xref: /llvm-project/llvm/lib/Bitcode/Reader/BitcodeReader.cpp (revision 5c984e563b2620a071e48acf504dc11ef6c5b73e)
1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This header defines the BitcodeReader class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Bitcode/ReaderWriter.h"
15 #include "BitcodeReader.h"
16 #include "llvm/Constants.h"
17 #include "llvm/DerivedTypes.h"
18 #include "llvm/InlineAsm.h"
19 #include "llvm/IntrinsicInst.h"
20 #include "llvm/Module.h"
21 #include "llvm/Operator.h"
22 #include "llvm/AutoUpgrade.h"
23 #include "llvm/ADT/SmallString.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/Support/MathExtras.h"
26 #include "llvm/Support/MemoryBuffer.h"
27 #include "llvm/OperandTraits.h"
28 using namespace llvm;
29 
30 void BitcodeReader::FreeState() {
31   if (BufferOwned)
32     delete Buffer;
33   Buffer = 0;
34   std::vector<PATypeHolder>().swap(TypeList);
35   ValueList.clear();
36   MDValueList.clear();
37 
38   std::vector<AttrListPtr>().swap(MAttributes);
39   std::vector<BasicBlock*>().swap(FunctionBBs);
40   std::vector<Function*>().swap(FunctionsWithBodies);
41   DeferredFunctionInfo.clear();
42   MDKindMap.clear();
43 }
44 
45 //===----------------------------------------------------------------------===//
46 //  Helper functions to implement forward reference resolution, etc.
47 //===----------------------------------------------------------------------===//
48 
49 /// ConvertToString - Convert a string from a record into an std::string, return
50 /// true on failure.
51 template<typename StrTy>
52 static bool ConvertToString(SmallVector<uint64_t, 64> &Record, unsigned Idx,
53                             StrTy &Result) {
54   if (Idx > Record.size())
55     return true;
56 
57   for (unsigned i = Idx, e = Record.size(); i != e; ++i)
58     Result += (char)Record[i];
59   return false;
60 }
61 
62 static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) {
63   switch (Val) {
64   default: // Map unknown/new linkages to external
65   case 0:  return GlobalValue::ExternalLinkage;
66   case 1:  return GlobalValue::WeakAnyLinkage;
67   case 2:  return GlobalValue::AppendingLinkage;
68   case 3:  return GlobalValue::InternalLinkage;
69   case 4:  return GlobalValue::LinkOnceAnyLinkage;
70   case 5:  return GlobalValue::DLLImportLinkage;
71   case 6:  return GlobalValue::DLLExportLinkage;
72   case 7:  return GlobalValue::ExternalWeakLinkage;
73   case 8:  return GlobalValue::CommonLinkage;
74   case 9:  return GlobalValue::PrivateLinkage;
75   case 10: return GlobalValue::WeakODRLinkage;
76   case 11: return GlobalValue::LinkOnceODRLinkage;
77   case 12: return GlobalValue::AvailableExternallyLinkage;
78   case 13: return GlobalValue::LinkerPrivateLinkage;
79   case 14: return GlobalValue::LinkerPrivateWeakLinkage;
80   case 15: return GlobalValue::LinkerPrivateWeakDefAutoLinkage;
81   }
82 }
83 
84 static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) {
85   switch (Val) {
86   default: // Map unknown visibilities to default.
87   case 0: return GlobalValue::DefaultVisibility;
88   case 1: return GlobalValue::HiddenVisibility;
89   case 2: return GlobalValue::ProtectedVisibility;
90   }
91 }
92 
93 static int GetDecodedCastOpcode(unsigned Val) {
94   switch (Val) {
95   default: return -1;
96   case bitc::CAST_TRUNC   : return Instruction::Trunc;
97   case bitc::CAST_ZEXT    : return Instruction::ZExt;
98   case bitc::CAST_SEXT    : return Instruction::SExt;
99   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
100   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
101   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
102   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
103   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
104   case bitc::CAST_FPEXT   : return Instruction::FPExt;
105   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
106   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
107   case bitc::CAST_BITCAST : return Instruction::BitCast;
108   }
109 }
110 static int GetDecodedBinaryOpcode(unsigned Val, const Type *Ty) {
111   switch (Val) {
112   default: return -1;
113   case bitc::BINOP_ADD:
114     return Ty->isFPOrFPVectorTy() ? Instruction::FAdd : Instruction::Add;
115   case bitc::BINOP_SUB:
116     return Ty->isFPOrFPVectorTy() ? Instruction::FSub : Instruction::Sub;
117   case bitc::BINOP_MUL:
118     return Ty->isFPOrFPVectorTy() ? Instruction::FMul : Instruction::Mul;
119   case bitc::BINOP_UDIV: return Instruction::UDiv;
120   case bitc::BINOP_SDIV:
121     return Ty->isFPOrFPVectorTy() ? Instruction::FDiv : Instruction::SDiv;
122   case bitc::BINOP_UREM: return Instruction::URem;
123   case bitc::BINOP_SREM:
124     return Ty->isFPOrFPVectorTy() ? Instruction::FRem : Instruction::SRem;
125   case bitc::BINOP_SHL:  return Instruction::Shl;
126   case bitc::BINOP_LSHR: return Instruction::LShr;
127   case bitc::BINOP_ASHR: return Instruction::AShr;
128   case bitc::BINOP_AND:  return Instruction::And;
129   case bitc::BINOP_OR:   return Instruction::Or;
130   case bitc::BINOP_XOR:  return Instruction::Xor;
131   }
132 }
133 
134 namespace llvm {
135 namespace {
136   /// @brief A class for maintaining the slot number definition
137   /// as a placeholder for the actual definition for forward constants defs.
138   class ConstantPlaceHolder : public ConstantExpr {
139     void operator=(const ConstantPlaceHolder &); // DO NOT IMPLEMENT
140   public:
141     // allocate space for exactly one operand
142     void *operator new(size_t s) {
143       return User::operator new(s, 1);
144     }
145     explicit ConstantPlaceHolder(const Type *Ty, LLVMContext& Context)
146       : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) {
147       Op<0>() = UndefValue::get(Type::getInt32Ty(Context));
148     }
149 
150     /// @brief Methods to support type inquiry through isa, cast, and dyn_cast.
151     //static inline bool classof(const ConstantPlaceHolder *) { return true; }
152     static bool classof(const Value *V) {
153       return isa<ConstantExpr>(V) &&
154              cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1;
155     }
156 
157 
158     /// Provide fast operand accessors
159     //DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
160   };
161 }
162 
163 // FIXME: can we inherit this from ConstantExpr?
164 template <>
165 struct OperandTraits<ConstantPlaceHolder> :
166   public FixedNumOperandTraits<ConstantPlaceHolder, 1> {
167 };
168 }
169 
170 
171 void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) {
172   if (Idx == size()) {
173     push_back(V);
174     return;
175   }
176 
177   if (Idx >= size())
178     resize(Idx+1);
179 
180   WeakVH &OldV = ValuePtrs[Idx];
181   if (OldV == 0) {
182     OldV = V;
183     return;
184   }
185 
186   // Handle constants and non-constants (e.g. instrs) differently for
187   // efficiency.
188   if (Constant *PHC = dyn_cast<Constant>(&*OldV)) {
189     ResolveConstants.push_back(std::make_pair(PHC, Idx));
190     OldV = V;
191   } else {
192     // If there was a forward reference to this value, replace it.
193     Value *PrevVal = OldV;
194     OldV->replaceAllUsesWith(V);
195     delete PrevVal;
196   }
197 }
198 
199 
200 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
201                                                     const Type *Ty) {
202   if (Idx >= size())
203     resize(Idx + 1);
204 
205   if (Value *V = ValuePtrs[Idx]) {
206     assert(Ty == V->getType() && "Type mismatch in constant table!");
207     return cast<Constant>(V);
208   }
209 
210   // Create and return a placeholder, which will later be RAUW'd.
211   Constant *C = new ConstantPlaceHolder(Ty, Context);
212   ValuePtrs[Idx] = C;
213   return C;
214 }
215 
216 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, const Type *Ty) {
217   if (Idx >= size())
218     resize(Idx + 1);
219 
220   if (Value *V = ValuePtrs[Idx]) {
221     assert((Ty == 0 || Ty == V->getType()) && "Type mismatch in value table!");
222     return V;
223   }
224 
225   // No type specified, must be invalid reference.
226   if (Ty == 0) return 0;
227 
228   // Create and return a placeholder, which will later be RAUW'd.
229   Value *V = new Argument(Ty);
230   ValuePtrs[Idx] = V;
231   return V;
232 }
233 
234 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk
235 /// resolves any forward references.  The idea behind this is that we sometimes
236 /// get constants (such as large arrays) which reference *many* forward ref
237 /// constants.  Replacing each of these causes a lot of thrashing when
238 /// building/reuniquing the constant.  Instead of doing this, we look at all the
239 /// uses and rewrite all the place holders at once for any constant that uses
240 /// a placeholder.
241 void BitcodeReaderValueList::ResolveConstantForwardRefs() {
242   // Sort the values by-pointer so that they are efficient to look up with a
243   // binary search.
244   std::sort(ResolveConstants.begin(), ResolveConstants.end());
245 
246   SmallVector<Constant*, 64> NewOps;
247 
248   while (!ResolveConstants.empty()) {
249     Value *RealVal = operator[](ResolveConstants.back().second);
250     Constant *Placeholder = ResolveConstants.back().first;
251     ResolveConstants.pop_back();
252 
253     // Loop over all users of the placeholder, updating them to reference the
254     // new value.  If they reference more than one placeholder, update them all
255     // at once.
256     while (!Placeholder->use_empty()) {
257       Value::use_iterator UI = Placeholder->use_begin();
258       User *U = *UI;
259 
260       // If the using object isn't uniqued, just update the operands.  This
261       // handles instructions and initializers for global variables.
262       if (!isa<Constant>(U) || isa<GlobalValue>(U)) {
263         UI.getUse().set(RealVal);
264         continue;
265       }
266 
267       // Otherwise, we have a constant that uses the placeholder.  Replace that
268       // constant with a new constant that has *all* placeholder uses updated.
269       Constant *UserC = cast<Constant>(U);
270       for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end();
271            I != E; ++I) {
272         Value *NewOp;
273         if (!isa<ConstantPlaceHolder>(*I)) {
274           // Not a placeholder reference.
275           NewOp = *I;
276         } else if (*I == Placeholder) {
277           // Common case is that it just references this one placeholder.
278           NewOp = RealVal;
279         } else {
280           // Otherwise, look up the placeholder in ResolveConstants.
281           ResolveConstantsTy::iterator It =
282             std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(),
283                              std::pair<Constant*, unsigned>(cast<Constant>(*I),
284                                                             0));
285           assert(It != ResolveConstants.end() && It->first == *I);
286           NewOp = operator[](It->second);
287         }
288 
289         NewOps.push_back(cast<Constant>(NewOp));
290       }
291 
292       // Make the new constant.
293       Constant *NewC;
294       if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) {
295         NewC = ConstantArray::get(UserCA->getType(), &NewOps[0],
296                                         NewOps.size());
297       } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) {
298         NewC = ConstantStruct::get(Context, &NewOps[0], NewOps.size(),
299                                          UserCS->getType()->isPacked());
300       } else if (isa<ConstantVector>(UserC)) {
301         NewC = ConstantVector::get(NewOps);
302       } else {
303         assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr.");
304         NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps);
305       }
306 
307       UserC->replaceAllUsesWith(NewC);
308       UserC->destroyConstant();
309       NewOps.clear();
310     }
311 
312     // Update all ValueHandles, they should be the only users at this point.
313     Placeholder->replaceAllUsesWith(RealVal);
314     delete Placeholder;
315   }
316 }
317 
318 void BitcodeReaderMDValueList::AssignValue(Value *V, unsigned Idx) {
319   if (Idx == size()) {
320     push_back(V);
321     return;
322   }
323 
324   if (Idx >= size())
325     resize(Idx+1);
326 
327   WeakVH &OldV = MDValuePtrs[Idx];
328   if (OldV == 0) {
329     OldV = V;
330     return;
331   }
332 
333   // If there was a forward reference to this value, replace it.
334   MDNode *PrevVal = cast<MDNode>(OldV);
335   OldV->replaceAllUsesWith(V);
336   MDNode::deleteTemporary(PrevVal);
337   // Deleting PrevVal sets Idx value in MDValuePtrs to null. Set new
338   // value for Idx.
339   MDValuePtrs[Idx] = V;
340 }
341 
342 Value *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) {
343   if (Idx >= size())
344     resize(Idx + 1);
345 
346   if (Value *V = MDValuePtrs[Idx]) {
347     assert(V->getType()->isMetadataTy() && "Type mismatch in value table!");
348     return V;
349   }
350 
351   // Create and return a placeholder, which will later be RAUW'd.
352   Value *V = MDNode::getTemporary(Context, 0, 0);
353   MDValuePtrs[Idx] = V;
354   return V;
355 }
356 
357 const Type *BitcodeReader::getTypeByID(unsigned ID, bool isTypeTable) {
358   // If the TypeID is in range, return it.
359   if (ID < TypeList.size())
360     return TypeList[ID].get();
361   if (!isTypeTable) return 0;
362 
363   // The type table allows forward references.  Push as many Opaque types as
364   // needed to get up to ID.
365   while (TypeList.size() <= ID)
366     TypeList.push_back(OpaqueType::get(Context));
367   return TypeList.back().get();
368 }
369 
370 //===----------------------------------------------------------------------===//
371 //  Functions for parsing blocks from the bitcode file
372 //===----------------------------------------------------------------------===//
373 
374 bool BitcodeReader::ParseAttributeBlock() {
375   if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
376     return Error("Malformed block record");
377 
378   if (!MAttributes.empty())
379     return Error("Multiple PARAMATTR blocks found!");
380 
381   SmallVector<uint64_t, 64> Record;
382 
383   SmallVector<AttributeWithIndex, 8> Attrs;
384 
385   // Read all the records.
386   while (1) {
387     unsigned Code = Stream.ReadCode();
388     if (Code == bitc::END_BLOCK) {
389       if (Stream.ReadBlockEnd())
390         return Error("Error at end of PARAMATTR block");
391       return false;
392     }
393 
394     if (Code == bitc::ENTER_SUBBLOCK) {
395       // No known subblocks, always skip them.
396       Stream.ReadSubBlockID();
397       if (Stream.SkipBlock())
398         return Error("Malformed block record");
399       continue;
400     }
401 
402     if (Code == bitc::DEFINE_ABBREV) {
403       Stream.ReadAbbrevRecord();
404       continue;
405     }
406 
407     // Read a record.
408     Record.clear();
409     switch (Stream.ReadRecord(Code, Record)) {
410     default:  // Default behavior: ignore.
411       break;
412     case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [paramidx0, attr0, ...]
413       if (Record.size() & 1)
414         return Error("Invalid ENTRY record");
415 
416       // FIXME : Remove this autoupgrade code in LLVM 3.0.
417       // If Function attributes are using index 0 then transfer them
418       // to index ~0. Index 0 is used for return value attributes but used to be
419       // used for function attributes.
420       Attributes RetAttribute = Attribute::None;
421       Attributes FnAttribute = Attribute::None;
422       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
423         // FIXME: remove in LLVM 3.0
424         // The alignment is stored as a 16-bit raw value from bits 31--16.
425         // We shift the bits above 31 down by 11 bits.
426 
427         unsigned Alignment = (Record[i+1] & (0xffffull << 16)) >> 16;
428         if (Alignment && !isPowerOf2_32(Alignment))
429           return Error("Alignment is not a power of two.");
430 
431         Attributes ReconstitutedAttr = Record[i+1] & 0xffff;
432         if (Alignment)
433           ReconstitutedAttr |= Attribute::constructAlignmentFromInt(Alignment);
434         ReconstitutedAttr |= (Record[i+1] & (0xffffull << 32)) >> 11;
435         Record[i+1] = ReconstitutedAttr;
436 
437         if (Record[i] == 0)
438           RetAttribute = Record[i+1];
439         else if (Record[i] == ~0U)
440           FnAttribute = Record[i+1];
441       }
442 
443       unsigned OldRetAttrs = (Attribute::NoUnwind|Attribute::NoReturn|
444                               Attribute::ReadOnly|Attribute::ReadNone);
445 
446       if (FnAttribute == Attribute::None && RetAttribute != Attribute::None &&
447           (RetAttribute & OldRetAttrs) != 0) {
448         if (FnAttribute == Attribute::None) { // add a slot so they get added.
449           Record.push_back(~0U);
450           Record.push_back(0);
451         }
452 
453         FnAttribute  |= RetAttribute & OldRetAttrs;
454         RetAttribute &= ~OldRetAttrs;
455       }
456 
457       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
458         if (Record[i] == 0) {
459           if (RetAttribute != Attribute::None)
460             Attrs.push_back(AttributeWithIndex::get(0, RetAttribute));
461         } else if (Record[i] == ~0U) {
462           if (FnAttribute != Attribute::None)
463             Attrs.push_back(AttributeWithIndex::get(~0U, FnAttribute));
464         } else if (Record[i+1] != Attribute::None)
465           Attrs.push_back(AttributeWithIndex::get(Record[i], Record[i+1]));
466       }
467 
468       MAttributes.push_back(AttrListPtr::get(Attrs.begin(), Attrs.end()));
469       Attrs.clear();
470       break;
471     }
472     }
473   }
474 }
475 
476 
477 bool BitcodeReader::ParseTypeTable() {
478   if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID))
479     return Error("Malformed block record");
480 
481   if (!TypeList.empty())
482     return Error("Multiple TYPE_BLOCKs found!");
483 
484   SmallVector<uint64_t, 64> Record;
485   unsigned NumRecords = 0;
486 
487   // Read all the records for this type table.
488   while (1) {
489     unsigned Code = Stream.ReadCode();
490     if (Code == bitc::END_BLOCK) {
491       if (NumRecords != TypeList.size())
492         return Error("Invalid type forward reference in TYPE_BLOCK");
493       if (Stream.ReadBlockEnd())
494         return Error("Error at end of type table block");
495       return false;
496     }
497 
498     if (Code == bitc::ENTER_SUBBLOCK) {
499       // No known subblocks, always skip them.
500       Stream.ReadSubBlockID();
501       if (Stream.SkipBlock())
502         return Error("Malformed block record");
503       continue;
504     }
505 
506     if (Code == bitc::DEFINE_ABBREV) {
507       Stream.ReadAbbrevRecord();
508       continue;
509     }
510 
511     // Read a record.
512     Record.clear();
513     const Type *ResultTy = 0;
514     switch (Stream.ReadRecord(Code, Record)) {
515     default:  // Default behavior: unknown type.
516       ResultTy = 0;
517       break;
518     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
519       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
520       // type list.  This allows us to reserve space.
521       if (Record.size() < 1)
522         return Error("Invalid TYPE_CODE_NUMENTRY record");
523       TypeList.reserve(Record[0]);
524       continue;
525     case bitc::TYPE_CODE_VOID:      // VOID
526       ResultTy = Type::getVoidTy(Context);
527       break;
528     case bitc::TYPE_CODE_FLOAT:     // FLOAT
529       ResultTy = Type::getFloatTy(Context);
530       break;
531     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
532       ResultTy = Type::getDoubleTy(Context);
533       break;
534     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
535       ResultTy = Type::getX86_FP80Ty(Context);
536       break;
537     case bitc::TYPE_CODE_FP128:     // FP128
538       ResultTy = Type::getFP128Ty(Context);
539       break;
540     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
541       ResultTy = Type::getPPC_FP128Ty(Context);
542       break;
543     case bitc::TYPE_CODE_LABEL:     // LABEL
544       ResultTy = Type::getLabelTy(Context);
545       break;
546     case bitc::TYPE_CODE_OPAQUE:    // OPAQUE
547       ResultTy = 0;
548       break;
549     case bitc::TYPE_CODE_METADATA:  // METADATA
550       ResultTy = Type::getMetadataTy(Context);
551       break;
552     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
553       ResultTy = Type::getX86_MMXTy(Context);
554       break;
555     case bitc::TYPE_CODE_INTEGER:   // INTEGER: [width]
556       if (Record.size() < 1)
557         return Error("Invalid Integer type record");
558 
559       ResultTy = IntegerType::get(Context, Record[0]);
560       break;
561     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
562                                     //          [pointee type, address space]
563       if (Record.size() < 1)
564         return Error("Invalid POINTER type record");
565       unsigned AddressSpace = 0;
566       if (Record.size() == 2)
567         AddressSpace = Record[1];
568       ResultTy = PointerType::get(getTypeByID(Record[0], true),
569                                         AddressSpace);
570       break;
571     }
572     case bitc::TYPE_CODE_FUNCTION: {
573       // FIXME: attrid is dead, remove it in LLVM 3.0
574       // FUNCTION: [vararg, attrid, retty, paramty x N]
575       if (Record.size() < 3)
576         return Error("Invalid FUNCTION type record");
577       std::vector<const Type*> ArgTys;
578       for (unsigned i = 3, e = Record.size(); i != e; ++i)
579         ArgTys.push_back(getTypeByID(Record[i], true));
580 
581       ResultTy = FunctionType::get(getTypeByID(Record[2], true), ArgTys,
582                                    Record[0]);
583       break;
584     }
585     case bitc::TYPE_CODE_STRUCT: {  // STRUCT: [ispacked, eltty x N]
586       if (Record.size() < 1)
587         return Error("Invalid STRUCT type record");
588       std::vector<const Type*> EltTys;
589       for (unsigned i = 1, e = Record.size(); i != e; ++i)
590         EltTys.push_back(getTypeByID(Record[i], true));
591       ResultTy = StructType::get(Context, EltTys, Record[0]);
592       break;
593     }
594     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
595       if (Record.size() < 2)
596         return Error("Invalid ARRAY type record");
597       ResultTy = ArrayType::get(getTypeByID(Record[1], true), Record[0]);
598       break;
599     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
600       if (Record.size() < 2)
601         return Error("Invalid VECTOR type record");
602       ResultTy = VectorType::get(getTypeByID(Record[1], true), Record[0]);
603       break;
604     }
605 
606     if (NumRecords == TypeList.size()) {
607       // If this is a new type slot, just append it.
608       TypeList.push_back(ResultTy ? ResultTy : OpaqueType::get(Context));
609       ++NumRecords;
610     } else if (ResultTy == 0) {
611       // Otherwise, this was forward referenced, so an opaque type was created,
612       // but the result type is actually just an opaque.  Leave the one we
613       // created previously.
614       ++NumRecords;
615     } else {
616       // Otherwise, this was forward referenced, so an opaque type was created.
617       // Resolve the opaque type to the real type now.
618       assert(NumRecords < TypeList.size() && "Typelist imbalance");
619       const OpaqueType *OldTy = cast<OpaqueType>(TypeList[NumRecords++].get());
620 
621       // Don't directly push the new type on the Tab. Instead we want to replace
622       // the opaque type we previously inserted with the new concrete value. The
623       // refinement from the abstract (opaque) type to the new type causes all
624       // uses of the abstract type to use the concrete type (NewTy). This will
625       // also cause the opaque type to be deleted.
626       const_cast<OpaqueType*>(OldTy)->refineAbstractTypeTo(ResultTy);
627 
628       // This should have replaced the old opaque type with the new type in the
629       // value table... or with a preexisting type that was already in the
630       // system.  Let's just make sure it did.
631       assert(TypeList[NumRecords-1].get() != OldTy &&
632              "refineAbstractType didn't work!");
633     }
634   }
635 }
636 
637 
638 bool BitcodeReader::ParseTypeSymbolTable() {
639   if (Stream.EnterSubBlock(bitc::TYPE_SYMTAB_BLOCK_ID))
640     return Error("Malformed block record");
641 
642   SmallVector<uint64_t, 64> Record;
643 
644   // Read all the records for this type table.
645   std::string TypeName;
646   while (1) {
647     unsigned Code = Stream.ReadCode();
648     if (Code == bitc::END_BLOCK) {
649       if (Stream.ReadBlockEnd())
650         return Error("Error at end of type symbol table block");
651       return false;
652     }
653 
654     if (Code == bitc::ENTER_SUBBLOCK) {
655       // No known subblocks, always skip them.
656       Stream.ReadSubBlockID();
657       if (Stream.SkipBlock())
658         return Error("Malformed block record");
659       continue;
660     }
661 
662     if (Code == bitc::DEFINE_ABBREV) {
663       Stream.ReadAbbrevRecord();
664       continue;
665     }
666 
667     // Read a record.
668     Record.clear();
669     switch (Stream.ReadRecord(Code, Record)) {
670     default:  // Default behavior: unknown type.
671       break;
672     case bitc::TST_CODE_ENTRY:    // TST_ENTRY: [typeid, namechar x N]
673       if (ConvertToString(Record, 1, TypeName))
674         return Error("Invalid TST_ENTRY record");
675       unsigned TypeID = Record[0];
676       if (TypeID >= TypeList.size())
677         return Error("Invalid Type ID in TST_ENTRY record");
678 
679       TheModule->addTypeName(TypeName, TypeList[TypeID].get());
680       TypeName.clear();
681       break;
682     }
683   }
684 }
685 
686 bool BitcodeReader::ParseValueSymbolTable() {
687   if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
688     return Error("Malformed block record");
689 
690   SmallVector<uint64_t, 64> Record;
691 
692   // Read all the records for this value table.
693   SmallString<128> ValueName;
694   while (1) {
695     unsigned Code = Stream.ReadCode();
696     if (Code == bitc::END_BLOCK) {
697       if (Stream.ReadBlockEnd())
698         return Error("Error at end of value symbol table block");
699       return false;
700     }
701     if (Code == bitc::ENTER_SUBBLOCK) {
702       // No known subblocks, always skip them.
703       Stream.ReadSubBlockID();
704       if (Stream.SkipBlock())
705         return Error("Malformed block record");
706       continue;
707     }
708 
709     if (Code == bitc::DEFINE_ABBREV) {
710       Stream.ReadAbbrevRecord();
711       continue;
712     }
713 
714     // Read a record.
715     Record.clear();
716     switch (Stream.ReadRecord(Code, Record)) {
717     default:  // Default behavior: unknown type.
718       break;
719     case bitc::VST_CODE_ENTRY: {  // VST_ENTRY: [valueid, namechar x N]
720       if (ConvertToString(Record, 1, ValueName))
721         return Error("Invalid VST_ENTRY record");
722       unsigned ValueID = Record[0];
723       if (ValueID >= ValueList.size())
724         return Error("Invalid Value ID in VST_ENTRY record");
725       Value *V = ValueList[ValueID];
726 
727       V->setName(StringRef(ValueName.data(), ValueName.size()));
728       ValueName.clear();
729       break;
730     }
731     case bitc::VST_CODE_BBENTRY: {
732       if (ConvertToString(Record, 1, ValueName))
733         return Error("Invalid VST_BBENTRY record");
734       BasicBlock *BB = getBasicBlock(Record[0]);
735       if (BB == 0)
736         return Error("Invalid BB ID in VST_BBENTRY record");
737 
738       BB->setName(StringRef(ValueName.data(), ValueName.size()));
739       ValueName.clear();
740       break;
741     }
742     }
743   }
744 }
745 
746 bool BitcodeReader::ParseMetadata() {
747   unsigned NextMDValueNo = MDValueList.size();
748 
749   if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID))
750     return Error("Malformed block record");
751 
752   SmallVector<uint64_t, 64> Record;
753 
754   // Read all the records.
755   while (1) {
756     unsigned Code = Stream.ReadCode();
757     if (Code == bitc::END_BLOCK) {
758       if (Stream.ReadBlockEnd())
759         return Error("Error at end of PARAMATTR block");
760       return false;
761     }
762 
763     if (Code == bitc::ENTER_SUBBLOCK) {
764       // No known subblocks, always skip them.
765       Stream.ReadSubBlockID();
766       if (Stream.SkipBlock())
767         return Error("Malformed block record");
768       continue;
769     }
770 
771     if (Code == bitc::DEFINE_ABBREV) {
772       Stream.ReadAbbrevRecord();
773       continue;
774     }
775 
776     bool IsFunctionLocal = false;
777     // Read a record.
778     Record.clear();
779     Code = Stream.ReadRecord(Code, Record);
780     switch (Code) {
781     default:  // Default behavior: ignore.
782       break;
783     case bitc::METADATA_NAME: {
784       // Read named of the named metadata.
785       unsigned NameLength = Record.size();
786       SmallString<8> Name;
787       Name.resize(NameLength);
788       for (unsigned i = 0; i != NameLength; ++i)
789         Name[i] = Record[i];
790       Record.clear();
791       Code = Stream.ReadCode();
792 
793       // METADATA_NAME is always followed by METADATA_NAMED_NODE2.
794       // Or METADATA_NAMED_NODE in LLVM 2.7. FIXME: Remove this in LLVM 3.0.
795       unsigned NextBitCode = Stream.ReadRecord(Code, Record);
796       if (NextBitCode == bitc::METADATA_NAMED_NODE) {
797         LLVM2_7MetadataDetected = true;
798       } else if (NextBitCode != bitc::METADATA_NAMED_NODE2)
799         assert ( 0 && "Invalid Named Metadata record");
800 
801       // Read named metadata elements.
802       unsigned Size = Record.size();
803       NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name);
804       for (unsigned i = 0; i != Size; ++i) {
805         MDNode *MD = dyn_cast<MDNode>(MDValueList.getValueFwdRef(Record[i]));
806         if (MD == 0)
807           return Error("Malformed metadata record");
808         NMD->addOperand(MD);
809       }
810       // Backwards compatibility hack: NamedMDValues used to be Values,
811       // and they got their own slots in the value numbering. They are no
812       // longer Values, however we still need to account for them in the
813       // numbering in order to be able to read old bitcode files.
814       // FIXME: Remove this in LLVM 3.0.
815       if (LLVM2_7MetadataDetected)
816         MDValueList.AssignValue(0, NextMDValueNo++);
817       break;
818     }
819     case bitc::METADATA_FN_NODE: // FIXME: Remove in LLVM 3.0.
820     case bitc::METADATA_FN_NODE2:
821       IsFunctionLocal = true;
822       // fall-through
823     case bitc::METADATA_NODE:    // FIXME: Remove in LLVM 3.0.
824     case bitc::METADATA_NODE2: {
825 
826       // Detect 2.7-era metadata.
827       // FIXME: Remove in LLVM 3.0.
828       if (Code == bitc::METADATA_FN_NODE || Code == bitc::METADATA_NODE)
829         LLVM2_7MetadataDetected = true;
830 
831       if (Record.size() % 2 == 1)
832         return Error("Invalid METADATA_NODE2 record");
833 
834       unsigned Size = Record.size();
835       SmallVector<Value*, 8> Elts;
836       for (unsigned i = 0; i != Size; i += 2) {
837         const Type *Ty = getTypeByID(Record[i]);
838         if (!Ty) return Error("Invalid METADATA_NODE2 record");
839         if (Ty->isMetadataTy())
840           Elts.push_back(MDValueList.getValueFwdRef(Record[i+1]));
841         else if (!Ty->isVoidTy())
842           Elts.push_back(ValueList.getValueFwdRef(Record[i+1], Ty));
843         else
844           Elts.push_back(NULL);
845       }
846       Value *V = MDNode::getWhenValsUnresolved(Context,
847                                                Elts.data(), Elts.size(),
848                                                IsFunctionLocal);
849       IsFunctionLocal = false;
850       MDValueList.AssignValue(V, NextMDValueNo++);
851       break;
852     }
853     case bitc::METADATA_STRING: {
854       unsigned MDStringLength = Record.size();
855       SmallString<8> String;
856       String.resize(MDStringLength);
857       for (unsigned i = 0; i != MDStringLength; ++i)
858         String[i] = Record[i];
859       Value *V = MDString::get(Context,
860                                StringRef(String.data(), String.size()));
861       MDValueList.AssignValue(V, NextMDValueNo++);
862       break;
863     }
864     case bitc::METADATA_KIND: {
865       unsigned RecordLength = Record.size();
866       if (Record.empty() || RecordLength < 2)
867         return Error("Invalid METADATA_KIND record");
868       SmallString<8> Name;
869       Name.resize(RecordLength-1);
870       unsigned Kind = Record[0];
871       for (unsigned i = 1; i != RecordLength; ++i)
872         Name[i-1] = Record[i];
873 
874       unsigned NewKind = TheModule->getMDKindID(Name.str());
875       if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second)
876         return Error("Conflicting METADATA_KIND records");
877       break;
878     }
879     }
880   }
881 }
882 
883 /// DecodeSignRotatedValue - Decode a signed value stored with the sign bit in
884 /// the LSB for dense VBR encoding.
885 static uint64_t DecodeSignRotatedValue(uint64_t V) {
886   if ((V & 1) == 0)
887     return V >> 1;
888   if (V != 1)
889     return -(V >> 1);
890   // There is no such thing as -0 with integers.  "-0" really means MININT.
891   return 1ULL << 63;
892 }
893 
894 /// ResolveGlobalAndAliasInits - Resolve all of the initializers for global
895 /// values and aliases that we can.
896 bool BitcodeReader::ResolveGlobalAndAliasInits() {
897   std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
898   std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist;
899 
900   GlobalInitWorklist.swap(GlobalInits);
901   AliasInitWorklist.swap(AliasInits);
902 
903   while (!GlobalInitWorklist.empty()) {
904     unsigned ValID = GlobalInitWorklist.back().second;
905     if (ValID >= ValueList.size()) {
906       // Not ready to resolve this yet, it requires something later in the file.
907       GlobalInits.push_back(GlobalInitWorklist.back());
908     } else {
909       if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
910         GlobalInitWorklist.back().first->setInitializer(C);
911       else
912         return Error("Global variable initializer is not a constant!");
913     }
914     GlobalInitWorklist.pop_back();
915   }
916 
917   while (!AliasInitWorklist.empty()) {
918     unsigned ValID = AliasInitWorklist.back().second;
919     if (ValID >= ValueList.size()) {
920       AliasInits.push_back(AliasInitWorklist.back());
921     } else {
922       if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
923         AliasInitWorklist.back().first->setAliasee(C);
924       else
925         return Error("Alias initializer is not a constant!");
926     }
927     AliasInitWorklist.pop_back();
928   }
929   return false;
930 }
931 
932 bool BitcodeReader::ParseConstants() {
933   if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
934     return Error("Malformed block record");
935 
936   SmallVector<uint64_t, 64> Record;
937 
938   // Read all the records for this value table.
939   const Type *CurTy = Type::getInt32Ty(Context);
940   unsigned NextCstNo = ValueList.size();
941   while (1) {
942     unsigned Code = Stream.ReadCode();
943     if (Code == bitc::END_BLOCK)
944       break;
945 
946     if (Code == bitc::ENTER_SUBBLOCK) {
947       // No known subblocks, always skip them.
948       Stream.ReadSubBlockID();
949       if (Stream.SkipBlock())
950         return Error("Malformed block record");
951       continue;
952     }
953 
954     if (Code == bitc::DEFINE_ABBREV) {
955       Stream.ReadAbbrevRecord();
956       continue;
957     }
958 
959     // Read a record.
960     Record.clear();
961     Value *V = 0;
962     unsigned BitCode = Stream.ReadRecord(Code, Record);
963     switch (BitCode) {
964     default:  // Default behavior: unknown constant
965     case bitc::CST_CODE_UNDEF:     // UNDEF
966       V = UndefValue::get(CurTy);
967       break;
968     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
969       if (Record.empty())
970         return Error("Malformed CST_SETTYPE record");
971       if (Record[0] >= TypeList.size())
972         return Error("Invalid Type ID in CST_SETTYPE record");
973       CurTy = TypeList[Record[0]];
974       continue;  // Skip the ValueList manipulation.
975     case bitc::CST_CODE_NULL:      // NULL
976       V = Constant::getNullValue(CurTy);
977       break;
978     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
979       if (!CurTy->isIntegerTy() || Record.empty())
980         return Error("Invalid CST_INTEGER record");
981       V = ConstantInt::get(CurTy, DecodeSignRotatedValue(Record[0]));
982       break;
983     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
984       if (!CurTy->isIntegerTy() || Record.empty())
985         return Error("Invalid WIDE_INTEGER record");
986 
987       unsigned NumWords = Record.size();
988       SmallVector<uint64_t, 8> Words;
989       Words.resize(NumWords);
990       for (unsigned i = 0; i != NumWords; ++i)
991         Words[i] = DecodeSignRotatedValue(Record[i]);
992       V = ConstantInt::get(Context,
993                            APInt(cast<IntegerType>(CurTy)->getBitWidth(),
994                            NumWords, &Words[0]));
995       break;
996     }
997     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
998       if (Record.empty())
999         return Error("Invalid FLOAT record");
1000       if (CurTy->isFloatTy())
1001         V = ConstantFP::get(Context, APFloat(APInt(32, (uint32_t)Record[0])));
1002       else if (CurTy->isDoubleTy())
1003         V = ConstantFP::get(Context, APFloat(APInt(64, Record[0])));
1004       else if (CurTy->isX86_FP80Ty()) {
1005         // Bits are not stored the same way as a normal i80 APInt, compensate.
1006         uint64_t Rearrange[2];
1007         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
1008         Rearrange[1] = Record[0] >> 48;
1009         V = ConstantFP::get(Context, APFloat(APInt(80, 2, Rearrange)));
1010       } else if (CurTy->isFP128Ty())
1011         V = ConstantFP::get(Context, APFloat(APInt(128, 2, &Record[0]), true));
1012       else if (CurTy->isPPC_FP128Ty())
1013         V = ConstantFP::get(Context, APFloat(APInt(128, 2, &Record[0])));
1014       else
1015         V = UndefValue::get(CurTy);
1016       break;
1017     }
1018 
1019     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
1020       if (Record.empty())
1021         return Error("Invalid CST_AGGREGATE record");
1022 
1023       unsigned Size = Record.size();
1024       std::vector<Constant*> Elts;
1025 
1026       if (const StructType *STy = dyn_cast<StructType>(CurTy)) {
1027         for (unsigned i = 0; i != Size; ++i)
1028           Elts.push_back(ValueList.getConstantFwdRef(Record[i],
1029                                                      STy->getElementType(i)));
1030         V = ConstantStruct::get(STy, Elts);
1031       } else if (const ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
1032         const Type *EltTy = ATy->getElementType();
1033         for (unsigned i = 0; i != Size; ++i)
1034           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
1035         V = ConstantArray::get(ATy, Elts);
1036       } else if (const VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
1037         const Type *EltTy = VTy->getElementType();
1038         for (unsigned i = 0; i != Size; ++i)
1039           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
1040         V = ConstantVector::get(Elts);
1041       } else {
1042         V = UndefValue::get(CurTy);
1043       }
1044       break;
1045     }
1046     case bitc::CST_CODE_STRING: { // STRING: [values]
1047       if (Record.empty())
1048         return Error("Invalid CST_AGGREGATE record");
1049 
1050       const ArrayType *ATy = cast<ArrayType>(CurTy);
1051       const Type *EltTy = ATy->getElementType();
1052 
1053       unsigned Size = Record.size();
1054       std::vector<Constant*> Elts;
1055       for (unsigned i = 0; i != Size; ++i)
1056         Elts.push_back(ConstantInt::get(EltTy, Record[i]));
1057       V = ConstantArray::get(ATy, Elts);
1058       break;
1059     }
1060     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
1061       if (Record.empty())
1062         return Error("Invalid CST_AGGREGATE record");
1063 
1064       const ArrayType *ATy = cast<ArrayType>(CurTy);
1065       const Type *EltTy = ATy->getElementType();
1066 
1067       unsigned Size = Record.size();
1068       std::vector<Constant*> Elts;
1069       for (unsigned i = 0; i != Size; ++i)
1070         Elts.push_back(ConstantInt::get(EltTy, Record[i]));
1071       Elts.push_back(Constant::getNullValue(EltTy));
1072       V = ConstantArray::get(ATy, Elts);
1073       break;
1074     }
1075     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
1076       if (Record.size() < 3) return Error("Invalid CE_BINOP record");
1077       int Opc = GetDecodedBinaryOpcode(Record[0], CurTy);
1078       if (Opc < 0) {
1079         V = UndefValue::get(CurTy);  // Unknown binop.
1080       } else {
1081         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
1082         Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
1083         unsigned Flags = 0;
1084         if (Record.size() >= 4) {
1085           if (Opc == Instruction::Add ||
1086               Opc == Instruction::Sub ||
1087               Opc == Instruction::Mul ||
1088               Opc == Instruction::Shl) {
1089             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
1090               Flags |= OverflowingBinaryOperator::NoSignedWrap;
1091             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
1092               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
1093           } else if (Opc == Instruction::SDiv ||
1094                      Opc == Instruction::UDiv ||
1095                      Opc == Instruction::LShr ||
1096                      Opc == Instruction::AShr) {
1097             if (Record[3] & (1 << bitc::PEO_EXACT))
1098               Flags |= SDivOperator::IsExact;
1099           }
1100         }
1101         V = ConstantExpr::get(Opc, LHS, RHS, Flags);
1102       }
1103       break;
1104     }
1105     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
1106       if (Record.size() < 3) return Error("Invalid CE_CAST record");
1107       int Opc = GetDecodedCastOpcode(Record[0]);
1108       if (Opc < 0) {
1109         V = UndefValue::get(CurTy);  // Unknown cast.
1110       } else {
1111         const Type *OpTy = getTypeByID(Record[1]);
1112         if (!OpTy) return Error("Invalid CE_CAST record");
1113         Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
1114         V = ConstantExpr::getCast(Opc, Op, CurTy);
1115       }
1116       break;
1117     }
1118     case bitc::CST_CODE_CE_INBOUNDS_GEP:
1119     case bitc::CST_CODE_CE_GEP: {  // CE_GEP:        [n x operands]
1120       if (Record.size() & 1) return Error("Invalid CE_GEP record");
1121       SmallVector<Constant*, 16> Elts;
1122       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1123         const Type *ElTy = getTypeByID(Record[i]);
1124         if (!ElTy) return Error("Invalid CE_GEP record");
1125         Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy));
1126       }
1127       if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
1128         V = ConstantExpr::getInBoundsGetElementPtr(Elts[0], &Elts[1],
1129                                                    Elts.size()-1);
1130       else
1131         V = ConstantExpr::getGetElementPtr(Elts[0], &Elts[1],
1132                                            Elts.size()-1);
1133       break;
1134     }
1135     case bitc::CST_CODE_CE_SELECT:  // CE_SELECT: [opval#, opval#, opval#]
1136       if (Record.size() < 3) return Error("Invalid CE_SELECT record");
1137       V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
1138                                                               Type::getInt1Ty(Context)),
1139                                   ValueList.getConstantFwdRef(Record[1],CurTy),
1140                                   ValueList.getConstantFwdRef(Record[2],CurTy));
1141       break;
1142     case bitc::CST_CODE_CE_EXTRACTELT: { // CE_EXTRACTELT: [opty, opval, opval]
1143       if (Record.size() < 3) return Error("Invalid CE_EXTRACTELT record");
1144       const VectorType *OpTy =
1145         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
1146       if (OpTy == 0) return Error("Invalid CE_EXTRACTELT record");
1147       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1148       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
1149       V = ConstantExpr::getExtractElement(Op0, Op1);
1150       break;
1151     }
1152     case bitc::CST_CODE_CE_INSERTELT: { // CE_INSERTELT: [opval, opval, opval]
1153       const VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1154       if (Record.size() < 3 || OpTy == 0)
1155         return Error("Invalid CE_INSERTELT record");
1156       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1157       Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
1158                                                   OpTy->getElementType());
1159       Constant *Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
1160       V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
1161       break;
1162     }
1163     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
1164       const VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1165       if (Record.size() < 3 || OpTy == 0)
1166         return Error("Invalid CE_SHUFFLEVEC record");
1167       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1168       Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
1169       const Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
1170                                                  OpTy->getNumElements());
1171       Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
1172       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
1173       break;
1174     }
1175     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
1176       const VectorType *RTy = dyn_cast<VectorType>(CurTy);
1177       const VectorType *OpTy =
1178         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
1179       if (Record.size() < 4 || RTy == 0 || OpTy == 0)
1180         return Error("Invalid CE_SHUFVEC_EX record");
1181       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1182       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1183       const Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
1184                                                  RTy->getNumElements());
1185       Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
1186       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
1187       break;
1188     }
1189     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
1190       if (Record.size() < 4) return Error("Invalid CE_CMP record");
1191       const Type *OpTy = getTypeByID(Record[0]);
1192       if (OpTy == 0) return Error("Invalid CE_CMP record");
1193       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1194       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1195 
1196       if (OpTy->isFPOrFPVectorTy())
1197         V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
1198       else
1199         V = ConstantExpr::getICmp(Record[3], Op0, Op1);
1200       break;
1201     }
1202     case bitc::CST_CODE_INLINEASM: {
1203       if (Record.size() < 2) return Error("Invalid INLINEASM record");
1204       std::string AsmStr, ConstrStr;
1205       bool HasSideEffects = Record[0] & 1;
1206       bool IsAlignStack = Record[0] >> 1;
1207       unsigned AsmStrSize = Record[1];
1208       if (2+AsmStrSize >= Record.size())
1209         return Error("Invalid INLINEASM record");
1210       unsigned ConstStrSize = Record[2+AsmStrSize];
1211       if (3+AsmStrSize+ConstStrSize > Record.size())
1212         return Error("Invalid INLINEASM record");
1213 
1214       for (unsigned i = 0; i != AsmStrSize; ++i)
1215         AsmStr += (char)Record[2+i];
1216       for (unsigned i = 0; i != ConstStrSize; ++i)
1217         ConstrStr += (char)Record[3+AsmStrSize+i];
1218       const PointerType *PTy = cast<PointerType>(CurTy);
1219       V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
1220                          AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
1221       break;
1222     }
1223     case bitc::CST_CODE_BLOCKADDRESS:{
1224       if (Record.size() < 3) return Error("Invalid CE_BLOCKADDRESS record");
1225       const Type *FnTy = getTypeByID(Record[0]);
1226       if (FnTy == 0) return Error("Invalid CE_BLOCKADDRESS record");
1227       Function *Fn =
1228         dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
1229       if (Fn == 0) return Error("Invalid CE_BLOCKADDRESS record");
1230 
1231       GlobalVariable *FwdRef = new GlobalVariable(*Fn->getParent(),
1232                                                   Type::getInt8Ty(Context),
1233                                             false, GlobalValue::InternalLinkage,
1234                                                   0, "");
1235       BlockAddrFwdRefs[Fn].push_back(std::make_pair(Record[2], FwdRef));
1236       V = FwdRef;
1237       break;
1238     }
1239     }
1240 
1241     ValueList.AssignValue(V, NextCstNo);
1242     ++NextCstNo;
1243   }
1244 
1245   if (NextCstNo != ValueList.size())
1246     return Error("Invalid constant reference!");
1247 
1248   if (Stream.ReadBlockEnd())
1249     return Error("Error at end of constants block");
1250 
1251   // Once all the constants have been read, go through and resolve forward
1252   // references.
1253   ValueList.ResolveConstantForwardRefs();
1254   return false;
1255 }
1256 
1257 /// RememberAndSkipFunctionBody - When we see the block for a function body,
1258 /// remember where it is and then skip it.  This lets us lazily deserialize the
1259 /// functions.
1260 bool BitcodeReader::RememberAndSkipFunctionBody() {
1261   // Get the function we are talking about.
1262   if (FunctionsWithBodies.empty())
1263     return Error("Insufficient function protos");
1264 
1265   Function *Fn = FunctionsWithBodies.back();
1266   FunctionsWithBodies.pop_back();
1267 
1268   // Save the current stream state.
1269   uint64_t CurBit = Stream.GetCurrentBitNo();
1270   DeferredFunctionInfo[Fn] = CurBit;
1271 
1272   // Skip over the function block for now.
1273   if (Stream.SkipBlock())
1274     return Error("Malformed block record");
1275   return false;
1276 }
1277 
1278 bool BitcodeReader::ParseModule() {
1279   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
1280     return Error("Malformed block record");
1281 
1282   SmallVector<uint64_t, 64> Record;
1283   std::vector<std::string> SectionTable;
1284   std::vector<std::string> GCTable;
1285 
1286   // Read all the records for this module.
1287   while (!Stream.AtEndOfStream()) {
1288     unsigned Code = Stream.ReadCode();
1289     if (Code == bitc::END_BLOCK) {
1290       if (Stream.ReadBlockEnd())
1291         return Error("Error at end of module block");
1292 
1293       // Patch the initializers for globals and aliases up.
1294       ResolveGlobalAndAliasInits();
1295       if (!GlobalInits.empty() || !AliasInits.empty())
1296         return Error("Malformed global initializer set");
1297       if (!FunctionsWithBodies.empty())
1298         return Error("Too few function bodies found");
1299 
1300       // Look for intrinsic functions which need to be upgraded at some point
1301       for (Module::iterator FI = TheModule->begin(), FE = TheModule->end();
1302            FI != FE; ++FI) {
1303         Function* NewFn;
1304         if (UpgradeIntrinsicFunction(FI, NewFn))
1305           UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn));
1306       }
1307 
1308       // Look for global variables which need to be renamed.
1309       for (Module::global_iterator
1310              GI = TheModule->global_begin(), GE = TheModule->global_end();
1311            GI != GE; ++GI)
1312         UpgradeGlobalVariable(GI);
1313 
1314       // Force deallocation of memory for these vectors to favor the client that
1315       // want lazy deserialization.
1316       std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
1317       std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits);
1318       std::vector<Function*>().swap(FunctionsWithBodies);
1319       return false;
1320     }
1321 
1322     if (Code == bitc::ENTER_SUBBLOCK) {
1323       switch (Stream.ReadSubBlockID()) {
1324       default:  // Skip unknown content.
1325         if (Stream.SkipBlock())
1326           return Error("Malformed block record");
1327         break;
1328       case bitc::BLOCKINFO_BLOCK_ID:
1329         if (Stream.ReadBlockInfoBlock())
1330           return Error("Malformed BlockInfoBlock");
1331         break;
1332       case bitc::PARAMATTR_BLOCK_ID:
1333         if (ParseAttributeBlock())
1334           return true;
1335         break;
1336       case bitc::TYPE_BLOCK_ID:
1337         if (ParseTypeTable())
1338           return true;
1339         break;
1340       case bitc::TYPE_SYMTAB_BLOCK_ID:
1341         if (ParseTypeSymbolTable())
1342           return true;
1343         break;
1344       case bitc::VALUE_SYMTAB_BLOCK_ID:
1345         if (ParseValueSymbolTable())
1346           return true;
1347         break;
1348       case bitc::CONSTANTS_BLOCK_ID:
1349         if (ParseConstants() || ResolveGlobalAndAliasInits())
1350           return true;
1351         break;
1352       case bitc::METADATA_BLOCK_ID:
1353         if (ParseMetadata())
1354           return true;
1355         break;
1356       case bitc::FUNCTION_BLOCK_ID:
1357         // If this is the first function body we've seen, reverse the
1358         // FunctionsWithBodies list.
1359         if (!HasReversedFunctionsWithBodies) {
1360           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
1361           HasReversedFunctionsWithBodies = true;
1362         }
1363 
1364         if (RememberAndSkipFunctionBody())
1365           return true;
1366         break;
1367       }
1368       continue;
1369     }
1370 
1371     if (Code == bitc::DEFINE_ABBREV) {
1372       Stream.ReadAbbrevRecord();
1373       continue;
1374     }
1375 
1376     // Read a record.
1377     switch (Stream.ReadRecord(Code, Record)) {
1378     default: break;  // Default behavior, ignore unknown content.
1379     case bitc::MODULE_CODE_VERSION:  // VERSION: [version#]
1380       if (Record.size() < 1)
1381         return Error("Malformed MODULE_CODE_VERSION");
1382       // Only version #0 is supported so far.
1383       if (Record[0] != 0)
1384         return Error("Unknown bitstream version!");
1385       break;
1386     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
1387       std::string S;
1388       if (ConvertToString(Record, 0, S))
1389         return Error("Invalid MODULE_CODE_TRIPLE record");
1390       TheModule->setTargetTriple(S);
1391       break;
1392     }
1393     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
1394       std::string S;
1395       if (ConvertToString(Record, 0, S))
1396         return Error("Invalid MODULE_CODE_DATALAYOUT record");
1397       TheModule->setDataLayout(S);
1398       break;
1399     }
1400     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
1401       std::string S;
1402       if (ConvertToString(Record, 0, S))
1403         return Error("Invalid MODULE_CODE_ASM record");
1404       TheModule->setModuleInlineAsm(S);
1405       break;
1406     }
1407     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
1408       std::string S;
1409       if (ConvertToString(Record, 0, S))
1410         return Error("Invalid MODULE_CODE_DEPLIB record");
1411       TheModule->addLibrary(S);
1412       break;
1413     }
1414     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
1415       std::string S;
1416       if (ConvertToString(Record, 0, S))
1417         return Error("Invalid MODULE_CODE_SECTIONNAME record");
1418       SectionTable.push_back(S);
1419       break;
1420     }
1421     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
1422       std::string S;
1423       if (ConvertToString(Record, 0, S))
1424         return Error("Invalid MODULE_CODE_GCNAME record");
1425       GCTable.push_back(S);
1426       break;
1427     }
1428     // GLOBALVAR: [pointer type, isconst, initid,
1429     //             linkage, alignment, section, visibility, threadlocal,
1430     //             unnamed_addr]
1431     case bitc::MODULE_CODE_GLOBALVAR: {
1432       if (Record.size() < 6)
1433         return Error("Invalid MODULE_CODE_GLOBALVAR record");
1434       const Type *Ty = getTypeByID(Record[0]);
1435       if (!Ty) return Error("Invalid MODULE_CODE_GLOBALVAR record");
1436       if (!Ty->isPointerTy())
1437         return Error("Global not a pointer type!");
1438       unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
1439       Ty = cast<PointerType>(Ty)->getElementType();
1440 
1441       bool isConstant = Record[1];
1442       GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]);
1443       unsigned Alignment = (1 << Record[4]) >> 1;
1444       std::string Section;
1445       if (Record[5]) {
1446         if (Record[5]-1 >= SectionTable.size())
1447           return Error("Invalid section ID");
1448         Section = SectionTable[Record[5]-1];
1449       }
1450       GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
1451       if (Record.size() > 6)
1452         Visibility = GetDecodedVisibility(Record[6]);
1453       bool isThreadLocal = false;
1454       if (Record.size() > 7)
1455         isThreadLocal = Record[7];
1456 
1457       bool UnnamedAddr = false;
1458       if (Record.size() > 8)
1459         UnnamedAddr = Record[8];
1460 
1461       GlobalVariable *NewGV =
1462         new GlobalVariable(*TheModule, Ty, isConstant, Linkage, 0, "", 0,
1463                            isThreadLocal, AddressSpace);
1464       NewGV->setAlignment(Alignment);
1465       if (!Section.empty())
1466         NewGV->setSection(Section);
1467       NewGV->setVisibility(Visibility);
1468       NewGV->setThreadLocal(isThreadLocal);
1469       NewGV->setUnnamedAddr(UnnamedAddr);
1470 
1471       ValueList.push_back(NewGV);
1472 
1473       // Remember which value to use for the global initializer.
1474       if (unsigned InitID = Record[2])
1475         GlobalInits.push_back(std::make_pair(NewGV, InitID-1));
1476       break;
1477     }
1478     // FUNCTION:  [type, callingconv, isproto, linkage, paramattr,
1479     //             alignment, section, visibility, gc, unnamed_addr]
1480     case bitc::MODULE_CODE_FUNCTION: {
1481       if (Record.size() < 8)
1482         return Error("Invalid MODULE_CODE_FUNCTION record");
1483       const Type *Ty = getTypeByID(Record[0]);
1484       if (!Ty) return Error("Invalid MODULE_CODE_FUNCTION record");
1485       if (!Ty->isPointerTy())
1486         return Error("Function not a pointer type!");
1487       const FunctionType *FTy =
1488         dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType());
1489       if (!FTy)
1490         return Error("Function not a pointer to function type!");
1491 
1492       Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
1493                                         "", TheModule);
1494 
1495       Func->setCallingConv(static_cast<CallingConv::ID>(Record[1]));
1496       bool isProto = Record[2];
1497       Func->setLinkage(GetDecodedLinkage(Record[3]));
1498       Func->setAttributes(getAttributes(Record[4]));
1499 
1500       Func->setAlignment((1 << Record[5]) >> 1);
1501       if (Record[6]) {
1502         if (Record[6]-1 >= SectionTable.size())
1503           return Error("Invalid section ID");
1504         Func->setSection(SectionTable[Record[6]-1]);
1505       }
1506       Func->setVisibility(GetDecodedVisibility(Record[7]));
1507       if (Record.size() > 8 && Record[8]) {
1508         if (Record[8]-1 > GCTable.size())
1509           return Error("Invalid GC ID");
1510         Func->setGC(GCTable[Record[8]-1].c_str());
1511       }
1512       bool UnnamedAddr = false;
1513       if (Record.size() > 9)
1514         UnnamedAddr = Record[9];
1515       Func->setUnnamedAddr(UnnamedAddr);
1516       ValueList.push_back(Func);
1517 
1518       // If this is a function with a body, remember the prototype we are
1519       // creating now, so that we can match up the body with them later.
1520       if (!isProto)
1521         FunctionsWithBodies.push_back(Func);
1522       break;
1523     }
1524     // ALIAS: [alias type, aliasee val#, linkage]
1525     // ALIAS: [alias type, aliasee val#, linkage, visibility]
1526     case bitc::MODULE_CODE_ALIAS: {
1527       if (Record.size() < 3)
1528         return Error("Invalid MODULE_ALIAS record");
1529       const Type *Ty = getTypeByID(Record[0]);
1530       if (!Ty) return Error("Invalid MODULE_ALIAS record");
1531       if (!Ty->isPointerTy())
1532         return Error("Function not a pointer type!");
1533 
1534       GlobalAlias *NewGA = new GlobalAlias(Ty, GetDecodedLinkage(Record[2]),
1535                                            "", 0, TheModule);
1536       // Old bitcode files didn't have visibility field.
1537       if (Record.size() > 3)
1538         NewGA->setVisibility(GetDecodedVisibility(Record[3]));
1539       ValueList.push_back(NewGA);
1540       AliasInits.push_back(std::make_pair(NewGA, Record[1]));
1541       break;
1542     }
1543     /// MODULE_CODE_PURGEVALS: [numvals]
1544     case bitc::MODULE_CODE_PURGEVALS:
1545       // Trim down the value list to the specified size.
1546       if (Record.size() < 1 || Record[0] > ValueList.size())
1547         return Error("Invalid MODULE_PURGEVALS record");
1548       ValueList.shrinkTo(Record[0]);
1549       break;
1550     }
1551     Record.clear();
1552   }
1553 
1554   return Error("Premature end of bitstream");
1555 }
1556 
1557 bool BitcodeReader::ParseBitcodeInto(Module *M) {
1558   TheModule = 0;
1559 
1560   unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart();
1561   unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
1562 
1563   if (Buffer->getBufferSize() & 3) {
1564     if (!isRawBitcode(BufPtr, BufEnd) && !isBitcodeWrapper(BufPtr, BufEnd))
1565       return Error("Invalid bitcode signature");
1566     else
1567       return Error("Bitcode stream should be a multiple of 4 bytes in length");
1568   }
1569 
1570   // If we have a wrapper header, parse it and ignore the non-bc file contents.
1571   // The magic number is 0x0B17C0DE stored in little endian.
1572   if (isBitcodeWrapper(BufPtr, BufEnd))
1573     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd))
1574       return Error("Invalid bitcode wrapper header");
1575 
1576   StreamFile.init(BufPtr, BufEnd);
1577   Stream.init(StreamFile);
1578 
1579   // Sniff for the signature.
1580   if (Stream.Read(8) != 'B' ||
1581       Stream.Read(8) != 'C' ||
1582       Stream.Read(4) != 0x0 ||
1583       Stream.Read(4) != 0xC ||
1584       Stream.Read(4) != 0xE ||
1585       Stream.Read(4) != 0xD)
1586     return Error("Invalid bitcode signature");
1587 
1588   // We expect a number of well-defined blocks, though we don't necessarily
1589   // need to understand them all.
1590   while (!Stream.AtEndOfStream()) {
1591     unsigned Code = Stream.ReadCode();
1592 
1593     if (Code != bitc::ENTER_SUBBLOCK)
1594       return Error("Invalid record at top-level");
1595 
1596     unsigned BlockID = Stream.ReadSubBlockID();
1597 
1598     // We only know the MODULE subblock ID.
1599     switch (BlockID) {
1600     case bitc::BLOCKINFO_BLOCK_ID:
1601       if (Stream.ReadBlockInfoBlock())
1602         return Error("Malformed BlockInfoBlock");
1603       break;
1604     case bitc::MODULE_BLOCK_ID:
1605       // Reject multiple MODULE_BLOCK's in a single bitstream.
1606       if (TheModule)
1607         return Error("Multiple MODULE_BLOCKs in same stream");
1608       TheModule = M;
1609       if (ParseModule())
1610         return true;
1611       break;
1612     default:
1613       if (Stream.SkipBlock())
1614         return Error("Malformed block record");
1615       break;
1616     }
1617   }
1618 
1619   return false;
1620 }
1621 
1622 bool BitcodeReader::ParseModuleTriple(std::string &Triple) {
1623   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
1624     return Error("Malformed block record");
1625 
1626   SmallVector<uint64_t, 64> Record;
1627 
1628   // Read all the records for this module.
1629   while (!Stream.AtEndOfStream()) {
1630     unsigned Code = Stream.ReadCode();
1631     if (Code == bitc::END_BLOCK) {
1632       if (Stream.ReadBlockEnd())
1633         return Error("Error at end of module block");
1634 
1635       return false;
1636     }
1637 
1638     if (Code == bitc::ENTER_SUBBLOCK) {
1639       switch (Stream.ReadSubBlockID()) {
1640       default:  // Skip unknown content.
1641         if (Stream.SkipBlock())
1642           return Error("Malformed block record");
1643         break;
1644       }
1645       continue;
1646     }
1647 
1648     if (Code == bitc::DEFINE_ABBREV) {
1649       Stream.ReadAbbrevRecord();
1650       continue;
1651     }
1652 
1653     // Read a record.
1654     switch (Stream.ReadRecord(Code, Record)) {
1655     default: break;  // Default behavior, ignore unknown content.
1656     case bitc::MODULE_CODE_VERSION:  // VERSION: [version#]
1657       if (Record.size() < 1)
1658         return Error("Malformed MODULE_CODE_VERSION");
1659       // Only version #0 is supported so far.
1660       if (Record[0] != 0)
1661         return Error("Unknown bitstream version!");
1662       break;
1663     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
1664       std::string S;
1665       if (ConvertToString(Record, 0, S))
1666         return Error("Invalid MODULE_CODE_TRIPLE record");
1667       Triple = S;
1668       break;
1669     }
1670     }
1671     Record.clear();
1672   }
1673 
1674   return Error("Premature end of bitstream");
1675 }
1676 
1677 bool BitcodeReader::ParseTriple(std::string &Triple) {
1678   if (Buffer->getBufferSize() & 3)
1679     return Error("Bitcode stream should be a multiple of 4 bytes in length");
1680 
1681   unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart();
1682   unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
1683 
1684   // If we have a wrapper header, parse it and ignore the non-bc file contents.
1685   // The magic number is 0x0B17C0DE stored in little endian.
1686   if (isBitcodeWrapper(BufPtr, BufEnd))
1687     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd))
1688       return Error("Invalid bitcode wrapper header");
1689 
1690   StreamFile.init(BufPtr, BufEnd);
1691   Stream.init(StreamFile);
1692 
1693   // Sniff for the signature.
1694   if (Stream.Read(8) != 'B' ||
1695       Stream.Read(8) != 'C' ||
1696       Stream.Read(4) != 0x0 ||
1697       Stream.Read(4) != 0xC ||
1698       Stream.Read(4) != 0xE ||
1699       Stream.Read(4) != 0xD)
1700     return Error("Invalid bitcode signature");
1701 
1702   // We expect a number of well-defined blocks, though we don't necessarily
1703   // need to understand them all.
1704   while (!Stream.AtEndOfStream()) {
1705     unsigned Code = Stream.ReadCode();
1706 
1707     if (Code != bitc::ENTER_SUBBLOCK)
1708       return Error("Invalid record at top-level");
1709 
1710     unsigned BlockID = Stream.ReadSubBlockID();
1711 
1712     // We only know the MODULE subblock ID.
1713     switch (BlockID) {
1714     case bitc::MODULE_BLOCK_ID:
1715       if (ParseModuleTriple(Triple))
1716         return true;
1717       break;
1718     default:
1719       if (Stream.SkipBlock())
1720         return Error("Malformed block record");
1721       break;
1722     }
1723   }
1724 
1725   return false;
1726 }
1727 
1728 /// ParseMetadataAttachment - Parse metadata attachments.
1729 bool BitcodeReader::ParseMetadataAttachment() {
1730   if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID))
1731     return Error("Malformed block record");
1732 
1733   SmallVector<uint64_t, 64> Record;
1734   while(1) {
1735     unsigned Code = Stream.ReadCode();
1736     if (Code == bitc::END_BLOCK) {
1737       if (Stream.ReadBlockEnd())
1738         return Error("Error at end of PARAMATTR block");
1739       break;
1740     }
1741     if (Code == bitc::DEFINE_ABBREV) {
1742       Stream.ReadAbbrevRecord();
1743       continue;
1744     }
1745     // Read a metadata attachment record.
1746     Record.clear();
1747     switch (Stream.ReadRecord(Code, Record)) {
1748     default:  // Default behavior: ignore.
1749       break;
1750     // FIXME: Remove in LLVM 3.0.
1751     case bitc::METADATA_ATTACHMENT:
1752       LLVM2_7MetadataDetected = true;
1753     case bitc::METADATA_ATTACHMENT2: {
1754       unsigned RecordLength = Record.size();
1755       if (Record.empty() || (RecordLength - 1) % 2 == 1)
1756         return Error ("Invalid METADATA_ATTACHMENT reader!");
1757       Instruction *Inst = InstructionList[Record[0]];
1758       for (unsigned i = 1; i != RecordLength; i = i+2) {
1759         unsigned Kind = Record[i];
1760         DenseMap<unsigned, unsigned>::iterator I =
1761           MDKindMap.find(Kind);
1762         if (I == MDKindMap.end())
1763           return Error("Invalid metadata kind ID");
1764         Value *Node = MDValueList.getValueFwdRef(Record[i+1]);
1765         Inst->setMetadata(I->second, cast<MDNode>(Node));
1766       }
1767       break;
1768     }
1769     }
1770   }
1771   return false;
1772 }
1773 
1774 /// ParseFunctionBody - Lazily parse the specified function body block.
1775 bool BitcodeReader::ParseFunctionBody(Function *F) {
1776   if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
1777     return Error("Malformed block record");
1778 
1779   InstructionList.clear();
1780   unsigned ModuleValueListSize = ValueList.size();
1781   unsigned ModuleMDValueListSize = MDValueList.size();
1782 
1783   // Add all the function arguments to the value table.
1784   for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
1785     ValueList.push_back(I);
1786 
1787   unsigned NextValueNo = ValueList.size();
1788   BasicBlock *CurBB = 0;
1789   unsigned CurBBNo = 0;
1790 
1791   DebugLoc LastLoc;
1792 
1793   // Read all the records.
1794   SmallVector<uint64_t, 64> Record;
1795   while (1) {
1796     unsigned Code = Stream.ReadCode();
1797     if (Code == bitc::END_BLOCK) {
1798       if (Stream.ReadBlockEnd())
1799         return Error("Error at end of function block");
1800       break;
1801     }
1802 
1803     if (Code == bitc::ENTER_SUBBLOCK) {
1804       switch (Stream.ReadSubBlockID()) {
1805       default:  // Skip unknown content.
1806         if (Stream.SkipBlock())
1807           return Error("Malformed block record");
1808         break;
1809       case bitc::CONSTANTS_BLOCK_ID:
1810         if (ParseConstants()) return true;
1811         NextValueNo = ValueList.size();
1812         break;
1813       case bitc::VALUE_SYMTAB_BLOCK_ID:
1814         if (ParseValueSymbolTable()) return true;
1815         break;
1816       case bitc::METADATA_ATTACHMENT_ID:
1817         if (ParseMetadataAttachment()) return true;
1818         break;
1819       case bitc::METADATA_BLOCK_ID:
1820         if (ParseMetadata()) return true;
1821         break;
1822       }
1823       continue;
1824     }
1825 
1826     if (Code == bitc::DEFINE_ABBREV) {
1827       Stream.ReadAbbrevRecord();
1828       continue;
1829     }
1830 
1831     // Read a record.
1832     Record.clear();
1833     Instruction *I = 0;
1834     unsigned BitCode = Stream.ReadRecord(Code, Record);
1835     switch (BitCode) {
1836     default: // Default behavior: reject
1837       return Error("Unknown instruction");
1838     case bitc::FUNC_CODE_DECLAREBLOCKS:     // DECLAREBLOCKS: [nblocks]
1839       if (Record.size() < 1 || Record[0] == 0)
1840         return Error("Invalid DECLAREBLOCKS record");
1841       // Create all the basic blocks for the function.
1842       FunctionBBs.resize(Record[0]);
1843       for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
1844         FunctionBBs[i] = BasicBlock::Create(Context, "", F);
1845       CurBB = FunctionBBs[0];
1846       continue;
1847 
1848 
1849     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
1850       // This record indicates that the last instruction is at the same
1851       // location as the previous instruction with a location.
1852       I = 0;
1853 
1854       // Get the last instruction emitted.
1855       if (CurBB && !CurBB->empty())
1856         I = &CurBB->back();
1857       else if (CurBBNo && FunctionBBs[CurBBNo-1] &&
1858                !FunctionBBs[CurBBNo-1]->empty())
1859         I = &FunctionBBs[CurBBNo-1]->back();
1860 
1861       if (I == 0) return Error("Invalid DEBUG_LOC_AGAIN record");
1862       I->setDebugLoc(LastLoc);
1863       I = 0;
1864       continue;
1865 
1866     // FIXME: Remove this in LLVM 3.0.
1867     case bitc::FUNC_CODE_DEBUG_LOC:
1868       LLVM2_7MetadataDetected = true;
1869     case bitc::FUNC_CODE_DEBUG_LOC2: {      // DEBUG_LOC: [line, col, scope, ia]
1870       I = 0;     // Get the last instruction emitted.
1871       if (CurBB && !CurBB->empty())
1872         I = &CurBB->back();
1873       else if (CurBBNo && FunctionBBs[CurBBNo-1] &&
1874                !FunctionBBs[CurBBNo-1]->empty())
1875         I = &FunctionBBs[CurBBNo-1]->back();
1876       if (I == 0 || Record.size() < 4)
1877         return Error("Invalid FUNC_CODE_DEBUG_LOC record");
1878 
1879       unsigned Line = Record[0], Col = Record[1];
1880       unsigned ScopeID = Record[2], IAID = Record[3];
1881 
1882       MDNode *Scope = 0, *IA = 0;
1883       if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1));
1884       if (IAID)    IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1));
1885       LastLoc = DebugLoc::get(Line, Col, Scope, IA);
1886       I->setDebugLoc(LastLoc);
1887       I = 0;
1888       continue;
1889     }
1890 
1891     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
1892       unsigned OpNum = 0;
1893       Value *LHS, *RHS;
1894       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
1895           getValue(Record, OpNum, LHS->getType(), RHS) ||
1896           OpNum+1 > Record.size())
1897         return Error("Invalid BINOP record");
1898 
1899       int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
1900       if (Opc == -1) return Error("Invalid BINOP record");
1901       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
1902       InstructionList.push_back(I);
1903       if (OpNum < Record.size()) {
1904         if (Opc == Instruction::Add ||
1905             Opc == Instruction::Sub ||
1906             Opc == Instruction::Mul ||
1907             Opc == Instruction::Shl) {
1908           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
1909             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
1910           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
1911             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
1912         } else if (Opc == Instruction::SDiv ||
1913                    Opc == Instruction::UDiv ||
1914                    Opc == Instruction::LShr ||
1915                    Opc == Instruction::AShr) {
1916           if (Record[OpNum] & (1 << bitc::PEO_EXACT))
1917             cast<BinaryOperator>(I)->setIsExact(true);
1918         }
1919       }
1920       break;
1921     }
1922     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
1923       unsigned OpNum = 0;
1924       Value *Op;
1925       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
1926           OpNum+2 != Record.size())
1927         return Error("Invalid CAST record");
1928 
1929       const Type *ResTy = getTypeByID(Record[OpNum]);
1930       int Opc = GetDecodedCastOpcode(Record[OpNum+1]);
1931       if (Opc == -1 || ResTy == 0)
1932         return Error("Invalid CAST record");
1933       I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy);
1934       InstructionList.push_back(I);
1935       break;
1936     }
1937     case bitc::FUNC_CODE_INST_INBOUNDS_GEP:
1938     case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands]
1939       unsigned OpNum = 0;
1940       Value *BasePtr;
1941       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
1942         return Error("Invalid GEP record");
1943 
1944       SmallVector<Value*, 16> GEPIdx;
1945       while (OpNum != Record.size()) {
1946         Value *Op;
1947         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
1948           return Error("Invalid GEP record");
1949         GEPIdx.push_back(Op);
1950       }
1951 
1952       I = GetElementPtrInst::Create(BasePtr, GEPIdx.begin(), GEPIdx.end());
1953       InstructionList.push_back(I);
1954       if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP)
1955         cast<GetElementPtrInst>(I)->setIsInBounds(true);
1956       break;
1957     }
1958 
1959     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
1960                                        // EXTRACTVAL: [opty, opval, n x indices]
1961       unsigned OpNum = 0;
1962       Value *Agg;
1963       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
1964         return Error("Invalid EXTRACTVAL record");
1965 
1966       SmallVector<unsigned, 4> EXTRACTVALIdx;
1967       for (unsigned RecSize = Record.size();
1968            OpNum != RecSize; ++OpNum) {
1969         uint64_t Index = Record[OpNum];
1970         if ((unsigned)Index != Index)
1971           return Error("Invalid EXTRACTVAL index");
1972         EXTRACTVALIdx.push_back((unsigned)Index);
1973       }
1974 
1975       I = ExtractValueInst::Create(Agg,
1976                                    EXTRACTVALIdx.begin(), EXTRACTVALIdx.end());
1977       InstructionList.push_back(I);
1978       break;
1979     }
1980 
1981     case bitc::FUNC_CODE_INST_INSERTVAL: {
1982                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
1983       unsigned OpNum = 0;
1984       Value *Agg;
1985       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
1986         return Error("Invalid INSERTVAL record");
1987       Value *Val;
1988       if (getValueTypePair(Record, OpNum, NextValueNo, Val))
1989         return Error("Invalid INSERTVAL record");
1990 
1991       SmallVector<unsigned, 4> INSERTVALIdx;
1992       for (unsigned RecSize = Record.size();
1993            OpNum != RecSize; ++OpNum) {
1994         uint64_t Index = Record[OpNum];
1995         if ((unsigned)Index != Index)
1996           return Error("Invalid INSERTVAL index");
1997         INSERTVALIdx.push_back((unsigned)Index);
1998       }
1999 
2000       I = InsertValueInst::Create(Agg, Val,
2001                                   INSERTVALIdx.begin(), INSERTVALIdx.end());
2002       InstructionList.push_back(I);
2003       break;
2004     }
2005 
2006     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
2007       // obsolete form of select
2008       // handles select i1 ... in old bitcode
2009       unsigned OpNum = 0;
2010       Value *TrueVal, *FalseVal, *Cond;
2011       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
2012           getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
2013           getValue(Record, OpNum, Type::getInt1Ty(Context), Cond))
2014         return Error("Invalid SELECT record");
2015 
2016       I = SelectInst::Create(Cond, TrueVal, FalseVal);
2017       InstructionList.push_back(I);
2018       break;
2019     }
2020 
2021     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
2022       // new form of select
2023       // handles select i1 or select [N x i1]
2024       unsigned OpNum = 0;
2025       Value *TrueVal, *FalseVal, *Cond;
2026       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
2027           getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
2028           getValueTypePair(Record, OpNum, NextValueNo, Cond))
2029         return Error("Invalid SELECT record");
2030 
2031       // select condition can be either i1 or [N x i1]
2032       if (const VectorType* vector_type =
2033           dyn_cast<const VectorType>(Cond->getType())) {
2034         // expect <n x i1>
2035         if (vector_type->getElementType() != Type::getInt1Ty(Context))
2036           return Error("Invalid SELECT condition type");
2037       } else {
2038         // expect i1
2039         if (Cond->getType() != Type::getInt1Ty(Context))
2040           return Error("Invalid SELECT condition type");
2041       }
2042 
2043       I = SelectInst::Create(Cond, TrueVal, FalseVal);
2044       InstructionList.push_back(I);
2045       break;
2046     }
2047 
2048     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
2049       unsigned OpNum = 0;
2050       Value *Vec, *Idx;
2051       if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
2052           getValue(Record, OpNum, Type::getInt32Ty(Context), Idx))
2053         return Error("Invalid EXTRACTELT record");
2054       I = ExtractElementInst::Create(Vec, Idx);
2055       InstructionList.push_back(I);
2056       break;
2057     }
2058 
2059     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
2060       unsigned OpNum = 0;
2061       Value *Vec, *Elt, *Idx;
2062       if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
2063           getValue(Record, OpNum,
2064                    cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
2065           getValue(Record, OpNum, Type::getInt32Ty(Context), Idx))
2066         return Error("Invalid INSERTELT record");
2067       I = InsertElementInst::Create(Vec, Elt, Idx);
2068       InstructionList.push_back(I);
2069       break;
2070     }
2071 
2072     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
2073       unsigned OpNum = 0;
2074       Value *Vec1, *Vec2, *Mask;
2075       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
2076           getValue(Record, OpNum, Vec1->getType(), Vec2))
2077         return Error("Invalid SHUFFLEVEC record");
2078 
2079       if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
2080         return Error("Invalid SHUFFLEVEC record");
2081       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
2082       InstructionList.push_back(I);
2083       break;
2084     }
2085 
2086     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
2087       // Old form of ICmp/FCmp returning bool
2088       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
2089       // both legal on vectors but had different behaviour.
2090     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
2091       // FCmp/ICmp returning bool or vector of bool
2092 
2093       unsigned OpNum = 0;
2094       Value *LHS, *RHS;
2095       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
2096           getValue(Record, OpNum, LHS->getType(), RHS) ||
2097           OpNum+1 != Record.size())
2098         return Error("Invalid CMP record");
2099 
2100       if (LHS->getType()->isFPOrFPVectorTy())
2101         I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS);
2102       else
2103         I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS);
2104       InstructionList.push_back(I);
2105       break;
2106     }
2107 
2108     case bitc::FUNC_CODE_INST_GETRESULT: { // GETRESULT: [ty, val, n]
2109       if (Record.size() != 2)
2110         return Error("Invalid GETRESULT record");
2111       unsigned OpNum = 0;
2112       Value *Op;
2113       getValueTypePair(Record, OpNum, NextValueNo, Op);
2114       unsigned Index = Record[1];
2115       I = ExtractValueInst::Create(Op, Index);
2116       InstructionList.push_back(I);
2117       break;
2118     }
2119 
2120     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
2121       {
2122         unsigned Size = Record.size();
2123         if (Size == 0) {
2124           I = ReturnInst::Create(Context);
2125           InstructionList.push_back(I);
2126           break;
2127         }
2128 
2129         unsigned OpNum = 0;
2130         SmallVector<Value *,4> Vs;
2131         do {
2132           Value *Op = NULL;
2133           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2134             return Error("Invalid RET record");
2135           Vs.push_back(Op);
2136         } while(OpNum != Record.size());
2137 
2138         const Type *ReturnType = F->getReturnType();
2139         // Handle multiple return values. FIXME: Remove in LLVM 3.0.
2140         if (Vs.size() > 1 ||
2141             (ReturnType->isStructTy() &&
2142              (Vs.empty() || Vs[0]->getType() != ReturnType))) {
2143           Value *RV = UndefValue::get(ReturnType);
2144           for (unsigned i = 0, e = Vs.size(); i != e; ++i) {
2145             I = InsertValueInst::Create(RV, Vs[i], i, "mrv");
2146             InstructionList.push_back(I);
2147             CurBB->getInstList().push_back(I);
2148             ValueList.AssignValue(I, NextValueNo++);
2149             RV = I;
2150           }
2151           I = ReturnInst::Create(Context, RV);
2152           InstructionList.push_back(I);
2153           break;
2154         }
2155 
2156         I = ReturnInst::Create(Context, Vs[0]);
2157         InstructionList.push_back(I);
2158         break;
2159       }
2160     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
2161       if (Record.size() != 1 && Record.size() != 3)
2162         return Error("Invalid BR record");
2163       BasicBlock *TrueDest = getBasicBlock(Record[0]);
2164       if (TrueDest == 0)
2165         return Error("Invalid BR record");
2166 
2167       if (Record.size() == 1) {
2168         I = BranchInst::Create(TrueDest);
2169         InstructionList.push_back(I);
2170       }
2171       else {
2172         BasicBlock *FalseDest = getBasicBlock(Record[1]);
2173         Value *Cond = getFnValueByID(Record[2], Type::getInt1Ty(Context));
2174         if (FalseDest == 0 || Cond == 0)
2175           return Error("Invalid BR record");
2176         I = BranchInst::Create(TrueDest, FalseDest, Cond);
2177         InstructionList.push_back(I);
2178       }
2179       break;
2180     }
2181     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
2182       if (Record.size() < 3 || (Record.size() & 1) == 0)
2183         return Error("Invalid SWITCH record");
2184       const Type *OpTy = getTypeByID(Record[0]);
2185       Value *Cond = getFnValueByID(Record[1], OpTy);
2186       BasicBlock *Default = getBasicBlock(Record[2]);
2187       if (OpTy == 0 || Cond == 0 || Default == 0)
2188         return Error("Invalid SWITCH record");
2189       unsigned NumCases = (Record.size()-3)/2;
2190       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
2191       InstructionList.push_back(SI);
2192       for (unsigned i = 0, e = NumCases; i != e; ++i) {
2193         ConstantInt *CaseVal =
2194           dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
2195         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
2196         if (CaseVal == 0 || DestBB == 0) {
2197           delete SI;
2198           return Error("Invalid SWITCH record!");
2199         }
2200         SI->addCase(CaseVal, DestBB);
2201       }
2202       I = SI;
2203       break;
2204     }
2205     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
2206       if (Record.size() < 2)
2207         return Error("Invalid INDIRECTBR record");
2208       const Type *OpTy = getTypeByID(Record[0]);
2209       Value *Address = getFnValueByID(Record[1], OpTy);
2210       if (OpTy == 0 || Address == 0)
2211         return Error("Invalid INDIRECTBR record");
2212       unsigned NumDests = Record.size()-2;
2213       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
2214       InstructionList.push_back(IBI);
2215       for (unsigned i = 0, e = NumDests; i != e; ++i) {
2216         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
2217           IBI->addDestination(DestBB);
2218         } else {
2219           delete IBI;
2220           return Error("Invalid INDIRECTBR record!");
2221         }
2222       }
2223       I = IBI;
2224       break;
2225     }
2226 
2227     case bitc::FUNC_CODE_INST_INVOKE: {
2228       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
2229       if (Record.size() < 4) return Error("Invalid INVOKE record");
2230       AttrListPtr PAL = getAttributes(Record[0]);
2231       unsigned CCInfo = Record[1];
2232       BasicBlock *NormalBB = getBasicBlock(Record[2]);
2233       BasicBlock *UnwindBB = getBasicBlock(Record[3]);
2234 
2235       unsigned OpNum = 4;
2236       Value *Callee;
2237       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
2238         return Error("Invalid INVOKE record");
2239 
2240       const PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
2241       const FunctionType *FTy = !CalleeTy ? 0 :
2242         dyn_cast<FunctionType>(CalleeTy->getElementType());
2243 
2244       // Check that the right number of fixed parameters are here.
2245       if (FTy == 0 || NormalBB == 0 || UnwindBB == 0 ||
2246           Record.size() < OpNum+FTy->getNumParams())
2247         return Error("Invalid INVOKE record");
2248 
2249       SmallVector<Value*, 16> Ops;
2250       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
2251         Ops.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
2252         if (Ops.back() == 0) return Error("Invalid INVOKE record");
2253       }
2254 
2255       if (!FTy->isVarArg()) {
2256         if (Record.size() != OpNum)
2257           return Error("Invalid INVOKE record");
2258       } else {
2259         // Read type/value pairs for varargs params.
2260         while (OpNum != Record.size()) {
2261           Value *Op;
2262           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2263             return Error("Invalid INVOKE record");
2264           Ops.push_back(Op);
2265         }
2266       }
2267 
2268       I = InvokeInst::Create(Callee, NormalBB, UnwindBB,
2269                              Ops.begin(), Ops.end());
2270       InstructionList.push_back(I);
2271       cast<InvokeInst>(I)->setCallingConv(
2272         static_cast<CallingConv::ID>(CCInfo));
2273       cast<InvokeInst>(I)->setAttributes(PAL);
2274       break;
2275     }
2276     case bitc::FUNC_CODE_INST_UNWIND: // UNWIND
2277       I = new UnwindInst(Context);
2278       InstructionList.push_back(I);
2279       break;
2280     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
2281       I = new UnreachableInst(Context);
2282       InstructionList.push_back(I);
2283       break;
2284     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
2285       if (Record.size() < 1 || ((Record.size()-1)&1))
2286         return Error("Invalid PHI record");
2287       const Type *Ty = getTypeByID(Record[0]);
2288       if (!Ty) return Error("Invalid PHI record");
2289 
2290       PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2);
2291       InstructionList.push_back(PN);
2292 
2293       for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
2294         Value *V = getFnValueByID(Record[1+i], Ty);
2295         BasicBlock *BB = getBasicBlock(Record[2+i]);
2296         if (!V || !BB) return Error("Invalid PHI record");
2297         PN->addIncoming(V, BB);
2298       }
2299       I = PN;
2300       break;
2301     }
2302 
2303     case bitc::FUNC_CODE_INST_MALLOC: { // MALLOC: [instty, op, align]
2304       // Autoupgrade malloc instruction to malloc call.
2305       // FIXME: Remove in LLVM 3.0.
2306       if (Record.size() < 3)
2307         return Error("Invalid MALLOC record");
2308       const PointerType *Ty =
2309         dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
2310       Value *Size = getFnValueByID(Record[1], Type::getInt32Ty(Context));
2311       if (!Ty || !Size) return Error("Invalid MALLOC record");
2312       if (!CurBB) return Error("Invalid malloc instruction with no BB");
2313       const Type *Int32Ty = IntegerType::getInt32Ty(CurBB->getContext());
2314       Constant *AllocSize = ConstantExpr::getSizeOf(Ty->getElementType());
2315       AllocSize = ConstantExpr::getTruncOrBitCast(AllocSize, Int32Ty);
2316       I = CallInst::CreateMalloc(CurBB, Int32Ty, Ty->getElementType(),
2317                                  AllocSize, Size, NULL);
2318       InstructionList.push_back(I);
2319       break;
2320     }
2321     case bitc::FUNC_CODE_INST_FREE: { // FREE: [op, opty]
2322       unsigned OpNum = 0;
2323       Value *Op;
2324       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2325           OpNum != Record.size())
2326         return Error("Invalid FREE record");
2327       if (!CurBB) return Error("Invalid free instruction with no BB");
2328       I = CallInst::CreateFree(Op, CurBB);
2329       InstructionList.push_back(I);
2330       break;
2331     }
2332     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
2333       // For backward compatibility, tolerate a lack of an opty, and use i32.
2334       // Remove this in LLVM 3.0.
2335       if (Record.size() < 3 || Record.size() > 4)
2336         return Error("Invalid ALLOCA record");
2337       unsigned OpNum = 0;
2338       const PointerType *Ty =
2339         dyn_cast_or_null<PointerType>(getTypeByID(Record[OpNum++]));
2340       const Type *OpTy = Record.size() == 4 ? getTypeByID(Record[OpNum++]) :
2341                                               Type::getInt32Ty(Context);
2342       Value *Size = getFnValueByID(Record[OpNum++], OpTy);
2343       unsigned Align = Record[OpNum++];
2344       if (!Ty || !Size) return Error("Invalid ALLOCA record");
2345       I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1);
2346       InstructionList.push_back(I);
2347       break;
2348     }
2349     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
2350       unsigned OpNum = 0;
2351       Value *Op;
2352       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2353           OpNum+2 != Record.size())
2354         return Error("Invalid LOAD record");
2355 
2356       I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2357       InstructionList.push_back(I);
2358       break;
2359     }
2360     case bitc::FUNC_CODE_INST_STORE2: { // STORE2:[ptrty, ptr, val, align, vol]
2361       unsigned OpNum = 0;
2362       Value *Val, *Ptr;
2363       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
2364           getValue(Record, OpNum,
2365                     cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
2366           OpNum+2 != Record.size())
2367         return Error("Invalid STORE record");
2368 
2369       I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2370       InstructionList.push_back(I);
2371       break;
2372     }
2373     case bitc::FUNC_CODE_INST_STORE: { // STORE:[val, valty, ptr, align, vol]
2374       // FIXME: Legacy form of store instruction. Should be removed in LLVM 3.0.
2375       unsigned OpNum = 0;
2376       Value *Val, *Ptr;
2377       if (getValueTypePair(Record, OpNum, NextValueNo, Val) ||
2378           getValue(Record, OpNum,
2379                    PointerType::getUnqual(Val->getType()), Ptr)||
2380           OpNum+2 != Record.size())
2381         return Error("Invalid STORE record");
2382 
2383       I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2384       InstructionList.push_back(I);
2385       break;
2386     }
2387     // FIXME: Remove this in LLVM 3.0.
2388     case bitc::FUNC_CODE_INST_CALL:
2389       LLVM2_7MetadataDetected = true;
2390     case bitc::FUNC_CODE_INST_CALL2: {
2391       // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...]
2392       if (Record.size() < 3)
2393         return Error("Invalid CALL record");
2394 
2395       AttrListPtr PAL = getAttributes(Record[0]);
2396       unsigned CCInfo = Record[1];
2397 
2398       unsigned OpNum = 2;
2399       Value *Callee;
2400       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
2401         return Error("Invalid CALL record");
2402 
2403       const PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
2404       const FunctionType *FTy = 0;
2405       if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType());
2406       if (!FTy || Record.size() < FTy->getNumParams()+OpNum)
2407         return Error("Invalid CALL record");
2408 
2409       SmallVector<Value*, 16> Args;
2410       // Read the fixed params.
2411       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
2412         if (FTy->getParamType(i)->getTypeID()==Type::LabelTyID)
2413           Args.push_back(getBasicBlock(Record[OpNum]));
2414         else
2415           Args.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
2416         if (Args.back() == 0) return Error("Invalid CALL record");
2417       }
2418 
2419       // Read type/value pairs for varargs params.
2420       if (!FTy->isVarArg()) {
2421         if (OpNum != Record.size())
2422           return Error("Invalid CALL record");
2423       } else {
2424         while (OpNum != Record.size()) {
2425           Value *Op;
2426           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2427             return Error("Invalid CALL record");
2428           Args.push_back(Op);
2429         }
2430       }
2431 
2432       I = CallInst::Create(Callee, Args.begin(), Args.end());
2433       InstructionList.push_back(I);
2434       cast<CallInst>(I)->setCallingConv(
2435         static_cast<CallingConv::ID>(CCInfo>>1));
2436       cast<CallInst>(I)->setTailCall(CCInfo & 1);
2437       cast<CallInst>(I)->setAttributes(PAL);
2438       break;
2439     }
2440     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
2441       if (Record.size() < 3)
2442         return Error("Invalid VAARG record");
2443       const Type *OpTy = getTypeByID(Record[0]);
2444       Value *Op = getFnValueByID(Record[1], OpTy);
2445       const Type *ResTy = getTypeByID(Record[2]);
2446       if (!OpTy || !Op || !ResTy)
2447         return Error("Invalid VAARG record");
2448       I = new VAArgInst(Op, ResTy);
2449       InstructionList.push_back(I);
2450       break;
2451     }
2452     }
2453 
2454     // Add instruction to end of current BB.  If there is no current BB, reject
2455     // this file.
2456     if (CurBB == 0) {
2457       delete I;
2458       return Error("Invalid instruction with no BB");
2459     }
2460     CurBB->getInstList().push_back(I);
2461 
2462     // If this was a terminator instruction, move to the next block.
2463     if (isa<TerminatorInst>(I)) {
2464       ++CurBBNo;
2465       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : 0;
2466     }
2467 
2468     // Non-void values get registered in the value table for future use.
2469     if (I && !I->getType()->isVoidTy())
2470       ValueList.AssignValue(I, NextValueNo++);
2471   }
2472 
2473   // Check the function list for unresolved values.
2474   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
2475     if (A->getParent() == 0) {
2476       // We found at least one unresolved value.  Nuke them all to avoid leaks.
2477       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
2478         if ((A = dyn_cast<Argument>(ValueList[i])) && A->getParent() == 0) {
2479           A->replaceAllUsesWith(UndefValue::get(A->getType()));
2480           delete A;
2481         }
2482       }
2483       return Error("Never resolved value found in function!");
2484     }
2485   }
2486 
2487   // FIXME: Check for unresolved forward-declared metadata references
2488   // and clean up leaks.
2489 
2490   // See if anything took the address of blocks in this function.  If so,
2491   // resolve them now.
2492   DenseMap<Function*, std::vector<BlockAddrRefTy> >::iterator BAFRI =
2493     BlockAddrFwdRefs.find(F);
2494   if (BAFRI != BlockAddrFwdRefs.end()) {
2495     std::vector<BlockAddrRefTy> &RefList = BAFRI->second;
2496     for (unsigned i = 0, e = RefList.size(); i != e; ++i) {
2497       unsigned BlockIdx = RefList[i].first;
2498       if (BlockIdx >= FunctionBBs.size())
2499         return Error("Invalid blockaddress block #");
2500 
2501       GlobalVariable *FwdRef = RefList[i].second;
2502       FwdRef->replaceAllUsesWith(BlockAddress::get(F, FunctionBBs[BlockIdx]));
2503       FwdRef->eraseFromParent();
2504     }
2505 
2506     BlockAddrFwdRefs.erase(BAFRI);
2507   }
2508 
2509   // FIXME: Remove this in LLVM 3.0.
2510   unsigned NewMDValueListSize = MDValueList.size();
2511 
2512   // Trim the value list down to the size it was before we parsed this function.
2513   ValueList.shrinkTo(ModuleValueListSize);
2514   MDValueList.shrinkTo(ModuleMDValueListSize);
2515 
2516   // Backwards compatibility hack: Function-local metadata numbers
2517   // were previously not reset between functions. This is now fixed,
2518   // however we still need to understand the old numbering in order
2519   // to be able to read old bitcode files.
2520   // FIXME: Remove this in LLVM 3.0.
2521   if (LLVM2_7MetadataDetected)
2522     MDValueList.resize(NewMDValueListSize);
2523 
2524   std::vector<BasicBlock*>().swap(FunctionBBs);
2525 
2526   return false;
2527 }
2528 
2529 //===----------------------------------------------------------------------===//
2530 // GVMaterializer implementation
2531 //===----------------------------------------------------------------------===//
2532 
2533 
2534 bool BitcodeReader::isMaterializable(const GlobalValue *GV) const {
2535   if (const Function *F = dyn_cast<Function>(GV)) {
2536     return F->isDeclaration() &&
2537       DeferredFunctionInfo.count(const_cast<Function*>(F));
2538   }
2539   return false;
2540 }
2541 
2542 bool BitcodeReader::Materialize(GlobalValue *GV, std::string *ErrInfo) {
2543   Function *F = dyn_cast<Function>(GV);
2544   // If it's not a function or is already material, ignore the request.
2545   if (!F || !F->isMaterializable()) return false;
2546 
2547   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
2548   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
2549 
2550   // Move the bit stream to the saved position of the deferred function body.
2551   Stream.JumpToBit(DFII->second);
2552 
2553   if (ParseFunctionBody(F)) {
2554     if (ErrInfo) *ErrInfo = ErrorString;
2555     return true;
2556   }
2557 
2558   // Upgrade any old intrinsic calls in the function.
2559   for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(),
2560        E = UpgradedIntrinsics.end(); I != E; ++I) {
2561     if (I->first != I->second) {
2562       for (Value::use_iterator UI = I->first->use_begin(),
2563            UE = I->first->use_end(); UI != UE; ) {
2564         if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2565           UpgradeIntrinsicCall(CI, I->second);
2566       }
2567     }
2568   }
2569 
2570   return false;
2571 }
2572 
2573 bool BitcodeReader::isDematerializable(const GlobalValue *GV) const {
2574   const Function *F = dyn_cast<Function>(GV);
2575   if (!F || F->isDeclaration())
2576     return false;
2577   return DeferredFunctionInfo.count(const_cast<Function*>(F));
2578 }
2579 
2580 void BitcodeReader::Dematerialize(GlobalValue *GV) {
2581   Function *F = dyn_cast<Function>(GV);
2582   // If this function isn't dematerializable, this is a noop.
2583   if (!F || !isDematerializable(F))
2584     return;
2585 
2586   assert(DeferredFunctionInfo.count(F) && "No info to read function later?");
2587 
2588   // Just forget the function body, we can remat it later.
2589   F->deleteBody();
2590 }
2591 
2592 
2593 bool BitcodeReader::MaterializeModule(Module *M, std::string *ErrInfo) {
2594   assert(M == TheModule &&
2595          "Can only Materialize the Module this BitcodeReader is attached to.");
2596   // Iterate over the module, deserializing any functions that are still on
2597   // disk.
2598   for (Module::iterator F = TheModule->begin(), E = TheModule->end();
2599        F != E; ++F)
2600     if (F->isMaterializable() &&
2601         Materialize(F, ErrInfo))
2602       return true;
2603 
2604   // Upgrade any intrinsic calls that slipped through (should not happen!) and
2605   // delete the old functions to clean up. We can't do this unless the entire
2606   // module is materialized because there could always be another function body
2607   // with calls to the old function.
2608   for (std::vector<std::pair<Function*, Function*> >::iterator I =
2609        UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) {
2610     if (I->first != I->second) {
2611       for (Value::use_iterator UI = I->first->use_begin(),
2612            UE = I->first->use_end(); UI != UE; ) {
2613         if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2614           UpgradeIntrinsicCall(CI, I->second);
2615       }
2616       if (!I->first->use_empty())
2617         I->first->replaceAllUsesWith(I->second);
2618       I->first->eraseFromParent();
2619     }
2620   }
2621   std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics);
2622 
2623   // Check debug info intrinsics.
2624   CheckDebugInfoIntrinsics(TheModule);
2625 
2626   return false;
2627 }
2628 
2629 
2630 //===----------------------------------------------------------------------===//
2631 // External interface
2632 //===----------------------------------------------------------------------===//
2633 
2634 /// getLazyBitcodeModule - lazy function-at-a-time loading from a file.
2635 ///
2636 Module *llvm::getLazyBitcodeModule(MemoryBuffer *Buffer,
2637                                    LLVMContext& Context,
2638                                    std::string *ErrMsg) {
2639   Module *M = new Module(Buffer->getBufferIdentifier(), Context);
2640   BitcodeReader *R = new BitcodeReader(Buffer, Context);
2641   M->setMaterializer(R);
2642   if (R->ParseBitcodeInto(M)) {
2643     if (ErrMsg)
2644       *ErrMsg = R->getErrorString();
2645 
2646     delete M;  // Also deletes R.
2647     return 0;
2648   }
2649   // Have the BitcodeReader dtor delete 'Buffer'.
2650   R->setBufferOwned(true);
2651   return M;
2652 }
2653 
2654 /// ParseBitcodeFile - Read the specified bitcode file, returning the module.
2655 /// If an error occurs, return null and fill in *ErrMsg if non-null.
2656 Module *llvm::ParseBitcodeFile(MemoryBuffer *Buffer, LLVMContext& Context,
2657                                std::string *ErrMsg){
2658   Module *M = getLazyBitcodeModule(Buffer, Context, ErrMsg);
2659   if (!M) return 0;
2660 
2661   // Don't let the BitcodeReader dtor delete 'Buffer', regardless of whether
2662   // there was an error.
2663   static_cast<BitcodeReader*>(M->getMaterializer())->setBufferOwned(false);
2664 
2665   // Read in the entire module, and destroy the BitcodeReader.
2666   if (M->MaterializeAllPermanently(ErrMsg)) {
2667     delete M;
2668     return 0;
2669   }
2670 
2671   return M;
2672 }
2673 
2674 std::string llvm::getBitcodeTargetTriple(MemoryBuffer *Buffer,
2675                                          LLVMContext& Context,
2676                                          std::string *ErrMsg) {
2677   BitcodeReader *R = new BitcodeReader(Buffer, Context);
2678   // Don't let the BitcodeReader dtor delete 'Buffer'.
2679   R->setBufferOwned(false);
2680 
2681   std::string Triple("");
2682   if (R->ParseTriple(Triple))
2683     if (ErrMsg)
2684       *ErrMsg = R->getErrorString();
2685 
2686   delete R;
2687   return Triple;
2688 }
2689