xref: /llvm-project/llvm/lib/Bitcode/Reader/BitcodeReader.cpp (revision 35315d065b74537c1290767d0b8da9ca2036fdea)
1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This header defines the BitcodeReader class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Bitcode/ReaderWriter.h"
15 #include "BitcodeReader.h"
16 #include "llvm/Constants.h"
17 #include "llvm/DerivedTypes.h"
18 #include "llvm/InlineAsm.h"
19 #include "llvm/IntrinsicInst.h"
20 #include "llvm/Module.h"
21 #include "llvm/Operator.h"
22 #include "llvm/AutoUpgrade.h"
23 #include "llvm/ADT/SmallString.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/Support/MathExtras.h"
26 #include "llvm/Support/MemoryBuffer.h"
27 #include "llvm/OperandTraits.h"
28 using namespace llvm;
29 
30 void BitcodeReader::FreeState() {
31   if (BufferOwned)
32     delete Buffer;
33   Buffer = 0;
34   std::vector<PATypeHolder>().swap(TypeList);
35   ValueList.clear();
36   MDValueList.clear();
37 
38   std::vector<AttrListPtr>().swap(MAttributes);
39   std::vector<BasicBlock*>().swap(FunctionBBs);
40   std::vector<Function*>().swap(FunctionsWithBodies);
41   DeferredFunctionInfo.clear();
42   MDKindMap.clear();
43 }
44 
45 //===----------------------------------------------------------------------===//
46 //  Helper functions to implement forward reference resolution, etc.
47 //===----------------------------------------------------------------------===//
48 
49 /// ConvertToString - Convert a string from a record into an std::string, return
50 /// true on failure.
51 template<typename StrTy>
52 static bool ConvertToString(SmallVector<uint64_t, 64> &Record, unsigned Idx,
53                             StrTy &Result) {
54   if (Idx > Record.size())
55     return true;
56 
57   for (unsigned i = Idx, e = Record.size(); i != e; ++i)
58     Result += (char)Record[i];
59   return false;
60 }
61 
62 static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) {
63   switch (Val) {
64   default: // Map unknown/new linkages to external
65   case 0:  return GlobalValue::ExternalLinkage;
66   case 1:  return GlobalValue::WeakAnyLinkage;
67   case 2:  return GlobalValue::AppendingLinkage;
68   case 3:  return GlobalValue::InternalLinkage;
69   case 4:  return GlobalValue::LinkOnceAnyLinkage;
70   case 5:  return GlobalValue::DLLImportLinkage;
71   case 6:  return GlobalValue::DLLExportLinkage;
72   case 7:  return GlobalValue::ExternalWeakLinkage;
73   case 8:  return GlobalValue::CommonLinkage;
74   case 9:  return GlobalValue::PrivateLinkage;
75   case 10: return GlobalValue::WeakODRLinkage;
76   case 11: return GlobalValue::LinkOnceODRLinkage;
77   case 12: return GlobalValue::AvailableExternallyLinkage;
78   case 13: return GlobalValue::LinkerPrivateLinkage;
79   case 14: return GlobalValue::LinkerPrivateWeakLinkage;
80   case 15: return GlobalValue::LinkerPrivateWeakDefAutoLinkage;
81   }
82 }
83 
84 static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) {
85   switch (Val) {
86   default: // Map unknown visibilities to default.
87   case 0: return GlobalValue::DefaultVisibility;
88   case 1: return GlobalValue::HiddenVisibility;
89   case 2: return GlobalValue::ProtectedVisibility;
90   }
91 }
92 
93 static int GetDecodedCastOpcode(unsigned Val) {
94   switch (Val) {
95   default: return -1;
96   case bitc::CAST_TRUNC   : return Instruction::Trunc;
97   case bitc::CAST_ZEXT    : return Instruction::ZExt;
98   case bitc::CAST_SEXT    : return Instruction::SExt;
99   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
100   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
101   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
102   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
103   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
104   case bitc::CAST_FPEXT   : return Instruction::FPExt;
105   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
106   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
107   case bitc::CAST_BITCAST : return Instruction::BitCast;
108   }
109 }
110 static int GetDecodedBinaryOpcode(unsigned Val, const Type *Ty) {
111   switch (Val) {
112   default: return -1;
113   case bitc::BINOP_ADD:
114     return Ty->isFPOrFPVectorTy() ? Instruction::FAdd : Instruction::Add;
115   case bitc::BINOP_SUB:
116     return Ty->isFPOrFPVectorTy() ? Instruction::FSub : Instruction::Sub;
117   case bitc::BINOP_MUL:
118     return Ty->isFPOrFPVectorTy() ? Instruction::FMul : Instruction::Mul;
119   case bitc::BINOP_UDIV: return Instruction::UDiv;
120   case bitc::BINOP_SDIV:
121     return Ty->isFPOrFPVectorTy() ? Instruction::FDiv : Instruction::SDiv;
122   case bitc::BINOP_UREM: return Instruction::URem;
123   case bitc::BINOP_SREM:
124     return Ty->isFPOrFPVectorTy() ? Instruction::FRem : Instruction::SRem;
125   case bitc::BINOP_SHL:  return Instruction::Shl;
126   case bitc::BINOP_LSHR: return Instruction::LShr;
127   case bitc::BINOP_ASHR: return Instruction::AShr;
128   case bitc::BINOP_AND:  return Instruction::And;
129   case bitc::BINOP_OR:   return Instruction::Or;
130   case bitc::BINOP_XOR:  return Instruction::Xor;
131   }
132 }
133 
134 namespace llvm {
135 namespace {
136   /// @brief A class for maintaining the slot number definition
137   /// as a placeholder for the actual definition for forward constants defs.
138   class ConstantPlaceHolder : public ConstantExpr {
139     void operator=(const ConstantPlaceHolder &); // DO NOT IMPLEMENT
140   public:
141     // allocate space for exactly one operand
142     void *operator new(size_t s) {
143       return User::operator new(s, 1);
144     }
145     explicit ConstantPlaceHolder(const Type *Ty, LLVMContext& Context)
146       : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) {
147       Op<0>() = UndefValue::get(Type::getInt32Ty(Context));
148     }
149 
150     /// @brief Methods to support type inquiry through isa, cast, and dyn_cast.
151     //static inline bool classof(const ConstantPlaceHolder *) { return true; }
152     static bool classof(const Value *V) {
153       return isa<ConstantExpr>(V) &&
154              cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1;
155     }
156 
157 
158     /// Provide fast operand accessors
159     //DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
160   };
161 }
162 
163 // FIXME: can we inherit this from ConstantExpr?
164 template <>
165 struct OperandTraits<ConstantPlaceHolder> :
166   public FixedNumOperandTraits<ConstantPlaceHolder, 1> {
167 };
168 }
169 
170 
171 void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) {
172   if (Idx == size()) {
173     push_back(V);
174     return;
175   }
176 
177   if (Idx >= size())
178     resize(Idx+1);
179 
180   WeakVH &OldV = ValuePtrs[Idx];
181   if (OldV == 0) {
182     OldV = V;
183     return;
184   }
185 
186   // Handle constants and non-constants (e.g. instrs) differently for
187   // efficiency.
188   if (Constant *PHC = dyn_cast<Constant>(&*OldV)) {
189     ResolveConstants.push_back(std::make_pair(PHC, Idx));
190     OldV = V;
191   } else {
192     // If there was a forward reference to this value, replace it.
193     Value *PrevVal = OldV;
194     OldV->replaceAllUsesWith(V);
195     delete PrevVal;
196   }
197 }
198 
199 
200 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
201                                                     const Type *Ty) {
202   if (Idx >= size())
203     resize(Idx + 1);
204 
205   if (Value *V = ValuePtrs[Idx]) {
206     assert(Ty == V->getType() && "Type mismatch in constant table!");
207     return cast<Constant>(V);
208   }
209 
210   // Create and return a placeholder, which will later be RAUW'd.
211   Constant *C = new ConstantPlaceHolder(Ty, Context);
212   ValuePtrs[Idx] = C;
213   return C;
214 }
215 
216 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, const Type *Ty) {
217   if (Idx >= size())
218     resize(Idx + 1);
219 
220   if (Value *V = ValuePtrs[Idx]) {
221     assert((Ty == 0 || Ty == V->getType()) && "Type mismatch in value table!");
222     return V;
223   }
224 
225   // No type specified, must be invalid reference.
226   if (Ty == 0) return 0;
227 
228   // Create and return a placeholder, which will later be RAUW'd.
229   Value *V = new Argument(Ty);
230   ValuePtrs[Idx] = V;
231   return V;
232 }
233 
234 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk
235 /// resolves any forward references.  The idea behind this is that we sometimes
236 /// get constants (such as large arrays) which reference *many* forward ref
237 /// constants.  Replacing each of these causes a lot of thrashing when
238 /// building/reuniquing the constant.  Instead of doing this, we look at all the
239 /// uses and rewrite all the place holders at once for any constant that uses
240 /// a placeholder.
241 void BitcodeReaderValueList::ResolveConstantForwardRefs() {
242   // Sort the values by-pointer so that they are efficient to look up with a
243   // binary search.
244   std::sort(ResolveConstants.begin(), ResolveConstants.end());
245 
246   SmallVector<Constant*, 64> NewOps;
247 
248   while (!ResolveConstants.empty()) {
249     Value *RealVal = operator[](ResolveConstants.back().second);
250     Constant *Placeholder = ResolveConstants.back().first;
251     ResolveConstants.pop_back();
252 
253     // Loop over all users of the placeholder, updating them to reference the
254     // new value.  If they reference more than one placeholder, update them all
255     // at once.
256     while (!Placeholder->use_empty()) {
257       Value::use_iterator UI = Placeholder->use_begin();
258       User *U = *UI;
259 
260       // If the using object isn't uniqued, just update the operands.  This
261       // handles instructions and initializers for global variables.
262       if (!isa<Constant>(U) || isa<GlobalValue>(U)) {
263         UI.getUse().set(RealVal);
264         continue;
265       }
266 
267       // Otherwise, we have a constant that uses the placeholder.  Replace that
268       // constant with a new constant that has *all* placeholder uses updated.
269       Constant *UserC = cast<Constant>(U);
270       for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end();
271            I != E; ++I) {
272         Value *NewOp;
273         if (!isa<ConstantPlaceHolder>(*I)) {
274           // Not a placeholder reference.
275           NewOp = *I;
276         } else if (*I == Placeholder) {
277           // Common case is that it just references this one placeholder.
278           NewOp = RealVal;
279         } else {
280           // Otherwise, look up the placeholder in ResolveConstants.
281           ResolveConstantsTy::iterator It =
282             std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(),
283                              std::pair<Constant*, unsigned>(cast<Constant>(*I),
284                                                             0));
285           assert(It != ResolveConstants.end() && It->first == *I);
286           NewOp = operator[](It->second);
287         }
288 
289         NewOps.push_back(cast<Constant>(NewOp));
290       }
291 
292       // Make the new constant.
293       Constant *NewC;
294       if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) {
295         NewC = ConstantArray::get(UserCA->getType(), &NewOps[0],
296                                         NewOps.size());
297       } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) {
298         NewC = ConstantStruct::get(Context, &NewOps[0], NewOps.size(),
299                                          UserCS->getType()->isPacked());
300       } else if (isa<ConstantVector>(UserC)) {
301         NewC = ConstantVector::get(&NewOps[0], NewOps.size());
302       } else {
303         assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr.");
304         NewC = cast<ConstantExpr>(UserC)->getWithOperands(&NewOps[0],
305                                                           NewOps.size());
306       }
307 
308       UserC->replaceAllUsesWith(NewC);
309       UserC->destroyConstant();
310       NewOps.clear();
311     }
312 
313     // Update all ValueHandles, they should be the only users at this point.
314     Placeholder->replaceAllUsesWith(RealVal);
315     delete Placeholder;
316   }
317 }
318 
319 void BitcodeReaderMDValueList::AssignValue(Value *V, unsigned Idx) {
320   if (Idx == size()) {
321     push_back(V);
322     return;
323   }
324 
325   if (Idx >= size())
326     resize(Idx+1);
327 
328   WeakVH &OldV = MDValuePtrs[Idx];
329   if (OldV == 0) {
330     OldV = V;
331     return;
332   }
333 
334   // If there was a forward reference to this value, replace it.
335   MDNode *PrevVal = cast<MDNode>(OldV);
336   OldV->replaceAllUsesWith(V);
337   MDNode::deleteTemporary(PrevVal);
338   // Deleting PrevVal sets Idx value in MDValuePtrs to null. Set new
339   // value for Idx.
340   MDValuePtrs[Idx] = V;
341 }
342 
343 Value *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) {
344   if (Idx >= size())
345     resize(Idx + 1);
346 
347   if (Value *V = MDValuePtrs[Idx]) {
348     assert(V->getType()->isMetadataTy() && "Type mismatch in value table!");
349     return V;
350   }
351 
352   // Create and return a placeholder, which will later be RAUW'd.
353   Value *V = MDNode::getTemporary(Context, 0, 0);
354   MDValuePtrs[Idx] = V;
355   return V;
356 }
357 
358 const Type *BitcodeReader::getTypeByID(unsigned ID, bool isTypeTable) {
359   // If the TypeID is in range, return it.
360   if (ID < TypeList.size())
361     return TypeList[ID].get();
362   if (!isTypeTable) return 0;
363 
364   // The type table allows forward references.  Push as many Opaque types as
365   // needed to get up to ID.
366   while (TypeList.size() <= ID)
367     TypeList.push_back(OpaqueType::get(Context));
368   return TypeList.back().get();
369 }
370 
371 //===----------------------------------------------------------------------===//
372 //  Functions for parsing blocks from the bitcode file
373 //===----------------------------------------------------------------------===//
374 
375 bool BitcodeReader::ParseAttributeBlock() {
376   if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
377     return Error("Malformed block record");
378 
379   if (!MAttributes.empty())
380     return Error("Multiple PARAMATTR blocks found!");
381 
382   SmallVector<uint64_t, 64> Record;
383 
384   SmallVector<AttributeWithIndex, 8> Attrs;
385 
386   // Read all the records.
387   while (1) {
388     unsigned Code = Stream.ReadCode();
389     if (Code == bitc::END_BLOCK) {
390       if (Stream.ReadBlockEnd())
391         return Error("Error at end of PARAMATTR block");
392       return false;
393     }
394 
395     if (Code == bitc::ENTER_SUBBLOCK) {
396       // No known subblocks, always skip them.
397       Stream.ReadSubBlockID();
398       if (Stream.SkipBlock())
399         return Error("Malformed block record");
400       continue;
401     }
402 
403     if (Code == bitc::DEFINE_ABBREV) {
404       Stream.ReadAbbrevRecord();
405       continue;
406     }
407 
408     // Read a record.
409     Record.clear();
410     switch (Stream.ReadRecord(Code, Record)) {
411     default:  // Default behavior: ignore.
412       break;
413     case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [paramidx0, attr0, ...]
414       if (Record.size() & 1)
415         return Error("Invalid ENTRY record");
416 
417       // FIXME : Remove this autoupgrade code in LLVM 3.0.
418       // If Function attributes are using index 0 then transfer them
419       // to index ~0. Index 0 is used for return value attributes but used to be
420       // used for function attributes.
421       Attributes RetAttribute = Attribute::None;
422       Attributes FnAttribute = Attribute::None;
423       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
424         // FIXME: remove in LLVM 3.0
425         // The alignment is stored as a 16-bit raw value from bits 31--16.
426         // We shift the bits above 31 down by 11 bits.
427 
428         unsigned Alignment = (Record[i+1] & (0xffffull << 16)) >> 16;
429         if (Alignment && !isPowerOf2_32(Alignment))
430           return Error("Alignment is not a power of two.");
431 
432         Attributes ReconstitutedAttr = Record[i+1] & 0xffff;
433         if (Alignment)
434           ReconstitutedAttr |= Attribute::constructAlignmentFromInt(Alignment);
435         ReconstitutedAttr |= (Record[i+1] & (0xffffull << 32)) >> 11;
436         Record[i+1] = ReconstitutedAttr;
437 
438         if (Record[i] == 0)
439           RetAttribute = Record[i+1];
440         else if (Record[i] == ~0U)
441           FnAttribute = Record[i+1];
442       }
443 
444       unsigned OldRetAttrs = (Attribute::NoUnwind|Attribute::NoReturn|
445                               Attribute::ReadOnly|Attribute::ReadNone);
446 
447       if (FnAttribute == Attribute::None && RetAttribute != Attribute::None &&
448           (RetAttribute & OldRetAttrs) != 0) {
449         if (FnAttribute == Attribute::None) { // add a slot so they get added.
450           Record.push_back(~0U);
451           Record.push_back(0);
452         }
453 
454         FnAttribute  |= RetAttribute & OldRetAttrs;
455         RetAttribute &= ~OldRetAttrs;
456       }
457 
458       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
459         if (Record[i] == 0) {
460           if (RetAttribute != Attribute::None)
461             Attrs.push_back(AttributeWithIndex::get(0, RetAttribute));
462         } else if (Record[i] == ~0U) {
463           if (FnAttribute != Attribute::None)
464             Attrs.push_back(AttributeWithIndex::get(~0U, FnAttribute));
465         } else if (Record[i+1] != Attribute::None)
466           Attrs.push_back(AttributeWithIndex::get(Record[i], Record[i+1]));
467       }
468 
469       MAttributes.push_back(AttrListPtr::get(Attrs.begin(), Attrs.end()));
470       Attrs.clear();
471       break;
472     }
473     }
474   }
475 }
476 
477 
478 bool BitcodeReader::ParseTypeTable() {
479   if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID))
480     return Error("Malformed block record");
481 
482   if (!TypeList.empty())
483     return Error("Multiple TYPE_BLOCKs found!");
484 
485   SmallVector<uint64_t, 64> Record;
486   unsigned NumRecords = 0;
487 
488   // Read all the records for this type table.
489   while (1) {
490     unsigned Code = Stream.ReadCode();
491     if (Code == bitc::END_BLOCK) {
492       if (NumRecords != TypeList.size())
493         return Error("Invalid type forward reference in TYPE_BLOCK");
494       if (Stream.ReadBlockEnd())
495         return Error("Error at end of type table block");
496       return false;
497     }
498 
499     if (Code == bitc::ENTER_SUBBLOCK) {
500       // No known subblocks, always skip them.
501       Stream.ReadSubBlockID();
502       if (Stream.SkipBlock())
503         return Error("Malformed block record");
504       continue;
505     }
506 
507     if (Code == bitc::DEFINE_ABBREV) {
508       Stream.ReadAbbrevRecord();
509       continue;
510     }
511 
512     // Read a record.
513     Record.clear();
514     const Type *ResultTy = 0;
515     switch (Stream.ReadRecord(Code, Record)) {
516     default:  // Default behavior: unknown type.
517       ResultTy = 0;
518       break;
519     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
520       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
521       // type list.  This allows us to reserve space.
522       if (Record.size() < 1)
523         return Error("Invalid TYPE_CODE_NUMENTRY record");
524       TypeList.reserve(Record[0]);
525       continue;
526     case bitc::TYPE_CODE_VOID:      // VOID
527       ResultTy = Type::getVoidTy(Context);
528       break;
529     case bitc::TYPE_CODE_FLOAT:     // FLOAT
530       ResultTy = Type::getFloatTy(Context);
531       break;
532     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
533       ResultTy = Type::getDoubleTy(Context);
534       break;
535     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
536       ResultTy = Type::getX86_FP80Ty(Context);
537       break;
538     case bitc::TYPE_CODE_FP128:     // FP128
539       ResultTy = Type::getFP128Ty(Context);
540       break;
541     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
542       ResultTy = Type::getPPC_FP128Ty(Context);
543       break;
544     case bitc::TYPE_CODE_LABEL:     // LABEL
545       ResultTy = Type::getLabelTy(Context);
546       break;
547     case bitc::TYPE_CODE_OPAQUE:    // OPAQUE
548       ResultTy = 0;
549       break;
550     case bitc::TYPE_CODE_METADATA:  // METADATA
551       ResultTy = Type::getMetadataTy(Context);
552       break;
553     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
554       ResultTy = Type::getX86_MMXTy(Context);
555       break;
556     case bitc::TYPE_CODE_INTEGER:   // INTEGER: [width]
557       if (Record.size() < 1)
558         return Error("Invalid Integer type record");
559 
560       ResultTy = IntegerType::get(Context, Record[0]);
561       break;
562     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
563                                     //          [pointee type, address space]
564       if (Record.size() < 1)
565         return Error("Invalid POINTER type record");
566       unsigned AddressSpace = 0;
567       if (Record.size() == 2)
568         AddressSpace = Record[1];
569       ResultTy = PointerType::get(getTypeByID(Record[0], true),
570                                         AddressSpace);
571       break;
572     }
573     case bitc::TYPE_CODE_FUNCTION: {
574       // FIXME: attrid is dead, remove it in LLVM 3.0
575       // FUNCTION: [vararg, attrid, retty, paramty x N]
576       if (Record.size() < 3)
577         return Error("Invalid FUNCTION type record");
578       std::vector<const Type*> ArgTys;
579       for (unsigned i = 3, e = Record.size(); i != e; ++i)
580         ArgTys.push_back(getTypeByID(Record[i], true));
581 
582       ResultTy = FunctionType::get(getTypeByID(Record[2], true), ArgTys,
583                                    Record[0]);
584       break;
585     }
586     case bitc::TYPE_CODE_STRUCT: {  // STRUCT: [ispacked, eltty x N]
587       if (Record.size() < 1)
588         return Error("Invalid STRUCT type record");
589       std::vector<const Type*> EltTys;
590       for (unsigned i = 1, e = Record.size(); i != e; ++i)
591         EltTys.push_back(getTypeByID(Record[i], true));
592       ResultTy = StructType::get(Context, EltTys, Record[0]);
593       break;
594     }
595     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
596       if (Record.size() < 2)
597         return Error("Invalid ARRAY type record");
598       ResultTy = ArrayType::get(getTypeByID(Record[1], true), Record[0]);
599       break;
600     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
601       if (Record.size() < 2)
602         return Error("Invalid VECTOR type record");
603       ResultTy = VectorType::get(getTypeByID(Record[1], true), Record[0]);
604       break;
605     }
606 
607     if (NumRecords == TypeList.size()) {
608       // If this is a new type slot, just append it.
609       TypeList.push_back(ResultTy ? ResultTy : OpaqueType::get(Context));
610       ++NumRecords;
611     } else if (ResultTy == 0) {
612       // Otherwise, this was forward referenced, so an opaque type was created,
613       // but the result type is actually just an opaque.  Leave the one we
614       // created previously.
615       ++NumRecords;
616     } else {
617       // Otherwise, this was forward referenced, so an opaque type was created.
618       // Resolve the opaque type to the real type now.
619       assert(NumRecords < TypeList.size() && "Typelist imbalance");
620       const OpaqueType *OldTy = cast<OpaqueType>(TypeList[NumRecords++].get());
621 
622       // Don't directly push the new type on the Tab. Instead we want to replace
623       // the opaque type we previously inserted with the new concrete value. The
624       // refinement from the abstract (opaque) type to the new type causes all
625       // uses of the abstract type to use the concrete type (NewTy). This will
626       // also cause the opaque type to be deleted.
627       const_cast<OpaqueType*>(OldTy)->refineAbstractTypeTo(ResultTy);
628 
629       // This should have replaced the old opaque type with the new type in the
630       // value table... or with a preexisting type that was already in the
631       // system.  Let's just make sure it did.
632       assert(TypeList[NumRecords-1].get() != OldTy &&
633              "refineAbstractType didn't work!");
634     }
635   }
636 }
637 
638 
639 bool BitcodeReader::ParseTypeSymbolTable() {
640   if (Stream.EnterSubBlock(bitc::TYPE_SYMTAB_BLOCK_ID))
641     return Error("Malformed block record");
642 
643   SmallVector<uint64_t, 64> Record;
644 
645   // Read all the records for this type table.
646   std::string TypeName;
647   while (1) {
648     unsigned Code = Stream.ReadCode();
649     if (Code == bitc::END_BLOCK) {
650       if (Stream.ReadBlockEnd())
651         return Error("Error at end of type symbol table block");
652       return false;
653     }
654 
655     if (Code == bitc::ENTER_SUBBLOCK) {
656       // No known subblocks, always skip them.
657       Stream.ReadSubBlockID();
658       if (Stream.SkipBlock())
659         return Error("Malformed block record");
660       continue;
661     }
662 
663     if (Code == bitc::DEFINE_ABBREV) {
664       Stream.ReadAbbrevRecord();
665       continue;
666     }
667 
668     // Read a record.
669     Record.clear();
670     switch (Stream.ReadRecord(Code, Record)) {
671     default:  // Default behavior: unknown type.
672       break;
673     case bitc::TST_CODE_ENTRY:    // TST_ENTRY: [typeid, namechar x N]
674       if (ConvertToString(Record, 1, TypeName))
675         return Error("Invalid TST_ENTRY record");
676       unsigned TypeID = Record[0];
677       if (TypeID >= TypeList.size())
678         return Error("Invalid Type ID in TST_ENTRY record");
679 
680       TheModule->addTypeName(TypeName, TypeList[TypeID].get());
681       TypeName.clear();
682       break;
683     }
684   }
685 }
686 
687 bool BitcodeReader::ParseValueSymbolTable() {
688   if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
689     return Error("Malformed block record");
690 
691   SmallVector<uint64_t, 64> Record;
692 
693   // Read all the records for this value table.
694   SmallString<128> ValueName;
695   while (1) {
696     unsigned Code = Stream.ReadCode();
697     if (Code == bitc::END_BLOCK) {
698       if (Stream.ReadBlockEnd())
699         return Error("Error at end of value symbol table block");
700       return false;
701     }
702     if (Code == bitc::ENTER_SUBBLOCK) {
703       // No known subblocks, always skip them.
704       Stream.ReadSubBlockID();
705       if (Stream.SkipBlock())
706         return Error("Malformed block record");
707       continue;
708     }
709 
710     if (Code == bitc::DEFINE_ABBREV) {
711       Stream.ReadAbbrevRecord();
712       continue;
713     }
714 
715     // Read a record.
716     Record.clear();
717     switch (Stream.ReadRecord(Code, Record)) {
718     default:  // Default behavior: unknown type.
719       break;
720     case bitc::VST_CODE_ENTRY: {  // VST_ENTRY: [valueid, namechar x N]
721       if (ConvertToString(Record, 1, ValueName))
722         return Error("Invalid VST_ENTRY record");
723       unsigned ValueID = Record[0];
724       if (ValueID >= ValueList.size())
725         return Error("Invalid Value ID in VST_ENTRY record");
726       Value *V = ValueList[ValueID];
727 
728       V->setName(StringRef(ValueName.data(), ValueName.size()));
729       ValueName.clear();
730       break;
731     }
732     case bitc::VST_CODE_BBENTRY: {
733       if (ConvertToString(Record, 1, ValueName))
734         return Error("Invalid VST_BBENTRY record");
735       BasicBlock *BB = getBasicBlock(Record[0]);
736       if (BB == 0)
737         return Error("Invalid BB ID in VST_BBENTRY record");
738 
739       BB->setName(StringRef(ValueName.data(), ValueName.size()));
740       ValueName.clear();
741       break;
742     }
743     }
744   }
745 }
746 
747 bool BitcodeReader::ParseMetadata() {
748   unsigned NextMDValueNo = MDValueList.size();
749 
750   if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID))
751     return Error("Malformed block record");
752 
753   SmallVector<uint64_t, 64> Record;
754 
755   // Read all the records.
756   while (1) {
757     unsigned Code = Stream.ReadCode();
758     if (Code == bitc::END_BLOCK) {
759       if (Stream.ReadBlockEnd())
760         return Error("Error at end of PARAMATTR block");
761       return false;
762     }
763 
764     if (Code == bitc::ENTER_SUBBLOCK) {
765       // No known subblocks, always skip them.
766       Stream.ReadSubBlockID();
767       if (Stream.SkipBlock())
768         return Error("Malformed block record");
769       continue;
770     }
771 
772     if (Code == bitc::DEFINE_ABBREV) {
773       Stream.ReadAbbrevRecord();
774       continue;
775     }
776 
777     bool IsFunctionLocal = false;
778     // Read a record.
779     Record.clear();
780     Code = Stream.ReadRecord(Code, Record);
781     switch (Code) {
782     default:  // Default behavior: ignore.
783       break;
784     case bitc::METADATA_NAME: {
785       // Read named of the named metadata.
786       unsigned NameLength = Record.size();
787       SmallString<8> Name;
788       Name.resize(NameLength);
789       for (unsigned i = 0; i != NameLength; ++i)
790         Name[i] = Record[i];
791       Record.clear();
792       Code = Stream.ReadCode();
793 
794       // METADATA_NAME is always followed by METADATA_NAMED_NODE2.
795       // Or METADATA_NAMED_NODE in LLVM 2.7. FIXME: Remove this in LLVM 3.0.
796       unsigned NextBitCode = Stream.ReadRecord(Code, Record);
797       if (NextBitCode == bitc::METADATA_NAMED_NODE) {
798         LLVM2_7MetadataDetected = true;
799       } else if (NextBitCode != bitc::METADATA_NAMED_NODE2)
800         assert ( 0 && "Invalid Named Metadata record");
801 
802       // Read named metadata elements.
803       unsigned Size = Record.size();
804       NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name);
805       for (unsigned i = 0; i != Size; ++i) {
806         MDNode *MD = dyn_cast<MDNode>(MDValueList.getValueFwdRef(Record[i]));
807         if (MD == 0)
808           return Error("Malformed metadata record");
809         NMD->addOperand(MD);
810       }
811       // Backwards compatibility hack: NamedMDValues used to be Values,
812       // and they got their own slots in the value numbering. They are no
813       // longer Values, however we still need to account for them in the
814       // numbering in order to be able to read old bitcode files.
815       // FIXME: Remove this in LLVM 3.0.
816       if (LLVM2_7MetadataDetected)
817         MDValueList.AssignValue(0, NextMDValueNo++);
818       break;
819     }
820     case bitc::METADATA_FN_NODE: // FIXME: Remove in LLVM 3.0.
821     case bitc::METADATA_FN_NODE2:
822       IsFunctionLocal = true;
823       // fall-through
824     case bitc::METADATA_NODE:    // FIXME: Remove in LLVM 3.0.
825     case bitc::METADATA_NODE2: {
826 
827       // Detect 2.7-era metadata.
828       // FIXME: Remove in LLVM 3.0.
829       if (Code == bitc::METADATA_FN_NODE || Code == bitc::METADATA_NODE)
830         LLVM2_7MetadataDetected = true;
831 
832       if (Record.size() % 2 == 1)
833         return Error("Invalid METADATA_NODE2 record");
834 
835       unsigned Size = Record.size();
836       SmallVector<Value*, 8> Elts;
837       for (unsigned i = 0; i != Size; i += 2) {
838         const Type *Ty = getTypeByID(Record[i]);
839         if (!Ty) return Error("Invalid METADATA_NODE2 record");
840         if (Ty->isMetadataTy())
841           Elts.push_back(MDValueList.getValueFwdRef(Record[i+1]));
842         else if (!Ty->isVoidTy())
843           Elts.push_back(ValueList.getValueFwdRef(Record[i+1], Ty));
844         else
845           Elts.push_back(NULL);
846       }
847       Value *V = MDNode::getWhenValsUnresolved(Context,
848                                                Elts.data(), Elts.size(),
849                                                IsFunctionLocal);
850       IsFunctionLocal = false;
851       MDValueList.AssignValue(V, NextMDValueNo++);
852       break;
853     }
854     case bitc::METADATA_STRING: {
855       unsigned MDStringLength = Record.size();
856       SmallString<8> String;
857       String.resize(MDStringLength);
858       for (unsigned i = 0; i != MDStringLength; ++i)
859         String[i] = Record[i];
860       Value *V = MDString::get(Context,
861                                StringRef(String.data(), String.size()));
862       MDValueList.AssignValue(V, NextMDValueNo++);
863       break;
864     }
865     case bitc::METADATA_KIND: {
866       unsigned RecordLength = Record.size();
867       if (Record.empty() || RecordLength < 2)
868         return Error("Invalid METADATA_KIND record");
869       SmallString<8> Name;
870       Name.resize(RecordLength-1);
871       unsigned Kind = Record[0];
872       for (unsigned i = 1; i != RecordLength; ++i)
873         Name[i-1] = Record[i];
874 
875       unsigned NewKind = TheModule->getMDKindID(Name.str());
876       if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second)
877         return Error("Conflicting METADATA_KIND records");
878       break;
879     }
880     }
881   }
882 }
883 
884 /// DecodeSignRotatedValue - Decode a signed value stored with the sign bit in
885 /// the LSB for dense VBR encoding.
886 static uint64_t DecodeSignRotatedValue(uint64_t V) {
887   if ((V & 1) == 0)
888     return V >> 1;
889   if (V != 1)
890     return -(V >> 1);
891   // There is no such thing as -0 with integers.  "-0" really means MININT.
892   return 1ULL << 63;
893 }
894 
895 /// ResolveGlobalAndAliasInits - Resolve all of the initializers for global
896 /// values and aliases that we can.
897 bool BitcodeReader::ResolveGlobalAndAliasInits() {
898   std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
899   std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist;
900 
901   GlobalInitWorklist.swap(GlobalInits);
902   AliasInitWorklist.swap(AliasInits);
903 
904   while (!GlobalInitWorklist.empty()) {
905     unsigned ValID = GlobalInitWorklist.back().second;
906     if (ValID >= ValueList.size()) {
907       // Not ready to resolve this yet, it requires something later in the file.
908       GlobalInits.push_back(GlobalInitWorklist.back());
909     } else {
910       if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
911         GlobalInitWorklist.back().first->setInitializer(C);
912       else
913         return Error("Global variable initializer is not a constant!");
914     }
915     GlobalInitWorklist.pop_back();
916   }
917 
918   while (!AliasInitWorklist.empty()) {
919     unsigned ValID = AliasInitWorklist.back().second;
920     if (ValID >= ValueList.size()) {
921       AliasInits.push_back(AliasInitWorklist.back());
922     } else {
923       if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
924         AliasInitWorklist.back().first->setAliasee(C);
925       else
926         return Error("Alias initializer is not a constant!");
927     }
928     AliasInitWorklist.pop_back();
929   }
930   return false;
931 }
932 
933 bool BitcodeReader::ParseConstants() {
934   if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
935     return Error("Malformed block record");
936 
937   SmallVector<uint64_t, 64> Record;
938 
939   // Read all the records for this value table.
940   const Type *CurTy = Type::getInt32Ty(Context);
941   unsigned NextCstNo = ValueList.size();
942   while (1) {
943     unsigned Code = Stream.ReadCode();
944     if (Code == bitc::END_BLOCK)
945       break;
946 
947     if (Code == bitc::ENTER_SUBBLOCK) {
948       // No known subblocks, always skip them.
949       Stream.ReadSubBlockID();
950       if (Stream.SkipBlock())
951         return Error("Malformed block record");
952       continue;
953     }
954 
955     if (Code == bitc::DEFINE_ABBREV) {
956       Stream.ReadAbbrevRecord();
957       continue;
958     }
959 
960     // Read a record.
961     Record.clear();
962     Value *V = 0;
963     unsigned BitCode = Stream.ReadRecord(Code, Record);
964     switch (BitCode) {
965     default:  // Default behavior: unknown constant
966     case bitc::CST_CODE_UNDEF:     // UNDEF
967       V = UndefValue::get(CurTy);
968       break;
969     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
970       if (Record.empty())
971         return Error("Malformed CST_SETTYPE record");
972       if (Record[0] >= TypeList.size())
973         return Error("Invalid Type ID in CST_SETTYPE record");
974       CurTy = TypeList[Record[0]];
975       continue;  // Skip the ValueList manipulation.
976     case bitc::CST_CODE_NULL:      // NULL
977       V = Constant::getNullValue(CurTy);
978       break;
979     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
980       if (!CurTy->isIntegerTy() || Record.empty())
981         return Error("Invalid CST_INTEGER record");
982       V = ConstantInt::get(CurTy, DecodeSignRotatedValue(Record[0]));
983       break;
984     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
985       if (!CurTy->isIntegerTy() || Record.empty())
986         return Error("Invalid WIDE_INTEGER record");
987 
988       unsigned NumWords = Record.size();
989       SmallVector<uint64_t, 8> Words;
990       Words.resize(NumWords);
991       for (unsigned i = 0; i != NumWords; ++i)
992         Words[i] = DecodeSignRotatedValue(Record[i]);
993       V = ConstantInt::get(Context,
994                            APInt(cast<IntegerType>(CurTy)->getBitWidth(),
995                            NumWords, &Words[0]));
996       break;
997     }
998     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
999       if (Record.empty())
1000         return Error("Invalid FLOAT record");
1001       if (CurTy->isFloatTy())
1002         V = ConstantFP::get(Context, APFloat(APInt(32, (uint32_t)Record[0])));
1003       else if (CurTy->isDoubleTy())
1004         V = ConstantFP::get(Context, APFloat(APInt(64, Record[0])));
1005       else if (CurTy->isX86_FP80Ty()) {
1006         // Bits are not stored the same way as a normal i80 APInt, compensate.
1007         uint64_t Rearrange[2];
1008         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
1009         Rearrange[1] = Record[0] >> 48;
1010         V = ConstantFP::get(Context, APFloat(APInt(80, 2, Rearrange)));
1011       } else if (CurTy->isFP128Ty())
1012         V = ConstantFP::get(Context, APFloat(APInt(128, 2, &Record[0]), true));
1013       else if (CurTy->isPPC_FP128Ty())
1014         V = ConstantFP::get(Context, APFloat(APInt(128, 2, &Record[0])));
1015       else
1016         V = UndefValue::get(CurTy);
1017       break;
1018     }
1019 
1020     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
1021       if (Record.empty())
1022         return Error("Invalid CST_AGGREGATE record");
1023 
1024       unsigned Size = Record.size();
1025       std::vector<Constant*> Elts;
1026 
1027       if (const StructType *STy = dyn_cast<StructType>(CurTy)) {
1028         for (unsigned i = 0; i != Size; ++i)
1029           Elts.push_back(ValueList.getConstantFwdRef(Record[i],
1030                                                      STy->getElementType(i)));
1031         V = ConstantStruct::get(STy, Elts);
1032       } else if (const ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
1033         const Type *EltTy = ATy->getElementType();
1034         for (unsigned i = 0; i != Size; ++i)
1035           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
1036         V = ConstantArray::get(ATy, Elts);
1037       } else if (const VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
1038         const Type *EltTy = VTy->getElementType();
1039         for (unsigned i = 0; i != Size; ++i)
1040           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
1041         V = ConstantVector::get(Elts);
1042       } else {
1043         V = UndefValue::get(CurTy);
1044       }
1045       break;
1046     }
1047     case bitc::CST_CODE_STRING: { // STRING: [values]
1048       if (Record.empty())
1049         return Error("Invalid CST_AGGREGATE record");
1050 
1051       const ArrayType *ATy = cast<ArrayType>(CurTy);
1052       const Type *EltTy = ATy->getElementType();
1053 
1054       unsigned Size = Record.size();
1055       std::vector<Constant*> Elts;
1056       for (unsigned i = 0; i != Size; ++i)
1057         Elts.push_back(ConstantInt::get(EltTy, Record[i]));
1058       V = ConstantArray::get(ATy, Elts);
1059       break;
1060     }
1061     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
1062       if (Record.empty())
1063         return Error("Invalid CST_AGGREGATE record");
1064 
1065       const ArrayType *ATy = cast<ArrayType>(CurTy);
1066       const Type *EltTy = ATy->getElementType();
1067 
1068       unsigned Size = Record.size();
1069       std::vector<Constant*> Elts;
1070       for (unsigned i = 0; i != Size; ++i)
1071         Elts.push_back(ConstantInt::get(EltTy, Record[i]));
1072       Elts.push_back(Constant::getNullValue(EltTy));
1073       V = ConstantArray::get(ATy, Elts);
1074       break;
1075     }
1076     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
1077       if (Record.size() < 3) return Error("Invalid CE_BINOP record");
1078       int Opc = GetDecodedBinaryOpcode(Record[0], CurTy);
1079       if (Opc < 0) {
1080         V = UndefValue::get(CurTy);  // Unknown binop.
1081       } else {
1082         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
1083         Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
1084         unsigned Flags = 0;
1085         if (Record.size() >= 4) {
1086           if (Opc == Instruction::Add ||
1087               Opc == Instruction::Sub ||
1088               Opc == Instruction::Mul) {
1089             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
1090               Flags |= OverflowingBinaryOperator::NoSignedWrap;
1091             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
1092               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
1093           } else if (Opc == Instruction::SDiv ||
1094                      Opc == Instruction::UDiv) {
1095             if (Record[3] & (1 << bitc::PEO_EXACT))
1096               Flags |= SDivOperator::IsExact;
1097           }
1098         }
1099         V = ConstantExpr::get(Opc, LHS, RHS, Flags);
1100       }
1101       break;
1102     }
1103     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
1104       if (Record.size() < 3) return Error("Invalid CE_CAST record");
1105       int Opc = GetDecodedCastOpcode(Record[0]);
1106       if (Opc < 0) {
1107         V = UndefValue::get(CurTy);  // Unknown cast.
1108       } else {
1109         const Type *OpTy = getTypeByID(Record[1]);
1110         if (!OpTy) return Error("Invalid CE_CAST record");
1111         Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
1112         V = ConstantExpr::getCast(Opc, Op, CurTy);
1113       }
1114       break;
1115     }
1116     case bitc::CST_CODE_CE_INBOUNDS_GEP:
1117     case bitc::CST_CODE_CE_GEP: {  // CE_GEP:        [n x operands]
1118       if (Record.size() & 1) return Error("Invalid CE_GEP record");
1119       SmallVector<Constant*, 16> Elts;
1120       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1121         const Type *ElTy = getTypeByID(Record[i]);
1122         if (!ElTy) return Error("Invalid CE_GEP record");
1123         Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy));
1124       }
1125       if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
1126         V = ConstantExpr::getInBoundsGetElementPtr(Elts[0], &Elts[1],
1127                                                    Elts.size()-1);
1128       else
1129         V = ConstantExpr::getGetElementPtr(Elts[0], &Elts[1],
1130                                            Elts.size()-1);
1131       break;
1132     }
1133     case bitc::CST_CODE_CE_SELECT:  // CE_SELECT: [opval#, opval#, opval#]
1134       if (Record.size() < 3) return Error("Invalid CE_SELECT record");
1135       V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
1136                                                               Type::getInt1Ty(Context)),
1137                                   ValueList.getConstantFwdRef(Record[1],CurTy),
1138                                   ValueList.getConstantFwdRef(Record[2],CurTy));
1139       break;
1140     case bitc::CST_CODE_CE_EXTRACTELT: { // CE_EXTRACTELT: [opty, opval, opval]
1141       if (Record.size() < 3) return Error("Invalid CE_EXTRACTELT record");
1142       const VectorType *OpTy =
1143         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
1144       if (OpTy == 0) return Error("Invalid CE_EXTRACTELT record");
1145       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1146       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
1147       V = ConstantExpr::getExtractElement(Op0, Op1);
1148       break;
1149     }
1150     case bitc::CST_CODE_CE_INSERTELT: { // CE_INSERTELT: [opval, opval, opval]
1151       const VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1152       if (Record.size() < 3 || OpTy == 0)
1153         return Error("Invalid CE_INSERTELT record");
1154       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1155       Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
1156                                                   OpTy->getElementType());
1157       Constant *Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
1158       V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
1159       break;
1160     }
1161     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
1162       const VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1163       if (Record.size() < 3 || OpTy == 0)
1164         return Error("Invalid CE_SHUFFLEVEC record");
1165       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1166       Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
1167       const Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
1168                                                  OpTy->getNumElements());
1169       Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
1170       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
1171       break;
1172     }
1173     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
1174       const VectorType *RTy = dyn_cast<VectorType>(CurTy);
1175       const VectorType *OpTy =
1176         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
1177       if (Record.size() < 4 || RTy == 0 || OpTy == 0)
1178         return Error("Invalid CE_SHUFVEC_EX record");
1179       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1180       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1181       const Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
1182                                                  RTy->getNumElements());
1183       Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
1184       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
1185       break;
1186     }
1187     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
1188       if (Record.size() < 4) return Error("Invalid CE_CMP record");
1189       const Type *OpTy = getTypeByID(Record[0]);
1190       if (OpTy == 0) return Error("Invalid CE_CMP record");
1191       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1192       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1193 
1194       if (OpTy->isFPOrFPVectorTy())
1195         V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
1196       else
1197         V = ConstantExpr::getICmp(Record[3], Op0, Op1);
1198       break;
1199     }
1200     case bitc::CST_CODE_INLINEASM: {
1201       if (Record.size() < 2) return Error("Invalid INLINEASM record");
1202       std::string AsmStr, ConstrStr;
1203       bool HasSideEffects = Record[0] & 1;
1204       bool IsAlignStack = Record[0] >> 1;
1205       unsigned AsmStrSize = Record[1];
1206       if (2+AsmStrSize >= Record.size())
1207         return Error("Invalid INLINEASM record");
1208       unsigned ConstStrSize = Record[2+AsmStrSize];
1209       if (3+AsmStrSize+ConstStrSize > Record.size())
1210         return Error("Invalid INLINEASM record");
1211 
1212       for (unsigned i = 0; i != AsmStrSize; ++i)
1213         AsmStr += (char)Record[2+i];
1214       for (unsigned i = 0; i != ConstStrSize; ++i)
1215         ConstrStr += (char)Record[3+AsmStrSize+i];
1216       const PointerType *PTy = cast<PointerType>(CurTy);
1217       V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
1218                          AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
1219       break;
1220     }
1221     case bitc::CST_CODE_BLOCKADDRESS:{
1222       if (Record.size() < 3) return Error("Invalid CE_BLOCKADDRESS record");
1223       const Type *FnTy = getTypeByID(Record[0]);
1224       if (FnTy == 0) return Error("Invalid CE_BLOCKADDRESS record");
1225       Function *Fn =
1226         dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
1227       if (Fn == 0) return Error("Invalid CE_BLOCKADDRESS record");
1228 
1229       GlobalVariable *FwdRef = new GlobalVariable(*Fn->getParent(),
1230                                                   Type::getInt8Ty(Context),
1231                                             false, GlobalValue::InternalLinkage,
1232                                                   0, "");
1233       BlockAddrFwdRefs[Fn].push_back(std::make_pair(Record[2], FwdRef));
1234       V = FwdRef;
1235       break;
1236     }
1237     }
1238 
1239     ValueList.AssignValue(V, NextCstNo);
1240     ++NextCstNo;
1241   }
1242 
1243   if (NextCstNo != ValueList.size())
1244     return Error("Invalid constant reference!");
1245 
1246   if (Stream.ReadBlockEnd())
1247     return Error("Error at end of constants block");
1248 
1249   // Once all the constants have been read, go through and resolve forward
1250   // references.
1251   ValueList.ResolveConstantForwardRefs();
1252   return false;
1253 }
1254 
1255 /// RememberAndSkipFunctionBody - When we see the block for a function body,
1256 /// remember where it is and then skip it.  This lets us lazily deserialize the
1257 /// functions.
1258 bool BitcodeReader::RememberAndSkipFunctionBody() {
1259   // Get the function we are talking about.
1260   if (FunctionsWithBodies.empty())
1261     return Error("Insufficient function protos");
1262 
1263   Function *Fn = FunctionsWithBodies.back();
1264   FunctionsWithBodies.pop_back();
1265 
1266   // Save the current stream state.
1267   uint64_t CurBit = Stream.GetCurrentBitNo();
1268   DeferredFunctionInfo[Fn] = CurBit;
1269 
1270   // Skip over the function block for now.
1271   if (Stream.SkipBlock())
1272     return Error("Malformed block record");
1273   return false;
1274 }
1275 
1276 bool BitcodeReader::ParseModule() {
1277   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
1278     return Error("Malformed block record");
1279 
1280   SmallVector<uint64_t, 64> Record;
1281   std::vector<std::string> SectionTable;
1282   std::vector<std::string> GCTable;
1283 
1284   // Read all the records for this module.
1285   while (!Stream.AtEndOfStream()) {
1286     unsigned Code = Stream.ReadCode();
1287     if (Code == bitc::END_BLOCK) {
1288       if (Stream.ReadBlockEnd())
1289         return Error("Error at end of module block");
1290 
1291       // Patch the initializers for globals and aliases up.
1292       ResolveGlobalAndAliasInits();
1293       if (!GlobalInits.empty() || !AliasInits.empty())
1294         return Error("Malformed global initializer set");
1295       if (!FunctionsWithBodies.empty())
1296         return Error("Too few function bodies found");
1297 
1298       // Look for intrinsic functions which need to be upgraded at some point
1299       for (Module::iterator FI = TheModule->begin(), FE = TheModule->end();
1300            FI != FE; ++FI) {
1301         Function* NewFn;
1302         if (UpgradeIntrinsicFunction(FI, NewFn))
1303           UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn));
1304       }
1305 
1306       // Look for global variables which need to be renamed.
1307       for (Module::global_iterator
1308              GI = TheModule->global_begin(), GE = TheModule->global_end();
1309            GI != GE; ++GI)
1310         UpgradeGlobalVariable(GI);
1311 
1312       // Force deallocation of memory for these vectors to favor the client that
1313       // want lazy deserialization.
1314       std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
1315       std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits);
1316       std::vector<Function*>().swap(FunctionsWithBodies);
1317       return false;
1318     }
1319 
1320     if (Code == bitc::ENTER_SUBBLOCK) {
1321       switch (Stream.ReadSubBlockID()) {
1322       default:  // Skip unknown content.
1323         if (Stream.SkipBlock())
1324           return Error("Malformed block record");
1325         break;
1326       case bitc::BLOCKINFO_BLOCK_ID:
1327         if (Stream.ReadBlockInfoBlock())
1328           return Error("Malformed BlockInfoBlock");
1329         break;
1330       case bitc::PARAMATTR_BLOCK_ID:
1331         if (ParseAttributeBlock())
1332           return true;
1333         break;
1334       case bitc::TYPE_BLOCK_ID:
1335         if (ParseTypeTable())
1336           return true;
1337         break;
1338       case bitc::TYPE_SYMTAB_BLOCK_ID:
1339         if (ParseTypeSymbolTable())
1340           return true;
1341         break;
1342       case bitc::VALUE_SYMTAB_BLOCK_ID:
1343         if (ParseValueSymbolTable())
1344           return true;
1345         break;
1346       case bitc::CONSTANTS_BLOCK_ID:
1347         if (ParseConstants() || ResolveGlobalAndAliasInits())
1348           return true;
1349         break;
1350       case bitc::METADATA_BLOCK_ID:
1351         if (ParseMetadata())
1352           return true;
1353         break;
1354       case bitc::FUNCTION_BLOCK_ID:
1355         // If this is the first function body we've seen, reverse the
1356         // FunctionsWithBodies list.
1357         if (!HasReversedFunctionsWithBodies) {
1358           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
1359           HasReversedFunctionsWithBodies = true;
1360         }
1361 
1362         if (RememberAndSkipFunctionBody())
1363           return true;
1364         break;
1365       }
1366       continue;
1367     }
1368 
1369     if (Code == bitc::DEFINE_ABBREV) {
1370       Stream.ReadAbbrevRecord();
1371       continue;
1372     }
1373 
1374     // Read a record.
1375     switch (Stream.ReadRecord(Code, Record)) {
1376     default: break;  // Default behavior, ignore unknown content.
1377     case bitc::MODULE_CODE_VERSION:  // VERSION: [version#]
1378       if (Record.size() < 1)
1379         return Error("Malformed MODULE_CODE_VERSION");
1380       // Only version #0 is supported so far.
1381       if (Record[0] != 0)
1382         return Error("Unknown bitstream version!");
1383       break;
1384     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
1385       std::string S;
1386       if (ConvertToString(Record, 0, S))
1387         return Error("Invalid MODULE_CODE_TRIPLE record");
1388       TheModule->setTargetTriple(S);
1389       break;
1390     }
1391     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
1392       std::string S;
1393       if (ConvertToString(Record, 0, S))
1394         return Error("Invalid MODULE_CODE_DATALAYOUT record");
1395       TheModule->setDataLayout(S);
1396       break;
1397     }
1398     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
1399       std::string S;
1400       if (ConvertToString(Record, 0, S))
1401         return Error("Invalid MODULE_CODE_ASM record");
1402       TheModule->setModuleInlineAsm(S);
1403       break;
1404     }
1405     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
1406       std::string S;
1407       if (ConvertToString(Record, 0, S))
1408         return Error("Invalid MODULE_CODE_DEPLIB record");
1409       TheModule->addLibrary(S);
1410       break;
1411     }
1412     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
1413       std::string S;
1414       if (ConvertToString(Record, 0, S))
1415         return Error("Invalid MODULE_CODE_SECTIONNAME record");
1416       SectionTable.push_back(S);
1417       break;
1418     }
1419     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
1420       std::string S;
1421       if (ConvertToString(Record, 0, S))
1422         return Error("Invalid MODULE_CODE_GCNAME record");
1423       GCTable.push_back(S);
1424       break;
1425     }
1426     // GLOBALVAR: [pointer type, isconst, initid,
1427     //             linkage, alignment, section, visibility, threadlocal,
1428     //             unnamed_addr]
1429     case bitc::MODULE_CODE_GLOBALVAR: {
1430       if (Record.size() < 6)
1431         return Error("Invalid MODULE_CODE_GLOBALVAR record");
1432       const Type *Ty = getTypeByID(Record[0]);
1433       if (!Ty) return Error("Invalid MODULE_CODE_GLOBALVAR record");
1434       if (!Ty->isPointerTy())
1435         return Error("Global not a pointer type!");
1436       unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
1437       Ty = cast<PointerType>(Ty)->getElementType();
1438 
1439       bool isConstant = Record[1];
1440       GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]);
1441       unsigned Alignment = (1 << Record[4]) >> 1;
1442       std::string Section;
1443       if (Record[5]) {
1444         if (Record[5]-1 >= SectionTable.size())
1445           return Error("Invalid section ID");
1446         Section = SectionTable[Record[5]-1];
1447       }
1448       GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
1449       if (Record.size() > 6)
1450         Visibility = GetDecodedVisibility(Record[6]);
1451       bool isThreadLocal = false;
1452       if (Record.size() > 7)
1453         isThreadLocal = Record[7];
1454 
1455       bool UnnamedAddr = false;
1456       if (Record.size() > 8)
1457         UnnamedAddr = Record[8];
1458 
1459       GlobalVariable *NewGV =
1460         new GlobalVariable(*TheModule, Ty, isConstant, Linkage, 0, "", 0,
1461                            isThreadLocal, AddressSpace);
1462       NewGV->setAlignment(Alignment);
1463       if (!Section.empty())
1464         NewGV->setSection(Section);
1465       NewGV->setVisibility(Visibility);
1466       NewGV->setThreadLocal(isThreadLocal);
1467       NewGV->setUnnamedAddr(UnnamedAddr);
1468 
1469       ValueList.push_back(NewGV);
1470 
1471       // Remember which value to use for the global initializer.
1472       if (unsigned InitID = Record[2])
1473         GlobalInits.push_back(std::make_pair(NewGV, InitID-1));
1474       break;
1475     }
1476     // FUNCTION:  [type, callingconv, isproto, linkage, paramattr,
1477     //             alignment, section, visibility, gc, unnamed_addr]
1478     case bitc::MODULE_CODE_FUNCTION: {
1479       if (Record.size() < 8)
1480         return Error("Invalid MODULE_CODE_FUNCTION record");
1481       const Type *Ty = getTypeByID(Record[0]);
1482       if (!Ty) return Error("Invalid MODULE_CODE_FUNCTION record");
1483       if (!Ty->isPointerTy())
1484         return Error("Function not a pointer type!");
1485       const FunctionType *FTy =
1486         dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType());
1487       if (!FTy)
1488         return Error("Function not a pointer to function type!");
1489 
1490       Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
1491                                         "", TheModule);
1492 
1493       Func->setCallingConv(static_cast<CallingConv::ID>(Record[1]));
1494       bool isProto = Record[2];
1495       Func->setLinkage(GetDecodedLinkage(Record[3]));
1496       Func->setAttributes(getAttributes(Record[4]));
1497 
1498       Func->setAlignment((1 << Record[5]) >> 1);
1499       if (Record[6]) {
1500         if (Record[6]-1 >= SectionTable.size())
1501           return Error("Invalid section ID");
1502         Func->setSection(SectionTable[Record[6]-1]);
1503       }
1504       Func->setVisibility(GetDecodedVisibility(Record[7]));
1505       if (Record.size() > 8 && Record[8]) {
1506         if (Record[8]-1 > GCTable.size())
1507           return Error("Invalid GC ID");
1508         Func->setGC(GCTable[Record[8]-1].c_str());
1509       }
1510       bool UnnamedAddr = false;
1511       if (Record.size() > 9)
1512         UnnamedAddr = Record[9];
1513       Func->setUnnamedAddr(UnnamedAddr);
1514       ValueList.push_back(Func);
1515 
1516       // If this is a function with a body, remember the prototype we are
1517       // creating now, so that we can match up the body with them later.
1518       if (!isProto)
1519         FunctionsWithBodies.push_back(Func);
1520       break;
1521     }
1522     // ALIAS: [alias type, aliasee val#, linkage]
1523     // ALIAS: [alias type, aliasee val#, linkage, visibility]
1524     case bitc::MODULE_CODE_ALIAS: {
1525       if (Record.size() < 3)
1526         return Error("Invalid MODULE_ALIAS record");
1527       const Type *Ty = getTypeByID(Record[0]);
1528       if (!Ty) return Error("Invalid MODULE_ALIAS record");
1529       if (!Ty->isPointerTy())
1530         return Error("Function not a pointer type!");
1531 
1532       GlobalAlias *NewGA = new GlobalAlias(Ty, GetDecodedLinkage(Record[2]),
1533                                            "", 0, TheModule);
1534       // Old bitcode files didn't have visibility field.
1535       if (Record.size() > 3)
1536         NewGA->setVisibility(GetDecodedVisibility(Record[3]));
1537       ValueList.push_back(NewGA);
1538       AliasInits.push_back(std::make_pair(NewGA, Record[1]));
1539       break;
1540     }
1541     /// MODULE_CODE_PURGEVALS: [numvals]
1542     case bitc::MODULE_CODE_PURGEVALS:
1543       // Trim down the value list to the specified size.
1544       if (Record.size() < 1 || Record[0] > ValueList.size())
1545         return Error("Invalid MODULE_PURGEVALS record");
1546       ValueList.shrinkTo(Record[0]);
1547       break;
1548     }
1549     Record.clear();
1550   }
1551 
1552   return Error("Premature end of bitstream");
1553 }
1554 
1555 bool BitcodeReader::ParseBitcodeInto(Module *M) {
1556   TheModule = 0;
1557 
1558   unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart();
1559   unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
1560 
1561   if (Buffer->getBufferSize() & 3) {
1562     if (!isRawBitcode(BufPtr, BufEnd) && !isBitcodeWrapper(BufPtr, BufEnd))
1563       return Error("Invalid bitcode signature");
1564     else
1565       return Error("Bitcode stream should be a multiple of 4 bytes in length");
1566   }
1567 
1568   // If we have a wrapper header, parse it and ignore the non-bc file contents.
1569   // The magic number is 0x0B17C0DE stored in little endian.
1570   if (isBitcodeWrapper(BufPtr, BufEnd))
1571     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd))
1572       return Error("Invalid bitcode wrapper header");
1573 
1574   StreamFile.init(BufPtr, BufEnd);
1575   Stream.init(StreamFile);
1576 
1577   // Sniff for the signature.
1578   if (Stream.Read(8) != 'B' ||
1579       Stream.Read(8) != 'C' ||
1580       Stream.Read(4) != 0x0 ||
1581       Stream.Read(4) != 0xC ||
1582       Stream.Read(4) != 0xE ||
1583       Stream.Read(4) != 0xD)
1584     return Error("Invalid bitcode signature");
1585 
1586   // We expect a number of well-defined blocks, though we don't necessarily
1587   // need to understand them all.
1588   while (!Stream.AtEndOfStream()) {
1589     unsigned Code = Stream.ReadCode();
1590 
1591     if (Code != bitc::ENTER_SUBBLOCK)
1592       return Error("Invalid record at top-level");
1593 
1594     unsigned BlockID = Stream.ReadSubBlockID();
1595 
1596     // We only know the MODULE subblock ID.
1597     switch (BlockID) {
1598     case bitc::BLOCKINFO_BLOCK_ID:
1599       if (Stream.ReadBlockInfoBlock())
1600         return Error("Malformed BlockInfoBlock");
1601       break;
1602     case bitc::MODULE_BLOCK_ID:
1603       // Reject multiple MODULE_BLOCK's in a single bitstream.
1604       if (TheModule)
1605         return Error("Multiple MODULE_BLOCKs in same stream");
1606       TheModule = M;
1607       if (ParseModule())
1608         return true;
1609       break;
1610     default:
1611       if (Stream.SkipBlock())
1612         return Error("Malformed block record");
1613       break;
1614     }
1615   }
1616 
1617   return false;
1618 }
1619 
1620 bool BitcodeReader::ParseModuleTriple(std::string &Triple) {
1621   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
1622     return Error("Malformed block record");
1623 
1624   SmallVector<uint64_t, 64> Record;
1625 
1626   // Read all the records for this module.
1627   while (!Stream.AtEndOfStream()) {
1628     unsigned Code = Stream.ReadCode();
1629     if (Code == bitc::END_BLOCK) {
1630       if (Stream.ReadBlockEnd())
1631         return Error("Error at end of module block");
1632 
1633       return false;
1634     }
1635 
1636     if (Code == bitc::ENTER_SUBBLOCK) {
1637       switch (Stream.ReadSubBlockID()) {
1638       default:  // Skip unknown content.
1639         if (Stream.SkipBlock())
1640           return Error("Malformed block record");
1641         break;
1642       }
1643       continue;
1644     }
1645 
1646     if (Code == bitc::DEFINE_ABBREV) {
1647       Stream.ReadAbbrevRecord();
1648       continue;
1649     }
1650 
1651     // Read a record.
1652     switch (Stream.ReadRecord(Code, Record)) {
1653     default: break;  // Default behavior, ignore unknown content.
1654     case bitc::MODULE_CODE_VERSION:  // VERSION: [version#]
1655       if (Record.size() < 1)
1656         return Error("Malformed MODULE_CODE_VERSION");
1657       // Only version #0 is supported so far.
1658       if (Record[0] != 0)
1659         return Error("Unknown bitstream version!");
1660       break;
1661     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
1662       std::string S;
1663       if (ConvertToString(Record, 0, S))
1664         return Error("Invalid MODULE_CODE_TRIPLE record");
1665       Triple = S;
1666       break;
1667     }
1668     }
1669     Record.clear();
1670   }
1671 
1672   return Error("Premature end of bitstream");
1673 }
1674 
1675 bool BitcodeReader::ParseTriple(std::string &Triple) {
1676   if (Buffer->getBufferSize() & 3)
1677     return Error("Bitcode stream should be a multiple of 4 bytes in length");
1678 
1679   unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart();
1680   unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
1681 
1682   // If we have a wrapper header, parse it and ignore the non-bc file contents.
1683   // The magic number is 0x0B17C0DE stored in little endian.
1684   if (isBitcodeWrapper(BufPtr, BufEnd))
1685     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd))
1686       return Error("Invalid bitcode wrapper header");
1687 
1688   StreamFile.init(BufPtr, BufEnd);
1689   Stream.init(StreamFile);
1690 
1691   // Sniff for the signature.
1692   if (Stream.Read(8) != 'B' ||
1693       Stream.Read(8) != 'C' ||
1694       Stream.Read(4) != 0x0 ||
1695       Stream.Read(4) != 0xC ||
1696       Stream.Read(4) != 0xE ||
1697       Stream.Read(4) != 0xD)
1698     return Error("Invalid bitcode signature");
1699 
1700   // We expect a number of well-defined blocks, though we don't necessarily
1701   // need to understand them all.
1702   while (!Stream.AtEndOfStream()) {
1703     unsigned Code = Stream.ReadCode();
1704 
1705     if (Code != bitc::ENTER_SUBBLOCK)
1706       return Error("Invalid record at top-level");
1707 
1708     unsigned BlockID = Stream.ReadSubBlockID();
1709 
1710     // We only know the MODULE subblock ID.
1711     switch (BlockID) {
1712     case bitc::MODULE_BLOCK_ID:
1713       if (ParseModuleTriple(Triple))
1714         return true;
1715       break;
1716     default:
1717       if (Stream.SkipBlock())
1718         return Error("Malformed block record");
1719       break;
1720     }
1721   }
1722 
1723   return false;
1724 }
1725 
1726 /// ParseMetadataAttachment - Parse metadata attachments.
1727 bool BitcodeReader::ParseMetadataAttachment() {
1728   if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID))
1729     return Error("Malformed block record");
1730 
1731   SmallVector<uint64_t, 64> Record;
1732   while(1) {
1733     unsigned Code = Stream.ReadCode();
1734     if (Code == bitc::END_BLOCK) {
1735       if (Stream.ReadBlockEnd())
1736         return Error("Error at end of PARAMATTR block");
1737       break;
1738     }
1739     if (Code == bitc::DEFINE_ABBREV) {
1740       Stream.ReadAbbrevRecord();
1741       continue;
1742     }
1743     // Read a metadata attachment record.
1744     Record.clear();
1745     switch (Stream.ReadRecord(Code, Record)) {
1746     default:  // Default behavior: ignore.
1747       break;
1748     // FIXME: Remove in LLVM 3.0.
1749     case bitc::METADATA_ATTACHMENT:
1750       LLVM2_7MetadataDetected = true;
1751     case bitc::METADATA_ATTACHMENT2: {
1752       unsigned RecordLength = Record.size();
1753       if (Record.empty() || (RecordLength - 1) % 2 == 1)
1754         return Error ("Invalid METADATA_ATTACHMENT reader!");
1755       Instruction *Inst = InstructionList[Record[0]];
1756       for (unsigned i = 1; i != RecordLength; i = i+2) {
1757         unsigned Kind = Record[i];
1758         DenseMap<unsigned, unsigned>::iterator I =
1759           MDKindMap.find(Kind);
1760         if (I == MDKindMap.end())
1761           return Error("Invalid metadata kind ID");
1762         Value *Node = MDValueList.getValueFwdRef(Record[i+1]);
1763         Inst->setMetadata(I->second, cast<MDNode>(Node));
1764       }
1765       break;
1766     }
1767     }
1768   }
1769   return false;
1770 }
1771 
1772 /// ParseFunctionBody - Lazily parse the specified function body block.
1773 bool BitcodeReader::ParseFunctionBody(Function *F) {
1774   if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
1775     return Error("Malformed block record");
1776 
1777   InstructionList.clear();
1778   unsigned ModuleValueListSize = ValueList.size();
1779   unsigned ModuleMDValueListSize = MDValueList.size();
1780 
1781   // Add all the function arguments to the value table.
1782   for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
1783     ValueList.push_back(I);
1784 
1785   unsigned NextValueNo = ValueList.size();
1786   BasicBlock *CurBB = 0;
1787   unsigned CurBBNo = 0;
1788 
1789   DebugLoc LastLoc;
1790 
1791   // Read all the records.
1792   SmallVector<uint64_t, 64> Record;
1793   while (1) {
1794     unsigned Code = Stream.ReadCode();
1795     if (Code == bitc::END_BLOCK) {
1796       if (Stream.ReadBlockEnd())
1797         return Error("Error at end of function block");
1798       break;
1799     }
1800 
1801     if (Code == bitc::ENTER_SUBBLOCK) {
1802       switch (Stream.ReadSubBlockID()) {
1803       default:  // Skip unknown content.
1804         if (Stream.SkipBlock())
1805           return Error("Malformed block record");
1806         break;
1807       case bitc::CONSTANTS_BLOCK_ID:
1808         if (ParseConstants()) return true;
1809         NextValueNo = ValueList.size();
1810         break;
1811       case bitc::VALUE_SYMTAB_BLOCK_ID:
1812         if (ParseValueSymbolTable()) return true;
1813         break;
1814       case bitc::METADATA_ATTACHMENT_ID:
1815         if (ParseMetadataAttachment()) return true;
1816         break;
1817       case bitc::METADATA_BLOCK_ID:
1818         if (ParseMetadata()) return true;
1819         break;
1820       }
1821       continue;
1822     }
1823 
1824     if (Code == bitc::DEFINE_ABBREV) {
1825       Stream.ReadAbbrevRecord();
1826       continue;
1827     }
1828 
1829     // Read a record.
1830     Record.clear();
1831     Instruction *I = 0;
1832     unsigned BitCode = Stream.ReadRecord(Code, Record);
1833     switch (BitCode) {
1834     default: // Default behavior: reject
1835       return Error("Unknown instruction");
1836     case bitc::FUNC_CODE_DECLAREBLOCKS:     // DECLAREBLOCKS: [nblocks]
1837       if (Record.size() < 1 || Record[0] == 0)
1838         return Error("Invalid DECLAREBLOCKS record");
1839       // Create all the basic blocks for the function.
1840       FunctionBBs.resize(Record[0]);
1841       for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
1842         FunctionBBs[i] = BasicBlock::Create(Context, "", F);
1843       CurBB = FunctionBBs[0];
1844       continue;
1845 
1846 
1847     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
1848       // This record indicates that the last instruction is at the same
1849       // location as the previous instruction with a location.
1850       I = 0;
1851 
1852       // Get the last instruction emitted.
1853       if (CurBB && !CurBB->empty())
1854         I = &CurBB->back();
1855       else if (CurBBNo && FunctionBBs[CurBBNo-1] &&
1856                !FunctionBBs[CurBBNo-1]->empty())
1857         I = &FunctionBBs[CurBBNo-1]->back();
1858 
1859       if (I == 0) return Error("Invalid DEBUG_LOC_AGAIN record");
1860       I->setDebugLoc(LastLoc);
1861       I = 0;
1862       continue;
1863 
1864     // FIXME: Remove this in LLVM 3.0.
1865     case bitc::FUNC_CODE_DEBUG_LOC:
1866       LLVM2_7MetadataDetected = true;
1867     case bitc::FUNC_CODE_DEBUG_LOC2: {      // DEBUG_LOC: [line, col, scope, ia]
1868       I = 0;     // Get the last instruction emitted.
1869       if (CurBB && !CurBB->empty())
1870         I = &CurBB->back();
1871       else if (CurBBNo && FunctionBBs[CurBBNo-1] &&
1872                !FunctionBBs[CurBBNo-1]->empty())
1873         I = &FunctionBBs[CurBBNo-1]->back();
1874       if (I == 0 || Record.size() < 4)
1875         return Error("Invalid FUNC_CODE_DEBUG_LOC record");
1876 
1877       unsigned Line = Record[0], Col = Record[1];
1878       unsigned ScopeID = Record[2], IAID = Record[3];
1879 
1880       MDNode *Scope = 0, *IA = 0;
1881       if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1));
1882       if (IAID)    IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1));
1883       LastLoc = DebugLoc::get(Line, Col, Scope, IA);
1884       I->setDebugLoc(LastLoc);
1885       I = 0;
1886       continue;
1887     }
1888 
1889     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
1890       unsigned OpNum = 0;
1891       Value *LHS, *RHS;
1892       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
1893           getValue(Record, OpNum, LHS->getType(), RHS) ||
1894           OpNum+1 > Record.size())
1895         return Error("Invalid BINOP record");
1896 
1897       int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
1898       if (Opc == -1) return Error("Invalid BINOP record");
1899       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
1900       InstructionList.push_back(I);
1901       if (OpNum < Record.size()) {
1902         if (Opc == Instruction::Add ||
1903             Opc == Instruction::Sub ||
1904             Opc == Instruction::Mul) {
1905           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
1906             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
1907           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
1908             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
1909         } else if (Opc == Instruction::SDiv ||
1910                    Opc == Instruction::UDiv) {
1911           if (Record[OpNum] & (1 << bitc::PEO_EXACT))
1912             cast<BinaryOperator>(I)->setIsExact(true);
1913         }
1914       }
1915       break;
1916     }
1917     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
1918       unsigned OpNum = 0;
1919       Value *Op;
1920       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
1921           OpNum+2 != Record.size())
1922         return Error("Invalid CAST record");
1923 
1924       const Type *ResTy = getTypeByID(Record[OpNum]);
1925       int Opc = GetDecodedCastOpcode(Record[OpNum+1]);
1926       if (Opc == -1 || ResTy == 0)
1927         return Error("Invalid CAST record");
1928       I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy);
1929       InstructionList.push_back(I);
1930       break;
1931     }
1932     case bitc::FUNC_CODE_INST_INBOUNDS_GEP:
1933     case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands]
1934       unsigned OpNum = 0;
1935       Value *BasePtr;
1936       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
1937         return Error("Invalid GEP record");
1938 
1939       SmallVector<Value*, 16> GEPIdx;
1940       while (OpNum != Record.size()) {
1941         Value *Op;
1942         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
1943           return Error("Invalid GEP record");
1944         GEPIdx.push_back(Op);
1945       }
1946 
1947       I = GetElementPtrInst::Create(BasePtr, GEPIdx.begin(), GEPIdx.end());
1948       InstructionList.push_back(I);
1949       if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP)
1950         cast<GetElementPtrInst>(I)->setIsInBounds(true);
1951       break;
1952     }
1953 
1954     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
1955                                        // EXTRACTVAL: [opty, opval, n x indices]
1956       unsigned OpNum = 0;
1957       Value *Agg;
1958       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
1959         return Error("Invalid EXTRACTVAL record");
1960 
1961       SmallVector<unsigned, 4> EXTRACTVALIdx;
1962       for (unsigned RecSize = Record.size();
1963            OpNum != RecSize; ++OpNum) {
1964         uint64_t Index = Record[OpNum];
1965         if ((unsigned)Index != Index)
1966           return Error("Invalid EXTRACTVAL index");
1967         EXTRACTVALIdx.push_back((unsigned)Index);
1968       }
1969 
1970       I = ExtractValueInst::Create(Agg,
1971                                    EXTRACTVALIdx.begin(), EXTRACTVALIdx.end());
1972       InstructionList.push_back(I);
1973       break;
1974     }
1975 
1976     case bitc::FUNC_CODE_INST_INSERTVAL: {
1977                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
1978       unsigned OpNum = 0;
1979       Value *Agg;
1980       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
1981         return Error("Invalid INSERTVAL record");
1982       Value *Val;
1983       if (getValueTypePair(Record, OpNum, NextValueNo, Val))
1984         return Error("Invalid INSERTVAL record");
1985 
1986       SmallVector<unsigned, 4> INSERTVALIdx;
1987       for (unsigned RecSize = Record.size();
1988            OpNum != RecSize; ++OpNum) {
1989         uint64_t Index = Record[OpNum];
1990         if ((unsigned)Index != Index)
1991           return Error("Invalid INSERTVAL index");
1992         INSERTVALIdx.push_back((unsigned)Index);
1993       }
1994 
1995       I = InsertValueInst::Create(Agg, Val,
1996                                   INSERTVALIdx.begin(), INSERTVALIdx.end());
1997       InstructionList.push_back(I);
1998       break;
1999     }
2000 
2001     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
2002       // obsolete form of select
2003       // handles select i1 ... in old bitcode
2004       unsigned OpNum = 0;
2005       Value *TrueVal, *FalseVal, *Cond;
2006       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
2007           getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
2008           getValue(Record, OpNum, Type::getInt1Ty(Context), Cond))
2009         return Error("Invalid SELECT record");
2010 
2011       I = SelectInst::Create(Cond, TrueVal, FalseVal);
2012       InstructionList.push_back(I);
2013       break;
2014     }
2015 
2016     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
2017       // new form of select
2018       // handles select i1 or select [N x i1]
2019       unsigned OpNum = 0;
2020       Value *TrueVal, *FalseVal, *Cond;
2021       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
2022           getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
2023           getValueTypePair(Record, OpNum, NextValueNo, Cond))
2024         return Error("Invalid SELECT record");
2025 
2026       // select condition can be either i1 or [N x i1]
2027       if (const VectorType* vector_type =
2028           dyn_cast<const VectorType>(Cond->getType())) {
2029         // expect <n x i1>
2030         if (vector_type->getElementType() != Type::getInt1Ty(Context))
2031           return Error("Invalid SELECT condition type");
2032       } else {
2033         // expect i1
2034         if (Cond->getType() != Type::getInt1Ty(Context))
2035           return Error("Invalid SELECT condition type");
2036       }
2037 
2038       I = SelectInst::Create(Cond, TrueVal, FalseVal);
2039       InstructionList.push_back(I);
2040       break;
2041     }
2042 
2043     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
2044       unsigned OpNum = 0;
2045       Value *Vec, *Idx;
2046       if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
2047           getValue(Record, OpNum, Type::getInt32Ty(Context), Idx))
2048         return Error("Invalid EXTRACTELT record");
2049       I = ExtractElementInst::Create(Vec, Idx);
2050       InstructionList.push_back(I);
2051       break;
2052     }
2053 
2054     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
2055       unsigned OpNum = 0;
2056       Value *Vec, *Elt, *Idx;
2057       if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
2058           getValue(Record, OpNum,
2059                    cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
2060           getValue(Record, OpNum, Type::getInt32Ty(Context), Idx))
2061         return Error("Invalid INSERTELT record");
2062       I = InsertElementInst::Create(Vec, Elt, Idx);
2063       InstructionList.push_back(I);
2064       break;
2065     }
2066 
2067     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
2068       unsigned OpNum = 0;
2069       Value *Vec1, *Vec2, *Mask;
2070       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
2071           getValue(Record, OpNum, Vec1->getType(), Vec2))
2072         return Error("Invalid SHUFFLEVEC record");
2073 
2074       if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
2075         return Error("Invalid SHUFFLEVEC record");
2076       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
2077       InstructionList.push_back(I);
2078       break;
2079     }
2080 
2081     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
2082       // Old form of ICmp/FCmp returning bool
2083       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
2084       // both legal on vectors but had different behaviour.
2085     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
2086       // FCmp/ICmp returning bool or vector of bool
2087 
2088       unsigned OpNum = 0;
2089       Value *LHS, *RHS;
2090       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
2091           getValue(Record, OpNum, LHS->getType(), RHS) ||
2092           OpNum+1 != Record.size())
2093         return Error("Invalid CMP record");
2094 
2095       if (LHS->getType()->isFPOrFPVectorTy())
2096         I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS);
2097       else
2098         I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS);
2099       InstructionList.push_back(I);
2100       break;
2101     }
2102 
2103     case bitc::FUNC_CODE_INST_GETRESULT: { // GETRESULT: [ty, val, n]
2104       if (Record.size() != 2)
2105         return Error("Invalid GETRESULT record");
2106       unsigned OpNum = 0;
2107       Value *Op;
2108       getValueTypePair(Record, OpNum, NextValueNo, Op);
2109       unsigned Index = Record[1];
2110       I = ExtractValueInst::Create(Op, Index);
2111       InstructionList.push_back(I);
2112       break;
2113     }
2114 
2115     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
2116       {
2117         unsigned Size = Record.size();
2118         if (Size == 0) {
2119           I = ReturnInst::Create(Context);
2120           InstructionList.push_back(I);
2121           break;
2122         }
2123 
2124         unsigned OpNum = 0;
2125         SmallVector<Value *,4> Vs;
2126         do {
2127           Value *Op = NULL;
2128           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2129             return Error("Invalid RET record");
2130           Vs.push_back(Op);
2131         } while(OpNum != Record.size());
2132 
2133         const Type *ReturnType = F->getReturnType();
2134         // Handle multiple return values. FIXME: Remove in LLVM 3.0.
2135         if (Vs.size() > 1 ||
2136             (ReturnType->isStructTy() &&
2137              (Vs.empty() || Vs[0]->getType() != ReturnType))) {
2138           Value *RV = UndefValue::get(ReturnType);
2139           for (unsigned i = 0, e = Vs.size(); i != e; ++i) {
2140             I = InsertValueInst::Create(RV, Vs[i], i, "mrv");
2141             InstructionList.push_back(I);
2142             CurBB->getInstList().push_back(I);
2143             ValueList.AssignValue(I, NextValueNo++);
2144             RV = I;
2145           }
2146           I = ReturnInst::Create(Context, RV);
2147           InstructionList.push_back(I);
2148           break;
2149         }
2150 
2151         I = ReturnInst::Create(Context, Vs[0]);
2152         InstructionList.push_back(I);
2153         break;
2154       }
2155     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
2156       if (Record.size() != 1 && Record.size() != 3)
2157         return Error("Invalid BR record");
2158       BasicBlock *TrueDest = getBasicBlock(Record[0]);
2159       if (TrueDest == 0)
2160         return Error("Invalid BR record");
2161 
2162       if (Record.size() == 1) {
2163         I = BranchInst::Create(TrueDest);
2164         InstructionList.push_back(I);
2165       }
2166       else {
2167         BasicBlock *FalseDest = getBasicBlock(Record[1]);
2168         Value *Cond = getFnValueByID(Record[2], Type::getInt1Ty(Context));
2169         if (FalseDest == 0 || Cond == 0)
2170           return Error("Invalid BR record");
2171         I = BranchInst::Create(TrueDest, FalseDest, Cond);
2172         InstructionList.push_back(I);
2173       }
2174       break;
2175     }
2176     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
2177       if (Record.size() < 3 || (Record.size() & 1) == 0)
2178         return Error("Invalid SWITCH record");
2179       const Type *OpTy = getTypeByID(Record[0]);
2180       Value *Cond = getFnValueByID(Record[1], OpTy);
2181       BasicBlock *Default = getBasicBlock(Record[2]);
2182       if (OpTy == 0 || Cond == 0 || Default == 0)
2183         return Error("Invalid SWITCH record");
2184       unsigned NumCases = (Record.size()-3)/2;
2185       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
2186       InstructionList.push_back(SI);
2187       for (unsigned i = 0, e = NumCases; i != e; ++i) {
2188         ConstantInt *CaseVal =
2189           dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
2190         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
2191         if (CaseVal == 0 || DestBB == 0) {
2192           delete SI;
2193           return Error("Invalid SWITCH record!");
2194         }
2195         SI->addCase(CaseVal, DestBB);
2196       }
2197       I = SI;
2198       break;
2199     }
2200     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
2201       if (Record.size() < 2)
2202         return Error("Invalid INDIRECTBR record");
2203       const Type *OpTy = getTypeByID(Record[0]);
2204       Value *Address = getFnValueByID(Record[1], OpTy);
2205       if (OpTy == 0 || Address == 0)
2206         return Error("Invalid INDIRECTBR record");
2207       unsigned NumDests = Record.size()-2;
2208       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
2209       InstructionList.push_back(IBI);
2210       for (unsigned i = 0, e = NumDests; i != e; ++i) {
2211         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
2212           IBI->addDestination(DestBB);
2213         } else {
2214           delete IBI;
2215           return Error("Invalid INDIRECTBR record!");
2216         }
2217       }
2218       I = IBI;
2219       break;
2220     }
2221 
2222     case bitc::FUNC_CODE_INST_INVOKE: {
2223       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
2224       if (Record.size() < 4) return Error("Invalid INVOKE record");
2225       AttrListPtr PAL = getAttributes(Record[0]);
2226       unsigned CCInfo = Record[1];
2227       BasicBlock *NormalBB = getBasicBlock(Record[2]);
2228       BasicBlock *UnwindBB = getBasicBlock(Record[3]);
2229 
2230       unsigned OpNum = 4;
2231       Value *Callee;
2232       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
2233         return Error("Invalid INVOKE record");
2234 
2235       const PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
2236       const FunctionType *FTy = !CalleeTy ? 0 :
2237         dyn_cast<FunctionType>(CalleeTy->getElementType());
2238 
2239       // Check that the right number of fixed parameters are here.
2240       if (FTy == 0 || NormalBB == 0 || UnwindBB == 0 ||
2241           Record.size() < OpNum+FTy->getNumParams())
2242         return Error("Invalid INVOKE record");
2243 
2244       SmallVector<Value*, 16> Ops;
2245       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
2246         Ops.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
2247         if (Ops.back() == 0) return Error("Invalid INVOKE record");
2248       }
2249 
2250       if (!FTy->isVarArg()) {
2251         if (Record.size() != OpNum)
2252           return Error("Invalid INVOKE record");
2253       } else {
2254         // Read type/value pairs for varargs params.
2255         while (OpNum != Record.size()) {
2256           Value *Op;
2257           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2258             return Error("Invalid INVOKE record");
2259           Ops.push_back(Op);
2260         }
2261       }
2262 
2263       I = InvokeInst::Create(Callee, NormalBB, UnwindBB,
2264                              Ops.begin(), Ops.end());
2265       InstructionList.push_back(I);
2266       cast<InvokeInst>(I)->setCallingConv(
2267         static_cast<CallingConv::ID>(CCInfo));
2268       cast<InvokeInst>(I)->setAttributes(PAL);
2269       break;
2270     }
2271     case bitc::FUNC_CODE_INST_UNWIND: // UNWIND
2272       I = new UnwindInst(Context);
2273       InstructionList.push_back(I);
2274       break;
2275     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
2276       I = new UnreachableInst(Context);
2277       InstructionList.push_back(I);
2278       break;
2279     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
2280       if (Record.size() < 1 || ((Record.size()-1)&1))
2281         return Error("Invalid PHI record");
2282       const Type *Ty = getTypeByID(Record[0]);
2283       if (!Ty) return Error("Invalid PHI record");
2284 
2285       PHINode *PN = PHINode::Create(Ty);
2286       InstructionList.push_back(PN);
2287       PN->reserveOperandSpace((Record.size()-1)/2);
2288 
2289       for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
2290         Value *V = getFnValueByID(Record[1+i], Ty);
2291         BasicBlock *BB = getBasicBlock(Record[2+i]);
2292         if (!V || !BB) return Error("Invalid PHI record");
2293         PN->addIncoming(V, BB);
2294       }
2295       I = PN;
2296       break;
2297     }
2298 
2299     case bitc::FUNC_CODE_INST_MALLOC: { // MALLOC: [instty, op, align]
2300       // Autoupgrade malloc instruction to malloc call.
2301       // FIXME: Remove in LLVM 3.0.
2302       if (Record.size() < 3)
2303         return Error("Invalid MALLOC record");
2304       const PointerType *Ty =
2305         dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
2306       Value *Size = getFnValueByID(Record[1], Type::getInt32Ty(Context));
2307       if (!Ty || !Size) return Error("Invalid MALLOC record");
2308       if (!CurBB) return Error("Invalid malloc instruction with no BB");
2309       const Type *Int32Ty = IntegerType::getInt32Ty(CurBB->getContext());
2310       Constant *AllocSize = ConstantExpr::getSizeOf(Ty->getElementType());
2311       AllocSize = ConstantExpr::getTruncOrBitCast(AllocSize, Int32Ty);
2312       I = CallInst::CreateMalloc(CurBB, Int32Ty, Ty->getElementType(),
2313                                  AllocSize, Size, NULL);
2314       InstructionList.push_back(I);
2315       break;
2316     }
2317     case bitc::FUNC_CODE_INST_FREE: { // FREE: [op, opty]
2318       unsigned OpNum = 0;
2319       Value *Op;
2320       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2321           OpNum != Record.size())
2322         return Error("Invalid FREE record");
2323       if (!CurBB) return Error("Invalid free instruction with no BB");
2324       I = CallInst::CreateFree(Op, CurBB);
2325       InstructionList.push_back(I);
2326       break;
2327     }
2328     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
2329       // For backward compatibility, tolerate a lack of an opty, and use i32.
2330       // Remove this in LLVM 3.0.
2331       if (Record.size() < 3 || Record.size() > 4)
2332         return Error("Invalid ALLOCA record");
2333       unsigned OpNum = 0;
2334       const PointerType *Ty =
2335         dyn_cast_or_null<PointerType>(getTypeByID(Record[OpNum++]));
2336       const Type *OpTy = Record.size() == 4 ? getTypeByID(Record[OpNum++]) :
2337                                               Type::getInt32Ty(Context);
2338       Value *Size = getFnValueByID(Record[OpNum++], OpTy);
2339       unsigned Align = Record[OpNum++];
2340       if (!Ty || !Size) return Error("Invalid ALLOCA record");
2341       I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1);
2342       InstructionList.push_back(I);
2343       break;
2344     }
2345     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
2346       unsigned OpNum = 0;
2347       Value *Op;
2348       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2349           OpNum+2 != Record.size())
2350         return Error("Invalid LOAD record");
2351 
2352       I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2353       InstructionList.push_back(I);
2354       break;
2355     }
2356     case bitc::FUNC_CODE_INST_STORE2: { // STORE2:[ptrty, ptr, val, align, vol]
2357       unsigned OpNum = 0;
2358       Value *Val, *Ptr;
2359       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
2360           getValue(Record, OpNum,
2361                     cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
2362           OpNum+2 != Record.size())
2363         return Error("Invalid STORE record");
2364 
2365       I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2366       InstructionList.push_back(I);
2367       break;
2368     }
2369     case bitc::FUNC_CODE_INST_STORE: { // STORE:[val, valty, ptr, align, vol]
2370       // FIXME: Legacy form of store instruction. Should be removed in LLVM 3.0.
2371       unsigned OpNum = 0;
2372       Value *Val, *Ptr;
2373       if (getValueTypePair(Record, OpNum, NextValueNo, Val) ||
2374           getValue(Record, OpNum,
2375                    PointerType::getUnqual(Val->getType()), Ptr)||
2376           OpNum+2 != Record.size())
2377         return Error("Invalid STORE record");
2378 
2379       I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2380       InstructionList.push_back(I);
2381       break;
2382     }
2383     // FIXME: Remove this in LLVM 3.0.
2384     case bitc::FUNC_CODE_INST_CALL:
2385       LLVM2_7MetadataDetected = true;
2386     case bitc::FUNC_CODE_INST_CALL2: {
2387       // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...]
2388       if (Record.size() < 3)
2389         return Error("Invalid CALL record");
2390 
2391       AttrListPtr PAL = getAttributes(Record[0]);
2392       unsigned CCInfo = Record[1];
2393 
2394       unsigned OpNum = 2;
2395       Value *Callee;
2396       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
2397         return Error("Invalid CALL record");
2398 
2399       const PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
2400       const FunctionType *FTy = 0;
2401       if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType());
2402       if (!FTy || Record.size() < FTy->getNumParams()+OpNum)
2403         return Error("Invalid CALL record");
2404 
2405       SmallVector<Value*, 16> Args;
2406       // Read the fixed params.
2407       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
2408         if (FTy->getParamType(i)->getTypeID()==Type::LabelTyID)
2409           Args.push_back(getBasicBlock(Record[OpNum]));
2410         else
2411           Args.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
2412         if (Args.back() == 0) return Error("Invalid CALL record");
2413       }
2414 
2415       // Read type/value pairs for varargs params.
2416       if (!FTy->isVarArg()) {
2417         if (OpNum != Record.size())
2418           return Error("Invalid CALL record");
2419       } else {
2420         while (OpNum != Record.size()) {
2421           Value *Op;
2422           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2423             return Error("Invalid CALL record");
2424           Args.push_back(Op);
2425         }
2426       }
2427 
2428       I = CallInst::Create(Callee, Args.begin(), Args.end());
2429       InstructionList.push_back(I);
2430       cast<CallInst>(I)->setCallingConv(
2431         static_cast<CallingConv::ID>(CCInfo>>1));
2432       cast<CallInst>(I)->setTailCall(CCInfo & 1);
2433       cast<CallInst>(I)->setAttributes(PAL);
2434       break;
2435     }
2436     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
2437       if (Record.size() < 3)
2438         return Error("Invalid VAARG record");
2439       const Type *OpTy = getTypeByID(Record[0]);
2440       Value *Op = getFnValueByID(Record[1], OpTy);
2441       const Type *ResTy = getTypeByID(Record[2]);
2442       if (!OpTy || !Op || !ResTy)
2443         return Error("Invalid VAARG record");
2444       I = new VAArgInst(Op, ResTy);
2445       InstructionList.push_back(I);
2446       break;
2447     }
2448     }
2449 
2450     // Add instruction to end of current BB.  If there is no current BB, reject
2451     // this file.
2452     if (CurBB == 0) {
2453       delete I;
2454       return Error("Invalid instruction with no BB");
2455     }
2456     CurBB->getInstList().push_back(I);
2457 
2458     // If this was a terminator instruction, move to the next block.
2459     if (isa<TerminatorInst>(I)) {
2460       ++CurBBNo;
2461       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : 0;
2462     }
2463 
2464     // Non-void values get registered in the value table for future use.
2465     if (I && !I->getType()->isVoidTy())
2466       ValueList.AssignValue(I, NextValueNo++);
2467   }
2468 
2469   // Check the function list for unresolved values.
2470   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
2471     if (A->getParent() == 0) {
2472       // We found at least one unresolved value.  Nuke them all to avoid leaks.
2473       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
2474         if ((A = dyn_cast<Argument>(ValueList[i])) && A->getParent() == 0) {
2475           A->replaceAllUsesWith(UndefValue::get(A->getType()));
2476           delete A;
2477         }
2478       }
2479       return Error("Never resolved value found in function!");
2480     }
2481   }
2482 
2483   // FIXME: Check for unresolved forward-declared metadata references
2484   // and clean up leaks.
2485 
2486   // See if anything took the address of blocks in this function.  If so,
2487   // resolve them now.
2488   DenseMap<Function*, std::vector<BlockAddrRefTy> >::iterator BAFRI =
2489     BlockAddrFwdRefs.find(F);
2490   if (BAFRI != BlockAddrFwdRefs.end()) {
2491     std::vector<BlockAddrRefTy> &RefList = BAFRI->second;
2492     for (unsigned i = 0, e = RefList.size(); i != e; ++i) {
2493       unsigned BlockIdx = RefList[i].first;
2494       if (BlockIdx >= FunctionBBs.size())
2495         return Error("Invalid blockaddress block #");
2496 
2497       GlobalVariable *FwdRef = RefList[i].second;
2498       FwdRef->replaceAllUsesWith(BlockAddress::get(F, FunctionBBs[BlockIdx]));
2499       FwdRef->eraseFromParent();
2500     }
2501 
2502     BlockAddrFwdRefs.erase(BAFRI);
2503   }
2504 
2505   // FIXME: Remove this in LLVM 3.0.
2506   unsigned NewMDValueListSize = MDValueList.size();
2507 
2508   // Trim the value list down to the size it was before we parsed this function.
2509   ValueList.shrinkTo(ModuleValueListSize);
2510   MDValueList.shrinkTo(ModuleMDValueListSize);
2511 
2512   // Backwards compatibility hack: Function-local metadata numbers
2513   // were previously not reset between functions. This is now fixed,
2514   // however we still need to understand the old numbering in order
2515   // to be able to read old bitcode files.
2516   // FIXME: Remove this in LLVM 3.0.
2517   if (LLVM2_7MetadataDetected)
2518     MDValueList.resize(NewMDValueListSize);
2519 
2520   std::vector<BasicBlock*>().swap(FunctionBBs);
2521 
2522   return false;
2523 }
2524 
2525 //===----------------------------------------------------------------------===//
2526 // GVMaterializer implementation
2527 //===----------------------------------------------------------------------===//
2528 
2529 
2530 bool BitcodeReader::isMaterializable(const GlobalValue *GV) const {
2531   if (const Function *F = dyn_cast<Function>(GV)) {
2532     return F->isDeclaration() &&
2533       DeferredFunctionInfo.count(const_cast<Function*>(F));
2534   }
2535   return false;
2536 }
2537 
2538 bool BitcodeReader::Materialize(GlobalValue *GV, std::string *ErrInfo) {
2539   Function *F = dyn_cast<Function>(GV);
2540   // If it's not a function or is already material, ignore the request.
2541   if (!F || !F->isMaterializable()) return false;
2542 
2543   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
2544   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
2545 
2546   // Move the bit stream to the saved position of the deferred function body.
2547   Stream.JumpToBit(DFII->second);
2548 
2549   if (ParseFunctionBody(F)) {
2550     if (ErrInfo) *ErrInfo = ErrorString;
2551     return true;
2552   }
2553 
2554   // Upgrade any old intrinsic calls in the function.
2555   for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(),
2556        E = UpgradedIntrinsics.end(); I != E; ++I) {
2557     if (I->first != I->second) {
2558       for (Value::use_iterator UI = I->first->use_begin(),
2559            UE = I->first->use_end(); UI != UE; ) {
2560         if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2561           UpgradeIntrinsicCall(CI, I->second);
2562       }
2563     }
2564   }
2565 
2566   return false;
2567 }
2568 
2569 bool BitcodeReader::isDematerializable(const GlobalValue *GV) const {
2570   const Function *F = dyn_cast<Function>(GV);
2571   if (!F || F->isDeclaration())
2572     return false;
2573   return DeferredFunctionInfo.count(const_cast<Function*>(F));
2574 }
2575 
2576 void BitcodeReader::Dematerialize(GlobalValue *GV) {
2577   Function *F = dyn_cast<Function>(GV);
2578   // If this function isn't dematerializable, this is a noop.
2579   if (!F || !isDematerializable(F))
2580     return;
2581 
2582   assert(DeferredFunctionInfo.count(F) && "No info to read function later?");
2583 
2584   // Just forget the function body, we can remat it later.
2585   F->deleteBody();
2586 }
2587 
2588 
2589 bool BitcodeReader::MaterializeModule(Module *M, std::string *ErrInfo) {
2590   assert(M == TheModule &&
2591          "Can only Materialize the Module this BitcodeReader is attached to.");
2592   // Iterate over the module, deserializing any functions that are still on
2593   // disk.
2594   for (Module::iterator F = TheModule->begin(), E = TheModule->end();
2595        F != E; ++F)
2596     if (F->isMaterializable() &&
2597         Materialize(F, ErrInfo))
2598       return true;
2599 
2600   // Upgrade any intrinsic calls that slipped through (should not happen!) and
2601   // delete the old functions to clean up. We can't do this unless the entire
2602   // module is materialized because there could always be another function body
2603   // with calls to the old function.
2604   for (std::vector<std::pair<Function*, Function*> >::iterator I =
2605        UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) {
2606     if (I->first != I->second) {
2607       for (Value::use_iterator UI = I->first->use_begin(),
2608            UE = I->first->use_end(); UI != UE; ) {
2609         if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2610           UpgradeIntrinsicCall(CI, I->second);
2611       }
2612       if (!I->first->use_empty())
2613         I->first->replaceAllUsesWith(I->second);
2614       I->first->eraseFromParent();
2615     }
2616   }
2617   std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics);
2618 
2619   // Check debug info intrinsics.
2620   CheckDebugInfoIntrinsics(TheModule);
2621 
2622   return false;
2623 }
2624 
2625 
2626 //===----------------------------------------------------------------------===//
2627 // External interface
2628 //===----------------------------------------------------------------------===//
2629 
2630 /// getLazyBitcodeModule - lazy function-at-a-time loading from a file.
2631 ///
2632 Module *llvm::getLazyBitcodeModule(MemoryBuffer *Buffer,
2633                                    LLVMContext& Context,
2634                                    std::string *ErrMsg) {
2635   Module *M = new Module(Buffer->getBufferIdentifier(), Context);
2636   BitcodeReader *R = new BitcodeReader(Buffer, Context);
2637   M->setMaterializer(R);
2638   if (R->ParseBitcodeInto(M)) {
2639     if (ErrMsg)
2640       *ErrMsg = R->getErrorString();
2641 
2642     delete M;  // Also deletes R.
2643     return 0;
2644   }
2645   // Have the BitcodeReader dtor delete 'Buffer'.
2646   R->setBufferOwned(true);
2647   return M;
2648 }
2649 
2650 /// ParseBitcodeFile - Read the specified bitcode file, returning the module.
2651 /// If an error occurs, return null and fill in *ErrMsg if non-null.
2652 Module *llvm::ParseBitcodeFile(MemoryBuffer *Buffer, LLVMContext& Context,
2653                                std::string *ErrMsg){
2654   Module *M = getLazyBitcodeModule(Buffer, Context, ErrMsg);
2655   if (!M) return 0;
2656 
2657   // Don't let the BitcodeReader dtor delete 'Buffer', regardless of whether
2658   // there was an error.
2659   static_cast<BitcodeReader*>(M->getMaterializer())->setBufferOwned(false);
2660 
2661   // Read in the entire module, and destroy the BitcodeReader.
2662   if (M->MaterializeAllPermanently(ErrMsg)) {
2663     delete M;
2664     return 0;
2665   }
2666 
2667   return M;
2668 }
2669 
2670 std::string llvm::getBitcodeTargetTriple(MemoryBuffer *Buffer,
2671                                          LLVMContext& Context,
2672                                          std::string *ErrMsg) {
2673   BitcodeReader *R = new BitcodeReader(Buffer, Context);
2674   // Don't let the BitcodeReader dtor delete 'Buffer'.
2675   R->setBufferOwned(false);
2676 
2677   std::string Triple("");
2678   if (R->ParseTriple(Triple))
2679     if (ErrMsg)
2680       *ErrMsg = R->getErrorString();
2681 
2682   delete R;
2683   return Triple;
2684 }
2685