1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This header defines the BitcodeReader class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/ReaderWriter.h" 15 #include "BitcodeReader.h" 16 #include "llvm/Constants.h" 17 #include "llvm/DerivedTypes.h" 18 #include "llvm/InlineAsm.h" 19 #include "llvm/IntrinsicInst.h" 20 #include "llvm/Module.h" 21 #include "llvm/Operator.h" 22 #include "llvm/AutoUpgrade.h" 23 #include "llvm/ADT/SmallString.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/Support/MathExtras.h" 26 #include "llvm/Support/MemoryBuffer.h" 27 #include "llvm/OperandTraits.h" 28 using namespace llvm; 29 30 void BitcodeReader::FreeState() { 31 if (BufferOwned) 32 delete Buffer; 33 Buffer = 0; 34 std::vector<PATypeHolder>().swap(TypeList); 35 ValueList.clear(); 36 MDValueList.clear(); 37 38 std::vector<AttrListPtr>().swap(MAttributes); 39 std::vector<BasicBlock*>().swap(FunctionBBs); 40 std::vector<Function*>().swap(FunctionsWithBodies); 41 DeferredFunctionInfo.clear(); 42 MDKindMap.clear(); 43 } 44 45 //===----------------------------------------------------------------------===// 46 // Helper functions to implement forward reference resolution, etc. 47 //===----------------------------------------------------------------------===// 48 49 /// ConvertToString - Convert a string from a record into an std::string, return 50 /// true on failure. 51 template<typename StrTy> 52 static bool ConvertToString(SmallVector<uint64_t, 64> &Record, unsigned Idx, 53 StrTy &Result) { 54 if (Idx > Record.size()) 55 return true; 56 57 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 58 Result += (char)Record[i]; 59 return false; 60 } 61 62 static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) { 63 switch (Val) { 64 default: // Map unknown/new linkages to external 65 case 0: return GlobalValue::ExternalLinkage; 66 case 1: return GlobalValue::WeakAnyLinkage; 67 case 2: return GlobalValue::AppendingLinkage; 68 case 3: return GlobalValue::InternalLinkage; 69 case 4: return GlobalValue::LinkOnceAnyLinkage; 70 case 5: return GlobalValue::DLLImportLinkage; 71 case 6: return GlobalValue::DLLExportLinkage; 72 case 7: return GlobalValue::ExternalWeakLinkage; 73 case 8: return GlobalValue::CommonLinkage; 74 case 9: return GlobalValue::PrivateLinkage; 75 case 10: return GlobalValue::WeakODRLinkage; 76 case 11: return GlobalValue::LinkOnceODRLinkage; 77 case 12: return GlobalValue::AvailableExternallyLinkage; 78 case 13: return GlobalValue::LinkerPrivateLinkage; 79 case 14: return GlobalValue::LinkerPrivateWeakLinkage; 80 case 15: return GlobalValue::LinkerPrivateWeakDefAutoLinkage; 81 } 82 } 83 84 static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) { 85 switch (Val) { 86 default: // Map unknown visibilities to default. 87 case 0: return GlobalValue::DefaultVisibility; 88 case 1: return GlobalValue::HiddenVisibility; 89 case 2: return GlobalValue::ProtectedVisibility; 90 } 91 } 92 93 static int GetDecodedCastOpcode(unsigned Val) { 94 switch (Val) { 95 default: return -1; 96 case bitc::CAST_TRUNC : return Instruction::Trunc; 97 case bitc::CAST_ZEXT : return Instruction::ZExt; 98 case bitc::CAST_SEXT : return Instruction::SExt; 99 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 100 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 101 case bitc::CAST_UITOFP : return Instruction::UIToFP; 102 case bitc::CAST_SITOFP : return Instruction::SIToFP; 103 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 104 case bitc::CAST_FPEXT : return Instruction::FPExt; 105 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 106 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 107 case bitc::CAST_BITCAST : return Instruction::BitCast; 108 } 109 } 110 static int GetDecodedBinaryOpcode(unsigned Val, const Type *Ty) { 111 switch (Val) { 112 default: return -1; 113 case bitc::BINOP_ADD: 114 return Ty->isFPOrFPVectorTy() ? Instruction::FAdd : Instruction::Add; 115 case bitc::BINOP_SUB: 116 return Ty->isFPOrFPVectorTy() ? Instruction::FSub : Instruction::Sub; 117 case bitc::BINOP_MUL: 118 return Ty->isFPOrFPVectorTy() ? Instruction::FMul : Instruction::Mul; 119 case bitc::BINOP_UDIV: return Instruction::UDiv; 120 case bitc::BINOP_SDIV: 121 return Ty->isFPOrFPVectorTy() ? Instruction::FDiv : Instruction::SDiv; 122 case bitc::BINOP_UREM: return Instruction::URem; 123 case bitc::BINOP_SREM: 124 return Ty->isFPOrFPVectorTy() ? Instruction::FRem : Instruction::SRem; 125 case bitc::BINOP_SHL: return Instruction::Shl; 126 case bitc::BINOP_LSHR: return Instruction::LShr; 127 case bitc::BINOP_ASHR: return Instruction::AShr; 128 case bitc::BINOP_AND: return Instruction::And; 129 case bitc::BINOP_OR: return Instruction::Or; 130 case bitc::BINOP_XOR: return Instruction::Xor; 131 } 132 } 133 134 namespace llvm { 135 namespace { 136 /// @brief A class for maintaining the slot number definition 137 /// as a placeholder for the actual definition for forward constants defs. 138 class ConstantPlaceHolder : public ConstantExpr { 139 void operator=(const ConstantPlaceHolder &); // DO NOT IMPLEMENT 140 public: 141 // allocate space for exactly one operand 142 void *operator new(size_t s) { 143 return User::operator new(s, 1); 144 } 145 explicit ConstantPlaceHolder(const Type *Ty, LLVMContext& Context) 146 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 147 Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); 148 } 149 150 /// @brief Methods to support type inquiry through isa, cast, and dyn_cast. 151 //static inline bool classof(const ConstantPlaceHolder *) { return true; } 152 static bool classof(const Value *V) { 153 return isa<ConstantExpr>(V) && 154 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 155 } 156 157 158 /// Provide fast operand accessors 159 //DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 160 }; 161 } 162 163 // FIXME: can we inherit this from ConstantExpr? 164 template <> 165 struct OperandTraits<ConstantPlaceHolder> : 166 public FixedNumOperandTraits<ConstantPlaceHolder, 1> { 167 }; 168 } 169 170 171 void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) { 172 if (Idx == size()) { 173 push_back(V); 174 return; 175 } 176 177 if (Idx >= size()) 178 resize(Idx+1); 179 180 WeakVH &OldV = ValuePtrs[Idx]; 181 if (OldV == 0) { 182 OldV = V; 183 return; 184 } 185 186 // Handle constants and non-constants (e.g. instrs) differently for 187 // efficiency. 188 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 189 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 190 OldV = V; 191 } else { 192 // If there was a forward reference to this value, replace it. 193 Value *PrevVal = OldV; 194 OldV->replaceAllUsesWith(V); 195 delete PrevVal; 196 } 197 } 198 199 200 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 201 const Type *Ty) { 202 if (Idx >= size()) 203 resize(Idx + 1); 204 205 if (Value *V = ValuePtrs[Idx]) { 206 assert(Ty == V->getType() && "Type mismatch in constant table!"); 207 return cast<Constant>(V); 208 } 209 210 // Create and return a placeholder, which will later be RAUW'd. 211 Constant *C = new ConstantPlaceHolder(Ty, Context); 212 ValuePtrs[Idx] = C; 213 return C; 214 } 215 216 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, const Type *Ty) { 217 if (Idx >= size()) 218 resize(Idx + 1); 219 220 if (Value *V = ValuePtrs[Idx]) { 221 assert((Ty == 0 || Ty == V->getType()) && "Type mismatch in value table!"); 222 return V; 223 } 224 225 // No type specified, must be invalid reference. 226 if (Ty == 0) return 0; 227 228 // Create and return a placeholder, which will later be RAUW'd. 229 Value *V = new Argument(Ty); 230 ValuePtrs[Idx] = V; 231 return V; 232 } 233 234 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk 235 /// resolves any forward references. The idea behind this is that we sometimes 236 /// get constants (such as large arrays) which reference *many* forward ref 237 /// constants. Replacing each of these causes a lot of thrashing when 238 /// building/reuniquing the constant. Instead of doing this, we look at all the 239 /// uses and rewrite all the place holders at once for any constant that uses 240 /// a placeholder. 241 void BitcodeReaderValueList::ResolveConstantForwardRefs() { 242 // Sort the values by-pointer so that they are efficient to look up with a 243 // binary search. 244 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 245 246 SmallVector<Constant*, 64> NewOps; 247 248 while (!ResolveConstants.empty()) { 249 Value *RealVal = operator[](ResolveConstants.back().second); 250 Constant *Placeholder = ResolveConstants.back().first; 251 ResolveConstants.pop_back(); 252 253 // Loop over all users of the placeholder, updating them to reference the 254 // new value. If they reference more than one placeholder, update them all 255 // at once. 256 while (!Placeholder->use_empty()) { 257 Value::use_iterator UI = Placeholder->use_begin(); 258 User *U = *UI; 259 260 // If the using object isn't uniqued, just update the operands. This 261 // handles instructions and initializers for global variables. 262 if (!isa<Constant>(U) || isa<GlobalValue>(U)) { 263 UI.getUse().set(RealVal); 264 continue; 265 } 266 267 // Otherwise, we have a constant that uses the placeholder. Replace that 268 // constant with a new constant that has *all* placeholder uses updated. 269 Constant *UserC = cast<Constant>(U); 270 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 271 I != E; ++I) { 272 Value *NewOp; 273 if (!isa<ConstantPlaceHolder>(*I)) { 274 // Not a placeholder reference. 275 NewOp = *I; 276 } else if (*I == Placeholder) { 277 // Common case is that it just references this one placeholder. 278 NewOp = RealVal; 279 } else { 280 // Otherwise, look up the placeholder in ResolveConstants. 281 ResolveConstantsTy::iterator It = 282 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 283 std::pair<Constant*, unsigned>(cast<Constant>(*I), 284 0)); 285 assert(It != ResolveConstants.end() && It->first == *I); 286 NewOp = operator[](It->second); 287 } 288 289 NewOps.push_back(cast<Constant>(NewOp)); 290 } 291 292 // Make the new constant. 293 Constant *NewC; 294 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 295 NewC = ConstantArray::get(UserCA->getType(), &NewOps[0], 296 NewOps.size()); 297 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 298 NewC = ConstantStruct::get(Context, &NewOps[0], NewOps.size(), 299 UserCS->getType()->isPacked()); 300 } else if (isa<ConstantVector>(UserC)) { 301 NewC = ConstantVector::get(NewOps); 302 } else { 303 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 304 NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps); 305 } 306 307 UserC->replaceAllUsesWith(NewC); 308 UserC->destroyConstant(); 309 NewOps.clear(); 310 } 311 312 // Update all ValueHandles, they should be the only users at this point. 313 Placeholder->replaceAllUsesWith(RealVal); 314 delete Placeholder; 315 } 316 } 317 318 void BitcodeReaderMDValueList::AssignValue(Value *V, unsigned Idx) { 319 if (Idx == size()) { 320 push_back(V); 321 return; 322 } 323 324 if (Idx >= size()) 325 resize(Idx+1); 326 327 WeakVH &OldV = MDValuePtrs[Idx]; 328 if (OldV == 0) { 329 OldV = V; 330 return; 331 } 332 333 // If there was a forward reference to this value, replace it. 334 MDNode *PrevVal = cast<MDNode>(OldV); 335 OldV->replaceAllUsesWith(V); 336 MDNode::deleteTemporary(PrevVal); 337 // Deleting PrevVal sets Idx value in MDValuePtrs to null. Set new 338 // value for Idx. 339 MDValuePtrs[Idx] = V; 340 } 341 342 Value *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) { 343 if (Idx >= size()) 344 resize(Idx + 1); 345 346 if (Value *V = MDValuePtrs[Idx]) { 347 assert(V->getType()->isMetadataTy() && "Type mismatch in value table!"); 348 return V; 349 } 350 351 // Create and return a placeholder, which will later be RAUW'd. 352 Value *V = MDNode::getTemporary(Context, ArrayRef<Value*>()); 353 MDValuePtrs[Idx] = V; 354 return V; 355 } 356 357 const Type *BitcodeReader::getTypeByID(unsigned ID, bool isTypeTable) { 358 // If the TypeID is in range, return it. 359 if (ID < TypeList.size()) 360 return TypeList[ID].get(); 361 if (!isTypeTable) return 0; 362 363 // The type table allows forward references. Push as many Opaque types as 364 // needed to get up to ID. 365 while (TypeList.size() <= ID) 366 TypeList.push_back(OpaqueType::get(Context)); 367 return TypeList.back().get(); 368 } 369 370 //===----------------------------------------------------------------------===// 371 // Functions for parsing blocks from the bitcode file 372 //===----------------------------------------------------------------------===// 373 374 bool BitcodeReader::ParseAttributeBlock() { 375 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 376 return Error("Malformed block record"); 377 378 if (!MAttributes.empty()) 379 return Error("Multiple PARAMATTR blocks found!"); 380 381 SmallVector<uint64_t, 64> Record; 382 383 SmallVector<AttributeWithIndex, 8> Attrs; 384 385 // Read all the records. 386 while (1) { 387 unsigned Code = Stream.ReadCode(); 388 if (Code == bitc::END_BLOCK) { 389 if (Stream.ReadBlockEnd()) 390 return Error("Error at end of PARAMATTR block"); 391 return false; 392 } 393 394 if (Code == bitc::ENTER_SUBBLOCK) { 395 // No known subblocks, always skip them. 396 Stream.ReadSubBlockID(); 397 if (Stream.SkipBlock()) 398 return Error("Malformed block record"); 399 continue; 400 } 401 402 if (Code == bitc::DEFINE_ABBREV) { 403 Stream.ReadAbbrevRecord(); 404 continue; 405 } 406 407 // Read a record. 408 Record.clear(); 409 switch (Stream.ReadRecord(Code, Record)) { 410 default: // Default behavior: ignore. 411 break; 412 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [paramidx0, attr0, ...] 413 if (Record.size() & 1) 414 return Error("Invalid ENTRY record"); 415 416 // FIXME : Remove this autoupgrade code in LLVM 3.0. 417 // If Function attributes are using index 0 then transfer them 418 // to index ~0. Index 0 is used for return value attributes but used to be 419 // used for function attributes. 420 Attributes RetAttribute = Attribute::None; 421 Attributes FnAttribute = Attribute::None; 422 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 423 // FIXME: remove in LLVM 3.0 424 // The alignment is stored as a 16-bit raw value from bits 31--16. 425 // We shift the bits above 31 down by 11 bits. 426 427 unsigned Alignment = (Record[i+1] & (0xffffull << 16)) >> 16; 428 if (Alignment && !isPowerOf2_32(Alignment)) 429 return Error("Alignment is not a power of two."); 430 431 Attributes ReconstitutedAttr = Record[i+1] & 0xffff; 432 if (Alignment) 433 ReconstitutedAttr |= Attribute::constructAlignmentFromInt(Alignment); 434 ReconstitutedAttr |= (Record[i+1] & (0xffffull << 32)) >> 11; 435 Record[i+1] = ReconstitutedAttr; 436 437 if (Record[i] == 0) 438 RetAttribute = Record[i+1]; 439 else if (Record[i] == ~0U) 440 FnAttribute = Record[i+1]; 441 } 442 443 unsigned OldRetAttrs = (Attribute::NoUnwind|Attribute::NoReturn| 444 Attribute::ReadOnly|Attribute::ReadNone); 445 446 if (FnAttribute == Attribute::None && RetAttribute != Attribute::None && 447 (RetAttribute & OldRetAttrs) != 0) { 448 if (FnAttribute == Attribute::None) { // add a slot so they get added. 449 Record.push_back(~0U); 450 Record.push_back(0); 451 } 452 453 FnAttribute |= RetAttribute & OldRetAttrs; 454 RetAttribute &= ~OldRetAttrs; 455 } 456 457 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 458 if (Record[i] == 0) { 459 if (RetAttribute != Attribute::None) 460 Attrs.push_back(AttributeWithIndex::get(0, RetAttribute)); 461 } else if (Record[i] == ~0U) { 462 if (FnAttribute != Attribute::None) 463 Attrs.push_back(AttributeWithIndex::get(~0U, FnAttribute)); 464 } else if (Record[i+1] != Attribute::None) 465 Attrs.push_back(AttributeWithIndex::get(Record[i], Record[i+1])); 466 } 467 468 MAttributes.push_back(AttrListPtr::get(Attrs.begin(), Attrs.end())); 469 Attrs.clear(); 470 break; 471 } 472 } 473 } 474 } 475 476 477 bool BitcodeReader::ParseTypeTable() { 478 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID)) 479 return Error("Malformed block record"); 480 481 if (!TypeList.empty()) 482 return Error("Multiple TYPE_BLOCKs found!"); 483 484 SmallVector<uint64_t, 64> Record; 485 unsigned NumRecords = 0; 486 487 // Read all the records for this type table. 488 while (1) { 489 unsigned Code = Stream.ReadCode(); 490 if (Code == bitc::END_BLOCK) { 491 if (NumRecords != TypeList.size()) 492 return Error("Invalid type forward reference in TYPE_BLOCK"); 493 if (Stream.ReadBlockEnd()) 494 return Error("Error at end of type table block"); 495 return false; 496 } 497 498 if (Code == bitc::ENTER_SUBBLOCK) { 499 // No known subblocks, always skip them. 500 Stream.ReadSubBlockID(); 501 if (Stream.SkipBlock()) 502 return Error("Malformed block record"); 503 continue; 504 } 505 506 if (Code == bitc::DEFINE_ABBREV) { 507 Stream.ReadAbbrevRecord(); 508 continue; 509 } 510 511 // Read a record. 512 Record.clear(); 513 const Type *ResultTy = 0; 514 switch (Stream.ReadRecord(Code, Record)) { 515 default: // Default behavior: unknown type. 516 ResultTy = 0; 517 break; 518 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 519 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 520 // type list. This allows us to reserve space. 521 if (Record.size() < 1) 522 return Error("Invalid TYPE_CODE_NUMENTRY record"); 523 TypeList.reserve(Record[0]); 524 continue; 525 case bitc::TYPE_CODE_VOID: // VOID 526 ResultTy = Type::getVoidTy(Context); 527 break; 528 case bitc::TYPE_CODE_FLOAT: // FLOAT 529 ResultTy = Type::getFloatTy(Context); 530 break; 531 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 532 ResultTy = Type::getDoubleTy(Context); 533 break; 534 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 535 ResultTy = Type::getX86_FP80Ty(Context); 536 break; 537 case bitc::TYPE_CODE_FP128: // FP128 538 ResultTy = Type::getFP128Ty(Context); 539 break; 540 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 541 ResultTy = Type::getPPC_FP128Ty(Context); 542 break; 543 case bitc::TYPE_CODE_LABEL: // LABEL 544 ResultTy = Type::getLabelTy(Context); 545 break; 546 case bitc::TYPE_CODE_OPAQUE: // OPAQUE 547 ResultTy = 0; 548 break; 549 case bitc::TYPE_CODE_METADATA: // METADATA 550 ResultTy = Type::getMetadataTy(Context); 551 break; 552 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 553 ResultTy = Type::getX86_MMXTy(Context); 554 break; 555 case bitc::TYPE_CODE_INTEGER: // INTEGER: [width] 556 if (Record.size() < 1) 557 return Error("Invalid Integer type record"); 558 559 ResultTy = IntegerType::get(Context, Record[0]); 560 break; 561 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 562 // [pointee type, address space] 563 if (Record.size() < 1) 564 return Error("Invalid POINTER type record"); 565 unsigned AddressSpace = 0; 566 if (Record.size() == 2) 567 AddressSpace = Record[1]; 568 ResultTy = PointerType::get(getTypeByID(Record[0], true), 569 AddressSpace); 570 break; 571 } 572 case bitc::TYPE_CODE_FUNCTION: { 573 // FIXME: attrid is dead, remove it in LLVM 3.0 574 // FUNCTION: [vararg, attrid, retty, paramty x N] 575 if (Record.size() < 3) 576 return Error("Invalid FUNCTION type record"); 577 std::vector<const Type*> ArgTys; 578 for (unsigned i = 3, e = Record.size(); i != e; ++i) 579 ArgTys.push_back(getTypeByID(Record[i], true)); 580 581 ResultTy = FunctionType::get(getTypeByID(Record[2], true), ArgTys, 582 Record[0]); 583 break; 584 } 585 case bitc::TYPE_CODE_STRUCT: { // STRUCT: [ispacked, eltty x N] 586 if (Record.size() < 1) 587 return Error("Invalid STRUCT type record"); 588 std::vector<const Type*> EltTys; 589 for (unsigned i = 1, e = Record.size(); i != e; ++i) 590 EltTys.push_back(getTypeByID(Record[i], true)); 591 ResultTy = StructType::get(Context, EltTys, Record[0]); 592 break; 593 } 594 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 595 if (Record.size() < 2) 596 return Error("Invalid ARRAY type record"); 597 ResultTy = ArrayType::get(getTypeByID(Record[1], true), Record[0]); 598 break; 599 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 600 if (Record.size() < 2) 601 return Error("Invalid VECTOR type record"); 602 ResultTy = VectorType::get(getTypeByID(Record[1], true), Record[0]); 603 break; 604 } 605 606 if (NumRecords == TypeList.size()) { 607 // If this is a new type slot, just append it. 608 TypeList.push_back(ResultTy ? ResultTy : OpaqueType::get(Context)); 609 ++NumRecords; 610 } else if (ResultTy == 0) { 611 // Otherwise, this was forward referenced, so an opaque type was created, 612 // but the result type is actually just an opaque. Leave the one we 613 // created previously. 614 ++NumRecords; 615 } else { 616 // Otherwise, this was forward referenced, so an opaque type was created. 617 // Resolve the opaque type to the real type now. 618 assert(NumRecords < TypeList.size() && "Typelist imbalance"); 619 const OpaqueType *OldTy = cast<OpaqueType>(TypeList[NumRecords++].get()); 620 621 // Don't directly push the new type on the Tab. Instead we want to replace 622 // the opaque type we previously inserted with the new concrete value. The 623 // refinement from the abstract (opaque) type to the new type causes all 624 // uses of the abstract type to use the concrete type (NewTy). This will 625 // also cause the opaque type to be deleted. 626 const_cast<OpaqueType*>(OldTy)->refineAbstractTypeTo(ResultTy); 627 628 // This should have replaced the old opaque type with the new type in the 629 // value table... or with a preexisting type that was already in the 630 // system. Let's just make sure it did. 631 assert(TypeList[NumRecords-1].get() != OldTy && 632 "refineAbstractType didn't work!"); 633 } 634 } 635 } 636 637 638 bool BitcodeReader::ParseTypeSymbolTable() { 639 if (Stream.EnterSubBlock(bitc::TYPE_SYMTAB_BLOCK_ID)) 640 return Error("Malformed block record"); 641 642 SmallVector<uint64_t, 64> Record; 643 644 // Read all the records for this type table. 645 std::string TypeName; 646 while (1) { 647 unsigned Code = Stream.ReadCode(); 648 if (Code == bitc::END_BLOCK) { 649 if (Stream.ReadBlockEnd()) 650 return Error("Error at end of type symbol table block"); 651 return false; 652 } 653 654 if (Code == bitc::ENTER_SUBBLOCK) { 655 // No known subblocks, always skip them. 656 Stream.ReadSubBlockID(); 657 if (Stream.SkipBlock()) 658 return Error("Malformed block record"); 659 continue; 660 } 661 662 if (Code == bitc::DEFINE_ABBREV) { 663 Stream.ReadAbbrevRecord(); 664 continue; 665 } 666 667 // Read a record. 668 Record.clear(); 669 switch (Stream.ReadRecord(Code, Record)) { 670 default: // Default behavior: unknown type. 671 break; 672 case bitc::TST_CODE_ENTRY: // TST_ENTRY: [typeid, namechar x N] 673 if (ConvertToString(Record, 1, TypeName)) 674 return Error("Invalid TST_ENTRY record"); 675 unsigned TypeID = Record[0]; 676 if (TypeID >= TypeList.size()) 677 return Error("Invalid Type ID in TST_ENTRY record"); 678 679 TheModule->addTypeName(TypeName, TypeList[TypeID].get()); 680 TypeName.clear(); 681 break; 682 } 683 } 684 } 685 686 bool BitcodeReader::ParseValueSymbolTable() { 687 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 688 return Error("Malformed block record"); 689 690 SmallVector<uint64_t, 64> Record; 691 692 // Read all the records for this value table. 693 SmallString<128> ValueName; 694 while (1) { 695 unsigned Code = Stream.ReadCode(); 696 if (Code == bitc::END_BLOCK) { 697 if (Stream.ReadBlockEnd()) 698 return Error("Error at end of value symbol table block"); 699 return false; 700 } 701 if (Code == bitc::ENTER_SUBBLOCK) { 702 // No known subblocks, always skip them. 703 Stream.ReadSubBlockID(); 704 if (Stream.SkipBlock()) 705 return Error("Malformed block record"); 706 continue; 707 } 708 709 if (Code == bitc::DEFINE_ABBREV) { 710 Stream.ReadAbbrevRecord(); 711 continue; 712 } 713 714 // Read a record. 715 Record.clear(); 716 switch (Stream.ReadRecord(Code, Record)) { 717 default: // Default behavior: unknown type. 718 break; 719 case bitc::VST_CODE_ENTRY: { // VST_ENTRY: [valueid, namechar x N] 720 if (ConvertToString(Record, 1, ValueName)) 721 return Error("Invalid VST_ENTRY record"); 722 unsigned ValueID = Record[0]; 723 if (ValueID >= ValueList.size()) 724 return Error("Invalid Value ID in VST_ENTRY record"); 725 Value *V = ValueList[ValueID]; 726 727 V->setName(StringRef(ValueName.data(), ValueName.size())); 728 ValueName.clear(); 729 break; 730 } 731 case bitc::VST_CODE_BBENTRY: { 732 if (ConvertToString(Record, 1, ValueName)) 733 return Error("Invalid VST_BBENTRY record"); 734 BasicBlock *BB = getBasicBlock(Record[0]); 735 if (BB == 0) 736 return Error("Invalid BB ID in VST_BBENTRY record"); 737 738 BB->setName(StringRef(ValueName.data(), ValueName.size())); 739 ValueName.clear(); 740 break; 741 } 742 } 743 } 744 } 745 746 bool BitcodeReader::ParseMetadata() { 747 unsigned NextMDValueNo = MDValueList.size(); 748 749 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) 750 return Error("Malformed block record"); 751 752 SmallVector<uint64_t, 64> Record; 753 754 // Read all the records. 755 while (1) { 756 unsigned Code = Stream.ReadCode(); 757 if (Code == bitc::END_BLOCK) { 758 if (Stream.ReadBlockEnd()) 759 return Error("Error at end of PARAMATTR block"); 760 return false; 761 } 762 763 if (Code == bitc::ENTER_SUBBLOCK) { 764 // No known subblocks, always skip them. 765 Stream.ReadSubBlockID(); 766 if (Stream.SkipBlock()) 767 return Error("Malformed block record"); 768 continue; 769 } 770 771 if (Code == bitc::DEFINE_ABBREV) { 772 Stream.ReadAbbrevRecord(); 773 continue; 774 } 775 776 bool IsFunctionLocal = false; 777 // Read a record. 778 Record.clear(); 779 Code = Stream.ReadRecord(Code, Record); 780 switch (Code) { 781 default: // Default behavior: ignore. 782 break; 783 case bitc::METADATA_NAME: { 784 // Read named of the named metadata. 785 unsigned NameLength = Record.size(); 786 SmallString<8> Name; 787 Name.resize(NameLength); 788 for (unsigned i = 0; i != NameLength; ++i) 789 Name[i] = Record[i]; 790 Record.clear(); 791 Code = Stream.ReadCode(); 792 793 // METADATA_NAME is always followed by METADATA_NAMED_NODE2. 794 // Or METADATA_NAMED_NODE in LLVM 2.7. FIXME: Remove this in LLVM 3.0. 795 unsigned NextBitCode = Stream.ReadRecord(Code, Record); 796 if (NextBitCode == bitc::METADATA_NAMED_NODE) { 797 LLVM2_7MetadataDetected = true; 798 } else if (NextBitCode != bitc::METADATA_NAMED_NODE2) 799 assert ( 0 && "Invalid Named Metadata record"); 800 801 // Read named metadata elements. 802 unsigned Size = Record.size(); 803 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name); 804 for (unsigned i = 0; i != Size; ++i) { 805 MDNode *MD = dyn_cast<MDNode>(MDValueList.getValueFwdRef(Record[i])); 806 if (MD == 0) 807 return Error("Malformed metadata record"); 808 NMD->addOperand(MD); 809 } 810 // Backwards compatibility hack: NamedMDValues used to be Values, 811 // and they got their own slots in the value numbering. They are no 812 // longer Values, however we still need to account for them in the 813 // numbering in order to be able to read old bitcode files. 814 // FIXME: Remove this in LLVM 3.0. 815 if (LLVM2_7MetadataDetected) 816 MDValueList.AssignValue(0, NextMDValueNo++); 817 break; 818 } 819 case bitc::METADATA_FN_NODE: // FIXME: Remove in LLVM 3.0. 820 case bitc::METADATA_FN_NODE2: 821 IsFunctionLocal = true; 822 // fall-through 823 case bitc::METADATA_NODE: // FIXME: Remove in LLVM 3.0. 824 case bitc::METADATA_NODE2: { 825 826 // Detect 2.7-era metadata. 827 // FIXME: Remove in LLVM 3.0. 828 if (Code == bitc::METADATA_FN_NODE || Code == bitc::METADATA_NODE) 829 LLVM2_7MetadataDetected = true; 830 831 if (Record.size() % 2 == 1) 832 return Error("Invalid METADATA_NODE2 record"); 833 834 unsigned Size = Record.size(); 835 SmallVector<Value*, 8> Elts; 836 for (unsigned i = 0; i != Size; i += 2) { 837 const Type *Ty = getTypeByID(Record[i]); 838 if (!Ty) return Error("Invalid METADATA_NODE2 record"); 839 if (Ty->isMetadataTy()) 840 Elts.push_back(MDValueList.getValueFwdRef(Record[i+1])); 841 else if (!Ty->isVoidTy()) 842 Elts.push_back(ValueList.getValueFwdRef(Record[i+1], Ty)); 843 else 844 Elts.push_back(NULL); 845 } 846 Value *V = MDNode::getWhenValsUnresolved(Context, Elts, IsFunctionLocal); 847 IsFunctionLocal = false; 848 MDValueList.AssignValue(V, NextMDValueNo++); 849 break; 850 } 851 case bitc::METADATA_STRING: { 852 unsigned MDStringLength = Record.size(); 853 SmallString<8> String; 854 String.resize(MDStringLength); 855 for (unsigned i = 0; i != MDStringLength; ++i) 856 String[i] = Record[i]; 857 Value *V = MDString::get(Context, 858 StringRef(String.data(), String.size())); 859 MDValueList.AssignValue(V, NextMDValueNo++); 860 break; 861 } 862 case bitc::METADATA_KIND: { 863 unsigned RecordLength = Record.size(); 864 if (Record.empty() || RecordLength < 2) 865 return Error("Invalid METADATA_KIND record"); 866 SmallString<8> Name; 867 Name.resize(RecordLength-1); 868 unsigned Kind = Record[0]; 869 for (unsigned i = 1; i != RecordLength; ++i) 870 Name[i-1] = Record[i]; 871 872 unsigned NewKind = TheModule->getMDKindID(Name.str()); 873 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second) 874 return Error("Conflicting METADATA_KIND records"); 875 break; 876 } 877 } 878 } 879 } 880 881 /// DecodeSignRotatedValue - Decode a signed value stored with the sign bit in 882 /// the LSB for dense VBR encoding. 883 static uint64_t DecodeSignRotatedValue(uint64_t V) { 884 if ((V & 1) == 0) 885 return V >> 1; 886 if (V != 1) 887 return -(V >> 1); 888 // There is no such thing as -0 with integers. "-0" really means MININT. 889 return 1ULL << 63; 890 } 891 892 /// ResolveGlobalAndAliasInits - Resolve all of the initializers for global 893 /// values and aliases that we can. 894 bool BitcodeReader::ResolveGlobalAndAliasInits() { 895 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 896 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist; 897 898 GlobalInitWorklist.swap(GlobalInits); 899 AliasInitWorklist.swap(AliasInits); 900 901 while (!GlobalInitWorklist.empty()) { 902 unsigned ValID = GlobalInitWorklist.back().second; 903 if (ValID >= ValueList.size()) { 904 // Not ready to resolve this yet, it requires something later in the file. 905 GlobalInits.push_back(GlobalInitWorklist.back()); 906 } else { 907 if (Constant *C = dyn_cast<Constant>(ValueList[ValID])) 908 GlobalInitWorklist.back().first->setInitializer(C); 909 else 910 return Error("Global variable initializer is not a constant!"); 911 } 912 GlobalInitWorklist.pop_back(); 913 } 914 915 while (!AliasInitWorklist.empty()) { 916 unsigned ValID = AliasInitWorklist.back().second; 917 if (ValID >= ValueList.size()) { 918 AliasInits.push_back(AliasInitWorklist.back()); 919 } else { 920 if (Constant *C = dyn_cast<Constant>(ValueList[ValID])) 921 AliasInitWorklist.back().first->setAliasee(C); 922 else 923 return Error("Alias initializer is not a constant!"); 924 } 925 AliasInitWorklist.pop_back(); 926 } 927 return false; 928 } 929 930 bool BitcodeReader::ParseConstants() { 931 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 932 return Error("Malformed block record"); 933 934 SmallVector<uint64_t, 64> Record; 935 936 // Read all the records for this value table. 937 const Type *CurTy = Type::getInt32Ty(Context); 938 unsigned NextCstNo = ValueList.size(); 939 while (1) { 940 unsigned Code = Stream.ReadCode(); 941 if (Code == bitc::END_BLOCK) 942 break; 943 944 if (Code == bitc::ENTER_SUBBLOCK) { 945 // No known subblocks, always skip them. 946 Stream.ReadSubBlockID(); 947 if (Stream.SkipBlock()) 948 return Error("Malformed block record"); 949 continue; 950 } 951 952 if (Code == bitc::DEFINE_ABBREV) { 953 Stream.ReadAbbrevRecord(); 954 continue; 955 } 956 957 // Read a record. 958 Record.clear(); 959 Value *V = 0; 960 unsigned BitCode = Stream.ReadRecord(Code, Record); 961 switch (BitCode) { 962 default: // Default behavior: unknown constant 963 case bitc::CST_CODE_UNDEF: // UNDEF 964 V = UndefValue::get(CurTy); 965 break; 966 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 967 if (Record.empty()) 968 return Error("Malformed CST_SETTYPE record"); 969 if (Record[0] >= TypeList.size()) 970 return Error("Invalid Type ID in CST_SETTYPE record"); 971 CurTy = TypeList[Record[0]]; 972 continue; // Skip the ValueList manipulation. 973 case bitc::CST_CODE_NULL: // NULL 974 V = Constant::getNullValue(CurTy); 975 break; 976 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 977 if (!CurTy->isIntegerTy() || Record.empty()) 978 return Error("Invalid CST_INTEGER record"); 979 V = ConstantInt::get(CurTy, DecodeSignRotatedValue(Record[0])); 980 break; 981 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 982 if (!CurTy->isIntegerTy() || Record.empty()) 983 return Error("Invalid WIDE_INTEGER record"); 984 985 unsigned NumWords = Record.size(); 986 SmallVector<uint64_t, 8> Words; 987 Words.resize(NumWords); 988 for (unsigned i = 0; i != NumWords; ++i) 989 Words[i] = DecodeSignRotatedValue(Record[i]); 990 V = ConstantInt::get(Context, 991 APInt(cast<IntegerType>(CurTy)->getBitWidth(), 992 NumWords, &Words[0])); 993 break; 994 } 995 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 996 if (Record.empty()) 997 return Error("Invalid FLOAT record"); 998 if (CurTy->isFloatTy()) 999 V = ConstantFP::get(Context, APFloat(APInt(32, (uint32_t)Record[0]))); 1000 else if (CurTy->isDoubleTy()) 1001 V = ConstantFP::get(Context, APFloat(APInt(64, Record[0]))); 1002 else if (CurTy->isX86_FP80Ty()) { 1003 // Bits are not stored the same way as a normal i80 APInt, compensate. 1004 uint64_t Rearrange[2]; 1005 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 1006 Rearrange[1] = Record[0] >> 48; 1007 V = ConstantFP::get(Context, APFloat(APInt(80, 2, Rearrange))); 1008 } else if (CurTy->isFP128Ty()) 1009 V = ConstantFP::get(Context, APFloat(APInt(128, 2, &Record[0]), true)); 1010 else if (CurTy->isPPC_FP128Ty()) 1011 V = ConstantFP::get(Context, APFloat(APInt(128, 2, &Record[0]))); 1012 else 1013 V = UndefValue::get(CurTy); 1014 break; 1015 } 1016 1017 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 1018 if (Record.empty()) 1019 return Error("Invalid CST_AGGREGATE record"); 1020 1021 unsigned Size = Record.size(); 1022 std::vector<Constant*> Elts; 1023 1024 if (const StructType *STy = dyn_cast<StructType>(CurTy)) { 1025 for (unsigned i = 0; i != Size; ++i) 1026 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 1027 STy->getElementType(i))); 1028 V = ConstantStruct::get(STy, Elts); 1029 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 1030 const Type *EltTy = ATy->getElementType(); 1031 for (unsigned i = 0; i != Size; ++i) 1032 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 1033 V = ConstantArray::get(ATy, Elts); 1034 } else if (const VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 1035 const Type *EltTy = VTy->getElementType(); 1036 for (unsigned i = 0; i != Size; ++i) 1037 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 1038 V = ConstantVector::get(Elts); 1039 } else { 1040 V = UndefValue::get(CurTy); 1041 } 1042 break; 1043 } 1044 case bitc::CST_CODE_STRING: { // STRING: [values] 1045 if (Record.empty()) 1046 return Error("Invalid CST_AGGREGATE record"); 1047 1048 const ArrayType *ATy = cast<ArrayType>(CurTy); 1049 const Type *EltTy = ATy->getElementType(); 1050 1051 unsigned Size = Record.size(); 1052 std::vector<Constant*> Elts; 1053 for (unsigned i = 0; i != Size; ++i) 1054 Elts.push_back(ConstantInt::get(EltTy, Record[i])); 1055 V = ConstantArray::get(ATy, Elts); 1056 break; 1057 } 1058 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 1059 if (Record.empty()) 1060 return Error("Invalid CST_AGGREGATE record"); 1061 1062 const ArrayType *ATy = cast<ArrayType>(CurTy); 1063 const Type *EltTy = ATy->getElementType(); 1064 1065 unsigned Size = Record.size(); 1066 std::vector<Constant*> Elts; 1067 for (unsigned i = 0; i != Size; ++i) 1068 Elts.push_back(ConstantInt::get(EltTy, Record[i])); 1069 Elts.push_back(Constant::getNullValue(EltTy)); 1070 V = ConstantArray::get(ATy, Elts); 1071 break; 1072 } 1073 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 1074 if (Record.size() < 3) return Error("Invalid CE_BINOP record"); 1075 int Opc = GetDecodedBinaryOpcode(Record[0], CurTy); 1076 if (Opc < 0) { 1077 V = UndefValue::get(CurTy); // Unknown binop. 1078 } else { 1079 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 1080 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 1081 unsigned Flags = 0; 1082 if (Record.size() >= 4) { 1083 if (Opc == Instruction::Add || 1084 Opc == Instruction::Sub || 1085 Opc == Instruction::Mul || 1086 Opc == Instruction::Shl) { 1087 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 1088 Flags |= OverflowingBinaryOperator::NoSignedWrap; 1089 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 1090 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 1091 } else if (Opc == Instruction::SDiv || 1092 Opc == Instruction::UDiv || 1093 Opc == Instruction::LShr || 1094 Opc == Instruction::AShr) { 1095 if (Record[3] & (1 << bitc::PEO_EXACT)) 1096 Flags |= SDivOperator::IsExact; 1097 } 1098 } 1099 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 1100 } 1101 break; 1102 } 1103 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 1104 if (Record.size() < 3) return Error("Invalid CE_CAST record"); 1105 int Opc = GetDecodedCastOpcode(Record[0]); 1106 if (Opc < 0) { 1107 V = UndefValue::get(CurTy); // Unknown cast. 1108 } else { 1109 const Type *OpTy = getTypeByID(Record[1]); 1110 if (!OpTy) return Error("Invalid CE_CAST record"); 1111 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 1112 V = ConstantExpr::getCast(Opc, Op, CurTy); 1113 } 1114 break; 1115 } 1116 case bitc::CST_CODE_CE_INBOUNDS_GEP: 1117 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 1118 if (Record.size() & 1) return Error("Invalid CE_GEP record"); 1119 SmallVector<Constant*, 16> Elts; 1120 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1121 const Type *ElTy = getTypeByID(Record[i]); 1122 if (!ElTy) return Error("Invalid CE_GEP record"); 1123 Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy)); 1124 } 1125 if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 1126 V = ConstantExpr::getInBoundsGetElementPtr(Elts[0], &Elts[1], 1127 Elts.size()-1); 1128 else 1129 V = ConstantExpr::getGetElementPtr(Elts[0], &Elts[1], 1130 Elts.size()-1); 1131 break; 1132 } 1133 case bitc::CST_CODE_CE_SELECT: // CE_SELECT: [opval#, opval#, opval#] 1134 if (Record.size() < 3) return Error("Invalid CE_SELECT record"); 1135 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 1136 Type::getInt1Ty(Context)), 1137 ValueList.getConstantFwdRef(Record[1],CurTy), 1138 ValueList.getConstantFwdRef(Record[2],CurTy)); 1139 break; 1140 case bitc::CST_CODE_CE_EXTRACTELT: { // CE_EXTRACTELT: [opty, opval, opval] 1141 if (Record.size() < 3) return Error("Invalid CE_EXTRACTELT record"); 1142 const VectorType *OpTy = 1143 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 1144 if (OpTy == 0) return Error("Invalid CE_EXTRACTELT record"); 1145 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1146 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 1147 V = ConstantExpr::getExtractElement(Op0, Op1); 1148 break; 1149 } 1150 case bitc::CST_CODE_CE_INSERTELT: { // CE_INSERTELT: [opval, opval, opval] 1151 const VectorType *OpTy = dyn_cast<VectorType>(CurTy); 1152 if (Record.size() < 3 || OpTy == 0) 1153 return Error("Invalid CE_INSERTELT record"); 1154 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 1155 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 1156 OpTy->getElementType()); 1157 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 1158 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 1159 break; 1160 } 1161 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 1162 const VectorType *OpTy = dyn_cast<VectorType>(CurTy); 1163 if (Record.size() < 3 || OpTy == 0) 1164 return Error("Invalid CE_SHUFFLEVEC record"); 1165 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 1166 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 1167 const Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 1168 OpTy->getNumElements()); 1169 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 1170 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 1171 break; 1172 } 1173 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 1174 const VectorType *RTy = dyn_cast<VectorType>(CurTy); 1175 const VectorType *OpTy = 1176 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 1177 if (Record.size() < 4 || RTy == 0 || OpTy == 0) 1178 return Error("Invalid CE_SHUFVEC_EX record"); 1179 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1180 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 1181 const Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 1182 RTy->getNumElements()); 1183 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 1184 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 1185 break; 1186 } 1187 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 1188 if (Record.size() < 4) return Error("Invalid CE_CMP record"); 1189 const Type *OpTy = getTypeByID(Record[0]); 1190 if (OpTy == 0) return Error("Invalid CE_CMP record"); 1191 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1192 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 1193 1194 if (OpTy->isFPOrFPVectorTy()) 1195 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 1196 else 1197 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 1198 break; 1199 } 1200 case bitc::CST_CODE_INLINEASM: { 1201 if (Record.size() < 2) return Error("Invalid INLINEASM record"); 1202 std::string AsmStr, ConstrStr; 1203 bool HasSideEffects = Record[0] & 1; 1204 bool IsAlignStack = Record[0] >> 1; 1205 unsigned AsmStrSize = Record[1]; 1206 if (2+AsmStrSize >= Record.size()) 1207 return Error("Invalid INLINEASM record"); 1208 unsigned ConstStrSize = Record[2+AsmStrSize]; 1209 if (3+AsmStrSize+ConstStrSize > Record.size()) 1210 return Error("Invalid INLINEASM record"); 1211 1212 for (unsigned i = 0; i != AsmStrSize; ++i) 1213 AsmStr += (char)Record[2+i]; 1214 for (unsigned i = 0; i != ConstStrSize; ++i) 1215 ConstrStr += (char)Record[3+AsmStrSize+i]; 1216 const PointerType *PTy = cast<PointerType>(CurTy); 1217 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 1218 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 1219 break; 1220 } 1221 case bitc::CST_CODE_BLOCKADDRESS:{ 1222 if (Record.size() < 3) return Error("Invalid CE_BLOCKADDRESS record"); 1223 const Type *FnTy = getTypeByID(Record[0]); 1224 if (FnTy == 0) return Error("Invalid CE_BLOCKADDRESS record"); 1225 Function *Fn = 1226 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 1227 if (Fn == 0) return Error("Invalid CE_BLOCKADDRESS record"); 1228 1229 GlobalVariable *FwdRef = new GlobalVariable(*Fn->getParent(), 1230 Type::getInt8Ty(Context), 1231 false, GlobalValue::InternalLinkage, 1232 0, ""); 1233 BlockAddrFwdRefs[Fn].push_back(std::make_pair(Record[2], FwdRef)); 1234 V = FwdRef; 1235 break; 1236 } 1237 } 1238 1239 ValueList.AssignValue(V, NextCstNo); 1240 ++NextCstNo; 1241 } 1242 1243 if (NextCstNo != ValueList.size()) 1244 return Error("Invalid constant reference!"); 1245 1246 if (Stream.ReadBlockEnd()) 1247 return Error("Error at end of constants block"); 1248 1249 // Once all the constants have been read, go through and resolve forward 1250 // references. 1251 ValueList.ResolveConstantForwardRefs(); 1252 return false; 1253 } 1254 1255 /// RememberAndSkipFunctionBody - When we see the block for a function body, 1256 /// remember where it is and then skip it. This lets us lazily deserialize the 1257 /// functions. 1258 bool BitcodeReader::RememberAndSkipFunctionBody() { 1259 // Get the function we are talking about. 1260 if (FunctionsWithBodies.empty()) 1261 return Error("Insufficient function protos"); 1262 1263 Function *Fn = FunctionsWithBodies.back(); 1264 FunctionsWithBodies.pop_back(); 1265 1266 // Save the current stream state. 1267 uint64_t CurBit = Stream.GetCurrentBitNo(); 1268 DeferredFunctionInfo[Fn] = CurBit; 1269 1270 // Skip over the function block for now. 1271 if (Stream.SkipBlock()) 1272 return Error("Malformed block record"); 1273 return false; 1274 } 1275 1276 bool BitcodeReader::ParseModule() { 1277 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 1278 return Error("Malformed block record"); 1279 1280 SmallVector<uint64_t, 64> Record; 1281 std::vector<std::string> SectionTable; 1282 std::vector<std::string> GCTable; 1283 1284 // Read all the records for this module. 1285 while (!Stream.AtEndOfStream()) { 1286 unsigned Code = Stream.ReadCode(); 1287 if (Code == bitc::END_BLOCK) { 1288 if (Stream.ReadBlockEnd()) 1289 return Error("Error at end of module block"); 1290 1291 // Patch the initializers for globals and aliases up. 1292 ResolveGlobalAndAliasInits(); 1293 if (!GlobalInits.empty() || !AliasInits.empty()) 1294 return Error("Malformed global initializer set"); 1295 if (!FunctionsWithBodies.empty()) 1296 return Error("Too few function bodies found"); 1297 1298 // Look for intrinsic functions which need to be upgraded at some point 1299 for (Module::iterator FI = TheModule->begin(), FE = TheModule->end(); 1300 FI != FE; ++FI) { 1301 Function* NewFn; 1302 if (UpgradeIntrinsicFunction(FI, NewFn)) 1303 UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn)); 1304 } 1305 1306 // Look for global variables which need to be renamed. 1307 for (Module::global_iterator 1308 GI = TheModule->global_begin(), GE = TheModule->global_end(); 1309 GI != GE; ++GI) 1310 UpgradeGlobalVariable(GI); 1311 1312 // Force deallocation of memory for these vectors to favor the client that 1313 // want lazy deserialization. 1314 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 1315 std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits); 1316 std::vector<Function*>().swap(FunctionsWithBodies); 1317 return false; 1318 } 1319 1320 if (Code == bitc::ENTER_SUBBLOCK) { 1321 switch (Stream.ReadSubBlockID()) { 1322 default: // Skip unknown content. 1323 if (Stream.SkipBlock()) 1324 return Error("Malformed block record"); 1325 break; 1326 case bitc::BLOCKINFO_BLOCK_ID: 1327 if (Stream.ReadBlockInfoBlock()) 1328 return Error("Malformed BlockInfoBlock"); 1329 break; 1330 case bitc::PARAMATTR_BLOCK_ID: 1331 if (ParseAttributeBlock()) 1332 return true; 1333 break; 1334 case bitc::TYPE_BLOCK_ID: 1335 if (ParseTypeTable()) 1336 return true; 1337 break; 1338 case bitc::TYPE_SYMTAB_BLOCK_ID: 1339 if (ParseTypeSymbolTable()) 1340 return true; 1341 break; 1342 case bitc::VALUE_SYMTAB_BLOCK_ID: 1343 if (ParseValueSymbolTable()) 1344 return true; 1345 break; 1346 case bitc::CONSTANTS_BLOCK_ID: 1347 if (ParseConstants() || ResolveGlobalAndAliasInits()) 1348 return true; 1349 break; 1350 case bitc::METADATA_BLOCK_ID: 1351 if (ParseMetadata()) 1352 return true; 1353 break; 1354 case bitc::FUNCTION_BLOCK_ID: 1355 // If this is the first function body we've seen, reverse the 1356 // FunctionsWithBodies list. 1357 if (!HasReversedFunctionsWithBodies) { 1358 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 1359 HasReversedFunctionsWithBodies = true; 1360 } 1361 1362 if (RememberAndSkipFunctionBody()) 1363 return true; 1364 break; 1365 } 1366 continue; 1367 } 1368 1369 if (Code == bitc::DEFINE_ABBREV) { 1370 Stream.ReadAbbrevRecord(); 1371 continue; 1372 } 1373 1374 // Read a record. 1375 switch (Stream.ReadRecord(Code, Record)) { 1376 default: break; // Default behavior, ignore unknown content. 1377 case bitc::MODULE_CODE_VERSION: // VERSION: [version#] 1378 if (Record.size() < 1) 1379 return Error("Malformed MODULE_CODE_VERSION"); 1380 // Only version #0 is supported so far. 1381 if (Record[0] != 0) 1382 return Error("Unknown bitstream version!"); 1383 break; 1384 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 1385 std::string S; 1386 if (ConvertToString(Record, 0, S)) 1387 return Error("Invalid MODULE_CODE_TRIPLE record"); 1388 TheModule->setTargetTriple(S); 1389 break; 1390 } 1391 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 1392 std::string S; 1393 if (ConvertToString(Record, 0, S)) 1394 return Error("Invalid MODULE_CODE_DATALAYOUT record"); 1395 TheModule->setDataLayout(S); 1396 break; 1397 } 1398 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 1399 std::string S; 1400 if (ConvertToString(Record, 0, S)) 1401 return Error("Invalid MODULE_CODE_ASM record"); 1402 TheModule->setModuleInlineAsm(S); 1403 break; 1404 } 1405 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 1406 std::string S; 1407 if (ConvertToString(Record, 0, S)) 1408 return Error("Invalid MODULE_CODE_DEPLIB record"); 1409 TheModule->addLibrary(S); 1410 break; 1411 } 1412 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 1413 std::string S; 1414 if (ConvertToString(Record, 0, S)) 1415 return Error("Invalid MODULE_CODE_SECTIONNAME record"); 1416 SectionTable.push_back(S); 1417 break; 1418 } 1419 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 1420 std::string S; 1421 if (ConvertToString(Record, 0, S)) 1422 return Error("Invalid MODULE_CODE_GCNAME record"); 1423 GCTable.push_back(S); 1424 break; 1425 } 1426 // GLOBALVAR: [pointer type, isconst, initid, 1427 // linkage, alignment, section, visibility, threadlocal, 1428 // unnamed_addr] 1429 case bitc::MODULE_CODE_GLOBALVAR: { 1430 if (Record.size() < 6) 1431 return Error("Invalid MODULE_CODE_GLOBALVAR record"); 1432 const Type *Ty = getTypeByID(Record[0]); 1433 if (!Ty) return Error("Invalid MODULE_CODE_GLOBALVAR record"); 1434 if (!Ty->isPointerTy()) 1435 return Error("Global not a pointer type!"); 1436 unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 1437 Ty = cast<PointerType>(Ty)->getElementType(); 1438 1439 bool isConstant = Record[1]; 1440 GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]); 1441 unsigned Alignment = (1 << Record[4]) >> 1; 1442 std::string Section; 1443 if (Record[5]) { 1444 if (Record[5]-1 >= SectionTable.size()) 1445 return Error("Invalid section ID"); 1446 Section = SectionTable[Record[5]-1]; 1447 } 1448 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 1449 if (Record.size() > 6) 1450 Visibility = GetDecodedVisibility(Record[6]); 1451 bool isThreadLocal = false; 1452 if (Record.size() > 7) 1453 isThreadLocal = Record[7]; 1454 1455 bool UnnamedAddr = false; 1456 if (Record.size() > 8) 1457 UnnamedAddr = Record[8]; 1458 1459 GlobalVariable *NewGV = 1460 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, 0, "", 0, 1461 isThreadLocal, AddressSpace); 1462 NewGV->setAlignment(Alignment); 1463 if (!Section.empty()) 1464 NewGV->setSection(Section); 1465 NewGV->setVisibility(Visibility); 1466 NewGV->setThreadLocal(isThreadLocal); 1467 NewGV->setUnnamedAddr(UnnamedAddr); 1468 1469 ValueList.push_back(NewGV); 1470 1471 // Remember which value to use for the global initializer. 1472 if (unsigned InitID = Record[2]) 1473 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 1474 break; 1475 } 1476 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 1477 // alignment, section, visibility, gc, unnamed_addr] 1478 case bitc::MODULE_CODE_FUNCTION: { 1479 if (Record.size() < 8) 1480 return Error("Invalid MODULE_CODE_FUNCTION record"); 1481 const Type *Ty = getTypeByID(Record[0]); 1482 if (!Ty) return Error("Invalid MODULE_CODE_FUNCTION record"); 1483 if (!Ty->isPointerTy()) 1484 return Error("Function not a pointer type!"); 1485 const FunctionType *FTy = 1486 dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType()); 1487 if (!FTy) 1488 return Error("Function not a pointer to function type!"); 1489 1490 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 1491 "", TheModule); 1492 1493 Func->setCallingConv(static_cast<CallingConv::ID>(Record[1])); 1494 bool isProto = Record[2]; 1495 Func->setLinkage(GetDecodedLinkage(Record[3])); 1496 Func->setAttributes(getAttributes(Record[4])); 1497 1498 Func->setAlignment((1 << Record[5]) >> 1); 1499 if (Record[6]) { 1500 if (Record[6]-1 >= SectionTable.size()) 1501 return Error("Invalid section ID"); 1502 Func->setSection(SectionTable[Record[6]-1]); 1503 } 1504 Func->setVisibility(GetDecodedVisibility(Record[7])); 1505 if (Record.size() > 8 && Record[8]) { 1506 if (Record[8]-1 > GCTable.size()) 1507 return Error("Invalid GC ID"); 1508 Func->setGC(GCTable[Record[8]-1].c_str()); 1509 } 1510 bool UnnamedAddr = false; 1511 if (Record.size() > 9) 1512 UnnamedAddr = Record[9]; 1513 Func->setUnnamedAddr(UnnamedAddr); 1514 ValueList.push_back(Func); 1515 1516 // If this is a function with a body, remember the prototype we are 1517 // creating now, so that we can match up the body with them later. 1518 if (!isProto) 1519 FunctionsWithBodies.push_back(Func); 1520 break; 1521 } 1522 // ALIAS: [alias type, aliasee val#, linkage] 1523 // ALIAS: [alias type, aliasee val#, linkage, visibility] 1524 case bitc::MODULE_CODE_ALIAS: { 1525 if (Record.size() < 3) 1526 return Error("Invalid MODULE_ALIAS record"); 1527 const Type *Ty = getTypeByID(Record[0]); 1528 if (!Ty) return Error("Invalid MODULE_ALIAS record"); 1529 if (!Ty->isPointerTy()) 1530 return Error("Function not a pointer type!"); 1531 1532 GlobalAlias *NewGA = new GlobalAlias(Ty, GetDecodedLinkage(Record[2]), 1533 "", 0, TheModule); 1534 // Old bitcode files didn't have visibility field. 1535 if (Record.size() > 3) 1536 NewGA->setVisibility(GetDecodedVisibility(Record[3])); 1537 ValueList.push_back(NewGA); 1538 AliasInits.push_back(std::make_pair(NewGA, Record[1])); 1539 break; 1540 } 1541 /// MODULE_CODE_PURGEVALS: [numvals] 1542 case bitc::MODULE_CODE_PURGEVALS: 1543 // Trim down the value list to the specified size. 1544 if (Record.size() < 1 || Record[0] > ValueList.size()) 1545 return Error("Invalid MODULE_PURGEVALS record"); 1546 ValueList.shrinkTo(Record[0]); 1547 break; 1548 } 1549 Record.clear(); 1550 } 1551 1552 return Error("Premature end of bitstream"); 1553 } 1554 1555 bool BitcodeReader::ParseBitcodeInto(Module *M) { 1556 TheModule = 0; 1557 1558 unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart(); 1559 unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 1560 1561 if (Buffer->getBufferSize() & 3) { 1562 if (!isRawBitcode(BufPtr, BufEnd) && !isBitcodeWrapper(BufPtr, BufEnd)) 1563 return Error("Invalid bitcode signature"); 1564 else 1565 return Error("Bitcode stream should be a multiple of 4 bytes in length"); 1566 } 1567 1568 // If we have a wrapper header, parse it and ignore the non-bc file contents. 1569 // The magic number is 0x0B17C0DE stored in little endian. 1570 if (isBitcodeWrapper(BufPtr, BufEnd)) 1571 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd)) 1572 return Error("Invalid bitcode wrapper header"); 1573 1574 StreamFile.init(BufPtr, BufEnd); 1575 Stream.init(StreamFile); 1576 1577 // Sniff for the signature. 1578 if (Stream.Read(8) != 'B' || 1579 Stream.Read(8) != 'C' || 1580 Stream.Read(4) != 0x0 || 1581 Stream.Read(4) != 0xC || 1582 Stream.Read(4) != 0xE || 1583 Stream.Read(4) != 0xD) 1584 return Error("Invalid bitcode signature"); 1585 1586 // We expect a number of well-defined blocks, though we don't necessarily 1587 // need to understand them all. 1588 while (!Stream.AtEndOfStream()) { 1589 unsigned Code = Stream.ReadCode(); 1590 1591 if (Code != bitc::ENTER_SUBBLOCK) 1592 return Error("Invalid record at top-level"); 1593 1594 unsigned BlockID = Stream.ReadSubBlockID(); 1595 1596 // We only know the MODULE subblock ID. 1597 switch (BlockID) { 1598 case bitc::BLOCKINFO_BLOCK_ID: 1599 if (Stream.ReadBlockInfoBlock()) 1600 return Error("Malformed BlockInfoBlock"); 1601 break; 1602 case bitc::MODULE_BLOCK_ID: 1603 // Reject multiple MODULE_BLOCK's in a single bitstream. 1604 if (TheModule) 1605 return Error("Multiple MODULE_BLOCKs in same stream"); 1606 TheModule = M; 1607 if (ParseModule()) 1608 return true; 1609 break; 1610 default: 1611 if (Stream.SkipBlock()) 1612 return Error("Malformed block record"); 1613 break; 1614 } 1615 } 1616 1617 return false; 1618 } 1619 1620 bool BitcodeReader::ParseModuleTriple(std::string &Triple) { 1621 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 1622 return Error("Malformed block record"); 1623 1624 SmallVector<uint64_t, 64> Record; 1625 1626 // Read all the records for this module. 1627 while (!Stream.AtEndOfStream()) { 1628 unsigned Code = Stream.ReadCode(); 1629 if (Code == bitc::END_BLOCK) { 1630 if (Stream.ReadBlockEnd()) 1631 return Error("Error at end of module block"); 1632 1633 return false; 1634 } 1635 1636 if (Code == bitc::ENTER_SUBBLOCK) { 1637 switch (Stream.ReadSubBlockID()) { 1638 default: // Skip unknown content. 1639 if (Stream.SkipBlock()) 1640 return Error("Malformed block record"); 1641 break; 1642 } 1643 continue; 1644 } 1645 1646 if (Code == bitc::DEFINE_ABBREV) { 1647 Stream.ReadAbbrevRecord(); 1648 continue; 1649 } 1650 1651 // Read a record. 1652 switch (Stream.ReadRecord(Code, Record)) { 1653 default: break; // Default behavior, ignore unknown content. 1654 case bitc::MODULE_CODE_VERSION: // VERSION: [version#] 1655 if (Record.size() < 1) 1656 return Error("Malformed MODULE_CODE_VERSION"); 1657 // Only version #0 is supported so far. 1658 if (Record[0] != 0) 1659 return Error("Unknown bitstream version!"); 1660 break; 1661 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 1662 std::string S; 1663 if (ConvertToString(Record, 0, S)) 1664 return Error("Invalid MODULE_CODE_TRIPLE record"); 1665 Triple = S; 1666 break; 1667 } 1668 } 1669 Record.clear(); 1670 } 1671 1672 return Error("Premature end of bitstream"); 1673 } 1674 1675 bool BitcodeReader::ParseTriple(std::string &Triple) { 1676 if (Buffer->getBufferSize() & 3) 1677 return Error("Bitcode stream should be a multiple of 4 bytes in length"); 1678 1679 unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart(); 1680 unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 1681 1682 // If we have a wrapper header, parse it and ignore the non-bc file contents. 1683 // The magic number is 0x0B17C0DE stored in little endian. 1684 if (isBitcodeWrapper(BufPtr, BufEnd)) 1685 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd)) 1686 return Error("Invalid bitcode wrapper header"); 1687 1688 StreamFile.init(BufPtr, BufEnd); 1689 Stream.init(StreamFile); 1690 1691 // Sniff for the signature. 1692 if (Stream.Read(8) != 'B' || 1693 Stream.Read(8) != 'C' || 1694 Stream.Read(4) != 0x0 || 1695 Stream.Read(4) != 0xC || 1696 Stream.Read(4) != 0xE || 1697 Stream.Read(4) != 0xD) 1698 return Error("Invalid bitcode signature"); 1699 1700 // We expect a number of well-defined blocks, though we don't necessarily 1701 // need to understand them all. 1702 while (!Stream.AtEndOfStream()) { 1703 unsigned Code = Stream.ReadCode(); 1704 1705 if (Code != bitc::ENTER_SUBBLOCK) 1706 return Error("Invalid record at top-level"); 1707 1708 unsigned BlockID = Stream.ReadSubBlockID(); 1709 1710 // We only know the MODULE subblock ID. 1711 switch (BlockID) { 1712 case bitc::MODULE_BLOCK_ID: 1713 if (ParseModuleTriple(Triple)) 1714 return true; 1715 break; 1716 default: 1717 if (Stream.SkipBlock()) 1718 return Error("Malformed block record"); 1719 break; 1720 } 1721 } 1722 1723 return false; 1724 } 1725 1726 /// ParseMetadataAttachment - Parse metadata attachments. 1727 bool BitcodeReader::ParseMetadataAttachment() { 1728 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) 1729 return Error("Malformed block record"); 1730 1731 SmallVector<uint64_t, 64> Record; 1732 while(1) { 1733 unsigned Code = Stream.ReadCode(); 1734 if (Code == bitc::END_BLOCK) { 1735 if (Stream.ReadBlockEnd()) 1736 return Error("Error at end of PARAMATTR block"); 1737 break; 1738 } 1739 if (Code == bitc::DEFINE_ABBREV) { 1740 Stream.ReadAbbrevRecord(); 1741 continue; 1742 } 1743 // Read a metadata attachment record. 1744 Record.clear(); 1745 switch (Stream.ReadRecord(Code, Record)) { 1746 default: // Default behavior: ignore. 1747 break; 1748 // FIXME: Remove in LLVM 3.0. 1749 case bitc::METADATA_ATTACHMENT: 1750 LLVM2_7MetadataDetected = true; 1751 case bitc::METADATA_ATTACHMENT2: { 1752 unsigned RecordLength = Record.size(); 1753 if (Record.empty() || (RecordLength - 1) % 2 == 1) 1754 return Error ("Invalid METADATA_ATTACHMENT reader!"); 1755 Instruction *Inst = InstructionList[Record[0]]; 1756 for (unsigned i = 1; i != RecordLength; i = i+2) { 1757 unsigned Kind = Record[i]; 1758 DenseMap<unsigned, unsigned>::iterator I = 1759 MDKindMap.find(Kind); 1760 if (I == MDKindMap.end()) 1761 return Error("Invalid metadata kind ID"); 1762 Value *Node = MDValueList.getValueFwdRef(Record[i+1]); 1763 Inst->setMetadata(I->second, cast<MDNode>(Node)); 1764 } 1765 break; 1766 } 1767 } 1768 } 1769 return false; 1770 } 1771 1772 /// ParseFunctionBody - Lazily parse the specified function body block. 1773 bool BitcodeReader::ParseFunctionBody(Function *F) { 1774 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 1775 return Error("Malformed block record"); 1776 1777 InstructionList.clear(); 1778 unsigned ModuleValueListSize = ValueList.size(); 1779 unsigned ModuleMDValueListSize = MDValueList.size(); 1780 1781 // Add all the function arguments to the value table. 1782 for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) 1783 ValueList.push_back(I); 1784 1785 unsigned NextValueNo = ValueList.size(); 1786 BasicBlock *CurBB = 0; 1787 unsigned CurBBNo = 0; 1788 1789 DebugLoc LastLoc; 1790 1791 // Read all the records. 1792 SmallVector<uint64_t, 64> Record; 1793 while (1) { 1794 unsigned Code = Stream.ReadCode(); 1795 if (Code == bitc::END_BLOCK) { 1796 if (Stream.ReadBlockEnd()) 1797 return Error("Error at end of function block"); 1798 break; 1799 } 1800 1801 if (Code == bitc::ENTER_SUBBLOCK) { 1802 switch (Stream.ReadSubBlockID()) { 1803 default: // Skip unknown content. 1804 if (Stream.SkipBlock()) 1805 return Error("Malformed block record"); 1806 break; 1807 case bitc::CONSTANTS_BLOCK_ID: 1808 if (ParseConstants()) return true; 1809 NextValueNo = ValueList.size(); 1810 break; 1811 case bitc::VALUE_SYMTAB_BLOCK_ID: 1812 if (ParseValueSymbolTable()) return true; 1813 break; 1814 case bitc::METADATA_ATTACHMENT_ID: 1815 if (ParseMetadataAttachment()) return true; 1816 break; 1817 case bitc::METADATA_BLOCK_ID: 1818 if (ParseMetadata()) return true; 1819 break; 1820 } 1821 continue; 1822 } 1823 1824 if (Code == bitc::DEFINE_ABBREV) { 1825 Stream.ReadAbbrevRecord(); 1826 continue; 1827 } 1828 1829 // Read a record. 1830 Record.clear(); 1831 Instruction *I = 0; 1832 unsigned BitCode = Stream.ReadRecord(Code, Record); 1833 switch (BitCode) { 1834 default: // Default behavior: reject 1835 return Error("Unknown instruction"); 1836 case bitc::FUNC_CODE_DECLAREBLOCKS: // DECLAREBLOCKS: [nblocks] 1837 if (Record.size() < 1 || Record[0] == 0) 1838 return Error("Invalid DECLAREBLOCKS record"); 1839 // Create all the basic blocks for the function. 1840 FunctionBBs.resize(Record[0]); 1841 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 1842 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 1843 CurBB = FunctionBBs[0]; 1844 continue; 1845 1846 1847 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 1848 // This record indicates that the last instruction is at the same 1849 // location as the previous instruction with a location. 1850 I = 0; 1851 1852 // Get the last instruction emitted. 1853 if (CurBB && !CurBB->empty()) 1854 I = &CurBB->back(); 1855 else if (CurBBNo && FunctionBBs[CurBBNo-1] && 1856 !FunctionBBs[CurBBNo-1]->empty()) 1857 I = &FunctionBBs[CurBBNo-1]->back(); 1858 1859 if (I == 0) return Error("Invalid DEBUG_LOC_AGAIN record"); 1860 I->setDebugLoc(LastLoc); 1861 I = 0; 1862 continue; 1863 1864 // FIXME: Remove this in LLVM 3.0. 1865 case bitc::FUNC_CODE_DEBUG_LOC: 1866 LLVM2_7MetadataDetected = true; 1867 case bitc::FUNC_CODE_DEBUG_LOC2: { // DEBUG_LOC: [line, col, scope, ia] 1868 I = 0; // Get the last instruction emitted. 1869 if (CurBB && !CurBB->empty()) 1870 I = &CurBB->back(); 1871 else if (CurBBNo && FunctionBBs[CurBBNo-1] && 1872 !FunctionBBs[CurBBNo-1]->empty()) 1873 I = &FunctionBBs[CurBBNo-1]->back(); 1874 if (I == 0 || Record.size() < 4) 1875 return Error("Invalid FUNC_CODE_DEBUG_LOC record"); 1876 1877 unsigned Line = Record[0], Col = Record[1]; 1878 unsigned ScopeID = Record[2], IAID = Record[3]; 1879 1880 MDNode *Scope = 0, *IA = 0; 1881 if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1)); 1882 if (IAID) IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1)); 1883 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 1884 I->setDebugLoc(LastLoc); 1885 I = 0; 1886 continue; 1887 } 1888 1889 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 1890 unsigned OpNum = 0; 1891 Value *LHS, *RHS; 1892 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 1893 getValue(Record, OpNum, LHS->getType(), RHS) || 1894 OpNum+1 > Record.size()) 1895 return Error("Invalid BINOP record"); 1896 1897 int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 1898 if (Opc == -1) return Error("Invalid BINOP record"); 1899 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 1900 InstructionList.push_back(I); 1901 if (OpNum < Record.size()) { 1902 if (Opc == Instruction::Add || 1903 Opc == Instruction::Sub || 1904 Opc == Instruction::Mul || 1905 Opc == Instruction::Shl) { 1906 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 1907 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 1908 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 1909 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 1910 } else if (Opc == Instruction::SDiv || 1911 Opc == Instruction::UDiv || 1912 Opc == Instruction::LShr || 1913 Opc == Instruction::AShr) { 1914 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 1915 cast<BinaryOperator>(I)->setIsExact(true); 1916 } 1917 } 1918 break; 1919 } 1920 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 1921 unsigned OpNum = 0; 1922 Value *Op; 1923 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 1924 OpNum+2 != Record.size()) 1925 return Error("Invalid CAST record"); 1926 1927 const Type *ResTy = getTypeByID(Record[OpNum]); 1928 int Opc = GetDecodedCastOpcode(Record[OpNum+1]); 1929 if (Opc == -1 || ResTy == 0) 1930 return Error("Invalid CAST record"); 1931 I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy); 1932 InstructionList.push_back(I); 1933 break; 1934 } 1935 case bitc::FUNC_CODE_INST_INBOUNDS_GEP: 1936 case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands] 1937 unsigned OpNum = 0; 1938 Value *BasePtr; 1939 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 1940 return Error("Invalid GEP record"); 1941 1942 SmallVector<Value*, 16> GEPIdx; 1943 while (OpNum != Record.size()) { 1944 Value *Op; 1945 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 1946 return Error("Invalid GEP record"); 1947 GEPIdx.push_back(Op); 1948 } 1949 1950 I = GetElementPtrInst::Create(BasePtr, GEPIdx.begin(), GEPIdx.end()); 1951 InstructionList.push_back(I); 1952 if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP) 1953 cast<GetElementPtrInst>(I)->setIsInBounds(true); 1954 break; 1955 } 1956 1957 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 1958 // EXTRACTVAL: [opty, opval, n x indices] 1959 unsigned OpNum = 0; 1960 Value *Agg; 1961 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 1962 return Error("Invalid EXTRACTVAL record"); 1963 1964 SmallVector<unsigned, 4> EXTRACTVALIdx; 1965 for (unsigned RecSize = Record.size(); 1966 OpNum != RecSize; ++OpNum) { 1967 uint64_t Index = Record[OpNum]; 1968 if ((unsigned)Index != Index) 1969 return Error("Invalid EXTRACTVAL index"); 1970 EXTRACTVALIdx.push_back((unsigned)Index); 1971 } 1972 1973 I = ExtractValueInst::Create(Agg, 1974 EXTRACTVALIdx.begin(), EXTRACTVALIdx.end()); 1975 InstructionList.push_back(I); 1976 break; 1977 } 1978 1979 case bitc::FUNC_CODE_INST_INSERTVAL: { 1980 // INSERTVAL: [opty, opval, opty, opval, n x indices] 1981 unsigned OpNum = 0; 1982 Value *Agg; 1983 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 1984 return Error("Invalid INSERTVAL record"); 1985 Value *Val; 1986 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 1987 return Error("Invalid INSERTVAL record"); 1988 1989 SmallVector<unsigned, 4> INSERTVALIdx; 1990 for (unsigned RecSize = Record.size(); 1991 OpNum != RecSize; ++OpNum) { 1992 uint64_t Index = Record[OpNum]; 1993 if ((unsigned)Index != Index) 1994 return Error("Invalid INSERTVAL index"); 1995 INSERTVALIdx.push_back((unsigned)Index); 1996 } 1997 1998 I = InsertValueInst::Create(Agg, Val, 1999 INSERTVALIdx.begin(), INSERTVALIdx.end()); 2000 InstructionList.push_back(I); 2001 break; 2002 } 2003 2004 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 2005 // obsolete form of select 2006 // handles select i1 ... in old bitcode 2007 unsigned OpNum = 0; 2008 Value *TrueVal, *FalseVal, *Cond; 2009 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 2010 getValue(Record, OpNum, TrueVal->getType(), FalseVal) || 2011 getValue(Record, OpNum, Type::getInt1Ty(Context), Cond)) 2012 return Error("Invalid SELECT record"); 2013 2014 I = SelectInst::Create(Cond, TrueVal, FalseVal); 2015 InstructionList.push_back(I); 2016 break; 2017 } 2018 2019 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 2020 // new form of select 2021 // handles select i1 or select [N x i1] 2022 unsigned OpNum = 0; 2023 Value *TrueVal, *FalseVal, *Cond; 2024 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 2025 getValue(Record, OpNum, TrueVal->getType(), FalseVal) || 2026 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 2027 return Error("Invalid SELECT record"); 2028 2029 // select condition can be either i1 or [N x i1] 2030 if (const VectorType* vector_type = 2031 dyn_cast<const VectorType>(Cond->getType())) { 2032 // expect <n x i1> 2033 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 2034 return Error("Invalid SELECT condition type"); 2035 } else { 2036 // expect i1 2037 if (Cond->getType() != Type::getInt1Ty(Context)) 2038 return Error("Invalid SELECT condition type"); 2039 } 2040 2041 I = SelectInst::Create(Cond, TrueVal, FalseVal); 2042 InstructionList.push_back(I); 2043 break; 2044 } 2045 2046 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 2047 unsigned OpNum = 0; 2048 Value *Vec, *Idx; 2049 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 2050 getValue(Record, OpNum, Type::getInt32Ty(Context), Idx)) 2051 return Error("Invalid EXTRACTELT record"); 2052 I = ExtractElementInst::Create(Vec, Idx); 2053 InstructionList.push_back(I); 2054 break; 2055 } 2056 2057 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 2058 unsigned OpNum = 0; 2059 Value *Vec, *Elt, *Idx; 2060 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 2061 getValue(Record, OpNum, 2062 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 2063 getValue(Record, OpNum, Type::getInt32Ty(Context), Idx)) 2064 return Error("Invalid INSERTELT record"); 2065 I = InsertElementInst::Create(Vec, Elt, Idx); 2066 InstructionList.push_back(I); 2067 break; 2068 } 2069 2070 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 2071 unsigned OpNum = 0; 2072 Value *Vec1, *Vec2, *Mask; 2073 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 2074 getValue(Record, OpNum, Vec1->getType(), Vec2)) 2075 return Error("Invalid SHUFFLEVEC record"); 2076 2077 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 2078 return Error("Invalid SHUFFLEVEC record"); 2079 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 2080 InstructionList.push_back(I); 2081 break; 2082 } 2083 2084 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 2085 // Old form of ICmp/FCmp returning bool 2086 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 2087 // both legal on vectors but had different behaviour. 2088 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 2089 // FCmp/ICmp returning bool or vector of bool 2090 2091 unsigned OpNum = 0; 2092 Value *LHS, *RHS; 2093 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 2094 getValue(Record, OpNum, LHS->getType(), RHS) || 2095 OpNum+1 != Record.size()) 2096 return Error("Invalid CMP record"); 2097 2098 if (LHS->getType()->isFPOrFPVectorTy()) 2099 I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS); 2100 else 2101 I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS); 2102 InstructionList.push_back(I); 2103 break; 2104 } 2105 2106 case bitc::FUNC_CODE_INST_GETRESULT: { // GETRESULT: [ty, val, n] 2107 if (Record.size() != 2) 2108 return Error("Invalid GETRESULT record"); 2109 unsigned OpNum = 0; 2110 Value *Op; 2111 getValueTypePair(Record, OpNum, NextValueNo, Op); 2112 unsigned Index = Record[1]; 2113 I = ExtractValueInst::Create(Op, Index); 2114 InstructionList.push_back(I); 2115 break; 2116 } 2117 2118 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 2119 { 2120 unsigned Size = Record.size(); 2121 if (Size == 0) { 2122 I = ReturnInst::Create(Context); 2123 InstructionList.push_back(I); 2124 break; 2125 } 2126 2127 unsigned OpNum = 0; 2128 SmallVector<Value *,4> Vs; 2129 do { 2130 Value *Op = NULL; 2131 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 2132 return Error("Invalid RET record"); 2133 Vs.push_back(Op); 2134 } while(OpNum != Record.size()); 2135 2136 const Type *ReturnType = F->getReturnType(); 2137 // Handle multiple return values. FIXME: Remove in LLVM 3.0. 2138 if (Vs.size() > 1 || 2139 (ReturnType->isStructTy() && 2140 (Vs.empty() || Vs[0]->getType() != ReturnType))) { 2141 Value *RV = UndefValue::get(ReturnType); 2142 for (unsigned i = 0, e = Vs.size(); i != e; ++i) { 2143 I = InsertValueInst::Create(RV, Vs[i], i, "mrv"); 2144 InstructionList.push_back(I); 2145 CurBB->getInstList().push_back(I); 2146 ValueList.AssignValue(I, NextValueNo++); 2147 RV = I; 2148 } 2149 I = ReturnInst::Create(Context, RV); 2150 InstructionList.push_back(I); 2151 break; 2152 } 2153 2154 I = ReturnInst::Create(Context, Vs[0]); 2155 InstructionList.push_back(I); 2156 break; 2157 } 2158 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 2159 if (Record.size() != 1 && Record.size() != 3) 2160 return Error("Invalid BR record"); 2161 BasicBlock *TrueDest = getBasicBlock(Record[0]); 2162 if (TrueDest == 0) 2163 return Error("Invalid BR record"); 2164 2165 if (Record.size() == 1) { 2166 I = BranchInst::Create(TrueDest); 2167 InstructionList.push_back(I); 2168 } 2169 else { 2170 BasicBlock *FalseDest = getBasicBlock(Record[1]); 2171 Value *Cond = getFnValueByID(Record[2], Type::getInt1Ty(Context)); 2172 if (FalseDest == 0 || Cond == 0) 2173 return Error("Invalid BR record"); 2174 I = BranchInst::Create(TrueDest, FalseDest, Cond); 2175 InstructionList.push_back(I); 2176 } 2177 break; 2178 } 2179 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 2180 if (Record.size() < 3 || (Record.size() & 1) == 0) 2181 return Error("Invalid SWITCH record"); 2182 const Type *OpTy = getTypeByID(Record[0]); 2183 Value *Cond = getFnValueByID(Record[1], OpTy); 2184 BasicBlock *Default = getBasicBlock(Record[2]); 2185 if (OpTy == 0 || Cond == 0 || Default == 0) 2186 return Error("Invalid SWITCH record"); 2187 unsigned NumCases = (Record.size()-3)/2; 2188 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 2189 InstructionList.push_back(SI); 2190 for (unsigned i = 0, e = NumCases; i != e; ++i) { 2191 ConstantInt *CaseVal = 2192 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 2193 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 2194 if (CaseVal == 0 || DestBB == 0) { 2195 delete SI; 2196 return Error("Invalid SWITCH record!"); 2197 } 2198 SI->addCase(CaseVal, DestBB); 2199 } 2200 I = SI; 2201 break; 2202 } 2203 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 2204 if (Record.size() < 2) 2205 return Error("Invalid INDIRECTBR record"); 2206 const Type *OpTy = getTypeByID(Record[0]); 2207 Value *Address = getFnValueByID(Record[1], OpTy); 2208 if (OpTy == 0 || Address == 0) 2209 return Error("Invalid INDIRECTBR record"); 2210 unsigned NumDests = Record.size()-2; 2211 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 2212 InstructionList.push_back(IBI); 2213 for (unsigned i = 0, e = NumDests; i != e; ++i) { 2214 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 2215 IBI->addDestination(DestBB); 2216 } else { 2217 delete IBI; 2218 return Error("Invalid INDIRECTBR record!"); 2219 } 2220 } 2221 I = IBI; 2222 break; 2223 } 2224 2225 case bitc::FUNC_CODE_INST_INVOKE: { 2226 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 2227 if (Record.size() < 4) return Error("Invalid INVOKE record"); 2228 AttrListPtr PAL = getAttributes(Record[0]); 2229 unsigned CCInfo = Record[1]; 2230 BasicBlock *NormalBB = getBasicBlock(Record[2]); 2231 BasicBlock *UnwindBB = getBasicBlock(Record[3]); 2232 2233 unsigned OpNum = 4; 2234 Value *Callee; 2235 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 2236 return Error("Invalid INVOKE record"); 2237 2238 const PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 2239 const FunctionType *FTy = !CalleeTy ? 0 : 2240 dyn_cast<FunctionType>(CalleeTy->getElementType()); 2241 2242 // Check that the right number of fixed parameters are here. 2243 if (FTy == 0 || NormalBB == 0 || UnwindBB == 0 || 2244 Record.size() < OpNum+FTy->getNumParams()) 2245 return Error("Invalid INVOKE record"); 2246 2247 SmallVector<Value*, 16> Ops; 2248 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 2249 Ops.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i))); 2250 if (Ops.back() == 0) return Error("Invalid INVOKE record"); 2251 } 2252 2253 if (!FTy->isVarArg()) { 2254 if (Record.size() != OpNum) 2255 return Error("Invalid INVOKE record"); 2256 } else { 2257 // Read type/value pairs for varargs params. 2258 while (OpNum != Record.size()) { 2259 Value *Op; 2260 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 2261 return Error("Invalid INVOKE record"); 2262 Ops.push_back(Op); 2263 } 2264 } 2265 2266 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, 2267 Ops.begin(), Ops.end()); 2268 InstructionList.push_back(I); 2269 cast<InvokeInst>(I)->setCallingConv( 2270 static_cast<CallingConv::ID>(CCInfo)); 2271 cast<InvokeInst>(I)->setAttributes(PAL); 2272 break; 2273 } 2274 case bitc::FUNC_CODE_INST_UNWIND: // UNWIND 2275 I = new UnwindInst(Context); 2276 InstructionList.push_back(I); 2277 break; 2278 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 2279 I = new UnreachableInst(Context); 2280 InstructionList.push_back(I); 2281 break; 2282 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 2283 if (Record.size() < 1 || ((Record.size()-1)&1)) 2284 return Error("Invalid PHI record"); 2285 const Type *Ty = getTypeByID(Record[0]); 2286 if (!Ty) return Error("Invalid PHI record"); 2287 2288 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 2289 InstructionList.push_back(PN); 2290 2291 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 2292 Value *V = getFnValueByID(Record[1+i], Ty); 2293 BasicBlock *BB = getBasicBlock(Record[2+i]); 2294 if (!V || !BB) return Error("Invalid PHI record"); 2295 PN->addIncoming(V, BB); 2296 } 2297 I = PN; 2298 break; 2299 } 2300 2301 case bitc::FUNC_CODE_INST_MALLOC: { // MALLOC: [instty, op, align] 2302 // Autoupgrade malloc instruction to malloc call. 2303 // FIXME: Remove in LLVM 3.0. 2304 if (Record.size() < 3) 2305 return Error("Invalid MALLOC record"); 2306 const PointerType *Ty = 2307 dyn_cast_or_null<PointerType>(getTypeByID(Record[0])); 2308 Value *Size = getFnValueByID(Record[1], Type::getInt32Ty(Context)); 2309 if (!Ty || !Size) return Error("Invalid MALLOC record"); 2310 if (!CurBB) return Error("Invalid malloc instruction with no BB"); 2311 const Type *Int32Ty = IntegerType::getInt32Ty(CurBB->getContext()); 2312 Constant *AllocSize = ConstantExpr::getSizeOf(Ty->getElementType()); 2313 AllocSize = ConstantExpr::getTruncOrBitCast(AllocSize, Int32Ty); 2314 I = CallInst::CreateMalloc(CurBB, Int32Ty, Ty->getElementType(), 2315 AllocSize, Size, NULL); 2316 InstructionList.push_back(I); 2317 break; 2318 } 2319 case bitc::FUNC_CODE_INST_FREE: { // FREE: [op, opty] 2320 unsigned OpNum = 0; 2321 Value *Op; 2322 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 2323 OpNum != Record.size()) 2324 return Error("Invalid FREE record"); 2325 if (!CurBB) return Error("Invalid free instruction with no BB"); 2326 I = CallInst::CreateFree(Op, CurBB); 2327 InstructionList.push_back(I); 2328 break; 2329 } 2330 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 2331 // For backward compatibility, tolerate a lack of an opty, and use i32. 2332 // Remove this in LLVM 3.0. 2333 if (Record.size() < 3 || Record.size() > 4) 2334 return Error("Invalid ALLOCA record"); 2335 unsigned OpNum = 0; 2336 const PointerType *Ty = 2337 dyn_cast_or_null<PointerType>(getTypeByID(Record[OpNum++])); 2338 const Type *OpTy = Record.size() == 4 ? getTypeByID(Record[OpNum++]) : 2339 Type::getInt32Ty(Context); 2340 Value *Size = getFnValueByID(Record[OpNum++], OpTy); 2341 unsigned Align = Record[OpNum++]; 2342 if (!Ty || !Size) return Error("Invalid ALLOCA record"); 2343 I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1); 2344 InstructionList.push_back(I); 2345 break; 2346 } 2347 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 2348 unsigned OpNum = 0; 2349 Value *Op; 2350 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 2351 OpNum+2 != Record.size()) 2352 return Error("Invalid LOAD record"); 2353 2354 I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1); 2355 InstructionList.push_back(I); 2356 break; 2357 } 2358 case bitc::FUNC_CODE_INST_STORE2: { // STORE2:[ptrty, ptr, val, align, vol] 2359 unsigned OpNum = 0; 2360 Value *Val, *Ptr; 2361 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 2362 getValue(Record, OpNum, 2363 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 2364 OpNum+2 != Record.size()) 2365 return Error("Invalid STORE record"); 2366 2367 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1); 2368 InstructionList.push_back(I); 2369 break; 2370 } 2371 case bitc::FUNC_CODE_INST_STORE: { // STORE:[val, valty, ptr, align, vol] 2372 // FIXME: Legacy form of store instruction. Should be removed in LLVM 3.0. 2373 unsigned OpNum = 0; 2374 Value *Val, *Ptr; 2375 if (getValueTypePair(Record, OpNum, NextValueNo, Val) || 2376 getValue(Record, OpNum, 2377 PointerType::getUnqual(Val->getType()), Ptr)|| 2378 OpNum+2 != Record.size()) 2379 return Error("Invalid STORE record"); 2380 2381 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1); 2382 InstructionList.push_back(I); 2383 break; 2384 } 2385 // FIXME: Remove this in LLVM 3.0. 2386 case bitc::FUNC_CODE_INST_CALL: 2387 LLVM2_7MetadataDetected = true; 2388 case bitc::FUNC_CODE_INST_CALL2: { 2389 // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...] 2390 if (Record.size() < 3) 2391 return Error("Invalid CALL record"); 2392 2393 AttrListPtr PAL = getAttributes(Record[0]); 2394 unsigned CCInfo = Record[1]; 2395 2396 unsigned OpNum = 2; 2397 Value *Callee; 2398 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 2399 return Error("Invalid CALL record"); 2400 2401 const PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 2402 const FunctionType *FTy = 0; 2403 if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 2404 if (!FTy || Record.size() < FTy->getNumParams()+OpNum) 2405 return Error("Invalid CALL record"); 2406 2407 SmallVector<Value*, 16> Args; 2408 // Read the fixed params. 2409 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 2410 if (FTy->getParamType(i)->getTypeID()==Type::LabelTyID) 2411 Args.push_back(getBasicBlock(Record[OpNum])); 2412 else 2413 Args.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i))); 2414 if (Args.back() == 0) return Error("Invalid CALL record"); 2415 } 2416 2417 // Read type/value pairs for varargs params. 2418 if (!FTy->isVarArg()) { 2419 if (OpNum != Record.size()) 2420 return Error("Invalid CALL record"); 2421 } else { 2422 while (OpNum != Record.size()) { 2423 Value *Op; 2424 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 2425 return Error("Invalid CALL record"); 2426 Args.push_back(Op); 2427 } 2428 } 2429 2430 I = CallInst::Create(Callee, Args.begin(), Args.end()); 2431 InstructionList.push_back(I); 2432 cast<CallInst>(I)->setCallingConv( 2433 static_cast<CallingConv::ID>(CCInfo>>1)); 2434 cast<CallInst>(I)->setTailCall(CCInfo & 1); 2435 cast<CallInst>(I)->setAttributes(PAL); 2436 break; 2437 } 2438 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 2439 if (Record.size() < 3) 2440 return Error("Invalid VAARG record"); 2441 const Type *OpTy = getTypeByID(Record[0]); 2442 Value *Op = getFnValueByID(Record[1], OpTy); 2443 const Type *ResTy = getTypeByID(Record[2]); 2444 if (!OpTy || !Op || !ResTy) 2445 return Error("Invalid VAARG record"); 2446 I = new VAArgInst(Op, ResTy); 2447 InstructionList.push_back(I); 2448 break; 2449 } 2450 } 2451 2452 // Add instruction to end of current BB. If there is no current BB, reject 2453 // this file. 2454 if (CurBB == 0) { 2455 delete I; 2456 return Error("Invalid instruction with no BB"); 2457 } 2458 CurBB->getInstList().push_back(I); 2459 2460 // If this was a terminator instruction, move to the next block. 2461 if (isa<TerminatorInst>(I)) { 2462 ++CurBBNo; 2463 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : 0; 2464 } 2465 2466 // Non-void values get registered in the value table for future use. 2467 if (I && !I->getType()->isVoidTy()) 2468 ValueList.AssignValue(I, NextValueNo++); 2469 } 2470 2471 // Check the function list for unresolved values. 2472 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 2473 if (A->getParent() == 0) { 2474 // We found at least one unresolved value. Nuke them all to avoid leaks. 2475 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 2476 if ((A = dyn_cast<Argument>(ValueList[i])) && A->getParent() == 0) { 2477 A->replaceAllUsesWith(UndefValue::get(A->getType())); 2478 delete A; 2479 } 2480 } 2481 return Error("Never resolved value found in function!"); 2482 } 2483 } 2484 2485 // FIXME: Check for unresolved forward-declared metadata references 2486 // and clean up leaks. 2487 2488 // See if anything took the address of blocks in this function. If so, 2489 // resolve them now. 2490 DenseMap<Function*, std::vector<BlockAddrRefTy> >::iterator BAFRI = 2491 BlockAddrFwdRefs.find(F); 2492 if (BAFRI != BlockAddrFwdRefs.end()) { 2493 std::vector<BlockAddrRefTy> &RefList = BAFRI->second; 2494 for (unsigned i = 0, e = RefList.size(); i != e; ++i) { 2495 unsigned BlockIdx = RefList[i].first; 2496 if (BlockIdx >= FunctionBBs.size()) 2497 return Error("Invalid blockaddress block #"); 2498 2499 GlobalVariable *FwdRef = RefList[i].second; 2500 FwdRef->replaceAllUsesWith(BlockAddress::get(F, FunctionBBs[BlockIdx])); 2501 FwdRef->eraseFromParent(); 2502 } 2503 2504 BlockAddrFwdRefs.erase(BAFRI); 2505 } 2506 2507 // FIXME: Remove this in LLVM 3.0. 2508 unsigned NewMDValueListSize = MDValueList.size(); 2509 2510 // Trim the value list down to the size it was before we parsed this function. 2511 ValueList.shrinkTo(ModuleValueListSize); 2512 MDValueList.shrinkTo(ModuleMDValueListSize); 2513 2514 // Backwards compatibility hack: Function-local metadata numbers 2515 // were previously not reset between functions. This is now fixed, 2516 // however we still need to understand the old numbering in order 2517 // to be able to read old bitcode files. 2518 // FIXME: Remove this in LLVM 3.0. 2519 if (LLVM2_7MetadataDetected) 2520 MDValueList.resize(NewMDValueListSize); 2521 2522 std::vector<BasicBlock*>().swap(FunctionBBs); 2523 2524 return false; 2525 } 2526 2527 //===----------------------------------------------------------------------===// 2528 // GVMaterializer implementation 2529 //===----------------------------------------------------------------------===// 2530 2531 2532 bool BitcodeReader::isMaterializable(const GlobalValue *GV) const { 2533 if (const Function *F = dyn_cast<Function>(GV)) { 2534 return F->isDeclaration() && 2535 DeferredFunctionInfo.count(const_cast<Function*>(F)); 2536 } 2537 return false; 2538 } 2539 2540 bool BitcodeReader::Materialize(GlobalValue *GV, std::string *ErrInfo) { 2541 Function *F = dyn_cast<Function>(GV); 2542 // If it's not a function or is already material, ignore the request. 2543 if (!F || !F->isMaterializable()) return false; 2544 2545 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 2546 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 2547 2548 // Move the bit stream to the saved position of the deferred function body. 2549 Stream.JumpToBit(DFII->second); 2550 2551 if (ParseFunctionBody(F)) { 2552 if (ErrInfo) *ErrInfo = ErrorString; 2553 return true; 2554 } 2555 2556 // Upgrade any old intrinsic calls in the function. 2557 for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(), 2558 E = UpgradedIntrinsics.end(); I != E; ++I) { 2559 if (I->first != I->second) { 2560 for (Value::use_iterator UI = I->first->use_begin(), 2561 UE = I->first->use_end(); UI != UE; ) { 2562 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 2563 UpgradeIntrinsicCall(CI, I->second); 2564 } 2565 } 2566 } 2567 2568 return false; 2569 } 2570 2571 bool BitcodeReader::isDematerializable(const GlobalValue *GV) const { 2572 const Function *F = dyn_cast<Function>(GV); 2573 if (!F || F->isDeclaration()) 2574 return false; 2575 return DeferredFunctionInfo.count(const_cast<Function*>(F)); 2576 } 2577 2578 void BitcodeReader::Dematerialize(GlobalValue *GV) { 2579 Function *F = dyn_cast<Function>(GV); 2580 // If this function isn't dematerializable, this is a noop. 2581 if (!F || !isDematerializable(F)) 2582 return; 2583 2584 assert(DeferredFunctionInfo.count(F) && "No info to read function later?"); 2585 2586 // Just forget the function body, we can remat it later. 2587 F->deleteBody(); 2588 } 2589 2590 2591 bool BitcodeReader::MaterializeModule(Module *M, std::string *ErrInfo) { 2592 assert(M == TheModule && 2593 "Can only Materialize the Module this BitcodeReader is attached to."); 2594 // Iterate over the module, deserializing any functions that are still on 2595 // disk. 2596 for (Module::iterator F = TheModule->begin(), E = TheModule->end(); 2597 F != E; ++F) 2598 if (F->isMaterializable() && 2599 Materialize(F, ErrInfo)) 2600 return true; 2601 2602 // Upgrade any intrinsic calls that slipped through (should not happen!) and 2603 // delete the old functions to clean up. We can't do this unless the entire 2604 // module is materialized because there could always be another function body 2605 // with calls to the old function. 2606 for (std::vector<std::pair<Function*, Function*> >::iterator I = 2607 UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) { 2608 if (I->first != I->second) { 2609 for (Value::use_iterator UI = I->first->use_begin(), 2610 UE = I->first->use_end(); UI != UE; ) { 2611 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 2612 UpgradeIntrinsicCall(CI, I->second); 2613 } 2614 if (!I->first->use_empty()) 2615 I->first->replaceAllUsesWith(I->second); 2616 I->first->eraseFromParent(); 2617 } 2618 } 2619 std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics); 2620 2621 // Check debug info intrinsics. 2622 CheckDebugInfoIntrinsics(TheModule); 2623 2624 return false; 2625 } 2626 2627 2628 //===----------------------------------------------------------------------===// 2629 // External interface 2630 //===----------------------------------------------------------------------===// 2631 2632 /// getLazyBitcodeModule - lazy function-at-a-time loading from a file. 2633 /// 2634 Module *llvm::getLazyBitcodeModule(MemoryBuffer *Buffer, 2635 LLVMContext& Context, 2636 std::string *ErrMsg) { 2637 Module *M = new Module(Buffer->getBufferIdentifier(), Context); 2638 BitcodeReader *R = new BitcodeReader(Buffer, Context); 2639 M->setMaterializer(R); 2640 if (R->ParseBitcodeInto(M)) { 2641 if (ErrMsg) 2642 *ErrMsg = R->getErrorString(); 2643 2644 delete M; // Also deletes R. 2645 return 0; 2646 } 2647 // Have the BitcodeReader dtor delete 'Buffer'. 2648 R->setBufferOwned(true); 2649 return M; 2650 } 2651 2652 /// ParseBitcodeFile - Read the specified bitcode file, returning the module. 2653 /// If an error occurs, return null and fill in *ErrMsg if non-null. 2654 Module *llvm::ParseBitcodeFile(MemoryBuffer *Buffer, LLVMContext& Context, 2655 std::string *ErrMsg){ 2656 Module *M = getLazyBitcodeModule(Buffer, Context, ErrMsg); 2657 if (!M) return 0; 2658 2659 // Don't let the BitcodeReader dtor delete 'Buffer', regardless of whether 2660 // there was an error. 2661 static_cast<BitcodeReader*>(M->getMaterializer())->setBufferOwned(false); 2662 2663 // Read in the entire module, and destroy the BitcodeReader. 2664 if (M->MaterializeAllPermanently(ErrMsg)) { 2665 delete M; 2666 return 0; 2667 } 2668 2669 return M; 2670 } 2671 2672 std::string llvm::getBitcodeTargetTriple(MemoryBuffer *Buffer, 2673 LLVMContext& Context, 2674 std::string *ErrMsg) { 2675 BitcodeReader *R = new BitcodeReader(Buffer, Context); 2676 // Don't let the BitcodeReader dtor delete 'Buffer'. 2677 R->setBufferOwned(false); 2678 2679 std::string Triple(""); 2680 if (R->ParseTriple(Triple)) 2681 if (ErrMsg) 2682 *ErrMsg = R->getErrorString(); 2683 2684 delete R; 2685 return Triple; 2686 } 2687