xref: /llvm-project/llvm/lib/Bitcode/Reader/BitcodeReader.cpp (revision 5b83bd133d705b024bfb34e4941941689456ba8c)
1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Bitcode/BitcodeReader.h"
10 #include "MetadataLoader.h"
11 #include "ValueList.h"
12 #include "llvm/ADT/APFloat.h"
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallString.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/StringRef.h"
20 #include "llvm/ADT/Twine.h"
21 #include "llvm/Bitcode/BitcodeCommon.h"
22 #include "llvm/Bitcode/LLVMBitCodes.h"
23 #include "llvm/Bitstream/BitstreamReader.h"
24 #include "llvm/Config/llvm-config.h"
25 #include "llvm/IR/Argument.h"
26 #include "llvm/IR/AttributeMask.h"
27 #include "llvm/IR/Attributes.h"
28 #include "llvm/IR/AutoUpgrade.h"
29 #include "llvm/IR/BasicBlock.h"
30 #include "llvm/IR/CallingConv.h"
31 #include "llvm/IR/Comdat.h"
32 #include "llvm/IR/Constant.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/DebugInfo.h"
36 #include "llvm/IR/DebugInfoMetadata.h"
37 #include "llvm/IR/DebugLoc.h"
38 #include "llvm/IR/DerivedTypes.h"
39 #include "llvm/IR/Function.h"
40 #include "llvm/IR/GVMaterializer.h"
41 #include "llvm/IR/GetElementPtrTypeIterator.h"
42 #include "llvm/IR/GlobalAlias.h"
43 #include "llvm/IR/GlobalIFunc.h"
44 #include "llvm/IR/GlobalObject.h"
45 #include "llvm/IR/GlobalValue.h"
46 #include "llvm/IR/GlobalVariable.h"
47 #include "llvm/IR/InlineAsm.h"
48 #include "llvm/IR/InstIterator.h"
49 #include "llvm/IR/InstrTypes.h"
50 #include "llvm/IR/Instruction.h"
51 #include "llvm/IR/Instructions.h"
52 #include "llvm/IR/Intrinsics.h"
53 #include "llvm/IR/IntrinsicsAArch64.h"
54 #include "llvm/IR/IntrinsicsARM.h"
55 #include "llvm/IR/LLVMContext.h"
56 #include "llvm/IR/Metadata.h"
57 #include "llvm/IR/Module.h"
58 #include "llvm/IR/ModuleSummaryIndex.h"
59 #include "llvm/IR/Operator.h"
60 #include "llvm/IR/Type.h"
61 #include "llvm/IR/Value.h"
62 #include "llvm/IR/Verifier.h"
63 #include "llvm/Support/AtomicOrdering.h"
64 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/CommandLine.h"
66 #include "llvm/Support/Compiler.h"
67 #include "llvm/Support/Debug.h"
68 #include "llvm/Support/Error.h"
69 #include "llvm/Support/ErrorHandling.h"
70 #include "llvm/Support/ErrorOr.h"
71 #include "llvm/Support/MathExtras.h"
72 #include "llvm/Support/MemoryBuffer.h"
73 #include "llvm/Support/ModRef.h"
74 #include "llvm/Support/raw_ostream.h"
75 #include "llvm/TargetParser/Triple.h"
76 #include <algorithm>
77 #include <cassert>
78 #include <cstddef>
79 #include <cstdint>
80 #include <deque>
81 #include <map>
82 #include <memory>
83 #include <optional>
84 #include <set>
85 #include <string>
86 #include <system_error>
87 #include <tuple>
88 #include <utility>
89 #include <vector>
90 
91 using namespace llvm;
92 
93 static cl::opt<bool> PrintSummaryGUIDs(
94     "print-summary-global-ids", cl::init(false), cl::Hidden,
95     cl::desc(
96         "Print the global id for each value when reading the module summary"));
97 
98 static cl::opt<bool> ExpandConstantExprs(
99     "expand-constant-exprs", cl::Hidden,
100     cl::desc(
101         "Expand constant expressions to instructions for testing purposes"));
102 
103 namespace {
104 
105 enum {
106   SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
107 };
108 
109 } // end anonymous namespace
110 
111 static Error error(const Twine &Message) {
112   return make_error<StringError>(
113       Message, make_error_code(BitcodeError::CorruptedBitcode));
114 }
115 
116 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) {
117   if (!Stream.canSkipToPos(4))
118     return createStringError(std::errc::illegal_byte_sequence,
119                              "file too small to contain bitcode header");
120   for (unsigned C : {'B', 'C'})
121     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) {
122       if (Res.get() != C)
123         return createStringError(std::errc::illegal_byte_sequence,
124                                  "file doesn't start with bitcode header");
125     } else
126       return Res.takeError();
127   for (unsigned C : {0x0, 0xC, 0xE, 0xD})
128     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) {
129       if (Res.get() != C)
130         return createStringError(std::errc::illegal_byte_sequence,
131                                  "file doesn't start with bitcode header");
132     } else
133       return Res.takeError();
134   return Error::success();
135 }
136 
137 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) {
138   const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart();
139   const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize();
140 
141   if (Buffer.getBufferSize() & 3)
142     return error("Invalid bitcode signature");
143 
144   // If we have a wrapper header, parse it and ignore the non-bc file contents.
145   // The magic number is 0x0B17C0DE stored in little endian.
146   if (isBitcodeWrapper(BufPtr, BufEnd))
147     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
148       return error("Invalid bitcode wrapper header");
149 
150   BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd));
151   if (Error Err = hasInvalidBitcodeHeader(Stream))
152     return std::move(Err);
153 
154   return std::move(Stream);
155 }
156 
157 /// Convert a string from a record into an std::string, return true on failure.
158 template <typename StrTy>
159 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
160                             StrTy &Result) {
161   if (Idx > Record.size())
162     return true;
163 
164   Result.append(Record.begin() + Idx, Record.end());
165   return false;
166 }
167 
168 // Strip all the TBAA attachment for the module.
169 static void stripTBAA(Module *M) {
170   for (auto &F : *M) {
171     if (F.isMaterializable())
172       continue;
173     for (auto &I : instructions(F))
174       I.setMetadata(LLVMContext::MD_tbaa, nullptr);
175   }
176 }
177 
178 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the
179 /// "epoch" encoded in the bitcode, and return the producer name if any.
180 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) {
181   if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID))
182     return std::move(Err);
183 
184   // Read all the records.
185   SmallVector<uint64_t, 64> Record;
186 
187   std::string ProducerIdentification;
188 
189   while (true) {
190     BitstreamEntry Entry;
191     if (Error E = Stream.advance().moveInto(Entry))
192       return std::move(E);
193 
194     switch (Entry.Kind) {
195     default:
196     case BitstreamEntry::Error:
197       return error("Malformed block");
198     case BitstreamEntry::EndBlock:
199       return ProducerIdentification;
200     case BitstreamEntry::Record:
201       // The interesting case.
202       break;
203     }
204 
205     // Read a record.
206     Record.clear();
207     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
208     if (!MaybeBitCode)
209       return MaybeBitCode.takeError();
210     switch (MaybeBitCode.get()) {
211     default: // Default behavior: reject
212       return error("Invalid value");
213     case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N]
214       convertToString(Record, 0, ProducerIdentification);
215       break;
216     case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#]
217       unsigned epoch = (unsigned)Record[0];
218       if (epoch != bitc::BITCODE_CURRENT_EPOCH) {
219         return error(
220           Twine("Incompatible epoch: Bitcode '") + Twine(epoch) +
221           "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'");
222       }
223     }
224     }
225   }
226 }
227 
228 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) {
229   // We expect a number of well-defined blocks, though we don't necessarily
230   // need to understand them all.
231   while (true) {
232     if (Stream.AtEndOfStream())
233       return "";
234 
235     BitstreamEntry Entry;
236     if (Error E = Stream.advance().moveInto(Entry))
237       return std::move(E);
238 
239     switch (Entry.Kind) {
240     case BitstreamEntry::EndBlock:
241     case BitstreamEntry::Error:
242       return error("Malformed block");
243 
244     case BitstreamEntry::SubBlock:
245       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID)
246         return readIdentificationBlock(Stream);
247 
248       // Ignore other sub-blocks.
249       if (Error Err = Stream.SkipBlock())
250         return std::move(Err);
251       continue;
252     case BitstreamEntry::Record:
253       if (Error E = Stream.skipRecord(Entry.ID).takeError())
254         return std::move(E);
255       continue;
256     }
257   }
258 }
259 
260 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) {
261   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
262     return std::move(Err);
263 
264   SmallVector<uint64_t, 64> Record;
265   // Read all the records for this module.
266 
267   while (true) {
268     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
269     if (!MaybeEntry)
270       return MaybeEntry.takeError();
271     BitstreamEntry Entry = MaybeEntry.get();
272 
273     switch (Entry.Kind) {
274     case BitstreamEntry::SubBlock: // Handled for us already.
275     case BitstreamEntry::Error:
276       return error("Malformed block");
277     case BitstreamEntry::EndBlock:
278       return false;
279     case BitstreamEntry::Record:
280       // The interesting case.
281       break;
282     }
283 
284     // Read a record.
285     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
286     if (!MaybeRecord)
287       return MaybeRecord.takeError();
288     switch (MaybeRecord.get()) {
289     default:
290       break; // Default behavior, ignore unknown content.
291     case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
292       std::string S;
293       if (convertToString(Record, 0, S))
294         return error("Invalid section name record");
295       // Check for the i386 and other (x86_64, ARM) conventions
296       if (S.find("__DATA,__objc_catlist") != std::string::npos ||
297           S.find("__OBJC,__category") != std::string::npos)
298         return true;
299       break;
300     }
301     }
302     Record.clear();
303   }
304   llvm_unreachable("Exit infinite loop");
305 }
306 
307 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) {
308   // We expect a number of well-defined blocks, though we don't necessarily
309   // need to understand them all.
310   while (true) {
311     BitstreamEntry Entry;
312     if (Error E = Stream.advance().moveInto(Entry))
313       return std::move(E);
314 
315     switch (Entry.Kind) {
316     case BitstreamEntry::Error:
317       return error("Malformed block");
318     case BitstreamEntry::EndBlock:
319       return false;
320 
321     case BitstreamEntry::SubBlock:
322       if (Entry.ID == bitc::MODULE_BLOCK_ID)
323         return hasObjCCategoryInModule(Stream);
324 
325       // Ignore other sub-blocks.
326       if (Error Err = Stream.SkipBlock())
327         return std::move(Err);
328       continue;
329 
330     case BitstreamEntry::Record:
331       if (Error E = Stream.skipRecord(Entry.ID).takeError())
332         return std::move(E);
333       continue;
334     }
335   }
336 }
337 
338 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) {
339   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
340     return std::move(Err);
341 
342   SmallVector<uint64_t, 64> Record;
343 
344   std::string Triple;
345 
346   // Read all the records for this module.
347   while (true) {
348     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
349     if (!MaybeEntry)
350       return MaybeEntry.takeError();
351     BitstreamEntry Entry = MaybeEntry.get();
352 
353     switch (Entry.Kind) {
354     case BitstreamEntry::SubBlock: // Handled for us already.
355     case BitstreamEntry::Error:
356       return error("Malformed block");
357     case BitstreamEntry::EndBlock:
358       return Triple;
359     case BitstreamEntry::Record:
360       // The interesting case.
361       break;
362     }
363 
364     // Read a record.
365     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
366     if (!MaybeRecord)
367       return MaybeRecord.takeError();
368     switch (MaybeRecord.get()) {
369     default: break;  // Default behavior, ignore unknown content.
370     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
371       std::string S;
372       if (convertToString(Record, 0, S))
373         return error("Invalid triple record");
374       Triple = S;
375       break;
376     }
377     }
378     Record.clear();
379   }
380   llvm_unreachable("Exit infinite loop");
381 }
382 
383 static Expected<std::string> readTriple(BitstreamCursor &Stream) {
384   // We expect a number of well-defined blocks, though we don't necessarily
385   // need to understand them all.
386   while (true) {
387     Expected<BitstreamEntry> MaybeEntry = Stream.advance();
388     if (!MaybeEntry)
389       return MaybeEntry.takeError();
390     BitstreamEntry Entry = MaybeEntry.get();
391 
392     switch (Entry.Kind) {
393     case BitstreamEntry::Error:
394       return error("Malformed block");
395     case BitstreamEntry::EndBlock:
396       return "";
397 
398     case BitstreamEntry::SubBlock:
399       if (Entry.ID == bitc::MODULE_BLOCK_ID)
400         return readModuleTriple(Stream);
401 
402       // Ignore other sub-blocks.
403       if (Error Err = Stream.SkipBlock())
404         return std::move(Err);
405       continue;
406 
407     case BitstreamEntry::Record:
408       if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
409         continue;
410       else
411         return Skipped.takeError();
412     }
413   }
414 }
415 
416 namespace {
417 
418 class BitcodeReaderBase {
419 protected:
420   BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab)
421       : Stream(std::move(Stream)), Strtab(Strtab) {
422     this->Stream.setBlockInfo(&BlockInfo);
423   }
424 
425   BitstreamBlockInfo BlockInfo;
426   BitstreamCursor Stream;
427   StringRef Strtab;
428 
429   /// In version 2 of the bitcode we store names of global values and comdats in
430   /// a string table rather than in the VST.
431   bool UseStrtab = false;
432 
433   Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record);
434 
435   /// If this module uses a string table, pop the reference to the string table
436   /// and return the referenced string and the rest of the record. Otherwise
437   /// just return the record itself.
438   std::pair<StringRef, ArrayRef<uint64_t>>
439   readNameFromStrtab(ArrayRef<uint64_t> Record);
440 
441   Error readBlockInfo();
442 
443   // Contains an arbitrary and optional string identifying the bitcode producer
444   std::string ProducerIdentification;
445 
446   Error error(const Twine &Message);
447 };
448 
449 } // end anonymous namespace
450 
451 Error BitcodeReaderBase::error(const Twine &Message) {
452   std::string FullMsg = Message.str();
453   if (!ProducerIdentification.empty())
454     FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " +
455                LLVM_VERSION_STRING "')";
456   return ::error(FullMsg);
457 }
458 
459 Expected<unsigned>
460 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) {
461   if (Record.empty())
462     return error("Invalid version record");
463   unsigned ModuleVersion = Record[0];
464   if (ModuleVersion > 2)
465     return error("Invalid value");
466   UseStrtab = ModuleVersion >= 2;
467   return ModuleVersion;
468 }
469 
470 std::pair<StringRef, ArrayRef<uint64_t>>
471 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) {
472   if (!UseStrtab)
473     return {"", Record};
474   // Invalid reference. Let the caller complain about the record being empty.
475   if (Record[0] + Record[1] > Strtab.size())
476     return {"", {}};
477   return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)};
478 }
479 
480 namespace {
481 
482 /// This represents a constant expression or constant aggregate using a custom
483 /// structure internal to the bitcode reader. Later, this structure will be
484 /// expanded by materializeValue() either into a constant expression/aggregate,
485 /// or into an instruction sequence at the point of use. This allows us to
486 /// upgrade bitcode using constant expressions even if this kind of constant
487 /// expression is no longer supported.
488 class BitcodeConstant final : public Value,
489                               TrailingObjects<BitcodeConstant, unsigned> {
490   friend TrailingObjects;
491 
492   // Value subclass ID: Pick largest possible value to avoid any clashes.
493   static constexpr uint8_t SubclassID = 255;
494 
495 public:
496   // Opcodes used for non-expressions. This includes constant aggregates
497   // (struct, array, vector) that might need expansion, as well as non-leaf
498   // constants that don't need expansion (no_cfi, dso_local, blockaddress),
499   // but still go through BitcodeConstant to avoid different uselist orders
500   // between the two cases.
501   static constexpr uint8_t ConstantStructOpcode = 255;
502   static constexpr uint8_t ConstantArrayOpcode = 254;
503   static constexpr uint8_t ConstantVectorOpcode = 253;
504   static constexpr uint8_t NoCFIOpcode = 252;
505   static constexpr uint8_t DSOLocalEquivalentOpcode = 251;
506   static constexpr uint8_t BlockAddressOpcode = 250;
507   static constexpr uint8_t FirstSpecialOpcode = BlockAddressOpcode;
508 
509   // Separate struct to make passing different number of parameters to
510   // BitcodeConstant::create() more convenient.
511   struct ExtraInfo {
512     uint8_t Opcode;
513     uint8_t Flags;
514     unsigned Extra;
515     Type *SrcElemTy;
516 
517     ExtraInfo(uint8_t Opcode, uint8_t Flags = 0, unsigned Extra = 0,
518               Type *SrcElemTy = nullptr)
519         : Opcode(Opcode), Flags(Flags), Extra(Extra), SrcElemTy(SrcElemTy) {}
520   };
521 
522   uint8_t Opcode;
523   uint8_t Flags;
524   unsigned NumOperands;
525   unsigned Extra;  // GEP inrange index or blockaddress BB id.
526   Type *SrcElemTy; // GEP source element type.
527 
528 private:
529   BitcodeConstant(Type *Ty, const ExtraInfo &Info, ArrayRef<unsigned> OpIDs)
530       : Value(Ty, SubclassID), Opcode(Info.Opcode), Flags(Info.Flags),
531         NumOperands(OpIDs.size()), Extra(Info.Extra),
532         SrcElemTy(Info.SrcElemTy) {
533     std::uninitialized_copy(OpIDs.begin(), OpIDs.end(),
534                             getTrailingObjects<unsigned>());
535   }
536 
537   BitcodeConstant &operator=(const BitcodeConstant &) = delete;
538 
539 public:
540   static BitcodeConstant *create(BumpPtrAllocator &A, Type *Ty,
541                                  const ExtraInfo &Info,
542                                  ArrayRef<unsigned> OpIDs) {
543     void *Mem = A.Allocate(totalSizeToAlloc<unsigned>(OpIDs.size()),
544                            alignof(BitcodeConstant));
545     return new (Mem) BitcodeConstant(Ty, Info, OpIDs);
546   }
547 
548   static bool classof(const Value *V) { return V->getValueID() == SubclassID; }
549 
550   ArrayRef<unsigned> getOperandIDs() const {
551     return ArrayRef(getTrailingObjects<unsigned>(), NumOperands);
552   }
553 
554   std::optional<unsigned> getInRangeIndex() const {
555     assert(Opcode == Instruction::GetElementPtr);
556     if (Extra == (unsigned)-1)
557       return std::nullopt;
558     return Extra;
559   }
560 
561   const char *getOpcodeName() const {
562     return Instruction::getOpcodeName(Opcode);
563   }
564 };
565 
566 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer {
567   LLVMContext &Context;
568   Module *TheModule = nullptr;
569   // Next offset to start scanning for lazy parsing of function bodies.
570   uint64_t NextUnreadBit = 0;
571   // Last function offset found in the VST.
572   uint64_t LastFunctionBlockBit = 0;
573   bool SeenValueSymbolTable = false;
574   uint64_t VSTOffset = 0;
575 
576   std::vector<std::string> SectionTable;
577   std::vector<std::string> GCTable;
578 
579   std::vector<Type *> TypeList;
580   /// Track type IDs of contained types. Order is the same as the contained
581   /// types of a Type*. This is used during upgrades of typed pointer IR in
582   /// opaque pointer mode.
583   DenseMap<unsigned, SmallVector<unsigned, 1>> ContainedTypeIDs;
584   /// In some cases, we need to create a type ID for a type that was not
585   /// explicitly encoded in the bitcode, or we don't know about at the current
586   /// point. For example, a global may explicitly encode the value type ID, but
587   /// not have a type ID for the pointer to value type, for which we create a
588   /// virtual type ID instead. This map stores the new type ID that was created
589   /// for the given pair of Type and contained type ID.
590   DenseMap<std::pair<Type *, unsigned>, unsigned> VirtualTypeIDs;
591   DenseMap<Function *, unsigned> FunctionTypeIDs;
592   /// Allocator for BitcodeConstants. This should come before ValueList,
593   /// because the ValueList might hold ValueHandles to these constants, so
594   /// ValueList must be destroyed before Alloc.
595   BumpPtrAllocator Alloc;
596   BitcodeReaderValueList ValueList;
597   std::optional<MetadataLoader> MDLoader;
598   std::vector<Comdat *> ComdatList;
599   DenseSet<GlobalObject *> ImplicitComdatObjects;
600   SmallVector<Instruction *, 64> InstructionList;
601 
602   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits;
603   std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInits;
604 
605   struct FunctionOperandInfo {
606     Function *F;
607     unsigned PersonalityFn;
608     unsigned Prefix;
609     unsigned Prologue;
610   };
611   std::vector<FunctionOperandInfo> FunctionOperands;
612 
613   /// The set of attributes by index.  Index zero in the file is for null, and
614   /// is thus not represented here.  As such all indices are off by one.
615   std::vector<AttributeList> MAttributes;
616 
617   /// The set of attribute groups.
618   std::map<unsigned, AttributeList> MAttributeGroups;
619 
620   /// While parsing a function body, this is a list of the basic blocks for the
621   /// function.
622   std::vector<BasicBlock*> FunctionBBs;
623 
624   // When reading the module header, this list is populated with functions that
625   // have bodies later in the file.
626   std::vector<Function*> FunctionsWithBodies;
627 
628   // When intrinsic functions are encountered which require upgrading they are
629   // stored here with their replacement function.
630   using UpdatedIntrinsicMap = DenseMap<Function *, Function *>;
631   UpdatedIntrinsicMap UpgradedIntrinsics;
632 
633   // Several operations happen after the module header has been read, but
634   // before function bodies are processed. This keeps track of whether
635   // we've done this yet.
636   bool SeenFirstFunctionBody = false;
637 
638   /// When function bodies are initially scanned, this map contains info about
639   /// where to find deferred function body in the stream.
640   DenseMap<Function*, uint64_t> DeferredFunctionInfo;
641 
642   /// When Metadata block is initially scanned when parsing the module, we may
643   /// choose to defer parsing of the metadata. This vector contains info about
644   /// which Metadata blocks are deferred.
645   std::vector<uint64_t> DeferredMetadataInfo;
646 
647   /// These are basic blocks forward-referenced by block addresses.  They are
648   /// inserted lazily into functions when they're loaded.  The basic block ID is
649   /// its index into the vector.
650   DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs;
651   std::deque<Function *> BasicBlockFwdRefQueue;
652 
653   /// These are Functions that contain BlockAddresses which refer a different
654   /// Function. When parsing the different Function, queue Functions that refer
655   /// to the different Function. Those Functions must be materialized in order
656   /// to resolve their BlockAddress constants before the different Function
657   /// gets moved into another Module.
658   std::vector<Function *> BackwardRefFunctions;
659 
660   /// Indicates that we are using a new encoding for instruction operands where
661   /// most operands in the current FUNCTION_BLOCK are encoded relative to the
662   /// instruction number, for a more compact encoding.  Some instruction
663   /// operands are not relative to the instruction ID: basic block numbers, and
664   /// types. Once the old style function blocks have been phased out, we would
665   /// not need this flag.
666   bool UseRelativeIDs = false;
667 
668   /// True if all functions will be materialized, negating the need to process
669   /// (e.g.) blockaddress forward references.
670   bool WillMaterializeAllForwardRefs = false;
671 
672   bool StripDebugInfo = false;
673   TBAAVerifier TBAAVerifyHelper;
674 
675   std::vector<std::string> BundleTags;
676   SmallVector<SyncScope::ID, 8> SSIDs;
677 
678   std::optional<ValueTypeCallbackTy> ValueTypeCallback;
679 
680 public:
681   BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
682                 StringRef ProducerIdentification, LLVMContext &Context);
683 
684   Error materializeForwardReferencedFunctions();
685 
686   Error materialize(GlobalValue *GV) override;
687   Error materializeModule() override;
688   std::vector<StructType *> getIdentifiedStructTypes() const override;
689 
690   /// Main interface to parsing a bitcode buffer.
691   /// \returns true if an error occurred.
692   Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
693                          bool IsImporting, ParserCallbacks Callbacks = {});
694 
695   static uint64_t decodeSignRotatedValue(uint64_t V);
696 
697   /// Materialize any deferred Metadata block.
698   Error materializeMetadata() override;
699 
700   void setStripDebugInfo() override;
701 
702 private:
703   std::vector<StructType *> IdentifiedStructTypes;
704   StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
705   StructType *createIdentifiedStructType(LLVMContext &Context);
706 
707   static constexpr unsigned InvalidTypeID = ~0u;
708 
709   Type *getTypeByID(unsigned ID);
710   Type *getPtrElementTypeByID(unsigned ID);
711   unsigned getContainedTypeID(unsigned ID, unsigned Idx = 0);
712   unsigned getVirtualTypeID(Type *Ty, ArrayRef<unsigned> ContainedTypeIDs = {});
713 
714   void callValueTypeCallback(Value *F, unsigned TypeID);
715   Expected<Value *> materializeValue(unsigned ValID, BasicBlock *InsertBB);
716   Expected<Constant *> getValueForInitializer(unsigned ID);
717 
718   Value *getFnValueByID(unsigned ID, Type *Ty, unsigned TyID,
719                         BasicBlock *ConstExprInsertBB) {
720     if (Ty && Ty->isMetadataTy())
721       return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
722     return ValueList.getValueFwdRef(ID, Ty, TyID, ConstExprInsertBB);
723   }
724 
725   Metadata *getFnMetadataByID(unsigned ID) {
726     return MDLoader->getMetadataFwdRefOrLoad(ID);
727   }
728 
729   BasicBlock *getBasicBlock(unsigned ID) const {
730     if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
731     return FunctionBBs[ID];
732   }
733 
734   AttributeList getAttributes(unsigned i) const {
735     if (i-1 < MAttributes.size())
736       return MAttributes[i-1];
737     return AttributeList();
738   }
739 
740   /// Read a value/type pair out of the specified record from slot 'Slot'.
741   /// Increment Slot past the number of slots used in the record. Return true on
742   /// failure.
743   bool getValueTypePair(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
744                         unsigned InstNum, Value *&ResVal, unsigned &TypeID,
745                         BasicBlock *ConstExprInsertBB) {
746     if (Slot == Record.size()) return true;
747     unsigned ValNo = (unsigned)Record[Slot++];
748     // Adjust the ValNo, if it was encoded relative to the InstNum.
749     if (UseRelativeIDs)
750       ValNo = InstNum - ValNo;
751     if (ValNo < InstNum) {
752       // If this is not a forward reference, just return the value we already
753       // have.
754       TypeID = ValueList.getTypeID(ValNo);
755       ResVal = getFnValueByID(ValNo, nullptr, TypeID, ConstExprInsertBB);
756       assert((!ResVal || ResVal->getType() == getTypeByID(TypeID)) &&
757              "Incorrect type ID stored for value");
758       return ResVal == nullptr;
759     }
760     if (Slot == Record.size())
761       return true;
762 
763     TypeID = (unsigned)Record[Slot++];
764     ResVal = getFnValueByID(ValNo, getTypeByID(TypeID), TypeID,
765                             ConstExprInsertBB);
766     return ResVal == nullptr;
767   }
768 
769   /// Read a value out of the specified record from slot 'Slot'. Increment Slot
770   /// past the number of slots used by the value in the record. Return true if
771   /// there is an error.
772   bool popValue(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
773                 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal,
774                 BasicBlock *ConstExprInsertBB) {
775     if (getValue(Record, Slot, InstNum, Ty, TyID, ResVal, ConstExprInsertBB))
776       return true;
777     // All values currently take a single record slot.
778     ++Slot;
779     return false;
780   }
781 
782   /// Like popValue, but does not increment the Slot number.
783   bool getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
784                 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal,
785                 BasicBlock *ConstExprInsertBB) {
786     ResVal = getValue(Record, Slot, InstNum, Ty, TyID, ConstExprInsertBB);
787     return ResVal == nullptr;
788   }
789 
790   /// Version of getValue that returns ResVal directly, or 0 if there is an
791   /// error.
792   Value *getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
793                   unsigned InstNum, Type *Ty, unsigned TyID,
794                   BasicBlock *ConstExprInsertBB) {
795     if (Slot == Record.size()) return nullptr;
796     unsigned ValNo = (unsigned)Record[Slot];
797     // Adjust the ValNo, if it was encoded relative to the InstNum.
798     if (UseRelativeIDs)
799       ValNo = InstNum - ValNo;
800     return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB);
801   }
802 
803   /// Like getValue, but decodes signed VBRs.
804   Value *getValueSigned(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
805                         unsigned InstNum, Type *Ty, unsigned TyID,
806                         BasicBlock *ConstExprInsertBB) {
807     if (Slot == Record.size()) return nullptr;
808     unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
809     // Adjust the ValNo, if it was encoded relative to the InstNum.
810     if (UseRelativeIDs)
811       ValNo = InstNum - ValNo;
812     return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB);
813   }
814 
815   /// Upgrades old-style typeless byval/sret/inalloca attributes by adding the
816   /// corresponding argument's pointee type. Also upgrades intrinsics that now
817   /// require an elementtype attribute.
818   Error propagateAttributeTypes(CallBase *CB, ArrayRef<unsigned> ArgsTys);
819 
820   /// Converts alignment exponent (i.e. power of two (or zero)) to the
821   /// corresponding alignment to use. If alignment is too large, returns
822   /// a corresponding error code.
823   Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment);
824   Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
825   Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false,
826                     ParserCallbacks Callbacks = {});
827 
828   Error parseComdatRecord(ArrayRef<uint64_t> Record);
829   Error parseGlobalVarRecord(ArrayRef<uint64_t> Record);
830   Error parseFunctionRecord(ArrayRef<uint64_t> Record);
831   Error parseGlobalIndirectSymbolRecord(unsigned BitCode,
832                                         ArrayRef<uint64_t> Record);
833 
834   Error parseAttributeBlock();
835   Error parseAttributeGroupBlock();
836   Error parseTypeTable();
837   Error parseTypeTableBody();
838   Error parseOperandBundleTags();
839   Error parseSyncScopeNames();
840 
841   Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record,
842                                 unsigned NameIndex, Triple &TT);
843   void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F,
844                                ArrayRef<uint64_t> Record);
845   Error parseValueSymbolTable(uint64_t Offset = 0);
846   Error parseGlobalValueSymbolTable();
847   Error parseConstants();
848   Error rememberAndSkipFunctionBodies();
849   Error rememberAndSkipFunctionBody();
850   /// Save the positions of the Metadata blocks and skip parsing the blocks.
851   Error rememberAndSkipMetadata();
852   Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType);
853   Error parseFunctionBody(Function *F);
854   Error globalCleanup();
855   Error resolveGlobalAndIndirectSymbolInits();
856   Error parseUseLists();
857   Error findFunctionInStream(
858       Function *F,
859       DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
860 
861   SyncScope::ID getDecodedSyncScopeID(unsigned Val);
862 };
863 
864 /// Class to manage reading and parsing function summary index bitcode
865 /// files/sections.
866 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase {
867   /// The module index built during parsing.
868   ModuleSummaryIndex &TheIndex;
869 
870   /// Indicates whether we have encountered a global value summary section
871   /// yet during parsing.
872   bool SeenGlobalValSummary = false;
873 
874   /// Indicates whether we have already parsed the VST, used for error checking.
875   bool SeenValueSymbolTable = false;
876 
877   /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record.
878   /// Used to enable on-demand parsing of the VST.
879   uint64_t VSTOffset = 0;
880 
881   // Map to save ValueId to ValueInfo association that was recorded in the
882   // ValueSymbolTable. It is used after the VST is parsed to convert
883   // call graph edges read from the function summary from referencing
884   // callees by their ValueId to using the ValueInfo instead, which is how
885   // they are recorded in the summary index being built.
886   // We save a GUID which refers to the same global as the ValueInfo, but
887   // ignoring the linkage, i.e. for values other than local linkage they are
888   // identical (this is the second tuple member).
889   // The third tuple member is the real GUID of the ValueInfo.
890   DenseMap<unsigned,
891            std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID>>
892       ValueIdToValueInfoMap;
893 
894   /// Map populated during module path string table parsing, from the
895   /// module ID to a string reference owned by the index's module
896   /// path string table, used to correlate with combined index
897   /// summary records.
898   DenseMap<uint64_t, StringRef> ModuleIdMap;
899 
900   /// Original source file name recorded in a bitcode record.
901   std::string SourceFileName;
902 
903   /// The string identifier given to this module by the client, normally the
904   /// path to the bitcode file.
905   StringRef ModulePath;
906 
907   /// Callback to ask whether a symbol is the prevailing copy when invoked
908   /// during combined index building.
909   std::function<bool(GlobalValue::GUID)> IsPrevailing;
910 
911   /// Saves the stack ids from the STACK_IDS record to consult when adding stack
912   /// ids from the lists in the callsite and alloc entries to the index.
913   std::vector<uint64_t> StackIds;
914 
915 public:
916   ModuleSummaryIndexBitcodeReader(
917       BitstreamCursor Stream, StringRef Strtab, ModuleSummaryIndex &TheIndex,
918       StringRef ModulePath,
919       std::function<bool(GlobalValue::GUID)> IsPrevailing = nullptr);
920 
921   Error parseModule();
922 
923 private:
924   void setValueGUID(uint64_t ValueID, StringRef ValueName,
925                     GlobalValue::LinkageTypes Linkage,
926                     StringRef SourceFileName);
927   Error parseValueSymbolTable(
928       uint64_t Offset,
929       DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap);
930   std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record);
931   std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record,
932                                                     bool IsOldProfileFormat,
933                                                     bool HasProfile,
934                                                     bool HasRelBF);
935   Error parseEntireSummary(unsigned ID);
936   Error parseModuleStringTable();
937   void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record);
938   void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot,
939                                        TypeIdCompatibleVtableInfo &TypeId);
940   std::vector<FunctionSummary::ParamAccess>
941   parseParamAccesses(ArrayRef<uint64_t> Record);
942 
943   template <bool AllowNullValueInfo = false>
944   std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID>
945   getValueInfoFromValueId(unsigned ValueId);
946 
947   void addThisModule();
948   ModuleSummaryIndex::ModuleInfo *getThisModule();
949 };
950 
951 } // end anonymous namespace
952 
953 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx,
954                                                     Error Err) {
955   if (Err) {
956     std::error_code EC;
957     handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) {
958       EC = EIB.convertToErrorCode();
959       Ctx.emitError(EIB.message());
960     });
961     return EC;
962   }
963   return std::error_code();
964 }
965 
966 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
967                              StringRef ProducerIdentification,
968                              LLVMContext &Context)
969     : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context),
970       ValueList(this->Stream.SizeInBytes(),
971                 [this](unsigned ValID, BasicBlock *InsertBB) {
972                   return materializeValue(ValID, InsertBB);
973                 }) {
974   this->ProducerIdentification = std::string(ProducerIdentification);
975 }
976 
977 Error BitcodeReader::materializeForwardReferencedFunctions() {
978   if (WillMaterializeAllForwardRefs)
979     return Error::success();
980 
981   // Prevent recursion.
982   WillMaterializeAllForwardRefs = true;
983 
984   while (!BasicBlockFwdRefQueue.empty()) {
985     Function *F = BasicBlockFwdRefQueue.front();
986     BasicBlockFwdRefQueue.pop_front();
987     assert(F && "Expected valid function");
988     if (!BasicBlockFwdRefs.count(F))
989       // Already materialized.
990       continue;
991 
992     // Check for a function that isn't materializable to prevent an infinite
993     // loop.  When parsing a blockaddress stored in a global variable, there
994     // isn't a trivial way to check if a function will have a body without a
995     // linear search through FunctionsWithBodies, so just check it here.
996     if (!F->isMaterializable())
997       return error("Never resolved function from blockaddress");
998 
999     // Try to materialize F.
1000     if (Error Err = materialize(F))
1001       return Err;
1002   }
1003   assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
1004 
1005   for (Function *F : BackwardRefFunctions)
1006     if (Error Err = materialize(F))
1007       return Err;
1008   BackwardRefFunctions.clear();
1009 
1010   // Reset state.
1011   WillMaterializeAllForwardRefs = false;
1012   return Error::success();
1013 }
1014 
1015 //===----------------------------------------------------------------------===//
1016 //  Helper functions to implement forward reference resolution, etc.
1017 //===----------------------------------------------------------------------===//
1018 
1019 static bool hasImplicitComdat(size_t Val) {
1020   switch (Val) {
1021   default:
1022     return false;
1023   case 1:  // Old WeakAnyLinkage
1024   case 4:  // Old LinkOnceAnyLinkage
1025   case 10: // Old WeakODRLinkage
1026   case 11: // Old LinkOnceODRLinkage
1027     return true;
1028   }
1029 }
1030 
1031 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
1032   switch (Val) {
1033   default: // Map unknown/new linkages to external
1034   case 0:
1035     return GlobalValue::ExternalLinkage;
1036   case 2:
1037     return GlobalValue::AppendingLinkage;
1038   case 3:
1039     return GlobalValue::InternalLinkage;
1040   case 5:
1041     return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
1042   case 6:
1043     return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
1044   case 7:
1045     return GlobalValue::ExternalWeakLinkage;
1046   case 8:
1047     return GlobalValue::CommonLinkage;
1048   case 9:
1049     return GlobalValue::PrivateLinkage;
1050   case 12:
1051     return GlobalValue::AvailableExternallyLinkage;
1052   case 13:
1053     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
1054   case 14:
1055     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
1056   case 15:
1057     return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
1058   case 1: // Old value with implicit comdat.
1059   case 16:
1060     return GlobalValue::WeakAnyLinkage;
1061   case 10: // Old value with implicit comdat.
1062   case 17:
1063     return GlobalValue::WeakODRLinkage;
1064   case 4: // Old value with implicit comdat.
1065   case 18:
1066     return GlobalValue::LinkOnceAnyLinkage;
1067   case 11: // Old value with implicit comdat.
1068   case 19:
1069     return GlobalValue::LinkOnceODRLinkage;
1070   }
1071 }
1072 
1073 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) {
1074   FunctionSummary::FFlags Flags;
1075   Flags.ReadNone = RawFlags & 0x1;
1076   Flags.ReadOnly = (RawFlags >> 1) & 0x1;
1077   Flags.NoRecurse = (RawFlags >> 2) & 0x1;
1078   Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1;
1079   Flags.NoInline = (RawFlags >> 4) & 0x1;
1080   Flags.AlwaysInline = (RawFlags >> 5) & 0x1;
1081   Flags.NoUnwind = (RawFlags >> 6) & 0x1;
1082   Flags.MayThrow = (RawFlags >> 7) & 0x1;
1083   Flags.HasUnknownCall = (RawFlags >> 8) & 0x1;
1084   Flags.MustBeUnreachable = (RawFlags >> 9) & 0x1;
1085   return Flags;
1086 }
1087 
1088 // Decode the flags for GlobalValue in the summary. The bits for each attribute:
1089 //
1090 // linkage: [0,4), notEligibleToImport: 4, live: 5, local: 6, canAutoHide: 7,
1091 // visibility: [8, 10).
1092 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags,
1093                                                             uint64_t Version) {
1094   // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage
1095   // like getDecodedLinkage() above. Any future change to the linkage enum and
1096   // to getDecodedLinkage() will need to be taken into account here as above.
1097   auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits
1098   auto Visibility = GlobalValue::VisibilityTypes((RawFlags >> 8) & 3); // 2 bits
1099   RawFlags = RawFlags >> 4;
1100   bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3;
1101   // The Live flag wasn't introduced until version 3. For dead stripping
1102   // to work correctly on earlier versions, we must conservatively treat all
1103   // values as live.
1104   bool Live = (RawFlags & 0x2) || Version < 3;
1105   bool Local = (RawFlags & 0x4);
1106   bool AutoHide = (RawFlags & 0x8);
1107 
1108   return GlobalValueSummary::GVFlags(Linkage, Visibility, NotEligibleToImport,
1109                                      Live, Local, AutoHide);
1110 }
1111 
1112 // Decode the flags for GlobalVariable in the summary
1113 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) {
1114   return GlobalVarSummary::GVarFlags(
1115       (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false,
1116       (RawFlags & 0x4) ? true : false,
1117       (GlobalObject::VCallVisibility)(RawFlags >> 3));
1118 }
1119 
1120 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) {
1121   switch (Val) {
1122   default: // Map unknown visibilities to default.
1123   case 0: return GlobalValue::DefaultVisibility;
1124   case 1: return GlobalValue::HiddenVisibility;
1125   case 2: return GlobalValue::ProtectedVisibility;
1126   }
1127 }
1128 
1129 static GlobalValue::DLLStorageClassTypes
1130 getDecodedDLLStorageClass(unsigned Val) {
1131   switch (Val) {
1132   default: // Map unknown values to default.
1133   case 0: return GlobalValue::DefaultStorageClass;
1134   case 1: return GlobalValue::DLLImportStorageClass;
1135   case 2: return GlobalValue::DLLExportStorageClass;
1136   }
1137 }
1138 
1139 static bool getDecodedDSOLocal(unsigned Val) {
1140   switch(Val) {
1141   default: // Map unknown values to preemptable.
1142   case 0:  return false;
1143   case 1:  return true;
1144   }
1145 }
1146 
1147 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) {
1148   switch (Val) {
1149     case 0: return GlobalVariable::NotThreadLocal;
1150     default: // Map unknown non-zero value to general dynamic.
1151     case 1: return GlobalVariable::GeneralDynamicTLSModel;
1152     case 2: return GlobalVariable::LocalDynamicTLSModel;
1153     case 3: return GlobalVariable::InitialExecTLSModel;
1154     case 4: return GlobalVariable::LocalExecTLSModel;
1155   }
1156 }
1157 
1158 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) {
1159   switch (Val) {
1160     default: // Map unknown to UnnamedAddr::None.
1161     case 0: return GlobalVariable::UnnamedAddr::None;
1162     case 1: return GlobalVariable::UnnamedAddr::Global;
1163     case 2: return GlobalVariable::UnnamedAddr::Local;
1164   }
1165 }
1166 
1167 static int getDecodedCastOpcode(unsigned Val) {
1168   switch (Val) {
1169   default: return -1;
1170   case bitc::CAST_TRUNC   : return Instruction::Trunc;
1171   case bitc::CAST_ZEXT    : return Instruction::ZExt;
1172   case bitc::CAST_SEXT    : return Instruction::SExt;
1173   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
1174   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
1175   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
1176   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
1177   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
1178   case bitc::CAST_FPEXT   : return Instruction::FPExt;
1179   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
1180   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
1181   case bitc::CAST_BITCAST : return Instruction::BitCast;
1182   case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
1183   }
1184 }
1185 
1186 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) {
1187   bool IsFP = Ty->isFPOrFPVectorTy();
1188   // UnOps are only valid for int/fp or vector of int/fp types
1189   if (!IsFP && !Ty->isIntOrIntVectorTy())
1190     return -1;
1191 
1192   switch (Val) {
1193   default:
1194     return -1;
1195   case bitc::UNOP_FNEG:
1196     return IsFP ? Instruction::FNeg : -1;
1197   }
1198 }
1199 
1200 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
1201   bool IsFP = Ty->isFPOrFPVectorTy();
1202   // BinOps are only valid for int/fp or vector of int/fp types
1203   if (!IsFP && !Ty->isIntOrIntVectorTy())
1204     return -1;
1205 
1206   switch (Val) {
1207   default:
1208     return -1;
1209   case bitc::BINOP_ADD:
1210     return IsFP ? Instruction::FAdd : Instruction::Add;
1211   case bitc::BINOP_SUB:
1212     return IsFP ? Instruction::FSub : Instruction::Sub;
1213   case bitc::BINOP_MUL:
1214     return IsFP ? Instruction::FMul : Instruction::Mul;
1215   case bitc::BINOP_UDIV:
1216     return IsFP ? -1 : Instruction::UDiv;
1217   case bitc::BINOP_SDIV:
1218     return IsFP ? Instruction::FDiv : Instruction::SDiv;
1219   case bitc::BINOP_UREM:
1220     return IsFP ? -1 : Instruction::URem;
1221   case bitc::BINOP_SREM:
1222     return IsFP ? Instruction::FRem : Instruction::SRem;
1223   case bitc::BINOP_SHL:
1224     return IsFP ? -1 : Instruction::Shl;
1225   case bitc::BINOP_LSHR:
1226     return IsFP ? -1 : Instruction::LShr;
1227   case bitc::BINOP_ASHR:
1228     return IsFP ? -1 : Instruction::AShr;
1229   case bitc::BINOP_AND:
1230     return IsFP ? -1 : Instruction::And;
1231   case bitc::BINOP_OR:
1232     return IsFP ? -1 : Instruction::Or;
1233   case bitc::BINOP_XOR:
1234     return IsFP ? -1 : Instruction::Xor;
1235   }
1236 }
1237 
1238 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) {
1239   switch (Val) {
1240   default: return AtomicRMWInst::BAD_BINOP;
1241   case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
1242   case bitc::RMW_ADD: return AtomicRMWInst::Add;
1243   case bitc::RMW_SUB: return AtomicRMWInst::Sub;
1244   case bitc::RMW_AND: return AtomicRMWInst::And;
1245   case bitc::RMW_NAND: return AtomicRMWInst::Nand;
1246   case bitc::RMW_OR: return AtomicRMWInst::Or;
1247   case bitc::RMW_XOR: return AtomicRMWInst::Xor;
1248   case bitc::RMW_MAX: return AtomicRMWInst::Max;
1249   case bitc::RMW_MIN: return AtomicRMWInst::Min;
1250   case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
1251   case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
1252   case bitc::RMW_FADD: return AtomicRMWInst::FAdd;
1253   case bitc::RMW_FSUB: return AtomicRMWInst::FSub;
1254   case bitc::RMW_FMAX: return AtomicRMWInst::FMax;
1255   case bitc::RMW_FMIN: return AtomicRMWInst::FMin;
1256   case bitc::RMW_UINC_WRAP:
1257     return AtomicRMWInst::UIncWrap;
1258   case bitc::RMW_UDEC_WRAP:
1259     return AtomicRMWInst::UDecWrap;
1260   }
1261 }
1262 
1263 static AtomicOrdering getDecodedOrdering(unsigned Val) {
1264   switch (Val) {
1265   case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic;
1266   case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered;
1267   case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic;
1268   case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire;
1269   case bitc::ORDERING_RELEASE: return AtomicOrdering::Release;
1270   case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease;
1271   default: // Map unknown orderings to sequentially-consistent.
1272   case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent;
1273   }
1274 }
1275 
1276 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
1277   switch (Val) {
1278   default: // Map unknown selection kinds to any.
1279   case bitc::COMDAT_SELECTION_KIND_ANY:
1280     return Comdat::Any;
1281   case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
1282     return Comdat::ExactMatch;
1283   case bitc::COMDAT_SELECTION_KIND_LARGEST:
1284     return Comdat::Largest;
1285   case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
1286     return Comdat::NoDeduplicate;
1287   case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
1288     return Comdat::SameSize;
1289   }
1290 }
1291 
1292 static FastMathFlags getDecodedFastMathFlags(unsigned Val) {
1293   FastMathFlags FMF;
1294   if (0 != (Val & bitc::UnsafeAlgebra))
1295     FMF.setFast();
1296   if (0 != (Val & bitc::AllowReassoc))
1297     FMF.setAllowReassoc();
1298   if (0 != (Val & bitc::NoNaNs))
1299     FMF.setNoNaNs();
1300   if (0 != (Val & bitc::NoInfs))
1301     FMF.setNoInfs();
1302   if (0 != (Val & bitc::NoSignedZeros))
1303     FMF.setNoSignedZeros();
1304   if (0 != (Val & bitc::AllowReciprocal))
1305     FMF.setAllowReciprocal();
1306   if (0 != (Val & bitc::AllowContract))
1307     FMF.setAllowContract(true);
1308   if (0 != (Val & bitc::ApproxFunc))
1309     FMF.setApproxFunc();
1310   return FMF;
1311 }
1312 
1313 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) {
1314   // A GlobalValue with local linkage cannot have a DLL storage class.
1315   if (GV->hasLocalLinkage())
1316     return;
1317   switch (Val) {
1318   case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
1319   case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
1320   }
1321 }
1322 
1323 Type *BitcodeReader::getTypeByID(unsigned ID) {
1324   // The type table size is always specified correctly.
1325   if (ID >= TypeList.size())
1326     return nullptr;
1327 
1328   if (Type *Ty = TypeList[ID])
1329     return Ty;
1330 
1331   // If we have a forward reference, the only possible case is when it is to a
1332   // named struct.  Just create a placeholder for now.
1333   return TypeList[ID] = createIdentifiedStructType(Context);
1334 }
1335 
1336 unsigned BitcodeReader::getContainedTypeID(unsigned ID, unsigned Idx) {
1337   auto It = ContainedTypeIDs.find(ID);
1338   if (It == ContainedTypeIDs.end())
1339     return InvalidTypeID;
1340 
1341   if (Idx >= It->second.size())
1342     return InvalidTypeID;
1343 
1344   return It->second[Idx];
1345 }
1346 
1347 Type *BitcodeReader::getPtrElementTypeByID(unsigned ID) {
1348   if (ID >= TypeList.size())
1349     return nullptr;
1350 
1351   Type *Ty = TypeList[ID];
1352   if (!Ty->isPointerTy())
1353     return nullptr;
1354 
1355   return getTypeByID(getContainedTypeID(ID, 0));
1356 }
1357 
1358 unsigned BitcodeReader::getVirtualTypeID(Type *Ty,
1359                                          ArrayRef<unsigned> ChildTypeIDs) {
1360   unsigned ChildTypeID = ChildTypeIDs.empty() ? InvalidTypeID : ChildTypeIDs[0];
1361   auto CacheKey = std::make_pair(Ty, ChildTypeID);
1362   auto It = VirtualTypeIDs.find(CacheKey);
1363   if (It != VirtualTypeIDs.end()) {
1364     // The cmpxchg return value is the only place we need more than one
1365     // contained type ID, however the second one will always be the same (i1),
1366     // so we don't need to include it in the cache key. This asserts that the
1367     // contained types are indeed as expected and there are no collisions.
1368     assert((ChildTypeIDs.empty() ||
1369             ContainedTypeIDs[It->second] == ChildTypeIDs) &&
1370            "Incorrect cached contained type IDs");
1371     return It->second;
1372   }
1373 
1374   unsigned TypeID = TypeList.size();
1375   TypeList.push_back(Ty);
1376   if (!ChildTypeIDs.empty())
1377     append_range(ContainedTypeIDs[TypeID], ChildTypeIDs);
1378   VirtualTypeIDs.insert({CacheKey, TypeID});
1379   return TypeID;
1380 }
1381 
1382 static bool isConstExprSupported(const BitcodeConstant *BC) {
1383   uint8_t Opcode = BC->Opcode;
1384 
1385   // These are not real constant expressions, always consider them supported.
1386   if (Opcode >= BitcodeConstant::FirstSpecialOpcode)
1387     return true;
1388 
1389   // If -expand-constant-exprs is set, we want to consider all expressions
1390   // as unsupported.
1391   if (ExpandConstantExprs)
1392     return false;
1393 
1394   if (Instruction::isBinaryOp(Opcode))
1395     return ConstantExpr::isSupportedBinOp(Opcode);
1396 
1397   if (Opcode == Instruction::GetElementPtr)
1398     return ConstantExpr::isSupportedGetElementPtr(BC->SrcElemTy);
1399 
1400   switch (Opcode) {
1401   case Instruction::FNeg:
1402   case Instruction::Select:
1403     return false;
1404   default:
1405     return true;
1406   }
1407 }
1408 
1409 Expected<Value *> BitcodeReader::materializeValue(unsigned StartValID,
1410                                                   BasicBlock *InsertBB) {
1411   // Quickly handle the case where there is no BitcodeConstant to resolve.
1412   if (StartValID < ValueList.size() && ValueList[StartValID] &&
1413       !isa<BitcodeConstant>(ValueList[StartValID]))
1414     return ValueList[StartValID];
1415 
1416   SmallDenseMap<unsigned, Value *> MaterializedValues;
1417   SmallVector<unsigned> Worklist;
1418   Worklist.push_back(StartValID);
1419   while (!Worklist.empty()) {
1420     unsigned ValID = Worklist.back();
1421     if (MaterializedValues.count(ValID)) {
1422       // Duplicate expression that was already handled.
1423       Worklist.pop_back();
1424       continue;
1425     }
1426 
1427     if (ValID >= ValueList.size() || !ValueList[ValID])
1428       return error("Invalid value ID");
1429 
1430     Value *V = ValueList[ValID];
1431     auto *BC = dyn_cast<BitcodeConstant>(V);
1432     if (!BC) {
1433       MaterializedValues.insert({ValID, V});
1434       Worklist.pop_back();
1435       continue;
1436     }
1437 
1438     // Iterate in reverse, so values will get popped from the worklist in
1439     // expected order.
1440     SmallVector<Value *> Ops;
1441     for (unsigned OpID : reverse(BC->getOperandIDs())) {
1442       auto It = MaterializedValues.find(OpID);
1443       if (It != MaterializedValues.end())
1444         Ops.push_back(It->second);
1445       else
1446         Worklist.push_back(OpID);
1447     }
1448 
1449     // Some expressions have not been resolved yet, handle them first and then
1450     // revisit this one.
1451     if (Ops.size() != BC->getOperandIDs().size())
1452       continue;
1453     std::reverse(Ops.begin(), Ops.end());
1454 
1455     SmallVector<Constant *> ConstOps;
1456     for (Value *Op : Ops)
1457       if (auto *C = dyn_cast<Constant>(Op))
1458         ConstOps.push_back(C);
1459 
1460     // Materialize as constant expression if possible.
1461     if (isConstExprSupported(BC) && ConstOps.size() == Ops.size()) {
1462       Constant *C;
1463       if (Instruction::isCast(BC->Opcode)) {
1464         C = UpgradeBitCastExpr(BC->Opcode, ConstOps[0], BC->getType());
1465         if (!C)
1466           C = ConstantExpr::getCast(BC->Opcode, ConstOps[0], BC->getType());
1467       } else if (Instruction::isBinaryOp(BC->Opcode)) {
1468         C = ConstantExpr::get(BC->Opcode, ConstOps[0], ConstOps[1], BC->Flags);
1469       } else {
1470         switch (BC->Opcode) {
1471         case BitcodeConstant::NoCFIOpcode: {
1472           auto *GV = dyn_cast<GlobalValue>(ConstOps[0]);
1473           if (!GV)
1474             return error("no_cfi operand must be GlobalValue");
1475           C = NoCFIValue::get(GV);
1476           break;
1477         }
1478         case BitcodeConstant::DSOLocalEquivalentOpcode: {
1479           auto *GV = dyn_cast<GlobalValue>(ConstOps[0]);
1480           if (!GV)
1481             return error("dso_local operand must be GlobalValue");
1482           C = DSOLocalEquivalent::get(GV);
1483           break;
1484         }
1485         case BitcodeConstant::BlockAddressOpcode: {
1486           Function *Fn = dyn_cast<Function>(ConstOps[0]);
1487           if (!Fn)
1488             return error("blockaddress operand must be a function");
1489 
1490           // If the function is already parsed we can insert the block address
1491           // right away.
1492           BasicBlock *BB;
1493           unsigned BBID = BC->Extra;
1494           if (!BBID)
1495             // Invalid reference to entry block.
1496             return error("Invalid ID");
1497           if (!Fn->empty()) {
1498             Function::iterator BBI = Fn->begin(), BBE = Fn->end();
1499             for (size_t I = 0, E = BBID; I != E; ++I) {
1500               if (BBI == BBE)
1501                 return error("Invalid ID");
1502               ++BBI;
1503             }
1504             BB = &*BBI;
1505           } else {
1506             // Otherwise insert a placeholder and remember it so it can be
1507             // inserted when the function is parsed.
1508             auto &FwdBBs = BasicBlockFwdRefs[Fn];
1509             if (FwdBBs.empty())
1510               BasicBlockFwdRefQueue.push_back(Fn);
1511             if (FwdBBs.size() < BBID + 1)
1512               FwdBBs.resize(BBID + 1);
1513             if (!FwdBBs[BBID])
1514               FwdBBs[BBID] = BasicBlock::Create(Context);
1515             BB = FwdBBs[BBID];
1516           }
1517           C = BlockAddress::get(Fn, BB);
1518           break;
1519         }
1520         case BitcodeConstant::ConstantStructOpcode:
1521           C = ConstantStruct::get(cast<StructType>(BC->getType()), ConstOps);
1522           break;
1523         case BitcodeConstant::ConstantArrayOpcode:
1524           C = ConstantArray::get(cast<ArrayType>(BC->getType()), ConstOps);
1525           break;
1526         case BitcodeConstant::ConstantVectorOpcode:
1527           C = ConstantVector::get(ConstOps);
1528           break;
1529         case Instruction::ICmp:
1530         case Instruction::FCmp:
1531           C = ConstantExpr::getCompare(BC->Flags, ConstOps[0], ConstOps[1]);
1532           break;
1533         case Instruction::GetElementPtr:
1534           C = ConstantExpr::getGetElementPtr(BC->SrcElemTy, ConstOps[0],
1535                                              ArrayRef(ConstOps).drop_front(),
1536                                              BC->Flags, BC->getInRangeIndex());
1537           break;
1538         case Instruction::ExtractElement:
1539           C = ConstantExpr::getExtractElement(ConstOps[0], ConstOps[1]);
1540           break;
1541         case Instruction::InsertElement:
1542           C = ConstantExpr::getInsertElement(ConstOps[0], ConstOps[1],
1543                                              ConstOps[2]);
1544           break;
1545         case Instruction::ShuffleVector: {
1546           SmallVector<int, 16> Mask;
1547           ShuffleVectorInst::getShuffleMask(ConstOps[2], Mask);
1548           C = ConstantExpr::getShuffleVector(ConstOps[0], ConstOps[1], Mask);
1549           break;
1550         }
1551         default:
1552           llvm_unreachable("Unhandled bitcode constant");
1553         }
1554       }
1555 
1556       // Cache resolved constant.
1557       ValueList.replaceValueWithoutRAUW(ValID, C);
1558       MaterializedValues.insert({ValID, C});
1559       Worklist.pop_back();
1560       continue;
1561     }
1562 
1563     if (!InsertBB)
1564       return error(Twine("Value referenced by initializer is an unsupported "
1565                          "constant expression of type ") +
1566                    BC->getOpcodeName());
1567 
1568     // Materialize as instructions if necessary.
1569     Instruction *I;
1570     if (Instruction::isCast(BC->Opcode)) {
1571       I = CastInst::Create((Instruction::CastOps)BC->Opcode, Ops[0],
1572                            BC->getType(), "constexpr", InsertBB);
1573     } else if (Instruction::isUnaryOp(BC->Opcode)) {
1574       I = UnaryOperator::Create((Instruction::UnaryOps)BC->Opcode, Ops[0],
1575                                 "constexpr", InsertBB);
1576     } else if (Instruction::isBinaryOp(BC->Opcode)) {
1577       I = BinaryOperator::Create((Instruction::BinaryOps)BC->Opcode, Ops[0],
1578                                  Ops[1], "constexpr", InsertBB);
1579       if (isa<OverflowingBinaryOperator>(I)) {
1580         if (BC->Flags & OverflowingBinaryOperator::NoSignedWrap)
1581           I->setHasNoSignedWrap();
1582         if (BC->Flags & OverflowingBinaryOperator::NoUnsignedWrap)
1583           I->setHasNoUnsignedWrap();
1584       }
1585       if (isa<PossiblyExactOperator>(I) &&
1586           (BC->Flags & PossiblyExactOperator::IsExact))
1587         I->setIsExact();
1588     } else {
1589       switch (BC->Opcode) {
1590       case BitcodeConstant::ConstantVectorOpcode: {
1591         Type *IdxTy = Type::getInt32Ty(BC->getContext());
1592         Value *V = PoisonValue::get(BC->getType());
1593         for (auto Pair : enumerate(Ops)) {
1594           Value *Idx = ConstantInt::get(IdxTy, Pair.index());
1595           V = InsertElementInst::Create(V, Pair.value(), Idx, "constexpr.ins",
1596                                         InsertBB);
1597         }
1598         I = cast<Instruction>(V);
1599         break;
1600       }
1601       case BitcodeConstant::ConstantStructOpcode:
1602       case BitcodeConstant::ConstantArrayOpcode: {
1603         Value *V = PoisonValue::get(BC->getType());
1604         for (auto Pair : enumerate(Ops))
1605           V = InsertValueInst::Create(V, Pair.value(), Pair.index(),
1606                                       "constexpr.ins", InsertBB);
1607         I = cast<Instruction>(V);
1608         break;
1609       }
1610       case Instruction::ICmp:
1611       case Instruction::FCmp:
1612         I = CmpInst::Create((Instruction::OtherOps)BC->Opcode,
1613                             (CmpInst::Predicate)BC->Flags, Ops[0], Ops[1],
1614                             "constexpr", InsertBB);
1615         break;
1616       case Instruction::GetElementPtr:
1617         I = GetElementPtrInst::Create(BC->SrcElemTy, Ops[0],
1618                                       ArrayRef(Ops).drop_front(), "constexpr",
1619                                       InsertBB);
1620         if (BC->Flags)
1621           cast<GetElementPtrInst>(I)->setIsInBounds();
1622         break;
1623       case Instruction::Select:
1624         I = SelectInst::Create(Ops[0], Ops[1], Ops[2], "constexpr", InsertBB);
1625         break;
1626       case Instruction::ExtractElement:
1627         I = ExtractElementInst::Create(Ops[0], Ops[1], "constexpr", InsertBB);
1628         break;
1629       case Instruction::InsertElement:
1630         I = InsertElementInst::Create(Ops[0], Ops[1], Ops[2], "constexpr",
1631                                       InsertBB);
1632         break;
1633       case Instruction::ShuffleVector:
1634         I = new ShuffleVectorInst(Ops[0], Ops[1], Ops[2], "constexpr",
1635                                   InsertBB);
1636         break;
1637       default:
1638         llvm_unreachable("Unhandled bitcode constant");
1639       }
1640     }
1641 
1642     MaterializedValues.insert({ValID, I});
1643     Worklist.pop_back();
1644   }
1645 
1646   return MaterializedValues[StartValID];
1647 }
1648 
1649 Expected<Constant *> BitcodeReader::getValueForInitializer(unsigned ID) {
1650   Expected<Value *> MaybeV = materializeValue(ID, /* InsertBB */ nullptr);
1651   if (!MaybeV)
1652     return MaybeV.takeError();
1653 
1654   // Result must be Constant if InsertBB is nullptr.
1655   return cast<Constant>(MaybeV.get());
1656 }
1657 
1658 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
1659                                                       StringRef Name) {
1660   auto *Ret = StructType::create(Context, Name);
1661   IdentifiedStructTypes.push_back(Ret);
1662   return Ret;
1663 }
1664 
1665 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
1666   auto *Ret = StructType::create(Context);
1667   IdentifiedStructTypes.push_back(Ret);
1668   return Ret;
1669 }
1670 
1671 //===----------------------------------------------------------------------===//
1672 //  Functions for parsing blocks from the bitcode file
1673 //===----------------------------------------------------------------------===//
1674 
1675 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) {
1676   switch (Val) {
1677   case Attribute::EndAttrKinds:
1678   case Attribute::EmptyKey:
1679   case Attribute::TombstoneKey:
1680     llvm_unreachable("Synthetic enumerators which should never get here");
1681 
1682   case Attribute::None:            return 0;
1683   case Attribute::ZExt:            return 1 << 0;
1684   case Attribute::SExt:            return 1 << 1;
1685   case Attribute::NoReturn:        return 1 << 2;
1686   case Attribute::InReg:           return 1 << 3;
1687   case Attribute::StructRet:       return 1 << 4;
1688   case Attribute::NoUnwind:        return 1 << 5;
1689   case Attribute::NoAlias:         return 1 << 6;
1690   case Attribute::ByVal:           return 1 << 7;
1691   case Attribute::Nest:            return 1 << 8;
1692   case Attribute::ReadNone:        return 1 << 9;
1693   case Attribute::ReadOnly:        return 1 << 10;
1694   case Attribute::NoInline:        return 1 << 11;
1695   case Attribute::AlwaysInline:    return 1 << 12;
1696   case Attribute::OptimizeForSize: return 1 << 13;
1697   case Attribute::StackProtect:    return 1 << 14;
1698   case Attribute::StackProtectReq: return 1 << 15;
1699   case Attribute::Alignment:       return 31 << 16;
1700   case Attribute::NoCapture:       return 1 << 21;
1701   case Attribute::NoRedZone:       return 1 << 22;
1702   case Attribute::NoImplicitFloat: return 1 << 23;
1703   case Attribute::Naked:           return 1 << 24;
1704   case Attribute::InlineHint:      return 1 << 25;
1705   case Attribute::StackAlignment:  return 7 << 26;
1706   case Attribute::ReturnsTwice:    return 1 << 29;
1707   case Attribute::UWTable:         return 1 << 30;
1708   case Attribute::NonLazyBind:     return 1U << 31;
1709   case Attribute::SanitizeAddress: return 1ULL << 32;
1710   case Attribute::MinSize:         return 1ULL << 33;
1711   case Attribute::NoDuplicate:     return 1ULL << 34;
1712   case Attribute::StackProtectStrong: return 1ULL << 35;
1713   case Attribute::SanitizeThread:  return 1ULL << 36;
1714   case Attribute::SanitizeMemory:  return 1ULL << 37;
1715   case Attribute::NoBuiltin:       return 1ULL << 38;
1716   case Attribute::Returned:        return 1ULL << 39;
1717   case Attribute::Cold:            return 1ULL << 40;
1718   case Attribute::Builtin:         return 1ULL << 41;
1719   case Attribute::OptimizeNone:    return 1ULL << 42;
1720   case Attribute::InAlloca:        return 1ULL << 43;
1721   case Attribute::NonNull:         return 1ULL << 44;
1722   case Attribute::JumpTable:       return 1ULL << 45;
1723   case Attribute::Convergent:      return 1ULL << 46;
1724   case Attribute::SafeStack:       return 1ULL << 47;
1725   case Attribute::NoRecurse:       return 1ULL << 48;
1726   // 1ULL << 49 is InaccessibleMemOnly, which is upgraded separately.
1727   // 1ULL << 50 is InaccessibleMemOrArgMemOnly, which is upgraded separately.
1728   case Attribute::SwiftSelf:       return 1ULL << 51;
1729   case Attribute::SwiftError:      return 1ULL << 52;
1730   case Attribute::WriteOnly:       return 1ULL << 53;
1731   case Attribute::Speculatable:    return 1ULL << 54;
1732   case Attribute::StrictFP:        return 1ULL << 55;
1733   case Attribute::SanitizeHWAddress: return 1ULL << 56;
1734   case Attribute::NoCfCheck:       return 1ULL << 57;
1735   case Attribute::OptForFuzzing:   return 1ULL << 58;
1736   case Attribute::ShadowCallStack: return 1ULL << 59;
1737   case Attribute::SpeculativeLoadHardening:
1738     return 1ULL << 60;
1739   case Attribute::ImmArg:
1740     return 1ULL << 61;
1741   case Attribute::WillReturn:
1742     return 1ULL << 62;
1743   case Attribute::NoFree:
1744     return 1ULL << 63;
1745   default:
1746     // Other attributes are not supported in the raw format,
1747     // as we ran out of space.
1748     return 0;
1749   }
1750   llvm_unreachable("Unsupported attribute type");
1751 }
1752 
1753 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) {
1754   if (!Val) return;
1755 
1756   for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds;
1757        I = Attribute::AttrKind(I + 1)) {
1758     if (uint64_t A = (Val & getRawAttributeMask(I))) {
1759       if (I == Attribute::Alignment)
1760         B.addAlignmentAttr(1ULL << ((A >> 16) - 1));
1761       else if (I == Attribute::StackAlignment)
1762         B.addStackAlignmentAttr(1ULL << ((A >> 26)-1));
1763       else if (Attribute::isTypeAttrKind(I))
1764         B.addTypeAttr(I, nullptr); // Type will be auto-upgraded.
1765       else
1766         B.addAttribute(I);
1767     }
1768   }
1769 }
1770 
1771 /// This fills an AttrBuilder object with the LLVM attributes that have
1772 /// been decoded from the given integer. This function must stay in sync with
1773 /// 'encodeLLVMAttributesForBitcode'.
1774 static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
1775                                            uint64_t EncodedAttrs,
1776                                            uint64_t AttrIdx) {
1777   // The alignment is stored as a 16-bit raw value from bits 31--16.  We shift
1778   // the bits above 31 down by 11 bits.
1779   unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
1780   assert((!Alignment || isPowerOf2_32(Alignment)) &&
1781          "Alignment must be a power of two.");
1782 
1783   if (Alignment)
1784     B.addAlignmentAttr(Alignment);
1785 
1786   uint64_t Attrs = ((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
1787                    (EncodedAttrs & 0xffff);
1788 
1789   if (AttrIdx == AttributeList::FunctionIndex) {
1790     // Upgrade old memory attributes.
1791     MemoryEffects ME = MemoryEffects::unknown();
1792     if (Attrs & (1ULL << 9)) {
1793       // ReadNone
1794       Attrs &= ~(1ULL << 9);
1795       ME &= MemoryEffects::none();
1796     }
1797     if (Attrs & (1ULL << 10)) {
1798       // ReadOnly
1799       Attrs &= ~(1ULL << 10);
1800       ME &= MemoryEffects::readOnly();
1801     }
1802     if (Attrs & (1ULL << 49)) {
1803       // InaccessibleMemOnly
1804       Attrs &= ~(1ULL << 49);
1805       ME &= MemoryEffects::inaccessibleMemOnly();
1806     }
1807     if (Attrs & (1ULL << 50)) {
1808       // InaccessibleMemOrArgMemOnly
1809       Attrs &= ~(1ULL << 50);
1810       ME &= MemoryEffects::inaccessibleOrArgMemOnly();
1811     }
1812     if (Attrs & (1ULL << 53)) {
1813       // WriteOnly
1814       Attrs &= ~(1ULL << 53);
1815       ME &= MemoryEffects::writeOnly();
1816     }
1817     if (ME != MemoryEffects::unknown())
1818       B.addMemoryAttr(ME);
1819   }
1820 
1821   addRawAttributeValue(B, Attrs);
1822 }
1823 
1824 Error BitcodeReader::parseAttributeBlock() {
1825   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
1826     return Err;
1827 
1828   if (!MAttributes.empty())
1829     return error("Invalid multiple blocks");
1830 
1831   SmallVector<uint64_t, 64> Record;
1832 
1833   SmallVector<AttributeList, 8> Attrs;
1834 
1835   // Read all the records.
1836   while (true) {
1837     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1838     if (!MaybeEntry)
1839       return MaybeEntry.takeError();
1840     BitstreamEntry Entry = MaybeEntry.get();
1841 
1842     switch (Entry.Kind) {
1843     case BitstreamEntry::SubBlock: // Handled for us already.
1844     case BitstreamEntry::Error:
1845       return error("Malformed block");
1846     case BitstreamEntry::EndBlock:
1847       return Error::success();
1848     case BitstreamEntry::Record:
1849       // The interesting case.
1850       break;
1851     }
1852 
1853     // Read a record.
1854     Record.clear();
1855     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1856     if (!MaybeRecord)
1857       return MaybeRecord.takeError();
1858     switch (MaybeRecord.get()) {
1859     default:  // Default behavior: ignore.
1860       break;
1861     case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...]
1862       // Deprecated, but still needed to read old bitcode files.
1863       if (Record.size() & 1)
1864         return error("Invalid parameter attribute record");
1865 
1866       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1867         AttrBuilder B(Context);
1868         decodeLLVMAttributesForBitcode(B, Record[i+1], Record[i]);
1869         Attrs.push_back(AttributeList::get(Context, Record[i], B));
1870       }
1871 
1872       MAttributes.push_back(AttributeList::get(Context, Attrs));
1873       Attrs.clear();
1874       break;
1875     case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...]
1876       for (unsigned i = 0, e = Record.size(); i != e; ++i)
1877         Attrs.push_back(MAttributeGroups[Record[i]]);
1878 
1879       MAttributes.push_back(AttributeList::get(Context, Attrs));
1880       Attrs.clear();
1881       break;
1882     }
1883   }
1884 }
1885 
1886 // Returns Attribute::None on unrecognized codes.
1887 static Attribute::AttrKind getAttrFromCode(uint64_t Code) {
1888   switch (Code) {
1889   default:
1890     return Attribute::None;
1891   case bitc::ATTR_KIND_ALIGNMENT:
1892     return Attribute::Alignment;
1893   case bitc::ATTR_KIND_ALWAYS_INLINE:
1894     return Attribute::AlwaysInline;
1895   case bitc::ATTR_KIND_BUILTIN:
1896     return Attribute::Builtin;
1897   case bitc::ATTR_KIND_BY_VAL:
1898     return Attribute::ByVal;
1899   case bitc::ATTR_KIND_IN_ALLOCA:
1900     return Attribute::InAlloca;
1901   case bitc::ATTR_KIND_COLD:
1902     return Attribute::Cold;
1903   case bitc::ATTR_KIND_CONVERGENT:
1904     return Attribute::Convergent;
1905   case bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION:
1906     return Attribute::DisableSanitizerInstrumentation;
1907   case bitc::ATTR_KIND_ELEMENTTYPE:
1908     return Attribute::ElementType;
1909   case bitc::ATTR_KIND_FNRETTHUNK_EXTERN:
1910     return Attribute::FnRetThunkExtern;
1911   case bitc::ATTR_KIND_INLINE_HINT:
1912     return Attribute::InlineHint;
1913   case bitc::ATTR_KIND_IN_REG:
1914     return Attribute::InReg;
1915   case bitc::ATTR_KIND_JUMP_TABLE:
1916     return Attribute::JumpTable;
1917   case bitc::ATTR_KIND_MEMORY:
1918     return Attribute::Memory;
1919   case bitc::ATTR_KIND_NOFPCLASS:
1920     return Attribute::NoFPClass;
1921   case bitc::ATTR_KIND_MIN_SIZE:
1922     return Attribute::MinSize;
1923   case bitc::ATTR_KIND_NAKED:
1924     return Attribute::Naked;
1925   case bitc::ATTR_KIND_NEST:
1926     return Attribute::Nest;
1927   case bitc::ATTR_KIND_NO_ALIAS:
1928     return Attribute::NoAlias;
1929   case bitc::ATTR_KIND_NO_BUILTIN:
1930     return Attribute::NoBuiltin;
1931   case bitc::ATTR_KIND_NO_CALLBACK:
1932     return Attribute::NoCallback;
1933   case bitc::ATTR_KIND_NO_CAPTURE:
1934     return Attribute::NoCapture;
1935   case bitc::ATTR_KIND_NO_DUPLICATE:
1936     return Attribute::NoDuplicate;
1937   case bitc::ATTR_KIND_NOFREE:
1938     return Attribute::NoFree;
1939   case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
1940     return Attribute::NoImplicitFloat;
1941   case bitc::ATTR_KIND_NO_INLINE:
1942     return Attribute::NoInline;
1943   case bitc::ATTR_KIND_NO_RECURSE:
1944     return Attribute::NoRecurse;
1945   case bitc::ATTR_KIND_NO_MERGE:
1946     return Attribute::NoMerge;
1947   case bitc::ATTR_KIND_NON_LAZY_BIND:
1948     return Attribute::NonLazyBind;
1949   case bitc::ATTR_KIND_NON_NULL:
1950     return Attribute::NonNull;
1951   case bitc::ATTR_KIND_DEREFERENCEABLE:
1952     return Attribute::Dereferenceable;
1953   case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL:
1954     return Attribute::DereferenceableOrNull;
1955   case bitc::ATTR_KIND_ALLOC_ALIGN:
1956     return Attribute::AllocAlign;
1957   case bitc::ATTR_KIND_ALLOC_KIND:
1958     return Attribute::AllocKind;
1959   case bitc::ATTR_KIND_ALLOC_SIZE:
1960     return Attribute::AllocSize;
1961   case bitc::ATTR_KIND_ALLOCATED_POINTER:
1962     return Attribute::AllocatedPointer;
1963   case bitc::ATTR_KIND_NO_RED_ZONE:
1964     return Attribute::NoRedZone;
1965   case bitc::ATTR_KIND_NO_RETURN:
1966     return Attribute::NoReturn;
1967   case bitc::ATTR_KIND_NOSYNC:
1968     return Attribute::NoSync;
1969   case bitc::ATTR_KIND_NOCF_CHECK:
1970     return Attribute::NoCfCheck;
1971   case bitc::ATTR_KIND_NO_PROFILE:
1972     return Attribute::NoProfile;
1973   case bitc::ATTR_KIND_SKIP_PROFILE:
1974     return Attribute::SkipProfile;
1975   case bitc::ATTR_KIND_NO_UNWIND:
1976     return Attribute::NoUnwind;
1977   case bitc::ATTR_KIND_NO_SANITIZE_BOUNDS:
1978     return Attribute::NoSanitizeBounds;
1979   case bitc::ATTR_KIND_NO_SANITIZE_COVERAGE:
1980     return Attribute::NoSanitizeCoverage;
1981   case bitc::ATTR_KIND_NULL_POINTER_IS_VALID:
1982     return Attribute::NullPointerIsValid;
1983   case bitc::ATTR_KIND_OPTIMIZE_FOR_DEBUGGING:
1984     return Attribute::OptimizeForDebugging;
1985   case bitc::ATTR_KIND_OPT_FOR_FUZZING:
1986     return Attribute::OptForFuzzing;
1987   case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
1988     return Attribute::OptimizeForSize;
1989   case bitc::ATTR_KIND_OPTIMIZE_NONE:
1990     return Attribute::OptimizeNone;
1991   case bitc::ATTR_KIND_READ_NONE:
1992     return Attribute::ReadNone;
1993   case bitc::ATTR_KIND_READ_ONLY:
1994     return Attribute::ReadOnly;
1995   case bitc::ATTR_KIND_RETURNED:
1996     return Attribute::Returned;
1997   case bitc::ATTR_KIND_RETURNS_TWICE:
1998     return Attribute::ReturnsTwice;
1999   case bitc::ATTR_KIND_S_EXT:
2000     return Attribute::SExt;
2001   case bitc::ATTR_KIND_SPECULATABLE:
2002     return Attribute::Speculatable;
2003   case bitc::ATTR_KIND_STACK_ALIGNMENT:
2004     return Attribute::StackAlignment;
2005   case bitc::ATTR_KIND_STACK_PROTECT:
2006     return Attribute::StackProtect;
2007   case bitc::ATTR_KIND_STACK_PROTECT_REQ:
2008     return Attribute::StackProtectReq;
2009   case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
2010     return Attribute::StackProtectStrong;
2011   case bitc::ATTR_KIND_SAFESTACK:
2012     return Attribute::SafeStack;
2013   case bitc::ATTR_KIND_SHADOWCALLSTACK:
2014     return Attribute::ShadowCallStack;
2015   case bitc::ATTR_KIND_STRICT_FP:
2016     return Attribute::StrictFP;
2017   case bitc::ATTR_KIND_STRUCT_RET:
2018     return Attribute::StructRet;
2019   case bitc::ATTR_KIND_SANITIZE_ADDRESS:
2020     return Attribute::SanitizeAddress;
2021   case bitc::ATTR_KIND_SANITIZE_HWADDRESS:
2022     return Attribute::SanitizeHWAddress;
2023   case bitc::ATTR_KIND_SANITIZE_THREAD:
2024     return Attribute::SanitizeThread;
2025   case bitc::ATTR_KIND_SANITIZE_MEMORY:
2026     return Attribute::SanitizeMemory;
2027   case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING:
2028     return Attribute::SpeculativeLoadHardening;
2029   case bitc::ATTR_KIND_SWIFT_ERROR:
2030     return Attribute::SwiftError;
2031   case bitc::ATTR_KIND_SWIFT_SELF:
2032     return Attribute::SwiftSelf;
2033   case bitc::ATTR_KIND_SWIFT_ASYNC:
2034     return Attribute::SwiftAsync;
2035   case bitc::ATTR_KIND_UW_TABLE:
2036     return Attribute::UWTable;
2037   case bitc::ATTR_KIND_VSCALE_RANGE:
2038     return Attribute::VScaleRange;
2039   case bitc::ATTR_KIND_WILLRETURN:
2040     return Attribute::WillReturn;
2041   case bitc::ATTR_KIND_WRITEONLY:
2042     return Attribute::WriteOnly;
2043   case bitc::ATTR_KIND_Z_EXT:
2044     return Attribute::ZExt;
2045   case bitc::ATTR_KIND_IMMARG:
2046     return Attribute::ImmArg;
2047   case bitc::ATTR_KIND_SANITIZE_MEMTAG:
2048     return Attribute::SanitizeMemTag;
2049   case bitc::ATTR_KIND_PREALLOCATED:
2050     return Attribute::Preallocated;
2051   case bitc::ATTR_KIND_NOUNDEF:
2052     return Attribute::NoUndef;
2053   case bitc::ATTR_KIND_BYREF:
2054     return Attribute::ByRef;
2055   case bitc::ATTR_KIND_MUSTPROGRESS:
2056     return Attribute::MustProgress;
2057   case bitc::ATTR_KIND_HOT:
2058     return Attribute::Hot;
2059   case bitc::ATTR_KIND_PRESPLIT_COROUTINE:
2060     return Attribute::PresplitCoroutine;
2061   }
2062 }
2063 
2064 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent,
2065                                          MaybeAlign &Alignment) {
2066   // Note: Alignment in bitcode files is incremented by 1, so that zero
2067   // can be used for default alignment.
2068   if (Exponent > Value::MaxAlignmentExponent + 1)
2069     return error("Invalid alignment value");
2070   Alignment = decodeMaybeAlign(Exponent);
2071   return Error::success();
2072 }
2073 
2074 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) {
2075   *Kind = getAttrFromCode(Code);
2076   if (*Kind == Attribute::None)
2077     return error("Unknown attribute kind (" + Twine(Code) + ")");
2078   return Error::success();
2079 }
2080 
2081 static bool upgradeOldMemoryAttribute(MemoryEffects &ME, uint64_t EncodedKind) {
2082   switch (EncodedKind) {
2083   case bitc::ATTR_KIND_READ_NONE:
2084     ME &= MemoryEffects::none();
2085     return true;
2086   case bitc::ATTR_KIND_READ_ONLY:
2087     ME &= MemoryEffects::readOnly();
2088     return true;
2089   case bitc::ATTR_KIND_WRITEONLY:
2090     ME &= MemoryEffects::writeOnly();
2091     return true;
2092   case bitc::ATTR_KIND_ARGMEMONLY:
2093     ME &= MemoryEffects::argMemOnly();
2094     return true;
2095   case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY:
2096     ME &= MemoryEffects::inaccessibleMemOnly();
2097     return true;
2098   case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY:
2099     ME &= MemoryEffects::inaccessibleOrArgMemOnly();
2100     return true;
2101   default:
2102     return false;
2103   }
2104 }
2105 
2106 Error BitcodeReader::parseAttributeGroupBlock() {
2107   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
2108     return Err;
2109 
2110   if (!MAttributeGroups.empty())
2111     return error("Invalid multiple blocks");
2112 
2113   SmallVector<uint64_t, 64> Record;
2114 
2115   // Read all the records.
2116   while (true) {
2117     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2118     if (!MaybeEntry)
2119       return MaybeEntry.takeError();
2120     BitstreamEntry Entry = MaybeEntry.get();
2121 
2122     switch (Entry.Kind) {
2123     case BitstreamEntry::SubBlock: // Handled for us already.
2124     case BitstreamEntry::Error:
2125       return error("Malformed block");
2126     case BitstreamEntry::EndBlock:
2127       return Error::success();
2128     case BitstreamEntry::Record:
2129       // The interesting case.
2130       break;
2131     }
2132 
2133     // Read a record.
2134     Record.clear();
2135     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2136     if (!MaybeRecord)
2137       return MaybeRecord.takeError();
2138     switch (MaybeRecord.get()) {
2139     default:  // Default behavior: ignore.
2140       break;
2141     case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
2142       if (Record.size() < 3)
2143         return error("Invalid grp record");
2144 
2145       uint64_t GrpID = Record[0];
2146       uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
2147 
2148       AttrBuilder B(Context);
2149       MemoryEffects ME = MemoryEffects::unknown();
2150       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
2151         if (Record[i] == 0) {        // Enum attribute
2152           Attribute::AttrKind Kind;
2153           uint64_t EncodedKind = Record[++i];
2154           if (Idx == AttributeList::FunctionIndex &&
2155               upgradeOldMemoryAttribute(ME, EncodedKind))
2156             continue;
2157 
2158           if (Error Err = parseAttrKind(EncodedKind, &Kind))
2159             return Err;
2160 
2161           // Upgrade old-style byval attribute to one with a type, even if it's
2162           // nullptr. We will have to insert the real type when we associate
2163           // this AttributeList with a function.
2164           if (Kind == Attribute::ByVal)
2165             B.addByValAttr(nullptr);
2166           else if (Kind == Attribute::StructRet)
2167             B.addStructRetAttr(nullptr);
2168           else if (Kind == Attribute::InAlloca)
2169             B.addInAllocaAttr(nullptr);
2170           else if (Kind == Attribute::UWTable)
2171             B.addUWTableAttr(UWTableKind::Default);
2172           else if (Attribute::isEnumAttrKind(Kind))
2173             B.addAttribute(Kind);
2174           else
2175             return error("Not an enum attribute");
2176         } else if (Record[i] == 1) { // Integer attribute
2177           Attribute::AttrKind Kind;
2178           if (Error Err = parseAttrKind(Record[++i], &Kind))
2179             return Err;
2180           if (!Attribute::isIntAttrKind(Kind))
2181             return error("Not an int attribute");
2182           if (Kind == Attribute::Alignment)
2183             B.addAlignmentAttr(Record[++i]);
2184           else if (Kind == Attribute::StackAlignment)
2185             B.addStackAlignmentAttr(Record[++i]);
2186           else if (Kind == Attribute::Dereferenceable)
2187             B.addDereferenceableAttr(Record[++i]);
2188           else if (Kind == Attribute::DereferenceableOrNull)
2189             B.addDereferenceableOrNullAttr(Record[++i]);
2190           else if (Kind == Attribute::AllocSize)
2191             B.addAllocSizeAttrFromRawRepr(Record[++i]);
2192           else if (Kind == Attribute::VScaleRange)
2193             B.addVScaleRangeAttrFromRawRepr(Record[++i]);
2194           else if (Kind == Attribute::UWTable)
2195             B.addUWTableAttr(UWTableKind(Record[++i]));
2196           else if (Kind == Attribute::AllocKind)
2197             B.addAllocKindAttr(static_cast<AllocFnKind>(Record[++i]));
2198           else if (Kind == Attribute::Memory)
2199             B.addMemoryAttr(MemoryEffects::createFromIntValue(Record[++i]));
2200           else if (Kind == Attribute::NoFPClass)
2201             B.addNoFPClassAttr(
2202                 static_cast<FPClassTest>(Record[++i] & fcAllFlags));
2203         } else if (Record[i] == 3 || Record[i] == 4) { // String attribute
2204           bool HasValue = (Record[i++] == 4);
2205           SmallString<64> KindStr;
2206           SmallString<64> ValStr;
2207 
2208           while (Record[i] != 0 && i != e)
2209             KindStr += Record[i++];
2210           assert(Record[i] == 0 && "Kind string not null terminated");
2211 
2212           if (HasValue) {
2213             // Has a value associated with it.
2214             ++i; // Skip the '0' that terminates the "kind" string.
2215             while (Record[i] != 0 && i != e)
2216               ValStr += Record[i++];
2217             assert(Record[i] == 0 && "Value string not null terminated");
2218           }
2219 
2220           B.addAttribute(KindStr.str(), ValStr.str());
2221         } else if (Record[i] == 5 || Record[i] == 6) {
2222           bool HasType = Record[i] == 6;
2223           Attribute::AttrKind Kind;
2224           if (Error Err = parseAttrKind(Record[++i], &Kind))
2225             return Err;
2226           if (!Attribute::isTypeAttrKind(Kind))
2227             return error("Not a type attribute");
2228 
2229           B.addTypeAttr(Kind, HasType ? getTypeByID(Record[++i]) : nullptr);
2230         } else {
2231           return error("Invalid attribute group entry");
2232         }
2233       }
2234 
2235       if (ME != MemoryEffects::unknown())
2236         B.addMemoryAttr(ME);
2237 
2238       UpgradeAttributes(B);
2239       MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B);
2240       break;
2241     }
2242     }
2243   }
2244 }
2245 
2246 Error BitcodeReader::parseTypeTable() {
2247   if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
2248     return Err;
2249 
2250   return parseTypeTableBody();
2251 }
2252 
2253 Error BitcodeReader::parseTypeTableBody() {
2254   if (!TypeList.empty())
2255     return error("Invalid multiple blocks");
2256 
2257   SmallVector<uint64_t, 64> Record;
2258   unsigned NumRecords = 0;
2259 
2260   SmallString<64> TypeName;
2261 
2262   // Read all the records for this type table.
2263   while (true) {
2264     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2265     if (!MaybeEntry)
2266       return MaybeEntry.takeError();
2267     BitstreamEntry Entry = MaybeEntry.get();
2268 
2269     switch (Entry.Kind) {
2270     case BitstreamEntry::SubBlock: // Handled for us already.
2271     case BitstreamEntry::Error:
2272       return error("Malformed block");
2273     case BitstreamEntry::EndBlock:
2274       if (NumRecords != TypeList.size())
2275         return error("Malformed block");
2276       return Error::success();
2277     case BitstreamEntry::Record:
2278       // The interesting case.
2279       break;
2280     }
2281 
2282     // Read a record.
2283     Record.clear();
2284     Type *ResultTy = nullptr;
2285     SmallVector<unsigned> ContainedIDs;
2286     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2287     if (!MaybeRecord)
2288       return MaybeRecord.takeError();
2289     switch (MaybeRecord.get()) {
2290     default:
2291       return error("Invalid value");
2292     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
2293       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
2294       // type list.  This allows us to reserve space.
2295       if (Record.empty())
2296         return error("Invalid numentry record");
2297       TypeList.resize(Record[0]);
2298       continue;
2299     case bitc::TYPE_CODE_VOID:      // VOID
2300       ResultTy = Type::getVoidTy(Context);
2301       break;
2302     case bitc::TYPE_CODE_HALF:     // HALF
2303       ResultTy = Type::getHalfTy(Context);
2304       break;
2305     case bitc::TYPE_CODE_BFLOAT:    // BFLOAT
2306       ResultTy = Type::getBFloatTy(Context);
2307       break;
2308     case bitc::TYPE_CODE_FLOAT:     // FLOAT
2309       ResultTy = Type::getFloatTy(Context);
2310       break;
2311     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
2312       ResultTy = Type::getDoubleTy(Context);
2313       break;
2314     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
2315       ResultTy = Type::getX86_FP80Ty(Context);
2316       break;
2317     case bitc::TYPE_CODE_FP128:     // FP128
2318       ResultTy = Type::getFP128Ty(Context);
2319       break;
2320     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
2321       ResultTy = Type::getPPC_FP128Ty(Context);
2322       break;
2323     case bitc::TYPE_CODE_LABEL:     // LABEL
2324       ResultTy = Type::getLabelTy(Context);
2325       break;
2326     case bitc::TYPE_CODE_METADATA:  // METADATA
2327       ResultTy = Type::getMetadataTy(Context);
2328       break;
2329     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
2330       ResultTy = Type::getX86_MMXTy(Context);
2331       break;
2332     case bitc::TYPE_CODE_X86_AMX:   // X86_AMX
2333       ResultTy = Type::getX86_AMXTy(Context);
2334       break;
2335     case bitc::TYPE_CODE_TOKEN:     // TOKEN
2336       ResultTy = Type::getTokenTy(Context);
2337       break;
2338     case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
2339       if (Record.empty())
2340         return error("Invalid integer record");
2341 
2342       uint64_t NumBits = Record[0];
2343       if (NumBits < IntegerType::MIN_INT_BITS ||
2344           NumBits > IntegerType::MAX_INT_BITS)
2345         return error("Bitwidth for integer type out of range");
2346       ResultTy = IntegerType::get(Context, NumBits);
2347       break;
2348     }
2349     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
2350                                     //          [pointee type, address space]
2351       if (Record.empty())
2352         return error("Invalid pointer record");
2353       unsigned AddressSpace = 0;
2354       if (Record.size() == 2)
2355         AddressSpace = Record[1];
2356       ResultTy = getTypeByID(Record[0]);
2357       if (!ResultTy ||
2358           !PointerType::isValidElementType(ResultTy))
2359         return error("Invalid type");
2360       ContainedIDs.push_back(Record[0]);
2361       ResultTy = PointerType::get(ResultTy, AddressSpace);
2362       break;
2363     }
2364     case bitc::TYPE_CODE_OPAQUE_POINTER: { // OPAQUE_POINTER: [addrspace]
2365       if (Record.size() != 1)
2366         return error("Invalid opaque pointer record");
2367       unsigned AddressSpace = Record[0];
2368       ResultTy = PointerType::get(Context, AddressSpace);
2369       break;
2370     }
2371     case bitc::TYPE_CODE_FUNCTION_OLD: {
2372       // Deprecated, but still needed to read old bitcode files.
2373       // FUNCTION: [vararg, attrid, retty, paramty x N]
2374       if (Record.size() < 3)
2375         return error("Invalid function record");
2376       SmallVector<Type*, 8> ArgTys;
2377       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
2378         if (Type *T = getTypeByID(Record[i]))
2379           ArgTys.push_back(T);
2380         else
2381           break;
2382       }
2383 
2384       ResultTy = getTypeByID(Record[2]);
2385       if (!ResultTy || ArgTys.size() < Record.size()-3)
2386         return error("Invalid type");
2387 
2388       ContainedIDs.append(Record.begin() + 2, Record.end());
2389       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
2390       break;
2391     }
2392     case bitc::TYPE_CODE_FUNCTION: {
2393       // FUNCTION: [vararg, retty, paramty x N]
2394       if (Record.size() < 2)
2395         return error("Invalid function record");
2396       SmallVector<Type*, 8> ArgTys;
2397       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
2398         if (Type *T = getTypeByID(Record[i])) {
2399           if (!FunctionType::isValidArgumentType(T))
2400             return error("Invalid function argument type");
2401           ArgTys.push_back(T);
2402         }
2403         else
2404           break;
2405       }
2406 
2407       ResultTy = getTypeByID(Record[1]);
2408       if (!ResultTy || ArgTys.size() < Record.size()-2)
2409         return error("Invalid type");
2410 
2411       ContainedIDs.append(Record.begin() + 1, Record.end());
2412       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
2413       break;
2414     }
2415     case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
2416       if (Record.empty())
2417         return error("Invalid anon struct record");
2418       SmallVector<Type*, 8> EltTys;
2419       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
2420         if (Type *T = getTypeByID(Record[i]))
2421           EltTys.push_back(T);
2422         else
2423           break;
2424       }
2425       if (EltTys.size() != Record.size()-1)
2426         return error("Invalid type");
2427       ContainedIDs.append(Record.begin() + 1, Record.end());
2428       ResultTy = StructType::get(Context, EltTys, Record[0]);
2429       break;
2430     }
2431     case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
2432       if (convertToString(Record, 0, TypeName))
2433         return error("Invalid struct name record");
2434       continue;
2435 
2436     case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
2437       if (Record.empty())
2438         return error("Invalid named struct record");
2439 
2440       if (NumRecords >= TypeList.size())
2441         return error("Invalid TYPE table");
2442 
2443       // Check to see if this was forward referenced, if so fill in the temp.
2444       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
2445       if (Res) {
2446         Res->setName(TypeName);
2447         TypeList[NumRecords] = nullptr;
2448       } else  // Otherwise, create a new struct.
2449         Res = createIdentifiedStructType(Context, TypeName);
2450       TypeName.clear();
2451 
2452       SmallVector<Type*, 8> EltTys;
2453       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
2454         if (Type *T = getTypeByID(Record[i]))
2455           EltTys.push_back(T);
2456         else
2457           break;
2458       }
2459       if (EltTys.size() != Record.size()-1)
2460         return error("Invalid named struct record");
2461       Res->setBody(EltTys, Record[0]);
2462       ContainedIDs.append(Record.begin() + 1, Record.end());
2463       ResultTy = Res;
2464       break;
2465     }
2466     case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
2467       if (Record.size() != 1)
2468         return error("Invalid opaque type record");
2469 
2470       if (NumRecords >= TypeList.size())
2471         return error("Invalid TYPE table");
2472 
2473       // Check to see if this was forward referenced, if so fill in the temp.
2474       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
2475       if (Res) {
2476         Res->setName(TypeName);
2477         TypeList[NumRecords] = nullptr;
2478       } else  // Otherwise, create a new struct with no body.
2479         Res = createIdentifiedStructType(Context, TypeName);
2480       TypeName.clear();
2481       ResultTy = Res;
2482       break;
2483     }
2484     case bitc::TYPE_CODE_TARGET_TYPE: { // TARGET_TYPE: [NumTy, Tys..., Ints...]
2485       if (Record.size() < 1)
2486         return error("Invalid target extension type record");
2487 
2488       if (NumRecords >= TypeList.size())
2489         return error("Invalid TYPE table");
2490 
2491       if (Record[0] >= Record.size())
2492         return error("Too many type parameters");
2493 
2494       unsigned NumTys = Record[0];
2495       SmallVector<Type *, 4> TypeParams;
2496       SmallVector<unsigned, 8> IntParams;
2497       for (unsigned i = 0; i < NumTys; i++) {
2498         if (Type *T = getTypeByID(Record[i + 1]))
2499           TypeParams.push_back(T);
2500         else
2501           return error("Invalid type");
2502       }
2503 
2504       for (unsigned i = NumTys + 1, e = Record.size(); i < e; i++) {
2505         if (Record[i] > UINT_MAX)
2506           return error("Integer parameter too large");
2507         IntParams.push_back(Record[i]);
2508       }
2509       ResultTy = TargetExtType::get(Context, TypeName, TypeParams, IntParams);
2510       TypeName.clear();
2511       break;
2512     }
2513     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
2514       if (Record.size() < 2)
2515         return error("Invalid array type record");
2516       ResultTy = getTypeByID(Record[1]);
2517       if (!ResultTy || !ArrayType::isValidElementType(ResultTy))
2518         return error("Invalid type");
2519       ContainedIDs.push_back(Record[1]);
2520       ResultTy = ArrayType::get(ResultTy, Record[0]);
2521       break;
2522     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty] or
2523                                     //         [numelts, eltty, scalable]
2524       if (Record.size() < 2)
2525         return error("Invalid vector type record");
2526       if (Record[0] == 0)
2527         return error("Invalid vector length");
2528       ResultTy = getTypeByID(Record[1]);
2529       if (!ResultTy || !VectorType::isValidElementType(ResultTy))
2530         return error("Invalid type");
2531       bool Scalable = Record.size() > 2 ? Record[2] : false;
2532       ContainedIDs.push_back(Record[1]);
2533       ResultTy = VectorType::get(ResultTy, Record[0], Scalable);
2534       break;
2535     }
2536 
2537     if (NumRecords >= TypeList.size())
2538       return error("Invalid TYPE table");
2539     if (TypeList[NumRecords])
2540       return error(
2541           "Invalid TYPE table: Only named structs can be forward referenced");
2542     assert(ResultTy && "Didn't read a type?");
2543     TypeList[NumRecords] = ResultTy;
2544     if (!ContainedIDs.empty())
2545       ContainedTypeIDs[NumRecords] = std::move(ContainedIDs);
2546     ++NumRecords;
2547   }
2548 }
2549 
2550 Error BitcodeReader::parseOperandBundleTags() {
2551   if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID))
2552     return Err;
2553 
2554   if (!BundleTags.empty())
2555     return error("Invalid multiple blocks");
2556 
2557   SmallVector<uint64_t, 64> Record;
2558 
2559   while (true) {
2560     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2561     if (!MaybeEntry)
2562       return MaybeEntry.takeError();
2563     BitstreamEntry Entry = MaybeEntry.get();
2564 
2565     switch (Entry.Kind) {
2566     case BitstreamEntry::SubBlock: // Handled for us already.
2567     case BitstreamEntry::Error:
2568       return error("Malformed block");
2569     case BitstreamEntry::EndBlock:
2570       return Error::success();
2571     case BitstreamEntry::Record:
2572       // The interesting case.
2573       break;
2574     }
2575 
2576     // Tags are implicitly mapped to integers by their order.
2577 
2578     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2579     if (!MaybeRecord)
2580       return MaybeRecord.takeError();
2581     if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG)
2582       return error("Invalid operand bundle record");
2583 
2584     // OPERAND_BUNDLE_TAG: [strchr x N]
2585     BundleTags.emplace_back();
2586     if (convertToString(Record, 0, BundleTags.back()))
2587       return error("Invalid operand bundle record");
2588     Record.clear();
2589   }
2590 }
2591 
2592 Error BitcodeReader::parseSyncScopeNames() {
2593   if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID))
2594     return Err;
2595 
2596   if (!SSIDs.empty())
2597     return error("Invalid multiple synchronization scope names blocks");
2598 
2599   SmallVector<uint64_t, 64> Record;
2600   while (true) {
2601     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2602     if (!MaybeEntry)
2603       return MaybeEntry.takeError();
2604     BitstreamEntry Entry = MaybeEntry.get();
2605 
2606     switch (Entry.Kind) {
2607     case BitstreamEntry::SubBlock: // Handled for us already.
2608     case BitstreamEntry::Error:
2609       return error("Malformed block");
2610     case BitstreamEntry::EndBlock:
2611       if (SSIDs.empty())
2612         return error("Invalid empty synchronization scope names block");
2613       return Error::success();
2614     case BitstreamEntry::Record:
2615       // The interesting case.
2616       break;
2617     }
2618 
2619     // Synchronization scope names are implicitly mapped to synchronization
2620     // scope IDs by their order.
2621 
2622     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2623     if (!MaybeRecord)
2624       return MaybeRecord.takeError();
2625     if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME)
2626       return error("Invalid sync scope record");
2627 
2628     SmallString<16> SSN;
2629     if (convertToString(Record, 0, SSN))
2630       return error("Invalid sync scope record");
2631 
2632     SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN));
2633     Record.clear();
2634   }
2635 }
2636 
2637 /// Associate a value with its name from the given index in the provided record.
2638 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
2639                                              unsigned NameIndex, Triple &TT) {
2640   SmallString<128> ValueName;
2641   if (convertToString(Record, NameIndex, ValueName))
2642     return error("Invalid record");
2643   unsigned ValueID = Record[0];
2644   if (ValueID >= ValueList.size() || !ValueList[ValueID])
2645     return error("Invalid record");
2646   Value *V = ValueList[ValueID];
2647 
2648   StringRef NameStr(ValueName.data(), ValueName.size());
2649   if (NameStr.contains(0))
2650     return error("Invalid value name");
2651   V->setName(NameStr);
2652   auto *GO = dyn_cast<GlobalObject>(V);
2653   if (GO && ImplicitComdatObjects.contains(GO) && TT.supportsCOMDAT())
2654     GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
2655   return V;
2656 }
2657 
2658 /// Helper to note and return the current location, and jump to the given
2659 /// offset.
2660 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset,
2661                                                  BitstreamCursor &Stream) {
2662   // Save the current parsing location so we can jump back at the end
2663   // of the VST read.
2664   uint64_t CurrentBit = Stream.GetCurrentBitNo();
2665   if (Error JumpFailed = Stream.JumpToBit(Offset * 32))
2666     return std::move(JumpFailed);
2667   Expected<BitstreamEntry> MaybeEntry = Stream.advance();
2668   if (!MaybeEntry)
2669     return MaybeEntry.takeError();
2670   if (MaybeEntry.get().Kind != BitstreamEntry::SubBlock ||
2671       MaybeEntry.get().ID != bitc::VALUE_SYMTAB_BLOCK_ID)
2672     return error("Expected value symbol table subblock");
2673   return CurrentBit;
2674 }
2675 
2676 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta,
2677                                             Function *F,
2678                                             ArrayRef<uint64_t> Record) {
2679   // Note that we subtract 1 here because the offset is relative to one word
2680   // before the start of the identification or module block, which was
2681   // historically always the start of the regular bitcode header.
2682   uint64_t FuncWordOffset = Record[1] - 1;
2683   uint64_t FuncBitOffset = FuncWordOffset * 32;
2684   DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
2685   // Set the LastFunctionBlockBit to point to the last function block.
2686   // Later when parsing is resumed after function materialization,
2687   // we can simply skip that last function block.
2688   if (FuncBitOffset > LastFunctionBlockBit)
2689     LastFunctionBlockBit = FuncBitOffset;
2690 }
2691 
2692 /// Read a new-style GlobalValue symbol table.
2693 Error BitcodeReader::parseGlobalValueSymbolTable() {
2694   unsigned FuncBitcodeOffsetDelta =
2695       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2696 
2697   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2698     return Err;
2699 
2700   SmallVector<uint64_t, 64> Record;
2701   while (true) {
2702     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2703     if (!MaybeEntry)
2704       return MaybeEntry.takeError();
2705     BitstreamEntry Entry = MaybeEntry.get();
2706 
2707     switch (Entry.Kind) {
2708     case BitstreamEntry::SubBlock:
2709     case BitstreamEntry::Error:
2710       return error("Malformed block");
2711     case BitstreamEntry::EndBlock:
2712       return Error::success();
2713     case BitstreamEntry::Record:
2714       break;
2715     }
2716 
2717     Record.clear();
2718     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2719     if (!MaybeRecord)
2720       return MaybeRecord.takeError();
2721     switch (MaybeRecord.get()) {
2722     case bitc::VST_CODE_FNENTRY: { // [valueid, offset]
2723       unsigned ValueID = Record[0];
2724       if (ValueID >= ValueList.size() || !ValueList[ValueID])
2725         return error("Invalid value reference in symbol table");
2726       setDeferredFunctionInfo(FuncBitcodeOffsetDelta,
2727                               cast<Function>(ValueList[ValueID]), Record);
2728       break;
2729     }
2730     }
2731   }
2732 }
2733 
2734 /// Parse the value symbol table at either the current parsing location or
2735 /// at the given bit offset if provided.
2736 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) {
2737   uint64_t CurrentBit;
2738   // Pass in the Offset to distinguish between calling for the module-level
2739   // VST (where we want to jump to the VST offset) and the function-level
2740   // VST (where we don't).
2741   if (Offset > 0) {
2742     Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
2743     if (!MaybeCurrentBit)
2744       return MaybeCurrentBit.takeError();
2745     CurrentBit = MaybeCurrentBit.get();
2746     // If this module uses a string table, read this as a module-level VST.
2747     if (UseStrtab) {
2748       if (Error Err = parseGlobalValueSymbolTable())
2749         return Err;
2750       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2751         return JumpFailed;
2752       return Error::success();
2753     }
2754     // Otherwise, the VST will be in a similar format to a function-level VST,
2755     // and will contain symbol names.
2756   }
2757 
2758   // Compute the delta between the bitcode indices in the VST (the word offset
2759   // to the word-aligned ENTER_SUBBLOCK for the function block, and that
2760   // expected by the lazy reader. The reader's EnterSubBlock expects to have
2761   // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
2762   // (size BlockIDWidth). Note that we access the stream's AbbrevID width here
2763   // just before entering the VST subblock because: 1) the EnterSubBlock
2764   // changes the AbbrevID width; 2) the VST block is nested within the same
2765   // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
2766   // AbbrevID width before calling EnterSubBlock; and 3) when we want to
2767   // jump to the FUNCTION_BLOCK using this offset later, we don't want
2768   // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
2769   unsigned FuncBitcodeOffsetDelta =
2770       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2771 
2772   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2773     return Err;
2774 
2775   SmallVector<uint64_t, 64> Record;
2776 
2777   Triple TT(TheModule->getTargetTriple());
2778 
2779   // Read all the records for this value table.
2780   SmallString<128> ValueName;
2781 
2782   while (true) {
2783     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2784     if (!MaybeEntry)
2785       return MaybeEntry.takeError();
2786     BitstreamEntry Entry = MaybeEntry.get();
2787 
2788     switch (Entry.Kind) {
2789     case BitstreamEntry::SubBlock: // Handled for us already.
2790     case BitstreamEntry::Error:
2791       return error("Malformed block");
2792     case BitstreamEntry::EndBlock:
2793       if (Offset > 0)
2794         if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2795           return JumpFailed;
2796       return Error::success();
2797     case BitstreamEntry::Record:
2798       // The interesting case.
2799       break;
2800     }
2801 
2802     // Read a record.
2803     Record.clear();
2804     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2805     if (!MaybeRecord)
2806       return MaybeRecord.takeError();
2807     switch (MaybeRecord.get()) {
2808     default:  // Default behavior: unknown type.
2809       break;
2810     case bitc::VST_CODE_ENTRY: {  // VST_CODE_ENTRY: [valueid, namechar x N]
2811       Expected<Value *> ValOrErr = recordValue(Record, 1, TT);
2812       if (Error Err = ValOrErr.takeError())
2813         return Err;
2814       ValOrErr.get();
2815       break;
2816     }
2817     case bitc::VST_CODE_FNENTRY: {
2818       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
2819       Expected<Value *> ValOrErr = recordValue(Record, 2, TT);
2820       if (Error Err = ValOrErr.takeError())
2821         return Err;
2822       Value *V = ValOrErr.get();
2823 
2824       // Ignore function offsets emitted for aliases of functions in older
2825       // versions of LLVM.
2826       if (auto *F = dyn_cast<Function>(V))
2827         setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record);
2828       break;
2829     }
2830     case bitc::VST_CODE_BBENTRY: {
2831       if (convertToString(Record, 1, ValueName))
2832         return error("Invalid bbentry record");
2833       BasicBlock *BB = getBasicBlock(Record[0]);
2834       if (!BB)
2835         return error("Invalid bbentry record");
2836 
2837       BB->setName(StringRef(ValueName.data(), ValueName.size()));
2838       ValueName.clear();
2839       break;
2840     }
2841     }
2842   }
2843 }
2844 
2845 /// Decode a signed value stored with the sign bit in the LSB for dense VBR
2846 /// encoding.
2847 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
2848   if ((V & 1) == 0)
2849     return V >> 1;
2850   if (V != 1)
2851     return -(V >> 1);
2852   // There is no such thing as -0 with integers.  "-0" really means MININT.
2853   return 1ULL << 63;
2854 }
2855 
2856 /// Resolve all of the initializers for global values and aliases that we can.
2857 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() {
2858   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist;
2859   std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInitWorklist;
2860   std::vector<FunctionOperandInfo> FunctionOperandWorklist;
2861 
2862   GlobalInitWorklist.swap(GlobalInits);
2863   IndirectSymbolInitWorklist.swap(IndirectSymbolInits);
2864   FunctionOperandWorklist.swap(FunctionOperands);
2865 
2866   while (!GlobalInitWorklist.empty()) {
2867     unsigned ValID = GlobalInitWorklist.back().second;
2868     if (ValID >= ValueList.size()) {
2869       // Not ready to resolve this yet, it requires something later in the file.
2870       GlobalInits.push_back(GlobalInitWorklist.back());
2871     } else {
2872       Expected<Constant *> MaybeC = getValueForInitializer(ValID);
2873       if (!MaybeC)
2874         return MaybeC.takeError();
2875       GlobalInitWorklist.back().first->setInitializer(MaybeC.get());
2876     }
2877     GlobalInitWorklist.pop_back();
2878   }
2879 
2880   while (!IndirectSymbolInitWorklist.empty()) {
2881     unsigned ValID = IndirectSymbolInitWorklist.back().second;
2882     if (ValID >= ValueList.size()) {
2883       IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back());
2884     } else {
2885       Expected<Constant *> MaybeC = getValueForInitializer(ValID);
2886       if (!MaybeC)
2887         return MaybeC.takeError();
2888       Constant *C = MaybeC.get();
2889       GlobalValue *GV = IndirectSymbolInitWorklist.back().first;
2890       if (auto *GA = dyn_cast<GlobalAlias>(GV)) {
2891         if (C->getType() != GV->getType())
2892           return error("Alias and aliasee types don't match");
2893         GA->setAliasee(C);
2894       } else if (auto *GI = dyn_cast<GlobalIFunc>(GV)) {
2895         Type *ResolverFTy =
2896             GlobalIFunc::getResolverFunctionType(GI->getValueType());
2897         // Transparently fix up the type for compatibility with older bitcode
2898         GI->setResolver(ConstantExpr::getBitCast(
2899             C, ResolverFTy->getPointerTo(GI->getAddressSpace())));
2900       } else {
2901         return error("Expected an alias or an ifunc");
2902       }
2903     }
2904     IndirectSymbolInitWorklist.pop_back();
2905   }
2906 
2907   while (!FunctionOperandWorklist.empty()) {
2908     FunctionOperandInfo &Info = FunctionOperandWorklist.back();
2909     if (Info.PersonalityFn) {
2910       unsigned ValID = Info.PersonalityFn - 1;
2911       if (ValID < ValueList.size()) {
2912         Expected<Constant *> MaybeC = getValueForInitializer(ValID);
2913         if (!MaybeC)
2914           return MaybeC.takeError();
2915         Info.F->setPersonalityFn(MaybeC.get());
2916         Info.PersonalityFn = 0;
2917       }
2918     }
2919     if (Info.Prefix) {
2920       unsigned ValID = Info.Prefix - 1;
2921       if (ValID < ValueList.size()) {
2922         Expected<Constant *> MaybeC = getValueForInitializer(ValID);
2923         if (!MaybeC)
2924           return MaybeC.takeError();
2925         Info.F->setPrefixData(MaybeC.get());
2926         Info.Prefix = 0;
2927       }
2928     }
2929     if (Info.Prologue) {
2930       unsigned ValID = Info.Prologue - 1;
2931       if (ValID < ValueList.size()) {
2932         Expected<Constant *> MaybeC = getValueForInitializer(ValID);
2933         if (!MaybeC)
2934           return MaybeC.takeError();
2935         Info.F->setPrologueData(MaybeC.get());
2936         Info.Prologue = 0;
2937       }
2938     }
2939     if (Info.PersonalityFn || Info.Prefix || Info.Prologue)
2940       FunctionOperands.push_back(Info);
2941     FunctionOperandWorklist.pop_back();
2942   }
2943 
2944   return Error::success();
2945 }
2946 
2947 APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
2948   SmallVector<uint64_t, 8> Words(Vals.size());
2949   transform(Vals, Words.begin(),
2950                  BitcodeReader::decodeSignRotatedValue);
2951 
2952   return APInt(TypeBits, Words);
2953 }
2954 
2955 Error BitcodeReader::parseConstants() {
2956   if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
2957     return Err;
2958 
2959   SmallVector<uint64_t, 64> Record;
2960 
2961   // Read all the records for this value table.
2962   Type *CurTy = Type::getInt32Ty(Context);
2963   unsigned Int32TyID = getVirtualTypeID(CurTy);
2964   unsigned CurTyID = Int32TyID;
2965   Type *CurElemTy = nullptr;
2966   unsigned NextCstNo = ValueList.size();
2967 
2968   while (true) {
2969     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2970     if (!MaybeEntry)
2971       return MaybeEntry.takeError();
2972     BitstreamEntry Entry = MaybeEntry.get();
2973 
2974     switch (Entry.Kind) {
2975     case BitstreamEntry::SubBlock: // Handled for us already.
2976     case BitstreamEntry::Error:
2977       return error("Malformed block");
2978     case BitstreamEntry::EndBlock:
2979       if (NextCstNo != ValueList.size())
2980         return error("Invalid constant reference");
2981       return Error::success();
2982     case BitstreamEntry::Record:
2983       // The interesting case.
2984       break;
2985     }
2986 
2987     // Read a record.
2988     Record.clear();
2989     Type *VoidType = Type::getVoidTy(Context);
2990     Value *V = nullptr;
2991     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
2992     if (!MaybeBitCode)
2993       return MaybeBitCode.takeError();
2994     switch (unsigned BitCode = MaybeBitCode.get()) {
2995     default:  // Default behavior: unknown constant
2996     case bitc::CST_CODE_UNDEF:     // UNDEF
2997       V = UndefValue::get(CurTy);
2998       break;
2999     case bitc::CST_CODE_POISON:    // POISON
3000       V = PoisonValue::get(CurTy);
3001       break;
3002     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
3003       if (Record.empty())
3004         return error("Invalid settype record");
3005       if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
3006         return error("Invalid settype record");
3007       if (TypeList[Record[0]] == VoidType)
3008         return error("Invalid constant type");
3009       CurTyID = Record[0];
3010       CurTy = TypeList[CurTyID];
3011       CurElemTy = getPtrElementTypeByID(CurTyID);
3012       continue;  // Skip the ValueList manipulation.
3013     case bitc::CST_CODE_NULL:      // NULL
3014       if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy())
3015         return error("Invalid type for a constant null value");
3016       if (auto *TETy = dyn_cast<TargetExtType>(CurTy))
3017         if (!TETy->hasProperty(TargetExtType::HasZeroInit))
3018           return error("Invalid type for a constant null value");
3019       V = Constant::getNullValue(CurTy);
3020       break;
3021     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
3022       if (!CurTy->isIntegerTy() || Record.empty())
3023         return error("Invalid integer const record");
3024       V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
3025       break;
3026     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
3027       if (!CurTy->isIntegerTy() || Record.empty())
3028         return error("Invalid wide integer const record");
3029 
3030       APInt VInt =
3031           readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth());
3032       V = ConstantInt::get(Context, VInt);
3033 
3034       break;
3035     }
3036     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
3037       if (Record.empty())
3038         return error("Invalid float const record");
3039       if (CurTy->isHalfTy())
3040         V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(),
3041                                              APInt(16, (uint16_t)Record[0])));
3042       else if (CurTy->isBFloatTy())
3043         V = ConstantFP::get(Context, APFloat(APFloat::BFloat(),
3044                                              APInt(16, (uint32_t)Record[0])));
3045       else if (CurTy->isFloatTy())
3046         V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(),
3047                                              APInt(32, (uint32_t)Record[0])));
3048       else if (CurTy->isDoubleTy())
3049         V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(),
3050                                              APInt(64, Record[0])));
3051       else if (CurTy->isX86_FP80Ty()) {
3052         // Bits are not stored the same way as a normal i80 APInt, compensate.
3053         uint64_t Rearrange[2];
3054         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
3055         Rearrange[1] = Record[0] >> 48;
3056         V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(),
3057                                              APInt(80, Rearrange)));
3058       } else if (CurTy->isFP128Ty())
3059         V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(),
3060                                              APInt(128, Record)));
3061       else if (CurTy->isPPC_FP128Ty())
3062         V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(),
3063                                              APInt(128, Record)));
3064       else
3065         V = UndefValue::get(CurTy);
3066       break;
3067     }
3068 
3069     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
3070       if (Record.empty())
3071         return error("Invalid aggregate record");
3072 
3073       unsigned Size = Record.size();
3074       SmallVector<unsigned, 16> Elts;
3075       for (unsigned i = 0; i != Size; ++i)
3076         Elts.push_back(Record[i]);
3077 
3078       if (isa<StructType>(CurTy)) {
3079         V = BitcodeConstant::create(
3080             Alloc, CurTy, BitcodeConstant::ConstantStructOpcode, Elts);
3081       } else if (isa<ArrayType>(CurTy)) {
3082         V = BitcodeConstant::create(Alloc, CurTy,
3083                                     BitcodeConstant::ConstantArrayOpcode, Elts);
3084       } else if (isa<VectorType>(CurTy)) {
3085         V = BitcodeConstant::create(
3086             Alloc, CurTy, BitcodeConstant::ConstantVectorOpcode, Elts);
3087       } else {
3088         V = UndefValue::get(CurTy);
3089       }
3090       break;
3091     }
3092     case bitc::CST_CODE_STRING:    // STRING: [values]
3093     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
3094       if (Record.empty())
3095         return error("Invalid string record");
3096 
3097       SmallString<16> Elts(Record.begin(), Record.end());
3098       V = ConstantDataArray::getString(Context, Elts,
3099                                        BitCode == bitc::CST_CODE_CSTRING);
3100       break;
3101     }
3102     case bitc::CST_CODE_DATA: {// DATA: [n x value]
3103       if (Record.empty())
3104         return error("Invalid data record");
3105 
3106       Type *EltTy;
3107       if (auto *Array = dyn_cast<ArrayType>(CurTy))
3108         EltTy = Array->getElementType();
3109       else
3110         EltTy = cast<VectorType>(CurTy)->getElementType();
3111       if (EltTy->isIntegerTy(8)) {
3112         SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
3113         if (isa<VectorType>(CurTy))
3114           V = ConstantDataVector::get(Context, Elts);
3115         else
3116           V = ConstantDataArray::get(Context, Elts);
3117       } else if (EltTy->isIntegerTy(16)) {
3118         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
3119         if (isa<VectorType>(CurTy))
3120           V = ConstantDataVector::get(Context, Elts);
3121         else
3122           V = ConstantDataArray::get(Context, Elts);
3123       } else if (EltTy->isIntegerTy(32)) {
3124         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
3125         if (isa<VectorType>(CurTy))
3126           V = ConstantDataVector::get(Context, Elts);
3127         else
3128           V = ConstantDataArray::get(Context, Elts);
3129       } else if (EltTy->isIntegerTy(64)) {
3130         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
3131         if (isa<VectorType>(CurTy))
3132           V = ConstantDataVector::get(Context, Elts);
3133         else
3134           V = ConstantDataArray::get(Context, Elts);
3135       } else if (EltTy->isHalfTy()) {
3136         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
3137         if (isa<VectorType>(CurTy))
3138           V = ConstantDataVector::getFP(EltTy, Elts);
3139         else
3140           V = ConstantDataArray::getFP(EltTy, Elts);
3141       } else if (EltTy->isBFloatTy()) {
3142         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
3143         if (isa<VectorType>(CurTy))
3144           V = ConstantDataVector::getFP(EltTy, Elts);
3145         else
3146           V = ConstantDataArray::getFP(EltTy, Elts);
3147       } else if (EltTy->isFloatTy()) {
3148         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
3149         if (isa<VectorType>(CurTy))
3150           V = ConstantDataVector::getFP(EltTy, Elts);
3151         else
3152           V = ConstantDataArray::getFP(EltTy, Elts);
3153       } else if (EltTy->isDoubleTy()) {
3154         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
3155         if (isa<VectorType>(CurTy))
3156           V = ConstantDataVector::getFP(EltTy, Elts);
3157         else
3158           V = ConstantDataArray::getFP(EltTy, Elts);
3159       } else {
3160         return error("Invalid type for value");
3161       }
3162       break;
3163     }
3164     case bitc::CST_CODE_CE_UNOP: {  // CE_UNOP: [opcode, opval]
3165       if (Record.size() < 2)
3166         return error("Invalid unary op constexpr record");
3167       int Opc = getDecodedUnaryOpcode(Record[0], CurTy);
3168       if (Opc < 0) {
3169         V = UndefValue::get(CurTy);  // Unknown unop.
3170       } else {
3171         V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[1]);
3172       }
3173       break;
3174     }
3175     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
3176       if (Record.size() < 3)
3177         return error("Invalid binary op constexpr record");
3178       int Opc = getDecodedBinaryOpcode(Record[0], CurTy);
3179       if (Opc < 0) {
3180         V = UndefValue::get(CurTy);  // Unknown binop.
3181       } else {
3182         uint8_t Flags = 0;
3183         if (Record.size() >= 4) {
3184           if (Opc == Instruction::Add ||
3185               Opc == Instruction::Sub ||
3186               Opc == Instruction::Mul ||
3187               Opc == Instruction::Shl) {
3188             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
3189               Flags |= OverflowingBinaryOperator::NoSignedWrap;
3190             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
3191               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
3192           } else if (Opc == Instruction::SDiv ||
3193                      Opc == Instruction::UDiv ||
3194                      Opc == Instruction::LShr ||
3195                      Opc == Instruction::AShr) {
3196             if (Record[3] & (1 << bitc::PEO_EXACT))
3197               Flags |= PossiblyExactOperator::IsExact;
3198           }
3199         }
3200         V = BitcodeConstant::create(Alloc, CurTy, {(uint8_t)Opc, Flags},
3201                                     {(unsigned)Record[1], (unsigned)Record[2]});
3202       }
3203       break;
3204     }
3205     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
3206       if (Record.size() < 3)
3207         return error("Invalid cast constexpr record");
3208       int Opc = getDecodedCastOpcode(Record[0]);
3209       if (Opc < 0) {
3210         V = UndefValue::get(CurTy);  // Unknown cast.
3211       } else {
3212         unsigned OpTyID = Record[1];
3213         Type *OpTy = getTypeByID(OpTyID);
3214         if (!OpTy)
3215           return error("Invalid cast constexpr record");
3216         V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[2]);
3217       }
3218       break;
3219     }
3220     case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands]
3221     case bitc::CST_CODE_CE_GEP: // [ty, n x operands]
3222     case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x
3223                                                      // operands]
3224       if (Record.size() < 2)
3225         return error("Constant GEP record must have at least two elements");
3226       unsigned OpNum = 0;
3227       Type *PointeeType = nullptr;
3228       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX ||
3229           Record.size() % 2)
3230         PointeeType = getTypeByID(Record[OpNum++]);
3231 
3232       bool InBounds = false;
3233       std::optional<unsigned> InRangeIndex;
3234       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) {
3235         uint64_t Op = Record[OpNum++];
3236         InBounds = Op & 1;
3237         InRangeIndex = Op >> 1;
3238       } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
3239         InBounds = true;
3240 
3241       SmallVector<unsigned, 16> Elts;
3242       unsigned BaseTypeID = Record[OpNum];
3243       while (OpNum != Record.size()) {
3244         unsigned ElTyID = Record[OpNum++];
3245         Type *ElTy = getTypeByID(ElTyID);
3246         if (!ElTy)
3247           return error("Invalid getelementptr constexpr record");
3248         Elts.push_back(Record[OpNum++]);
3249       }
3250 
3251       if (Elts.size() < 1)
3252         return error("Invalid gep with no operands");
3253 
3254       Type *BaseType = getTypeByID(BaseTypeID);
3255       if (isa<VectorType>(BaseType)) {
3256         BaseTypeID = getContainedTypeID(BaseTypeID, 0);
3257         BaseType = getTypeByID(BaseTypeID);
3258       }
3259 
3260       PointerType *OrigPtrTy = dyn_cast_or_null<PointerType>(BaseType);
3261       if (!OrigPtrTy)
3262         return error("GEP base operand must be pointer or vector of pointer");
3263 
3264       if (!PointeeType) {
3265         PointeeType = getPtrElementTypeByID(BaseTypeID);
3266         if (!PointeeType)
3267           return error("Missing element type for old-style constant GEP");
3268       }
3269 
3270       V = BitcodeConstant::create(Alloc, CurTy,
3271                                   {Instruction::GetElementPtr, InBounds,
3272                                    InRangeIndex.value_or(-1), PointeeType},
3273                                   Elts);
3274       break;
3275     }
3276     case bitc::CST_CODE_CE_SELECT: {  // CE_SELECT: [opval#, opval#, opval#]
3277       if (Record.size() < 3)
3278         return error("Invalid select constexpr record");
3279 
3280       V = BitcodeConstant::create(
3281           Alloc, CurTy, Instruction::Select,
3282           {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]});
3283       break;
3284     }
3285     case bitc::CST_CODE_CE_EXTRACTELT
3286         : { // CE_EXTRACTELT: [opty, opval, opty, opval]
3287       if (Record.size() < 3)
3288         return error("Invalid extractelement constexpr record");
3289       unsigned OpTyID = Record[0];
3290       VectorType *OpTy =
3291         dyn_cast_or_null<VectorType>(getTypeByID(OpTyID));
3292       if (!OpTy)
3293         return error("Invalid extractelement constexpr record");
3294       unsigned IdxRecord;
3295       if (Record.size() == 4) {
3296         unsigned IdxTyID = Record[2];
3297         Type *IdxTy = getTypeByID(IdxTyID);
3298         if (!IdxTy)
3299           return error("Invalid extractelement constexpr record");
3300         IdxRecord = Record[3];
3301       } else {
3302         // Deprecated, but still needed to read old bitcode files.
3303         IdxRecord = Record[2];
3304       }
3305       V = BitcodeConstant::create(Alloc, CurTy, Instruction::ExtractElement,
3306                                   {(unsigned)Record[1], IdxRecord});
3307       break;
3308     }
3309     case bitc::CST_CODE_CE_INSERTELT
3310         : { // CE_INSERTELT: [opval, opval, opty, opval]
3311       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
3312       if (Record.size() < 3 || !OpTy)
3313         return error("Invalid insertelement constexpr record");
3314       unsigned IdxRecord;
3315       if (Record.size() == 4) {
3316         unsigned IdxTyID = Record[2];
3317         Type *IdxTy = getTypeByID(IdxTyID);
3318         if (!IdxTy)
3319           return error("Invalid insertelement constexpr record");
3320         IdxRecord = Record[3];
3321       } else {
3322         // Deprecated, but still needed to read old bitcode files.
3323         IdxRecord = Record[2];
3324       }
3325       V = BitcodeConstant::create(
3326           Alloc, CurTy, Instruction::InsertElement,
3327           {(unsigned)Record[0], (unsigned)Record[1], IdxRecord});
3328       break;
3329     }
3330     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
3331       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
3332       if (Record.size() < 3 || !OpTy)
3333         return error("Invalid shufflevector constexpr record");
3334       V = BitcodeConstant::create(
3335           Alloc, CurTy, Instruction::ShuffleVector,
3336           {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]});
3337       break;
3338     }
3339     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
3340       VectorType *RTy = dyn_cast<VectorType>(CurTy);
3341       VectorType *OpTy =
3342         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
3343       if (Record.size() < 4 || !RTy || !OpTy)
3344         return error("Invalid shufflevector constexpr record");
3345       V = BitcodeConstant::create(
3346           Alloc, CurTy, Instruction::ShuffleVector,
3347           {(unsigned)Record[1], (unsigned)Record[2], (unsigned)Record[3]});
3348       break;
3349     }
3350     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
3351       if (Record.size() < 4)
3352         return error("Invalid cmp constexpt record");
3353       unsigned OpTyID = Record[0];
3354       Type *OpTy = getTypeByID(OpTyID);
3355       if (!OpTy)
3356         return error("Invalid cmp constexpr record");
3357       V = BitcodeConstant::create(
3358           Alloc, CurTy,
3359           {(uint8_t)(OpTy->isFPOrFPVectorTy() ? Instruction::FCmp
3360                                               : Instruction::ICmp),
3361            (uint8_t)Record[3]},
3362           {(unsigned)Record[1], (unsigned)Record[2]});
3363       break;
3364     }
3365     // This maintains backward compatibility, pre-asm dialect keywords.
3366     // Deprecated, but still needed to read old bitcode files.
3367     case bitc::CST_CODE_INLINEASM_OLD: {
3368       if (Record.size() < 2)
3369         return error("Invalid inlineasm record");
3370       std::string AsmStr, ConstrStr;
3371       bool HasSideEffects = Record[0] & 1;
3372       bool IsAlignStack = Record[0] >> 1;
3373       unsigned AsmStrSize = Record[1];
3374       if (2+AsmStrSize >= Record.size())
3375         return error("Invalid inlineasm record");
3376       unsigned ConstStrSize = Record[2+AsmStrSize];
3377       if (3+AsmStrSize+ConstStrSize > Record.size())
3378         return error("Invalid inlineasm record");
3379 
3380       for (unsigned i = 0; i != AsmStrSize; ++i)
3381         AsmStr += (char)Record[2+i];
3382       for (unsigned i = 0; i != ConstStrSize; ++i)
3383         ConstrStr += (char)Record[3+AsmStrSize+i];
3384       UpgradeInlineAsmString(&AsmStr);
3385       if (!CurElemTy)
3386         return error("Missing element type for old-style inlineasm");
3387       V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr,
3388                          HasSideEffects, IsAlignStack);
3389       break;
3390     }
3391     // This version adds support for the asm dialect keywords (e.g.,
3392     // inteldialect).
3393     case bitc::CST_CODE_INLINEASM_OLD2: {
3394       if (Record.size() < 2)
3395         return error("Invalid inlineasm record");
3396       std::string AsmStr, ConstrStr;
3397       bool HasSideEffects = Record[0] & 1;
3398       bool IsAlignStack = (Record[0] >> 1) & 1;
3399       unsigned AsmDialect = Record[0] >> 2;
3400       unsigned AsmStrSize = Record[1];
3401       if (2+AsmStrSize >= Record.size())
3402         return error("Invalid inlineasm record");
3403       unsigned ConstStrSize = Record[2+AsmStrSize];
3404       if (3+AsmStrSize+ConstStrSize > Record.size())
3405         return error("Invalid inlineasm record");
3406 
3407       for (unsigned i = 0; i != AsmStrSize; ++i)
3408         AsmStr += (char)Record[2+i];
3409       for (unsigned i = 0; i != ConstStrSize; ++i)
3410         ConstrStr += (char)Record[3+AsmStrSize+i];
3411       UpgradeInlineAsmString(&AsmStr);
3412       if (!CurElemTy)
3413         return error("Missing element type for old-style inlineasm");
3414       V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr,
3415                          HasSideEffects, IsAlignStack,
3416                          InlineAsm::AsmDialect(AsmDialect));
3417       break;
3418     }
3419     // This version adds support for the unwind keyword.
3420     case bitc::CST_CODE_INLINEASM_OLD3: {
3421       if (Record.size() < 2)
3422         return error("Invalid inlineasm record");
3423       unsigned OpNum = 0;
3424       std::string AsmStr, ConstrStr;
3425       bool HasSideEffects = Record[OpNum] & 1;
3426       bool IsAlignStack = (Record[OpNum] >> 1) & 1;
3427       unsigned AsmDialect = (Record[OpNum] >> 2) & 1;
3428       bool CanThrow = (Record[OpNum] >> 3) & 1;
3429       ++OpNum;
3430       unsigned AsmStrSize = Record[OpNum];
3431       ++OpNum;
3432       if (OpNum + AsmStrSize >= Record.size())
3433         return error("Invalid inlineasm record");
3434       unsigned ConstStrSize = Record[OpNum + AsmStrSize];
3435       if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size())
3436         return error("Invalid inlineasm record");
3437 
3438       for (unsigned i = 0; i != AsmStrSize; ++i)
3439         AsmStr += (char)Record[OpNum + i];
3440       ++OpNum;
3441       for (unsigned i = 0; i != ConstStrSize; ++i)
3442         ConstrStr += (char)Record[OpNum + AsmStrSize + i];
3443       UpgradeInlineAsmString(&AsmStr);
3444       if (!CurElemTy)
3445         return error("Missing element type for old-style inlineasm");
3446       V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr,
3447                          HasSideEffects, IsAlignStack,
3448                          InlineAsm::AsmDialect(AsmDialect), CanThrow);
3449       break;
3450     }
3451     // This version adds explicit function type.
3452     case bitc::CST_CODE_INLINEASM: {
3453       if (Record.size() < 3)
3454         return error("Invalid inlineasm record");
3455       unsigned OpNum = 0;
3456       auto *FnTy = dyn_cast_or_null<FunctionType>(getTypeByID(Record[OpNum]));
3457       ++OpNum;
3458       if (!FnTy)
3459         return error("Invalid inlineasm record");
3460       std::string AsmStr, ConstrStr;
3461       bool HasSideEffects = Record[OpNum] & 1;
3462       bool IsAlignStack = (Record[OpNum] >> 1) & 1;
3463       unsigned AsmDialect = (Record[OpNum] >> 2) & 1;
3464       bool CanThrow = (Record[OpNum] >> 3) & 1;
3465       ++OpNum;
3466       unsigned AsmStrSize = Record[OpNum];
3467       ++OpNum;
3468       if (OpNum + AsmStrSize >= Record.size())
3469         return error("Invalid inlineasm record");
3470       unsigned ConstStrSize = Record[OpNum + AsmStrSize];
3471       if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size())
3472         return error("Invalid inlineasm record");
3473 
3474       for (unsigned i = 0; i != AsmStrSize; ++i)
3475         AsmStr += (char)Record[OpNum + i];
3476       ++OpNum;
3477       for (unsigned i = 0; i != ConstStrSize; ++i)
3478         ConstrStr += (char)Record[OpNum + AsmStrSize + i];
3479       UpgradeInlineAsmString(&AsmStr);
3480       V = InlineAsm::get(FnTy, AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
3481                          InlineAsm::AsmDialect(AsmDialect), CanThrow);
3482       break;
3483     }
3484     case bitc::CST_CODE_BLOCKADDRESS:{
3485       if (Record.size() < 3)
3486         return error("Invalid blockaddress record");
3487       unsigned FnTyID = Record[0];
3488       Type *FnTy = getTypeByID(FnTyID);
3489       if (!FnTy)
3490         return error("Invalid blockaddress record");
3491       V = BitcodeConstant::create(
3492           Alloc, CurTy,
3493           {BitcodeConstant::BlockAddressOpcode, 0, (unsigned)Record[2]},
3494           Record[1]);
3495       break;
3496     }
3497     case bitc::CST_CODE_DSO_LOCAL_EQUIVALENT: {
3498       if (Record.size() < 2)
3499         return error("Invalid dso_local record");
3500       unsigned GVTyID = Record[0];
3501       Type *GVTy = getTypeByID(GVTyID);
3502       if (!GVTy)
3503         return error("Invalid dso_local record");
3504       V = BitcodeConstant::create(
3505           Alloc, CurTy, BitcodeConstant::DSOLocalEquivalentOpcode, Record[1]);
3506       break;
3507     }
3508     case bitc::CST_CODE_NO_CFI_VALUE: {
3509       if (Record.size() < 2)
3510         return error("Invalid no_cfi record");
3511       unsigned GVTyID = Record[0];
3512       Type *GVTy = getTypeByID(GVTyID);
3513       if (!GVTy)
3514         return error("Invalid no_cfi record");
3515       V = BitcodeConstant::create(Alloc, CurTy, BitcodeConstant::NoCFIOpcode,
3516                                   Record[1]);
3517       break;
3518     }
3519     }
3520 
3521     assert(V->getType() == getTypeByID(CurTyID) && "Incorrect result type ID");
3522     if (Error Err = ValueList.assignValue(NextCstNo, V, CurTyID))
3523       return Err;
3524     ++NextCstNo;
3525   }
3526 }
3527 
3528 Error BitcodeReader::parseUseLists() {
3529   if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
3530     return Err;
3531 
3532   // Read all the records.
3533   SmallVector<uint64_t, 64> Record;
3534 
3535   while (true) {
3536     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
3537     if (!MaybeEntry)
3538       return MaybeEntry.takeError();
3539     BitstreamEntry Entry = MaybeEntry.get();
3540 
3541     switch (Entry.Kind) {
3542     case BitstreamEntry::SubBlock: // Handled for us already.
3543     case BitstreamEntry::Error:
3544       return error("Malformed block");
3545     case BitstreamEntry::EndBlock:
3546       return Error::success();
3547     case BitstreamEntry::Record:
3548       // The interesting case.
3549       break;
3550     }
3551 
3552     // Read a use list record.
3553     Record.clear();
3554     bool IsBB = false;
3555     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
3556     if (!MaybeRecord)
3557       return MaybeRecord.takeError();
3558     switch (MaybeRecord.get()) {
3559     default:  // Default behavior: unknown type.
3560       break;
3561     case bitc::USELIST_CODE_BB:
3562       IsBB = true;
3563       [[fallthrough]];
3564     case bitc::USELIST_CODE_DEFAULT: {
3565       unsigned RecordLength = Record.size();
3566       if (RecordLength < 3)
3567         // Records should have at least an ID and two indexes.
3568         return error("Invalid record");
3569       unsigned ID = Record.pop_back_val();
3570 
3571       Value *V;
3572       if (IsBB) {
3573         assert(ID < FunctionBBs.size() && "Basic block not found");
3574         V = FunctionBBs[ID];
3575       } else
3576         V = ValueList[ID];
3577       unsigned NumUses = 0;
3578       SmallDenseMap<const Use *, unsigned, 16> Order;
3579       for (const Use &U : V->materialized_uses()) {
3580         if (++NumUses > Record.size())
3581           break;
3582         Order[&U] = Record[NumUses - 1];
3583       }
3584       if (Order.size() != Record.size() || NumUses > Record.size())
3585         // Mismatches can happen if the functions are being materialized lazily
3586         // (out-of-order), or a value has been upgraded.
3587         break;
3588 
3589       V->sortUseList([&](const Use &L, const Use &R) {
3590         return Order.lookup(&L) < Order.lookup(&R);
3591       });
3592       break;
3593     }
3594     }
3595   }
3596 }
3597 
3598 /// When we see the block for metadata, remember where it is and then skip it.
3599 /// This lets us lazily deserialize the metadata.
3600 Error BitcodeReader::rememberAndSkipMetadata() {
3601   // Save the current stream state.
3602   uint64_t CurBit = Stream.GetCurrentBitNo();
3603   DeferredMetadataInfo.push_back(CurBit);
3604 
3605   // Skip over the block for now.
3606   if (Error Err = Stream.SkipBlock())
3607     return Err;
3608   return Error::success();
3609 }
3610 
3611 Error BitcodeReader::materializeMetadata() {
3612   for (uint64_t BitPos : DeferredMetadataInfo) {
3613     // Move the bit stream to the saved position.
3614     if (Error JumpFailed = Stream.JumpToBit(BitPos))
3615       return JumpFailed;
3616     if (Error Err = MDLoader->parseModuleMetadata())
3617       return Err;
3618   }
3619 
3620   // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level
3621   // metadata. Only upgrade if the new option doesn't exist to avoid upgrade
3622   // multiple times.
3623   if (!TheModule->getNamedMetadata("llvm.linker.options")) {
3624     if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) {
3625       NamedMDNode *LinkerOpts =
3626           TheModule->getOrInsertNamedMetadata("llvm.linker.options");
3627       for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands())
3628         LinkerOpts->addOperand(cast<MDNode>(MDOptions));
3629     }
3630   }
3631 
3632   DeferredMetadataInfo.clear();
3633   return Error::success();
3634 }
3635 
3636 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
3637 
3638 /// When we see the block for a function body, remember where it is and then
3639 /// skip it.  This lets us lazily deserialize the functions.
3640 Error BitcodeReader::rememberAndSkipFunctionBody() {
3641   // Get the function we are talking about.
3642   if (FunctionsWithBodies.empty())
3643     return error("Insufficient function protos");
3644 
3645   Function *Fn = FunctionsWithBodies.back();
3646   FunctionsWithBodies.pop_back();
3647 
3648   // Save the current stream state.
3649   uint64_t CurBit = Stream.GetCurrentBitNo();
3650   assert(
3651       (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) &&
3652       "Mismatch between VST and scanned function offsets");
3653   DeferredFunctionInfo[Fn] = CurBit;
3654 
3655   // Skip over the function block for now.
3656   if (Error Err = Stream.SkipBlock())
3657     return Err;
3658   return Error::success();
3659 }
3660 
3661 Error BitcodeReader::globalCleanup() {
3662   // Patch the initializers for globals and aliases up.
3663   if (Error Err = resolveGlobalAndIndirectSymbolInits())
3664     return Err;
3665   if (!GlobalInits.empty() || !IndirectSymbolInits.empty())
3666     return error("Malformed global initializer set");
3667 
3668   // Look for intrinsic functions which need to be upgraded at some point
3669   // and functions that need to have their function attributes upgraded.
3670   for (Function &F : *TheModule) {
3671     MDLoader->upgradeDebugIntrinsics(F);
3672     Function *NewFn;
3673     if (UpgradeIntrinsicFunction(&F, NewFn))
3674       UpgradedIntrinsics[&F] = NewFn;
3675     // Look for functions that rely on old function attribute behavior.
3676     UpgradeFunctionAttributes(F);
3677   }
3678 
3679   // Look for global variables which need to be renamed.
3680   std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables;
3681   for (GlobalVariable &GV : TheModule->globals())
3682     if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV))
3683       UpgradedVariables.emplace_back(&GV, Upgraded);
3684   for (auto &Pair : UpgradedVariables) {
3685     Pair.first->eraseFromParent();
3686     TheModule->insertGlobalVariable(Pair.second);
3687   }
3688 
3689   // Force deallocation of memory for these vectors to favor the client that
3690   // want lazy deserialization.
3691   std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits);
3692   std::vector<std::pair<GlobalValue *, unsigned>>().swap(IndirectSymbolInits);
3693   return Error::success();
3694 }
3695 
3696 /// Support for lazy parsing of function bodies. This is required if we
3697 /// either have an old bitcode file without a VST forward declaration record,
3698 /// or if we have an anonymous function being materialized, since anonymous
3699 /// functions do not have a name and are therefore not in the VST.
3700 Error BitcodeReader::rememberAndSkipFunctionBodies() {
3701   if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit))
3702     return JumpFailed;
3703 
3704   if (Stream.AtEndOfStream())
3705     return error("Could not find function in stream");
3706 
3707   if (!SeenFirstFunctionBody)
3708     return error("Trying to materialize functions before seeing function blocks");
3709 
3710   // An old bitcode file with the symbol table at the end would have
3711   // finished the parse greedily.
3712   assert(SeenValueSymbolTable);
3713 
3714   SmallVector<uint64_t, 64> Record;
3715 
3716   while (true) {
3717     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3718     if (!MaybeEntry)
3719       return MaybeEntry.takeError();
3720     llvm::BitstreamEntry Entry = MaybeEntry.get();
3721 
3722     switch (Entry.Kind) {
3723     default:
3724       return error("Expect SubBlock");
3725     case BitstreamEntry::SubBlock:
3726       switch (Entry.ID) {
3727       default:
3728         return error("Expect function block");
3729       case bitc::FUNCTION_BLOCK_ID:
3730         if (Error Err = rememberAndSkipFunctionBody())
3731           return Err;
3732         NextUnreadBit = Stream.GetCurrentBitNo();
3733         return Error::success();
3734       }
3735     }
3736   }
3737 }
3738 
3739 Error BitcodeReaderBase::readBlockInfo() {
3740   Expected<std::optional<BitstreamBlockInfo>> MaybeNewBlockInfo =
3741       Stream.ReadBlockInfoBlock();
3742   if (!MaybeNewBlockInfo)
3743     return MaybeNewBlockInfo.takeError();
3744   std::optional<BitstreamBlockInfo> NewBlockInfo =
3745       std::move(MaybeNewBlockInfo.get());
3746   if (!NewBlockInfo)
3747     return error("Malformed block");
3748   BlockInfo = std::move(*NewBlockInfo);
3749   return Error::success();
3750 }
3751 
3752 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) {
3753   // v1: [selection_kind, name]
3754   // v2: [strtab_offset, strtab_size, selection_kind]
3755   StringRef Name;
3756   std::tie(Name, Record) = readNameFromStrtab(Record);
3757 
3758   if (Record.empty())
3759     return error("Invalid record");
3760   Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
3761   std::string OldFormatName;
3762   if (!UseStrtab) {
3763     if (Record.size() < 2)
3764       return error("Invalid record");
3765     unsigned ComdatNameSize = Record[1];
3766     if (ComdatNameSize > Record.size() - 2)
3767       return error("Comdat name size too large");
3768     OldFormatName.reserve(ComdatNameSize);
3769     for (unsigned i = 0; i != ComdatNameSize; ++i)
3770       OldFormatName += (char)Record[2 + i];
3771     Name = OldFormatName;
3772   }
3773   Comdat *C = TheModule->getOrInsertComdat(Name);
3774   C->setSelectionKind(SK);
3775   ComdatList.push_back(C);
3776   return Error::success();
3777 }
3778 
3779 static void inferDSOLocal(GlobalValue *GV) {
3780   // infer dso_local from linkage and visibility if it is not encoded.
3781   if (GV->hasLocalLinkage() ||
3782       (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()))
3783     GV->setDSOLocal(true);
3784 }
3785 
3786 GlobalValue::SanitizerMetadata deserializeSanitizerMetadata(unsigned V) {
3787   GlobalValue::SanitizerMetadata Meta;
3788   if (V & (1 << 0))
3789     Meta.NoAddress = true;
3790   if (V & (1 << 1))
3791     Meta.NoHWAddress = true;
3792   if (V & (1 << 2))
3793     Meta.Memtag = true;
3794   if (V & (1 << 3))
3795     Meta.IsDynInit = true;
3796   return Meta;
3797 }
3798 
3799 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) {
3800   // v1: [pointer type, isconst, initid, linkage, alignment, section,
3801   // visibility, threadlocal, unnamed_addr, externally_initialized,
3802   // dllstorageclass, comdat, attributes, preemption specifier,
3803   // partition strtab offset, partition strtab size] (name in VST)
3804   // v2: [strtab_offset, strtab_size, v1]
3805   StringRef Name;
3806   std::tie(Name, Record) = readNameFromStrtab(Record);
3807 
3808   if (Record.size() < 6)
3809     return error("Invalid record");
3810   unsigned TyID = Record[0];
3811   Type *Ty = getTypeByID(TyID);
3812   if (!Ty)
3813     return error("Invalid record");
3814   bool isConstant = Record[1] & 1;
3815   bool explicitType = Record[1] & 2;
3816   unsigned AddressSpace;
3817   if (explicitType) {
3818     AddressSpace = Record[1] >> 2;
3819   } else {
3820     if (!Ty->isPointerTy())
3821       return error("Invalid type for value");
3822     AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
3823     TyID = getContainedTypeID(TyID);
3824     Ty = getTypeByID(TyID);
3825     if (!Ty)
3826       return error("Missing element type for old-style global");
3827   }
3828 
3829   uint64_t RawLinkage = Record[3];
3830   GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
3831   MaybeAlign Alignment;
3832   if (Error Err = parseAlignmentValue(Record[4], Alignment))
3833     return Err;
3834   std::string Section;
3835   if (Record[5]) {
3836     if (Record[5] - 1 >= SectionTable.size())
3837       return error("Invalid ID");
3838     Section = SectionTable[Record[5] - 1];
3839   }
3840   GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
3841   // Local linkage must have default visibility.
3842   // auto-upgrade `hidden` and `protected` for old bitcode.
3843   if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
3844     Visibility = getDecodedVisibility(Record[6]);
3845 
3846   GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
3847   if (Record.size() > 7)
3848     TLM = getDecodedThreadLocalMode(Record[7]);
3849 
3850   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3851   if (Record.size() > 8)
3852     UnnamedAddr = getDecodedUnnamedAddrType(Record[8]);
3853 
3854   bool ExternallyInitialized = false;
3855   if (Record.size() > 9)
3856     ExternallyInitialized = Record[9];
3857 
3858   GlobalVariable *NewGV =
3859       new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name,
3860                          nullptr, TLM, AddressSpace, ExternallyInitialized);
3861   if (Alignment)
3862     NewGV->setAlignment(*Alignment);
3863   if (!Section.empty())
3864     NewGV->setSection(Section);
3865   NewGV->setVisibility(Visibility);
3866   NewGV->setUnnamedAddr(UnnamedAddr);
3867 
3868   if (Record.size() > 10) {
3869     // A GlobalValue with local linkage cannot have a DLL storage class.
3870     if (!NewGV->hasLocalLinkage()) {
3871       NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10]));
3872     }
3873   } else {
3874     upgradeDLLImportExportLinkage(NewGV, RawLinkage);
3875   }
3876 
3877   ValueList.push_back(NewGV, getVirtualTypeID(NewGV->getType(), TyID));
3878 
3879   // Remember which value to use for the global initializer.
3880   if (unsigned InitID = Record[2])
3881     GlobalInits.push_back(std::make_pair(NewGV, InitID - 1));
3882 
3883   if (Record.size() > 11) {
3884     if (unsigned ComdatID = Record[11]) {
3885       if (ComdatID > ComdatList.size())
3886         return error("Invalid global variable comdat ID");
3887       NewGV->setComdat(ComdatList[ComdatID - 1]);
3888     }
3889   } else if (hasImplicitComdat(RawLinkage)) {
3890     ImplicitComdatObjects.insert(NewGV);
3891   }
3892 
3893   if (Record.size() > 12) {
3894     auto AS = getAttributes(Record[12]).getFnAttrs();
3895     NewGV->setAttributes(AS);
3896   }
3897 
3898   if (Record.size() > 13) {
3899     NewGV->setDSOLocal(getDecodedDSOLocal(Record[13]));
3900   }
3901   inferDSOLocal(NewGV);
3902 
3903   // Check whether we have enough values to read a partition name.
3904   if (Record.size() > 15)
3905     NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15]));
3906 
3907   if (Record.size() > 16 && Record[16]) {
3908     llvm::GlobalValue::SanitizerMetadata Meta =
3909         deserializeSanitizerMetadata(Record[16]);
3910     NewGV->setSanitizerMetadata(Meta);
3911   }
3912 
3913   return Error::success();
3914 }
3915 
3916 void BitcodeReader::callValueTypeCallback(Value *F, unsigned TypeID) {
3917   if (ValueTypeCallback) {
3918     (*ValueTypeCallback)(
3919         F, TypeID, [this](unsigned I) { return getTypeByID(I); },
3920         [this](unsigned I, unsigned J) { return getContainedTypeID(I, J); });
3921   }
3922 }
3923 
3924 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) {
3925   // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section,
3926   // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat,
3927   // prefixdata,  personalityfn, preemption specifier, addrspace] (name in VST)
3928   // v2: [strtab_offset, strtab_size, v1]
3929   StringRef Name;
3930   std::tie(Name, Record) = readNameFromStrtab(Record);
3931 
3932   if (Record.size() < 8)
3933     return error("Invalid record");
3934   unsigned FTyID = Record[0];
3935   Type *FTy = getTypeByID(FTyID);
3936   if (!FTy)
3937     return error("Invalid record");
3938   if (isa<PointerType>(FTy)) {
3939     FTyID = getContainedTypeID(FTyID, 0);
3940     FTy = getTypeByID(FTyID);
3941     if (!FTy)
3942       return error("Missing element type for old-style function");
3943   }
3944 
3945   if (!isa<FunctionType>(FTy))
3946     return error("Invalid type for value");
3947   auto CC = static_cast<CallingConv::ID>(Record[1]);
3948   if (CC & ~CallingConv::MaxID)
3949     return error("Invalid calling convention ID");
3950 
3951   unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace();
3952   if (Record.size() > 16)
3953     AddrSpace = Record[16];
3954 
3955   Function *Func =
3956       Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage,
3957                        AddrSpace, Name, TheModule);
3958 
3959   assert(Func->getFunctionType() == FTy &&
3960          "Incorrect fully specified type provided for function");
3961   FunctionTypeIDs[Func] = FTyID;
3962 
3963   Func->setCallingConv(CC);
3964   bool isProto = Record[2];
3965   uint64_t RawLinkage = Record[3];
3966   Func->setLinkage(getDecodedLinkage(RawLinkage));
3967   Func->setAttributes(getAttributes(Record[4]));
3968   callValueTypeCallback(Func, FTyID);
3969 
3970   // Upgrade any old-style byval or sret without a type by propagating the
3971   // argument's pointee type. There should be no opaque pointers where the byval
3972   // type is implicit.
3973   for (unsigned i = 0; i != Func->arg_size(); ++i) {
3974     for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet,
3975                                      Attribute::InAlloca}) {
3976       if (!Func->hasParamAttribute(i, Kind))
3977         continue;
3978 
3979       if (Func->getParamAttribute(i, Kind).getValueAsType())
3980         continue;
3981 
3982       Func->removeParamAttr(i, Kind);
3983 
3984       unsigned ParamTypeID = getContainedTypeID(FTyID, i + 1);
3985       Type *PtrEltTy = getPtrElementTypeByID(ParamTypeID);
3986       if (!PtrEltTy)
3987         return error("Missing param element type for attribute upgrade");
3988 
3989       Attribute NewAttr;
3990       switch (Kind) {
3991       case Attribute::ByVal:
3992         NewAttr = Attribute::getWithByValType(Context, PtrEltTy);
3993         break;
3994       case Attribute::StructRet:
3995         NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy);
3996         break;
3997       case Attribute::InAlloca:
3998         NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy);
3999         break;
4000       default:
4001         llvm_unreachable("not an upgraded type attribute");
4002       }
4003 
4004       Func->addParamAttr(i, NewAttr);
4005     }
4006   }
4007 
4008   if (Func->getCallingConv() == CallingConv::X86_INTR &&
4009       !Func->arg_empty() && !Func->hasParamAttribute(0, Attribute::ByVal)) {
4010     unsigned ParamTypeID = getContainedTypeID(FTyID, 1);
4011     Type *ByValTy = getPtrElementTypeByID(ParamTypeID);
4012     if (!ByValTy)
4013       return error("Missing param element type for x86_intrcc upgrade");
4014     Attribute NewAttr = Attribute::getWithByValType(Context, ByValTy);
4015     Func->addParamAttr(0, NewAttr);
4016   }
4017 
4018   MaybeAlign Alignment;
4019   if (Error Err = parseAlignmentValue(Record[5], Alignment))
4020     return Err;
4021   if (Alignment)
4022     Func->setAlignment(*Alignment);
4023   if (Record[6]) {
4024     if (Record[6] - 1 >= SectionTable.size())
4025       return error("Invalid ID");
4026     Func->setSection(SectionTable[Record[6] - 1]);
4027   }
4028   // Local linkage must have default visibility.
4029   // auto-upgrade `hidden` and `protected` for old bitcode.
4030   if (!Func->hasLocalLinkage())
4031     Func->setVisibility(getDecodedVisibility(Record[7]));
4032   if (Record.size() > 8 && Record[8]) {
4033     if (Record[8] - 1 >= GCTable.size())
4034       return error("Invalid ID");
4035     Func->setGC(GCTable[Record[8] - 1]);
4036   }
4037   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
4038   if (Record.size() > 9)
4039     UnnamedAddr = getDecodedUnnamedAddrType(Record[9]);
4040   Func->setUnnamedAddr(UnnamedAddr);
4041 
4042   FunctionOperandInfo OperandInfo = {Func, 0, 0, 0};
4043   if (Record.size() > 10)
4044     OperandInfo.Prologue = Record[10];
4045 
4046   if (Record.size() > 11) {
4047     // A GlobalValue with local linkage cannot have a DLL storage class.
4048     if (!Func->hasLocalLinkage()) {
4049       Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11]));
4050     }
4051   } else {
4052     upgradeDLLImportExportLinkage(Func, RawLinkage);
4053   }
4054 
4055   if (Record.size() > 12) {
4056     if (unsigned ComdatID = Record[12]) {
4057       if (ComdatID > ComdatList.size())
4058         return error("Invalid function comdat ID");
4059       Func->setComdat(ComdatList[ComdatID - 1]);
4060     }
4061   } else if (hasImplicitComdat(RawLinkage)) {
4062     ImplicitComdatObjects.insert(Func);
4063   }
4064 
4065   if (Record.size() > 13)
4066     OperandInfo.Prefix = Record[13];
4067 
4068   if (Record.size() > 14)
4069     OperandInfo.PersonalityFn = Record[14];
4070 
4071   if (Record.size() > 15) {
4072     Func->setDSOLocal(getDecodedDSOLocal(Record[15]));
4073   }
4074   inferDSOLocal(Func);
4075 
4076   // Record[16] is the address space number.
4077 
4078   // Check whether we have enough values to read a partition name. Also make
4079   // sure Strtab has enough values.
4080   if (Record.size() > 18 && Strtab.data() &&
4081       Record[17] + Record[18] <= Strtab.size()) {
4082     Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18]));
4083   }
4084 
4085   ValueList.push_back(Func, getVirtualTypeID(Func->getType(), FTyID));
4086 
4087   if (OperandInfo.PersonalityFn || OperandInfo.Prefix || OperandInfo.Prologue)
4088     FunctionOperands.push_back(OperandInfo);
4089 
4090   // If this is a function with a body, remember the prototype we are
4091   // creating now, so that we can match up the body with them later.
4092   if (!isProto) {
4093     Func->setIsMaterializable(true);
4094     FunctionsWithBodies.push_back(Func);
4095     DeferredFunctionInfo[Func] = 0;
4096   }
4097   return Error::success();
4098 }
4099 
4100 Error BitcodeReader::parseGlobalIndirectSymbolRecord(
4101     unsigned BitCode, ArrayRef<uint64_t> Record) {
4102   // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST)
4103   // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility,
4104   // dllstorageclass, threadlocal, unnamed_addr,
4105   // preemption specifier] (name in VST)
4106   // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage,
4107   // visibility, dllstorageclass, threadlocal, unnamed_addr,
4108   // preemption specifier] (name in VST)
4109   // v2: [strtab_offset, strtab_size, v1]
4110   StringRef Name;
4111   std::tie(Name, Record) = readNameFromStrtab(Record);
4112 
4113   bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD;
4114   if (Record.size() < (3 + (unsigned)NewRecord))
4115     return error("Invalid record");
4116   unsigned OpNum = 0;
4117   unsigned TypeID = Record[OpNum++];
4118   Type *Ty = getTypeByID(TypeID);
4119   if (!Ty)
4120     return error("Invalid record");
4121 
4122   unsigned AddrSpace;
4123   if (!NewRecord) {
4124     auto *PTy = dyn_cast<PointerType>(Ty);
4125     if (!PTy)
4126       return error("Invalid type for value");
4127     AddrSpace = PTy->getAddressSpace();
4128     TypeID = getContainedTypeID(TypeID);
4129     Ty = getTypeByID(TypeID);
4130     if (!Ty)
4131       return error("Missing element type for old-style indirect symbol");
4132   } else {
4133     AddrSpace = Record[OpNum++];
4134   }
4135 
4136   auto Val = Record[OpNum++];
4137   auto Linkage = Record[OpNum++];
4138   GlobalValue *NewGA;
4139   if (BitCode == bitc::MODULE_CODE_ALIAS ||
4140       BitCode == bitc::MODULE_CODE_ALIAS_OLD)
4141     NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
4142                                 TheModule);
4143   else
4144     NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
4145                                 nullptr, TheModule);
4146 
4147   // Local linkage must have default visibility.
4148   // auto-upgrade `hidden` and `protected` for old bitcode.
4149   if (OpNum != Record.size()) {
4150     auto VisInd = OpNum++;
4151     if (!NewGA->hasLocalLinkage())
4152       NewGA->setVisibility(getDecodedVisibility(Record[VisInd]));
4153   }
4154   if (BitCode == bitc::MODULE_CODE_ALIAS ||
4155       BitCode == bitc::MODULE_CODE_ALIAS_OLD) {
4156     if (OpNum != Record.size()) {
4157       auto S = Record[OpNum++];
4158       // A GlobalValue with local linkage cannot have a DLL storage class.
4159       if (!NewGA->hasLocalLinkage())
4160         NewGA->setDLLStorageClass(getDecodedDLLStorageClass(S));
4161     }
4162     else
4163       upgradeDLLImportExportLinkage(NewGA, Linkage);
4164     if (OpNum != Record.size())
4165       NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++]));
4166     if (OpNum != Record.size())
4167       NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++]));
4168   }
4169   if (OpNum != Record.size())
4170     NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++]));
4171   inferDSOLocal(NewGA);
4172 
4173   // Check whether we have enough values to read a partition name.
4174   if (OpNum + 1 < Record.size()) {
4175     NewGA->setPartition(
4176         StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1]));
4177     OpNum += 2;
4178   }
4179 
4180   ValueList.push_back(NewGA, getVirtualTypeID(NewGA->getType(), TypeID));
4181   IndirectSymbolInits.push_back(std::make_pair(NewGA, Val));
4182   return Error::success();
4183 }
4184 
4185 Error BitcodeReader::parseModule(uint64_t ResumeBit,
4186                                  bool ShouldLazyLoadMetadata,
4187                                  ParserCallbacks Callbacks) {
4188   this->ValueTypeCallback = std::move(Callbacks.ValueType);
4189   if (ResumeBit) {
4190     if (Error JumpFailed = Stream.JumpToBit(ResumeBit))
4191       return JumpFailed;
4192   } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
4193     return Err;
4194 
4195   SmallVector<uint64_t, 64> Record;
4196 
4197   // Parts of bitcode parsing depend on the datalayout.  Make sure we
4198   // finalize the datalayout before we run any of that code.
4199   bool ResolvedDataLayout = false;
4200   // In order to support importing modules with illegal data layout strings,
4201   // delay parsing the data layout string until after upgrades and overrides
4202   // have been applied, allowing to fix illegal data layout strings.
4203   // Initialize to the current module's layout string in case none is specified.
4204   std::string TentativeDataLayoutStr = TheModule->getDataLayoutStr();
4205 
4206   auto ResolveDataLayout = [&]() -> Error {
4207     if (ResolvedDataLayout)
4208       return Error::success();
4209 
4210     // Datalayout and triple can't be parsed after this point.
4211     ResolvedDataLayout = true;
4212 
4213     // Auto-upgrade the layout string
4214     TentativeDataLayoutStr = llvm::UpgradeDataLayoutString(
4215         TentativeDataLayoutStr, TheModule->getTargetTriple());
4216 
4217     // Apply override
4218     if (Callbacks.DataLayout) {
4219       if (auto LayoutOverride = (*Callbacks.DataLayout)(
4220               TheModule->getTargetTriple(), TentativeDataLayoutStr))
4221         TentativeDataLayoutStr = *LayoutOverride;
4222     }
4223 
4224     // Now the layout string is finalized in TentativeDataLayoutStr. Parse it.
4225     Expected<DataLayout> MaybeDL = DataLayout::parse(TentativeDataLayoutStr);
4226     if (!MaybeDL)
4227       return MaybeDL.takeError();
4228 
4229     TheModule->setDataLayout(MaybeDL.get());
4230     return Error::success();
4231   };
4232 
4233   // Read all the records for this module.
4234   while (true) {
4235     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
4236     if (!MaybeEntry)
4237       return MaybeEntry.takeError();
4238     llvm::BitstreamEntry Entry = MaybeEntry.get();
4239 
4240     switch (Entry.Kind) {
4241     case BitstreamEntry::Error:
4242       return error("Malformed block");
4243     case BitstreamEntry::EndBlock:
4244       if (Error Err = ResolveDataLayout())
4245         return Err;
4246       return globalCleanup();
4247 
4248     case BitstreamEntry::SubBlock:
4249       switch (Entry.ID) {
4250       default:  // Skip unknown content.
4251         if (Error Err = Stream.SkipBlock())
4252           return Err;
4253         break;
4254       case bitc::BLOCKINFO_BLOCK_ID:
4255         if (Error Err = readBlockInfo())
4256           return Err;
4257         break;
4258       case bitc::PARAMATTR_BLOCK_ID:
4259         if (Error Err = parseAttributeBlock())
4260           return Err;
4261         break;
4262       case bitc::PARAMATTR_GROUP_BLOCK_ID:
4263         if (Error Err = parseAttributeGroupBlock())
4264           return Err;
4265         break;
4266       case bitc::TYPE_BLOCK_ID_NEW:
4267         if (Error Err = parseTypeTable())
4268           return Err;
4269         break;
4270       case bitc::VALUE_SYMTAB_BLOCK_ID:
4271         if (!SeenValueSymbolTable) {
4272           // Either this is an old form VST without function index and an
4273           // associated VST forward declaration record (which would have caused
4274           // the VST to be jumped to and parsed before it was encountered
4275           // normally in the stream), or there were no function blocks to
4276           // trigger an earlier parsing of the VST.
4277           assert(VSTOffset == 0 || FunctionsWithBodies.empty());
4278           if (Error Err = parseValueSymbolTable())
4279             return Err;
4280           SeenValueSymbolTable = true;
4281         } else {
4282           // We must have had a VST forward declaration record, which caused
4283           // the parser to jump to and parse the VST earlier.
4284           assert(VSTOffset > 0);
4285           if (Error Err = Stream.SkipBlock())
4286             return Err;
4287         }
4288         break;
4289       case bitc::CONSTANTS_BLOCK_ID:
4290         if (Error Err = parseConstants())
4291           return Err;
4292         if (Error Err = resolveGlobalAndIndirectSymbolInits())
4293           return Err;
4294         break;
4295       case bitc::METADATA_BLOCK_ID:
4296         if (ShouldLazyLoadMetadata) {
4297           if (Error Err = rememberAndSkipMetadata())
4298             return Err;
4299           break;
4300         }
4301         assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata");
4302         if (Error Err = MDLoader->parseModuleMetadata())
4303           return Err;
4304         break;
4305       case bitc::METADATA_KIND_BLOCK_ID:
4306         if (Error Err = MDLoader->parseMetadataKinds())
4307           return Err;
4308         break;
4309       case bitc::FUNCTION_BLOCK_ID:
4310         if (Error Err = ResolveDataLayout())
4311           return Err;
4312 
4313         // If this is the first function body we've seen, reverse the
4314         // FunctionsWithBodies list.
4315         if (!SeenFirstFunctionBody) {
4316           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
4317           if (Error Err = globalCleanup())
4318             return Err;
4319           SeenFirstFunctionBody = true;
4320         }
4321 
4322         if (VSTOffset > 0) {
4323           // If we have a VST forward declaration record, make sure we
4324           // parse the VST now if we haven't already. It is needed to
4325           // set up the DeferredFunctionInfo vector for lazy reading.
4326           if (!SeenValueSymbolTable) {
4327             if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset))
4328               return Err;
4329             SeenValueSymbolTable = true;
4330             // Fall through so that we record the NextUnreadBit below.
4331             // This is necessary in case we have an anonymous function that
4332             // is later materialized. Since it will not have a VST entry we
4333             // need to fall back to the lazy parse to find its offset.
4334           } else {
4335             // If we have a VST forward declaration record, but have already
4336             // parsed the VST (just above, when the first function body was
4337             // encountered here), then we are resuming the parse after
4338             // materializing functions. The ResumeBit points to the
4339             // start of the last function block recorded in the
4340             // DeferredFunctionInfo map. Skip it.
4341             if (Error Err = Stream.SkipBlock())
4342               return Err;
4343             continue;
4344           }
4345         }
4346 
4347         // Support older bitcode files that did not have the function
4348         // index in the VST, nor a VST forward declaration record, as
4349         // well as anonymous functions that do not have VST entries.
4350         // Build the DeferredFunctionInfo vector on the fly.
4351         if (Error Err = rememberAndSkipFunctionBody())
4352           return Err;
4353 
4354         // Suspend parsing when we reach the function bodies. Subsequent
4355         // materialization calls will resume it when necessary. If the bitcode
4356         // file is old, the symbol table will be at the end instead and will not
4357         // have been seen yet. In this case, just finish the parse now.
4358         if (SeenValueSymbolTable) {
4359           NextUnreadBit = Stream.GetCurrentBitNo();
4360           // After the VST has been parsed, we need to make sure intrinsic name
4361           // are auto-upgraded.
4362           return globalCleanup();
4363         }
4364         break;
4365       case bitc::USELIST_BLOCK_ID:
4366         if (Error Err = parseUseLists())
4367           return Err;
4368         break;
4369       case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID:
4370         if (Error Err = parseOperandBundleTags())
4371           return Err;
4372         break;
4373       case bitc::SYNC_SCOPE_NAMES_BLOCK_ID:
4374         if (Error Err = parseSyncScopeNames())
4375           return Err;
4376         break;
4377       }
4378       continue;
4379 
4380     case BitstreamEntry::Record:
4381       // The interesting case.
4382       break;
4383     }
4384 
4385     // Read a record.
4386     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
4387     if (!MaybeBitCode)
4388       return MaybeBitCode.takeError();
4389     switch (unsigned BitCode = MaybeBitCode.get()) {
4390     default: break;  // Default behavior, ignore unknown content.
4391     case bitc::MODULE_CODE_VERSION: {
4392       Expected<unsigned> VersionOrErr = parseVersionRecord(Record);
4393       if (!VersionOrErr)
4394         return VersionOrErr.takeError();
4395       UseRelativeIDs = *VersionOrErr >= 1;
4396       break;
4397     }
4398     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
4399       if (ResolvedDataLayout)
4400         return error("target triple too late in module");
4401       std::string S;
4402       if (convertToString(Record, 0, S))
4403         return error("Invalid record");
4404       TheModule->setTargetTriple(S);
4405       break;
4406     }
4407     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
4408       if (ResolvedDataLayout)
4409         return error("datalayout too late in module");
4410       if (convertToString(Record, 0, TentativeDataLayoutStr))
4411         return error("Invalid record");
4412       break;
4413     }
4414     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
4415       std::string S;
4416       if (convertToString(Record, 0, S))
4417         return error("Invalid record");
4418       TheModule->setModuleInlineAsm(S);
4419       break;
4420     }
4421     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
4422       // Deprecated, but still needed to read old bitcode files.
4423       std::string S;
4424       if (convertToString(Record, 0, S))
4425         return error("Invalid record");
4426       // Ignore value.
4427       break;
4428     }
4429     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
4430       std::string S;
4431       if (convertToString(Record, 0, S))
4432         return error("Invalid record");
4433       SectionTable.push_back(S);
4434       break;
4435     }
4436     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
4437       std::string S;
4438       if (convertToString(Record, 0, S))
4439         return error("Invalid record");
4440       GCTable.push_back(S);
4441       break;
4442     }
4443     case bitc::MODULE_CODE_COMDAT:
4444       if (Error Err = parseComdatRecord(Record))
4445         return Err;
4446       break;
4447     // FIXME: BitcodeReader should handle {GLOBALVAR, FUNCTION, ALIAS, IFUNC}
4448     // written by ThinLinkBitcodeWriter. See
4449     // `ThinLinkBitcodeWriter::writeSimplifiedModuleInfo` for the format of each
4450     // record
4451     // (https://github.com/llvm/llvm-project/blob/b6a93967d9c11e79802b5e75cec1584d6c8aa472/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp#L4714)
4452     case bitc::MODULE_CODE_GLOBALVAR:
4453       if (Error Err = parseGlobalVarRecord(Record))
4454         return Err;
4455       break;
4456     case bitc::MODULE_CODE_FUNCTION:
4457       if (Error Err = ResolveDataLayout())
4458         return Err;
4459       if (Error Err = parseFunctionRecord(Record))
4460         return Err;
4461       break;
4462     case bitc::MODULE_CODE_IFUNC:
4463     case bitc::MODULE_CODE_ALIAS:
4464     case bitc::MODULE_CODE_ALIAS_OLD:
4465       if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record))
4466         return Err;
4467       break;
4468     /// MODULE_CODE_VSTOFFSET: [offset]
4469     case bitc::MODULE_CODE_VSTOFFSET:
4470       if (Record.empty())
4471         return error("Invalid record");
4472       // Note that we subtract 1 here because the offset is relative to one word
4473       // before the start of the identification or module block, which was
4474       // historically always the start of the regular bitcode header.
4475       VSTOffset = Record[0] - 1;
4476       break;
4477     /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
4478     case bitc::MODULE_CODE_SOURCE_FILENAME:
4479       SmallString<128> ValueName;
4480       if (convertToString(Record, 0, ValueName))
4481         return error("Invalid record");
4482       TheModule->setSourceFileName(ValueName);
4483       break;
4484     }
4485     Record.clear();
4486   }
4487   this->ValueTypeCallback = std::nullopt;
4488   return Error::success();
4489 }
4490 
4491 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
4492                                       bool IsImporting,
4493                                       ParserCallbacks Callbacks) {
4494   TheModule = M;
4495   MetadataLoaderCallbacks MDCallbacks;
4496   MDCallbacks.GetTypeByID = [&](unsigned ID) { return getTypeByID(ID); };
4497   MDCallbacks.GetContainedTypeID = [&](unsigned I, unsigned J) {
4498     return getContainedTypeID(I, J);
4499   };
4500   MDCallbacks.MDType = Callbacks.MDType;
4501   MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, MDCallbacks);
4502   return parseModule(0, ShouldLazyLoadMetadata, Callbacks);
4503 }
4504 
4505 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) {
4506   if (!isa<PointerType>(PtrType))
4507     return error("Load/Store operand is not a pointer type");
4508   if (!PointerType::isLoadableOrStorableType(ValType))
4509     return error("Cannot load/store from pointer");
4510   return Error::success();
4511 }
4512 
4513 Error BitcodeReader::propagateAttributeTypes(CallBase *CB,
4514                                              ArrayRef<unsigned> ArgTyIDs) {
4515   AttributeList Attrs = CB->getAttributes();
4516   for (unsigned i = 0; i != CB->arg_size(); ++i) {
4517     for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet,
4518                                      Attribute::InAlloca}) {
4519       if (!Attrs.hasParamAttr(i, Kind) ||
4520           Attrs.getParamAttr(i, Kind).getValueAsType())
4521         continue;
4522 
4523       Type *PtrEltTy = getPtrElementTypeByID(ArgTyIDs[i]);
4524       if (!PtrEltTy)
4525         return error("Missing element type for typed attribute upgrade");
4526 
4527       Attribute NewAttr;
4528       switch (Kind) {
4529       case Attribute::ByVal:
4530         NewAttr = Attribute::getWithByValType(Context, PtrEltTy);
4531         break;
4532       case Attribute::StructRet:
4533         NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy);
4534         break;
4535       case Attribute::InAlloca:
4536         NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy);
4537         break;
4538       default:
4539         llvm_unreachable("not an upgraded type attribute");
4540       }
4541 
4542       Attrs = Attrs.addParamAttribute(Context, i, NewAttr);
4543     }
4544   }
4545 
4546   if (CB->isInlineAsm()) {
4547     const InlineAsm *IA = cast<InlineAsm>(CB->getCalledOperand());
4548     unsigned ArgNo = 0;
4549     for (const InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
4550       if (!CI.hasArg())
4551         continue;
4552 
4553       if (CI.isIndirect && !Attrs.getParamElementType(ArgNo)) {
4554         Type *ElemTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]);
4555         if (!ElemTy)
4556           return error("Missing element type for inline asm upgrade");
4557         Attrs = Attrs.addParamAttribute(
4558             Context, ArgNo,
4559             Attribute::get(Context, Attribute::ElementType, ElemTy));
4560       }
4561 
4562       ArgNo++;
4563     }
4564   }
4565 
4566   switch (CB->getIntrinsicID()) {
4567   case Intrinsic::preserve_array_access_index:
4568   case Intrinsic::preserve_struct_access_index:
4569   case Intrinsic::aarch64_ldaxr:
4570   case Intrinsic::aarch64_ldxr:
4571   case Intrinsic::aarch64_stlxr:
4572   case Intrinsic::aarch64_stxr:
4573   case Intrinsic::arm_ldaex:
4574   case Intrinsic::arm_ldrex:
4575   case Intrinsic::arm_stlex:
4576   case Intrinsic::arm_strex: {
4577     unsigned ArgNo;
4578     switch (CB->getIntrinsicID()) {
4579     case Intrinsic::aarch64_stlxr:
4580     case Intrinsic::aarch64_stxr:
4581     case Intrinsic::arm_stlex:
4582     case Intrinsic::arm_strex:
4583       ArgNo = 1;
4584       break;
4585     default:
4586       ArgNo = 0;
4587       break;
4588     }
4589     if (!Attrs.getParamElementType(ArgNo)) {
4590       Type *ElTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]);
4591       if (!ElTy)
4592         return error("Missing element type for elementtype upgrade");
4593       Attribute NewAttr = Attribute::get(Context, Attribute::ElementType, ElTy);
4594       Attrs = Attrs.addParamAttribute(Context, ArgNo, NewAttr);
4595     }
4596     break;
4597   }
4598   default:
4599     break;
4600   }
4601 
4602   CB->setAttributes(Attrs);
4603   return Error::success();
4604 }
4605 
4606 /// Lazily parse the specified function body block.
4607 Error BitcodeReader::parseFunctionBody(Function *F) {
4608   if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
4609     return Err;
4610 
4611   // Unexpected unresolved metadata when parsing function.
4612   if (MDLoader->hasFwdRefs())
4613     return error("Invalid function metadata: incoming forward references");
4614 
4615   InstructionList.clear();
4616   unsigned ModuleValueListSize = ValueList.size();
4617   unsigned ModuleMDLoaderSize = MDLoader->size();
4618 
4619   // Add all the function arguments to the value table.
4620   unsigned ArgNo = 0;
4621   unsigned FTyID = FunctionTypeIDs[F];
4622   for (Argument &I : F->args()) {
4623     unsigned ArgTyID = getContainedTypeID(FTyID, ArgNo + 1);
4624     assert(I.getType() == getTypeByID(ArgTyID) &&
4625            "Incorrect fully specified type for Function Argument");
4626     ValueList.push_back(&I, ArgTyID);
4627     ++ArgNo;
4628   }
4629   unsigned NextValueNo = ValueList.size();
4630   BasicBlock *CurBB = nullptr;
4631   unsigned CurBBNo = 0;
4632   // Block into which constant expressions from phi nodes are materialized.
4633   BasicBlock *PhiConstExprBB = nullptr;
4634   // Edge blocks for phi nodes into which constant expressions have been
4635   // expanded.
4636   SmallMapVector<std::pair<BasicBlock *, BasicBlock *>, BasicBlock *, 4>
4637     ConstExprEdgeBBs;
4638 
4639   DebugLoc LastLoc;
4640   auto getLastInstruction = [&]() -> Instruction * {
4641     if (CurBB && !CurBB->empty())
4642       return &CurBB->back();
4643     else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
4644              !FunctionBBs[CurBBNo - 1]->empty())
4645       return &FunctionBBs[CurBBNo - 1]->back();
4646     return nullptr;
4647   };
4648 
4649   std::vector<OperandBundleDef> OperandBundles;
4650 
4651   // Read all the records.
4652   SmallVector<uint64_t, 64> Record;
4653 
4654   while (true) {
4655     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
4656     if (!MaybeEntry)
4657       return MaybeEntry.takeError();
4658     llvm::BitstreamEntry Entry = MaybeEntry.get();
4659 
4660     switch (Entry.Kind) {
4661     case BitstreamEntry::Error:
4662       return error("Malformed block");
4663     case BitstreamEntry::EndBlock:
4664       goto OutOfRecordLoop;
4665 
4666     case BitstreamEntry::SubBlock:
4667       switch (Entry.ID) {
4668       default:  // Skip unknown content.
4669         if (Error Err = Stream.SkipBlock())
4670           return Err;
4671         break;
4672       case bitc::CONSTANTS_BLOCK_ID:
4673         if (Error Err = parseConstants())
4674           return Err;
4675         NextValueNo = ValueList.size();
4676         break;
4677       case bitc::VALUE_SYMTAB_BLOCK_ID:
4678         if (Error Err = parseValueSymbolTable())
4679           return Err;
4680         break;
4681       case bitc::METADATA_ATTACHMENT_ID:
4682         if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList))
4683           return Err;
4684         break;
4685       case bitc::METADATA_BLOCK_ID:
4686         assert(DeferredMetadataInfo.empty() &&
4687                "Must read all module-level metadata before function-level");
4688         if (Error Err = MDLoader->parseFunctionMetadata())
4689           return Err;
4690         break;
4691       case bitc::USELIST_BLOCK_ID:
4692         if (Error Err = parseUseLists())
4693           return Err;
4694         break;
4695       }
4696       continue;
4697 
4698     case BitstreamEntry::Record:
4699       // The interesting case.
4700       break;
4701     }
4702 
4703     // Read a record.
4704     Record.clear();
4705     Instruction *I = nullptr;
4706     unsigned ResTypeID = InvalidTypeID;
4707     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
4708     if (!MaybeBitCode)
4709       return MaybeBitCode.takeError();
4710     switch (unsigned BitCode = MaybeBitCode.get()) {
4711     default: // Default behavior: reject
4712       return error("Invalid value");
4713     case bitc::FUNC_CODE_DECLAREBLOCKS: {   // DECLAREBLOCKS: [nblocks]
4714       if (Record.empty() || Record[0] == 0)
4715         return error("Invalid record");
4716       // Create all the basic blocks for the function.
4717       FunctionBBs.resize(Record[0]);
4718 
4719       // See if anything took the address of blocks in this function.
4720       auto BBFRI = BasicBlockFwdRefs.find(F);
4721       if (BBFRI == BasicBlockFwdRefs.end()) {
4722         for (BasicBlock *&BB : FunctionBBs)
4723           BB = BasicBlock::Create(Context, "", F);
4724       } else {
4725         auto &BBRefs = BBFRI->second;
4726         // Check for invalid basic block references.
4727         if (BBRefs.size() > FunctionBBs.size())
4728           return error("Invalid ID");
4729         assert(!BBRefs.empty() && "Unexpected empty array");
4730         assert(!BBRefs.front() && "Invalid reference to entry block");
4731         for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
4732              ++I)
4733           if (I < RE && BBRefs[I]) {
4734             BBRefs[I]->insertInto(F);
4735             FunctionBBs[I] = BBRefs[I];
4736           } else {
4737             FunctionBBs[I] = BasicBlock::Create(Context, "", F);
4738           }
4739 
4740         // Erase from the table.
4741         BasicBlockFwdRefs.erase(BBFRI);
4742       }
4743 
4744       CurBB = FunctionBBs[0];
4745       continue;
4746     }
4747 
4748     case bitc::FUNC_CODE_BLOCKADDR_USERS: // BLOCKADDR_USERS: [vals...]
4749       // The record should not be emitted if it's an empty list.
4750       if (Record.empty())
4751         return error("Invalid record");
4752       // When we have the RARE case of a BlockAddress Constant that is not
4753       // scoped to the Function it refers to, we need to conservatively
4754       // materialize the referred to Function, regardless of whether or not
4755       // that Function will ultimately be linked, otherwise users of
4756       // BitcodeReader might start splicing out Function bodies such that we
4757       // might no longer be able to materialize the BlockAddress since the
4758       // BasicBlock (and entire body of the Function) the BlockAddress refers
4759       // to may have been moved. In the case that the user of BitcodeReader
4760       // decides ultimately not to link the Function body, materializing here
4761       // could be considered wasteful, but it's better than a deserialization
4762       // failure as described. This keeps BitcodeReader unaware of complex
4763       // linkage policy decisions such as those use by LTO, leaving those
4764       // decisions "one layer up."
4765       for (uint64_t ValID : Record)
4766         if (auto *F = dyn_cast<Function>(ValueList[ValID]))
4767           BackwardRefFunctions.push_back(F);
4768         else
4769           return error("Invalid record");
4770 
4771       continue;
4772 
4773     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
4774       // This record indicates that the last instruction is at the same
4775       // location as the previous instruction with a location.
4776       I = getLastInstruction();
4777 
4778       if (!I)
4779         return error("Invalid record");
4780       I->setDebugLoc(LastLoc);
4781       I = nullptr;
4782       continue;
4783 
4784     case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
4785       I = getLastInstruction();
4786       if (!I || Record.size() < 4)
4787         return error("Invalid record");
4788 
4789       unsigned Line = Record[0], Col = Record[1];
4790       unsigned ScopeID = Record[2], IAID = Record[3];
4791       bool isImplicitCode = Record.size() == 5 && Record[4];
4792 
4793       MDNode *Scope = nullptr, *IA = nullptr;
4794       if (ScopeID) {
4795         Scope = dyn_cast_or_null<MDNode>(
4796             MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1));
4797         if (!Scope)
4798           return error("Invalid record");
4799       }
4800       if (IAID) {
4801         IA = dyn_cast_or_null<MDNode>(
4802             MDLoader->getMetadataFwdRefOrLoad(IAID - 1));
4803         if (!IA)
4804           return error("Invalid record");
4805       }
4806       LastLoc = DILocation::get(Scope->getContext(), Line, Col, Scope, IA,
4807                                 isImplicitCode);
4808       I->setDebugLoc(LastLoc);
4809       I = nullptr;
4810       continue;
4811     }
4812     case bitc::FUNC_CODE_INST_UNOP: {    // UNOP: [opval, ty, opcode]
4813       unsigned OpNum = 0;
4814       Value *LHS;
4815       unsigned TypeID;
4816       if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) ||
4817           OpNum+1 > Record.size())
4818         return error("Invalid record");
4819 
4820       int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType());
4821       if (Opc == -1)
4822         return error("Invalid record");
4823       I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
4824       ResTypeID = TypeID;
4825       InstructionList.push_back(I);
4826       if (OpNum < Record.size()) {
4827         if (isa<FPMathOperator>(I)) {
4828           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4829           if (FMF.any())
4830             I->setFastMathFlags(FMF);
4831         }
4832       }
4833       break;
4834     }
4835     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
4836       unsigned OpNum = 0;
4837       Value *LHS, *RHS;
4838       unsigned TypeID;
4839       if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) ||
4840           popValue(Record, OpNum, NextValueNo, LHS->getType(), TypeID, RHS,
4841                    CurBB) ||
4842           OpNum+1 > Record.size())
4843         return error("Invalid record");
4844 
4845       int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
4846       if (Opc == -1)
4847         return error("Invalid record");
4848       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
4849       ResTypeID = TypeID;
4850       InstructionList.push_back(I);
4851       if (OpNum < Record.size()) {
4852         if (Opc == Instruction::Add ||
4853             Opc == Instruction::Sub ||
4854             Opc == Instruction::Mul ||
4855             Opc == Instruction::Shl) {
4856           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
4857             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
4858           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
4859             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
4860         } else if (Opc == Instruction::SDiv ||
4861                    Opc == Instruction::UDiv ||
4862                    Opc == Instruction::LShr ||
4863                    Opc == Instruction::AShr) {
4864           if (Record[OpNum] & (1 << bitc::PEO_EXACT))
4865             cast<BinaryOperator>(I)->setIsExact(true);
4866         } else if (isa<FPMathOperator>(I)) {
4867           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4868           if (FMF.any())
4869             I->setFastMathFlags(FMF);
4870         }
4871 
4872       }
4873       break;
4874     }
4875     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
4876       unsigned OpNum = 0;
4877       Value *Op;
4878       unsigned OpTypeID;
4879       if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) ||
4880           OpNum+2 != Record.size())
4881         return error("Invalid record");
4882 
4883       ResTypeID = Record[OpNum];
4884       Type *ResTy = getTypeByID(ResTypeID);
4885       int Opc = getDecodedCastOpcode(Record[OpNum + 1]);
4886       if (Opc == -1 || !ResTy)
4887         return error("Invalid record");
4888       Instruction *Temp = nullptr;
4889       if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
4890         if (Temp) {
4891           InstructionList.push_back(Temp);
4892           assert(CurBB && "No current BB?");
4893           Temp->insertInto(CurBB, CurBB->end());
4894         }
4895       } else {
4896         auto CastOp = (Instruction::CastOps)Opc;
4897         if (!CastInst::castIsValid(CastOp, Op, ResTy))
4898           return error("Invalid cast");
4899         I = CastInst::Create(CastOp, Op, ResTy);
4900       }
4901       InstructionList.push_back(I);
4902       break;
4903     }
4904     case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
4905     case bitc::FUNC_CODE_INST_GEP_OLD:
4906     case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
4907       unsigned OpNum = 0;
4908 
4909       unsigned TyID;
4910       Type *Ty;
4911       bool InBounds;
4912 
4913       if (BitCode == bitc::FUNC_CODE_INST_GEP) {
4914         InBounds = Record[OpNum++];
4915         TyID = Record[OpNum++];
4916         Ty = getTypeByID(TyID);
4917       } else {
4918         InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
4919         TyID = InvalidTypeID;
4920         Ty = nullptr;
4921       }
4922 
4923       Value *BasePtr;
4924       unsigned BasePtrTypeID;
4925       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr, BasePtrTypeID,
4926                            CurBB))
4927         return error("Invalid record");
4928 
4929       if (!Ty) {
4930         TyID = getContainedTypeID(BasePtrTypeID);
4931         if (BasePtr->getType()->isVectorTy())
4932           TyID = getContainedTypeID(TyID);
4933         Ty = getTypeByID(TyID);
4934       }
4935 
4936       SmallVector<Value*, 16> GEPIdx;
4937       while (OpNum != Record.size()) {
4938         Value *Op;
4939         unsigned OpTypeID;
4940         if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
4941           return error("Invalid record");
4942         GEPIdx.push_back(Op);
4943       }
4944 
4945       I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
4946 
4947       ResTypeID = TyID;
4948       if (cast<GEPOperator>(I)->getNumIndices() != 0) {
4949         auto GTI = std::next(gep_type_begin(I));
4950         for (Value *Idx : drop_begin(cast<GEPOperator>(I)->indices())) {
4951           unsigned SubType = 0;
4952           if (GTI.isStruct()) {
4953             ConstantInt *IdxC =
4954                 Idx->getType()->isVectorTy()
4955                     ? cast<ConstantInt>(cast<Constant>(Idx)->getSplatValue())
4956                     : cast<ConstantInt>(Idx);
4957             SubType = IdxC->getZExtValue();
4958           }
4959           ResTypeID = getContainedTypeID(ResTypeID, SubType);
4960           ++GTI;
4961         }
4962       }
4963 
4964       // At this point ResTypeID is the result element type. We need a pointer
4965       // or vector of pointer to it.
4966       ResTypeID = getVirtualTypeID(I->getType()->getScalarType(), ResTypeID);
4967       if (I->getType()->isVectorTy())
4968         ResTypeID = getVirtualTypeID(I->getType(), ResTypeID);
4969 
4970       InstructionList.push_back(I);
4971       if (InBounds)
4972         cast<GetElementPtrInst>(I)->setIsInBounds(true);
4973       break;
4974     }
4975 
4976     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
4977                                        // EXTRACTVAL: [opty, opval, n x indices]
4978       unsigned OpNum = 0;
4979       Value *Agg;
4980       unsigned AggTypeID;
4981       if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB))
4982         return error("Invalid record");
4983       Type *Ty = Agg->getType();
4984 
4985       unsigned RecSize = Record.size();
4986       if (OpNum == RecSize)
4987         return error("EXTRACTVAL: Invalid instruction with 0 indices");
4988 
4989       SmallVector<unsigned, 4> EXTRACTVALIdx;
4990       ResTypeID = AggTypeID;
4991       for (; OpNum != RecSize; ++OpNum) {
4992         bool IsArray = Ty->isArrayTy();
4993         bool IsStruct = Ty->isStructTy();
4994         uint64_t Index = Record[OpNum];
4995 
4996         if (!IsStruct && !IsArray)
4997           return error("EXTRACTVAL: Invalid type");
4998         if ((unsigned)Index != Index)
4999           return error("Invalid value");
5000         if (IsStruct && Index >= Ty->getStructNumElements())
5001           return error("EXTRACTVAL: Invalid struct index");
5002         if (IsArray && Index >= Ty->getArrayNumElements())
5003           return error("EXTRACTVAL: Invalid array index");
5004         EXTRACTVALIdx.push_back((unsigned)Index);
5005 
5006         if (IsStruct) {
5007           Ty = Ty->getStructElementType(Index);
5008           ResTypeID = getContainedTypeID(ResTypeID, Index);
5009         } else {
5010           Ty = Ty->getArrayElementType();
5011           ResTypeID = getContainedTypeID(ResTypeID);
5012         }
5013       }
5014 
5015       I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
5016       InstructionList.push_back(I);
5017       break;
5018     }
5019 
5020     case bitc::FUNC_CODE_INST_INSERTVAL: {
5021                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
5022       unsigned OpNum = 0;
5023       Value *Agg;
5024       unsigned AggTypeID;
5025       if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB))
5026         return error("Invalid record");
5027       Value *Val;
5028       unsigned ValTypeID;
5029       if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB))
5030         return error("Invalid record");
5031 
5032       unsigned RecSize = Record.size();
5033       if (OpNum == RecSize)
5034         return error("INSERTVAL: Invalid instruction with 0 indices");
5035 
5036       SmallVector<unsigned, 4> INSERTVALIdx;
5037       Type *CurTy = Agg->getType();
5038       for (; OpNum != RecSize; ++OpNum) {
5039         bool IsArray = CurTy->isArrayTy();
5040         bool IsStruct = CurTy->isStructTy();
5041         uint64_t Index = Record[OpNum];
5042 
5043         if (!IsStruct && !IsArray)
5044           return error("INSERTVAL: Invalid type");
5045         if ((unsigned)Index != Index)
5046           return error("Invalid value");
5047         if (IsStruct && Index >= CurTy->getStructNumElements())
5048           return error("INSERTVAL: Invalid struct index");
5049         if (IsArray && Index >= CurTy->getArrayNumElements())
5050           return error("INSERTVAL: Invalid array index");
5051 
5052         INSERTVALIdx.push_back((unsigned)Index);
5053         if (IsStruct)
5054           CurTy = CurTy->getStructElementType(Index);
5055         else
5056           CurTy = CurTy->getArrayElementType();
5057       }
5058 
5059       if (CurTy != Val->getType())
5060         return error("Inserted value type doesn't match aggregate type");
5061 
5062       I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
5063       ResTypeID = AggTypeID;
5064       InstructionList.push_back(I);
5065       break;
5066     }
5067 
5068     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
5069       // obsolete form of select
5070       // handles select i1 ... in old bitcode
5071       unsigned OpNum = 0;
5072       Value *TrueVal, *FalseVal, *Cond;
5073       unsigned TypeID;
5074       Type *CondType = Type::getInt1Ty(Context);
5075       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, TypeID,
5076                            CurBB) ||
5077           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), TypeID,
5078                    FalseVal, CurBB) ||
5079           popValue(Record, OpNum, NextValueNo, CondType,
5080                    getVirtualTypeID(CondType), Cond, CurBB))
5081         return error("Invalid record");
5082 
5083       I = SelectInst::Create(Cond, TrueVal, FalseVal);
5084       ResTypeID = TypeID;
5085       InstructionList.push_back(I);
5086       break;
5087     }
5088 
5089     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
5090       // new form of select
5091       // handles select i1 or select [N x i1]
5092       unsigned OpNum = 0;
5093       Value *TrueVal, *FalseVal, *Cond;
5094       unsigned ValTypeID, CondTypeID;
5095       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, ValTypeID,
5096                            CurBB) ||
5097           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), ValTypeID,
5098                    FalseVal, CurBB) ||
5099           getValueTypePair(Record, OpNum, NextValueNo, Cond, CondTypeID, CurBB))
5100         return error("Invalid record");
5101 
5102       // select condition can be either i1 or [N x i1]
5103       if (VectorType* vector_type =
5104           dyn_cast<VectorType>(Cond->getType())) {
5105         // expect <n x i1>
5106         if (vector_type->getElementType() != Type::getInt1Ty(Context))
5107           return error("Invalid type for value");
5108       } else {
5109         // expect i1
5110         if (Cond->getType() != Type::getInt1Ty(Context))
5111           return error("Invalid type for value");
5112       }
5113 
5114       I = SelectInst::Create(Cond, TrueVal, FalseVal);
5115       ResTypeID = ValTypeID;
5116       InstructionList.push_back(I);
5117       if (OpNum < Record.size() && isa<FPMathOperator>(I)) {
5118         FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
5119         if (FMF.any())
5120           I->setFastMathFlags(FMF);
5121       }
5122       break;
5123     }
5124 
5125     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
5126       unsigned OpNum = 0;
5127       Value *Vec, *Idx;
5128       unsigned VecTypeID, IdxTypeID;
5129       if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB) ||
5130           getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB))
5131         return error("Invalid record");
5132       if (!Vec->getType()->isVectorTy())
5133         return error("Invalid type for value");
5134       I = ExtractElementInst::Create(Vec, Idx);
5135       ResTypeID = getContainedTypeID(VecTypeID);
5136       InstructionList.push_back(I);
5137       break;
5138     }
5139 
5140     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
5141       unsigned OpNum = 0;
5142       Value *Vec, *Elt, *Idx;
5143       unsigned VecTypeID, IdxTypeID;
5144       if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB))
5145         return error("Invalid record");
5146       if (!Vec->getType()->isVectorTy())
5147         return error("Invalid type for value");
5148       if (popValue(Record, OpNum, NextValueNo,
5149                    cast<VectorType>(Vec->getType())->getElementType(),
5150                    getContainedTypeID(VecTypeID), Elt, CurBB) ||
5151           getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB))
5152         return error("Invalid record");
5153       I = InsertElementInst::Create(Vec, Elt, Idx);
5154       ResTypeID = VecTypeID;
5155       InstructionList.push_back(I);
5156       break;
5157     }
5158 
5159     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
5160       unsigned OpNum = 0;
5161       Value *Vec1, *Vec2, *Mask;
5162       unsigned Vec1TypeID;
5163       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1, Vec1TypeID,
5164                            CurBB) ||
5165           popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec1TypeID,
5166                    Vec2, CurBB))
5167         return error("Invalid record");
5168 
5169       unsigned MaskTypeID;
5170       if (getValueTypePair(Record, OpNum, NextValueNo, Mask, MaskTypeID, CurBB))
5171         return error("Invalid record");
5172       if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
5173         return error("Invalid type for value");
5174 
5175       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
5176       ResTypeID =
5177           getVirtualTypeID(I->getType(), getContainedTypeID(Vec1TypeID));
5178       InstructionList.push_back(I);
5179       break;
5180     }
5181 
5182     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
5183       // Old form of ICmp/FCmp returning bool
5184       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
5185       // both legal on vectors but had different behaviour.
5186     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
5187       // FCmp/ICmp returning bool or vector of bool
5188 
5189       unsigned OpNum = 0;
5190       Value *LHS, *RHS;
5191       unsigned LHSTypeID;
5192       if (getValueTypePair(Record, OpNum, NextValueNo, LHS, LHSTypeID, CurBB) ||
5193           popValue(Record, OpNum, NextValueNo, LHS->getType(), LHSTypeID, RHS,
5194                    CurBB))
5195         return error("Invalid record");
5196 
5197       if (OpNum >= Record.size())
5198         return error(
5199             "Invalid record: operand number exceeded available operands");
5200 
5201       unsigned PredVal = Record[OpNum];
5202       bool IsFP = LHS->getType()->isFPOrFPVectorTy();
5203       FastMathFlags FMF;
5204       if (IsFP && Record.size() > OpNum+1)
5205         FMF = getDecodedFastMathFlags(Record[++OpNum]);
5206 
5207       if (OpNum+1 != Record.size())
5208         return error("Invalid record");
5209 
5210       if (LHS->getType()->isFPOrFPVectorTy())
5211         I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS);
5212       else
5213         I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS);
5214 
5215       ResTypeID = getVirtualTypeID(I->getType()->getScalarType());
5216       if (LHS->getType()->isVectorTy())
5217         ResTypeID = getVirtualTypeID(I->getType(), ResTypeID);
5218 
5219       if (FMF.any())
5220         I->setFastMathFlags(FMF);
5221       InstructionList.push_back(I);
5222       break;
5223     }
5224 
5225     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
5226       {
5227         unsigned Size = Record.size();
5228         if (Size == 0) {
5229           I = ReturnInst::Create(Context);
5230           InstructionList.push_back(I);
5231           break;
5232         }
5233 
5234         unsigned OpNum = 0;
5235         Value *Op = nullptr;
5236         unsigned OpTypeID;
5237         if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
5238           return error("Invalid record");
5239         if (OpNum != Record.size())
5240           return error("Invalid record");
5241 
5242         I = ReturnInst::Create(Context, Op);
5243         InstructionList.push_back(I);
5244         break;
5245       }
5246     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
5247       if (Record.size() != 1 && Record.size() != 3)
5248         return error("Invalid record");
5249       BasicBlock *TrueDest = getBasicBlock(Record[0]);
5250       if (!TrueDest)
5251         return error("Invalid record");
5252 
5253       if (Record.size() == 1) {
5254         I = BranchInst::Create(TrueDest);
5255         InstructionList.push_back(I);
5256       }
5257       else {
5258         BasicBlock *FalseDest = getBasicBlock(Record[1]);
5259         Type *CondType = Type::getInt1Ty(Context);
5260         Value *Cond = getValue(Record, 2, NextValueNo, CondType,
5261                                getVirtualTypeID(CondType), CurBB);
5262         if (!FalseDest || !Cond)
5263           return error("Invalid record");
5264         I = BranchInst::Create(TrueDest, FalseDest, Cond);
5265         InstructionList.push_back(I);
5266       }
5267       break;
5268     }
5269     case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#]
5270       if (Record.size() != 1 && Record.size() != 2)
5271         return error("Invalid record");
5272       unsigned Idx = 0;
5273       Type *TokenTy = Type::getTokenTy(Context);
5274       Value *CleanupPad = getValue(Record, Idx++, NextValueNo, TokenTy,
5275                                    getVirtualTypeID(TokenTy), CurBB);
5276       if (!CleanupPad)
5277         return error("Invalid record");
5278       BasicBlock *UnwindDest = nullptr;
5279       if (Record.size() == 2) {
5280         UnwindDest = getBasicBlock(Record[Idx++]);
5281         if (!UnwindDest)
5282           return error("Invalid record");
5283       }
5284 
5285       I = CleanupReturnInst::Create(CleanupPad, UnwindDest);
5286       InstructionList.push_back(I);
5287       break;
5288     }
5289     case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#]
5290       if (Record.size() != 2)
5291         return error("Invalid record");
5292       unsigned Idx = 0;
5293       Type *TokenTy = Type::getTokenTy(Context);
5294       Value *CatchPad = getValue(Record, Idx++, NextValueNo, TokenTy,
5295                                  getVirtualTypeID(TokenTy), CurBB);
5296       if (!CatchPad)
5297         return error("Invalid record");
5298       BasicBlock *BB = getBasicBlock(Record[Idx++]);
5299       if (!BB)
5300         return error("Invalid record");
5301 
5302       I = CatchReturnInst::Create(CatchPad, BB);
5303       InstructionList.push_back(I);
5304       break;
5305     }
5306     case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?]
5307       // We must have, at minimum, the outer scope and the number of arguments.
5308       if (Record.size() < 2)
5309         return error("Invalid record");
5310 
5311       unsigned Idx = 0;
5312 
5313       Type *TokenTy = Type::getTokenTy(Context);
5314       Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy,
5315                                   getVirtualTypeID(TokenTy), CurBB);
5316 
5317       unsigned NumHandlers = Record[Idx++];
5318 
5319       SmallVector<BasicBlock *, 2> Handlers;
5320       for (unsigned Op = 0; Op != NumHandlers; ++Op) {
5321         BasicBlock *BB = getBasicBlock(Record[Idx++]);
5322         if (!BB)
5323           return error("Invalid record");
5324         Handlers.push_back(BB);
5325       }
5326 
5327       BasicBlock *UnwindDest = nullptr;
5328       if (Idx + 1 == Record.size()) {
5329         UnwindDest = getBasicBlock(Record[Idx++]);
5330         if (!UnwindDest)
5331           return error("Invalid record");
5332       }
5333 
5334       if (Record.size() != Idx)
5335         return error("Invalid record");
5336 
5337       auto *CatchSwitch =
5338           CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers);
5339       for (BasicBlock *Handler : Handlers)
5340         CatchSwitch->addHandler(Handler);
5341       I = CatchSwitch;
5342       ResTypeID = getVirtualTypeID(I->getType());
5343       InstructionList.push_back(I);
5344       break;
5345     }
5346     case bitc::FUNC_CODE_INST_CATCHPAD:
5347     case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*]
5348       // We must have, at minimum, the outer scope and the number of arguments.
5349       if (Record.size() < 2)
5350         return error("Invalid record");
5351 
5352       unsigned Idx = 0;
5353 
5354       Type *TokenTy = Type::getTokenTy(Context);
5355       Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy,
5356                                   getVirtualTypeID(TokenTy), CurBB);
5357 
5358       unsigned NumArgOperands = Record[Idx++];
5359 
5360       SmallVector<Value *, 2> Args;
5361       for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
5362         Value *Val;
5363         unsigned ValTypeID;
5364         if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, nullptr))
5365           return error("Invalid record");
5366         Args.push_back(Val);
5367       }
5368 
5369       if (Record.size() != Idx)
5370         return error("Invalid record");
5371 
5372       if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD)
5373         I = CleanupPadInst::Create(ParentPad, Args);
5374       else
5375         I = CatchPadInst::Create(ParentPad, Args);
5376       ResTypeID = getVirtualTypeID(I->getType());
5377       InstructionList.push_back(I);
5378       break;
5379     }
5380     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
5381       // Check magic
5382       if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
5383         // "New" SwitchInst format with case ranges. The changes to write this
5384         // format were reverted but we still recognize bitcode that uses it.
5385         // Hopefully someday we will have support for case ranges and can use
5386         // this format again.
5387 
5388         unsigned OpTyID = Record[1];
5389         Type *OpTy = getTypeByID(OpTyID);
5390         unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
5391 
5392         Value *Cond = getValue(Record, 2, NextValueNo, OpTy, OpTyID, CurBB);
5393         BasicBlock *Default = getBasicBlock(Record[3]);
5394         if (!OpTy || !Cond || !Default)
5395           return error("Invalid record");
5396 
5397         unsigned NumCases = Record[4];
5398 
5399         SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
5400         InstructionList.push_back(SI);
5401 
5402         unsigned CurIdx = 5;
5403         for (unsigned i = 0; i != NumCases; ++i) {
5404           SmallVector<ConstantInt*, 1> CaseVals;
5405           unsigned NumItems = Record[CurIdx++];
5406           for (unsigned ci = 0; ci != NumItems; ++ci) {
5407             bool isSingleNumber = Record[CurIdx++];
5408 
5409             APInt Low;
5410             unsigned ActiveWords = 1;
5411             if (ValueBitWidth > 64)
5412               ActiveWords = Record[CurIdx++];
5413             Low = readWideAPInt(ArrayRef(&Record[CurIdx], ActiveWords),
5414                                 ValueBitWidth);
5415             CurIdx += ActiveWords;
5416 
5417             if (!isSingleNumber) {
5418               ActiveWords = 1;
5419               if (ValueBitWidth > 64)
5420                 ActiveWords = Record[CurIdx++];
5421               APInt High = readWideAPInt(ArrayRef(&Record[CurIdx], ActiveWords),
5422                                          ValueBitWidth);
5423               CurIdx += ActiveWords;
5424 
5425               // FIXME: It is not clear whether values in the range should be
5426               // compared as signed or unsigned values. The partially
5427               // implemented changes that used this format in the past used
5428               // unsigned comparisons.
5429               for ( ; Low.ule(High); ++Low)
5430                 CaseVals.push_back(ConstantInt::get(Context, Low));
5431             } else
5432               CaseVals.push_back(ConstantInt::get(Context, Low));
5433           }
5434           BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
5435           for (ConstantInt *Cst : CaseVals)
5436             SI->addCase(Cst, DestBB);
5437         }
5438         I = SI;
5439         break;
5440       }
5441 
5442       // Old SwitchInst format without case ranges.
5443 
5444       if (Record.size() < 3 || (Record.size() & 1) == 0)
5445         return error("Invalid record");
5446       unsigned OpTyID = Record[0];
5447       Type *OpTy = getTypeByID(OpTyID);
5448       Value *Cond = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB);
5449       BasicBlock *Default = getBasicBlock(Record[2]);
5450       if (!OpTy || !Cond || !Default)
5451         return error("Invalid record");
5452       unsigned NumCases = (Record.size()-3)/2;
5453       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
5454       InstructionList.push_back(SI);
5455       for (unsigned i = 0, e = NumCases; i != e; ++i) {
5456         ConstantInt *CaseVal = dyn_cast_or_null<ConstantInt>(
5457             getFnValueByID(Record[3+i*2], OpTy, OpTyID, nullptr));
5458         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
5459         if (!CaseVal || !DestBB) {
5460           delete SI;
5461           return error("Invalid record");
5462         }
5463         SI->addCase(CaseVal, DestBB);
5464       }
5465       I = SI;
5466       break;
5467     }
5468     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
5469       if (Record.size() < 2)
5470         return error("Invalid record");
5471       unsigned OpTyID = Record[0];
5472       Type *OpTy = getTypeByID(OpTyID);
5473       Value *Address = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB);
5474       if (!OpTy || !Address)
5475         return error("Invalid record");
5476       unsigned NumDests = Record.size()-2;
5477       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
5478       InstructionList.push_back(IBI);
5479       for (unsigned i = 0, e = NumDests; i != e; ++i) {
5480         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
5481           IBI->addDestination(DestBB);
5482         } else {
5483           delete IBI;
5484           return error("Invalid record");
5485         }
5486       }
5487       I = IBI;
5488       break;
5489     }
5490 
5491     case bitc::FUNC_CODE_INST_INVOKE: {
5492       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
5493       if (Record.size() < 4)
5494         return error("Invalid record");
5495       unsigned OpNum = 0;
5496       AttributeList PAL = getAttributes(Record[OpNum++]);
5497       unsigned CCInfo = Record[OpNum++];
5498       BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]);
5499       BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]);
5500 
5501       unsigned FTyID = InvalidTypeID;
5502       FunctionType *FTy = nullptr;
5503       if ((CCInfo >> 13) & 1) {
5504         FTyID = Record[OpNum++];
5505         FTy = dyn_cast<FunctionType>(getTypeByID(FTyID));
5506         if (!FTy)
5507           return error("Explicit invoke type is not a function type");
5508       }
5509 
5510       Value *Callee;
5511       unsigned CalleeTypeID;
5512       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID,
5513                            CurBB))
5514         return error("Invalid record");
5515 
5516       PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
5517       if (!CalleeTy)
5518         return error("Callee is not a pointer");
5519       if (!FTy) {
5520         FTyID = getContainedTypeID(CalleeTypeID);
5521         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
5522         if (!FTy)
5523           return error("Callee is not of pointer to function type");
5524       }
5525       if (Record.size() < FTy->getNumParams() + OpNum)
5526         return error("Insufficient operands to call");
5527 
5528       SmallVector<Value*, 16> Ops;
5529       SmallVector<unsigned, 16> ArgTyIDs;
5530       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5531         unsigned ArgTyID = getContainedTypeID(FTyID, i + 1);
5532         Ops.push_back(getValue(Record, OpNum, NextValueNo, FTy->getParamType(i),
5533                                ArgTyID, CurBB));
5534         ArgTyIDs.push_back(ArgTyID);
5535         if (!Ops.back())
5536           return error("Invalid record");
5537       }
5538 
5539       if (!FTy->isVarArg()) {
5540         if (Record.size() != OpNum)
5541           return error("Invalid record");
5542       } else {
5543         // Read type/value pairs for varargs params.
5544         while (OpNum != Record.size()) {
5545           Value *Op;
5546           unsigned OpTypeID;
5547           if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
5548             return error("Invalid record");
5549           Ops.push_back(Op);
5550           ArgTyIDs.push_back(OpTypeID);
5551         }
5552       }
5553 
5554       // Upgrade the bundles if needed.
5555       if (!OperandBundles.empty())
5556         UpgradeOperandBundles(OperandBundles);
5557 
5558       I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops,
5559                              OperandBundles);
5560       ResTypeID = getContainedTypeID(FTyID);
5561       OperandBundles.clear();
5562       InstructionList.push_back(I);
5563       cast<InvokeInst>(I)->setCallingConv(
5564           static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo));
5565       cast<InvokeInst>(I)->setAttributes(PAL);
5566       if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) {
5567         I->deleteValue();
5568         return Err;
5569       }
5570 
5571       break;
5572     }
5573     case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
5574       unsigned Idx = 0;
5575       Value *Val = nullptr;
5576       unsigned ValTypeID;
5577       if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, CurBB))
5578         return error("Invalid record");
5579       I = ResumeInst::Create(Val);
5580       InstructionList.push_back(I);
5581       break;
5582     }
5583     case bitc::FUNC_CODE_INST_CALLBR: {
5584       // CALLBR: [attr, cc, norm, transfs, fty, fnid, args]
5585       unsigned OpNum = 0;
5586       AttributeList PAL = getAttributes(Record[OpNum++]);
5587       unsigned CCInfo = Record[OpNum++];
5588 
5589       BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]);
5590       unsigned NumIndirectDests = Record[OpNum++];
5591       SmallVector<BasicBlock *, 16> IndirectDests;
5592       for (unsigned i = 0, e = NumIndirectDests; i != e; ++i)
5593         IndirectDests.push_back(getBasicBlock(Record[OpNum++]));
5594 
5595       unsigned FTyID = InvalidTypeID;
5596       FunctionType *FTy = nullptr;
5597       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
5598         FTyID = Record[OpNum++];
5599         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
5600         if (!FTy)
5601           return error("Explicit call type is not a function type");
5602       }
5603 
5604       Value *Callee;
5605       unsigned CalleeTypeID;
5606       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID,
5607                            CurBB))
5608         return error("Invalid record");
5609 
5610       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
5611       if (!OpTy)
5612         return error("Callee is not a pointer type");
5613       if (!FTy) {
5614         FTyID = getContainedTypeID(CalleeTypeID);
5615         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
5616         if (!FTy)
5617           return error("Callee is not of pointer to function type");
5618       }
5619       if (Record.size() < FTy->getNumParams() + OpNum)
5620         return error("Insufficient operands to call");
5621 
5622       SmallVector<Value*, 16> Args;
5623       SmallVector<unsigned, 16> ArgTyIDs;
5624       // Read the fixed params.
5625       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5626         Value *Arg;
5627         unsigned ArgTyID = getContainedTypeID(FTyID, i + 1);
5628         if (FTy->getParamType(i)->isLabelTy())
5629           Arg = getBasicBlock(Record[OpNum]);
5630         else
5631           Arg = getValue(Record, OpNum, NextValueNo, FTy->getParamType(i),
5632                          ArgTyID, CurBB);
5633         if (!Arg)
5634           return error("Invalid record");
5635         Args.push_back(Arg);
5636         ArgTyIDs.push_back(ArgTyID);
5637       }
5638 
5639       // Read type/value pairs for varargs params.
5640       if (!FTy->isVarArg()) {
5641         if (OpNum != Record.size())
5642           return error("Invalid record");
5643       } else {
5644         while (OpNum != Record.size()) {
5645           Value *Op;
5646           unsigned OpTypeID;
5647           if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
5648             return error("Invalid record");
5649           Args.push_back(Op);
5650           ArgTyIDs.push_back(OpTypeID);
5651         }
5652       }
5653 
5654       // Upgrade the bundles if needed.
5655       if (!OperandBundles.empty())
5656         UpgradeOperandBundles(OperandBundles);
5657 
5658       if (auto *IA = dyn_cast<InlineAsm>(Callee)) {
5659         InlineAsm::ConstraintInfoVector ConstraintInfo = IA->ParseConstraints();
5660         auto IsLabelConstraint = [](const InlineAsm::ConstraintInfo &CI) {
5661           return CI.Type == InlineAsm::isLabel;
5662         };
5663         if (none_of(ConstraintInfo, IsLabelConstraint)) {
5664           // Upgrade explicit blockaddress arguments to label constraints.
5665           // Verify that the last arguments are blockaddress arguments that
5666           // match the indirect destinations. Clang always generates callbr
5667           // in this form. We could support reordering with more effort.
5668           unsigned FirstBlockArg = Args.size() - IndirectDests.size();
5669           for (unsigned ArgNo = FirstBlockArg; ArgNo < Args.size(); ++ArgNo) {
5670             unsigned LabelNo = ArgNo - FirstBlockArg;
5671             auto *BA = dyn_cast<BlockAddress>(Args[ArgNo]);
5672             if (!BA || BA->getFunction() != F ||
5673                 LabelNo > IndirectDests.size() ||
5674                 BA->getBasicBlock() != IndirectDests[LabelNo])
5675               return error("callbr argument does not match indirect dest");
5676           }
5677 
5678           // Remove blockaddress arguments.
5679           Args.erase(Args.begin() + FirstBlockArg, Args.end());
5680           ArgTyIDs.erase(ArgTyIDs.begin() + FirstBlockArg, ArgTyIDs.end());
5681 
5682           // Recreate the function type with less arguments.
5683           SmallVector<Type *> ArgTys;
5684           for (Value *Arg : Args)
5685             ArgTys.push_back(Arg->getType());
5686           FTy =
5687               FunctionType::get(FTy->getReturnType(), ArgTys, FTy->isVarArg());
5688 
5689           // Update constraint string to use label constraints.
5690           std::string Constraints = IA->getConstraintString();
5691           unsigned ArgNo = 0;
5692           size_t Pos = 0;
5693           for (const auto &CI : ConstraintInfo) {
5694             if (CI.hasArg()) {
5695               if (ArgNo >= FirstBlockArg)
5696                 Constraints.insert(Pos, "!");
5697               ++ArgNo;
5698             }
5699 
5700             // Go to next constraint in string.
5701             Pos = Constraints.find(',', Pos);
5702             if (Pos == std::string::npos)
5703               break;
5704             ++Pos;
5705           }
5706 
5707           Callee = InlineAsm::get(FTy, IA->getAsmString(), Constraints,
5708                                   IA->hasSideEffects(), IA->isAlignStack(),
5709                                   IA->getDialect(), IA->canThrow());
5710         }
5711       }
5712 
5713       I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args,
5714                              OperandBundles);
5715       ResTypeID = getContainedTypeID(FTyID);
5716       OperandBundles.clear();
5717       InstructionList.push_back(I);
5718       cast<CallBrInst>(I)->setCallingConv(
5719           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
5720       cast<CallBrInst>(I)->setAttributes(PAL);
5721       if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) {
5722         I->deleteValue();
5723         return Err;
5724       }
5725       break;
5726     }
5727     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
5728       I = new UnreachableInst(Context);
5729       InstructionList.push_back(I);
5730       break;
5731     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
5732       if (Record.empty())
5733         return error("Invalid phi record");
5734       // The first record specifies the type.
5735       unsigned TyID = Record[0];
5736       Type *Ty = getTypeByID(TyID);
5737       if (!Ty)
5738         return error("Invalid phi record");
5739 
5740       // Phi arguments are pairs of records of [value, basic block].
5741       // There is an optional final record for fast-math-flags if this phi has a
5742       // floating-point type.
5743       size_t NumArgs = (Record.size() - 1) / 2;
5744       PHINode *PN = PHINode::Create(Ty, NumArgs);
5745       if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN)) {
5746         PN->deleteValue();
5747         return error("Invalid phi record");
5748       }
5749       InstructionList.push_back(PN);
5750 
5751       SmallDenseMap<BasicBlock *, Value *> Args;
5752       for (unsigned i = 0; i != NumArgs; i++) {
5753         BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]);
5754         if (!BB) {
5755           PN->deleteValue();
5756           return error("Invalid phi BB");
5757         }
5758 
5759         // Phi nodes may contain the same predecessor multiple times, in which
5760         // case the incoming value must be identical. Directly reuse the already
5761         // seen value here, to avoid expanding a constant expression multiple
5762         // times.
5763         auto It = Args.find(BB);
5764         if (It != Args.end()) {
5765           PN->addIncoming(It->second, BB);
5766           continue;
5767         }
5768 
5769         // If there already is a block for this edge (from a different phi),
5770         // use it.
5771         BasicBlock *EdgeBB = ConstExprEdgeBBs.lookup({BB, CurBB});
5772         if (!EdgeBB) {
5773           // Otherwise, use a temporary block (that we will discard if it
5774           // turns out to be unnecessary).
5775           if (!PhiConstExprBB)
5776             PhiConstExprBB = BasicBlock::Create(Context, "phi.constexpr", F);
5777           EdgeBB = PhiConstExprBB;
5778         }
5779 
5780         // With the new function encoding, it is possible that operands have
5781         // negative IDs (for forward references).  Use a signed VBR
5782         // representation to keep the encoding small.
5783         Value *V;
5784         if (UseRelativeIDs)
5785           V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB);
5786         else
5787           V = getValue(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB);
5788         if (!V) {
5789           PN->deleteValue();
5790           PhiConstExprBB->eraseFromParent();
5791           return error("Invalid phi record");
5792         }
5793 
5794         if (EdgeBB == PhiConstExprBB && !EdgeBB->empty()) {
5795           ConstExprEdgeBBs.insert({{BB, CurBB}, EdgeBB});
5796           PhiConstExprBB = nullptr;
5797         }
5798         PN->addIncoming(V, BB);
5799         Args.insert({BB, V});
5800       }
5801       I = PN;
5802       ResTypeID = TyID;
5803 
5804       // If there are an even number of records, the final record must be FMF.
5805       if (Record.size() % 2 == 0) {
5806         assert(isa<FPMathOperator>(I) && "Unexpected phi type");
5807         FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]);
5808         if (FMF.any())
5809           I->setFastMathFlags(FMF);
5810       }
5811 
5812       break;
5813     }
5814 
5815     case bitc::FUNC_CODE_INST_LANDINGPAD:
5816     case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: {
5817       // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
5818       unsigned Idx = 0;
5819       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) {
5820         if (Record.size() < 3)
5821           return error("Invalid record");
5822       } else {
5823         assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD);
5824         if (Record.size() < 4)
5825           return error("Invalid record");
5826       }
5827       ResTypeID = Record[Idx++];
5828       Type *Ty = getTypeByID(ResTypeID);
5829       if (!Ty)
5830         return error("Invalid record");
5831       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) {
5832         Value *PersFn = nullptr;
5833         unsigned PersFnTypeID;
5834         if (getValueTypePair(Record, Idx, NextValueNo, PersFn, PersFnTypeID,
5835                              nullptr))
5836           return error("Invalid record");
5837 
5838         if (!F->hasPersonalityFn())
5839           F->setPersonalityFn(cast<Constant>(PersFn));
5840         else if (F->getPersonalityFn() != cast<Constant>(PersFn))
5841           return error("Personality function mismatch");
5842       }
5843 
5844       bool IsCleanup = !!Record[Idx++];
5845       unsigned NumClauses = Record[Idx++];
5846       LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses);
5847       LP->setCleanup(IsCleanup);
5848       for (unsigned J = 0; J != NumClauses; ++J) {
5849         LandingPadInst::ClauseType CT =
5850           LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
5851         Value *Val;
5852         unsigned ValTypeID;
5853 
5854         if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID,
5855                              nullptr)) {
5856           delete LP;
5857           return error("Invalid record");
5858         }
5859 
5860         assert((CT != LandingPadInst::Catch ||
5861                 !isa<ArrayType>(Val->getType())) &&
5862                "Catch clause has a invalid type!");
5863         assert((CT != LandingPadInst::Filter ||
5864                 isa<ArrayType>(Val->getType())) &&
5865                "Filter clause has invalid type!");
5866         LP->addClause(cast<Constant>(Val));
5867       }
5868 
5869       I = LP;
5870       InstructionList.push_back(I);
5871       break;
5872     }
5873 
5874     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
5875       if (Record.size() != 4 && Record.size() != 5)
5876         return error("Invalid record");
5877       using APV = AllocaPackedValues;
5878       const uint64_t Rec = Record[3];
5879       const bool InAlloca = Bitfield::get<APV::UsedWithInAlloca>(Rec);
5880       const bool SwiftError = Bitfield::get<APV::SwiftError>(Rec);
5881       unsigned TyID = Record[0];
5882       Type *Ty = getTypeByID(TyID);
5883       if (!Bitfield::get<APV::ExplicitType>(Rec)) {
5884         TyID = getContainedTypeID(TyID);
5885         Ty = getTypeByID(TyID);
5886         if (!Ty)
5887           return error("Missing element type for old-style alloca");
5888       }
5889       unsigned OpTyID = Record[1];
5890       Type *OpTy = getTypeByID(OpTyID);
5891       Value *Size = getFnValueByID(Record[2], OpTy, OpTyID, CurBB);
5892       MaybeAlign Align;
5893       uint64_t AlignExp =
5894           Bitfield::get<APV::AlignLower>(Rec) |
5895           (Bitfield::get<APV::AlignUpper>(Rec) << APV::AlignLower::Bits);
5896       if (Error Err = parseAlignmentValue(AlignExp, Align)) {
5897         return Err;
5898       }
5899       if (!Ty || !Size)
5900         return error("Invalid record");
5901 
5902       const DataLayout &DL = TheModule->getDataLayout();
5903       unsigned AS = Record.size() == 5 ? Record[4] : DL.getAllocaAddrSpace();
5904 
5905       SmallPtrSet<Type *, 4> Visited;
5906       if (!Align && !Ty->isSized(&Visited))
5907         return error("alloca of unsized type");
5908       if (!Align)
5909         Align = DL.getPrefTypeAlign(Ty);
5910 
5911       AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align);
5912       AI->setUsedWithInAlloca(InAlloca);
5913       AI->setSwiftError(SwiftError);
5914       I = AI;
5915       ResTypeID = getVirtualTypeID(AI->getType(), TyID);
5916       InstructionList.push_back(I);
5917       break;
5918     }
5919     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
5920       unsigned OpNum = 0;
5921       Value *Op;
5922       unsigned OpTypeID;
5923       if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) ||
5924           (OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
5925         return error("Invalid record");
5926 
5927       if (!isa<PointerType>(Op->getType()))
5928         return error("Load operand is not a pointer type");
5929 
5930       Type *Ty = nullptr;
5931       if (OpNum + 3 == Record.size()) {
5932         ResTypeID = Record[OpNum++];
5933         Ty = getTypeByID(ResTypeID);
5934       } else {
5935         ResTypeID = getContainedTypeID(OpTypeID);
5936         Ty = getTypeByID(ResTypeID);
5937         if (!Ty)
5938           return error("Missing element type for old-style load");
5939       }
5940 
5941       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
5942         return Err;
5943 
5944       MaybeAlign Align;
5945       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
5946         return Err;
5947       SmallPtrSet<Type *, 4> Visited;
5948       if (!Align && !Ty->isSized(&Visited))
5949         return error("load of unsized type");
5950       if (!Align)
5951         Align = TheModule->getDataLayout().getABITypeAlign(Ty);
5952       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align);
5953       InstructionList.push_back(I);
5954       break;
5955     }
5956     case bitc::FUNC_CODE_INST_LOADATOMIC: {
5957        // LOADATOMIC: [opty, op, align, vol, ordering, ssid]
5958       unsigned OpNum = 0;
5959       Value *Op;
5960       unsigned OpTypeID;
5961       if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) ||
5962           (OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
5963         return error("Invalid record");
5964 
5965       if (!isa<PointerType>(Op->getType()))
5966         return error("Load operand is not a pointer type");
5967 
5968       Type *Ty = nullptr;
5969       if (OpNum + 5 == Record.size()) {
5970         ResTypeID = Record[OpNum++];
5971         Ty = getTypeByID(ResTypeID);
5972       } else {
5973         ResTypeID = getContainedTypeID(OpTypeID);
5974         Ty = getTypeByID(ResTypeID);
5975         if (!Ty)
5976           return error("Missing element type for old style atomic load");
5977       }
5978 
5979       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
5980         return Err;
5981 
5982       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5983       if (Ordering == AtomicOrdering::NotAtomic ||
5984           Ordering == AtomicOrdering::Release ||
5985           Ordering == AtomicOrdering::AcquireRelease)
5986         return error("Invalid record");
5987       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
5988         return error("Invalid record");
5989       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
5990 
5991       MaybeAlign Align;
5992       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
5993         return Err;
5994       if (!Align)
5995         return error("Alignment missing from atomic load");
5996       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID);
5997       InstructionList.push_back(I);
5998       break;
5999     }
6000     case bitc::FUNC_CODE_INST_STORE:
6001     case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
6002       unsigned OpNum = 0;
6003       Value *Val, *Ptr;
6004       unsigned PtrTypeID, ValTypeID;
6005       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB))
6006         return error("Invalid record");
6007 
6008       if (BitCode == bitc::FUNC_CODE_INST_STORE) {
6009         if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB))
6010           return error("Invalid record");
6011       } else {
6012         ValTypeID = getContainedTypeID(PtrTypeID);
6013         if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID),
6014                      ValTypeID, Val, CurBB))
6015           return error("Invalid record");
6016       }
6017 
6018       if (OpNum + 2 != Record.size())
6019         return error("Invalid record");
6020 
6021       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
6022         return Err;
6023       MaybeAlign Align;
6024       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
6025         return Err;
6026       SmallPtrSet<Type *, 4> Visited;
6027       if (!Align && !Val->getType()->isSized(&Visited))
6028         return error("store of unsized type");
6029       if (!Align)
6030         Align = TheModule->getDataLayout().getABITypeAlign(Val->getType());
6031       I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align);
6032       InstructionList.push_back(I);
6033       break;
6034     }
6035     case bitc::FUNC_CODE_INST_STOREATOMIC:
6036     case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: {
6037       // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid]
6038       unsigned OpNum = 0;
6039       Value *Val, *Ptr;
6040       unsigned PtrTypeID, ValTypeID;
6041       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB) ||
6042           !isa<PointerType>(Ptr->getType()))
6043         return error("Invalid record");
6044       if (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC) {
6045         if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB))
6046           return error("Invalid record");
6047       } else {
6048         ValTypeID = getContainedTypeID(PtrTypeID);
6049         if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID),
6050                      ValTypeID, Val, CurBB))
6051           return error("Invalid record");
6052       }
6053 
6054       if (OpNum + 4 != Record.size())
6055         return error("Invalid record");
6056 
6057       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
6058         return Err;
6059       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
6060       if (Ordering == AtomicOrdering::NotAtomic ||
6061           Ordering == AtomicOrdering::Acquire ||
6062           Ordering == AtomicOrdering::AcquireRelease)
6063         return error("Invalid record");
6064       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
6065       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
6066         return error("Invalid record");
6067 
6068       MaybeAlign Align;
6069       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
6070         return Err;
6071       if (!Align)
6072         return error("Alignment missing from atomic store");
6073       I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID);
6074       InstructionList.push_back(I);
6075       break;
6076     }
6077     case bitc::FUNC_CODE_INST_CMPXCHG_OLD: {
6078       // CMPXCHG_OLD: [ptrty, ptr, cmp, val, vol, ordering, synchscope,
6079       // failure_ordering?, weak?]
6080       const size_t NumRecords = Record.size();
6081       unsigned OpNum = 0;
6082       Value *Ptr = nullptr;
6083       unsigned PtrTypeID;
6084       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB))
6085         return error("Invalid record");
6086 
6087       if (!isa<PointerType>(Ptr->getType()))
6088         return error("Cmpxchg operand is not a pointer type");
6089 
6090       Value *Cmp = nullptr;
6091       unsigned CmpTypeID = getContainedTypeID(PtrTypeID);
6092       if (popValue(Record, OpNum, NextValueNo, getTypeByID(CmpTypeID),
6093                    CmpTypeID, Cmp, CurBB))
6094         return error("Invalid record");
6095 
6096       Value *New = nullptr;
6097       if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID,
6098                    New, CurBB) ||
6099           NumRecords < OpNum + 3 || NumRecords > OpNum + 5)
6100         return error("Invalid record");
6101 
6102       const AtomicOrdering SuccessOrdering =
6103           getDecodedOrdering(Record[OpNum + 1]);
6104       if (SuccessOrdering == AtomicOrdering::NotAtomic ||
6105           SuccessOrdering == AtomicOrdering::Unordered)
6106         return error("Invalid record");
6107 
6108       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
6109 
6110       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
6111         return Err;
6112 
6113       const AtomicOrdering FailureOrdering =
6114           NumRecords < 7
6115               ? AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering)
6116               : getDecodedOrdering(Record[OpNum + 3]);
6117 
6118       if (FailureOrdering == AtomicOrdering::NotAtomic ||
6119           FailureOrdering == AtomicOrdering::Unordered)
6120         return error("Invalid record");
6121 
6122       const Align Alignment(
6123           TheModule->getDataLayout().getTypeStoreSize(Cmp->getType()));
6124 
6125       I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering,
6126                                 FailureOrdering, SSID);
6127       cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
6128 
6129       if (NumRecords < 8) {
6130         // Before weak cmpxchgs existed, the instruction simply returned the
6131         // value loaded from memory, so bitcode files from that era will be
6132         // expecting the first component of a modern cmpxchg.
6133         I->insertInto(CurBB, CurBB->end());
6134         I = ExtractValueInst::Create(I, 0);
6135         ResTypeID = CmpTypeID;
6136       } else {
6137         cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]);
6138         unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context));
6139         ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID});
6140       }
6141 
6142       InstructionList.push_back(I);
6143       break;
6144     }
6145     case bitc::FUNC_CODE_INST_CMPXCHG: {
6146       // CMPXCHG: [ptrty, ptr, cmp, val, vol, success_ordering, synchscope,
6147       // failure_ordering, weak, align?]
6148       const size_t NumRecords = Record.size();
6149       unsigned OpNum = 0;
6150       Value *Ptr = nullptr;
6151       unsigned PtrTypeID;
6152       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB))
6153         return error("Invalid record");
6154 
6155       if (!isa<PointerType>(Ptr->getType()))
6156         return error("Cmpxchg operand is not a pointer type");
6157 
6158       Value *Cmp = nullptr;
6159       unsigned CmpTypeID;
6160       if (getValueTypePair(Record, OpNum, NextValueNo, Cmp, CmpTypeID, CurBB))
6161         return error("Invalid record");
6162 
6163       Value *Val = nullptr;
6164       if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID, Val,
6165                    CurBB))
6166         return error("Invalid record");
6167 
6168       if (NumRecords < OpNum + 3 || NumRecords > OpNum + 6)
6169         return error("Invalid record");
6170 
6171       const bool IsVol = Record[OpNum];
6172 
6173       const AtomicOrdering SuccessOrdering =
6174           getDecodedOrdering(Record[OpNum + 1]);
6175       if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering))
6176         return error("Invalid cmpxchg success ordering");
6177 
6178       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
6179 
6180       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
6181         return Err;
6182 
6183       const AtomicOrdering FailureOrdering =
6184           getDecodedOrdering(Record[OpNum + 3]);
6185       if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering))
6186         return error("Invalid cmpxchg failure ordering");
6187 
6188       const bool IsWeak = Record[OpNum + 4];
6189 
6190       MaybeAlign Alignment;
6191 
6192       if (NumRecords == (OpNum + 6)) {
6193         if (Error Err = parseAlignmentValue(Record[OpNum + 5], Alignment))
6194           return Err;
6195       }
6196       if (!Alignment)
6197         Alignment =
6198             Align(TheModule->getDataLayout().getTypeStoreSize(Cmp->getType()));
6199 
6200       I = new AtomicCmpXchgInst(Ptr, Cmp, Val, *Alignment, SuccessOrdering,
6201                                 FailureOrdering, SSID);
6202       cast<AtomicCmpXchgInst>(I)->setVolatile(IsVol);
6203       cast<AtomicCmpXchgInst>(I)->setWeak(IsWeak);
6204 
6205       unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context));
6206       ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID});
6207 
6208       InstructionList.push_back(I);
6209       break;
6210     }
6211     case bitc::FUNC_CODE_INST_ATOMICRMW_OLD:
6212     case bitc::FUNC_CODE_INST_ATOMICRMW: {
6213       // ATOMICRMW_OLD: [ptrty, ptr, val, op, vol, ordering, ssid, align?]
6214       // ATOMICRMW: [ptrty, ptr, valty, val, op, vol, ordering, ssid, align?]
6215       const size_t NumRecords = Record.size();
6216       unsigned OpNum = 0;
6217 
6218       Value *Ptr = nullptr;
6219       unsigned PtrTypeID;
6220       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB))
6221         return error("Invalid record");
6222 
6223       if (!isa<PointerType>(Ptr->getType()))
6224         return error("Invalid record");
6225 
6226       Value *Val = nullptr;
6227       unsigned ValTypeID = InvalidTypeID;
6228       if (BitCode == bitc::FUNC_CODE_INST_ATOMICRMW_OLD) {
6229         ValTypeID = getContainedTypeID(PtrTypeID);
6230         if (popValue(Record, OpNum, NextValueNo,
6231                      getTypeByID(ValTypeID), ValTypeID, Val, CurBB))
6232           return error("Invalid record");
6233       } else {
6234         if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB))
6235           return error("Invalid record");
6236       }
6237 
6238       if (!(NumRecords == (OpNum + 4) || NumRecords == (OpNum + 5)))
6239         return error("Invalid record");
6240 
6241       const AtomicRMWInst::BinOp Operation =
6242           getDecodedRMWOperation(Record[OpNum]);
6243       if (Operation < AtomicRMWInst::FIRST_BINOP ||
6244           Operation > AtomicRMWInst::LAST_BINOP)
6245         return error("Invalid record");
6246 
6247       const bool IsVol = Record[OpNum + 1];
6248 
6249       const AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
6250       if (Ordering == AtomicOrdering::NotAtomic ||
6251           Ordering == AtomicOrdering::Unordered)
6252         return error("Invalid record");
6253 
6254       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
6255 
6256       MaybeAlign Alignment;
6257 
6258       if (NumRecords == (OpNum + 5)) {
6259         if (Error Err = parseAlignmentValue(Record[OpNum + 4], Alignment))
6260           return Err;
6261       }
6262 
6263       if (!Alignment)
6264         Alignment =
6265             Align(TheModule->getDataLayout().getTypeStoreSize(Val->getType()));
6266 
6267       I = new AtomicRMWInst(Operation, Ptr, Val, *Alignment, Ordering, SSID);
6268       ResTypeID = ValTypeID;
6269       cast<AtomicRMWInst>(I)->setVolatile(IsVol);
6270 
6271       InstructionList.push_back(I);
6272       break;
6273     }
6274     case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid]
6275       if (2 != Record.size())
6276         return error("Invalid record");
6277       AtomicOrdering Ordering = getDecodedOrdering(Record[0]);
6278       if (Ordering == AtomicOrdering::NotAtomic ||
6279           Ordering == AtomicOrdering::Unordered ||
6280           Ordering == AtomicOrdering::Monotonic)
6281         return error("Invalid record");
6282       SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]);
6283       I = new FenceInst(Context, Ordering, SSID);
6284       InstructionList.push_back(I);
6285       break;
6286     }
6287     case bitc::FUNC_CODE_INST_CALL: {
6288       // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...]
6289       if (Record.size() < 3)
6290         return error("Invalid record");
6291 
6292       unsigned OpNum = 0;
6293       AttributeList PAL = getAttributes(Record[OpNum++]);
6294       unsigned CCInfo = Record[OpNum++];
6295 
6296       FastMathFlags FMF;
6297       if ((CCInfo >> bitc::CALL_FMF) & 1) {
6298         FMF = getDecodedFastMathFlags(Record[OpNum++]);
6299         if (!FMF.any())
6300           return error("Fast math flags indicator set for call with no FMF");
6301       }
6302 
6303       unsigned FTyID = InvalidTypeID;
6304       FunctionType *FTy = nullptr;
6305       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
6306         FTyID = Record[OpNum++];
6307         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
6308         if (!FTy)
6309           return error("Explicit call type is not a function type");
6310       }
6311 
6312       Value *Callee;
6313       unsigned CalleeTypeID;
6314       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID,
6315                            CurBB))
6316         return error("Invalid record");
6317 
6318       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
6319       if (!OpTy)
6320         return error("Callee is not a pointer type");
6321       if (!FTy) {
6322         FTyID = getContainedTypeID(CalleeTypeID);
6323         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
6324         if (!FTy)
6325           return error("Callee is not of pointer to function type");
6326       }
6327       if (Record.size() < FTy->getNumParams() + OpNum)
6328         return error("Insufficient operands to call");
6329 
6330       SmallVector<Value*, 16> Args;
6331       SmallVector<unsigned, 16> ArgTyIDs;
6332       // Read the fixed params.
6333       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
6334         unsigned ArgTyID = getContainedTypeID(FTyID, i + 1);
6335         if (FTy->getParamType(i)->isLabelTy())
6336           Args.push_back(getBasicBlock(Record[OpNum]));
6337         else
6338           Args.push_back(getValue(Record, OpNum, NextValueNo,
6339                                   FTy->getParamType(i), ArgTyID, CurBB));
6340         ArgTyIDs.push_back(ArgTyID);
6341         if (!Args.back())
6342           return error("Invalid record");
6343       }
6344 
6345       // Read type/value pairs for varargs params.
6346       if (!FTy->isVarArg()) {
6347         if (OpNum != Record.size())
6348           return error("Invalid record");
6349       } else {
6350         while (OpNum != Record.size()) {
6351           Value *Op;
6352           unsigned OpTypeID;
6353           if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
6354             return error("Invalid record");
6355           Args.push_back(Op);
6356           ArgTyIDs.push_back(OpTypeID);
6357         }
6358       }
6359 
6360       // Upgrade the bundles if needed.
6361       if (!OperandBundles.empty())
6362         UpgradeOperandBundles(OperandBundles);
6363 
6364       I = CallInst::Create(FTy, Callee, Args, OperandBundles);
6365       ResTypeID = getContainedTypeID(FTyID);
6366       OperandBundles.clear();
6367       InstructionList.push_back(I);
6368       cast<CallInst>(I)->setCallingConv(
6369           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
6370       CallInst::TailCallKind TCK = CallInst::TCK_None;
6371       if (CCInfo & (1 << bitc::CALL_TAIL))
6372         TCK = CallInst::TCK_Tail;
6373       if (CCInfo & (1 << bitc::CALL_MUSTTAIL))
6374         TCK = CallInst::TCK_MustTail;
6375       if (CCInfo & (1 << bitc::CALL_NOTAIL))
6376         TCK = CallInst::TCK_NoTail;
6377       cast<CallInst>(I)->setTailCallKind(TCK);
6378       cast<CallInst>(I)->setAttributes(PAL);
6379       if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) {
6380         I->deleteValue();
6381         return Err;
6382       }
6383       if (FMF.any()) {
6384         if (!isa<FPMathOperator>(I))
6385           return error("Fast-math-flags specified for call without "
6386                        "floating-point scalar or vector return type");
6387         I->setFastMathFlags(FMF);
6388       }
6389       break;
6390     }
6391     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
6392       if (Record.size() < 3)
6393         return error("Invalid record");
6394       unsigned OpTyID = Record[0];
6395       Type *OpTy = getTypeByID(OpTyID);
6396       Value *Op = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB);
6397       ResTypeID = Record[2];
6398       Type *ResTy = getTypeByID(ResTypeID);
6399       if (!OpTy || !Op || !ResTy)
6400         return error("Invalid record");
6401       I = new VAArgInst(Op, ResTy);
6402       InstructionList.push_back(I);
6403       break;
6404     }
6405 
6406     case bitc::FUNC_CODE_OPERAND_BUNDLE: {
6407       // A call or an invoke can be optionally prefixed with some variable
6408       // number of operand bundle blocks.  These blocks are read into
6409       // OperandBundles and consumed at the next call or invoke instruction.
6410 
6411       if (Record.empty() || Record[0] >= BundleTags.size())
6412         return error("Invalid record");
6413 
6414       std::vector<Value *> Inputs;
6415 
6416       unsigned OpNum = 1;
6417       while (OpNum != Record.size()) {
6418         Value *Op;
6419         unsigned OpTypeID;
6420         if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
6421           return error("Invalid record");
6422         Inputs.push_back(Op);
6423       }
6424 
6425       OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs));
6426       continue;
6427     }
6428 
6429     case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval]
6430       unsigned OpNum = 0;
6431       Value *Op = nullptr;
6432       unsigned OpTypeID;
6433       if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
6434         return error("Invalid record");
6435       if (OpNum != Record.size())
6436         return error("Invalid record");
6437 
6438       I = new FreezeInst(Op);
6439       ResTypeID = OpTypeID;
6440       InstructionList.push_back(I);
6441       break;
6442     }
6443     }
6444 
6445     // Add instruction to end of current BB.  If there is no current BB, reject
6446     // this file.
6447     if (!CurBB) {
6448       I->deleteValue();
6449       return error("Invalid instruction with no BB");
6450     }
6451     if (!OperandBundles.empty()) {
6452       I->deleteValue();
6453       return error("Operand bundles found with no consumer");
6454     }
6455     I->insertInto(CurBB, CurBB->end());
6456 
6457     // If this was a terminator instruction, move to the next block.
6458     if (I->isTerminator()) {
6459       ++CurBBNo;
6460       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
6461     }
6462 
6463     // Non-void values get registered in the value table for future use.
6464     if (!I->getType()->isVoidTy()) {
6465       assert(I->getType() == getTypeByID(ResTypeID) &&
6466              "Incorrect result type ID");
6467       if (Error Err = ValueList.assignValue(NextValueNo++, I, ResTypeID))
6468         return Err;
6469     }
6470   }
6471 
6472 OutOfRecordLoop:
6473 
6474   if (!OperandBundles.empty())
6475     return error("Operand bundles found with no consumer");
6476 
6477   // Check the function list for unresolved values.
6478   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
6479     if (!A->getParent()) {
6480       // We found at least one unresolved value.  Nuke them all to avoid leaks.
6481       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
6482         if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
6483           A->replaceAllUsesWith(PoisonValue::get(A->getType()));
6484           delete A;
6485         }
6486       }
6487       return error("Never resolved value found in function");
6488     }
6489   }
6490 
6491   // Unexpected unresolved metadata about to be dropped.
6492   if (MDLoader->hasFwdRefs())
6493     return error("Invalid function metadata: outgoing forward refs");
6494 
6495   if (PhiConstExprBB)
6496     PhiConstExprBB->eraseFromParent();
6497 
6498   for (const auto &Pair : ConstExprEdgeBBs) {
6499     BasicBlock *From = Pair.first.first;
6500     BasicBlock *To = Pair.first.second;
6501     BasicBlock *EdgeBB = Pair.second;
6502     BranchInst::Create(To, EdgeBB);
6503     From->getTerminator()->replaceSuccessorWith(To, EdgeBB);
6504     To->replacePhiUsesWith(From, EdgeBB);
6505     EdgeBB->moveBefore(To);
6506   }
6507 
6508   // Trim the value list down to the size it was before we parsed this function.
6509   ValueList.shrinkTo(ModuleValueListSize);
6510   MDLoader->shrinkTo(ModuleMDLoaderSize);
6511   std::vector<BasicBlock*>().swap(FunctionBBs);
6512   return Error::success();
6513 }
6514 
6515 /// Find the function body in the bitcode stream
6516 Error BitcodeReader::findFunctionInStream(
6517     Function *F,
6518     DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
6519   while (DeferredFunctionInfoIterator->second == 0) {
6520     // This is the fallback handling for the old format bitcode that
6521     // didn't contain the function index in the VST, or when we have
6522     // an anonymous function which would not have a VST entry.
6523     // Assert that we have one of those two cases.
6524     assert(VSTOffset == 0 || !F->hasName());
6525     // Parse the next body in the stream and set its position in the
6526     // DeferredFunctionInfo map.
6527     if (Error Err = rememberAndSkipFunctionBodies())
6528       return Err;
6529   }
6530   return Error::success();
6531 }
6532 
6533 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) {
6534   if (Val == SyncScope::SingleThread || Val == SyncScope::System)
6535     return SyncScope::ID(Val);
6536   if (Val >= SSIDs.size())
6537     return SyncScope::System; // Map unknown synchronization scopes to system.
6538   return SSIDs[Val];
6539 }
6540 
6541 //===----------------------------------------------------------------------===//
6542 // GVMaterializer implementation
6543 //===----------------------------------------------------------------------===//
6544 
6545 Error BitcodeReader::materialize(GlobalValue *GV) {
6546   Function *F = dyn_cast<Function>(GV);
6547   // If it's not a function or is already material, ignore the request.
6548   if (!F || !F->isMaterializable())
6549     return Error::success();
6550 
6551   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
6552   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
6553   // If its position is recorded as 0, its body is somewhere in the stream
6554   // but we haven't seen it yet.
6555   if (DFII->second == 0)
6556     if (Error Err = findFunctionInStream(F, DFII))
6557       return Err;
6558 
6559   // Materialize metadata before parsing any function bodies.
6560   if (Error Err = materializeMetadata())
6561     return Err;
6562 
6563   // Move the bit stream to the saved position of the deferred function body.
6564   if (Error JumpFailed = Stream.JumpToBit(DFII->second))
6565     return JumpFailed;
6566   if (Error Err = parseFunctionBody(F))
6567     return Err;
6568   F->setIsMaterializable(false);
6569 
6570   if (StripDebugInfo)
6571     stripDebugInfo(*F);
6572 
6573   // Upgrade any old intrinsic calls in the function.
6574   for (auto &I : UpgradedIntrinsics) {
6575     for (User *U : llvm::make_early_inc_range(I.first->materialized_users()))
6576       if (CallInst *CI = dyn_cast<CallInst>(U))
6577         UpgradeIntrinsicCall(CI, I.second);
6578   }
6579 
6580   // Finish fn->subprogram upgrade for materialized functions.
6581   if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F))
6582     F->setSubprogram(SP);
6583 
6584   // Check if the TBAA Metadata are valid, otherwise we will need to strip them.
6585   if (!MDLoader->isStrippingTBAA()) {
6586     for (auto &I : instructions(F)) {
6587       MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa);
6588       if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA))
6589         continue;
6590       MDLoader->setStripTBAA(true);
6591       stripTBAA(F->getParent());
6592     }
6593   }
6594 
6595   for (auto &I : instructions(F)) {
6596     // "Upgrade" older incorrect branch weights by dropping them.
6597     if (auto *MD = I.getMetadata(LLVMContext::MD_prof)) {
6598       if (MD->getOperand(0) != nullptr && isa<MDString>(MD->getOperand(0))) {
6599         MDString *MDS = cast<MDString>(MD->getOperand(0));
6600         StringRef ProfName = MDS->getString();
6601         // Check consistency of !prof branch_weights metadata.
6602         if (!ProfName.equals("branch_weights"))
6603           continue;
6604         unsigned ExpectedNumOperands = 0;
6605         if (BranchInst *BI = dyn_cast<BranchInst>(&I))
6606           ExpectedNumOperands = BI->getNumSuccessors();
6607         else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I))
6608           ExpectedNumOperands = SI->getNumSuccessors();
6609         else if (isa<CallInst>(&I))
6610           ExpectedNumOperands = 1;
6611         else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I))
6612           ExpectedNumOperands = IBI->getNumDestinations();
6613         else if (isa<SelectInst>(&I))
6614           ExpectedNumOperands = 2;
6615         else
6616           continue; // ignore and continue.
6617 
6618         // If branch weight doesn't match, just strip branch weight.
6619         if (MD->getNumOperands() != 1 + ExpectedNumOperands)
6620           I.setMetadata(LLVMContext::MD_prof, nullptr);
6621       }
6622     }
6623 
6624     // Remove incompatible attributes on function calls.
6625     if (auto *CI = dyn_cast<CallBase>(&I)) {
6626       CI->removeRetAttrs(AttributeFuncs::typeIncompatible(
6627           CI->getFunctionType()->getReturnType()));
6628 
6629       for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ++ArgNo)
6630         CI->removeParamAttrs(ArgNo, AttributeFuncs::typeIncompatible(
6631                                         CI->getArgOperand(ArgNo)->getType()));
6632     }
6633   }
6634 
6635   // Look for functions that rely on old function attribute behavior.
6636   UpgradeFunctionAttributes(*F);
6637 
6638   // Bring in any functions that this function forward-referenced via
6639   // blockaddresses.
6640   return materializeForwardReferencedFunctions();
6641 }
6642 
6643 Error BitcodeReader::materializeModule() {
6644   if (Error Err = materializeMetadata())
6645     return Err;
6646 
6647   // Promise to materialize all forward references.
6648   WillMaterializeAllForwardRefs = true;
6649 
6650   // Iterate over the module, deserializing any functions that are still on
6651   // disk.
6652   for (Function &F : *TheModule) {
6653     if (Error Err = materialize(&F))
6654       return Err;
6655   }
6656   // At this point, if there are any function bodies, parse the rest of
6657   // the bits in the module past the last function block we have recorded
6658   // through either lazy scanning or the VST.
6659   if (LastFunctionBlockBit || NextUnreadBit)
6660     if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit
6661                                     ? LastFunctionBlockBit
6662                                     : NextUnreadBit))
6663       return Err;
6664 
6665   // Check that all block address forward references got resolved (as we
6666   // promised above).
6667   if (!BasicBlockFwdRefs.empty())
6668     return error("Never resolved function from blockaddress");
6669 
6670   // Upgrade any intrinsic calls that slipped through (should not happen!) and
6671   // delete the old functions to clean up. We can't do this unless the entire
6672   // module is materialized because there could always be another function body
6673   // with calls to the old function.
6674   for (auto &I : UpgradedIntrinsics) {
6675     for (auto *U : I.first->users()) {
6676       if (CallInst *CI = dyn_cast<CallInst>(U))
6677         UpgradeIntrinsicCall(CI, I.second);
6678     }
6679     if (!I.first->use_empty())
6680       I.first->replaceAllUsesWith(I.second);
6681     I.first->eraseFromParent();
6682   }
6683   UpgradedIntrinsics.clear();
6684 
6685   UpgradeDebugInfo(*TheModule);
6686 
6687   UpgradeModuleFlags(*TheModule);
6688 
6689   UpgradeARCRuntime(*TheModule);
6690 
6691   return Error::success();
6692 }
6693 
6694 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
6695   return IdentifiedStructTypes;
6696 }
6697 
6698 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
6699     BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex,
6700     StringRef ModulePath, std::function<bool(GlobalValue::GUID)> IsPrevailing)
6701     : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex),
6702       ModulePath(ModulePath), IsPrevailing(IsPrevailing) {}
6703 
6704 void ModuleSummaryIndexBitcodeReader::addThisModule() {
6705   TheIndex.addModule(ModulePath);
6706 }
6707 
6708 ModuleSummaryIndex::ModuleInfo *
6709 ModuleSummaryIndexBitcodeReader::getThisModule() {
6710   return TheIndex.getModule(ModulePath);
6711 }
6712 
6713 template <bool AllowNullValueInfo>
6714 std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID>
6715 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) {
6716   auto VGI = ValueIdToValueInfoMap[ValueId];
6717   // We can have a null value info for memprof callsite info records in
6718   // distributed ThinLTO index files when the callee function summary is not
6719   // included in the index. The bitcode writer records 0 in that case,
6720   // and the caller of this helper will set AllowNullValueInfo to true.
6721   assert(AllowNullValueInfo || std::get<0>(VGI));
6722   return VGI;
6723 }
6724 
6725 void ModuleSummaryIndexBitcodeReader::setValueGUID(
6726     uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage,
6727     StringRef SourceFileName) {
6728   std::string GlobalId =
6729       GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName);
6730   auto ValueGUID = GlobalValue::getGUID(GlobalId);
6731   auto OriginalNameID = ValueGUID;
6732   if (GlobalValue::isLocalLinkage(Linkage))
6733     OriginalNameID = GlobalValue::getGUID(ValueName);
6734   if (PrintSummaryGUIDs)
6735     dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is "
6736            << ValueName << "\n";
6737 
6738   // UseStrtab is false for legacy summary formats and value names are
6739   // created on stack. In that case we save the name in a string saver in
6740   // the index so that the value name can be recorded.
6741   ValueIdToValueInfoMap[ValueID] = std::make_tuple(
6742       TheIndex.getOrInsertValueInfo(
6743           ValueGUID, UseStrtab ? ValueName : TheIndex.saveString(ValueName)),
6744       OriginalNameID, ValueGUID);
6745 }
6746 
6747 // Specialized value symbol table parser used when reading module index
6748 // blocks where we don't actually create global values. The parsed information
6749 // is saved in the bitcode reader for use when later parsing summaries.
6750 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable(
6751     uint64_t Offset,
6752     DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) {
6753   // With a strtab the VST is not required to parse the summary.
6754   if (UseStrtab)
6755     return Error::success();
6756 
6757   assert(Offset > 0 && "Expected non-zero VST offset");
6758   Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
6759   if (!MaybeCurrentBit)
6760     return MaybeCurrentBit.takeError();
6761   uint64_t CurrentBit = MaybeCurrentBit.get();
6762 
6763   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
6764     return Err;
6765 
6766   SmallVector<uint64_t, 64> Record;
6767 
6768   // Read all the records for this value table.
6769   SmallString<128> ValueName;
6770 
6771   while (true) {
6772     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6773     if (!MaybeEntry)
6774       return MaybeEntry.takeError();
6775     BitstreamEntry Entry = MaybeEntry.get();
6776 
6777     switch (Entry.Kind) {
6778     case BitstreamEntry::SubBlock: // Handled for us already.
6779     case BitstreamEntry::Error:
6780       return error("Malformed block");
6781     case BitstreamEntry::EndBlock:
6782       // Done parsing VST, jump back to wherever we came from.
6783       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
6784         return JumpFailed;
6785       return Error::success();
6786     case BitstreamEntry::Record:
6787       // The interesting case.
6788       break;
6789     }
6790 
6791     // Read a record.
6792     Record.clear();
6793     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
6794     if (!MaybeRecord)
6795       return MaybeRecord.takeError();
6796     switch (MaybeRecord.get()) {
6797     default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records).
6798       break;
6799     case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
6800       if (convertToString(Record, 1, ValueName))
6801         return error("Invalid record");
6802       unsigned ValueID = Record[0];
6803       assert(!SourceFileName.empty());
6804       auto VLI = ValueIdToLinkageMap.find(ValueID);
6805       assert(VLI != ValueIdToLinkageMap.end() &&
6806              "No linkage found for VST entry?");
6807       auto Linkage = VLI->second;
6808       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
6809       ValueName.clear();
6810       break;
6811     }
6812     case bitc::VST_CODE_FNENTRY: {
6813       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
6814       if (convertToString(Record, 2, ValueName))
6815         return error("Invalid record");
6816       unsigned ValueID = Record[0];
6817       assert(!SourceFileName.empty());
6818       auto VLI = ValueIdToLinkageMap.find(ValueID);
6819       assert(VLI != ValueIdToLinkageMap.end() &&
6820              "No linkage found for VST entry?");
6821       auto Linkage = VLI->second;
6822       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
6823       ValueName.clear();
6824       break;
6825     }
6826     case bitc::VST_CODE_COMBINED_ENTRY: {
6827       // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
6828       unsigned ValueID = Record[0];
6829       GlobalValue::GUID RefGUID = Record[1];
6830       // The "original name", which is the second value of the pair will be
6831       // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index.
6832       ValueIdToValueInfoMap[ValueID] = std::make_tuple(
6833           TheIndex.getOrInsertValueInfo(RefGUID), RefGUID, RefGUID);
6834       break;
6835     }
6836     }
6837   }
6838 }
6839 
6840 // Parse just the blocks needed for building the index out of the module.
6841 // At the end of this routine the module Index is populated with a map
6842 // from global value id to GlobalValueSummary objects.
6843 Error ModuleSummaryIndexBitcodeReader::parseModule() {
6844   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
6845     return Err;
6846 
6847   SmallVector<uint64_t, 64> Record;
6848   DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap;
6849   unsigned ValueId = 0;
6850 
6851   // Read the index for this module.
6852   while (true) {
6853     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6854     if (!MaybeEntry)
6855       return MaybeEntry.takeError();
6856     llvm::BitstreamEntry Entry = MaybeEntry.get();
6857 
6858     switch (Entry.Kind) {
6859     case BitstreamEntry::Error:
6860       return error("Malformed block");
6861     case BitstreamEntry::EndBlock:
6862       return Error::success();
6863 
6864     case BitstreamEntry::SubBlock:
6865       switch (Entry.ID) {
6866       default: // Skip unknown content.
6867         if (Error Err = Stream.SkipBlock())
6868           return Err;
6869         break;
6870       case bitc::BLOCKINFO_BLOCK_ID:
6871         // Need to parse these to get abbrev ids (e.g. for VST)
6872         if (Error Err = readBlockInfo())
6873           return Err;
6874         break;
6875       case bitc::VALUE_SYMTAB_BLOCK_ID:
6876         // Should have been parsed earlier via VSTOffset, unless there
6877         // is no summary section.
6878         assert(((SeenValueSymbolTable && VSTOffset > 0) ||
6879                 !SeenGlobalValSummary) &&
6880                "Expected early VST parse via VSTOffset record");
6881         if (Error Err = Stream.SkipBlock())
6882           return Err;
6883         break;
6884       case bitc::GLOBALVAL_SUMMARY_BLOCK_ID:
6885       case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID:
6886         // Add the module if it is a per-module index (has a source file name).
6887         if (!SourceFileName.empty())
6888           addThisModule();
6889         assert(!SeenValueSymbolTable &&
6890                "Already read VST when parsing summary block?");
6891         // We might not have a VST if there were no values in the
6892         // summary. An empty summary block generated when we are
6893         // performing ThinLTO compiles so we don't later invoke
6894         // the regular LTO process on them.
6895         if (VSTOffset > 0) {
6896           if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap))
6897             return Err;
6898           SeenValueSymbolTable = true;
6899         }
6900         SeenGlobalValSummary = true;
6901         if (Error Err = parseEntireSummary(Entry.ID))
6902           return Err;
6903         break;
6904       case bitc::MODULE_STRTAB_BLOCK_ID:
6905         if (Error Err = parseModuleStringTable())
6906           return Err;
6907         break;
6908       }
6909       continue;
6910 
6911     case BitstreamEntry::Record: {
6912         Record.clear();
6913         Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
6914         if (!MaybeBitCode)
6915           return MaybeBitCode.takeError();
6916         switch (MaybeBitCode.get()) {
6917         default:
6918           break; // Default behavior, ignore unknown content.
6919         case bitc::MODULE_CODE_VERSION: {
6920           if (Error Err = parseVersionRecord(Record).takeError())
6921             return Err;
6922           break;
6923         }
6924         /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
6925         case bitc::MODULE_CODE_SOURCE_FILENAME: {
6926           SmallString<128> ValueName;
6927           if (convertToString(Record, 0, ValueName))
6928             return error("Invalid record");
6929           SourceFileName = ValueName.c_str();
6930           break;
6931         }
6932         /// MODULE_CODE_HASH: [5*i32]
6933         case bitc::MODULE_CODE_HASH: {
6934           if (Record.size() != 5)
6935             return error("Invalid hash length " + Twine(Record.size()).str());
6936           auto &Hash = getThisModule()->second;
6937           int Pos = 0;
6938           for (auto &Val : Record) {
6939             assert(!(Val >> 32) && "Unexpected high bits set");
6940             Hash[Pos++] = Val;
6941           }
6942           break;
6943         }
6944         /// MODULE_CODE_VSTOFFSET: [offset]
6945         case bitc::MODULE_CODE_VSTOFFSET:
6946           if (Record.empty())
6947             return error("Invalid record");
6948           // Note that we subtract 1 here because the offset is relative to one
6949           // word before the start of the identification or module block, which
6950           // was historically always the start of the regular bitcode header.
6951           VSTOffset = Record[0] - 1;
6952           break;
6953         // v1 GLOBALVAR: [pointer type, isconst,     initid,       linkage, ...]
6954         // v1 FUNCTION:  [type,         callingconv, isproto,      linkage, ...]
6955         // v1 ALIAS:     [alias type,   addrspace,   aliasee val#, linkage, ...]
6956         // v2: [strtab offset, strtab size, v1]
6957         case bitc::MODULE_CODE_GLOBALVAR:
6958         case bitc::MODULE_CODE_FUNCTION:
6959         case bitc::MODULE_CODE_ALIAS: {
6960           StringRef Name;
6961           ArrayRef<uint64_t> GVRecord;
6962           std::tie(Name, GVRecord) = readNameFromStrtab(Record);
6963           if (GVRecord.size() <= 3)
6964             return error("Invalid record");
6965           uint64_t RawLinkage = GVRecord[3];
6966           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
6967           if (!UseStrtab) {
6968             ValueIdToLinkageMap[ValueId++] = Linkage;
6969             break;
6970           }
6971 
6972           setValueGUID(ValueId++, Name, Linkage, SourceFileName);
6973           break;
6974         }
6975         }
6976       }
6977       continue;
6978     }
6979   }
6980 }
6981 
6982 std::vector<ValueInfo>
6983 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) {
6984   std::vector<ValueInfo> Ret;
6985   Ret.reserve(Record.size());
6986   for (uint64_t RefValueId : Record)
6987     Ret.push_back(std::get<0>(getValueInfoFromValueId(RefValueId)));
6988   return Ret;
6989 }
6990 
6991 std::vector<FunctionSummary::EdgeTy>
6992 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record,
6993                                               bool IsOldProfileFormat,
6994                                               bool HasProfile, bool HasRelBF) {
6995   std::vector<FunctionSummary::EdgeTy> Ret;
6996   Ret.reserve(Record.size());
6997   for (unsigned I = 0, E = Record.size(); I != E; ++I) {
6998     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
6999     uint64_t RelBF = 0;
7000     ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[I]));
7001     if (IsOldProfileFormat) {
7002       I += 1; // Skip old callsitecount field
7003       if (HasProfile)
7004         I += 1; // Skip old profilecount field
7005     } else if (HasProfile)
7006       Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]);
7007     else if (HasRelBF)
7008       RelBF = Record[++I];
7009     Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)});
7010   }
7011   return Ret;
7012 }
7013 
7014 static void
7015 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot,
7016                                        WholeProgramDevirtResolution &Wpd) {
7017   uint64_t ArgNum = Record[Slot++];
7018   WholeProgramDevirtResolution::ByArg &B =
7019       Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}];
7020   Slot += ArgNum;
7021 
7022   B.TheKind =
7023       static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]);
7024   B.Info = Record[Slot++];
7025   B.Byte = Record[Slot++];
7026   B.Bit = Record[Slot++];
7027 }
7028 
7029 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record,
7030                                               StringRef Strtab, size_t &Slot,
7031                                               TypeIdSummary &TypeId) {
7032   uint64_t Id = Record[Slot++];
7033   WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id];
7034 
7035   Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]);
7036   Wpd.SingleImplName = {Strtab.data() + Record[Slot],
7037                         static_cast<size_t>(Record[Slot + 1])};
7038   Slot += 2;
7039 
7040   uint64_t ResByArgNum = Record[Slot++];
7041   for (uint64_t I = 0; I != ResByArgNum; ++I)
7042     parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd);
7043 }
7044 
7045 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record,
7046                                      StringRef Strtab,
7047                                      ModuleSummaryIndex &TheIndex) {
7048   size_t Slot = 0;
7049   TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary(
7050       {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])});
7051   Slot += 2;
7052 
7053   TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]);
7054   TypeId.TTRes.SizeM1BitWidth = Record[Slot++];
7055   TypeId.TTRes.AlignLog2 = Record[Slot++];
7056   TypeId.TTRes.SizeM1 = Record[Slot++];
7057   TypeId.TTRes.BitMask = Record[Slot++];
7058   TypeId.TTRes.InlineBits = Record[Slot++];
7059 
7060   while (Slot < Record.size())
7061     parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId);
7062 }
7063 
7064 std::vector<FunctionSummary::ParamAccess>
7065 ModuleSummaryIndexBitcodeReader::parseParamAccesses(ArrayRef<uint64_t> Record) {
7066   auto ReadRange = [&]() {
7067     APInt Lower(FunctionSummary::ParamAccess::RangeWidth,
7068                 BitcodeReader::decodeSignRotatedValue(Record.front()));
7069     Record = Record.drop_front();
7070     APInt Upper(FunctionSummary::ParamAccess::RangeWidth,
7071                 BitcodeReader::decodeSignRotatedValue(Record.front()));
7072     Record = Record.drop_front();
7073     ConstantRange Range{Lower, Upper};
7074     assert(!Range.isFullSet());
7075     assert(!Range.isUpperSignWrapped());
7076     return Range;
7077   };
7078 
7079   std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
7080   while (!Record.empty()) {
7081     PendingParamAccesses.emplace_back();
7082     FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back();
7083     ParamAccess.ParamNo = Record.front();
7084     Record = Record.drop_front();
7085     ParamAccess.Use = ReadRange();
7086     ParamAccess.Calls.resize(Record.front());
7087     Record = Record.drop_front();
7088     for (auto &Call : ParamAccess.Calls) {
7089       Call.ParamNo = Record.front();
7090       Record = Record.drop_front();
7091       Call.Callee = std::get<0>(getValueInfoFromValueId(Record.front()));
7092       Record = Record.drop_front();
7093       Call.Offsets = ReadRange();
7094     }
7095   }
7096   return PendingParamAccesses;
7097 }
7098 
7099 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo(
7100     ArrayRef<uint64_t> Record, size_t &Slot,
7101     TypeIdCompatibleVtableInfo &TypeId) {
7102   uint64_t Offset = Record[Slot++];
7103   ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[Slot++]));
7104   TypeId.push_back({Offset, Callee});
7105 }
7106 
7107 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord(
7108     ArrayRef<uint64_t> Record) {
7109   size_t Slot = 0;
7110   TypeIdCompatibleVtableInfo &TypeId =
7111       TheIndex.getOrInsertTypeIdCompatibleVtableSummary(
7112           {Strtab.data() + Record[Slot],
7113            static_cast<size_t>(Record[Slot + 1])});
7114   Slot += 2;
7115 
7116   while (Slot < Record.size())
7117     parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId);
7118 }
7119 
7120 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt,
7121                            unsigned WOCnt) {
7122   // Readonly and writeonly refs are in the end of the refs list.
7123   assert(ROCnt + WOCnt <= Refs.size());
7124   unsigned FirstWORef = Refs.size() - WOCnt;
7125   unsigned RefNo = FirstWORef - ROCnt;
7126   for (; RefNo < FirstWORef; ++RefNo)
7127     Refs[RefNo].setReadOnly();
7128   for (; RefNo < Refs.size(); ++RefNo)
7129     Refs[RefNo].setWriteOnly();
7130 }
7131 
7132 // Eagerly parse the entire summary block. This populates the GlobalValueSummary
7133 // objects in the index.
7134 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) {
7135   if (Error Err = Stream.EnterSubBlock(ID))
7136     return Err;
7137   SmallVector<uint64_t, 64> Record;
7138 
7139   // Parse version
7140   {
7141     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
7142     if (!MaybeEntry)
7143       return MaybeEntry.takeError();
7144     BitstreamEntry Entry = MaybeEntry.get();
7145 
7146     if (Entry.Kind != BitstreamEntry::Record)
7147       return error("Invalid Summary Block: record for version expected");
7148     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
7149     if (!MaybeRecord)
7150       return MaybeRecord.takeError();
7151     if (MaybeRecord.get() != bitc::FS_VERSION)
7152       return error("Invalid Summary Block: version expected");
7153   }
7154   const uint64_t Version = Record[0];
7155   const bool IsOldProfileFormat = Version == 1;
7156   if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion)
7157     return error("Invalid summary version " + Twine(Version) +
7158                  ". Version should be in the range [1-" +
7159                  Twine(ModuleSummaryIndex::BitcodeSummaryVersion) +
7160                  "].");
7161   Record.clear();
7162 
7163   // Keep around the last seen summary to be used when we see an optional
7164   // "OriginalName" attachement.
7165   GlobalValueSummary *LastSeenSummary = nullptr;
7166   GlobalValue::GUID LastSeenGUID = 0;
7167 
7168   // We can expect to see any number of type ID information records before
7169   // each function summary records; these variables store the information
7170   // collected so far so that it can be used to create the summary object.
7171   std::vector<GlobalValue::GUID> PendingTypeTests;
7172   std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls,
7173       PendingTypeCheckedLoadVCalls;
7174   std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls,
7175       PendingTypeCheckedLoadConstVCalls;
7176   std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
7177 
7178   std::vector<CallsiteInfo> PendingCallsites;
7179   std::vector<AllocInfo> PendingAllocs;
7180 
7181   while (true) {
7182     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
7183     if (!MaybeEntry)
7184       return MaybeEntry.takeError();
7185     BitstreamEntry Entry = MaybeEntry.get();
7186 
7187     switch (Entry.Kind) {
7188     case BitstreamEntry::SubBlock: // Handled for us already.
7189     case BitstreamEntry::Error:
7190       return error("Malformed block");
7191     case BitstreamEntry::EndBlock:
7192       return Error::success();
7193     case BitstreamEntry::Record:
7194       // The interesting case.
7195       break;
7196     }
7197 
7198     // Read a record. The record format depends on whether this
7199     // is a per-module index or a combined index file. In the per-module
7200     // case the records contain the associated value's ID for correlation
7201     // with VST entries. In the combined index the correlation is done
7202     // via the bitcode offset of the summary records (which were saved
7203     // in the combined index VST entries). The records also contain
7204     // information used for ThinLTO renaming and importing.
7205     Record.clear();
7206     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
7207     if (!MaybeBitCode)
7208       return MaybeBitCode.takeError();
7209     switch (unsigned BitCode = MaybeBitCode.get()) {
7210     default: // Default behavior: ignore.
7211       break;
7212     case bitc::FS_FLAGS: {  // [flags]
7213       TheIndex.setFlags(Record[0]);
7214       break;
7215     }
7216     case bitc::FS_VALUE_GUID: { // [valueid, refguid]
7217       uint64_t ValueID = Record[0];
7218       GlobalValue::GUID RefGUID = Record[1];
7219       ValueIdToValueInfoMap[ValueID] = std::make_tuple(
7220           TheIndex.getOrInsertValueInfo(RefGUID), RefGUID, RefGUID);
7221       break;
7222     }
7223     // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs,
7224     //                numrefs x valueid, n x (valueid)]
7225     // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs,
7226     //                        numrefs x valueid,
7227     //                        n x (valueid, hotness)]
7228     // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs,
7229     //                      numrefs x valueid,
7230     //                      n x (valueid, relblockfreq)]
7231     case bitc::FS_PERMODULE:
7232     case bitc::FS_PERMODULE_RELBF:
7233     case bitc::FS_PERMODULE_PROFILE: {
7234       unsigned ValueID = Record[0];
7235       uint64_t RawFlags = Record[1];
7236       unsigned InstCount = Record[2];
7237       uint64_t RawFunFlags = 0;
7238       unsigned NumRefs = Record[3];
7239       unsigned NumRORefs = 0, NumWORefs = 0;
7240       int RefListStartIndex = 4;
7241       if (Version >= 4) {
7242         RawFunFlags = Record[3];
7243         NumRefs = Record[4];
7244         RefListStartIndex = 5;
7245         if (Version >= 5) {
7246           NumRORefs = Record[5];
7247           RefListStartIndex = 6;
7248           if (Version >= 7) {
7249             NumWORefs = Record[6];
7250             RefListStartIndex = 7;
7251           }
7252         }
7253       }
7254 
7255       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7256       // The module path string ref set in the summary must be owned by the
7257       // index's module string table. Since we don't have a module path
7258       // string table section in the per-module index, we create a single
7259       // module path string table entry with an empty (0) ID to take
7260       // ownership.
7261       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
7262       assert(Record.size() >= RefListStartIndex + NumRefs &&
7263              "Record size inconsistent with number of references");
7264       std::vector<ValueInfo> Refs = makeRefList(
7265           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
7266       bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE);
7267       bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF);
7268       std::vector<FunctionSummary::EdgeTy> Calls = makeCallList(
7269           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
7270           IsOldProfileFormat, HasProfile, HasRelBF);
7271       setSpecialRefs(Refs, NumRORefs, NumWORefs);
7272       auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID);
7273       // In order to save memory, only record the memprof summaries if this is
7274       // the prevailing copy of a symbol. The linker doesn't resolve local
7275       // linkage values so don't check whether those are prevailing.
7276       auto LT = (GlobalValue::LinkageTypes)Flags.Linkage;
7277       if (IsPrevailing &&
7278           !GlobalValue::isLocalLinkage(LT) &&
7279           !IsPrevailing(std::get<2>(VIAndOriginalGUID))) {
7280         PendingCallsites.clear();
7281         PendingAllocs.clear();
7282       }
7283       auto FS = std::make_unique<FunctionSummary>(
7284           Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0,
7285           std::move(Refs), std::move(Calls), std::move(PendingTypeTests),
7286           std::move(PendingTypeTestAssumeVCalls),
7287           std::move(PendingTypeCheckedLoadVCalls),
7288           std::move(PendingTypeTestAssumeConstVCalls),
7289           std::move(PendingTypeCheckedLoadConstVCalls),
7290           std::move(PendingParamAccesses), std::move(PendingCallsites),
7291           std::move(PendingAllocs));
7292       FS->setModulePath(getThisModule()->first());
7293       FS->setOriginalName(std::get<1>(VIAndOriginalGUID));
7294       TheIndex.addGlobalValueSummary(std::get<0>(VIAndOriginalGUID),
7295                                      std::move(FS));
7296       break;
7297     }
7298     // FS_ALIAS: [valueid, flags, valueid]
7299     // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as
7300     // they expect all aliasee summaries to be available.
7301     case bitc::FS_ALIAS: {
7302       unsigned ValueID = Record[0];
7303       uint64_t RawFlags = Record[1];
7304       unsigned AliaseeID = Record[2];
7305       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7306       auto AS = std::make_unique<AliasSummary>(Flags);
7307       // The module path string ref set in the summary must be owned by the
7308       // index's module string table. Since we don't have a module path
7309       // string table section in the per-module index, we create a single
7310       // module path string table entry with an empty (0) ID to take
7311       // ownership.
7312       AS->setModulePath(getThisModule()->first());
7313 
7314       auto AliaseeVI = std::get<0>(getValueInfoFromValueId(AliaseeID));
7315       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath);
7316       if (!AliaseeInModule)
7317         return error("Alias expects aliasee summary to be parsed");
7318       AS->setAliasee(AliaseeVI, AliaseeInModule);
7319 
7320       auto GUID = getValueInfoFromValueId(ValueID);
7321       AS->setOriginalName(std::get<1>(GUID));
7322       TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(AS));
7323       break;
7324     }
7325     // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid]
7326     case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: {
7327       unsigned ValueID = Record[0];
7328       uint64_t RawFlags = Record[1];
7329       unsigned RefArrayStart = 2;
7330       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
7331                                       /* WriteOnly */ false,
7332                                       /* Constant */ false,
7333                                       GlobalObject::VCallVisibilityPublic);
7334       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7335       if (Version >= 5) {
7336         GVF = getDecodedGVarFlags(Record[2]);
7337         RefArrayStart = 3;
7338       }
7339       std::vector<ValueInfo> Refs =
7340           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
7341       auto FS =
7342           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
7343       FS->setModulePath(getThisModule()->first());
7344       auto GUID = getValueInfoFromValueId(ValueID);
7345       FS->setOriginalName(std::get<1>(GUID));
7346       TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(FS));
7347       break;
7348     }
7349     // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags,
7350     //                        numrefs, numrefs x valueid,
7351     //                        n x (valueid, offset)]
7352     case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: {
7353       unsigned ValueID = Record[0];
7354       uint64_t RawFlags = Record[1];
7355       GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]);
7356       unsigned NumRefs = Record[3];
7357       unsigned RefListStartIndex = 4;
7358       unsigned VTableListStartIndex = RefListStartIndex + NumRefs;
7359       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7360       std::vector<ValueInfo> Refs = makeRefList(
7361           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
7362       VTableFuncList VTableFuncs;
7363       for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) {
7364         ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[I]));
7365         uint64_t Offset = Record[++I];
7366         VTableFuncs.push_back({Callee, Offset});
7367       }
7368       auto VS =
7369           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
7370       VS->setModulePath(getThisModule()->first());
7371       VS->setVTableFuncs(VTableFuncs);
7372       auto GUID = getValueInfoFromValueId(ValueID);
7373       VS->setOriginalName(std::get<1>(GUID));
7374       TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(VS));
7375       break;
7376     }
7377     // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs,
7378     //               numrefs x valueid, n x (valueid)]
7379     // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs,
7380     //                       numrefs x valueid, n x (valueid, hotness)]
7381     case bitc::FS_COMBINED:
7382     case bitc::FS_COMBINED_PROFILE: {
7383       unsigned ValueID = Record[0];
7384       uint64_t ModuleId = Record[1];
7385       uint64_t RawFlags = Record[2];
7386       unsigned InstCount = Record[3];
7387       uint64_t RawFunFlags = 0;
7388       uint64_t EntryCount = 0;
7389       unsigned NumRefs = Record[4];
7390       unsigned NumRORefs = 0, NumWORefs = 0;
7391       int RefListStartIndex = 5;
7392 
7393       if (Version >= 4) {
7394         RawFunFlags = Record[4];
7395         RefListStartIndex = 6;
7396         size_t NumRefsIndex = 5;
7397         if (Version >= 5) {
7398           unsigned NumRORefsOffset = 1;
7399           RefListStartIndex = 7;
7400           if (Version >= 6) {
7401             NumRefsIndex = 6;
7402             EntryCount = Record[5];
7403             RefListStartIndex = 8;
7404             if (Version >= 7) {
7405               RefListStartIndex = 9;
7406               NumWORefs = Record[8];
7407               NumRORefsOffset = 2;
7408             }
7409           }
7410           NumRORefs = Record[RefListStartIndex - NumRORefsOffset];
7411         }
7412         NumRefs = Record[NumRefsIndex];
7413       }
7414 
7415       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7416       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
7417       assert(Record.size() >= RefListStartIndex + NumRefs &&
7418              "Record size inconsistent with number of references");
7419       std::vector<ValueInfo> Refs = makeRefList(
7420           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
7421       bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE);
7422       std::vector<FunctionSummary::EdgeTy> Edges = makeCallList(
7423           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
7424           IsOldProfileFormat, HasProfile, false);
7425       ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID));
7426       setSpecialRefs(Refs, NumRORefs, NumWORefs);
7427       auto FS = std::make_unique<FunctionSummary>(
7428           Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount,
7429           std::move(Refs), std::move(Edges), std::move(PendingTypeTests),
7430           std::move(PendingTypeTestAssumeVCalls),
7431           std::move(PendingTypeCheckedLoadVCalls),
7432           std::move(PendingTypeTestAssumeConstVCalls),
7433           std::move(PendingTypeCheckedLoadConstVCalls),
7434           std::move(PendingParamAccesses), std::move(PendingCallsites),
7435           std::move(PendingAllocs));
7436       LastSeenSummary = FS.get();
7437       LastSeenGUID = VI.getGUID();
7438       FS->setModulePath(ModuleIdMap[ModuleId]);
7439       TheIndex.addGlobalValueSummary(VI, std::move(FS));
7440       break;
7441     }
7442     // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid]
7443     // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as
7444     // they expect all aliasee summaries to be available.
7445     case bitc::FS_COMBINED_ALIAS: {
7446       unsigned ValueID = Record[0];
7447       uint64_t ModuleId = Record[1];
7448       uint64_t RawFlags = Record[2];
7449       unsigned AliaseeValueId = Record[3];
7450       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7451       auto AS = std::make_unique<AliasSummary>(Flags);
7452       LastSeenSummary = AS.get();
7453       AS->setModulePath(ModuleIdMap[ModuleId]);
7454 
7455       auto AliaseeVI = std::get<0>(getValueInfoFromValueId(AliaseeValueId));
7456       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath());
7457       AS->setAliasee(AliaseeVI, AliaseeInModule);
7458 
7459       ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID));
7460       LastSeenGUID = VI.getGUID();
7461       TheIndex.addGlobalValueSummary(VI, std::move(AS));
7462       break;
7463     }
7464     // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid]
7465     case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: {
7466       unsigned ValueID = Record[0];
7467       uint64_t ModuleId = Record[1];
7468       uint64_t RawFlags = Record[2];
7469       unsigned RefArrayStart = 3;
7470       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
7471                                       /* WriteOnly */ false,
7472                                       /* Constant */ false,
7473                                       GlobalObject::VCallVisibilityPublic);
7474       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7475       if (Version >= 5) {
7476         GVF = getDecodedGVarFlags(Record[3]);
7477         RefArrayStart = 4;
7478       }
7479       std::vector<ValueInfo> Refs =
7480           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
7481       auto FS =
7482           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
7483       LastSeenSummary = FS.get();
7484       FS->setModulePath(ModuleIdMap[ModuleId]);
7485       ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID));
7486       LastSeenGUID = VI.getGUID();
7487       TheIndex.addGlobalValueSummary(VI, std::move(FS));
7488       break;
7489     }
7490     // FS_COMBINED_ORIGINAL_NAME: [original_name]
7491     case bitc::FS_COMBINED_ORIGINAL_NAME: {
7492       uint64_t OriginalName = Record[0];
7493       if (!LastSeenSummary)
7494         return error("Name attachment that does not follow a combined record");
7495       LastSeenSummary->setOriginalName(OriginalName);
7496       TheIndex.addOriginalName(LastSeenGUID, OriginalName);
7497       // Reset the LastSeenSummary
7498       LastSeenSummary = nullptr;
7499       LastSeenGUID = 0;
7500       break;
7501     }
7502     case bitc::FS_TYPE_TESTS:
7503       assert(PendingTypeTests.empty());
7504       llvm::append_range(PendingTypeTests, Record);
7505       break;
7506 
7507     case bitc::FS_TYPE_TEST_ASSUME_VCALLS:
7508       assert(PendingTypeTestAssumeVCalls.empty());
7509       for (unsigned I = 0; I != Record.size(); I += 2)
7510         PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]});
7511       break;
7512 
7513     case bitc::FS_TYPE_CHECKED_LOAD_VCALLS:
7514       assert(PendingTypeCheckedLoadVCalls.empty());
7515       for (unsigned I = 0; I != Record.size(); I += 2)
7516         PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]});
7517       break;
7518 
7519     case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL:
7520       PendingTypeTestAssumeConstVCalls.push_back(
7521           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
7522       break;
7523 
7524     case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL:
7525       PendingTypeCheckedLoadConstVCalls.push_back(
7526           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
7527       break;
7528 
7529     case bitc::FS_CFI_FUNCTION_DEFS: {
7530       std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs();
7531       for (unsigned I = 0; I != Record.size(); I += 2)
7532         CfiFunctionDefs.insert(
7533             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
7534       break;
7535     }
7536 
7537     case bitc::FS_CFI_FUNCTION_DECLS: {
7538       std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls();
7539       for (unsigned I = 0; I != Record.size(); I += 2)
7540         CfiFunctionDecls.insert(
7541             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
7542       break;
7543     }
7544 
7545     case bitc::FS_TYPE_ID:
7546       parseTypeIdSummaryRecord(Record, Strtab, TheIndex);
7547       break;
7548 
7549     case bitc::FS_TYPE_ID_METADATA:
7550       parseTypeIdCompatibleVtableSummaryRecord(Record);
7551       break;
7552 
7553     case bitc::FS_BLOCK_COUNT:
7554       TheIndex.addBlockCount(Record[0]);
7555       break;
7556 
7557     case bitc::FS_PARAM_ACCESS: {
7558       PendingParamAccesses = parseParamAccesses(Record);
7559       break;
7560     }
7561 
7562     case bitc::FS_STACK_IDS: { // [n x stackid]
7563       // Save stack ids in the reader to consult when adding stack ids from the
7564       // lists in the stack node and alloc node entries.
7565       StackIds = ArrayRef<uint64_t>(Record);
7566       break;
7567     }
7568 
7569     case bitc::FS_PERMODULE_CALLSITE_INFO: {
7570       unsigned ValueID = Record[0];
7571       SmallVector<unsigned> StackIdList;
7572       for (auto R = Record.begin() + 1; R != Record.end(); R++) {
7573         assert(*R < StackIds.size());
7574         StackIdList.push_back(TheIndex.addOrGetStackIdIndex(StackIds[*R]));
7575       }
7576       ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID));
7577       PendingCallsites.push_back(CallsiteInfo({VI, std::move(StackIdList)}));
7578       break;
7579     }
7580 
7581     case bitc::FS_COMBINED_CALLSITE_INFO: {
7582       auto RecordIter = Record.begin();
7583       unsigned ValueID = *RecordIter++;
7584       unsigned NumStackIds = *RecordIter++;
7585       unsigned NumVersions = *RecordIter++;
7586       assert(Record.size() == 3 + NumStackIds + NumVersions);
7587       SmallVector<unsigned> StackIdList;
7588       for (unsigned J = 0; J < NumStackIds; J++) {
7589         assert(*RecordIter < StackIds.size());
7590         StackIdList.push_back(
7591             TheIndex.addOrGetStackIdIndex(StackIds[*RecordIter++]));
7592       }
7593       SmallVector<unsigned> Versions;
7594       for (unsigned J = 0; J < NumVersions; J++)
7595         Versions.push_back(*RecordIter++);
7596       ValueInfo VI = std::get<0>(
7597           getValueInfoFromValueId</*AllowNullValueInfo*/ true>(ValueID));
7598       PendingCallsites.push_back(
7599           CallsiteInfo({VI, std::move(Versions), std::move(StackIdList)}));
7600       break;
7601     }
7602 
7603     case bitc::FS_PERMODULE_ALLOC_INFO: {
7604       unsigned I = 0;
7605       std::vector<MIBInfo> MIBs;
7606       while (I < Record.size()) {
7607         assert(Record.size() - I >= 2);
7608         AllocationType AllocType = (AllocationType)Record[I++];
7609         unsigned NumStackEntries = Record[I++];
7610         assert(Record.size() - I >= NumStackEntries);
7611         SmallVector<unsigned> StackIdList;
7612         for (unsigned J = 0; J < NumStackEntries; J++) {
7613           assert(Record[I] < StackIds.size());
7614           StackIdList.push_back(
7615               TheIndex.addOrGetStackIdIndex(StackIds[Record[I++]]));
7616         }
7617         MIBs.push_back(MIBInfo(AllocType, std::move(StackIdList)));
7618       }
7619       PendingAllocs.push_back(AllocInfo(std::move(MIBs)));
7620       break;
7621     }
7622 
7623     case bitc::FS_COMBINED_ALLOC_INFO: {
7624       unsigned I = 0;
7625       std::vector<MIBInfo> MIBs;
7626       unsigned NumMIBs = Record[I++];
7627       unsigned NumVersions = Record[I++];
7628       unsigned MIBsRead = 0;
7629       while (MIBsRead++ < NumMIBs) {
7630         assert(Record.size() - I >= 2);
7631         AllocationType AllocType = (AllocationType)Record[I++];
7632         unsigned NumStackEntries = Record[I++];
7633         assert(Record.size() - I >= NumStackEntries);
7634         SmallVector<unsigned> StackIdList;
7635         for (unsigned J = 0; J < NumStackEntries; J++) {
7636           assert(Record[I] < StackIds.size());
7637           StackIdList.push_back(
7638               TheIndex.addOrGetStackIdIndex(StackIds[Record[I++]]));
7639         }
7640         MIBs.push_back(MIBInfo(AllocType, std::move(StackIdList)));
7641       }
7642       assert(Record.size() - I >= NumVersions);
7643       SmallVector<uint8_t> Versions;
7644       for (unsigned J = 0; J < NumVersions; J++)
7645         Versions.push_back(Record[I++]);
7646       PendingAllocs.push_back(
7647           AllocInfo(std::move(Versions), std::move(MIBs)));
7648       break;
7649     }
7650     }
7651   }
7652   llvm_unreachable("Exit infinite loop");
7653 }
7654 
7655 // Parse the  module string table block into the Index.
7656 // This populates the ModulePathStringTable map in the index.
7657 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() {
7658   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID))
7659     return Err;
7660 
7661   SmallVector<uint64_t, 64> Record;
7662 
7663   SmallString<128> ModulePath;
7664   ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr;
7665 
7666   while (true) {
7667     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
7668     if (!MaybeEntry)
7669       return MaybeEntry.takeError();
7670     BitstreamEntry Entry = MaybeEntry.get();
7671 
7672     switch (Entry.Kind) {
7673     case BitstreamEntry::SubBlock: // Handled for us already.
7674     case BitstreamEntry::Error:
7675       return error("Malformed block");
7676     case BitstreamEntry::EndBlock:
7677       return Error::success();
7678     case BitstreamEntry::Record:
7679       // The interesting case.
7680       break;
7681     }
7682 
7683     Record.clear();
7684     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
7685     if (!MaybeRecord)
7686       return MaybeRecord.takeError();
7687     switch (MaybeRecord.get()) {
7688     default: // Default behavior: ignore.
7689       break;
7690     case bitc::MST_CODE_ENTRY: {
7691       // MST_ENTRY: [modid, namechar x N]
7692       uint64_t ModuleId = Record[0];
7693 
7694       if (convertToString(Record, 1, ModulePath))
7695         return error("Invalid record");
7696 
7697       LastSeenModule = TheIndex.addModule(ModulePath);
7698       ModuleIdMap[ModuleId] = LastSeenModule->first();
7699 
7700       ModulePath.clear();
7701       break;
7702     }
7703     /// MST_CODE_HASH: [5*i32]
7704     case bitc::MST_CODE_HASH: {
7705       if (Record.size() != 5)
7706         return error("Invalid hash length " + Twine(Record.size()).str());
7707       if (!LastSeenModule)
7708         return error("Invalid hash that does not follow a module path");
7709       int Pos = 0;
7710       for (auto &Val : Record) {
7711         assert(!(Val >> 32) && "Unexpected high bits set");
7712         LastSeenModule->second[Pos++] = Val;
7713       }
7714       // Reset LastSeenModule to avoid overriding the hash unexpectedly.
7715       LastSeenModule = nullptr;
7716       break;
7717     }
7718     }
7719   }
7720   llvm_unreachable("Exit infinite loop");
7721 }
7722 
7723 namespace {
7724 
7725 // FIXME: This class is only here to support the transition to llvm::Error. It
7726 // will be removed once this transition is complete. Clients should prefer to
7727 // deal with the Error value directly, rather than converting to error_code.
7728 class BitcodeErrorCategoryType : public std::error_category {
7729   const char *name() const noexcept override {
7730     return "llvm.bitcode";
7731   }
7732 
7733   std::string message(int IE) const override {
7734     BitcodeError E = static_cast<BitcodeError>(IE);
7735     switch (E) {
7736     case BitcodeError::CorruptedBitcode:
7737       return "Corrupted bitcode";
7738     }
7739     llvm_unreachable("Unknown error type!");
7740   }
7741 };
7742 
7743 } // end anonymous namespace
7744 
7745 const std::error_category &llvm::BitcodeErrorCategory() {
7746   static BitcodeErrorCategoryType ErrorCategory;
7747   return ErrorCategory;
7748 }
7749 
7750 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream,
7751                                             unsigned Block, unsigned RecordID) {
7752   if (Error Err = Stream.EnterSubBlock(Block))
7753     return std::move(Err);
7754 
7755   StringRef Strtab;
7756   while (true) {
7757     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
7758     if (!MaybeEntry)
7759       return MaybeEntry.takeError();
7760     llvm::BitstreamEntry Entry = MaybeEntry.get();
7761 
7762     switch (Entry.Kind) {
7763     case BitstreamEntry::EndBlock:
7764       return Strtab;
7765 
7766     case BitstreamEntry::Error:
7767       return error("Malformed block");
7768 
7769     case BitstreamEntry::SubBlock:
7770       if (Error Err = Stream.SkipBlock())
7771         return std::move(Err);
7772       break;
7773 
7774     case BitstreamEntry::Record:
7775       StringRef Blob;
7776       SmallVector<uint64_t, 1> Record;
7777       Expected<unsigned> MaybeRecord =
7778           Stream.readRecord(Entry.ID, Record, &Blob);
7779       if (!MaybeRecord)
7780         return MaybeRecord.takeError();
7781       if (MaybeRecord.get() == RecordID)
7782         Strtab = Blob;
7783       break;
7784     }
7785   }
7786 }
7787 
7788 //===----------------------------------------------------------------------===//
7789 // External interface
7790 //===----------------------------------------------------------------------===//
7791 
7792 Expected<std::vector<BitcodeModule>>
7793 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) {
7794   auto FOrErr = getBitcodeFileContents(Buffer);
7795   if (!FOrErr)
7796     return FOrErr.takeError();
7797   return std::move(FOrErr->Mods);
7798 }
7799 
7800 Expected<BitcodeFileContents>
7801 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) {
7802   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
7803   if (!StreamOrErr)
7804     return StreamOrErr.takeError();
7805   BitstreamCursor &Stream = *StreamOrErr;
7806 
7807   BitcodeFileContents F;
7808   while (true) {
7809     uint64_t BCBegin = Stream.getCurrentByteNo();
7810 
7811     // We may be consuming bitcode from a client that leaves garbage at the end
7812     // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to
7813     // the end that there cannot possibly be another module, stop looking.
7814     if (BCBegin + 8 >= Stream.getBitcodeBytes().size())
7815       return F;
7816 
7817     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
7818     if (!MaybeEntry)
7819       return MaybeEntry.takeError();
7820     llvm::BitstreamEntry Entry = MaybeEntry.get();
7821 
7822     switch (Entry.Kind) {
7823     case BitstreamEntry::EndBlock:
7824     case BitstreamEntry::Error:
7825       return error("Malformed block");
7826 
7827     case BitstreamEntry::SubBlock: {
7828       uint64_t IdentificationBit = -1ull;
7829       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
7830         IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8;
7831         if (Error Err = Stream.SkipBlock())
7832           return std::move(Err);
7833 
7834         {
7835           Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
7836           if (!MaybeEntry)
7837             return MaybeEntry.takeError();
7838           Entry = MaybeEntry.get();
7839         }
7840 
7841         if (Entry.Kind != BitstreamEntry::SubBlock ||
7842             Entry.ID != bitc::MODULE_BLOCK_ID)
7843           return error("Malformed block");
7844       }
7845 
7846       if (Entry.ID == bitc::MODULE_BLOCK_ID) {
7847         uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8;
7848         if (Error Err = Stream.SkipBlock())
7849           return std::move(Err);
7850 
7851         F.Mods.push_back({Stream.getBitcodeBytes().slice(
7852                               BCBegin, Stream.getCurrentByteNo() - BCBegin),
7853                           Buffer.getBufferIdentifier(), IdentificationBit,
7854                           ModuleBit});
7855         continue;
7856       }
7857 
7858       if (Entry.ID == bitc::STRTAB_BLOCK_ID) {
7859         Expected<StringRef> Strtab =
7860             readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB);
7861         if (!Strtab)
7862           return Strtab.takeError();
7863         // This string table is used by every preceding bitcode module that does
7864         // not have its own string table. A bitcode file may have multiple
7865         // string tables if it was created by binary concatenation, for example
7866         // with "llvm-cat -b".
7867         for (BitcodeModule &I : llvm::reverse(F.Mods)) {
7868           if (!I.Strtab.empty())
7869             break;
7870           I.Strtab = *Strtab;
7871         }
7872         // Similarly, the string table is used by every preceding symbol table;
7873         // normally there will be just one unless the bitcode file was created
7874         // by binary concatenation.
7875         if (!F.Symtab.empty() && F.StrtabForSymtab.empty())
7876           F.StrtabForSymtab = *Strtab;
7877         continue;
7878       }
7879 
7880       if (Entry.ID == bitc::SYMTAB_BLOCK_ID) {
7881         Expected<StringRef> SymtabOrErr =
7882             readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB);
7883         if (!SymtabOrErr)
7884           return SymtabOrErr.takeError();
7885 
7886         // We can expect the bitcode file to have multiple symbol tables if it
7887         // was created by binary concatenation. In that case we silently
7888         // ignore any subsequent symbol tables, which is fine because this is a
7889         // low level function. The client is expected to notice that the number
7890         // of modules in the symbol table does not match the number of modules
7891         // in the input file and regenerate the symbol table.
7892         if (F.Symtab.empty())
7893           F.Symtab = *SymtabOrErr;
7894         continue;
7895       }
7896 
7897       if (Error Err = Stream.SkipBlock())
7898         return std::move(Err);
7899       continue;
7900     }
7901     case BitstreamEntry::Record:
7902       if (Error E = Stream.skipRecord(Entry.ID).takeError())
7903         return std::move(E);
7904       continue;
7905     }
7906   }
7907 }
7908 
7909 /// Get a lazy one-at-time loading module from bitcode.
7910 ///
7911 /// This isn't always used in a lazy context.  In particular, it's also used by
7912 /// \a parseModule().  If this is truly lazy, then we need to eagerly pull
7913 /// in forward-referenced functions from block address references.
7914 ///
7915 /// \param[in] MaterializeAll Set to \c true if we should materialize
7916 /// everything.
7917 Expected<std::unique_ptr<Module>>
7918 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll,
7919                              bool ShouldLazyLoadMetadata, bool IsImporting,
7920                              ParserCallbacks Callbacks) {
7921   BitstreamCursor Stream(Buffer);
7922 
7923   std::string ProducerIdentification;
7924   if (IdentificationBit != -1ull) {
7925     if (Error JumpFailed = Stream.JumpToBit(IdentificationBit))
7926       return std::move(JumpFailed);
7927     if (Error E =
7928             readIdentificationBlock(Stream).moveInto(ProducerIdentification))
7929       return std::move(E);
7930   }
7931 
7932   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
7933     return std::move(JumpFailed);
7934   auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification,
7935                               Context);
7936 
7937   std::unique_ptr<Module> M =
7938       std::make_unique<Module>(ModuleIdentifier, Context);
7939   M->setMaterializer(R);
7940 
7941   // Delay parsing Metadata if ShouldLazyLoadMetadata is true.
7942   if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata,
7943                                       IsImporting, Callbacks))
7944     return std::move(Err);
7945 
7946   if (MaterializeAll) {
7947     // Read in the entire module, and destroy the BitcodeReader.
7948     if (Error Err = M->materializeAll())
7949       return std::move(Err);
7950   } else {
7951     // Resolve forward references from blockaddresses.
7952     if (Error Err = R->materializeForwardReferencedFunctions())
7953       return std::move(Err);
7954   }
7955   return std::move(M);
7956 }
7957 
7958 Expected<std::unique_ptr<Module>>
7959 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata,
7960                              bool IsImporting, ParserCallbacks Callbacks) {
7961   return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting,
7962                        Callbacks);
7963 }
7964 
7965 // Parse the specified bitcode buffer and merge the index into CombinedIndex.
7966 // We don't use ModuleIdentifier here because the client may need to control the
7967 // module path used in the combined summary (e.g. when reading summaries for
7968 // regular LTO modules).
7969 Error BitcodeModule::readSummary(
7970     ModuleSummaryIndex &CombinedIndex, StringRef ModulePath,
7971     std::function<bool(GlobalValue::GUID)> IsPrevailing) {
7972   BitstreamCursor Stream(Buffer);
7973   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
7974     return JumpFailed;
7975 
7976   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex,
7977                                     ModulePath, IsPrevailing);
7978   return R.parseModule();
7979 }
7980 
7981 // Parse the specified bitcode buffer, returning the function info index.
7982 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() {
7983   BitstreamCursor Stream(Buffer);
7984   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
7985     return std::move(JumpFailed);
7986 
7987   auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false);
7988   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index,
7989                                     ModuleIdentifier, 0);
7990 
7991   if (Error Err = R.parseModule())
7992     return std::move(Err);
7993 
7994   return std::move(Index);
7995 }
7996 
7997 static Expected<std::pair<bool, bool>>
7998 getEnableSplitLTOUnitAndUnifiedFlag(BitstreamCursor &Stream,
7999                                                  unsigned ID,
8000                                                  BitcodeLTOInfo &LTOInfo) {
8001   if (Error Err = Stream.EnterSubBlock(ID))
8002     return std::move(Err);
8003   SmallVector<uint64_t, 64> Record;
8004 
8005   while (true) {
8006     BitstreamEntry Entry;
8007     std::pair<bool, bool> Result = {false,false};
8008     if (Error E = Stream.advanceSkippingSubblocks().moveInto(Entry))
8009       return std::move(E);
8010 
8011     switch (Entry.Kind) {
8012     case BitstreamEntry::SubBlock: // Handled for us already.
8013     case BitstreamEntry::Error:
8014       return error("Malformed block");
8015     case BitstreamEntry::EndBlock: {
8016       // If no flags record found, set both flags to false.
8017       return Result;
8018     }
8019     case BitstreamEntry::Record:
8020       // The interesting case.
8021       break;
8022     }
8023 
8024     // Look for the FS_FLAGS record.
8025     Record.clear();
8026     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
8027     if (!MaybeBitCode)
8028       return MaybeBitCode.takeError();
8029     switch (MaybeBitCode.get()) {
8030     default: // Default behavior: ignore.
8031       break;
8032     case bitc::FS_FLAGS: { // [flags]
8033       uint64_t Flags = Record[0];
8034       // Scan flags.
8035       assert(Flags <= 0x2ff && "Unexpected bits in flag");
8036 
8037       bool EnableSplitLTOUnit = Flags & 0x8;
8038       bool UnifiedLTO = Flags & 0x200;
8039       Result = {EnableSplitLTOUnit, UnifiedLTO};
8040 
8041       return Result;
8042     }
8043     }
8044   }
8045   llvm_unreachable("Exit infinite loop");
8046 }
8047 
8048 // Check if the given bitcode buffer contains a global value summary block.
8049 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() {
8050   BitstreamCursor Stream(Buffer);
8051   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
8052     return std::move(JumpFailed);
8053 
8054   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
8055     return std::move(Err);
8056 
8057   while (true) {
8058     llvm::BitstreamEntry Entry;
8059     if (Error E = Stream.advance().moveInto(Entry))
8060       return std::move(E);
8061 
8062     switch (Entry.Kind) {
8063     case BitstreamEntry::Error:
8064       return error("Malformed block");
8065     case BitstreamEntry::EndBlock:
8066       return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false,
8067                             /*EnableSplitLTOUnit=*/false, /*UnifiedLTO=*/false};
8068 
8069     case BitstreamEntry::SubBlock:
8070       if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) {
8071         BitcodeLTOInfo LTOInfo;
8072         Expected<std::pair<bool, bool>> Flags =
8073             getEnableSplitLTOUnitAndUnifiedFlag(Stream, Entry.ID, LTOInfo);
8074         if (!Flags)
8075           return Flags.takeError();
8076         std::tie(LTOInfo.EnableSplitLTOUnit, LTOInfo.UnifiedLTO) = Flags.get();
8077         LTOInfo.IsThinLTO = true;
8078         LTOInfo.HasSummary = true;
8079         return LTOInfo;
8080       }
8081 
8082       if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) {
8083         BitcodeLTOInfo LTOInfo;
8084         Expected<std::pair<bool, bool>> Flags =
8085             getEnableSplitLTOUnitAndUnifiedFlag(Stream, Entry.ID, LTOInfo);
8086         if (!Flags)
8087           return Flags.takeError();
8088         std::tie(LTOInfo.EnableSplitLTOUnit, LTOInfo.UnifiedLTO) = Flags.get();
8089         LTOInfo.IsThinLTO = false;
8090         LTOInfo.HasSummary = true;
8091         return LTOInfo;
8092       }
8093 
8094       // Ignore other sub-blocks.
8095       if (Error Err = Stream.SkipBlock())
8096         return std::move(Err);
8097       continue;
8098 
8099     case BitstreamEntry::Record:
8100       if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID))
8101         continue;
8102       else
8103         return StreamFailed.takeError();
8104     }
8105   }
8106 }
8107 
8108 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) {
8109   Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer);
8110   if (!MsOrErr)
8111     return MsOrErr.takeError();
8112 
8113   if (MsOrErr->size() != 1)
8114     return error("Expected a single module");
8115 
8116   return (*MsOrErr)[0];
8117 }
8118 
8119 Expected<std::unique_ptr<Module>>
8120 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context,
8121                            bool ShouldLazyLoadMetadata, bool IsImporting,
8122                            ParserCallbacks Callbacks) {
8123   Expected<BitcodeModule> BM = getSingleModule(Buffer);
8124   if (!BM)
8125     return BM.takeError();
8126 
8127   return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting,
8128                            Callbacks);
8129 }
8130 
8131 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule(
8132     std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context,
8133     bool ShouldLazyLoadMetadata, bool IsImporting, ParserCallbacks Callbacks) {
8134   auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata,
8135                                      IsImporting, Callbacks);
8136   if (MOrErr)
8137     (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer));
8138   return MOrErr;
8139 }
8140 
8141 Expected<std::unique_ptr<Module>>
8142 BitcodeModule::parseModule(LLVMContext &Context, ParserCallbacks Callbacks) {
8143   return getModuleImpl(Context, true, false, false, Callbacks);
8144   // TODO: Restore the use-lists to the in-memory state when the bitcode was
8145   // written.  We must defer until the Module has been fully materialized.
8146 }
8147 
8148 Expected<std::unique_ptr<Module>>
8149 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context,
8150                        ParserCallbacks Callbacks) {
8151   Expected<BitcodeModule> BM = getSingleModule(Buffer);
8152   if (!BM)
8153     return BM.takeError();
8154 
8155   return BM->parseModule(Context, Callbacks);
8156 }
8157 
8158 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) {
8159   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
8160   if (!StreamOrErr)
8161     return StreamOrErr.takeError();
8162 
8163   return readTriple(*StreamOrErr);
8164 }
8165 
8166 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) {
8167   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
8168   if (!StreamOrErr)
8169     return StreamOrErr.takeError();
8170 
8171   return hasObjCCategory(*StreamOrErr);
8172 }
8173 
8174 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) {
8175   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
8176   if (!StreamOrErr)
8177     return StreamOrErr.takeError();
8178 
8179   return readIdentificationCode(*StreamOrErr);
8180 }
8181 
8182 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer,
8183                                    ModuleSummaryIndex &CombinedIndex) {
8184   Expected<BitcodeModule> BM = getSingleModule(Buffer);
8185   if (!BM)
8186     return BM.takeError();
8187 
8188   return BM->readSummary(CombinedIndex, BM->getModuleIdentifier());
8189 }
8190 
8191 Expected<std::unique_ptr<ModuleSummaryIndex>>
8192 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) {
8193   Expected<BitcodeModule> BM = getSingleModule(Buffer);
8194   if (!BM)
8195     return BM.takeError();
8196 
8197   return BM->getSummary();
8198 }
8199 
8200 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) {
8201   Expected<BitcodeModule> BM = getSingleModule(Buffer);
8202   if (!BM)
8203     return BM.takeError();
8204 
8205   return BM->getLTOInfo();
8206 }
8207 
8208 Expected<std::unique_ptr<ModuleSummaryIndex>>
8209 llvm::getModuleSummaryIndexForFile(StringRef Path,
8210                                    bool IgnoreEmptyThinLTOIndexFile) {
8211   ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr =
8212       MemoryBuffer::getFileOrSTDIN(Path);
8213   if (!FileOrErr)
8214     return errorCodeToError(FileOrErr.getError());
8215   if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize())
8216     return nullptr;
8217   return getModuleSummaryIndex(**FileOrErr);
8218 }
8219