1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This header defines the BitcodeReader class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/ReaderWriter.h" 15 #include "BitcodeReader.h" 16 #include "llvm/Constants.h" 17 #include "llvm/DerivedTypes.h" 18 #include "llvm/InlineAsm.h" 19 #include "llvm/IntrinsicInst.h" 20 #include "llvm/Module.h" 21 #include "llvm/Operator.h" 22 #include "llvm/AutoUpgrade.h" 23 #include "llvm/ADT/SmallString.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/Support/MathExtras.h" 26 #include "llvm/Support/MemoryBuffer.h" 27 #include "llvm/OperandTraits.h" 28 using namespace llvm; 29 30 void BitcodeReader::FreeState() { 31 if (BufferOwned) 32 delete Buffer; 33 Buffer = 0; 34 std::vector<PATypeHolder>().swap(TypeList); 35 ValueList.clear(); 36 MDValueList.clear(); 37 38 std::vector<AttrListPtr>().swap(MAttributes); 39 std::vector<BasicBlock*>().swap(FunctionBBs); 40 std::vector<Function*>().swap(FunctionsWithBodies); 41 DeferredFunctionInfo.clear(); 42 MDKindMap.clear(); 43 } 44 45 //===----------------------------------------------------------------------===// 46 // Helper functions to implement forward reference resolution, etc. 47 //===----------------------------------------------------------------------===// 48 49 /// ConvertToString - Convert a string from a record into an std::string, return 50 /// true on failure. 51 template<typename StrTy> 52 static bool ConvertToString(SmallVector<uint64_t, 64> &Record, unsigned Idx, 53 StrTy &Result) { 54 if (Idx > Record.size()) 55 return true; 56 57 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 58 Result += (char)Record[i]; 59 return false; 60 } 61 62 static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) { 63 switch (Val) { 64 default: // Map unknown/new linkages to external 65 case 0: return GlobalValue::ExternalLinkage; 66 case 1: return GlobalValue::WeakAnyLinkage; 67 case 2: return GlobalValue::AppendingLinkage; 68 case 3: return GlobalValue::InternalLinkage; 69 case 4: return GlobalValue::LinkOnceAnyLinkage; 70 case 5: return GlobalValue::DLLImportLinkage; 71 case 6: return GlobalValue::DLLExportLinkage; 72 case 7: return GlobalValue::ExternalWeakLinkage; 73 case 8: return GlobalValue::CommonLinkage; 74 case 9: return GlobalValue::PrivateLinkage; 75 case 10: return GlobalValue::WeakODRLinkage; 76 case 11: return GlobalValue::LinkOnceODRLinkage; 77 case 12: return GlobalValue::AvailableExternallyLinkage; 78 case 13: return GlobalValue::LinkerPrivateLinkage; 79 case 14: return GlobalValue::LinkerPrivateWeakLinkage; 80 } 81 } 82 83 static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) { 84 switch (Val) { 85 default: // Map unknown visibilities to default. 86 case 0: return GlobalValue::DefaultVisibility; 87 case 1: return GlobalValue::HiddenVisibility; 88 case 2: return GlobalValue::ProtectedVisibility; 89 } 90 } 91 92 static int GetDecodedCastOpcode(unsigned Val) { 93 switch (Val) { 94 default: return -1; 95 case bitc::CAST_TRUNC : return Instruction::Trunc; 96 case bitc::CAST_ZEXT : return Instruction::ZExt; 97 case bitc::CAST_SEXT : return Instruction::SExt; 98 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 99 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 100 case bitc::CAST_UITOFP : return Instruction::UIToFP; 101 case bitc::CAST_SITOFP : return Instruction::SIToFP; 102 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 103 case bitc::CAST_FPEXT : return Instruction::FPExt; 104 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 105 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 106 case bitc::CAST_BITCAST : return Instruction::BitCast; 107 } 108 } 109 static int GetDecodedBinaryOpcode(unsigned Val, const Type *Ty) { 110 switch (Val) { 111 default: return -1; 112 case bitc::BINOP_ADD: 113 return Ty->isFPOrFPVectorTy() ? Instruction::FAdd : Instruction::Add; 114 case bitc::BINOP_SUB: 115 return Ty->isFPOrFPVectorTy() ? Instruction::FSub : Instruction::Sub; 116 case bitc::BINOP_MUL: 117 return Ty->isFPOrFPVectorTy() ? Instruction::FMul : Instruction::Mul; 118 case bitc::BINOP_UDIV: return Instruction::UDiv; 119 case bitc::BINOP_SDIV: 120 return Ty->isFPOrFPVectorTy() ? Instruction::FDiv : Instruction::SDiv; 121 case bitc::BINOP_UREM: return Instruction::URem; 122 case bitc::BINOP_SREM: 123 return Ty->isFPOrFPVectorTy() ? Instruction::FRem : Instruction::SRem; 124 case bitc::BINOP_SHL: return Instruction::Shl; 125 case bitc::BINOP_LSHR: return Instruction::LShr; 126 case bitc::BINOP_ASHR: return Instruction::AShr; 127 case bitc::BINOP_AND: return Instruction::And; 128 case bitc::BINOP_OR: return Instruction::Or; 129 case bitc::BINOP_XOR: return Instruction::Xor; 130 } 131 } 132 133 namespace llvm { 134 namespace { 135 /// @brief A class for maintaining the slot number definition 136 /// as a placeholder for the actual definition for forward constants defs. 137 class ConstantPlaceHolder : public ConstantExpr { 138 ConstantPlaceHolder(); // DO NOT IMPLEMENT 139 void operator=(const ConstantPlaceHolder &); // DO NOT IMPLEMENT 140 public: 141 // allocate space for exactly one operand 142 void *operator new(size_t s) { 143 return User::operator new(s, 1); 144 } 145 explicit ConstantPlaceHolder(const Type *Ty, LLVMContext& Context) 146 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 147 Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); 148 } 149 150 /// @brief Methods to support type inquiry through isa, cast, and dyn_cast. 151 static inline bool classof(const ConstantPlaceHolder *) { return true; } 152 static bool classof(const Value *V) { 153 return isa<ConstantExpr>(V) && 154 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 155 } 156 157 158 /// Provide fast operand accessors 159 //DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 160 }; 161 } 162 163 // FIXME: can we inherit this from ConstantExpr? 164 template <> 165 struct OperandTraits<ConstantPlaceHolder> : public FixedNumOperandTraits<1> { 166 }; 167 } 168 169 170 void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) { 171 if (Idx == size()) { 172 push_back(V); 173 return; 174 } 175 176 if (Idx >= size()) 177 resize(Idx+1); 178 179 WeakVH &OldV = ValuePtrs[Idx]; 180 if (OldV == 0) { 181 OldV = V; 182 return; 183 } 184 185 // Handle constants and non-constants (e.g. instrs) differently for 186 // efficiency. 187 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 188 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 189 OldV = V; 190 } else { 191 // If there was a forward reference to this value, replace it. 192 Value *PrevVal = OldV; 193 OldV->replaceAllUsesWith(V); 194 delete PrevVal; 195 } 196 } 197 198 199 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 200 const Type *Ty) { 201 if (Idx >= size()) 202 resize(Idx + 1); 203 204 if (Value *V = ValuePtrs[Idx]) { 205 assert(Ty == V->getType() && "Type mismatch in constant table!"); 206 return cast<Constant>(V); 207 } 208 209 // Create and return a placeholder, which will later be RAUW'd. 210 Constant *C = new ConstantPlaceHolder(Ty, Context); 211 ValuePtrs[Idx] = C; 212 return C; 213 } 214 215 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, const Type *Ty) { 216 if (Idx >= size()) 217 resize(Idx + 1); 218 219 if (Value *V = ValuePtrs[Idx]) { 220 assert((Ty == 0 || Ty == V->getType()) && "Type mismatch in value table!"); 221 return V; 222 } 223 224 // No type specified, must be invalid reference. 225 if (Ty == 0) return 0; 226 227 // Create and return a placeholder, which will later be RAUW'd. 228 Value *V = new Argument(Ty); 229 ValuePtrs[Idx] = V; 230 return V; 231 } 232 233 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk 234 /// resolves any forward references. The idea behind this is that we sometimes 235 /// get constants (such as large arrays) which reference *many* forward ref 236 /// constants. Replacing each of these causes a lot of thrashing when 237 /// building/reuniquing the constant. Instead of doing this, we look at all the 238 /// uses and rewrite all the place holders at once for any constant that uses 239 /// a placeholder. 240 void BitcodeReaderValueList::ResolveConstantForwardRefs() { 241 // Sort the values by-pointer so that they are efficient to look up with a 242 // binary search. 243 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 244 245 SmallVector<Constant*, 64> NewOps; 246 247 while (!ResolveConstants.empty()) { 248 Value *RealVal = operator[](ResolveConstants.back().second); 249 Constant *Placeholder = ResolveConstants.back().first; 250 ResolveConstants.pop_back(); 251 252 // Loop over all users of the placeholder, updating them to reference the 253 // new value. If they reference more than one placeholder, update them all 254 // at once. 255 while (!Placeholder->use_empty()) { 256 Value::use_iterator UI = Placeholder->use_begin(); 257 User *U = *UI; 258 259 // If the using object isn't uniqued, just update the operands. This 260 // handles instructions and initializers for global variables. 261 if (!isa<Constant>(U) || isa<GlobalValue>(U)) { 262 UI.getUse().set(RealVal); 263 continue; 264 } 265 266 // Otherwise, we have a constant that uses the placeholder. Replace that 267 // constant with a new constant that has *all* placeholder uses updated. 268 Constant *UserC = cast<Constant>(U); 269 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 270 I != E; ++I) { 271 Value *NewOp; 272 if (!isa<ConstantPlaceHolder>(*I)) { 273 // Not a placeholder reference. 274 NewOp = *I; 275 } else if (*I == Placeholder) { 276 // Common case is that it just references this one placeholder. 277 NewOp = RealVal; 278 } else { 279 // Otherwise, look up the placeholder in ResolveConstants. 280 ResolveConstantsTy::iterator It = 281 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 282 std::pair<Constant*, unsigned>(cast<Constant>(*I), 283 0)); 284 assert(It != ResolveConstants.end() && It->first == *I); 285 NewOp = operator[](It->second); 286 } 287 288 NewOps.push_back(cast<Constant>(NewOp)); 289 } 290 291 // Make the new constant. 292 Constant *NewC; 293 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 294 NewC = ConstantArray::get(UserCA->getType(), &NewOps[0], 295 NewOps.size()); 296 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 297 NewC = ConstantStruct::get(Context, &NewOps[0], NewOps.size(), 298 UserCS->getType()->isPacked()); 299 } else if (ConstantUnion *UserCU = dyn_cast<ConstantUnion>(UserC)) { 300 NewC = ConstantUnion::get(UserCU->getType(), NewOps[0]); 301 } else if (isa<ConstantVector>(UserC)) { 302 NewC = ConstantVector::get(&NewOps[0], NewOps.size()); 303 } else { 304 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 305 NewC = cast<ConstantExpr>(UserC)->getWithOperands(&NewOps[0], 306 NewOps.size()); 307 } 308 309 UserC->replaceAllUsesWith(NewC); 310 UserC->destroyConstant(); 311 NewOps.clear(); 312 } 313 314 // Update all ValueHandles, they should be the only users at this point. 315 Placeholder->replaceAllUsesWith(RealVal); 316 delete Placeholder; 317 } 318 } 319 320 void BitcodeReaderMDValueList::AssignValue(Value *V, unsigned Idx) { 321 if (Idx == size()) { 322 push_back(V); 323 return; 324 } 325 326 if (Idx >= size()) 327 resize(Idx+1); 328 329 WeakVH &OldV = MDValuePtrs[Idx]; 330 if (OldV == 0) { 331 OldV = V; 332 return; 333 } 334 335 // If there was a forward reference to this value, replace it. 336 Value *PrevVal = OldV; 337 OldV->replaceAllUsesWith(V); 338 delete PrevVal; 339 // Deleting PrevVal sets Idx value in MDValuePtrs to null. Set new 340 // value for Idx. 341 MDValuePtrs[Idx] = V; 342 } 343 344 Value *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) { 345 if (Idx >= size()) 346 resize(Idx + 1); 347 348 if (Value *V = MDValuePtrs[Idx]) { 349 assert(V->getType()->isMetadataTy() && "Type mismatch in value table!"); 350 return V; 351 } 352 353 // Create and return a placeholder, which will later be RAUW'd. 354 Value *V = new Argument(Type::getMetadataTy(Context)); 355 MDValuePtrs[Idx] = V; 356 return V; 357 } 358 359 const Type *BitcodeReader::getTypeByID(unsigned ID, bool isTypeTable) { 360 // If the TypeID is in range, return it. 361 if (ID < TypeList.size()) 362 return TypeList[ID].get(); 363 if (!isTypeTable) return 0; 364 365 // The type table allows forward references. Push as many Opaque types as 366 // needed to get up to ID. 367 while (TypeList.size() <= ID) 368 TypeList.push_back(OpaqueType::get(Context)); 369 return TypeList.back().get(); 370 } 371 372 //===----------------------------------------------------------------------===// 373 // Functions for parsing blocks from the bitcode file 374 //===----------------------------------------------------------------------===// 375 376 bool BitcodeReader::ParseAttributeBlock() { 377 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 378 return Error("Malformed block record"); 379 380 if (!MAttributes.empty()) 381 return Error("Multiple PARAMATTR blocks found!"); 382 383 SmallVector<uint64_t, 64> Record; 384 385 SmallVector<AttributeWithIndex, 8> Attrs; 386 387 // Read all the records. 388 while (1) { 389 unsigned Code = Stream.ReadCode(); 390 if (Code == bitc::END_BLOCK) { 391 if (Stream.ReadBlockEnd()) 392 return Error("Error at end of PARAMATTR block"); 393 return false; 394 } 395 396 if (Code == bitc::ENTER_SUBBLOCK) { 397 // No known subblocks, always skip them. 398 Stream.ReadSubBlockID(); 399 if (Stream.SkipBlock()) 400 return Error("Malformed block record"); 401 continue; 402 } 403 404 if (Code == bitc::DEFINE_ABBREV) { 405 Stream.ReadAbbrevRecord(); 406 continue; 407 } 408 409 // Read a record. 410 Record.clear(); 411 switch (Stream.ReadRecord(Code, Record)) { 412 default: // Default behavior: ignore. 413 break; 414 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [paramidx0, attr0, ...] 415 if (Record.size() & 1) 416 return Error("Invalid ENTRY record"); 417 418 // FIXME : Remove this autoupgrade code in LLVM 3.0. 419 // If Function attributes are using index 0 then transfer them 420 // to index ~0. Index 0 is used for return value attributes but used to be 421 // used for function attributes. 422 Attributes RetAttribute = Attribute::None; 423 Attributes FnAttribute = Attribute::None; 424 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 425 // FIXME: remove in LLVM 3.0 426 // The alignment is stored as a 16-bit raw value from bits 31--16. 427 // We shift the bits above 31 down by 11 bits. 428 429 unsigned Alignment = (Record[i+1] & (0xffffull << 16)) >> 16; 430 if (Alignment && !isPowerOf2_32(Alignment)) 431 return Error("Alignment is not a power of two."); 432 433 Attributes ReconstitutedAttr = Record[i+1] & 0xffff; 434 if (Alignment) 435 ReconstitutedAttr |= Attribute::constructAlignmentFromInt(Alignment); 436 ReconstitutedAttr |= (Record[i+1] & (0xffffull << 32)) >> 11; 437 Record[i+1] = ReconstitutedAttr; 438 439 if (Record[i] == 0) 440 RetAttribute = Record[i+1]; 441 else if (Record[i] == ~0U) 442 FnAttribute = Record[i+1]; 443 } 444 445 unsigned OldRetAttrs = (Attribute::NoUnwind|Attribute::NoReturn| 446 Attribute::ReadOnly|Attribute::ReadNone); 447 448 if (FnAttribute == Attribute::None && RetAttribute != Attribute::None && 449 (RetAttribute & OldRetAttrs) != 0) { 450 if (FnAttribute == Attribute::None) { // add a slot so they get added. 451 Record.push_back(~0U); 452 Record.push_back(0); 453 } 454 455 FnAttribute |= RetAttribute & OldRetAttrs; 456 RetAttribute &= ~OldRetAttrs; 457 } 458 459 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 460 if (Record[i] == 0) { 461 if (RetAttribute != Attribute::None) 462 Attrs.push_back(AttributeWithIndex::get(0, RetAttribute)); 463 } else if (Record[i] == ~0U) { 464 if (FnAttribute != Attribute::None) 465 Attrs.push_back(AttributeWithIndex::get(~0U, FnAttribute)); 466 } else if (Record[i+1] != Attribute::None) 467 Attrs.push_back(AttributeWithIndex::get(Record[i], Record[i+1])); 468 } 469 470 MAttributes.push_back(AttrListPtr::get(Attrs.begin(), Attrs.end())); 471 Attrs.clear(); 472 break; 473 } 474 } 475 } 476 } 477 478 479 bool BitcodeReader::ParseTypeTable() { 480 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID)) 481 return Error("Malformed block record"); 482 483 if (!TypeList.empty()) 484 return Error("Multiple TYPE_BLOCKs found!"); 485 486 SmallVector<uint64_t, 64> Record; 487 unsigned NumRecords = 0; 488 489 // Read all the records for this type table. 490 while (1) { 491 unsigned Code = Stream.ReadCode(); 492 if (Code == bitc::END_BLOCK) { 493 if (NumRecords != TypeList.size()) 494 return Error("Invalid type forward reference in TYPE_BLOCK"); 495 if (Stream.ReadBlockEnd()) 496 return Error("Error at end of type table block"); 497 return false; 498 } 499 500 if (Code == bitc::ENTER_SUBBLOCK) { 501 // No known subblocks, always skip them. 502 Stream.ReadSubBlockID(); 503 if (Stream.SkipBlock()) 504 return Error("Malformed block record"); 505 continue; 506 } 507 508 if (Code == bitc::DEFINE_ABBREV) { 509 Stream.ReadAbbrevRecord(); 510 continue; 511 } 512 513 // Read a record. 514 Record.clear(); 515 const Type *ResultTy = 0; 516 switch (Stream.ReadRecord(Code, Record)) { 517 default: // Default behavior: unknown type. 518 ResultTy = 0; 519 break; 520 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 521 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 522 // type list. This allows us to reserve space. 523 if (Record.size() < 1) 524 return Error("Invalid TYPE_CODE_NUMENTRY record"); 525 TypeList.reserve(Record[0]); 526 continue; 527 case bitc::TYPE_CODE_VOID: // VOID 528 ResultTy = Type::getVoidTy(Context); 529 break; 530 case bitc::TYPE_CODE_FLOAT: // FLOAT 531 ResultTy = Type::getFloatTy(Context); 532 break; 533 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 534 ResultTy = Type::getDoubleTy(Context); 535 break; 536 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 537 ResultTy = Type::getX86_FP80Ty(Context); 538 break; 539 case bitc::TYPE_CODE_FP128: // FP128 540 ResultTy = Type::getFP128Ty(Context); 541 break; 542 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 543 ResultTy = Type::getPPC_FP128Ty(Context); 544 break; 545 case bitc::TYPE_CODE_LABEL: // LABEL 546 ResultTy = Type::getLabelTy(Context); 547 break; 548 case bitc::TYPE_CODE_OPAQUE: // OPAQUE 549 ResultTy = 0; 550 break; 551 case bitc::TYPE_CODE_METADATA: // METADATA 552 ResultTy = Type::getMetadataTy(Context); 553 break; 554 case bitc::TYPE_CODE_INTEGER: // INTEGER: [width] 555 if (Record.size() < 1) 556 return Error("Invalid Integer type record"); 557 558 ResultTy = IntegerType::get(Context, Record[0]); 559 break; 560 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 561 // [pointee type, address space] 562 if (Record.size() < 1) 563 return Error("Invalid POINTER type record"); 564 unsigned AddressSpace = 0; 565 if (Record.size() == 2) 566 AddressSpace = Record[1]; 567 ResultTy = PointerType::get(getTypeByID(Record[0], true), 568 AddressSpace); 569 break; 570 } 571 case bitc::TYPE_CODE_FUNCTION: { 572 // FIXME: attrid is dead, remove it in LLVM 3.0 573 // FUNCTION: [vararg, attrid, retty, paramty x N] 574 if (Record.size() < 3) 575 return Error("Invalid FUNCTION type record"); 576 std::vector<const Type*> ArgTys; 577 for (unsigned i = 3, e = Record.size(); i != e; ++i) 578 ArgTys.push_back(getTypeByID(Record[i], true)); 579 580 ResultTy = FunctionType::get(getTypeByID(Record[2], true), ArgTys, 581 Record[0]); 582 break; 583 } 584 case bitc::TYPE_CODE_STRUCT: { // STRUCT: [ispacked, eltty x N] 585 if (Record.size() < 1) 586 return Error("Invalid STRUCT type record"); 587 std::vector<const Type*> EltTys; 588 for (unsigned i = 1, e = Record.size(); i != e; ++i) 589 EltTys.push_back(getTypeByID(Record[i], true)); 590 ResultTy = StructType::get(Context, EltTys, Record[0]); 591 break; 592 } 593 case bitc::TYPE_CODE_UNION: { // UNION: [eltty x N] 594 SmallVector<const Type*, 8> EltTys; 595 for (unsigned i = 0, e = Record.size(); i != e; ++i) 596 EltTys.push_back(getTypeByID(Record[i], true)); 597 ResultTy = UnionType::get(&EltTys[0], EltTys.size()); 598 break; 599 } 600 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 601 if (Record.size() < 2) 602 return Error("Invalid ARRAY type record"); 603 ResultTy = ArrayType::get(getTypeByID(Record[1], true), Record[0]); 604 break; 605 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 606 if (Record.size() < 2) 607 return Error("Invalid VECTOR type record"); 608 ResultTy = VectorType::get(getTypeByID(Record[1], true), Record[0]); 609 break; 610 } 611 612 if (NumRecords == TypeList.size()) { 613 // If this is a new type slot, just append it. 614 TypeList.push_back(ResultTy ? ResultTy : OpaqueType::get(Context)); 615 ++NumRecords; 616 } else if (ResultTy == 0) { 617 // Otherwise, this was forward referenced, so an opaque type was created, 618 // but the result type is actually just an opaque. Leave the one we 619 // created previously. 620 ++NumRecords; 621 } else { 622 // Otherwise, this was forward referenced, so an opaque type was created. 623 // Resolve the opaque type to the real type now. 624 assert(NumRecords < TypeList.size() && "Typelist imbalance"); 625 const OpaqueType *OldTy = cast<OpaqueType>(TypeList[NumRecords++].get()); 626 627 // Don't directly push the new type on the Tab. Instead we want to replace 628 // the opaque type we previously inserted with the new concrete value. The 629 // refinement from the abstract (opaque) type to the new type causes all 630 // uses of the abstract type to use the concrete type (NewTy). This will 631 // also cause the opaque type to be deleted. 632 const_cast<OpaqueType*>(OldTy)->refineAbstractTypeTo(ResultTy); 633 634 // This should have replaced the old opaque type with the new type in the 635 // value table... or with a preexisting type that was already in the 636 // system. Let's just make sure it did. 637 assert(TypeList[NumRecords-1].get() != OldTy && 638 "refineAbstractType didn't work!"); 639 } 640 } 641 } 642 643 644 bool BitcodeReader::ParseTypeSymbolTable() { 645 if (Stream.EnterSubBlock(bitc::TYPE_SYMTAB_BLOCK_ID)) 646 return Error("Malformed block record"); 647 648 SmallVector<uint64_t, 64> Record; 649 650 // Read all the records for this type table. 651 std::string TypeName; 652 while (1) { 653 unsigned Code = Stream.ReadCode(); 654 if (Code == bitc::END_BLOCK) { 655 if (Stream.ReadBlockEnd()) 656 return Error("Error at end of type symbol table block"); 657 return false; 658 } 659 660 if (Code == bitc::ENTER_SUBBLOCK) { 661 // No known subblocks, always skip them. 662 Stream.ReadSubBlockID(); 663 if (Stream.SkipBlock()) 664 return Error("Malformed block record"); 665 continue; 666 } 667 668 if (Code == bitc::DEFINE_ABBREV) { 669 Stream.ReadAbbrevRecord(); 670 continue; 671 } 672 673 // Read a record. 674 Record.clear(); 675 switch (Stream.ReadRecord(Code, Record)) { 676 default: // Default behavior: unknown type. 677 break; 678 case bitc::TST_CODE_ENTRY: // TST_ENTRY: [typeid, namechar x N] 679 if (ConvertToString(Record, 1, TypeName)) 680 return Error("Invalid TST_ENTRY record"); 681 unsigned TypeID = Record[0]; 682 if (TypeID >= TypeList.size()) 683 return Error("Invalid Type ID in TST_ENTRY record"); 684 685 TheModule->addTypeName(TypeName, TypeList[TypeID].get()); 686 TypeName.clear(); 687 break; 688 } 689 } 690 } 691 692 bool BitcodeReader::ParseValueSymbolTable() { 693 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 694 return Error("Malformed block record"); 695 696 SmallVector<uint64_t, 64> Record; 697 698 // Read all the records for this value table. 699 SmallString<128> ValueName; 700 while (1) { 701 unsigned Code = Stream.ReadCode(); 702 if (Code == bitc::END_BLOCK) { 703 if (Stream.ReadBlockEnd()) 704 return Error("Error at end of value symbol table block"); 705 return false; 706 } 707 if (Code == bitc::ENTER_SUBBLOCK) { 708 // No known subblocks, always skip them. 709 Stream.ReadSubBlockID(); 710 if (Stream.SkipBlock()) 711 return Error("Malformed block record"); 712 continue; 713 } 714 715 if (Code == bitc::DEFINE_ABBREV) { 716 Stream.ReadAbbrevRecord(); 717 continue; 718 } 719 720 // Read a record. 721 Record.clear(); 722 switch (Stream.ReadRecord(Code, Record)) { 723 default: // Default behavior: unknown type. 724 break; 725 case bitc::VST_CODE_ENTRY: { // VST_ENTRY: [valueid, namechar x N] 726 if (ConvertToString(Record, 1, ValueName)) 727 return Error("Invalid VST_ENTRY record"); 728 unsigned ValueID = Record[0]; 729 if (ValueID >= ValueList.size()) 730 return Error("Invalid Value ID in VST_ENTRY record"); 731 Value *V = ValueList[ValueID]; 732 733 V->setName(StringRef(ValueName.data(), ValueName.size())); 734 ValueName.clear(); 735 break; 736 } 737 case bitc::VST_CODE_BBENTRY: { 738 if (ConvertToString(Record, 1, ValueName)) 739 return Error("Invalid VST_BBENTRY record"); 740 BasicBlock *BB = getBasicBlock(Record[0]); 741 if (BB == 0) 742 return Error("Invalid BB ID in VST_BBENTRY record"); 743 744 BB->setName(StringRef(ValueName.data(), ValueName.size())); 745 ValueName.clear(); 746 break; 747 } 748 } 749 } 750 } 751 752 bool BitcodeReader::ParseMetadata() { 753 unsigned NextMDValueNo = MDValueList.size(); 754 755 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) 756 return Error("Malformed block record"); 757 758 SmallVector<uint64_t, 64> Record; 759 760 // Read all the records. 761 while (1) { 762 unsigned Code = Stream.ReadCode(); 763 if (Code == bitc::END_BLOCK) { 764 if (Stream.ReadBlockEnd()) 765 return Error("Error at end of PARAMATTR block"); 766 return false; 767 } 768 769 if (Code == bitc::ENTER_SUBBLOCK) { 770 // No known subblocks, always skip them. 771 Stream.ReadSubBlockID(); 772 if (Stream.SkipBlock()) 773 return Error("Malformed block record"); 774 continue; 775 } 776 777 if (Code == bitc::DEFINE_ABBREV) { 778 Stream.ReadAbbrevRecord(); 779 continue; 780 } 781 782 bool IsFunctionLocal = false; 783 // Read a record. 784 Record.clear(); 785 switch (Stream.ReadRecord(Code, Record)) { 786 default: // Default behavior: ignore. 787 break; 788 case bitc::METADATA_NAME: { 789 // Read named of the named metadata. 790 unsigned NameLength = Record.size(); 791 SmallString<8> Name; 792 Name.resize(NameLength); 793 for (unsigned i = 0; i != NameLength; ++i) 794 Name[i] = Record[i]; 795 Record.clear(); 796 Code = Stream.ReadCode(); 797 798 // METADATA_NAME is always followed by METADATA_NAMED_NODE. 799 if (Stream.ReadRecord(Code, Record) != bitc::METADATA_NAMED_NODE) 800 assert ( 0 && "Inavlid Named Metadata record"); 801 802 // Read named metadata elements. 803 unsigned Size = Record.size(); 804 SmallVector<MDNode *, 8> Elts; 805 for (unsigned i = 0; i != Size; ++i) { 806 if (Record[i] == ~0U) { 807 Elts.push_back(NULL); 808 continue; 809 } 810 MDNode *MD = dyn_cast<MDNode>(MDValueList.getValueFwdRef(Record[i])); 811 if (MD == 0) 812 return Error("Malformed metadata record"); 813 Elts.push_back(MD); 814 } 815 Value *V = NamedMDNode::Create(Context, Name.str(), Elts.data(), 816 Elts.size(), TheModule); 817 MDValueList.AssignValue(V, NextMDValueNo++); 818 break; 819 } 820 case bitc::METADATA_FN_NODE: 821 IsFunctionLocal = true; 822 // fall-through 823 case bitc::METADATA_NODE: { 824 if (Record.size() % 2 == 1) 825 return Error("Invalid METADATA_NODE record"); 826 827 unsigned Size = Record.size(); 828 SmallVector<Value*, 8> Elts; 829 for (unsigned i = 0; i != Size; i += 2) { 830 const Type *Ty = getTypeByID(Record[i], false); 831 if (Ty->isMetadataTy()) 832 Elts.push_back(MDValueList.getValueFwdRef(Record[i+1])); 833 else if (!Ty->isVoidTy()) 834 Elts.push_back(ValueList.getValueFwdRef(Record[i+1], Ty)); 835 else 836 Elts.push_back(NULL); 837 } 838 Value *V = MDNode::getWhenValsUnresolved(Context, 839 Elts.data(), Elts.size(), 840 IsFunctionLocal); 841 IsFunctionLocal = false; 842 MDValueList.AssignValue(V, NextMDValueNo++); 843 break; 844 } 845 case bitc::METADATA_STRING: { 846 unsigned MDStringLength = Record.size(); 847 SmallString<8> String; 848 String.resize(MDStringLength); 849 for (unsigned i = 0; i != MDStringLength; ++i) 850 String[i] = Record[i]; 851 Value *V = MDString::get(Context, 852 StringRef(String.data(), String.size())); 853 MDValueList.AssignValue(V, NextMDValueNo++); 854 break; 855 } 856 case bitc::METADATA_KIND: { 857 unsigned RecordLength = Record.size(); 858 if (Record.empty() || RecordLength < 2) 859 return Error("Invalid METADATA_KIND record"); 860 SmallString<8> Name; 861 Name.resize(RecordLength-1); 862 unsigned Kind = Record[0]; 863 for (unsigned i = 1; i != RecordLength; ++i) 864 Name[i-1] = Record[i]; 865 866 unsigned NewKind = TheModule->getMDKindID(Name.str()); 867 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second) 868 return Error("Conflicting METADATA_KIND records"); 869 break; 870 } 871 } 872 } 873 } 874 875 /// DecodeSignRotatedValue - Decode a signed value stored with the sign bit in 876 /// the LSB for dense VBR encoding. 877 static uint64_t DecodeSignRotatedValue(uint64_t V) { 878 if ((V & 1) == 0) 879 return V >> 1; 880 if (V != 1) 881 return -(V >> 1); 882 // There is no such thing as -0 with integers. "-0" really means MININT. 883 return 1ULL << 63; 884 } 885 886 /// ResolveGlobalAndAliasInits - Resolve all of the initializers for global 887 /// values and aliases that we can. 888 bool BitcodeReader::ResolveGlobalAndAliasInits() { 889 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 890 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist; 891 892 GlobalInitWorklist.swap(GlobalInits); 893 AliasInitWorklist.swap(AliasInits); 894 895 while (!GlobalInitWorklist.empty()) { 896 unsigned ValID = GlobalInitWorklist.back().second; 897 if (ValID >= ValueList.size()) { 898 // Not ready to resolve this yet, it requires something later in the file. 899 GlobalInits.push_back(GlobalInitWorklist.back()); 900 } else { 901 if (Constant *C = dyn_cast<Constant>(ValueList[ValID])) 902 GlobalInitWorklist.back().first->setInitializer(C); 903 else 904 return Error("Global variable initializer is not a constant!"); 905 } 906 GlobalInitWorklist.pop_back(); 907 } 908 909 while (!AliasInitWorklist.empty()) { 910 unsigned ValID = AliasInitWorklist.back().second; 911 if (ValID >= ValueList.size()) { 912 AliasInits.push_back(AliasInitWorklist.back()); 913 } else { 914 if (Constant *C = dyn_cast<Constant>(ValueList[ValID])) 915 AliasInitWorklist.back().first->setAliasee(C); 916 else 917 return Error("Alias initializer is not a constant!"); 918 } 919 AliasInitWorklist.pop_back(); 920 } 921 return false; 922 } 923 924 bool BitcodeReader::ParseConstants() { 925 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 926 return Error("Malformed block record"); 927 928 SmallVector<uint64_t, 64> Record; 929 930 // Read all the records for this value table. 931 const Type *CurTy = Type::getInt32Ty(Context); 932 unsigned NextCstNo = ValueList.size(); 933 while (1) { 934 unsigned Code = Stream.ReadCode(); 935 if (Code == bitc::END_BLOCK) 936 break; 937 938 if (Code == bitc::ENTER_SUBBLOCK) { 939 // No known subblocks, always skip them. 940 Stream.ReadSubBlockID(); 941 if (Stream.SkipBlock()) 942 return Error("Malformed block record"); 943 continue; 944 } 945 946 if (Code == bitc::DEFINE_ABBREV) { 947 Stream.ReadAbbrevRecord(); 948 continue; 949 } 950 951 // Read a record. 952 Record.clear(); 953 Value *V = 0; 954 unsigned BitCode = Stream.ReadRecord(Code, Record); 955 switch (BitCode) { 956 default: // Default behavior: unknown constant 957 case bitc::CST_CODE_UNDEF: // UNDEF 958 V = UndefValue::get(CurTy); 959 break; 960 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 961 if (Record.empty()) 962 return Error("Malformed CST_SETTYPE record"); 963 if (Record[0] >= TypeList.size()) 964 return Error("Invalid Type ID in CST_SETTYPE record"); 965 CurTy = TypeList[Record[0]]; 966 continue; // Skip the ValueList manipulation. 967 case bitc::CST_CODE_NULL: // NULL 968 V = Constant::getNullValue(CurTy); 969 break; 970 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 971 if (!CurTy->isIntegerTy() || Record.empty()) 972 return Error("Invalid CST_INTEGER record"); 973 V = ConstantInt::get(CurTy, DecodeSignRotatedValue(Record[0])); 974 break; 975 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 976 if (!CurTy->isIntegerTy() || Record.empty()) 977 return Error("Invalid WIDE_INTEGER record"); 978 979 unsigned NumWords = Record.size(); 980 SmallVector<uint64_t, 8> Words; 981 Words.resize(NumWords); 982 for (unsigned i = 0; i != NumWords; ++i) 983 Words[i] = DecodeSignRotatedValue(Record[i]); 984 V = ConstantInt::get(Context, 985 APInt(cast<IntegerType>(CurTy)->getBitWidth(), 986 NumWords, &Words[0])); 987 break; 988 } 989 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 990 if (Record.empty()) 991 return Error("Invalid FLOAT record"); 992 if (CurTy->isFloatTy()) 993 V = ConstantFP::get(Context, APFloat(APInt(32, (uint32_t)Record[0]))); 994 else if (CurTy->isDoubleTy()) 995 V = ConstantFP::get(Context, APFloat(APInt(64, Record[0]))); 996 else if (CurTy->isX86_FP80Ty()) { 997 // Bits are not stored the same way as a normal i80 APInt, compensate. 998 uint64_t Rearrange[2]; 999 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 1000 Rearrange[1] = Record[0] >> 48; 1001 V = ConstantFP::get(Context, APFloat(APInt(80, 2, Rearrange))); 1002 } else if (CurTy->isFP128Ty()) 1003 V = ConstantFP::get(Context, APFloat(APInt(128, 2, &Record[0]), true)); 1004 else if (CurTy->isPPC_FP128Ty()) 1005 V = ConstantFP::get(Context, APFloat(APInt(128, 2, &Record[0]))); 1006 else 1007 V = UndefValue::get(CurTy); 1008 break; 1009 } 1010 1011 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 1012 if (Record.empty()) 1013 return Error("Invalid CST_AGGREGATE record"); 1014 1015 unsigned Size = Record.size(); 1016 std::vector<Constant*> Elts; 1017 1018 if (const StructType *STy = dyn_cast<StructType>(CurTy)) { 1019 for (unsigned i = 0; i != Size; ++i) 1020 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 1021 STy->getElementType(i))); 1022 V = ConstantStruct::get(STy, Elts); 1023 } else if (const UnionType *UnTy = dyn_cast<UnionType>(CurTy)) { 1024 uint64_t Index = Record[0]; 1025 Constant *Val = ValueList.getConstantFwdRef(Record[1], 1026 UnTy->getElementType(Index)); 1027 V = ConstantUnion::get(UnTy, Val); 1028 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 1029 const Type *EltTy = ATy->getElementType(); 1030 for (unsigned i = 0; i != Size; ++i) 1031 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 1032 V = ConstantArray::get(ATy, Elts); 1033 } else if (const VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 1034 const Type *EltTy = VTy->getElementType(); 1035 for (unsigned i = 0; i != Size; ++i) 1036 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 1037 V = ConstantVector::get(Elts); 1038 } else { 1039 V = UndefValue::get(CurTy); 1040 } 1041 break; 1042 } 1043 case bitc::CST_CODE_STRING: { // STRING: [values] 1044 if (Record.empty()) 1045 return Error("Invalid CST_AGGREGATE record"); 1046 1047 const ArrayType *ATy = cast<ArrayType>(CurTy); 1048 const Type *EltTy = ATy->getElementType(); 1049 1050 unsigned Size = Record.size(); 1051 std::vector<Constant*> Elts; 1052 for (unsigned i = 0; i != Size; ++i) 1053 Elts.push_back(ConstantInt::get(EltTy, Record[i])); 1054 V = ConstantArray::get(ATy, Elts); 1055 break; 1056 } 1057 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 1058 if (Record.empty()) 1059 return Error("Invalid CST_AGGREGATE record"); 1060 1061 const ArrayType *ATy = cast<ArrayType>(CurTy); 1062 const Type *EltTy = ATy->getElementType(); 1063 1064 unsigned Size = Record.size(); 1065 std::vector<Constant*> Elts; 1066 for (unsigned i = 0; i != Size; ++i) 1067 Elts.push_back(ConstantInt::get(EltTy, Record[i])); 1068 Elts.push_back(Constant::getNullValue(EltTy)); 1069 V = ConstantArray::get(ATy, Elts); 1070 break; 1071 } 1072 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 1073 if (Record.size() < 3) return Error("Invalid CE_BINOP record"); 1074 int Opc = GetDecodedBinaryOpcode(Record[0], CurTy); 1075 if (Opc < 0) { 1076 V = UndefValue::get(CurTy); // Unknown binop. 1077 } else { 1078 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 1079 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 1080 unsigned Flags = 0; 1081 if (Record.size() >= 4) { 1082 if (Opc == Instruction::Add || 1083 Opc == Instruction::Sub || 1084 Opc == Instruction::Mul) { 1085 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 1086 Flags |= OverflowingBinaryOperator::NoSignedWrap; 1087 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 1088 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 1089 } else if (Opc == Instruction::SDiv) { 1090 if (Record[3] & (1 << bitc::SDIV_EXACT)) 1091 Flags |= SDivOperator::IsExact; 1092 } 1093 } 1094 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 1095 } 1096 break; 1097 } 1098 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 1099 if (Record.size() < 3) return Error("Invalid CE_CAST record"); 1100 int Opc = GetDecodedCastOpcode(Record[0]); 1101 if (Opc < 0) { 1102 V = UndefValue::get(CurTy); // Unknown cast. 1103 } else { 1104 const Type *OpTy = getTypeByID(Record[1]); 1105 if (!OpTy) return Error("Invalid CE_CAST record"); 1106 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 1107 V = ConstantExpr::getCast(Opc, Op, CurTy); 1108 } 1109 break; 1110 } 1111 case bitc::CST_CODE_CE_INBOUNDS_GEP: 1112 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 1113 if (Record.size() & 1) return Error("Invalid CE_GEP record"); 1114 SmallVector<Constant*, 16> Elts; 1115 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1116 const Type *ElTy = getTypeByID(Record[i]); 1117 if (!ElTy) return Error("Invalid CE_GEP record"); 1118 Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy)); 1119 } 1120 if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 1121 V = ConstantExpr::getInBoundsGetElementPtr(Elts[0], &Elts[1], 1122 Elts.size()-1); 1123 else 1124 V = ConstantExpr::getGetElementPtr(Elts[0], &Elts[1], 1125 Elts.size()-1); 1126 break; 1127 } 1128 case bitc::CST_CODE_CE_SELECT: // CE_SELECT: [opval#, opval#, opval#] 1129 if (Record.size() < 3) return Error("Invalid CE_SELECT record"); 1130 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 1131 Type::getInt1Ty(Context)), 1132 ValueList.getConstantFwdRef(Record[1],CurTy), 1133 ValueList.getConstantFwdRef(Record[2],CurTy)); 1134 break; 1135 case bitc::CST_CODE_CE_EXTRACTELT: { // CE_EXTRACTELT: [opty, opval, opval] 1136 if (Record.size() < 3) return Error("Invalid CE_EXTRACTELT record"); 1137 const VectorType *OpTy = 1138 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 1139 if (OpTy == 0) return Error("Invalid CE_EXTRACTELT record"); 1140 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1141 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 1142 V = ConstantExpr::getExtractElement(Op0, Op1); 1143 break; 1144 } 1145 case bitc::CST_CODE_CE_INSERTELT: { // CE_INSERTELT: [opval, opval, opval] 1146 const VectorType *OpTy = dyn_cast<VectorType>(CurTy); 1147 if (Record.size() < 3 || OpTy == 0) 1148 return Error("Invalid CE_INSERTELT record"); 1149 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 1150 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 1151 OpTy->getElementType()); 1152 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 1153 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 1154 break; 1155 } 1156 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 1157 const VectorType *OpTy = dyn_cast<VectorType>(CurTy); 1158 if (Record.size() < 3 || OpTy == 0) 1159 return Error("Invalid CE_SHUFFLEVEC record"); 1160 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 1161 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 1162 const Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 1163 OpTy->getNumElements()); 1164 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 1165 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 1166 break; 1167 } 1168 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 1169 const VectorType *RTy = dyn_cast<VectorType>(CurTy); 1170 const VectorType *OpTy = dyn_cast<VectorType>(getTypeByID(Record[0])); 1171 if (Record.size() < 4 || RTy == 0 || OpTy == 0) 1172 return Error("Invalid CE_SHUFVEC_EX record"); 1173 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1174 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 1175 const Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 1176 RTy->getNumElements()); 1177 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 1178 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 1179 break; 1180 } 1181 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 1182 if (Record.size() < 4) return Error("Invalid CE_CMP record"); 1183 const Type *OpTy = getTypeByID(Record[0]); 1184 if (OpTy == 0) return Error("Invalid CE_CMP record"); 1185 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1186 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 1187 1188 if (OpTy->isFPOrFPVectorTy()) 1189 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 1190 else 1191 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 1192 break; 1193 } 1194 case bitc::CST_CODE_INLINEASM: { 1195 if (Record.size() < 2) return Error("Invalid INLINEASM record"); 1196 std::string AsmStr, ConstrStr; 1197 bool HasSideEffects = Record[0] & 1; 1198 bool IsAlignStack = Record[0] >> 1; 1199 unsigned AsmStrSize = Record[1]; 1200 if (2+AsmStrSize >= Record.size()) 1201 return Error("Invalid INLINEASM record"); 1202 unsigned ConstStrSize = Record[2+AsmStrSize]; 1203 if (3+AsmStrSize+ConstStrSize > Record.size()) 1204 return Error("Invalid INLINEASM record"); 1205 1206 for (unsigned i = 0; i != AsmStrSize; ++i) 1207 AsmStr += (char)Record[2+i]; 1208 for (unsigned i = 0; i != ConstStrSize; ++i) 1209 ConstrStr += (char)Record[3+AsmStrSize+i]; 1210 const PointerType *PTy = cast<PointerType>(CurTy); 1211 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 1212 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 1213 break; 1214 } 1215 case bitc::CST_CODE_BLOCKADDRESS:{ 1216 if (Record.size() < 3) return Error("Invalid CE_BLOCKADDRESS record"); 1217 const Type *FnTy = getTypeByID(Record[0]); 1218 if (FnTy == 0) return Error("Invalid CE_BLOCKADDRESS record"); 1219 Function *Fn = 1220 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 1221 if (Fn == 0) return Error("Invalid CE_BLOCKADDRESS record"); 1222 1223 GlobalVariable *FwdRef = new GlobalVariable(*Fn->getParent(), 1224 Type::getInt8Ty(Context), 1225 false, GlobalValue::InternalLinkage, 1226 0, ""); 1227 BlockAddrFwdRefs[Fn].push_back(std::make_pair(Record[2], FwdRef)); 1228 V = FwdRef; 1229 break; 1230 } 1231 } 1232 1233 ValueList.AssignValue(V, NextCstNo); 1234 ++NextCstNo; 1235 } 1236 1237 if (NextCstNo != ValueList.size()) 1238 return Error("Invalid constant reference!"); 1239 1240 if (Stream.ReadBlockEnd()) 1241 return Error("Error at end of constants block"); 1242 1243 // Once all the constants have been read, go through and resolve forward 1244 // references. 1245 ValueList.ResolveConstantForwardRefs(); 1246 return false; 1247 } 1248 1249 /// RememberAndSkipFunctionBody - When we see the block for a function body, 1250 /// remember where it is and then skip it. This lets us lazily deserialize the 1251 /// functions. 1252 bool BitcodeReader::RememberAndSkipFunctionBody() { 1253 // Get the function we are talking about. 1254 if (FunctionsWithBodies.empty()) 1255 return Error("Insufficient function protos"); 1256 1257 Function *Fn = FunctionsWithBodies.back(); 1258 FunctionsWithBodies.pop_back(); 1259 1260 // Save the current stream state. 1261 uint64_t CurBit = Stream.GetCurrentBitNo(); 1262 DeferredFunctionInfo[Fn] = CurBit; 1263 1264 // Skip over the function block for now. 1265 if (Stream.SkipBlock()) 1266 return Error("Malformed block record"); 1267 return false; 1268 } 1269 1270 bool BitcodeReader::ParseModule() { 1271 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 1272 return Error("Malformed block record"); 1273 1274 SmallVector<uint64_t, 64> Record; 1275 std::vector<std::string> SectionTable; 1276 std::vector<std::string> GCTable; 1277 1278 // Read all the records for this module. 1279 while (!Stream.AtEndOfStream()) { 1280 unsigned Code = Stream.ReadCode(); 1281 if (Code == bitc::END_BLOCK) { 1282 if (Stream.ReadBlockEnd()) 1283 return Error("Error at end of module block"); 1284 1285 // Patch the initializers for globals and aliases up. 1286 ResolveGlobalAndAliasInits(); 1287 if (!GlobalInits.empty() || !AliasInits.empty()) 1288 return Error("Malformed global initializer set"); 1289 if (!FunctionsWithBodies.empty()) 1290 return Error("Too few function bodies found"); 1291 1292 // Look for intrinsic functions which need to be upgraded at some point 1293 for (Module::iterator FI = TheModule->begin(), FE = TheModule->end(); 1294 FI != FE; ++FI) { 1295 Function* NewFn; 1296 if (UpgradeIntrinsicFunction(FI, NewFn)) 1297 UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn)); 1298 } 1299 1300 // Force deallocation of memory for these vectors to favor the client that 1301 // want lazy deserialization. 1302 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 1303 std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits); 1304 std::vector<Function*>().swap(FunctionsWithBodies); 1305 return false; 1306 } 1307 1308 if (Code == bitc::ENTER_SUBBLOCK) { 1309 switch (Stream.ReadSubBlockID()) { 1310 default: // Skip unknown content. 1311 if (Stream.SkipBlock()) 1312 return Error("Malformed block record"); 1313 break; 1314 case bitc::BLOCKINFO_BLOCK_ID: 1315 if (Stream.ReadBlockInfoBlock()) 1316 return Error("Malformed BlockInfoBlock"); 1317 break; 1318 case bitc::PARAMATTR_BLOCK_ID: 1319 if (ParseAttributeBlock()) 1320 return true; 1321 break; 1322 case bitc::TYPE_BLOCK_ID: 1323 if (ParseTypeTable()) 1324 return true; 1325 break; 1326 case bitc::TYPE_SYMTAB_BLOCK_ID: 1327 if (ParseTypeSymbolTable()) 1328 return true; 1329 break; 1330 case bitc::VALUE_SYMTAB_BLOCK_ID: 1331 if (ParseValueSymbolTable()) 1332 return true; 1333 break; 1334 case bitc::CONSTANTS_BLOCK_ID: 1335 if (ParseConstants() || ResolveGlobalAndAliasInits()) 1336 return true; 1337 break; 1338 case bitc::METADATA_BLOCK_ID: 1339 if (ParseMetadata()) 1340 return true; 1341 break; 1342 case bitc::FUNCTION_BLOCK_ID: 1343 // If this is the first function body we've seen, reverse the 1344 // FunctionsWithBodies list. 1345 if (!HasReversedFunctionsWithBodies) { 1346 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 1347 HasReversedFunctionsWithBodies = true; 1348 } 1349 1350 if (RememberAndSkipFunctionBody()) 1351 return true; 1352 break; 1353 } 1354 continue; 1355 } 1356 1357 if (Code == bitc::DEFINE_ABBREV) { 1358 Stream.ReadAbbrevRecord(); 1359 continue; 1360 } 1361 1362 // Read a record. 1363 switch (Stream.ReadRecord(Code, Record)) { 1364 default: break; // Default behavior, ignore unknown content. 1365 case bitc::MODULE_CODE_VERSION: // VERSION: [version#] 1366 if (Record.size() < 1) 1367 return Error("Malformed MODULE_CODE_VERSION"); 1368 // Only version #0 is supported so far. 1369 if (Record[0] != 0) 1370 return Error("Unknown bitstream version!"); 1371 break; 1372 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 1373 std::string S; 1374 if (ConvertToString(Record, 0, S)) 1375 return Error("Invalid MODULE_CODE_TRIPLE record"); 1376 TheModule->setTargetTriple(S); 1377 break; 1378 } 1379 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 1380 std::string S; 1381 if (ConvertToString(Record, 0, S)) 1382 return Error("Invalid MODULE_CODE_DATALAYOUT record"); 1383 TheModule->setDataLayout(S); 1384 break; 1385 } 1386 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 1387 std::string S; 1388 if (ConvertToString(Record, 0, S)) 1389 return Error("Invalid MODULE_CODE_ASM record"); 1390 TheModule->setModuleInlineAsm(S); 1391 break; 1392 } 1393 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 1394 std::string S; 1395 if (ConvertToString(Record, 0, S)) 1396 return Error("Invalid MODULE_CODE_DEPLIB record"); 1397 TheModule->addLibrary(S); 1398 break; 1399 } 1400 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 1401 std::string S; 1402 if (ConvertToString(Record, 0, S)) 1403 return Error("Invalid MODULE_CODE_SECTIONNAME record"); 1404 SectionTable.push_back(S); 1405 break; 1406 } 1407 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 1408 std::string S; 1409 if (ConvertToString(Record, 0, S)) 1410 return Error("Invalid MODULE_CODE_GCNAME record"); 1411 GCTable.push_back(S); 1412 break; 1413 } 1414 // GLOBALVAR: [pointer type, isconst, initid, 1415 // linkage, alignment, section, visibility, threadlocal] 1416 case bitc::MODULE_CODE_GLOBALVAR: { 1417 if (Record.size() < 6) 1418 return Error("Invalid MODULE_CODE_GLOBALVAR record"); 1419 const Type *Ty = getTypeByID(Record[0]); 1420 if (!Ty->isPointerTy()) 1421 return Error("Global not a pointer type!"); 1422 unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 1423 Ty = cast<PointerType>(Ty)->getElementType(); 1424 1425 bool isConstant = Record[1]; 1426 GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]); 1427 unsigned Alignment = (1 << Record[4]) >> 1; 1428 std::string Section; 1429 if (Record[5]) { 1430 if (Record[5]-1 >= SectionTable.size()) 1431 return Error("Invalid section ID"); 1432 Section = SectionTable[Record[5]-1]; 1433 } 1434 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 1435 if (Record.size() > 6) 1436 Visibility = GetDecodedVisibility(Record[6]); 1437 bool isThreadLocal = false; 1438 if (Record.size() > 7) 1439 isThreadLocal = Record[7]; 1440 1441 GlobalVariable *NewGV = 1442 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, 0, "", 0, 1443 isThreadLocal, AddressSpace); 1444 NewGV->setAlignment(Alignment); 1445 if (!Section.empty()) 1446 NewGV->setSection(Section); 1447 NewGV->setVisibility(Visibility); 1448 NewGV->setThreadLocal(isThreadLocal); 1449 1450 ValueList.push_back(NewGV); 1451 1452 // Remember which value to use for the global initializer. 1453 if (unsigned InitID = Record[2]) 1454 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 1455 break; 1456 } 1457 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 1458 // alignment, section, visibility, gc] 1459 case bitc::MODULE_CODE_FUNCTION: { 1460 if (Record.size() < 8) 1461 return Error("Invalid MODULE_CODE_FUNCTION record"); 1462 const Type *Ty = getTypeByID(Record[0]); 1463 if (!Ty->isPointerTy()) 1464 return Error("Function not a pointer type!"); 1465 const FunctionType *FTy = 1466 dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType()); 1467 if (!FTy) 1468 return Error("Function not a pointer to function type!"); 1469 1470 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 1471 "", TheModule); 1472 1473 Func->setCallingConv(static_cast<CallingConv::ID>(Record[1])); 1474 bool isProto = Record[2]; 1475 Func->setLinkage(GetDecodedLinkage(Record[3])); 1476 Func->setAttributes(getAttributes(Record[4])); 1477 1478 Func->setAlignment((1 << Record[5]) >> 1); 1479 if (Record[6]) { 1480 if (Record[6]-1 >= SectionTable.size()) 1481 return Error("Invalid section ID"); 1482 Func->setSection(SectionTable[Record[6]-1]); 1483 } 1484 Func->setVisibility(GetDecodedVisibility(Record[7])); 1485 if (Record.size() > 8 && Record[8]) { 1486 if (Record[8]-1 > GCTable.size()) 1487 return Error("Invalid GC ID"); 1488 Func->setGC(GCTable[Record[8]-1].c_str()); 1489 } 1490 ValueList.push_back(Func); 1491 1492 // If this is a function with a body, remember the prototype we are 1493 // creating now, so that we can match up the body with them later. 1494 if (!isProto) 1495 FunctionsWithBodies.push_back(Func); 1496 break; 1497 } 1498 // ALIAS: [alias type, aliasee val#, linkage] 1499 // ALIAS: [alias type, aliasee val#, linkage, visibility] 1500 case bitc::MODULE_CODE_ALIAS: { 1501 if (Record.size() < 3) 1502 return Error("Invalid MODULE_ALIAS record"); 1503 const Type *Ty = getTypeByID(Record[0]); 1504 if (!Ty->isPointerTy()) 1505 return Error("Function not a pointer type!"); 1506 1507 GlobalAlias *NewGA = new GlobalAlias(Ty, GetDecodedLinkage(Record[2]), 1508 "", 0, TheModule); 1509 // Old bitcode files didn't have visibility field. 1510 if (Record.size() > 3) 1511 NewGA->setVisibility(GetDecodedVisibility(Record[3])); 1512 ValueList.push_back(NewGA); 1513 AliasInits.push_back(std::make_pair(NewGA, Record[1])); 1514 break; 1515 } 1516 /// MODULE_CODE_PURGEVALS: [numvals] 1517 case bitc::MODULE_CODE_PURGEVALS: 1518 // Trim down the value list to the specified size. 1519 if (Record.size() < 1 || Record[0] > ValueList.size()) 1520 return Error("Invalid MODULE_PURGEVALS record"); 1521 ValueList.shrinkTo(Record[0]); 1522 break; 1523 } 1524 Record.clear(); 1525 } 1526 1527 return Error("Premature end of bitstream"); 1528 } 1529 1530 bool BitcodeReader::ParseBitcodeInto(Module *M) { 1531 TheModule = 0; 1532 1533 unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart(); 1534 unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 1535 1536 if (Buffer->getBufferSize() & 3) { 1537 if (!isRawBitcode(BufPtr, BufEnd) && !isBitcodeWrapper(BufPtr, BufEnd)) 1538 return Error("Invalid bitcode signature"); 1539 else 1540 return Error("Bitcode stream should be a multiple of 4 bytes in length"); 1541 } 1542 1543 // If we have a wrapper header, parse it and ignore the non-bc file contents. 1544 // The magic number is 0x0B17C0DE stored in little endian. 1545 if (isBitcodeWrapper(BufPtr, BufEnd)) 1546 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd)) 1547 return Error("Invalid bitcode wrapper header"); 1548 1549 StreamFile.init(BufPtr, BufEnd); 1550 Stream.init(StreamFile); 1551 1552 // Sniff for the signature. 1553 if (Stream.Read(8) != 'B' || 1554 Stream.Read(8) != 'C' || 1555 Stream.Read(4) != 0x0 || 1556 Stream.Read(4) != 0xC || 1557 Stream.Read(4) != 0xE || 1558 Stream.Read(4) != 0xD) 1559 return Error("Invalid bitcode signature"); 1560 1561 // We expect a number of well-defined blocks, though we don't necessarily 1562 // need to understand them all. 1563 while (!Stream.AtEndOfStream()) { 1564 unsigned Code = Stream.ReadCode(); 1565 1566 if (Code != bitc::ENTER_SUBBLOCK) 1567 return Error("Invalid record at top-level"); 1568 1569 unsigned BlockID = Stream.ReadSubBlockID(); 1570 1571 // We only know the MODULE subblock ID. 1572 switch (BlockID) { 1573 case bitc::BLOCKINFO_BLOCK_ID: 1574 if (Stream.ReadBlockInfoBlock()) 1575 return Error("Malformed BlockInfoBlock"); 1576 break; 1577 case bitc::MODULE_BLOCK_ID: 1578 // Reject multiple MODULE_BLOCK's in a single bitstream. 1579 if (TheModule) 1580 return Error("Multiple MODULE_BLOCKs in same stream"); 1581 TheModule = M; 1582 if (ParseModule()) 1583 return true; 1584 break; 1585 default: 1586 if (Stream.SkipBlock()) 1587 return Error("Malformed block record"); 1588 break; 1589 } 1590 } 1591 1592 return false; 1593 } 1594 1595 /// ParseMetadataAttachment - Parse metadata attachments. 1596 bool BitcodeReader::ParseMetadataAttachment() { 1597 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) 1598 return Error("Malformed block record"); 1599 1600 SmallVector<uint64_t, 64> Record; 1601 while(1) { 1602 unsigned Code = Stream.ReadCode(); 1603 if (Code == bitc::END_BLOCK) { 1604 if (Stream.ReadBlockEnd()) 1605 return Error("Error at end of PARAMATTR block"); 1606 break; 1607 } 1608 if (Code == bitc::DEFINE_ABBREV) { 1609 Stream.ReadAbbrevRecord(); 1610 continue; 1611 } 1612 // Read a metadata attachment record. 1613 Record.clear(); 1614 switch (Stream.ReadRecord(Code, Record)) { 1615 default: // Default behavior: ignore. 1616 break; 1617 case bitc::METADATA_ATTACHMENT: { 1618 unsigned RecordLength = Record.size(); 1619 if (Record.empty() || (RecordLength - 1) % 2 == 1) 1620 return Error ("Invalid METADATA_ATTACHMENT reader!"); 1621 Instruction *Inst = InstructionList[Record[0]]; 1622 for (unsigned i = 1; i != RecordLength; i = i+2) { 1623 unsigned Kind = Record[i]; 1624 DenseMap<unsigned, unsigned>::iterator I = 1625 MDKindMap.find(Kind); 1626 if (I == MDKindMap.end()) 1627 return Error("Invalid metadata kind ID"); 1628 Value *Node = MDValueList.getValueFwdRef(Record[i+1]); 1629 Inst->setMetadata(I->second, cast<MDNode>(Node)); 1630 } 1631 break; 1632 } 1633 } 1634 } 1635 return false; 1636 } 1637 1638 /// ParseFunctionBody - Lazily parse the specified function body block. 1639 bool BitcodeReader::ParseFunctionBody(Function *F) { 1640 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 1641 return Error("Malformed block record"); 1642 1643 InstructionList.clear(); 1644 unsigned ModuleValueListSize = ValueList.size(); 1645 1646 // Add all the function arguments to the value table. 1647 for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) 1648 ValueList.push_back(I); 1649 1650 unsigned NextValueNo = ValueList.size(); 1651 BasicBlock *CurBB = 0; 1652 unsigned CurBBNo = 0; 1653 1654 DebugLoc LastLoc; 1655 1656 // Read all the records. 1657 SmallVector<uint64_t, 64> Record; 1658 while (1) { 1659 unsigned Code = Stream.ReadCode(); 1660 if (Code == bitc::END_BLOCK) { 1661 if (Stream.ReadBlockEnd()) 1662 return Error("Error at end of function block"); 1663 break; 1664 } 1665 1666 if (Code == bitc::ENTER_SUBBLOCK) { 1667 switch (Stream.ReadSubBlockID()) { 1668 default: // Skip unknown content. 1669 if (Stream.SkipBlock()) 1670 return Error("Malformed block record"); 1671 break; 1672 case bitc::CONSTANTS_BLOCK_ID: 1673 if (ParseConstants()) return true; 1674 NextValueNo = ValueList.size(); 1675 break; 1676 case bitc::VALUE_SYMTAB_BLOCK_ID: 1677 if (ParseValueSymbolTable()) return true; 1678 break; 1679 case bitc::METADATA_ATTACHMENT_ID: 1680 if (ParseMetadataAttachment()) return true; 1681 break; 1682 case bitc::METADATA_BLOCK_ID: 1683 if (ParseMetadata()) return true; 1684 break; 1685 } 1686 continue; 1687 } 1688 1689 if (Code == bitc::DEFINE_ABBREV) { 1690 Stream.ReadAbbrevRecord(); 1691 continue; 1692 } 1693 1694 // Read a record. 1695 Record.clear(); 1696 Instruction *I = 0; 1697 unsigned BitCode = Stream.ReadRecord(Code, Record); 1698 switch (BitCode) { 1699 default: // Default behavior: reject 1700 return Error("Unknown instruction"); 1701 case bitc::FUNC_CODE_DECLAREBLOCKS: // DECLAREBLOCKS: [nblocks] 1702 if (Record.size() < 1 || Record[0] == 0) 1703 return Error("Invalid DECLAREBLOCKS record"); 1704 // Create all the basic blocks for the function. 1705 FunctionBBs.resize(Record[0]); 1706 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 1707 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 1708 CurBB = FunctionBBs[0]; 1709 continue; 1710 1711 1712 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 1713 // This record indicates that the last instruction is at the same 1714 // location as the previous instruction with a location. 1715 I = 0; 1716 1717 // Get the last instruction emitted. 1718 if (CurBB && !CurBB->empty()) 1719 I = &CurBB->back(); 1720 else if (CurBBNo && FunctionBBs[CurBBNo-1] && 1721 !FunctionBBs[CurBBNo-1]->empty()) 1722 I = &FunctionBBs[CurBBNo-1]->back(); 1723 1724 if (I == 0) return Error("Invalid DEBUG_LOC_AGAIN record"); 1725 I->setDebugLoc(LastLoc); 1726 I = 0; 1727 continue; 1728 1729 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 1730 I = 0; // Get the last instruction emitted. 1731 if (CurBB && !CurBB->empty()) 1732 I = &CurBB->back(); 1733 else if (CurBBNo && FunctionBBs[CurBBNo-1] && 1734 !FunctionBBs[CurBBNo-1]->empty()) 1735 I = &FunctionBBs[CurBBNo-1]->back(); 1736 if (I == 0 || Record.size() < 4) 1737 return Error("Invalid FUNC_CODE_DEBUG_LOC record"); 1738 1739 unsigned Line = Record[0], Col = Record[1]; 1740 unsigned ScopeID = Record[2], IAID = Record[3]; 1741 1742 MDNode *Scope = 0, *IA = 0; 1743 if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1)); 1744 if (IAID) IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1)); 1745 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 1746 I->setDebugLoc(LastLoc); 1747 I = 0; 1748 continue; 1749 } 1750 1751 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 1752 unsigned OpNum = 0; 1753 Value *LHS, *RHS; 1754 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 1755 getValue(Record, OpNum, LHS->getType(), RHS) || 1756 OpNum+1 > Record.size()) 1757 return Error("Invalid BINOP record"); 1758 1759 int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 1760 if (Opc == -1) return Error("Invalid BINOP record"); 1761 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 1762 InstructionList.push_back(I); 1763 if (OpNum < Record.size()) { 1764 if (Opc == Instruction::Add || 1765 Opc == Instruction::Sub || 1766 Opc == Instruction::Mul) { 1767 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 1768 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 1769 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 1770 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 1771 } else if (Opc == Instruction::SDiv) { 1772 if (Record[OpNum] & (1 << bitc::SDIV_EXACT)) 1773 cast<BinaryOperator>(I)->setIsExact(true); 1774 } 1775 } 1776 break; 1777 } 1778 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 1779 unsigned OpNum = 0; 1780 Value *Op; 1781 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 1782 OpNum+2 != Record.size()) 1783 return Error("Invalid CAST record"); 1784 1785 const Type *ResTy = getTypeByID(Record[OpNum]); 1786 int Opc = GetDecodedCastOpcode(Record[OpNum+1]); 1787 if (Opc == -1 || ResTy == 0) 1788 return Error("Invalid CAST record"); 1789 I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy); 1790 InstructionList.push_back(I); 1791 break; 1792 } 1793 case bitc::FUNC_CODE_INST_INBOUNDS_GEP: 1794 case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands] 1795 unsigned OpNum = 0; 1796 Value *BasePtr; 1797 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 1798 return Error("Invalid GEP record"); 1799 1800 SmallVector<Value*, 16> GEPIdx; 1801 while (OpNum != Record.size()) { 1802 Value *Op; 1803 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 1804 return Error("Invalid GEP record"); 1805 GEPIdx.push_back(Op); 1806 } 1807 1808 I = GetElementPtrInst::Create(BasePtr, GEPIdx.begin(), GEPIdx.end()); 1809 InstructionList.push_back(I); 1810 if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP) 1811 cast<GetElementPtrInst>(I)->setIsInBounds(true); 1812 break; 1813 } 1814 1815 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 1816 // EXTRACTVAL: [opty, opval, n x indices] 1817 unsigned OpNum = 0; 1818 Value *Agg; 1819 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 1820 return Error("Invalid EXTRACTVAL record"); 1821 1822 SmallVector<unsigned, 4> EXTRACTVALIdx; 1823 for (unsigned RecSize = Record.size(); 1824 OpNum != RecSize; ++OpNum) { 1825 uint64_t Index = Record[OpNum]; 1826 if ((unsigned)Index != Index) 1827 return Error("Invalid EXTRACTVAL index"); 1828 EXTRACTVALIdx.push_back((unsigned)Index); 1829 } 1830 1831 I = ExtractValueInst::Create(Agg, 1832 EXTRACTVALIdx.begin(), EXTRACTVALIdx.end()); 1833 InstructionList.push_back(I); 1834 break; 1835 } 1836 1837 case bitc::FUNC_CODE_INST_INSERTVAL: { 1838 // INSERTVAL: [opty, opval, opty, opval, n x indices] 1839 unsigned OpNum = 0; 1840 Value *Agg; 1841 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 1842 return Error("Invalid INSERTVAL record"); 1843 Value *Val; 1844 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 1845 return Error("Invalid INSERTVAL record"); 1846 1847 SmallVector<unsigned, 4> INSERTVALIdx; 1848 for (unsigned RecSize = Record.size(); 1849 OpNum != RecSize; ++OpNum) { 1850 uint64_t Index = Record[OpNum]; 1851 if ((unsigned)Index != Index) 1852 return Error("Invalid INSERTVAL index"); 1853 INSERTVALIdx.push_back((unsigned)Index); 1854 } 1855 1856 I = InsertValueInst::Create(Agg, Val, 1857 INSERTVALIdx.begin(), INSERTVALIdx.end()); 1858 InstructionList.push_back(I); 1859 break; 1860 } 1861 1862 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 1863 // obsolete form of select 1864 // handles select i1 ... in old bitcode 1865 unsigned OpNum = 0; 1866 Value *TrueVal, *FalseVal, *Cond; 1867 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 1868 getValue(Record, OpNum, TrueVal->getType(), FalseVal) || 1869 getValue(Record, OpNum, Type::getInt1Ty(Context), Cond)) 1870 return Error("Invalid SELECT record"); 1871 1872 I = SelectInst::Create(Cond, TrueVal, FalseVal); 1873 InstructionList.push_back(I); 1874 break; 1875 } 1876 1877 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 1878 // new form of select 1879 // handles select i1 or select [N x i1] 1880 unsigned OpNum = 0; 1881 Value *TrueVal, *FalseVal, *Cond; 1882 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 1883 getValue(Record, OpNum, TrueVal->getType(), FalseVal) || 1884 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 1885 return Error("Invalid SELECT record"); 1886 1887 // select condition can be either i1 or [N x i1] 1888 if (const VectorType* vector_type = 1889 dyn_cast<const VectorType>(Cond->getType())) { 1890 // expect <n x i1> 1891 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 1892 return Error("Invalid SELECT condition type"); 1893 } else { 1894 // expect i1 1895 if (Cond->getType() != Type::getInt1Ty(Context)) 1896 return Error("Invalid SELECT condition type"); 1897 } 1898 1899 I = SelectInst::Create(Cond, TrueVal, FalseVal); 1900 InstructionList.push_back(I); 1901 break; 1902 } 1903 1904 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 1905 unsigned OpNum = 0; 1906 Value *Vec, *Idx; 1907 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 1908 getValue(Record, OpNum, Type::getInt32Ty(Context), Idx)) 1909 return Error("Invalid EXTRACTELT record"); 1910 I = ExtractElementInst::Create(Vec, Idx); 1911 InstructionList.push_back(I); 1912 break; 1913 } 1914 1915 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 1916 unsigned OpNum = 0; 1917 Value *Vec, *Elt, *Idx; 1918 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 1919 getValue(Record, OpNum, 1920 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 1921 getValue(Record, OpNum, Type::getInt32Ty(Context), Idx)) 1922 return Error("Invalid INSERTELT record"); 1923 I = InsertElementInst::Create(Vec, Elt, Idx); 1924 InstructionList.push_back(I); 1925 break; 1926 } 1927 1928 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 1929 unsigned OpNum = 0; 1930 Value *Vec1, *Vec2, *Mask; 1931 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 1932 getValue(Record, OpNum, Vec1->getType(), Vec2)) 1933 return Error("Invalid SHUFFLEVEC record"); 1934 1935 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 1936 return Error("Invalid SHUFFLEVEC record"); 1937 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 1938 InstructionList.push_back(I); 1939 break; 1940 } 1941 1942 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 1943 // Old form of ICmp/FCmp returning bool 1944 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 1945 // both legal on vectors but had different behaviour. 1946 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 1947 // FCmp/ICmp returning bool or vector of bool 1948 1949 unsigned OpNum = 0; 1950 Value *LHS, *RHS; 1951 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 1952 getValue(Record, OpNum, LHS->getType(), RHS) || 1953 OpNum+1 != Record.size()) 1954 return Error("Invalid CMP record"); 1955 1956 if (LHS->getType()->isFPOrFPVectorTy()) 1957 I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS); 1958 else 1959 I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS); 1960 InstructionList.push_back(I); 1961 break; 1962 } 1963 1964 case bitc::FUNC_CODE_INST_GETRESULT: { // GETRESULT: [ty, val, n] 1965 if (Record.size() != 2) 1966 return Error("Invalid GETRESULT record"); 1967 unsigned OpNum = 0; 1968 Value *Op; 1969 getValueTypePair(Record, OpNum, NextValueNo, Op); 1970 unsigned Index = Record[1]; 1971 I = ExtractValueInst::Create(Op, Index); 1972 InstructionList.push_back(I); 1973 break; 1974 } 1975 1976 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 1977 { 1978 unsigned Size = Record.size(); 1979 if (Size == 0) { 1980 I = ReturnInst::Create(Context); 1981 InstructionList.push_back(I); 1982 break; 1983 } 1984 1985 unsigned OpNum = 0; 1986 SmallVector<Value *,4> Vs; 1987 do { 1988 Value *Op = NULL; 1989 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 1990 return Error("Invalid RET record"); 1991 Vs.push_back(Op); 1992 } while(OpNum != Record.size()); 1993 1994 const Type *ReturnType = F->getReturnType(); 1995 if (Vs.size() > 1 || 1996 (ReturnType->isStructTy() && 1997 (Vs.empty() || Vs[0]->getType() != ReturnType))) { 1998 Value *RV = UndefValue::get(ReturnType); 1999 for (unsigned i = 0, e = Vs.size(); i != e; ++i) { 2000 I = InsertValueInst::Create(RV, Vs[i], i, "mrv"); 2001 InstructionList.push_back(I); 2002 CurBB->getInstList().push_back(I); 2003 ValueList.AssignValue(I, NextValueNo++); 2004 RV = I; 2005 } 2006 I = ReturnInst::Create(Context, RV); 2007 InstructionList.push_back(I); 2008 break; 2009 } 2010 2011 I = ReturnInst::Create(Context, Vs[0]); 2012 InstructionList.push_back(I); 2013 break; 2014 } 2015 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 2016 if (Record.size() != 1 && Record.size() != 3) 2017 return Error("Invalid BR record"); 2018 BasicBlock *TrueDest = getBasicBlock(Record[0]); 2019 if (TrueDest == 0) 2020 return Error("Invalid BR record"); 2021 2022 if (Record.size() == 1) { 2023 I = BranchInst::Create(TrueDest); 2024 InstructionList.push_back(I); 2025 } 2026 else { 2027 BasicBlock *FalseDest = getBasicBlock(Record[1]); 2028 Value *Cond = getFnValueByID(Record[2], Type::getInt1Ty(Context)); 2029 if (FalseDest == 0 || Cond == 0) 2030 return Error("Invalid BR record"); 2031 I = BranchInst::Create(TrueDest, FalseDest, Cond); 2032 InstructionList.push_back(I); 2033 } 2034 break; 2035 } 2036 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 2037 if (Record.size() < 3 || (Record.size() & 1) == 0) 2038 return Error("Invalid SWITCH record"); 2039 const Type *OpTy = getTypeByID(Record[0]); 2040 Value *Cond = getFnValueByID(Record[1], OpTy); 2041 BasicBlock *Default = getBasicBlock(Record[2]); 2042 if (OpTy == 0 || Cond == 0 || Default == 0) 2043 return Error("Invalid SWITCH record"); 2044 unsigned NumCases = (Record.size()-3)/2; 2045 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 2046 InstructionList.push_back(SI); 2047 for (unsigned i = 0, e = NumCases; i != e; ++i) { 2048 ConstantInt *CaseVal = 2049 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 2050 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 2051 if (CaseVal == 0 || DestBB == 0) { 2052 delete SI; 2053 return Error("Invalid SWITCH record!"); 2054 } 2055 SI->addCase(CaseVal, DestBB); 2056 } 2057 I = SI; 2058 break; 2059 } 2060 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 2061 if (Record.size() < 2) 2062 return Error("Invalid INDIRECTBR record"); 2063 const Type *OpTy = getTypeByID(Record[0]); 2064 Value *Address = getFnValueByID(Record[1], OpTy); 2065 if (OpTy == 0 || Address == 0) 2066 return Error("Invalid INDIRECTBR record"); 2067 unsigned NumDests = Record.size()-2; 2068 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 2069 InstructionList.push_back(IBI); 2070 for (unsigned i = 0, e = NumDests; i != e; ++i) { 2071 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 2072 IBI->addDestination(DestBB); 2073 } else { 2074 delete IBI; 2075 return Error("Invalid INDIRECTBR record!"); 2076 } 2077 } 2078 I = IBI; 2079 break; 2080 } 2081 2082 case bitc::FUNC_CODE_INST_INVOKE: { 2083 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 2084 if (Record.size() < 4) return Error("Invalid INVOKE record"); 2085 AttrListPtr PAL = getAttributes(Record[0]); 2086 unsigned CCInfo = Record[1]; 2087 BasicBlock *NormalBB = getBasicBlock(Record[2]); 2088 BasicBlock *UnwindBB = getBasicBlock(Record[3]); 2089 2090 unsigned OpNum = 4; 2091 Value *Callee; 2092 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 2093 return Error("Invalid INVOKE record"); 2094 2095 const PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 2096 const FunctionType *FTy = !CalleeTy ? 0 : 2097 dyn_cast<FunctionType>(CalleeTy->getElementType()); 2098 2099 // Check that the right number of fixed parameters are here. 2100 if (FTy == 0 || NormalBB == 0 || UnwindBB == 0 || 2101 Record.size() < OpNum+FTy->getNumParams()) 2102 return Error("Invalid INVOKE record"); 2103 2104 SmallVector<Value*, 16> Ops; 2105 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 2106 Ops.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i))); 2107 if (Ops.back() == 0) return Error("Invalid INVOKE record"); 2108 } 2109 2110 if (!FTy->isVarArg()) { 2111 if (Record.size() != OpNum) 2112 return Error("Invalid INVOKE record"); 2113 } else { 2114 // Read type/value pairs for varargs params. 2115 while (OpNum != Record.size()) { 2116 Value *Op; 2117 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 2118 return Error("Invalid INVOKE record"); 2119 Ops.push_back(Op); 2120 } 2121 } 2122 2123 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, 2124 Ops.begin(), Ops.end()); 2125 InstructionList.push_back(I); 2126 cast<InvokeInst>(I)->setCallingConv( 2127 static_cast<CallingConv::ID>(CCInfo)); 2128 cast<InvokeInst>(I)->setAttributes(PAL); 2129 break; 2130 } 2131 case bitc::FUNC_CODE_INST_UNWIND: // UNWIND 2132 I = new UnwindInst(Context); 2133 InstructionList.push_back(I); 2134 break; 2135 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 2136 I = new UnreachableInst(Context); 2137 InstructionList.push_back(I); 2138 break; 2139 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 2140 if (Record.size() < 1 || ((Record.size()-1)&1)) 2141 return Error("Invalid PHI record"); 2142 const Type *Ty = getTypeByID(Record[0]); 2143 if (!Ty) return Error("Invalid PHI record"); 2144 2145 PHINode *PN = PHINode::Create(Ty); 2146 InstructionList.push_back(PN); 2147 PN->reserveOperandSpace((Record.size()-1)/2); 2148 2149 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 2150 Value *V = getFnValueByID(Record[1+i], Ty); 2151 BasicBlock *BB = getBasicBlock(Record[2+i]); 2152 if (!V || !BB) return Error("Invalid PHI record"); 2153 PN->addIncoming(V, BB); 2154 } 2155 I = PN; 2156 break; 2157 } 2158 2159 case bitc::FUNC_CODE_INST_MALLOC: { // MALLOC: [instty, op, align] 2160 // Autoupgrade malloc instruction to malloc call. 2161 // FIXME: Remove in LLVM 3.0. 2162 if (Record.size() < 3) 2163 return Error("Invalid MALLOC record"); 2164 const PointerType *Ty = 2165 dyn_cast_or_null<PointerType>(getTypeByID(Record[0])); 2166 Value *Size = getFnValueByID(Record[1], Type::getInt32Ty(Context)); 2167 if (!Ty || !Size) return Error("Invalid MALLOC record"); 2168 if (!CurBB) return Error("Invalid malloc instruction with no BB"); 2169 const Type *Int32Ty = IntegerType::getInt32Ty(CurBB->getContext()); 2170 Constant *AllocSize = ConstantExpr::getSizeOf(Ty->getElementType()); 2171 AllocSize = ConstantExpr::getTruncOrBitCast(AllocSize, Int32Ty); 2172 I = CallInst::CreateMalloc(CurBB, Int32Ty, Ty->getElementType(), 2173 AllocSize, Size, NULL); 2174 InstructionList.push_back(I); 2175 break; 2176 } 2177 case bitc::FUNC_CODE_INST_FREE: { // FREE: [op, opty] 2178 unsigned OpNum = 0; 2179 Value *Op; 2180 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 2181 OpNum != Record.size()) 2182 return Error("Invalid FREE record"); 2183 if (!CurBB) return Error("Invalid free instruction with no BB"); 2184 I = CallInst::CreateFree(Op, CurBB); 2185 InstructionList.push_back(I); 2186 break; 2187 } 2188 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 2189 // For backward compatibility, tolerate a lack of an opty, and use i32. 2190 // LLVM 3.0: Remove this. 2191 if (Record.size() < 3 || Record.size() > 4) 2192 return Error("Invalid ALLOCA record"); 2193 unsigned OpNum = 0; 2194 const PointerType *Ty = 2195 dyn_cast_or_null<PointerType>(getTypeByID(Record[OpNum++])); 2196 const Type *OpTy = Record.size() == 4 ? getTypeByID(Record[OpNum++]) : 2197 Type::getInt32Ty(Context); 2198 Value *Size = getFnValueByID(Record[OpNum++], OpTy); 2199 unsigned Align = Record[OpNum++]; 2200 if (!Ty || !Size) return Error("Invalid ALLOCA record"); 2201 I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1); 2202 InstructionList.push_back(I); 2203 break; 2204 } 2205 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 2206 unsigned OpNum = 0; 2207 Value *Op; 2208 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 2209 OpNum+2 != Record.size()) 2210 return Error("Invalid LOAD record"); 2211 2212 I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1); 2213 InstructionList.push_back(I); 2214 break; 2215 } 2216 case bitc::FUNC_CODE_INST_STORE2: { // STORE2:[ptrty, ptr, val, align, vol] 2217 unsigned OpNum = 0; 2218 Value *Val, *Ptr; 2219 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 2220 getValue(Record, OpNum, 2221 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 2222 OpNum+2 != Record.size()) 2223 return Error("Invalid STORE record"); 2224 2225 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1); 2226 InstructionList.push_back(I); 2227 break; 2228 } 2229 case bitc::FUNC_CODE_INST_STORE: { // STORE:[val, valty, ptr, align, vol] 2230 // FIXME: Legacy form of store instruction. Should be removed in LLVM 3.0. 2231 unsigned OpNum = 0; 2232 Value *Val, *Ptr; 2233 if (getValueTypePair(Record, OpNum, NextValueNo, Val) || 2234 getValue(Record, OpNum, 2235 PointerType::getUnqual(Val->getType()), Ptr)|| 2236 OpNum+2 != Record.size()) 2237 return Error("Invalid STORE record"); 2238 2239 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1); 2240 InstructionList.push_back(I); 2241 break; 2242 } 2243 case bitc::FUNC_CODE_INST_CALL: { 2244 // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...] 2245 if (Record.size() < 3) 2246 return Error("Invalid CALL record"); 2247 2248 AttrListPtr PAL = getAttributes(Record[0]); 2249 unsigned CCInfo = Record[1]; 2250 2251 unsigned OpNum = 2; 2252 Value *Callee; 2253 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 2254 return Error("Invalid CALL record"); 2255 2256 const PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 2257 const FunctionType *FTy = 0; 2258 if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 2259 if (!FTy || Record.size() < FTy->getNumParams()+OpNum) 2260 return Error("Invalid CALL record"); 2261 2262 SmallVector<Value*, 16> Args; 2263 // Read the fixed params. 2264 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 2265 if (FTy->getParamType(i)->getTypeID()==Type::LabelTyID) 2266 Args.push_back(getBasicBlock(Record[OpNum])); 2267 else 2268 Args.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i))); 2269 if (Args.back() == 0) return Error("Invalid CALL record"); 2270 } 2271 2272 // Read type/value pairs for varargs params. 2273 if (!FTy->isVarArg()) { 2274 if (OpNum != Record.size()) 2275 return Error("Invalid CALL record"); 2276 } else { 2277 while (OpNum != Record.size()) { 2278 Value *Op; 2279 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 2280 return Error("Invalid CALL record"); 2281 Args.push_back(Op); 2282 } 2283 } 2284 2285 I = CallInst::Create(Callee, Args.begin(), Args.end()); 2286 InstructionList.push_back(I); 2287 cast<CallInst>(I)->setCallingConv( 2288 static_cast<CallingConv::ID>(CCInfo>>1)); 2289 cast<CallInst>(I)->setTailCall(CCInfo & 1); 2290 cast<CallInst>(I)->setAttributes(PAL); 2291 break; 2292 } 2293 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 2294 if (Record.size() < 3) 2295 return Error("Invalid VAARG record"); 2296 const Type *OpTy = getTypeByID(Record[0]); 2297 Value *Op = getFnValueByID(Record[1], OpTy); 2298 const Type *ResTy = getTypeByID(Record[2]); 2299 if (!OpTy || !Op || !ResTy) 2300 return Error("Invalid VAARG record"); 2301 I = new VAArgInst(Op, ResTy); 2302 InstructionList.push_back(I); 2303 break; 2304 } 2305 } 2306 2307 // Add instruction to end of current BB. If there is no current BB, reject 2308 // this file. 2309 if (CurBB == 0) { 2310 delete I; 2311 return Error("Invalid instruction with no BB"); 2312 } 2313 CurBB->getInstList().push_back(I); 2314 2315 // If this was a terminator instruction, move to the next block. 2316 if (isa<TerminatorInst>(I)) { 2317 ++CurBBNo; 2318 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : 0; 2319 } 2320 2321 // Non-void values get registered in the value table for future use. 2322 if (I && !I->getType()->isVoidTy()) 2323 ValueList.AssignValue(I, NextValueNo++); 2324 } 2325 2326 // Check the function list for unresolved values. 2327 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 2328 if (A->getParent() == 0) { 2329 // We found at least one unresolved value. Nuke them all to avoid leaks. 2330 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 2331 if ((A = dyn_cast<Argument>(ValueList.back())) && A->getParent() == 0) { 2332 A->replaceAllUsesWith(UndefValue::get(A->getType())); 2333 delete A; 2334 } 2335 } 2336 return Error("Never resolved value found in function!"); 2337 } 2338 } 2339 2340 // See if anything took the address of blocks in this function. If so, 2341 // resolve them now. 2342 DenseMap<Function*, std::vector<BlockAddrRefTy> >::iterator BAFRI = 2343 BlockAddrFwdRefs.find(F); 2344 if (BAFRI != BlockAddrFwdRefs.end()) { 2345 std::vector<BlockAddrRefTy> &RefList = BAFRI->second; 2346 for (unsigned i = 0, e = RefList.size(); i != e; ++i) { 2347 unsigned BlockIdx = RefList[i].first; 2348 if (BlockIdx >= FunctionBBs.size()) 2349 return Error("Invalid blockaddress block #"); 2350 2351 GlobalVariable *FwdRef = RefList[i].second; 2352 FwdRef->replaceAllUsesWith(BlockAddress::get(F, FunctionBBs[BlockIdx])); 2353 FwdRef->eraseFromParent(); 2354 } 2355 2356 BlockAddrFwdRefs.erase(BAFRI); 2357 } 2358 2359 // Trim the value list down to the size it was before we parsed this function. 2360 ValueList.shrinkTo(ModuleValueListSize); 2361 std::vector<BasicBlock*>().swap(FunctionBBs); 2362 2363 return false; 2364 } 2365 2366 //===----------------------------------------------------------------------===// 2367 // GVMaterializer implementation 2368 //===----------------------------------------------------------------------===// 2369 2370 2371 bool BitcodeReader::isMaterializable(const GlobalValue *GV) const { 2372 if (const Function *F = dyn_cast<Function>(GV)) { 2373 return F->isDeclaration() && 2374 DeferredFunctionInfo.count(const_cast<Function*>(F)); 2375 } 2376 return false; 2377 } 2378 2379 bool BitcodeReader::Materialize(GlobalValue *GV, std::string *ErrInfo) { 2380 Function *F = dyn_cast<Function>(GV); 2381 // If it's not a function or is already material, ignore the request. 2382 if (!F || !F->isMaterializable()) return false; 2383 2384 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 2385 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 2386 2387 // Move the bit stream to the saved position of the deferred function body. 2388 Stream.JumpToBit(DFII->second); 2389 2390 if (ParseFunctionBody(F)) { 2391 if (ErrInfo) *ErrInfo = ErrorString; 2392 return true; 2393 } 2394 2395 // Upgrade any old intrinsic calls in the function. 2396 for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(), 2397 E = UpgradedIntrinsics.end(); I != E; ++I) { 2398 if (I->first != I->second) { 2399 for (Value::use_iterator UI = I->first->use_begin(), 2400 UE = I->first->use_end(); UI != UE; ) { 2401 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 2402 UpgradeIntrinsicCall(CI, I->second); 2403 } 2404 } 2405 } 2406 2407 return false; 2408 } 2409 2410 bool BitcodeReader::isDematerializable(const GlobalValue *GV) const { 2411 const Function *F = dyn_cast<Function>(GV); 2412 if (!F || F->isDeclaration()) 2413 return false; 2414 return DeferredFunctionInfo.count(const_cast<Function*>(F)); 2415 } 2416 2417 void BitcodeReader::Dematerialize(GlobalValue *GV) { 2418 Function *F = dyn_cast<Function>(GV); 2419 // If this function isn't dematerializable, this is a noop. 2420 if (!F || !isDematerializable(F)) 2421 return; 2422 2423 assert(DeferredFunctionInfo.count(F) && "No info to read function later?"); 2424 2425 // Just forget the function body, we can remat it later. 2426 F->deleteBody(); 2427 } 2428 2429 2430 bool BitcodeReader::MaterializeModule(Module *M, std::string *ErrInfo) { 2431 assert(M == TheModule && 2432 "Can only Materialize the Module this BitcodeReader is attached to."); 2433 // Iterate over the module, deserializing any functions that are still on 2434 // disk. 2435 for (Module::iterator F = TheModule->begin(), E = TheModule->end(); 2436 F != E; ++F) 2437 if (F->isMaterializable() && 2438 Materialize(F, ErrInfo)) 2439 return true; 2440 2441 // Upgrade any intrinsic calls that slipped through (should not happen!) and 2442 // delete the old functions to clean up. We can't do this unless the entire 2443 // module is materialized because there could always be another function body 2444 // with calls to the old function. 2445 for (std::vector<std::pair<Function*, Function*> >::iterator I = 2446 UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) { 2447 if (I->first != I->second) { 2448 for (Value::use_iterator UI = I->first->use_begin(), 2449 UE = I->first->use_end(); UI != UE; ) { 2450 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 2451 UpgradeIntrinsicCall(CI, I->second); 2452 } 2453 if (!I->first->use_empty()) 2454 I->first->replaceAllUsesWith(I->second); 2455 I->first->eraseFromParent(); 2456 } 2457 } 2458 std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics); 2459 2460 // Check debug info intrinsics. 2461 CheckDebugInfoIntrinsics(TheModule); 2462 2463 return false; 2464 } 2465 2466 2467 //===----------------------------------------------------------------------===// 2468 // External interface 2469 //===----------------------------------------------------------------------===// 2470 2471 /// getLazyBitcodeModule - lazy function-at-a-time loading from a file. 2472 /// 2473 Module *llvm::getLazyBitcodeModule(MemoryBuffer *Buffer, 2474 LLVMContext& Context, 2475 std::string *ErrMsg) { 2476 Module *M = new Module(Buffer->getBufferIdentifier(), Context); 2477 BitcodeReader *R = new BitcodeReader(Buffer, Context); 2478 M->setMaterializer(R); 2479 if (R->ParseBitcodeInto(M)) { 2480 if (ErrMsg) 2481 *ErrMsg = R->getErrorString(); 2482 2483 delete M; // Also deletes R. 2484 return 0; 2485 } 2486 // Have the BitcodeReader dtor delete 'Buffer'. 2487 R->setBufferOwned(true); 2488 return M; 2489 } 2490 2491 /// ParseBitcodeFile - Read the specified bitcode file, returning the module. 2492 /// If an error occurs, return null and fill in *ErrMsg if non-null. 2493 Module *llvm::ParseBitcodeFile(MemoryBuffer *Buffer, LLVMContext& Context, 2494 std::string *ErrMsg){ 2495 Module *M = getLazyBitcodeModule(Buffer, Context, ErrMsg); 2496 if (!M) return 0; 2497 2498 // Don't let the BitcodeReader dtor delete 'Buffer', regardless of whether 2499 // there was an error. 2500 static_cast<BitcodeReader*>(M->getMaterializer())->setBufferOwned(false); 2501 2502 // Read in the entire module, and destroy the BitcodeReader. 2503 if (M->MaterializeAllPermanently(ErrMsg)) { 2504 delete M; 2505 return NULL; 2506 } 2507 return M; 2508 } 2509