xref: /llvm-project/llvm/lib/Bitcode/Reader/BitcodeReader.cpp (revision 3dea421826ff4d793de8515bb062a62fd32e0185)
1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This header defines the BitcodeReader class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Bitcode/ReaderWriter.h"
15 #include "BitcodeReader.h"
16 #include "llvm/Constants.h"
17 #include "llvm/DerivedTypes.h"
18 #include "llvm/InlineAsm.h"
19 #include "llvm/IntrinsicInst.h"
20 #include "llvm/Module.h"
21 #include "llvm/Operator.h"
22 #include "llvm/AutoUpgrade.h"
23 #include "llvm/ADT/SmallString.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/Support/DataStream.h"
26 #include "llvm/Support/MathExtras.h"
27 #include "llvm/Support/MemoryBuffer.h"
28 #include "llvm/OperandTraits.h"
29 using namespace llvm;
30 
31 enum {
32   SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
33 };
34 
35 void BitcodeReader::materializeForwardReferencedFunctions() {
36   while (!BlockAddrFwdRefs.empty()) {
37     Function *F = BlockAddrFwdRefs.begin()->first;
38     F->Materialize();
39   }
40 }
41 
42 void BitcodeReader::FreeState() {
43   if (BufferOwned)
44     delete Buffer;
45   Buffer = 0;
46   std::vector<Type*>().swap(TypeList);
47   ValueList.clear();
48   MDValueList.clear();
49 
50   std::vector<AttrListPtr>().swap(MAttributes);
51   std::vector<BasicBlock*>().swap(FunctionBBs);
52   std::vector<Function*>().swap(FunctionsWithBodies);
53   DeferredFunctionInfo.clear();
54   MDKindMap.clear();
55 }
56 
57 //===----------------------------------------------------------------------===//
58 //  Helper functions to implement forward reference resolution, etc.
59 //===----------------------------------------------------------------------===//
60 
61 /// ConvertToString - Convert a string from a record into an std::string, return
62 /// true on failure.
63 template<typename StrTy>
64 static bool ConvertToString(SmallVector<uint64_t, 64> &Record, unsigned Idx,
65                             StrTy &Result) {
66   if (Idx > Record.size())
67     return true;
68 
69   for (unsigned i = Idx, e = Record.size(); i != e; ++i)
70     Result += (char)Record[i];
71   return false;
72 }
73 
74 static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) {
75   switch (Val) {
76   default: // Map unknown/new linkages to external
77   case 0:  return GlobalValue::ExternalLinkage;
78   case 1:  return GlobalValue::WeakAnyLinkage;
79   case 2:  return GlobalValue::AppendingLinkage;
80   case 3:  return GlobalValue::InternalLinkage;
81   case 4:  return GlobalValue::LinkOnceAnyLinkage;
82   case 5:  return GlobalValue::DLLImportLinkage;
83   case 6:  return GlobalValue::DLLExportLinkage;
84   case 7:  return GlobalValue::ExternalWeakLinkage;
85   case 8:  return GlobalValue::CommonLinkage;
86   case 9:  return GlobalValue::PrivateLinkage;
87   case 10: return GlobalValue::WeakODRLinkage;
88   case 11: return GlobalValue::LinkOnceODRLinkage;
89   case 12: return GlobalValue::AvailableExternallyLinkage;
90   case 13: return GlobalValue::LinkerPrivateLinkage;
91   case 14: return GlobalValue::LinkerPrivateWeakLinkage;
92   case 15: return GlobalValue::LinkerPrivateWeakDefAutoLinkage;
93   }
94 }
95 
96 static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) {
97   switch (Val) {
98   default: // Map unknown visibilities to default.
99   case 0: return GlobalValue::DefaultVisibility;
100   case 1: return GlobalValue::HiddenVisibility;
101   case 2: return GlobalValue::ProtectedVisibility;
102   }
103 }
104 
105 static int GetDecodedCastOpcode(unsigned Val) {
106   switch (Val) {
107   default: return -1;
108   case bitc::CAST_TRUNC   : return Instruction::Trunc;
109   case bitc::CAST_ZEXT    : return Instruction::ZExt;
110   case bitc::CAST_SEXT    : return Instruction::SExt;
111   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
112   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
113   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
114   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
115   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
116   case bitc::CAST_FPEXT   : return Instruction::FPExt;
117   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
118   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
119   case bitc::CAST_BITCAST : return Instruction::BitCast;
120   }
121 }
122 static int GetDecodedBinaryOpcode(unsigned Val, Type *Ty) {
123   switch (Val) {
124   default: return -1;
125   case bitc::BINOP_ADD:
126     return Ty->isFPOrFPVectorTy() ? Instruction::FAdd : Instruction::Add;
127   case bitc::BINOP_SUB:
128     return Ty->isFPOrFPVectorTy() ? Instruction::FSub : Instruction::Sub;
129   case bitc::BINOP_MUL:
130     return Ty->isFPOrFPVectorTy() ? Instruction::FMul : Instruction::Mul;
131   case bitc::BINOP_UDIV: return Instruction::UDiv;
132   case bitc::BINOP_SDIV:
133     return Ty->isFPOrFPVectorTy() ? Instruction::FDiv : Instruction::SDiv;
134   case bitc::BINOP_UREM: return Instruction::URem;
135   case bitc::BINOP_SREM:
136     return Ty->isFPOrFPVectorTy() ? Instruction::FRem : Instruction::SRem;
137   case bitc::BINOP_SHL:  return Instruction::Shl;
138   case bitc::BINOP_LSHR: return Instruction::LShr;
139   case bitc::BINOP_ASHR: return Instruction::AShr;
140   case bitc::BINOP_AND:  return Instruction::And;
141   case bitc::BINOP_OR:   return Instruction::Or;
142   case bitc::BINOP_XOR:  return Instruction::Xor;
143   }
144 }
145 
146 static AtomicRMWInst::BinOp GetDecodedRMWOperation(unsigned Val) {
147   switch (Val) {
148   default: return AtomicRMWInst::BAD_BINOP;
149   case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
150   case bitc::RMW_ADD: return AtomicRMWInst::Add;
151   case bitc::RMW_SUB: return AtomicRMWInst::Sub;
152   case bitc::RMW_AND: return AtomicRMWInst::And;
153   case bitc::RMW_NAND: return AtomicRMWInst::Nand;
154   case bitc::RMW_OR: return AtomicRMWInst::Or;
155   case bitc::RMW_XOR: return AtomicRMWInst::Xor;
156   case bitc::RMW_MAX: return AtomicRMWInst::Max;
157   case bitc::RMW_MIN: return AtomicRMWInst::Min;
158   case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
159   case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
160   }
161 }
162 
163 static AtomicOrdering GetDecodedOrdering(unsigned Val) {
164   switch (Val) {
165   case bitc::ORDERING_NOTATOMIC: return NotAtomic;
166   case bitc::ORDERING_UNORDERED: return Unordered;
167   case bitc::ORDERING_MONOTONIC: return Monotonic;
168   case bitc::ORDERING_ACQUIRE: return Acquire;
169   case bitc::ORDERING_RELEASE: return Release;
170   case bitc::ORDERING_ACQREL: return AcquireRelease;
171   default: // Map unknown orderings to sequentially-consistent.
172   case bitc::ORDERING_SEQCST: return SequentiallyConsistent;
173   }
174 }
175 
176 static SynchronizationScope GetDecodedSynchScope(unsigned Val) {
177   switch (Val) {
178   case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread;
179   default: // Map unknown scopes to cross-thread.
180   case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread;
181   }
182 }
183 
184 namespace llvm {
185 namespace {
186   /// @brief A class for maintaining the slot number definition
187   /// as a placeholder for the actual definition for forward constants defs.
188   class ConstantPlaceHolder : public ConstantExpr {
189     void operator=(const ConstantPlaceHolder &); // DO NOT IMPLEMENT
190   public:
191     // allocate space for exactly one operand
192     void *operator new(size_t s) {
193       return User::operator new(s, 1);
194     }
195     explicit ConstantPlaceHolder(Type *Ty, LLVMContext& Context)
196       : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) {
197       Op<0>() = UndefValue::get(Type::getInt32Ty(Context));
198     }
199 
200     /// @brief Methods to support type inquiry through isa, cast, and dyn_cast.
201     //static inline bool classof(const ConstantPlaceHolder *) { return true; }
202     static bool classof(const Value *V) {
203       return isa<ConstantExpr>(V) &&
204              cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1;
205     }
206 
207 
208     /// Provide fast operand accessors
209     //DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
210   };
211 }
212 
213 // FIXME: can we inherit this from ConstantExpr?
214 template <>
215 struct OperandTraits<ConstantPlaceHolder> :
216   public FixedNumOperandTraits<ConstantPlaceHolder, 1> {
217 };
218 }
219 
220 
221 void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) {
222   if (Idx == size()) {
223     push_back(V);
224     return;
225   }
226 
227   if (Idx >= size())
228     resize(Idx+1);
229 
230   WeakVH &OldV = ValuePtrs[Idx];
231   if (OldV == 0) {
232     OldV = V;
233     return;
234   }
235 
236   // Handle constants and non-constants (e.g. instrs) differently for
237   // efficiency.
238   if (Constant *PHC = dyn_cast<Constant>(&*OldV)) {
239     ResolveConstants.push_back(std::make_pair(PHC, Idx));
240     OldV = V;
241   } else {
242     // If there was a forward reference to this value, replace it.
243     Value *PrevVal = OldV;
244     OldV->replaceAllUsesWith(V);
245     delete PrevVal;
246   }
247 }
248 
249 
250 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
251                                                     Type *Ty) {
252   if (Idx >= size())
253     resize(Idx + 1);
254 
255   if (Value *V = ValuePtrs[Idx]) {
256     assert(Ty == V->getType() && "Type mismatch in constant table!");
257     return cast<Constant>(V);
258   }
259 
260   // Create and return a placeholder, which will later be RAUW'd.
261   Constant *C = new ConstantPlaceHolder(Ty, Context);
262   ValuePtrs[Idx] = C;
263   return C;
264 }
265 
266 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) {
267   if (Idx >= size())
268     resize(Idx + 1);
269 
270   if (Value *V = ValuePtrs[Idx]) {
271     assert((Ty == 0 || Ty == V->getType()) && "Type mismatch in value table!");
272     return V;
273   }
274 
275   // No type specified, must be invalid reference.
276   if (Ty == 0) return 0;
277 
278   // Create and return a placeholder, which will later be RAUW'd.
279   Value *V = new Argument(Ty);
280   ValuePtrs[Idx] = V;
281   return V;
282 }
283 
284 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk
285 /// resolves any forward references.  The idea behind this is that we sometimes
286 /// get constants (such as large arrays) which reference *many* forward ref
287 /// constants.  Replacing each of these causes a lot of thrashing when
288 /// building/reuniquing the constant.  Instead of doing this, we look at all the
289 /// uses and rewrite all the place holders at once for any constant that uses
290 /// a placeholder.
291 void BitcodeReaderValueList::ResolveConstantForwardRefs() {
292   // Sort the values by-pointer so that they are efficient to look up with a
293   // binary search.
294   std::sort(ResolveConstants.begin(), ResolveConstants.end());
295 
296   SmallVector<Constant*, 64> NewOps;
297 
298   while (!ResolveConstants.empty()) {
299     Value *RealVal = operator[](ResolveConstants.back().second);
300     Constant *Placeholder = ResolveConstants.back().first;
301     ResolveConstants.pop_back();
302 
303     // Loop over all users of the placeholder, updating them to reference the
304     // new value.  If they reference more than one placeholder, update them all
305     // at once.
306     while (!Placeholder->use_empty()) {
307       Value::use_iterator UI = Placeholder->use_begin();
308       User *U = *UI;
309 
310       // If the using object isn't uniqued, just update the operands.  This
311       // handles instructions and initializers for global variables.
312       if (!isa<Constant>(U) || isa<GlobalValue>(U)) {
313         UI.getUse().set(RealVal);
314         continue;
315       }
316 
317       // Otherwise, we have a constant that uses the placeholder.  Replace that
318       // constant with a new constant that has *all* placeholder uses updated.
319       Constant *UserC = cast<Constant>(U);
320       for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end();
321            I != E; ++I) {
322         Value *NewOp;
323         if (!isa<ConstantPlaceHolder>(*I)) {
324           // Not a placeholder reference.
325           NewOp = *I;
326         } else if (*I == Placeholder) {
327           // Common case is that it just references this one placeholder.
328           NewOp = RealVal;
329         } else {
330           // Otherwise, look up the placeholder in ResolveConstants.
331           ResolveConstantsTy::iterator It =
332             std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(),
333                              std::pair<Constant*, unsigned>(cast<Constant>(*I),
334                                                             0));
335           assert(It != ResolveConstants.end() && It->first == *I);
336           NewOp = operator[](It->second);
337         }
338 
339         NewOps.push_back(cast<Constant>(NewOp));
340       }
341 
342       // Make the new constant.
343       Constant *NewC;
344       if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) {
345         NewC = ConstantArray::get(UserCA->getType(), NewOps);
346       } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) {
347         NewC = ConstantStruct::get(UserCS->getType(), NewOps);
348       } else if (isa<ConstantVector>(UserC)) {
349         NewC = ConstantVector::get(NewOps);
350       } else {
351         assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr.");
352         NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps);
353       }
354 
355       UserC->replaceAllUsesWith(NewC);
356       UserC->destroyConstant();
357       NewOps.clear();
358     }
359 
360     // Update all ValueHandles, they should be the only users at this point.
361     Placeholder->replaceAllUsesWith(RealVal);
362     delete Placeholder;
363   }
364 }
365 
366 void BitcodeReaderMDValueList::AssignValue(Value *V, unsigned Idx) {
367   if (Idx == size()) {
368     push_back(V);
369     return;
370   }
371 
372   if (Idx >= size())
373     resize(Idx+1);
374 
375   WeakVH &OldV = MDValuePtrs[Idx];
376   if (OldV == 0) {
377     OldV = V;
378     return;
379   }
380 
381   // If there was a forward reference to this value, replace it.
382   MDNode *PrevVal = cast<MDNode>(OldV);
383   OldV->replaceAllUsesWith(V);
384   MDNode::deleteTemporary(PrevVal);
385   // Deleting PrevVal sets Idx value in MDValuePtrs to null. Set new
386   // value for Idx.
387   MDValuePtrs[Idx] = V;
388 }
389 
390 Value *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) {
391   if (Idx >= size())
392     resize(Idx + 1);
393 
394   if (Value *V = MDValuePtrs[Idx]) {
395     assert(V->getType()->isMetadataTy() && "Type mismatch in value table!");
396     return V;
397   }
398 
399   // Create and return a placeholder, which will later be RAUW'd.
400   Value *V = MDNode::getTemporary(Context, ArrayRef<Value*>());
401   MDValuePtrs[Idx] = V;
402   return V;
403 }
404 
405 Type *BitcodeReader::getTypeByID(unsigned ID) {
406   // The type table size is always specified correctly.
407   if (ID >= TypeList.size())
408     return 0;
409 
410   if (Type *Ty = TypeList[ID])
411     return Ty;
412 
413   // If we have a forward reference, the only possible case is when it is to a
414   // named struct.  Just create a placeholder for now.
415   return TypeList[ID] = StructType::create(Context);
416 }
417 
418 
419 //===----------------------------------------------------------------------===//
420 //  Functions for parsing blocks from the bitcode file
421 //===----------------------------------------------------------------------===//
422 
423 bool BitcodeReader::ParseAttributeBlock() {
424   if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
425     return Error("Malformed block record");
426 
427   if (!MAttributes.empty())
428     return Error("Multiple PARAMATTR blocks found!");
429 
430   SmallVector<uint64_t, 64> Record;
431 
432   SmallVector<AttributeWithIndex, 8> Attrs;
433 
434   // Read all the records.
435   while (1) {
436     unsigned Code = Stream.ReadCode();
437     if (Code == bitc::END_BLOCK) {
438       if (Stream.ReadBlockEnd())
439         return Error("Error at end of PARAMATTR block");
440       return false;
441     }
442 
443     if (Code == bitc::ENTER_SUBBLOCK) {
444       // No known subblocks, always skip them.
445       Stream.ReadSubBlockID();
446       if (Stream.SkipBlock())
447         return Error("Malformed block record");
448       continue;
449     }
450 
451     if (Code == bitc::DEFINE_ABBREV) {
452       Stream.ReadAbbrevRecord();
453       continue;
454     }
455 
456     // Read a record.
457     Record.clear();
458     switch (Stream.ReadRecord(Code, Record)) {
459     default:  // Default behavior: ignore.
460       break;
461     case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [paramidx0, attr0, ...]
462       if (Record.size() & 1)
463         return Error("Invalid ENTRY record");
464 
465       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
466         // FIXME: remove in LLVM 3.0
467         // The alignment is stored as a 16-bit raw value from bits 31--16.
468         // We shift the bits above 31 down by 11 bits.
469 
470         unsigned Alignment = (Record[i+1] & (0xffffull << 16)) >> 16;
471         if (Alignment && !isPowerOf2_32(Alignment))
472           return Error("Alignment is not a power of two.");
473 
474         Attributes ReconstitutedAttr(Record[i+1] & 0xffff);
475         if (Alignment)
476           ReconstitutedAttr |= Attribute::constructAlignmentFromInt(Alignment);
477         ReconstitutedAttr |=
478             Attributes((Record[i+1] & (0xffffull << 32)) >> 11);
479 
480         Record[i+1] = ReconstitutedAttr.Raw();
481       }
482 
483       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
484         if (Attributes(Record[i+1]) != Attribute::None)
485           Attrs.push_back(AttributeWithIndex::get(Record[i],
486                                                   Attributes(Record[i+1])));
487       }
488 
489       MAttributes.push_back(AttrListPtr::get(Attrs.begin(), Attrs.end()));
490       Attrs.clear();
491       break;
492     }
493     }
494   }
495 }
496 
497 bool BitcodeReader::ParseTypeTable() {
498   if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
499     return Error("Malformed block record");
500 
501   return ParseTypeTableBody();
502 }
503 
504 bool BitcodeReader::ParseTypeTableBody() {
505   if (!TypeList.empty())
506     return Error("Multiple TYPE_BLOCKs found!");
507 
508   SmallVector<uint64_t, 64> Record;
509   unsigned NumRecords = 0;
510 
511   SmallString<64> TypeName;
512 
513   // Read all the records for this type table.
514   while (1) {
515     unsigned Code = Stream.ReadCode();
516     if (Code == bitc::END_BLOCK) {
517       if (NumRecords != TypeList.size())
518         return Error("Invalid type forward reference in TYPE_BLOCK");
519       if (Stream.ReadBlockEnd())
520         return Error("Error at end of type table block");
521       return false;
522     }
523 
524     if (Code == bitc::ENTER_SUBBLOCK) {
525       // No known subblocks, always skip them.
526       Stream.ReadSubBlockID();
527       if (Stream.SkipBlock())
528         return Error("Malformed block record");
529       continue;
530     }
531 
532     if (Code == bitc::DEFINE_ABBREV) {
533       Stream.ReadAbbrevRecord();
534       continue;
535     }
536 
537     // Read a record.
538     Record.clear();
539     Type *ResultTy = 0;
540     switch (Stream.ReadRecord(Code, Record)) {
541     default: return Error("unknown type in type table");
542     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
543       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
544       // type list.  This allows us to reserve space.
545       if (Record.size() < 1)
546         return Error("Invalid TYPE_CODE_NUMENTRY record");
547       TypeList.resize(Record[0]);
548       continue;
549     case bitc::TYPE_CODE_VOID:      // VOID
550       ResultTy = Type::getVoidTy(Context);
551       break;
552     case bitc::TYPE_CODE_HALF:     // HALF
553       ResultTy = Type::getHalfTy(Context);
554       break;
555     case bitc::TYPE_CODE_FLOAT:     // FLOAT
556       ResultTy = Type::getFloatTy(Context);
557       break;
558     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
559       ResultTy = Type::getDoubleTy(Context);
560       break;
561     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
562       ResultTy = Type::getX86_FP80Ty(Context);
563       break;
564     case bitc::TYPE_CODE_FP128:     // FP128
565       ResultTy = Type::getFP128Ty(Context);
566       break;
567     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
568       ResultTy = Type::getPPC_FP128Ty(Context);
569       break;
570     case bitc::TYPE_CODE_LABEL:     // LABEL
571       ResultTy = Type::getLabelTy(Context);
572       break;
573     case bitc::TYPE_CODE_METADATA:  // METADATA
574       ResultTy = Type::getMetadataTy(Context);
575       break;
576     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
577       ResultTy = Type::getX86_MMXTy(Context);
578       break;
579     case bitc::TYPE_CODE_INTEGER:   // INTEGER: [width]
580       if (Record.size() < 1)
581         return Error("Invalid Integer type record");
582 
583       ResultTy = IntegerType::get(Context, Record[0]);
584       break;
585     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
586                                     //          [pointee type, address space]
587       if (Record.size() < 1)
588         return Error("Invalid POINTER type record");
589       unsigned AddressSpace = 0;
590       if (Record.size() == 2)
591         AddressSpace = Record[1];
592       ResultTy = getTypeByID(Record[0]);
593       if (ResultTy == 0) return Error("invalid element type in pointer type");
594       ResultTy = PointerType::get(ResultTy, AddressSpace);
595       break;
596     }
597     case bitc::TYPE_CODE_FUNCTION: {
598       // FUNCTION: [vararg, retty, paramty x N]
599       if (Record.size() < 2)
600         return Error("Invalid FUNCTION type record");
601       SmallVector<Type*, 8> ArgTys;
602       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
603         if (Type *T = getTypeByID(Record[i]))
604           ArgTys.push_back(T);
605         else
606           break;
607       }
608 
609       ResultTy = getTypeByID(Record[1]);
610       if (ResultTy == 0 || ArgTys.size() < Record.size()-2)
611         return Error("invalid type in function type");
612 
613       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
614       break;
615     }
616     case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
617       if (Record.size() < 1)
618         return Error("Invalid STRUCT type record");
619       SmallVector<Type*, 8> EltTys;
620       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
621         if (Type *T = getTypeByID(Record[i]))
622           EltTys.push_back(T);
623         else
624           break;
625       }
626       if (EltTys.size() != Record.size()-1)
627         return Error("invalid type in struct type");
628       ResultTy = StructType::get(Context, EltTys, Record[0]);
629       break;
630     }
631     case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
632       if (ConvertToString(Record, 0, TypeName))
633         return Error("Invalid STRUCT_NAME record");
634       continue;
635 
636     case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
637       if (Record.size() < 1)
638         return Error("Invalid STRUCT type record");
639 
640       if (NumRecords >= TypeList.size())
641         return Error("invalid TYPE table");
642 
643       // Check to see if this was forward referenced, if so fill in the temp.
644       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
645       if (Res) {
646         Res->setName(TypeName);
647         TypeList[NumRecords] = 0;
648       } else  // Otherwise, create a new struct.
649         Res = StructType::create(Context, TypeName);
650       TypeName.clear();
651 
652       SmallVector<Type*, 8> EltTys;
653       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
654         if (Type *T = getTypeByID(Record[i]))
655           EltTys.push_back(T);
656         else
657           break;
658       }
659       if (EltTys.size() != Record.size()-1)
660         return Error("invalid STRUCT type record");
661       Res->setBody(EltTys, Record[0]);
662       ResultTy = Res;
663       break;
664     }
665     case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
666       if (Record.size() != 1)
667         return Error("Invalid OPAQUE type record");
668 
669       if (NumRecords >= TypeList.size())
670         return Error("invalid TYPE table");
671 
672       // Check to see if this was forward referenced, if so fill in the temp.
673       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
674       if (Res) {
675         Res->setName(TypeName);
676         TypeList[NumRecords] = 0;
677       } else  // Otherwise, create a new struct with no body.
678         Res = StructType::create(Context, TypeName);
679       TypeName.clear();
680       ResultTy = Res;
681       break;
682     }
683     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
684       if (Record.size() < 2)
685         return Error("Invalid ARRAY type record");
686       if ((ResultTy = getTypeByID(Record[1])))
687         ResultTy = ArrayType::get(ResultTy, Record[0]);
688       else
689         return Error("Invalid ARRAY type element");
690       break;
691     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
692       if (Record.size() < 2)
693         return Error("Invalid VECTOR type record");
694       if ((ResultTy = getTypeByID(Record[1])))
695         ResultTy = VectorType::get(ResultTy, Record[0]);
696       else
697         return Error("Invalid ARRAY type element");
698       break;
699     }
700 
701     if (NumRecords >= TypeList.size())
702       return Error("invalid TYPE table");
703     assert(ResultTy && "Didn't read a type?");
704     assert(TypeList[NumRecords] == 0 && "Already read type?");
705     TypeList[NumRecords++] = ResultTy;
706   }
707 }
708 
709 bool BitcodeReader::ParseValueSymbolTable() {
710   if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
711     return Error("Malformed block record");
712 
713   SmallVector<uint64_t, 64> Record;
714 
715   // Read all the records for this value table.
716   SmallString<128> ValueName;
717   while (1) {
718     unsigned Code = Stream.ReadCode();
719     if (Code == bitc::END_BLOCK) {
720       if (Stream.ReadBlockEnd())
721         return Error("Error at end of value symbol table block");
722       return false;
723     }
724     if (Code == bitc::ENTER_SUBBLOCK) {
725       // No known subblocks, always skip them.
726       Stream.ReadSubBlockID();
727       if (Stream.SkipBlock())
728         return Error("Malformed block record");
729       continue;
730     }
731 
732     if (Code == bitc::DEFINE_ABBREV) {
733       Stream.ReadAbbrevRecord();
734       continue;
735     }
736 
737     // Read a record.
738     Record.clear();
739     switch (Stream.ReadRecord(Code, Record)) {
740     default:  // Default behavior: unknown type.
741       break;
742     case bitc::VST_CODE_ENTRY: {  // VST_ENTRY: [valueid, namechar x N]
743       if (ConvertToString(Record, 1, ValueName))
744         return Error("Invalid VST_ENTRY record");
745       unsigned ValueID = Record[0];
746       if (ValueID >= ValueList.size())
747         return Error("Invalid Value ID in VST_ENTRY record");
748       Value *V = ValueList[ValueID];
749 
750       V->setName(StringRef(ValueName.data(), ValueName.size()));
751       ValueName.clear();
752       break;
753     }
754     case bitc::VST_CODE_BBENTRY: {
755       if (ConvertToString(Record, 1, ValueName))
756         return Error("Invalid VST_BBENTRY record");
757       BasicBlock *BB = getBasicBlock(Record[0]);
758       if (BB == 0)
759         return Error("Invalid BB ID in VST_BBENTRY record");
760 
761       BB->setName(StringRef(ValueName.data(), ValueName.size()));
762       ValueName.clear();
763       break;
764     }
765     }
766   }
767 }
768 
769 bool BitcodeReader::ParseMetadata() {
770   unsigned NextMDValueNo = MDValueList.size();
771 
772   if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID))
773     return Error("Malformed block record");
774 
775   SmallVector<uint64_t, 64> Record;
776 
777   // Read all the records.
778   while (1) {
779     unsigned Code = Stream.ReadCode();
780     if (Code == bitc::END_BLOCK) {
781       if (Stream.ReadBlockEnd())
782         return Error("Error at end of PARAMATTR block");
783       return false;
784     }
785 
786     if (Code == bitc::ENTER_SUBBLOCK) {
787       // No known subblocks, always skip them.
788       Stream.ReadSubBlockID();
789       if (Stream.SkipBlock())
790         return Error("Malformed block record");
791       continue;
792     }
793 
794     if (Code == bitc::DEFINE_ABBREV) {
795       Stream.ReadAbbrevRecord();
796       continue;
797     }
798 
799     bool IsFunctionLocal = false;
800     // Read a record.
801     Record.clear();
802     Code = Stream.ReadRecord(Code, Record);
803     switch (Code) {
804     default:  // Default behavior: ignore.
805       break;
806     case bitc::METADATA_NAME: {
807       // Read named of the named metadata.
808       unsigned NameLength = Record.size();
809       SmallString<8> Name;
810       Name.resize(NameLength);
811       for (unsigned i = 0; i != NameLength; ++i)
812         Name[i] = Record[i];
813       Record.clear();
814       Code = Stream.ReadCode();
815 
816       // METADATA_NAME is always followed by METADATA_NAMED_NODE.
817       unsigned NextBitCode = Stream.ReadRecord(Code, Record);
818       assert(NextBitCode == bitc::METADATA_NAMED_NODE); (void)NextBitCode;
819 
820       // Read named metadata elements.
821       unsigned Size = Record.size();
822       NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name);
823       for (unsigned i = 0; i != Size; ++i) {
824         MDNode *MD = dyn_cast<MDNode>(MDValueList.getValueFwdRef(Record[i]));
825         if (MD == 0)
826           return Error("Malformed metadata record");
827         NMD->addOperand(MD);
828       }
829       break;
830     }
831     case bitc::METADATA_FN_NODE:
832       IsFunctionLocal = true;
833       // fall-through
834     case bitc::METADATA_NODE: {
835       if (Record.size() % 2 == 1)
836         return Error("Invalid METADATA_NODE record");
837 
838       unsigned Size = Record.size();
839       SmallVector<Value*, 8> Elts;
840       for (unsigned i = 0; i != Size; i += 2) {
841         Type *Ty = getTypeByID(Record[i]);
842         if (!Ty) return Error("Invalid METADATA_NODE record");
843         if (Ty->isMetadataTy())
844           Elts.push_back(MDValueList.getValueFwdRef(Record[i+1]));
845         else if (!Ty->isVoidTy())
846           Elts.push_back(ValueList.getValueFwdRef(Record[i+1], Ty));
847         else
848           Elts.push_back(NULL);
849       }
850       Value *V = MDNode::getWhenValsUnresolved(Context, Elts, IsFunctionLocal);
851       IsFunctionLocal = false;
852       MDValueList.AssignValue(V, NextMDValueNo++);
853       break;
854     }
855     case bitc::METADATA_STRING: {
856       unsigned MDStringLength = Record.size();
857       SmallString<8> String;
858       String.resize(MDStringLength);
859       for (unsigned i = 0; i != MDStringLength; ++i)
860         String[i] = Record[i];
861       Value *V = MDString::get(Context,
862                                StringRef(String.data(), String.size()));
863       MDValueList.AssignValue(V, NextMDValueNo++);
864       break;
865     }
866     case bitc::METADATA_KIND: {
867       unsigned RecordLength = Record.size();
868       if (Record.empty() || RecordLength < 2)
869         return Error("Invalid METADATA_KIND record");
870       SmallString<8> Name;
871       Name.resize(RecordLength-1);
872       unsigned Kind = Record[0];
873       for (unsigned i = 1; i != RecordLength; ++i)
874         Name[i-1] = Record[i];
875 
876       unsigned NewKind = TheModule->getMDKindID(Name.str());
877       if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second)
878         return Error("Conflicting METADATA_KIND records");
879       break;
880     }
881     }
882   }
883 }
884 
885 /// DecodeSignRotatedValue - Decode a signed value stored with the sign bit in
886 /// the LSB for dense VBR encoding.
887 static uint64_t DecodeSignRotatedValue(uint64_t V) {
888   if ((V & 1) == 0)
889     return V >> 1;
890   if (V != 1)
891     return -(V >> 1);
892   // There is no such thing as -0 with integers.  "-0" really means MININT.
893   return 1ULL << 63;
894 }
895 
896 /// ResolveGlobalAndAliasInits - Resolve all of the initializers for global
897 /// values and aliases that we can.
898 bool BitcodeReader::ResolveGlobalAndAliasInits() {
899   std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
900   std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist;
901 
902   GlobalInitWorklist.swap(GlobalInits);
903   AliasInitWorklist.swap(AliasInits);
904 
905   while (!GlobalInitWorklist.empty()) {
906     unsigned ValID = GlobalInitWorklist.back().second;
907     if (ValID >= ValueList.size()) {
908       // Not ready to resolve this yet, it requires something later in the file.
909       GlobalInits.push_back(GlobalInitWorklist.back());
910     } else {
911       if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
912         GlobalInitWorklist.back().first->setInitializer(C);
913       else
914         return Error("Global variable initializer is not a constant!");
915     }
916     GlobalInitWorklist.pop_back();
917   }
918 
919   while (!AliasInitWorklist.empty()) {
920     unsigned ValID = AliasInitWorklist.back().second;
921     if (ValID >= ValueList.size()) {
922       AliasInits.push_back(AliasInitWorklist.back());
923     } else {
924       if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
925         AliasInitWorklist.back().first->setAliasee(C);
926       else
927         return Error("Alias initializer is not a constant!");
928     }
929     AliasInitWorklist.pop_back();
930   }
931   return false;
932 }
933 
934 APInt ReadWideAPInt(const uint64_t *Vals, unsigned ActiveWords,
935                     unsigned TypeBits) {
936   SmallVector<uint64_t, 8> Words;
937   Words.resize(ActiveWords);
938   for (unsigned i = 0; i != ActiveWords; ++i)
939     Words[i] = DecodeSignRotatedValue(Vals[i]);
940 
941   return APInt(TypeBits, Words);
942 }
943 
944 bool BitcodeReader::ParseConstants() {
945   if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
946     return Error("Malformed block record");
947 
948   SmallVector<uint64_t, 64> Record;
949 
950   // Read all the records for this value table.
951   Type *CurTy = Type::getInt32Ty(Context);
952   unsigned NextCstNo = ValueList.size();
953   while (1) {
954     unsigned Code = Stream.ReadCode();
955     if (Code == bitc::END_BLOCK)
956       break;
957 
958     if (Code == bitc::ENTER_SUBBLOCK) {
959       // No known subblocks, always skip them.
960       Stream.ReadSubBlockID();
961       if (Stream.SkipBlock())
962         return Error("Malformed block record");
963       continue;
964     }
965 
966     if (Code == bitc::DEFINE_ABBREV) {
967       Stream.ReadAbbrevRecord();
968       continue;
969     }
970 
971     // Read a record.
972     Record.clear();
973     Value *V = 0;
974     unsigned BitCode = Stream.ReadRecord(Code, Record);
975     switch (BitCode) {
976     default:  // Default behavior: unknown constant
977     case bitc::CST_CODE_UNDEF:     // UNDEF
978       V = UndefValue::get(CurTy);
979       break;
980     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
981       if (Record.empty())
982         return Error("Malformed CST_SETTYPE record");
983       if (Record[0] >= TypeList.size())
984         return Error("Invalid Type ID in CST_SETTYPE record");
985       CurTy = TypeList[Record[0]];
986       continue;  // Skip the ValueList manipulation.
987     case bitc::CST_CODE_NULL:      // NULL
988       V = Constant::getNullValue(CurTy);
989       break;
990     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
991       if (!CurTy->isIntegerTy() || Record.empty())
992         return Error("Invalid CST_INTEGER record");
993       V = ConstantInt::get(CurTy, DecodeSignRotatedValue(Record[0]));
994       break;
995     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
996       if (!CurTy->isIntegerTy() || Record.empty())
997         return Error("Invalid WIDE_INTEGER record");
998 
999       unsigned NumWords = Record.size();
1000 
1001       APInt VInt = ReadWideAPInt(&Record[0], NumWords,
1002           cast<IntegerType>(CurTy)->getBitWidth());
1003       V = ConstantInt::get(Context, VInt);
1004 
1005       break;
1006     }
1007     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
1008       if (Record.empty())
1009         return Error("Invalid FLOAT record");
1010       if (CurTy->isHalfTy())
1011         V = ConstantFP::get(Context, APFloat(APInt(16, (uint16_t)Record[0])));
1012       else if (CurTy->isFloatTy())
1013         V = ConstantFP::get(Context, APFloat(APInt(32, (uint32_t)Record[0])));
1014       else if (CurTy->isDoubleTy())
1015         V = ConstantFP::get(Context, APFloat(APInt(64, Record[0])));
1016       else if (CurTy->isX86_FP80Ty()) {
1017         // Bits are not stored the same way as a normal i80 APInt, compensate.
1018         uint64_t Rearrange[2];
1019         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
1020         Rearrange[1] = Record[0] >> 48;
1021         V = ConstantFP::get(Context, APFloat(APInt(80, Rearrange)));
1022       } else if (CurTy->isFP128Ty())
1023         V = ConstantFP::get(Context, APFloat(APInt(128, Record), true));
1024       else if (CurTy->isPPC_FP128Ty())
1025         V = ConstantFP::get(Context, APFloat(APInt(128, Record)));
1026       else
1027         V = UndefValue::get(CurTy);
1028       break;
1029     }
1030 
1031     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
1032       if (Record.empty())
1033         return Error("Invalid CST_AGGREGATE record");
1034 
1035       unsigned Size = Record.size();
1036       SmallVector<Constant*, 16> Elts;
1037 
1038       if (StructType *STy = dyn_cast<StructType>(CurTy)) {
1039         for (unsigned i = 0; i != Size; ++i)
1040           Elts.push_back(ValueList.getConstantFwdRef(Record[i],
1041                                                      STy->getElementType(i)));
1042         V = ConstantStruct::get(STy, Elts);
1043       } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
1044         Type *EltTy = ATy->getElementType();
1045         for (unsigned i = 0; i != Size; ++i)
1046           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
1047         V = ConstantArray::get(ATy, Elts);
1048       } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
1049         Type *EltTy = VTy->getElementType();
1050         for (unsigned i = 0; i != Size; ++i)
1051           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
1052         V = ConstantVector::get(Elts);
1053       } else {
1054         V = UndefValue::get(CurTy);
1055       }
1056       break;
1057     }
1058     case bitc::CST_CODE_STRING:    // STRING: [values]
1059     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
1060       if (Record.empty())
1061         return Error("Invalid CST_STRING record");
1062 
1063       unsigned Size = Record.size();
1064       SmallString<16> Elts;
1065       for (unsigned i = 0; i != Size; ++i)
1066         Elts.push_back(Record[i]);
1067       V = ConstantDataArray::getString(Context, Elts,
1068                                        BitCode == bitc::CST_CODE_CSTRING);
1069       break;
1070     }
1071     case bitc::CST_CODE_DATA: {// DATA: [n x value]
1072       if (Record.empty())
1073         return Error("Invalid CST_DATA record");
1074 
1075       Type *EltTy = cast<SequentialType>(CurTy)->getElementType();
1076       unsigned Size = Record.size();
1077 
1078       if (EltTy->isIntegerTy(8)) {
1079         SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
1080         if (isa<VectorType>(CurTy))
1081           V = ConstantDataVector::get(Context, Elts);
1082         else
1083           V = ConstantDataArray::get(Context, Elts);
1084       } else if (EltTy->isIntegerTy(16)) {
1085         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
1086         if (isa<VectorType>(CurTy))
1087           V = ConstantDataVector::get(Context, Elts);
1088         else
1089           V = ConstantDataArray::get(Context, Elts);
1090       } else if (EltTy->isIntegerTy(32)) {
1091         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
1092         if (isa<VectorType>(CurTy))
1093           V = ConstantDataVector::get(Context, Elts);
1094         else
1095           V = ConstantDataArray::get(Context, Elts);
1096       } else if (EltTy->isIntegerTy(64)) {
1097         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
1098         if (isa<VectorType>(CurTy))
1099           V = ConstantDataVector::get(Context, Elts);
1100         else
1101           V = ConstantDataArray::get(Context, Elts);
1102       } else if (EltTy->isFloatTy()) {
1103         SmallVector<float, 16> Elts;
1104         for (unsigned i = 0; i != Size; ++i) {
1105           union { uint32_t I; float F; };
1106           I = Record[i];
1107           Elts.push_back(F);
1108         }
1109         if (isa<VectorType>(CurTy))
1110           V = ConstantDataVector::get(Context, Elts);
1111         else
1112           V = ConstantDataArray::get(Context, Elts);
1113       } else if (EltTy->isDoubleTy()) {
1114         SmallVector<double, 16> Elts;
1115         for (unsigned i = 0; i != Size; ++i) {
1116           union { uint64_t I; double F; };
1117           I = Record[i];
1118           Elts.push_back(F);
1119         }
1120         if (isa<VectorType>(CurTy))
1121           V = ConstantDataVector::get(Context, Elts);
1122         else
1123           V = ConstantDataArray::get(Context, Elts);
1124       } else {
1125         return Error("Unknown element type in CE_DATA");
1126       }
1127       break;
1128     }
1129 
1130     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
1131       if (Record.size() < 3) return Error("Invalid CE_BINOP record");
1132       int Opc = GetDecodedBinaryOpcode(Record[0], CurTy);
1133       if (Opc < 0) {
1134         V = UndefValue::get(CurTy);  // Unknown binop.
1135       } else {
1136         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
1137         Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
1138         unsigned Flags = 0;
1139         if (Record.size() >= 4) {
1140           if (Opc == Instruction::Add ||
1141               Opc == Instruction::Sub ||
1142               Opc == Instruction::Mul ||
1143               Opc == Instruction::Shl) {
1144             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
1145               Flags |= OverflowingBinaryOperator::NoSignedWrap;
1146             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
1147               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
1148           } else if (Opc == Instruction::SDiv ||
1149                      Opc == Instruction::UDiv ||
1150                      Opc == Instruction::LShr ||
1151                      Opc == Instruction::AShr) {
1152             if (Record[3] & (1 << bitc::PEO_EXACT))
1153               Flags |= SDivOperator::IsExact;
1154           }
1155         }
1156         V = ConstantExpr::get(Opc, LHS, RHS, Flags);
1157       }
1158       break;
1159     }
1160     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
1161       if (Record.size() < 3) return Error("Invalid CE_CAST record");
1162       int Opc = GetDecodedCastOpcode(Record[0]);
1163       if (Opc < 0) {
1164         V = UndefValue::get(CurTy);  // Unknown cast.
1165       } else {
1166         Type *OpTy = getTypeByID(Record[1]);
1167         if (!OpTy) return Error("Invalid CE_CAST record");
1168         Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
1169         V = ConstantExpr::getCast(Opc, Op, CurTy);
1170       }
1171       break;
1172     }
1173     case bitc::CST_CODE_CE_INBOUNDS_GEP:
1174     case bitc::CST_CODE_CE_GEP: {  // CE_GEP:        [n x operands]
1175       if (Record.size() & 1) return Error("Invalid CE_GEP record");
1176       SmallVector<Constant*, 16> Elts;
1177       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1178         Type *ElTy = getTypeByID(Record[i]);
1179         if (!ElTy) return Error("Invalid CE_GEP record");
1180         Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy));
1181       }
1182       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
1183       V = ConstantExpr::getGetElementPtr(Elts[0], Indices,
1184                                          BitCode ==
1185                                            bitc::CST_CODE_CE_INBOUNDS_GEP);
1186       break;
1187     }
1188     case bitc::CST_CODE_CE_SELECT:  // CE_SELECT: [opval#, opval#, opval#]
1189       if (Record.size() < 3) return Error("Invalid CE_SELECT record");
1190       V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
1191                                                               Type::getInt1Ty(Context)),
1192                                   ValueList.getConstantFwdRef(Record[1],CurTy),
1193                                   ValueList.getConstantFwdRef(Record[2],CurTy));
1194       break;
1195     case bitc::CST_CODE_CE_EXTRACTELT: { // CE_EXTRACTELT: [opty, opval, opval]
1196       if (Record.size() < 3) return Error("Invalid CE_EXTRACTELT record");
1197       VectorType *OpTy =
1198         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
1199       if (OpTy == 0) return Error("Invalid CE_EXTRACTELT record");
1200       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1201       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
1202       V = ConstantExpr::getExtractElement(Op0, Op1);
1203       break;
1204     }
1205     case bitc::CST_CODE_CE_INSERTELT: { // CE_INSERTELT: [opval, opval, opval]
1206       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1207       if (Record.size() < 3 || OpTy == 0)
1208         return Error("Invalid CE_INSERTELT record");
1209       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1210       Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
1211                                                   OpTy->getElementType());
1212       Constant *Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
1213       V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
1214       break;
1215     }
1216     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
1217       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1218       if (Record.size() < 3 || OpTy == 0)
1219         return Error("Invalid CE_SHUFFLEVEC record");
1220       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1221       Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
1222       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
1223                                                  OpTy->getNumElements());
1224       Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
1225       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
1226       break;
1227     }
1228     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
1229       VectorType *RTy = dyn_cast<VectorType>(CurTy);
1230       VectorType *OpTy =
1231         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
1232       if (Record.size() < 4 || RTy == 0 || OpTy == 0)
1233         return Error("Invalid CE_SHUFVEC_EX record");
1234       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1235       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1236       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
1237                                                  RTy->getNumElements());
1238       Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
1239       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
1240       break;
1241     }
1242     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
1243       if (Record.size() < 4) return Error("Invalid CE_CMP record");
1244       Type *OpTy = getTypeByID(Record[0]);
1245       if (OpTy == 0) return Error("Invalid CE_CMP record");
1246       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1247       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1248 
1249       if (OpTy->isFPOrFPVectorTy())
1250         V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
1251       else
1252         V = ConstantExpr::getICmp(Record[3], Op0, Op1);
1253       break;
1254     }
1255     case bitc::CST_CODE_INLINEASM: {
1256       if (Record.size() < 2) return Error("Invalid INLINEASM record");
1257       std::string AsmStr, ConstrStr;
1258       bool HasSideEffects = Record[0] & 1;
1259       bool IsAlignStack = Record[0] >> 1;
1260       unsigned AsmStrSize = Record[1];
1261       if (2+AsmStrSize >= Record.size())
1262         return Error("Invalid INLINEASM record");
1263       unsigned ConstStrSize = Record[2+AsmStrSize];
1264       if (3+AsmStrSize+ConstStrSize > Record.size())
1265         return Error("Invalid INLINEASM record");
1266 
1267       for (unsigned i = 0; i != AsmStrSize; ++i)
1268         AsmStr += (char)Record[2+i];
1269       for (unsigned i = 0; i != ConstStrSize; ++i)
1270         ConstrStr += (char)Record[3+AsmStrSize+i];
1271       PointerType *PTy = cast<PointerType>(CurTy);
1272       V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
1273                          AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
1274       break;
1275     }
1276     case bitc::CST_CODE_BLOCKADDRESS:{
1277       if (Record.size() < 3) return Error("Invalid CE_BLOCKADDRESS record");
1278       Type *FnTy = getTypeByID(Record[0]);
1279       if (FnTy == 0) return Error("Invalid CE_BLOCKADDRESS record");
1280       Function *Fn =
1281         dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
1282       if (Fn == 0) return Error("Invalid CE_BLOCKADDRESS record");
1283 
1284       GlobalVariable *FwdRef = new GlobalVariable(*Fn->getParent(),
1285                                                   Type::getInt8Ty(Context),
1286                                             false, GlobalValue::InternalLinkage,
1287                                                   0, "");
1288       BlockAddrFwdRefs[Fn].push_back(std::make_pair(Record[2], FwdRef));
1289       V = FwdRef;
1290       break;
1291     }
1292     }
1293 
1294     ValueList.AssignValue(V, NextCstNo);
1295     ++NextCstNo;
1296   }
1297 
1298   if (NextCstNo != ValueList.size())
1299     return Error("Invalid constant reference!");
1300 
1301   if (Stream.ReadBlockEnd())
1302     return Error("Error at end of constants block");
1303 
1304   // Once all the constants have been read, go through and resolve forward
1305   // references.
1306   ValueList.ResolveConstantForwardRefs();
1307   return false;
1308 }
1309 
1310 bool BitcodeReader::ParseUseLists() {
1311   if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
1312     return Error("Malformed block record");
1313 
1314   SmallVector<uint64_t, 64> Record;
1315 
1316   // Read all the records.
1317   while (1) {
1318     unsigned Code = Stream.ReadCode();
1319     if (Code == bitc::END_BLOCK) {
1320       if (Stream.ReadBlockEnd())
1321         return Error("Error at end of use-list table block");
1322       return false;
1323     }
1324 
1325     if (Code == bitc::ENTER_SUBBLOCK) {
1326       // No known subblocks, always skip them.
1327       Stream.ReadSubBlockID();
1328       if (Stream.SkipBlock())
1329         return Error("Malformed block record");
1330       continue;
1331     }
1332 
1333     if (Code == bitc::DEFINE_ABBREV) {
1334       Stream.ReadAbbrevRecord();
1335       continue;
1336     }
1337 
1338     // Read a use list record.
1339     Record.clear();
1340     switch (Stream.ReadRecord(Code, Record)) {
1341     default:  // Default behavior: unknown type.
1342       break;
1343     case bitc::USELIST_CODE_ENTRY: { // USELIST_CODE_ENTRY: TBD.
1344       unsigned RecordLength = Record.size();
1345       if (RecordLength < 1)
1346         return Error ("Invalid UseList reader!");
1347       UseListRecords.push_back(Record);
1348       break;
1349     }
1350     }
1351   }
1352 }
1353 
1354 /// RememberAndSkipFunctionBody - When we see the block for a function body,
1355 /// remember where it is and then skip it.  This lets us lazily deserialize the
1356 /// functions.
1357 bool BitcodeReader::RememberAndSkipFunctionBody() {
1358   // Get the function we are talking about.
1359   if (FunctionsWithBodies.empty())
1360     return Error("Insufficient function protos");
1361 
1362   Function *Fn = FunctionsWithBodies.back();
1363   FunctionsWithBodies.pop_back();
1364 
1365   // Save the current stream state.
1366   uint64_t CurBit = Stream.GetCurrentBitNo();
1367   DeferredFunctionInfo[Fn] = CurBit;
1368 
1369   // Skip over the function block for now.
1370   if (Stream.SkipBlock())
1371     return Error("Malformed block record");
1372   return false;
1373 }
1374 
1375 bool BitcodeReader::GlobalCleanup() {
1376   // Patch the initializers for globals and aliases up.
1377   ResolveGlobalAndAliasInits();
1378   if (!GlobalInits.empty() || !AliasInits.empty())
1379     return Error("Malformed global initializer set");
1380 
1381   // Look for intrinsic functions which need to be upgraded at some point
1382   for (Module::iterator FI = TheModule->begin(), FE = TheModule->end();
1383        FI != FE; ++FI) {
1384     Function *NewFn;
1385     if (UpgradeIntrinsicFunction(FI, NewFn))
1386       UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn));
1387   }
1388 
1389   // Look for global variables which need to be renamed.
1390   for (Module::global_iterator
1391          GI = TheModule->global_begin(), GE = TheModule->global_end();
1392        GI != GE; ++GI)
1393     UpgradeGlobalVariable(GI);
1394   // Force deallocation of memory for these vectors to favor the client that
1395   // want lazy deserialization.
1396   std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
1397   std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits);
1398   return false;
1399 }
1400 
1401 bool BitcodeReader::ParseModule(bool Resume) {
1402   if (Resume)
1403     Stream.JumpToBit(NextUnreadBit);
1404   else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
1405     return Error("Malformed block record");
1406 
1407   SmallVector<uint64_t, 64> Record;
1408   std::vector<std::string> SectionTable;
1409   std::vector<std::string> GCTable;
1410 
1411   // Read all the records for this module.
1412   while (!Stream.AtEndOfStream()) {
1413     unsigned Code = Stream.ReadCode();
1414     if (Code == bitc::END_BLOCK) {
1415       if (Stream.ReadBlockEnd())
1416         return Error("Error at end of module block");
1417 
1418       return GlobalCleanup();
1419     }
1420 
1421     if (Code == bitc::ENTER_SUBBLOCK) {
1422       switch (Stream.ReadSubBlockID()) {
1423       default:  // Skip unknown content.
1424         if (Stream.SkipBlock())
1425           return Error("Malformed block record");
1426         break;
1427       case bitc::BLOCKINFO_BLOCK_ID:
1428         if (Stream.ReadBlockInfoBlock())
1429           return Error("Malformed BlockInfoBlock");
1430         break;
1431       case bitc::PARAMATTR_BLOCK_ID:
1432         if (ParseAttributeBlock())
1433           return true;
1434         break;
1435       case bitc::TYPE_BLOCK_ID_NEW:
1436         if (ParseTypeTable())
1437           return true;
1438         break;
1439       case bitc::VALUE_SYMTAB_BLOCK_ID:
1440         if (ParseValueSymbolTable())
1441           return true;
1442         SeenValueSymbolTable = true;
1443         break;
1444       case bitc::CONSTANTS_BLOCK_ID:
1445         if (ParseConstants() || ResolveGlobalAndAliasInits())
1446           return true;
1447         break;
1448       case bitc::METADATA_BLOCK_ID:
1449         if (ParseMetadata())
1450           return true;
1451         break;
1452       case bitc::FUNCTION_BLOCK_ID:
1453         // If this is the first function body we've seen, reverse the
1454         // FunctionsWithBodies list.
1455         if (!SeenFirstFunctionBody) {
1456           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
1457           if (GlobalCleanup())
1458             return true;
1459           SeenFirstFunctionBody = true;
1460         }
1461 
1462         if (RememberAndSkipFunctionBody())
1463           return true;
1464         // For streaming bitcode, suspend parsing when we reach the function
1465         // bodies. Subsequent materialization calls will resume it when
1466         // necessary. For streaming, the function bodies must be at the end of
1467         // the bitcode. If the bitcode file is old, the symbol table will be
1468         // at the end instead and will not have been seen yet. In this case,
1469         // just finish the parse now.
1470         if (LazyStreamer && SeenValueSymbolTable) {
1471           NextUnreadBit = Stream.GetCurrentBitNo();
1472           return false;
1473         }
1474         break;
1475       case bitc::USELIST_BLOCK_ID:
1476         if (ParseUseLists())
1477           return true;
1478         break;
1479       }
1480       continue;
1481     }
1482 
1483     if (Code == bitc::DEFINE_ABBREV) {
1484       Stream.ReadAbbrevRecord();
1485       continue;
1486     }
1487 
1488     // Read a record.
1489     switch (Stream.ReadRecord(Code, Record)) {
1490     default: break;  // Default behavior, ignore unknown content.
1491     case bitc::MODULE_CODE_VERSION:  // VERSION: [version#]
1492       if (Record.size() < 1)
1493         return Error("Malformed MODULE_CODE_VERSION");
1494       // Only version #0 is supported so far.
1495       if (Record[0] != 0)
1496         return Error("Unknown bitstream version!");
1497       break;
1498     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
1499       std::string S;
1500       if (ConvertToString(Record, 0, S))
1501         return Error("Invalid MODULE_CODE_TRIPLE record");
1502       TheModule->setTargetTriple(S);
1503       break;
1504     }
1505     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
1506       std::string S;
1507       if (ConvertToString(Record, 0, S))
1508         return Error("Invalid MODULE_CODE_DATALAYOUT record");
1509       TheModule->setDataLayout(S);
1510       break;
1511     }
1512     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
1513       std::string S;
1514       if (ConvertToString(Record, 0, S))
1515         return Error("Invalid MODULE_CODE_ASM record");
1516       TheModule->setModuleInlineAsm(S);
1517       break;
1518     }
1519     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
1520       std::string S;
1521       if (ConvertToString(Record, 0, S))
1522         return Error("Invalid MODULE_CODE_DEPLIB record");
1523       TheModule->addLibrary(S);
1524       break;
1525     }
1526     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
1527       std::string S;
1528       if (ConvertToString(Record, 0, S))
1529         return Error("Invalid MODULE_CODE_SECTIONNAME record");
1530       SectionTable.push_back(S);
1531       break;
1532     }
1533     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
1534       std::string S;
1535       if (ConvertToString(Record, 0, S))
1536         return Error("Invalid MODULE_CODE_GCNAME record");
1537       GCTable.push_back(S);
1538       break;
1539     }
1540     // GLOBALVAR: [pointer type, isconst, initid,
1541     //             linkage, alignment, section, visibility, threadlocal,
1542     //             unnamed_addr]
1543     case bitc::MODULE_CODE_GLOBALVAR: {
1544       if (Record.size() < 6)
1545         return Error("Invalid MODULE_CODE_GLOBALVAR record");
1546       Type *Ty = getTypeByID(Record[0]);
1547       if (!Ty) return Error("Invalid MODULE_CODE_GLOBALVAR record");
1548       if (!Ty->isPointerTy())
1549         return Error("Global not a pointer type!");
1550       unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
1551       Ty = cast<PointerType>(Ty)->getElementType();
1552 
1553       bool isConstant = Record[1];
1554       GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]);
1555       unsigned Alignment = (1 << Record[4]) >> 1;
1556       std::string Section;
1557       if (Record[5]) {
1558         if (Record[5]-1 >= SectionTable.size())
1559           return Error("Invalid section ID");
1560         Section = SectionTable[Record[5]-1];
1561       }
1562       GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
1563       if (Record.size() > 6)
1564         Visibility = GetDecodedVisibility(Record[6]);
1565       bool isThreadLocal = false;
1566       if (Record.size() > 7)
1567         isThreadLocal = Record[7];
1568 
1569       bool UnnamedAddr = false;
1570       if (Record.size() > 8)
1571         UnnamedAddr = Record[8];
1572 
1573       GlobalVariable *NewGV =
1574         new GlobalVariable(*TheModule, Ty, isConstant, Linkage, 0, "", 0,
1575                            isThreadLocal, AddressSpace);
1576       NewGV->setAlignment(Alignment);
1577       if (!Section.empty())
1578         NewGV->setSection(Section);
1579       NewGV->setVisibility(Visibility);
1580       NewGV->setThreadLocal(isThreadLocal);
1581       NewGV->setUnnamedAddr(UnnamedAddr);
1582 
1583       ValueList.push_back(NewGV);
1584 
1585       // Remember which value to use for the global initializer.
1586       if (unsigned InitID = Record[2])
1587         GlobalInits.push_back(std::make_pair(NewGV, InitID-1));
1588       break;
1589     }
1590     // FUNCTION:  [type, callingconv, isproto, linkage, paramattr,
1591     //             alignment, section, visibility, gc, unnamed_addr]
1592     case bitc::MODULE_CODE_FUNCTION: {
1593       if (Record.size() < 8)
1594         return Error("Invalid MODULE_CODE_FUNCTION record");
1595       Type *Ty = getTypeByID(Record[0]);
1596       if (!Ty) return Error("Invalid MODULE_CODE_FUNCTION record");
1597       if (!Ty->isPointerTy())
1598         return Error("Function not a pointer type!");
1599       FunctionType *FTy =
1600         dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType());
1601       if (!FTy)
1602         return Error("Function not a pointer to function type!");
1603 
1604       Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
1605                                         "", TheModule);
1606 
1607       Func->setCallingConv(static_cast<CallingConv::ID>(Record[1]));
1608       bool isProto = Record[2];
1609       Func->setLinkage(GetDecodedLinkage(Record[3]));
1610       Func->setAttributes(getAttributes(Record[4]));
1611 
1612       Func->setAlignment((1 << Record[5]) >> 1);
1613       if (Record[6]) {
1614         if (Record[6]-1 >= SectionTable.size())
1615           return Error("Invalid section ID");
1616         Func->setSection(SectionTable[Record[6]-1]);
1617       }
1618       Func->setVisibility(GetDecodedVisibility(Record[7]));
1619       if (Record.size() > 8 && Record[8]) {
1620         if (Record[8]-1 > GCTable.size())
1621           return Error("Invalid GC ID");
1622         Func->setGC(GCTable[Record[8]-1].c_str());
1623       }
1624       bool UnnamedAddr = false;
1625       if (Record.size() > 9)
1626         UnnamedAddr = Record[9];
1627       Func->setUnnamedAddr(UnnamedAddr);
1628       ValueList.push_back(Func);
1629 
1630       // If this is a function with a body, remember the prototype we are
1631       // creating now, so that we can match up the body with them later.
1632       if (!isProto) {
1633         FunctionsWithBodies.push_back(Func);
1634         if (LazyStreamer) DeferredFunctionInfo[Func] = 0;
1635       }
1636       break;
1637     }
1638     // ALIAS: [alias type, aliasee val#, linkage]
1639     // ALIAS: [alias type, aliasee val#, linkage, visibility]
1640     case bitc::MODULE_CODE_ALIAS: {
1641       if (Record.size() < 3)
1642         return Error("Invalid MODULE_ALIAS record");
1643       Type *Ty = getTypeByID(Record[0]);
1644       if (!Ty) return Error("Invalid MODULE_ALIAS record");
1645       if (!Ty->isPointerTy())
1646         return Error("Function not a pointer type!");
1647 
1648       GlobalAlias *NewGA = new GlobalAlias(Ty, GetDecodedLinkage(Record[2]),
1649                                            "", 0, TheModule);
1650       // Old bitcode files didn't have visibility field.
1651       if (Record.size() > 3)
1652         NewGA->setVisibility(GetDecodedVisibility(Record[3]));
1653       ValueList.push_back(NewGA);
1654       AliasInits.push_back(std::make_pair(NewGA, Record[1]));
1655       break;
1656     }
1657     /// MODULE_CODE_PURGEVALS: [numvals]
1658     case bitc::MODULE_CODE_PURGEVALS:
1659       // Trim down the value list to the specified size.
1660       if (Record.size() < 1 || Record[0] > ValueList.size())
1661         return Error("Invalid MODULE_PURGEVALS record");
1662       ValueList.shrinkTo(Record[0]);
1663       break;
1664     }
1665     Record.clear();
1666   }
1667 
1668   return Error("Premature end of bitstream");
1669 }
1670 
1671 bool BitcodeReader::ParseBitcodeInto(Module *M) {
1672   TheModule = 0;
1673 
1674   if (InitStream()) return true;
1675 
1676   // Sniff for the signature.
1677   if (Stream.Read(8) != 'B' ||
1678       Stream.Read(8) != 'C' ||
1679       Stream.Read(4) != 0x0 ||
1680       Stream.Read(4) != 0xC ||
1681       Stream.Read(4) != 0xE ||
1682       Stream.Read(4) != 0xD)
1683     return Error("Invalid bitcode signature");
1684 
1685   // We expect a number of well-defined blocks, though we don't necessarily
1686   // need to understand them all.
1687   while (!Stream.AtEndOfStream()) {
1688     unsigned Code = Stream.ReadCode();
1689 
1690     if (Code != bitc::ENTER_SUBBLOCK) {
1691 
1692       // The ranlib in xcode 4 will align archive members by appending newlines
1693       // to the end of them. If this file size is a multiple of 4 but not 8, we
1694       // have to read and ignore these final 4 bytes :-(
1695       if (Stream.GetAbbrevIDWidth() == 2 && Code == 2 &&
1696           Stream.Read(6) == 2 && Stream.Read(24) == 0xa0a0a &&
1697 	  Stream.AtEndOfStream())
1698         return false;
1699 
1700       return Error("Invalid record at top-level");
1701     }
1702 
1703     unsigned BlockID = Stream.ReadSubBlockID();
1704 
1705     // We only know the MODULE subblock ID.
1706     switch (BlockID) {
1707     case bitc::BLOCKINFO_BLOCK_ID:
1708       if (Stream.ReadBlockInfoBlock())
1709         return Error("Malformed BlockInfoBlock");
1710       break;
1711     case bitc::MODULE_BLOCK_ID:
1712       // Reject multiple MODULE_BLOCK's in a single bitstream.
1713       if (TheModule)
1714         return Error("Multiple MODULE_BLOCKs in same stream");
1715       TheModule = M;
1716       if (ParseModule(false))
1717         return true;
1718       if (LazyStreamer) return false;
1719       break;
1720     default:
1721       if (Stream.SkipBlock())
1722         return Error("Malformed block record");
1723       break;
1724     }
1725   }
1726 
1727   return false;
1728 }
1729 
1730 bool BitcodeReader::ParseModuleTriple(std::string &Triple) {
1731   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
1732     return Error("Malformed block record");
1733 
1734   SmallVector<uint64_t, 64> Record;
1735 
1736   // Read all the records for this module.
1737   while (!Stream.AtEndOfStream()) {
1738     unsigned Code = Stream.ReadCode();
1739     if (Code == bitc::END_BLOCK) {
1740       if (Stream.ReadBlockEnd())
1741         return Error("Error at end of module block");
1742 
1743       return false;
1744     }
1745 
1746     if (Code == bitc::ENTER_SUBBLOCK) {
1747       switch (Stream.ReadSubBlockID()) {
1748       default:  // Skip unknown content.
1749         if (Stream.SkipBlock())
1750           return Error("Malformed block record");
1751         break;
1752       }
1753       continue;
1754     }
1755 
1756     if (Code == bitc::DEFINE_ABBREV) {
1757       Stream.ReadAbbrevRecord();
1758       continue;
1759     }
1760 
1761     // Read a record.
1762     switch (Stream.ReadRecord(Code, Record)) {
1763     default: break;  // Default behavior, ignore unknown content.
1764     case bitc::MODULE_CODE_VERSION:  // VERSION: [version#]
1765       if (Record.size() < 1)
1766         return Error("Malformed MODULE_CODE_VERSION");
1767       // Only version #0 is supported so far.
1768       if (Record[0] != 0)
1769         return Error("Unknown bitstream version!");
1770       break;
1771     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
1772       std::string S;
1773       if (ConvertToString(Record, 0, S))
1774         return Error("Invalid MODULE_CODE_TRIPLE record");
1775       Triple = S;
1776       break;
1777     }
1778     }
1779     Record.clear();
1780   }
1781 
1782   return Error("Premature end of bitstream");
1783 }
1784 
1785 bool BitcodeReader::ParseTriple(std::string &Triple) {
1786   if (InitStream()) return true;
1787 
1788   // Sniff for the signature.
1789   if (Stream.Read(8) != 'B' ||
1790       Stream.Read(8) != 'C' ||
1791       Stream.Read(4) != 0x0 ||
1792       Stream.Read(4) != 0xC ||
1793       Stream.Read(4) != 0xE ||
1794       Stream.Read(4) != 0xD)
1795     return Error("Invalid bitcode signature");
1796 
1797   // We expect a number of well-defined blocks, though we don't necessarily
1798   // need to understand them all.
1799   while (!Stream.AtEndOfStream()) {
1800     unsigned Code = Stream.ReadCode();
1801 
1802     if (Code != bitc::ENTER_SUBBLOCK)
1803       return Error("Invalid record at top-level");
1804 
1805     unsigned BlockID = Stream.ReadSubBlockID();
1806 
1807     // We only know the MODULE subblock ID.
1808     switch (BlockID) {
1809     case bitc::MODULE_BLOCK_ID:
1810       if (ParseModuleTriple(Triple))
1811         return true;
1812       break;
1813     default:
1814       if (Stream.SkipBlock())
1815         return Error("Malformed block record");
1816       break;
1817     }
1818   }
1819 
1820   return false;
1821 }
1822 
1823 /// ParseMetadataAttachment - Parse metadata attachments.
1824 bool BitcodeReader::ParseMetadataAttachment() {
1825   if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID))
1826     return Error("Malformed block record");
1827 
1828   SmallVector<uint64_t, 64> Record;
1829   while(1) {
1830     unsigned Code = Stream.ReadCode();
1831     if (Code == bitc::END_BLOCK) {
1832       if (Stream.ReadBlockEnd())
1833         return Error("Error at end of PARAMATTR block");
1834       break;
1835     }
1836     if (Code == bitc::DEFINE_ABBREV) {
1837       Stream.ReadAbbrevRecord();
1838       continue;
1839     }
1840     // Read a metadata attachment record.
1841     Record.clear();
1842     switch (Stream.ReadRecord(Code, Record)) {
1843     default:  // Default behavior: ignore.
1844       break;
1845     case bitc::METADATA_ATTACHMENT: {
1846       unsigned RecordLength = Record.size();
1847       if (Record.empty() || (RecordLength - 1) % 2 == 1)
1848         return Error ("Invalid METADATA_ATTACHMENT reader!");
1849       Instruction *Inst = InstructionList[Record[0]];
1850       for (unsigned i = 1; i != RecordLength; i = i+2) {
1851         unsigned Kind = Record[i];
1852         DenseMap<unsigned, unsigned>::iterator I =
1853           MDKindMap.find(Kind);
1854         if (I == MDKindMap.end())
1855           return Error("Invalid metadata kind ID");
1856         Value *Node = MDValueList.getValueFwdRef(Record[i+1]);
1857         Inst->setMetadata(I->second, cast<MDNode>(Node));
1858       }
1859       break;
1860     }
1861     }
1862   }
1863   return false;
1864 }
1865 
1866 /// ParseFunctionBody - Lazily parse the specified function body block.
1867 bool BitcodeReader::ParseFunctionBody(Function *F) {
1868   if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
1869     return Error("Malformed block record");
1870 
1871   InstructionList.clear();
1872   unsigned ModuleValueListSize = ValueList.size();
1873   unsigned ModuleMDValueListSize = MDValueList.size();
1874 
1875   // Add all the function arguments to the value table.
1876   for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
1877     ValueList.push_back(I);
1878 
1879   unsigned NextValueNo = ValueList.size();
1880   BasicBlock *CurBB = 0;
1881   unsigned CurBBNo = 0;
1882 
1883   DebugLoc LastLoc;
1884 
1885   // Read all the records.
1886   SmallVector<uint64_t, 64> Record;
1887   while (1) {
1888     unsigned Code = Stream.ReadCode();
1889     if (Code == bitc::END_BLOCK) {
1890       if (Stream.ReadBlockEnd())
1891         return Error("Error at end of function block");
1892       break;
1893     }
1894 
1895     if (Code == bitc::ENTER_SUBBLOCK) {
1896       switch (Stream.ReadSubBlockID()) {
1897       default:  // Skip unknown content.
1898         if (Stream.SkipBlock())
1899           return Error("Malformed block record");
1900         break;
1901       case bitc::CONSTANTS_BLOCK_ID:
1902         if (ParseConstants()) return true;
1903         NextValueNo = ValueList.size();
1904         break;
1905       case bitc::VALUE_SYMTAB_BLOCK_ID:
1906         if (ParseValueSymbolTable()) return true;
1907         break;
1908       case bitc::METADATA_ATTACHMENT_ID:
1909         if (ParseMetadataAttachment()) return true;
1910         break;
1911       case bitc::METADATA_BLOCK_ID:
1912         if (ParseMetadata()) return true;
1913         break;
1914       }
1915       continue;
1916     }
1917 
1918     if (Code == bitc::DEFINE_ABBREV) {
1919       Stream.ReadAbbrevRecord();
1920       continue;
1921     }
1922 
1923     // Read a record.
1924     Record.clear();
1925     Instruction *I = 0;
1926     unsigned BitCode = Stream.ReadRecord(Code, Record);
1927     switch (BitCode) {
1928     default: // Default behavior: reject
1929       return Error("Unknown instruction");
1930     case bitc::FUNC_CODE_DECLAREBLOCKS:     // DECLAREBLOCKS: [nblocks]
1931       if (Record.size() < 1 || Record[0] == 0)
1932         return Error("Invalid DECLAREBLOCKS record");
1933       // Create all the basic blocks for the function.
1934       FunctionBBs.resize(Record[0]);
1935       for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
1936         FunctionBBs[i] = BasicBlock::Create(Context, "", F);
1937       CurBB = FunctionBBs[0];
1938       continue;
1939 
1940     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
1941       // This record indicates that the last instruction is at the same
1942       // location as the previous instruction with a location.
1943       I = 0;
1944 
1945       // Get the last instruction emitted.
1946       if (CurBB && !CurBB->empty())
1947         I = &CurBB->back();
1948       else if (CurBBNo && FunctionBBs[CurBBNo-1] &&
1949                !FunctionBBs[CurBBNo-1]->empty())
1950         I = &FunctionBBs[CurBBNo-1]->back();
1951 
1952       if (I == 0) return Error("Invalid DEBUG_LOC_AGAIN record");
1953       I->setDebugLoc(LastLoc);
1954       I = 0;
1955       continue;
1956 
1957     case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
1958       I = 0;     // Get the last instruction emitted.
1959       if (CurBB && !CurBB->empty())
1960         I = &CurBB->back();
1961       else if (CurBBNo && FunctionBBs[CurBBNo-1] &&
1962                !FunctionBBs[CurBBNo-1]->empty())
1963         I = &FunctionBBs[CurBBNo-1]->back();
1964       if (I == 0 || Record.size() < 4)
1965         return Error("Invalid FUNC_CODE_DEBUG_LOC record");
1966 
1967       unsigned Line = Record[0], Col = Record[1];
1968       unsigned ScopeID = Record[2], IAID = Record[3];
1969 
1970       MDNode *Scope = 0, *IA = 0;
1971       if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1));
1972       if (IAID)    IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1));
1973       LastLoc = DebugLoc::get(Line, Col, Scope, IA);
1974       I->setDebugLoc(LastLoc);
1975       I = 0;
1976       continue;
1977     }
1978 
1979     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
1980       unsigned OpNum = 0;
1981       Value *LHS, *RHS;
1982       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
1983           getValue(Record, OpNum, LHS->getType(), RHS) ||
1984           OpNum+1 > Record.size())
1985         return Error("Invalid BINOP record");
1986 
1987       int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
1988       if (Opc == -1) return Error("Invalid BINOP record");
1989       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
1990       InstructionList.push_back(I);
1991       if (OpNum < Record.size()) {
1992         if (Opc == Instruction::Add ||
1993             Opc == Instruction::Sub ||
1994             Opc == Instruction::Mul ||
1995             Opc == Instruction::Shl) {
1996           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
1997             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
1998           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
1999             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
2000         } else if (Opc == Instruction::SDiv ||
2001                    Opc == Instruction::UDiv ||
2002                    Opc == Instruction::LShr ||
2003                    Opc == Instruction::AShr) {
2004           if (Record[OpNum] & (1 << bitc::PEO_EXACT))
2005             cast<BinaryOperator>(I)->setIsExact(true);
2006         }
2007       }
2008       break;
2009     }
2010     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
2011       unsigned OpNum = 0;
2012       Value *Op;
2013       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2014           OpNum+2 != Record.size())
2015         return Error("Invalid CAST record");
2016 
2017       Type *ResTy = getTypeByID(Record[OpNum]);
2018       int Opc = GetDecodedCastOpcode(Record[OpNum+1]);
2019       if (Opc == -1 || ResTy == 0)
2020         return Error("Invalid CAST record");
2021       I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy);
2022       InstructionList.push_back(I);
2023       break;
2024     }
2025     case bitc::FUNC_CODE_INST_INBOUNDS_GEP:
2026     case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands]
2027       unsigned OpNum = 0;
2028       Value *BasePtr;
2029       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
2030         return Error("Invalid GEP record");
2031 
2032       SmallVector<Value*, 16> GEPIdx;
2033       while (OpNum != Record.size()) {
2034         Value *Op;
2035         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2036           return Error("Invalid GEP record");
2037         GEPIdx.push_back(Op);
2038       }
2039 
2040       I = GetElementPtrInst::Create(BasePtr, GEPIdx);
2041       InstructionList.push_back(I);
2042       if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP)
2043         cast<GetElementPtrInst>(I)->setIsInBounds(true);
2044       break;
2045     }
2046 
2047     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
2048                                        // EXTRACTVAL: [opty, opval, n x indices]
2049       unsigned OpNum = 0;
2050       Value *Agg;
2051       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
2052         return Error("Invalid EXTRACTVAL record");
2053 
2054       SmallVector<unsigned, 4> EXTRACTVALIdx;
2055       for (unsigned RecSize = Record.size();
2056            OpNum != RecSize; ++OpNum) {
2057         uint64_t Index = Record[OpNum];
2058         if ((unsigned)Index != Index)
2059           return Error("Invalid EXTRACTVAL index");
2060         EXTRACTVALIdx.push_back((unsigned)Index);
2061       }
2062 
2063       I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
2064       InstructionList.push_back(I);
2065       break;
2066     }
2067 
2068     case bitc::FUNC_CODE_INST_INSERTVAL: {
2069                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
2070       unsigned OpNum = 0;
2071       Value *Agg;
2072       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
2073         return Error("Invalid INSERTVAL record");
2074       Value *Val;
2075       if (getValueTypePair(Record, OpNum, NextValueNo, Val))
2076         return Error("Invalid INSERTVAL record");
2077 
2078       SmallVector<unsigned, 4> INSERTVALIdx;
2079       for (unsigned RecSize = Record.size();
2080            OpNum != RecSize; ++OpNum) {
2081         uint64_t Index = Record[OpNum];
2082         if ((unsigned)Index != Index)
2083           return Error("Invalid INSERTVAL index");
2084         INSERTVALIdx.push_back((unsigned)Index);
2085       }
2086 
2087       I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
2088       InstructionList.push_back(I);
2089       break;
2090     }
2091 
2092     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
2093       // obsolete form of select
2094       // handles select i1 ... in old bitcode
2095       unsigned OpNum = 0;
2096       Value *TrueVal, *FalseVal, *Cond;
2097       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
2098           getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
2099           getValue(Record, OpNum, Type::getInt1Ty(Context), Cond))
2100         return Error("Invalid SELECT record");
2101 
2102       I = SelectInst::Create(Cond, TrueVal, FalseVal);
2103       InstructionList.push_back(I);
2104       break;
2105     }
2106 
2107     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
2108       // new form of select
2109       // handles select i1 or select [N x i1]
2110       unsigned OpNum = 0;
2111       Value *TrueVal, *FalseVal, *Cond;
2112       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
2113           getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
2114           getValueTypePair(Record, OpNum, NextValueNo, Cond))
2115         return Error("Invalid SELECT record");
2116 
2117       // select condition can be either i1 or [N x i1]
2118       if (VectorType* vector_type =
2119           dyn_cast<VectorType>(Cond->getType())) {
2120         // expect <n x i1>
2121         if (vector_type->getElementType() != Type::getInt1Ty(Context))
2122           return Error("Invalid SELECT condition type");
2123       } else {
2124         // expect i1
2125         if (Cond->getType() != Type::getInt1Ty(Context))
2126           return Error("Invalid SELECT condition type");
2127       }
2128 
2129       I = SelectInst::Create(Cond, TrueVal, FalseVal);
2130       InstructionList.push_back(I);
2131       break;
2132     }
2133 
2134     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
2135       unsigned OpNum = 0;
2136       Value *Vec, *Idx;
2137       if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
2138           getValue(Record, OpNum, Type::getInt32Ty(Context), Idx))
2139         return Error("Invalid EXTRACTELT record");
2140       I = ExtractElementInst::Create(Vec, Idx);
2141       InstructionList.push_back(I);
2142       break;
2143     }
2144 
2145     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
2146       unsigned OpNum = 0;
2147       Value *Vec, *Elt, *Idx;
2148       if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
2149           getValue(Record, OpNum,
2150                    cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
2151           getValue(Record, OpNum, Type::getInt32Ty(Context), Idx))
2152         return Error("Invalid INSERTELT record");
2153       I = InsertElementInst::Create(Vec, Elt, Idx);
2154       InstructionList.push_back(I);
2155       break;
2156     }
2157 
2158     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
2159       unsigned OpNum = 0;
2160       Value *Vec1, *Vec2, *Mask;
2161       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
2162           getValue(Record, OpNum, Vec1->getType(), Vec2))
2163         return Error("Invalid SHUFFLEVEC record");
2164 
2165       if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
2166         return Error("Invalid SHUFFLEVEC record");
2167       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
2168       InstructionList.push_back(I);
2169       break;
2170     }
2171 
2172     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
2173       // Old form of ICmp/FCmp returning bool
2174       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
2175       // both legal on vectors but had different behaviour.
2176     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
2177       // FCmp/ICmp returning bool or vector of bool
2178 
2179       unsigned OpNum = 0;
2180       Value *LHS, *RHS;
2181       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
2182           getValue(Record, OpNum, LHS->getType(), RHS) ||
2183           OpNum+1 != Record.size())
2184         return Error("Invalid CMP record");
2185 
2186       if (LHS->getType()->isFPOrFPVectorTy())
2187         I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS);
2188       else
2189         I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS);
2190       InstructionList.push_back(I);
2191       break;
2192     }
2193 
2194     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
2195       {
2196         unsigned Size = Record.size();
2197         if (Size == 0) {
2198           I = ReturnInst::Create(Context);
2199           InstructionList.push_back(I);
2200           break;
2201         }
2202 
2203         unsigned OpNum = 0;
2204         Value *Op = NULL;
2205         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2206           return Error("Invalid RET record");
2207         if (OpNum != Record.size())
2208           return Error("Invalid RET record");
2209 
2210         I = ReturnInst::Create(Context, Op);
2211         InstructionList.push_back(I);
2212         break;
2213       }
2214     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
2215       if (Record.size() != 1 && Record.size() != 3)
2216         return Error("Invalid BR record");
2217       BasicBlock *TrueDest = getBasicBlock(Record[0]);
2218       if (TrueDest == 0)
2219         return Error("Invalid BR record");
2220 
2221       if (Record.size() == 1) {
2222         I = BranchInst::Create(TrueDest);
2223         InstructionList.push_back(I);
2224       }
2225       else {
2226         BasicBlock *FalseDest = getBasicBlock(Record[1]);
2227         Value *Cond = getFnValueByID(Record[2], Type::getInt1Ty(Context));
2228         if (FalseDest == 0 || Cond == 0)
2229           return Error("Invalid BR record");
2230         I = BranchInst::Create(TrueDest, FalseDest, Cond);
2231         InstructionList.push_back(I);
2232       }
2233       break;
2234     }
2235     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
2236       // Check magic
2237       if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
2238         // New SwitchInst format with case ranges.
2239 
2240         Type *OpTy = getTypeByID(Record[1]);
2241         unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
2242 
2243         Value *Cond = getFnValueByID(Record[2], OpTy);
2244         BasicBlock *Default = getBasicBlock(Record[3]);
2245         if (OpTy == 0 || Cond == 0 || Default == 0)
2246           return Error("Invalid SWITCH record");
2247 
2248         unsigned NumCases = Record[4];
2249 
2250         SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
2251         InstructionList.push_back(SI);
2252 
2253         unsigned CurIdx = 5;
2254         for (unsigned i = 0; i != NumCases; ++i) {
2255           CRSBuilder CaseBuilder;
2256           unsigned NumItems = Record[CurIdx++];
2257           for (unsigned ci = 0; ci != NumItems; ++ci) {
2258             bool isSingleNumber = Record[CurIdx++];
2259 
2260             APInt Low;
2261             unsigned ActiveWords = 1;
2262             if (ValueBitWidth > 64)
2263               ActiveWords = Record[CurIdx++];
2264             Low = ReadWideAPInt(&Record[CurIdx], ActiveWords, ValueBitWidth);
2265             CurIdx += ActiveWords;
2266 
2267             if (!isSingleNumber) {
2268               ActiveWords = 1;
2269               if (ValueBitWidth > 64)
2270                 ActiveWords = Record[CurIdx++];
2271               APInt High =
2272                   ReadWideAPInt(&Record[CurIdx], ActiveWords, ValueBitWidth);
2273               CaseBuilder.add(cast<ConstantInt>(ConstantInt::get(OpTy, Low)),
2274                               cast<ConstantInt>(ConstantInt::get(OpTy, High)));
2275               CurIdx += ActiveWords;
2276             } else
2277               CaseBuilder.add(cast<ConstantInt>(ConstantInt::get(OpTy, Low)));
2278           }
2279           BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
2280           ConstantRangesSet Case = CaseBuilder.getCase();
2281           SI->addCase(Case, DestBB);
2282         }
2283         uint16_t Hash = SI->hash();
2284         if (Hash != (Record[0] & 0xFFFF))
2285           return Error("Invalid SWITCH record");
2286         I = SI;
2287         break;
2288       }
2289 
2290       // Old SwitchInst format without case ranges.
2291 
2292       if (Record.size() < 3 || (Record.size() & 1) == 0)
2293         return Error("Invalid SWITCH record");
2294       Type *OpTy = getTypeByID(Record[0]);
2295       Value *Cond = getFnValueByID(Record[1], OpTy);
2296       BasicBlock *Default = getBasicBlock(Record[2]);
2297       if (OpTy == 0 || Cond == 0 || Default == 0)
2298         return Error("Invalid SWITCH record");
2299       unsigned NumCases = (Record.size()-3)/2;
2300       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
2301       InstructionList.push_back(SI);
2302       for (unsigned i = 0, e = NumCases; i != e; ++i) {
2303         ConstantInt *CaseVal =
2304           dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
2305         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
2306         if (CaseVal == 0 || DestBB == 0) {
2307           delete SI;
2308           return Error("Invalid SWITCH record!");
2309         }
2310         SI->addCase(CaseVal, DestBB);
2311       }
2312       I = SI;
2313       break;
2314     }
2315     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
2316       if (Record.size() < 2)
2317         return Error("Invalid INDIRECTBR record");
2318       Type *OpTy = getTypeByID(Record[0]);
2319       Value *Address = getFnValueByID(Record[1], OpTy);
2320       if (OpTy == 0 || Address == 0)
2321         return Error("Invalid INDIRECTBR record");
2322       unsigned NumDests = Record.size()-2;
2323       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
2324       InstructionList.push_back(IBI);
2325       for (unsigned i = 0, e = NumDests; i != e; ++i) {
2326         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
2327           IBI->addDestination(DestBB);
2328         } else {
2329           delete IBI;
2330           return Error("Invalid INDIRECTBR record!");
2331         }
2332       }
2333       I = IBI;
2334       break;
2335     }
2336 
2337     case bitc::FUNC_CODE_INST_INVOKE: {
2338       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
2339       if (Record.size() < 4) return Error("Invalid INVOKE record");
2340       AttrListPtr PAL = getAttributes(Record[0]);
2341       unsigned CCInfo = Record[1];
2342       BasicBlock *NormalBB = getBasicBlock(Record[2]);
2343       BasicBlock *UnwindBB = getBasicBlock(Record[3]);
2344 
2345       unsigned OpNum = 4;
2346       Value *Callee;
2347       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
2348         return Error("Invalid INVOKE record");
2349 
2350       PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
2351       FunctionType *FTy = !CalleeTy ? 0 :
2352         dyn_cast<FunctionType>(CalleeTy->getElementType());
2353 
2354       // Check that the right number of fixed parameters are here.
2355       if (FTy == 0 || NormalBB == 0 || UnwindBB == 0 ||
2356           Record.size() < OpNum+FTy->getNumParams())
2357         return Error("Invalid INVOKE record");
2358 
2359       SmallVector<Value*, 16> Ops;
2360       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
2361         Ops.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
2362         if (Ops.back() == 0) return Error("Invalid INVOKE record");
2363       }
2364 
2365       if (!FTy->isVarArg()) {
2366         if (Record.size() != OpNum)
2367           return Error("Invalid INVOKE record");
2368       } else {
2369         // Read type/value pairs for varargs params.
2370         while (OpNum != Record.size()) {
2371           Value *Op;
2372           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2373             return Error("Invalid INVOKE record");
2374           Ops.push_back(Op);
2375         }
2376       }
2377 
2378       I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops);
2379       InstructionList.push_back(I);
2380       cast<InvokeInst>(I)->setCallingConv(
2381         static_cast<CallingConv::ID>(CCInfo));
2382       cast<InvokeInst>(I)->setAttributes(PAL);
2383       break;
2384     }
2385     case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
2386       unsigned Idx = 0;
2387       Value *Val = 0;
2388       if (getValueTypePair(Record, Idx, NextValueNo, Val))
2389         return Error("Invalid RESUME record");
2390       I = ResumeInst::Create(Val);
2391       InstructionList.push_back(I);
2392       break;
2393     }
2394     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
2395       I = new UnreachableInst(Context);
2396       InstructionList.push_back(I);
2397       break;
2398     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
2399       if (Record.size() < 1 || ((Record.size()-1)&1))
2400         return Error("Invalid PHI record");
2401       Type *Ty = getTypeByID(Record[0]);
2402       if (!Ty) return Error("Invalid PHI record");
2403 
2404       PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2);
2405       InstructionList.push_back(PN);
2406 
2407       for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
2408         Value *V = getFnValueByID(Record[1+i], Ty);
2409         BasicBlock *BB = getBasicBlock(Record[2+i]);
2410         if (!V || !BB) return Error("Invalid PHI record");
2411         PN->addIncoming(V, BB);
2412       }
2413       I = PN;
2414       break;
2415     }
2416 
2417     case bitc::FUNC_CODE_INST_LANDINGPAD: {
2418       // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
2419       unsigned Idx = 0;
2420       if (Record.size() < 4)
2421         return Error("Invalid LANDINGPAD record");
2422       Type *Ty = getTypeByID(Record[Idx++]);
2423       if (!Ty) return Error("Invalid LANDINGPAD record");
2424       Value *PersFn = 0;
2425       if (getValueTypePair(Record, Idx, NextValueNo, PersFn))
2426         return Error("Invalid LANDINGPAD record");
2427 
2428       bool IsCleanup = !!Record[Idx++];
2429       unsigned NumClauses = Record[Idx++];
2430       LandingPadInst *LP = LandingPadInst::Create(Ty, PersFn, NumClauses);
2431       LP->setCleanup(IsCleanup);
2432       for (unsigned J = 0; J != NumClauses; ++J) {
2433         LandingPadInst::ClauseType CT =
2434           LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
2435         Value *Val;
2436 
2437         if (getValueTypePair(Record, Idx, NextValueNo, Val)) {
2438           delete LP;
2439           return Error("Invalid LANDINGPAD record");
2440         }
2441 
2442         assert((CT != LandingPadInst::Catch ||
2443                 !isa<ArrayType>(Val->getType())) &&
2444                "Catch clause has a invalid type!");
2445         assert((CT != LandingPadInst::Filter ||
2446                 isa<ArrayType>(Val->getType())) &&
2447                "Filter clause has invalid type!");
2448         LP->addClause(Val);
2449       }
2450 
2451       I = LP;
2452       InstructionList.push_back(I);
2453       break;
2454     }
2455 
2456     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
2457       if (Record.size() != 4)
2458         return Error("Invalid ALLOCA record");
2459       PointerType *Ty =
2460         dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
2461       Type *OpTy = getTypeByID(Record[1]);
2462       Value *Size = getFnValueByID(Record[2], OpTy);
2463       unsigned Align = Record[3];
2464       if (!Ty || !Size) return Error("Invalid ALLOCA record");
2465       I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1);
2466       InstructionList.push_back(I);
2467       break;
2468     }
2469     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
2470       unsigned OpNum = 0;
2471       Value *Op;
2472       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2473           OpNum+2 != Record.size())
2474         return Error("Invalid LOAD record");
2475 
2476       I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2477       InstructionList.push_back(I);
2478       break;
2479     }
2480     case bitc::FUNC_CODE_INST_LOADATOMIC: {
2481        // LOADATOMIC: [opty, op, align, vol, ordering, synchscope]
2482       unsigned OpNum = 0;
2483       Value *Op;
2484       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2485           OpNum+4 != Record.size())
2486         return Error("Invalid LOADATOMIC record");
2487 
2488 
2489       AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]);
2490       if (Ordering == NotAtomic || Ordering == Release ||
2491           Ordering == AcquireRelease)
2492         return Error("Invalid LOADATOMIC record");
2493       if (Ordering != NotAtomic && Record[OpNum] == 0)
2494         return Error("Invalid LOADATOMIC record");
2495       SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]);
2496 
2497       I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1,
2498                        Ordering, SynchScope);
2499       InstructionList.push_back(I);
2500       break;
2501     }
2502     case bitc::FUNC_CODE_INST_STORE: { // STORE2:[ptrty, ptr, val, align, vol]
2503       unsigned OpNum = 0;
2504       Value *Val, *Ptr;
2505       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
2506           getValue(Record, OpNum,
2507                     cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
2508           OpNum+2 != Record.size())
2509         return Error("Invalid STORE record");
2510 
2511       I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2512       InstructionList.push_back(I);
2513       break;
2514     }
2515     case bitc::FUNC_CODE_INST_STOREATOMIC: {
2516       // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope]
2517       unsigned OpNum = 0;
2518       Value *Val, *Ptr;
2519       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
2520           getValue(Record, OpNum,
2521                     cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
2522           OpNum+4 != Record.size())
2523         return Error("Invalid STOREATOMIC record");
2524 
2525       AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]);
2526       if (Ordering == NotAtomic || Ordering == Acquire ||
2527           Ordering == AcquireRelease)
2528         return Error("Invalid STOREATOMIC record");
2529       SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]);
2530       if (Ordering != NotAtomic && Record[OpNum] == 0)
2531         return Error("Invalid STOREATOMIC record");
2532 
2533       I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1,
2534                         Ordering, SynchScope);
2535       InstructionList.push_back(I);
2536       break;
2537     }
2538     case bitc::FUNC_CODE_INST_CMPXCHG: {
2539       // CMPXCHG:[ptrty, ptr, cmp, new, vol, ordering, synchscope]
2540       unsigned OpNum = 0;
2541       Value *Ptr, *Cmp, *New;
2542       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
2543           getValue(Record, OpNum,
2544                     cast<PointerType>(Ptr->getType())->getElementType(), Cmp) ||
2545           getValue(Record, OpNum,
2546                     cast<PointerType>(Ptr->getType())->getElementType(), New) ||
2547           OpNum+3 != Record.size())
2548         return Error("Invalid CMPXCHG record");
2549       AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+1]);
2550       if (Ordering == NotAtomic || Ordering == Unordered)
2551         return Error("Invalid CMPXCHG record");
2552       SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+2]);
2553       I = new AtomicCmpXchgInst(Ptr, Cmp, New, Ordering, SynchScope);
2554       cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
2555       InstructionList.push_back(I);
2556       break;
2557     }
2558     case bitc::FUNC_CODE_INST_ATOMICRMW: {
2559       // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope]
2560       unsigned OpNum = 0;
2561       Value *Ptr, *Val;
2562       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
2563           getValue(Record, OpNum,
2564                     cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
2565           OpNum+4 != Record.size())
2566         return Error("Invalid ATOMICRMW record");
2567       AtomicRMWInst::BinOp Operation = GetDecodedRMWOperation(Record[OpNum]);
2568       if (Operation < AtomicRMWInst::FIRST_BINOP ||
2569           Operation > AtomicRMWInst::LAST_BINOP)
2570         return Error("Invalid ATOMICRMW record");
2571       AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]);
2572       if (Ordering == NotAtomic || Ordering == Unordered)
2573         return Error("Invalid ATOMICRMW record");
2574       SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]);
2575       I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope);
2576       cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]);
2577       InstructionList.push_back(I);
2578       break;
2579     }
2580     case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope]
2581       if (2 != Record.size())
2582         return Error("Invalid FENCE record");
2583       AtomicOrdering Ordering = GetDecodedOrdering(Record[0]);
2584       if (Ordering == NotAtomic || Ordering == Unordered ||
2585           Ordering == Monotonic)
2586         return Error("Invalid FENCE record");
2587       SynchronizationScope SynchScope = GetDecodedSynchScope(Record[1]);
2588       I = new FenceInst(Context, Ordering, SynchScope);
2589       InstructionList.push_back(I);
2590       break;
2591     }
2592     case bitc::FUNC_CODE_INST_CALL: {
2593       // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...]
2594       if (Record.size() < 3)
2595         return Error("Invalid CALL record");
2596 
2597       AttrListPtr PAL = getAttributes(Record[0]);
2598       unsigned CCInfo = Record[1];
2599 
2600       unsigned OpNum = 2;
2601       Value *Callee;
2602       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
2603         return Error("Invalid CALL record");
2604 
2605       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
2606       FunctionType *FTy = 0;
2607       if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType());
2608       if (!FTy || Record.size() < FTy->getNumParams()+OpNum)
2609         return Error("Invalid CALL record");
2610 
2611       SmallVector<Value*, 16> Args;
2612       // Read the fixed params.
2613       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
2614         if (FTy->getParamType(i)->isLabelTy())
2615           Args.push_back(getBasicBlock(Record[OpNum]));
2616         else
2617           Args.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
2618         if (Args.back() == 0) return Error("Invalid CALL record");
2619       }
2620 
2621       // Read type/value pairs for varargs params.
2622       if (!FTy->isVarArg()) {
2623         if (OpNum != Record.size())
2624           return Error("Invalid CALL record");
2625       } else {
2626         while (OpNum != Record.size()) {
2627           Value *Op;
2628           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2629             return Error("Invalid CALL record");
2630           Args.push_back(Op);
2631         }
2632       }
2633 
2634       I = CallInst::Create(Callee, Args);
2635       InstructionList.push_back(I);
2636       cast<CallInst>(I)->setCallingConv(
2637         static_cast<CallingConv::ID>(CCInfo>>1));
2638       cast<CallInst>(I)->setTailCall(CCInfo & 1);
2639       cast<CallInst>(I)->setAttributes(PAL);
2640       break;
2641     }
2642     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
2643       if (Record.size() < 3)
2644         return Error("Invalid VAARG record");
2645       Type *OpTy = getTypeByID(Record[0]);
2646       Value *Op = getFnValueByID(Record[1], OpTy);
2647       Type *ResTy = getTypeByID(Record[2]);
2648       if (!OpTy || !Op || !ResTy)
2649         return Error("Invalid VAARG record");
2650       I = new VAArgInst(Op, ResTy);
2651       InstructionList.push_back(I);
2652       break;
2653     }
2654     }
2655 
2656     // Add instruction to end of current BB.  If there is no current BB, reject
2657     // this file.
2658     if (CurBB == 0) {
2659       delete I;
2660       return Error("Invalid instruction with no BB");
2661     }
2662     CurBB->getInstList().push_back(I);
2663 
2664     // If this was a terminator instruction, move to the next block.
2665     if (isa<TerminatorInst>(I)) {
2666       ++CurBBNo;
2667       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : 0;
2668     }
2669 
2670     // Non-void values get registered in the value table for future use.
2671     if (I && !I->getType()->isVoidTy())
2672       ValueList.AssignValue(I, NextValueNo++);
2673   }
2674 
2675   // Check the function list for unresolved values.
2676   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
2677     if (A->getParent() == 0) {
2678       // We found at least one unresolved value.  Nuke them all to avoid leaks.
2679       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
2680         if ((A = dyn_cast<Argument>(ValueList[i])) && A->getParent() == 0) {
2681           A->replaceAllUsesWith(UndefValue::get(A->getType()));
2682           delete A;
2683         }
2684       }
2685       return Error("Never resolved value found in function!");
2686     }
2687   }
2688 
2689   // FIXME: Check for unresolved forward-declared metadata references
2690   // and clean up leaks.
2691 
2692   // See if anything took the address of blocks in this function.  If so,
2693   // resolve them now.
2694   DenseMap<Function*, std::vector<BlockAddrRefTy> >::iterator BAFRI =
2695     BlockAddrFwdRefs.find(F);
2696   if (BAFRI != BlockAddrFwdRefs.end()) {
2697     std::vector<BlockAddrRefTy> &RefList = BAFRI->second;
2698     for (unsigned i = 0, e = RefList.size(); i != e; ++i) {
2699       unsigned BlockIdx = RefList[i].first;
2700       if (BlockIdx >= FunctionBBs.size())
2701         return Error("Invalid blockaddress block #");
2702 
2703       GlobalVariable *FwdRef = RefList[i].second;
2704       FwdRef->replaceAllUsesWith(BlockAddress::get(F, FunctionBBs[BlockIdx]));
2705       FwdRef->eraseFromParent();
2706     }
2707 
2708     BlockAddrFwdRefs.erase(BAFRI);
2709   }
2710 
2711   // Trim the value list down to the size it was before we parsed this function.
2712   ValueList.shrinkTo(ModuleValueListSize);
2713   MDValueList.shrinkTo(ModuleMDValueListSize);
2714   std::vector<BasicBlock*>().swap(FunctionBBs);
2715   return false;
2716 }
2717 
2718 /// FindFunctionInStream - Find the function body in the bitcode stream
2719 bool BitcodeReader::FindFunctionInStream(Function *F,
2720        DenseMap<Function*, uint64_t>::iterator DeferredFunctionInfoIterator) {
2721   while (DeferredFunctionInfoIterator->second == 0) {
2722     if (Stream.AtEndOfStream())
2723       return Error("Could not find Function in stream");
2724     // ParseModule will parse the next body in the stream and set its
2725     // position in the DeferredFunctionInfo map.
2726     if (ParseModule(true)) return true;
2727   }
2728   return false;
2729 }
2730 
2731 //===----------------------------------------------------------------------===//
2732 // GVMaterializer implementation
2733 //===----------------------------------------------------------------------===//
2734 
2735 
2736 bool BitcodeReader::isMaterializable(const GlobalValue *GV) const {
2737   if (const Function *F = dyn_cast<Function>(GV)) {
2738     return F->isDeclaration() &&
2739       DeferredFunctionInfo.count(const_cast<Function*>(F));
2740   }
2741   return false;
2742 }
2743 
2744 bool BitcodeReader::Materialize(GlobalValue *GV, std::string *ErrInfo) {
2745   Function *F = dyn_cast<Function>(GV);
2746   // If it's not a function or is already material, ignore the request.
2747   if (!F || !F->isMaterializable()) return false;
2748 
2749   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
2750   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
2751   // If its position is recorded as 0, its body is somewhere in the stream
2752   // but we haven't seen it yet.
2753   if (DFII->second == 0)
2754     if (LazyStreamer && FindFunctionInStream(F, DFII)) return true;
2755 
2756   // Move the bit stream to the saved position of the deferred function body.
2757   Stream.JumpToBit(DFII->second);
2758 
2759   if (ParseFunctionBody(F)) {
2760     if (ErrInfo) *ErrInfo = ErrorString;
2761     return true;
2762   }
2763 
2764   // Upgrade any old intrinsic calls in the function.
2765   for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(),
2766        E = UpgradedIntrinsics.end(); I != E; ++I) {
2767     if (I->first != I->second) {
2768       for (Value::use_iterator UI = I->first->use_begin(),
2769            UE = I->first->use_end(); UI != UE; ) {
2770         if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2771           UpgradeIntrinsicCall(CI, I->second);
2772       }
2773     }
2774   }
2775 
2776   return false;
2777 }
2778 
2779 bool BitcodeReader::isDematerializable(const GlobalValue *GV) const {
2780   const Function *F = dyn_cast<Function>(GV);
2781   if (!F || F->isDeclaration())
2782     return false;
2783   return DeferredFunctionInfo.count(const_cast<Function*>(F));
2784 }
2785 
2786 void BitcodeReader::Dematerialize(GlobalValue *GV) {
2787   Function *F = dyn_cast<Function>(GV);
2788   // If this function isn't dematerializable, this is a noop.
2789   if (!F || !isDematerializable(F))
2790     return;
2791 
2792   assert(DeferredFunctionInfo.count(F) && "No info to read function later?");
2793 
2794   // Just forget the function body, we can remat it later.
2795   F->deleteBody();
2796 }
2797 
2798 
2799 bool BitcodeReader::MaterializeModule(Module *M, std::string *ErrInfo) {
2800   assert(M == TheModule &&
2801          "Can only Materialize the Module this BitcodeReader is attached to.");
2802   // Iterate over the module, deserializing any functions that are still on
2803   // disk.
2804   for (Module::iterator F = TheModule->begin(), E = TheModule->end();
2805        F != E; ++F)
2806     if (F->isMaterializable() &&
2807         Materialize(F, ErrInfo))
2808       return true;
2809 
2810   // At this point, if there are any function bodies, the current bit is
2811   // pointing to the END_BLOCK record after them. Now make sure the rest
2812   // of the bits in the module have been read.
2813   if (NextUnreadBit)
2814     ParseModule(true);
2815 
2816   // Upgrade any intrinsic calls that slipped through (should not happen!) and
2817   // delete the old functions to clean up. We can't do this unless the entire
2818   // module is materialized because there could always be another function body
2819   // with calls to the old function.
2820   for (std::vector<std::pair<Function*, Function*> >::iterator I =
2821        UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) {
2822     if (I->first != I->second) {
2823       for (Value::use_iterator UI = I->first->use_begin(),
2824            UE = I->first->use_end(); UI != UE; ) {
2825         if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2826           UpgradeIntrinsicCall(CI, I->second);
2827       }
2828       if (!I->first->use_empty())
2829         I->first->replaceAllUsesWith(I->second);
2830       I->first->eraseFromParent();
2831     }
2832   }
2833   std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics);
2834 
2835   return false;
2836 }
2837 
2838 bool BitcodeReader::InitStream() {
2839   if (LazyStreamer) return InitLazyStream();
2840   return InitStreamFromBuffer();
2841 }
2842 
2843 bool BitcodeReader::InitStreamFromBuffer() {
2844   const unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart();
2845   const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
2846 
2847   if (Buffer->getBufferSize() & 3) {
2848     if (!isRawBitcode(BufPtr, BufEnd) && !isBitcodeWrapper(BufPtr, BufEnd))
2849       return Error("Invalid bitcode signature");
2850     else
2851       return Error("Bitcode stream should be a multiple of 4 bytes in length");
2852   }
2853 
2854   // If we have a wrapper header, parse it and ignore the non-bc file contents.
2855   // The magic number is 0x0B17C0DE stored in little endian.
2856   if (isBitcodeWrapper(BufPtr, BufEnd))
2857     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
2858       return Error("Invalid bitcode wrapper header");
2859 
2860   StreamFile.reset(new BitstreamReader(BufPtr, BufEnd));
2861   Stream.init(*StreamFile);
2862 
2863   return false;
2864 }
2865 
2866 bool BitcodeReader::InitLazyStream() {
2867   // Check and strip off the bitcode wrapper; BitstreamReader expects never to
2868   // see it.
2869   StreamingMemoryObject *Bytes = new StreamingMemoryObject(LazyStreamer);
2870   StreamFile.reset(new BitstreamReader(Bytes));
2871   Stream.init(*StreamFile);
2872 
2873   unsigned char buf[16];
2874   if (Bytes->readBytes(0, 16, buf, NULL) == -1)
2875     return Error("Bitcode stream must be at least 16 bytes in length");
2876 
2877   if (!isBitcode(buf, buf + 16))
2878     return Error("Invalid bitcode signature");
2879 
2880   if (isBitcodeWrapper(buf, buf + 4)) {
2881     const unsigned char *bitcodeStart = buf;
2882     const unsigned char *bitcodeEnd = buf + 16;
2883     SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false);
2884     Bytes->dropLeadingBytes(bitcodeStart - buf);
2885     Bytes->setKnownObjectSize(bitcodeEnd - bitcodeStart);
2886   }
2887   return false;
2888 }
2889 
2890 //===----------------------------------------------------------------------===//
2891 // External interface
2892 //===----------------------------------------------------------------------===//
2893 
2894 /// getLazyBitcodeModule - lazy function-at-a-time loading from a file.
2895 ///
2896 Module *llvm::getLazyBitcodeModule(MemoryBuffer *Buffer,
2897                                    LLVMContext& Context,
2898                                    std::string *ErrMsg) {
2899   Module *M = new Module(Buffer->getBufferIdentifier(), Context);
2900   BitcodeReader *R = new BitcodeReader(Buffer, Context);
2901   M->setMaterializer(R);
2902   if (R->ParseBitcodeInto(M)) {
2903     if (ErrMsg)
2904       *ErrMsg = R->getErrorString();
2905 
2906     delete M;  // Also deletes R.
2907     return 0;
2908   }
2909   // Have the BitcodeReader dtor delete 'Buffer'.
2910   R->setBufferOwned(true);
2911 
2912   R->materializeForwardReferencedFunctions();
2913 
2914   return M;
2915 }
2916 
2917 
2918 Module *llvm::getStreamedBitcodeModule(const std::string &name,
2919                                        DataStreamer *streamer,
2920                                        LLVMContext &Context,
2921                                        std::string *ErrMsg) {
2922   Module *M = new Module(name, Context);
2923   BitcodeReader *R = new BitcodeReader(streamer, Context);
2924   M->setMaterializer(R);
2925   if (R->ParseBitcodeInto(M)) {
2926     if (ErrMsg)
2927       *ErrMsg = R->getErrorString();
2928     delete M;  // Also deletes R.
2929     return 0;
2930   }
2931   R->setBufferOwned(false); // no buffer to delete
2932   return M;
2933 }
2934 
2935 /// ParseBitcodeFile - Read the specified bitcode file, returning the module.
2936 /// If an error occurs, return null and fill in *ErrMsg if non-null.
2937 Module *llvm::ParseBitcodeFile(MemoryBuffer *Buffer, LLVMContext& Context,
2938                                std::string *ErrMsg){
2939   Module *M = getLazyBitcodeModule(Buffer, Context, ErrMsg);
2940   if (!M) return 0;
2941 
2942   // Don't let the BitcodeReader dtor delete 'Buffer', regardless of whether
2943   // there was an error.
2944   static_cast<BitcodeReader*>(M->getMaterializer())->setBufferOwned(false);
2945 
2946   // Read in the entire module, and destroy the BitcodeReader.
2947   if (M->MaterializeAllPermanently(ErrMsg)) {
2948     delete M;
2949     return 0;
2950   }
2951 
2952   // TODO: Restore the use-lists to the in-memory state when the bitcode was
2953   // written.  We must defer until the Module has been fully materialized.
2954 
2955   return M;
2956 }
2957 
2958 std::string llvm::getBitcodeTargetTriple(MemoryBuffer *Buffer,
2959                                          LLVMContext& Context,
2960                                          std::string *ErrMsg) {
2961   BitcodeReader *R = new BitcodeReader(Buffer, Context);
2962   // Don't let the BitcodeReader dtor delete 'Buffer'.
2963   R->setBufferOwned(false);
2964 
2965   std::string Triple("");
2966   if (R->ParseTriple(Triple))
2967     if (ErrMsg)
2968       *ErrMsg = R->getErrorString();
2969 
2970   delete R;
2971   return Triple;
2972 }
2973