090 5091 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 5092 // obsolete form of select 5093 // handles select i1 ... in old bitcode 5094 unsigned OpNum = 0; 5095 Value *TrueVal, *FalseVal, *Cond; 5096 unsigned TypeID; 5097 Type *CondType = Type::getInt1Ty(Context); 5098 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, TypeID, 5099 CurBB) || 5100 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), TypeID, 5101 FalseVal, CurBB) || 5102 popValue(Record, OpNum, NextValueNo, CondType, 5103 getVirtualTypeID(CondType), Cond, CurBB)) 5104 return error("Invalid record"); 5105 5106 I = SelectInst::Create(Cond, TrueVal, FalseVal); 5107 ResTypeID = TypeID; 5108 InstructionList.push_back(I); 5109 break; 5110 } 5111 5112 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 5113 // new form of select 5114 // handles select i1 or select [N x i1] 5115 unsigned OpNum = 0; 5116 Value *TrueVal, *FalseVal, *Cond; 5117 unsigned ValTypeID, CondTypeID; 5118 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, ValTypeID, 5119 CurBB) || 5120 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), ValTypeID, 5121 FalseVal, CurBB) || 5122 getValueTypePair(Record, OpNum, NextValueNo, Cond, CondTypeID, CurBB)) 5123 return error("Invalid record"); 5124 5125 // select condition can be either i1 or [N x i1] 5126 if (VectorType* vector_type = 5127 dyn_cast<VectorType>(Cond->getType())) { 5128 // expect <n x i1> 5129 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 5130 return error("Invalid type for value"); 5131 } else { 5132 // expect i1 5133 if (Cond->getType() != Type::getInt1Ty(Context)) 5134 return error("Invalid type for value"); 5135 } 5136 5137 I = SelectInst::Create(Cond, TrueVal, FalseVal); 5138 ResTypeID = ValTypeID; 5139 InstructionList.push_back(I); 5140 if (OpNum < Record.size() && isa<FPMathOperator>(I)) { 5141 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 5142 if (FMF.any()) 5143 I->setFastMathFlags(FMF); 5144 } 5145 break; 5146 } 5147 5148 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 5149 unsigned OpNum = 0; 5150 Value *Vec, *Idx; 5151 unsigned VecTypeID, IdxTypeID; 5152 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB) || 5153 getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB)) 5154 return error("Invalid record"); 5155 if (!Vec->getType()->isVectorTy()) 5156 return error("Invalid type for value"); 5157 I = ExtractElementInst::Create(Vec, Idx); 5158 ResTypeID = getContainedTypeID(VecTypeID); 5159 InstructionList.push_back(I); 5160 break; 5161 } 5162 5163 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 5164 unsigned OpNum = 0; 5165 Value *Vec, *Elt, *Idx; 5166 unsigned VecTypeID, IdxTypeID; 5167 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB)) 5168 return error("Invalid record"); 5169 if (!Vec->getType()->isVectorTy()) 5170 return error("Invalid type for value"); 5171 if (popValue(Record, OpNum, NextValueNo, 5172 cast<VectorType>(Vec->getType())->getElementType(), 5173 getContainedTypeID(VecTypeID), Elt, CurBB) || 5174 getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB)) 5175 return error("Invalid record"); 5176 I = InsertElementInst::Create(Vec, Elt, Idx); 5177 ResTypeID = VecTypeID; 5178 InstructionList.push_back(I); 5179 break; 5180 } 5181 5182 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 5183 unsigned OpNum = 0; 5184 Value *Vec1, *Vec2, *Mask; 5185 unsigned Vec1TypeID; 5186 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1, Vec1TypeID, 5187 CurBB) || 5188 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec1TypeID, 5189 Vec2, CurBB)) 5190 return error("Invalid record"); 5191 5192 unsigned MaskTypeID; 5193 if (getValueTypePair(Record, OpNum, NextValueNo, Mask, MaskTypeID, CurBB)) 5194 return error("Invalid record"); 5195 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 5196 return error("Invalid type for value"); 5197 5198 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 5199 ResTypeID = 5200 getVirtualTypeID(I->getType(), getContainedTypeID(Vec1TypeID)); 5201 InstructionList.push_back(I); 5202 break; 5203 } 5204 5205 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 5206 // Old form of ICmp/FCmp returning bool 5207 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 5208 // both legal on vectors but had different behaviour. 5209 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 5210 // FCmp/ICmp returning bool or vector of bool 5211 5212 unsigned OpNum = 0; 5213 Value *LHS, *RHS; 5214 unsigned LHSTypeID; 5215 if (getValueTypePair(Record, OpNum, NextValueNo, LHS, LHSTypeID, CurBB) || 5216 popValue(Record, OpNum, NextValueNo, LHS->getType(), LHSTypeID, RHS, 5217 CurBB)) 5218 return error("Invalid record"); 5219 5220 if (OpNum >= Record.size()) 5221 return error( 5222 "Invalid record: operand number exceeded available operands"); 5223 5224 unsigned PredVal = Record[OpNum]; 5225 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 5226 FastMathFlags FMF; 5227 if (IsFP && Record.size() > OpNum+1) 5228 FMF = getDecodedFastMathFlags(Record[++OpNum]); 5229 5230 if (OpNum+1 != Record.size()) 5231 return error("Invalid record"); 5232 5233 if (LHS->getType()->isFPOrFPVectorTy()) 5234 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 5235 else 5236 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 5237 5238 ResTypeID = getVirtualTypeID(I->getType()->getScalarType()); 5239 if (LHS->getType()->isVectorTy()) 5240 ResTypeID = getVirtualTypeID(I->getType(), ResTypeID); 5241 5242 if (FMF.any()) 5243 I->setFastMathFlags(FMF); 5244 InstructionList.push_back(I); 5245 break; 5246 } 5247 5248 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 5249 { 5250 unsigned Size = Record.size(); 5251 if (Size == 0) { 5252 I = ReturnInst::Create(Context); 5253 InstructionList.push_back(I); 5254 break; 5255 } 5256 5257 unsigned OpNum = 0; 5258 Value *Op = nullptr; 5259 unsigned OpTypeID; 5260 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 5261 return error("Invalid record"); 5262 if (OpNum != Record.size()) 5263 return error("Invalid record"); 5264 5265 I = ReturnInst::Create(Context, Op); 5266 InstructionList.push_back(I); 5267 break; 5268 } 5269 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 5270 if (Record.size() != 1 && Record.size() != 3) 5271 return error("Invalid record"); 5272 BasicBlock *TrueDest = getBasicBlock(Record[0]); 5273 if (!TrueDest) 5274 return error("Invalid record"); 5275 5276 if (Record.size() == 1) { 5277 I = BranchInst::Create(TrueDest); 5278 InstructionList.push_back(I); 5279 } 5280 else { 5281 BasicBlock *FalseDest = getBasicBlock(Record[1]); 5282 Type *CondType = Type::getInt1Ty(Context); 5283 Value *Cond = getValue(Record, 2, NextValueNo, CondType, 5284 getVirtualTypeID(CondType), CurBB); 5285 if (!FalseDest || !Cond) 5286 return error("Invalid record"); 5287 I = BranchInst::Create(TrueDest, FalseDest, Cond); 5288 InstructionList.push_back(I); 5289 } 5290 break; 5291 } 5292 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 5293 if (Record.size() != 1 && Record.size() != 2) 5294 return error("Invalid record"); 5295 unsigned Idx = 0; 5296 Type *TokenTy = Type::getTokenTy(Context); 5297 Value *CleanupPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5298 getVirtualTypeID(TokenTy), CurBB); 5299 if (!CleanupPad) 5300 return error("Invalid record"); 5301 BasicBlock *UnwindDest = nullptr; 5302 if (Record.size() == 2) { 5303 UnwindDest = getBasicBlock(Record[Idx++]); 5304 if (!UnwindDest) 5305 return error("Invalid record"); 5306 } 5307 5308 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 5309 InstructionList.push_back(I); 5310 break; 5311 } 5312 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 5313 if (Record.size() != 2) 5314 return error("Invalid record"); 5315 unsigned Idx = 0; 5316 Type *TokenTy = Type::getTokenTy(Context); 5317 Value *CatchPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5318 getVirtualTypeID(TokenTy), CurBB); 5319 if (!CatchPad) 5320 return error("Invalid record"); 5321 BasicBlock *BB = getBasicBlock(Record[Idx++]); 5322 if (!BB) 5323 return error("Invalid record"); 5324 5325 I = CatchReturnInst::Create(CatchPad, BB); 5326 InstructionList.push_back(I); 5327 break; 5328 } 5329 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 5330 // We must have, at minimum, the outer scope and the number of arguments. 5331 if (Record.size() < 2) 5332 return error("Invalid record"); 5333 5334 unsigned Idx = 0; 5335 5336 Type *TokenTy = Type::getTokenTy(Context); 5337 Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5338 getVirtualTypeID(TokenTy), CurBB); 5339 5340 unsigned NumHandlers = Record[Idx++]; 5341 5342 SmallVector<BasicBlock *, 2> Handlers; 5343 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 5344 BasicBlock *BB = getBasicBlock(Record[Idx++]); 5345 if (!BB) 5346 return error("Invalid record"); 5347 Handlers.push_back(BB); 5348 } 5349 5350 BasicBlock *UnwindDest = nullptr; 5351 if (Idx + 1 == Record.size()) { 5352 UnwindDest = getBasicBlock(Record[Idx++]); 5353 if (!UnwindDest) 5354 return error("Invalid record"); 5355 } 5356 5357 if (Record.size() != Idx) 5358 return error("Invalid record"); 5359 5360 auto *CatchSwitch = 5361 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 5362 for (BasicBlock *Handler : Handlers) 5363 CatchSwitch->addHandler(Handler); 5364 I = CatchSwitch; 5365 ResTypeID = getVirtualTypeID(I->getType()); 5366 InstructionList.push_back(I); 5367 break; 5368 } 5369 case bitc::FUNC_CODE_INST_CATCHPAD: 5370 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 5371 // We must have, at minimum, the outer scope and the number of arguments. 5372 if (Record.size() < 2) 5373 return error("Invalid record"); 5374 5375 unsigned Idx = 0; 5376 5377 Type *TokenTy = Type::getTokenTy(Context); 5378 Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5379 getVirtualTypeID(TokenTy), CurBB); 5380 5381 unsigned NumArgOperands = Record[Idx++]; 5382 5383 SmallVector<Value *, 2> Args; 5384 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 5385 Value *Val; 5386 unsigned ValTypeID; 5387 if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, nullptr)) 5388 return error("Invalid record"); 5389 Args.push_back(Val); 5390 } 5391 5392 if (Record.size() != Idx) 5393 return error("Invalid record"); 5394 5395 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 5396 I = CleanupPadInst::Create(ParentPad, Args); 5397 else 5398 I = CatchPadInst::Create(ParentPad, Args); 5399 ResTypeID = getVirtualTypeID(I->getType()); 5400 InstructionList.push_back(I); 5401 break; 5402 } 5403 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 5404 // Check magic 5405 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 5406 // "New" SwitchInst format with case ranges. The changes to write this 5407 // format were reverted but we still recognize bitcode that uses it. 5408 // Hopefully someday we will have support for case ranges and can use 5409 // this format again. 5410 5411 unsigned OpTyID = Record[1]; 5412 Type *OpTy = getTypeByID(OpTyID); 5413 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 5414 5415 Value *Cond = getValue(Record, 2, NextValueNo, OpTy, OpTyID, CurBB); 5416 BasicBlock *Default = getBasicBlock(Record[3]); 5417 if (!OpTy || !Cond || !Default) 5418 return error("Invalid record"); 5419 5420 unsigned NumCases = Record[4]; 5421 5422 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 5423 InstructionList.push_back(SI); 5424 5425 unsigned CurIdx = 5; 5426 for (unsigned i = 0; i != NumCases; ++i) { 5427 SmallVector<ConstantInt*, 1> CaseVals; 5428 unsigned NumItems = Record[CurIdx++]; 5429 for (unsigned ci = 0; ci != NumItems; ++ci) { 5430 bool isSingleNumber = Record[CurIdx++]; 5431 5432 APInt Low; 5433 unsigned ActiveWords = 1; 5434 if (ValueBitWidth > 64) 5435 ActiveWords = Record[CurIdx++]; 5436 Low = readWideAPInt(ArrayRef(&Record[CurIdx], ActiveWords), 5437 ValueBitWidth); 5438 CurIdx += ActiveWords; 5439 5440 if (!isSingleNumber) { 5441 ActiveWords = 1; 5442 if (ValueBitWidth > 64) 5443 ActiveWords = Record[CurIdx++]; 5444 APInt High = readWideAPInt(ArrayRef(&Record[CurIdx], ActiveWords), 5445 ValueBitWidth); 5446 CurIdx += ActiveWords; 5447 5448 // FIXME: It is not clear whether values in the range should be 5449 // compared as signed or unsigned values. The partially 5450 // implemented changes that used this format in the past used 5451 // unsigned comparisons. 5452 for ( ; Low.ule(High); ++Low) 5453 CaseVals.push_back(ConstantInt::get(Context, Low)); 5454 } else 5455 CaseVals.push_back(ConstantInt::get(Context, Low)); 5456 } 5457 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 5458 for (ConstantInt *Cst : CaseVals) 5459 SI->addCase(Cst, DestBB); 5460 } 5461 I = SI; 5462 break; 5463 } 5464 5465 // Old SwitchInst format without case ranges. 5466 5467 if (Record.size() < 3 || (Record.size() & 1) == 0) 5468 return error("Invalid record"); 5469 unsigned OpTyID = Record[0]; 5470 Type *OpTy = getTypeByID(OpTyID); 5471 Value *Cond = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB); 5472 BasicBlock *Default = getBasicBlock(Record[2]); 5473 if (!OpTy || !Cond || !Default) 5474 return error("Invalid record"); 5475 unsigned NumCases = (Record.size()-3)/2; 5476 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 5477 InstructionList.push_back(SI); 5478 for (unsigned i = 0, e = NumCases; i != e; ++i) { 5479 ConstantInt *CaseVal = dyn_cast_or_null<ConstantInt>( 5480 getFnValueByID(Record[3+i*2], OpTy, OpTyID, nullptr)); 5481 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 5482 if (!CaseVal || !DestBB) { 5483 delete SI; 5484 return error("Invalid record"); 5485 } 5486 SI->addCase(CaseVal, DestBB); 5487 } 5488 I = SI; 5489 break; 5490 } 5491 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 5492 if (Record.size() < 2) 5493 return error("Invalid record"); 5494 unsigned OpTyID = Record[0]; 5495 Type *OpTy = getTypeByID(OpTyID); 5496 Value *Address = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB); 5497 if (!OpTy || !Address) 5498 return error("Invalid record"); 5499 unsigned NumDests = Record.size()-2; 5500 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 5501 InstructionList.push_back(IBI); 5502 for (unsigned i = 0, e = NumDests; i != e; ++i) { 5503 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 5504 IBI->addDestination(DestBB); 5505 } else { 5506 delete IBI; 5507 return error("Invalid record"); 5508 } 5509 } 5510 I = IBI; 5511 break; 5512 } 5513 5514 case bitc::FUNC_CODE_INST_INVOKE: { 5515 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 5516 if (Record.size() < 4) 5517 return error("Invalid record"); 5518 unsigned OpNum = 0; 5519 AttributeList PAL = getAttributes(Record[OpNum++]); 5520 unsigned CCInfo = Record[OpNum++]; 5521 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 5522 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 5523 5524 unsigned FTyID = InvalidTypeID; 5525 FunctionType *FTy = nullptr; 5526 if ((CCInfo >> 13) & 1) { 5527 FTyID = Record[OpNum++]; 5528 FTy = dyn_cast<FunctionType>(getTypeByID(FTyID)); 5529 if (!FTy) 5530 return error("Explicit invoke type is not a function type"); 5531 } 5532 5533 Value *Callee; 5534 unsigned CalleeTypeID; 5535 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID, 5536 CurBB)) 5537 return error("Invalid record"); 5538 5539 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 5540 if (!CalleeTy) 5541 return error("Callee is not a pointer"); 5542 if (!FTy) { 5543 FTyID = getContainedTypeID(CalleeTypeID); 5544 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 5545 if (!FTy) 5546 return error("Callee is not of pointer to function type"); 5547 } else if (!CalleeTy->isOpaqueOrPointeeTypeMatches(FTy)) 5548 return error("Explicit invoke type does not match pointee type of " 5549 "callee operand"); 5550 if (Record.size() < FTy->getNumParams() + OpNum) 5551 return error("Insufficient operands to call"); 5552 5553 SmallVector<Value*, 16> Ops; 5554 SmallVector<unsigned, 16> ArgTyIDs; 5555 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5556 unsigned ArgTyID = getContainedTypeID(FTyID, i + 1); 5557 Ops.push_back(getValue(Record, OpNum, NextValueNo, FTy->getParamType(i), 5558 ArgTyID, CurBB)); 5559 ArgTyIDs.push_back(ArgTyID); 5560 if (!Ops.back()) 5561 return error("Invalid record"); 5562 } 5563 5564 if (!FTy->isVarArg()) { 5565 if (Record.size() != OpNum) 5566 return error("Invalid record"); 5567 } else { 5568 // Read type/value pairs for varargs params. 5569 while (OpNum != Record.size()) { 5570 Value *Op; 5571 unsigned OpTypeID; 5572 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 5573 return error("Invalid record"); 5574 Ops.push_back(Op); 5575 ArgTyIDs.push_back(OpTypeID); 5576 } 5577 } 5578 5579 // Upgrade the bundles if needed. 5580 if (!OperandBundles.empty()) 5581 UpgradeOperandBundles(OperandBundles); 5582 5583 I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops, 5584 OperandBundles); 5585 ResTypeID = getContainedTypeID(FTyID); 5586 OperandBundles.clear(); 5587 InstructionList.push_back(I); 5588 cast<InvokeInst>(I)->setCallingConv( 5589 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 5590 cast<InvokeInst>(I)->setAttributes(PAL); 5591 if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) { 5592 I->deleteValue(); 5593 return Err; 5594 } 5595 5596 break; 5597 } 5598 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 5599 unsigned Idx = 0; 5600 Value *Val = nullptr; 5601 unsigned ValTypeID; 5602 if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, CurBB)) 5603 return error("Invalid record"); 5604 I = ResumeInst::Create(Val); 5605 InstructionList.push_back(I); 5606 break; 5607 } 5608 case bitc::FUNC_CODE_INST_CALLBR: { 5609 // CALLBR: [attr, cc, norm, transfs, fty, fnid, args] 5610 unsigned OpNum = 0; 5611 AttributeList PAL = getAttributes(Record[OpNum++]); 5612 unsigned CCInfo = Record[OpNum++]; 5613 5614 BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]); 5615 unsigned NumIndirectDests = Record[OpNum++]; 5616 SmallVector<BasicBlock *, 16> IndirectDests; 5617 for (unsigned i = 0, e = NumIndirectDests; i != e; ++i) 5618 IndirectDests.push_back(getBasicBlock(Record[OpNum++])); 5619 5620 unsigned FTyID = InvalidTypeID; 5621 FunctionType *FTy = nullptr; 5622 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 5623 FTyID = Record[OpNum++]; 5624 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 5625 if (!FTy) 5626 return error("Explicit call type is not a function type"); 5627 } 5628 5629 Value *Callee; 5630 unsigned CalleeTypeID; 5631 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID, 5632 CurBB)) 5633 return error("Invalid record"); 5634 5635 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5636 if (!OpTy) 5637 return error("Callee is not a pointer type"); 5638 if (!FTy) { 5639 FTyID = getContainedTypeID(CalleeTypeID); 5640 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 5641 if (!FTy) 5642 return error("Callee is not of pointer to function type"); 5643 } else if (!OpTy->isOpaqueOrPointeeTypeMatches(FTy)) 5644 return error("Explicit call type does not match pointee type of " 5645 "callee operand"); 5646 if (Record.size() < FTy->getNumParams() + OpNum) 5647 return error("Insufficient operands to call"); 5648 5649 SmallVector<Value*, 16> Args; 5650 SmallVector<unsigned, 16> ArgTyIDs; 5651 // Read the fixed params. 5652 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5653 Value *Arg; 5654 unsigned ArgTyID = getContainedTypeID(FTyID, i + 1); 5655 if (FTy->getParamType(i)->isLabelTy()) 5656 Arg = getBasicBlock(Record[OpNum]); 5657 else 5658 Arg = getValue(Record, OpNum, NextValueNo, FTy->getParamType(i), 5659 ArgTyID, CurBB); 5660 if (!Arg) 5661 return error("Invalid record"); 5662 Args.push_back(Arg); 5663 ArgTyIDs.push_back(ArgTyID); 5664 } 5665 5666 // Read type/value pairs for varargs params. 5667 if (!FTy->isVarArg()) { 5668 if (OpNum != Record.size()) 5669 return error("Invalid record"); 5670 } else { 5671 while (OpNum != Record.size()) { 5672 Value *Op; 5673 unsigned OpTypeID; 5674 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 5675 return error("Invalid record"); 5676 Args.push_back(Op); 5677 ArgTyIDs.push_back(OpTypeID); 5678 } 5679 } 5680 5681 // Upgrade the bundles if needed. 5682 if (!OperandBundles.empty()) 5683 UpgradeOperandBundles(OperandBundles); 5684 5685 if (auto *IA = dyn_cast<InlineAsm>(Callee)) { 5686 InlineAsm::ConstraintInfoVector ConstraintInfo = IA->ParseConstraints(); 5687 auto IsLabelConstraint = [](const InlineAsm::ConstraintInfo &CI) { 5688 return CI.Type == InlineAsm::isLabel; 5689 }; 5690 if (none_of(ConstraintInfo, IsLabelConstraint)) { 5691 // Upgrade explicit blockaddress arguments to label constraints. 5692 // Verify that the last arguments are blockaddress arguments that 5693 // match the indirect destinations. Clang always generates callbr 5694 // in this form. We could support reordering with more effort. 5695 unsigned FirstBlockArg = Args.size() - IndirectDests.size(); 5696 for (unsigned ArgNo = FirstBlockArg; ArgNo < Args.size(); ++ArgNo) { 5697 unsigned LabelNo = ArgNo - FirstBlockArg; 5698 auto *BA = dyn_cast<BlockAddress>(Args[ArgNo]); 5699 if (!BA || BA->getFunction() != F || 5700 LabelNo > IndirectDests.size() || 5701 BA->getBasicBlock() != IndirectDests[LabelNo]) 5702 return error("callbr argument does not match indirect dest"); 5703 } 5704 5705 // Remove blockaddress arguments. 5706 Args.erase(Args.begin() + FirstBlockArg, Args.end()); 5707 ArgTyIDs.erase(ArgTyIDs.begin() + FirstBlockArg, ArgTyIDs.end()); 5708 5709 // Recreate the function type with less arguments. 5710 SmallVector<Type *> ArgTys; 5711 for (Value *Arg : Args) 5712 ArgTys.push_back(Arg->getType()); 5713 FTy = 5714 FunctionType::get(FTy->getReturnType(), ArgTys, FTy->isVarArg()); 5715 5716 // Update constraint string to use label constraints. 5717 std::string Constraints = IA->getConstraintString(); 5718 unsigned ArgNo = 0; 5719 size_t Pos = 0; 5720 for (const auto &CI : ConstraintInfo) { 5721 if (CI.hasArg()) { 5722 if (ArgNo >= FirstBlockArg) 5723 Constraints.insert(Pos, "!"); 5724 ++ArgNo; 5725 } 5726 5727 // Go to next constraint in string. 5728 Pos = Constraints.find(',', Pos); 5729 if (Pos == std::string::npos) 5730 break; 5731 ++Pos; 5732 } 5733 5734 Callee = InlineAsm::get(FTy, IA->getAsmString(), Constraints, 5735 IA->hasSideEffects(), IA->isAlignStack(), 5736 IA->getDialect(), IA->canThrow()); 5737 } 5738 } 5739 5740 I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args, 5741 OperandBundles); 5742 ResTypeID = getContainedTypeID(FTyID); 5743 OperandBundles.clear(); 5744 InstructionList.push_back(I); 5745 cast<CallBrInst>(I)->setCallingConv( 5746 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5747 cast<CallBrInst>(I)->setAttributes(PAL); 5748 if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) { 5749 I->deleteValue(); 5750 return Err; 5751 } 5752 break; 5753 } 5754 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 5755 I = new UnreachableInst(Context); 5756 InstructionList.push_back(I); 5757 break; 5758 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 5759 if (Record.empty()) 5760 return error("Invalid phi record"); 5761 // The first record specifies the type. 5762 unsigned TyID = Record[0]; 5763 Type *Ty = getTypeByID(TyID); 5764 if (!Ty) 5765 return error("Invalid phi record"); 5766 5767 // Phi arguments are pairs of records of [value, basic block]. 5768 // There is an optional final record for fast-math-flags if this phi has a 5769 // floating-point type. 5770 size_t NumArgs = (Record.size() - 1) / 2; 5771 PHINode *PN = PHINode::Create(Ty, NumArgs); 5772 if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN)) { 5773 PN->deleteValue(); 5774 return error("Invalid phi record"); 5775 } 5776 InstructionList.push_back(PN); 5777 5778 SmallDenseMap<BasicBlock *, Value *> Args; 5779 for (unsigned i = 0; i != NumArgs; i++) { 5780 BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]); 5781 if (!BB) { 5782 PN->deleteValue(); 5783 return error("Invalid phi BB"); 5784 } 5785 5786 // Phi nodes may contain the same predecessor multiple times, in which 5787 // case the incoming value must be identical. Directly reuse the already 5788 // seen value here, to avoid expanding a constant expression multiple 5789 // times. 5790 auto It = Args.find(BB); 5791 if (It != Args.end()) { 5792 PN->addIncoming(It->second, BB); 5793 continue; 5794 } 5795 5796 // If there already is a block for this edge (from a different phi), 5797 // use it. 5798 BasicBlock *EdgeBB = ConstExprEdgeBBs.lookup({BB, CurBB}); 5799 if (!EdgeBB) { 5800 // Otherwise, use a temporary block (that we will discard if it 5801 // turns out to be unnecessary). 5802 if (!PhiConstExprBB) 5803 PhiConstExprBB = BasicBlock::Create(Context, "phi.constexpr", F); 5804 EdgeBB = PhiConstExprBB; 5805 } 5806 5807 // With the new function encoding, it is possible that operands have 5808 // negative IDs (for forward references). Use a signed VBR 5809 // representation to keep the encoding small. 5810 Value *V; 5811 if (UseRelativeIDs) 5812 V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB); 5813 else 5814 V = getValue(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB); 5815 if (!V) { 5816 PN->deleteValue(); 5817 PhiConstExprBB->eraseFromParent(); 5818 return error("Invalid phi record"); 5819 } 5820 5821 if (EdgeBB == PhiConstExprBB && !EdgeBB->empty()) { 5822 ConstExprEdgeBBs.insert({{BB, CurBB}, EdgeBB}); 5823 PhiConstExprBB = nullptr; 5824 } 5825 PN->addIncoming(V, BB); 5826 Args.insert({BB, V}); 5827 } 5828 I = PN; 5829 ResTypeID = TyID; 5830 5831 // If there are an even number of records, the final record must be FMF. 5832 if (Record.size() % 2 == 0) { 5833 assert(isa<FPMathOperator>(I) && "Unexpected phi type"); 5834 FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]); 5835 if (FMF.any()) 5836 I->setFastMathFlags(FMF); 5837 } 5838 5839 break; 5840 } 5841 5842 case bitc::FUNC_CODE_INST_LANDINGPAD: 5843 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 5844 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 5845 unsigned Idx = 0; 5846 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 5847 if (Record.size() < 3) 5848 return error("Invalid record"); 5849 } else { 5850 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 5851 if (Record.size() < 4) 5852 return error("Invalid record"); 5853 } 5854 ResTypeID = Record[Idx++]; 5855 Type *Ty = getTypeByID(ResTypeID); 5856 if (!Ty) 5857 return error("Invalid record"); 5858 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 5859 Value *PersFn = nullptr; 5860 unsigned PersFnTypeID; 5861 if (getValueTypePair(Record, Idx, NextValueNo, PersFn, PersFnTypeID, 5862 nullptr)) 5863 return error("Invalid record"); 5864 5865 if (!F->hasPersonalityFn()) 5866 F->setPersonalityFn(cast<Constant>(PersFn)); 5867 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 5868 return error("Personality function mismatch"); 5869 } 5870 5871 bool IsCleanup = !!Record[Idx++]; 5872 unsigned NumClauses = Record[Idx++]; 5873 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 5874 LP->setCleanup(IsCleanup); 5875 for (unsigned J = 0; J != NumClauses; ++J) { 5876 LandingPadInst::ClauseType CT = 5877 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 5878 Value *Val; 5879 unsigned ValTypeID; 5880 5881 if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, 5882 nullptr)) { 5883 delete LP; 5884 return error("Invalid record"); 5885 } 5886 5887 assert((CT != LandingPadInst::Catch || 5888 !isa<ArrayType>(Val->getType())) && 5889 "Catch clause has a invalid type!"); 5890 assert((CT != LandingPadInst::Filter || 5891 isa<ArrayType>(Val->getType())) && 5892 "Filter clause has invalid type!"); 5893 LP->addClause(cast<Constant>(Val)); 5894 } 5895 5896 I = LP; 5897 InstructionList.push_back(I); 5898 break; 5899 } 5900 5901 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 5902 if (Record.size() != 4 && Record.size() != 5) 5903 return error("Invalid record"); 5904 using APV = AllocaPackedValues; 5905 const uint64_t Rec = Record[3]; 5906 const bool InAlloca = Bitfield::get<APV::UsedWithInAlloca>(Rec); 5907 const bool SwiftError = Bitfield::get<APV::SwiftError>(Rec); 5908 unsigned TyID = Record[0]; 5909 Type *Ty = getTypeByID(TyID); 5910 if (!Bitfield::get<APV::ExplicitType>(Rec)) { 5911 TyID = getContainedTypeID(TyID); 5912 Ty = getTypeByID(TyID); 5913 if (!Ty) 5914 return error("Missing element type for old-style alloca"); 5915 } 5916 unsigned OpTyID = Record[1]; 5917 Type *OpTy = getTypeByID(OpTyID); 5918 Value *Size = getFnValueByID(Record[2], OpTy, OpTyID, CurBB); 5919 MaybeAlign Align; 5920 uint64_t AlignExp = 5921 Bitfield::get<APV::AlignLower>(Rec) | 5922 (Bitfield::get<APV::AlignUpper>(Rec) << APV::AlignLower::Bits); 5923 if (Error Err = parseAlignmentValue(AlignExp, Align)) { 5924 return Err; 5925 } 5926 if (!Ty || !Size) 5927 return error("Invalid record"); 5928 5929 const DataLayout &DL = TheModule->getDataLayout(); 5930 unsigned AS = Record.size() == 5 ? Record[4] : DL.getAllocaAddrSpace(); 5931 5932 SmallPtrSet<Type *, 4> Visited; 5933 if (!Align && !Ty->isSized(&Visited)) 5934 return error("alloca of unsized type"); 5935 if (!Align) 5936 Align = DL.getPrefTypeAlign(Ty); 5937 5938 AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align); 5939 AI->setUsedWithInAlloca(InAlloca); 5940 AI->setSwiftError(SwiftError); 5941 I = AI; 5942 ResTypeID = getVirtualTypeID(AI->getType(), TyID); 5943 InstructionList.push_back(I); 5944 break; 5945 } 5946 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 5947 unsigned OpNum = 0; 5948 Value *Op; 5949 unsigned OpTypeID; 5950 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) || 5951 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 5952 return error("Invalid record"); 5953 5954 if (!isa<PointerType>(Op->getType())) 5955 return error("Load operand is not a pointer type"); 5956 5957 Type *Ty = nullptr; 5958 if (OpNum + 3 == Record.size()) { 5959 ResTypeID = Record[OpNum++]; 5960 Ty = getTypeByID(ResTypeID); 5961 } else { 5962 ResTypeID = getContainedTypeID(OpTypeID); 5963 Ty = getTypeByID(ResTypeID); 5964 if (!Ty) 5965 return error("Missing element type for old-style load"); 5966 } 5967 5968 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 5969 return Err; 5970 5971 MaybeAlign Align; 5972 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 5973 return Err; 5974 SmallPtrSet<Type *, 4> Visited; 5975 if (!Align && !Ty->isSized(&Visited)) 5976 return error("load of unsized type"); 5977 if (!Align) 5978 Align = TheModule->getDataLayout().getABITypeAlign(Ty); 5979 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align); 5980 InstructionList.push_back(I); 5981 break; 5982 } 5983 case bitc::FUNC_CODE_INST_LOADATOMIC: { 5984 // LOADATOMIC: [opty, op, align, vol, ordering, ssid] 5985 unsigned OpNum = 0; 5986 Value *Op; 5987 unsigned OpTypeID; 5988 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) || 5989 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 5990 return error("Invalid record"); 5991 5992 if (!isa<PointerType>(Op->getType())) 5993 return error("Load operand is not a pointer type"); 5994 5995 Type *Ty = nullptr; 5996 if (OpNum + 5 == Record.size()) { 5997 ResTypeID = Record[OpNum++]; 5998 Ty = getTypeByID(ResTypeID); 5999 } else { 6000 ResTypeID = getContainedTypeID(OpTypeID); 6001 Ty = getTypeByID(ResTypeID); 6002 if (!Ty) 6003 return error("Missing element type for old style atomic load"); 6004 } 6005 6006 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 6007 return Err; 6008 6009 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 6010 if (Ordering == AtomicOrdering::NotAtomic || 6011 Ordering == AtomicOrdering::Release || 6012 Ordering == AtomicOrdering::AcquireRelease) 6013 return error("Invalid record"); 6014 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 6015 return error("Invalid record"); 6016 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 6017 6018 MaybeAlign Align; 6019 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 6020 return Err; 6021 if (!Align) 6022 return error("Alignment missing from atomic load"); 6023 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID); 6024 InstructionList.push_back(I); 6025 break; 6026 } 6027 case bitc::FUNC_CODE_INST_STORE: 6028 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 6029 unsigned OpNum = 0; 6030 Value *Val, *Ptr; 6031 unsigned PtrTypeID, ValTypeID; 6032 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 6033 return error("Invalid record"); 6034 6035 if (BitCode == bitc::FUNC_CODE_INST_STORE) { 6036 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 6037 return error("Invalid record"); 6038 } else { 6039 ValTypeID = getContainedTypeID(PtrTypeID); 6040 if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID), 6041 ValTypeID, Val, CurBB)) 6042 return error("Invalid record"); 6043 } 6044 6045 if (OpNum + 2 != Record.size()) 6046 return error("Invalid record"); 6047 6048 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 6049 return Err; 6050 MaybeAlign Align; 6051 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 6052 return Err; 6053 SmallPtrSet<Type *, 4> Visited; 6054 if (!Align && !Val->getType()->isSized(&Visited)) 6055 return error("store of unsized type"); 6056 if (!Align) 6057 Align = TheModule->getDataLayout().getABITypeAlign(Val->getType()); 6058 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align); 6059 InstructionList.push_back(I); 6060 break; 6061 } 6062 case bitc::FUNC_CODE_INST_STOREATOMIC: 6063 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 6064 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid] 6065 unsigned OpNum = 0; 6066 Value *Val, *Ptr; 6067 unsigned PtrTypeID, ValTypeID; 6068 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB) || 6069 !isa<PointerType>(Ptr->getType())) 6070 return error("Invalid record"); 6071 if (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC) { 6072 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 6073 return error("Invalid record"); 6074 } else { 6075 ValTypeID = getContainedTypeID(PtrTypeID); 6076 if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID), 6077 ValTypeID, Val, CurBB)) 6078 return error("Invalid record"); 6079 } 6080 6081 if (OpNum + 4 != Record.size()) 6082 return error("Invalid record"); 6083 6084 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 6085 return Err; 6086 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 6087 if (Ordering == AtomicOrdering::NotAtomic || 6088 Ordering == AtomicOrdering::Acquire || 6089 Ordering == AtomicOrdering::AcquireRelease) 6090 return error("Invalid record"); 6091 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 6092 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 6093 return error("Invalid record"); 6094 6095 MaybeAlign Align; 6096 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 6097 return Err; 6098 if (!Align) 6099 return error("Alignment missing from atomic store"); 6100 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID); 6101 InstructionList.push_back(I); 6102 break; 6103 } 6104 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: { 6105 // CMPXCHG_OLD: [ptrty, ptr, cmp, val, vol, ordering, synchscope, 6106 // failure_ordering?, weak?] 6107 const size_t NumRecords = Record.size(); 6108 unsigned OpNum = 0; 6109 Value *Ptr = nullptr; 6110 unsigned PtrTypeID; 6111 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 6112 return error("Invalid record"); 6113 6114 if (!isa<PointerType>(Ptr->getType())) 6115 return error("Cmpxchg operand is not a pointer type"); 6116 6117 Value *Cmp = nullptr; 6118 unsigned CmpTypeID = getContainedTypeID(PtrTypeID); 6119 if (popValue(Record, OpNum, NextValueNo, getTypeByID(CmpTypeID), 6120 CmpTypeID, Cmp, CurBB)) 6121 return error("Invalid record"); 6122 6123 Value *New = nullptr; 6124 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID, 6125 New, CurBB) || 6126 NumRecords < OpNum + 3 || NumRecords > OpNum + 5) 6127 return error("Invalid record"); 6128 6129 const AtomicOrdering SuccessOrdering = 6130 getDecodedOrdering(Record[OpNum + 1]); 6131 if (SuccessOrdering == AtomicOrdering::NotAtomic || 6132 SuccessOrdering == AtomicOrdering::Unordered) 6133 return error("Invalid record"); 6134 6135 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 6136 6137 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 6138 return Err; 6139 6140 const AtomicOrdering FailureOrdering = 6141 NumRecords < 7 6142 ? AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering) 6143 : getDecodedOrdering(Record[OpNum + 3]); 6144 6145 if (FailureOrdering == AtomicOrdering::NotAtomic || 6146 FailureOrdering == AtomicOrdering::Unordered) 6147 return error("Invalid record"); 6148 6149 const Align Alignment( 6150 TheModule->getDataLayout().getTypeStoreSize(Cmp->getType())); 6151 6152 I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering, 6153 FailureOrdering, SSID); 6154 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 6155 6156 if (NumRecords < 8) { 6157 // Before weak cmpxchgs existed, the instruction simply returned the 6158 // value loaded from memory, so bitcode files from that era will be 6159 // expecting the first component of a modern cmpxchg. 6160 I->insertInto(CurBB, CurBB->end()); 6161 I = ExtractValueInst::Create(I, 0); 6162 ResTypeID = CmpTypeID; 6163 } else { 6164 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]); 6165 unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context)); 6166 ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID}); 6167 } 6168 6169 InstructionList.push_back(I); 6170 break; 6171 } 6172 case bitc::FUNC_CODE_INST_CMPXCHG: { 6173 // CMPXCHG: [ptrty, ptr, cmp, val, vol, success_ordering, synchscope, 6174 // failure_ordering, weak, align?] 6175 const size_t NumRecords = Record.size(); 6176 unsigned OpNum = 0; 6177 Value *Ptr = nullptr; 6178 unsigned PtrTypeID; 6179 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 6180 return error("Invalid record"); 6181 6182 if (!isa<PointerType>(Ptr->getType())) 6183 return error("Cmpxchg operand is not a pointer type"); 6184 6185 Value *Cmp = nullptr; 6186 unsigned CmpTypeID; 6187 if (getValueTypePair(Record, OpNum, NextValueNo, Cmp, CmpTypeID, CurBB)) 6188 return error("Invalid record"); 6189 6190 Value *Val = nullptr; 6191 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID, Val, 6192 CurBB)) 6193 return error("Invalid record"); 6194 6195 if (NumRecords < OpNum + 3 || NumRecords > OpNum + 6) 6196 return error("Invalid record"); 6197 6198 const bool IsVol = Record[OpNum]; 6199 6200 const AtomicOrdering SuccessOrdering = 6201 getDecodedOrdering(Record[OpNum + 1]); 6202 if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering)) 6203 return error("Invalid cmpxchg success ordering"); 6204 6205 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 6206 6207 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 6208 return Err; 6209 6210 const AtomicOrdering FailureOrdering = 6211 getDecodedOrdering(Record[OpNum + 3]); 6212 if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering)) 6213 return error("Invalid cmpxchg failure ordering"); 6214 6215 const bool IsWeak = Record[OpNum + 4]; 6216 6217 MaybeAlign Alignment; 6218 6219 if (NumRecords == (OpNum + 6)) { 6220 if (Error Err = parseAlignmentValue(Record[OpNum + 5], Alignment)) 6221 return Err; 6222 } 6223 if (!Alignment) 6224 Alignment = 6225 Align(TheModule->getDataLayout().getTypeStoreSize(Cmp->getType())); 6226 6227 I = new AtomicCmpXchgInst(Ptr, Cmp, Val, *Alignment, SuccessOrdering, 6228 FailureOrdering, SSID); 6229 cast<AtomicCmpXchgInst>(I)->setVolatile(IsVol); 6230 cast<AtomicCmpXchgInst>(I)->setWeak(IsWeak); 6231 6232 unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context)); 6233 ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID}); 6234 6235 InstructionList.push_back(I); 6236 break; 6237 } 6238 case bitc::FUNC_CODE_INST_ATOMICRMW_OLD: 6239 case bitc::FUNC_CODE_INST_ATOMICRMW: { 6240 // ATOMICRMW_OLD: [ptrty, ptr, val, op, vol, ordering, ssid, align?] 6241 // ATOMICRMW: [ptrty, ptr, valty, val, op, vol, ordering, ssid, align?] 6242 const size_t NumRecords = Record.size(); 6243 unsigned OpNum = 0; 6244 6245 Value *Ptr = nullptr; 6246 unsigned PtrTypeID; 6247 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 6248 return error("Invalid record"); 6249 6250 if (!isa<PointerType>(Ptr->getType())) 6251 return error("Invalid record"); 6252 6253 Value *Val = nullptr; 6254 unsigned ValTypeID = InvalidTypeID; 6255 if (BitCode == bitc::FUNC_CODE_INST_ATOMICRMW_OLD) { 6256 ValTypeID = getContainedTypeID(PtrTypeID); 6257 if (popValue(Record, OpNum, NextValueNo, 6258 getTypeByID(ValTypeID), ValTypeID, Val, CurBB)) 6259 return error("Invalid record"); 6260 } else { 6261 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 6262 return error("Invalid record"); 6263 } 6264 6265 if (!(NumRecords == (OpNum + 4) || NumRecords == (OpNum + 5))) 6266 return error("Invalid record"); 6267 6268 const AtomicRMWInst::BinOp Operation = 6269 getDecodedRMWOperation(Record[OpNum]); 6270 if (Operation < AtomicRMWInst::FIRST_BINOP || 6271 Operation > AtomicRMWInst::LAST_BINOP) 6272 return error("Invalid record"); 6273 6274 const bool IsVol = Record[OpNum + 1]; 6275 6276 const AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 6277 if (Ordering == AtomicOrdering::NotAtomic || 6278 Ordering == AtomicOrdering::Unordered) 6279 return error("Invalid record"); 6280 6281 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 6282 6283 MaybeAlign Alignment; 6284 6285 if (NumRecords == (OpNum + 5)) { 6286 if (Error Err = parseAlignmentValue(Record[OpNum + 4], Alignment)) 6287 return Err; 6288 } 6289 6290 if (!Alignment) 6291 Alignment = 6292 Align(TheModule->getDataLayout().getTypeStoreSize(Val->getType())); 6293 6294 I = new AtomicRMWInst(Operation, Ptr, Val, *Alignment, Ordering, SSID); 6295 ResTypeID = ValTypeID; 6296 cast<AtomicRMWInst>(I)->setVolatile(IsVol); 6297 6298 InstructionList.push_back(I); 6299 break; 6300 } 6301 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid] 6302 if (2 != Record.size()) 6303 return error("Invalid record"); 6304 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 6305 if (Ordering == AtomicOrdering::NotAtomic || 6306 Ordering == AtomicOrdering::Unordered || 6307 Ordering == AtomicOrdering::Monotonic) 6308 return error("Invalid record"); 6309 SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]); 6310 I = new FenceInst(Context, Ordering, SSID); 6311 InstructionList.push_back(I); 6312 break; 6313 } 6314 case bitc::FUNC_CODE_INST_CALL: { 6315 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 6316 if (Record.size() < 3) 6317 return error("Invalid record"); 6318 6319 unsigned OpNum = 0; 6320 AttributeList PAL = getAttributes(Record[OpNum++]); 6321 unsigned CCInfo = Record[OpNum++]; 6322 6323 FastMathFlags FMF; 6324 if ((CCInfo >> bitc::CALL_FMF) & 1) { 6325 FMF = getDecodedFastMathFlags(Record[OpNum++]); 6326 if (!FMF.any()) 6327 return error("Fast math flags indicator set for call with no FMF"); 6328 } 6329 6330 unsigned FTyID = InvalidTypeID; 6331 FunctionType *FTy = nullptr; 6332 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 6333 FTyID = Record[OpNum++]; 6334 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 6335 if (!FTy) 6336 return error("Explicit call type is not a function type"); 6337 } 6338 6339 Value *Callee; 6340 unsigned CalleeTypeID; 6341 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID, 6342 CurBB)) 6343 return error("Invalid record"); 6344 6345 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 6346 if (!OpTy) 6347 return error("Callee is not a pointer type"); 6348 if (!FTy) { 6349 FTyID = getContainedTypeID(CalleeTypeID); 6350 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 6351 if (!FTy) 6352 return error("Callee is not of pointer to function type"); 6353 } else if (!OpTy->isOpaqueOrPointeeTypeMatches(FTy)) 6354 return error("Explicit call type does not match pointee type of " 6355 "callee operand"); 6356 if (Record.size() < FTy->getNumParams() + OpNum) 6357 return error("Insufficient operands to call"); 6358 6359 SmallVector<Value*, 16> Args; 6360 SmallVector<unsigned, 16> ArgTyIDs; 6361 // Read the fixed params. 6362 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 6363 unsigned ArgTyID = getContainedTypeID(FTyID, i + 1); 6364 if (FTy->getParamType(i)->isLabelTy()) 6365 Args.push_back(getBasicBlock(Record[OpNum])); 6366 else 6367 Args.push_back(getValue(Record, OpNum, NextValueNo, 6368 FTy->getParamType(i), ArgTyID, CurBB)); 6369 ArgTyIDs.push_back(ArgTyID); 6370 if (!Args.back()) 6371 return error("Invalid record"); 6372 } 6373 6374 // Read type/value pairs for varargs params. 6375 if (!FTy->isVarArg()) { 6376 if (OpNum != Record.size()) 6377 return error("Invalid record"); 6378 } else { 6379 while (OpNum != Record.size()) { 6380 Value *Op; 6381 unsigned OpTypeID; 6382 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 6383 return error("Invalid record"); 6384 Args.push_back(Op); 6385 ArgTyIDs.push_back(OpTypeID); 6386 } 6387 } 6388 6389 // Upgrade the bundles if needed. 6390 if (!OperandBundles.empty()) 6391 UpgradeOperandBundles(OperandBundles); 6392 6393 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 6394 ResTypeID = getContainedTypeID(FTyID); 6395 OperandBundles.clear(); 6396 InstructionList.push_back(I); 6397 cast<CallInst>(I)->setCallingConv( 6398 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 6399 CallInst::TailCallKind TCK = CallInst::TCK_None; 6400 if (CCInfo & 1 << bitc::CALL_TAIL) 6401 TCK = CallInst::TCK_Tail; 6402 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 6403 TCK = CallInst::TCK_MustTail; 6404 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 6405 TCK = CallInst::TCK_NoTail; 6406 cast<CallInst>(I)->setTailCallKind(TCK); 6407 cast<CallInst>(I)->setAttributes(PAL); 6408 if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) { 6409 I->deleteValue(); 6410 return Err; 6411 } 6412 if (FMF.any()) { 6413 if (!isa<FPMathOperator>(I)) 6414 return error("Fast-math-flags specified for call without " 6415 "floating-point scalar or vector return type"); 6416 I->setFastMathFlags(FMF); 6417 } 6418 break; 6419 } 6420 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 6421 if (Record.size() < 3) 6422 return error("Invalid record"); 6423 unsigned OpTyID = Record[0]; 6424 Type *OpTy = getTypeByID(OpTyID); 6425 Value *Op = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB); 6426 ResTypeID = Record[2]; 6427 Type *ResTy = getTypeByID(ResTypeID); 6428 if (!OpTy || !Op || !ResTy) 6429 return error("Invalid record"); 6430 I = new VAArgInst(Op, ResTy); 6431 InstructionList.push_back(I); 6432 break; 6433 } 6434 6435 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 6436 // A call or an invoke can be optionally prefixed with some variable 6437 // number of operand bundle blocks. These blocks are read into 6438 // OperandBundles and consumed at the next call or invoke instruction. 6439 6440 if (Record.empty() || Record[0] >= BundleTags.size()) 6441 return error("Invalid record"); 6442 6443 std::vector<Value *> Inputs; 6444 6445 unsigned OpNum = 1; 6446 while (OpNum != Record.size()) { 6447 Value *Op; 6448 unsigned OpTypeID; 6449 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 6450 return error("Invalid record"); 6451 Inputs.push_back(Op); 6452 } 6453 6454 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 6455 continue; 6456 } 6457 6458 case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval] 6459 unsigned OpNum = 0; 6460 Value *Op = nullptr; 6461 unsigned OpTypeID; 6462 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 6463 return error("Invalid record"); 6464 if (OpNum != Record.size()) 6465 return error("Invalid record"); 6466 6467 I = new FreezeInst(Op); 6468 ResTypeID = OpTypeID; 6469 InstructionList.push_back(I); 6470 break; 6471 } 6472 } 6473 6474 // Add instruction to end of current BB. If there is no current BB, reject 6475 // this file. 6476 if (!CurBB) { 6477 I->deleteValue(); 6478 return error("Invalid instruction with no BB"); 6479 } 6480 if (!OperandBundles.empty()) { 6481 I->deleteValue(); 6482 return error("Operand bundles found with no consumer"); 6483 } 6484 I->insertInto(CurBB, CurBB->end()); 6485 6486 // If this was a terminator instruction, move to the next block. 6487 if (I->isTerminator()) { 6488 ++CurBBNo; 6489 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 6490 } 6491 6492 // Non-void values get registered in the value table for future use. 6493 if (!I->getType()->isVoidTy()) { 6494 assert(I->getType() == getTypeByID(ResTypeID) && 6495 "Incorrect result type ID"); 6496 if (Error Err = ValueList.assignValue(NextValueNo++, I, ResTypeID)) 6497 return Err; 6498 } 6499 } 6500 6501 OutOfRecordLoop: 6502 6503 if (!OperandBundles.empty()) 6504 return error("Operand bundles found with no consumer"); 6505 6506 // Check the function list for unresolved values. 6507 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 6508 if (!A->getParent()) { 6509 // We found at least one unresolved value. Nuke them all to avoid leaks. 6510 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 6511 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 6512 A->replaceAllUsesWith(PoisonValue::get(A->getType())); 6513 delete A; 6514 } 6515 } 6516 return error("Never resolved value found in function"); 6517 } 6518 } 6519 6520 // Unexpected unresolved metadata about to be dropped. 6521 if (MDLoader->hasFwdRefs()) 6522 return error("Invalid function metadata: outgoing forward refs"); 6523 6524 if (PhiConstExprBB) 6525 PhiConstExprBB->eraseFromParent(); 6526 6527 for (const auto &Pair : ConstExprEdgeBBs) { 6528 BasicBlock *From = Pair.first.first; 6529 BasicBlock *To = Pair.first.second; 6530 BasicBlock *EdgeBB = Pair.second; 6531 BranchInst::Create(To, EdgeBB); 6532 From->getTerminator()->replaceSuccessorWith(To, EdgeBB); 6533 To->replacePhiUsesWith(From, EdgeBB); 6534 EdgeBB->moveBefore(To); 6535 } 6536 6537 // Trim the value list down to the size it was before we parsed this function. 6538 ValueList.shrinkTo(ModuleValueListSize); 6539 MDLoader->shrinkTo(ModuleMDLoaderSize); 6540 std::vector<BasicBlock*>().swap(FunctionBBs); 6541 return Error::success(); 6542 } 6543 6544 /// Find the function body in the bitcode stream 6545 Error BitcodeReader::findFunctionInStream( 6546 Function *F, 6547 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 6548 while (DeferredFunctionInfoIterator->second == 0) { 6549 // This is the fallback handling for the old format bitcode that 6550 // didn't contain the function index in the VST, or when we have 6551 // an anonymous function which would not have a VST entry. 6552 // Assert that we have one of those two cases. 6553 assert(VSTOffset == 0 || !F->hasName()); 6554 // Parse the next body in the stream and set its position in the 6555 // DeferredFunctionInfo map. 6556 if (Error Err = rememberAndSkipFunctionBodies()) 6557 return Err; 6558 } 6559 return Error::success(); 6560 } 6561 6562 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) { 6563 if (Val == SyncScope::SingleThread || Val == SyncScope::System) 6564 return SyncScope::ID(Val); 6565 if (Val >= SSIDs.size()) 6566 return SyncScope::System; // Map unknown synchronization scopes to system. 6567 return SSIDs[Val]; 6568 } 6569 6570 //===----------------------------------------------------------------------===// 6571 // GVMaterializer implementation 6572 //===----------------------------------------------------------------------===// 6573 6574 Error BitcodeReader::materialize(GlobalValue *GV) { 6575 Function *F = dyn_cast<Function>(GV); 6576 // If it's not a function or is already material, ignore the request. 6577 if (!F || !F->isMaterializable()) 6578 return Error::success(); 6579 6580 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 6581 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 6582 // If its position is recorded as 0, its body is somewhere in the stream 6583 // but we haven't seen it yet. 6584 if (DFII->second == 0) 6585 if (Error Err = findFunctionInStream(F, DFII)) 6586 return Err; 6587 6588 // Materialize metadata before parsing any function bodies. 6589 if (Error Err = materializeMetadata()) 6590 return Err; 6591 6592 // Move the bit stream to the saved position of the deferred function body. 6593 if (Error JumpFailed = Stream.JumpToBit(DFII->second)) 6594 return JumpFailed; 6595 if (Error Err = parseFunctionBody(F)) 6596 return Err; 6597 F->setIsMaterializable(false); 6598 6599 if (StripDebugInfo) 6600 stripDebugInfo(*F); 6601 6602 // Upgrade any old intrinsic calls in the function. 6603 for (auto &I : UpgradedIntrinsics) { 6604 for (User *U : llvm::make_early_inc_range(I.first->materialized_users())) 6605 if (CallInst *CI = dyn_cast<CallInst>(U)) 6606 UpgradeIntrinsicCall(CI, I.second); 6607 } 6608 6609 // Finish fn->subprogram upgrade for materialized functions. 6610 if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F)) 6611 F->setSubprogram(SP); 6612 6613 // Check if the TBAA Metadata are valid, otherwise we will need to strip them. 6614 if (!MDLoader->isStrippingTBAA()) { 6615 for (auto &I : instructions(F)) { 6616 MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa); 6617 if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA)) 6618 continue; 6619 MDLoader->setStripTBAA(true); 6620 stripTBAA(F->getParent()); 6621 } 6622 } 6623 6624 for (auto &I : instructions(F)) { 6625 // "Upgrade" older incorrect branch weights by dropping them. 6626 if (auto *MD = I.getMetadata(LLVMContext::MD_prof)) { 6627 if (MD->getOperand(0) != nullptr && isa<MDString>(MD->getOperand(0))) { 6628 MDString *MDS = cast<MDString>(MD->getOperand(0)); 6629 StringRef ProfName = MDS->getString(); 6630 // Check consistency of !prof branch_weights metadata. 6631 if (!ProfName.equals("branch_weights")) 6632 continue; 6633 unsigned ExpectedNumOperands = 0; 6634 if (BranchInst *BI = dyn_cast<BranchInst>(&I)) 6635 ExpectedNumOperands = BI->getNumSuccessors(); 6636 else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I)) 6637 ExpectedNumOperands = SI->getNumSuccessors(); 6638 else if (isa<CallInst>(&I)) 6639 ExpectedNumOperands = 1; 6640 else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I)) 6641 ExpectedNumOperands = IBI->getNumDestinations(); 6642 else if (isa<SelectInst>(&I)) 6643 ExpectedNumOperands = 2; 6644 else 6645 continue; // ignore and continue. 6646 6647 // If branch weight doesn't match, just strip branch weight. 6648 if (MD->getNumOperands() != 1 + ExpectedNumOperands) 6649 I.setMetadata(LLVMContext::MD_prof, nullptr); 6650 } 6651 } 6652 6653 // Remove incompatible attributes on function calls. 6654 if (auto *CI = dyn_cast<CallBase>(&I)) { 6655 CI->removeRetAttrs(AttributeFuncs::typeIncompatible( 6656 CI->getFunctionType()->getReturnType())); 6657 6658 for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ++ArgNo) 6659 CI->removeParamAttrs(ArgNo, AttributeFuncs::typeIncompatible( 6660 CI->getArgOperand(ArgNo)->getType())); 6661 } 6662 } 6663 6664 // Look for functions that rely on old function attribute behavior. 6665 UpgradeFunctionAttributes(*F); 6666 6667 // Bring in any functions that this function forward-referenced via 6668 // blockaddresses. 6669 return materializeForwardReferencedFunctions(); 6670 } 6671 6672 Error BitcodeReader::materializeModule() { 6673 if (Error Err = materializeMetadata()) 6674 return Err; 6675 6676 // Promise to materialize all forward references. 6677 WillMaterializeAllForwardRefs = true; 6678 6679 // Iterate over the module, deserializing any functions that are still on 6680 // disk. 6681 for (Function &F : *TheModule) { 6682 if (Error Err = materialize(&F)) 6683 return Err; 6684 } 6685 // At this point, if there are any function bodies, parse the rest of 6686 // the bits in the module past the last function block we have recorded 6687 // through either lazy scanning or the VST. 6688 if (LastFunctionBlockBit || NextUnreadBit) 6689 if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit 6690 ? LastFunctionBlockBit 6691 : NextUnreadBit)) 6692 return Err; 6693 6694 // Check that all block address forward references got resolved (as we 6695 // promised above). 6696 if (!BasicBlockFwdRefs.empty()) 6697 return error("Never resolved function from blockaddress"); 6698 6699 // Upgrade any intrinsic calls that slipped through (should not happen!) and 6700 // delete the old functions to clean up. We can't do this unless the entire 6701 // module is materialized because there could always be another function body 6702 // with calls to the old function. 6703 for (auto &I : UpgradedIntrinsics) { 6704 for (auto *U : I.first->users()) { 6705 if (CallInst *CI = dyn_cast<CallInst>(U)) 6706 UpgradeIntrinsicCall(CI, I.second); 6707 } 6708 if (!I.first->use_empty()) 6709 I.first->replaceAllUsesWith(I.second); 6710 I.first->eraseFromParent(); 6711 } 6712 UpgradedIntrinsics.clear(); 6713 6714 UpgradeDebugInfo(*TheModule); 6715 6716 UpgradeModuleFlags(*TheModule); 6717 6718 UpgradeARCRuntime(*TheModule); 6719 6720 return Error::success(); 6721 } 6722 6723 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 6724 return IdentifiedStructTypes; 6725 } 6726 6727 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 6728 BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex, 6729 StringRef ModulePath, unsigned ModuleId, 6730 std::function<bool(GlobalValue::GUID)> IsPrevailing) 6731 : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex), 6732 ModulePath(ModulePath), ModuleId(ModuleId), IsPrevailing(IsPrevailing) {} 6733 6734 void ModuleSummaryIndexBitcodeReader::addThisModule() { 6735 TheIndex.addModule(ModulePath, ModuleId); 6736 } 6737 6738 ModuleSummaryIndex::ModuleInfo * 6739 ModuleSummaryIndexBitcodeReader::getThisModule() { 6740 return TheIndex.getModule(ModulePath); 6741 } 6742 6743 template <bool AllowNullValueInfo> 6744 std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID> 6745 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) { 6746 auto VGI = ValueIdToValueInfoMap[ValueId]; 6747 // We can have a null value info for memprof callsite info records in 6748 // distributed ThinLTO index files when the callee function summary is not 6749 // included in the index. The bitcode writer records 0 in that case, 6750 // and the caller of this helper will set AllowNullValueInfo to true. 6751 assert(AllowNullValueInfo || std::get<0>(VGI)); 6752 return VGI; 6753 } 6754 6755 void ModuleSummaryIndexBitcodeReader::setValueGUID( 6756 uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage, 6757 StringRef SourceFileName) { 6758 std::string GlobalId = 6759 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 6760 auto ValueGUID = GlobalValue::getGUID(GlobalId); 6761 auto OriginalNameID = ValueGUID; 6762 if (GlobalValue::isLocalLinkage(Linkage)) 6763 OriginalNameID = GlobalValue::getGUID(ValueName); 6764 if (PrintSummaryGUIDs) 6765 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 6766 << ValueName << "\n"; 6767 6768 // UseStrtab is false for legacy summary formats and value names are 6769 // created on stack. In that case we save the name in a string saver in 6770 // the index so that the value name can be recorded. 6771 ValueIdToValueInfoMap[ValueID] = std::make_tuple( 6772 TheIndex.getOrInsertValueInfo( 6773 ValueGUID, UseStrtab ? ValueName : TheIndex.saveString(ValueName)), 6774 OriginalNameID, ValueGUID); 6775 } 6776 6777 // Specialized value symbol table parser used when reading module index 6778 // blocks where we don't actually create global values. The parsed information 6779 // is saved in the bitcode reader for use when later parsing summaries. 6780 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 6781 uint64_t Offset, 6782 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 6783 // With a strtab the VST is not required to parse the summary. 6784 if (UseStrtab) 6785 return Error::success(); 6786 6787 assert(Offset > 0 && "Expected non-zero VST offset"); 6788 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 6789 if (!MaybeCurrentBit) 6790 return MaybeCurrentBit.takeError(); 6791 uint64_t CurrentBit = MaybeCurrentBit.get(); 6792 6793 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 6794 return Err; 6795 6796 SmallVector<uint64_t, 64> Record; 6797 6798 // Read all the records for this value table. 6799 SmallString<128> ValueName; 6800 6801 while (true) { 6802 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6803 if (!MaybeEntry) 6804 return MaybeEntry.takeError(); 6805 BitstreamEntry Entry = MaybeEntry.get(); 6806 6807 switch (Entry.Kind) { 6808 case BitstreamEntry::SubBlock: // Handled for us already. 6809 case BitstreamEntry::Error: 6810 return error("Malformed block"); 6811 case BitstreamEntry::EndBlock: 6812 // Done parsing VST, jump back to wherever we came from. 6813 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 6814 return JumpFailed; 6815 return Error::success(); 6816 case BitstreamEntry::Record: 6817 // The interesting case. 6818 break; 6819 } 6820 6821 // Read a record. 6822 Record.clear(); 6823 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 6824 if (!MaybeRecord) 6825 return MaybeRecord.takeError(); 6826 switch (MaybeRecord.get()) { 6827 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 6828 break; 6829 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 6830 if (convertToString(Record, 1, ValueName)) 6831 return error("Invalid record"); 6832 unsigned ValueID = Record[0]; 6833 assert(!SourceFileName.empty()); 6834 auto VLI = ValueIdToLinkageMap.find(ValueID); 6835 assert(VLI != ValueIdToLinkageMap.end() && 6836 "No linkage found for VST entry?"); 6837 auto Linkage = VLI->second; 6838 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 6839 ValueName.clear(); 6840 break; 6841 } 6842 case bitc::VST_CODE_FNENTRY: { 6843 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 6844 if (convertToString(Record, 2, ValueName)) 6845 return error("Invalid record"); 6846 unsigned ValueID = Record[0]; 6847 assert(!SourceFileName.empty()); 6848 auto VLI = ValueIdToLinkageMap.find(ValueID); 6849 assert(VLI != ValueIdToLinkageMap.end() && 6850 "No linkage found for VST entry?"); 6851 auto Linkage = VLI->second; 6852 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 6853 ValueName.clear(); 6854 break; 6855 } 6856 case bitc::VST_CODE_COMBINED_ENTRY: { 6857 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 6858 unsigned ValueID = Record[0]; 6859 GlobalValue::GUID RefGUID = Record[1]; 6860 // The "original name", which is the second value of the pair will be 6861 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 6862 ValueIdToValueInfoMap[ValueID] = std::make_tuple( 6863 TheIndex.getOrInsertValueInfo(RefGUID), RefGUID, RefGUID); 6864 break; 6865 } 6866 } 6867 } 6868 } 6869 6870 // Parse just the blocks needed for building the index out of the module. 6871 // At the end of this routine the module Index is populated with a map 6872 // from global value id to GlobalValueSummary objects. 6873 Error ModuleSummaryIndexBitcodeReader::parseModule() { 6874 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 6875 return Err; 6876 6877 SmallVector<uint64_t, 64> Record; 6878 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 6879 unsigned ValueId = 0; 6880 6881 // Read the index for this module. 6882 while (true) { 6883 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6884 if (!MaybeEntry) 6885 return MaybeEntry.takeError(); 6886 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6887 6888 switch (Entry.Kind) { 6889 case BitstreamEntry::Error: 6890 return error("Malformed block"); 6891 case BitstreamEntry::EndBlock: 6892 return Error::success(); 6893 6894 case BitstreamEntry::SubBlock: 6895 switch (Entry.ID) { 6896 default: // Skip unknown content. 6897 if (Error Err = Stream.SkipBlock()) 6898 return Err; 6899 break; 6900 case bitc::BLOCKINFO_BLOCK_ID: 6901 // Need to parse these to get abbrev ids (e.g. for VST) 6902 if (Error Err = readBlockInfo()) 6903 return Err; 6904 break; 6905 case bitc::VALUE_SYMTAB_BLOCK_ID: 6906 // Should have been parsed earlier via VSTOffset, unless there 6907 // is no summary section. 6908 assert(((SeenValueSymbolTable && VSTOffset > 0) || 6909 !SeenGlobalValSummary) && 6910 "Expected early VST parse via VSTOffset record"); 6911 if (Error Err = Stream.SkipBlock()) 6912 return Err; 6913 break; 6914 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 6915 case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID: 6916 // Add the module if it is a per-module index (has a source file name). 6917 if (!SourceFileName.empty()) 6918 addThisModule(); 6919 assert(!SeenValueSymbolTable && 6920 "Already read VST when parsing summary block?"); 6921 // We might not have a VST if there were no values in the 6922 // summary. An empty summary block generated when we are 6923 // performing ThinLTO compiles so we don't later invoke 6924 // the regular LTO process on them. 6925 if (VSTOffset > 0) { 6926 if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 6927 return Err; 6928 SeenValueSymbolTable = true; 6929 } 6930 SeenGlobalValSummary = true; 6931 if (Error Err = parseEntireSummary(Entry.ID)) 6932 return Err; 6933 break; 6934 case bitc::MODULE_STRTAB_BLOCK_ID: 6935 if (Error Err = parseModuleStringTable()) 6936 return Err; 6937 break; 6938 } 6939 continue; 6940 6941 case BitstreamEntry::Record: { 6942 Record.clear(); 6943 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 6944 if (!MaybeBitCode) 6945 return MaybeBitCode.takeError(); 6946 switch (MaybeBitCode.get()) { 6947 default: 6948 break; // Default behavior, ignore unknown content. 6949 case bitc::MODULE_CODE_VERSION: { 6950 if (Error Err = parseVersionRecord(Record).takeError()) 6951 return Err; 6952 break; 6953 } 6954 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 6955 case bitc::MODULE_CODE_SOURCE_FILENAME: { 6956 SmallString<128> ValueName; 6957 if (convertToString(Record, 0, ValueName)) 6958 return error("Invalid record"); 6959 SourceFileName = ValueName.c_str(); 6960 break; 6961 } 6962 /// MODULE_CODE_HASH: [5*i32] 6963 case bitc::MODULE_CODE_HASH: { 6964 if (Record.size() != 5) 6965 return error("Invalid hash length " + Twine(Record.size()).str()); 6966 auto &Hash = getThisModule()->second.second; 6967 int Pos = 0; 6968 for (auto &Val : Record) { 6969 assert(!(Val >> 32) && "Unexpected high bits set"); 6970 Hash[Pos++] = Val; 6971 } 6972 break; 6973 } 6974 /// MODULE_CODE_VSTOFFSET: [offset] 6975 case bitc::MODULE_CODE_VSTOFFSET: 6976 if (Record.empty()) 6977 return error("Invalid record"); 6978 // Note that we subtract 1 here because the offset is relative to one 6979 // word before the start of the identification or module block, which 6980 // was historically always the start of the regular bitcode header. 6981 VSTOffset = Record[0] - 1; 6982 break; 6983 // v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...] 6984 // v1 FUNCTION: [type, callingconv, isproto, linkage, ...] 6985 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...] 6986 // v2: [strtab offset, strtab size, v1] 6987 case bitc::MODULE_CODE_GLOBALVAR: 6988 case bitc::MODULE_CODE_FUNCTION: 6989 case bitc::MODULE_CODE_ALIAS: { 6990 StringRef Name; 6991 ArrayRef<uint64_t> GVRecord; 6992 std::tie(Name, GVRecord) = readNameFromStrtab(Record); 6993 if (GVRecord.size() <= 3) 6994 return error("Invalid record"); 6995 uint64_t RawLinkage = GVRecord[3]; 6996 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 6997 if (!UseStrtab) { 6998 ValueIdToLinkageMap[ValueId++] = Linkage; 6999 break; 7000 } 7001 7002 setValueGUID(ValueId++, Name, Linkage, SourceFileName); 7003 break; 7004 } 7005 } 7006 } 7007 continue; 7008 } 7009 } 7010 } 7011 7012 std::vector<ValueInfo> 7013 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) { 7014 std::vector<ValueInfo> Ret; 7015 Ret.reserve(Record.size()); 7016 for (uint64_t RefValueId : Record) 7017 Ret.push_back(std::get<0>(getValueInfoFromValueId(RefValueId))); 7018 return Ret; 7019 } 7020 7021 std::vector<FunctionSummary::EdgeTy> 7022 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record, 7023 bool IsOldProfileFormat, 7024 bool HasProfile, bool HasRelBF) { 7025 std::vector<FunctionSummary::EdgeTy> Ret; 7026 Ret.reserve(Record.size()); 7027 for (unsigned I = 0, E = Record.size(); I != E; ++I) { 7028 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 7029 uint64_t RelBF = 0; 7030 ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[I])); 7031 if (IsOldProfileFormat) { 7032 I += 1; // Skip old callsitecount field 7033 if (HasProfile) 7034 I += 1; // Skip old profilecount field 7035 } else if (HasProfile) 7036 Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]); 7037 else if (HasRelBF) 7038 RelBF = Record[++I]; 7039 Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)}); 7040 } 7041 return Ret; 7042 } 7043 7044 static void 7045 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot, 7046 WholeProgramDevirtResolution &Wpd) { 7047 uint64_t ArgNum = Record[Slot++]; 7048 WholeProgramDevirtResolution::ByArg &B = 7049 Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}]; 7050 Slot += ArgNum; 7051 7052 B.TheKind = 7053 static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]); 7054 B.Info = Record[Slot++]; 7055 B.Byte = Record[Slot++]; 7056 B.Bit = Record[Slot++]; 7057 } 7058 7059 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record, 7060 StringRef Strtab, size_t &Slot, 7061 TypeIdSummary &TypeId) { 7062 uint64_t Id = Record[Slot++]; 7063 WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id]; 7064 7065 Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]); 7066 Wpd.SingleImplName = {Strtab.data() + Record[Slot], 7067 static_cast<size_t>(Record[Slot + 1])}; 7068 Slot += 2; 7069 7070 uint64_t ResByArgNum = Record[Slot++]; 7071 for (uint64_t I = 0; I != ResByArgNum; ++I) 7072 parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd); 7073 } 7074 7075 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record, 7076 StringRef Strtab, 7077 ModuleSummaryIndex &TheIndex) { 7078 size_t Slot = 0; 7079 TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary( 7080 {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])}); 7081 Slot += 2; 7082 7083 TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]); 7084 TypeId.TTRes.SizeM1BitWidth = Record[Slot++]; 7085 TypeId.TTRes.AlignLog2 = Record[Slot++]; 7086 TypeId.TTRes.SizeM1 = Record[Slot++]; 7087 TypeId.TTRes.BitMask = Record[Slot++]; 7088 TypeId.TTRes.InlineBits = Record[Slot++]; 7089 7090 while (Slot < Record.size()) 7091 parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId); 7092 } 7093 7094 std::vector<FunctionSummary::ParamAccess> 7095 ModuleSummaryIndexBitcodeReader::parseParamAccesses(ArrayRef<uint64_t> Record) { 7096 auto ReadRange = [&]() { 7097 APInt Lower(FunctionSummary::ParamAccess::RangeWidth, 7098 BitcodeReader::decodeSignRotatedValue(Record.front())); 7099 Record = Record.drop_front(); 7100 APInt Upper(FunctionSummary::ParamAccess::RangeWidth, 7101 BitcodeReader::decodeSignRotatedValue(Record.front())); 7102 Record = Record.drop_front(); 7103 ConstantRange Range{Lower, Upper}; 7104 assert(!Range.isFullSet()); 7105 assert(!Range.isUpperSignWrapped()); 7106 return Range; 7107 }; 7108 7109 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; 7110 while (!Record.empty()) { 7111 PendingParamAccesses.emplace_back(); 7112 FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back(); 7113 ParamAccess.ParamNo = Record.front(); 7114 Record = Record.drop_front(); 7115 ParamAccess.Use = ReadRange(); 7116 ParamAccess.Calls.resize(Record.front()); 7117 Record = Record.drop_front(); 7118 for (auto &Call : ParamAccess.Calls) { 7119 Call.ParamNo = Record.front(); 7120 Record = Record.drop_front(); 7121 Call.Callee = std::get<0>(getValueInfoFromValueId(Record.front())); 7122 Record = Record.drop_front(); 7123 Call.Offsets = ReadRange(); 7124 } 7125 } 7126 return PendingParamAccesses; 7127 } 7128 7129 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo( 7130 ArrayRef<uint64_t> Record, size_t &Slot, 7131 TypeIdCompatibleVtableInfo &TypeId) { 7132 uint64_t Offset = Record[Slot++]; 7133 ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[Slot++])); 7134 TypeId.push_back({Offset, Callee}); 7135 } 7136 7137 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord( 7138 ArrayRef<uint64_t> Record) { 7139 size_t Slot = 0; 7140 TypeIdCompatibleVtableInfo &TypeId = 7141 TheIndex.getOrInsertTypeIdCompatibleVtableSummary( 7142 {Strtab.data() + Record[Slot], 7143 static_cast<size_t>(Record[Slot + 1])}); 7144 Slot += 2; 7145 7146 while (Slot < Record.size()) 7147 parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId); 7148 } 7149 7150 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt, 7151 unsigned WOCnt) { 7152 // Readonly and writeonly refs are in the end of the refs list. 7153 assert(ROCnt + WOCnt <= Refs.size()); 7154 unsigned FirstWORef = Refs.size() - WOCnt; 7155 unsigned RefNo = FirstWORef - ROCnt; 7156 for (; RefNo < FirstWORef; ++RefNo) 7157 Refs[RefNo].setReadOnly(); 7158 for (; RefNo < Refs.size(); ++RefNo) 7159 Refs[RefNo].setWriteOnly(); 7160 } 7161 7162 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 7163 // objects in the index. 7164 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) { 7165 if (Error Err = Stream.EnterSubBlock(ID)) 7166 return Err; 7167 SmallVector<uint64_t, 64> Record; 7168 7169 // Parse version 7170 { 7171 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 7172 if (!MaybeEntry) 7173 return MaybeEntry.takeError(); 7174 BitstreamEntry Entry = MaybeEntry.get(); 7175 7176 if (Entry.Kind != BitstreamEntry::Record) 7177 return error("Invalid Summary Block: record for version expected"); 7178 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 7179 if (!MaybeRecord) 7180 return MaybeRecord.takeError(); 7181 if (MaybeRecord.get() != bitc::FS_VERSION) 7182 return error("Invalid Summary Block: version expected"); 7183 } 7184 const uint64_t Version = Record[0]; 7185 const bool IsOldProfileFormat = Version == 1; 7186 if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion) 7187 return error("Invalid summary version " + Twine(Version) + 7188 ". Version should be in the range [1-" + 7189 Twine(ModuleSummaryIndex::BitcodeSummaryVersion) + 7190 "]."); 7191 Record.clear(); 7192 7193 // Keep around the last seen summary to be used when we see an optional 7194 // "OriginalName" attachement. 7195 GlobalValueSummary *LastSeenSummary = nullptr; 7196 GlobalValue::GUID LastSeenGUID = 0; 7197 7198 // We can expect to see any number of type ID information records before 7199 // each function summary records; these variables store the information 7200 // collected so far so that it can be used to create the summary object. 7201 std::vector<GlobalValue::GUID> PendingTypeTests; 7202 std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls, 7203 PendingTypeCheckedLoadVCalls; 7204 std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls, 7205 PendingTypeCheckedLoadConstVCalls; 7206 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; 7207 7208 std::vector<CallsiteInfo> PendingCallsites; 7209 std::vector<AllocInfo> PendingAllocs; 7210 7211 while (true) { 7212 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 7213 if (!MaybeEntry) 7214 return MaybeEntry.takeError(); 7215 BitstreamEntry Entry = MaybeEntry.get(); 7216 7217 switch (Entry.Kind) { 7218 case BitstreamEntry::SubBlock: // Handled for us already. 7219 case BitstreamEntry::Error: 7220 return error("Malformed block"); 7221 case BitstreamEntry::EndBlock: 7222 return Error::success(); 7223 case BitstreamEntry::Record: 7224 // The interesting case. 7225 break; 7226 } 7227 7228 // Read a record. The record format depends on whether this 7229 // is a per-module index or a combined index file. In the per-module 7230 // case the records contain the associated value's ID for correlation 7231 // with VST entries. In the combined index the correlation is done 7232 // via the bitcode offset of the summary records (which were saved 7233 // in the combined index VST entries). The records also contain 7234 // information used for ThinLTO renaming and importing. 7235 Record.clear(); 7236 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 7237 if (!MaybeBitCode) 7238 return MaybeBitCode.takeError(); 7239 switch (unsigned BitCode = MaybeBitCode.get()) { 7240 default: // Default behavior: ignore. 7241 break; 7242 case bitc::FS_FLAGS: { // [flags] 7243 TheIndex.setFlags(Record[0]); 7244 break; 7245 } 7246 case bitc::FS_VALUE_GUID: { // [valueid, refguid] 7247 uint64_t ValueID = Record[0]; 7248 GlobalValue::GUID RefGUID = Record[1]; 7249 ValueIdToValueInfoMap[ValueID] = std::make_tuple( 7250 TheIndex.getOrInsertValueInfo(RefGUID), RefGUID, RefGUID); 7251 break; 7252 } 7253 // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs, 7254 // numrefs x valueid, n x (valueid)] 7255 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs, 7256 // numrefs x valueid, 7257 // n x (valueid, hotness)] 7258 // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs, 7259 // numrefs x valueid, 7260 // n x (valueid, relblockfreq)] 7261 case bitc::FS_PERMODULE: 7262 case bitc::FS_PERMODULE_RELBF: 7263 case bitc::FS_PERMODULE_PROFILE: { 7264 unsigned ValueID = Record[0]; 7265 uint64_t RawFlags = Record[1]; 7266 unsigned InstCount = Record[2]; 7267 uint64_t RawFunFlags = 0; 7268 unsigned NumRefs = Record[3]; 7269 unsigned NumRORefs = 0, NumWORefs = 0; 7270 int RefListStartIndex = 4; 7271 if (Version >= 4) { 7272 RawFunFlags = Record[3]; 7273 NumRefs = Record[4]; 7274 RefListStartIndex = 5; 7275 if (Version >= 5) { 7276 NumRORefs = Record[5]; 7277 RefListStartIndex = 6; 7278 if (Version >= 7) { 7279 NumWORefs = Record[6]; 7280 RefListStartIndex = 7; 7281 } 7282 } 7283 } 7284 7285 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7286 // The module path string ref set in the summary must be owned by the 7287 // index's module string table. Since we don't have a module path 7288 // string table section in the per-module index, we create a single 7289 // module path string table entry with an empty (0) ID to take 7290 // ownership. 7291 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 7292 assert(Record.size() >= RefListStartIndex + NumRefs && 7293 "Record size inconsistent with number of references"); 7294 std::vector<ValueInfo> Refs = makeRefList( 7295 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 7296 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 7297 bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF); 7298 std::vector<FunctionSummary::EdgeTy> Calls = makeCallList( 7299 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 7300 IsOldProfileFormat, HasProfile, HasRelBF); 7301 setSpecialRefs(Refs, NumRORefs, NumWORefs); 7302 auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID); 7303 // In order to save memory, only record the memprof summaries if this is 7304 // the prevailing copy of a symbol. The linker doesn't resolve local 7305 // linkage values so don't check whether those are prevailing. 7306 auto LT = (GlobalValue::LinkageTypes)Flags.Linkage; 7307 if (IsPrevailing && 7308 !GlobalValue::isLocalLinkage(LT) && 7309 !IsPrevailing(std::get<2>(VIAndOriginalGUID))) { 7310 PendingCallsites.clear(); 7311 PendingAllocs.clear(); 7312 } 7313 auto FS = std::make_unique<FunctionSummary>( 7314 Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0, 7315 std::move(Refs), std::move(Calls), std::move(PendingTypeTests), 7316 std::move(PendingTypeTestAssumeVCalls), 7317 std::move(PendingTypeCheckedLoadVCalls), 7318 std::move(PendingTypeTestAssumeConstVCalls), 7319 std::move(PendingTypeCheckedLoadConstVCalls), 7320 std::move(PendingParamAccesses), std::move(PendingCallsites), 7321 std::move(PendingAllocs)); 7322 FS->setModulePath(getThisModule()->first()); 7323 FS->setOriginalName(std::get<1>(VIAndOriginalGUID)); 7324 TheIndex.addGlobalValueSummary(std::get<0>(VIAndOriginalGUID), 7325 std::move(FS)); 7326 break; 7327 } 7328 // FS_ALIAS: [valueid, flags, valueid] 7329 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 7330 // they expect all aliasee summaries to be available. 7331 case bitc::FS_ALIAS: { 7332 unsigned ValueID = Record[0]; 7333 uint64_t RawFlags = Record[1]; 7334 unsigned AliaseeID = Record[2]; 7335 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7336 auto AS = std::make_unique<AliasSummary>(Flags); 7337 // The module path string ref set in the summary must be owned by the 7338 // index's module string table. Since we don't have a module path 7339 // string table section in the per-module index, we create a single 7340 // module path string table entry with an empty (0) ID to take 7341 // ownership. 7342 AS->setModulePath(getThisModule()->first()); 7343 7344 auto AliaseeVI = std::get<0>(getValueInfoFromValueId(AliaseeID)); 7345 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath); 7346 if (!AliaseeInModule) 7347 return error("Alias expects aliasee summary to be parsed"); 7348 AS->setAliasee(AliaseeVI, AliaseeInModule); 7349 7350 auto GUID = getValueInfoFromValueId(ValueID); 7351 AS->setOriginalName(std::get<1>(GUID)); 7352 TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(AS)); 7353 break; 7354 } 7355 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid] 7356 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 7357 unsigned ValueID = Record[0]; 7358 uint64_t RawFlags = Record[1]; 7359 unsigned RefArrayStart = 2; 7360 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 7361 /* WriteOnly */ false, 7362 /* Constant */ false, 7363 GlobalObject::VCallVisibilityPublic); 7364 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7365 if (Version >= 5) { 7366 GVF = getDecodedGVarFlags(Record[2]); 7367 RefArrayStart = 3; 7368 } 7369 std::vector<ValueInfo> Refs = 7370 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 7371 auto FS = 7372 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 7373 FS->setModulePath(getThisModule()->first()); 7374 auto GUID = getValueInfoFromValueId(ValueID); 7375 FS->setOriginalName(std::get<1>(GUID)); 7376 TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(FS)); 7377 break; 7378 } 7379 // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, 7380 // numrefs, numrefs x valueid, 7381 // n x (valueid, offset)] 7382 case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: { 7383 unsigned ValueID = Record[0]; 7384 uint64_t RawFlags = Record[1]; 7385 GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]); 7386 unsigned NumRefs = Record[3]; 7387 unsigned RefListStartIndex = 4; 7388 unsigned VTableListStartIndex = RefListStartIndex + NumRefs; 7389 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7390 std::vector<ValueInfo> Refs = makeRefList( 7391 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 7392 VTableFuncList VTableFuncs; 7393 for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) { 7394 ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[I])); 7395 uint64_t Offset = Record[++I]; 7396 VTableFuncs.push_back({Callee, Offset}); 7397 } 7398 auto VS = 7399 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 7400 VS->setModulePath(getThisModule()->first()); 7401 VS->setVTableFuncs(VTableFuncs); 7402 auto GUID = getValueInfoFromValueId(ValueID); 7403 VS->setOriginalName(std::get<1>(GUID)); 7404 TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(VS)); 7405 break; 7406 } 7407 // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs, 7408 // numrefs x valueid, n x (valueid)] 7409 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs, 7410 // numrefs x valueid, n x (valueid, hotness)] 7411 case bitc::FS_COMBINED: 7412 case bitc::FS_COMBINED_PROFILE: { 7413 unsigned ValueID = Record[0]; 7414 uint64_t ModuleId = Record[1]; 7415 uint64_t RawFlags = Record[2]; 7416 unsigned InstCount = Record[3]; 7417 uint64_t RawFunFlags = 0; 7418 uint64_t EntryCount = 0; 7419 unsigned NumRefs = Record[4]; 7420 unsigned NumRORefs = 0, NumWORefs = 0; 7421 int RefListStartIndex = 5; 7422 7423 if (Version >= 4) { 7424 RawFunFlags = Record[4]; 7425 RefListStartIndex = 6; 7426 size_t NumRefsIndex = 5; 7427 if (Version >= 5) { 7428 unsigned NumRORefsOffset = 1; 7429 RefListStartIndex = 7; 7430 if (Version >= 6) { 7431 NumRefsIndex = 6; 7432 EntryCount = Record[5]; 7433 RefListStartIndex = 8; 7434 if (Version >= 7) { 7435 RefListStartIndex = 9; 7436 NumWORefs = Record[8]; 7437 NumRORefsOffset = 2; 7438 } 7439 } 7440 NumRORefs = Record[RefListStartIndex - NumRORefsOffset]; 7441 } 7442 NumRefs = Record[NumRefsIndex]; 7443 } 7444 7445 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7446 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 7447 assert(Record.size() >= RefListStartIndex + NumRefs && 7448 "Record size inconsistent with number of references"); 7449 std::vector<ValueInfo> Refs = makeRefList( 7450 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 7451 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 7452 std::vector<FunctionSummary::EdgeTy> Edges = makeCallList( 7453 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 7454 IsOldProfileFormat, HasProfile, false); 7455 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID)); 7456 setSpecialRefs(Refs, NumRORefs, NumWORefs); 7457 auto FS = std::make_unique<FunctionSummary>( 7458 Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount, 7459 std::move(Refs), std::move(Edges), std::move(PendingTypeTests), 7460 std::move(PendingTypeTestAssumeVCalls), 7461 std::move(PendingTypeCheckedLoadVCalls), 7462 std::move(PendingTypeTestAssumeConstVCalls), 7463 std::move(PendingTypeCheckedLoadConstVCalls), 7464 std::move(PendingParamAccesses), std::move(PendingCallsites), 7465 std::move(PendingAllocs)); 7466 LastSeenSummary = FS.get(); 7467 LastSeenGUID = VI.getGUID(); 7468 FS->setModulePath(ModuleIdMap[ModuleId]); 7469 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 7470 break; 7471 } 7472 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 7473 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 7474 // they expect all aliasee summaries to be available. 7475 case bitc::FS_COMBINED_ALIAS: { 7476 unsigned ValueID = Record[0]; 7477 uint64_t ModuleId = Record[1]; 7478 uint64_t RawFlags = Record[2]; 7479 unsigned AliaseeValueId = Record[3]; 7480 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7481 auto AS = std::make_unique<AliasSummary>(Flags); 7482 LastSeenSummary = AS.get(); 7483 AS->setModulePath(ModuleIdMap[ModuleId]); 7484 7485 auto AliaseeVI = std::get<0>(getValueInfoFromValueId(AliaseeValueId)); 7486 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath()); 7487 AS->setAliasee(AliaseeVI, AliaseeInModule); 7488 7489 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID)); 7490 LastSeenGUID = VI.getGUID(); 7491 TheIndex.addGlobalValueSummary(VI, std::move(AS)); 7492 break; 7493 } 7494 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 7495 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 7496 unsigned ValueID = Record[0]; 7497 uint64_t ModuleId = Record[1]; 7498 uint64_t RawFlags = Record[2]; 7499 unsigned RefArrayStart = 3; 7500 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 7501 /* WriteOnly */ false, 7502 /* Constant */ false, 7503 GlobalObject::VCallVisibilityPublic); 7504 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7505 if (Version >= 5) { 7506 GVF = getDecodedGVarFlags(Record[3]); 7507 RefArrayStart = 4; 7508 } 7509 std::vector<ValueInfo> Refs = 7510 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 7511 auto FS = 7512 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 7513 LastSeenSummary = FS.get(); 7514 FS->setModulePath(ModuleIdMap[ModuleId]); 7515 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID)); 7516 LastSeenGUID = VI.getGUID(); 7517 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 7518 break; 7519 } 7520 // FS_COMBINED_ORIGINAL_NAME: [original_name] 7521 case bitc::FS_COMBINED_ORIGINAL_NAME: { 7522 uint64_t OriginalName = Record[0]; 7523 if (!LastSeenSummary) 7524 return error("Name attachment that does not follow a combined record"); 7525 LastSeenSummary->setOriginalName(OriginalName); 7526 TheIndex.addOriginalName(LastSeenGUID, OriginalName); 7527 // Reset the LastSeenSummary 7528 LastSeenSummary = nullptr; 7529 LastSeenGUID = 0; 7530 break; 7531 } 7532 case bitc::FS_TYPE_TESTS: 7533 assert(PendingTypeTests.empty()); 7534 llvm::append_range(PendingTypeTests, Record); 7535 break; 7536 7537 case bitc::FS_TYPE_TEST_ASSUME_VCALLS: 7538 assert(PendingTypeTestAssumeVCalls.empty()); 7539 for (unsigned I = 0; I != Record.size(); I += 2) 7540 PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]}); 7541 break; 7542 7543 case bitc::FS_TYPE_CHECKED_LOAD_VCALLS: 7544 assert(PendingTypeCheckedLoadVCalls.empty()); 7545 for (unsigned I = 0; I != Record.size(); I += 2) 7546 PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]}); 7547 break; 7548 7549 case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL: 7550 PendingTypeTestAssumeConstVCalls.push_back( 7551 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 7552 break; 7553 7554 case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL: 7555 PendingTypeCheckedLoadConstVCalls.push_back( 7556 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 7557 break; 7558 7559 case bitc::FS_CFI_FUNCTION_DEFS: { 7560 std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs(); 7561 for (unsigned I = 0; I != Record.size(); I += 2) 7562 CfiFunctionDefs.insert( 7563 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 7564 break; 7565 } 7566 7567 case bitc::FS_CFI_FUNCTION_DECLS: { 7568 std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls(); 7569 for (unsigned I = 0; I != Record.size(); I += 2) 7570 CfiFunctionDecls.insert( 7571 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 7572 break; 7573 } 7574 7575 case bitc::FS_TYPE_ID: 7576 parseTypeIdSummaryRecord(Record, Strtab, TheIndex); 7577 break; 7578 7579 case bitc::FS_TYPE_ID_METADATA: 7580 parseTypeIdCompatibleVtableSummaryRecord(Record); 7581 break; 7582 7583 case bitc::FS_BLOCK_COUNT: 7584 TheIndex.addBlockCount(Record[0]); 7585 break; 7586 7587 case bitc::FS_PARAM_ACCESS: { 7588 PendingParamAccesses = parseParamAccesses(Record); 7589 break; 7590 } 7591 7592 case bitc::FS_STACK_IDS: { // [n x stackid] 7593 // Save stack ids in the reader to consult when adding stack ids from the 7594 // lists in the stack node and alloc node entries. 7595 StackIds = ArrayRef<uint64_t>(Record); 7596 break; 7597 } 7598 7599 case bitc::FS_PERMODULE_CALLSITE_INFO: { 7600 unsigned ValueID = Record[0]; 7601 SmallVector<unsigned> StackIdList; 7602 for (auto R = Record.begin() + 1; R != Record.end(); R++) { 7603 assert(*R < StackIds.size()); 7604 StackIdList.push_back(TheIndex.addOrGetStackIdIndex(StackIds[*R])); 7605 } 7606 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID)); 7607 PendingCallsites.push_back(CallsiteInfo({VI, std::move(StackIdList)})); 7608 break; 7609 } 7610 7611 case bitc::FS_COMBINED_CALLSITE_INFO: { 7612 auto RecordIter = Record.begin(); 7613 unsigned ValueID = *RecordIter++; 7614 unsigned NumStackIds = *RecordIter++; 7615 unsigned NumVersions = *RecordIter++; 7616 assert(Record.size() == 3 + NumStackIds + NumVersions); 7617 SmallVector<unsigned> StackIdList; 7618 for (unsigned J = 0; J < NumStackIds; J++) { 7619 assert(*RecordIter < StackIds.size()); 7620 StackIdList.push_back( 7621 TheIndex.addOrGetStackIdIndex(StackIds[*RecordIter++])); 7622 } 7623 SmallVector<unsigned> Versions; 7624 for (unsigned J = 0; J < NumVersions; J++) 7625 Versions.push_back(*RecordIter++); 7626 ValueInfo VI = std::get<0>( 7627 getValueInfoFromValueId</*AllowNullValueInfo*/ true>(ValueID)); 7628 PendingCallsites.push_back( 7629 CallsiteInfo({VI, std::move(Versions), std::move(StackIdList)})); 7630 break; 7631 } 7632 7633 case bitc::FS_PERMODULE_ALLOC_INFO: { 7634 unsigned I = 0; 7635 std::vector<MIBInfo> MIBs; 7636 while (I < Record.size()) { 7637 assert(Record.size() - I >= 2); 7638 AllocationType AllocType = (AllocationType)Record[I++]; 7639 unsigned NumStackEntries = Record[I++]; 7640 assert(Record.size() - I >= NumStackEntries); 7641 SmallVector<unsigned> StackIdList; 7642 for (unsigned J = 0; J < NumStackEntries; J++) { 7643 assert(Record[I] < StackIds.size()); 7644 StackIdList.push_back( 7645 TheIndex.addOrGetStackIdIndex(StackIds[Record[I++]])); 7646 } 7647 MIBs.push_back(MIBInfo(AllocType, std::move(StackIdList))); 7648 } 7649 PendingAllocs.push_back(AllocInfo(std::move(MIBs))); 7650 break; 7651 } 7652 7653 case bitc::FS_COMBINED_ALLOC_INFO: { 7654 unsigned I = 0; 7655 std::vector<MIBInfo> MIBs; 7656 unsigned NumMIBs = Record[I++]; 7657 unsigned NumVersions = Record[I++]; 7658 unsigned MIBsRead = 0; 7659 while (MIBsRead++ < NumMIBs) { 7660 assert(Record.size() - I >= 2); 7661 AllocationType AllocType = (AllocationType)Record[I++]; 7662 unsigned NumStackEntries = Record[I++]; 7663 assert(Record.size() - I >= NumStackEntries); 7664 SmallVector<unsigned> StackIdList; 7665 for (unsigned J = 0; J < NumStackEntries; J++) { 7666 assert(Record[I] < StackIds.size()); 7667 StackIdList.push_back( 7668 TheIndex.addOrGetStackIdIndex(StackIds[Record[I++]])); 7669 } 7670 MIBs.push_back(MIBInfo(AllocType, std::move(StackIdList))); 7671 } 7672 assert(Record.size() - I >= NumVersions); 7673 SmallVector<uint8_t> Versions; 7674 for (unsigned J = 0; J < NumVersions; J++) 7675 Versions.push_back(Record[I++]); 7676 PendingAllocs.push_back( 7677 AllocInfo(std::move(Versions), std::move(MIBs))); 7678 break; 7679 } 7680 } 7681 } 7682 llvm_unreachable("Exit infinite loop"); 7683 } 7684 7685 // Parse the module string table block into the Index. 7686 // This populates the ModulePathStringTable map in the index. 7687 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 7688 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 7689 return Err; 7690 7691 SmallVector<uint64_t, 64> Record; 7692 7693 SmallString<128> ModulePath; 7694 ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr; 7695 7696 while (true) { 7697 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 7698 if (!MaybeEntry) 7699 return MaybeEntry.takeError(); 7700 BitstreamEntry Entry = MaybeEntry.get(); 7701 7702 switch (Entry.Kind) { 7703 case BitstreamEntry::SubBlock: // Handled for us already. 7704 case BitstreamEntry::Error: 7705 return error("Malformed block"); 7706 case BitstreamEntry::EndBlock: 7707 return Error::success(); 7708 case BitstreamEntry::Record: 7709 // The interesting case. 7710 break; 7711 } 7712 7713 Record.clear(); 7714 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 7715 if (!MaybeRecord) 7716 return MaybeRecord.takeError(); 7717 switch (MaybeRecord.get()) { 7718 default: // Default behavior: ignore. 7719 break; 7720 case bitc::MST_CODE_ENTRY: { 7721 // MST_ENTRY: [modid, namechar x N] 7722 uint64_t ModuleId = Record[0]; 7723 7724 if (convertToString(Record, 1, ModulePath)) 7725 return error("Invalid record"); 7726 7727 LastSeenModule = TheIndex.addModule(ModulePath, ModuleId); 7728 ModuleIdMap[ModuleId] = LastSeenModule->first(); 7729 7730 ModulePath.clear(); 7731 break; 7732 } 7733 /// MST_CODE_HASH: [5*i32] 7734 case bitc::MST_CODE_HASH: { 7735 if (Record.size() != 5) 7736 return error("Invalid hash length " + Twine(Record.size()).str()); 7737 if (!LastSeenModule) 7738 return error("Invalid hash that does not follow a module path"); 7739 int Pos = 0; 7740 for (auto &Val : Record) { 7741 assert(!(Val >> 32) && "Unexpected high bits set"); 7742 LastSeenModule->second.second[Pos++] = Val; 7743 } 7744 // Reset LastSeenModule to avoid overriding the hash unexpectedly. 7745 LastSeenModule = nullptr; 7746 break; 7747 } 7748 } 7749 } 7750 llvm_unreachable("Exit infinite loop"); 7751 } 7752 7753 namespace { 7754 7755 // FIXME: This class is only here to support the transition to llvm::Error. It 7756 // will be removed once this transition is complete. Clients should prefer to 7757 // deal with the Error value directly, rather than converting to error_code. 7758 class BitcodeErrorCategoryType : public std::error_category { 7759 const char *name() const noexcept override { 7760 return "llvm.bitcode"; 7761 } 7762 7763 std::string message(int IE) const override { 7764 BitcodeError E = static_cast<BitcodeError>(IE); 7765 switch (E) { 7766 case BitcodeError::CorruptedBitcode: 7767 return "Corrupted bitcode"; 7768 } 7769 llvm_unreachable("Unknown error type!"); 7770 } 7771 }; 7772 7773 } // end anonymous namespace 7774 7775 const std::error_category &llvm::BitcodeErrorCategory() { 7776 static BitcodeErrorCategoryType ErrorCategory; 7777 return ErrorCategory; 7778 } 7779 7780 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream, 7781 unsigned Block, unsigned RecordID) { 7782 if (Error Err = Stream.EnterSubBlock(Block)) 7783 return std::move(Err); 7784 7785 StringRef Strtab; 7786 while (true) { 7787 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 7788 if (!MaybeEntry) 7789 return MaybeEntry.takeError(); 7790 llvm::BitstreamEntry Entry = MaybeEntry.get(); 7791 7792 switch (Entry.Kind) { 7793 case BitstreamEntry::EndBlock: 7794 return Strtab; 7795 7796 case BitstreamEntry::Error: 7797 return error("Malformed block"); 7798 7799 case BitstreamEntry::SubBlock: 7800 if (Error Err = Stream.SkipBlock()) 7801 return std::move(Err); 7802 break; 7803 7804 case BitstreamEntry::Record: 7805 StringRef Blob; 7806 SmallVector<uint64_t, 1> Record; 7807 Expected<unsigned> MaybeRecord = 7808 Stream.readRecord(Entry.ID, Record, &Blob); 7809 if (!MaybeRecord) 7810 return MaybeRecord.takeError(); 7811 if (MaybeRecord.get() == RecordID) 7812 Strtab = Blob; 7813 break; 7814 } 7815 } 7816 } 7817 7818 //===----------------------------------------------------------------------===// 7819 // External interface 7820 //===----------------------------------------------------------------------===// 7821 7822 Expected<std::vector<BitcodeModule>> 7823 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) { 7824 auto FOrErr = getBitcodeFileContents(Buffer); 7825 if (!FOrErr) 7826 return FOrErr.takeError(); 7827 return std::move(FOrErr->Mods); 7828 } 7829 7830 Expected<BitcodeFileContents> 7831 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) { 7832 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 7833 if (!StreamOrErr) 7834 return StreamOrErr.takeError(); 7835 BitstreamCursor &Stream = *StreamOrErr; 7836 7837 BitcodeFileContents F; 7838 while (true) { 7839 uint64_t BCBegin = Stream.getCurrentByteNo(); 7840 7841 // We may be consuming bitcode from a client that leaves garbage at the end 7842 // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to 7843 // the end that there cannot possibly be another module, stop looking. 7844 if (BCBegin + 8 >= Stream.getBitcodeBytes().size()) 7845 return F; 7846 7847 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 7848 if (!MaybeEntry) 7849 return MaybeEntry.takeError(); 7850 llvm::BitstreamEntry Entry = MaybeEntry.get(); 7851 7852 switch (Entry.Kind) { 7853 case BitstreamEntry::EndBlock: 7854 case BitstreamEntry::Error: 7855 return error("Malformed block"); 7856 7857 case BitstreamEntry::SubBlock: { 7858 uint64_t IdentificationBit = -1ull; 7859 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 7860 IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8; 7861 if (Error Err = Stream.SkipBlock()) 7862 return std::move(Err); 7863 7864 { 7865 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 7866 if (!MaybeEntry) 7867 return MaybeEntry.takeError(); 7868 Entry = MaybeEntry.get(); 7869 } 7870 7871 if (Entry.Kind != BitstreamEntry::SubBlock || 7872 Entry.ID != bitc::MODULE_BLOCK_ID) 7873 return error("Malformed block"); 7874 } 7875 7876 if (Entry.ID == bitc::MODULE_BLOCK_ID) { 7877 uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8; 7878 if (Error Err = Stream.SkipBlock()) 7879 return std::move(Err); 7880 7881 F.Mods.push_back({Stream.getBitcodeBytes().slice( 7882 BCBegin, Stream.getCurrentByteNo() - BCBegin), 7883 Buffer.getBufferIdentifier(), IdentificationBit, 7884 ModuleBit}); 7885 continue; 7886 } 7887 7888 if (Entry.ID == bitc::STRTAB_BLOCK_ID) { 7889 Expected<StringRef> Strtab = 7890 readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB); 7891 if (!Strtab) 7892 return Strtab.takeError(); 7893 // This string table is used by every preceding bitcode module that does 7894 // not have its own string table. A bitcode file may have multiple 7895 // string tables if it was created by binary concatenation, for example 7896 // with "llvm-cat -b". 7897 for (BitcodeModule &I : llvm::reverse(F.Mods)) { 7898 if (!I.Strtab.empty()) 7899 break; 7900 I.Strtab = *Strtab; 7901 } 7902 // Similarly, the string table is used by every preceding symbol table; 7903 // normally there will be just one unless the bitcode file was created 7904 // by binary concatenation. 7905 if (!F.Symtab.empty() && F.StrtabForSymtab.empty()) 7906 F.StrtabForSymtab = *Strtab; 7907 continue; 7908 } 7909 7910 if (Entry.ID == bitc::SYMTAB_BLOCK_ID) { 7911 Expected<StringRef> SymtabOrErr = 7912 readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB); 7913 if (!SymtabOrErr) 7914 return SymtabOrErr.takeError(); 7915 7916 // We can expect the bitcode file to have multiple symbol tables if it 7917 // was created by binary concatenation. In that case we silently 7918 // ignore any subsequent symbol tables, which is fine because this is a 7919 // low level function. The client is expected to notice that the number 7920 // of modules in the symbol table does not match the number of modules 7921 // in the input file and regenerate the symbol table. 7922 if (F.Symtab.empty()) 7923 F.Symtab = *SymtabOrErr; 7924 continue; 7925 } 7926 7927 if (Error Err = Stream.SkipBlock()) 7928 return std::move(Err); 7929 continue; 7930 } 7931 case BitstreamEntry::Record: 7932 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 7933 return std::move(E); 7934 continue; 7935 } 7936 } 7937 } 7938 7939 /// Get a lazy one-at-time loading module from bitcode. 7940 /// 7941 /// This isn't always used in a lazy context. In particular, it's also used by 7942 /// \a parseModule(). If this is truly lazy, then we need to eagerly pull 7943 /// in forward-referenced functions from block address references. 7944 /// 7945 /// \param[in] MaterializeAll Set to \c true if we should materialize 7946 /// everything. 7947 Expected<std::unique_ptr<Module>> 7948 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll, 7949 bool ShouldLazyLoadMetadata, bool IsImporting, 7950 ParserCallbacks Callbacks) { 7951 BitstreamCursor Stream(Buffer); 7952 7953 std::string ProducerIdentification; 7954 if (IdentificationBit != -1ull) { 7955 if (Error JumpFailed = Stream.JumpToBit(IdentificationBit)) 7956 return std::move(JumpFailed); 7957 if (Error E = 7958 readIdentificationBlock(Stream).moveInto(ProducerIdentification)) 7959 return std::move(E); 7960 } 7961 7962 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 7963 return std::move(JumpFailed); 7964 auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification, 7965 Context); 7966 7967 std::unique_ptr<Module> M = 7968 std::make_unique<Module>(ModuleIdentifier, Context); 7969 M->setMaterializer(R); 7970 7971 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 7972 if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, 7973 IsImporting, Callbacks)) 7974 return std::move(Err); 7975 7976 if (MaterializeAll) { 7977 // Read in the entire module, and destroy the BitcodeReader. 7978 if (Error Err = M->materializeAll()) 7979 return std::move(Err); 7980 } else { 7981 // Resolve forward references from blockaddresses. 7982 if (Error Err = R->materializeForwardReferencedFunctions()) 7983 return std::move(Err); 7984 } 7985 return std::move(M); 7986 } 7987 7988 Expected<std::unique_ptr<Module>> 7989 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata, 7990 bool IsImporting, ParserCallbacks Callbacks) { 7991 return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting, 7992 Callbacks); 7993 } 7994 7995 // Parse the specified bitcode buffer and merge the index into CombinedIndex. 7996 // We don't use ModuleIdentifier here because the client may need to control the 7997 // module path used in the combined summary (e.g. when reading summaries for 7998 // regular LTO modules). 7999 Error BitcodeModule::readSummary( 8000 ModuleSummaryIndex &CombinedIndex, StringRef ModulePath, uint64_t ModuleId, 8001 std::function<bool(GlobalValue::GUID)> IsPrevailing) { 8002 BitstreamCursor Stream(Buffer); 8003 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 8004 return JumpFailed; 8005 8006 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex, 8007 ModulePath, ModuleId, IsPrevailing); 8008 return R.parseModule(); 8009 } 8010 8011 // Parse the specified bitcode buffer, returning the function info index. 8012 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() { 8013 BitstreamCursor Stream(Buffer); 8014 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 8015 return std::move(JumpFailed); 8016 8017 auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false); 8018 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index, 8019 ModuleIdentifier, 0); 8020 8021 if (Error Err = R.parseModule()) 8022 return std::move(Err); 8023 8024 return std::move(Index); 8025 } 8026 8027 static Expected<bool> getEnableSplitLTOUnitFlag(BitstreamCursor &Stream, 8028 unsigned ID) { 8029 if (Error Err = Stream.EnterSubBlock(ID)) 8030 return std::move(Err); 8031 SmallVector<uint64_t, 64> Record; 8032 8033 while (true) { 8034 BitstreamEntry Entry; 8035 if (Error E = Stream.advanceSkippingSubblocks().moveInto(Entry)) 8036 return std::move(E); 8037 8038 switch (Entry.Kind) { 8039 case BitstreamEntry::SubBlock: // Handled for us already. 8040 case BitstreamEntry::Error: 8041 return error("Malformed block"); 8042 case BitstreamEntry::EndBlock: 8043 // If no flags record found, conservatively return true to mimic 8044 // behavior before this flag was added. 8045 return true; 8046 case BitstreamEntry::Record: 8047 // The interesting case. 8048 break; 8049 } 8050 8051 // Look for the FS_FLAGS record. 8052 Record.clear(); 8053 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 8054 if (!MaybeBitCode) 8055 return MaybeBitCode.takeError(); 8056 switch (MaybeBitCode.get()) { 8057 default: // Default behavior: ignore. 8058 break; 8059 case bitc::FS_FLAGS: { // [flags] 8060 uint64_t Flags = Record[0]; 8061 // Scan flags. 8062 assert(Flags <= 0xff && "Unexpected bits in flag"); 8063 8064 return Flags & 0x8; 8065 } 8066 } 8067 } 8068 llvm_unreachable("Exit infinite loop"); 8069 } 8070 8071 // Check if the given bitcode buffer contains a global value summary block. 8072 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() { 8073 BitstreamCursor Stream(Buffer); 8074 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 8075 return std::move(JumpFailed); 8076 8077 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 8078 return std::move(Err); 8079 8080 while (true) { 8081 llvm::BitstreamEntry Entry; 8082 if (Error E = Stream.advance().moveInto(Entry)) 8083 return std::move(E); 8084 8085 switch (Entry.Kind) { 8086 case BitstreamEntry::Error: 8087 return error("Malformed block"); 8088 case BitstreamEntry::EndBlock: 8089 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false, 8090 /*EnableSplitLTOUnit=*/false}; 8091 8092 case BitstreamEntry::SubBlock: 8093 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) { 8094 Expected<bool> EnableSplitLTOUnit = 8095 getEnableSplitLTOUnitFlag(Stream, Entry.ID); 8096 if (!EnableSplitLTOUnit) 8097 return EnableSplitLTOUnit.takeError(); 8098 return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true, 8099 *EnableSplitLTOUnit}; 8100 } 8101 8102 if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) { 8103 Expected<bool> EnableSplitLTOUnit = 8104 getEnableSplitLTOUnitFlag(Stream, Entry.ID); 8105 if (!EnableSplitLTOUnit) 8106 return EnableSplitLTOUnit.takeError(); 8107 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true, 8108 *EnableSplitLTOUnit}; 8109 } 8110 8111 // Ignore other sub-blocks. 8112 if (Error Err = Stream.SkipBlock()) 8113 return std::move(Err); 8114 continue; 8115 8116 case BitstreamEntry::Record: 8117 if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID)) 8118 continue; 8119 else 8120 return StreamFailed.takeError(); 8121 } 8122 } 8123 } 8124 8125 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) { 8126 Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer); 8127 if (!MsOrErr) 8128 return MsOrErr.takeError(); 8129 8130 if (MsOrErr->size() != 1) 8131 return error("Expected a single module"); 8132 8133 return (*MsOrErr)[0]; 8134 } 8135 8136 Expected<std::unique_ptr<Module>> 8137 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context, 8138 bool ShouldLazyLoadMetadata, bool IsImporting, 8139 ParserCallbacks Callbacks) { 8140 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8141 if (!BM) 8142 return BM.takeError(); 8143 8144 return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting, 8145 Callbacks); 8146 } 8147 8148 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule( 8149 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context, 8150 bool ShouldLazyLoadMetadata, bool IsImporting, ParserCallbacks Callbacks) { 8151 auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata, 8152 IsImporting, Callbacks); 8153 if (MOrErr) 8154 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer)); 8155 return MOrErr; 8156 } 8157 8158 Expected<std::unique_ptr<Module>> 8159 BitcodeModule::parseModule(LLVMContext &Context, ParserCallbacks Callbacks) { 8160 return getModuleImpl(Context, true, false, false, Callbacks); 8161 // TODO: Restore the use-lists to the in-memory state when the bitcode was 8162 // written. We must defer until the Module has been fully materialized. 8163 } 8164 8165 Expected<std::unique_ptr<Module>> 8166 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context, 8167 ParserCallbacks Callbacks) { 8168 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8169 if (!BM) 8170 return BM.takeError(); 8171 8172 return BM->parseModule(Context, Callbacks); 8173 } 8174 8175 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) { 8176 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 8177 if (!StreamOrErr) 8178 return StreamOrErr.takeError(); 8179 8180 return readTriple(*StreamOrErr); 8181 } 8182 8183 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) { 8184 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 8185 if (!StreamOrErr) 8186 return StreamOrErr.takeError(); 8187 8188 return hasObjCCategory(*StreamOrErr); 8189 } 8190 8191 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) { 8192 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 8193 if (!StreamOrErr) 8194 return StreamOrErr.takeError(); 8195 8196 return readIdentificationCode(*StreamOrErr); 8197 } 8198 8199 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer, 8200 ModuleSummaryIndex &CombinedIndex, 8201 uint64_t ModuleId) { 8202 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8203 if (!BM) 8204 return BM.takeError(); 8205 8206 return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId); 8207 } 8208 8209 Expected<std::unique_ptr<ModuleSummaryIndex>> 8210 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) { 8211 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8212 if (!BM) 8213 return BM.takeError(); 8214 8215 return BM->getSummary(); 8216 } 8217 8218 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) { 8219 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8220 if (!BM) 8221 return BM.takeError(); 8222 8223 return BM->getLTOInfo(); 8224 } 8225 8226 Expected<std::unique_ptr<ModuleSummaryIndex>> 8227 llvm::getModuleSummaryIndexForFile(StringRef Path, 8228 bool IgnoreEmptyThinLTOIndexFile) { 8229 ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr = 8230 MemoryBuffer::getFileOrSTDIN(Path); 8231 if (!FileOrErr) 8232 return errorCodeToError(FileOrErr.getError()); 8233 if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize()) 8234 return nullptr; 8235 return getModuleSummaryIndex(**FileOrErr); 8236 } 8237