xref: /llvm-project/llvm/lib/Bitcode/Reader/BitcodeReader.cpp (revision 416f1c465db62d829283f6902ef35e027e127aa7)
1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Bitcode/BitcodeReader.h"
10 #include "MetadataLoader.h"
11 #include "ValueList.h"
12 #include "llvm/ADT/APFloat.h"
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallString.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/StringRef.h"
20 #include "llvm/ADT/Twine.h"
21 #include "llvm/Bitcode/BitcodeCommon.h"
22 #include "llvm/Bitcode/LLVMBitCodes.h"
23 #include "llvm/Bitstream/BitstreamReader.h"
24 #include "llvm/Config/llvm-config.h"
25 #include "llvm/IR/Argument.h"
26 #include "llvm/IR/AttributeMask.h"
27 #include "llvm/IR/Attributes.h"
28 #include "llvm/IR/AutoUpgrade.h"
29 #include "llvm/IR/BasicBlock.h"
30 #include "llvm/IR/CallingConv.h"
31 #include "llvm/IR/Comdat.h"
32 #include "llvm/IR/Constant.h"
33 #include "llvm/IR/ConstantRangeList.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/DebugInfo.h"
37 #include "llvm/IR/DebugInfoMetadata.h"
38 #include "llvm/IR/DebugLoc.h"
39 #include "llvm/IR/DerivedTypes.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/GVMaterializer.h"
42 #include "llvm/IR/GetElementPtrTypeIterator.h"
43 #include "llvm/IR/GlobalAlias.h"
44 #include "llvm/IR/GlobalIFunc.h"
45 #include "llvm/IR/GlobalObject.h"
46 #include "llvm/IR/GlobalValue.h"
47 #include "llvm/IR/GlobalVariable.h"
48 #include "llvm/IR/InlineAsm.h"
49 #include "llvm/IR/InstIterator.h"
50 #include "llvm/IR/InstrTypes.h"
51 #include "llvm/IR/Instruction.h"
52 #include "llvm/IR/Instructions.h"
53 #include "llvm/IR/Intrinsics.h"
54 #include "llvm/IR/IntrinsicsAArch64.h"
55 #include "llvm/IR/IntrinsicsARM.h"
56 #include "llvm/IR/LLVMContext.h"
57 #include "llvm/IR/Metadata.h"
58 #include "llvm/IR/Module.h"
59 #include "llvm/IR/ModuleSummaryIndex.h"
60 #include "llvm/IR/Operator.h"
61 #include "llvm/IR/ProfDataUtils.h"
62 #include "llvm/IR/Type.h"
63 #include "llvm/IR/Value.h"
64 #include "llvm/IR/Verifier.h"
65 #include "llvm/Support/AtomicOrdering.h"
66 #include "llvm/Support/Casting.h"
67 #include "llvm/Support/CommandLine.h"
68 #include "llvm/Support/Compiler.h"
69 #include "llvm/Support/Debug.h"
70 #include "llvm/Support/Error.h"
71 #include "llvm/Support/ErrorHandling.h"
72 #include "llvm/Support/ErrorOr.h"
73 #include "llvm/Support/MathExtras.h"
74 #include "llvm/Support/MemoryBuffer.h"
75 #include "llvm/Support/ModRef.h"
76 #include "llvm/Support/raw_ostream.h"
77 #include "llvm/TargetParser/Triple.h"
78 #include <algorithm>
79 #include <cassert>
80 #include <cstddef>
81 #include <cstdint>
82 #include <deque>
83 #include <map>
84 #include <memory>
85 #include <optional>
86 #include <set>
87 #include <string>
88 #include <system_error>
89 #include <tuple>
90 #include <utility>
91 #include <vector>
92 
93 using namespace llvm;
94 
95 static cl::opt<bool> PrintSummaryGUIDs(
96     "print-summary-global-ids", cl::init(false), cl::Hidden,
97     cl::desc(
98         "Print the global id for each value when reading the module summary"));
99 
100 static cl::opt<bool> ExpandConstantExprs(
101     "expand-constant-exprs", cl::Hidden,
102     cl::desc(
103         "Expand constant expressions to instructions for testing purposes"));
104 
105 /// Load bitcode directly into RemoveDIs format (use debug records instead
106 /// of debug intrinsics). UNSET is treated as FALSE, so the default action
107 /// is to do nothing. Individual tools can override this to incrementally add
108 /// support for the RemoveDIs format.
109 cl::opt<cl::boolOrDefault> LoadBitcodeIntoNewDbgInfoFormat(
110     "load-bitcode-into-experimental-debuginfo-iterators", cl::Hidden,
111     cl::desc("Load bitcode directly into the new debug info format (regardless "
112              "of input format)"));
113 extern cl::opt<bool> UseNewDbgInfoFormat;
114 extern cl::opt<cl::boolOrDefault> PreserveInputDbgFormat;
115 extern bool WriteNewDbgInfoFormatToBitcode;
116 extern cl::opt<bool> WriteNewDbgInfoFormat;
117 
118 namespace {
119 
120 enum {
121   SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
122 };
123 
124 } // end anonymous namespace
125 
126 static Error error(const Twine &Message) {
127   return make_error<StringError>(
128       Message, make_error_code(BitcodeError::CorruptedBitcode));
129 }
130 
131 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) {
132   if (!Stream.canSkipToPos(4))
133     return createStringError(std::errc::illegal_byte_sequence,
134                              "file too small to contain bitcode header");
135   for (unsigned C : {'B', 'C'})
136     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) {
137       if (Res.get() != C)
138         return createStringError(std::errc::illegal_byte_sequence,
139                                  "file doesn't start with bitcode header");
140     } else
141       return Res.takeError();
142   for (unsigned C : {0x0, 0xC, 0xE, 0xD})
143     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) {
144       if (Res.get() != C)
145         return createStringError(std::errc::illegal_byte_sequence,
146                                  "file doesn't start with bitcode header");
147     } else
148       return Res.takeError();
149   return Error::success();
150 }
151 
152 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) {
153   const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart();
154   const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize();
155 
156   if (Buffer.getBufferSize() & 3)
157     return error("Invalid bitcode signature");
158 
159   // If we have a wrapper header, parse it and ignore the non-bc file contents.
160   // The magic number is 0x0B17C0DE stored in little endian.
161   if (isBitcodeWrapper(BufPtr, BufEnd))
162     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
163       return error("Invalid bitcode wrapper header");
164 
165   BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd));
166   if (Error Err = hasInvalidBitcodeHeader(Stream))
167     return std::move(Err);
168 
169   return std::move(Stream);
170 }
171 
172 /// Convert a string from a record into an std::string, return true on failure.
173 template <typename StrTy>
174 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
175                             StrTy &Result) {
176   if (Idx > Record.size())
177     return true;
178 
179   Result.append(Record.begin() + Idx, Record.end());
180   return false;
181 }
182 
183 // Strip all the TBAA attachment for the module.
184 static void stripTBAA(Module *M) {
185   for (auto &F : *M) {
186     if (F.isMaterializable())
187       continue;
188     for (auto &I : instructions(F))
189       I.setMetadata(LLVMContext::MD_tbaa, nullptr);
190   }
191 }
192 
193 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the
194 /// "epoch" encoded in the bitcode, and return the producer name if any.
195 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) {
196   if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID))
197     return std::move(Err);
198 
199   // Read all the records.
200   SmallVector<uint64_t, 64> Record;
201 
202   std::string ProducerIdentification;
203 
204   while (true) {
205     BitstreamEntry Entry;
206     if (Error E = Stream.advance().moveInto(Entry))
207       return std::move(E);
208 
209     switch (Entry.Kind) {
210     default:
211     case BitstreamEntry::Error:
212       return error("Malformed block");
213     case BitstreamEntry::EndBlock:
214       return ProducerIdentification;
215     case BitstreamEntry::Record:
216       // The interesting case.
217       break;
218     }
219 
220     // Read a record.
221     Record.clear();
222     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
223     if (!MaybeBitCode)
224       return MaybeBitCode.takeError();
225     switch (MaybeBitCode.get()) {
226     default: // Default behavior: reject
227       return error("Invalid value");
228     case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N]
229       convertToString(Record, 0, ProducerIdentification);
230       break;
231     case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#]
232       unsigned epoch = (unsigned)Record[0];
233       if (epoch != bitc::BITCODE_CURRENT_EPOCH) {
234         return error(
235           Twine("Incompatible epoch: Bitcode '") + Twine(epoch) +
236           "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'");
237       }
238     }
239     }
240   }
241 }
242 
243 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) {
244   // We expect a number of well-defined blocks, though we don't necessarily
245   // need to understand them all.
246   while (true) {
247     if (Stream.AtEndOfStream())
248       return "";
249 
250     BitstreamEntry Entry;
251     if (Error E = Stream.advance().moveInto(Entry))
252       return std::move(E);
253 
254     switch (Entry.Kind) {
255     case BitstreamEntry::EndBlock:
256     case BitstreamEntry::Error:
257       return error("Malformed block");
258 
259     case BitstreamEntry::SubBlock:
260       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID)
261         return readIdentificationBlock(Stream);
262 
263       // Ignore other sub-blocks.
264       if (Error Err = Stream.SkipBlock())
265         return std::move(Err);
266       continue;
267     case BitstreamEntry::Record:
268       if (Error E = Stream.skipRecord(Entry.ID).takeError())
269         return std::move(E);
270       continue;
271     }
272   }
273 }
274 
275 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) {
276   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
277     return std::move(Err);
278 
279   SmallVector<uint64_t, 64> Record;
280   // Read all the records for this module.
281 
282   while (true) {
283     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
284     if (!MaybeEntry)
285       return MaybeEntry.takeError();
286     BitstreamEntry Entry = MaybeEntry.get();
287 
288     switch (Entry.Kind) {
289     case BitstreamEntry::SubBlock: // Handled for us already.
290     case BitstreamEntry::Error:
291       return error("Malformed block");
292     case BitstreamEntry::EndBlock:
293       return false;
294     case BitstreamEntry::Record:
295       // The interesting case.
296       break;
297     }
298 
299     // Read a record.
300     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
301     if (!MaybeRecord)
302       return MaybeRecord.takeError();
303     switch (MaybeRecord.get()) {
304     default:
305       break; // Default behavior, ignore unknown content.
306     case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
307       std::string S;
308       if (convertToString(Record, 0, S))
309         return error("Invalid section name record");
310       // Check for the i386 and other (x86_64, ARM) conventions
311       if (S.find("__DATA,__objc_catlist") != std::string::npos ||
312           S.find("__OBJC,__category") != std::string::npos ||
313           S.find("__TEXT,__swift") != std::string::npos)
314         return true;
315       break;
316     }
317     }
318     Record.clear();
319   }
320   llvm_unreachable("Exit infinite loop");
321 }
322 
323 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) {
324   // We expect a number of well-defined blocks, though we don't necessarily
325   // need to understand them all.
326   while (true) {
327     BitstreamEntry Entry;
328     if (Error E = Stream.advance().moveInto(Entry))
329       return std::move(E);
330 
331     switch (Entry.Kind) {
332     case BitstreamEntry::Error:
333       return error("Malformed block");
334     case BitstreamEntry::EndBlock:
335       return false;
336 
337     case BitstreamEntry::SubBlock:
338       if (Entry.ID == bitc::MODULE_BLOCK_ID)
339         return hasObjCCategoryInModule(Stream);
340 
341       // Ignore other sub-blocks.
342       if (Error Err = Stream.SkipBlock())
343         return std::move(Err);
344       continue;
345 
346     case BitstreamEntry::Record:
347       if (Error E = Stream.skipRecord(Entry.ID).takeError())
348         return std::move(E);
349       continue;
350     }
351   }
352 }
353 
354 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) {
355   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
356     return std::move(Err);
357 
358   SmallVector<uint64_t, 64> Record;
359 
360   std::string Triple;
361 
362   // Read all the records for this module.
363   while (true) {
364     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
365     if (!MaybeEntry)
366       return MaybeEntry.takeError();
367     BitstreamEntry Entry = MaybeEntry.get();
368 
369     switch (Entry.Kind) {
370     case BitstreamEntry::SubBlock: // Handled for us already.
371     case BitstreamEntry::Error:
372       return error("Malformed block");
373     case BitstreamEntry::EndBlock:
374       return Triple;
375     case BitstreamEntry::Record:
376       // The interesting case.
377       break;
378     }
379 
380     // Read a record.
381     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
382     if (!MaybeRecord)
383       return MaybeRecord.takeError();
384     switch (MaybeRecord.get()) {
385     default: break;  // Default behavior, ignore unknown content.
386     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
387       std::string S;
388       if (convertToString(Record, 0, S))
389         return error("Invalid triple record");
390       Triple = S;
391       break;
392     }
393     }
394     Record.clear();
395   }
396   llvm_unreachable("Exit infinite loop");
397 }
398 
399 static Expected<std::string> readTriple(BitstreamCursor &Stream) {
400   // We expect a number of well-defined blocks, though we don't necessarily
401   // need to understand them all.
402   while (true) {
403     Expected<BitstreamEntry> MaybeEntry = Stream.advance();
404     if (!MaybeEntry)
405       return MaybeEntry.takeError();
406     BitstreamEntry Entry = MaybeEntry.get();
407 
408     switch (Entry.Kind) {
409     case BitstreamEntry::Error:
410       return error("Malformed block");
411     case BitstreamEntry::EndBlock:
412       return "";
413 
414     case BitstreamEntry::SubBlock:
415       if (Entry.ID == bitc::MODULE_BLOCK_ID)
416         return readModuleTriple(Stream);
417 
418       // Ignore other sub-blocks.
419       if (Error Err = Stream.SkipBlock())
420         return std::move(Err);
421       continue;
422 
423     case BitstreamEntry::Record:
424       if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
425         continue;
426       else
427         return Skipped.takeError();
428     }
429   }
430 }
431 
432 namespace {
433 
434 class BitcodeReaderBase {
435 protected:
436   BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab)
437       : Stream(std::move(Stream)), Strtab(Strtab) {
438     this->Stream.setBlockInfo(&BlockInfo);
439   }
440 
441   BitstreamBlockInfo BlockInfo;
442   BitstreamCursor Stream;
443   StringRef Strtab;
444 
445   /// In version 2 of the bitcode we store names of global values and comdats in
446   /// a string table rather than in the VST.
447   bool UseStrtab = false;
448 
449   Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record);
450 
451   /// If this module uses a string table, pop the reference to the string table
452   /// and return the referenced string and the rest of the record. Otherwise
453   /// just return the record itself.
454   std::pair<StringRef, ArrayRef<uint64_t>>
455   readNameFromStrtab(ArrayRef<uint64_t> Record);
456 
457   Error readBlockInfo();
458 
459   // Contains an arbitrary and optional string identifying the bitcode producer
460   std::string ProducerIdentification;
461 
462   Error error(const Twine &Message);
463 };
464 
465 } // end anonymous namespace
466 
467 Error BitcodeReaderBase::error(const Twine &Message) {
468   std::string FullMsg = Message.str();
469   if (!ProducerIdentification.empty())
470     FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " +
471                LLVM_VERSION_STRING "')";
472   return ::error(FullMsg);
473 }
474 
475 Expected<unsigned>
476 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) {
477   if (Record.empty())
478     return error("Invalid version record");
479   unsigned ModuleVersion = Record[0];
480   if (ModuleVersion > 2)
481     return error("Invalid value");
482   UseStrtab = ModuleVersion >= 2;
483   return ModuleVersion;
484 }
485 
486 std::pair<StringRef, ArrayRef<uint64_t>>
487 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) {
488   if (!UseStrtab)
489     return {"", Record};
490   // Invalid reference. Let the caller complain about the record being empty.
491   if (Record[0] + Record[1] > Strtab.size())
492     return {"", {}};
493   return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)};
494 }
495 
496 namespace {
497 
498 /// This represents a constant expression or constant aggregate using a custom
499 /// structure internal to the bitcode reader. Later, this structure will be
500 /// expanded by materializeValue() either into a constant expression/aggregate,
501 /// or into an instruction sequence at the point of use. This allows us to
502 /// upgrade bitcode using constant expressions even if this kind of constant
503 /// expression is no longer supported.
504 class BitcodeConstant final : public Value,
505                               TrailingObjects<BitcodeConstant, unsigned> {
506   friend TrailingObjects;
507 
508   // Value subclass ID: Pick largest possible value to avoid any clashes.
509   static constexpr uint8_t SubclassID = 255;
510 
511 public:
512   // Opcodes used for non-expressions. This includes constant aggregates
513   // (struct, array, vector) that might need expansion, as well as non-leaf
514   // constants that don't need expansion (no_cfi, dso_local, blockaddress),
515   // but still go through BitcodeConstant to avoid different uselist orders
516   // between the two cases.
517   static constexpr uint8_t ConstantStructOpcode = 255;
518   static constexpr uint8_t ConstantArrayOpcode = 254;
519   static constexpr uint8_t ConstantVectorOpcode = 253;
520   static constexpr uint8_t NoCFIOpcode = 252;
521   static constexpr uint8_t DSOLocalEquivalentOpcode = 251;
522   static constexpr uint8_t BlockAddressOpcode = 250;
523   static constexpr uint8_t ConstantPtrAuthOpcode = 249;
524   static constexpr uint8_t FirstSpecialOpcode = ConstantPtrAuthOpcode;
525 
526   // Separate struct to make passing different number of parameters to
527   // BitcodeConstant::create() more convenient.
528   struct ExtraInfo {
529     uint8_t Opcode;
530     uint8_t Flags;
531     unsigned BlockAddressBB = 0;
532     Type *SrcElemTy = nullptr;
533     std::optional<ConstantRange> InRange;
534 
535     ExtraInfo(uint8_t Opcode, uint8_t Flags = 0, Type *SrcElemTy = nullptr,
536               std::optional<ConstantRange> InRange = std::nullopt)
537         : Opcode(Opcode), Flags(Flags), SrcElemTy(SrcElemTy),
538           InRange(std::move(InRange)) {}
539 
540     ExtraInfo(uint8_t Opcode, uint8_t Flags, unsigned BlockAddressBB)
541         : Opcode(Opcode), Flags(Flags), BlockAddressBB(BlockAddressBB) {}
542   };
543 
544   uint8_t Opcode;
545   uint8_t Flags;
546   unsigned NumOperands;
547   unsigned BlockAddressBB;
548   Type *SrcElemTy; // GEP source element type.
549   std::optional<ConstantRange> InRange; // GEP inrange attribute.
550 
551 private:
552   BitcodeConstant(Type *Ty, const ExtraInfo &Info, ArrayRef<unsigned> OpIDs)
553       : Value(Ty, SubclassID), Opcode(Info.Opcode), Flags(Info.Flags),
554         NumOperands(OpIDs.size()), BlockAddressBB(Info.BlockAddressBB),
555         SrcElemTy(Info.SrcElemTy), InRange(Info.InRange) {
556     std::uninitialized_copy(OpIDs.begin(), OpIDs.end(),
557                             getTrailingObjects<unsigned>());
558   }
559 
560   BitcodeConstant &operator=(const BitcodeConstant &) = delete;
561 
562 public:
563   static BitcodeConstant *create(BumpPtrAllocator &A, Type *Ty,
564                                  const ExtraInfo &Info,
565                                  ArrayRef<unsigned> OpIDs) {
566     void *Mem = A.Allocate(totalSizeToAlloc<unsigned>(OpIDs.size()),
567                            alignof(BitcodeConstant));
568     return new (Mem) BitcodeConstant(Ty, Info, OpIDs);
569   }
570 
571   static bool classof(const Value *V) { return V->getValueID() == SubclassID; }
572 
573   ArrayRef<unsigned> getOperandIDs() const {
574     return ArrayRef(getTrailingObjects<unsigned>(), NumOperands);
575   }
576 
577   std::optional<ConstantRange> getInRange() const {
578     assert(Opcode == Instruction::GetElementPtr);
579     return InRange;
580   }
581 
582   const char *getOpcodeName() const {
583     return Instruction::getOpcodeName(Opcode);
584   }
585 };
586 
587 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer {
588   LLVMContext &Context;
589   Module *TheModule = nullptr;
590   // Next offset to start scanning for lazy parsing of function bodies.
591   uint64_t NextUnreadBit = 0;
592   // Last function offset found in the VST.
593   uint64_t LastFunctionBlockBit = 0;
594   bool SeenValueSymbolTable = false;
595   uint64_t VSTOffset = 0;
596 
597   std::vector<std::string> SectionTable;
598   std::vector<std::string> GCTable;
599 
600   std::vector<Type *> TypeList;
601   /// Track type IDs of contained types. Order is the same as the contained
602   /// types of a Type*. This is used during upgrades of typed pointer IR in
603   /// opaque pointer mode.
604   DenseMap<unsigned, SmallVector<unsigned, 1>> ContainedTypeIDs;
605   /// In some cases, we need to create a type ID for a type that was not
606   /// explicitly encoded in the bitcode, or we don't know about at the current
607   /// point. For example, a global may explicitly encode the value type ID, but
608   /// not have a type ID for the pointer to value type, for which we create a
609   /// virtual type ID instead. This map stores the new type ID that was created
610   /// for the given pair of Type and contained type ID.
611   DenseMap<std::pair<Type *, unsigned>, unsigned> VirtualTypeIDs;
612   DenseMap<Function *, unsigned> FunctionTypeIDs;
613   /// Allocator for BitcodeConstants. This should come before ValueList,
614   /// because the ValueList might hold ValueHandles to these constants, so
615   /// ValueList must be destroyed before Alloc.
616   BumpPtrAllocator Alloc;
617   BitcodeReaderValueList ValueList;
618   std::optional<MetadataLoader> MDLoader;
619   std::vector<Comdat *> ComdatList;
620   DenseSet<GlobalObject *> ImplicitComdatObjects;
621   SmallVector<Instruction *, 64> InstructionList;
622 
623   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits;
624   std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInits;
625 
626   struct FunctionOperandInfo {
627     Function *F;
628     unsigned PersonalityFn;
629     unsigned Prefix;
630     unsigned Prologue;
631   };
632   std::vector<FunctionOperandInfo> FunctionOperands;
633 
634   /// The set of attributes by index.  Index zero in the file is for null, and
635   /// is thus not represented here.  As such all indices are off by one.
636   std::vector<AttributeList> MAttributes;
637 
638   /// The set of attribute groups.
639   std::map<unsigned, AttributeList> MAttributeGroups;
640 
641   /// While parsing a function body, this is a list of the basic blocks for the
642   /// function.
643   std::vector<BasicBlock*> FunctionBBs;
644 
645   // When reading the module header, this list is populated with functions that
646   // have bodies later in the file.
647   std::vector<Function*> FunctionsWithBodies;
648 
649   // When intrinsic functions are encountered which require upgrading they are
650   // stored here with their replacement function.
651   using UpdatedIntrinsicMap = DenseMap<Function *, Function *>;
652   UpdatedIntrinsicMap UpgradedIntrinsics;
653 
654   // Several operations happen after the module header has been read, but
655   // before function bodies are processed. This keeps track of whether
656   // we've done this yet.
657   bool SeenFirstFunctionBody = false;
658 
659   /// When function bodies are initially scanned, this map contains info about
660   /// where to find deferred function body in the stream.
661   DenseMap<Function*, uint64_t> DeferredFunctionInfo;
662 
663   /// When Metadata block is initially scanned when parsing the module, we may
664   /// choose to defer parsing of the metadata. This vector contains info about
665   /// which Metadata blocks are deferred.
666   std::vector<uint64_t> DeferredMetadataInfo;
667 
668   /// These are basic blocks forward-referenced by block addresses.  They are
669   /// inserted lazily into functions when they're loaded.  The basic block ID is
670   /// its index into the vector.
671   DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs;
672   std::deque<Function *> BasicBlockFwdRefQueue;
673 
674   /// These are Functions that contain BlockAddresses which refer a different
675   /// Function. When parsing the different Function, queue Functions that refer
676   /// to the different Function. Those Functions must be materialized in order
677   /// to resolve their BlockAddress constants before the different Function
678   /// gets moved into another Module.
679   std::vector<Function *> BackwardRefFunctions;
680 
681   /// Indicates that we are using a new encoding for instruction operands where
682   /// most operands in the current FUNCTION_BLOCK are encoded relative to the
683   /// instruction number, for a more compact encoding.  Some instruction
684   /// operands are not relative to the instruction ID: basic block numbers, and
685   /// types. Once the old style function blocks have been phased out, we would
686   /// not need this flag.
687   bool UseRelativeIDs = false;
688 
689   /// True if all functions will be materialized, negating the need to process
690   /// (e.g.) blockaddress forward references.
691   bool WillMaterializeAllForwardRefs = false;
692 
693   /// Tracks whether we have seen debug intrinsics or records in this bitcode;
694   /// seeing both in a single module is currently a fatal error.
695   bool SeenDebugIntrinsic = false;
696   bool SeenDebugRecord = false;
697 
698   bool StripDebugInfo = false;
699   TBAAVerifier TBAAVerifyHelper;
700 
701   std::vector<std::string> BundleTags;
702   SmallVector<SyncScope::ID, 8> SSIDs;
703 
704   std::optional<ValueTypeCallbackTy> ValueTypeCallback;
705 
706 public:
707   BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
708                 StringRef ProducerIdentification, LLVMContext &Context);
709 
710   Error materializeForwardReferencedFunctions();
711 
712   Error materialize(GlobalValue *GV) override;
713   Error materializeModule() override;
714   std::vector<StructType *> getIdentifiedStructTypes() const override;
715 
716   /// Main interface to parsing a bitcode buffer.
717   /// \returns true if an error occurred.
718   Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
719                          bool IsImporting, ParserCallbacks Callbacks = {});
720 
721   static uint64_t decodeSignRotatedValue(uint64_t V);
722 
723   /// Materialize any deferred Metadata block.
724   Error materializeMetadata() override;
725 
726   void setStripDebugInfo() override;
727 
728 private:
729   std::vector<StructType *> IdentifiedStructTypes;
730   StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
731   StructType *createIdentifiedStructType(LLVMContext &Context);
732 
733   static constexpr unsigned InvalidTypeID = ~0u;
734 
735   Type *getTypeByID(unsigned ID);
736   Type *getPtrElementTypeByID(unsigned ID);
737   unsigned getContainedTypeID(unsigned ID, unsigned Idx = 0);
738   unsigned getVirtualTypeID(Type *Ty, ArrayRef<unsigned> ContainedTypeIDs = {});
739 
740   void callValueTypeCallback(Value *F, unsigned TypeID);
741   Expected<Value *> materializeValue(unsigned ValID, BasicBlock *InsertBB);
742   Expected<Constant *> getValueForInitializer(unsigned ID);
743 
744   Value *getFnValueByID(unsigned ID, Type *Ty, unsigned TyID,
745                         BasicBlock *ConstExprInsertBB) {
746     if (Ty && Ty->isMetadataTy())
747       return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
748     return ValueList.getValueFwdRef(ID, Ty, TyID, ConstExprInsertBB);
749   }
750 
751   Metadata *getFnMetadataByID(unsigned ID) {
752     return MDLoader->getMetadataFwdRefOrLoad(ID);
753   }
754 
755   BasicBlock *getBasicBlock(unsigned ID) const {
756     if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
757     return FunctionBBs[ID];
758   }
759 
760   AttributeList getAttributes(unsigned i) const {
761     if (i-1 < MAttributes.size())
762       return MAttributes[i-1];
763     return AttributeList();
764   }
765 
766   /// Read a value/type pair out of the specified record from slot 'Slot'.
767   /// Increment Slot past the number of slots used in the record. Return true on
768   /// failure.
769   bool getValueTypePair(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
770                         unsigned InstNum, Value *&ResVal, unsigned &TypeID,
771                         BasicBlock *ConstExprInsertBB) {
772     if (Slot == Record.size()) return true;
773     unsigned ValNo = (unsigned)Record[Slot++];
774     // Adjust the ValNo, if it was encoded relative to the InstNum.
775     if (UseRelativeIDs)
776       ValNo = InstNum - ValNo;
777     if (ValNo < InstNum) {
778       // If this is not a forward reference, just return the value we already
779       // have.
780       TypeID = ValueList.getTypeID(ValNo);
781       ResVal = getFnValueByID(ValNo, nullptr, TypeID, ConstExprInsertBB);
782       assert((!ResVal || ResVal->getType() == getTypeByID(TypeID)) &&
783              "Incorrect type ID stored for value");
784       return ResVal == nullptr;
785     }
786     if (Slot == Record.size())
787       return true;
788 
789     TypeID = (unsigned)Record[Slot++];
790     ResVal = getFnValueByID(ValNo, getTypeByID(TypeID), TypeID,
791                             ConstExprInsertBB);
792     return ResVal == nullptr;
793   }
794 
795   bool getValueOrMetadata(const SmallVectorImpl<uint64_t> &Record,
796                           unsigned &Slot, unsigned InstNum, Value *&ResVal,
797                           BasicBlock *ConstExprInsertBB) {
798     if (Slot == Record.size())
799       return true;
800     unsigned ValID = Record[Slot++];
801     if (ValID != static_cast<unsigned>(bitc::OB_METADATA)) {
802       unsigned TypeId;
803       return getValueTypePair(Record, --Slot, InstNum, ResVal, TypeId,
804                               ConstExprInsertBB);
805     }
806     if (Slot == Record.size())
807       return true;
808     unsigned ValNo = InstNum - (unsigned)Record[Slot++];
809     ResVal = MetadataAsValue::get(Context, getFnMetadataByID(ValNo));
810     return false;
811   }
812 
813   /// Read a value out of the specified record from slot 'Slot'. Increment Slot
814   /// past the number of slots used by the value in the record. Return true if
815   /// there is an error.
816   bool popValue(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
817                 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal,
818                 BasicBlock *ConstExprInsertBB) {
819     if (getValue(Record, Slot, InstNum, Ty, TyID, ResVal, ConstExprInsertBB))
820       return true;
821     // All values currently take a single record slot.
822     ++Slot;
823     return false;
824   }
825 
826   /// Like popValue, but does not increment the Slot number.
827   bool getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
828                 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal,
829                 BasicBlock *ConstExprInsertBB) {
830     ResVal = getValue(Record, Slot, InstNum, Ty, TyID, ConstExprInsertBB);
831     return ResVal == nullptr;
832   }
833 
834   /// Version of getValue that returns ResVal directly, or 0 if there is an
835   /// error.
836   Value *getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
837                   unsigned InstNum, Type *Ty, unsigned TyID,
838                   BasicBlock *ConstExprInsertBB) {
839     if (Slot == Record.size()) return nullptr;
840     unsigned ValNo = (unsigned)Record[Slot];
841     // Adjust the ValNo, if it was encoded relative to the InstNum.
842     if (UseRelativeIDs)
843       ValNo = InstNum - ValNo;
844     return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB);
845   }
846 
847   /// Like getValue, but decodes signed VBRs.
848   Value *getValueSigned(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
849                         unsigned InstNum, Type *Ty, unsigned TyID,
850                         BasicBlock *ConstExprInsertBB) {
851     if (Slot == Record.size()) return nullptr;
852     unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
853     // Adjust the ValNo, if it was encoded relative to the InstNum.
854     if (UseRelativeIDs)
855       ValNo = InstNum - ValNo;
856     return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB);
857   }
858 
859   Expected<ConstantRange> readConstantRange(ArrayRef<uint64_t> Record,
860                                             unsigned &OpNum,
861                                             unsigned BitWidth) {
862     if (Record.size() - OpNum < 2)
863       return error("Too few records for range");
864     if (BitWidth > 64) {
865       unsigned LowerActiveWords = Record[OpNum];
866       unsigned UpperActiveWords = Record[OpNum++] >> 32;
867       if (Record.size() - OpNum < LowerActiveWords + UpperActiveWords)
868         return error("Too few records for range");
869       APInt Lower =
870           readWideAPInt(ArrayRef(&Record[OpNum], LowerActiveWords), BitWidth);
871       OpNum += LowerActiveWords;
872       APInt Upper =
873           readWideAPInt(ArrayRef(&Record[OpNum], UpperActiveWords), BitWidth);
874       OpNum += UpperActiveWords;
875       return ConstantRange(Lower, Upper);
876     } else {
877       int64_t Start = BitcodeReader::decodeSignRotatedValue(Record[OpNum++]);
878       int64_t End = BitcodeReader::decodeSignRotatedValue(Record[OpNum++]);
879       return ConstantRange(APInt(BitWidth, Start, true),
880                            APInt(BitWidth, End, true));
881     }
882   }
883 
884   Expected<ConstantRange>
885   readBitWidthAndConstantRange(ArrayRef<uint64_t> Record, unsigned &OpNum) {
886     if (Record.size() - OpNum < 1)
887       return error("Too few records for range");
888     unsigned BitWidth = Record[OpNum++];
889     return readConstantRange(Record, OpNum, BitWidth);
890   }
891 
892   /// Upgrades old-style typeless byval/sret/inalloca attributes by adding the
893   /// corresponding argument's pointee type. Also upgrades intrinsics that now
894   /// require an elementtype attribute.
895   Error propagateAttributeTypes(CallBase *CB, ArrayRef<unsigned> ArgsTys);
896 
897   /// Converts alignment exponent (i.e. power of two (or zero)) to the
898   /// corresponding alignment to use. If alignment is too large, returns
899   /// a corresponding error code.
900   Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment);
901   Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
902   Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false,
903                     ParserCallbacks Callbacks = {});
904 
905   Error parseComdatRecord(ArrayRef<uint64_t> Record);
906   Error parseGlobalVarRecord(ArrayRef<uint64_t> Record);
907   Error parseFunctionRecord(ArrayRef<uint64_t> Record);
908   Error parseGlobalIndirectSymbolRecord(unsigned BitCode,
909                                         ArrayRef<uint64_t> Record);
910 
911   Error parseAttributeBlock();
912   Error parseAttributeGroupBlock();
913   Error parseTypeTable();
914   Error parseTypeTableBody();
915   Error parseOperandBundleTags();
916   Error parseSyncScopeNames();
917 
918   Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record,
919                                 unsigned NameIndex, Triple &TT);
920   void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F,
921                                ArrayRef<uint64_t> Record);
922   Error parseValueSymbolTable(uint64_t Offset = 0);
923   Error parseGlobalValueSymbolTable();
924   Error parseConstants();
925   Error rememberAndSkipFunctionBodies();
926   Error rememberAndSkipFunctionBody();
927   /// Save the positions of the Metadata blocks and skip parsing the blocks.
928   Error rememberAndSkipMetadata();
929   Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType);
930   Error parseFunctionBody(Function *F);
931   Error globalCleanup();
932   Error resolveGlobalAndIndirectSymbolInits();
933   Error parseUseLists();
934   Error findFunctionInStream(
935       Function *F,
936       DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
937 
938   SyncScope::ID getDecodedSyncScopeID(unsigned Val);
939 };
940 
941 /// Class to manage reading and parsing function summary index bitcode
942 /// files/sections.
943 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase {
944   /// The module index built during parsing.
945   ModuleSummaryIndex &TheIndex;
946 
947   /// Indicates whether we have encountered a global value summary section
948   /// yet during parsing.
949   bool SeenGlobalValSummary = false;
950 
951   /// Indicates whether we have already parsed the VST, used for error checking.
952   bool SeenValueSymbolTable = false;
953 
954   /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record.
955   /// Used to enable on-demand parsing of the VST.
956   uint64_t VSTOffset = 0;
957 
958   // Map to save ValueId to ValueInfo association that was recorded in the
959   // ValueSymbolTable. It is used after the VST is parsed to convert
960   // call graph edges read from the function summary from referencing
961   // callees by their ValueId to using the ValueInfo instead, which is how
962   // they are recorded in the summary index being built.
963   // We save a GUID which refers to the same global as the ValueInfo, but
964   // ignoring the linkage, i.e. for values other than local linkage they are
965   // identical (this is the second member). ValueInfo has the real GUID.
966   DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>>
967       ValueIdToValueInfoMap;
968 
969   /// Map populated during module path string table parsing, from the
970   /// module ID to a string reference owned by the index's module
971   /// path string table, used to correlate with combined index
972   /// summary records.
973   DenseMap<uint64_t, StringRef> ModuleIdMap;
974 
975   /// Original source file name recorded in a bitcode record.
976   std::string SourceFileName;
977 
978   /// The string identifier given to this module by the client, normally the
979   /// path to the bitcode file.
980   StringRef ModulePath;
981 
982   /// Callback to ask whether a symbol is the prevailing copy when invoked
983   /// during combined index building.
984   std::function<bool(GlobalValue::GUID)> IsPrevailing;
985 
986   /// Saves the stack ids from the STACK_IDS record to consult when adding stack
987   /// ids from the lists in the callsite and alloc entries to the index.
988   std::vector<uint64_t> StackIds;
989 
990   /// Linearized radix tree of allocation contexts. See the description above
991   /// the CallStackRadixTreeBuilder class in ProfileData/MemProf.h for format.
992   std::vector<uint64_t> RadixArray;
993 
994 public:
995   ModuleSummaryIndexBitcodeReader(
996       BitstreamCursor Stream, StringRef Strtab, ModuleSummaryIndex &TheIndex,
997       StringRef ModulePath,
998       std::function<bool(GlobalValue::GUID)> IsPrevailing = nullptr);
999 
1000   Error parseModule();
1001 
1002 private:
1003   void setValueGUID(uint64_t ValueID, StringRef ValueName,
1004                     GlobalValue::LinkageTypes Linkage,
1005                     StringRef SourceFileName);
1006   Error parseValueSymbolTable(
1007       uint64_t Offset,
1008       DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap);
1009   SmallVector<ValueInfo, 0> makeRefList(ArrayRef<uint64_t> Record);
1010   SmallVector<FunctionSummary::EdgeTy, 0>
1011   makeCallList(ArrayRef<uint64_t> Record, bool IsOldProfileFormat,
1012                bool HasProfile, bool HasRelBF);
1013   Error parseEntireSummary(unsigned ID);
1014   Error parseModuleStringTable();
1015   void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record);
1016   void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot,
1017                                        TypeIdCompatibleVtableInfo &TypeId);
1018   std::vector<FunctionSummary::ParamAccess>
1019   parseParamAccesses(ArrayRef<uint64_t> Record);
1020   SmallVector<unsigned> parseAllocInfoContext(ArrayRef<uint64_t> Record,
1021                                               unsigned &I);
1022 
1023   template <bool AllowNullValueInfo = false>
1024   std::pair<ValueInfo, GlobalValue::GUID>
1025   getValueInfoFromValueId(unsigned ValueId);
1026 
1027   void addThisModule();
1028   ModuleSummaryIndex::ModuleInfo *getThisModule();
1029 };
1030 
1031 } // end anonymous namespace
1032 
1033 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx,
1034                                                     Error Err) {
1035   if (Err) {
1036     std::error_code EC;
1037     handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) {
1038       EC = EIB.convertToErrorCode();
1039       Ctx.emitError(EIB.message());
1040     });
1041     return EC;
1042   }
1043   return std::error_code();
1044 }
1045 
1046 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
1047                              StringRef ProducerIdentification,
1048                              LLVMContext &Context)
1049     : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context),
1050       ValueList(this->Stream.SizeInBytes(),
1051                 [this](unsigned ValID, BasicBlock *InsertBB) {
1052                   return materializeValue(ValID, InsertBB);
1053                 }) {
1054   this->ProducerIdentification = std::string(ProducerIdentification);
1055 }
1056 
1057 Error BitcodeReader::materializeForwardReferencedFunctions() {
1058   if (WillMaterializeAllForwardRefs)
1059     return Error::success();
1060 
1061   // Prevent recursion.
1062   WillMaterializeAllForwardRefs = true;
1063 
1064   while (!BasicBlockFwdRefQueue.empty()) {
1065     Function *F = BasicBlockFwdRefQueue.front();
1066     BasicBlockFwdRefQueue.pop_front();
1067     assert(F && "Expected valid function");
1068     if (!BasicBlockFwdRefs.count(F))
1069       // Already materialized.
1070       continue;
1071 
1072     // Check for a function that isn't materializable to prevent an infinite
1073     // loop.  When parsing a blockaddress stored in a global variable, there
1074     // isn't a trivial way to check if a function will have a body without a
1075     // linear search through FunctionsWithBodies, so just check it here.
1076     if (!F->isMaterializable())
1077       return error("Never resolved function from blockaddress");
1078 
1079     // Try to materialize F.
1080     if (Error Err = materialize(F))
1081       return Err;
1082   }
1083   assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
1084 
1085   for (Function *F : BackwardRefFunctions)
1086     if (Error Err = materialize(F))
1087       return Err;
1088   BackwardRefFunctions.clear();
1089 
1090   // Reset state.
1091   WillMaterializeAllForwardRefs = false;
1092   return Error::success();
1093 }
1094 
1095 //===----------------------------------------------------------------------===//
1096 //  Helper functions to implement forward reference resolution, etc.
1097 //===----------------------------------------------------------------------===//
1098 
1099 static bool hasImplicitComdat(size_t Val) {
1100   switch (Val) {
1101   default:
1102     return false;
1103   case 1:  // Old WeakAnyLinkage
1104   case 4:  // Old LinkOnceAnyLinkage
1105   case 10: // Old WeakODRLinkage
1106   case 11: // Old LinkOnceODRLinkage
1107     return true;
1108   }
1109 }
1110 
1111 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
1112   switch (Val) {
1113   default: // Map unknown/new linkages to external
1114   case 0:
1115     return GlobalValue::ExternalLinkage;
1116   case 2:
1117     return GlobalValue::AppendingLinkage;
1118   case 3:
1119     return GlobalValue::InternalLinkage;
1120   case 5:
1121     return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
1122   case 6:
1123     return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
1124   case 7:
1125     return GlobalValue::ExternalWeakLinkage;
1126   case 8:
1127     return GlobalValue::CommonLinkage;
1128   case 9:
1129     return GlobalValue::PrivateLinkage;
1130   case 12:
1131     return GlobalValue::AvailableExternallyLinkage;
1132   case 13:
1133     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
1134   case 14:
1135     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
1136   case 15:
1137     return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
1138   case 1: // Old value with implicit comdat.
1139   case 16:
1140     return GlobalValue::WeakAnyLinkage;
1141   case 10: // Old value with implicit comdat.
1142   case 17:
1143     return GlobalValue::WeakODRLinkage;
1144   case 4: // Old value with implicit comdat.
1145   case 18:
1146     return GlobalValue::LinkOnceAnyLinkage;
1147   case 11: // Old value with implicit comdat.
1148   case 19:
1149     return GlobalValue::LinkOnceODRLinkage;
1150   }
1151 }
1152 
1153 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) {
1154   FunctionSummary::FFlags Flags;
1155   Flags.ReadNone = RawFlags & 0x1;
1156   Flags.ReadOnly = (RawFlags >> 1) & 0x1;
1157   Flags.NoRecurse = (RawFlags >> 2) & 0x1;
1158   Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1;
1159   Flags.NoInline = (RawFlags >> 4) & 0x1;
1160   Flags.AlwaysInline = (RawFlags >> 5) & 0x1;
1161   Flags.NoUnwind = (RawFlags >> 6) & 0x1;
1162   Flags.MayThrow = (RawFlags >> 7) & 0x1;
1163   Flags.HasUnknownCall = (RawFlags >> 8) & 0x1;
1164   Flags.MustBeUnreachable = (RawFlags >> 9) & 0x1;
1165   return Flags;
1166 }
1167 
1168 // Decode the flags for GlobalValue in the summary. The bits for each attribute:
1169 //
1170 // linkage: [0,4), notEligibleToImport: 4, live: 5, local: 6, canAutoHide: 7,
1171 // visibility: [8, 10).
1172 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags,
1173                                                             uint64_t Version) {
1174   // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage
1175   // like getDecodedLinkage() above. Any future change to the linkage enum and
1176   // to getDecodedLinkage() will need to be taken into account here as above.
1177   auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits
1178   auto Visibility = GlobalValue::VisibilityTypes((RawFlags >> 8) & 3); // 2 bits
1179   auto IK = GlobalValueSummary::ImportKind((RawFlags >> 10) & 1);      // 1 bit
1180   RawFlags = RawFlags >> 4;
1181   bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3;
1182   // The Live flag wasn't introduced until version 3. For dead stripping
1183   // to work correctly on earlier versions, we must conservatively treat all
1184   // values as live.
1185   bool Live = (RawFlags & 0x2) || Version < 3;
1186   bool Local = (RawFlags & 0x4);
1187   bool AutoHide = (RawFlags & 0x8);
1188 
1189   return GlobalValueSummary::GVFlags(Linkage, Visibility, NotEligibleToImport,
1190                                      Live, Local, AutoHide, IK);
1191 }
1192 
1193 // Decode the flags for GlobalVariable in the summary
1194 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) {
1195   return GlobalVarSummary::GVarFlags(
1196       (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false,
1197       (RawFlags & 0x4) ? true : false,
1198       (GlobalObject::VCallVisibility)(RawFlags >> 3));
1199 }
1200 
1201 static std::pair<CalleeInfo::HotnessType, bool>
1202 getDecodedHotnessCallEdgeInfo(uint64_t RawFlags) {
1203   CalleeInfo::HotnessType Hotness =
1204       static_cast<CalleeInfo::HotnessType>(RawFlags & 0x7); // 3 bits
1205   bool HasTailCall = (RawFlags & 0x8);                      // 1 bit
1206   return {Hotness, HasTailCall};
1207 }
1208 
1209 static void getDecodedRelBFCallEdgeInfo(uint64_t RawFlags, uint64_t &RelBF,
1210                                         bool &HasTailCall) {
1211   static constexpr uint64_t RelBlockFreqMask =
1212       (1 << CalleeInfo::RelBlockFreqBits) - 1;
1213   RelBF = RawFlags & RelBlockFreqMask; // RelBlockFreqBits bits
1214   HasTailCall = (RawFlags & (1 << CalleeInfo::RelBlockFreqBits)); // 1 bit
1215 }
1216 
1217 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) {
1218   switch (Val) {
1219   default: // Map unknown visibilities to default.
1220   case 0: return GlobalValue::DefaultVisibility;
1221   case 1: return GlobalValue::HiddenVisibility;
1222   case 2: return GlobalValue::ProtectedVisibility;
1223   }
1224 }
1225 
1226 static GlobalValue::DLLStorageClassTypes
1227 getDecodedDLLStorageClass(unsigned Val) {
1228   switch (Val) {
1229   default: // Map unknown values to default.
1230   case 0: return GlobalValue::DefaultStorageClass;
1231   case 1: return GlobalValue::DLLImportStorageClass;
1232   case 2: return GlobalValue::DLLExportStorageClass;
1233   }
1234 }
1235 
1236 static bool getDecodedDSOLocal(unsigned Val) {
1237   switch(Val) {
1238   default: // Map unknown values to preemptable.
1239   case 0:  return false;
1240   case 1:  return true;
1241   }
1242 }
1243 
1244 static std::optional<CodeModel::Model> getDecodedCodeModel(unsigned Val) {
1245   switch (Val) {
1246   case 1:
1247     return CodeModel::Tiny;
1248   case 2:
1249     return CodeModel::Small;
1250   case 3:
1251     return CodeModel::Kernel;
1252   case 4:
1253     return CodeModel::Medium;
1254   case 5:
1255     return CodeModel::Large;
1256   }
1257 
1258   return {};
1259 }
1260 
1261 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) {
1262   switch (Val) {
1263     case 0: return GlobalVariable::NotThreadLocal;
1264     default: // Map unknown non-zero value to general dynamic.
1265     case 1: return GlobalVariable::GeneralDynamicTLSModel;
1266     case 2: return GlobalVariable::LocalDynamicTLSModel;
1267     case 3: return GlobalVariable::InitialExecTLSModel;
1268     case 4: return GlobalVariable::LocalExecTLSModel;
1269   }
1270 }
1271 
1272 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) {
1273   switch (Val) {
1274     default: // Map unknown to UnnamedAddr::None.
1275     case 0: return GlobalVariable::UnnamedAddr::None;
1276     case 1: return GlobalVariable::UnnamedAddr::Global;
1277     case 2: return GlobalVariable::UnnamedAddr::Local;
1278   }
1279 }
1280 
1281 static int getDecodedCastOpcode(unsigned Val) {
1282   switch (Val) {
1283   default: return -1;
1284   case bitc::CAST_TRUNC   : return Instruction::Trunc;
1285   case bitc::CAST_ZEXT    : return Instruction::ZExt;
1286   case bitc::CAST_SEXT    : return Instruction::SExt;
1287   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
1288   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
1289   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
1290   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
1291   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
1292   case bitc::CAST_FPEXT   : return Instruction::FPExt;
1293   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
1294   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
1295   case bitc::CAST_BITCAST : return Instruction::BitCast;
1296   case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
1297   }
1298 }
1299 
1300 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) {
1301   bool IsFP = Ty->isFPOrFPVectorTy();
1302   // UnOps are only valid for int/fp or vector of int/fp types
1303   if (!IsFP && !Ty->isIntOrIntVectorTy())
1304     return -1;
1305 
1306   switch (Val) {
1307   default:
1308     return -1;
1309   case bitc::UNOP_FNEG:
1310     return IsFP ? Instruction::FNeg : -1;
1311   }
1312 }
1313 
1314 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
1315   bool IsFP = Ty->isFPOrFPVectorTy();
1316   // BinOps are only valid for int/fp or vector of int/fp types
1317   if (!IsFP && !Ty->isIntOrIntVectorTy())
1318     return -1;
1319 
1320   switch (Val) {
1321   default:
1322     return -1;
1323   case bitc::BINOP_ADD:
1324     return IsFP ? Instruction::FAdd : Instruction::Add;
1325   case bitc::BINOP_SUB:
1326     return IsFP ? Instruction::FSub : Instruction::Sub;
1327   case bitc::BINOP_MUL:
1328     return IsFP ? Instruction::FMul : Instruction::Mul;
1329   case bitc::BINOP_UDIV:
1330     return IsFP ? -1 : Instruction::UDiv;
1331   case bitc::BINOP_SDIV:
1332     return IsFP ? Instruction::FDiv : Instruction::SDiv;
1333   case bitc::BINOP_UREM:
1334     return IsFP ? -1 : Instruction::URem;
1335   case bitc::BINOP_SREM:
1336     return IsFP ? Instruction::FRem : Instruction::SRem;
1337   case bitc::BINOP_SHL:
1338     return IsFP ? -1 : Instruction::Shl;
1339   case bitc::BINOP_LSHR:
1340     return IsFP ? -1 : Instruction::LShr;
1341   case bitc::BINOP_ASHR:
1342     return IsFP ? -1 : Instruction::AShr;
1343   case bitc::BINOP_AND:
1344     return IsFP ? -1 : Instruction::And;
1345   case bitc::BINOP_OR:
1346     return IsFP ? -1 : Instruction::Or;
1347   case bitc::BINOP_XOR:
1348     return IsFP ? -1 : Instruction::Xor;
1349   }
1350 }
1351 
1352 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) {
1353   switch (Val) {
1354   default: return AtomicRMWInst::BAD_BINOP;
1355   case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
1356   case bitc::RMW_ADD: return AtomicRMWInst::Add;
1357   case bitc::RMW_SUB: return AtomicRMWInst::Sub;
1358   case bitc::RMW_AND: return AtomicRMWInst::And;
1359   case bitc::RMW_NAND: return AtomicRMWInst::Nand;
1360   case bitc::RMW_OR: return AtomicRMWInst::Or;
1361   case bitc::RMW_XOR: return AtomicRMWInst::Xor;
1362   case bitc::RMW_MAX: return AtomicRMWInst::Max;
1363   case bitc::RMW_MIN: return AtomicRMWInst::Min;
1364   case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
1365   case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
1366   case bitc::RMW_FADD: return AtomicRMWInst::FAdd;
1367   case bitc::RMW_FSUB: return AtomicRMWInst::FSub;
1368   case bitc::RMW_FMAX: return AtomicRMWInst::FMax;
1369   case bitc::RMW_FMIN: return AtomicRMWInst::FMin;
1370   case bitc::RMW_UINC_WRAP:
1371     return AtomicRMWInst::UIncWrap;
1372   case bitc::RMW_UDEC_WRAP:
1373     return AtomicRMWInst::UDecWrap;
1374   case bitc::RMW_USUB_COND:
1375     return AtomicRMWInst::USubCond;
1376   case bitc::RMW_USUB_SAT:
1377     return AtomicRMWInst::USubSat;
1378   }
1379 }
1380 
1381 static AtomicOrdering getDecodedOrdering(unsigned Val) {
1382   switch (Val) {
1383   case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic;
1384   case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered;
1385   case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic;
1386   case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire;
1387   case bitc::ORDERING_RELEASE: return AtomicOrdering::Release;
1388   case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease;
1389   default: // Map unknown orderings to sequentially-consistent.
1390   case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent;
1391   }
1392 }
1393 
1394 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
1395   switch (Val) {
1396   default: // Map unknown selection kinds to any.
1397   case bitc::COMDAT_SELECTION_KIND_ANY:
1398     return Comdat::Any;
1399   case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
1400     return Comdat::ExactMatch;
1401   case bitc::COMDAT_SELECTION_KIND_LARGEST:
1402     return Comdat::Largest;
1403   case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
1404     return Comdat::NoDeduplicate;
1405   case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
1406     return Comdat::SameSize;
1407   }
1408 }
1409 
1410 static FastMathFlags getDecodedFastMathFlags(unsigned Val) {
1411   FastMathFlags FMF;
1412   if (0 != (Val & bitc::UnsafeAlgebra))
1413     FMF.setFast();
1414   if (0 != (Val & bitc::AllowReassoc))
1415     FMF.setAllowReassoc();
1416   if (0 != (Val & bitc::NoNaNs))
1417     FMF.setNoNaNs();
1418   if (0 != (Val & bitc::NoInfs))
1419     FMF.setNoInfs();
1420   if (0 != (Val & bitc::NoSignedZeros))
1421     FMF.setNoSignedZeros();
1422   if (0 != (Val & bitc::AllowReciprocal))
1423     FMF.setAllowReciprocal();
1424   if (0 != (Val & bitc::AllowContract))
1425     FMF.setAllowContract(true);
1426   if (0 != (Val & bitc::ApproxFunc))
1427     FMF.setApproxFunc();
1428   return FMF;
1429 }
1430 
1431 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) {
1432   // A GlobalValue with local linkage cannot have a DLL storage class.
1433   if (GV->hasLocalLinkage())
1434     return;
1435   switch (Val) {
1436   case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
1437   case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
1438   }
1439 }
1440 
1441 Type *BitcodeReader::getTypeByID(unsigned ID) {
1442   // The type table size is always specified correctly.
1443   if (ID >= TypeList.size())
1444     return nullptr;
1445 
1446   if (Type *Ty = TypeList[ID])
1447     return Ty;
1448 
1449   // If we have a forward reference, the only possible case is when it is to a
1450   // named struct.  Just create a placeholder for now.
1451   return TypeList[ID] = createIdentifiedStructType(Context);
1452 }
1453 
1454 unsigned BitcodeReader::getContainedTypeID(unsigned ID, unsigned Idx) {
1455   auto It = ContainedTypeIDs.find(ID);
1456   if (It == ContainedTypeIDs.end())
1457     return InvalidTypeID;
1458 
1459   if (Idx >= It->second.size())
1460     return InvalidTypeID;
1461 
1462   return It->second[Idx];
1463 }
1464 
1465 Type *BitcodeReader::getPtrElementTypeByID(unsigned ID) {
1466   if (ID >= TypeList.size())
1467     return nullptr;
1468 
1469   Type *Ty = TypeList[ID];
1470   if (!Ty->isPointerTy())
1471     return nullptr;
1472 
1473   return getTypeByID(getContainedTypeID(ID, 0));
1474 }
1475 
1476 unsigned BitcodeReader::getVirtualTypeID(Type *Ty,
1477                                          ArrayRef<unsigned> ChildTypeIDs) {
1478   unsigned ChildTypeID = ChildTypeIDs.empty() ? InvalidTypeID : ChildTypeIDs[0];
1479   auto CacheKey = std::make_pair(Ty, ChildTypeID);
1480   auto It = VirtualTypeIDs.find(CacheKey);
1481   if (It != VirtualTypeIDs.end()) {
1482     // The cmpxchg return value is the only place we need more than one
1483     // contained type ID, however the second one will always be the same (i1),
1484     // so we don't need to include it in the cache key. This asserts that the
1485     // contained types are indeed as expected and there are no collisions.
1486     assert((ChildTypeIDs.empty() ||
1487             ContainedTypeIDs[It->second] == ChildTypeIDs) &&
1488            "Incorrect cached contained type IDs");
1489     return It->second;
1490   }
1491 
1492   unsigned TypeID = TypeList.size();
1493   TypeList.push_back(Ty);
1494   if (!ChildTypeIDs.empty())
1495     append_range(ContainedTypeIDs[TypeID], ChildTypeIDs);
1496   VirtualTypeIDs.insert({CacheKey, TypeID});
1497   return TypeID;
1498 }
1499 
1500 static GEPNoWrapFlags toGEPNoWrapFlags(uint64_t Flags) {
1501   GEPNoWrapFlags NW;
1502   if (Flags & (1 << bitc::GEP_INBOUNDS))
1503     NW |= GEPNoWrapFlags::inBounds();
1504   if (Flags & (1 << bitc::GEP_NUSW))
1505     NW |= GEPNoWrapFlags::noUnsignedSignedWrap();
1506   if (Flags & (1 << bitc::GEP_NUW))
1507     NW |= GEPNoWrapFlags::noUnsignedWrap();
1508   return NW;
1509 }
1510 
1511 static bool isConstExprSupported(const BitcodeConstant *BC) {
1512   uint8_t Opcode = BC->Opcode;
1513 
1514   // These are not real constant expressions, always consider them supported.
1515   if (Opcode >= BitcodeConstant::FirstSpecialOpcode)
1516     return true;
1517 
1518   // If -expand-constant-exprs is set, we want to consider all expressions
1519   // as unsupported.
1520   if (ExpandConstantExprs)
1521     return false;
1522 
1523   if (Instruction::isBinaryOp(Opcode))
1524     return ConstantExpr::isSupportedBinOp(Opcode);
1525 
1526   if (Instruction::isCast(Opcode))
1527     return ConstantExpr::isSupportedCastOp(Opcode);
1528 
1529   if (Opcode == Instruction::GetElementPtr)
1530     return ConstantExpr::isSupportedGetElementPtr(BC->SrcElemTy);
1531 
1532   switch (Opcode) {
1533   case Instruction::FNeg:
1534   case Instruction::Select:
1535   case Instruction::ICmp:
1536   case Instruction::FCmp:
1537     return false;
1538   default:
1539     return true;
1540   }
1541 }
1542 
1543 Expected<Value *> BitcodeReader::materializeValue(unsigned StartValID,
1544                                                   BasicBlock *InsertBB) {
1545   // Quickly handle the case where there is no BitcodeConstant to resolve.
1546   if (StartValID < ValueList.size() && ValueList[StartValID] &&
1547       !isa<BitcodeConstant>(ValueList[StartValID]))
1548     return ValueList[StartValID];
1549 
1550   SmallDenseMap<unsigned, Value *> MaterializedValues;
1551   SmallVector<unsigned> Worklist;
1552   Worklist.push_back(StartValID);
1553   while (!Worklist.empty()) {
1554     unsigned ValID = Worklist.back();
1555     if (MaterializedValues.count(ValID)) {
1556       // Duplicate expression that was already handled.
1557       Worklist.pop_back();
1558       continue;
1559     }
1560 
1561     if (ValID >= ValueList.size() || !ValueList[ValID])
1562       return error("Invalid value ID");
1563 
1564     Value *V = ValueList[ValID];
1565     auto *BC = dyn_cast<BitcodeConstant>(V);
1566     if (!BC) {
1567       MaterializedValues.insert({ValID, V});
1568       Worklist.pop_back();
1569       continue;
1570     }
1571 
1572     // Iterate in reverse, so values will get popped from the worklist in
1573     // expected order.
1574     SmallVector<Value *> Ops;
1575     for (unsigned OpID : reverse(BC->getOperandIDs())) {
1576       auto It = MaterializedValues.find(OpID);
1577       if (It != MaterializedValues.end())
1578         Ops.push_back(It->second);
1579       else
1580         Worklist.push_back(OpID);
1581     }
1582 
1583     // Some expressions have not been resolved yet, handle them first and then
1584     // revisit this one.
1585     if (Ops.size() != BC->getOperandIDs().size())
1586       continue;
1587     std::reverse(Ops.begin(), Ops.end());
1588 
1589     SmallVector<Constant *> ConstOps;
1590     for (Value *Op : Ops)
1591       if (auto *C = dyn_cast<Constant>(Op))
1592         ConstOps.push_back(C);
1593 
1594     // Materialize as constant expression if possible.
1595     if (isConstExprSupported(BC) && ConstOps.size() == Ops.size()) {
1596       Constant *C;
1597       if (Instruction::isCast(BC->Opcode)) {
1598         C = UpgradeBitCastExpr(BC->Opcode, ConstOps[0], BC->getType());
1599         if (!C)
1600           C = ConstantExpr::getCast(BC->Opcode, ConstOps[0], BC->getType());
1601       } else if (Instruction::isBinaryOp(BC->Opcode)) {
1602         C = ConstantExpr::get(BC->Opcode, ConstOps[0], ConstOps[1], BC->Flags);
1603       } else {
1604         switch (BC->Opcode) {
1605         case BitcodeConstant::ConstantPtrAuthOpcode: {
1606           auto *Key = dyn_cast<ConstantInt>(ConstOps[1]);
1607           if (!Key)
1608             return error("ptrauth key operand must be ConstantInt");
1609 
1610           auto *Disc = dyn_cast<ConstantInt>(ConstOps[2]);
1611           if (!Disc)
1612             return error("ptrauth disc operand must be ConstantInt");
1613 
1614           C = ConstantPtrAuth::get(ConstOps[0], Key, Disc, ConstOps[3]);
1615           break;
1616         }
1617         case BitcodeConstant::NoCFIOpcode: {
1618           auto *GV = dyn_cast<GlobalValue>(ConstOps[0]);
1619           if (!GV)
1620             return error("no_cfi operand must be GlobalValue");
1621           C = NoCFIValue::get(GV);
1622           break;
1623         }
1624         case BitcodeConstant::DSOLocalEquivalentOpcode: {
1625           auto *GV = dyn_cast<GlobalValue>(ConstOps[0]);
1626           if (!GV)
1627             return error("dso_local operand must be GlobalValue");
1628           C = DSOLocalEquivalent::get(GV);
1629           break;
1630         }
1631         case BitcodeConstant::BlockAddressOpcode: {
1632           Function *Fn = dyn_cast<Function>(ConstOps[0]);
1633           if (!Fn)
1634             return error("blockaddress operand must be a function");
1635 
1636           // If the function is already parsed we can insert the block address
1637           // right away.
1638           BasicBlock *BB;
1639           unsigned BBID = BC->BlockAddressBB;
1640           if (!BBID)
1641             // Invalid reference to entry block.
1642             return error("Invalid ID");
1643           if (!Fn->empty()) {
1644             Function::iterator BBI = Fn->begin(), BBE = Fn->end();
1645             for (size_t I = 0, E = BBID; I != E; ++I) {
1646               if (BBI == BBE)
1647                 return error("Invalid ID");
1648               ++BBI;
1649             }
1650             BB = &*BBI;
1651           } else {
1652             // Otherwise insert a placeholder and remember it so it can be
1653             // inserted when the function is parsed.
1654             auto &FwdBBs = BasicBlockFwdRefs[Fn];
1655             if (FwdBBs.empty())
1656               BasicBlockFwdRefQueue.push_back(Fn);
1657             if (FwdBBs.size() < BBID + 1)
1658               FwdBBs.resize(BBID + 1);
1659             if (!FwdBBs[BBID])
1660               FwdBBs[BBID] = BasicBlock::Create(Context);
1661             BB = FwdBBs[BBID];
1662           }
1663           C = BlockAddress::get(Fn, BB);
1664           break;
1665         }
1666         case BitcodeConstant::ConstantStructOpcode: {
1667           auto *ST = cast<StructType>(BC->getType());
1668           if (ST->getNumElements() != ConstOps.size())
1669             return error("Invalid number of elements in struct initializer");
1670 
1671           for (const auto [Ty, Op] : zip(ST->elements(), ConstOps))
1672             if (Op->getType() != Ty)
1673               return error("Incorrect type in struct initializer");
1674 
1675           C = ConstantStruct::get(ST, ConstOps);
1676           break;
1677         }
1678         case BitcodeConstant::ConstantArrayOpcode: {
1679           auto *AT = cast<ArrayType>(BC->getType());
1680           if (AT->getNumElements() != ConstOps.size())
1681             return error("Invalid number of elements in array initializer");
1682 
1683           for (Constant *Op : ConstOps)
1684             if (Op->getType() != AT->getElementType())
1685               return error("Incorrect type in array initializer");
1686 
1687           C = ConstantArray::get(AT, ConstOps);
1688           break;
1689         }
1690         case BitcodeConstant::ConstantVectorOpcode: {
1691           auto *VT = cast<FixedVectorType>(BC->getType());
1692           if (VT->getNumElements() != ConstOps.size())
1693             return error("Invalid number of elements in vector initializer");
1694 
1695           for (Constant *Op : ConstOps)
1696             if (Op->getType() != VT->getElementType())
1697               return error("Incorrect type in vector initializer");
1698 
1699           C = ConstantVector::get(ConstOps);
1700           break;
1701         }
1702         case Instruction::GetElementPtr:
1703           C = ConstantExpr::getGetElementPtr(
1704               BC->SrcElemTy, ConstOps[0], ArrayRef(ConstOps).drop_front(),
1705               toGEPNoWrapFlags(BC->Flags), BC->getInRange());
1706           break;
1707         case Instruction::ExtractElement:
1708           C = ConstantExpr::getExtractElement(ConstOps[0], ConstOps[1]);
1709           break;
1710         case Instruction::InsertElement:
1711           C = ConstantExpr::getInsertElement(ConstOps[0], ConstOps[1],
1712                                              ConstOps[2]);
1713           break;
1714         case Instruction::ShuffleVector: {
1715           SmallVector<int, 16> Mask;
1716           ShuffleVectorInst::getShuffleMask(ConstOps[2], Mask);
1717           C = ConstantExpr::getShuffleVector(ConstOps[0], ConstOps[1], Mask);
1718           break;
1719         }
1720         default:
1721           llvm_unreachable("Unhandled bitcode constant");
1722         }
1723       }
1724 
1725       // Cache resolved constant.
1726       ValueList.replaceValueWithoutRAUW(ValID, C);
1727       MaterializedValues.insert({ValID, C});
1728       Worklist.pop_back();
1729       continue;
1730     }
1731 
1732     if (!InsertBB)
1733       return error(Twine("Value referenced by initializer is an unsupported "
1734                          "constant expression of type ") +
1735                    BC->getOpcodeName());
1736 
1737     // Materialize as instructions if necessary.
1738     Instruction *I;
1739     if (Instruction::isCast(BC->Opcode)) {
1740       I = CastInst::Create((Instruction::CastOps)BC->Opcode, Ops[0],
1741                            BC->getType(), "constexpr", InsertBB);
1742     } else if (Instruction::isUnaryOp(BC->Opcode)) {
1743       I = UnaryOperator::Create((Instruction::UnaryOps)BC->Opcode, Ops[0],
1744                                 "constexpr", InsertBB);
1745     } else if (Instruction::isBinaryOp(BC->Opcode)) {
1746       I = BinaryOperator::Create((Instruction::BinaryOps)BC->Opcode, Ops[0],
1747                                  Ops[1], "constexpr", InsertBB);
1748       if (isa<OverflowingBinaryOperator>(I)) {
1749         if (BC->Flags & OverflowingBinaryOperator::NoSignedWrap)
1750           I->setHasNoSignedWrap();
1751         if (BC->Flags & OverflowingBinaryOperator::NoUnsignedWrap)
1752           I->setHasNoUnsignedWrap();
1753       }
1754       if (isa<PossiblyExactOperator>(I) &&
1755           (BC->Flags & PossiblyExactOperator::IsExact))
1756         I->setIsExact();
1757     } else {
1758       switch (BC->Opcode) {
1759       case BitcodeConstant::ConstantVectorOpcode: {
1760         Type *IdxTy = Type::getInt32Ty(BC->getContext());
1761         Value *V = PoisonValue::get(BC->getType());
1762         for (auto Pair : enumerate(Ops)) {
1763           Value *Idx = ConstantInt::get(IdxTy, Pair.index());
1764           V = InsertElementInst::Create(V, Pair.value(), Idx, "constexpr.ins",
1765                                         InsertBB);
1766         }
1767         I = cast<Instruction>(V);
1768         break;
1769       }
1770       case BitcodeConstant::ConstantStructOpcode:
1771       case BitcodeConstant::ConstantArrayOpcode: {
1772         Value *V = PoisonValue::get(BC->getType());
1773         for (auto Pair : enumerate(Ops))
1774           V = InsertValueInst::Create(V, Pair.value(), Pair.index(),
1775                                       "constexpr.ins", InsertBB);
1776         I = cast<Instruction>(V);
1777         break;
1778       }
1779       case Instruction::ICmp:
1780       case Instruction::FCmp:
1781         I = CmpInst::Create((Instruction::OtherOps)BC->Opcode,
1782                             (CmpInst::Predicate)BC->Flags, Ops[0], Ops[1],
1783                             "constexpr", InsertBB);
1784         break;
1785       case Instruction::GetElementPtr:
1786         I = GetElementPtrInst::Create(BC->SrcElemTy, Ops[0],
1787                                       ArrayRef(Ops).drop_front(), "constexpr",
1788                                       InsertBB);
1789         cast<GetElementPtrInst>(I)->setNoWrapFlags(toGEPNoWrapFlags(BC->Flags));
1790         break;
1791       case Instruction::Select:
1792         I = SelectInst::Create(Ops[0], Ops[1], Ops[2], "constexpr", InsertBB);
1793         break;
1794       case Instruction::ExtractElement:
1795         I = ExtractElementInst::Create(Ops[0], Ops[1], "constexpr", InsertBB);
1796         break;
1797       case Instruction::InsertElement:
1798         I = InsertElementInst::Create(Ops[0], Ops[1], Ops[2], "constexpr",
1799                                       InsertBB);
1800         break;
1801       case Instruction::ShuffleVector:
1802         I = new ShuffleVectorInst(Ops[0], Ops[1], Ops[2], "constexpr",
1803                                   InsertBB);
1804         break;
1805       default:
1806         llvm_unreachable("Unhandled bitcode constant");
1807       }
1808     }
1809 
1810     MaterializedValues.insert({ValID, I});
1811     Worklist.pop_back();
1812   }
1813 
1814   return MaterializedValues[StartValID];
1815 }
1816 
1817 Expected<Constant *> BitcodeReader::getValueForInitializer(unsigned ID) {
1818   Expected<Value *> MaybeV = materializeValue(ID, /* InsertBB */ nullptr);
1819   if (!MaybeV)
1820     return MaybeV.takeError();
1821 
1822   // Result must be Constant if InsertBB is nullptr.
1823   return cast<Constant>(MaybeV.get());
1824 }
1825 
1826 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
1827                                                       StringRef Name) {
1828   auto *Ret = StructType::create(Context, Name);
1829   IdentifiedStructTypes.push_back(Ret);
1830   return Ret;
1831 }
1832 
1833 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
1834   auto *Ret = StructType::create(Context);
1835   IdentifiedStructTypes.push_back(Ret);
1836   return Ret;
1837 }
1838 
1839 //===----------------------------------------------------------------------===//
1840 //  Functions for parsing blocks from the bitcode file
1841 //===----------------------------------------------------------------------===//
1842 
1843 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) {
1844   switch (Val) {
1845   case Attribute::EndAttrKinds:
1846   case Attribute::EmptyKey:
1847   case Attribute::TombstoneKey:
1848     llvm_unreachable("Synthetic enumerators which should never get here");
1849 
1850   case Attribute::None:            return 0;
1851   case Attribute::ZExt:            return 1 << 0;
1852   case Attribute::SExt:            return 1 << 1;
1853   case Attribute::NoReturn:        return 1 << 2;
1854   case Attribute::InReg:           return 1 << 3;
1855   case Attribute::StructRet:       return 1 << 4;
1856   case Attribute::NoUnwind:        return 1 << 5;
1857   case Attribute::NoAlias:         return 1 << 6;
1858   case Attribute::ByVal:           return 1 << 7;
1859   case Attribute::Nest:            return 1 << 8;
1860   case Attribute::ReadNone:        return 1 << 9;
1861   case Attribute::ReadOnly:        return 1 << 10;
1862   case Attribute::NoInline:        return 1 << 11;
1863   case Attribute::AlwaysInline:    return 1 << 12;
1864   case Attribute::OptimizeForSize: return 1 << 13;
1865   case Attribute::StackProtect:    return 1 << 14;
1866   case Attribute::StackProtectReq: return 1 << 15;
1867   case Attribute::Alignment:       return 31 << 16;
1868   case Attribute::NoCapture:       return 1 << 21;
1869   case Attribute::NoRedZone:       return 1 << 22;
1870   case Attribute::NoImplicitFloat: return 1 << 23;
1871   case Attribute::Naked:           return 1 << 24;
1872   case Attribute::InlineHint:      return 1 << 25;
1873   case Attribute::StackAlignment:  return 7 << 26;
1874   case Attribute::ReturnsTwice:    return 1 << 29;
1875   case Attribute::UWTable:         return 1 << 30;
1876   case Attribute::NonLazyBind:     return 1U << 31;
1877   case Attribute::SanitizeAddress: return 1ULL << 32;
1878   case Attribute::MinSize:         return 1ULL << 33;
1879   case Attribute::NoDuplicate:     return 1ULL << 34;
1880   case Attribute::StackProtectStrong: return 1ULL << 35;
1881   case Attribute::SanitizeThread:  return 1ULL << 36;
1882   case Attribute::SanitizeMemory:  return 1ULL << 37;
1883   case Attribute::NoBuiltin:       return 1ULL << 38;
1884   case Attribute::Returned:        return 1ULL << 39;
1885   case Attribute::Cold:            return 1ULL << 40;
1886   case Attribute::Builtin:         return 1ULL << 41;
1887   case Attribute::OptimizeNone:    return 1ULL << 42;
1888   case Attribute::InAlloca:        return 1ULL << 43;
1889   case Attribute::NonNull:         return 1ULL << 44;
1890   case Attribute::JumpTable:       return 1ULL << 45;
1891   case Attribute::Convergent:      return 1ULL << 46;
1892   case Attribute::SafeStack:       return 1ULL << 47;
1893   case Attribute::NoRecurse:       return 1ULL << 48;
1894   // 1ULL << 49 is InaccessibleMemOnly, which is upgraded separately.
1895   // 1ULL << 50 is InaccessibleMemOrArgMemOnly, which is upgraded separately.
1896   case Attribute::SwiftSelf:       return 1ULL << 51;
1897   case Attribute::SwiftError:      return 1ULL << 52;
1898   case Attribute::WriteOnly:       return 1ULL << 53;
1899   case Attribute::Speculatable:    return 1ULL << 54;
1900   case Attribute::StrictFP:        return 1ULL << 55;
1901   case Attribute::SanitizeHWAddress: return 1ULL << 56;
1902   case Attribute::NoCfCheck:       return 1ULL << 57;
1903   case Attribute::OptForFuzzing:   return 1ULL << 58;
1904   case Attribute::ShadowCallStack: return 1ULL << 59;
1905   case Attribute::SpeculativeLoadHardening:
1906     return 1ULL << 60;
1907   case Attribute::ImmArg:
1908     return 1ULL << 61;
1909   case Attribute::WillReturn:
1910     return 1ULL << 62;
1911   case Attribute::NoFree:
1912     return 1ULL << 63;
1913   default:
1914     // Other attributes are not supported in the raw format,
1915     // as we ran out of space.
1916     return 0;
1917   }
1918   llvm_unreachable("Unsupported attribute type");
1919 }
1920 
1921 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) {
1922   if (!Val) return;
1923 
1924   for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds;
1925        I = Attribute::AttrKind(I + 1)) {
1926     if (uint64_t A = (Val & getRawAttributeMask(I))) {
1927       if (I == Attribute::Alignment)
1928         B.addAlignmentAttr(1ULL << ((A >> 16) - 1));
1929       else if (I == Attribute::StackAlignment)
1930         B.addStackAlignmentAttr(1ULL << ((A >> 26)-1));
1931       else if (Attribute::isTypeAttrKind(I))
1932         B.addTypeAttr(I, nullptr); // Type will be auto-upgraded.
1933       else
1934         B.addAttribute(I);
1935     }
1936   }
1937 }
1938 
1939 /// This fills an AttrBuilder object with the LLVM attributes that have
1940 /// been decoded from the given integer. This function must stay in sync with
1941 /// 'encodeLLVMAttributesForBitcode'.
1942 static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
1943                                            uint64_t EncodedAttrs,
1944                                            uint64_t AttrIdx) {
1945   // The alignment is stored as a 16-bit raw value from bits 31--16.  We shift
1946   // the bits above 31 down by 11 bits.
1947   unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
1948   assert((!Alignment || isPowerOf2_32(Alignment)) &&
1949          "Alignment must be a power of two.");
1950 
1951   if (Alignment)
1952     B.addAlignmentAttr(Alignment);
1953 
1954   uint64_t Attrs = ((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
1955                    (EncodedAttrs & 0xffff);
1956 
1957   if (AttrIdx == AttributeList::FunctionIndex) {
1958     // Upgrade old memory attributes.
1959     MemoryEffects ME = MemoryEffects::unknown();
1960     if (Attrs & (1ULL << 9)) {
1961       // ReadNone
1962       Attrs &= ~(1ULL << 9);
1963       ME &= MemoryEffects::none();
1964     }
1965     if (Attrs & (1ULL << 10)) {
1966       // ReadOnly
1967       Attrs &= ~(1ULL << 10);
1968       ME &= MemoryEffects::readOnly();
1969     }
1970     if (Attrs & (1ULL << 49)) {
1971       // InaccessibleMemOnly
1972       Attrs &= ~(1ULL << 49);
1973       ME &= MemoryEffects::inaccessibleMemOnly();
1974     }
1975     if (Attrs & (1ULL << 50)) {
1976       // InaccessibleMemOrArgMemOnly
1977       Attrs &= ~(1ULL << 50);
1978       ME &= MemoryEffects::inaccessibleOrArgMemOnly();
1979     }
1980     if (Attrs & (1ULL << 53)) {
1981       // WriteOnly
1982       Attrs &= ~(1ULL << 53);
1983       ME &= MemoryEffects::writeOnly();
1984     }
1985     if (ME != MemoryEffects::unknown())
1986       B.addMemoryAttr(ME);
1987   }
1988 
1989   addRawAttributeValue(B, Attrs);
1990 }
1991 
1992 Error BitcodeReader::parseAttributeBlock() {
1993   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
1994     return Err;
1995 
1996   if (!MAttributes.empty())
1997     return error("Invalid multiple blocks");
1998 
1999   SmallVector<uint64_t, 64> Record;
2000 
2001   SmallVector<AttributeList, 8> Attrs;
2002 
2003   // Read all the records.
2004   while (true) {
2005     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2006     if (!MaybeEntry)
2007       return MaybeEntry.takeError();
2008     BitstreamEntry Entry = MaybeEntry.get();
2009 
2010     switch (Entry.Kind) {
2011     case BitstreamEntry::SubBlock: // Handled for us already.
2012     case BitstreamEntry::Error:
2013       return error("Malformed block");
2014     case BitstreamEntry::EndBlock:
2015       return Error::success();
2016     case BitstreamEntry::Record:
2017       // The interesting case.
2018       break;
2019     }
2020 
2021     // Read a record.
2022     Record.clear();
2023     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2024     if (!MaybeRecord)
2025       return MaybeRecord.takeError();
2026     switch (MaybeRecord.get()) {
2027     default:  // Default behavior: ignore.
2028       break;
2029     case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...]
2030       // Deprecated, but still needed to read old bitcode files.
2031       if (Record.size() & 1)
2032         return error("Invalid parameter attribute record");
2033 
2034       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
2035         AttrBuilder B(Context);
2036         decodeLLVMAttributesForBitcode(B, Record[i+1], Record[i]);
2037         Attrs.push_back(AttributeList::get(Context, Record[i], B));
2038       }
2039 
2040       MAttributes.push_back(AttributeList::get(Context, Attrs));
2041       Attrs.clear();
2042       break;
2043     case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...]
2044       for (uint64_t Val : Record)
2045         Attrs.push_back(MAttributeGroups[Val]);
2046 
2047       MAttributes.push_back(AttributeList::get(Context, Attrs));
2048       Attrs.clear();
2049       break;
2050     }
2051   }
2052 }
2053 
2054 // Returns Attribute::None on unrecognized codes.
2055 static Attribute::AttrKind getAttrFromCode(uint64_t Code) {
2056   switch (Code) {
2057   default:
2058     return Attribute::None;
2059   case bitc::ATTR_KIND_ALIGNMENT:
2060     return Attribute::Alignment;
2061   case bitc::ATTR_KIND_ALWAYS_INLINE:
2062     return Attribute::AlwaysInline;
2063   case bitc::ATTR_KIND_BUILTIN:
2064     return Attribute::Builtin;
2065   case bitc::ATTR_KIND_BY_VAL:
2066     return Attribute::ByVal;
2067   case bitc::ATTR_KIND_IN_ALLOCA:
2068     return Attribute::InAlloca;
2069   case bitc::ATTR_KIND_COLD:
2070     return Attribute::Cold;
2071   case bitc::ATTR_KIND_CONVERGENT:
2072     return Attribute::Convergent;
2073   case bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION:
2074     return Attribute::DisableSanitizerInstrumentation;
2075   case bitc::ATTR_KIND_ELEMENTTYPE:
2076     return Attribute::ElementType;
2077   case bitc::ATTR_KIND_FNRETTHUNK_EXTERN:
2078     return Attribute::FnRetThunkExtern;
2079   case bitc::ATTR_KIND_INLINE_HINT:
2080     return Attribute::InlineHint;
2081   case bitc::ATTR_KIND_IN_REG:
2082     return Attribute::InReg;
2083   case bitc::ATTR_KIND_JUMP_TABLE:
2084     return Attribute::JumpTable;
2085   case bitc::ATTR_KIND_MEMORY:
2086     return Attribute::Memory;
2087   case bitc::ATTR_KIND_NOFPCLASS:
2088     return Attribute::NoFPClass;
2089   case bitc::ATTR_KIND_MIN_SIZE:
2090     return Attribute::MinSize;
2091   case bitc::ATTR_KIND_NAKED:
2092     return Attribute::Naked;
2093   case bitc::ATTR_KIND_NEST:
2094     return Attribute::Nest;
2095   case bitc::ATTR_KIND_NO_ALIAS:
2096     return Attribute::NoAlias;
2097   case bitc::ATTR_KIND_NO_BUILTIN:
2098     return Attribute::NoBuiltin;
2099   case bitc::ATTR_KIND_NO_CALLBACK:
2100     return Attribute::NoCallback;
2101   case bitc::ATTR_KIND_NO_CAPTURE:
2102     return Attribute::NoCapture;
2103   case bitc::ATTR_KIND_NO_DIVERGENCE_SOURCE:
2104     return Attribute::NoDivergenceSource;
2105   case bitc::ATTR_KIND_NO_DUPLICATE:
2106     return Attribute::NoDuplicate;
2107   case bitc::ATTR_KIND_NOFREE:
2108     return Attribute::NoFree;
2109   case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
2110     return Attribute::NoImplicitFloat;
2111   case bitc::ATTR_KIND_NO_INLINE:
2112     return Attribute::NoInline;
2113   case bitc::ATTR_KIND_NO_RECURSE:
2114     return Attribute::NoRecurse;
2115   case bitc::ATTR_KIND_NO_MERGE:
2116     return Attribute::NoMerge;
2117   case bitc::ATTR_KIND_NON_LAZY_BIND:
2118     return Attribute::NonLazyBind;
2119   case bitc::ATTR_KIND_NON_NULL:
2120     return Attribute::NonNull;
2121   case bitc::ATTR_KIND_DEREFERENCEABLE:
2122     return Attribute::Dereferenceable;
2123   case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL:
2124     return Attribute::DereferenceableOrNull;
2125   case bitc::ATTR_KIND_ALLOC_ALIGN:
2126     return Attribute::AllocAlign;
2127   case bitc::ATTR_KIND_ALLOC_KIND:
2128     return Attribute::AllocKind;
2129   case bitc::ATTR_KIND_ALLOC_SIZE:
2130     return Attribute::AllocSize;
2131   case bitc::ATTR_KIND_ALLOCATED_POINTER:
2132     return Attribute::AllocatedPointer;
2133   case bitc::ATTR_KIND_NO_RED_ZONE:
2134     return Attribute::NoRedZone;
2135   case bitc::ATTR_KIND_NO_RETURN:
2136     return Attribute::NoReturn;
2137   case bitc::ATTR_KIND_NOSYNC:
2138     return Attribute::NoSync;
2139   case bitc::ATTR_KIND_NOCF_CHECK:
2140     return Attribute::NoCfCheck;
2141   case bitc::ATTR_KIND_NO_PROFILE:
2142     return Attribute::NoProfile;
2143   case bitc::ATTR_KIND_SKIP_PROFILE:
2144     return Attribute::SkipProfile;
2145   case bitc::ATTR_KIND_NO_UNWIND:
2146     return Attribute::NoUnwind;
2147   case bitc::ATTR_KIND_NO_SANITIZE_BOUNDS:
2148     return Attribute::NoSanitizeBounds;
2149   case bitc::ATTR_KIND_NO_SANITIZE_COVERAGE:
2150     return Attribute::NoSanitizeCoverage;
2151   case bitc::ATTR_KIND_NULL_POINTER_IS_VALID:
2152     return Attribute::NullPointerIsValid;
2153   case bitc::ATTR_KIND_OPTIMIZE_FOR_DEBUGGING:
2154     return Attribute::OptimizeForDebugging;
2155   case bitc::ATTR_KIND_OPT_FOR_FUZZING:
2156     return Attribute::OptForFuzzing;
2157   case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
2158     return Attribute::OptimizeForSize;
2159   case bitc::ATTR_KIND_OPTIMIZE_NONE:
2160     return Attribute::OptimizeNone;
2161   case bitc::ATTR_KIND_READ_NONE:
2162     return Attribute::ReadNone;
2163   case bitc::ATTR_KIND_READ_ONLY:
2164     return Attribute::ReadOnly;
2165   case bitc::ATTR_KIND_RETURNED:
2166     return Attribute::Returned;
2167   case bitc::ATTR_KIND_RETURNS_TWICE:
2168     return Attribute::ReturnsTwice;
2169   case bitc::ATTR_KIND_S_EXT:
2170     return Attribute::SExt;
2171   case bitc::ATTR_KIND_SPECULATABLE:
2172     return Attribute::Speculatable;
2173   case bitc::ATTR_KIND_STACK_ALIGNMENT:
2174     return Attribute::StackAlignment;
2175   case bitc::ATTR_KIND_STACK_PROTECT:
2176     return Attribute::StackProtect;
2177   case bitc::ATTR_KIND_STACK_PROTECT_REQ:
2178     return Attribute::StackProtectReq;
2179   case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
2180     return Attribute::StackProtectStrong;
2181   case bitc::ATTR_KIND_SAFESTACK:
2182     return Attribute::SafeStack;
2183   case bitc::ATTR_KIND_SHADOWCALLSTACK:
2184     return Attribute::ShadowCallStack;
2185   case bitc::ATTR_KIND_STRICT_FP:
2186     return Attribute::StrictFP;
2187   case bitc::ATTR_KIND_STRUCT_RET:
2188     return Attribute::StructRet;
2189   case bitc::ATTR_KIND_SANITIZE_ADDRESS:
2190     return Attribute::SanitizeAddress;
2191   case bitc::ATTR_KIND_SANITIZE_HWADDRESS:
2192     return Attribute::SanitizeHWAddress;
2193   case bitc::ATTR_KIND_SANITIZE_THREAD:
2194     return Attribute::SanitizeThread;
2195   case bitc::ATTR_KIND_SANITIZE_TYPE:
2196     return Attribute::SanitizeType;
2197   case bitc::ATTR_KIND_SANITIZE_MEMORY:
2198     return Attribute::SanitizeMemory;
2199   case bitc::ATTR_KIND_SANITIZE_NUMERICAL_STABILITY:
2200     return Attribute::SanitizeNumericalStability;
2201   case bitc::ATTR_KIND_SANITIZE_REALTIME:
2202     return Attribute::SanitizeRealtime;
2203   case bitc::ATTR_KIND_SANITIZE_REALTIME_BLOCKING:
2204     return Attribute::SanitizeRealtimeBlocking;
2205   case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING:
2206     return Attribute::SpeculativeLoadHardening;
2207   case bitc::ATTR_KIND_SWIFT_ERROR:
2208     return Attribute::SwiftError;
2209   case bitc::ATTR_KIND_SWIFT_SELF:
2210     return Attribute::SwiftSelf;
2211   case bitc::ATTR_KIND_SWIFT_ASYNC:
2212     return Attribute::SwiftAsync;
2213   case bitc::ATTR_KIND_UW_TABLE:
2214     return Attribute::UWTable;
2215   case bitc::ATTR_KIND_VSCALE_RANGE:
2216     return Attribute::VScaleRange;
2217   case bitc::ATTR_KIND_WILLRETURN:
2218     return Attribute::WillReturn;
2219   case bitc::ATTR_KIND_WRITEONLY:
2220     return Attribute::WriteOnly;
2221   case bitc::ATTR_KIND_Z_EXT:
2222     return Attribute::ZExt;
2223   case bitc::ATTR_KIND_IMMARG:
2224     return Attribute::ImmArg;
2225   case bitc::ATTR_KIND_SANITIZE_MEMTAG:
2226     return Attribute::SanitizeMemTag;
2227   case bitc::ATTR_KIND_PREALLOCATED:
2228     return Attribute::Preallocated;
2229   case bitc::ATTR_KIND_NOUNDEF:
2230     return Attribute::NoUndef;
2231   case bitc::ATTR_KIND_BYREF:
2232     return Attribute::ByRef;
2233   case bitc::ATTR_KIND_MUSTPROGRESS:
2234     return Attribute::MustProgress;
2235   case bitc::ATTR_KIND_HOT:
2236     return Attribute::Hot;
2237   case bitc::ATTR_KIND_PRESPLIT_COROUTINE:
2238     return Attribute::PresplitCoroutine;
2239   case bitc::ATTR_KIND_WRITABLE:
2240     return Attribute::Writable;
2241   case bitc::ATTR_KIND_CORO_ONLY_DESTROY_WHEN_COMPLETE:
2242     return Attribute::CoroDestroyOnlyWhenComplete;
2243   case bitc::ATTR_KIND_DEAD_ON_UNWIND:
2244     return Attribute::DeadOnUnwind;
2245   case bitc::ATTR_KIND_RANGE:
2246     return Attribute::Range;
2247   case bitc::ATTR_KIND_INITIALIZES:
2248     return Attribute::Initializes;
2249   case bitc::ATTR_KIND_CORO_ELIDE_SAFE:
2250     return Attribute::CoroElideSafe;
2251   case bitc::ATTR_KIND_NO_EXT:
2252     return Attribute::NoExt;
2253   case bitc::ATTR_KIND_CAPTURES:
2254     return Attribute::Captures;
2255   }
2256 }
2257 
2258 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent,
2259                                          MaybeAlign &Alignment) {
2260   // Note: Alignment in bitcode files is incremented by 1, so that zero
2261   // can be used for default alignment.
2262   if (Exponent > Value::MaxAlignmentExponent + 1)
2263     return error("Invalid alignment value");
2264   Alignment = decodeMaybeAlign(Exponent);
2265   return Error::success();
2266 }
2267 
2268 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) {
2269   *Kind = getAttrFromCode(Code);
2270   if (*Kind == Attribute::None)
2271     return error("Unknown attribute kind (" + Twine(Code) + ")");
2272   return Error::success();
2273 }
2274 
2275 static bool upgradeOldMemoryAttribute(MemoryEffects &ME, uint64_t EncodedKind) {
2276   switch (EncodedKind) {
2277   case bitc::ATTR_KIND_READ_NONE:
2278     ME &= MemoryEffects::none();
2279     return true;
2280   case bitc::ATTR_KIND_READ_ONLY:
2281     ME &= MemoryEffects::readOnly();
2282     return true;
2283   case bitc::ATTR_KIND_WRITEONLY:
2284     ME &= MemoryEffects::writeOnly();
2285     return true;
2286   case bitc::ATTR_KIND_ARGMEMONLY:
2287     ME &= MemoryEffects::argMemOnly();
2288     return true;
2289   case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY:
2290     ME &= MemoryEffects::inaccessibleMemOnly();
2291     return true;
2292   case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY:
2293     ME &= MemoryEffects::inaccessibleOrArgMemOnly();
2294     return true;
2295   default:
2296     return false;
2297   }
2298 }
2299 
2300 Error BitcodeReader::parseAttributeGroupBlock() {
2301   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
2302     return Err;
2303 
2304   if (!MAttributeGroups.empty())
2305     return error("Invalid multiple blocks");
2306 
2307   SmallVector<uint64_t, 64> Record;
2308 
2309   // Read all the records.
2310   while (true) {
2311     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2312     if (!MaybeEntry)
2313       return MaybeEntry.takeError();
2314     BitstreamEntry Entry = MaybeEntry.get();
2315 
2316     switch (Entry.Kind) {
2317     case BitstreamEntry::SubBlock: // Handled for us already.
2318     case BitstreamEntry::Error:
2319       return error("Malformed block");
2320     case BitstreamEntry::EndBlock:
2321       return Error::success();
2322     case BitstreamEntry::Record:
2323       // The interesting case.
2324       break;
2325     }
2326 
2327     // Read a record.
2328     Record.clear();
2329     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2330     if (!MaybeRecord)
2331       return MaybeRecord.takeError();
2332     switch (MaybeRecord.get()) {
2333     default:  // Default behavior: ignore.
2334       break;
2335     case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
2336       if (Record.size() < 3)
2337         return error("Invalid grp record");
2338 
2339       uint64_t GrpID = Record[0];
2340       uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
2341 
2342       AttrBuilder B(Context);
2343       MemoryEffects ME = MemoryEffects::unknown();
2344       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
2345         if (Record[i] == 0) {        // Enum attribute
2346           Attribute::AttrKind Kind;
2347           uint64_t EncodedKind = Record[++i];
2348           if (Idx == AttributeList::FunctionIndex &&
2349               upgradeOldMemoryAttribute(ME, EncodedKind))
2350             continue;
2351 
2352           if (Error Err = parseAttrKind(EncodedKind, &Kind))
2353             return Err;
2354 
2355           // Upgrade old-style byval attribute to one with a type, even if it's
2356           // nullptr. We will have to insert the real type when we associate
2357           // this AttributeList with a function.
2358           if (Kind == Attribute::ByVal)
2359             B.addByValAttr(nullptr);
2360           else if (Kind == Attribute::StructRet)
2361             B.addStructRetAttr(nullptr);
2362           else if (Kind == Attribute::InAlloca)
2363             B.addInAllocaAttr(nullptr);
2364           else if (Kind == Attribute::UWTable)
2365             B.addUWTableAttr(UWTableKind::Default);
2366           else if (Attribute::isEnumAttrKind(Kind))
2367             B.addAttribute(Kind);
2368           else
2369             return error("Not an enum attribute");
2370         } else if (Record[i] == 1) { // Integer attribute
2371           Attribute::AttrKind Kind;
2372           if (Error Err = parseAttrKind(Record[++i], &Kind))
2373             return Err;
2374           if (!Attribute::isIntAttrKind(Kind))
2375             return error("Not an int attribute");
2376           if (Kind == Attribute::Alignment)
2377             B.addAlignmentAttr(Record[++i]);
2378           else if (Kind == Attribute::StackAlignment)
2379             B.addStackAlignmentAttr(Record[++i]);
2380           else if (Kind == Attribute::Dereferenceable)
2381             B.addDereferenceableAttr(Record[++i]);
2382           else if (Kind == Attribute::DereferenceableOrNull)
2383             B.addDereferenceableOrNullAttr(Record[++i]);
2384           else if (Kind == Attribute::AllocSize)
2385             B.addAllocSizeAttrFromRawRepr(Record[++i]);
2386           else if (Kind == Attribute::VScaleRange)
2387             B.addVScaleRangeAttrFromRawRepr(Record[++i]);
2388           else if (Kind == Attribute::UWTable)
2389             B.addUWTableAttr(UWTableKind(Record[++i]));
2390           else if (Kind == Attribute::AllocKind)
2391             B.addAllocKindAttr(static_cast<AllocFnKind>(Record[++i]));
2392           else if (Kind == Attribute::Memory)
2393             B.addMemoryAttr(MemoryEffects::createFromIntValue(Record[++i]));
2394           else if (Kind == Attribute::Captures)
2395             B.addCapturesAttr(CaptureInfo::createFromIntValue(Record[++i]));
2396           else if (Kind == Attribute::NoFPClass)
2397             B.addNoFPClassAttr(
2398                 static_cast<FPClassTest>(Record[++i] & fcAllFlags));
2399         } else if (Record[i] == 3 || Record[i] == 4) { // String attribute
2400           bool HasValue = (Record[i++] == 4);
2401           SmallString<64> KindStr;
2402           SmallString<64> ValStr;
2403 
2404           while (Record[i] != 0 && i != e)
2405             KindStr += Record[i++];
2406           assert(Record[i] == 0 && "Kind string not null terminated");
2407 
2408           if (HasValue) {
2409             // Has a value associated with it.
2410             ++i; // Skip the '0' that terminates the "kind" string.
2411             while (Record[i] != 0 && i != e)
2412               ValStr += Record[i++];
2413             assert(Record[i] == 0 && "Value string not null terminated");
2414           }
2415 
2416           B.addAttribute(KindStr.str(), ValStr.str());
2417         } else if (Record[i] == 5 || Record[i] == 6) {
2418           bool HasType = Record[i] == 6;
2419           Attribute::AttrKind Kind;
2420           if (Error Err = parseAttrKind(Record[++i], &Kind))
2421             return Err;
2422           if (!Attribute::isTypeAttrKind(Kind))
2423             return error("Not a type attribute");
2424 
2425           B.addTypeAttr(Kind, HasType ? getTypeByID(Record[++i]) : nullptr);
2426         } else if (Record[i] == 7) {
2427           Attribute::AttrKind Kind;
2428 
2429           i++;
2430           if (Error Err = parseAttrKind(Record[i++], &Kind))
2431             return Err;
2432           if (!Attribute::isConstantRangeAttrKind(Kind))
2433             return error("Not a ConstantRange attribute");
2434 
2435           Expected<ConstantRange> MaybeCR =
2436               readBitWidthAndConstantRange(Record, i);
2437           if (!MaybeCR)
2438             return MaybeCR.takeError();
2439           i--;
2440 
2441           B.addConstantRangeAttr(Kind, MaybeCR.get());
2442         } else if (Record[i] == 8) {
2443           Attribute::AttrKind Kind;
2444 
2445           i++;
2446           if (Error Err = parseAttrKind(Record[i++], &Kind))
2447             return Err;
2448           if (!Attribute::isConstantRangeListAttrKind(Kind))
2449             return error("Not a constant range list attribute");
2450 
2451           SmallVector<ConstantRange, 2> Val;
2452           if (i + 2 > e)
2453             return error("Too few records for constant range list");
2454           unsigned RangeSize = Record[i++];
2455           unsigned BitWidth = Record[i++];
2456           for (unsigned Idx = 0; Idx < RangeSize; ++Idx) {
2457             Expected<ConstantRange> MaybeCR =
2458                 readConstantRange(Record, i, BitWidth);
2459             if (!MaybeCR)
2460               return MaybeCR.takeError();
2461             Val.push_back(MaybeCR.get());
2462           }
2463           i--;
2464 
2465           if (!ConstantRangeList::isOrderedRanges(Val))
2466             return error("Invalid (unordered or overlapping) range list");
2467           B.addConstantRangeListAttr(Kind, Val);
2468         } else {
2469           return error("Invalid attribute group entry");
2470         }
2471       }
2472 
2473       if (ME != MemoryEffects::unknown())
2474         B.addMemoryAttr(ME);
2475 
2476       UpgradeAttributes(B);
2477       MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B);
2478       break;
2479     }
2480     }
2481   }
2482 }
2483 
2484 Error BitcodeReader::parseTypeTable() {
2485   if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
2486     return Err;
2487 
2488   return parseTypeTableBody();
2489 }
2490 
2491 Error BitcodeReader::parseTypeTableBody() {
2492   if (!TypeList.empty())
2493     return error("Invalid multiple blocks");
2494 
2495   SmallVector<uint64_t, 64> Record;
2496   unsigned NumRecords = 0;
2497 
2498   SmallString<64> TypeName;
2499 
2500   // Read all the records for this type table.
2501   while (true) {
2502     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2503     if (!MaybeEntry)
2504       return MaybeEntry.takeError();
2505     BitstreamEntry Entry = MaybeEntry.get();
2506 
2507     switch (Entry.Kind) {
2508     case BitstreamEntry::SubBlock: // Handled for us already.
2509     case BitstreamEntry::Error:
2510       return error("Malformed block");
2511     case BitstreamEntry::EndBlock:
2512       if (NumRecords != TypeList.size())
2513         return error("Malformed block");
2514       return Error::success();
2515     case BitstreamEntry::Record:
2516       // The interesting case.
2517       break;
2518     }
2519 
2520     // Read a record.
2521     Record.clear();
2522     Type *ResultTy = nullptr;
2523     SmallVector<unsigned> ContainedIDs;
2524     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2525     if (!MaybeRecord)
2526       return MaybeRecord.takeError();
2527     switch (MaybeRecord.get()) {
2528     default:
2529       return error("Invalid value");
2530     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
2531       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
2532       // type list.  This allows us to reserve space.
2533       if (Record.empty())
2534         return error("Invalid numentry record");
2535       TypeList.resize(Record[0]);
2536       continue;
2537     case bitc::TYPE_CODE_VOID:      // VOID
2538       ResultTy = Type::getVoidTy(Context);
2539       break;
2540     case bitc::TYPE_CODE_HALF:     // HALF
2541       ResultTy = Type::getHalfTy(Context);
2542       break;
2543     case bitc::TYPE_CODE_BFLOAT:    // BFLOAT
2544       ResultTy = Type::getBFloatTy(Context);
2545       break;
2546     case bitc::TYPE_CODE_FLOAT:     // FLOAT
2547       ResultTy = Type::getFloatTy(Context);
2548       break;
2549     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
2550       ResultTy = Type::getDoubleTy(Context);
2551       break;
2552     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
2553       ResultTy = Type::getX86_FP80Ty(Context);
2554       break;
2555     case bitc::TYPE_CODE_FP128:     // FP128
2556       ResultTy = Type::getFP128Ty(Context);
2557       break;
2558     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
2559       ResultTy = Type::getPPC_FP128Ty(Context);
2560       break;
2561     case bitc::TYPE_CODE_LABEL:     // LABEL
2562       ResultTy = Type::getLabelTy(Context);
2563       break;
2564     case bitc::TYPE_CODE_METADATA:  // METADATA
2565       ResultTy = Type::getMetadataTy(Context);
2566       break;
2567     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
2568       // Deprecated: decodes as <1 x i64>
2569       ResultTy =
2570           llvm::FixedVectorType::get(llvm::IntegerType::get(Context, 64), 1);
2571       break;
2572     case bitc::TYPE_CODE_X86_AMX:   // X86_AMX
2573       ResultTy = Type::getX86_AMXTy(Context);
2574       break;
2575     case bitc::TYPE_CODE_TOKEN:     // TOKEN
2576       ResultTy = Type::getTokenTy(Context);
2577       break;
2578     case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
2579       if (Record.empty())
2580         return error("Invalid integer record");
2581 
2582       uint64_t NumBits = Record[0];
2583       if (NumBits < IntegerType::MIN_INT_BITS ||
2584           NumBits > IntegerType::MAX_INT_BITS)
2585         return error("Bitwidth for integer type out of range");
2586       ResultTy = IntegerType::get(Context, NumBits);
2587       break;
2588     }
2589     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
2590                                     //          [pointee type, address space]
2591       if (Record.empty())
2592         return error("Invalid pointer record");
2593       unsigned AddressSpace = 0;
2594       if (Record.size() == 2)
2595         AddressSpace = Record[1];
2596       ResultTy = getTypeByID(Record[0]);
2597       if (!ResultTy ||
2598           !PointerType::isValidElementType(ResultTy))
2599         return error("Invalid type");
2600       ContainedIDs.push_back(Record[0]);
2601       ResultTy = PointerType::get(ResultTy->getContext(), AddressSpace);
2602       break;
2603     }
2604     case bitc::TYPE_CODE_OPAQUE_POINTER: { // OPAQUE_POINTER: [addrspace]
2605       if (Record.size() != 1)
2606         return error("Invalid opaque pointer record");
2607       unsigned AddressSpace = Record[0];
2608       ResultTy = PointerType::get(Context, AddressSpace);
2609       break;
2610     }
2611     case bitc::TYPE_CODE_FUNCTION_OLD: {
2612       // Deprecated, but still needed to read old bitcode files.
2613       // FUNCTION: [vararg, attrid, retty, paramty x N]
2614       if (Record.size() < 3)
2615         return error("Invalid function record");
2616       SmallVector<Type*, 8> ArgTys;
2617       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
2618         if (Type *T = getTypeByID(Record[i]))
2619           ArgTys.push_back(T);
2620         else
2621           break;
2622       }
2623 
2624       ResultTy = getTypeByID(Record[2]);
2625       if (!ResultTy || ArgTys.size() < Record.size()-3)
2626         return error("Invalid type");
2627 
2628       ContainedIDs.append(Record.begin() + 2, Record.end());
2629       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
2630       break;
2631     }
2632     case bitc::TYPE_CODE_FUNCTION: {
2633       // FUNCTION: [vararg, retty, paramty x N]
2634       if (Record.size() < 2)
2635         return error("Invalid function record");
2636       SmallVector<Type*, 8> ArgTys;
2637       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
2638         if (Type *T = getTypeByID(Record[i])) {
2639           if (!FunctionType::isValidArgumentType(T))
2640             return error("Invalid function argument type");
2641           ArgTys.push_back(T);
2642         }
2643         else
2644           break;
2645       }
2646 
2647       ResultTy = getTypeByID(Record[1]);
2648       if (!ResultTy || ArgTys.size() < Record.size()-2)
2649         return error("Invalid type");
2650 
2651       ContainedIDs.append(Record.begin() + 1, Record.end());
2652       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
2653       break;
2654     }
2655     case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
2656       if (Record.empty())
2657         return error("Invalid anon struct record");
2658       SmallVector<Type*, 8> EltTys;
2659       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
2660         if (Type *T = getTypeByID(Record[i]))
2661           EltTys.push_back(T);
2662         else
2663           break;
2664       }
2665       if (EltTys.size() != Record.size()-1)
2666         return error("Invalid type");
2667       ContainedIDs.append(Record.begin() + 1, Record.end());
2668       ResultTy = StructType::get(Context, EltTys, Record[0]);
2669       break;
2670     }
2671     case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
2672       if (convertToString(Record, 0, TypeName))
2673         return error("Invalid struct name record");
2674       continue;
2675 
2676     case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
2677       if (Record.empty())
2678         return error("Invalid named struct record");
2679 
2680       if (NumRecords >= TypeList.size())
2681         return error("Invalid TYPE table");
2682 
2683       // Check to see if this was forward referenced, if so fill in the temp.
2684       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
2685       if (Res) {
2686         Res->setName(TypeName);
2687         TypeList[NumRecords] = nullptr;
2688       } else  // Otherwise, create a new struct.
2689         Res = createIdentifiedStructType(Context, TypeName);
2690       TypeName.clear();
2691 
2692       SmallVector<Type*, 8> EltTys;
2693       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
2694         if (Type *T = getTypeByID(Record[i]))
2695           EltTys.push_back(T);
2696         else
2697           break;
2698       }
2699       if (EltTys.size() != Record.size()-1)
2700         return error("Invalid named struct record");
2701       if (auto E = Res->setBodyOrError(EltTys, Record[0]))
2702         return E;
2703       ContainedIDs.append(Record.begin() + 1, Record.end());
2704       ResultTy = Res;
2705       break;
2706     }
2707     case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
2708       if (Record.size() != 1)
2709         return error("Invalid opaque type record");
2710 
2711       if (NumRecords >= TypeList.size())
2712         return error("Invalid TYPE table");
2713 
2714       // Check to see if this was forward referenced, if so fill in the temp.
2715       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
2716       if (Res) {
2717         Res->setName(TypeName);
2718         TypeList[NumRecords] = nullptr;
2719       } else  // Otherwise, create a new struct with no body.
2720         Res = createIdentifiedStructType(Context, TypeName);
2721       TypeName.clear();
2722       ResultTy = Res;
2723       break;
2724     }
2725     case bitc::TYPE_CODE_TARGET_TYPE: { // TARGET_TYPE: [NumTy, Tys..., Ints...]
2726       if (Record.size() < 1)
2727         return error("Invalid target extension type record");
2728 
2729       if (NumRecords >= TypeList.size())
2730         return error("Invalid TYPE table");
2731 
2732       if (Record[0] >= Record.size())
2733         return error("Too many type parameters");
2734 
2735       unsigned NumTys = Record[0];
2736       SmallVector<Type *, 4> TypeParams;
2737       SmallVector<unsigned, 8> IntParams;
2738       for (unsigned i = 0; i < NumTys; i++) {
2739         if (Type *T = getTypeByID(Record[i + 1]))
2740           TypeParams.push_back(T);
2741         else
2742           return error("Invalid type");
2743       }
2744 
2745       for (unsigned i = NumTys + 1, e = Record.size(); i < e; i++) {
2746         if (Record[i] > UINT_MAX)
2747           return error("Integer parameter too large");
2748         IntParams.push_back(Record[i]);
2749       }
2750       auto TTy =
2751           TargetExtType::getOrError(Context, TypeName, TypeParams, IntParams);
2752       if (auto E = TTy.takeError())
2753         return E;
2754       ResultTy = *TTy;
2755       TypeName.clear();
2756       break;
2757     }
2758     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
2759       if (Record.size() < 2)
2760         return error("Invalid array type record");
2761       ResultTy = getTypeByID(Record[1]);
2762       if (!ResultTy || !ArrayType::isValidElementType(ResultTy))
2763         return error("Invalid type");
2764       ContainedIDs.push_back(Record[1]);
2765       ResultTy = ArrayType::get(ResultTy, Record[0]);
2766       break;
2767     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty] or
2768                                     //         [numelts, eltty, scalable]
2769       if (Record.size() < 2)
2770         return error("Invalid vector type record");
2771       if (Record[0] == 0)
2772         return error("Invalid vector length");
2773       ResultTy = getTypeByID(Record[1]);
2774       if (!ResultTy || !VectorType::isValidElementType(ResultTy))
2775         return error("Invalid type");
2776       bool Scalable = Record.size() > 2 ? Record[2] : false;
2777       ContainedIDs.push_back(Record[1]);
2778       ResultTy = VectorType::get(ResultTy, Record[0], Scalable);
2779       break;
2780     }
2781 
2782     if (NumRecords >= TypeList.size())
2783       return error("Invalid TYPE table");
2784     if (TypeList[NumRecords])
2785       return error(
2786           "Invalid TYPE table: Only named structs can be forward referenced");
2787     assert(ResultTy && "Didn't read a type?");
2788     TypeList[NumRecords] = ResultTy;
2789     if (!ContainedIDs.empty())
2790       ContainedTypeIDs[NumRecords] = std::move(ContainedIDs);
2791     ++NumRecords;
2792   }
2793 }
2794 
2795 Error BitcodeReader::parseOperandBundleTags() {
2796   if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID))
2797     return Err;
2798 
2799   if (!BundleTags.empty())
2800     return error("Invalid multiple blocks");
2801 
2802   SmallVector<uint64_t, 64> Record;
2803 
2804   while (true) {
2805     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2806     if (!MaybeEntry)
2807       return MaybeEntry.takeError();
2808     BitstreamEntry Entry = MaybeEntry.get();
2809 
2810     switch (Entry.Kind) {
2811     case BitstreamEntry::SubBlock: // Handled for us already.
2812     case BitstreamEntry::Error:
2813       return error("Malformed block");
2814     case BitstreamEntry::EndBlock:
2815       return Error::success();
2816     case BitstreamEntry::Record:
2817       // The interesting case.
2818       break;
2819     }
2820 
2821     // Tags are implicitly mapped to integers by their order.
2822 
2823     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2824     if (!MaybeRecord)
2825       return MaybeRecord.takeError();
2826     if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG)
2827       return error("Invalid operand bundle record");
2828 
2829     // OPERAND_BUNDLE_TAG: [strchr x N]
2830     BundleTags.emplace_back();
2831     if (convertToString(Record, 0, BundleTags.back()))
2832       return error("Invalid operand bundle record");
2833     Record.clear();
2834   }
2835 }
2836 
2837 Error BitcodeReader::parseSyncScopeNames() {
2838   if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID))
2839     return Err;
2840 
2841   if (!SSIDs.empty())
2842     return error("Invalid multiple synchronization scope names blocks");
2843 
2844   SmallVector<uint64_t, 64> Record;
2845   while (true) {
2846     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2847     if (!MaybeEntry)
2848       return MaybeEntry.takeError();
2849     BitstreamEntry Entry = MaybeEntry.get();
2850 
2851     switch (Entry.Kind) {
2852     case BitstreamEntry::SubBlock: // Handled for us already.
2853     case BitstreamEntry::Error:
2854       return error("Malformed block");
2855     case BitstreamEntry::EndBlock:
2856       if (SSIDs.empty())
2857         return error("Invalid empty synchronization scope names block");
2858       return Error::success();
2859     case BitstreamEntry::Record:
2860       // The interesting case.
2861       break;
2862     }
2863 
2864     // Synchronization scope names are implicitly mapped to synchronization
2865     // scope IDs by their order.
2866 
2867     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2868     if (!MaybeRecord)
2869       return MaybeRecord.takeError();
2870     if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME)
2871       return error("Invalid sync scope record");
2872 
2873     SmallString<16> SSN;
2874     if (convertToString(Record, 0, SSN))
2875       return error("Invalid sync scope record");
2876 
2877     SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN));
2878     Record.clear();
2879   }
2880 }
2881 
2882 /// Associate a value with its name from the given index in the provided record.
2883 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
2884                                              unsigned NameIndex, Triple &TT) {
2885   SmallString<128> ValueName;
2886   if (convertToString(Record, NameIndex, ValueName))
2887     return error("Invalid record");
2888   unsigned ValueID = Record[0];
2889   if (ValueID >= ValueList.size() || !ValueList[ValueID])
2890     return error("Invalid record");
2891   Value *V = ValueList[ValueID];
2892 
2893   StringRef NameStr(ValueName.data(), ValueName.size());
2894   if (NameStr.contains(0))
2895     return error("Invalid value name");
2896   V->setName(NameStr);
2897   auto *GO = dyn_cast<GlobalObject>(V);
2898   if (GO && ImplicitComdatObjects.contains(GO) && TT.supportsCOMDAT())
2899     GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
2900   return V;
2901 }
2902 
2903 /// Helper to note and return the current location, and jump to the given
2904 /// offset.
2905 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset,
2906                                                  BitstreamCursor &Stream) {
2907   // Save the current parsing location so we can jump back at the end
2908   // of the VST read.
2909   uint64_t CurrentBit = Stream.GetCurrentBitNo();
2910   if (Error JumpFailed = Stream.JumpToBit(Offset * 32))
2911     return std::move(JumpFailed);
2912   Expected<BitstreamEntry> MaybeEntry = Stream.advance();
2913   if (!MaybeEntry)
2914     return MaybeEntry.takeError();
2915   if (MaybeEntry.get().Kind != BitstreamEntry::SubBlock ||
2916       MaybeEntry.get().ID != bitc::VALUE_SYMTAB_BLOCK_ID)
2917     return error("Expected value symbol table subblock");
2918   return CurrentBit;
2919 }
2920 
2921 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta,
2922                                             Function *F,
2923                                             ArrayRef<uint64_t> Record) {
2924   // Note that we subtract 1 here because the offset is relative to one word
2925   // before the start of the identification or module block, which was
2926   // historically always the start of the regular bitcode header.
2927   uint64_t FuncWordOffset = Record[1] - 1;
2928   uint64_t FuncBitOffset = FuncWordOffset * 32;
2929   DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
2930   // Set the LastFunctionBlockBit to point to the last function block.
2931   // Later when parsing is resumed after function materialization,
2932   // we can simply skip that last function block.
2933   if (FuncBitOffset > LastFunctionBlockBit)
2934     LastFunctionBlockBit = FuncBitOffset;
2935 }
2936 
2937 /// Read a new-style GlobalValue symbol table.
2938 Error BitcodeReader::parseGlobalValueSymbolTable() {
2939   unsigned FuncBitcodeOffsetDelta =
2940       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2941 
2942   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2943     return Err;
2944 
2945   SmallVector<uint64_t, 64> Record;
2946   while (true) {
2947     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2948     if (!MaybeEntry)
2949       return MaybeEntry.takeError();
2950     BitstreamEntry Entry = MaybeEntry.get();
2951 
2952     switch (Entry.Kind) {
2953     case BitstreamEntry::SubBlock:
2954     case BitstreamEntry::Error:
2955       return error("Malformed block");
2956     case BitstreamEntry::EndBlock:
2957       return Error::success();
2958     case BitstreamEntry::Record:
2959       break;
2960     }
2961 
2962     Record.clear();
2963     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2964     if (!MaybeRecord)
2965       return MaybeRecord.takeError();
2966     switch (MaybeRecord.get()) {
2967     case bitc::VST_CODE_FNENTRY: { // [valueid, offset]
2968       unsigned ValueID = Record[0];
2969       if (ValueID >= ValueList.size() || !ValueList[ValueID])
2970         return error("Invalid value reference in symbol table");
2971       setDeferredFunctionInfo(FuncBitcodeOffsetDelta,
2972                               cast<Function>(ValueList[ValueID]), Record);
2973       break;
2974     }
2975     }
2976   }
2977 }
2978 
2979 /// Parse the value symbol table at either the current parsing location or
2980 /// at the given bit offset if provided.
2981 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) {
2982   uint64_t CurrentBit;
2983   // Pass in the Offset to distinguish between calling for the module-level
2984   // VST (where we want to jump to the VST offset) and the function-level
2985   // VST (where we don't).
2986   if (Offset > 0) {
2987     Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
2988     if (!MaybeCurrentBit)
2989       return MaybeCurrentBit.takeError();
2990     CurrentBit = MaybeCurrentBit.get();
2991     // If this module uses a string table, read this as a module-level VST.
2992     if (UseStrtab) {
2993       if (Error Err = parseGlobalValueSymbolTable())
2994         return Err;
2995       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2996         return JumpFailed;
2997       return Error::success();
2998     }
2999     // Otherwise, the VST will be in a similar format to a function-level VST,
3000     // and will contain symbol names.
3001   }
3002 
3003   // Compute the delta between the bitcode indices in the VST (the word offset
3004   // to the word-aligned ENTER_SUBBLOCK for the function block, and that
3005   // expected by the lazy reader. The reader's EnterSubBlock expects to have
3006   // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
3007   // (size BlockIDWidth). Note that we access the stream's AbbrevID width here
3008   // just before entering the VST subblock because: 1) the EnterSubBlock
3009   // changes the AbbrevID width; 2) the VST block is nested within the same
3010   // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
3011   // AbbrevID width before calling EnterSubBlock; and 3) when we want to
3012   // jump to the FUNCTION_BLOCK using this offset later, we don't want
3013   // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
3014   unsigned FuncBitcodeOffsetDelta =
3015       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
3016 
3017   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
3018     return Err;
3019 
3020   SmallVector<uint64_t, 64> Record;
3021 
3022   Triple TT(TheModule->getTargetTriple());
3023 
3024   // Read all the records for this value table.
3025   SmallString<128> ValueName;
3026 
3027   while (true) {
3028     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
3029     if (!MaybeEntry)
3030       return MaybeEntry.takeError();
3031     BitstreamEntry Entry = MaybeEntry.get();
3032 
3033     switch (Entry.Kind) {
3034     case BitstreamEntry::SubBlock: // Handled for us already.
3035     case BitstreamEntry::Error:
3036       return error("Malformed block");
3037     case BitstreamEntry::EndBlock:
3038       if (Offset > 0)
3039         if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
3040           return JumpFailed;
3041       return Error::success();
3042     case BitstreamEntry::Record:
3043       // The interesting case.
3044       break;
3045     }
3046 
3047     // Read a record.
3048     Record.clear();
3049     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
3050     if (!MaybeRecord)
3051       return MaybeRecord.takeError();
3052     switch (MaybeRecord.get()) {
3053     default:  // Default behavior: unknown type.
3054       break;
3055     case bitc::VST_CODE_ENTRY: {  // VST_CODE_ENTRY: [valueid, namechar x N]
3056       Expected<Value *> ValOrErr = recordValue(Record, 1, TT);
3057       if (Error Err = ValOrErr.takeError())
3058         return Err;
3059       ValOrErr.get();
3060       break;
3061     }
3062     case bitc::VST_CODE_FNENTRY: {
3063       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
3064       Expected<Value *> ValOrErr = recordValue(Record, 2, TT);
3065       if (Error Err = ValOrErr.takeError())
3066         return Err;
3067       Value *V = ValOrErr.get();
3068 
3069       // Ignore function offsets emitted for aliases of functions in older
3070       // versions of LLVM.
3071       if (auto *F = dyn_cast<Function>(V))
3072         setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record);
3073       break;
3074     }
3075     case bitc::VST_CODE_BBENTRY: {
3076       if (convertToString(Record, 1, ValueName))
3077         return error("Invalid bbentry record");
3078       BasicBlock *BB = getBasicBlock(Record[0]);
3079       if (!BB)
3080         return error("Invalid bbentry record");
3081 
3082       BB->setName(ValueName.str());
3083       ValueName.clear();
3084       break;
3085     }
3086     }
3087   }
3088 }
3089 
3090 /// Decode a signed value stored with the sign bit in the LSB for dense VBR
3091 /// encoding.
3092 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
3093   if ((V & 1) == 0)
3094     return V >> 1;
3095   if (V != 1)
3096     return -(V >> 1);
3097   // There is no such thing as -0 with integers.  "-0" really means MININT.
3098   return 1ULL << 63;
3099 }
3100 
3101 /// Resolve all of the initializers for global values and aliases that we can.
3102 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() {
3103   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist;
3104   std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInitWorklist;
3105   std::vector<FunctionOperandInfo> FunctionOperandWorklist;
3106 
3107   GlobalInitWorklist.swap(GlobalInits);
3108   IndirectSymbolInitWorklist.swap(IndirectSymbolInits);
3109   FunctionOperandWorklist.swap(FunctionOperands);
3110 
3111   while (!GlobalInitWorklist.empty()) {
3112     unsigned ValID = GlobalInitWorklist.back().second;
3113     if (ValID >= ValueList.size()) {
3114       // Not ready to resolve this yet, it requires something later in the file.
3115       GlobalInits.push_back(GlobalInitWorklist.back());
3116     } else {
3117       Expected<Constant *> MaybeC = getValueForInitializer(ValID);
3118       if (!MaybeC)
3119         return MaybeC.takeError();
3120       GlobalInitWorklist.back().first->setInitializer(MaybeC.get());
3121     }
3122     GlobalInitWorklist.pop_back();
3123   }
3124 
3125   while (!IndirectSymbolInitWorklist.empty()) {
3126     unsigned ValID = IndirectSymbolInitWorklist.back().second;
3127     if (ValID >= ValueList.size()) {
3128       IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back());
3129     } else {
3130       Expected<Constant *> MaybeC = getValueForInitializer(ValID);
3131       if (!MaybeC)
3132         return MaybeC.takeError();
3133       Constant *C = MaybeC.get();
3134       GlobalValue *GV = IndirectSymbolInitWorklist.back().first;
3135       if (auto *GA = dyn_cast<GlobalAlias>(GV)) {
3136         if (C->getType() != GV->getType())
3137           return error("Alias and aliasee types don't match");
3138         GA->setAliasee(C);
3139       } else if (auto *GI = dyn_cast<GlobalIFunc>(GV)) {
3140         GI->setResolver(C);
3141       } else {
3142         return error("Expected an alias or an ifunc");
3143       }
3144     }
3145     IndirectSymbolInitWorklist.pop_back();
3146   }
3147 
3148   while (!FunctionOperandWorklist.empty()) {
3149     FunctionOperandInfo &Info = FunctionOperandWorklist.back();
3150     if (Info.PersonalityFn) {
3151       unsigned ValID = Info.PersonalityFn - 1;
3152       if (ValID < ValueList.size()) {
3153         Expected<Constant *> MaybeC = getValueForInitializer(ValID);
3154         if (!MaybeC)
3155           return MaybeC.takeError();
3156         Info.F->setPersonalityFn(MaybeC.get());
3157         Info.PersonalityFn = 0;
3158       }
3159     }
3160     if (Info.Prefix) {
3161       unsigned ValID = Info.Prefix - 1;
3162       if (ValID < ValueList.size()) {
3163         Expected<Constant *> MaybeC = getValueForInitializer(ValID);
3164         if (!MaybeC)
3165           return MaybeC.takeError();
3166         Info.F->setPrefixData(MaybeC.get());
3167         Info.Prefix = 0;
3168       }
3169     }
3170     if (Info.Prologue) {
3171       unsigned ValID = Info.Prologue - 1;
3172       if (ValID < ValueList.size()) {
3173         Expected<Constant *> MaybeC = getValueForInitializer(ValID);
3174         if (!MaybeC)
3175           return MaybeC.takeError();
3176         Info.F->setPrologueData(MaybeC.get());
3177         Info.Prologue = 0;
3178       }
3179     }
3180     if (Info.PersonalityFn || Info.Prefix || Info.Prologue)
3181       FunctionOperands.push_back(Info);
3182     FunctionOperandWorklist.pop_back();
3183   }
3184 
3185   return Error::success();
3186 }
3187 
3188 APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
3189   SmallVector<uint64_t, 8> Words(Vals.size());
3190   transform(Vals, Words.begin(),
3191                  BitcodeReader::decodeSignRotatedValue);
3192 
3193   return APInt(TypeBits, Words);
3194 }
3195 
3196 Error BitcodeReader::parseConstants() {
3197   if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
3198     return Err;
3199 
3200   SmallVector<uint64_t, 64> Record;
3201 
3202   // Read all the records for this value table.
3203   Type *CurTy = Type::getInt32Ty(Context);
3204   unsigned Int32TyID = getVirtualTypeID(CurTy);
3205   unsigned CurTyID = Int32TyID;
3206   Type *CurElemTy = nullptr;
3207   unsigned NextCstNo = ValueList.size();
3208 
3209   while (true) {
3210     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
3211     if (!MaybeEntry)
3212       return MaybeEntry.takeError();
3213     BitstreamEntry Entry = MaybeEntry.get();
3214 
3215     switch (Entry.Kind) {
3216     case BitstreamEntry::SubBlock: // Handled for us already.
3217     case BitstreamEntry::Error:
3218       return error("Malformed block");
3219     case BitstreamEntry::EndBlock:
3220       if (NextCstNo != ValueList.size())
3221         return error("Invalid constant reference");
3222       return Error::success();
3223     case BitstreamEntry::Record:
3224       // The interesting case.
3225       break;
3226     }
3227 
3228     // Read a record.
3229     Record.clear();
3230     Type *VoidType = Type::getVoidTy(Context);
3231     Value *V = nullptr;
3232     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
3233     if (!MaybeBitCode)
3234       return MaybeBitCode.takeError();
3235     switch (unsigned BitCode = MaybeBitCode.get()) {
3236     default:  // Default behavior: unknown constant
3237     case bitc::CST_CODE_UNDEF:     // UNDEF
3238       V = UndefValue::get(CurTy);
3239       break;
3240     case bitc::CST_CODE_POISON:    // POISON
3241       V = PoisonValue::get(CurTy);
3242       break;
3243     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
3244       if (Record.empty())
3245         return error("Invalid settype record");
3246       if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
3247         return error("Invalid settype record");
3248       if (TypeList[Record[0]] == VoidType)
3249         return error("Invalid constant type");
3250       CurTyID = Record[0];
3251       CurTy = TypeList[CurTyID];
3252       CurElemTy = getPtrElementTypeByID(CurTyID);
3253       continue;  // Skip the ValueList manipulation.
3254     case bitc::CST_CODE_NULL:      // NULL
3255       if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy())
3256         return error("Invalid type for a constant null value");
3257       if (auto *TETy = dyn_cast<TargetExtType>(CurTy))
3258         if (!TETy->hasProperty(TargetExtType::HasZeroInit))
3259           return error("Invalid type for a constant null value");
3260       V = Constant::getNullValue(CurTy);
3261       break;
3262     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
3263       if (!CurTy->isIntOrIntVectorTy() || Record.empty())
3264         return error("Invalid integer const record");
3265       V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
3266       break;
3267     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
3268       if (!CurTy->isIntOrIntVectorTy() || Record.empty())
3269         return error("Invalid wide integer const record");
3270 
3271       auto *ScalarTy = cast<IntegerType>(CurTy->getScalarType());
3272       APInt VInt = readWideAPInt(Record, ScalarTy->getBitWidth());
3273       V = ConstantInt::get(CurTy, VInt);
3274       break;
3275     }
3276     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
3277       if (Record.empty())
3278         return error("Invalid float const record");
3279 
3280       auto *ScalarTy = CurTy->getScalarType();
3281       if (ScalarTy->isHalfTy())
3282         V = ConstantFP::get(CurTy, APFloat(APFloat::IEEEhalf(),
3283                                            APInt(16, (uint16_t)Record[0])));
3284       else if (ScalarTy->isBFloatTy())
3285         V = ConstantFP::get(
3286             CurTy, APFloat(APFloat::BFloat(), APInt(16, (uint32_t)Record[0])));
3287       else if (ScalarTy->isFloatTy())
3288         V = ConstantFP::get(CurTy, APFloat(APFloat::IEEEsingle(),
3289                                            APInt(32, (uint32_t)Record[0])));
3290       else if (ScalarTy->isDoubleTy())
3291         V = ConstantFP::get(
3292             CurTy, APFloat(APFloat::IEEEdouble(), APInt(64, Record[0])));
3293       else if (ScalarTy->isX86_FP80Ty()) {
3294         // Bits are not stored the same way as a normal i80 APInt, compensate.
3295         uint64_t Rearrange[2];
3296         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
3297         Rearrange[1] = Record[0] >> 48;
3298         V = ConstantFP::get(
3299             CurTy, APFloat(APFloat::x87DoubleExtended(), APInt(80, Rearrange)));
3300       } else if (ScalarTy->isFP128Ty())
3301         V = ConstantFP::get(CurTy,
3302                             APFloat(APFloat::IEEEquad(), APInt(128, Record)));
3303       else if (ScalarTy->isPPC_FP128Ty())
3304         V = ConstantFP::get(
3305             CurTy, APFloat(APFloat::PPCDoubleDouble(), APInt(128, Record)));
3306       else
3307         V = PoisonValue::get(CurTy);
3308       break;
3309     }
3310 
3311     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
3312       if (Record.empty())
3313         return error("Invalid aggregate record");
3314 
3315       unsigned Size = Record.size();
3316       SmallVector<unsigned, 16> Elts;
3317       for (unsigned i = 0; i != Size; ++i)
3318         Elts.push_back(Record[i]);
3319 
3320       if (isa<StructType>(CurTy)) {
3321         V = BitcodeConstant::create(
3322             Alloc, CurTy, BitcodeConstant::ConstantStructOpcode, Elts);
3323       } else if (isa<ArrayType>(CurTy)) {
3324         V = BitcodeConstant::create(Alloc, CurTy,
3325                                     BitcodeConstant::ConstantArrayOpcode, Elts);
3326       } else if (isa<VectorType>(CurTy)) {
3327         V = BitcodeConstant::create(
3328             Alloc, CurTy, BitcodeConstant::ConstantVectorOpcode, Elts);
3329       } else {
3330         V = PoisonValue::get(CurTy);
3331       }
3332       break;
3333     }
3334     case bitc::CST_CODE_STRING:    // STRING: [values]
3335     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
3336       if (Record.empty())
3337         return error("Invalid string record");
3338 
3339       SmallString<16> Elts(Record.begin(), Record.end());
3340       V = ConstantDataArray::getString(Context, Elts,
3341                                        BitCode == bitc::CST_CODE_CSTRING);
3342       break;
3343     }
3344     case bitc::CST_CODE_DATA: {// DATA: [n x value]
3345       if (Record.empty())
3346         return error("Invalid data record");
3347 
3348       Type *EltTy;
3349       if (auto *Array = dyn_cast<ArrayType>(CurTy))
3350         EltTy = Array->getElementType();
3351       else
3352         EltTy = cast<VectorType>(CurTy)->getElementType();
3353       if (EltTy->isIntegerTy(8)) {
3354         SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
3355         if (isa<VectorType>(CurTy))
3356           V = ConstantDataVector::get(Context, Elts);
3357         else
3358           V = ConstantDataArray::get(Context, Elts);
3359       } else if (EltTy->isIntegerTy(16)) {
3360         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
3361         if (isa<VectorType>(CurTy))
3362           V = ConstantDataVector::get(Context, Elts);
3363         else
3364           V = ConstantDataArray::get(Context, Elts);
3365       } else if (EltTy->isIntegerTy(32)) {
3366         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
3367         if (isa<VectorType>(CurTy))
3368           V = ConstantDataVector::get(Context, Elts);
3369         else
3370           V = ConstantDataArray::get(Context, Elts);
3371       } else if (EltTy->isIntegerTy(64)) {
3372         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
3373         if (isa<VectorType>(CurTy))
3374           V = ConstantDataVector::get(Context, Elts);
3375         else
3376           V = ConstantDataArray::get(Context, Elts);
3377       } else if (EltTy->isHalfTy()) {
3378         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
3379         if (isa<VectorType>(CurTy))
3380           V = ConstantDataVector::getFP(EltTy, Elts);
3381         else
3382           V = ConstantDataArray::getFP(EltTy, Elts);
3383       } else if (EltTy->isBFloatTy()) {
3384         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
3385         if (isa<VectorType>(CurTy))
3386           V = ConstantDataVector::getFP(EltTy, Elts);
3387         else
3388           V = ConstantDataArray::getFP(EltTy, Elts);
3389       } else if (EltTy->isFloatTy()) {
3390         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
3391         if (isa<VectorType>(CurTy))
3392           V = ConstantDataVector::getFP(EltTy, Elts);
3393         else
3394           V = ConstantDataArray::getFP(EltTy, Elts);
3395       } else if (EltTy->isDoubleTy()) {
3396         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
3397         if (isa<VectorType>(CurTy))
3398           V = ConstantDataVector::getFP(EltTy, Elts);
3399         else
3400           V = ConstantDataArray::getFP(EltTy, Elts);
3401       } else {
3402         return error("Invalid type for value");
3403       }
3404       break;
3405     }
3406     case bitc::CST_CODE_CE_UNOP: {  // CE_UNOP: [opcode, opval]
3407       if (Record.size() < 2)
3408         return error("Invalid unary op constexpr record");
3409       int Opc = getDecodedUnaryOpcode(Record[0], CurTy);
3410       if (Opc < 0) {
3411         V = PoisonValue::get(CurTy);  // Unknown unop.
3412       } else {
3413         V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[1]);
3414       }
3415       break;
3416     }
3417     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
3418       if (Record.size() < 3)
3419         return error("Invalid binary op constexpr record");
3420       int Opc = getDecodedBinaryOpcode(Record[0], CurTy);
3421       if (Opc < 0) {
3422         V = PoisonValue::get(CurTy);  // Unknown binop.
3423       } else {
3424         uint8_t Flags = 0;
3425         if (Record.size() >= 4) {
3426           if (Opc == Instruction::Add ||
3427               Opc == Instruction::Sub ||
3428               Opc == Instruction::Mul ||
3429               Opc == Instruction::Shl) {
3430             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
3431               Flags |= OverflowingBinaryOperator::NoSignedWrap;
3432             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
3433               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
3434           } else if (Opc == Instruction::SDiv ||
3435                      Opc == Instruction::UDiv ||
3436                      Opc == Instruction::LShr ||
3437                      Opc == Instruction::AShr) {
3438             if (Record[3] & (1 << bitc::PEO_EXACT))
3439               Flags |= PossiblyExactOperator::IsExact;
3440           }
3441         }
3442         V = BitcodeConstant::create(Alloc, CurTy, {(uint8_t)Opc, Flags},
3443                                     {(unsigned)Record[1], (unsigned)Record[2]});
3444       }
3445       break;
3446     }
3447     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
3448       if (Record.size() < 3)
3449         return error("Invalid cast constexpr record");
3450       int Opc = getDecodedCastOpcode(Record[0]);
3451       if (Opc < 0) {
3452         V = PoisonValue::get(CurTy);  // Unknown cast.
3453       } else {
3454         unsigned OpTyID = Record[1];
3455         Type *OpTy = getTypeByID(OpTyID);
3456         if (!OpTy)
3457           return error("Invalid cast constexpr record");
3458         V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[2]);
3459       }
3460       break;
3461     }
3462     case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands]
3463     case bitc::CST_CODE_CE_GEP_OLD:      // [ty, n x operands]
3464     case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX_OLD: // [ty, flags, n x
3465                                                        // operands]
3466     case bitc::CST_CODE_CE_GEP:                // [ty, flags, n x operands]
3467     case bitc::CST_CODE_CE_GEP_WITH_INRANGE: { // [ty, flags, start, end, n x
3468                                                // operands]
3469       if (Record.size() < 2)
3470         return error("Constant GEP record must have at least two elements");
3471       unsigned OpNum = 0;
3472       Type *PointeeType = nullptr;
3473       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX_OLD ||
3474           BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE ||
3475           BitCode == bitc::CST_CODE_CE_GEP || Record.size() % 2)
3476         PointeeType = getTypeByID(Record[OpNum++]);
3477 
3478       uint64_t Flags = 0;
3479       std::optional<ConstantRange> InRange;
3480       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX_OLD) {
3481         uint64_t Op = Record[OpNum++];
3482         Flags = Op & 1; // inbounds
3483         unsigned InRangeIndex = Op >> 1;
3484         // "Upgrade" inrange by dropping it. The feature is too niche to
3485         // bother.
3486         (void)InRangeIndex;
3487       } else if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE) {
3488         Flags = Record[OpNum++];
3489         Expected<ConstantRange> MaybeInRange =
3490             readBitWidthAndConstantRange(Record, OpNum);
3491         if (!MaybeInRange)
3492           return MaybeInRange.takeError();
3493         InRange = MaybeInRange.get();
3494       } else if (BitCode == bitc::CST_CODE_CE_GEP) {
3495         Flags = Record[OpNum++];
3496       } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
3497         Flags = (1 << bitc::GEP_INBOUNDS);
3498 
3499       SmallVector<unsigned, 16> Elts;
3500       unsigned BaseTypeID = Record[OpNum];
3501       while (OpNum != Record.size()) {
3502         unsigned ElTyID = Record[OpNum++];
3503         Type *ElTy = getTypeByID(ElTyID);
3504         if (!ElTy)
3505           return error("Invalid getelementptr constexpr record");
3506         Elts.push_back(Record[OpNum++]);
3507       }
3508 
3509       if (Elts.size() < 1)
3510         return error("Invalid gep with no operands");
3511 
3512       Type *BaseType = getTypeByID(BaseTypeID);
3513       if (isa<VectorType>(BaseType)) {
3514         BaseTypeID = getContainedTypeID(BaseTypeID, 0);
3515         BaseType = getTypeByID(BaseTypeID);
3516       }
3517 
3518       PointerType *OrigPtrTy = dyn_cast_or_null<PointerType>(BaseType);
3519       if (!OrigPtrTy)
3520         return error("GEP base operand must be pointer or vector of pointer");
3521 
3522       if (!PointeeType) {
3523         PointeeType = getPtrElementTypeByID(BaseTypeID);
3524         if (!PointeeType)
3525           return error("Missing element type for old-style constant GEP");
3526       }
3527 
3528       V = BitcodeConstant::create(
3529           Alloc, CurTy,
3530           {Instruction::GetElementPtr, uint8_t(Flags), PointeeType, InRange},
3531           Elts);
3532       break;
3533     }
3534     case bitc::CST_CODE_CE_SELECT: {  // CE_SELECT: [opval#, opval#, opval#]
3535       if (Record.size() < 3)
3536         return error("Invalid select constexpr record");
3537 
3538       V = BitcodeConstant::create(
3539           Alloc, CurTy, Instruction::Select,
3540           {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]});
3541       break;
3542     }
3543     case bitc::CST_CODE_CE_EXTRACTELT
3544         : { // CE_EXTRACTELT: [opty, opval, opty, opval]
3545       if (Record.size() < 3)
3546         return error("Invalid extractelement constexpr record");
3547       unsigned OpTyID = Record[0];
3548       VectorType *OpTy =
3549         dyn_cast_or_null<VectorType>(getTypeByID(OpTyID));
3550       if (!OpTy)
3551         return error("Invalid extractelement constexpr record");
3552       unsigned IdxRecord;
3553       if (Record.size() == 4) {
3554         unsigned IdxTyID = Record[2];
3555         Type *IdxTy = getTypeByID(IdxTyID);
3556         if (!IdxTy)
3557           return error("Invalid extractelement constexpr record");
3558         IdxRecord = Record[3];
3559       } else {
3560         // Deprecated, but still needed to read old bitcode files.
3561         IdxRecord = Record[2];
3562       }
3563       V = BitcodeConstant::create(Alloc, CurTy, Instruction::ExtractElement,
3564                                   {(unsigned)Record[1], IdxRecord});
3565       break;
3566     }
3567     case bitc::CST_CODE_CE_INSERTELT
3568         : { // CE_INSERTELT: [opval, opval, opty, opval]
3569       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
3570       if (Record.size() < 3 || !OpTy)
3571         return error("Invalid insertelement constexpr record");
3572       unsigned IdxRecord;
3573       if (Record.size() == 4) {
3574         unsigned IdxTyID = Record[2];
3575         Type *IdxTy = getTypeByID(IdxTyID);
3576         if (!IdxTy)
3577           return error("Invalid insertelement constexpr record");
3578         IdxRecord = Record[3];
3579       } else {
3580         // Deprecated, but still needed to read old bitcode files.
3581         IdxRecord = Record[2];
3582       }
3583       V = BitcodeConstant::create(
3584           Alloc, CurTy, Instruction::InsertElement,
3585           {(unsigned)Record[0], (unsigned)Record[1], IdxRecord});
3586       break;
3587     }
3588     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
3589       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
3590       if (Record.size() < 3 || !OpTy)
3591         return error("Invalid shufflevector constexpr record");
3592       V = BitcodeConstant::create(
3593           Alloc, CurTy, Instruction::ShuffleVector,
3594           {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]});
3595       break;
3596     }
3597     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
3598       VectorType *RTy = dyn_cast<VectorType>(CurTy);
3599       VectorType *OpTy =
3600         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
3601       if (Record.size() < 4 || !RTy || !OpTy)
3602         return error("Invalid shufflevector constexpr record");
3603       V = BitcodeConstant::create(
3604           Alloc, CurTy, Instruction::ShuffleVector,
3605           {(unsigned)Record[1], (unsigned)Record[2], (unsigned)Record[3]});
3606       break;
3607     }
3608     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
3609       if (Record.size() < 4)
3610         return error("Invalid cmp constexpt record");
3611       unsigned OpTyID = Record[0];
3612       Type *OpTy = getTypeByID(OpTyID);
3613       if (!OpTy)
3614         return error("Invalid cmp constexpr record");
3615       V = BitcodeConstant::create(
3616           Alloc, CurTy,
3617           {(uint8_t)(OpTy->isFPOrFPVectorTy() ? Instruction::FCmp
3618                                               : Instruction::ICmp),
3619            (uint8_t)Record[3]},
3620           {(unsigned)Record[1], (unsigned)Record[2]});
3621       break;
3622     }
3623     // This maintains backward compatibility, pre-asm dialect keywords.
3624     // Deprecated, but still needed to read old bitcode files.
3625     case bitc::CST_CODE_INLINEASM_OLD: {
3626       if (Record.size() < 2)
3627         return error("Invalid inlineasm record");
3628       std::string AsmStr, ConstrStr;
3629       bool HasSideEffects = Record[0] & 1;
3630       bool IsAlignStack = Record[0] >> 1;
3631       unsigned AsmStrSize = Record[1];
3632       if (2+AsmStrSize >= Record.size())
3633         return error("Invalid inlineasm record");
3634       unsigned ConstStrSize = Record[2+AsmStrSize];
3635       if (3+AsmStrSize+ConstStrSize > Record.size())
3636         return error("Invalid inlineasm record");
3637 
3638       for (unsigned i = 0; i != AsmStrSize; ++i)
3639         AsmStr += (char)Record[2+i];
3640       for (unsigned i = 0; i != ConstStrSize; ++i)
3641         ConstrStr += (char)Record[3+AsmStrSize+i];
3642       UpgradeInlineAsmString(&AsmStr);
3643       if (!CurElemTy)
3644         return error("Missing element type for old-style inlineasm");
3645       V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr,
3646                          HasSideEffects, IsAlignStack);
3647       break;
3648     }
3649     // This version adds support for the asm dialect keywords (e.g.,
3650     // inteldialect).
3651     case bitc::CST_CODE_INLINEASM_OLD2: {
3652       if (Record.size() < 2)
3653         return error("Invalid inlineasm record");
3654       std::string AsmStr, ConstrStr;
3655       bool HasSideEffects = Record[0] & 1;
3656       bool IsAlignStack = (Record[0] >> 1) & 1;
3657       unsigned AsmDialect = Record[0] >> 2;
3658       unsigned AsmStrSize = Record[1];
3659       if (2+AsmStrSize >= Record.size())
3660         return error("Invalid inlineasm record");
3661       unsigned ConstStrSize = Record[2+AsmStrSize];
3662       if (3+AsmStrSize+ConstStrSize > Record.size())
3663         return error("Invalid inlineasm record");
3664 
3665       for (unsigned i = 0; i != AsmStrSize; ++i)
3666         AsmStr += (char)Record[2+i];
3667       for (unsigned i = 0; i != ConstStrSize; ++i)
3668         ConstrStr += (char)Record[3+AsmStrSize+i];
3669       UpgradeInlineAsmString(&AsmStr);
3670       if (!CurElemTy)
3671         return error("Missing element type for old-style inlineasm");
3672       V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr,
3673                          HasSideEffects, IsAlignStack,
3674                          InlineAsm::AsmDialect(AsmDialect));
3675       break;
3676     }
3677     // This version adds support for the unwind keyword.
3678     case bitc::CST_CODE_INLINEASM_OLD3: {
3679       if (Record.size() < 2)
3680         return error("Invalid inlineasm record");
3681       unsigned OpNum = 0;
3682       std::string AsmStr, ConstrStr;
3683       bool HasSideEffects = Record[OpNum] & 1;
3684       bool IsAlignStack = (Record[OpNum] >> 1) & 1;
3685       unsigned AsmDialect = (Record[OpNum] >> 2) & 1;
3686       bool CanThrow = (Record[OpNum] >> 3) & 1;
3687       ++OpNum;
3688       unsigned AsmStrSize = Record[OpNum];
3689       ++OpNum;
3690       if (OpNum + AsmStrSize >= Record.size())
3691         return error("Invalid inlineasm record");
3692       unsigned ConstStrSize = Record[OpNum + AsmStrSize];
3693       if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size())
3694         return error("Invalid inlineasm record");
3695 
3696       for (unsigned i = 0; i != AsmStrSize; ++i)
3697         AsmStr += (char)Record[OpNum + i];
3698       ++OpNum;
3699       for (unsigned i = 0; i != ConstStrSize; ++i)
3700         ConstrStr += (char)Record[OpNum + AsmStrSize + i];
3701       UpgradeInlineAsmString(&AsmStr);
3702       if (!CurElemTy)
3703         return error("Missing element type for old-style inlineasm");
3704       V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr,
3705                          HasSideEffects, IsAlignStack,
3706                          InlineAsm::AsmDialect(AsmDialect), CanThrow);
3707       break;
3708     }
3709     // This version adds explicit function type.
3710     case bitc::CST_CODE_INLINEASM: {
3711       if (Record.size() < 3)
3712         return error("Invalid inlineasm record");
3713       unsigned OpNum = 0;
3714       auto *FnTy = dyn_cast_or_null<FunctionType>(getTypeByID(Record[OpNum]));
3715       ++OpNum;
3716       if (!FnTy)
3717         return error("Invalid inlineasm record");
3718       std::string AsmStr, ConstrStr;
3719       bool HasSideEffects = Record[OpNum] & 1;
3720       bool IsAlignStack = (Record[OpNum] >> 1) & 1;
3721       unsigned AsmDialect = (Record[OpNum] >> 2) & 1;
3722       bool CanThrow = (Record[OpNum] >> 3) & 1;
3723       ++OpNum;
3724       unsigned AsmStrSize = Record[OpNum];
3725       ++OpNum;
3726       if (OpNum + AsmStrSize >= Record.size())
3727         return error("Invalid inlineasm record");
3728       unsigned ConstStrSize = Record[OpNum + AsmStrSize];
3729       if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size())
3730         return error("Invalid inlineasm record");
3731 
3732       for (unsigned i = 0; i != AsmStrSize; ++i)
3733         AsmStr += (char)Record[OpNum + i];
3734       ++OpNum;
3735       for (unsigned i = 0; i != ConstStrSize; ++i)
3736         ConstrStr += (char)Record[OpNum + AsmStrSize + i];
3737       UpgradeInlineAsmString(&AsmStr);
3738       V = InlineAsm::get(FnTy, AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
3739                          InlineAsm::AsmDialect(AsmDialect), CanThrow);
3740       break;
3741     }
3742     case bitc::CST_CODE_BLOCKADDRESS:{
3743       if (Record.size() < 3)
3744         return error("Invalid blockaddress record");
3745       unsigned FnTyID = Record[0];
3746       Type *FnTy = getTypeByID(FnTyID);
3747       if (!FnTy)
3748         return error("Invalid blockaddress record");
3749       V = BitcodeConstant::create(
3750           Alloc, CurTy,
3751           {BitcodeConstant::BlockAddressOpcode, 0, (unsigned)Record[2]},
3752           Record[1]);
3753       break;
3754     }
3755     case bitc::CST_CODE_DSO_LOCAL_EQUIVALENT: {
3756       if (Record.size() < 2)
3757         return error("Invalid dso_local record");
3758       unsigned GVTyID = Record[0];
3759       Type *GVTy = getTypeByID(GVTyID);
3760       if (!GVTy)
3761         return error("Invalid dso_local record");
3762       V = BitcodeConstant::create(
3763           Alloc, CurTy, BitcodeConstant::DSOLocalEquivalentOpcode, Record[1]);
3764       break;
3765     }
3766     case bitc::CST_CODE_NO_CFI_VALUE: {
3767       if (Record.size() < 2)
3768         return error("Invalid no_cfi record");
3769       unsigned GVTyID = Record[0];
3770       Type *GVTy = getTypeByID(GVTyID);
3771       if (!GVTy)
3772         return error("Invalid no_cfi record");
3773       V = BitcodeConstant::create(Alloc, CurTy, BitcodeConstant::NoCFIOpcode,
3774                                   Record[1]);
3775       break;
3776     }
3777     case bitc::CST_CODE_PTRAUTH: {
3778       if (Record.size() < 4)
3779         return error("Invalid ptrauth record");
3780       // Ptr, Key, Disc, AddrDisc
3781       V = BitcodeConstant::create(Alloc, CurTy,
3782                                   BitcodeConstant::ConstantPtrAuthOpcode,
3783                                   {(unsigned)Record[0], (unsigned)Record[1],
3784                                    (unsigned)Record[2], (unsigned)Record[3]});
3785       break;
3786     }
3787     }
3788 
3789     assert(V->getType() == getTypeByID(CurTyID) && "Incorrect result type ID");
3790     if (Error Err = ValueList.assignValue(NextCstNo, V, CurTyID))
3791       return Err;
3792     ++NextCstNo;
3793   }
3794 }
3795 
3796 Error BitcodeReader::parseUseLists() {
3797   if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
3798     return Err;
3799 
3800   // Read all the records.
3801   SmallVector<uint64_t, 64> Record;
3802 
3803   while (true) {
3804     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
3805     if (!MaybeEntry)
3806       return MaybeEntry.takeError();
3807     BitstreamEntry Entry = MaybeEntry.get();
3808 
3809     switch (Entry.Kind) {
3810     case BitstreamEntry::SubBlock: // Handled for us already.
3811     case BitstreamEntry::Error:
3812       return error("Malformed block");
3813     case BitstreamEntry::EndBlock:
3814       return Error::success();
3815     case BitstreamEntry::Record:
3816       // The interesting case.
3817       break;
3818     }
3819 
3820     // Read a use list record.
3821     Record.clear();
3822     bool IsBB = false;
3823     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
3824     if (!MaybeRecord)
3825       return MaybeRecord.takeError();
3826     switch (MaybeRecord.get()) {
3827     default:  // Default behavior: unknown type.
3828       break;
3829     case bitc::USELIST_CODE_BB:
3830       IsBB = true;
3831       [[fallthrough]];
3832     case bitc::USELIST_CODE_DEFAULT: {
3833       unsigned RecordLength = Record.size();
3834       if (RecordLength < 3)
3835         // Records should have at least an ID and two indexes.
3836         return error("Invalid record");
3837       unsigned ID = Record.pop_back_val();
3838 
3839       Value *V;
3840       if (IsBB) {
3841         assert(ID < FunctionBBs.size() && "Basic block not found");
3842         V = FunctionBBs[ID];
3843       } else
3844         V = ValueList[ID];
3845       unsigned NumUses = 0;
3846       SmallDenseMap<const Use *, unsigned, 16> Order;
3847       for (const Use &U : V->materialized_uses()) {
3848         if (++NumUses > Record.size())
3849           break;
3850         Order[&U] = Record[NumUses - 1];
3851       }
3852       if (Order.size() != Record.size() || NumUses > Record.size())
3853         // Mismatches can happen if the functions are being materialized lazily
3854         // (out-of-order), or a value has been upgraded.
3855         break;
3856 
3857       V->sortUseList([&](const Use &L, const Use &R) {
3858         return Order.lookup(&L) < Order.lookup(&R);
3859       });
3860       break;
3861     }
3862     }
3863   }
3864 }
3865 
3866 /// When we see the block for metadata, remember where it is and then skip it.
3867 /// This lets us lazily deserialize the metadata.
3868 Error BitcodeReader::rememberAndSkipMetadata() {
3869   // Save the current stream state.
3870   uint64_t CurBit = Stream.GetCurrentBitNo();
3871   DeferredMetadataInfo.push_back(CurBit);
3872 
3873   // Skip over the block for now.
3874   if (Error Err = Stream.SkipBlock())
3875     return Err;
3876   return Error::success();
3877 }
3878 
3879 Error BitcodeReader::materializeMetadata() {
3880   for (uint64_t BitPos : DeferredMetadataInfo) {
3881     // Move the bit stream to the saved position.
3882     if (Error JumpFailed = Stream.JumpToBit(BitPos))
3883       return JumpFailed;
3884     if (Error Err = MDLoader->parseModuleMetadata())
3885       return Err;
3886   }
3887 
3888   // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level
3889   // metadata. Only upgrade if the new option doesn't exist to avoid upgrade
3890   // multiple times.
3891   if (!TheModule->getNamedMetadata("llvm.linker.options")) {
3892     if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) {
3893       NamedMDNode *LinkerOpts =
3894           TheModule->getOrInsertNamedMetadata("llvm.linker.options");
3895       for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands())
3896         LinkerOpts->addOperand(cast<MDNode>(MDOptions));
3897     }
3898   }
3899 
3900   DeferredMetadataInfo.clear();
3901   return Error::success();
3902 }
3903 
3904 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
3905 
3906 /// When we see the block for a function body, remember where it is and then
3907 /// skip it.  This lets us lazily deserialize the functions.
3908 Error BitcodeReader::rememberAndSkipFunctionBody() {
3909   // Get the function we are talking about.
3910   if (FunctionsWithBodies.empty())
3911     return error("Insufficient function protos");
3912 
3913   Function *Fn = FunctionsWithBodies.back();
3914   FunctionsWithBodies.pop_back();
3915 
3916   // Save the current stream state.
3917   uint64_t CurBit = Stream.GetCurrentBitNo();
3918   assert(
3919       (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) &&
3920       "Mismatch between VST and scanned function offsets");
3921   DeferredFunctionInfo[Fn] = CurBit;
3922 
3923   // Skip over the function block for now.
3924   if (Error Err = Stream.SkipBlock())
3925     return Err;
3926   return Error::success();
3927 }
3928 
3929 Error BitcodeReader::globalCleanup() {
3930   // Patch the initializers for globals and aliases up.
3931   if (Error Err = resolveGlobalAndIndirectSymbolInits())
3932     return Err;
3933   if (!GlobalInits.empty() || !IndirectSymbolInits.empty())
3934     return error("Malformed global initializer set");
3935 
3936   // Look for intrinsic functions which need to be upgraded at some point
3937   // and functions that need to have their function attributes upgraded.
3938   for (Function &F : *TheModule) {
3939     MDLoader->upgradeDebugIntrinsics(F);
3940     Function *NewFn;
3941     // If PreserveInputDbgFormat=true, then we don't know whether we want
3942     // intrinsics or records, and we won't perform any conversions in either
3943     // case, so don't upgrade intrinsics to records.
3944     if (UpgradeIntrinsicFunction(
3945             &F, NewFn, PreserveInputDbgFormat != cl::boolOrDefault::BOU_TRUE))
3946       UpgradedIntrinsics[&F] = NewFn;
3947     // Look for functions that rely on old function attribute behavior.
3948     UpgradeFunctionAttributes(F);
3949   }
3950 
3951   // Look for global variables which need to be renamed.
3952   std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables;
3953   for (GlobalVariable &GV : TheModule->globals())
3954     if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV))
3955       UpgradedVariables.emplace_back(&GV, Upgraded);
3956   for (auto &Pair : UpgradedVariables) {
3957     Pair.first->eraseFromParent();
3958     TheModule->insertGlobalVariable(Pair.second);
3959   }
3960 
3961   // Force deallocation of memory for these vectors to favor the client that
3962   // want lazy deserialization.
3963   std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits);
3964   std::vector<std::pair<GlobalValue *, unsigned>>().swap(IndirectSymbolInits);
3965   return Error::success();
3966 }
3967 
3968 /// Support for lazy parsing of function bodies. This is required if we
3969 /// either have an old bitcode file without a VST forward declaration record,
3970 /// or if we have an anonymous function being materialized, since anonymous
3971 /// functions do not have a name and are therefore not in the VST.
3972 Error BitcodeReader::rememberAndSkipFunctionBodies() {
3973   if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit))
3974     return JumpFailed;
3975 
3976   if (Stream.AtEndOfStream())
3977     return error("Could not find function in stream");
3978 
3979   if (!SeenFirstFunctionBody)
3980     return error("Trying to materialize functions before seeing function blocks");
3981 
3982   // An old bitcode file with the symbol table at the end would have
3983   // finished the parse greedily.
3984   assert(SeenValueSymbolTable);
3985 
3986   SmallVector<uint64_t, 64> Record;
3987 
3988   while (true) {
3989     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3990     if (!MaybeEntry)
3991       return MaybeEntry.takeError();
3992     llvm::BitstreamEntry Entry = MaybeEntry.get();
3993 
3994     switch (Entry.Kind) {
3995     default:
3996       return error("Expect SubBlock");
3997     case BitstreamEntry::SubBlock:
3998       switch (Entry.ID) {
3999       default:
4000         return error("Expect function block");
4001       case bitc::FUNCTION_BLOCK_ID:
4002         if (Error Err = rememberAndSkipFunctionBody())
4003           return Err;
4004         NextUnreadBit = Stream.GetCurrentBitNo();
4005         return Error::success();
4006       }
4007     }
4008   }
4009 }
4010 
4011 Error BitcodeReaderBase::readBlockInfo() {
4012   Expected<std::optional<BitstreamBlockInfo>> MaybeNewBlockInfo =
4013       Stream.ReadBlockInfoBlock();
4014   if (!MaybeNewBlockInfo)
4015     return MaybeNewBlockInfo.takeError();
4016   std::optional<BitstreamBlockInfo> NewBlockInfo =
4017       std::move(MaybeNewBlockInfo.get());
4018   if (!NewBlockInfo)
4019     return error("Malformed block");
4020   BlockInfo = std::move(*NewBlockInfo);
4021   return Error::success();
4022 }
4023 
4024 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) {
4025   // v1: [selection_kind, name]
4026   // v2: [strtab_offset, strtab_size, selection_kind]
4027   StringRef Name;
4028   std::tie(Name, Record) = readNameFromStrtab(Record);
4029 
4030   if (Record.empty())
4031     return error("Invalid record");
4032   Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
4033   std::string OldFormatName;
4034   if (!UseStrtab) {
4035     if (Record.size() < 2)
4036       return error("Invalid record");
4037     unsigned ComdatNameSize = Record[1];
4038     if (ComdatNameSize > Record.size() - 2)
4039       return error("Comdat name size too large");
4040     OldFormatName.reserve(ComdatNameSize);
4041     for (unsigned i = 0; i != ComdatNameSize; ++i)
4042       OldFormatName += (char)Record[2 + i];
4043     Name = OldFormatName;
4044   }
4045   Comdat *C = TheModule->getOrInsertComdat(Name);
4046   C->setSelectionKind(SK);
4047   ComdatList.push_back(C);
4048   return Error::success();
4049 }
4050 
4051 static void inferDSOLocal(GlobalValue *GV) {
4052   // infer dso_local from linkage and visibility if it is not encoded.
4053   if (GV->hasLocalLinkage() ||
4054       (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()))
4055     GV->setDSOLocal(true);
4056 }
4057 
4058 GlobalValue::SanitizerMetadata deserializeSanitizerMetadata(unsigned V) {
4059   GlobalValue::SanitizerMetadata Meta;
4060   if (V & (1 << 0))
4061     Meta.NoAddress = true;
4062   if (V & (1 << 1))
4063     Meta.NoHWAddress = true;
4064   if (V & (1 << 2))
4065     Meta.Memtag = true;
4066   if (V & (1 << 3))
4067     Meta.IsDynInit = true;
4068   return Meta;
4069 }
4070 
4071 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) {
4072   // v1: [pointer type, isconst, initid, linkage, alignment, section,
4073   // visibility, threadlocal, unnamed_addr, externally_initialized,
4074   // dllstorageclass, comdat, attributes, preemption specifier,
4075   // partition strtab offset, partition strtab size] (name in VST)
4076   // v2: [strtab_offset, strtab_size, v1]
4077   // v3: [v2, code_model]
4078   StringRef Name;
4079   std::tie(Name, Record) = readNameFromStrtab(Record);
4080 
4081   if (Record.size() < 6)
4082     return error("Invalid record");
4083   unsigned TyID = Record[0];
4084   Type *Ty = getTypeByID(TyID);
4085   if (!Ty)
4086     return error("Invalid record");
4087   bool isConstant = Record[1] & 1;
4088   bool explicitType = Record[1] & 2;
4089   unsigned AddressSpace;
4090   if (explicitType) {
4091     AddressSpace = Record[1] >> 2;
4092   } else {
4093     if (!Ty->isPointerTy())
4094       return error("Invalid type for value");
4095     AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
4096     TyID = getContainedTypeID(TyID);
4097     Ty = getTypeByID(TyID);
4098     if (!Ty)
4099       return error("Missing element type for old-style global");
4100   }
4101 
4102   uint64_t RawLinkage = Record[3];
4103   GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
4104   MaybeAlign Alignment;
4105   if (Error Err = parseAlignmentValue(Record[4], Alignment))
4106     return Err;
4107   std::string Section;
4108   if (Record[5]) {
4109     if (Record[5] - 1 >= SectionTable.size())
4110       return error("Invalid ID");
4111     Section = SectionTable[Record[5] - 1];
4112   }
4113   GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
4114   // Local linkage must have default visibility.
4115   // auto-upgrade `hidden` and `protected` for old bitcode.
4116   if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
4117     Visibility = getDecodedVisibility(Record[6]);
4118 
4119   GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
4120   if (Record.size() > 7)
4121     TLM = getDecodedThreadLocalMode(Record[7]);
4122 
4123   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
4124   if (Record.size() > 8)
4125     UnnamedAddr = getDecodedUnnamedAddrType(Record[8]);
4126 
4127   bool ExternallyInitialized = false;
4128   if (Record.size() > 9)
4129     ExternallyInitialized = Record[9];
4130 
4131   GlobalVariable *NewGV =
4132       new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name,
4133                          nullptr, TLM, AddressSpace, ExternallyInitialized);
4134   if (Alignment)
4135     NewGV->setAlignment(*Alignment);
4136   if (!Section.empty())
4137     NewGV->setSection(Section);
4138   NewGV->setVisibility(Visibility);
4139   NewGV->setUnnamedAddr(UnnamedAddr);
4140 
4141   if (Record.size() > 10) {
4142     // A GlobalValue with local linkage cannot have a DLL storage class.
4143     if (!NewGV->hasLocalLinkage()) {
4144       NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10]));
4145     }
4146   } else {
4147     upgradeDLLImportExportLinkage(NewGV, RawLinkage);
4148   }
4149 
4150   ValueList.push_back(NewGV, getVirtualTypeID(NewGV->getType(), TyID));
4151 
4152   // Remember which value to use for the global initializer.
4153   if (unsigned InitID = Record[2])
4154     GlobalInits.push_back(std::make_pair(NewGV, InitID - 1));
4155 
4156   if (Record.size() > 11) {
4157     if (unsigned ComdatID = Record[11]) {
4158       if (ComdatID > ComdatList.size())
4159         return error("Invalid global variable comdat ID");
4160       NewGV->setComdat(ComdatList[ComdatID - 1]);
4161     }
4162   } else if (hasImplicitComdat(RawLinkage)) {
4163     ImplicitComdatObjects.insert(NewGV);
4164   }
4165 
4166   if (Record.size() > 12) {
4167     auto AS = getAttributes(Record[12]).getFnAttrs();
4168     NewGV->setAttributes(AS);
4169   }
4170 
4171   if (Record.size() > 13) {
4172     NewGV->setDSOLocal(getDecodedDSOLocal(Record[13]));
4173   }
4174   inferDSOLocal(NewGV);
4175 
4176   // Check whether we have enough values to read a partition name.
4177   if (Record.size() > 15)
4178     NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15]));
4179 
4180   if (Record.size() > 16 && Record[16]) {
4181     llvm::GlobalValue::SanitizerMetadata Meta =
4182         deserializeSanitizerMetadata(Record[16]);
4183     NewGV->setSanitizerMetadata(Meta);
4184   }
4185 
4186   if (Record.size() > 17 && Record[17]) {
4187     if (auto CM = getDecodedCodeModel(Record[17]))
4188       NewGV->setCodeModel(*CM);
4189     else
4190       return error("Invalid global variable code model");
4191   }
4192 
4193   return Error::success();
4194 }
4195 
4196 void BitcodeReader::callValueTypeCallback(Value *F, unsigned TypeID) {
4197   if (ValueTypeCallback) {
4198     (*ValueTypeCallback)(
4199         F, TypeID, [this](unsigned I) { return getTypeByID(I); },
4200         [this](unsigned I, unsigned J) { return getContainedTypeID(I, J); });
4201   }
4202 }
4203 
4204 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) {
4205   // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section,
4206   // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat,
4207   // prefixdata,  personalityfn, preemption specifier, addrspace] (name in VST)
4208   // v2: [strtab_offset, strtab_size, v1]
4209   StringRef Name;
4210   std::tie(Name, Record) = readNameFromStrtab(Record);
4211 
4212   if (Record.size() < 8)
4213     return error("Invalid record");
4214   unsigned FTyID = Record[0];
4215   Type *FTy = getTypeByID(FTyID);
4216   if (!FTy)
4217     return error("Invalid record");
4218   if (isa<PointerType>(FTy)) {
4219     FTyID = getContainedTypeID(FTyID, 0);
4220     FTy = getTypeByID(FTyID);
4221     if (!FTy)
4222       return error("Missing element type for old-style function");
4223   }
4224 
4225   if (!isa<FunctionType>(FTy))
4226     return error("Invalid type for value");
4227   auto CC = static_cast<CallingConv::ID>(Record[1]);
4228   if (CC & ~CallingConv::MaxID)
4229     return error("Invalid calling convention ID");
4230 
4231   unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace();
4232   if (Record.size() > 16)
4233     AddrSpace = Record[16];
4234 
4235   Function *Func =
4236       Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage,
4237                        AddrSpace, Name, TheModule);
4238 
4239   assert(Func->getFunctionType() == FTy &&
4240          "Incorrect fully specified type provided for function");
4241   FunctionTypeIDs[Func] = FTyID;
4242 
4243   Func->setCallingConv(CC);
4244   bool isProto = Record[2];
4245   uint64_t RawLinkage = Record[3];
4246   Func->setLinkage(getDecodedLinkage(RawLinkage));
4247   Func->setAttributes(getAttributes(Record[4]));
4248   callValueTypeCallback(Func, FTyID);
4249 
4250   // Upgrade any old-style byval or sret without a type by propagating the
4251   // argument's pointee type. There should be no opaque pointers where the byval
4252   // type is implicit.
4253   for (unsigned i = 0; i != Func->arg_size(); ++i) {
4254     for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet,
4255                                      Attribute::InAlloca}) {
4256       if (!Func->hasParamAttribute(i, Kind))
4257         continue;
4258 
4259       if (Func->getParamAttribute(i, Kind).getValueAsType())
4260         continue;
4261 
4262       Func->removeParamAttr(i, Kind);
4263 
4264       unsigned ParamTypeID = getContainedTypeID(FTyID, i + 1);
4265       Type *PtrEltTy = getPtrElementTypeByID(ParamTypeID);
4266       if (!PtrEltTy)
4267         return error("Missing param element type for attribute upgrade");
4268 
4269       Attribute NewAttr;
4270       switch (Kind) {
4271       case Attribute::ByVal:
4272         NewAttr = Attribute::getWithByValType(Context, PtrEltTy);
4273         break;
4274       case Attribute::StructRet:
4275         NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy);
4276         break;
4277       case Attribute::InAlloca:
4278         NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy);
4279         break;
4280       default:
4281         llvm_unreachable("not an upgraded type attribute");
4282       }
4283 
4284       Func->addParamAttr(i, NewAttr);
4285     }
4286   }
4287 
4288   if (Func->getCallingConv() == CallingConv::X86_INTR &&
4289       !Func->arg_empty() && !Func->hasParamAttribute(0, Attribute::ByVal)) {
4290     unsigned ParamTypeID = getContainedTypeID(FTyID, 1);
4291     Type *ByValTy = getPtrElementTypeByID(ParamTypeID);
4292     if (!ByValTy)
4293       return error("Missing param element type for x86_intrcc upgrade");
4294     Attribute NewAttr = Attribute::getWithByValType(Context, ByValTy);
4295     Func->addParamAttr(0, NewAttr);
4296   }
4297 
4298   MaybeAlign Alignment;
4299   if (Error Err = parseAlignmentValue(Record[5], Alignment))
4300     return Err;
4301   if (Alignment)
4302     Func->setAlignment(*Alignment);
4303   if (Record[6]) {
4304     if (Record[6] - 1 >= SectionTable.size())
4305       return error("Invalid ID");
4306     Func->setSection(SectionTable[Record[6] - 1]);
4307   }
4308   // Local linkage must have default visibility.
4309   // auto-upgrade `hidden` and `protected` for old bitcode.
4310   if (!Func->hasLocalLinkage())
4311     Func->setVisibility(getDecodedVisibility(Record[7]));
4312   if (Record.size() > 8 && Record[8]) {
4313     if (Record[8] - 1 >= GCTable.size())
4314       return error("Invalid ID");
4315     Func->setGC(GCTable[Record[8] - 1]);
4316   }
4317   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
4318   if (Record.size() > 9)
4319     UnnamedAddr = getDecodedUnnamedAddrType(Record[9]);
4320   Func->setUnnamedAddr(UnnamedAddr);
4321 
4322   FunctionOperandInfo OperandInfo = {Func, 0, 0, 0};
4323   if (Record.size() > 10)
4324     OperandInfo.Prologue = Record[10];
4325 
4326   if (Record.size() > 11) {
4327     // A GlobalValue with local linkage cannot have a DLL storage class.
4328     if (!Func->hasLocalLinkage()) {
4329       Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11]));
4330     }
4331   } else {
4332     upgradeDLLImportExportLinkage(Func, RawLinkage);
4333   }
4334 
4335   if (Record.size() > 12) {
4336     if (unsigned ComdatID = Record[12]) {
4337       if (ComdatID > ComdatList.size())
4338         return error("Invalid function comdat ID");
4339       Func->setComdat(ComdatList[ComdatID - 1]);
4340     }
4341   } else if (hasImplicitComdat(RawLinkage)) {
4342     ImplicitComdatObjects.insert(Func);
4343   }
4344 
4345   if (Record.size() > 13)
4346     OperandInfo.Prefix = Record[13];
4347 
4348   if (Record.size() > 14)
4349     OperandInfo.PersonalityFn = Record[14];
4350 
4351   if (Record.size() > 15) {
4352     Func->setDSOLocal(getDecodedDSOLocal(Record[15]));
4353   }
4354   inferDSOLocal(Func);
4355 
4356   // Record[16] is the address space number.
4357 
4358   // Check whether we have enough values to read a partition name. Also make
4359   // sure Strtab has enough values.
4360   if (Record.size() > 18 && Strtab.data() &&
4361       Record[17] + Record[18] <= Strtab.size()) {
4362     Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18]));
4363   }
4364 
4365   ValueList.push_back(Func, getVirtualTypeID(Func->getType(), FTyID));
4366 
4367   if (OperandInfo.PersonalityFn || OperandInfo.Prefix || OperandInfo.Prologue)
4368     FunctionOperands.push_back(OperandInfo);
4369 
4370   // If this is a function with a body, remember the prototype we are
4371   // creating now, so that we can match up the body with them later.
4372   if (!isProto) {
4373     Func->setIsMaterializable(true);
4374     FunctionsWithBodies.push_back(Func);
4375     DeferredFunctionInfo[Func] = 0;
4376   }
4377   return Error::success();
4378 }
4379 
4380 Error BitcodeReader::parseGlobalIndirectSymbolRecord(
4381     unsigned BitCode, ArrayRef<uint64_t> Record) {
4382   // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST)
4383   // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility,
4384   // dllstorageclass, threadlocal, unnamed_addr,
4385   // preemption specifier] (name in VST)
4386   // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage,
4387   // visibility, dllstorageclass, threadlocal, unnamed_addr,
4388   // preemption specifier] (name in VST)
4389   // v2: [strtab_offset, strtab_size, v1]
4390   StringRef Name;
4391   std::tie(Name, Record) = readNameFromStrtab(Record);
4392 
4393   bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD;
4394   if (Record.size() < (3 + (unsigned)NewRecord))
4395     return error("Invalid record");
4396   unsigned OpNum = 0;
4397   unsigned TypeID = Record[OpNum++];
4398   Type *Ty = getTypeByID(TypeID);
4399   if (!Ty)
4400     return error("Invalid record");
4401 
4402   unsigned AddrSpace;
4403   if (!NewRecord) {
4404     auto *PTy = dyn_cast<PointerType>(Ty);
4405     if (!PTy)
4406       return error("Invalid type for value");
4407     AddrSpace = PTy->getAddressSpace();
4408     TypeID = getContainedTypeID(TypeID);
4409     Ty = getTypeByID(TypeID);
4410     if (!Ty)
4411       return error("Missing element type for old-style indirect symbol");
4412   } else {
4413     AddrSpace = Record[OpNum++];
4414   }
4415 
4416   auto Val = Record[OpNum++];
4417   auto Linkage = Record[OpNum++];
4418   GlobalValue *NewGA;
4419   if (BitCode == bitc::MODULE_CODE_ALIAS ||
4420       BitCode == bitc::MODULE_CODE_ALIAS_OLD)
4421     NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
4422                                 TheModule);
4423   else
4424     NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
4425                                 nullptr, TheModule);
4426 
4427   // Local linkage must have default visibility.
4428   // auto-upgrade `hidden` and `protected` for old bitcode.
4429   if (OpNum != Record.size()) {
4430     auto VisInd = OpNum++;
4431     if (!NewGA->hasLocalLinkage())
4432       NewGA->setVisibility(getDecodedVisibility(Record[VisInd]));
4433   }
4434   if (BitCode == bitc::MODULE_CODE_ALIAS ||
4435       BitCode == bitc::MODULE_CODE_ALIAS_OLD) {
4436     if (OpNum != Record.size()) {
4437       auto S = Record[OpNum++];
4438       // A GlobalValue with local linkage cannot have a DLL storage class.
4439       if (!NewGA->hasLocalLinkage())
4440         NewGA->setDLLStorageClass(getDecodedDLLStorageClass(S));
4441     }
4442     else
4443       upgradeDLLImportExportLinkage(NewGA, Linkage);
4444     if (OpNum != Record.size())
4445       NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++]));
4446     if (OpNum != Record.size())
4447       NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++]));
4448   }
4449   if (OpNum != Record.size())
4450     NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++]));
4451   inferDSOLocal(NewGA);
4452 
4453   // Check whether we have enough values to read a partition name.
4454   if (OpNum + 1 < Record.size()) {
4455     // Check Strtab has enough values for the partition.
4456     if (Record[OpNum] + Record[OpNum + 1] > Strtab.size())
4457       return error("Malformed partition, too large.");
4458     NewGA->setPartition(
4459         StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1]));
4460   }
4461 
4462   ValueList.push_back(NewGA, getVirtualTypeID(NewGA->getType(), TypeID));
4463   IndirectSymbolInits.push_back(std::make_pair(NewGA, Val));
4464   return Error::success();
4465 }
4466 
4467 Error BitcodeReader::parseModule(uint64_t ResumeBit,
4468                                  bool ShouldLazyLoadMetadata,
4469                                  ParserCallbacks Callbacks) {
4470   // Load directly into RemoveDIs format if LoadBitcodeIntoNewDbgInfoFormat
4471   // has been set to true and we aren't attempting to preserve the existing
4472   // format in the bitcode (default action: load into the old debug format).
4473   if (PreserveInputDbgFormat != cl::boolOrDefault::BOU_TRUE) {
4474     TheModule->IsNewDbgInfoFormat =
4475         UseNewDbgInfoFormat &&
4476         LoadBitcodeIntoNewDbgInfoFormat != cl::boolOrDefault::BOU_FALSE;
4477   }
4478 
4479   this->ValueTypeCallback = std::move(Callbacks.ValueType);
4480   if (ResumeBit) {
4481     if (Error JumpFailed = Stream.JumpToBit(ResumeBit))
4482       return JumpFailed;
4483   } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
4484     return Err;
4485 
4486   SmallVector<uint64_t, 64> Record;
4487 
4488   // Parts of bitcode parsing depend on the datalayout.  Make sure we
4489   // finalize the datalayout before we run any of that code.
4490   bool ResolvedDataLayout = false;
4491   // In order to support importing modules with illegal data layout strings,
4492   // delay parsing the data layout string until after upgrades and overrides
4493   // have been applied, allowing to fix illegal data layout strings.
4494   // Initialize to the current module's layout string in case none is specified.
4495   std::string TentativeDataLayoutStr = TheModule->getDataLayoutStr();
4496 
4497   auto ResolveDataLayout = [&]() -> Error {
4498     if (ResolvedDataLayout)
4499       return Error::success();
4500 
4501     // Datalayout and triple can't be parsed after this point.
4502     ResolvedDataLayout = true;
4503 
4504     // Auto-upgrade the layout string
4505     TentativeDataLayoutStr = llvm::UpgradeDataLayoutString(
4506         TentativeDataLayoutStr, TheModule->getTargetTriple());
4507 
4508     // Apply override
4509     if (Callbacks.DataLayout) {
4510       if (auto LayoutOverride = (*Callbacks.DataLayout)(
4511               TheModule->getTargetTriple(), TentativeDataLayoutStr))
4512         TentativeDataLayoutStr = *LayoutOverride;
4513     }
4514 
4515     // Now the layout string is finalized in TentativeDataLayoutStr. Parse it.
4516     Expected<DataLayout> MaybeDL = DataLayout::parse(TentativeDataLayoutStr);
4517     if (!MaybeDL)
4518       return MaybeDL.takeError();
4519 
4520     TheModule->setDataLayout(MaybeDL.get());
4521     return Error::success();
4522   };
4523 
4524   // Read all the records for this module.
4525   while (true) {
4526     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
4527     if (!MaybeEntry)
4528       return MaybeEntry.takeError();
4529     llvm::BitstreamEntry Entry = MaybeEntry.get();
4530 
4531     switch (Entry.Kind) {
4532     case BitstreamEntry::Error:
4533       return error("Malformed block");
4534     case BitstreamEntry::EndBlock:
4535       if (Error Err = ResolveDataLayout())
4536         return Err;
4537       return globalCleanup();
4538 
4539     case BitstreamEntry::SubBlock:
4540       switch (Entry.ID) {
4541       default:  // Skip unknown content.
4542         if (Error Err = Stream.SkipBlock())
4543           return Err;
4544         break;
4545       case bitc::BLOCKINFO_BLOCK_ID:
4546         if (Error Err = readBlockInfo())
4547           return Err;
4548         break;
4549       case bitc::PARAMATTR_BLOCK_ID:
4550         if (Error Err = parseAttributeBlock())
4551           return Err;
4552         break;
4553       case bitc::PARAMATTR_GROUP_BLOCK_ID:
4554         if (Error Err = parseAttributeGroupBlock())
4555           return Err;
4556         break;
4557       case bitc::TYPE_BLOCK_ID_NEW:
4558         if (Error Err = parseTypeTable())
4559           return Err;
4560         break;
4561       case bitc::VALUE_SYMTAB_BLOCK_ID:
4562         if (!SeenValueSymbolTable) {
4563           // Either this is an old form VST without function index and an
4564           // associated VST forward declaration record (which would have caused
4565           // the VST to be jumped to and parsed before it was encountered
4566           // normally in the stream), or there were no function blocks to
4567           // trigger an earlier parsing of the VST.
4568           assert(VSTOffset == 0 || FunctionsWithBodies.empty());
4569           if (Error Err = parseValueSymbolTable())
4570             return Err;
4571           SeenValueSymbolTable = true;
4572         } else {
4573           // We must have had a VST forward declaration record, which caused
4574           // the parser to jump to and parse the VST earlier.
4575           assert(VSTOffset > 0);
4576           if (Error Err = Stream.SkipBlock())
4577             return Err;
4578         }
4579         break;
4580       case bitc::CONSTANTS_BLOCK_ID:
4581         if (Error Err = parseConstants())
4582           return Err;
4583         if (Error Err = resolveGlobalAndIndirectSymbolInits())
4584           return Err;
4585         break;
4586       case bitc::METADATA_BLOCK_ID:
4587         if (ShouldLazyLoadMetadata) {
4588           if (Error Err = rememberAndSkipMetadata())
4589             return Err;
4590           break;
4591         }
4592         assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata");
4593         if (Error Err = MDLoader->parseModuleMetadata())
4594           return Err;
4595         break;
4596       case bitc::METADATA_KIND_BLOCK_ID:
4597         if (Error Err = MDLoader->parseMetadataKinds())
4598           return Err;
4599         break;
4600       case bitc::FUNCTION_BLOCK_ID:
4601         if (Error Err = ResolveDataLayout())
4602           return Err;
4603 
4604         // If this is the first function body we've seen, reverse the
4605         // FunctionsWithBodies list.
4606         if (!SeenFirstFunctionBody) {
4607           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
4608           if (Error Err = globalCleanup())
4609             return Err;
4610           SeenFirstFunctionBody = true;
4611         }
4612 
4613         if (VSTOffset > 0) {
4614           // If we have a VST forward declaration record, make sure we
4615           // parse the VST now if we haven't already. It is needed to
4616           // set up the DeferredFunctionInfo vector for lazy reading.
4617           if (!SeenValueSymbolTable) {
4618             if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset))
4619               return Err;
4620             SeenValueSymbolTable = true;
4621             // Fall through so that we record the NextUnreadBit below.
4622             // This is necessary in case we have an anonymous function that
4623             // is later materialized. Since it will not have a VST entry we
4624             // need to fall back to the lazy parse to find its offset.
4625           } else {
4626             // If we have a VST forward declaration record, but have already
4627             // parsed the VST (just above, when the first function body was
4628             // encountered here), then we are resuming the parse after
4629             // materializing functions. The ResumeBit points to the
4630             // start of the last function block recorded in the
4631             // DeferredFunctionInfo map. Skip it.
4632             if (Error Err = Stream.SkipBlock())
4633               return Err;
4634             continue;
4635           }
4636         }
4637 
4638         // Support older bitcode files that did not have the function
4639         // index in the VST, nor a VST forward declaration record, as
4640         // well as anonymous functions that do not have VST entries.
4641         // Build the DeferredFunctionInfo vector on the fly.
4642         if (Error Err = rememberAndSkipFunctionBody())
4643           return Err;
4644 
4645         // Suspend parsing when we reach the function bodies. Subsequent
4646         // materialization calls will resume it when necessary. If the bitcode
4647         // file is old, the symbol table will be at the end instead and will not
4648         // have been seen yet. In this case, just finish the parse now.
4649         if (SeenValueSymbolTable) {
4650           NextUnreadBit = Stream.GetCurrentBitNo();
4651           // After the VST has been parsed, we need to make sure intrinsic name
4652           // are auto-upgraded.
4653           return globalCleanup();
4654         }
4655         break;
4656       case bitc::USELIST_BLOCK_ID:
4657         if (Error Err = parseUseLists())
4658           return Err;
4659         break;
4660       case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID:
4661         if (Error Err = parseOperandBundleTags())
4662           return Err;
4663         break;
4664       case bitc::SYNC_SCOPE_NAMES_BLOCK_ID:
4665         if (Error Err = parseSyncScopeNames())
4666           return Err;
4667         break;
4668       }
4669       continue;
4670 
4671     case BitstreamEntry::Record:
4672       // The interesting case.
4673       break;
4674     }
4675 
4676     // Read a record.
4677     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
4678     if (!MaybeBitCode)
4679       return MaybeBitCode.takeError();
4680     switch (unsigned BitCode = MaybeBitCode.get()) {
4681     default: break;  // Default behavior, ignore unknown content.
4682     case bitc::MODULE_CODE_VERSION: {
4683       Expected<unsigned> VersionOrErr = parseVersionRecord(Record);
4684       if (!VersionOrErr)
4685         return VersionOrErr.takeError();
4686       UseRelativeIDs = *VersionOrErr >= 1;
4687       break;
4688     }
4689     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
4690       if (ResolvedDataLayout)
4691         return error("target triple too late in module");
4692       std::string S;
4693       if (convertToString(Record, 0, S))
4694         return error("Invalid record");
4695       TheModule->setTargetTriple(S);
4696       break;
4697     }
4698     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
4699       if (ResolvedDataLayout)
4700         return error("datalayout too late in module");
4701       if (convertToString(Record, 0, TentativeDataLayoutStr))
4702         return error("Invalid record");
4703       break;
4704     }
4705     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
4706       std::string S;
4707       if (convertToString(Record, 0, S))
4708         return error("Invalid record");
4709       TheModule->setModuleInlineAsm(S);
4710       break;
4711     }
4712     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
4713       // Deprecated, but still needed to read old bitcode files.
4714       std::string S;
4715       if (convertToString(Record, 0, S))
4716         return error("Invalid record");
4717       // Ignore value.
4718       break;
4719     }
4720     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
4721       std::string S;
4722       if (convertToString(Record, 0, S))
4723         return error("Invalid record");
4724       SectionTable.push_back(S);
4725       break;
4726     }
4727     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
4728       std::string S;
4729       if (convertToString(Record, 0, S))
4730         return error("Invalid record");
4731       GCTable.push_back(S);
4732       break;
4733     }
4734     case bitc::MODULE_CODE_COMDAT:
4735       if (Error Err = parseComdatRecord(Record))
4736         return Err;
4737       break;
4738     // FIXME: BitcodeReader should handle {GLOBALVAR, FUNCTION, ALIAS, IFUNC}
4739     // written by ThinLinkBitcodeWriter. See
4740     // `ThinLinkBitcodeWriter::writeSimplifiedModuleInfo` for the format of each
4741     // record
4742     // (https://github.com/llvm/llvm-project/blob/b6a93967d9c11e79802b5e75cec1584d6c8aa472/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp#L4714)
4743     case bitc::MODULE_CODE_GLOBALVAR:
4744       if (Error Err = parseGlobalVarRecord(Record))
4745         return Err;
4746       break;
4747     case bitc::MODULE_CODE_FUNCTION:
4748       if (Error Err = ResolveDataLayout())
4749         return Err;
4750       if (Error Err = parseFunctionRecord(Record))
4751         return Err;
4752       break;
4753     case bitc::MODULE_CODE_IFUNC:
4754     case bitc::MODULE_CODE_ALIAS:
4755     case bitc::MODULE_CODE_ALIAS_OLD:
4756       if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record))
4757         return Err;
4758       break;
4759     /// MODULE_CODE_VSTOFFSET: [offset]
4760     case bitc::MODULE_CODE_VSTOFFSET:
4761       if (Record.empty())
4762         return error("Invalid record");
4763       // Note that we subtract 1 here because the offset is relative to one word
4764       // before the start of the identification or module block, which was
4765       // historically always the start of the regular bitcode header.
4766       VSTOffset = Record[0] - 1;
4767       break;
4768     /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
4769     case bitc::MODULE_CODE_SOURCE_FILENAME:
4770       SmallString<128> ValueName;
4771       if (convertToString(Record, 0, ValueName))
4772         return error("Invalid record");
4773       TheModule->setSourceFileName(ValueName);
4774       break;
4775     }
4776     Record.clear();
4777   }
4778   this->ValueTypeCallback = std::nullopt;
4779   return Error::success();
4780 }
4781 
4782 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
4783                                       bool IsImporting,
4784                                       ParserCallbacks Callbacks) {
4785   TheModule = M;
4786   MetadataLoaderCallbacks MDCallbacks;
4787   MDCallbacks.GetTypeByID = [&](unsigned ID) { return getTypeByID(ID); };
4788   MDCallbacks.GetContainedTypeID = [&](unsigned I, unsigned J) {
4789     return getContainedTypeID(I, J);
4790   };
4791   MDCallbacks.MDType = Callbacks.MDType;
4792   MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, MDCallbacks);
4793   return parseModule(0, ShouldLazyLoadMetadata, Callbacks);
4794 }
4795 
4796 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) {
4797   if (!isa<PointerType>(PtrType))
4798     return error("Load/Store operand is not a pointer type");
4799   if (!PointerType::isLoadableOrStorableType(ValType))
4800     return error("Cannot load/store from pointer");
4801   return Error::success();
4802 }
4803 
4804 Error BitcodeReader::propagateAttributeTypes(CallBase *CB,
4805                                              ArrayRef<unsigned> ArgTyIDs) {
4806   AttributeList Attrs = CB->getAttributes();
4807   for (unsigned i = 0; i != CB->arg_size(); ++i) {
4808     for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet,
4809                                      Attribute::InAlloca}) {
4810       if (!Attrs.hasParamAttr(i, Kind) ||
4811           Attrs.getParamAttr(i, Kind).getValueAsType())
4812         continue;
4813 
4814       Type *PtrEltTy = getPtrElementTypeByID(ArgTyIDs[i]);
4815       if (!PtrEltTy)
4816         return error("Missing element type for typed attribute upgrade");
4817 
4818       Attribute NewAttr;
4819       switch (Kind) {
4820       case Attribute::ByVal:
4821         NewAttr = Attribute::getWithByValType(Context, PtrEltTy);
4822         break;
4823       case Attribute::StructRet:
4824         NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy);
4825         break;
4826       case Attribute::InAlloca:
4827         NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy);
4828         break;
4829       default:
4830         llvm_unreachable("not an upgraded type attribute");
4831       }
4832 
4833       Attrs = Attrs.addParamAttribute(Context, i, NewAttr);
4834     }
4835   }
4836 
4837   if (CB->isInlineAsm()) {
4838     const InlineAsm *IA = cast<InlineAsm>(CB->getCalledOperand());
4839     unsigned ArgNo = 0;
4840     for (const InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
4841       if (!CI.hasArg())
4842         continue;
4843 
4844       if (CI.isIndirect && !Attrs.getParamElementType(ArgNo)) {
4845         Type *ElemTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]);
4846         if (!ElemTy)
4847           return error("Missing element type for inline asm upgrade");
4848         Attrs = Attrs.addParamAttribute(
4849             Context, ArgNo,
4850             Attribute::get(Context, Attribute::ElementType, ElemTy));
4851       }
4852 
4853       ArgNo++;
4854     }
4855   }
4856 
4857   switch (CB->getIntrinsicID()) {
4858   case Intrinsic::preserve_array_access_index:
4859   case Intrinsic::preserve_struct_access_index:
4860   case Intrinsic::aarch64_ldaxr:
4861   case Intrinsic::aarch64_ldxr:
4862   case Intrinsic::aarch64_stlxr:
4863   case Intrinsic::aarch64_stxr:
4864   case Intrinsic::arm_ldaex:
4865   case Intrinsic::arm_ldrex:
4866   case Intrinsic::arm_stlex:
4867   case Intrinsic::arm_strex: {
4868     unsigned ArgNo;
4869     switch (CB->getIntrinsicID()) {
4870     case Intrinsic::aarch64_stlxr:
4871     case Intrinsic::aarch64_stxr:
4872     case Intrinsic::arm_stlex:
4873     case Intrinsic::arm_strex:
4874       ArgNo = 1;
4875       break;
4876     default:
4877       ArgNo = 0;
4878       break;
4879     }
4880     if (!Attrs.getParamElementType(ArgNo)) {
4881       Type *ElTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]);
4882       if (!ElTy)
4883         return error("Missing element type for elementtype upgrade");
4884       Attribute NewAttr = Attribute::get(Context, Attribute::ElementType, ElTy);
4885       Attrs = Attrs.addParamAttribute(Context, ArgNo, NewAttr);
4886     }
4887     break;
4888   }
4889   default:
4890     break;
4891   }
4892 
4893   CB->setAttributes(Attrs);
4894   return Error::success();
4895 }
4896 
4897 /// Lazily parse the specified function body block.
4898 Error BitcodeReader::parseFunctionBody(Function *F) {
4899   if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
4900     return Err;
4901 
4902   // Unexpected unresolved metadata when parsing function.
4903   if (MDLoader->hasFwdRefs())
4904     return error("Invalid function metadata: incoming forward references");
4905 
4906   InstructionList.clear();
4907   unsigned ModuleValueListSize = ValueList.size();
4908   unsigned ModuleMDLoaderSize = MDLoader->size();
4909 
4910   // Add all the function arguments to the value table.
4911   unsigned ArgNo = 0;
4912   unsigned FTyID = FunctionTypeIDs[F];
4913   for (Argument &I : F->args()) {
4914     unsigned ArgTyID = getContainedTypeID(FTyID, ArgNo + 1);
4915     assert(I.getType() == getTypeByID(ArgTyID) &&
4916            "Incorrect fully specified type for Function Argument");
4917     ValueList.push_back(&I, ArgTyID);
4918     ++ArgNo;
4919   }
4920   unsigned NextValueNo = ValueList.size();
4921   BasicBlock *CurBB = nullptr;
4922   unsigned CurBBNo = 0;
4923   // Block into which constant expressions from phi nodes are materialized.
4924   BasicBlock *PhiConstExprBB = nullptr;
4925   // Edge blocks for phi nodes into which constant expressions have been
4926   // expanded.
4927   SmallMapVector<std::pair<BasicBlock *, BasicBlock *>, BasicBlock *, 4>
4928     ConstExprEdgeBBs;
4929 
4930   DebugLoc LastLoc;
4931   auto getLastInstruction = [&]() -> Instruction * {
4932     if (CurBB && !CurBB->empty())
4933       return &CurBB->back();
4934     else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
4935              !FunctionBBs[CurBBNo - 1]->empty())
4936       return &FunctionBBs[CurBBNo - 1]->back();
4937     return nullptr;
4938   };
4939 
4940   std::vector<OperandBundleDef> OperandBundles;
4941 
4942   // Read all the records.
4943   SmallVector<uint64_t, 64> Record;
4944 
4945   while (true) {
4946     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
4947     if (!MaybeEntry)
4948       return MaybeEntry.takeError();
4949     llvm::BitstreamEntry Entry = MaybeEntry.get();
4950 
4951     switch (Entry.Kind) {
4952     case BitstreamEntry::Error:
4953       return error("Malformed block");
4954     case BitstreamEntry::EndBlock:
4955       goto OutOfRecordLoop;
4956 
4957     case BitstreamEntry::SubBlock:
4958       switch (Entry.ID) {
4959       default:  // Skip unknown content.
4960         if (Error Err = Stream.SkipBlock())
4961           return Err;
4962         break;
4963       case bitc::CONSTANTS_BLOCK_ID:
4964         if (Error Err = parseConstants())
4965           return Err;
4966         NextValueNo = ValueList.size();
4967         break;
4968       case bitc::VALUE_SYMTAB_BLOCK_ID:
4969         if (Error Err = parseValueSymbolTable())
4970           return Err;
4971         break;
4972       case bitc::METADATA_ATTACHMENT_ID:
4973         if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList))
4974           return Err;
4975         break;
4976       case bitc::METADATA_BLOCK_ID:
4977         assert(DeferredMetadataInfo.empty() &&
4978                "Must read all module-level metadata before function-level");
4979         if (Error Err = MDLoader->parseFunctionMetadata())
4980           return Err;
4981         break;
4982       case bitc::USELIST_BLOCK_ID:
4983         if (Error Err = parseUseLists())
4984           return Err;
4985         break;
4986       }
4987       continue;
4988 
4989     case BitstreamEntry::Record:
4990       // The interesting case.
4991       break;
4992     }
4993 
4994     // Read a record.
4995     Record.clear();
4996     Instruction *I = nullptr;
4997     unsigned ResTypeID = InvalidTypeID;
4998     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
4999     if (!MaybeBitCode)
5000       return MaybeBitCode.takeError();
5001     switch (unsigned BitCode = MaybeBitCode.get()) {
5002     default: // Default behavior: reject
5003       return error("Invalid value");
5004     case bitc::FUNC_CODE_DECLAREBLOCKS: {   // DECLAREBLOCKS: [nblocks]
5005       if (Record.empty() || Record[0] == 0)
5006         return error("Invalid record");
5007       // Create all the basic blocks for the function.
5008       FunctionBBs.resize(Record[0]);
5009 
5010       // See if anything took the address of blocks in this function.
5011       auto BBFRI = BasicBlockFwdRefs.find(F);
5012       if (BBFRI == BasicBlockFwdRefs.end()) {
5013         for (BasicBlock *&BB : FunctionBBs)
5014           BB = BasicBlock::Create(Context, "", F);
5015       } else {
5016         auto &BBRefs = BBFRI->second;
5017         // Check for invalid basic block references.
5018         if (BBRefs.size() > FunctionBBs.size())
5019           return error("Invalid ID");
5020         assert(!BBRefs.empty() && "Unexpected empty array");
5021         assert(!BBRefs.front() && "Invalid reference to entry block");
5022         for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
5023              ++I)
5024           if (I < RE && BBRefs[I]) {
5025             BBRefs[I]->insertInto(F);
5026             FunctionBBs[I] = BBRefs[I];
5027           } else {
5028             FunctionBBs[I] = BasicBlock::Create(Context, "", F);
5029           }
5030 
5031         // Erase from the table.
5032         BasicBlockFwdRefs.erase(BBFRI);
5033       }
5034 
5035       CurBB = FunctionBBs[0];
5036       continue;
5037     }
5038 
5039     case bitc::FUNC_CODE_BLOCKADDR_USERS: // BLOCKADDR_USERS: [vals...]
5040       // The record should not be emitted if it's an empty list.
5041       if (Record.empty())
5042         return error("Invalid record");
5043       // When we have the RARE case of a BlockAddress Constant that is not
5044       // scoped to the Function it refers to, we need to conservatively
5045       // materialize the referred to Function, regardless of whether or not
5046       // that Function will ultimately be linked, otherwise users of
5047       // BitcodeReader might start splicing out Function bodies such that we
5048       // might no longer be able to materialize the BlockAddress since the
5049       // BasicBlock (and entire body of the Function) the BlockAddress refers
5050       // to may have been moved. In the case that the user of BitcodeReader
5051       // decides ultimately not to link the Function body, materializing here
5052       // could be considered wasteful, but it's better than a deserialization
5053       // failure as described. This keeps BitcodeReader unaware of complex
5054       // linkage policy decisions such as those use by LTO, leaving those
5055       // decisions "one layer up."
5056       for (uint64_t ValID : Record)
5057         if (auto *F = dyn_cast<Function>(ValueList[ValID]))
5058           BackwardRefFunctions.push_back(F);
5059         else
5060           return error("Invalid record");
5061 
5062       continue;
5063 
5064     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
5065       // This record indicates that the last instruction is at the same
5066       // location as the previous instruction with a location.
5067       I = getLastInstruction();
5068 
5069       if (!I)
5070         return error("Invalid record");
5071       I->setDebugLoc(LastLoc);
5072       I = nullptr;
5073       continue;
5074 
5075     case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
5076       I = getLastInstruction();
5077       if (!I || Record.size() < 4)
5078         return error("Invalid record");
5079 
5080       unsigned Line = Record[0], Col = Record[1];
5081       unsigned ScopeID = Record[2], IAID = Record[3];
5082       bool isImplicitCode = Record.size() == 5 && Record[4];
5083 
5084       MDNode *Scope = nullptr, *IA = nullptr;
5085       if (ScopeID) {
5086         Scope = dyn_cast_or_null<MDNode>(
5087             MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1));
5088         if (!Scope)
5089           return error("Invalid record");
5090       }
5091       if (IAID) {
5092         IA = dyn_cast_or_null<MDNode>(
5093             MDLoader->getMetadataFwdRefOrLoad(IAID - 1));
5094         if (!IA)
5095           return error("Invalid record");
5096       }
5097       LastLoc = DILocation::get(Scope->getContext(), Line, Col, Scope, IA,
5098                                 isImplicitCode);
5099       I->setDebugLoc(LastLoc);
5100       I = nullptr;
5101       continue;
5102     }
5103     case bitc::FUNC_CODE_INST_UNOP: {    // UNOP: [opval, ty, opcode]
5104       unsigned OpNum = 0;
5105       Value *LHS;
5106       unsigned TypeID;
5107       if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) ||
5108           OpNum+1 > Record.size())
5109         return error("Invalid record");
5110 
5111       int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType());
5112       if (Opc == -1)
5113         return error("Invalid record");
5114       I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
5115       ResTypeID = TypeID;
5116       InstructionList.push_back(I);
5117       if (OpNum < Record.size()) {
5118         if (isa<FPMathOperator>(I)) {
5119           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
5120           if (FMF.any())
5121             I->setFastMathFlags(FMF);
5122         }
5123       }
5124       break;
5125     }
5126     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
5127       unsigned OpNum = 0;
5128       Value *LHS, *RHS;
5129       unsigned TypeID;
5130       if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) ||
5131           popValue(Record, OpNum, NextValueNo, LHS->getType(), TypeID, RHS,
5132                    CurBB) ||
5133           OpNum+1 > Record.size())
5134         return error("Invalid record");
5135 
5136       int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
5137       if (Opc == -1)
5138         return error("Invalid record");
5139       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
5140       ResTypeID = TypeID;
5141       InstructionList.push_back(I);
5142       if (OpNum < Record.size()) {
5143         if (Opc == Instruction::Add ||
5144             Opc == Instruction::Sub ||
5145             Opc == Instruction::Mul ||
5146             Opc == Instruction::Shl) {
5147           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
5148             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
5149           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
5150             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
5151         } else if (Opc == Instruction::SDiv ||
5152                    Opc == Instruction::UDiv ||
5153                    Opc == Instruction::LShr ||
5154                    Opc == Instruction::AShr) {
5155           if (Record[OpNum] & (1 << bitc::PEO_EXACT))
5156             cast<BinaryOperator>(I)->setIsExact(true);
5157         } else if (Opc == Instruction::Or) {
5158           if (Record[OpNum] & (1 << bitc::PDI_DISJOINT))
5159             cast<PossiblyDisjointInst>(I)->setIsDisjoint(true);
5160         } else if (isa<FPMathOperator>(I)) {
5161           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
5162           if (FMF.any())
5163             I->setFastMathFlags(FMF);
5164         }
5165       }
5166       break;
5167     }
5168     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
5169       unsigned OpNum = 0;
5170       Value *Op;
5171       unsigned OpTypeID;
5172       if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) ||
5173           OpNum + 1 > Record.size())
5174         return error("Invalid record");
5175 
5176       ResTypeID = Record[OpNum++];
5177       Type *ResTy = getTypeByID(ResTypeID);
5178       int Opc = getDecodedCastOpcode(Record[OpNum++]);
5179 
5180       if (Opc == -1 || !ResTy)
5181         return error("Invalid record");
5182       Instruction *Temp = nullptr;
5183       if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
5184         if (Temp) {
5185           InstructionList.push_back(Temp);
5186           assert(CurBB && "No current BB?");
5187           Temp->insertInto(CurBB, CurBB->end());
5188         }
5189       } else {
5190         auto CastOp = (Instruction::CastOps)Opc;
5191         if (!CastInst::castIsValid(CastOp, Op, ResTy))
5192           return error("Invalid cast");
5193         I = CastInst::Create(CastOp, Op, ResTy);
5194       }
5195 
5196       if (OpNum < Record.size()) {
5197         if (Opc == Instruction::ZExt || Opc == Instruction::UIToFP) {
5198           if (Record[OpNum] & (1 << bitc::PNNI_NON_NEG))
5199             cast<PossiblyNonNegInst>(I)->setNonNeg(true);
5200         } else if (Opc == Instruction::Trunc) {
5201           if (Record[OpNum] & (1 << bitc::TIO_NO_UNSIGNED_WRAP))
5202             cast<TruncInst>(I)->setHasNoUnsignedWrap(true);
5203           if (Record[OpNum] & (1 << bitc::TIO_NO_SIGNED_WRAP))
5204             cast<TruncInst>(I)->setHasNoSignedWrap(true);
5205         }
5206         if (isa<FPMathOperator>(I)) {
5207           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
5208           if (FMF.any())
5209             I->setFastMathFlags(FMF);
5210         }
5211       }
5212 
5213       InstructionList.push_back(I);
5214       break;
5215     }
5216     case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
5217     case bitc::FUNC_CODE_INST_GEP_OLD:
5218     case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
5219       unsigned OpNum = 0;
5220 
5221       unsigned TyID;
5222       Type *Ty;
5223       GEPNoWrapFlags NW;
5224 
5225       if (BitCode == bitc::FUNC_CODE_INST_GEP) {
5226         NW = toGEPNoWrapFlags(Record[OpNum++]);
5227         TyID = Record[OpNum++];
5228         Ty = getTypeByID(TyID);
5229       } else {
5230         if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD)
5231           NW = GEPNoWrapFlags::inBounds();
5232         TyID = InvalidTypeID;
5233         Ty = nullptr;
5234       }
5235 
5236       Value *BasePtr;
5237       unsigned BasePtrTypeID;
5238       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr, BasePtrTypeID,
5239                            CurBB))
5240         return error("Invalid record");
5241 
5242       if (!Ty) {
5243         TyID = getContainedTypeID(BasePtrTypeID);
5244         if (BasePtr->getType()->isVectorTy())
5245           TyID = getContainedTypeID(TyID);
5246         Ty = getTypeByID(TyID);
5247       }
5248 
5249       SmallVector<Value*, 16> GEPIdx;
5250       while (OpNum != Record.size()) {
5251         Value *Op;
5252         unsigned OpTypeID;
5253         if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
5254           return error("Invalid record");
5255         GEPIdx.push_back(Op);
5256       }
5257 
5258       auto *GEP = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
5259       I = GEP;
5260 
5261       ResTypeID = TyID;
5262       if (cast<GEPOperator>(I)->getNumIndices() != 0) {
5263         auto GTI = std::next(gep_type_begin(I));
5264         for (Value *Idx : drop_begin(cast<GEPOperator>(I)->indices())) {
5265           unsigned SubType = 0;
5266           if (GTI.isStruct()) {
5267             ConstantInt *IdxC =
5268                 Idx->getType()->isVectorTy()
5269                     ? cast<ConstantInt>(cast<Constant>(Idx)->getSplatValue())
5270                     : cast<ConstantInt>(Idx);
5271             SubType = IdxC->getZExtValue();
5272           }
5273           ResTypeID = getContainedTypeID(ResTypeID, SubType);
5274           ++GTI;
5275         }
5276       }
5277 
5278       // At this point ResTypeID is the result element type. We need a pointer
5279       // or vector of pointer to it.
5280       ResTypeID = getVirtualTypeID(I->getType()->getScalarType(), ResTypeID);
5281       if (I->getType()->isVectorTy())
5282         ResTypeID = getVirtualTypeID(I->getType(), ResTypeID);
5283 
5284       InstructionList.push_back(I);
5285       GEP->setNoWrapFlags(NW);
5286       break;
5287     }
5288 
5289     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
5290                                        // EXTRACTVAL: [opty, opval, n x indices]
5291       unsigned OpNum = 0;
5292       Value *Agg;
5293       unsigned AggTypeID;
5294       if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB))
5295         return error("Invalid record");
5296       Type *Ty = Agg->getType();
5297 
5298       unsigned RecSize = Record.size();
5299       if (OpNum == RecSize)
5300         return error("EXTRACTVAL: Invalid instruction with 0 indices");
5301 
5302       SmallVector<unsigned, 4> EXTRACTVALIdx;
5303       ResTypeID = AggTypeID;
5304       for (; OpNum != RecSize; ++OpNum) {
5305         bool IsArray = Ty->isArrayTy();
5306         bool IsStruct = Ty->isStructTy();
5307         uint64_t Index = Record[OpNum];
5308 
5309         if (!IsStruct && !IsArray)
5310           return error("EXTRACTVAL: Invalid type");
5311         if ((unsigned)Index != Index)
5312           return error("Invalid value");
5313         if (IsStruct && Index >= Ty->getStructNumElements())
5314           return error("EXTRACTVAL: Invalid struct index");
5315         if (IsArray && Index >= Ty->getArrayNumElements())
5316           return error("EXTRACTVAL: Invalid array index");
5317         EXTRACTVALIdx.push_back((unsigned)Index);
5318 
5319         if (IsStruct) {
5320           Ty = Ty->getStructElementType(Index);
5321           ResTypeID = getContainedTypeID(ResTypeID, Index);
5322         } else {
5323           Ty = Ty->getArrayElementType();
5324           ResTypeID = getContainedTypeID(ResTypeID);
5325         }
5326       }
5327 
5328       I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
5329       InstructionList.push_back(I);
5330       break;
5331     }
5332 
5333     case bitc::FUNC_CODE_INST_INSERTVAL: {
5334                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
5335       unsigned OpNum = 0;
5336       Value *Agg;
5337       unsigned AggTypeID;
5338       if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB))
5339         return error("Invalid record");
5340       Value *Val;
5341       unsigned ValTypeID;
5342       if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB))
5343         return error("Invalid record");
5344 
5345       unsigned RecSize = Record.size();
5346       if (OpNum == RecSize)
5347         return error("INSERTVAL: Invalid instruction with 0 indices");
5348 
5349       SmallVector<unsigned, 4> INSERTVALIdx;
5350       Type *CurTy = Agg->getType();
5351       for (; OpNum != RecSize; ++OpNum) {
5352         bool IsArray = CurTy->isArrayTy();
5353         bool IsStruct = CurTy->isStructTy();
5354         uint64_t Index = Record[OpNum];
5355 
5356         if (!IsStruct && !IsArray)
5357           return error("INSERTVAL: Invalid type");
5358         if ((unsigned)Index != Index)
5359           return error("Invalid value");
5360         if (IsStruct && Index >= CurTy->getStructNumElements())
5361           return error("INSERTVAL: Invalid struct index");
5362         if (IsArray && Index >= CurTy->getArrayNumElements())
5363           return error("INSERTVAL: Invalid array index");
5364 
5365         INSERTVALIdx.push_back((unsigned)Index);
5366         if (IsStruct)
5367           CurTy = CurTy->getStructElementType(Index);
5368         else
5369           CurTy = CurTy->getArrayElementType();
5370       }
5371 
5372       if (CurTy != Val->getType())
5373         return error("Inserted value type doesn't match aggregate type");
5374 
5375       I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
5376       ResTypeID = AggTypeID;
5377       InstructionList.push_back(I);
5378       break;
5379     }
5380 
5381     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
5382       // obsolete form of select
5383       // handles select i1 ... in old bitcode
5384       unsigned OpNum = 0;
5385       Value *TrueVal, *FalseVal, *Cond;
5386       unsigned TypeID;
5387       Type *CondType = Type::getInt1Ty(Context);
5388       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, TypeID,
5389                            CurBB) ||
5390           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), TypeID,
5391                    FalseVal, CurBB) ||
5392           popValue(Record, OpNum, NextValueNo, CondType,
5393                    getVirtualTypeID(CondType), Cond, CurBB))
5394         return error("Invalid record");
5395 
5396       I = SelectInst::Create(Cond, TrueVal, FalseVal);
5397       ResTypeID = TypeID;
5398       InstructionList.push_back(I);
5399       break;
5400     }
5401 
5402     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
5403       // new form of select
5404       // handles select i1 or select [N x i1]
5405       unsigned OpNum = 0;
5406       Value *TrueVal, *FalseVal, *Cond;
5407       unsigned ValTypeID, CondTypeID;
5408       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, ValTypeID,
5409                            CurBB) ||
5410           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), ValTypeID,
5411                    FalseVal, CurBB) ||
5412           getValueTypePair(Record, OpNum, NextValueNo, Cond, CondTypeID, CurBB))
5413         return error("Invalid record");
5414 
5415       // select condition can be either i1 or [N x i1]
5416       if (VectorType* vector_type =
5417           dyn_cast<VectorType>(Cond->getType())) {
5418         // expect <n x i1>
5419         if (vector_type->getElementType() != Type::getInt1Ty(Context))
5420           return error("Invalid type for value");
5421       } else {
5422         // expect i1
5423         if (Cond->getType() != Type::getInt1Ty(Context))
5424           return error("Invalid type for value");
5425       }
5426 
5427       I = SelectInst::Create(Cond, TrueVal, FalseVal);
5428       ResTypeID = ValTypeID;
5429       InstructionList.push_back(I);
5430       if (OpNum < Record.size() && isa<FPMathOperator>(I)) {
5431         FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
5432         if (FMF.any())
5433           I->setFastMathFlags(FMF);
5434       }
5435       break;
5436     }
5437 
5438     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
5439       unsigned OpNum = 0;
5440       Value *Vec, *Idx;
5441       unsigned VecTypeID, IdxTypeID;
5442       if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB) ||
5443           getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB))
5444         return error("Invalid record");
5445       if (!Vec->getType()->isVectorTy())
5446         return error("Invalid type for value");
5447       I = ExtractElementInst::Create(Vec, Idx);
5448       ResTypeID = getContainedTypeID(VecTypeID);
5449       InstructionList.push_back(I);
5450       break;
5451     }
5452 
5453     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
5454       unsigned OpNum = 0;
5455       Value *Vec, *Elt, *Idx;
5456       unsigned VecTypeID, IdxTypeID;
5457       if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB))
5458         return error("Invalid record");
5459       if (!Vec->getType()->isVectorTy())
5460         return error("Invalid type for value");
5461       if (popValue(Record, OpNum, NextValueNo,
5462                    cast<VectorType>(Vec->getType())->getElementType(),
5463                    getContainedTypeID(VecTypeID), Elt, CurBB) ||
5464           getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB))
5465         return error("Invalid record");
5466       I = InsertElementInst::Create(Vec, Elt, Idx);
5467       ResTypeID = VecTypeID;
5468       InstructionList.push_back(I);
5469       break;
5470     }
5471 
5472     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
5473       unsigned OpNum = 0;
5474       Value *Vec1, *Vec2, *Mask;
5475       unsigned Vec1TypeID;
5476       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1, Vec1TypeID,
5477                            CurBB) ||
5478           popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec1TypeID,
5479                    Vec2, CurBB))
5480         return error("Invalid record");
5481 
5482       unsigned MaskTypeID;
5483       if (getValueTypePair(Record, OpNum, NextValueNo, Mask, MaskTypeID, CurBB))
5484         return error("Invalid record");
5485       if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
5486         return error("Invalid type for value");
5487 
5488       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
5489       ResTypeID =
5490           getVirtualTypeID(I->getType(), getContainedTypeID(Vec1TypeID));
5491       InstructionList.push_back(I);
5492       break;
5493     }
5494 
5495     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
5496       // Old form of ICmp/FCmp returning bool
5497       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
5498       // both legal on vectors but had different behaviour.
5499     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
5500       // FCmp/ICmp returning bool or vector of bool
5501 
5502       unsigned OpNum = 0;
5503       Value *LHS, *RHS;
5504       unsigned LHSTypeID;
5505       if (getValueTypePair(Record, OpNum, NextValueNo, LHS, LHSTypeID, CurBB) ||
5506           popValue(Record, OpNum, NextValueNo, LHS->getType(), LHSTypeID, RHS,
5507                    CurBB))
5508         return error("Invalid record");
5509 
5510       if (OpNum >= Record.size())
5511         return error(
5512             "Invalid record: operand number exceeded available operands");
5513 
5514       CmpInst::Predicate PredVal = CmpInst::Predicate(Record[OpNum]);
5515       bool IsFP = LHS->getType()->isFPOrFPVectorTy();
5516       FastMathFlags FMF;
5517       if (IsFP && Record.size() > OpNum+1)
5518         FMF = getDecodedFastMathFlags(Record[++OpNum]);
5519 
5520       if (IsFP) {
5521         if (!CmpInst::isFPPredicate(PredVal))
5522           return error("Invalid fcmp predicate");
5523         I = new FCmpInst(PredVal, LHS, RHS);
5524       } else {
5525         if (!CmpInst::isIntPredicate(PredVal))
5526           return error("Invalid icmp predicate");
5527         I = new ICmpInst(PredVal, LHS, RHS);
5528         if (Record.size() > OpNum + 1 &&
5529             (Record[++OpNum] & (1 << bitc::ICMP_SAME_SIGN)))
5530           cast<ICmpInst>(I)->setSameSign();
5531       }
5532 
5533       if (OpNum + 1 != Record.size())
5534         return error("Invalid record");
5535 
5536       ResTypeID = getVirtualTypeID(I->getType()->getScalarType());
5537       if (LHS->getType()->isVectorTy())
5538         ResTypeID = getVirtualTypeID(I->getType(), ResTypeID);
5539 
5540       if (FMF.any())
5541         I->setFastMathFlags(FMF);
5542       InstructionList.push_back(I);
5543       break;
5544     }
5545 
5546     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
5547       {
5548         unsigned Size = Record.size();
5549         if (Size == 0) {
5550           I = ReturnInst::Create(Context);
5551           InstructionList.push_back(I);
5552           break;
5553         }
5554 
5555         unsigned OpNum = 0;
5556         Value *Op = nullptr;
5557         unsigned OpTypeID;
5558         if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
5559           return error("Invalid record");
5560         if (OpNum != Record.size())
5561           return error("Invalid record");
5562 
5563         I = ReturnInst::Create(Context, Op);
5564         InstructionList.push_back(I);
5565         break;
5566       }
5567     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
5568       if (Record.size() != 1 && Record.size() != 3)
5569         return error("Invalid record");
5570       BasicBlock *TrueDest = getBasicBlock(Record[0]);
5571       if (!TrueDest)
5572         return error("Invalid record");
5573 
5574       if (Record.size() == 1) {
5575         I = BranchInst::Create(TrueDest);
5576         InstructionList.push_back(I);
5577       }
5578       else {
5579         BasicBlock *FalseDest = getBasicBlock(Record[1]);
5580         Type *CondType = Type::getInt1Ty(Context);
5581         Value *Cond = getValue(Record, 2, NextValueNo, CondType,
5582                                getVirtualTypeID(CondType), CurBB);
5583         if (!FalseDest || !Cond)
5584           return error("Invalid record");
5585         I = BranchInst::Create(TrueDest, FalseDest, Cond);
5586         InstructionList.push_back(I);
5587       }
5588       break;
5589     }
5590     case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#]
5591       if (Record.size() != 1 && Record.size() != 2)
5592         return error("Invalid record");
5593       unsigned Idx = 0;
5594       Type *TokenTy = Type::getTokenTy(Context);
5595       Value *CleanupPad = getValue(Record, Idx++, NextValueNo, TokenTy,
5596                                    getVirtualTypeID(TokenTy), CurBB);
5597       if (!CleanupPad)
5598         return error("Invalid record");
5599       BasicBlock *UnwindDest = nullptr;
5600       if (Record.size() == 2) {
5601         UnwindDest = getBasicBlock(Record[Idx++]);
5602         if (!UnwindDest)
5603           return error("Invalid record");
5604       }
5605 
5606       I = CleanupReturnInst::Create(CleanupPad, UnwindDest);
5607       InstructionList.push_back(I);
5608       break;
5609     }
5610     case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#]
5611       if (Record.size() != 2)
5612         return error("Invalid record");
5613       unsigned Idx = 0;
5614       Type *TokenTy = Type::getTokenTy(Context);
5615       Value *CatchPad = getValue(Record, Idx++, NextValueNo, TokenTy,
5616                                  getVirtualTypeID(TokenTy), CurBB);
5617       if (!CatchPad)
5618         return error("Invalid record");
5619       BasicBlock *BB = getBasicBlock(Record[Idx++]);
5620       if (!BB)
5621         return error("Invalid record");
5622 
5623       I = CatchReturnInst::Create(CatchPad, BB);
5624       InstructionList.push_back(I);
5625       break;
5626     }
5627     case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?]
5628       // We must have, at minimum, the outer scope and the number of arguments.
5629       if (Record.size() < 2)
5630         return error("Invalid record");
5631 
5632       unsigned Idx = 0;
5633 
5634       Type *TokenTy = Type::getTokenTy(Context);
5635       Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy,
5636                                   getVirtualTypeID(TokenTy), CurBB);
5637       if (!ParentPad)
5638         return error("Invalid record");
5639 
5640       unsigned NumHandlers = Record[Idx++];
5641 
5642       SmallVector<BasicBlock *, 2> Handlers;
5643       for (unsigned Op = 0; Op != NumHandlers; ++Op) {
5644         BasicBlock *BB = getBasicBlock(Record[Idx++]);
5645         if (!BB)
5646           return error("Invalid record");
5647         Handlers.push_back(BB);
5648       }
5649 
5650       BasicBlock *UnwindDest = nullptr;
5651       if (Idx + 1 == Record.size()) {
5652         UnwindDest = getBasicBlock(Record[Idx++]);
5653         if (!UnwindDest)
5654           return error("Invalid record");
5655       }
5656 
5657       if (Record.size() != Idx)
5658         return error("Invalid record");
5659 
5660       auto *CatchSwitch =
5661           CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers);
5662       for (BasicBlock *Handler : Handlers)
5663         CatchSwitch->addHandler(Handler);
5664       I = CatchSwitch;
5665       ResTypeID = getVirtualTypeID(I->getType());
5666       InstructionList.push_back(I);
5667       break;
5668     }
5669     case bitc::FUNC_CODE_INST_CATCHPAD:
5670     case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*]
5671       // We must have, at minimum, the outer scope and the number of arguments.
5672       if (Record.size() < 2)
5673         return error("Invalid record");
5674 
5675       unsigned Idx = 0;
5676 
5677       Type *TokenTy = Type::getTokenTy(Context);
5678       Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy,
5679                                   getVirtualTypeID(TokenTy), CurBB);
5680       if (!ParentPad)
5681         return error("Invald record");
5682 
5683       unsigned NumArgOperands = Record[Idx++];
5684 
5685       SmallVector<Value *, 2> Args;
5686       for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
5687         Value *Val;
5688         unsigned ValTypeID;
5689         if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, nullptr))
5690           return error("Invalid record");
5691         Args.push_back(Val);
5692       }
5693 
5694       if (Record.size() != Idx)
5695         return error("Invalid record");
5696 
5697       if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD)
5698         I = CleanupPadInst::Create(ParentPad, Args);
5699       else
5700         I = CatchPadInst::Create(ParentPad, Args);
5701       ResTypeID = getVirtualTypeID(I->getType());
5702       InstructionList.push_back(I);
5703       break;
5704     }
5705     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
5706       // Check magic
5707       if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
5708         // "New" SwitchInst format with case ranges. The changes to write this
5709         // format were reverted but we still recognize bitcode that uses it.
5710         // Hopefully someday we will have support for case ranges and can use
5711         // this format again.
5712 
5713         unsigned OpTyID = Record[1];
5714         Type *OpTy = getTypeByID(OpTyID);
5715         unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
5716 
5717         Value *Cond = getValue(Record, 2, NextValueNo, OpTy, OpTyID, CurBB);
5718         BasicBlock *Default = getBasicBlock(Record[3]);
5719         if (!OpTy || !Cond || !Default)
5720           return error("Invalid record");
5721 
5722         unsigned NumCases = Record[4];
5723 
5724         SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
5725         InstructionList.push_back(SI);
5726 
5727         unsigned CurIdx = 5;
5728         for (unsigned i = 0; i != NumCases; ++i) {
5729           SmallVector<ConstantInt*, 1> CaseVals;
5730           unsigned NumItems = Record[CurIdx++];
5731           for (unsigned ci = 0; ci != NumItems; ++ci) {
5732             bool isSingleNumber = Record[CurIdx++];
5733 
5734             APInt Low;
5735             unsigned ActiveWords = 1;
5736             if (ValueBitWidth > 64)
5737               ActiveWords = Record[CurIdx++];
5738             Low = readWideAPInt(ArrayRef(&Record[CurIdx], ActiveWords),
5739                                 ValueBitWidth);
5740             CurIdx += ActiveWords;
5741 
5742             if (!isSingleNumber) {
5743               ActiveWords = 1;
5744               if (ValueBitWidth > 64)
5745                 ActiveWords = Record[CurIdx++];
5746               APInt High = readWideAPInt(ArrayRef(&Record[CurIdx], ActiveWords),
5747                                          ValueBitWidth);
5748               CurIdx += ActiveWords;
5749 
5750               // FIXME: It is not clear whether values in the range should be
5751               // compared as signed or unsigned values. The partially
5752               // implemented changes that used this format in the past used
5753               // unsigned comparisons.
5754               for ( ; Low.ule(High); ++Low)
5755                 CaseVals.push_back(ConstantInt::get(Context, Low));
5756             } else
5757               CaseVals.push_back(ConstantInt::get(Context, Low));
5758           }
5759           BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
5760           for (ConstantInt *Cst : CaseVals)
5761             SI->addCase(Cst, DestBB);
5762         }
5763         I = SI;
5764         break;
5765       }
5766 
5767       // Old SwitchInst format without case ranges.
5768 
5769       if (Record.size() < 3 || (Record.size() & 1) == 0)
5770         return error("Invalid record");
5771       unsigned OpTyID = Record[0];
5772       Type *OpTy = getTypeByID(OpTyID);
5773       Value *Cond = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB);
5774       BasicBlock *Default = getBasicBlock(Record[2]);
5775       if (!OpTy || !Cond || !Default)
5776         return error("Invalid record");
5777       unsigned NumCases = (Record.size()-3)/2;
5778       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
5779       InstructionList.push_back(SI);
5780       for (unsigned i = 0, e = NumCases; i != e; ++i) {
5781         ConstantInt *CaseVal = dyn_cast_or_null<ConstantInt>(
5782             getFnValueByID(Record[3+i*2], OpTy, OpTyID, nullptr));
5783         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
5784         if (!CaseVal || !DestBB) {
5785           delete SI;
5786           return error("Invalid record");
5787         }
5788         SI->addCase(CaseVal, DestBB);
5789       }
5790       I = SI;
5791       break;
5792     }
5793     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
5794       if (Record.size() < 2)
5795         return error("Invalid record");
5796       unsigned OpTyID = Record[0];
5797       Type *OpTy = getTypeByID(OpTyID);
5798       Value *Address = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB);
5799       if (!OpTy || !Address)
5800         return error("Invalid record");
5801       unsigned NumDests = Record.size()-2;
5802       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
5803       InstructionList.push_back(IBI);
5804       for (unsigned i = 0, e = NumDests; i != e; ++i) {
5805         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
5806           IBI->addDestination(DestBB);
5807         } else {
5808           delete IBI;
5809           return error("Invalid record");
5810         }
5811       }
5812       I = IBI;
5813       break;
5814     }
5815 
5816     case bitc::FUNC_CODE_INST_INVOKE: {
5817       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
5818       if (Record.size() < 4)
5819         return error("Invalid record");
5820       unsigned OpNum = 0;
5821       AttributeList PAL = getAttributes(Record[OpNum++]);
5822       unsigned CCInfo = Record[OpNum++];
5823       BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]);
5824       BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]);
5825 
5826       unsigned FTyID = InvalidTypeID;
5827       FunctionType *FTy = nullptr;
5828       if ((CCInfo >> 13) & 1) {
5829         FTyID = Record[OpNum++];
5830         FTy = dyn_cast<FunctionType>(getTypeByID(FTyID));
5831         if (!FTy)
5832           return error("Explicit invoke type is not a function type");
5833       }
5834 
5835       Value *Callee;
5836       unsigned CalleeTypeID;
5837       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID,
5838                            CurBB))
5839         return error("Invalid record");
5840 
5841       PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
5842       if (!CalleeTy)
5843         return error("Callee is not a pointer");
5844       if (!FTy) {
5845         FTyID = getContainedTypeID(CalleeTypeID);
5846         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
5847         if (!FTy)
5848           return error("Callee is not of pointer to function type");
5849       }
5850       if (Record.size() < FTy->getNumParams() + OpNum)
5851         return error("Insufficient operands to call");
5852 
5853       SmallVector<Value*, 16> Ops;
5854       SmallVector<unsigned, 16> ArgTyIDs;
5855       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5856         unsigned ArgTyID = getContainedTypeID(FTyID, i + 1);
5857         Ops.push_back(getValue(Record, OpNum, NextValueNo, FTy->getParamType(i),
5858                                ArgTyID, CurBB));
5859         ArgTyIDs.push_back(ArgTyID);
5860         if (!Ops.back())
5861           return error("Invalid record");
5862       }
5863 
5864       if (!FTy->isVarArg()) {
5865         if (Record.size() != OpNum)
5866           return error("Invalid record");
5867       } else {
5868         // Read type/value pairs for varargs params.
5869         while (OpNum != Record.size()) {
5870           Value *Op;
5871           unsigned OpTypeID;
5872           if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
5873             return error("Invalid record");
5874           Ops.push_back(Op);
5875           ArgTyIDs.push_back(OpTypeID);
5876         }
5877       }
5878 
5879       // Upgrade the bundles if needed.
5880       if (!OperandBundles.empty())
5881         UpgradeOperandBundles(OperandBundles);
5882 
5883       I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops,
5884                              OperandBundles);
5885       ResTypeID = getContainedTypeID(FTyID);
5886       OperandBundles.clear();
5887       InstructionList.push_back(I);
5888       cast<InvokeInst>(I)->setCallingConv(
5889           static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo));
5890       cast<InvokeInst>(I)->setAttributes(PAL);
5891       if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) {
5892         I->deleteValue();
5893         return Err;
5894       }
5895 
5896       break;
5897     }
5898     case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
5899       unsigned Idx = 0;
5900       Value *Val = nullptr;
5901       unsigned ValTypeID;
5902       if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, CurBB))
5903         return error("Invalid record");
5904       I = ResumeInst::Create(Val);
5905       InstructionList.push_back(I);
5906       break;
5907     }
5908     case bitc::FUNC_CODE_INST_CALLBR: {
5909       // CALLBR: [attr, cc, norm, transfs, fty, fnid, args]
5910       unsigned OpNum = 0;
5911       AttributeList PAL = getAttributes(Record[OpNum++]);
5912       unsigned CCInfo = Record[OpNum++];
5913 
5914       BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]);
5915       unsigned NumIndirectDests = Record[OpNum++];
5916       SmallVector<BasicBlock *, 16> IndirectDests;
5917       for (unsigned i = 0, e = NumIndirectDests; i != e; ++i)
5918         IndirectDests.push_back(getBasicBlock(Record[OpNum++]));
5919 
5920       unsigned FTyID = InvalidTypeID;
5921       FunctionType *FTy = nullptr;
5922       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
5923         FTyID = Record[OpNum++];
5924         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
5925         if (!FTy)
5926           return error("Explicit call type is not a function type");
5927       }
5928 
5929       Value *Callee;
5930       unsigned CalleeTypeID;
5931       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID,
5932                            CurBB))
5933         return error("Invalid record");
5934 
5935       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
5936       if (!OpTy)
5937         return error("Callee is not a pointer type");
5938       if (!FTy) {
5939         FTyID = getContainedTypeID(CalleeTypeID);
5940         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
5941         if (!FTy)
5942           return error("Callee is not of pointer to function type");
5943       }
5944       if (Record.size() < FTy->getNumParams() + OpNum)
5945         return error("Insufficient operands to call");
5946 
5947       SmallVector<Value*, 16> Args;
5948       SmallVector<unsigned, 16> ArgTyIDs;
5949       // Read the fixed params.
5950       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5951         Value *Arg;
5952         unsigned ArgTyID = getContainedTypeID(FTyID, i + 1);
5953         if (FTy->getParamType(i)->isLabelTy())
5954           Arg = getBasicBlock(Record[OpNum]);
5955         else
5956           Arg = getValue(Record, OpNum, NextValueNo, FTy->getParamType(i),
5957                          ArgTyID, CurBB);
5958         if (!Arg)
5959           return error("Invalid record");
5960         Args.push_back(Arg);
5961         ArgTyIDs.push_back(ArgTyID);
5962       }
5963 
5964       // Read type/value pairs for varargs params.
5965       if (!FTy->isVarArg()) {
5966         if (OpNum != Record.size())
5967           return error("Invalid record");
5968       } else {
5969         while (OpNum != Record.size()) {
5970           Value *Op;
5971           unsigned OpTypeID;
5972           if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
5973             return error("Invalid record");
5974           Args.push_back(Op);
5975           ArgTyIDs.push_back(OpTypeID);
5976         }
5977       }
5978 
5979       // Upgrade the bundles if needed.
5980       if (!OperandBundles.empty())
5981         UpgradeOperandBundles(OperandBundles);
5982 
5983       if (auto *IA = dyn_cast<InlineAsm>(Callee)) {
5984         InlineAsm::ConstraintInfoVector ConstraintInfo = IA->ParseConstraints();
5985         auto IsLabelConstraint = [](const InlineAsm::ConstraintInfo &CI) {
5986           return CI.Type == InlineAsm::isLabel;
5987         };
5988         if (none_of(ConstraintInfo, IsLabelConstraint)) {
5989           // Upgrade explicit blockaddress arguments to label constraints.
5990           // Verify that the last arguments are blockaddress arguments that
5991           // match the indirect destinations. Clang always generates callbr
5992           // in this form. We could support reordering with more effort.
5993           unsigned FirstBlockArg = Args.size() - IndirectDests.size();
5994           for (unsigned ArgNo = FirstBlockArg; ArgNo < Args.size(); ++ArgNo) {
5995             unsigned LabelNo = ArgNo - FirstBlockArg;
5996             auto *BA = dyn_cast<BlockAddress>(Args[ArgNo]);
5997             if (!BA || BA->getFunction() != F ||
5998                 LabelNo > IndirectDests.size() ||
5999                 BA->getBasicBlock() != IndirectDests[LabelNo])
6000               return error("callbr argument does not match indirect dest");
6001           }
6002 
6003           // Remove blockaddress arguments.
6004           Args.erase(Args.begin() + FirstBlockArg, Args.end());
6005           ArgTyIDs.erase(ArgTyIDs.begin() + FirstBlockArg, ArgTyIDs.end());
6006 
6007           // Recreate the function type with less arguments.
6008           SmallVector<Type *> ArgTys;
6009           for (Value *Arg : Args)
6010             ArgTys.push_back(Arg->getType());
6011           FTy =
6012               FunctionType::get(FTy->getReturnType(), ArgTys, FTy->isVarArg());
6013 
6014           // Update constraint string to use label constraints.
6015           std::string Constraints = IA->getConstraintString();
6016           unsigned ArgNo = 0;
6017           size_t Pos = 0;
6018           for (const auto &CI : ConstraintInfo) {
6019             if (CI.hasArg()) {
6020               if (ArgNo >= FirstBlockArg)
6021                 Constraints.insert(Pos, "!");
6022               ++ArgNo;
6023             }
6024 
6025             // Go to next constraint in string.
6026             Pos = Constraints.find(',', Pos);
6027             if (Pos == std::string::npos)
6028               break;
6029             ++Pos;
6030           }
6031 
6032           Callee = InlineAsm::get(FTy, IA->getAsmString(), Constraints,
6033                                   IA->hasSideEffects(), IA->isAlignStack(),
6034                                   IA->getDialect(), IA->canThrow());
6035         }
6036       }
6037 
6038       I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args,
6039                              OperandBundles);
6040       ResTypeID = getContainedTypeID(FTyID);
6041       OperandBundles.clear();
6042       InstructionList.push_back(I);
6043       cast<CallBrInst>(I)->setCallingConv(
6044           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
6045       cast<CallBrInst>(I)->setAttributes(PAL);
6046       if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) {
6047         I->deleteValue();
6048         return Err;
6049       }
6050       break;
6051     }
6052     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
6053       I = new UnreachableInst(Context);
6054       InstructionList.push_back(I);
6055       break;
6056     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
6057       if (Record.empty())
6058         return error("Invalid phi record");
6059       // The first record specifies the type.
6060       unsigned TyID = Record[0];
6061       Type *Ty = getTypeByID(TyID);
6062       if (!Ty)
6063         return error("Invalid phi record");
6064 
6065       // Phi arguments are pairs of records of [value, basic block].
6066       // There is an optional final record for fast-math-flags if this phi has a
6067       // floating-point type.
6068       size_t NumArgs = (Record.size() - 1) / 2;
6069       PHINode *PN = PHINode::Create(Ty, NumArgs);
6070       if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN)) {
6071         PN->deleteValue();
6072         return error("Invalid phi record");
6073       }
6074       InstructionList.push_back(PN);
6075 
6076       SmallDenseMap<BasicBlock *, Value *> Args;
6077       for (unsigned i = 0; i != NumArgs; i++) {
6078         BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]);
6079         if (!BB) {
6080           PN->deleteValue();
6081           return error("Invalid phi BB");
6082         }
6083 
6084         // Phi nodes may contain the same predecessor multiple times, in which
6085         // case the incoming value must be identical. Directly reuse the already
6086         // seen value here, to avoid expanding a constant expression multiple
6087         // times.
6088         auto It = Args.find(BB);
6089         if (It != Args.end()) {
6090           PN->addIncoming(It->second, BB);
6091           continue;
6092         }
6093 
6094         // If there already is a block for this edge (from a different phi),
6095         // use it.
6096         BasicBlock *EdgeBB = ConstExprEdgeBBs.lookup({BB, CurBB});
6097         if (!EdgeBB) {
6098           // Otherwise, use a temporary block (that we will discard if it
6099           // turns out to be unnecessary).
6100           if (!PhiConstExprBB)
6101             PhiConstExprBB = BasicBlock::Create(Context, "phi.constexpr", F);
6102           EdgeBB = PhiConstExprBB;
6103         }
6104 
6105         // With the new function encoding, it is possible that operands have
6106         // negative IDs (for forward references).  Use a signed VBR
6107         // representation to keep the encoding small.
6108         Value *V;
6109         if (UseRelativeIDs)
6110           V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB);
6111         else
6112           V = getValue(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB);
6113         if (!V) {
6114           PN->deleteValue();
6115           PhiConstExprBB->eraseFromParent();
6116           return error("Invalid phi record");
6117         }
6118 
6119         if (EdgeBB == PhiConstExprBB && !EdgeBB->empty()) {
6120           ConstExprEdgeBBs.insert({{BB, CurBB}, EdgeBB});
6121           PhiConstExprBB = nullptr;
6122         }
6123         PN->addIncoming(V, BB);
6124         Args.insert({BB, V});
6125       }
6126       I = PN;
6127       ResTypeID = TyID;
6128 
6129       // If there are an even number of records, the final record must be FMF.
6130       if (Record.size() % 2 == 0) {
6131         assert(isa<FPMathOperator>(I) && "Unexpected phi type");
6132         FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]);
6133         if (FMF.any())
6134           I->setFastMathFlags(FMF);
6135       }
6136 
6137       break;
6138     }
6139 
6140     case bitc::FUNC_CODE_INST_LANDINGPAD:
6141     case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: {
6142       // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
6143       unsigned Idx = 0;
6144       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) {
6145         if (Record.size() < 3)
6146           return error("Invalid record");
6147       } else {
6148         assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD);
6149         if (Record.size() < 4)
6150           return error("Invalid record");
6151       }
6152       ResTypeID = Record[Idx++];
6153       Type *Ty = getTypeByID(ResTypeID);
6154       if (!Ty)
6155         return error("Invalid record");
6156       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) {
6157         Value *PersFn = nullptr;
6158         unsigned PersFnTypeID;
6159         if (getValueTypePair(Record, Idx, NextValueNo, PersFn, PersFnTypeID,
6160                              nullptr))
6161           return error("Invalid record");
6162 
6163         if (!F->hasPersonalityFn())
6164           F->setPersonalityFn(cast<Constant>(PersFn));
6165         else if (F->getPersonalityFn() != cast<Constant>(PersFn))
6166           return error("Personality function mismatch");
6167       }
6168 
6169       bool IsCleanup = !!Record[Idx++];
6170       unsigned NumClauses = Record[Idx++];
6171       LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses);
6172       LP->setCleanup(IsCleanup);
6173       for (unsigned J = 0; J != NumClauses; ++J) {
6174         LandingPadInst::ClauseType CT =
6175           LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
6176         Value *Val;
6177         unsigned ValTypeID;
6178 
6179         if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID,
6180                              nullptr)) {
6181           delete LP;
6182           return error("Invalid record");
6183         }
6184 
6185         assert((CT != LandingPadInst::Catch ||
6186                 !isa<ArrayType>(Val->getType())) &&
6187                "Catch clause has a invalid type!");
6188         assert((CT != LandingPadInst::Filter ||
6189                 isa<ArrayType>(Val->getType())) &&
6190                "Filter clause has invalid type!");
6191         LP->addClause(cast<Constant>(Val));
6192       }
6193 
6194       I = LP;
6195       InstructionList.push_back(I);
6196       break;
6197     }
6198 
6199     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
6200       if (Record.size() != 4 && Record.size() != 5)
6201         return error("Invalid record");
6202       using APV = AllocaPackedValues;
6203       const uint64_t Rec = Record[3];
6204       const bool InAlloca = Bitfield::get<APV::UsedWithInAlloca>(Rec);
6205       const bool SwiftError = Bitfield::get<APV::SwiftError>(Rec);
6206       unsigned TyID = Record[0];
6207       Type *Ty = getTypeByID(TyID);
6208       if (!Bitfield::get<APV::ExplicitType>(Rec)) {
6209         TyID = getContainedTypeID(TyID);
6210         Ty = getTypeByID(TyID);
6211         if (!Ty)
6212           return error("Missing element type for old-style alloca");
6213       }
6214       unsigned OpTyID = Record[1];
6215       Type *OpTy = getTypeByID(OpTyID);
6216       Value *Size = getFnValueByID(Record[2], OpTy, OpTyID, CurBB);
6217       MaybeAlign Align;
6218       uint64_t AlignExp =
6219           Bitfield::get<APV::AlignLower>(Rec) |
6220           (Bitfield::get<APV::AlignUpper>(Rec) << APV::AlignLower::Bits);
6221       if (Error Err = parseAlignmentValue(AlignExp, Align)) {
6222         return Err;
6223       }
6224       if (!Ty || !Size)
6225         return error("Invalid record");
6226 
6227       const DataLayout &DL = TheModule->getDataLayout();
6228       unsigned AS = Record.size() == 5 ? Record[4] : DL.getAllocaAddrSpace();
6229 
6230       SmallPtrSet<Type *, 4> Visited;
6231       if (!Align && !Ty->isSized(&Visited))
6232         return error("alloca of unsized type");
6233       if (!Align)
6234         Align = DL.getPrefTypeAlign(Ty);
6235 
6236       if (!Size->getType()->isIntegerTy())
6237         return error("alloca element count must have integer type");
6238 
6239       AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align);
6240       AI->setUsedWithInAlloca(InAlloca);
6241       AI->setSwiftError(SwiftError);
6242       I = AI;
6243       ResTypeID = getVirtualTypeID(AI->getType(), TyID);
6244       InstructionList.push_back(I);
6245       break;
6246     }
6247     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
6248       unsigned OpNum = 0;
6249       Value *Op;
6250       unsigned OpTypeID;
6251       if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) ||
6252           (OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
6253         return error("Invalid record");
6254 
6255       if (!isa<PointerType>(Op->getType()))
6256         return error("Load operand is not a pointer type");
6257 
6258       Type *Ty = nullptr;
6259       if (OpNum + 3 == Record.size()) {
6260         ResTypeID = Record[OpNum++];
6261         Ty = getTypeByID(ResTypeID);
6262       } else {
6263         ResTypeID = getContainedTypeID(OpTypeID);
6264         Ty = getTypeByID(ResTypeID);
6265       }
6266 
6267       if (!Ty)
6268         return error("Missing load type");
6269 
6270       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
6271         return Err;
6272 
6273       MaybeAlign Align;
6274       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
6275         return Err;
6276       SmallPtrSet<Type *, 4> Visited;
6277       if (!Align && !Ty->isSized(&Visited))
6278         return error("load of unsized type");
6279       if (!Align)
6280         Align = TheModule->getDataLayout().getABITypeAlign(Ty);
6281       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align);
6282       InstructionList.push_back(I);
6283       break;
6284     }
6285     case bitc::FUNC_CODE_INST_LOADATOMIC: {
6286        // LOADATOMIC: [opty, op, align, vol, ordering, ssid]
6287       unsigned OpNum = 0;
6288       Value *Op;
6289       unsigned OpTypeID;
6290       if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) ||
6291           (OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
6292         return error("Invalid record");
6293 
6294       if (!isa<PointerType>(Op->getType()))
6295         return error("Load operand is not a pointer type");
6296 
6297       Type *Ty = nullptr;
6298       if (OpNum + 5 == Record.size()) {
6299         ResTypeID = Record[OpNum++];
6300         Ty = getTypeByID(ResTypeID);
6301       } else {
6302         ResTypeID = getContainedTypeID(OpTypeID);
6303         Ty = getTypeByID(ResTypeID);
6304       }
6305 
6306       if (!Ty)
6307         return error("Missing atomic load type");
6308 
6309       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
6310         return Err;
6311 
6312       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
6313       if (Ordering == AtomicOrdering::NotAtomic ||
6314           Ordering == AtomicOrdering::Release ||
6315           Ordering == AtomicOrdering::AcquireRelease)
6316         return error("Invalid record");
6317       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
6318         return error("Invalid record");
6319       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
6320 
6321       MaybeAlign Align;
6322       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
6323         return Err;
6324       if (!Align)
6325         return error("Alignment missing from atomic load");
6326       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID);
6327       InstructionList.push_back(I);
6328       break;
6329     }
6330     case bitc::FUNC_CODE_INST_STORE:
6331     case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
6332       unsigned OpNum = 0;
6333       Value *Val, *Ptr;
6334       unsigned PtrTypeID, ValTypeID;
6335       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB))
6336         return error("Invalid record");
6337 
6338       if (BitCode == bitc::FUNC_CODE_INST_STORE) {
6339         if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB))
6340           return error("Invalid record");
6341       } else {
6342         ValTypeID = getContainedTypeID(PtrTypeID);
6343         if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID),
6344                      ValTypeID, Val, CurBB))
6345           return error("Invalid record");
6346       }
6347 
6348       if (OpNum + 2 != Record.size())
6349         return error("Invalid record");
6350 
6351       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
6352         return Err;
6353       MaybeAlign Align;
6354       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
6355         return Err;
6356       SmallPtrSet<Type *, 4> Visited;
6357       if (!Align && !Val->getType()->isSized(&Visited))
6358         return error("store of unsized type");
6359       if (!Align)
6360         Align = TheModule->getDataLayout().getABITypeAlign(Val->getType());
6361       I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align);
6362       InstructionList.push_back(I);
6363       break;
6364     }
6365     case bitc::FUNC_CODE_INST_STOREATOMIC:
6366     case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: {
6367       // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid]
6368       unsigned OpNum = 0;
6369       Value *Val, *Ptr;
6370       unsigned PtrTypeID, ValTypeID;
6371       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB) ||
6372           !isa<PointerType>(Ptr->getType()))
6373         return error("Invalid record");
6374       if (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC) {
6375         if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB))
6376           return error("Invalid record");
6377       } else {
6378         ValTypeID = getContainedTypeID(PtrTypeID);
6379         if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID),
6380                      ValTypeID, Val, CurBB))
6381           return error("Invalid record");
6382       }
6383 
6384       if (OpNum + 4 != Record.size())
6385         return error("Invalid record");
6386 
6387       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
6388         return Err;
6389       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
6390       if (Ordering == AtomicOrdering::NotAtomic ||
6391           Ordering == AtomicOrdering::Acquire ||
6392           Ordering == AtomicOrdering::AcquireRelease)
6393         return error("Invalid record");
6394       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
6395       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
6396         return error("Invalid record");
6397 
6398       MaybeAlign Align;
6399       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
6400         return Err;
6401       if (!Align)
6402         return error("Alignment missing from atomic store");
6403       I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID);
6404       InstructionList.push_back(I);
6405       break;
6406     }
6407     case bitc::FUNC_CODE_INST_CMPXCHG_OLD: {
6408       // CMPXCHG_OLD: [ptrty, ptr, cmp, val, vol, ordering, synchscope,
6409       // failure_ordering?, weak?]
6410       const size_t NumRecords = Record.size();
6411       unsigned OpNum = 0;
6412       Value *Ptr = nullptr;
6413       unsigned PtrTypeID;
6414       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB))
6415         return error("Invalid record");
6416 
6417       if (!isa<PointerType>(Ptr->getType()))
6418         return error("Cmpxchg operand is not a pointer type");
6419 
6420       Value *Cmp = nullptr;
6421       unsigned CmpTypeID = getContainedTypeID(PtrTypeID);
6422       if (popValue(Record, OpNum, NextValueNo, getTypeByID(CmpTypeID),
6423                    CmpTypeID, Cmp, CurBB))
6424         return error("Invalid record");
6425 
6426       Value *New = nullptr;
6427       if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID,
6428                    New, CurBB) ||
6429           NumRecords < OpNum + 3 || NumRecords > OpNum + 5)
6430         return error("Invalid record");
6431 
6432       const AtomicOrdering SuccessOrdering =
6433           getDecodedOrdering(Record[OpNum + 1]);
6434       if (SuccessOrdering == AtomicOrdering::NotAtomic ||
6435           SuccessOrdering == AtomicOrdering::Unordered)
6436         return error("Invalid record");
6437 
6438       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
6439 
6440       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
6441         return Err;
6442 
6443       const AtomicOrdering FailureOrdering =
6444           NumRecords < 7
6445               ? AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering)
6446               : getDecodedOrdering(Record[OpNum + 3]);
6447 
6448       if (FailureOrdering == AtomicOrdering::NotAtomic ||
6449           FailureOrdering == AtomicOrdering::Unordered)
6450         return error("Invalid record");
6451 
6452       const Align Alignment(
6453           TheModule->getDataLayout().getTypeStoreSize(Cmp->getType()));
6454 
6455       I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering,
6456                                 FailureOrdering, SSID);
6457       cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
6458 
6459       if (NumRecords < 8) {
6460         // Before weak cmpxchgs existed, the instruction simply returned the
6461         // value loaded from memory, so bitcode files from that era will be
6462         // expecting the first component of a modern cmpxchg.
6463         I->insertInto(CurBB, CurBB->end());
6464         I = ExtractValueInst::Create(I, 0);
6465         ResTypeID = CmpTypeID;
6466       } else {
6467         cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]);
6468         unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context));
6469         ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID});
6470       }
6471 
6472       InstructionList.push_back(I);
6473       break;
6474     }
6475     case bitc::FUNC_CODE_INST_CMPXCHG: {
6476       // CMPXCHG: [ptrty, ptr, cmp, val, vol, success_ordering, synchscope,
6477       // failure_ordering, weak, align?]
6478       const size_t NumRecords = Record.size();
6479       unsigned OpNum = 0;
6480       Value *Ptr = nullptr;
6481       unsigned PtrTypeID;
6482       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB))
6483         return error("Invalid record");
6484 
6485       if (!isa<PointerType>(Ptr->getType()))
6486         return error("Cmpxchg operand is not a pointer type");
6487 
6488       Value *Cmp = nullptr;
6489       unsigned CmpTypeID;
6490       if (getValueTypePair(Record, OpNum, NextValueNo, Cmp, CmpTypeID, CurBB))
6491         return error("Invalid record");
6492 
6493       Value *Val = nullptr;
6494       if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID, Val,
6495                    CurBB))
6496         return error("Invalid record");
6497 
6498       if (NumRecords < OpNum + 3 || NumRecords > OpNum + 6)
6499         return error("Invalid record");
6500 
6501       const bool IsVol = Record[OpNum];
6502 
6503       const AtomicOrdering SuccessOrdering =
6504           getDecodedOrdering(Record[OpNum + 1]);
6505       if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering))
6506         return error("Invalid cmpxchg success ordering");
6507 
6508       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
6509 
6510       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
6511         return Err;
6512 
6513       const AtomicOrdering FailureOrdering =
6514           getDecodedOrdering(Record[OpNum + 3]);
6515       if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering))
6516         return error("Invalid cmpxchg failure ordering");
6517 
6518       const bool IsWeak = Record[OpNum + 4];
6519 
6520       MaybeAlign Alignment;
6521 
6522       if (NumRecords == (OpNum + 6)) {
6523         if (Error Err = parseAlignmentValue(Record[OpNum + 5], Alignment))
6524           return Err;
6525       }
6526       if (!Alignment)
6527         Alignment =
6528             Align(TheModule->getDataLayout().getTypeStoreSize(Cmp->getType()));
6529 
6530       I = new AtomicCmpXchgInst(Ptr, Cmp, Val, *Alignment, SuccessOrdering,
6531                                 FailureOrdering, SSID);
6532       cast<AtomicCmpXchgInst>(I)->setVolatile(IsVol);
6533       cast<AtomicCmpXchgInst>(I)->setWeak(IsWeak);
6534 
6535       unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context));
6536       ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID});
6537 
6538       InstructionList.push_back(I);
6539       break;
6540     }
6541     case bitc::FUNC_CODE_INST_ATOMICRMW_OLD:
6542     case bitc::FUNC_CODE_INST_ATOMICRMW: {
6543       // ATOMICRMW_OLD: [ptrty, ptr, val, op, vol, ordering, ssid, align?]
6544       // ATOMICRMW: [ptrty, ptr, valty, val, op, vol, ordering, ssid, align?]
6545       const size_t NumRecords = Record.size();
6546       unsigned OpNum = 0;
6547 
6548       Value *Ptr = nullptr;
6549       unsigned PtrTypeID;
6550       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB))
6551         return error("Invalid record");
6552 
6553       if (!isa<PointerType>(Ptr->getType()))
6554         return error("Invalid record");
6555 
6556       Value *Val = nullptr;
6557       unsigned ValTypeID = InvalidTypeID;
6558       if (BitCode == bitc::FUNC_CODE_INST_ATOMICRMW_OLD) {
6559         ValTypeID = getContainedTypeID(PtrTypeID);
6560         if (popValue(Record, OpNum, NextValueNo,
6561                      getTypeByID(ValTypeID), ValTypeID, Val, CurBB))
6562           return error("Invalid record");
6563       } else {
6564         if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB))
6565           return error("Invalid record");
6566       }
6567 
6568       if (!(NumRecords == (OpNum + 4) || NumRecords == (OpNum + 5)))
6569         return error("Invalid record");
6570 
6571       const AtomicRMWInst::BinOp Operation =
6572           getDecodedRMWOperation(Record[OpNum]);
6573       if (Operation < AtomicRMWInst::FIRST_BINOP ||
6574           Operation > AtomicRMWInst::LAST_BINOP)
6575         return error("Invalid record");
6576 
6577       const bool IsVol = Record[OpNum + 1];
6578 
6579       const AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
6580       if (Ordering == AtomicOrdering::NotAtomic ||
6581           Ordering == AtomicOrdering::Unordered)
6582         return error("Invalid record");
6583 
6584       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
6585 
6586       MaybeAlign Alignment;
6587 
6588       if (NumRecords == (OpNum + 5)) {
6589         if (Error Err = parseAlignmentValue(Record[OpNum + 4], Alignment))
6590           return Err;
6591       }
6592 
6593       if (!Alignment)
6594         Alignment =
6595             Align(TheModule->getDataLayout().getTypeStoreSize(Val->getType()));
6596 
6597       I = new AtomicRMWInst(Operation, Ptr, Val, *Alignment, Ordering, SSID);
6598       ResTypeID = ValTypeID;
6599       cast<AtomicRMWInst>(I)->setVolatile(IsVol);
6600 
6601       InstructionList.push_back(I);
6602       break;
6603     }
6604     case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid]
6605       if (2 != Record.size())
6606         return error("Invalid record");
6607       AtomicOrdering Ordering = getDecodedOrdering(Record[0]);
6608       if (Ordering == AtomicOrdering::NotAtomic ||
6609           Ordering == AtomicOrdering::Unordered ||
6610           Ordering == AtomicOrdering::Monotonic)
6611         return error("Invalid record");
6612       SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]);
6613       I = new FenceInst(Context, Ordering, SSID);
6614       InstructionList.push_back(I);
6615       break;
6616     }
6617     case bitc::FUNC_CODE_DEBUG_RECORD_LABEL: {
6618       // DbgLabelRecords are placed after the Instructions that they are
6619       // attached to.
6620       SeenDebugRecord = true;
6621       Instruction *Inst = getLastInstruction();
6622       if (!Inst)
6623         return error("Invalid dbg record: missing instruction");
6624       DILocation *DIL = cast<DILocation>(getFnMetadataByID(Record[0]));
6625       DILabel *Label = cast<DILabel>(getFnMetadataByID(Record[1]));
6626       Inst->getParent()->insertDbgRecordBefore(
6627           new DbgLabelRecord(Label, DebugLoc(DIL)), Inst->getIterator());
6628       continue; // This isn't an instruction.
6629     }
6630     case bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE:
6631     case bitc::FUNC_CODE_DEBUG_RECORD_VALUE:
6632     case bitc::FUNC_CODE_DEBUG_RECORD_DECLARE:
6633     case bitc::FUNC_CODE_DEBUG_RECORD_ASSIGN: {
6634       // DbgVariableRecords are placed after the Instructions that they are
6635       // attached to.
6636       SeenDebugRecord = true;
6637       Instruction *Inst = getLastInstruction();
6638       if (!Inst)
6639         return error("Invalid dbg record: missing instruction");
6640 
6641       // First 3 fields are common to all kinds:
6642       //   DILocation, DILocalVariable, DIExpression
6643       // dbg_value (FUNC_CODE_DEBUG_RECORD_VALUE)
6644       //   ..., LocationMetadata
6645       // dbg_value (FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE - abbrev'd)
6646       //   ..., Value
6647       // dbg_declare (FUNC_CODE_DEBUG_RECORD_DECLARE)
6648       //   ..., LocationMetadata
6649       // dbg_assign (FUNC_CODE_DEBUG_RECORD_ASSIGN)
6650       //   ..., LocationMetadata, DIAssignID, DIExpression, LocationMetadata
6651       unsigned Slot = 0;
6652       // Common fields (0-2).
6653       DILocation *DIL = cast<DILocation>(getFnMetadataByID(Record[Slot++]));
6654       DILocalVariable *Var =
6655           cast<DILocalVariable>(getFnMetadataByID(Record[Slot++]));
6656       DIExpression *Expr =
6657           cast<DIExpression>(getFnMetadataByID(Record[Slot++]));
6658 
6659       // Union field (3: LocationMetadata | Value).
6660       Metadata *RawLocation = nullptr;
6661       if (BitCode == bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE) {
6662         Value *V = nullptr;
6663         unsigned TyID = 0;
6664         // We never expect to see a fwd reference value here because
6665         // use-before-defs are encoded with the standard non-abbrev record
6666         // type (they'd require encoding the type too, and they're rare). As a
6667         // result, getValueTypePair only ever increments Slot by one here (once
6668         // for the value, never twice for value and type).
6669         unsigned SlotBefore = Slot;
6670         if (getValueTypePair(Record, Slot, NextValueNo, V, TyID, CurBB))
6671           return error("Invalid dbg record: invalid value");
6672         (void)SlotBefore;
6673         assert((SlotBefore == Slot - 1) && "unexpected fwd ref");
6674         RawLocation = ValueAsMetadata::get(V);
6675       } else {
6676         RawLocation = getFnMetadataByID(Record[Slot++]);
6677       }
6678 
6679       DbgVariableRecord *DVR = nullptr;
6680       switch (BitCode) {
6681       case bitc::FUNC_CODE_DEBUG_RECORD_VALUE:
6682       case bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE:
6683         DVR = new DbgVariableRecord(RawLocation, Var, Expr, DIL,
6684                                     DbgVariableRecord::LocationType::Value);
6685         break;
6686       case bitc::FUNC_CODE_DEBUG_RECORD_DECLARE:
6687         DVR = new DbgVariableRecord(RawLocation, Var, Expr, DIL,
6688                                     DbgVariableRecord::LocationType::Declare);
6689         break;
6690       case bitc::FUNC_CODE_DEBUG_RECORD_ASSIGN: {
6691         DIAssignID *ID = cast<DIAssignID>(getFnMetadataByID(Record[Slot++]));
6692         DIExpression *AddrExpr =
6693             cast<DIExpression>(getFnMetadataByID(Record[Slot++]));
6694         Metadata *Addr = getFnMetadataByID(Record[Slot++]);
6695         DVR = new DbgVariableRecord(RawLocation, Var, Expr, ID, Addr, AddrExpr,
6696                                     DIL);
6697         break;
6698       }
6699       default:
6700         llvm_unreachable("Unknown DbgVariableRecord bitcode");
6701       }
6702       Inst->getParent()->insertDbgRecordBefore(DVR, Inst->getIterator());
6703       continue; // This isn't an instruction.
6704     }
6705     case bitc::FUNC_CODE_INST_CALL: {
6706       // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...]
6707       if (Record.size() < 3)
6708         return error("Invalid record");
6709 
6710       unsigned OpNum = 0;
6711       AttributeList PAL = getAttributes(Record[OpNum++]);
6712       unsigned CCInfo = Record[OpNum++];
6713 
6714       FastMathFlags FMF;
6715       if ((CCInfo >> bitc::CALL_FMF) & 1) {
6716         FMF = getDecodedFastMathFlags(Record[OpNum++]);
6717         if (!FMF.any())
6718           return error("Fast math flags indicator set for call with no FMF");
6719       }
6720 
6721       unsigned FTyID = InvalidTypeID;
6722       FunctionType *FTy = nullptr;
6723       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
6724         FTyID = Record[OpNum++];
6725         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
6726         if (!FTy)
6727           return error("Explicit call type is not a function type");
6728       }
6729 
6730       Value *Callee;
6731       unsigned CalleeTypeID;
6732       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID,
6733                            CurBB))
6734         return error("Invalid record");
6735 
6736       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
6737       if (!OpTy)
6738         return error("Callee is not a pointer type");
6739       if (!FTy) {
6740         FTyID = getContainedTypeID(CalleeTypeID);
6741         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
6742         if (!FTy)
6743           return error("Callee is not of pointer to function type");
6744       }
6745       if (Record.size() < FTy->getNumParams() + OpNum)
6746         return error("Insufficient operands to call");
6747 
6748       SmallVector<Value*, 16> Args;
6749       SmallVector<unsigned, 16> ArgTyIDs;
6750       // Read the fixed params.
6751       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
6752         unsigned ArgTyID = getContainedTypeID(FTyID, i + 1);
6753         if (FTy->getParamType(i)->isLabelTy())
6754           Args.push_back(getBasicBlock(Record[OpNum]));
6755         else
6756           Args.push_back(getValue(Record, OpNum, NextValueNo,
6757                                   FTy->getParamType(i), ArgTyID, CurBB));
6758         ArgTyIDs.push_back(ArgTyID);
6759         if (!Args.back())
6760           return error("Invalid record");
6761       }
6762 
6763       // Read type/value pairs for varargs params.
6764       if (!FTy->isVarArg()) {
6765         if (OpNum != Record.size())
6766           return error("Invalid record");
6767       } else {
6768         while (OpNum != Record.size()) {
6769           Value *Op;
6770           unsigned OpTypeID;
6771           if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
6772             return error("Invalid record");
6773           Args.push_back(Op);
6774           ArgTyIDs.push_back(OpTypeID);
6775         }
6776       }
6777 
6778       // Upgrade the bundles if needed.
6779       if (!OperandBundles.empty())
6780         UpgradeOperandBundles(OperandBundles);
6781 
6782       I = CallInst::Create(FTy, Callee, Args, OperandBundles);
6783       ResTypeID = getContainedTypeID(FTyID);
6784       OperandBundles.clear();
6785       InstructionList.push_back(I);
6786       cast<CallInst>(I)->setCallingConv(
6787           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
6788       CallInst::TailCallKind TCK = CallInst::TCK_None;
6789       if (CCInfo & (1 << bitc::CALL_TAIL))
6790         TCK = CallInst::TCK_Tail;
6791       if (CCInfo & (1 << bitc::CALL_MUSTTAIL))
6792         TCK = CallInst::TCK_MustTail;
6793       if (CCInfo & (1 << bitc::CALL_NOTAIL))
6794         TCK = CallInst::TCK_NoTail;
6795       cast<CallInst>(I)->setTailCallKind(TCK);
6796       cast<CallInst>(I)->setAttributes(PAL);
6797       if (isa<DbgInfoIntrinsic>(I))
6798         SeenDebugIntrinsic = true;
6799       if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) {
6800         I->deleteValue();
6801         return Err;
6802       }
6803       if (FMF.any()) {
6804         if (!isa<FPMathOperator>(I))
6805           return error("Fast-math-flags specified for call without "
6806                        "floating-point scalar or vector return type");
6807         I->setFastMathFlags(FMF);
6808       }
6809       break;
6810     }
6811     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
6812       if (Record.size() < 3)
6813         return error("Invalid record");
6814       unsigned OpTyID = Record[0];
6815       Type *OpTy = getTypeByID(OpTyID);
6816       Value *Op = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB);
6817       ResTypeID = Record[2];
6818       Type *ResTy = getTypeByID(ResTypeID);
6819       if (!OpTy || !Op || !ResTy)
6820         return error("Invalid record");
6821       I = new VAArgInst(Op, ResTy);
6822       InstructionList.push_back(I);
6823       break;
6824     }
6825 
6826     case bitc::FUNC_CODE_OPERAND_BUNDLE: {
6827       // A call or an invoke can be optionally prefixed with some variable
6828       // number of operand bundle blocks.  These blocks are read into
6829       // OperandBundles and consumed at the next call or invoke instruction.
6830 
6831       if (Record.empty() || Record[0] >= BundleTags.size())
6832         return error("Invalid record");
6833 
6834       std::vector<Value *> Inputs;
6835 
6836       unsigned OpNum = 1;
6837       while (OpNum != Record.size()) {
6838         Value *Op;
6839         if (getValueOrMetadata(Record, OpNum, NextValueNo, Op, CurBB))
6840           return error("Invalid record");
6841         Inputs.push_back(Op);
6842       }
6843 
6844       OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs));
6845       continue;
6846     }
6847 
6848     case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval]
6849       unsigned OpNum = 0;
6850       Value *Op = nullptr;
6851       unsigned OpTypeID;
6852       if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
6853         return error("Invalid record");
6854       if (OpNum != Record.size())
6855         return error("Invalid record");
6856 
6857       I = new FreezeInst(Op);
6858       ResTypeID = OpTypeID;
6859       InstructionList.push_back(I);
6860       break;
6861     }
6862     }
6863 
6864     // Add instruction to end of current BB.  If there is no current BB, reject
6865     // this file.
6866     if (!CurBB) {
6867       I->deleteValue();
6868       return error("Invalid instruction with no BB");
6869     }
6870     if (!OperandBundles.empty()) {
6871       I->deleteValue();
6872       return error("Operand bundles found with no consumer");
6873     }
6874     I->insertInto(CurBB, CurBB->end());
6875 
6876     // If this was a terminator instruction, move to the next block.
6877     if (I->isTerminator()) {
6878       ++CurBBNo;
6879       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
6880     }
6881 
6882     // Non-void values get registered in the value table for future use.
6883     if (!I->getType()->isVoidTy()) {
6884       assert(I->getType() == getTypeByID(ResTypeID) &&
6885              "Incorrect result type ID");
6886       if (Error Err = ValueList.assignValue(NextValueNo++, I, ResTypeID))
6887         return Err;
6888     }
6889   }
6890 
6891 OutOfRecordLoop:
6892 
6893   if (!OperandBundles.empty())
6894     return error("Operand bundles found with no consumer");
6895 
6896   // Check the function list for unresolved values.
6897   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
6898     if (!A->getParent()) {
6899       // We found at least one unresolved value.  Nuke them all to avoid leaks.
6900       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
6901         if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
6902           A->replaceAllUsesWith(PoisonValue::get(A->getType()));
6903           delete A;
6904         }
6905       }
6906       return error("Never resolved value found in function");
6907     }
6908   }
6909 
6910   // Unexpected unresolved metadata about to be dropped.
6911   if (MDLoader->hasFwdRefs())
6912     return error("Invalid function metadata: outgoing forward refs");
6913 
6914   if (PhiConstExprBB)
6915     PhiConstExprBB->eraseFromParent();
6916 
6917   for (const auto &Pair : ConstExprEdgeBBs) {
6918     BasicBlock *From = Pair.first.first;
6919     BasicBlock *To = Pair.first.second;
6920     BasicBlock *EdgeBB = Pair.second;
6921     BranchInst::Create(To, EdgeBB);
6922     From->getTerminator()->replaceSuccessorWith(To, EdgeBB);
6923     To->replacePhiUsesWith(From, EdgeBB);
6924     EdgeBB->moveBefore(To);
6925   }
6926 
6927   // Trim the value list down to the size it was before we parsed this function.
6928   ValueList.shrinkTo(ModuleValueListSize);
6929   MDLoader->shrinkTo(ModuleMDLoaderSize);
6930   std::vector<BasicBlock*>().swap(FunctionBBs);
6931   return Error::success();
6932 }
6933 
6934 /// Find the function body in the bitcode stream
6935 Error BitcodeReader::findFunctionInStream(
6936     Function *F,
6937     DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
6938   while (DeferredFunctionInfoIterator->second == 0) {
6939     // This is the fallback handling for the old format bitcode that
6940     // didn't contain the function index in the VST, or when we have
6941     // an anonymous function which would not have a VST entry.
6942     // Assert that we have one of those two cases.
6943     assert(VSTOffset == 0 || !F->hasName());
6944     // Parse the next body in the stream and set its position in the
6945     // DeferredFunctionInfo map.
6946     if (Error Err = rememberAndSkipFunctionBodies())
6947       return Err;
6948   }
6949   return Error::success();
6950 }
6951 
6952 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) {
6953   if (Val == SyncScope::SingleThread || Val == SyncScope::System)
6954     return SyncScope::ID(Val);
6955   if (Val >= SSIDs.size())
6956     return SyncScope::System; // Map unknown synchronization scopes to system.
6957   return SSIDs[Val];
6958 }
6959 
6960 //===----------------------------------------------------------------------===//
6961 // GVMaterializer implementation
6962 //===----------------------------------------------------------------------===//
6963 
6964 Error BitcodeReader::materialize(GlobalValue *GV) {
6965   Function *F = dyn_cast<Function>(GV);
6966   // If it's not a function or is already material, ignore the request.
6967   if (!F || !F->isMaterializable())
6968     return Error::success();
6969 
6970   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
6971   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
6972   // If its position is recorded as 0, its body is somewhere in the stream
6973   // but we haven't seen it yet.
6974   if (DFII->second == 0)
6975     if (Error Err = findFunctionInStream(F, DFII))
6976       return Err;
6977 
6978   // Materialize metadata before parsing any function bodies.
6979   if (Error Err = materializeMetadata())
6980     return Err;
6981 
6982   // Move the bit stream to the saved position of the deferred function body.
6983   if (Error JumpFailed = Stream.JumpToBit(DFII->second))
6984     return JumpFailed;
6985 
6986   // Regardless of the debug info format we want to end up in, we need
6987   // IsNewDbgInfoFormat=true to construct any debug records seen in the bitcode.
6988   F->IsNewDbgInfoFormat = true;
6989 
6990   if (Error Err = parseFunctionBody(F))
6991     return Err;
6992   F->setIsMaterializable(false);
6993 
6994   // All parsed Functions should load into the debug info format dictated by the
6995   // Module, unless we're attempting to preserve the input debug info format.
6996   if (SeenDebugIntrinsic && SeenDebugRecord)
6997     return error("Mixed debug intrinsics and debug records in bitcode module!");
6998   if (PreserveInputDbgFormat == cl::boolOrDefault::BOU_TRUE) {
6999     bool SeenAnyDebugInfo = SeenDebugIntrinsic || SeenDebugRecord;
7000     bool NewDbgInfoFormatDesired =
7001         SeenAnyDebugInfo ? SeenDebugRecord : F->getParent()->IsNewDbgInfoFormat;
7002     if (SeenAnyDebugInfo) {
7003       UseNewDbgInfoFormat = SeenDebugRecord;
7004       WriteNewDbgInfoFormatToBitcode = SeenDebugRecord;
7005       WriteNewDbgInfoFormat = SeenDebugRecord;
7006     }
7007     // If the module's debug info format doesn't match the observed input
7008     // format, then set its format now; we don't need to call the conversion
7009     // function because there must be no existing intrinsics to convert.
7010     // Otherwise, just set the format on this function now.
7011     if (NewDbgInfoFormatDesired != F->getParent()->IsNewDbgInfoFormat)
7012       F->getParent()->setNewDbgInfoFormatFlag(NewDbgInfoFormatDesired);
7013     else
7014       F->setNewDbgInfoFormatFlag(NewDbgInfoFormatDesired);
7015   } else {
7016     // If we aren't preserving formats, we use the Module flag to get our
7017     // desired format instead of reading flags, in case we are lazy-loading and
7018     // the format of the module has been changed since it was set by the flags.
7019     // We only need to convert debug info here if we have debug records but
7020     // desire the intrinsic format; everything else is a no-op or handled by the
7021     // autoupgrader.
7022     bool ModuleIsNewDbgInfoFormat = F->getParent()->IsNewDbgInfoFormat;
7023     if (ModuleIsNewDbgInfoFormat || !SeenDebugRecord)
7024       F->setNewDbgInfoFormatFlag(ModuleIsNewDbgInfoFormat);
7025     else
7026       F->setIsNewDbgInfoFormat(ModuleIsNewDbgInfoFormat);
7027   }
7028 
7029   if (StripDebugInfo)
7030     stripDebugInfo(*F);
7031 
7032   // Upgrade any old intrinsic calls in the function.
7033   for (auto &I : UpgradedIntrinsics) {
7034     for (User *U : llvm::make_early_inc_range(I.first->materialized_users()))
7035       if (CallInst *CI = dyn_cast<CallInst>(U))
7036         UpgradeIntrinsicCall(CI, I.second);
7037   }
7038 
7039   // Finish fn->subprogram upgrade for materialized functions.
7040   if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F))
7041     F->setSubprogram(SP);
7042 
7043   // Check if the TBAA Metadata are valid, otherwise we will need to strip them.
7044   if (!MDLoader->isStrippingTBAA()) {
7045     for (auto &I : instructions(F)) {
7046       MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa);
7047       if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA))
7048         continue;
7049       MDLoader->setStripTBAA(true);
7050       stripTBAA(F->getParent());
7051     }
7052   }
7053 
7054   for (auto &I : instructions(F)) {
7055     // "Upgrade" older incorrect branch weights by dropping them.
7056     if (auto *MD = I.getMetadata(LLVMContext::MD_prof)) {
7057       if (MD->getOperand(0) != nullptr && isa<MDString>(MD->getOperand(0))) {
7058         MDString *MDS = cast<MDString>(MD->getOperand(0));
7059         StringRef ProfName = MDS->getString();
7060         // Check consistency of !prof branch_weights metadata.
7061         if (ProfName != "branch_weights")
7062           continue;
7063         unsigned ExpectedNumOperands = 0;
7064         if (BranchInst *BI = dyn_cast<BranchInst>(&I))
7065           ExpectedNumOperands = BI->getNumSuccessors();
7066         else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I))
7067           ExpectedNumOperands = SI->getNumSuccessors();
7068         else if (isa<CallInst>(&I))
7069           ExpectedNumOperands = 1;
7070         else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I))
7071           ExpectedNumOperands = IBI->getNumDestinations();
7072         else if (isa<SelectInst>(&I))
7073           ExpectedNumOperands = 2;
7074         else
7075           continue; // ignore and continue.
7076 
7077         unsigned Offset = getBranchWeightOffset(MD);
7078 
7079         // If branch weight doesn't match, just strip branch weight.
7080         if (MD->getNumOperands() != Offset + ExpectedNumOperands)
7081           I.setMetadata(LLVMContext::MD_prof, nullptr);
7082       }
7083     }
7084 
7085     // Remove incompatible attributes on function calls.
7086     if (auto *CI = dyn_cast<CallBase>(&I)) {
7087       CI->removeRetAttrs(AttributeFuncs::typeIncompatible(
7088           CI->getFunctionType()->getReturnType(), CI->getRetAttributes()));
7089 
7090       for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ++ArgNo)
7091         CI->removeParamAttrs(ArgNo, AttributeFuncs::typeIncompatible(
7092                                         CI->getArgOperand(ArgNo)->getType(),
7093                                         CI->getParamAttributes(ArgNo)));
7094     }
7095   }
7096 
7097   // Look for functions that rely on old function attribute behavior.
7098   UpgradeFunctionAttributes(*F);
7099 
7100   // Bring in any functions that this function forward-referenced via
7101   // blockaddresses.
7102   return materializeForwardReferencedFunctions();
7103 }
7104 
7105 Error BitcodeReader::materializeModule() {
7106   if (Error Err = materializeMetadata())
7107     return Err;
7108 
7109   // Promise to materialize all forward references.
7110   WillMaterializeAllForwardRefs = true;
7111 
7112   // Iterate over the module, deserializing any functions that are still on
7113   // disk.
7114   for (Function &F : *TheModule) {
7115     if (Error Err = materialize(&F))
7116       return Err;
7117   }
7118   // At this point, if there are any function bodies, parse the rest of
7119   // the bits in the module past the last function block we have recorded
7120   // through either lazy scanning or the VST.
7121   if (LastFunctionBlockBit || NextUnreadBit)
7122     if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit
7123                                     ? LastFunctionBlockBit
7124                                     : NextUnreadBit))
7125       return Err;
7126 
7127   // Check that all block address forward references got resolved (as we
7128   // promised above).
7129   if (!BasicBlockFwdRefs.empty())
7130     return error("Never resolved function from blockaddress");
7131 
7132   // Upgrade any intrinsic calls that slipped through (should not happen!) and
7133   // delete the old functions to clean up. We can't do this unless the entire
7134   // module is materialized because there could always be another function body
7135   // with calls to the old function.
7136   for (auto &I : UpgradedIntrinsics) {
7137     for (auto *U : I.first->users()) {
7138       if (CallInst *CI = dyn_cast<CallInst>(U))
7139         UpgradeIntrinsicCall(CI, I.second);
7140     }
7141     if (!I.first->use_empty())
7142       I.first->replaceAllUsesWith(I.second);
7143     I.first->eraseFromParent();
7144   }
7145   UpgradedIntrinsics.clear();
7146 
7147   UpgradeDebugInfo(*TheModule);
7148 
7149   UpgradeModuleFlags(*TheModule);
7150 
7151   UpgradeARCRuntime(*TheModule);
7152 
7153   return Error::success();
7154 }
7155 
7156 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
7157   return IdentifiedStructTypes;
7158 }
7159 
7160 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
7161     BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex,
7162     StringRef ModulePath, std::function<bool(GlobalValue::GUID)> IsPrevailing)
7163     : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex),
7164       ModulePath(ModulePath), IsPrevailing(IsPrevailing) {}
7165 
7166 void ModuleSummaryIndexBitcodeReader::addThisModule() {
7167   TheIndex.addModule(ModulePath);
7168 }
7169 
7170 ModuleSummaryIndex::ModuleInfo *
7171 ModuleSummaryIndexBitcodeReader::getThisModule() {
7172   return TheIndex.getModule(ModulePath);
7173 }
7174 
7175 template <bool AllowNullValueInfo>
7176 std::pair<ValueInfo, GlobalValue::GUID>
7177 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) {
7178   auto VGI = ValueIdToValueInfoMap[ValueId];
7179   // We can have a null value info for memprof callsite info records in
7180   // distributed ThinLTO index files when the callee function summary is not
7181   // included in the index. The bitcode writer records 0 in that case,
7182   // and the caller of this helper will set AllowNullValueInfo to true.
7183   assert(AllowNullValueInfo || std::get<0>(VGI));
7184   return VGI;
7185 }
7186 
7187 void ModuleSummaryIndexBitcodeReader::setValueGUID(
7188     uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage,
7189     StringRef SourceFileName) {
7190   std::string GlobalId =
7191       GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName);
7192   auto ValueGUID = GlobalValue::getGUID(GlobalId);
7193   auto OriginalNameID = ValueGUID;
7194   if (GlobalValue::isLocalLinkage(Linkage))
7195     OriginalNameID = GlobalValue::getGUID(ValueName);
7196   if (PrintSummaryGUIDs)
7197     dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is "
7198            << ValueName << "\n";
7199 
7200   // UseStrtab is false for legacy summary formats and value names are
7201   // created on stack. In that case we save the name in a string saver in
7202   // the index so that the value name can be recorded.
7203   ValueIdToValueInfoMap[ValueID] = std::make_pair(
7204       TheIndex.getOrInsertValueInfo(
7205           ValueGUID, UseStrtab ? ValueName : TheIndex.saveString(ValueName)),
7206       OriginalNameID);
7207 }
7208 
7209 // Specialized value symbol table parser used when reading module index
7210 // blocks where we don't actually create global values. The parsed information
7211 // is saved in the bitcode reader for use when later parsing summaries.
7212 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable(
7213     uint64_t Offset,
7214     DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) {
7215   // With a strtab the VST is not required to parse the summary.
7216   if (UseStrtab)
7217     return Error::success();
7218 
7219   assert(Offset > 0 && "Expected non-zero VST offset");
7220   Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
7221   if (!MaybeCurrentBit)
7222     return MaybeCurrentBit.takeError();
7223   uint64_t CurrentBit = MaybeCurrentBit.get();
7224 
7225   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
7226     return Err;
7227 
7228   SmallVector<uint64_t, 64> Record;
7229 
7230   // Read all the records for this value table.
7231   SmallString<128> ValueName;
7232 
7233   while (true) {
7234     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
7235     if (!MaybeEntry)
7236       return MaybeEntry.takeError();
7237     BitstreamEntry Entry = MaybeEntry.get();
7238 
7239     switch (Entry.Kind) {
7240     case BitstreamEntry::SubBlock: // Handled for us already.
7241     case BitstreamEntry::Error:
7242       return error("Malformed block");
7243     case BitstreamEntry::EndBlock:
7244       // Done parsing VST, jump back to wherever we came from.
7245       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
7246         return JumpFailed;
7247       return Error::success();
7248     case BitstreamEntry::Record:
7249       // The interesting case.
7250       break;
7251     }
7252 
7253     // Read a record.
7254     Record.clear();
7255     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
7256     if (!MaybeRecord)
7257       return MaybeRecord.takeError();
7258     switch (MaybeRecord.get()) {
7259     default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records).
7260       break;
7261     case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
7262       if (convertToString(Record, 1, ValueName))
7263         return error("Invalid record");
7264       unsigned ValueID = Record[0];
7265       assert(!SourceFileName.empty());
7266       auto VLI = ValueIdToLinkageMap.find(ValueID);
7267       assert(VLI != ValueIdToLinkageMap.end() &&
7268              "No linkage found for VST entry?");
7269       auto Linkage = VLI->second;
7270       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
7271       ValueName.clear();
7272       break;
7273     }
7274     case bitc::VST_CODE_FNENTRY: {
7275       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
7276       if (convertToString(Record, 2, ValueName))
7277         return error("Invalid record");
7278       unsigned ValueID = Record[0];
7279       assert(!SourceFileName.empty());
7280       auto VLI = ValueIdToLinkageMap.find(ValueID);
7281       assert(VLI != ValueIdToLinkageMap.end() &&
7282              "No linkage found for VST entry?");
7283       auto Linkage = VLI->second;
7284       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
7285       ValueName.clear();
7286       break;
7287     }
7288     case bitc::VST_CODE_COMBINED_ENTRY: {
7289       // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
7290       unsigned ValueID = Record[0];
7291       GlobalValue::GUID RefGUID = Record[1];
7292       // The "original name", which is the second value of the pair will be
7293       // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index.
7294       ValueIdToValueInfoMap[ValueID] =
7295           std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
7296       break;
7297     }
7298     }
7299   }
7300 }
7301 
7302 // Parse just the blocks needed for building the index out of the module.
7303 // At the end of this routine the module Index is populated with a map
7304 // from global value id to GlobalValueSummary objects.
7305 Error ModuleSummaryIndexBitcodeReader::parseModule() {
7306   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
7307     return Err;
7308 
7309   SmallVector<uint64_t, 64> Record;
7310   DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap;
7311   unsigned ValueId = 0;
7312 
7313   // Read the index for this module.
7314   while (true) {
7315     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
7316     if (!MaybeEntry)
7317       return MaybeEntry.takeError();
7318     llvm::BitstreamEntry Entry = MaybeEntry.get();
7319 
7320     switch (Entry.Kind) {
7321     case BitstreamEntry::Error:
7322       return error("Malformed block");
7323     case BitstreamEntry::EndBlock:
7324       return Error::success();
7325 
7326     case BitstreamEntry::SubBlock:
7327       switch (Entry.ID) {
7328       default: // Skip unknown content.
7329         if (Error Err = Stream.SkipBlock())
7330           return Err;
7331         break;
7332       case bitc::BLOCKINFO_BLOCK_ID:
7333         // Need to parse these to get abbrev ids (e.g. for VST)
7334         if (Error Err = readBlockInfo())
7335           return Err;
7336         break;
7337       case bitc::VALUE_SYMTAB_BLOCK_ID:
7338         // Should have been parsed earlier via VSTOffset, unless there
7339         // is no summary section.
7340         assert(((SeenValueSymbolTable && VSTOffset > 0) ||
7341                 !SeenGlobalValSummary) &&
7342                "Expected early VST parse via VSTOffset record");
7343         if (Error Err = Stream.SkipBlock())
7344           return Err;
7345         break;
7346       case bitc::GLOBALVAL_SUMMARY_BLOCK_ID:
7347       case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID:
7348         // Add the module if it is a per-module index (has a source file name).
7349         if (!SourceFileName.empty())
7350           addThisModule();
7351         assert(!SeenValueSymbolTable &&
7352                "Already read VST when parsing summary block?");
7353         // We might not have a VST if there were no values in the
7354         // summary. An empty summary block generated when we are
7355         // performing ThinLTO compiles so we don't later invoke
7356         // the regular LTO process on them.
7357         if (VSTOffset > 0) {
7358           if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap))
7359             return Err;
7360           SeenValueSymbolTable = true;
7361         }
7362         SeenGlobalValSummary = true;
7363         if (Error Err = parseEntireSummary(Entry.ID))
7364           return Err;
7365         break;
7366       case bitc::MODULE_STRTAB_BLOCK_ID:
7367         if (Error Err = parseModuleStringTable())
7368           return Err;
7369         break;
7370       }
7371       continue;
7372 
7373     case BitstreamEntry::Record: {
7374         Record.clear();
7375         Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
7376         if (!MaybeBitCode)
7377           return MaybeBitCode.takeError();
7378         switch (MaybeBitCode.get()) {
7379         default:
7380           break; // Default behavior, ignore unknown content.
7381         case bitc::MODULE_CODE_VERSION: {
7382           if (Error Err = parseVersionRecord(Record).takeError())
7383             return Err;
7384           break;
7385         }
7386         /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
7387         case bitc::MODULE_CODE_SOURCE_FILENAME: {
7388           SmallString<128> ValueName;
7389           if (convertToString(Record, 0, ValueName))
7390             return error("Invalid record");
7391           SourceFileName = ValueName.c_str();
7392           break;
7393         }
7394         /// MODULE_CODE_HASH: [5*i32]
7395         case bitc::MODULE_CODE_HASH: {
7396           if (Record.size() != 5)
7397             return error("Invalid hash length " + Twine(Record.size()).str());
7398           auto &Hash = getThisModule()->second;
7399           int Pos = 0;
7400           for (auto &Val : Record) {
7401             assert(!(Val >> 32) && "Unexpected high bits set");
7402             Hash[Pos++] = Val;
7403           }
7404           break;
7405         }
7406         /// MODULE_CODE_VSTOFFSET: [offset]
7407         case bitc::MODULE_CODE_VSTOFFSET:
7408           if (Record.empty())
7409             return error("Invalid record");
7410           // Note that we subtract 1 here because the offset is relative to one
7411           // word before the start of the identification or module block, which
7412           // was historically always the start of the regular bitcode header.
7413           VSTOffset = Record[0] - 1;
7414           break;
7415         // v1 GLOBALVAR: [pointer type, isconst,     initid,       linkage, ...]
7416         // v1 FUNCTION:  [type,         callingconv, isproto,      linkage, ...]
7417         // v1 ALIAS:     [alias type,   addrspace,   aliasee val#, linkage, ...]
7418         // v2: [strtab offset, strtab size, v1]
7419         case bitc::MODULE_CODE_GLOBALVAR:
7420         case bitc::MODULE_CODE_FUNCTION:
7421         case bitc::MODULE_CODE_ALIAS: {
7422           StringRef Name;
7423           ArrayRef<uint64_t> GVRecord;
7424           std::tie(Name, GVRecord) = readNameFromStrtab(Record);
7425           if (GVRecord.size() <= 3)
7426             return error("Invalid record");
7427           uint64_t RawLinkage = GVRecord[3];
7428           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
7429           if (!UseStrtab) {
7430             ValueIdToLinkageMap[ValueId++] = Linkage;
7431             break;
7432           }
7433 
7434           setValueGUID(ValueId++, Name, Linkage, SourceFileName);
7435           break;
7436         }
7437         }
7438       }
7439       continue;
7440     }
7441   }
7442 }
7443 
7444 SmallVector<ValueInfo, 0>
7445 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) {
7446   SmallVector<ValueInfo, 0> Ret;
7447   Ret.reserve(Record.size());
7448   for (uint64_t RefValueId : Record)
7449     Ret.push_back(std::get<0>(getValueInfoFromValueId(RefValueId)));
7450   return Ret;
7451 }
7452 
7453 SmallVector<FunctionSummary::EdgeTy, 0>
7454 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record,
7455                                               bool IsOldProfileFormat,
7456                                               bool HasProfile, bool HasRelBF) {
7457   SmallVector<FunctionSummary::EdgeTy, 0> Ret;
7458   // In the case of new profile formats, there are two Record entries per
7459   // Edge. Otherwise, conservatively reserve up to Record.size.
7460   if (!IsOldProfileFormat && (HasProfile || HasRelBF))
7461     Ret.reserve(Record.size() / 2);
7462   else
7463     Ret.reserve(Record.size());
7464 
7465   for (unsigned I = 0, E = Record.size(); I != E; ++I) {
7466     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
7467     bool HasTailCall = false;
7468     uint64_t RelBF = 0;
7469     ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[I]));
7470     if (IsOldProfileFormat) {
7471       I += 1; // Skip old callsitecount field
7472       if (HasProfile)
7473         I += 1; // Skip old profilecount field
7474     } else if (HasProfile)
7475       std::tie(Hotness, HasTailCall) =
7476           getDecodedHotnessCallEdgeInfo(Record[++I]);
7477     else if (HasRelBF)
7478       getDecodedRelBFCallEdgeInfo(Record[++I], RelBF, HasTailCall);
7479     Ret.push_back(FunctionSummary::EdgeTy{
7480         Callee, CalleeInfo(Hotness, HasTailCall, RelBF)});
7481   }
7482   return Ret;
7483 }
7484 
7485 static void
7486 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot,
7487                                        WholeProgramDevirtResolution &Wpd) {
7488   uint64_t ArgNum = Record[Slot++];
7489   WholeProgramDevirtResolution::ByArg &B =
7490       Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}];
7491   Slot += ArgNum;
7492 
7493   B.TheKind =
7494       static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]);
7495   B.Info = Record[Slot++];
7496   B.Byte = Record[Slot++];
7497   B.Bit = Record[Slot++];
7498 }
7499 
7500 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record,
7501                                               StringRef Strtab, size_t &Slot,
7502                                               TypeIdSummary &TypeId) {
7503   uint64_t Id = Record[Slot++];
7504   WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id];
7505 
7506   Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]);
7507   Wpd.SingleImplName = {Strtab.data() + Record[Slot],
7508                         static_cast<size_t>(Record[Slot + 1])};
7509   Slot += 2;
7510 
7511   uint64_t ResByArgNum = Record[Slot++];
7512   for (uint64_t I = 0; I != ResByArgNum; ++I)
7513     parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd);
7514 }
7515 
7516 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record,
7517                                      StringRef Strtab,
7518                                      ModuleSummaryIndex &TheIndex) {
7519   size_t Slot = 0;
7520   TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary(
7521       {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])});
7522   Slot += 2;
7523 
7524   TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]);
7525   TypeId.TTRes.SizeM1BitWidth = Record[Slot++];
7526   TypeId.TTRes.AlignLog2 = Record[Slot++];
7527   TypeId.TTRes.SizeM1 = Record[Slot++];
7528   TypeId.TTRes.BitMask = Record[Slot++];
7529   TypeId.TTRes.InlineBits = Record[Slot++];
7530 
7531   while (Slot < Record.size())
7532     parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId);
7533 }
7534 
7535 std::vector<FunctionSummary::ParamAccess>
7536 ModuleSummaryIndexBitcodeReader::parseParamAccesses(ArrayRef<uint64_t> Record) {
7537   auto ReadRange = [&]() {
7538     APInt Lower(FunctionSummary::ParamAccess::RangeWidth,
7539                 BitcodeReader::decodeSignRotatedValue(Record.front()));
7540     Record = Record.drop_front();
7541     APInt Upper(FunctionSummary::ParamAccess::RangeWidth,
7542                 BitcodeReader::decodeSignRotatedValue(Record.front()));
7543     Record = Record.drop_front();
7544     ConstantRange Range{Lower, Upper};
7545     assert(!Range.isFullSet());
7546     assert(!Range.isUpperSignWrapped());
7547     return Range;
7548   };
7549 
7550   std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
7551   while (!Record.empty()) {
7552     PendingParamAccesses.emplace_back();
7553     FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back();
7554     ParamAccess.ParamNo = Record.front();
7555     Record = Record.drop_front();
7556     ParamAccess.Use = ReadRange();
7557     ParamAccess.Calls.resize(Record.front());
7558     Record = Record.drop_front();
7559     for (auto &Call : ParamAccess.Calls) {
7560       Call.ParamNo = Record.front();
7561       Record = Record.drop_front();
7562       Call.Callee = std::get<0>(getValueInfoFromValueId(Record.front()));
7563       Record = Record.drop_front();
7564       Call.Offsets = ReadRange();
7565     }
7566   }
7567   return PendingParamAccesses;
7568 }
7569 
7570 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo(
7571     ArrayRef<uint64_t> Record, size_t &Slot,
7572     TypeIdCompatibleVtableInfo &TypeId) {
7573   uint64_t Offset = Record[Slot++];
7574   ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[Slot++]));
7575   TypeId.push_back({Offset, Callee});
7576 }
7577 
7578 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord(
7579     ArrayRef<uint64_t> Record) {
7580   size_t Slot = 0;
7581   TypeIdCompatibleVtableInfo &TypeId =
7582       TheIndex.getOrInsertTypeIdCompatibleVtableSummary(
7583           {Strtab.data() + Record[Slot],
7584            static_cast<size_t>(Record[Slot + 1])});
7585   Slot += 2;
7586 
7587   while (Slot < Record.size())
7588     parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId);
7589 }
7590 
7591 SmallVector<unsigned> ModuleSummaryIndexBitcodeReader::parseAllocInfoContext(
7592     ArrayRef<uint64_t> Record, unsigned &I) {
7593   SmallVector<unsigned> StackIdList;
7594   // For backwards compatibility with old format before radix tree was
7595   // used, simply see if we found a radix tree array record (and thus if
7596   // the RadixArray is non-empty).
7597   if (RadixArray.empty()) {
7598     unsigned NumStackEntries = Record[I++];
7599     assert(Record.size() - I >= NumStackEntries);
7600     StackIdList.reserve(NumStackEntries);
7601     for (unsigned J = 0; J < NumStackEntries; J++) {
7602       assert(Record[I] < StackIds.size());
7603       StackIdList.push_back(
7604           TheIndex.addOrGetStackIdIndex(StackIds[Record[I++]]));
7605     }
7606   } else {
7607     unsigned RadixIndex = Record[I++];
7608     // See the comments above CallStackRadixTreeBuilder in ProfileData/MemProf.h
7609     // for a detailed description of the radix tree array format. Briefly, the
7610     // first entry will be the number of frames, any negative values are the
7611     // negative of the offset of the next frame, and otherwise the frames are in
7612     // increasing linear order.
7613     assert(RadixIndex < RadixArray.size());
7614     unsigned NumStackIds = RadixArray[RadixIndex++];
7615     StackIdList.reserve(NumStackIds);
7616     while (NumStackIds--) {
7617       assert(RadixIndex < RadixArray.size());
7618       unsigned Elem = RadixArray[RadixIndex];
7619       if (static_cast<std::make_signed_t<unsigned>>(Elem) < 0) {
7620         RadixIndex = RadixIndex - Elem;
7621         assert(RadixIndex < RadixArray.size());
7622         Elem = RadixArray[RadixIndex];
7623         // We shouldn't encounter a second offset in a row.
7624         assert(static_cast<std::make_signed_t<unsigned>>(Elem) >= 0);
7625       }
7626       RadixIndex++;
7627       StackIdList.push_back(TheIndex.addOrGetStackIdIndex(StackIds[Elem]));
7628     }
7629   }
7630   return StackIdList;
7631 }
7632 
7633 static void setSpecialRefs(SmallVectorImpl<ValueInfo> &Refs, unsigned ROCnt,
7634                            unsigned WOCnt) {
7635   // Readonly and writeonly refs are in the end of the refs list.
7636   assert(ROCnt + WOCnt <= Refs.size());
7637   unsigned FirstWORef = Refs.size() - WOCnt;
7638   unsigned RefNo = FirstWORef - ROCnt;
7639   for (; RefNo < FirstWORef; ++RefNo)
7640     Refs[RefNo].setReadOnly();
7641   for (; RefNo < Refs.size(); ++RefNo)
7642     Refs[RefNo].setWriteOnly();
7643 }
7644 
7645 // Eagerly parse the entire summary block. This populates the GlobalValueSummary
7646 // objects in the index.
7647 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) {
7648   if (Error Err = Stream.EnterSubBlock(ID))
7649     return Err;
7650   SmallVector<uint64_t, 64> Record;
7651 
7652   // Parse version
7653   {
7654     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
7655     if (!MaybeEntry)
7656       return MaybeEntry.takeError();
7657     BitstreamEntry Entry = MaybeEntry.get();
7658 
7659     if (Entry.Kind != BitstreamEntry::Record)
7660       return error("Invalid Summary Block: record for version expected");
7661     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
7662     if (!MaybeRecord)
7663       return MaybeRecord.takeError();
7664     if (MaybeRecord.get() != bitc::FS_VERSION)
7665       return error("Invalid Summary Block: version expected");
7666   }
7667   const uint64_t Version = Record[0];
7668   const bool IsOldProfileFormat = Version == 1;
7669   if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion)
7670     return error("Invalid summary version " + Twine(Version) +
7671                  ". Version should be in the range [1-" +
7672                  Twine(ModuleSummaryIndex::BitcodeSummaryVersion) +
7673                  "].");
7674   Record.clear();
7675 
7676   // Keep around the last seen summary to be used when we see an optional
7677   // "OriginalName" attachement.
7678   GlobalValueSummary *LastSeenSummary = nullptr;
7679   GlobalValue::GUID LastSeenGUID = 0;
7680 
7681   // We can expect to see any number of type ID information records before
7682   // each function summary records; these variables store the information
7683   // collected so far so that it can be used to create the summary object.
7684   std::vector<GlobalValue::GUID> PendingTypeTests;
7685   std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls,
7686       PendingTypeCheckedLoadVCalls;
7687   std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls,
7688       PendingTypeCheckedLoadConstVCalls;
7689   std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
7690 
7691   std::vector<CallsiteInfo> PendingCallsites;
7692   std::vector<AllocInfo> PendingAllocs;
7693   std::vector<uint64_t> PendingContextIds;
7694 
7695   while (true) {
7696     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
7697     if (!MaybeEntry)
7698       return MaybeEntry.takeError();
7699     BitstreamEntry Entry = MaybeEntry.get();
7700 
7701     switch (Entry.Kind) {
7702     case BitstreamEntry::SubBlock: // Handled for us already.
7703     case BitstreamEntry::Error:
7704       return error("Malformed block");
7705     case BitstreamEntry::EndBlock:
7706       return Error::success();
7707     case BitstreamEntry::Record:
7708       // The interesting case.
7709       break;
7710     }
7711 
7712     // Read a record. The record format depends on whether this
7713     // is a per-module index or a combined index file. In the per-module
7714     // case the records contain the associated value's ID for correlation
7715     // with VST entries. In the combined index the correlation is done
7716     // via the bitcode offset of the summary records (which were saved
7717     // in the combined index VST entries). The records also contain
7718     // information used for ThinLTO renaming and importing.
7719     Record.clear();
7720     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
7721     if (!MaybeBitCode)
7722       return MaybeBitCode.takeError();
7723     switch (unsigned BitCode = MaybeBitCode.get()) {
7724     default: // Default behavior: ignore.
7725       break;
7726     case bitc::FS_FLAGS: {  // [flags]
7727       TheIndex.setFlags(Record[0]);
7728       break;
7729     }
7730     case bitc::FS_VALUE_GUID: { // [valueid, refguid_upper32, refguid_lower32]
7731       uint64_t ValueID = Record[0];
7732       GlobalValue::GUID RefGUID;
7733       if (Version >= 11) {
7734         RefGUID = Record[1] << 32 | Record[2];
7735       } else {
7736         RefGUID = Record[1];
7737       }
7738       ValueIdToValueInfoMap[ValueID] =
7739           std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
7740       break;
7741     }
7742     // FS_PERMODULE is legacy and does not have support for the tail call flag.
7743     // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs,
7744     //                numrefs x valueid, n x (valueid)]
7745     // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs,
7746     //                        numrefs x valueid,
7747     //                        n x (valueid, hotness+tailcall flags)]
7748     // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs,
7749     //                      numrefs x valueid,
7750     //                      n x (valueid, relblockfreq+tailcall)]
7751     case bitc::FS_PERMODULE:
7752     case bitc::FS_PERMODULE_RELBF:
7753     case bitc::FS_PERMODULE_PROFILE: {
7754       unsigned ValueID = Record[0];
7755       uint64_t RawFlags = Record[1];
7756       unsigned InstCount = Record[2];
7757       uint64_t RawFunFlags = 0;
7758       unsigned NumRefs = Record[3];
7759       unsigned NumRORefs = 0, NumWORefs = 0;
7760       int RefListStartIndex = 4;
7761       if (Version >= 4) {
7762         RawFunFlags = Record[3];
7763         NumRefs = Record[4];
7764         RefListStartIndex = 5;
7765         if (Version >= 5) {
7766           NumRORefs = Record[5];
7767           RefListStartIndex = 6;
7768           if (Version >= 7) {
7769             NumWORefs = Record[6];
7770             RefListStartIndex = 7;
7771           }
7772         }
7773       }
7774 
7775       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7776       // The module path string ref set in the summary must be owned by the
7777       // index's module string table. Since we don't have a module path
7778       // string table section in the per-module index, we create a single
7779       // module path string table entry with an empty (0) ID to take
7780       // ownership.
7781       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
7782       assert(Record.size() >= RefListStartIndex + NumRefs &&
7783              "Record size inconsistent with number of references");
7784       SmallVector<ValueInfo, 0> Refs = makeRefList(
7785           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
7786       bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE);
7787       bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF);
7788       SmallVector<FunctionSummary::EdgeTy, 0> Calls = makeCallList(
7789           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
7790           IsOldProfileFormat, HasProfile, HasRelBF);
7791       setSpecialRefs(Refs, NumRORefs, NumWORefs);
7792       auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID);
7793       // In order to save memory, only record the memprof summaries if this is
7794       // the prevailing copy of a symbol. The linker doesn't resolve local
7795       // linkage values so don't check whether those are prevailing.
7796       auto LT = (GlobalValue::LinkageTypes)Flags.Linkage;
7797       if (IsPrevailing && !GlobalValue::isLocalLinkage(LT) &&
7798           !IsPrevailing(VIAndOriginalGUID.first.getGUID())) {
7799         PendingCallsites.clear();
7800         PendingAllocs.clear();
7801       }
7802       auto FS = std::make_unique<FunctionSummary>(
7803           Flags, InstCount, getDecodedFFlags(RawFunFlags), std::move(Refs),
7804           std::move(Calls), std::move(PendingTypeTests),
7805           std::move(PendingTypeTestAssumeVCalls),
7806           std::move(PendingTypeCheckedLoadVCalls),
7807           std::move(PendingTypeTestAssumeConstVCalls),
7808           std::move(PendingTypeCheckedLoadConstVCalls),
7809           std::move(PendingParamAccesses), std::move(PendingCallsites),
7810           std::move(PendingAllocs));
7811       FS->setModulePath(getThisModule()->first());
7812       FS->setOriginalName(std::get<1>(VIAndOriginalGUID));
7813       TheIndex.addGlobalValueSummary(std::get<0>(VIAndOriginalGUID),
7814                                      std::move(FS));
7815       break;
7816     }
7817     // FS_ALIAS: [valueid, flags, valueid]
7818     // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as
7819     // they expect all aliasee summaries to be available.
7820     case bitc::FS_ALIAS: {
7821       unsigned ValueID = Record[0];
7822       uint64_t RawFlags = Record[1];
7823       unsigned AliaseeID = Record[2];
7824       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7825       auto AS = std::make_unique<AliasSummary>(Flags);
7826       // The module path string ref set in the summary must be owned by the
7827       // index's module string table. Since we don't have a module path
7828       // string table section in the per-module index, we create a single
7829       // module path string table entry with an empty (0) ID to take
7830       // ownership.
7831       AS->setModulePath(getThisModule()->first());
7832 
7833       auto AliaseeVI = std::get<0>(getValueInfoFromValueId(AliaseeID));
7834       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath);
7835       if (!AliaseeInModule)
7836         return error("Alias expects aliasee summary to be parsed");
7837       AS->setAliasee(AliaseeVI, AliaseeInModule);
7838 
7839       auto GUID = getValueInfoFromValueId(ValueID);
7840       AS->setOriginalName(std::get<1>(GUID));
7841       TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(AS));
7842       break;
7843     }
7844     // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid]
7845     case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: {
7846       unsigned ValueID = Record[0];
7847       uint64_t RawFlags = Record[1];
7848       unsigned RefArrayStart = 2;
7849       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
7850                                       /* WriteOnly */ false,
7851                                       /* Constant */ false,
7852                                       GlobalObject::VCallVisibilityPublic);
7853       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7854       if (Version >= 5) {
7855         GVF = getDecodedGVarFlags(Record[2]);
7856         RefArrayStart = 3;
7857       }
7858       SmallVector<ValueInfo, 0> Refs =
7859           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
7860       auto FS =
7861           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
7862       FS->setModulePath(getThisModule()->first());
7863       auto GUID = getValueInfoFromValueId(ValueID);
7864       FS->setOriginalName(std::get<1>(GUID));
7865       TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(FS));
7866       break;
7867     }
7868     // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags,
7869     //                        numrefs, numrefs x valueid,
7870     //                        n x (valueid, offset)]
7871     case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: {
7872       unsigned ValueID = Record[0];
7873       uint64_t RawFlags = Record[1];
7874       GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]);
7875       unsigned NumRefs = Record[3];
7876       unsigned RefListStartIndex = 4;
7877       unsigned VTableListStartIndex = RefListStartIndex + NumRefs;
7878       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7879       SmallVector<ValueInfo, 0> Refs = makeRefList(
7880           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
7881       VTableFuncList VTableFuncs;
7882       for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) {
7883         ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[I]));
7884         uint64_t Offset = Record[++I];
7885         VTableFuncs.push_back({Callee, Offset});
7886       }
7887       auto VS =
7888           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
7889       VS->setModulePath(getThisModule()->first());
7890       VS->setVTableFuncs(VTableFuncs);
7891       auto GUID = getValueInfoFromValueId(ValueID);
7892       VS->setOriginalName(std::get<1>(GUID));
7893       TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(VS));
7894       break;
7895     }
7896     // FS_COMBINED is legacy and does not have support for the tail call flag.
7897     // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs,
7898     //               numrefs x valueid, n x (valueid)]
7899     // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs,
7900     //                       numrefs x valueid,
7901     //                       n x (valueid, hotness+tailcall flags)]
7902     case bitc::FS_COMBINED:
7903     case bitc::FS_COMBINED_PROFILE: {
7904       unsigned ValueID = Record[0];
7905       uint64_t ModuleId = Record[1];
7906       uint64_t RawFlags = Record[2];
7907       unsigned InstCount = Record[3];
7908       uint64_t RawFunFlags = 0;
7909       unsigned NumRefs = Record[4];
7910       unsigned NumRORefs = 0, NumWORefs = 0;
7911       int RefListStartIndex = 5;
7912 
7913       if (Version >= 4) {
7914         RawFunFlags = Record[4];
7915         RefListStartIndex = 6;
7916         size_t NumRefsIndex = 5;
7917         if (Version >= 5) {
7918           unsigned NumRORefsOffset = 1;
7919           RefListStartIndex = 7;
7920           if (Version >= 6) {
7921             NumRefsIndex = 6;
7922             RefListStartIndex = 8;
7923             if (Version >= 7) {
7924               RefListStartIndex = 9;
7925               NumWORefs = Record[8];
7926               NumRORefsOffset = 2;
7927             }
7928           }
7929           NumRORefs = Record[RefListStartIndex - NumRORefsOffset];
7930         }
7931         NumRefs = Record[NumRefsIndex];
7932       }
7933 
7934       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7935       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
7936       assert(Record.size() >= RefListStartIndex + NumRefs &&
7937              "Record size inconsistent with number of references");
7938       SmallVector<ValueInfo, 0> Refs = makeRefList(
7939           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
7940       bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE);
7941       SmallVector<FunctionSummary::EdgeTy, 0> Edges = makeCallList(
7942           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
7943           IsOldProfileFormat, HasProfile, false);
7944       ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID));
7945       setSpecialRefs(Refs, NumRORefs, NumWORefs);
7946       auto FS = std::make_unique<FunctionSummary>(
7947           Flags, InstCount, getDecodedFFlags(RawFunFlags), std::move(Refs),
7948           std::move(Edges), std::move(PendingTypeTests),
7949           std::move(PendingTypeTestAssumeVCalls),
7950           std::move(PendingTypeCheckedLoadVCalls),
7951           std::move(PendingTypeTestAssumeConstVCalls),
7952           std::move(PendingTypeCheckedLoadConstVCalls),
7953           std::move(PendingParamAccesses), std::move(PendingCallsites),
7954           std::move(PendingAllocs));
7955       LastSeenSummary = FS.get();
7956       LastSeenGUID = VI.getGUID();
7957       FS->setModulePath(ModuleIdMap[ModuleId]);
7958       TheIndex.addGlobalValueSummary(VI, std::move(FS));
7959       break;
7960     }
7961     // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid]
7962     // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as
7963     // they expect all aliasee summaries to be available.
7964     case bitc::FS_COMBINED_ALIAS: {
7965       unsigned ValueID = Record[0];
7966       uint64_t ModuleId = Record[1];
7967       uint64_t RawFlags = Record[2];
7968       unsigned AliaseeValueId = Record[3];
7969       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7970       auto AS = std::make_unique<AliasSummary>(Flags);
7971       LastSeenSummary = AS.get();
7972       AS->setModulePath(ModuleIdMap[ModuleId]);
7973 
7974       auto AliaseeVI = std::get<0>(getValueInfoFromValueId(AliaseeValueId));
7975       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath());
7976       AS->setAliasee(AliaseeVI, AliaseeInModule);
7977 
7978       ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID));
7979       LastSeenGUID = VI.getGUID();
7980       TheIndex.addGlobalValueSummary(VI, std::move(AS));
7981       break;
7982     }
7983     // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid]
7984     case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: {
7985       unsigned ValueID = Record[0];
7986       uint64_t ModuleId = Record[1];
7987       uint64_t RawFlags = Record[2];
7988       unsigned RefArrayStart = 3;
7989       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
7990                                       /* WriteOnly */ false,
7991                                       /* Constant */ false,
7992                                       GlobalObject::VCallVisibilityPublic);
7993       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7994       if (Version >= 5) {
7995         GVF = getDecodedGVarFlags(Record[3]);
7996         RefArrayStart = 4;
7997       }
7998       SmallVector<ValueInfo, 0> Refs =
7999           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
8000       auto FS =
8001           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
8002       LastSeenSummary = FS.get();
8003       FS->setModulePath(ModuleIdMap[ModuleId]);
8004       ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID));
8005       LastSeenGUID = VI.getGUID();
8006       TheIndex.addGlobalValueSummary(VI, std::move(FS));
8007       break;
8008     }
8009     // FS_COMBINED_ORIGINAL_NAME: [original_name]
8010     case bitc::FS_COMBINED_ORIGINAL_NAME: {
8011       uint64_t OriginalName = Record[0];
8012       if (!LastSeenSummary)
8013         return error("Name attachment that does not follow a combined record");
8014       LastSeenSummary->setOriginalName(OriginalName);
8015       TheIndex.addOriginalName(LastSeenGUID, OriginalName);
8016       // Reset the LastSeenSummary
8017       LastSeenSummary = nullptr;
8018       LastSeenGUID = 0;
8019       break;
8020     }
8021     case bitc::FS_TYPE_TESTS:
8022       assert(PendingTypeTests.empty());
8023       llvm::append_range(PendingTypeTests, Record);
8024       break;
8025 
8026     case bitc::FS_TYPE_TEST_ASSUME_VCALLS:
8027       assert(PendingTypeTestAssumeVCalls.empty());
8028       for (unsigned I = 0; I != Record.size(); I += 2)
8029         PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]});
8030       break;
8031 
8032     case bitc::FS_TYPE_CHECKED_LOAD_VCALLS:
8033       assert(PendingTypeCheckedLoadVCalls.empty());
8034       for (unsigned I = 0; I != Record.size(); I += 2)
8035         PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]});
8036       break;
8037 
8038     case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL:
8039       PendingTypeTestAssumeConstVCalls.push_back(
8040           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
8041       break;
8042 
8043     case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL:
8044       PendingTypeCheckedLoadConstVCalls.push_back(
8045           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
8046       break;
8047 
8048     case bitc::FS_CFI_FUNCTION_DEFS: {
8049       std::set<std::string, std::less<>> &CfiFunctionDefs =
8050           TheIndex.cfiFunctionDefs();
8051       for (unsigned I = 0; I != Record.size(); I += 2)
8052         CfiFunctionDefs.insert(
8053             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
8054       break;
8055     }
8056 
8057     case bitc::FS_CFI_FUNCTION_DECLS: {
8058       std::set<std::string, std::less<>> &CfiFunctionDecls =
8059           TheIndex.cfiFunctionDecls();
8060       for (unsigned I = 0; I != Record.size(); I += 2)
8061         CfiFunctionDecls.insert(
8062             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
8063       break;
8064     }
8065 
8066     case bitc::FS_TYPE_ID:
8067       parseTypeIdSummaryRecord(Record, Strtab, TheIndex);
8068       break;
8069 
8070     case bitc::FS_TYPE_ID_METADATA:
8071       parseTypeIdCompatibleVtableSummaryRecord(Record);
8072       break;
8073 
8074     case bitc::FS_BLOCK_COUNT:
8075       TheIndex.addBlockCount(Record[0]);
8076       break;
8077 
8078     case bitc::FS_PARAM_ACCESS: {
8079       PendingParamAccesses = parseParamAccesses(Record);
8080       break;
8081     }
8082 
8083     case bitc::FS_STACK_IDS: { // [n x stackid]
8084       // Save stack ids in the reader to consult when adding stack ids from the
8085       // lists in the stack node and alloc node entries.
8086       if (Version <= 11) {
8087         StackIds = ArrayRef<uint64_t>(Record);
8088         break;
8089       }
8090       // This is an array of 32-bit fixed-width values, holding each 64-bit
8091       // context id as a pair of adjacent (most significant first) 32-bit words.
8092       assert(Record.size() % 2 == 0);
8093       StackIds.reserve(Record.size() / 2);
8094       for (auto R = Record.begin(); R != Record.end(); R += 2)
8095         StackIds.push_back(*R << 32 | *(R + 1));
8096       break;
8097     }
8098 
8099     case bitc::FS_CONTEXT_RADIX_TREE_ARRAY: { // [n x entry]
8100       RadixArray = ArrayRef<uint64_t>(Record);
8101       break;
8102     }
8103 
8104     case bitc::FS_PERMODULE_CALLSITE_INFO: {
8105       unsigned ValueID = Record[0];
8106       SmallVector<unsigned> StackIdList;
8107       for (auto R = Record.begin() + 1; R != Record.end(); R++) {
8108         assert(*R < StackIds.size());
8109         StackIdList.push_back(TheIndex.addOrGetStackIdIndex(StackIds[*R]));
8110       }
8111       ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID));
8112       PendingCallsites.push_back(CallsiteInfo({VI, std::move(StackIdList)}));
8113       break;
8114     }
8115 
8116     case bitc::FS_COMBINED_CALLSITE_INFO: {
8117       auto RecordIter = Record.begin();
8118       unsigned ValueID = *RecordIter++;
8119       unsigned NumStackIds = *RecordIter++;
8120       unsigned NumVersions = *RecordIter++;
8121       assert(Record.size() == 3 + NumStackIds + NumVersions);
8122       SmallVector<unsigned> StackIdList;
8123       for (unsigned J = 0; J < NumStackIds; J++) {
8124         assert(*RecordIter < StackIds.size());
8125         StackIdList.push_back(
8126             TheIndex.addOrGetStackIdIndex(StackIds[*RecordIter++]));
8127       }
8128       SmallVector<unsigned> Versions;
8129       for (unsigned J = 0; J < NumVersions; J++)
8130         Versions.push_back(*RecordIter++);
8131       ValueInfo VI = std::get<0>(
8132           getValueInfoFromValueId</*AllowNullValueInfo*/ true>(ValueID));
8133       PendingCallsites.push_back(
8134           CallsiteInfo({VI, std::move(Versions), std::move(StackIdList)}));
8135       break;
8136     }
8137 
8138     case bitc::FS_ALLOC_CONTEXT_IDS: {
8139       // This is an array of 32-bit fixed-width values, holding each 64-bit
8140       // context id as a pair of adjacent (most significant first) 32-bit words.
8141       assert(Record.size() % 2 == 0);
8142       PendingContextIds.reserve(Record.size() / 2);
8143       for (auto R = Record.begin(); R != Record.end(); R += 2)
8144         PendingContextIds.push_back(*R << 32 | *(R + 1));
8145       break;
8146     }
8147 
8148     case bitc::FS_PERMODULE_ALLOC_INFO: {
8149       unsigned I = 0;
8150       std::vector<MIBInfo> MIBs;
8151       unsigned NumMIBs = 0;
8152       if (Version >= 10)
8153         NumMIBs = Record[I++];
8154       unsigned MIBsRead = 0;
8155       while ((Version >= 10 && MIBsRead++ < NumMIBs) ||
8156              (Version < 10 && I < Record.size())) {
8157         assert(Record.size() - I >= 2);
8158         AllocationType AllocType = (AllocationType)Record[I++];
8159         auto StackIdList = parseAllocInfoContext(Record, I);
8160         MIBs.push_back(MIBInfo(AllocType, std::move(StackIdList)));
8161       }
8162       // We either have nothing left or at least NumMIBs context size info
8163       // indices left (for the total sizes included when reporting of hinted
8164       // bytes is enabled).
8165       assert(I == Record.size() || Record.size() - I >= NumMIBs);
8166       std::vector<std::vector<ContextTotalSize>> AllContextSizes;
8167       if (I < Record.size()) {
8168         assert(!PendingContextIds.empty() &&
8169                "Missing context ids for alloc sizes");
8170         unsigned ContextIdIndex = 0;
8171         MIBsRead = 0;
8172         // The sizes are a linearized array of sizes, where for each MIB there
8173         // is 1 or more sizes (due to context trimming, each MIB in the metadata
8174         // and summarized here can correspond to more than one original context
8175         // from the profile).
8176         while (MIBsRead++ < NumMIBs) {
8177           // First read the number of contexts recorded for this MIB.
8178           unsigned NumContextSizeInfoEntries = Record[I++];
8179           assert(Record.size() - I >= NumContextSizeInfoEntries);
8180           std::vector<ContextTotalSize> ContextSizes;
8181           ContextSizes.reserve(NumContextSizeInfoEntries);
8182           for (unsigned J = 0; J < NumContextSizeInfoEntries; J++) {
8183             assert(ContextIdIndex < PendingContextIds.size());
8184             // PendingContextIds read from the preceding FS_ALLOC_CONTEXT_IDS
8185             // should be in the same order as the total sizes.
8186             ContextSizes.push_back(
8187                 {PendingContextIds[ContextIdIndex++], Record[I++]});
8188           }
8189           AllContextSizes.push_back(std::move(ContextSizes));
8190         }
8191         PendingContextIds.clear();
8192       }
8193       PendingAllocs.push_back(AllocInfo(std::move(MIBs)));
8194       if (!AllContextSizes.empty()) {
8195         assert(PendingAllocs.back().MIBs.size() == AllContextSizes.size());
8196         PendingAllocs.back().ContextSizeInfos = std::move(AllContextSizes);
8197       }
8198       break;
8199     }
8200 
8201     case bitc::FS_COMBINED_ALLOC_INFO: {
8202       unsigned I = 0;
8203       std::vector<MIBInfo> MIBs;
8204       unsigned NumMIBs = Record[I++];
8205       unsigned NumVersions = Record[I++];
8206       unsigned MIBsRead = 0;
8207       while (MIBsRead++ < NumMIBs) {
8208         assert(Record.size() - I >= 2);
8209         AllocationType AllocType = (AllocationType)Record[I++];
8210         auto StackIdList = parseAllocInfoContext(Record, I);
8211         MIBs.push_back(MIBInfo(AllocType, std::move(StackIdList)));
8212       }
8213       assert(Record.size() - I >= NumVersions);
8214       SmallVector<uint8_t> Versions;
8215       for (unsigned J = 0; J < NumVersions; J++)
8216         Versions.push_back(Record[I++]);
8217       assert(I == Record.size());
8218       PendingAllocs.push_back(AllocInfo(std::move(Versions), std::move(MIBs)));
8219       break;
8220     }
8221     }
8222   }
8223   llvm_unreachable("Exit infinite loop");
8224 }
8225 
8226 // Parse the  module string table block into the Index.
8227 // This populates the ModulePathStringTable map in the index.
8228 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() {
8229   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID))
8230     return Err;
8231 
8232   SmallVector<uint64_t, 64> Record;
8233 
8234   SmallString<128> ModulePath;
8235   ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr;
8236 
8237   while (true) {
8238     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
8239     if (!MaybeEntry)
8240       return MaybeEntry.takeError();
8241     BitstreamEntry Entry = MaybeEntry.get();
8242 
8243     switch (Entry.Kind) {
8244     case BitstreamEntry::SubBlock: // Handled for us already.
8245     case BitstreamEntry::Error:
8246       return error("Malformed block");
8247     case BitstreamEntry::EndBlock:
8248       return Error::success();
8249     case BitstreamEntry::Record:
8250       // The interesting case.
8251       break;
8252     }
8253 
8254     Record.clear();
8255     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
8256     if (!MaybeRecord)
8257       return MaybeRecord.takeError();
8258     switch (MaybeRecord.get()) {
8259     default: // Default behavior: ignore.
8260       break;
8261     case bitc::MST_CODE_ENTRY: {
8262       // MST_ENTRY: [modid, namechar x N]
8263       uint64_t ModuleId = Record[0];
8264 
8265       if (convertToString(Record, 1, ModulePath))
8266         return error("Invalid record");
8267 
8268       LastSeenModule = TheIndex.addModule(ModulePath);
8269       ModuleIdMap[ModuleId] = LastSeenModule->first();
8270 
8271       ModulePath.clear();
8272       break;
8273     }
8274     /// MST_CODE_HASH: [5*i32]
8275     case bitc::MST_CODE_HASH: {
8276       if (Record.size() != 5)
8277         return error("Invalid hash length " + Twine(Record.size()).str());
8278       if (!LastSeenModule)
8279         return error("Invalid hash that does not follow a module path");
8280       int Pos = 0;
8281       for (auto &Val : Record) {
8282         assert(!(Val >> 32) && "Unexpected high bits set");
8283         LastSeenModule->second[Pos++] = Val;
8284       }
8285       // Reset LastSeenModule to avoid overriding the hash unexpectedly.
8286       LastSeenModule = nullptr;
8287       break;
8288     }
8289     }
8290   }
8291   llvm_unreachable("Exit infinite loop");
8292 }
8293 
8294 namespace {
8295 
8296 // FIXME: This class is only here to support the transition to llvm::Error. It
8297 // will be removed once this transition is complete. Clients should prefer to
8298 // deal with the Error value directly, rather than converting to error_code.
8299 class BitcodeErrorCategoryType : public std::error_category {
8300   const char *name() const noexcept override {
8301     return "llvm.bitcode";
8302   }
8303 
8304   std::string message(int IE) const override {
8305     BitcodeError E = static_cast<BitcodeError>(IE);
8306     switch (E) {
8307     case BitcodeError::CorruptedBitcode:
8308       return "Corrupted bitcode";
8309     }
8310     llvm_unreachable("Unknown error type!");
8311   }
8312 };
8313 
8314 } // end anonymous namespace
8315 
8316 const std::error_category &llvm::BitcodeErrorCategory() {
8317   static BitcodeErrorCategoryType ErrorCategory;
8318   return ErrorCategory;
8319 }
8320 
8321 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream,
8322                                             unsigned Block, unsigned RecordID) {
8323   if (Error Err = Stream.EnterSubBlock(Block))
8324     return std::move(Err);
8325 
8326   StringRef Strtab;
8327   while (true) {
8328     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
8329     if (!MaybeEntry)
8330       return MaybeEntry.takeError();
8331     llvm::BitstreamEntry Entry = MaybeEntry.get();
8332 
8333     switch (Entry.Kind) {
8334     case BitstreamEntry::EndBlock:
8335       return Strtab;
8336 
8337     case BitstreamEntry::Error:
8338       return error("Malformed block");
8339 
8340     case BitstreamEntry::SubBlock:
8341       if (Error Err = Stream.SkipBlock())
8342         return std::move(Err);
8343       break;
8344 
8345     case BitstreamEntry::Record:
8346       StringRef Blob;
8347       SmallVector<uint64_t, 1> Record;
8348       Expected<unsigned> MaybeRecord =
8349           Stream.readRecord(Entry.ID, Record, &Blob);
8350       if (!MaybeRecord)
8351         return MaybeRecord.takeError();
8352       if (MaybeRecord.get() == RecordID)
8353         Strtab = Blob;
8354       break;
8355     }
8356   }
8357 }
8358 
8359 //===----------------------------------------------------------------------===//
8360 // External interface
8361 //===----------------------------------------------------------------------===//
8362 
8363 Expected<std::vector<BitcodeModule>>
8364 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) {
8365   auto FOrErr = getBitcodeFileContents(Buffer);
8366   if (!FOrErr)
8367     return FOrErr.takeError();
8368   return std::move(FOrErr->Mods);
8369 }
8370 
8371 Expected<BitcodeFileContents>
8372 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) {
8373   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
8374   if (!StreamOrErr)
8375     return StreamOrErr.takeError();
8376   BitstreamCursor &Stream = *StreamOrErr;
8377 
8378   BitcodeFileContents F;
8379   while (true) {
8380     uint64_t BCBegin = Stream.getCurrentByteNo();
8381 
8382     // We may be consuming bitcode from a client that leaves garbage at the end
8383     // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to
8384     // the end that there cannot possibly be another module, stop looking.
8385     if (BCBegin + 8 >= Stream.getBitcodeBytes().size())
8386       return F;
8387 
8388     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
8389     if (!MaybeEntry)
8390       return MaybeEntry.takeError();
8391     llvm::BitstreamEntry Entry = MaybeEntry.get();
8392 
8393     switch (Entry.Kind) {
8394     case BitstreamEntry::EndBlock:
8395     case BitstreamEntry::Error:
8396       return error("Malformed block");
8397 
8398     case BitstreamEntry::SubBlock: {
8399       uint64_t IdentificationBit = -1ull;
8400       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
8401         IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8;
8402         if (Error Err = Stream.SkipBlock())
8403           return std::move(Err);
8404 
8405         {
8406           Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
8407           if (!MaybeEntry)
8408             return MaybeEntry.takeError();
8409           Entry = MaybeEntry.get();
8410         }
8411 
8412         if (Entry.Kind != BitstreamEntry::SubBlock ||
8413             Entry.ID != bitc::MODULE_BLOCK_ID)
8414           return error("Malformed block");
8415       }
8416 
8417       if (Entry.ID == bitc::MODULE_BLOCK_ID) {
8418         uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8;
8419         if (Error Err = Stream.SkipBlock())
8420           return std::move(Err);
8421 
8422         F.Mods.push_back({Stream.getBitcodeBytes().slice(
8423                               BCBegin, Stream.getCurrentByteNo() - BCBegin),
8424                           Buffer.getBufferIdentifier(), IdentificationBit,
8425                           ModuleBit});
8426         continue;
8427       }
8428 
8429       if (Entry.ID == bitc::STRTAB_BLOCK_ID) {
8430         Expected<StringRef> Strtab =
8431             readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB);
8432         if (!Strtab)
8433           return Strtab.takeError();
8434         // This string table is used by every preceding bitcode module that does
8435         // not have its own string table. A bitcode file may have multiple
8436         // string tables if it was created by binary concatenation, for example
8437         // with "llvm-cat -b".
8438         for (BitcodeModule &I : llvm::reverse(F.Mods)) {
8439           if (!I.Strtab.empty())
8440             break;
8441           I.Strtab = *Strtab;
8442         }
8443         // Similarly, the string table is used by every preceding symbol table;
8444         // normally there will be just one unless the bitcode file was created
8445         // by binary concatenation.
8446         if (!F.Symtab.empty() && F.StrtabForSymtab.empty())
8447           F.StrtabForSymtab = *Strtab;
8448         continue;
8449       }
8450 
8451       if (Entry.ID == bitc::SYMTAB_BLOCK_ID) {
8452         Expected<StringRef> SymtabOrErr =
8453             readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB);
8454         if (!SymtabOrErr)
8455           return SymtabOrErr.takeError();
8456 
8457         // We can expect the bitcode file to have multiple symbol tables if it
8458         // was created by binary concatenation. In that case we silently
8459         // ignore any subsequent symbol tables, which is fine because this is a
8460         // low level function. The client is expected to notice that the number
8461         // of modules in the symbol table does not match the number of modules
8462         // in the input file and regenerate the symbol table.
8463         if (F.Symtab.empty())
8464           F.Symtab = *SymtabOrErr;
8465         continue;
8466       }
8467 
8468       if (Error Err = Stream.SkipBlock())
8469         return std::move(Err);
8470       continue;
8471     }
8472     case BitstreamEntry::Record:
8473       if (Error E = Stream.skipRecord(Entry.ID).takeError())
8474         return std::move(E);
8475       continue;
8476     }
8477   }
8478 }
8479 
8480 /// Get a lazy one-at-time loading module from bitcode.
8481 ///
8482 /// This isn't always used in a lazy context.  In particular, it's also used by
8483 /// \a parseModule().  If this is truly lazy, then we need to eagerly pull
8484 /// in forward-referenced functions from block address references.
8485 ///
8486 /// \param[in] MaterializeAll Set to \c true if we should materialize
8487 /// everything.
8488 Expected<std::unique_ptr<Module>>
8489 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll,
8490                              bool ShouldLazyLoadMetadata, bool IsImporting,
8491                              ParserCallbacks Callbacks) {
8492   BitstreamCursor Stream(Buffer);
8493 
8494   std::string ProducerIdentification;
8495   if (IdentificationBit != -1ull) {
8496     if (Error JumpFailed = Stream.JumpToBit(IdentificationBit))
8497       return std::move(JumpFailed);
8498     if (Error E =
8499             readIdentificationBlock(Stream).moveInto(ProducerIdentification))
8500       return std::move(E);
8501   }
8502 
8503   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
8504     return std::move(JumpFailed);
8505   auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification,
8506                               Context);
8507 
8508   std::unique_ptr<Module> M =
8509       std::make_unique<Module>(ModuleIdentifier, Context);
8510   M->setMaterializer(R);
8511 
8512   // Delay parsing Metadata if ShouldLazyLoadMetadata is true.
8513   if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata,
8514                                       IsImporting, Callbacks))
8515     return std::move(Err);
8516 
8517   if (MaterializeAll) {
8518     // Read in the entire module, and destroy the BitcodeReader.
8519     if (Error Err = M->materializeAll())
8520       return std::move(Err);
8521   } else {
8522     // Resolve forward references from blockaddresses.
8523     if (Error Err = R->materializeForwardReferencedFunctions())
8524       return std::move(Err);
8525   }
8526 
8527   return std::move(M);
8528 }
8529 
8530 Expected<std::unique_ptr<Module>>
8531 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata,
8532                              bool IsImporting, ParserCallbacks Callbacks) {
8533   return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting,
8534                        Callbacks);
8535 }
8536 
8537 // Parse the specified bitcode buffer and merge the index into CombinedIndex.
8538 // We don't use ModuleIdentifier here because the client may need to control the
8539 // module path used in the combined summary (e.g. when reading summaries for
8540 // regular LTO modules).
8541 Error BitcodeModule::readSummary(
8542     ModuleSummaryIndex &CombinedIndex, StringRef ModulePath,
8543     std::function<bool(GlobalValue::GUID)> IsPrevailing) {
8544   BitstreamCursor Stream(Buffer);
8545   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
8546     return JumpFailed;
8547 
8548   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex,
8549                                     ModulePath, IsPrevailing);
8550   return R.parseModule();
8551 }
8552 
8553 // Parse the specified bitcode buffer, returning the function info index.
8554 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() {
8555   BitstreamCursor Stream(Buffer);
8556   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
8557     return std::move(JumpFailed);
8558 
8559   auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false);
8560   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index,
8561                                     ModuleIdentifier, 0);
8562 
8563   if (Error Err = R.parseModule())
8564     return std::move(Err);
8565 
8566   return std::move(Index);
8567 }
8568 
8569 static Expected<std::pair<bool, bool>>
8570 getEnableSplitLTOUnitAndUnifiedFlag(BitstreamCursor &Stream,
8571                                                  unsigned ID,
8572                                                  BitcodeLTOInfo &LTOInfo) {
8573   if (Error Err = Stream.EnterSubBlock(ID))
8574     return std::move(Err);
8575   SmallVector<uint64_t, 64> Record;
8576 
8577   while (true) {
8578     BitstreamEntry Entry;
8579     std::pair<bool, bool> Result = {false,false};
8580     if (Error E = Stream.advanceSkippingSubblocks().moveInto(Entry))
8581       return std::move(E);
8582 
8583     switch (Entry.Kind) {
8584     case BitstreamEntry::SubBlock: // Handled for us already.
8585     case BitstreamEntry::Error:
8586       return error("Malformed block");
8587     case BitstreamEntry::EndBlock: {
8588       // If no flags record found, set both flags to false.
8589       return Result;
8590     }
8591     case BitstreamEntry::Record:
8592       // The interesting case.
8593       break;
8594     }
8595 
8596     // Look for the FS_FLAGS record.
8597     Record.clear();
8598     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
8599     if (!MaybeBitCode)
8600       return MaybeBitCode.takeError();
8601     switch (MaybeBitCode.get()) {
8602     default: // Default behavior: ignore.
8603       break;
8604     case bitc::FS_FLAGS: { // [flags]
8605       uint64_t Flags = Record[0];
8606       // Scan flags.
8607       assert(Flags <= 0x2ff && "Unexpected bits in flag");
8608 
8609       bool EnableSplitLTOUnit = Flags & 0x8;
8610       bool UnifiedLTO = Flags & 0x200;
8611       Result = {EnableSplitLTOUnit, UnifiedLTO};
8612 
8613       return Result;
8614     }
8615     }
8616   }
8617   llvm_unreachable("Exit infinite loop");
8618 }
8619 
8620 // Check if the given bitcode buffer contains a global value summary block.
8621 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() {
8622   BitstreamCursor Stream(Buffer);
8623   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
8624     return std::move(JumpFailed);
8625 
8626   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
8627     return std::move(Err);
8628 
8629   while (true) {
8630     llvm::BitstreamEntry Entry;
8631     if (Error E = Stream.advance().moveInto(Entry))
8632       return std::move(E);
8633 
8634     switch (Entry.Kind) {
8635     case BitstreamEntry::Error:
8636       return error("Malformed block");
8637     case BitstreamEntry::EndBlock:
8638       return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false,
8639                             /*EnableSplitLTOUnit=*/false, /*UnifiedLTO=*/false};
8640 
8641     case BitstreamEntry::SubBlock:
8642       if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) {
8643         BitcodeLTOInfo LTOInfo;
8644         Expected<std::pair<bool, bool>> Flags =
8645             getEnableSplitLTOUnitAndUnifiedFlag(Stream, Entry.ID, LTOInfo);
8646         if (!Flags)
8647           return Flags.takeError();
8648         std::tie(LTOInfo.EnableSplitLTOUnit, LTOInfo.UnifiedLTO) = Flags.get();
8649         LTOInfo.IsThinLTO = true;
8650         LTOInfo.HasSummary = true;
8651         return LTOInfo;
8652       }
8653 
8654       if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) {
8655         BitcodeLTOInfo LTOInfo;
8656         Expected<std::pair<bool, bool>> Flags =
8657             getEnableSplitLTOUnitAndUnifiedFlag(Stream, Entry.ID, LTOInfo);
8658         if (!Flags)
8659           return Flags.takeError();
8660         std::tie(LTOInfo.EnableSplitLTOUnit, LTOInfo.UnifiedLTO) = Flags.get();
8661         LTOInfo.IsThinLTO = false;
8662         LTOInfo.HasSummary = true;
8663         return LTOInfo;
8664       }
8665 
8666       // Ignore other sub-blocks.
8667       if (Error Err = Stream.SkipBlock())
8668         return std::move(Err);
8669       continue;
8670 
8671     case BitstreamEntry::Record:
8672       if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID))
8673         continue;
8674       else
8675         return StreamFailed.takeError();
8676     }
8677   }
8678 }
8679 
8680 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) {
8681   Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer);
8682   if (!MsOrErr)
8683     return MsOrErr.takeError();
8684 
8685   if (MsOrErr->size() != 1)
8686     return error("Expected a single module");
8687 
8688   return (*MsOrErr)[0];
8689 }
8690 
8691 Expected<std::unique_ptr<Module>>
8692 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context,
8693                            bool ShouldLazyLoadMetadata, bool IsImporting,
8694                            ParserCallbacks Callbacks) {
8695   Expected<BitcodeModule> BM = getSingleModule(Buffer);
8696   if (!BM)
8697     return BM.takeError();
8698 
8699   return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting,
8700                            Callbacks);
8701 }
8702 
8703 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule(
8704     std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context,
8705     bool ShouldLazyLoadMetadata, bool IsImporting, ParserCallbacks Callbacks) {
8706   auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata,
8707                                      IsImporting, Callbacks);
8708   if (MOrErr)
8709     (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer));
8710   return MOrErr;
8711 }
8712 
8713 Expected<std::unique_ptr<Module>>
8714 BitcodeModule::parseModule(LLVMContext &Context, ParserCallbacks Callbacks) {
8715   return getModuleImpl(Context, true, false, false, Callbacks);
8716   // TODO: Restore the use-lists to the in-memory state when the bitcode was
8717   // written.  We must defer until the Module has been fully materialized.
8718 }
8719 
8720 Expected<std::unique_ptr<Module>>
8721 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context,
8722                        ParserCallbacks Callbacks) {
8723   Expected<BitcodeModule> BM = getSingleModule(Buffer);
8724   if (!BM)
8725     return BM.takeError();
8726 
8727   return BM->parseModule(Context, Callbacks);
8728 }
8729 
8730 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) {
8731   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
8732   if (!StreamOrErr)
8733     return StreamOrErr.takeError();
8734 
8735   return readTriple(*StreamOrErr);
8736 }
8737 
8738 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) {
8739   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
8740   if (!StreamOrErr)
8741     return StreamOrErr.takeError();
8742 
8743   return hasObjCCategory(*StreamOrErr);
8744 }
8745 
8746 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) {
8747   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
8748   if (!StreamOrErr)
8749     return StreamOrErr.takeError();
8750 
8751   return readIdentificationCode(*StreamOrErr);
8752 }
8753 
8754 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer,
8755                                    ModuleSummaryIndex &CombinedIndex) {
8756   Expected<BitcodeModule> BM = getSingleModule(Buffer);
8757   if (!BM)
8758     return BM.takeError();
8759 
8760   return BM->readSummary(CombinedIndex, BM->getModuleIdentifier());
8761 }
8762 
8763 Expected<std::unique_ptr<ModuleSummaryIndex>>
8764 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) {
8765   Expected<BitcodeModule> BM = getSingleModule(Buffer);
8766   if (!BM)
8767     return BM.takeError();
8768 
8769   return BM->getSummary();
8770 }
8771 
8772 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) {
8773   Expected<BitcodeModule> BM = getSingleModule(Buffer);
8774   if (!BM)
8775     return BM.takeError();
8776 
8777   return BM->getLTOInfo();
8778 }
8779 
8780 Expected<std::unique_ptr<ModuleSummaryIndex>>
8781 llvm::getModuleSummaryIndexForFile(StringRef Path,
8782                                    bool IgnoreEmptyThinLTOIndexFile) {
8783   ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr =
8784       MemoryBuffer::getFileOrSTDIN(Path);
8785   if (!FileOrErr)
8786     return errorCodeToError(FileOrErr.getError());
8787   if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize())
8788     return nullptr;
8789   return getModuleSummaryIndex(**FileOrErr);
8790 }
8791