1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Bitcode/BitcodeReader.h" 10 #include "MetadataLoader.h" 11 #include "ValueList.h" 12 #include "llvm/ADT/APFloat.h" 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallString.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/ADT/StringRef.h" 20 #include "llvm/ADT/Twine.h" 21 #include "llvm/Bitcode/BitcodeCommon.h" 22 #include "llvm/Bitcode/LLVMBitCodes.h" 23 #include "llvm/Bitstream/BitstreamReader.h" 24 #include "llvm/Config/llvm-config.h" 25 #include "llvm/IR/Argument.h" 26 #include "llvm/IR/AttributeMask.h" 27 #include "llvm/IR/Attributes.h" 28 #include "llvm/IR/AutoUpgrade.h" 29 #include "llvm/IR/BasicBlock.h" 30 #include "llvm/IR/CallingConv.h" 31 #include "llvm/IR/Comdat.h" 32 #include "llvm/IR/Constant.h" 33 #include "llvm/IR/ConstantRangeList.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/DebugInfo.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GVMaterializer.h" 42 #include "llvm/IR/GetElementPtrTypeIterator.h" 43 #include "llvm/IR/GlobalAlias.h" 44 #include "llvm/IR/GlobalIFunc.h" 45 #include "llvm/IR/GlobalObject.h" 46 #include "llvm/IR/GlobalValue.h" 47 #include "llvm/IR/GlobalVariable.h" 48 #include "llvm/IR/InlineAsm.h" 49 #include "llvm/IR/InstIterator.h" 50 #include "llvm/IR/InstrTypes.h" 51 #include "llvm/IR/Instruction.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/IntrinsicsAArch64.h" 55 #include "llvm/IR/IntrinsicsARM.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/Metadata.h" 58 #include "llvm/IR/Module.h" 59 #include "llvm/IR/ModuleSummaryIndex.h" 60 #include "llvm/IR/Operator.h" 61 #include "llvm/IR/ProfDataUtils.h" 62 #include "llvm/IR/Type.h" 63 #include "llvm/IR/Value.h" 64 #include "llvm/IR/Verifier.h" 65 #include "llvm/Support/AtomicOrdering.h" 66 #include "llvm/Support/Casting.h" 67 #include "llvm/Support/CommandLine.h" 68 #include "llvm/Support/Compiler.h" 69 #include "llvm/Support/Debug.h" 70 #include "llvm/Support/Error.h" 71 #include "llvm/Support/ErrorHandling.h" 72 #include "llvm/Support/ErrorOr.h" 73 #include "llvm/Support/MathExtras.h" 74 #include "llvm/Support/MemoryBuffer.h" 75 #include "llvm/Support/ModRef.h" 76 #include "llvm/Support/raw_ostream.h" 77 #include "llvm/TargetParser/Triple.h" 78 #include <algorithm> 79 #include <cassert> 80 #include <cstddef> 81 #include <cstdint> 82 #include <deque> 83 #include <map> 84 #include <memory> 85 #include <optional> 86 #include <set> 87 #include <string> 88 #include <system_error> 89 #include <tuple> 90 #include <utility> 91 #include <vector> 92 93 using namespace llvm; 94 95 static cl::opt<bool> PrintSummaryGUIDs( 96 "print-summary-global-ids", cl::init(false), cl::Hidden, 97 cl::desc( 98 "Print the global id for each value when reading the module summary")); 99 100 static cl::opt<bool> ExpandConstantExprs( 101 "expand-constant-exprs", cl::Hidden, 102 cl::desc( 103 "Expand constant expressions to instructions for testing purposes")); 104 105 /// Load bitcode directly into RemoveDIs format (use debug records instead 106 /// of debug intrinsics). UNSET is treated as FALSE, so the default action 107 /// is to do nothing. Individual tools can override this to incrementally add 108 /// support for the RemoveDIs format. 109 cl::opt<cl::boolOrDefault> LoadBitcodeIntoNewDbgInfoFormat( 110 "load-bitcode-into-experimental-debuginfo-iterators", cl::Hidden, 111 cl::desc("Load bitcode directly into the new debug info format (regardless " 112 "of input format)")); 113 extern cl::opt<bool> UseNewDbgInfoFormat; 114 extern cl::opt<cl::boolOrDefault> PreserveInputDbgFormat; 115 extern bool WriteNewDbgInfoFormatToBitcode; 116 extern cl::opt<bool> WriteNewDbgInfoFormat; 117 118 namespace { 119 120 enum { 121 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 122 }; 123 124 } // end anonymous namespace 125 126 static Error error(const Twine &Message) { 127 return make_error<StringError>( 128 Message, make_error_code(BitcodeError::CorruptedBitcode)); 129 } 130 131 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) { 132 if (!Stream.canSkipToPos(4)) 133 return createStringError(std::errc::illegal_byte_sequence, 134 "file too small to contain bitcode header"); 135 for (unsigned C : {'B', 'C'}) 136 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) { 137 if (Res.get() != C) 138 return createStringError(std::errc::illegal_byte_sequence, 139 "file doesn't start with bitcode header"); 140 } else 141 return Res.takeError(); 142 for (unsigned C : {0x0, 0xC, 0xE, 0xD}) 143 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) { 144 if (Res.get() != C) 145 return createStringError(std::errc::illegal_byte_sequence, 146 "file doesn't start with bitcode header"); 147 } else 148 return Res.takeError(); 149 return Error::success(); 150 } 151 152 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) { 153 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart(); 154 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize(); 155 156 if (Buffer.getBufferSize() & 3) 157 return error("Invalid bitcode signature"); 158 159 // If we have a wrapper header, parse it and ignore the non-bc file contents. 160 // The magic number is 0x0B17C0DE stored in little endian. 161 if (isBitcodeWrapper(BufPtr, BufEnd)) 162 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 163 return error("Invalid bitcode wrapper header"); 164 165 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd)); 166 if (Error Err = hasInvalidBitcodeHeader(Stream)) 167 return std::move(Err); 168 169 return std::move(Stream); 170 } 171 172 /// Convert a string from a record into an std::string, return true on failure. 173 template <typename StrTy> 174 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 175 StrTy &Result) { 176 if (Idx > Record.size()) 177 return true; 178 179 Result.append(Record.begin() + Idx, Record.end()); 180 return false; 181 } 182 183 // Strip all the TBAA attachment for the module. 184 static void stripTBAA(Module *M) { 185 for (auto &F : *M) { 186 if (F.isMaterializable()) 187 continue; 188 for (auto &I : instructions(F)) 189 I.setMetadata(LLVMContext::MD_tbaa, nullptr); 190 } 191 } 192 193 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the 194 /// "epoch" encoded in the bitcode, and return the producer name if any. 195 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) { 196 if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 197 return std::move(Err); 198 199 // Read all the records. 200 SmallVector<uint64_t, 64> Record; 201 202 std::string ProducerIdentification; 203 204 while (true) { 205 BitstreamEntry Entry; 206 if (Error E = Stream.advance().moveInto(Entry)) 207 return std::move(E); 208 209 switch (Entry.Kind) { 210 default: 211 case BitstreamEntry::Error: 212 return error("Malformed block"); 213 case BitstreamEntry::EndBlock: 214 return ProducerIdentification; 215 case BitstreamEntry::Record: 216 // The interesting case. 217 break; 218 } 219 220 // Read a record. 221 Record.clear(); 222 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 223 if (!MaybeBitCode) 224 return MaybeBitCode.takeError(); 225 switch (MaybeBitCode.get()) { 226 default: // Default behavior: reject 227 return error("Invalid value"); 228 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N] 229 convertToString(Record, 0, ProducerIdentification); 230 break; 231 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 232 unsigned epoch = (unsigned)Record[0]; 233 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 234 return error( 235 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 236 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 237 } 238 } 239 } 240 } 241 } 242 243 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) { 244 // We expect a number of well-defined blocks, though we don't necessarily 245 // need to understand them all. 246 while (true) { 247 if (Stream.AtEndOfStream()) 248 return ""; 249 250 BitstreamEntry Entry; 251 if (Error E = Stream.advance().moveInto(Entry)) 252 return std::move(E); 253 254 switch (Entry.Kind) { 255 case BitstreamEntry::EndBlock: 256 case BitstreamEntry::Error: 257 return error("Malformed block"); 258 259 case BitstreamEntry::SubBlock: 260 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) 261 return readIdentificationBlock(Stream); 262 263 // Ignore other sub-blocks. 264 if (Error Err = Stream.SkipBlock()) 265 return std::move(Err); 266 continue; 267 case BitstreamEntry::Record: 268 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 269 return std::move(E); 270 continue; 271 } 272 } 273 } 274 275 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) { 276 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 277 return std::move(Err); 278 279 SmallVector<uint64_t, 64> Record; 280 // Read all the records for this module. 281 282 while (true) { 283 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 284 if (!MaybeEntry) 285 return MaybeEntry.takeError(); 286 BitstreamEntry Entry = MaybeEntry.get(); 287 288 switch (Entry.Kind) { 289 case BitstreamEntry::SubBlock: // Handled for us already. 290 case BitstreamEntry::Error: 291 return error("Malformed block"); 292 case BitstreamEntry::EndBlock: 293 return false; 294 case BitstreamEntry::Record: 295 // The interesting case. 296 break; 297 } 298 299 // Read a record. 300 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 301 if (!MaybeRecord) 302 return MaybeRecord.takeError(); 303 switch (MaybeRecord.get()) { 304 default: 305 break; // Default behavior, ignore unknown content. 306 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 307 std::string S; 308 if (convertToString(Record, 0, S)) 309 return error("Invalid section name record"); 310 // Check for the i386 and other (x86_64, ARM) conventions 311 if (S.find("__DATA,__objc_catlist") != std::string::npos || 312 S.find("__OBJC,__category") != std::string::npos || 313 S.find("__TEXT,__swift") != std::string::npos) 314 return true; 315 break; 316 } 317 } 318 Record.clear(); 319 } 320 llvm_unreachable("Exit infinite loop"); 321 } 322 323 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) { 324 // We expect a number of well-defined blocks, though we don't necessarily 325 // need to understand them all. 326 while (true) { 327 BitstreamEntry Entry; 328 if (Error E = Stream.advance().moveInto(Entry)) 329 return std::move(E); 330 331 switch (Entry.Kind) { 332 case BitstreamEntry::Error: 333 return error("Malformed block"); 334 case BitstreamEntry::EndBlock: 335 return false; 336 337 case BitstreamEntry::SubBlock: 338 if (Entry.ID == bitc::MODULE_BLOCK_ID) 339 return hasObjCCategoryInModule(Stream); 340 341 // Ignore other sub-blocks. 342 if (Error Err = Stream.SkipBlock()) 343 return std::move(Err); 344 continue; 345 346 case BitstreamEntry::Record: 347 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 348 return std::move(E); 349 continue; 350 } 351 } 352 } 353 354 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) { 355 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 356 return std::move(Err); 357 358 SmallVector<uint64_t, 64> Record; 359 360 std::string Triple; 361 362 // Read all the records for this module. 363 while (true) { 364 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 365 if (!MaybeEntry) 366 return MaybeEntry.takeError(); 367 BitstreamEntry Entry = MaybeEntry.get(); 368 369 switch (Entry.Kind) { 370 case BitstreamEntry::SubBlock: // Handled for us already. 371 case BitstreamEntry::Error: 372 return error("Malformed block"); 373 case BitstreamEntry::EndBlock: 374 return Triple; 375 case BitstreamEntry::Record: 376 // The interesting case. 377 break; 378 } 379 380 // Read a record. 381 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 382 if (!MaybeRecord) 383 return MaybeRecord.takeError(); 384 switch (MaybeRecord.get()) { 385 default: break; // Default behavior, ignore unknown content. 386 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 387 std::string S; 388 if (convertToString(Record, 0, S)) 389 return error("Invalid triple record"); 390 Triple = S; 391 break; 392 } 393 } 394 Record.clear(); 395 } 396 llvm_unreachable("Exit infinite loop"); 397 } 398 399 static Expected<std::string> readTriple(BitstreamCursor &Stream) { 400 // We expect a number of well-defined blocks, though we don't necessarily 401 // need to understand them all. 402 while (true) { 403 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 404 if (!MaybeEntry) 405 return MaybeEntry.takeError(); 406 BitstreamEntry Entry = MaybeEntry.get(); 407 408 switch (Entry.Kind) { 409 case BitstreamEntry::Error: 410 return error("Malformed block"); 411 case BitstreamEntry::EndBlock: 412 return ""; 413 414 case BitstreamEntry::SubBlock: 415 if (Entry.ID == bitc::MODULE_BLOCK_ID) 416 return readModuleTriple(Stream); 417 418 // Ignore other sub-blocks. 419 if (Error Err = Stream.SkipBlock()) 420 return std::move(Err); 421 continue; 422 423 case BitstreamEntry::Record: 424 if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 425 continue; 426 else 427 return Skipped.takeError(); 428 } 429 } 430 } 431 432 namespace { 433 434 class BitcodeReaderBase { 435 protected: 436 BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab) 437 : Stream(std::move(Stream)), Strtab(Strtab) { 438 this->Stream.setBlockInfo(&BlockInfo); 439 } 440 441 BitstreamBlockInfo BlockInfo; 442 BitstreamCursor Stream; 443 StringRef Strtab; 444 445 /// In version 2 of the bitcode we store names of global values and comdats in 446 /// a string table rather than in the VST. 447 bool UseStrtab = false; 448 449 Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record); 450 451 /// If this module uses a string table, pop the reference to the string table 452 /// and return the referenced string and the rest of the record. Otherwise 453 /// just return the record itself. 454 std::pair<StringRef, ArrayRef<uint64_t>> 455 readNameFromStrtab(ArrayRef<uint64_t> Record); 456 457 Error readBlockInfo(); 458 459 // Contains an arbitrary and optional string identifying the bitcode producer 460 std::string ProducerIdentification; 461 462 Error error(const Twine &Message); 463 }; 464 465 } // end anonymous namespace 466 467 Error BitcodeReaderBase::error(const Twine &Message) { 468 std::string FullMsg = Message.str(); 469 if (!ProducerIdentification.empty()) 470 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " + 471 LLVM_VERSION_STRING "')"; 472 return ::error(FullMsg); 473 } 474 475 Expected<unsigned> 476 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) { 477 if (Record.empty()) 478 return error("Invalid version record"); 479 unsigned ModuleVersion = Record[0]; 480 if (ModuleVersion > 2) 481 return error("Invalid value"); 482 UseStrtab = ModuleVersion >= 2; 483 return ModuleVersion; 484 } 485 486 std::pair<StringRef, ArrayRef<uint64_t>> 487 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) { 488 if (!UseStrtab) 489 return {"", Record}; 490 // Invalid reference. Let the caller complain about the record being empty. 491 if (Record[0] + Record[1] > Strtab.size()) 492 return {"", {}}; 493 return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)}; 494 } 495 496 namespace { 497 498 /// This represents a constant expression or constant aggregate using a custom 499 /// structure internal to the bitcode reader. Later, this structure will be 500 /// expanded by materializeValue() either into a constant expression/aggregate, 501 /// or into an instruction sequence at the point of use. This allows us to 502 /// upgrade bitcode using constant expressions even if this kind of constant 503 /// expression is no longer supported. 504 class BitcodeConstant final : public Value, 505 TrailingObjects<BitcodeConstant, unsigned> { 506 friend TrailingObjects; 507 508 // Value subclass ID: Pick largest possible value to avoid any clashes. 509 static constexpr uint8_t SubclassID = 255; 510 511 public: 512 // Opcodes used for non-expressions. This includes constant aggregates 513 // (struct, array, vector) that might need expansion, as well as non-leaf 514 // constants that don't need expansion (no_cfi, dso_local, blockaddress), 515 // but still go through BitcodeConstant to avoid different uselist orders 516 // between the two cases. 517 static constexpr uint8_t ConstantStructOpcode = 255; 518 static constexpr uint8_t ConstantArrayOpcode = 254; 519 static constexpr uint8_t ConstantVectorOpcode = 253; 520 static constexpr uint8_t NoCFIOpcode = 252; 521 static constexpr uint8_t DSOLocalEquivalentOpcode = 251; 522 static constexpr uint8_t BlockAddressOpcode = 250; 523 static constexpr uint8_t ConstantPtrAuthOpcode = 249; 524 static constexpr uint8_t FirstSpecialOpcode = ConstantPtrAuthOpcode; 525 526 // Separate struct to make passing different number of parameters to 527 // BitcodeConstant::create() more convenient. 528 struct ExtraInfo { 529 uint8_t Opcode; 530 uint8_t Flags; 531 unsigned BlockAddressBB = 0; 532 Type *SrcElemTy = nullptr; 533 std::optional<ConstantRange> InRange; 534 535 ExtraInfo(uint8_t Opcode, uint8_t Flags = 0, Type *SrcElemTy = nullptr, 536 std::optional<ConstantRange> InRange = std::nullopt) 537 : Opcode(Opcode), Flags(Flags), SrcElemTy(SrcElemTy), 538 InRange(std::move(InRange)) {} 539 540 ExtraInfo(uint8_t Opcode, uint8_t Flags, unsigned BlockAddressBB) 541 : Opcode(Opcode), Flags(Flags), BlockAddressBB(BlockAddressBB) {} 542 }; 543 544 uint8_t Opcode; 545 uint8_t Flags; 546 unsigned NumOperands; 547 unsigned BlockAddressBB; 548 Type *SrcElemTy; // GEP source element type. 549 std::optional<ConstantRange> InRange; // GEP inrange attribute. 550 551 private: 552 BitcodeConstant(Type *Ty, const ExtraInfo &Info, ArrayRef<unsigned> OpIDs) 553 : Value(Ty, SubclassID), Opcode(Info.Opcode), Flags(Info.Flags), 554 NumOperands(OpIDs.size()), BlockAddressBB(Info.BlockAddressBB), 555 SrcElemTy(Info.SrcElemTy), InRange(Info.InRange) { 556 std::uninitialized_copy(OpIDs.begin(), OpIDs.end(), 557 getTrailingObjects<unsigned>()); 558 } 559 560 BitcodeConstant &operator=(const BitcodeConstant &) = delete; 561 562 public: 563 static BitcodeConstant *create(BumpPtrAllocator &A, Type *Ty, 564 const ExtraInfo &Info, 565 ArrayRef<unsigned> OpIDs) { 566 void *Mem = A.Allocate(totalSizeToAlloc<unsigned>(OpIDs.size()), 567 alignof(BitcodeConstant)); 568 return new (Mem) BitcodeConstant(Ty, Info, OpIDs); 569 } 570 571 static bool classof(const Value *V) { return V->getValueID() == SubclassID; } 572 573 ArrayRef<unsigned> getOperandIDs() const { 574 return ArrayRef(getTrailingObjects<unsigned>(), NumOperands); 575 } 576 577 std::optional<ConstantRange> getInRange() const { 578 assert(Opcode == Instruction::GetElementPtr); 579 return InRange; 580 } 581 582 const char *getOpcodeName() const { 583 return Instruction::getOpcodeName(Opcode); 584 } 585 }; 586 587 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer { 588 LLVMContext &Context; 589 Module *TheModule = nullptr; 590 // Next offset to start scanning for lazy parsing of function bodies. 591 uint64_t NextUnreadBit = 0; 592 // Last function offset found in the VST. 593 uint64_t LastFunctionBlockBit = 0; 594 bool SeenValueSymbolTable = false; 595 uint64_t VSTOffset = 0; 596 597 std::vector<std::string> SectionTable; 598 std::vector<std::string> GCTable; 599 600 std::vector<Type *> TypeList; 601 /// Track type IDs of contained types. Order is the same as the contained 602 /// types of a Type*. This is used during upgrades of typed pointer IR in 603 /// opaque pointer mode. 604 DenseMap<unsigned, SmallVector<unsigned, 1>> ContainedTypeIDs; 605 /// In some cases, we need to create a type ID for a type that was not 606 /// explicitly encoded in the bitcode, or we don't know about at the current 607 /// point. For example, a global may explicitly encode the value type ID, but 608 /// not have a type ID for the pointer to value type, for which we create a 609 /// virtual type ID instead. This map stores the new type ID that was created 610 /// for the given pair of Type and contained type ID. 611 DenseMap<std::pair<Type *, unsigned>, unsigned> VirtualTypeIDs; 612 DenseMap<Function *, unsigned> FunctionTypeIDs; 613 /// Allocator for BitcodeConstants. This should come before ValueList, 614 /// because the ValueList might hold ValueHandles to these constants, so 615 /// ValueList must be destroyed before Alloc. 616 BumpPtrAllocator Alloc; 617 BitcodeReaderValueList ValueList; 618 std::optional<MetadataLoader> MDLoader; 619 std::vector<Comdat *> ComdatList; 620 DenseSet<GlobalObject *> ImplicitComdatObjects; 621 SmallVector<Instruction *, 64> InstructionList; 622 623 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits; 624 std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInits; 625 626 struct FunctionOperandInfo { 627 Function *F; 628 unsigned PersonalityFn; 629 unsigned Prefix; 630 unsigned Prologue; 631 }; 632 std::vector<FunctionOperandInfo> FunctionOperands; 633 634 /// The set of attributes by index. Index zero in the file is for null, and 635 /// is thus not represented here. As such all indices are off by one. 636 std::vector<AttributeList> MAttributes; 637 638 /// The set of attribute groups. 639 std::map<unsigned, AttributeList> MAttributeGroups; 640 641 /// While parsing a function body, this is a list of the basic blocks for the 642 /// function. 643 std::vector<BasicBlock*> FunctionBBs; 644 645 // When reading the module header, this list is populated with functions that 646 // have bodies later in the file. 647 std::vector<Function*> FunctionsWithBodies; 648 649 // When intrinsic functions are encountered which require upgrading they are 650 // stored here with their replacement function. 651 using UpdatedIntrinsicMap = DenseMap<Function *, Function *>; 652 UpdatedIntrinsicMap UpgradedIntrinsics; 653 654 // Several operations happen after the module header has been read, but 655 // before function bodies are processed. This keeps track of whether 656 // we've done this yet. 657 bool SeenFirstFunctionBody = false; 658 659 /// When function bodies are initially scanned, this map contains info about 660 /// where to find deferred function body in the stream. 661 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 662 663 /// When Metadata block is initially scanned when parsing the module, we may 664 /// choose to defer parsing of the metadata. This vector contains info about 665 /// which Metadata blocks are deferred. 666 std::vector<uint64_t> DeferredMetadataInfo; 667 668 /// These are basic blocks forward-referenced by block addresses. They are 669 /// inserted lazily into functions when they're loaded. The basic block ID is 670 /// its index into the vector. 671 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 672 std::deque<Function *> BasicBlockFwdRefQueue; 673 674 /// These are Functions that contain BlockAddresses which refer a different 675 /// Function. When parsing the different Function, queue Functions that refer 676 /// to the different Function. Those Functions must be materialized in order 677 /// to resolve their BlockAddress constants before the different Function 678 /// gets moved into another Module. 679 std::vector<Function *> BackwardRefFunctions; 680 681 /// Indicates that we are using a new encoding for instruction operands where 682 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 683 /// instruction number, for a more compact encoding. Some instruction 684 /// operands are not relative to the instruction ID: basic block numbers, and 685 /// types. Once the old style function blocks have been phased out, we would 686 /// not need this flag. 687 bool UseRelativeIDs = false; 688 689 /// True if all functions will be materialized, negating the need to process 690 /// (e.g.) blockaddress forward references. 691 bool WillMaterializeAllForwardRefs = false; 692 693 /// Tracks whether we have seen debug intrinsics or records in this bitcode; 694 /// seeing both in a single module is currently a fatal error. 695 bool SeenDebugIntrinsic = false; 696 bool SeenDebugRecord = false; 697 698 bool StripDebugInfo = false; 699 TBAAVerifier TBAAVerifyHelper; 700 701 std::vector<std::string> BundleTags; 702 SmallVector<SyncScope::ID, 8> SSIDs; 703 704 std::optional<ValueTypeCallbackTy> ValueTypeCallback; 705 706 public: 707 BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 708 StringRef ProducerIdentification, LLVMContext &Context); 709 710 Error materializeForwardReferencedFunctions(); 711 712 Error materialize(GlobalValue *GV) override; 713 Error materializeModule() override; 714 std::vector<StructType *> getIdentifiedStructTypes() const override; 715 716 /// Main interface to parsing a bitcode buffer. 717 /// \returns true if an error occurred. 718 Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 719 bool IsImporting, ParserCallbacks Callbacks = {}); 720 721 static uint64_t decodeSignRotatedValue(uint64_t V); 722 723 /// Materialize any deferred Metadata block. 724 Error materializeMetadata() override; 725 726 void setStripDebugInfo() override; 727 728 private: 729 std::vector<StructType *> IdentifiedStructTypes; 730 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 731 StructType *createIdentifiedStructType(LLVMContext &Context); 732 733 static constexpr unsigned InvalidTypeID = ~0u; 734 735 Type *getTypeByID(unsigned ID); 736 Type *getPtrElementTypeByID(unsigned ID); 737 unsigned getContainedTypeID(unsigned ID, unsigned Idx = 0); 738 unsigned getVirtualTypeID(Type *Ty, ArrayRef<unsigned> ContainedTypeIDs = {}); 739 740 void callValueTypeCallback(Value *F, unsigned TypeID); 741 Expected<Value *> materializeValue(unsigned ValID, BasicBlock *InsertBB); 742 Expected<Constant *> getValueForInitializer(unsigned ID); 743 744 Value *getFnValueByID(unsigned ID, Type *Ty, unsigned TyID, 745 BasicBlock *ConstExprInsertBB) { 746 if (Ty && Ty->isMetadataTy()) 747 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 748 return ValueList.getValueFwdRef(ID, Ty, TyID, ConstExprInsertBB); 749 } 750 751 Metadata *getFnMetadataByID(unsigned ID) { 752 return MDLoader->getMetadataFwdRefOrLoad(ID); 753 } 754 755 BasicBlock *getBasicBlock(unsigned ID) const { 756 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 757 return FunctionBBs[ID]; 758 } 759 760 AttributeList getAttributes(unsigned i) const { 761 if (i-1 < MAttributes.size()) 762 return MAttributes[i-1]; 763 return AttributeList(); 764 } 765 766 /// Read a value/type pair out of the specified record from slot 'Slot'. 767 /// Increment Slot past the number of slots used in the record. Return true on 768 /// failure. 769 bool getValueTypePair(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 770 unsigned InstNum, Value *&ResVal, unsigned &TypeID, 771 BasicBlock *ConstExprInsertBB) { 772 if (Slot == Record.size()) return true; 773 unsigned ValNo = (unsigned)Record[Slot++]; 774 // Adjust the ValNo, if it was encoded relative to the InstNum. 775 if (UseRelativeIDs) 776 ValNo = InstNum - ValNo; 777 if (ValNo < InstNum) { 778 // If this is not a forward reference, just return the value we already 779 // have. 780 TypeID = ValueList.getTypeID(ValNo); 781 ResVal = getFnValueByID(ValNo, nullptr, TypeID, ConstExprInsertBB); 782 assert((!ResVal || ResVal->getType() == getTypeByID(TypeID)) && 783 "Incorrect type ID stored for value"); 784 return ResVal == nullptr; 785 } 786 if (Slot == Record.size()) 787 return true; 788 789 TypeID = (unsigned)Record[Slot++]; 790 ResVal = getFnValueByID(ValNo, getTypeByID(TypeID), TypeID, 791 ConstExprInsertBB); 792 return ResVal == nullptr; 793 } 794 795 bool getValueOrMetadata(const SmallVectorImpl<uint64_t> &Record, 796 unsigned &Slot, unsigned InstNum, Value *&ResVal, 797 BasicBlock *ConstExprInsertBB) { 798 if (Slot == Record.size()) 799 return true; 800 unsigned ValID = Record[Slot++]; 801 if (ValID != static_cast<unsigned>(bitc::OB_METADATA)) { 802 unsigned TypeId; 803 return getValueTypePair(Record, --Slot, InstNum, ResVal, TypeId, 804 ConstExprInsertBB); 805 } 806 if (Slot == Record.size()) 807 return true; 808 unsigned ValNo = InstNum - (unsigned)Record[Slot++]; 809 ResVal = MetadataAsValue::get(Context, getFnMetadataByID(ValNo)); 810 return false; 811 } 812 813 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 814 /// past the number of slots used by the value in the record. Return true if 815 /// there is an error. 816 bool popValue(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 817 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal, 818 BasicBlock *ConstExprInsertBB) { 819 if (getValue(Record, Slot, InstNum, Ty, TyID, ResVal, ConstExprInsertBB)) 820 return true; 821 // All values currently take a single record slot. 822 ++Slot; 823 return false; 824 } 825 826 /// Like popValue, but does not increment the Slot number. 827 bool getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 828 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal, 829 BasicBlock *ConstExprInsertBB) { 830 ResVal = getValue(Record, Slot, InstNum, Ty, TyID, ConstExprInsertBB); 831 return ResVal == nullptr; 832 } 833 834 /// Version of getValue that returns ResVal directly, or 0 if there is an 835 /// error. 836 Value *getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 837 unsigned InstNum, Type *Ty, unsigned TyID, 838 BasicBlock *ConstExprInsertBB) { 839 if (Slot == Record.size()) return nullptr; 840 unsigned ValNo = (unsigned)Record[Slot]; 841 // Adjust the ValNo, if it was encoded relative to the InstNum. 842 if (UseRelativeIDs) 843 ValNo = InstNum - ValNo; 844 return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB); 845 } 846 847 /// Like getValue, but decodes signed VBRs. 848 Value *getValueSigned(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 849 unsigned InstNum, Type *Ty, unsigned TyID, 850 BasicBlock *ConstExprInsertBB) { 851 if (Slot == Record.size()) return nullptr; 852 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 853 // Adjust the ValNo, if it was encoded relative to the InstNum. 854 if (UseRelativeIDs) 855 ValNo = InstNum - ValNo; 856 return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB); 857 } 858 859 Expected<ConstantRange> readConstantRange(ArrayRef<uint64_t> Record, 860 unsigned &OpNum, 861 unsigned BitWidth) { 862 if (Record.size() - OpNum < 2) 863 return error("Too few records for range"); 864 if (BitWidth > 64) { 865 unsigned LowerActiveWords = Record[OpNum]; 866 unsigned UpperActiveWords = Record[OpNum++] >> 32; 867 if (Record.size() - OpNum < LowerActiveWords + UpperActiveWords) 868 return error("Too few records for range"); 869 APInt Lower = 870 readWideAPInt(ArrayRef(&Record[OpNum], LowerActiveWords), BitWidth); 871 OpNum += LowerActiveWords; 872 APInt Upper = 873 readWideAPInt(ArrayRef(&Record[OpNum], UpperActiveWords), BitWidth); 874 OpNum += UpperActiveWords; 875 return ConstantRange(Lower, Upper); 876 } else { 877 int64_t Start = BitcodeReader::decodeSignRotatedValue(Record[OpNum++]); 878 int64_t End = BitcodeReader::decodeSignRotatedValue(Record[OpNum++]); 879 return ConstantRange(APInt(BitWidth, Start, true), 880 APInt(BitWidth, End, true)); 881 } 882 } 883 884 Expected<ConstantRange> 885 readBitWidthAndConstantRange(ArrayRef<uint64_t> Record, unsigned &OpNum) { 886 if (Record.size() - OpNum < 1) 887 return error("Too few records for range"); 888 unsigned BitWidth = Record[OpNum++]; 889 return readConstantRange(Record, OpNum, BitWidth); 890 } 891 892 /// Upgrades old-style typeless byval/sret/inalloca attributes by adding the 893 /// corresponding argument's pointee type. Also upgrades intrinsics that now 894 /// require an elementtype attribute. 895 Error propagateAttributeTypes(CallBase *CB, ArrayRef<unsigned> ArgsTys); 896 897 /// Converts alignment exponent (i.e. power of two (or zero)) to the 898 /// corresponding alignment to use. If alignment is too large, returns 899 /// a corresponding error code. 900 Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment); 901 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 902 Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false, 903 ParserCallbacks Callbacks = {}); 904 905 Error parseComdatRecord(ArrayRef<uint64_t> Record); 906 Error parseGlobalVarRecord(ArrayRef<uint64_t> Record); 907 Error parseFunctionRecord(ArrayRef<uint64_t> Record); 908 Error parseGlobalIndirectSymbolRecord(unsigned BitCode, 909 ArrayRef<uint64_t> Record); 910 911 Error parseAttributeBlock(); 912 Error parseAttributeGroupBlock(); 913 Error parseTypeTable(); 914 Error parseTypeTableBody(); 915 Error parseOperandBundleTags(); 916 Error parseSyncScopeNames(); 917 918 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 919 unsigned NameIndex, Triple &TT); 920 void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F, 921 ArrayRef<uint64_t> Record); 922 Error parseValueSymbolTable(uint64_t Offset = 0); 923 Error parseGlobalValueSymbolTable(); 924 Error parseConstants(); 925 Error rememberAndSkipFunctionBodies(); 926 Error rememberAndSkipFunctionBody(); 927 /// Save the positions of the Metadata blocks and skip parsing the blocks. 928 Error rememberAndSkipMetadata(); 929 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType); 930 Error parseFunctionBody(Function *F); 931 Error globalCleanup(); 932 Error resolveGlobalAndIndirectSymbolInits(); 933 Error parseUseLists(); 934 Error findFunctionInStream( 935 Function *F, 936 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 937 938 SyncScope::ID getDecodedSyncScopeID(unsigned Val); 939 }; 940 941 /// Class to manage reading and parsing function summary index bitcode 942 /// files/sections. 943 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase { 944 /// The module index built during parsing. 945 ModuleSummaryIndex &TheIndex; 946 947 /// Indicates whether we have encountered a global value summary section 948 /// yet during parsing. 949 bool SeenGlobalValSummary = false; 950 951 /// Indicates whether we have already parsed the VST, used for error checking. 952 bool SeenValueSymbolTable = false; 953 954 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 955 /// Used to enable on-demand parsing of the VST. 956 uint64_t VSTOffset = 0; 957 958 // Map to save ValueId to ValueInfo association that was recorded in the 959 // ValueSymbolTable. It is used after the VST is parsed to convert 960 // call graph edges read from the function summary from referencing 961 // callees by their ValueId to using the ValueInfo instead, which is how 962 // they are recorded in the summary index being built. 963 // We save a GUID which refers to the same global as the ValueInfo, but 964 // ignoring the linkage, i.e. for values other than local linkage they are 965 // identical (this is the second member). ValueInfo has the real GUID. 966 DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>> 967 ValueIdToValueInfoMap; 968 969 /// Map populated during module path string table parsing, from the 970 /// module ID to a string reference owned by the index's module 971 /// path string table, used to correlate with combined index 972 /// summary records. 973 DenseMap<uint64_t, StringRef> ModuleIdMap; 974 975 /// Original source file name recorded in a bitcode record. 976 std::string SourceFileName; 977 978 /// The string identifier given to this module by the client, normally the 979 /// path to the bitcode file. 980 StringRef ModulePath; 981 982 /// Callback to ask whether a symbol is the prevailing copy when invoked 983 /// during combined index building. 984 std::function<bool(GlobalValue::GUID)> IsPrevailing; 985 986 /// Saves the stack ids from the STACK_IDS record to consult when adding stack 987 /// ids from the lists in the callsite and alloc entries to the index. 988 std::vector<uint64_t> StackIds; 989 990 public: 991 ModuleSummaryIndexBitcodeReader( 992 BitstreamCursor Stream, StringRef Strtab, ModuleSummaryIndex &TheIndex, 993 StringRef ModulePath, 994 std::function<bool(GlobalValue::GUID)> IsPrevailing = nullptr); 995 996 Error parseModule(); 997 998 private: 999 void setValueGUID(uint64_t ValueID, StringRef ValueName, 1000 GlobalValue::LinkageTypes Linkage, 1001 StringRef SourceFileName); 1002 Error parseValueSymbolTable( 1003 uint64_t Offset, 1004 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 1005 SmallVector<ValueInfo, 0> makeRefList(ArrayRef<uint64_t> Record); 1006 SmallVector<FunctionSummary::EdgeTy, 0> 1007 makeCallList(ArrayRef<uint64_t> Record, bool IsOldProfileFormat, 1008 bool HasProfile, bool HasRelBF); 1009 Error parseEntireSummary(unsigned ID); 1010 Error parseModuleStringTable(); 1011 void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record); 1012 void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot, 1013 TypeIdCompatibleVtableInfo &TypeId); 1014 std::vector<FunctionSummary::ParamAccess> 1015 parseParamAccesses(ArrayRef<uint64_t> Record); 1016 1017 template <bool AllowNullValueInfo = false> 1018 std::pair<ValueInfo, GlobalValue::GUID> 1019 getValueInfoFromValueId(unsigned ValueId); 1020 1021 void addThisModule(); 1022 ModuleSummaryIndex::ModuleInfo *getThisModule(); 1023 }; 1024 1025 } // end anonymous namespace 1026 1027 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx, 1028 Error Err) { 1029 if (Err) { 1030 std::error_code EC; 1031 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) { 1032 EC = EIB.convertToErrorCode(); 1033 Ctx.emitError(EIB.message()); 1034 }); 1035 return EC; 1036 } 1037 return std::error_code(); 1038 } 1039 1040 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 1041 StringRef ProducerIdentification, 1042 LLVMContext &Context) 1043 : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context), 1044 ValueList(this->Stream.SizeInBytes(), 1045 [this](unsigned ValID, BasicBlock *InsertBB) { 1046 return materializeValue(ValID, InsertBB); 1047 }) { 1048 this->ProducerIdentification = std::string(ProducerIdentification); 1049 } 1050 1051 Error BitcodeReader::materializeForwardReferencedFunctions() { 1052 if (WillMaterializeAllForwardRefs) 1053 return Error::success(); 1054 1055 // Prevent recursion. 1056 WillMaterializeAllForwardRefs = true; 1057 1058 while (!BasicBlockFwdRefQueue.empty()) { 1059 Function *F = BasicBlockFwdRefQueue.front(); 1060 BasicBlockFwdRefQueue.pop_front(); 1061 assert(F && "Expected valid function"); 1062 if (!BasicBlockFwdRefs.count(F)) 1063 // Already materialized. 1064 continue; 1065 1066 // Check for a function that isn't materializable to prevent an infinite 1067 // loop. When parsing a blockaddress stored in a global variable, there 1068 // isn't a trivial way to check if a function will have a body without a 1069 // linear search through FunctionsWithBodies, so just check it here. 1070 if (!F->isMaterializable()) 1071 return error("Never resolved function from blockaddress"); 1072 1073 // Try to materialize F. 1074 if (Error Err = materialize(F)) 1075 return Err; 1076 } 1077 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 1078 1079 for (Function *F : BackwardRefFunctions) 1080 if (Error Err = materialize(F)) 1081 return Err; 1082 BackwardRefFunctions.clear(); 1083 1084 // Reset state. 1085 WillMaterializeAllForwardRefs = false; 1086 return Error::success(); 1087 } 1088 1089 //===----------------------------------------------------------------------===// 1090 // Helper functions to implement forward reference resolution, etc. 1091 //===----------------------------------------------------------------------===// 1092 1093 static bool hasImplicitComdat(size_t Val) { 1094 switch (Val) { 1095 default: 1096 return false; 1097 case 1: // Old WeakAnyLinkage 1098 case 4: // Old LinkOnceAnyLinkage 1099 case 10: // Old WeakODRLinkage 1100 case 11: // Old LinkOnceODRLinkage 1101 return true; 1102 } 1103 } 1104 1105 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 1106 switch (Val) { 1107 default: // Map unknown/new linkages to external 1108 case 0: 1109 return GlobalValue::ExternalLinkage; 1110 case 2: 1111 return GlobalValue::AppendingLinkage; 1112 case 3: 1113 return GlobalValue::InternalLinkage; 1114 case 5: 1115 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 1116 case 6: 1117 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 1118 case 7: 1119 return GlobalValue::ExternalWeakLinkage; 1120 case 8: 1121 return GlobalValue::CommonLinkage; 1122 case 9: 1123 return GlobalValue::PrivateLinkage; 1124 case 12: 1125 return GlobalValue::AvailableExternallyLinkage; 1126 case 13: 1127 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 1128 case 14: 1129 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 1130 case 15: 1131 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 1132 case 1: // Old value with implicit comdat. 1133 case 16: 1134 return GlobalValue::WeakAnyLinkage; 1135 case 10: // Old value with implicit comdat. 1136 case 17: 1137 return GlobalValue::WeakODRLinkage; 1138 case 4: // Old value with implicit comdat. 1139 case 18: 1140 return GlobalValue::LinkOnceAnyLinkage; 1141 case 11: // Old value with implicit comdat. 1142 case 19: 1143 return GlobalValue::LinkOnceODRLinkage; 1144 } 1145 } 1146 1147 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) { 1148 FunctionSummary::FFlags Flags; 1149 Flags.ReadNone = RawFlags & 0x1; 1150 Flags.ReadOnly = (RawFlags >> 1) & 0x1; 1151 Flags.NoRecurse = (RawFlags >> 2) & 0x1; 1152 Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1; 1153 Flags.NoInline = (RawFlags >> 4) & 0x1; 1154 Flags.AlwaysInline = (RawFlags >> 5) & 0x1; 1155 Flags.NoUnwind = (RawFlags >> 6) & 0x1; 1156 Flags.MayThrow = (RawFlags >> 7) & 0x1; 1157 Flags.HasUnknownCall = (RawFlags >> 8) & 0x1; 1158 Flags.MustBeUnreachable = (RawFlags >> 9) & 0x1; 1159 return Flags; 1160 } 1161 1162 // Decode the flags for GlobalValue in the summary. The bits for each attribute: 1163 // 1164 // linkage: [0,4), notEligibleToImport: 4, live: 5, local: 6, canAutoHide: 7, 1165 // visibility: [8, 10). 1166 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 1167 uint64_t Version) { 1168 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 1169 // like getDecodedLinkage() above. Any future change to the linkage enum and 1170 // to getDecodedLinkage() will need to be taken into account here as above. 1171 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 1172 auto Visibility = GlobalValue::VisibilityTypes((RawFlags >> 8) & 3); // 2 bits 1173 auto IK = GlobalValueSummary::ImportKind((RawFlags >> 10) & 1); // 1 bit 1174 RawFlags = RawFlags >> 4; 1175 bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3; 1176 // The Live flag wasn't introduced until version 3. For dead stripping 1177 // to work correctly on earlier versions, we must conservatively treat all 1178 // values as live. 1179 bool Live = (RawFlags & 0x2) || Version < 3; 1180 bool Local = (RawFlags & 0x4); 1181 bool AutoHide = (RawFlags & 0x8); 1182 1183 return GlobalValueSummary::GVFlags(Linkage, Visibility, NotEligibleToImport, 1184 Live, Local, AutoHide, IK); 1185 } 1186 1187 // Decode the flags for GlobalVariable in the summary 1188 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) { 1189 return GlobalVarSummary::GVarFlags( 1190 (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false, 1191 (RawFlags & 0x4) ? true : false, 1192 (GlobalObject::VCallVisibility)(RawFlags >> 3)); 1193 } 1194 1195 static std::pair<CalleeInfo::HotnessType, bool> 1196 getDecodedHotnessCallEdgeInfo(uint64_t RawFlags) { 1197 CalleeInfo::HotnessType Hotness = 1198 static_cast<CalleeInfo::HotnessType>(RawFlags & 0x7); // 3 bits 1199 bool HasTailCall = (RawFlags & 0x8); // 1 bit 1200 return {Hotness, HasTailCall}; 1201 } 1202 1203 static void getDecodedRelBFCallEdgeInfo(uint64_t RawFlags, uint64_t &RelBF, 1204 bool &HasTailCall) { 1205 static constexpr uint64_t RelBlockFreqMask = 1206 (1 << CalleeInfo::RelBlockFreqBits) - 1; 1207 RelBF = RawFlags & RelBlockFreqMask; // RelBlockFreqBits bits 1208 HasTailCall = (RawFlags & (1 << CalleeInfo::RelBlockFreqBits)); // 1 bit 1209 } 1210 1211 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 1212 switch (Val) { 1213 default: // Map unknown visibilities to default. 1214 case 0: return GlobalValue::DefaultVisibility; 1215 case 1: return GlobalValue::HiddenVisibility; 1216 case 2: return GlobalValue::ProtectedVisibility; 1217 } 1218 } 1219 1220 static GlobalValue::DLLStorageClassTypes 1221 getDecodedDLLStorageClass(unsigned Val) { 1222 switch (Val) { 1223 default: // Map unknown values to default. 1224 case 0: return GlobalValue::DefaultStorageClass; 1225 case 1: return GlobalValue::DLLImportStorageClass; 1226 case 2: return GlobalValue::DLLExportStorageClass; 1227 } 1228 } 1229 1230 static bool getDecodedDSOLocal(unsigned Val) { 1231 switch(Val) { 1232 default: // Map unknown values to preemptable. 1233 case 0: return false; 1234 case 1: return true; 1235 } 1236 } 1237 1238 static std::optional<CodeModel::Model> getDecodedCodeModel(unsigned Val) { 1239 switch (Val) { 1240 case 1: 1241 return CodeModel::Tiny; 1242 case 2: 1243 return CodeModel::Small; 1244 case 3: 1245 return CodeModel::Kernel; 1246 case 4: 1247 return CodeModel::Medium; 1248 case 5: 1249 return CodeModel::Large; 1250 } 1251 1252 return {}; 1253 } 1254 1255 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 1256 switch (Val) { 1257 case 0: return GlobalVariable::NotThreadLocal; 1258 default: // Map unknown non-zero value to general dynamic. 1259 case 1: return GlobalVariable::GeneralDynamicTLSModel; 1260 case 2: return GlobalVariable::LocalDynamicTLSModel; 1261 case 3: return GlobalVariable::InitialExecTLSModel; 1262 case 4: return GlobalVariable::LocalExecTLSModel; 1263 } 1264 } 1265 1266 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { 1267 switch (Val) { 1268 default: // Map unknown to UnnamedAddr::None. 1269 case 0: return GlobalVariable::UnnamedAddr::None; 1270 case 1: return GlobalVariable::UnnamedAddr::Global; 1271 case 2: return GlobalVariable::UnnamedAddr::Local; 1272 } 1273 } 1274 1275 static int getDecodedCastOpcode(unsigned Val) { 1276 switch (Val) { 1277 default: return -1; 1278 case bitc::CAST_TRUNC : return Instruction::Trunc; 1279 case bitc::CAST_ZEXT : return Instruction::ZExt; 1280 case bitc::CAST_SEXT : return Instruction::SExt; 1281 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 1282 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 1283 case bitc::CAST_UITOFP : return Instruction::UIToFP; 1284 case bitc::CAST_SITOFP : return Instruction::SIToFP; 1285 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 1286 case bitc::CAST_FPEXT : return Instruction::FPExt; 1287 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 1288 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 1289 case bitc::CAST_BITCAST : return Instruction::BitCast; 1290 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 1291 } 1292 } 1293 1294 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) { 1295 bool IsFP = Ty->isFPOrFPVectorTy(); 1296 // UnOps are only valid for int/fp or vector of int/fp types 1297 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1298 return -1; 1299 1300 switch (Val) { 1301 default: 1302 return -1; 1303 case bitc::UNOP_FNEG: 1304 return IsFP ? Instruction::FNeg : -1; 1305 } 1306 } 1307 1308 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 1309 bool IsFP = Ty->isFPOrFPVectorTy(); 1310 // BinOps are only valid for int/fp or vector of int/fp types 1311 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1312 return -1; 1313 1314 switch (Val) { 1315 default: 1316 return -1; 1317 case bitc::BINOP_ADD: 1318 return IsFP ? Instruction::FAdd : Instruction::Add; 1319 case bitc::BINOP_SUB: 1320 return IsFP ? Instruction::FSub : Instruction::Sub; 1321 case bitc::BINOP_MUL: 1322 return IsFP ? Instruction::FMul : Instruction::Mul; 1323 case bitc::BINOP_UDIV: 1324 return IsFP ? -1 : Instruction::UDiv; 1325 case bitc::BINOP_SDIV: 1326 return IsFP ? Instruction::FDiv : Instruction::SDiv; 1327 case bitc::BINOP_UREM: 1328 return IsFP ? -1 : Instruction::URem; 1329 case bitc::BINOP_SREM: 1330 return IsFP ? Instruction::FRem : Instruction::SRem; 1331 case bitc::BINOP_SHL: 1332 return IsFP ? -1 : Instruction::Shl; 1333 case bitc::BINOP_LSHR: 1334 return IsFP ? -1 : Instruction::LShr; 1335 case bitc::BINOP_ASHR: 1336 return IsFP ? -1 : Instruction::AShr; 1337 case bitc::BINOP_AND: 1338 return IsFP ? -1 : Instruction::And; 1339 case bitc::BINOP_OR: 1340 return IsFP ? -1 : Instruction::Or; 1341 case bitc::BINOP_XOR: 1342 return IsFP ? -1 : Instruction::Xor; 1343 } 1344 } 1345 1346 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 1347 switch (Val) { 1348 default: return AtomicRMWInst::BAD_BINOP; 1349 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 1350 case bitc::RMW_ADD: return AtomicRMWInst::Add; 1351 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 1352 case bitc::RMW_AND: return AtomicRMWInst::And; 1353 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 1354 case bitc::RMW_OR: return AtomicRMWInst::Or; 1355 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 1356 case bitc::RMW_MAX: return AtomicRMWInst::Max; 1357 case bitc::RMW_MIN: return AtomicRMWInst::Min; 1358 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 1359 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 1360 case bitc::RMW_FADD: return AtomicRMWInst::FAdd; 1361 case bitc::RMW_FSUB: return AtomicRMWInst::FSub; 1362 case bitc::RMW_FMAX: return AtomicRMWInst::FMax; 1363 case bitc::RMW_FMIN: return AtomicRMWInst::FMin; 1364 case bitc::RMW_UINC_WRAP: 1365 return AtomicRMWInst::UIncWrap; 1366 case bitc::RMW_UDEC_WRAP: 1367 return AtomicRMWInst::UDecWrap; 1368 case bitc::RMW_USUB_COND: 1369 return AtomicRMWInst::USubCond; 1370 case bitc::RMW_USUB_SAT: 1371 return AtomicRMWInst::USubSat; 1372 } 1373 } 1374 1375 static AtomicOrdering getDecodedOrdering(unsigned Val) { 1376 switch (Val) { 1377 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 1378 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 1379 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 1380 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 1381 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 1382 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 1383 default: // Map unknown orderings to sequentially-consistent. 1384 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 1385 } 1386 } 1387 1388 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 1389 switch (Val) { 1390 default: // Map unknown selection kinds to any. 1391 case bitc::COMDAT_SELECTION_KIND_ANY: 1392 return Comdat::Any; 1393 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 1394 return Comdat::ExactMatch; 1395 case bitc::COMDAT_SELECTION_KIND_LARGEST: 1396 return Comdat::Largest; 1397 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 1398 return Comdat::NoDeduplicate; 1399 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 1400 return Comdat::SameSize; 1401 } 1402 } 1403 1404 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 1405 FastMathFlags FMF; 1406 if (0 != (Val & bitc::UnsafeAlgebra)) 1407 FMF.setFast(); 1408 if (0 != (Val & bitc::AllowReassoc)) 1409 FMF.setAllowReassoc(); 1410 if (0 != (Val & bitc::NoNaNs)) 1411 FMF.setNoNaNs(); 1412 if (0 != (Val & bitc::NoInfs)) 1413 FMF.setNoInfs(); 1414 if (0 != (Val & bitc::NoSignedZeros)) 1415 FMF.setNoSignedZeros(); 1416 if (0 != (Val & bitc::AllowReciprocal)) 1417 FMF.setAllowReciprocal(); 1418 if (0 != (Val & bitc::AllowContract)) 1419 FMF.setAllowContract(true); 1420 if (0 != (Val & bitc::ApproxFunc)) 1421 FMF.setApproxFunc(); 1422 return FMF; 1423 } 1424 1425 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) { 1426 // A GlobalValue with local linkage cannot have a DLL storage class. 1427 if (GV->hasLocalLinkage()) 1428 return; 1429 switch (Val) { 1430 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 1431 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 1432 } 1433 } 1434 1435 Type *BitcodeReader::getTypeByID(unsigned ID) { 1436 // The type table size is always specified correctly. 1437 if (ID >= TypeList.size()) 1438 return nullptr; 1439 1440 if (Type *Ty = TypeList[ID]) 1441 return Ty; 1442 1443 // If we have a forward reference, the only possible case is when it is to a 1444 // named struct. Just create a placeholder for now. 1445 return TypeList[ID] = createIdentifiedStructType(Context); 1446 } 1447 1448 unsigned BitcodeReader::getContainedTypeID(unsigned ID, unsigned Idx) { 1449 auto It = ContainedTypeIDs.find(ID); 1450 if (It == ContainedTypeIDs.end()) 1451 return InvalidTypeID; 1452 1453 if (Idx >= It->second.size()) 1454 return InvalidTypeID; 1455 1456 return It->second[Idx]; 1457 } 1458 1459 Type *BitcodeReader::getPtrElementTypeByID(unsigned ID) { 1460 if (ID >= TypeList.size()) 1461 return nullptr; 1462 1463 Type *Ty = TypeList[ID]; 1464 if (!Ty->isPointerTy()) 1465 return nullptr; 1466 1467 return getTypeByID(getContainedTypeID(ID, 0)); 1468 } 1469 1470 unsigned BitcodeReader::getVirtualTypeID(Type *Ty, 1471 ArrayRef<unsigned> ChildTypeIDs) { 1472 unsigned ChildTypeID = ChildTypeIDs.empty() ? InvalidTypeID : ChildTypeIDs[0]; 1473 auto CacheKey = std::make_pair(Ty, ChildTypeID); 1474 auto It = VirtualTypeIDs.find(CacheKey); 1475 if (It != VirtualTypeIDs.end()) { 1476 // The cmpxchg return value is the only place we need more than one 1477 // contained type ID, however the second one will always be the same (i1), 1478 // so we don't need to include it in the cache key. This asserts that the 1479 // contained types are indeed as expected and there are no collisions. 1480 assert((ChildTypeIDs.empty() || 1481 ContainedTypeIDs[It->second] == ChildTypeIDs) && 1482 "Incorrect cached contained type IDs"); 1483 return It->second; 1484 } 1485 1486 unsigned TypeID = TypeList.size(); 1487 TypeList.push_back(Ty); 1488 if (!ChildTypeIDs.empty()) 1489 append_range(ContainedTypeIDs[TypeID], ChildTypeIDs); 1490 VirtualTypeIDs.insert({CacheKey, TypeID}); 1491 return TypeID; 1492 } 1493 1494 static GEPNoWrapFlags toGEPNoWrapFlags(uint64_t Flags) { 1495 GEPNoWrapFlags NW; 1496 if (Flags & (1 << bitc::GEP_INBOUNDS)) 1497 NW |= GEPNoWrapFlags::inBounds(); 1498 if (Flags & (1 << bitc::GEP_NUSW)) 1499 NW |= GEPNoWrapFlags::noUnsignedSignedWrap(); 1500 if (Flags & (1 << bitc::GEP_NUW)) 1501 NW |= GEPNoWrapFlags::noUnsignedWrap(); 1502 return NW; 1503 } 1504 1505 static bool isConstExprSupported(const BitcodeConstant *BC) { 1506 uint8_t Opcode = BC->Opcode; 1507 1508 // These are not real constant expressions, always consider them supported. 1509 if (Opcode >= BitcodeConstant::FirstSpecialOpcode) 1510 return true; 1511 1512 // If -expand-constant-exprs is set, we want to consider all expressions 1513 // as unsupported. 1514 if (ExpandConstantExprs) 1515 return false; 1516 1517 if (Instruction::isBinaryOp(Opcode)) 1518 return ConstantExpr::isSupportedBinOp(Opcode); 1519 1520 if (Instruction::isCast(Opcode)) 1521 return ConstantExpr::isSupportedCastOp(Opcode); 1522 1523 if (Opcode == Instruction::GetElementPtr) 1524 return ConstantExpr::isSupportedGetElementPtr(BC->SrcElemTy); 1525 1526 switch (Opcode) { 1527 case Instruction::FNeg: 1528 case Instruction::Select: 1529 case Instruction::ICmp: 1530 case Instruction::FCmp: 1531 return false; 1532 default: 1533 return true; 1534 } 1535 } 1536 1537 Expected<Value *> BitcodeReader::materializeValue(unsigned StartValID, 1538 BasicBlock *InsertBB) { 1539 // Quickly handle the case where there is no BitcodeConstant to resolve. 1540 if (StartValID < ValueList.size() && ValueList[StartValID] && 1541 !isa<BitcodeConstant>(ValueList[StartValID])) 1542 return ValueList[StartValID]; 1543 1544 SmallDenseMap<unsigned, Value *> MaterializedValues; 1545 SmallVector<unsigned> Worklist; 1546 Worklist.push_back(StartValID); 1547 while (!Worklist.empty()) { 1548 unsigned ValID = Worklist.back(); 1549 if (MaterializedValues.count(ValID)) { 1550 // Duplicate expression that was already handled. 1551 Worklist.pop_back(); 1552 continue; 1553 } 1554 1555 if (ValID >= ValueList.size() || !ValueList[ValID]) 1556 return error("Invalid value ID"); 1557 1558 Value *V = ValueList[ValID]; 1559 auto *BC = dyn_cast<BitcodeConstant>(V); 1560 if (!BC) { 1561 MaterializedValues.insert({ValID, V}); 1562 Worklist.pop_back(); 1563 continue; 1564 } 1565 1566 // Iterate in reverse, so values will get popped from the worklist in 1567 // expected order. 1568 SmallVector<Value *> Ops; 1569 for (unsigned OpID : reverse(BC->getOperandIDs())) { 1570 auto It = MaterializedValues.find(OpID); 1571 if (It != MaterializedValues.end()) 1572 Ops.push_back(It->second); 1573 else 1574 Worklist.push_back(OpID); 1575 } 1576 1577 // Some expressions have not been resolved yet, handle them first and then 1578 // revisit this one. 1579 if (Ops.size() != BC->getOperandIDs().size()) 1580 continue; 1581 std::reverse(Ops.begin(), Ops.end()); 1582 1583 SmallVector<Constant *> ConstOps; 1584 for (Value *Op : Ops) 1585 if (auto *C = dyn_cast<Constant>(Op)) 1586 ConstOps.push_back(C); 1587 1588 // Materialize as constant expression if possible. 1589 if (isConstExprSupported(BC) && ConstOps.size() == Ops.size()) { 1590 Constant *C; 1591 if (Instruction::isCast(BC->Opcode)) { 1592 C = UpgradeBitCastExpr(BC->Opcode, ConstOps[0], BC->getType()); 1593 if (!C) 1594 C = ConstantExpr::getCast(BC->Opcode, ConstOps[0], BC->getType()); 1595 } else if (Instruction::isBinaryOp(BC->Opcode)) { 1596 C = ConstantExpr::get(BC->Opcode, ConstOps[0], ConstOps[1], BC->Flags); 1597 } else { 1598 switch (BC->Opcode) { 1599 case BitcodeConstant::ConstantPtrAuthOpcode: { 1600 auto *Key = dyn_cast<ConstantInt>(ConstOps[1]); 1601 if (!Key) 1602 return error("ptrauth key operand must be ConstantInt"); 1603 1604 auto *Disc = dyn_cast<ConstantInt>(ConstOps[2]); 1605 if (!Disc) 1606 return error("ptrauth disc operand must be ConstantInt"); 1607 1608 C = ConstantPtrAuth::get(ConstOps[0], Key, Disc, ConstOps[3]); 1609 break; 1610 } 1611 case BitcodeConstant::NoCFIOpcode: { 1612 auto *GV = dyn_cast<GlobalValue>(ConstOps[0]); 1613 if (!GV) 1614 return error("no_cfi operand must be GlobalValue"); 1615 C = NoCFIValue::get(GV); 1616 break; 1617 } 1618 case BitcodeConstant::DSOLocalEquivalentOpcode: { 1619 auto *GV = dyn_cast<GlobalValue>(ConstOps[0]); 1620 if (!GV) 1621 return error("dso_local operand must be GlobalValue"); 1622 C = DSOLocalEquivalent::get(GV); 1623 break; 1624 } 1625 case BitcodeConstant::BlockAddressOpcode: { 1626 Function *Fn = dyn_cast<Function>(ConstOps[0]); 1627 if (!Fn) 1628 return error("blockaddress operand must be a function"); 1629 1630 // If the function is already parsed we can insert the block address 1631 // right away. 1632 BasicBlock *BB; 1633 unsigned BBID = BC->BlockAddressBB; 1634 if (!BBID) 1635 // Invalid reference to entry block. 1636 return error("Invalid ID"); 1637 if (!Fn->empty()) { 1638 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 1639 for (size_t I = 0, E = BBID; I != E; ++I) { 1640 if (BBI == BBE) 1641 return error("Invalid ID"); 1642 ++BBI; 1643 } 1644 BB = &*BBI; 1645 } else { 1646 // Otherwise insert a placeholder and remember it so it can be 1647 // inserted when the function is parsed. 1648 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 1649 if (FwdBBs.empty()) 1650 BasicBlockFwdRefQueue.push_back(Fn); 1651 if (FwdBBs.size() < BBID + 1) 1652 FwdBBs.resize(BBID + 1); 1653 if (!FwdBBs[BBID]) 1654 FwdBBs[BBID] = BasicBlock::Create(Context); 1655 BB = FwdBBs[BBID]; 1656 } 1657 C = BlockAddress::get(Fn, BB); 1658 break; 1659 } 1660 case BitcodeConstant::ConstantStructOpcode: 1661 C = ConstantStruct::get(cast<StructType>(BC->getType()), ConstOps); 1662 break; 1663 case BitcodeConstant::ConstantArrayOpcode: 1664 C = ConstantArray::get(cast<ArrayType>(BC->getType()), ConstOps); 1665 break; 1666 case BitcodeConstant::ConstantVectorOpcode: 1667 C = ConstantVector::get(ConstOps); 1668 break; 1669 case Instruction::GetElementPtr: 1670 C = ConstantExpr::getGetElementPtr( 1671 BC->SrcElemTy, ConstOps[0], ArrayRef(ConstOps).drop_front(), 1672 toGEPNoWrapFlags(BC->Flags), BC->getInRange()); 1673 break; 1674 case Instruction::ExtractElement: 1675 C = ConstantExpr::getExtractElement(ConstOps[0], ConstOps[1]); 1676 break; 1677 case Instruction::InsertElement: 1678 C = ConstantExpr::getInsertElement(ConstOps[0], ConstOps[1], 1679 ConstOps[2]); 1680 break; 1681 case Instruction::ShuffleVector: { 1682 SmallVector<int, 16> Mask; 1683 ShuffleVectorInst::getShuffleMask(ConstOps[2], Mask); 1684 C = ConstantExpr::getShuffleVector(ConstOps[0], ConstOps[1], Mask); 1685 break; 1686 } 1687 default: 1688 llvm_unreachable("Unhandled bitcode constant"); 1689 } 1690 } 1691 1692 // Cache resolved constant. 1693 ValueList.replaceValueWithoutRAUW(ValID, C); 1694 MaterializedValues.insert({ValID, C}); 1695 Worklist.pop_back(); 1696 continue; 1697 } 1698 1699 if (!InsertBB) 1700 return error(Twine("Value referenced by initializer is an unsupported " 1701 "constant expression of type ") + 1702 BC->getOpcodeName()); 1703 1704 // Materialize as instructions if necessary. 1705 Instruction *I; 1706 if (Instruction::isCast(BC->Opcode)) { 1707 I = CastInst::Create((Instruction::CastOps)BC->Opcode, Ops[0], 1708 BC->getType(), "constexpr", InsertBB); 1709 } else if (Instruction::isUnaryOp(BC->Opcode)) { 1710 I = UnaryOperator::Create((Instruction::UnaryOps)BC->Opcode, Ops[0], 1711 "constexpr", InsertBB); 1712 } else if (Instruction::isBinaryOp(BC->Opcode)) { 1713 I = BinaryOperator::Create((Instruction::BinaryOps)BC->Opcode, Ops[0], 1714 Ops[1], "constexpr", InsertBB); 1715 if (isa<OverflowingBinaryOperator>(I)) { 1716 if (BC->Flags & OverflowingBinaryOperator::NoSignedWrap) 1717 I->setHasNoSignedWrap(); 1718 if (BC->Flags & OverflowingBinaryOperator::NoUnsignedWrap) 1719 I->setHasNoUnsignedWrap(); 1720 } 1721 if (isa<PossiblyExactOperator>(I) && 1722 (BC->Flags & PossiblyExactOperator::IsExact)) 1723 I->setIsExact(); 1724 } else { 1725 switch (BC->Opcode) { 1726 case BitcodeConstant::ConstantVectorOpcode: { 1727 Type *IdxTy = Type::getInt32Ty(BC->getContext()); 1728 Value *V = PoisonValue::get(BC->getType()); 1729 for (auto Pair : enumerate(Ops)) { 1730 Value *Idx = ConstantInt::get(IdxTy, Pair.index()); 1731 V = InsertElementInst::Create(V, Pair.value(), Idx, "constexpr.ins", 1732 InsertBB); 1733 } 1734 I = cast<Instruction>(V); 1735 break; 1736 } 1737 case BitcodeConstant::ConstantStructOpcode: 1738 case BitcodeConstant::ConstantArrayOpcode: { 1739 Value *V = PoisonValue::get(BC->getType()); 1740 for (auto Pair : enumerate(Ops)) 1741 V = InsertValueInst::Create(V, Pair.value(), Pair.index(), 1742 "constexpr.ins", InsertBB); 1743 I = cast<Instruction>(V); 1744 break; 1745 } 1746 case Instruction::ICmp: 1747 case Instruction::FCmp: 1748 I = CmpInst::Create((Instruction::OtherOps)BC->Opcode, 1749 (CmpInst::Predicate)BC->Flags, Ops[0], Ops[1], 1750 "constexpr", InsertBB); 1751 break; 1752 case Instruction::GetElementPtr: 1753 I = GetElementPtrInst::Create(BC->SrcElemTy, Ops[0], 1754 ArrayRef(Ops).drop_front(), "constexpr", 1755 InsertBB); 1756 cast<GetElementPtrInst>(I)->setNoWrapFlags(toGEPNoWrapFlags(BC->Flags)); 1757 break; 1758 case Instruction::Select: 1759 I = SelectInst::Create(Ops[0], Ops[1], Ops[2], "constexpr", InsertBB); 1760 break; 1761 case Instruction::ExtractElement: 1762 I = ExtractElementInst::Create(Ops[0], Ops[1], "constexpr", InsertBB); 1763 break; 1764 case Instruction::InsertElement: 1765 I = InsertElementInst::Create(Ops[0], Ops[1], Ops[2], "constexpr", 1766 InsertBB); 1767 break; 1768 case Instruction::ShuffleVector: 1769 I = new ShuffleVectorInst(Ops[0], Ops[1], Ops[2], "constexpr", 1770 InsertBB); 1771 break; 1772 default: 1773 llvm_unreachable("Unhandled bitcode constant"); 1774 } 1775 } 1776 1777 MaterializedValues.insert({ValID, I}); 1778 Worklist.pop_back(); 1779 } 1780 1781 return MaterializedValues[StartValID]; 1782 } 1783 1784 Expected<Constant *> BitcodeReader::getValueForInitializer(unsigned ID) { 1785 Expected<Value *> MaybeV = materializeValue(ID, /* InsertBB */ nullptr); 1786 if (!MaybeV) 1787 return MaybeV.takeError(); 1788 1789 // Result must be Constant if InsertBB is nullptr. 1790 return cast<Constant>(MaybeV.get()); 1791 } 1792 1793 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1794 StringRef Name) { 1795 auto *Ret = StructType::create(Context, Name); 1796 IdentifiedStructTypes.push_back(Ret); 1797 return Ret; 1798 } 1799 1800 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1801 auto *Ret = StructType::create(Context); 1802 IdentifiedStructTypes.push_back(Ret); 1803 return Ret; 1804 } 1805 1806 //===----------------------------------------------------------------------===// 1807 // Functions for parsing blocks from the bitcode file 1808 //===----------------------------------------------------------------------===// 1809 1810 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) { 1811 switch (Val) { 1812 case Attribute::EndAttrKinds: 1813 case Attribute::EmptyKey: 1814 case Attribute::TombstoneKey: 1815 llvm_unreachable("Synthetic enumerators which should never get here"); 1816 1817 case Attribute::None: return 0; 1818 case Attribute::ZExt: return 1 << 0; 1819 case Attribute::SExt: return 1 << 1; 1820 case Attribute::NoReturn: return 1 << 2; 1821 case Attribute::InReg: return 1 << 3; 1822 case Attribute::StructRet: return 1 << 4; 1823 case Attribute::NoUnwind: return 1 << 5; 1824 case Attribute::NoAlias: return 1 << 6; 1825 case Attribute::ByVal: return 1 << 7; 1826 case Attribute::Nest: return 1 << 8; 1827 case Attribute::ReadNone: return 1 << 9; 1828 case Attribute::ReadOnly: return 1 << 10; 1829 case Attribute::NoInline: return 1 << 11; 1830 case Attribute::AlwaysInline: return 1 << 12; 1831 case Attribute::OptimizeForSize: return 1 << 13; 1832 case Attribute::StackProtect: return 1 << 14; 1833 case Attribute::StackProtectReq: return 1 << 15; 1834 case Attribute::Alignment: return 31 << 16; 1835 case Attribute::NoCapture: return 1 << 21; 1836 case Attribute::NoRedZone: return 1 << 22; 1837 case Attribute::NoImplicitFloat: return 1 << 23; 1838 case Attribute::Naked: return 1 << 24; 1839 case Attribute::InlineHint: return 1 << 25; 1840 case Attribute::StackAlignment: return 7 << 26; 1841 case Attribute::ReturnsTwice: return 1 << 29; 1842 case Attribute::UWTable: return 1 << 30; 1843 case Attribute::NonLazyBind: return 1U << 31; 1844 case Attribute::SanitizeAddress: return 1ULL << 32; 1845 case Attribute::MinSize: return 1ULL << 33; 1846 case Attribute::NoDuplicate: return 1ULL << 34; 1847 case Attribute::StackProtectStrong: return 1ULL << 35; 1848 case Attribute::SanitizeThread: return 1ULL << 36; 1849 case Attribute::SanitizeMemory: return 1ULL << 37; 1850 case Attribute::NoBuiltin: return 1ULL << 38; 1851 case Attribute::Returned: return 1ULL << 39; 1852 case Attribute::Cold: return 1ULL << 40; 1853 case Attribute::Builtin: return 1ULL << 41; 1854 case Attribute::OptimizeNone: return 1ULL << 42; 1855 case Attribute::InAlloca: return 1ULL << 43; 1856 case Attribute::NonNull: return 1ULL << 44; 1857 case Attribute::JumpTable: return 1ULL << 45; 1858 case Attribute::Convergent: return 1ULL << 46; 1859 case Attribute::SafeStack: return 1ULL << 47; 1860 case Attribute::NoRecurse: return 1ULL << 48; 1861 // 1ULL << 49 is InaccessibleMemOnly, which is upgraded separately. 1862 // 1ULL << 50 is InaccessibleMemOrArgMemOnly, which is upgraded separately. 1863 case Attribute::SwiftSelf: return 1ULL << 51; 1864 case Attribute::SwiftError: return 1ULL << 52; 1865 case Attribute::WriteOnly: return 1ULL << 53; 1866 case Attribute::Speculatable: return 1ULL << 54; 1867 case Attribute::StrictFP: return 1ULL << 55; 1868 case Attribute::SanitizeHWAddress: return 1ULL << 56; 1869 case Attribute::NoCfCheck: return 1ULL << 57; 1870 case Attribute::OptForFuzzing: return 1ULL << 58; 1871 case Attribute::ShadowCallStack: return 1ULL << 59; 1872 case Attribute::SpeculativeLoadHardening: 1873 return 1ULL << 60; 1874 case Attribute::ImmArg: 1875 return 1ULL << 61; 1876 case Attribute::WillReturn: 1877 return 1ULL << 62; 1878 case Attribute::NoFree: 1879 return 1ULL << 63; 1880 default: 1881 // Other attributes are not supported in the raw format, 1882 // as we ran out of space. 1883 return 0; 1884 } 1885 llvm_unreachable("Unsupported attribute type"); 1886 } 1887 1888 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) { 1889 if (!Val) return; 1890 1891 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; 1892 I = Attribute::AttrKind(I + 1)) { 1893 if (uint64_t A = (Val & getRawAttributeMask(I))) { 1894 if (I == Attribute::Alignment) 1895 B.addAlignmentAttr(1ULL << ((A >> 16) - 1)); 1896 else if (I == Attribute::StackAlignment) 1897 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1)); 1898 else if (Attribute::isTypeAttrKind(I)) 1899 B.addTypeAttr(I, nullptr); // Type will be auto-upgraded. 1900 else 1901 B.addAttribute(I); 1902 } 1903 } 1904 } 1905 1906 /// This fills an AttrBuilder object with the LLVM attributes that have 1907 /// been decoded from the given integer. This function must stay in sync with 1908 /// 'encodeLLVMAttributesForBitcode'. 1909 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1910 uint64_t EncodedAttrs, 1911 uint64_t AttrIdx) { 1912 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1913 // the bits above 31 down by 11 bits. 1914 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1915 assert((!Alignment || isPowerOf2_32(Alignment)) && 1916 "Alignment must be a power of two."); 1917 1918 if (Alignment) 1919 B.addAlignmentAttr(Alignment); 1920 1921 uint64_t Attrs = ((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1922 (EncodedAttrs & 0xffff); 1923 1924 if (AttrIdx == AttributeList::FunctionIndex) { 1925 // Upgrade old memory attributes. 1926 MemoryEffects ME = MemoryEffects::unknown(); 1927 if (Attrs & (1ULL << 9)) { 1928 // ReadNone 1929 Attrs &= ~(1ULL << 9); 1930 ME &= MemoryEffects::none(); 1931 } 1932 if (Attrs & (1ULL << 10)) { 1933 // ReadOnly 1934 Attrs &= ~(1ULL << 10); 1935 ME &= MemoryEffects::readOnly(); 1936 } 1937 if (Attrs & (1ULL << 49)) { 1938 // InaccessibleMemOnly 1939 Attrs &= ~(1ULL << 49); 1940 ME &= MemoryEffects::inaccessibleMemOnly(); 1941 } 1942 if (Attrs & (1ULL << 50)) { 1943 // InaccessibleMemOrArgMemOnly 1944 Attrs &= ~(1ULL << 50); 1945 ME &= MemoryEffects::inaccessibleOrArgMemOnly(); 1946 } 1947 if (Attrs & (1ULL << 53)) { 1948 // WriteOnly 1949 Attrs &= ~(1ULL << 53); 1950 ME &= MemoryEffects::writeOnly(); 1951 } 1952 if (ME != MemoryEffects::unknown()) 1953 B.addMemoryAttr(ME); 1954 } 1955 1956 addRawAttributeValue(B, Attrs); 1957 } 1958 1959 Error BitcodeReader::parseAttributeBlock() { 1960 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1961 return Err; 1962 1963 if (!MAttributes.empty()) 1964 return error("Invalid multiple blocks"); 1965 1966 SmallVector<uint64_t, 64> Record; 1967 1968 SmallVector<AttributeList, 8> Attrs; 1969 1970 // Read all the records. 1971 while (true) { 1972 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1973 if (!MaybeEntry) 1974 return MaybeEntry.takeError(); 1975 BitstreamEntry Entry = MaybeEntry.get(); 1976 1977 switch (Entry.Kind) { 1978 case BitstreamEntry::SubBlock: // Handled for us already. 1979 case BitstreamEntry::Error: 1980 return error("Malformed block"); 1981 case BitstreamEntry::EndBlock: 1982 return Error::success(); 1983 case BitstreamEntry::Record: 1984 // The interesting case. 1985 break; 1986 } 1987 1988 // Read a record. 1989 Record.clear(); 1990 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1991 if (!MaybeRecord) 1992 return MaybeRecord.takeError(); 1993 switch (MaybeRecord.get()) { 1994 default: // Default behavior: ignore. 1995 break; 1996 case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...] 1997 // Deprecated, but still needed to read old bitcode files. 1998 if (Record.size() & 1) 1999 return error("Invalid parameter attribute record"); 2000 2001 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 2002 AttrBuilder B(Context); 2003 decodeLLVMAttributesForBitcode(B, Record[i+1], Record[i]); 2004 Attrs.push_back(AttributeList::get(Context, Record[i], B)); 2005 } 2006 2007 MAttributes.push_back(AttributeList::get(Context, Attrs)); 2008 Attrs.clear(); 2009 break; 2010 case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...] 2011 for (uint64_t Val : Record) 2012 Attrs.push_back(MAttributeGroups[Val]); 2013 2014 MAttributes.push_back(AttributeList::get(Context, Attrs)); 2015 Attrs.clear(); 2016 break; 2017 } 2018 } 2019 } 2020 2021 // Returns Attribute::None on unrecognized codes. 2022 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 2023 switch (Code) { 2024 default: 2025 return Attribute::None; 2026 case bitc::ATTR_KIND_ALIGNMENT: 2027 return Attribute::Alignment; 2028 case bitc::ATTR_KIND_ALWAYS_INLINE: 2029 return Attribute::AlwaysInline; 2030 case bitc::ATTR_KIND_BUILTIN: 2031 return Attribute::Builtin; 2032 case bitc::ATTR_KIND_BY_VAL: 2033 return Attribute::ByVal; 2034 case bitc::ATTR_KIND_IN_ALLOCA: 2035 return Attribute::InAlloca; 2036 case bitc::ATTR_KIND_COLD: 2037 return Attribute::Cold; 2038 case bitc::ATTR_KIND_CONVERGENT: 2039 return Attribute::Convergent; 2040 case bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION: 2041 return Attribute::DisableSanitizerInstrumentation; 2042 case bitc::ATTR_KIND_ELEMENTTYPE: 2043 return Attribute::ElementType; 2044 case bitc::ATTR_KIND_FNRETTHUNK_EXTERN: 2045 return Attribute::FnRetThunkExtern; 2046 case bitc::ATTR_KIND_INLINE_HINT: 2047 return Attribute::InlineHint; 2048 case bitc::ATTR_KIND_IN_REG: 2049 return Attribute::InReg; 2050 case bitc::ATTR_KIND_JUMP_TABLE: 2051 return Attribute::JumpTable; 2052 case bitc::ATTR_KIND_MEMORY: 2053 return Attribute::Memory; 2054 case bitc::ATTR_KIND_NOFPCLASS: 2055 return Attribute::NoFPClass; 2056 case bitc::ATTR_KIND_MIN_SIZE: 2057 return Attribute::MinSize; 2058 case bitc::ATTR_KIND_NAKED: 2059 return Attribute::Naked; 2060 case bitc::ATTR_KIND_NEST: 2061 return Attribute::Nest; 2062 case bitc::ATTR_KIND_NO_ALIAS: 2063 return Attribute::NoAlias; 2064 case bitc::ATTR_KIND_NO_BUILTIN: 2065 return Attribute::NoBuiltin; 2066 case bitc::ATTR_KIND_NO_CALLBACK: 2067 return Attribute::NoCallback; 2068 case bitc::ATTR_KIND_NO_CAPTURE: 2069 return Attribute::NoCapture; 2070 case bitc::ATTR_KIND_NO_DIVERGENCE_SOURCE: 2071 return Attribute::NoDivergenceSource; 2072 case bitc::ATTR_KIND_NO_DUPLICATE: 2073 return Attribute::NoDuplicate; 2074 case bitc::ATTR_KIND_NOFREE: 2075 return Attribute::NoFree; 2076 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 2077 return Attribute::NoImplicitFloat; 2078 case bitc::ATTR_KIND_NO_INLINE: 2079 return Attribute::NoInline; 2080 case bitc::ATTR_KIND_NO_RECURSE: 2081 return Attribute::NoRecurse; 2082 case bitc::ATTR_KIND_NO_MERGE: 2083 return Attribute::NoMerge; 2084 case bitc::ATTR_KIND_NON_LAZY_BIND: 2085 return Attribute::NonLazyBind; 2086 case bitc::ATTR_KIND_NON_NULL: 2087 return Attribute::NonNull; 2088 case bitc::ATTR_KIND_DEREFERENCEABLE: 2089 return Attribute::Dereferenceable; 2090 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 2091 return Attribute::DereferenceableOrNull; 2092 case bitc::ATTR_KIND_ALLOC_ALIGN: 2093 return Attribute::AllocAlign; 2094 case bitc::ATTR_KIND_ALLOC_KIND: 2095 return Attribute::AllocKind; 2096 case bitc::ATTR_KIND_ALLOC_SIZE: 2097 return Attribute::AllocSize; 2098 case bitc::ATTR_KIND_ALLOCATED_POINTER: 2099 return Attribute::AllocatedPointer; 2100 case bitc::ATTR_KIND_NO_RED_ZONE: 2101 return Attribute::NoRedZone; 2102 case bitc::ATTR_KIND_NO_RETURN: 2103 return Attribute::NoReturn; 2104 case bitc::ATTR_KIND_NOSYNC: 2105 return Attribute::NoSync; 2106 case bitc::ATTR_KIND_NOCF_CHECK: 2107 return Attribute::NoCfCheck; 2108 case bitc::ATTR_KIND_NO_PROFILE: 2109 return Attribute::NoProfile; 2110 case bitc::ATTR_KIND_SKIP_PROFILE: 2111 return Attribute::SkipProfile; 2112 case bitc::ATTR_KIND_NO_UNWIND: 2113 return Attribute::NoUnwind; 2114 case bitc::ATTR_KIND_NO_SANITIZE_BOUNDS: 2115 return Attribute::NoSanitizeBounds; 2116 case bitc::ATTR_KIND_NO_SANITIZE_COVERAGE: 2117 return Attribute::NoSanitizeCoverage; 2118 case bitc::ATTR_KIND_NULL_POINTER_IS_VALID: 2119 return Attribute::NullPointerIsValid; 2120 case bitc::ATTR_KIND_OPTIMIZE_FOR_DEBUGGING: 2121 return Attribute::OptimizeForDebugging; 2122 case bitc::ATTR_KIND_OPT_FOR_FUZZING: 2123 return Attribute::OptForFuzzing; 2124 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 2125 return Attribute::OptimizeForSize; 2126 case bitc::ATTR_KIND_OPTIMIZE_NONE: 2127 return Attribute::OptimizeNone; 2128 case bitc::ATTR_KIND_READ_NONE: 2129 return Attribute::ReadNone; 2130 case bitc::ATTR_KIND_READ_ONLY: 2131 return Attribute::ReadOnly; 2132 case bitc::ATTR_KIND_RETURNED: 2133 return Attribute::Returned; 2134 case bitc::ATTR_KIND_RETURNS_TWICE: 2135 return Attribute::ReturnsTwice; 2136 case bitc::ATTR_KIND_S_EXT: 2137 return Attribute::SExt; 2138 case bitc::ATTR_KIND_SPECULATABLE: 2139 return Attribute::Speculatable; 2140 case bitc::ATTR_KIND_STACK_ALIGNMENT: 2141 return Attribute::StackAlignment; 2142 case bitc::ATTR_KIND_STACK_PROTECT: 2143 return Attribute::StackProtect; 2144 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 2145 return Attribute::StackProtectReq; 2146 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 2147 return Attribute::StackProtectStrong; 2148 case bitc::ATTR_KIND_SAFESTACK: 2149 return Attribute::SafeStack; 2150 case bitc::ATTR_KIND_SHADOWCALLSTACK: 2151 return Attribute::ShadowCallStack; 2152 case bitc::ATTR_KIND_STRICT_FP: 2153 return Attribute::StrictFP; 2154 case bitc::ATTR_KIND_STRUCT_RET: 2155 return Attribute::StructRet; 2156 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 2157 return Attribute::SanitizeAddress; 2158 case bitc::ATTR_KIND_SANITIZE_HWADDRESS: 2159 return Attribute::SanitizeHWAddress; 2160 case bitc::ATTR_KIND_SANITIZE_THREAD: 2161 return Attribute::SanitizeThread; 2162 case bitc::ATTR_KIND_SANITIZE_MEMORY: 2163 return Attribute::SanitizeMemory; 2164 case bitc::ATTR_KIND_SANITIZE_NUMERICAL_STABILITY: 2165 return Attribute::SanitizeNumericalStability; 2166 case bitc::ATTR_KIND_SANITIZE_REALTIME: 2167 return Attribute::SanitizeRealtime; 2168 case bitc::ATTR_KIND_SANITIZE_REALTIME_BLOCKING: 2169 return Attribute::SanitizeRealtimeBlocking; 2170 case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING: 2171 return Attribute::SpeculativeLoadHardening; 2172 case bitc::ATTR_KIND_SWIFT_ERROR: 2173 return Attribute::SwiftError; 2174 case bitc::ATTR_KIND_SWIFT_SELF: 2175 return Attribute::SwiftSelf; 2176 case bitc::ATTR_KIND_SWIFT_ASYNC: 2177 return Attribute::SwiftAsync; 2178 case bitc::ATTR_KIND_UW_TABLE: 2179 return Attribute::UWTable; 2180 case bitc::ATTR_KIND_VSCALE_RANGE: 2181 return Attribute::VScaleRange; 2182 case bitc::ATTR_KIND_WILLRETURN: 2183 return Attribute::WillReturn; 2184 case bitc::ATTR_KIND_WRITEONLY: 2185 return Attribute::WriteOnly; 2186 case bitc::ATTR_KIND_Z_EXT: 2187 return Attribute::ZExt; 2188 case bitc::ATTR_KIND_IMMARG: 2189 return Attribute::ImmArg; 2190 case bitc::ATTR_KIND_SANITIZE_MEMTAG: 2191 return Attribute::SanitizeMemTag; 2192 case bitc::ATTR_KIND_PREALLOCATED: 2193 return Attribute::Preallocated; 2194 case bitc::ATTR_KIND_NOUNDEF: 2195 return Attribute::NoUndef; 2196 case bitc::ATTR_KIND_BYREF: 2197 return Attribute::ByRef; 2198 case bitc::ATTR_KIND_MUSTPROGRESS: 2199 return Attribute::MustProgress; 2200 case bitc::ATTR_KIND_HOT: 2201 return Attribute::Hot; 2202 case bitc::ATTR_KIND_PRESPLIT_COROUTINE: 2203 return Attribute::PresplitCoroutine; 2204 case bitc::ATTR_KIND_WRITABLE: 2205 return Attribute::Writable; 2206 case bitc::ATTR_KIND_CORO_ONLY_DESTROY_WHEN_COMPLETE: 2207 return Attribute::CoroDestroyOnlyWhenComplete; 2208 case bitc::ATTR_KIND_DEAD_ON_UNWIND: 2209 return Attribute::DeadOnUnwind; 2210 case bitc::ATTR_KIND_RANGE: 2211 return Attribute::Range; 2212 case bitc::ATTR_KIND_INITIALIZES: 2213 return Attribute::Initializes; 2214 case bitc::ATTR_KIND_CORO_ELIDE_SAFE: 2215 return Attribute::CoroElideSafe; 2216 case bitc::ATTR_KIND_NO_EXT: 2217 return Attribute::NoExt; 2218 } 2219 } 2220 2221 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent, 2222 MaybeAlign &Alignment) { 2223 // Note: Alignment in bitcode files is incremented by 1, so that zero 2224 // can be used for default alignment. 2225 if (Exponent > Value::MaxAlignmentExponent + 1) 2226 return error("Invalid alignment value"); 2227 Alignment = decodeMaybeAlign(Exponent); 2228 return Error::success(); 2229 } 2230 2231 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) { 2232 *Kind = getAttrFromCode(Code); 2233 if (*Kind == Attribute::None) 2234 return error("Unknown attribute kind (" + Twine(Code) + ")"); 2235 return Error::success(); 2236 } 2237 2238 static bool upgradeOldMemoryAttribute(MemoryEffects &ME, uint64_t EncodedKind) { 2239 switch (EncodedKind) { 2240 case bitc::ATTR_KIND_READ_NONE: 2241 ME &= MemoryEffects::none(); 2242 return true; 2243 case bitc::ATTR_KIND_READ_ONLY: 2244 ME &= MemoryEffects::readOnly(); 2245 return true; 2246 case bitc::ATTR_KIND_WRITEONLY: 2247 ME &= MemoryEffects::writeOnly(); 2248 return true; 2249 case bitc::ATTR_KIND_ARGMEMONLY: 2250 ME &= MemoryEffects::argMemOnly(); 2251 return true; 2252 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 2253 ME &= MemoryEffects::inaccessibleMemOnly(); 2254 return true; 2255 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 2256 ME &= MemoryEffects::inaccessibleOrArgMemOnly(); 2257 return true; 2258 default: 2259 return false; 2260 } 2261 } 2262 2263 Error BitcodeReader::parseAttributeGroupBlock() { 2264 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 2265 return Err; 2266 2267 if (!MAttributeGroups.empty()) 2268 return error("Invalid multiple blocks"); 2269 2270 SmallVector<uint64_t, 64> Record; 2271 2272 // Read all the records. 2273 while (true) { 2274 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2275 if (!MaybeEntry) 2276 return MaybeEntry.takeError(); 2277 BitstreamEntry Entry = MaybeEntry.get(); 2278 2279 switch (Entry.Kind) { 2280 case BitstreamEntry::SubBlock: // Handled for us already. 2281 case BitstreamEntry::Error: 2282 return error("Malformed block"); 2283 case BitstreamEntry::EndBlock: 2284 return Error::success(); 2285 case BitstreamEntry::Record: 2286 // The interesting case. 2287 break; 2288 } 2289 2290 // Read a record. 2291 Record.clear(); 2292 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2293 if (!MaybeRecord) 2294 return MaybeRecord.takeError(); 2295 switch (MaybeRecord.get()) { 2296 default: // Default behavior: ignore. 2297 break; 2298 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 2299 if (Record.size() < 3) 2300 return error("Invalid grp record"); 2301 2302 uint64_t GrpID = Record[0]; 2303 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 2304 2305 AttrBuilder B(Context); 2306 MemoryEffects ME = MemoryEffects::unknown(); 2307 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 2308 if (Record[i] == 0) { // Enum attribute 2309 Attribute::AttrKind Kind; 2310 uint64_t EncodedKind = Record[++i]; 2311 if (Idx == AttributeList::FunctionIndex && 2312 upgradeOldMemoryAttribute(ME, EncodedKind)) 2313 continue; 2314 2315 if (Error Err = parseAttrKind(EncodedKind, &Kind)) 2316 return Err; 2317 2318 // Upgrade old-style byval attribute to one with a type, even if it's 2319 // nullptr. We will have to insert the real type when we associate 2320 // this AttributeList with a function. 2321 if (Kind == Attribute::ByVal) 2322 B.addByValAttr(nullptr); 2323 else if (Kind == Attribute::StructRet) 2324 B.addStructRetAttr(nullptr); 2325 else if (Kind == Attribute::InAlloca) 2326 B.addInAllocaAttr(nullptr); 2327 else if (Kind == Attribute::UWTable) 2328 B.addUWTableAttr(UWTableKind::Default); 2329 else if (Attribute::isEnumAttrKind(Kind)) 2330 B.addAttribute(Kind); 2331 else 2332 return error("Not an enum attribute"); 2333 } else if (Record[i] == 1) { // Integer attribute 2334 Attribute::AttrKind Kind; 2335 if (Error Err = parseAttrKind(Record[++i], &Kind)) 2336 return Err; 2337 if (!Attribute::isIntAttrKind(Kind)) 2338 return error("Not an int attribute"); 2339 if (Kind == Attribute::Alignment) 2340 B.addAlignmentAttr(Record[++i]); 2341 else if (Kind == Attribute::StackAlignment) 2342 B.addStackAlignmentAttr(Record[++i]); 2343 else if (Kind == Attribute::Dereferenceable) 2344 B.addDereferenceableAttr(Record[++i]); 2345 else if (Kind == Attribute::DereferenceableOrNull) 2346 B.addDereferenceableOrNullAttr(Record[++i]); 2347 else if (Kind == Attribute::AllocSize) 2348 B.addAllocSizeAttrFromRawRepr(Record[++i]); 2349 else if (Kind == Attribute::VScaleRange) 2350 B.addVScaleRangeAttrFromRawRepr(Record[++i]); 2351 else if (Kind == Attribute::UWTable) 2352 B.addUWTableAttr(UWTableKind(Record[++i])); 2353 else if (Kind == Attribute::AllocKind) 2354 B.addAllocKindAttr(static_cast<AllocFnKind>(Record[++i])); 2355 else if (Kind == Attribute::Memory) 2356 B.addMemoryAttr(MemoryEffects::createFromIntValue(Record[++i])); 2357 else if (Kind == Attribute::NoFPClass) 2358 B.addNoFPClassAttr( 2359 static_cast<FPClassTest>(Record[++i] & fcAllFlags)); 2360 } else if (Record[i] == 3 || Record[i] == 4) { // String attribute 2361 bool HasValue = (Record[i++] == 4); 2362 SmallString<64> KindStr; 2363 SmallString<64> ValStr; 2364 2365 while (Record[i] != 0 && i != e) 2366 KindStr += Record[i++]; 2367 assert(Record[i] == 0 && "Kind string not null terminated"); 2368 2369 if (HasValue) { 2370 // Has a value associated with it. 2371 ++i; // Skip the '0' that terminates the "kind" string. 2372 while (Record[i] != 0 && i != e) 2373 ValStr += Record[i++]; 2374 assert(Record[i] == 0 && "Value string not null terminated"); 2375 } 2376 2377 B.addAttribute(KindStr.str(), ValStr.str()); 2378 } else if (Record[i] == 5 || Record[i] == 6) { 2379 bool HasType = Record[i] == 6; 2380 Attribute::AttrKind Kind; 2381 if (Error Err = parseAttrKind(Record[++i], &Kind)) 2382 return Err; 2383 if (!Attribute::isTypeAttrKind(Kind)) 2384 return error("Not a type attribute"); 2385 2386 B.addTypeAttr(Kind, HasType ? getTypeByID(Record[++i]) : nullptr); 2387 } else if (Record[i] == 7) { 2388 Attribute::AttrKind Kind; 2389 2390 i++; 2391 if (Error Err = parseAttrKind(Record[i++], &Kind)) 2392 return Err; 2393 if (!Attribute::isConstantRangeAttrKind(Kind)) 2394 return error("Not a ConstantRange attribute"); 2395 2396 Expected<ConstantRange> MaybeCR = 2397 readBitWidthAndConstantRange(Record, i); 2398 if (!MaybeCR) 2399 return MaybeCR.takeError(); 2400 i--; 2401 2402 B.addConstantRangeAttr(Kind, MaybeCR.get()); 2403 } else if (Record[i] == 8) { 2404 Attribute::AttrKind Kind; 2405 2406 i++; 2407 if (Error Err = parseAttrKind(Record[i++], &Kind)) 2408 return Err; 2409 if (!Attribute::isConstantRangeListAttrKind(Kind)) 2410 return error("Not a constant range list attribute"); 2411 2412 SmallVector<ConstantRange, 2> Val; 2413 if (i + 2 > e) 2414 return error("Too few records for constant range list"); 2415 unsigned RangeSize = Record[i++]; 2416 unsigned BitWidth = Record[i++]; 2417 for (unsigned Idx = 0; Idx < RangeSize; ++Idx) { 2418 Expected<ConstantRange> MaybeCR = 2419 readConstantRange(Record, i, BitWidth); 2420 if (!MaybeCR) 2421 return MaybeCR.takeError(); 2422 Val.push_back(MaybeCR.get()); 2423 } 2424 i--; 2425 2426 if (!ConstantRangeList::isOrderedRanges(Val)) 2427 return error("Invalid (unordered or overlapping) range list"); 2428 B.addConstantRangeListAttr(Kind, Val); 2429 } else { 2430 return error("Invalid attribute group entry"); 2431 } 2432 } 2433 2434 if (ME != MemoryEffects::unknown()) 2435 B.addMemoryAttr(ME); 2436 2437 UpgradeAttributes(B); 2438 MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B); 2439 break; 2440 } 2441 } 2442 } 2443 } 2444 2445 Error BitcodeReader::parseTypeTable() { 2446 if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 2447 return Err; 2448 2449 return parseTypeTableBody(); 2450 } 2451 2452 Error BitcodeReader::parseTypeTableBody() { 2453 if (!TypeList.empty()) 2454 return error("Invalid multiple blocks"); 2455 2456 SmallVector<uint64_t, 64> Record; 2457 unsigned NumRecords = 0; 2458 2459 SmallString<64> TypeName; 2460 2461 // Read all the records for this type table. 2462 while (true) { 2463 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2464 if (!MaybeEntry) 2465 return MaybeEntry.takeError(); 2466 BitstreamEntry Entry = MaybeEntry.get(); 2467 2468 switch (Entry.Kind) { 2469 case BitstreamEntry::SubBlock: // Handled for us already. 2470 case BitstreamEntry::Error: 2471 return error("Malformed block"); 2472 case BitstreamEntry::EndBlock: 2473 if (NumRecords != TypeList.size()) 2474 return error("Malformed block"); 2475 return Error::success(); 2476 case BitstreamEntry::Record: 2477 // The interesting case. 2478 break; 2479 } 2480 2481 // Read a record. 2482 Record.clear(); 2483 Type *ResultTy = nullptr; 2484 SmallVector<unsigned> ContainedIDs; 2485 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2486 if (!MaybeRecord) 2487 return MaybeRecord.takeError(); 2488 switch (MaybeRecord.get()) { 2489 default: 2490 return error("Invalid value"); 2491 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 2492 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 2493 // type list. This allows us to reserve space. 2494 if (Record.empty()) 2495 return error("Invalid numentry record"); 2496 TypeList.resize(Record[0]); 2497 continue; 2498 case bitc::TYPE_CODE_VOID: // VOID 2499 ResultTy = Type::getVoidTy(Context); 2500 break; 2501 case bitc::TYPE_CODE_HALF: // HALF 2502 ResultTy = Type::getHalfTy(Context); 2503 break; 2504 case bitc::TYPE_CODE_BFLOAT: // BFLOAT 2505 ResultTy = Type::getBFloatTy(Context); 2506 break; 2507 case bitc::TYPE_CODE_FLOAT: // FLOAT 2508 ResultTy = Type::getFloatTy(Context); 2509 break; 2510 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 2511 ResultTy = Type::getDoubleTy(Context); 2512 break; 2513 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 2514 ResultTy = Type::getX86_FP80Ty(Context); 2515 break; 2516 case bitc::TYPE_CODE_FP128: // FP128 2517 ResultTy = Type::getFP128Ty(Context); 2518 break; 2519 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 2520 ResultTy = Type::getPPC_FP128Ty(Context); 2521 break; 2522 case bitc::TYPE_CODE_LABEL: // LABEL 2523 ResultTy = Type::getLabelTy(Context); 2524 break; 2525 case bitc::TYPE_CODE_METADATA: // METADATA 2526 ResultTy = Type::getMetadataTy(Context); 2527 break; 2528 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 2529 // Deprecated: decodes as <1 x i64> 2530 ResultTy = 2531 llvm::FixedVectorType::get(llvm::IntegerType::get(Context, 64), 1); 2532 break; 2533 case bitc::TYPE_CODE_X86_AMX: // X86_AMX 2534 ResultTy = Type::getX86_AMXTy(Context); 2535 break; 2536 case bitc::TYPE_CODE_TOKEN: // TOKEN 2537 ResultTy = Type::getTokenTy(Context); 2538 break; 2539 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 2540 if (Record.empty()) 2541 return error("Invalid integer record"); 2542 2543 uint64_t NumBits = Record[0]; 2544 if (NumBits < IntegerType::MIN_INT_BITS || 2545 NumBits > IntegerType::MAX_INT_BITS) 2546 return error("Bitwidth for integer type out of range"); 2547 ResultTy = IntegerType::get(Context, NumBits); 2548 break; 2549 } 2550 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 2551 // [pointee type, address space] 2552 if (Record.empty()) 2553 return error("Invalid pointer record"); 2554 unsigned AddressSpace = 0; 2555 if (Record.size() == 2) 2556 AddressSpace = Record[1]; 2557 ResultTy = getTypeByID(Record[0]); 2558 if (!ResultTy || 2559 !PointerType::isValidElementType(ResultTy)) 2560 return error("Invalid type"); 2561 ContainedIDs.push_back(Record[0]); 2562 ResultTy = PointerType::get(ResultTy, AddressSpace); 2563 break; 2564 } 2565 case bitc::TYPE_CODE_OPAQUE_POINTER: { // OPAQUE_POINTER: [addrspace] 2566 if (Record.size() != 1) 2567 return error("Invalid opaque pointer record"); 2568 unsigned AddressSpace = Record[0]; 2569 ResultTy = PointerType::get(Context, AddressSpace); 2570 break; 2571 } 2572 case bitc::TYPE_CODE_FUNCTION_OLD: { 2573 // Deprecated, but still needed to read old bitcode files. 2574 // FUNCTION: [vararg, attrid, retty, paramty x N] 2575 if (Record.size() < 3) 2576 return error("Invalid function record"); 2577 SmallVector<Type*, 8> ArgTys; 2578 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 2579 if (Type *T = getTypeByID(Record[i])) 2580 ArgTys.push_back(T); 2581 else 2582 break; 2583 } 2584 2585 ResultTy = getTypeByID(Record[2]); 2586 if (!ResultTy || ArgTys.size() < Record.size()-3) 2587 return error("Invalid type"); 2588 2589 ContainedIDs.append(Record.begin() + 2, Record.end()); 2590 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 2591 break; 2592 } 2593 case bitc::TYPE_CODE_FUNCTION: { 2594 // FUNCTION: [vararg, retty, paramty x N] 2595 if (Record.size() < 2) 2596 return error("Invalid function record"); 2597 SmallVector<Type*, 8> ArgTys; 2598 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 2599 if (Type *T = getTypeByID(Record[i])) { 2600 if (!FunctionType::isValidArgumentType(T)) 2601 return error("Invalid function argument type"); 2602 ArgTys.push_back(T); 2603 } 2604 else 2605 break; 2606 } 2607 2608 ResultTy = getTypeByID(Record[1]); 2609 if (!ResultTy || ArgTys.size() < Record.size()-2) 2610 return error("Invalid type"); 2611 2612 ContainedIDs.append(Record.begin() + 1, Record.end()); 2613 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 2614 break; 2615 } 2616 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 2617 if (Record.empty()) 2618 return error("Invalid anon struct record"); 2619 SmallVector<Type*, 8> EltTys; 2620 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 2621 if (Type *T = getTypeByID(Record[i])) 2622 EltTys.push_back(T); 2623 else 2624 break; 2625 } 2626 if (EltTys.size() != Record.size()-1) 2627 return error("Invalid type"); 2628 ContainedIDs.append(Record.begin() + 1, Record.end()); 2629 ResultTy = StructType::get(Context, EltTys, Record[0]); 2630 break; 2631 } 2632 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 2633 if (convertToString(Record, 0, TypeName)) 2634 return error("Invalid struct name record"); 2635 continue; 2636 2637 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 2638 if (Record.empty()) 2639 return error("Invalid named struct record"); 2640 2641 if (NumRecords >= TypeList.size()) 2642 return error("Invalid TYPE table"); 2643 2644 // Check to see if this was forward referenced, if so fill in the temp. 2645 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 2646 if (Res) { 2647 Res->setName(TypeName); 2648 TypeList[NumRecords] = nullptr; 2649 } else // Otherwise, create a new struct. 2650 Res = createIdentifiedStructType(Context, TypeName); 2651 TypeName.clear(); 2652 2653 SmallVector<Type*, 8> EltTys; 2654 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 2655 if (Type *T = getTypeByID(Record[i])) 2656 EltTys.push_back(T); 2657 else 2658 break; 2659 } 2660 if (EltTys.size() != Record.size()-1) 2661 return error("Invalid named struct record"); 2662 Res->setBody(EltTys, Record[0]); 2663 ContainedIDs.append(Record.begin() + 1, Record.end()); 2664 ResultTy = Res; 2665 break; 2666 } 2667 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 2668 if (Record.size() != 1) 2669 return error("Invalid opaque type record"); 2670 2671 if (NumRecords >= TypeList.size()) 2672 return error("Invalid TYPE table"); 2673 2674 // Check to see if this was forward referenced, if so fill in the temp. 2675 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 2676 if (Res) { 2677 Res->setName(TypeName); 2678 TypeList[NumRecords] = nullptr; 2679 } else // Otherwise, create a new struct with no body. 2680 Res = createIdentifiedStructType(Context, TypeName); 2681 TypeName.clear(); 2682 ResultTy = Res; 2683 break; 2684 } 2685 case bitc::TYPE_CODE_TARGET_TYPE: { // TARGET_TYPE: [NumTy, Tys..., Ints...] 2686 if (Record.size() < 1) 2687 return error("Invalid target extension type record"); 2688 2689 if (NumRecords >= TypeList.size()) 2690 return error("Invalid TYPE table"); 2691 2692 if (Record[0] >= Record.size()) 2693 return error("Too many type parameters"); 2694 2695 unsigned NumTys = Record[0]; 2696 SmallVector<Type *, 4> TypeParams; 2697 SmallVector<unsigned, 8> IntParams; 2698 for (unsigned i = 0; i < NumTys; i++) { 2699 if (Type *T = getTypeByID(Record[i + 1])) 2700 TypeParams.push_back(T); 2701 else 2702 return error("Invalid type"); 2703 } 2704 2705 for (unsigned i = NumTys + 1, e = Record.size(); i < e; i++) { 2706 if (Record[i] > UINT_MAX) 2707 return error("Integer parameter too large"); 2708 IntParams.push_back(Record[i]); 2709 } 2710 auto TTy = 2711 TargetExtType::getOrError(Context, TypeName, TypeParams, IntParams); 2712 if (auto E = TTy.takeError()) 2713 return E; 2714 ResultTy = *TTy; 2715 TypeName.clear(); 2716 break; 2717 } 2718 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 2719 if (Record.size() < 2) 2720 return error("Invalid array type record"); 2721 ResultTy = getTypeByID(Record[1]); 2722 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 2723 return error("Invalid type"); 2724 ContainedIDs.push_back(Record[1]); 2725 ResultTy = ArrayType::get(ResultTy, Record[0]); 2726 break; 2727 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] or 2728 // [numelts, eltty, scalable] 2729 if (Record.size() < 2) 2730 return error("Invalid vector type record"); 2731 if (Record[0] == 0) 2732 return error("Invalid vector length"); 2733 ResultTy = getTypeByID(Record[1]); 2734 if (!ResultTy || !VectorType::isValidElementType(ResultTy)) 2735 return error("Invalid type"); 2736 bool Scalable = Record.size() > 2 ? Record[2] : false; 2737 ContainedIDs.push_back(Record[1]); 2738 ResultTy = VectorType::get(ResultTy, Record[0], Scalable); 2739 break; 2740 } 2741 2742 if (NumRecords >= TypeList.size()) 2743 return error("Invalid TYPE table"); 2744 if (TypeList[NumRecords]) 2745 return error( 2746 "Invalid TYPE table: Only named structs can be forward referenced"); 2747 assert(ResultTy && "Didn't read a type?"); 2748 TypeList[NumRecords] = ResultTy; 2749 if (!ContainedIDs.empty()) 2750 ContainedTypeIDs[NumRecords] = std::move(ContainedIDs); 2751 ++NumRecords; 2752 } 2753 } 2754 2755 Error BitcodeReader::parseOperandBundleTags() { 2756 if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 2757 return Err; 2758 2759 if (!BundleTags.empty()) 2760 return error("Invalid multiple blocks"); 2761 2762 SmallVector<uint64_t, 64> Record; 2763 2764 while (true) { 2765 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2766 if (!MaybeEntry) 2767 return MaybeEntry.takeError(); 2768 BitstreamEntry Entry = MaybeEntry.get(); 2769 2770 switch (Entry.Kind) { 2771 case BitstreamEntry::SubBlock: // Handled for us already. 2772 case BitstreamEntry::Error: 2773 return error("Malformed block"); 2774 case BitstreamEntry::EndBlock: 2775 return Error::success(); 2776 case BitstreamEntry::Record: 2777 // The interesting case. 2778 break; 2779 } 2780 2781 // Tags are implicitly mapped to integers by their order. 2782 2783 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2784 if (!MaybeRecord) 2785 return MaybeRecord.takeError(); 2786 if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG) 2787 return error("Invalid operand bundle record"); 2788 2789 // OPERAND_BUNDLE_TAG: [strchr x N] 2790 BundleTags.emplace_back(); 2791 if (convertToString(Record, 0, BundleTags.back())) 2792 return error("Invalid operand bundle record"); 2793 Record.clear(); 2794 } 2795 } 2796 2797 Error BitcodeReader::parseSyncScopeNames() { 2798 if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID)) 2799 return Err; 2800 2801 if (!SSIDs.empty()) 2802 return error("Invalid multiple synchronization scope names blocks"); 2803 2804 SmallVector<uint64_t, 64> Record; 2805 while (true) { 2806 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2807 if (!MaybeEntry) 2808 return MaybeEntry.takeError(); 2809 BitstreamEntry Entry = MaybeEntry.get(); 2810 2811 switch (Entry.Kind) { 2812 case BitstreamEntry::SubBlock: // Handled for us already. 2813 case BitstreamEntry::Error: 2814 return error("Malformed block"); 2815 case BitstreamEntry::EndBlock: 2816 if (SSIDs.empty()) 2817 return error("Invalid empty synchronization scope names block"); 2818 return Error::success(); 2819 case BitstreamEntry::Record: 2820 // The interesting case. 2821 break; 2822 } 2823 2824 // Synchronization scope names are implicitly mapped to synchronization 2825 // scope IDs by their order. 2826 2827 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2828 if (!MaybeRecord) 2829 return MaybeRecord.takeError(); 2830 if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME) 2831 return error("Invalid sync scope record"); 2832 2833 SmallString<16> SSN; 2834 if (convertToString(Record, 0, SSN)) 2835 return error("Invalid sync scope record"); 2836 2837 SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN)); 2838 Record.clear(); 2839 } 2840 } 2841 2842 /// Associate a value with its name from the given index in the provided record. 2843 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 2844 unsigned NameIndex, Triple &TT) { 2845 SmallString<128> ValueName; 2846 if (convertToString(Record, NameIndex, ValueName)) 2847 return error("Invalid record"); 2848 unsigned ValueID = Record[0]; 2849 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 2850 return error("Invalid record"); 2851 Value *V = ValueList[ValueID]; 2852 2853 StringRef NameStr(ValueName.data(), ValueName.size()); 2854 if (NameStr.contains(0)) 2855 return error("Invalid value name"); 2856 V->setName(NameStr); 2857 auto *GO = dyn_cast<GlobalObject>(V); 2858 if (GO && ImplicitComdatObjects.contains(GO) && TT.supportsCOMDAT()) 2859 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 2860 return V; 2861 } 2862 2863 /// Helper to note and return the current location, and jump to the given 2864 /// offset. 2865 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset, 2866 BitstreamCursor &Stream) { 2867 // Save the current parsing location so we can jump back at the end 2868 // of the VST read. 2869 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 2870 if (Error JumpFailed = Stream.JumpToBit(Offset * 32)) 2871 return std::move(JumpFailed); 2872 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 2873 if (!MaybeEntry) 2874 return MaybeEntry.takeError(); 2875 if (MaybeEntry.get().Kind != BitstreamEntry::SubBlock || 2876 MaybeEntry.get().ID != bitc::VALUE_SYMTAB_BLOCK_ID) 2877 return error("Expected value symbol table subblock"); 2878 return CurrentBit; 2879 } 2880 2881 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, 2882 Function *F, 2883 ArrayRef<uint64_t> Record) { 2884 // Note that we subtract 1 here because the offset is relative to one word 2885 // before the start of the identification or module block, which was 2886 // historically always the start of the regular bitcode header. 2887 uint64_t FuncWordOffset = Record[1] - 1; 2888 uint64_t FuncBitOffset = FuncWordOffset * 32; 2889 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 2890 // Set the LastFunctionBlockBit to point to the last function block. 2891 // Later when parsing is resumed after function materialization, 2892 // we can simply skip that last function block. 2893 if (FuncBitOffset > LastFunctionBlockBit) 2894 LastFunctionBlockBit = FuncBitOffset; 2895 } 2896 2897 /// Read a new-style GlobalValue symbol table. 2898 Error BitcodeReader::parseGlobalValueSymbolTable() { 2899 unsigned FuncBitcodeOffsetDelta = 2900 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2901 2902 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2903 return Err; 2904 2905 SmallVector<uint64_t, 64> Record; 2906 while (true) { 2907 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2908 if (!MaybeEntry) 2909 return MaybeEntry.takeError(); 2910 BitstreamEntry Entry = MaybeEntry.get(); 2911 2912 switch (Entry.Kind) { 2913 case BitstreamEntry::SubBlock: 2914 case BitstreamEntry::Error: 2915 return error("Malformed block"); 2916 case BitstreamEntry::EndBlock: 2917 return Error::success(); 2918 case BitstreamEntry::Record: 2919 break; 2920 } 2921 2922 Record.clear(); 2923 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2924 if (!MaybeRecord) 2925 return MaybeRecord.takeError(); 2926 switch (MaybeRecord.get()) { 2927 case bitc::VST_CODE_FNENTRY: { // [valueid, offset] 2928 unsigned ValueID = Record[0]; 2929 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 2930 return error("Invalid value reference in symbol table"); 2931 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, 2932 cast<Function>(ValueList[ValueID]), Record); 2933 break; 2934 } 2935 } 2936 } 2937 } 2938 2939 /// Parse the value symbol table at either the current parsing location or 2940 /// at the given bit offset if provided. 2941 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 2942 uint64_t CurrentBit; 2943 // Pass in the Offset to distinguish between calling for the module-level 2944 // VST (where we want to jump to the VST offset) and the function-level 2945 // VST (where we don't). 2946 if (Offset > 0) { 2947 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 2948 if (!MaybeCurrentBit) 2949 return MaybeCurrentBit.takeError(); 2950 CurrentBit = MaybeCurrentBit.get(); 2951 // If this module uses a string table, read this as a module-level VST. 2952 if (UseStrtab) { 2953 if (Error Err = parseGlobalValueSymbolTable()) 2954 return Err; 2955 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2956 return JumpFailed; 2957 return Error::success(); 2958 } 2959 // Otherwise, the VST will be in a similar format to a function-level VST, 2960 // and will contain symbol names. 2961 } 2962 2963 // Compute the delta between the bitcode indices in the VST (the word offset 2964 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 2965 // expected by the lazy reader. The reader's EnterSubBlock expects to have 2966 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 2967 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 2968 // just before entering the VST subblock because: 1) the EnterSubBlock 2969 // changes the AbbrevID width; 2) the VST block is nested within the same 2970 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 2971 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 2972 // jump to the FUNCTION_BLOCK using this offset later, we don't want 2973 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 2974 unsigned FuncBitcodeOffsetDelta = 2975 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2976 2977 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2978 return Err; 2979 2980 SmallVector<uint64_t, 64> Record; 2981 2982 Triple TT(TheModule->getTargetTriple()); 2983 2984 // Read all the records for this value table. 2985 SmallString<128> ValueName; 2986 2987 while (true) { 2988 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2989 if (!MaybeEntry) 2990 return MaybeEntry.takeError(); 2991 BitstreamEntry Entry = MaybeEntry.get(); 2992 2993 switch (Entry.Kind) { 2994 case BitstreamEntry::SubBlock: // Handled for us already. 2995 case BitstreamEntry::Error: 2996 return error("Malformed block"); 2997 case BitstreamEntry::EndBlock: 2998 if (Offset > 0) 2999 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 3000 return JumpFailed; 3001 return Error::success(); 3002 case BitstreamEntry::Record: 3003 // The interesting case. 3004 break; 3005 } 3006 3007 // Read a record. 3008 Record.clear(); 3009 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 3010 if (!MaybeRecord) 3011 return MaybeRecord.takeError(); 3012 switch (MaybeRecord.get()) { 3013 default: // Default behavior: unknown type. 3014 break; 3015 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 3016 Expected<Value *> ValOrErr = recordValue(Record, 1, TT); 3017 if (Error Err = ValOrErr.takeError()) 3018 return Err; 3019 ValOrErr.get(); 3020 break; 3021 } 3022 case bitc::VST_CODE_FNENTRY: { 3023 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 3024 Expected<Value *> ValOrErr = recordValue(Record, 2, TT); 3025 if (Error Err = ValOrErr.takeError()) 3026 return Err; 3027 Value *V = ValOrErr.get(); 3028 3029 // Ignore function offsets emitted for aliases of functions in older 3030 // versions of LLVM. 3031 if (auto *F = dyn_cast<Function>(V)) 3032 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record); 3033 break; 3034 } 3035 case bitc::VST_CODE_BBENTRY: { 3036 if (convertToString(Record, 1, ValueName)) 3037 return error("Invalid bbentry record"); 3038 BasicBlock *BB = getBasicBlock(Record[0]); 3039 if (!BB) 3040 return error("Invalid bbentry record"); 3041 3042 BB->setName(ValueName.str()); 3043 ValueName.clear(); 3044 break; 3045 } 3046 } 3047 } 3048 } 3049 3050 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 3051 /// encoding. 3052 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 3053 if ((V & 1) == 0) 3054 return V >> 1; 3055 if (V != 1) 3056 return -(V >> 1); 3057 // There is no such thing as -0 with integers. "-0" really means MININT. 3058 return 1ULL << 63; 3059 } 3060 3061 /// Resolve all of the initializers for global values and aliases that we can. 3062 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 3063 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist; 3064 std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInitWorklist; 3065 std::vector<FunctionOperandInfo> FunctionOperandWorklist; 3066 3067 GlobalInitWorklist.swap(GlobalInits); 3068 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 3069 FunctionOperandWorklist.swap(FunctionOperands); 3070 3071 while (!GlobalInitWorklist.empty()) { 3072 unsigned ValID = GlobalInitWorklist.back().second; 3073 if (ValID >= ValueList.size()) { 3074 // Not ready to resolve this yet, it requires something later in the file. 3075 GlobalInits.push_back(GlobalInitWorklist.back()); 3076 } else { 3077 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 3078 if (!MaybeC) 3079 return MaybeC.takeError(); 3080 GlobalInitWorklist.back().first->setInitializer(MaybeC.get()); 3081 } 3082 GlobalInitWorklist.pop_back(); 3083 } 3084 3085 while (!IndirectSymbolInitWorklist.empty()) { 3086 unsigned ValID = IndirectSymbolInitWorklist.back().second; 3087 if (ValID >= ValueList.size()) { 3088 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 3089 } else { 3090 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 3091 if (!MaybeC) 3092 return MaybeC.takeError(); 3093 Constant *C = MaybeC.get(); 3094 GlobalValue *GV = IndirectSymbolInitWorklist.back().first; 3095 if (auto *GA = dyn_cast<GlobalAlias>(GV)) { 3096 if (C->getType() != GV->getType()) 3097 return error("Alias and aliasee types don't match"); 3098 GA->setAliasee(C); 3099 } else if (auto *GI = dyn_cast<GlobalIFunc>(GV)) { 3100 GI->setResolver(C); 3101 } else { 3102 return error("Expected an alias or an ifunc"); 3103 } 3104 } 3105 IndirectSymbolInitWorklist.pop_back(); 3106 } 3107 3108 while (!FunctionOperandWorklist.empty()) { 3109 FunctionOperandInfo &Info = FunctionOperandWorklist.back(); 3110 if (Info.PersonalityFn) { 3111 unsigned ValID = Info.PersonalityFn - 1; 3112 if (ValID < ValueList.size()) { 3113 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 3114 if (!MaybeC) 3115 return MaybeC.takeError(); 3116 Info.F->setPersonalityFn(MaybeC.get()); 3117 Info.PersonalityFn = 0; 3118 } 3119 } 3120 if (Info.Prefix) { 3121 unsigned ValID = Info.Prefix - 1; 3122 if (ValID < ValueList.size()) { 3123 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 3124 if (!MaybeC) 3125 return MaybeC.takeError(); 3126 Info.F->setPrefixData(MaybeC.get()); 3127 Info.Prefix = 0; 3128 } 3129 } 3130 if (Info.Prologue) { 3131 unsigned ValID = Info.Prologue - 1; 3132 if (ValID < ValueList.size()) { 3133 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 3134 if (!MaybeC) 3135 return MaybeC.takeError(); 3136 Info.F->setPrologueData(MaybeC.get()); 3137 Info.Prologue = 0; 3138 } 3139 } 3140 if (Info.PersonalityFn || Info.Prefix || Info.Prologue) 3141 FunctionOperands.push_back(Info); 3142 FunctionOperandWorklist.pop_back(); 3143 } 3144 3145 return Error::success(); 3146 } 3147 3148 APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 3149 SmallVector<uint64_t, 8> Words(Vals.size()); 3150 transform(Vals, Words.begin(), 3151 BitcodeReader::decodeSignRotatedValue); 3152 3153 return APInt(TypeBits, Words); 3154 } 3155 3156 Error BitcodeReader::parseConstants() { 3157 if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 3158 return Err; 3159 3160 SmallVector<uint64_t, 64> Record; 3161 3162 // Read all the records for this value table. 3163 Type *CurTy = Type::getInt32Ty(Context); 3164 unsigned Int32TyID = getVirtualTypeID(CurTy); 3165 unsigned CurTyID = Int32TyID; 3166 Type *CurElemTy = nullptr; 3167 unsigned NextCstNo = ValueList.size(); 3168 3169 while (true) { 3170 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 3171 if (!MaybeEntry) 3172 return MaybeEntry.takeError(); 3173 BitstreamEntry Entry = MaybeEntry.get(); 3174 3175 switch (Entry.Kind) { 3176 case BitstreamEntry::SubBlock: // Handled for us already. 3177 case BitstreamEntry::Error: 3178 return error("Malformed block"); 3179 case BitstreamEntry::EndBlock: 3180 if (NextCstNo != ValueList.size()) 3181 return error("Invalid constant reference"); 3182 return Error::success(); 3183 case BitstreamEntry::Record: 3184 // The interesting case. 3185 break; 3186 } 3187 3188 // Read a record. 3189 Record.clear(); 3190 Type *VoidType = Type::getVoidTy(Context); 3191 Value *V = nullptr; 3192 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 3193 if (!MaybeBitCode) 3194 return MaybeBitCode.takeError(); 3195 switch (unsigned BitCode = MaybeBitCode.get()) { 3196 default: // Default behavior: unknown constant 3197 case bitc::CST_CODE_UNDEF: // UNDEF 3198 V = UndefValue::get(CurTy); 3199 break; 3200 case bitc::CST_CODE_POISON: // POISON 3201 V = PoisonValue::get(CurTy); 3202 break; 3203 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 3204 if (Record.empty()) 3205 return error("Invalid settype record"); 3206 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 3207 return error("Invalid settype record"); 3208 if (TypeList[Record[0]] == VoidType) 3209 return error("Invalid constant type"); 3210 CurTyID = Record[0]; 3211 CurTy = TypeList[CurTyID]; 3212 CurElemTy = getPtrElementTypeByID(CurTyID); 3213 continue; // Skip the ValueList manipulation. 3214 case bitc::CST_CODE_NULL: // NULL 3215 if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy()) 3216 return error("Invalid type for a constant null value"); 3217 if (auto *TETy = dyn_cast<TargetExtType>(CurTy)) 3218 if (!TETy->hasProperty(TargetExtType::HasZeroInit)) 3219 return error("Invalid type for a constant null value"); 3220 V = Constant::getNullValue(CurTy); 3221 break; 3222 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 3223 if (!CurTy->isIntOrIntVectorTy() || Record.empty()) 3224 return error("Invalid integer const record"); 3225 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 3226 break; 3227 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 3228 if (!CurTy->isIntOrIntVectorTy() || Record.empty()) 3229 return error("Invalid wide integer const record"); 3230 3231 auto *ScalarTy = cast<IntegerType>(CurTy->getScalarType()); 3232 APInt VInt = readWideAPInt(Record, ScalarTy->getBitWidth()); 3233 V = ConstantInt::get(CurTy, VInt); 3234 break; 3235 } 3236 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 3237 if (Record.empty()) 3238 return error("Invalid float const record"); 3239 3240 auto *ScalarTy = CurTy->getScalarType(); 3241 if (ScalarTy->isHalfTy()) 3242 V = ConstantFP::get(CurTy, APFloat(APFloat::IEEEhalf(), 3243 APInt(16, (uint16_t)Record[0]))); 3244 else if (ScalarTy->isBFloatTy()) 3245 V = ConstantFP::get( 3246 CurTy, APFloat(APFloat::BFloat(), APInt(16, (uint32_t)Record[0]))); 3247 else if (ScalarTy->isFloatTy()) 3248 V = ConstantFP::get(CurTy, APFloat(APFloat::IEEEsingle(), 3249 APInt(32, (uint32_t)Record[0]))); 3250 else if (ScalarTy->isDoubleTy()) 3251 V = ConstantFP::get( 3252 CurTy, APFloat(APFloat::IEEEdouble(), APInt(64, Record[0]))); 3253 else if (ScalarTy->isX86_FP80Ty()) { 3254 // Bits are not stored the same way as a normal i80 APInt, compensate. 3255 uint64_t Rearrange[2]; 3256 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 3257 Rearrange[1] = Record[0] >> 48; 3258 V = ConstantFP::get( 3259 CurTy, APFloat(APFloat::x87DoubleExtended(), APInt(80, Rearrange))); 3260 } else if (ScalarTy->isFP128Ty()) 3261 V = ConstantFP::get(CurTy, 3262 APFloat(APFloat::IEEEquad(), APInt(128, Record))); 3263 else if (ScalarTy->isPPC_FP128Ty()) 3264 V = ConstantFP::get( 3265 CurTy, APFloat(APFloat::PPCDoubleDouble(), APInt(128, Record))); 3266 else 3267 V = PoisonValue::get(CurTy); 3268 break; 3269 } 3270 3271 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 3272 if (Record.empty()) 3273 return error("Invalid aggregate record"); 3274 3275 unsigned Size = Record.size(); 3276 SmallVector<unsigned, 16> Elts; 3277 for (unsigned i = 0; i != Size; ++i) 3278 Elts.push_back(Record[i]); 3279 3280 if (isa<StructType>(CurTy)) { 3281 V = BitcodeConstant::create( 3282 Alloc, CurTy, BitcodeConstant::ConstantStructOpcode, Elts); 3283 } else if (isa<ArrayType>(CurTy)) { 3284 V = BitcodeConstant::create(Alloc, CurTy, 3285 BitcodeConstant::ConstantArrayOpcode, Elts); 3286 } else if (isa<VectorType>(CurTy)) { 3287 V = BitcodeConstant::create( 3288 Alloc, CurTy, BitcodeConstant::ConstantVectorOpcode, Elts); 3289 } else { 3290 V = PoisonValue::get(CurTy); 3291 } 3292 break; 3293 } 3294 case bitc::CST_CODE_STRING: // STRING: [values] 3295 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 3296 if (Record.empty()) 3297 return error("Invalid string record"); 3298 3299 SmallString<16> Elts(Record.begin(), Record.end()); 3300 V = ConstantDataArray::getString(Context, Elts, 3301 BitCode == bitc::CST_CODE_CSTRING); 3302 break; 3303 } 3304 case bitc::CST_CODE_DATA: {// DATA: [n x value] 3305 if (Record.empty()) 3306 return error("Invalid data record"); 3307 3308 Type *EltTy; 3309 if (auto *Array = dyn_cast<ArrayType>(CurTy)) 3310 EltTy = Array->getElementType(); 3311 else 3312 EltTy = cast<VectorType>(CurTy)->getElementType(); 3313 if (EltTy->isIntegerTy(8)) { 3314 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 3315 if (isa<VectorType>(CurTy)) 3316 V = ConstantDataVector::get(Context, Elts); 3317 else 3318 V = ConstantDataArray::get(Context, Elts); 3319 } else if (EltTy->isIntegerTy(16)) { 3320 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 3321 if (isa<VectorType>(CurTy)) 3322 V = ConstantDataVector::get(Context, Elts); 3323 else 3324 V = ConstantDataArray::get(Context, Elts); 3325 } else if (EltTy->isIntegerTy(32)) { 3326 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 3327 if (isa<VectorType>(CurTy)) 3328 V = ConstantDataVector::get(Context, Elts); 3329 else 3330 V = ConstantDataArray::get(Context, Elts); 3331 } else if (EltTy->isIntegerTy(64)) { 3332 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 3333 if (isa<VectorType>(CurTy)) 3334 V = ConstantDataVector::get(Context, Elts); 3335 else 3336 V = ConstantDataArray::get(Context, Elts); 3337 } else if (EltTy->isHalfTy()) { 3338 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 3339 if (isa<VectorType>(CurTy)) 3340 V = ConstantDataVector::getFP(EltTy, Elts); 3341 else 3342 V = ConstantDataArray::getFP(EltTy, Elts); 3343 } else if (EltTy->isBFloatTy()) { 3344 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 3345 if (isa<VectorType>(CurTy)) 3346 V = ConstantDataVector::getFP(EltTy, Elts); 3347 else 3348 V = ConstantDataArray::getFP(EltTy, Elts); 3349 } else if (EltTy->isFloatTy()) { 3350 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 3351 if (isa<VectorType>(CurTy)) 3352 V = ConstantDataVector::getFP(EltTy, Elts); 3353 else 3354 V = ConstantDataArray::getFP(EltTy, Elts); 3355 } else if (EltTy->isDoubleTy()) { 3356 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 3357 if (isa<VectorType>(CurTy)) 3358 V = ConstantDataVector::getFP(EltTy, Elts); 3359 else 3360 V = ConstantDataArray::getFP(EltTy, Elts); 3361 } else { 3362 return error("Invalid type for value"); 3363 } 3364 break; 3365 } 3366 case bitc::CST_CODE_CE_UNOP: { // CE_UNOP: [opcode, opval] 3367 if (Record.size() < 2) 3368 return error("Invalid unary op constexpr record"); 3369 int Opc = getDecodedUnaryOpcode(Record[0], CurTy); 3370 if (Opc < 0) { 3371 V = PoisonValue::get(CurTy); // Unknown unop. 3372 } else { 3373 V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[1]); 3374 } 3375 break; 3376 } 3377 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 3378 if (Record.size() < 3) 3379 return error("Invalid binary op constexpr record"); 3380 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 3381 if (Opc < 0) { 3382 V = PoisonValue::get(CurTy); // Unknown binop. 3383 } else { 3384 uint8_t Flags = 0; 3385 if (Record.size() >= 4) { 3386 if (Opc == Instruction::Add || 3387 Opc == Instruction::Sub || 3388 Opc == Instruction::Mul || 3389 Opc == Instruction::Shl) { 3390 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3391 Flags |= OverflowingBinaryOperator::NoSignedWrap; 3392 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3393 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 3394 } else if (Opc == Instruction::SDiv || 3395 Opc == Instruction::UDiv || 3396 Opc == Instruction::LShr || 3397 Opc == Instruction::AShr) { 3398 if (Record[3] & (1 << bitc::PEO_EXACT)) 3399 Flags |= PossiblyExactOperator::IsExact; 3400 } 3401 } 3402 V = BitcodeConstant::create(Alloc, CurTy, {(uint8_t)Opc, Flags}, 3403 {(unsigned)Record[1], (unsigned)Record[2]}); 3404 } 3405 break; 3406 } 3407 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 3408 if (Record.size() < 3) 3409 return error("Invalid cast constexpr record"); 3410 int Opc = getDecodedCastOpcode(Record[0]); 3411 if (Opc < 0) { 3412 V = PoisonValue::get(CurTy); // Unknown cast. 3413 } else { 3414 unsigned OpTyID = Record[1]; 3415 Type *OpTy = getTypeByID(OpTyID); 3416 if (!OpTy) 3417 return error("Invalid cast constexpr record"); 3418 V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[2]); 3419 } 3420 break; 3421 } 3422 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands] 3423 case bitc::CST_CODE_CE_GEP_OLD: // [ty, n x operands] 3424 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX_OLD: // [ty, flags, n x 3425 // operands] 3426 case bitc::CST_CODE_CE_GEP: // [ty, flags, n x operands] 3427 case bitc::CST_CODE_CE_GEP_WITH_INRANGE: { // [ty, flags, start, end, n x 3428 // operands] 3429 if (Record.size() < 2) 3430 return error("Constant GEP record must have at least two elements"); 3431 unsigned OpNum = 0; 3432 Type *PointeeType = nullptr; 3433 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX_OLD || 3434 BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE || 3435 BitCode == bitc::CST_CODE_CE_GEP || Record.size() % 2) 3436 PointeeType = getTypeByID(Record[OpNum++]); 3437 3438 uint64_t Flags = 0; 3439 std::optional<ConstantRange> InRange; 3440 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX_OLD) { 3441 uint64_t Op = Record[OpNum++]; 3442 Flags = Op & 1; // inbounds 3443 unsigned InRangeIndex = Op >> 1; 3444 // "Upgrade" inrange by dropping it. The feature is too niche to 3445 // bother. 3446 (void)InRangeIndex; 3447 } else if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE) { 3448 Flags = Record[OpNum++]; 3449 Expected<ConstantRange> MaybeInRange = 3450 readBitWidthAndConstantRange(Record, OpNum); 3451 if (!MaybeInRange) 3452 return MaybeInRange.takeError(); 3453 InRange = MaybeInRange.get(); 3454 } else if (BitCode == bitc::CST_CODE_CE_GEP) { 3455 Flags = Record[OpNum++]; 3456 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 3457 Flags = (1 << bitc::GEP_INBOUNDS); 3458 3459 SmallVector<unsigned, 16> Elts; 3460 unsigned BaseTypeID = Record[OpNum]; 3461 while (OpNum != Record.size()) { 3462 unsigned ElTyID = Record[OpNum++]; 3463 Type *ElTy = getTypeByID(ElTyID); 3464 if (!ElTy) 3465 return error("Invalid getelementptr constexpr record"); 3466 Elts.push_back(Record[OpNum++]); 3467 } 3468 3469 if (Elts.size() < 1) 3470 return error("Invalid gep with no operands"); 3471 3472 Type *BaseType = getTypeByID(BaseTypeID); 3473 if (isa<VectorType>(BaseType)) { 3474 BaseTypeID = getContainedTypeID(BaseTypeID, 0); 3475 BaseType = getTypeByID(BaseTypeID); 3476 } 3477 3478 PointerType *OrigPtrTy = dyn_cast_or_null<PointerType>(BaseType); 3479 if (!OrigPtrTy) 3480 return error("GEP base operand must be pointer or vector of pointer"); 3481 3482 if (!PointeeType) { 3483 PointeeType = getPtrElementTypeByID(BaseTypeID); 3484 if (!PointeeType) 3485 return error("Missing element type for old-style constant GEP"); 3486 } 3487 3488 V = BitcodeConstant::create( 3489 Alloc, CurTy, 3490 {Instruction::GetElementPtr, uint8_t(Flags), PointeeType, InRange}, 3491 Elts); 3492 break; 3493 } 3494 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 3495 if (Record.size() < 3) 3496 return error("Invalid select constexpr record"); 3497 3498 V = BitcodeConstant::create( 3499 Alloc, CurTy, Instruction::Select, 3500 {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]}); 3501 break; 3502 } 3503 case bitc::CST_CODE_CE_EXTRACTELT 3504 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 3505 if (Record.size() < 3) 3506 return error("Invalid extractelement constexpr record"); 3507 unsigned OpTyID = Record[0]; 3508 VectorType *OpTy = 3509 dyn_cast_or_null<VectorType>(getTypeByID(OpTyID)); 3510 if (!OpTy) 3511 return error("Invalid extractelement constexpr record"); 3512 unsigned IdxRecord; 3513 if (Record.size() == 4) { 3514 unsigned IdxTyID = Record[2]; 3515 Type *IdxTy = getTypeByID(IdxTyID); 3516 if (!IdxTy) 3517 return error("Invalid extractelement constexpr record"); 3518 IdxRecord = Record[3]; 3519 } else { 3520 // Deprecated, but still needed to read old bitcode files. 3521 IdxRecord = Record[2]; 3522 } 3523 V = BitcodeConstant::create(Alloc, CurTy, Instruction::ExtractElement, 3524 {(unsigned)Record[1], IdxRecord}); 3525 break; 3526 } 3527 case bitc::CST_CODE_CE_INSERTELT 3528 : { // CE_INSERTELT: [opval, opval, opty, opval] 3529 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 3530 if (Record.size() < 3 || !OpTy) 3531 return error("Invalid insertelement constexpr record"); 3532 unsigned IdxRecord; 3533 if (Record.size() == 4) { 3534 unsigned IdxTyID = Record[2]; 3535 Type *IdxTy = getTypeByID(IdxTyID); 3536 if (!IdxTy) 3537 return error("Invalid insertelement constexpr record"); 3538 IdxRecord = Record[3]; 3539 } else { 3540 // Deprecated, but still needed to read old bitcode files. 3541 IdxRecord = Record[2]; 3542 } 3543 V = BitcodeConstant::create( 3544 Alloc, CurTy, Instruction::InsertElement, 3545 {(unsigned)Record[0], (unsigned)Record[1], IdxRecord}); 3546 break; 3547 } 3548 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 3549 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 3550 if (Record.size() < 3 || !OpTy) 3551 return error("Invalid shufflevector constexpr record"); 3552 V = BitcodeConstant::create( 3553 Alloc, CurTy, Instruction::ShuffleVector, 3554 {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]}); 3555 break; 3556 } 3557 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 3558 VectorType *RTy = dyn_cast<VectorType>(CurTy); 3559 VectorType *OpTy = 3560 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 3561 if (Record.size() < 4 || !RTy || !OpTy) 3562 return error("Invalid shufflevector constexpr record"); 3563 V = BitcodeConstant::create( 3564 Alloc, CurTy, Instruction::ShuffleVector, 3565 {(unsigned)Record[1], (unsigned)Record[2], (unsigned)Record[3]}); 3566 break; 3567 } 3568 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 3569 if (Record.size() < 4) 3570 return error("Invalid cmp constexpt record"); 3571 unsigned OpTyID = Record[0]; 3572 Type *OpTy = getTypeByID(OpTyID); 3573 if (!OpTy) 3574 return error("Invalid cmp constexpr record"); 3575 V = BitcodeConstant::create( 3576 Alloc, CurTy, 3577 {(uint8_t)(OpTy->isFPOrFPVectorTy() ? Instruction::FCmp 3578 : Instruction::ICmp), 3579 (uint8_t)Record[3]}, 3580 {(unsigned)Record[1], (unsigned)Record[2]}); 3581 break; 3582 } 3583 // This maintains backward compatibility, pre-asm dialect keywords. 3584 // Deprecated, but still needed to read old bitcode files. 3585 case bitc::CST_CODE_INLINEASM_OLD: { 3586 if (Record.size() < 2) 3587 return error("Invalid inlineasm record"); 3588 std::string AsmStr, ConstrStr; 3589 bool HasSideEffects = Record[0] & 1; 3590 bool IsAlignStack = Record[0] >> 1; 3591 unsigned AsmStrSize = Record[1]; 3592 if (2+AsmStrSize >= Record.size()) 3593 return error("Invalid inlineasm record"); 3594 unsigned ConstStrSize = Record[2+AsmStrSize]; 3595 if (3+AsmStrSize+ConstStrSize > Record.size()) 3596 return error("Invalid inlineasm record"); 3597 3598 for (unsigned i = 0; i != AsmStrSize; ++i) 3599 AsmStr += (char)Record[2+i]; 3600 for (unsigned i = 0; i != ConstStrSize; ++i) 3601 ConstrStr += (char)Record[3+AsmStrSize+i]; 3602 UpgradeInlineAsmString(&AsmStr); 3603 if (!CurElemTy) 3604 return error("Missing element type for old-style inlineasm"); 3605 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr, 3606 HasSideEffects, IsAlignStack); 3607 break; 3608 } 3609 // This version adds support for the asm dialect keywords (e.g., 3610 // inteldialect). 3611 case bitc::CST_CODE_INLINEASM_OLD2: { 3612 if (Record.size() < 2) 3613 return error("Invalid inlineasm record"); 3614 std::string AsmStr, ConstrStr; 3615 bool HasSideEffects = Record[0] & 1; 3616 bool IsAlignStack = (Record[0] >> 1) & 1; 3617 unsigned AsmDialect = Record[0] >> 2; 3618 unsigned AsmStrSize = Record[1]; 3619 if (2+AsmStrSize >= Record.size()) 3620 return error("Invalid inlineasm record"); 3621 unsigned ConstStrSize = Record[2+AsmStrSize]; 3622 if (3+AsmStrSize+ConstStrSize > Record.size()) 3623 return error("Invalid inlineasm record"); 3624 3625 for (unsigned i = 0; i != AsmStrSize; ++i) 3626 AsmStr += (char)Record[2+i]; 3627 for (unsigned i = 0; i != ConstStrSize; ++i) 3628 ConstrStr += (char)Record[3+AsmStrSize+i]; 3629 UpgradeInlineAsmString(&AsmStr); 3630 if (!CurElemTy) 3631 return error("Missing element type for old-style inlineasm"); 3632 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr, 3633 HasSideEffects, IsAlignStack, 3634 InlineAsm::AsmDialect(AsmDialect)); 3635 break; 3636 } 3637 // This version adds support for the unwind keyword. 3638 case bitc::CST_CODE_INLINEASM_OLD3: { 3639 if (Record.size() < 2) 3640 return error("Invalid inlineasm record"); 3641 unsigned OpNum = 0; 3642 std::string AsmStr, ConstrStr; 3643 bool HasSideEffects = Record[OpNum] & 1; 3644 bool IsAlignStack = (Record[OpNum] >> 1) & 1; 3645 unsigned AsmDialect = (Record[OpNum] >> 2) & 1; 3646 bool CanThrow = (Record[OpNum] >> 3) & 1; 3647 ++OpNum; 3648 unsigned AsmStrSize = Record[OpNum]; 3649 ++OpNum; 3650 if (OpNum + AsmStrSize >= Record.size()) 3651 return error("Invalid inlineasm record"); 3652 unsigned ConstStrSize = Record[OpNum + AsmStrSize]; 3653 if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size()) 3654 return error("Invalid inlineasm record"); 3655 3656 for (unsigned i = 0; i != AsmStrSize; ++i) 3657 AsmStr += (char)Record[OpNum + i]; 3658 ++OpNum; 3659 for (unsigned i = 0; i != ConstStrSize; ++i) 3660 ConstrStr += (char)Record[OpNum + AsmStrSize + i]; 3661 UpgradeInlineAsmString(&AsmStr); 3662 if (!CurElemTy) 3663 return error("Missing element type for old-style inlineasm"); 3664 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr, 3665 HasSideEffects, IsAlignStack, 3666 InlineAsm::AsmDialect(AsmDialect), CanThrow); 3667 break; 3668 } 3669 // This version adds explicit function type. 3670 case bitc::CST_CODE_INLINEASM: { 3671 if (Record.size() < 3) 3672 return error("Invalid inlineasm record"); 3673 unsigned OpNum = 0; 3674 auto *FnTy = dyn_cast_or_null<FunctionType>(getTypeByID(Record[OpNum])); 3675 ++OpNum; 3676 if (!FnTy) 3677 return error("Invalid inlineasm record"); 3678 std::string AsmStr, ConstrStr; 3679 bool HasSideEffects = Record[OpNum] & 1; 3680 bool IsAlignStack = (Record[OpNum] >> 1) & 1; 3681 unsigned AsmDialect = (Record[OpNum] >> 2) & 1; 3682 bool CanThrow = (Record[OpNum] >> 3) & 1; 3683 ++OpNum; 3684 unsigned AsmStrSize = Record[OpNum]; 3685 ++OpNum; 3686 if (OpNum + AsmStrSize >= Record.size()) 3687 return error("Invalid inlineasm record"); 3688 unsigned ConstStrSize = Record[OpNum + AsmStrSize]; 3689 if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size()) 3690 return error("Invalid inlineasm record"); 3691 3692 for (unsigned i = 0; i != AsmStrSize; ++i) 3693 AsmStr += (char)Record[OpNum + i]; 3694 ++OpNum; 3695 for (unsigned i = 0; i != ConstStrSize; ++i) 3696 ConstrStr += (char)Record[OpNum + AsmStrSize + i]; 3697 UpgradeInlineAsmString(&AsmStr); 3698 V = InlineAsm::get(FnTy, AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 3699 InlineAsm::AsmDialect(AsmDialect), CanThrow); 3700 break; 3701 } 3702 case bitc::CST_CODE_BLOCKADDRESS:{ 3703 if (Record.size() < 3) 3704 return error("Invalid blockaddress record"); 3705 unsigned FnTyID = Record[0]; 3706 Type *FnTy = getTypeByID(FnTyID); 3707 if (!FnTy) 3708 return error("Invalid blockaddress record"); 3709 V = BitcodeConstant::create( 3710 Alloc, CurTy, 3711 {BitcodeConstant::BlockAddressOpcode, 0, (unsigned)Record[2]}, 3712 Record[1]); 3713 break; 3714 } 3715 case bitc::CST_CODE_DSO_LOCAL_EQUIVALENT: { 3716 if (Record.size() < 2) 3717 return error("Invalid dso_local record"); 3718 unsigned GVTyID = Record[0]; 3719 Type *GVTy = getTypeByID(GVTyID); 3720 if (!GVTy) 3721 return error("Invalid dso_local record"); 3722 V = BitcodeConstant::create( 3723 Alloc, CurTy, BitcodeConstant::DSOLocalEquivalentOpcode, Record[1]); 3724 break; 3725 } 3726 case bitc::CST_CODE_NO_CFI_VALUE: { 3727 if (Record.size() < 2) 3728 return error("Invalid no_cfi record"); 3729 unsigned GVTyID = Record[0]; 3730 Type *GVTy = getTypeByID(GVTyID); 3731 if (!GVTy) 3732 return error("Invalid no_cfi record"); 3733 V = BitcodeConstant::create(Alloc, CurTy, BitcodeConstant::NoCFIOpcode, 3734 Record[1]); 3735 break; 3736 } 3737 case bitc::CST_CODE_PTRAUTH: { 3738 if (Record.size() < 4) 3739 return error("Invalid ptrauth record"); 3740 // Ptr, Key, Disc, AddrDisc 3741 V = BitcodeConstant::create(Alloc, CurTy, 3742 BitcodeConstant::ConstantPtrAuthOpcode, 3743 {(unsigned)Record[0], (unsigned)Record[1], 3744 (unsigned)Record[2], (unsigned)Record[3]}); 3745 break; 3746 } 3747 } 3748 3749 assert(V->getType() == getTypeByID(CurTyID) && "Incorrect result type ID"); 3750 if (Error Err = ValueList.assignValue(NextCstNo, V, CurTyID)) 3751 return Err; 3752 ++NextCstNo; 3753 } 3754 } 3755 3756 Error BitcodeReader::parseUseLists() { 3757 if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 3758 return Err; 3759 3760 // Read all the records. 3761 SmallVector<uint64_t, 64> Record; 3762 3763 while (true) { 3764 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 3765 if (!MaybeEntry) 3766 return MaybeEntry.takeError(); 3767 BitstreamEntry Entry = MaybeEntry.get(); 3768 3769 switch (Entry.Kind) { 3770 case BitstreamEntry::SubBlock: // Handled for us already. 3771 case BitstreamEntry::Error: 3772 return error("Malformed block"); 3773 case BitstreamEntry::EndBlock: 3774 return Error::success(); 3775 case BitstreamEntry::Record: 3776 // The interesting case. 3777 break; 3778 } 3779 3780 // Read a use list record. 3781 Record.clear(); 3782 bool IsBB = false; 3783 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 3784 if (!MaybeRecord) 3785 return MaybeRecord.takeError(); 3786 switch (MaybeRecord.get()) { 3787 default: // Default behavior: unknown type. 3788 break; 3789 case bitc::USELIST_CODE_BB: 3790 IsBB = true; 3791 [[fallthrough]]; 3792 case bitc::USELIST_CODE_DEFAULT: { 3793 unsigned RecordLength = Record.size(); 3794 if (RecordLength < 3) 3795 // Records should have at least an ID and two indexes. 3796 return error("Invalid record"); 3797 unsigned ID = Record.pop_back_val(); 3798 3799 Value *V; 3800 if (IsBB) { 3801 assert(ID < FunctionBBs.size() && "Basic block not found"); 3802 V = FunctionBBs[ID]; 3803 } else 3804 V = ValueList[ID]; 3805 unsigned NumUses = 0; 3806 SmallDenseMap<const Use *, unsigned, 16> Order; 3807 for (const Use &U : V->materialized_uses()) { 3808 if (++NumUses > Record.size()) 3809 break; 3810 Order[&U] = Record[NumUses - 1]; 3811 } 3812 if (Order.size() != Record.size() || NumUses > Record.size()) 3813 // Mismatches can happen if the functions are being materialized lazily 3814 // (out-of-order), or a value has been upgraded. 3815 break; 3816 3817 V->sortUseList([&](const Use &L, const Use &R) { 3818 return Order.lookup(&L) < Order.lookup(&R); 3819 }); 3820 break; 3821 } 3822 } 3823 } 3824 } 3825 3826 /// When we see the block for metadata, remember where it is and then skip it. 3827 /// This lets us lazily deserialize the metadata. 3828 Error BitcodeReader::rememberAndSkipMetadata() { 3829 // Save the current stream state. 3830 uint64_t CurBit = Stream.GetCurrentBitNo(); 3831 DeferredMetadataInfo.push_back(CurBit); 3832 3833 // Skip over the block for now. 3834 if (Error Err = Stream.SkipBlock()) 3835 return Err; 3836 return Error::success(); 3837 } 3838 3839 Error BitcodeReader::materializeMetadata() { 3840 for (uint64_t BitPos : DeferredMetadataInfo) { 3841 // Move the bit stream to the saved position. 3842 if (Error JumpFailed = Stream.JumpToBit(BitPos)) 3843 return JumpFailed; 3844 if (Error Err = MDLoader->parseModuleMetadata()) 3845 return Err; 3846 } 3847 3848 // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level 3849 // metadata. Only upgrade if the new option doesn't exist to avoid upgrade 3850 // multiple times. 3851 if (!TheModule->getNamedMetadata("llvm.linker.options")) { 3852 if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) { 3853 NamedMDNode *LinkerOpts = 3854 TheModule->getOrInsertNamedMetadata("llvm.linker.options"); 3855 for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands()) 3856 LinkerOpts->addOperand(cast<MDNode>(MDOptions)); 3857 } 3858 } 3859 3860 DeferredMetadataInfo.clear(); 3861 return Error::success(); 3862 } 3863 3864 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 3865 3866 /// When we see the block for a function body, remember where it is and then 3867 /// skip it. This lets us lazily deserialize the functions. 3868 Error BitcodeReader::rememberAndSkipFunctionBody() { 3869 // Get the function we are talking about. 3870 if (FunctionsWithBodies.empty()) 3871 return error("Insufficient function protos"); 3872 3873 Function *Fn = FunctionsWithBodies.back(); 3874 FunctionsWithBodies.pop_back(); 3875 3876 // Save the current stream state. 3877 uint64_t CurBit = Stream.GetCurrentBitNo(); 3878 assert( 3879 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 3880 "Mismatch between VST and scanned function offsets"); 3881 DeferredFunctionInfo[Fn] = CurBit; 3882 3883 // Skip over the function block for now. 3884 if (Error Err = Stream.SkipBlock()) 3885 return Err; 3886 return Error::success(); 3887 } 3888 3889 Error BitcodeReader::globalCleanup() { 3890 // Patch the initializers for globals and aliases up. 3891 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3892 return Err; 3893 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 3894 return error("Malformed global initializer set"); 3895 3896 // Look for intrinsic functions which need to be upgraded at some point 3897 // and functions that need to have their function attributes upgraded. 3898 for (Function &F : *TheModule) { 3899 MDLoader->upgradeDebugIntrinsics(F); 3900 Function *NewFn; 3901 // If PreserveInputDbgFormat=true, then we don't know whether we want 3902 // intrinsics or records, and we won't perform any conversions in either 3903 // case, so don't upgrade intrinsics to records. 3904 if (UpgradeIntrinsicFunction( 3905 &F, NewFn, PreserveInputDbgFormat != cl::boolOrDefault::BOU_TRUE)) 3906 UpgradedIntrinsics[&F] = NewFn; 3907 // Look for functions that rely on old function attribute behavior. 3908 UpgradeFunctionAttributes(F); 3909 } 3910 3911 // Look for global variables which need to be renamed. 3912 std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables; 3913 for (GlobalVariable &GV : TheModule->globals()) 3914 if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV)) 3915 UpgradedVariables.emplace_back(&GV, Upgraded); 3916 for (auto &Pair : UpgradedVariables) { 3917 Pair.first->eraseFromParent(); 3918 TheModule->insertGlobalVariable(Pair.second); 3919 } 3920 3921 // Force deallocation of memory for these vectors to favor the client that 3922 // want lazy deserialization. 3923 std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits); 3924 std::vector<std::pair<GlobalValue *, unsigned>>().swap(IndirectSymbolInits); 3925 return Error::success(); 3926 } 3927 3928 /// Support for lazy parsing of function bodies. This is required if we 3929 /// either have an old bitcode file without a VST forward declaration record, 3930 /// or if we have an anonymous function being materialized, since anonymous 3931 /// functions do not have a name and are therefore not in the VST. 3932 Error BitcodeReader::rememberAndSkipFunctionBodies() { 3933 if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit)) 3934 return JumpFailed; 3935 3936 if (Stream.AtEndOfStream()) 3937 return error("Could not find function in stream"); 3938 3939 if (!SeenFirstFunctionBody) 3940 return error("Trying to materialize functions before seeing function blocks"); 3941 3942 // An old bitcode file with the symbol table at the end would have 3943 // finished the parse greedily. 3944 assert(SeenValueSymbolTable); 3945 3946 SmallVector<uint64_t, 64> Record; 3947 3948 while (true) { 3949 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3950 if (!MaybeEntry) 3951 return MaybeEntry.takeError(); 3952 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3953 3954 switch (Entry.Kind) { 3955 default: 3956 return error("Expect SubBlock"); 3957 case BitstreamEntry::SubBlock: 3958 switch (Entry.ID) { 3959 default: 3960 return error("Expect function block"); 3961 case bitc::FUNCTION_BLOCK_ID: 3962 if (Error Err = rememberAndSkipFunctionBody()) 3963 return Err; 3964 NextUnreadBit = Stream.GetCurrentBitNo(); 3965 return Error::success(); 3966 } 3967 } 3968 } 3969 } 3970 3971 Error BitcodeReaderBase::readBlockInfo() { 3972 Expected<std::optional<BitstreamBlockInfo>> MaybeNewBlockInfo = 3973 Stream.ReadBlockInfoBlock(); 3974 if (!MaybeNewBlockInfo) 3975 return MaybeNewBlockInfo.takeError(); 3976 std::optional<BitstreamBlockInfo> NewBlockInfo = 3977 std::move(MaybeNewBlockInfo.get()); 3978 if (!NewBlockInfo) 3979 return error("Malformed block"); 3980 BlockInfo = std::move(*NewBlockInfo); 3981 return Error::success(); 3982 } 3983 3984 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) { 3985 // v1: [selection_kind, name] 3986 // v2: [strtab_offset, strtab_size, selection_kind] 3987 StringRef Name; 3988 std::tie(Name, Record) = readNameFromStrtab(Record); 3989 3990 if (Record.empty()) 3991 return error("Invalid record"); 3992 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 3993 std::string OldFormatName; 3994 if (!UseStrtab) { 3995 if (Record.size() < 2) 3996 return error("Invalid record"); 3997 unsigned ComdatNameSize = Record[1]; 3998 if (ComdatNameSize > Record.size() - 2) 3999 return error("Comdat name size too large"); 4000 OldFormatName.reserve(ComdatNameSize); 4001 for (unsigned i = 0; i != ComdatNameSize; ++i) 4002 OldFormatName += (char)Record[2 + i]; 4003 Name = OldFormatName; 4004 } 4005 Comdat *C = TheModule->getOrInsertComdat(Name); 4006 C->setSelectionKind(SK); 4007 ComdatList.push_back(C); 4008 return Error::success(); 4009 } 4010 4011 static void inferDSOLocal(GlobalValue *GV) { 4012 // infer dso_local from linkage and visibility if it is not encoded. 4013 if (GV->hasLocalLinkage() || 4014 (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())) 4015 GV->setDSOLocal(true); 4016 } 4017 4018 GlobalValue::SanitizerMetadata deserializeSanitizerMetadata(unsigned V) { 4019 GlobalValue::SanitizerMetadata Meta; 4020 if (V & (1 << 0)) 4021 Meta.NoAddress = true; 4022 if (V & (1 << 1)) 4023 Meta.NoHWAddress = true; 4024 if (V & (1 << 2)) 4025 Meta.Memtag = true; 4026 if (V & (1 << 3)) 4027 Meta.IsDynInit = true; 4028 return Meta; 4029 } 4030 4031 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) { 4032 // v1: [pointer type, isconst, initid, linkage, alignment, section, 4033 // visibility, threadlocal, unnamed_addr, externally_initialized, 4034 // dllstorageclass, comdat, attributes, preemption specifier, 4035 // partition strtab offset, partition strtab size] (name in VST) 4036 // v2: [strtab_offset, strtab_size, v1] 4037 // v3: [v2, code_model] 4038 StringRef Name; 4039 std::tie(Name, Record) = readNameFromStrtab(Record); 4040 4041 if (Record.size() < 6) 4042 return error("Invalid record"); 4043 unsigned TyID = Record[0]; 4044 Type *Ty = getTypeByID(TyID); 4045 if (!Ty) 4046 return error("Invalid record"); 4047 bool isConstant = Record[1] & 1; 4048 bool explicitType = Record[1] & 2; 4049 unsigned AddressSpace; 4050 if (explicitType) { 4051 AddressSpace = Record[1] >> 2; 4052 } else { 4053 if (!Ty->isPointerTy()) 4054 return error("Invalid type for value"); 4055 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 4056 TyID = getContainedTypeID(TyID); 4057 Ty = getTypeByID(TyID); 4058 if (!Ty) 4059 return error("Missing element type for old-style global"); 4060 } 4061 4062 uint64_t RawLinkage = Record[3]; 4063 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 4064 MaybeAlign Alignment; 4065 if (Error Err = parseAlignmentValue(Record[4], Alignment)) 4066 return Err; 4067 std::string Section; 4068 if (Record[5]) { 4069 if (Record[5] - 1 >= SectionTable.size()) 4070 return error("Invalid ID"); 4071 Section = SectionTable[Record[5] - 1]; 4072 } 4073 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 4074 // Local linkage must have default visibility. 4075 // auto-upgrade `hidden` and `protected` for old bitcode. 4076 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 4077 Visibility = getDecodedVisibility(Record[6]); 4078 4079 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 4080 if (Record.size() > 7) 4081 TLM = getDecodedThreadLocalMode(Record[7]); 4082 4083 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 4084 if (Record.size() > 8) 4085 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); 4086 4087 bool ExternallyInitialized = false; 4088 if (Record.size() > 9) 4089 ExternallyInitialized = Record[9]; 4090 4091 GlobalVariable *NewGV = 4092 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name, 4093 nullptr, TLM, AddressSpace, ExternallyInitialized); 4094 if (Alignment) 4095 NewGV->setAlignment(*Alignment); 4096 if (!Section.empty()) 4097 NewGV->setSection(Section); 4098 NewGV->setVisibility(Visibility); 4099 NewGV->setUnnamedAddr(UnnamedAddr); 4100 4101 if (Record.size() > 10) { 4102 // A GlobalValue with local linkage cannot have a DLL storage class. 4103 if (!NewGV->hasLocalLinkage()) { 4104 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 4105 } 4106 } else { 4107 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 4108 } 4109 4110 ValueList.push_back(NewGV, getVirtualTypeID(NewGV->getType(), TyID)); 4111 4112 // Remember which value to use for the global initializer. 4113 if (unsigned InitID = Record[2]) 4114 GlobalInits.push_back(std::make_pair(NewGV, InitID - 1)); 4115 4116 if (Record.size() > 11) { 4117 if (unsigned ComdatID = Record[11]) { 4118 if (ComdatID > ComdatList.size()) 4119 return error("Invalid global variable comdat ID"); 4120 NewGV->setComdat(ComdatList[ComdatID - 1]); 4121 } 4122 } else if (hasImplicitComdat(RawLinkage)) { 4123 ImplicitComdatObjects.insert(NewGV); 4124 } 4125 4126 if (Record.size() > 12) { 4127 auto AS = getAttributes(Record[12]).getFnAttrs(); 4128 NewGV->setAttributes(AS); 4129 } 4130 4131 if (Record.size() > 13) { 4132 NewGV->setDSOLocal(getDecodedDSOLocal(Record[13])); 4133 } 4134 inferDSOLocal(NewGV); 4135 4136 // Check whether we have enough values to read a partition name. 4137 if (Record.size() > 15) 4138 NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15])); 4139 4140 if (Record.size() > 16 && Record[16]) { 4141 llvm::GlobalValue::SanitizerMetadata Meta = 4142 deserializeSanitizerMetadata(Record[16]); 4143 NewGV->setSanitizerMetadata(Meta); 4144 } 4145 4146 if (Record.size() > 17 && Record[17]) { 4147 if (auto CM = getDecodedCodeModel(Record[17])) 4148 NewGV->setCodeModel(*CM); 4149 else 4150 return error("Invalid global variable code model"); 4151 } 4152 4153 return Error::success(); 4154 } 4155 4156 void BitcodeReader::callValueTypeCallback(Value *F, unsigned TypeID) { 4157 if (ValueTypeCallback) { 4158 (*ValueTypeCallback)( 4159 F, TypeID, [this](unsigned I) { return getTypeByID(I); }, 4160 [this](unsigned I, unsigned J) { return getContainedTypeID(I, J); }); 4161 } 4162 } 4163 4164 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) { 4165 // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section, 4166 // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat, 4167 // prefixdata, personalityfn, preemption specifier, addrspace] (name in VST) 4168 // v2: [strtab_offset, strtab_size, v1] 4169 StringRef Name; 4170 std::tie(Name, Record) = readNameFromStrtab(Record); 4171 4172 if (Record.size() < 8) 4173 return error("Invalid record"); 4174 unsigned FTyID = Record[0]; 4175 Type *FTy = getTypeByID(FTyID); 4176 if (!FTy) 4177 return error("Invalid record"); 4178 if (isa<PointerType>(FTy)) { 4179 FTyID = getContainedTypeID(FTyID, 0); 4180 FTy = getTypeByID(FTyID); 4181 if (!FTy) 4182 return error("Missing element type for old-style function"); 4183 } 4184 4185 if (!isa<FunctionType>(FTy)) 4186 return error("Invalid type for value"); 4187 auto CC = static_cast<CallingConv::ID>(Record[1]); 4188 if (CC & ~CallingConv::MaxID) 4189 return error("Invalid calling convention ID"); 4190 4191 unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace(); 4192 if (Record.size() > 16) 4193 AddrSpace = Record[16]; 4194 4195 Function *Func = 4196 Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage, 4197 AddrSpace, Name, TheModule); 4198 4199 assert(Func->getFunctionType() == FTy && 4200 "Incorrect fully specified type provided for function"); 4201 FunctionTypeIDs[Func] = FTyID; 4202 4203 Func->setCallingConv(CC); 4204 bool isProto = Record[2]; 4205 uint64_t RawLinkage = Record[3]; 4206 Func->setLinkage(getDecodedLinkage(RawLinkage)); 4207 Func->setAttributes(getAttributes(Record[4])); 4208 callValueTypeCallback(Func, FTyID); 4209 4210 // Upgrade any old-style byval or sret without a type by propagating the 4211 // argument's pointee type. There should be no opaque pointers where the byval 4212 // type is implicit. 4213 for (unsigned i = 0; i != Func->arg_size(); ++i) { 4214 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet, 4215 Attribute::InAlloca}) { 4216 if (!Func->hasParamAttribute(i, Kind)) 4217 continue; 4218 4219 if (Func->getParamAttribute(i, Kind).getValueAsType()) 4220 continue; 4221 4222 Func->removeParamAttr(i, Kind); 4223 4224 unsigned ParamTypeID = getContainedTypeID(FTyID, i + 1); 4225 Type *PtrEltTy = getPtrElementTypeByID(ParamTypeID); 4226 if (!PtrEltTy) 4227 return error("Missing param element type for attribute upgrade"); 4228 4229 Attribute NewAttr; 4230 switch (Kind) { 4231 case Attribute::ByVal: 4232 NewAttr = Attribute::getWithByValType(Context, PtrEltTy); 4233 break; 4234 case Attribute::StructRet: 4235 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy); 4236 break; 4237 case Attribute::InAlloca: 4238 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy); 4239 break; 4240 default: 4241 llvm_unreachable("not an upgraded type attribute"); 4242 } 4243 4244 Func->addParamAttr(i, NewAttr); 4245 } 4246 } 4247 4248 if (Func->getCallingConv() == CallingConv::X86_INTR && 4249 !Func->arg_empty() && !Func->hasParamAttribute(0, Attribute::ByVal)) { 4250 unsigned ParamTypeID = getContainedTypeID(FTyID, 1); 4251 Type *ByValTy = getPtrElementTypeByID(ParamTypeID); 4252 if (!ByValTy) 4253 return error("Missing param element type for x86_intrcc upgrade"); 4254 Attribute NewAttr = Attribute::getWithByValType(Context, ByValTy); 4255 Func->addParamAttr(0, NewAttr); 4256 } 4257 4258 MaybeAlign Alignment; 4259 if (Error Err = parseAlignmentValue(Record[5], Alignment)) 4260 return Err; 4261 if (Alignment) 4262 Func->setAlignment(*Alignment); 4263 if (Record[6]) { 4264 if (Record[6] - 1 >= SectionTable.size()) 4265 return error("Invalid ID"); 4266 Func->setSection(SectionTable[Record[6] - 1]); 4267 } 4268 // Local linkage must have default visibility. 4269 // auto-upgrade `hidden` and `protected` for old bitcode. 4270 if (!Func->hasLocalLinkage()) 4271 Func->setVisibility(getDecodedVisibility(Record[7])); 4272 if (Record.size() > 8 && Record[8]) { 4273 if (Record[8] - 1 >= GCTable.size()) 4274 return error("Invalid ID"); 4275 Func->setGC(GCTable[Record[8] - 1]); 4276 } 4277 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 4278 if (Record.size() > 9) 4279 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); 4280 Func->setUnnamedAddr(UnnamedAddr); 4281 4282 FunctionOperandInfo OperandInfo = {Func, 0, 0, 0}; 4283 if (Record.size() > 10) 4284 OperandInfo.Prologue = Record[10]; 4285 4286 if (Record.size() > 11) { 4287 // A GlobalValue with local linkage cannot have a DLL storage class. 4288 if (!Func->hasLocalLinkage()) { 4289 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 4290 } 4291 } else { 4292 upgradeDLLImportExportLinkage(Func, RawLinkage); 4293 } 4294 4295 if (Record.size() > 12) { 4296 if (unsigned ComdatID = Record[12]) { 4297 if (ComdatID > ComdatList.size()) 4298 return error("Invalid function comdat ID"); 4299 Func->setComdat(ComdatList[ComdatID - 1]); 4300 } 4301 } else if (hasImplicitComdat(RawLinkage)) { 4302 ImplicitComdatObjects.insert(Func); 4303 } 4304 4305 if (Record.size() > 13) 4306 OperandInfo.Prefix = Record[13]; 4307 4308 if (Record.size() > 14) 4309 OperandInfo.PersonalityFn = Record[14]; 4310 4311 if (Record.size() > 15) { 4312 Func->setDSOLocal(getDecodedDSOLocal(Record[15])); 4313 } 4314 inferDSOLocal(Func); 4315 4316 // Record[16] is the address space number. 4317 4318 // Check whether we have enough values to read a partition name. Also make 4319 // sure Strtab has enough values. 4320 if (Record.size() > 18 && Strtab.data() && 4321 Record[17] + Record[18] <= Strtab.size()) { 4322 Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18])); 4323 } 4324 4325 ValueList.push_back(Func, getVirtualTypeID(Func->getType(), FTyID)); 4326 4327 if (OperandInfo.PersonalityFn || OperandInfo.Prefix || OperandInfo.Prologue) 4328 FunctionOperands.push_back(OperandInfo); 4329 4330 // If this is a function with a body, remember the prototype we are 4331 // creating now, so that we can match up the body with them later. 4332 if (!isProto) { 4333 Func->setIsMaterializable(true); 4334 FunctionsWithBodies.push_back(Func); 4335 DeferredFunctionInfo[Func] = 0; 4336 } 4337 return Error::success(); 4338 } 4339 4340 Error BitcodeReader::parseGlobalIndirectSymbolRecord( 4341 unsigned BitCode, ArrayRef<uint64_t> Record) { 4342 // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST) 4343 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 4344 // dllstorageclass, threadlocal, unnamed_addr, 4345 // preemption specifier] (name in VST) 4346 // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage, 4347 // visibility, dllstorageclass, threadlocal, unnamed_addr, 4348 // preemption specifier] (name in VST) 4349 // v2: [strtab_offset, strtab_size, v1] 4350 StringRef Name; 4351 std::tie(Name, Record) = readNameFromStrtab(Record); 4352 4353 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 4354 if (Record.size() < (3 + (unsigned)NewRecord)) 4355 return error("Invalid record"); 4356 unsigned OpNum = 0; 4357 unsigned TypeID = Record[OpNum++]; 4358 Type *Ty = getTypeByID(TypeID); 4359 if (!Ty) 4360 return error("Invalid record"); 4361 4362 unsigned AddrSpace; 4363 if (!NewRecord) { 4364 auto *PTy = dyn_cast<PointerType>(Ty); 4365 if (!PTy) 4366 return error("Invalid type for value"); 4367 AddrSpace = PTy->getAddressSpace(); 4368 TypeID = getContainedTypeID(TypeID); 4369 Ty = getTypeByID(TypeID); 4370 if (!Ty) 4371 return error("Missing element type for old-style indirect symbol"); 4372 } else { 4373 AddrSpace = Record[OpNum++]; 4374 } 4375 4376 auto Val = Record[OpNum++]; 4377 auto Linkage = Record[OpNum++]; 4378 GlobalValue *NewGA; 4379 if (BitCode == bitc::MODULE_CODE_ALIAS || 4380 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 4381 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 4382 TheModule); 4383 else 4384 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 4385 nullptr, TheModule); 4386 4387 // Local linkage must have default visibility. 4388 // auto-upgrade `hidden` and `protected` for old bitcode. 4389 if (OpNum != Record.size()) { 4390 auto VisInd = OpNum++; 4391 if (!NewGA->hasLocalLinkage()) 4392 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 4393 } 4394 if (BitCode == bitc::MODULE_CODE_ALIAS || 4395 BitCode == bitc::MODULE_CODE_ALIAS_OLD) { 4396 if (OpNum != Record.size()) { 4397 auto S = Record[OpNum++]; 4398 // A GlobalValue with local linkage cannot have a DLL storage class. 4399 if (!NewGA->hasLocalLinkage()) 4400 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(S)); 4401 } 4402 else 4403 upgradeDLLImportExportLinkage(NewGA, Linkage); 4404 if (OpNum != Record.size()) 4405 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 4406 if (OpNum != Record.size()) 4407 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); 4408 } 4409 if (OpNum != Record.size()) 4410 NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++])); 4411 inferDSOLocal(NewGA); 4412 4413 // Check whether we have enough values to read a partition name. 4414 if (OpNum + 1 < Record.size()) { 4415 // Check Strtab has enough values for the partition. 4416 if (Record[OpNum] + Record[OpNum + 1] > Strtab.size()) 4417 return error("Malformed partition, too large."); 4418 NewGA->setPartition( 4419 StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1])); 4420 } 4421 4422 ValueList.push_back(NewGA, getVirtualTypeID(NewGA->getType(), TypeID)); 4423 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 4424 return Error::success(); 4425 } 4426 4427 Error BitcodeReader::parseModule(uint64_t ResumeBit, 4428 bool ShouldLazyLoadMetadata, 4429 ParserCallbacks Callbacks) { 4430 // Load directly into RemoveDIs format if LoadBitcodeIntoNewDbgInfoFormat 4431 // has been set to true and we aren't attempting to preserve the existing 4432 // format in the bitcode (default action: load into the old debug format). 4433 if (PreserveInputDbgFormat != cl::boolOrDefault::BOU_TRUE) { 4434 TheModule->IsNewDbgInfoFormat = 4435 UseNewDbgInfoFormat && 4436 LoadBitcodeIntoNewDbgInfoFormat != cl::boolOrDefault::BOU_FALSE; 4437 } 4438 4439 this->ValueTypeCallback = std::move(Callbacks.ValueType); 4440 if (ResumeBit) { 4441 if (Error JumpFailed = Stream.JumpToBit(ResumeBit)) 4442 return JumpFailed; 4443 } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 4444 return Err; 4445 4446 SmallVector<uint64_t, 64> Record; 4447 4448 // Parts of bitcode parsing depend on the datalayout. Make sure we 4449 // finalize the datalayout before we run any of that code. 4450 bool ResolvedDataLayout = false; 4451 // In order to support importing modules with illegal data layout strings, 4452 // delay parsing the data layout string until after upgrades and overrides 4453 // have been applied, allowing to fix illegal data layout strings. 4454 // Initialize to the current module's layout string in case none is specified. 4455 std::string TentativeDataLayoutStr = TheModule->getDataLayoutStr(); 4456 4457 auto ResolveDataLayout = [&]() -> Error { 4458 if (ResolvedDataLayout) 4459 return Error::success(); 4460 4461 // Datalayout and triple can't be parsed after this point. 4462 ResolvedDataLayout = true; 4463 4464 // Auto-upgrade the layout string 4465 TentativeDataLayoutStr = llvm::UpgradeDataLayoutString( 4466 TentativeDataLayoutStr, TheModule->getTargetTriple()); 4467 4468 // Apply override 4469 if (Callbacks.DataLayout) { 4470 if (auto LayoutOverride = (*Callbacks.DataLayout)( 4471 TheModule->getTargetTriple(), TentativeDataLayoutStr)) 4472 TentativeDataLayoutStr = *LayoutOverride; 4473 } 4474 4475 // Now the layout string is finalized in TentativeDataLayoutStr. Parse it. 4476 Expected<DataLayout> MaybeDL = DataLayout::parse(TentativeDataLayoutStr); 4477 if (!MaybeDL) 4478 return MaybeDL.takeError(); 4479 4480 TheModule->setDataLayout(MaybeDL.get()); 4481 return Error::success(); 4482 }; 4483 4484 // Read all the records for this module. 4485 while (true) { 4486 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 4487 if (!MaybeEntry) 4488 return MaybeEntry.takeError(); 4489 llvm::BitstreamEntry Entry = MaybeEntry.get(); 4490 4491 switch (Entry.Kind) { 4492 case BitstreamEntry::Error: 4493 return error("Malformed block"); 4494 case BitstreamEntry::EndBlock: 4495 if (Error Err = ResolveDataLayout()) 4496 return Err; 4497 return globalCleanup(); 4498 4499 case BitstreamEntry::SubBlock: 4500 switch (Entry.ID) { 4501 default: // Skip unknown content. 4502 if (Error Err = Stream.SkipBlock()) 4503 return Err; 4504 break; 4505 case bitc::BLOCKINFO_BLOCK_ID: 4506 if (Error Err = readBlockInfo()) 4507 return Err; 4508 break; 4509 case bitc::PARAMATTR_BLOCK_ID: 4510 if (Error Err = parseAttributeBlock()) 4511 return Err; 4512 break; 4513 case bitc::PARAMATTR_GROUP_BLOCK_ID: 4514 if (Error Err = parseAttributeGroupBlock()) 4515 return Err; 4516 break; 4517 case bitc::TYPE_BLOCK_ID_NEW: 4518 if (Error Err = parseTypeTable()) 4519 return Err; 4520 break; 4521 case bitc::VALUE_SYMTAB_BLOCK_ID: 4522 if (!SeenValueSymbolTable) { 4523 // Either this is an old form VST without function index and an 4524 // associated VST forward declaration record (which would have caused 4525 // the VST to be jumped to and parsed before it was encountered 4526 // normally in the stream), or there were no function blocks to 4527 // trigger an earlier parsing of the VST. 4528 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 4529 if (Error Err = parseValueSymbolTable()) 4530 return Err; 4531 SeenValueSymbolTable = true; 4532 } else { 4533 // We must have had a VST forward declaration record, which caused 4534 // the parser to jump to and parse the VST earlier. 4535 assert(VSTOffset > 0); 4536 if (Error Err = Stream.SkipBlock()) 4537 return Err; 4538 } 4539 break; 4540 case bitc::CONSTANTS_BLOCK_ID: 4541 if (Error Err = parseConstants()) 4542 return Err; 4543 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 4544 return Err; 4545 break; 4546 case bitc::METADATA_BLOCK_ID: 4547 if (ShouldLazyLoadMetadata) { 4548 if (Error Err = rememberAndSkipMetadata()) 4549 return Err; 4550 break; 4551 } 4552 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 4553 if (Error Err = MDLoader->parseModuleMetadata()) 4554 return Err; 4555 break; 4556 case bitc::METADATA_KIND_BLOCK_ID: 4557 if (Error Err = MDLoader->parseMetadataKinds()) 4558 return Err; 4559 break; 4560 case bitc::FUNCTION_BLOCK_ID: 4561 if (Error Err = ResolveDataLayout()) 4562 return Err; 4563 4564 // If this is the first function body we've seen, reverse the 4565 // FunctionsWithBodies list. 4566 if (!SeenFirstFunctionBody) { 4567 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 4568 if (Error Err = globalCleanup()) 4569 return Err; 4570 SeenFirstFunctionBody = true; 4571 } 4572 4573 if (VSTOffset > 0) { 4574 // If we have a VST forward declaration record, make sure we 4575 // parse the VST now if we haven't already. It is needed to 4576 // set up the DeferredFunctionInfo vector for lazy reading. 4577 if (!SeenValueSymbolTable) { 4578 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset)) 4579 return Err; 4580 SeenValueSymbolTable = true; 4581 // Fall through so that we record the NextUnreadBit below. 4582 // This is necessary in case we have an anonymous function that 4583 // is later materialized. Since it will not have a VST entry we 4584 // need to fall back to the lazy parse to find its offset. 4585 } else { 4586 // If we have a VST forward declaration record, but have already 4587 // parsed the VST (just above, when the first function body was 4588 // encountered here), then we are resuming the parse after 4589 // materializing functions. The ResumeBit points to the 4590 // start of the last function block recorded in the 4591 // DeferredFunctionInfo map. Skip it. 4592 if (Error Err = Stream.SkipBlock()) 4593 return Err; 4594 continue; 4595 } 4596 } 4597 4598 // Support older bitcode files that did not have the function 4599 // index in the VST, nor a VST forward declaration record, as 4600 // well as anonymous functions that do not have VST entries. 4601 // Build the DeferredFunctionInfo vector on the fly. 4602 if (Error Err = rememberAndSkipFunctionBody()) 4603 return Err; 4604 4605 // Suspend parsing when we reach the function bodies. Subsequent 4606 // materialization calls will resume it when necessary. If the bitcode 4607 // file is old, the symbol table will be at the end instead and will not 4608 // have been seen yet. In this case, just finish the parse now. 4609 if (SeenValueSymbolTable) { 4610 NextUnreadBit = Stream.GetCurrentBitNo(); 4611 // After the VST has been parsed, we need to make sure intrinsic name 4612 // are auto-upgraded. 4613 return globalCleanup(); 4614 } 4615 break; 4616 case bitc::USELIST_BLOCK_ID: 4617 if (Error Err = parseUseLists()) 4618 return Err; 4619 break; 4620 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 4621 if (Error Err = parseOperandBundleTags()) 4622 return Err; 4623 break; 4624 case bitc::SYNC_SCOPE_NAMES_BLOCK_ID: 4625 if (Error Err = parseSyncScopeNames()) 4626 return Err; 4627 break; 4628 } 4629 continue; 4630 4631 case BitstreamEntry::Record: 4632 // The interesting case. 4633 break; 4634 } 4635 4636 // Read a record. 4637 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 4638 if (!MaybeBitCode) 4639 return MaybeBitCode.takeError(); 4640 switch (unsigned BitCode = MaybeBitCode.get()) { 4641 default: break; // Default behavior, ignore unknown content. 4642 case bitc::MODULE_CODE_VERSION: { 4643 Expected<unsigned> VersionOrErr = parseVersionRecord(Record); 4644 if (!VersionOrErr) 4645 return VersionOrErr.takeError(); 4646 UseRelativeIDs = *VersionOrErr >= 1; 4647 break; 4648 } 4649 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 4650 if (ResolvedDataLayout) 4651 return error("target triple too late in module"); 4652 std::string S; 4653 if (convertToString(Record, 0, S)) 4654 return error("Invalid record"); 4655 TheModule->setTargetTriple(S); 4656 break; 4657 } 4658 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 4659 if (ResolvedDataLayout) 4660 return error("datalayout too late in module"); 4661 if (convertToString(Record, 0, TentativeDataLayoutStr)) 4662 return error("Invalid record"); 4663 break; 4664 } 4665 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 4666 std::string S; 4667 if (convertToString(Record, 0, S)) 4668 return error("Invalid record"); 4669 TheModule->setModuleInlineAsm(S); 4670 break; 4671 } 4672 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 4673 // Deprecated, but still needed to read old bitcode files. 4674 std::string S; 4675 if (convertToString(Record, 0, S)) 4676 return error("Invalid record"); 4677 // Ignore value. 4678 break; 4679 } 4680 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 4681 std::string S; 4682 if (convertToString(Record, 0, S)) 4683 return error("Invalid record"); 4684 SectionTable.push_back(S); 4685 break; 4686 } 4687 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 4688 std::string S; 4689 if (convertToString(Record, 0, S)) 4690 return error("Invalid record"); 4691 GCTable.push_back(S); 4692 break; 4693 } 4694 case bitc::MODULE_CODE_COMDAT: 4695 if (Error Err = parseComdatRecord(Record)) 4696 return Err; 4697 break; 4698 // FIXME: BitcodeReader should handle {GLOBALVAR, FUNCTION, ALIAS, IFUNC} 4699 // written by ThinLinkBitcodeWriter. See 4700 // `ThinLinkBitcodeWriter::writeSimplifiedModuleInfo` for the format of each 4701 // record 4702 // (https://github.com/llvm/llvm-project/blob/b6a93967d9c11e79802b5e75cec1584d6c8aa472/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp#L4714) 4703 case bitc::MODULE_CODE_GLOBALVAR: 4704 if (Error Err = parseGlobalVarRecord(Record)) 4705 return Err; 4706 break; 4707 case bitc::MODULE_CODE_FUNCTION: 4708 if (Error Err = ResolveDataLayout()) 4709 return Err; 4710 if (Error Err = parseFunctionRecord(Record)) 4711 return Err; 4712 break; 4713 case bitc::MODULE_CODE_IFUNC: 4714 case bitc::MODULE_CODE_ALIAS: 4715 case bitc::MODULE_CODE_ALIAS_OLD: 4716 if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record)) 4717 return Err; 4718 break; 4719 /// MODULE_CODE_VSTOFFSET: [offset] 4720 case bitc::MODULE_CODE_VSTOFFSET: 4721 if (Record.empty()) 4722 return error("Invalid record"); 4723 // Note that we subtract 1 here because the offset is relative to one word 4724 // before the start of the identification or module block, which was 4725 // historically always the start of the regular bitcode header. 4726 VSTOffset = Record[0] - 1; 4727 break; 4728 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4729 case bitc::MODULE_CODE_SOURCE_FILENAME: 4730 SmallString<128> ValueName; 4731 if (convertToString(Record, 0, ValueName)) 4732 return error("Invalid record"); 4733 TheModule->setSourceFileName(ValueName); 4734 break; 4735 } 4736 Record.clear(); 4737 } 4738 this->ValueTypeCallback = std::nullopt; 4739 return Error::success(); 4740 } 4741 4742 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 4743 bool IsImporting, 4744 ParserCallbacks Callbacks) { 4745 TheModule = M; 4746 MetadataLoaderCallbacks MDCallbacks; 4747 MDCallbacks.GetTypeByID = [&](unsigned ID) { return getTypeByID(ID); }; 4748 MDCallbacks.GetContainedTypeID = [&](unsigned I, unsigned J) { 4749 return getContainedTypeID(I, J); 4750 }; 4751 MDCallbacks.MDType = Callbacks.MDType; 4752 MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, MDCallbacks); 4753 return parseModule(0, ShouldLazyLoadMetadata, Callbacks); 4754 } 4755 4756 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 4757 if (!isa<PointerType>(PtrType)) 4758 return error("Load/Store operand is not a pointer type"); 4759 if (!PointerType::isLoadableOrStorableType(ValType)) 4760 return error("Cannot load/store from pointer"); 4761 return Error::success(); 4762 } 4763 4764 Error BitcodeReader::propagateAttributeTypes(CallBase *CB, 4765 ArrayRef<unsigned> ArgTyIDs) { 4766 AttributeList Attrs = CB->getAttributes(); 4767 for (unsigned i = 0; i != CB->arg_size(); ++i) { 4768 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet, 4769 Attribute::InAlloca}) { 4770 if (!Attrs.hasParamAttr(i, Kind) || 4771 Attrs.getParamAttr(i, Kind).getValueAsType()) 4772 continue; 4773 4774 Type *PtrEltTy = getPtrElementTypeByID(ArgTyIDs[i]); 4775 if (!PtrEltTy) 4776 return error("Missing element type for typed attribute upgrade"); 4777 4778 Attribute NewAttr; 4779 switch (Kind) { 4780 case Attribute::ByVal: 4781 NewAttr = Attribute::getWithByValType(Context, PtrEltTy); 4782 break; 4783 case Attribute::StructRet: 4784 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy); 4785 break; 4786 case Attribute::InAlloca: 4787 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy); 4788 break; 4789 default: 4790 llvm_unreachable("not an upgraded type attribute"); 4791 } 4792 4793 Attrs = Attrs.addParamAttribute(Context, i, NewAttr); 4794 } 4795 } 4796 4797 if (CB->isInlineAsm()) { 4798 const InlineAsm *IA = cast<InlineAsm>(CB->getCalledOperand()); 4799 unsigned ArgNo = 0; 4800 for (const InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 4801 if (!CI.hasArg()) 4802 continue; 4803 4804 if (CI.isIndirect && !Attrs.getParamElementType(ArgNo)) { 4805 Type *ElemTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]); 4806 if (!ElemTy) 4807 return error("Missing element type for inline asm upgrade"); 4808 Attrs = Attrs.addParamAttribute( 4809 Context, ArgNo, 4810 Attribute::get(Context, Attribute::ElementType, ElemTy)); 4811 } 4812 4813 ArgNo++; 4814 } 4815 } 4816 4817 switch (CB->getIntrinsicID()) { 4818 case Intrinsic::preserve_array_access_index: 4819 case Intrinsic::preserve_struct_access_index: 4820 case Intrinsic::aarch64_ldaxr: 4821 case Intrinsic::aarch64_ldxr: 4822 case Intrinsic::aarch64_stlxr: 4823 case Intrinsic::aarch64_stxr: 4824 case Intrinsic::arm_ldaex: 4825 case Intrinsic::arm_ldrex: 4826 case Intrinsic::arm_stlex: 4827 case Intrinsic::arm_strex: { 4828 unsigned ArgNo; 4829 switch (CB->getIntrinsicID()) { 4830 case Intrinsic::aarch64_stlxr: 4831 case Intrinsic::aarch64_stxr: 4832 case Intrinsic::arm_stlex: 4833 case Intrinsic::arm_strex: 4834 ArgNo = 1; 4835 break; 4836 default: 4837 ArgNo = 0; 4838 break; 4839 } 4840 if (!Attrs.getParamElementType(ArgNo)) { 4841 Type *ElTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]); 4842 if (!ElTy) 4843 return error("Missing element type for elementtype upgrade"); 4844 Attribute NewAttr = Attribute::get(Context, Attribute::ElementType, ElTy); 4845 Attrs = Attrs.addParamAttribute(Context, ArgNo, NewAttr); 4846 } 4847 break; 4848 } 4849 default: 4850 break; 4851 } 4852 4853 CB->setAttributes(Attrs); 4854 return Error::success(); 4855 } 4856 4857 /// Lazily parse the specified function body block. 4858 Error BitcodeReader::parseFunctionBody(Function *F) { 4859 if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 4860 return Err; 4861 4862 // Unexpected unresolved metadata when parsing function. 4863 if (MDLoader->hasFwdRefs()) 4864 return error("Invalid function metadata: incoming forward references"); 4865 4866 InstructionList.clear(); 4867 unsigned ModuleValueListSize = ValueList.size(); 4868 unsigned ModuleMDLoaderSize = MDLoader->size(); 4869 4870 // Add all the function arguments to the value table. 4871 unsigned ArgNo = 0; 4872 unsigned FTyID = FunctionTypeIDs[F]; 4873 for (Argument &I : F->args()) { 4874 unsigned ArgTyID = getContainedTypeID(FTyID, ArgNo + 1); 4875 assert(I.getType() == getTypeByID(ArgTyID) && 4876 "Incorrect fully specified type for Function Argument"); 4877 ValueList.push_back(&I, ArgTyID); 4878 ++ArgNo; 4879 } 4880 unsigned NextValueNo = ValueList.size(); 4881 BasicBlock *CurBB = nullptr; 4882 unsigned CurBBNo = 0; 4883 // Block into which constant expressions from phi nodes are materialized. 4884 BasicBlock *PhiConstExprBB = nullptr; 4885 // Edge blocks for phi nodes into which constant expressions have been 4886 // expanded. 4887 SmallMapVector<std::pair<BasicBlock *, BasicBlock *>, BasicBlock *, 4> 4888 ConstExprEdgeBBs; 4889 4890 DebugLoc LastLoc; 4891 auto getLastInstruction = [&]() -> Instruction * { 4892 if (CurBB && !CurBB->empty()) 4893 return &CurBB->back(); 4894 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 4895 !FunctionBBs[CurBBNo - 1]->empty()) 4896 return &FunctionBBs[CurBBNo - 1]->back(); 4897 return nullptr; 4898 }; 4899 4900 std::vector<OperandBundleDef> OperandBundles; 4901 4902 // Read all the records. 4903 SmallVector<uint64_t, 64> Record; 4904 4905 while (true) { 4906 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 4907 if (!MaybeEntry) 4908 return MaybeEntry.takeError(); 4909 llvm::BitstreamEntry Entry = MaybeEntry.get(); 4910 4911 switch (Entry.Kind) { 4912 case BitstreamEntry::Error: 4913 return error("Malformed block"); 4914 case BitstreamEntry::EndBlock: 4915 goto OutOfRecordLoop; 4916 4917 case BitstreamEntry::SubBlock: 4918 switch (Entry.ID) { 4919 default: // Skip unknown content. 4920 if (Error Err = Stream.SkipBlock()) 4921 return Err; 4922 break; 4923 case bitc::CONSTANTS_BLOCK_ID: 4924 if (Error Err = parseConstants()) 4925 return Err; 4926 NextValueNo = ValueList.size(); 4927 break; 4928 case bitc::VALUE_SYMTAB_BLOCK_ID: 4929 if (Error Err = parseValueSymbolTable()) 4930 return Err; 4931 break; 4932 case bitc::METADATA_ATTACHMENT_ID: 4933 if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList)) 4934 return Err; 4935 break; 4936 case bitc::METADATA_BLOCK_ID: 4937 assert(DeferredMetadataInfo.empty() && 4938 "Must read all module-level metadata before function-level"); 4939 if (Error Err = MDLoader->parseFunctionMetadata()) 4940 return Err; 4941 break; 4942 case bitc::USELIST_BLOCK_ID: 4943 if (Error Err = parseUseLists()) 4944 return Err; 4945 break; 4946 } 4947 continue; 4948 4949 case BitstreamEntry::Record: 4950 // The interesting case. 4951 break; 4952 } 4953 4954 // Read a record. 4955 Record.clear(); 4956 Instruction *I = nullptr; 4957 unsigned ResTypeID = InvalidTypeID; 4958 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 4959 if (!MaybeBitCode) 4960 return MaybeBitCode.takeError(); 4961 switch (unsigned BitCode = MaybeBitCode.get()) { 4962 default: // Default behavior: reject 4963 return error("Invalid value"); 4964 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 4965 if (Record.empty() || Record[0] == 0) 4966 return error("Invalid record"); 4967 // Create all the basic blocks for the function. 4968 FunctionBBs.resize(Record[0]); 4969 4970 // See if anything took the address of blocks in this function. 4971 auto BBFRI = BasicBlockFwdRefs.find(F); 4972 if (BBFRI == BasicBlockFwdRefs.end()) { 4973 for (BasicBlock *&BB : FunctionBBs) 4974 BB = BasicBlock::Create(Context, "", F); 4975 } else { 4976 auto &BBRefs = BBFRI->second; 4977 // Check for invalid basic block references. 4978 if (BBRefs.size() > FunctionBBs.size()) 4979 return error("Invalid ID"); 4980 assert(!BBRefs.empty() && "Unexpected empty array"); 4981 assert(!BBRefs.front() && "Invalid reference to entry block"); 4982 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 4983 ++I) 4984 if (I < RE && BBRefs[I]) { 4985 BBRefs[I]->insertInto(F); 4986 FunctionBBs[I] = BBRefs[I]; 4987 } else { 4988 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 4989 } 4990 4991 // Erase from the table. 4992 BasicBlockFwdRefs.erase(BBFRI); 4993 } 4994 4995 CurBB = FunctionBBs[0]; 4996 continue; 4997 } 4998 4999 case bitc::FUNC_CODE_BLOCKADDR_USERS: // BLOCKADDR_USERS: [vals...] 5000 // The record should not be emitted if it's an empty list. 5001 if (Record.empty()) 5002 return error("Invalid record"); 5003 // When we have the RARE case of a BlockAddress Constant that is not 5004 // scoped to the Function it refers to, we need to conservatively 5005 // materialize the referred to Function, regardless of whether or not 5006 // that Function will ultimately be linked, otherwise users of 5007 // BitcodeReader might start splicing out Function bodies such that we 5008 // might no longer be able to materialize the BlockAddress since the 5009 // BasicBlock (and entire body of the Function) the BlockAddress refers 5010 // to may have been moved. In the case that the user of BitcodeReader 5011 // decides ultimately not to link the Function body, materializing here 5012 // could be considered wasteful, but it's better than a deserialization 5013 // failure as described. This keeps BitcodeReader unaware of complex 5014 // linkage policy decisions such as those use by LTO, leaving those 5015 // decisions "one layer up." 5016 for (uint64_t ValID : Record) 5017 if (auto *F = dyn_cast<Function>(ValueList[ValID])) 5018 BackwardRefFunctions.push_back(F); 5019 else 5020 return error("Invalid record"); 5021 5022 continue; 5023 5024 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 5025 // This record indicates that the last instruction is at the same 5026 // location as the previous instruction with a location. 5027 I = getLastInstruction(); 5028 5029 if (!I) 5030 return error("Invalid record"); 5031 I->setDebugLoc(LastLoc); 5032 I = nullptr; 5033 continue; 5034 5035 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 5036 I = getLastInstruction(); 5037 if (!I || Record.size() < 4) 5038 return error("Invalid record"); 5039 5040 unsigned Line = Record[0], Col = Record[1]; 5041 unsigned ScopeID = Record[2], IAID = Record[3]; 5042 bool isImplicitCode = Record.size() == 5 && Record[4]; 5043 5044 MDNode *Scope = nullptr, *IA = nullptr; 5045 if (ScopeID) { 5046 Scope = dyn_cast_or_null<MDNode>( 5047 MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1)); 5048 if (!Scope) 5049 return error("Invalid record"); 5050 } 5051 if (IAID) { 5052 IA = dyn_cast_or_null<MDNode>( 5053 MDLoader->getMetadataFwdRefOrLoad(IAID - 1)); 5054 if (!IA) 5055 return error("Invalid record"); 5056 } 5057 LastLoc = DILocation::get(Scope->getContext(), Line, Col, Scope, IA, 5058 isImplicitCode); 5059 I->setDebugLoc(LastLoc); 5060 I = nullptr; 5061 continue; 5062 } 5063 case bitc::FUNC_CODE_INST_UNOP: { // UNOP: [opval, ty, opcode] 5064 unsigned OpNum = 0; 5065 Value *LHS; 5066 unsigned TypeID; 5067 if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) || 5068 OpNum+1 > Record.size()) 5069 return error("Invalid record"); 5070 5071 int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType()); 5072 if (Opc == -1) 5073 return error("Invalid record"); 5074 I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 5075 ResTypeID = TypeID; 5076 InstructionList.push_back(I); 5077 if (OpNum < Record.size()) { 5078 if (isa<FPMathOperator>(I)) { 5079 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 5080 if (FMF.any()) 5081 I->setFastMathFlags(FMF); 5082 } 5083 } 5084 break; 5085 } 5086 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 5087 unsigned OpNum = 0; 5088 Value *LHS, *RHS; 5089 unsigned TypeID; 5090 if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) || 5091 popValue(Record, OpNum, NextValueNo, LHS->getType(), TypeID, RHS, 5092 CurBB) || 5093 OpNum+1 > Record.size()) 5094 return error("Invalid record"); 5095 5096 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 5097 if (Opc == -1) 5098 return error("Invalid record"); 5099 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 5100 ResTypeID = TypeID; 5101 InstructionList.push_back(I); 5102 if (OpNum < Record.size()) { 5103 if (Opc == Instruction::Add || 5104 Opc == Instruction::Sub || 5105 Opc == Instruction::Mul || 5106 Opc == Instruction::Shl) { 5107 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 5108 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 5109 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 5110 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 5111 } else if (Opc == Instruction::SDiv || 5112 Opc == Instruction::UDiv || 5113 Opc == Instruction::LShr || 5114 Opc == Instruction::AShr) { 5115 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 5116 cast<BinaryOperator>(I)->setIsExact(true); 5117 } else if (Opc == Instruction::Or) { 5118 if (Record[OpNum] & (1 << bitc::PDI_DISJOINT)) 5119 cast<PossiblyDisjointInst>(I)->setIsDisjoint(true); 5120 } else if (isa<FPMathOperator>(I)) { 5121 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 5122 if (FMF.any()) 5123 I->setFastMathFlags(FMF); 5124 } 5125 } 5126 break; 5127 } 5128 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 5129 unsigned OpNum = 0; 5130 Value *Op; 5131 unsigned OpTypeID; 5132 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) || 5133 OpNum + 1 > Record.size()) 5134 return error("Invalid record"); 5135 5136 ResTypeID = Record[OpNum++]; 5137 Type *ResTy = getTypeByID(ResTypeID); 5138 int Opc = getDecodedCastOpcode(Record[OpNum++]); 5139 5140 if (Opc == -1 || !ResTy) 5141 return error("Invalid record"); 5142 Instruction *Temp = nullptr; 5143 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 5144 if (Temp) { 5145 InstructionList.push_back(Temp); 5146 assert(CurBB && "No current BB?"); 5147 Temp->insertInto(CurBB, CurBB->end()); 5148 } 5149 } else { 5150 auto CastOp = (Instruction::CastOps)Opc; 5151 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 5152 return error("Invalid cast"); 5153 I = CastInst::Create(CastOp, Op, ResTy); 5154 } 5155 5156 if (OpNum < Record.size()) { 5157 if (Opc == Instruction::ZExt || Opc == Instruction::UIToFP) { 5158 if (Record[OpNum] & (1 << bitc::PNNI_NON_NEG)) 5159 cast<PossiblyNonNegInst>(I)->setNonNeg(true); 5160 } else if (Opc == Instruction::Trunc) { 5161 if (Record[OpNum] & (1 << bitc::TIO_NO_UNSIGNED_WRAP)) 5162 cast<TruncInst>(I)->setHasNoUnsignedWrap(true); 5163 if (Record[OpNum] & (1 << bitc::TIO_NO_SIGNED_WRAP)) 5164 cast<TruncInst>(I)->setHasNoSignedWrap(true); 5165 } 5166 } 5167 5168 InstructionList.push_back(I); 5169 break; 5170 } 5171 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 5172 case bitc::FUNC_CODE_INST_GEP_OLD: 5173 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 5174 unsigned OpNum = 0; 5175 5176 unsigned TyID; 5177 Type *Ty; 5178 GEPNoWrapFlags NW; 5179 5180 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 5181 NW = toGEPNoWrapFlags(Record[OpNum++]); 5182 TyID = Record[OpNum++]; 5183 Ty = getTypeByID(TyID); 5184 } else { 5185 if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD) 5186 NW = GEPNoWrapFlags::inBounds(); 5187 TyID = InvalidTypeID; 5188 Ty = nullptr; 5189 } 5190 5191 Value *BasePtr; 5192 unsigned BasePtrTypeID; 5193 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr, BasePtrTypeID, 5194 CurBB)) 5195 return error("Invalid record"); 5196 5197 if (!Ty) { 5198 TyID = getContainedTypeID(BasePtrTypeID); 5199 if (BasePtr->getType()->isVectorTy()) 5200 TyID = getContainedTypeID(TyID); 5201 Ty = getTypeByID(TyID); 5202 } 5203 5204 SmallVector<Value*, 16> GEPIdx; 5205 while (OpNum != Record.size()) { 5206 Value *Op; 5207 unsigned OpTypeID; 5208 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 5209 return error("Invalid record"); 5210 GEPIdx.push_back(Op); 5211 } 5212 5213 auto *GEP = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 5214 I = GEP; 5215 5216 ResTypeID = TyID; 5217 if (cast<GEPOperator>(I)->getNumIndices() != 0) { 5218 auto GTI = std::next(gep_type_begin(I)); 5219 for (Value *Idx : drop_begin(cast<GEPOperator>(I)->indices())) { 5220 unsigned SubType = 0; 5221 if (GTI.isStruct()) { 5222 ConstantInt *IdxC = 5223 Idx->getType()->isVectorTy() 5224 ? cast<ConstantInt>(cast<Constant>(Idx)->getSplatValue()) 5225 : cast<ConstantInt>(Idx); 5226 SubType = IdxC->getZExtValue(); 5227 } 5228 ResTypeID = getContainedTypeID(ResTypeID, SubType); 5229 ++GTI; 5230 } 5231 } 5232 5233 // At this point ResTypeID is the result element type. We need a pointer 5234 // or vector of pointer to it. 5235 ResTypeID = getVirtualTypeID(I->getType()->getScalarType(), ResTypeID); 5236 if (I->getType()->isVectorTy()) 5237 ResTypeID = getVirtualTypeID(I->getType(), ResTypeID); 5238 5239 InstructionList.push_back(I); 5240 GEP->setNoWrapFlags(NW); 5241 break; 5242 } 5243 5244 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 5245 // EXTRACTVAL: [opty, opval, n x indices] 5246 unsigned OpNum = 0; 5247 Value *Agg; 5248 unsigned AggTypeID; 5249 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB)) 5250 return error("Invalid record"); 5251 Type *Ty = Agg->getType(); 5252 5253 unsigned RecSize = Record.size(); 5254 if (OpNum == RecSize) 5255 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 5256 5257 SmallVector<unsigned, 4> EXTRACTVALIdx; 5258 ResTypeID = AggTypeID; 5259 for (; OpNum != RecSize; ++OpNum) { 5260 bool IsArray = Ty->isArrayTy(); 5261 bool IsStruct = Ty->isStructTy(); 5262 uint64_t Index = Record[OpNum]; 5263 5264 if (!IsStruct && !IsArray) 5265 return error("EXTRACTVAL: Invalid type"); 5266 if ((unsigned)Index != Index) 5267 return error("Invalid value"); 5268 if (IsStruct && Index >= Ty->getStructNumElements()) 5269 return error("EXTRACTVAL: Invalid struct index"); 5270 if (IsArray && Index >= Ty->getArrayNumElements()) 5271 return error("EXTRACTVAL: Invalid array index"); 5272 EXTRACTVALIdx.push_back((unsigned)Index); 5273 5274 if (IsStruct) { 5275 Ty = Ty->getStructElementType(Index); 5276 ResTypeID = getContainedTypeID(ResTypeID, Index); 5277 } else { 5278 Ty = Ty->getArrayElementType(); 5279 ResTypeID = getContainedTypeID(ResTypeID); 5280 } 5281 } 5282 5283 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 5284 InstructionList.push_back(I); 5285 break; 5286 } 5287 5288 case bitc::FUNC_CODE_INST_INSERTVAL: { 5289 // INSERTVAL: [opty, opval, opty, opval, n x indices] 5290 unsigned OpNum = 0; 5291 Value *Agg; 5292 unsigned AggTypeID; 5293 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB)) 5294 return error("Invalid record"); 5295 Value *Val; 5296 unsigned ValTypeID; 5297 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 5298 return error("Invalid record"); 5299 5300 unsigned RecSize = Record.size(); 5301 if (OpNum == RecSize) 5302 return error("INSERTVAL: Invalid instruction with 0 indices"); 5303 5304 SmallVector<unsigned, 4> INSERTVALIdx; 5305 Type *CurTy = Agg->getType(); 5306 for (; OpNum != RecSize; ++OpNum) { 5307 bool IsArray = CurTy->isArrayTy(); 5308 bool IsStruct = CurTy->isStructTy(); 5309 uint64_t Index = Record[OpNum]; 5310 5311 if (!IsStruct && !IsArray) 5312 return error("INSERTVAL: Invalid type"); 5313 if ((unsigned)Index != Index) 5314 return error("Invalid value"); 5315 if (IsStruct && Index >= CurTy->getStructNumElements()) 5316 return error("INSERTVAL: Invalid struct index"); 5317 if (IsArray && Index >= CurTy->getArrayNumElements()) 5318 return error("INSERTVAL: Invalid array index"); 5319 5320 INSERTVALIdx.push_back((unsigned)Index); 5321 if (IsStruct) 5322 CurTy = CurTy->getStructElementType(Index); 5323 else 5324 CurTy = CurTy->getArrayElementType(); 5325 } 5326 5327 if (CurTy != Val->getType()) 5328 return error("Inserted value type doesn't match aggregate type"); 5329 5330 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 5331 ResTypeID = AggTypeID; 5332 InstructionList.push_back(I); 5333 break; 5334 } 5335 5336 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 5337 // obsolete form of select 5338 // handles select i1 ... in old bitcode 5339 unsigned OpNum = 0; 5340 Value *TrueVal, *FalseVal, *Cond; 5341 unsigned TypeID; 5342 Type *CondType = Type::getInt1Ty(Context); 5343 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, TypeID, 5344 CurBB) || 5345 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), TypeID, 5346 FalseVal, CurBB) || 5347 popValue(Record, OpNum, NextValueNo, CondType, 5348 getVirtualTypeID(CondType), Cond, CurBB)) 5349 return error("Invalid record"); 5350 5351 I = SelectInst::Create(Cond, TrueVal, FalseVal); 5352 ResTypeID = TypeID; 5353 InstructionList.push_back(I); 5354 break; 5355 } 5356 5357 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 5358 // new form of select 5359 // handles select i1 or select [N x i1] 5360 unsigned OpNum = 0; 5361 Value *TrueVal, *FalseVal, *Cond; 5362 unsigned ValTypeID, CondTypeID; 5363 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, ValTypeID, 5364 CurBB) || 5365 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), ValTypeID, 5366 FalseVal, CurBB) || 5367 getValueTypePair(Record, OpNum, NextValueNo, Cond, CondTypeID, CurBB)) 5368 return error("Invalid record"); 5369 5370 // select condition can be either i1 or [N x i1] 5371 if (VectorType* vector_type = 5372 dyn_cast<VectorType>(Cond->getType())) { 5373 // expect <n x i1> 5374 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 5375 return error("Invalid type for value"); 5376 } else { 5377 // expect i1 5378 if (Cond->getType() != Type::getInt1Ty(Context)) 5379 return error("Invalid type for value"); 5380 } 5381 5382 I = SelectInst::Create(Cond, TrueVal, FalseVal); 5383 ResTypeID = ValTypeID; 5384 InstructionList.push_back(I); 5385 if (OpNum < Record.size() && isa<FPMathOperator>(I)) { 5386 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 5387 if (FMF.any()) 5388 I->setFastMathFlags(FMF); 5389 } 5390 break; 5391 } 5392 5393 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 5394 unsigned OpNum = 0; 5395 Value *Vec, *Idx; 5396 unsigned VecTypeID, IdxTypeID; 5397 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB) || 5398 getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB)) 5399 return error("Invalid record"); 5400 if (!Vec->getType()->isVectorTy()) 5401 return error("Invalid type for value"); 5402 I = ExtractElementInst::Create(Vec, Idx); 5403 ResTypeID = getContainedTypeID(VecTypeID); 5404 InstructionList.push_back(I); 5405 break; 5406 } 5407 5408 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 5409 unsigned OpNum = 0; 5410 Value *Vec, *Elt, *Idx; 5411 unsigned VecTypeID, IdxTypeID; 5412 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB)) 5413 return error("Invalid record"); 5414 if (!Vec->getType()->isVectorTy()) 5415 return error("Invalid type for value"); 5416 if (popValue(Record, OpNum, NextValueNo, 5417 cast<VectorType>(Vec->getType())->getElementType(), 5418 getContainedTypeID(VecTypeID), Elt, CurBB) || 5419 getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB)) 5420 return error("Invalid record"); 5421 I = InsertElementInst::Create(Vec, Elt, Idx); 5422 ResTypeID = VecTypeID; 5423 InstructionList.push_back(I); 5424 break; 5425 } 5426 5427 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 5428 unsigned OpNum = 0; 5429 Value *Vec1, *Vec2, *Mask; 5430 unsigned Vec1TypeID; 5431 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1, Vec1TypeID, 5432 CurBB) || 5433 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec1TypeID, 5434 Vec2, CurBB)) 5435 return error("Invalid record"); 5436 5437 unsigned MaskTypeID; 5438 if (getValueTypePair(Record, OpNum, NextValueNo, Mask, MaskTypeID, CurBB)) 5439 return error("Invalid record"); 5440 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 5441 return error("Invalid type for value"); 5442 5443 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 5444 ResTypeID = 5445 getVirtualTypeID(I->getType(), getContainedTypeID(Vec1TypeID)); 5446 InstructionList.push_back(I); 5447 break; 5448 } 5449 5450 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 5451 // Old form of ICmp/FCmp returning bool 5452 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 5453 // both legal on vectors but had different behaviour. 5454 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 5455 // FCmp/ICmp returning bool or vector of bool 5456 5457 unsigned OpNum = 0; 5458 Value *LHS, *RHS; 5459 unsigned LHSTypeID; 5460 if (getValueTypePair(Record, OpNum, NextValueNo, LHS, LHSTypeID, CurBB) || 5461 popValue(Record, OpNum, NextValueNo, LHS->getType(), LHSTypeID, RHS, 5462 CurBB)) 5463 return error("Invalid record"); 5464 5465 if (OpNum >= Record.size()) 5466 return error( 5467 "Invalid record: operand number exceeded available operands"); 5468 5469 CmpInst::Predicate PredVal = CmpInst::Predicate(Record[OpNum]); 5470 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 5471 FastMathFlags FMF; 5472 if (IsFP && Record.size() > OpNum+1) 5473 FMF = getDecodedFastMathFlags(Record[++OpNum]); 5474 5475 if (IsFP) { 5476 if (!CmpInst::isFPPredicate(PredVal)) 5477 return error("Invalid fcmp predicate"); 5478 I = new FCmpInst(PredVal, LHS, RHS); 5479 } else { 5480 if (!CmpInst::isIntPredicate(PredVal)) 5481 return error("Invalid icmp predicate"); 5482 I = new ICmpInst(PredVal, LHS, RHS); 5483 if (Record.size() > OpNum + 1 && 5484 (Record[++OpNum] & (1 << bitc::ICMP_SAME_SIGN))) 5485 cast<ICmpInst>(I)->setSameSign(); 5486 } 5487 5488 if (OpNum + 1 != Record.size()) 5489 return error("Invalid record"); 5490 5491 ResTypeID = getVirtualTypeID(I->getType()->getScalarType()); 5492 if (LHS->getType()->isVectorTy()) 5493 ResTypeID = getVirtualTypeID(I->getType(), ResTypeID); 5494 5495 if (FMF.any()) 5496 I->setFastMathFlags(FMF); 5497 InstructionList.push_back(I); 5498 break; 5499 } 5500 5501 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 5502 { 5503 unsigned Size = Record.size(); 5504 if (Size == 0) { 5505 I = ReturnInst::Create(Context); 5506 InstructionList.push_back(I); 5507 break; 5508 } 5509 5510 unsigned OpNum = 0; 5511 Value *Op = nullptr; 5512 unsigned OpTypeID; 5513 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 5514 return error("Invalid record"); 5515 if (OpNum != Record.size()) 5516 return error("Invalid record"); 5517 5518 I = ReturnInst::Create(Context, Op); 5519 InstructionList.push_back(I); 5520 break; 5521 } 5522 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 5523 if (Record.size() != 1 && Record.size() != 3) 5524 return error("Invalid record"); 5525 BasicBlock *TrueDest = getBasicBlock(Record[0]); 5526 if (!TrueDest) 5527 return error("Invalid record"); 5528 5529 if (Record.size() == 1) { 5530 I = BranchInst::Create(TrueDest); 5531 InstructionList.push_back(I); 5532 } 5533 else { 5534 BasicBlock *FalseDest = getBasicBlock(Record[1]); 5535 Type *CondType = Type::getInt1Ty(Context); 5536 Value *Cond = getValue(Record, 2, NextValueNo, CondType, 5537 getVirtualTypeID(CondType), CurBB); 5538 if (!FalseDest || !Cond) 5539 return error("Invalid record"); 5540 I = BranchInst::Create(TrueDest, FalseDest, Cond); 5541 InstructionList.push_back(I); 5542 } 5543 break; 5544 } 5545 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 5546 if (Record.size() != 1 && Record.size() != 2) 5547 return error("Invalid record"); 5548 unsigned Idx = 0; 5549 Type *TokenTy = Type::getTokenTy(Context); 5550 Value *CleanupPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5551 getVirtualTypeID(TokenTy), CurBB); 5552 if (!CleanupPad) 5553 return error("Invalid record"); 5554 BasicBlock *UnwindDest = nullptr; 5555 if (Record.size() == 2) { 5556 UnwindDest = getBasicBlock(Record[Idx++]); 5557 if (!UnwindDest) 5558 return error("Invalid record"); 5559 } 5560 5561 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 5562 InstructionList.push_back(I); 5563 break; 5564 } 5565 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 5566 if (Record.size() != 2) 5567 return error("Invalid record"); 5568 unsigned Idx = 0; 5569 Type *TokenTy = Type::getTokenTy(Context); 5570 Value *CatchPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5571 getVirtualTypeID(TokenTy), CurBB); 5572 if (!CatchPad) 5573 return error("Invalid record"); 5574 BasicBlock *BB = getBasicBlock(Record[Idx++]); 5575 if (!BB) 5576 return error("Invalid record"); 5577 5578 I = CatchReturnInst::Create(CatchPad, BB); 5579 InstructionList.push_back(I); 5580 break; 5581 } 5582 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 5583 // We must have, at minimum, the outer scope and the number of arguments. 5584 if (Record.size() < 2) 5585 return error("Invalid record"); 5586 5587 unsigned Idx = 0; 5588 5589 Type *TokenTy = Type::getTokenTy(Context); 5590 Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5591 getVirtualTypeID(TokenTy), CurBB); 5592 if (!ParentPad) 5593 return error("Invalid record"); 5594 5595 unsigned NumHandlers = Record[Idx++]; 5596 5597 SmallVector<BasicBlock *, 2> Handlers; 5598 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 5599 BasicBlock *BB = getBasicBlock(Record[Idx++]); 5600 if (!BB) 5601 return error("Invalid record"); 5602 Handlers.push_back(BB); 5603 } 5604 5605 BasicBlock *UnwindDest = nullptr; 5606 if (Idx + 1 == Record.size()) { 5607 UnwindDest = getBasicBlock(Record[Idx++]); 5608 if (!UnwindDest) 5609 return error("Invalid record"); 5610 } 5611 5612 if (Record.size() != Idx) 5613 return error("Invalid record"); 5614 5615 auto *CatchSwitch = 5616 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 5617 for (BasicBlock *Handler : Handlers) 5618 CatchSwitch->addHandler(Handler); 5619 I = CatchSwitch; 5620 ResTypeID = getVirtualTypeID(I->getType()); 5621 InstructionList.push_back(I); 5622 break; 5623 } 5624 case bitc::FUNC_CODE_INST_CATCHPAD: 5625 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 5626 // We must have, at minimum, the outer scope and the number of arguments. 5627 if (Record.size() < 2) 5628 return error("Invalid record"); 5629 5630 unsigned Idx = 0; 5631 5632 Type *TokenTy = Type::getTokenTy(Context); 5633 Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5634 getVirtualTypeID(TokenTy), CurBB); 5635 if (!ParentPad) 5636 return error("Invald record"); 5637 5638 unsigned NumArgOperands = Record[Idx++]; 5639 5640 SmallVector<Value *, 2> Args; 5641 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 5642 Value *Val; 5643 unsigned ValTypeID; 5644 if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, nullptr)) 5645 return error("Invalid record"); 5646 Args.push_back(Val); 5647 } 5648 5649 if (Record.size() != Idx) 5650 return error("Invalid record"); 5651 5652 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 5653 I = CleanupPadInst::Create(ParentPad, Args); 5654 else 5655 I = CatchPadInst::Create(ParentPad, Args); 5656 ResTypeID = getVirtualTypeID(I->getType()); 5657 InstructionList.push_back(I); 5658 break; 5659 } 5660 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 5661 // Check magic 5662 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 5663 // "New" SwitchInst format with case ranges. The changes to write this 5664 // format were reverted but we still recognize bitcode that uses it. 5665 // Hopefully someday we will have support for case ranges and can use 5666 // this format again. 5667 5668 unsigned OpTyID = Record[1]; 5669 Type *OpTy = getTypeByID(OpTyID); 5670 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 5671 5672 Value *Cond = getValue(Record, 2, NextValueNo, OpTy, OpTyID, CurBB); 5673 BasicBlock *Default = getBasicBlock(Record[3]); 5674 if (!OpTy || !Cond || !Default) 5675 return error("Invalid record"); 5676 5677 unsigned NumCases = Record[4]; 5678 5679 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 5680 InstructionList.push_back(SI); 5681 5682 unsigned CurIdx = 5; 5683 for (unsigned i = 0; i != NumCases; ++i) { 5684 SmallVector<ConstantInt*, 1> CaseVals; 5685 unsigned NumItems = Record[CurIdx++]; 5686 for (unsigned ci = 0; ci != NumItems; ++ci) { 5687 bool isSingleNumber = Record[CurIdx++]; 5688 5689 APInt Low; 5690 unsigned ActiveWords = 1; 5691 if (ValueBitWidth > 64) 5692 ActiveWords = Record[CurIdx++]; 5693 Low = readWideAPInt(ArrayRef(&Record[CurIdx], ActiveWords), 5694 ValueBitWidth); 5695 CurIdx += ActiveWords; 5696 5697 if (!isSingleNumber) { 5698 ActiveWords = 1; 5699 if (ValueBitWidth > 64) 5700 ActiveWords = Record[CurIdx++]; 5701 APInt High = readWideAPInt(ArrayRef(&Record[CurIdx], ActiveWords), 5702 ValueBitWidth); 5703 CurIdx += ActiveWords; 5704 5705 // FIXME: It is not clear whether values in the range should be 5706 // compared as signed or unsigned values. The partially 5707 // implemented changes that used this format in the past used 5708 // unsigned comparisons. 5709 for ( ; Low.ule(High); ++Low) 5710 CaseVals.push_back(ConstantInt::get(Context, Low)); 5711 } else 5712 CaseVals.push_back(ConstantInt::get(Context, Low)); 5713 } 5714 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 5715 for (ConstantInt *Cst : CaseVals) 5716 SI->addCase(Cst, DestBB); 5717 } 5718 I = SI; 5719 break; 5720 } 5721 5722 // Old SwitchInst format without case ranges. 5723 5724 if (Record.size() < 3 || (Record.size() & 1) == 0) 5725 return error("Invalid record"); 5726 unsigned OpTyID = Record[0]; 5727 Type *OpTy = getTypeByID(OpTyID); 5728 Value *Cond = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB); 5729 BasicBlock *Default = getBasicBlock(Record[2]); 5730 if (!OpTy || !Cond || !Default) 5731 return error("Invalid record"); 5732 unsigned NumCases = (Record.size()-3)/2; 5733 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 5734 InstructionList.push_back(SI); 5735 for (unsigned i = 0, e = NumCases; i != e; ++i) { 5736 ConstantInt *CaseVal = dyn_cast_or_null<ConstantInt>( 5737 getFnValueByID(Record[3+i*2], OpTy, OpTyID, nullptr)); 5738 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 5739 if (!CaseVal || !DestBB) { 5740 delete SI; 5741 return error("Invalid record"); 5742 } 5743 SI->addCase(CaseVal, DestBB); 5744 } 5745 I = SI; 5746 break; 5747 } 5748 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 5749 if (Record.size() < 2) 5750 return error("Invalid record"); 5751 unsigned OpTyID = Record[0]; 5752 Type *OpTy = getTypeByID(OpTyID); 5753 Value *Address = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB); 5754 if (!OpTy || !Address) 5755 return error("Invalid record"); 5756 unsigned NumDests = Record.size()-2; 5757 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 5758 InstructionList.push_back(IBI); 5759 for (unsigned i = 0, e = NumDests; i != e; ++i) { 5760 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 5761 IBI->addDestination(DestBB); 5762 } else { 5763 delete IBI; 5764 return error("Invalid record"); 5765 } 5766 } 5767 I = IBI; 5768 break; 5769 } 5770 5771 case bitc::FUNC_CODE_INST_INVOKE: { 5772 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 5773 if (Record.size() < 4) 5774 return error("Invalid record"); 5775 unsigned OpNum = 0; 5776 AttributeList PAL = getAttributes(Record[OpNum++]); 5777 unsigned CCInfo = Record[OpNum++]; 5778 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 5779 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 5780 5781 unsigned FTyID = InvalidTypeID; 5782 FunctionType *FTy = nullptr; 5783 if ((CCInfo >> 13) & 1) { 5784 FTyID = Record[OpNum++]; 5785 FTy = dyn_cast<FunctionType>(getTypeByID(FTyID)); 5786 if (!FTy) 5787 return error("Explicit invoke type is not a function type"); 5788 } 5789 5790 Value *Callee; 5791 unsigned CalleeTypeID; 5792 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID, 5793 CurBB)) 5794 return error("Invalid record"); 5795 5796 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 5797 if (!CalleeTy) 5798 return error("Callee is not a pointer"); 5799 if (!FTy) { 5800 FTyID = getContainedTypeID(CalleeTypeID); 5801 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 5802 if (!FTy) 5803 return error("Callee is not of pointer to function type"); 5804 } 5805 if (Record.size() < FTy->getNumParams() + OpNum) 5806 return error("Insufficient operands to call"); 5807 5808 SmallVector<Value*, 16> Ops; 5809 SmallVector<unsigned, 16> ArgTyIDs; 5810 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5811 unsigned ArgTyID = getContainedTypeID(FTyID, i + 1); 5812 Ops.push_back(getValue(Record, OpNum, NextValueNo, FTy->getParamType(i), 5813 ArgTyID, CurBB)); 5814 ArgTyIDs.push_back(ArgTyID); 5815 if (!Ops.back()) 5816 return error("Invalid record"); 5817 } 5818 5819 if (!FTy->isVarArg()) { 5820 if (Record.size() != OpNum) 5821 return error("Invalid record"); 5822 } else { 5823 // Read type/value pairs for varargs params. 5824 while (OpNum != Record.size()) { 5825 Value *Op; 5826 unsigned OpTypeID; 5827 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 5828 return error("Invalid record"); 5829 Ops.push_back(Op); 5830 ArgTyIDs.push_back(OpTypeID); 5831 } 5832 } 5833 5834 // Upgrade the bundles if needed. 5835 if (!OperandBundles.empty()) 5836 UpgradeOperandBundles(OperandBundles); 5837 5838 I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops, 5839 OperandBundles); 5840 ResTypeID = getContainedTypeID(FTyID); 5841 OperandBundles.clear(); 5842 InstructionList.push_back(I); 5843 cast<InvokeInst>(I)->setCallingConv( 5844 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 5845 cast<InvokeInst>(I)->setAttributes(PAL); 5846 if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) { 5847 I->deleteValue(); 5848 return Err; 5849 } 5850 5851 break; 5852 } 5853 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 5854 unsigned Idx = 0; 5855 Value *Val = nullptr; 5856 unsigned ValTypeID; 5857 if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, CurBB)) 5858 return error("Invalid record"); 5859 I = ResumeInst::Create(Val); 5860 InstructionList.push_back(I); 5861 break; 5862 } 5863 case bitc::FUNC_CODE_INST_CALLBR: { 5864 // CALLBR: [attr, cc, norm, transfs, fty, fnid, args] 5865 unsigned OpNum = 0; 5866 AttributeList PAL = getAttributes(Record[OpNum++]); 5867 unsigned CCInfo = Record[OpNum++]; 5868 5869 BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]); 5870 unsigned NumIndirectDests = Record[OpNum++]; 5871 SmallVector<BasicBlock *, 16> IndirectDests; 5872 for (unsigned i = 0, e = NumIndirectDests; i != e; ++i) 5873 IndirectDests.push_back(getBasicBlock(Record[OpNum++])); 5874 5875 unsigned FTyID = InvalidTypeID; 5876 FunctionType *FTy = nullptr; 5877 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 5878 FTyID = Record[OpNum++]; 5879 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 5880 if (!FTy) 5881 return error("Explicit call type is not a function type"); 5882 } 5883 5884 Value *Callee; 5885 unsigned CalleeTypeID; 5886 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID, 5887 CurBB)) 5888 return error("Invalid record"); 5889 5890 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5891 if (!OpTy) 5892 return error("Callee is not a pointer type"); 5893 if (!FTy) { 5894 FTyID = getContainedTypeID(CalleeTypeID); 5895 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 5896 if (!FTy) 5897 return error("Callee is not of pointer to function type"); 5898 } 5899 if (Record.size() < FTy->getNumParams() + OpNum) 5900 return error("Insufficient operands to call"); 5901 5902 SmallVector<Value*, 16> Args; 5903 SmallVector<unsigned, 16> ArgTyIDs; 5904 // Read the fixed params. 5905 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5906 Value *Arg; 5907 unsigned ArgTyID = getContainedTypeID(FTyID, i + 1); 5908 if (FTy->getParamType(i)->isLabelTy()) 5909 Arg = getBasicBlock(Record[OpNum]); 5910 else 5911 Arg = getValue(Record, OpNum, NextValueNo, FTy->getParamType(i), 5912 ArgTyID, CurBB); 5913 if (!Arg) 5914 return error("Invalid record"); 5915 Args.push_back(Arg); 5916 ArgTyIDs.push_back(ArgTyID); 5917 } 5918 5919 // Read type/value pairs for varargs params. 5920 if (!FTy->isVarArg()) { 5921 if (OpNum != Record.size()) 5922 return error("Invalid record"); 5923 } else { 5924 while (OpNum != Record.size()) { 5925 Value *Op; 5926 unsigned OpTypeID; 5927 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 5928 return error("Invalid record"); 5929 Args.push_back(Op); 5930 ArgTyIDs.push_back(OpTypeID); 5931 } 5932 } 5933 5934 // Upgrade the bundles if needed. 5935 if (!OperandBundles.empty()) 5936 UpgradeOperandBundles(OperandBundles); 5937 5938 if (auto *IA = dyn_cast<InlineAsm>(Callee)) { 5939 InlineAsm::ConstraintInfoVector ConstraintInfo = IA->ParseConstraints(); 5940 auto IsLabelConstraint = [](const InlineAsm::ConstraintInfo &CI) { 5941 return CI.Type == InlineAsm::isLabel; 5942 }; 5943 if (none_of(ConstraintInfo, IsLabelConstraint)) { 5944 // Upgrade explicit blockaddress arguments to label constraints. 5945 // Verify that the last arguments are blockaddress arguments that 5946 // match the indirect destinations. Clang always generates callbr 5947 // in this form. We could support reordering with more effort. 5948 unsigned FirstBlockArg = Args.size() - IndirectDests.size(); 5949 for (unsigned ArgNo = FirstBlockArg; ArgNo < Args.size(); ++ArgNo) { 5950 unsigned LabelNo = ArgNo - FirstBlockArg; 5951 auto *BA = dyn_cast<BlockAddress>(Args[ArgNo]); 5952 if (!BA || BA->getFunction() != F || 5953 LabelNo > IndirectDests.size() || 5954 BA->getBasicBlock() != IndirectDests[LabelNo]) 5955 return error("callbr argument does not match indirect dest"); 5956 } 5957 5958 // Remove blockaddress arguments. 5959 Args.erase(Args.begin() + FirstBlockArg, Args.end()); 5960 ArgTyIDs.erase(ArgTyIDs.begin() + FirstBlockArg, ArgTyIDs.end()); 5961 5962 // Recreate the function type with less arguments. 5963 SmallVector<Type *> ArgTys; 5964 for (Value *Arg : Args) 5965 ArgTys.push_back(Arg->getType()); 5966 FTy = 5967 FunctionType::get(FTy->getReturnType(), ArgTys, FTy->isVarArg()); 5968 5969 // Update constraint string to use label constraints. 5970 std::string Constraints = IA->getConstraintString(); 5971 unsigned ArgNo = 0; 5972 size_t Pos = 0; 5973 for (const auto &CI : ConstraintInfo) { 5974 if (CI.hasArg()) { 5975 if (ArgNo >= FirstBlockArg) 5976 Constraints.insert(Pos, "!"); 5977 ++ArgNo; 5978 } 5979 5980 // Go to next constraint in string. 5981 Pos = Constraints.find(',', Pos); 5982 if (Pos == std::string::npos) 5983 break; 5984 ++Pos; 5985 } 5986 5987 Callee = InlineAsm::get(FTy, IA->getAsmString(), Constraints, 5988 IA->hasSideEffects(), IA->isAlignStack(), 5989 IA->getDialect(), IA->canThrow()); 5990 } 5991 } 5992 5993 I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args, 5994 OperandBundles); 5995 ResTypeID = getContainedTypeID(FTyID); 5996 OperandBundles.clear(); 5997 InstructionList.push_back(I); 5998 cast<CallBrInst>(I)->setCallingConv( 5999 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 6000 cast<CallBrInst>(I)->setAttributes(PAL); 6001 if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) { 6002 I->deleteValue(); 6003 return Err; 6004 } 6005 break; 6006 } 6007 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 6008 I = new UnreachableInst(Context); 6009 InstructionList.push_back(I); 6010 break; 6011 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 6012 if (Record.empty()) 6013 return error("Invalid phi record"); 6014 // The first record specifies the type. 6015 unsigned TyID = Record[0]; 6016 Type *Ty = getTypeByID(TyID); 6017 if (!Ty) 6018 return error("Invalid phi record"); 6019 6020 // Phi arguments are pairs of records of [value, basic block]. 6021 // There is an optional final record for fast-math-flags if this phi has a 6022 // floating-point type. 6023 size_t NumArgs = (Record.size() - 1) / 2; 6024 PHINode *PN = PHINode::Create(Ty, NumArgs); 6025 if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN)) { 6026 PN->deleteValue(); 6027 return error("Invalid phi record"); 6028 } 6029 InstructionList.push_back(PN); 6030 6031 SmallDenseMap<BasicBlock *, Value *> Args; 6032 for (unsigned i = 0; i != NumArgs; i++) { 6033 BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]); 6034 if (!BB) { 6035 PN->deleteValue(); 6036 return error("Invalid phi BB"); 6037 } 6038 6039 // Phi nodes may contain the same predecessor multiple times, in which 6040 // case the incoming value must be identical. Directly reuse the already 6041 // seen value here, to avoid expanding a constant expression multiple 6042 // times. 6043 auto It = Args.find(BB); 6044 if (It != Args.end()) { 6045 PN->addIncoming(It->second, BB); 6046 continue; 6047 } 6048 6049 // If there already is a block for this edge (from a different phi), 6050 // use it. 6051 BasicBlock *EdgeBB = ConstExprEdgeBBs.lookup({BB, CurBB}); 6052 if (!EdgeBB) { 6053 // Otherwise, use a temporary block (that we will discard if it 6054 // turns out to be unnecessary). 6055 if (!PhiConstExprBB) 6056 PhiConstExprBB = BasicBlock::Create(Context, "phi.constexpr", F); 6057 EdgeBB = PhiConstExprBB; 6058 } 6059 6060 // With the new function encoding, it is possible that operands have 6061 // negative IDs (for forward references). Use a signed VBR 6062 // representation to keep the encoding small. 6063 Value *V; 6064 if (UseRelativeIDs) 6065 V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB); 6066 else 6067 V = getValue(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB); 6068 if (!V) { 6069 PN->deleteValue(); 6070 PhiConstExprBB->eraseFromParent(); 6071 return error("Invalid phi record"); 6072 } 6073 6074 if (EdgeBB == PhiConstExprBB && !EdgeBB->empty()) { 6075 ConstExprEdgeBBs.insert({{BB, CurBB}, EdgeBB}); 6076 PhiConstExprBB = nullptr; 6077 } 6078 PN->addIncoming(V, BB); 6079 Args.insert({BB, V}); 6080 } 6081 I = PN; 6082 ResTypeID = TyID; 6083 6084 // If there are an even number of records, the final record must be FMF. 6085 if (Record.size() % 2 == 0) { 6086 assert(isa<FPMathOperator>(I) && "Unexpected phi type"); 6087 FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]); 6088 if (FMF.any()) 6089 I->setFastMathFlags(FMF); 6090 } 6091 6092 break; 6093 } 6094 6095 case bitc::FUNC_CODE_INST_LANDINGPAD: 6096 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 6097 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 6098 unsigned Idx = 0; 6099 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 6100 if (Record.size() < 3) 6101 return error("Invalid record"); 6102 } else { 6103 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 6104 if (Record.size() < 4) 6105 return error("Invalid record"); 6106 } 6107 ResTypeID = Record[Idx++]; 6108 Type *Ty = getTypeByID(ResTypeID); 6109 if (!Ty) 6110 return error("Invalid record"); 6111 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 6112 Value *PersFn = nullptr; 6113 unsigned PersFnTypeID; 6114 if (getValueTypePair(Record, Idx, NextValueNo, PersFn, PersFnTypeID, 6115 nullptr)) 6116 return error("Invalid record"); 6117 6118 if (!F->hasPersonalityFn()) 6119 F->setPersonalityFn(cast<Constant>(PersFn)); 6120 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 6121 return error("Personality function mismatch"); 6122 } 6123 6124 bool IsCleanup = !!Record[Idx++]; 6125 unsigned NumClauses = Record[Idx++]; 6126 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 6127 LP->setCleanup(IsCleanup); 6128 for (unsigned J = 0; J != NumClauses; ++J) { 6129 LandingPadInst::ClauseType CT = 6130 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 6131 Value *Val; 6132 unsigned ValTypeID; 6133 6134 if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, 6135 nullptr)) { 6136 delete LP; 6137 return error("Invalid record"); 6138 } 6139 6140 assert((CT != LandingPadInst::Catch || 6141 !isa<ArrayType>(Val->getType())) && 6142 "Catch clause has a invalid type!"); 6143 assert((CT != LandingPadInst::Filter || 6144 isa<ArrayType>(Val->getType())) && 6145 "Filter clause has invalid type!"); 6146 LP->addClause(cast<Constant>(Val)); 6147 } 6148 6149 I = LP; 6150 InstructionList.push_back(I); 6151 break; 6152 } 6153 6154 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 6155 if (Record.size() != 4 && Record.size() != 5) 6156 return error("Invalid record"); 6157 using APV = AllocaPackedValues; 6158 const uint64_t Rec = Record[3]; 6159 const bool InAlloca = Bitfield::get<APV::UsedWithInAlloca>(Rec); 6160 const bool SwiftError = Bitfield::get<APV::SwiftError>(Rec); 6161 unsigned TyID = Record[0]; 6162 Type *Ty = getTypeByID(TyID); 6163 if (!Bitfield::get<APV::ExplicitType>(Rec)) { 6164 TyID = getContainedTypeID(TyID); 6165 Ty = getTypeByID(TyID); 6166 if (!Ty) 6167 return error("Missing element type for old-style alloca"); 6168 } 6169 unsigned OpTyID = Record[1]; 6170 Type *OpTy = getTypeByID(OpTyID); 6171 Value *Size = getFnValueByID(Record[2], OpTy, OpTyID, CurBB); 6172 MaybeAlign Align; 6173 uint64_t AlignExp = 6174 Bitfield::get<APV::AlignLower>(Rec) | 6175 (Bitfield::get<APV::AlignUpper>(Rec) << APV::AlignLower::Bits); 6176 if (Error Err = parseAlignmentValue(AlignExp, Align)) { 6177 return Err; 6178 } 6179 if (!Ty || !Size) 6180 return error("Invalid record"); 6181 6182 const DataLayout &DL = TheModule->getDataLayout(); 6183 unsigned AS = Record.size() == 5 ? Record[4] : DL.getAllocaAddrSpace(); 6184 6185 SmallPtrSet<Type *, 4> Visited; 6186 if (!Align && !Ty->isSized(&Visited)) 6187 return error("alloca of unsized type"); 6188 if (!Align) 6189 Align = DL.getPrefTypeAlign(Ty); 6190 6191 if (!Size->getType()->isIntegerTy()) 6192 return error("alloca element count must have integer type"); 6193 6194 AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align); 6195 AI->setUsedWithInAlloca(InAlloca); 6196 AI->setSwiftError(SwiftError); 6197 I = AI; 6198 ResTypeID = getVirtualTypeID(AI->getType(), TyID); 6199 InstructionList.push_back(I); 6200 break; 6201 } 6202 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 6203 unsigned OpNum = 0; 6204 Value *Op; 6205 unsigned OpTypeID; 6206 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) || 6207 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 6208 return error("Invalid record"); 6209 6210 if (!isa<PointerType>(Op->getType())) 6211 return error("Load operand is not a pointer type"); 6212 6213 Type *Ty = nullptr; 6214 if (OpNum + 3 == Record.size()) { 6215 ResTypeID = Record[OpNum++]; 6216 Ty = getTypeByID(ResTypeID); 6217 } else { 6218 ResTypeID = getContainedTypeID(OpTypeID); 6219 Ty = getTypeByID(ResTypeID); 6220 } 6221 6222 if (!Ty) 6223 return error("Missing load type"); 6224 6225 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 6226 return Err; 6227 6228 MaybeAlign Align; 6229 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 6230 return Err; 6231 SmallPtrSet<Type *, 4> Visited; 6232 if (!Align && !Ty->isSized(&Visited)) 6233 return error("load of unsized type"); 6234 if (!Align) 6235 Align = TheModule->getDataLayout().getABITypeAlign(Ty); 6236 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align); 6237 InstructionList.push_back(I); 6238 break; 6239 } 6240 case bitc::FUNC_CODE_INST_LOADATOMIC: { 6241 // LOADATOMIC: [opty, op, align, vol, ordering, ssid] 6242 unsigned OpNum = 0; 6243 Value *Op; 6244 unsigned OpTypeID; 6245 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) || 6246 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 6247 return error("Invalid record"); 6248 6249 if (!isa<PointerType>(Op->getType())) 6250 return error("Load operand is not a pointer type"); 6251 6252 Type *Ty = nullptr; 6253 if (OpNum + 5 == Record.size()) { 6254 ResTypeID = Record[OpNum++]; 6255 Ty = getTypeByID(ResTypeID); 6256 } else { 6257 ResTypeID = getContainedTypeID(OpTypeID); 6258 Ty = getTypeByID(ResTypeID); 6259 } 6260 6261 if (!Ty) 6262 return error("Missing atomic load type"); 6263 6264 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 6265 return Err; 6266 6267 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 6268 if (Ordering == AtomicOrdering::NotAtomic || 6269 Ordering == AtomicOrdering::Release || 6270 Ordering == AtomicOrdering::AcquireRelease) 6271 return error("Invalid record"); 6272 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 6273 return error("Invalid record"); 6274 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 6275 6276 MaybeAlign Align; 6277 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 6278 return Err; 6279 if (!Align) 6280 return error("Alignment missing from atomic load"); 6281 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID); 6282 InstructionList.push_back(I); 6283 break; 6284 } 6285 case bitc::FUNC_CODE_INST_STORE: 6286 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 6287 unsigned OpNum = 0; 6288 Value *Val, *Ptr; 6289 unsigned PtrTypeID, ValTypeID; 6290 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 6291 return error("Invalid record"); 6292 6293 if (BitCode == bitc::FUNC_CODE_INST_STORE) { 6294 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 6295 return error("Invalid record"); 6296 } else { 6297 ValTypeID = getContainedTypeID(PtrTypeID); 6298 if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID), 6299 ValTypeID, Val, CurBB)) 6300 return error("Invalid record"); 6301 } 6302 6303 if (OpNum + 2 != Record.size()) 6304 return error("Invalid record"); 6305 6306 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 6307 return Err; 6308 MaybeAlign Align; 6309 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 6310 return Err; 6311 SmallPtrSet<Type *, 4> Visited; 6312 if (!Align && !Val->getType()->isSized(&Visited)) 6313 return error("store of unsized type"); 6314 if (!Align) 6315 Align = TheModule->getDataLayout().getABITypeAlign(Val->getType()); 6316 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align); 6317 InstructionList.push_back(I); 6318 break; 6319 } 6320 case bitc::FUNC_CODE_INST_STOREATOMIC: 6321 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 6322 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid] 6323 unsigned OpNum = 0; 6324 Value *Val, *Ptr; 6325 unsigned PtrTypeID, ValTypeID; 6326 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB) || 6327 !isa<PointerType>(Ptr->getType())) 6328 return error("Invalid record"); 6329 if (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC) { 6330 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 6331 return error("Invalid record"); 6332 } else { 6333 ValTypeID = getContainedTypeID(PtrTypeID); 6334 if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID), 6335 ValTypeID, Val, CurBB)) 6336 return error("Invalid record"); 6337 } 6338 6339 if (OpNum + 4 != Record.size()) 6340 return error("Invalid record"); 6341 6342 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 6343 return Err; 6344 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 6345 if (Ordering == AtomicOrdering::NotAtomic || 6346 Ordering == AtomicOrdering::Acquire || 6347 Ordering == AtomicOrdering::AcquireRelease) 6348 return error("Invalid record"); 6349 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 6350 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 6351 return error("Invalid record"); 6352 6353 MaybeAlign Align; 6354 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 6355 return Err; 6356 if (!Align) 6357 return error("Alignment missing from atomic store"); 6358 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID); 6359 InstructionList.push_back(I); 6360 break; 6361 } 6362 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: { 6363 // CMPXCHG_OLD: [ptrty, ptr, cmp, val, vol, ordering, synchscope, 6364 // failure_ordering?, weak?] 6365 const size_t NumRecords = Record.size(); 6366 unsigned OpNum = 0; 6367 Value *Ptr = nullptr; 6368 unsigned PtrTypeID; 6369 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 6370 return error("Invalid record"); 6371 6372 if (!isa<PointerType>(Ptr->getType())) 6373 return error("Cmpxchg operand is not a pointer type"); 6374 6375 Value *Cmp = nullptr; 6376 unsigned CmpTypeID = getContainedTypeID(PtrTypeID); 6377 if (popValue(Record, OpNum, NextValueNo, getTypeByID(CmpTypeID), 6378 CmpTypeID, Cmp, CurBB)) 6379 return error("Invalid record"); 6380 6381 Value *New = nullptr; 6382 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID, 6383 New, CurBB) || 6384 NumRecords < OpNum + 3 || NumRecords > OpNum + 5) 6385 return error("Invalid record"); 6386 6387 const AtomicOrdering SuccessOrdering = 6388 getDecodedOrdering(Record[OpNum + 1]); 6389 if (SuccessOrdering == AtomicOrdering::NotAtomic || 6390 SuccessOrdering == AtomicOrdering::Unordered) 6391 return error("Invalid record"); 6392 6393 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 6394 6395 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 6396 return Err; 6397 6398 const AtomicOrdering FailureOrdering = 6399 NumRecords < 7 6400 ? AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering) 6401 : getDecodedOrdering(Record[OpNum + 3]); 6402 6403 if (FailureOrdering == AtomicOrdering::NotAtomic || 6404 FailureOrdering == AtomicOrdering::Unordered) 6405 return error("Invalid record"); 6406 6407 const Align Alignment( 6408 TheModule->getDataLayout().getTypeStoreSize(Cmp->getType())); 6409 6410 I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering, 6411 FailureOrdering, SSID); 6412 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 6413 6414 if (NumRecords < 8) { 6415 // Before weak cmpxchgs existed, the instruction simply returned the 6416 // value loaded from memory, so bitcode files from that era will be 6417 // expecting the first component of a modern cmpxchg. 6418 I->insertInto(CurBB, CurBB->end()); 6419 I = ExtractValueInst::Create(I, 0); 6420 ResTypeID = CmpTypeID; 6421 } else { 6422 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]); 6423 unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context)); 6424 ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID}); 6425 } 6426 6427 InstructionList.push_back(I); 6428 break; 6429 } 6430 case bitc::FUNC_CODE_INST_CMPXCHG: { 6431 // CMPXCHG: [ptrty, ptr, cmp, val, vol, success_ordering, synchscope, 6432 // failure_ordering, weak, align?] 6433 const size_t NumRecords = Record.size(); 6434 unsigned OpNum = 0; 6435 Value *Ptr = nullptr; 6436 unsigned PtrTypeID; 6437 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 6438 return error("Invalid record"); 6439 6440 if (!isa<PointerType>(Ptr->getType())) 6441 return error("Cmpxchg operand is not a pointer type"); 6442 6443 Value *Cmp = nullptr; 6444 unsigned CmpTypeID; 6445 if (getValueTypePair(Record, OpNum, NextValueNo, Cmp, CmpTypeID, CurBB)) 6446 return error("Invalid record"); 6447 6448 Value *Val = nullptr; 6449 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID, Val, 6450 CurBB)) 6451 return error("Invalid record"); 6452 6453 if (NumRecords < OpNum + 3 || NumRecords > OpNum + 6) 6454 return error("Invalid record"); 6455 6456 const bool IsVol = Record[OpNum]; 6457 6458 const AtomicOrdering SuccessOrdering = 6459 getDecodedOrdering(Record[OpNum + 1]); 6460 if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering)) 6461 return error("Invalid cmpxchg success ordering"); 6462 6463 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 6464 6465 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 6466 return Err; 6467 6468 const AtomicOrdering FailureOrdering = 6469 getDecodedOrdering(Record[OpNum + 3]); 6470 if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering)) 6471 return error("Invalid cmpxchg failure ordering"); 6472 6473 const bool IsWeak = Record[OpNum + 4]; 6474 6475 MaybeAlign Alignment; 6476 6477 if (NumRecords == (OpNum + 6)) { 6478 if (Error Err = parseAlignmentValue(Record[OpNum + 5], Alignment)) 6479 return Err; 6480 } 6481 if (!Alignment) 6482 Alignment = 6483 Align(TheModule->getDataLayout().getTypeStoreSize(Cmp->getType())); 6484 6485 I = new AtomicCmpXchgInst(Ptr, Cmp, Val, *Alignment, SuccessOrdering, 6486 FailureOrdering, SSID); 6487 cast<AtomicCmpXchgInst>(I)->setVolatile(IsVol); 6488 cast<AtomicCmpXchgInst>(I)->setWeak(IsWeak); 6489 6490 unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context)); 6491 ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID}); 6492 6493 InstructionList.push_back(I); 6494 break; 6495 } 6496 case bitc::FUNC_CODE_INST_ATOMICRMW_OLD: 6497 case bitc::FUNC_CODE_INST_ATOMICRMW: { 6498 // ATOMICRMW_OLD: [ptrty, ptr, val, op, vol, ordering, ssid, align?] 6499 // ATOMICRMW: [ptrty, ptr, valty, val, op, vol, ordering, ssid, align?] 6500 const size_t NumRecords = Record.size(); 6501 unsigned OpNum = 0; 6502 6503 Value *Ptr = nullptr; 6504 unsigned PtrTypeID; 6505 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 6506 return error("Invalid record"); 6507 6508 if (!isa<PointerType>(Ptr->getType())) 6509 return error("Invalid record"); 6510 6511 Value *Val = nullptr; 6512 unsigned ValTypeID = InvalidTypeID; 6513 if (BitCode == bitc::FUNC_CODE_INST_ATOMICRMW_OLD) { 6514 ValTypeID = getContainedTypeID(PtrTypeID); 6515 if (popValue(Record, OpNum, NextValueNo, 6516 getTypeByID(ValTypeID), ValTypeID, Val, CurBB)) 6517 return error("Invalid record"); 6518 } else { 6519 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 6520 return error("Invalid record"); 6521 } 6522 6523 if (!(NumRecords == (OpNum + 4) || NumRecords == (OpNum + 5))) 6524 return error("Invalid record"); 6525 6526 const AtomicRMWInst::BinOp Operation = 6527 getDecodedRMWOperation(Record[OpNum]); 6528 if (Operation < AtomicRMWInst::FIRST_BINOP || 6529 Operation > AtomicRMWInst::LAST_BINOP) 6530 return error("Invalid record"); 6531 6532 const bool IsVol = Record[OpNum + 1]; 6533 6534 const AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 6535 if (Ordering == AtomicOrdering::NotAtomic || 6536 Ordering == AtomicOrdering::Unordered) 6537 return error("Invalid record"); 6538 6539 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 6540 6541 MaybeAlign Alignment; 6542 6543 if (NumRecords == (OpNum + 5)) { 6544 if (Error Err = parseAlignmentValue(Record[OpNum + 4], Alignment)) 6545 return Err; 6546 } 6547 6548 if (!Alignment) 6549 Alignment = 6550 Align(TheModule->getDataLayout().getTypeStoreSize(Val->getType())); 6551 6552 I = new AtomicRMWInst(Operation, Ptr, Val, *Alignment, Ordering, SSID); 6553 ResTypeID = ValTypeID; 6554 cast<AtomicRMWInst>(I)->setVolatile(IsVol); 6555 6556 InstructionList.push_back(I); 6557 break; 6558 } 6559 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid] 6560 if (2 != Record.size()) 6561 return error("Invalid record"); 6562 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 6563 if (Ordering == AtomicOrdering::NotAtomic || 6564 Ordering == AtomicOrdering::Unordered || 6565 Ordering == AtomicOrdering::Monotonic) 6566 return error("Invalid record"); 6567 SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]); 6568 I = new FenceInst(Context, Ordering, SSID); 6569 InstructionList.push_back(I); 6570 break; 6571 } 6572 case bitc::FUNC_CODE_DEBUG_RECORD_LABEL: { 6573 // DbgLabelRecords are placed after the Instructions that they are 6574 // attached to. 6575 SeenDebugRecord = true; 6576 Instruction *Inst = getLastInstruction(); 6577 if (!Inst) 6578 return error("Invalid dbg record: missing instruction"); 6579 DILocation *DIL = cast<DILocation>(getFnMetadataByID(Record[0])); 6580 DILabel *Label = cast<DILabel>(getFnMetadataByID(Record[1])); 6581 Inst->getParent()->insertDbgRecordBefore( 6582 new DbgLabelRecord(Label, DebugLoc(DIL)), Inst->getIterator()); 6583 continue; // This isn't an instruction. 6584 } 6585 case bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE: 6586 case bitc::FUNC_CODE_DEBUG_RECORD_VALUE: 6587 case bitc::FUNC_CODE_DEBUG_RECORD_DECLARE: 6588 case bitc::FUNC_CODE_DEBUG_RECORD_ASSIGN: { 6589 // DbgVariableRecords are placed after the Instructions that they are 6590 // attached to. 6591 SeenDebugRecord = true; 6592 Instruction *Inst = getLastInstruction(); 6593 if (!Inst) 6594 return error("Invalid dbg record: missing instruction"); 6595 6596 // First 3 fields are common to all kinds: 6597 // DILocation, DILocalVariable, DIExpression 6598 // dbg_value (FUNC_CODE_DEBUG_RECORD_VALUE) 6599 // ..., LocationMetadata 6600 // dbg_value (FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE - abbrev'd) 6601 // ..., Value 6602 // dbg_declare (FUNC_CODE_DEBUG_RECORD_DECLARE) 6603 // ..., LocationMetadata 6604 // dbg_assign (FUNC_CODE_DEBUG_RECORD_ASSIGN) 6605 // ..., LocationMetadata, DIAssignID, DIExpression, LocationMetadata 6606 unsigned Slot = 0; 6607 // Common fields (0-2). 6608 DILocation *DIL = cast<DILocation>(getFnMetadataByID(Record[Slot++])); 6609 DILocalVariable *Var = 6610 cast<DILocalVariable>(getFnMetadataByID(Record[Slot++])); 6611 DIExpression *Expr = 6612 cast<DIExpression>(getFnMetadataByID(Record[Slot++])); 6613 6614 // Union field (3: LocationMetadata | Value). 6615 Metadata *RawLocation = nullptr; 6616 if (BitCode == bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE) { 6617 Value *V = nullptr; 6618 unsigned TyID = 0; 6619 // We never expect to see a fwd reference value here because 6620 // use-before-defs are encoded with the standard non-abbrev record 6621 // type (they'd require encoding the type too, and they're rare). As a 6622 // result, getValueTypePair only ever increments Slot by one here (once 6623 // for the value, never twice for value and type). 6624 unsigned SlotBefore = Slot; 6625 if (getValueTypePair(Record, Slot, NextValueNo, V, TyID, CurBB)) 6626 return error("Invalid dbg record: invalid value"); 6627 (void)SlotBefore; 6628 assert((SlotBefore == Slot - 1) && "unexpected fwd ref"); 6629 RawLocation = ValueAsMetadata::get(V); 6630 } else { 6631 RawLocation = getFnMetadataByID(Record[Slot++]); 6632 } 6633 6634 DbgVariableRecord *DVR = nullptr; 6635 switch (BitCode) { 6636 case bitc::FUNC_CODE_DEBUG_RECORD_VALUE: 6637 case bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE: 6638 DVR = new DbgVariableRecord(RawLocation, Var, Expr, DIL, 6639 DbgVariableRecord::LocationType::Value); 6640 break; 6641 case bitc::FUNC_CODE_DEBUG_RECORD_DECLARE: 6642 DVR = new DbgVariableRecord(RawLocation, Var, Expr, DIL, 6643 DbgVariableRecord::LocationType::Declare); 6644 break; 6645 case bitc::FUNC_CODE_DEBUG_RECORD_ASSIGN: { 6646 DIAssignID *ID = cast<DIAssignID>(getFnMetadataByID(Record[Slot++])); 6647 DIExpression *AddrExpr = 6648 cast<DIExpression>(getFnMetadataByID(Record[Slot++])); 6649 Metadata *Addr = getFnMetadataByID(Record[Slot++]); 6650 DVR = new DbgVariableRecord(RawLocation, Var, Expr, ID, Addr, AddrExpr, 6651 DIL); 6652 break; 6653 } 6654 default: 6655 llvm_unreachable("Unknown DbgVariableRecord bitcode"); 6656 } 6657 Inst->getParent()->insertDbgRecordBefore(DVR, Inst->getIterator()); 6658 continue; // This isn't an instruction. 6659 } 6660 case bitc::FUNC_CODE_INST_CALL: { 6661 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 6662 if (Record.size() < 3) 6663 return error("Invalid record"); 6664 6665 unsigned OpNum = 0; 6666 AttributeList PAL = getAttributes(Record[OpNum++]); 6667 unsigned CCInfo = Record[OpNum++]; 6668 6669 FastMathFlags FMF; 6670 if ((CCInfo >> bitc::CALL_FMF) & 1) { 6671 FMF = getDecodedFastMathFlags(Record[OpNum++]); 6672 if (!FMF.any()) 6673 return error("Fast math flags indicator set for call with no FMF"); 6674 } 6675 6676 unsigned FTyID = InvalidTypeID; 6677 FunctionType *FTy = nullptr; 6678 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 6679 FTyID = Record[OpNum++]; 6680 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 6681 if (!FTy) 6682 return error("Explicit call type is not a function type"); 6683 } 6684 6685 Value *Callee; 6686 unsigned CalleeTypeID; 6687 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID, 6688 CurBB)) 6689 return error("Invalid record"); 6690 6691 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 6692 if (!OpTy) 6693 return error("Callee is not a pointer type"); 6694 if (!FTy) { 6695 FTyID = getContainedTypeID(CalleeTypeID); 6696 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 6697 if (!FTy) 6698 return error("Callee is not of pointer to function type"); 6699 } 6700 if (Record.size() < FTy->getNumParams() + OpNum) 6701 return error("Insufficient operands to call"); 6702 6703 SmallVector<Value*, 16> Args; 6704 SmallVector<unsigned, 16> ArgTyIDs; 6705 // Read the fixed params. 6706 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 6707 unsigned ArgTyID = getContainedTypeID(FTyID, i + 1); 6708 if (FTy->getParamType(i)->isLabelTy()) 6709 Args.push_back(getBasicBlock(Record[OpNum])); 6710 else 6711 Args.push_back(getValue(Record, OpNum, NextValueNo, 6712 FTy->getParamType(i), ArgTyID, CurBB)); 6713 ArgTyIDs.push_back(ArgTyID); 6714 if (!Args.back()) 6715 return error("Invalid record"); 6716 } 6717 6718 // Read type/value pairs for varargs params. 6719 if (!FTy->isVarArg()) { 6720 if (OpNum != Record.size()) 6721 return error("Invalid record"); 6722 } else { 6723 while (OpNum != Record.size()) { 6724 Value *Op; 6725 unsigned OpTypeID; 6726 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 6727 return error("Invalid record"); 6728 Args.push_back(Op); 6729 ArgTyIDs.push_back(OpTypeID); 6730 } 6731 } 6732 6733 // Upgrade the bundles if needed. 6734 if (!OperandBundles.empty()) 6735 UpgradeOperandBundles(OperandBundles); 6736 6737 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 6738 ResTypeID = getContainedTypeID(FTyID); 6739 OperandBundles.clear(); 6740 InstructionList.push_back(I); 6741 cast<CallInst>(I)->setCallingConv( 6742 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 6743 CallInst::TailCallKind TCK = CallInst::TCK_None; 6744 if (CCInfo & (1 << bitc::CALL_TAIL)) 6745 TCK = CallInst::TCK_Tail; 6746 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 6747 TCK = CallInst::TCK_MustTail; 6748 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 6749 TCK = CallInst::TCK_NoTail; 6750 cast<CallInst>(I)->setTailCallKind(TCK); 6751 cast<CallInst>(I)->setAttributes(PAL); 6752 if (isa<DbgInfoIntrinsic>(I)) 6753 SeenDebugIntrinsic = true; 6754 if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) { 6755 I->deleteValue(); 6756 return Err; 6757 } 6758 if (FMF.any()) { 6759 if (!isa<FPMathOperator>(I)) 6760 return error("Fast-math-flags specified for call without " 6761 "floating-point scalar or vector return type"); 6762 I->setFastMathFlags(FMF); 6763 } 6764 break; 6765 } 6766 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 6767 if (Record.size() < 3) 6768 return error("Invalid record"); 6769 unsigned OpTyID = Record[0]; 6770 Type *OpTy = getTypeByID(OpTyID); 6771 Value *Op = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB); 6772 ResTypeID = Record[2]; 6773 Type *ResTy = getTypeByID(ResTypeID); 6774 if (!OpTy || !Op || !ResTy) 6775 return error("Invalid record"); 6776 I = new VAArgInst(Op, ResTy); 6777 InstructionList.push_back(I); 6778 break; 6779 } 6780 6781 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 6782 // A call or an invoke can be optionally prefixed with some variable 6783 // number of operand bundle blocks. These blocks are read into 6784 // OperandBundles and consumed at the next call or invoke instruction. 6785 6786 if (Record.empty() || Record[0] >= BundleTags.size()) 6787 return error("Invalid record"); 6788 6789 std::vector<Value *> Inputs; 6790 6791 unsigned OpNum = 1; 6792 while (OpNum != Record.size()) { 6793 Value *Op; 6794 if (getValueOrMetadata(Record, OpNum, NextValueNo, Op, CurBB)) 6795 return error("Invalid record"); 6796 Inputs.push_back(Op); 6797 } 6798 6799 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 6800 continue; 6801 } 6802 6803 case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval] 6804 unsigned OpNum = 0; 6805 Value *Op = nullptr; 6806 unsigned OpTypeID; 6807 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 6808 return error("Invalid record"); 6809 if (OpNum != Record.size()) 6810 return error("Invalid record"); 6811 6812 I = new FreezeInst(Op); 6813 ResTypeID = OpTypeID; 6814 InstructionList.push_back(I); 6815 break; 6816 } 6817 } 6818 6819 // Add instruction to end of current BB. If there is no current BB, reject 6820 // this file. 6821 if (!CurBB) { 6822 I->deleteValue(); 6823 return error("Invalid instruction with no BB"); 6824 } 6825 if (!OperandBundles.empty()) { 6826 I->deleteValue(); 6827 return error("Operand bundles found with no consumer"); 6828 } 6829 I->insertInto(CurBB, CurBB->end()); 6830 6831 // If this was a terminator instruction, move to the next block. 6832 if (I->isTerminator()) { 6833 ++CurBBNo; 6834 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 6835 } 6836 6837 // Non-void values get registered in the value table for future use. 6838 if (!I->getType()->isVoidTy()) { 6839 assert(I->getType() == getTypeByID(ResTypeID) && 6840 "Incorrect result type ID"); 6841 if (Error Err = ValueList.assignValue(NextValueNo++, I, ResTypeID)) 6842 return Err; 6843 } 6844 } 6845 6846 OutOfRecordLoop: 6847 6848 if (!OperandBundles.empty()) 6849 return error("Operand bundles found with no consumer"); 6850 6851 // Check the function list for unresolved values. 6852 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 6853 if (!A->getParent()) { 6854 // We found at least one unresolved value. Nuke them all to avoid leaks. 6855 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 6856 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 6857 A->replaceAllUsesWith(PoisonValue::get(A->getType())); 6858 delete A; 6859 } 6860 } 6861 return error("Never resolved value found in function"); 6862 } 6863 } 6864 6865 // Unexpected unresolved metadata about to be dropped. 6866 if (MDLoader->hasFwdRefs()) 6867 return error("Invalid function metadata: outgoing forward refs"); 6868 6869 if (PhiConstExprBB) 6870 PhiConstExprBB->eraseFromParent(); 6871 6872 for (const auto &Pair : ConstExprEdgeBBs) { 6873 BasicBlock *From = Pair.first.first; 6874 BasicBlock *To = Pair.first.second; 6875 BasicBlock *EdgeBB = Pair.second; 6876 BranchInst::Create(To, EdgeBB); 6877 From->getTerminator()->replaceSuccessorWith(To, EdgeBB); 6878 To->replacePhiUsesWith(From, EdgeBB); 6879 EdgeBB->moveBefore(To); 6880 } 6881 6882 // Trim the value list down to the size it was before we parsed this function. 6883 ValueList.shrinkTo(ModuleValueListSize); 6884 MDLoader->shrinkTo(ModuleMDLoaderSize); 6885 std::vector<BasicBlock*>().swap(FunctionBBs); 6886 return Error::success(); 6887 } 6888 6889 /// Find the function body in the bitcode stream 6890 Error BitcodeReader::findFunctionInStream( 6891 Function *F, 6892 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 6893 while (DeferredFunctionInfoIterator->second == 0) { 6894 // This is the fallback handling for the old format bitcode that 6895 // didn't contain the function index in the VST, or when we have 6896 // an anonymous function which would not have a VST entry. 6897 // Assert that we have one of those two cases. 6898 assert(VSTOffset == 0 || !F->hasName()); 6899 // Parse the next body in the stream and set its position in the 6900 // DeferredFunctionInfo map. 6901 if (Error Err = rememberAndSkipFunctionBodies()) 6902 return Err; 6903 } 6904 return Error::success(); 6905 } 6906 6907 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) { 6908 if (Val == SyncScope::SingleThread || Val == SyncScope::System) 6909 return SyncScope::ID(Val); 6910 if (Val >= SSIDs.size()) 6911 return SyncScope::System; // Map unknown synchronization scopes to system. 6912 return SSIDs[Val]; 6913 } 6914 6915 //===----------------------------------------------------------------------===// 6916 // GVMaterializer implementation 6917 //===----------------------------------------------------------------------===// 6918 6919 Error BitcodeReader::materialize(GlobalValue *GV) { 6920 Function *F = dyn_cast<Function>(GV); 6921 // If it's not a function or is already material, ignore the request. 6922 if (!F || !F->isMaterializable()) 6923 return Error::success(); 6924 6925 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 6926 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 6927 // If its position is recorded as 0, its body is somewhere in the stream 6928 // but we haven't seen it yet. 6929 if (DFII->second == 0) 6930 if (Error Err = findFunctionInStream(F, DFII)) 6931 return Err; 6932 6933 // Materialize metadata before parsing any function bodies. 6934 if (Error Err = materializeMetadata()) 6935 return Err; 6936 6937 // Move the bit stream to the saved position of the deferred function body. 6938 if (Error JumpFailed = Stream.JumpToBit(DFII->second)) 6939 return JumpFailed; 6940 6941 // Regardless of the debug info format we want to end up in, we need 6942 // IsNewDbgInfoFormat=true to construct any debug records seen in the bitcode. 6943 F->IsNewDbgInfoFormat = true; 6944 6945 if (Error Err = parseFunctionBody(F)) 6946 return Err; 6947 F->setIsMaterializable(false); 6948 6949 // All parsed Functions should load into the debug info format dictated by the 6950 // Module, unless we're attempting to preserve the input debug info format. 6951 if (SeenDebugIntrinsic && SeenDebugRecord) 6952 return error("Mixed debug intrinsics and debug records in bitcode module!"); 6953 if (PreserveInputDbgFormat == cl::boolOrDefault::BOU_TRUE) { 6954 bool SeenAnyDebugInfo = SeenDebugIntrinsic || SeenDebugRecord; 6955 bool NewDbgInfoFormatDesired = 6956 SeenAnyDebugInfo ? SeenDebugRecord : F->getParent()->IsNewDbgInfoFormat; 6957 if (SeenAnyDebugInfo) { 6958 UseNewDbgInfoFormat = SeenDebugRecord; 6959 WriteNewDbgInfoFormatToBitcode = SeenDebugRecord; 6960 WriteNewDbgInfoFormat = SeenDebugRecord; 6961 } 6962 // If the module's debug info format doesn't match the observed input 6963 // format, then set its format now; we don't need to call the conversion 6964 // function because there must be no existing intrinsics to convert. 6965 // Otherwise, just set the format on this function now. 6966 if (NewDbgInfoFormatDesired != F->getParent()->IsNewDbgInfoFormat) 6967 F->getParent()->setNewDbgInfoFormatFlag(NewDbgInfoFormatDesired); 6968 else 6969 F->setNewDbgInfoFormatFlag(NewDbgInfoFormatDesired); 6970 } else { 6971 // If we aren't preserving formats, we use the Module flag to get our 6972 // desired format instead of reading flags, in case we are lazy-loading and 6973 // the format of the module has been changed since it was set by the flags. 6974 // We only need to convert debug info here if we have debug records but 6975 // desire the intrinsic format; everything else is a no-op or handled by the 6976 // autoupgrader. 6977 bool ModuleIsNewDbgInfoFormat = F->getParent()->IsNewDbgInfoFormat; 6978 if (ModuleIsNewDbgInfoFormat || !SeenDebugRecord) 6979 F->setNewDbgInfoFormatFlag(ModuleIsNewDbgInfoFormat); 6980 else 6981 F->setIsNewDbgInfoFormat(ModuleIsNewDbgInfoFormat); 6982 } 6983 6984 if (StripDebugInfo) 6985 stripDebugInfo(*F); 6986 6987 // Upgrade any old intrinsic calls in the function. 6988 for (auto &I : UpgradedIntrinsics) { 6989 for (User *U : llvm::make_early_inc_range(I.first->materialized_users())) 6990 if (CallInst *CI = dyn_cast<CallInst>(U)) 6991 UpgradeIntrinsicCall(CI, I.second); 6992 } 6993 6994 // Finish fn->subprogram upgrade for materialized functions. 6995 if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F)) 6996 F->setSubprogram(SP); 6997 6998 // Check if the TBAA Metadata are valid, otherwise we will need to strip them. 6999 if (!MDLoader->isStrippingTBAA()) { 7000 for (auto &I : instructions(F)) { 7001 MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa); 7002 if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA)) 7003 continue; 7004 MDLoader->setStripTBAA(true); 7005 stripTBAA(F->getParent()); 7006 } 7007 } 7008 7009 for (auto &I : instructions(F)) { 7010 // "Upgrade" older incorrect branch weights by dropping them. 7011 if (auto *MD = I.getMetadata(LLVMContext::MD_prof)) { 7012 if (MD->getOperand(0) != nullptr && isa<MDString>(MD->getOperand(0))) { 7013 MDString *MDS = cast<MDString>(MD->getOperand(0)); 7014 StringRef ProfName = MDS->getString(); 7015 // Check consistency of !prof branch_weights metadata. 7016 if (ProfName != "branch_weights") 7017 continue; 7018 unsigned ExpectedNumOperands = 0; 7019 if (BranchInst *BI = dyn_cast<BranchInst>(&I)) 7020 ExpectedNumOperands = BI->getNumSuccessors(); 7021 else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I)) 7022 ExpectedNumOperands = SI->getNumSuccessors(); 7023 else if (isa<CallInst>(&I)) 7024 ExpectedNumOperands = 1; 7025 else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I)) 7026 ExpectedNumOperands = IBI->getNumDestinations(); 7027 else if (isa<SelectInst>(&I)) 7028 ExpectedNumOperands = 2; 7029 else 7030 continue; // ignore and continue. 7031 7032 unsigned Offset = getBranchWeightOffset(MD); 7033 7034 // If branch weight doesn't match, just strip branch weight. 7035 if (MD->getNumOperands() != Offset + ExpectedNumOperands) 7036 I.setMetadata(LLVMContext::MD_prof, nullptr); 7037 } 7038 } 7039 7040 // Remove incompatible attributes on function calls. 7041 if (auto *CI = dyn_cast<CallBase>(&I)) { 7042 CI->removeRetAttrs(AttributeFuncs::typeIncompatible( 7043 CI->getFunctionType()->getReturnType(), CI->getRetAttributes())); 7044 7045 for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ++ArgNo) 7046 CI->removeParamAttrs(ArgNo, AttributeFuncs::typeIncompatible( 7047 CI->getArgOperand(ArgNo)->getType(), 7048 CI->getParamAttributes(ArgNo))); 7049 } 7050 } 7051 7052 // Look for functions that rely on old function attribute behavior. 7053 UpgradeFunctionAttributes(*F); 7054 7055 // Bring in any functions that this function forward-referenced via 7056 // blockaddresses. 7057 return materializeForwardReferencedFunctions(); 7058 } 7059 7060 Error BitcodeReader::materializeModule() { 7061 if (Error Err = materializeMetadata()) 7062 return Err; 7063 7064 // Promise to materialize all forward references. 7065 WillMaterializeAllForwardRefs = true; 7066 7067 // Iterate over the module, deserializing any functions that are still on 7068 // disk. 7069 for (Function &F : *TheModule) { 7070 if (Error Err = materialize(&F)) 7071 return Err; 7072 } 7073 // At this point, if there are any function bodies, parse the rest of 7074 // the bits in the module past the last function block we have recorded 7075 // through either lazy scanning or the VST. 7076 if (LastFunctionBlockBit || NextUnreadBit) 7077 if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit 7078 ? LastFunctionBlockBit 7079 : NextUnreadBit)) 7080 return Err; 7081 7082 // Check that all block address forward references got resolved (as we 7083 // promised above). 7084 if (!BasicBlockFwdRefs.empty()) 7085 return error("Never resolved function from blockaddress"); 7086 7087 // Upgrade any intrinsic calls that slipped through (should not happen!) and 7088 // delete the old functions to clean up. We can't do this unless the entire 7089 // module is materialized because there could always be another function body 7090 // with calls to the old function. 7091 for (auto &I : UpgradedIntrinsics) { 7092 for (auto *U : I.first->users()) { 7093 if (CallInst *CI = dyn_cast<CallInst>(U)) 7094 UpgradeIntrinsicCall(CI, I.second); 7095 } 7096 if (!I.first->use_empty()) 7097 I.first->replaceAllUsesWith(I.second); 7098 I.first->eraseFromParent(); 7099 } 7100 UpgradedIntrinsics.clear(); 7101 7102 UpgradeDebugInfo(*TheModule); 7103 7104 UpgradeModuleFlags(*TheModule); 7105 7106 UpgradeARCRuntime(*TheModule); 7107 7108 return Error::success(); 7109 } 7110 7111 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 7112 return IdentifiedStructTypes; 7113 } 7114 7115 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 7116 BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex, 7117 StringRef ModulePath, std::function<bool(GlobalValue::GUID)> IsPrevailing) 7118 : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex), 7119 ModulePath(ModulePath), IsPrevailing(IsPrevailing) {} 7120 7121 void ModuleSummaryIndexBitcodeReader::addThisModule() { 7122 TheIndex.addModule(ModulePath); 7123 } 7124 7125 ModuleSummaryIndex::ModuleInfo * 7126 ModuleSummaryIndexBitcodeReader::getThisModule() { 7127 return TheIndex.getModule(ModulePath); 7128 } 7129 7130 template <bool AllowNullValueInfo> 7131 std::pair<ValueInfo, GlobalValue::GUID> 7132 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) { 7133 auto VGI = ValueIdToValueInfoMap[ValueId]; 7134 // We can have a null value info for memprof callsite info records in 7135 // distributed ThinLTO index files when the callee function summary is not 7136 // included in the index. The bitcode writer records 0 in that case, 7137 // and the caller of this helper will set AllowNullValueInfo to true. 7138 assert(AllowNullValueInfo || std::get<0>(VGI)); 7139 return VGI; 7140 } 7141 7142 void ModuleSummaryIndexBitcodeReader::setValueGUID( 7143 uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage, 7144 StringRef SourceFileName) { 7145 std::string GlobalId = 7146 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 7147 auto ValueGUID = GlobalValue::getGUID(GlobalId); 7148 auto OriginalNameID = ValueGUID; 7149 if (GlobalValue::isLocalLinkage(Linkage)) 7150 OriginalNameID = GlobalValue::getGUID(ValueName); 7151 if (PrintSummaryGUIDs) 7152 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 7153 << ValueName << "\n"; 7154 7155 // UseStrtab is false for legacy summary formats and value names are 7156 // created on stack. In that case we save the name in a string saver in 7157 // the index so that the value name can be recorded. 7158 ValueIdToValueInfoMap[ValueID] = std::make_pair( 7159 TheIndex.getOrInsertValueInfo( 7160 ValueGUID, UseStrtab ? ValueName : TheIndex.saveString(ValueName)), 7161 OriginalNameID); 7162 } 7163 7164 // Specialized value symbol table parser used when reading module index 7165 // blocks where we don't actually create global values. The parsed information 7166 // is saved in the bitcode reader for use when later parsing summaries. 7167 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 7168 uint64_t Offset, 7169 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 7170 // With a strtab the VST is not required to parse the summary. 7171 if (UseStrtab) 7172 return Error::success(); 7173 7174 assert(Offset > 0 && "Expected non-zero VST offset"); 7175 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 7176 if (!MaybeCurrentBit) 7177 return MaybeCurrentBit.takeError(); 7178 uint64_t CurrentBit = MaybeCurrentBit.get(); 7179 7180 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 7181 return Err; 7182 7183 SmallVector<uint64_t, 64> Record; 7184 7185 // Read all the records for this value table. 7186 SmallString<128> ValueName; 7187 7188 while (true) { 7189 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 7190 if (!MaybeEntry) 7191 return MaybeEntry.takeError(); 7192 BitstreamEntry Entry = MaybeEntry.get(); 7193 7194 switch (Entry.Kind) { 7195 case BitstreamEntry::SubBlock: // Handled for us already. 7196 case BitstreamEntry::Error: 7197 return error("Malformed block"); 7198 case BitstreamEntry::EndBlock: 7199 // Done parsing VST, jump back to wherever we came from. 7200 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 7201 return JumpFailed; 7202 return Error::success(); 7203 case BitstreamEntry::Record: 7204 // The interesting case. 7205 break; 7206 } 7207 7208 // Read a record. 7209 Record.clear(); 7210 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 7211 if (!MaybeRecord) 7212 return MaybeRecord.takeError(); 7213 switch (MaybeRecord.get()) { 7214 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 7215 break; 7216 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 7217 if (convertToString(Record, 1, ValueName)) 7218 return error("Invalid record"); 7219 unsigned ValueID = Record[0]; 7220 assert(!SourceFileName.empty()); 7221 auto VLI = ValueIdToLinkageMap.find(ValueID); 7222 assert(VLI != ValueIdToLinkageMap.end() && 7223 "No linkage found for VST entry?"); 7224 auto Linkage = VLI->second; 7225 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 7226 ValueName.clear(); 7227 break; 7228 } 7229 case bitc::VST_CODE_FNENTRY: { 7230 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 7231 if (convertToString(Record, 2, ValueName)) 7232 return error("Invalid record"); 7233 unsigned ValueID = Record[0]; 7234 assert(!SourceFileName.empty()); 7235 auto VLI = ValueIdToLinkageMap.find(ValueID); 7236 assert(VLI != ValueIdToLinkageMap.end() && 7237 "No linkage found for VST entry?"); 7238 auto Linkage = VLI->second; 7239 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 7240 ValueName.clear(); 7241 break; 7242 } 7243 case bitc::VST_CODE_COMBINED_ENTRY: { 7244 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 7245 unsigned ValueID = Record[0]; 7246 GlobalValue::GUID RefGUID = Record[1]; 7247 // The "original name", which is the second value of the pair will be 7248 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 7249 ValueIdToValueInfoMap[ValueID] = 7250 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 7251 break; 7252 } 7253 } 7254 } 7255 } 7256 7257 // Parse just the blocks needed for building the index out of the module. 7258 // At the end of this routine the module Index is populated with a map 7259 // from global value id to GlobalValueSummary objects. 7260 Error ModuleSummaryIndexBitcodeReader::parseModule() { 7261 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 7262 return Err; 7263 7264 SmallVector<uint64_t, 64> Record; 7265 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 7266 unsigned ValueId = 0; 7267 7268 // Read the index for this module. 7269 while (true) { 7270 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 7271 if (!MaybeEntry) 7272 return MaybeEntry.takeError(); 7273 llvm::BitstreamEntry Entry = MaybeEntry.get(); 7274 7275 switch (Entry.Kind) { 7276 case BitstreamEntry::Error: 7277 return error("Malformed block"); 7278 case BitstreamEntry::EndBlock: 7279 return Error::success(); 7280 7281 case BitstreamEntry::SubBlock: 7282 switch (Entry.ID) { 7283 default: // Skip unknown content. 7284 if (Error Err = Stream.SkipBlock()) 7285 return Err; 7286 break; 7287 case bitc::BLOCKINFO_BLOCK_ID: 7288 // Need to parse these to get abbrev ids (e.g. for VST) 7289 if (Error Err = readBlockInfo()) 7290 return Err; 7291 break; 7292 case bitc::VALUE_SYMTAB_BLOCK_ID: 7293 // Should have been parsed earlier via VSTOffset, unless there 7294 // is no summary section. 7295 assert(((SeenValueSymbolTable && VSTOffset > 0) || 7296 !SeenGlobalValSummary) && 7297 "Expected early VST parse via VSTOffset record"); 7298 if (Error Err = Stream.SkipBlock()) 7299 return Err; 7300 break; 7301 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 7302 case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID: 7303 // Add the module if it is a per-module index (has a source file name). 7304 if (!SourceFileName.empty()) 7305 addThisModule(); 7306 assert(!SeenValueSymbolTable && 7307 "Already read VST when parsing summary block?"); 7308 // We might not have a VST if there were no values in the 7309 // summary. An empty summary block generated when we are 7310 // performing ThinLTO compiles so we don't later invoke 7311 // the regular LTO process on them. 7312 if (VSTOffset > 0) { 7313 if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 7314 return Err; 7315 SeenValueSymbolTable = true; 7316 } 7317 SeenGlobalValSummary = true; 7318 if (Error Err = parseEntireSummary(Entry.ID)) 7319 return Err; 7320 break; 7321 case bitc::MODULE_STRTAB_BLOCK_ID: 7322 if (Error Err = parseModuleStringTable()) 7323 return Err; 7324 break; 7325 } 7326 continue; 7327 7328 case BitstreamEntry::Record: { 7329 Record.clear(); 7330 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 7331 if (!MaybeBitCode) 7332 return MaybeBitCode.takeError(); 7333 switch (MaybeBitCode.get()) { 7334 default: 7335 break; // Default behavior, ignore unknown content. 7336 case bitc::MODULE_CODE_VERSION: { 7337 if (Error Err = parseVersionRecord(Record).takeError()) 7338 return Err; 7339 break; 7340 } 7341 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 7342 case bitc::MODULE_CODE_SOURCE_FILENAME: { 7343 SmallString<128> ValueName; 7344 if (convertToString(Record, 0, ValueName)) 7345 return error("Invalid record"); 7346 SourceFileName = ValueName.c_str(); 7347 break; 7348 } 7349 /// MODULE_CODE_HASH: [5*i32] 7350 case bitc::MODULE_CODE_HASH: { 7351 if (Record.size() != 5) 7352 return error("Invalid hash length " + Twine(Record.size()).str()); 7353 auto &Hash = getThisModule()->second; 7354 int Pos = 0; 7355 for (auto &Val : Record) { 7356 assert(!(Val >> 32) && "Unexpected high bits set"); 7357 Hash[Pos++] = Val; 7358 } 7359 break; 7360 } 7361 /// MODULE_CODE_VSTOFFSET: [offset] 7362 case bitc::MODULE_CODE_VSTOFFSET: 7363 if (Record.empty()) 7364 return error("Invalid record"); 7365 // Note that we subtract 1 here because the offset is relative to one 7366 // word before the start of the identification or module block, which 7367 // was historically always the start of the regular bitcode header. 7368 VSTOffset = Record[0] - 1; 7369 break; 7370 // v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...] 7371 // v1 FUNCTION: [type, callingconv, isproto, linkage, ...] 7372 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...] 7373 // v2: [strtab offset, strtab size, v1] 7374 case bitc::MODULE_CODE_GLOBALVAR: 7375 case bitc::MODULE_CODE_FUNCTION: 7376 case bitc::MODULE_CODE_ALIAS: { 7377 StringRef Name; 7378 ArrayRef<uint64_t> GVRecord; 7379 std::tie(Name, GVRecord) = readNameFromStrtab(Record); 7380 if (GVRecord.size() <= 3) 7381 return error("Invalid record"); 7382 uint64_t RawLinkage = GVRecord[3]; 7383 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 7384 if (!UseStrtab) { 7385 ValueIdToLinkageMap[ValueId++] = Linkage; 7386 break; 7387 } 7388 7389 setValueGUID(ValueId++, Name, Linkage, SourceFileName); 7390 break; 7391 } 7392 } 7393 } 7394 continue; 7395 } 7396 } 7397 } 7398 7399 SmallVector<ValueInfo, 0> 7400 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) { 7401 SmallVector<ValueInfo, 0> Ret; 7402 Ret.reserve(Record.size()); 7403 for (uint64_t RefValueId : Record) 7404 Ret.push_back(std::get<0>(getValueInfoFromValueId(RefValueId))); 7405 return Ret; 7406 } 7407 7408 SmallVector<FunctionSummary::EdgeTy, 0> 7409 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record, 7410 bool IsOldProfileFormat, 7411 bool HasProfile, bool HasRelBF) { 7412 SmallVector<FunctionSummary::EdgeTy, 0> Ret; 7413 // In the case of new profile formats, there are two Record entries per 7414 // Edge. Otherwise, conservatively reserve up to Record.size. 7415 if (!IsOldProfileFormat && (HasProfile || HasRelBF)) 7416 Ret.reserve(Record.size() / 2); 7417 else 7418 Ret.reserve(Record.size()); 7419 7420 for (unsigned I = 0, E = Record.size(); I != E; ++I) { 7421 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 7422 bool HasTailCall = false; 7423 uint64_t RelBF = 0; 7424 ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[I])); 7425 if (IsOldProfileFormat) { 7426 I += 1; // Skip old callsitecount field 7427 if (HasProfile) 7428 I += 1; // Skip old profilecount field 7429 } else if (HasProfile) 7430 std::tie(Hotness, HasTailCall) = 7431 getDecodedHotnessCallEdgeInfo(Record[++I]); 7432 else if (HasRelBF) 7433 getDecodedRelBFCallEdgeInfo(Record[++I], RelBF, HasTailCall); 7434 Ret.push_back(FunctionSummary::EdgeTy{ 7435 Callee, CalleeInfo(Hotness, HasTailCall, RelBF)}); 7436 } 7437 return Ret; 7438 } 7439 7440 static void 7441 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot, 7442 WholeProgramDevirtResolution &Wpd) { 7443 uint64_t ArgNum = Record[Slot++]; 7444 WholeProgramDevirtResolution::ByArg &B = 7445 Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}]; 7446 Slot += ArgNum; 7447 7448 B.TheKind = 7449 static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]); 7450 B.Info = Record[Slot++]; 7451 B.Byte = Record[Slot++]; 7452 B.Bit = Record[Slot++]; 7453 } 7454 7455 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record, 7456 StringRef Strtab, size_t &Slot, 7457 TypeIdSummary &TypeId) { 7458 uint64_t Id = Record[Slot++]; 7459 WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id]; 7460 7461 Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]); 7462 Wpd.SingleImplName = {Strtab.data() + Record[Slot], 7463 static_cast<size_t>(Record[Slot + 1])}; 7464 Slot += 2; 7465 7466 uint64_t ResByArgNum = Record[Slot++]; 7467 for (uint64_t I = 0; I != ResByArgNum; ++I) 7468 parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd); 7469 } 7470 7471 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record, 7472 StringRef Strtab, 7473 ModuleSummaryIndex &TheIndex) { 7474 size_t Slot = 0; 7475 TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary( 7476 {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])}); 7477 Slot += 2; 7478 7479 TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]); 7480 TypeId.TTRes.SizeM1BitWidth = Record[Slot++]; 7481 TypeId.TTRes.AlignLog2 = Record[Slot++]; 7482 TypeId.TTRes.SizeM1 = Record[Slot++]; 7483 TypeId.TTRes.BitMask = Record[Slot++]; 7484 TypeId.TTRes.InlineBits = Record[Slot++]; 7485 7486 while (Slot < Record.size()) 7487 parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId); 7488 } 7489 7490 std::vector<FunctionSummary::ParamAccess> 7491 ModuleSummaryIndexBitcodeReader::parseParamAccesses(ArrayRef<uint64_t> Record) { 7492 auto ReadRange = [&]() { 7493 APInt Lower(FunctionSummary::ParamAccess::RangeWidth, 7494 BitcodeReader::decodeSignRotatedValue(Record.front())); 7495 Record = Record.drop_front(); 7496 APInt Upper(FunctionSummary::ParamAccess::RangeWidth, 7497 BitcodeReader::decodeSignRotatedValue(Record.front())); 7498 Record = Record.drop_front(); 7499 ConstantRange Range{Lower, Upper}; 7500 assert(!Range.isFullSet()); 7501 assert(!Range.isUpperSignWrapped()); 7502 return Range; 7503 }; 7504 7505 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; 7506 while (!Record.empty()) { 7507 PendingParamAccesses.emplace_back(); 7508 FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back(); 7509 ParamAccess.ParamNo = Record.front(); 7510 Record = Record.drop_front(); 7511 ParamAccess.Use = ReadRange(); 7512 ParamAccess.Calls.resize(Record.front()); 7513 Record = Record.drop_front(); 7514 for (auto &Call : ParamAccess.Calls) { 7515 Call.ParamNo = Record.front(); 7516 Record = Record.drop_front(); 7517 Call.Callee = std::get<0>(getValueInfoFromValueId(Record.front())); 7518 Record = Record.drop_front(); 7519 Call.Offsets = ReadRange(); 7520 } 7521 } 7522 return PendingParamAccesses; 7523 } 7524 7525 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo( 7526 ArrayRef<uint64_t> Record, size_t &Slot, 7527 TypeIdCompatibleVtableInfo &TypeId) { 7528 uint64_t Offset = Record[Slot++]; 7529 ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[Slot++])); 7530 TypeId.push_back({Offset, Callee}); 7531 } 7532 7533 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord( 7534 ArrayRef<uint64_t> Record) { 7535 size_t Slot = 0; 7536 TypeIdCompatibleVtableInfo &TypeId = 7537 TheIndex.getOrInsertTypeIdCompatibleVtableSummary( 7538 {Strtab.data() + Record[Slot], 7539 static_cast<size_t>(Record[Slot + 1])}); 7540 Slot += 2; 7541 7542 while (Slot < Record.size()) 7543 parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId); 7544 } 7545 7546 static void setSpecialRefs(SmallVectorImpl<ValueInfo> &Refs, unsigned ROCnt, 7547 unsigned WOCnt) { 7548 // Readonly and writeonly refs are in the end of the refs list. 7549 assert(ROCnt + WOCnt <= Refs.size()); 7550 unsigned FirstWORef = Refs.size() - WOCnt; 7551 unsigned RefNo = FirstWORef - ROCnt; 7552 for (; RefNo < FirstWORef; ++RefNo) 7553 Refs[RefNo].setReadOnly(); 7554 for (; RefNo < Refs.size(); ++RefNo) 7555 Refs[RefNo].setWriteOnly(); 7556 } 7557 7558 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 7559 // objects in the index. 7560 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) { 7561 if (Error Err = Stream.EnterSubBlock(ID)) 7562 return Err; 7563 SmallVector<uint64_t, 64> Record; 7564 7565 // Parse version 7566 { 7567 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 7568 if (!MaybeEntry) 7569 return MaybeEntry.takeError(); 7570 BitstreamEntry Entry = MaybeEntry.get(); 7571 7572 if (Entry.Kind != BitstreamEntry::Record) 7573 return error("Invalid Summary Block: record for version expected"); 7574 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 7575 if (!MaybeRecord) 7576 return MaybeRecord.takeError(); 7577 if (MaybeRecord.get() != bitc::FS_VERSION) 7578 return error("Invalid Summary Block: version expected"); 7579 } 7580 const uint64_t Version = Record[0]; 7581 const bool IsOldProfileFormat = Version == 1; 7582 if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion) 7583 return error("Invalid summary version " + Twine(Version) + 7584 ". Version should be in the range [1-" + 7585 Twine(ModuleSummaryIndex::BitcodeSummaryVersion) + 7586 "]."); 7587 Record.clear(); 7588 7589 // Keep around the last seen summary to be used when we see an optional 7590 // "OriginalName" attachement. 7591 GlobalValueSummary *LastSeenSummary = nullptr; 7592 GlobalValue::GUID LastSeenGUID = 0; 7593 7594 // We can expect to see any number of type ID information records before 7595 // each function summary records; these variables store the information 7596 // collected so far so that it can be used to create the summary object. 7597 std::vector<GlobalValue::GUID> PendingTypeTests; 7598 std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls, 7599 PendingTypeCheckedLoadVCalls; 7600 std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls, 7601 PendingTypeCheckedLoadConstVCalls; 7602 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; 7603 7604 std::vector<CallsiteInfo> PendingCallsites; 7605 std::vector<AllocInfo> PendingAllocs; 7606 7607 while (true) { 7608 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 7609 if (!MaybeEntry) 7610 return MaybeEntry.takeError(); 7611 BitstreamEntry Entry = MaybeEntry.get(); 7612 7613 switch (Entry.Kind) { 7614 case BitstreamEntry::SubBlock: // Handled for us already. 7615 case BitstreamEntry::Error: 7616 return error("Malformed block"); 7617 case BitstreamEntry::EndBlock: 7618 return Error::success(); 7619 case BitstreamEntry::Record: 7620 // The interesting case. 7621 break; 7622 } 7623 7624 // Read a record. The record format depends on whether this 7625 // is a per-module index or a combined index file. In the per-module 7626 // case the records contain the associated value's ID for correlation 7627 // with VST entries. In the combined index the correlation is done 7628 // via the bitcode offset of the summary records (which were saved 7629 // in the combined index VST entries). The records also contain 7630 // information used for ThinLTO renaming and importing. 7631 Record.clear(); 7632 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 7633 if (!MaybeBitCode) 7634 return MaybeBitCode.takeError(); 7635 switch (unsigned BitCode = MaybeBitCode.get()) { 7636 default: // Default behavior: ignore. 7637 break; 7638 case bitc::FS_FLAGS: { // [flags] 7639 TheIndex.setFlags(Record[0]); 7640 break; 7641 } 7642 case bitc::FS_VALUE_GUID: { // [valueid, refguid_upper32, refguid_lower32] 7643 uint64_t ValueID = Record[0]; 7644 GlobalValue::GUID RefGUID; 7645 if (Version >= 11) { 7646 RefGUID = Record[1] << 32 | Record[2]; 7647 } else { 7648 RefGUID = Record[1]; 7649 } 7650 ValueIdToValueInfoMap[ValueID] = 7651 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 7652 break; 7653 } 7654 // FS_PERMODULE is legacy and does not have support for the tail call flag. 7655 // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs, 7656 // numrefs x valueid, n x (valueid)] 7657 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs, 7658 // numrefs x valueid, 7659 // n x (valueid, hotness+tailcall flags)] 7660 // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs, 7661 // numrefs x valueid, 7662 // n x (valueid, relblockfreq+tailcall)] 7663 case bitc::FS_PERMODULE: 7664 case bitc::FS_PERMODULE_RELBF: 7665 case bitc::FS_PERMODULE_PROFILE: { 7666 unsigned ValueID = Record[0]; 7667 uint64_t RawFlags = Record[1]; 7668 unsigned InstCount = Record[2]; 7669 uint64_t RawFunFlags = 0; 7670 unsigned NumRefs = Record[3]; 7671 unsigned NumRORefs = 0, NumWORefs = 0; 7672 int RefListStartIndex = 4; 7673 if (Version >= 4) { 7674 RawFunFlags = Record[3]; 7675 NumRefs = Record[4]; 7676 RefListStartIndex = 5; 7677 if (Version >= 5) { 7678 NumRORefs = Record[5]; 7679 RefListStartIndex = 6; 7680 if (Version >= 7) { 7681 NumWORefs = Record[6]; 7682 RefListStartIndex = 7; 7683 } 7684 } 7685 } 7686 7687 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7688 // The module path string ref set in the summary must be owned by the 7689 // index's module string table. Since we don't have a module path 7690 // string table section in the per-module index, we create a single 7691 // module path string table entry with an empty (0) ID to take 7692 // ownership. 7693 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 7694 assert(Record.size() >= RefListStartIndex + NumRefs && 7695 "Record size inconsistent with number of references"); 7696 SmallVector<ValueInfo, 0> Refs = makeRefList( 7697 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 7698 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 7699 bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF); 7700 SmallVector<FunctionSummary::EdgeTy, 0> Calls = makeCallList( 7701 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 7702 IsOldProfileFormat, HasProfile, HasRelBF); 7703 setSpecialRefs(Refs, NumRORefs, NumWORefs); 7704 auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID); 7705 // In order to save memory, only record the memprof summaries if this is 7706 // the prevailing copy of a symbol. The linker doesn't resolve local 7707 // linkage values so don't check whether those are prevailing. 7708 auto LT = (GlobalValue::LinkageTypes)Flags.Linkage; 7709 if (IsPrevailing && !GlobalValue::isLocalLinkage(LT) && 7710 !IsPrevailing(VIAndOriginalGUID.first.getGUID())) { 7711 PendingCallsites.clear(); 7712 PendingAllocs.clear(); 7713 } 7714 auto FS = std::make_unique<FunctionSummary>( 7715 Flags, InstCount, getDecodedFFlags(RawFunFlags), std::move(Refs), 7716 std::move(Calls), std::move(PendingTypeTests), 7717 std::move(PendingTypeTestAssumeVCalls), 7718 std::move(PendingTypeCheckedLoadVCalls), 7719 std::move(PendingTypeTestAssumeConstVCalls), 7720 std::move(PendingTypeCheckedLoadConstVCalls), 7721 std::move(PendingParamAccesses), std::move(PendingCallsites), 7722 std::move(PendingAllocs)); 7723 FS->setModulePath(getThisModule()->first()); 7724 FS->setOriginalName(std::get<1>(VIAndOriginalGUID)); 7725 TheIndex.addGlobalValueSummary(std::get<0>(VIAndOriginalGUID), 7726 std::move(FS)); 7727 break; 7728 } 7729 // FS_ALIAS: [valueid, flags, valueid] 7730 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 7731 // they expect all aliasee summaries to be available. 7732 case bitc::FS_ALIAS: { 7733 unsigned ValueID = Record[0]; 7734 uint64_t RawFlags = Record[1]; 7735 unsigned AliaseeID = Record[2]; 7736 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7737 auto AS = std::make_unique<AliasSummary>(Flags); 7738 // The module path string ref set in the summary must be owned by the 7739 // index's module string table. Since we don't have a module path 7740 // string table section in the per-module index, we create a single 7741 // module path string table entry with an empty (0) ID to take 7742 // ownership. 7743 AS->setModulePath(getThisModule()->first()); 7744 7745 auto AliaseeVI = std::get<0>(getValueInfoFromValueId(AliaseeID)); 7746 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath); 7747 if (!AliaseeInModule) 7748 return error("Alias expects aliasee summary to be parsed"); 7749 AS->setAliasee(AliaseeVI, AliaseeInModule); 7750 7751 auto GUID = getValueInfoFromValueId(ValueID); 7752 AS->setOriginalName(std::get<1>(GUID)); 7753 TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(AS)); 7754 break; 7755 } 7756 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid] 7757 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 7758 unsigned ValueID = Record[0]; 7759 uint64_t RawFlags = Record[1]; 7760 unsigned RefArrayStart = 2; 7761 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 7762 /* WriteOnly */ false, 7763 /* Constant */ false, 7764 GlobalObject::VCallVisibilityPublic); 7765 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7766 if (Version >= 5) { 7767 GVF = getDecodedGVarFlags(Record[2]); 7768 RefArrayStart = 3; 7769 } 7770 SmallVector<ValueInfo, 0> Refs = 7771 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 7772 auto FS = 7773 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 7774 FS->setModulePath(getThisModule()->first()); 7775 auto GUID = getValueInfoFromValueId(ValueID); 7776 FS->setOriginalName(std::get<1>(GUID)); 7777 TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(FS)); 7778 break; 7779 } 7780 // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, 7781 // numrefs, numrefs x valueid, 7782 // n x (valueid, offset)] 7783 case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: { 7784 unsigned ValueID = Record[0]; 7785 uint64_t RawFlags = Record[1]; 7786 GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]); 7787 unsigned NumRefs = Record[3]; 7788 unsigned RefListStartIndex = 4; 7789 unsigned VTableListStartIndex = RefListStartIndex + NumRefs; 7790 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7791 SmallVector<ValueInfo, 0> Refs = makeRefList( 7792 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 7793 VTableFuncList VTableFuncs; 7794 for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) { 7795 ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[I])); 7796 uint64_t Offset = Record[++I]; 7797 VTableFuncs.push_back({Callee, Offset}); 7798 } 7799 auto VS = 7800 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 7801 VS->setModulePath(getThisModule()->first()); 7802 VS->setVTableFuncs(VTableFuncs); 7803 auto GUID = getValueInfoFromValueId(ValueID); 7804 VS->setOriginalName(std::get<1>(GUID)); 7805 TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(VS)); 7806 break; 7807 } 7808 // FS_COMBINED is legacy and does not have support for the tail call flag. 7809 // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs, 7810 // numrefs x valueid, n x (valueid)] 7811 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs, 7812 // numrefs x valueid, 7813 // n x (valueid, hotness+tailcall flags)] 7814 case bitc::FS_COMBINED: 7815 case bitc::FS_COMBINED_PROFILE: { 7816 unsigned ValueID = Record[0]; 7817 uint64_t ModuleId = Record[1]; 7818 uint64_t RawFlags = Record[2]; 7819 unsigned InstCount = Record[3]; 7820 uint64_t RawFunFlags = 0; 7821 unsigned NumRefs = Record[4]; 7822 unsigned NumRORefs = 0, NumWORefs = 0; 7823 int RefListStartIndex = 5; 7824 7825 if (Version >= 4) { 7826 RawFunFlags = Record[4]; 7827 RefListStartIndex = 6; 7828 size_t NumRefsIndex = 5; 7829 if (Version >= 5) { 7830 unsigned NumRORefsOffset = 1; 7831 RefListStartIndex = 7; 7832 if (Version >= 6) { 7833 NumRefsIndex = 6; 7834 RefListStartIndex = 8; 7835 if (Version >= 7) { 7836 RefListStartIndex = 9; 7837 NumWORefs = Record[8]; 7838 NumRORefsOffset = 2; 7839 } 7840 } 7841 NumRORefs = Record[RefListStartIndex - NumRORefsOffset]; 7842 } 7843 NumRefs = Record[NumRefsIndex]; 7844 } 7845 7846 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7847 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 7848 assert(Record.size() >= RefListStartIndex + NumRefs && 7849 "Record size inconsistent with number of references"); 7850 SmallVector<ValueInfo, 0> Refs = makeRefList( 7851 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 7852 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 7853 SmallVector<FunctionSummary::EdgeTy, 0> Edges = makeCallList( 7854 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 7855 IsOldProfileFormat, HasProfile, false); 7856 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID)); 7857 setSpecialRefs(Refs, NumRORefs, NumWORefs); 7858 auto FS = std::make_unique<FunctionSummary>( 7859 Flags, InstCount, getDecodedFFlags(RawFunFlags), std::move(Refs), 7860 std::move(Edges), std::move(PendingTypeTests), 7861 std::move(PendingTypeTestAssumeVCalls), 7862 std::move(PendingTypeCheckedLoadVCalls), 7863 std::move(PendingTypeTestAssumeConstVCalls), 7864 std::move(PendingTypeCheckedLoadConstVCalls), 7865 std::move(PendingParamAccesses), std::move(PendingCallsites), 7866 std::move(PendingAllocs)); 7867 LastSeenSummary = FS.get(); 7868 LastSeenGUID = VI.getGUID(); 7869 FS->setModulePath(ModuleIdMap[ModuleId]); 7870 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 7871 break; 7872 } 7873 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 7874 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 7875 // they expect all aliasee summaries to be available. 7876 case bitc::FS_COMBINED_ALIAS: { 7877 unsigned ValueID = Record[0]; 7878 uint64_t ModuleId = Record[1]; 7879 uint64_t RawFlags = Record[2]; 7880 unsigned AliaseeValueId = Record[3]; 7881 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7882 auto AS = std::make_unique<AliasSummary>(Flags); 7883 LastSeenSummary = AS.get(); 7884 AS->setModulePath(ModuleIdMap[ModuleId]); 7885 7886 auto AliaseeVI = std::get<0>(getValueInfoFromValueId(AliaseeValueId)); 7887 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath()); 7888 AS->setAliasee(AliaseeVI, AliaseeInModule); 7889 7890 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID)); 7891 LastSeenGUID = VI.getGUID(); 7892 TheIndex.addGlobalValueSummary(VI, std::move(AS)); 7893 break; 7894 } 7895 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 7896 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 7897 unsigned ValueID = Record[0]; 7898 uint64_t ModuleId = Record[1]; 7899 uint64_t RawFlags = Record[2]; 7900 unsigned RefArrayStart = 3; 7901 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 7902 /* WriteOnly */ false, 7903 /* Constant */ false, 7904 GlobalObject::VCallVisibilityPublic); 7905 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7906 if (Version >= 5) { 7907 GVF = getDecodedGVarFlags(Record[3]); 7908 RefArrayStart = 4; 7909 } 7910 SmallVector<ValueInfo, 0> Refs = 7911 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 7912 auto FS = 7913 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 7914 LastSeenSummary = FS.get(); 7915 FS->setModulePath(ModuleIdMap[ModuleId]); 7916 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID)); 7917 LastSeenGUID = VI.getGUID(); 7918 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 7919 break; 7920 } 7921 // FS_COMBINED_ORIGINAL_NAME: [original_name] 7922 case bitc::FS_COMBINED_ORIGINAL_NAME: { 7923 uint64_t OriginalName = Record[0]; 7924 if (!LastSeenSummary) 7925 return error("Name attachment that does not follow a combined record"); 7926 LastSeenSummary->setOriginalName(OriginalName); 7927 TheIndex.addOriginalName(LastSeenGUID, OriginalName); 7928 // Reset the LastSeenSummary 7929 LastSeenSummary = nullptr; 7930 LastSeenGUID = 0; 7931 break; 7932 } 7933 case bitc::FS_TYPE_TESTS: 7934 assert(PendingTypeTests.empty()); 7935 llvm::append_range(PendingTypeTests, Record); 7936 break; 7937 7938 case bitc::FS_TYPE_TEST_ASSUME_VCALLS: 7939 assert(PendingTypeTestAssumeVCalls.empty()); 7940 for (unsigned I = 0; I != Record.size(); I += 2) 7941 PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]}); 7942 break; 7943 7944 case bitc::FS_TYPE_CHECKED_LOAD_VCALLS: 7945 assert(PendingTypeCheckedLoadVCalls.empty()); 7946 for (unsigned I = 0; I != Record.size(); I += 2) 7947 PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]}); 7948 break; 7949 7950 case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL: 7951 PendingTypeTestAssumeConstVCalls.push_back( 7952 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 7953 break; 7954 7955 case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL: 7956 PendingTypeCheckedLoadConstVCalls.push_back( 7957 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 7958 break; 7959 7960 case bitc::FS_CFI_FUNCTION_DEFS: { 7961 std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs(); 7962 for (unsigned I = 0; I != Record.size(); I += 2) 7963 CfiFunctionDefs.insert( 7964 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 7965 break; 7966 } 7967 7968 case bitc::FS_CFI_FUNCTION_DECLS: { 7969 std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls(); 7970 for (unsigned I = 0; I != Record.size(); I += 2) 7971 CfiFunctionDecls.insert( 7972 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 7973 break; 7974 } 7975 7976 case bitc::FS_TYPE_ID: 7977 parseTypeIdSummaryRecord(Record, Strtab, TheIndex); 7978 break; 7979 7980 case bitc::FS_TYPE_ID_METADATA: 7981 parseTypeIdCompatibleVtableSummaryRecord(Record); 7982 break; 7983 7984 case bitc::FS_BLOCK_COUNT: 7985 TheIndex.addBlockCount(Record[0]); 7986 break; 7987 7988 case bitc::FS_PARAM_ACCESS: { 7989 PendingParamAccesses = parseParamAccesses(Record); 7990 break; 7991 } 7992 7993 case bitc::FS_STACK_IDS: { // [n x stackid] 7994 // Save stack ids in the reader to consult when adding stack ids from the 7995 // lists in the stack node and alloc node entries. 7996 StackIds = ArrayRef<uint64_t>(Record); 7997 break; 7998 } 7999 8000 case bitc::FS_PERMODULE_CALLSITE_INFO: { 8001 unsigned ValueID = Record[0]; 8002 SmallVector<unsigned> StackIdList; 8003 for (auto R = Record.begin() + 1; R != Record.end(); R++) { 8004 assert(*R < StackIds.size()); 8005 StackIdList.push_back(TheIndex.addOrGetStackIdIndex(StackIds[*R])); 8006 } 8007 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID)); 8008 PendingCallsites.push_back(CallsiteInfo({VI, std::move(StackIdList)})); 8009 break; 8010 } 8011 8012 case bitc::FS_COMBINED_CALLSITE_INFO: { 8013 auto RecordIter = Record.begin(); 8014 unsigned ValueID = *RecordIter++; 8015 unsigned NumStackIds = *RecordIter++; 8016 unsigned NumVersions = *RecordIter++; 8017 assert(Record.size() == 3 + NumStackIds + NumVersions); 8018 SmallVector<unsigned> StackIdList; 8019 for (unsigned J = 0; J < NumStackIds; J++) { 8020 assert(*RecordIter < StackIds.size()); 8021 StackIdList.push_back( 8022 TheIndex.addOrGetStackIdIndex(StackIds[*RecordIter++])); 8023 } 8024 SmallVector<unsigned> Versions; 8025 for (unsigned J = 0; J < NumVersions; J++) 8026 Versions.push_back(*RecordIter++); 8027 ValueInfo VI = std::get<0>( 8028 getValueInfoFromValueId</*AllowNullValueInfo*/ true>(ValueID)); 8029 PendingCallsites.push_back( 8030 CallsiteInfo({VI, std::move(Versions), std::move(StackIdList)})); 8031 break; 8032 } 8033 8034 case bitc::FS_PERMODULE_ALLOC_INFO: { 8035 unsigned I = 0; 8036 std::vector<MIBInfo> MIBs; 8037 unsigned NumMIBs = 0; 8038 if (Version >= 10) 8039 NumMIBs = Record[I++]; 8040 unsigned MIBsRead = 0; 8041 while ((Version >= 10 && MIBsRead++ < NumMIBs) || 8042 (Version < 10 && I < Record.size())) { 8043 assert(Record.size() - I >= 2); 8044 AllocationType AllocType = (AllocationType)Record[I++]; 8045 unsigned NumStackEntries = Record[I++]; 8046 assert(Record.size() - I >= NumStackEntries); 8047 SmallVector<unsigned> StackIdList; 8048 for (unsigned J = 0; J < NumStackEntries; J++) { 8049 assert(Record[I] < StackIds.size()); 8050 StackIdList.push_back( 8051 TheIndex.addOrGetStackIdIndex(StackIds[Record[I++]])); 8052 } 8053 MIBs.push_back(MIBInfo(AllocType, std::move(StackIdList))); 8054 } 8055 std::vector<uint64_t> TotalSizes; 8056 // We either have no sizes or NumMIBs of them. 8057 assert(I == Record.size() || Record.size() - I == NumMIBs); 8058 if (I < Record.size()) { 8059 MIBsRead = 0; 8060 while (MIBsRead++ < NumMIBs) 8061 TotalSizes.push_back(Record[I++]); 8062 } 8063 PendingAllocs.push_back(AllocInfo(std::move(MIBs))); 8064 if (!TotalSizes.empty()) { 8065 assert(PendingAllocs.back().MIBs.size() == TotalSizes.size()); 8066 PendingAllocs.back().TotalSizes = std::move(TotalSizes); 8067 } 8068 break; 8069 } 8070 8071 case bitc::FS_COMBINED_ALLOC_INFO: { 8072 unsigned I = 0; 8073 std::vector<MIBInfo> MIBs; 8074 unsigned NumMIBs = Record[I++]; 8075 unsigned NumVersions = Record[I++]; 8076 unsigned MIBsRead = 0; 8077 while (MIBsRead++ < NumMIBs) { 8078 assert(Record.size() - I >= 2); 8079 AllocationType AllocType = (AllocationType)Record[I++]; 8080 unsigned NumStackEntries = Record[I++]; 8081 assert(Record.size() - I >= NumStackEntries); 8082 SmallVector<unsigned> StackIdList; 8083 for (unsigned J = 0; J < NumStackEntries; J++) { 8084 assert(Record[I] < StackIds.size()); 8085 StackIdList.push_back( 8086 TheIndex.addOrGetStackIdIndex(StackIds[Record[I++]])); 8087 } 8088 MIBs.push_back(MIBInfo(AllocType, std::move(StackIdList))); 8089 } 8090 assert(Record.size() - I >= NumVersions); 8091 SmallVector<uint8_t> Versions; 8092 for (unsigned J = 0; J < NumVersions; J++) 8093 Versions.push_back(Record[I++]); 8094 std::vector<uint64_t> TotalSizes; 8095 // We either have no sizes or NumMIBs of them. 8096 assert(I == Record.size() || Record.size() - I == NumMIBs); 8097 if (I < Record.size()) { 8098 MIBsRead = 0; 8099 while (MIBsRead++ < NumMIBs) { 8100 TotalSizes.push_back(Record[I++]); 8101 } 8102 } 8103 PendingAllocs.push_back( 8104 AllocInfo(std::move(Versions), std::move(MIBs))); 8105 if (!TotalSizes.empty()) { 8106 assert(PendingAllocs.back().MIBs.size() == TotalSizes.size()); 8107 PendingAllocs.back().TotalSizes = std::move(TotalSizes); 8108 } 8109 break; 8110 } 8111 } 8112 } 8113 llvm_unreachable("Exit infinite loop"); 8114 } 8115 8116 // Parse the module string table block into the Index. 8117 // This populates the ModulePathStringTable map in the index. 8118 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 8119 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 8120 return Err; 8121 8122 SmallVector<uint64_t, 64> Record; 8123 8124 SmallString<128> ModulePath; 8125 ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr; 8126 8127 while (true) { 8128 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 8129 if (!MaybeEntry) 8130 return MaybeEntry.takeError(); 8131 BitstreamEntry Entry = MaybeEntry.get(); 8132 8133 switch (Entry.Kind) { 8134 case BitstreamEntry::SubBlock: // Handled for us already. 8135 case BitstreamEntry::Error: 8136 return error("Malformed block"); 8137 case BitstreamEntry::EndBlock: 8138 return Error::success(); 8139 case BitstreamEntry::Record: 8140 // The interesting case. 8141 break; 8142 } 8143 8144 Record.clear(); 8145 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 8146 if (!MaybeRecord) 8147 return MaybeRecord.takeError(); 8148 switch (MaybeRecord.get()) { 8149 default: // Default behavior: ignore. 8150 break; 8151 case bitc::MST_CODE_ENTRY: { 8152 // MST_ENTRY: [modid, namechar x N] 8153 uint64_t ModuleId = Record[0]; 8154 8155 if (convertToString(Record, 1, ModulePath)) 8156 return error("Invalid record"); 8157 8158 LastSeenModule = TheIndex.addModule(ModulePath); 8159 ModuleIdMap[ModuleId] = LastSeenModule->first(); 8160 8161 ModulePath.clear(); 8162 break; 8163 } 8164 /// MST_CODE_HASH: [5*i32] 8165 case bitc::MST_CODE_HASH: { 8166 if (Record.size() != 5) 8167 return error("Invalid hash length " + Twine(Record.size()).str()); 8168 if (!LastSeenModule) 8169 return error("Invalid hash that does not follow a module path"); 8170 int Pos = 0; 8171 for (auto &Val : Record) { 8172 assert(!(Val >> 32) && "Unexpected high bits set"); 8173 LastSeenModule->second[Pos++] = Val; 8174 } 8175 // Reset LastSeenModule to avoid overriding the hash unexpectedly. 8176 LastSeenModule = nullptr; 8177 break; 8178 } 8179 } 8180 } 8181 llvm_unreachable("Exit infinite loop"); 8182 } 8183 8184 namespace { 8185 8186 // FIXME: This class is only here to support the transition to llvm::Error. It 8187 // will be removed once this transition is complete. Clients should prefer to 8188 // deal with the Error value directly, rather than converting to error_code. 8189 class BitcodeErrorCategoryType : public std::error_category { 8190 const char *name() const noexcept override { 8191 return "llvm.bitcode"; 8192 } 8193 8194 std::string message(int IE) const override { 8195 BitcodeError E = static_cast<BitcodeError>(IE); 8196 switch (E) { 8197 case BitcodeError::CorruptedBitcode: 8198 return "Corrupted bitcode"; 8199 } 8200 llvm_unreachable("Unknown error type!"); 8201 } 8202 }; 8203 8204 } // end anonymous namespace 8205 8206 const std::error_category &llvm::BitcodeErrorCategory() { 8207 static BitcodeErrorCategoryType ErrorCategory; 8208 return ErrorCategory; 8209 } 8210 8211 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream, 8212 unsigned Block, unsigned RecordID) { 8213 if (Error Err = Stream.EnterSubBlock(Block)) 8214 return std::move(Err); 8215 8216 StringRef Strtab; 8217 while (true) { 8218 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 8219 if (!MaybeEntry) 8220 return MaybeEntry.takeError(); 8221 llvm::BitstreamEntry Entry = MaybeEntry.get(); 8222 8223 switch (Entry.Kind) { 8224 case BitstreamEntry::EndBlock: 8225 return Strtab; 8226 8227 case BitstreamEntry::Error: 8228 return error("Malformed block"); 8229 8230 case BitstreamEntry::SubBlock: 8231 if (Error Err = Stream.SkipBlock()) 8232 return std::move(Err); 8233 break; 8234 8235 case BitstreamEntry::Record: 8236 StringRef Blob; 8237 SmallVector<uint64_t, 1> Record; 8238 Expected<unsigned> MaybeRecord = 8239 Stream.readRecord(Entry.ID, Record, &Blob); 8240 if (!MaybeRecord) 8241 return MaybeRecord.takeError(); 8242 if (MaybeRecord.get() == RecordID) 8243 Strtab = Blob; 8244 break; 8245 } 8246 } 8247 } 8248 8249 //===----------------------------------------------------------------------===// 8250 // External interface 8251 //===----------------------------------------------------------------------===// 8252 8253 Expected<std::vector<BitcodeModule>> 8254 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) { 8255 auto FOrErr = getBitcodeFileContents(Buffer); 8256 if (!FOrErr) 8257 return FOrErr.takeError(); 8258 return std::move(FOrErr->Mods); 8259 } 8260 8261 Expected<BitcodeFileContents> 8262 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) { 8263 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 8264 if (!StreamOrErr) 8265 return StreamOrErr.takeError(); 8266 BitstreamCursor &Stream = *StreamOrErr; 8267 8268 BitcodeFileContents F; 8269 while (true) { 8270 uint64_t BCBegin = Stream.getCurrentByteNo(); 8271 8272 // We may be consuming bitcode from a client that leaves garbage at the end 8273 // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to 8274 // the end that there cannot possibly be another module, stop looking. 8275 if (BCBegin + 8 >= Stream.getBitcodeBytes().size()) 8276 return F; 8277 8278 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 8279 if (!MaybeEntry) 8280 return MaybeEntry.takeError(); 8281 llvm::BitstreamEntry Entry = MaybeEntry.get(); 8282 8283 switch (Entry.Kind) { 8284 case BitstreamEntry::EndBlock: 8285 case BitstreamEntry::Error: 8286 return error("Malformed block"); 8287 8288 case BitstreamEntry::SubBlock: { 8289 uint64_t IdentificationBit = -1ull; 8290 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 8291 IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8; 8292 if (Error Err = Stream.SkipBlock()) 8293 return std::move(Err); 8294 8295 { 8296 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 8297 if (!MaybeEntry) 8298 return MaybeEntry.takeError(); 8299 Entry = MaybeEntry.get(); 8300 } 8301 8302 if (Entry.Kind != BitstreamEntry::SubBlock || 8303 Entry.ID != bitc::MODULE_BLOCK_ID) 8304 return error("Malformed block"); 8305 } 8306 8307 if (Entry.ID == bitc::MODULE_BLOCK_ID) { 8308 uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8; 8309 if (Error Err = Stream.SkipBlock()) 8310 return std::move(Err); 8311 8312 F.Mods.push_back({Stream.getBitcodeBytes().slice( 8313 BCBegin, Stream.getCurrentByteNo() - BCBegin), 8314 Buffer.getBufferIdentifier(), IdentificationBit, 8315 ModuleBit}); 8316 continue; 8317 } 8318 8319 if (Entry.ID == bitc::STRTAB_BLOCK_ID) { 8320 Expected<StringRef> Strtab = 8321 readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB); 8322 if (!Strtab) 8323 return Strtab.takeError(); 8324 // This string table is used by every preceding bitcode module that does 8325 // not have its own string table. A bitcode file may have multiple 8326 // string tables if it was created by binary concatenation, for example 8327 // with "llvm-cat -b". 8328 for (BitcodeModule &I : llvm::reverse(F.Mods)) { 8329 if (!I.Strtab.empty()) 8330 break; 8331 I.Strtab = *Strtab; 8332 } 8333 // Similarly, the string table is used by every preceding symbol table; 8334 // normally there will be just one unless the bitcode file was created 8335 // by binary concatenation. 8336 if (!F.Symtab.empty() && F.StrtabForSymtab.empty()) 8337 F.StrtabForSymtab = *Strtab; 8338 continue; 8339 } 8340 8341 if (Entry.ID == bitc::SYMTAB_BLOCK_ID) { 8342 Expected<StringRef> SymtabOrErr = 8343 readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB); 8344 if (!SymtabOrErr) 8345 return SymtabOrErr.takeError(); 8346 8347 // We can expect the bitcode file to have multiple symbol tables if it 8348 // was created by binary concatenation. In that case we silently 8349 // ignore any subsequent symbol tables, which is fine because this is a 8350 // low level function. The client is expected to notice that the number 8351 // of modules in the symbol table does not match the number of modules 8352 // in the input file and regenerate the symbol table. 8353 if (F.Symtab.empty()) 8354 F.Symtab = *SymtabOrErr; 8355 continue; 8356 } 8357 8358 if (Error Err = Stream.SkipBlock()) 8359 return std::move(Err); 8360 continue; 8361 } 8362 case BitstreamEntry::Record: 8363 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 8364 return std::move(E); 8365 continue; 8366 } 8367 } 8368 } 8369 8370 /// Get a lazy one-at-time loading module from bitcode. 8371 /// 8372 /// This isn't always used in a lazy context. In particular, it's also used by 8373 /// \a parseModule(). If this is truly lazy, then we need to eagerly pull 8374 /// in forward-referenced functions from block address references. 8375 /// 8376 /// \param[in] MaterializeAll Set to \c true if we should materialize 8377 /// everything. 8378 Expected<std::unique_ptr<Module>> 8379 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll, 8380 bool ShouldLazyLoadMetadata, bool IsImporting, 8381 ParserCallbacks Callbacks) { 8382 BitstreamCursor Stream(Buffer); 8383 8384 std::string ProducerIdentification; 8385 if (IdentificationBit != -1ull) { 8386 if (Error JumpFailed = Stream.JumpToBit(IdentificationBit)) 8387 return std::move(JumpFailed); 8388 if (Error E = 8389 readIdentificationBlock(Stream).moveInto(ProducerIdentification)) 8390 return std::move(E); 8391 } 8392 8393 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 8394 return std::move(JumpFailed); 8395 auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification, 8396 Context); 8397 8398 std::unique_ptr<Module> M = 8399 std::make_unique<Module>(ModuleIdentifier, Context); 8400 M->setMaterializer(R); 8401 8402 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 8403 if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, 8404 IsImporting, Callbacks)) 8405 return std::move(Err); 8406 8407 if (MaterializeAll) { 8408 // Read in the entire module, and destroy the BitcodeReader. 8409 if (Error Err = M->materializeAll()) 8410 return std::move(Err); 8411 } else { 8412 // Resolve forward references from blockaddresses. 8413 if (Error Err = R->materializeForwardReferencedFunctions()) 8414 return std::move(Err); 8415 } 8416 8417 return std::move(M); 8418 } 8419 8420 Expected<std::unique_ptr<Module>> 8421 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata, 8422 bool IsImporting, ParserCallbacks Callbacks) { 8423 return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting, 8424 Callbacks); 8425 } 8426 8427 // Parse the specified bitcode buffer and merge the index into CombinedIndex. 8428 // We don't use ModuleIdentifier here because the client may need to control the 8429 // module path used in the combined summary (e.g. when reading summaries for 8430 // regular LTO modules). 8431 Error BitcodeModule::readSummary( 8432 ModuleSummaryIndex &CombinedIndex, StringRef ModulePath, 8433 std::function<bool(GlobalValue::GUID)> IsPrevailing) { 8434 BitstreamCursor Stream(Buffer); 8435 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 8436 return JumpFailed; 8437 8438 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex, 8439 ModulePath, IsPrevailing); 8440 return R.parseModule(); 8441 } 8442 8443 // Parse the specified bitcode buffer, returning the function info index. 8444 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() { 8445 BitstreamCursor Stream(Buffer); 8446 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 8447 return std::move(JumpFailed); 8448 8449 auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false); 8450 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index, 8451 ModuleIdentifier, 0); 8452 8453 if (Error Err = R.parseModule()) 8454 return std::move(Err); 8455 8456 return std::move(Index); 8457 } 8458 8459 static Expected<std::pair<bool, bool>> 8460 getEnableSplitLTOUnitAndUnifiedFlag(BitstreamCursor &Stream, 8461 unsigned ID, 8462 BitcodeLTOInfo <OInfo) { 8463 if (Error Err = Stream.EnterSubBlock(ID)) 8464 return std::move(Err); 8465 SmallVector<uint64_t, 64> Record; 8466 8467 while (true) { 8468 BitstreamEntry Entry; 8469 std::pair<bool, bool> Result = {false,false}; 8470 if (Error E = Stream.advanceSkippingSubblocks().moveInto(Entry)) 8471 return std::move(E); 8472 8473 switch (Entry.Kind) { 8474 case BitstreamEntry::SubBlock: // Handled for us already. 8475 case BitstreamEntry::Error: 8476 return error("Malformed block"); 8477 case BitstreamEntry::EndBlock: { 8478 // If no flags record found, set both flags to false. 8479 return Result; 8480 } 8481 case BitstreamEntry::Record: 8482 // The interesting case. 8483 break; 8484 } 8485 8486 // Look for the FS_FLAGS record. 8487 Record.clear(); 8488 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 8489 if (!MaybeBitCode) 8490 return MaybeBitCode.takeError(); 8491 switch (MaybeBitCode.get()) { 8492 default: // Default behavior: ignore. 8493 break; 8494 case bitc::FS_FLAGS: { // [flags] 8495 uint64_t Flags = Record[0]; 8496 // Scan flags. 8497 assert(Flags <= 0x2ff && "Unexpected bits in flag"); 8498 8499 bool EnableSplitLTOUnit = Flags & 0x8; 8500 bool UnifiedLTO = Flags & 0x200; 8501 Result = {EnableSplitLTOUnit, UnifiedLTO}; 8502 8503 return Result; 8504 } 8505 } 8506 } 8507 llvm_unreachable("Exit infinite loop"); 8508 } 8509 8510 // Check if the given bitcode buffer contains a global value summary block. 8511 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() { 8512 BitstreamCursor Stream(Buffer); 8513 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 8514 return std::move(JumpFailed); 8515 8516 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 8517 return std::move(Err); 8518 8519 while (true) { 8520 llvm::BitstreamEntry Entry; 8521 if (Error E = Stream.advance().moveInto(Entry)) 8522 return std::move(E); 8523 8524 switch (Entry.Kind) { 8525 case BitstreamEntry::Error: 8526 return error("Malformed block"); 8527 case BitstreamEntry::EndBlock: 8528 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false, 8529 /*EnableSplitLTOUnit=*/false, /*UnifiedLTO=*/false}; 8530 8531 case BitstreamEntry::SubBlock: 8532 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) { 8533 BitcodeLTOInfo LTOInfo; 8534 Expected<std::pair<bool, bool>> Flags = 8535 getEnableSplitLTOUnitAndUnifiedFlag(Stream, Entry.ID, LTOInfo); 8536 if (!Flags) 8537 return Flags.takeError(); 8538 std::tie(LTOInfo.EnableSplitLTOUnit, LTOInfo.UnifiedLTO) = Flags.get(); 8539 LTOInfo.IsThinLTO = true; 8540 LTOInfo.HasSummary = true; 8541 return LTOInfo; 8542 } 8543 8544 if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) { 8545 BitcodeLTOInfo LTOInfo; 8546 Expected<std::pair<bool, bool>> Flags = 8547 getEnableSplitLTOUnitAndUnifiedFlag(Stream, Entry.ID, LTOInfo); 8548 if (!Flags) 8549 return Flags.takeError(); 8550 std::tie(LTOInfo.EnableSplitLTOUnit, LTOInfo.UnifiedLTO) = Flags.get(); 8551 LTOInfo.IsThinLTO = false; 8552 LTOInfo.HasSummary = true; 8553 return LTOInfo; 8554 } 8555 8556 // Ignore other sub-blocks. 8557 if (Error Err = Stream.SkipBlock()) 8558 return std::move(Err); 8559 continue; 8560 8561 case BitstreamEntry::Record: 8562 if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID)) 8563 continue; 8564 else 8565 return StreamFailed.takeError(); 8566 } 8567 } 8568 } 8569 8570 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) { 8571 Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer); 8572 if (!MsOrErr) 8573 return MsOrErr.takeError(); 8574 8575 if (MsOrErr->size() != 1) 8576 return error("Expected a single module"); 8577 8578 return (*MsOrErr)[0]; 8579 } 8580 8581 Expected<std::unique_ptr<Module>> 8582 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context, 8583 bool ShouldLazyLoadMetadata, bool IsImporting, 8584 ParserCallbacks Callbacks) { 8585 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8586 if (!BM) 8587 return BM.takeError(); 8588 8589 return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting, 8590 Callbacks); 8591 } 8592 8593 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule( 8594 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context, 8595 bool ShouldLazyLoadMetadata, bool IsImporting, ParserCallbacks Callbacks) { 8596 auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata, 8597 IsImporting, Callbacks); 8598 if (MOrErr) 8599 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer)); 8600 return MOrErr; 8601 } 8602 8603 Expected<std::unique_ptr<Module>> 8604 BitcodeModule::parseModule(LLVMContext &Context, ParserCallbacks Callbacks) { 8605 return getModuleImpl(Context, true, false, false, Callbacks); 8606 // TODO: Restore the use-lists to the in-memory state when the bitcode was 8607 // written. We must defer until the Module has been fully materialized. 8608 } 8609 8610 Expected<std::unique_ptr<Module>> 8611 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context, 8612 ParserCallbacks Callbacks) { 8613 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8614 if (!BM) 8615 return BM.takeError(); 8616 8617 return BM->parseModule(Context, Callbacks); 8618 } 8619 8620 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) { 8621 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 8622 if (!StreamOrErr) 8623 return StreamOrErr.takeError(); 8624 8625 return readTriple(*StreamOrErr); 8626 } 8627 8628 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) { 8629 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 8630 if (!StreamOrErr) 8631 return StreamOrErr.takeError(); 8632 8633 return hasObjCCategory(*StreamOrErr); 8634 } 8635 8636 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) { 8637 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 8638 if (!StreamOrErr) 8639 return StreamOrErr.takeError(); 8640 8641 return readIdentificationCode(*StreamOrErr); 8642 } 8643 8644 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer, 8645 ModuleSummaryIndex &CombinedIndex) { 8646 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8647 if (!BM) 8648 return BM.takeError(); 8649 8650 return BM->readSummary(CombinedIndex, BM->getModuleIdentifier()); 8651 } 8652 8653 Expected<std::unique_ptr<ModuleSummaryIndex>> 8654 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) { 8655 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8656 if (!BM) 8657 return BM.takeError(); 8658 8659 return BM->getSummary(); 8660 } 8661 8662 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) { 8663 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8664 if (!BM) 8665 return BM.takeError(); 8666 8667 return BM->getLTOInfo(); 8668 } 8669 8670 Expected<std::unique_ptr<ModuleSummaryIndex>> 8671 llvm::getModuleSummaryIndexForFile(StringRef Path, 8672 bool IgnoreEmptyThinLTOIndexFile) { 8673 ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr = 8674 MemoryBuffer::getFileOrSTDIN(Path); 8675 if (!FileOrErr) 8676 return errorCodeToError(FileOrErr.getError()); 8677 if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize()) 8678 return nullptr; 8679 return getModuleSummaryIndex(**FileOrErr); 8680 } 8681