1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Bitcode/BitcodeReader.h" 10 #include "MetadataLoader.h" 11 #include "ValueList.h" 12 #include "llvm/ADT/APFloat.h" 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallString.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/ADT/StringRef.h" 20 #include "llvm/ADT/Twine.h" 21 #include "llvm/Bitcode/BitcodeCommon.h" 22 #include "llvm/Bitcode/LLVMBitCodes.h" 23 #include "llvm/Bitstream/BitstreamReader.h" 24 #include "llvm/Config/llvm-config.h" 25 #include "llvm/IR/Argument.h" 26 #include "llvm/IR/AttributeMask.h" 27 #include "llvm/IR/Attributes.h" 28 #include "llvm/IR/AutoUpgrade.h" 29 #include "llvm/IR/BasicBlock.h" 30 #include "llvm/IR/CallingConv.h" 31 #include "llvm/IR/Comdat.h" 32 #include "llvm/IR/Constant.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/DebugInfo.h" 36 #include "llvm/IR/DebugInfoMetadata.h" 37 #include "llvm/IR/DebugLoc.h" 38 #include "llvm/IR/DerivedTypes.h" 39 #include "llvm/IR/Function.h" 40 #include "llvm/IR/GVMaterializer.h" 41 #include "llvm/IR/GetElementPtrTypeIterator.h" 42 #include "llvm/IR/GlobalAlias.h" 43 #include "llvm/IR/GlobalIFunc.h" 44 #include "llvm/IR/GlobalObject.h" 45 #include "llvm/IR/GlobalValue.h" 46 #include "llvm/IR/GlobalVariable.h" 47 #include "llvm/IR/InlineAsm.h" 48 #include "llvm/IR/InstIterator.h" 49 #include "llvm/IR/InstrTypes.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/IntrinsicsAArch64.h" 54 #include "llvm/IR/IntrinsicsARM.h" 55 #include "llvm/IR/LLVMContext.h" 56 #include "llvm/IR/Metadata.h" 57 #include "llvm/IR/Module.h" 58 #include "llvm/IR/ModuleSummaryIndex.h" 59 #include "llvm/IR/Operator.h" 60 #include "llvm/IR/Type.h" 61 #include "llvm/IR/Value.h" 62 #include "llvm/IR/Verifier.h" 63 #include "llvm/Support/AtomicOrdering.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Compiler.h" 67 #include "llvm/Support/Debug.h" 68 #include "llvm/Support/Error.h" 69 #include "llvm/Support/ErrorHandling.h" 70 #include "llvm/Support/ErrorOr.h" 71 #include "llvm/Support/MathExtras.h" 72 #include "llvm/Support/MemoryBuffer.h" 73 #include "llvm/Support/ModRef.h" 74 #include "llvm/Support/raw_ostream.h" 75 #include "llvm/TargetParser/Triple.h" 76 #include <algorithm> 77 #include <cassert> 78 #include <cstddef> 79 #include <cstdint> 80 #include <deque> 81 #include <map> 82 #include <memory> 83 #include <optional> 84 #include <set> 85 #include <string> 86 #include <system_error> 87 #include <tuple> 88 #include <utility> 89 #include <vector> 90 91 using namespace llvm; 92 93 static cl::opt<bool> PrintSummaryGUIDs( 94 "print-summary-global-ids", cl::init(false), cl::Hidden, 95 cl::desc( 96 "Print the global id for each value when reading the module summary")); 97 98 static cl::opt<bool> ExpandConstantExprs( 99 "expand-constant-exprs", cl::Hidden, 100 cl::desc( 101 "Expand constant expressions to instructions for testing purposes")); 102 103 // Declare external flag for whether we're using the new debug-info format. 104 extern llvm::cl::opt<bool> UseNewDbgInfoFormat; 105 106 namespace { 107 108 enum { 109 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 110 }; 111 112 } // end anonymous namespace 113 114 static Error error(const Twine &Message) { 115 return make_error<StringError>( 116 Message, make_error_code(BitcodeError::CorruptedBitcode)); 117 } 118 119 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) { 120 if (!Stream.canSkipToPos(4)) 121 return createStringError(std::errc::illegal_byte_sequence, 122 "file too small to contain bitcode header"); 123 for (unsigned C : {'B', 'C'}) 124 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) { 125 if (Res.get() != C) 126 return createStringError(std::errc::illegal_byte_sequence, 127 "file doesn't start with bitcode header"); 128 } else 129 return Res.takeError(); 130 for (unsigned C : {0x0, 0xC, 0xE, 0xD}) 131 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) { 132 if (Res.get() != C) 133 return createStringError(std::errc::illegal_byte_sequence, 134 "file doesn't start with bitcode header"); 135 } else 136 return Res.takeError(); 137 return Error::success(); 138 } 139 140 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) { 141 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart(); 142 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize(); 143 144 if (Buffer.getBufferSize() & 3) 145 return error("Invalid bitcode signature"); 146 147 // If we have a wrapper header, parse it and ignore the non-bc file contents. 148 // The magic number is 0x0B17C0DE stored in little endian. 149 if (isBitcodeWrapper(BufPtr, BufEnd)) 150 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 151 return error("Invalid bitcode wrapper header"); 152 153 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd)); 154 if (Error Err = hasInvalidBitcodeHeader(Stream)) 155 return std::move(Err); 156 157 return std::move(Stream); 158 } 159 160 /// Convert a string from a record into an std::string, return true on failure. 161 template <typename StrTy> 162 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 163 StrTy &Result) { 164 if (Idx > Record.size()) 165 return true; 166 167 Result.append(Record.begin() + Idx, Record.end()); 168 return false; 169 } 170 171 // Strip all the TBAA attachment for the module. 172 static void stripTBAA(Module *M) { 173 for (auto &F : *M) { 174 if (F.isMaterializable()) 175 continue; 176 for (auto &I : instructions(F)) 177 I.setMetadata(LLVMContext::MD_tbaa, nullptr); 178 } 179 } 180 181 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the 182 /// "epoch" encoded in the bitcode, and return the producer name if any. 183 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) { 184 if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 185 return std::move(Err); 186 187 // Read all the records. 188 SmallVector<uint64_t, 64> Record; 189 190 std::string ProducerIdentification; 191 192 while (true) { 193 BitstreamEntry Entry; 194 if (Error E = Stream.advance().moveInto(Entry)) 195 return std::move(E); 196 197 switch (Entry.Kind) { 198 default: 199 case BitstreamEntry::Error: 200 return error("Malformed block"); 201 case BitstreamEntry::EndBlock: 202 return ProducerIdentification; 203 case BitstreamEntry::Record: 204 // The interesting case. 205 break; 206 } 207 208 // Read a record. 209 Record.clear(); 210 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 211 if (!MaybeBitCode) 212 return MaybeBitCode.takeError(); 213 switch (MaybeBitCode.get()) { 214 default: // Default behavior: reject 215 return error("Invalid value"); 216 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N] 217 convertToString(Record, 0, ProducerIdentification); 218 break; 219 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 220 unsigned epoch = (unsigned)Record[0]; 221 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 222 return error( 223 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 224 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 225 } 226 } 227 } 228 } 229 } 230 231 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) { 232 // We expect a number of well-defined blocks, though we don't necessarily 233 // need to understand them all. 234 while (true) { 235 if (Stream.AtEndOfStream()) 236 return ""; 237 238 BitstreamEntry Entry; 239 if (Error E = Stream.advance().moveInto(Entry)) 240 return std::move(E); 241 242 switch (Entry.Kind) { 243 case BitstreamEntry::EndBlock: 244 case BitstreamEntry::Error: 245 return error("Malformed block"); 246 247 case BitstreamEntry::SubBlock: 248 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) 249 return readIdentificationBlock(Stream); 250 251 // Ignore other sub-blocks. 252 if (Error Err = Stream.SkipBlock()) 253 return std::move(Err); 254 continue; 255 case BitstreamEntry::Record: 256 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 257 return std::move(E); 258 continue; 259 } 260 } 261 } 262 263 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) { 264 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 265 return std::move(Err); 266 267 SmallVector<uint64_t, 64> Record; 268 // Read all the records for this module. 269 270 while (true) { 271 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 272 if (!MaybeEntry) 273 return MaybeEntry.takeError(); 274 BitstreamEntry Entry = MaybeEntry.get(); 275 276 switch (Entry.Kind) { 277 case BitstreamEntry::SubBlock: // Handled for us already. 278 case BitstreamEntry::Error: 279 return error("Malformed block"); 280 case BitstreamEntry::EndBlock: 281 return false; 282 case BitstreamEntry::Record: 283 // The interesting case. 284 break; 285 } 286 287 // Read a record. 288 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 289 if (!MaybeRecord) 290 return MaybeRecord.takeError(); 291 switch (MaybeRecord.get()) { 292 default: 293 break; // Default behavior, ignore unknown content. 294 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 295 std::string S; 296 if (convertToString(Record, 0, S)) 297 return error("Invalid section name record"); 298 // Check for the i386 and other (x86_64, ARM) conventions 299 if (S.find("__DATA,__objc_catlist") != std::string::npos || 300 S.find("__OBJC,__category") != std::string::npos) 301 return true; 302 break; 303 } 304 } 305 Record.clear(); 306 } 307 llvm_unreachable("Exit infinite loop"); 308 } 309 310 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) { 311 // We expect a number of well-defined blocks, though we don't necessarily 312 // need to understand them all. 313 while (true) { 314 BitstreamEntry Entry; 315 if (Error E = Stream.advance().moveInto(Entry)) 316 return std::move(E); 317 318 switch (Entry.Kind) { 319 case BitstreamEntry::Error: 320 return error("Malformed block"); 321 case BitstreamEntry::EndBlock: 322 return false; 323 324 case BitstreamEntry::SubBlock: 325 if (Entry.ID == bitc::MODULE_BLOCK_ID) 326 return hasObjCCategoryInModule(Stream); 327 328 // Ignore other sub-blocks. 329 if (Error Err = Stream.SkipBlock()) 330 return std::move(Err); 331 continue; 332 333 case BitstreamEntry::Record: 334 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 335 return std::move(E); 336 continue; 337 } 338 } 339 } 340 341 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) { 342 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 343 return std::move(Err); 344 345 SmallVector<uint64_t, 64> Record; 346 347 std::string Triple; 348 349 // Read all the records for this module. 350 while (true) { 351 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 352 if (!MaybeEntry) 353 return MaybeEntry.takeError(); 354 BitstreamEntry Entry = MaybeEntry.get(); 355 356 switch (Entry.Kind) { 357 case BitstreamEntry::SubBlock: // Handled for us already. 358 case BitstreamEntry::Error: 359 return error("Malformed block"); 360 case BitstreamEntry::EndBlock: 361 return Triple; 362 case BitstreamEntry::Record: 363 // The interesting case. 364 break; 365 } 366 367 // Read a record. 368 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 369 if (!MaybeRecord) 370 return MaybeRecord.takeError(); 371 switch (MaybeRecord.get()) { 372 default: break; // Default behavior, ignore unknown content. 373 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 374 std::string S; 375 if (convertToString(Record, 0, S)) 376 return error("Invalid triple record"); 377 Triple = S; 378 break; 379 } 380 } 381 Record.clear(); 382 } 383 llvm_unreachable("Exit infinite loop"); 384 } 385 386 static Expected<std::string> readTriple(BitstreamCursor &Stream) { 387 // We expect a number of well-defined blocks, though we don't necessarily 388 // need to understand them all. 389 while (true) { 390 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 391 if (!MaybeEntry) 392 return MaybeEntry.takeError(); 393 BitstreamEntry Entry = MaybeEntry.get(); 394 395 switch (Entry.Kind) { 396 case BitstreamEntry::Error: 397 return error("Malformed block"); 398 case BitstreamEntry::EndBlock: 399 return ""; 400 401 case BitstreamEntry::SubBlock: 402 if (Entry.ID == bitc::MODULE_BLOCK_ID) 403 return readModuleTriple(Stream); 404 405 // Ignore other sub-blocks. 406 if (Error Err = Stream.SkipBlock()) 407 return std::move(Err); 408 continue; 409 410 case BitstreamEntry::Record: 411 if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 412 continue; 413 else 414 return Skipped.takeError(); 415 } 416 } 417 } 418 419 namespace { 420 421 class BitcodeReaderBase { 422 protected: 423 BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab) 424 : Stream(std::move(Stream)), Strtab(Strtab) { 425 this->Stream.setBlockInfo(&BlockInfo); 426 } 427 428 BitstreamBlockInfo BlockInfo; 429 BitstreamCursor Stream; 430 StringRef Strtab; 431 432 /// In version 2 of the bitcode we store names of global values and comdats in 433 /// a string table rather than in the VST. 434 bool UseStrtab = false; 435 436 Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record); 437 438 /// If this module uses a string table, pop the reference to the string table 439 /// and return the referenced string and the rest of the record. Otherwise 440 /// just return the record itself. 441 std::pair<StringRef, ArrayRef<uint64_t>> 442 readNameFromStrtab(ArrayRef<uint64_t> Record); 443 444 Error readBlockInfo(); 445 446 // Contains an arbitrary and optional string identifying the bitcode producer 447 std::string ProducerIdentification; 448 449 Error error(const Twine &Message); 450 }; 451 452 } // end anonymous namespace 453 454 Error BitcodeReaderBase::error(const Twine &Message) { 455 std::string FullMsg = Message.str(); 456 if (!ProducerIdentification.empty()) 457 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " + 458 LLVM_VERSION_STRING "')"; 459 return ::error(FullMsg); 460 } 461 462 Expected<unsigned> 463 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) { 464 if (Record.empty()) 465 return error("Invalid version record"); 466 unsigned ModuleVersion = Record[0]; 467 if (ModuleVersion > 2) 468 return error("Invalid value"); 469 UseStrtab = ModuleVersion >= 2; 470 return ModuleVersion; 471 } 472 473 std::pair<StringRef, ArrayRef<uint64_t>> 474 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) { 475 if (!UseStrtab) 476 return {"", Record}; 477 // Invalid reference. Let the caller complain about the record being empty. 478 if (Record[0] + Record[1] > Strtab.size()) 479 return {"", {}}; 480 return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)}; 481 } 482 483 namespace { 484 485 /// This represents a constant expression or constant aggregate using a custom 486 /// structure internal to the bitcode reader. Later, this structure will be 487 /// expanded by materializeValue() either into a constant expression/aggregate, 488 /// or into an instruction sequence at the point of use. This allows us to 489 /// upgrade bitcode using constant expressions even if this kind of constant 490 /// expression is no longer supported. 491 class BitcodeConstant final : public Value, 492 TrailingObjects<BitcodeConstant, unsigned> { 493 friend TrailingObjects; 494 495 // Value subclass ID: Pick largest possible value to avoid any clashes. 496 static constexpr uint8_t SubclassID = 255; 497 498 public: 499 // Opcodes used for non-expressions. This includes constant aggregates 500 // (struct, array, vector) that might need expansion, as well as non-leaf 501 // constants that don't need expansion (no_cfi, dso_local, blockaddress), 502 // but still go through BitcodeConstant to avoid different uselist orders 503 // between the two cases. 504 static constexpr uint8_t ConstantStructOpcode = 255; 505 static constexpr uint8_t ConstantArrayOpcode = 254; 506 static constexpr uint8_t ConstantVectorOpcode = 253; 507 static constexpr uint8_t NoCFIOpcode = 252; 508 static constexpr uint8_t DSOLocalEquivalentOpcode = 251; 509 static constexpr uint8_t BlockAddressOpcode = 250; 510 static constexpr uint8_t FirstSpecialOpcode = BlockAddressOpcode; 511 512 // Separate struct to make passing different number of parameters to 513 // BitcodeConstant::create() more convenient. 514 struct ExtraInfo { 515 uint8_t Opcode; 516 uint8_t Flags; 517 unsigned Extra; 518 Type *SrcElemTy; 519 520 ExtraInfo(uint8_t Opcode, uint8_t Flags = 0, unsigned Extra = 0, 521 Type *SrcElemTy = nullptr) 522 : Opcode(Opcode), Flags(Flags), Extra(Extra), SrcElemTy(SrcElemTy) {} 523 }; 524 525 uint8_t Opcode; 526 uint8_t Flags; 527 unsigned NumOperands; 528 unsigned Extra; // GEP inrange index or blockaddress BB id. 529 Type *SrcElemTy; // GEP source element type. 530 531 private: 532 BitcodeConstant(Type *Ty, const ExtraInfo &Info, ArrayRef<unsigned> OpIDs) 533 : Value(Ty, SubclassID), Opcode(Info.Opcode), Flags(Info.Flags), 534 NumOperands(OpIDs.size()), Extra(Info.Extra), 535 SrcElemTy(Info.SrcElemTy) { 536 std::uninitialized_copy(OpIDs.begin(), OpIDs.end(), 537 getTrailingObjects<unsigned>()); 538 } 539 540 BitcodeConstant &operator=(const BitcodeConstant &) = delete; 541 542 public: 543 static BitcodeConstant *create(BumpPtrAllocator &A, Type *Ty, 544 const ExtraInfo &Info, 545 ArrayRef<unsigned> OpIDs) { 546 void *Mem = A.Allocate(totalSizeToAlloc<unsigned>(OpIDs.size()), 547 alignof(BitcodeConstant)); 548 return new (Mem) BitcodeConstant(Ty, Info, OpIDs); 549 } 550 551 static bool classof(const Value *V) { return V->getValueID() == SubclassID; } 552 553 ArrayRef<unsigned> getOperandIDs() const { 554 return ArrayRef(getTrailingObjects<unsigned>(), NumOperands); 555 } 556 557 std::optional<unsigned> getInRangeIndex() const { 558 assert(Opcode == Instruction::GetElementPtr); 559 if (Extra == (unsigned)-1) 560 return std::nullopt; 561 return Extra; 562 } 563 564 const char *getOpcodeName() const { 565 return Instruction::getOpcodeName(Opcode); 566 } 567 }; 568 569 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer { 570 LLVMContext &Context; 571 Module *TheModule = nullptr; 572 // Next offset to start scanning for lazy parsing of function bodies. 573 uint64_t NextUnreadBit = 0; 574 // Last function offset found in the VST. 575 uint64_t LastFunctionBlockBit = 0; 576 bool SeenValueSymbolTable = false; 577 uint64_t VSTOffset = 0; 578 579 std::vector<std::string> SectionTable; 580 std::vector<std::string> GCTable; 581 582 std::vector<Type *> TypeList; 583 /// Track type IDs of contained types. Order is the same as the contained 584 /// types of a Type*. This is used during upgrades of typed pointer IR in 585 /// opaque pointer mode. 586 DenseMap<unsigned, SmallVector<unsigned, 1>> ContainedTypeIDs; 587 /// In some cases, we need to create a type ID for a type that was not 588 /// explicitly encoded in the bitcode, or we don't know about at the current 589 /// point. For example, a global may explicitly encode the value type ID, but 590 /// not have a type ID for the pointer to value type, for which we create a 591 /// virtual type ID instead. This map stores the new type ID that was created 592 /// for the given pair of Type and contained type ID. 593 DenseMap<std::pair<Type *, unsigned>, unsigned> VirtualTypeIDs; 594 DenseMap<Function *, unsigned> FunctionTypeIDs; 595 /// Allocator for BitcodeConstants. This should come before ValueList, 596 /// because the ValueList might hold ValueHandles to these constants, so 597 /// ValueList must be destroyed before Alloc. 598 BumpPtrAllocator Alloc; 599 BitcodeReaderValueList ValueList; 600 std::optional<MetadataLoader> MDLoader; 601 std::vector<Comdat *> ComdatList; 602 DenseSet<GlobalObject *> ImplicitComdatObjects; 603 SmallVector<Instruction *, 64> InstructionList; 604 605 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits; 606 std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInits; 607 608 struct FunctionOperandInfo { 609 Function *F; 610 unsigned PersonalityFn; 611 unsigned Prefix; 612 unsigned Prologue; 613 }; 614 std::vector<FunctionOperandInfo> FunctionOperands; 615 616 /// The set of attributes by index. Index zero in the file is for null, and 617 /// is thus not represented here. As such all indices are off by one. 618 std::vector<AttributeList> MAttributes; 619 620 /// The set of attribute groups. 621 std::map<unsigned, AttributeList> MAttributeGroups; 622 623 /// While parsing a function body, this is a list of the basic blocks for the 624 /// function. 625 std::vector<BasicBlock*> FunctionBBs; 626 627 // When reading the module header, this list is populated with functions that 628 // have bodies later in the file. 629 std::vector<Function*> FunctionsWithBodies; 630 631 // When intrinsic functions are encountered which require upgrading they are 632 // stored here with their replacement function. 633 using UpdatedIntrinsicMap = DenseMap<Function *, Function *>; 634 UpdatedIntrinsicMap UpgradedIntrinsics; 635 636 // Several operations happen after the module header has been read, but 637 // before function bodies are processed. This keeps track of whether 638 // we've done this yet. 639 bool SeenFirstFunctionBody = false; 640 641 /// When function bodies are initially scanned, this map contains info about 642 /// where to find deferred function body in the stream. 643 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 644 645 /// When Metadata block is initially scanned when parsing the module, we may 646 /// choose to defer parsing of the metadata. This vector contains info about 647 /// which Metadata blocks are deferred. 648 std::vector<uint64_t> DeferredMetadataInfo; 649 650 /// These are basic blocks forward-referenced by block addresses. They are 651 /// inserted lazily into functions when they're loaded. The basic block ID is 652 /// its index into the vector. 653 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 654 std::deque<Function *> BasicBlockFwdRefQueue; 655 656 /// These are Functions that contain BlockAddresses which refer a different 657 /// Function. When parsing the different Function, queue Functions that refer 658 /// to the different Function. Those Functions must be materialized in order 659 /// to resolve their BlockAddress constants before the different Function 660 /// gets moved into another Module. 661 std::vector<Function *> BackwardRefFunctions; 662 663 /// Indicates that we are using a new encoding for instruction operands where 664 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 665 /// instruction number, for a more compact encoding. Some instruction 666 /// operands are not relative to the instruction ID: basic block numbers, and 667 /// types. Once the old style function blocks have been phased out, we would 668 /// not need this flag. 669 bool UseRelativeIDs = false; 670 671 /// True if all functions will be materialized, negating the need to process 672 /// (e.g.) blockaddress forward references. 673 bool WillMaterializeAllForwardRefs = false; 674 675 bool StripDebugInfo = false; 676 TBAAVerifier TBAAVerifyHelper; 677 678 std::vector<std::string> BundleTags; 679 SmallVector<SyncScope::ID, 8> SSIDs; 680 681 std::optional<ValueTypeCallbackTy> ValueTypeCallback; 682 683 public: 684 BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 685 StringRef ProducerIdentification, LLVMContext &Context); 686 687 Error materializeForwardReferencedFunctions(); 688 689 Error materialize(GlobalValue *GV) override; 690 Error materializeModule() override; 691 std::vector<StructType *> getIdentifiedStructTypes() const override; 692 693 /// Main interface to parsing a bitcode buffer. 694 /// \returns true if an error occurred. 695 Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 696 bool IsImporting, ParserCallbacks Callbacks = {}); 697 698 static uint64_t decodeSignRotatedValue(uint64_t V); 699 700 /// Materialize any deferred Metadata block. 701 Error materializeMetadata() override; 702 703 void setStripDebugInfo() override; 704 705 private: 706 std::vector<StructType *> IdentifiedStructTypes; 707 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 708 StructType *createIdentifiedStructType(LLVMContext &Context); 709 710 static constexpr unsigned InvalidTypeID = ~0u; 711 712 Type *getTypeByID(unsigned ID); 713 Type *getPtrElementTypeByID(unsigned ID); 714 unsigned getContainedTypeID(unsigned ID, unsigned Idx = 0); 715 unsigned getVirtualTypeID(Type *Ty, ArrayRef<unsigned> ContainedTypeIDs = {}); 716 717 void callValueTypeCallback(Value *F, unsigned TypeID); 718 Expected<Value *> materializeValue(unsigned ValID, BasicBlock *InsertBB); 719 Expected<Constant *> getValueForInitializer(unsigned ID); 720 721 Value *getFnValueByID(unsigned ID, Type *Ty, unsigned TyID, 722 BasicBlock *ConstExprInsertBB) { 723 if (Ty && Ty->isMetadataTy()) 724 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 725 return ValueList.getValueFwdRef(ID, Ty, TyID, ConstExprInsertBB); 726 } 727 728 Metadata *getFnMetadataByID(unsigned ID) { 729 return MDLoader->getMetadataFwdRefOrLoad(ID); 730 } 731 732 BasicBlock *getBasicBlock(unsigned ID) const { 733 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 734 return FunctionBBs[ID]; 735 } 736 737 AttributeList getAttributes(unsigned i) const { 738 if (i-1 < MAttributes.size()) 739 return MAttributes[i-1]; 740 return AttributeList(); 741 } 742 743 /// Read a value/type pair out of the specified record from slot 'Slot'. 744 /// Increment Slot past the number of slots used in the record. Return true on 745 /// failure. 746 bool getValueTypePair(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 747 unsigned InstNum, Value *&ResVal, unsigned &TypeID, 748 BasicBlock *ConstExprInsertBB) { 749 if (Slot == Record.size()) return true; 750 unsigned ValNo = (unsigned)Record[Slot++]; 751 // Adjust the ValNo, if it was encoded relative to the InstNum. 752 if (UseRelativeIDs) 753 ValNo = InstNum - ValNo; 754 if (ValNo < InstNum) { 755 // If this is not a forward reference, just return the value we already 756 // have. 757 TypeID = ValueList.getTypeID(ValNo); 758 ResVal = getFnValueByID(ValNo, nullptr, TypeID, ConstExprInsertBB); 759 assert((!ResVal || ResVal->getType() == getTypeByID(TypeID)) && 760 "Incorrect type ID stored for value"); 761 return ResVal == nullptr; 762 } 763 if (Slot == Record.size()) 764 return true; 765 766 TypeID = (unsigned)Record[Slot++]; 767 ResVal = getFnValueByID(ValNo, getTypeByID(TypeID), TypeID, 768 ConstExprInsertBB); 769 return ResVal == nullptr; 770 } 771 772 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 773 /// past the number of slots used by the value in the record. Return true if 774 /// there is an error. 775 bool popValue(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 776 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal, 777 BasicBlock *ConstExprInsertBB) { 778 if (getValue(Record, Slot, InstNum, Ty, TyID, ResVal, ConstExprInsertBB)) 779 return true; 780 // All values currently take a single record slot. 781 ++Slot; 782 return false; 783 } 784 785 /// Like popValue, but does not increment the Slot number. 786 bool getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 787 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal, 788 BasicBlock *ConstExprInsertBB) { 789 ResVal = getValue(Record, Slot, InstNum, Ty, TyID, ConstExprInsertBB); 790 return ResVal == nullptr; 791 } 792 793 /// Version of getValue that returns ResVal directly, or 0 if there is an 794 /// error. 795 Value *getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 796 unsigned InstNum, Type *Ty, unsigned TyID, 797 BasicBlock *ConstExprInsertBB) { 798 if (Slot == Record.size()) return nullptr; 799 unsigned ValNo = (unsigned)Record[Slot]; 800 // Adjust the ValNo, if it was encoded relative to the InstNum. 801 if (UseRelativeIDs) 802 ValNo = InstNum - ValNo; 803 return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB); 804 } 805 806 /// Like getValue, but decodes signed VBRs. 807 Value *getValueSigned(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 808 unsigned InstNum, Type *Ty, unsigned TyID, 809 BasicBlock *ConstExprInsertBB) { 810 if (Slot == Record.size()) return nullptr; 811 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 812 // Adjust the ValNo, if it was encoded relative to the InstNum. 813 if (UseRelativeIDs) 814 ValNo = InstNum - ValNo; 815 return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB); 816 } 817 818 Expected<ConstantRange> readConstantRange(ArrayRef<uint64_t> Record, 819 unsigned &OpNum) { 820 if (Record.size() - OpNum < 3) 821 return error("Too few records for range"); 822 unsigned BitWidth = Record[OpNum++]; 823 if (BitWidth > 64) { 824 unsigned LowerActiveWords = Record[OpNum]; 825 unsigned UpperActiveWords = Record[OpNum++] >> 32; 826 if (Record.size() - OpNum < LowerActiveWords + UpperActiveWords) 827 return error("Too few records for range"); 828 APInt Lower = 829 readWideAPInt(ArrayRef(&Record[OpNum], LowerActiveWords), BitWidth); 830 OpNum += LowerActiveWords; 831 APInt Upper = 832 readWideAPInt(ArrayRef(&Record[OpNum], UpperActiveWords), BitWidth); 833 OpNum += UpperActiveWords; 834 return ConstantRange(Lower, Upper); 835 } else { 836 int64_t Start = BitcodeReader::decodeSignRotatedValue(Record[OpNum++]); 837 int64_t End = BitcodeReader::decodeSignRotatedValue(Record[OpNum++]); 838 return ConstantRange(APInt(BitWidth, Start), APInt(BitWidth, End)); 839 } 840 } 841 842 /// Upgrades old-style typeless byval/sret/inalloca attributes by adding the 843 /// corresponding argument's pointee type. Also upgrades intrinsics that now 844 /// require an elementtype attribute. 845 Error propagateAttributeTypes(CallBase *CB, ArrayRef<unsigned> ArgsTys); 846 847 /// Converts alignment exponent (i.e. power of two (or zero)) to the 848 /// corresponding alignment to use. If alignment is too large, returns 849 /// a corresponding error code. 850 Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment); 851 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 852 Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false, 853 ParserCallbacks Callbacks = {}); 854 855 Error parseComdatRecord(ArrayRef<uint64_t> Record); 856 Error parseGlobalVarRecord(ArrayRef<uint64_t> Record); 857 Error parseFunctionRecord(ArrayRef<uint64_t> Record); 858 Error parseGlobalIndirectSymbolRecord(unsigned BitCode, 859 ArrayRef<uint64_t> Record); 860 861 Error parseAttributeBlock(); 862 Error parseAttributeGroupBlock(); 863 Error parseTypeTable(); 864 Error parseTypeTableBody(); 865 Error parseOperandBundleTags(); 866 Error parseSyncScopeNames(); 867 868 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 869 unsigned NameIndex, Triple &TT); 870 void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F, 871 ArrayRef<uint64_t> Record); 872 Error parseValueSymbolTable(uint64_t Offset = 0); 873 Error parseGlobalValueSymbolTable(); 874 Error parseConstants(); 875 Error rememberAndSkipFunctionBodies(); 876 Error rememberAndSkipFunctionBody(); 877 /// Save the positions of the Metadata blocks and skip parsing the blocks. 878 Error rememberAndSkipMetadata(); 879 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType); 880 Error parseFunctionBody(Function *F); 881 Error globalCleanup(); 882 Error resolveGlobalAndIndirectSymbolInits(); 883 Error parseUseLists(); 884 Error findFunctionInStream( 885 Function *F, 886 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 887 888 SyncScope::ID getDecodedSyncScopeID(unsigned Val); 889 }; 890 891 /// Class to manage reading and parsing function summary index bitcode 892 /// files/sections. 893 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase { 894 /// The module index built during parsing. 895 ModuleSummaryIndex &TheIndex; 896 897 /// Indicates whether we have encountered a global value summary section 898 /// yet during parsing. 899 bool SeenGlobalValSummary = false; 900 901 /// Indicates whether we have already parsed the VST, used for error checking. 902 bool SeenValueSymbolTable = false; 903 904 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 905 /// Used to enable on-demand parsing of the VST. 906 uint64_t VSTOffset = 0; 907 908 // Map to save ValueId to ValueInfo association that was recorded in the 909 // ValueSymbolTable. It is used after the VST is parsed to convert 910 // call graph edges read from the function summary from referencing 911 // callees by their ValueId to using the ValueInfo instead, which is how 912 // they are recorded in the summary index being built. 913 // We save a GUID which refers to the same global as the ValueInfo, but 914 // ignoring the linkage, i.e. for values other than local linkage they are 915 // identical (this is the second tuple member). 916 // The third tuple member is the real GUID of the ValueInfo. 917 DenseMap<unsigned, 918 std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID>> 919 ValueIdToValueInfoMap; 920 921 /// Map populated during module path string table parsing, from the 922 /// module ID to a string reference owned by the index's module 923 /// path string table, used to correlate with combined index 924 /// summary records. 925 DenseMap<uint64_t, StringRef> ModuleIdMap; 926 927 /// Original source file name recorded in a bitcode record. 928 std::string SourceFileName; 929 930 /// The string identifier given to this module by the client, normally the 931 /// path to the bitcode file. 932 StringRef ModulePath; 933 934 /// Callback to ask whether a symbol is the prevailing copy when invoked 935 /// during combined index building. 936 std::function<bool(GlobalValue::GUID)> IsPrevailing; 937 938 /// Saves the stack ids from the STACK_IDS record to consult when adding stack 939 /// ids from the lists in the callsite and alloc entries to the index. 940 std::vector<uint64_t> StackIds; 941 942 public: 943 ModuleSummaryIndexBitcodeReader( 944 BitstreamCursor Stream, StringRef Strtab, ModuleSummaryIndex &TheIndex, 945 StringRef ModulePath, 946 std::function<bool(GlobalValue::GUID)> IsPrevailing = nullptr); 947 948 Error parseModule(); 949 950 private: 951 void setValueGUID(uint64_t ValueID, StringRef ValueName, 952 GlobalValue::LinkageTypes Linkage, 953 StringRef SourceFileName); 954 Error parseValueSymbolTable( 955 uint64_t Offset, 956 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 957 std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record); 958 std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record, 959 bool IsOldProfileFormat, 960 bool HasProfile, 961 bool HasRelBF); 962 Error parseEntireSummary(unsigned ID); 963 Error parseModuleStringTable(); 964 void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record); 965 void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot, 966 TypeIdCompatibleVtableInfo &TypeId); 967 std::vector<FunctionSummary::ParamAccess> 968 parseParamAccesses(ArrayRef<uint64_t> Record); 969 970 template <bool AllowNullValueInfo = false> 971 std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID> 972 getValueInfoFromValueId(unsigned ValueId); 973 974 void addThisModule(); 975 ModuleSummaryIndex::ModuleInfo *getThisModule(); 976 }; 977 978 } // end anonymous namespace 979 980 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx, 981 Error Err) { 982 if (Err) { 983 std::error_code EC; 984 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) { 985 EC = EIB.convertToErrorCode(); 986 Ctx.emitError(EIB.message()); 987 }); 988 return EC; 989 } 990 return std::error_code(); 991 } 992 993 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 994 StringRef ProducerIdentification, 995 LLVMContext &Context) 996 : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context), 997 ValueList(this->Stream.SizeInBytes(), 998 [this](unsigned ValID, BasicBlock *InsertBB) { 999 return materializeValue(ValID, InsertBB); 1000 }) { 1001 this->ProducerIdentification = std::string(ProducerIdentification); 1002 } 1003 1004 Error BitcodeReader::materializeForwardReferencedFunctions() { 1005 if (WillMaterializeAllForwardRefs) 1006 return Error::success(); 1007 1008 // Prevent recursion. 1009 WillMaterializeAllForwardRefs = true; 1010 1011 while (!BasicBlockFwdRefQueue.empty()) { 1012 Function *F = BasicBlockFwdRefQueue.front(); 1013 BasicBlockFwdRefQueue.pop_front(); 1014 assert(F && "Expected valid function"); 1015 if (!BasicBlockFwdRefs.count(F)) 1016 // Already materialized. 1017 continue; 1018 1019 // Check for a function that isn't materializable to prevent an infinite 1020 // loop. When parsing a blockaddress stored in a global variable, there 1021 // isn't a trivial way to check if a function will have a body without a 1022 // linear search through FunctionsWithBodies, so just check it here. 1023 if (!F->isMaterializable()) 1024 return error("Never resolved function from blockaddress"); 1025 1026 // Try to materialize F. 1027 if (Error Err = materialize(F)) 1028 return Err; 1029 } 1030 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 1031 1032 for (Function *F : BackwardRefFunctions) 1033 if (Error Err = materialize(F)) 1034 return Err; 1035 BackwardRefFunctions.clear(); 1036 1037 // Reset state. 1038 WillMaterializeAllForwardRefs = false; 1039 return Error::success(); 1040 } 1041 1042 //===----------------------------------------------------------------------===// 1043 // Helper functions to implement forward reference resolution, etc. 1044 //===----------------------------------------------------------------------===// 1045 1046 static bool hasImplicitComdat(size_t Val) { 1047 switch (Val) { 1048 default: 1049 return false; 1050 case 1: // Old WeakAnyLinkage 1051 case 4: // Old LinkOnceAnyLinkage 1052 case 10: // Old WeakODRLinkage 1053 case 11: // Old LinkOnceODRLinkage 1054 return true; 1055 } 1056 } 1057 1058 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 1059 switch (Val) { 1060 default: // Map unknown/new linkages to external 1061 case 0: 1062 return GlobalValue::ExternalLinkage; 1063 case 2: 1064 return GlobalValue::AppendingLinkage; 1065 case 3: 1066 return GlobalValue::InternalLinkage; 1067 case 5: 1068 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 1069 case 6: 1070 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 1071 case 7: 1072 return GlobalValue::ExternalWeakLinkage; 1073 case 8: 1074 return GlobalValue::CommonLinkage; 1075 case 9: 1076 return GlobalValue::PrivateLinkage; 1077 case 12: 1078 return GlobalValue::AvailableExternallyLinkage; 1079 case 13: 1080 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 1081 case 14: 1082 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 1083 case 15: 1084 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 1085 case 1: // Old value with implicit comdat. 1086 case 16: 1087 return GlobalValue::WeakAnyLinkage; 1088 case 10: // Old value with implicit comdat. 1089 case 17: 1090 return GlobalValue::WeakODRLinkage; 1091 case 4: // Old value with implicit comdat. 1092 case 18: 1093 return GlobalValue::LinkOnceAnyLinkage; 1094 case 11: // Old value with implicit comdat. 1095 case 19: 1096 return GlobalValue::LinkOnceODRLinkage; 1097 } 1098 } 1099 1100 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) { 1101 FunctionSummary::FFlags Flags; 1102 Flags.ReadNone = RawFlags & 0x1; 1103 Flags.ReadOnly = (RawFlags >> 1) & 0x1; 1104 Flags.NoRecurse = (RawFlags >> 2) & 0x1; 1105 Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1; 1106 Flags.NoInline = (RawFlags >> 4) & 0x1; 1107 Flags.AlwaysInline = (RawFlags >> 5) & 0x1; 1108 Flags.NoUnwind = (RawFlags >> 6) & 0x1; 1109 Flags.MayThrow = (RawFlags >> 7) & 0x1; 1110 Flags.HasUnknownCall = (RawFlags >> 8) & 0x1; 1111 Flags.MustBeUnreachable = (RawFlags >> 9) & 0x1; 1112 return Flags; 1113 } 1114 1115 // Decode the flags for GlobalValue in the summary. The bits for each attribute: 1116 // 1117 // linkage: [0,4), notEligibleToImport: 4, live: 5, local: 6, canAutoHide: 7, 1118 // visibility: [8, 10). 1119 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 1120 uint64_t Version) { 1121 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 1122 // like getDecodedLinkage() above. Any future change to the linkage enum and 1123 // to getDecodedLinkage() will need to be taken into account here as above. 1124 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 1125 auto Visibility = GlobalValue::VisibilityTypes((RawFlags >> 8) & 3); // 2 bits 1126 RawFlags = RawFlags >> 4; 1127 bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3; 1128 // The Live flag wasn't introduced until version 3. For dead stripping 1129 // to work correctly on earlier versions, we must conservatively treat all 1130 // values as live. 1131 bool Live = (RawFlags & 0x2) || Version < 3; 1132 bool Local = (RawFlags & 0x4); 1133 bool AutoHide = (RawFlags & 0x8); 1134 1135 return GlobalValueSummary::GVFlags(Linkage, Visibility, NotEligibleToImport, 1136 Live, Local, AutoHide); 1137 } 1138 1139 // Decode the flags for GlobalVariable in the summary 1140 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) { 1141 return GlobalVarSummary::GVarFlags( 1142 (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false, 1143 (RawFlags & 0x4) ? true : false, 1144 (GlobalObject::VCallVisibility)(RawFlags >> 3)); 1145 } 1146 1147 static std::pair<CalleeInfo::HotnessType, bool> 1148 getDecodedHotnessCallEdgeInfo(uint64_t RawFlags) { 1149 CalleeInfo::HotnessType Hotness = 1150 static_cast<CalleeInfo::HotnessType>(RawFlags & 0x7); // 3 bits 1151 bool HasTailCall = (RawFlags & 0x8); // 1 bit 1152 return {Hotness, HasTailCall}; 1153 } 1154 1155 static void getDecodedRelBFCallEdgeInfo(uint64_t RawFlags, uint64_t &RelBF, 1156 bool &HasTailCall) { 1157 static constexpr uint64_t RelBlockFreqMask = 1158 (1 << CalleeInfo::RelBlockFreqBits) - 1; 1159 RelBF = RawFlags & RelBlockFreqMask; // RelBlockFreqBits bits 1160 HasTailCall = (RawFlags & (1 << CalleeInfo::RelBlockFreqBits)); // 1 bit 1161 } 1162 1163 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 1164 switch (Val) { 1165 default: // Map unknown visibilities to default. 1166 case 0: return GlobalValue::DefaultVisibility; 1167 case 1: return GlobalValue::HiddenVisibility; 1168 case 2: return GlobalValue::ProtectedVisibility; 1169 } 1170 } 1171 1172 static GlobalValue::DLLStorageClassTypes 1173 getDecodedDLLStorageClass(unsigned Val) { 1174 switch (Val) { 1175 default: // Map unknown values to default. 1176 case 0: return GlobalValue::DefaultStorageClass; 1177 case 1: return GlobalValue::DLLImportStorageClass; 1178 case 2: return GlobalValue::DLLExportStorageClass; 1179 } 1180 } 1181 1182 static bool getDecodedDSOLocal(unsigned Val) { 1183 switch(Val) { 1184 default: // Map unknown values to preemptable. 1185 case 0: return false; 1186 case 1: return true; 1187 } 1188 } 1189 1190 static std::optional<CodeModel::Model> getDecodedCodeModel(unsigned Val) { 1191 switch (Val) { 1192 case 1: 1193 return CodeModel::Tiny; 1194 case 2: 1195 return CodeModel::Small; 1196 case 3: 1197 return CodeModel::Kernel; 1198 case 4: 1199 return CodeModel::Medium; 1200 case 5: 1201 return CodeModel::Large; 1202 } 1203 1204 return {}; 1205 } 1206 1207 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 1208 switch (Val) { 1209 case 0: return GlobalVariable::NotThreadLocal; 1210 default: // Map unknown non-zero value to general dynamic. 1211 case 1: return GlobalVariable::GeneralDynamicTLSModel; 1212 case 2: return GlobalVariable::LocalDynamicTLSModel; 1213 case 3: return GlobalVariable::InitialExecTLSModel; 1214 case 4: return GlobalVariable::LocalExecTLSModel; 1215 } 1216 } 1217 1218 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { 1219 switch (Val) { 1220 default: // Map unknown to UnnamedAddr::None. 1221 case 0: return GlobalVariable::UnnamedAddr::None; 1222 case 1: return GlobalVariable::UnnamedAddr::Global; 1223 case 2: return GlobalVariable::UnnamedAddr::Local; 1224 } 1225 } 1226 1227 static int getDecodedCastOpcode(unsigned Val) { 1228 switch (Val) { 1229 default: return -1; 1230 case bitc::CAST_TRUNC : return Instruction::Trunc; 1231 case bitc::CAST_ZEXT : return Instruction::ZExt; 1232 case bitc::CAST_SEXT : return Instruction::SExt; 1233 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 1234 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 1235 case bitc::CAST_UITOFP : return Instruction::UIToFP; 1236 case bitc::CAST_SITOFP : return Instruction::SIToFP; 1237 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 1238 case bitc::CAST_FPEXT : return Instruction::FPExt; 1239 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 1240 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 1241 case bitc::CAST_BITCAST : return Instruction::BitCast; 1242 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 1243 } 1244 } 1245 1246 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) { 1247 bool IsFP = Ty->isFPOrFPVectorTy(); 1248 // UnOps are only valid for int/fp or vector of int/fp types 1249 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1250 return -1; 1251 1252 switch (Val) { 1253 default: 1254 return -1; 1255 case bitc::UNOP_FNEG: 1256 return IsFP ? Instruction::FNeg : -1; 1257 } 1258 } 1259 1260 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 1261 bool IsFP = Ty->isFPOrFPVectorTy(); 1262 // BinOps are only valid for int/fp or vector of int/fp types 1263 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1264 return -1; 1265 1266 switch (Val) { 1267 default: 1268 return -1; 1269 case bitc::BINOP_ADD: 1270 return IsFP ? Instruction::FAdd : Instruction::Add; 1271 case bitc::BINOP_SUB: 1272 return IsFP ? Instruction::FSub : Instruction::Sub; 1273 case bitc::BINOP_MUL: 1274 return IsFP ? Instruction::FMul : Instruction::Mul; 1275 case bitc::BINOP_UDIV: 1276 return IsFP ? -1 : Instruction::UDiv; 1277 case bitc::BINOP_SDIV: 1278 return IsFP ? Instruction::FDiv : Instruction::SDiv; 1279 case bitc::BINOP_UREM: 1280 return IsFP ? -1 : Instruction::URem; 1281 case bitc::BINOP_SREM: 1282 return IsFP ? Instruction::FRem : Instruction::SRem; 1283 case bitc::BINOP_SHL: 1284 return IsFP ? -1 : Instruction::Shl; 1285 case bitc::BINOP_LSHR: 1286 return IsFP ? -1 : Instruction::LShr; 1287 case bitc::BINOP_ASHR: 1288 return IsFP ? -1 : Instruction::AShr; 1289 case bitc::BINOP_AND: 1290 return IsFP ? -1 : Instruction::And; 1291 case bitc::BINOP_OR: 1292 return IsFP ? -1 : Instruction::Or; 1293 case bitc::BINOP_XOR: 1294 return IsFP ? -1 : Instruction::Xor; 1295 } 1296 } 1297 1298 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 1299 switch (Val) { 1300 default: return AtomicRMWInst::BAD_BINOP; 1301 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 1302 case bitc::RMW_ADD: return AtomicRMWInst::Add; 1303 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 1304 case bitc::RMW_AND: return AtomicRMWInst::And; 1305 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 1306 case bitc::RMW_OR: return AtomicRMWInst::Or; 1307 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 1308 case bitc::RMW_MAX: return AtomicRMWInst::Max; 1309 case bitc::RMW_MIN: return AtomicRMWInst::Min; 1310 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 1311 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 1312 case bitc::RMW_FADD: return AtomicRMWInst::FAdd; 1313 case bitc::RMW_FSUB: return AtomicRMWInst::FSub; 1314 case bitc::RMW_FMAX: return AtomicRMWInst::FMax; 1315 case bitc::RMW_FMIN: return AtomicRMWInst::FMin; 1316 case bitc::RMW_UINC_WRAP: 1317 return AtomicRMWInst::UIncWrap; 1318 case bitc::RMW_UDEC_WRAP: 1319 return AtomicRMWInst::UDecWrap; 1320 } 1321 } 1322 1323 static AtomicOrdering getDecodedOrdering(unsigned Val) { 1324 switch (Val) { 1325 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 1326 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 1327 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 1328 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 1329 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 1330 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 1331 default: // Map unknown orderings to sequentially-consistent. 1332 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 1333 } 1334 } 1335 1336 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 1337 switch (Val) { 1338 default: // Map unknown selection kinds to any. 1339 case bitc::COMDAT_SELECTION_KIND_ANY: 1340 return Comdat::Any; 1341 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 1342 return Comdat::ExactMatch; 1343 case bitc::COMDAT_SELECTION_KIND_LARGEST: 1344 return Comdat::Largest; 1345 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 1346 return Comdat::NoDeduplicate; 1347 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 1348 return Comdat::SameSize; 1349 } 1350 } 1351 1352 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 1353 FastMathFlags FMF; 1354 if (0 != (Val & bitc::UnsafeAlgebra)) 1355 FMF.setFast(); 1356 if (0 != (Val & bitc::AllowReassoc)) 1357 FMF.setAllowReassoc(); 1358 if (0 != (Val & bitc::NoNaNs)) 1359 FMF.setNoNaNs(); 1360 if (0 != (Val & bitc::NoInfs)) 1361 FMF.setNoInfs(); 1362 if (0 != (Val & bitc::NoSignedZeros)) 1363 FMF.setNoSignedZeros(); 1364 if (0 != (Val & bitc::AllowReciprocal)) 1365 FMF.setAllowReciprocal(); 1366 if (0 != (Val & bitc::AllowContract)) 1367 FMF.setAllowContract(true); 1368 if (0 != (Val & bitc::ApproxFunc)) 1369 FMF.setApproxFunc(); 1370 return FMF; 1371 } 1372 1373 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) { 1374 // A GlobalValue with local linkage cannot have a DLL storage class. 1375 if (GV->hasLocalLinkage()) 1376 return; 1377 switch (Val) { 1378 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 1379 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 1380 } 1381 } 1382 1383 Type *BitcodeReader::getTypeByID(unsigned ID) { 1384 // The type table size is always specified correctly. 1385 if (ID >= TypeList.size()) 1386 return nullptr; 1387 1388 if (Type *Ty = TypeList[ID]) 1389 return Ty; 1390 1391 // If we have a forward reference, the only possible case is when it is to a 1392 // named struct. Just create a placeholder for now. 1393 return TypeList[ID] = createIdentifiedStructType(Context); 1394 } 1395 1396 unsigned BitcodeReader::getContainedTypeID(unsigned ID, unsigned Idx) { 1397 auto It = ContainedTypeIDs.find(ID); 1398 if (It == ContainedTypeIDs.end()) 1399 return InvalidTypeID; 1400 1401 if (Idx >= It->second.size()) 1402 return InvalidTypeID; 1403 1404 return It->second[Idx]; 1405 } 1406 1407 Type *BitcodeReader::getPtrElementTypeByID(unsigned ID) { 1408 if (ID >= TypeList.size()) 1409 return nullptr; 1410 1411 Type *Ty = TypeList[ID]; 1412 if (!Ty->isPointerTy()) 1413 return nullptr; 1414 1415 return getTypeByID(getContainedTypeID(ID, 0)); 1416 } 1417 1418 unsigned BitcodeReader::getVirtualTypeID(Type *Ty, 1419 ArrayRef<unsigned> ChildTypeIDs) { 1420 unsigned ChildTypeID = ChildTypeIDs.empty() ? InvalidTypeID : ChildTypeIDs[0]; 1421 auto CacheKey = std::make_pair(Ty, ChildTypeID); 1422 auto It = VirtualTypeIDs.find(CacheKey); 1423 if (It != VirtualTypeIDs.end()) { 1424 // The cmpxchg return value is the only place we need more than one 1425 // contained type ID, however the second one will always be the same (i1), 1426 // so we don't need to include it in the cache key. This asserts that the 1427 // contained types are indeed as expected and there are no collisions. 1428 assert((ChildTypeIDs.empty() || 1429 ContainedTypeIDs[It->second] == ChildTypeIDs) && 1430 "Incorrect cached contained type IDs"); 1431 return It->second; 1432 } 1433 1434 unsigned TypeID = TypeList.size(); 1435 TypeList.push_back(Ty); 1436 if (!ChildTypeIDs.empty()) 1437 append_range(ContainedTypeIDs[TypeID], ChildTypeIDs); 1438 VirtualTypeIDs.insert({CacheKey, TypeID}); 1439 return TypeID; 1440 } 1441 1442 static bool isConstExprSupported(const BitcodeConstant *BC) { 1443 uint8_t Opcode = BC->Opcode; 1444 1445 // These are not real constant expressions, always consider them supported. 1446 if (Opcode >= BitcodeConstant::FirstSpecialOpcode) 1447 return true; 1448 1449 // If -expand-constant-exprs is set, we want to consider all expressions 1450 // as unsupported. 1451 if (ExpandConstantExprs) 1452 return false; 1453 1454 if (Instruction::isBinaryOp(Opcode)) 1455 return ConstantExpr::isSupportedBinOp(Opcode); 1456 1457 if (Instruction::isCast(Opcode)) 1458 return ConstantExpr::isSupportedCastOp(Opcode); 1459 1460 if (Opcode == Instruction::GetElementPtr) 1461 return ConstantExpr::isSupportedGetElementPtr(BC->SrcElemTy); 1462 1463 switch (Opcode) { 1464 case Instruction::FNeg: 1465 case Instruction::Select: 1466 return false; 1467 default: 1468 return true; 1469 } 1470 } 1471 1472 Expected<Value *> BitcodeReader::materializeValue(unsigned StartValID, 1473 BasicBlock *InsertBB) { 1474 // Quickly handle the case where there is no BitcodeConstant to resolve. 1475 if (StartValID < ValueList.size() && ValueList[StartValID] && 1476 !isa<BitcodeConstant>(ValueList[StartValID])) 1477 return ValueList[StartValID]; 1478 1479 SmallDenseMap<unsigned, Value *> MaterializedValues; 1480 SmallVector<unsigned> Worklist; 1481 Worklist.push_back(StartValID); 1482 while (!Worklist.empty()) { 1483 unsigned ValID = Worklist.back(); 1484 if (MaterializedValues.count(ValID)) { 1485 // Duplicate expression that was already handled. 1486 Worklist.pop_back(); 1487 continue; 1488 } 1489 1490 if (ValID >= ValueList.size() || !ValueList[ValID]) 1491 return error("Invalid value ID"); 1492 1493 Value *V = ValueList[ValID]; 1494 auto *BC = dyn_cast<BitcodeConstant>(V); 1495 if (!BC) { 1496 MaterializedValues.insert({ValID, V}); 1497 Worklist.pop_back(); 1498 continue; 1499 } 1500 1501 // Iterate in reverse, so values will get popped from the worklist in 1502 // expected order. 1503 SmallVector<Value *> Ops; 1504 for (unsigned OpID : reverse(BC->getOperandIDs())) { 1505 auto It = MaterializedValues.find(OpID); 1506 if (It != MaterializedValues.end()) 1507 Ops.push_back(It->second); 1508 else 1509 Worklist.push_back(OpID); 1510 } 1511 1512 // Some expressions have not been resolved yet, handle them first and then 1513 // revisit this one. 1514 if (Ops.size() != BC->getOperandIDs().size()) 1515 continue; 1516 std::reverse(Ops.begin(), Ops.end()); 1517 1518 SmallVector<Constant *> ConstOps; 1519 for (Value *Op : Ops) 1520 if (auto *C = dyn_cast<Constant>(Op)) 1521 ConstOps.push_back(C); 1522 1523 // Materialize as constant expression if possible. 1524 if (isConstExprSupported(BC) && ConstOps.size() == Ops.size()) { 1525 Constant *C; 1526 if (Instruction::isCast(BC->Opcode)) { 1527 C = UpgradeBitCastExpr(BC->Opcode, ConstOps[0], BC->getType()); 1528 if (!C) 1529 C = ConstantExpr::getCast(BC->Opcode, ConstOps[0], BC->getType()); 1530 } else if (Instruction::isBinaryOp(BC->Opcode)) { 1531 C = ConstantExpr::get(BC->Opcode, ConstOps[0], ConstOps[1], BC->Flags); 1532 } else { 1533 switch (BC->Opcode) { 1534 case BitcodeConstant::NoCFIOpcode: { 1535 auto *GV = dyn_cast<GlobalValue>(ConstOps[0]); 1536 if (!GV) 1537 return error("no_cfi operand must be GlobalValue"); 1538 C = NoCFIValue::get(GV); 1539 break; 1540 } 1541 case BitcodeConstant::DSOLocalEquivalentOpcode: { 1542 auto *GV = dyn_cast<GlobalValue>(ConstOps[0]); 1543 if (!GV) 1544 return error("dso_local operand must be GlobalValue"); 1545 C = DSOLocalEquivalent::get(GV); 1546 break; 1547 } 1548 case BitcodeConstant::BlockAddressOpcode: { 1549 Function *Fn = dyn_cast<Function>(ConstOps[0]); 1550 if (!Fn) 1551 return error("blockaddress operand must be a function"); 1552 1553 // If the function is already parsed we can insert the block address 1554 // right away. 1555 BasicBlock *BB; 1556 unsigned BBID = BC->Extra; 1557 if (!BBID) 1558 // Invalid reference to entry block. 1559 return error("Invalid ID"); 1560 if (!Fn->empty()) { 1561 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 1562 for (size_t I = 0, E = BBID; I != E; ++I) { 1563 if (BBI == BBE) 1564 return error("Invalid ID"); 1565 ++BBI; 1566 } 1567 BB = &*BBI; 1568 } else { 1569 // Otherwise insert a placeholder and remember it so it can be 1570 // inserted when the function is parsed. 1571 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 1572 if (FwdBBs.empty()) 1573 BasicBlockFwdRefQueue.push_back(Fn); 1574 if (FwdBBs.size() < BBID + 1) 1575 FwdBBs.resize(BBID + 1); 1576 if (!FwdBBs[BBID]) 1577 FwdBBs[BBID] = BasicBlock::Create(Context); 1578 BB = FwdBBs[BBID]; 1579 } 1580 C = BlockAddress::get(Fn, BB); 1581 break; 1582 } 1583 case BitcodeConstant::ConstantStructOpcode: 1584 C = ConstantStruct::get(cast<StructType>(BC->getType()), ConstOps); 1585 break; 1586 case BitcodeConstant::ConstantArrayOpcode: 1587 C = ConstantArray::get(cast<ArrayType>(BC->getType()), ConstOps); 1588 break; 1589 case BitcodeConstant::ConstantVectorOpcode: 1590 C = ConstantVector::get(ConstOps); 1591 break; 1592 case Instruction::ICmp: 1593 case Instruction::FCmp: 1594 C = ConstantExpr::getCompare(BC->Flags, ConstOps[0], ConstOps[1]); 1595 break; 1596 case Instruction::GetElementPtr: 1597 C = ConstantExpr::getGetElementPtr(BC->SrcElemTy, ConstOps[0], 1598 ArrayRef(ConstOps).drop_front(), 1599 BC->Flags, BC->getInRangeIndex()); 1600 break; 1601 case Instruction::ExtractElement: 1602 C = ConstantExpr::getExtractElement(ConstOps[0], ConstOps[1]); 1603 break; 1604 case Instruction::InsertElement: 1605 C = ConstantExpr::getInsertElement(ConstOps[0], ConstOps[1], 1606 ConstOps[2]); 1607 break; 1608 case Instruction::ShuffleVector: { 1609 SmallVector<int, 16> Mask; 1610 ShuffleVectorInst::getShuffleMask(ConstOps[2], Mask); 1611 C = ConstantExpr::getShuffleVector(ConstOps[0], ConstOps[1], Mask); 1612 break; 1613 } 1614 default: 1615 llvm_unreachable("Unhandled bitcode constant"); 1616 } 1617 } 1618 1619 // Cache resolved constant. 1620 ValueList.replaceValueWithoutRAUW(ValID, C); 1621 MaterializedValues.insert({ValID, C}); 1622 Worklist.pop_back(); 1623 continue; 1624 } 1625 1626 if (!InsertBB) 1627 return error(Twine("Value referenced by initializer is an unsupported " 1628 "constant expression of type ") + 1629 BC->getOpcodeName()); 1630 1631 // Materialize as instructions if necessary. 1632 Instruction *I; 1633 if (Instruction::isCast(BC->Opcode)) { 1634 I = CastInst::Create((Instruction::CastOps)BC->Opcode, Ops[0], 1635 BC->getType(), "constexpr", InsertBB); 1636 } else if (Instruction::isUnaryOp(BC->Opcode)) { 1637 I = UnaryOperator::Create((Instruction::UnaryOps)BC->Opcode, Ops[0], 1638 "constexpr", InsertBB); 1639 } else if (Instruction::isBinaryOp(BC->Opcode)) { 1640 I = BinaryOperator::Create((Instruction::BinaryOps)BC->Opcode, Ops[0], 1641 Ops[1], "constexpr", InsertBB); 1642 if (isa<OverflowingBinaryOperator>(I)) { 1643 if (BC->Flags & OverflowingBinaryOperator::NoSignedWrap) 1644 I->setHasNoSignedWrap(); 1645 if (BC->Flags & OverflowingBinaryOperator::NoUnsignedWrap) 1646 I->setHasNoUnsignedWrap(); 1647 } 1648 if (isa<PossiblyExactOperator>(I) && 1649 (BC->Flags & PossiblyExactOperator::IsExact)) 1650 I->setIsExact(); 1651 } else { 1652 switch (BC->Opcode) { 1653 case BitcodeConstant::ConstantVectorOpcode: { 1654 Type *IdxTy = Type::getInt32Ty(BC->getContext()); 1655 Value *V = PoisonValue::get(BC->getType()); 1656 for (auto Pair : enumerate(Ops)) { 1657 Value *Idx = ConstantInt::get(IdxTy, Pair.index()); 1658 V = InsertElementInst::Create(V, Pair.value(), Idx, "constexpr.ins", 1659 InsertBB); 1660 } 1661 I = cast<Instruction>(V); 1662 break; 1663 } 1664 case BitcodeConstant::ConstantStructOpcode: 1665 case BitcodeConstant::ConstantArrayOpcode: { 1666 Value *V = PoisonValue::get(BC->getType()); 1667 for (auto Pair : enumerate(Ops)) 1668 V = InsertValueInst::Create(V, Pair.value(), Pair.index(), 1669 "constexpr.ins", InsertBB); 1670 I = cast<Instruction>(V); 1671 break; 1672 } 1673 case Instruction::ICmp: 1674 case Instruction::FCmp: 1675 I = CmpInst::Create((Instruction::OtherOps)BC->Opcode, 1676 (CmpInst::Predicate)BC->Flags, Ops[0], Ops[1], 1677 "constexpr", InsertBB); 1678 break; 1679 case Instruction::GetElementPtr: 1680 I = GetElementPtrInst::Create(BC->SrcElemTy, Ops[0], 1681 ArrayRef(Ops).drop_front(), "constexpr", 1682 InsertBB); 1683 if (BC->Flags) 1684 cast<GetElementPtrInst>(I)->setIsInBounds(); 1685 break; 1686 case Instruction::Select: 1687 I = SelectInst::Create(Ops[0], Ops[1], Ops[2], "constexpr", InsertBB); 1688 break; 1689 case Instruction::ExtractElement: 1690 I = ExtractElementInst::Create(Ops[0], Ops[1], "constexpr", InsertBB); 1691 break; 1692 case Instruction::InsertElement: 1693 I = InsertElementInst::Create(Ops[0], Ops[1], Ops[2], "constexpr", 1694 InsertBB); 1695 break; 1696 case Instruction::ShuffleVector: 1697 I = new ShuffleVectorInst(Ops[0], Ops[1], Ops[2], "constexpr", 1698 InsertBB); 1699 break; 1700 default: 1701 llvm_unreachable("Unhandled bitcode constant"); 1702 } 1703 } 1704 1705 MaterializedValues.insert({ValID, I}); 1706 Worklist.pop_back(); 1707 } 1708 1709 return MaterializedValues[StartValID]; 1710 } 1711 1712 Expected<Constant *> BitcodeReader::getValueForInitializer(unsigned ID) { 1713 Expected<Value *> MaybeV = materializeValue(ID, /* InsertBB */ nullptr); 1714 if (!MaybeV) 1715 return MaybeV.takeError(); 1716 1717 // Result must be Constant if InsertBB is nullptr. 1718 return cast<Constant>(MaybeV.get()); 1719 } 1720 1721 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1722 StringRef Name) { 1723 auto *Ret = StructType::create(Context, Name); 1724 IdentifiedStructTypes.push_back(Ret); 1725 return Ret; 1726 } 1727 1728 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1729 auto *Ret = StructType::create(Context); 1730 IdentifiedStructTypes.push_back(Ret); 1731 return Ret; 1732 } 1733 1734 //===----------------------------------------------------------------------===// 1735 // Functions for parsing blocks from the bitcode file 1736 //===----------------------------------------------------------------------===// 1737 1738 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) { 1739 switch (Val) { 1740 case Attribute::EndAttrKinds: 1741 case Attribute::EmptyKey: 1742 case Attribute::TombstoneKey: 1743 llvm_unreachable("Synthetic enumerators which should never get here"); 1744 1745 case Attribute::None: return 0; 1746 case Attribute::ZExt: return 1 << 0; 1747 case Attribute::SExt: return 1 << 1; 1748 case Attribute::NoReturn: return 1 << 2; 1749 case Attribute::InReg: return 1 << 3; 1750 case Attribute::StructRet: return 1 << 4; 1751 case Attribute::NoUnwind: return 1 << 5; 1752 case Attribute::NoAlias: return 1 << 6; 1753 case Attribute::ByVal: return 1 << 7; 1754 case Attribute::Nest: return 1 << 8; 1755 case Attribute::ReadNone: return 1 << 9; 1756 case Attribute::ReadOnly: return 1 << 10; 1757 case Attribute::NoInline: return 1 << 11; 1758 case Attribute::AlwaysInline: return 1 << 12; 1759 case Attribute::OptimizeForSize: return 1 << 13; 1760 case Attribute::StackProtect: return 1 << 14; 1761 case Attribute::StackProtectReq: return 1 << 15; 1762 case Attribute::Alignment: return 31 << 16; 1763 case Attribute::NoCapture: return 1 << 21; 1764 case Attribute::NoRedZone: return 1 << 22; 1765 case Attribute::NoImplicitFloat: return 1 << 23; 1766 case Attribute::Naked: return 1 << 24; 1767 case Attribute::InlineHint: return 1 << 25; 1768 case Attribute::StackAlignment: return 7 << 26; 1769 case Attribute::ReturnsTwice: return 1 << 29; 1770 case Attribute::UWTable: return 1 << 30; 1771 case Attribute::NonLazyBind: return 1U << 31; 1772 case Attribute::SanitizeAddress: return 1ULL << 32; 1773 case Attribute::MinSize: return 1ULL << 33; 1774 case Attribute::NoDuplicate: return 1ULL << 34; 1775 case Attribute::StackProtectStrong: return 1ULL << 35; 1776 case Attribute::SanitizeThread: return 1ULL << 36; 1777 case Attribute::SanitizeMemory: return 1ULL << 37; 1778 case Attribute::NoBuiltin: return 1ULL << 38; 1779 case Attribute::Returned: return 1ULL << 39; 1780 case Attribute::Cold: return 1ULL << 40; 1781 case Attribute::Builtin: return 1ULL << 41; 1782 case Attribute::OptimizeNone: return 1ULL << 42; 1783 case Attribute::InAlloca: return 1ULL << 43; 1784 case Attribute::NonNull: return 1ULL << 44; 1785 case Attribute::JumpTable: return 1ULL << 45; 1786 case Attribute::Convergent: return 1ULL << 46; 1787 case Attribute::SafeStack: return 1ULL << 47; 1788 case Attribute::NoRecurse: return 1ULL << 48; 1789 // 1ULL << 49 is InaccessibleMemOnly, which is upgraded separately. 1790 // 1ULL << 50 is InaccessibleMemOrArgMemOnly, which is upgraded separately. 1791 case Attribute::SwiftSelf: return 1ULL << 51; 1792 case Attribute::SwiftError: return 1ULL << 52; 1793 case Attribute::WriteOnly: return 1ULL << 53; 1794 case Attribute::Speculatable: return 1ULL << 54; 1795 case Attribute::StrictFP: return 1ULL << 55; 1796 case Attribute::SanitizeHWAddress: return 1ULL << 56; 1797 case Attribute::NoCfCheck: return 1ULL << 57; 1798 case Attribute::OptForFuzzing: return 1ULL << 58; 1799 case Attribute::ShadowCallStack: return 1ULL << 59; 1800 case Attribute::SpeculativeLoadHardening: 1801 return 1ULL << 60; 1802 case Attribute::ImmArg: 1803 return 1ULL << 61; 1804 case Attribute::WillReturn: 1805 return 1ULL << 62; 1806 case Attribute::NoFree: 1807 return 1ULL << 63; 1808 default: 1809 // Other attributes are not supported in the raw format, 1810 // as we ran out of space. 1811 return 0; 1812 } 1813 llvm_unreachable("Unsupported attribute type"); 1814 } 1815 1816 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) { 1817 if (!Val) return; 1818 1819 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; 1820 I = Attribute::AttrKind(I + 1)) { 1821 if (uint64_t A = (Val & getRawAttributeMask(I))) { 1822 if (I == Attribute::Alignment) 1823 B.addAlignmentAttr(1ULL << ((A >> 16) - 1)); 1824 else if (I == Attribute::StackAlignment) 1825 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1)); 1826 else if (Attribute::isTypeAttrKind(I)) 1827 B.addTypeAttr(I, nullptr); // Type will be auto-upgraded. 1828 else 1829 B.addAttribute(I); 1830 } 1831 } 1832 } 1833 1834 /// This fills an AttrBuilder object with the LLVM attributes that have 1835 /// been decoded from the given integer. This function must stay in sync with 1836 /// 'encodeLLVMAttributesForBitcode'. 1837 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1838 uint64_t EncodedAttrs, 1839 uint64_t AttrIdx) { 1840 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1841 // the bits above 31 down by 11 bits. 1842 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1843 assert((!Alignment || isPowerOf2_32(Alignment)) && 1844 "Alignment must be a power of two."); 1845 1846 if (Alignment) 1847 B.addAlignmentAttr(Alignment); 1848 1849 uint64_t Attrs = ((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1850 (EncodedAttrs & 0xffff); 1851 1852 if (AttrIdx == AttributeList::FunctionIndex) { 1853 // Upgrade old memory attributes. 1854 MemoryEffects ME = MemoryEffects::unknown(); 1855 if (Attrs & (1ULL << 9)) { 1856 // ReadNone 1857 Attrs &= ~(1ULL << 9); 1858 ME &= MemoryEffects::none(); 1859 } 1860 if (Attrs & (1ULL << 10)) { 1861 // ReadOnly 1862 Attrs &= ~(1ULL << 10); 1863 ME &= MemoryEffects::readOnly(); 1864 } 1865 if (Attrs & (1ULL << 49)) { 1866 // InaccessibleMemOnly 1867 Attrs &= ~(1ULL << 49); 1868 ME &= MemoryEffects::inaccessibleMemOnly(); 1869 } 1870 if (Attrs & (1ULL << 50)) { 1871 // InaccessibleMemOrArgMemOnly 1872 Attrs &= ~(1ULL << 50); 1873 ME &= MemoryEffects::inaccessibleOrArgMemOnly(); 1874 } 1875 if (Attrs & (1ULL << 53)) { 1876 // WriteOnly 1877 Attrs &= ~(1ULL << 53); 1878 ME &= MemoryEffects::writeOnly(); 1879 } 1880 if (ME != MemoryEffects::unknown()) 1881 B.addMemoryAttr(ME); 1882 } 1883 1884 addRawAttributeValue(B, Attrs); 1885 } 1886 1887 Error BitcodeReader::parseAttributeBlock() { 1888 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1889 return Err; 1890 1891 if (!MAttributes.empty()) 1892 return error("Invalid multiple blocks"); 1893 1894 SmallVector<uint64_t, 64> Record; 1895 1896 SmallVector<AttributeList, 8> Attrs; 1897 1898 // Read all the records. 1899 while (true) { 1900 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1901 if (!MaybeEntry) 1902 return MaybeEntry.takeError(); 1903 BitstreamEntry Entry = MaybeEntry.get(); 1904 1905 switch (Entry.Kind) { 1906 case BitstreamEntry::SubBlock: // Handled for us already. 1907 case BitstreamEntry::Error: 1908 return error("Malformed block"); 1909 case BitstreamEntry::EndBlock: 1910 return Error::success(); 1911 case BitstreamEntry::Record: 1912 // The interesting case. 1913 break; 1914 } 1915 1916 // Read a record. 1917 Record.clear(); 1918 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1919 if (!MaybeRecord) 1920 return MaybeRecord.takeError(); 1921 switch (MaybeRecord.get()) { 1922 default: // Default behavior: ignore. 1923 break; 1924 case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...] 1925 // Deprecated, but still needed to read old bitcode files. 1926 if (Record.size() & 1) 1927 return error("Invalid parameter attribute record"); 1928 1929 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1930 AttrBuilder B(Context); 1931 decodeLLVMAttributesForBitcode(B, Record[i+1], Record[i]); 1932 Attrs.push_back(AttributeList::get(Context, Record[i], B)); 1933 } 1934 1935 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1936 Attrs.clear(); 1937 break; 1938 case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...] 1939 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1940 Attrs.push_back(MAttributeGroups[Record[i]]); 1941 1942 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1943 Attrs.clear(); 1944 break; 1945 } 1946 } 1947 } 1948 1949 // Returns Attribute::None on unrecognized codes. 1950 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1951 switch (Code) { 1952 default: 1953 return Attribute::None; 1954 case bitc::ATTR_KIND_ALIGNMENT: 1955 return Attribute::Alignment; 1956 case bitc::ATTR_KIND_ALWAYS_INLINE: 1957 return Attribute::AlwaysInline; 1958 case bitc::ATTR_KIND_BUILTIN: 1959 return Attribute::Builtin; 1960 case bitc::ATTR_KIND_BY_VAL: 1961 return Attribute::ByVal; 1962 case bitc::ATTR_KIND_IN_ALLOCA: 1963 return Attribute::InAlloca; 1964 case bitc::ATTR_KIND_COLD: 1965 return Attribute::Cold; 1966 case bitc::ATTR_KIND_CONVERGENT: 1967 return Attribute::Convergent; 1968 case bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION: 1969 return Attribute::DisableSanitizerInstrumentation; 1970 case bitc::ATTR_KIND_ELEMENTTYPE: 1971 return Attribute::ElementType; 1972 case bitc::ATTR_KIND_FNRETTHUNK_EXTERN: 1973 return Attribute::FnRetThunkExtern; 1974 case bitc::ATTR_KIND_INLINE_HINT: 1975 return Attribute::InlineHint; 1976 case bitc::ATTR_KIND_IN_REG: 1977 return Attribute::InReg; 1978 case bitc::ATTR_KIND_JUMP_TABLE: 1979 return Attribute::JumpTable; 1980 case bitc::ATTR_KIND_MEMORY: 1981 return Attribute::Memory; 1982 case bitc::ATTR_KIND_NOFPCLASS: 1983 return Attribute::NoFPClass; 1984 case bitc::ATTR_KIND_MIN_SIZE: 1985 return Attribute::MinSize; 1986 case bitc::ATTR_KIND_NAKED: 1987 return Attribute::Naked; 1988 case bitc::ATTR_KIND_NEST: 1989 return Attribute::Nest; 1990 case bitc::ATTR_KIND_NO_ALIAS: 1991 return Attribute::NoAlias; 1992 case bitc::ATTR_KIND_NO_BUILTIN: 1993 return Attribute::NoBuiltin; 1994 case bitc::ATTR_KIND_NO_CALLBACK: 1995 return Attribute::NoCallback; 1996 case bitc::ATTR_KIND_NO_CAPTURE: 1997 return Attribute::NoCapture; 1998 case bitc::ATTR_KIND_NO_DUPLICATE: 1999 return Attribute::NoDuplicate; 2000 case bitc::ATTR_KIND_NOFREE: 2001 return Attribute::NoFree; 2002 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 2003 return Attribute::NoImplicitFloat; 2004 case bitc::ATTR_KIND_NO_INLINE: 2005 return Attribute::NoInline; 2006 case bitc::ATTR_KIND_NO_RECURSE: 2007 return Attribute::NoRecurse; 2008 case bitc::ATTR_KIND_NO_MERGE: 2009 return Attribute::NoMerge; 2010 case bitc::ATTR_KIND_NON_LAZY_BIND: 2011 return Attribute::NonLazyBind; 2012 case bitc::ATTR_KIND_NON_NULL: 2013 return Attribute::NonNull; 2014 case bitc::ATTR_KIND_DEREFERENCEABLE: 2015 return Attribute::Dereferenceable; 2016 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 2017 return Attribute::DereferenceableOrNull; 2018 case bitc::ATTR_KIND_ALLOC_ALIGN: 2019 return Attribute::AllocAlign; 2020 case bitc::ATTR_KIND_ALLOC_KIND: 2021 return Attribute::AllocKind; 2022 case bitc::ATTR_KIND_ALLOC_SIZE: 2023 return Attribute::AllocSize; 2024 case bitc::ATTR_KIND_ALLOCATED_POINTER: 2025 return Attribute::AllocatedPointer; 2026 case bitc::ATTR_KIND_NO_RED_ZONE: 2027 return Attribute::NoRedZone; 2028 case bitc::ATTR_KIND_NO_RETURN: 2029 return Attribute::NoReturn; 2030 case bitc::ATTR_KIND_NOSYNC: 2031 return Attribute::NoSync; 2032 case bitc::ATTR_KIND_NOCF_CHECK: 2033 return Attribute::NoCfCheck; 2034 case bitc::ATTR_KIND_NO_PROFILE: 2035 return Attribute::NoProfile; 2036 case bitc::ATTR_KIND_SKIP_PROFILE: 2037 return Attribute::SkipProfile; 2038 case bitc::ATTR_KIND_NO_UNWIND: 2039 return Attribute::NoUnwind; 2040 case bitc::ATTR_KIND_NO_SANITIZE_BOUNDS: 2041 return Attribute::NoSanitizeBounds; 2042 case bitc::ATTR_KIND_NO_SANITIZE_COVERAGE: 2043 return Attribute::NoSanitizeCoverage; 2044 case bitc::ATTR_KIND_NULL_POINTER_IS_VALID: 2045 return Attribute::NullPointerIsValid; 2046 case bitc::ATTR_KIND_OPTIMIZE_FOR_DEBUGGING: 2047 return Attribute::OptimizeForDebugging; 2048 case bitc::ATTR_KIND_OPT_FOR_FUZZING: 2049 return Attribute::OptForFuzzing; 2050 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 2051 return Attribute::OptimizeForSize; 2052 case bitc::ATTR_KIND_OPTIMIZE_NONE: 2053 return Attribute::OptimizeNone; 2054 case bitc::ATTR_KIND_READ_NONE: 2055 return Attribute::ReadNone; 2056 case bitc::ATTR_KIND_READ_ONLY: 2057 return Attribute::ReadOnly; 2058 case bitc::ATTR_KIND_RETURNED: 2059 return Attribute::Returned; 2060 case bitc::ATTR_KIND_RETURNS_TWICE: 2061 return Attribute::ReturnsTwice; 2062 case bitc::ATTR_KIND_S_EXT: 2063 return Attribute::SExt; 2064 case bitc::ATTR_KIND_SPECULATABLE: 2065 return Attribute::Speculatable; 2066 case bitc::ATTR_KIND_STACK_ALIGNMENT: 2067 return Attribute::StackAlignment; 2068 case bitc::ATTR_KIND_STACK_PROTECT: 2069 return Attribute::StackProtect; 2070 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 2071 return Attribute::StackProtectReq; 2072 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 2073 return Attribute::StackProtectStrong; 2074 case bitc::ATTR_KIND_SAFESTACK: 2075 return Attribute::SafeStack; 2076 case bitc::ATTR_KIND_SHADOWCALLSTACK: 2077 return Attribute::ShadowCallStack; 2078 case bitc::ATTR_KIND_STRICT_FP: 2079 return Attribute::StrictFP; 2080 case bitc::ATTR_KIND_STRUCT_RET: 2081 return Attribute::StructRet; 2082 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 2083 return Attribute::SanitizeAddress; 2084 case bitc::ATTR_KIND_SANITIZE_HWADDRESS: 2085 return Attribute::SanitizeHWAddress; 2086 case bitc::ATTR_KIND_SANITIZE_THREAD: 2087 return Attribute::SanitizeThread; 2088 case bitc::ATTR_KIND_SANITIZE_MEMORY: 2089 return Attribute::SanitizeMemory; 2090 case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING: 2091 return Attribute::SpeculativeLoadHardening; 2092 case bitc::ATTR_KIND_SWIFT_ERROR: 2093 return Attribute::SwiftError; 2094 case bitc::ATTR_KIND_SWIFT_SELF: 2095 return Attribute::SwiftSelf; 2096 case bitc::ATTR_KIND_SWIFT_ASYNC: 2097 return Attribute::SwiftAsync; 2098 case bitc::ATTR_KIND_UW_TABLE: 2099 return Attribute::UWTable; 2100 case bitc::ATTR_KIND_VSCALE_RANGE: 2101 return Attribute::VScaleRange; 2102 case bitc::ATTR_KIND_WILLRETURN: 2103 return Attribute::WillReturn; 2104 case bitc::ATTR_KIND_WRITEONLY: 2105 return Attribute::WriteOnly; 2106 case bitc::ATTR_KIND_Z_EXT: 2107 return Attribute::ZExt; 2108 case bitc::ATTR_KIND_IMMARG: 2109 return Attribute::ImmArg; 2110 case bitc::ATTR_KIND_SANITIZE_MEMTAG: 2111 return Attribute::SanitizeMemTag; 2112 case bitc::ATTR_KIND_PREALLOCATED: 2113 return Attribute::Preallocated; 2114 case bitc::ATTR_KIND_NOUNDEF: 2115 return Attribute::NoUndef; 2116 case bitc::ATTR_KIND_BYREF: 2117 return Attribute::ByRef; 2118 case bitc::ATTR_KIND_MUSTPROGRESS: 2119 return Attribute::MustProgress; 2120 case bitc::ATTR_KIND_HOT: 2121 return Attribute::Hot; 2122 case bitc::ATTR_KIND_PRESPLIT_COROUTINE: 2123 return Attribute::PresplitCoroutine; 2124 case bitc::ATTR_KIND_WRITABLE: 2125 return Attribute::Writable; 2126 case bitc::ATTR_KIND_CORO_ONLY_DESTROY_WHEN_COMPLETE: 2127 return Attribute::CoroDestroyOnlyWhenComplete; 2128 case bitc::ATTR_KIND_DEAD_ON_UNWIND: 2129 return Attribute::DeadOnUnwind; 2130 case bitc::ATTR_KIND_RANGE: 2131 return Attribute::Range; 2132 } 2133 } 2134 2135 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent, 2136 MaybeAlign &Alignment) { 2137 // Note: Alignment in bitcode files is incremented by 1, so that zero 2138 // can be used for default alignment. 2139 if (Exponent > Value::MaxAlignmentExponent + 1) 2140 return error("Invalid alignment value"); 2141 Alignment = decodeMaybeAlign(Exponent); 2142 return Error::success(); 2143 } 2144 2145 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) { 2146 *Kind = getAttrFromCode(Code); 2147 if (*Kind == Attribute::None) 2148 return error("Unknown attribute kind (" + Twine(Code) + ")"); 2149 return Error::success(); 2150 } 2151 2152 static bool upgradeOldMemoryAttribute(MemoryEffects &ME, uint64_t EncodedKind) { 2153 switch (EncodedKind) { 2154 case bitc::ATTR_KIND_READ_NONE: 2155 ME &= MemoryEffects::none(); 2156 return true; 2157 case bitc::ATTR_KIND_READ_ONLY: 2158 ME &= MemoryEffects::readOnly(); 2159 return true; 2160 case bitc::ATTR_KIND_WRITEONLY: 2161 ME &= MemoryEffects::writeOnly(); 2162 return true; 2163 case bitc::ATTR_KIND_ARGMEMONLY: 2164 ME &= MemoryEffects::argMemOnly(); 2165 return true; 2166 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 2167 ME &= MemoryEffects::inaccessibleMemOnly(); 2168 return true; 2169 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 2170 ME &= MemoryEffects::inaccessibleOrArgMemOnly(); 2171 return true; 2172 default: 2173 return false; 2174 } 2175 } 2176 2177 Error BitcodeReader::parseAttributeGroupBlock() { 2178 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 2179 return Err; 2180 2181 if (!MAttributeGroups.empty()) 2182 return error("Invalid multiple blocks"); 2183 2184 SmallVector<uint64_t, 64> Record; 2185 2186 // Read all the records. 2187 while (true) { 2188 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2189 if (!MaybeEntry) 2190 return MaybeEntry.takeError(); 2191 BitstreamEntry Entry = MaybeEntry.get(); 2192 2193 switch (Entry.Kind) { 2194 case BitstreamEntry::SubBlock: // Handled for us already. 2195 case BitstreamEntry::Error: 2196 return error("Malformed block"); 2197 case BitstreamEntry::EndBlock: 2198 return Error::success(); 2199 case BitstreamEntry::Record: 2200 // The interesting case. 2201 break; 2202 } 2203 2204 // Read a record. 2205 Record.clear(); 2206 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2207 if (!MaybeRecord) 2208 return MaybeRecord.takeError(); 2209 switch (MaybeRecord.get()) { 2210 default: // Default behavior: ignore. 2211 break; 2212 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 2213 if (Record.size() < 3) 2214 return error("Invalid grp record"); 2215 2216 uint64_t GrpID = Record[0]; 2217 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 2218 2219 AttrBuilder B(Context); 2220 MemoryEffects ME = MemoryEffects::unknown(); 2221 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 2222 if (Record[i] == 0) { // Enum attribute 2223 Attribute::AttrKind Kind; 2224 uint64_t EncodedKind = Record[++i]; 2225 if (Idx == AttributeList::FunctionIndex && 2226 upgradeOldMemoryAttribute(ME, EncodedKind)) 2227 continue; 2228 2229 if (Error Err = parseAttrKind(EncodedKind, &Kind)) 2230 return Err; 2231 2232 // Upgrade old-style byval attribute to one with a type, even if it's 2233 // nullptr. We will have to insert the real type when we associate 2234 // this AttributeList with a function. 2235 if (Kind == Attribute::ByVal) 2236 B.addByValAttr(nullptr); 2237 else if (Kind == Attribute::StructRet) 2238 B.addStructRetAttr(nullptr); 2239 else if (Kind == Attribute::InAlloca) 2240 B.addInAllocaAttr(nullptr); 2241 else if (Kind == Attribute::UWTable) 2242 B.addUWTableAttr(UWTableKind::Default); 2243 else if (Attribute::isEnumAttrKind(Kind)) 2244 B.addAttribute(Kind); 2245 else 2246 return error("Not an enum attribute"); 2247 } else if (Record[i] == 1) { // Integer attribute 2248 Attribute::AttrKind Kind; 2249 if (Error Err = parseAttrKind(Record[++i], &Kind)) 2250 return Err; 2251 if (!Attribute::isIntAttrKind(Kind)) 2252 return error("Not an int attribute"); 2253 if (Kind == Attribute::Alignment) 2254 B.addAlignmentAttr(Record[++i]); 2255 else if (Kind == Attribute::StackAlignment) 2256 B.addStackAlignmentAttr(Record[++i]); 2257 else if (Kind == Attribute::Dereferenceable) 2258 B.addDereferenceableAttr(Record[++i]); 2259 else if (Kind == Attribute::DereferenceableOrNull) 2260 B.addDereferenceableOrNullAttr(Record[++i]); 2261 else if (Kind == Attribute::AllocSize) 2262 B.addAllocSizeAttrFromRawRepr(Record[++i]); 2263 else if (Kind == Attribute::VScaleRange) 2264 B.addVScaleRangeAttrFromRawRepr(Record[++i]); 2265 else if (Kind == Attribute::UWTable) 2266 B.addUWTableAttr(UWTableKind(Record[++i])); 2267 else if (Kind == Attribute::AllocKind) 2268 B.addAllocKindAttr(static_cast<AllocFnKind>(Record[++i])); 2269 else if (Kind == Attribute::Memory) 2270 B.addMemoryAttr(MemoryEffects::createFromIntValue(Record[++i])); 2271 else if (Kind == Attribute::NoFPClass) 2272 B.addNoFPClassAttr( 2273 static_cast<FPClassTest>(Record[++i] & fcAllFlags)); 2274 } else if (Record[i] == 3 || Record[i] == 4) { // String attribute 2275 bool HasValue = (Record[i++] == 4); 2276 SmallString<64> KindStr; 2277 SmallString<64> ValStr; 2278 2279 while (Record[i] != 0 && i != e) 2280 KindStr += Record[i++]; 2281 assert(Record[i] == 0 && "Kind string not null terminated"); 2282 2283 if (HasValue) { 2284 // Has a value associated with it. 2285 ++i; // Skip the '0' that terminates the "kind" string. 2286 while (Record[i] != 0 && i != e) 2287 ValStr += Record[i++]; 2288 assert(Record[i] == 0 && "Value string not null terminated"); 2289 } 2290 2291 B.addAttribute(KindStr.str(), ValStr.str()); 2292 } else if (Record[i] == 5 || Record[i] == 6) { 2293 bool HasType = Record[i] == 6; 2294 Attribute::AttrKind Kind; 2295 if (Error Err = parseAttrKind(Record[++i], &Kind)) 2296 return Err; 2297 if (!Attribute::isTypeAttrKind(Kind)) 2298 return error("Not a type attribute"); 2299 2300 B.addTypeAttr(Kind, HasType ? getTypeByID(Record[++i]) : nullptr); 2301 } else if (Record[i] == 7) { 2302 Attribute::AttrKind Kind; 2303 2304 i++; 2305 if (Error Err = parseAttrKind(Record[i++], &Kind)) 2306 return Err; 2307 if (!Attribute::isConstantRangeAttrKind(Kind)) 2308 return error("Not a ConstantRange attribute"); 2309 2310 Expected<ConstantRange> MaybeCR = readConstantRange(Record, i); 2311 if (!MaybeCR) 2312 return MaybeCR.takeError(); 2313 i--; 2314 2315 B.addConstantRangeAttr(Kind, MaybeCR.get()); 2316 } else { 2317 return error("Invalid attribute group entry"); 2318 } 2319 } 2320 2321 if (ME != MemoryEffects::unknown()) 2322 B.addMemoryAttr(ME); 2323 2324 UpgradeAttributes(B); 2325 MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B); 2326 break; 2327 } 2328 } 2329 } 2330 } 2331 2332 Error BitcodeReader::parseTypeTable() { 2333 if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 2334 return Err; 2335 2336 return parseTypeTableBody(); 2337 } 2338 2339 Error BitcodeReader::parseTypeTableBody() { 2340 if (!TypeList.empty()) 2341 return error("Invalid multiple blocks"); 2342 2343 SmallVector<uint64_t, 64> Record; 2344 unsigned NumRecords = 0; 2345 2346 SmallString<64> TypeName; 2347 2348 // Read all the records for this type table. 2349 while (true) { 2350 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2351 if (!MaybeEntry) 2352 return MaybeEntry.takeError(); 2353 BitstreamEntry Entry = MaybeEntry.get(); 2354 2355 switch (Entry.Kind) { 2356 case BitstreamEntry::SubBlock: // Handled for us already. 2357 case BitstreamEntry::Error: 2358 return error("Malformed block"); 2359 case BitstreamEntry::EndBlock: 2360 if (NumRecords != TypeList.size()) 2361 return error("Malformed block"); 2362 return Error::success(); 2363 case BitstreamEntry::Record: 2364 // The interesting case. 2365 break; 2366 } 2367 2368 // Read a record. 2369 Record.clear(); 2370 Type *ResultTy = nullptr; 2371 SmallVector<unsigned> ContainedIDs; 2372 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2373 if (!MaybeRecord) 2374 return MaybeRecord.takeError(); 2375 switch (MaybeRecord.get()) { 2376 default: 2377 return error("Invalid value"); 2378 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 2379 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 2380 // type list. This allows us to reserve space. 2381 if (Record.empty()) 2382 return error("Invalid numentry record"); 2383 TypeList.resize(Record[0]); 2384 continue; 2385 case bitc::TYPE_CODE_VOID: // VOID 2386 ResultTy = Type::getVoidTy(Context); 2387 break; 2388 case bitc::TYPE_CODE_HALF: // HALF 2389 ResultTy = Type::getHalfTy(Context); 2390 break; 2391 case bitc::TYPE_CODE_BFLOAT: // BFLOAT 2392 ResultTy = Type::getBFloatTy(Context); 2393 break; 2394 case bitc::TYPE_CODE_FLOAT: // FLOAT 2395 ResultTy = Type::getFloatTy(Context); 2396 break; 2397 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 2398 ResultTy = Type::getDoubleTy(Context); 2399 break; 2400 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 2401 ResultTy = Type::getX86_FP80Ty(Context); 2402 break; 2403 case bitc::TYPE_CODE_FP128: // FP128 2404 ResultTy = Type::getFP128Ty(Context); 2405 break; 2406 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 2407 ResultTy = Type::getPPC_FP128Ty(Context); 2408 break; 2409 case bitc::TYPE_CODE_LABEL: // LABEL 2410 ResultTy = Type::getLabelTy(Context); 2411 break; 2412 case bitc::TYPE_CODE_METADATA: // METADATA 2413 ResultTy = Type::getMetadataTy(Context); 2414 break; 2415 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 2416 ResultTy = Type::getX86_MMXTy(Context); 2417 break; 2418 case bitc::TYPE_CODE_X86_AMX: // X86_AMX 2419 ResultTy = Type::getX86_AMXTy(Context); 2420 break; 2421 case bitc::TYPE_CODE_TOKEN: // TOKEN 2422 ResultTy = Type::getTokenTy(Context); 2423 break; 2424 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 2425 if (Record.empty()) 2426 return error("Invalid integer record"); 2427 2428 uint64_t NumBits = Record[0]; 2429 if (NumBits < IntegerType::MIN_INT_BITS || 2430 NumBits > IntegerType::MAX_INT_BITS) 2431 return error("Bitwidth for integer type out of range"); 2432 ResultTy = IntegerType::get(Context, NumBits); 2433 break; 2434 } 2435 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 2436 // [pointee type, address space] 2437 if (Record.empty()) 2438 return error("Invalid pointer record"); 2439 unsigned AddressSpace = 0; 2440 if (Record.size() == 2) 2441 AddressSpace = Record[1]; 2442 ResultTy = getTypeByID(Record[0]); 2443 if (!ResultTy || 2444 !PointerType::isValidElementType(ResultTy)) 2445 return error("Invalid type"); 2446 ContainedIDs.push_back(Record[0]); 2447 ResultTy = PointerType::get(ResultTy, AddressSpace); 2448 break; 2449 } 2450 case bitc::TYPE_CODE_OPAQUE_POINTER: { // OPAQUE_POINTER: [addrspace] 2451 if (Record.size() != 1) 2452 return error("Invalid opaque pointer record"); 2453 unsigned AddressSpace = Record[0]; 2454 ResultTy = PointerType::get(Context, AddressSpace); 2455 break; 2456 } 2457 case bitc::TYPE_CODE_FUNCTION_OLD: { 2458 // Deprecated, but still needed to read old bitcode files. 2459 // FUNCTION: [vararg, attrid, retty, paramty x N] 2460 if (Record.size() < 3) 2461 return error("Invalid function record"); 2462 SmallVector<Type*, 8> ArgTys; 2463 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 2464 if (Type *T = getTypeByID(Record[i])) 2465 ArgTys.push_back(T); 2466 else 2467 break; 2468 } 2469 2470 ResultTy = getTypeByID(Record[2]); 2471 if (!ResultTy || ArgTys.size() < Record.size()-3) 2472 return error("Invalid type"); 2473 2474 ContainedIDs.append(Record.begin() + 2, Record.end()); 2475 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 2476 break; 2477 } 2478 case bitc::TYPE_CODE_FUNCTION: { 2479 // FUNCTION: [vararg, retty, paramty x N] 2480 if (Record.size() < 2) 2481 return error("Invalid function record"); 2482 SmallVector<Type*, 8> ArgTys; 2483 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 2484 if (Type *T = getTypeByID(Record[i])) { 2485 if (!FunctionType::isValidArgumentType(T)) 2486 return error("Invalid function argument type"); 2487 ArgTys.push_back(T); 2488 } 2489 else 2490 break; 2491 } 2492 2493 ResultTy = getTypeByID(Record[1]); 2494 if (!ResultTy || ArgTys.size() < Record.size()-2) 2495 return error("Invalid type"); 2496 2497 ContainedIDs.append(Record.begin() + 1, Record.end()); 2498 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 2499 break; 2500 } 2501 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 2502 if (Record.empty()) 2503 return error("Invalid anon struct record"); 2504 SmallVector<Type*, 8> EltTys; 2505 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 2506 if (Type *T = getTypeByID(Record[i])) 2507 EltTys.push_back(T); 2508 else 2509 break; 2510 } 2511 if (EltTys.size() != Record.size()-1) 2512 return error("Invalid type"); 2513 ContainedIDs.append(Record.begin() + 1, Record.end()); 2514 ResultTy = StructType::get(Context, EltTys, Record[0]); 2515 break; 2516 } 2517 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 2518 if (convertToString(Record, 0, TypeName)) 2519 return error("Invalid struct name record"); 2520 continue; 2521 2522 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 2523 if (Record.empty()) 2524 return error("Invalid named struct record"); 2525 2526 if (NumRecords >= TypeList.size()) 2527 return error("Invalid TYPE table"); 2528 2529 // Check to see if this was forward referenced, if so fill in the temp. 2530 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 2531 if (Res) { 2532 Res->setName(TypeName); 2533 TypeList[NumRecords] = nullptr; 2534 } else // Otherwise, create a new struct. 2535 Res = createIdentifiedStructType(Context, TypeName); 2536 TypeName.clear(); 2537 2538 SmallVector<Type*, 8> EltTys; 2539 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 2540 if (Type *T = getTypeByID(Record[i])) 2541 EltTys.push_back(T); 2542 else 2543 break; 2544 } 2545 if (EltTys.size() != Record.size()-1) 2546 return error("Invalid named struct record"); 2547 Res->setBody(EltTys, Record[0]); 2548 ContainedIDs.append(Record.begin() + 1, Record.end()); 2549 ResultTy = Res; 2550 break; 2551 } 2552 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 2553 if (Record.size() != 1) 2554 return error("Invalid opaque type record"); 2555 2556 if (NumRecords >= TypeList.size()) 2557 return error("Invalid TYPE table"); 2558 2559 // Check to see if this was forward referenced, if so fill in the temp. 2560 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 2561 if (Res) { 2562 Res->setName(TypeName); 2563 TypeList[NumRecords] = nullptr; 2564 } else // Otherwise, create a new struct with no body. 2565 Res = createIdentifiedStructType(Context, TypeName); 2566 TypeName.clear(); 2567 ResultTy = Res; 2568 break; 2569 } 2570 case bitc::TYPE_CODE_TARGET_TYPE: { // TARGET_TYPE: [NumTy, Tys..., Ints...] 2571 if (Record.size() < 1) 2572 return error("Invalid target extension type record"); 2573 2574 if (NumRecords >= TypeList.size()) 2575 return error("Invalid TYPE table"); 2576 2577 if (Record[0] >= Record.size()) 2578 return error("Too many type parameters"); 2579 2580 unsigned NumTys = Record[0]; 2581 SmallVector<Type *, 4> TypeParams; 2582 SmallVector<unsigned, 8> IntParams; 2583 for (unsigned i = 0; i < NumTys; i++) { 2584 if (Type *T = getTypeByID(Record[i + 1])) 2585 TypeParams.push_back(T); 2586 else 2587 return error("Invalid type"); 2588 } 2589 2590 for (unsigned i = NumTys + 1, e = Record.size(); i < e; i++) { 2591 if (Record[i] > UINT_MAX) 2592 return error("Integer parameter too large"); 2593 IntParams.push_back(Record[i]); 2594 } 2595 ResultTy = TargetExtType::get(Context, TypeName, TypeParams, IntParams); 2596 TypeName.clear(); 2597 break; 2598 } 2599 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 2600 if (Record.size() < 2) 2601 return error("Invalid array type record"); 2602 ResultTy = getTypeByID(Record[1]); 2603 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 2604 return error("Invalid type"); 2605 ContainedIDs.push_back(Record[1]); 2606 ResultTy = ArrayType::get(ResultTy, Record[0]); 2607 break; 2608 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] or 2609 // [numelts, eltty, scalable] 2610 if (Record.size() < 2) 2611 return error("Invalid vector type record"); 2612 if (Record[0] == 0) 2613 return error("Invalid vector length"); 2614 ResultTy = getTypeByID(Record[1]); 2615 if (!ResultTy || !VectorType::isValidElementType(ResultTy)) 2616 return error("Invalid type"); 2617 bool Scalable = Record.size() > 2 ? Record[2] : false; 2618 ContainedIDs.push_back(Record[1]); 2619 ResultTy = VectorType::get(ResultTy, Record[0], Scalable); 2620 break; 2621 } 2622 2623 if (NumRecords >= TypeList.size()) 2624 return error("Invalid TYPE table"); 2625 if (TypeList[NumRecords]) 2626 return error( 2627 "Invalid TYPE table: Only named structs can be forward referenced"); 2628 assert(ResultTy && "Didn't read a type?"); 2629 TypeList[NumRecords] = ResultTy; 2630 if (!ContainedIDs.empty()) 2631 ContainedTypeIDs[NumRecords] = std::move(ContainedIDs); 2632 ++NumRecords; 2633 } 2634 } 2635 2636 Error BitcodeReader::parseOperandBundleTags() { 2637 if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 2638 return Err; 2639 2640 if (!BundleTags.empty()) 2641 return error("Invalid multiple blocks"); 2642 2643 SmallVector<uint64_t, 64> Record; 2644 2645 while (true) { 2646 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2647 if (!MaybeEntry) 2648 return MaybeEntry.takeError(); 2649 BitstreamEntry Entry = MaybeEntry.get(); 2650 2651 switch (Entry.Kind) { 2652 case BitstreamEntry::SubBlock: // Handled for us already. 2653 case BitstreamEntry::Error: 2654 return error("Malformed block"); 2655 case BitstreamEntry::EndBlock: 2656 return Error::success(); 2657 case BitstreamEntry::Record: 2658 // The interesting case. 2659 break; 2660 } 2661 2662 // Tags are implicitly mapped to integers by their order. 2663 2664 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2665 if (!MaybeRecord) 2666 return MaybeRecord.takeError(); 2667 if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG) 2668 return error("Invalid operand bundle record"); 2669 2670 // OPERAND_BUNDLE_TAG: [strchr x N] 2671 BundleTags.emplace_back(); 2672 if (convertToString(Record, 0, BundleTags.back())) 2673 return error("Invalid operand bundle record"); 2674 Record.clear(); 2675 } 2676 } 2677 2678 Error BitcodeReader::parseSyncScopeNames() { 2679 if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID)) 2680 return Err; 2681 2682 if (!SSIDs.empty()) 2683 return error("Invalid multiple synchronization scope names blocks"); 2684 2685 SmallVector<uint64_t, 64> Record; 2686 while (true) { 2687 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2688 if (!MaybeEntry) 2689 return MaybeEntry.takeError(); 2690 BitstreamEntry Entry = MaybeEntry.get(); 2691 2692 switch (Entry.Kind) { 2693 case BitstreamEntry::SubBlock: // Handled for us already. 2694 case BitstreamEntry::Error: 2695 return error("Malformed block"); 2696 case BitstreamEntry::EndBlock: 2697 if (SSIDs.empty()) 2698 return error("Invalid empty synchronization scope names block"); 2699 return Error::success(); 2700 case BitstreamEntry::Record: 2701 // The interesting case. 2702 break; 2703 } 2704 2705 // Synchronization scope names are implicitly mapped to synchronization 2706 // scope IDs by their order. 2707 2708 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2709 if (!MaybeRecord) 2710 return MaybeRecord.takeError(); 2711 if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME) 2712 return error("Invalid sync scope record"); 2713 2714 SmallString<16> SSN; 2715 if (convertToString(Record, 0, SSN)) 2716 return error("Invalid sync scope record"); 2717 2718 SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN)); 2719 Record.clear(); 2720 } 2721 } 2722 2723 /// Associate a value with its name from the given index in the provided record. 2724 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 2725 unsigned NameIndex, Triple &TT) { 2726 SmallString<128> ValueName; 2727 if (convertToString(Record, NameIndex, ValueName)) 2728 return error("Invalid record"); 2729 unsigned ValueID = Record[0]; 2730 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 2731 return error("Invalid record"); 2732 Value *V = ValueList[ValueID]; 2733 2734 StringRef NameStr(ValueName.data(), ValueName.size()); 2735 if (NameStr.contains(0)) 2736 return error("Invalid value name"); 2737 V->setName(NameStr); 2738 auto *GO = dyn_cast<GlobalObject>(V); 2739 if (GO && ImplicitComdatObjects.contains(GO) && TT.supportsCOMDAT()) 2740 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 2741 return V; 2742 } 2743 2744 /// Helper to note and return the current location, and jump to the given 2745 /// offset. 2746 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset, 2747 BitstreamCursor &Stream) { 2748 // Save the current parsing location so we can jump back at the end 2749 // of the VST read. 2750 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 2751 if (Error JumpFailed = Stream.JumpToBit(Offset * 32)) 2752 return std::move(JumpFailed); 2753 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 2754 if (!MaybeEntry) 2755 return MaybeEntry.takeError(); 2756 if (MaybeEntry.get().Kind != BitstreamEntry::SubBlock || 2757 MaybeEntry.get().ID != bitc::VALUE_SYMTAB_BLOCK_ID) 2758 return error("Expected value symbol table subblock"); 2759 return CurrentBit; 2760 } 2761 2762 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, 2763 Function *F, 2764 ArrayRef<uint64_t> Record) { 2765 // Note that we subtract 1 here because the offset is relative to one word 2766 // before the start of the identification or module block, which was 2767 // historically always the start of the regular bitcode header. 2768 uint64_t FuncWordOffset = Record[1] - 1; 2769 uint64_t FuncBitOffset = FuncWordOffset * 32; 2770 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 2771 // Set the LastFunctionBlockBit to point to the last function block. 2772 // Later when parsing is resumed after function materialization, 2773 // we can simply skip that last function block. 2774 if (FuncBitOffset > LastFunctionBlockBit) 2775 LastFunctionBlockBit = FuncBitOffset; 2776 } 2777 2778 /// Read a new-style GlobalValue symbol table. 2779 Error BitcodeReader::parseGlobalValueSymbolTable() { 2780 unsigned FuncBitcodeOffsetDelta = 2781 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2782 2783 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2784 return Err; 2785 2786 SmallVector<uint64_t, 64> Record; 2787 while (true) { 2788 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2789 if (!MaybeEntry) 2790 return MaybeEntry.takeError(); 2791 BitstreamEntry Entry = MaybeEntry.get(); 2792 2793 switch (Entry.Kind) { 2794 case BitstreamEntry::SubBlock: 2795 case BitstreamEntry::Error: 2796 return error("Malformed block"); 2797 case BitstreamEntry::EndBlock: 2798 return Error::success(); 2799 case BitstreamEntry::Record: 2800 break; 2801 } 2802 2803 Record.clear(); 2804 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2805 if (!MaybeRecord) 2806 return MaybeRecord.takeError(); 2807 switch (MaybeRecord.get()) { 2808 case bitc::VST_CODE_FNENTRY: { // [valueid, offset] 2809 unsigned ValueID = Record[0]; 2810 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 2811 return error("Invalid value reference in symbol table"); 2812 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, 2813 cast<Function>(ValueList[ValueID]), Record); 2814 break; 2815 } 2816 } 2817 } 2818 } 2819 2820 /// Parse the value symbol table at either the current parsing location or 2821 /// at the given bit offset if provided. 2822 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 2823 uint64_t CurrentBit; 2824 // Pass in the Offset to distinguish between calling for the module-level 2825 // VST (where we want to jump to the VST offset) and the function-level 2826 // VST (where we don't). 2827 if (Offset > 0) { 2828 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 2829 if (!MaybeCurrentBit) 2830 return MaybeCurrentBit.takeError(); 2831 CurrentBit = MaybeCurrentBit.get(); 2832 // If this module uses a string table, read this as a module-level VST. 2833 if (UseStrtab) { 2834 if (Error Err = parseGlobalValueSymbolTable()) 2835 return Err; 2836 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2837 return JumpFailed; 2838 return Error::success(); 2839 } 2840 // Otherwise, the VST will be in a similar format to a function-level VST, 2841 // and will contain symbol names. 2842 } 2843 2844 // Compute the delta between the bitcode indices in the VST (the word offset 2845 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 2846 // expected by the lazy reader. The reader's EnterSubBlock expects to have 2847 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 2848 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 2849 // just before entering the VST subblock because: 1) the EnterSubBlock 2850 // changes the AbbrevID width; 2) the VST block is nested within the same 2851 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 2852 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 2853 // jump to the FUNCTION_BLOCK using this offset later, we don't want 2854 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 2855 unsigned FuncBitcodeOffsetDelta = 2856 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2857 2858 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2859 return Err; 2860 2861 SmallVector<uint64_t, 64> Record; 2862 2863 Triple TT(TheModule->getTargetTriple()); 2864 2865 // Read all the records for this value table. 2866 SmallString<128> ValueName; 2867 2868 while (true) { 2869 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2870 if (!MaybeEntry) 2871 return MaybeEntry.takeError(); 2872 BitstreamEntry Entry = MaybeEntry.get(); 2873 2874 switch (Entry.Kind) { 2875 case BitstreamEntry::SubBlock: // Handled for us already. 2876 case BitstreamEntry::Error: 2877 return error("Malformed block"); 2878 case BitstreamEntry::EndBlock: 2879 if (Offset > 0) 2880 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2881 return JumpFailed; 2882 return Error::success(); 2883 case BitstreamEntry::Record: 2884 // The interesting case. 2885 break; 2886 } 2887 2888 // Read a record. 2889 Record.clear(); 2890 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2891 if (!MaybeRecord) 2892 return MaybeRecord.takeError(); 2893 switch (MaybeRecord.get()) { 2894 default: // Default behavior: unknown type. 2895 break; 2896 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 2897 Expected<Value *> ValOrErr = recordValue(Record, 1, TT); 2898 if (Error Err = ValOrErr.takeError()) 2899 return Err; 2900 ValOrErr.get(); 2901 break; 2902 } 2903 case bitc::VST_CODE_FNENTRY: { 2904 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 2905 Expected<Value *> ValOrErr = recordValue(Record, 2, TT); 2906 if (Error Err = ValOrErr.takeError()) 2907 return Err; 2908 Value *V = ValOrErr.get(); 2909 2910 // Ignore function offsets emitted for aliases of functions in older 2911 // versions of LLVM. 2912 if (auto *F = dyn_cast<Function>(V)) 2913 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record); 2914 break; 2915 } 2916 case bitc::VST_CODE_BBENTRY: { 2917 if (convertToString(Record, 1, ValueName)) 2918 return error("Invalid bbentry record"); 2919 BasicBlock *BB = getBasicBlock(Record[0]); 2920 if (!BB) 2921 return error("Invalid bbentry record"); 2922 2923 BB->setName(StringRef(ValueName.data(), ValueName.size())); 2924 ValueName.clear(); 2925 break; 2926 } 2927 } 2928 } 2929 } 2930 2931 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2932 /// encoding. 2933 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2934 if ((V & 1) == 0) 2935 return V >> 1; 2936 if (V != 1) 2937 return -(V >> 1); 2938 // There is no such thing as -0 with integers. "-0" really means MININT. 2939 return 1ULL << 63; 2940 } 2941 2942 /// Resolve all of the initializers for global values and aliases that we can. 2943 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 2944 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist; 2945 std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInitWorklist; 2946 std::vector<FunctionOperandInfo> FunctionOperandWorklist; 2947 2948 GlobalInitWorklist.swap(GlobalInits); 2949 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 2950 FunctionOperandWorklist.swap(FunctionOperands); 2951 2952 while (!GlobalInitWorklist.empty()) { 2953 unsigned ValID = GlobalInitWorklist.back().second; 2954 if (ValID >= ValueList.size()) { 2955 // Not ready to resolve this yet, it requires something later in the file. 2956 GlobalInits.push_back(GlobalInitWorklist.back()); 2957 } else { 2958 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 2959 if (!MaybeC) 2960 return MaybeC.takeError(); 2961 GlobalInitWorklist.back().first->setInitializer(MaybeC.get()); 2962 } 2963 GlobalInitWorklist.pop_back(); 2964 } 2965 2966 while (!IndirectSymbolInitWorklist.empty()) { 2967 unsigned ValID = IndirectSymbolInitWorklist.back().second; 2968 if (ValID >= ValueList.size()) { 2969 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 2970 } else { 2971 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 2972 if (!MaybeC) 2973 return MaybeC.takeError(); 2974 Constant *C = MaybeC.get(); 2975 GlobalValue *GV = IndirectSymbolInitWorklist.back().first; 2976 if (auto *GA = dyn_cast<GlobalAlias>(GV)) { 2977 if (C->getType() != GV->getType()) 2978 return error("Alias and aliasee types don't match"); 2979 GA->setAliasee(C); 2980 } else if (auto *GI = dyn_cast<GlobalIFunc>(GV)) { 2981 GI->setResolver(C); 2982 } else { 2983 return error("Expected an alias or an ifunc"); 2984 } 2985 } 2986 IndirectSymbolInitWorklist.pop_back(); 2987 } 2988 2989 while (!FunctionOperandWorklist.empty()) { 2990 FunctionOperandInfo &Info = FunctionOperandWorklist.back(); 2991 if (Info.PersonalityFn) { 2992 unsigned ValID = Info.PersonalityFn - 1; 2993 if (ValID < ValueList.size()) { 2994 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 2995 if (!MaybeC) 2996 return MaybeC.takeError(); 2997 Info.F->setPersonalityFn(MaybeC.get()); 2998 Info.PersonalityFn = 0; 2999 } 3000 } 3001 if (Info.Prefix) { 3002 unsigned ValID = Info.Prefix - 1; 3003 if (ValID < ValueList.size()) { 3004 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 3005 if (!MaybeC) 3006 return MaybeC.takeError(); 3007 Info.F->setPrefixData(MaybeC.get()); 3008 Info.Prefix = 0; 3009 } 3010 } 3011 if (Info.Prologue) { 3012 unsigned ValID = Info.Prologue - 1; 3013 if (ValID < ValueList.size()) { 3014 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 3015 if (!MaybeC) 3016 return MaybeC.takeError(); 3017 Info.F->setPrologueData(MaybeC.get()); 3018 Info.Prologue = 0; 3019 } 3020 } 3021 if (Info.PersonalityFn || Info.Prefix || Info.Prologue) 3022 FunctionOperands.push_back(Info); 3023 FunctionOperandWorklist.pop_back(); 3024 } 3025 3026 return Error::success(); 3027 } 3028 3029 APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 3030 SmallVector<uint64_t, 8> Words(Vals.size()); 3031 transform(Vals, Words.begin(), 3032 BitcodeReader::decodeSignRotatedValue); 3033 3034 return APInt(TypeBits, Words); 3035 } 3036 3037 Error BitcodeReader::parseConstants() { 3038 if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 3039 return Err; 3040 3041 SmallVector<uint64_t, 64> Record; 3042 3043 // Read all the records for this value table. 3044 Type *CurTy = Type::getInt32Ty(Context); 3045 unsigned Int32TyID = getVirtualTypeID(CurTy); 3046 unsigned CurTyID = Int32TyID; 3047 Type *CurElemTy = nullptr; 3048 unsigned NextCstNo = ValueList.size(); 3049 3050 while (true) { 3051 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 3052 if (!MaybeEntry) 3053 return MaybeEntry.takeError(); 3054 BitstreamEntry Entry = MaybeEntry.get(); 3055 3056 switch (Entry.Kind) { 3057 case BitstreamEntry::SubBlock: // Handled for us already. 3058 case BitstreamEntry::Error: 3059 return error("Malformed block"); 3060 case BitstreamEntry::EndBlock: 3061 if (NextCstNo != ValueList.size()) 3062 return error("Invalid constant reference"); 3063 return Error::success(); 3064 case BitstreamEntry::Record: 3065 // The interesting case. 3066 break; 3067 } 3068 3069 // Read a record. 3070 Record.clear(); 3071 Type *VoidType = Type::getVoidTy(Context); 3072 Value *V = nullptr; 3073 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 3074 if (!MaybeBitCode) 3075 return MaybeBitCode.takeError(); 3076 switch (unsigned BitCode = MaybeBitCode.get()) { 3077 default: // Default behavior: unknown constant 3078 case bitc::CST_CODE_UNDEF: // UNDEF 3079 V = UndefValue::get(CurTy); 3080 break; 3081 case bitc::CST_CODE_POISON: // POISON 3082 V = PoisonValue::get(CurTy); 3083 break; 3084 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 3085 if (Record.empty()) 3086 return error("Invalid settype record"); 3087 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 3088 return error("Invalid settype record"); 3089 if (TypeList[Record[0]] == VoidType) 3090 return error("Invalid constant type"); 3091 CurTyID = Record[0]; 3092 CurTy = TypeList[CurTyID]; 3093 CurElemTy = getPtrElementTypeByID(CurTyID); 3094 continue; // Skip the ValueList manipulation. 3095 case bitc::CST_CODE_NULL: // NULL 3096 if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy()) 3097 return error("Invalid type for a constant null value"); 3098 if (auto *TETy = dyn_cast<TargetExtType>(CurTy)) 3099 if (!TETy->hasProperty(TargetExtType::HasZeroInit)) 3100 return error("Invalid type for a constant null value"); 3101 V = Constant::getNullValue(CurTy); 3102 break; 3103 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 3104 if (!CurTy->isIntOrIntVectorTy() || Record.empty()) 3105 return error("Invalid integer const record"); 3106 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 3107 break; 3108 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 3109 if (!CurTy->isIntOrIntVectorTy() || Record.empty()) 3110 return error("Invalid wide integer const record"); 3111 3112 auto *ScalarTy = cast<IntegerType>(CurTy->getScalarType()); 3113 APInt VInt = readWideAPInt(Record, ScalarTy->getBitWidth()); 3114 V = ConstantInt::get(CurTy, VInt); 3115 break; 3116 } 3117 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 3118 if (Record.empty()) 3119 return error("Invalid float const record"); 3120 3121 auto *ScalarTy = CurTy->getScalarType(); 3122 if (ScalarTy->isHalfTy()) 3123 V = ConstantFP::get(CurTy, APFloat(APFloat::IEEEhalf(), 3124 APInt(16, (uint16_t)Record[0]))); 3125 else if (ScalarTy->isBFloatTy()) 3126 V = ConstantFP::get( 3127 CurTy, APFloat(APFloat::BFloat(), APInt(16, (uint32_t)Record[0]))); 3128 else if (ScalarTy->isFloatTy()) 3129 V = ConstantFP::get(CurTy, APFloat(APFloat::IEEEsingle(), 3130 APInt(32, (uint32_t)Record[0]))); 3131 else if (ScalarTy->isDoubleTy()) 3132 V = ConstantFP::get( 3133 CurTy, APFloat(APFloat::IEEEdouble(), APInt(64, Record[0]))); 3134 else if (ScalarTy->isX86_FP80Ty()) { 3135 // Bits are not stored the same way as a normal i80 APInt, compensate. 3136 uint64_t Rearrange[2]; 3137 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 3138 Rearrange[1] = Record[0] >> 48; 3139 V = ConstantFP::get( 3140 CurTy, APFloat(APFloat::x87DoubleExtended(), APInt(80, Rearrange))); 3141 } else if (ScalarTy->isFP128Ty()) 3142 V = ConstantFP::get(CurTy, 3143 APFloat(APFloat::IEEEquad(), APInt(128, Record))); 3144 else if (ScalarTy->isPPC_FP128Ty()) 3145 V = ConstantFP::get( 3146 CurTy, APFloat(APFloat::PPCDoubleDouble(), APInt(128, Record))); 3147 else 3148 V = UndefValue::get(CurTy); 3149 break; 3150 } 3151 3152 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 3153 if (Record.empty()) 3154 return error("Invalid aggregate record"); 3155 3156 unsigned Size = Record.size(); 3157 SmallVector<unsigned, 16> Elts; 3158 for (unsigned i = 0; i != Size; ++i) 3159 Elts.push_back(Record[i]); 3160 3161 if (isa<StructType>(CurTy)) { 3162 V = BitcodeConstant::create( 3163 Alloc, CurTy, BitcodeConstant::ConstantStructOpcode, Elts); 3164 } else if (isa<ArrayType>(CurTy)) { 3165 V = BitcodeConstant::create(Alloc, CurTy, 3166 BitcodeConstant::ConstantArrayOpcode, Elts); 3167 } else if (isa<VectorType>(CurTy)) { 3168 V = BitcodeConstant::create( 3169 Alloc, CurTy, BitcodeConstant::ConstantVectorOpcode, Elts); 3170 } else { 3171 V = UndefValue::get(CurTy); 3172 } 3173 break; 3174 } 3175 case bitc::CST_CODE_STRING: // STRING: [values] 3176 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 3177 if (Record.empty()) 3178 return error("Invalid string record"); 3179 3180 SmallString<16> Elts(Record.begin(), Record.end()); 3181 V = ConstantDataArray::getString(Context, Elts, 3182 BitCode == bitc::CST_CODE_CSTRING); 3183 break; 3184 } 3185 case bitc::CST_CODE_DATA: {// DATA: [n x value] 3186 if (Record.empty()) 3187 return error("Invalid data record"); 3188 3189 Type *EltTy; 3190 if (auto *Array = dyn_cast<ArrayType>(CurTy)) 3191 EltTy = Array->getElementType(); 3192 else 3193 EltTy = cast<VectorType>(CurTy)->getElementType(); 3194 if (EltTy->isIntegerTy(8)) { 3195 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 3196 if (isa<VectorType>(CurTy)) 3197 V = ConstantDataVector::get(Context, Elts); 3198 else 3199 V = ConstantDataArray::get(Context, Elts); 3200 } else if (EltTy->isIntegerTy(16)) { 3201 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 3202 if (isa<VectorType>(CurTy)) 3203 V = ConstantDataVector::get(Context, Elts); 3204 else 3205 V = ConstantDataArray::get(Context, Elts); 3206 } else if (EltTy->isIntegerTy(32)) { 3207 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 3208 if (isa<VectorType>(CurTy)) 3209 V = ConstantDataVector::get(Context, Elts); 3210 else 3211 V = ConstantDataArray::get(Context, Elts); 3212 } else if (EltTy->isIntegerTy(64)) { 3213 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 3214 if (isa<VectorType>(CurTy)) 3215 V = ConstantDataVector::get(Context, Elts); 3216 else 3217 V = ConstantDataArray::get(Context, Elts); 3218 } else if (EltTy->isHalfTy()) { 3219 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 3220 if (isa<VectorType>(CurTy)) 3221 V = ConstantDataVector::getFP(EltTy, Elts); 3222 else 3223 V = ConstantDataArray::getFP(EltTy, Elts); 3224 } else if (EltTy->isBFloatTy()) { 3225 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 3226 if (isa<VectorType>(CurTy)) 3227 V = ConstantDataVector::getFP(EltTy, Elts); 3228 else 3229 V = ConstantDataArray::getFP(EltTy, Elts); 3230 } else if (EltTy->isFloatTy()) { 3231 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 3232 if (isa<VectorType>(CurTy)) 3233 V = ConstantDataVector::getFP(EltTy, Elts); 3234 else 3235 V = ConstantDataArray::getFP(EltTy, Elts); 3236 } else if (EltTy->isDoubleTy()) { 3237 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 3238 if (isa<VectorType>(CurTy)) 3239 V = ConstantDataVector::getFP(EltTy, Elts); 3240 else 3241 V = ConstantDataArray::getFP(EltTy, Elts); 3242 } else { 3243 return error("Invalid type for value"); 3244 } 3245 break; 3246 } 3247 case bitc::CST_CODE_CE_UNOP: { // CE_UNOP: [opcode, opval] 3248 if (Record.size() < 2) 3249 return error("Invalid unary op constexpr record"); 3250 int Opc = getDecodedUnaryOpcode(Record[0], CurTy); 3251 if (Opc < 0) { 3252 V = UndefValue::get(CurTy); // Unknown unop. 3253 } else { 3254 V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[1]); 3255 } 3256 break; 3257 } 3258 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 3259 if (Record.size() < 3) 3260 return error("Invalid binary op constexpr record"); 3261 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 3262 if (Opc < 0) { 3263 V = UndefValue::get(CurTy); // Unknown binop. 3264 } else { 3265 uint8_t Flags = 0; 3266 if (Record.size() >= 4) { 3267 if (Opc == Instruction::Add || 3268 Opc == Instruction::Sub || 3269 Opc == Instruction::Mul || 3270 Opc == Instruction::Shl) { 3271 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3272 Flags |= OverflowingBinaryOperator::NoSignedWrap; 3273 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3274 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 3275 } else if (Opc == Instruction::SDiv || 3276 Opc == Instruction::UDiv || 3277 Opc == Instruction::LShr || 3278 Opc == Instruction::AShr) { 3279 if (Record[3] & (1 << bitc::PEO_EXACT)) 3280 Flags |= PossiblyExactOperator::IsExact; 3281 } 3282 } 3283 V = BitcodeConstant::create(Alloc, CurTy, {(uint8_t)Opc, Flags}, 3284 {(unsigned)Record[1], (unsigned)Record[2]}); 3285 } 3286 break; 3287 } 3288 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 3289 if (Record.size() < 3) 3290 return error("Invalid cast constexpr record"); 3291 int Opc = getDecodedCastOpcode(Record[0]); 3292 if (Opc < 0) { 3293 V = UndefValue::get(CurTy); // Unknown cast. 3294 } else { 3295 unsigned OpTyID = Record[1]; 3296 Type *OpTy = getTypeByID(OpTyID); 3297 if (!OpTy) 3298 return error("Invalid cast constexpr record"); 3299 V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[2]); 3300 } 3301 break; 3302 } 3303 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands] 3304 case bitc::CST_CODE_CE_GEP: // [ty, n x operands] 3305 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x 3306 // operands] 3307 if (Record.size() < 2) 3308 return error("Constant GEP record must have at least two elements"); 3309 unsigned OpNum = 0; 3310 Type *PointeeType = nullptr; 3311 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX || 3312 Record.size() % 2) 3313 PointeeType = getTypeByID(Record[OpNum++]); 3314 3315 bool InBounds = false; 3316 std::optional<unsigned> InRangeIndex; 3317 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) { 3318 uint64_t Op = Record[OpNum++]; 3319 InBounds = Op & 1; 3320 InRangeIndex = Op >> 1; 3321 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 3322 InBounds = true; 3323 3324 SmallVector<unsigned, 16> Elts; 3325 unsigned BaseTypeID = Record[OpNum]; 3326 while (OpNum != Record.size()) { 3327 unsigned ElTyID = Record[OpNum++]; 3328 Type *ElTy = getTypeByID(ElTyID); 3329 if (!ElTy) 3330 return error("Invalid getelementptr constexpr record"); 3331 Elts.push_back(Record[OpNum++]); 3332 } 3333 3334 if (Elts.size() < 1) 3335 return error("Invalid gep with no operands"); 3336 3337 Type *BaseType = getTypeByID(BaseTypeID); 3338 if (isa<VectorType>(BaseType)) { 3339 BaseTypeID = getContainedTypeID(BaseTypeID, 0); 3340 BaseType = getTypeByID(BaseTypeID); 3341 } 3342 3343 PointerType *OrigPtrTy = dyn_cast_or_null<PointerType>(BaseType); 3344 if (!OrigPtrTy) 3345 return error("GEP base operand must be pointer or vector of pointer"); 3346 3347 if (!PointeeType) { 3348 PointeeType = getPtrElementTypeByID(BaseTypeID); 3349 if (!PointeeType) 3350 return error("Missing element type for old-style constant GEP"); 3351 } 3352 3353 V = BitcodeConstant::create(Alloc, CurTy, 3354 {Instruction::GetElementPtr, InBounds, 3355 InRangeIndex.value_or(-1), PointeeType}, 3356 Elts); 3357 break; 3358 } 3359 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 3360 if (Record.size() < 3) 3361 return error("Invalid select constexpr record"); 3362 3363 V = BitcodeConstant::create( 3364 Alloc, CurTy, Instruction::Select, 3365 {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]}); 3366 break; 3367 } 3368 case bitc::CST_CODE_CE_EXTRACTELT 3369 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 3370 if (Record.size() < 3) 3371 return error("Invalid extractelement constexpr record"); 3372 unsigned OpTyID = Record[0]; 3373 VectorType *OpTy = 3374 dyn_cast_or_null<VectorType>(getTypeByID(OpTyID)); 3375 if (!OpTy) 3376 return error("Invalid extractelement constexpr record"); 3377 unsigned IdxRecord; 3378 if (Record.size() == 4) { 3379 unsigned IdxTyID = Record[2]; 3380 Type *IdxTy = getTypeByID(IdxTyID); 3381 if (!IdxTy) 3382 return error("Invalid extractelement constexpr record"); 3383 IdxRecord = Record[3]; 3384 } else { 3385 // Deprecated, but still needed to read old bitcode files. 3386 IdxRecord = Record[2]; 3387 } 3388 V = BitcodeConstant::create(Alloc, CurTy, Instruction::ExtractElement, 3389 {(unsigned)Record[1], IdxRecord}); 3390 break; 3391 } 3392 case bitc::CST_CODE_CE_INSERTELT 3393 : { // CE_INSERTELT: [opval, opval, opty, opval] 3394 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 3395 if (Record.size() < 3 || !OpTy) 3396 return error("Invalid insertelement constexpr record"); 3397 unsigned IdxRecord; 3398 if (Record.size() == 4) { 3399 unsigned IdxTyID = Record[2]; 3400 Type *IdxTy = getTypeByID(IdxTyID); 3401 if (!IdxTy) 3402 return error("Invalid insertelement constexpr record"); 3403 IdxRecord = Record[3]; 3404 } else { 3405 // Deprecated, but still needed to read old bitcode files. 3406 IdxRecord = Record[2]; 3407 } 3408 V = BitcodeConstant::create( 3409 Alloc, CurTy, Instruction::InsertElement, 3410 {(unsigned)Record[0], (unsigned)Record[1], IdxRecord}); 3411 break; 3412 } 3413 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 3414 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 3415 if (Record.size() < 3 || !OpTy) 3416 return error("Invalid shufflevector constexpr record"); 3417 V = BitcodeConstant::create( 3418 Alloc, CurTy, Instruction::ShuffleVector, 3419 {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]}); 3420 break; 3421 } 3422 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 3423 VectorType *RTy = dyn_cast<VectorType>(CurTy); 3424 VectorType *OpTy = 3425 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 3426 if (Record.size() < 4 || !RTy || !OpTy) 3427 return error("Invalid shufflevector constexpr record"); 3428 V = BitcodeConstant::create( 3429 Alloc, CurTy, Instruction::ShuffleVector, 3430 {(unsigned)Record[1], (unsigned)Record[2], (unsigned)Record[3]}); 3431 break; 3432 } 3433 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 3434 if (Record.size() < 4) 3435 return error("Invalid cmp constexpt record"); 3436 unsigned OpTyID = Record[0]; 3437 Type *OpTy = getTypeByID(OpTyID); 3438 if (!OpTy) 3439 return error("Invalid cmp constexpr record"); 3440 V = BitcodeConstant::create( 3441 Alloc, CurTy, 3442 {(uint8_t)(OpTy->isFPOrFPVectorTy() ? Instruction::FCmp 3443 : Instruction::ICmp), 3444 (uint8_t)Record[3]}, 3445 {(unsigned)Record[1], (unsigned)Record[2]}); 3446 break; 3447 } 3448 // This maintains backward compatibility, pre-asm dialect keywords. 3449 // Deprecated, but still needed to read old bitcode files. 3450 case bitc::CST_CODE_INLINEASM_OLD: { 3451 if (Record.size() < 2) 3452 return error("Invalid inlineasm record"); 3453 std::string AsmStr, ConstrStr; 3454 bool HasSideEffects = Record[0] & 1; 3455 bool IsAlignStack = Record[0] >> 1; 3456 unsigned AsmStrSize = Record[1]; 3457 if (2+AsmStrSize >= Record.size()) 3458 return error("Invalid inlineasm record"); 3459 unsigned ConstStrSize = Record[2+AsmStrSize]; 3460 if (3+AsmStrSize+ConstStrSize > Record.size()) 3461 return error("Invalid inlineasm record"); 3462 3463 for (unsigned i = 0; i != AsmStrSize; ++i) 3464 AsmStr += (char)Record[2+i]; 3465 for (unsigned i = 0; i != ConstStrSize; ++i) 3466 ConstrStr += (char)Record[3+AsmStrSize+i]; 3467 UpgradeInlineAsmString(&AsmStr); 3468 if (!CurElemTy) 3469 return error("Missing element type for old-style inlineasm"); 3470 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr, 3471 HasSideEffects, IsAlignStack); 3472 break; 3473 } 3474 // This version adds support for the asm dialect keywords (e.g., 3475 // inteldialect). 3476 case bitc::CST_CODE_INLINEASM_OLD2: { 3477 if (Record.size() < 2) 3478 return error("Invalid inlineasm record"); 3479 std::string AsmStr, ConstrStr; 3480 bool HasSideEffects = Record[0] & 1; 3481 bool IsAlignStack = (Record[0] >> 1) & 1; 3482 unsigned AsmDialect = Record[0] >> 2; 3483 unsigned AsmStrSize = Record[1]; 3484 if (2+AsmStrSize >= Record.size()) 3485 return error("Invalid inlineasm record"); 3486 unsigned ConstStrSize = Record[2+AsmStrSize]; 3487 if (3+AsmStrSize+ConstStrSize > Record.size()) 3488 return error("Invalid inlineasm record"); 3489 3490 for (unsigned i = 0; i != AsmStrSize; ++i) 3491 AsmStr += (char)Record[2+i]; 3492 for (unsigned i = 0; i != ConstStrSize; ++i) 3493 ConstrStr += (char)Record[3+AsmStrSize+i]; 3494 UpgradeInlineAsmString(&AsmStr); 3495 if (!CurElemTy) 3496 return error("Missing element type for old-style inlineasm"); 3497 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr, 3498 HasSideEffects, IsAlignStack, 3499 InlineAsm::AsmDialect(AsmDialect)); 3500 break; 3501 } 3502 // This version adds support for the unwind keyword. 3503 case bitc::CST_CODE_INLINEASM_OLD3: { 3504 if (Record.size() < 2) 3505 return error("Invalid inlineasm record"); 3506 unsigned OpNum = 0; 3507 std::string AsmStr, ConstrStr; 3508 bool HasSideEffects = Record[OpNum] & 1; 3509 bool IsAlignStack = (Record[OpNum] >> 1) & 1; 3510 unsigned AsmDialect = (Record[OpNum] >> 2) & 1; 3511 bool CanThrow = (Record[OpNum] >> 3) & 1; 3512 ++OpNum; 3513 unsigned AsmStrSize = Record[OpNum]; 3514 ++OpNum; 3515 if (OpNum + AsmStrSize >= Record.size()) 3516 return error("Invalid inlineasm record"); 3517 unsigned ConstStrSize = Record[OpNum + AsmStrSize]; 3518 if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size()) 3519 return error("Invalid inlineasm record"); 3520 3521 for (unsigned i = 0; i != AsmStrSize; ++i) 3522 AsmStr += (char)Record[OpNum + i]; 3523 ++OpNum; 3524 for (unsigned i = 0; i != ConstStrSize; ++i) 3525 ConstrStr += (char)Record[OpNum + AsmStrSize + i]; 3526 UpgradeInlineAsmString(&AsmStr); 3527 if (!CurElemTy) 3528 return error("Missing element type for old-style inlineasm"); 3529 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr, 3530 HasSideEffects, IsAlignStack, 3531 InlineAsm::AsmDialect(AsmDialect), CanThrow); 3532 break; 3533 } 3534 // This version adds explicit function type. 3535 case bitc::CST_CODE_INLINEASM: { 3536 if (Record.size() < 3) 3537 return error("Invalid inlineasm record"); 3538 unsigned OpNum = 0; 3539 auto *FnTy = dyn_cast_or_null<FunctionType>(getTypeByID(Record[OpNum])); 3540 ++OpNum; 3541 if (!FnTy) 3542 return error("Invalid inlineasm record"); 3543 std::string AsmStr, ConstrStr; 3544 bool HasSideEffects = Record[OpNum] & 1; 3545 bool IsAlignStack = (Record[OpNum] >> 1) & 1; 3546 unsigned AsmDialect = (Record[OpNum] >> 2) & 1; 3547 bool CanThrow = (Record[OpNum] >> 3) & 1; 3548 ++OpNum; 3549 unsigned AsmStrSize = Record[OpNum]; 3550 ++OpNum; 3551 if (OpNum + AsmStrSize >= Record.size()) 3552 return error("Invalid inlineasm record"); 3553 unsigned ConstStrSize = Record[OpNum + AsmStrSize]; 3554 if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size()) 3555 return error("Invalid inlineasm record"); 3556 3557 for (unsigned i = 0; i != AsmStrSize; ++i) 3558 AsmStr += (char)Record[OpNum + i]; 3559 ++OpNum; 3560 for (unsigned i = 0; i != ConstStrSize; ++i) 3561 ConstrStr += (char)Record[OpNum + AsmStrSize + i]; 3562 UpgradeInlineAsmString(&AsmStr); 3563 V = InlineAsm::get(FnTy, AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 3564 InlineAsm::AsmDialect(AsmDialect), CanThrow); 3565 break; 3566 } 3567 case bitc::CST_CODE_BLOCKADDRESS:{ 3568 if (Record.size() < 3) 3569 return error("Invalid blockaddress record"); 3570 unsigned FnTyID = Record[0]; 3571 Type *FnTy = getTypeByID(FnTyID); 3572 if (!FnTy) 3573 return error("Invalid blockaddress record"); 3574 V = BitcodeConstant::create( 3575 Alloc, CurTy, 3576 {BitcodeConstant::BlockAddressOpcode, 0, (unsigned)Record[2]}, 3577 Record[1]); 3578 break; 3579 } 3580 case bitc::CST_CODE_DSO_LOCAL_EQUIVALENT: { 3581 if (Record.size() < 2) 3582 return error("Invalid dso_local record"); 3583 unsigned GVTyID = Record[0]; 3584 Type *GVTy = getTypeByID(GVTyID); 3585 if (!GVTy) 3586 return error("Invalid dso_local record"); 3587 V = BitcodeConstant::create( 3588 Alloc, CurTy, BitcodeConstant::DSOLocalEquivalentOpcode, Record[1]); 3589 break; 3590 } 3591 case bitc::CST_CODE_NO_CFI_VALUE: { 3592 if (Record.size() < 2) 3593 return error("Invalid no_cfi record"); 3594 unsigned GVTyID = Record[0]; 3595 Type *GVTy = getTypeByID(GVTyID); 3596 if (!GVTy) 3597 return error("Invalid no_cfi record"); 3598 V = BitcodeConstant::create(Alloc, CurTy, BitcodeConstant::NoCFIOpcode, 3599 Record[1]); 3600 break; 3601 } 3602 } 3603 3604 assert(V->getType() == getTypeByID(CurTyID) && "Incorrect result type ID"); 3605 if (Error Err = ValueList.assignValue(NextCstNo, V, CurTyID)) 3606 return Err; 3607 ++NextCstNo; 3608 } 3609 } 3610 3611 Error BitcodeReader::parseUseLists() { 3612 if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 3613 return Err; 3614 3615 // Read all the records. 3616 SmallVector<uint64_t, 64> Record; 3617 3618 while (true) { 3619 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 3620 if (!MaybeEntry) 3621 return MaybeEntry.takeError(); 3622 BitstreamEntry Entry = MaybeEntry.get(); 3623 3624 switch (Entry.Kind) { 3625 case BitstreamEntry::SubBlock: // Handled for us already. 3626 case BitstreamEntry::Error: 3627 return error("Malformed block"); 3628 case BitstreamEntry::EndBlock: 3629 return Error::success(); 3630 case BitstreamEntry::Record: 3631 // The interesting case. 3632 break; 3633 } 3634 3635 // Read a use list record. 3636 Record.clear(); 3637 bool IsBB = false; 3638 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 3639 if (!MaybeRecord) 3640 return MaybeRecord.takeError(); 3641 switch (MaybeRecord.get()) { 3642 default: // Default behavior: unknown type. 3643 break; 3644 case bitc::USELIST_CODE_BB: 3645 IsBB = true; 3646 [[fallthrough]]; 3647 case bitc::USELIST_CODE_DEFAULT: { 3648 unsigned RecordLength = Record.size(); 3649 if (RecordLength < 3) 3650 // Records should have at least an ID and two indexes. 3651 return error("Invalid record"); 3652 unsigned ID = Record.pop_back_val(); 3653 3654 Value *V; 3655 if (IsBB) { 3656 assert(ID < FunctionBBs.size() && "Basic block not found"); 3657 V = FunctionBBs[ID]; 3658 } else 3659 V = ValueList[ID]; 3660 unsigned NumUses = 0; 3661 SmallDenseMap<const Use *, unsigned, 16> Order; 3662 for (const Use &U : V->materialized_uses()) { 3663 if (++NumUses > Record.size()) 3664 break; 3665 Order[&U] = Record[NumUses - 1]; 3666 } 3667 if (Order.size() != Record.size() || NumUses > Record.size()) 3668 // Mismatches can happen if the functions are being materialized lazily 3669 // (out-of-order), or a value has been upgraded. 3670 break; 3671 3672 V->sortUseList([&](const Use &L, const Use &R) { 3673 return Order.lookup(&L) < Order.lookup(&R); 3674 }); 3675 break; 3676 } 3677 } 3678 } 3679 } 3680 3681 /// When we see the block for metadata, remember where it is and then skip it. 3682 /// This lets us lazily deserialize the metadata. 3683 Error BitcodeReader::rememberAndSkipMetadata() { 3684 // Save the current stream state. 3685 uint64_t CurBit = Stream.GetCurrentBitNo(); 3686 DeferredMetadataInfo.push_back(CurBit); 3687 3688 // Skip over the block for now. 3689 if (Error Err = Stream.SkipBlock()) 3690 return Err; 3691 return Error::success(); 3692 } 3693 3694 Error BitcodeReader::materializeMetadata() { 3695 for (uint64_t BitPos : DeferredMetadataInfo) { 3696 // Move the bit stream to the saved position. 3697 if (Error JumpFailed = Stream.JumpToBit(BitPos)) 3698 return JumpFailed; 3699 if (Error Err = MDLoader->parseModuleMetadata()) 3700 return Err; 3701 } 3702 3703 // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level 3704 // metadata. Only upgrade if the new option doesn't exist to avoid upgrade 3705 // multiple times. 3706 if (!TheModule->getNamedMetadata("llvm.linker.options")) { 3707 if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) { 3708 NamedMDNode *LinkerOpts = 3709 TheModule->getOrInsertNamedMetadata("llvm.linker.options"); 3710 for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands()) 3711 LinkerOpts->addOperand(cast<MDNode>(MDOptions)); 3712 } 3713 } 3714 3715 DeferredMetadataInfo.clear(); 3716 return Error::success(); 3717 } 3718 3719 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 3720 3721 /// When we see the block for a function body, remember where it is and then 3722 /// skip it. This lets us lazily deserialize the functions. 3723 Error BitcodeReader::rememberAndSkipFunctionBody() { 3724 // Get the function we are talking about. 3725 if (FunctionsWithBodies.empty()) 3726 return error("Insufficient function protos"); 3727 3728 Function *Fn = FunctionsWithBodies.back(); 3729 FunctionsWithBodies.pop_back(); 3730 3731 // Save the current stream state. 3732 uint64_t CurBit = Stream.GetCurrentBitNo(); 3733 assert( 3734 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 3735 "Mismatch between VST and scanned function offsets"); 3736 DeferredFunctionInfo[Fn] = CurBit; 3737 3738 // Skip over the function block for now. 3739 if (Error Err = Stream.SkipBlock()) 3740 return Err; 3741 return Error::success(); 3742 } 3743 3744 Error BitcodeReader::globalCleanup() { 3745 // Patch the initializers for globals and aliases up. 3746 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3747 return Err; 3748 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 3749 return error("Malformed global initializer set"); 3750 3751 // Look for intrinsic functions which need to be upgraded at some point 3752 // and functions that need to have their function attributes upgraded. 3753 for (Function &F : *TheModule) { 3754 MDLoader->upgradeDebugIntrinsics(F); 3755 Function *NewFn; 3756 if (UpgradeIntrinsicFunction(&F, NewFn)) 3757 UpgradedIntrinsics[&F] = NewFn; 3758 // Look for functions that rely on old function attribute behavior. 3759 UpgradeFunctionAttributes(F); 3760 } 3761 3762 // Look for global variables which need to be renamed. 3763 std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables; 3764 for (GlobalVariable &GV : TheModule->globals()) 3765 if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV)) 3766 UpgradedVariables.emplace_back(&GV, Upgraded); 3767 for (auto &Pair : UpgradedVariables) { 3768 Pair.first->eraseFromParent(); 3769 TheModule->insertGlobalVariable(Pair.second); 3770 } 3771 3772 // Force deallocation of memory for these vectors to favor the client that 3773 // want lazy deserialization. 3774 std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits); 3775 std::vector<std::pair<GlobalValue *, unsigned>>().swap(IndirectSymbolInits); 3776 return Error::success(); 3777 } 3778 3779 /// Support for lazy parsing of function bodies. This is required if we 3780 /// either have an old bitcode file without a VST forward declaration record, 3781 /// or if we have an anonymous function being materialized, since anonymous 3782 /// functions do not have a name and are therefore not in the VST. 3783 Error BitcodeReader::rememberAndSkipFunctionBodies() { 3784 if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit)) 3785 return JumpFailed; 3786 3787 if (Stream.AtEndOfStream()) 3788 return error("Could not find function in stream"); 3789 3790 if (!SeenFirstFunctionBody) 3791 return error("Trying to materialize functions before seeing function blocks"); 3792 3793 // An old bitcode file with the symbol table at the end would have 3794 // finished the parse greedily. 3795 assert(SeenValueSymbolTable); 3796 3797 SmallVector<uint64_t, 64> Record; 3798 3799 while (true) { 3800 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3801 if (!MaybeEntry) 3802 return MaybeEntry.takeError(); 3803 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3804 3805 switch (Entry.Kind) { 3806 default: 3807 return error("Expect SubBlock"); 3808 case BitstreamEntry::SubBlock: 3809 switch (Entry.ID) { 3810 default: 3811 return error("Expect function block"); 3812 case bitc::FUNCTION_BLOCK_ID: 3813 if (Error Err = rememberAndSkipFunctionBody()) 3814 return Err; 3815 NextUnreadBit = Stream.GetCurrentBitNo(); 3816 return Error::success(); 3817 } 3818 } 3819 } 3820 } 3821 3822 Error BitcodeReaderBase::readBlockInfo() { 3823 Expected<std::optional<BitstreamBlockInfo>> MaybeNewBlockInfo = 3824 Stream.ReadBlockInfoBlock(); 3825 if (!MaybeNewBlockInfo) 3826 return MaybeNewBlockInfo.takeError(); 3827 std::optional<BitstreamBlockInfo> NewBlockInfo = 3828 std::move(MaybeNewBlockInfo.get()); 3829 if (!NewBlockInfo) 3830 return error("Malformed block"); 3831 BlockInfo = std::move(*NewBlockInfo); 3832 return Error::success(); 3833 } 3834 3835 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) { 3836 // v1: [selection_kind, name] 3837 // v2: [strtab_offset, strtab_size, selection_kind] 3838 StringRef Name; 3839 std::tie(Name, Record) = readNameFromStrtab(Record); 3840 3841 if (Record.empty()) 3842 return error("Invalid record"); 3843 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 3844 std::string OldFormatName; 3845 if (!UseStrtab) { 3846 if (Record.size() < 2) 3847 return error("Invalid record"); 3848 unsigned ComdatNameSize = Record[1]; 3849 if (ComdatNameSize > Record.size() - 2) 3850 return error("Comdat name size too large"); 3851 OldFormatName.reserve(ComdatNameSize); 3852 for (unsigned i = 0; i != ComdatNameSize; ++i) 3853 OldFormatName += (char)Record[2 + i]; 3854 Name = OldFormatName; 3855 } 3856 Comdat *C = TheModule->getOrInsertComdat(Name); 3857 C->setSelectionKind(SK); 3858 ComdatList.push_back(C); 3859 return Error::success(); 3860 } 3861 3862 static void inferDSOLocal(GlobalValue *GV) { 3863 // infer dso_local from linkage and visibility if it is not encoded. 3864 if (GV->hasLocalLinkage() || 3865 (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())) 3866 GV->setDSOLocal(true); 3867 } 3868 3869 GlobalValue::SanitizerMetadata deserializeSanitizerMetadata(unsigned V) { 3870 GlobalValue::SanitizerMetadata Meta; 3871 if (V & (1 << 0)) 3872 Meta.NoAddress = true; 3873 if (V & (1 << 1)) 3874 Meta.NoHWAddress = true; 3875 if (V & (1 << 2)) 3876 Meta.Memtag = true; 3877 if (V & (1 << 3)) 3878 Meta.IsDynInit = true; 3879 return Meta; 3880 } 3881 3882 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) { 3883 // v1: [pointer type, isconst, initid, linkage, alignment, section, 3884 // visibility, threadlocal, unnamed_addr, externally_initialized, 3885 // dllstorageclass, comdat, attributes, preemption specifier, 3886 // partition strtab offset, partition strtab size] (name in VST) 3887 // v2: [strtab_offset, strtab_size, v1] 3888 // v3: [v2, code_model] 3889 StringRef Name; 3890 std::tie(Name, Record) = readNameFromStrtab(Record); 3891 3892 if (Record.size() < 6) 3893 return error("Invalid record"); 3894 unsigned TyID = Record[0]; 3895 Type *Ty = getTypeByID(TyID); 3896 if (!Ty) 3897 return error("Invalid record"); 3898 bool isConstant = Record[1] & 1; 3899 bool explicitType = Record[1] & 2; 3900 unsigned AddressSpace; 3901 if (explicitType) { 3902 AddressSpace = Record[1] >> 2; 3903 } else { 3904 if (!Ty->isPointerTy()) 3905 return error("Invalid type for value"); 3906 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 3907 TyID = getContainedTypeID(TyID); 3908 Ty = getTypeByID(TyID); 3909 if (!Ty) 3910 return error("Missing element type for old-style global"); 3911 } 3912 3913 uint64_t RawLinkage = Record[3]; 3914 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 3915 MaybeAlign Alignment; 3916 if (Error Err = parseAlignmentValue(Record[4], Alignment)) 3917 return Err; 3918 std::string Section; 3919 if (Record[5]) { 3920 if (Record[5] - 1 >= SectionTable.size()) 3921 return error("Invalid ID"); 3922 Section = SectionTable[Record[5] - 1]; 3923 } 3924 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 3925 // Local linkage must have default visibility. 3926 // auto-upgrade `hidden` and `protected` for old bitcode. 3927 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 3928 Visibility = getDecodedVisibility(Record[6]); 3929 3930 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 3931 if (Record.size() > 7) 3932 TLM = getDecodedThreadLocalMode(Record[7]); 3933 3934 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3935 if (Record.size() > 8) 3936 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); 3937 3938 bool ExternallyInitialized = false; 3939 if (Record.size() > 9) 3940 ExternallyInitialized = Record[9]; 3941 3942 GlobalVariable *NewGV = 3943 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name, 3944 nullptr, TLM, AddressSpace, ExternallyInitialized); 3945 if (Alignment) 3946 NewGV->setAlignment(*Alignment); 3947 if (!Section.empty()) 3948 NewGV->setSection(Section); 3949 NewGV->setVisibility(Visibility); 3950 NewGV->setUnnamedAddr(UnnamedAddr); 3951 3952 if (Record.size() > 10) { 3953 // A GlobalValue with local linkage cannot have a DLL storage class. 3954 if (!NewGV->hasLocalLinkage()) { 3955 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 3956 } 3957 } else { 3958 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 3959 } 3960 3961 ValueList.push_back(NewGV, getVirtualTypeID(NewGV->getType(), TyID)); 3962 3963 // Remember which value to use for the global initializer. 3964 if (unsigned InitID = Record[2]) 3965 GlobalInits.push_back(std::make_pair(NewGV, InitID - 1)); 3966 3967 if (Record.size() > 11) { 3968 if (unsigned ComdatID = Record[11]) { 3969 if (ComdatID > ComdatList.size()) 3970 return error("Invalid global variable comdat ID"); 3971 NewGV->setComdat(ComdatList[ComdatID - 1]); 3972 } 3973 } else if (hasImplicitComdat(RawLinkage)) { 3974 ImplicitComdatObjects.insert(NewGV); 3975 } 3976 3977 if (Record.size() > 12) { 3978 auto AS = getAttributes(Record[12]).getFnAttrs(); 3979 NewGV->setAttributes(AS); 3980 } 3981 3982 if (Record.size() > 13) { 3983 NewGV->setDSOLocal(getDecodedDSOLocal(Record[13])); 3984 } 3985 inferDSOLocal(NewGV); 3986 3987 // Check whether we have enough values to read a partition name. 3988 if (Record.size() > 15) 3989 NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15])); 3990 3991 if (Record.size() > 16 && Record[16]) { 3992 llvm::GlobalValue::SanitizerMetadata Meta = 3993 deserializeSanitizerMetadata(Record[16]); 3994 NewGV->setSanitizerMetadata(Meta); 3995 } 3996 3997 if (Record.size() > 17 && Record[17]) { 3998 if (auto CM = getDecodedCodeModel(Record[17])) 3999 NewGV->setCodeModel(*CM); 4000 else 4001 return error("Invalid global variable code model"); 4002 } 4003 4004 return Error::success(); 4005 } 4006 4007 void BitcodeReader::callValueTypeCallback(Value *F, unsigned TypeID) { 4008 if (ValueTypeCallback) { 4009 (*ValueTypeCallback)( 4010 F, TypeID, [this](unsigned I) { return getTypeByID(I); }, 4011 [this](unsigned I, unsigned J) { return getContainedTypeID(I, J); }); 4012 } 4013 } 4014 4015 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) { 4016 // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section, 4017 // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat, 4018 // prefixdata, personalityfn, preemption specifier, addrspace] (name in VST) 4019 // v2: [strtab_offset, strtab_size, v1] 4020 StringRef Name; 4021 std::tie(Name, Record) = readNameFromStrtab(Record); 4022 4023 if (Record.size() < 8) 4024 return error("Invalid record"); 4025 unsigned FTyID = Record[0]; 4026 Type *FTy = getTypeByID(FTyID); 4027 if (!FTy) 4028 return error("Invalid record"); 4029 if (isa<PointerType>(FTy)) { 4030 FTyID = getContainedTypeID(FTyID, 0); 4031 FTy = getTypeByID(FTyID); 4032 if (!FTy) 4033 return error("Missing element type for old-style function"); 4034 } 4035 4036 if (!isa<FunctionType>(FTy)) 4037 return error("Invalid type for value"); 4038 auto CC = static_cast<CallingConv::ID>(Record[1]); 4039 if (CC & ~CallingConv::MaxID) 4040 return error("Invalid calling convention ID"); 4041 4042 unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace(); 4043 if (Record.size() > 16) 4044 AddrSpace = Record[16]; 4045 4046 Function *Func = 4047 Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage, 4048 AddrSpace, Name, TheModule); 4049 4050 assert(Func->getFunctionType() == FTy && 4051 "Incorrect fully specified type provided for function"); 4052 FunctionTypeIDs[Func] = FTyID; 4053 4054 Func->setCallingConv(CC); 4055 bool isProto = Record[2]; 4056 uint64_t RawLinkage = Record[3]; 4057 Func->setLinkage(getDecodedLinkage(RawLinkage)); 4058 Func->setAttributes(getAttributes(Record[4])); 4059 callValueTypeCallback(Func, FTyID); 4060 4061 // Upgrade any old-style byval or sret without a type by propagating the 4062 // argument's pointee type. There should be no opaque pointers where the byval 4063 // type is implicit. 4064 for (unsigned i = 0; i != Func->arg_size(); ++i) { 4065 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet, 4066 Attribute::InAlloca}) { 4067 if (!Func->hasParamAttribute(i, Kind)) 4068 continue; 4069 4070 if (Func->getParamAttribute(i, Kind).getValueAsType()) 4071 continue; 4072 4073 Func->removeParamAttr(i, Kind); 4074 4075 unsigned ParamTypeID = getContainedTypeID(FTyID, i + 1); 4076 Type *PtrEltTy = getPtrElementTypeByID(ParamTypeID); 4077 if (!PtrEltTy) 4078 return error("Missing param element type for attribute upgrade"); 4079 4080 Attribute NewAttr; 4081 switch (Kind) { 4082 case Attribute::ByVal: 4083 NewAttr = Attribute::getWithByValType(Context, PtrEltTy); 4084 break; 4085 case Attribute::StructRet: 4086 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy); 4087 break; 4088 case Attribute::InAlloca: 4089 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy); 4090 break; 4091 default: 4092 llvm_unreachable("not an upgraded type attribute"); 4093 } 4094 4095 Func->addParamAttr(i, NewAttr); 4096 } 4097 } 4098 4099 if (Func->getCallingConv() == CallingConv::X86_INTR && 4100 !Func->arg_empty() && !Func->hasParamAttribute(0, Attribute::ByVal)) { 4101 unsigned ParamTypeID = getContainedTypeID(FTyID, 1); 4102 Type *ByValTy = getPtrElementTypeByID(ParamTypeID); 4103 if (!ByValTy) 4104 return error("Missing param element type for x86_intrcc upgrade"); 4105 Attribute NewAttr = Attribute::getWithByValType(Context, ByValTy); 4106 Func->addParamAttr(0, NewAttr); 4107 } 4108 4109 MaybeAlign Alignment; 4110 if (Error Err = parseAlignmentValue(Record[5], Alignment)) 4111 return Err; 4112 if (Alignment) 4113 Func->setAlignment(*Alignment); 4114 if (Record[6]) { 4115 if (Record[6] - 1 >= SectionTable.size()) 4116 return error("Invalid ID"); 4117 Func->setSection(SectionTable[Record[6] - 1]); 4118 } 4119 // Local linkage must have default visibility. 4120 // auto-upgrade `hidden` and `protected` for old bitcode. 4121 if (!Func->hasLocalLinkage()) 4122 Func->setVisibility(getDecodedVisibility(Record[7])); 4123 if (Record.size() > 8 && Record[8]) { 4124 if (Record[8] - 1 >= GCTable.size()) 4125 return error("Invalid ID"); 4126 Func->setGC(GCTable[Record[8] - 1]); 4127 } 4128 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 4129 if (Record.size() > 9) 4130 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); 4131 Func->setUnnamedAddr(UnnamedAddr); 4132 4133 FunctionOperandInfo OperandInfo = {Func, 0, 0, 0}; 4134 if (Record.size() > 10) 4135 OperandInfo.Prologue = Record[10]; 4136 4137 if (Record.size() > 11) { 4138 // A GlobalValue with local linkage cannot have a DLL storage class. 4139 if (!Func->hasLocalLinkage()) { 4140 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 4141 } 4142 } else { 4143 upgradeDLLImportExportLinkage(Func, RawLinkage); 4144 } 4145 4146 if (Record.size() > 12) { 4147 if (unsigned ComdatID = Record[12]) { 4148 if (ComdatID > ComdatList.size()) 4149 return error("Invalid function comdat ID"); 4150 Func->setComdat(ComdatList[ComdatID - 1]); 4151 } 4152 } else if (hasImplicitComdat(RawLinkage)) { 4153 ImplicitComdatObjects.insert(Func); 4154 } 4155 4156 if (Record.size() > 13) 4157 OperandInfo.Prefix = Record[13]; 4158 4159 if (Record.size() > 14) 4160 OperandInfo.PersonalityFn = Record[14]; 4161 4162 if (Record.size() > 15) { 4163 Func->setDSOLocal(getDecodedDSOLocal(Record[15])); 4164 } 4165 inferDSOLocal(Func); 4166 4167 // Record[16] is the address space number. 4168 4169 // Check whether we have enough values to read a partition name. Also make 4170 // sure Strtab has enough values. 4171 if (Record.size() > 18 && Strtab.data() && 4172 Record[17] + Record[18] <= Strtab.size()) { 4173 Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18])); 4174 } 4175 4176 ValueList.push_back(Func, getVirtualTypeID(Func->getType(), FTyID)); 4177 4178 if (OperandInfo.PersonalityFn || OperandInfo.Prefix || OperandInfo.Prologue) 4179 FunctionOperands.push_back(OperandInfo); 4180 4181 // If this is a function with a body, remember the prototype we are 4182 // creating now, so that we can match up the body with them later. 4183 if (!isProto) { 4184 Func->setIsMaterializable(true); 4185 FunctionsWithBodies.push_back(Func); 4186 DeferredFunctionInfo[Func] = 0; 4187 } 4188 return Error::success(); 4189 } 4190 4191 Error BitcodeReader::parseGlobalIndirectSymbolRecord( 4192 unsigned BitCode, ArrayRef<uint64_t> Record) { 4193 // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST) 4194 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 4195 // dllstorageclass, threadlocal, unnamed_addr, 4196 // preemption specifier] (name in VST) 4197 // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage, 4198 // visibility, dllstorageclass, threadlocal, unnamed_addr, 4199 // preemption specifier] (name in VST) 4200 // v2: [strtab_offset, strtab_size, v1] 4201 StringRef Name; 4202 std::tie(Name, Record) = readNameFromStrtab(Record); 4203 4204 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 4205 if (Record.size() < (3 + (unsigned)NewRecord)) 4206 return error("Invalid record"); 4207 unsigned OpNum = 0; 4208 unsigned TypeID = Record[OpNum++]; 4209 Type *Ty = getTypeByID(TypeID); 4210 if (!Ty) 4211 return error("Invalid record"); 4212 4213 unsigned AddrSpace; 4214 if (!NewRecord) { 4215 auto *PTy = dyn_cast<PointerType>(Ty); 4216 if (!PTy) 4217 return error("Invalid type for value"); 4218 AddrSpace = PTy->getAddressSpace(); 4219 TypeID = getContainedTypeID(TypeID); 4220 Ty = getTypeByID(TypeID); 4221 if (!Ty) 4222 return error("Missing element type for old-style indirect symbol"); 4223 } else { 4224 AddrSpace = Record[OpNum++]; 4225 } 4226 4227 auto Val = Record[OpNum++]; 4228 auto Linkage = Record[OpNum++]; 4229 GlobalValue *NewGA; 4230 if (BitCode == bitc::MODULE_CODE_ALIAS || 4231 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 4232 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 4233 TheModule); 4234 else 4235 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 4236 nullptr, TheModule); 4237 4238 // Local linkage must have default visibility. 4239 // auto-upgrade `hidden` and `protected` for old bitcode. 4240 if (OpNum != Record.size()) { 4241 auto VisInd = OpNum++; 4242 if (!NewGA->hasLocalLinkage()) 4243 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 4244 } 4245 if (BitCode == bitc::MODULE_CODE_ALIAS || 4246 BitCode == bitc::MODULE_CODE_ALIAS_OLD) { 4247 if (OpNum != Record.size()) { 4248 auto S = Record[OpNum++]; 4249 // A GlobalValue with local linkage cannot have a DLL storage class. 4250 if (!NewGA->hasLocalLinkage()) 4251 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(S)); 4252 } 4253 else 4254 upgradeDLLImportExportLinkage(NewGA, Linkage); 4255 if (OpNum != Record.size()) 4256 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 4257 if (OpNum != Record.size()) 4258 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); 4259 } 4260 if (OpNum != Record.size()) 4261 NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++])); 4262 inferDSOLocal(NewGA); 4263 4264 // Check whether we have enough values to read a partition name. 4265 if (OpNum + 1 < Record.size()) { 4266 // Check Strtab has enough values for the partition. 4267 if (Record[OpNum] + Record[OpNum + 1] > Strtab.size()) 4268 return error("Malformed partition, too large."); 4269 NewGA->setPartition( 4270 StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1])); 4271 OpNum += 2; 4272 } 4273 4274 ValueList.push_back(NewGA, getVirtualTypeID(NewGA->getType(), TypeID)); 4275 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 4276 return Error::success(); 4277 } 4278 4279 Error BitcodeReader::parseModule(uint64_t ResumeBit, 4280 bool ShouldLazyLoadMetadata, 4281 ParserCallbacks Callbacks) { 4282 this->ValueTypeCallback = std::move(Callbacks.ValueType); 4283 if (ResumeBit) { 4284 if (Error JumpFailed = Stream.JumpToBit(ResumeBit)) 4285 return JumpFailed; 4286 } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 4287 return Err; 4288 4289 SmallVector<uint64_t, 64> Record; 4290 4291 // Parts of bitcode parsing depend on the datalayout. Make sure we 4292 // finalize the datalayout before we run any of that code. 4293 bool ResolvedDataLayout = false; 4294 // In order to support importing modules with illegal data layout strings, 4295 // delay parsing the data layout string until after upgrades and overrides 4296 // have been applied, allowing to fix illegal data layout strings. 4297 // Initialize to the current module's layout string in case none is specified. 4298 std::string TentativeDataLayoutStr = TheModule->getDataLayoutStr(); 4299 4300 auto ResolveDataLayout = [&]() -> Error { 4301 if (ResolvedDataLayout) 4302 return Error::success(); 4303 4304 // Datalayout and triple can't be parsed after this point. 4305 ResolvedDataLayout = true; 4306 4307 // Auto-upgrade the layout string 4308 TentativeDataLayoutStr = llvm::UpgradeDataLayoutString( 4309 TentativeDataLayoutStr, TheModule->getTargetTriple()); 4310 4311 // Apply override 4312 if (Callbacks.DataLayout) { 4313 if (auto LayoutOverride = (*Callbacks.DataLayout)( 4314 TheModule->getTargetTriple(), TentativeDataLayoutStr)) 4315 TentativeDataLayoutStr = *LayoutOverride; 4316 } 4317 4318 // Now the layout string is finalized in TentativeDataLayoutStr. Parse it. 4319 Expected<DataLayout> MaybeDL = DataLayout::parse(TentativeDataLayoutStr); 4320 if (!MaybeDL) 4321 return MaybeDL.takeError(); 4322 4323 TheModule->setDataLayout(MaybeDL.get()); 4324 return Error::success(); 4325 }; 4326 4327 // Read all the records for this module. 4328 while (true) { 4329 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 4330 if (!MaybeEntry) 4331 return MaybeEntry.takeError(); 4332 llvm::BitstreamEntry Entry = MaybeEntry.get(); 4333 4334 switch (Entry.Kind) { 4335 case BitstreamEntry::Error: 4336 return error("Malformed block"); 4337 case BitstreamEntry::EndBlock: 4338 if (Error Err = ResolveDataLayout()) 4339 return Err; 4340 return globalCleanup(); 4341 4342 case BitstreamEntry::SubBlock: 4343 switch (Entry.ID) { 4344 default: // Skip unknown content. 4345 if (Error Err = Stream.SkipBlock()) 4346 return Err; 4347 break; 4348 case bitc::BLOCKINFO_BLOCK_ID: 4349 if (Error Err = readBlockInfo()) 4350 return Err; 4351 break; 4352 case bitc::PARAMATTR_BLOCK_ID: 4353 if (Error Err = parseAttributeBlock()) 4354 return Err; 4355 break; 4356 case bitc::PARAMATTR_GROUP_BLOCK_ID: 4357 if (Error Err = parseAttributeGroupBlock()) 4358 return Err; 4359 break; 4360 case bitc::TYPE_BLOCK_ID_NEW: 4361 if (Error Err = parseTypeTable()) 4362 return Err; 4363 break; 4364 case bitc::VALUE_SYMTAB_BLOCK_ID: 4365 if (!SeenValueSymbolTable) { 4366 // Either this is an old form VST without function index and an 4367 // associated VST forward declaration record (which would have caused 4368 // the VST to be jumped to and parsed before it was encountered 4369 // normally in the stream), or there were no function blocks to 4370 // trigger an earlier parsing of the VST. 4371 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 4372 if (Error Err = parseValueSymbolTable()) 4373 return Err; 4374 SeenValueSymbolTable = true; 4375 } else { 4376 // We must have had a VST forward declaration record, which caused 4377 // the parser to jump to and parse the VST earlier. 4378 assert(VSTOffset > 0); 4379 if (Error Err = Stream.SkipBlock()) 4380 return Err; 4381 } 4382 break; 4383 case bitc::CONSTANTS_BLOCK_ID: 4384 if (Error Err = parseConstants()) 4385 return Err; 4386 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 4387 return Err; 4388 break; 4389 case bitc::METADATA_BLOCK_ID: 4390 if (ShouldLazyLoadMetadata) { 4391 if (Error Err = rememberAndSkipMetadata()) 4392 return Err; 4393 break; 4394 } 4395 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 4396 if (Error Err = MDLoader->parseModuleMetadata()) 4397 return Err; 4398 break; 4399 case bitc::METADATA_KIND_BLOCK_ID: 4400 if (Error Err = MDLoader->parseMetadataKinds()) 4401 return Err; 4402 break; 4403 case bitc::FUNCTION_BLOCK_ID: 4404 if (Error Err = ResolveDataLayout()) 4405 return Err; 4406 4407 // If this is the first function body we've seen, reverse the 4408 // FunctionsWithBodies list. 4409 if (!SeenFirstFunctionBody) { 4410 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 4411 if (Error Err = globalCleanup()) 4412 return Err; 4413 SeenFirstFunctionBody = true; 4414 } 4415 4416 if (VSTOffset > 0) { 4417 // If we have a VST forward declaration record, make sure we 4418 // parse the VST now if we haven't already. It is needed to 4419 // set up the DeferredFunctionInfo vector for lazy reading. 4420 if (!SeenValueSymbolTable) { 4421 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset)) 4422 return Err; 4423 SeenValueSymbolTable = true; 4424 // Fall through so that we record the NextUnreadBit below. 4425 // This is necessary in case we have an anonymous function that 4426 // is later materialized. Since it will not have a VST entry we 4427 // need to fall back to the lazy parse to find its offset. 4428 } else { 4429 // If we have a VST forward declaration record, but have already 4430 // parsed the VST (just above, when the first function body was 4431 // encountered here), then we are resuming the parse after 4432 // materializing functions. The ResumeBit points to the 4433 // start of the last function block recorded in the 4434 // DeferredFunctionInfo map. Skip it. 4435 if (Error Err = Stream.SkipBlock()) 4436 return Err; 4437 continue; 4438 } 4439 } 4440 4441 // Support older bitcode files that did not have the function 4442 // index in the VST, nor a VST forward declaration record, as 4443 // well as anonymous functions that do not have VST entries. 4444 // Build the DeferredFunctionInfo vector on the fly. 4445 if (Error Err = rememberAndSkipFunctionBody()) 4446 return Err; 4447 4448 // Suspend parsing when we reach the function bodies. Subsequent 4449 // materialization calls will resume it when necessary. If the bitcode 4450 // file is old, the symbol table will be at the end instead and will not 4451 // have been seen yet. In this case, just finish the parse now. 4452 if (SeenValueSymbolTable) { 4453 NextUnreadBit = Stream.GetCurrentBitNo(); 4454 // After the VST has been parsed, we need to make sure intrinsic name 4455 // are auto-upgraded. 4456 return globalCleanup(); 4457 } 4458 break; 4459 case bitc::USELIST_BLOCK_ID: 4460 if (Error Err = parseUseLists()) 4461 return Err; 4462 break; 4463 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 4464 if (Error Err = parseOperandBundleTags()) 4465 return Err; 4466 break; 4467 case bitc::SYNC_SCOPE_NAMES_BLOCK_ID: 4468 if (Error Err = parseSyncScopeNames()) 4469 return Err; 4470 break; 4471 } 4472 continue; 4473 4474 case BitstreamEntry::Record: 4475 // The interesting case. 4476 break; 4477 } 4478 4479 // Read a record. 4480 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 4481 if (!MaybeBitCode) 4482 return MaybeBitCode.takeError(); 4483 switch (unsigned BitCode = MaybeBitCode.get()) { 4484 default: break; // Default behavior, ignore unknown content. 4485 case bitc::MODULE_CODE_VERSION: { 4486 Expected<unsigned> VersionOrErr = parseVersionRecord(Record); 4487 if (!VersionOrErr) 4488 return VersionOrErr.takeError(); 4489 UseRelativeIDs = *VersionOrErr >= 1; 4490 break; 4491 } 4492 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 4493 if (ResolvedDataLayout) 4494 return error("target triple too late in module"); 4495 std::string S; 4496 if (convertToString(Record, 0, S)) 4497 return error("Invalid record"); 4498 TheModule->setTargetTriple(S); 4499 break; 4500 } 4501 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 4502 if (ResolvedDataLayout) 4503 return error("datalayout too late in module"); 4504 if (convertToString(Record, 0, TentativeDataLayoutStr)) 4505 return error("Invalid record"); 4506 break; 4507 } 4508 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 4509 std::string S; 4510 if (convertToString(Record, 0, S)) 4511 return error("Invalid record"); 4512 TheModule->setModuleInlineAsm(S); 4513 break; 4514 } 4515 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 4516 // Deprecated, but still needed to read old bitcode files. 4517 std::string S; 4518 if (convertToString(Record, 0, S)) 4519 return error("Invalid record"); 4520 // Ignore value. 4521 break; 4522 } 4523 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 4524 std::string S; 4525 if (convertToString(Record, 0, S)) 4526 return error("Invalid record"); 4527 SectionTable.push_back(S); 4528 break; 4529 } 4530 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 4531 std::string S; 4532 if (convertToString(Record, 0, S)) 4533 return error("Invalid record"); 4534 GCTable.push_back(S); 4535 break; 4536 } 4537 case bitc::MODULE_CODE_COMDAT: 4538 if (Error Err = parseComdatRecord(Record)) 4539 return Err; 4540 break; 4541 // FIXME: BitcodeReader should handle {GLOBALVAR, FUNCTION, ALIAS, IFUNC} 4542 // written by ThinLinkBitcodeWriter. See 4543 // `ThinLinkBitcodeWriter::writeSimplifiedModuleInfo` for the format of each 4544 // record 4545 // (https://github.com/llvm/llvm-project/blob/b6a93967d9c11e79802b5e75cec1584d6c8aa472/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp#L4714) 4546 case bitc::MODULE_CODE_GLOBALVAR: 4547 if (Error Err = parseGlobalVarRecord(Record)) 4548 return Err; 4549 break; 4550 case bitc::MODULE_CODE_FUNCTION: 4551 if (Error Err = ResolveDataLayout()) 4552 return Err; 4553 if (Error Err = parseFunctionRecord(Record)) 4554 return Err; 4555 break; 4556 case bitc::MODULE_CODE_IFUNC: 4557 case bitc::MODULE_CODE_ALIAS: 4558 case bitc::MODULE_CODE_ALIAS_OLD: 4559 if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record)) 4560 return Err; 4561 break; 4562 /// MODULE_CODE_VSTOFFSET: [offset] 4563 case bitc::MODULE_CODE_VSTOFFSET: 4564 if (Record.empty()) 4565 return error("Invalid record"); 4566 // Note that we subtract 1 here because the offset is relative to one word 4567 // before the start of the identification or module block, which was 4568 // historically always the start of the regular bitcode header. 4569 VSTOffset = Record[0] - 1; 4570 break; 4571 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4572 case bitc::MODULE_CODE_SOURCE_FILENAME: 4573 SmallString<128> ValueName; 4574 if (convertToString(Record, 0, ValueName)) 4575 return error("Invalid record"); 4576 TheModule->setSourceFileName(ValueName); 4577 break; 4578 } 4579 Record.clear(); 4580 } 4581 this->ValueTypeCallback = std::nullopt; 4582 return Error::success(); 4583 } 4584 4585 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 4586 bool IsImporting, 4587 ParserCallbacks Callbacks) { 4588 TheModule = M; 4589 MetadataLoaderCallbacks MDCallbacks; 4590 MDCallbacks.GetTypeByID = [&](unsigned ID) { return getTypeByID(ID); }; 4591 MDCallbacks.GetContainedTypeID = [&](unsigned I, unsigned J) { 4592 return getContainedTypeID(I, J); 4593 }; 4594 MDCallbacks.MDType = Callbacks.MDType; 4595 MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, MDCallbacks); 4596 return parseModule(0, ShouldLazyLoadMetadata, Callbacks); 4597 } 4598 4599 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 4600 if (!isa<PointerType>(PtrType)) 4601 return error("Load/Store operand is not a pointer type"); 4602 if (!PointerType::isLoadableOrStorableType(ValType)) 4603 return error("Cannot load/store from pointer"); 4604 return Error::success(); 4605 } 4606 4607 Error BitcodeReader::propagateAttributeTypes(CallBase *CB, 4608 ArrayRef<unsigned> ArgTyIDs) { 4609 AttributeList Attrs = CB->getAttributes(); 4610 for (unsigned i = 0; i != CB->arg_size(); ++i) { 4611 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet, 4612 Attribute::InAlloca}) { 4613 if (!Attrs.hasParamAttr(i, Kind) || 4614 Attrs.getParamAttr(i, Kind).getValueAsType()) 4615 continue; 4616 4617 Type *PtrEltTy = getPtrElementTypeByID(ArgTyIDs[i]); 4618 if (!PtrEltTy) 4619 return error("Missing element type for typed attribute upgrade"); 4620 4621 Attribute NewAttr; 4622 switch (Kind) { 4623 case Attribute::ByVal: 4624 NewAttr = Attribute::getWithByValType(Context, PtrEltTy); 4625 break; 4626 case Attribute::StructRet: 4627 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy); 4628 break; 4629 case Attribute::InAlloca: 4630 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy); 4631 break; 4632 default: 4633 llvm_unreachable("not an upgraded type attribute"); 4634 } 4635 4636 Attrs = Attrs.addParamAttribute(Context, i, NewAttr); 4637 } 4638 } 4639 4640 if (CB->isInlineAsm()) { 4641 const InlineAsm *IA = cast<InlineAsm>(CB->getCalledOperand()); 4642 unsigned ArgNo = 0; 4643 for (const InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 4644 if (!CI.hasArg()) 4645 continue; 4646 4647 if (CI.isIndirect && !Attrs.getParamElementType(ArgNo)) { 4648 Type *ElemTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]); 4649 if (!ElemTy) 4650 return error("Missing element type for inline asm upgrade"); 4651 Attrs = Attrs.addParamAttribute( 4652 Context, ArgNo, 4653 Attribute::get(Context, Attribute::ElementType, ElemTy)); 4654 } 4655 4656 ArgNo++; 4657 } 4658 } 4659 4660 switch (CB->getIntrinsicID()) { 4661 case Intrinsic::preserve_array_access_index: 4662 case Intrinsic::preserve_struct_access_index: 4663 case Intrinsic::aarch64_ldaxr: 4664 case Intrinsic::aarch64_ldxr: 4665 case Intrinsic::aarch64_stlxr: 4666 case Intrinsic::aarch64_stxr: 4667 case Intrinsic::arm_ldaex: 4668 case Intrinsic::arm_ldrex: 4669 case Intrinsic::arm_stlex: 4670 case Intrinsic::arm_strex: { 4671 unsigned ArgNo; 4672 switch (CB->getIntrinsicID()) { 4673 case Intrinsic::aarch64_stlxr: 4674 case Intrinsic::aarch64_stxr: 4675 case Intrinsic::arm_stlex: 4676 case Intrinsic::arm_strex: 4677 ArgNo = 1; 4678 break; 4679 default: 4680 ArgNo = 0; 4681 break; 4682 } 4683 if (!Attrs.getParamElementType(ArgNo)) { 4684 Type *ElTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]); 4685 if (!ElTy) 4686 return error("Missing element type for elementtype upgrade"); 4687 Attribute NewAttr = Attribute::get(Context, Attribute::ElementType, ElTy); 4688 Attrs = Attrs.addParamAttribute(Context, ArgNo, NewAttr); 4689 } 4690 break; 4691 } 4692 default: 4693 break; 4694 } 4695 4696 CB->setAttributes(Attrs); 4697 return Error::success(); 4698 } 4699 4700 /// Lazily parse the specified function body block. 4701 Error BitcodeReader::parseFunctionBody(Function *F) { 4702 if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 4703 return Err; 4704 4705 // Unexpected unresolved metadata when parsing function. 4706 if (MDLoader->hasFwdRefs()) 4707 return error("Invalid function metadata: incoming forward references"); 4708 4709 InstructionList.clear(); 4710 unsigned ModuleValueListSize = ValueList.size(); 4711 unsigned ModuleMDLoaderSize = MDLoader->size(); 4712 4713 // Add all the function arguments to the value table. 4714 unsigned ArgNo = 0; 4715 unsigned FTyID = FunctionTypeIDs[F]; 4716 for (Argument &I : F->args()) { 4717 unsigned ArgTyID = getContainedTypeID(FTyID, ArgNo + 1); 4718 assert(I.getType() == getTypeByID(ArgTyID) && 4719 "Incorrect fully specified type for Function Argument"); 4720 ValueList.push_back(&I, ArgTyID); 4721 ++ArgNo; 4722 } 4723 unsigned NextValueNo = ValueList.size(); 4724 BasicBlock *CurBB = nullptr; 4725 unsigned CurBBNo = 0; 4726 // Block into which constant expressions from phi nodes are materialized. 4727 BasicBlock *PhiConstExprBB = nullptr; 4728 // Edge blocks for phi nodes into which constant expressions have been 4729 // expanded. 4730 SmallMapVector<std::pair<BasicBlock *, BasicBlock *>, BasicBlock *, 4> 4731 ConstExprEdgeBBs; 4732 4733 DebugLoc LastLoc; 4734 auto getLastInstruction = [&]() -> Instruction * { 4735 if (CurBB && !CurBB->empty()) 4736 return &CurBB->back(); 4737 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 4738 !FunctionBBs[CurBBNo - 1]->empty()) 4739 return &FunctionBBs[CurBBNo - 1]->back(); 4740 return nullptr; 4741 }; 4742 4743 std::vector<OperandBundleDef> OperandBundles; 4744 4745 // Read all the records. 4746 SmallVector<uint64_t, 64> Record; 4747 4748 while (true) { 4749 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 4750 if (!MaybeEntry) 4751 return MaybeEntry.takeError(); 4752 llvm::BitstreamEntry Entry = MaybeEntry.get(); 4753 4754 switch (Entry.Kind) { 4755 case BitstreamEntry::Error: 4756 return error("Malformed block"); 4757 case BitstreamEntry::EndBlock: 4758 goto OutOfRecordLoop; 4759 4760 case BitstreamEntry::SubBlock: 4761 switch (Entry.ID) { 4762 default: // Skip unknown content. 4763 if (Error Err = Stream.SkipBlock()) 4764 return Err; 4765 break; 4766 case bitc::CONSTANTS_BLOCK_ID: 4767 if (Error Err = parseConstants()) 4768 return Err; 4769 NextValueNo = ValueList.size(); 4770 break; 4771 case bitc::VALUE_SYMTAB_BLOCK_ID: 4772 if (Error Err = parseValueSymbolTable()) 4773 return Err; 4774 break; 4775 case bitc::METADATA_ATTACHMENT_ID: 4776 if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList)) 4777 return Err; 4778 break; 4779 case bitc::METADATA_BLOCK_ID: 4780 assert(DeferredMetadataInfo.empty() && 4781 "Must read all module-level metadata before function-level"); 4782 if (Error Err = MDLoader->parseFunctionMetadata()) 4783 return Err; 4784 break; 4785 case bitc::USELIST_BLOCK_ID: 4786 if (Error Err = parseUseLists()) 4787 return Err; 4788 break; 4789 } 4790 continue; 4791 4792 case BitstreamEntry::Record: 4793 // The interesting case. 4794 break; 4795 } 4796 4797 // Read a record. 4798 Record.clear(); 4799 Instruction *I = nullptr; 4800 unsigned ResTypeID = InvalidTypeID; 4801 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 4802 if (!MaybeBitCode) 4803 return MaybeBitCode.takeError(); 4804 switch (unsigned BitCode = MaybeBitCode.get()) { 4805 default: // Default behavior: reject 4806 return error("Invalid value"); 4807 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 4808 if (Record.empty() || Record[0] == 0) 4809 return error("Invalid record"); 4810 // Create all the basic blocks for the function. 4811 FunctionBBs.resize(Record[0]); 4812 4813 // See if anything took the address of blocks in this function. 4814 auto BBFRI = BasicBlockFwdRefs.find(F); 4815 if (BBFRI == BasicBlockFwdRefs.end()) { 4816 for (BasicBlock *&BB : FunctionBBs) 4817 BB = BasicBlock::Create(Context, "", F); 4818 } else { 4819 auto &BBRefs = BBFRI->second; 4820 // Check for invalid basic block references. 4821 if (BBRefs.size() > FunctionBBs.size()) 4822 return error("Invalid ID"); 4823 assert(!BBRefs.empty() && "Unexpected empty array"); 4824 assert(!BBRefs.front() && "Invalid reference to entry block"); 4825 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 4826 ++I) 4827 if (I < RE && BBRefs[I]) { 4828 BBRefs[I]->insertInto(F); 4829 FunctionBBs[I] = BBRefs[I]; 4830 } else { 4831 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 4832 } 4833 4834 // Erase from the table. 4835 BasicBlockFwdRefs.erase(BBFRI); 4836 } 4837 4838 CurBB = FunctionBBs[0]; 4839 continue; 4840 } 4841 4842 case bitc::FUNC_CODE_BLOCKADDR_USERS: // BLOCKADDR_USERS: [vals...] 4843 // The record should not be emitted if it's an empty list. 4844 if (Record.empty()) 4845 return error("Invalid record"); 4846 // When we have the RARE case of a BlockAddress Constant that is not 4847 // scoped to the Function it refers to, we need to conservatively 4848 // materialize the referred to Function, regardless of whether or not 4849 // that Function will ultimately be linked, otherwise users of 4850 // BitcodeReader might start splicing out Function bodies such that we 4851 // might no longer be able to materialize the BlockAddress since the 4852 // BasicBlock (and entire body of the Function) the BlockAddress refers 4853 // to may have been moved. In the case that the user of BitcodeReader 4854 // decides ultimately not to link the Function body, materializing here 4855 // could be considered wasteful, but it's better than a deserialization 4856 // failure as described. This keeps BitcodeReader unaware of complex 4857 // linkage policy decisions such as those use by LTO, leaving those 4858 // decisions "one layer up." 4859 for (uint64_t ValID : Record) 4860 if (auto *F = dyn_cast<Function>(ValueList[ValID])) 4861 BackwardRefFunctions.push_back(F); 4862 else 4863 return error("Invalid record"); 4864 4865 continue; 4866 4867 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 4868 // This record indicates that the last instruction is at the same 4869 // location as the previous instruction with a location. 4870 I = getLastInstruction(); 4871 4872 if (!I) 4873 return error("Invalid record"); 4874 I->setDebugLoc(LastLoc); 4875 I = nullptr; 4876 continue; 4877 4878 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 4879 I = getLastInstruction(); 4880 if (!I || Record.size() < 4) 4881 return error("Invalid record"); 4882 4883 unsigned Line = Record[0], Col = Record[1]; 4884 unsigned ScopeID = Record[2], IAID = Record[3]; 4885 bool isImplicitCode = Record.size() == 5 && Record[4]; 4886 4887 MDNode *Scope = nullptr, *IA = nullptr; 4888 if (ScopeID) { 4889 Scope = dyn_cast_or_null<MDNode>( 4890 MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1)); 4891 if (!Scope) 4892 return error("Invalid record"); 4893 } 4894 if (IAID) { 4895 IA = dyn_cast_or_null<MDNode>( 4896 MDLoader->getMetadataFwdRefOrLoad(IAID - 1)); 4897 if (!IA) 4898 return error("Invalid record"); 4899 } 4900 LastLoc = DILocation::get(Scope->getContext(), Line, Col, Scope, IA, 4901 isImplicitCode); 4902 I->setDebugLoc(LastLoc); 4903 I = nullptr; 4904 continue; 4905 } 4906 case bitc::FUNC_CODE_INST_UNOP: { // UNOP: [opval, ty, opcode] 4907 unsigned OpNum = 0; 4908 Value *LHS; 4909 unsigned TypeID; 4910 if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) || 4911 OpNum+1 > Record.size()) 4912 return error("Invalid record"); 4913 4914 int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType()); 4915 if (Opc == -1) 4916 return error("Invalid record"); 4917 I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 4918 ResTypeID = TypeID; 4919 InstructionList.push_back(I); 4920 if (OpNum < Record.size()) { 4921 if (isa<FPMathOperator>(I)) { 4922 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4923 if (FMF.any()) 4924 I->setFastMathFlags(FMF); 4925 } 4926 } 4927 break; 4928 } 4929 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 4930 unsigned OpNum = 0; 4931 Value *LHS, *RHS; 4932 unsigned TypeID; 4933 if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) || 4934 popValue(Record, OpNum, NextValueNo, LHS->getType(), TypeID, RHS, 4935 CurBB) || 4936 OpNum+1 > Record.size()) 4937 return error("Invalid record"); 4938 4939 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 4940 if (Opc == -1) 4941 return error("Invalid record"); 4942 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 4943 ResTypeID = TypeID; 4944 InstructionList.push_back(I); 4945 if (OpNum < Record.size()) { 4946 if (Opc == Instruction::Add || 4947 Opc == Instruction::Sub || 4948 Opc == Instruction::Mul || 4949 Opc == Instruction::Shl) { 4950 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 4951 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 4952 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 4953 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 4954 } else if (Opc == Instruction::SDiv || 4955 Opc == Instruction::UDiv || 4956 Opc == Instruction::LShr || 4957 Opc == Instruction::AShr) { 4958 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 4959 cast<BinaryOperator>(I)->setIsExact(true); 4960 } else if (Opc == Instruction::Or) { 4961 if (Record[OpNum] & (1 << bitc::PDI_DISJOINT)) 4962 cast<PossiblyDisjointInst>(I)->setIsDisjoint(true); 4963 } else if (isa<FPMathOperator>(I)) { 4964 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4965 if (FMF.any()) 4966 I->setFastMathFlags(FMF); 4967 } 4968 } 4969 break; 4970 } 4971 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 4972 unsigned OpNum = 0; 4973 Value *Op; 4974 unsigned OpTypeID; 4975 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) || 4976 OpNum + 1 > Record.size()) 4977 return error("Invalid record"); 4978 4979 ResTypeID = Record[OpNum++]; 4980 Type *ResTy = getTypeByID(ResTypeID); 4981 int Opc = getDecodedCastOpcode(Record[OpNum++]); 4982 4983 if (Opc == -1 || !ResTy) 4984 return error("Invalid record"); 4985 Instruction *Temp = nullptr; 4986 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 4987 if (Temp) { 4988 InstructionList.push_back(Temp); 4989 assert(CurBB && "No current BB?"); 4990 Temp->insertInto(CurBB, CurBB->end()); 4991 } 4992 } else { 4993 auto CastOp = (Instruction::CastOps)Opc; 4994 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 4995 return error("Invalid cast"); 4996 I = CastInst::Create(CastOp, Op, ResTy); 4997 } 4998 if (OpNum < Record.size() && isa<PossiblyNonNegInst>(I) && 4999 (Record[OpNum] & (1 << bitc::PNNI_NON_NEG))) 5000 I->setNonNeg(true); 5001 InstructionList.push_back(I); 5002 break; 5003 } 5004 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 5005 case bitc::FUNC_CODE_INST_GEP_OLD: 5006 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 5007 unsigned OpNum = 0; 5008 5009 unsigned TyID; 5010 Type *Ty; 5011 bool InBounds; 5012 5013 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 5014 InBounds = Record[OpNum++]; 5015 TyID = Record[OpNum++]; 5016 Ty = getTypeByID(TyID); 5017 } else { 5018 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 5019 TyID = InvalidTypeID; 5020 Ty = nullptr; 5021 } 5022 5023 Value *BasePtr; 5024 unsigned BasePtrTypeID; 5025 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr, BasePtrTypeID, 5026 CurBB)) 5027 return error("Invalid record"); 5028 5029 if (!Ty) { 5030 TyID = getContainedTypeID(BasePtrTypeID); 5031 if (BasePtr->getType()->isVectorTy()) 5032 TyID = getContainedTypeID(TyID); 5033 Ty = getTypeByID(TyID); 5034 } 5035 5036 SmallVector<Value*, 16> GEPIdx; 5037 while (OpNum != Record.size()) { 5038 Value *Op; 5039 unsigned OpTypeID; 5040 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 5041 return error("Invalid record"); 5042 GEPIdx.push_back(Op); 5043 } 5044 5045 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 5046 5047 ResTypeID = TyID; 5048 if (cast<GEPOperator>(I)->getNumIndices() != 0) { 5049 auto GTI = std::next(gep_type_begin(I)); 5050 for (Value *Idx : drop_begin(cast<GEPOperator>(I)->indices())) { 5051 unsigned SubType = 0; 5052 if (GTI.isStruct()) { 5053 ConstantInt *IdxC = 5054 Idx->getType()->isVectorTy() 5055 ? cast<ConstantInt>(cast<Constant>(Idx)->getSplatValue()) 5056 : cast<ConstantInt>(Idx); 5057 SubType = IdxC->getZExtValue(); 5058 } 5059 ResTypeID = getContainedTypeID(ResTypeID, SubType); 5060 ++GTI; 5061 } 5062 } 5063 5064 // At this point ResTypeID is the result element type. We need a pointer 5065 // or vector of pointer to it. 5066 ResTypeID = getVirtualTypeID(I->getType()->getScalarType(), ResTypeID); 5067 if (I->getType()->isVectorTy()) 5068 ResTypeID = getVirtualTypeID(I->getType(), ResTypeID); 5069 5070 InstructionList.push_back(I); 5071 if (InBounds) 5072 cast<GetElementPtrInst>(I)->setIsInBounds(true); 5073 break; 5074 } 5075 5076 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 5077 // EXTRACTVAL: [opty, opval, n x indices] 5078 unsigned OpNum = 0; 5079 Value *Agg; 5080 unsigned AggTypeID; 5081 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB)) 5082 return error("Invalid record"); 5083 Type *Ty = Agg->getType(); 5084 5085 unsigned RecSize = Record.size(); 5086 if (OpNum == RecSize) 5087 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 5088 5089 SmallVector<unsigned, 4> EXTRACTVALIdx; 5090 ResTypeID = AggTypeID; 5091 for (; OpNum != RecSize; ++OpNum) { 5092 bool IsArray = Ty->isArrayTy(); 5093 bool IsStruct = Ty->isStructTy(); 5094 uint64_t Index = Record[OpNum]; 5095 5096 if (!IsStruct && !IsArray) 5097 return error("EXTRACTVAL: Invalid type"); 5098 if ((unsigned)Index != Index) 5099 return error("Invalid value"); 5100 if (IsStruct && Index >= Ty->getStructNumElements()) 5101 return error("EXTRACTVAL: Invalid struct index"); 5102 if (IsArray && Index >= Ty->getArrayNumElements()) 5103 return error("EXTRACTVAL: Invalid array index"); 5104 EXTRACTVALIdx.push_back((unsigned)Index); 5105 5106 if (IsStruct) { 5107 Ty = Ty->getStructElementType(Index); 5108 ResTypeID = getContainedTypeID(ResTypeID, Index); 5109 } else { 5110 Ty = Ty->getArrayElementType(); 5111 ResTypeID = getContainedTypeID(ResTypeID); 5112 } 5113 } 5114 5115 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 5116 InstructionList.push_back(I); 5117 break; 5118 } 5119 5120 case bitc::FUNC_CODE_INST_INSERTVAL: { 5121 // INSERTVAL: [opty, opval, opty, opval, n x indices] 5122 unsigned OpNum = 0; 5123 Value *Agg; 5124 unsigned AggTypeID; 5125 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB)) 5126 return error("Invalid record"); 5127 Value *Val; 5128 unsigned ValTypeID; 5129 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 5130 return error("Invalid record"); 5131 5132 unsigned RecSize = Record.size(); 5133 if (OpNum == RecSize) 5134 return error("INSERTVAL: Invalid instruction with 0 indices"); 5135 5136 SmallVector<unsigned, 4> INSERTVALIdx; 5137 Type *CurTy = Agg->getType(); 5138 for (; OpNum != RecSize; ++OpNum) { 5139 bool IsArray = CurTy->isArrayTy(); 5140 bool IsStruct = CurTy->isStructTy(); 5141 uint64_t Index = Record[OpNum]; 5142 5143 if (!IsStruct && !IsArray) 5144 return error("INSERTVAL: Invalid type"); 5145 if ((unsigned)Index != Index) 5146 return error("Invalid value"); 5147 if (IsStruct && Index >= CurTy->getStructNumElements()) 5148 return error("INSERTVAL: Invalid struct index"); 5149 if (IsArray && Index >= CurTy->getArrayNumElements()) 5150 return error("INSERTVAL: Invalid array index"); 5151 5152 INSERTVALIdx.push_back((unsigned)Index); 5153 if (IsStruct) 5154 CurTy = CurTy->getStructElementType(Index); 5155 else 5156 CurTy = CurTy->getArrayElementType(); 5157 } 5158 5159 if (CurTy != Val->getType()) 5160 return error("Inserted value type doesn't match aggregate type"); 5161 5162 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 5163 ResTypeID = AggTypeID; 5164 InstructionList.push_back(I); 5165 break; 5166 } 5167 5168 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 5169 // obsolete form of select 5170 // handles select i1 ... in old bitcode 5171 unsigned OpNum = 0; 5172 Value *TrueVal, *FalseVal, *Cond; 5173 unsigned TypeID; 5174 Type *CondType = Type::getInt1Ty(Context); 5175 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, TypeID, 5176 CurBB) || 5177 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), TypeID, 5178 FalseVal, CurBB) || 5179 popValue(Record, OpNum, NextValueNo, CondType, 5180 getVirtualTypeID(CondType), Cond, CurBB)) 5181 return error("Invalid record"); 5182 5183 I = SelectInst::Create(Cond, TrueVal, FalseVal); 5184 ResTypeID = TypeID; 5185 InstructionList.push_back(I); 5186 break; 5187 } 5188 5189 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 5190 // new form of select 5191 // handles select i1 or select [N x i1] 5192 unsigned OpNum = 0; 5193 Value *TrueVal, *FalseVal, *Cond; 5194 unsigned ValTypeID, CondTypeID; 5195 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, ValTypeID, 5196 CurBB) || 5197 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), ValTypeID, 5198 FalseVal, CurBB) || 5199 getValueTypePair(Record, OpNum, NextValueNo, Cond, CondTypeID, CurBB)) 5200 return error("Invalid record"); 5201 5202 // select condition can be either i1 or [N x i1] 5203 if (VectorType* vector_type = 5204 dyn_cast<VectorType>(Cond->getType())) { 5205 // expect <n x i1> 5206 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 5207 return error("Invalid type for value"); 5208 } else { 5209 // expect i1 5210 if (Cond->getType() != Type::getInt1Ty(Context)) 5211 return error("Invalid type for value"); 5212 } 5213 5214 I = SelectInst::Create(Cond, TrueVal, FalseVal); 5215 ResTypeID = ValTypeID; 5216 InstructionList.push_back(I); 5217 if (OpNum < Record.size() && isa<FPMathOperator>(I)) { 5218 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 5219 if (FMF.any()) 5220 I->setFastMathFlags(FMF); 5221 } 5222 break; 5223 } 5224 5225 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 5226 unsigned OpNum = 0; 5227 Value *Vec, *Idx; 5228 unsigned VecTypeID, IdxTypeID; 5229 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB) || 5230 getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB)) 5231 return error("Invalid record"); 5232 if (!Vec->getType()->isVectorTy()) 5233 return error("Invalid type for value"); 5234 I = ExtractElementInst::Create(Vec, Idx); 5235 ResTypeID = getContainedTypeID(VecTypeID); 5236 InstructionList.push_back(I); 5237 break; 5238 } 5239 5240 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 5241 unsigned OpNum = 0; 5242 Value *Vec, *Elt, *Idx; 5243 unsigned VecTypeID, IdxTypeID; 5244 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB)) 5245 return error("Invalid record"); 5246 if (!Vec->getType()->isVectorTy()) 5247 return error("Invalid type for value"); 5248 if (popValue(Record, OpNum, NextValueNo, 5249 cast<VectorType>(Vec->getType())->getElementType(), 5250 getContainedTypeID(VecTypeID), Elt, CurBB) || 5251 getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB)) 5252 return error("Invalid record"); 5253 I = InsertElementInst::Create(Vec, Elt, Idx); 5254 ResTypeID = VecTypeID; 5255 InstructionList.push_back(I); 5256 break; 5257 } 5258 5259 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 5260 unsigned OpNum = 0; 5261 Value *Vec1, *Vec2, *Mask; 5262 unsigned Vec1TypeID; 5263 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1, Vec1TypeID, 5264 CurBB) || 5265 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec1TypeID, 5266 Vec2, CurBB)) 5267 return error("Invalid record"); 5268 5269 unsigned MaskTypeID; 5270 if (getValueTypePair(Record, OpNum, NextValueNo, Mask, MaskTypeID, CurBB)) 5271 return error("Invalid record"); 5272 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 5273 return error("Invalid type for value"); 5274 5275 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 5276 ResTypeID = 5277 getVirtualTypeID(I->getType(), getContainedTypeID(Vec1TypeID)); 5278 InstructionList.push_back(I); 5279 break; 5280 } 5281 5282 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 5283 // Old form of ICmp/FCmp returning bool 5284 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 5285 // both legal on vectors but had different behaviour. 5286 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 5287 // FCmp/ICmp returning bool or vector of bool 5288 5289 unsigned OpNum = 0; 5290 Value *LHS, *RHS; 5291 unsigned LHSTypeID; 5292 if (getValueTypePair(Record, OpNum, NextValueNo, LHS, LHSTypeID, CurBB) || 5293 popValue(Record, OpNum, NextValueNo, LHS->getType(), LHSTypeID, RHS, 5294 CurBB)) 5295 return error("Invalid record"); 5296 5297 if (OpNum >= Record.size()) 5298 return error( 5299 "Invalid record: operand number exceeded available operands"); 5300 5301 CmpInst::Predicate PredVal = CmpInst::Predicate(Record[OpNum]); 5302 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 5303 FastMathFlags FMF; 5304 if (IsFP && Record.size() > OpNum+1) 5305 FMF = getDecodedFastMathFlags(Record[++OpNum]); 5306 5307 if (OpNum+1 != Record.size()) 5308 return error("Invalid record"); 5309 5310 if (IsFP) { 5311 if (!CmpInst::isFPPredicate(PredVal)) 5312 return error("Invalid fcmp predicate"); 5313 I = new FCmpInst(PredVal, LHS, RHS); 5314 } else { 5315 if (!CmpInst::isIntPredicate(PredVal)) 5316 return error("Invalid icmp predicate"); 5317 I = new ICmpInst(PredVal, LHS, RHS); 5318 } 5319 5320 ResTypeID = getVirtualTypeID(I->getType()->getScalarType()); 5321 if (LHS->getType()->isVectorTy()) 5322 ResTypeID = getVirtualTypeID(I->getType(), ResTypeID); 5323 5324 if (FMF.any()) 5325 I->setFastMathFlags(FMF); 5326 InstructionList.push_back(I); 5327 break; 5328 } 5329 5330 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 5331 { 5332 unsigned Size = Record.size(); 5333 if (Size == 0) { 5334 I = ReturnInst::Create(Context); 5335 InstructionList.push_back(I); 5336 break; 5337 } 5338 5339 unsigned OpNum = 0; 5340 Value *Op = nullptr; 5341 unsigned OpTypeID; 5342 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 5343 return error("Invalid record"); 5344 if (OpNum != Record.size()) 5345 return error("Invalid record"); 5346 5347 I = ReturnInst::Create(Context, Op); 5348 InstructionList.push_back(I); 5349 break; 5350 } 5351 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 5352 if (Record.size() != 1 && Record.size() != 3) 5353 return error("Invalid record"); 5354 BasicBlock *TrueDest = getBasicBlock(Record[0]); 5355 if (!TrueDest) 5356 return error("Invalid record"); 5357 5358 if (Record.size() == 1) { 5359 I = BranchInst::Create(TrueDest); 5360 InstructionList.push_back(I); 5361 } 5362 else { 5363 BasicBlock *FalseDest = getBasicBlock(Record[1]); 5364 Type *CondType = Type::getInt1Ty(Context); 5365 Value *Cond = getValue(Record, 2, NextValueNo, CondType, 5366 getVirtualTypeID(CondType), CurBB); 5367 if (!FalseDest || !Cond) 5368 return error("Invalid record"); 5369 I = BranchInst::Create(TrueDest, FalseDest, Cond); 5370 InstructionList.push_back(I); 5371 } 5372 break; 5373 } 5374 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 5375 if (Record.size() != 1 && Record.size() != 2) 5376 return error("Invalid record"); 5377 unsigned Idx = 0; 5378 Type *TokenTy = Type::getTokenTy(Context); 5379 Value *CleanupPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5380 getVirtualTypeID(TokenTy), CurBB); 5381 if (!CleanupPad) 5382 return error("Invalid record"); 5383 BasicBlock *UnwindDest = nullptr; 5384 if (Record.size() == 2) { 5385 UnwindDest = getBasicBlock(Record[Idx++]); 5386 if (!UnwindDest) 5387 return error("Invalid record"); 5388 } 5389 5390 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 5391 InstructionList.push_back(I); 5392 break; 5393 } 5394 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 5395 if (Record.size() != 2) 5396 return error("Invalid record"); 5397 unsigned Idx = 0; 5398 Type *TokenTy = Type::getTokenTy(Context); 5399 Value *CatchPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5400 getVirtualTypeID(TokenTy), CurBB); 5401 if (!CatchPad) 5402 return error("Invalid record"); 5403 BasicBlock *BB = getBasicBlock(Record[Idx++]); 5404 if (!BB) 5405 return error("Invalid record"); 5406 5407 I = CatchReturnInst::Create(CatchPad, BB); 5408 InstructionList.push_back(I); 5409 break; 5410 } 5411 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 5412 // We must have, at minimum, the outer scope and the number of arguments. 5413 if (Record.size() < 2) 5414 return error("Invalid record"); 5415 5416 unsigned Idx = 0; 5417 5418 Type *TokenTy = Type::getTokenTy(Context); 5419 Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5420 getVirtualTypeID(TokenTy), CurBB); 5421 if (!ParentPad) 5422 return error("Invalid record"); 5423 5424 unsigned NumHandlers = Record[Idx++]; 5425 5426 SmallVector<BasicBlock *, 2> Handlers; 5427 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 5428 BasicBlock *BB = getBasicBlock(Record[Idx++]); 5429 if (!BB) 5430 return error("Invalid record"); 5431 Handlers.push_back(BB); 5432 } 5433 5434 BasicBlock *UnwindDest = nullptr; 5435 if (Idx + 1 == Record.size()) { 5436 UnwindDest = getBasicBlock(Record[Idx++]); 5437 if (!UnwindDest) 5438 return error("Invalid record"); 5439 } 5440 5441 if (Record.size() != Idx) 5442 return error("Invalid record"); 5443 5444 auto *CatchSwitch = 5445 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 5446 for (BasicBlock *Handler : Handlers) 5447 CatchSwitch->addHandler(Handler); 5448 I = CatchSwitch; 5449 ResTypeID = getVirtualTypeID(I->getType()); 5450 InstructionList.push_back(I); 5451 break; 5452 } 5453 case bitc::FUNC_CODE_INST_CATCHPAD: 5454 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 5455 // We must have, at minimum, the outer scope and the number of arguments. 5456 if (Record.size() < 2) 5457 return error("Invalid record"); 5458 5459 unsigned Idx = 0; 5460 5461 Type *TokenTy = Type::getTokenTy(Context); 5462 Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5463 getVirtualTypeID(TokenTy), CurBB); 5464 if (!ParentPad) 5465 return error("Invald record"); 5466 5467 unsigned NumArgOperands = Record[Idx++]; 5468 5469 SmallVector<Value *, 2> Args; 5470 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 5471 Value *Val; 5472 unsigned ValTypeID; 5473 if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, nullptr)) 5474 return error("Invalid record"); 5475 Args.push_back(Val); 5476 } 5477 5478 if (Record.size() != Idx) 5479 return error("Invalid record"); 5480 5481 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 5482 I = CleanupPadInst::Create(ParentPad, Args); 5483 else 5484 I = CatchPadInst::Create(ParentPad, Args); 5485 ResTypeID = getVirtualTypeID(I->getType()); 5486 InstructionList.push_back(I); 5487 break; 5488 } 5489 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 5490 // Check magic 5491 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 5492 // "New" SwitchInst format with case ranges. The changes to write this 5493 // format were reverted but we still recognize bitcode that uses it. 5494 // Hopefully someday we will have support for case ranges and can use 5495 // this format again. 5496 5497 unsigned OpTyID = Record[1]; 5498 Type *OpTy = getTypeByID(OpTyID); 5499 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 5500 5501 Value *Cond = getValue(Record, 2, NextValueNo, OpTy, OpTyID, CurBB); 5502 BasicBlock *Default = getBasicBlock(Record[3]); 5503 if (!OpTy || !Cond || !Default) 5504 return error("Invalid record"); 5505 5506 unsigned NumCases = Record[4]; 5507 5508 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 5509 InstructionList.push_back(SI); 5510 5511 unsigned CurIdx = 5; 5512 for (unsigned i = 0; i != NumCases; ++i) { 5513 SmallVector<ConstantInt*, 1> CaseVals; 5514 unsigned NumItems = Record[CurIdx++]; 5515 for (unsigned ci = 0; ci != NumItems; ++ci) { 5516 bool isSingleNumber = Record[CurIdx++]; 5517 5518 APInt Low; 5519 unsigned ActiveWords = 1; 5520 if (ValueBitWidth > 64) 5521 ActiveWords = Record[CurIdx++]; 5522 Low = readWideAPInt(ArrayRef(&Record[CurIdx], ActiveWords), 5523 ValueBitWidth); 5524 CurIdx += ActiveWords; 5525 5526 if (!isSingleNumber) { 5527 ActiveWords = 1; 5528 if (ValueBitWidth > 64) 5529 ActiveWords = Record[CurIdx++]; 5530 APInt High = readWideAPInt(ArrayRef(&Record[CurIdx], ActiveWords), 5531 ValueBitWidth); 5532 CurIdx += ActiveWords; 5533 5534 // FIXME: It is not clear whether values in the range should be 5535 // compared as signed or unsigned values. The partially 5536 // implemented changes that used this format in the past used 5537 // unsigned comparisons. 5538 for ( ; Low.ule(High); ++Low) 5539 CaseVals.push_back(ConstantInt::get(Context, Low)); 5540 } else 5541 CaseVals.push_back(ConstantInt::get(Context, Low)); 5542 } 5543 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 5544 for (ConstantInt *Cst : CaseVals) 5545 SI->addCase(Cst, DestBB); 5546 } 5547 I = SI; 5548 break; 5549 } 5550 5551 // Old SwitchInst format without case ranges. 5552 5553 if (Record.size() < 3 || (Record.size() & 1) == 0) 5554 return error("Invalid record"); 5555 unsigned OpTyID = Record[0]; 5556 Type *OpTy = getTypeByID(OpTyID); 5557 Value *Cond = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB); 5558 BasicBlock *Default = getBasicBlock(Record[2]); 5559 if (!OpTy || !Cond || !Default) 5560 return error("Invalid record"); 5561 unsigned NumCases = (Record.size()-3)/2; 5562 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 5563 InstructionList.push_back(SI); 5564 for (unsigned i = 0, e = NumCases; i != e; ++i) { 5565 ConstantInt *CaseVal = dyn_cast_or_null<ConstantInt>( 5566 getFnValueByID(Record[3+i*2], OpTy, OpTyID, nullptr)); 5567 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 5568 if (!CaseVal || !DestBB) { 5569 delete SI; 5570 return error("Invalid record"); 5571 } 5572 SI->addCase(CaseVal, DestBB); 5573 } 5574 I = SI; 5575 break; 5576 } 5577 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 5578 if (Record.size() < 2) 5579 return error("Invalid record"); 5580 unsigned OpTyID = Record[0]; 5581 Type *OpTy = getTypeByID(OpTyID); 5582 Value *Address = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB); 5583 if (!OpTy || !Address) 5584 return error("Invalid record"); 5585 unsigned NumDests = Record.size()-2; 5586 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 5587 InstructionList.push_back(IBI); 5588 for (unsigned i = 0, e = NumDests; i != e; ++i) { 5589 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 5590 IBI->addDestination(DestBB); 5591 } else { 5592 delete IBI; 5593 return error("Invalid record"); 5594 } 5595 } 5596 I = IBI; 5597 break; 5598 } 5599 5600 case bitc::FUNC_CODE_INST_INVOKE: { 5601 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 5602 if (Record.size() < 4) 5603 return error("Invalid record"); 5604 unsigned OpNum = 0; 5605 AttributeList PAL = getAttributes(Record[OpNum++]); 5606 unsigned CCInfo = Record[OpNum++]; 5607 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 5608 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 5609 5610 unsigned FTyID = InvalidTypeID; 5611 FunctionType *FTy = nullptr; 5612 if ((CCInfo >> 13) & 1) { 5613 FTyID = Record[OpNum++]; 5614 FTy = dyn_cast<FunctionType>(getTypeByID(FTyID)); 5615 if (!FTy) 5616 return error("Explicit invoke type is not a function type"); 5617 } 5618 5619 Value *Callee; 5620 unsigned CalleeTypeID; 5621 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID, 5622 CurBB)) 5623 return error("Invalid record"); 5624 5625 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 5626 if (!CalleeTy) 5627 return error("Callee is not a pointer"); 5628 if (!FTy) { 5629 FTyID = getContainedTypeID(CalleeTypeID); 5630 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 5631 if (!FTy) 5632 return error("Callee is not of pointer to function type"); 5633 } 5634 if (Record.size() < FTy->getNumParams() + OpNum) 5635 return error("Insufficient operands to call"); 5636 5637 SmallVector<Value*, 16> Ops; 5638 SmallVector<unsigned, 16> ArgTyIDs; 5639 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5640 unsigned ArgTyID = getContainedTypeID(FTyID, i + 1); 5641 Ops.push_back(getValue(Record, OpNum, NextValueNo, FTy->getParamType(i), 5642 ArgTyID, CurBB)); 5643 ArgTyIDs.push_back(ArgTyID); 5644 if (!Ops.back()) 5645 return error("Invalid record"); 5646 } 5647 5648 if (!FTy->isVarArg()) { 5649 if (Record.size() != OpNum) 5650 return error("Invalid record"); 5651 } else { 5652 // Read type/value pairs for varargs params. 5653 while (OpNum != Record.size()) { 5654 Value *Op; 5655 unsigned OpTypeID; 5656 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 5657 return error("Invalid record"); 5658 Ops.push_back(Op); 5659 ArgTyIDs.push_back(OpTypeID); 5660 } 5661 } 5662 5663 // Upgrade the bundles if needed. 5664 if (!OperandBundles.empty()) 5665 UpgradeOperandBundles(OperandBundles); 5666 5667 I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops, 5668 OperandBundles); 5669 ResTypeID = getContainedTypeID(FTyID); 5670 OperandBundles.clear(); 5671 InstructionList.push_back(I); 5672 cast<InvokeInst>(I)->setCallingConv( 5673 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 5674 cast<InvokeInst>(I)->setAttributes(PAL); 5675 if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) { 5676 I->deleteValue(); 5677 return Err; 5678 } 5679 5680 break; 5681 } 5682 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 5683 unsigned Idx = 0; 5684 Value *Val = nullptr; 5685 unsigned ValTypeID; 5686 if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, CurBB)) 5687 return error("Invalid record"); 5688 I = ResumeInst::Create(Val); 5689 InstructionList.push_back(I); 5690 break; 5691 } 5692 case bitc::FUNC_CODE_INST_CALLBR: { 5693 // CALLBR: [attr, cc, norm, transfs, fty, fnid, args] 5694 unsigned OpNum = 0; 5695 AttributeList PAL = getAttributes(Record[OpNum++]); 5696 unsigned CCInfo = Record[OpNum++]; 5697 5698 BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]); 5699 unsigned NumIndirectDests = Record[OpNum++]; 5700 SmallVector<BasicBlock *, 16> IndirectDests; 5701 for (unsigned i = 0, e = NumIndirectDests; i != e; ++i) 5702 IndirectDests.push_back(getBasicBlock(Record[OpNum++])); 5703 5704 unsigned FTyID = InvalidTypeID; 5705 FunctionType *FTy = nullptr; 5706 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 5707 FTyID = Record[OpNum++]; 5708 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 5709 if (!FTy) 5710 return error("Explicit call type is not a function type"); 5711 } 5712 5713 Value *Callee; 5714 unsigned CalleeTypeID; 5715 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID, 5716 CurBB)) 5717 return error("Invalid record"); 5718 5719 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5720 if (!OpTy) 5721 return error("Callee is not a pointer type"); 5722 if (!FTy) { 5723 FTyID = getContainedTypeID(CalleeTypeID); 5724 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 5725 if (!FTy) 5726 return error("Callee is not of pointer to function type"); 5727 } 5728 if (Record.size() < FTy->getNumParams() + OpNum) 5729 return error("Insufficient operands to call"); 5730 5731 SmallVector<Value*, 16> Args; 5732 SmallVector<unsigned, 16> ArgTyIDs; 5733 // Read the fixed params. 5734 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5735 Value *Arg; 5736 unsigned ArgTyID = getContainedTypeID(FTyID, i + 1); 5737 if (FTy->getParamType(i)->isLabelTy()) 5738 Arg = getBasicBlock(Record[OpNum]); 5739 else 5740 Arg = getValue(Record, OpNum, NextValueNo, FTy->getParamType(i), 5741 ArgTyID, CurBB); 5742 if (!Arg) 5743 return error("Invalid record"); 5744 Args.push_back(Arg); 5745 ArgTyIDs.push_back(ArgTyID); 5746 } 5747 5748 // Read type/value pairs for varargs params. 5749 if (!FTy->isVarArg()) { 5750 if (OpNum != Record.size()) 5751 return error("Invalid record"); 5752 } else { 5753 while (OpNum != Record.size()) { 5754 Value *Op; 5755 unsigned OpTypeID; 5756 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 5757 return error("Invalid record"); 5758 Args.push_back(Op); 5759 ArgTyIDs.push_back(OpTypeID); 5760 } 5761 } 5762 5763 // Upgrade the bundles if needed. 5764 if (!OperandBundles.empty()) 5765 UpgradeOperandBundles(OperandBundles); 5766 5767 if (auto *IA = dyn_cast<InlineAsm>(Callee)) { 5768 InlineAsm::ConstraintInfoVector ConstraintInfo = IA->ParseConstraints(); 5769 auto IsLabelConstraint = [](const InlineAsm::ConstraintInfo &CI) { 5770 return CI.Type == InlineAsm::isLabel; 5771 }; 5772 if (none_of(ConstraintInfo, IsLabelConstraint)) { 5773 // Upgrade explicit blockaddress arguments to label constraints. 5774 // Verify that the last arguments are blockaddress arguments that 5775 // match the indirect destinations. Clang always generates callbr 5776 // in this form. We could support reordering with more effort. 5777 unsigned FirstBlockArg = Args.size() - IndirectDests.size(); 5778 for (unsigned ArgNo = FirstBlockArg; ArgNo < Args.size(); ++ArgNo) { 5779 unsigned LabelNo = ArgNo - FirstBlockArg; 5780 auto *BA = dyn_cast<BlockAddress>(Args[ArgNo]); 5781 if (!BA || BA->getFunction() != F || 5782 LabelNo > IndirectDests.size() || 5783 BA->getBasicBlock() != IndirectDests[LabelNo]) 5784 return error("callbr argument does not match indirect dest"); 5785 } 5786 5787 // Remove blockaddress arguments. 5788 Args.erase(Args.begin() + FirstBlockArg, Args.end()); 5789 ArgTyIDs.erase(ArgTyIDs.begin() + FirstBlockArg, ArgTyIDs.end()); 5790 5791 // Recreate the function type with less arguments. 5792 SmallVector<Type *> ArgTys; 5793 for (Value *Arg : Args) 5794 ArgTys.push_back(Arg->getType()); 5795 FTy = 5796 FunctionType::get(FTy->getReturnType(), ArgTys, FTy->isVarArg()); 5797 5798 // Update constraint string to use label constraints. 5799 std::string Constraints = IA->getConstraintString(); 5800 unsigned ArgNo = 0; 5801 size_t Pos = 0; 5802 for (const auto &CI : ConstraintInfo) { 5803 if (CI.hasArg()) { 5804 if (ArgNo >= FirstBlockArg) 5805 Constraints.insert(Pos, "!"); 5806 ++ArgNo; 5807 } 5808 5809 // Go to next constraint in string. 5810 Pos = Constraints.find(',', Pos); 5811 if (Pos == std::string::npos) 5812 break; 5813 ++Pos; 5814 } 5815 5816 Callee = InlineAsm::get(FTy, IA->getAsmString(), Constraints, 5817 IA->hasSideEffects(), IA->isAlignStack(), 5818 IA->getDialect(), IA->canThrow()); 5819 } 5820 } 5821 5822 I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args, 5823 OperandBundles); 5824 ResTypeID = getContainedTypeID(FTyID); 5825 OperandBundles.clear(); 5826 InstructionList.push_back(I); 5827 cast<CallBrInst>(I)->setCallingConv( 5828 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5829 cast<CallBrInst>(I)->setAttributes(PAL); 5830 if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) { 5831 I->deleteValue(); 5832 return Err; 5833 } 5834 break; 5835 } 5836 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 5837 I = new UnreachableInst(Context); 5838 InstructionList.push_back(I); 5839 break; 5840 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 5841 if (Record.empty()) 5842 return error("Invalid phi record"); 5843 // The first record specifies the type. 5844 unsigned TyID = Record[0]; 5845 Type *Ty = getTypeByID(TyID); 5846 if (!Ty) 5847 return error("Invalid phi record"); 5848 5849 // Phi arguments are pairs of records of [value, basic block]. 5850 // There is an optional final record for fast-math-flags if this phi has a 5851 // floating-point type. 5852 size_t NumArgs = (Record.size() - 1) / 2; 5853 PHINode *PN = PHINode::Create(Ty, NumArgs); 5854 if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN)) { 5855 PN->deleteValue(); 5856 return error("Invalid phi record"); 5857 } 5858 InstructionList.push_back(PN); 5859 5860 SmallDenseMap<BasicBlock *, Value *> Args; 5861 for (unsigned i = 0; i != NumArgs; i++) { 5862 BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]); 5863 if (!BB) { 5864 PN->deleteValue(); 5865 return error("Invalid phi BB"); 5866 } 5867 5868 // Phi nodes may contain the same predecessor multiple times, in which 5869 // case the incoming value must be identical. Directly reuse the already 5870 // seen value here, to avoid expanding a constant expression multiple 5871 // times. 5872 auto It = Args.find(BB); 5873 if (It != Args.end()) { 5874 PN->addIncoming(It->second, BB); 5875 continue; 5876 } 5877 5878 // If there already is a block for this edge (from a different phi), 5879 // use it. 5880 BasicBlock *EdgeBB = ConstExprEdgeBBs.lookup({BB, CurBB}); 5881 if (!EdgeBB) { 5882 // Otherwise, use a temporary block (that we will discard if it 5883 // turns out to be unnecessary). 5884 if (!PhiConstExprBB) 5885 PhiConstExprBB = BasicBlock::Create(Context, "phi.constexpr", F); 5886 EdgeBB = PhiConstExprBB; 5887 } 5888 5889 // With the new function encoding, it is possible that operands have 5890 // negative IDs (for forward references). Use a signed VBR 5891 // representation to keep the encoding small. 5892 Value *V; 5893 if (UseRelativeIDs) 5894 V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB); 5895 else 5896 V = getValue(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB); 5897 if (!V) { 5898 PN->deleteValue(); 5899 PhiConstExprBB->eraseFromParent(); 5900 return error("Invalid phi record"); 5901 } 5902 5903 if (EdgeBB == PhiConstExprBB && !EdgeBB->empty()) { 5904 ConstExprEdgeBBs.insert({{BB, CurBB}, EdgeBB}); 5905 PhiConstExprBB = nullptr; 5906 } 5907 PN->addIncoming(V, BB); 5908 Args.insert({BB, V}); 5909 } 5910 I = PN; 5911 ResTypeID = TyID; 5912 5913 // If there are an even number of records, the final record must be FMF. 5914 if (Record.size() % 2 == 0) { 5915 assert(isa<FPMathOperator>(I) && "Unexpected phi type"); 5916 FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]); 5917 if (FMF.any()) 5918 I->setFastMathFlags(FMF); 5919 } 5920 5921 break; 5922 } 5923 5924 case bitc::FUNC_CODE_INST_LANDINGPAD: 5925 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 5926 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 5927 unsigned Idx = 0; 5928 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 5929 if (Record.size() < 3) 5930 return error("Invalid record"); 5931 } else { 5932 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 5933 if (Record.size() < 4) 5934 return error("Invalid record"); 5935 } 5936 ResTypeID = Record[Idx++]; 5937 Type *Ty = getTypeByID(ResTypeID); 5938 if (!Ty) 5939 return error("Invalid record"); 5940 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 5941 Value *PersFn = nullptr; 5942 unsigned PersFnTypeID; 5943 if (getValueTypePair(Record, Idx, NextValueNo, PersFn, PersFnTypeID, 5944 nullptr)) 5945 return error("Invalid record"); 5946 5947 if (!F->hasPersonalityFn()) 5948 F->setPersonalityFn(cast<Constant>(PersFn)); 5949 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 5950 return error("Personality function mismatch"); 5951 } 5952 5953 bool IsCleanup = !!Record[Idx++]; 5954 unsigned NumClauses = Record[Idx++]; 5955 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 5956 LP->setCleanup(IsCleanup); 5957 for (unsigned J = 0; J != NumClauses; ++J) { 5958 LandingPadInst::ClauseType CT = 5959 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 5960 Value *Val; 5961 unsigned ValTypeID; 5962 5963 if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, 5964 nullptr)) { 5965 delete LP; 5966 return error("Invalid record"); 5967 } 5968 5969 assert((CT != LandingPadInst::Catch || 5970 !isa<ArrayType>(Val->getType())) && 5971 "Catch clause has a invalid type!"); 5972 assert((CT != LandingPadInst::Filter || 5973 isa<ArrayType>(Val->getType())) && 5974 "Filter clause has invalid type!"); 5975 LP->addClause(cast<Constant>(Val)); 5976 } 5977 5978 I = LP; 5979 InstructionList.push_back(I); 5980 break; 5981 } 5982 5983 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 5984 if (Record.size() != 4 && Record.size() != 5) 5985 return error("Invalid record"); 5986 using APV = AllocaPackedValues; 5987 const uint64_t Rec = Record[3]; 5988 const bool InAlloca = Bitfield::get<APV::UsedWithInAlloca>(Rec); 5989 const bool SwiftError = Bitfield::get<APV::SwiftError>(Rec); 5990 unsigned TyID = Record[0]; 5991 Type *Ty = getTypeByID(TyID); 5992 if (!Bitfield::get<APV::ExplicitType>(Rec)) { 5993 TyID = getContainedTypeID(TyID); 5994 Ty = getTypeByID(TyID); 5995 if (!Ty) 5996 return error("Missing element type for old-style alloca"); 5997 } 5998 unsigned OpTyID = Record[1]; 5999 Type *OpTy = getTypeByID(OpTyID); 6000 Value *Size = getFnValueByID(Record[2], OpTy, OpTyID, CurBB); 6001 MaybeAlign Align; 6002 uint64_t AlignExp = 6003 Bitfield::get<APV::AlignLower>(Rec) | 6004 (Bitfield::get<APV::AlignUpper>(Rec) << APV::AlignLower::Bits); 6005 if (Error Err = parseAlignmentValue(AlignExp, Align)) { 6006 return Err; 6007 } 6008 if (!Ty || !Size) 6009 return error("Invalid record"); 6010 6011 const DataLayout &DL = TheModule->getDataLayout(); 6012 unsigned AS = Record.size() == 5 ? Record[4] : DL.getAllocaAddrSpace(); 6013 6014 SmallPtrSet<Type *, 4> Visited; 6015 if (!Align && !Ty->isSized(&Visited)) 6016 return error("alloca of unsized type"); 6017 if (!Align) 6018 Align = DL.getPrefTypeAlign(Ty); 6019 6020 if (!Size->getType()->isIntegerTy()) 6021 return error("alloca element count must have integer type"); 6022 6023 AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align); 6024 AI->setUsedWithInAlloca(InAlloca); 6025 AI->setSwiftError(SwiftError); 6026 I = AI; 6027 ResTypeID = getVirtualTypeID(AI->getType(), TyID); 6028 InstructionList.push_back(I); 6029 break; 6030 } 6031 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 6032 unsigned OpNum = 0; 6033 Value *Op; 6034 unsigned OpTypeID; 6035 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) || 6036 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 6037 return error("Invalid record"); 6038 6039 if (!isa<PointerType>(Op->getType())) 6040 return error("Load operand is not a pointer type"); 6041 6042 Type *Ty = nullptr; 6043 if (OpNum + 3 == Record.size()) { 6044 ResTypeID = Record[OpNum++]; 6045 Ty = getTypeByID(ResTypeID); 6046 } else { 6047 ResTypeID = getContainedTypeID(OpTypeID); 6048 Ty = getTypeByID(ResTypeID); 6049 } 6050 6051 if (!Ty) 6052 return error("Missing load type"); 6053 6054 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 6055 return Err; 6056 6057 MaybeAlign Align; 6058 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 6059 return Err; 6060 SmallPtrSet<Type *, 4> Visited; 6061 if (!Align && !Ty->isSized(&Visited)) 6062 return error("load of unsized type"); 6063 if (!Align) 6064 Align = TheModule->getDataLayout().getABITypeAlign(Ty); 6065 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align); 6066 InstructionList.push_back(I); 6067 break; 6068 } 6069 case bitc::FUNC_CODE_INST_LOADATOMIC: { 6070 // LOADATOMIC: [opty, op, align, vol, ordering, ssid] 6071 unsigned OpNum = 0; 6072 Value *Op; 6073 unsigned OpTypeID; 6074 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) || 6075 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 6076 return error("Invalid record"); 6077 6078 if (!isa<PointerType>(Op->getType())) 6079 return error("Load operand is not a pointer type"); 6080 6081 Type *Ty = nullptr; 6082 if (OpNum + 5 == Record.size()) { 6083 ResTypeID = Record[OpNum++]; 6084 Ty = getTypeByID(ResTypeID); 6085 } else { 6086 ResTypeID = getContainedTypeID(OpTypeID); 6087 Ty = getTypeByID(ResTypeID); 6088 } 6089 6090 if (!Ty) 6091 return error("Missing atomic load type"); 6092 6093 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 6094 return Err; 6095 6096 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 6097 if (Ordering == AtomicOrdering::NotAtomic || 6098 Ordering == AtomicOrdering::Release || 6099 Ordering == AtomicOrdering::AcquireRelease) 6100 return error("Invalid record"); 6101 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 6102 return error("Invalid record"); 6103 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 6104 6105 MaybeAlign Align; 6106 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 6107 return Err; 6108 if (!Align) 6109 return error("Alignment missing from atomic load"); 6110 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID); 6111 InstructionList.push_back(I); 6112 break; 6113 } 6114 case bitc::FUNC_CODE_INST_STORE: 6115 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 6116 unsigned OpNum = 0; 6117 Value *Val, *Ptr; 6118 unsigned PtrTypeID, ValTypeID; 6119 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 6120 return error("Invalid record"); 6121 6122 if (BitCode == bitc::FUNC_CODE_INST_STORE) { 6123 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 6124 return error("Invalid record"); 6125 } else { 6126 ValTypeID = getContainedTypeID(PtrTypeID); 6127 if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID), 6128 ValTypeID, Val, CurBB)) 6129 return error("Invalid record"); 6130 } 6131 6132 if (OpNum + 2 != Record.size()) 6133 return error("Invalid record"); 6134 6135 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 6136 return Err; 6137 MaybeAlign Align; 6138 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 6139 return Err; 6140 SmallPtrSet<Type *, 4> Visited; 6141 if (!Align && !Val->getType()->isSized(&Visited)) 6142 return error("store of unsized type"); 6143 if (!Align) 6144 Align = TheModule->getDataLayout().getABITypeAlign(Val->getType()); 6145 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align); 6146 InstructionList.push_back(I); 6147 break; 6148 } 6149 case bitc::FUNC_CODE_INST_STOREATOMIC: 6150 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 6151 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid] 6152 unsigned OpNum = 0; 6153 Value *Val, *Ptr; 6154 unsigned PtrTypeID, ValTypeID; 6155 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB) || 6156 !isa<PointerType>(Ptr->getType())) 6157 return error("Invalid record"); 6158 if (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC) { 6159 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 6160 return error("Invalid record"); 6161 } else { 6162 ValTypeID = getContainedTypeID(PtrTypeID); 6163 if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID), 6164 ValTypeID, Val, CurBB)) 6165 return error("Invalid record"); 6166 } 6167 6168 if (OpNum + 4 != Record.size()) 6169 return error("Invalid record"); 6170 6171 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 6172 return Err; 6173 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 6174 if (Ordering == AtomicOrdering::NotAtomic || 6175 Ordering == AtomicOrdering::Acquire || 6176 Ordering == AtomicOrdering::AcquireRelease) 6177 return error("Invalid record"); 6178 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 6179 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 6180 return error("Invalid record"); 6181 6182 MaybeAlign Align; 6183 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 6184 return Err; 6185 if (!Align) 6186 return error("Alignment missing from atomic store"); 6187 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID); 6188 InstructionList.push_back(I); 6189 break; 6190 } 6191 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: { 6192 // CMPXCHG_OLD: [ptrty, ptr, cmp, val, vol, ordering, synchscope, 6193 // failure_ordering?, weak?] 6194 const size_t NumRecords = Record.size(); 6195 unsigned OpNum = 0; 6196 Value *Ptr = nullptr; 6197 unsigned PtrTypeID; 6198 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 6199 return error("Invalid record"); 6200 6201 if (!isa<PointerType>(Ptr->getType())) 6202 return error("Cmpxchg operand is not a pointer type"); 6203 6204 Value *Cmp = nullptr; 6205 unsigned CmpTypeID = getContainedTypeID(PtrTypeID); 6206 if (popValue(Record, OpNum, NextValueNo, getTypeByID(CmpTypeID), 6207 CmpTypeID, Cmp, CurBB)) 6208 return error("Invalid record"); 6209 6210 Value *New = nullptr; 6211 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID, 6212 New, CurBB) || 6213 NumRecords < OpNum + 3 || NumRecords > OpNum + 5) 6214 return error("Invalid record"); 6215 6216 const AtomicOrdering SuccessOrdering = 6217 getDecodedOrdering(Record[OpNum + 1]); 6218 if (SuccessOrdering == AtomicOrdering::NotAtomic || 6219 SuccessOrdering == AtomicOrdering::Unordered) 6220 return error("Invalid record"); 6221 6222 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 6223 6224 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 6225 return Err; 6226 6227 const AtomicOrdering FailureOrdering = 6228 NumRecords < 7 6229 ? AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering) 6230 : getDecodedOrdering(Record[OpNum + 3]); 6231 6232 if (FailureOrdering == AtomicOrdering::NotAtomic || 6233 FailureOrdering == AtomicOrdering::Unordered) 6234 return error("Invalid record"); 6235 6236 const Align Alignment( 6237 TheModule->getDataLayout().getTypeStoreSize(Cmp->getType())); 6238 6239 I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering, 6240 FailureOrdering, SSID); 6241 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 6242 6243 if (NumRecords < 8) { 6244 // Before weak cmpxchgs existed, the instruction simply returned the 6245 // value loaded from memory, so bitcode files from that era will be 6246 // expecting the first component of a modern cmpxchg. 6247 I->insertInto(CurBB, CurBB->end()); 6248 I = ExtractValueInst::Create(I, 0); 6249 ResTypeID = CmpTypeID; 6250 } else { 6251 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]); 6252 unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context)); 6253 ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID}); 6254 } 6255 6256 InstructionList.push_back(I); 6257 break; 6258 } 6259 case bitc::FUNC_CODE_INST_CMPXCHG: { 6260 // CMPXCHG: [ptrty, ptr, cmp, val, vol, success_ordering, synchscope, 6261 // failure_ordering, weak, align?] 6262 const size_t NumRecords = Record.size(); 6263 unsigned OpNum = 0; 6264 Value *Ptr = nullptr; 6265 unsigned PtrTypeID; 6266 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 6267 return error("Invalid record"); 6268 6269 if (!isa<PointerType>(Ptr->getType())) 6270 return error("Cmpxchg operand is not a pointer type"); 6271 6272 Value *Cmp = nullptr; 6273 unsigned CmpTypeID; 6274 if (getValueTypePair(Record, OpNum, NextValueNo, Cmp, CmpTypeID, CurBB)) 6275 return error("Invalid record"); 6276 6277 Value *Val = nullptr; 6278 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID, Val, 6279 CurBB)) 6280 return error("Invalid record"); 6281 6282 if (NumRecords < OpNum + 3 || NumRecords > OpNum + 6) 6283 return error("Invalid record"); 6284 6285 const bool IsVol = Record[OpNum]; 6286 6287 const AtomicOrdering SuccessOrdering = 6288 getDecodedOrdering(Record[OpNum + 1]); 6289 if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering)) 6290 return error("Invalid cmpxchg success ordering"); 6291 6292 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 6293 6294 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 6295 return Err; 6296 6297 const AtomicOrdering FailureOrdering = 6298 getDecodedOrdering(Record[OpNum + 3]); 6299 if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering)) 6300 return error("Invalid cmpxchg failure ordering"); 6301 6302 const bool IsWeak = Record[OpNum + 4]; 6303 6304 MaybeAlign Alignment; 6305 6306 if (NumRecords == (OpNum + 6)) { 6307 if (Error Err = parseAlignmentValue(Record[OpNum + 5], Alignment)) 6308 return Err; 6309 } 6310 if (!Alignment) 6311 Alignment = 6312 Align(TheModule->getDataLayout().getTypeStoreSize(Cmp->getType())); 6313 6314 I = new AtomicCmpXchgInst(Ptr, Cmp, Val, *Alignment, SuccessOrdering, 6315 FailureOrdering, SSID); 6316 cast<AtomicCmpXchgInst>(I)->setVolatile(IsVol); 6317 cast<AtomicCmpXchgInst>(I)->setWeak(IsWeak); 6318 6319 unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context)); 6320 ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID}); 6321 6322 InstructionList.push_back(I); 6323 break; 6324 } 6325 case bitc::FUNC_CODE_INST_ATOMICRMW_OLD: 6326 case bitc::FUNC_CODE_INST_ATOMICRMW: { 6327 // ATOMICRMW_OLD: [ptrty, ptr, val, op, vol, ordering, ssid, align?] 6328 // ATOMICRMW: [ptrty, ptr, valty, val, op, vol, ordering, ssid, align?] 6329 const size_t NumRecords = Record.size(); 6330 unsigned OpNum = 0; 6331 6332 Value *Ptr = nullptr; 6333 unsigned PtrTypeID; 6334 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 6335 return error("Invalid record"); 6336 6337 if (!isa<PointerType>(Ptr->getType())) 6338 return error("Invalid record"); 6339 6340 Value *Val = nullptr; 6341 unsigned ValTypeID = InvalidTypeID; 6342 if (BitCode == bitc::FUNC_CODE_INST_ATOMICRMW_OLD) { 6343 ValTypeID = getContainedTypeID(PtrTypeID); 6344 if (popValue(Record, OpNum, NextValueNo, 6345 getTypeByID(ValTypeID), ValTypeID, Val, CurBB)) 6346 return error("Invalid record"); 6347 } else { 6348 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 6349 return error("Invalid record"); 6350 } 6351 6352 if (!(NumRecords == (OpNum + 4) || NumRecords == (OpNum + 5))) 6353 return error("Invalid record"); 6354 6355 const AtomicRMWInst::BinOp Operation = 6356 getDecodedRMWOperation(Record[OpNum]); 6357 if (Operation < AtomicRMWInst::FIRST_BINOP || 6358 Operation > AtomicRMWInst::LAST_BINOP) 6359 return error("Invalid record"); 6360 6361 const bool IsVol = Record[OpNum + 1]; 6362 6363 const AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 6364 if (Ordering == AtomicOrdering::NotAtomic || 6365 Ordering == AtomicOrdering::Unordered) 6366 return error("Invalid record"); 6367 6368 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 6369 6370 MaybeAlign Alignment; 6371 6372 if (NumRecords == (OpNum + 5)) { 6373 if (Error Err = parseAlignmentValue(Record[OpNum + 4], Alignment)) 6374 return Err; 6375 } 6376 6377 if (!Alignment) 6378 Alignment = 6379 Align(TheModule->getDataLayout().getTypeStoreSize(Val->getType())); 6380 6381 I = new AtomicRMWInst(Operation, Ptr, Val, *Alignment, Ordering, SSID); 6382 ResTypeID = ValTypeID; 6383 cast<AtomicRMWInst>(I)->setVolatile(IsVol); 6384 6385 InstructionList.push_back(I); 6386 break; 6387 } 6388 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid] 6389 if (2 != Record.size()) 6390 return error("Invalid record"); 6391 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 6392 if (Ordering == AtomicOrdering::NotAtomic || 6393 Ordering == AtomicOrdering::Unordered || 6394 Ordering == AtomicOrdering::Monotonic) 6395 return error("Invalid record"); 6396 SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]); 6397 I = new FenceInst(Context, Ordering, SSID); 6398 InstructionList.push_back(I); 6399 break; 6400 } 6401 case bitc::FUNC_CODE_INST_CALL: { 6402 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 6403 if (Record.size() < 3) 6404 return error("Invalid record"); 6405 6406 unsigned OpNum = 0; 6407 AttributeList PAL = getAttributes(Record[OpNum++]); 6408 unsigned CCInfo = Record[OpNum++]; 6409 6410 FastMathFlags FMF; 6411 if ((CCInfo >> bitc::CALL_FMF) & 1) { 6412 FMF = getDecodedFastMathFlags(Record[OpNum++]); 6413 if (!FMF.any()) 6414 return error("Fast math flags indicator set for call with no FMF"); 6415 } 6416 6417 unsigned FTyID = InvalidTypeID; 6418 FunctionType *FTy = nullptr; 6419 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 6420 FTyID = Record[OpNum++]; 6421 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 6422 if (!FTy) 6423 return error("Explicit call type is not a function type"); 6424 } 6425 6426 Value *Callee; 6427 unsigned CalleeTypeID; 6428 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID, 6429 CurBB)) 6430 return error("Invalid record"); 6431 6432 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 6433 if (!OpTy) 6434 return error("Callee is not a pointer type"); 6435 if (!FTy) { 6436 FTyID = getContainedTypeID(CalleeTypeID); 6437 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 6438 if (!FTy) 6439 return error("Callee is not of pointer to function type"); 6440 } 6441 if (Record.size() < FTy->getNumParams() + OpNum) 6442 return error("Insufficient operands to call"); 6443 6444 SmallVector<Value*, 16> Args; 6445 SmallVector<unsigned, 16> ArgTyIDs; 6446 // Read the fixed params. 6447 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 6448 unsigned ArgTyID = getContainedTypeID(FTyID, i + 1); 6449 if (FTy->getParamType(i)->isLabelTy()) 6450 Args.push_back(getBasicBlock(Record[OpNum])); 6451 else 6452 Args.push_back(getValue(Record, OpNum, NextValueNo, 6453 FTy->getParamType(i), ArgTyID, CurBB)); 6454 ArgTyIDs.push_back(ArgTyID); 6455 if (!Args.back()) 6456 return error("Invalid record"); 6457 } 6458 6459 // Read type/value pairs for varargs params. 6460 if (!FTy->isVarArg()) { 6461 if (OpNum != Record.size()) 6462 return error("Invalid record"); 6463 } else { 6464 while (OpNum != Record.size()) { 6465 Value *Op; 6466 unsigned OpTypeID; 6467 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 6468 return error("Invalid record"); 6469 Args.push_back(Op); 6470 ArgTyIDs.push_back(OpTypeID); 6471 } 6472 } 6473 6474 // Upgrade the bundles if needed. 6475 if (!OperandBundles.empty()) 6476 UpgradeOperandBundles(OperandBundles); 6477 6478 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 6479 ResTypeID = getContainedTypeID(FTyID); 6480 OperandBundles.clear(); 6481 InstructionList.push_back(I); 6482 cast<CallInst>(I)->setCallingConv( 6483 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 6484 CallInst::TailCallKind TCK = CallInst::TCK_None; 6485 if (CCInfo & (1 << bitc::CALL_TAIL)) 6486 TCK = CallInst::TCK_Tail; 6487 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 6488 TCK = CallInst::TCK_MustTail; 6489 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 6490 TCK = CallInst::TCK_NoTail; 6491 cast<CallInst>(I)->setTailCallKind(TCK); 6492 cast<CallInst>(I)->setAttributes(PAL); 6493 if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) { 6494 I->deleteValue(); 6495 return Err; 6496 } 6497 if (FMF.any()) { 6498 if (!isa<FPMathOperator>(I)) 6499 return error("Fast-math-flags specified for call without " 6500 "floating-point scalar or vector return type"); 6501 I->setFastMathFlags(FMF); 6502 } 6503 break; 6504 } 6505 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 6506 if (Record.size() < 3) 6507 return error("Invalid record"); 6508 unsigned OpTyID = Record[0]; 6509 Type *OpTy = getTypeByID(OpTyID); 6510 Value *Op = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB); 6511 ResTypeID = Record[2]; 6512 Type *ResTy = getTypeByID(ResTypeID); 6513 if (!OpTy || !Op || !ResTy) 6514 return error("Invalid record"); 6515 I = new VAArgInst(Op, ResTy); 6516 InstructionList.push_back(I); 6517 break; 6518 } 6519 6520 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 6521 // A call or an invoke can be optionally prefixed with some variable 6522 // number of operand bundle blocks. These blocks are read into 6523 // OperandBundles and consumed at the next call or invoke instruction. 6524 6525 if (Record.empty() || Record[0] >= BundleTags.size()) 6526 return error("Invalid record"); 6527 6528 std::vector<Value *> Inputs; 6529 6530 unsigned OpNum = 1; 6531 while (OpNum != Record.size()) { 6532 Value *Op; 6533 unsigned OpTypeID; 6534 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 6535 return error("Invalid record"); 6536 Inputs.push_back(Op); 6537 } 6538 6539 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 6540 continue; 6541 } 6542 6543 case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval] 6544 unsigned OpNum = 0; 6545 Value *Op = nullptr; 6546 unsigned OpTypeID; 6547 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 6548 return error("Invalid record"); 6549 if (OpNum != Record.size()) 6550 return error("Invalid record"); 6551 6552 I = new FreezeInst(Op); 6553 ResTypeID = OpTypeID; 6554 InstructionList.push_back(I); 6555 break; 6556 } 6557 } 6558 6559 // Add instruction to end of current BB. If there is no current BB, reject 6560 // this file. 6561 if (!CurBB) { 6562 I->deleteValue(); 6563 return error("Invalid instruction with no BB"); 6564 } 6565 if (!OperandBundles.empty()) { 6566 I->deleteValue(); 6567 return error("Operand bundles found with no consumer"); 6568 } 6569 I->insertInto(CurBB, CurBB->end()); 6570 6571 // If this was a terminator instruction, move to the next block. 6572 if (I->isTerminator()) { 6573 ++CurBBNo; 6574 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 6575 } 6576 6577 // Non-void values get registered in the value table for future use. 6578 if (!I->getType()->isVoidTy()) { 6579 assert(I->getType() == getTypeByID(ResTypeID) && 6580 "Incorrect result type ID"); 6581 if (Error Err = ValueList.assignValue(NextValueNo++, I, ResTypeID)) 6582 return Err; 6583 } 6584 } 6585 6586 OutOfRecordLoop: 6587 6588 if (!OperandBundles.empty()) 6589 return error("Operand bundles found with no consumer"); 6590 6591 // Check the function list for unresolved values. 6592 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 6593 if (!A->getParent()) { 6594 // We found at least one unresolved value. Nuke them all to avoid leaks. 6595 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 6596 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 6597 A->replaceAllUsesWith(PoisonValue::get(A->getType())); 6598 delete A; 6599 } 6600 } 6601 return error("Never resolved value found in function"); 6602 } 6603 } 6604 6605 // Unexpected unresolved metadata about to be dropped. 6606 if (MDLoader->hasFwdRefs()) 6607 return error("Invalid function metadata: outgoing forward refs"); 6608 6609 if (PhiConstExprBB) 6610 PhiConstExprBB->eraseFromParent(); 6611 6612 for (const auto &Pair : ConstExprEdgeBBs) { 6613 BasicBlock *From = Pair.first.first; 6614 BasicBlock *To = Pair.first.second; 6615 BasicBlock *EdgeBB = Pair.second; 6616 BranchInst::Create(To, EdgeBB); 6617 From->getTerminator()->replaceSuccessorWith(To, EdgeBB); 6618 To->replacePhiUsesWith(From, EdgeBB); 6619 EdgeBB->moveBefore(To); 6620 } 6621 6622 // Trim the value list down to the size it was before we parsed this function. 6623 ValueList.shrinkTo(ModuleValueListSize); 6624 MDLoader->shrinkTo(ModuleMDLoaderSize); 6625 std::vector<BasicBlock*>().swap(FunctionBBs); 6626 return Error::success(); 6627 } 6628 6629 /// Find the function body in the bitcode stream 6630 Error BitcodeReader::findFunctionInStream( 6631 Function *F, 6632 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 6633 while (DeferredFunctionInfoIterator->second == 0) { 6634 // This is the fallback handling for the old format bitcode that 6635 // didn't contain the function index in the VST, or when we have 6636 // an anonymous function which would not have a VST entry. 6637 // Assert that we have one of those two cases. 6638 assert(VSTOffset == 0 || !F->hasName()); 6639 // Parse the next body in the stream and set its position in the 6640 // DeferredFunctionInfo map. 6641 if (Error Err = rememberAndSkipFunctionBodies()) 6642 return Err; 6643 } 6644 return Error::success(); 6645 } 6646 6647 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) { 6648 if (Val == SyncScope::SingleThread || Val == SyncScope::System) 6649 return SyncScope::ID(Val); 6650 if (Val >= SSIDs.size()) 6651 return SyncScope::System; // Map unknown synchronization scopes to system. 6652 return SSIDs[Val]; 6653 } 6654 6655 //===----------------------------------------------------------------------===// 6656 // GVMaterializer implementation 6657 //===----------------------------------------------------------------------===// 6658 6659 Error BitcodeReader::materialize(GlobalValue *GV) { 6660 Function *F = dyn_cast<Function>(GV); 6661 // If it's not a function or is already material, ignore the request. 6662 if (!F || !F->isMaterializable()) 6663 return Error::success(); 6664 6665 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 6666 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 6667 // If its position is recorded as 0, its body is somewhere in the stream 6668 // but we haven't seen it yet. 6669 if (DFII->second == 0) 6670 if (Error Err = findFunctionInStream(F, DFII)) 6671 return Err; 6672 6673 // Materialize metadata before parsing any function bodies. 6674 if (Error Err = materializeMetadata()) 6675 return Err; 6676 6677 // Move the bit stream to the saved position of the deferred function body. 6678 if (Error JumpFailed = Stream.JumpToBit(DFII->second)) 6679 return JumpFailed; 6680 if (Error Err = parseFunctionBody(F)) 6681 return Err; 6682 F->setIsMaterializable(false); 6683 6684 if (StripDebugInfo) 6685 stripDebugInfo(*F); 6686 6687 // Upgrade any old intrinsic calls in the function. 6688 for (auto &I : UpgradedIntrinsics) { 6689 for (User *U : llvm::make_early_inc_range(I.first->materialized_users())) 6690 if (CallInst *CI = dyn_cast<CallInst>(U)) 6691 UpgradeIntrinsicCall(CI, I.second); 6692 } 6693 6694 // Finish fn->subprogram upgrade for materialized functions. 6695 if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F)) 6696 F->setSubprogram(SP); 6697 6698 // Check if the TBAA Metadata are valid, otherwise we will need to strip them. 6699 if (!MDLoader->isStrippingTBAA()) { 6700 for (auto &I : instructions(F)) { 6701 MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa); 6702 if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA)) 6703 continue; 6704 MDLoader->setStripTBAA(true); 6705 stripTBAA(F->getParent()); 6706 } 6707 } 6708 6709 for (auto &I : instructions(F)) { 6710 // "Upgrade" older incorrect branch weights by dropping them. 6711 if (auto *MD = I.getMetadata(LLVMContext::MD_prof)) { 6712 if (MD->getOperand(0) != nullptr && isa<MDString>(MD->getOperand(0))) { 6713 MDString *MDS = cast<MDString>(MD->getOperand(0)); 6714 StringRef ProfName = MDS->getString(); 6715 // Check consistency of !prof branch_weights metadata. 6716 if (!ProfName.equals("branch_weights")) 6717 continue; 6718 unsigned ExpectedNumOperands = 0; 6719 if (BranchInst *BI = dyn_cast<BranchInst>(&I)) 6720 ExpectedNumOperands = BI->getNumSuccessors(); 6721 else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I)) 6722 ExpectedNumOperands = SI->getNumSuccessors(); 6723 else if (isa<CallInst>(&I)) 6724 ExpectedNumOperands = 1; 6725 else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I)) 6726 ExpectedNumOperands = IBI->getNumDestinations(); 6727 else if (isa<SelectInst>(&I)) 6728 ExpectedNumOperands = 2; 6729 else 6730 continue; // ignore and continue. 6731 6732 // If branch weight doesn't match, just strip branch weight. 6733 if (MD->getNumOperands() != 1 + ExpectedNumOperands) 6734 I.setMetadata(LLVMContext::MD_prof, nullptr); 6735 } 6736 } 6737 6738 // Remove incompatible attributes on function calls. 6739 if (auto *CI = dyn_cast<CallBase>(&I)) { 6740 CI->removeRetAttrs(AttributeFuncs::typeIncompatible( 6741 CI->getFunctionType()->getReturnType())); 6742 6743 for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ++ArgNo) 6744 CI->removeParamAttrs(ArgNo, AttributeFuncs::typeIncompatible( 6745 CI->getArgOperand(ArgNo)->getType())); 6746 } 6747 } 6748 6749 // Look for functions that rely on old function attribute behavior. 6750 UpgradeFunctionAttributes(*F); 6751 6752 // Bring in any functions that this function forward-referenced via 6753 // blockaddresses. 6754 return materializeForwardReferencedFunctions(); 6755 } 6756 6757 Error BitcodeReader::materializeModule() { 6758 if (Error Err = materializeMetadata()) 6759 return Err; 6760 6761 // Promise to materialize all forward references. 6762 WillMaterializeAllForwardRefs = true; 6763 6764 // Iterate over the module, deserializing any functions that are still on 6765 // disk. 6766 for (Function &F : *TheModule) { 6767 if (Error Err = materialize(&F)) 6768 return Err; 6769 } 6770 // At this point, if there are any function bodies, parse the rest of 6771 // the bits in the module past the last function block we have recorded 6772 // through either lazy scanning or the VST. 6773 if (LastFunctionBlockBit || NextUnreadBit) 6774 if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit 6775 ? LastFunctionBlockBit 6776 : NextUnreadBit)) 6777 return Err; 6778 6779 // Check that all block address forward references got resolved (as we 6780 // promised above). 6781 if (!BasicBlockFwdRefs.empty()) 6782 return error("Never resolved function from blockaddress"); 6783 6784 // Upgrade any intrinsic calls that slipped through (should not happen!) and 6785 // delete the old functions to clean up. We can't do this unless the entire 6786 // module is materialized because there could always be another function body 6787 // with calls to the old function. 6788 for (auto &I : UpgradedIntrinsics) { 6789 for (auto *U : I.first->users()) { 6790 if (CallInst *CI = dyn_cast<CallInst>(U)) 6791 UpgradeIntrinsicCall(CI, I.second); 6792 } 6793 if (!I.first->use_empty()) 6794 I.first->replaceAllUsesWith(I.second); 6795 I.first->eraseFromParent(); 6796 } 6797 UpgradedIntrinsics.clear(); 6798 6799 UpgradeDebugInfo(*TheModule); 6800 6801 UpgradeModuleFlags(*TheModule); 6802 6803 UpgradeARCRuntime(*TheModule); 6804 6805 return Error::success(); 6806 } 6807 6808 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 6809 return IdentifiedStructTypes; 6810 } 6811 6812 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 6813 BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex, 6814 StringRef ModulePath, std::function<bool(GlobalValue::GUID)> IsPrevailing) 6815 : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex), 6816 ModulePath(ModulePath), IsPrevailing(IsPrevailing) {} 6817 6818 void ModuleSummaryIndexBitcodeReader::addThisModule() { 6819 TheIndex.addModule(ModulePath); 6820 } 6821 6822 ModuleSummaryIndex::ModuleInfo * 6823 ModuleSummaryIndexBitcodeReader::getThisModule() { 6824 return TheIndex.getModule(ModulePath); 6825 } 6826 6827 template <bool AllowNullValueInfo> 6828 std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID> 6829 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) { 6830 auto VGI = ValueIdToValueInfoMap[ValueId]; 6831 // We can have a null value info for memprof callsite info records in 6832 // distributed ThinLTO index files when the callee function summary is not 6833 // included in the index. The bitcode writer records 0 in that case, 6834 // and the caller of this helper will set AllowNullValueInfo to true. 6835 assert(AllowNullValueInfo || std::get<0>(VGI)); 6836 return VGI; 6837 } 6838 6839 void ModuleSummaryIndexBitcodeReader::setValueGUID( 6840 uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage, 6841 StringRef SourceFileName) { 6842 std::string GlobalId = 6843 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 6844 auto ValueGUID = GlobalValue::getGUID(GlobalId); 6845 auto OriginalNameID = ValueGUID; 6846 if (GlobalValue::isLocalLinkage(Linkage)) 6847 OriginalNameID = GlobalValue::getGUID(ValueName); 6848 if (PrintSummaryGUIDs) 6849 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 6850 << ValueName << "\n"; 6851 6852 // UseStrtab is false for legacy summary formats and value names are 6853 // created on stack. In that case we save the name in a string saver in 6854 // the index so that the value name can be recorded. 6855 ValueIdToValueInfoMap[ValueID] = std::make_tuple( 6856 TheIndex.getOrInsertValueInfo( 6857 ValueGUID, UseStrtab ? ValueName : TheIndex.saveString(ValueName)), 6858 OriginalNameID, ValueGUID); 6859 } 6860 6861 // Specialized value symbol table parser used when reading module index 6862 // blocks where we don't actually create global values. The parsed information 6863 // is saved in the bitcode reader for use when later parsing summaries. 6864 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 6865 uint64_t Offset, 6866 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 6867 // With a strtab the VST is not required to parse the summary. 6868 if (UseStrtab) 6869 return Error::success(); 6870 6871 assert(Offset > 0 && "Expected non-zero VST offset"); 6872 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 6873 if (!MaybeCurrentBit) 6874 return MaybeCurrentBit.takeError(); 6875 uint64_t CurrentBit = MaybeCurrentBit.get(); 6876 6877 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 6878 return Err; 6879 6880 SmallVector<uint64_t, 64> Record; 6881 6882 // Read all the records for this value table. 6883 SmallString<128> ValueName; 6884 6885 while (true) { 6886 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6887 if (!MaybeEntry) 6888 return MaybeEntry.takeError(); 6889 BitstreamEntry Entry = MaybeEntry.get(); 6890 6891 switch (Entry.Kind) { 6892 case BitstreamEntry::SubBlock: // Handled for us already. 6893 case BitstreamEntry::Error: 6894 return error("Malformed block"); 6895 case BitstreamEntry::EndBlock: 6896 // Done parsing VST, jump back to wherever we came from. 6897 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 6898 return JumpFailed; 6899 return Error::success(); 6900 case BitstreamEntry::Record: 6901 // The interesting case. 6902 break; 6903 } 6904 6905 // Read a record. 6906 Record.clear(); 6907 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 6908 if (!MaybeRecord) 6909 return MaybeRecord.takeError(); 6910 switch (MaybeRecord.get()) { 6911 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 6912 break; 6913 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 6914 if (convertToString(Record, 1, ValueName)) 6915 return error("Invalid record"); 6916 unsigned ValueID = Record[0]; 6917 assert(!SourceFileName.empty()); 6918 auto VLI = ValueIdToLinkageMap.find(ValueID); 6919 assert(VLI != ValueIdToLinkageMap.end() && 6920 "No linkage found for VST entry?"); 6921 auto Linkage = VLI->second; 6922 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 6923 ValueName.clear(); 6924 break; 6925 } 6926 case bitc::VST_CODE_FNENTRY: { 6927 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 6928 if (convertToString(Record, 2, ValueName)) 6929 return error("Invalid record"); 6930 unsigned ValueID = Record[0]; 6931 assert(!SourceFileName.empty()); 6932 auto VLI = ValueIdToLinkageMap.find(ValueID); 6933 assert(VLI != ValueIdToLinkageMap.end() && 6934 "No linkage found for VST entry?"); 6935 auto Linkage = VLI->second; 6936 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 6937 ValueName.clear(); 6938 break; 6939 } 6940 case bitc::VST_CODE_COMBINED_ENTRY: { 6941 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 6942 unsigned ValueID = Record[0]; 6943 GlobalValue::GUID RefGUID = Record[1]; 6944 // The "original name", which is the second value of the pair will be 6945 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 6946 ValueIdToValueInfoMap[ValueID] = std::make_tuple( 6947 TheIndex.getOrInsertValueInfo(RefGUID), RefGUID, RefGUID); 6948 break; 6949 } 6950 } 6951 } 6952 } 6953 6954 // Parse just the blocks needed for building the index out of the module. 6955 // At the end of this routine the module Index is populated with a map 6956 // from global value id to GlobalValueSummary objects. 6957 Error ModuleSummaryIndexBitcodeReader::parseModule() { 6958 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 6959 return Err; 6960 6961 SmallVector<uint64_t, 64> Record; 6962 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 6963 unsigned ValueId = 0; 6964 6965 // Read the index for this module. 6966 while (true) { 6967 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6968 if (!MaybeEntry) 6969 return MaybeEntry.takeError(); 6970 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6971 6972 switch (Entry.Kind) { 6973 case BitstreamEntry::Error: 6974 return error("Malformed block"); 6975 case BitstreamEntry::EndBlock: 6976 return Error::success(); 6977 6978 case BitstreamEntry::SubBlock: 6979 switch (Entry.ID) { 6980 default: // Skip unknown content. 6981 if (Error Err = Stream.SkipBlock()) 6982 return Err; 6983 break; 6984 case bitc::BLOCKINFO_BLOCK_ID: 6985 // Need to parse these to get abbrev ids (e.g. for VST) 6986 if (Error Err = readBlockInfo()) 6987 return Err; 6988 break; 6989 case bitc::VALUE_SYMTAB_BLOCK_ID: 6990 // Should have been parsed earlier via VSTOffset, unless there 6991 // is no summary section. 6992 assert(((SeenValueSymbolTable && VSTOffset > 0) || 6993 !SeenGlobalValSummary) && 6994 "Expected early VST parse via VSTOffset record"); 6995 if (Error Err = Stream.SkipBlock()) 6996 return Err; 6997 break; 6998 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 6999 case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID: 7000 // Add the module if it is a per-module index (has a source file name). 7001 if (!SourceFileName.empty()) 7002 addThisModule(); 7003 assert(!SeenValueSymbolTable && 7004 "Already read VST when parsing summary block?"); 7005 // We might not have a VST if there were no values in the 7006 // summary. An empty summary block generated when we are 7007 // performing ThinLTO compiles so we don't later invoke 7008 // the regular LTO process on them. 7009 if (VSTOffset > 0) { 7010 if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 7011 return Err; 7012 SeenValueSymbolTable = true; 7013 } 7014 SeenGlobalValSummary = true; 7015 if (Error Err = parseEntireSummary(Entry.ID)) 7016 return Err; 7017 break; 7018 case bitc::MODULE_STRTAB_BLOCK_ID: 7019 if (Error Err = parseModuleStringTable()) 7020 return Err; 7021 break; 7022 } 7023 continue; 7024 7025 case BitstreamEntry::Record: { 7026 Record.clear(); 7027 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 7028 if (!MaybeBitCode) 7029 return MaybeBitCode.takeError(); 7030 switch (MaybeBitCode.get()) { 7031 default: 7032 break; // Default behavior, ignore unknown content. 7033 case bitc::MODULE_CODE_VERSION: { 7034 if (Error Err = parseVersionRecord(Record).takeError()) 7035 return Err; 7036 break; 7037 } 7038 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 7039 case bitc::MODULE_CODE_SOURCE_FILENAME: { 7040 SmallString<128> ValueName; 7041 if (convertToString(Record, 0, ValueName)) 7042 return error("Invalid record"); 7043 SourceFileName = ValueName.c_str(); 7044 break; 7045 } 7046 /// MODULE_CODE_HASH: [5*i32] 7047 case bitc::MODULE_CODE_HASH: { 7048 if (Record.size() != 5) 7049 return error("Invalid hash length " + Twine(Record.size()).str()); 7050 auto &Hash = getThisModule()->second; 7051 int Pos = 0; 7052 for (auto &Val : Record) { 7053 assert(!(Val >> 32) && "Unexpected high bits set"); 7054 Hash[Pos++] = Val; 7055 } 7056 break; 7057 } 7058 /// MODULE_CODE_VSTOFFSET: [offset] 7059 case bitc::MODULE_CODE_VSTOFFSET: 7060 if (Record.empty()) 7061 return error("Invalid record"); 7062 // Note that we subtract 1 here because the offset is relative to one 7063 // word before the start of the identification or module block, which 7064 // was historically always the start of the regular bitcode header. 7065 VSTOffset = Record[0] - 1; 7066 break; 7067 // v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...] 7068 // v1 FUNCTION: [type, callingconv, isproto, linkage, ...] 7069 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...] 7070 // v2: [strtab offset, strtab size, v1] 7071 case bitc::MODULE_CODE_GLOBALVAR: 7072 case bitc::MODULE_CODE_FUNCTION: 7073 case bitc::MODULE_CODE_ALIAS: { 7074 StringRef Name; 7075 ArrayRef<uint64_t> GVRecord; 7076 std::tie(Name, GVRecord) = readNameFromStrtab(Record); 7077 if (GVRecord.size() <= 3) 7078 return error("Invalid record"); 7079 uint64_t RawLinkage = GVRecord[3]; 7080 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 7081 if (!UseStrtab) { 7082 ValueIdToLinkageMap[ValueId++] = Linkage; 7083 break; 7084 } 7085 7086 setValueGUID(ValueId++, Name, Linkage, SourceFileName); 7087 break; 7088 } 7089 } 7090 } 7091 continue; 7092 } 7093 } 7094 } 7095 7096 std::vector<ValueInfo> 7097 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) { 7098 std::vector<ValueInfo> Ret; 7099 Ret.reserve(Record.size()); 7100 for (uint64_t RefValueId : Record) 7101 Ret.push_back(std::get<0>(getValueInfoFromValueId(RefValueId))); 7102 return Ret; 7103 } 7104 7105 std::vector<FunctionSummary::EdgeTy> 7106 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record, 7107 bool IsOldProfileFormat, 7108 bool HasProfile, bool HasRelBF) { 7109 std::vector<FunctionSummary::EdgeTy> Ret; 7110 Ret.reserve(Record.size()); 7111 for (unsigned I = 0, E = Record.size(); I != E; ++I) { 7112 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 7113 bool HasTailCall = false; 7114 uint64_t RelBF = 0; 7115 ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[I])); 7116 if (IsOldProfileFormat) { 7117 I += 1; // Skip old callsitecount field 7118 if (HasProfile) 7119 I += 1; // Skip old profilecount field 7120 } else if (HasProfile) 7121 std::tie(Hotness, HasTailCall) = 7122 getDecodedHotnessCallEdgeInfo(Record[++I]); 7123 else if (HasRelBF) 7124 getDecodedRelBFCallEdgeInfo(Record[++I], RelBF, HasTailCall); 7125 Ret.push_back(FunctionSummary::EdgeTy{ 7126 Callee, CalleeInfo(Hotness, HasTailCall, RelBF)}); 7127 } 7128 return Ret; 7129 } 7130 7131 static void 7132 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot, 7133 WholeProgramDevirtResolution &Wpd) { 7134 uint64_t ArgNum = Record[Slot++]; 7135 WholeProgramDevirtResolution::ByArg &B = 7136 Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}]; 7137 Slot += ArgNum; 7138 7139 B.TheKind = 7140 static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]); 7141 B.Info = Record[Slot++]; 7142 B.Byte = Record[Slot++]; 7143 B.Bit = Record[Slot++]; 7144 } 7145 7146 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record, 7147 StringRef Strtab, size_t &Slot, 7148 TypeIdSummary &TypeId) { 7149 uint64_t Id = Record[Slot++]; 7150 WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id]; 7151 7152 Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]); 7153 Wpd.SingleImplName = {Strtab.data() + Record[Slot], 7154 static_cast<size_t>(Record[Slot + 1])}; 7155 Slot += 2; 7156 7157 uint64_t ResByArgNum = Record[Slot++]; 7158 for (uint64_t I = 0; I != ResByArgNum; ++I) 7159 parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd); 7160 } 7161 7162 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record, 7163 StringRef Strtab, 7164 ModuleSummaryIndex &TheIndex) { 7165 size_t Slot = 0; 7166 TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary( 7167 {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])}); 7168 Slot += 2; 7169 7170 TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]); 7171 TypeId.TTRes.SizeM1BitWidth = Record[Slot++]; 7172 TypeId.TTRes.AlignLog2 = Record[Slot++]; 7173 TypeId.TTRes.SizeM1 = Record[Slot++]; 7174 TypeId.TTRes.BitMask = Record[Slot++]; 7175 TypeId.TTRes.InlineBits = Record[Slot++]; 7176 7177 while (Slot < Record.size()) 7178 parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId); 7179 } 7180 7181 std::vector<FunctionSummary::ParamAccess> 7182 ModuleSummaryIndexBitcodeReader::parseParamAccesses(ArrayRef<uint64_t> Record) { 7183 auto ReadRange = [&]() { 7184 APInt Lower(FunctionSummary::ParamAccess::RangeWidth, 7185 BitcodeReader::decodeSignRotatedValue(Record.front())); 7186 Record = Record.drop_front(); 7187 APInt Upper(FunctionSummary::ParamAccess::RangeWidth, 7188 BitcodeReader::decodeSignRotatedValue(Record.front())); 7189 Record = Record.drop_front(); 7190 ConstantRange Range{Lower, Upper}; 7191 assert(!Range.isFullSet()); 7192 assert(!Range.isUpperSignWrapped()); 7193 return Range; 7194 }; 7195 7196 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; 7197 while (!Record.empty()) { 7198 PendingParamAccesses.emplace_back(); 7199 FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back(); 7200 ParamAccess.ParamNo = Record.front(); 7201 Record = Record.drop_front(); 7202 ParamAccess.Use = ReadRange(); 7203 ParamAccess.Calls.resize(Record.front()); 7204 Record = Record.drop_front(); 7205 for (auto &Call : ParamAccess.Calls) { 7206 Call.ParamNo = Record.front(); 7207 Record = Record.drop_front(); 7208 Call.Callee = std::get<0>(getValueInfoFromValueId(Record.front())); 7209 Record = Record.drop_front(); 7210 Call.Offsets = ReadRange(); 7211 } 7212 } 7213 return PendingParamAccesses; 7214 } 7215 7216 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo( 7217 ArrayRef<uint64_t> Record, size_t &Slot, 7218 TypeIdCompatibleVtableInfo &TypeId) { 7219 uint64_t Offset = Record[Slot++]; 7220 ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[Slot++])); 7221 TypeId.push_back({Offset, Callee}); 7222 } 7223 7224 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord( 7225 ArrayRef<uint64_t> Record) { 7226 size_t Slot = 0; 7227 TypeIdCompatibleVtableInfo &TypeId = 7228 TheIndex.getOrInsertTypeIdCompatibleVtableSummary( 7229 {Strtab.data() + Record[Slot], 7230 static_cast<size_t>(Record[Slot + 1])}); 7231 Slot += 2; 7232 7233 while (Slot < Record.size()) 7234 parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId); 7235 } 7236 7237 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt, 7238 unsigned WOCnt) { 7239 // Readonly and writeonly refs are in the end of the refs list. 7240 assert(ROCnt + WOCnt <= Refs.size()); 7241 unsigned FirstWORef = Refs.size() - WOCnt; 7242 unsigned RefNo = FirstWORef - ROCnt; 7243 for (; RefNo < FirstWORef; ++RefNo) 7244 Refs[RefNo].setReadOnly(); 7245 for (; RefNo < Refs.size(); ++RefNo) 7246 Refs[RefNo].setWriteOnly(); 7247 } 7248 7249 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 7250 // objects in the index. 7251 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) { 7252 if (Error Err = Stream.EnterSubBlock(ID)) 7253 return Err; 7254 SmallVector<uint64_t, 64> Record; 7255 7256 // Parse version 7257 { 7258 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 7259 if (!MaybeEntry) 7260 return MaybeEntry.takeError(); 7261 BitstreamEntry Entry = MaybeEntry.get(); 7262 7263 if (Entry.Kind != BitstreamEntry::Record) 7264 return error("Invalid Summary Block: record for version expected"); 7265 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 7266 if (!MaybeRecord) 7267 return MaybeRecord.takeError(); 7268 if (MaybeRecord.get() != bitc::FS_VERSION) 7269 return error("Invalid Summary Block: version expected"); 7270 } 7271 const uint64_t Version = Record[0]; 7272 const bool IsOldProfileFormat = Version == 1; 7273 if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion) 7274 return error("Invalid summary version " + Twine(Version) + 7275 ". Version should be in the range [1-" + 7276 Twine(ModuleSummaryIndex::BitcodeSummaryVersion) + 7277 "]."); 7278 Record.clear(); 7279 7280 // Keep around the last seen summary to be used when we see an optional 7281 // "OriginalName" attachement. 7282 GlobalValueSummary *LastSeenSummary = nullptr; 7283 GlobalValue::GUID LastSeenGUID = 0; 7284 7285 // We can expect to see any number of type ID information records before 7286 // each function summary records; these variables store the information 7287 // collected so far so that it can be used to create the summary object. 7288 std::vector<GlobalValue::GUID> PendingTypeTests; 7289 std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls, 7290 PendingTypeCheckedLoadVCalls; 7291 std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls, 7292 PendingTypeCheckedLoadConstVCalls; 7293 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; 7294 7295 std::vector<CallsiteInfo> PendingCallsites; 7296 std::vector<AllocInfo> PendingAllocs; 7297 7298 while (true) { 7299 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 7300 if (!MaybeEntry) 7301 return MaybeEntry.takeError(); 7302 BitstreamEntry Entry = MaybeEntry.get(); 7303 7304 switch (Entry.Kind) { 7305 case BitstreamEntry::SubBlock: // Handled for us already. 7306 case BitstreamEntry::Error: 7307 return error("Malformed block"); 7308 case BitstreamEntry::EndBlock: 7309 return Error::success(); 7310 case BitstreamEntry::Record: 7311 // The interesting case. 7312 break; 7313 } 7314 7315 // Read a record. The record format depends on whether this 7316 // is a per-module index or a combined index file. In the per-module 7317 // case the records contain the associated value's ID for correlation 7318 // with VST entries. In the combined index the correlation is done 7319 // via the bitcode offset of the summary records (which were saved 7320 // in the combined index VST entries). The records also contain 7321 // information used for ThinLTO renaming and importing. 7322 Record.clear(); 7323 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 7324 if (!MaybeBitCode) 7325 return MaybeBitCode.takeError(); 7326 switch (unsigned BitCode = MaybeBitCode.get()) { 7327 default: // Default behavior: ignore. 7328 break; 7329 case bitc::FS_FLAGS: { // [flags] 7330 TheIndex.setFlags(Record[0]); 7331 break; 7332 } 7333 case bitc::FS_VALUE_GUID: { // [valueid, refguid] 7334 uint64_t ValueID = Record[0]; 7335 GlobalValue::GUID RefGUID = Record[1]; 7336 ValueIdToValueInfoMap[ValueID] = std::make_tuple( 7337 TheIndex.getOrInsertValueInfo(RefGUID), RefGUID, RefGUID); 7338 break; 7339 } 7340 // FS_PERMODULE is legacy and does not have support for the tail call flag. 7341 // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs, 7342 // numrefs x valueid, n x (valueid)] 7343 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs, 7344 // numrefs x valueid, 7345 // n x (valueid, hotness+tailcall flags)] 7346 // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs, 7347 // numrefs x valueid, 7348 // n x (valueid, relblockfreq+tailcall)] 7349 case bitc::FS_PERMODULE: 7350 case bitc::FS_PERMODULE_RELBF: 7351 case bitc::FS_PERMODULE_PROFILE: { 7352 unsigned ValueID = Record[0]; 7353 uint64_t RawFlags = Record[1]; 7354 unsigned InstCount = Record[2]; 7355 uint64_t RawFunFlags = 0; 7356 unsigned NumRefs = Record[3]; 7357 unsigned NumRORefs = 0, NumWORefs = 0; 7358 int RefListStartIndex = 4; 7359 if (Version >= 4) { 7360 RawFunFlags = Record[3]; 7361 NumRefs = Record[4]; 7362 RefListStartIndex = 5; 7363 if (Version >= 5) { 7364 NumRORefs = Record[5]; 7365 RefListStartIndex = 6; 7366 if (Version >= 7) { 7367 NumWORefs = Record[6]; 7368 RefListStartIndex = 7; 7369 } 7370 } 7371 } 7372 7373 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7374 // The module path string ref set in the summary must be owned by the 7375 // index's module string table. Since we don't have a module path 7376 // string table section in the per-module index, we create a single 7377 // module path string table entry with an empty (0) ID to take 7378 // ownership. 7379 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 7380 assert(Record.size() >= RefListStartIndex + NumRefs && 7381 "Record size inconsistent with number of references"); 7382 std::vector<ValueInfo> Refs = makeRefList( 7383 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 7384 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 7385 bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF); 7386 std::vector<FunctionSummary::EdgeTy> Calls = makeCallList( 7387 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 7388 IsOldProfileFormat, HasProfile, HasRelBF); 7389 setSpecialRefs(Refs, NumRORefs, NumWORefs); 7390 auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID); 7391 // In order to save memory, only record the memprof summaries if this is 7392 // the prevailing copy of a symbol. The linker doesn't resolve local 7393 // linkage values so don't check whether those are prevailing. 7394 auto LT = (GlobalValue::LinkageTypes)Flags.Linkage; 7395 if (IsPrevailing && 7396 !GlobalValue::isLocalLinkage(LT) && 7397 !IsPrevailing(std::get<2>(VIAndOriginalGUID))) { 7398 PendingCallsites.clear(); 7399 PendingAllocs.clear(); 7400 } 7401 auto FS = std::make_unique<FunctionSummary>( 7402 Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0, 7403 std::move(Refs), std::move(Calls), std::move(PendingTypeTests), 7404 std::move(PendingTypeTestAssumeVCalls), 7405 std::move(PendingTypeCheckedLoadVCalls), 7406 std::move(PendingTypeTestAssumeConstVCalls), 7407 std::move(PendingTypeCheckedLoadConstVCalls), 7408 std::move(PendingParamAccesses), std::move(PendingCallsites), 7409 std::move(PendingAllocs)); 7410 FS->setModulePath(getThisModule()->first()); 7411 FS->setOriginalName(std::get<1>(VIAndOriginalGUID)); 7412 TheIndex.addGlobalValueSummary(std::get<0>(VIAndOriginalGUID), 7413 std::move(FS)); 7414 break; 7415 } 7416 // FS_ALIAS: [valueid, flags, valueid] 7417 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 7418 // they expect all aliasee summaries to be available. 7419 case bitc::FS_ALIAS: { 7420 unsigned ValueID = Record[0]; 7421 uint64_t RawFlags = Record[1]; 7422 unsigned AliaseeID = Record[2]; 7423 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7424 auto AS = std::make_unique<AliasSummary>(Flags); 7425 // The module path string ref set in the summary must be owned by the 7426 // index's module string table. Since we don't have a module path 7427 // string table section in the per-module index, we create a single 7428 // module path string table entry with an empty (0) ID to take 7429 // ownership. 7430 AS->setModulePath(getThisModule()->first()); 7431 7432 auto AliaseeVI = std::get<0>(getValueInfoFromValueId(AliaseeID)); 7433 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath); 7434 if (!AliaseeInModule) 7435 return error("Alias expects aliasee summary to be parsed"); 7436 AS->setAliasee(AliaseeVI, AliaseeInModule); 7437 7438 auto GUID = getValueInfoFromValueId(ValueID); 7439 AS->setOriginalName(std::get<1>(GUID)); 7440 TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(AS)); 7441 break; 7442 } 7443 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid] 7444 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 7445 unsigned ValueID = Record[0]; 7446 uint64_t RawFlags = Record[1]; 7447 unsigned RefArrayStart = 2; 7448 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 7449 /* WriteOnly */ false, 7450 /* Constant */ false, 7451 GlobalObject::VCallVisibilityPublic); 7452 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7453 if (Version >= 5) { 7454 GVF = getDecodedGVarFlags(Record[2]); 7455 RefArrayStart = 3; 7456 } 7457 std::vector<ValueInfo> Refs = 7458 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 7459 auto FS = 7460 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 7461 FS->setModulePath(getThisModule()->first()); 7462 auto GUID = getValueInfoFromValueId(ValueID); 7463 FS->setOriginalName(std::get<1>(GUID)); 7464 TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(FS)); 7465 break; 7466 } 7467 // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, 7468 // numrefs, numrefs x valueid, 7469 // n x (valueid, offset)] 7470 case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: { 7471 unsigned ValueID = Record[0]; 7472 uint64_t RawFlags = Record[1]; 7473 GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]); 7474 unsigned NumRefs = Record[3]; 7475 unsigned RefListStartIndex = 4; 7476 unsigned VTableListStartIndex = RefListStartIndex + NumRefs; 7477 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7478 std::vector<ValueInfo> Refs = makeRefList( 7479 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 7480 VTableFuncList VTableFuncs; 7481 for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) { 7482 ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[I])); 7483 uint64_t Offset = Record[++I]; 7484 VTableFuncs.push_back({Callee, Offset}); 7485 } 7486 auto VS = 7487 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 7488 VS->setModulePath(getThisModule()->first()); 7489 VS->setVTableFuncs(VTableFuncs); 7490 auto GUID = getValueInfoFromValueId(ValueID); 7491 VS->setOriginalName(std::get<1>(GUID)); 7492 TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(VS)); 7493 break; 7494 } 7495 // FS_COMBINED is legacy and does not have support for the tail call flag. 7496 // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs, 7497 // numrefs x valueid, n x (valueid)] 7498 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs, 7499 // numrefs x valueid, 7500 // n x (valueid, hotness+tailcall flags)] 7501 case bitc::FS_COMBINED: 7502 case bitc::FS_COMBINED_PROFILE: { 7503 unsigned ValueID = Record[0]; 7504 uint64_t ModuleId = Record[1]; 7505 uint64_t RawFlags = Record[2]; 7506 unsigned InstCount = Record[3]; 7507 uint64_t RawFunFlags = 0; 7508 uint64_t EntryCount = 0; 7509 unsigned NumRefs = Record[4]; 7510 unsigned NumRORefs = 0, NumWORefs = 0; 7511 int RefListStartIndex = 5; 7512 7513 if (Version >= 4) { 7514 RawFunFlags = Record[4]; 7515 RefListStartIndex = 6; 7516 size_t NumRefsIndex = 5; 7517 if (Version >= 5) { 7518 unsigned NumRORefsOffset = 1; 7519 RefListStartIndex = 7; 7520 if (Version >= 6) { 7521 NumRefsIndex = 6; 7522 EntryCount = Record[5]; 7523 RefListStartIndex = 8; 7524 if (Version >= 7) { 7525 RefListStartIndex = 9; 7526 NumWORefs = Record[8]; 7527 NumRORefsOffset = 2; 7528 } 7529 } 7530 NumRORefs = Record[RefListStartIndex - NumRORefsOffset]; 7531 } 7532 NumRefs = Record[NumRefsIndex]; 7533 } 7534 7535 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7536 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 7537 assert(Record.size() >= RefListStartIndex + NumRefs && 7538 "Record size inconsistent with number of references"); 7539 std::vector<ValueInfo> Refs = makeRefList( 7540 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 7541 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 7542 std::vector<FunctionSummary::EdgeTy> Edges = makeCallList( 7543 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 7544 IsOldProfileFormat, HasProfile, false); 7545 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID)); 7546 setSpecialRefs(Refs, NumRORefs, NumWORefs); 7547 auto FS = std::make_unique<FunctionSummary>( 7548 Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount, 7549 std::move(Refs), std::move(Edges), std::move(PendingTypeTests), 7550 std::move(PendingTypeTestAssumeVCalls), 7551 std::move(PendingTypeCheckedLoadVCalls), 7552 std::move(PendingTypeTestAssumeConstVCalls), 7553 std::move(PendingTypeCheckedLoadConstVCalls), 7554 std::move(PendingParamAccesses), std::move(PendingCallsites), 7555 std::move(PendingAllocs)); 7556 LastSeenSummary = FS.get(); 7557 LastSeenGUID = VI.getGUID(); 7558 FS->setModulePath(ModuleIdMap[ModuleId]); 7559 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 7560 break; 7561 } 7562 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 7563 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 7564 // they expect all aliasee summaries to be available. 7565 case bitc::FS_COMBINED_ALIAS: { 7566 unsigned ValueID = Record[0]; 7567 uint64_t ModuleId = Record[1]; 7568 uint64_t RawFlags = Record[2]; 7569 unsigned AliaseeValueId = Record[3]; 7570 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7571 auto AS = std::make_unique<AliasSummary>(Flags); 7572 LastSeenSummary = AS.get(); 7573 AS->setModulePath(ModuleIdMap[ModuleId]); 7574 7575 auto AliaseeVI = std::get<0>(getValueInfoFromValueId(AliaseeValueId)); 7576 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath()); 7577 AS->setAliasee(AliaseeVI, AliaseeInModule); 7578 7579 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID)); 7580 LastSeenGUID = VI.getGUID(); 7581 TheIndex.addGlobalValueSummary(VI, std::move(AS)); 7582 break; 7583 } 7584 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 7585 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 7586 unsigned ValueID = Record[0]; 7587 uint64_t ModuleId = Record[1]; 7588 uint64_t RawFlags = Record[2]; 7589 unsigned RefArrayStart = 3; 7590 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 7591 /* WriteOnly */ false, 7592 /* Constant */ false, 7593 GlobalObject::VCallVisibilityPublic); 7594 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7595 if (Version >= 5) { 7596 GVF = getDecodedGVarFlags(Record[3]); 7597 RefArrayStart = 4; 7598 } 7599 std::vector<ValueInfo> Refs = 7600 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 7601 auto FS = 7602 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 7603 LastSeenSummary = FS.get(); 7604 FS->setModulePath(ModuleIdMap[ModuleId]); 7605 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID)); 7606 LastSeenGUID = VI.getGUID(); 7607 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 7608 break; 7609 } 7610 // FS_COMBINED_ORIGINAL_NAME: [original_name] 7611 case bitc::FS_COMBINED_ORIGINAL_NAME: { 7612 uint64_t OriginalName = Record[0]; 7613 if (!LastSeenSummary) 7614 return error("Name attachment that does not follow a combined record"); 7615 LastSeenSummary->setOriginalName(OriginalName); 7616 TheIndex.addOriginalName(LastSeenGUID, OriginalName); 7617 // Reset the LastSeenSummary 7618 LastSeenSummary = nullptr; 7619 LastSeenGUID = 0; 7620 break; 7621 } 7622 case bitc::FS_TYPE_TESTS: 7623 assert(PendingTypeTests.empty()); 7624 llvm::append_range(PendingTypeTests, Record); 7625 break; 7626 7627 case bitc::FS_TYPE_TEST_ASSUME_VCALLS: 7628 assert(PendingTypeTestAssumeVCalls.empty()); 7629 for (unsigned I = 0; I != Record.size(); I += 2) 7630 PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]}); 7631 break; 7632 7633 case bitc::FS_TYPE_CHECKED_LOAD_VCALLS: 7634 assert(PendingTypeCheckedLoadVCalls.empty()); 7635 for (unsigned I = 0; I != Record.size(); I += 2) 7636 PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]}); 7637 break; 7638 7639 case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL: 7640 PendingTypeTestAssumeConstVCalls.push_back( 7641 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 7642 break; 7643 7644 case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL: 7645 PendingTypeCheckedLoadConstVCalls.push_back( 7646 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 7647 break; 7648 7649 case bitc::FS_CFI_FUNCTION_DEFS: { 7650 std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs(); 7651 for (unsigned I = 0; I != Record.size(); I += 2) 7652 CfiFunctionDefs.insert( 7653 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 7654 break; 7655 } 7656 7657 case bitc::FS_CFI_FUNCTION_DECLS: { 7658 std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls(); 7659 for (unsigned I = 0; I != Record.size(); I += 2) 7660 CfiFunctionDecls.insert( 7661 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 7662 break; 7663 } 7664 7665 case bitc::FS_TYPE_ID: 7666 parseTypeIdSummaryRecord(Record, Strtab, TheIndex); 7667 break; 7668 7669 case bitc::FS_TYPE_ID_METADATA: 7670 parseTypeIdCompatibleVtableSummaryRecord(Record); 7671 break; 7672 7673 case bitc::FS_BLOCK_COUNT: 7674 TheIndex.addBlockCount(Record[0]); 7675 break; 7676 7677 case bitc::FS_PARAM_ACCESS: { 7678 PendingParamAccesses = parseParamAccesses(Record); 7679 break; 7680 } 7681 7682 case bitc::FS_STACK_IDS: { // [n x stackid] 7683 // Save stack ids in the reader to consult when adding stack ids from the 7684 // lists in the stack node and alloc node entries. 7685 StackIds = ArrayRef<uint64_t>(Record); 7686 break; 7687 } 7688 7689 case bitc::FS_PERMODULE_CALLSITE_INFO: { 7690 unsigned ValueID = Record[0]; 7691 SmallVector<unsigned> StackIdList; 7692 for (auto R = Record.begin() + 1; R != Record.end(); R++) { 7693 assert(*R < StackIds.size()); 7694 StackIdList.push_back(TheIndex.addOrGetStackIdIndex(StackIds[*R])); 7695 } 7696 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID)); 7697 PendingCallsites.push_back(CallsiteInfo({VI, std::move(StackIdList)})); 7698 break; 7699 } 7700 7701 case bitc::FS_COMBINED_CALLSITE_INFO: { 7702 auto RecordIter = Record.begin(); 7703 unsigned ValueID = *RecordIter++; 7704 unsigned NumStackIds = *RecordIter++; 7705 unsigned NumVersions = *RecordIter++; 7706 assert(Record.size() == 3 + NumStackIds + NumVersions); 7707 SmallVector<unsigned> StackIdList; 7708 for (unsigned J = 0; J < NumStackIds; J++) { 7709 assert(*RecordIter < StackIds.size()); 7710 StackIdList.push_back( 7711 TheIndex.addOrGetStackIdIndex(StackIds[*RecordIter++])); 7712 } 7713 SmallVector<unsigned> Versions; 7714 for (unsigned J = 0; J < NumVersions; J++) 7715 Versions.push_back(*RecordIter++); 7716 ValueInfo VI = std::get<0>( 7717 getValueInfoFromValueId</*AllowNullValueInfo*/ true>(ValueID)); 7718 PendingCallsites.push_back( 7719 CallsiteInfo({VI, std::move(Versions), std::move(StackIdList)})); 7720 break; 7721 } 7722 7723 case bitc::FS_PERMODULE_ALLOC_INFO: { 7724 unsigned I = 0; 7725 std::vector<MIBInfo> MIBs; 7726 while (I < Record.size()) { 7727 assert(Record.size() - I >= 2); 7728 AllocationType AllocType = (AllocationType)Record[I++]; 7729 unsigned NumStackEntries = Record[I++]; 7730 assert(Record.size() - I >= NumStackEntries); 7731 SmallVector<unsigned> StackIdList; 7732 for (unsigned J = 0; J < NumStackEntries; J++) { 7733 assert(Record[I] < StackIds.size()); 7734 StackIdList.push_back( 7735 TheIndex.addOrGetStackIdIndex(StackIds[Record[I++]])); 7736 } 7737 MIBs.push_back(MIBInfo(AllocType, std::move(StackIdList))); 7738 } 7739 PendingAllocs.push_back(AllocInfo(std::move(MIBs))); 7740 break; 7741 } 7742 7743 case bitc::FS_COMBINED_ALLOC_INFO: { 7744 unsigned I = 0; 7745 std::vector<MIBInfo> MIBs; 7746 unsigned NumMIBs = Record[I++]; 7747 unsigned NumVersions = Record[I++]; 7748 unsigned MIBsRead = 0; 7749 while (MIBsRead++ < NumMIBs) { 7750 assert(Record.size() - I >= 2); 7751 AllocationType AllocType = (AllocationType)Record[I++]; 7752 unsigned NumStackEntries = Record[I++]; 7753 assert(Record.size() - I >= NumStackEntries); 7754 SmallVector<unsigned> StackIdList; 7755 for (unsigned J = 0; J < NumStackEntries; J++) { 7756 assert(Record[I] < StackIds.size()); 7757 StackIdList.push_back( 7758 TheIndex.addOrGetStackIdIndex(StackIds[Record[I++]])); 7759 } 7760 MIBs.push_back(MIBInfo(AllocType, std::move(StackIdList))); 7761 } 7762 assert(Record.size() - I >= NumVersions); 7763 SmallVector<uint8_t> Versions; 7764 for (unsigned J = 0; J < NumVersions; J++) 7765 Versions.push_back(Record[I++]); 7766 PendingAllocs.push_back( 7767 AllocInfo(std::move(Versions), std::move(MIBs))); 7768 break; 7769 } 7770 } 7771 } 7772 llvm_unreachable("Exit infinite loop"); 7773 } 7774 7775 // Parse the module string table block into the Index. 7776 // This populates the ModulePathStringTable map in the index. 7777 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 7778 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 7779 return Err; 7780 7781 SmallVector<uint64_t, 64> Record; 7782 7783 SmallString<128> ModulePath; 7784 ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr; 7785 7786 while (true) { 7787 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 7788 if (!MaybeEntry) 7789 return MaybeEntry.takeError(); 7790 BitstreamEntry Entry = MaybeEntry.get(); 7791 7792 switch (Entry.Kind) { 7793 case BitstreamEntry::SubBlock: // Handled for us already. 7794 case BitstreamEntry::Error: 7795 return error("Malformed block"); 7796 case BitstreamEntry::EndBlock: 7797 return Error::success(); 7798 case BitstreamEntry::Record: 7799 // The interesting case. 7800 break; 7801 } 7802 7803 Record.clear(); 7804 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 7805 if (!MaybeRecord) 7806 return MaybeRecord.takeError(); 7807 switch (MaybeRecord.get()) { 7808 default: // Default behavior: ignore. 7809 break; 7810 case bitc::MST_CODE_ENTRY: { 7811 // MST_ENTRY: [modid, namechar x N] 7812 uint64_t ModuleId = Record[0]; 7813 7814 if (convertToString(Record, 1, ModulePath)) 7815 return error("Invalid record"); 7816 7817 LastSeenModule = TheIndex.addModule(ModulePath); 7818 ModuleIdMap[ModuleId] = LastSeenModule->first(); 7819 7820 ModulePath.clear(); 7821 break; 7822 } 7823 /// MST_CODE_HASH: [5*i32] 7824 case bitc::MST_CODE_HASH: { 7825 if (Record.size() != 5) 7826 return error("Invalid hash length " + Twine(Record.size()).str()); 7827 if (!LastSeenModule) 7828 return error("Invalid hash that does not follow a module path"); 7829 int Pos = 0; 7830 for (auto &Val : Record) { 7831 assert(!(Val >> 32) && "Unexpected high bits set"); 7832 LastSeenModule->second[Pos++] = Val; 7833 } 7834 // Reset LastSeenModule to avoid overriding the hash unexpectedly. 7835 LastSeenModule = nullptr; 7836 break; 7837 } 7838 } 7839 } 7840 llvm_unreachable("Exit infinite loop"); 7841 } 7842 7843 namespace { 7844 7845 // FIXME: This class is only here to support the transition to llvm::Error. It 7846 // will be removed once this transition is complete. Clients should prefer to 7847 // deal with the Error value directly, rather than converting to error_code. 7848 class BitcodeErrorCategoryType : public std::error_category { 7849 const char *name() const noexcept override { 7850 return "llvm.bitcode"; 7851 } 7852 7853 std::string message(int IE) const override { 7854 BitcodeError E = static_cast<BitcodeError>(IE); 7855 switch (E) { 7856 case BitcodeError::CorruptedBitcode: 7857 return "Corrupted bitcode"; 7858 } 7859 llvm_unreachable("Unknown error type!"); 7860 } 7861 }; 7862 7863 } // end anonymous namespace 7864 7865 const std::error_category &llvm::BitcodeErrorCategory() { 7866 static BitcodeErrorCategoryType ErrorCategory; 7867 return ErrorCategory; 7868 } 7869 7870 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream, 7871 unsigned Block, unsigned RecordID) { 7872 if (Error Err = Stream.EnterSubBlock(Block)) 7873 return std::move(Err); 7874 7875 StringRef Strtab; 7876 while (true) { 7877 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 7878 if (!MaybeEntry) 7879 return MaybeEntry.takeError(); 7880 llvm::BitstreamEntry Entry = MaybeEntry.get(); 7881 7882 switch (Entry.Kind) { 7883 case BitstreamEntry::EndBlock: 7884 return Strtab; 7885 7886 case BitstreamEntry::Error: 7887 return error("Malformed block"); 7888 7889 case BitstreamEntry::SubBlock: 7890 if (Error Err = Stream.SkipBlock()) 7891 return std::move(Err); 7892 break; 7893 7894 case BitstreamEntry::Record: 7895 StringRef Blob; 7896 SmallVector<uint64_t, 1> Record; 7897 Expected<unsigned> MaybeRecord = 7898 Stream.readRecord(Entry.ID, Record, &Blob); 7899 if (!MaybeRecord) 7900 return MaybeRecord.takeError(); 7901 if (MaybeRecord.get() == RecordID) 7902 Strtab = Blob; 7903 break; 7904 } 7905 } 7906 } 7907 7908 //===----------------------------------------------------------------------===// 7909 // External interface 7910 //===----------------------------------------------------------------------===// 7911 7912 Expected<std::vector<BitcodeModule>> 7913 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) { 7914 auto FOrErr = getBitcodeFileContents(Buffer); 7915 if (!FOrErr) 7916 return FOrErr.takeError(); 7917 return std::move(FOrErr->Mods); 7918 } 7919 7920 Expected<BitcodeFileContents> 7921 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) { 7922 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 7923 if (!StreamOrErr) 7924 return StreamOrErr.takeError(); 7925 BitstreamCursor &Stream = *StreamOrErr; 7926 7927 BitcodeFileContents F; 7928 while (true) { 7929 uint64_t BCBegin = Stream.getCurrentByteNo(); 7930 7931 // We may be consuming bitcode from a client that leaves garbage at the end 7932 // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to 7933 // the end that there cannot possibly be another module, stop looking. 7934 if (BCBegin + 8 >= Stream.getBitcodeBytes().size()) 7935 return F; 7936 7937 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 7938 if (!MaybeEntry) 7939 return MaybeEntry.takeError(); 7940 llvm::BitstreamEntry Entry = MaybeEntry.get(); 7941 7942 switch (Entry.Kind) { 7943 case BitstreamEntry::EndBlock: 7944 case BitstreamEntry::Error: 7945 return error("Malformed block"); 7946 7947 case BitstreamEntry::SubBlock: { 7948 uint64_t IdentificationBit = -1ull; 7949 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 7950 IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8; 7951 if (Error Err = Stream.SkipBlock()) 7952 return std::move(Err); 7953 7954 { 7955 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 7956 if (!MaybeEntry) 7957 return MaybeEntry.takeError(); 7958 Entry = MaybeEntry.get(); 7959 } 7960 7961 if (Entry.Kind != BitstreamEntry::SubBlock || 7962 Entry.ID != bitc::MODULE_BLOCK_ID) 7963 return error("Malformed block"); 7964 } 7965 7966 if (Entry.ID == bitc::MODULE_BLOCK_ID) { 7967 uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8; 7968 if (Error Err = Stream.SkipBlock()) 7969 return std::move(Err); 7970 7971 F.Mods.push_back({Stream.getBitcodeBytes().slice( 7972 BCBegin, Stream.getCurrentByteNo() - BCBegin), 7973 Buffer.getBufferIdentifier(), IdentificationBit, 7974 ModuleBit}); 7975 continue; 7976 } 7977 7978 if (Entry.ID == bitc::STRTAB_BLOCK_ID) { 7979 Expected<StringRef> Strtab = 7980 readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB); 7981 if (!Strtab) 7982 return Strtab.takeError(); 7983 // This string table is used by every preceding bitcode module that does 7984 // not have its own string table. A bitcode file may have multiple 7985 // string tables if it was created by binary concatenation, for example 7986 // with "llvm-cat -b". 7987 for (BitcodeModule &I : llvm::reverse(F.Mods)) { 7988 if (!I.Strtab.empty()) 7989 break; 7990 I.Strtab = *Strtab; 7991 } 7992 // Similarly, the string table is used by every preceding symbol table; 7993 // normally there will be just one unless the bitcode file was created 7994 // by binary concatenation. 7995 if (!F.Symtab.empty() && F.StrtabForSymtab.empty()) 7996 F.StrtabForSymtab = *Strtab; 7997 continue; 7998 } 7999 8000 if (Entry.ID == bitc::SYMTAB_BLOCK_ID) { 8001 Expected<StringRef> SymtabOrErr = 8002 readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB); 8003 if (!SymtabOrErr) 8004 return SymtabOrErr.takeError(); 8005 8006 // We can expect the bitcode file to have multiple symbol tables if it 8007 // was created by binary concatenation. In that case we silently 8008 // ignore any subsequent symbol tables, which is fine because this is a 8009 // low level function. The client is expected to notice that the number 8010 // of modules in the symbol table does not match the number of modules 8011 // in the input file and regenerate the symbol table. 8012 if (F.Symtab.empty()) 8013 F.Symtab = *SymtabOrErr; 8014 continue; 8015 } 8016 8017 if (Error Err = Stream.SkipBlock()) 8018 return std::move(Err); 8019 continue; 8020 } 8021 case BitstreamEntry::Record: 8022 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 8023 return std::move(E); 8024 continue; 8025 } 8026 } 8027 } 8028 8029 /// Get a lazy one-at-time loading module from bitcode. 8030 /// 8031 /// This isn't always used in a lazy context. In particular, it's also used by 8032 /// \a parseModule(). If this is truly lazy, then we need to eagerly pull 8033 /// in forward-referenced functions from block address references. 8034 /// 8035 /// \param[in] MaterializeAll Set to \c true if we should materialize 8036 /// everything. 8037 Expected<std::unique_ptr<Module>> 8038 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll, 8039 bool ShouldLazyLoadMetadata, bool IsImporting, 8040 ParserCallbacks Callbacks) { 8041 BitstreamCursor Stream(Buffer); 8042 8043 std::string ProducerIdentification; 8044 if (IdentificationBit != -1ull) { 8045 if (Error JumpFailed = Stream.JumpToBit(IdentificationBit)) 8046 return std::move(JumpFailed); 8047 if (Error E = 8048 readIdentificationBlock(Stream).moveInto(ProducerIdentification)) 8049 return std::move(E); 8050 } 8051 8052 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 8053 return std::move(JumpFailed); 8054 auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification, 8055 Context); 8056 8057 std::unique_ptr<Module> M = 8058 std::make_unique<Module>(ModuleIdentifier, Context); 8059 M->setMaterializer(R); 8060 8061 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 8062 if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, 8063 IsImporting, Callbacks)) 8064 return std::move(Err); 8065 8066 if (MaterializeAll) { 8067 // Read in the entire module, and destroy the BitcodeReader. 8068 if (Error Err = M->materializeAll()) 8069 return std::move(Err); 8070 } else { 8071 // Resolve forward references from blockaddresses. 8072 if (Error Err = R->materializeForwardReferencedFunctions()) 8073 return std::move(Err); 8074 } 8075 8076 return std::move(M); 8077 } 8078 8079 Expected<std::unique_ptr<Module>> 8080 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata, 8081 bool IsImporting, ParserCallbacks Callbacks) { 8082 return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting, 8083 Callbacks); 8084 } 8085 8086 // Parse the specified bitcode buffer and merge the index into CombinedIndex. 8087 // We don't use ModuleIdentifier here because the client may need to control the 8088 // module path used in the combined summary (e.g. when reading summaries for 8089 // regular LTO modules). 8090 Error BitcodeModule::readSummary( 8091 ModuleSummaryIndex &CombinedIndex, StringRef ModulePath, 8092 std::function<bool(GlobalValue::GUID)> IsPrevailing) { 8093 BitstreamCursor Stream(Buffer); 8094 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 8095 return JumpFailed; 8096 8097 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex, 8098 ModulePath, IsPrevailing); 8099 return R.parseModule(); 8100 } 8101 8102 // Parse the specified bitcode buffer, returning the function info index. 8103 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() { 8104 BitstreamCursor Stream(Buffer); 8105 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 8106 return std::move(JumpFailed); 8107 8108 auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false); 8109 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index, 8110 ModuleIdentifier, 0); 8111 8112 if (Error Err = R.parseModule()) 8113 return std::move(Err); 8114 8115 return std::move(Index); 8116 } 8117 8118 static Expected<std::pair<bool, bool>> 8119 getEnableSplitLTOUnitAndUnifiedFlag(BitstreamCursor &Stream, 8120 unsigned ID, 8121 BitcodeLTOInfo <OInfo) { 8122 if (Error Err = Stream.EnterSubBlock(ID)) 8123 return std::move(Err); 8124 SmallVector<uint64_t, 64> Record; 8125 8126 while (true) { 8127 BitstreamEntry Entry; 8128 std::pair<bool, bool> Result = {false,false}; 8129 if (Error E = Stream.advanceSkippingSubblocks().moveInto(Entry)) 8130 return std::move(E); 8131 8132 switch (Entry.Kind) { 8133 case BitstreamEntry::SubBlock: // Handled for us already. 8134 case BitstreamEntry::Error: 8135 return error("Malformed block"); 8136 case BitstreamEntry::EndBlock: { 8137 // If no flags record found, set both flags to false. 8138 return Result; 8139 } 8140 case BitstreamEntry::Record: 8141 // The interesting case. 8142 break; 8143 } 8144 8145 // Look for the FS_FLAGS record. 8146 Record.clear(); 8147 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 8148 if (!MaybeBitCode) 8149 return MaybeBitCode.takeError(); 8150 switch (MaybeBitCode.get()) { 8151 default: // Default behavior: ignore. 8152 break; 8153 case bitc::FS_FLAGS: { // [flags] 8154 uint64_t Flags = Record[0]; 8155 // Scan flags. 8156 assert(Flags <= 0x2ff && "Unexpected bits in flag"); 8157 8158 bool EnableSplitLTOUnit = Flags & 0x8; 8159 bool UnifiedLTO = Flags & 0x200; 8160 Result = {EnableSplitLTOUnit, UnifiedLTO}; 8161 8162 return Result; 8163 } 8164 } 8165 } 8166 llvm_unreachable("Exit infinite loop"); 8167 } 8168 8169 // Check if the given bitcode buffer contains a global value summary block. 8170 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() { 8171 BitstreamCursor Stream(Buffer); 8172 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 8173 return std::move(JumpFailed); 8174 8175 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 8176 return std::move(Err); 8177 8178 while (true) { 8179 llvm::BitstreamEntry Entry; 8180 if (Error E = Stream.advance().moveInto(Entry)) 8181 return std::move(E); 8182 8183 switch (Entry.Kind) { 8184 case BitstreamEntry::Error: 8185 return error("Malformed block"); 8186 case BitstreamEntry::EndBlock: 8187 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false, 8188 /*EnableSplitLTOUnit=*/false, /*UnifiedLTO=*/false}; 8189 8190 case BitstreamEntry::SubBlock: 8191 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) { 8192 BitcodeLTOInfo LTOInfo; 8193 Expected<std::pair<bool, bool>> Flags = 8194 getEnableSplitLTOUnitAndUnifiedFlag(Stream, Entry.ID, LTOInfo); 8195 if (!Flags) 8196 return Flags.takeError(); 8197 std::tie(LTOInfo.EnableSplitLTOUnit, LTOInfo.UnifiedLTO) = Flags.get(); 8198 LTOInfo.IsThinLTO = true; 8199 LTOInfo.HasSummary = true; 8200 return LTOInfo; 8201 } 8202 8203 if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) { 8204 BitcodeLTOInfo LTOInfo; 8205 Expected<std::pair<bool, bool>> Flags = 8206 getEnableSplitLTOUnitAndUnifiedFlag(Stream, Entry.ID, LTOInfo); 8207 if (!Flags) 8208 return Flags.takeError(); 8209 std::tie(LTOInfo.EnableSplitLTOUnit, LTOInfo.UnifiedLTO) = Flags.get(); 8210 LTOInfo.IsThinLTO = false; 8211 LTOInfo.HasSummary = true; 8212 return LTOInfo; 8213 } 8214 8215 // Ignore other sub-blocks. 8216 if (Error Err = Stream.SkipBlock()) 8217 return std::move(Err); 8218 continue; 8219 8220 case BitstreamEntry::Record: 8221 if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID)) 8222 continue; 8223 else 8224 return StreamFailed.takeError(); 8225 } 8226 } 8227 } 8228 8229 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) { 8230 Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer); 8231 if (!MsOrErr) 8232 return MsOrErr.takeError(); 8233 8234 if (MsOrErr->size() != 1) 8235 return error("Expected a single module"); 8236 8237 return (*MsOrErr)[0]; 8238 } 8239 8240 Expected<std::unique_ptr<Module>> 8241 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context, 8242 bool ShouldLazyLoadMetadata, bool IsImporting, 8243 ParserCallbacks Callbacks) { 8244 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8245 if (!BM) 8246 return BM.takeError(); 8247 8248 return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting, 8249 Callbacks); 8250 } 8251 8252 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule( 8253 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context, 8254 bool ShouldLazyLoadMetadata, bool IsImporting, ParserCallbacks Callbacks) { 8255 auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata, 8256 IsImporting, Callbacks); 8257 if (MOrErr) 8258 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer)); 8259 return MOrErr; 8260 } 8261 8262 Expected<std::unique_ptr<Module>> 8263 BitcodeModule::parseModule(LLVMContext &Context, ParserCallbacks Callbacks) { 8264 return getModuleImpl(Context, true, false, false, Callbacks); 8265 // TODO: Restore the use-lists to the in-memory state when the bitcode was 8266 // written. We must defer until the Module has been fully materialized. 8267 } 8268 8269 Expected<std::unique_ptr<Module>> 8270 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context, 8271 ParserCallbacks Callbacks) { 8272 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8273 if (!BM) 8274 return BM.takeError(); 8275 8276 return BM->parseModule(Context, Callbacks); 8277 } 8278 8279 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) { 8280 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 8281 if (!StreamOrErr) 8282 return StreamOrErr.takeError(); 8283 8284 return readTriple(*StreamOrErr); 8285 } 8286 8287 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) { 8288 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 8289 if (!StreamOrErr) 8290 return StreamOrErr.takeError(); 8291 8292 return hasObjCCategory(*StreamOrErr); 8293 } 8294 8295 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) { 8296 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 8297 if (!StreamOrErr) 8298 return StreamOrErr.takeError(); 8299 8300 return readIdentificationCode(*StreamOrErr); 8301 } 8302 8303 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer, 8304 ModuleSummaryIndex &CombinedIndex) { 8305 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8306 if (!BM) 8307 return BM.takeError(); 8308 8309 return BM->readSummary(CombinedIndex, BM->getModuleIdentifier()); 8310 } 8311 8312 Expected<std::unique_ptr<ModuleSummaryIndex>> 8313 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) { 8314 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8315 if (!BM) 8316 return BM.takeError(); 8317 8318 return BM->getSummary(); 8319 } 8320 8321 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) { 8322 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8323 if (!BM) 8324 return BM.takeError(); 8325 8326 return BM->getLTOInfo(); 8327 } 8328 8329 Expected<std::unique_ptr<ModuleSummaryIndex>> 8330 llvm::getModuleSummaryIndexForFile(StringRef Path, 8331 bool IgnoreEmptyThinLTOIndexFile) { 8332 ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr = 8333 MemoryBuffer::getFileOrSTDIN(Path); 8334 if (!FileOrErr) 8335 return errorCodeToError(FileOrErr.getError()); 8336 if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize()) 8337 return nullptr; 8338 return getModuleSummaryIndex(**FileOrErr); 8339 } 8340