xref: /llvm-project/llvm/lib/Bitcode/Reader/BitcodeReader.cpp (revision 49ae2dcf369e0fd76e4bb18f1c84e6716ff0ec4b)
1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Bitcode/BitcodeReader.h"
10 #include "MetadataLoader.h"
11 #include "ValueList.h"
12 #include "llvm/ADT/APFloat.h"
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallString.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/StringRef.h"
20 #include "llvm/ADT/Twine.h"
21 #include "llvm/Bitcode/BitcodeCommon.h"
22 #include "llvm/Bitcode/LLVMBitCodes.h"
23 #include "llvm/Bitstream/BitstreamReader.h"
24 #include "llvm/Config/llvm-config.h"
25 #include "llvm/IR/Argument.h"
26 #include "llvm/IR/AttributeMask.h"
27 #include "llvm/IR/Attributes.h"
28 #include "llvm/IR/AutoUpgrade.h"
29 #include "llvm/IR/BasicBlock.h"
30 #include "llvm/IR/CallingConv.h"
31 #include "llvm/IR/Comdat.h"
32 #include "llvm/IR/Constant.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/DebugInfo.h"
36 #include "llvm/IR/DebugInfoMetadata.h"
37 #include "llvm/IR/DebugLoc.h"
38 #include "llvm/IR/DerivedTypes.h"
39 #include "llvm/IR/Function.h"
40 #include "llvm/IR/GVMaterializer.h"
41 #include "llvm/IR/GetElementPtrTypeIterator.h"
42 #include "llvm/IR/GlobalAlias.h"
43 #include "llvm/IR/GlobalIFunc.h"
44 #include "llvm/IR/GlobalObject.h"
45 #include "llvm/IR/GlobalValue.h"
46 #include "llvm/IR/GlobalVariable.h"
47 #include "llvm/IR/InlineAsm.h"
48 #include "llvm/IR/InstIterator.h"
49 #include "llvm/IR/InstrTypes.h"
50 #include "llvm/IR/Instruction.h"
51 #include "llvm/IR/Instructions.h"
52 #include "llvm/IR/Intrinsics.h"
53 #include "llvm/IR/IntrinsicsAArch64.h"
54 #include "llvm/IR/IntrinsicsARM.h"
55 #include "llvm/IR/LLVMContext.h"
56 #include "llvm/IR/Metadata.h"
57 #include "llvm/IR/Module.h"
58 #include "llvm/IR/ModuleSummaryIndex.h"
59 #include "llvm/IR/Operator.h"
60 #include "llvm/IR/ProfDataUtils.h"
61 #include "llvm/IR/Type.h"
62 #include "llvm/IR/Value.h"
63 #include "llvm/IR/Verifier.h"
64 #include "llvm/Support/AtomicOrdering.h"
65 #include "llvm/Support/Casting.h"
66 #include "llvm/Support/CommandLine.h"
67 #include "llvm/Support/Compiler.h"
68 #include "llvm/Support/Debug.h"
69 #include "llvm/Support/Error.h"
70 #include "llvm/Support/ErrorHandling.h"
71 #include "llvm/Support/ErrorOr.h"
72 #include "llvm/Support/MathExtras.h"
73 #include "llvm/Support/MemoryBuffer.h"
74 #include "llvm/Support/ModRef.h"
75 #include "llvm/Support/raw_ostream.h"
76 #include "llvm/TargetParser/Triple.h"
77 #include <algorithm>
78 #include <cassert>
79 #include <cstddef>
80 #include <cstdint>
81 #include <deque>
82 #include <map>
83 #include <memory>
84 #include <optional>
85 #include <set>
86 #include <string>
87 #include <system_error>
88 #include <tuple>
89 #include <utility>
90 #include <vector>
91 
92 using namespace llvm;
93 
94 static cl::opt<bool> PrintSummaryGUIDs(
95     "print-summary-global-ids", cl::init(false), cl::Hidden,
96     cl::desc(
97         "Print the global id for each value when reading the module summary"));
98 
99 static cl::opt<bool> ExpandConstantExprs(
100     "expand-constant-exprs", cl::Hidden,
101     cl::desc(
102         "Expand constant expressions to instructions for testing purposes"));
103 
104 /// Load bitcode directly into RemoveDIs format (use debug records instead
105 /// of debug intrinsics). UNSET is treated as FALSE, so the default action
106 /// is to do nothing. Individual tools can override this to incrementally add
107 /// support for the RemoveDIs format.
108 cl::opt<cl::boolOrDefault> LoadBitcodeIntoNewDbgInfoFormat(
109     "load-bitcode-into-experimental-debuginfo-iterators", cl::Hidden,
110     cl::desc("Load bitcode directly into the new debug info format (regardless "
111              "of input format)"));
112 extern cl::opt<bool> UseNewDbgInfoFormat;
113 extern cl::opt<cl::boolOrDefault> PreserveInputDbgFormat;
114 extern bool WriteNewDbgInfoFormatToBitcode;
115 extern cl::opt<bool> WriteNewDbgInfoFormat;
116 
117 namespace {
118 
119 enum {
120   SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
121 };
122 
123 } // end anonymous namespace
124 
125 static Error error(const Twine &Message) {
126   return make_error<StringError>(
127       Message, make_error_code(BitcodeError::CorruptedBitcode));
128 }
129 
130 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) {
131   if (!Stream.canSkipToPos(4))
132     return createStringError(std::errc::illegal_byte_sequence,
133                              "file too small to contain bitcode header");
134   for (unsigned C : {'B', 'C'})
135     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) {
136       if (Res.get() != C)
137         return createStringError(std::errc::illegal_byte_sequence,
138                                  "file doesn't start with bitcode header");
139     } else
140       return Res.takeError();
141   for (unsigned C : {0x0, 0xC, 0xE, 0xD})
142     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) {
143       if (Res.get() != C)
144         return createStringError(std::errc::illegal_byte_sequence,
145                                  "file doesn't start with bitcode header");
146     } else
147       return Res.takeError();
148   return Error::success();
149 }
150 
151 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) {
152   const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart();
153   const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize();
154 
155   if (Buffer.getBufferSize() & 3)
156     return error("Invalid bitcode signature");
157 
158   // If we have a wrapper header, parse it and ignore the non-bc file contents.
159   // The magic number is 0x0B17C0DE stored in little endian.
160   if (isBitcodeWrapper(BufPtr, BufEnd))
161     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
162       return error("Invalid bitcode wrapper header");
163 
164   BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd));
165   if (Error Err = hasInvalidBitcodeHeader(Stream))
166     return std::move(Err);
167 
168   return std::move(Stream);
169 }
170 
171 /// Convert a string from a record into an std::string, return true on failure.
172 template <typename StrTy>
173 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
174                             StrTy &Result) {
175   if (Idx > Record.size())
176     return true;
177 
178   Result.append(Record.begin() + Idx, Record.end());
179   return false;
180 }
181 
182 // Strip all the TBAA attachment for the module.
183 static void stripTBAA(Module *M) {
184   for (auto &F : *M) {
185     if (F.isMaterializable())
186       continue;
187     for (auto &I : instructions(F))
188       I.setMetadata(LLVMContext::MD_tbaa, nullptr);
189   }
190 }
191 
192 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the
193 /// "epoch" encoded in the bitcode, and return the producer name if any.
194 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) {
195   if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID))
196     return std::move(Err);
197 
198   // Read all the records.
199   SmallVector<uint64_t, 64> Record;
200 
201   std::string ProducerIdentification;
202 
203   while (true) {
204     BitstreamEntry Entry;
205     if (Error E = Stream.advance().moveInto(Entry))
206       return std::move(E);
207 
208     switch (Entry.Kind) {
209     default:
210     case BitstreamEntry::Error:
211       return error("Malformed block");
212     case BitstreamEntry::EndBlock:
213       return ProducerIdentification;
214     case BitstreamEntry::Record:
215       // The interesting case.
216       break;
217     }
218 
219     // Read a record.
220     Record.clear();
221     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
222     if (!MaybeBitCode)
223       return MaybeBitCode.takeError();
224     switch (MaybeBitCode.get()) {
225     default: // Default behavior: reject
226       return error("Invalid value");
227     case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N]
228       convertToString(Record, 0, ProducerIdentification);
229       break;
230     case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#]
231       unsigned epoch = (unsigned)Record[0];
232       if (epoch != bitc::BITCODE_CURRENT_EPOCH) {
233         return error(
234           Twine("Incompatible epoch: Bitcode '") + Twine(epoch) +
235           "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'");
236       }
237     }
238     }
239   }
240 }
241 
242 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) {
243   // We expect a number of well-defined blocks, though we don't necessarily
244   // need to understand them all.
245   while (true) {
246     if (Stream.AtEndOfStream())
247       return "";
248 
249     BitstreamEntry Entry;
250     if (Error E = Stream.advance().moveInto(Entry))
251       return std::move(E);
252 
253     switch (Entry.Kind) {
254     case BitstreamEntry::EndBlock:
255     case BitstreamEntry::Error:
256       return error("Malformed block");
257 
258     case BitstreamEntry::SubBlock:
259       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID)
260         return readIdentificationBlock(Stream);
261 
262       // Ignore other sub-blocks.
263       if (Error Err = Stream.SkipBlock())
264         return std::move(Err);
265       continue;
266     case BitstreamEntry::Record:
267       if (Error E = Stream.skipRecord(Entry.ID).takeError())
268         return std::move(E);
269       continue;
270     }
271   }
272 }
273 
274 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) {
275   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
276     return std::move(Err);
277 
278   SmallVector<uint64_t, 64> Record;
279   // Read all the records for this module.
280 
281   while (true) {
282     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
283     if (!MaybeEntry)
284       return MaybeEntry.takeError();
285     BitstreamEntry Entry = MaybeEntry.get();
286 
287     switch (Entry.Kind) {
288     case BitstreamEntry::SubBlock: // Handled for us already.
289     case BitstreamEntry::Error:
290       return error("Malformed block");
291     case BitstreamEntry::EndBlock:
292       return false;
293     case BitstreamEntry::Record:
294       // The interesting case.
295       break;
296     }
297 
298     // Read a record.
299     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
300     if (!MaybeRecord)
301       return MaybeRecord.takeError();
302     switch (MaybeRecord.get()) {
303     default:
304       break; // Default behavior, ignore unknown content.
305     case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
306       std::string S;
307       if (convertToString(Record, 0, S))
308         return error("Invalid section name record");
309       // Check for the i386 and other (x86_64, ARM) conventions
310       if (S.find("__DATA,__objc_catlist") != std::string::npos ||
311           S.find("__OBJC,__category") != std::string::npos ||
312           S.find("__TEXT,__swift") != std::string::npos)
313         return true;
314       break;
315     }
316     }
317     Record.clear();
318   }
319   llvm_unreachable("Exit infinite loop");
320 }
321 
322 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) {
323   // We expect a number of well-defined blocks, though we don't necessarily
324   // need to understand them all.
325   while (true) {
326     BitstreamEntry Entry;
327     if (Error E = Stream.advance().moveInto(Entry))
328       return std::move(E);
329 
330     switch (Entry.Kind) {
331     case BitstreamEntry::Error:
332       return error("Malformed block");
333     case BitstreamEntry::EndBlock:
334       return false;
335 
336     case BitstreamEntry::SubBlock:
337       if (Entry.ID == bitc::MODULE_BLOCK_ID)
338         return hasObjCCategoryInModule(Stream);
339 
340       // Ignore other sub-blocks.
341       if (Error Err = Stream.SkipBlock())
342         return std::move(Err);
343       continue;
344 
345     case BitstreamEntry::Record:
346       if (Error E = Stream.skipRecord(Entry.ID).takeError())
347         return std::move(E);
348       continue;
349     }
350   }
351 }
352 
353 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) {
354   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
355     return std::move(Err);
356 
357   SmallVector<uint64_t, 64> Record;
358 
359   std::string Triple;
360 
361   // Read all the records for this module.
362   while (true) {
363     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
364     if (!MaybeEntry)
365       return MaybeEntry.takeError();
366     BitstreamEntry Entry = MaybeEntry.get();
367 
368     switch (Entry.Kind) {
369     case BitstreamEntry::SubBlock: // Handled for us already.
370     case BitstreamEntry::Error:
371       return error("Malformed block");
372     case BitstreamEntry::EndBlock:
373       return Triple;
374     case BitstreamEntry::Record:
375       // The interesting case.
376       break;
377     }
378 
379     // Read a record.
380     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
381     if (!MaybeRecord)
382       return MaybeRecord.takeError();
383     switch (MaybeRecord.get()) {
384     default: break;  // Default behavior, ignore unknown content.
385     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
386       std::string S;
387       if (convertToString(Record, 0, S))
388         return error("Invalid triple record");
389       Triple = S;
390       break;
391     }
392     }
393     Record.clear();
394   }
395   llvm_unreachable("Exit infinite loop");
396 }
397 
398 static Expected<std::string> readTriple(BitstreamCursor &Stream) {
399   // We expect a number of well-defined blocks, though we don't necessarily
400   // need to understand them all.
401   while (true) {
402     Expected<BitstreamEntry> MaybeEntry = Stream.advance();
403     if (!MaybeEntry)
404       return MaybeEntry.takeError();
405     BitstreamEntry Entry = MaybeEntry.get();
406 
407     switch (Entry.Kind) {
408     case BitstreamEntry::Error:
409       return error("Malformed block");
410     case BitstreamEntry::EndBlock:
411       return "";
412 
413     case BitstreamEntry::SubBlock:
414       if (Entry.ID == bitc::MODULE_BLOCK_ID)
415         return readModuleTriple(Stream);
416 
417       // Ignore other sub-blocks.
418       if (Error Err = Stream.SkipBlock())
419         return std::move(Err);
420       continue;
421 
422     case BitstreamEntry::Record:
423       if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
424         continue;
425       else
426         return Skipped.takeError();
427     }
428   }
429 }
430 
431 namespace {
432 
433 class BitcodeReaderBase {
434 protected:
435   BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab)
436       : Stream(std::move(Stream)), Strtab(Strtab) {
437     this->Stream.setBlockInfo(&BlockInfo);
438   }
439 
440   BitstreamBlockInfo BlockInfo;
441   BitstreamCursor Stream;
442   StringRef Strtab;
443 
444   /// In version 2 of the bitcode we store names of global values and comdats in
445   /// a string table rather than in the VST.
446   bool UseStrtab = false;
447 
448   Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record);
449 
450   /// If this module uses a string table, pop the reference to the string table
451   /// and return the referenced string and the rest of the record. Otherwise
452   /// just return the record itself.
453   std::pair<StringRef, ArrayRef<uint64_t>>
454   readNameFromStrtab(ArrayRef<uint64_t> Record);
455 
456   Error readBlockInfo();
457 
458   // Contains an arbitrary and optional string identifying the bitcode producer
459   std::string ProducerIdentification;
460 
461   Error error(const Twine &Message);
462 };
463 
464 } // end anonymous namespace
465 
466 Error BitcodeReaderBase::error(const Twine &Message) {
467   std::string FullMsg = Message.str();
468   if (!ProducerIdentification.empty())
469     FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " +
470                LLVM_VERSION_STRING "')";
471   return ::error(FullMsg);
472 }
473 
474 Expected<unsigned>
475 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) {
476   if (Record.empty())
477     return error("Invalid version record");
478   unsigned ModuleVersion = Record[0];
479   if (ModuleVersion > 2)
480     return error("Invalid value");
481   UseStrtab = ModuleVersion >= 2;
482   return ModuleVersion;
483 }
484 
485 std::pair<StringRef, ArrayRef<uint64_t>>
486 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) {
487   if (!UseStrtab)
488     return {"", Record};
489   // Invalid reference. Let the caller complain about the record being empty.
490   if (Record[0] + Record[1] > Strtab.size())
491     return {"", {}};
492   return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)};
493 }
494 
495 namespace {
496 
497 /// This represents a constant expression or constant aggregate using a custom
498 /// structure internal to the bitcode reader. Later, this structure will be
499 /// expanded by materializeValue() either into a constant expression/aggregate,
500 /// or into an instruction sequence at the point of use. This allows us to
501 /// upgrade bitcode using constant expressions even if this kind of constant
502 /// expression is no longer supported.
503 class BitcodeConstant final : public Value,
504                               TrailingObjects<BitcodeConstant, unsigned> {
505   friend TrailingObjects;
506 
507   // Value subclass ID: Pick largest possible value to avoid any clashes.
508   static constexpr uint8_t SubclassID = 255;
509 
510 public:
511   // Opcodes used for non-expressions. This includes constant aggregates
512   // (struct, array, vector) that might need expansion, as well as non-leaf
513   // constants that don't need expansion (no_cfi, dso_local, blockaddress),
514   // but still go through BitcodeConstant to avoid different uselist orders
515   // between the two cases.
516   static constexpr uint8_t ConstantStructOpcode = 255;
517   static constexpr uint8_t ConstantArrayOpcode = 254;
518   static constexpr uint8_t ConstantVectorOpcode = 253;
519   static constexpr uint8_t NoCFIOpcode = 252;
520   static constexpr uint8_t DSOLocalEquivalentOpcode = 251;
521   static constexpr uint8_t BlockAddressOpcode = 250;
522   static constexpr uint8_t ConstantPtrAuthOpcode = 249;
523   static constexpr uint8_t FirstSpecialOpcode = ConstantPtrAuthOpcode;
524 
525   // Separate struct to make passing different number of parameters to
526   // BitcodeConstant::create() more convenient.
527   struct ExtraInfo {
528     uint8_t Opcode;
529     uint8_t Flags;
530     unsigned BlockAddressBB = 0;
531     Type *SrcElemTy = nullptr;
532     std::optional<ConstantRange> InRange;
533 
534     ExtraInfo(uint8_t Opcode, uint8_t Flags = 0, Type *SrcElemTy = nullptr,
535               std::optional<ConstantRange> InRange = std::nullopt)
536         : Opcode(Opcode), Flags(Flags), SrcElemTy(SrcElemTy),
537           InRange(std::move(InRange)) {}
538 
539     ExtraInfo(uint8_t Opcode, uint8_t Flags, unsigned BlockAddressBB)
540         : Opcode(Opcode), Flags(Flags), BlockAddressBB(BlockAddressBB) {}
541   };
542 
543   uint8_t Opcode;
544   uint8_t Flags;
545   unsigned NumOperands;
546   unsigned BlockAddressBB;
547   Type *SrcElemTy; // GEP source element type.
548   std::optional<ConstantRange> InRange; // GEP inrange attribute.
549 
550 private:
551   BitcodeConstant(Type *Ty, const ExtraInfo &Info, ArrayRef<unsigned> OpIDs)
552       : Value(Ty, SubclassID), Opcode(Info.Opcode), Flags(Info.Flags),
553         NumOperands(OpIDs.size()), BlockAddressBB(Info.BlockAddressBB),
554         SrcElemTy(Info.SrcElemTy), InRange(Info.InRange) {
555     std::uninitialized_copy(OpIDs.begin(), OpIDs.end(),
556                             getTrailingObjects<unsigned>());
557   }
558 
559   BitcodeConstant &operator=(const BitcodeConstant &) = delete;
560 
561 public:
562   static BitcodeConstant *create(BumpPtrAllocator &A, Type *Ty,
563                                  const ExtraInfo &Info,
564                                  ArrayRef<unsigned> OpIDs) {
565     void *Mem = A.Allocate(totalSizeToAlloc<unsigned>(OpIDs.size()),
566                            alignof(BitcodeConstant));
567     return new (Mem) BitcodeConstant(Ty, Info, OpIDs);
568   }
569 
570   static bool classof(const Value *V) { return V->getValueID() == SubclassID; }
571 
572   ArrayRef<unsigned> getOperandIDs() const {
573     return ArrayRef(getTrailingObjects<unsigned>(), NumOperands);
574   }
575 
576   std::optional<ConstantRange> getInRange() const {
577     assert(Opcode == Instruction::GetElementPtr);
578     return InRange;
579   }
580 
581   const char *getOpcodeName() const {
582     return Instruction::getOpcodeName(Opcode);
583   }
584 };
585 
586 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer {
587   LLVMContext &Context;
588   Module *TheModule = nullptr;
589   // Next offset to start scanning for lazy parsing of function bodies.
590   uint64_t NextUnreadBit = 0;
591   // Last function offset found in the VST.
592   uint64_t LastFunctionBlockBit = 0;
593   bool SeenValueSymbolTable = false;
594   uint64_t VSTOffset = 0;
595 
596   std::vector<std::string> SectionTable;
597   std::vector<std::string> GCTable;
598 
599   std::vector<Type *> TypeList;
600   /// Track type IDs of contained types. Order is the same as the contained
601   /// types of a Type*. This is used during upgrades of typed pointer IR in
602   /// opaque pointer mode.
603   DenseMap<unsigned, SmallVector<unsigned, 1>> ContainedTypeIDs;
604   /// In some cases, we need to create a type ID for a type that was not
605   /// explicitly encoded in the bitcode, or we don't know about at the current
606   /// point. For example, a global may explicitly encode the value type ID, but
607   /// not have a type ID for the pointer to value type, for which we create a
608   /// virtual type ID instead. This map stores the new type ID that was created
609   /// for the given pair of Type and contained type ID.
610   DenseMap<std::pair<Type *, unsigned>, unsigned> VirtualTypeIDs;
611   DenseMap<Function *, unsigned> FunctionTypeIDs;
612   /// Allocator for BitcodeConstants. This should come before ValueList,
613   /// because the ValueList might hold ValueHandles to these constants, so
614   /// ValueList must be destroyed before Alloc.
615   BumpPtrAllocator Alloc;
616   BitcodeReaderValueList ValueList;
617   std::optional<MetadataLoader> MDLoader;
618   std::vector<Comdat *> ComdatList;
619   DenseSet<GlobalObject *> ImplicitComdatObjects;
620   SmallVector<Instruction *, 64> InstructionList;
621 
622   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits;
623   std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInits;
624 
625   struct FunctionOperandInfo {
626     Function *F;
627     unsigned PersonalityFn;
628     unsigned Prefix;
629     unsigned Prologue;
630   };
631   std::vector<FunctionOperandInfo> FunctionOperands;
632 
633   /// The set of attributes by index.  Index zero in the file is for null, and
634   /// is thus not represented here.  As such all indices are off by one.
635   std::vector<AttributeList> MAttributes;
636 
637   /// The set of attribute groups.
638   std::map<unsigned, AttributeList> MAttributeGroups;
639 
640   /// While parsing a function body, this is a list of the basic blocks for the
641   /// function.
642   std::vector<BasicBlock*> FunctionBBs;
643 
644   // When reading the module header, this list is populated with functions that
645   // have bodies later in the file.
646   std::vector<Function*> FunctionsWithBodies;
647 
648   // When intrinsic functions are encountered which require upgrading they are
649   // stored here with their replacement function.
650   using UpdatedIntrinsicMap = DenseMap<Function *, Function *>;
651   UpdatedIntrinsicMap UpgradedIntrinsics;
652 
653   // Several operations happen after the module header has been read, but
654   // before function bodies are processed. This keeps track of whether
655   // we've done this yet.
656   bool SeenFirstFunctionBody = false;
657 
658   /// When function bodies are initially scanned, this map contains info about
659   /// where to find deferred function body in the stream.
660   DenseMap<Function*, uint64_t> DeferredFunctionInfo;
661 
662   /// When Metadata block is initially scanned when parsing the module, we may
663   /// choose to defer parsing of the metadata. This vector contains info about
664   /// which Metadata blocks are deferred.
665   std::vector<uint64_t> DeferredMetadataInfo;
666 
667   /// These are basic blocks forward-referenced by block addresses.  They are
668   /// inserted lazily into functions when they're loaded.  The basic block ID is
669   /// its index into the vector.
670   DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs;
671   std::deque<Function *> BasicBlockFwdRefQueue;
672 
673   /// These are Functions that contain BlockAddresses which refer a different
674   /// Function. When parsing the different Function, queue Functions that refer
675   /// to the different Function. Those Functions must be materialized in order
676   /// to resolve their BlockAddress constants before the different Function
677   /// gets moved into another Module.
678   std::vector<Function *> BackwardRefFunctions;
679 
680   /// Indicates that we are using a new encoding for instruction operands where
681   /// most operands in the current FUNCTION_BLOCK are encoded relative to the
682   /// instruction number, for a more compact encoding.  Some instruction
683   /// operands are not relative to the instruction ID: basic block numbers, and
684   /// types. Once the old style function blocks have been phased out, we would
685   /// not need this flag.
686   bool UseRelativeIDs = false;
687 
688   /// True if all functions will be materialized, negating the need to process
689   /// (e.g.) blockaddress forward references.
690   bool WillMaterializeAllForwardRefs = false;
691 
692   /// Tracks whether we have seen debug intrinsics or records in this bitcode;
693   /// seeing both in a single module is currently a fatal error.
694   bool SeenDebugIntrinsic = false;
695   bool SeenDebugRecord = false;
696 
697   bool StripDebugInfo = false;
698   TBAAVerifier TBAAVerifyHelper;
699 
700   std::vector<std::string> BundleTags;
701   SmallVector<SyncScope::ID, 8> SSIDs;
702 
703   std::optional<ValueTypeCallbackTy> ValueTypeCallback;
704 
705 public:
706   BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
707                 StringRef ProducerIdentification, LLVMContext &Context);
708 
709   Error materializeForwardReferencedFunctions();
710 
711   Error materialize(GlobalValue *GV) override;
712   Error materializeModule() override;
713   std::vector<StructType *> getIdentifiedStructTypes() const override;
714 
715   /// Main interface to parsing a bitcode buffer.
716   /// \returns true if an error occurred.
717   Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
718                          bool IsImporting, ParserCallbacks Callbacks = {});
719 
720   static uint64_t decodeSignRotatedValue(uint64_t V);
721 
722   /// Materialize any deferred Metadata block.
723   Error materializeMetadata() override;
724 
725   void setStripDebugInfo() override;
726 
727 private:
728   std::vector<StructType *> IdentifiedStructTypes;
729   StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
730   StructType *createIdentifiedStructType(LLVMContext &Context);
731 
732   static constexpr unsigned InvalidTypeID = ~0u;
733 
734   Type *getTypeByID(unsigned ID);
735   Type *getPtrElementTypeByID(unsigned ID);
736   unsigned getContainedTypeID(unsigned ID, unsigned Idx = 0);
737   unsigned getVirtualTypeID(Type *Ty, ArrayRef<unsigned> ContainedTypeIDs = {});
738 
739   void callValueTypeCallback(Value *F, unsigned TypeID);
740   Expected<Value *> materializeValue(unsigned ValID, BasicBlock *InsertBB);
741   Expected<Constant *> getValueForInitializer(unsigned ID);
742 
743   Value *getFnValueByID(unsigned ID, Type *Ty, unsigned TyID,
744                         BasicBlock *ConstExprInsertBB) {
745     if (Ty && Ty->isMetadataTy())
746       return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
747     return ValueList.getValueFwdRef(ID, Ty, TyID, ConstExprInsertBB);
748   }
749 
750   Metadata *getFnMetadataByID(unsigned ID) {
751     return MDLoader->getMetadataFwdRefOrLoad(ID);
752   }
753 
754   BasicBlock *getBasicBlock(unsigned ID) const {
755     if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
756     return FunctionBBs[ID];
757   }
758 
759   AttributeList getAttributes(unsigned i) const {
760     if (i-1 < MAttributes.size())
761       return MAttributes[i-1];
762     return AttributeList();
763   }
764 
765   /// Read a value/type pair out of the specified record from slot 'Slot'.
766   /// Increment Slot past the number of slots used in the record. Return true on
767   /// failure.
768   bool getValueTypePair(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
769                         unsigned InstNum, Value *&ResVal, unsigned &TypeID,
770                         BasicBlock *ConstExprInsertBB) {
771     if (Slot == Record.size()) return true;
772     unsigned ValNo = (unsigned)Record[Slot++];
773     // Adjust the ValNo, if it was encoded relative to the InstNum.
774     if (UseRelativeIDs)
775       ValNo = InstNum - ValNo;
776     if (ValNo < InstNum) {
777       // If this is not a forward reference, just return the value we already
778       // have.
779       TypeID = ValueList.getTypeID(ValNo);
780       ResVal = getFnValueByID(ValNo, nullptr, TypeID, ConstExprInsertBB);
781       assert((!ResVal || ResVal->getType() == getTypeByID(TypeID)) &&
782              "Incorrect type ID stored for value");
783       return ResVal == nullptr;
784     }
785     if (Slot == Record.size())
786       return true;
787 
788     TypeID = (unsigned)Record[Slot++];
789     ResVal = getFnValueByID(ValNo, getTypeByID(TypeID), TypeID,
790                             ConstExprInsertBB);
791     return ResVal == nullptr;
792   }
793 
794   /// Read a value out of the specified record from slot 'Slot'. Increment Slot
795   /// past the number of slots used by the value in the record. Return true if
796   /// there is an error.
797   bool popValue(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
798                 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal,
799                 BasicBlock *ConstExprInsertBB) {
800     if (getValue(Record, Slot, InstNum, Ty, TyID, ResVal, ConstExprInsertBB))
801       return true;
802     // All values currently take a single record slot.
803     ++Slot;
804     return false;
805   }
806 
807   /// Like popValue, but does not increment the Slot number.
808   bool getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
809                 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal,
810                 BasicBlock *ConstExprInsertBB) {
811     ResVal = getValue(Record, Slot, InstNum, Ty, TyID, ConstExprInsertBB);
812     return ResVal == nullptr;
813   }
814 
815   /// Version of getValue that returns ResVal directly, or 0 if there is an
816   /// error.
817   Value *getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
818                   unsigned InstNum, Type *Ty, unsigned TyID,
819                   BasicBlock *ConstExprInsertBB) {
820     if (Slot == Record.size()) return nullptr;
821     unsigned ValNo = (unsigned)Record[Slot];
822     // Adjust the ValNo, if it was encoded relative to the InstNum.
823     if (UseRelativeIDs)
824       ValNo = InstNum - ValNo;
825     return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB);
826   }
827 
828   /// Like getValue, but decodes signed VBRs.
829   Value *getValueSigned(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
830                         unsigned InstNum, Type *Ty, unsigned TyID,
831                         BasicBlock *ConstExprInsertBB) {
832     if (Slot == Record.size()) return nullptr;
833     unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
834     // Adjust the ValNo, if it was encoded relative to the InstNum.
835     if (UseRelativeIDs)
836       ValNo = InstNum - ValNo;
837     return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB);
838   }
839 
840   Expected<ConstantRange> readConstantRange(ArrayRef<uint64_t> Record,
841                                             unsigned &OpNum) {
842     if (Record.size() - OpNum < 3)
843       return error("Too few records for range");
844     unsigned BitWidth = Record[OpNum++];
845     if (BitWidth > 64) {
846       unsigned LowerActiveWords = Record[OpNum];
847       unsigned UpperActiveWords = Record[OpNum++] >> 32;
848       if (Record.size() - OpNum < LowerActiveWords + UpperActiveWords)
849         return error("Too few records for range");
850       APInt Lower =
851           readWideAPInt(ArrayRef(&Record[OpNum], LowerActiveWords), BitWidth);
852       OpNum += LowerActiveWords;
853       APInt Upper =
854           readWideAPInt(ArrayRef(&Record[OpNum], UpperActiveWords), BitWidth);
855       OpNum += UpperActiveWords;
856       return ConstantRange(Lower, Upper);
857     } else {
858       int64_t Start = BitcodeReader::decodeSignRotatedValue(Record[OpNum++]);
859       int64_t End = BitcodeReader::decodeSignRotatedValue(Record[OpNum++]);
860       return ConstantRange(APInt(BitWidth, Start), APInt(BitWidth, End));
861     }
862   }
863 
864   /// Upgrades old-style typeless byval/sret/inalloca attributes by adding the
865   /// corresponding argument's pointee type. Also upgrades intrinsics that now
866   /// require an elementtype attribute.
867   Error propagateAttributeTypes(CallBase *CB, ArrayRef<unsigned> ArgsTys);
868 
869   /// Converts alignment exponent (i.e. power of two (or zero)) to the
870   /// corresponding alignment to use. If alignment is too large, returns
871   /// a corresponding error code.
872   Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment);
873   Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
874   Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false,
875                     ParserCallbacks Callbacks = {});
876 
877   Error parseComdatRecord(ArrayRef<uint64_t> Record);
878   Error parseGlobalVarRecord(ArrayRef<uint64_t> Record);
879   Error parseFunctionRecord(ArrayRef<uint64_t> Record);
880   Error parseGlobalIndirectSymbolRecord(unsigned BitCode,
881                                         ArrayRef<uint64_t> Record);
882 
883   Error parseAttributeBlock();
884   Error parseAttributeGroupBlock();
885   Error parseTypeTable();
886   Error parseTypeTableBody();
887   Error parseOperandBundleTags();
888   Error parseSyncScopeNames();
889 
890   Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record,
891                                 unsigned NameIndex, Triple &TT);
892   void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F,
893                                ArrayRef<uint64_t> Record);
894   Error parseValueSymbolTable(uint64_t Offset = 0);
895   Error parseGlobalValueSymbolTable();
896   Error parseConstants();
897   Error rememberAndSkipFunctionBodies();
898   Error rememberAndSkipFunctionBody();
899   /// Save the positions of the Metadata blocks and skip parsing the blocks.
900   Error rememberAndSkipMetadata();
901   Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType);
902   Error parseFunctionBody(Function *F);
903   Error globalCleanup();
904   Error resolveGlobalAndIndirectSymbolInits();
905   Error parseUseLists();
906   Error findFunctionInStream(
907       Function *F,
908       DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
909 
910   SyncScope::ID getDecodedSyncScopeID(unsigned Val);
911 };
912 
913 /// Class to manage reading and parsing function summary index bitcode
914 /// files/sections.
915 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase {
916   /// The module index built during parsing.
917   ModuleSummaryIndex &TheIndex;
918 
919   /// Indicates whether we have encountered a global value summary section
920   /// yet during parsing.
921   bool SeenGlobalValSummary = false;
922 
923   /// Indicates whether we have already parsed the VST, used for error checking.
924   bool SeenValueSymbolTable = false;
925 
926   /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record.
927   /// Used to enable on-demand parsing of the VST.
928   uint64_t VSTOffset = 0;
929 
930   // Map to save ValueId to ValueInfo association that was recorded in the
931   // ValueSymbolTable. It is used after the VST is parsed to convert
932   // call graph edges read from the function summary from referencing
933   // callees by their ValueId to using the ValueInfo instead, which is how
934   // they are recorded in the summary index being built.
935   // We save a GUID which refers to the same global as the ValueInfo, but
936   // ignoring the linkage, i.e. for values other than local linkage they are
937   // identical (this is the second tuple member).
938   // The third tuple member is the real GUID of the ValueInfo.
939   DenseMap<unsigned,
940            std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID>>
941       ValueIdToValueInfoMap;
942 
943   /// Map populated during module path string table parsing, from the
944   /// module ID to a string reference owned by the index's module
945   /// path string table, used to correlate with combined index
946   /// summary records.
947   DenseMap<uint64_t, StringRef> ModuleIdMap;
948 
949   /// Original source file name recorded in a bitcode record.
950   std::string SourceFileName;
951 
952   /// The string identifier given to this module by the client, normally the
953   /// path to the bitcode file.
954   StringRef ModulePath;
955 
956   /// Callback to ask whether a symbol is the prevailing copy when invoked
957   /// during combined index building.
958   std::function<bool(GlobalValue::GUID)> IsPrevailing;
959 
960   /// Saves the stack ids from the STACK_IDS record to consult when adding stack
961   /// ids from the lists in the callsite and alloc entries to the index.
962   std::vector<uint64_t> StackIds;
963 
964 public:
965   ModuleSummaryIndexBitcodeReader(
966       BitstreamCursor Stream, StringRef Strtab, ModuleSummaryIndex &TheIndex,
967       StringRef ModulePath,
968       std::function<bool(GlobalValue::GUID)> IsPrevailing = nullptr);
969 
970   Error parseModule();
971 
972 private:
973   void setValueGUID(uint64_t ValueID, StringRef ValueName,
974                     GlobalValue::LinkageTypes Linkage,
975                     StringRef SourceFileName);
976   Error parseValueSymbolTable(
977       uint64_t Offset,
978       DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap);
979   std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record);
980   std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record,
981                                                     bool IsOldProfileFormat,
982                                                     bool HasProfile,
983                                                     bool HasRelBF);
984   Error parseEntireSummary(unsigned ID);
985   Error parseModuleStringTable();
986   void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record);
987   void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot,
988                                        TypeIdCompatibleVtableInfo &TypeId);
989   std::vector<FunctionSummary::ParamAccess>
990   parseParamAccesses(ArrayRef<uint64_t> Record);
991 
992   template <bool AllowNullValueInfo = false>
993   std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID>
994   getValueInfoFromValueId(unsigned ValueId);
995 
996   void addThisModule();
997   ModuleSummaryIndex::ModuleInfo *getThisModule();
998 };
999 
1000 } // end anonymous namespace
1001 
1002 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx,
1003                                                     Error Err) {
1004   if (Err) {
1005     std::error_code EC;
1006     handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) {
1007       EC = EIB.convertToErrorCode();
1008       Ctx.emitError(EIB.message());
1009     });
1010     return EC;
1011   }
1012   return std::error_code();
1013 }
1014 
1015 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
1016                              StringRef ProducerIdentification,
1017                              LLVMContext &Context)
1018     : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context),
1019       ValueList(this->Stream.SizeInBytes(),
1020                 [this](unsigned ValID, BasicBlock *InsertBB) {
1021                   return materializeValue(ValID, InsertBB);
1022                 }) {
1023   this->ProducerIdentification = std::string(ProducerIdentification);
1024 }
1025 
1026 Error BitcodeReader::materializeForwardReferencedFunctions() {
1027   if (WillMaterializeAllForwardRefs)
1028     return Error::success();
1029 
1030   // Prevent recursion.
1031   WillMaterializeAllForwardRefs = true;
1032 
1033   while (!BasicBlockFwdRefQueue.empty()) {
1034     Function *F = BasicBlockFwdRefQueue.front();
1035     BasicBlockFwdRefQueue.pop_front();
1036     assert(F && "Expected valid function");
1037     if (!BasicBlockFwdRefs.count(F))
1038       // Already materialized.
1039       continue;
1040 
1041     // Check for a function that isn't materializable to prevent an infinite
1042     // loop.  When parsing a blockaddress stored in a global variable, there
1043     // isn't a trivial way to check if a function will have a body without a
1044     // linear search through FunctionsWithBodies, so just check it here.
1045     if (!F->isMaterializable())
1046       return error("Never resolved function from blockaddress");
1047 
1048     // Try to materialize F.
1049     if (Error Err = materialize(F))
1050       return Err;
1051   }
1052   assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
1053 
1054   for (Function *F : BackwardRefFunctions)
1055     if (Error Err = materialize(F))
1056       return Err;
1057   BackwardRefFunctions.clear();
1058 
1059   // Reset state.
1060   WillMaterializeAllForwardRefs = false;
1061   return Error::success();
1062 }
1063 
1064 //===----------------------------------------------------------------------===//
1065 //  Helper functions to implement forward reference resolution, etc.
1066 //===----------------------------------------------------------------------===//
1067 
1068 static bool hasImplicitComdat(size_t Val) {
1069   switch (Val) {
1070   default:
1071     return false;
1072   case 1:  // Old WeakAnyLinkage
1073   case 4:  // Old LinkOnceAnyLinkage
1074   case 10: // Old WeakODRLinkage
1075   case 11: // Old LinkOnceODRLinkage
1076     return true;
1077   }
1078 }
1079 
1080 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
1081   switch (Val) {
1082   default: // Map unknown/new linkages to external
1083   case 0:
1084     return GlobalValue::ExternalLinkage;
1085   case 2:
1086     return GlobalValue::AppendingLinkage;
1087   case 3:
1088     return GlobalValue::InternalLinkage;
1089   case 5:
1090     return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
1091   case 6:
1092     return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
1093   case 7:
1094     return GlobalValue::ExternalWeakLinkage;
1095   case 8:
1096     return GlobalValue::CommonLinkage;
1097   case 9:
1098     return GlobalValue::PrivateLinkage;
1099   case 12:
1100     return GlobalValue::AvailableExternallyLinkage;
1101   case 13:
1102     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
1103   case 14:
1104     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
1105   case 15:
1106     return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
1107   case 1: // Old value with implicit comdat.
1108   case 16:
1109     return GlobalValue::WeakAnyLinkage;
1110   case 10: // Old value with implicit comdat.
1111   case 17:
1112     return GlobalValue::WeakODRLinkage;
1113   case 4: // Old value with implicit comdat.
1114   case 18:
1115     return GlobalValue::LinkOnceAnyLinkage;
1116   case 11: // Old value with implicit comdat.
1117   case 19:
1118     return GlobalValue::LinkOnceODRLinkage;
1119   }
1120 }
1121 
1122 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) {
1123   FunctionSummary::FFlags Flags;
1124   Flags.ReadNone = RawFlags & 0x1;
1125   Flags.ReadOnly = (RawFlags >> 1) & 0x1;
1126   Flags.NoRecurse = (RawFlags >> 2) & 0x1;
1127   Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1;
1128   Flags.NoInline = (RawFlags >> 4) & 0x1;
1129   Flags.AlwaysInline = (RawFlags >> 5) & 0x1;
1130   Flags.NoUnwind = (RawFlags >> 6) & 0x1;
1131   Flags.MayThrow = (RawFlags >> 7) & 0x1;
1132   Flags.HasUnknownCall = (RawFlags >> 8) & 0x1;
1133   Flags.MustBeUnreachable = (RawFlags >> 9) & 0x1;
1134   return Flags;
1135 }
1136 
1137 // Decode the flags for GlobalValue in the summary. The bits for each attribute:
1138 //
1139 // linkage: [0,4), notEligibleToImport: 4, live: 5, local: 6, canAutoHide: 7,
1140 // visibility: [8, 10).
1141 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags,
1142                                                             uint64_t Version) {
1143   // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage
1144   // like getDecodedLinkage() above. Any future change to the linkage enum and
1145   // to getDecodedLinkage() will need to be taken into account here as above.
1146   auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits
1147   auto Visibility = GlobalValue::VisibilityTypes((RawFlags >> 8) & 3); // 2 bits
1148   auto IK = GlobalValueSummary::ImportKind((RawFlags >> 10) & 1);      // 1 bit
1149   RawFlags = RawFlags >> 4;
1150   bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3;
1151   // The Live flag wasn't introduced until version 3. For dead stripping
1152   // to work correctly on earlier versions, we must conservatively treat all
1153   // values as live.
1154   bool Live = (RawFlags & 0x2) || Version < 3;
1155   bool Local = (RawFlags & 0x4);
1156   bool AutoHide = (RawFlags & 0x8);
1157 
1158   return GlobalValueSummary::GVFlags(Linkage, Visibility, NotEligibleToImport,
1159                                      Live, Local, AutoHide, IK);
1160 }
1161 
1162 // Decode the flags for GlobalVariable in the summary
1163 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) {
1164   return GlobalVarSummary::GVarFlags(
1165       (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false,
1166       (RawFlags & 0x4) ? true : false,
1167       (GlobalObject::VCallVisibility)(RawFlags >> 3));
1168 }
1169 
1170 static std::pair<CalleeInfo::HotnessType, bool>
1171 getDecodedHotnessCallEdgeInfo(uint64_t RawFlags) {
1172   CalleeInfo::HotnessType Hotness =
1173       static_cast<CalleeInfo::HotnessType>(RawFlags & 0x7); // 3 bits
1174   bool HasTailCall = (RawFlags & 0x8);                      // 1 bit
1175   return {Hotness, HasTailCall};
1176 }
1177 
1178 static void getDecodedRelBFCallEdgeInfo(uint64_t RawFlags, uint64_t &RelBF,
1179                                         bool &HasTailCall) {
1180   static constexpr uint64_t RelBlockFreqMask =
1181       (1 << CalleeInfo::RelBlockFreqBits) - 1;
1182   RelBF = RawFlags & RelBlockFreqMask; // RelBlockFreqBits bits
1183   HasTailCall = (RawFlags & (1 << CalleeInfo::RelBlockFreqBits)); // 1 bit
1184 }
1185 
1186 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) {
1187   switch (Val) {
1188   default: // Map unknown visibilities to default.
1189   case 0: return GlobalValue::DefaultVisibility;
1190   case 1: return GlobalValue::HiddenVisibility;
1191   case 2: return GlobalValue::ProtectedVisibility;
1192   }
1193 }
1194 
1195 static GlobalValue::DLLStorageClassTypes
1196 getDecodedDLLStorageClass(unsigned Val) {
1197   switch (Val) {
1198   default: // Map unknown values to default.
1199   case 0: return GlobalValue::DefaultStorageClass;
1200   case 1: return GlobalValue::DLLImportStorageClass;
1201   case 2: return GlobalValue::DLLExportStorageClass;
1202   }
1203 }
1204 
1205 static bool getDecodedDSOLocal(unsigned Val) {
1206   switch(Val) {
1207   default: // Map unknown values to preemptable.
1208   case 0:  return false;
1209   case 1:  return true;
1210   }
1211 }
1212 
1213 static std::optional<CodeModel::Model> getDecodedCodeModel(unsigned Val) {
1214   switch (Val) {
1215   case 1:
1216     return CodeModel::Tiny;
1217   case 2:
1218     return CodeModel::Small;
1219   case 3:
1220     return CodeModel::Kernel;
1221   case 4:
1222     return CodeModel::Medium;
1223   case 5:
1224     return CodeModel::Large;
1225   }
1226 
1227   return {};
1228 }
1229 
1230 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) {
1231   switch (Val) {
1232     case 0: return GlobalVariable::NotThreadLocal;
1233     default: // Map unknown non-zero value to general dynamic.
1234     case 1: return GlobalVariable::GeneralDynamicTLSModel;
1235     case 2: return GlobalVariable::LocalDynamicTLSModel;
1236     case 3: return GlobalVariable::InitialExecTLSModel;
1237     case 4: return GlobalVariable::LocalExecTLSModel;
1238   }
1239 }
1240 
1241 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) {
1242   switch (Val) {
1243     default: // Map unknown to UnnamedAddr::None.
1244     case 0: return GlobalVariable::UnnamedAddr::None;
1245     case 1: return GlobalVariable::UnnamedAddr::Global;
1246     case 2: return GlobalVariable::UnnamedAddr::Local;
1247   }
1248 }
1249 
1250 static int getDecodedCastOpcode(unsigned Val) {
1251   switch (Val) {
1252   default: return -1;
1253   case bitc::CAST_TRUNC   : return Instruction::Trunc;
1254   case bitc::CAST_ZEXT    : return Instruction::ZExt;
1255   case bitc::CAST_SEXT    : return Instruction::SExt;
1256   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
1257   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
1258   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
1259   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
1260   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
1261   case bitc::CAST_FPEXT   : return Instruction::FPExt;
1262   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
1263   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
1264   case bitc::CAST_BITCAST : return Instruction::BitCast;
1265   case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
1266   }
1267 }
1268 
1269 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) {
1270   bool IsFP = Ty->isFPOrFPVectorTy();
1271   // UnOps are only valid for int/fp or vector of int/fp types
1272   if (!IsFP && !Ty->isIntOrIntVectorTy())
1273     return -1;
1274 
1275   switch (Val) {
1276   default:
1277     return -1;
1278   case bitc::UNOP_FNEG:
1279     return IsFP ? Instruction::FNeg : -1;
1280   }
1281 }
1282 
1283 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
1284   bool IsFP = Ty->isFPOrFPVectorTy();
1285   // BinOps are only valid for int/fp or vector of int/fp types
1286   if (!IsFP && !Ty->isIntOrIntVectorTy())
1287     return -1;
1288 
1289   switch (Val) {
1290   default:
1291     return -1;
1292   case bitc::BINOP_ADD:
1293     return IsFP ? Instruction::FAdd : Instruction::Add;
1294   case bitc::BINOP_SUB:
1295     return IsFP ? Instruction::FSub : Instruction::Sub;
1296   case bitc::BINOP_MUL:
1297     return IsFP ? Instruction::FMul : Instruction::Mul;
1298   case bitc::BINOP_UDIV:
1299     return IsFP ? -1 : Instruction::UDiv;
1300   case bitc::BINOP_SDIV:
1301     return IsFP ? Instruction::FDiv : Instruction::SDiv;
1302   case bitc::BINOP_UREM:
1303     return IsFP ? -1 : Instruction::URem;
1304   case bitc::BINOP_SREM:
1305     return IsFP ? Instruction::FRem : Instruction::SRem;
1306   case bitc::BINOP_SHL:
1307     return IsFP ? -1 : Instruction::Shl;
1308   case bitc::BINOP_LSHR:
1309     return IsFP ? -1 : Instruction::LShr;
1310   case bitc::BINOP_ASHR:
1311     return IsFP ? -1 : Instruction::AShr;
1312   case bitc::BINOP_AND:
1313     return IsFP ? -1 : Instruction::And;
1314   case bitc::BINOP_OR:
1315     return IsFP ? -1 : Instruction::Or;
1316   case bitc::BINOP_XOR:
1317     return IsFP ? -1 : Instruction::Xor;
1318   }
1319 }
1320 
1321 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) {
1322   switch (Val) {
1323   default: return AtomicRMWInst::BAD_BINOP;
1324   case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
1325   case bitc::RMW_ADD: return AtomicRMWInst::Add;
1326   case bitc::RMW_SUB: return AtomicRMWInst::Sub;
1327   case bitc::RMW_AND: return AtomicRMWInst::And;
1328   case bitc::RMW_NAND: return AtomicRMWInst::Nand;
1329   case bitc::RMW_OR: return AtomicRMWInst::Or;
1330   case bitc::RMW_XOR: return AtomicRMWInst::Xor;
1331   case bitc::RMW_MAX: return AtomicRMWInst::Max;
1332   case bitc::RMW_MIN: return AtomicRMWInst::Min;
1333   case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
1334   case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
1335   case bitc::RMW_FADD: return AtomicRMWInst::FAdd;
1336   case bitc::RMW_FSUB: return AtomicRMWInst::FSub;
1337   case bitc::RMW_FMAX: return AtomicRMWInst::FMax;
1338   case bitc::RMW_FMIN: return AtomicRMWInst::FMin;
1339   case bitc::RMW_UINC_WRAP:
1340     return AtomicRMWInst::UIncWrap;
1341   case bitc::RMW_UDEC_WRAP:
1342     return AtomicRMWInst::UDecWrap;
1343   }
1344 }
1345 
1346 static AtomicOrdering getDecodedOrdering(unsigned Val) {
1347   switch (Val) {
1348   case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic;
1349   case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered;
1350   case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic;
1351   case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire;
1352   case bitc::ORDERING_RELEASE: return AtomicOrdering::Release;
1353   case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease;
1354   default: // Map unknown orderings to sequentially-consistent.
1355   case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent;
1356   }
1357 }
1358 
1359 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
1360   switch (Val) {
1361   default: // Map unknown selection kinds to any.
1362   case bitc::COMDAT_SELECTION_KIND_ANY:
1363     return Comdat::Any;
1364   case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
1365     return Comdat::ExactMatch;
1366   case bitc::COMDAT_SELECTION_KIND_LARGEST:
1367     return Comdat::Largest;
1368   case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
1369     return Comdat::NoDeduplicate;
1370   case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
1371     return Comdat::SameSize;
1372   }
1373 }
1374 
1375 static FastMathFlags getDecodedFastMathFlags(unsigned Val) {
1376   FastMathFlags FMF;
1377   if (0 != (Val & bitc::UnsafeAlgebra))
1378     FMF.setFast();
1379   if (0 != (Val & bitc::AllowReassoc))
1380     FMF.setAllowReassoc();
1381   if (0 != (Val & bitc::NoNaNs))
1382     FMF.setNoNaNs();
1383   if (0 != (Val & bitc::NoInfs))
1384     FMF.setNoInfs();
1385   if (0 != (Val & bitc::NoSignedZeros))
1386     FMF.setNoSignedZeros();
1387   if (0 != (Val & bitc::AllowReciprocal))
1388     FMF.setAllowReciprocal();
1389   if (0 != (Val & bitc::AllowContract))
1390     FMF.setAllowContract(true);
1391   if (0 != (Val & bitc::ApproxFunc))
1392     FMF.setApproxFunc();
1393   return FMF;
1394 }
1395 
1396 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) {
1397   // A GlobalValue with local linkage cannot have a DLL storage class.
1398   if (GV->hasLocalLinkage())
1399     return;
1400   switch (Val) {
1401   case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
1402   case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
1403   }
1404 }
1405 
1406 Type *BitcodeReader::getTypeByID(unsigned ID) {
1407   // The type table size is always specified correctly.
1408   if (ID >= TypeList.size())
1409     return nullptr;
1410 
1411   if (Type *Ty = TypeList[ID])
1412     return Ty;
1413 
1414   // If we have a forward reference, the only possible case is when it is to a
1415   // named struct.  Just create a placeholder for now.
1416   return TypeList[ID] = createIdentifiedStructType(Context);
1417 }
1418 
1419 unsigned BitcodeReader::getContainedTypeID(unsigned ID, unsigned Idx) {
1420   auto It = ContainedTypeIDs.find(ID);
1421   if (It == ContainedTypeIDs.end())
1422     return InvalidTypeID;
1423 
1424   if (Idx >= It->second.size())
1425     return InvalidTypeID;
1426 
1427   return It->second[Idx];
1428 }
1429 
1430 Type *BitcodeReader::getPtrElementTypeByID(unsigned ID) {
1431   if (ID >= TypeList.size())
1432     return nullptr;
1433 
1434   Type *Ty = TypeList[ID];
1435   if (!Ty->isPointerTy())
1436     return nullptr;
1437 
1438   return getTypeByID(getContainedTypeID(ID, 0));
1439 }
1440 
1441 unsigned BitcodeReader::getVirtualTypeID(Type *Ty,
1442                                          ArrayRef<unsigned> ChildTypeIDs) {
1443   unsigned ChildTypeID = ChildTypeIDs.empty() ? InvalidTypeID : ChildTypeIDs[0];
1444   auto CacheKey = std::make_pair(Ty, ChildTypeID);
1445   auto It = VirtualTypeIDs.find(CacheKey);
1446   if (It != VirtualTypeIDs.end()) {
1447     // The cmpxchg return value is the only place we need more than one
1448     // contained type ID, however the second one will always be the same (i1),
1449     // so we don't need to include it in the cache key. This asserts that the
1450     // contained types are indeed as expected and there are no collisions.
1451     assert((ChildTypeIDs.empty() ||
1452             ContainedTypeIDs[It->second] == ChildTypeIDs) &&
1453            "Incorrect cached contained type IDs");
1454     return It->second;
1455   }
1456 
1457   unsigned TypeID = TypeList.size();
1458   TypeList.push_back(Ty);
1459   if (!ChildTypeIDs.empty())
1460     append_range(ContainedTypeIDs[TypeID], ChildTypeIDs);
1461   VirtualTypeIDs.insert({CacheKey, TypeID});
1462   return TypeID;
1463 }
1464 
1465 static GEPNoWrapFlags toGEPNoWrapFlags(uint64_t Flags) {
1466   GEPNoWrapFlags NW;
1467   if (Flags & (1 << bitc::GEP_INBOUNDS))
1468     NW |= GEPNoWrapFlags::inBounds();
1469   if (Flags & (1 << bitc::GEP_NUSW))
1470     NW |= GEPNoWrapFlags::noUnsignedSignedWrap();
1471   if (Flags & (1 << bitc::GEP_NUW))
1472     NW |= GEPNoWrapFlags::noUnsignedWrap();
1473   return NW;
1474 }
1475 
1476 static bool isConstExprSupported(const BitcodeConstant *BC) {
1477   uint8_t Opcode = BC->Opcode;
1478 
1479   // These are not real constant expressions, always consider them supported.
1480   if (Opcode >= BitcodeConstant::FirstSpecialOpcode)
1481     return true;
1482 
1483   // If -expand-constant-exprs is set, we want to consider all expressions
1484   // as unsupported.
1485   if (ExpandConstantExprs)
1486     return false;
1487 
1488   if (Instruction::isBinaryOp(Opcode))
1489     return ConstantExpr::isSupportedBinOp(Opcode);
1490 
1491   if (Instruction::isCast(Opcode))
1492     return ConstantExpr::isSupportedCastOp(Opcode);
1493 
1494   if (Opcode == Instruction::GetElementPtr)
1495     return ConstantExpr::isSupportedGetElementPtr(BC->SrcElemTy);
1496 
1497   switch (Opcode) {
1498   case Instruction::FNeg:
1499   case Instruction::Select:
1500   case Instruction::ICmp:
1501   case Instruction::FCmp:
1502     return false;
1503   default:
1504     return true;
1505   }
1506 }
1507 
1508 Expected<Value *> BitcodeReader::materializeValue(unsigned StartValID,
1509                                                   BasicBlock *InsertBB) {
1510   // Quickly handle the case where there is no BitcodeConstant to resolve.
1511   if (StartValID < ValueList.size() && ValueList[StartValID] &&
1512       !isa<BitcodeConstant>(ValueList[StartValID]))
1513     return ValueList[StartValID];
1514 
1515   SmallDenseMap<unsigned, Value *> MaterializedValues;
1516   SmallVector<unsigned> Worklist;
1517   Worklist.push_back(StartValID);
1518   while (!Worklist.empty()) {
1519     unsigned ValID = Worklist.back();
1520     if (MaterializedValues.count(ValID)) {
1521       // Duplicate expression that was already handled.
1522       Worklist.pop_back();
1523       continue;
1524     }
1525 
1526     if (ValID >= ValueList.size() || !ValueList[ValID])
1527       return error("Invalid value ID");
1528 
1529     Value *V = ValueList[ValID];
1530     auto *BC = dyn_cast<BitcodeConstant>(V);
1531     if (!BC) {
1532       MaterializedValues.insert({ValID, V});
1533       Worklist.pop_back();
1534       continue;
1535     }
1536 
1537     // Iterate in reverse, so values will get popped from the worklist in
1538     // expected order.
1539     SmallVector<Value *> Ops;
1540     for (unsigned OpID : reverse(BC->getOperandIDs())) {
1541       auto It = MaterializedValues.find(OpID);
1542       if (It != MaterializedValues.end())
1543         Ops.push_back(It->second);
1544       else
1545         Worklist.push_back(OpID);
1546     }
1547 
1548     // Some expressions have not been resolved yet, handle them first and then
1549     // revisit this one.
1550     if (Ops.size() != BC->getOperandIDs().size())
1551       continue;
1552     std::reverse(Ops.begin(), Ops.end());
1553 
1554     SmallVector<Constant *> ConstOps;
1555     for (Value *Op : Ops)
1556       if (auto *C = dyn_cast<Constant>(Op))
1557         ConstOps.push_back(C);
1558 
1559     // Materialize as constant expression if possible.
1560     if (isConstExprSupported(BC) && ConstOps.size() == Ops.size()) {
1561       Constant *C;
1562       if (Instruction::isCast(BC->Opcode)) {
1563         C = UpgradeBitCastExpr(BC->Opcode, ConstOps[0], BC->getType());
1564         if (!C)
1565           C = ConstantExpr::getCast(BC->Opcode, ConstOps[0], BC->getType());
1566       } else if (Instruction::isBinaryOp(BC->Opcode)) {
1567         C = ConstantExpr::get(BC->Opcode, ConstOps[0], ConstOps[1], BC->Flags);
1568       } else {
1569         switch (BC->Opcode) {
1570         case BitcodeConstant::ConstantPtrAuthOpcode: {
1571           auto *Key = dyn_cast<ConstantInt>(ConstOps[1]);
1572           if (!Key)
1573             return error("ptrauth key operand must be ConstantInt");
1574 
1575           auto *Disc = dyn_cast<ConstantInt>(ConstOps[2]);
1576           if (!Disc)
1577             return error("ptrauth disc operand must be ConstantInt");
1578 
1579           C = ConstantPtrAuth::get(ConstOps[0], Key, Disc, ConstOps[3]);
1580           break;
1581         }
1582         case BitcodeConstant::NoCFIOpcode: {
1583           auto *GV = dyn_cast<GlobalValue>(ConstOps[0]);
1584           if (!GV)
1585             return error("no_cfi operand must be GlobalValue");
1586           C = NoCFIValue::get(GV);
1587           break;
1588         }
1589         case BitcodeConstant::DSOLocalEquivalentOpcode: {
1590           auto *GV = dyn_cast<GlobalValue>(ConstOps[0]);
1591           if (!GV)
1592             return error("dso_local operand must be GlobalValue");
1593           C = DSOLocalEquivalent::get(GV);
1594           break;
1595         }
1596         case BitcodeConstant::BlockAddressOpcode: {
1597           Function *Fn = dyn_cast<Function>(ConstOps[0]);
1598           if (!Fn)
1599             return error("blockaddress operand must be a function");
1600 
1601           // If the function is already parsed we can insert the block address
1602           // right away.
1603           BasicBlock *BB;
1604           unsigned BBID = BC->BlockAddressBB;
1605           if (!BBID)
1606             // Invalid reference to entry block.
1607             return error("Invalid ID");
1608           if (!Fn->empty()) {
1609             Function::iterator BBI = Fn->begin(), BBE = Fn->end();
1610             for (size_t I = 0, E = BBID; I != E; ++I) {
1611               if (BBI == BBE)
1612                 return error("Invalid ID");
1613               ++BBI;
1614             }
1615             BB = &*BBI;
1616           } else {
1617             // Otherwise insert a placeholder and remember it so it can be
1618             // inserted when the function is parsed.
1619             auto &FwdBBs = BasicBlockFwdRefs[Fn];
1620             if (FwdBBs.empty())
1621               BasicBlockFwdRefQueue.push_back(Fn);
1622             if (FwdBBs.size() < BBID + 1)
1623               FwdBBs.resize(BBID + 1);
1624             if (!FwdBBs[BBID])
1625               FwdBBs[BBID] = BasicBlock::Create(Context);
1626             BB = FwdBBs[BBID];
1627           }
1628           C = BlockAddress::get(Fn, BB);
1629           break;
1630         }
1631         case BitcodeConstant::ConstantStructOpcode:
1632           C = ConstantStruct::get(cast<StructType>(BC->getType()), ConstOps);
1633           break;
1634         case BitcodeConstant::ConstantArrayOpcode:
1635           C = ConstantArray::get(cast<ArrayType>(BC->getType()), ConstOps);
1636           break;
1637         case BitcodeConstant::ConstantVectorOpcode:
1638           C = ConstantVector::get(ConstOps);
1639           break;
1640         case Instruction::GetElementPtr:
1641           C = ConstantExpr::getGetElementPtr(
1642               BC->SrcElemTy, ConstOps[0], ArrayRef(ConstOps).drop_front(),
1643               toGEPNoWrapFlags(BC->Flags), BC->getInRange());
1644           break;
1645         case Instruction::ExtractElement:
1646           C = ConstantExpr::getExtractElement(ConstOps[0], ConstOps[1]);
1647           break;
1648         case Instruction::InsertElement:
1649           C = ConstantExpr::getInsertElement(ConstOps[0], ConstOps[1],
1650                                              ConstOps[2]);
1651           break;
1652         case Instruction::ShuffleVector: {
1653           SmallVector<int, 16> Mask;
1654           ShuffleVectorInst::getShuffleMask(ConstOps[2], Mask);
1655           C = ConstantExpr::getShuffleVector(ConstOps[0], ConstOps[1], Mask);
1656           break;
1657         }
1658         default:
1659           llvm_unreachable("Unhandled bitcode constant");
1660         }
1661       }
1662 
1663       // Cache resolved constant.
1664       ValueList.replaceValueWithoutRAUW(ValID, C);
1665       MaterializedValues.insert({ValID, C});
1666       Worklist.pop_back();
1667       continue;
1668     }
1669 
1670     if (!InsertBB)
1671       return error(Twine("Value referenced by initializer is an unsupported "
1672                          "constant expression of type ") +
1673                    BC->getOpcodeName());
1674 
1675     // Materialize as instructions if necessary.
1676     Instruction *I;
1677     if (Instruction::isCast(BC->Opcode)) {
1678       I = CastInst::Create((Instruction::CastOps)BC->Opcode, Ops[0],
1679                            BC->getType(), "constexpr", InsertBB);
1680     } else if (Instruction::isUnaryOp(BC->Opcode)) {
1681       I = UnaryOperator::Create((Instruction::UnaryOps)BC->Opcode, Ops[0],
1682                                 "constexpr", InsertBB);
1683     } else if (Instruction::isBinaryOp(BC->Opcode)) {
1684       I = BinaryOperator::Create((Instruction::BinaryOps)BC->Opcode, Ops[0],
1685                                  Ops[1], "constexpr", InsertBB);
1686       if (isa<OverflowingBinaryOperator>(I)) {
1687         if (BC->Flags & OverflowingBinaryOperator::NoSignedWrap)
1688           I->setHasNoSignedWrap();
1689         if (BC->Flags & OverflowingBinaryOperator::NoUnsignedWrap)
1690           I->setHasNoUnsignedWrap();
1691       }
1692       if (isa<PossiblyExactOperator>(I) &&
1693           (BC->Flags & PossiblyExactOperator::IsExact))
1694         I->setIsExact();
1695     } else {
1696       switch (BC->Opcode) {
1697       case BitcodeConstant::ConstantVectorOpcode: {
1698         Type *IdxTy = Type::getInt32Ty(BC->getContext());
1699         Value *V = PoisonValue::get(BC->getType());
1700         for (auto Pair : enumerate(Ops)) {
1701           Value *Idx = ConstantInt::get(IdxTy, Pair.index());
1702           V = InsertElementInst::Create(V, Pair.value(), Idx, "constexpr.ins",
1703                                         InsertBB);
1704         }
1705         I = cast<Instruction>(V);
1706         break;
1707       }
1708       case BitcodeConstant::ConstantStructOpcode:
1709       case BitcodeConstant::ConstantArrayOpcode: {
1710         Value *V = PoisonValue::get(BC->getType());
1711         for (auto Pair : enumerate(Ops))
1712           V = InsertValueInst::Create(V, Pair.value(), Pair.index(),
1713                                       "constexpr.ins", InsertBB);
1714         I = cast<Instruction>(V);
1715         break;
1716       }
1717       case Instruction::ICmp:
1718       case Instruction::FCmp:
1719         I = CmpInst::Create((Instruction::OtherOps)BC->Opcode,
1720                             (CmpInst::Predicate)BC->Flags, Ops[0], Ops[1],
1721                             "constexpr", InsertBB);
1722         break;
1723       case Instruction::GetElementPtr:
1724         I = GetElementPtrInst::Create(BC->SrcElemTy, Ops[0],
1725                                       ArrayRef(Ops).drop_front(), "constexpr",
1726                                       InsertBB);
1727         cast<GetElementPtrInst>(I)->setNoWrapFlags(toGEPNoWrapFlags(BC->Flags));
1728         break;
1729       case Instruction::Select:
1730         I = SelectInst::Create(Ops[0], Ops[1], Ops[2], "constexpr", InsertBB);
1731         break;
1732       case Instruction::ExtractElement:
1733         I = ExtractElementInst::Create(Ops[0], Ops[1], "constexpr", InsertBB);
1734         break;
1735       case Instruction::InsertElement:
1736         I = InsertElementInst::Create(Ops[0], Ops[1], Ops[2], "constexpr",
1737                                       InsertBB);
1738         break;
1739       case Instruction::ShuffleVector:
1740         I = new ShuffleVectorInst(Ops[0], Ops[1], Ops[2], "constexpr",
1741                                   InsertBB);
1742         break;
1743       default:
1744         llvm_unreachable("Unhandled bitcode constant");
1745       }
1746     }
1747 
1748     MaterializedValues.insert({ValID, I});
1749     Worklist.pop_back();
1750   }
1751 
1752   return MaterializedValues[StartValID];
1753 }
1754 
1755 Expected<Constant *> BitcodeReader::getValueForInitializer(unsigned ID) {
1756   Expected<Value *> MaybeV = materializeValue(ID, /* InsertBB */ nullptr);
1757   if (!MaybeV)
1758     return MaybeV.takeError();
1759 
1760   // Result must be Constant if InsertBB is nullptr.
1761   return cast<Constant>(MaybeV.get());
1762 }
1763 
1764 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
1765                                                       StringRef Name) {
1766   auto *Ret = StructType::create(Context, Name);
1767   IdentifiedStructTypes.push_back(Ret);
1768   return Ret;
1769 }
1770 
1771 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
1772   auto *Ret = StructType::create(Context);
1773   IdentifiedStructTypes.push_back(Ret);
1774   return Ret;
1775 }
1776 
1777 //===----------------------------------------------------------------------===//
1778 //  Functions for parsing blocks from the bitcode file
1779 //===----------------------------------------------------------------------===//
1780 
1781 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) {
1782   switch (Val) {
1783   case Attribute::EndAttrKinds:
1784   case Attribute::EmptyKey:
1785   case Attribute::TombstoneKey:
1786     llvm_unreachable("Synthetic enumerators which should never get here");
1787 
1788   case Attribute::None:            return 0;
1789   case Attribute::ZExt:            return 1 << 0;
1790   case Attribute::SExt:            return 1 << 1;
1791   case Attribute::NoReturn:        return 1 << 2;
1792   case Attribute::InReg:           return 1 << 3;
1793   case Attribute::StructRet:       return 1 << 4;
1794   case Attribute::NoUnwind:        return 1 << 5;
1795   case Attribute::NoAlias:         return 1 << 6;
1796   case Attribute::ByVal:           return 1 << 7;
1797   case Attribute::Nest:            return 1 << 8;
1798   case Attribute::ReadNone:        return 1 << 9;
1799   case Attribute::ReadOnly:        return 1 << 10;
1800   case Attribute::NoInline:        return 1 << 11;
1801   case Attribute::AlwaysInline:    return 1 << 12;
1802   case Attribute::OptimizeForSize: return 1 << 13;
1803   case Attribute::StackProtect:    return 1 << 14;
1804   case Attribute::StackProtectReq: return 1 << 15;
1805   case Attribute::Alignment:       return 31 << 16;
1806   case Attribute::NoCapture:       return 1 << 21;
1807   case Attribute::NoRedZone:       return 1 << 22;
1808   case Attribute::NoImplicitFloat: return 1 << 23;
1809   case Attribute::Naked:           return 1 << 24;
1810   case Attribute::InlineHint:      return 1 << 25;
1811   case Attribute::StackAlignment:  return 7 << 26;
1812   case Attribute::ReturnsTwice:    return 1 << 29;
1813   case Attribute::UWTable:         return 1 << 30;
1814   case Attribute::NonLazyBind:     return 1U << 31;
1815   case Attribute::SanitizeAddress: return 1ULL << 32;
1816   case Attribute::MinSize:         return 1ULL << 33;
1817   case Attribute::NoDuplicate:     return 1ULL << 34;
1818   case Attribute::StackProtectStrong: return 1ULL << 35;
1819   case Attribute::SanitizeThread:  return 1ULL << 36;
1820   case Attribute::SanitizeMemory:  return 1ULL << 37;
1821   case Attribute::NoBuiltin:       return 1ULL << 38;
1822   case Attribute::Returned:        return 1ULL << 39;
1823   case Attribute::Cold:            return 1ULL << 40;
1824   case Attribute::Builtin:         return 1ULL << 41;
1825   case Attribute::OptimizeNone:    return 1ULL << 42;
1826   case Attribute::InAlloca:        return 1ULL << 43;
1827   case Attribute::NonNull:         return 1ULL << 44;
1828   case Attribute::JumpTable:       return 1ULL << 45;
1829   case Attribute::Convergent:      return 1ULL << 46;
1830   case Attribute::SafeStack:       return 1ULL << 47;
1831   case Attribute::NoRecurse:       return 1ULL << 48;
1832   // 1ULL << 49 is InaccessibleMemOnly, which is upgraded separately.
1833   // 1ULL << 50 is InaccessibleMemOrArgMemOnly, which is upgraded separately.
1834   case Attribute::SwiftSelf:       return 1ULL << 51;
1835   case Attribute::SwiftError:      return 1ULL << 52;
1836   case Attribute::WriteOnly:       return 1ULL << 53;
1837   case Attribute::Speculatable:    return 1ULL << 54;
1838   case Attribute::StrictFP:        return 1ULL << 55;
1839   case Attribute::SanitizeHWAddress: return 1ULL << 56;
1840   case Attribute::NoCfCheck:       return 1ULL << 57;
1841   case Attribute::OptForFuzzing:   return 1ULL << 58;
1842   case Attribute::ShadowCallStack: return 1ULL << 59;
1843   case Attribute::SpeculativeLoadHardening:
1844     return 1ULL << 60;
1845   case Attribute::ImmArg:
1846     return 1ULL << 61;
1847   case Attribute::WillReturn:
1848     return 1ULL << 62;
1849   case Attribute::NoFree:
1850     return 1ULL << 63;
1851   default:
1852     // Other attributes are not supported in the raw format,
1853     // as we ran out of space.
1854     return 0;
1855   }
1856   llvm_unreachable("Unsupported attribute type");
1857 }
1858 
1859 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) {
1860   if (!Val) return;
1861 
1862   for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds;
1863        I = Attribute::AttrKind(I + 1)) {
1864     if (uint64_t A = (Val & getRawAttributeMask(I))) {
1865       if (I == Attribute::Alignment)
1866         B.addAlignmentAttr(1ULL << ((A >> 16) - 1));
1867       else if (I == Attribute::StackAlignment)
1868         B.addStackAlignmentAttr(1ULL << ((A >> 26)-1));
1869       else if (Attribute::isTypeAttrKind(I))
1870         B.addTypeAttr(I, nullptr); // Type will be auto-upgraded.
1871       else
1872         B.addAttribute(I);
1873     }
1874   }
1875 }
1876 
1877 /// This fills an AttrBuilder object with the LLVM attributes that have
1878 /// been decoded from the given integer. This function must stay in sync with
1879 /// 'encodeLLVMAttributesForBitcode'.
1880 static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
1881                                            uint64_t EncodedAttrs,
1882                                            uint64_t AttrIdx) {
1883   // The alignment is stored as a 16-bit raw value from bits 31--16.  We shift
1884   // the bits above 31 down by 11 bits.
1885   unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
1886   assert((!Alignment || isPowerOf2_32(Alignment)) &&
1887          "Alignment must be a power of two.");
1888 
1889   if (Alignment)
1890     B.addAlignmentAttr(Alignment);
1891 
1892   uint64_t Attrs = ((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
1893                    (EncodedAttrs & 0xffff);
1894 
1895   if (AttrIdx == AttributeList::FunctionIndex) {
1896     // Upgrade old memory attributes.
1897     MemoryEffects ME = MemoryEffects::unknown();
1898     if (Attrs & (1ULL << 9)) {
1899       // ReadNone
1900       Attrs &= ~(1ULL << 9);
1901       ME &= MemoryEffects::none();
1902     }
1903     if (Attrs & (1ULL << 10)) {
1904       // ReadOnly
1905       Attrs &= ~(1ULL << 10);
1906       ME &= MemoryEffects::readOnly();
1907     }
1908     if (Attrs & (1ULL << 49)) {
1909       // InaccessibleMemOnly
1910       Attrs &= ~(1ULL << 49);
1911       ME &= MemoryEffects::inaccessibleMemOnly();
1912     }
1913     if (Attrs & (1ULL << 50)) {
1914       // InaccessibleMemOrArgMemOnly
1915       Attrs &= ~(1ULL << 50);
1916       ME &= MemoryEffects::inaccessibleOrArgMemOnly();
1917     }
1918     if (Attrs & (1ULL << 53)) {
1919       // WriteOnly
1920       Attrs &= ~(1ULL << 53);
1921       ME &= MemoryEffects::writeOnly();
1922     }
1923     if (ME != MemoryEffects::unknown())
1924       B.addMemoryAttr(ME);
1925   }
1926 
1927   addRawAttributeValue(B, Attrs);
1928 }
1929 
1930 Error BitcodeReader::parseAttributeBlock() {
1931   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
1932     return Err;
1933 
1934   if (!MAttributes.empty())
1935     return error("Invalid multiple blocks");
1936 
1937   SmallVector<uint64_t, 64> Record;
1938 
1939   SmallVector<AttributeList, 8> Attrs;
1940 
1941   // Read all the records.
1942   while (true) {
1943     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1944     if (!MaybeEntry)
1945       return MaybeEntry.takeError();
1946     BitstreamEntry Entry = MaybeEntry.get();
1947 
1948     switch (Entry.Kind) {
1949     case BitstreamEntry::SubBlock: // Handled for us already.
1950     case BitstreamEntry::Error:
1951       return error("Malformed block");
1952     case BitstreamEntry::EndBlock:
1953       return Error::success();
1954     case BitstreamEntry::Record:
1955       // The interesting case.
1956       break;
1957     }
1958 
1959     // Read a record.
1960     Record.clear();
1961     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1962     if (!MaybeRecord)
1963       return MaybeRecord.takeError();
1964     switch (MaybeRecord.get()) {
1965     default:  // Default behavior: ignore.
1966       break;
1967     case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...]
1968       // Deprecated, but still needed to read old bitcode files.
1969       if (Record.size() & 1)
1970         return error("Invalid parameter attribute record");
1971 
1972       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1973         AttrBuilder B(Context);
1974         decodeLLVMAttributesForBitcode(B, Record[i+1], Record[i]);
1975         Attrs.push_back(AttributeList::get(Context, Record[i], B));
1976       }
1977 
1978       MAttributes.push_back(AttributeList::get(Context, Attrs));
1979       Attrs.clear();
1980       break;
1981     case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...]
1982       for (unsigned i = 0, e = Record.size(); i != e; ++i)
1983         Attrs.push_back(MAttributeGroups[Record[i]]);
1984 
1985       MAttributes.push_back(AttributeList::get(Context, Attrs));
1986       Attrs.clear();
1987       break;
1988     }
1989   }
1990 }
1991 
1992 // Returns Attribute::None on unrecognized codes.
1993 static Attribute::AttrKind getAttrFromCode(uint64_t Code) {
1994   switch (Code) {
1995   default:
1996     return Attribute::None;
1997   case bitc::ATTR_KIND_ALIGNMENT:
1998     return Attribute::Alignment;
1999   case bitc::ATTR_KIND_ALWAYS_INLINE:
2000     return Attribute::AlwaysInline;
2001   case bitc::ATTR_KIND_BUILTIN:
2002     return Attribute::Builtin;
2003   case bitc::ATTR_KIND_BY_VAL:
2004     return Attribute::ByVal;
2005   case bitc::ATTR_KIND_IN_ALLOCA:
2006     return Attribute::InAlloca;
2007   case bitc::ATTR_KIND_COLD:
2008     return Attribute::Cold;
2009   case bitc::ATTR_KIND_CONVERGENT:
2010     return Attribute::Convergent;
2011   case bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION:
2012     return Attribute::DisableSanitizerInstrumentation;
2013   case bitc::ATTR_KIND_ELEMENTTYPE:
2014     return Attribute::ElementType;
2015   case bitc::ATTR_KIND_FNRETTHUNK_EXTERN:
2016     return Attribute::FnRetThunkExtern;
2017   case bitc::ATTR_KIND_INLINE_HINT:
2018     return Attribute::InlineHint;
2019   case bitc::ATTR_KIND_IN_REG:
2020     return Attribute::InReg;
2021   case bitc::ATTR_KIND_JUMP_TABLE:
2022     return Attribute::JumpTable;
2023   case bitc::ATTR_KIND_MEMORY:
2024     return Attribute::Memory;
2025   case bitc::ATTR_KIND_NOFPCLASS:
2026     return Attribute::NoFPClass;
2027   case bitc::ATTR_KIND_MIN_SIZE:
2028     return Attribute::MinSize;
2029   case bitc::ATTR_KIND_NAKED:
2030     return Attribute::Naked;
2031   case bitc::ATTR_KIND_NEST:
2032     return Attribute::Nest;
2033   case bitc::ATTR_KIND_NO_ALIAS:
2034     return Attribute::NoAlias;
2035   case bitc::ATTR_KIND_NO_BUILTIN:
2036     return Attribute::NoBuiltin;
2037   case bitc::ATTR_KIND_NO_CALLBACK:
2038     return Attribute::NoCallback;
2039   case bitc::ATTR_KIND_NO_CAPTURE:
2040     return Attribute::NoCapture;
2041   case bitc::ATTR_KIND_NO_DUPLICATE:
2042     return Attribute::NoDuplicate;
2043   case bitc::ATTR_KIND_NOFREE:
2044     return Attribute::NoFree;
2045   case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
2046     return Attribute::NoImplicitFloat;
2047   case bitc::ATTR_KIND_NO_INLINE:
2048     return Attribute::NoInline;
2049   case bitc::ATTR_KIND_NO_RECURSE:
2050     return Attribute::NoRecurse;
2051   case bitc::ATTR_KIND_NO_MERGE:
2052     return Attribute::NoMerge;
2053   case bitc::ATTR_KIND_NON_LAZY_BIND:
2054     return Attribute::NonLazyBind;
2055   case bitc::ATTR_KIND_NON_NULL:
2056     return Attribute::NonNull;
2057   case bitc::ATTR_KIND_DEREFERENCEABLE:
2058     return Attribute::Dereferenceable;
2059   case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL:
2060     return Attribute::DereferenceableOrNull;
2061   case bitc::ATTR_KIND_ALLOC_ALIGN:
2062     return Attribute::AllocAlign;
2063   case bitc::ATTR_KIND_ALLOC_KIND:
2064     return Attribute::AllocKind;
2065   case bitc::ATTR_KIND_ALLOC_SIZE:
2066     return Attribute::AllocSize;
2067   case bitc::ATTR_KIND_ALLOCATED_POINTER:
2068     return Attribute::AllocatedPointer;
2069   case bitc::ATTR_KIND_NO_RED_ZONE:
2070     return Attribute::NoRedZone;
2071   case bitc::ATTR_KIND_NO_RETURN:
2072     return Attribute::NoReturn;
2073   case bitc::ATTR_KIND_NOSYNC:
2074     return Attribute::NoSync;
2075   case bitc::ATTR_KIND_NOCF_CHECK:
2076     return Attribute::NoCfCheck;
2077   case bitc::ATTR_KIND_NO_PROFILE:
2078     return Attribute::NoProfile;
2079   case bitc::ATTR_KIND_SKIP_PROFILE:
2080     return Attribute::SkipProfile;
2081   case bitc::ATTR_KIND_NO_UNWIND:
2082     return Attribute::NoUnwind;
2083   case bitc::ATTR_KIND_NO_SANITIZE_BOUNDS:
2084     return Attribute::NoSanitizeBounds;
2085   case bitc::ATTR_KIND_NO_SANITIZE_COVERAGE:
2086     return Attribute::NoSanitizeCoverage;
2087   case bitc::ATTR_KIND_NULL_POINTER_IS_VALID:
2088     return Attribute::NullPointerIsValid;
2089   case bitc::ATTR_KIND_OPTIMIZE_FOR_DEBUGGING:
2090     return Attribute::OptimizeForDebugging;
2091   case bitc::ATTR_KIND_OPT_FOR_FUZZING:
2092     return Attribute::OptForFuzzing;
2093   case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
2094     return Attribute::OptimizeForSize;
2095   case bitc::ATTR_KIND_OPTIMIZE_NONE:
2096     return Attribute::OptimizeNone;
2097   case bitc::ATTR_KIND_READ_NONE:
2098     return Attribute::ReadNone;
2099   case bitc::ATTR_KIND_READ_ONLY:
2100     return Attribute::ReadOnly;
2101   case bitc::ATTR_KIND_RETURNED:
2102     return Attribute::Returned;
2103   case bitc::ATTR_KIND_RETURNS_TWICE:
2104     return Attribute::ReturnsTwice;
2105   case bitc::ATTR_KIND_S_EXT:
2106     return Attribute::SExt;
2107   case bitc::ATTR_KIND_SPECULATABLE:
2108     return Attribute::Speculatable;
2109   case bitc::ATTR_KIND_STACK_ALIGNMENT:
2110     return Attribute::StackAlignment;
2111   case bitc::ATTR_KIND_STACK_PROTECT:
2112     return Attribute::StackProtect;
2113   case bitc::ATTR_KIND_STACK_PROTECT_REQ:
2114     return Attribute::StackProtectReq;
2115   case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
2116     return Attribute::StackProtectStrong;
2117   case bitc::ATTR_KIND_SAFESTACK:
2118     return Attribute::SafeStack;
2119   case bitc::ATTR_KIND_SHADOWCALLSTACK:
2120     return Attribute::ShadowCallStack;
2121   case bitc::ATTR_KIND_STRICT_FP:
2122     return Attribute::StrictFP;
2123   case bitc::ATTR_KIND_STRUCT_RET:
2124     return Attribute::StructRet;
2125   case bitc::ATTR_KIND_SANITIZE_ADDRESS:
2126     return Attribute::SanitizeAddress;
2127   case bitc::ATTR_KIND_SANITIZE_HWADDRESS:
2128     return Attribute::SanitizeHWAddress;
2129   case bitc::ATTR_KIND_SANITIZE_THREAD:
2130     return Attribute::SanitizeThread;
2131   case bitc::ATTR_KIND_SANITIZE_MEMORY:
2132     return Attribute::SanitizeMemory;
2133   case bitc::ATTR_KIND_SANITIZE_NUMERICAL_STABILITY:
2134     return Attribute::SanitizeNumericalStability;
2135   case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING:
2136     return Attribute::SpeculativeLoadHardening;
2137   case bitc::ATTR_KIND_SWIFT_ERROR:
2138     return Attribute::SwiftError;
2139   case bitc::ATTR_KIND_SWIFT_SELF:
2140     return Attribute::SwiftSelf;
2141   case bitc::ATTR_KIND_SWIFT_ASYNC:
2142     return Attribute::SwiftAsync;
2143   case bitc::ATTR_KIND_UW_TABLE:
2144     return Attribute::UWTable;
2145   case bitc::ATTR_KIND_VSCALE_RANGE:
2146     return Attribute::VScaleRange;
2147   case bitc::ATTR_KIND_WILLRETURN:
2148     return Attribute::WillReturn;
2149   case bitc::ATTR_KIND_WRITEONLY:
2150     return Attribute::WriteOnly;
2151   case bitc::ATTR_KIND_Z_EXT:
2152     return Attribute::ZExt;
2153   case bitc::ATTR_KIND_IMMARG:
2154     return Attribute::ImmArg;
2155   case bitc::ATTR_KIND_SANITIZE_MEMTAG:
2156     return Attribute::SanitizeMemTag;
2157   case bitc::ATTR_KIND_PREALLOCATED:
2158     return Attribute::Preallocated;
2159   case bitc::ATTR_KIND_NOUNDEF:
2160     return Attribute::NoUndef;
2161   case bitc::ATTR_KIND_BYREF:
2162     return Attribute::ByRef;
2163   case bitc::ATTR_KIND_MUSTPROGRESS:
2164     return Attribute::MustProgress;
2165   case bitc::ATTR_KIND_HOT:
2166     return Attribute::Hot;
2167   case bitc::ATTR_KIND_PRESPLIT_COROUTINE:
2168     return Attribute::PresplitCoroutine;
2169   case bitc::ATTR_KIND_WRITABLE:
2170     return Attribute::Writable;
2171   case bitc::ATTR_KIND_CORO_ONLY_DESTROY_WHEN_COMPLETE:
2172     return Attribute::CoroDestroyOnlyWhenComplete;
2173   case bitc::ATTR_KIND_DEAD_ON_UNWIND:
2174     return Attribute::DeadOnUnwind;
2175   case bitc::ATTR_KIND_RANGE:
2176     return Attribute::Range;
2177   }
2178 }
2179 
2180 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent,
2181                                          MaybeAlign &Alignment) {
2182   // Note: Alignment in bitcode files is incremented by 1, so that zero
2183   // can be used for default alignment.
2184   if (Exponent > Value::MaxAlignmentExponent + 1)
2185     return error("Invalid alignment value");
2186   Alignment = decodeMaybeAlign(Exponent);
2187   return Error::success();
2188 }
2189 
2190 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) {
2191   *Kind = getAttrFromCode(Code);
2192   if (*Kind == Attribute::None)
2193     return error("Unknown attribute kind (" + Twine(Code) + ")");
2194   return Error::success();
2195 }
2196 
2197 static bool upgradeOldMemoryAttribute(MemoryEffects &ME, uint64_t EncodedKind) {
2198   switch (EncodedKind) {
2199   case bitc::ATTR_KIND_READ_NONE:
2200     ME &= MemoryEffects::none();
2201     return true;
2202   case bitc::ATTR_KIND_READ_ONLY:
2203     ME &= MemoryEffects::readOnly();
2204     return true;
2205   case bitc::ATTR_KIND_WRITEONLY:
2206     ME &= MemoryEffects::writeOnly();
2207     return true;
2208   case bitc::ATTR_KIND_ARGMEMONLY:
2209     ME &= MemoryEffects::argMemOnly();
2210     return true;
2211   case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY:
2212     ME &= MemoryEffects::inaccessibleMemOnly();
2213     return true;
2214   case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY:
2215     ME &= MemoryEffects::inaccessibleOrArgMemOnly();
2216     return true;
2217   default:
2218     return false;
2219   }
2220 }
2221 
2222 Error BitcodeReader::parseAttributeGroupBlock() {
2223   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
2224     return Err;
2225 
2226   if (!MAttributeGroups.empty())
2227     return error("Invalid multiple blocks");
2228 
2229   SmallVector<uint64_t, 64> Record;
2230 
2231   // Read all the records.
2232   while (true) {
2233     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2234     if (!MaybeEntry)
2235       return MaybeEntry.takeError();
2236     BitstreamEntry Entry = MaybeEntry.get();
2237 
2238     switch (Entry.Kind) {
2239     case BitstreamEntry::SubBlock: // Handled for us already.
2240     case BitstreamEntry::Error:
2241       return error("Malformed block");
2242     case BitstreamEntry::EndBlock:
2243       return Error::success();
2244     case BitstreamEntry::Record:
2245       // The interesting case.
2246       break;
2247     }
2248 
2249     // Read a record.
2250     Record.clear();
2251     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2252     if (!MaybeRecord)
2253       return MaybeRecord.takeError();
2254     switch (MaybeRecord.get()) {
2255     default:  // Default behavior: ignore.
2256       break;
2257     case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
2258       if (Record.size() < 3)
2259         return error("Invalid grp record");
2260 
2261       uint64_t GrpID = Record[0];
2262       uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
2263 
2264       AttrBuilder B(Context);
2265       MemoryEffects ME = MemoryEffects::unknown();
2266       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
2267         if (Record[i] == 0) {        // Enum attribute
2268           Attribute::AttrKind Kind;
2269           uint64_t EncodedKind = Record[++i];
2270           if (Idx == AttributeList::FunctionIndex &&
2271               upgradeOldMemoryAttribute(ME, EncodedKind))
2272             continue;
2273 
2274           if (Error Err = parseAttrKind(EncodedKind, &Kind))
2275             return Err;
2276 
2277           // Upgrade old-style byval attribute to one with a type, even if it's
2278           // nullptr. We will have to insert the real type when we associate
2279           // this AttributeList with a function.
2280           if (Kind == Attribute::ByVal)
2281             B.addByValAttr(nullptr);
2282           else if (Kind == Attribute::StructRet)
2283             B.addStructRetAttr(nullptr);
2284           else if (Kind == Attribute::InAlloca)
2285             B.addInAllocaAttr(nullptr);
2286           else if (Kind == Attribute::UWTable)
2287             B.addUWTableAttr(UWTableKind::Default);
2288           else if (Attribute::isEnumAttrKind(Kind))
2289             B.addAttribute(Kind);
2290           else
2291             return error("Not an enum attribute");
2292         } else if (Record[i] == 1) { // Integer attribute
2293           Attribute::AttrKind Kind;
2294           if (Error Err = parseAttrKind(Record[++i], &Kind))
2295             return Err;
2296           if (!Attribute::isIntAttrKind(Kind))
2297             return error("Not an int attribute");
2298           if (Kind == Attribute::Alignment)
2299             B.addAlignmentAttr(Record[++i]);
2300           else if (Kind == Attribute::StackAlignment)
2301             B.addStackAlignmentAttr(Record[++i]);
2302           else if (Kind == Attribute::Dereferenceable)
2303             B.addDereferenceableAttr(Record[++i]);
2304           else if (Kind == Attribute::DereferenceableOrNull)
2305             B.addDereferenceableOrNullAttr(Record[++i]);
2306           else if (Kind == Attribute::AllocSize)
2307             B.addAllocSizeAttrFromRawRepr(Record[++i]);
2308           else if (Kind == Attribute::VScaleRange)
2309             B.addVScaleRangeAttrFromRawRepr(Record[++i]);
2310           else if (Kind == Attribute::UWTable)
2311             B.addUWTableAttr(UWTableKind(Record[++i]));
2312           else if (Kind == Attribute::AllocKind)
2313             B.addAllocKindAttr(static_cast<AllocFnKind>(Record[++i]));
2314           else if (Kind == Attribute::Memory)
2315             B.addMemoryAttr(MemoryEffects::createFromIntValue(Record[++i]));
2316           else if (Kind == Attribute::NoFPClass)
2317             B.addNoFPClassAttr(
2318                 static_cast<FPClassTest>(Record[++i] & fcAllFlags));
2319         } else if (Record[i] == 3 || Record[i] == 4) { // String attribute
2320           bool HasValue = (Record[i++] == 4);
2321           SmallString<64> KindStr;
2322           SmallString<64> ValStr;
2323 
2324           while (Record[i] != 0 && i != e)
2325             KindStr += Record[i++];
2326           assert(Record[i] == 0 && "Kind string not null terminated");
2327 
2328           if (HasValue) {
2329             // Has a value associated with it.
2330             ++i; // Skip the '0' that terminates the "kind" string.
2331             while (Record[i] != 0 && i != e)
2332               ValStr += Record[i++];
2333             assert(Record[i] == 0 && "Value string not null terminated");
2334           }
2335 
2336           B.addAttribute(KindStr.str(), ValStr.str());
2337         } else if (Record[i] == 5 || Record[i] == 6) {
2338           bool HasType = Record[i] == 6;
2339           Attribute::AttrKind Kind;
2340           if (Error Err = parseAttrKind(Record[++i], &Kind))
2341             return Err;
2342           if (!Attribute::isTypeAttrKind(Kind))
2343             return error("Not a type attribute");
2344 
2345           B.addTypeAttr(Kind, HasType ? getTypeByID(Record[++i]) : nullptr);
2346         } else if (Record[i] == 7) {
2347           Attribute::AttrKind Kind;
2348 
2349           i++;
2350           if (Error Err = parseAttrKind(Record[i++], &Kind))
2351             return Err;
2352           if (!Attribute::isConstantRangeAttrKind(Kind))
2353             return error("Not a ConstantRange attribute");
2354 
2355           Expected<ConstantRange> MaybeCR = readConstantRange(Record, i);
2356           if (!MaybeCR)
2357             return MaybeCR.takeError();
2358           i--;
2359 
2360           B.addConstantRangeAttr(Kind, MaybeCR.get());
2361         } else {
2362           return error("Invalid attribute group entry");
2363         }
2364       }
2365 
2366       if (ME != MemoryEffects::unknown())
2367         B.addMemoryAttr(ME);
2368 
2369       UpgradeAttributes(B);
2370       MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B);
2371       break;
2372     }
2373     }
2374   }
2375 }
2376 
2377 Error BitcodeReader::parseTypeTable() {
2378   if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
2379     return Err;
2380 
2381   return parseTypeTableBody();
2382 }
2383 
2384 Error BitcodeReader::parseTypeTableBody() {
2385   if (!TypeList.empty())
2386     return error("Invalid multiple blocks");
2387 
2388   SmallVector<uint64_t, 64> Record;
2389   unsigned NumRecords = 0;
2390 
2391   SmallString<64> TypeName;
2392 
2393   // Read all the records for this type table.
2394   while (true) {
2395     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2396     if (!MaybeEntry)
2397       return MaybeEntry.takeError();
2398     BitstreamEntry Entry = MaybeEntry.get();
2399 
2400     switch (Entry.Kind) {
2401     case BitstreamEntry::SubBlock: // Handled for us already.
2402     case BitstreamEntry::Error:
2403       return error("Malformed block");
2404     case BitstreamEntry::EndBlock:
2405       if (NumRecords != TypeList.size())
2406         return error("Malformed block");
2407       return Error::success();
2408     case BitstreamEntry::Record:
2409       // The interesting case.
2410       break;
2411     }
2412 
2413     // Read a record.
2414     Record.clear();
2415     Type *ResultTy = nullptr;
2416     SmallVector<unsigned> ContainedIDs;
2417     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2418     if (!MaybeRecord)
2419       return MaybeRecord.takeError();
2420     switch (MaybeRecord.get()) {
2421     default:
2422       return error("Invalid value");
2423     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
2424       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
2425       // type list.  This allows us to reserve space.
2426       if (Record.empty())
2427         return error("Invalid numentry record");
2428       TypeList.resize(Record[0]);
2429       continue;
2430     case bitc::TYPE_CODE_VOID:      // VOID
2431       ResultTy = Type::getVoidTy(Context);
2432       break;
2433     case bitc::TYPE_CODE_HALF:     // HALF
2434       ResultTy = Type::getHalfTy(Context);
2435       break;
2436     case bitc::TYPE_CODE_BFLOAT:    // BFLOAT
2437       ResultTy = Type::getBFloatTy(Context);
2438       break;
2439     case bitc::TYPE_CODE_FLOAT:     // FLOAT
2440       ResultTy = Type::getFloatTy(Context);
2441       break;
2442     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
2443       ResultTy = Type::getDoubleTy(Context);
2444       break;
2445     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
2446       ResultTy = Type::getX86_FP80Ty(Context);
2447       break;
2448     case bitc::TYPE_CODE_FP128:     // FP128
2449       ResultTy = Type::getFP128Ty(Context);
2450       break;
2451     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
2452       ResultTy = Type::getPPC_FP128Ty(Context);
2453       break;
2454     case bitc::TYPE_CODE_LABEL:     // LABEL
2455       ResultTy = Type::getLabelTy(Context);
2456       break;
2457     case bitc::TYPE_CODE_METADATA:  // METADATA
2458       ResultTy = Type::getMetadataTy(Context);
2459       break;
2460     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
2461       ResultTy = Type::getX86_MMXTy(Context);
2462       break;
2463     case bitc::TYPE_CODE_X86_AMX:   // X86_AMX
2464       ResultTy = Type::getX86_AMXTy(Context);
2465       break;
2466     case bitc::TYPE_CODE_TOKEN:     // TOKEN
2467       ResultTy = Type::getTokenTy(Context);
2468       break;
2469     case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
2470       if (Record.empty())
2471         return error("Invalid integer record");
2472 
2473       uint64_t NumBits = Record[0];
2474       if (NumBits < IntegerType::MIN_INT_BITS ||
2475           NumBits > IntegerType::MAX_INT_BITS)
2476         return error("Bitwidth for integer type out of range");
2477       ResultTy = IntegerType::get(Context, NumBits);
2478       break;
2479     }
2480     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
2481                                     //          [pointee type, address space]
2482       if (Record.empty())
2483         return error("Invalid pointer record");
2484       unsigned AddressSpace = 0;
2485       if (Record.size() == 2)
2486         AddressSpace = Record[1];
2487       ResultTy = getTypeByID(Record[0]);
2488       if (!ResultTy ||
2489           !PointerType::isValidElementType(ResultTy))
2490         return error("Invalid type");
2491       ContainedIDs.push_back(Record[0]);
2492       ResultTy = PointerType::get(ResultTy, AddressSpace);
2493       break;
2494     }
2495     case bitc::TYPE_CODE_OPAQUE_POINTER: { // OPAQUE_POINTER: [addrspace]
2496       if (Record.size() != 1)
2497         return error("Invalid opaque pointer record");
2498       unsigned AddressSpace = Record[0];
2499       ResultTy = PointerType::get(Context, AddressSpace);
2500       break;
2501     }
2502     case bitc::TYPE_CODE_FUNCTION_OLD: {
2503       // Deprecated, but still needed to read old bitcode files.
2504       // FUNCTION: [vararg, attrid, retty, paramty x N]
2505       if (Record.size() < 3)
2506         return error("Invalid function record");
2507       SmallVector<Type*, 8> ArgTys;
2508       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
2509         if (Type *T = getTypeByID(Record[i]))
2510           ArgTys.push_back(T);
2511         else
2512           break;
2513       }
2514 
2515       ResultTy = getTypeByID(Record[2]);
2516       if (!ResultTy || ArgTys.size() < Record.size()-3)
2517         return error("Invalid type");
2518 
2519       ContainedIDs.append(Record.begin() + 2, Record.end());
2520       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
2521       break;
2522     }
2523     case bitc::TYPE_CODE_FUNCTION: {
2524       // FUNCTION: [vararg, retty, paramty x N]
2525       if (Record.size() < 2)
2526         return error("Invalid function record");
2527       SmallVector<Type*, 8> ArgTys;
2528       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
2529         if (Type *T = getTypeByID(Record[i])) {
2530           if (!FunctionType::isValidArgumentType(T))
2531             return error("Invalid function argument type");
2532           ArgTys.push_back(T);
2533         }
2534         else
2535           break;
2536       }
2537 
2538       ResultTy = getTypeByID(Record[1]);
2539       if (!ResultTy || ArgTys.size() < Record.size()-2)
2540         return error("Invalid type");
2541 
2542       ContainedIDs.append(Record.begin() + 1, Record.end());
2543       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
2544       break;
2545     }
2546     case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
2547       if (Record.empty())
2548         return error("Invalid anon struct record");
2549       SmallVector<Type*, 8> EltTys;
2550       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
2551         if (Type *T = getTypeByID(Record[i]))
2552           EltTys.push_back(T);
2553         else
2554           break;
2555       }
2556       if (EltTys.size() != Record.size()-1)
2557         return error("Invalid type");
2558       ContainedIDs.append(Record.begin() + 1, Record.end());
2559       ResultTy = StructType::get(Context, EltTys, Record[0]);
2560       break;
2561     }
2562     case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
2563       if (convertToString(Record, 0, TypeName))
2564         return error("Invalid struct name record");
2565       continue;
2566 
2567     case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
2568       if (Record.empty())
2569         return error("Invalid named struct record");
2570 
2571       if (NumRecords >= TypeList.size())
2572         return error("Invalid TYPE table");
2573 
2574       // Check to see if this was forward referenced, if so fill in the temp.
2575       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
2576       if (Res) {
2577         Res->setName(TypeName);
2578         TypeList[NumRecords] = nullptr;
2579       } else  // Otherwise, create a new struct.
2580         Res = createIdentifiedStructType(Context, TypeName);
2581       TypeName.clear();
2582 
2583       SmallVector<Type*, 8> EltTys;
2584       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
2585         if (Type *T = getTypeByID(Record[i]))
2586           EltTys.push_back(T);
2587         else
2588           break;
2589       }
2590       if (EltTys.size() != Record.size()-1)
2591         return error("Invalid named struct record");
2592       Res->setBody(EltTys, Record[0]);
2593       ContainedIDs.append(Record.begin() + 1, Record.end());
2594       ResultTy = Res;
2595       break;
2596     }
2597     case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
2598       if (Record.size() != 1)
2599         return error("Invalid opaque type record");
2600 
2601       if (NumRecords >= TypeList.size())
2602         return error("Invalid TYPE table");
2603 
2604       // Check to see if this was forward referenced, if so fill in the temp.
2605       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
2606       if (Res) {
2607         Res->setName(TypeName);
2608         TypeList[NumRecords] = nullptr;
2609       } else  // Otherwise, create a new struct with no body.
2610         Res = createIdentifiedStructType(Context, TypeName);
2611       TypeName.clear();
2612       ResultTy = Res;
2613       break;
2614     }
2615     case bitc::TYPE_CODE_TARGET_TYPE: { // TARGET_TYPE: [NumTy, Tys..., Ints...]
2616       if (Record.size() < 1)
2617         return error("Invalid target extension type record");
2618 
2619       if (NumRecords >= TypeList.size())
2620         return error("Invalid TYPE table");
2621 
2622       if (Record[0] >= Record.size())
2623         return error("Too many type parameters");
2624 
2625       unsigned NumTys = Record[0];
2626       SmallVector<Type *, 4> TypeParams;
2627       SmallVector<unsigned, 8> IntParams;
2628       for (unsigned i = 0; i < NumTys; i++) {
2629         if (Type *T = getTypeByID(Record[i + 1]))
2630           TypeParams.push_back(T);
2631         else
2632           return error("Invalid type");
2633       }
2634 
2635       for (unsigned i = NumTys + 1, e = Record.size(); i < e; i++) {
2636         if (Record[i] > UINT_MAX)
2637           return error("Integer parameter too large");
2638         IntParams.push_back(Record[i]);
2639       }
2640       ResultTy = TargetExtType::get(Context, TypeName, TypeParams, IntParams);
2641       TypeName.clear();
2642       break;
2643     }
2644     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
2645       if (Record.size() < 2)
2646         return error("Invalid array type record");
2647       ResultTy = getTypeByID(Record[1]);
2648       if (!ResultTy || !ArrayType::isValidElementType(ResultTy))
2649         return error("Invalid type");
2650       ContainedIDs.push_back(Record[1]);
2651       ResultTy = ArrayType::get(ResultTy, Record[0]);
2652       break;
2653     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty] or
2654                                     //         [numelts, eltty, scalable]
2655       if (Record.size() < 2)
2656         return error("Invalid vector type record");
2657       if (Record[0] == 0)
2658         return error("Invalid vector length");
2659       ResultTy = getTypeByID(Record[1]);
2660       if (!ResultTy || !VectorType::isValidElementType(ResultTy))
2661         return error("Invalid type");
2662       bool Scalable = Record.size() > 2 ? Record[2] : false;
2663       ContainedIDs.push_back(Record[1]);
2664       ResultTy = VectorType::get(ResultTy, Record[0], Scalable);
2665       break;
2666     }
2667 
2668     if (NumRecords >= TypeList.size())
2669       return error("Invalid TYPE table");
2670     if (TypeList[NumRecords])
2671       return error(
2672           "Invalid TYPE table: Only named structs can be forward referenced");
2673     assert(ResultTy && "Didn't read a type?");
2674     TypeList[NumRecords] = ResultTy;
2675     if (!ContainedIDs.empty())
2676       ContainedTypeIDs[NumRecords] = std::move(ContainedIDs);
2677     ++NumRecords;
2678   }
2679 }
2680 
2681 Error BitcodeReader::parseOperandBundleTags() {
2682   if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID))
2683     return Err;
2684 
2685   if (!BundleTags.empty())
2686     return error("Invalid multiple blocks");
2687 
2688   SmallVector<uint64_t, 64> Record;
2689 
2690   while (true) {
2691     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2692     if (!MaybeEntry)
2693       return MaybeEntry.takeError();
2694     BitstreamEntry Entry = MaybeEntry.get();
2695 
2696     switch (Entry.Kind) {
2697     case BitstreamEntry::SubBlock: // Handled for us already.
2698     case BitstreamEntry::Error:
2699       return error("Malformed block");
2700     case BitstreamEntry::EndBlock:
2701       return Error::success();
2702     case BitstreamEntry::Record:
2703       // The interesting case.
2704       break;
2705     }
2706 
2707     // Tags are implicitly mapped to integers by their order.
2708 
2709     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2710     if (!MaybeRecord)
2711       return MaybeRecord.takeError();
2712     if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG)
2713       return error("Invalid operand bundle record");
2714 
2715     // OPERAND_BUNDLE_TAG: [strchr x N]
2716     BundleTags.emplace_back();
2717     if (convertToString(Record, 0, BundleTags.back()))
2718       return error("Invalid operand bundle record");
2719     Record.clear();
2720   }
2721 }
2722 
2723 Error BitcodeReader::parseSyncScopeNames() {
2724   if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID))
2725     return Err;
2726 
2727   if (!SSIDs.empty())
2728     return error("Invalid multiple synchronization scope names blocks");
2729 
2730   SmallVector<uint64_t, 64> Record;
2731   while (true) {
2732     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2733     if (!MaybeEntry)
2734       return MaybeEntry.takeError();
2735     BitstreamEntry Entry = MaybeEntry.get();
2736 
2737     switch (Entry.Kind) {
2738     case BitstreamEntry::SubBlock: // Handled for us already.
2739     case BitstreamEntry::Error:
2740       return error("Malformed block");
2741     case BitstreamEntry::EndBlock:
2742       if (SSIDs.empty())
2743         return error("Invalid empty synchronization scope names block");
2744       return Error::success();
2745     case BitstreamEntry::Record:
2746       // The interesting case.
2747       break;
2748     }
2749 
2750     // Synchronization scope names are implicitly mapped to synchronization
2751     // scope IDs by their order.
2752 
2753     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2754     if (!MaybeRecord)
2755       return MaybeRecord.takeError();
2756     if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME)
2757       return error("Invalid sync scope record");
2758 
2759     SmallString<16> SSN;
2760     if (convertToString(Record, 0, SSN))
2761       return error("Invalid sync scope record");
2762 
2763     SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN));
2764     Record.clear();
2765   }
2766 }
2767 
2768 /// Associate a value with its name from the given index in the provided record.
2769 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
2770                                              unsigned NameIndex, Triple &TT) {
2771   SmallString<128> ValueName;
2772   if (convertToString(Record, NameIndex, ValueName))
2773     return error("Invalid record");
2774   unsigned ValueID = Record[0];
2775   if (ValueID >= ValueList.size() || !ValueList[ValueID])
2776     return error("Invalid record");
2777   Value *V = ValueList[ValueID];
2778 
2779   StringRef NameStr(ValueName.data(), ValueName.size());
2780   if (NameStr.contains(0))
2781     return error("Invalid value name");
2782   V->setName(NameStr);
2783   auto *GO = dyn_cast<GlobalObject>(V);
2784   if (GO && ImplicitComdatObjects.contains(GO) && TT.supportsCOMDAT())
2785     GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
2786   return V;
2787 }
2788 
2789 /// Helper to note and return the current location, and jump to the given
2790 /// offset.
2791 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset,
2792                                                  BitstreamCursor &Stream) {
2793   // Save the current parsing location so we can jump back at the end
2794   // of the VST read.
2795   uint64_t CurrentBit = Stream.GetCurrentBitNo();
2796   if (Error JumpFailed = Stream.JumpToBit(Offset * 32))
2797     return std::move(JumpFailed);
2798   Expected<BitstreamEntry> MaybeEntry = Stream.advance();
2799   if (!MaybeEntry)
2800     return MaybeEntry.takeError();
2801   if (MaybeEntry.get().Kind != BitstreamEntry::SubBlock ||
2802       MaybeEntry.get().ID != bitc::VALUE_SYMTAB_BLOCK_ID)
2803     return error("Expected value symbol table subblock");
2804   return CurrentBit;
2805 }
2806 
2807 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta,
2808                                             Function *F,
2809                                             ArrayRef<uint64_t> Record) {
2810   // Note that we subtract 1 here because the offset is relative to one word
2811   // before the start of the identification or module block, which was
2812   // historically always the start of the regular bitcode header.
2813   uint64_t FuncWordOffset = Record[1] - 1;
2814   uint64_t FuncBitOffset = FuncWordOffset * 32;
2815   DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
2816   // Set the LastFunctionBlockBit to point to the last function block.
2817   // Later when parsing is resumed after function materialization,
2818   // we can simply skip that last function block.
2819   if (FuncBitOffset > LastFunctionBlockBit)
2820     LastFunctionBlockBit = FuncBitOffset;
2821 }
2822 
2823 /// Read a new-style GlobalValue symbol table.
2824 Error BitcodeReader::parseGlobalValueSymbolTable() {
2825   unsigned FuncBitcodeOffsetDelta =
2826       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2827 
2828   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2829     return Err;
2830 
2831   SmallVector<uint64_t, 64> Record;
2832   while (true) {
2833     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2834     if (!MaybeEntry)
2835       return MaybeEntry.takeError();
2836     BitstreamEntry Entry = MaybeEntry.get();
2837 
2838     switch (Entry.Kind) {
2839     case BitstreamEntry::SubBlock:
2840     case BitstreamEntry::Error:
2841       return error("Malformed block");
2842     case BitstreamEntry::EndBlock:
2843       return Error::success();
2844     case BitstreamEntry::Record:
2845       break;
2846     }
2847 
2848     Record.clear();
2849     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2850     if (!MaybeRecord)
2851       return MaybeRecord.takeError();
2852     switch (MaybeRecord.get()) {
2853     case bitc::VST_CODE_FNENTRY: { // [valueid, offset]
2854       unsigned ValueID = Record[0];
2855       if (ValueID >= ValueList.size() || !ValueList[ValueID])
2856         return error("Invalid value reference in symbol table");
2857       setDeferredFunctionInfo(FuncBitcodeOffsetDelta,
2858                               cast<Function>(ValueList[ValueID]), Record);
2859       break;
2860     }
2861     }
2862   }
2863 }
2864 
2865 /// Parse the value symbol table at either the current parsing location or
2866 /// at the given bit offset if provided.
2867 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) {
2868   uint64_t CurrentBit;
2869   // Pass in the Offset to distinguish between calling for the module-level
2870   // VST (where we want to jump to the VST offset) and the function-level
2871   // VST (where we don't).
2872   if (Offset > 0) {
2873     Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
2874     if (!MaybeCurrentBit)
2875       return MaybeCurrentBit.takeError();
2876     CurrentBit = MaybeCurrentBit.get();
2877     // If this module uses a string table, read this as a module-level VST.
2878     if (UseStrtab) {
2879       if (Error Err = parseGlobalValueSymbolTable())
2880         return Err;
2881       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2882         return JumpFailed;
2883       return Error::success();
2884     }
2885     // Otherwise, the VST will be in a similar format to a function-level VST,
2886     // and will contain symbol names.
2887   }
2888 
2889   // Compute the delta between the bitcode indices in the VST (the word offset
2890   // to the word-aligned ENTER_SUBBLOCK for the function block, and that
2891   // expected by the lazy reader. The reader's EnterSubBlock expects to have
2892   // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
2893   // (size BlockIDWidth). Note that we access the stream's AbbrevID width here
2894   // just before entering the VST subblock because: 1) the EnterSubBlock
2895   // changes the AbbrevID width; 2) the VST block is nested within the same
2896   // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
2897   // AbbrevID width before calling EnterSubBlock; and 3) when we want to
2898   // jump to the FUNCTION_BLOCK using this offset later, we don't want
2899   // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
2900   unsigned FuncBitcodeOffsetDelta =
2901       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2902 
2903   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2904     return Err;
2905 
2906   SmallVector<uint64_t, 64> Record;
2907 
2908   Triple TT(TheModule->getTargetTriple());
2909 
2910   // Read all the records for this value table.
2911   SmallString<128> ValueName;
2912 
2913   while (true) {
2914     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2915     if (!MaybeEntry)
2916       return MaybeEntry.takeError();
2917     BitstreamEntry Entry = MaybeEntry.get();
2918 
2919     switch (Entry.Kind) {
2920     case BitstreamEntry::SubBlock: // Handled for us already.
2921     case BitstreamEntry::Error:
2922       return error("Malformed block");
2923     case BitstreamEntry::EndBlock:
2924       if (Offset > 0)
2925         if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2926           return JumpFailed;
2927       return Error::success();
2928     case BitstreamEntry::Record:
2929       // The interesting case.
2930       break;
2931     }
2932 
2933     // Read a record.
2934     Record.clear();
2935     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2936     if (!MaybeRecord)
2937       return MaybeRecord.takeError();
2938     switch (MaybeRecord.get()) {
2939     default:  // Default behavior: unknown type.
2940       break;
2941     case bitc::VST_CODE_ENTRY: {  // VST_CODE_ENTRY: [valueid, namechar x N]
2942       Expected<Value *> ValOrErr = recordValue(Record, 1, TT);
2943       if (Error Err = ValOrErr.takeError())
2944         return Err;
2945       ValOrErr.get();
2946       break;
2947     }
2948     case bitc::VST_CODE_FNENTRY: {
2949       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
2950       Expected<Value *> ValOrErr = recordValue(Record, 2, TT);
2951       if (Error Err = ValOrErr.takeError())
2952         return Err;
2953       Value *V = ValOrErr.get();
2954 
2955       // Ignore function offsets emitted for aliases of functions in older
2956       // versions of LLVM.
2957       if (auto *F = dyn_cast<Function>(V))
2958         setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record);
2959       break;
2960     }
2961     case bitc::VST_CODE_BBENTRY: {
2962       if (convertToString(Record, 1, ValueName))
2963         return error("Invalid bbentry record");
2964       BasicBlock *BB = getBasicBlock(Record[0]);
2965       if (!BB)
2966         return error("Invalid bbentry record");
2967 
2968       BB->setName(ValueName.str());
2969       ValueName.clear();
2970       break;
2971     }
2972     }
2973   }
2974 }
2975 
2976 /// Decode a signed value stored with the sign bit in the LSB for dense VBR
2977 /// encoding.
2978 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
2979   if ((V & 1) == 0)
2980     return V >> 1;
2981   if (V != 1)
2982     return -(V >> 1);
2983   // There is no such thing as -0 with integers.  "-0" really means MININT.
2984   return 1ULL << 63;
2985 }
2986 
2987 /// Resolve all of the initializers for global values and aliases that we can.
2988 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() {
2989   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist;
2990   std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInitWorklist;
2991   std::vector<FunctionOperandInfo> FunctionOperandWorklist;
2992 
2993   GlobalInitWorklist.swap(GlobalInits);
2994   IndirectSymbolInitWorklist.swap(IndirectSymbolInits);
2995   FunctionOperandWorklist.swap(FunctionOperands);
2996 
2997   while (!GlobalInitWorklist.empty()) {
2998     unsigned ValID = GlobalInitWorklist.back().second;
2999     if (ValID >= ValueList.size()) {
3000       // Not ready to resolve this yet, it requires something later in the file.
3001       GlobalInits.push_back(GlobalInitWorklist.back());
3002     } else {
3003       Expected<Constant *> MaybeC = getValueForInitializer(ValID);
3004       if (!MaybeC)
3005         return MaybeC.takeError();
3006       GlobalInitWorklist.back().first->setInitializer(MaybeC.get());
3007     }
3008     GlobalInitWorklist.pop_back();
3009   }
3010 
3011   while (!IndirectSymbolInitWorklist.empty()) {
3012     unsigned ValID = IndirectSymbolInitWorklist.back().second;
3013     if (ValID >= ValueList.size()) {
3014       IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back());
3015     } else {
3016       Expected<Constant *> MaybeC = getValueForInitializer(ValID);
3017       if (!MaybeC)
3018         return MaybeC.takeError();
3019       Constant *C = MaybeC.get();
3020       GlobalValue *GV = IndirectSymbolInitWorklist.back().first;
3021       if (auto *GA = dyn_cast<GlobalAlias>(GV)) {
3022         if (C->getType() != GV->getType())
3023           return error("Alias and aliasee types don't match");
3024         GA->setAliasee(C);
3025       } else if (auto *GI = dyn_cast<GlobalIFunc>(GV)) {
3026         GI->setResolver(C);
3027       } else {
3028         return error("Expected an alias or an ifunc");
3029       }
3030     }
3031     IndirectSymbolInitWorklist.pop_back();
3032   }
3033 
3034   while (!FunctionOperandWorklist.empty()) {
3035     FunctionOperandInfo &Info = FunctionOperandWorklist.back();
3036     if (Info.PersonalityFn) {
3037       unsigned ValID = Info.PersonalityFn - 1;
3038       if (ValID < ValueList.size()) {
3039         Expected<Constant *> MaybeC = getValueForInitializer(ValID);
3040         if (!MaybeC)
3041           return MaybeC.takeError();
3042         Info.F->setPersonalityFn(MaybeC.get());
3043         Info.PersonalityFn = 0;
3044       }
3045     }
3046     if (Info.Prefix) {
3047       unsigned ValID = Info.Prefix - 1;
3048       if (ValID < ValueList.size()) {
3049         Expected<Constant *> MaybeC = getValueForInitializer(ValID);
3050         if (!MaybeC)
3051           return MaybeC.takeError();
3052         Info.F->setPrefixData(MaybeC.get());
3053         Info.Prefix = 0;
3054       }
3055     }
3056     if (Info.Prologue) {
3057       unsigned ValID = Info.Prologue - 1;
3058       if (ValID < ValueList.size()) {
3059         Expected<Constant *> MaybeC = getValueForInitializer(ValID);
3060         if (!MaybeC)
3061           return MaybeC.takeError();
3062         Info.F->setPrologueData(MaybeC.get());
3063         Info.Prologue = 0;
3064       }
3065     }
3066     if (Info.PersonalityFn || Info.Prefix || Info.Prologue)
3067       FunctionOperands.push_back(Info);
3068     FunctionOperandWorklist.pop_back();
3069   }
3070 
3071   return Error::success();
3072 }
3073 
3074 APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
3075   SmallVector<uint64_t, 8> Words(Vals.size());
3076   transform(Vals, Words.begin(),
3077                  BitcodeReader::decodeSignRotatedValue);
3078 
3079   return APInt(TypeBits, Words);
3080 }
3081 
3082 Error BitcodeReader::parseConstants() {
3083   if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
3084     return Err;
3085 
3086   SmallVector<uint64_t, 64> Record;
3087 
3088   // Read all the records for this value table.
3089   Type *CurTy = Type::getInt32Ty(Context);
3090   unsigned Int32TyID = getVirtualTypeID(CurTy);
3091   unsigned CurTyID = Int32TyID;
3092   Type *CurElemTy = nullptr;
3093   unsigned NextCstNo = ValueList.size();
3094 
3095   while (true) {
3096     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
3097     if (!MaybeEntry)
3098       return MaybeEntry.takeError();
3099     BitstreamEntry Entry = MaybeEntry.get();
3100 
3101     switch (Entry.Kind) {
3102     case BitstreamEntry::SubBlock: // Handled for us already.
3103     case BitstreamEntry::Error:
3104       return error("Malformed block");
3105     case BitstreamEntry::EndBlock:
3106       if (NextCstNo != ValueList.size())
3107         return error("Invalid constant reference");
3108       return Error::success();
3109     case BitstreamEntry::Record:
3110       // The interesting case.
3111       break;
3112     }
3113 
3114     // Read a record.
3115     Record.clear();
3116     Type *VoidType = Type::getVoidTy(Context);
3117     Value *V = nullptr;
3118     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
3119     if (!MaybeBitCode)
3120       return MaybeBitCode.takeError();
3121     switch (unsigned BitCode = MaybeBitCode.get()) {
3122     default:  // Default behavior: unknown constant
3123     case bitc::CST_CODE_UNDEF:     // UNDEF
3124       V = UndefValue::get(CurTy);
3125       break;
3126     case bitc::CST_CODE_POISON:    // POISON
3127       V = PoisonValue::get(CurTy);
3128       break;
3129     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
3130       if (Record.empty())
3131         return error("Invalid settype record");
3132       if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
3133         return error("Invalid settype record");
3134       if (TypeList[Record[0]] == VoidType)
3135         return error("Invalid constant type");
3136       CurTyID = Record[0];
3137       CurTy = TypeList[CurTyID];
3138       CurElemTy = getPtrElementTypeByID(CurTyID);
3139       continue;  // Skip the ValueList manipulation.
3140     case bitc::CST_CODE_NULL:      // NULL
3141       if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy())
3142         return error("Invalid type for a constant null value");
3143       if (auto *TETy = dyn_cast<TargetExtType>(CurTy))
3144         if (!TETy->hasProperty(TargetExtType::HasZeroInit))
3145           return error("Invalid type for a constant null value");
3146       V = Constant::getNullValue(CurTy);
3147       break;
3148     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
3149       if (!CurTy->isIntOrIntVectorTy() || Record.empty())
3150         return error("Invalid integer const record");
3151       V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
3152       break;
3153     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
3154       if (!CurTy->isIntOrIntVectorTy() || Record.empty())
3155         return error("Invalid wide integer const record");
3156 
3157       auto *ScalarTy = cast<IntegerType>(CurTy->getScalarType());
3158       APInt VInt = readWideAPInt(Record, ScalarTy->getBitWidth());
3159       V = ConstantInt::get(CurTy, VInt);
3160       break;
3161     }
3162     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
3163       if (Record.empty())
3164         return error("Invalid float const record");
3165 
3166       auto *ScalarTy = CurTy->getScalarType();
3167       if (ScalarTy->isHalfTy())
3168         V = ConstantFP::get(CurTy, APFloat(APFloat::IEEEhalf(),
3169                                            APInt(16, (uint16_t)Record[0])));
3170       else if (ScalarTy->isBFloatTy())
3171         V = ConstantFP::get(
3172             CurTy, APFloat(APFloat::BFloat(), APInt(16, (uint32_t)Record[0])));
3173       else if (ScalarTy->isFloatTy())
3174         V = ConstantFP::get(CurTy, APFloat(APFloat::IEEEsingle(),
3175                                            APInt(32, (uint32_t)Record[0])));
3176       else if (ScalarTy->isDoubleTy())
3177         V = ConstantFP::get(
3178             CurTy, APFloat(APFloat::IEEEdouble(), APInt(64, Record[0])));
3179       else if (ScalarTy->isX86_FP80Ty()) {
3180         // Bits are not stored the same way as a normal i80 APInt, compensate.
3181         uint64_t Rearrange[2];
3182         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
3183         Rearrange[1] = Record[0] >> 48;
3184         V = ConstantFP::get(
3185             CurTy, APFloat(APFloat::x87DoubleExtended(), APInt(80, Rearrange)));
3186       } else if (ScalarTy->isFP128Ty())
3187         V = ConstantFP::get(CurTy,
3188                             APFloat(APFloat::IEEEquad(), APInt(128, Record)));
3189       else if (ScalarTy->isPPC_FP128Ty())
3190         V = ConstantFP::get(
3191             CurTy, APFloat(APFloat::PPCDoubleDouble(), APInt(128, Record)));
3192       else
3193         V = UndefValue::get(CurTy);
3194       break;
3195     }
3196 
3197     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
3198       if (Record.empty())
3199         return error("Invalid aggregate record");
3200 
3201       unsigned Size = Record.size();
3202       SmallVector<unsigned, 16> Elts;
3203       for (unsigned i = 0; i != Size; ++i)
3204         Elts.push_back(Record[i]);
3205 
3206       if (isa<StructType>(CurTy)) {
3207         V = BitcodeConstant::create(
3208             Alloc, CurTy, BitcodeConstant::ConstantStructOpcode, Elts);
3209       } else if (isa<ArrayType>(CurTy)) {
3210         V = BitcodeConstant::create(Alloc, CurTy,
3211                                     BitcodeConstant::ConstantArrayOpcode, Elts);
3212       } else if (isa<VectorType>(CurTy)) {
3213         V = BitcodeConstant::create(
3214             Alloc, CurTy, BitcodeConstant::ConstantVectorOpcode, Elts);
3215       } else {
3216         V = UndefValue::get(CurTy);
3217       }
3218       break;
3219     }
3220     case bitc::CST_CODE_STRING:    // STRING: [values]
3221     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
3222       if (Record.empty())
3223         return error("Invalid string record");
3224 
3225       SmallString<16> Elts(Record.begin(), Record.end());
3226       V = ConstantDataArray::getString(Context, Elts,
3227                                        BitCode == bitc::CST_CODE_CSTRING);
3228       break;
3229     }
3230     case bitc::CST_CODE_DATA: {// DATA: [n x value]
3231       if (Record.empty())
3232         return error("Invalid data record");
3233 
3234       Type *EltTy;
3235       if (auto *Array = dyn_cast<ArrayType>(CurTy))
3236         EltTy = Array->getElementType();
3237       else
3238         EltTy = cast<VectorType>(CurTy)->getElementType();
3239       if (EltTy->isIntegerTy(8)) {
3240         SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
3241         if (isa<VectorType>(CurTy))
3242           V = ConstantDataVector::get(Context, Elts);
3243         else
3244           V = ConstantDataArray::get(Context, Elts);
3245       } else if (EltTy->isIntegerTy(16)) {
3246         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
3247         if (isa<VectorType>(CurTy))
3248           V = ConstantDataVector::get(Context, Elts);
3249         else
3250           V = ConstantDataArray::get(Context, Elts);
3251       } else if (EltTy->isIntegerTy(32)) {
3252         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
3253         if (isa<VectorType>(CurTy))
3254           V = ConstantDataVector::get(Context, Elts);
3255         else
3256           V = ConstantDataArray::get(Context, Elts);
3257       } else if (EltTy->isIntegerTy(64)) {
3258         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
3259         if (isa<VectorType>(CurTy))
3260           V = ConstantDataVector::get(Context, Elts);
3261         else
3262           V = ConstantDataArray::get(Context, Elts);
3263       } else if (EltTy->isHalfTy()) {
3264         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
3265         if (isa<VectorType>(CurTy))
3266           V = ConstantDataVector::getFP(EltTy, Elts);
3267         else
3268           V = ConstantDataArray::getFP(EltTy, Elts);
3269       } else if (EltTy->isBFloatTy()) {
3270         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
3271         if (isa<VectorType>(CurTy))
3272           V = ConstantDataVector::getFP(EltTy, Elts);
3273         else
3274           V = ConstantDataArray::getFP(EltTy, Elts);
3275       } else if (EltTy->isFloatTy()) {
3276         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
3277         if (isa<VectorType>(CurTy))
3278           V = ConstantDataVector::getFP(EltTy, Elts);
3279         else
3280           V = ConstantDataArray::getFP(EltTy, Elts);
3281       } else if (EltTy->isDoubleTy()) {
3282         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
3283         if (isa<VectorType>(CurTy))
3284           V = ConstantDataVector::getFP(EltTy, Elts);
3285         else
3286           V = ConstantDataArray::getFP(EltTy, Elts);
3287       } else {
3288         return error("Invalid type for value");
3289       }
3290       break;
3291     }
3292     case bitc::CST_CODE_CE_UNOP: {  // CE_UNOP: [opcode, opval]
3293       if (Record.size() < 2)
3294         return error("Invalid unary op constexpr record");
3295       int Opc = getDecodedUnaryOpcode(Record[0], CurTy);
3296       if (Opc < 0) {
3297         V = UndefValue::get(CurTy);  // Unknown unop.
3298       } else {
3299         V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[1]);
3300       }
3301       break;
3302     }
3303     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
3304       if (Record.size() < 3)
3305         return error("Invalid binary op constexpr record");
3306       int Opc = getDecodedBinaryOpcode(Record[0], CurTy);
3307       if (Opc < 0) {
3308         V = UndefValue::get(CurTy);  // Unknown binop.
3309       } else {
3310         uint8_t Flags = 0;
3311         if (Record.size() >= 4) {
3312           if (Opc == Instruction::Add ||
3313               Opc == Instruction::Sub ||
3314               Opc == Instruction::Mul ||
3315               Opc == Instruction::Shl) {
3316             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
3317               Flags |= OverflowingBinaryOperator::NoSignedWrap;
3318             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
3319               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
3320           } else if (Opc == Instruction::SDiv ||
3321                      Opc == Instruction::UDiv ||
3322                      Opc == Instruction::LShr ||
3323                      Opc == Instruction::AShr) {
3324             if (Record[3] & (1 << bitc::PEO_EXACT))
3325               Flags |= PossiblyExactOperator::IsExact;
3326           }
3327         }
3328         V = BitcodeConstant::create(Alloc, CurTy, {(uint8_t)Opc, Flags},
3329                                     {(unsigned)Record[1], (unsigned)Record[2]});
3330       }
3331       break;
3332     }
3333     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
3334       if (Record.size() < 3)
3335         return error("Invalid cast constexpr record");
3336       int Opc = getDecodedCastOpcode(Record[0]);
3337       if (Opc < 0) {
3338         V = UndefValue::get(CurTy);  // Unknown cast.
3339       } else {
3340         unsigned OpTyID = Record[1];
3341         Type *OpTy = getTypeByID(OpTyID);
3342         if (!OpTy)
3343           return error("Invalid cast constexpr record");
3344         V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[2]);
3345       }
3346       break;
3347     }
3348     case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands]
3349     case bitc::CST_CODE_CE_GEP_OLD:      // [ty, n x operands]
3350     case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX_OLD: // [ty, flags, n x
3351                                                        // operands]
3352     case bitc::CST_CODE_CE_GEP:                // [ty, flags, n x operands]
3353     case bitc::CST_CODE_CE_GEP_WITH_INRANGE: { // [ty, flags, start, end, n x
3354                                                // operands]
3355       if (Record.size() < 2)
3356         return error("Constant GEP record must have at least two elements");
3357       unsigned OpNum = 0;
3358       Type *PointeeType = nullptr;
3359       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX_OLD ||
3360           BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE ||
3361           BitCode == bitc::CST_CODE_CE_GEP || Record.size() % 2)
3362         PointeeType = getTypeByID(Record[OpNum++]);
3363 
3364       uint64_t Flags = 0;
3365       std::optional<ConstantRange> InRange;
3366       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX_OLD) {
3367         uint64_t Op = Record[OpNum++];
3368         Flags = Op & 1; // inbounds
3369         unsigned InRangeIndex = Op >> 1;
3370         // "Upgrade" inrange by dropping it. The feature is too niche to
3371         // bother.
3372         (void)InRangeIndex;
3373       } else if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE) {
3374         Flags = Record[OpNum++];
3375         Expected<ConstantRange> MaybeInRange = readConstantRange(Record, OpNum);
3376         if (!MaybeInRange)
3377           return MaybeInRange.takeError();
3378         InRange = MaybeInRange.get();
3379       } else if (BitCode == bitc::CST_CODE_CE_GEP) {
3380         Flags = Record[OpNum++];
3381       } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
3382         Flags = (1 << bitc::GEP_INBOUNDS);
3383 
3384       SmallVector<unsigned, 16> Elts;
3385       unsigned BaseTypeID = Record[OpNum];
3386       while (OpNum != Record.size()) {
3387         unsigned ElTyID = Record[OpNum++];
3388         Type *ElTy = getTypeByID(ElTyID);
3389         if (!ElTy)
3390           return error("Invalid getelementptr constexpr record");
3391         Elts.push_back(Record[OpNum++]);
3392       }
3393 
3394       if (Elts.size() < 1)
3395         return error("Invalid gep with no operands");
3396 
3397       Type *BaseType = getTypeByID(BaseTypeID);
3398       if (isa<VectorType>(BaseType)) {
3399         BaseTypeID = getContainedTypeID(BaseTypeID, 0);
3400         BaseType = getTypeByID(BaseTypeID);
3401       }
3402 
3403       PointerType *OrigPtrTy = dyn_cast_or_null<PointerType>(BaseType);
3404       if (!OrigPtrTy)
3405         return error("GEP base operand must be pointer or vector of pointer");
3406 
3407       if (!PointeeType) {
3408         PointeeType = getPtrElementTypeByID(BaseTypeID);
3409         if (!PointeeType)
3410           return error("Missing element type for old-style constant GEP");
3411       }
3412 
3413       V = BitcodeConstant::create(
3414           Alloc, CurTy,
3415           {Instruction::GetElementPtr, uint8_t(Flags), PointeeType, InRange},
3416           Elts);
3417       break;
3418     }
3419     case bitc::CST_CODE_CE_SELECT: {  // CE_SELECT: [opval#, opval#, opval#]
3420       if (Record.size() < 3)
3421         return error("Invalid select constexpr record");
3422 
3423       V = BitcodeConstant::create(
3424           Alloc, CurTy, Instruction::Select,
3425           {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]});
3426       break;
3427     }
3428     case bitc::CST_CODE_CE_EXTRACTELT
3429         : { // CE_EXTRACTELT: [opty, opval, opty, opval]
3430       if (Record.size() < 3)
3431         return error("Invalid extractelement constexpr record");
3432       unsigned OpTyID = Record[0];
3433       VectorType *OpTy =
3434         dyn_cast_or_null<VectorType>(getTypeByID(OpTyID));
3435       if (!OpTy)
3436         return error("Invalid extractelement constexpr record");
3437       unsigned IdxRecord;
3438       if (Record.size() == 4) {
3439         unsigned IdxTyID = Record[2];
3440         Type *IdxTy = getTypeByID(IdxTyID);
3441         if (!IdxTy)
3442           return error("Invalid extractelement constexpr record");
3443         IdxRecord = Record[3];
3444       } else {
3445         // Deprecated, but still needed to read old bitcode files.
3446         IdxRecord = Record[2];
3447       }
3448       V = BitcodeConstant::create(Alloc, CurTy, Instruction::ExtractElement,
3449                                   {(unsigned)Record[1], IdxRecord});
3450       break;
3451     }
3452     case bitc::CST_CODE_CE_INSERTELT
3453         : { // CE_INSERTELT: [opval, opval, opty, opval]
3454       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
3455       if (Record.size() < 3 || !OpTy)
3456         return error("Invalid insertelement constexpr record");
3457       unsigned IdxRecord;
3458       if (Record.size() == 4) {
3459         unsigned IdxTyID = Record[2];
3460         Type *IdxTy = getTypeByID(IdxTyID);
3461         if (!IdxTy)
3462           return error("Invalid insertelement constexpr record");
3463         IdxRecord = Record[3];
3464       } else {
3465         // Deprecated, but still needed to read old bitcode files.
3466         IdxRecord = Record[2];
3467       }
3468       V = BitcodeConstant::create(
3469           Alloc, CurTy, Instruction::InsertElement,
3470           {(unsigned)Record[0], (unsigned)Record[1], IdxRecord});
3471       break;
3472     }
3473     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
3474       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
3475       if (Record.size() < 3 || !OpTy)
3476         return error("Invalid shufflevector constexpr record");
3477       V = BitcodeConstant::create(
3478           Alloc, CurTy, Instruction::ShuffleVector,
3479           {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]});
3480       break;
3481     }
3482     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
3483       VectorType *RTy = dyn_cast<VectorType>(CurTy);
3484       VectorType *OpTy =
3485         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
3486       if (Record.size() < 4 || !RTy || !OpTy)
3487         return error("Invalid shufflevector constexpr record");
3488       V = BitcodeConstant::create(
3489           Alloc, CurTy, Instruction::ShuffleVector,
3490           {(unsigned)Record[1], (unsigned)Record[2], (unsigned)Record[3]});
3491       break;
3492     }
3493     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
3494       if (Record.size() < 4)
3495         return error("Invalid cmp constexpt record");
3496       unsigned OpTyID = Record[0];
3497       Type *OpTy = getTypeByID(OpTyID);
3498       if (!OpTy)
3499         return error("Invalid cmp constexpr record");
3500       V = BitcodeConstant::create(
3501           Alloc, CurTy,
3502           {(uint8_t)(OpTy->isFPOrFPVectorTy() ? Instruction::FCmp
3503                                               : Instruction::ICmp),
3504            (uint8_t)Record[3]},
3505           {(unsigned)Record[1], (unsigned)Record[2]});
3506       break;
3507     }
3508     // This maintains backward compatibility, pre-asm dialect keywords.
3509     // Deprecated, but still needed to read old bitcode files.
3510     case bitc::CST_CODE_INLINEASM_OLD: {
3511       if (Record.size() < 2)
3512         return error("Invalid inlineasm record");
3513       std::string AsmStr, ConstrStr;
3514       bool HasSideEffects = Record[0] & 1;
3515       bool IsAlignStack = Record[0] >> 1;
3516       unsigned AsmStrSize = Record[1];
3517       if (2+AsmStrSize >= Record.size())
3518         return error("Invalid inlineasm record");
3519       unsigned ConstStrSize = Record[2+AsmStrSize];
3520       if (3+AsmStrSize+ConstStrSize > Record.size())
3521         return error("Invalid inlineasm record");
3522 
3523       for (unsigned i = 0; i != AsmStrSize; ++i)
3524         AsmStr += (char)Record[2+i];
3525       for (unsigned i = 0; i != ConstStrSize; ++i)
3526         ConstrStr += (char)Record[3+AsmStrSize+i];
3527       UpgradeInlineAsmString(&AsmStr);
3528       if (!CurElemTy)
3529         return error("Missing element type for old-style inlineasm");
3530       V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr,
3531                          HasSideEffects, IsAlignStack);
3532       break;
3533     }
3534     // This version adds support for the asm dialect keywords (e.g.,
3535     // inteldialect).
3536     case bitc::CST_CODE_INLINEASM_OLD2: {
3537       if (Record.size() < 2)
3538         return error("Invalid inlineasm record");
3539       std::string AsmStr, ConstrStr;
3540       bool HasSideEffects = Record[0] & 1;
3541       bool IsAlignStack = (Record[0] >> 1) & 1;
3542       unsigned AsmDialect = Record[0] >> 2;
3543       unsigned AsmStrSize = Record[1];
3544       if (2+AsmStrSize >= Record.size())
3545         return error("Invalid inlineasm record");
3546       unsigned ConstStrSize = Record[2+AsmStrSize];
3547       if (3+AsmStrSize+ConstStrSize > Record.size())
3548         return error("Invalid inlineasm record");
3549 
3550       for (unsigned i = 0; i != AsmStrSize; ++i)
3551         AsmStr += (char)Record[2+i];
3552       for (unsigned i = 0; i != ConstStrSize; ++i)
3553         ConstrStr += (char)Record[3+AsmStrSize+i];
3554       UpgradeInlineAsmString(&AsmStr);
3555       if (!CurElemTy)
3556         return error("Missing element type for old-style inlineasm");
3557       V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr,
3558                          HasSideEffects, IsAlignStack,
3559                          InlineAsm::AsmDialect(AsmDialect));
3560       break;
3561     }
3562     // This version adds support for the unwind keyword.
3563     case bitc::CST_CODE_INLINEASM_OLD3: {
3564       if (Record.size() < 2)
3565         return error("Invalid inlineasm record");
3566       unsigned OpNum = 0;
3567       std::string AsmStr, ConstrStr;
3568       bool HasSideEffects = Record[OpNum] & 1;
3569       bool IsAlignStack = (Record[OpNum] >> 1) & 1;
3570       unsigned AsmDialect = (Record[OpNum] >> 2) & 1;
3571       bool CanThrow = (Record[OpNum] >> 3) & 1;
3572       ++OpNum;
3573       unsigned AsmStrSize = Record[OpNum];
3574       ++OpNum;
3575       if (OpNum + AsmStrSize >= Record.size())
3576         return error("Invalid inlineasm record");
3577       unsigned ConstStrSize = Record[OpNum + AsmStrSize];
3578       if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size())
3579         return error("Invalid inlineasm record");
3580 
3581       for (unsigned i = 0; i != AsmStrSize; ++i)
3582         AsmStr += (char)Record[OpNum + i];
3583       ++OpNum;
3584       for (unsigned i = 0; i != ConstStrSize; ++i)
3585         ConstrStr += (char)Record[OpNum + AsmStrSize + i];
3586       UpgradeInlineAsmString(&AsmStr);
3587       if (!CurElemTy)
3588         return error("Missing element type for old-style inlineasm");
3589       V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr,
3590                          HasSideEffects, IsAlignStack,
3591                          InlineAsm::AsmDialect(AsmDialect), CanThrow);
3592       break;
3593     }
3594     // This version adds explicit function type.
3595     case bitc::CST_CODE_INLINEASM: {
3596       if (Record.size() < 3)
3597         return error("Invalid inlineasm record");
3598       unsigned OpNum = 0;
3599       auto *FnTy = dyn_cast_or_null<FunctionType>(getTypeByID(Record[OpNum]));
3600       ++OpNum;
3601       if (!FnTy)
3602         return error("Invalid inlineasm record");
3603       std::string AsmStr, ConstrStr;
3604       bool HasSideEffects = Record[OpNum] & 1;
3605       bool IsAlignStack = (Record[OpNum] >> 1) & 1;
3606       unsigned AsmDialect = (Record[OpNum] >> 2) & 1;
3607       bool CanThrow = (Record[OpNum] >> 3) & 1;
3608       ++OpNum;
3609       unsigned AsmStrSize = Record[OpNum];
3610       ++OpNum;
3611       if (OpNum + AsmStrSize >= Record.size())
3612         return error("Invalid inlineasm record");
3613       unsigned ConstStrSize = Record[OpNum + AsmStrSize];
3614       if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size())
3615         return error("Invalid inlineasm record");
3616 
3617       for (unsigned i = 0; i != AsmStrSize; ++i)
3618         AsmStr += (char)Record[OpNum + i];
3619       ++OpNum;
3620       for (unsigned i = 0; i != ConstStrSize; ++i)
3621         ConstrStr += (char)Record[OpNum + AsmStrSize + i];
3622       UpgradeInlineAsmString(&AsmStr);
3623       V = InlineAsm::get(FnTy, AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
3624                          InlineAsm::AsmDialect(AsmDialect), CanThrow);
3625       break;
3626     }
3627     case bitc::CST_CODE_BLOCKADDRESS:{
3628       if (Record.size() < 3)
3629         return error("Invalid blockaddress record");
3630       unsigned FnTyID = Record[0];
3631       Type *FnTy = getTypeByID(FnTyID);
3632       if (!FnTy)
3633         return error("Invalid blockaddress record");
3634       V = BitcodeConstant::create(
3635           Alloc, CurTy,
3636           {BitcodeConstant::BlockAddressOpcode, 0, (unsigned)Record[2]},
3637           Record[1]);
3638       break;
3639     }
3640     case bitc::CST_CODE_DSO_LOCAL_EQUIVALENT: {
3641       if (Record.size() < 2)
3642         return error("Invalid dso_local record");
3643       unsigned GVTyID = Record[0];
3644       Type *GVTy = getTypeByID(GVTyID);
3645       if (!GVTy)
3646         return error("Invalid dso_local record");
3647       V = BitcodeConstant::create(
3648           Alloc, CurTy, BitcodeConstant::DSOLocalEquivalentOpcode, Record[1]);
3649       break;
3650     }
3651     case bitc::CST_CODE_NO_CFI_VALUE: {
3652       if (Record.size() < 2)
3653         return error("Invalid no_cfi record");
3654       unsigned GVTyID = Record[0];
3655       Type *GVTy = getTypeByID(GVTyID);
3656       if (!GVTy)
3657         return error("Invalid no_cfi record");
3658       V = BitcodeConstant::create(Alloc, CurTy, BitcodeConstant::NoCFIOpcode,
3659                                   Record[1]);
3660       break;
3661     }
3662     case bitc::CST_CODE_PTRAUTH: {
3663       if (Record.size() < 4)
3664         return error("Invalid ptrauth record");
3665       // Ptr, Key, Disc, AddrDisc
3666       V = BitcodeConstant::create(Alloc, CurTy,
3667                                   BitcodeConstant::ConstantPtrAuthOpcode,
3668                                   {(unsigned)Record[0], (unsigned)Record[1],
3669                                    (unsigned)Record[2], (unsigned)Record[3]});
3670       break;
3671     }
3672     }
3673 
3674     assert(V->getType() == getTypeByID(CurTyID) && "Incorrect result type ID");
3675     if (Error Err = ValueList.assignValue(NextCstNo, V, CurTyID))
3676       return Err;
3677     ++NextCstNo;
3678   }
3679 }
3680 
3681 Error BitcodeReader::parseUseLists() {
3682   if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
3683     return Err;
3684 
3685   // Read all the records.
3686   SmallVector<uint64_t, 64> Record;
3687 
3688   while (true) {
3689     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
3690     if (!MaybeEntry)
3691       return MaybeEntry.takeError();
3692     BitstreamEntry Entry = MaybeEntry.get();
3693 
3694     switch (Entry.Kind) {
3695     case BitstreamEntry::SubBlock: // Handled for us already.
3696     case BitstreamEntry::Error:
3697       return error("Malformed block");
3698     case BitstreamEntry::EndBlock:
3699       return Error::success();
3700     case BitstreamEntry::Record:
3701       // The interesting case.
3702       break;
3703     }
3704 
3705     // Read a use list record.
3706     Record.clear();
3707     bool IsBB = false;
3708     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
3709     if (!MaybeRecord)
3710       return MaybeRecord.takeError();
3711     switch (MaybeRecord.get()) {
3712     default:  // Default behavior: unknown type.
3713       break;
3714     case bitc::USELIST_CODE_BB:
3715       IsBB = true;
3716       [[fallthrough]];
3717     case bitc::USELIST_CODE_DEFAULT: {
3718       unsigned RecordLength = Record.size();
3719       if (RecordLength < 3)
3720         // Records should have at least an ID and two indexes.
3721         return error("Invalid record");
3722       unsigned ID = Record.pop_back_val();
3723 
3724       Value *V;
3725       if (IsBB) {
3726         assert(ID < FunctionBBs.size() && "Basic block not found");
3727         V = FunctionBBs[ID];
3728       } else
3729         V = ValueList[ID];
3730       unsigned NumUses = 0;
3731       SmallDenseMap<const Use *, unsigned, 16> Order;
3732       for (const Use &U : V->materialized_uses()) {
3733         if (++NumUses > Record.size())
3734           break;
3735         Order[&U] = Record[NumUses - 1];
3736       }
3737       if (Order.size() != Record.size() || NumUses > Record.size())
3738         // Mismatches can happen if the functions are being materialized lazily
3739         // (out-of-order), or a value has been upgraded.
3740         break;
3741 
3742       V->sortUseList([&](const Use &L, const Use &R) {
3743         return Order.lookup(&L) < Order.lookup(&R);
3744       });
3745       break;
3746     }
3747     }
3748   }
3749 }
3750 
3751 /// When we see the block for metadata, remember where it is and then skip it.
3752 /// This lets us lazily deserialize the metadata.
3753 Error BitcodeReader::rememberAndSkipMetadata() {
3754   // Save the current stream state.
3755   uint64_t CurBit = Stream.GetCurrentBitNo();
3756   DeferredMetadataInfo.push_back(CurBit);
3757 
3758   // Skip over the block for now.
3759   if (Error Err = Stream.SkipBlock())
3760     return Err;
3761   return Error::success();
3762 }
3763 
3764 Error BitcodeReader::materializeMetadata() {
3765   for (uint64_t BitPos : DeferredMetadataInfo) {
3766     // Move the bit stream to the saved position.
3767     if (Error JumpFailed = Stream.JumpToBit(BitPos))
3768       return JumpFailed;
3769     if (Error Err = MDLoader->parseModuleMetadata())
3770       return Err;
3771   }
3772 
3773   // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level
3774   // metadata. Only upgrade if the new option doesn't exist to avoid upgrade
3775   // multiple times.
3776   if (!TheModule->getNamedMetadata("llvm.linker.options")) {
3777     if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) {
3778       NamedMDNode *LinkerOpts =
3779           TheModule->getOrInsertNamedMetadata("llvm.linker.options");
3780       for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands())
3781         LinkerOpts->addOperand(cast<MDNode>(MDOptions));
3782     }
3783   }
3784 
3785   DeferredMetadataInfo.clear();
3786   return Error::success();
3787 }
3788 
3789 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
3790 
3791 /// When we see the block for a function body, remember where it is and then
3792 /// skip it.  This lets us lazily deserialize the functions.
3793 Error BitcodeReader::rememberAndSkipFunctionBody() {
3794   // Get the function we are talking about.
3795   if (FunctionsWithBodies.empty())
3796     return error("Insufficient function protos");
3797 
3798   Function *Fn = FunctionsWithBodies.back();
3799   FunctionsWithBodies.pop_back();
3800 
3801   // Save the current stream state.
3802   uint64_t CurBit = Stream.GetCurrentBitNo();
3803   assert(
3804       (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) &&
3805       "Mismatch between VST and scanned function offsets");
3806   DeferredFunctionInfo[Fn] = CurBit;
3807 
3808   // Skip over the function block for now.
3809   if (Error Err = Stream.SkipBlock())
3810     return Err;
3811   return Error::success();
3812 }
3813 
3814 Error BitcodeReader::globalCleanup() {
3815   // Patch the initializers for globals and aliases up.
3816   if (Error Err = resolveGlobalAndIndirectSymbolInits())
3817     return Err;
3818   if (!GlobalInits.empty() || !IndirectSymbolInits.empty())
3819     return error("Malformed global initializer set");
3820 
3821   // Look for intrinsic functions which need to be upgraded at some point
3822   // and functions that need to have their function attributes upgraded.
3823   for (Function &F : *TheModule) {
3824     MDLoader->upgradeDebugIntrinsics(F);
3825     Function *NewFn;
3826     // If PreserveInputDbgFormat=true, then we don't know whether we want
3827     // intrinsics or records, and we won't perform any conversions in either
3828     // case, so don't upgrade intrinsics to records.
3829     if (UpgradeIntrinsicFunction(
3830             &F, NewFn, PreserveInputDbgFormat != cl::boolOrDefault::BOU_TRUE))
3831       UpgradedIntrinsics[&F] = NewFn;
3832     // Look for functions that rely on old function attribute behavior.
3833     UpgradeFunctionAttributes(F);
3834   }
3835 
3836   // Look for global variables which need to be renamed.
3837   std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables;
3838   for (GlobalVariable &GV : TheModule->globals())
3839     if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV))
3840       UpgradedVariables.emplace_back(&GV, Upgraded);
3841   for (auto &Pair : UpgradedVariables) {
3842     Pair.first->eraseFromParent();
3843     TheModule->insertGlobalVariable(Pair.second);
3844   }
3845 
3846   // Force deallocation of memory for these vectors to favor the client that
3847   // want lazy deserialization.
3848   std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits);
3849   std::vector<std::pair<GlobalValue *, unsigned>>().swap(IndirectSymbolInits);
3850   return Error::success();
3851 }
3852 
3853 /// Support for lazy parsing of function bodies. This is required if we
3854 /// either have an old bitcode file without a VST forward declaration record,
3855 /// or if we have an anonymous function being materialized, since anonymous
3856 /// functions do not have a name and are therefore not in the VST.
3857 Error BitcodeReader::rememberAndSkipFunctionBodies() {
3858   if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit))
3859     return JumpFailed;
3860 
3861   if (Stream.AtEndOfStream())
3862     return error("Could not find function in stream");
3863 
3864   if (!SeenFirstFunctionBody)
3865     return error("Trying to materialize functions before seeing function blocks");
3866 
3867   // An old bitcode file with the symbol table at the end would have
3868   // finished the parse greedily.
3869   assert(SeenValueSymbolTable);
3870 
3871   SmallVector<uint64_t, 64> Record;
3872 
3873   while (true) {
3874     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3875     if (!MaybeEntry)
3876       return MaybeEntry.takeError();
3877     llvm::BitstreamEntry Entry = MaybeEntry.get();
3878 
3879     switch (Entry.Kind) {
3880     default:
3881       return error("Expect SubBlock");
3882     case BitstreamEntry::SubBlock:
3883       switch (Entry.ID) {
3884       default:
3885         return error("Expect function block");
3886       case bitc::FUNCTION_BLOCK_ID:
3887         if (Error Err = rememberAndSkipFunctionBody())
3888           return Err;
3889         NextUnreadBit = Stream.GetCurrentBitNo();
3890         return Error::success();
3891       }
3892     }
3893   }
3894 }
3895 
3896 Error BitcodeReaderBase::readBlockInfo() {
3897   Expected<std::optional<BitstreamBlockInfo>> MaybeNewBlockInfo =
3898       Stream.ReadBlockInfoBlock();
3899   if (!MaybeNewBlockInfo)
3900     return MaybeNewBlockInfo.takeError();
3901   std::optional<BitstreamBlockInfo> NewBlockInfo =
3902       std::move(MaybeNewBlockInfo.get());
3903   if (!NewBlockInfo)
3904     return error("Malformed block");
3905   BlockInfo = std::move(*NewBlockInfo);
3906   return Error::success();
3907 }
3908 
3909 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) {
3910   // v1: [selection_kind, name]
3911   // v2: [strtab_offset, strtab_size, selection_kind]
3912   StringRef Name;
3913   std::tie(Name, Record) = readNameFromStrtab(Record);
3914 
3915   if (Record.empty())
3916     return error("Invalid record");
3917   Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
3918   std::string OldFormatName;
3919   if (!UseStrtab) {
3920     if (Record.size() < 2)
3921       return error("Invalid record");
3922     unsigned ComdatNameSize = Record[1];
3923     if (ComdatNameSize > Record.size() - 2)
3924       return error("Comdat name size too large");
3925     OldFormatName.reserve(ComdatNameSize);
3926     for (unsigned i = 0; i != ComdatNameSize; ++i)
3927       OldFormatName += (char)Record[2 + i];
3928     Name = OldFormatName;
3929   }
3930   Comdat *C = TheModule->getOrInsertComdat(Name);
3931   C->setSelectionKind(SK);
3932   ComdatList.push_back(C);
3933   return Error::success();
3934 }
3935 
3936 static void inferDSOLocal(GlobalValue *GV) {
3937   // infer dso_local from linkage and visibility if it is not encoded.
3938   if (GV->hasLocalLinkage() ||
3939       (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()))
3940     GV->setDSOLocal(true);
3941 }
3942 
3943 GlobalValue::SanitizerMetadata deserializeSanitizerMetadata(unsigned V) {
3944   GlobalValue::SanitizerMetadata Meta;
3945   if (V & (1 << 0))
3946     Meta.NoAddress = true;
3947   if (V & (1 << 1))
3948     Meta.NoHWAddress = true;
3949   if (V & (1 << 2))
3950     Meta.Memtag = true;
3951   if (V & (1 << 3))
3952     Meta.IsDynInit = true;
3953   return Meta;
3954 }
3955 
3956 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) {
3957   // v1: [pointer type, isconst, initid, linkage, alignment, section,
3958   // visibility, threadlocal, unnamed_addr, externally_initialized,
3959   // dllstorageclass, comdat, attributes, preemption specifier,
3960   // partition strtab offset, partition strtab size] (name in VST)
3961   // v2: [strtab_offset, strtab_size, v1]
3962   // v3: [v2, code_model]
3963   StringRef Name;
3964   std::tie(Name, Record) = readNameFromStrtab(Record);
3965 
3966   if (Record.size() < 6)
3967     return error("Invalid record");
3968   unsigned TyID = Record[0];
3969   Type *Ty = getTypeByID(TyID);
3970   if (!Ty)
3971     return error("Invalid record");
3972   bool isConstant = Record[1] & 1;
3973   bool explicitType = Record[1] & 2;
3974   unsigned AddressSpace;
3975   if (explicitType) {
3976     AddressSpace = Record[1] >> 2;
3977   } else {
3978     if (!Ty->isPointerTy())
3979       return error("Invalid type for value");
3980     AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
3981     TyID = getContainedTypeID(TyID);
3982     Ty = getTypeByID(TyID);
3983     if (!Ty)
3984       return error("Missing element type for old-style global");
3985   }
3986 
3987   uint64_t RawLinkage = Record[3];
3988   GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
3989   MaybeAlign Alignment;
3990   if (Error Err = parseAlignmentValue(Record[4], Alignment))
3991     return Err;
3992   std::string Section;
3993   if (Record[5]) {
3994     if (Record[5] - 1 >= SectionTable.size())
3995       return error("Invalid ID");
3996     Section = SectionTable[Record[5] - 1];
3997   }
3998   GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
3999   // Local linkage must have default visibility.
4000   // auto-upgrade `hidden` and `protected` for old bitcode.
4001   if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
4002     Visibility = getDecodedVisibility(Record[6]);
4003 
4004   GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
4005   if (Record.size() > 7)
4006     TLM = getDecodedThreadLocalMode(Record[7]);
4007 
4008   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
4009   if (Record.size() > 8)
4010     UnnamedAddr = getDecodedUnnamedAddrType(Record[8]);
4011 
4012   bool ExternallyInitialized = false;
4013   if (Record.size() > 9)
4014     ExternallyInitialized = Record[9];
4015 
4016   GlobalVariable *NewGV =
4017       new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name,
4018                          nullptr, TLM, AddressSpace, ExternallyInitialized);
4019   if (Alignment)
4020     NewGV->setAlignment(*Alignment);
4021   if (!Section.empty())
4022     NewGV->setSection(Section);
4023   NewGV->setVisibility(Visibility);
4024   NewGV->setUnnamedAddr(UnnamedAddr);
4025 
4026   if (Record.size() > 10) {
4027     // A GlobalValue with local linkage cannot have a DLL storage class.
4028     if (!NewGV->hasLocalLinkage()) {
4029       NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10]));
4030     }
4031   } else {
4032     upgradeDLLImportExportLinkage(NewGV, RawLinkage);
4033   }
4034 
4035   ValueList.push_back(NewGV, getVirtualTypeID(NewGV->getType(), TyID));
4036 
4037   // Remember which value to use for the global initializer.
4038   if (unsigned InitID = Record[2])
4039     GlobalInits.push_back(std::make_pair(NewGV, InitID - 1));
4040 
4041   if (Record.size() > 11) {
4042     if (unsigned ComdatID = Record[11]) {
4043       if (ComdatID > ComdatList.size())
4044         return error("Invalid global variable comdat ID");
4045       NewGV->setComdat(ComdatList[ComdatID - 1]);
4046     }
4047   } else if (hasImplicitComdat(RawLinkage)) {
4048     ImplicitComdatObjects.insert(NewGV);
4049   }
4050 
4051   if (Record.size() > 12) {
4052     auto AS = getAttributes(Record[12]).getFnAttrs();
4053     NewGV->setAttributes(AS);
4054   }
4055 
4056   if (Record.size() > 13) {
4057     NewGV->setDSOLocal(getDecodedDSOLocal(Record[13]));
4058   }
4059   inferDSOLocal(NewGV);
4060 
4061   // Check whether we have enough values to read a partition name.
4062   if (Record.size() > 15)
4063     NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15]));
4064 
4065   if (Record.size() > 16 && Record[16]) {
4066     llvm::GlobalValue::SanitizerMetadata Meta =
4067         deserializeSanitizerMetadata(Record[16]);
4068     NewGV->setSanitizerMetadata(Meta);
4069   }
4070 
4071   if (Record.size() > 17 && Record[17]) {
4072     if (auto CM = getDecodedCodeModel(Record[17]))
4073       NewGV->setCodeModel(*CM);
4074     else
4075       return error("Invalid global variable code model");
4076   }
4077 
4078   return Error::success();
4079 }
4080 
4081 void BitcodeReader::callValueTypeCallback(Value *F, unsigned TypeID) {
4082   if (ValueTypeCallback) {
4083     (*ValueTypeCallback)(
4084         F, TypeID, [this](unsigned I) { return getTypeByID(I); },
4085         [this](unsigned I, unsigned J) { return getContainedTypeID(I, J); });
4086   }
4087 }
4088 
4089 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) {
4090   // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section,
4091   // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat,
4092   // prefixdata,  personalityfn, preemption specifier, addrspace] (name in VST)
4093   // v2: [strtab_offset, strtab_size, v1]
4094   StringRef Name;
4095   std::tie(Name, Record) = readNameFromStrtab(Record);
4096 
4097   if (Record.size() < 8)
4098     return error("Invalid record");
4099   unsigned FTyID = Record[0];
4100   Type *FTy = getTypeByID(FTyID);
4101   if (!FTy)
4102     return error("Invalid record");
4103   if (isa<PointerType>(FTy)) {
4104     FTyID = getContainedTypeID(FTyID, 0);
4105     FTy = getTypeByID(FTyID);
4106     if (!FTy)
4107       return error("Missing element type for old-style function");
4108   }
4109 
4110   if (!isa<FunctionType>(FTy))
4111     return error("Invalid type for value");
4112   auto CC = static_cast<CallingConv::ID>(Record[1]);
4113   if (CC & ~CallingConv::MaxID)
4114     return error("Invalid calling convention ID");
4115 
4116   unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace();
4117   if (Record.size() > 16)
4118     AddrSpace = Record[16];
4119 
4120   Function *Func =
4121       Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage,
4122                        AddrSpace, Name, TheModule);
4123 
4124   assert(Func->getFunctionType() == FTy &&
4125          "Incorrect fully specified type provided for function");
4126   FunctionTypeIDs[Func] = FTyID;
4127 
4128   Func->setCallingConv(CC);
4129   bool isProto = Record[2];
4130   uint64_t RawLinkage = Record[3];
4131   Func->setLinkage(getDecodedLinkage(RawLinkage));
4132   Func->setAttributes(getAttributes(Record[4]));
4133   callValueTypeCallback(Func, FTyID);
4134 
4135   // Upgrade any old-style byval or sret without a type by propagating the
4136   // argument's pointee type. There should be no opaque pointers where the byval
4137   // type is implicit.
4138   for (unsigned i = 0; i != Func->arg_size(); ++i) {
4139     for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet,
4140                                      Attribute::InAlloca}) {
4141       if (!Func->hasParamAttribute(i, Kind))
4142         continue;
4143 
4144       if (Func->getParamAttribute(i, Kind).getValueAsType())
4145         continue;
4146 
4147       Func->removeParamAttr(i, Kind);
4148 
4149       unsigned ParamTypeID = getContainedTypeID(FTyID, i + 1);
4150       Type *PtrEltTy = getPtrElementTypeByID(ParamTypeID);
4151       if (!PtrEltTy)
4152         return error("Missing param element type for attribute upgrade");
4153 
4154       Attribute NewAttr;
4155       switch (Kind) {
4156       case Attribute::ByVal:
4157         NewAttr = Attribute::getWithByValType(Context, PtrEltTy);
4158         break;
4159       case Attribute::StructRet:
4160         NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy);
4161         break;
4162       case Attribute::InAlloca:
4163         NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy);
4164         break;
4165       default:
4166         llvm_unreachable("not an upgraded type attribute");
4167       }
4168 
4169       Func->addParamAttr(i, NewAttr);
4170     }
4171   }
4172 
4173   if (Func->getCallingConv() == CallingConv::X86_INTR &&
4174       !Func->arg_empty() && !Func->hasParamAttribute(0, Attribute::ByVal)) {
4175     unsigned ParamTypeID = getContainedTypeID(FTyID, 1);
4176     Type *ByValTy = getPtrElementTypeByID(ParamTypeID);
4177     if (!ByValTy)
4178       return error("Missing param element type for x86_intrcc upgrade");
4179     Attribute NewAttr = Attribute::getWithByValType(Context, ByValTy);
4180     Func->addParamAttr(0, NewAttr);
4181   }
4182 
4183   MaybeAlign Alignment;
4184   if (Error Err = parseAlignmentValue(Record[5], Alignment))
4185     return Err;
4186   if (Alignment)
4187     Func->setAlignment(*Alignment);
4188   if (Record[6]) {
4189     if (Record[6] - 1 >= SectionTable.size())
4190       return error("Invalid ID");
4191     Func->setSection(SectionTable[Record[6] - 1]);
4192   }
4193   // Local linkage must have default visibility.
4194   // auto-upgrade `hidden` and `protected` for old bitcode.
4195   if (!Func->hasLocalLinkage())
4196     Func->setVisibility(getDecodedVisibility(Record[7]));
4197   if (Record.size() > 8 && Record[8]) {
4198     if (Record[8] - 1 >= GCTable.size())
4199       return error("Invalid ID");
4200     Func->setGC(GCTable[Record[8] - 1]);
4201   }
4202   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
4203   if (Record.size() > 9)
4204     UnnamedAddr = getDecodedUnnamedAddrType(Record[9]);
4205   Func->setUnnamedAddr(UnnamedAddr);
4206 
4207   FunctionOperandInfo OperandInfo = {Func, 0, 0, 0};
4208   if (Record.size() > 10)
4209     OperandInfo.Prologue = Record[10];
4210 
4211   if (Record.size() > 11) {
4212     // A GlobalValue with local linkage cannot have a DLL storage class.
4213     if (!Func->hasLocalLinkage()) {
4214       Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11]));
4215     }
4216   } else {
4217     upgradeDLLImportExportLinkage(Func, RawLinkage);
4218   }
4219 
4220   if (Record.size() > 12) {
4221     if (unsigned ComdatID = Record[12]) {
4222       if (ComdatID > ComdatList.size())
4223         return error("Invalid function comdat ID");
4224       Func->setComdat(ComdatList[ComdatID - 1]);
4225     }
4226   } else if (hasImplicitComdat(RawLinkage)) {
4227     ImplicitComdatObjects.insert(Func);
4228   }
4229 
4230   if (Record.size() > 13)
4231     OperandInfo.Prefix = Record[13];
4232 
4233   if (Record.size() > 14)
4234     OperandInfo.PersonalityFn = Record[14];
4235 
4236   if (Record.size() > 15) {
4237     Func->setDSOLocal(getDecodedDSOLocal(Record[15]));
4238   }
4239   inferDSOLocal(Func);
4240 
4241   // Record[16] is the address space number.
4242 
4243   // Check whether we have enough values to read a partition name. Also make
4244   // sure Strtab has enough values.
4245   if (Record.size() > 18 && Strtab.data() &&
4246       Record[17] + Record[18] <= Strtab.size()) {
4247     Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18]));
4248   }
4249 
4250   ValueList.push_back(Func, getVirtualTypeID(Func->getType(), FTyID));
4251 
4252   if (OperandInfo.PersonalityFn || OperandInfo.Prefix || OperandInfo.Prologue)
4253     FunctionOperands.push_back(OperandInfo);
4254 
4255   // If this is a function with a body, remember the prototype we are
4256   // creating now, so that we can match up the body with them later.
4257   if (!isProto) {
4258     Func->setIsMaterializable(true);
4259     FunctionsWithBodies.push_back(Func);
4260     DeferredFunctionInfo[Func] = 0;
4261   }
4262   return Error::success();
4263 }
4264 
4265 Error BitcodeReader::parseGlobalIndirectSymbolRecord(
4266     unsigned BitCode, ArrayRef<uint64_t> Record) {
4267   // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST)
4268   // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility,
4269   // dllstorageclass, threadlocal, unnamed_addr,
4270   // preemption specifier] (name in VST)
4271   // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage,
4272   // visibility, dllstorageclass, threadlocal, unnamed_addr,
4273   // preemption specifier] (name in VST)
4274   // v2: [strtab_offset, strtab_size, v1]
4275   StringRef Name;
4276   std::tie(Name, Record) = readNameFromStrtab(Record);
4277 
4278   bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD;
4279   if (Record.size() < (3 + (unsigned)NewRecord))
4280     return error("Invalid record");
4281   unsigned OpNum = 0;
4282   unsigned TypeID = Record[OpNum++];
4283   Type *Ty = getTypeByID(TypeID);
4284   if (!Ty)
4285     return error("Invalid record");
4286 
4287   unsigned AddrSpace;
4288   if (!NewRecord) {
4289     auto *PTy = dyn_cast<PointerType>(Ty);
4290     if (!PTy)
4291       return error("Invalid type for value");
4292     AddrSpace = PTy->getAddressSpace();
4293     TypeID = getContainedTypeID(TypeID);
4294     Ty = getTypeByID(TypeID);
4295     if (!Ty)
4296       return error("Missing element type for old-style indirect symbol");
4297   } else {
4298     AddrSpace = Record[OpNum++];
4299   }
4300 
4301   auto Val = Record[OpNum++];
4302   auto Linkage = Record[OpNum++];
4303   GlobalValue *NewGA;
4304   if (BitCode == bitc::MODULE_CODE_ALIAS ||
4305       BitCode == bitc::MODULE_CODE_ALIAS_OLD)
4306     NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
4307                                 TheModule);
4308   else
4309     NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
4310                                 nullptr, TheModule);
4311 
4312   // Local linkage must have default visibility.
4313   // auto-upgrade `hidden` and `protected` for old bitcode.
4314   if (OpNum != Record.size()) {
4315     auto VisInd = OpNum++;
4316     if (!NewGA->hasLocalLinkage())
4317       NewGA->setVisibility(getDecodedVisibility(Record[VisInd]));
4318   }
4319   if (BitCode == bitc::MODULE_CODE_ALIAS ||
4320       BitCode == bitc::MODULE_CODE_ALIAS_OLD) {
4321     if (OpNum != Record.size()) {
4322       auto S = Record[OpNum++];
4323       // A GlobalValue with local linkage cannot have a DLL storage class.
4324       if (!NewGA->hasLocalLinkage())
4325         NewGA->setDLLStorageClass(getDecodedDLLStorageClass(S));
4326     }
4327     else
4328       upgradeDLLImportExportLinkage(NewGA, Linkage);
4329     if (OpNum != Record.size())
4330       NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++]));
4331     if (OpNum != Record.size())
4332       NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++]));
4333   }
4334   if (OpNum != Record.size())
4335     NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++]));
4336   inferDSOLocal(NewGA);
4337 
4338   // Check whether we have enough values to read a partition name.
4339   if (OpNum + 1 < Record.size()) {
4340     // Check Strtab has enough values for the partition.
4341     if (Record[OpNum] + Record[OpNum + 1] > Strtab.size())
4342       return error("Malformed partition, too large.");
4343     NewGA->setPartition(
4344         StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1]));
4345     OpNum += 2;
4346   }
4347 
4348   ValueList.push_back(NewGA, getVirtualTypeID(NewGA->getType(), TypeID));
4349   IndirectSymbolInits.push_back(std::make_pair(NewGA, Val));
4350   return Error::success();
4351 }
4352 
4353 Error BitcodeReader::parseModule(uint64_t ResumeBit,
4354                                  bool ShouldLazyLoadMetadata,
4355                                  ParserCallbacks Callbacks) {
4356   // Load directly into RemoveDIs format if LoadBitcodeIntoNewDbgInfoFormat
4357   // has been set to true and we aren't attempting to preserve the existing
4358   // format in the bitcode (default action: load into the old debug format).
4359   if (PreserveInputDbgFormat != cl::boolOrDefault::BOU_TRUE) {
4360     TheModule->IsNewDbgInfoFormat =
4361         UseNewDbgInfoFormat &&
4362         LoadBitcodeIntoNewDbgInfoFormat != cl::boolOrDefault::BOU_FALSE;
4363   }
4364 
4365   this->ValueTypeCallback = std::move(Callbacks.ValueType);
4366   if (ResumeBit) {
4367     if (Error JumpFailed = Stream.JumpToBit(ResumeBit))
4368       return JumpFailed;
4369   } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
4370     return Err;
4371 
4372   SmallVector<uint64_t, 64> Record;
4373 
4374   // Parts of bitcode parsing depend on the datalayout.  Make sure we
4375   // finalize the datalayout before we run any of that code.
4376   bool ResolvedDataLayout = false;
4377   // In order to support importing modules with illegal data layout strings,
4378   // delay parsing the data layout string until after upgrades and overrides
4379   // have been applied, allowing to fix illegal data layout strings.
4380   // Initialize to the current module's layout string in case none is specified.
4381   std::string TentativeDataLayoutStr = TheModule->getDataLayoutStr();
4382 
4383   auto ResolveDataLayout = [&]() -> Error {
4384     if (ResolvedDataLayout)
4385       return Error::success();
4386 
4387     // Datalayout and triple can't be parsed after this point.
4388     ResolvedDataLayout = true;
4389 
4390     // Auto-upgrade the layout string
4391     TentativeDataLayoutStr = llvm::UpgradeDataLayoutString(
4392         TentativeDataLayoutStr, TheModule->getTargetTriple());
4393 
4394     // Apply override
4395     if (Callbacks.DataLayout) {
4396       if (auto LayoutOverride = (*Callbacks.DataLayout)(
4397               TheModule->getTargetTriple(), TentativeDataLayoutStr))
4398         TentativeDataLayoutStr = *LayoutOverride;
4399     }
4400 
4401     // Now the layout string is finalized in TentativeDataLayoutStr. Parse it.
4402     Expected<DataLayout> MaybeDL = DataLayout::parse(TentativeDataLayoutStr);
4403     if (!MaybeDL)
4404       return MaybeDL.takeError();
4405 
4406     TheModule->setDataLayout(MaybeDL.get());
4407     return Error::success();
4408   };
4409 
4410   // Read all the records for this module.
4411   while (true) {
4412     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
4413     if (!MaybeEntry)
4414       return MaybeEntry.takeError();
4415     llvm::BitstreamEntry Entry = MaybeEntry.get();
4416 
4417     switch (Entry.Kind) {
4418     case BitstreamEntry::Error:
4419       return error("Malformed block");
4420     case BitstreamEntry::EndBlock:
4421       if (Error Err = ResolveDataLayout())
4422         return Err;
4423       return globalCleanup();
4424 
4425     case BitstreamEntry::SubBlock:
4426       switch (Entry.ID) {
4427       default:  // Skip unknown content.
4428         if (Error Err = Stream.SkipBlock())
4429           return Err;
4430         break;
4431       case bitc::BLOCKINFO_BLOCK_ID:
4432         if (Error Err = readBlockInfo())
4433           return Err;
4434         break;
4435       case bitc::PARAMATTR_BLOCK_ID:
4436         if (Error Err = parseAttributeBlock())
4437           return Err;
4438         break;
4439       case bitc::PARAMATTR_GROUP_BLOCK_ID:
4440         if (Error Err = parseAttributeGroupBlock())
4441           return Err;
4442         break;
4443       case bitc::TYPE_BLOCK_ID_NEW:
4444         if (Error Err = parseTypeTable())
4445           return Err;
4446         break;
4447       case bitc::VALUE_SYMTAB_BLOCK_ID:
4448         if (!SeenValueSymbolTable) {
4449           // Either this is an old form VST without function index and an
4450           // associated VST forward declaration record (which would have caused
4451           // the VST to be jumped to and parsed before it was encountered
4452           // normally in the stream), or there were no function blocks to
4453           // trigger an earlier parsing of the VST.
4454           assert(VSTOffset == 0 || FunctionsWithBodies.empty());
4455           if (Error Err = parseValueSymbolTable())
4456             return Err;
4457           SeenValueSymbolTable = true;
4458         } else {
4459           // We must have had a VST forward declaration record, which caused
4460           // the parser to jump to and parse the VST earlier.
4461           assert(VSTOffset > 0);
4462           if (Error Err = Stream.SkipBlock())
4463             return Err;
4464         }
4465         break;
4466       case bitc::CONSTANTS_BLOCK_ID:
4467         if (Error Err = parseConstants())
4468           return Err;
4469         if (Error Err = resolveGlobalAndIndirectSymbolInits())
4470           return Err;
4471         break;
4472       case bitc::METADATA_BLOCK_ID:
4473         if (ShouldLazyLoadMetadata) {
4474           if (Error Err = rememberAndSkipMetadata())
4475             return Err;
4476           break;
4477         }
4478         assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata");
4479         if (Error Err = MDLoader->parseModuleMetadata())
4480           return Err;
4481         break;
4482       case bitc::METADATA_KIND_BLOCK_ID:
4483         if (Error Err = MDLoader->parseMetadataKinds())
4484           return Err;
4485         break;
4486       case bitc::FUNCTION_BLOCK_ID:
4487         if (Error Err = ResolveDataLayout())
4488           return Err;
4489 
4490         // If this is the first function body we've seen, reverse the
4491         // FunctionsWithBodies list.
4492         if (!SeenFirstFunctionBody) {
4493           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
4494           if (Error Err = globalCleanup())
4495             return Err;
4496           SeenFirstFunctionBody = true;
4497         }
4498 
4499         if (VSTOffset > 0) {
4500           // If we have a VST forward declaration record, make sure we
4501           // parse the VST now if we haven't already. It is needed to
4502           // set up the DeferredFunctionInfo vector for lazy reading.
4503           if (!SeenValueSymbolTable) {
4504             if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset))
4505               return Err;
4506             SeenValueSymbolTable = true;
4507             // Fall through so that we record the NextUnreadBit below.
4508             // This is necessary in case we have an anonymous function that
4509             // is later materialized. Since it will not have a VST entry we
4510             // need to fall back to the lazy parse to find its offset.
4511           } else {
4512             // If we have a VST forward declaration record, but have already
4513             // parsed the VST (just above, when the first function body was
4514             // encountered here), then we are resuming the parse after
4515             // materializing functions. The ResumeBit points to the
4516             // start of the last function block recorded in the
4517             // DeferredFunctionInfo map. Skip it.
4518             if (Error Err = Stream.SkipBlock())
4519               return Err;
4520             continue;
4521           }
4522         }
4523 
4524         // Support older bitcode files that did not have the function
4525         // index in the VST, nor a VST forward declaration record, as
4526         // well as anonymous functions that do not have VST entries.
4527         // Build the DeferredFunctionInfo vector on the fly.
4528         if (Error Err = rememberAndSkipFunctionBody())
4529           return Err;
4530 
4531         // Suspend parsing when we reach the function bodies. Subsequent
4532         // materialization calls will resume it when necessary. If the bitcode
4533         // file is old, the symbol table will be at the end instead and will not
4534         // have been seen yet. In this case, just finish the parse now.
4535         if (SeenValueSymbolTable) {
4536           NextUnreadBit = Stream.GetCurrentBitNo();
4537           // After the VST has been parsed, we need to make sure intrinsic name
4538           // are auto-upgraded.
4539           return globalCleanup();
4540         }
4541         break;
4542       case bitc::USELIST_BLOCK_ID:
4543         if (Error Err = parseUseLists())
4544           return Err;
4545         break;
4546       case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID:
4547         if (Error Err = parseOperandBundleTags())
4548           return Err;
4549         break;
4550       case bitc::SYNC_SCOPE_NAMES_BLOCK_ID:
4551         if (Error Err = parseSyncScopeNames())
4552           return Err;
4553         break;
4554       }
4555       continue;
4556 
4557     case BitstreamEntry::Record:
4558       // The interesting case.
4559       break;
4560     }
4561 
4562     // Read a record.
4563     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
4564     if (!MaybeBitCode)
4565       return MaybeBitCode.takeError();
4566     switch (unsigned BitCode = MaybeBitCode.get()) {
4567     default: break;  // Default behavior, ignore unknown content.
4568     case bitc::MODULE_CODE_VERSION: {
4569       Expected<unsigned> VersionOrErr = parseVersionRecord(Record);
4570       if (!VersionOrErr)
4571         return VersionOrErr.takeError();
4572       UseRelativeIDs = *VersionOrErr >= 1;
4573       break;
4574     }
4575     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
4576       if (ResolvedDataLayout)
4577         return error("target triple too late in module");
4578       std::string S;
4579       if (convertToString(Record, 0, S))
4580         return error("Invalid record");
4581       TheModule->setTargetTriple(S);
4582       break;
4583     }
4584     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
4585       if (ResolvedDataLayout)
4586         return error("datalayout too late in module");
4587       if (convertToString(Record, 0, TentativeDataLayoutStr))
4588         return error("Invalid record");
4589       break;
4590     }
4591     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
4592       std::string S;
4593       if (convertToString(Record, 0, S))
4594         return error("Invalid record");
4595       TheModule->setModuleInlineAsm(S);
4596       break;
4597     }
4598     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
4599       // Deprecated, but still needed to read old bitcode files.
4600       std::string S;
4601       if (convertToString(Record, 0, S))
4602         return error("Invalid record");
4603       // Ignore value.
4604       break;
4605     }
4606     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
4607       std::string S;
4608       if (convertToString(Record, 0, S))
4609         return error("Invalid record");
4610       SectionTable.push_back(S);
4611       break;
4612     }
4613     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
4614       std::string S;
4615       if (convertToString(Record, 0, S))
4616         return error("Invalid record");
4617       GCTable.push_back(S);
4618       break;
4619     }
4620     case bitc::MODULE_CODE_COMDAT:
4621       if (Error Err = parseComdatRecord(Record))
4622         return Err;
4623       break;
4624     // FIXME: BitcodeReader should handle {GLOBALVAR, FUNCTION, ALIAS, IFUNC}
4625     // written by ThinLinkBitcodeWriter. See
4626     // `ThinLinkBitcodeWriter::writeSimplifiedModuleInfo` for the format of each
4627     // record
4628     // (https://github.com/llvm/llvm-project/blob/b6a93967d9c11e79802b5e75cec1584d6c8aa472/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp#L4714)
4629     case bitc::MODULE_CODE_GLOBALVAR:
4630       if (Error Err = parseGlobalVarRecord(Record))
4631         return Err;
4632       break;
4633     case bitc::MODULE_CODE_FUNCTION:
4634       if (Error Err = ResolveDataLayout())
4635         return Err;
4636       if (Error Err = parseFunctionRecord(Record))
4637         return Err;
4638       break;
4639     case bitc::MODULE_CODE_IFUNC:
4640     case bitc::MODULE_CODE_ALIAS:
4641     case bitc::MODULE_CODE_ALIAS_OLD:
4642       if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record))
4643         return Err;
4644       break;
4645     /// MODULE_CODE_VSTOFFSET: [offset]
4646     case bitc::MODULE_CODE_VSTOFFSET:
4647       if (Record.empty())
4648         return error("Invalid record");
4649       // Note that we subtract 1 here because the offset is relative to one word
4650       // before the start of the identification or module block, which was
4651       // historically always the start of the regular bitcode header.
4652       VSTOffset = Record[0] - 1;
4653       break;
4654     /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
4655     case bitc::MODULE_CODE_SOURCE_FILENAME:
4656       SmallString<128> ValueName;
4657       if (convertToString(Record, 0, ValueName))
4658         return error("Invalid record");
4659       TheModule->setSourceFileName(ValueName);
4660       break;
4661     }
4662     Record.clear();
4663   }
4664   this->ValueTypeCallback = std::nullopt;
4665   return Error::success();
4666 }
4667 
4668 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
4669                                       bool IsImporting,
4670                                       ParserCallbacks Callbacks) {
4671   TheModule = M;
4672   MetadataLoaderCallbacks MDCallbacks;
4673   MDCallbacks.GetTypeByID = [&](unsigned ID) { return getTypeByID(ID); };
4674   MDCallbacks.GetContainedTypeID = [&](unsigned I, unsigned J) {
4675     return getContainedTypeID(I, J);
4676   };
4677   MDCallbacks.MDType = Callbacks.MDType;
4678   MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, MDCallbacks);
4679   return parseModule(0, ShouldLazyLoadMetadata, Callbacks);
4680 }
4681 
4682 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) {
4683   if (!isa<PointerType>(PtrType))
4684     return error("Load/Store operand is not a pointer type");
4685   if (!PointerType::isLoadableOrStorableType(ValType))
4686     return error("Cannot load/store from pointer");
4687   return Error::success();
4688 }
4689 
4690 Error BitcodeReader::propagateAttributeTypes(CallBase *CB,
4691                                              ArrayRef<unsigned> ArgTyIDs) {
4692   AttributeList Attrs = CB->getAttributes();
4693   for (unsigned i = 0; i != CB->arg_size(); ++i) {
4694     for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet,
4695                                      Attribute::InAlloca}) {
4696       if (!Attrs.hasParamAttr(i, Kind) ||
4697           Attrs.getParamAttr(i, Kind).getValueAsType())
4698         continue;
4699 
4700       Type *PtrEltTy = getPtrElementTypeByID(ArgTyIDs[i]);
4701       if (!PtrEltTy)
4702         return error("Missing element type for typed attribute upgrade");
4703 
4704       Attribute NewAttr;
4705       switch (Kind) {
4706       case Attribute::ByVal:
4707         NewAttr = Attribute::getWithByValType(Context, PtrEltTy);
4708         break;
4709       case Attribute::StructRet:
4710         NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy);
4711         break;
4712       case Attribute::InAlloca:
4713         NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy);
4714         break;
4715       default:
4716         llvm_unreachable("not an upgraded type attribute");
4717       }
4718 
4719       Attrs = Attrs.addParamAttribute(Context, i, NewAttr);
4720     }
4721   }
4722 
4723   if (CB->isInlineAsm()) {
4724     const InlineAsm *IA = cast<InlineAsm>(CB->getCalledOperand());
4725     unsigned ArgNo = 0;
4726     for (const InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
4727       if (!CI.hasArg())
4728         continue;
4729 
4730       if (CI.isIndirect && !Attrs.getParamElementType(ArgNo)) {
4731         Type *ElemTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]);
4732         if (!ElemTy)
4733           return error("Missing element type for inline asm upgrade");
4734         Attrs = Attrs.addParamAttribute(
4735             Context, ArgNo,
4736             Attribute::get(Context, Attribute::ElementType, ElemTy));
4737       }
4738 
4739       ArgNo++;
4740     }
4741   }
4742 
4743   switch (CB->getIntrinsicID()) {
4744   case Intrinsic::preserve_array_access_index:
4745   case Intrinsic::preserve_struct_access_index:
4746   case Intrinsic::aarch64_ldaxr:
4747   case Intrinsic::aarch64_ldxr:
4748   case Intrinsic::aarch64_stlxr:
4749   case Intrinsic::aarch64_stxr:
4750   case Intrinsic::arm_ldaex:
4751   case Intrinsic::arm_ldrex:
4752   case Intrinsic::arm_stlex:
4753   case Intrinsic::arm_strex: {
4754     unsigned ArgNo;
4755     switch (CB->getIntrinsicID()) {
4756     case Intrinsic::aarch64_stlxr:
4757     case Intrinsic::aarch64_stxr:
4758     case Intrinsic::arm_stlex:
4759     case Intrinsic::arm_strex:
4760       ArgNo = 1;
4761       break;
4762     default:
4763       ArgNo = 0;
4764       break;
4765     }
4766     if (!Attrs.getParamElementType(ArgNo)) {
4767       Type *ElTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]);
4768       if (!ElTy)
4769         return error("Missing element type for elementtype upgrade");
4770       Attribute NewAttr = Attribute::get(Context, Attribute::ElementType, ElTy);
4771       Attrs = Attrs.addParamAttribute(Context, ArgNo, NewAttr);
4772     }
4773     break;
4774   }
4775   default:
4776     break;
4777   }
4778 
4779   CB->setAttributes(Attrs);
4780   return Error::success();
4781 }
4782 
4783 /// Lazily parse the specified function body block.
4784 Error BitcodeReader::parseFunctionBody(Function *F) {
4785   if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
4786     return Err;
4787 
4788   // Unexpected unresolved metadata when parsing function.
4789   if (MDLoader->hasFwdRefs())
4790     return error("Invalid function metadata: incoming forward references");
4791 
4792   InstructionList.clear();
4793   unsigned ModuleValueListSize = ValueList.size();
4794   unsigned ModuleMDLoaderSize = MDLoader->size();
4795 
4796   // Add all the function arguments to the value table.
4797   unsigned ArgNo = 0;
4798   unsigned FTyID = FunctionTypeIDs[F];
4799   for (Argument &I : F->args()) {
4800     unsigned ArgTyID = getContainedTypeID(FTyID, ArgNo + 1);
4801     assert(I.getType() == getTypeByID(ArgTyID) &&
4802            "Incorrect fully specified type for Function Argument");
4803     ValueList.push_back(&I, ArgTyID);
4804     ++ArgNo;
4805   }
4806   unsigned NextValueNo = ValueList.size();
4807   BasicBlock *CurBB = nullptr;
4808   unsigned CurBBNo = 0;
4809   // Block into which constant expressions from phi nodes are materialized.
4810   BasicBlock *PhiConstExprBB = nullptr;
4811   // Edge blocks for phi nodes into which constant expressions have been
4812   // expanded.
4813   SmallMapVector<std::pair<BasicBlock *, BasicBlock *>, BasicBlock *, 4>
4814     ConstExprEdgeBBs;
4815 
4816   DebugLoc LastLoc;
4817   auto getLastInstruction = [&]() -> Instruction * {
4818     if (CurBB && !CurBB->empty())
4819       return &CurBB->back();
4820     else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
4821              !FunctionBBs[CurBBNo - 1]->empty())
4822       return &FunctionBBs[CurBBNo - 1]->back();
4823     return nullptr;
4824   };
4825 
4826   std::vector<OperandBundleDef> OperandBundles;
4827 
4828   // Read all the records.
4829   SmallVector<uint64_t, 64> Record;
4830 
4831   while (true) {
4832     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
4833     if (!MaybeEntry)
4834       return MaybeEntry.takeError();
4835     llvm::BitstreamEntry Entry = MaybeEntry.get();
4836 
4837     switch (Entry.Kind) {
4838     case BitstreamEntry::Error:
4839       return error("Malformed block");
4840     case BitstreamEntry::EndBlock:
4841       goto OutOfRecordLoop;
4842 
4843     case BitstreamEntry::SubBlock:
4844       switch (Entry.ID) {
4845       default:  // Skip unknown content.
4846         if (Error Err = Stream.SkipBlock())
4847           return Err;
4848         break;
4849       case bitc::CONSTANTS_BLOCK_ID:
4850         if (Error Err = parseConstants())
4851           return Err;
4852         NextValueNo = ValueList.size();
4853         break;
4854       case bitc::VALUE_SYMTAB_BLOCK_ID:
4855         if (Error Err = parseValueSymbolTable())
4856           return Err;
4857         break;
4858       case bitc::METADATA_ATTACHMENT_ID:
4859         if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList))
4860           return Err;
4861         break;
4862       case bitc::METADATA_BLOCK_ID:
4863         assert(DeferredMetadataInfo.empty() &&
4864                "Must read all module-level metadata before function-level");
4865         if (Error Err = MDLoader->parseFunctionMetadata())
4866           return Err;
4867         break;
4868       case bitc::USELIST_BLOCK_ID:
4869         if (Error Err = parseUseLists())
4870           return Err;
4871         break;
4872       }
4873       continue;
4874 
4875     case BitstreamEntry::Record:
4876       // The interesting case.
4877       break;
4878     }
4879 
4880     // Read a record.
4881     Record.clear();
4882     Instruction *I = nullptr;
4883     unsigned ResTypeID = InvalidTypeID;
4884     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
4885     if (!MaybeBitCode)
4886       return MaybeBitCode.takeError();
4887     switch (unsigned BitCode = MaybeBitCode.get()) {
4888     default: // Default behavior: reject
4889       return error("Invalid value");
4890     case bitc::FUNC_CODE_DECLAREBLOCKS: {   // DECLAREBLOCKS: [nblocks]
4891       if (Record.empty() || Record[0] == 0)
4892         return error("Invalid record");
4893       // Create all the basic blocks for the function.
4894       FunctionBBs.resize(Record[0]);
4895 
4896       // See if anything took the address of blocks in this function.
4897       auto BBFRI = BasicBlockFwdRefs.find(F);
4898       if (BBFRI == BasicBlockFwdRefs.end()) {
4899         for (BasicBlock *&BB : FunctionBBs)
4900           BB = BasicBlock::Create(Context, "", F);
4901       } else {
4902         auto &BBRefs = BBFRI->second;
4903         // Check for invalid basic block references.
4904         if (BBRefs.size() > FunctionBBs.size())
4905           return error("Invalid ID");
4906         assert(!BBRefs.empty() && "Unexpected empty array");
4907         assert(!BBRefs.front() && "Invalid reference to entry block");
4908         for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
4909              ++I)
4910           if (I < RE && BBRefs[I]) {
4911             BBRefs[I]->insertInto(F);
4912             FunctionBBs[I] = BBRefs[I];
4913           } else {
4914             FunctionBBs[I] = BasicBlock::Create(Context, "", F);
4915           }
4916 
4917         // Erase from the table.
4918         BasicBlockFwdRefs.erase(BBFRI);
4919       }
4920 
4921       CurBB = FunctionBBs[0];
4922       continue;
4923     }
4924 
4925     case bitc::FUNC_CODE_BLOCKADDR_USERS: // BLOCKADDR_USERS: [vals...]
4926       // The record should not be emitted if it's an empty list.
4927       if (Record.empty())
4928         return error("Invalid record");
4929       // When we have the RARE case of a BlockAddress Constant that is not
4930       // scoped to the Function it refers to, we need to conservatively
4931       // materialize the referred to Function, regardless of whether or not
4932       // that Function will ultimately be linked, otherwise users of
4933       // BitcodeReader might start splicing out Function bodies such that we
4934       // might no longer be able to materialize the BlockAddress since the
4935       // BasicBlock (and entire body of the Function) the BlockAddress refers
4936       // to may have been moved. In the case that the user of BitcodeReader
4937       // decides ultimately not to link the Function body, materializing here
4938       // could be considered wasteful, but it's better than a deserialization
4939       // failure as described. This keeps BitcodeReader unaware of complex
4940       // linkage policy decisions such as those use by LTO, leaving those
4941       // decisions "one layer up."
4942       for (uint64_t ValID : Record)
4943         if (auto *F = dyn_cast<Function>(ValueList[ValID]))
4944           BackwardRefFunctions.push_back(F);
4945         else
4946           return error("Invalid record");
4947 
4948       continue;
4949 
4950     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
4951       // This record indicates that the last instruction is at the same
4952       // location as the previous instruction with a location.
4953       I = getLastInstruction();
4954 
4955       if (!I)
4956         return error("Invalid record");
4957       I->setDebugLoc(LastLoc);
4958       I = nullptr;
4959       continue;
4960 
4961     case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
4962       I = getLastInstruction();
4963       if (!I || Record.size() < 4)
4964         return error("Invalid record");
4965 
4966       unsigned Line = Record[0], Col = Record[1];
4967       unsigned ScopeID = Record[2], IAID = Record[3];
4968       bool isImplicitCode = Record.size() == 5 && Record[4];
4969 
4970       MDNode *Scope = nullptr, *IA = nullptr;
4971       if (ScopeID) {
4972         Scope = dyn_cast_or_null<MDNode>(
4973             MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1));
4974         if (!Scope)
4975           return error("Invalid record");
4976       }
4977       if (IAID) {
4978         IA = dyn_cast_or_null<MDNode>(
4979             MDLoader->getMetadataFwdRefOrLoad(IAID - 1));
4980         if (!IA)
4981           return error("Invalid record");
4982       }
4983       LastLoc = DILocation::get(Scope->getContext(), Line, Col, Scope, IA,
4984                                 isImplicitCode);
4985       I->setDebugLoc(LastLoc);
4986       I = nullptr;
4987       continue;
4988     }
4989     case bitc::FUNC_CODE_INST_UNOP: {    // UNOP: [opval, ty, opcode]
4990       unsigned OpNum = 0;
4991       Value *LHS;
4992       unsigned TypeID;
4993       if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) ||
4994           OpNum+1 > Record.size())
4995         return error("Invalid record");
4996 
4997       int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType());
4998       if (Opc == -1)
4999         return error("Invalid record");
5000       I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
5001       ResTypeID = TypeID;
5002       InstructionList.push_back(I);
5003       if (OpNum < Record.size()) {
5004         if (isa<FPMathOperator>(I)) {
5005           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
5006           if (FMF.any())
5007             I->setFastMathFlags(FMF);
5008         }
5009       }
5010       break;
5011     }
5012     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
5013       unsigned OpNum = 0;
5014       Value *LHS, *RHS;
5015       unsigned TypeID;
5016       if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) ||
5017           popValue(Record, OpNum, NextValueNo, LHS->getType(), TypeID, RHS,
5018                    CurBB) ||
5019           OpNum+1 > Record.size())
5020         return error("Invalid record");
5021 
5022       int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
5023       if (Opc == -1)
5024         return error("Invalid record");
5025       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
5026       ResTypeID = TypeID;
5027       InstructionList.push_back(I);
5028       if (OpNum < Record.size()) {
5029         if (Opc == Instruction::Add ||
5030             Opc == Instruction::Sub ||
5031             Opc == Instruction::Mul ||
5032             Opc == Instruction::Shl) {
5033           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
5034             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
5035           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
5036             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
5037         } else if (Opc == Instruction::SDiv ||
5038                    Opc == Instruction::UDiv ||
5039                    Opc == Instruction::LShr ||
5040                    Opc == Instruction::AShr) {
5041           if (Record[OpNum] & (1 << bitc::PEO_EXACT))
5042             cast<BinaryOperator>(I)->setIsExact(true);
5043         } else if (Opc == Instruction::Or) {
5044           if (Record[OpNum] & (1 << bitc::PDI_DISJOINT))
5045             cast<PossiblyDisjointInst>(I)->setIsDisjoint(true);
5046         } else if (isa<FPMathOperator>(I)) {
5047           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
5048           if (FMF.any())
5049             I->setFastMathFlags(FMF);
5050         }
5051       }
5052       break;
5053     }
5054     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
5055       unsigned OpNum = 0;
5056       Value *Op;
5057       unsigned OpTypeID;
5058       if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) ||
5059           OpNum + 1 > Record.size())
5060         return error("Invalid record");
5061 
5062       ResTypeID = Record[OpNum++];
5063       Type *ResTy = getTypeByID(ResTypeID);
5064       int Opc = getDecodedCastOpcode(Record[OpNum++]);
5065 
5066       if (Opc == -1 || !ResTy)
5067         return error("Invalid record");
5068       Instruction *Temp = nullptr;
5069       if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
5070         if (Temp) {
5071           InstructionList.push_back(Temp);
5072           assert(CurBB && "No current BB?");
5073           Temp->insertInto(CurBB, CurBB->end());
5074         }
5075       } else {
5076         auto CastOp = (Instruction::CastOps)Opc;
5077         if (!CastInst::castIsValid(CastOp, Op, ResTy))
5078           return error("Invalid cast");
5079         I = CastInst::Create(CastOp, Op, ResTy);
5080       }
5081 
5082       if (OpNum < Record.size()) {
5083         if (Opc == Instruction::ZExt || Opc == Instruction::UIToFP) {
5084           if (Record[OpNum] & (1 << bitc::PNNI_NON_NEG))
5085             cast<PossiblyNonNegInst>(I)->setNonNeg(true);
5086         } else if (Opc == Instruction::Trunc) {
5087           if (Record[OpNum] & (1 << bitc::TIO_NO_UNSIGNED_WRAP))
5088             cast<TruncInst>(I)->setHasNoUnsignedWrap(true);
5089           if (Record[OpNum] & (1 << bitc::TIO_NO_SIGNED_WRAP))
5090             cast<TruncInst>(I)->setHasNoSignedWrap(true);
5091         }
5092       }
5093 
5094       InstructionList.push_back(I);
5095       break;
5096     }
5097     case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
5098     case bitc::FUNC_CODE_INST_GEP_OLD:
5099     case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
5100       unsigned OpNum = 0;
5101 
5102       unsigned TyID;
5103       Type *Ty;
5104       GEPNoWrapFlags NW;
5105 
5106       if (BitCode == bitc::FUNC_CODE_INST_GEP) {
5107         NW = toGEPNoWrapFlags(Record[OpNum++]);
5108         TyID = Record[OpNum++];
5109         Ty = getTypeByID(TyID);
5110       } else {
5111         if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD)
5112           NW = GEPNoWrapFlags::inBounds();
5113         TyID = InvalidTypeID;
5114         Ty = nullptr;
5115       }
5116 
5117       Value *BasePtr;
5118       unsigned BasePtrTypeID;
5119       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr, BasePtrTypeID,
5120                            CurBB))
5121         return error("Invalid record");
5122 
5123       if (!Ty) {
5124         TyID = getContainedTypeID(BasePtrTypeID);
5125         if (BasePtr->getType()->isVectorTy())
5126           TyID = getContainedTypeID(TyID);
5127         Ty = getTypeByID(TyID);
5128       }
5129 
5130       SmallVector<Value*, 16> GEPIdx;
5131       while (OpNum != Record.size()) {
5132         Value *Op;
5133         unsigned OpTypeID;
5134         if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
5135           return error("Invalid record");
5136         GEPIdx.push_back(Op);
5137       }
5138 
5139       auto *GEP = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
5140       I = GEP;
5141 
5142       ResTypeID = TyID;
5143       if (cast<GEPOperator>(I)->getNumIndices() != 0) {
5144         auto GTI = std::next(gep_type_begin(I));
5145         for (Value *Idx : drop_begin(cast<GEPOperator>(I)->indices())) {
5146           unsigned SubType = 0;
5147           if (GTI.isStruct()) {
5148             ConstantInt *IdxC =
5149                 Idx->getType()->isVectorTy()
5150                     ? cast<ConstantInt>(cast<Constant>(Idx)->getSplatValue())
5151                     : cast<ConstantInt>(Idx);
5152             SubType = IdxC->getZExtValue();
5153           }
5154           ResTypeID = getContainedTypeID(ResTypeID, SubType);
5155           ++GTI;
5156         }
5157       }
5158 
5159       // At this point ResTypeID is the result element type. We need a pointer
5160       // or vector of pointer to it.
5161       ResTypeID = getVirtualTypeID(I->getType()->getScalarType(), ResTypeID);
5162       if (I->getType()->isVectorTy())
5163         ResTypeID = getVirtualTypeID(I->getType(), ResTypeID);
5164 
5165       InstructionList.push_back(I);
5166       GEP->setNoWrapFlags(NW);
5167       break;
5168     }
5169 
5170     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
5171                                        // EXTRACTVAL: [opty, opval, n x indices]
5172       unsigned OpNum = 0;
5173       Value *Agg;
5174       unsigned AggTypeID;
5175       if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB))
5176         return error("Invalid record");
5177       Type *Ty = Agg->getType();
5178 
5179       unsigned RecSize = Record.size();
5180       if (OpNum == RecSize)
5181         return error("EXTRACTVAL: Invalid instruction with 0 indices");
5182 
5183       SmallVector<unsigned, 4> EXTRACTVALIdx;
5184       ResTypeID = AggTypeID;
5185       for (; OpNum != RecSize; ++OpNum) {
5186         bool IsArray = Ty->isArrayTy();
5187         bool IsStruct = Ty->isStructTy();
5188         uint64_t Index = Record[OpNum];
5189 
5190         if (!IsStruct && !IsArray)
5191           return error("EXTRACTVAL: Invalid type");
5192         if ((unsigned)Index != Index)
5193           return error("Invalid value");
5194         if (IsStruct && Index >= Ty->getStructNumElements())
5195           return error("EXTRACTVAL: Invalid struct index");
5196         if (IsArray && Index >= Ty->getArrayNumElements())
5197           return error("EXTRACTVAL: Invalid array index");
5198         EXTRACTVALIdx.push_back((unsigned)Index);
5199 
5200         if (IsStruct) {
5201           Ty = Ty->getStructElementType(Index);
5202           ResTypeID = getContainedTypeID(ResTypeID, Index);
5203         } else {
5204           Ty = Ty->getArrayElementType();
5205           ResTypeID = getContainedTypeID(ResTypeID);
5206         }
5207       }
5208 
5209       I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
5210       InstructionList.push_back(I);
5211       break;
5212     }
5213 
5214     case bitc::FUNC_CODE_INST_INSERTVAL: {
5215                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
5216       unsigned OpNum = 0;
5217       Value *Agg;
5218       unsigned AggTypeID;
5219       if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB))
5220         return error("Invalid record");
5221       Value *Val;
5222       unsigned ValTypeID;
5223       if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB))
5224         return error("Invalid record");
5225 
5226       unsigned RecSize = Record.size();
5227       if (OpNum == RecSize)
5228         return error("INSERTVAL: Invalid instruction with 0 indices");
5229 
5230       SmallVector<unsigned, 4> INSERTVALIdx;
5231       Type *CurTy = Agg->getType();
5232       for (; OpNum != RecSize; ++OpNum) {
5233         bool IsArray = CurTy->isArrayTy();
5234         bool IsStruct = CurTy->isStructTy();
5235         uint64_t Index = Record[OpNum];
5236 
5237         if (!IsStruct && !IsArray)
5238           return error("INSERTVAL: Invalid type");
5239         if ((unsigned)Index != Index)
5240           return error("Invalid value");
5241         if (IsStruct && Index >= CurTy->getStructNumElements())
5242           return error("INSERTVAL: Invalid struct index");
5243         if (IsArray && Index >= CurTy->getArrayNumElements())
5244           return error("INSERTVAL: Invalid array index");
5245 
5246         INSERTVALIdx.push_back((unsigned)Index);
5247         if (IsStruct)
5248           CurTy = CurTy->getStructElementType(Index);
5249         else
5250           CurTy = CurTy->getArrayElementType();
5251       }
5252 
5253       if (CurTy != Val->getType())
5254         return error("Inserted value type doesn't match aggregate type");
5255 
5256       I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
5257       ResTypeID = AggTypeID;
5258       InstructionList.push_back(I);
5259       break;
5260     }
5261 
5262     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
5263       // obsolete form of select
5264       // handles select i1 ... in old bitcode
5265       unsigned OpNum = 0;
5266       Value *TrueVal, *FalseVal, *Cond;
5267       unsigned TypeID;
5268       Type *CondType = Type::getInt1Ty(Context);
5269       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, TypeID,
5270                            CurBB) ||
5271           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), TypeID,
5272                    FalseVal, CurBB) ||
5273           popValue(Record, OpNum, NextValueNo, CondType,
5274                    getVirtualTypeID(CondType), Cond, CurBB))
5275         return error("Invalid record");
5276 
5277       I = SelectInst::Create(Cond, TrueVal, FalseVal);
5278       ResTypeID = TypeID;
5279       InstructionList.push_back(I);
5280       break;
5281     }
5282 
5283     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
5284       // new form of select
5285       // handles select i1 or select [N x i1]
5286       unsigned OpNum = 0;
5287       Value *TrueVal, *FalseVal, *Cond;
5288       unsigned ValTypeID, CondTypeID;
5289       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, ValTypeID,
5290                            CurBB) ||
5291           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), ValTypeID,
5292                    FalseVal, CurBB) ||
5293           getValueTypePair(Record, OpNum, NextValueNo, Cond, CondTypeID, CurBB))
5294         return error("Invalid record");
5295 
5296       // select condition can be either i1 or [N x i1]
5297       if (VectorType* vector_type =
5298           dyn_cast<VectorType>(Cond->getType())) {
5299         // expect <n x i1>
5300         if (vector_type->getElementType() != Type::getInt1Ty(Context))
5301           return error("Invalid type for value");
5302       } else {
5303         // expect i1
5304         if (Cond->getType() != Type::getInt1Ty(Context))
5305           return error("Invalid type for value");
5306       }
5307 
5308       I = SelectInst::Create(Cond, TrueVal, FalseVal);
5309       ResTypeID = ValTypeID;
5310       InstructionList.push_back(I);
5311       if (OpNum < Record.size() && isa<FPMathOperator>(I)) {
5312         FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
5313         if (FMF.any())
5314           I->setFastMathFlags(FMF);
5315       }
5316       break;
5317     }
5318 
5319     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
5320       unsigned OpNum = 0;
5321       Value *Vec, *Idx;
5322       unsigned VecTypeID, IdxTypeID;
5323       if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB) ||
5324           getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB))
5325         return error("Invalid record");
5326       if (!Vec->getType()->isVectorTy())
5327         return error("Invalid type for value");
5328       I = ExtractElementInst::Create(Vec, Idx);
5329       ResTypeID = getContainedTypeID(VecTypeID);
5330       InstructionList.push_back(I);
5331       break;
5332     }
5333 
5334     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
5335       unsigned OpNum = 0;
5336       Value *Vec, *Elt, *Idx;
5337       unsigned VecTypeID, IdxTypeID;
5338       if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB))
5339         return error("Invalid record");
5340       if (!Vec->getType()->isVectorTy())
5341         return error("Invalid type for value");
5342       if (popValue(Record, OpNum, NextValueNo,
5343                    cast<VectorType>(Vec->getType())->getElementType(),
5344                    getContainedTypeID(VecTypeID), Elt, CurBB) ||
5345           getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB))
5346         return error("Invalid record");
5347       I = InsertElementInst::Create(Vec, Elt, Idx);
5348       ResTypeID = VecTypeID;
5349       InstructionList.push_back(I);
5350       break;
5351     }
5352 
5353     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
5354       unsigned OpNum = 0;
5355       Value *Vec1, *Vec2, *Mask;
5356       unsigned Vec1TypeID;
5357       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1, Vec1TypeID,
5358                            CurBB) ||
5359           popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec1TypeID,
5360                    Vec2, CurBB))
5361         return error("Invalid record");
5362 
5363       unsigned MaskTypeID;
5364       if (getValueTypePair(Record, OpNum, NextValueNo, Mask, MaskTypeID, CurBB))
5365         return error("Invalid record");
5366       if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
5367         return error("Invalid type for value");
5368 
5369       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
5370       ResTypeID =
5371           getVirtualTypeID(I->getType(), getContainedTypeID(Vec1TypeID));
5372       InstructionList.push_back(I);
5373       break;
5374     }
5375 
5376     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
5377       // Old form of ICmp/FCmp returning bool
5378       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
5379       // both legal on vectors but had different behaviour.
5380     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
5381       // FCmp/ICmp returning bool or vector of bool
5382 
5383       unsigned OpNum = 0;
5384       Value *LHS, *RHS;
5385       unsigned LHSTypeID;
5386       if (getValueTypePair(Record, OpNum, NextValueNo, LHS, LHSTypeID, CurBB) ||
5387           popValue(Record, OpNum, NextValueNo, LHS->getType(), LHSTypeID, RHS,
5388                    CurBB))
5389         return error("Invalid record");
5390 
5391       if (OpNum >= Record.size())
5392         return error(
5393             "Invalid record: operand number exceeded available operands");
5394 
5395       CmpInst::Predicate PredVal = CmpInst::Predicate(Record[OpNum]);
5396       bool IsFP = LHS->getType()->isFPOrFPVectorTy();
5397       FastMathFlags FMF;
5398       if (IsFP && Record.size() > OpNum+1)
5399         FMF = getDecodedFastMathFlags(Record[++OpNum]);
5400 
5401       if (OpNum+1 != Record.size())
5402         return error("Invalid record");
5403 
5404       if (IsFP) {
5405         if (!CmpInst::isFPPredicate(PredVal))
5406           return error("Invalid fcmp predicate");
5407         I = new FCmpInst(PredVal, LHS, RHS);
5408       } else {
5409         if (!CmpInst::isIntPredicate(PredVal))
5410           return error("Invalid icmp predicate");
5411         I = new ICmpInst(PredVal, LHS, RHS);
5412       }
5413 
5414       ResTypeID = getVirtualTypeID(I->getType()->getScalarType());
5415       if (LHS->getType()->isVectorTy())
5416         ResTypeID = getVirtualTypeID(I->getType(), ResTypeID);
5417 
5418       if (FMF.any())
5419         I->setFastMathFlags(FMF);
5420       InstructionList.push_back(I);
5421       break;
5422     }
5423 
5424     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
5425       {
5426         unsigned Size = Record.size();
5427         if (Size == 0) {
5428           I = ReturnInst::Create(Context);
5429           InstructionList.push_back(I);
5430           break;
5431         }
5432 
5433         unsigned OpNum = 0;
5434         Value *Op = nullptr;
5435         unsigned OpTypeID;
5436         if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
5437           return error("Invalid record");
5438         if (OpNum != Record.size())
5439           return error("Invalid record");
5440 
5441         I = ReturnInst::Create(Context, Op);
5442         InstructionList.push_back(I);
5443         break;
5444       }
5445     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
5446       if (Record.size() != 1 && Record.size() != 3)
5447         return error("Invalid record");
5448       BasicBlock *TrueDest = getBasicBlock(Record[0]);
5449       if (!TrueDest)
5450         return error("Invalid record");
5451 
5452       if (Record.size() == 1) {
5453         I = BranchInst::Create(TrueDest);
5454         InstructionList.push_back(I);
5455       }
5456       else {
5457         BasicBlock *FalseDest = getBasicBlock(Record[1]);
5458         Type *CondType = Type::getInt1Ty(Context);
5459         Value *Cond = getValue(Record, 2, NextValueNo, CondType,
5460                                getVirtualTypeID(CondType), CurBB);
5461         if (!FalseDest || !Cond)
5462           return error("Invalid record");
5463         I = BranchInst::Create(TrueDest, FalseDest, Cond);
5464         InstructionList.push_back(I);
5465       }
5466       break;
5467     }
5468     case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#]
5469       if (Record.size() != 1 && Record.size() != 2)
5470         return error("Invalid record");
5471       unsigned Idx = 0;
5472       Type *TokenTy = Type::getTokenTy(Context);
5473       Value *CleanupPad = getValue(Record, Idx++, NextValueNo, TokenTy,
5474                                    getVirtualTypeID(TokenTy), CurBB);
5475       if (!CleanupPad)
5476         return error("Invalid record");
5477       BasicBlock *UnwindDest = nullptr;
5478       if (Record.size() == 2) {
5479         UnwindDest = getBasicBlock(Record[Idx++]);
5480         if (!UnwindDest)
5481           return error("Invalid record");
5482       }
5483 
5484       I = CleanupReturnInst::Create(CleanupPad, UnwindDest);
5485       InstructionList.push_back(I);
5486       break;
5487     }
5488     case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#]
5489       if (Record.size() != 2)
5490         return error("Invalid record");
5491       unsigned Idx = 0;
5492       Type *TokenTy = Type::getTokenTy(Context);
5493       Value *CatchPad = getValue(Record, Idx++, NextValueNo, TokenTy,
5494                                  getVirtualTypeID(TokenTy), CurBB);
5495       if (!CatchPad)
5496         return error("Invalid record");
5497       BasicBlock *BB = getBasicBlock(Record[Idx++]);
5498       if (!BB)
5499         return error("Invalid record");
5500 
5501       I = CatchReturnInst::Create(CatchPad, BB);
5502       InstructionList.push_back(I);
5503       break;
5504     }
5505     case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?]
5506       // We must have, at minimum, the outer scope and the number of arguments.
5507       if (Record.size() < 2)
5508         return error("Invalid record");
5509 
5510       unsigned Idx = 0;
5511 
5512       Type *TokenTy = Type::getTokenTy(Context);
5513       Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy,
5514                                   getVirtualTypeID(TokenTy), CurBB);
5515       if (!ParentPad)
5516         return error("Invalid record");
5517 
5518       unsigned NumHandlers = Record[Idx++];
5519 
5520       SmallVector<BasicBlock *, 2> Handlers;
5521       for (unsigned Op = 0; Op != NumHandlers; ++Op) {
5522         BasicBlock *BB = getBasicBlock(Record[Idx++]);
5523         if (!BB)
5524           return error("Invalid record");
5525         Handlers.push_back(BB);
5526       }
5527 
5528       BasicBlock *UnwindDest = nullptr;
5529       if (Idx + 1 == Record.size()) {
5530         UnwindDest = getBasicBlock(Record[Idx++]);
5531         if (!UnwindDest)
5532           return error("Invalid record");
5533       }
5534 
5535       if (Record.size() != Idx)
5536         return error("Invalid record");
5537 
5538       auto *CatchSwitch =
5539           CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers);
5540       for (BasicBlock *Handler : Handlers)
5541         CatchSwitch->addHandler(Handler);
5542       I = CatchSwitch;
5543       ResTypeID = getVirtualTypeID(I->getType());
5544       InstructionList.push_back(I);
5545       break;
5546     }
5547     case bitc::FUNC_CODE_INST_CATCHPAD:
5548     case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*]
5549       // We must have, at minimum, the outer scope and the number of arguments.
5550       if (Record.size() < 2)
5551         return error("Invalid record");
5552 
5553       unsigned Idx = 0;
5554 
5555       Type *TokenTy = Type::getTokenTy(Context);
5556       Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy,
5557                                   getVirtualTypeID(TokenTy), CurBB);
5558       if (!ParentPad)
5559         return error("Invald record");
5560 
5561       unsigned NumArgOperands = Record[Idx++];
5562 
5563       SmallVector<Value *, 2> Args;
5564       for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
5565         Value *Val;
5566         unsigned ValTypeID;
5567         if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, nullptr))
5568           return error("Invalid record");
5569         Args.push_back(Val);
5570       }
5571 
5572       if (Record.size() != Idx)
5573         return error("Invalid record");
5574 
5575       if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD)
5576         I = CleanupPadInst::Create(ParentPad, Args);
5577       else
5578         I = CatchPadInst::Create(ParentPad, Args);
5579       ResTypeID = getVirtualTypeID(I->getType());
5580       InstructionList.push_back(I);
5581       break;
5582     }
5583     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
5584       // Check magic
5585       if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
5586         // "New" SwitchInst format with case ranges. The changes to write this
5587         // format were reverted but we still recognize bitcode that uses it.
5588         // Hopefully someday we will have support for case ranges and can use
5589         // this format again.
5590 
5591         unsigned OpTyID = Record[1];
5592         Type *OpTy = getTypeByID(OpTyID);
5593         unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
5594 
5595         Value *Cond = getValue(Record, 2, NextValueNo, OpTy, OpTyID, CurBB);
5596         BasicBlock *Default = getBasicBlock(Record[3]);
5597         if (!OpTy || !Cond || !Default)
5598           return error("Invalid record");
5599 
5600         unsigned NumCases = Record[4];
5601 
5602         SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
5603         InstructionList.push_back(SI);
5604 
5605         unsigned CurIdx = 5;
5606         for (unsigned i = 0; i != NumCases; ++i) {
5607           SmallVector<ConstantInt*, 1> CaseVals;
5608           unsigned NumItems = Record[CurIdx++];
5609           for (unsigned ci = 0; ci != NumItems; ++ci) {
5610             bool isSingleNumber = Record[CurIdx++];
5611 
5612             APInt Low;
5613             unsigned ActiveWords = 1;
5614             if (ValueBitWidth > 64)
5615               ActiveWords = Record[CurIdx++];
5616             Low = readWideAPInt(ArrayRef(&Record[CurIdx], ActiveWords),
5617                                 ValueBitWidth);
5618             CurIdx += ActiveWords;
5619 
5620             if (!isSingleNumber) {
5621               ActiveWords = 1;
5622               if (ValueBitWidth > 64)
5623                 ActiveWords = Record[CurIdx++];
5624               APInt High = readWideAPInt(ArrayRef(&Record[CurIdx], ActiveWords),
5625                                          ValueBitWidth);
5626               CurIdx += ActiveWords;
5627 
5628               // FIXME: It is not clear whether values in the range should be
5629               // compared as signed or unsigned values. The partially
5630               // implemented changes that used this format in the past used
5631               // unsigned comparisons.
5632               for ( ; Low.ule(High); ++Low)
5633                 CaseVals.push_back(ConstantInt::get(Context, Low));
5634             } else
5635               CaseVals.push_back(ConstantInt::get(Context, Low));
5636           }
5637           BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
5638           for (ConstantInt *Cst : CaseVals)
5639             SI->addCase(Cst, DestBB);
5640         }
5641         I = SI;
5642         break;
5643       }
5644 
5645       // Old SwitchInst format without case ranges.
5646 
5647       if (Record.size() < 3 || (Record.size() & 1) == 0)
5648         return error("Invalid record");
5649       unsigned OpTyID = Record[0];
5650       Type *OpTy = getTypeByID(OpTyID);
5651       Value *Cond = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB);
5652       BasicBlock *Default = getBasicBlock(Record[2]);
5653       if (!OpTy || !Cond || !Default)
5654         return error("Invalid record");
5655       unsigned NumCases = (Record.size()-3)/2;
5656       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
5657       InstructionList.push_back(SI);
5658       for (unsigned i = 0, e = NumCases; i != e; ++i) {
5659         ConstantInt *CaseVal = dyn_cast_or_null<ConstantInt>(
5660             getFnValueByID(Record[3+i*2], OpTy, OpTyID, nullptr));
5661         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
5662         if (!CaseVal || !DestBB) {
5663           delete SI;
5664           return error("Invalid record");
5665         }
5666         SI->addCase(CaseVal, DestBB);
5667       }
5668       I = SI;
5669       break;
5670     }
5671     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
5672       if (Record.size() < 2)
5673         return error("Invalid record");
5674       unsigned OpTyID = Record[0];
5675       Type *OpTy = getTypeByID(OpTyID);
5676       Value *Address = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB);
5677       if (!OpTy || !Address)
5678         return error("Invalid record");
5679       unsigned NumDests = Record.size()-2;
5680       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
5681       InstructionList.push_back(IBI);
5682       for (unsigned i = 0, e = NumDests; i != e; ++i) {
5683         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
5684           IBI->addDestination(DestBB);
5685         } else {
5686           delete IBI;
5687           return error("Invalid record");
5688         }
5689       }
5690       I = IBI;
5691       break;
5692     }
5693 
5694     case bitc::FUNC_CODE_INST_INVOKE: {
5695       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
5696       if (Record.size() < 4)
5697         return error("Invalid record");
5698       unsigned OpNum = 0;
5699       AttributeList PAL = getAttributes(Record[OpNum++]);
5700       unsigned CCInfo = Record[OpNum++];
5701       BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]);
5702       BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]);
5703 
5704       unsigned FTyID = InvalidTypeID;
5705       FunctionType *FTy = nullptr;
5706       if ((CCInfo >> 13) & 1) {
5707         FTyID = Record[OpNum++];
5708         FTy = dyn_cast<FunctionType>(getTypeByID(FTyID));
5709         if (!FTy)
5710           return error("Explicit invoke type is not a function type");
5711       }
5712 
5713       Value *Callee;
5714       unsigned CalleeTypeID;
5715       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID,
5716                            CurBB))
5717         return error("Invalid record");
5718 
5719       PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
5720       if (!CalleeTy)
5721         return error("Callee is not a pointer");
5722       if (!FTy) {
5723         FTyID = getContainedTypeID(CalleeTypeID);
5724         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
5725         if (!FTy)
5726           return error("Callee is not of pointer to function type");
5727       }
5728       if (Record.size() < FTy->getNumParams() + OpNum)
5729         return error("Insufficient operands to call");
5730 
5731       SmallVector<Value*, 16> Ops;
5732       SmallVector<unsigned, 16> ArgTyIDs;
5733       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5734         unsigned ArgTyID = getContainedTypeID(FTyID, i + 1);
5735         Ops.push_back(getValue(Record, OpNum, NextValueNo, FTy->getParamType(i),
5736                                ArgTyID, CurBB));
5737         ArgTyIDs.push_back(ArgTyID);
5738         if (!Ops.back())
5739           return error("Invalid record");
5740       }
5741 
5742       if (!FTy->isVarArg()) {
5743         if (Record.size() != OpNum)
5744           return error("Invalid record");
5745       } else {
5746         // Read type/value pairs for varargs params.
5747         while (OpNum != Record.size()) {
5748           Value *Op;
5749           unsigned OpTypeID;
5750           if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
5751             return error("Invalid record");
5752           Ops.push_back(Op);
5753           ArgTyIDs.push_back(OpTypeID);
5754         }
5755       }
5756 
5757       // Upgrade the bundles if needed.
5758       if (!OperandBundles.empty())
5759         UpgradeOperandBundles(OperandBundles);
5760 
5761       I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops,
5762                              OperandBundles);
5763       ResTypeID = getContainedTypeID(FTyID);
5764       OperandBundles.clear();
5765       InstructionList.push_back(I);
5766       cast<InvokeInst>(I)->setCallingConv(
5767           static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo));
5768       cast<InvokeInst>(I)->setAttributes(PAL);
5769       if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) {
5770         I->deleteValue();
5771         return Err;
5772       }
5773 
5774       break;
5775     }
5776     case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
5777       unsigned Idx = 0;
5778       Value *Val = nullptr;
5779       unsigned ValTypeID;
5780       if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, CurBB))
5781         return error("Invalid record");
5782       I = ResumeInst::Create(Val);
5783       InstructionList.push_back(I);
5784       break;
5785     }
5786     case bitc::FUNC_CODE_INST_CALLBR: {
5787       // CALLBR: [attr, cc, norm, transfs, fty, fnid, args]
5788       unsigned OpNum = 0;
5789       AttributeList PAL = getAttributes(Record[OpNum++]);
5790       unsigned CCInfo = Record[OpNum++];
5791 
5792       BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]);
5793       unsigned NumIndirectDests = Record[OpNum++];
5794       SmallVector<BasicBlock *, 16> IndirectDests;
5795       for (unsigned i = 0, e = NumIndirectDests; i != e; ++i)
5796         IndirectDests.push_back(getBasicBlock(Record[OpNum++]));
5797 
5798       unsigned FTyID = InvalidTypeID;
5799       FunctionType *FTy = nullptr;
5800       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
5801         FTyID = Record[OpNum++];
5802         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
5803         if (!FTy)
5804           return error("Explicit call type is not a function type");
5805       }
5806 
5807       Value *Callee;
5808       unsigned CalleeTypeID;
5809       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID,
5810                            CurBB))
5811         return error("Invalid record");
5812 
5813       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
5814       if (!OpTy)
5815         return error("Callee is not a pointer type");
5816       if (!FTy) {
5817         FTyID = getContainedTypeID(CalleeTypeID);
5818         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
5819         if (!FTy)
5820           return error("Callee is not of pointer to function type");
5821       }
5822       if (Record.size() < FTy->getNumParams() + OpNum)
5823         return error("Insufficient operands to call");
5824 
5825       SmallVector<Value*, 16> Args;
5826       SmallVector<unsigned, 16> ArgTyIDs;
5827       // Read the fixed params.
5828       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5829         Value *Arg;
5830         unsigned ArgTyID = getContainedTypeID(FTyID, i + 1);
5831         if (FTy->getParamType(i)->isLabelTy())
5832           Arg = getBasicBlock(Record[OpNum]);
5833         else
5834           Arg = getValue(Record, OpNum, NextValueNo, FTy->getParamType(i),
5835                          ArgTyID, CurBB);
5836         if (!Arg)
5837           return error("Invalid record");
5838         Args.push_back(Arg);
5839         ArgTyIDs.push_back(ArgTyID);
5840       }
5841 
5842       // Read type/value pairs for varargs params.
5843       if (!FTy->isVarArg()) {
5844         if (OpNum != Record.size())
5845           return error("Invalid record");
5846       } else {
5847         while (OpNum != Record.size()) {
5848           Value *Op;
5849           unsigned OpTypeID;
5850           if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
5851             return error("Invalid record");
5852           Args.push_back(Op);
5853           ArgTyIDs.push_back(OpTypeID);
5854         }
5855       }
5856 
5857       // Upgrade the bundles if needed.
5858       if (!OperandBundles.empty())
5859         UpgradeOperandBundles(OperandBundles);
5860 
5861       if (auto *IA = dyn_cast<InlineAsm>(Callee)) {
5862         InlineAsm::ConstraintInfoVector ConstraintInfo = IA->ParseConstraints();
5863         auto IsLabelConstraint = [](const InlineAsm::ConstraintInfo &CI) {
5864           return CI.Type == InlineAsm::isLabel;
5865         };
5866         if (none_of(ConstraintInfo, IsLabelConstraint)) {
5867           // Upgrade explicit blockaddress arguments to label constraints.
5868           // Verify that the last arguments are blockaddress arguments that
5869           // match the indirect destinations. Clang always generates callbr
5870           // in this form. We could support reordering with more effort.
5871           unsigned FirstBlockArg = Args.size() - IndirectDests.size();
5872           for (unsigned ArgNo = FirstBlockArg; ArgNo < Args.size(); ++ArgNo) {
5873             unsigned LabelNo = ArgNo - FirstBlockArg;
5874             auto *BA = dyn_cast<BlockAddress>(Args[ArgNo]);
5875             if (!BA || BA->getFunction() != F ||
5876                 LabelNo > IndirectDests.size() ||
5877                 BA->getBasicBlock() != IndirectDests[LabelNo])
5878               return error("callbr argument does not match indirect dest");
5879           }
5880 
5881           // Remove blockaddress arguments.
5882           Args.erase(Args.begin() + FirstBlockArg, Args.end());
5883           ArgTyIDs.erase(ArgTyIDs.begin() + FirstBlockArg, ArgTyIDs.end());
5884 
5885           // Recreate the function type with less arguments.
5886           SmallVector<Type *> ArgTys;
5887           for (Value *Arg : Args)
5888             ArgTys.push_back(Arg->getType());
5889           FTy =
5890               FunctionType::get(FTy->getReturnType(), ArgTys, FTy->isVarArg());
5891 
5892           // Update constraint string to use label constraints.
5893           std::string Constraints = IA->getConstraintString();
5894           unsigned ArgNo = 0;
5895           size_t Pos = 0;
5896           for (const auto &CI : ConstraintInfo) {
5897             if (CI.hasArg()) {
5898               if (ArgNo >= FirstBlockArg)
5899                 Constraints.insert(Pos, "!");
5900               ++ArgNo;
5901             }
5902 
5903             // Go to next constraint in string.
5904             Pos = Constraints.find(',', Pos);
5905             if (Pos == std::string::npos)
5906               break;
5907             ++Pos;
5908           }
5909 
5910           Callee = InlineAsm::get(FTy, IA->getAsmString(), Constraints,
5911                                   IA->hasSideEffects(), IA->isAlignStack(),
5912                                   IA->getDialect(), IA->canThrow());
5913         }
5914       }
5915 
5916       I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args,
5917                              OperandBundles);
5918       ResTypeID = getContainedTypeID(FTyID);
5919       OperandBundles.clear();
5920       InstructionList.push_back(I);
5921       cast<CallBrInst>(I)->setCallingConv(
5922           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
5923       cast<CallBrInst>(I)->setAttributes(PAL);
5924       if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) {
5925         I->deleteValue();
5926         return Err;
5927       }
5928       break;
5929     }
5930     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
5931       I = new UnreachableInst(Context);
5932       InstructionList.push_back(I);
5933       break;
5934     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
5935       if (Record.empty())
5936         return error("Invalid phi record");
5937       // The first record specifies the type.
5938       unsigned TyID = Record[0];
5939       Type *Ty = getTypeByID(TyID);
5940       if (!Ty)
5941         return error("Invalid phi record");
5942 
5943       // Phi arguments are pairs of records of [value, basic block].
5944       // There is an optional final record for fast-math-flags if this phi has a
5945       // floating-point type.
5946       size_t NumArgs = (Record.size() - 1) / 2;
5947       PHINode *PN = PHINode::Create(Ty, NumArgs);
5948       if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN)) {
5949         PN->deleteValue();
5950         return error("Invalid phi record");
5951       }
5952       InstructionList.push_back(PN);
5953 
5954       SmallDenseMap<BasicBlock *, Value *> Args;
5955       for (unsigned i = 0; i != NumArgs; i++) {
5956         BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]);
5957         if (!BB) {
5958           PN->deleteValue();
5959           return error("Invalid phi BB");
5960         }
5961 
5962         // Phi nodes may contain the same predecessor multiple times, in which
5963         // case the incoming value must be identical. Directly reuse the already
5964         // seen value here, to avoid expanding a constant expression multiple
5965         // times.
5966         auto It = Args.find(BB);
5967         if (It != Args.end()) {
5968           PN->addIncoming(It->second, BB);
5969           continue;
5970         }
5971 
5972         // If there already is a block for this edge (from a different phi),
5973         // use it.
5974         BasicBlock *EdgeBB = ConstExprEdgeBBs.lookup({BB, CurBB});
5975         if (!EdgeBB) {
5976           // Otherwise, use a temporary block (that we will discard if it
5977           // turns out to be unnecessary).
5978           if (!PhiConstExprBB)
5979             PhiConstExprBB = BasicBlock::Create(Context, "phi.constexpr", F);
5980           EdgeBB = PhiConstExprBB;
5981         }
5982 
5983         // With the new function encoding, it is possible that operands have
5984         // negative IDs (for forward references).  Use a signed VBR
5985         // representation to keep the encoding small.
5986         Value *V;
5987         if (UseRelativeIDs)
5988           V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB);
5989         else
5990           V = getValue(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB);
5991         if (!V) {
5992           PN->deleteValue();
5993           PhiConstExprBB->eraseFromParent();
5994           return error("Invalid phi record");
5995         }
5996 
5997         if (EdgeBB == PhiConstExprBB && !EdgeBB->empty()) {
5998           ConstExprEdgeBBs.insert({{BB, CurBB}, EdgeBB});
5999           PhiConstExprBB = nullptr;
6000         }
6001         PN->addIncoming(V, BB);
6002         Args.insert({BB, V});
6003       }
6004       I = PN;
6005       ResTypeID = TyID;
6006 
6007       // If there are an even number of records, the final record must be FMF.
6008       if (Record.size() % 2 == 0) {
6009         assert(isa<FPMathOperator>(I) && "Unexpected phi type");
6010         FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]);
6011         if (FMF.any())
6012           I->setFastMathFlags(FMF);
6013       }
6014 
6015       break;
6016     }
6017 
6018     case bitc::FUNC_CODE_INST_LANDINGPAD:
6019     case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: {
6020       // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
6021       unsigned Idx = 0;
6022       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) {
6023         if (Record.size() < 3)
6024           return error("Invalid record");
6025       } else {
6026         assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD);
6027         if (Record.size() < 4)
6028           return error("Invalid record");
6029       }
6030       ResTypeID = Record[Idx++];
6031       Type *Ty = getTypeByID(ResTypeID);
6032       if (!Ty)
6033         return error("Invalid record");
6034       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) {
6035         Value *PersFn = nullptr;
6036         unsigned PersFnTypeID;
6037         if (getValueTypePair(Record, Idx, NextValueNo, PersFn, PersFnTypeID,
6038                              nullptr))
6039           return error("Invalid record");
6040 
6041         if (!F->hasPersonalityFn())
6042           F->setPersonalityFn(cast<Constant>(PersFn));
6043         else if (F->getPersonalityFn() != cast<Constant>(PersFn))
6044           return error("Personality function mismatch");
6045       }
6046 
6047       bool IsCleanup = !!Record[Idx++];
6048       unsigned NumClauses = Record[Idx++];
6049       LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses);
6050       LP->setCleanup(IsCleanup);
6051       for (unsigned J = 0; J != NumClauses; ++J) {
6052         LandingPadInst::ClauseType CT =
6053           LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
6054         Value *Val;
6055         unsigned ValTypeID;
6056 
6057         if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID,
6058                              nullptr)) {
6059           delete LP;
6060           return error("Invalid record");
6061         }
6062 
6063         assert((CT != LandingPadInst::Catch ||
6064                 !isa<ArrayType>(Val->getType())) &&
6065                "Catch clause has a invalid type!");
6066         assert((CT != LandingPadInst::Filter ||
6067                 isa<ArrayType>(Val->getType())) &&
6068                "Filter clause has invalid type!");
6069         LP->addClause(cast<Constant>(Val));
6070       }
6071 
6072       I = LP;
6073       InstructionList.push_back(I);
6074       break;
6075     }
6076 
6077     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
6078       if (Record.size() != 4 && Record.size() != 5)
6079         return error("Invalid record");
6080       using APV = AllocaPackedValues;
6081       const uint64_t Rec = Record[3];
6082       const bool InAlloca = Bitfield::get<APV::UsedWithInAlloca>(Rec);
6083       const bool SwiftError = Bitfield::get<APV::SwiftError>(Rec);
6084       unsigned TyID = Record[0];
6085       Type *Ty = getTypeByID(TyID);
6086       if (!Bitfield::get<APV::ExplicitType>(Rec)) {
6087         TyID = getContainedTypeID(TyID);
6088         Ty = getTypeByID(TyID);
6089         if (!Ty)
6090           return error("Missing element type for old-style alloca");
6091       }
6092       unsigned OpTyID = Record[1];
6093       Type *OpTy = getTypeByID(OpTyID);
6094       Value *Size = getFnValueByID(Record[2], OpTy, OpTyID, CurBB);
6095       MaybeAlign Align;
6096       uint64_t AlignExp =
6097           Bitfield::get<APV::AlignLower>(Rec) |
6098           (Bitfield::get<APV::AlignUpper>(Rec) << APV::AlignLower::Bits);
6099       if (Error Err = parseAlignmentValue(AlignExp, Align)) {
6100         return Err;
6101       }
6102       if (!Ty || !Size)
6103         return error("Invalid record");
6104 
6105       const DataLayout &DL = TheModule->getDataLayout();
6106       unsigned AS = Record.size() == 5 ? Record[4] : DL.getAllocaAddrSpace();
6107 
6108       SmallPtrSet<Type *, 4> Visited;
6109       if (!Align && !Ty->isSized(&Visited))
6110         return error("alloca of unsized type");
6111       if (!Align)
6112         Align = DL.getPrefTypeAlign(Ty);
6113 
6114       if (!Size->getType()->isIntegerTy())
6115         return error("alloca element count must have integer type");
6116 
6117       AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align);
6118       AI->setUsedWithInAlloca(InAlloca);
6119       AI->setSwiftError(SwiftError);
6120       I = AI;
6121       ResTypeID = getVirtualTypeID(AI->getType(), TyID);
6122       InstructionList.push_back(I);
6123       break;
6124     }
6125     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
6126       unsigned OpNum = 0;
6127       Value *Op;
6128       unsigned OpTypeID;
6129       if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) ||
6130           (OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
6131         return error("Invalid record");
6132 
6133       if (!isa<PointerType>(Op->getType()))
6134         return error("Load operand is not a pointer type");
6135 
6136       Type *Ty = nullptr;
6137       if (OpNum + 3 == Record.size()) {
6138         ResTypeID = Record[OpNum++];
6139         Ty = getTypeByID(ResTypeID);
6140       } else {
6141         ResTypeID = getContainedTypeID(OpTypeID);
6142         Ty = getTypeByID(ResTypeID);
6143       }
6144 
6145       if (!Ty)
6146         return error("Missing load type");
6147 
6148       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
6149         return Err;
6150 
6151       MaybeAlign Align;
6152       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
6153         return Err;
6154       SmallPtrSet<Type *, 4> Visited;
6155       if (!Align && !Ty->isSized(&Visited))
6156         return error("load of unsized type");
6157       if (!Align)
6158         Align = TheModule->getDataLayout().getABITypeAlign(Ty);
6159       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align);
6160       InstructionList.push_back(I);
6161       break;
6162     }
6163     case bitc::FUNC_CODE_INST_LOADATOMIC: {
6164        // LOADATOMIC: [opty, op, align, vol, ordering, ssid]
6165       unsigned OpNum = 0;
6166       Value *Op;
6167       unsigned OpTypeID;
6168       if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) ||
6169           (OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
6170         return error("Invalid record");
6171 
6172       if (!isa<PointerType>(Op->getType()))
6173         return error("Load operand is not a pointer type");
6174 
6175       Type *Ty = nullptr;
6176       if (OpNum + 5 == Record.size()) {
6177         ResTypeID = Record[OpNum++];
6178         Ty = getTypeByID(ResTypeID);
6179       } else {
6180         ResTypeID = getContainedTypeID(OpTypeID);
6181         Ty = getTypeByID(ResTypeID);
6182       }
6183 
6184       if (!Ty)
6185         return error("Missing atomic load type");
6186 
6187       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
6188         return Err;
6189 
6190       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
6191       if (Ordering == AtomicOrdering::NotAtomic ||
6192           Ordering == AtomicOrdering::Release ||
6193           Ordering == AtomicOrdering::AcquireRelease)
6194         return error("Invalid record");
6195       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
6196         return error("Invalid record");
6197       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
6198 
6199       MaybeAlign Align;
6200       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
6201         return Err;
6202       if (!Align)
6203         return error("Alignment missing from atomic load");
6204       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID);
6205       InstructionList.push_back(I);
6206       break;
6207     }
6208     case bitc::FUNC_CODE_INST_STORE:
6209     case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
6210       unsigned OpNum = 0;
6211       Value *Val, *Ptr;
6212       unsigned PtrTypeID, ValTypeID;
6213       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB))
6214         return error("Invalid record");
6215 
6216       if (BitCode == bitc::FUNC_CODE_INST_STORE) {
6217         if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB))
6218           return error("Invalid record");
6219       } else {
6220         ValTypeID = getContainedTypeID(PtrTypeID);
6221         if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID),
6222                      ValTypeID, Val, CurBB))
6223           return error("Invalid record");
6224       }
6225 
6226       if (OpNum + 2 != Record.size())
6227         return error("Invalid record");
6228 
6229       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
6230         return Err;
6231       MaybeAlign Align;
6232       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
6233         return Err;
6234       SmallPtrSet<Type *, 4> Visited;
6235       if (!Align && !Val->getType()->isSized(&Visited))
6236         return error("store of unsized type");
6237       if (!Align)
6238         Align = TheModule->getDataLayout().getABITypeAlign(Val->getType());
6239       I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align);
6240       InstructionList.push_back(I);
6241       break;
6242     }
6243     case bitc::FUNC_CODE_INST_STOREATOMIC:
6244     case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: {
6245       // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid]
6246       unsigned OpNum = 0;
6247       Value *Val, *Ptr;
6248       unsigned PtrTypeID, ValTypeID;
6249       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB) ||
6250           !isa<PointerType>(Ptr->getType()))
6251         return error("Invalid record");
6252       if (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC) {
6253         if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB))
6254           return error("Invalid record");
6255       } else {
6256         ValTypeID = getContainedTypeID(PtrTypeID);
6257         if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID),
6258                      ValTypeID, Val, CurBB))
6259           return error("Invalid record");
6260       }
6261 
6262       if (OpNum + 4 != Record.size())
6263         return error("Invalid record");
6264 
6265       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
6266         return Err;
6267       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
6268       if (Ordering == AtomicOrdering::NotAtomic ||
6269           Ordering == AtomicOrdering::Acquire ||
6270           Ordering == AtomicOrdering::AcquireRelease)
6271         return error("Invalid record");
6272       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
6273       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
6274         return error("Invalid record");
6275 
6276       MaybeAlign Align;
6277       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
6278         return Err;
6279       if (!Align)
6280         return error("Alignment missing from atomic store");
6281       I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID);
6282       InstructionList.push_back(I);
6283       break;
6284     }
6285     case bitc::FUNC_CODE_INST_CMPXCHG_OLD: {
6286       // CMPXCHG_OLD: [ptrty, ptr, cmp, val, vol, ordering, synchscope,
6287       // failure_ordering?, weak?]
6288       const size_t NumRecords = Record.size();
6289       unsigned OpNum = 0;
6290       Value *Ptr = nullptr;
6291       unsigned PtrTypeID;
6292       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB))
6293         return error("Invalid record");
6294 
6295       if (!isa<PointerType>(Ptr->getType()))
6296         return error("Cmpxchg operand is not a pointer type");
6297 
6298       Value *Cmp = nullptr;
6299       unsigned CmpTypeID = getContainedTypeID(PtrTypeID);
6300       if (popValue(Record, OpNum, NextValueNo, getTypeByID(CmpTypeID),
6301                    CmpTypeID, Cmp, CurBB))
6302         return error("Invalid record");
6303 
6304       Value *New = nullptr;
6305       if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID,
6306                    New, CurBB) ||
6307           NumRecords < OpNum + 3 || NumRecords > OpNum + 5)
6308         return error("Invalid record");
6309 
6310       const AtomicOrdering SuccessOrdering =
6311           getDecodedOrdering(Record[OpNum + 1]);
6312       if (SuccessOrdering == AtomicOrdering::NotAtomic ||
6313           SuccessOrdering == AtomicOrdering::Unordered)
6314         return error("Invalid record");
6315 
6316       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
6317 
6318       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
6319         return Err;
6320 
6321       const AtomicOrdering FailureOrdering =
6322           NumRecords < 7
6323               ? AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering)
6324               : getDecodedOrdering(Record[OpNum + 3]);
6325 
6326       if (FailureOrdering == AtomicOrdering::NotAtomic ||
6327           FailureOrdering == AtomicOrdering::Unordered)
6328         return error("Invalid record");
6329 
6330       const Align Alignment(
6331           TheModule->getDataLayout().getTypeStoreSize(Cmp->getType()));
6332 
6333       I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering,
6334                                 FailureOrdering, SSID);
6335       cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
6336 
6337       if (NumRecords < 8) {
6338         // Before weak cmpxchgs existed, the instruction simply returned the
6339         // value loaded from memory, so bitcode files from that era will be
6340         // expecting the first component of a modern cmpxchg.
6341         I->insertInto(CurBB, CurBB->end());
6342         I = ExtractValueInst::Create(I, 0);
6343         ResTypeID = CmpTypeID;
6344       } else {
6345         cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]);
6346         unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context));
6347         ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID});
6348       }
6349 
6350       InstructionList.push_back(I);
6351       break;
6352     }
6353     case bitc::FUNC_CODE_INST_CMPXCHG: {
6354       // CMPXCHG: [ptrty, ptr, cmp, val, vol, success_ordering, synchscope,
6355       // failure_ordering, weak, align?]
6356       const size_t NumRecords = Record.size();
6357       unsigned OpNum = 0;
6358       Value *Ptr = nullptr;
6359       unsigned PtrTypeID;
6360       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB))
6361         return error("Invalid record");
6362 
6363       if (!isa<PointerType>(Ptr->getType()))
6364         return error("Cmpxchg operand is not a pointer type");
6365 
6366       Value *Cmp = nullptr;
6367       unsigned CmpTypeID;
6368       if (getValueTypePair(Record, OpNum, NextValueNo, Cmp, CmpTypeID, CurBB))
6369         return error("Invalid record");
6370 
6371       Value *Val = nullptr;
6372       if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID, Val,
6373                    CurBB))
6374         return error("Invalid record");
6375 
6376       if (NumRecords < OpNum + 3 || NumRecords > OpNum + 6)
6377         return error("Invalid record");
6378 
6379       const bool IsVol = Record[OpNum];
6380 
6381       const AtomicOrdering SuccessOrdering =
6382           getDecodedOrdering(Record[OpNum + 1]);
6383       if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering))
6384         return error("Invalid cmpxchg success ordering");
6385 
6386       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
6387 
6388       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
6389         return Err;
6390 
6391       const AtomicOrdering FailureOrdering =
6392           getDecodedOrdering(Record[OpNum + 3]);
6393       if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering))
6394         return error("Invalid cmpxchg failure ordering");
6395 
6396       const bool IsWeak = Record[OpNum + 4];
6397 
6398       MaybeAlign Alignment;
6399 
6400       if (NumRecords == (OpNum + 6)) {
6401         if (Error Err = parseAlignmentValue(Record[OpNum + 5], Alignment))
6402           return Err;
6403       }
6404       if (!Alignment)
6405         Alignment =
6406             Align(TheModule->getDataLayout().getTypeStoreSize(Cmp->getType()));
6407 
6408       I = new AtomicCmpXchgInst(Ptr, Cmp, Val, *Alignment, SuccessOrdering,
6409                                 FailureOrdering, SSID);
6410       cast<AtomicCmpXchgInst>(I)->setVolatile(IsVol);
6411       cast<AtomicCmpXchgInst>(I)->setWeak(IsWeak);
6412 
6413       unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context));
6414       ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID});
6415 
6416       InstructionList.push_back(I);
6417       break;
6418     }
6419     case bitc::FUNC_CODE_INST_ATOMICRMW_OLD:
6420     case bitc::FUNC_CODE_INST_ATOMICRMW: {
6421       // ATOMICRMW_OLD: [ptrty, ptr, val, op, vol, ordering, ssid, align?]
6422       // ATOMICRMW: [ptrty, ptr, valty, val, op, vol, ordering, ssid, align?]
6423       const size_t NumRecords = Record.size();
6424       unsigned OpNum = 0;
6425 
6426       Value *Ptr = nullptr;
6427       unsigned PtrTypeID;
6428       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB))
6429         return error("Invalid record");
6430 
6431       if (!isa<PointerType>(Ptr->getType()))
6432         return error("Invalid record");
6433 
6434       Value *Val = nullptr;
6435       unsigned ValTypeID = InvalidTypeID;
6436       if (BitCode == bitc::FUNC_CODE_INST_ATOMICRMW_OLD) {
6437         ValTypeID = getContainedTypeID(PtrTypeID);
6438         if (popValue(Record, OpNum, NextValueNo,
6439                      getTypeByID(ValTypeID), ValTypeID, Val, CurBB))
6440           return error("Invalid record");
6441       } else {
6442         if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB))
6443           return error("Invalid record");
6444       }
6445 
6446       if (!(NumRecords == (OpNum + 4) || NumRecords == (OpNum + 5)))
6447         return error("Invalid record");
6448 
6449       const AtomicRMWInst::BinOp Operation =
6450           getDecodedRMWOperation(Record[OpNum]);
6451       if (Operation < AtomicRMWInst::FIRST_BINOP ||
6452           Operation > AtomicRMWInst::LAST_BINOP)
6453         return error("Invalid record");
6454 
6455       const bool IsVol = Record[OpNum + 1];
6456 
6457       const AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
6458       if (Ordering == AtomicOrdering::NotAtomic ||
6459           Ordering == AtomicOrdering::Unordered)
6460         return error("Invalid record");
6461 
6462       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
6463 
6464       MaybeAlign Alignment;
6465 
6466       if (NumRecords == (OpNum + 5)) {
6467         if (Error Err = parseAlignmentValue(Record[OpNum + 4], Alignment))
6468           return Err;
6469       }
6470 
6471       if (!Alignment)
6472         Alignment =
6473             Align(TheModule->getDataLayout().getTypeStoreSize(Val->getType()));
6474 
6475       I = new AtomicRMWInst(Operation, Ptr, Val, *Alignment, Ordering, SSID);
6476       ResTypeID = ValTypeID;
6477       cast<AtomicRMWInst>(I)->setVolatile(IsVol);
6478 
6479       InstructionList.push_back(I);
6480       break;
6481     }
6482     case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid]
6483       if (2 != Record.size())
6484         return error("Invalid record");
6485       AtomicOrdering Ordering = getDecodedOrdering(Record[0]);
6486       if (Ordering == AtomicOrdering::NotAtomic ||
6487           Ordering == AtomicOrdering::Unordered ||
6488           Ordering == AtomicOrdering::Monotonic)
6489         return error("Invalid record");
6490       SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]);
6491       I = new FenceInst(Context, Ordering, SSID);
6492       InstructionList.push_back(I);
6493       break;
6494     }
6495     case bitc::FUNC_CODE_DEBUG_RECORD_LABEL: {
6496       // DbgLabelRecords are placed after the Instructions that they are
6497       // attached to.
6498       SeenDebugRecord = true;
6499       Instruction *Inst = getLastInstruction();
6500       if (!Inst)
6501         return error("Invalid dbg record: missing instruction");
6502       DILocation *DIL = cast<DILocation>(getFnMetadataByID(Record[0]));
6503       DILabel *Label = cast<DILabel>(getFnMetadataByID(Record[1]));
6504       Inst->getParent()->insertDbgRecordBefore(
6505           new DbgLabelRecord(Label, DebugLoc(DIL)), Inst->getIterator());
6506       continue; // This isn't an instruction.
6507     }
6508     case bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE:
6509     case bitc::FUNC_CODE_DEBUG_RECORD_VALUE:
6510     case bitc::FUNC_CODE_DEBUG_RECORD_DECLARE:
6511     case bitc::FUNC_CODE_DEBUG_RECORD_ASSIGN: {
6512       // DbgVariableRecords are placed after the Instructions that they are
6513       // attached to.
6514       SeenDebugRecord = true;
6515       Instruction *Inst = getLastInstruction();
6516       if (!Inst)
6517         return error("Invalid dbg record: missing instruction");
6518 
6519       // First 3 fields are common to all kinds:
6520       //   DILocation, DILocalVariable, DIExpression
6521       // dbg_value (FUNC_CODE_DEBUG_RECORD_VALUE)
6522       //   ..., LocationMetadata
6523       // dbg_value (FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE - abbrev'd)
6524       //   ..., Value
6525       // dbg_declare (FUNC_CODE_DEBUG_RECORD_DECLARE)
6526       //   ..., LocationMetadata
6527       // dbg_assign (FUNC_CODE_DEBUG_RECORD_ASSIGN)
6528       //   ..., LocationMetadata, DIAssignID, DIExpression, LocationMetadata
6529       unsigned Slot = 0;
6530       // Common fields (0-2).
6531       DILocation *DIL = cast<DILocation>(getFnMetadataByID(Record[Slot++]));
6532       DILocalVariable *Var =
6533           cast<DILocalVariable>(getFnMetadataByID(Record[Slot++]));
6534       DIExpression *Expr =
6535           cast<DIExpression>(getFnMetadataByID(Record[Slot++]));
6536 
6537       // Union field (3: LocationMetadata | Value).
6538       Metadata *RawLocation = nullptr;
6539       if (BitCode == bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE) {
6540         Value *V = nullptr;
6541         unsigned TyID = 0;
6542         // We never expect to see a fwd reference value here because
6543         // use-before-defs are encoded with the standard non-abbrev record
6544         // type (they'd require encoding the type too, and they're rare). As a
6545         // result, getValueTypePair only ever increments Slot by one here (once
6546         // for the value, never twice for value and type).
6547         unsigned SlotBefore = Slot;
6548         if (getValueTypePair(Record, Slot, NextValueNo, V, TyID, CurBB))
6549           return error("Invalid dbg record: invalid value");
6550         (void)SlotBefore;
6551         assert((SlotBefore == Slot - 1) && "unexpected fwd ref");
6552         RawLocation = ValueAsMetadata::get(V);
6553       } else {
6554         RawLocation = getFnMetadataByID(Record[Slot++]);
6555       }
6556 
6557       DbgVariableRecord *DVR = nullptr;
6558       switch (BitCode) {
6559       case bitc::FUNC_CODE_DEBUG_RECORD_VALUE:
6560       case bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE:
6561         DVR = new DbgVariableRecord(RawLocation, Var, Expr, DIL,
6562                                     DbgVariableRecord::LocationType::Value);
6563         break;
6564       case bitc::FUNC_CODE_DEBUG_RECORD_DECLARE:
6565         DVR = new DbgVariableRecord(RawLocation, Var, Expr, DIL,
6566                                     DbgVariableRecord::LocationType::Declare);
6567         break;
6568       case bitc::FUNC_CODE_DEBUG_RECORD_ASSIGN: {
6569         DIAssignID *ID = cast<DIAssignID>(getFnMetadataByID(Record[Slot++]));
6570         DIExpression *AddrExpr =
6571             cast<DIExpression>(getFnMetadataByID(Record[Slot++]));
6572         Metadata *Addr = getFnMetadataByID(Record[Slot++]);
6573         DVR = new DbgVariableRecord(RawLocation, Var, Expr, ID, Addr, AddrExpr,
6574                                     DIL);
6575         break;
6576       }
6577       default:
6578         llvm_unreachable("Unknown DbgVariableRecord bitcode");
6579       }
6580       Inst->getParent()->insertDbgRecordBefore(DVR, Inst->getIterator());
6581       continue; // This isn't an instruction.
6582     }
6583     case bitc::FUNC_CODE_INST_CALL: {
6584       // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...]
6585       if (Record.size() < 3)
6586         return error("Invalid record");
6587 
6588       unsigned OpNum = 0;
6589       AttributeList PAL = getAttributes(Record[OpNum++]);
6590       unsigned CCInfo = Record[OpNum++];
6591 
6592       FastMathFlags FMF;
6593       if ((CCInfo >> bitc::CALL_FMF) & 1) {
6594         FMF = getDecodedFastMathFlags(Record[OpNum++]);
6595         if (!FMF.any())
6596           return error("Fast math flags indicator set for call with no FMF");
6597       }
6598 
6599       unsigned FTyID = InvalidTypeID;
6600       FunctionType *FTy = nullptr;
6601       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
6602         FTyID = Record[OpNum++];
6603         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
6604         if (!FTy)
6605           return error("Explicit call type is not a function type");
6606       }
6607 
6608       Value *Callee;
6609       unsigned CalleeTypeID;
6610       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID,
6611                            CurBB))
6612         return error("Invalid record");
6613 
6614       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
6615       if (!OpTy)
6616         return error("Callee is not a pointer type");
6617       if (!FTy) {
6618         FTyID = getContainedTypeID(CalleeTypeID);
6619         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
6620         if (!FTy)
6621           return error("Callee is not of pointer to function type");
6622       }
6623       if (Record.size() < FTy->getNumParams() + OpNum)
6624         return error("Insufficient operands to call");
6625 
6626       SmallVector<Value*, 16> Args;
6627       SmallVector<unsigned, 16> ArgTyIDs;
6628       // Read the fixed params.
6629       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
6630         unsigned ArgTyID = getContainedTypeID(FTyID, i + 1);
6631         if (FTy->getParamType(i)->isLabelTy())
6632           Args.push_back(getBasicBlock(Record[OpNum]));
6633         else
6634           Args.push_back(getValue(Record, OpNum, NextValueNo,
6635                                   FTy->getParamType(i), ArgTyID, CurBB));
6636         ArgTyIDs.push_back(ArgTyID);
6637         if (!Args.back())
6638           return error("Invalid record");
6639       }
6640 
6641       // Read type/value pairs for varargs params.
6642       if (!FTy->isVarArg()) {
6643         if (OpNum != Record.size())
6644           return error("Invalid record");
6645       } else {
6646         while (OpNum != Record.size()) {
6647           Value *Op;
6648           unsigned OpTypeID;
6649           if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
6650             return error("Invalid record");
6651           Args.push_back(Op);
6652           ArgTyIDs.push_back(OpTypeID);
6653         }
6654       }
6655 
6656       // Upgrade the bundles if needed.
6657       if (!OperandBundles.empty())
6658         UpgradeOperandBundles(OperandBundles);
6659 
6660       I = CallInst::Create(FTy, Callee, Args, OperandBundles);
6661       ResTypeID = getContainedTypeID(FTyID);
6662       OperandBundles.clear();
6663       InstructionList.push_back(I);
6664       cast<CallInst>(I)->setCallingConv(
6665           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
6666       CallInst::TailCallKind TCK = CallInst::TCK_None;
6667       if (CCInfo & (1 << bitc::CALL_TAIL))
6668         TCK = CallInst::TCK_Tail;
6669       if (CCInfo & (1 << bitc::CALL_MUSTTAIL))
6670         TCK = CallInst::TCK_MustTail;
6671       if (CCInfo & (1 << bitc::CALL_NOTAIL))
6672         TCK = CallInst::TCK_NoTail;
6673       cast<CallInst>(I)->setTailCallKind(TCK);
6674       cast<CallInst>(I)->setAttributes(PAL);
6675       if (isa<DbgInfoIntrinsic>(I))
6676         SeenDebugIntrinsic = true;
6677       if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) {
6678         I->deleteValue();
6679         return Err;
6680       }
6681       if (FMF.any()) {
6682         if (!isa<FPMathOperator>(I))
6683           return error("Fast-math-flags specified for call without "
6684                        "floating-point scalar or vector return type");
6685         I->setFastMathFlags(FMF);
6686       }
6687       break;
6688     }
6689     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
6690       if (Record.size() < 3)
6691         return error("Invalid record");
6692       unsigned OpTyID = Record[0];
6693       Type *OpTy = getTypeByID(OpTyID);
6694       Value *Op = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB);
6695       ResTypeID = Record[2];
6696       Type *ResTy = getTypeByID(ResTypeID);
6697       if (!OpTy || !Op || !ResTy)
6698         return error("Invalid record");
6699       I = new VAArgInst(Op, ResTy);
6700       InstructionList.push_back(I);
6701       break;
6702     }
6703 
6704     case bitc::FUNC_CODE_OPERAND_BUNDLE: {
6705       // A call or an invoke can be optionally prefixed with some variable
6706       // number of operand bundle blocks.  These blocks are read into
6707       // OperandBundles and consumed at the next call or invoke instruction.
6708 
6709       if (Record.empty() || Record[0] >= BundleTags.size())
6710         return error("Invalid record");
6711 
6712       std::vector<Value *> Inputs;
6713 
6714       unsigned OpNum = 1;
6715       while (OpNum != Record.size()) {
6716         Value *Op;
6717         unsigned OpTypeID;
6718         if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
6719           return error("Invalid record");
6720         Inputs.push_back(Op);
6721       }
6722 
6723       OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs));
6724       continue;
6725     }
6726 
6727     case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval]
6728       unsigned OpNum = 0;
6729       Value *Op = nullptr;
6730       unsigned OpTypeID;
6731       if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
6732         return error("Invalid record");
6733       if (OpNum != Record.size())
6734         return error("Invalid record");
6735 
6736       I = new FreezeInst(Op);
6737       ResTypeID = OpTypeID;
6738       InstructionList.push_back(I);
6739       break;
6740     }
6741     }
6742 
6743     // Add instruction to end of current BB.  If there is no current BB, reject
6744     // this file.
6745     if (!CurBB) {
6746       I->deleteValue();
6747       return error("Invalid instruction with no BB");
6748     }
6749     if (!OperandBundles.empty()) {
6750       I->deleteValue();
6751       return error("Operand bundles found with no consumer");
6752     }
6753     I->insertInto(CurBB, CurBB->end());
6754 
6755     // If this was a terminator instruction, move to the next block.
6756     if (I->isTerminator()) {
6757       ++CurBBNo;
6758       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
6759     }
6760 
6761     // Non-void values get registered in the value table for future use.
6762     if (!I->getType()->isVoidTy()) {
6763       assert(I->getType() == getTypeByID(ResTypeID) &&
6764              "Incorrect result type ID");
6765       if (Error Err = ValueList.assignValue(NextValueNo++, I, ResTypeID))
6766         return Err;
6767     }
6768   }
6769 
6770 OutOfRecordLoop:
6771 
6772   if (!OperandBundles.empty())
6773     return error("Operand bundles found with no consumer");
6774 
6775   // Check the function list for unresolved values.
6776   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
6777     if (!A->getParent()) {
6778       // We found at least one unresolved value.  Nuke them all to avoid leaks.
6779       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
6780         if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
6781           A->replaceAllUsesWith(PoisonValue::get(A->getType()));
6782           delete A;
6783         }
6784       }
6785       return error("Never resolved value found in function");
6786     }
6787   }
6788 
6789   // Unexpected unresolved metadata about to be dropped.
6790   if (MDLoader->hasFwdRefs())
6791     return error("Invalid function metadata: outgoing forward refs");
6792 
6793   if (PhiConstExprBB)
6794     PhiConstExprBB->eraseFromParent();
6795 
6796   for (const auto &Pair : ConstExprEdgeBBs) {
6797     BasicBlock *From = Pair.first.first;
6798     BasicBlock *To = Pair.first.second;
6799     BasicBlock *EdgeBB = Pair.second;
6800     BranchInst::Create(To, EdgeBB);
6801     From->getTerminator()->replaceSuccessorWith(To, EdgeBB);
6802     To->replacePhiUsesWith(From, EdgeBB);
6803     EdgeBB->moveBefore(To);
6804   }
6805 
6806   // Trim the value list down to the size it was before we parsed this function.
6807   ValueList.shrinkTo(ModuleValueListSize);
6808   MDLoader->shrinkTo(ModuleMDLoaderSize);
6809   std::vector<BasicBlock*>().swap(FunctionBBs);
6810   return Error::success();
6811 }
6812 
6813 /// Find the function body in the bitcode stream
6814 Error BitcodeReader::findFunctionInStream(
6815     Function *F,
6816     DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
6817   while (DeferredFunctionInfoIterator->second == 0) {
6818     // This is the fallback handling for the old format bitcode that
6819     // didn't contain the function index in the VST, or when we have
6820     // an anonymous function which would not have a VST entry.
6821     // Assert that we have one of those two cases.
6822     assert(VSTOffset == 0 || !F->hasName());
6823     // Parse the next body in the stream and set its position in the
6824     // DeferredFunctionInfo map.
6825     if (Error Err = rememberAndSkipFunctionBodies())
6826       return Err;
6827   }
6828   return Error::success();
6829 }
6830 
6831 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) {
6832   if (Val == SyncScope::SingleThread || Val == SyncScope::System)
6833     return SyncScope::ID(Val);
6834   if (Val >= SSIDs.size())
6835     return SyncScope::System; // Map unknown synchronization scopes to system.
6836   return SSIDs[Val];
6837 }
6838 
6839 //===----------------------------------------------------------------------===//
6840 // GVMaterializer implementation
6841 //===----------------------------------------------------------------------===//
6842 
6843 Error BitcodeReader::materialize(GlobalValue *GV) {
6844   Function *F = dyn_cast<Function>(GV);
6845   // If it's not a function or is already material, ignore the request.
6846   if (!F || !F->isMaterializable())
6847     return Error::success();
6848 
6849   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
6850   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
6851   // If its position is recorded as 0, its body is somewhere in the stream
6852   // but we haven't seen it yet.
6853   if (DFII->second == 0)
6854     if (Error Err = findFunctionInStream(F, DFII))
6855       return Err;
6856 
6857   // Materialize metadata before parsing any function bodies.
6858   if (Error Err = materializeMetadata())
6859     return Err;
6860 
6861   // Move the bit stream to the saved position of the deferred function body.
6862   if (Error JumpFailed = Stream.JumpToBit(DFII->second))
6863     return JumpFailed;
6864 
6865   // Regardless of the debug info format we want to end up in, we need
6866   // IsNewDbgInfoFormat=true to construct any debug records seen in the bitcode.
6867   F->IsNewDbgInfoFormat = true;
6868 
6869   if (Error Err = parseFunctionBody(F))
6870     return Err;
6871   F->setIsMaterializable(false);
6872 
6873   // All parsed Functions should load into the debug info format dictated by the
6874   // Module, unless we're attempting to preserve the input debug info format.
6875   if (SeenDebugIntrinsic && SeenDebugRecord)
6876     return error("Mixed debug intrinsics and debug records in bitcode module!");
6877   if (PreserveInputDbgFormat == cl::boolOrDefault::BOU_TRUE) {
6878     bool SeenAnyDebugInfo = SeenDebugIntrinsic || SeenDebugRecord;
6879     bool NewDbgInfoFormatDesired =
6880         SeenAnyDebugInfo ? SeenDebugRecord : F->getParent()->IsNewDbgInfoFormat;
6881     if (SeenAnyDebugInfo) {
6882       UseNewDbgInfoFormat = SeenDebugRecord;
6883       WriteNewDbgInfoFormatToBitcode = SeenDebugRecord;
6884       WriteNewDbgInfoFormat = SeenDebugRecord;
6885     }
6886     // If the module's debug info format doesn't match the observed input
6887     // format, then set its format now; we don't need to call the conversion
6888     // function because there must be no existing intrinsics to convert.
6889     // Otherwise, just set the format on this function now.
6890     if (NewDbgInfoFormatDesired != F->getParent()->IsNewDbgInfoFormat)
6891       F->getParent()->setNewDbgInfoFormatFlag(NewDbgInfoFormatDesired);
6892     else
6893       F->setNewDbgInfoFormatFlag(NewDbgInfoFormatDesired);
6894   } else {
6895     // If we aren't preserving formats, we use the Module flag to get our
6896     // desired format instead of reading flags, in case we are lazy-loading and
6897     // the format of the module has been changed since it was set by the flags.
6898     // We only need to convert debug info here if we have debug records but
6899     // desire the intrinsic format; everything else is a no-op or handled by the
6900     // autoupgrader.
6901     bool ModuleIsNewDbgInfoFormat = F->getParent()->IsNewDbgInfoFormat;
6902     if (ModuleIsNewDbgInfoFormat || !SeenDebugRecord)
6903       F->setNewDbgInfoFormatFlag(ModuleIsNewDbgInfoFormat);
6904     else
6905       F->setIsNewDbgInfoFormat(ModuleIsNewDbgInfoFormat);
6906   }
6907 
6908   if (StripDebugInfo)
6909     stripDebugInfo(*F);
6910 
6911   // Upgrade any old intrinsic calls in the function.
6912   for (auto &I : UpgradedIntrinsics) {
6913     for (User *U : llvm::make_early_inc_range(I.first->materialized_users()))
6914       if (CallInst *CI = dyn_cast<CallInst>(U))
6915         UpgradeIntrinsicCall(CI, I.second);
6916   }
6917 
6918   // Finish fn->subprogram upgrade for materialized functions.
6919   if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F))
6920     F->setSubprogram(SP);
6921 
6922   // Check if the TBAA Metadata are valid, otherwise we will need to strip them.
6923   if (!MDLoader->isStrippingTBAA()) {
6924     for (auto &I : instructions(F)) {
6925       MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa);
6926       if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA))
6927         continue;
6928       MDLoader->setStripTBAA(true);
6929       stripTBAA(F->getParent());
6930     }
6931   }
6932 
6933   for (auto &I : instructions(F)) {
6934     // "Upgrade" older incorrect branch weights by dropping them.
6935     if (auto *MD = I.getMetadata(LLVMContext::MD_prof)) {
6936       if (MD->getOperand(0) != nullptr && isa<MDString>(MD->getOperand(0))) {
6937         MDString *MDS = cast<MDString>(MD->getOperand(0));
6938         StringRef ProfName = MDS->getString();
6939         // Check consistency of !prof branch_weights metadata.
6940         if (ProfName != "branch_weights")
6941           continue;
6942         unsigned ExpectedNumOperands = 0;
6943         if (BranchInst *BI = dyn_cast<BranchInst>(&I))
6944           ExpectedNumOperands = BI->getNumSuccessors();
6945         else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I))
6946           ExpectedNumOperands = SI->getNumSuccessors();
6947         else if (isa<CallInst>(&I))
6948           ExpectedNumOperands = 1;
6949         else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I))
6950           ExpectedNumOperands = IBI->getNumDestinations();
6951         else if (isa<SelectInst>(&I))
6952           ExpectedNumOperands = 2;
6953         else
6954           continue; // ignore and continue.
6955 
6956         unsigned Offset = getBranchWeightOffset(MD);
6957 
6958         // If branch weight doesn't match, just strip branch weight.
6959         if (MD->getNumOperands() != Offset + ExpectedNumOperands)
6960           I.setMetadata(LLVMContext::MD_prof, nullptr);
6961       }
6962     }
6963 
6964     // Remove incompatible attributes on function calls.
6965     if (auto *CI = dyn_cast<CallBase>(&I)) {
6966       CI->removeRetAttrs(AttributeFuncs::typeIncompatible(
6967           CI->getFunctionType()->getReturnType()));
6968 
6969       for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ++ArgNo)
6970         CI->removeParamAttrs(ArgNo, AttributeFuncs::typeIncompatible(
6971                                         CI->getArgOperand(ArgNo)->getType()));
6972     }
6973   }
6974 
6975   // Look for functions that rely on old function attribute behavior.
6976   UpgradeFunctionAttributes(*F);
6977 
6978   // Bring in any functions that this function forward-referenced via
6979   // blockaddresses.
6980   return materializeForwardReferencedFunctions();
6981 }
6982 
6983 Error BitcodeReader::materializeModule() {
6984   if (Error Err = materializeMetadata())
6985     return Err;
6986 
6987   // Promise to materialize all forward references.
6988   WillMaterializeAllForwardRefs = true;
6989 
6990   // Iterate over the module, deserializing any functions that are still on
6991   // disk.
6992   for (Function &F : *TheModule) {
6993     if (Error Err = materialize(&F))
6994       return Err;
6995   }
6996   // At this point, if there are any function bodies, parse the rest of
6997   // the bits in the module past the last function block we have recorded
6998   // through either lazy scanning or the VST.
6999   if (LastFunctionBlockBit || NextUnreadBit)
7000     if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit
7001                                     ? LastFunctionBlockBit
7002                                     : NextUnreadBit))
7003       return Err;
7004 
7005   // Check that all block address forward references got resolved (as we
7006   // promised above).
7007   if (!BasicBlockFwdRefs.empty())
7008     return error("Never resolved function from blockaddress");
7009 
7010   // Upgrade any intrinsic calls that slipped through (should not happen!) and
7011   // delete the old functions to clean up. We can't do this unless the entire
7012   // module is materialized because there could always be another function body
7013   // with calls to the old function.
7014   for (auto &I : UpgradedIntrinsics) {
7015     for (auto *U : I.first->users()) {
7016       if (CallInst *CI = dyn_cast<CallInst>(U))
7017         UpgradeIntrinsicCall(CI, I.second);
7018     }
7019     if (!I.first->use_empty())
7020       I.first->replaceAllUsesWith(I.second);
7021     I.first->eraseFromParent();
7022   }
7023   UpgradedIntrinsics.clear();
7024 
7025   UpgradeDebugInfo(*TheModule);
7026 
7027   UpgradeModuleFlags(*TheModule);
7028 
7029   UpgradeARCRuntime(*TheModule);
7030 
7031   return Error::success();
7032 }
7033 
7034 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
7035   return IdentifiedStructTypes;
7036 }
7037 
7038 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
7039     BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex,
7040     StringRef ModulePath, std::function<bool(GlobalValue::GUID)> IsPrevailing)
7041     : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex),
7042       ModulePath(ModulePath), IsPrevailing(IsPrevailing) {}
7043 
7044 void ModuleSummaryIndexBitcodeReader::addThisModule() {
7045   TheIndex.addModule(ModulePath);
7046 }
7047 
7048 ModuleSummaryIndex::ModuleInfo *
7049 ModuleSummaryIndexBitcodeReader::getThisModule() {
7050   return TheIndex.getModule(ModulePath);
7051 }
7052 
7053 template <bool AllowNullValueInfo>
7054 std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID>
7055 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) {
7056   auto VGI = ValueIdToValueInfoMap[ValueId];
7057   // We can have a null value info for memprof callsite info records in
7058   // distributed ThinLTO index files when the callee function summary is not
7059   // included in the index. The bitcode writer records 0 in that case,
7060   // and the caller of this helper will set AllowNullValueInfo to true.
7061   assert(AllowNullValueInfo || std::get<0>(VGI));
7062   return VGI;
7063 }
7064 
7065 void ModuleSummaryIndexBitcodeReader::setValueGUID(
7066     uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage,
7067     StringRef SourceFileName) {
7068   std::string GlobalId =
7069       GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName);
7070   auto ValueGUID = GlobalValue::getGUID(GlobalId);
7071   auto OriginalNameID = ValueGUID;
7072   if (GlobalValue::isLocalLinkage(Linkage))
7073     OriginalNameID = GlobalValue::getGUID(ValueName);
7074   if (PrintSummaryGUIDs)
7075     dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is "
7076            << ValueName << "\n";
7077 
7078   // UseStrtab is false for legacy summary formats and value names are
7079   // created on stack. In that case we save the name in a string saver in
7080   // the index so that the value name can be recorded.
7081   ValueIdToValueInfoMap[ValueID] = std::make_tuple(
7082       TheIndex.getOrInsertValueInfo(
7083           ValueGUID, UseStrtab ? ValueName : TheIndex.saveString(ValueName)),
7084       OriginalNameID, ValueGUID);
7085 }
7086 
7087 // Specialized value symbol table parser used when reading module index
7088 // blocks where we don't actually create global values. The parsed information
7089 // is saved in the bitcode reader for use when later parsing summaries.
7090 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable(
7091     uint64_t Offset,
7092     DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) {
7093   // With a strtab the VST is not required to parse the summary.
7094   if (UseStrtab)
7095     return Error::success();
7096 
7097   assert(Offset > 0 && "Expected non-zero VST offset");
7098   Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
7099   if (!MaybeCurrentBit)
7100     return MaybeCurrentBit.takeError();
7101   uint64_t CurrentBit = MaybeCurrentBit.get();
7102 
7103   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
7104     return Err;
7105 
7106   SmallVector<uint64_t, 64> Record;
7107 
7108   // Read all the records for this value table.
7109   SmallString<128> ValueName;
7110 
7111   while (true) {
7112     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
7113     if (!MaybeEntry)
7114       return MaybeEntry.takeError();
7115     BitstreamEntry Entry = MaybeEntry.get();
7116 
7117     switch (Entry.Kind) {
7118     case BitstreamEntry::SubBlock: // Handled for us already.
7119     case BitstreamEntry::Error:
7120       return error("Malformed block");
7121     case BitstreamEntry::EndBlock:
7122       // Done parsing VST, jump back to wherever we came from.
7123       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
7124         return JumpFailed;
7125       return Error::success();
7126     case BitstreamEntry::Record:
7127       // The interesting case.
7128       break;
7129     }
7130 
7131     // Read a record.
7132     Record.clear();
7133     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
7134     if (!MaybeRecord)
7135       return MaybeRecord.takeError();
7136     switch (MaybeRecord.get()) {
7137     default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records).
7138       break;
7139     case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
7140       if (convertToString(Record, 1, ValueName))
7141         return error("Invalid record");
7142       unsigned ValueID = Record[0];
7143       assert(!SourceFileName.empty());
7144       auto VLI = ValueIdToLinkageMap.find(ValueID);
7145       assert(VLI != ValueIdToLinkageMap.end() &&
7146              "No linkage found for VST entry?");
7147       auto Linkage = VLI->second;
7148       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
7149       ValueName.clear();
7150       break;
7151     }
7152     case bitc::VST_CODE_FNENTRY: {
7153       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
7154       if (convertToString(Record, 2, ValueName))
7155         return error("Invalid record");
7156       unsigned ValueID = Record[0];
7157       assert(!SourceFileName.empty());
7158       auto VLI = ValueIdToLinkageMap.find(ValueID);
7159       assert(VLI != ValueIdToLinkageMap.end() &&
7160              "No linkage found for VST entry?");
7161       auto Linkage = VLI->second;
7162       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
7163       ValueName.clear();
7164       break;
7165     }
7166     case bitc::VST_CODE_COMBINED_ENTRY: {
7167       // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
7168       unsigned ValueID = Record[0];
7169       GlobalValue::GUID RefGUID = Record[1];
7170       // The "original name", which is the second value of the pair will be
7171       // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index.
7172       ValueIdToValueInfoMap[ValueID] = std::make_tuple(
7173           TheIndex.getOrInsertValueInfo(RefGUID), RefGUID, RefGUID);
7174       break;
7175     }
7176     }
7177   }
7178 }
7179 
7180 // Parse just the blocks needed for building the index out of the module.
7181 // At the end of this routine the module Index is populated with a map
7182 // from global value id to GlobalValueSummary objects.
7183 Error ModuleSummaryIndexBitcodeReader::parseModule() {
7184   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
7185     return Err;
7186 
7187   SmallVector<uint64_t, 64> Record;
7188   DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap;
7189   unsigned ValueId = 0;
7190 
7191   // Read the index for this module.
7192   while (true) {
7193     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
7194     if (!MaybeEntry)
7195       return MaybeEntry.takeError();
7196     llvm::BitstreamEntry Entry = MaybeEntry.get();
7197 
7198     switch (Entry.Kind) {
7199     case BitstreamEntry::Error:
7200       return error("Malformed block");
7201     case BitstreamEntry::EndBlock:
7202       return Error::success();
7203 
7204     case BitstreamEntry::SubBlock:
7205       switch (Entry.ID) {
7206       default: // Skip unknown content.
7207         if (Error Err = Stream.SkipBlock())
7208           return Err;
7209         break;
7210       case bitc::BLOCKINFO_BLOCK_ID:
7211         // Need to parse these to get abbrev ids (e.g. for VST)
7212         if (Error Err = readBlockInfo())
7213           return Err;
7214         break;
7215       case bitc::VALUE_SYMTAB_BLOCK_ID:
7216         // Should have been parsed earlier via VSTOffset, unless there
7217         // is no summary section.
7218         assert(((SeenValueSymbolTable && VSTOffset > 0) ||
7219                 !SeenGlobalValSummary) &&
7220                "Expected early VST parse via VSTOffset record");
7221         if (Error Err = Stream.SkipBlock())
7222           return Err;
7223         break;
7224       case bitc::GLOBALVAL_SUMMARY_BLOCK_ID:
7225       case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID:
7226         // Add the module if it is a per-module index (has a source file name).
7227         if (!SourceFileName.empty())
7228           addThisModule();
7229         assert(!SeenValueSymbolTable &&
7230                "Already read VST when parsing summary block?");
7231         // We might not have a VST if there were no values in the
7232         // summary. An empty summary block generated when we are
7233         // performing ThinLTO compiles so we don't later invoke
7234         // the regular LTO process on them.
7235         if (VSTOffset > 0) {
7236           if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap))
7237             return Err;
7238           SeenValueSymbolTable = true;
7239         }
7240         SeenGlobalValSummary = true;
7241         if (Error Err = parseEntireSummary(Entry.ID))
7242           return Err;
7243         break;
7244       case bitc::MODULE_STRTAB_BLOCK_ID:
7245         if (Error Err = parseModuleStringTable())
7246           return Err;
7247         break;
7248       }
7249       continue;
7250 
7251     case BitstreamEntry::Record: {
7252         Record.clear();
7253         Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
7254         if (!MaybeBitCode)
7255           return MaybeBitCode.takeError();
7256         switch (MaybeBitCode.get()) {
7257         default:
7258           break; // Default behavior, ignore unknown content.
7259         case bitc::MODULE_CODE_VERSION: {
7260           if (Error Err = parseVersionRecord(Record).takeError())
7261             return Err;
7262           break;
7263         }
7264         /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
7265         case bitc::MODULE_CODE_SOURCE_FILENAME: {
7266           SmallString<128> ValueName;
7267           if (convertToString(Record, 0, ValueName))
7268             return error("Invalid record");
7269           SourceFileName = ValueName.c_str();
7270           break;
7271         }
7272         /// MODULE_CODE_HASH: [5*i32]
7273         case bitc::MODULE_CODE_HASH: {
7274           if (Record.size() != 5)
7275             return error("Invalid hash length " + Twine(Record.size()).str());
7276           auto &Hash = getThisModule()->second;
7277           int Pos = 0;
7278           for (auto &Val : Record) {
7279             assert(!(Val >> 32) && "Unexpected high bits set");
7280             Hash[Pos++] = Val;
7281           }
7282           break;
7283         }
7284         /// MODULE_CODE_VSTOFFSET: [offset]
7285         case bitc::MODULE_CODE_VSTOFFSET:
7286           if (Record.empty())
7287             return error("Invalid record");
7288           // Note that we subtract 1 here because the offset is relative to one
7289           // word before the start of the identification or module block, which
7290           // was historically always the start of the regular bitcode header.
7291           VSTOffset = Record[0] - 1;
7292           break;
7293         // v1 GLOBALVAR: [pointer type, isconst,     initid,       linkage, ...]
7294         // v1 FUNCTION:  [type,         callingconv, isproto,      linkage, ...]
7295         // v1 ALIAS:     [alias type,   addrspace,   aliasee val#, linkage, ...]
7296         // v2: [strtab offset, strtab size, v1]
7297         case bitc::MODULE_CODE_GLOBALVAR:
7298         case bitc::MODULE_CODE_FUNCTION:
7299         case bitc::MODULE_CODE_ALIAS: {
7300           StringRef Name;
7301           ArrayRef<uint64_t> GVRecord;
7302           std::tie(Name, GVRecord) = readNameFromStrtab(Record);
7303           if (GVRecord.size() <= 3)
7304             return error("Invalid record");
7305           uint64_t RawLinkage = GVRecord[3];
7306           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
7307           if (!UseStrtab) {
7308             ValueIdToLinkageMap[ValueId++] = Linkage;
7309             break;
7310           }
7311 
7312           setValueGUID(ValueId++, Name, Linkage, SourceFileName);
7313           break;
7314         }
7315         }
7316       }
7317       continue;
7318     }
7319   }
7320 }
7321 
7322 std::vector<ValueInfo>
7323 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) {
7324   std::vector<ValueInfo> Ret;
7325   Ret.reserve(Record.size());
7326   for (uint64_t RefValueId : Record)
7327     Ret.push_back(std::get<0>(getValueInfoFromValueId(RefValueId)));
7328   return Ret;
7329 }
7330 
7331 std::vector<FunctionSummary::EdgeTy>
7332 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record,
7333                                               bool IsOldProfileFormat,
7334                                               bool HasProfile, bool HasRelBF) {
7335   std::vector<FunctionSummary::EdgeTy> Ret;
7336   Ret.reserve(Record.size());
7337   for (unsigned I = 0, E = Record.size(); I != E; ++I) {
7338     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
7339     bool HasTailCall = false;
7340     uint64_t RelBF = 0;
7341     ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[I]));
7342     if (IsOldProfileFormat) {
7343       I += 1; // Skip old callsitecount field
7344       if (HasProfile)
7345         I += 1; // Skip old profilecount field
7346     } else if (HasProfile)
7347       std::tie(Hotness, HasTailCall) =
7348           getDecodedHotnessCallEdgeInfo(Record[++I]);
7349     else if (HasRelBF)
7350       getDecodedRelBFCallEdgeInfo(Record[++I], RelBF, HasTailCall);
7351     Ret.push_back(FunctionSummary::EdgeTy{
7352         Callee, CalleeInfo(Hotness, HasTailCall, RelBF)});
7353   }
7354   return Ret;
7355 }
7356 
7357 static void
7358 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot,
7359                                        WholeProgramDevirtResolution &Wpd) {
7360   uint64_t ArgNum = Record[Slot++];
7361   WholeProgramDevirtResolution::ByArg &B =
7362       Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}];
7363   Slot += ArgNum;
7364 
7365   B.TheKind =
7366       static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]);
7367   B.Info = Record[Slot++];
7368   B.Byte = Record[Slot++];
7369   B.Bit = Record[Slot++];
7370 }
7371 
7372 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record,
7373                                               StringRef Strtab, size_t &Slot,
7374                                               TypeIdSummary &TypeId) {
7375   uint64_t Id = Record[Slot++];
7376   WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id];
7377 
7378   Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]);
7379   Wpd.SingleImplName = {Strtab.data() + Record[Slot],
7380                         static_cast<size_t>(Record[Slot + 1])};
7381   Slot += 2;
7382 
7383   uint64_t ResByArgNum = Record[Slot++];
7384   for (uint64_t I = 0; I != ResByArgNum; ++I)
7385     parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd);
7386 }
7387 
7388 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record,
7389                                      StringRef Strtab,
7390                                      ModuleSummaryIndex &TheIndex) {
7391   size_t Slot = 0;
7392   TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary(
7393       {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])});
7394   Slot += 2;
7395 
7396   TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]);
7397   TypeId.TTRes.SizeM1BitWidth = Record[Slot++];
7398   TypeId.TTRes.AlignLog2 = Record[Slot++];
7399   TypeId.TTRes.SizeM1 = Record[Slot++];
7400   TypeId.TTRes.BitMask = Record[Slot++];
7401   TypeId.TTRes.InlineBits = Record[Slot++];
7402 
7403   while (Slot < Record.size())
7404     parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId);
7405 }
7406 
7407 std::vector<FunctionSummary::ParamAccess>
7408 ModuleSummaryIndexBitcodeReader::parseParamAccesses(ArrayRef<uint64_t> Record) {
7409   auto ReadRange = [&]() {
7410     APInt Lower(FunctionSummary::ParamAccess::RangeWidth,
7411                 BitcodeReader::decodeSignRotatedValue(Record.front()));
7412     Record = Record.drop_front();
7413     APInt Upper(FunctionSummary::ParamAccess::RangeWidth,
7414                 BitcodeReader::decodeSignRotatedValue(Record.front()));
7415     Record = Record.drop_front();
7416     ConstantRange Range{Lower, Upper};
7417     assert(!Range.isFullSet());
7418     assert(!Range.isUpperSignWrapped());
7419     return Range;
7420   };
7421 
7422   std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
7423   while (!Record.empty()) {
7424     PendingParamAccesses.emplace_back();
7425     FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back();
7426     ParamAccess.ParamNo = Record.front();
7427     Record = Record.drop_front();
7428     ParamAccess.Use = ReadRange();
7429     ParamAccess.Calls.resize(Record.front());
7430     Record = Record.drop_front();
7431     for (auto &Call : ParamAccess.Calls) {
7432       Call.ParamNo = Record.front();
7433       Record = Record.drop_front();
7434       Call.Callee = std::get<0>(getValueInfoFromValueId(Record.front()));
7435       Record = Record.drop_front();
7436       Call.Offsets = ReadRange();
7437     }
7438   }
7439   return PendingParamAccesses;
7440 }
7441 
7442 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo(
7443     ArrayRef<uint64_t> Record, size_t &Slot,
7444     TypeIdCompatibleVtableInfo &TypeId) {
7445   uint64_t Offset = Record[Slot++];
7446   ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[Slot++]));
7447   TypeId.push_back({Offset, Callee});
7448 }
7449 
7450 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord(
7451     ArrayRef<uint64_t> Record) {
7452   size_t Slot = 0;
7453   TypeIdCompatibleVtableInfo &TypeId =
7454       TheIndex.getOrInsertTypeIdCompatibleVtableSummary(
7455           {Strtab.data() + Record[Slot],
7456            static_cast<size_t>(Record[Slot + 1])});
7457   Slot += 2;
7458 
7459   while (Slot < Record.size())
7460     parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId);
7461 }
7462 
7463 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt,
7464                            unsigned WOCnt) {
7465   // Readonly and writeonly refs are in the end of the refs list.
7466   assert(ROCnt + WOCnt <= Refs.size());
7467   unsigned FirstWORef = Refs.size() - WOCnt;
7468   unsigned RefNo = FirstWORef - ROCnt;
7469   for (; RefNo < FirstWORef; ++RefNo)
7470     Refs[RefNo].setReadOnly();
7471   for (; RefNo < Refs.size(); ++RefNo)
7472     Refs[RefNo].setWriteOnly();
7473 }
7474 
7475 // Eagerly parse the entire summary block. This populates the GlobalValueSummary
7476 // objects in the index.
7477 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) {
7478   if (Error Err = Stream.EnterSubBlock(ID))
7479     return Err;
7480   SmallVector<uint64_t, 64> Record;
7481 
7482   // Parse version
7483   {
7484     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
7485     if (!MaybeEntry)
7486       return MaybeEntry.takeError();
7487     BitstreamEntry Entry = MaybeEntry.get();
7488 
7489     if (Entry.Kind != BitstreamEntry::Record)
7490       return error("Invalid Summary Block: record for version expected");
7491     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
7492     if (!MaybeRecord)
7493       return MaybeRecord.takeError();
7494     if (MaybeRecord.get() != bitc::FS_VERSION)
7495       return error("Invalid Summary Block: version expected");
7496   }
7497   const uint64_t Version = Record[0];
7498   const bool IsOldProfileFormat = Version == 1;
7499   if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion)
7500     return error("Invalid summary version " + Twine(Version) +
7501                  ". Version should be in the range [1-" +
7502                  Twine(ModuleSummaryIndex::BitcodeSummaryVersion) +
7503                  "].");
7504   Record.clear();
7505 
7506   // Keep around the last seen summary to be used when we see an optional
7507   // "OriginalName" attachement.
7508   GlobalValueSummary *LastSeenSummary = nullptr;
7509   GlobalValue::GUID LastSeenGUID = 0;
7510 
7511   // We can expect to see any number of type ID information records before
7512   // each function summary records; these variables store the information
7513   // collected so far so that it can be used to create the summary object.
7514   std::vector<GlobalValue::GUID> PendingTypeTests;
7515   std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls,
7516       PendingTypeCheckedLoadVCalls;
7517   std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls,
7518       PendingTypeCheckedLoadConstVCalls;
7519   std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
7520 
7521   std::vector<CallsiteInfo> PendingCallsites;
7522   std::vector<AllocInfo> PendingAllocs;
7523 
7524   while (true) {
7525     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
7526     if (!MaybeEntry)
7527       return MaybeEntry.takeError();
7528     BitstreamEntry Entry = MaybeEntry.get();
7529 
7530     switch (Entry.Kind) {
7531     case BitstreamEntry::SubBlock: // Handled for us already.
7532     case BitstreamEntry::Error:
7533       return error("Malformed block");
7534     case BitstreamEntry::EndBlock:
7535       return Error::success();
7536     case BitstreamEntry::Record:
7537       // The interesting case.
7538       break;
7539     }
7540 
7541     // Read a record. The record format depends on whether this
7542     // is a per-module index or a combined index file. In the per-module
7543     // case the records contain the associated value's ID for correlation
7544     // with VST entries. In the combined index the correlation is done
7545     // via the bitcode offset of the summary records (which were saved
7546     // in the combined index VST entries). The records also contain
7547     // information used for ThinLTO renaming and importing.
7548     Record.clear();
7549     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
7550     if (!MaybeBitCode)
7551       return MaybeBitCode.takeError();
7552     switch (unsigned BitCode = MaybeBitCode.get()) {
7553     default: // Default behavior: ignore.
7554       break;
7555     case bitc::FS_FLAGS: {  // [flags]
7556       TheIndex.setFlags(Record[0]);
7557       break;
7558     }
7559     case bitc::FS_VALUE_GUID: { // [valueid, refguid]
7560       uint64_t ValueID = Record[0];
7561       GlobalValue::GUID RefGUID = Record[1];
7562       ValueIdToValueInfoMap[ValueID] = std::make_tuple(
7563           TheIndex.getOrInsertValueInfo(RefGUID), RefGUID, RefGUID);
7564       break;
7565     }
7566     // FS_PERMODULE is legacy and does not have support for the tail call flag.
7567     // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs,
7568     //                numrefs x valueid, n x (valueid)]
7569     // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs,
7570     //                        numrefs x valueid,
7571     //                        n x (valueid, hotness+tailcall flags)]
7572     // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs,
7573     //                      numrefs x valueid,
7574     //                      n x (valueid, relblockfreq+tailcall)]
7575     case bitc::FS_PERMODULE:
7576     case bitc::FS_PERMODULE_RELBF:
7577     case bitc::FS_PERMODULE_PROFILE: {
7578       unsigned ValueID = Record[0];
7579       uint64_t RawFlags = Record[1];
7580       unsigned InstCount = Record[2];
7581       uint64_t RawFunFlags = 0;
7582       unsigned NumRefs = Record[3];
7583       unsigned NumRORefs = 0, NumWORefs = 0;
7584       int RefListStartIndex = 4;
7585       if (Version >= 4) {
7586         RawFunFlags = Record[3];
7587         NumRefs = Record[4];
7588         RefListStartIndex = 5;
7589         if (Version >= 5) {
7590           NumRORefs = Record[5];
7591           RefListStartIndex = 6;
7592           if (Version >= 7) {
7593             NumWORefs = Record[6];
7594             RefListStartIndex = 7;
7595           }
7596         }
7597       }
7598 
7599       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7600       // The module path string ref set in the summary must be owned by the
7601       // index's module string table. Since we don't have a module path
7602       // string table section in the per-module index, we create a single
7603       // module path string table entry with an empty (0) ID to take
7604       // ownership.
7605       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
7606       assert(Record.size() >= RefListStartIndex + NumRefs &&
7607              "Record size inconsistent with number of references");
7608       std::vector<ValueInfo> Refs = makeRefList(
7609           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
7610       bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE);
7611       bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF);
7612       std::vector<FunctionSummary::EdgeTy> Calls = makeCallList(
7613           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
7614           IsOldProfileFormat, HasProfile, HasRelBF);
7615       setSpecialRefs(Refs, NumRORefs, NumWORefs);
7616       auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID);
7617       // In order to save memory, only record the memprof summaries if this is
7618       // the prevailing copy of a symbol. The linker doesn't resolve local
7619       // linkage values so don't check whether those are prevailing.
7620       auto LT = (GlobalValue::LinkageTypes)Flags.Linkage;
7621       if (IsPrevailing &&
7622           !GlobalValue::isLocalLinkage(LT) &&
7623           !IsPrevailing(std::get<2>(VIAndOriginalGUID))) {
7624         PendingCallsites.clear();
7625         PendingAllocs.clear();
7626       }
7627       auto FS = std::make_unique<FunctionSummary>(
7628           Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0,
7629           std::move(Refs), std::move(Calls), std::move(PendingTypeTests),
7630           std::move(PendingTypeTestAssumeVCalls),
7631           std::move(PendingTypeCheckedLoadVCalls),
7632           std::move(PendingTypeTestAssumeConstVCalls),
7633           std::move(PendingTypeCheckedLoadConstVCalls),
7634           std::move(PendingParamAccesses), std::move(PendingCallsites),
7635           std::move(PendingAllocs));
7636       FS->setModulePath(getThisModule()->first());
7637       FS->setOriginalName(std::get<1>(VIAndOriginalGUID));
7638       TheIndex.addGlobalValueSummary(std::get<0>(VIAndOriginalGUID),
7639                                      std::move(FS));
7640       break;
7641     }
7642     // FS_ALIAS: [valueid, flags, valueid]
7643     // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as
7644     // they expect all aliasee summaries to be available.
7645     case bitc::FS_ALIAS: {
7646       unsigned ValueID = Record[0];
7647       uint64_t RawFlags = Record[1];
7648       unsigned AliaseeID = Record[2];
7649       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7650       auto AS = std::make_unique<AliasSummary>(Flags);
7651       // The module path string ref set in the summary must be owned by the
7652       // index's module string table. Since we don't have a module path
7653       // string table section in the per-module index, we create a single
7654       // module path string table entry with an empty (0) ID to take
7655       // ownership.
7656       AS->setModulePath(getThisModule()->first());
7657 
7658       auto AliaseeVI = std::get<0>(getValueInfoFromValueId(AliaseeID));
7659       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath);
7660       if (!AliaseeInModule)
7661         return error("Alias expects aliasee summary to be parsed");
7662       AS->setAliasee(AliaseeVI, AliaseeInModule);
7663 
7664       auto GUID = getValueInfoFromValueId(ValueID);
7665       AS->setOriginalName(std::get<1>(GUID));
7666       TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(AS));
7667       break;
7668     }
7669     // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid]
7670     case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: {
7671       unsigned ValueID = Record[0];
7672       uint64_t RawFlags = Record[1];
7673       unsigned RefArrayStart = 2;
7674       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
7675                                       /* WriteOnly */ false,
7676                                       /* Constant */ false,
7677                                       GlobalObject::VCallVisibilityPublic);
7678       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7679       if (Version >= 5) {
7680         GVF = getDecodedGVarFlags(Record[2]);
7681         RefArrayStart = 3;
7682       }
7683       std::vector<ValueInfo> Refs =
7684           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
7685       auto FS =
7686           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
7687       FS->setModulePath(getThisModule()->first());
7688       auto GUID = getValueInfoFromValueId(ValueID);
7689       FS->setOriginalName(std::get<1>(GUID));
7690       TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(FS));
7691       break;
7692     }
7693     // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags,
7694     //                        numrefs, numrefs x valueid,
7695     //                        n x (valueid, offset)]
7696     case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: {
7697       unsigned ValueID = Record[0];
7698       uint64_t RawFlags = Record[1];
7699       GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]);
7700       unsigned NumRefs = Record[3];
7701       unsigned RefListStartIndex = 4;
7702       unsigned VTableListStartIndex = RefListStartIndex + NumRefs;
7703       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7704       std::vector<ValueInfo> Refs = makeRefList(
7705           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
7706       VTableFuncList VTableFuncs;
7707       for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) {
7708         ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[I]));
7709         uint64_t Offset = Record[++I];
7710         VTableFuncs.push_back({Callee, Offset});
7711       }
7712       auto VS =
7713           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
7714       VS->setModulePath(getThisModule()->first());
7715       VS->setVTableFuncs(VTableFuncs);
7716       auto GUID = getValueInfoFromValueId(ValueID);
7717       VS->setOriginalName(std::get<1>(GUID));
7718       TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(VS));
7719       break;
7720     }
7721     // FS_COMBINED is legacy and does not have support for the tail call flag.
7722     // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs,
7723     //               numrefs x valueid, n x (valueid)]
7724     // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs,
7725     //                       numrefs x valueid,
7726     //                       n x (valueid, hotness+tailcall flags)]
7727     case bitc::FS_COMBINED:
7728     case bitc::FS_COMBINED_PROFILE: {
7729       unsigned ValueID = Record[0];
7730       uint64_t ModuleId = Record[1];
7731       uint64_t RawFlags = Record[2];
7732       unsigned InstCount = Record[3];
7733       uint64_t RawFunFlags = 0;
7734       uint64_t EntryCount = 0;
7735       unsigned NumRefs = Record[4];
7736       unsigned NumRORefs = 0, NumWORefs = 0;
7737       int RefListStartIndex = 5;
7738 
7739       if (Version >= 4) {
7740         RawFunFlags = Record[4];
7741         RefListStartIndex = 6;
7742         size_t NumRefsIndex = 5;
7743         if (Version >= 5) {
7744           unsigned NumRORefsOffset = 1;
7745           RefListStartIndex = 7;
7746           if (Version >= 6) {
7747             NumRefsIndex = 6;
7748             EntryCount = Record[5];
7749             RefListStartIndex = 8;
7750             if (Version >= 7) {
7751               RefListStartIndex = 9;
7752               NumWORefs = Record[8];
7753               NumRORefsOffset = 2;
7754             }
7755           }
7756           NumRORefs = Record[RefListStartIndex - NumRORefsOffset];
7757         }
7758         NumRefs = Record[NumRefsIndex];
7759       }
7760 
7761       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7762       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
7763       assert(Record.size() >= RefListStartIndex + NumRefs &&
7764              "Record size inconsistent with number of references");
7765       std::vector<ValueInfo> Refs = makeRefList(
7766           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
7767       bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE);
7768       std::vector<FunctionSummary::EdgeTy> Edges = makeCallList(
7769           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
7770           IsOldProfileFormat, HasProfile, false);
7771       ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID));
7772       setSpecialRefs(Refs, NumRORefs, NumWORefs);
7773       auto FS = std::make_unique<FunctionSummary>(
7774           Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount,
7775           std::move(Refs), std::move(Edges), std::move(PendingTypeTests),
7776           std::move(PendingTypeTestAssumeVCalls),
7777           std::move(PendingTypeCheckedLoadVCalls),
7778           std::move(PendingTypeTestAssumeConstVCalls),
7779           std::move(PendingTypeCheckedLoadConstVCalls),
7780           std::move(PendingParamAccesses), std::move(PendingCallsites),
7781           std::move(PendingAllocs));
7782       LastSeenSummary = FS.get();
7783       LastSeenGUID = VI.getGUID();
7784       FS->setModulePath(ModuleIdMap[ModuleId]);
7785       TheIndex.addGlobalValueSummary(VI, std::move(FS));
7786       break;
7787     }
7788     // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid]
7789     // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as
7790     // they expect all aliasee summaries to be available.
7791     case bitc::FS_COMBINED_ALIAS: {
7792       unsigned ValueID = Record[0];
7793       uint64_t ModuleId = Record[1];
7794       uint64_t RawFlags = Record[2];
7795       unsigned AliaseeValueId = Record[3];
7796       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7797       auto AS = std::make_unique<AliasSummary>(Flags);
7798       LastSeenSummary = AS.get();
7799       AS->setModulePath(ModuleIdMap[ModuleId]);
7800 
7801       auto AliaseeVI = std::get<0>(getValueInfoFromValueId(AliaseeValueId));
7802       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath());
7803       AS->setAliasee(AliaseeVI, AliaseeInModule);
7804 
7805       ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID));
7806       LastSeenGUID = VI.getGUID();
7807       TheIndex.addGlobalValueSummary(VI, std::move(AS));
7808       break;
7809     }
7810     // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid]
7811     case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: {
7812       unsigned ValueID = Record[0];
7813       uint64_t ModuleId = Record[1];
7814       uint64_t RawFlags = Record[2];
7815       unsigned RefArrayStart = 3;
7816       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
7817                                       /* WriteOnly */ false,
7818                                       /* Constant */ false,
7819                                       GlobalObject::VCallVisibilityPublic);
7820       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7821       if (Version >= 5) {
7822         GVF = getDecodedGVarFlags(Record[3]);
7823         RefArrayStart = 4;
7824       }
7825       std::vector<ValueInfo> Refs =
7826           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
7827       auto FS =
7828           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
7829       LastSeenSummary = FS.get();
7830       FS->setModulePath(ModuleIdMap[ModuleId]);
7831       ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID));
7832       LastSeenGUID = VI.getGUID();
7833       TheIndex.addGlobalValueSummary(VI, std::move(FS));
7834       break;
7835     }
7836     // FS_COMBINED_ORIGINAL_NAME: [original_name]
7837     case bitc::FS_COMBINED_ORIGINAL_NAME: {
7838       uint64_t OriginalName = Record[0];
7839       if (!LastSeenSummary)
7840         return error("Name attachment that does not follow a combined record");
7841       LastSeenSummary->setOriginalName(OriginalName);
7842       TheIndex.addOriginalName(LastSeenGUID, OriginalName);
7843       // Reset the LastSeenSummary
7844       LastSeenSummary = nullptr;
7845       LastSeenGUID = 0;
7846       break;
7847     }
7848     case bitc::FS_TYPE_TESTS:
7849       assert(PendingTypeTests.empty());
7850       llvm::append_range(PendingTypeTests, Record);
7851       break;
7852 
7853     case bitc::FS_TYPE_TEST_ASSUME_VCALLS:
7854       assert(PendingTypeTestAssumeVCalls.empty());
7855       for (unsigned I = 0; I != Record.size(); I += 2)
7856         PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]});
7857       break;
7858 
7859     case bitc::FS_TYPE_CHECKED_LOAD_VCALLS:
7860       assert(PendingTypeCheckedLoadVCalls.empty());
7861       for (unsigned I = 0; I != Record.size(); I += 2)
7862         PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]});
7863       break;
7864 
7865     case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL:
7866       PendingTypeTestAssumeConstVCalls.push_back(
7867           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
7868       break;
7869 
7870     case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL:
7871       PendingTypeCheckedLoadConstVCalls.push_back(
7872           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
7873       break;
7874 
7875     case bitc::FS_CFI_FUNCTION_DEFS: {
7876       std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs();
7877       for (unsigned I = 0; I != Record.size(); I += 2)
7878         CfiFunctionDefs.insert(
7879             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
7880       break;
7881     }
7882 
7883     case bitc::FS_CFI_FUNCTION_DECLS: {
7884       std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls();
7885       for (unsigned I = 0; I != Record.size(); I += 2)
7886         CfiFunctionDecls.insert(
7887             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
7888       break;
7889     }
7890 
7891     case bitc::FS_TYPE_ID:
7892       parseTypeIdSummaryRecord(Record, Strtab, TheIndex);
7893       break;
7894 
7895     case bitc::FS_TYPE_ID_METADATA:
7896       parseTypeIdCompatibleVtableSummaryRecord(Record);
7897       break;
7898 
7899     case bitc::FS_BLOCK_COUNT:
7900       TheIndex.addBlockCount(Record[0]);
7901       break;
7902 
7903     case bitc::FS_PARAM_ACCESS: {
7904       PendingParamAccesses = parseParamAccesses(Record);
7905       break;
7906     }
7907 
7908     case bitc::FS_STACK_IDS: { // [n x stackid]
7909       // Save stack ids in the reader to consult when adding stack ids from the
7910       // lists in the stack node and alloc node entries.
7911       StackIds = ArrayRef<uint64_t>(Record);
7912       break;
7913     }
7914 
7915     case bitc::FS_PERMODULE_CALLSITE_INFO: {
7916       unsigned ValueID = Record[0];
7917       SmallVector<unsigned> StackIdList;
7918       for (auto R = Record.begin() + 1; R != Record.end(); R++) {
7919         assert(*R < StackIds.size());
7920         StackIdList.push_back(TheIndex.addOrGetStackIdIndex(StackIds[*R]));
7921       }
7922       ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID));
7923       PendingCallsites.push_back(CallsiteInfo({VI, std::move(StackIdList)}));
7924       break;
7925     }
7926 
7927     case bitc::FS_COMBINED_CALLSITE_INFO: {
7928       auto RecordIter = Record.begin();
7929       unsigned ValueID = *RecordIter++;
7930       unsigned NumStackIds = *RecordIter++;
7931       unsigned NumVersions = *RecordIter++;
7932       assert(Record.size() == 3 + NumStackIds + NumVersions);
7933       SmallVector<unsigned> StackIdList;
7934       for (unsigned J = 0; J < NumStackIds; J++) {
7935         assert(*RecordIter < StackIds.size());
7936         StackIdList.push_back(
7937             TheIndex.addOrGetStackIdIndex(StackIds[*RecordIter++]));
7938       }
7939       SmallVector<unsigned> Versions;
7940       for (unsigned J = 0; J < NumVersions; J++)
7941         Versions.push_back(*RecordIter++);
7942       ValueInfo VI = std::get<0>(
7943           getValueInfoFromValueId</*AllowNullValueInfo*/ true>(ValueID));
7944       PendingCallsites.push_back(
7945           CallsiteInfo({VI, std::move(Versions), std::move(StackIdList)}));
7946       break;
7947     }
7948 
7949     case bitc::FS_PERMODULE_ALLOC_INFO: {
7950       unsigned I = 0;
7951       std::vector<MIBInfo> MIBs;
7952       while (I < Record.size()) {
7953         assert(Record.size() - I >= 2);
7954         AllocationType AllocType = (AllocationType)Record[I++];
7955         unsigned NumStackEntries = Record[I++];
7956         assert(Record.size() - I >= NumStackEntries);
7957         SmallVector<unsigned> StackIdList;
7958         for (unsigned J = 0; J < NumStackEntries; J++) {
7959           assert(Record[I] < StackIds.size());
7960           StackIdList.push_back(
7961               TheIndex.addOrGetStackIdIndex(StackIds[Record[I++]]));
7962         }
7963         MIBs.push_back(MIBInfo(AllocType, std::move(StackIdList)));
7964       }
7965       PendingAllocs.push_back(AllocInfo(std::move(MIBs)));
7966       break;
7967     }
7968 
7969     case bitc::FS_COMBINED_ALLOC_INFO: {
7970       unsigned I = 0;
7971       std::vector<MIBInfo> MIBs;
7972       unsigned NumMIBs = Record[I++];
7973       unsigned NumVersions = Record[I++];
7974       unsigned MIBsRead = 0;
7975       while (MIBsRead++ < NumMIBs) {
7976         assert(Record.size() - I >= 2);
7977         AllocationType AllocType = (AllocationType)Record[I++];
7978         unsigned NumStackEntries = Record[I++];
7979         assert(Record.size() - I >= NumStackEntries);
7980         SmallVector<unsigned> StackIdList;
7981         for (unsigned J = 0; J < NumStackEntries; J++) {
7982           assert(Record[I] < StackIds.size());
7983           StackIdList.push_back(
7984               TheIndex.addOrGetStackIdIndex(StackIds[Record[I++]]));
7985         }
7986         MIBs.push_back(MIBInfo(AllocType, std::move(StackIdList)));
7987       }
7988       assert(Record.size() - I >= NumVersions);
7989       SmallVector<uint8_t> Versions;
7990       for (unsigned J = 0; J < NumVersions; J++)
7991         Versions.push_back(Record[I++]);
7992       PendingAllocs.push_back(
7993           AllocInfo(std::move(Versions), std::move(MIBs)));
7994       break;
7995     }
7996     }
7997   }
7998   llvm_unreachable("Exit infinite loop");
7999 }
8000 
8001 // Parse the  module string table block into the Index.
8002 // This populates the ModulePathStringTable map in the index.
8003 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() {
8004   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID))
8005     return Err;
8006 
8007   SmallVector<uint64_t, 64> Record;
8008 
8009   SmallString<128> ModulePath;
8010   ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr;
8011 
8012   while (true) {
8013     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
8014     if (!MaybeEntry)
8015       return MaybeEntry.takeError();
8016     BitstreamEntry Entry = MaybeEntry.get();
8017 
8018     switch (Entry.Kind) {
8019     case BitstreamEntry::SubBlock: // Handled for us already.
8020     case BitstreamEntry::Error:
8021       return error("Malformed block");
8022     case BitstreamEntry::EndBlock:
8023       return Error::success();
8024     case BitstreamEntry::Record:
8025       // The interesting case.
8026       break;
8027     }
8028 
8029     Record.clear();
8030     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
8031     if (!MaybeRecord)
8032       return MaybeRecord.takeError();
8033     switch (MaybeRecord.get()) {
8034     default: // Default behavior: ignore.
8035       break;
8036     case bitc::MST_CODE_ENTRY: {
8037       // MST_ENTRY: [modid, namechar x N]
8038       uint64_t ModuleId = Record[0];
8039 
8040       if (convertToString(Record, 1, ModulePath))
8041         return error("Invalid record");
8042 
8043       LastSeenModule = TheIndex.addModule(ModulePath);
8044       ModuleIdMap[ModuleId] = LastSeenModule->first();
8045 
8046       ModulePath.clear();
8047       break;
8048     }
8049     /// MST_CODE_HASH: [5*i32]
8050     case bitc::MST_CODE_HASH: {
8051       if (Record.size() != 5)
8052         return error("Invalid hash length " + Twine(Record.size()).str());
8053       if (!LastSeenModule)
8054         return error("Invalid hash that does not follow a module path");
8055       int Pos = 0;
8056       for (auto &Val : Record) {
8057         assert(!(Val >> 32) && "Unexpected high bits set");
8058         LastSeenModule->second[Pos++] = Val;
8059       }
8060       // Reset LastSeenModule to avoid overriding the hash unexpectedly.
8061       LastSeenModule = nullptr;
8062       break;
8063     }
8064     }
8065   }
8066   llvm_unreachable("Exit infinite loop");
8067 }
8068 
8069 namespace {
8070 
8071 // FIXME: This class is only here to support the transition to llvm::Error. It
8072 // will be removed once this transition is complete. Clients should prefer to
8073 // deal with the Error value directly, rather than converting to error_code.
8074 class BitcodeErrorCategoryType : public std::error_category {
8075   const char *name() const noexcept override {
8076     return "llvm.bitcode";
8077   }
8078 
8079   std::string message(int IE) const override {
8080     BitcodeError E = static_cast<BitcodeError>(IE);
8081     switch (E) {
8082     case BitcodeError::CorruptedBitcode:
8083       return "Corrupted bitcode";
8084     }
8085     llvm_unreachable("Unknown error type!");
8086   }
8087 };
8088 
8089 } // end anonymous namespace
8090 
8091 const std::error_category &llvm::BitcodeErrorCategory() {
8092   static BitcodeErrorCategoryType ErrorCategory;
8093   return ErrorCategory;
8094 }
8095 
8096 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream,
8097                                             unsigned Block, unsigned RecordID) {
8098   if (Error Err = Stream.EnterSubBlock(Block))
8099     return std::move(Err);
8100 
8101   StringRef Strtab;
8102   while (true) {
8103     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
8104     if (!MaybeEntry)
8105       return MaybeEntry.takeError();
8106     llvm::BitstreamEntry Entry = MaybeEntry.get();
8107 
8108     switch (Entry.Kind) {
8109     case BitstreamEntry::EndBlock:
8110       return Strtab;
8111 
8112     case BitstreamEntry::Error:
8113       return error("Malformed block");
8114 
8115     case BitstreamEntry::SubBlock:
8116       if (Error Err = Stream.SkipBlock())
8117         return std::move(Err);
8118       break;
8119 
8120     case BitstreamEntry::Record:
8121       StringRef Blob;
8122       SmallVector<uint64_t, 1> Record;
8123       Expected<unsigned> MaybeRecord =
8124           Stream.readRecord(Entry.ID, Record, &Blob);
8125       if (!MaybeRecord)
8126         return MaybeRecord.takeError();
8127       if (MaybeRecord.get() == RecordID)
8128         Strtab = Blob;
8129       break;
8130     }
8131   }
8132 }
8133 
8134 //===----------------------------------------------------------------------===//
8135 // External interface
8136 //===----------------------------------------------------------------------===//
8137 
8138 Expected<std::vector<BitcodeModule>>
8139 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) {
8140   auto FOrErr = getBitcodeFileContents(Buffer);
8141   if (!FOrErr)
8142     return FOrErr.takeError();
8143   return std::move(FOrErr->Mods);
8144 }
8145 
8146 Expected<BitcodeFileContents>
8147 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) {
8148   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
8149   if (!StreamOrErr)
8150     return StreamOrErr.takeError();
8151   BitstreamCursor &Stream = *StreamOrErr;
8152 
8153   BitcodeFileContents F;
8154   while (true) {
8155     uint64_t BCBegin = Stream.getCurrentByteNo();
8156 
8157     // We may be consuming bitcode from a client that leaves garbage at the end
8158     // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to
8159     // the end that there cannot possibly be another module, stop looking.
8160     if (BCBegin + 8 >= Stream.getBitcodeBytes().size())
8161       return F;
8162 
8163     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
8164     if (!MaybeEntry)
8165       return MaybeEntry.takeError();
8166     llvm::BitstreamEntry Entry = MaybeEntry.get();
8167 
8168     switch (Entry.Kind) {
8169     case BitstreamEntry::EndBlock:
8170     case BitstreamEntry::Error:
8171       return error("Malformed block");
8172 
8173     case BitstreamEntry::SubBlock: {
8174       uint64_t IdentificationBit = -1ull;
8175       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
8176         IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8;
8177         if (Error Err = Stream.SkipBlock())
8178           return std::move(Err);
8179 
8180         {
8181           Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
8182           if (!MaybeEntry)
8183             return MaybeEntry.takeError();
8184           Entry = MaybeEntry.get();
8185         }
8186 
8187         if (Entry.Kind != BitstreamEntry::SubBlock ||
8188             Entry.ID != bitc::MODULE_BLOCK_ID)
8189           return error("Malformed block");
8190       }
8191 
8192       if (Entry.ID == bitc::MODULE_BLOCK_ID) {
8193         uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8;
8194         if (Error Err = Stream.SkipBlock())
8195           return std::move(Err);
8196 
8197         F.Mods.push_back({Stream.getBitcodeBytes().slice(
8198                               BCBegin, Stream.getCurrentByteNo() - BCBegin),
8199                           Buffer.getBufferIdentifier(), IdentificationBit,
8200                           ModuleBit});
8201         continue;
8202       }
8203 
8204       if (Entry.ID == bitc::STRTAB_BLOCK_ID) {
8205         Expected<StringRef> Strtab =
8206             readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB);
8207         if (!Strtab)
8208           return Strtab.takeError();
8209         // This string table is used by every preceding bitcode module that does
8210         // not have its own string table. A bitcode file may have multiple
8211         // string tables if it was created by binary concatenation, for example
8212         // with "llvm-cat -b".
8213         for (BitcodeModule &I : llvm::reverse(F.Mods)) {
8214           if (!I.Strtab.empty())
8215             break;
8216           I.Strtab = *Strtab;
8217         }
8218         // Similarly, the string table is used by every preceding symbol table;
8219         // normally there will be just one unless the bitcode file was created
8220         // by binary concatenation.
8221         if (!F.Symtab.empty() && F.StrtabForSymtab.empty())
8222           F.StrtabForSymtab = *Strtab;
8223         continue;
8224       }
8225 
8226       if (Entry.ID == bitc::SYMTAB_BLOCK_ID) {
8227         Expected<StringRef> SymtabOrErr =
8228             readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB);
8229         if (!SymtabOrErr)
8230           return SymtabOrErr.takeError();
8231 
8232         // We can expect the bitcode file to have multiple symbol tables if it
8233         // was created by binary concatenation. In that case we silently
8234         // ignore any subsequent symbol tables, which is fine because this is a
8235         // low level function. The client is expected to notice that the number
8236         // of modules in the symbol table does not match the number of modules
8237         // in the input file and regenerate the symbol table.
8238         if (F.Symtab.empty())
8239           F.Symtab = *SymtabOrErr;
8240         continue;
8241       }
8242 
8243       if (Error Err = Stream.SkipBlock())
8244         return std::move(Err);
8245       continue;
8246     }
8247     case BitstreamEntry::Record:
8248       if (Error E = Stream.skipRecord(Entry.ID).takeError())
8249         return std::move(E);
8250       continue;
8251     }
8252   }
8253 }
8254 
8255 /// Get a lazy one-at-time loading module from bitcode.
8256 ///
8257 /// This isn't always used in a lazy context.  In particular, it's also used by
8258 /// \a parseModule().  If this is truly lazy, then we need to eagerly pull
8259 /// in forward-referenced functions from block address references.
8260 ///
8261 /// \param[in] MaterializeAll Set to \c true if we should materialize
8262 /// everything.
8263 Expected<std::unique_ptr<Module>>
8264 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll,
8265                              bool ShouldLazyLoadMetadata, bool IsImporting,
8266                              ParserCallbacks Callbacks) {
8267   BitstreamCursor Stream(Buffer);
8268 
8269   std::string ProducerIdentification;
8270   if (IdentificationBit != -1ull) {
8271     if (Error JumpFailed = Stream.JumpToBit(IdentificationBit))
8272       return std::move(JumpFailed);
8273     if (Error E =
8274             readIdentificationBlock(Stream).moveInto(ProducerIdentification))
8275       return std::move(E);
8276   }
8277 
8278   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
8279     return std::move(JumpFailed);
8280   auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification,
8281                               Context);
8282 
8283   std::unique_ptr<Module> M =
8284       std::make_unique<Module>(ModuleIdentifier, Context);
8285   M->setMaterializer(R);
8286 
8287   // Delay parsing Metadata if ShouldLazyLoadMetadata is true.
8288   if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata,
8289                                       IsImporting, Callbacks))
8290     return std::move(Err);
8291 
8292   if (MaterializeAll) {
8293     // Read in the entire module, and destroy the BitcodeReader.
8294     if (Error Err = M->materializeAll())
8295       return std::move(Err);
8296   } else {
8297     // Resolve forward references from blockaddresses.
8298     if (Error Err = R->materializeForwardReferencedFunctions())
8299       return std::move(Err);
8300   }
8301 
8302   return std::move(M);
8303 }
8304 
8305 Expected<std::unique_ptr<Module>>
8306 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata,
8307                              bool IsImporting, ParserCallbacks Callbacks) {
8308   return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting,
8309                        Callbacks);
8310 }
8311 
8312 // Parse the specified bitcode buffer and merge the index into CombinedIndex.
8313 // We don't use ModuleIdentifier here because the client may need to control the
8314 // module path used in the combined summary (e.g. when reading summaries for
8315 // regular LTO modules).
8316 Error BitcodeModule::readSummary(
8317     ModuleSummaryIndex &CombinedIndex, StringRef ModulePath,
8318     std::function<bool(GlobalValue::GUID)> IsPrevailing) {
8319   BitstreamCursor Stream(Buffer);
8320   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
8321     return JumpFailed;
8322 
8323   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex,
8324                                     ModulePath, IsPrevailing);
8325   return R.parseModule();
8326 }
8327 
8328 // Parse the specified bitcode buffer, returning the function info index.
8329 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() {
8330   BitstreamCursor Stream(Buffer);
8331   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
8332     return std::move(JumpFailed);
8333 
8334   auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false);
8335   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index,
8336                                     ModuleIdentifier, 0);
8337 
8338   if (Error Err = R.parseModule())
8339     return std::move(Err);
8340 
8341   return std::move(Index);
8342 }
8343 
8344 static Expected<std::pair<bool, bool>>
8345 getEnableSplitLTOUnitAndUnifiedFlag(BitstreamCursor &Stream,
8346                                                  unsigned ID,
8347                                                  BitcodeLTOInfo &LTOInfo) {
8348   if (Error Err = Stream.EnterSubBlock(ID))
8349     return std::move(Err);
8350   SmallVector<uint64_t, 64> Record;
8351 
8352   while (true) {
8353     BitstreamEntry Entry;
8354     std::pair<bool, bool> Result = {false,false};
8355     if (Error E = Stream.advanceSkippingSubblocks().moveInto(Entry))
8356       return std::move(E);
8357 
8358     switch (Entry.Kind) {
8359     case BitstreamEntry::SubBlock: // Handled for us already.
8360     case BitstreamEntry::Error:
8361       return error("Malformed block");
8362     case BitstreamEntry::EndBlock: {
8363       // If no flags record found, set both flags to false.
8364       return Result;
8365     }
8366     case BitstreamEntry::Record:
8367       // The interesting case.
8368       break;
8369     }
8370 
8371     // Look for the FS_FLAGS record.
8372     Record.clear();
8373     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
8374     if (!MaybeBitCode)
8375       return MaybeBitCode.takeError();
8376     switch (MaybeBitCode.get()) {
8377     default: // Default behavior: ignore.
8378       break;
8379     case bitc::FS_FLAGS: { // [flags]
8380       uint64_t Flags = Record[0];
8381       // Scan flags.
8382       assert(Flags <= 0x2ff && "Unexpected bits in flag");
8383 
8384       bool EnableSplitLTOUnit = Flags & 0x8;
8385       bool UnifiedLTO = Flags & 0x200;
8386       Result = {EnableSplitLTOUnit, UnifiedLTO};
8387 
8388       return Result;
8389     }
8390     }
8391   }
8392   llvm_unreachable("Exit infinite loop");
8393 }
8394 
8395 // Check if the given bitcode buffer contains a global value summary block.
8396 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() {
8397   BitstreamCursor Stream(Buffer);
8398   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
8399     return std::move(JumpFailed);
8400 
8401   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
8402     return std::move(Err);
8403 
8404   while (true) {
8405     llvm::BitstreamEntry Entry;
8406     if (Error E = Stream.advance().moveInto(Entry))
8407       return std::move(E);
8408 
8409     switch (Entry.Kind) {
8410     case BitstreamEntry::Error:
8411       return error("Malformed block");
8412     case BitstreamEntry::EndBlock:
8413       return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false,
8414                             /*EnableSplitLTOUnit=*/false, /*UnifiedLTO=*/false};
8415 
8416     case BitstreamEntry::SubBlock:
8417       if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) {
8418         BitcodeLTOInfo LTOInfo;
8419         Expected<std::pair<bool, bool>> Flags =
8420             getEnableSplitLTOUnitAndUnifiedFlag(Stream, Entry.ID, LTOInfo);
8421         if (!Flags)
8422           return Flags.takeError();
8423         std::tie(LTOInfo.EnableSplitLTOUnit, LTOInfo.UnifiedLTO) = Flags.get();
8424         LTOInfo.IsThinLTO = true;
8425         LTOInfo.HasSummary = true;
8426         return LTOInfo;
8427       }
8428 
8429       if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) {
8430         BitcodeLTOInfo LTOInfo;
8431         Expected<std::pair<bool, bool>> Flags =
8432             getEnableSplitLTOUnitAndUnifiedFlag(Stream, Entry.ID, LTOInfo);
8433         if (!Flags)
8434           return Flags.takeError();
8435         std::tie(LTOInfo.EnableSplitLTOUnit, LTOInfo.UnifiedLTO) = Flags.get();
8436         LTOInfo.IsThinLTO = false;
8437         LTOInfo.HasSummary = true;
8438         return LTOInfo;
8439       }
8440 
8441       // Ignore other sub-blocks.
8442       if (Error Err = Stream.SkipBlock())
8443         return std::move(Err);
8444       continue;
8445 
8446     case BitstreamEntry::Record:
8447       if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID))
8448         continue;
8449       else
8450         return StreamFailed.takeError();
8451     }
8452   }
8453 }
8454 
8455 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) {
8456   Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer);
8457   if (!MsOrErr)
8458     return MsOrErr.takeError();
8459 
8460   if (MsOrErr->size() != 1)
8461     return error("Expected a single module");
8462 
8463   return (*MsOrErr)[0];
8464 }
8465 
8466 Expected<std::unique_ptr<Module>>
8467 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context,
8468                            bool ShouldLazyLoadMetadata, bool IsImporting,
8469                            ParserCallbacks Callbacks) {
8470   Expected<BitcodeModule> BM = getSingleModule(Buffer);
8471   if (!BM)
8472     return BM.takeError();
8473 
8474   return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting,
8475                            Callbacks);
8476 }
8477 
8478 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule(
8479     std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context,
8480     bool ShouldLazyLoadMetadata, bool IsImporting, ParserCallbacks Callbacks) {
8481   auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata,
8482                                      IsImporting, Callbacks);
8483   if (MOrErr)
8484     (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer));
8485   return MOrErr;
8486 }
8487 
8488 Expected<std::unique_ptr<Module>>
8489 BitcodeModule::parseModule(LLVMContext &Context, ParserCallbacks Callbacks) {
8490   return getModuleImpl(Context, true, false, false, Callbacks);
8491   // TODO: Restore the use-lists to the in-memory state when the bitcode was
8492   // written.  We must defer until the Module has been fully materialized.
8493 }
8494 
8495 Expected<std::unique_ptr<Module>>
8496 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context,
8497                        ParserCallbacks Callbacks) {
8498   Expected<BitcodeModule> BM = getSingleModule(Buffer);
8499   if (!BM)
8500     return BM.takeError();
8501 
8502   return BM->parseModule(Context, Callbacks);
8503 }
8504 
8505 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) {
8506   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
8507   if (!StreamOrErr)
8508     return StreamOrErr.takeError();
8509 
8510   return readTriple(*StreamOrErr);
8511 }
8512 
8513 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) {
8514   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
8515   if (!StreamOrErr)
8516     return StreamOrErr.takeError();
8517 
8518   return hasObjCCategory(*StreamOrErr);
8519 }
8520 
8521 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) {
8522   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
8523   if (!StreamOrErr)
8524     return StreamOrErr.takeError();
8525 
8526   return readIdentificationCode(*StreamOrErr);
8527 }
8528 
8529 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer,
8530                                    ModuleSummaryIndex &CombinedIndex) {
8531   Expected<BitcodeModule> BM = getSingleModule(Buffer);
8532   if (!BM)
8533     return BM.takeError();
8534 
8535   return BM->readSummary(CombinedIndex, BM->getModuleIdentifier());
8536 }
8537 
8538 Expected<std::unique_ptr<ModuleSummaryIndex>>
8539 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) {
8540   Expected<BitcodeModule> BM = getSingleModule(Buffer);
8541   if (!BM)
8542     return BM.takeError();
8543 
8544   return BM->getSummary();
8545 }
8546 
8547 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) {
8548   Expected<BitcodeModule> BM = getSingleModule(Buffer);
8549   if (!BM)
8550     return BM.takeError();
8551 
8552   return BM->getLTOInfo();
8553 }
8554 
8555 Expected<std::unique_ptr<ModuleSummaryIndex>>
8556 llvm::getModuleSummaryIndexForFile(StringRef Path,
8557                                    bool IgnoreEmptyThinLTOIndexFile) {
8558   ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr =
8559       MemoryBuffer::getFileOrSTDIN(Path);
8560   if (!FileOrErr)
8561     return errorCodeToError(FileOrErr.getError());
8562   if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize())
8563     return nullptr;
8564   return getModuleSummaryIndex(**FileOrErr);
8565 }
8566