1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Bitcode/BitcodeReader.h" 10 #include "MetadataLoader.h" 11 #include "ValueList.h" 12 #include "llvm/ADT/APFloat.h" 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallString.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/ADT/StringRef.h" 20 #include "llvm/ADT/Twine.h" 21 #include "llvm/Bitcode/BitcodeCommon.h" 22 #include "llvm/Bitcode/LLVMBitCodes.h" 23 #include "llvm/Bitstream/BitstreamReader.h" 24 #include "llvm/Config/llvm-config.h" 25 #include "llvm/IR/Argument.h" 26 #include "llvm/IR/AttributeMask.h" 27 #include "llvm/IR/Attributes.h" 28 #include "llvm/IR/AutoUpgrade.h" 29 #include "llvm/IR/BasicBlock.h" 30 #include "llvm/IR/CallingConv.h" 31 #include "llvm/IR/Comdat.h" 32 #include "llvm/IR/Constant.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/DebugInfo.h" 36 #include "llvm/IR/DebugInfoMetadata.h" 37 #include "llvm/IR/DebugLoc.h" 38 #include "llvm/IR/DerivedTypes.h" 39 #include "llvm/IR/Function.h" 40 #include "llvm/IR/GVMaterializer.h" 41 #include "llvm/IR/GetElementPtrTypeIterator.h" 42 #include "llvm/IR/GlobalAlias.h" 43 #include "llvm/IR/GlobalIFunc.h" 44 #include "llvm/IR/GlobalObject.h" 45 #include "llvm/IR/GlobalValue.h" 46 #include "llvm/IR/GlobalVariable.h" 47 #include "llvm/IR/InlineAsm.h" 48 #include "llvm/IR/InstIterator.h" 49 #include "llvm/IR/InstrTypes.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/IntrinsicsAArch64.h" 54 #include "llvm/IR/IntrinsicsARM.h" 55 #include "llvm/IR/LLVMContext.h" 56 #include "llvm/IR/Metadata.h" 57 #include "llvm/IR/Module.h" 58 #include "llvm/IR/ModuleSummaryIndex.h" 59 #include "llvm/IR/Operator.h" 60 #include "llvm/IR/Type.h" 61 #include "llvm/IR/Value.h" 62 #include "llvm/IR/Verifier.h" 63 #include "llvm/Support/AtomicOrdering.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Compiler.h" 67 #include "llvm/Support/Debug.h" 68 #include "llvm/Support/Error.h" 69 #include "llvm/Support/ErrorHandling.h" 70 #include "llvm/Support/ErrorOr.h" 71 #include "llvm/Support/MathExtras.h" 72 #include "llvm/Support/MemoryBuffer.h" 73 #include "llvm/Support/ModRef.h" 74 #include "llvm/Support/raw_ostream.h" 75 #include "llvm/TargetParser/Triple.h" 76 #include <algorithm> 77 #include <cassert> 78 #include <cstddef> 79 #include <cstdint> 80 #include <deque> 81 #include <map> 82 #include <memory> 83 #include <optional> 84 #include <set> 85 #include <string> 86 #include <system_error> 87 #include <tuple> 88 #include <utility> 89 #include <vector> 90 91 using namespace llvm; 92 93 static cl::opt<bool> PrintSummaryGUIDs( 94 "print-summary-global-ids", cl::init(false), cl::Hidden, 95 cl::desc( 96 "Print the global id for each value when reading the module summary")); 97 98 static cl::opt<bool> ExpandConstantExprs( 99 "expand-constant-exprs", cl::Hidden, 100 cl::desc( 101 "Expand constant expressions to instructions for testing purposes")); 102 103 /// Load bitcode directly into RemoveDIs format (use debug records instead 104 /// of debug intrinsics). UNSET is treated as FALSE, so the default action 105 /// is to do nothing. Individual tools can override this to incrementally add 106 /// support for the RemoveDIs format. 107 cl::opt<cl::boolOrDefault> LoadBitcodeIntoNewDbgInforFormat( 108 "load-bitcode-into-experimental-debuginfo-iterators", cl::Hidden, 109 cl::desc("Load bitcode directly into the new debug info format (regardless " 110 "of input format)")); 111 112 namespace { 113 114 enum { 115 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 116 }; 117 118 } // end anonymous namespace 119 120 static Error error(const Twine &Message) { 121 return make_error<StringError>( 122 Message, make_error_code(BitcodeError::CorruptedBitcode)); 123 } 124 125 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) { 126 if (!Stream.canSkipToPos(4)) 127 return createStringError(std::errc::illegal_byte_sequence, 128 "file too small to contain bitcode header"); 129 for (unsigned C : {'B', 'C'}) 130 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) { 131 if (Res.get() != C) 132 return createStringError(std::errc::illegal_byte_sequence, 133 "file doesn't start with bitcode header"); 134 } else 135 return Res.takeError(); 136 for (unsigned C : {0x0, 0xC, 0xE, 0xD}) 137 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) { 138 if (Res.get() != C) 139 return createStringError(std::errc::illegal_byte_sequence, 140 "file doesn't start with bitcode header"); 141 } else 142 return Res.takeError(); 143 return Error::success(); 144 } 145 146 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) { 147 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart(); 148 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize(); 149 150 if (Buffer.getBufferSize() & 3) 151 return error("Invalid bitcode signature"); 152 153 // If we have a wrapper header, parse it and ignore the non-bc file contents. 154 // The magic number is 0x0B17C0DE stored in little endian. 155 if (isBitcodeWrapper(BufPtr, BufEnd)) 156 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 157 return error("Invalid bitcode wrapper header"); 158 159 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd)); 160 if (Error Err = hasInvalidBitcodeHeader(Stream)) 161 return std::move(Err); 162 163 return std::move(Stream); 164 } 165 166 /// Convert a string from a record into an std::string, return true on failure. 167 template <typename StrTy> 168 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 169 StrTy &Result) { 170 if (Idx > Record.size()) 171 return true; 172 173 Result.append(Record.begin() + Idx, Record.end()); 174 return false; 175 } 176 177 // Strip all the TBAA attachment for the module. 178 static void stripTBAA(Module *M) { 179 for (auto &F : *M) { 180 if (F.isMaterializable()) 181 continue; 182 for (auto &I : instructions(F)) 183 I.setMetadata(LLVMContext::MD_tbaa, nullptr); 184 } 185 } 186 187 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the 188 /// "epoch" encoded in the bitcode, and return the producer name if any. 189 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) { 190 if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 191 return std::move(Err); 192 193 // Read all the records. 194 SmallVector<uint64_t, 64> Record; 195 196 std::string ProducerIdentification; 197 198 while (true) { 199 BitstreamEntry Entry; 200 if (Error E = Stream.advance().moveInto(Entry)) 201 return std::move(E); 202 203 switch (Entry.Kind) { 204 default: 205 case BitstreamEntry::Error: 206 return error("Malformed block"); 207 case BitstreamEntry::EndBlock: 208 return ProducerIdentification; 209 case BitstreamEntry::Record: 210 // The interesting case. 211 break; 212 } 213 214 // Read a record. 215 Record.clear(); 216 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 217 if (!MaybeBitCode) 218 return MaybeBitCode.takeError(); 219 switch (MaybeBitCode.get()) { 220 default: // Default behavior: reject 221 return error("Invalid value"); 222 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N] 223 convertToString(Record, 0, ProducerIdentification); 224 break; 225 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 226 unsigned epoch = (unsigned)Record[0]; 227 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 228 return error( 229 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 230 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 231 } 232 } 233 } 234 } 235 } 236 237 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) { 238 // We expect a number of well-defined blocks, though we don't necessarily 239 // need to understand them all. 240 while (true) { 241 if (Stream.AtEndOfStream()) 242 return ""; 243 244 BitstreamEntry Entry; 245 if (Error E = Stream.advance().moveInto(Entry)) 246 return std::move(E); 247 248 switch (Entry.Kind) { 249 case BitstreamEntry::EndBlock: 250 case BitstreamEntry::Error: 251 return error("Malformed block"); 252 253 case BitstreamEntry::SubBlock: 254 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) 255 return readIdentificationBlock(Stream); 256 257 // Ignore other sub-blocks. 258 if (Error Err = Stream.SkipBlock()) 259 return std::move(Err); 260 continue; 261 case BitstreamEntry::Record: 262 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 263 return std::move(E); 264 continue; 265 } 266 } 267 } 268 269 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) { 270 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 271 return std::move(Err); 272 273 SmallVector<uint64_t, 64> Record; 274 // Read all the records for this module. 275 276 while (true) { 277 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 278 if (!MaybeEntry) 279 return MaybeEntry.takeError(); 280 BitstreamEntry Entry = MaybeEntry.get(); 281 282 switch (Entry.Kind) { 283 case BitstreamEntry::SubBlock: // Handled for us already. 284 case BitstreamEntry::Error: 285 return error("Malformed block"); 286 case BitstreamEntry::EndBlock: 287 return false; 288 case BitstreamEntry::Record: 289 // The interesting case. 290 break; 291 } 292 293 // Read a record. 294 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 295 if (!MaybeRecord) 296 return MaybeRecord.takeError(); 297 switch (MaybeRecord.get()) { 298 default: 299 break; // Default behavior, ignore unknown content. 300 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 301 std::string S; 302 if (convertToString(Record, 0, S)) 303 return error("Invalid section name record"); 304 // Check for the i386 and other (x86_64, ARM) conventions 305 if (S.find("__DATA,__objc_catlist") != std::string::npos || 306 S.find("__OBJC,__category") != std::string::npos) 307 return true; 308 break; 309 } 310 } 311 Record.clear(); 312 } 313 llvm_unreachable("Exit infinite loop"); 314 } 315 316 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) { 317 // We expect a number of well-defined blocks, though we don't necessarily 318 // need to understand them all. 319 while (true) { 320 BitstreamEntry Entry; 321 if (Error E = Stream.advance().moveInto(Entry)) 322 return std::move(E); 323 324 switch (Entry.Kind) { 325 case BitstreamEntry::Error: 326 return error("Malformed block"); 327 case BitstreamEntry::EndBlock: 328 return false; 329 330 case BitstreamEntry::SubBlock: 331 if (Entry.ID == bitc::MODULE_BLOCK_ID) 332 return hasObjCCategoryInModule(Stream); 333 334 // Ignore other sub-blocks. 335 if (Error Err = Stream.SkipBlock()) 336 return std::move(Err); 337 continue; 338 339 case BitstreamEntry::Record: 340 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 341 return std::move(E); 342 continue; 343 } 344 } 345 } 346 347 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) { 348 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 349 return std::move(Err); 350 351 SmallVector<uint64_t, 64> Record; 352 353 std::string Triple; 354 355 // Read all the records for this module. 356 while (true) { 357 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 358 if (!MaybeEntry) 359 return MaybeEntry.takeError(); 360 BitstreamEntry Entry = MaybeEntry.get(); 361 362 switch (Entry.Kind) { 363 case BitstreamEntry::SubBlock: // Handled for us already. 364 case BitstreamEntry::Error: 365 return error("Malformed block"); 366 case BitstreamEntry::EndBlock: 367 return Triple; 368 case BitstreamEntry::Record: 369 // The interesting case. 370 break; 371 } 372 373 // Read a record. 374 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 375 if (!MaybeRecord) 376 return MaybeRecord.takeError(); 377 switch (MaybeRecord.get()) { 378 default: break; // Default behavior, ignore unknown content. 379 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 380 std::string S; 381 if (convertToString(Record, 0, S)) 382 return error("Invalid triple record"); 383 Triple = S; 384 break; 385 } 386 } 387 Record.clear(); 388 } 389 llvm_unreachable("Exit infinite loop"); 390 } 391 392 static Expected<std::string> readTriple(BitstreamCursor &Stream) { 393 // We expect a number of well-defined blocks, though we don't necessarily 394 // need to understand them all. 395 while (true) { 396 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 397 if (!MaybeEntry) 398 return MaybeEntry.takeError(); 399 BitstreamEntry Entry = MaybeEntry.get(); 400 401 switch (Entry.Kind) { 402 case BitstreamEntry::Error: 403 return error("Malformed block"); 404 case BitstreamEntry::EndBlock: 405 return ""; 406 407 case BitstreamEntry::SubBlock: 408 if (Entry.ID == bitc::MODULE_BLOCK_ID) 409 return readModuleTriple(Stream); 410 411 // Ignore other sub-blocks. 412 if (Error Err = Stream.SkipBlock()) 413 return std::move(Err); 414 continue; 415 416 case BitstreamEntry::Record: 417 if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 418 continue; 419 else 420 return Skipped.takeError(); 421 } 422 } 423 } 424 425 namespace { 426 427 class BitcodeReaderBase { 428 protected: 429 BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab) 430 : Stream(std::move(Stream)), Strtab(Strtab) { 431 this->Stream.setBlockInfo(&BlockInfo); 432 } 433 434 BitstreamBlockInfo BlockInfo; 435 BitstreamCursor Stream; 436 StringRef Strtab; 437 438 /// In version 2 of the bitcode we store names of global values and comdats in 439 /// a string table rather than in the VST. 440 bool UseStrtab = false; 441 442 Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record); 443 444 /// If this module uses a string table, pop the reference to the string table 445 /// and return the referenced string and the rest of the record. Otherwise 446 /// just return the record itself. 447 std::pair<StringRef, ArrayRef<uint64_t>> 448 readNameFromStrtab(ArrayRef<uint64_t> Record); 449 450 Error readBlockInfo(); 451 452 // Contains an arbitrary and optional string identifying the bitcode producer 453 std::string ProducerIdentification; 454 455 Error error(const Twine &Message); 456 }; 457 458 } // end anonymous namespace 459 460 Error BitcodeReaderBase::error(const Twine &Message) { 461 std::string FullMsg = Message.str(); 462 if (!ProducerIdentification.empty()) 463 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " + 464 LLVM_VERSION_STRING "')"; 465 return ::error(FullMsg); 466 } 467 468 Expected<unsigned> 469 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) { 470 if (Record.empty()) 471 return error("Invalid version record"); 472 unsigned ModuleVersion = Record[0]; 473 if (ModuleVersion > 2) 474 return error("Invalid value"); 475 UseStrtab = ModuleVersion >= 2; 476 return ModuleVersion; 477 } 478 479 std::pair<StringRef, ArrayRef<uint64_t>> 480 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) { 481 if (!UseStrtab) 482 return {"", Record}; 483 // Invalid reference. Let the caller complain about the record being empty. 484 if (Record[0] + Record[1] > Strtab.size()) 485 return {"", {}}; 486 return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)}; 487 } 488 489 namespace { 490 491 /// This represents a constant expression or constant aggregate using a custom 492 /// structure internal to the bitcode reader. Later, this structure will be 493 /// expanded by materializeValue() either into a constant expression/aggregate, 494 /// or into an instruction sequence at the point of use. This allows us to 495 /// upgrade bitcode using constant expressions even if this kind of constant 496 /// expression is no longer supported. 497 class BitcodeConstant final : public Value, 498 TrailingObjects<BitcodeConstant, unsigned> { 499 friend TrailingObjects; 500 501 // Value subclass ID: Pick largest possible value to avoid any clashes. 502 static constexpr uint8_t SubclassID = 255; 503 504 public: 505 // Opcodes used for non-expressions. This includes constant aggregates 506 // (struct, array, vector) that might need expansion, as well as non-leaf 507 // constants that don't need expansion (no_cfi, dso_local, blockaddress), 508 // but still go through BitcodeConstant to avoid different uselist orders 509 // between the two cases. 510 static constexpr uint8_t ConstantStructOpcode = 255; 511 static constexpr uint8_t ConstantArrayOpcode = 254; 512 static constexpr uint8_t ConstantVectorOpcode = 253; 513 static constexpr uint8_t NoCFIOpcode = 252; 514 static constexpr uint8_t DSOLocalEquivalentOpcode = 251; 515 static constexpr uint8_t BlockAddressOpcode = 250; 516 static constexpr uint8_t FirstSpecialOpcode = BlockAddressOpcode; 517 518 // Separate struct to make passing different number of parameters to 519 // BitcodeConstant::create() more convenient. 520 struct ExtraInfo { 521 uint8_t Opcode; 522 uint8_t Flags; 523 unsigned Extra; 524 Type *SrcElemTy; 525 526 ExtraInfo(uint8_t Opcode, uint8_t Flags = 0, unsigned Extra = 0, 527 Type *SrcElemTy = nullptr) 528 : Opcode(Opcode), Flags(Flags), Extra(Extra), SrcElemTy(SrcElemTy) {} 529 }; 530 531 uint8_t Opcode; 532 uint8_t Flags; 533 unsigned NumOperands; 534 unsigned Extra; // GEP inrange index or blockaddress BB id. 535 Type *SrcElemTy; // GEP source element type. 536 537 private: 538 BitcodeConstant(Type *Ty, const ExtraInfo &Info, ArrayRef<unsigned> OpIDs) 539 : Value(Ty, SubclassID), Opcode(Info.Opcode), Flags(Info.Flags), 540 NumOperands(OpIDs.size()), Extra(Info.Extra), 541 SrcElemTy(Info.SrcElemTy) { 542 std::uninitialized_copy(OpIDs.begin(), OpIDs.end(), 543 getTrailingObjects<unsigned>()); 544 } 545 546 BitcodeConstant &operator=(const BitcodeConstant &) = delete; 547 548 public: 549 static BitcodeConstant *create(BumpPtrAllocator &A, Type *Ty, 550 const ExtraInfo &Info, 551 ArrayRef<unsigned> OpIDs) { 552 void *Mem = A.Allocate(totalSizeToAlloc<unsigned>(OpIDs.size()), 553 alignof(BitcodeConstant)); 554 return new (Mem) BitcodeConstant(Ty, Info, OpIDs); 555 } 556 557 static bool classof(const Value *V) { return V->getValueID() == SubclassID; } 558 559 ArrayRef<unsigned> getOperandIDs() const { 560 return ArrayRef(getTrailingObjects<unsigned>(), NumOperands); 561 } 562 563 std::optional<unsigned> getInRangeIndex() const { 564 assert(Opcode == Instruction::GetElementPtr); 565 if (Extra == (unsigned)-1) 566 return std::nullopt; 567 return Extra; 568 } 569 570 const char *getOpcodeName() const { 571 return Instruction::getOpcodeName(Opcode); 572 } 573 }; 574 575 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer { 576 LLVMContext &Context; 577 Module *TheModule = nullptr; 578 // Next offset to start scanning for lazy parsing of function bodies. 579 uint64_t NextUnreadBit = 0; 580 // Last function offset found in the VST. 581 uint64_t LastFunctionBlockBit = 0; 582 bool SeenValueSymbolTable = false; 583 uint64_t VSTOffset = 0; 584 585 std::vector<std::string> SectionTable; 586 std::vector<std::string> GCTable; 587 588 std::vector<Type *> TypeList; 589 /// Track type IDs of contained types. Order is the same as the contained 590 /// types of a Type*. This is used during upgrades of typed pointer IR in 591 /// opaque pointer mode. 592 DenseMap<unsigned, SmallVector<unsigned, 1>> ContainedTypeIDs; 593 /// In some cases, we need to create a type ID for a type that was not 594 /// explicitly encoded in the bitcode, or we don't know about at the current 595 /// point. For example, a global may explicitly encode the value type ID, but 596 /// not have a type ID for the pointer to value type, for which we create a 597 /// virtual type ID instead. This map stores the new type ID that was created 598 /// for the given pair of Type and contained type ID. 599 DenseMap<std::pair<Type *, unsigned>, unsigned> VirtualTypeIDs; 600 DenseMap<Function *, unsigned> FunctionTypeIDs; 601 /// Allocator for BitcodeConstants. This should come before ValueList, 602 /// because the ValueList might hold ValueHandles to these constants, so 603 /// ValueList must be destroyed before Alloc. 604 BumpPtrAllocator Alloc; 605 BitcodeReaderValueList ValueList; 606 std::optional<MetadataLoader> MDLoader; 607 std::vector<Comdat *> ComdatList; 608 DenseSet<GlobalObject *> ImplicitComdatObjects; 609 SmallVector<Instruction *, 64> InstructionList; 610 611 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits; 612 std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInits; 613 614 struct FunctionOperandInfo { 615 Function *F; 616 unsigned PersonalityFn; 617 unsigned Prefix; 618 unsigned Prologue; 619 }; 620 std::vector<FunctionOperandInfo> FunctionOperands; 621 622 /// The set of attributes by index. Index zero in the file is for null, and 623 /// is thus not represented here. As such all indices are off by one. 624 std::vector<AttributeList> MAttributes; 625 626 /// The set of attribute groups. 627 std::map<unsigned, AttributeList> MAttributeGroups; 628 629 /// While parsing a function body, this is a list of the basic blocks for the 630 /// function. 631 std::vector<BasicBlock*> FunctionBBs; 632 633 // When reading the module header, this list is populated with functions that 634 // have bodies later in the file. 635 std::vector<Function*> FunctionsWithBodies; 636 637 // When intrinsic functions are encountered which require upgrading they are 638 // stored here with their replacement function. 639 using UpdatedIntrinsicMap = DenseMap<Function *, Function *>; 640 UpdatedIntrinsicMap UpgradedIntrinsics; 641 642 // Several operations happen after the module header has been read, but 643 // before function bodies are processed. This keeps track of whether 644 // we've done this yet. 645 bool SeenFirstFunctionBody = false; 646 647 /// When function bodies are initially scanned, this map contains info about 648 /// where to find deferred function body in the stream. 649 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 650 651 /// When Metadata block is initially scanned when parsing the module, we may 652 /// choose to defer parsing of the metadata. This vector contains info about 653 /// which Metadata blocks are deferred. 654 std::vector<uint64_t> DeferredMetadataInfo; 655 656 /// These are basic blocks forward-referenced by block addresses. They are 657 /// inserted lazily into functions when they're loaded. The basic block ID is 658 /// its index into the vector. 659 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 660 std::deque<Function *> BasicBlockFwdRefQueue; 661 662 /// These are Functions that contain BlockAddresses which refer a different 663 /// Function. When parsing the different Function, queue Functions that refer 664 /// to the different Function. Those Functions must be materialized in order 665 /// to resolve their BlockAddress constants before the different Function 666 /// gets moved into another Module. 667 std::vector<Function *> BackwardRefFunctions; 668 669 /// Indicates that we are using a new encoding for instruction operands where 670 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 671 /// instruction number, for a more compact encoding. Some instruction 672 /// operands are not relative to the instruction ID: basic block numbers, and 673 /// types. Once the old style function blocks have been phased out, we would 674 /// not need this flag. 675 bool UseRelativeIDs = false; 676 677 /// True if all functions will be materialized, negating the need to process 678 /// (e.g.) blockaddress forward references. 679 bool WillMaterializeAllForwardRefs = false; 680 681 bool StripDebugInfo = false; 682 TBAAVerifier TBAAVerifyHelper; 683 684 std::vector<std::string> BundleTags; 685 SmallVector<SyncScope::ID, 8> SSIDs; 686 687 std::optional<ValueTypeCallbackTy> ValueTypeCallback; 688 689 public: 690 BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 691 StringRef ProducerIdentification, LLVMContext &Context); 692 693 Error materializeForwardReferencedFunctions(); 694 695 Error materialize(GlobalValue *GV) override; 696 Error materializeModule() override; 697 std::vector<StructType *> getIdentifiedStructTypes() const override; 698 699 /// Main interface to parsing a bitcode buffer. 700 /// \returns true if an error occurred. 701 Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 702 bool IsImporting, ParserCallbacks Callbacks = {}); 703 704 static uint64_t decodeSignRotatedValue(uint64_t V); 705 706 /// Materialize any deferred Metadata block. 707 Error materializeMetadata() override; 708 709 void setStripDebugInfo() override; 710 711 private: 712 std::vector<StructType *> IdentifiedStructTypes; 713 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 714 StructType *createIdentifiedStructType(LLVMContext &Context); 715 716 static constexpr unsigned InvalidTypeID = ~0u; 717 718 Type *getTypeByID(unsigned ID); 719 Type *getPtrElementTypeByID(unsigned ID); 720 unsigned getContainedTypeID(unsigned ID, unsigned Idx = 0); 721 unsigned getVirtualTypeID(Type *Ty, ArrayRef<unsigned> ContainedTypeIDs = {}); 722 723 void callValueTypeCallback(Value *F, unsigned TypeID); 724 Expected<Value *> materializeValue(unsigned ValID, BasicBlock *InsertBB); 725 Expected<Constant *> getValueForInitializer(unsigned ID); 726 727 Value *getFnValueByID(unsigned ID, Type *Ty, unsigned TyID, 728 BasicBlock *ConstExprInsertBB) { 729 if (Ty && Ty->isMetadataTy()) 730 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 731 return ValueList.getValueFwdRef(ID, Ty, TyID, ConstExprInsertBB); 732 } 733 734 Metadata *getFnMetadataByID(unsigned ID) { 735 return MDLoader->getMetadataFwdRefOrLoad(ID); 736 } 737 738 BasicBlock *getBasicBlock(unsigned ID) const { 739 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 740 return FunctionBBs[ID]; 741 } 742 743 AttributeList getAttributes(unsigned i) const { 744 if (i-1 < MAttributes.size()) 745 return MAttributes[i-1]; 746 return AttributeList(); 747 } 748 749 /// Read a value/type pair out of the specified record from slot 'Slot'. 750 /// Increment Slot past the number of slots used in the record. Return true on 751 /// failure. 752 bool getValueTypePair(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 753 unsigned InstNum, Value *&ResVal, unsigned &TypeID, 754 BasicBlock *ConstExprInsertBB) { 755 if (Slot == Record.size()) return true; 756 unsigned ValNo = (unsigned)Record[Slot++]; 757 // Adjust the ValNo, if it was encoded relative to the InstNum. 758 if (UseRelativeIDs) 759 ValNo = InstNum - ValNo; 760 if (ValNo < InstNum) { 761 // If this is not a forward reference, just return the value we already 762 // have. 763 TypeID = ValueList.getTypeID(ValNo); 764 ResVal = getFnValueByID(ValNo, nullptr, TypeID, ConstExprInsertBB); 765 assert((!ResVal || ResVal->getType() == getTypeByID(TypeID)) && 766 "Incorrect type ID stored for value"); 767 return ResVal == nullptr; 768 } 769 if (Slot == Record.size()) 770 return true; 771 772 TypeID = (unsigned)Record[Slot++]; 773 ResVal = getFnValueByID(ValNo, getTypeByID(TypeID), TypeID, 774 ConstExprInsertBB); 775 return ResVal == nullptr; 776 } 777 778 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 779 /// past the number of slots used by the value in the record. Return true if 780 /// there is an error. 781 bool popValue(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 782 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal, 783 BasicBlock *ConstExprInsertBB) { 784 if (getValue(Record, Slot, InstNum, Ty, TyID, ResVal, ConstExprInsertBB)) 785 return true; 786 // All values currently take a single record slot. 787 ++Slot; 788 return false; 789 } 790 791 /// Like popValue, but does not increment the Slot number. 792 bool getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 793 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal, 794 BasicBlock *ConstExprInsertBB) { 795 ResVal = getValue(Record, Slot, InstNum, Ty, TyID, ConstExprInsertBB); 796 return ResVal == nullptr; 797 } 798 799 /// Version of getValue that returns ResVal directly, or 0 if there is an 800 /// error. 801 Value *getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 802 unsigned InstNum, Type *Ty, unsigned TyID, 803 BasicBlock *ConstExprInsertBB) { 804 if (Slot == Record.size()) return nullptr; 805 unsigned ValNo = (unsigned)Record[Slot]; 806 // Adjust the ValNo, if it was encoded relative to the InstNum. 807 if (UseRelativeIDs) 808 ValNo = InstNum - ValNo; 809 return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB); 810 } 811 812 /// Like getValue, but decodes signed VBRs. 813 Value *getValueSigned(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 814 unsigned InstNum, Type *Ty, unsigned TyID, 815 BasicBlock *ConstExprInsertBB) { 816 if (Slot == Record.size()) return nullptr; 817 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 818 // Adjust the ValNo, if it was encoded relative to the InstNum. 819 if (UseRelativeIDs) 820 ValNo = InstNum - ValNo; 821 return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB); 822 } 823 824 Expected<ConstantRange> readConstantRange(ArrayRef<uint64_t> Record, 825 unsigned &OpNum) { 826 if (Record.size() - OpNum < 3) 827 return error("Too few records for range"); 828 unsigned BitWidth = Record[OpNum++]; 829 if (BitWidth > 64) { 830 unsigned LowerActiveWords = Record[OpNum]; 831 unsigned UpperActiveWords = Record[OpNum++] >> 32; 832 if (Record.size() - OpNum < LowerActiveWords + UpperActiveWords) 833 return error("Too few records for range"); 834 APInt Lower = 835 readWideAPInt(ArrayRef(&Record[OpNum], LowerActiveWords), BitWidth); 836 OpNum += LowerActiveWords; 837 APInt Upper = 838 readWideAPInt(ArrayRef(&Record[OpNum], UpperActiveWords), BitWidth); 839 OpNum += UpperActiveWords; 840 return ConstantRange(Lower, Upper); 841 } else { 842 int64_t Start = BitcodeReader::decodeSignRotatedValue(Record[OpNum++]); 843 int64_t End = BitcodeReader::decodeSignRotatedValue(Record[OpNum++]); 844 return ConstantRange(APInt(BitWidth, Start), APInt(BitWidth, End)); 845 } 846 } 847 848 /// Upgrades old-style typeless byval/sret/inalloca attributes by adding the 849 /// corresponding argument's pointee type. Also upgrades intrinsics that now 850 /// require an elementtype attribute. 851 Error propagateAttributeTypes(CallBase *CB, ArrayRef<unsigned> ArgsTys); 852 853 /// Converts alignment exponent (i.e. power of two (or zero)) to the 854 /// corresponding alignment to use. If alignment is too large, returns 855 /// a corresponding error code. 856 Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment); 857 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 858 Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false, 859 ParserCallbacks Callbacks = {}); 860 861 Error parseComdatRecord(ArrayRef<uint64_t> Record); 862 Error parseGlobalVarRecord(ArrayRef<uint64_t> Record); 863 Error parseFunctionRecord(ArrayRef<uint64_t> Record); 864 Error parseGlobalIndirectSymbolRecord(unsigned BitCode, 865 ArrayRef<uint64_t> Record); 866 867 Error parseAttributeBlock(); 868 Error parseAttributeGroupBlock(); 869 Error parseTypeTable(); 870 Error parseTypeTableBody(); 871 Error parseOperandBundleTags(); 872 Error parseSyncScopeNames(); 873 874 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 875 unsigned NameIndex, Triple &TT); 876 void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F, 877 ArrayRef<uint64_t> Record); 878 Error parseValueSymbolTable(uint64_t Offset = 0); 879 Error parseGlobalValueSymbolTable(); 880 Error parseConstants(); 881 Error rememberAndSkipFunctionBodies(); 882 Error rememberAndSkipFunctionBody(); 883 /// Save the positions of the Metadata blocks and skip parsing the blocks. 884 Error rememberAndSkipMetadata(); 885 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType); 886 Error parseFunctionBody(Function *F); 887 Error globalCleanup(); 888 Error resolveGlobalAndIndirectSymbolInits(); 889 Error parseUseLists(); 890 Error findFunctionInStream( 891 Function *F, 892 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 893 894 SyncScope::ID getDecodedSyncScopeID(unsigned Val); 895 }; 896 897 /// Class to manage reading and parsing function summary index bitcode 898 /// files/sections. 899 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase { 900 /// The module index built during parsing. 901 ModuleSummaryIndex &TheIndex; 902 903 /// Indicates whether we have encountered a global value summary section 904 /// yet during parsing. 905 bool SeenGlobalValSummary = false; 906 907 /// Indicates whether we have already parsed the VST, used for error checking. 908 bool SeenValueSymbolTable = false; 909 910 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 911 /// Used to enable on-demand parsing of the VST. 912 uint64_t VSTOffset = 0; 913 914 // Map to save ValueId to ValueInfo association that was recorded in the 915 // ValueSymbolTable. It is used after the VST is parsed to convert 916 // call graph edges read from the function summary from referencing 917 // callees by their ValueId to using the ValueInfo instead, which is how 918 // they are recorded in the summary index being built. 919 // We save a GUID which refers to the same global as the ValueInfo, but 920 // ignoring the linkage, i.e. for values other than local linkage they are 921 // identical (this is the second tuple member). 922 // The third tuple member is the real GUID of the ValueInfo. 923 DenseMap<unsigned, 924 std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID>> 925 ValueIdToValueInfoMap; 926 927 /// Map populated during module path string table parsing, from the 928 /// module ID to a string reference owned by the index's module 929 /// path string table, used to correlate with combined index 930 /// summary records. 931 DenseMap<uint64_t, StringRef> ModuleIdMap; 932 933 /// Original source file name recorded in a bitcode record. 934 std::string SourceFileName; 935 936 /// The string identifier given to this module by the client, normally the 937 /// path to the bitcode file. 938 StringRef ModulePath; 939 940 /// Callback to ask whether a symbol is the prevailing copy when invoked 941 /// during combined index building. 942 std::function<bool(GlobalValue::GUID)> IsPrevailing; 943 944 /// Saves the stack ids from the STACK_IDS record to consult when adding stack 945 /// ids from the lists in the callsite and alloc entries to the index. 946 std::vector<uint64_t> StackIds; 947 948 public: 949 ModuleSummaryIndexBitcodeReader( 950 BitstreamCursor Stream, StringRef Strtab, ModuleSummaryIndex &TheIndex, 951 StringRef ModulePath, 952 std::function<bool(GlobalValue::GUID)> IsPrevailing = nullptr); 953 954 Error parseModule(); 955 956 private: 957 void setValueGUID(uint64_t ValueID, StringRef ValueName, 958 GlobalValue::LinkageTypes Linkage, 959 StringRef SourceFileName); 960 Error parseValueSymbolTable( 961 uint64_t Offset, 962 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 963 std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record); 964 std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record, 965 bool IsOldProfileFormat, 966 bool HasProfile, 967 bool HasRelBF); 968 Error parseEntireSummary(unsigned ID); 969 Error parseModuleStringTable(); 970 void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record); 971 void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot, 972 TypeIdCompatibleVtableInfo &TypeId); 973 std::vector<FunctionSummary::ParamAccess> 974 parseParamAccesses(ArrayRef<uint64_t> Record); 975 976 template <bool AllowNullValueInfo = false> 977 std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID> 978 getValueInfoFromValueId(unsigned ValueId); 979 980 void addThisModule(); 981 ModuleSummaryIndex::ModuleInfo *getThisModule(); 982 }; 983 984 } // end anonymous namespace 985 986 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx, 987 Error Err) { 988 if (Err) { 989 std::error_code EC; 990 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) { 991 EC = EIB.convertToErrorCode(); 992 Ctx.emitError(EIB.message()); 993 }); 994 return EC; 995 } 996 return std::error_code(); 997 } 998 999 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 1000 StringRef ProducerIdentification, 1001 LLVMContext &Context) 1002 : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context), 1003 ValueList(this->Stream.SizeInBytes(), 1004 [this](unsigned ValID, BasicBlock *InsertBB) { 1005 return materializeValue(ValID, InsertBB); 1006 }) { 1007 this->ProducerIdentification = std::string(ProducerIdentification); 1008 } 1009 1010 Error BitcodeReader::materializeForwardReferencedFunctions() { 1011 if (WillMaterializeAllForwardRefs) 1012 return Error::success(); 1013 1014 // Prevent recursion. 1015 WillMaterializeAllForwardRefs = true; 1016 1017 while (!BasicBlockFwdRefQueue.empty()) { 1018 Function *F = BasicBlockFwdRefQueue.front(); 1019 BasicBlockFwdRefQueue.pop_front(); 1020 assert(F && "Expected valid function"); 1021 if (!BasicBlockFwdRefs.count(F)) 1022 // Already materialized. 1023 continue; 1024 1025 // Check for a function that isn't materializable to prevent an infinite 1026 // loop. When parsing a blockaddress stored in a global variable, there 1027 // isn't a trivial way to check if a function will have a body without a 1028 // linear search through FunctionsWithBodies, so just check it here. 1029 if (!F->isMaterializable()) 1030 return error("Never resolved function from blockaddress"); 1031 1032 // Try to materialize F. 1033 if (Error Err = materialize(F)) 1034 return Err; 1035 } 1036 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 1037 1038 for (Function *F : BackwardRefFunctions) 1039 if (Error Err = materialize(F)) 1040 return Err; 1041 BackwardRefFunctions.clear(); 1042 1043 // Reset state. 1044 WillMaterializeAllForwardRefs = false; 1045 return Error::success(); 1046 } 1047 1048 //===----------------------------------------------------------------------===// 1049 // Helper functions to implement forward reference resolution, etc. 1050 //===----------------------------------------------------------------------===// 1051 1052 static bool hasImplicitComdat(size_t Val) { 1053 switch (Val) { 1054 default: 1055 return false; 1056 case 1: // Old WeakAnyLinkage 1057 case 4: // Old LinkOnceAnyLinkage 1058 case 10: // Old WeakODRLinkage 1059 case 11: // Old LinkOnceODRLinkage 1060 return true; 1061 } 1062 } 1063 1064 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 1065 switch (Val) { 1066 default: // Map unknown/new linkages to external 1067 case 0: 1068 return GlobalValue::ExternalLinkage; 1069 case 2: 1070 return GlobalValue::AppendingLinkage; 1071 case 3: 1072 return GlobalValue::InternalLinkage; 1073 case 5: 1074 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 1075 case 6: 1076 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 1077 case 7: 1078 return GlobalValue::ExternalWeakLinkage; 1079 case 8: 1080 return GlobalValue::CommonLinkage; 1081 case 9: 1082 return GlobalValue::PrivateLinkage; 1083 case 12: 1084 return GlobalValue::AvailableExternallyLinkage; 1085 case 13: 1086 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 1087 case 14: 1088 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 1089 case 15: 1090 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 1091 case 1: // Old value with implicit comdat. 1092 case 16: 1093 return GlobalValue::WeakAnyLinkage; 1094 case 10: // Old value with implicit comdat. 1095 case 17: 1096 return GlobalValue::WeakODRLinkage; 1097 case 4: // Old value with implicit comdat. 1098 case 18: 1099 return GlobalValue::LinkOnceAnyLinkage; 1100 case 11: // Old value with implicit comdat. 1101 case 19: 1102 return GlobalValue::LinkOnceODRLinkage; 1103 } 1104 } 1105 1106 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) { 1107 FunctionSummary::FFlags Flags; 1108 Flags.ReadNone = RawFlags & 0x1; 1109 Flags.ReadOnly = (RawFlags >> 1) & 0x1; 1110 Flags.NoRecurse = (RawFlags >> 2) & 0x1; 1111 Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1; 1112 Flags.NoInline = (RawFlags >> 4) & 0x1; 1113 Flags.AlwaysInline = (RawFlags >> 5) & 0x1; 1114 Flags.NoUnwind = (RawFlags >> 6) & 0x1; 1115 Flags.MayThrow = (RawFlags >> 7) & 0x1; 1116 Flags.HasUnknownCall = (RawFlags >> 8) & 0x1; 1117 Flags.MustBeUnreachable = (RawFlags >> 9) & 0x1; 1118 return Flags; 1119 } 1120 1121 // Decode the flags for GlobalValue in the summary. The bits for each attribute: 1122 // 1123 // linkage: [0,4), notEligibleToImport: 4, live: 5, local: 6, canAutoHide: 7, 1124 // visibility: [8, 10). 1125 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 1126 uint64_t Version) { 1127 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 1128 // like getDecodedLinkage() above. Any future change to the linkage enum and 1129 // to getDecodedLinkage() will need to be taken into account here as above. 1130 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 1131 auto Visibility = GlobalValue::VisibilityTypes((RawFlags >> 8) & 3); // 2 bits 1132 RawFlags = RawFlags >> 4; 1133 bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3; 1134 // The Live flag wasn't introduced until version 3. For dead stripping 1135 // to work correctly on earlier versions, we must conservatively treat all 1136 // values as live. 1137 bool Live = (RawFlags & 0x2) || Version < 3; 1138 bool Local = (RawFlags & 0x4); 1139 bool AutoHide = (RawFlags & 0x8); 1140 1141 return GlobalValueSummary::GVFlags(Linkage, Visibility, NotEligibleToImport, 1142 Live, Local, AutoHide); 1143 } 1144 1145 // Decode the flags for GlobalVariable in the summary 1146 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) { 1147 return GlobalVarSummary::GVarFlags( 1148 (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false, 1149 (RawFlags & 0x4) ? true : false, 1150 (GlobalObject::VCallVisibility)(RawFlags >> 3)); 1151 } 1152 1153 static std::pair<CalleeInfo::HotnessType, bool> 1154 getDecodedHotnessCallEdgeInfo(uint64_t RawFlags) { 1155 CalleeInfo::HotnessType Hotness = 1156 static_cast<CalleeInfo::HotnessType>(RawFlags & 0x7); // 3 bits 1157 bool HasTailCall = (RawFlags & 0x8); // 1 bit 1158 return {Hotness, HasTailCall}; 1159 } 1160 1161 static void getDecodedRelBFCallEdgeInfo(uint64_t RawFlags, uint64_t &RelBF, 1162 bool &HasTailCall) { 1163 static constexpr uint64_t RelBlockFreqMask = 1164 (1 << CalleeInfo::RelBlockFreqBits) - 1; 1165 RelBF = RawFlags & RelBlockFreqMask; // RelBlockFreqBits bits 1166 HasTailCall = (RawFlags & (1 << CalleeInfo::RelBlockFreqBits)); // 1 bit 1167 } 1168 1169 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 1170 switch (Val) { 1171 default: // Map unknown visibilities to default. 1172 case 0: return GlobalValue::DefaultVisibility; 1173 case 1: return GlobalValue::HiddenVisibility; 1174 case 2: return GlobalValue::ProtectedVisibility; 1175 } 1176 } 1177 1178 static GlobalValue::DLLStorageClassTypes 1179 getDecodedDLLStorageClass(unsigned Val) { 1180 switch (Val) { 1181 default: // Map unknown values to default. 1182 case 0: return GlobalValue::DefaultStorageClass; 1183 case 1: return GlobalValue::DLLImportStorageClass; 1184 case 2: return GlobalValue::DLLExportStorageClass; 1185 } 1186 } 1187 1188 static bool getDecodedDSOLocal(unsigned Val) { 1189 switch(Val) { 1190 default: // Map unknown values to preemptable. 1191 case 0: return false; 1192 case 1: return true; 1193 } 1194 } 1195 1196 static std::optional<CodeModel::Model> getDecodedCodeModel(unsigned Val) { 1197 switch (Val) { 1198 case 1: 1199 return CodeModel::Tiny; 1200 case 2: 1201 return CodeModel::Small; 1202 case 3: 1203 return CodeModel::Kernel; 1204 case 4: 1205 return CodeModel::Medium; 1206 case 5: 1207 return CodeModel::Large; 1208 } 1209 1210 return {}; 1211 } 1212 1213 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 1214 switch (Val) { 1215 case 0: return GlobalVariable::NotThreadLocal; 1216 default: // Map unknown non-zero value to general dynamic. 1217 case 1: return GlobalVariable::GeneralDynamicTLSModel; 1218 case 2: return GlobalVariable::LocalDynamicTLSModel; 1219 case 3: return GlobalVariable::InitialExecTLSModel; 1220 case 4: return GlobalVariable::LocalExecTLSModel; 1221 } 1222 } 1223 1224 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { 1225 switch (Val) { 1226 default: // Map unknown to UnnamedAddr::None. 1227 case 0: return GlobalVariable::UnnamedAddr::None; 1228 case 1: return GlobalVariable::UnnamedAddr::Global; 1229 case 2: return GlobalVariable::UnnamedAddr::Local; 1230 } 1231 } 1232 1233 static int getDecodedCastOpcode(unsigned Val) { 1234 switch (Val) { 1235 default: return -1; 1236 case bitc::CAST_TRUNC : return Instruction::Trunc; 1237 case bitc::CAST_ZEXT : return Instruction::ZExt; 1238 case bitc::CAST_SEXT : return Instruction::SExt; 1239 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 1240 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 1241 case bitc::CAST_UITOFP : return Instruction::UIToFP; 1242 case bitc::CAST_SITOFP : return Instruction::SIToFP; 1243 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 1244 case bitc::CAST_FPEXT : return Instruction::FPExt; 1245 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 1246 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 1247 case bitc::CAST_BITCAST : return Instruction::BitCast; 1248 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 1249 } 1250 } 1251 1252 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) { 1253 bool IsFP = Ty->isFPOrFPVectorTy(); 1254 // UnOps are only valid for int/fp or vector of int/fp types 1255 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1256 return -1; 1257 1258 switch (Val) { 1259 default: 1260 return -1; 1261 case bitc::UNOP_FNEG: 1262 return IsFP ? Instruction::FNeg : -1; 1263 } 1264 } 1265 1266 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 1267 bool IsFP = Ty->isFPOrFPVectorTy(); 1268 // BinOps are only valid for int/fp or vector of int/fp types 1269 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1270 return -1; 1271 1272 switch (Val) { 1273 default: 1274 return -1; 1275 case bitc::BINOP_ADD: 1276 return IsFP ? Instruction::FAdd : Instruction::Add; 1277 case bitc::BINOP_SUB: 1278 return IsFP ? Instruction::FSub : Instruction::Sub; 1279 case bitc::BINOP_MUL: 1280 return IsFP ? Instruction::FMul : Instruction::Mul; 1281 case bitc::BINOP_UDIV: 1282 return IsFP ? -1 : Instruction::UDiv; 1283 case bitc::BINOP_SDIV: 1284 return IsFP ? Instruction::FDiv : Instruction::SDiv; 1285 case bitc::BINOP_UREM: 1286 return IsFP ? -1 : Instruction::URem; 1287 case bitc::BINOP_SREM: 1288 return IsFP ? Instruction::FRem : Instruction::SRem; 1289 case bitc::BINOP_SHL: 1290 return IsFP ? -1 : Instruction::Shl; 1291 case bitc::BINOP_LSHR: 1292 return IsFP ? -1 : Instruction::LShr; 1293 case bitc::BINOP_ASHR: 1294 return IsFP ? -1 : Instruction::AShr; 1295 case bitc::BINOP_AND: 1296 return IsFP ? -1 : Instruction::And; 1297 case bitc::BINOP_OR: 1298 return IsFP ? -1 : Instruction::Or; 1299 case bitc::BINOP_XOR: 1300 return IsFP ? -1 : Instruction::Xor; 1301 } 1302 } 1303 1304 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 1305 switch (Val) { 1306 default: return AtomicRMWInst::BAD_BINOP; 1307 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 1308 case bitc::RMW_ADD: return AtomicRMWInst::Add; 1309 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 1310 case bitc::RMW_AND: return AtomicRMWInst::And; 1311 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 1312 case bitc::RMW_OR: return AtomicRMWInst::Or; 1313 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 1314 case bitc::RMW_MAX: return AtomicRMWInst::Max; 1315 case bitc::RMW_MIN: return AtomicRMWInst::Min; 1316 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 1317 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 1318 case bitc::RMW_FADD: return AtomicRMWInst::FAdd; 1319 case bitc::RMW_FSUB: return AtomicRMWInst::FSub; 1320 case bitc::RMW_FMAX: return AtomicRMWInst::FMax; 1321 case bitc::RMW_FMIN: return AtomicRMWInst::FMin; 1322 case bitc::RMW_UINC_WRAP: 1323 return AtomicRMWInst::UIncWrap; 1324 case bitc::RMW_UDEC_WRAP: 1325 return AtomicRMWInst::UDecWrap; 1326 } 1327 } 1328 1329 static AtomicOrdering getDecodedOrdering(unsigned Val) { 1330 switch (Val) { 1331 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 1332 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 1333 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 1334 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 1335 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 1336 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 1337 default: // Map unknown orderings to sequentially-consistent. 1338 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 1339 } 1340 } 1341 1342 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 1343 switch (Val) { 1344 default: // Map unknown selection kinds to any. 1345 case bitc::COMDAT_SELECTION_KIND_ANY: 1346 return Comdat::Any; 1347 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 1348 return Comdat::ExactMatch; 1349 case bitc::COMDAT_SELECTION_KIND_LARGEST: 1350 return Comdat::Largest; 1351 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 1352 return Comdat::NoDeduplicate; 1353 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 1354 return Comdat::SameSize; 1355 } 1356 } 1357 1358 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 1359 FastMathFlags FMF; 1360 if (0 != (Val & bitc::UnsafeAlgebra)) 1361 FMF.setFast(); 1362 if (0 != (Val & bitc::AllowReassoc)) 1363 FMF.setAllowReassoc(); 1364 if (0 != (Val & bitc::NoNaNs)) 1365 FMF.setNoNaNs(); 1366 if (0 != (Val & bitc::NoInfs)) 1367 FMF.setNoInfs(); 1368 if (0 != (Val & bitc::NoSignedZeros)) 1369 FMF.setNoSignedZeros(); 1370 if (0 != (Val & bitc::AllowReciprocal)) 1371 FMF.setAllowReciprocal(); 1372 if (0 != (Val & bitc::AllowContract)) 1373 FMF.setAllowContract(true); 1374 if (0 != (Val & bitc::ApproxFunc)) 1375 FMF.setApproxFunc(); 1376 return FMF; 1377 } 1378 1379 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) { 1380 // A GlobalValue with local linkage cannot have a DLL storage class. 1381 if (GV->hasLocalLinkage()) 1382 return; 1383 switch (Val) { 1384 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 1385 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 1386 } 1387 } 1388 1389 Type *BitcodeReader::getTypeByID(unsigned ID) { 1390 // The type table size is always specified correctly. 1391 if (ID >= TypeList.size()) 1392 return nullptr; 1393 1394 if (Type *Ty = TypeList[ID]) 1395 return Ty; 1396 1397 // If we have a forward reference, the only possible case is when it is to a 1398 // named struct. Just create a placeholder for now. 1399 return TypeList[ID] = createIdentifiedStructType(Context); 1400 } 1401 1402 unsigned BitcodeReader::getContainedTypeID(unsigned ID, unsigned Idx) { 1403 auto It = ContainedTypeIDs.find(ID); 1404 if (It == ContainedTypeIDs.end()) 1405 return InvalidTypeID; 1406 1407 if (Idx >= It->second.size()) 1408 return InvalidTypeID; 1409 1410 return It->second[Idx]; 1411 } 1412 1413 Type *BitcodeReader::getPtrElementTypeByID(unsigned ID) { 1414 if (ID >= TypeList.size()) 1415 return nullptr; 1416 1417 Type *Ty = TypeList[ID]; 1418 if (!Ty->isPointerTy()) 1419 return nullptr; 1420 1421 return getTypeByID(getContainedTypeID(ID, 0)); 1422 } 1423 1424 unsigned BitcodeReader::getVirtualTypeID(Type *Ty, 1425 ArrayRef<unsigned> ChildTypeIDs) { 1426 unsigned ChildTypeID = ChildTypeIDs.empty() ? InvalidTypeID : ChildTypeIDs[0]; 1427 auto CacheKey = std::make_pair(Ty, ChildTypeID); 1428 auto It = VirtualTypeIDs.find(CacheKey); 1429 if (It != VirtualTypeIDs.end()) { 1430 // The cmpxchg return value is the only place we need more than one 1431 // contained type ID, however the second one will always be the same (i1), 1432 // so we don't need to include it in the cache key. This asserts that the 1433 // contained types are indeed as expected and there are no collisions. 1434 assert((ChildTypeIDs.empty() || 1435 ContainedTypeIDs[It->second] == ChildTypeIDs) && 1436 "Incorrect cached contained type IDs"); 1437 return It->second; 1438 } 1439 1440 unsigned TypeID = TypeList.size(); 1441 TypeList.push_back(Ty); 1442 if (!ChildTypeIDs.empty()) 1443 append_range(ContainedTypeIDs[TypeID], ChildTypeIDs); 1444 VirtualTypeIDs.insert({CacheKey, TypeID}); 1445 return TypeID; 1446 } 1447 1448 static bool isConstExprSupported(const BitcodeConstant *BC) { 1449 uint8_t Opcode = BC->Opcode; 1450 1451 // These are not real constant expressions, always consider them supported. 1452 if (Opcode >= BitcodeConstant::FirstSpecialOpcode) 1453 return true; 1454 1455 // If -expand-constant-exprs is set, we want to consider all expressions 1456 // as unsupported. 1457 if (ExpandConstantExprs) 1458 return false; 1459 1460 if (Instruction::isBinaryOp(Opcode)) 1461 return ConstantExpr::isSupportedBinOp(Opcode); 1462 1463 if (Instruction::isCast(Opcode)) 1464 return ConstantExpr::isSupportedCastOp(Opcode); 1465 1466 if (Opcode == Instruction::GetElementPtr) 1467 return ConstantExpr::isSupportedGetElementPtr(BC->SrcElemTy); 1468 1469 switch (Opcode) { 1470 case Instruction::FNeg: 1471 case Instruction::Select: 1472 return false; 1473 default: 1474 return true; 1475 } 1476 } 1477 1478 Expected<Value *> BitcodeReader::materializeValue(unsigned StartValID, 1479 BasicBlock *InsertBB) { 1480 // Quickly handle the case where there is no BitcodeConstant to resolve. 1481 if (StartValID < ValueList.size() && ValueList[StartValID] && 1482 !isa<BitcodeConstant>(ValueList[StartValID])) 1483 return ValueList[StartValID]; 1484 1485 SmallDenseMap<unsigned, Value *> MaterializedValues; 1486 SmallVector<unsigned> Worklist; 1487 Worklist.push_back(StartValID); 1488 while (!Worklist.empty()) { 1489 unsigned ValID = Worklist.back(); 1490 if (MaterializedValues.count(ValID)) { 1491 // Duplicate expression that was already handled. 1492 Worklist.pop_back(); 1493 continue; 1494 } 1495 1496 if (ValID >= ValueList.size() || !ValueList[ValID]) 1497 return error("Invalid value ID"); 1498 1499 Value *V = ValueList[ValID]; 1500 auto *BC = dyn_cast<BitcodeConstant>(V); 1501 if (!BC) { 1502 MaterializedValues.insert({ValID, V}); 1503 Worklist.pop_back(); 1504 continue; 1505 } 1506 1507 // Iterate in reverse, so values will get popped from the worklist in 1508 // expected order. 1509 SmallVector<Value *> Ops; 1510 for (unsigned OpID : reverse(BC->getOperandIDs())) { 1511 auto It = MaterializedValues.find(OpID); 1512 if (It != MaterializedValues.end()) 1513 Ops.push_back(It->second); 1514 else 1515 Worklist.push_back(OpID); 1516 } 1517 1518 // Some expressions have not been resolved yet, handle them first and then 1519 // revisit this one. 1520 if (Ops.size() != BC->getOperandIDs().size()) 1521 continue; 1522 std::reverse(Ops.begin(), Ops.end()); 1523 1524 SmallVector<Constant *> ConstOps; 1525 for (Value *Op : Ops) 1526 if (auto *C = dyn_cast<Constant>(Op)) 1527 ConstOps.push_back(C); 1528 1529 // Materialize as constant expression if possible. 1530 if (isConstExprSupported(BC) && ConstOps.size() == Ops.size()) { 1531 Constant *C; 1532 if (Instruction::isCast(BC->Opcode)) { 1533 C = UpgradeBitCastExpr(BC->Opcode, ConstOps[0], BC->getType()); 1534 if (!C) 1535 C = ConstantExpr::getCast(BC->Opcode, ConstOps[0], BC->getType()); 1536 } else if (Instruction::isBinaryOp(BC->Opcode)) { 1537 C = ConstantExpr::get(BC->Opcode, ConstOps[0], ConstOps[1], BC->Flags); 1538 } else { 1539 switch (BC->Opcode) { 1540 case BitcodeConstant::NoCFIOpcode: { 1541 auto *GV = dyn_cast<GlobalValue>(ConstOps[0]); 1542 if (!GV) 1543 return error("no_cfi operand must be GlobalValue"); 1544 C = NoCFIValue::get(GV); 1545 break; 1546 } 1547 case BitcodeConstant::DSOLocalEquivalentOpcode: { 1548 auto *GV = dyn_cast<GlobalValue>(ConstOps[0]); 1549 if (!GV) 1550 return error("dso_local operand must be GlobalValue"); 1551 C = DSOLocalEquivalent::get(GV); 1552 break; 1553 } 1554 case BitcodeConstant::BlockAddressOpcode: { 1555 Function *Fn = dyn_cast<Function>(ConstOps[0]); 1556 if (!Fn) 1557 return error("blockaddress operand must be a function"); 1558 1559 // If the function is already parsed we can insert the block address 1560 // right away. 1561 BasicBlock *BB; 1562 unsigned BBID = BC->Extra; 1563 if (!BBID) 1564 // Invalid reference to entry block. 1565 return error("Invalid ID"); 1566 if (!Fn->empty()) { 1567 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 1568 for (size_t I = 0, E = BBID; I != E; ++I) { 1569 if (BBI == BBE) 1570 return error("Invalid ID"); 1571 ++BBI; 1572 } 1573 BB = &*BBI; 1574 } else { 1575 // Otherwise insert a placeholder and remember it so it can be 1576 // inserted when the function is parsed. 1577 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 1578 if (FwdBBs.empty()) 1579 BasicBlockFwdRefQueue.push_back(Fn); 1580 if (FwdBBs.size() < BBID + 1) 1581 FwdBBs.resize(BBID + 1); 1582 if (!FwdBBs[BBID]) 1583 FwdBBs[BBID] = BasicBlock::Create(Context); 1584 BB = FwdBBs[BBID]; 1585 } 1586 C = BlockAddress::get(Fn, BB); 1587 break; 1588 } 1589 case BitcodeConstant::ConstantStructOpcode: 1590 C = ConstantStruct::get(cast<StructType>(BC->getType()), ConstOps); 1591 break; 1592 case BitcodeConstant::ConstantArrayOpcode: 1593 C = ConstantArray::get(cast<ArrayType>(BC->getType()), ConstOps); 1594 break; 1595 case BitcodeConstant::ConstantVectorOpcode: 1596 C = ConstantVector::get(ConstOps); 1597 break; 1598 case Instruction::ICmp: 1599 case Instruction::FCmp: 1600 C = ConstantExpr::getCompare(BC->Flags, ConstOps[0], ConstOps[1]); 1601 break; 1602 case Instruction::GetElementPtr: 1603 C = ConstantExpr::getGetElementPtr(BC->SrcElemTy, ConstOps[0], 1604 ArrayRef(ConstOps).drop_front(), 1605 BC->Flags, BC->getInRangeIndex()); 1606 break; 1607 case Instruction::ExtractElement: 1608 C = ConstantExpr::getExtractElement(ConstOps[0], ConstOps[1]); 1609 break; 1610 case Instruction::InsertElement: 1611 C = ConstantExpr::getInsertElement(ConstOps[0], ConstOps[1], 1612 ConstOps[2]); 1613 break; 1614 case Instruction::ShuffleVector: { 1615 SmallVector<int, 16> Mask; 1616 ShuffleVectorInst::getShuffleMask(ConstOps[2], Mask); 1617 C = ConstantExpr::getShuffleVector(ConstOps[0], ConstOps[1], Mask); 1618 break; 1619 } 1620 default: 1621 llvm_unreachable("Unhandled bitcode constant"); 1622 } 1623 } 1624 1625 // Cache resolved constant. 1626 ValueList.replaceValueWithoutRAUW(ValID, C); 1627 MaterializedValues.insert({ValID, C}); 1628 Worklist.pop_back(); 1629 continue; 1630 } 1631 1632 if (!InsertBB) 1633 return error(Twine("Value referenced by initializer is an unsupported " 1634 "constant expression of type ") + 1635 BC->getOpcodeName()); 1636 1637 // Materialize as instructions if necessary. 1638 Instruction *I; 1639 if (Instruction::isCast(BC->Opcode)) { 1640 I = CastInst::Create((Instruction::CastOps)BC->Opcode, Ops[0], 1641 BC->getType(), "constexpr", InsertBB); 1642 } else if (Instruction::isUnaryOp(BC->Opcode)) { 1643 I = UnaryOperator::Create((Instruction::UnaryOps)BC->Opcode, Ops[0], 1644 "constexpr", InsertBB); 1645 } else if (Instruction::isBinaryOp(BC->Opcode)) { 1646 I = BinaryOperator::Create((Instruction::BinaryOps)BC->Opcode, Ops[0], 1647 Ops[1], "constexpr", InsertBB); 1648 if (isa<OverflowingBinaryOperator>(I)) { 1649 if (BC->Flags & OverflowingBinaryOperator::NoSignedWrap) 1650 I->setHasNoSignedWrap(); 1651 if (BC->Flags & OverflowingBinaryOperator::NoUnsignedWrap) 1652 I->setHasNoUnsignedWrap(); 1653 } 1654 if (isa<PossiblyExactOperator>(I) && 1655 (BC->Flags & PossiblyExactOperator::IsExact)) 1656 I->setIsExact(); 1657 } else { 1658 switch (BC->Opcode) { 1659 case BitcodeConstant::ConstantVectorOpcode: { 1660 Type *IdxTy = Type::getInt32Ty(BC->getContext()); 1661 Value *V = PoisonValue::get(BC->getType()); 1662 for (auto Pair : enumerate(Ops)) { 1663 Value *Idx = ConstantInt::get(IdxTy, Pair.index()); 1664 V = InsertElementInst::Create(V, Pair.value(), Idx, "constexpr.ins", 1665 InsertBB); 1666 } 1667 I = cast<Instruction>(V); 1668 break; 1669 } 1670 case BitcodeConstant::ConstantStructOpcode: 1671 case BitcodeConstant::ConstantArrayOpcode: { 1672 Value *V = PoisonValue::get(BC->getType()); 1673 for (auto Pair : enumerate(Ops)) 1674 V = InsertValueInst::Create(V, Pair.value(), Pair.index(), 1675 "constexpr.ins", InsertBB); 1676 I = cast<Instruction>(V); 1677 break; 1678 } 1679 case Instruction::ICmp: 1680 case Instruction::FCmp: 1681 I = CmpInst::Create((Instruction::OtherOps)BC->Opcode, 1682 (CmpInst::Predicate)BC->Flags, Ops[0], Ops[1], 1683 "constexpr", InsertBB); 1684 break; 1685 case Instruction::GetElementPtr: 1686 I = GetElementPtrInst::Create(BC->SrcElemTy, Ops[0], 1687 ArrayRef(Ops).drop_front(), "constexpr", 1688 InsertBB); 1689 if (BC->Flags) 1690 cast<GetElementPtrInst>(I)->setIsInBounds(); 1691 break; 1692 case Instruction::Select: 1693 I = SelectInst::Create(Ops[0], Ops[1], Ops[2], "constexpr", InsertBB); 1694 break; 1695 case Instruction::ExtractElement: 1696 I = ExtractElementInst::Create(Ops[0], Ops[1], "constexpr", InsertBB); 1697 break; 1698 case Instruction::InsertElement: 1699 I = InsertElementInst::Create(Ops[0], Ops[1], Ops[2], "constexpr", 1700 InsertBB); 1701 break; 1702 case Instruction::ShuffleVector: 1703 I = new ShuffleVectorInst(Ops[0], Ops[1], Ops[2], "constexpr", 1704 InsertBB); 1705 break; 1706 default: 1707 llvm_unreachable("Unhandled bitcode constant"); 1708 } 1709 } 1710 1711 MaterializedValues.insert({ValID, I}); 1712 Worklist.pop_back(); 1713 } 1714 1715 return MaterializedValues[StartValID]; 1716 } 1717 1718 Expected<Constant *> BitcodeReader::getValueForInitializer(unsigned ID) { 1719 Expected<Value *> MaybeV = materializeValue(ID, /* InsertBB */ nullptr); 1720 if (!MaybeV) 1721 return MaybeV.takeError(); 1722 1723 // Result must be Constant if InsertBB is nullptr. 1724 return cast<Constant>(MaybeV.get()); 1725 } 1726 1727 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1728 StringRef Name) { 1729 auto *Ret = StructType::create(Context, Name); 1730 IdentifiedStructTypes.push_back(Ret); 1731 return Ret; 1732 } 1733 1734 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1735 auto *Ret = StructType::create(Context); 1736 IdentifiedStructTypes.push_back(Ret); 1737 return Ret; 1738 } 1739 1740 //===----------------------------------------------------------------------===// 1741 // Functions for parsing blocks from the bitcode file 1742 //===----------------------------------------------------------------------===// 1743 1744 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) { 1745 switch (Val) { 1746 case Attribute::EndAttrKinds: 1747 case Attribute::EmptyKey: 1748 case Attribute::TombstoneKey: 1749 llvm_unreachable("Synthetic enumerators which should never get here"); 1750 1751 case Attribute::None: return 0; 1752 case Attribute::ZExt: return 1 << 0; 1753 case Attribute::SExt: return 1 << 1; 1754 case Attribute::NoReturn: return 1 << 2; 1755 case Attribute::InReg: return 1 << 3; 1756 case Attribute::StructRet: return 1 << 4; 1757 case Attribute::NoUnwind: return 1 << 5; 1758 case Attribute::NoAlias: return 1 << 6; 1759 case Attribute::ByVal: return 1 << 7; 1760 case Attribute::Nest: return 1 << 8; 1761 case Attribute::ReadNone: return 1 << 9; 1762 case Attribute::ReadOnly: return 1 << 10; 1763 case Attribute::NoInline: return 1 << 11; 1764 case Attribute::AlwaysInline: return 1 << 12; 1765 case Attribute::OptimizeForSize: return 1 << 13; 1766 case Attribute::StackProtect: return 1 << 14; 1767 case Attribute::StackProtectReq: return 1 << 15; 1768 case Attribute::Alignment: return 31 << 16; 1769 case Attribute::NoCapture: return 1 << 21; 1770 case Attribute::NoRedZone: return 1 << 22; 1771 case Attribute::NoImplicitFloat: return 1 << 23; 1772 case Attribute::Naked: return 1 << 24; 1773 case Attribute::InlineHint: return 1 << 25; 1774 case Attribute::StackAlignment: return 7 << 26; 1775 case Attribute::ReturnsTwice: return 1 << 29; 1776 case Attribute::UWTable: return 1 << 30; 1777 case Attribute::NonLazyBind: return 1U << 31; 1778 case Attribute::SanitizeAddress: return 1ULL << 32; 1779 case Attribute::MinSize: return 1ULL << 33; 1780 case Attribute::NoDuplicate: return 1ULL << 34; 1781 case Attribute::StackProtectStrong: return 1ULL << 35; 1782 case Attribute::SanitizeThread: return 1ULL << 36; 1783 case Attribute::SanitizeMemory: return 1ULL << 37; 1784 case Attribute::NoBuiltin: return 1ULL << 38; 1785 case Attribute::Returned: return 1ULL << 39; 1786 case Attribute::Cold: return 1ULL << 40; 1787 case Attribute::Builtin: return 1ULL << 41; 1788 case Attribute::OptimizeNone: return 1ULL << 42; 1789 case Attribute::InAlloca: return 1ULL << 43; 1790 case Attribute::NonNull: return 1ULL << 44; 1791 case Attribute::JumpTable: return 1ULL << 45; 1792 case Attribute::Convergent: return 1ULL << 46; 1793 case Attribute::SafeStack: return 1ULL << 47; 1794 case Attribute::NoRecurse: return 1ULL << 48; 1795 // 1ULL << 49 is InaccessibleMemOnly, which is upgraded separately. 1796 // 1ULL << 50 is InaccessibleMemOrArgMemOnly, which is upgraded separately. 1797 case Attribute::SwiftSelf: return 1ULL << 51; 1798 case Attribute::SwiftError: return 1ULL << 52; 1799 case Attribute::WriteOnly: return 1ULL << 53; 1800 case Attribute::Speculatable: return 1ULL << 54; 1801 case Attribute::StrictFP: return 1ULL << 55; 1802 case Attribute::SanitizeHWAddress: return 1ULL << 56; 1803 case Attribute::NoCfCheck: return 1ULL << 57; 1804 case Attribute::OptForFuzzing: return 1ULL << 58; 1805 case Attribute::ShadowCallStack: return 1ULL << 59; 1806 case Attribute::SpeculativeLoadHardening: 1807 return 1ULL << 60; 1808 case Attribute::ImmArg: 1809 return 1ULL << 61; 1810 case Attribute::WillReturn: 1811 return 1ULL << 62; 1812 case Attribute::NoFree: 1813 return 1ULL << 63; 1814 default: 1815 // Other attributes are not supported in the raw format, 1816 // as we ran out of space. 1817 return 0; 1818 } 1819 llvm_unreachable("Unsupported attribute type"); 1820 } 1821 1822 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) { 1823 if (!Val) return; 1824 1825 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; 1826 I = Attribute::AttrKind(I + 1)) { 1827 if (uint64_t A = (Val & getRawAttributeMask(I))) { 1828 if (I == Attribute::Alignment) 1829 B.addAlignmentAttr(1ULL << ((A >> 16) - 1)); 1830 else if (I == Attribute::StackAlignment) 1831 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1)); 1832 else if (Attribute::isTypeAttrKind(I)) 1833 B.addTypeAttr(I, nullptr); // Type will be auto-upgraded. 1834 else 1835 B.addAttribute(I); 1836 } 1837 } 1838 } 1839 1840 /// This fills an AttrBuilder object with the LLVM attributes that have 1841 /// been decoded from the given integer. This function must stay in sync with 1842 /// 'encodeLLVMAttributesForBitcode'. 1843 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1844 uint64_t EncodedAttrs, 1845 uint64_t AttrIdx) { 1846 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1847 // the bits above 31 down by 11 bits. 1848 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1849 assert((!Alignment || isPowerOf2_32(Alignment)) && 1850 "Alignment must be a power of two."); 1851 1852 if (Alignment) 1853 B.addAlignmentAttr(Alignment); 1854 1855 uint64_t Attrs = ((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1856 (EncodedAttrs & 0xffff); 1857 1858 if (AttrIdx == AttributeList::FunctionIndex) { 1859 // Upgrade old memory attributes. 1860 MemoryEffects ME = MemoryEffects::unknown(); 1861 if (Attrs & (1ULL << 9)) { 1862 // ReadNone 1863 Attrs &= ~(1ULL << 9); 1864 ME &= MemoryEffects::none(); 1865 } 1866 if (Attrs & (1ULL << 10)) { 1867 // ReadOnly 1868 Attrs &= ~(1ULL << 10); 1869 ME &= MemoryEffects::readOnly(); 1870 } 1871 if (Attrs & (1ULL << 49)) { 1872 // InaccessibleMemOnly 1873 Attrs &= ~(1ULL << 49); 1874 ME &= MemoryEffects::inaccessibleMemOnly(); 1875 } 1876 if (Attrs & (1ULL << 50)) { 1877 // InaccessibleMemOrArgMemOnly 1878 Attrs &= ~(1ULL << 50); 1879 ME &= MemoryEffects::inaccessibleOrArgMemOnly(); 1880 } 1881 if (Attrs & (1ULL << 53)) { 1882 // WriteOnly 1883 Attrs &= ~(1ULL << 53); 1884 ME &= MemoryEffects::writeOnly(); 1885 } 1886 if (ME != MemoryEffects::unknown()) 1887 B.addMemoryAttr(ME); 1888 } 1889 1890 addRawAttributeValue(B, Attrs); 1891 } 1892 1893 Error BitcodeReader::parseAttributeBlock() { 1894 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1895 return Err; 1896 1897 if (!MAttributes.empty()) 1898 return error("Invalid multiple blocks"); 1899 1900 SmallVector<uint64_t, 64> Record; 1901 1902 SmallVector<AttributeList, 8> Attrs; 1903 1904 // Read all the records. 1905 while (true) { 1906 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1907 if (!MaybeEntry) 1908 return MaybeEntry.takeError(); 1909 BitstreamEntry Entry = MaybeEntry.get(); 1910 1911 switch (Entry.Kind) { 1912 case BitstreamEntry::SubBlock: // Handled for us already. 1913 case BitstreamEntry::Error: 1914 return error("Malformed block"); 1915 case BitstreamEntry::EndBlock: 1916 return Error::success(); 1917 case BitstreamEntry::Record: 1918 // The interesting case. 1919 break; 1920 } 1921 1922 // Read a record. 1923 Record.clear(); 1924 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1925 if (!MaybeRecord) 1926 return MaybeRecord.takeError(); 1927 switch (MaybeRecord.get()) { 1928 default: // Default behavior: ignore. 1929 break; 1930 case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...] 1931 // Deprecated, but still needed to read old bitcode files. 1932 if (Record.size() & 1) 1933 return error("Invalid parameter attribute record"); 1934 1935 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1936 AttrBuilder B(Context); 1937 decodeLLVMAttributesForBitcode(B, Record[i+1], Record[i]); 1938 Attrs.push_back(AttributeList::get(Context, Record[i], B)); 1939 } 1940 1941 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1942 Attrs.clear(); 1943 break; 1944 case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...] 1945 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1946 Attrs.push_back(MAttributeGroups[Record[i]]); 1947 1948 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1949 Attrs.clear(); 1950 break; 1951 } 1952 } 1953 } 1954 1955 // Returns Attribute::None on unrecognized codes. 1956 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1957 switch (Code) { 1958 default: 1959 return Attribute::None; 1960 case bitc::ATTR_KIND_ALIGNMENT: 1961 return Attribute::Alignment; 1962 case bitc::ATTR_KIND_ALWAYS_INLINE: 1963 return Attribute::AlwaysInline; 1964 case bitc::ATTR_KIND_BUILTIN: 1965 return Attribute::Builtin; 1966 case bitc::ATTR_KIND_BY_VAL: 1967 return Attribute::ByVal; 1968 case bitc::ATTR_KIND_IN_ALLOCA: 1969 return Attribute::InAlloca; 1970 case bitc::ATTR_KIND_COLD: 1971 return Attribute::Cold; 1972 case bitc::ATTR_KIND_CONVERGENT: 1973 return Attribute::Convergent; 1974 case bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION: 1975 return Attribute::DisableSanitizerInstrumentation; 1976 case bitc::ATTR_KIND_ELEMENTTYPE: 1977 return Attribute::ElementType; 1978 case bitc::ATTR_KIND_FNRETTHUNK_EXTERN: 1979 return Attribute::FnRetThunkExtern; 1980 case bitc::ATTR_KIND_INLINE_HINT: 1981 return Attribute::InlineHint; 1982 case bitc::ATTR_KIND_IN_REG: 1983 return Attribute::InReg; 1984 case bitc::ATTR_KIND_JUMP_TABLE: 1985 return Attribute::JumpTable; 1986 case bitc::ATTR_KIND_MEMORY: 1987 return Attribute::Memory; 1988 case bitc::ATTR_KIND_NOFPCLASS: 1989 return Attribute::NoFPClass; 1990 case bitc::ATTR_KIND_MIN_SIZE: 1991 return Attribute::MinSize; 1992 case bitc::ATTR_KIND_NAKED: 1993 return Attribute::Naked; 1994 case bitc::ATTR_KIND_NEST: 1995 return Attribute::Nest; 1996 case bitc::ATTR_KIND_NO_ALIAS: 1997 return Attribute::NoAlias; 1998 case bitc::ATTR_KIND_NO_BUILTIN: 1999 return Attribute::NoBuiltin; 2000 case bitc::ATTR_KIND_NO_CALLBACK: 2001 return Attribute::NoCallback; 2002 case bitc::ATTR_KIND_NO_CAPTURE: 2003 return Attribute::NoCapture; 2004 case bitc::ATTR_KIND_NO_DUPLICATE: 2005 return Attribute::NoDuplicate; 2006 case bitc::ATTR_KIND_NOFREE: 2007 return Attribute::NoFree; 2008 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 2009 return Attribute::NoImplicitFloat; 2010 case bitc::ATTR_KIND_NO_INLINE: 2011 return Attribute::NoInline; 2012 case bitc::ATTR_KIND_NO_RECURSE: 2013 return Attribute::NoRecurse; 2014 case bitc::ATTR_KIND_NO_MERGE: 2015 return Attribute::NoMerge; 2016 case bitc::ATTR_KIND_NON_LAZY_BIND: 2017 return Attribute::NonLazyBind; 2018 case bitc::ATTR_KIND_NON_NULL: 2019 return Attribute::NonNull; 2020 case bitc::ATTR_KIND_DEREFERENCEABLE: 2021 return Attribute::Dereferenceable; 2022 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 2023 return Attribute::DereferenceableOrNull; 2024 case bitc::ATTR_KIND_ALLOC_ALIGN: 2025 return Attribute::AllocAlign; 2026 case bitc::ATTR_KIND_ALLOC_KIND: 2027 return Attribute::AllocKind; 2028 case bitc::ATTR_KIND_ALLOC_SIZE: 2029 return Attribute::AllocSize; 2030 case bitc::ATTR_KIND_ALLOCATED_POINTER: 2031 return Attribute::AllocatedPointer; 2032 case bitc::ATTR_KIND_NO_RED_ZONE: 2033 return Attribute::NoRedZone; 2034 case bitc::ATTR_KIND_NO_RETURN: 2035 return Attribute::NoReturn; 2036 case bitc::ATTR_KIND_NOSYNC: 2037 return Attribute::NoSync; 2038 case bitc::ATTR_KIND_NOCF_CHECK: 2039 return Attribute::NoCfCheck; 2040 case bitc::ATTR_KIND_NO_PROFILE: 2041 return Attribute::NoProfile; 2042 case bitc::ATTR_KIND_SKIP_PROFILE: 2043 return Attribute::SkipProfile; 2044 case bitc::ATTR_KIND_NO_UNWIND: 2045 return Attribute::NoUnwind; 2046 case bitc::ATTR_KIND_NO_SANITIZE_BOUNDS: 2047 return Attribute::NoSanitizeBounds; 2048 case bitc::ATTR_KIND_NO_SANITIZE_COVERAGE: 2049 return Attribute::NoSanitizeCoverage; 2050 case bitc::ATTR_KIND_NULL_POINTER_IS_VALID: 2051 return Attribute::NullPointerIsValid; 2052 case bitc::ATTR_KIND_OPTIMIZE_FOR_DEBUGGING: 2053 return Attribute::OptimizeForDebugging; 2054 case bitc::ATTR_KIND_OPT_FOR_FUZZING: 2055 return Attribute::OptForFuzzing; 2056 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 2057 return Attribute::OptimizeForSize; 2058 case bitc::ATTR_KIND_OPTIMIZE_NONE: 2059 return Attribute::OptimizeNone; 2060 case bitc::ATTR_KIND_READ_NONE: 2061 return Attribute::ReadNone; 2062 case bitc::ATTR_KIND_READ_ONLY: 2063 return Attribute::ReadOnly; 2064 case bitc::ATTR_KIND_RETURNED: 2065 return Attribute::Returned; 2066 case bitc::ATTR_KIND_RETURNS_TWICE: 2067 return Attribute::ReturnsTwice; 2068 case bitc::ATTR_KIND_S_EXT: 2069 return Attribute::SExt; 2070 case bitc::ATTR_KIND_SPECULATABLE: 2071 return Attribute::Speculatable; 2072 case bitc::ATTR_KIND_STACK_ALIGNMENT: 2073 return Attribute::StackAlignment; 2074 case bitc::ATTR_KIND_STACK_PROTECT: 2075 return Attribute::StackProtect; 2076 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 2077 return Attribute::StackProtectReq; 2078 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 2079 return Attribute::StackProtectStrong; 2080 case bitc::ATTR_KIND_SAFESTACK: 2081 return Attribute::SafeStack; 2082 case bitc::ATTR_KIND_SHADOWCALLSTACK: 2083 return Attribute::ShadowCallStack; 2084 case bitc::ATTR_KIND_STRICT_FP: 2085 return Attribute::StrictFP; 2086 case bitc::ATTR_KIND_STRUCT_RET: 2087 return Attribute::StructRet; 2088 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 2089 return Attribute::SanitizeAddress; 2090 case bitc::ATTR_KIND_SANITIZE_HWADDRESS: 2091 return Attribute::SanitizeHWAddress; 2092 case bitc::ATTR_KIND_SANITIZE_THREAD: 2093 return Attribute::SanitizeThread; 2094 case bitc::ATTR_KIND_SANITIZE_MEMORY: 2095 return Attribute::SanitizeMemory; 2096 case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING: 2097 return Attribute::SpeculativeLoadHardening; 2098 case bitc::ATTR_KIND_SWIFT_ERROR: 2099 return Attribute::SwiftError; 2100 case bitc::ATTR_KIND_SWIFT_SELF: 2101 return Attribute::SwiftSelf; 2102 case bitc::ATTR_KIND_SWIFT_ASYNC: 2103 return Attribute::SwiftAsync; 2104 case bitc::ATTR_KIND_UW_TABLE: 2105 return Attribute::UWTable; 2106 case bitc::ATTR_KIND_VSCALE_RANGE: 2107 return Attribute::VScaleRange; 2108 case bitc::ATTR_KIND_WILLRETURN: 2109 return Attribute::WillReturn; 2110 case bitc::ATTR_KIND_WRITEONLY: 2111 return Attribute::WriteOnly; 2112 case bitc::ATTR_KIND_Z_EXT: 2113 return Attribute::ZExt; 2114 case bitc::ATTR_KIND_IMMARG: 2115 return Attribute::ImmArg; 2116 case bitc::ATTR_KIND_SANITIZE_MEMTAG: 2117 return Attribute::SanitizeMemTag; 2118 case bitc::ATTR_KIND_PREALLOCATED: 2119 return Attribute::Preallocated; 2120 case bitc::ATTR_KIND_NOUNDEF: 2121 return Attribute::NoUndef; 2122 case bitc::ATTR_KIND_BYREF: 2123 return Attribute::ByRef; 2124 case bitc::ATTR_KIND_MUSTPROGRESS: 2125 return Attribute::MustProgress; 2126 case bitc::ATTR_KIND_HOT: 2127 return Attribute::Hot; 2128 case bitc::ATTR_KIND_PRESPLIT_COROUTINE: 2129 return Attribute::PresplitCoroutine; 2130 case bitc::ATTR_KIND_WRITABLE: 2131 return Attribute::Writable; 2132 case bitc::ATTR_KIND_CORO_ONLY_DESTROY_WHEN_COMPLETE: 2133 return Attribute::CoroDestroyOnlyWhenComplete; 2134 case bitc::ATTR_KIND_DEAD_ON_UNWIND: 2135 return Attribute::DeadOnUnwind; 2136 case bitc::ATTR_KIND_RANGE: 2137 return Attribute::Range; 2138 } 2139 } 2140 2141 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent, 2142 MaybeAlign &Alignment) { 2143 // Note: Alignment in bitcode files is incremented by 1, so that zero 2144 // can be used for default alignment. 2145 if (Exponent > Value::MaxAlignmentExponent + 1) 2146 return error("Invalid alignment value"); 2147 Alignment = decodeMaybeAlign(Exponent); 2148 return Error::success(); 2149 } 2150 2151 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) { 2152 *Kind = getAttrFromCode(Code); 2153 if (*Kind == Attribute::None) 2154 return error("Unknown attribute kind (" + Twine(Code) + ")"); 2155 return Error::success(); 2156 } 2157 2158 static bool upgradeOldMemoryAttribute(MemoryEffects &ME, uint64_t EncodedKind) { 2159 switch (EncodedKind) { 2160 case bitc::ATTR_KIND_READ_NONE: 2161 ME &= MemoryEffects::none(); 2162 return true; 2163 case bitc::ATTR_KIND_READ_ONLY: 2164 ME &= MemoryEffects::readOnly(); 2165 return true; 2166 case bitc::ATTR_KIND_WRITEONLY: 2167 ME &= MemoryEffects::writeOnly(); 2168 return true; 2169 case bitc::ATTR_KIND_ARGMEMONLY: 2170 ME &= MemoryEffects::argMemOnly(); 2171 return true; 2172 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 2173 ME &= MemoryEffects::inaccessibleMemOnly(); 2174 return true; 2175 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 2176 ME &= MemoryEffects::inaccessibleOrArgMemOnly(); 2177 return true; 2178 default: 2179 return false; 2180 } 2181 } 2182 2183 Error BitcodeReader::parseAttributeGroupBlock() { 2184 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 2185 return Err; 2186 2187 if (!MAttributeGroups.empty()) 2188 return error("Invalid multiple blocks"); 2189 2190 SmallVector<uint64_t, 64> Record; 2191 2192 // Read all the records. 2193 while (true) { 2194 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2195 if (!MaybeEntry) 2196 return MaybeEntry.takeError(); 2197 BitstreamEntry Entry = MaybeEntry.get(); 2198 2199 switch (Entry.Kind) { 2200 case BitstreamEntry::SubBlock: // Handled for us already. 2201 case BitstreamEntry::Error: 2202 return error("Malformed block"); 2203 case BitstreamEntry::EndBlock: 2204 return Error::success(); 2205 case BitstreamEntry::Record: 2206 // The interesting case. 2207 break; 2208 } 2209 2210 // Read a record. 2211 Record.clear(); 2212 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2213 if (!MaybeRecord) 2214 return MaybeRecord.takeError(); 2215 switch (MaybeRecord.get()) { 2216 default: // Default behavior: ignore. 2217 break; 2218 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 2219 if (Record.size() < 3) 2220 return error("Invalid grp record"); 2221 2222 uint64_t GrpID = Record[0]; 2223 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 2224 2225 AttrBuilder B(Context); 2226 MemoryEffects ME = MemoryEffects::unknown(); 2227 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 2228 if (Record[i] == 0) { // Enum attribute 2229 Attribute::AttrKind Kind; 2230 uint64_t EncodedKind = Record[++i]; 2231 if (Idx == AttributeList::FunctionIndex && 2232 upgradeOldMemoryAttribute(ME, EncodedKind)) 2233 continue; 2234 2235 if (Error Err = parseAttrKind(EncodedKind, &Kind)) 2236 return Err; 2237 2238 // Upgrade old-style byval attribute to one with a type, even if it's 2239 // nullptr. We will have to insert the real type when we associate 2240 // this AttributeList with a function. 2241 if (Kind == Attribute::ByVal) 2242 B.addByValAttr(nullptr); 2243 else if (Kind == Attribute::StructRet) 2244 B.addStructRetAttr(nullptr); 2245 else if (Kind == Attribute::InAlloca) 2246 B.addInAllocaAttr(nullptr); 2247 else if (Kind == Attribute::UWTable) 2248 B.addUWTableAttr(UWTableKind::Default); 2249 else if (Attribute::isEnumAttrKind(Kind)) 2250 B.addAttribute(Kind); 2251 else 2252 return error("Not an enum attribute"); 2253 } else if (Record[i] == 1) { // Integer attribute 2254 Attribute::AttrKind Kind; 2255 if (Error Err = parseAttrKind(Record[++i], &Kind)) 2256 return Err; 2257 if (!Attribute::isIntAttrKind(Kind)) 2258 return error("Not an int attribute"); 2259 if (Kind == Attribute::Alignment) 2260 B.addAlignmentAttr(Record[++i]); 2261 else if (Kind == Attribute::StackAlignment) 2262 B.addStackAlignmentAttr(Record[++i]); 2263 else if (Kind == Attribute::Dereferenceable) 2264 B.addDereferenceableAttr(Record[++i]); 2265 else if (Kind == Attribute::DereferenceableOrNull) 2266 B.addDereferenceableOrNullAttr(Record[++i]); 2267 else if (Kind == Attribute::AllocSize) 2268 B.addAllocSizeAttrFromRawRepr(Record[++i]); 2269 else if (Kind == Attribute::VScaleRange) 2270 B.addVScaleRangeAttrFromRawRepr(Record[++i]); 2271 else if (Kind == Attribute::UWTable) 2272 B.addUWTableAttr(UWTableKind(Record[++i])); 2273 else if (Kind == Attribute::AllocKind) 2274 B.addAllocKindAttr(static_cast<AllocFnKind>(Record[++i])); 2275 else if (Kind == Attribute::Memory) 2276 B.addMemoryAttr(MemoryEffects::createFromIntValue(Record[++i])); 2277 else if (Kind == Attribute::NoFPClass) 2278 B.addNoFPClassAttr( 2279 static_cast<FPClassTest>(Record[++i] & fcAllFlags)); 2280 } else if (Record[i] == 3 || Record[i] == 4) { // String attribute 2281 bool HasValue = (Record[i++] == 4); 2282 SmallString<64> KindStr; 2283 SmallString<64> ValStr; 2284 2285 while (Record[i] != 0 && i != e) 2286 KindStr += Record[i++]; 2287 assert(Record[i] == 0 && "Kind string not null terminated"); 2288 2289 if (HasValue) { 2290 // Has a value associated with it. 2291 ++i; // Skip the '0' that terminates the "kind" string. 2292 while (Record[i] != 0 && i != e) 2293 ValStr += Record[i++]; 2294 assert(Record[i] == 0 && "Value string not null terminated"); 2295 } 2296 2297 B.addAttribute(KindStr.str(), ValStr.str()); 2298 } else if (Record[i] == 5 || Record[i] == 6) { 2299 bool HasType = Record[i] == 6; 2300 Attribute::AttrKind Kind; 2301 if (Error Err = parseAttrKind(Record[++i], &Kind)) 2302 return Err; 2303 if (!Attribute::isTypeAttrKind(Kind)) 2304 return error("Not a type attribute"); 2305 2306 B.addTypeAttr(Kind, HasType ? getTypeByID(Record[++i]) : nullptr); 2307 } else if (Record[i] == 7) { 2308 Attribute::AttrKind Kind; 2309 2310 i++; 2311 if (Error Err = parseAttrKind(Record[i++], &Kind)) 2312 return Err; 2313 if (!Attribute::isConstantRangeAttrKind(Kind)) 2314 return error("Not a ConstantRange attribute"); 2315 2316 Expected<ConstantRange> MaybeCR = readConstantRange(Record, i); 2317 if (!MaybeCR) 2318 return MaybeCR.takeError(); 2319 i--; 2320 2321 B.addConstantRangeAttr(Kind, MaybeCR.get()); 2322 } else { 2323 return error("Invalid attribute group entry"); 2324 } 2325 } 2326 2327 if (ME != MemoryEffects::unknown()) 2328 B.addMemoryAttr(ME); 2329 2330 UpgradeAttributes(B); 2331 MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B); 2332 break; 2333 } 2334 } 2335 } 2336 } 2337 2338 Error BitcodeReader::parseTypeTable() { 2339 if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 2340 return Err; 2341 2342 return parseTypeTableBody(); 2343 } 2344 2345 Error BitcodeReader::parseTypeTableBody() { 2346 if (!TypeList.empty()) 2347 return error("Invalid multiple blocks"); 2348 2349 SmallVector<uint64_t, 64> Record; 2350 unsigned NumRecords = 0; 2351 2352 SmallString<64> TypeName; 2353 2354 // Read all the records for this type table. 2355 while (true) { 2356 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2357 if (!MaybeEntry) 2358 return MaybeEntry.takeError(); 2359 BitstreamEntry Entry = MaybeEntry.get(); 2360 2361 switch (Entry.Kind) { 2362 case BitstreamEntry::SubBlock: // Handled for us already. 2363 case BitstreamEntry::Error: 2364 return error("Malformed block"); 2365 case BitstreamEntry::EndBlock: 2366 if (NumRecords != TypeList.size()) 2367 return error("Malformed block"); 2368 return Error::success(); 2369 case BitstreamEntry::Record: 2370 // The interesting case. 2371 break; 2372 } 2373 2374 // Read a record. 2375 Record.clear(); 2376 Type *ResultTy = nullptr; 2377 SmallVector<unsigned> ContainedIDs; 2378 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2379 if (!MaybeRecord) 2380 return MaybeRecord.takeError(); 2381 switch (MaybeRecord.get()) { 2382 default: 2383 return error("Invalid value"); 2384 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 2385 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 2386 // type list. This allows us to reserve space. 2387 if (Record.empty()) 2388 return error("Invalid numentry record"); 2389 TypeList.resize(Record[0]); 2390 continue; 2391 case bitc::TYPE_CODE_VOID: // VOID 2392 ResultTy = Type::getVoidTy(Context); 2393 break; 2394 case bitc::TYPE_CODE_HALF: // HALF 2395 ResultTy = Type::getHalfTy(Context); 2396 break; 2397 case bitc::TYPE_CODE_BFLOAT: // BFLOAT 2398 ResultTy = Type::getBFloatTy(Context); 2399 break; 2400 case bitc::TYPE_CODE_FLOAT: // FLOAT 2401 ResultTy = Type::getFloatTy(Context); 2402 break; 2403 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 2404 ResultTy = Type::getDoubleTy(Context); 2405 break; 2406 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 2407 ResultTy = Type::getX86_FP80Ty(Context); 2408 break; 2409 case bitc::TYPE_CODE_FP128: // FP128 2410 ResultTy = Type::getFP128Ty(Context); 2411 break; 2412 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 2413 ResultTy = Type::getPPC_FP128Ty(Context); 2414 break; 2415 case bitc::TYPE_CODE_LABEL: // LABEL 2416 ResultTy = Type::getLabelTy(Context); 2417 break; 2418 case bitc::TYPE_CODE_METADATA: // METADATA 2419 ResultTy = Type::getMetadataTy(Context); 2420 break; 2421 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 2422 ResultTy = Type::getX86_MMXTy(Context); 2423 break; 2424 case bitc::TYPE_CODE_X86_AMX: // X86_AMX 2425 ResultTy = Type::getX86_AMXTy(Context); 2426 break; 2427 case bitc::TYPE_CODE_TOKEN: // TOKEN 2428 ResultTy = Type::getTokenTy(Context); 2429 break; 2430 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 2431 if (Record.empty()) 2432 return error("Invalid integer record"); 2433 2434 uint64_t NumBits = Record[0]; 2435 if (NumBits < IntegerType::MIN_INT_BITS || 2436 NumBits > IntegerType::MAX_INT_BITS) 2437 return error("Bitwidth for integer type out of range"); 2438 ResultTy = IntegerType::get(Context, NumBits); 2439 break; 2440 } 2441 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 2442 // [pointee type, address space] 2443 if (Record.empty()) 2444 return error("Invalid pointer record"); 2445 unsigned AddressSpace = 0; 2446 if (Record.size() == 2) 2447 AddressSpace = Record[1]; 2448 ResultTy = getTypeByID(Record[0]); 2449 if (!ResultTy || 2450 !PointerType::isValidElementType(ResultTy)) 2451 return error("Invalid type"); 2452 ContainedIDs.push_back(Record[0]); 2453 ResultTy = PointerType::get(ResultTy, AddressSpace); 2454 break; 2455 } 2456 case bitc::TYPE_CODE_OPAQUE_POINTER: { // OPAQUE_POINTER: [addrspace] 2457 if (Record.size() != 1) 2458 return error("Invalid opaque pointer record"); 2459 unsigned AddressSpace = Record[0]; 2460 ResultTy = PointerType::get(Context, AddressSpace); 2461 break; 2462 } 2463 case bitc::TYPE_CODE_FUNCTION_OLD: { 2464 // Deprecated, but still needed to read old bitcode files. 2465 // FUNCTION: [vararg, attrid, retty, paramty x N] 2466 if (Record.size() < 3) 2467 return error("Invalid function record"); 2468 SmallVector<Type*, 8> ArgTys; 2469 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 2470 if (Type *T = getTypeByID(Record[i])) 2471 ArgTys.push_back(T); 2472 else 2473 break; 2474 } 2475 2476 ResultTy = getTypeByID(Record[2]); 2477 if (!ResultTy || ArgTys.size() < Record.size()-3) 2478 return error("Invalid type"); 2479 2480 ContainedIDs.append(Record.begin() + 2, Record.end()); 2481 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 2482 break; 2483 } 2484 case bitc::TYPE_CODE_FUNCTION: { 2485 // FUNCTION: [vararg, retty, paramty x N] 2486 if (Record.size() < 2) 2487 return error("Invalid function record"); 2488 SmallVector<Type*, 8> ArgTys; 2489 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 2490 if (Type *T = getTypeByID(Record[i])) { 2491 if (!FunctionType::isValidArgumentType(T)) 2492 return error("Invalid function argument type"); 2493 ArgTys.push_back(T); 2494 } 2495 else 2496 break; 2497 } 2498 2499 ResultTy = getTypeByID(Record[1]); 2500 if (!ResultTy || ArgTys.size() < Record.size()-2) 2501 return error("Invalid type"); 2502 2503 ContainedIDs.append(Record.begin() + 1, Record.end()); 2504 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 2505 break; 2506 } 2507 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 2508 if (Record.empty()) 2509 return error("Invalid anon struct record"); 2510 SmallVector<Type*, 8> EltTys; 2511 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 2512 if (Type *T = getTypeByID(Record[i])) 2513 EltTys.push_back(T); 2514 else 2515 break; 2516 } 2517 if (EltTys.size() != Record.size()-1) 2518 return error("Invalid type"); 2519 ContainedIDs.append(Record.begin() + 1, Record.end()); 2520 ResultTy = StructType::get(Context, EltTys, Record[0]); 2521 break; 2522 } 2523 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 2524 if (convertToString(Record, 0, TypeName)) 2525 return error("Invalid struct name record"); 2526 continue; 2527 2528 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 2529 if (Record.empty()) 2530 return error("Invalid named struct record"); 2531 2532 if (NumRecords >= TypeList.size()) 2533 return error("Invalid TYPE table"); 2534 2535 // Check to see if this was forward referenced, if so fill in the temp. 2536 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 2537 if (Res) { 2538 Res->setName(TypeName); 2539 TypeList[NumRecords] = nullptr; 2540 } else // Otherwise, create a new struct. 2541 Res = createIdentifiedStructType(Context, TypeName); 2542 TypeName.clear(); 2543 2544 SmallVector<Type*, 8> EltTys; 2545 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 2546 if (Type *T = getTypeByID(Record[i])) 2547 EltTys.push_back(T); 2548 else 2549 break; 2550 } 2551 if (EltTys.size() != Record.size()-1) 2552 return error("Invalid named struct record"); 2553 Res->setBody(EltTys, Record[0]); 2554 ContainedIDs.append(Record.begin() + 1, Record.end()); 2555 ResultTy = Res; 2556 break; 2557 } 2558 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 2559 if (Record.size() != 1) 2560 return error("Invalid opaque type record"); 2561 2562 if (NumRecords >= TypeList.size()) 2563 return error("Invalid TYPE table"); 2564 2565 // Check to see if this was forward referenced, if so fill in the temp. 2566 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 2567 if (Res) { 2568 Res->setName(TypeName); 2569 TypeList[NumRecords] = nullptr; 2570 } else // Otherwise, create a new struct with no body. 2571 Res = createIdentifiedStructType(Context, TypeName); 2572 TypeName.clear(); 2573 ResultTy = Res; 2574 break; 2575 } 2576 case bitc::TYPE_CODE_TARGET_TYPE: { // TARGET_TYPE: [NumTy, Tys..., Ints...] 2577 if (Record.size() < 1) 2578 return error("Invalid target extension type record"); 2579 2580 if (NumRecords >= TypeList.size()) 2581 return error("Invalid TYPE table"); 2582 2583 if (Record[0] >= Record.size()) 2584 return error("Too many type parameters"); 2585 2586 unsigned NumTys = Record[0]; 2587 SmallVector<Type *, 4> TypeParams; 2588 SmallVector<unsigned, 8> IntParams; 2589 for (unsigned i = 0; i < NumTys; i++) { 2590 if (Type *T = getTypeByID(Record[i + 1])) 2591 TypeParams.push_back(T); 2592 else 2593 return error("Invalid type"); 2594 } 2595 2596 for (unsigned i = NumTys + 1, e = Record.size(); i < e; i++) { 2597 if (Record[i] > UINT_MAX) 2598 return error("Integer parameter too large"); 2599 IntParams.push_back(Record[i]); 2600 } 2601 ResultTy = TargetExtType::get(Context, TypeName, TypeParams, IntParams); 2602 TypeName.clear(); 2603 break; 2604 } 2605 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 2606 if (Record.size() < 2) 2607 return error("Invalid array type record"); 2608 ResultTy = getTypeByID(Record[1]); 2609 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 2610 return error("Invalid type"); 2611 ContainedIDs.push_back(Record[1]); 2612 ResultTy = ArrayType::get(ResultTy, Record[0]); 2613 break; 2614 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] or 2615 // [numelts, eltty, scalable] 2616 if (Record.size() < 2) 2617 return error("Invalid vector type record"); 2618 if (Record[0] == 0) 2619 return error("Invalid vector length"); 2620 ResultTy = getTypeByID(Record[1]); 2621 if (!ResultTy || !VectorType::isValidElementType(ResultTy)) 2622 return error("Invalid type"); 2623 bool Scalable = Record.size() > 2 ? Record[2] : false; 2624 ContainedIDs.push_back(Record[1]); 2625 ResultTy = VectorType::get(ResultTy, Record[0], Scalable); 2626 break; 2627 } 2628 2629 if (NumRecords >= TypeList.size()) 2630 return error("Invalid TYPE table"); 2631 if (TypeList[NumRecords]) 2632 return error( 2633 "Invalid TYPE table: Only named structs can be forward referenced"); 2634 assert(ResultTy && "Didn't read a type?"); 2635 TypeList[NumRecords] = ResultTy; 2636 if (!ContainedIDs.empty()) 2637 ContainedTypeIDs[NumRecords] = std::move(ContainedIDs); 2638 ++NumRecords; 2639 } 2640 } 2641 2642 Error BitcodeReader::parseOperandBundleTags() { 2643 if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 2644 return Err; 2645 2646 if (!BundleTags.empty()) 2647 return error("Invalid multiple blocks"); 2648 2649 SmallVector<uint64_t, 64> Record; 2650 2651 while (true) { 2652 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2653 if (!MaybeEntry) 2654 return MaybeEntry.takeError(); 2655 BitstreamEntry Entry = MaybeEntry.get(); 2656 2657 switch (Entry.Kind) { 2658 case BitstreamEntry::SubBlock: // Handled for us already. 2659 case BitstreamEntry::Error: 2660 return error("Malformed block"); 2661 case BitstreamEntry::EndBlock: 2662 return Error::success(); 2663 case BitstreamEntry::Record: 2664 // The interesting case. 2665 break; 2666 } 2667 2668 // Tags are implicitly mapped to integers by their order. 2669 2670 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2671 if (!MaybeRecord) 2672 return MaybeRecord.takeError(); 2673 if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG) 2674 return error("Invalid operand bundle record"); 2675 2676 // OPERAND_BUNDLE_TAG: [strchr x N] 2677 BundleTags.emplace_back(); 2678 if (convertToString(Record, 0, BundleTags.back())) 2679 return error("Invalid operand bundle record"); 2680 Record.clear(); 2681 } 2682 } 2683 2684 Error BitcodeReader::parseSyncScopeNames() { 2685 if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID)) 2686 return Err; 2687 2688 if (!SSIDs.empty()) 2689 return error("Invalid multiple synchronization scope names blocks"); 2690 2691 SmallVector<uint64_t, 64> Record; 2692 while (true) { 2693 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2694 if (!MaybeEntry) 2695 return MaybeEntry.takeError(); 2696 BitstreamEntry Entry = MaybeEntry.get(); 2697 2698 switch (Entry.Kind) { 2699 case BitstreamEntry::SubBlock: // Handled for us already. 2700 case BitstreamEntry::Error: 2701 return error("Malformed block"); 2702 case BitstreamEntry::EndBlock: 2703 if (SSIDs.empty()) 2704 return error("Invalid empty synchronization scope names block"); 2705 return Error::success(); 2706 case BitstreamEntry::Record: 2707 // The interesting case. 2708 break; 2709 } 2710 2711 // Synchronization scope names are implicitly mapped to synchronization 2712 // scope IDs by their order. 2713 2714 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2715 if (!MaybeRecord) 2716 return MaybeRecord.takeError(); 2717 if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME) 2718 return error("Invalid sync scope record"); 2719 2720 SmallString<16> SSN; 2721 if (convertToString(Record, 0, SSN)) 2722 return error("Invalid sync scope record"); 2723 2724 SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN)); 2725 Record.clear(); 2726 } 2727 } 2728 2729 /// Associate a value with its name from the given index in the provided record. 2730 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 2731 unsigned NameIndex, Triple &TT) { 2732 SmallString<128> ValueName; 2733 if (convertToString(Record, NameIndex, ValueName)) 2734 return error("Invalid record"); 2735 unsigned ValueID = Record[0]; 2736 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 2737 return error("Invalid record"); 2738 Value *V = ValueList[ValueID]; 2739 2740 StringRef NameStr(ValueName.data(), ValueName.size()); 2741 if (NameStr.contains(0)) 2742 return error("Invalid value name"); 2743 V->setName(NameStr); 2744 auto *GO = dyn_cast<GlobalObject>(V); 2745 if (GO && ImplicitComdatObjects.contains(GO) && TT.supportsCOMDAT()) 2746 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 2747 return V; 2748 } 2749 2750 /// Helper to note and return the current location, and jump to the given 2751 /// offset. 2752 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset, 2753 BitstreamCursor &Stream) { 2754 // Save the current parsing location so we can jump back at the end 2755 // of the VST read. 2756 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 2757 if (Error JumpFailed = Stream.JumpToBit(Offset * 32)) 2758 return std::move(JumpFailed); 2759 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 2760 if (!MaybeEntry) 2761 return MaybeEntry.takeError(); 2762 if (MaybeEntry.get().Kind != BitstreamEntry::SubBlock || 2763 MaybeEntry.get().ID != bitc::VALUE_SYMTAB_BLOCK_ID) 2764 return error("Expected value symbol table subblock"); 2765 return CurrentBit; 2766 } 2767 2768 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, 2769 Function *F, 2770 ArrayRef<uint64_t> Record) { 2771 // Note that we subtract 1 here because the offset is relative to one word 2772 // before the start of the identification or module block, which was 2773 // historically always the start of the regular bitcode header. 2774 uint64_t FuncWordOffset = Record[1] - 1; 2775 uint64_t FuncBitOffset = FuncWordOffset * 32; 2776 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 2777 // Set the LastFunctionBlockBit to point to the last function block. 2778 // Later when parsing is resumed after function materialization, 2779 // we can simply skip that last function block. 2780 if (FuncBitOffset > LastFunctionBlockBit) 2781 LastFunctionBlockBit = FuncBitOffset; 2782 } 2783 2784 /// Read a new-style GlobalValue symbol table. 2785 Error BitcodeReader::parseGlobalValueSymbolTable() { 2786 unsigned FuncBitcodeOffsetDelta = 2787 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2788 2789 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2790 return Err; 2791 2792 SmallVector<uint64_t, 64> Record; 2793 while (true) { 2794 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2795 if (!MaybeEntry) 2796 return MaybeEntry.takeError(); 2797 BitstreamEntry Entry = MaybeEntry.get(); 2798 2799 switch (Entry.Kind) { 2800 case BitstreamEntry::SubBlock: 2801 case BitstreamEntry::Error: 2802 return error("Malformed block"); 2803 case BitstreamEntry::EndBlock: 2804 return Error::success(); 2805 case BitstreamEntry::Record: 2806 break; 2807 } 2808 2809 Record.clear(); 2810 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2811 if (!MaybeRecord) 2812 return MaybeRecord.takeError(); 2813 switch (MaybeRecord.get()) { 2814 case bitc::VST_CODE_FNENTRY: { // [valueid, offset] 2815 unsigned ValueID = Record[0]; 2816 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 2817 return error("Invalid value reference in symbol table"); 2818 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, 2819 cast<Function>(ValueList[ValueID]), Record); 2820 break; 2821 } 2822 } 2823 } 2824 } 2825 2826 /// Parse the value symbol table at either the current parsing location or 2827 /// at the given bit offset if provided. 2828 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 2829 uint64_t CurrentBit; 2830 // Pass in the Offset to distinguish between calling for the module-level 2831 // VST (where we want to jump to the VST offset) and the function-level 2832 // VST (where we don't). 2833 if (Offset > 0) { 2834 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 2835 if (!MaybeCurrentBit) 2836 return MaybeCurrentBit.takeError(); 2837 CurrentBit = MaybeCurrentBit.get(); 2838 // If this module uses a string table, read this as a module-level VST. 2839 if (UseStrtab) { 2840 if (Error Err = parseGlobalValueSymbolTable()) 2841 return Err; 2842 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2843 return JumpFailed; 2844 return Error::success(); 2845 } 2846 // Otherwise, the VST will be in a similar format to a function-level VST, 2847 // and will contain symbol names. 2848 } 2849 2850 // Compute the delta between the bitcode indices in the VST (the word offset 2851 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 2852 // expected by the lazy reader. The reader's EnterSubBlock expects to have 2853 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 2854 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 2855 // just before entering the VST subblock because: 1) the EnterSubBlock 2856 // changes the AbbrevID width; 2) the VST block is nested within the same 2857 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 2858 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 2859 // jump to the FUNCTION_BLOCK using this offset later, we don't want 2860 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 2861 unsigned FuncBitcodeOffsetDelta = 2862 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2863 2864 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2865 return Err; 2866 2867 SmallVector<uint64_t, 64> Record; 2868 2869 Triple TT(TheModule->getTargetTriple()); 2870 2871 // Read all the records for this value table. 2872 SmallString<128> ValueName; 2873 2874 while (true) { 2875 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2876 if (!MaybeEntry) 2877 return MaybeEntry.takeError(); 2878 BitstreamEntry Entry = MaybeEntry.get(); 2879 2880 switch (Entry.Kind) { 2881 case BitstreamEntry::SubBlock: // Handled for us already. 2882 case BitstreamEntry::Error: 2883 return error("Malformed block"); 2884 case BitstreamEntry::EndBlock: 2885 if (Offset > 0) 2886 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2887 return JumpFailed; 2888 return Error::success(); 2889 case BitstreamEntry::Record: 2890 // The interesting case. 2891 break; 2892 } 2893 2894 // Read a record. 2895 Record.clear(); 2896 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2897 if (!MaybeRecord) 2898 return MaybeRecord.takeError(); 2899 switch (MaybeRecord.get()) { 2900 default: // Default behavior: unknown type. 2901 break; 2902 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 2903 Expected<Value *> ValOrErr = recordValue(Record, 1, TT); 2904 if (Error Err = ValOrErr.takeError()) 2905 return Err; 2906 ValOrErr.get(); 2907 break; 2908 } 2909 case bitc::VST_CODE_FNENTRY: { 2910 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 2911 Expected<Value *> ValOrErr = recordValue(Record, 2, TT); 2912 if (Error Err = ValOrErr.takeError()) 2913 return Err; 2914 Value *V = ValOrErr.get(); 2915 2916 // Ignore function offsets emitted for aliases of functions in older 2917 // versions of LLVM. 2918 if (auto *F = dyn_cast<Function>(V)) 2919 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record); 2920 break; 2921 } 2922 case bitc::VST_CODE_BBENTRY: { 2923 if (convertToString(Record, 1, ValueName)) 2924 return error("Invalid bbentry record"); 2925 BasicBlock *BB = getBasicBlock(Record[0]); 2926 if (!BB) 2927 return error("Invalid bbentry record"); 2928 2929 BB->setName(StringRef(ValueName.data(), ValueName.size())); 2930 ValueName.clear(); 2931 break; 2932 } 2933 } 2934 } 2935 } 2936 2937 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2938 /// encoding. 2939 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2940 if ((V & 1) == 0) 2941 return V >> 1; 2942 if (V != 1) 2943 return -(V >> 1); 2944 // There is no such thing as -0 with integers. "-0" really means MININT. 2945 return 1ULL << 63; 2946 } 2947 2948 /// Resolve all of the initializers for global values and aliases that we can. 2949 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 2950 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist; 2951 std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInitWorklist; 2952 std::vector<FunctionOperandInfo> FunctionOperandWorklist; 2953 2954 GlobalInitWorklist.swap(GlobalInits); 2955 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 2956 FunctionOperandWorklist.swap(FunctionOperands); 2957 2958 while (!GlobalInitWorklist.empty()) { 2959 unsigned ValID = GlobalInitWorklist.back().second; 2960 if (ValID >= ValueList.size()) { 2961 // Not ready to resolve this yet, it requires something later in the file. 2962 GlobalInits.push_back(GlobalInitWorklist.back()); 2963 } else { 2964 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 2965 if (!MaybeC) 2966 return MaybeC.takeError(); 2967 GlobalInitWorklist.back().first->setInitializer(MaybeC.get()); 2968 } 2969 GlobalInitWorklist.pop_back(); 2970 } 2971 2972 while (!IndirectSymbolInitWorklist.empty()) { 2973 unsigned ValID = IndirectSymbolInitWorklist.back().second; 2974 if (ValID >= ValueList.size()) { 2975 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 2976 } else { 2977 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 2978 if (!MaybeC) 2979 return MaybeC.takeError(); 2980 Constant *C = MaybeC.get(); 2981 GlobalValue *GV = IndirectSymbolInitWorklist.back().first; 2982 if (auto *GA = dyn_cast<GlobalAlias>(GV)) { 2983 if (C->getType() != GV->getType()) 2984 return error("Alias and aliasee types don't match"); 2985 GA->setAliasee(C); 2986 } else if (auto *GI = dyn_cast<GlobalIFunc>(GV)) { 2987 GI->setResolver(C); 2988 } else { 2989 return error("Expected an alias or an ifunc"); 2990 } 2991 } 2992 IndirectSymbolInitWorklist.pop_back(); 2993 } 2994 2995 while (!FunctionOperandWorklist.empty()) { 2996 FunctionOperandInfo &Info = FunctionOperandWorklist.back(); 2997 if (Info.PersonalityFn) { 2998 unsigned ValID = Info.PersonalityFn - 1; 2999 if (ValID < ValueList.size()) { 3000 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 3001 if (!MaybeC) 3002 return MaybeC.takeError(); 3003 Info.F->setPersonalityFn(MaybeC.get()); 3004 Info.PersonalityFn = 0; 3005 } 3006 } 3007 if (Info.Prefix) { 3008 unsigned ValID = Info.Prefix - 1; 3009 if (ValID < ValueList.size()) { 3010 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 3011 if (!MaybeC) 3012 return MaybeC.takeError(); 3013 Info.F->setPrefixData(MaybeC.get()); 3014 Info.Prefix = 0; 3015 } 3016 } 3017 if (Info.Prologue) { 3018 unsigned ValID = Info.Prologue - 1; 3019 if (ValID < ValueList.size()) { 3020 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 3021 if (!MaybeC) 3022 return MaybeC.takeError(); 3023 Info.F->setPrologueData(MaybeC.get()); 3024 Info.Prologue = 0; 3025 } 3026 } 3027 if (Info.PersonalityFn || Info.Prefix || Info.Prologue) 3028 FunctionOperands.push_back(Info); 3029 FunctionOperandWorklist.pop_back(); 3030 } 3031 3032 return Error::success(); 3033 } 3034 3035 APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 3036 SmallVector<uint64_t, 8> Words(Vals.size()); 3037 transform(Vals, Words.begin(), 3038 BitcodeReader::decodeSignRotatedValue); 3039 3040 return APInt(TypeBits, Words); 3041 } 3042 3043 Error BitcodeReader::parseConstants() { 3044 if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 3045 return Err; 3046 3047 SmallVector<uint64_t, 64> Record; 3048 3049 // Read all the records for this value table. 3050 Type *CurTy = Type::getInt32Ty(Context); 3051 unsigned Int32TyID = getVirtualTypeID(CurTy); 3052 unsigned CurTyID = Int32TyID; 3053 Type *CurElemTy = nullptr; 3054 unsigned NextCstNo = ValueList.size(); 3055 3056 while (true) { 3057 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 3058 if (!MaybeEntry) 3059 return MaybeEntry.takeError(); 3060 BitstreamEntry Entry = MaybeEntry.get(); 3061 3062 switch (Entry.Kind) { 3063 case BitstreamEntry::SubBlock: // Handled for us already. 3064 case BitstreamEntry::Error: 3065 return error("Malformed block"); 3066 case BitstreamEntry::EndBlock: 3067 if (NextCstNo != ValueList.size()) 3068 return error("Invalid constant reference"); 3069 return Error::success(); 3070 case BitstreamEntry::Record: 3071 // The interesting case. 3072 break; 3073 } 3074 3075 // Read a record. 3076 Record.clear(); 3077 Type *VoidType = Type::getVoidTy(Context); 3078 Value *V = nullptr; 3079 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 3080 if (!MaybeBitCode) 3081 return MaybeBitCode.takeError(); 3082 switch (unsigned BitCode = MaybeBitCode.get()) { 3083 default: // Default behavior: unknown constant 3084 case bitc::CST_CODE_UNDEF: // UNDEF 3085 V = UndefValue::get(CurTy); 3086 break; 3087 case bitc::CST_CODE_POISON: // POISON 3088 V = PoisonValue::get(CurTy); 3089 break; 3090 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 3091 if (Record.empty()) 3092 return error("Invalid settype record"); 3093 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 3094 return error("Invalid settype record"); 3095 if (TypeList[Record[0]] == VoidType) 3096 return error("Invalid constant type"); 3097 CurTyID = Record[0]; 3098 CurTy = TypeList[CurTyID]; 3099 CurElemTy = getPtrElementTypeByID(CurTyID); 3100 continue; // Skip the ValueList manipulation. 3101 case bitc::CST_CODE_NULL: // NULL 3102 if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy()) 3103 return error("Invalid type for a constant null value"); 3104 if (auto *TETy = dyn_cast<TargetExtType>(CurTy)) 3105 if (!TETy->hasProperty(TargetExtType::HasZeroInit)) 3106 return error("Invalid type for a constant null value"); 3107 V = Constant::getNullValue(CurTy); 3108 break; 3109 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 3110 if (!CurTy->isIntOrIntVectorTy() || Record.empty()) 3111 return error("Invalid integer const record"); 3112 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 3113 break; 3114 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 3115 if (!CurTy->isIntOrIntVectorTy() || Record.empty()) 3116 return error("Invalid wide integer const record"); 3117 3118 auto *ScalarTy = cast<IntegerType>(CurTy->getScalarType()); 3119 APInt VInt = readWideAPInt(Record, ScalarTy->getBitWidth()); 3120 V = ConstantInt::get(CurTy, VInt); 3121 break; 3122 } 3123 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 3124 if (Record.empty()) 3125 return error("Invalid float const record"); 3126 3127 auto *ScalarTy = CurTy->getScalarType(); 3128 if (ScalarTy->isHalfTy()) 3129 V = ConstantFP::get(CurTy, APFloat(APFloat::IEEEhalf(), 3130 APInt(16, (uint16_t)Record[0]))); 3131 else if (ScalarTy->isBFloatTy()) 3132 V = ConstantFP::get( 3133 CurTy, APFloat(APFloat::BFloat(), APInt(16, (uint32_t)Record[0]))); 3134 else if (ScalarTy->isFloatTy()) 3135 V = ConstantFP::get(CurTy, APFloat(APFloat::IEEEsingle(), 3136 APInt(32, (uint32_t)Record[0]))); 3137 else if (ScalarTy->isDoubleTy()) 3138 V = ConstantFP::get( 3139 CurTy, APFloat(APFloat::IEEEdouble(), APInt(64, Record[0]))); 3140 else if (ScalarTy->isX86_FP80Ty()) { 3141 // Bits are not stored the same way as a normal i80 APInt, compensate. 3142 uint64_t Rearrange[2]; 3143 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 3144 Rearrange[1] = Record[0] >> 48; 3145 V = ConstantFP::get( 3146 CurTy, APFloat(APFloat::x87DoubleExtended(), APInt(80, Rearrange))); 3147 } else if (ScalarTy->isFP128Ty()) 3148 V = ConstantFP::get(CurTy, 3149 APFloat(APFloat::IEEEquad(), APInt(128, Record))); 3150 else if (ScalarTy->isPPC_FP128Ty()) 3151 V = ConstantFP::get( 3152 CurTy, APFloat(APFloat::PPCDoubleDouble(), APInt(128, Record))); 3153 else 3154 V = UndefValue::get(CurTy); 3155 break; 3156 } 3157 3158 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 3159 if (Record.empty()) 3160 return error("Invalid aggregate record"); 3161 3162 unsigned Size = Record.size(); 3163 SmallVector<unsigned, 16> Elts; 3164 for (unsigned i = 0; i != Size; ++i) 3165 Elts.push_back(Record[i]); 3166 3167 if (isa<StructType>(CurTy)) { 3168 V = BitcodeConstant::create( 3169 Alloc, CurTy, BitcodeConstant::ConstantStructOpcode, Elts); 3170 } else if (isa<ArrayType>(CurTy)) { 3171 V = BitcodeConstant::create(Alloc, CurTy, 3172 BitcodeConstant::ConstantArrayOpcode, Elts); 3173 } else if (isa<VectorType>(CurTy)) { 3174 V = BitcodeConstant::create( 3175 Alloc, CurTy, BitcodeConstant::ConstantVectorOpcode, Elts); 3176 } else { 3177 V = UndefValue::get(CurTy); 3178 } 3179 break; 3180 } 3181 case bitc::CST_CODE_STRING: // STRING: [values] 3182 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 3183 if (Record.empty()) 3184 return error("Invalid string record"); 3185 3186 SmallString<16> Elts(Record.begin(), Record.end()); 3187 V = ConstantDataArray::getString(Context, Elts, 3188 BitCode == bitc::CST_CODE_CSTRING); 3189 break; 3190 } 3191 case bitc::CST_CODE_DATA: {// DATA: [n x value] 3192 if (Record.empty()) 3193 return error("Invalid data record"); 3194 3195 Type *EltTy; 3196 if (auto *Array = dyn_cast<ArrayType>(CurTy)) 3197 EltTy = Array->getElementType(); 3198 else 3199 EltTy = cast<VectorType>(CurTy)->getElementType(); 3200 if (EltTy->isIntegerTy(8)) { 3201 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 3202 if (isa<VectorType>(CurTy)) 3203 V = ConstantDataVector::get(Context, Elts); 3204 else 3205 V = ConstantDataArray::get(Context, Elts); 3206 } else if (EltTy->isIntegerTy(16)) { 3207 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 3208 if (isa<VectorType>(CurTy)) 3209 V = ConstantDataVector::get(Context, Elts); 3210 else 3211 V = ConstantDataArray::get(Context, Elts); 3212 } else if (EltTy->isIntegerTy(32)) { 3213 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 3214 if (isa<VectorType>(CurTy)) 3215 V = ConstantDataVector::get(Context, Elts); 3216 else 3217 V = ConstantDataArray::get(Context, Elts); 3218 } else if (EltTy->isIntegerTy(64)) { 3219 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 3220 if (isa<VectorType>(CurTy)) 3221 V = ConstantDataVector::get(Context, Elts); 3222 else 3223 V = ConstantDataArray::get(Context, Elts); 3224 } else if (EltTy->isHalfTy()) { 3225 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 3226 if (isa<VectorType>(CurTy)) 3227 V = ConstantDataVector::getFP(EltTy, Elts); 3228 else 3229 V = ConstantDataArray::getFP(EltTy, Elts); 3230 } else if (EltTy->isBFloatTy()) { 3231 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 3232 if (isa<VectorType>(CurTy)) 3233 V = ConstantDataVector::getFP(EltTy, Elts); 3234 else 3235 V = ConstantDataArray::getFP(EltTy, Elts); 3236 } else if (EltTy->isFloatTy()) { 3237 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 3238 if (isa<VectorType>(CurTy)) 3239 V = ConstantDataVector::getFP(EltTy, Elts); 3240 else 3241 V = ConstantDataArray::getFP(EltTy, Elts); 3242 } else if (EltTy->isDoubleTy()) { 3243 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 3244 if (isa<VectorType>(CurTy)) 3245 V = ConstantDataVector::getFP(EltTy, Elts); 3246 else 3247 V = ConstantDataArray::getFP(EltTy, Elts); 3248 } else { 3249 return error("Invalid type for value"); 3250 } 3251 break; 3252 } 3253 case bitc::CST_CODE_CE_UNOP: { // CE_UNOP: [opcode, opval] 3254 if (Record.size() < 2) 3255 return error("Invalid unary op constexpr record"); 3256 int Opc = getDecodedUnaryOpcode(Record[0], CurTy); 3257 if (Opc < 0) { 3258 V = UndefValue::get(CurTy); // Unknown unop. 3259 } else { 3260 V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[1]); 3261 } 3262 break; 3263 } 3264 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 3265 if (Record.size() < 3) 3266 return error("Invalid binary op constexpr record"); 3267 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 3268 if (Opc < 0) { 3269 V = UndefValue::get(CurTy); // Unknown binop. 3270 } else { 3271 uint8_t Flags = 0; 3272 if (Record.size() >= 4) { 3273 if (Opc == Instruction::Add || 3274 Opc == Instruction::Sub || 3275 Opc == Instruction::Mul || 3276 Opc == Instruction::Shl) { 3277 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3278 Flags |= OverflowingBinaryOperator::NoSignedWrap; 3279 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3280 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 3281 } else if (Opc == Instruction::SDiv || 3282 Opc == Instruction::UDiv || 3283 Opc == Instruction::LShr || 3284 Opc == Instruction::AShr) { 3285 if (Record[3] & (1 << bitc::PEO_EXACT)) 3286 Flags |= PossiblyExactOperator::IsExact; 3287 } 3288 } 3289 V = BitcodeConstant::create(Alloc, CurTy, {(uint8_t)Opc, Flags}, 3290 {(unsigned)Record[1], (unsigned)Record[2]}); 3291 } 3292 break; 3293 } 3294 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 3295 if (Record.size() < 3) 3296 return error("Invalid cast constexpr record"); 3297 int Opc = getDecodedCastOpcode(Record[0]); 3298 if (Opc < 0) { 3299 V = UndefValue::get(CurTy); // Unknown cast. 3300 } else { 3301 unsigned OpTyID = Record[1]; 3302 Type *OpTy = getTypeByID(OpTyID); 3303 if (!OpTy) 3304 return error("Invalid cast constexpr record"); 3305 V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[2]); 3306 } 3307 break; 3308 } 3309 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands] 3310 case bitc::CST_CODE_CE_GEP: // [ty, n x operands] 3311 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x 3312 // operands] 3313 if (Record.size() < 2) 3314 return error("Constant GEP record must have at least two elements"); 3315 unsigned OpNum = 0; 3316 Type *PointeeType = nullptr; 3317 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX || 3318 Record.size() % 2) 3319 PointeeType = getTypeByID(Record[OpNum++]); 3320 3321 bool InBounds = false; 3322 std::optional<unsigned> InRangeIndex; 3323 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) { 3324 uint64_t Op = Record[OpNum++]; 3325 InBounds = Op & 1; 3326 InRangeIndex = Op >> 1; 3327 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 3328 InBounds = true; 3329 3330 SmallVector<unsigned, 16> Elts; 3331 unsigned BaseTypeID = Record[OpNum]; 3332 while (OpNum != Record.size()) { 3333 unsigned ElTyID = Record[OpNum++]; 3334 Type *ElTy = getTypeByID(ElTyID); 3335 if (!ElTy) 3336 return error("Invalid getelementptr constexpr record"); 3337 Elts.push_back(Record[OpNum++]); 3338 } 3339 3340 if (Elts.size() < 1) 3341 return error("Invalid gep with no operands"); 3342 3343 Type *BaseType = getTypeByID(BaseTypeID); 3344 if (isa<VectorType>(BaseType)) { 3345 BaseTypeID = getContainedTypeID(BaseTypeID, 0); 3346 BaseType = getTypeByID(BaseTypeID); 3347 } 3348 3349 PointerType *OrigPtrTy = dyn_cast_or_null<PointerType>(BaseType); 3350 if (!OrigPtrTy) 3351 return error("GEP base operand must be pointer or vector of pointer"); 3352 3353 if (!PointeeType) { 3354 PointeeType = getPtrElementTypeByID(BaseTypeID); 3355 if (!PointeeType) 3356 return error("Missing element type for old-style constant GEP"); 3357 } 3358 3359 V = BitcodeConstant::create(Alloc, CurTy, 3360 {Instruction::GetElementPtr, InBounds, 3361 InRangeIndex.value_or(-1), PointeeType}, 3362 Elts); 3363 break; 3364 } 3365 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 3366 if (Record.size() < 3) 3367 return error("Invalid select constexpr record"); 3368 3369 V = BitcodeConstant::create( 3370 Alloc, CurTy, Instruction::Select, 3371 {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]}); 3372 break; 3373 } 3374 case bitc::CST_CODE_CE_EXTRACTELT 3375 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 3376 if (Record.size() < 3) 3377 return error("Invalid extractelement constexpr record"); 3378 unsigned OpTyID = Record[0]; 3379 VectorType *OpTy = 3380 dyn_cast_or_null<VectorType>(getTypeByID(OpTyID)); 3381 if (!OpTy) 3382 return error("Invalid extractelement constexpr record"); 3383 unsigned IdxRecord; 3384 if (Record.size() == 4) { 3385 unsigned IdxTyID = Record[2]; 3386 Type *IdxTy = getTypeByID(IdxTyID); 3387 if (!IdxTy) 3388 return error("Invalid extractelement constexpr record"); 3389 IdxRecord = Record[3]; 3390 } else { 3391 // Deprecated, but still needed to read old bitcode files. 3392 IdxRecord = Record[2]; 3393 } 3394 V = BitcodeConstant::create(Alloc, CurTy, Instruction::ExtractElement, 3395 {(unsigned)Record[1], IdxRecord}); 3396 break; 3397 } 3398 case bitc::CST_CODE_CE_INSERTELT 3399 : { // CE_INSERTELT: [opval, opval, opty, opval] 3400 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 3401 if (Record.size() < 3 || !OpTy) 3402 return error("Invalid insertelement constexpr record"); 3403 unsigned IdxRecord; 3404 if (Record.size() == 4) { 3405 unsigned IdxTyID = Record[2]; 3406 Type *IdxTy = getTypeByID(IdxTyID); 3407 if (!IdxTy) 3408 return error("Invalid insertelement constexpr record"); 3409 IdxRecord = Record[3]; 3410 } else { 3411 // Deprecated, but still needed to read old bitcode files. 3412 IdxRecord = Record[2]; 3413 } 3414 V = BitcodeConstant::create( 3415 Alloc, CurTy, Instruction::InsertElement, 3416 {(unsigned)Record[0], (unsigned)Record[1], IdxRecord}); 3417 break; 3418 } 3419 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 3420 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 3421 if (Record.size() < 3 || !OpTy) 3422 return error("Invalid shufflevector constexpr record"); 3423 V = BitcodeConstant::create( 3424 Alloc, CurTy, Instruction::ShuffleVector, 3425 {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]}); 3426 break; 3427 } 3428 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 3429 VectorType *RTy = dyn_cast<VectorType>(CurTy); 3430 VectorType *OpTy = 3431 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 3432 if (Record.size() < 4 || !RTy || !OpTy) 3433 return error("Invalid shufflevector constexpr record"); 3434 V = BitcodeConstant::create( 3435 Alloc, CurTy, Instruction::ShuffleVector, 3436 {(unsigned)Record[1], (unsigned)Record[2], (unsigned)Record[3]}); 3437 break; 3438 } 3439 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 3440 if (Record.size() < 4) 3441 return error("Invalid cmp constexpt record"); 3442 unsigned OpTyID = Record[0]; 3443 Type *OpTy = getTypeByID(OpTyID); 3444 if (!OpTy) 3445 return error("Invalid cmp constexpr record"); 3446 V = BitcodeConstant::create( 3447 Alloc, CurTy, 3448 {(uint8_t)(OpTy->isFPOrFPVectorTy() ? Instruction::FCmp 3449 : Instruction::ICmp), 3450 (uint8_t)Record[3]}, 3451 {(unsigned)Record[1], (unsigned)Record[2]}); 3452 break; 3453 } 3454 // This maintains backward compatibility, pre-asm dialect keywords. 3455 // Deprecated, but still needed to read old bitcode files. 3456 case bitc::CST_CODE_INLINEASM_OLD: { 3457 if (Record.size() < 2) 3458 return error("Invalid inlineasm record"); 3459 std::string AsmStr, ConstrStr; 3460 bool HasSideEffects = Record[0] & 1; 3461 bool IsAlignStack = Record[0] >> 1; 3462 unsigned AsmStrSize = Record[1]; 3463 if (2+AsmStrSize >= Record.size()) 3464 return error("Invalid inlineasm record"); 3465 unsigned ConstStrSize = Record[2+AsmStrSize]; 3466 if (3+AsmStrSize+ConstStrSize > Record.size()) 3467 return error("Invalid inlineasm record"); 3468 3469 for (unsigned i = 0; i != AsmStrSize; ++i) 3470 AsmStr += (char)Record[2+i]; 3471 for (unsigned i = 0; i != ConstStrSize; ++i) 3472 ConstrStr += (char)Record[3+AsmStrSize+i]; 3473 UpgradeInlineAsmString(&AsmStr); 3474 if (!CurElemTy) 3475 return error("Missing element type for old-style inlineasm"); 3476 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr, 3477 HasSideEffects, IsAlignStack); 3478 break; 3479 } 3480 // This version adds support for the asm dialect keywords (e.g., 3481 // inteldialect). 3482 case bitc::CST_CODE_INLINEASM_OLD2: { 3483 if (Record.size() < 2) 3484 return error("Invalid inlineasm record"); 3485 std::string AsmStr, ConstrStr; 3486 bool HasSideEffects = Record[0] & 1; 3487 bool IsAlignStack = (Record[0] >> 1) & 1; 3488 unsigned AsmDialect = Record[0] >> 2; 3489 unsigned AsmStrSize = Record[1]; 3490 if (2+AsmStrSize >= Record.size()) 3491 return error("Invalid inlineasm record"); 3492 unsigned ConstStrSize = Record[2+AsmStrSize]; 3493 if (3+AsmStrSize+ConstStrSize > Record.size()) 3494 return error("Invalid inlineasm record"); 3495 3496 for (unsigned i = 0; i != AsmStrSize; ++i) 3497 AsmStr += (char)Record[2+i]; 3498 for (unsigned i = 0; i != ConstStrSize; ++i) 3499 ConstrStr += (char)Record[3+AsmStrSize+i]; 3500 UpgradeInlineAsmString(&AsmStr); 3501 if (!CurElemTy) 3502 return error("Missing element type for old-style inlineasm"); 3503 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr, 3504 HasSideEffects, IsAlignStack, 3505 InlineAsm::AsmDialect(AsmDialect)); 3506 break; 3507 } 3508 // This version adds support for the unwind keyword. 3509 case bitc::CST_CODE_INLINEASM_OLD3: { 3510 if (Record.size() < 2) 3511 return error("Invalid inlineasm record"); 3512 unsigned OpNum = 0; 3513 std::string AsmStr, ConstrStr; 3514 bool HasSideEffects = Record[OpNum] & 1; 3515 bool IsAlignStack = (Record[OpNum] >> 1) & 1; 3516 unsigned AsmDialect = (Record[OpNum] >> 2) & 1; 3517 bool CanThrow = (Record[OpNum] >> 3) & 1; 3518 ++OpNum; 3519 unsigned AsmStrSize = Record[OpNum]; 3520 ++OpNum; 3521 if (OpNum + AsmStrSize >= Record.size()) 3522 return error("Invalid inlineasm record"); 3523 unsigned ConstStrSize = Record[OpNum + AsmStrSize]; 3524 if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size()) 3525 return error("Invalid inlineasm record"); 3526 3527 for (unsigned i = 0; i != AsmStrSize; ++i) 3528 AsmStr += (char)Record[OpNum + i]; 3529 ++OpNum; 3530 for (unsigned i = 0; i != ConstStrSize; ++i) 3531 ConstrStr += (char)Record[OpNum + AsmStrSize + i]; 3532 UpgradeInlineAsmString(&AsmStr); 3533 if (!CurElemTy) 3534 return error("Missing element type for old-style inlineasm"); 3535 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr, 3536 HasSideEffects, IsAlignStack, 3537 InlineAsm::AsmDialect(AsmDialect), CanThrow); 3538 break; 3539 } 3540 // This version adds explicit function type. 3541 case bitc::CST_CODE_INLINEASM: { 3542 if (Record.size() < 3) 3543 return error("Invalid inlineasm record"); 3544 unsigned OpNum = 0; 3545 auto *FnTy = dyn_cast_or_null<FunctionType>(getTypeByID(Record[OpNum])); 3546 ++OpNum; 3547 if (!FnTy) 3548 return error("Invalid inlineasm record"); 3549 std::string AsmStr, ConstrStr; 3550 bool HasSideEffects = Record[OpNum] & 1; 3551 bool IsAlignStack = (Record[OpNum] >> 1) & 1; 3552 unsigned AsmDialect = (Record[OpNum] >> 2) & 1; 3553 bool CanThrow = (Record[OpNum] >> 3) & 1; 3554 ++OpNum; 3555 unsigned AsmStrSize = Record[OpNum]; 3556 ++OpNum; 3557 if (OpNum + AsmStrSize >= Record.size()) 3558 return error("Invalid inlineasm record"); 3559 unsigned ConstStrSize = Record[OpNum + AsmStrSize]; 3560 if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size()) 3561 return error("Invalid inlineasm record"); 3562 3563 for (unsigned i = 0; i != AsmStrSize; ++i) 3564 AsmStr += (char)Record[OpNum + i]; 3565 ++OpNum; 3566 for (unsigned i = 0; i != ConstStrSize; ++i) 3567 ConstrStr += (char)Record[OpNum + AsmStrSize + i]; 3568 UpgradeInlineAsmString(&AsmStr); 3569 V = InlineAsm::get(FnTy, AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 3570 InlineAsm::AsmDialect(AsmDialect), CanThrow); 3571 break; 3572 } 3573 case bitc::CST_CODE_BLOCKADDRESS:{ 3574 if (Record.size() < 3) 3575 return error("Invalid blockaddress record"); 3576 unsigned FnTyID = Record[0]; 3577 Type *FnTy = getTypeByID(FnTyID); 3578 if (!FnTy) 3579 return error("Invalid blockaddress record"); 3580 V = BitcodeConstant::create( 3581 Alloc, CurTy, 3582 {BitcodeConstant::BlockAddressOpcode, 0, (unsigned)Record[2]}, 3583 Record[1]); 3584 break; 3585 } 3586 case bitc::CST_CODE_DSO_LOCAL_EQUIVALENT: { 3587 if (Record.size() < 2) 3588 return error("Invalid dso_local record"); 3589 unsigned GVTyID = Record[0]; 3590 Type *GVTy = getTypeByID(GVTyID); 3591 if (!GVTy) 3592 return error("Invalid dso_local record"); 3593 V = BitcodeConstant::create( 3594 Alloc, CurTy, BitcodeConstant::DSOLocalEquivalentOpcode, Record[1]); 3595 break; 3596 } 3597 case bitc::CST_CODE_NO_CFI_VALUE: { 3598 if (Record.size() < 2) 3599 return error("Invalid no_cfi record"); 3600 unsigned GVTyID = Record[0]; 3601 Type *GVTy = getTypeByID(GVTyID); 3602 if (!GVTy) 3603 return error("Invalid no_cfi record"); 3604 V = BitcodeConstant::create(Alloc, CurTy, BitcodeConstant::NoCFIOpcode, 3605 Record[1]); 3606 break; 3607 } 3608 } 3609 3610 assert(V->getType() == getTypeByID(CurTyID) && "Incorrect result type ID"); 3611 if (Error Err = ValueList.assignValue(NextCstNo, V, CurTyID)) 3612 return Err; 3613 ++NextCstNo; 3614 } 3615 } 3616 3617 Error BitcodeReader::parseUseLists() { 3618 if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 3619 return Err; 3620 3621 // Read all the records. 3622 SmallVector<uint64_t, 64> Record; 3623 3624 while (true) { 3625 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 3626 if (!MaybeEntry) 3627 return MaybeEntry.takeError(); 3628 BitstreamEntry Entry = MaybeEntry.get(); 3629 3630 switch (Entry.Kind) { 3631 case BitstreamEntry::SubBlock: // Handled for us already. 3632 case BitstreamEntry::Error: 3633 return error("Malformed block"); 3634 case BitstreamEntry::EndBlock: 3635 return Error::success(); 3636 case BitstreamEntry::Record: 3637 // The interesting case. 3638 break; 3639 } 3640 3641 // Read a use list record. 3642 Record.clear(); 3643 bool IsBB = false; 3644 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 3645 if (!MaybeRecord) 3646 return MaybeRecord.takeError(); 3647 switch (MaybeRecord.get()) { 3648 default: // Default behavior: unknown type. 3649 break; 3650 case bitc::USELIST_CODE_BB: 3651 IsBB = true; 3652 [[fallthrough]]; 3653 case bitc::USELIST_CODE_DEFAULT: { 3654 unsigned RecordLength = Record.size(); 3655 if (RecordLength < 3) 3656 // Records should have at least an ID and two indexes. 3657 return error("Invalid record"); 3658 unsigned ID = Record.pop_back_val(); 3659 3660 Value *V; 3661 if (IsBB) { 3662 assert(ID < FunctionBBs.size() && "Basic block not found"); 3663 V = FunctionBBs[ID]; 3664 } else 3665 V = ValueList[ID]; 3666 unsigned NumUses = 0; 3667 SmallDenseMap<const Use *, unsigned, 16> Order; 3668 for (const Use &U : V->materialized_uses()) { 3669 if (++NumUses > Record.size()) 3670 break; 3671 Order[&U] = Record[NumUses - 1]; 3672 } 3673 if (Order.size() != Record.size() || NumUses > Record.size()) 3674 // Mismatches can happen if the functions are being materialized lazily 3675 // (out-of-order), or a value has been upgraded. 3676 break; 3677 3678 V->sortUseList([&](const Use &L, const Use &R) { 3679 return Order.lookup(&L) < Order.lookup(&R); 3680 }); 3681 break; 3682 } 3683 } 3684 } 3685 } 3686 3687 /// When we see the block for metadata, remember where it is and then skip it. 3688 /// This lets us lazily deserialize the metadata. 3689 Error BitcodeReader::rememberAndSkipMetadata() { 3690 // Save the current stream state. 3691 uint64_t CurBit = Stream.GetCurrentBitNo(); 3692 DeferredMetadataInfo.push_back(CurBit); 3693 3694 // Skip over the block for now. 3695 if (Error Err = Stream.SkipBlock()) 3696 return Err; 3697 return Error::success(); 3698 } 3699 3700 Error BitcodeReader::materializeMetadata() { 3701 for (uint64_t BitPos : DeferredMetadataInfo) { 3702 // Move the bit stream to the saved position. 3703 if (Error JumpFailed = Stream.JumpToBit(BitPos)) 3704 return JumpFailed; 3705 if (Error Err = MDLoader->parseModuleMetadata()) 3706 return Err; 3707 } 3708 3709 // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level 3710 // metadata. Only upgrade if the new option doesn't exist to avoid upgrade 3711 // multiple times. 3712 if (!TheModule->getNamedMetadata("llvm.linker.options")) { 3713 if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) { 3714 NamedMDNode *LinkerOpts = 3715 TheModule->getOrInsertNamedMetadata("llvm.linker.options"); 3716 for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands()) 3717 LinkerOpts->addOperand(cast<MDNode>(MDOptions)); 3718 } 3719 } 3720 3721 DeferredMetadataInfo.clear(); 3722 return Error::success(); 3723 } 3724 3725 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 3726 3727 /// When we see the block for a function body, remember where it is and then 3728 /// skip it. This lets us lazily deserialize the functions. 3729 Error BitcodeReader::rememberAndSkipFunctionBody() { 3730 // Get the function we are talking about. 3731 if (FunctionsWithBodies.empty()) 3732 return error("Insufficient function protos"); 3733 3734 Function *Fn = FunctionsWithBodies.back(); 3735 FunctionsWithBodies.pop_back(); 3736 3737 // Save the current stream state. 3738 uint64_t CurBit = Stream.GetCurrentBitNo(); 3739 assert( 3740 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 3741 "Mismatch between VST and scanned function offsets"); 3742 DeferredFunctionInfo[Fn] = CurBit; 3743 3744 // Skip over the function block for now. 3745 if (Error Err = Stream.SkipBlock()) 3746 return Err; 3747 return Error::success(); 3748 } 3749 3750 Error BitcodeReader::globalCleanup() { 3751 // Patch the initializers for globals and aliases up. 3752 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3753 return Err; 3754 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 3755 return error("Malformed global initializer set"); 3756 3757 // Look for intrinsic functions which need to be upgraded at some point 3758 // and functions that need to have their function attributes upgraded. 3759 for (Function &F : *TheModule) { 3760 MDLoader->upgradeDebugIntrinsics(F); 3761 Function *NewFn; 3762 if (UpgradeIntrinsicFunction(&F, NewFn)) 3763 UpgradedIntrinsics[&F] = NewFn; 3764 // Look for functions that rely on old function attribute behavior. 3765 UpgradeFunctionAttributes(F); 3766 } 3767 3768 // Look for global variables which need to be renamed. 3769 std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables; 3770 for (GlobalVariable &GV : TheModule->globals()) 3771 if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV)) 3772 UpgradedVariables.emplace_back(&GV, Upgraded); 3773 for (auto &Pair : UpgradedVariables) { 3774 Pair.first->eraseFromParent(); 3775 TheModule->insertGlobalVariable(Pair.second); 3776 } 3777 3778 // Force deallocation of memory for these vectors to favor the client that 3779 // want lazy deserialization. 3780 std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits); 3781 std::vector<std::pair<GlobalValue *, unsigned>>().swap(IndirectSymbolInits); 3782 return Error::success(); 3783 } 3784 3785 /// Support for lazy parsing of function bodies. This is required if we 3786 /// either have an old bitcode file without a VST forward declaration record, 3787 /// or if we have an anonymous function being materialized, since anonymous 3788 /// functions do not have a name and are therefore not in the VST. 3789 Error BitcodeReader::rememberAndSkipFunctionBodies() { 3790 if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit)) 3791 return JumpFailed; 3792 3793 if (Stream.AtEndOfStream()) 3794 return error("Could not find function in stream"); 3795 3796 if (!SeenFirstFunctionBody) 3797 return error("Trying to materialize functions before seeing function blocks"); 3798 3799 // An old bitcode file with the symbol table at the end would have 3800 // finished the parse greedily. 3801 assert(SeenValueSymbolTable); 3802 3803 SmallVector<uint64_t, 64> Record; 3804 3805 while (true) { 3806 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3807 if (!MaybeEntry) 3808 return MaybeEntry.takeError(); 3809 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3810 3811 switch (Entry.Kind) { 3812 default: 3813 return error("Expect SubBlock"); 3814 case BitstreamEntry::SubBlock: 3815 switch (Entry.ID) { 3816 default: 3817 return error("Expect function block"); 3818 case bitc::FUNCTION_BLOCK_ID: 3819 if (Error Err = rememberAndSkipFunctionBody()) 3820 return Err; 3821 NextUnreadBit = Stream.GetCurrentBitNo(); 3822 return Error::success(); 3823 } 3824 } 3825 } 3826 } 3827 3828 Error BitcodeReaderBase::readBlockInfo() { 3829 Expected<std::optional<BitstreamBlockInfo>> MaybeNewBlockInfo = 3830 Stream.ReadBlockInfoBlock(); 3831 if (!MaybeNewBlockInfo) 3832 return MaybeNewBlockInfo.takeError(); 3833 std::optional<BitstreamBlockInfo> NewBlockInfo = 3834 std::move(MaybeNewBlockInfo.get()); 3835 if (!NewBlockInfo) 3836 return error("Malformed block"); 3837 BlockInfo = std::move(*NewBlockInfo); 3838 return Error::success(); 3839 } 3840 3841 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) { 3842 // v1: [selection_kind, name] 3843 // v2: [strtab_offset, strtab_size, selection_kind] 3844 StringRef Name; 3845 std::tie(Name, Record) = readNameFromStrtab(Record); 3846 3847 if (Record.empty()) 3848 return error("Invalid record"); 3849 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 3850 std::string OldFormatName; 3851 if (!UseStrtab) { 3852 if (Record.size() < 2) 3853 return error("Invalid record"); 3854 unsigned ComdatNameSize = Record[1]; 3855 if (ComdatNameSize > Record.size() - 2) 3856 return error("Comdat name size too large"); 3857 OldFormatName.reserve(ComdatNameSize); 3858 for (unsigned i = 0; i != ComdatNameSize; ++i) 3859 OldFormatName += (char)Record[2 + i]; 3860 Name = OldFormatName; 3861 } 3862 Comdat *C = TheModule->getOrInsertComdat(Name); 3863 C->setSelectionKind(SK); 3864 ComdatList.push_back(C); 3865 return Error::success(); 3866 } 3867 3868 static void inferDSOLocal(GlobalValue *GV) { 3869 // infer dso_local from linkage and visibility if it is not encoded. 3870 if (GV->hasLocalLinkage() || 3871 (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())) 3872 GV->setDSOLocal(true); 3873 } 3874 3875 GlobalValue::SanitizerMetadata deserializeSanitizerMetadata(unsigned V) { 3876 GlobalValue::SanitizerMetadata Meta; 3877 if (V & (1 << 0)) 3878 Meta.NoAddress = true; 3879 if (V & (1 << 1)) 3880 Meta.NoHWAddress = true; 3881 if (V & (1 << 2)) 3882 Meta.Memtag = true; 3883 if (V & (1 << 3)) 3884 Meta.IsDynInit = true; 3885 return Meta; 3886 } 3887 3888 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) { 3889 // v1: [pointer type, isconst, initid, linkage, alignment, section, 3890 // visibility, threadlocal, unnamed_addr, externally_initialized, 3891 // dllstorageclass, comdat, attributes, preemption specifier, 3892 // partition strtab offset, partition strtab size] (name in VST) 3893 // v2: [strtab_offset, strtab_size, v1] 3894 // v3: [v2, code_model] 3895 StringRef Name; 3896 std::tie(Name, Record) = readNameFromStrtab(Record); 3897 3898 if (Record.size() < 6) 3899 return error("Invalid record"); 3900 unsigned TyID = Record[0]; 3901 Type *Ty = getTypeByID(TyID); 3902 if (!Ty) 3903 return error("Invalid record"); 3904 bool isConstant = Record[1] & 1; 3905 bool explicitType = Record[1] & 2; 3906 unsigned AddressSpace; 3907 if (explicitType) { 3908 AddressSpace = Record[1] >> 2; 3909 } else { 3910 if (!Ty->isPointerTy()) 3911 return error("Invalid type for value"); 3912 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 3913 TyID = getContainedTypeID(TyID); 3914 Ty = getTypeByID(TyID); 3915 if (!Ty) 3916 return error("Missing element type for old-style global"); 3917 } 3918 3919 uint64_t RawLinkage = Record[3]; 3920 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 3921 MaybeAlign Alignment; 3922 if (Error Err = parseAlignmentValue(Record[4], Alignment)) 3923 return Err; 3924 std::string Section; 3925 if (Record[5]) { 3926 if (Record[5] - 1 >= SectionTable.size()) 3927 return error("Invalid ID"); 3928 Section = SectionTable[Record[5] - 1]; 3929 } 3930 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 3931 // Local linkage must have default visibility. 3932 // auto-upgrade `hidden` and `protected` for old bitcode. 3933 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 3934 Visibility = getDecodedVisibility(Record[6]); 3935 3936 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 3937 if (Record.size() > 7) 3938 TLM = getDecodedThreadLocalMode(Record[7]); 3939 3940 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3941 if (Record.size() > 8) 3942 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); 3943 3944 bool ExternallyInitialized = false; 3945 if (Record.size() > 9) 3946 ExternallyInitialized = Record[9]; 3947 3948 GlobalVariable *NewGV = 3949 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name, 3950 nullptr, TLM, AddressSpace, ExternallyInitialized); 3951 if (Alignment) 3952 NewGV->setAlignment(*Alignment); 3953 if (!Section.empty()) 3954 NewGV->setSection(Section); 3955 NewGV->setVisibility(Visibility); 3956 NewGV->setUnnamedAddr(UnnamedAddr); 3957 3958 if (Record.size() > 10) { 3959 // A GlobalValue with local linkage cannot have a DLL storage class. 3960 if (!NewGV->hasLocalLinkage()) { 3961 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 3962 } 3963 } else { 3964 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 3965 } 3966 3967 ValueList.push_back(NewGV, getVirtualTypeID(NewGV->getType(), TyID)); 3968 3969 // Remember which value to use for the global initializer. 3970 if (unsigned InitID = Record[2]) 3971 GlobalInits.push_back(std::make_pair(NewGV, InitID - 1)); 3972 3973 if (Record.size() > 11) { 3974 if (unsigned ComdatID = Record[11]) { 3975 if (ComdatID > ComdatList.size()) 3976 return error("Invalid global variable comdat ID"); 3977 NewGV->setComdat(ComdatList[ComdatID - 1]); 3978 } 3979 } else if (hasImplicitComdat(RawLinkage)) { 3980 ImplicitComdatObjects.insert(NewGV); 3981 } 3982 3983 if (Record.size() > 12) { 3984 auto AS = getAttributes(Record[12]).getFnAttrs(); 3985 NewGV->setAttributes(AS); 3986 } 3987 3988 if (Record.size() > 13) { 3989 NewGV->setDSOLocal(getDecodedDSOLocal(Record[13])); 3990 } 3991 inferDSOLocal(NewGV); 3992 3993 // Check whether we have enough values to read a partition name. 3994 if (Record.size() > 15) 3995 NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15])); 3996 3997 if (Record.size() > 16 && Record[16]) { 3998 llvm::GlobalValue::SanitizerMetadata Meta = 3999 deserializeSanitizerMetadata(Record[16]); 4000 NewGV->setSanitizerMetadata(Meta); 4001 } 4002 4003 if (Record.size() > 17 && Record[17]) { 4004 if (auto CM = getDecodedCodeModel(Record[17])) 4005 NewGV->setCodeModel(*CM); 4006 else 4007 return error("Invalid global variable code model"); 4008 } 4009 4010 return Error::success(); 4011 } 4012 4013 void BitcodeReader::callValueTypeCallback(Value *F, unsigned TypeID) { 4014 if (ValueTypeCallback) { 4015 (*ValueTypeCallback)( 4016 F, TypeID, [this](unsigned I) { return getTypeByID(I); }, 4017 [this](unsigned I, unsigned J) { return getContainedTypeID(I, J); }); 4018 } 4019 } 4020 4021 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) { 4022 // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section, 4023 // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat, 4024 // prefixdata, personalityfn, preemption specifier, addrspace] (name in VST) 4025 // v2: [strtab_offset, strtab_size, v1] 4026 StringRef Name; 4027 std::tie(Name, Record) = readNameFromStrtab(Record); 4028 4029 if (Record.size() < 8) 4030 return error("Invalid record"); 4031 unsigned FTyID = Record[0]; 4032 Type *FTy = getTypeByID(FTyID); 4033 if (!FTy) 4034 return error("Invalid record"); 4035 if (isa<PointerType>(FTy)) { 4036 FTyID = getContainedTypeID(FTyID, 0); 4037 FTy = getTypeByID(FTyID); 4038 if (!FTy) 4039 return error("Missing element type for old-style function"); 4040 } 4041 4042 if (!isa<FunctionType>(FTy)) 4043 return error("Invalid type for value"); 4044 auto CC = static_cast<CallingConv::ID>(Record[1]); 4045 if (CC & ~CallingConv::MaxID) 4046 return error("Invalid calling convention ID"); 4047 4048 unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace(); 4049 if (Record.size() > 16) 4050 AddrSpace = Record[16]; 4051 4052 Function *Func = 4053 Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage, 4054 AddrSpace, Name, TheModule); 4055 4056 assert(Func->getFunctionType() == FTy && 4057 "Incorrect fully specified type provided for function"); 4058 FunctionTypeIDs[Func] = FTyID; 4059 4060 Func->setCallingConv(CC); 4061 bool isProto = Record[2]; 4062 uint64_t RawLinkage = Record[3]; 4063 Func->setLinkage(getDecodedLinkage(RawLinkage)); 4064 Func->setAttributes(getAttributes(Record[4])); 4065 callValueTypeCallback(Func, FTyID); 4066 4067 // Upgrade any old-style byval or sret without a type by propagating the 4068 // argument's pointee type. There should be no opaque pointers where the byval 4069 // type is implicit. 4070 for (unsigned i = 0; i != Func->arg_size(); ++i) { 4071 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet, 4072 Attribute::InAlloca}) { 4073 if (!Func->hasParamAttribute(i, Kind)) 4074 continue; 4075 4076 if (Func->getParamAttribute(i, Kind).getValueAsType()) 4077 continue; 4078 4079 Func->removeParamAttr(i, Kind); 4080 4081 unsigned ParamTypeID = getContainedTypeID(FTyID, i + 1); 4082 Type *PtrEltTy = getPtrElementTypeByID(ParamTypeID); 4083 if (!PtrEltTy) 4084 return error("Missing param element type for attribute upgrade"); 4085 4086 Attribute NewAttr; 4087 switch (Kind) { 4088 case Attribute::ByVal: 4089 NewAttr = Attribute::getWithByValType(Context, PtrEltTy); 4090 break; 4091 case Attribute::StructRet: 4092 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy); 4093 break; 4094 case Attribute::InAlloca: 4095 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy); 4096 break; 4097 default: 4098 llvm_unreachable("not an upgraded type attribute"); 4099 } 4100 4101 Func->addParamAttr(i, NewAttr); 4102 } 4103 } 4104 4105 if (Func->getCallingConv() == CallingConv::X86_INTR && 4106 !Func->arg_empty() && !Func->hasParamAttribute(0, Attribute::ByVal)) { 4107 unsigned ParamTypeID = getContainedTypeID(FTyID, 1); 4108 Type *ByValTy = getPtrElementTypeByID(ParamTypeID); 4109 if (!ByValTy) 4110 return error("Missing param element type for x86_intrcc upgrade"); 4111 Attribute NewAttr = Attribute::getWithByValType(Context, ByValTy); 4112 Func->addParamAttr(0, NewAttr); 4113 } 4114 4115 MaybeAlign Alignment; 4116 if (Error Err = parseAlignmentValue(Record[5], Alignment)) 4117 return Err; 4118 if (Alignment) 4119 Func->setAlignment(*Alignment); 4120 if (Record[6]) { 4121 if (Record[6] - 1 >= SectionTable.size()) 4122 return error("Invalid ID"); 4123 Func->setSection(SectionTable[Record[6] - 1]); 4124 } 4125 // Local linkage must have default visibility. 4126 // auto-upgrade `hidden` and `protected` for old bitcode. 4127 if (!Func->hasLocalLinkage()) 4128 Func->setVisibility(getDecodedVisibility(Record[7])); 4129 if (Record.size() > 8 && Record[8]) { 4130 if (Record[8] - 1 >= GCTable.size()) 4131 return error("Invalid ID"); 4132 Func->setGC(GCTable[Record[8] - 1]); 4133 } 4134 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 4135 if (Record.size() > 9) 4136 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); 4137 Func->setUnnamedAddr(UnnamedAddr); 4138 4139 FunctionOperandInfo OperandInfo = {Func, 0, 0, 0}; 4140 if (Record.size() > 10) 4141 OperandInfo.Prologue = Record[10]; 4142 4143 if (Record.size() > 11) { 4144 // A GlobalValue with local linkage cannot have a DLL storage class. 4145 if (!Func->hasLocalLinkage()) { 4146 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 4147 } 4148 } else { 4149 upgradeDLLImportExportLinkage(Func, RawLinkage); 4150 } 4151 4152 if (Record.size() > 12) { 4153 if (unsigned ComdatID = Record[12]) { 4154 if (ComdatID > ComdatList.size()) 4155 return error("Invalid function comdat ID"); 4156 Func->setComdat(ComdatList[ComdatID - 1]); 4157 } 4158 } else if (hasImplicitComdat(RawLinkage)) { 4159 ImplicitComdatObjects.insert(Func); 4160 } 4161 4162 if (Record.size() > 13) 4163 OperandInfo.Prefix = Record[13]; 4164 4165 if (Record.size() > 14) 4166 OperandInfo.PersonalityFn = Record[14]; 4167 4168 if (Record.size() > 15) { 4169 Func->setDSOLocal(getDecodedDSOLocal(Record[15])); 4170 } 4171 inferDSOLocal(Func); 4172 4173 // Record[16] is the address space number. 4174 4175 // Check whether we have enough values to read a partition name. Also make 4176 // sure Strtab has enough values. 4177 if (Record.size() > 18 && Strtab.data() && 4178 Record[17] + Record[18] <= Strtab.size()) { 4179 Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18])); 4180 } 4181 4182 ValueList.push_back(Func, getVirtualTypeID(Func->getType(), FTyID)); 4183 4184 if (OperandInfo.PersonalityFn || OperandInfo.Prefix || OperandInfo.Prologue) 4185 FunctionOperands.push_back(OperandInfo); 4186 4187 // If this is a function with a body, remember the prototype we are 4188 // creating now, so that we can match up the body with them later. 4189 if (!isProto) { 4190 Func->setIsMaterializable(true); 4191 FunctionsWithBodies.push_back(Func); 4192 DeferredFunctionInfo[Func] = 0; 4193 } 4194 return Error::success(); 4195 } 4196 4197 Error BitcodeReader::parseGlobalIndirectSymbolRecord( 4198 unsigned BitCode, ArrayRef<uint64_t> Record) { 4199 // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST) 4200 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 4201 // dllstorageclass, threadlocal, unnamed_addr, 4202 // preemption specifier] (name in VST) 4203 // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage, 4204 // visibility, dllstorageclass, threadlocal, unnamed_addr, 4205 // preemption specifier] (name in VST) 4206 // v2: [strtab_offset, strtab_size, v1] 4207 StringRef Name; 4208 std::tie(Name, Record) = readNameFromStrtab(Record); 4209 4210 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 4211 if (Record.size() < (3 + (unsigned)NewRecord)) 4212 return error("Invalid record"); 4213 unsigned OpNum = 0; 4214 unsigned TypeID = Record[OpNum++]; 4215 Type *Ty = getTypeByID(TypeID); 4216 if (!Ty) 4217 return error("Invalid record"); 4218 4219 unsigned AddrSpace; 4220 if (!NewRecord) { 4221 auto *PTy = dyn_cast<PointerType>(Ty); 4222 if (!PTy) 4223 return error("Invalid type for value"); 4224 AddrSpace = PTy->getAddressSpace(); 4225 TypeID = getContainedTypeID(TypeID); 4226 Ty = getTypeByID(TypeID); 4227 if (!Ty) 4228 return error("Missing element type for old-style indirect symbol"); 4229 } else { 4230 AddrSpace = Record[OpNum++]; 4231 } 4232 4233 auto Val = Record[OpNum++]; 4234 auto Linkage = Record[OpNum++]; 4235 GlobalValue *NewGA; 4236 if (BitCode == bitc::MODULE_CODE_ALIAS || 4237 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 4238 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 4239 TheModule); 4240 else 4241 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 4242 nullptr, TheModule); 4243 4244 // Local linkage must have default visibility. 4245 // auto-upgrade `hidden` and `protected` for old bitcode. 4246 if (OpNum != Record.size()) { 4247 auto VisInd = OpNum++; 4248 if (!NewGA->hasLocalLinkage()) 4249 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 4250 } 4251 if (BitCode == bitc::MODULE_CODE_ALIAS || 4252 BitCode == bitc::MODULE_CODE_ALIAS_OLD) { 4253 if (OpNum != Record.size()) { 4254 auto S = Record[OpNum++]; 4255 // A GlobalValue with local linkage cannot have a DLL storage class. 4256 if (!NewGA->hasLocalLinkage()) 4257 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(S)); 4258 } 4259 else 4260 upgradeDLLImportExportLinkage(NewGA, Linkage); 4261 if (OpNum != Record.size()) 4262 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 4263 if (OpNum != Record.size()) 4264 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); 4265 } 4266 if (OpNum != Record.size()) 4267 NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++])); 4268 inferDSOLocal(NewGA); 4269 4270 // Check whether we have enough values to read a partition name. 4271 if (OpNum + 1 < Record.size()) { 4272 // Check Strtab has enough values for the partition. 4273 if (Record[OpNum] + Record[OpNum + 1] > Strtab.size()) 4274 return error("Malformed partition, too large."); 4275 NewGA->setPartition( 4276 StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1])); 4277 OpNum += 2; 4278 } 4279 4280 ValueList.push_back(NewGA, getVirtualTypeID(NewGA->getType(), TypeID)); 4281 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 4282 return Error::success(); 4283 } 4284 4285 Error BitcodeReader::parseModule(uint64_t ResumeBit, 4286 bool ShouldLazyLoadMetadata, 4287 ParserCallbacks Callbacks) { 4288 // Load directly into RemoveDIs format if LoadBitcodeIntoNewDbgInforFormat 4289 // has been set to true (default action: load into the old debug format). 4290 TheModule->IsNewDbgInfoFormat = 4291 UseNewDbgInfoFormat && 4292 LoadBitcodeIntoNewDbgInforFormat == cl::boolOrDefault::BOU_TRUE; 4293 4294 this->ValueTypeCallback = std::move(Callbacks.ValueType); 4295 if (ResumeBit) { 4296 if (Error JumpFailed = Stream.JumpToBit(ResumeBit)) 4297 return JumpFailed; 4298 } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 4299 return Err; 4300 4301 SmallVector<uint64_t, 64> Record; 4302 4303 // Parts of bitcode parsing depend on the datalayout. Make sure we 4304 // finalize the datalayout before we run any of that code. 4305 bool ResolvedDataLayout = false; 4306 // In order to support importing modules with illegal data layout strings, 4307 // delay parsing the data layout string until after upgrades and overrides 4308 // have been applied, allowing to fix illegal data layout strings. 4309 // Initialize to the current module's layout string in case none is specified. 4310 std::string TentativeDataLayoutStr = TheModule->getDataLayoutStr(); 4311 4312 auto ResolveDataLayout = [&]() -> Error { 4313 if (ResolvedDataLayout) 4314 return Error::success(); 4315 4316 // Datalayout and triple can't be parsed after this point. 4317 ResolvedDataLayout = true; 4318 4319 // Auto-upgrade the layout string 4320 TentativeDataLayoutStr = llvm::UpgradeDataLayoutString( 4321 TentativeDataLayoutStr, TheModule->getTargetTriple()); 4322 4323 // Apply override 4324 if (Callbacks.DataLayout) { 4325 if (auto LayoutOverride = (*Callbacks.DataLayout)( 4326 TheModule->getTargetTriple(), TentativeDataLayoutStr)) 4327 TentativeDataLayoutStr = *LayoutOverride; 4328 } 4329 4330 // Now the layout string is finalized in TentativeDataLayoutStr. Parse it. 4331 Expected<DataLayout> MaybeDL = DataLayout::parse(TentativeDataLayoutStr); 4332 if (!MaybeDL) 4333 return MaybeDL.takeError(); 4334 4335 TheModule->setDataLayout(MaybeDL.get()); 4336 return Error::success(); 4337 }; 4338 4339 // Read all the records for this module. 4340 while (true) { 4341 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 4342 if (!MaybeEntry) 4343 return MaybeEntry.takeError(); 4344 llvm::BitstreamEntry Entry = MaybeEntry.get(); 4345 4346 switch (Entry.Kind) { 4347 case BitstreamEntry::Error: 4348 return error("Malformed block"); 4349 case BitstreamEntry::EndBlock: 4350 if (Error Err = ResolveDataLayout()) 4351 return Err; 4352 return globalCleanup(); 4353 4354 case BitstreamEntry::SubBlock: 4355 switch (Entry.ID) { 4356 default: // Skip unknown content. 4357 if (Error Err = Stream.SkipBlock()) 4358 return Err; 4359 break; 4360 case bitc::BLOCKINFO_BLOCK_ID: 4361 if (Error Err = readBlockInfo()) 4362 return Err; 4363 break; 4364 case bitc::PARAMATTR_BLOCK_ID: 4365 if (Error Err = parseAttributeBlock()) 4366 return Err; 4367 break; 4368 case bitc::PARAMATTR_GROUP_BLOCK_ID: 4369 if (Error Err = parseAttributeGroupBlock()) 4370 return Err; 4371 break; 4372 case bitc::TYPE_BLOCK_ID_NEW: 4373 if (Error Err = parseTypeTable()) 4374 return Err; 4375 break; 4376 case bitc::VALUE_SYMTAB_BLOCK_ID: 4377 if (!SeenValueSymbolTable) { 4378 // Either this is an old form VST without function index and an 4379 // associated VST forward declaration record (which would have caused 4380 // the VST to be jumped to and parsed before it was encountered 4381 // normally in the stream), or there were no function blocks to 4382 // trigger an earlier parsing of the VST. 4383 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 4384 if (Error Err = parseValueSymbolTable()) 4385 return Err; 4386 SeenValueSymbolTable = true; 4387 } else { 4388 // We must have had a VST forward declaration record, which caused 4389 // the parser to jump to and parse the VST earlier. 4390 assert(VSTOffset > 0); 4391 if (Error Err = Stream.SkipBlock()) 4392 return Err; 4393 } 4394 break; 4395 case bitc::CONSTANTS_BLOCK_ID: 4396 if (Error Err = parseConstants()) 4397 return Err; 4398 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 4399 return Err; 4400 break; 4401 case bitc::METADATA_BLOCK_ID: 4402 if (ShouldLazyLoadMetadata) { 4403 if (Error Err = rememberAndSkipMetadata()) 4404 return Err; 4405 break; 4406 } 4407 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 4408 if (Error Err = MDLoader->parseModuleMetadata()) 4409 return Err; 4410 break; 4411 case bitc::METADATA_KIND_BLOCK_ID: 4412 if (Error Err = MDLoader->parseMetadataKinds()) 4413 return Err; 4414 break; 4415 case bitc::FUNCTION_BLOCK_ID: 4416 if (Error Err = ResolveDataLayout()) 4417 return Err; 4418 4419 // If this is the first function body we've seen, reverse the 4420 // FunctionsWithBodies list. 4421 if (!SeenFirstFunctionBody) { 4422 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 4423 if (Error Err = globalCleanup()) 4424 return Err; 4425 SeenFirstFunctionBody = true; 4426 } 4427 4428 if (VSTOffset > 0) { 4429 // If we have a VST forward declaration record, make sure we 4430 // parse the VST now if we haven't already. It is needed to 4431 // set up the DeferredFunctionInfo vector for lazy reading. 4432 if (!SeenValueSymbolTable) { 4433 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset)) 4434 return Err; 4435 SeenValueSymbolTable = true; 4436 // Fall through so that we record the NextUnreadBit below. 4437 // This is necessary in case we have an anonymous function that 4438 // is later materialized. Since it will not have a VST entry we 4439 // need to fall back to the lazy parse to find its offset. 4440 } else { 4441 // If we have a VST forward declaration record, but have already 4442 // parsed the VST (just above, when the first function body was 4443 // encountered here), then we are resuming the parse after 4444 // materializing functions. The ResumeBit points to the 4445 // start of the last function block recorded in the 4446 // DeferredFunctionInfo map. Skip it. 4447 if (Error Err = Stream.SkipBlock()) 4448 return Err; 4449 continue; 4450 } 4451 } 4452 4453 // Support older bitcode files that did not have the function 4454 // index in the VST, nor a VST forward declaration record, as 4455 // well as anonymous functions that do not have VST entries. 4456 // Build the DeferredFunctionInfo vector on the fly. 4457 if (Error Err = rememberAndSkipFunctionBody()) 4458 return Err; 4459 4460 // Suspend parsing when we reach the function bodies. Subsequent 4461 // materialization calls will resume it when necessary. If the bitcode 4462 // file is old, the symbol table will be at the end instead and will not 4463 // have been seen yet. In this case, just finish the parse now. 4464 if (SeenValueSymbolTable) { 4465 NextUnreadBit = Stream.GetCurrentBitNo(); 4466 // After the VST has been parsed, we need to make sure intrinsic name 4467 // are auto-upgraded. 4468 return globalCleanup(); 4469 } 4470 break; 4471 case bitc::USELIST_BLOCK_ID: 4472 if (Error Err = parseUseLists()) 4473 return Err; 4474 break; 4475 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 4476 if (Error Err = parseOperandBundleTags()) 4477 return Err; 4478 break; 4479 case bitc::SYNC_SCOPE_NAMES_BLOCK_ID: 4480 if (Error Err = parseSyncScopeNames()) 4481 return Err; 4482 break; 4483 } 4484 continue; 4485 4486 case BitstreamEntry::Record: 4487 // The interesting case. 4488 break; 4489 } 4490 4491 // Read a record. 4492 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 4493 if (!MaybeBitCode) 4494 return MaybeBitCode.takeError(); 4495 switch (unsigned BitCode = MaybeBitCode.get()) { 4496 default: break; // Default behavior, ignore unknown content. 4497 case bitc::MODULE_CODE_VERSION: { 4498 Expected<unsigned> VersionOrErr = parseVersionRecord(Record); 4499 if (!VersionOrErr) 4500 return VersionOrErr.takeError(); 4501 UseRelativeIDs = *VersionOrErr >= 1; 4502 break; 4503 } 4504 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 4505 if (ResolvedDataLayout) 4506 return error("target triple too late in module"); 4507 std::string S; 4508 if (convertToString(Record, 0, S)) 4509 return error("Invalid record"); 4510 TheModule->setTargetTriple(S); 4511 break; 4512 } 4513 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 4514 if (ResolvedDataLayout) 4515 return error("datalayout too late in module"); 4516 if (convertToString(Record, 0, TentativeDataLayoutStr)) 4517 return error("Invalid record"); 4518 break; 4519 } 4520 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 4521 std::string S; 4522 if (convertToString(Record, 0, S)) 4523 return error("Invalid record"); 4524 TheModule->setModuleInlineAsm(S); 4525 break; 4526 } 4527 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 4528 // Deprecated, but still needed to read old bitcode files. 4529 std::string S; 4530 if (convertToString(Record, 0, S)) 4531 return error("Invalid record"); 4532 // Ignore value. 4533 break; 4534 } 4535 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 4536 std::string S; 4537 if (convertToString(Record, 0, S)) 4538 return error("Invalid record"); 4539 SectionTable.push_back(S); 4540 break; 4541 } 4542 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 4543 std::string S; 4544 if (convertToString(Record, 0, S)) 4545 return error("Invalid record"); 4546 GCTable.push_back(S); 4547 break; 4548 } 4549 case bitc::MODULE_CODE_COMDAT: 4550 if (Error Err = parseComdatRecord(Record)) 4551 return Err; 4552 break; 4553 // FIXME: BitcodeReader should handle {GLOBALVAR, FUNCTION, ALIAS, IFUNC} 4554 // written by ThinLinkBitcodeWriter. See 4555 // `ThinLinkBitcodeWriter::writeSimplifiedModuleInfo` for the format of each 4556 // record 4557 // (https://github.com/llvm/llvm-project/blob/b6a93967d9c11e79802b5e75cec1584d6c8aa472/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp#L4714) 4558 case bitc::MODULE_CODE_GLOBALVAR: 4559 if (Error Err = parseGlobalVarRecord(Record)) 4560 return Err; 4561 break; 4562 case bitc::MODULE_CODE_FUNCTION: 4563 if (Error Err = ResolveDataLayout()) 4564 return Err; 4565 if (Error Err = parseFunctionRecord(Record)) 4566 return Err; 4567 break; 4568 case bitc::MODULE_CODE_IFUNC: 4569 case bitc::MODULE_CODE_ALIAS: 4570 case bitc::MODULE_CODE_ALIAS_OLD: 4571 if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record)) 4572 return Err; 4573 break; 4574 /// MODULE_CODE_VSTOFFSET: [offset] 4575 case bitc::MODULE_CODE_VSTOFFSET: 4576 if (Record.empty()) 4577 return error("Invalid record"); 4578 // Note that we subtract 1 here because the offset is relative to one word 4579 // before the start of the identification or module block, which was 4580 // historically always the start of the regular bitcode header. 4581 VSTOffset = Record[0] - 1; 4582 break; 4583 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4584 case bitc::MODULE_CODE_SOURCE_FILENAME: 4585 SmallString<128> ValueName; 4586 if (convertToString(Record, 0, ValueName)) 4587 return error("Invalid record"); 4588 TheModule->setSourceFileName(ValueName); 4589 break; 4590 } 4591 Record.clear(); 4592 } 4593 this->ValueTypeCallback = std::nullopt; 4594 return Error::success(); 4595 } 4596 4597 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 4598 bool IsImporting, 4599 ParserCallbacks Callbacks) { 4600 TheModule = M; 4601 MetadataLoaderCallbacks MDCallbacks; 4602 MDCallbacks.GetTypeByID = [&](unsigned ID) { return getTypeByID(ID); }; 4603 MDCallbacks.GetContainedTypeID = [&](unsigned I, unsigned J) { 4604 return getContainedTypeID(I, J); 4605 }; 4606 MDCallbacks.MDType = Callbacks.MDType; 4607 MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, MDCallbacks); 4608 return parseModule(0, ShouldLazyLoadMetadata, Callbacks); 4609 } 4610 4611 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 4612 if (!isa<PointerType>(PtrType)) 4613 return error("Load/Store operand is not a pointer type"); 4614 if (!PointerType::isLoadableOrStorableType(ValType)) 4615 return error("Cannot load/store from pointer"); 4616 return Error::success(); 4617 } 4618 4619 Error BitcodeReader::propagateAttributeTypes(CallBase *CB, 4620 ArrayRef<unsigned> ArgTyIDs) { 4621 AttributeList Attrs = CB->getAttributes(); 4622 for (unsigned i = 0; i != CB->arg_size(); ++i) { 4623 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet, 4624 Attribute::InAlloca}) { 4625 if (!Attrs.hasParamAttr(i, Kind) || 4626 Attrs.getParamAttr(i, Kind).getValueAsType()) 4627 continue; 4628 4629 Type *PtrEltTy = getPtrElementTypeByID(ArgTyIDs[i]); 4630 if (!PtrEltTy) 4631 return error("Missing element type for typed attribute upgrade"); 4632 4633 Attribute NewAttr; 4634 switch (Kind) { 4635 case Attribute::ByVal: 4636 NewAttr = Attribute::getWithByValType(Context, PtrEltTy); 4637 break; 4638 case Attribute::StructRet: 4639 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy); 4640 break; 4641 case Attribute::InAlloca: 4642 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy); 4643 break; 4644 default: 4645 llvm_unreachable("not an upgraded type attribute"); 4646 } 4647 4648 Attrs = Attrs.addParamAttribute(Context, i, NewAttr); 4649 } 4650 } 4651 4652 if (CB->isInlineAsm()) { 4653 const InlineAsm *IA = cast<InlineAsm>(CB->getCalledOperand()); 4654 unsigned ArgNo = 0; 4655 for (const InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 4656 if (!CI.hasArg()) 4657 continue; 4658 4659 if (CI.isIndirect && !Attrs.getParamElementType(ArgNo)) { 4660 Type *ElemTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]); 4661 if (!ElemTy) 4662 return error("Missing element type for inline asm upgrade"); 4663 Attrs = Attrs.addParamAttribute( 4664 Context, ArgNo, 4665 Attribute::get(Context, Attribute::ElementType, ElemTy)); 4666 } 4667 4668 ArgNo++; 4669 } 4670 } 4671 4672 switch (CB->getIntrinsicID()) { 4673 case Intrinsic::preserve_array_access_index: 4674 case Intrinsic::preserve_struct_access_index: 4675 case Intrinsic::aarch64_ldaxr: 4676 case Intrinsic::aarch64_ldxr: 4677 case Intrinsic::aarch64_stlxr: 4678 case Intrinsic::aarch64_stxr: 4679 case Intrinsic::arm_ldaex: 4680 case Intrinsic::arm_ldrex: 4681 case Intrinsic::arm_stlex: 4682 case Intrinsic::arm_strex: { 4683 unsigned ArgNo; 4684 switch (CB->getIntrinsicID()) { 4685 case Intrinsic::aarch64_stlxr: 4686 case Intrinsic::aarch64_stxr: 4687 case Intrinsic::arm_stlex: 4688 case Intrinsic::arm_strex: 4689 ArgNo = 1; 4690 break; 4691 default: 4692 ArgNo = 0; 4693 break; 4694 } 4695 if (!Attrs.getParamElementType(ArgNo)) { 4696 Type *ElTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]); 4697 if (!ElTy) 4698 return error("Missing element type for elementtype upgrade"); 4699 Attribute NewAttr = Attribute::get(Context, Attribute::ElementType, ElTy); 4700 Attrs = Attrs.addParamAttribute(Context, ArgNo, NewAttr); 4701 } 4702 break; 4703 } 4704 default: 4705 break; 4706 } 4707 4708 CB->setAttributes(Attrs); 4709 return Error::success(); 4710 } 4711 4712 /// Lazily parse the specified function body block. 4713 Error BitcodeReader::parseFunctionBody(Function *F) { 4714 if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 4715 return Err; 4716 4717 // Unexpected unresolved metadata when parsing function. 4718 if (MDLoader->hasFwdRefs()) 4719 return error("Invalid function metadata: incoming forward references"); 4720 4721 InstructionList.clear(); 4722 unsigned ModuleValueListSize = ValueList.size(); 4723 unsigned ModuleMDLoaderSize = MDLoader->size(); 4724 4725 // Add all the function arguments to the value table. 4726 unsigned ArgNo = 0; 4727 unsigned FTyID = FunctionTypeIDs[F]; 4728 for (Argument &I : F->args()) { 4729 unsigned ArgTyID = getContainedTypeID(FTyID, ArgNo + 1); 4730 assert(I.getType() == getTypeByID(ArgTyID) && 4731 "Incorrect fully specified type for Function Argument"); 4732 ValueList.push_back(&I, ArgTyID); 4733 ++ArgNo; 4734 } 4735 unsigned NextValueNo = ValueList.size(); 4736 BasicBlock *CurBB = nullptr; 4737 unsigned CurBBNo = 0; 4738 // Block into which constant expressions from phi nodes are materialized. 4739 BasicBlock *PhiConstExprBB = nullptr; 4740 // Edge blocks for phi nodes into which constant expressions have been 4741 // expanded. 4742 SmallMapVector<std::pair<BasicBlock *, BasicBlock *>, BasicBlock *, 4> 4743 ConstExprEdgeBBs; 4744 4745 DebugLoc LastLoc; 4746 auto getLastInstruction = [&]() -> Instruction * { 4747 if (CurBB && !CurBB->empty()) 4748 return &CurBB->back(); 4749 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 4750 !FunctionBBs[CurBBNo - 1]->empty()) 4751 return &FunctionBBs[CurBBNo - 1]->back(); 4752 return nullptr; 4753 }; 4754 4755 std::vector<OperandBundleDef> OperandBundles; 4756 4757 // Read all the records. 4758 SmallVector<uint64_t, 64> Record; 4759 4760 while (true) { 4761 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 4762 if (!MaybeEntry) 4763 return MaybeEntry.takeError(); 4764 llvm::BitstreamEntry Entry = MaybeEntry.get(); 4765 4766 switch (Entry.Kind) { 4767 case BitstreamEntry::Error: 4768 return error("Malformed block"); 4769 case BitstreamEntry::EndBlock: 4770 goto OutOfRecordLoop; 4771 4772 case BitstreamEntry::SubBlock: 4773 switch (Entry.ID) { 4774 default: // Skip unknown content. 4775 if (Error Err = Stream.SkipBlock()) 4776 return Err; 4777 break; 4778 case bitc::CONSTANTS_BLOCK_ID: 4779 if (Error Err = parseConstants()) 4780 return Err; 4781 NextValueNo = ValueList.size(); 4782 break; 4783 case bitc::VALUE_SYMTAB_BLOCK_ID: 4784 if (Error Err = parseValueSymbolTable()) 4785 return Err; 4786 break; 4787 case bitc::METADATA_ATTACHMENT_ID: 4788 if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList)) 4789 return Err; 4790 break; 4791 case bitc::METADATA_BLOCK_ID: 4792 assert(DeferredMetadataInfo.empty() && 4793 "Must read all module-level metadata before function-level"); 4794 if (Error Err = MDLoader->parseFunctionMetadata()) 4795 return Err; 4796 break; 4797 case bitc::USELIST_BLOCK_ID: 4798 if (Error Err = parseUseLists()) 4799 return Err; 4800 break; 4801 } 4802 continue; 4803 4804 case BitstreamEntry::Record: 4805 // The interesting case. 4806 break; 4807 } 4808 4809 // Read a record. 4810 Record.clear(); 4811 Instruction *I = nullptr; 4812 unsigned ResTypeID = InvalidTypeID; 4813 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 4814 if (!MaybeBitCode) 4815 return MaybeBitCode.takeError(); 4816 switch (unsigned BitCode = MaybeBitCode.get()) { 4817 default: // Default behavior: reject 4818 return error("Invalid value"); 4819 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 4820 if (Record.empty() || Record[0] == 0) 4821 return error("Invalid record"); 4822 // Create all the basic blocks for the function. 4823 FunctionBBs.resize(Record[0]); 4824 4825 // See if anything took the address of blocks in this function. 4826 auto BBFRI = BasicBlockFwdRefs.find(F); 4827 if (BBFRI == BasicBlockFwdRefs.end()) { 4828 for (BasicBlock *&BB : FunctionBBs) 4829 BB = BasicBlock::Create(Context, "", F); 4830 } else { 4831 auto &BBRefs = BBFRI->second; 4832 // Check for invalid basic block references. 4833 if (BBRefs.size() > FunctionBBs.size()) 4834 return error("Invalid ID"); 4835 assert(!BBRefs.empty() && "Unexpected empty array"); 4836 assert(!BBRefs.front() && "Invalid reference to entry block"); 4837 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 4838 ++I) 4839 if (I < RE && BBRefs[I]) { 4840 BBRefs[I]->insertInto(F); 4841 FunctionBBs[I] = BBRefs[I]; 4842 } else { 4843 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 4844 } 4845 4846 // Erase from the table. 4847 BasicBlockFwdRefs.erase(BBFRI); 4848 } 4849 4850 CurBB = FunctionBBs[0]; 4851 continue; 4852 } 4853 4854 case bitc::FUNC_CODE_BLOCKADDR_USERS: // BLOCKADDR_USERS: [vals...] 4855 // The record should not be emitted if it's an empty list. 4856 if (Record.empty()) 4857 return error("Invalid record"); 4858 // When we have the RARE case of a BlockAddress Constant that is not 4859 // scoped to the Function it refers to, we need to conservatively 4860 // materialize the referred to Function, regardless of whether or not 4861 // that Function will ultimately be linked, otherwise users of 4862 // BitcodeReader might start splicing out Function bodies such that we 4863 // might no longer be able to materialize the BlockAddress since the 4864 // BasicBlock (and entire body of the Function) the BlockAddress refers 4865 // to may have been moved. In the case that the user of BitcodeReader 4866 // decides ultimately not to link the Function body, materializing here 4867 // could be considered wasteful, but it's better than a deserialization 4868 // failure as described. This keeps BitcodeReader unaware of complex 4869 // linkage policy decisions such as those use by LTO, leaving those 4870 // decisions "one layer up." 4871 for (uint64_t ValID : Record) 4872 if (auto *F = dyn_cast<Function>(ValueList[ValID])) 4873 BackwardRefFunctions.push_back(F); 4874 else 4875 return error("Invalid record"); 4876 4877 continue; 4878 4879 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 4880 // This record indicates that the last instruction is at the same 4881 // location as the previous instruction with a location. 4882 I = getLastInstruction(); 4883 4884 if (!I) 4885 return error("Invalid record"); 4886 I->setDebugLoc(LastLoc); 4887 I = nullptr; 4888 continue; 4889 4890 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 4891 I = getLastInstruction(); 4892 if (!I || Record.size() < 4) 4893 return error("Invalid record"); 4894 4895 unsigned Line = Record[0], Col = Record[1]; 4896 unsigned ScopeID = Record[2], IAID = Record[3]; 4897 bool isImplicitCode = Record.size() == 5 && Record[4]; 4898 4899 MDNode *Scope = nullptr, *IA = nullptr; 4900 if (ScopeID) { 4901 Scope = dyn_cast_or_null<MDNode>( 4902 MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1)); 4903 if (!Scope) 4904 return error("Invalid record"); 4905 } 4906 if (IAID) { 4907 IA = dyn_cast_or_null<MDNode>( 4908 MDLoader->getMetadataFwdRefOrLoad(IAID - 1)); 4909 if (!IA) 4910 return error("Invalid record"); 4911 } 4912 LastLoc = DILocation::get(Scope->getContext(), Line, Col, Scope, IA, 4913 isImplicitCode); 4914 I->setDebugLoc(LastLoc); 4915 I = nullptr; 4916 continue; 4917 } 4918 case bitc::FUNC_CODE_INST_UNOP: { // UNOP: [opval, ty, opcode] 4919 unsigned OpNum = 0; 4920 Value *LHS; 4921 unsigned TypeID; 4922 if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) || 4923 OpNum+1 > Record.size()) 4924 return error("Invalid record"); 4925 4926 int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType()); 4927 if (Opc == -1) 4928 return error("Invalid record"); 4929 I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 4930 ResTypeID = TypeID; 4931 InstructionList.push_back(I); 4932 if (OpNum < Record.size()) { 4933 if (isa<FPMathOperator>(I)) { 4934 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4935 if (FMF.any()) 4936 I->setFastMathFlags(FMF); 4937 } 4938 } 4939 break; 4940 } 4941 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 4942 unsigned OpNum = 0; 4943 Value *LHS, *RHS; 4944 unsigned TypeID; 4945 if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) || 4946 popValue(Record, OpNum, NextValueNo, LHS->getType(), TypeID, RHS, 4947 CurBB) || 4948 OpNum+1 > Record.size()) 4949 return error("Invalid record"); 4950 4951 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 4952 if (Opc == -1) 4953 return error("Invalid record"); 4954 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 4955 ResTypeID = TypeID; 4956 InstructionList.push_back(I); 4957 if (OpNum < Record.size()) { 4958 if (Opc == Instruction::Add || 4959 Opc == Instruction::Sub || 4960 Opc == Instruction::Mul || 4961 Opc == Instruction::Shl) { 4962 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 4963 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 4964 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 4965 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 4966 } else if (Opc == Instruction::SDiv || 4967 Opc == Instruction::UDiv || 4968 Opc == Instruction::LShr || 4969 Opc == Instruction::AShr) { 4970 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 4971 cast<BinaryOperator>(I)->setIsExact(true); 4972 } else if (Opc == Instruction::Or) { 4973 if (Record[OpNum] & (1 << bitc::PDI_DISJOINT)) 4974 cast<PossiblyDisjointInst>(I)->setIsDisjoint(true); 4975 } else if (isa<FPMathOperator>(I)) { 4976 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4977 if (FMF.any()) 4978 I->setFastMathFlags(FMF); 4979 } 4980 } 4981 break; 4982 } 4983 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 4984 unsigned OpNum = 0; 4985 Value *Op; 4986 unsigned OpTypeID; 4987 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) || 4988 OpNum + 1 > Record.size()) 4989 return error("Invalid record"); 4990 4991 ResTypeID = Record[OpNum++]; 4992 Type *ResTy = getTypeByID(ResTypeID); 4993 int Opc = getDecodedCastOpcode(Record[OpNum++]); 4994 4995 if (Opc == -1 || !ResTy) 4996 return error("Invalid record"); 4997 Instruction *Temp = nullptr; 4998 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 4999 if (Temp) { 5000 InstructionList.push_back(Temp); 5001 assert(CurBB && "No current BB?"); 5002 Temp->insertInto(CurBB, CurBB->end()); 5003 } 5004 } else { 5005 auto CastOp = (Instruction::CastOps)Opc; 5006 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 5007 return error("Invalid cast"); 5008 I = CastInst::Create(CastOp, Op, ResTy); 5009 } 5010 if (OpNum < Record.size() && isa<PossiblyNonNegInst>(I) && 5011 (Record[OpNum] & (1 << bitc::PNNI_NON_NEG))) 5012 I->setNonNeg(true); 5013 InstructionList.push_back(I); 5014 break; 5015 } 5016 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 5017 case bitc::FUNC_CODE_INST_GEP_OLD: 5018 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 5019 unsigned OpNum = 0; 5020 5021 unsigned TyID; 5022 Type *Ty; 5023 bool InBounds; 5024 5025 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 5026 InBounds = Record[OpNum++]; 5027 TyID = Record[OpNum++]; 5028 Ty = getTypeByID(TyID); 5029 } else { 5030 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 5031 TyID = InvalidTypeID; 5032 Ty = nullptr; 5033 } 5034 5035 Value *BasePtr; 5036 unsigned BasePtrTypeID; 5037 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr, BasePtrTypeID, 5038 CurBB)) 5039 return error("Invalid record"); 5040 5041 if (!Ty) { 5042 TyID = getContainedTypeID(BasePtrTypeID); 5043 if (BasePtr->getType()->isVectorTy()) 5044 TyID = getContainedTypeID(TyID); 5045 Ty = getTypeByID(TyID); 5046 } 5047 5048 SmallVector<Value*, 16> GEPIdx; 5049 while (OpNum != Record.size()) { 5050 Value *Op; 5051 unsigned OpTypeID; 5052 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 5053 return error("Invalid record"); 5054 GEPIdx.push_back(Op); 5055 } 5056 5057 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 5058 5059 ResTypeID = TyID; 5060 if (cast<GEPOperator>(I)->getNumIndices() != 0) { 5061 auto GTI = std::next(gep_type_begin(I)); 5062 for (Value *Idx : drop_begin(cast<GEPOperator>(I)->indices())) { 5063 unsigned SubType = 0; 5064 if (GTI.isStruct()) { 5065 ConstantInt *IdxC = 5066 Idx->getType()->isVectorTy() 5067 ? cast<ConstantInt>(cast<Constant>(Idx)->getSplatValue()) 5068 : cast<ConstantInt>(Idx); 5069 SubType = IdxC->getZExtValue(); 5070 } 5071 ResTypeID = getContainedTypeID(ResTypeID, SubType); 5072 ++GTI; 5073 } 5074 } 5075 5076 // At this point ResTypeID is the result element type. We need a pointer 5077 // or vector of pointer to it. 5078 ResTypeID = getVirtualTypeID(I->getType()->getScalarType(), ResTypeID); 5079 if (I->getType()->isVectorTy()) 5080 ResTypeID = getVirtualTypeID(I->getType(), ResTypeID); 5081 5082 InstructionList.push_back(I); 5083 if (InBounds) 5084 cast<GetElementPtrInst>(I)->setIsInBounds(true); 5085 break; 5086 } 5087 5088 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 5089 // EXTRACTVAL: [opty, opval, n x indices] 5090 unsigned OpNum = 0; 5091 Value *Agg; 5092 unsigned AggTypeID; 5093 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB)) 5094 return error("Invalid record"); 5095 Type *Ty = Agg->getType(); 5096 5097 unsigned RecSize = Record.size(); 5098 if (OpNum == RecSize) 5099 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 5100 5101 SmallVector<unsigned, 4> EXTRACTVALIdx; 5102 ResTypeID = AggTypeID; 5103 for (; OpNum != RecSize; ++OpNum) { 5104 bool IsArray = Ty->isArrayTy(); 5105 bool IsStruct = Ty->isStructTy(); 5106 uint64_t Index = Record[OpNum]; 5107 5108 if (!IsStruct && !IsArray) 5109 return error("EXTRACTVAL: Invalid type"); 5110 if ((unsigned)Index != Index) 5111 return error("Invalid value"); 5112 if (IsStruct && Index >= Ty->getStructNumElements()) 5113 return error("EXTRACTVAL: Invalid struct index"); 5114 if (IsArray && Index >= Ty->getArrayNumElements()) 5115 return error("EXTRACTVAL: Invalid array index"); 5116 EXTRACTVALIdx.push_back((unsigned)Index); 5117 5118 if (IsStruct) { 5119 Ty = Ty->getStructElementType(Index); 5120 ResTypeID = getContainedTypeID(ResTypeID, Index); 5121 } else { 5122 Ty = Ty->getArrayElementType(); 5123 ResTypeID = getContainedTypeID(ResTypeID); 5124 } 5125 } 5126 5127 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 5128 InstructionList.push_back(I); 5129 break; 5130 } 5131 5132 case bitc::FUNC_CODE_INST_INSERTVAL: { 5133 // INSERTVAL: [opty, opval, opty, opval, n x indices] 5134 unsigned OpNum = 0; 5135 Value *Agg; 5136 unsigned AggTypeID; 5137 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB)) 5138 return error("Invalid record"); 5139 Value *Val; 5140 unsigned ValTypeID; 5141 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 5142 return error("Invalid record"); 5143 5144 unsigned RecSize = Record.size(); 5145 if (OpNum == RecSize) 5146 return error("INSERTVAL: Invalid instruction with 0 indices"); 5147 5148 SmallVector<unsigned, 4> INSERTVALIdx; 5149 Type *CurTy = Agg->getType(); 5150 for (; OpNum != RecSize; ++OpNum) { 5151 bool IsArray = CurTy->isArrayTy(); 5152 bool IsStruct = CurTy->isStructTy(); 5153 uint64_t Index = Record[OpNum]; 5154 5155 if (!IsStruct && !IsArray) 5156 return error("INSERTVAL: Invalid type"); 5157 if ((unsigned)Index != Index) 5158 return error("Invalid value"); 5159 if (IsStruct && Index >= CurTy->getStructNumElements()) 5160 return error("INSERTVAL: Invalid struct index"); 5161 if (IsArray && Index >= CurTy->getArrayNumElements()) 5162 return error("INSERTVAL: Invalid array index"); 5163 5164 INSERTVALIdx.push_back((unsigned)Index); 5165 if (IsStruct) 5166 CurTy = CurTy->getStructElementType(Index); 5167 else 5168 CurTy = CurTy->getArrayElementType(); 5169 } 5170 5171 if (CurTy != Val->getType()) 5172 return error("Inserted value type doesn't match aggregate type"); 5173 5174 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 5175 ResTypeID = AggTypeID; 5176 InstructionList.push_back(I); 5177 break; 5178 } 5179 5180 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 5181 // obsolete form of select 5182 // handles select i1 ... in old bitcode 5183 unsigned OpNum = 0; 5184 Value *TrueVal, *FalseVal, *Cond; 5185 unsigned TypeID; 5186 Type *CondType = Type::getInt1Ty(Context); 5187 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, TypeID, 5188 CurBB) || 5189 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), TypeID, 5190 FalseVal, CurBB) || 5191 popValue(Record, OpNum, NextValueNo, CondType, 5192 getVirtualTypeID(CondType), Cond, CurBB)) 5193 return error("Invalid record"); 5194 5195 I = SelectInst::Create(Cond, TrueVal, FalseVal); 5196 ResTypeID = TypeID; 5197 InstructionList.push_back(I); 5198 break; 5199 } 5200 5201 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 5202 // new form of select 5203 // handles select i1 or select [N x i1] 5204 unsigned OpNum = 0; 5205 Value *TrueVal, *FalseVal, *Cond; 5206 unsigned ValTypeID, CondTypeID; 5207 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, ValTypeID, 5208 CurBB) || 5209 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), ValTypeID, 5210 FalseVal, CurBB) || 5211 getValueTypePair(Record, OpNum, NextValueNo, Cond, CondTypeID, CurBB)) 5212 return error("Invalid record"); 5213 5214 // select condition can be either i1 or [N x i1] 5215 if (VectorType* vector_type = 5216 dyn_cast<VectorType>(Cond->getType())) { 5217 // expect <n x i1> 5218 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 5219 return error("Invalid type for value"); 5220 } else { 5221 // expect i1 5222 if (Cond->getType() != Type::getInt1Ty(Context)) 5223 return error("Invalid type for value"); 5224 } 5225 5226 I = SelectInst::Create(Cond, TrueVal, FalseVal); 5227 ResTypeID = ValTypeID; 5228 InstructionList.push_back(I); 5229 if (OpNum < Record.size() && isa<FPMathOperator>(I)) { 5230 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 5231 if (FMF.any()) 5232 I->setFastMathFlags(FMF); 5233 } 5234 break; 5235 } 5236 5237 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 5238 unsigned OpNum = 0; 5239 Value *Vec, *Idx; 5240 unsigned VecTypeID, IdxTypeID; 5241 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB) || 5242 getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB)) 5243 return error("Invalid record"); 5244 if (!Vec->getType()->isVectorTy()) 5245 return error("Invalid type for value"); 5246 I = ExtractElementInst::Create(Vec, Idx); 5247 ResTypeID = getContainedTypeID(VecTypeID); 5248 InstructionList.push_back(I); 5249 break; 5250 } 5251 5252 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 5253 unsigned OpNum = 0; 5254 Value *Vec, *Elt, *Idx; 5255 unsigned VecTypeID, IdxTypeID; 5256 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB)) 5257 return error("Invalid record"); 5258 if (!Vec->getType()->isVectorTy()) 5259 return error("Invalid type for value"); 5260 if (popValue(Record, OpNum, NextValueNo, 5261 cast<VectorType>(Vec->getType())->getElementType(), 5262 getContainedTypeID(VecTypeID), Elt, CurBB) || 5263 getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB)) 5264 return error("Invalid record"); 5265 I = InsertElementInst::Create(Vec, Elt, Idx); 5266 ResTypeID = VecTypeID; 5267 InstructionList.push_back(I); 5268 break; 5269 } 5270 5271 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 5272 unsigned OpNum = 0; 5273 Value *Vec1, *Vec2, *Mask; 5274 unsigned Vec1TypeID; 5275 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1, Vec1TypeID, 5276 CurBB) || 5277 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec1TypeID, 5278 Vec2, CurBB)) 5279 return error("Invalid record"); 5280 5281 unsigned MaskTypeID; 5282 if (getValueTypePair(Record, OpNum, NextValueNo, Mask, MaskTypeID, CurBB)) 5283 return error("Invalid record"); 5284 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 5285 return error("Invalid type for value"); 5286 5287 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 5288 ResTypeID = 5289 getVirtualTypeID(I->getType(), getContainedTypeID(Vec1TypeID)); 5290 InstructionList.push_back(I); 5291 break; 5292 } 5293 5294 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 5295 // Old form of ICmp/FCmp returning bool 5296 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 5297 // both legal on vectors but had different behaviour. 5298 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 5299 // FCmp/ICmp returning bool or vector of bool 5300 5301 unsigned OpNum = 0; 5302 Value *LHS, *RHS; 5303 unsigned LHSTypeID; 5304 if (getValueTypePair(Record, OpNum, NextValueNo, LHS, LHSTypeID, CurBB) || 5305 popValue(Record, OpNum, NextValueNo, LHS->getType(), LHSTypeID, RHS, 5306 CurBB)) 5307 return error("Invalid record"); 5308 5309 if (OpNum >= Record.size()) 5310 return error( 5311 "Invalid record: operand number exceeded available operands"); 5312 5313 CmpInst::Predicate PredVal = CmpInst::Predicate(Record[OpNum]); 5314 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 5315 FastMathFlags FMF; 5316 if (IsFP && Record.size() > OpNum+1) 5317 FMF = getDecodedFastMathFlags(Record[++OpNum]); 5318 5319 if (OpNum+1 != Record.size()) 5320 return error("Invalid record"); 5321 5322 if (IsFP) { 5323 if (!CmpInst::isFPPredicate(PredVal)) 5324 return error("Invalid fcmp predicate"); 5325 I = new FCmpInst(PredVal, LHS, RHS); 5326 } else { 5327 if (!CmpInst::isIntPredicate(PredVal)) 5328 return error("Invalid icmp predicate"); 5329 I = new ICmpInst(PredVal, LHS, RHS); 5330 } 5331 5332 ResTypeID = getVirtualTypeID(I->getType()->getScalarType()); 5333 if (LHS->getType()->isVectorTy()) 5334 ResTypeID = getVirtualTypeID(I->getType(), ResTypeID); 5335 5336 if (FMF.any()) 5337 I->setFastMathFlags(FMF); 5338 InstructionList.push_back(I); 5339 break; 5340 } 5341 5342 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 5343 { 5344 unsigned Size = Record.size(); 5345 if (Size == 0) { 5346 I = ReturnInst::Create(Context); 5347 InstructionList.push_back(I); 5348 break; 5349 } 5350 5351 unsigned OpNum = 0; 5352 Value *Op = nullptr; 5353 unsigned OpTypeID; 5354 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 5355 return error("Invalid record"); 5356 if (OpNum != Record.size()) 5357 return error("Invalid record"); 5358 5359 I = ReturnInst::Create(Context, Op); 5360 InstructionList.push_back(I); 5361 break; 5362 } 5363 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 5364 if (Record.size() != 1 && Record.size() != 3) 5365 return error("Invalid record"); 5366 BasicBlock *TrueDest = getBasicBlock(Record[0]); 5367 if (!TrueDest) 5368 return error("Invalid record"); 5369 5370 if (Record.size() == 1) { 5371 I = BranchInst::Create(TrueDest); 5372 InstructionList.push_back(I); 5373 } 5374 else { 5375 BasicBlock *FalseDest = getBasicBlock(Record[1]); 5376 Type *CondType = Type::getInt1Ty(Context); 5377 Value *Cond = getValue(Record, 2, NextValueNo, CondType, 5378 getVirtualTypeID(CondType), CurBB); 5379 if (!FalseDest || !Cond) 5380 return error("Invalid record"); 5381 I = BranchInst::Create(TrueDest, FalseDest, Cond); 5382 InstructionList.push_back(I); 5383 } 5384 break; 5385 } 5386 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 5387 if (Record.size() != 1 && Record.size() != 2) 5388 return error("Invalid record"); 5389 unsigned Idx = 0; 5390 Type *TokenTy = Type::getTokenTy(Context); 5391 Value *CleanupPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5392 getVirtualTypeID(TokenTy), CurBB); 5393 if (!CleanupPad) 5394 return error("Invalid record"); 5395 BasicBlock *UnwindDest = nullptr; 5396 if (Record.size() == 2) { 5397 UnwindDest = getBasicBlock(Record[Idx++]); 5398 if (!UnwindDest) 5399 return error("Invalid record"); 5400 } 5401 5402 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 5403 InstructionList.push_back(I); 5404 break; 5405 } 5406 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 5407 if (Record.size() != 2) 5408 return error("Invalid record"); 5409 unsigned Idx = 0; 5410 Type *TokenTy = Type::getTokenTy(Context); 5411 Value *CatchPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5412 getVirtualTypeID(TokenTy), CurBB); 5413 if (!CatchPad) 5414 return error("Invalid record"); 5415 BasicBlock *BB = getBasicBlock(Record[Idx++]); 5416 if (!BB) 5417 return error("Invalid record"); 5418 5419 I = CatchReturnInst::Create(CatchPad, BB); 5420 InstructionList.push_back(I); 5421 break; 5422 } 5423 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 5424 // We must have, at minimum, the outer scope and the number of arguments. 5425 if (Record.size() < 2) 5426 return error("Invalid record"); 5427 5428 unsigned Idx = 0; 5429 5430 Type *TokenTy = Type::getTokenTy(Context); 5431 Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5432 getVirtualTypeID(TokenTy), CurBB); 5433 if (!ParentPad) 5434 return error("Invalid record"); 5435 5436 unsigned NumHandlers = Record[Idx++]; 5437 5438 SmallVector<BasicBlock *, 2> Handlers; 5439 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 5440 BasicBlock *BB = getBasicBlock(Record[Idx++]); 5441 if (!BB) 5442 return error("Invalid record"); 5443 Handlers.push_back(BB); 5444 } 5445 5446 BasicBlock *UnwindDest = nullptr; 5447 if (Idx + 1 == Record.size()) { 5448 UnwindDest = getBasicBlock(Record[Idx++]); 5449 if (!UnwindDest) 5450 return error("Invalid record"); 5451 } 5452 5453 if (Record.size() != Idx) 5454 return error("Invalid record"); 5455 5456 auto *CatchSwitch = 5457 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 5458 for (BasicBlock *Handler : Handlers) 5459 CatchSwitch->addHandler(Handler); 5460 I = CatchSwitch; 5461 ResTypeID = getVirtualTypeID(I->getType()); 5462 InstructionList.push_back(I); 5463 break; 5464 } 5465 case bitc::FUNC_CODE_INST_CATCHPAD: 5466 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 5467 // We must have, at minimum, the outer scope and the number of arguments. 5468 if (Record.size() < 2) 5469 return error("Invalid record"); 5470 5471 unsigned Idx = 0; 5472 5473 Type *TokenTy = Type::getTokenTy(Context); 5474 Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5475 getVirtualTypeID(TokenTy), CurBB); 5476 if (!ParentPad) 5477 return error("Invald record"); 5478 5479 unsigned NumArgOperands = Record[Idx++]; 5480 5481 SmallVector<Value *, 2> Args; 5482 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 5483 Value *Val; 5484 unsigned ValTypeID; 5485 if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, nullptr)) 5486 return error("Invalid record"); 5487 Args.push_back(Val); 5488 } 5489 5490 if (Record.size() != Idx) 5491 return error("Invalid record"); 5492 5493 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 5494 I = CleanupPadInst::Create(ParentPad, Args); 5495 else 5496 I = CatchPadInst::Create(ParentPad, Args); 5497 ResTypeID = getVirtualTypeID(I->getType()); 5498 InstructionList.push_back(I); 5499 break; 5500 } 5501 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 5502 // Check magic 5503 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 5504 // "New" SwitchInst format with case ranges. The changes to write this 5505 // format were reverted but we still recognize bitcode that uses it. 5506 // Hopefully someday we will have support for case ranges and can use 5507 // this format again. 5508 5509 unsigned OpTyID = Record[1]; 5510 Type *OpTy = getTypeByID(OpTyID); 5511 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 5512 5513 Value *Cond = getValue(Record, 2, NextValueNo, OpTy, OpTyID, CurBB); 5514 BasicBlock *Default = getBasicBlock(Record[3]); 5515 if (!OpTy || !Cond || !Default) 5516 return error("Invalid record"); 5517 5518 unsigned NumCases = Record[4]; 5519 5520 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 5521 InstructionList.push_back(SI); 5522 5523 unsigned CurIdx = 5; 5524 for (unsigned i = 0; i != NumCases; ++i) { 5525 SmallVector<ConstantInt*, 1> CaseVals; 5526 unsigned NumItems = Record[CurIdx++]; 5527 for (unsigned ci = 0; ci != NumItems; ++ci) { 5528 bool isSingleNumber = Record[CurIdx++]; 5529 5530 APInt Low; 5531 unsigned ActiveWords = 1; 5532 if (ValueBitWidth > 64) 5533 ActiveWords = Record[CurIdx++]; 5534 Low = readWideAPInt(ArrayRef(&Record[CurIdx], ActiveWords), 5535 ValueBitWidth); 5536 CurIdx += ActiveWords; 5537 5538 if (!isSingleNumber) { 5539 ActiveWords = 1; 5540 if (ValueBitWidth > 64) 5541 ActiveWords = Record[CurIdx++]; 5542 APInt High = readWideAPInt(ArrayRef(&Record[CurIdx], ActiveWords), 5543 ValueBitWidth); 5544 CurIdx += ActiveWords; 5545 5546 // FIXME: It is not clear whether values in the range should be 5547 // compared as signed or unsigned values. The partially 5548 // implemented changes that used this format in the past used 5549 // unsigned comparisons. 5550 for ( ; Low.ule(High); ++Low) 5551 CaseVals.push_back(ConstantInt::get(Context, Low)); 5552 } else 5553 CaseVals.push_back(ConstantInt::get(Context, Low)); 5554 } 5555 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 5556 for (ConstantInt *Cst : CaseVals) 5557 SI->addCase(Cst, DestBB); 5558 } 5559 I = SI; 5560 break; 5561 } 5562 5563 // Old SwitchInst format without case ranges. 5564 5565 if (Record.size() < 3 || (Record.size() & 1) == 0) 5566 return error("Invalid record"); 5567 unsigned OpTyID = Record[0]; 5568 Type *OpTy = getTypeByID(OpTyID); 5569 Value *Cond = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB); 5570 BasicBlock *Default = getBasicBlock(Record[2]); 5571 if (!OpTy || !Cond || !Default) 5572 return error("Invalid record"); 5573 unsigned NumCases = (Record.size()-3)/2; 5574 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 5575 InstructionList.push_back(SI); 5576 for (unsigned i = 0, e = NumCases; i != e; ++i) { 5577 ConstantInt *CaseVal = dyn_cast_or_null<ConstantInt>( 5578 getFnValueByID(Record[3+i*2], OpTy, OpTyID, nullptr)); 5579 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 5580 if (!CaseVal || !DestBB) { 5581 delete SI; 5582 return error("Invalid record"); 5583 } 5584 SI->addCase(CaseVal, DestBB); 5585 } 5586 I = SI; 5587 break; 5588 } 5589 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 5590 if (Record.size() < 2) 5591 return error("Invalid record"); 5592 unsigned OpTyID = Record[0]; 5593 Type *OpTy = getTypeByID(OpTyID); 5594 Value *Address = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB); 5595 if (!OpTy || !Address) 5596 return error("Invalid record"); 5597 unsigned NumDests = Record.size()-2; 5598 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 5599 InstructionList.push_back(IBI); 5600 for (unsigned i = 0, e = NumDests; i != e; ++i) { 5601 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 5602 IBI->addDestination(DestBB); 5603 } else { 5604 delete IBI; 5605 return error("Invalid record"); 5606 } 5607 } 5608 I = IBI; 5609 break; 5610 } 5611 5612 case bitc::FUNC_CODE_INST_INVOKE: { 5613 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 5614 if (Record.size() < 4) 5615 return error("Invalid record"); 5616 unsigned OpNum = 0; 5617 AttributeList PAL = getAttributes(Record[OpNum++]); 5618 unsigned CCInfo = Record[OpNum++]; 5619 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 5620 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 5621 5622 unsigned FTyID = InvalidTypeID; 5623 FunctionType *FTy = nullptr; 5624 if ((CCInfo >> 13) & 1) { 5625 FTyID = Record[OpNum++]; 5626 FTy = dyn_cast<FunctionType>(getTypeByID(FTyID)); 5627 if (!FTy) 5628 return error("Explicit invoke type is not a function type"); 5629 } 5630 5631 Value *Callee; 5632 unsigned CalleeTypeID; 5633 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID, 5634 CurBB)) 5635 return error("Invalid record"); 5636 5637 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 5638 if (!CalleeTy) 5639 return error("Callee is not a pointer"); 5640 if (!FTy) { 5641 FTyID = getContainedTypeID(CalleeTypeID); 5642 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 5643 if (!FTy) 5644 return error("Callee is not of pointer to function type"); 5645 } 5646 if (Record.size() < FTy->getNumParams() + OpNum) 5647 return error("Insufficient operands to call"); 5648 5649 SmallVector<Value*, 16> Ops; 5650 SmallVector<unsigned, 16> ArgTyIDs; 5651 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5652 unsigned ArgTyID = getContainedTypeID(FTyID, i + 1); 5653 Ops.push_back(getValue(Record, OpNum, NextValueNo, FTy->getParamType(i), 5654 ArgTyID, CurBB)); 5655 ArgTyIDs.push_back(ArgTyID); 5656 if (!Ops.back()) 5657 return error("Invalid record"); 5658 } 5659 5660 if (!FTy->isVarArg()) { 5661 if (Record.size() != OpNum) 5662 return error("Invalid record"); 5663 } else { 5664 // Read type/value pairs for varargs params. 5665 while (OpNum != Record.size()) { 5666 Value *Op; 5667 unsigned OpTypeID; 5668 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 5669 return error("Invalid record"); 5670 Ops.push_back(Op); 5671 ArgTyIDs.push_back(OpTypeID); 5672 } 5673 } 5674 5675 // Upgrade the bundles if needed. 5676 if (!OperandBundles.empty()) 5677 UpgradeOperandBundles(OperandBundles); 5678 5679 I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops, 5680 OperandBundles); 5681 ResTypeID = getContainedTypeID(FTyID); 5682 OperandBundles.clear(); 5683 InstructionList.push_back(I); 5684 cast<InvokeInst>(I)->setCallingConv( 5685 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 5686 cast<InvokeInst>(I)->setAttributes(PAL); 5687 if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) { 5688 I->deleteValue(); 5689 return Err; 5690 } 5691 5692 break; 5693 } 5694 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 5695 unsigned Idx = 0; 5696 Value *Val = nullptr; 5697 unsigned ValTypeID; 5698 if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, CurBB)) 5699 return error("Invalid record"); 5700 I = ResumeInst::Create(Val); 5701 InstructionList.push_back(I); 5702 break; 5703 } 5704 case bitc::FUNC_CODE_INST_CALLBR: { 5705 // CALLBR: [attr, cc, norm, transfs, fty, fnid, args] 5706 unsigned OpNum = 0; 5707 AttributeList PAL = getAttributes(Record[OpNum++]); 5708 unsigned CCInfo = Record[OpNum++]; 5709 5710 BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]); 5711 unsigned NumIndirectDests = Record[OpNum++]; 5712 SmallVector<BasicBlock *, 16> IndirectDests; 5713 for (unsigned i = 0, e = NumIndirectDests; i != e; ++i) 5714 IndirectDests.push_back(getBasicBlock(Record[OpNum++])); 5715 5716 unsigned FTyID = InvalidTypeID; 5717 FunctionType *FTy = nullptr; 5718 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 5719 FTyID = Record[OpNum++]; 5720 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 5721 if (!FTy) 5722 return error("Explicit call type is not a function type"); 5723 } 5724 5725 Value *Callee; 5726 unsigned CalleeTypeID; 5727 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID, 5728 CurBB)) 5729 return error("Invalid record"); 5730 5731 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5732 if (!OpTy) 5733 return error("Callee is not a pointer type"); 5734 if (!FTy) { 5735 FTyID = getContainedTypeID(CalleeTypeID); 5736 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 5737 if (!FTy) 5738 return error("Callee is not of pointer to function type"); 5739 } 5740 if (Record.size() < FTy->getNumParams() + OpNum) 5741 return error("Insufficient operands to call"); 5742 5743 SmallVector<Value*, 16> Args; 5744 SmallVector<unsigned, 16> ArgTyIDs; 5745 // Read the fixed params. 5746 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5747 Value *Arg; 5748 unsigned ArgTyID = getContainedTypeID(FTyID, i + 1); 5749 if (FTy->getParamType(i)->isLabelTy()) 5750 Arg = getBasicBlock(Record[OpNum]); 5751 else 5752 Arg = getValue(Record, OpNum, NextValueNo, FTy->getParamType(i), 5753 ArgTyID, CurBB); 5754 if (!Arg) 5755 return error("Invalid record"); 5756 Args.push_back(Arg); 5757 ArgTyIDs.push_back(ArgTyID); 5758 } 5759 5760 // Read type/value pairs for varargs params. 5761 if (!FTy->isVarArg()) { 5762 if (OpNum != Record.size()) 5763 return error("Invalid record"); 5764 } else { 5765 while (OpNum != Record.size()) { 5766 Value *Op; 5767 unsigned OpTypeID; 5768 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 5769 return error("Invalid record"); 5770 Args.push_back(Op); 5771 ArgTyIDs.push_back(OpTypeID); 5772 } 5773 } 5774 5775 // Upgrade the bundles if needed. 5776 if (!OperandBundles.empty()) 5777 UpgradeOperandBundles(OperandBundles); 5778 5779 if (auto *IA = dyn_cast<InlineAsm>(Callee)) { 5780 InlineAsm::ConstraintInfoVector ConstraintInfo = IA->ParseConstraints(); 5781 auto IsLabelConstraint = [](const InlineAsm::ConstraintInfo &CI) { 5782 return CI.Type == InlineAsm::isLabel; 5783 }; 5784 if (none_of(ConstraintInfo, IsLabelConstraint)) { 5785 // Upgrade explicit blockaddress arguments to label constraints. 5786 // Verify that the last arguments are blockaddress arguments that 5787 // match the indirect destinations. Clang always generates callbr 5788 // in this form. We could support reordering with more effort. 5789 unsigned FirstBlockArg = Args.size() - IndirectDests.size(); 5790 for (unsigned ArgNo = FirstBlockArg; ArgNo < Args.size(); ++ArgNo) { 5791 unsigned LabelNo = ArgNo - FirstBlockArg; 5792 auto *BA = dyn_cast<BlockAddress>(Args[ArgNo]); 5793 if (!BA || BA->getFunction() != F || 5794 LabelNo > IndirectDests.size() || 5795 BA->getBasicBlock() != IndirectDests[LabelNo]) 5796 return error("callbr argument does not match indirect dest"); 5797 } 5798 5799 // Remove blockaddress arguments. 5800 Args.erase(Args.begin() + FirstBlockArg, Args.end()); 5801 ArgTyIDs.erase(ArgTyIDs.begin() + FirstBlockArg, ArgTyIDs.end()); 5802 5803 // Recreate the function type with less arguments. 5804 SmallVector<Type *> ArgTys; 5805 for (Value *Arg : Args) 5806 ArgTys.push_back(Arg->getType()); 5807 FTy = 5808 FunctionType::get(FTy->getReturnType(), ArgTys, FTy->isVarArg()); 5809 5810 // Update constraint string to use label constraints. 5811 std::string Constraints = IA->getConstraintString(); 5812 unsigned ArgNo = 0; 5813 size_t Pos = 0; 5814 for (const auto &CI : ConstraintInfo) { 5815 if (CI.hasArg()) { 5816 if (ArgNo >= FirstBlockArg) 5817 Constraints.insert(Pos, "!"); 5818 ++ArgNo; 5819 } 5820 5821 // Go to next constraint in string. 5822 Pos = Constraints.find(',', Pos); 5823 if (Pos == std::string::npos) 5824 break; 5825 ++Pos; 5826 } 5827 5828 Callee = InlineAsm::get(FTy, IA->getAsmString(), Constraints, 5829 IA->hasSideEffects(), IA->isAlignStack(), 5830 IA->getDialect(), IA->canThrow()); 5831 } 5832 } 5833 5834 I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args, 5835 OperandBundles); 5836 ResTypeID = getContainedTypeID(FTyID); 5837 OperandBundles.clear(); 5838 InstructionList.push_back(I); 5839 cast<CallBrInst>(I)->setCallingConv( 5840 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5841 cast<CallBrInst>(I)->setAttributes(PAL); 5842 if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) { 5843 I->deleteValue(); 5844 return Err; 5845 } 5846 break; 5847 } 5848 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 5849 I = new UnreachableInst(Context); 5850 InstructionList.push_back(I); 5851 break; 5852 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 5853 if (Record.empty()) 5854 return error("Invalid phi record"); 5855 // The first record specifies the type. 5856 unsigned TyID = Record[0]; 5857 Type *Ty = getTypeByID(TyID); 5858 if (!Ty) 5859 return error("Invalid phi record"); 5860 5861 // Phi arguments are pairs of records of [value, basic block]. 5862 // There is an optional final record for fast-math-flags if this phi has a 5863 // floating-point type. 5864 size_t NumArgs = (Record.size() - 1) / 2; 5865 PHINode *PN = PHINode::Create(Ty, NumArgs); 5866 if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN)) { 5867 PN->deleteValue(); 5868 return error("Invalid phi record"); 5869 } 5870 InstructionList.push_back(PN); 5871 5872 SmallDenseMap<BasicBlock *, Value *> Args; 5873 for (unsigned i = 0; i != NumArgs; i++) { 5874 BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]); 5875 if (!BB) { 5876 PN->deleteValue(); 5877 return error("Invalid phi BB"); 5878 } 5879 5880 // Phi nodes may contain the same predecessor multiple times, in which 5881 // case the incoming value must be identical. Directly reuse the already 5882 // seen value here, to avoid expanding a constant expression multiple 5883 // times. 5884 auto It = Args.find(BB); 5885 if (It != Args.end()) { 5886 PN->addIncoming(It->second, BB); 5887 continue; 5888 } 5889 5890 // If there already is a block for this edge (from a different phi), 5891 // use it. 5892 BasicBlock *EdgeBB = ConstExprEdgeBBs.lookup({BB, CurBB}); 5893 if (!EdgeBB) { 5894 // Otherwise, use a temporary block (that we will discard if it 5895 // turns out to be unnecessary). 5896 if (!PhiConstExprBB) 5897 PhiConstExprBB = BasicBlock::Create(Context, "phi.constexpr", F); 5898 EdgeBB = PhiConstExprBB; 5899 } 5900 5901 // With the new function encoding, it is possible that operands have 5902 // negative IDs (for forward references). Use a signed VBR 5903 // representation to keep the encoding small. 5904 Value *V; 5905 if (UseRelativeIDs) 5906 V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB); 5907 else 5908 V = getValue(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB); 5909 if (!V) { 5910 PN->deleteValue(); 5911 PhiConstExprBB->eraseFromParent(); 5912 return error("Invalid phi record"); 5913 } 5914 5915 if (EdgeBB == PhiConstExprBB && !EdgeBB->empty()) { 5916 ConstExprEdgeBBs.insert({{BB, CurBB}, EdgeBB}); 5917 PhiConstExprBB = nullptr; 5918 } 5919 PN->addIncoming(V, BB); 5920 Args.insert({BB, V}); 5921 } 5922 I = PN; 5923 ResTypeID = TyID; 5924 5925 // If there are an even number of records, the final record must be FMF. 5926 if (Record.size() % 2 == 0) { 5927 assert(isa<FPMathOperator>(I) && "Unexpected phi type"); 5928 FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]); 5929 if (FMF.any()) 5930 I->setFastMathFlags(FMF); 5931 } 5932 5933 break; 5934 } 5935 5936 case bitc::FUNC_CODE_INST_LANDINGPAD: 5937 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 5938 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 5939 unsigned Idx = 0; 5940 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 5941 if (Record.size() < 3) 5942 return error("Invalid record"); 5943 } else { 5944 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 5945 if (Record.size() < 4) 5946 return error("Invalid record"); 5947 } 5948 ResTypeID = Record[Idx++]; 5949 Type *Ty = getTypeByID(ResTypeID); 5950 if (!Ty) 5951 return error("Invalid record"); 5952 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 5953 Value *PersFn = nullptr; 5954 unsigned PersFnTypeID; 5955 if (getValueTypePair(Record, Idx, NextValueNo, PersFn, PersFnTypeID, 5956 nullptr)) 5957 return error("Invalid record"); 5958 5959 if (!F->hasPersonalityFn()) 5960 F->setPersonalityFn(cast<Constant>(PersFn)); 5961 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 5962 return error("Personality function mismatch"); 5963 } 5964 5965 bool IsCleanup = !!Record[Idx++]; 5966 unsigned NumClauses = Record[Idx++]; 5967 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 5968 LP->setCleanup(IsCleanup); 5969 for (unsigned J = 0; J != NumClauses; ++J) { 5970 LandingPadInst::ClauseType CT = 5971 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 5972 Value *Val; 5973 unsigned ValTypeID; 5974 5975 if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, 5976 nullptr)) { 5977 delete LP; 5978 return error("Invalid record"); 5979 } 5980 5981 assert((CT != LandingPadInst::Catch || 5982 !isa<ArrayType>(Val->getType())) && 5983 "Catch clause has a invalid type!"); 5984 assert((CT != LandingPadInst::Filter || 5985 isa<ArrayType>(Val->getType())) && 5986 "Filter clause has invalid type!"); 5987 LP->addClause(cast<Constant>(Val)); 5988 } 5989 5990 I = LP; 5991 InstructionList.push_back(I); 5992 break; 5993 } 5994 5995 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 5996 if (Record.size() != 4 && Record.size() != 5) 5997 return error("Invalid record"); 5998 using APV = AllocaPackedValues; 5999 const uint64_t Rec = Record[3]; 6000 const bool InAlloca = Bitfield::get<APV::UsedWithInAlloca>(Rec); 6001 const bool SwiftError = Bitfield::get<APV::SwiftError>(Rec); 6002 unsigned TyID = Record[0]; 6003 Type *Ty = getTypeByID(TyID); 6004 if (!Bitfield::get<APV::ExplicitType>(Rec)) { 6005 TyID = getContainedTypeID(TyID); 6006 Ty = getTypeByID(TyID); 6007 if (!Ty) 6008 return error("Missing element type for old-style alloca"); 6009 } 6010 unsigned OpTyID = Record[1]; 6011 Type *OpTy = getTypeByID(OpTyID); 6012 Value *Size = getFnValueByID(Record[2], OpTy, OpTyID, CurBB); 6013 MaybeAlign Align; 6014 uint64_t AlignExp = 6015 Bitfield::get<APV::AlignLower>(Rec) | 6016 (Bitfield::get<APV::AlignUpper>(Rec) << APV::AlignLower::Bits); 6017 if (Error Err = parseAlignmentValue(AlignExp, Align)) { 6018 return Err; 6019 } 6020 if (!Ty || !Size) 6021 return error("Invalid record"); 6022 6023 const DataLayout &DL = TheModule->getDataLayout(); 6024 unsigned AS = Record.size() == 5 ? Record[4] : DL.getAllocaAddrSpace(); 6025 6026 SmallPtrSet<Type *, 4> Visited; 6027 if (!Align && !Ty->isSized(&Visited)) 6028 return error("alloca of unsized type"); 6029 if (!Align) 6030 Align = DL.getPrefTypeAlign(Ty); 6031 6032 if (!Size->getType()->isIntegerTy()) 6033 return error("alloca element count must have integer type"); 6034 6035 AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align); 6036 AI->setUsedWithInAlloca(InAlloca); 6037 AI->setSwiftError(SwiftError); 6038 I = AI; 6039 ResTypeID = getVirtualTypeID(AI->getType(), TyID); 6040 InstructionList.push_back(I); 6041 break; 6042 } 6043 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 6044 unsigned OpNum = 0; 6045 Value *Op; 6046 unsigned OpTypeID; 6047 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) || 6048 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 6049 return error("Invalid record"); 6050 6051 if (!isa<PointerType>(Op->getType())) 6052 return error("Load operand is not a pointer type"); 6053 6054 Type *Ty = nullptr; 6055 if (OpNum + 3 == Record.size()) { 6056 ResTypeID = Record[OpNum++]; 6057 Ty = getTypeByID(ResTypeID); 6058 } else { 6059 ResTypeID = getContainedTypeID(OpTypeID); 6060 Ty = getTypeByID(ResTypeID); 6061 } 6062 6063 if (!Ty) 6064 return error("Missing load type"); 6065 6066 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 6067 return Err; 6068 6069 MaybeAlign Align; 6070 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 6071 return Err; 6072 SmallPtrSet<Type *, 4> Visited; 6073 if (!Align && !Ty->isSized(&Visited)) 6074 return error("load of unsized type"); 6075 if (!Align) 6076 Align = TheModule->getDataLayout().getABITypeAlign(Ty); 6077 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align); 6078 InstructionList.push_back(I); 6079 break; 6080 } 6081 case bitc::FUNC_CODE_INST_LOADATOMIC: { 6082 // LOADATOMIC: [opty, op, align, vol, ordering, ssid] 6083 unsigned OpNum = 0; 6084 Value *Op; 6085 unsigned OpTypeID; 6086 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) || 6087 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 6088 return error("Invalid record"); 6089 6090 if (!isa<PointerType>(Op->getType())) 6091 return error("Load operand is not a pointer type"); 6092 6093 Type *Ty = nullptr; 6094 if (OpNum + 5 == Record.size()) { 6095 ResTypeID = Record[OpNum++]; 6096 Ty = getTypeByID(ResTypeID); 6097 } else { 6098 ResTypeID = getContainedTypeID(OpTypeID); 6099 Ty = getTypeByID(ResTypeID); 6100 } 6101 6102 if (!Ty) 6103 return error("Missing atomic load type"); 6104 6105 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 6106 return Err; 6107 6108 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 6109 if (Ordering == AtomicOrdering::NotAtomic || 6110 Ordering == AtomicOrdering::Release || 6111 Ordering == AtomicOrdering::AcquireRelease) 6112 return error("Invalid record"); 6113 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 6114 return error("Invalid record"); 6115 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 6116 6117 MaybeAlign Align; 6118 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 6119 return Err; 6120 if (!Align) 6121 return error("Alignment missing from atomic load"); 6122 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID); 6123 InstructionList.push_back(I); 6124 break; 6125 } 6126 case bitc::FUNC_CODE_INST_STORE: 6127 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 6128 unsigned OpNum = 0; 6129 Value *Val, *Ptr; 6130 unsigned PtrTypeID, ValTypeID; 6131 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 6132 return error("Invalid record"); 6133 6134 if (BitCode == bitc::FUNC_CODE_INST_STORE) { 6135 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 6136 return error("Invalid record"); 6137 } else { 6138 ValTypeID = getContainedTypeID(PtrTypeID); 6139 if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID), 6140 ValTypeID, Val, CurBB)) 6141 return error("Invalid record"); 6142 } 6143 6144 if (OpNum + 2 != Record.size()) 6145 return error("Invalid record"); 6146 6147 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 6148 return Err; 6149 MaybeAlign Align; 6150 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 6151 return Err; 6152 SmallPtrSet<Type *, 4> Visited; 6153 if (!Align && !Val->getType()->isSized(&Visited)) 6154 return error("store of unsized type"); 6155 if (!Align) 6156 Align = TheModule->getDataLayout().getABITypeAlign(Val->getType()); 6157 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align); 6158 InstructionList.push_back(I); 6159 break; 6160 } 6161 case bitc::FUNC_CODE_INST_STOREATOMIC: 6162 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 6163 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid] 6164 unsigned OpNum = 0; 6165 Value *Val, *Ptr; 6166 unsigned PtrTypeID, ValTypeID; 6167 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB) || 6168 !isa<PointerType>(Ptr->getType())) 6169 return error("Invalid record"); 6170 if (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC) { 6171 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 6172 return error("Invalid record"); 6173 } else { 6174 ValTypeID = getContainedTypeID(PtrTypeID); 6175 if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID), 6176 ValTypeID, Val, CurBB)) 6177 return error("Invalid record"); 6178 } 6179 6180 if (OpNum + 4 != Record.size()) 6181 return error("Invalid record"); 6182 6183 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 6184 return Err; 6185 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 6186 if (Ordering == AtomicOrdering::NotAtomic || 6187 Ordering == AtomicOrdering::Acquire || 6188 Ordering == AtomicOrdering::AcquireRelease) 6189 return error("Invalid record"); 6190 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 6191 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 6192 return error("Invalid record"); 6193 6194 MaybeAlign Align; 6195 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 6196 return Err; 6197 if (!Align) 6198 return error("Alignment missing from atomic store"); 6199 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID); 6200 InstructionList.push_back(I); 6201 break; 6202 } 6203 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: { 6204 // CMPXCHG_OLD: [ptrty, ptr, cmp, val, vol, ordering, synchscope, 6205 // failure_ordering?, weak?] 6206 const size_t NumRecords = Record.size(); 6207 unsigned OpNum = 0; 6208 Value *Ptr = nullptr; 6209 unsigned PtrTypeID; 6210 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 6211 return error("Invalid record"); 6212 6213 if (!isa<PointerType>(Ptr->getType())) 6214 return error("Cmpxchg operand is not a pointer type"); 6215 6216 Value *Cmp = nullptr; 6217 unsigned CmpTypeID = getContainedTypeID(PtrTypeID); 6218 if (popValue(Record, OpNum, NextValueNo, getTypeByID(CmpTypeID), 6219 CmpTypeID, Cmp, CurBB)) 6220 return error("Invalid record"); 6221 6222 Value *New = nullptr; 6223 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID, 6224 New, CurBB) || 6225 NumRecords < OpNum + 3 || NumRecords > OpNum + 5) 6226 return error("Invalid record"); 6227 6228 const AtomicOrdering SuccessOrdering = 6229 getDecodedOrdering(Record[OpNum + 1]); 6230 if (SuccessOrdering == AtomicOrdering::NotAtomic || 6231 SuccessOrdering == AtomicOrdering::Unordered) 6232 return error("Invalid record"); 6233 6234 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 6235 6236 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 6237 return Err; 6238 6239 const AtomicOrdering FailureOrdering = 6240 NumRecords < 7 6241 ? AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering) 6242 : getDecodedOrdering(Record[OpNum + 3]); 6243 6244 if (FailureOrdering == AtomicOrdering::NotAtomic || 6245 FailureOrdering == AtomicOrdering::Unordered) 6246 return error("Invalid record"); 6247 6248 const Align Alignment( 6249 TheModule->getDataLayout().getTypeStoreSize(Cmp->getType())); 6250 6251 I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering, 6252 FailureOrdering, SSID); 6253 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 6254 6255 if (NumRecords < 8) { 6256 // Before weak cmpxchgs existed, the instruction simply returned the 6257 // value loaded from memory, so bitcode files from that era will be 6258 // expecting the first component of a modern cmpxchg. 6259 I->insertInto(CurBB, CurBB->end()); 6260 I = ExtractValueInst::Create(I, 0); 6261 ResTypeID = CmpTypeID; 6262 } else { 6263 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]); 6264 unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context)); 6265 ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID}); 6266 } 6267 6268 InstructionList.push_back(I); 6269 break; 6270 } 6271 case bitc::FUNC_CODE_INST_CMPXCHG: { 6272 // CMPXCHG: [ptrty, ptr, cmp, val, vol, success_ordering, synchscope, 6273 // failure_ordering, weak, align?] 6274 const size_t NumRecords = Record.size(); 6275 unsigned OpNum = 0; 6276 Value *Ptr = nullptr; 6277 unsigned PtrTypeID; 6278 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 6279 return error("Invalid record"); 6280 6281 if (!isa<PointerType>(Ptr->getType())) 6282 return error("Cmpxchg operand is not a pointer type"); 6283 6284 Value *Cmp = nullptr; 6285 unsigned CmpTypeID; 6286 if (getValueTypePair(Record, OpNum, NextValueNo, Cmp, CmpTypeID, CurBB)) 6287 return error("Invalid record"); 6288 6289 Value *Val = nullptr; 6290 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID, Val, 6291 CurBB)) 6292 return error("Invalid record"); 6293 6294 if (NumRecords < OpNum + 3 || NumRecords > OpNum + 6) 6295 return error("Invalid record"); 6296 6297 const bool IsVol = Record[OpNum]; 6298 6299 const AtomicOrdering SuccessOrdering = 6300 getDecodedOrdering(Record[OpNum + 1]); 6301 if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering)) 6302 return error("Invalid cmpxchg success ordering"); 6303 6304 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 6305 6306 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 6307 return Err; 6308 6309 const AtomicOrdering FailureOrdering = 6310 getDecodedOrdering(Record[OpNum + 3]); 6311 if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering)) 6312 return error("Invalid cmpxchg failure ordering"); 6313 6314 const bool IsWeak = Record[OpNum + 4]; 6315 6316 MaybeAlign Alignment; 6317 6318 if (NumRecords == (OpNum + 6)) { 6319 if (Error Err = parseAlignmentValue(Record[OpNum + 5], Alignment)) 6320 return Err; 6321 } 6322 if (!Alignment) 6323 Alignment = 6324 Align(TheModule->getDataLayout().getTypeStoreSize(Cmp->getType())); 6325 6326 I = new AtomicCmpXchgInst(Ptr, Cmp, Val, *Alignment, SuccessOrdering, 6327 FailureOrdering, SSID); 6328 cast<AtomicCmpXchgInst>(I)->setVolatile(IsVol); 6329 cast<AtomicCmpXchgInst>(I)->setWeak(IsWeak); 6330 6331 unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context)); 6332 ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID}); 6333 6334 InstructionList.push_back(I); 6335 break; 6336 } 6337 case bitc::FUNC_CODE_INST_ATOMICRMW_OLD: 6338 case bitc::FUNC_CODE_INST_ATOMICRMW: { 6339 // ATOMICRMW_OLD: [ptrty, ptr, val, op, vol, ordering, ssid, align?] 6340 // ATOMICRMW: [ptrty, ptr, valty, val, op, vol, ordering, ssid, align?] 6341 const size_t NumRecords = Record.size(); 6342 unsigned OpNum = 0; 6343 6344 Value *Ptr = nullptr; 6345 unsigned PtrTypeID; 6346 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 6347 return error("Invalid record"); 6348 6349 if (!isa<PointerType>(Ptr->getType())) 6350 return error("Invalid record"); 6351 6352 Value *Val = nullptr; 6353 unsigned ValTypeID = InvalidTypeID; 6354 if (BitCode == bitc::FUNC_CODE_INST_ATOMICRMW_OLD) { 6355 ValTypeID = getContainedTypeID(PtrTypeID); 6356 if (popValue(Record, OpNum, NextValueNo, 6357 getTypeByID(ValTypeID), ValTypeID, Val, CurBB)) 6358 return error("Invalid record"); 6359 } else { 6360 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 6361 return error("Invalid record"); 6362 } 6363 6364 if (!(NumRecords == (OpNum + 4) || NumRecords == (OpNum + 5))) 6365 return error("Invalid record"); 6366 6367 const AtomicRMWInst::BinOp Operation = 6368 getDecodedRMWOperation(Record[OpNum]); 6369 if (Operation < AtomicRMWInst::FIRST_BINOP || 6370 Operation > AtomicRMWInst::LAST_BINOP) 6371 return error("Invalid record"); 6372 6373 const bool IsVol = Record[OpNum + 1]; 6374 6375 const AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 6376 if (Ordering == AtomicOrdering::NotAtomic || 6377 Ordering == AtomicOrdering::Unordered) 6378 return error("Invalid record"); 6379 6380 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 6381 6382 MaybeAlign Alignment; 6383 6384 if (NumRecords == (OpNum + 5)) { 6385 if (Error Err = parseAlignmentValue(Record[OpNum + 4], Alignment)) 6386 return Err; 6387 } 6388 6389 if (!Alignment) 6390 Alignment = 6391 Align(TheModule->getDataLayout().getTypeStoreSize(Val->getType())); 6392 6393 I = new AtomicRMWInst(Operation, Ptr, Val, *Alignment, Ordering, SSID); 6394 ResTypeID = ValTypeID; 6395 cast<AtomicRMWInst>(I)->setVolatile(IsVol); 6396 6397 InstructionList.push_back(I); 6398 break; 6399 } 6400 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid] 6401 if (2 != Record.size()) 6402 return error("Invalid record"); 6403 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 6404 if (Ordering == AtomicOrdering::NotAtomic || 6405 Ordering == AtomicOrdering::Unordered || 6406 Ordering == AtomicOrdering::Monotonic) 6407 return error("Invalid record"); 6408 SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]); 6409 I = new FenceInst(Context, Ordering, SSID); 6410 InstructionList.push_back(I); 6411 break; 6412 } 6413 case bitc::FUNC_CODE_DEBUG_RECORD_LABEL: { 6414 // DPLabels are placed after the Instructions that they are attached to. 6415 Instruction *Inst = getLastInstruction(); 6416 if (!Inst) 6417 return error("Invalid dbg record: missing instruction"); 6418 DILocation *DIL = cast<DILocation>(getFnMetadataByID(Record[0])); 6419 DILabel *Label = cast<DILabel>(getFnMetadataByID(Record[1])); 6420 Inst->getParent()->insertDbgRecordBefore( 6421 new DPLabel(Label, DebugLoc(DIL)), Inst->getIterator()); 6422 continue; // This isn't an instruction. 6423 } 6424 case bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE: 6425 case bitc::FUNC_CODE_DEBUG_RECORD_VALUE: 6426 case bitc::FUNC_CODE_DEBUG_RECORD_DECLARE: 6427 case bitc::FUNC_CODE_DEBUG_RECORD_ASSIGN: { 6428 // DPValues are placed after the Instructions that they are attached to. 6429 Instruction *Inst = getLastInstruction(); 6430 if (!Inst) 6431 return error("Invalid dbg record: missing instruction"); 6432 6433 // First 3 fields are common to all kinds: 6434 // DILocation, DILocalVariable, DIExpression 6435 // dbg_value (FUNC_CODE_DEBUG_RECORD_VALUE) 6436 // ..., LocationMetadata 6437 // dbg_value (FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE - abbrev'd) 6438 // ..., Value 6439 // dbg_declare (FUNC_CODE_DEBUG_RECORD_DECLARE) 6440 // ..., LocationMetadata 6441 // dbg_assign (FUNC_CODE_DEBUG_RECORD_ASSIGN) 6442 // ..., LocationMetadata, DIAssignID, DIExpression, LocationMetadata 6443 unsigned Slot = 0; 6444 // Common fields (0-2). 6445 DILocation *DIL = cast<DILocation>(getFnMetadataByID(Record[Slot++])); 6446 DILocalVariable *Var = 6447 cast<DILocalVariable>(getFnMetadataByID(Record[Slot++])); 6448 DIExpression *Expr = 6449 cast<DIExpression>(getFnMetadataByID(Record[Slot++])); 6450 6451 // Union field (3: LocationMetadata | Value). 6452 Metadata *RawLocation = nullptr; 6453 if (BitCode == bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE) { 6454 Value *V = nullptr; 6455 unsigned TyID = 0; 6456 // We never expect to see a fwd reference value here because 6457 // use-before-defs are encoded with the standard non-abbrev record 6458 // type (they'd require encoding the type too, and they're rare). As a 6459 // result, getValueTypePair only ever increments Slot by one here (once 6460 // for the value, never twice for value and type). 6461 unsigned SlotBefore = Slot; 6462 if (getValueTypePair(Record, Slot, NextValueNo, V, TyID, CurBB)) 6463 return error("Invalid dbg record: invalid value"); 6464 (void)SlotBefore; 6465 assert((SlotBefore == Slot - 1) && "unexpected fwd ref"); 6466 RawLocation = ValueAsMetadata::get(V); 6467 } else { 6468 RawLocation = getFnMetadataByID(Record[Slot++]); 6469 } 6470 6471 DPValue *DPV = nullptr; 6472 switch (BitCode) { 6473 case bitc::FUNC_CODE_DEBUG_RECORD_VALUE: 6474 case bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE: 6475 DPV = new DPValue(RawLocation, Var, Expr, DIL, 6476 DPValue::LocationType::Value); 6477 break; 6478 case bitc::FUNC_CODE_DEBUG_RECORD_DECLARE: 6479 DPV = new DPValue(RawLocation, Var, Expr, DIL, 6480 DPValue::LocationType::Declare); 6481 break; 6482 case bitc::FUNC_CODE_DEBUG_RECORD_ASSIGN: { 6483 DIAssignID *ID = cast<DIAssignID>(getFnMetadataByID(Record[Slot++])); 6484 DIExpression *AddrExpr = 6485 cast<DIExpression>(getFnMetadataByID(Record[Slot++])); 6486 Metadata *Addr = getFnMetadataByID(Record[Slot++]); 6487 DPV = new DPValue(RawLocation, Var, Expr, ID, Addr, AddrExpr, DIL); 6488 break; 6489 } 6490 default: 6491 llvm_unreachable("Unknown DPValue bitcode"); 6492 } 6493 Inst->getParent()->insertDbgRecordBefore(DPV, Inst->getIterator()); 6494 continue; // This isn't an instruction. 6495 } 6496 case bitc::FUNC_CODE_INST_CALL: { 6497 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 6498 if (Record.size() < 3) 6499 return error("Invalid record"); 6500 6501 unsigned OpNum = 0; 6502 AttributeList PAL = getAttributes(Record[OpNum++]); 6503 unsigned CCInfo = Record[OpNum++]; 6504 6505 FastMathFlags FMF; 6506 if ((CCInfo >> bitc::CALL_FMF) & 1) { 6507 FMF = getDecodedFastMathFlags(Record[OpNum++]); 6508 if (!FMF.any()) 6509 return error("Fast math flags indicator set for call with no FMF"); 6510 } 6511 6512 unsigned FTyID = InvalidTypeID; 6513 FunctionType *FTy = nullptr; 6514 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 6515 FTyID = Record[OpNum++]; 6516 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 6517 if (!FTy) 6518 return error("Explicit call type is not a function type"); 6519 } 6520 6521 Value *Callee; 6522 unsigned CalleeTypeID; 6523 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID, 6524 CurBB)) 6525 return error("Invalid record"); 6526 6527 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 6528 if (!OpTy) 6529 return error("Callee is not a pointer type"); 6530 if (!FTy) { 6531 FTyID = getContainedTypeID(CalleeTypeID); 6532 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 6533 if (!FTy) 6534 return error("Callee is not of pointer to function type"); 6535 } 6536 if (Record.size() < FTy->getNumParams() + OpNum) 6537 return error("Insufficient operands to call"); 6538 6539 SmallVector<Value*, 16> Args; 6540 SmallVector<unsigned, 16> ArgTyIDs; 6541 // Read the fixed params. 6542 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 6543 unsigned ArgTyID = getContainedTypeID(FTyID, i + 1); 6544 if (FTy->getParamType(i)->isLabelTy()) 6545 Args.push_back(getBasicBlock(Record[OpNum])); 6546 else 6547 Args.push_back(getValue(Record, OpNum, NextValueNo, 6548 FTy->getParamType(i), ArgTyID, CurBB)); 6549 ArgTyIDs.push_back(ArgTyID); 6550 if (!Args.back()) 6551 return error("Invalid record"); 6552 } 6553 6554 // Read type/value pairs for varargs params. 6555 if (!FTy->isVarArg()) { 6556 if (OpNum != Record.size()) 6557 return error("Invalid record"); 6558 } else { 6559 while (OpNum != Record.size()) { 6560 Value *Op; 6561 unsigned OpTypeID; 6562 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 6563 return error("Invalid record"); 6564 Args.push_back(Op); 6565 ArgTyIDs.push_back(OpTypeID); 6566 } 6567 } 6568 6569 // Upgrade the bundles if needed. 6570 if (!OperandBundles.empty()) 6571 UpgradeOperandBundles(OperandBundles); 6572 6573 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 6574 ResTypeID = getContainedTypeID(FTyID); 6575 OperandBundles.clear(); 6576 InstructionList.push_back(I); 6577 cast<CallInst>(I)->setCallingConv( 6578 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 6579 CallInst::TailCallKind TCK = CallInst::TCK_None; 6580 if (CCInfo & (1 << bitc::CALL_TAIL)) 6581 TCK = CallInst::TCK_Tail; 6582 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 6583 TCK = CallInst::TCK_MustTail; 6584 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 6585 TCK = CallInst::TCK_NoTail; 6586 cast<CallInst>(I)->setTailCallKind(TCK); 6587 cast<CallInst>(I)->setAttributes(PAL); 6588 if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) { 6589 I->deleteValue(); 6590 return Err; 6591 } 6592 if (FMF.any()) { 6593 if (!isa<FPMathOperator>(I)) 6594 return error("Fast-math-flags specified for call without " 6595 "floating-point scalar or vector return type"); 6596 I->setFastMathFlags(FMF); 6597 } 6598 break; 6599 } 6600 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 6601 if (Record.size() < 3) 6602 return error("Invalid record"); 6603 unsigned OpTyID = Record[0]; 6604 Type *OpTy = getTypeByID(OpTyID); 6605 Value *Op = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB); 6606 ResTypeID = Record[2]; 6607 Type *ResTy = getTypeByID(ResTypeID); 6608 if (!OpTy || !Op || !ResTy) 6609 return error("Invalid record"); 6610 I = new VAArgInst(Op, ResTy); 6611 InstructionList.push_back(I); 6612 break; 6613 } 6614 6615 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 6616 // A call or an invoke can be optionally prefixed with some variable 6617 // number of operand bundle blocks. These blocks are read into 6618 // OperandBundles and consumed at the next call or invoke instruction. 6619 6620 if (Record.empty() || Record[0] >= BundleTags.size()) 6621 return error("Invalid record"); 6622 6623 std::vector<Value *> Inputs; 6624 6625 unsigned OpNum = 1; 6626 while (OpNum != Record.size()) { 6627 Value *Op; 6628 unsigned OpTypeID; 6629 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 6630 return error("Invalid record"); 6631 Inputs.push_back(Op); 6632 } 6633 6634 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 6635 continue; 6636 } 6637 6638 case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval] 6639 unsigned OpNum = 0; 6640 Value *Op = nullptr; 6641 unsigned OpTypeID; 6642 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 6643 return error("Invalid record"); 6644 if (OpNum != Record.size()) 6645 return error("Invalid record"); 6646 6647 I = new FreezeInst(Op); 6648 ResTypeID = OpTypeID; 6649 InstructionList.push_back(I); 6650 break; 6651 } 6652 } 6653 6654 // Add instruction to end of current BB. If there is no current BB, reject 6655 // this file. 6656 if (!CurBB) { 6657 I->deleteValue(); 6658 return error("Invalid instruction with no BB"); 6659 } 6660 if (!OperandBundles.empty()) { 6661 I->deleteValue(); 6662 return error("Operand bundles found with no consumer"); 6663 } 6664 I->insertInto(CurBB, CurBB->end()); 6665 6666 // If this was a terminator instruction, move to the next block. 6667 if (I->isTerminator()) { 6668 ++CurBBNo; 6669 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 6670 } 6671 6672 // Non-void values get registered in the value table for future use. 6673 if (!I->getType()->isVoidTy()) { 6674 assert(I->getType() == getTypeByID(ResTypeID) && 6675 "Incorrect result type ID"); 6676 if (Error Err = ValueList.assignValue(NextValueNo++, I, ResTypeID)) 6677 return Err; 6678 } 6679 } 6680 6681 OutOfRecordLoop: 6682 6683 if (!OperandBundles.empty()) 6684 return error("Operand bundles found with no consumer"); 6685 6686 // Check the function list for unresolved values. 6687 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 6688 if (!A->getParent()) { 6689 // We found at least one unresolved value. Nuke them all to avoid leaks. 6690 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 6691 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 6692 A->replaceAllUsesWith(PoisonValue::get(A->getType())); 6693 delete A; 6694 } 6695 } 6696 return error("Never resolved value found in function"); 6697 } 6698 } 6699 6700 // Unexpected unresolved metadata about to be dropped. 6701 if (MDLoader->hasFwdRefs()) 6702 return error("Invalid function metadata: outgoing forward refs"); 6703 6704 if (PhiConstExprBB) 6705 PhiConstExprBB->eraseFromParent(); 6706 6707 for (const auto &Pair : ConstExprEdgeBBs) { 6708 BasicBlock *From = Pair.first.first; 6709 BasicBlock *To = Pair.first.second; 6710 BasicBlock *EdgeBB = Pair.second; 6711 BranchInst::Create(To, EdgeBB); 6712 From->getTerminator()->replaceSuccessorWith(To, EdgeBB); 6713 To->replacePhiUsesWith(From, EdgeBB); 6714 EdgeBB->moveBefore(To); 6715 } 6716 6717 // Trim the value list down to the size it was before we parsed this function. 6718 ValueList.shrinkTo(ModuleValueListSize); 6719 MDLoader->shrinkTo(ModuleMDLoaderSize); 6720 std::vector<BasicBlock*>().swap(FunctionBBs); 6721 return Error::success(); 6722 } 6723 6724 /// Find the function body in the bitcode stream 6725 Error BitcodeReader::findFunctionInStream( 6726 Function *F, 6727 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 6728 while (DeferredFunctionInfoIterator->second == 0) { 6729 // This is the fallback handling for the old format bitcode that 6730 // didn't contain the function index in the VST, or when we have 6731 // an anonymous function which would not have a VST entry. 6732 // Assert that we have one of those two cases. 6733 assert(VSTOffset == 0 || !F->hasName()); 6734 // Parse the next body in the stream and set its position in the 6735 // DeferredFunctionInfo map. 6736 if (Error Err = rememberAndSkipFunctionBodies()) 6737 return Err; 6738 } 6739 return Error::success(); 6740 } 6741 6742 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) { 6743 if (Val == SyncScope::SingleThread || Val == SyncScope::System) 6744 return SyncScope::ID(Val); 6745 if (Val >= SSIDs.size()) 6746 return SyncScope::System; // Map unknown synchronization scopes to system. 6747 return SSIDs[Val]; 6748 } 6749 6750 //===----------------------------------------------------------------------===// 6751 // GVMaterializer implementation 6752 //===----------------------------------------------------------------------===// 6753 6754 Error BitcodeReader::materialize(GlobalValue *GV) { 6755 Function *F = dyn_cast<Function>(GV); 6756 // If it's not a function or is already material, ignore the request. 6757 if (!F || !F->isMaterializable()) 6758 return Error::success(); 6759 6760 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 6761 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 6762 // If its position is recorded as 0, its body is somewhere in the stream 6763 // but we haven't seen it yet. 6764 if (DFII->second == 0) 6765 if (Error Err = findFunctionInStream(F, DFII)) 6766 return Err; 6767 6768 // Materialize metadata before parsing any function bodies. 6769 if (Error Err = materializeMetadata()) 6770 return Err; 6771 6772 // Move the bit stream to the saved position of the deferred function body. 6773 if (Error JumpFailed = Stream.JumpToBit(DFII->second)) 6774 return JumpFailed; 6775 6776 // Set the debug info mode to "new", possibly creating a mismatch between 6777 // module and function debug modes. This is okay because we'll convert 6778 // everything back to the old mode after parsing if needed. 6779 // FIXME: Remove this once all tools support RemoveDIs. 6780 F->IsNewDbgInfoFormat = true; 6781 6782 if (Error Err = parseFunctionBody(F)) 6783 return Err; 6784 F->setIsMaterializable(false); 6785 6786 // Convert new debug info records into intrinsics. 6787 // FIXME: Remove this once all tools support RemoveDIs. 6788 if (!F->getParent()->IsNewDbgInfoFormat) 6789 F->convertFromNewDbgValues(); 6790 6791 if (StripDebugInfo) 6792 stripDebugInfo(*F); 6793 6794 // Upgrade any old intrinsic calls in the function. 6795 for (auto &I : UpgradedIntrinsics) { 6796 for (User *U : llvm::make_early_inc_range(I.first->materialized_users())) 6797 if (CallInst *CI = dyn_cast<CallInst>(U)) 6798 UpgradeIntrinsicCall(CI, I.second); 6799 } 6800 6801 // Finish fn->subprogram upgrade for materialized functions. 6802 if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F)) 6803 F->setSubprogram(SP); 6804 6805 // Check if the TBAA Metadata are valid, otherwise we will need to strip them. 6806 if (!MDLoader->isStrippingTBAA()) { 6807 for (auto &I : instructions(F)) { 6808 MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa); 6809 if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA)) 6810 continue; 6811 MDLoader->setStripTBAA(true); 6812 stripTBAA(F->getParent()); 6813 } 6814 } 6815 6816 for (auto &I : instructions(F)) { 6817 // "Upgrade" older incorrect branch weights by dropping them. 6818 if (auto *MD = I.getMetadata(LLVMContext::MD_prof)) { 6819 if (MD->getOperand(0) != nullptr && isa<MDString>(MD->getOperand(0))) { 6820 MDString *MDS = cast<MDString>(MD->getOperand(0)); 6821 StringRef ProfName = MDS->getString(); 6822 // Check consistency of !prof branch_weights metadata. 6823 if (!ProfName.equals("branch_weights")) 6824 continue; 6825 unsigned ExpectedNumOperands = 0; 6826 if (BranchInst *BI = dyn_cast<BranchInst>(&I)) 6827 ExpectedNumOperands = BI->getNumSuccessors(); 6828 else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I)) 6829 ExpectedNumOperands = SI->getNumSuccessors(); 6830 else if (isa<CallInst>(&I)) 6831 ExpectedNumOperands = 1; 6832 else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I)) 6833 ExpectedNumOperands = IBI->getNumDestinations(); 6834 else if (isa<SelectInst>(&I)) 6835 ExpectedNumOperands = 2; 6836 else 6837 continue; // ignore and continue. 6838 6839 // If branch weight doesn't match, just strip branch weight. 6840 if (MD->getNumOperands() != 1 + ExpectedNumOperands) 6841 I.setMetadata(LLVMContext::MD_prof, nullptr); 6842 } 6843 } 6844 6845 // Remove incompatible attributes on function calls. 6846 if (auto *CI = dyn_cast<CallBase>(&I)) { 6847 CI->removeRetAttrs(AttributeFuncs::typeIncompatible( 6848 CI->getFunctionType()->getReturnType())); 6849 6850 for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ++ArgNo) 6851 CI->removeParamAttrs(ArgNo, AttributeFuncs::typeIncompatible( 6852 CI->getArgOperand(ArgNo)->getType())); 6853 } 6854 } 6855 6856 // Look for functions that rely on old function attribute behavior. 6857 UpgradeFunctionAttributes(*F); 6858 6859 // Bring in any functions that this function forward-referenced via 6860 // blockaddresses. 6861 return materializeForwardReferencedFunctions(); 6862 } 6863 6864 Error BitcodeReader::materializeModule() { 6865 if (Error Err = materializeMetadata()) 6866 return Err; 6867 6868 // Promise to materialize all forward references. 6869 WillMaterializeAllForwardRefs = true; 6870 6871 // Iterate over the module, deserializing any functions that are still on 6872 // disk. 6873 for (Function &F : *TheModule) { 6874 if (Error Err = materialize(&F)) 6875 return Err; 6876 } 6877 // At this point, if there are any function bodies, parse the rest of 6878 // the bits in the module past the last function block we have recorded 6879 // through either lazy scanning or the VST. 6880 if (LastFunctionBlockBit || NextUnreadBit) 6881 if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit 6882 ? LastFunctionBlockBit 6883 : NextUnreadBit)) 6884 return Err; 6885 6886 // Check that all block address forward references got resolved (as we 6887 // promised above). 6888 if (!BasicBlockFwdRefs.empty()) 6889 return error("Never resolved function from blockaddress"); 6890 6891 // Upgrade any intrinsic calls that slipped through (should not happen!) and 6892 // delete the old functions to clean up. We can't do this unless the entire 6893 // module is materialized because there could always be another function body 6894 // with calls to the old function. 6895 for (auto &I : UpgradedIntrinsics) { 6896 for (auto *U : I.first->users()) { 6897 if (CallInst *CI = dyn_cast<CallInst>(U)) 6898 UpgradeIntrinsicCall(CI, I.second); 6899 } 6900 if (!I.first->use_empty()) 6901 I.first->replaceAllUsesWith(I.second); 6902 I.first->eraseFromParent(); 6903 } 6904 UpgradedIntrinsics.clear(); 6905 6906 UpgradeDebugInfo(*TheModule); 6907 6908 UpgradeModuleFlags(*TheModule); 6909 6910 UpgradeARCRuntime(*TheModule); 6911 6912 return Error::success(); 6913 } 6914 6915 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 6916 return IdentifiedStructTypes; 6917 } 6918 6919 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 6920 BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex, 6921 StringRef ModulePath, std::function<bool(GlobalValue::GUID)> IsPrevailing) 6922 : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex), 6923 ModulePath(ModulePath), IsPrevailing(IsPrevailing) {} 6924 6925 void ModuleSummaryIndexBitcodeReader::addThisModule() { 6926 TheIndex.addModule(ModulePath); 6927 } 6928 6929 ModuleSummaryIndex::ModuleInfo * 6930 ModuleSummaryIndexBitcodeReader::getThisModule() { 6931 return TheIndex.getModule(ModulePath); 6932 } 6933 6934 template <bool AllowNullValueInfo> 6935 std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID> 6936 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) { 6937 auto VGI = ValueIdToValueInfoMap[ValueId]; 6938 // We can have a null value info for memprof callsite info records in 6939 // distributed ThinLTO index files when the callee function summary is not 6940 // included in the index. The bitcode writer records 0 in that case, 6941 // and the caller of this helper will set AllowNullValueInfo to true. 6942 assert(AllowNullValueInfo || std::get<0>(VGI)); 6943 return VGI; 6944 } 6945 6946 void ModuleSummaryIndexBitcodeReader::setValueGUID( 6947 uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage, 6948 StringRef SourceFileName) { 6949 std::string GlobalId = 6950 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 6951 auto ValueGUID = GlobalValue::getGUID(GlobalId); 6952 auto OriginalNameID = ValueGUID; 6953 if (GlobalValue::isLocalLinkage(Linkage)) 6954 OriginalNameID = GlobalValue::getGUID(ValueName); 6955 if (PrintSummaryGUIDs) 6956 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 6957 << ValueName << "\n"; 6958 6959 // UseStrtab is false for legacy summary formats and value names are 6960 // created on stack. In that case we save the name in a string saver in 6961 // the index so that the value name can be recorded. 6962 ValueIdToValueInfoMap[ValueID] = std::make_tuple( 6963 TheIndex.getOrInsertValueInfo( 6964 ValueGUID, UseStrtab ? ValueName : TheIndex.saveString(ValueName)), 6965 OriginalNameID, ValueGUID); 6966 } 6967 6968 // Specialized value symbol table parser used when reading module index 6969 // blocks where we don't actually create global values. The parsed information 6970 // is saved in the bitcode reader for use when later parsing summaries. 6971 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 6972 uint64_t Offset, 6973 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 6974 // With a strtab the VST is not required to parse the summary. 6975 if (UseStrtab) 6976 return Error::success(); 6977 6978 assert(Offset > 0 && "Expected non-zero VST offset"); 6979 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 6980 if (!MaybeCurrentBit) 6981 return MaybeCurrentBit.takeError(); 6982 uint64_t CurrentBit = MaybeCurrentBit.get(); 6983 6984 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 6985 return Err; 6986 6987 SmallVector<uint64_t, 64> Record; 6988 6989 // Read all the records for this value table. 6990 SmallString<128> ValueName; 6991 6992 while (true) { 6993 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6994 if (!MaybeEntry) 6995 return MaybeEntry.takeError(); 6996 BitstreamEntry Entry = MaybeEntry.get(); 6997 6998 switch (Entry.Kind) { 6999 case BitstreamEntry::SubBlock: // Handled for us already. 7000 case BitstreamEntry::Error: 7001 return error("Malformed block"); 7002 case BitstreamEntry::EndBlock: 7003 // Done parsing VST, jump back to wherever we came from. 7004 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 7005 return JumpFailed; 7006 return Error::success(); 7007 case BitstreamEntry::Record: 7008 // The interesting case. 7009 break; 7010 } 7011 7012 // Read a record. 7013 Record.clear(); 7014 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 7015 if (!MaybeRecord) 7016 return MaybeRecord.takeError(); 7017 switch (MaybeRecord.get()) { 7018 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 7019 break; 7020 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 7021 if (convertToString(Record, 1, ValueName)) 7022 return error("Invalid record"); 7023 unsigned ValueID = Record[0]; 7024 assert(!SourceFileName.empty()); 7025 auto VLI = ValueIdToLinkageMap.find(ValueID); 7026 assert(VLI != ValueIdToLinkageMap.end() && 7027 "No linkage found for VST entry?"); 7028 auto Linkage = VLI->second; 7029 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 7030 ValueName.clear(); 7031 break; 7032 } 7033 case bitc::VST_CODE_FNENTRY: { 7034 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 7035 if (convertToString(Record, 2, ValueName)) 7036 return error("Invalid record"); 7037 unsigned ValueID = Record[0]; 7038 assert(!SourceFileName.empty()); 7039 auto VLI = ValueIdToLinkageMap.find(ValueID); 7040 assert(VLI != ValueIdToLinkageMap.end() && 7041 "No linkage found for VST entry?"); 7042 auto Linkage = VLI->second; 7043 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 7044 ValueName.clear(); 7045 break; 7046 } 7047 case bitc::VST_CODE_COMBINED_ENTRY: { 7048 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 7049 unsigned ValueID = Record[0]; 7050 GlobalValue::GUID RefGUID = Record[1]; 7051 // The "original name", which is the second value of the pair will be 7052 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 7053 ValueIdToValueInfoMap[ValueID] = std::make_tuple( 7054 TheIndex.getOrInsertValueInfo(RefGUID), RefGUID, RefGUID); 7055 break; 7056 } 7057 } 7058 } 7059 } 7060 7061 // Parse just the blocks needed for building the index out of the module. 7062 // At the end of this routine the module Index is populated with a map 7063 // from global value id to GlobalValueSummary objects. 7064 Error ModuleSummaryIndexBitcodeReader::parseModule() { 7065 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 7066 return Err; 7067 7068 SmallVector<uint64_t, 64> Record; 7069 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 7070 unsigned ValueId = 0; 7071 7072 // Read the index for this module. 7073 while (true) { 7074 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 7075 if (!MaybeEntry) 7076 return MaybeEntry.takeError(); 7077 llvm::BitstreamEntry Entry = MaybeEntry.get(); 7078 7079 switch (Entry.Kind) { 7080 case BitstreamEntry::Error: 7081 return error("Malformed block"); 7082 case BitstreamEntry::EndBlock: 7083 return Error::success(); 7084 7085 case BitstreamEntry::SubBlock: 7086 switch (Entry.ID) { 7087 default: // Skip unknown content. 7088 if (Error Err = Stream.SkipBlock()) 7089 return Err; 7090 break; 7091 case bitc::BLOCKINFO_BLOCK_ID: 7092 // Need to parse these to get abbrev ids (e.g. for VST) 7093 if (Error Err = readBlockInfo()) 7094 return Err; 7095 break; 7096 case bitc::VALUE_SYMTAB_BLOCK_ID: 7097 // Should have been parsed earlier via VSTOffset, unless there 7098 // is no summary section. 7099 assert(((SeenValueSymbolTable && VSTOffset > 0) || 7100 !SeenGlobalValSummary) && 7101 "Expected early VST parse via VSTOffset record"); 7102 if (Error Err = Stream.SkipBlock()) 7103 return Err; 7104 break; 7105 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 7106 case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID: 7107 // Add the module if it is a per-module index (has a source file name). 7108 if (!SourceFileName.empty()) 7109 addThisModule(); 7110 assert(!SeenValueSymbolTable && 7111 "Already read VST when parsing summary block?"); 7112 // We might not have a VST if there were no values in the 7113 // summary. An empty summary block generated when we are 7114 // performing ThinLTO compiles so we don't later invoke 7115 // the regular LTO process on them. 7116 if (VSTOffset > 0) { 7117 if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 7118 return Err; 7119 SeenValueSymbolTable = true; 7120 } 7121 SeenGlobalValSummary = true; 7122 if (Error Err = parseEntireSummary(Entry.ID)) 7123 return Err; 7124 break; 7125 case bitc::MODULE_STRTAB_BLOCK_ID: 7126 if (Error Err = parseModuleStringTable()) 7127 return Err; 7128 break; 7129 } 7130 continue; 7131 7132 case BitstreamEntry::Record: { 7133 Record.clear(); 7134 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 7135 if (!MaybeBitCode) 7136 return MaybeBitCode.takeError(); 7137 switch (MaybeBitCode.get()) { 7138 default: 7139 break; // Default behavior, ignore unknown content. 7140 case bitc::MODULE_CODE_VERSION: { 7141 if (Error Err = parseVersionRecord(Record).takeError()) 7142 return Err; 7143 break; 7144 } 7145 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 7146 case bitc::MODULE_CODE_SOURCE_FILENAME: { 7147 SmallString<128> ValueName; 7148 if (convertToString(Record, 0, ValueName)) 7149 return error("Invalid record"); 7150 SourceFileName = ValueName.c_str(); 7151 break; 7152 } 7153 /// MODULE_CODE_HASH: [5*i32] 7154 case bitc::MODULE_CODE_HASH: { 7155 if (Record.size() != 5) 7156 return error("Invalid hash length " + Twine(Record.size()).str()); 7157 auto &Hash = getThisModule()->second; 7158 int Pos = 0; 7159 for (auto &Val : Record) { 7160 assert(!(Val >> 32) && "Unexpected high bits set"); 7161 Hash[Pos++] = Val; 7162 } 7163 break; 7164 } 7165 /// MODULE_CODE_VSTOFFSET: [offset] 7166 case bitc::MODULE_CODE_VSTOFFSET: 7167 if (Record.empty()) 7168 return error("Invalid record"); 7169 // Note that we subtract 1 here because the offset is relative to one 7170 // word before the start of the identification or module block, which 7171 // was historically always the start of the regular bitcode header. 7172 VSTOffset = Record[0] - 1; 7173 break; 7174 // v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...] 7175 // v1 FUNCTION: [type, callingconv, isproto, linkage, ...] 7176 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...] 7177 // v2: [strtab offset, strtab size, v1] 7178 case bitc::MODULE_CODE_GLOBALVAR: 7179 case bitc::MODULE_CODE_FUNCTION: 7180 case bitc::MODULE_CODE_ALIAS: { 7181 StringRef Name; 7182 ArrayRef<uint64_t> GVRecord; 7183 std::tie(Name, GVRecord) = readNameFromStrtab(Record); 7184 if (GVRecord.size() <= 3) 7185 return error("Invalid record"); 7186 uint64_t RawLinkage = GVRecord[3]; 7187 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 7188 if (!UseStrtab) { 7189 ValueIdToLinkageMap[ValueId++] = Linkage; 7190 break; 7191 } 7192 7193 setValueGUID(ValueId++, Name, Linkage, SourceFileName); 7194 break; 7195 } 7196 } 7197 } 7198 continue; 7199 } 7200 } 7201 } 7202 7203 std::vector<ValueInfo> 7204 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) { 7205 std::vector<ValueInfo> Ret; 7206 Ret.reserve(Record.size()); 7207 for (uint64_t RefValueId : Record) 7208 Ret.push_back(std::get<0>(getValueInfoFromValueId(RefValueId))); 7209 return Ret; 7210 } 7211 7212 std::vector<FunctionSummary::EdgeTy> 7213 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record, 7214 bool IsOldProfileFormat, 7215 bool HasProfile, bool HasRelBF) { 7216 std::vector<FunctionSummary::EdgeTy> Ret; 7217 Ret.reserve(Record.size()); 7218 for (unsigned I = 0, E = Record.size(); I != E; ++I) { 7219 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 7220 bool HasTailCall = false; 7221 uint64_t RelBF = 0; 7222 ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[I])); 7223 if (IsOldProfileFormat) { 7224 I += 1; // Skip old callsitecount field 7225 if (HasProfile) 7226 I += 1; // Skip old profilecount field 7227 } else if (HasProfile) 7228 std::tie(Hotness, HasTailCall) = 7229 getDecodedHotnessCallEdgeInfo(Record[++I]); 7230 else if (HasRelBF) 7231 getDecodedRelBFCallEdgeInfo(Record[++I], RelBF, HasTailCall); 7232 Ret.push_back(FunctionSummary::EdgeTy{ 7233 Callee, CalleeInfo(Hotness, HasTailCall, RelBF)}); 7234 } 7235 return Ret; 7236 } 7237 7238 static void 7239 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot, 7240 WholeProgramDevirtResolution &Wpd) { 7241 uint64_t ArgNum = Record[Slot++]; 7242 WholeProgramDevirtResolution::ByArg &B = 7243 Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}]; 7244 Slot += ArgNum; 7245 7246 B.TheKind = 7247 static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]); 7248 B.Info = Record[Slot++]; 7249 B.Byte = Record[Slot++]; 7250 B.Bit = Record[Slot++]; 7251 } 7252 7253 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record, 7254 StringRef Strtab, size_t &Slot, 7255 TypeIdSummary &TypeId) { 7256 uint64_t Id = Record[Slot++]; 7257 WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id]; 7258 7259 Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]); 7260 Wpd.SingleImplName = {Strtab.data() + Record[Slot], 7261 static_cast<size_t>(Record[Slot + 1])}; 7262 Slot += 2; 7263 7264 uint64_t ResByArgNum = Record[Slot++]; 7265 for (uint64_t I = 0; I != ResByArgNum; ++I) 7266 parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd); 7267 } 7268 7269 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record, 7270 StringRef Strtab, 7271 ModuleSummaryIndex &TheIndex) { 7272 size_t Slot = 0; 7273 TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary( 7274 {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])}); 7275 Slot += 2; 7276 7277 TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]); 7278 TypeId.TTRes.SizeM1BitWidth = Record[Slot++]; 7279 TypeId.TTRes.AlignLog2 = Record[Slot++]; 7280 TypeId.TTRes.SizeM1 = Record[Slot++]; 7281 TypeId.TTRes.BitMask = Record[Slot++]; 7282 TypeId.TTRes.InlineBits = Record[Slot++]; 7283 7284 while (Slot < Record.size()) 7285 parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId); 7286 } 7287 7288 std::vector<FunctionSummary::ParamAccess> 7289 ModuleSummaryIndexBitcodeReader::parseParamAccesses(ArrayRef<uint64_t> Record) { 7290 auto ReadRange = [&]() { 7291 APInt Lower(FunctionSummary::ParamAccess::RangeWidth, 7292 BitcodeReader::decodeSignRotatedValue(Record.front())); 7293 Record = Record.drop_front(); 7294 APInt Upper(FunctionSummary::ParamAccess::RangeWidth, 7295 BitcodeReader::decodeSignRotatedValue(Record.front())); 7296 Record = Record.drop_front(); 7297 ConstantRange Range{Lower, Upper}; 7298 assert(!Range.isFullSet()); 7299 assert(!Range.isUpperSignWrapped()); 7300 return Range; 7301 }; 7302 7303 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; 7304 while (!Record.empty()) { 7305 PendingParamAccesses.emplace_back(); 7306 FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back(); 7307 ParamAccess.ParamNo = Record.front(); 7308 Record = Record.drop_front(); 7309 ParamAccess.Use = ReadRange(); 7310 ParamAccess.Calls.resize(Record.front()); 7311 Record = Record.drop_front(); 7312 for (auto &Call : ParamAccess.Calls) { 7313 Call.ParamNo = Record.front(); 7314 Record = Record.drop_front(); 7315 Call.Callee = std::get<0>(getValueInfoFromValueId(Record.front())); 7316 Record = Record.drop_front(); 7317 Call.Offsets = ReadRange(); 7318 } 7319 } 7320 return PendingParamAccesses; 7321 } 7322 7323 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo( 7324 ArrayRef<uint64_t> Record, size_t &Slot, 7325 TypeIdCompatibleVtableInfo &TypeId) { 7326 uint64_t Offset = Record[Slot++]; 7327 ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[Slot++])); 7328 TypeId.push_back({Offset, Callee}); 7329 } 7330 7331 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord( 7332 ArrayRef<uint64_t> Record) { 7333 size_t Slot = 0; 7334 TypeIdCompatibleVtableInfo &TypeId = 7335 TheIndex.getOrInsertTypeIdCompatibleVtableSummary( 7336 {Strtab.data() + Record[Slot], 7337 static_cast<size_t>(Record[Slot + 1])}); 7338 Slot += 2; 7339 7340 while (Slot < Record.size()) 7341 parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId); 7342 } 7343 7344 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt, 7345 unsigned WOCnt) { 7346 // Readonly and writeonly refs are in the end of the refs list. 7347 assert(ROCnt + WOCnt <= Refs.size()); 7348 unsigned FirstWORef = Refs.size() - WOCnt; 7349 unsigned RefNo = FirstWORef - ROCnt; 7350 for (; RefNo < FirstWORef; ++RefNo) 7351 Refs[RefNo].setReadOnly(); 7352 for (; RefNo < Refs.size(); ++RefNo) 7353 Refs[RefNo].setWriteOnly(); 7354 } 7355 7356 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 7357 // objects in the index. 7358 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) { 7359 if (Error Err = Stream.EnterSubBlock(ID)) 7360 return Err; 7361 SmallVector<uint64_t, 64> Record; 7362 7363 // Parse version 7364 { 7365 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 7366 if (!MaybeEntry) 7367 return MaybeEntry.takeError(); 7368 BitstreamEntry Entry = MaybeEntry.get(); 7369 7370 if (Entry.Kind != BitstreamEntry::Record) 7371 return error("Invalid Summary Block: record for version expected"); 7372 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 7373 if (!MaybeRecord) 7374 return MaybeRecord.takeError(); 7375 if (MaybeRecord.get() != bitc::FS_VERSION) 7376 return error("Invalid Summary Block: version expected"); 7377 } 7378 const uint64_t Version = Record[0]; 7379 const bool IsOldProfileFormat = Version == 1; 7380 if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion) 7381 return error("Invalid summary version " + Twine(Version) + 7382 ". Version should be in the range [1-" + 7383 Twine(ModuleSummaryIndex::BitcodeSummaryVersion) + 7384 "]."); 7385 Record.clear(); 7386 7387 // Keep around the last seen summary to be used when we see an optional 7388 // "OriginalName" attachement. 7389 GlobalValueSummary *LastSeenSummary = nullptr; 7390 GlobalValue::GUID LastSeenGUID = 0; 7391 7392 // We can expect to see any number of type ID information records before 7393 // each function summary records; these variables store the information 7394 // collected so far so that it can be used to create the summary object. 7395 std::vector<GlobalValue::GUID> PendingTypeTests; 7396 std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls, 7397 PendingTypeCheckedLoadVCalls; 7398 std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls, 7399 PendingTypeCheckedLoadConstVCalls; 7400 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; 7401 7402 std::vector<CallsiteInfo> PendingCallsites; 7403 std::vector<AllocInfo> PendingAllocs; 7404 7405 while (true) { 7406 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 7407 if (!MaybeEntry) 7408 return MaybeEntry.takeError(); 7409 BitstreamEntry Entry = MaybeEntry.get(); 7410 7411 switch (Entry.Kind) { 7412 case BitstreamEntry::SubBlock: // Handled for us already. 7413 case BitstreamEntry::Error: 7414 return error("Malformed block"); 7415 case BitstreamEntry::EndBlock: 7416 return Error::success(); 7417 case BitstreamEntry::Record: 7418 // The interesting case. 7419 break; 7420 } 7421 7422 // Read a record. The record format depends on whether this 7423 // is a per-module index or a combined index file. In the per-module 7424 // case the records contain the associated value's ID for correlation 7425 // with VST entries. In the combined index the correlation is done 7426 // via the bitcode offset of the summary records (which were saved 7427 // in the combined index VST entries). The records also contain 7428 // information used for ThinLTO renaming and importing. 7429 Record.clear(); 7430 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 7431 if (!MaybeBitCode) 7432 return MaybeBitCode.takeError(); 7433 switch (unsigned BitCode = MaybeBitCode.get()) { 7434 default: // Default behavior: ignore. 7435 break; 7436 case bitc::FS_FLAGS: { // [flags] 7437 TheIndex.setFlags(Record[0]); 7438 break; 7439 } 7440 case bitc::FS_VALUE_GUID: { // [valueid, refguid] 7441 uint64_t ValueID = Record[0]; 7442 GlobalValue::GUID RefGUID = Record[1]; 7443 ValueIdToValueInfoMap[ValueID] = std::make_tuple( 7444 TheIndex.getOrInsertValueInfo(RefGUID), RefGUID, RefGUID); 7445 break; 7446 } 7447 // FS_PERMODULE is legacy and does not have support for the tail call flag. 7448 // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs, 7449 // numrefs x valueid, n x (valueid)] 7450 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs, 7451 // numrefs x valueid, 7452 // n x (valueid, hotness+tailcall flags)] 7453 // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs, 7454 // numrefs x valueid, 7455 // n x (valueid, relblockfreq+tailcall)] 7456 case bitc::FS_PERMODULE: 7457 case bitc::FS_PERMODULE_RELBF: 7458 case bitc::FS_PERMODULE_PROFILE: { 7459 unsigned ValueID = Record[0]; 7460 uint64_t RawFlags = Record[1]; 7461 unsigned InstCount = Record[2]; 7462 uint64_t RawFunFlags = 0; 7463 unsigned NumRefs = Record[3]; 7464 unsigned NumRORefs = 0, NumWORefs = 0; 7465 int RefListStartIndex = 4; 7466 if (Version >= 4) { 7467 RawFunFlags = Record[3]; 7468 NumRefs = Record[4]; 7469 RefListStartIndex = 5; 7470 if (Version >= 5) { 7471 NumRORefs = Record[5]; 7472 RefListStartIndex = 6; 7473 if (Version >= 7) { 7474 NumWORefs = Record[6]; 7475 RefListStartIndex = 7; 7476 } 7477 } 7478 } 7479 7480 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7481 // The module path string ref set in the summary must be owned by the 7482 // index's module string table. Since we don't have a module path 7483 // string table section in the per-module index, we create a single 7484 // module path string table entry with an empty (0) ID to take 7485 // ownership. 7486 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 7487 assert(Record.size() >= RefListStartIndex + NumRefs && 7488 "Record size inconsistent with number of references"); 7489 std::vector<ValueInfo> Refs = makeRefList( 7490 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 7491 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 7492 bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF); 7493 std::vector<FunctionSummary::EdgeTy> Calls = makeCallList( 7494 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 7495 IsOldProfileFormat, HasProfile, HasRelBF); 7496 setSpecialRefs(Refs, NumRORefs, NumWORefs); 7497 auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID); 7498 // In order to save memory, only record the memprof summaries if this is 7499 // the prevailing copy of a symbol. The linker doesn't resolve local 7500 // linkage values so don't check whether those are prevailing. 7501 auto LT = (GlobalValue::LinkageTypes)Flags.Linkage; 7502 if (IsPrevailing && 7503 !GlobalValue::isLocalLinkage(LT) && 7504 !IsPrevailing(std::get<2>(VIAndOriginalGUID))) { 7505 PendingCallsites.clear(); 7506 PendingAllocs.clear(); 7507 } 7508 auto FS = std::make_unique<FunctionSummary>( 7509 Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0, 7510 std::move(Refs), std::move(Calls), std::move(PendingTypeTests), 7511 std::move(PendingTypeTestAssumeVCalls), 7512 std::move(PendingTypeCheckedLoadVCalls), 7513 std::move(PendingTypeTestAssumeConstVCalls), 7514 std::move(PendingTypeCheckedLoadConstVCalls), 7515 std::move(PendingParamAccesses), std::move(PendingCallsites), 7516 std::move(PendingAllocs)); 7517 FS->setModulePath(getThisModule()->first()); 7518 FS->setOriginalName(std::get<1>(VIAndOriginalGUID)); 7519 TheIndex.addGlobalValueSummary(std::get<0>(VIAndOriginalGUID), 7520 std::move(FS)); 7521 break; 7522 } 7523 // FS_ALIAS: [valueid, flags, valueid] 7524 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 7525 // they expect all aliasee summaries to be available. 7526 case bitc::FS_ALIAS: { 7527 unsigned ValueID = Record[0]; 7528 uint64_t RawFlags = Record[1]; 7529 unsigned AliaseeID = Record[2]; 7530 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7531 auto AS = std::make_unique<AliasSummary>(Flags); 7532 // The module path string ref set in the summary must be owned by the 7533 // index's module string table. Since we don't have a module path 7534 // string table section in the per-module index, we create a single 7535 // module path string table entry with an empty (0) ID to take 7536 // ownership. 7537 AS->setModulePath(getThisModule()->first()); 7538 7539 auto AliaseeVI = std::get<0>(getValueInfoFromValueId(AliaseeID)); 7540 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath); 7541 if (!AliaseeInModule) 7542 return error("Alias expects aliasee summary to be parsed"); 7543 AS->setAliasee(AliaseeVI, AliaseeInModule); 7544 7545 auto GUID = getValueInfoFromValueId(ValueID); 7546 AS->setOriginalName(std::get<1>(GUID)); 7547 TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(AS)); 7548 break; 7549 } 7550 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid] 7551 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 7552 unsigned ValueID = Record[0]; 7553 uint64_t RawFlags = Record[1]; 7554 unsigned RefArrayStart = 2; 7555 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 7556 /* WriteOnly */ false, 7557 /* Constant */ false, 7558 GlobalObject::VCallVisibilityPublic); 7559 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7560 if (Version >= 5) { 7561 GVF = getDecodedGVarFlags(Record[2]); 7562 RefArrayStart = 3; 7563 } 7564 std::vector<ValueInfo> Refs = 7565 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 7566 auto FS = 7567 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 7568 FS->setModulePath(getThisModule()->first()); 7569 auto GUID = getValueInfoFromValueId(ValueID); 7570 FS->setOriginalName(std::get<1>(GUID)); 7571 TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(FS)); 7572 break; 7573 } 7574 // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, 7575 // numrefs, numrefs x valueid, 7576 // n x (valueid, offset)] 7577 case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: { 7578 unsigned ValueID = Record[0]; 7579 uint64_t RawFlags = Record[1]; 7580 GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]); 7581 unsigned NumRefs = Record[3]; 7582 unsigned RefListStartIndex = 4; 7583 unsigned VTableListStartIndex = RefListStartIndex + NumRefs; 7584 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7585 std::vector<ValueInfo> Refs = makeRefList( 7586 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 7587 VTableFuncList VTableFuncs; 7588 for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) { 7589 ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[I])); 7590 uint64_t Offset = Record[++I]; 7591 VTableFuncs.push_back({Callee, Offset}); 7592 } 7593 auto VS = 7594 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 7595 VS->setModulePath(getThisModule()->first()); 7596 VS->setVTableFuncs(VTableFuncs); 7597 auto GUID = getValueInfoFromValueId(ValueID); 7598 VS->setOriginalName(std::get<1>(GUID)); 7599 TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(VS)); 7600 break; 7601 } 7602 // FS_COMBINED is legacy and does not have support for the tail call flag. 7603 // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs, 7604 // numrefs x valueid, n x (valueid)] 7605 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs, 7606 // numrefs x valueid, 7607 // n x (valueid, hotness+tailcall flags)] 7608 case bitc::FS_COMBINED: 7609 case bitc::FS_COMBINED_PROFILE: { 7610 unsigned ValueID = Record[0]; 7611 uint64_t ModuleId = Record[1]; 7612 uint64_t RawFlags = Record[2]; 7613 unsigned InstCount = Record[3]; 7614 uint64_t RawFunFlags = 0; 7615 uint64_t EntryCount = 0; 7616 unsigned NumRefs = Record[4]; 7617 unsigned NumRORefs = 0, NumWORefs = 0; 7618 int RefListStartIndex = 5; 7619 7620 if (Version >= 4) { 7621 RawFunFlags = Record[4]; 7622 RefListStartIndex = 6; 7623 size_t NumRefsIndex = 5; 7624 if (Version >= 5) { 7625 unsigned NumRORefsOffset = 1; 7626 RefListStartIndex = 7; 7627 if (Version >= 6) { 7628 NumRefsIndex = 6; 7629 EntryCount = Record[5]; 7630 RefListStartIndex = 8; 7631 if (Version >= 7) { 7632 RefListStartIndex = 9; 7633 NumWORefs = Record[8]; 7634 NumRORefsOffset = 2; 7635 } 7636 } 7637 NumRORefs = Record[RefListStartIndex - NumRORefsOffset]; 7638 } 7639 NumRefs = Record[NumRefsIndex]; 7640 } 7641 7642 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7643 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 7644 assert(Record.size() >= RefListStartIndex + NumRefs && 7645 "Record size inconsistent with number of references"); 7646 std::vector<ValueInfo> Refs = makeRefList( 7647 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 7648 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 7649 std::vector<FunctionSummary::EdgeTy> Edges = makeCallList( 7650 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 7651 IsOldProfileFormat, HasProfile, false); 7652 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID)); 7653 setSpecialRefs(Refs, NumRORefs, NumWORefs); 7654 auto FS = std::make_unique<FunctionSummary>( 7655 Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount, 7656 std::move(Refs), std::move(Edges), std::move(PendingTypeTests), 7657 std::move(PendingTypeTestAssumeVCalls), 7658 std::move(PendingTypeCheckedLoadVCalls), 7659 std::move(PendingTypeTestAssumeConstVCalls), 7660 std::move(PendingTypeCheckedLoadConstVCalls), 7661 std::move(PendingParamAccesses), std::move(PendingCallsites), 7662 std::move(PendingAllocs)); 7663 LastSeenSummary = FS.get(); 7664 LastSeenGUID = VI.getGUID(); 7665 FS->setModulePath(ModuleIdMap[ModuleId]); 7666 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 7667 break; 7668 } 7669 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 7670 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 7671 // they expect all aliasee summaries to be available. 7672 case bitc::FS_COMBINED_ALIAS: { 7673 unsigned ValueID = Record[0]; 7674 uint64_t ModuleId = Record[1]; 7675 uint64_t RawFlags = Record[2]; 7676 unsigned AliaseeValueId = Record[3]; 7677 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7678 auto AS = std::make_unique<AliasSummary>(Flags); 7679 LastSeenSummary = AS.get(); 7680 AS->setModulePath(ModuleIdMap[ModuleId]); 7681 7682 auto AliaseeVI = std::get<0>(getValueInfoFromValueId(AliaseeValueId)); 7683 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath()); 7684 AS->setAliasee(AliaseeVI, AliaseeInModule); 7685 7686 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID)); 7687 LastSeenGUID = VI.getGUID(); 7688 TheIndex.addGlobalValueSummary(VI, std::move(AS)); 7689 break; 7690 } 7691 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 7692 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 7693 unsigned ValueID = Record[0]; 7694 uint64_t ModuleId = Record[1]; 7695 uint64_t RawFlags = Record[2]; 7696 unsigned RefArrayStart = 3; 7697 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 7698 /* WriteOnly */ false, 7699 /* Constant */ false, 7700 GlobalObject::VCallVisibilityPublic); 7701 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7702 if (Version >= 5) { 7703 GVF = getDecodedGVarFlags(Record[3]); 7704 RefArrayStart = 4; 7705 } 7706 std::vector<ValueInfo> Refs = 7707 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 7708 auto FS = 7709 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 7710 LastSeenSummary = FS.get(); 7711 FS->setModulePath(ModuleIdMap[ModuleId]); 7712 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID)); 7713 LastSeenGUID = VI.getGUID(); 7714 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 7715 break; 7716 } 7717 // FS_COMBINED_ORIGINAL_NAME: [original_name] 7718 case bitc::FS_COMBINED_ORIGINAL_NAME: { 7719 uint64_t OriginalName = Record[0]; 7720 if (!LastSeenSummary) 7721 return error("Name attachment that does not follow a combined record"); 7722 LastSeenSummary->setOriginalName(OriginalName); 7723 TheIndex.addOriginalName(LastSeenGUID, OriginalName); 7724 // Reset the LastSeenSummary 7725 LastSeenSummary = nullptr; 7726 LastSeenGUID = 0; 7727 break; 7728 } 7729 case bitc::FS_TYPE_TESTS: 7730 assert(PendingTypeTests.empty()); 7731 llvm::append_range(PendingTypeTests, Record); 7732 break; 7733 7734 case bitc::FS_TYPE_TEST_ASSUME_VCALLS: 7735 assert(PendingTypeTestAssumeVCalls.empty()); 7736 for (unsigned I = 0; I != Record.size(); I += 2) 7737 PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]}); 7738 break; 7739 7740 case bitc::FS_TYPE_CHECKED_LOAD_VCALLS: 7741 assert(PendingTypeCheckedLoadVCalls.empty()); 7742 for (unsigned I = 0; I != Record.size(); I += 2) 7743 PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]}); 7744 break; 7745 7746 case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL: 7747 PendingTypeTestAssumeConstVCalls.push_back( 7748 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 7749 break; 7750 7751 case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL: 7752 PendingTypeCheckedLoadConstVCalls.push_back( 7753 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 7754 break; 7755 7756 case bitc::FS_CFI_FUNCTION_DEFS: { 7757 std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs(); 7758 for (unsigned I = 0; I != Record.size(); I += 2) 7759 CfiFunctionDefs.insert( 7760 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 7761 break; 7762 } 7763 7764 case bitc::FS_CFI_FUNCTION_DECLS: { 7765 std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls(); 7766 for (unsigned I = 0; I != Record.size(); I += 2) 7767 CfiFunctionDecls.insert( 7768 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 7769 break; 7770 } 7771 7772 case bitc::FS_TYPE_ID: 7773 parseTypeIdSummaryRecord(Record, Strtab, TheIndex); 7774 break; 7775 7776 case bitc::FS_TYPE_ID_METADATA: 7777 parseTypeIdCompatibleVtableSummaryRecord(Record); 7778 break; 7779 7780 case bitc::FS_BLOCK_COUNT: 7781 TheIndex.addBlockCount(Record[0]); 7782 break; 7783 7784 case bitc::FS_PARAM_ACCESS: { 7785 PendingParamAccesses = parseParamAccesses(Record); 7786 break; 7787 } 7788 7789 case bitc::FS_STACK_IDS: { // [n x stackid] 7790 // Save stack ids in the reader to consult when adding stack ids from the 7791 // lists in the stack node and alloc node entries. 7792 StackIds = ArrayRef<uint64_t>(Record); 7793 break; 7794 } 7795 7796 case bitc::FS_PERMODULE_CALLSITE_INFO: { 7797 unsigned ValueID = Record[0]; 7798 SmallVector<unsigned> StackIdList; 7799 for (auto R = Record.begin() + 1; R != Record.end(); R++) { 7800 assert(*R < StackIds.size()); 7801 StackIdList.push_back(TheIndex.addOrGetStackIdIndex(StackIds[*R])); 7802 } 7803 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID)); 7804 PendingCallsites.push_back(CallsiteInfo({VI, std::move(StackIdList)})); 7805 break; 7806 } 7807 7808 case bitc::FS_COMBINED_CALLSITE_INFO: { 7809 auto RecordIter = Record.begin(); 7810 unsigned ValueID = *RecordIter++; 7811 unsigned NumStackIds = *RecordIter++; 7812 unsigned NumVersions = *RecordIter++; 7813 assert(Record.size() == 3 + NumStackIds + NumVersions); 7814 SmallVector<unsigned> StackIdList; 7815 for (unsigned J = 0; J < NumStackIds; J++) { 7816 assert(*RecordIter < StackIds.size()); 7817 StackIdList.push_back( 7818 TheIndex.addOrGetStackIdIndex(StackIds[*RecordIter++])); 7819 } 7820 SmallVector<unsigned> Versions; 7821 for (unsigned J = 0; J < NumVersions; J++) 7822 Versions.push_back(*RecordIter++); 7823 ValueInfo VI = std::get<0>( 7824 getValueInfoFromValueId</*AllowNullValueInfo*/ true>(ValueID)); 7825 PendingCallsites.push_back( 7826 CallsiteInfo({VI, std::move(Versions), std::move(StackIdList)})); 7827 break; 7828 } 7829 7830 case bitc::FS_PERMODULE_ALLOC_INFO: { 7831 unsigned I = 0; 7832 std::vector<MIBInfo> MIBs; 7833 while (I < Record.size()) { 7834 assert(Record.size() - I >= 2); 7835 AllocationType AllocType = (AllocationType)Record[I++]; 7836 unsigned NumStackEntries = Record[I++]; 7837 assert(Record.size() - I >= NumStackEntries); 7838 SmallVector<unsigned> StackIdList; 7839 for (unsigned J = 0; J < NumStackEntries; J++) { 7840 assert(Record[I] < StackIds.size()); 7841 StackIdList.push_back( 7842 TheIndex.addOrGetStackIdIndex(StackIds[Record[I++]])); 7843 } 7844 MIBs.push_back(MIBInfo(AllocType, std::move(StackIdList))); 7845 } 7846 PendingAllocs.push_back(AllocInfo(std::move(MIBs))); 7847 break; 7848 } 7849 7850 case bitc::FS_COMBINED_ALLOC_INFO: { 7851 unsigned I = 0; 7852 std::vector<MIBInfo> MIBs; 7853 unsigned NumMIBs = Record[I++]; 7854 unsigned NumVersions = Record[I++]; 7855 unsigned MIBsRead = 0; 7856 while (MIBsRead++ < NumMIBs) { 7857 assert(Record.size() - I >= 2); 7858 AllocationType AllocType = (AllocationType)Record[I++]; 7859 unsigned NumStackEntries = Record[I++]; 7860 assert(Record.size() - I >= NumStackEntries); 7861 SmallVector<unsigned> StackIdList; 7862 for (unsigned J = 0; J < NumStackEntries; J++) { 7863 assert(Record[I] < StackIds.size()); 7864 StackIdList.push_back( 7865 TheIndex.addOrGetStackIdIndex(StackIds[Record[I++]])); 7866 } 7867 MIBs.push_back(MIBInfo(AllocType, std::move(StackIdList))); 7868 } 7869 assert(Record.size() - I >= NumVersions); 7870 SmallVector<uint8_t> Versions; 7871 for (unsigned J = 0; J < NumVersions; J++) 7872 Versions.push_back(Record[I++]); 7873 PendingAllocs.push_back( 7874 AllocInfo(std::move(Versions), std::move(MIBs))); 7875 break; 7876 } 7877 } 7878 } 7879 llvm_unreachable("Exit infinite loop"); 7880 } 7881 7882 // Parse the module string table block into the Index. 7883 // This populates the ModulePathStringTable map in the index. 7884 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 7885 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 7886 return Err; 7887 7888 SmallVector<uint64_t, 64> Record; 7889 7890 SmallString<128> ModulePath; 7891 ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr; 7892 7893 while (true) { 7894 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 7895 if (!MaybeEntry) 7896 return MaybeEntry.takeError(); 7897 BitstreamEntry Entry = MaybeEntry.get(); 7898 7899 switch (Entry.Kind) { 7900 case BitstreamEntry::SubBlock: // Handled for us already. 7901 case BitstreamEntry::Error: 7902 return error("Malformed block"); 7903 case BitstreamEntry::EndBlock: 7904 return Error::success(); 7905 case BitstreamEntry::Record: 7906 // The interesting case. 7907 break; 7908 } 7909 7910 Record.clear(); 7911 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 7912 if (!MaybeRecord) 7913 return MaybeRecord.takeError(); 7914 switch (MaybeRecord.get()) { 7915 default: // Default behavior: ignore. 7916 break; 7917 case bitc::MST_CODE_ENTRY: { 7918 // MST_ENTRY: [modid, namechar x N] 7919 uint64_t ModuleId = Record[0]; 7920 7921 if (convertToString(Record, 1, ModulePath)) 7922 return error("Invalid record"); 7923 7924 LastSeenModule = TheIndex.addModule(ModulePath); 7925 ModuleIdMap[ModuleId] = LastSeenModule->first(); 7926 7927 ModulePath.clear(); 7928 break; 7929 } 7930 /// MST_CODE_HASH: [5*i32] 7931 case bitc::MST_CODE_HASH: { 7932 if (Record.size() != 5) 7933 return error("Invalid hash length " + Twine(Record.size()).str()); 7934 if (!LastSeenModule) 7935 return error("Invalid hash that does not follow a module path"); 7936 int Pos = 0; 7937 for (auto &Val : Record) { 7938 assert(!(Val >> 32) && "Unexpected high bits set"); 7939 LastSeenModule->second[Pos++] = Val; 7940 } 7941 // Reset LastSeenModule to avoid overriding the hash unexpectedly. 7942 LastSeenModule = nullptr; 7943 break; 7944 } 7945 } 7946 } 7947 llvm_unreachable("Exit infinite loop"); 7948 } 7949 7950 namespace { 7951 7952 // FIXME: This class is only here to support the transition to llvm::Error. It 7953 // will be removed once this transition is complete. Clients should prefer to 7954 // deal with the Error value directly, rather than converting to error_code. 7955 class BitcodeErrorCategoryType : public std::error_category { 7956 const char *name() const noexcept override { 7957 return "llvm.bitcode"; 7958 } 7959 7960 std::string message(int IE) const override { 7961 BitcodeError E = static_cast<BitcodeError>(IE); 7962 switch (E) { 7963 case BitcodeError::CorruptedBitcode: 7964 return "Corrupted bitcode"; 7965 } 7966 llvm_unreachable("Unknown error type!"); 7967 } 7968 }; 7969 7970 } // end anonymous namespace 7971 7972 const std::error_category &llvm::BitcodeErrorCategory() { 7973 static BitcodeErrorCategoryType ErrorCategory; 7974 return ErrorCategory; 7975 } 7976 7977 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream, 7978 unsigned Block, unsigned RecordID) { 7979 if (Error Err = Stream.EnterSubBlock(Block)) 7980 return std::move(Err); 7981 7982 StringRef Strtab; 7983 while (true) { 7984 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 7985 if (!MaybeEntry) 7986 return MaybeEntry.takeError(); 7987 llvm::BitstreamEntry Entry = MaybeEntry.get(); 7988 7989 switch (Entry.Kind) { 7990 case BitstreamEntry::EndBlock: 7991 return Strtab; 7992 7993 case BitstreamEntry::Error: 7994 return error("Malformed block"); 7995 7996 case BitstreamEntry::SubBlock: 7997 if (Error Err = Stream.SkipBlock()) 7998 return std::move(Err); 7999 break; 8000 8001 case BitstreamEntry::Record: 8002 StringRef Blob; 8003 SmallVector<uint64_t, 1> Record; 8004 Expected<unsigned> MaybeRecord = 8005 Stream.readRecord(Entry.ID, Record, &Blob); 8006 if (!MaybeRecord) 8007 return MaybeRecord.takeError(); 8008 if (MaybeRecord.get() == RecordID) 8009 Strtab = Blob; 8010 break; 8011 } 8012 } 8013 } 8014 8015 //===----------------------------------------------------------------------===// 8016 // External interface 8017 //===----------------------------------------------------------------------===// 8018 8019 Expected<std::vector<BitcodeModule>> 8020 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) { 8021 auto FOrErr = getBitcodeFileContents(Buffer); 8022 if (!FOrErr) 8023 return FOrErr.takeError(); 8024 return std::move(FOrErr->Mods); 8025 } 8026 8027 Expected<BitcodeFileContents> 8028 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) { 8029 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 8030 if (!StreamOrErr) 8031 return StreamOrErr.takeError(); 8032 BitstreamCursor &Stream = *StreamOrErr; 8033 8034 BitcodeFileContents F; 8035 while (true) { 8036 uint64_t BCBegin = Stream.getCurrentByteNo(); 8037 8038 // We may be consuming bitcode from a client that leaves garbage at the end 8039 // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to 8040 // the end that there cannot possibly be another module, stop looking. 8041 if (BCBegin + 8 >= Stream.getBitcodeBytes().size()) 8042 return F; 8043 8044 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 8045 if (!MaybeEntry) 8046 return MaybeEntry.takeError(); 8047 llvm::BitstreamEntry Entry = MaybeEntry.get(); 8048 8049 switch (Entry.Kind) { 8050 case BitstreamEntry::EndBlock: 8051 case BitstreamEntry::Error: 8052 return error("Malformed block"); 8053 8054 case BitstreamEntry::SubBlock: { 8055 uint64_t IdentificationBit = -1ull; 8056 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 8057 IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8; 8058 if (Error Err = Stream.SkipBlock()) 8059 return std::move(Err); 8060 8061 { 8062 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 8063 if (!MaybeEntry) 8064 return MaybeEntry.takeError(); 8065 Entry = MaybeEntry.get(); 8066 } 8067 8068 if (Entry.Kind != BitstreamEntry::SubBlock || 8069 Entry.ID != bitc::MODULE_BLOCK_ID) 8070 return error("Malformed block"); 8071 } 8072 8073 if (Entry.ID == bitc::MODULE_BLOCK_ID) { 8074 uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8; 8075 if (Error Err = Stream.SkipBlock()) 8076 return std::move(Err); 8077 8078 F.Mods.push_back({Stream.getBitcodeBytes().slice( 8079 BCBegin, Stream.getCurrentByteNo() - BCBegin), 8080 Buffer.getBufferIdentifier(), IdentificationBit, 8081 ModuleBit}); 8082 continue; 8083 } 8084 8085 if (Entry.ID == bitc::STRTAB_BLOCK_ID) { 8086 Expected<StringRef> Strtab = 8087 readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB); 8088 if (!Strtab) 8089 return Strtab.takeError(); 8090 // This string table is used by every preceding bitcode module that does 8091 // not have its own string table. A bitcode file may have multiple 8092 // string tables if it was created by binary concatenation, for example 8093 // with "llvm-cat -b". 8094 for (BitcodeModule &I : llvm::reverse(F.Mods)) { 8095 if (!I.Strtab.empty()) 8096 break; 8097 I.Strtab = *Strtab; 8098 } 8099 // Similarly, the string table is used by every preceding symbol table; 8100 // normally there will be just one unless the bitcode file was created 8101 // by binary concatenation. 8102 if (!F.Symtab.empty() && F.StrtabForSymtab.empty()) 8103 F.StrtabForSymtab = *Strtab; 8104 continue; 8105 } 8106 8107 if (Entry.ID == bitc::SYMTAB_BLOCK_ID) { 8108 Expected<StringRef> SymtabOrErr = 8109 readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB); 8110 if (!SymtabOrErr) 8111 return SymtabOrErr.takeError(); 8112 8113 // We can expect the bitcode file to have multiple symbol tables if it 8114 // was created by binary concatenation. In that case we silently 8115 // ignore any subsequent symbol tables, which is fine because this is a 8116 // low level function. The client is expected to notice that the number 8117 // of modules in the symbol table does not match the number of modules 8118 // in the input file and regenerate the symbol table. 8119 if (F.Symtab.empty()) 8120 F.Symtab = *SymtabOrErr; 8121 continue; 8122 } 8123 8124 if (Error Err = Stream.SkipBlock()) 8125 return std::move(Err); 8126 continue; 8127 } 8128 case BitstreamEntry::Record: 8129 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 8130 return std::move(E); 8131 continue; 8132 } 8133 } 8134 } 8135 8136 /// Get a lazy one-at-time loading module from bitcode. 8137 /// 8138 /// This isn't always used in a lazy context. In particular, it's also used by 8139 /// \a parseModule(). If this is truly lazy, then we need to eagerly pull 8140 /// in forward-referenced functions from block address references. 8141 /// 8142 /// \param[in] MaterializeAll Set to \c true if we should materialize 8143 /// everything. 8144 Expected<std::unique_ptr<Module>> 8145 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll, 8146 bool ShouldLazyLoadMetadata, bool IsImporting, 8147 ParserCallbacks Callbacks) { 8148 BitstreamCursor Stream(Buffer); 8149 8150 std::string ProducerIdentification; 8151 if (IdentificationBit != -1ull) { 8152 if (Error JumpFailed = Stream.JumpToBit(IdentificationBit)) 8153 return std::move(JumpFailed); 8154 if (Error E = 8155 readIdentificationBlock(Stream).moveInto(ProducerIdentification)) 8156 return std::move(E); 8157 } 8158 8159 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 8160 return std::move(JumpFailed); 8161 auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification, 8162 Context); 8163 8164 std::unique_ptr<Module> M = 8165 std::make_unique<Module>(ModuleIdentifier, Context); 8166 M->setMaterializer(R); 8167 8168 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 8169 if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, 8170 IsImporting, Callbacks)) 8171 return std::move(Err); 8172 8173 if (MaterializeAll) { 8174 // Read in the entire module, and destroy the BitcodeReader. 8175 if (Error Err = M->materializeAll()) 8176 return std::move(Err); 8177 } else { 8178 // Resolve forward references from blockaddresses. 8179 if (Error Err = R->materializeForwardReferencedFunctions()) 8180 return std::move(Err); 8181 } 8182 8183 return std::move(M); 8184 } 8185 8186 Expected<std::unique_ptr<Module>> 8187 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata, 8188 bool IsImporting, ParserCallbacks Callbacks) { 8189 return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting, 8190 Callbacks); 8191 } 8192 8193 // Parse the specified bitcode buffer and merge the index into CombinedIndex. 8194 // We don't use ModuleIdentifier here because the client may need to control the 8195 // module path used in the combined summary (e.g. when reading summaries for 8196 // regular LTO modules). 8197 Error BitcodeModule::readSummary( 8198 ModuleSummaryIndex &CombinedIndex, StringRef ModulePath, 8199 std::function<bool(GlobalValue::GUID)> IsPrevailing) { 8200 BitstreamCursor Stream(Buffer); 8201 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 8202 return JumpFailed; 8203 8204 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex, 8205 ModulePath, IsPrevailing); 8206 return R.parseModule(); 8207 } 8208 8209 // Parse the specified bitcode buffer, returning the function info index. 8210 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() { 8211 BitstreamCursor Stream(Buffer); 8212 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 8213 return std::move(JumpFailed); 8214 8215 auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false); 8216 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index, 8217 ModuleIdentifier, 0); 8218 8219 if (Error Err = R.parseModule()) 8220 return std::move(Err); 8221 8222 return std::move(Index); 8223 } 8224 8225 static Expected<std::pair<bool, bool>> 8226 getEnableSplitLTOUnitAndUnifiedFlag(BitstreamCursor &Stream, 8227 unsigned ID, 8228 BitcodeLTOInfo <OInfo) { 8229 if (Error Err = Stream.EnterSubBlock(ID)) 8230 return std::move(Err); 8231 SmallVector<uint64_t, 64> Record; 8232 8233 while (true) { 8234 BitstreamEntry Entry; 8235 std::pair<bool, bool> Result = {false,false}; 8236 if (Error E = Stream.advanceSkippingSubblocks().moveInto(Entry)) 8237 return std::move(E); 8238 8239 switch (Entry.Kind) { 8240 case BitstreamEntry::SubBlock: // Handled for us already. 8241 case BitstreamEntry::Error: 8242 return error("Malformed block"); 8243 case BitstreamEntry::EndBlock: { 8244 // If no flags record found, set both flags to false. 8245 return Result; 8246 } 8247 case BitstreamEntry::Record: 8248 // The interesting case. 8249 break; 8250 } 8251 8252 // Look for the FS_FLAGS record. 8253 Record.clear(); 8254 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 8255 if (!MaybeBitCode) 8256 return MaybeBitCode.takeError(); 8257 switch (MaybeBitCode.get()) { 8258 default: // Default behavior: ignore. 8259 break; 8260 case bitc::FS_FLAGS: { // [flags] 8261 uint64_t Flags = Record[0]; 8262 // Scan flags. 8263 assert(Flags <= 0x2ff && "Unexpected bits in flag"); 8264 8265 bool EnableSplitLTOUnit = Flags & 0x8; 8266 bool UnifiedLTO = Flags & 0x200; 8267 Result = {EnableSplitLTOUnit, UnifiedLTO}; 8268 8269 return Result; 8270 } 8271 } 8272 } 8273 llvm_unreachable("Exit infinite loop"); 8274 } 8275 8276 // Check if the given bitcode buffer contains a global value summary block. 8277 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() { 8278 BitstreamCursor Stream(Buffer); 8279 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 8280 return std::move(JumpFailed); 8281 8282 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 8283 return std::move(Err); 8284 8285 while (true) { 8286 llvm::BitstreamEntry Entry; 8287 if (Error E = Stream.advance().moveInto(Entry)) 8288 return std::move(E); 8289 8290 switch (Entry.Kind) { 8291 case BitstreamEntry::Error: 8292 return error("Malformed block"); 8293 case BitstreamEntry::EndBlock: 8294 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false, 8295 /*EnableSplitLTOUnit=*/false, /*UnifiedLTO=*/false}; 8296 8297 case BitstreamEntry::SubBlock: 8298 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) { 8299 BitcodeLTOInfo LTOInfo; 8300 Expected<std::pair<bool, bool>> Flags = 8301 getEnableSplitLTOUnitAndUnifiedFlag(Stream, Entry.ID, LTOInfo); 8302 if (!Flags) 8303 return Flags.takeError(); 8304 std::tie(LTOInfo.EnableSplitLTOUnit, LTOInfo.UnifiedLTO) = Flags.get(); 8305 LTOInfo.IsThinLTO = true; 8306 LTOInfo.HasSummary = true; 8307 return LTOInfo; 8308 } 8309 8310 if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) { 8311 BitcodeLTOInfo LTOInfo; 8312 Expected<std::pair<bool, bool>> Flags = 8313 getEnableSplitLTOUnitAndUnifiedFlag(Stream, Entry.ID, LTOInfo); 8314 if (!Flags) 8315 return Flags.takeError(); 8316 std::tie(LTOInfo.EnableSplitLTOUnit, LTOInfo.UnifiedLTO) = Flags.get(); 8317 LTOInfo.IsThinLTO = false; 8318 LTOInfo.HasSummary = true; 8319 return LTOInfo; 8320 } 8321 8322 // Ignore other sub-blocks. 8323 if (Error Err = Stream.SkipBlock()) 8324 return std::move(Err); 8325 continue; 8326 8327 case BitstreamEntry::Record: 8328 if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID)) 8329 continue; 8330 else 8331 return StreamFailed.takeError(); 8332 } 8333 } 8334 } 8335 8336 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) { 8337 Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer); 8338 if (!MsOrErr) 8339 return MsOrErr.takeError(); 8340 8341 if (MsOrErr->size() != 1) 8342 return error("Expected a single module"); 8343 8344 return (*MsOrErr)[0]; 8345 } 8346 8347 Expected<std::unique_ptr<Module>> 8348 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context, 8349 bool ShouldLazyLoadMetadata, bool IsImporting, 8350 ParserCallbacks Callbacks) { 8351 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8352 if (!BM) 8353 return BM.takeError(); 8354 8355 return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting, 8356 Callbacks); 8357 } 8358 8359 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule( 8360 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context, 8361 bool ShouldLazyLoadMetadata, bool IsImporting, ParserCallbacks Callbacks) { 8362 auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata, 8363 IsImporting, Callbacks); 8364 if (MOrErr) 8365 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer)); 8366 return MOrErr; 8367 } 8368 8369 Expected<std::unique_ptr<Module>> 8370 BitcodeModule::parseModule(LLVMContext &Context, ParserCallbacks Callbacks) { 8371 return getModuleImpl(Context, true, false, false, Callbacks); 8372 // TODO: Restore the use-lists to the in-memory state when the bitcode was 8373 // written. We must defer until the Module has been fully materialized. 8374 } 8375 8376 Expected<std::unique_ptr<Module>> 8377 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context, 8378 ParserCallbacks Callbacks) { 8379 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8380 if (!BM) 8381 return BM.takeError(); 8382 8383 return BM->parseModule(Context, Callbacks); 8384 } 8385 8386 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) { 8387 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 8388 if (!StreamOrErr) 8389 return StreamOrErr.takeError(); 8390 8391 return readTriple(*StreamOrErr); 8392 } 8393 8394 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) { 8395 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 8396 if (!StreamOrErr) 8397 return StreamOrErr.takeError(); 8398 8399 return hasObjCCategory(*StreamOrErr); 8400 } 8401 8402 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) { 8403 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 8404 if (!StreamOrErr) 8405 return StreamOrErr.takeError(); 8406 8407 return readIdentificationCode(*StreamOrErr); 8408 } 8409 8410 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer, 8411 ModuleSummaryIndex &CombinedIndex) { 8412 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8413 if (!BM) 8414 return BM.takeError(); 8415 8416 return BM->readSummary(CombinedIndex, BM->getModuleIdentifier()); 8417 } 8418 8419 Expected<std::unique_ptr<ModuleSummaryIndex>> 8420 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) { 8421 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8422 if (!BM) 8423 return BM.takeError(); 8424 8425 return BM->getSummary(); 8426 } 8427 8428 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) { 8429 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8430 if (!BM) 8431 return BM.takeError(); 8432 8433 return BM->getLTOInfo(); 8434 } 8435 8436 Expected<std::unique_ptr<ModuleSummaryIndex>> 8437 llvm::getModuleSummaryIndexForFile(StringRef Path, 8438 bool IgnoreEmptyThinLTOIndexFile) { 8439 ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr = 8440 MemoryBuffer::getFileOrSTDIN(Path); 8441 if (!FileOrErr) 8442 return errorCodeToError(FileOrErr.getError()); 8443 if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize()) 8444 return nullptr; 8445 return getModuleSummaryIndex(**FileOrErr); 8446 } 8447