1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Bitcode/BitcodeReader.h" 10 #include "MetadataLoader.h" 11 #include "ValueList.h" 12 #include "llvm/ADT/APFloat.h" 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallString.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/ADT/StringRef.h" 20 #include "llvm/ADT/Twine.h" 21 #include "llvm/Bitcode/BitcodeCommon.h" 22 #include "llvm/Bitcode/LLVMBitCodes.h" 23 #include "llvm/Bitstream/BitstreamReader.h" 24 #include "llvm/Config/llvm-config.h" 25 #include "llvm/IR/Argument.h" 26 #include "llvm/IR/AttributeMask.h" 27 #include "llvm/IR/Attributes.h" 28 #include "llvm/IR/AutoUpgrade.h" 29 #include "llvm/IR/BasicBlock.h" 30 #include "llvm/IR/CallingConv.h" 31 #include "llvm/IR/Comdat.h" 32 #include "llvm/IR/Constant.h" 33 #include "llvm/IR/ConstantRangeList.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/DebugInfo.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GVMaterializer.h" 42 #include "llvm/IR/GetElementPtrTypeIterator.h" 43 #include "llvm/IR/GlobalAlias.h" 44 #include "llvm/IR/GlobalIFunc.h" 45 #include "llvm/IR/GlobalObject.h" 46 #include "llvm/IR/GlobalValue.h" 47 #include "llvm/IR/GlobalVariable.h" 48 #include "llvm/IR/InlineAsm.h" 49 #include "llvm/IR/InstIterator.h" 50 #include "llvm/IR/InstrTypes.h" 51 #include "llvm/IR/Instruction.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/IntrinsicsAArch64.h" 55 #include "llvm/IR/IntrinsicsARM.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/Metadata.h" 58 #include "llvm/IR/Module.h" 59 #include "llvm/IR/ModuleSummaryIndex.h" 60 #include "llvm/IR/Operator.h" 61 #include "llvm/IR/ProfDataUtils.h" 62 #include "llvm/IR/Type.h" 63 #include "llvm/IR/Value.h" 64 #include "llvm/IR/Verifier.h" 65 #include "llvm/Support/AtomicOrdering.h" 66 #include "llvm/Support/Casting.h" 67 #include "llvm/Support/CommandLine.h" 68 #include "llvm/Support/Compiler.h" 69 #include "llvm/Support/Debug.h" 70 #include "llvm/Support/Error.h" 71 #include "llvm/Support/ErrorHandling.h" 72 #include "llvm/Support/ErrorOr.h" 73 #include "llvm/Support/MathExtras.h" 74 #include "llvm/Support/MemoryBuffer.h" 75 #include "llvm/Support/ModRef.h" 76 #include "llvm/Support/raw_ostream.h" 77 #include "llvm/TargetParser/Triple.h" 78 #include <algorithm> 79 #include <cassert> 80 #include <cstddef> 81 #include <cstdint> 82 #include <deque> 83 #include <map> 84 #include <memory> 85 #include <optional> 86 #include <set> 87 #include <string> 88 #include <system_error> 89 #include <tuple> 90 #include <utility> 91 #include <vector> 92 93 using namespace llvm; 94 95 static cl::opt<bool> PrintSummaryGUIDs( 96 "print-summary-global-ids", cl::init(false), cl::Hidden, 97 cl::desc( 98 "Print the global id for each value when reading the module summary")); 99 100 static cl::opt<bool> ExpandConstantExprs( 101 "expand-constant-exprs", cl::Hidden, 102 cl::desc( 103 "Expand constant expressions to instructions for testing purposes")); 104 105 /// Load bitcode directly into RemoveDIs format (use debug records instead 106 /// of debug intrinsics). UNSET is treated as FALSE, so the default action 107 /// is to do nothing. Individual tools can override this to incrementally add 108 /// support for the RemoveDIs format. 109 cl::opt<cl::boolOrDefault> LoadBitcodeIntoNewDbgInfoFormat( 110 "load-bitcode-into-experimental-debuginfo-iterators", cl::Hidden, 111 cl::desc("Load bitcode directly into the new debug info format (regardless " 112 "of input format)")); 113 extern cl::opt<bool> UseNewDbgInfoFormat; 114 extern cl::opt<cl::boolOrDefault> PreserveInputDbgFormat; 115 extern bool WriteNewDbgInfoFormatToBitcode; 116 extern cl::opt<bool> WriteNewDbgInfoFormat; 117 118 namespace { 119 120 enum { 121 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 122 }; 123 124 } // end anonymous namespace 125 126 static Error error(const Twine &Message) { 127 return make_error<StringError>( 128 Message, make_error_code(BitcodeError::CorruptedBitcode)); 129 } 130 131 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) { 132 if (!Stream.canSkipToPos(4)) 133 return createStringError(std::errc::illegal_byte_sequence, 134 "file too small to contain bitcode header"); 135 for (unsigned C : {'B', 'C'}) 136 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) { 137 if (Res.get() != C) 138 return createStringError(std::errc::illegal_byte_sequence, 139 "file doesn't start with bitcode header"); 140 } else 141 return Res.takeError(); 142 for (unsigned C : {0x0, 0xC, 0xE, 0xD}) 143 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) { 144 if (Res.get() != C) 145 return createStringError(std::errc::illegal_byte_sequence, 146 "file doesn't start with bitcode header"); 147 } else 148 return Res.takeError(); 149 return Error::success(); 150 } 151 152 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) { 153 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart(); 154 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize(); 155 156 if (Buffer.getBufferSize() & 3) 157 return error("Invalid bitcode signature"); 158 159 // If we have a wrapper header, parse it and ignore the non-bc file contents. 160 // The magic number is 0x0B17C0DE stored in little endian. 161 if (isBitcodeWrapper(BufPtr, BufEnd)) 162 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 163 return error("Invalid bitcode wrapper header"); 164 165 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd)); 166 if (Error Err = hasInvalidBitcodeHeader(Stream)) 167 return std::move(Err); 168 169 return std::move(Stream); 170 } 171 172 /// Convert a string from a record into an std::string, return true on failure. 173 template <typename StrTy> 174 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 175 StrTy &Result) { 176 if (Idx > Record.size()) 177 return true; 178 179 Result.append(Record.begin() + Idx, Record.end()); 180 return false; 181 } 182 183 // Strip all the TBAA attachment for the module. 184 static void stripTBAA(Module *M) { 185 for (auto &F : *M) { 186 if (F.isMaterializable()) 187 continue; 188 for (auto &I : instructions(F)) 189 I.setMetadata(LLVMContext::MD_tbaa, nullptr); 190 } 191 } 192 193 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the 194 /// "epoch" encoded in the bitcode, and return the producer name if any. 195 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) { 196 if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 197 return std::move(Err); 198 199 // Read all the records. 200 SmallVector<uint64_t, 64> Record; 201 202 std::string ProducerIdentification; 203 204 while (true) { 205 BitstreamEntry Entry; 206 if (Error E = Stream.advance().moveInto(Entry)) 207 return std::move(E); 208 209 switch (Entry.Kind) { 210 default: 211 case BitstreamEntry::Error: 212 return error("Malformed block"); 213 case BitstreamEntry::EndBlock: 214 return ProducerIdentification; 215 case BitstreamEntry::Record: 216 // The interesting case. 217 break; 218 } 219 220 // Read a record. 221 Record.clear(); 222 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 223 if (!MaybeBitCode) 224 return MaybeBitCode.takeError(); 225 switch (MaybeBitCode.get()) { 226 default: // Default behavior: reject 227 return error("Invalid value"); 228 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N] 229 convertToString(Record, 0, ProducerIdentification); 230 break; 231 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 232 unsigned epoch = (unsigned)Record[0]; 233 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 234 return error( 235 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 236 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 237 } 238 } 239 } 240 } 241 } 242 243 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) { 244 // We expect a number of well-defined blocks, though we don't necessarily 245 // need to understand them all. 246 while (true) { 247 if (Stream.AtEndOfStream()) 248 return ""; 249 250 BitstreamEntry Entry; 251 if (Error E = Stream.advance().moveInto(Entry)) 252 return std::move(E); 253 254 switch (Entry.Kind) { 255 case BitstreamEntry::EndBlock: 256 case BitstreamEntry::Error: 257 return error("Malformed block"); 258 259 case BitstreamEntry::SubBlock: 260 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) 261 return readIdentificationBlock(Stream); 262 263 // Ignore other sub-blocks. 264 if (Error Err = Stream.SkipBlock()) 265 return std::move(Err); 266 continue; 267 case BitstreamEntry::Record: 268 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 269 return std::move(E); 270 continue; 271 } 272 } 273 } 274 275 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) { 276 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 277 return std::move(Err); 278 279 SmallVector<uint64_t, 64> Record; 280 // Read all the records for this module. 281 282 while (true) { 283 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 284 if (!MaybeEntry) 285 return MaybeEntry.takeError(); 286 BitstreamEntry Entry = MaybeEntry.get(); 287 288 switch (Entry.Kind) { 289 case BitstreamEntry::SubBlock: // Handled for us already. 290 case BitstreamEntry::Error: 291 return error("Malformed block"); 292 case BitstreamEntry::EndBlock: 293 return false; 294 case BitstreamEntry::Record: 295 // The interesting case. 296 break; 297 } 298 299 // Read a record. 300 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 301 if (!MaybeRecord) 302 return MaybeRecord.takeError(); 303 switch (MaybeRecord.get()) { 304 default: 305 break; // Default behavior, ignore unknown content. 306 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 307 std::string S; 308 if (convertToString(Record, 0, S)) 309 return error("Invalid section name record"); 310 // Check for the i386 and other (x86_64, ARM) conventions 311 if (S.find("__DATA,__objc_catlist") != std::string::npos || 312 S.find("__OBJC,__category") != std::string::npos || 313 S.find("__TEXT,__swift") != std::string::npos) 314 return true; 315 break; 316 } 317 } 318 Record.clear(); 319 } 320 llvm_unreachable("Exit infinite loop"); 321 } 322 323 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) { 324 // We expect a number of well-defined blocks, though we don't necessarily 325 // need to understand them all. 326 while (true) { 327 BitstreamEntry Entry; 328 if (Error E = Stream.advance().moveInto(Entry)) 329 return std::move(E); 330 331 switch (Entry.Kind) { 332 case BitstreamEntry::Error: 333 return error("Malformed block"); 334 case BitstreamEntry::EndBlock: 335 return false; 336 337 case BitstreamEntry::SubBlock: 338 if (Entry.ID == bitc::MODULE_BLOCK_ID) 339 return hasObjCCategoryInModule(Stream); 340 341 // Ignore other sub-blocks. 342 if (Error Err = Stream.SkipBlock()) 343 return std::move(Err); 344 continue; 345 346 case BitstreamEntry::Record: 347 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 348 return std::move(E); 349 continue; 350 } 351 } 352 } 353 354 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) { 355 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 356 return std::move(Err); 357 358 SmallVector<uint64_t, 64> Record; 359 360 std::string Triple; 361 362 // Read all the records for this module. 363 while (true) { 364 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 365 if (!MaybeEntry) 366 return MaybeEntry.takeError(); 367 BitstreamEntry Entry = MaybeEntry.get(); 368 369 switch (Entry.Kind) { 370 case BitstreamEntry::SubBlock: // Handled for us already. 371 case BitstreamEntry::Error: 372 return error("Malformed block"); 373 case BitstreamEntry::EndBlock: 374 return Triple; 375 case BitstreamEntry::Record: 376 // The interesting case. 377 break; 378 } 379 380 // Read a record. 381 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 382 if (!MaybeRecord) 383 return MaybeRecord.takeError(); 384 switch (MaybeRecord.get()) { 385 default: break; // Default behavior, ignore unknown content. 386 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 387 std::string S; 388 if (convertToString(Record, 0, S)) 389 return error("Invalid triple record"); 390 Triple = S; 391 break; 392 } 393 } 394 Record.clear(); 395 } 396 llvm_unreachable("Exit infinite loop"); 397 } 398 399 static Expected<std::string> readTriple(BitstreamCursor &Stream) { 400 // We expect a number of well-defined blocks, though we don't necessarily 401 // need to understand them all. 402 while (true) { 403 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 404 if (!MaybeEntry) 405 return MaybeEntry.takeError(); 406 BitstreamEntry Entry = MaybeEntry.get(); 407 408 switch (Entry.Kind) { 409 case BitstreamEntry::Error: 410 return error("Malformed block"); 411 case BitstreamEntry::EndBlock: 412 return ""; 413 414 case BitstreamEntry::SubBlock: 415 if (Entry.ID == bitc::MODULE_BLOCK_ID) 416 return readModuleTriple(Stream); 417 418 // Ignore other sub-blocks. 419 if (Error Err = Stream.SkipBlock()) 420 return std::move(Err); 421 continue; 422 423 case BitstreamEntry::Record: 424 if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 425 continue; 426 else 427 return Skipped.takeError(); 428 } 429 } 430 } 431 432 namespace { 433 434 class BitcodeReaderBase { 435 protected: 436 BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab) 437 : Stream(std::move(Stream)), Strtab(Strtab) { 438 this->Stream.setBlockInfo(&BlockInfo); 439 } 440 441 BitstreamBlockInfo BlockInfo; 442 BitstreamCursor Stream; 443 StringRef Strtab; 444 445 /// In version 2 of the bitcode we store names of global values and comdats in 446 /// a string table rather than in the VST. 447 bool UseStrtab = false; 448 449 Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record); 450 451 /// If this module uses a string table, pop the reference to the string table 452 /// and return the referenced string and the rest of the record. Otherwise 453 /// just return the record itself. 454 std::pair<StringRef, ArrayRef<uint64_t>> 455 readNameFromStrtab(ArrayRef<uint64_t> Record); 456 457 Error readBlockInfo(); 458 459 // Contains an arbitrary and optional string identifying the bitcode producer 460 std::string ProducerIdentification; 461 462 Error error(const Twine &Message); 463 }; 464 465 } // end anonymous namespace 466 467 Error BitcodeReaderBase::error(const Twine &Message) { 468 std::string FullMsg = Message.str(); 469 if (!ProducerIdentification.empty()) 470 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " + 471 LLVM_VERSION_STRING "')"; 472 return ::error(FullMsg); 473 } 474 475 Expected<unsigned> 476 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) { 477 if (Record.empty()) 478 return error("Invalid version record"); 479 unsigned ModuleVersion = Record[0]; 480 if (ModuleVersion > 2) 481 return error("Invalid value"); 482 UseStrtab = ModuleVersion >= 2; 483 return ModuleVersion; 484 } 485 486 std::pair<StringRef, ArrayRef<uint64_t>> 487 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) { 488 if (!UseStrtab) 489 return {"", Record}; 490 // Invalid reference. Let the caller complain about the record being empty. 491 if (Record[0] + Record[1] > Strtab.size()) 492 return {"", {}}; 493 return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)}; 494 } 495 496 namespace { 497 498 /// This represents a constant expression or constant aggregate using a custom 499 /// structure internal to the bitcode reader. Later, this structure will be 500 /// expanded by materializeValue() either into a constant expression/aggregate, 501 /// or into an instruction sequence at the point of use. This allows us to 502 /// upgrade bitcode using constant expressions even if this kind of constant 503 /// expression is no longer supported. 504 class BitcodeConstant final : public Value, 505 TrailingObjects<BitcodeConstant, unsigned> { 506 friend TrailingObjects; 507 508 // Value subclass ID: Pick largest possible value to avoid any clashes. 509 static constexpr uint8_t SubclassID = 255; 510 511 public: 512 // Opcodes used for non-expressions. This includes constant aggregates 513 // (struct, array, vector) that might need expansion, as well as non-leaf 514 // constants that don't need expansion (no_cfi, dso_local, blockaddress), 515 // but still go through BitcodeConstant to avoid different uselist orders 516 // between the two cases. 517 static constexpr uint8_t ConstantStructOpcode = 255; 518 static constexpr uint8_t ConstantArrayOpcode = 254; 519 static constexpr uint8_t ConstantVectorOpcode = 253; 520 static constexpr uint8_t NoCFIOpcode = 252; 521 static constexpr uint8_t DSOLocalEquivalentOpcode = 251; 522 static constexpr uint8_t BlockAddressOpcode = 250; 523 static constexpr uint8_t ConstantPtrAuthOpcode = 249; 524 static constexpr uint8_t FirstSpecialOpcode = ConstantPtrAuthOpcode; 525 526 // Separate struct to make passing different number of parameters to 527 // BitcodeConstant::create() more convenient. 528 struct ExtraInfo { 529 uint8_t Opcode; 530 uint8_t Flags; 531 unsigned BlockAddressBB = 0; 532 Type *SrcElemTy = nullptr; 533 std::optional<ConstantRange> InRange; 534 535 ExtraInfo(uint8_t Opcode, uint8_t Flags = 0, Type *SrcElemTy = nullptr, 536 std::optional<ConstantRange> InRange = std::nullopt) 537 : Opcode(Opcode), Flags(Flags), SrcElemTy(SrcElemTy), 538 InRange(std::move(InRange)) {} 539 540 ExtraInfo(uint8_t Opcode, uint8_t Flags, unsigned BlockAddressBB) 541 : Opcode(Opcode), Flags(Flags), BlockAddressBB(BlockAddressBB) {} 542 }; 543 544 uint8_t Opcode; 545 uint8_t Flags; 546 unsigned NumOperands; 547 unsigned BlockAddressBB; 548 Type *SrcElemTy; // GEP source element type. 549 std::optional<ConstantRange> InRange; // GEP inrange attribute. 550 551 private: 552 BitcodeConstant(Type *Ty, const ExtraInfo &Info, ArrayRef<unsigned> OpIDs) 553 : Value(Ty, SubclassID), Opcode(Info.Opcode), Flags(Info.Flags), 554 NumOperands(OpIDs.size()), BlockAddressBB(Info.BlockAddressBB), 555 SrcElemTy(Info.SrcElemTy), InRange(Info.InRange) { 556 std::uninitialized_copy(OpIDs.begin(), OpIDs.end(), 557 getTrailingObjects<unsigned>()); 558 } 559 560 BitcodeConstant &operator=(const BitcodeConstant &) = delete; 561 562 public: 563 static BitcodeConstant *create(BumpPtrAllocator &A, Type *Ty, 564 const ExtraInfo &Info, 565 ArrayRef<unsigned> OpIDs) { 566 void *Mem = A.Allocate(totalSizeToAlloc<unsigned>(OpIDs.size()), 567 alignof(BitcodeConstant)); 568 return new (Mem) BitcodeConstant(Ty, Info, OpIDs); 569 } 570 571 static bool classof(const Value *V) { return V->getValueID() == SubclassID; } 572 573 ArrayRef<unsigned> getOperandIDs() const { 574 return ArrayRef(getTrailingObjects<unsigned>(), NumOperands); 575 } 576 577 std::optional<ConstantRange> getInRange() const { 578 assert(Opcode == Instruction::GetElementPtr); 579 return InRange; 580 } 581 582 const char *getOpcodeName() const { 583 return Instruction::getOpcodeName(Opcode); 584 } 585 }; 586 587 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer { 588 LLVMContext &Context; 589 Module *TheModule = nullptr; 590 // Next offset to start scanning for lazy parsing of function bodies. 591 uint64_t NextUnreadBit = 0; 592 // Last function offset found in the VST. 593 uint64_t LastFunctionBlockBit = 0; 594 bool SeenValueSymbolTable = false; 595 uint64_t VSTOffset = 0; 596 597 std::vector<std::string> SectionTable; 598 std::vector<std::string> GCTable; 599 600 std::vector<Type *> TypeList; 601 /// Track type IDs of contained types. Order is the same as the contained 602 /// types of a Type*. This is used during upgrades of typed pointer IR in 603 /// opaque pointer mode. 604 DenseMap<unsigned, SmallVector<unsigned, 1>> ContainedTypeIDs; 605 /// In some cases, we need to create a type ID for a type that was not 606 /// explicitly encoded in the bitcode, or we don't know about at the current 607 /// point. For example, a global may explicitly encode the value type ID, but 608 /// not have a type ID for the pointer to value type, for which we create a 609 /// virtual type ID instead. This map stores the new type ID that was created 610 /// for the given pair of Type and contained type ID. 611 DenseMap<std::pair<Type *, unsigned>, unsigned> VirtualTypeIDs; 612 DenseMap<Function *, unsigned> FunctionTypeIDs; 613 /// Allocator for BitcodeConstants. This should come before ValueList, 614 /// because the ValueList might hold ValueHandles to these constants, so 615 /// ValueList must be destroyed before Alloc. 616 BumpPtrAllocator Alloc; 617 BitcodeReaderValueList ValueList; 618 std::optional<MetadataLoader> MDLoader; 619 std::vector<Comdat *> ComdatList; 620 DenseSet<GlobalObject *> ImplicitComdatObjects; 621 SmallVector<Instruction *, 64> InstructionList; 622 623 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits; 624 std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInits; 625 626 struct FunctionOperandInfo { 627 Function *F; 628 unsigned PersonalityFn; 629 unsigned Prefix; 630 unsigned Prologue; 631 }; 632 std::vector<FunctionOperandInfo> FunctionOperands; 633 634 /// The set of attributes by index. Index zero in the file is for null, and 635 /// is thus not represented here. As such all indices are off by one. 636 std::vector<AttributeList> MAttributes; 637 638 /// The set of attribute groups. 639 std::map<unsigned, AttributeList> MAttributeGroups; 640 641 /// While parsing a function body, this is a list of the basic blocks for the 642 /// function. 643 std::vector<BasicBlock*> FunctionBBs; 644 645 // When reading the module header, this list is populated with functions that 646 // have bodies later in the file. 647 std::vector<Function*> FunctionsWithBodies; 648 649 // When intrinsic functions are encountered which require upgrading they are 650 // stored here with their replacement function. 651 using UpdatedIntrinsicMap = DenseMap<Function *, Function *>; 652 UpdatedIntrinsicMap UpgradedIntrinsics; 653 654 // Several operations happen after the module header has been read, but 655 // before function bodies are processed. This keeps track of whether 656 // we've done this yet. 657 bool SeenFirstFunctionBody = false; 658 659 /// When function bodies are initially scanned, this map contains info about 660 /// where to find deferred function body in the stream. 661 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 662 663 /// When Metadata block is initially scanned when parsing the module, we may 664 /// choose to defer parsing of the metadata. This vector contains info about 665 /// which Metadata blocks are deferred. 666 std::vector<uint64_t> DeferredMetadataInfo; 667 668 /// These are basic blocks forward-referenced by block addresses. They are 669 /// inserted lazily into functions when they're loaded. The basic block ID is 670 /// its index into the vector. 671 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 672 std::deque<Function *> BasicBlockFwdRefQueue; 673 674 /// These are Functions that contain BlockAddresses which refer a different 675 /// Function. When parsing the different Function, queue Functions that refer 676 /// to the different Function. Those Functions must be materialized in order 677 /// to resolve their BlockAddress constants before the different Function 678 /// gets moved into another Module. 679 std::vector<Function *> BackwardRefFunctions; 680 681 /// Indicates that we are using a new encoding for instruction operands where 682 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 683 /// instruction number, for a more compact encoding. Some instruction 684 /// operands are not relative to the instruction ID: basic block numbers, and 685 /// types. Once the old style function blocks have been phased out, we would 686 /// not need this flag. 687 bool UseRelativeIDs = false; 688 689 /// True if all functions will be materialized, negating the need to process 690 /// (e.g.) blockaddress forward references. 691 bool WillMaterializeAllForwardRefs = false; 692 693 /// Tracks whether we have seen debug intrinsics or records in this bitcode; 694 /// seeing both in a single module is currently a fatal error. 695 bool SeenDebugIntrinsic = false; 696 bool SeenDebugRecord = false; 697 698 bool StripDebugInfo = false; 699 TBAAVerifier TBAAVerifyHelper; 700 701 std::vector<std::string> BundleTags; 702 SmallVector<SyncScope::ID, 8> SSIDs; 703 704 std::optional<ValueTypeCallbackTy> ValueTypeCallback; 705 706 public: 707 BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 708 StringRef ProducerIdentification, LLVMContext &Context); 709 710 Error materializeForwardReferencedFunctions(); 711 712 Error materialize(GlobalValue *GV) override; 713 Error materializeModule() override; 714 std::vector<StructType *> getIdentifiedStructTypes() const override; 715 716 /// Main interface to parsing a bitcode buffer. 717 /// \returns true if an error occurred. 718 Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 719 bool IsImporting, ParserCallbacks Callbacks = {}); 720 721 static uint64_t decodeSignRotatedValue(uint64_t V); 722 723 /// Materialize any deferred Metadata block. 724 Error materializeMetadata() override; 725 726 void setStripDebugInfo() override; 727 728 private: 729 std::vector<StructType *> IdentifiedStructTypes; 730 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 731 StructType *createIdentifiedStructType(LLVMContext &Context); 732 733 static constexpr unsigned InvalidTypeID = ~0u; 734 735 Type *getTypeByID(unsigned ID); 736 Type *getPtrElementTypeByID(unsigned ID); 737 unsigned getContainedTypeID(unsigned ID, unsigned Idx = 0); 738 unsigned getVirtualTypeID(Type *Ty, ArrayRef<unsigned> ContainedTypeIDs = {}); 739 740 void callValueTypeCallback(Value *F, unsigned TypeID); 741 Expected<Value *> materializeValue(unsigned ValID, BasicBlock *InsertBB); 742 Expected<Constant *> getValueForInitializer(unsigned ID); 743 744 Value *getFnValueByID(unsigned ID, Type *Ty, unsigned TyID, 745 BasicBlock *ConstExprInsertBB) { 746 if (Ty && Ty->isMetadataTy()) 747 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 748 return ValueList.getValueFwdRef(ID, Ty, TyID, ConstExprInsertBB); 749 } 750 751 Metadata *getFnMetadataByID(unsigned ID) { 752 return MDLoader->getMetadataFwdRefOrLoad(ID); 753 } 754 755 BasicBlock *getBasicBlock(unsigned ID) const { 756 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 757 return FunctionBBs[ID]; 758 } 759 760 AttributeList getAttributes(unsigned i) const { 761 if (i-1 < MAttributes.size()) 762 return MAttributes[i-1]; 763 return AttributeList(); 764 } 765 766 /// Read a value/type pair out of the specified record from slot 'Slot'. 767 /// Increment Slot past the number of slots used in the record. Return true on 768 /// failure. 769 bool getValueTypePair(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 770 unsigned InstNum, Value *&ResVal, unsigned &TypeID, 771 BasicBlock *ConstExprInsertBB) { 772 if (Slot == Record.size()) return true; 773 unsigned ValNo = (unsigned)Record[Slot++]; 774 // Adjust the ValNo, if it was encoded relative to the InstNum. 775 if (UseRelativeIDs) 776 ValNo = InstNum - ValNo; 777 if (ValNo < InstNum) { 778 // If this is not a forward reference, just return the value we already 779 // have. 780 TypeID = ValueList.getTypeID(ValNo); 781 ResVal = getFnValueByID(ValNo, nullptr, TypeID, ConstExprInsertBB); 782 assert((!ResVal || ResVal->getType() == getTypeByID(TypeID)) && 783 "Incorrect type ID stored for value"); 784 return ResVal == nullptr; 785 } 786 if (Slot == Record.size()) 787 return true; 788 789 TypeID = (unsigned)Record[Slot++]; 790 ResVal = getFnValueByID(ValNo, getTypeByID(TypeID), TypeID, 791 ConstExprInsertBB); 792 return ResVal == nullptr; 793 } 794 795 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 796 /// past the number of slots used by the value in the record. Return true if 797 /// there is an error. 798 bool popValue(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 799 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal, 800 BasicBlock *ConstExprInsertBB) { 801 if (getValue(Record, Slot, InstNum, Ty, TyID, ResVal, ConstExprInsertBB)) 802 return true; 803 // All values currently take a single record slot. 804 ++Slot; 805 return false; 806 } 807 808 /// Like popValue, but does not increment the Slot number. 809 bool getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 810 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal, 811 BasicBlock *ConstExprInsertBB) { 812 ResVal = getValue(Record, Slot, InstNum, Ty, TyID, ConstExprInsertBB); 813 return ResVal == nullptr; 814 } 815 816 /// Version of getValue that returns ResVal directly, or 0 if there is an 817 /// error. 818 Value *getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 819 unsigned InstNum, Type *Ty, unsigned TyID, 820 BasicBlock *ConstExprInsertBB) { 821 if (Slot == Record.size()) return nullptr; 822 unsigned ValNo = (unsigned)Record[Slot]; 823 // Adjust the ValNo, if it was encoded relative to the InstNum. 824 if (UseRelativeIDs) 825 ValNo = InstNum - ValNo; 826 return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB); 827 } 828 829 /// Like getValue, but decodes signed VBRs. 830 Value *getValueSigned(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 831 unsigned InstNum, Type *Ty, unsigned TyID, 832 BasicBlock *ConstExprInsertBB) { 833 if (Slot == Record.size()) return nullptr; 834 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 835 // Adjust the ValNo, if it was encoded relative to the InstNum. 836 if (UseRelativeIDs) 837 ValNo = InstNum - ValNo; 838 return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB); 839 } 840 841 Expected<ConstantRange> readConstantRange(ArrayRef<uint64_t> Record, 842 unsigned &OpNum, 843 unsigned BitWidth) { 844 if (Record.size() - OpNum < 2) 845 return error("Too few records for range"); 846 if (BitWidth > 64) { 847 unsigned LowerActiveWords = Record[OpNum]; 848 unsigned UpperActiveWords = Record[OpNum++] >> 32; 849 if (Record.size() - OpNum < LowerActiveWords + UpperActiveWords) 850 return error("Too few records for range"); 851 APInt Lower = 852 readWideAPInt(ArrayRef(&Record[OpNum], LowerActiveWords), BitWidth); 853 OpNum += LowerActiveWords; 854 APInt Upper = 855 readWideAPInt(ArrayRef(&Record[OpNum], UpperActiveWords), BitWidth); 856 OpNum += UpperActiveWords; 857 return ConstantRange(Lower, Upper); 858 } else { 859 int64_t Start = BitcodeReader::decodeSignRotatedValue(Record[OpNum++]); 860 int64_t End = BitcodeReader::decodeSignRotatedValue(Record[OpNum++]); 861 return ConstantRange(APInt(BitWidth, Start), APInt(BitWidth, End)); 862 } 863 } 864 865 Expected<ConstantRange> 866 readBitWidthAndConstantRange(ArrayRef<uint64_t> Record, unsigned &OpNum) { 867 if (Record.size() - OpNum < 1) 868 return error("Too few records for range"); 869 unsigned BitWidth = Record[OpNum++]; 870 return readConstantRange(Record, OpNum, BitWidth); 871 } 872 873 /// Upgrades old-style typeless byval/sret/inalloca attributes by adding the 874 /// corresponding argument's pointee type. Also upgrades intrinsics that now 875 /// require an elementtype attribute. 876 Error propagateAttributeTypes(CallBase *CB, ArrayRef<unsigned> ArgsTys); 877 878 /// Converts alignment exponent (i.e. power of two (or zero)) to the 879 /// corresponding alignment to use. If alignment is too large, returns 880 /// a corresponding error code. 881 Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment); 882 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 883 Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false, 884 ParserCallbacks Callbacks = {}); 885 886 Error parseComdatRecord(ArrayRef<uint64_t> Record); 887 Error parseGlobalVarRecord(ArrayRef<uint64_t> Record); 888 Error parseFunctionRecord(ArrayRef<uint64_t> Record); 889 Error parseGlobalIndirectSymbolRecord(unsigned BitCode, 890 ArrayRef<uint64_t> Record); 891 892 Error parseAttributeBlock(); 893 Error parseAttributeGroupBlock(); 894 Error parseTypeTable(); 895 Error parseTypeTableBody(); 896 Error parseOperandBundleTags(); 897 Error parseSyncScopeNames(); 898 899 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 900 unsigned NameIndex, Triple &TT); 901 void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F, 902 ArrayRef<uint64_t> Record); 903 Error parseValueSymbolTable(uint64_t Offset = 0); 904 Error parseGlobalValueSymbolTable(); 905 Error parseConstants(); 906 Error rememberAndSkipFunctionBodies(); 907 Error rememberAndSkipFunctionBody(); 908 /// Save the positions of the Metadata blocks and skip parsing the blocks. 909 Error rememberAndSkipMetadata(); 910 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType); 911 Error parseFunctionBody(Function *F); 912 Error globalCleanup(); 913 Error resolveGlobalAndIndirectSymbolInits(); 914 Error parseUseLists(); 915 Error findFunctionInStream( 916 Function *F, 917 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 918 919 SyncScope::ID getDecodedSyncScopeID(unsigned Val); 920 }; 921 922 /// Class to manage reading and parsing function summary index bitcode 923 /// files/sections. 924 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase { 925 /// The module index built during parsing. 926 ModuleSummaryIndex &TheIndex; 927 928 /// Indicates whether we have encountered a global value summary section 929 /// yet during parsing. 930 bool SeenGlobalValSummary = false; 931 932 /// Indicates whether we have already parsed the VST, used for error checking. 933 bool SeenValueSymbolTable = false; 934 935 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 936 /// Used to enable on-demand parsing of the VST. 937 uint64_t VSTOffset = 0; 938 939 // Map to save ValueId to ValueInfo association that was recorded in the 940 // ValueSymbolTable. It is used after the VST is parsed to convert 941 // call graph edges read from the function summary from referencing 942 // callees by their ValueId to using the ValueInfo instead, which is how 943 // they are recorded in the summary index being built. 944 // We save a GUID which refers to the same global as the ValueInfo, but 945 // ignoring the linkage, i.e. for values other than local linkage they are 946 // identical (this is the second tuple member). 947 // The third tuple member is the real GUID of the ValueInfo. 948 DenseMap<unsigned, 949 std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID>> 950 ValueIdToValueInfoMap; 951 952 /// Map populated during module path string table parsing, from the 953 /// module ID to a string reference owned by the index's module 954 /// path string table, used to correlate with combined index 955 /// summary records. 956 DenseMap<uint64_t, StringRef> ModuleIdMap; 957 958 /// Original source file name recorded in a bitcode record. 959 std::string SourceFileName; 960 961 /// The string identifier given to this module by the client, normally the 962 /// path to the bitcode file. 963 StringRef ModulePath; 964 965 /// Callback to ask whether a symbol is the prevailing copy when invoked 966 /// during combined index building. 967 std::function<bool(GlobalValue::GUID)> IsPrevailing; 968 969 /// Saves the stack ids from the STACK_IDS record to consult when adding stack 970 /// ids from the lists in the callsite and alloc entries to the index. 971 std::vector<uint64_t> StackIds; 972 973 public: 974 ModuleSummaryIndexBitcodeReader( 975 BitstreamCursor Stream, StringRef Strtab, ModuleSummaryIndex &TheIndex, 976 StringRef ModulePath, 977 std::function<bool(GlobalValue::GUID)> IsPrevailing = nullptr); 978 979 Error parseModule(); 980 981 private: 982 void setValueGUID(uint64_t ValueID, StringRef ValueName, 983 GlobalValue::LinkageTypes Linkage, 984 StringRef SourceFileName); 985 Error parseValueSymbolTable( 986 uint64_t Offset, 987 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 988 std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record); 989 std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record, 990 bool IsOldProfileFormat, 991 bool HasProfile, 992 bool HasRelBF); 993 Error parseEntireSummary(unsigned ID); 994 Error parseModuleStringTable(); 995 void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record); 996 void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot, 997 TypeIdCompatibleVtableInfo &TypeId); 998 std::vector<FunctionSummary::ParamAccess> 999 parseParamAccesses(ArrayRef<uint64_t> Record); 1000 1001 template <bool AllowNullValueInfo = false> 1002 std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID> 1003 getValueInfoFromValueId(unsigned ValueId); 1004 1005 void addThisModule(); 1006 ModuleSummaryIndex::ModuleInfo *getThisModule(); 1007 }; 1008 1009 } // end anonymous namespace 1010 1011 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx, 1012 Error Err) { 1013 if (Err) { 1014 std::error_code EC; 1015 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) { 1016 EC = EIB.convertToErrorCode(); 1017 Ctx.emitError(EIB.message()); 1018 }); 1019 return EC; 1020 } 1021 return std::error_code(); 1022 } 1023 1024 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 1025 StringRef ProducerIdentification, 1026 LLVMContext &Context) 1027 : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context), 1028 ValueList(this->Stream.SizeInBytes(), 1029 [this](unsigned ValID, BasicBlock *InsertBB) { 1030 return materializeValue(ValID, InsertBB); 1031 }) { 1032 this->ProducerIdentification = std::string(ProducerIdentification); 1033 } 1034 1035 Error BitcodeReader::materializeForwardReferencedFunctions() { 1036 if (WillMaterializeAllForwardRefs) 1037 return Error::success(); 1038 1039 // Prevent recursion. 1040 WillMaterializeAllForwardRefs = true; 1041 1042 while (!BasicBlockFwdRefQueue.empty()) { 1043 Function *F = BasicBlockFwdRefQueue.front(); 1044 BasicBlockFwdRefQueue.pop_front(); 1045 assert(F && "Expected valid function"); 1046 if (!BasicBlockFwdRefs.count(F)) 1047 // Already materialized. 1048 continue; 1049 1050 // Check for a function that isn't materializable to prevent an infinite 1051 // loop. When parsing a blockaddress stored in a global variable, there 1052 // isn't a trivial way to check if a function will have a body without a 1053 // linear search through FunctionsWithBodies, so just check it here. 1054 if (!F->isMaterializable()) 1055 return error("Never resolved function from blockaddress"); 1056 1057 // Try to materialize F. 1058 if (Error Err = materialize(F)) 1059 return Err; 1060 } 1061 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 1062 1063 for (Function *F : BackwardRefFunctions) 1064 if (Error Err = materialize(F)) 1065 return Err; 1066 BackwardRefFunctions.clear(); 1067 1068 // Reset state. 1069 WillMaterializeAllForwardRefs = false; 1070 return Error::success(); 1071 } 1072 1073 //===----------------------------------------------------------------------===// 1074 // Helper functions to implement forward reference resolution, etc. 1075 //===----------------------------------------------------------------------===// 1076 1077 static bool hasImplicitComdat(size_t Val) { 1078 switch (Val) { 1079 default: 1080 return false; 1081 case 1: // Old WeakAnyLinkage 1082 case 4: // Old LinkOnceAnyLinkage 1083 case 10: // Old WeakODRLinkage 1084 case 11: // Old LinkOnceODRLinkage 1085 return true; 1086 } 1087 } 1088 1089 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 1090 switch (Val) { 1091 default: // Map unknown/new linkages to external 1092 case 0: 1093 return GlobalValue::ExternalLinkage; 1094 case 2: 1095 return GlobalValue::AppendingLinkage; 1096 case 3: 1097 return GlobalValue::InternalLinkage; 1098 case 5: 1099 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 1100 case 6: 1101 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 1102 case 7: 1103 return GlobalValue::ExternalWeakLinkage; 1104 case 8: 1105 return GlobalValue::CommonLinkage; 1106 case 9: 1107 return GlobalValue::PrivateLinkage; 1108 case 12: 1109 return GlobalValue::AvailableExternallyLinkage; 1110 case 13: 1111 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 1112 case 14: 1113 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 1114 case 15: 1115 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 1116 case 1: // Old value with implicit comdat. 1117 case 16: 1118 return GlobalValue::WeakAnyLinkage; 1119 case 10: // Old value with implicit comdat. 1120 case 17: 1121 return GlobalValue::WeakODRLinkage; 1122 case 4: // Old value with implicit comdat. 1123 case 18: 1124 return GlobalValue::LinkOnceAnyLinkage; 1125 case 11: // Old value with implicit comdat. 1126 case 19: 1127 return GlobalValue::LinkOnceODRLinkage; 1128 } 1129 } 1130 1131 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) { 1132 FunctionSummary::FFlags Flags; 1133 Flags.ReadNone = RawFlags & 0x1; 1134 Flags.ReadOnly = (RawFlags >> 1) & 0x1; 1135 Flags.NoRecurse = (RawFlags >> 2) & 0x1; 1136 Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1; 1137 Flags.NoInline = (RawFlags >> 4) & 0x1; 1138 Flags.AlwaysInline = (RawFlags >> 5) & 0x1; 1139 Flags.NoUnwind = (RawFlags >> 6) & 0x1; 1140 Flags.MayThrow = (RawFlags >> 7) & 0x1; 1141 Flags.HasUnknownCall = (RawFlags >> 8) & 0x1; 1142 Flags.MustBeUnreachable = (RawFlags >> 9) & 0x1; 1143 return Flags; 1144 } 1145 1146 // Decode the flags for GlobalValue in the summary. The bits for each attribute: 1147 // 1148 // linkage: [0,4), notEligibleToImport: 4, live: 5, local: 6, canAutoHide: 7, 1149 // visibility: [8, 10). 1150 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 1151 uint64_t Version) { 1152 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 1153 // like getDecodedLinkage() above. Any future change to the linkage enum and 1154 // to getDecodedLinkage() will need to be taken into account here as above. 1155 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 1156 auto Visibility = GlobalValue::VisibilityTypes((RawFlags >> 8) & 3); // 2 bits 1157 auto IK = GlobalValueSummary::ImportKind((RawFlags >> 10) & 1); // 1 bit 1158 RawFlags = RawFlags >> 4; 1159 bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3; 1160 // The Live flag wasn't introduced until version 3. For dead stripping 1161 // to work correctly on earlier versions, we must conservatively treat all 1162 // values as live. 1163 bool Live = (RawFlags & 0x2) || Version < 3; 1164 bool Local = (RawFlags & 0x4); 1165 bool AutoHide = (RawFlags & 0x8); 1166 1167 return GlobalValueSummary::GVFlags(Linkage, Visibility, NotEligibleToImport, 1168 Live, Local, AutoHide, IK); 1169 } 1170 1171 // Decode the flags for GlobalVariable in the summary 1172 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) { 1173 return GlobalVarSummary::GVarFlags( 1174 (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false, 1175 (RawFlags & 0x4) ? true : false, 1176 (GlobalObject::VCallVisibility)(RawFlags >> 3)); 1177 } 1178 1179 static std::pair<CalleeInfo::HotnessType, bool> 1180 getDecodedHotnessCallEdgeInfo(uint64_t RawFlags) { 1181 CalleeInfo::HotnessType Hotness = 1182 static_cast<CalleeInfo::HotnessType>(RawFlags & 0x7); // 3 bits 1183 bool HasTailCall = (RawFlags & 0x8); // 1 bit 1184 return {Hotness, HasTailCall}; 1185 } 1186 1187 static void getDecodedRelBFCallEdgeInfo(uint64_t RawFlags, uint64_t &RelBF, 1188 bool &HasTailCall) { 1189 static constexpr uint64_t RelBlockFreqMask = 1190 (1 << CalleeInfo::RelBlockFreqBits) - 1; 1191 RelBF = RawFlags & RelBlockFreqMask; // RelBlockFreqBits bits 1192 HasTailCall = (RawFlags & (1 << CalleeInfo::RelBlockFreqBits)); // 1 bit 1193 } 1194 1195 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 1196 switch (Val) { 1197 default: // Map unknown visibilities to default. 1198 case 0: return GlobalValue::DefaultVisibility; 1199 case 1: return GlobalValue::HiddenVisibility; 1200 case 2: return GlobalValue::ProtectedVisibility; 1201 } 1202 } 1203 1204 static GlobalValue::DLLStorageClassTypes 1205 getDecodedDLLStorageClass(unsigned Val) { 1206 switch (Val) { 1207 default: // Map unknown values to default. 1208 case 0: return GlobalValue::DefaultStorageClass; 1209 case 1: return GlobalValue::DLLImportStorageClass; 1210 case 2: return GlobalValue::DLLExportStorageClass; 1211 } 1212 } 1213 1214 static bool getDecodedDSOLocal(unsigned Val) { 1215 switch(Val) { 1216 default: // Map unknown values to preemptable. 1217 case 0: return false; 1218 case 1: return true; 1219 } 1220 } 1221 1222 static std::optional<CodeModel::Model> getDecodedCodeModel(unsigned Val) { 1223 switch (Val) { 1224 case 1: 1225 return CodeModel::Tiny; 1226 case 2: 1227 return CodeModel::Small; 1228 case 3: 1229 return CodeModel::Kernel; 1230 case 4: 1231 return CodeModel::Medium; 1232 case 5: 1233 return CodeModel::Large; 1234 } 1235 1236 return {}; 1237 } 1238 1239 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 1240 switch (Val) { 1241 case 0: return GlobalVariable::NotThreadLocal; 1242 default: // Map unknown non-zero value to general dynamic. 1243 case 1: return GlobalVariable::GeneralDynamicTLSModel; 1244 case 2: return GlobalVariable::LocalDynamicTLSModel; 1245 case 3: return GlobalVariable::InitialExecTLSModel; 1246 case 4: return GlobalVariable::LocalExecTLSModel; 1247 } 1248 } 1249 1250 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { 1251 switch (Val) { 1252 default: // Map unknown to UnnamedAddr::None. 1253 case 0: return GlobalVariable::UnnamedAddr::None; 1254 case 1: return GlobalVariable::UnnamedAddr::Global; 1255 case 2: return GlobalVariable::UnnamedAddr::Local; 1256 } 1257 } 1258 1259 static int getDecodedCastOpcode(unsigned Val) { 1260 switch (Val) { 1261 default: return -1; 1262 case bitc::CAST_TRUNC : return Instruction::Trunc; 1263 case bitc::CAST_ZEXT : return Instruction::ZExt; 1264 case bitc::CAST_SEXT : return Instruction::SExt; 1265 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 1266 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 1267 case bitc::CAST_UITOFP : return Instruction::UIToFP; 1268 case bitc::CAST_SITOFP : return Instruction::SIToFP; 1269 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 1270 case bitc::CAST_FPEXT : return Instruction::FPExt; 1271 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 1272 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 1273 case bitc::CAST_BITCAST : return Instruction::BitCast; 1274 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 1275 } 1276 } 1277 1278 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) { 1279 bool IsFP = Ty->isFPOrFPVectorTy(); 1280 // UnOps are only valid for int/fp or vector of int/fp types 1281 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1282 return -1; 1283 1284 switch (Val) { 1285 default: 1286 return -1; 1287 case bitc::UNOP_FNEG: 1288 return IsFP ? Instruction::FNeg : -1; 1289 } 1290 } 1291 1292 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 1293 bool IsFP = Ty->isFPOrFPVectorTy(); 1294 // BinOps are only valid for int/fp or vector of int/fp types 1295 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1296 return -1; 1297 1298 switch (Val) { 1299 default: 1300 return -1; 1301 case bitc::BINOP_ADD: 1302 return IsFP ? Instruction::FAdd : Instruction::Add; 1303 case bitc::BINOP_SUB: 1304 return IsFP ? Instruction::FSub : Instruction::Sub; 1305 case bitc::BINOP_MUL: 1306 return IsFP ? Instruction::FMul : Instruction::Mul; 1307 case bitc::BINOP_UDIV: 1308 return IsFP ? -1 : Instruction::UDiv; 1309 case bitc::BINOP_SDIV: 1310 return IsFP ? Instruction::FDiv : Instruction::SDiv; 1311 case bitc::BINOP_UREM: 1312 return IsFP ? -1 : Instruction::URem; 1313 case bitc::BINOP_SREM: 1314 return IsFP ? Instruction::FRem : Instruction::SRem; 1315 case bitc::BINOP_SHL: 1316 return IsFP ? -1 : Instruction::Shl; 1317 case bitc::BINOP_LSHR: 1318 return IsFP ? -1 : Instruction::LShr; 1319 case bitc::BINOP_ASHR: 1320 return IsFP ? -1 : Instruction::AShr; 1321 case bitc::BINOP_AND: 1322 return IsFP ? -1 : Instruction::And; 1323 case bitc::BINOP_OR: 1324 return IsFP ? -1 : Instruction::Or; 1325 case bitc::BINOP_XOR: 1326 return IsFP ? -1 : Instruction::Xor; 1327 } 1328 } 1329 1330 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 1331 switch (Val) { 1332 default: return AtomicRMWInst::BAD_BINOP; 1333 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 1334 case bitc::RMW_ADD: return AtomicRMWInst::Add; 1335 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 1336 case bitc::RMW_AND: return AtomicRMWInst::And; 1337 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 1338 case bitc::RMW_OR: return AtomicRMWInst::Or; 1339 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 1340 case bitc::RMW_MAX: return AtomicRMWInst::Max; 1341 case bitc::RMW_MIN: return AtomicRMWInst::Min; 1342 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 1343 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 1344 case bitc::RMW_FADD: return AtomicRMWInst::FAdd; 1345 case bitc::RMW_FSUB: return AtomicRMWInst::FSub; 1346 case bitc::RMW_FMAX: return AtomicRMWInst::FMax; 1347 case bitc::RMW_FMIN: return AtomicRMWInst::FMin; 1348 case bitc::RMW_UINC_WRAP: 1349 return AtomicRMWInst::UIncWrap; 1350 case bitc::RMW_UDEC_WRAP: 1351 return AtomicRMWInst::UDecWrap; 1352 } 1353 } 1354 1355 static AtomicOrdering getDecodedOrdering(unsigned Val) { 1356 switch (Val) { 1357 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 1358 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 1359 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 1360 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 1361 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 1362 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 1363 default: // Map unknown orderings to sequentially-consistent. 1364 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 1365 } 1366 } 1367 1368 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 1369 switch (Val) { 1370 default: // Map unknown selection kinds to any. 1371 case bitc::COMDAT_SELECTION_KIND_ANY: 1372 return Comdat::Any; 1373 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 1374 return Comdat::ExactMatch; 1375 case bitc::COMDAT_SELECTION_KIND_LARGEST: 1376 return Comdat::Largest; 1377 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 1378 return Comdat::NoDeduplicate; 1379 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 1380 return Comdat::SameSize; 1381 } 1382 } 1383 1384 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 1385 FastMathFlags FMF; 1386 if (0 != (Val & bitc::UnsafeAlgebra)) 1387 FMF.setFast(); 1388 if (0 != (Val & bitc::AllowReassoc)) 1389 FMF.setAllowReassoc(); 1390 if (0 != (Val & bitc::NoNaNs)) 1391 FMF.setNoNaNs(); 1392 if (0 != (Val & bitc::NoInfs)) 1393 FMF.setNoInfs(); 1394 if (0 != (Val & bitc::NoSignedZeros)) 1395 FMF.setNoSignedZeros(); 1396 if (0 != (Val & bitc::AllowReciprocal)) 1397 FMF.setAllowReciprocal(); 1398 if (0 != (Val & bitc::AllowContract)) 1399 FMF.setAllowContract(true); 1400 if (0 != (Val & bitc::ApproxFunc)) 1401 FMF.setApproxFunc(); 1402 return FMF; 1403 } 1404 1405 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) { 1406 // A GlobalValue with local linkage cannot have a DLL storage class. 1407 if (GV->hasLocalLinkage()) 1408 return; 1409 switch (Val) { 1410 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 1411 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 1412 } 1413 } 1414 1415 Type *BitcodeReader::getTypeByID(unsigned ID) { 1416 // The type table size is always specified correctly. 1417 if (ID >= TypeList.size()) 1418 return nullptr; 1419 1420 if (Type *Ty = TypeList[ID]) 1421 return Ty; 1422 1423 // If we have a forward reference, the only possible case is when it is to a 1424 // named struct. Just create a placeholder for now. 1425 return TypeList[ID] = createIdentifiedStructType(Context); 1426 } 1427 1428 unsigned BitcodeReader::getContainedTypeID(unsigned ID, unsigned Idx) { 1429 auto It = ContainedTypeIDs.find(ID); 1430 if (It == ContainedTypeIDs.end()) 1431 return InvalidTypeID; 1432 1433 if (Idx >= It->second.size()) 1434 return InvalidTypeID; 1435 1436 return It->second[Idx]; 1437 } 1438 1439 Type *BitcodeReader::getPtrElementTypeByID(unsigned ID) { 1440 if (ID >= TypeList.size()) 1441 return nullptr; 1442 1443 Type *Ty = TypeList[ID]; 1444 if (!Ty->isPointerTy()) 1445 return nullptr; 1446 1447 return getTypeByID(getContainedTypeID(ID, 0)); 1448 } 1449 1450 unsigned BitcodeReader::getVirtualTypeID(Type *Ty, 1451 ArrayRef<unsigned> ChildTypeIDs) { 1452 unsigned ChildTypeID = ChildTypeIDs.empty() ? InvalidTypeID : ChildTypeIDs[0]; 1453 auto CacheKey = std::make_pair(Ty, ChildTypeID); 1454 auto It = VirtualTypeIDs.find(CacheKey); 1455 if (It != VirtualTypeIDs.end()) { 1456 // The cmpxchg return value is the only place we need more than one 1457 // contained type ID, however the second one will always be the same (i1), 1458 // so we don't need to include it in the cache key. This asserts that the 1459 // contained types are indeed as expected and there are no collisions. 1460 assert((ChildTypeIDs.empty() || 1461 ContainedTypeIDs[It->second] == ChildTypeIDs) && 1462 "Incorrect cached contained type IDs"); 1463 return It->second; 1464 } 1465 1466 unsigned TypeID = TypeList.size(); 1467 TypeList.push_back(Ty); 1468 if (!ChildTypeIDs.empty()) 1469 append_range(ContainedTypeIDs[TypeID], ChildTypeIDs); 1470 VirtualTypeIDs.insert({CacheKey, TypeID}); 1471 return TypeID; 1472 } 1473 1474 static GEPNoWrapFlags toGEPNoWrapFlags(uint64_t Flags) { 1475 GEPNoWrapFlags NW; 1476 if (Flags & (1 << bitc::GEP_INBOUNDS)) 1477 NW |= GEPNoWrapFlags::inBounds(); 1478 if (Flags & (1 << bitc::GEP_NUSW)) 1479 NW |= GEPNoWrapFlags::noUnsignedSignedWrap(); 1480 if (Flags & (1 << bitc::GEP_NUW)) 1481 NW |= GEPNoWrapFlags::noUnsignedWrap(); 1482 return NW; 1483 } 1484 1485 static bool isConstExprSupported(const BitcodeConstant *BC) { 1486 uint8_t Opcode = BC->Opcode; 1487 1488 // These are not real constant expressions, always consider them supported. 1489 if (Opcode >= BitcodeConstant::FirstSpecialOpcode) 1490 return true; 1491 1492 // If -expand-constant-exprs is set, we want to consider all expressions 1493 // as unsupported. 1494 if (ExpandConstantExprs) 1495 return false; 1496 1497 if (Instruction::isBinaryOp(Opcode)) 1498 return ConstantExpr::isSupportedBinOp(Opcode); 1499 1500 if (Instruction::isCast(Opcode)) 1501 return ConstantExpr::isSupportedCastOp(Opcode); 1502 1503 if (Opcode == Instruction::GetElementPtr) 1504 return ConstantExpr::isSupportedGetElementPtr(BC->SrcElemTy); 1505 1506 switch (Opcode) { 1507 case Instruction::FNeg: 1508 case Instruction::Select: 1509 case Instruction::ICmp: 1510 case Instruction::FCmp: 1511 return false; 1512 default: 1513 return true; 1514 } 1515 } 1516 1517 Expected<Value *> BitcodeReader::materializeValue(unsigned StartValID, 1518 BasicBlock *InsertBB) { 1519 // Quickly handle the case where there is no BitcodeConstant to resolve. 1520 if (StartValID < ValueList.size() && ValueList[StartValID] && 1521 !isa<BitcodeConstant>(ValueList[StartValID])) 1522 return ValueList[StartValID]; 1523 1524 SmallDenseMap<unsigned, Value *> MaterializedValues; 1525 SmallVector<unsigned> Worklist; 1526 Worklist.push_back(StartValID); 1527 while (!Worklist.empty()) { 1528 unsigned ValID = Worklist.back(); 1529 if (MaterializedValues.count(ValID)) { 1530 // Duplicate expression that was already handled. 1531 Worklist.pop_back(); 1532 continue; 1533 } 1534 1535 if (ValID >= ValueList.size() || !ValueList[ValID]) 1536 return error("Invalid value ID"); 1537 1538 Value *V = ValueList[ValID]; 1539 auto *BC = dyn_cast<BitcodeConstant>(V); 1540 if (!BC) { 1541 MaterializedValues.insert({ValID, V}); 1542 Worklist.pop_back(); 1543 continue; 1544 } 1545 1546 // Iterate in reverse, so values will get popped from the worklist in 1547 // expected order. 1548 SmallVector<Value *> Ops; 1549 for (unsigned OpID : reverse(BC->getOperandIDs())) { 1550 auto It = MaterializedValues.find(OpID); 1551 if (It != MaterializedValues.end()) 1552 Ops.push_back(It->second); 1553 else 1554 Worklist.push_back(OpID); 1555 } 1556 1557 // Some expressions have not been resolved yet, handle them first and then 1558 // revisit this one. 1559 if (Ops.size() != BC->getOperandIDs().size()) 1560 continue; 1561 std::reverse(Ops.begin(), Ops.end()); 1562 1563 SmallVector<Constant *> ConstOps; 1564 for (Value *Op : Ops) 1565 if (auto *C = dyn_cast<Constant>(Op)) 1566 ConstOps.push_back(C); 1567 1568 // Materialize as constant expression if possible. 1569 if (isConstExprSupported(BC) && ConstOps.size() == Ops.size()) { 1570 Constant *C; 1571 if (Instruction::isCast(BC->Opcode)) { 1572 C = UpgradeBitCastExpr(BC->Opcode, ConstOps[0], BC->getType()); 1573 if (!C) 1574 C = ConstantExpr::getCast(BC->Opcode, ConstOps[0], BC->getType()); 1575 } else if (Instruction::isBinaryOp(BC->Opcode)) { 1576 C = ConstantExpr::get(BC->Opcode, ConstOps[0], ConstOps[1], BC->Flags); 1577 } else { 1578 switch (BC->Opcode) { 1579 case BitcodeConstant::ConstantPtrAuthOpcode: { 1580 auto *Key = dyn_cast<ConstantInt>(ConstOps[1]); 1581 if (!Key) 1582 return error("ptrauth key operand must be ConstantInt"); 1583 1584 auto *Disc = dyn_cast<ConstantInt>(ConstOps[2]); 1585 if (!Disc) 1586 return error("ptrauth disc operand must be ConstantInt"); 1587 1588 C = ConstantPtrAuth::get(ConstOps[0], Key, Disc, ConstOps[3]); 1589 break; 1590 } 1591 case BitcodeConstant::NoCFIOpcode: { 1592 auto *GV = dyn_cast<GlobalValue>(ConstOps[0]); 1593 if (!GV) 1594 return error("no_cfi operand must be GlobalValue"); 1595 C = NoCFIValue::get(GV); 1596 break; 1597 } 1598 case BitcodeConstant::DSOLocalEquivalentOpcode: { 1599 auto *GV = dyn_cast<GlobalValue>(ConstOps[0]); 1600 if (!GV) 1601 return error("dso_local operand must be GlobalValue"); 1602 C = DSOLocalEquivalent::get(GV); 1603 break; 1604 } 1605 case BitcodeConstant::BlockAddressOpcode: { 1606 Function *Fn = dyn_cast<Function>(ConstOps[0]); 1607 if (!Fn) 1608 return error("blockaddress operand must be a function"); 1609 1610 // If the function is already parsed we can insert the block address 1611 // right away. 1612 BasicBlock *BB; 1613 unsigned BBID = BC->BlockAddressBB; 1614 if (!BBID) 1615 // Invalid reference to entry block. 1616 return error("Invalid ID"); 1617 if (!Fn->empty()) { 1618 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 1619 for (size_t I = 0, E = BBID; I != E; ++I) { 1620 if (BBI == BBE) 1621 return error("Invalid ID"); 1622 ++BBI; 1623 } 1624 BB = &*BBI; 1625 } else { 1626 // Otherwise insert a placeholder and remember it so it can be 1627 // inserted when the function is parsed. 1628 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 1629 if (FwdBBs.empty()) 1630 BasicBlockFwdRefQueue.push_back(Fn); 1631 if (FwdBBs.size() < BBID + 1) 1632 FwdBBs.resize(BBID + 1); 1633 if (!FwdBBs[BBID]) 1634 FwdBBs[BBID] = BasicBlock::Create(Context); 1635 BB = FwdBBs[BBID]; 1636 } 1637 C = BlockAddress::get(Fn, BB); 1638 break; 1639 } 1640 case BitcodeConstant::ConstantStructOpcode: 1641 C = ConstantStruct::get(cast<StructType>(BC->getType()), ConstOps); 1642 break; 1643 case BitcodeConstant::ConstantArrayOpcode: 1644 C = ConstantArray::get(cast<ArrayType>(BC->getType()), ConstOps); 1645 break; 1646 case BitcodeConstant::ConstantVectorOpcode: 1647 C = ConstantVector::get(ConstOps); 1648 break; 1649 case Instruction::GetElementPtr: 1650 C = ConstantExpr::getGetElementPtr( 1651 BC->SrcElemTy, ConstOps[0], ArrayRef(ConstOps).drop_front(), 1652 toGEPNoWrapFlags(BC->Flags), BC->getInRange()); 1653 break; 1654 case Instruction::ExtractElement: 1655 C = ConstantExpr::getExtractElement(ConstOps[0], ConstOps[1]); 1656 break; 1657 case Instruction::InsertElement: 1658 C = ConstantExpr::getInsertElement(ConstOps[0], ConstOps[1], 1659 ConstOps[2]); 1660 break; 1661 case Instruction::ShuffleVector: { 1662 SmallVector<int, 16> Mask; 1663 ShuffleVectorInst::getShuffleMask(ConstOps[2], Mask); 1664 C = ConstantExpr::getShuffleVector(ConstOps[0], ConstOps[1], Mask); 1665 break; 1666 } 1667 default: 1668 llvm_unreachable("Unhandled bitcode constant"); 1669 } 1670 } 1671 1672 // Cache resolved constant. 1673 ValueList.replaceValueWithoutRAUW(ValID, C); 1674 MaterializedValues.insert({ValID, C}); 1675 Worklist.pop_back(); 1676 continue; 1677 } 1678 1679 if (!InsertBB) 1680 return error(Twine("Value referenced by initializer is an unsupported " 1681 "constant expression of type ") + 1682 BC->getOpcodeName()); 1683 1684 // Materialize as instructions if necessary. 1685 Instruction *I; 1686 if (Instruction::isCast(BC->Opcode)) { 1687 I = CastInst::Create((Instruction::CastOps)BC->Opcode, Ops[0], 1688 BC->getType(), "constexpr", InsertBB); 1689 } else if (Instruction::isUnaryOp(BC->Opcode)) { 1690 I = UnaryOperator::Create((Instruction::UnaryOps)BC->Opcode, Ops[0], 1691 "constexpr", InsertBB); 1692 } else if (Instruction::isBinaryOp(BC->Opcode)) { 1693 I = BinaryOperator::Create((Instruction::BinaryOps)BC->Opcode, Ops[0], 1694 Ops[1], "constexpr", InsertBB); 1695 if (isa<OverflowingBinaryOperator>(I)) { 1696 if (BC->Flags & OverflowingBinaryOperator::NoSignedWrap) 1697 I->setHasNoSignedWrap(); 1698 if (BC->Flags & OverflowingBinaryOperator::NoUnsignedWrap) 1699 I->setHasNoUnsignedWrap(); 1700 } 1701 if (isa<PossiblyExactOperator>(I) && 1702 (BC->Flags & PossiblyExactOperator::IsExact)) 1703 I->setIsExact(); 1704 } else { 1705 switch (BC->Opcode) { 1706 case BitcodeConstant::ConstantVectorOpcode: { 1707 Type *IdxTy = Type::getInt32Ty(BC->getContext()); 1708 Value *V = PoisonValue::get(BC->getType()); 1709 for (auto Pair : enumerate(Ops)) { 1710 Value *Idx = ConstantInt::get(IdxTy, Pair.index()); 1711 V = InsertElementInst::Create(V, Pair.value(), Idx, "constexpr.ins", 1712 InsertBB); 1713 } 1714 I = cast<Instruction>(V); 1715 break; 1716 } 1717 case BitcodeConstant::ConstantStructOpcode: 1718 case BitcodeConstant::ConstantArrayOpcode: { 1719 Value *V = PoisonValue::get(BC->getType()); 1720 for (auto Pair : enumerate(Ops)) 1721 V = InsertValueInst::Create(V, Pair.value(), Pair.index(), 1722 "constexpr.ins", InsertBB); 1723 I = cast<Instruction>(V); 1724 break; 1725 } 1726 case Instruction::ICmp: 1727 case Instruction::FCmp: 1728 I = CmpInst::Create((Instruction::OtherOps)BC->Opcode, 1729 (CmpInst::Predicate)BC->Flags, Ops[0], Ops[1], 1730 "constexpr", InsertBB); 1731 break; 1732 case Instruction::GetElementPtr: 1733 I = GetElementPtrInst::Create(BC->SrcElemTy, Ops[0], 1734 ArrayRef(Ops).drop_front(), "constexpr", 1735 InsertBB); 1736 cast<GetElementPtrInst>(I)->setNoWrapFlags(toGEPNoWrapFlags(BC->Flags)); 1737 break; 1738 case Instruction::Select: 1739 I = SelectInst::Create(Ops[0], Ops[1], Ops[2], "constexpr", InsertBB); 1740 break; 1741 case Instruction::ExtractElement: 1742 I = ExtractElementInst::Create(Ops[0], Ops[1], "constexpr", InsertBB); 1743 break; 1744 case Instruction::InsertElement: 1745 I = InsertElementInst::Create(Ops[0], Ops[1], Ops[2], "constexpr", 1746 InsertBB); 1747 break; 1748 case Instruction::ShuffleVector: 1749 I = new ShuffleVectorInst(Ops[0], Ops[1], Ops[2], "constexpr", 1750 InsertBB); 1751 break; 1752 default: 1753 llvm_unreachable("Unhandled bitcode constant"); 1754 } 1755 } 1756 1757 MaterializedValues.insert({ValID, I}); 1758 Worklist.pop_back(); 1759 } 1760 1761 return MaterializedValues[StartValID]; 1762 } 1763 1764 Expected<Constant *> BitcodeReader::getValueForInitializer(unsigned ID) { 1765 Expected<Value *> MaybeV = materializeValue(ID, /* InsertBB */ nullptr); 1766 if (!MaybeV) 1767 return MaybeV.takeError(); 1768 1769 // Result must be Constant if InsertBB is nullptr. 1770 return cast<Constant>(MaybeV.get()); 1771 } 1772 1773 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1774 StringRef Name) { 1775 auto *Ret = StructType::create(Context, Name); 1776 IdentifiedStructTypes.push_back(Ret); 1777 return Ret; 1778 } 1779 1780 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1781 auto *Ret = StructType::create(Context); 1782 IdentifiedStructTypes.push_back(Ret); 1783 return Ret; 1784 } 1785 1786 //===----------------------------------------------------------------------===// 1787 // Functions for parsing blocks from the bitcode file 1788 //===----------------------------------------------------------------------===// 1789 1790 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) { 1791 switch (Val) { 1792 case Attribute::EndAttrKinds: 1793 case Attribute::EmptyKey: 1794 case Attribute::TombstoneKey: 1795 llvm_unreachable("Synthetic enumerators which should never get here"); 1796 1797 case Attribute::None: return 0; 1798 case Attribute::ZExt: return 1 << 0; 1799 case Attribute::SExt: return 1 << 1; 1800 case Attribute::NoReturn: return 1 << 2; 1801 case Attribute::InReg: return 1 << 3; 1802 case Attribute::StructRet: return 1 << 4; 1803 case Attribute::NoUnwind: return 1 << 5; 1804 case Attribute::NoAlias: return 1 << 6; 1805 case Attribute::ByVal: return 1 << 7; 1806 case Attribute::Nest: return 1 << 8; 1807 case Attribute::ReadNone: return 1 << 9; 1808 case Attribute::ReadOnly: return 1 << 10; 1809 case Attribute::NoInline: return 1 << 11; 1810 case Attribute::AlwaysInline: return 1 << 12; 1811 case Attribute::OptimizeForSize: return 1 << 13; 1812 case Attribute::StackProtect: return 1 << 14; 1813 case Attribute::StackProtectReq: return 1 << 15; 1814 case Attribute::Alignment: return 31 << 16; 1815 case Attribute::NoCapture: return 1 << 21; 1816 case Attribute::NoRedZone: return 1 << 22; 1817 case Attribute::NoImplicitFloat: return 1 << 23; 1818 case Attribute::Naked: return 1 << 24; 1819 case Attribute::InlineHint: return 1 << 25; 1820 case Attribute::StackAlignment: return 7 << 26; 1821 case Attribute::ReturnsTwice: return 1 << 29; 1822 case Attribute::UWTable: return 1 << 30; 1823 case Attribute::NonLazyBind: return 1U << 31; 1824 case Attribute::SanitizeAddress: return 1ULL << 32; 1825 case Attribute::MinSize: return 1ULL << 33; 1826 case Attribute::NoDuplicate: return 1ULL << 34; 1827 case Attribute::StackProtectStrong: return 1ULL << 35; 1828 case Attribute::SanitizeThread: return 1ULL << 36; 1829 case Attribute::SanitizeMemory: return 1ULL << 37; 1830 case Attribute::NoBuiltin: return 1ULL << 38; 1831 case Attribute::Returned: return 1ULL << 39; 1832 case Attribute::Cold: return 1ULL << 40; 1833 case Attribute::Builtin: return 1ULL << 41; 1834 case Attribute::OptimizeNone: return 1ULL << 42; 1835 case Attribute::InAlloca: return 1ULL << 43; 1836 case Attribute::NonNull: return 1ULL << 44; 1837 case Attribute::JumpTable: return 1ULL << 45; 1838 case Attribute::Convergent: return 1ULL << 46; 1839 case Attribute::SafeStack: return 1ULL << 47; 1840 case Attribute::NoRecurse: return 1ULL << 48; 1841 // 1ULL << 49 is InaccessibleMemOnly, which is upgraded separately. 1842 // 1ULL << 50 is InaccessibleMemOrArgMemOnly, which is upgraded separately. 1843 case Attribute::SwiftSelf: return 1ULL << 51; 1844 case Attribute::SwiftError: return 1ULL << 52; 1845 case Attribute::WriteOnly: return 1ULL << 53; 1846 case Attribute::Speculatable: return 1ULL << 54; 1847 case Attribute::StrictFP: return 1ULL << 55; 1848 case Attribute::SanitizeHWAddress: return 1ULL << 56; 1849 case Attribute::NoCfCheck: return 1ULL << 57; 1850 case Attribute::OptForFuzzing: return 1ULL << 58; 1851 case Attribute::ShadowCallStack: return 1ULL << 59; 1852 case Attribute::SpeculativeLoadHardening: 1853 return 1ULL << 60; 1854 case Attribute::ImmArg: 1855 return 1ULL << 61; 1856 case Attribute::WillReturn: 1857 return 1ULL << 62; 1858 case Attribute::NoFree: 1859 return 1ULL << 63; 1860 default: 1861 // Other attributes are not supported in the raw format, 1862 // as we ran out of space. 1863 return 0; 1864 } 1865 llvm_unreachable("Unsupported attribute type"); 1866 } 1867 1868 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) { 1869 if (!Val) return; 1870 1871 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; 1872 I = Attribute::AttrKind(I + 1)) { 1873 if (uint64_t A = (Val & getRawAttributeMask(I))) { 1874 if (I == Attribute::Alignment) 1875 B.addAlignmentAttr(1ULL << ((A >> 16) - 1)); 1876 else if (I == Attribute::StackAlignment) 1877 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1)); 1878 else if (Attribute::isTypeAttrKind(I)) 1879 B.addTypeAttr(I, nullptr); // Type will be auto-upgraded. 1880 else 1881 B.addAttribute(I); 1882 } 1883 } 1884 } 1885 1886 /// This fills an AttrBuilder object with the LLVM attributes that have 1887 /// been decoded from the given integer. This function must stay in sync with 1888 /// 'encodeLLVMAttributesForBitcode'. 1889 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1890 uint64_t EncodedAttrs, 1891 uint64_t AttrIdx) { 1892 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1893 // the bits above 31 down by 11 bits. 1894 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1895 assert((!Alignment || isPowerOf2_32(Alignment)) && 1896 "Alignment must be a power of two."); 1897 1898 if (Alignment) 1899 B.addAlignmentAttr(Alignment); 1900 1901 uint64_t Attrs = ((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1902 (EncodedAttrs & 0xffff); 1903 1904 if (AttrIdx == AttributeList::FunctionIndex) { 1905 // Upgrade old memory attributes. 1906 MemoryEffects ME = MemoryEffects::unknown(); 1907 if (Attrs & (1ULL << 9)) { 1908 // ReadNone 1909 Attrs &= ~(1ULL << 9); 1910 ME &= MemoryEffects::none(); 1911 } 1912 if (Attrs & (1ULL << 10)) { 1913 // ReadOnly 1914 Attrs &= ~(1ULL << 10); 1915 ME &= MemoryEffects::readOnly(); 1916 } 1917 if (Attrs & (1ULL << 49)) { 1918 // InaccessibleMemOnly 1919 Attrs &= ~(1ULL << 49); 1920 ME &= MemoryEffects::inaccessibleMemOnly(); 1921 } 1922 if (Attrs & (1ULL << 50)) { 1923 // InaccessibleMemOrArgMemOnly 1924 Attrs &= ~(1ULL << 50); 1925 ME &= MemoryEffects::inaccessibleOrArgMemOnly(); 1926 } 1927 if (Attrs & (1ULL << 53)) { 1928 // WriteOnly 1929 Attrs &= ~(1ULL << 53); 1930 ME &= MemoryEffects::writeOnly(); 1931 } 1932 if (ME != MemoryEffects::unknown()) 1933 B.addMemoryAttr(ME); 1934 } 1935 1936 addRawAttributeValue(B, Attrs); 1937 } 1938 1939 Error BitcodeReader::parseAttributeBlock() { 1940 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1941 return Err; 1942 1943 if (!MAttributes.empty()) 1944 return error("Invalid multiple blocks"); 1945 1946 SmallVector<uint64_t, 64> Record; 1947 1948 SmallVector<AttributeList, 8> Attrs; 1949 1950 // Read all the records. 1951 while (true) { 1952 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1953 if (!MaybeEntry) 1954 return MaybeEntry.takeError(); 1955 BitstreamEntry Entry = MaybeEntry.get(); 1956 1957 switch (Entry.Kind) { 1958 case BitstreamEntry::SubBlock: // Handled for us already. 1959 case BitstreamEntry::Error: 1960 return error("Malformed block"); 1961 case BitstreamEntry::EndBlock: 1962 return Error::success(); 1963 case BitstreamEntry::Record: 1964 // The interesting case. 1965 break; 1966 } 1967 1968 // Read a record. 1969 Record.clear(); 1970 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1971 if (!MaybeRecord) 1972 return MaybeRecord.takeError(); 1973 switch (MaybeRecord.get()) { 1974 default: // Default behavior: ignore. 1975 break; 1976 case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...] 1977 // Deprecated, but still needed to read old bitcode files. 1978 if (Record.size() & 1) 1979 return error("Invalid parameter attribute record"); 1980 1981 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1982 AttrBuilder B(Context); 1983 decodeLLVMAttributesForBitcode(B, Record[i+1], Record[i]); 1984 Attrs.push_back(AttributeList::get(Context, Record[i], B)); 1985 } 1986 1987 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1988 Attrs.clear(); 1989 break; 1990 case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...] 1991 for (uint64_t Val : Record) 1992 Attrs.push_back(MAttributeGroups[Val]); 1993 1994 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1995 Attrs.clear(); 1996 break; 1997 } 1998 } 1999 } 2000 2001 // Returns Attribute::None on unrecognized codes. 2002 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 2003 switch (Code) { 2004 default: 2005 return Attribute::None; 2006 case bitc::ATTR_KIND_ALIGNMENT: 2007 return Attribute::Alignment; 2008 case bitc::ATTR_KIND_ALWAYS_INLINE: 2009 return Attribute::AlwaysInline; 2010 case bitc::ATTR_KIND_BUILTIN: 2011 return Attribute::Builtin; 2012 case bitc::ATTR_KIND_BY_VAL: 2013 return Attribute::ByVal; 2014 case bitc::ATTR_KIND_IN_ALLOCA: 2015 return Attribute::InAlloca; 2016 case bitc::ATTR_KIND_COLD: 2017 return Attribute::Cold; 2018 case bitc::ATTR_KIND_CONVERGENT: 2019 return Attribute::Convergent; 2020 case bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION: 2021 return Attribute::DisableSanitizerInstrumentation; 2022 case bitc::ATTR_KIND_ELEMENTTYPE: 2023 return Attribute::ElementType; 2024 case bitc::ATTR_KIND_FNRETTHUNK_EXTERN: 2025 return Attribute::FnRetThunkExtern; 2026 case bitc::ATTR_KIND_INLINE_HINT: 2027 return Attribute::InlineHint; 2028 case bitc::ATTR_KIND_IN_REG: 2029 return Attribute::InReg; 2030 case bitc::ATTR_KIND_JUMP_TABLE: 2031 return Attribute::JumpTable; 2032 case bitc::ATTR_KIND_MEMORY: 2033 return Attribute::Memory; 2034 case bitc::ATTR_KIND_NOFPCLASS: 2035 return Attribute::NoFPClass; 2036 case bitc::ATTR_KIND_MIN_SIZE: 2037 return Attribute::MinSize; 2038 case bitc::ATTR_KIND_NAKED: 2039 return Attribute::Naked; 2040 case bitc::ATTR_KIND_NEST: 2041 return Attribute::Nest; 2042 case bitc::ATTR_KIND_NO_ALIAS: 2043 return Attribute::NoAlias; 2044 case bitc::ATTR_KIND_NO_BUILTIN: 2045 return Attribute::NoBuiltin; 2046 case bitc::ATTR_KIND_NO_CALLBACK: 2047 return Attribute::NoCallback; 2048 case bitc::ATTR_KIND_NO_CAPTURE: 2049 return Attribute::NoCapture; 2050 case bitc::ATTR_KIND_NO_DUPLICATE: 2051 return Attribute::NoDuplicate; 2052 case bitc::ATTR_KIND_NOFREE: 2053 return Attribute::NoFree; 2054 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 2055 return Attribute::NoImplicitFloat; 2056 case bitc::ATTR_KIND_NO_INLINE: 2057 return Attribute::NoInline; 2058 case bitc::ATTR_KIND_NO_RECURSE: 2059 return Attribute::NoRecurse; 2060 case bitc::ATTR_KIND_NO_MERGE: 2061 return Attribute::NoMerge; 2062 case bitc::ATTR_KIND_NON_LAZY_BIND: 2063 return Attribute::NonLazyBind; 2064 case bitc::ATTR_KIND_NON_NULL: 2065 return Attribute::NonNull; 2066 case bitc::ATTR_KIND_DEREFERENCEABLE: 2067 return Attribute::Dereferenceable; 2068 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 2069 return Attribute::DereferenceableOrNull; 2070 case bitc::ATTR_KIND_ALLOC_ALIGN: 2071 return Attribute::AllocAlign; 2072 case bitc::ATTR_KIND_ALLOC_KIND: 2073 return Attribute::AllocKind; 2074 case bitc::ATTR_KIND_ALLOC_SIZE: 2075 return Attribute::AllocSize; 2076 case bitc::ATTR_KIND_ALLOCATED_POINTER: 2077 return Attribute::AllocatedPointer; 2078 case bitc::ATTR_KIND_NO_RED_ZONE: 2079 return Attribute::NoRedZone; 2080 case bitc::ATTR_KIND_NO_RETURN: 2081 return Attribute::NoReturn; 2082 case bitc::ATTR_KIND_NOSYNC: 2083 return Attribute::NoSync; 2084 case bitc::ATTR_KIND_NOCF_CHECK: 2085 return Attribute::NoCfCheck; 2086 case bitc::ATTR_KIND_NO_PROFILE: 2087 return Attribute::NoProfile; 2088 case bitc::ATTR_KIND_SKIP_PROFILE: 2089 return Attribute::SkipProfile; 2090 case bitc::ATTR_KIND_NO_UNWIND: 2091 return Attribute::NoUnwind; 2092 case bitc::ATTR_KIND_NO_SANITIZE_BOUNDS: 2093 return Attribute::NoSanitizeBounds; 2094 case bitc::ATTR_KIND_NO_SANITIZE_COVERAGE: 2095 return Attribute::NoSanitizeCoverage; 2096 case bitc::ATTR_KIND_NULL_POINTER_IS_VALID: 2097 return Attribute::NullPointerIsValid; 2098 case bitc::ATTR_KIND_OPTIMIZE_FOR_DEBUGGING: 2099 return Attribute::OptimizeForDebugging; 2100 case bitc::ATTR_KIND_OPT_FOR_FUZZING: 2101 return Attribute::OptForFuzzing; 2102 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 2103 return Attribute::OptimizeForSize; 2104 case bitc::ATTR_KIND_OPTIMIZE_NONE: 2105 return Attribute::OptimizeNone; 2106 case bitc::ATTR_KIND_READ_NONE: 2107 return Attribute::ReadNone; 2108 case bitc::ATTR_KIND_READ_ONLY: 2109 return Attribute::ReadOnly; 2110 case bitc::ATTR_KIND_RETURNED: 2111 return Attribute::Returned; 2112 case bitc::ATTR_KIND_RETURNS_TWICE: 2113 return Attribute::ReturnsTwice; 2114 case bitc::ATTR_KIND_S_EXT: 2115 return Attribute::SExt; 2116 case bitc::ATTR_KIND_SPECULATABLE: 2117 return Attribute::Speculatable; 2118 case bitc::ATTR_KIND_STACK_ALIGNMENT: 2119 return Attribute::StackAlignment; 2120 case bitc::ATTR_KIND_STACK_PROTECT: 2121 return Attribute::StackProtect; 2122 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 2123 return Attribute::StackProtectReq; 2124 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 2125 return Attribute::StackProtectStrong; 2126 case bitc::ATTR_KIND_SAFESTACK: 2127 return Attribute::SafeStack; 2128 case bitc::ATTR_KIND_SHADOWCALLSTACK: 2129 return Attribute::ShadowCallStack; 2130 case bitc::ATTR_KIND_STRICT_FP: 2131 return Attribute::StrictFP; 2132 case bitc::ATTR_KIND_STRUCT_RET: 2133 return Attribute::StructRet; 2134 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 2135 return Attribute::SanitizeAddress; 2136 case bitc::ATTR_KIND_SANITIZE_HWADDRESS: 2137 return Attribute::SanitizeHWAddress; 2138 case bitc::ATTR_KIND_SANITIZE_THREAD: 2139 return Attribute::SanitizeThread; 2140 case bitc::ATTR_KIND_SANITIZE_MEMORY: 2141 return Attribute::SanitizeMemory; 2142 case bitc::ATTR_KIND_SANITIZE_NUMERICAL_STABILITY: 2143 return Attribute::SanitizeNumericalStability; 2144 case bitc::ATTR_KIND_SANITIZE_REALTIME: 2145 return Attribute::SanitizeRealtime; 2146 case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING: 2147 return Attribute::SpeculativeLoadHardening; 2148 case bitc::ATTR_KIND_SWIFT_ERROR: 2149 return Attribute::SwiftError; 2150 case bitc::ATTR_KIND_SWIFT_SELF: 2151 return Attribute::SwiftSelf; 2152 case bitc::ATTR_KIND_SWIFT_ASYNC: 2153 return Attribute::SwiftAsync; 2154 case bitc::ATTR_KIND_UW_TABLE: 2155 return Attribute::UWTable; 2156 case bitc::ATTR_KIND_VSCALE_RANGE: 2157 return Attribute::VScaleRange; 2158 case bitc::ATTR_KIND_WILLRETURN: 2159 return Attribute::WillReturn; 2160 case bitc::ATTR_KIND_WRITEONLY: 2161 return Attribute::WriteOnly; 2162 case bitc::ATTR_KIND_Z_EXT: 2163 return Attribute::ZExt; 2164 case bitc::ATTR_KIND_IMMARG: 2165 return Attribute::ImmArg; 2166 case bitc::ATTR_KIND_SANITIZE_MEMTAG: 2167 return Attribute::SanitizeMemTag; 2168 case bitc::ATTR_KIND_PREALLOCATED: 2169 return Attribute::Preallocated; 2170 case bitc::ATTR_KIND_NOUNDEF: 2171 return Attribute::NoUndef; 2172 case bitc::ATTR_KIND_BYREF: 2173 return Attribute::ByRef; 2174 case bitc::ATTR_KIND_MUSTPROGRESS: 2175 return Attribute::MustProgress; 2176 case bitc::ATTR_KIND_HOT: 2177 return Attribute::Hot; 2178 case bitc::ATTR_KIND_PRESPLIT_COROUTINE: 2179 return Attribute::PresplitCoroutine; 2180 case bitc::ATTR_KIND_WRITABLE: 2181 return Attribute::Writable; 2182 case bitc::ATTR_KIND_CORO_ONLY_DESTROY_WHEN_COMPLETE: 2183 return Attribute::CoroDestroyOnlyWhenComplete; 2184 case bitc::ATTR_KIND_DEAD_ON_UNWIND: 2185 return Attribute::DeadOnUnwind; 2186 case bitc::ATTR_KIND_RANGE: 2187 return Attribute::Range; 2188 case bitc::ATTR_KIND_INITIALIZES: 2189 return Attribute::Initializes; 2190 } 2191 } 2192 2193 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent, 2194 MaybeAlign &Alignment) { 2195 // Note: Alignment in bitcode files is incremented by 1, so that zero 2196 // can be used for default alignment. 2197 if (Exponent > Value::MaxAlignmentExponent + 1) 2198 return error("Invalid alignment value"); 2199 Alignment = decodeMaybeAlign(Exponent); 2200 return Error::success(); 2201 } 2202 2203 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) { 2204 *Kind = getAttrFromCode(Code); 2205 if (*Kind == Attribute::None) 2206 return error("Unknown attribute kind (" + Twine(Code) + ")"); 2207 return Error::success(); 2208 } 2209 2210 static bool upgradeOldMemoryAttribute(MemoryEffects &ME, uint64_t EncodedKind) { 2211 switch (EncodedKind) { 2212 case bitc::ATTR_KIND_READ_NONE: 2213 ME &= MemoryEffects::none(); 2214 return true; 2215 case bitc::ATTR_KIND_READ_ONLY: 2216 ME &= MemoryEffects::readOnly(); 2217 return true; 2218 case bitc::ATTR_KIND_WRITEONLY: 2219 ME &= MemoryEffects::writeOnly(); 2220 return true; 2221 case bitc::ATTR_KIND_ARGMEMONLY: 2222 ME &= MemoryEffects::argMemOnly(); 2223 return true; 2224 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 2225 ME &= MemoryEffects::inaccessibleMemOnly(); 2226 return true; 2227 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 2228 ME &= MemoryEffects::inaccessibleOrArgMemOnly(); 2229 return true; 2230 default: 2231 return false; 2232 } 2233 } 2234 2235 Error BitcodeReader::parseAttributeGroupBlock() { 2236 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 2237 return Err; 2238 2239 if (!MAttributeGroups.empty()) 2240 return error("Invalid multiple blocks"); 2241 2242 SmallVector<uint64_t, 64> Record; 2243 2244 // Read all the records. 2245 while (true) { 2246 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2247 if (!MaybeEntry) 2248 return MaybeEntry.takeError(); 2249 BitstreamEntry Entry = MaybeEntry.get(); 2250 2251 switch (Entry.Kind) { 2252 case BitstreamEntry::SubBlock: // Handled for us already. 2253 case BitstreamEntry::Error: 2254 return error("Malformed block"); 2255 case BitstreamEntry::EndBlock: 2256 return Error::success(); 2257 case BitstreamEntry::Record: 2258 // The interesting case. 2259 break; 2260 } 2261 2262 // Read a record. 2263 Record.clear(); 2264 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2265 if (!MaybeRecord) 2266 return MaybeRecord.takeError(); 2267 switch (MaybeRecord.get()) { 2268 default: // Default behavior: ignore. 2269 break; 2270 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 2271 if (Record.size() < 3) 2272 return error("Invalid grp record"); 2273 2274 uint64_t GrpID = Record[0]; 2275 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 2276 2277 AttrBuilder B(Context); 2278 MemoryEffects ME = MemoryEffects::unknown(); 2279 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 2280 if (Record[i] == 0) { // Enum attribute 2281 Attribute::AttrKind Kind; 2282 uint64_t EncodedKind = Record[++i]; 2283 if (Idx == AttributeList::FunctionIndex && 2284 upgradeOldMemoryAttribute(ME, EncodedKind)) 2285 continue; 2286 2287 if (Error Err = parseAttrKind(EncodedKind, &Kind)) 2288 return Err; 2289 2290 // Upgrade old-style byval attribute to one with a type, even if it's 2291 // nullptr. We will have to insert the real type when we associate 2292 // this AttributeList with a function. 2293 if (Kind == Attribute::ByVal) 2294 B.addByValAttr(nullptr); 2295 else if (Kind == Attribute::StructRet) 2296 B.addStructRetAttr(nullptr); 2297 else if (Kind == Attribute::InAlloca) 2298 B.addInAllocaAttr(nullptr); 2299 else if (Kind == Attribute::UWTable) 2300 B.addUWTableAttr(UWTableKind::Default); 2301 else if (Attribute::isEnumAttrKind(Kind)) 2302 B.addAttribute(Kind); 2303 else 2304 return error("Not an enum attribute"); 2305 } else if (Record[i] == 1) { // Integer attribute 2306 Attribute::AttrKind Kind; 2307 if (Error Err = parseAttrKind(Record[++i], &Kind)) 2308 return Err; 2309 if (!Attribute::isIntAttrKind(Kind)) 2310 return error("Not an int attribute"); 2311 if (Kind == Attribute::Alignment) 2312 B.addAlignmentAttr(Record[++i]); 2313 else if (Kind == Attribute::StackAlignment) 2314 B.addStackAlignmentAttr(Record[++i]); 2315 else if (Kind == Attribute::Dereferenceable) 2316 B.addDereferenceableAttr(Record[++i]); 2317 else if (Kind == Attribute::DereferenceableOrNull) 2318 B.addDereferenceableOrNullAttr(Record[++i]); 2319 else if (Kind == Attribute::AllocSize) 2320 B.addAllocSizeAttrFromRawRepr(Record[++i]); 2321 else if (Kind == Attribute::VScaleRange) 2322 B.addVScaleRangeAttrFromRawRepr(Record[++i]); 2323 else if (Kind == Attribute::UWTable) 2324 B.addUWTableAttr(UWTableKind(Record[++i])); 2325 else if (Kind == Attribute::AllocKind) 2326 B.addAllocKindAttr(static_cast<AllocFnKind>(Record[++i])); 2327 else if (Kind == Attribute::Memory) 2328 B.addMemoryAttr(MemoryEffects::createFromIntValue(Record[++i])); 2329 else if (Kind == Attribute::NoFPClass) 2330 B.addNoFPClassAttr( 2331 static_cast<FPClassTest>(Record[++i] & fcAllFlags)); 2332 } else if (Record[i] == 3 || Record[i] == 4) { // String attribute 2333 bool HasValue = (Record[i++] == 4); 2334 SmallString<64> KindStr; 2335 SmallString<64> ValStr; 2336 2337 while (Record[i] != 0 && i != e) 2338 KindStr += Record[i++]; 2339 assert(Record[i] == 0 && "Kind string not null terminated"); 2340 2341 if (HasValue) { 2342 // Has a value associated with it. 2343 ++i; // Skip the '0' that terminates the "kind" string. 2344 while (Record[i] != 0 && i != e) 2345 ValStr += Record[i++]; 2346 assert(Record[i] == 0 && "Value string not null terminated"); 2347 } 2348 2349 B.addAttribute(KindStr.str(), ValStr.str()); 2350 } else if (Record[i] == 5 || Record[i] == 6) { 2351 bool HasType = Record[i] == 6; 2352 Attribute::AttrKind Kind; 2353 if (Error Err = parseAttrKind(Record[++i], &Kind)) 2354 return Err; 2355 if (!Attribute::isTypeAttrKind(Kind)) 2356 return error("Not a type attribute"); 2357 2358 B.addTypeAttr(Kind, HasType ? getTypeByID(Record[++i]) : nullptr); 2359 } else if (Record[i] == 7) { 2360 Attribute::AttrKind Kind; 2361 2362 i++; 2363 if (Error Err = parseAttrKind(Record[i++], &Kind)) 2364 return Err; 2365 if (!Attribute::isConstantRangeAttrKind(Kind)) 2366 return error("Not a ConstantRange attribute"); 2367 2368 Expected<ConstantRange> MaybeCR = 2369 readBitWidthAndConstantRange(Record, i); 2370 if (!MaybeCR) 2371 return MaybeCR.takeError(); 2372 i--; 2373 2374 B.addConstantRangeAttr(Kind, MaybeCR.get()); 2375 } else if (Record[i] == 8) { 2376 Attribute::AttrKind Kind; 2377 2378 i++; 2379 if (Error Err = parseAttrKind(Record[i++], &Kind)) 2380 return Err; 2381 if (!Attribute::isConstantRangeListAttrKind(Kind)) 2382 return error("Not a constant range list attribute"); 2383 2384 SmallVector<ConstantRange, 2> Val; 2385 if (i + 2 > e) 2386 return error("Too few records for constant range list"); 2387 unsigned RangeSize = Record[i++]; 2388 unsigned BitWidth = Record[i++]; 2389 for (unsigned Idx = 0; Idx < RangeSize; ++Idx) { 2390 Expected<ConstantRange> MaybeCR = 2391 readConstantRange(Record, i, BitWidth); 2392 if (!MaybeCR) 2393 return MaybeCR.takeError(); 2394 Val.push_back(MaybeCR.get()); 2395 } 2396 i--; 2397 2398 if (!ConstantRangeList::isOrderedRanges(Val)) 2399 return error("Invalid (unordered or overlapping) range list"); 2400 B.addConstantRangeListAttr(Kind, Val); 2401 } else { 2402 return error("Invalid attribute group entry"); 2403 } 2404 } 2405 2406 if (ME != MemoryEffects::unknown()) 2407 B.addMemoryAttr(ME); 2408 2409 UpgradeAttributes(B); 2410 MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B); 2411 break; 2412 } 2413 } 2414 } 2415 } 2416 2417 Error BitcodeReader::parseTypeTable() { 2418 if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 2419 return Err; 2420 2421 return parseTypeTableBody(); 2422 } 2423 2424 Error BitcodeReader::parseTypeTableBody() { 2425 if (!TypeList.empty()) 2426 return error("Invalid multiple blocks"); 2427 2428 SmallVector<uint64_t, 64> Record; 2429 unsigned NumRecords = 0; 2430 2431 SmallString<64> TypeName; 2432 2433 // Read all the records for this type table. 2434 while (true) { 2435 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2436 if (!MaybeEntry) 2437 return MaybeEntry.takeError(); 2438 BitstreamEntry Entry = MaybeEntry.get(); 2439 2440 switch (Entry.Kind) { 2441 case BitstreamEntry::SubBlock: // Handled for us already. 2442 case BitstreamEntry::Error: 2443 return error("Malformed block"); 2444 case BitstreamEntry::EndBlock: 2445 if (NumRecords != TypeList.size()) 2446 return error("Malformed block"); 2447 return Error::success(); 2448 case BitstreamEntry::Record: 2449 // The interesting case. 2450 break; 2451 } 2452 2453 // Read a record. 2454 Record.clear(); 2455 Type *ResultTy = nullptr; 2456 SmallVector<unsigned> ContainedIDs; 2457 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2458 if (!MaybeRecord) 2459 return MaybeRecord.takeError(); 2460 switch (MaybeRecord.get()) { 2461 default: 2462 return error("Invalid value"); 2463 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 2464 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 2465 // type list. This allows us to reserve space. 2466 if (Record.empty()) 2467 return error("Invalid numentry record"); 2468 TypeList.resize(Record[0]); 2469 continue; 2470 case bitc::TYPE_CODE_VOID: // VOID 2471 ResultTy = Type::getVoidTy(Context); 2472 break; 2473 case bitc::TYPE_CODE_HALF: // HALF 2474 ResultTy = Type::getHalfTy(Context); 2475 break; 2476 case bitc::TYPE_CODE_BFLOAT: // BFLOAT 2477 ResultTy = Type::getBFloatTy(Context); 2478 break; 2479 case bitc::TYPE_CODE_FLOAT: // FLOAT 2480 ResultTy = Type::getFloatTy(Context); 2481 break; 2482 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 2483 ResultTy = Type::getDoubleTy(Context); 2484 break; 2485 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 2486 ResultTy = Type::getX86_FP80Ty(Context); 2487 break; 2488 case bitc::TYPE_CODE_FP128: // FP128 2489 ResultTy = Type::getFP128Ty(Context); 2490 break; 2491 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 2492 ResultTy = Type::getPPC_FP128Ty(Context); 2493 break; 2494 case bitc::TYPE_CODE_LABEL: // LABEL 2495 ResultTy = Type::getLabelTy(Context); 2496 break; 2497 case bitc::TYPE_CODE_METADATA: // METADATA 2498 ResultTy = Type::getMetadataTy(Context); 2499 break; 2500 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 2501 // Deprecated: decodes as <1 x i64> 2502 ResultTy = 2503 llvm::FixedVectorType::get(llvm::IntegerType::get(Context, 64), 1); 2504 break; 2505 case bitc::TYPE_CODE_X86_AMX: // X86_AMX 2506 ResultTy = Type::getX86_AMXTy(Context); 2507 break; 2508 case bitc::TYPE_CODE_TOKEN: // TOKEN 2509 ResultTy = Type::getTokenTy(Context); 2510 break; 2511 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 2512 if (Record.empty()) 2513 return error("Invalid integer record"); 2514 2515 uint64_t NumBits = Record[0]; 2516 if (NumBits < IntegerType::MIN_INT_BITS || 2517 NumBits > IntegerType::MAX_INT_BITS) 2518 return error("Bitwidth for integer type out of range"); 2519 ResultTy = IntegerType::get(Context, NumBits); 2520 break; 2521 } 2522 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 2523 // [pointee type, address space] 2524 if (Record.empty()) 2525 return error("Invalid pointer record"); 2526 unsigned AddressSpace = 0; 2527 if (Record.size() == 2) 2528 AddressSpace = Record[1]; 2529 ResultTy = getTypeByID(Record[0]); 2530 if (!ResultTy || 2531 !PointerType::isValidElementType(ResultTy)) 2532 return error("Invalid type"); 2533 ContainedIDs.push_back(Record[0]); 2534 ResultTy = PointerType::get(ResultTy, AddressSpace); 2535 break; 2536 } 2537 case bitc::TYPE_CODE_OPAQUE_POINTER: { // OPAQUE_POINTER: [addrspace] 2538 if (Record.size() != 1) 2539 return error("Invalid opaque pointer record"); 2540 unsigned AddressSpace = Record[0]; 2541 ResultTy = PointerType::get(Context, AddressSpace); 2542 break; 2543 } 2544 case bitc::TYPE_CODE_FUNCTION_OLD: { 2545 // Deprecated, but still needed to read old bitcode files. 2546 // FUNCTION: [vararg, attrid, retty, paramty x N] 2547 if (Record.size() < 3) 2548 return error("Invalid function record"); 2549 SmallVector<Type*, 8> ArgTys; 2550 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 2551 if (Type *T = getTypeByID(Record[i])) 2552 ArgTys.push_back(T); 2553 else 2554 break; 2555 } 2556 2557 ResultTy = getTypeByID(Record[2]); 2558 if (!ResultTy || ArgTys.size() < Record.size()-3) 2559 return error("Invalid type"); 2560 2561 ContainedIDs.append(Record.begin() + 2, Record.end()); 2562 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 2563 break; 2564 } 2565 case bitc::TYPE_CODE_FUNCTION: { 2566 // FUNCTION: [vararg, retty, paramty x N] 2567 if (Record.size() < 2) 2568 return error("Invalid function record"); 2569 SmallVector<Type*, 8> ArgTys; 2570 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 2571 if (Type *T = getTypeByID(Record[i])) { 2572 if (!FunctionType::isValidArgumentType(T)) 2573 return error("Invalid function argument type"); 2574 ArgTys.push_back(T); 2575 } 2576 else 2577 break; 2578 } 2579 2580 ResultTy = getTypeByID(Record[1]); 2581 if (!ResultTy || ArgTys.size() < Record.size()-2) 2582 return error("Invalid type"); 2583 2584 ContainedIDs.append(Record.begin() + 1, Record.end()); 2585 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 2586 break; 2587 } 2588 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 2589 if (Record.empty()) 2590 return error("Invalid anon struct record"); 2591 SmallVector<Type*, 8> EltTys; 2592 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 2593 if (Type *T = getTypeByID(Record[i])) 2594 EltTys.push_back(T); 2595 else 2596 break; 2597 } 2598 if (EltTys.size() != Record.size()-1) 2599 return error("Invalid type"); 2600 ContainedIDs.append(Record.begin() + 1, Record.end()); 2601 ResultTy = StructType::get(Context, EltTys, Record[0]); 2602 break; 2603 } 2604 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 2605 if (convertToString(Record, 0, TypeName)) 2606 return error("Invalid struct name record"); 2607 continue; 2608 2609 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 2610 if (Record.empty()) 2611 return error("Invalid named struct record"); 2612 2613 if (NumRecords >= TypeList.size()) 2614 return error("Invalid TYPE table"); 2615 2616 // Check to see if this was forward referenced, if so fill in the temp. 2617 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 2618 if (Res) { 2619 Res->setName(TypeName); 2620 TypeList[NumRecords] = nullptr; 2621 } else // Otherwise, create a new struct. 2622 Res = createIdentifiedStructType(Context, TypeName); 2623 TypeName.clear(); 2624 2625 SmallVector<Type*, 8> EltTys; 2626 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 2627 if (Type *T = getTypeByID(Record[i])) 2628 EltTys.push_back(T); 2629 else 2630 break; 2631 } 2632 if (EltTys.size() != Record.size()-1) 2633 return error("Invalid named struct record"); 2634 Res->setBody(EltTys, Record[0]); 2635 ContainedIDs.append(Record.begin() + 1, Record.end()); 2636 ResultTy = Res; 2637 break; 2638 } 2639 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 2640 if (Record.size() != 1) 2641 return error("Invalid opaque type record"); 2642 2643 if (NumRecords >= TypeList.size()) 2644 return error("Invalid TYPE table"); 2645 2646 // Check to see if this was forward referenced, if so fill in the temp. 2647 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 2648 if (Res) { 2649 Res->setName(TypeName); 2650 TypeList[NumRecords] = nullptr; 2651 } else // Otherwise, create a new struct with no body. 2652 Res = createIdentifiedStructType(Context, TypeName); 2653 TypeName.clear(); 2654 ResultTy = Res; 2655 break; 2656 } 2657 case bitc::TYPE_CODE_TARGET_TYPE: { // TARGET_TYPE: [NumTy, Tys..., Ints...] 2658 if (Record.size() < 1) 2659 return error("Invalid target extension type record"); 2660 2661 if (NumRecords >= TypeList.size()) 2662 return error("Invalid TYPE table"); 2663 2664 if (Record[0] >= Record.size()) 2665 return error("Too many type parameters"); 2666 2667 unsigned NumTys = Record[0]; 2668 SmallVector<Type *, 4> TypeParams; 2669 SmallVector<unsigned, 8> IntParams; 2670 for (unsigned i = 0; i < NumTys; i++) { 2671 if (Type *T = getTypeByID(Record[i + 1])) 2672 TypeParams.push_back(T); 2673 else 2674 return error("Invalid type"); 2675 } 2676 2677 for (unsigned i = NumTys + 1, e = Record.size(); i < e; i++) { 2678 if (Record[i] > UINT_MAX) 2679 return error("Integer parameter too large"); 2680 IntParams.push_back(Record[i]); 2681 } 2682 auto TTy = 2683 TargetExtType::getOrError(Context, TypeName, TypeParams, IntParams); 2684 if (auto E = TTy.takeError()) 2685 return E; 2686 ResultTy = *TTy; 2687 TypeName.clear(); 2688 break; 2689 } 2690 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 2691 if (Record.size() < 2) 2692 return error("Invalid array type record"); 2693 ResultTy = getTypeByID(Record[1]); 2694 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 2695 return error("Invalid type"); 2696 ContainedIDs.push_back(Record[1]); 2697 ResultTy = ArrayType::get(ResultTy, Record[0]); 2698 break; 2699 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] or 2700 // [numelts, eltty, scalable] 2701 if (Record.size() < 2) 2702 return error("Invalid vector type record"); 2703 if (Record[0] == 0) 2704 return error("Invalid vector length"); 2705 ResultTy = getTypeByID(Record[1]); 2706 if (!ResultTy || !VectorType::isValidElementType(ResultTy)) 2707 return error("Invalid type"); 2708 bool Scalable = Record.size() > 2 ? Record[2] : false; 2709 ContainedIDs.push_back(Record[1]); 2710 ResultTy = VectorType::get(ResultTy, Record[0], Scalable); 2711 break; 2712 } 2713 2714 if (NumRecords >= TypeList.size()) 2715 return error("Invalid TYPE table"); 2716 if (TypeList[NumRecords]) 2717 return error( 2718 "Invalid TYPE table: Only named structs can be forward referenced"); 2719 assert(ResultTy && "Didn't read a type?"); 2720 TypeList[NumRecords] = ResultTy; 2721 if (!ContainedIDs.empty()) 2722 ContainedTypeIDs[NumRecords] = std::move(ContainedIDs); 2723 ++NumRecords; 2724 } 2725 } 2726 2727 Error BitcodeReader::parseOperandBundleTags() { 2728 if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 2729 return Err; 2730 2731 if (!BundleTags.empty()) 2732 return error("Invalid multiple blocks"); 2733 2734 SmallVector<uint64_t, 64> Record; 2735 2736 while (true) { 2737 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2738 if (!MaybeEntry) 2739 return MaybeEntry.takeError(); 2740 BitstreamEntry Entry = MaybeEntry.get(); 2741 2742 switch (Entry.Kind) { 2743 case BitstreamEntry::SubBlock: // Handled for us already. 2744 case BitstreamEntry::Error: 2745 return error("Malformed block"); 2746 case BitstreamEntry::EndBlock: 2747 return Error::success(); 2748 case BitstreamEntry::Record: 2749 // The interesting case. 2750 break; 2751 } 2752 2753 // Tags are implicitly mapped to integers by their order. 2754 2755 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2756 if (!MaybeRecord) 2757 return MaybeRecord.takeError(); 2758 if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG) 2759 return error("Invalid operand bundle record"); 2760 2761 // OPERAND_BUNDLE_TAG: [strchr x N] 2762 BundleTags.emplace_back(); 2763 if (convertToString(Record, 0, BundleTags.back())) 2764 return error("Invalid operand bundle record"); 2765 Record.clear(); 2766 } 2767 } 2768 2769 Error BitcodeReader::parseSyncScopeNames() { 2770 if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID)) 2771 return Err; 2772 2773 if (!SSIDs.empty()) 2774 return error("Invalid multiple synchronization scope names blocks"); 2775 2776 SmallVector<uint64_t, 64> Record; 2777 while (true) { 2778 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2779 if (!MaybeEntry) 2780 return MaybeEntry.takeError(); 2781 BitstreamEntry Entry = MaybeEntry.get(); 2782 2783 switch (Entry.Kind) { 2784 case BitstreamEntry::SubBlock: // Handled for us already. 2785 case BitstreamEntry::Error: 2786 return error("Malformed block"); 2787 case BitstreamEntry::EndBlock: 2788 if (SSIDs.empty()) 2789 return error("Invalid empty synchronization scope names block"); 2790 return Error::success(); 2791 case BitstreamEntry::Record: 2792 // The interesting case. 2793 break; 2794 } 2795 2796 // Synchronization scope names are implicitly mapped to synchronization 2797 // scope IDs by their order. 2798 2799 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2800 if (!MaybeRecord) 2801 return MaybeRecord.takeError(); 2802 if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME) 2803 return error("Invalid sync scope record"); 2804 2805 SmallString<16> SSN; 2806 if (convertToString(Record, 0, SSN)) 2807 return error("Invalid sync scope record"); 2808 2809 SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN)); 2810 Record.clear(); 2811 } 2812 } 2813 2814 /// Associate a value with its name from the given index in the provided record. 2815 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 2816 unsigned NameIndex, Triple &TT) { 2817 SmallString<128> ValueName; 2818 if (convertToString(Record, NameIndex, ValueName)) 2819 return error("Invalid record"); 2820 unsigned ValueID = Record[0]; 2821 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 2822 return error("Invalid record"); 2823 Value *V = ValueList[ValueID]; 2824 2825 StringRef NameStr(ValueName.data(), ValueName.size()); 2826 if (NameStr.contains(0)) 2827 return error("Invalid value name"); 2828 V->setName(NameStr); 2829 auto *GO = dyn_cast<GlobalObject>(V); 2830 if (GO && ImplicitComdatObjects.contains(GO) && TT.supportsCOMDAT()) 2831 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 2832 return V; 2833 } 2834 2835 /// Helper to note and return the current location, and jump to the given 2836 /// offset. 2837 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset, 2838 BitstreamCursor &Stream) { 2839 // Save the current parsing location so we can jump back at the end 2840 // of the VST read. 2841 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 2842 if (Error JumpFailed = Stream.JumpToBit(Offset * 32)) 2843 return std::move(JumpFailed); 2844 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 2845 if (!MaybeEntry) 2846 return MaybeEntry.takeError(); 2847 if (MaybeEntry.get().Kind != BitstreamEntry::SubBlock || 2848 MaybeEntry.get().ID != bitc::VALUE_SYMTAB_BLOCK_ID) 2849 return error("Expected value symbol table subblock"); 2850 return CurrentBit; 2851 } 2852 2853 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, 2854 Function *F, 2855 ArrayRef<uint64_t> Record) { 2856 // Note that we subtract 1 here because the offset is relative to one word 2857 // before the start of the identification or module block, which was 2858 // historically always the start of the regular bitcode header. 2859 uint64_t FuncWordOffset = Record[1] - 1; 2860 uint64_t FuncBitOffset = FuncWordOffset * 32; 2861 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 2862 // Set the LastFunctionBlockBit to point to the last function block. 2863 // Later when parsing is resumed after function materialization, 2864 // we can simply skip that last function block. 2865 if (FuncBitOffset > LastFunctionBlockBit) 2866 LastFunctionBlockBit = FuncBitOffset; 2867 } 2868 2869 /// Read a new-style GlobalValue symbol table. 2870 Error BitcodeReader::parseGlobalValueSymbolTable() { 2871 unsigned FuncBitcodeOffsetDelta = 2872 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2873 2874 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2875 return Err; 2876 2877 SmallVector<uint64_t, 64> Record; 2878 while (true) { 2879 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2880 if (!MaybeEntry) 2881 return MaybeEntry.takeError(); 2882 BitstreamEntry Entry = MaybeEntry.get(); 2883 2884 switch (Entry.Kind) { 2885 case BitstreamEntry::SubBlock: 2886 case BitstreamEntry::Error: 2887 return error("Malformed block"); 2888 case BitstreamEntry::EndBlock: 2889 return Error::success(); 2890 case BitstreamEntry::Record: 2891 break; 2892 } 2893 2894 Record.clear(); 2895 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2896 if (!MaybeRecord) 2897 return MaybeRecord.takeError(); 2898 switch (MaybeRecord.get()) { 2899 case bitc::VST_CODE_FNENTRY: { // [valueid, offset] 2900 unsigned ValueID = Record[0]; 2901 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 2902 return error("Invalid value reference in symbol table"); 2903 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, 2904 cast<Function>(ValueList[ValueID]), Record); 2905 break; 2906 } 2907 } 2908 } 2909 } 2910 2911 /// Parse the value symbol table at either the current parsing location or 2912 /// at the given bit offset if provided. 2913 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 2914 uint64_t CurrentBit; 2915 // Pass in the Offset to distinguish between calling for the module-level 2916 // VST (where we want to jump to the VST offset) and the function-level 2917 // VST (where we don't). 2918 if (Offset > 0) { 2919 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 2920 if (!MaybeCurrentBit) 2921 return MaybeCurrentBit.takeError(); 2922 CurrentBit = MaybeCurrentBit.get(); 2923 // If this module uses a string table, read this as a module-level VST. 2924 if (UseStrtab) { 2925 if (Error Err = parseGlobalValueSymbolTable()) 2926 return Err; 2927 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2928 return JumpFailed; 2929 return Error::success(); 2930 } 2931 // Otherwise, the VST will be in a similar format to a function-level VST, 2932 // and will contain symbol names. 2933 } 2934 2935 // Compute the delta between the bitcode indices in the VST (the word offset 2936 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 2937 // expected by the lazy reader. The reader's EnterSubBlock expects to have 2938 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 2939 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 2940 // just before entering the VST subblock because: 1) the EnterSubBlock 2941 // changes the AbbrevID width; 2) the VST block is nested within the same 2942 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 2943 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 2944 // jump to the FUNCTION_BLOCK using this offset later, we don't want 2945 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 2946 unsigned FuncBitcodeOffsetDelta = 2947 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2948 2949 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2950 return Err; 2951 2952 SmallVector<uint64_t, 64> Record; 2953 2954 Triple TT(TheModule->getTargetTriple()); 2955 2956 // Read all the records for this value table. 2957 SmallString<128> ValueName; 2958 2959 while (true) { 2960 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2961 if (!MaybeEntry) 2962 return MaybeEntry.takeError(); 2963 BitstreamEntry Entry = MaybeEntry.get(); 2964 2965 switch (Entry.Kind) { 2966 case BitstreamEntry::SubBlock: // Handled for us already. 2967 case BitstreamEntry::Error: 2968 return error("Malformed block"); 2969 case BitstreamEntry::EndBlock: 2970 if (Offset > 0) 2971 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2972 return JumpFailed; 2973 return Error::success(); 2974 case BitstreamEntry::Record: 2975 // The interesting case. 2976 break; 2977 } 2978 2979 // Read a record. 2980 Record.clear(); 2981 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2982 if (!MaybeRecord) 2983 return MaybeRecord.takeError(); 2984 switch (MaybeRecord.get()) { 2985 default: // Default behavior: unknown type. 2986 break; 2987 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 2988 Expected<Value *> ValOrErr = recordValue(Record, 1, TT); 2989 if (Error Err = ValOrErr.takeError()) 2990 return Err; 2991 ValOrErr.get(); 2992 break; 2993 } 2994 case bitc::VST_CODE_FNENTRY: { 2995 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 2996 Expected<Value *> ValOrErr = recordValue(Record, 2, TT); 2997 if (Error Err = ValOrErr.takeError()) 2998 return Err; 2999 Value *V = ValOrErr.get(); 3000 3001 // Ignore function offsets emitted for aliases of functions in older 3002 // versions of LLVM. 3003 if (auto *F = dyn_cast<Function>(V)) 3004 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record); 3005 break; 3006 } 3007 case bitc::VST_CODE_BBENTRY: { 3008 if (convertToString(Record, 1, ValueName)) 3009 return error("Invalid bbentry record"); 3010 BasicBlock *BB = getBasicBlock(Record[0]); 3011 if (!BB) 3012 return error("Invalid bbentry record"); 3013 3014 BB->setName(ValueName.str()); 3015 ValueName.clear(); 3016 break; 3017 } 3018 } 3019 } 3020 } 3021 3022 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 3023 /// encoding. 3024 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 3025 if ((V & 1) == 0) 3026 return V >> 1; 3027 if (V != 1) 3028 return -(V >> 1); 3029 // There is no such thing as -0 with integers. "-0" really means MININT. 3030 return 1ULL << 63; 3031 } 3032 3033 /// Resolve all of the initializers for global values and aliases that we can. 3034 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 3035 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist; 3036 std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInitWorklist; 3037 std::vector<FunctionOperandInfo> FunctionOperandWorklist; 3038 3039 GlobalInitWorklist.swap(GlobalInits); 3040 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 3041 FunctionOperandWorklist.swap(FunctionOperands); 3042 3043 while (!GlobalInitWorklist.empty()) { 3044 unsigned ValID = GlobalInitWorklist.back().second; 3045 if (ValID >= ValueList.size()) { 3046 // Not ready to resolve this yet, it requires something later in the file. 3047 GlobalInits.push_back(GlobalInitWorklist.back()); 3048 } else { 3049 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 3050 if (!MaybeC) 3051 return MaybeC.takeError(); 3052 GlobalInitWorklist.back().first->setInitializer(MaybeC.get()); 3053 } 3054 GlobalInitWorklist.pop_back(); 3055 } 3056 3057 while (!IndirectSymbolInitWorklist.empty()) { 3058 unsigned ValID = IndirectSymbolInitWorklist.back().second; 3059 if (ValID >= ValueList.size()) { 3060 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 3061 } else { 3062 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 3063 if (!MaybeC) 3064 return MaybeC.takeError(); 3065 Constant *C = MaybeC.get(); 3066 GlobalValue *GV = IndirectSymbolInitWorklist.back().first; 3067 if (auto *GA = dyn_cast<GlobalAlias>(GV)) { 3068 if (C->getType() != GV->getType()) 3069 return error("Alias and aliasee types don't match"); 3070 GA->setAliasee(C); 3071 } else if (auto *GI = dyn_cast<GlobalIFunc>(GV)) { 3072 GI->setResolver(C); 3073 } else { 3074 return error("Expected an alias or an ifunc"); 3075 } 3076 } 3077 IndirectSymbolInitWorklist.pop_back(); 3078 } 3079 3080 while (!FunctionOperandWorklist.empty()) { 3081 FunctionOperandInfo &Info = FunctionOperandWorklist.back(); 3082 if (Info.PersonalityFn) { 3083 unsigned ValID = Info.PersonalityFn - 1; 3084 if (ValID < ValueList.size()) { 3085 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 3086 if (!MaybeC) 3087 return MaybeC.takeError(); 3088 Info.F->setPersonalityFn(MaybeC.get()); 3089 Info.PersonalityFn = 0; 3090 } 3091 } 3092 if (Info.Prefix) { 3093 unsigned ValID = Info.Prefix - 1; 3094 if (ValID < ValueList.size()) { 3095 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 3096 if (!MaybeC) 3097 return MaybeC.takeError(); 3098 Info.F->setPrefixData(MaybeC.get()); 3099 Info.Prefix = 0; 3100 } 3101 } 3102 if (Info.Prologue) { 3103 unsigned ValID = Info.Prologue - 1; 3104 if (ValID < ValueList.size()) { 3105 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 3106 if (!MaybeC) 3107 return MaybeC.takeError(); 3108 Info.F->setPrologueData(MaybeC.get()); 3109 Info.Prologue = 0; 3110 } 3111 } 3112 if (Info.PersonalityFn || Info.Prefix || Info.Prologue) 3113 FunctionOperands.push_back(Info); 3114 FunctionOperandWorklist.pop_back(); 3115 } 3116 3117 return Error::success(); 3118 } 3119 3120 APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 3121 SmallVector<uint64_t, 8> Words(Vals.size()); 3122 transform(Vals, Words.begin(), 3123 BitcodeReader::decodeSignRotatedValue); 3124 3125 return APInt(TypeBits, Words); 3126 } 3127 3128 Error BitcodeReader::parseConstants() { 3129 if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 3130 return Err; 3131 3132 SmallVector<uint64_t, 64> Record; 3133 3134 // Read all the records for this value table. 3135 Type *CurTy = Type::getInt32Ty(Context); 3136 unsigned Int32TyID = getVirtualTypeID(CurTy); 3137 unsigned CurTyID = Int32TyID; 3138 Type *CurElemTy = nullptr; 3139 unsigned NextCstNo = ValueList.size(); 3140 3141 while (true) { 3142 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 3143 if (!MaybeEntry) 3144 return MaybeEntry.takeError(); 3145 BitstreamEntry Entry = MaybeEntry.get(); 3146 3147 switch (Entry.Kind) { 3148 case BitstreamEntry::SubBlock: // Handled for us already. 3149 case BitstreamEntry::Error: 3150 return error("Malformed block"); 3151 case BitstreamEntry::EndBlock: 3152 if (NextCstNo != ValueList.size()) 3153 return error("Invalid constant reference"); 3154 return Error::success(); 3155 case BitstreamEntry::Record: 3156 // The interesting case. 3157 break; 3158 } 3159 3160 // Read a record. 3161 Record.clear(); 3162 Type *VoidType = Type::getVoidTy(Context); 3163 Value *V = nullptr; 3164 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 3165 if (!MaybeBitCode) 3166 return MaybeBitCode.takeError(); 3167 switch (unsigned BitCode = MaybeBitCode.get()) { 3168 default: // Default behavior: unknown constant 3169 case bitc::CST_CODE_UNDEF: // UNDEF 3170 V = UndefValue::get(CurTy); 3171 break; 3172 case bitc::CST_CODE_POISON: // POISON 3173 V = PoisonValue::get(CurTy); 3174 break; 3175 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 3176 if (Record.empty()) 3177 return error("Invalid settype record"); 3178 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 3179 return error("Invalid settype record"); 3180 if (TypeList[Record[0]] == VoidType) 3181 return error("Invalid constant type"); 3182 CurTyID = Record[0]; 3183 CurTy = TypeList[CurTyID]; 3184 CurElemTy = getPtrElementTypeByID(CurTyID); 3185 continue; // Skip the ValueList manipulation. 3186 case bitc::CST_CODE_NULL: // NULL 3187 if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy()) 3188 return error("Invalid type for a constant null value"); 3189 if (auto *TETy = dyn_cast<TargetExtType>(CurTy)) 3190 if (!TETy->hasProperty(TargetExtType::HasZeroInit)) 3191 return error("Invalid type for a constant null value"); 3192 V = Constant::getNullValue(CurTy); 3193 break; 3194 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 3195 if (!CurTy->isIntOrIntVectorTy() || Record.empty()) 3196 return error("Invalid integer const record"); 3197 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 3198 break; 3199 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 3200 if (!CurTy->isIntOrIntVectorTy() || Record.empty()) 3201 return error("Invalid wide integer const record"); 3202 3203 auto *ScalarTy = cast<IntegerType>(CurTy->getScalarType()); 3204 APInt VInt = readWideAPInt(Record, ScalarTy->getBitWidth()); 3205 V = ConstantInt::get(CurTy, VInt); 3206 break; 3207 } 3208 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 3209 if (Record.empty()) 3210 return error("Invalid float const record"); 3211 3212 auto *ScalarTy = CurTy->getScalarType(); 3213 if (ScalarTy->isHalfTy()) 3214 V = ConstantFP::get(CurTy, APFloat(APFloat::IEEEhalf(), 3215 APInt(16, (uint16_t)Record[0]))); 3216 else if (ScalarTy->isBFloatTy()) 3217 V = ConstantFP::get( 3218 CurTy, APFloat(APFloat::BFloat(), APInt(16, (uint32_t)Record[0]))); 3219 else if (ScalarTy->isFloatTy()) 3220 V = ConstantFP::get(CurTy, APFloat(APFloat::IEEEsingle(), 3221 APInt(32, (uint32_t)Record[0]))); 3222 else if (ScalarTy->isDoubleTy()) 3223 V = ConstantFP::get( 3224 CurTy, APFloat(APFloat::IEEEdouble(), APInt(64, Record[0]))); 3225 else if (ScalarTy->isX86_FP80Ty()) { 3226 // Bits are not stored the same way as a normal i80 APInt, compensate. 3227 uint64_t Rearrange[2]; 3228 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 3229 Rearrange[1] = Record[0] >> 48; 3230 V = ConstantFP::get( 3231 CurTy, APFloat(APFloat::x87DoubleExtended(), APInt(80, Rearrange))); 3232 } else if (ScalarTy->isFP128Ty()) 3233 V = ConstantFP::get(CurTy, 3234 APFloat(APFloat::IEEEquad(), APInt(128, Record))); 3235 else if (ScalarTy->isPPC_FP128Ty()) 3236 V = ConstantFP::get( 3237 CurTy, APFloat(APFloat::PPCDoubleDouble(), APInt(128, Record))); 3238 else 3239 V = PoisonValue::get(CurTy); 3240 break; 3241 } 3242 3243 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 3244 if (Record.empty()) 3245 return error("Invalid aggregate record"); 3246 3247 unsigned Size = Record.size(); 3248 SmallVector<unsigned, 16> Elts; 3249 for (unsigned i = 0; i != Size; ++i) 3250 Elts.push_back(Record[i]); 3251 3252 if (isa<StructType>(CurTy)) { 3253 V = BitcodeConstant::create( 3254 Alloc, CurTy, BitcodeConstant::ConstantStructOpcode, Elts); 3255 } else if (isa<ArrayType>(CurTy)) { 3256 V = BitcodeConstant::create(Alloc, CurTy, 3257 BitcodeConstant::ConstantArrayOpcode, Elts); 3258 } else if (isa<VectorType>(CurTy)) { 3259 V = BitcodeConstant::create( 3260 Alloc, CurTy, BitcodeConstant::ConstantVectorOpcode, Elts); 3261 } else { 3262 V = PoisonValue::get(CurTy); 3263 } 3264 break; 3265 } 3266 case bitc::CST_CODE_STRING: // STRING: [values] 3267 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 3268 if (Record.empty()) 3269 return error("Invalid string record"); 3270 3271 SmallString<16> Elts(Record.begin(), Record.end()); 3272 V = ConstantDataArray::getString(Context, Elts, 3273 BitCode == bitc::CST_CODE_CSTRING); 3274 break; 3275 } 3276 case bitc::CST_CODE_DATA: {// DATA: [n x value] 3277 if (Record.empty()) 3278 return error("Invalid data record"); 3279 3280 Type *EltTy; 3281 if (auto *Array = dyn_cast<ArrayType>(CurTy)) 3282 EltTy = Array->getElementType(); 3283 else 3284 EltTy = cast<VectorType>(CurTy)->getElementType(); 3285 if (EltTy->isIntegerTy(8)) { 3286 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 3287 if (isa<VectorType>(CurTy)) 3288 V = ConstantDataVector::get(Context, Elts); 3289 else 3290 V = ConstantDataArray::get(Context, Elts); 3291 } else if (EltTy->isIntegerTy(16)) { 3292 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 3293 if (isa<VectorType>(CurTy)) 3294 V = ConstantDataVector::get(Context, Elts); 3295 else 3296 V = ConstantDataArray::get(Context, Elts); 3297 } else if (EltTy->isIntegerTy(32)) { 3298 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 3299 if (isa<VectorType>(CurTy)) 3300 V = ConstantDataVector::get(Context, Elts); 3301 else 3302 V = ConstantDataArray::get(Context, Elts); 3303 } else if (EltTy->isIntegerTy(64)) { 3304 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 3305 if (isa<VectorType>(CurTy)) 3306 V = ConstantDataVector::get(Context, Elts); 3307 else 3308 V = ConstantDataArray::get(Context, Elts); 3309 } else if (EltTy->isHalfTy()) { 3310 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 3311 if (isa<VectorType>(CurTy)) 3312 V = ConstantDataVector::getFP(EltTy, Elts); 3313 else 3314 V = ConstantDataArray::getFP(EltTy, Elts); 3315 } else if (EltTy->isBFloatTy()) { 3316 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 3317 if (isa<VectorType>(CurTy)) 3318 V = ConstantDataVector::getFP(EltTy, Elts); 3319 else 3320 V = ConstantDataArray::getFP(EltTy, Elts); 3321 } else if (EltTy->isFloatTy()) { 3322 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 3323 if (isa<VectorType>(CurTy)) 3324 V = ConstantDataVector::getFP(EltTy, Elts); 3325 else 3326 V = ConstantDataArray::getFP(EltTy, Elts); 3327 } else if (EltTy->isDoubleTy()) { 3328 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 3329 if (isa<VectorType>(CurTy)) 3330 V = ConstantDataVector::getFP(EltTy, Elts); 3331 else 3332 V = ConstantDataArray::getFP(EltTy, Elts); 3333 } else { 3334 return error("Invalid type for value"); 3335 } 3336 break; 3337 } 3338 case bitc::CST_CODE_CE_UNOP: { // CE_UNOP: [opcode, opval] 3339 if (Record.size() < 2) 3340 return error("Invalid unary op constexpr record"); 3341 int Opc = getDecodedUnaryOpcode(Record[0], CurTy); 3342 if (Opc < 0) { 3343 V = PoisonValue::get(CurTy); // Unknown unop. 3344 } else { 3345 V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[1]); 3346 } 3347 break; 3348 } 3349 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 3350 if (Record.size() < 3) 3351 return error("Invalid binary op constexpr record"); 3352 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 3353 if (Opc < 0) { 3354 V = PoisonValue::get(CurTy); // Unknown binop. 3355 } else { 3356 uint8_t Flags = 0; 3357 if (Record.size() >= 4) { 3358 if (Opc == Instruction::Add || 3359 Opc == Instruction::Sub || 3360 Opc == Instruction::Mul || 3361 Opc == Instruction::Shl) { 3362 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3363 Flags |= OverflowingBinaryOperator::NoSignedWrap; 3364 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3365 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 3366 } else if (Opc == Instruction::SDiv || 3367 Opc == Instruction::UDiv || 3368 Opc == Instruction::LShr || 3369 Opc == Instruction::AShr) { 3370 if (Record[3] & (1 << bitc::PEO_EXACT)) 3371 Flags |= PossiblyExactOperator::IsExact; 3372 } 3373 } 3374 V = BitcodeConstant::create(Alloc, CurTy, {(uint8_t)Opc, Flags}, 3375 {(unsigned)Record[1], (unsigned)Record[2]}); 3376 } 3377 break; 3378 } 3379 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 3380 if (Record.size() < 3) 3381 return error("Invalid cast constexpr record"); 3382 int Opc = getDecodedCastOpcode(Record[0]); 3383 if (Opc < 0) { 3384 V = PoisonValue::get(CurTy); // Unknown cast. 3385 } else { 3386 unsigned OpTyID = Record[1]; 3387 Type *OpTy = getTypeByID(OpTyID); 3388 if (!OpTy) 3389 return error("Invalid cast constexpr record"); 3390 V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[2]); 3391 } 3392 break; 3393 } 3394 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands] 3395 case bitc::CST_CODE_CE_GEP_OLD: // [ty, n x operands] 3396 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX_OLD: // [ty, flags, n x 3397 // operands] 3398 case bitc::CST_CODE_CE_GEP: // [ty, flags, n x operands] 3399 case bitc::CST_CODE_CE_GEP_WITH_INRANGE: { // [ty, flags, start, end, n x 3400 // operands] 3401 if (Record.size() < 2) 3402 return error("Constant GEP record must have at least two elements"); 3403 unsigned OpNum = 0; 3404 Type *PointeeType = nullptr; 3405 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX_OLD || 3406 BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE || 3407 BitCode == bitc::CST_CODE_CE_GEP || Record.size() % 2) 3408 PointeeType = getTypeByID(Record[OpNum++]); 3409 3410 uint64_t Flags = 0; 3411 std::optional<ConstantRange> InRange; 3412 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX_OLD) { 3413 uint64_t Op = Record[OpNum++]; 3414 Flags = Op & 1; // inbounds 3415 unsigned InRangeIndex = Op >> 1; 3416 // "Upgrade" inrange by dropping it. The feature is too niche to 3417 // bother. 3418 (void)InRangeIndex; 3419 } else if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE) { 3420 Flags = Record[OpNum++]; 3421 Expected<ConstantRange> MaybeInRange = 3422 readBitWidthAndConstantRange(Record, OpNum); 3423 if (!MaybeInRange) 3424 return MaybeInRange.takeError(); 3425 InRange = MaybeInRange.get(); 3426 } else if (BitCode == bitc::CST_CODE_CE_GEP) { 3427 Flags = Record[OpNum++]; 3428 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 3429 Flags = (1 << bitc::GEP_INBOUNDS); 3430 3431 SmallVector<unsigned, 16> Elts; 3432 unsigned BaseTypeID = Record[OpNum]; 3433 while (OpNum != Record.size()) { 3434 unsigned ElTyID = Record[OpNum++]; 3435 Type *ElTy = getTypeByID(ElTyID); 3436 if (!ElTy) 3437 return error("Invalid getelementptr constexpr record"); 3438 Elts.push_back(Record[OpNum++]); 3439 } 3440 3441 if (Elts.size() < 1) 3442 return error("Invalid gep with no operands"); 3443 3444 Type *BaseType = getTypeByID(BaseTypeID); 3445 if (isa<VectorType>(BaseType)) { 3446 BaseTypeID = getContainedTypeID(BaseTypeID, 0); 3447 BaseType = getTypeByID(BaseTypeID); 3448 } 3449 3450 PointerType *OrigPtrTy = dyn_cast_or_null<PointerType>(BaseType); 3451 if (!OrigPtrTy) 3452 return error("GEP base operand must be pointer or vector of pointer"); 3453 3454 if (!PointeeType) { 3455 PointeeType = getPtrElementTypeByID(BaseTypeID); 3456 if (!PointeeType) 3457 return error("Missing element type for old-style constant GEP"); 3458 } 3459 3460 V = BitcodeConstant::create( 3461 Alloc, CurTy, 3462 {Instruction::GetElementPtr, uint8_t(Flags), PointeeType, InRange}, 3463 Elts); 3464 break; 3465 } 3466 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 3467 if (Record.size() < 3) 3468 return error("Invalid select constexpr record"); 3469 3470 V = BitcodeConstant::create( 3471 Alloc, CurTy, Instruction::Select, 3472 {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]}); 3473 break; 3474 } 3475 case bitc::CST_CODE_CE_EXTRACTELT 3476 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 3477 if (Record.size() < 3) 3478 return error("Invalid extractelement constexpr record"); 3479 unsigned OpTyID = Record[0]; 3480 VectorType *OpTy = 3481 dyn_cast_or_null<VectorType>(getTypeByID(OpTyID)); 3482 if (!OpTy) 3483 return error("Invalid extractelement constexpr record"); 3484 unsigned IdxRecord; 3485 if (Record.size() == 4) { 3486 unsigned IdxTyID = Record[2]; 3487 Type *IdxTy = getTypeByID(IdxTyID); 3488 if (!IdxTy) 3489 return error("Invalid extractelement constexpr record"); 3490 IdxRecord = Record[3]; 3491 } else { 3492 // Deprecated, but still needed to read old bitcode files. 3493 IdxRecord = Record[2]; 3494 } 3495 V = BitcodeConstant::create(Alloc, CurTy, Instruction::ExtractElement, 3496 {(unsigned)Record[1], IdxRecord}); 3497 break; 3498 } 3499 case bitc::CST_CODE_CE_INSERTELT 3500 : { // CE_INSERTELT: [opval, opval, opty, opval] 3501 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 3502 if (Record.size() < 3 || !OpTy) 3503 return error("Invalid insertelement constexpr record"); 3504 unsigned IdxRecord; 3505 if (Record.size() == 4) { 3506 unsigned IdxTyID = Record[2]; 3507 Type *IdxTy = getTypeByID(IdxTyID); 3508 if (!IdxTy) 3509 return error("Invalid insertelement constexpr record"); 3510 IdxRecord = Record[3]; 3511 } else { 3512 // Deprecated, but still needed to read old bitcode files. 3513 IdxRecord = Record[2]; 3514 } 3515 V = BitcodeConstant::create( 3516 Alloc, CurTy, Instruction::InsertElement, 3517 {(unsigned)Record[0], (unsigned)Record[1], IdxRecord}); 3518 break; 3519 } 3520 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 3521 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 3522 if (Record.size() < 3 || !OpTy) 3523 return error("Invalid shufflevector constexpr record"); 3524 V = BitcodeConstant::create( 3525 Alloc, CurTy, Instruction::ShuffleVector, 3526 {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]}); 3527 break; 3528 } 3529 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 3530 VectorType *RTy = dyn_cast<VectorType>(CurTy); 3531 VectorType *OpTy = 3532 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 3533 if (Record.size() < 4 || !RTy || !OpTy) 3534 return error("Invalid shufflevector constexpr record"); 3535 V = BitcodeConstant::create( 3536 Alloc, CurTy, Instruction::ShuffleVector, 3537 {(unsigned)Record[1], (unsigned)Record[2], (unsigned)Record[3]}); 3538 break; 3539 } 3540 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 3541 if (Record.size() < 4) 3542 return error("Invalid cmp constexpt record"); 3543 unsigned OpTyID = Record[0]; 3544 Type *OpTy = getTypeByID(OpTyID); 3545 if (!OpTy) 3546 return error("Invalid cmp constexpr record"); 3547 V = BitcodeConstant::create( 3548 Alloc, CurTy, 3549 {(uint8_t)(OpTy->isFPOrFPVectorTy() ? Instruction::FCmp 3550 : Instruction::ICmp), 3551 (uint8_t)Record[3]}, 3552 {(unsigned)Record[1], (unsigned)Record[2]}); 3553 break; 3554 } 3555 // This maintains backward compatibility, pre-asm dialect keywords. 3556 // Deprecated, but still needed to read old bitcode files. 3557 case bitc::CST_CODE_INLINEASM_OLD: { 3558 if (Record.size() < 2) 3559 return error("Invalid inlineasm record"); 3560 std::string AsmStr, ConstrStr; 3561 bool HasSideEffects = Record[0] & 1; 3562 bool IsAlignStack = Record[0] >> 1; 3563 unsigned AsmStrSize = Record[1]; 3564 if (2+AsmStrSize >= Record.size()) 3565 return error("Invalid inlineasm record"); 3566 unsigned ConstStrSize = Record[2+AsmStrSize]; 3567 if (3+AsmStrSize+ConstStrSize > Record.size()) 3568 return error("Invalid inlineasm record"); 3569 3570 for (unsigned i = 0; i != AsmStrSize; ++i) 3571 AsmStr += (char)Record[2+i]; 3572 for (unsigned i = 0; i != ConstStrSize; ++i) 3573 ConstrStr += (char)Record[3+AsmStrSize+i]; 3574 UpgradeInlineAsmString(&AsmStr); 3575 if (!CurElemTy) 3576 return error("Missing element type for old-style inlineasm"); 3577 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr, 3578 HasSideEffects, IsAlignStack); 3579 break; 3580 } 3581 // This version adds support for the asm dialect keywords (e.g., 3582 // inteldialect). 3583 case bitc::CST_CODE_INLINEASM_OLD2: { 3584 if (Record.size() < 2) 3585 return error("Invalid inlineasm record"); 3586 std::string AsmStr, ConstrStr; 3587 bool HasSideEffects = Record[0] & 1; 3588 bool IsAlignStack = (Record[0] >> 1) & 1; 3589 unsigned AsmDialect = Record[0] >> 2; 3590 unsigned AsmStrSize = Record[1]; 3591 if (2+AsmStrSize >= Record.size()) 3592 return error("Invalid inlineasm record"); 3593 unsigned ConstStrSize = Record[2+AsmStrSize]; 3594 if (3+AsmStrSize+ConstStrSize > Record.size()) 3595 return error("Invalid inlineasm record"); 3596 3597 for (unsigned i = 0; i != AsmStrSize; ++i) 3598 AsmStr += (char)Record[2+i]; 3599 for (unsigned i = 0; i != ConstStrSize; ++i) 3600 ConstrStr += (char)Record[3+AsmStrSize+i]; 3601 UpgradeInlineAsmString(&AsmStr); 3602 if (!CurElemTy) 3603 return error("Missing element type for old-style inlineasm"); 3604 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr, 3605 HasSideEffects, IsAlignStack, 3606 InlineAsm::AsmDialect(AsmDialect)); 3607 break; 3608 } 3609 // This version adds support for the unwind keyword. 3610 case bitc::CST_CODE_INLINEASM_OLD3: { 3611 if (Record.size() < 2) 3612 return error("Invalid inlineasm record"); 3613 unsigned OpNum = 0; 3614 std::string AsmStr, ConstrStr; 3615 bool HasSideEffects = Record[OpNum] & 1; 3616 bool IsAlignStack = (Record[OpNum] >> 1) & 1; 3617 unsigned AsmDialect = (Record[OpNum] >> 2) & 1; 3618 bool CanThrow = (Record[OpNum] >> 3) & 1; 3619 ++OpNum; 3620 unsigned AsmStrSize = Record[OpNum]; 3621 ++OpNum; 3622 if (OpNum + AsmStrSize >= Record.size()) 3623 return error("Invalid inlineasm record"); 3624 unsigned ConstStrSize = Record[OpNum + AsmStrSize]; 3625 if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size()) 3626 return error("Invalid inlineasm record"); 3627 3628 for (unsigned i = 0; i != AsmStrSize; ++i) 3629 AsmStr += (char)Record[OpNum + i]; 3630 ++OpNum; 3631 for (unsigned i = 0; i != ConstStrSize; ++i) 3632 ConstrStr += (char)Record[OpNum + AsmStrSize + i]; 3633 UpgradeInlineAsmString(&AsmStr); 3634 if (!CurElemTy) 3635 return error("Missing element type for old-style inlineasm"); 3636 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr, 3637 HasSideEffects, IsAlignStack, 3638 InlineAsm::AsmDialect(AsmDialect), CanThrow); 3639 break; 3640 } 3641 // This version adds explicit function type. 3642 case bitc::CST_CODE_INLINEASM: { 3643 if (Record.size() < 3) 3644 return error("Invalid inlineasm record"); 3645 unsigned OpNum = 0; 3646 auto *FnTy = dyn_cast_or_null<FunctionType>(getTypeByID(Record[OpNum])); 3647 ++OpNum; 3648 if (!FnTy) 3649 return error("Invalid inlineasm record"); 3650 std::string AsmStr, ConstrStr; 3651 bool HasSideEffects = Record[OpNum] & 1; 3652 bool IsAlignStack = (Record[OpNum] >> 1) & 1; 3653 unsigned AsmDialect = (Record[OpNum] >> 2) & 1; 3654 bool CanThrow = (Record[OpNum] >> 3) & 1; 3655 ++OpNum; 3656 unsigned AsmStrSize = Record[OpNum]; 3657 ++OpNum; 3658 if (OpNum + AsmStrSize >= Record.size()) 3659 return error("Invalid inlineasm record"); 3660 unsigned ConstStrSize = Record[OpNum + AsmStrSize]; 3661 if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size()) 3662 return error("Invalid inlineasm record"); 3663 3664 for (unsigned i = 0; i != AsmStrSize; ++i) 3665 AsmStr += (char)Record[OpNum + i]; 3666 ++OpNum; 3667 for (unsigned i = 0; i != ConstStrSize; ++i) 3668 ConstrStr += (char)Record[OpNum + AsmStrSize + i]; 3669 UpgradeInlineAsmString(&AsmStr); 3670 V = InlineAsm::get(FnTy, AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 3671 InlineAsm::AsmDialect(AsmDialect), CanThrow); 3672 break; 3673 } 3674 case bitc::CST_CODE_BLOCKADDRESS:{ 3675 if (Record.size() < 3) 3676 return error("Invalid blockaddress record"); 3677 unsigned FnTyID = Record[0]; 3678 Type *FnTy = getTypeByID(FnTyID); 3679 if (!FnTy) 3680 return error("Invalid blockaddress record"); 3681 V = BitcodeConstant::create( 3682 Alloc, CurTy, 3683 {BitcodeConstant::BlockAddressOpcode, 0, (unsigned)Record[2]}, 3684 Record[1]); 3685 break; 3686 } 3687 case bitc::CST_CODE_DSO_LOCAL_EQUIVALENT: { 3688 if (Record.size() < 2) 3689 return error("Invalid dso_local record"); 3690 unsigned GVTyID = Record[0]; 3691 Type *GVTy = getTypeByID(GVTyID); 3692 if (!GVTy) 3693 return error("Invalid dso_local record"); 3694 V = BitcodeConstant::create( 3695 Alloc, CurTy, BitcodeConstant::DSOLocalEquivalentOpcode, Record[1]); 3696 break; 3697 } 3698 case bitc::CST_CODE_NO_CFI_VALUE: { 3699 if (Record.size() < 2) 3700 return error("Invalid no_cfi record"); 3701 unsigned GVTyID = Record[0]; 3702 Type *GVTy = getTypeByID(GVTyID); 3703 if (!GVTy) 3704 return error("Invalid no_cfi record"); 3705 V = BitcodeConstant::create(Alloc, CurTy, BitcodeConstant::NoCFIOpcode, 3706 Record[1]); 3707 break; 3708 } 3709 case bitc::CST_CODE_PTRAUTH: { 3710 if (Record.size() < 4) 3711 return error("Invalid ptrauth record"); 3712 // Ptr, Key, Disc, AddrDisc 3713 V = BitcodeConstant::create(Alloc, CurTy, 3714 BitcodeConstant::ConstantPtrAuthOpcode, 3715 {(unsigned)Record[0], (unsigned)Record[1], 3716 (unsigned)Record[2], (unsigned)Record[3]}); 3717 break; 3718 } 3719 } 3720 3721 assert(V->getType() == getTypeByID(CurTyID) && "Incorrect result type ID"); 3722 if (Error Err = ValueList.assignValue(NextCstNo, V, CurTyID)) 3723 return Err; 3724 ++NextCstNo; 3725 } 3726 } 3727 3728 Error BitcodeReader::parseUseLists() { 3729 if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 3730 return Err; 3731 3732 // Read all the records. 3733 SmallVector<uint64_t, 64> Record; 3734 3735 while (true) { 3736 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 3737 if (!MaybeEntry) 3738 return MaybeEntry.takeError(); 3739 BitstreamEntry Entry = MaybeEntry.get(); 3740 3741 switch (Entry.Kind) { 3742 case BitstreamEntry::SubBlock: // Handled for us already. 3743 case BitstreamEntry::Error: 3744 return error("Malformed block"); 3745 case BitstreamEntry::EndBlock: 3746 return Error::success(); 3747 case BitstreamEntry::Record: 3748 // The interesting case. 3749 break; 3750 } 3751 3752 // Read a use list record. 3753 Record.clear(); 3754 bool IsBB = false; 3755 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 3756 if (!MaybeRecord) 3757 return MaybeRecord.takeError(); 3758 switch (MaybeRecord.get()) { 3759 default: // Default behavior: unknown type. 3760 break; 3761 case bitc::USELIST_CODE_BB: 3762 IsBB = true; 3763 [[fallthrough]]; 3764 case bitc::USELIST_CODE_DEFAULT: { 3765 unsigned RecordLength = Record.size(); 3766 if (RecordLength < 3) 3767 // Records should have at least an ID and two indexes. 3768 return error("Invalid record"); 3769 unsigned ID = Record.pop_back_val(); 3770 3771 Value *V; 3772 if (IsBB) { 3773 assert(ID < FunctionBBs.size() && "Basic block not found"); 3774 V = FunctionBBs[ID]; 3775 } else 3776 V = ValueList[ID]; 3777 unsigned NumUses = 0; 3778 SmallDenseMap<const Use *, unsigned, 16> Order; 3779 for (const Use &U : V->materialized_uses()) { 3780 if (++NumUses > Record.size()) 3781 break; 3782 Order[&U] = Record[NumUses - 1]; 3783 } 3784 if (Order.size() != Record.size() || NumUses > Record.size()) 3785 // Mismatches can happen if the functions are being materialized lazily 3786 // (out-of-order), or a value has been upgraded. 3787 break; 3788 3789 V->sortUseList([&](const Use &L, const Use &R) { 3790 return Order.lookup(&L) < Order.lookup(&R); 3791 }); 3792 break; 3793 } 3794 } 3795 } 3796 } 3797 3798 /// When we see the block for metadata, remember where it is and then skip it. 3799 /// This lets us lazily deserialize the metadata. 3800 Error BitcodeReader::rememberAndSkipMetadata() { 3801 // Save the current stream state. 3802 uint64_t CurBit = Stream.GetCurrentBitNo(); 3803 DeferredMetadataInfo.push_back(CurBit); 3804 3805 // Skip over the block for now. 3806 if (Error Err = Stream.SkipBlock()) 3807 return Err; 3808 return Error::success(); 3809 } 3810 3811 Error BitcodeReader::materializeMetadata() { 3812 for (uint64_t BitPos : DeferredMetadataInfo) { 3813 // Move the bit stream to the saved position. 3814 if (Error JumpFailed = Stream.JumpToBit(BitPos)) 3815 return JumpFailed; 3816 if (Error Err = MDLoader->parseModuleMetadata()) 3817 return Err; 3818 } 3819 3820 // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level 3821 // metadata. Only upgrade if the new option doesn't exist to avoid upgrade 3822 // multiple times. 3823 if (!TheModule->getNamedMetadata("llvm.linker.options")) { 3824 if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) { 3825 NamedMDNode *LinkerOpts = 3826 TheModule->getOrInsertNamedMetadata("llvm.linker.options"); 3827 for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands()) 3828 LinkerOpts->addOperand(cast<MDNode>(MDOptions)); 3829 } 3830 } 3831 3832 DeferredMetadataInfo.clear(); 3833 return Error::success(); 3834 } 3835 3836 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 3837 3838 /// When we see the block for a function body, remember where it is and then 3839 /// skip it. This lets us lazily deserialize the functions. 3840 Error BitcodeReader::rememberAndSkipFunctionBody() { 3841 // Get the function we are talking about. 3842 if (FunctionsWithBodies.empty()) 3843 return error("Insufficient function protos"); 3844 3845 Function *Fn = FunctionsWithBodies.back(); 3846 FunctionsWithBodies.pop_back(); 3847 3848 // Save the current stream state. 3849 uint64_t CurBit = Stream.GetCurrentBitNo(); 3850 assert( 3851 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 3852 "Mismatch between VST and scanned function offsets"); 3853 DeferredFunctionInfo[Fn] = CurBit; 3854 3855 // Skip over the function block for now. 3856 if (Error Err = Stream.SkipBlock()) 3857 return Err; 3858 return Error::success(); 3859 } 3860 3861 Error BitcodeReader::globalCleanup() { 3862 // Patch the initializers for globals and aliases up. 3863 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3864 return Err; 3865 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 3866 return error("Malformed global initializer set"); 3867 3868 // Look for intrinsic functions which need to be upgraded at some point 3869 // and functions that need to have their function attributes upgraded. 3870 for (Function &F : *TheModule) { 3871 MDLoader->upgradeDebugIntrinsics(F); 3872 Function *NewFn; 3873 // If PreserveInputDbgFormat=true, then we don't know whether we want 3874 // intrinsics or records, and we won't perform any conversions in either 3875 // case, so don't upgrade intrinsics to records. 3876 if (UpgradeIntrinsicFunction( 3877 &F, NewFn, PreserveInputDbgFormat != cl::boolOrDefault::BOU_TRUE)) 3878 UpgradedIntrinsics[&F] = NewFn; 3879 // Look for functions that rely on old function attribute behavior. 3880 UpgradeFunctionAttributes(F); 3881 } 3882 3883 // Look for global variables which need to be renamed. 3884 std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables; 3885 for (GlobalVariable &GV : TheModule->globals()) 3886 if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV)) 3887 UpgradedVariables.emplace_back(&GV, Upgraded); 3888 for (auto &Pair : UpgradedVariables) { 3889 Pair.first->eraseFromParent(); 3890 TheModule->insertGlobalVariable(Pair.second); 3891 } 3892 3893 // Force deallocation of memory for these vectors to favor the client that 3894 // want lazy deserialization. 3895 std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits); 3896 std::vector<std::pair<GlobalValue *, unsigned>>().swap(IndirectSymbolInits); 3897 return Error::success(); 3898 } 3899 3900 /// Support for lazy parsing of function bodies. This is required if we 3901 /// either have an old bitcode file without a VST forward declaration record, 3902 /// or if we have an anonymous function being materialized, since anonymous 3903 /// functions do not have a name and are therefore not in the VST. 3904 Error BitcodeReader::rememberAndSkipFunctionBodies() { 3905 if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit)) 3906 return JumpFailed; 3907 3908 if (Stream.AtEndOfStream()) 3909 return error("Could not find function in stream"); 3910 3911 if (!SeenFirstFunctionBody) 3912 return error("Trying to materialize functions before seeing function blocks"); 3913 3914 // An old bitcode file with the symbol table at the end would have 3915 // finished the parse greedily. 3916 assert(SeenValueSymbolTable); 3917 3918 SmallVector<uint64_t, 64> Record; 3919 3920 while (true) { 3921 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3922 if (!MaybeEntry) 3923 return MaybeEntry.takeError(); 3924 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3925 3926 switch (Entry.Kind) { 3927 default: 3928 return error("Expect SubBlock"); 3929 case BitstreamEntry::SubBlock: 3930 switch (Entry.ID) { 3931 default: 3932 return error("Expect function block"); 3933 case bitc::FUNCTION_BLOCK_ID: 3934 if (Error Err = rememberAndSkipFunctionBody()) 3935 return Err; 3936 NextUnreadBit = Stream.GetCurrentBitNo(); 3937 return Error::success(); 3938 } 3939 } 3940 } 3941 } 3942 3943 Error BitcodeReaderBase::readBlockInfo() { 3944 Expected<std::optional<BitstreamBlockInfo>> MaybeNewBlockInfo = 3945 Stream.ReadBlockInfoBlock(); 3946 if (!MaybeNewBlockInfo) 3947 return MaybeNewBlockInfo.takeError(); 3948 std::optional<BitstreamBlockInfo> NewBlockInfo = 3949 std::move(MaybeNewBlockInfo.get()); 3950 if (!NewBlockInfo) 3951 return error("Malformed block"); 3952 BlockInfo = std::move(*NewBlockInfo); 3953 return Error::success(); 3954 } 3955 3956 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) { 3957 // v1: [selection_kind, name] 3958 // v2: [strtab_offset, strtab_size, selection_kind] 3959 StringRef Name; 3960 std::tie(Name, Record) = readNameFromStrtab(Record); 3961 3962 if (Record.empty()) 3963 return error("Invalid record"); 3964 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 3965 std::string OldFormatName; 3966 if (!UseStrtab) { 3967 if (Record.size() < 2) 3968 return error("Invalid record"); 3969 unsigned ComdatNameSize = Record[1]; 3970 if (ComdatNameSize > Record.size() - 2) 3971 return error("Comdat name size too large"); 3972 OldFormatName.reserve(ComdatNameSize); 3973 for (unsigned i = 0; i != ComdatNameSize; ++i) 3974 OldFormatName += (char)Record[2 + i]; 3975 Name = OldFormatName; 3976 } 3977 Comdat *C = TheModule->getOrInsertComdat(Name); 3978 C->setSelectionKind(SK); 3979 ComdatList.push_back(C); 3980 return Error::success(); 3981 } 3982 3983 static void inferDSOLocal(GlobalValue *GV) { 3984 // infer dso_local from linkage and visibility if it is not encoded. 3985 if (GV->hasLocalLinkage() || 3986 (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())) 3987 GV->setDSOLocal(true); 3988 } 3989 3990 GlobalValue::SanitizerMetadata deserializeSanitizerMetadata(unsigned V) { 3991 GlobalValue::SanitizerMetadata Meta; 3992 if (V & (1 << 0)) 3993 Meta.NoAddress = true; 3994 if (V & (1 << 1)) 3995 Meta.NoHWAddress = true; 3996 if (V & (1 << 2)) 3997 Meta.Memtag = true; 3998 if (V & (1 << 3)) 3999 Meta.IsDynInit = true; 4000 return Meta; 4001 } 4002 4003 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) { 4004 // v1: [pointer type, isconst, initid, linkage, alignment, section, 4005 // visibility, threadlocal, unnamed_addr, externally_initialized, 4006 // dllstorageclass, comdat, attributes, preemption specifier, 4007 // partition strtab offset, partition strtab size] (name in VST) 4008 // v2: [strtab_offset, strtab_size, v1] 4009 // v3: [v2, code_model] 4010 StringRef Name; 4011 std::tie(Name, Record) = readNameFromStrtab(Record); 4012 4013 if (Record.size() < 6) 4014 return error("Invalid record"); 4015 unsigned TyID = Record[0]; 4016 Type *Ty = getTypeByID(TyID); 4017 if (!Ty) 4018 return error("Invalid record"); 4019 bool isConstant = Record[1] & 1; 4020 bool explicitType = Record[1] & 2; 4021 unsigned AddressSpace; 4022 if (explicitType) { 4023 AddressSpace = Record[1] >> 2; 4024 } else { 4025 if (!Ty->isPointerTy()) 4026 return error("Invalid type for value"); 4027 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 4028 TyID = getContainedTypeID(TyID); 4029 Ty = getTypeByID(TyID); 4030 if (!Ty) 4031 return error("Missing element type for old-style global"); 4032 } 4033 4034 uint64_t RawLinkage = Record[3]; 4035 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 4036 MaybeAlign Alignment; 4037 if (Error Err = parseAlignmentValue(Record[4], Alignment)) 4038 return Err; 4039 std::string Section; 4040 if (Record[5]) { 4041 if (Record[5] - 1 >= SectionTable.size()) 4042 return error("Invalid ID"); 4043 Section = SectionTable[Record[5] - 1]; 4044 } 4045 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 4046 // Local linkage must have default visibility. 4047 // auto-upgrade `hidden` and `protected` for old bitcode. 4048 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 4049 Visibility = getDecodedVisibility(Record[6]); 4050 4051 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 4052 if (Record.size() > 7) 4053 TLM = getDecodedThreadLocalMode(Record[7]); 4054 4055 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 4056 if (Record.size() > 8) 4057 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); 4058 4059 bool ExternallyInitialized = false; 4060 if (Record.size() > 9) 4061 ExternallyInitialized = Record[9]; 4062 4063 GlobalVariable *NewGV = 4064 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name, 4065 nullptr, TLM, AddressSpace, ExternallyInitialized); 4066 if (Alignment) 4067 NewGV->setAlignment(*Alignment); 4068 if (!Section.empty()) 4069 NewGV->setSection(Section); 4070 NewGV->setVisibility(Visibility); 4071 NewGV->setUnnamedAddr(UnnamedAddr); 4072 4073 if (Record.size() > 10) { 4074 // A GlobalValue with local linkage cannot have a DLL storage class. 4075 if (!NewGV->hasLocalLinkage()) { 4076 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 4077 } 4078 } else { 4079 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 4080 } 4081 4082 ValueList.push_back(NewGV, getVirtualTypeID(NewGV->getType(), TyID)); 4083 4084 // Remember which value to use for the global initializer. 4085 if (unsigned InitID = Record[2]) 4086 GlobalInits.push_back(std::make_pair(NewGV, InitID - 1)); 4087 4088 if (Record.size() > 11) { 4089 if (unsigned ComdatID = Record[11]) { 4090 if (ComdatID > ComdatList.size()) 4091 return error("Invalid global variable comdat ID"); 4092 NewGV->setComdat(ComdatList[ComdatID - 1]); 4093 } 4094 } else if (hasImplicitComdat(RawLinkage)) { 4095 ImplicitComdatObjects.insert(NewGV); 4096 } 4097 4098 if (Record.size() > 12) { 4099 auto AS = getAttributes(Record[12]).getFnAttrs(); 4100 NewGV->setAttributes(AS); 4101 } 4102 4103 if (Record.size() > 13) { 4104 NewGV->setDSOLocal(getDecodedDSOLocal(Record[13])); 4105 } 4106 inferDSOLocal(NewGV); 4107 4108 // Check whether we have enough values to read a partition name. 4109 if (Record.size() > 15) 4110 NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15])); 4111 4112 if (Record.size() > 16 && Record[16]) { 4113 llvm::GlobalValue::SanitizerMetadata Meta = 4114 deserializeSanitizerMetadata(Record[16]); 4115 NewGV->setSanitizerMetadata(Meta); 4116 } 4117 4118 if (Record.size() > 17 && Record[17]) { 4119 if (auto CM = getDecodedCodeModel(Record[17])) 4120 NewGV->setCodeModel(*CM); 4121 else 4122 return error("Invalid global variable code model"); 4123 } 4124 4125 return Error::success(); 4126 } 4127 4128 void BitcodeReader::callValueTypeCallback(Value *F, unsigned TypeID) { 4129 if (ValueTypeCallback) { 4130 (*ValueTypeCallback)( 4131 F, TypeID, [this](unsigned I) { return getTypeByID(I); }, 4132 [this](unsigned I, unsigned J) { return getContainedTypeID(I, J); }); 4133 } 4134 } 4135 4136 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) { 4137 // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section, 4138 // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat, 4139 // prefixdata, personalityfn, preemption specifier, addrspace] (name in VST) 4140 // v2: [strtab_offset, strtab_size, v1] 4141 StringRef Name; 4142 std::tie(Name, Record) = readNameFromStrtab(Record); 4143 4144 if (Record.size() < 8) 4145 return error("Invalid record"); 4146 unsigned FTyID = Record[0]; 4147 Type *FTy = getTypeByID(FTyID); 4148 if (!FTy) 4149 return error("Invalid record"); 4150 if (isa<PointerType>(FTy)) { 4151 FTyID = getContainedTypeID(FTyID, 0); 4152 FTy = getTypeByID(FTyID); 4153 if (!FTy) 4154 return error("Missing element type for old-style function"); 4155 } 4156 4157 if (!isa<FunctionType>(FTy)) 4158 return error("Invalid type for value"); 4159 auto CC = static_cast<CallingConv::ID>(Record[1]); 4160 if (CC & ~CallingConv::MaxID) 4161 return error("Invalid calling convention ID"); 4162 4163 unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace(); 4164 if (Record.size() > 16) 4165 AddrSpace = Record[16]; 4166 4167 Function *Func = 4168 Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage, 4169 AddrSpace, Name, TheModule); 4170 4171 assert(Func->getFunctionType() == FTy && 4172 "Incorrect fully specified type provided for function"); 4173 FunctionTypeIDs[Func] = FTyID; 4174 4175 Func->setCallingConv(CC); 4176 bool isProto = Record[2]; 4177 uint64_t RawLinkage = Record[3]; 4178 Func->setLinkage(getDecodedLinkage(RawLinkage)); 4179 Func->setAttributes(getAttributes(Record[4])); 4180 callValueTypeCallback(Func, FTyID); 4181 4182 // Upgrade any old-style byval or sret without a type by propagating the 4183 // argument's pointee type. There should be no opaque pointers where the byval 4184 // type is implicit. 4185 for (unsigned i = 0; i != Func->arg_size(); ++i) { 4186 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet, 4187 Attribute::InAlloca}) { 4188 if (!Func->hasParamAttribute(i, Kind)) 4189 continue; 4190 4191 if (Func->getParamAttribute(i, Kind).getValueAsType()) 4192 continue; 4193 4194 Func->removeParamAttr(i, Kind); 4195 4196 unsigned ParamTypeID = getContainedTypeID(FTyID, i + 1); 4197 Type *PtrEltTy = getPtrElementTypeByID(ParamTypeID); 4198 if (!PtrEltTy) 4199 return error("Missing param element type for attribute upgrade"); 4200 4201 Attribute NewAttr; 4202 switch (Kind) { 4203 case Attribute::ByVal: 4204 NewAttr = Attribute::getWithByValType(Context, PtrEltTy); 4205 break; 4206 case Attribute::StructRet: 4207 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy); 4208 break; 4209 case Attribute::InAlloca: 4210 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy); 4211 break; 4212 default: 4213 llvm_unreachable("not an upgraded type attribute"); 4214 } 4215 4216 Func->addParamAttr(i, NewAttr); 4217 } 4218 } 4219 4220 if (Func->getCallingConv() == CallingConv::X86_INTR && 4221 !Func->arg_empty() && !Func->hasParamAttribute(0, Attribute::ByVal)) { 4222 unsigned ParamTypeID = getContainedTypeID(FTyID, 1); 4223 Type *ByValTy = getPtrElementTypeByID(ParamTypeID); 4224 if (!ByValTy) 4225 return error("Missing param element type for x86_intrcc upgrade"); 4226 Attribute NewAttr = Attribute::getWithByValType(Context, ByValTy); 4227 Func->addParamAttr(0, NewAttr); 4228 } 4229 4230 MaybeAlign Alignment; 4231 if (Error Err = parseAlignmentValue(Record[5], Alignment)) 4232 return Err; 4233 if (Alignment) 4234 Func->setAlignment(*Alignment); 4235 if (Record[6]) { 4236 if (Record[6] - 1 >= SectionTable.size()) 4237 return error("Invalid ID"); 4238 Func->setSection(SectionTable[Record[6] - 1]); 4239 } 4240 // Local linkage must have default visibility. 4241 // auto-upgrade `hidden` and `protected` for old bitcode. 4242 if (!Func->hasLocalLinkage()) 4243 Func->setVisibility(getDecodedVisibility(Record[7])); 4244 if (Record.size() > 8 && Record[8]) { 4245 if (Record[8] - 1 >= GCTable.size()) 4246 return error("Invalid ID"); 4247 Func->setGC(GCTable[Record[8] - 1]); 4248 } 4249 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 4250 if (Record.size() > 9) 4251 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); 4252 Func->setUnnamedAddr(UnnamedAddr); 4253 4254 FunctionOperandInfo OperandInfo = {Func, 0, 0, 0}; 4255 if (Record.size() > 10) 4256 OperandInfo.Prologue = Record[10]; 4257 4258 if (Record.size() > 11) { 4259 // A GlobalValue with local linkage cannot have a DLL storage class. 4260 if (!Func->hasLocalLinkage()) { 4261 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 4262 } 4263 } else { 4264 upgradeDLLImportExportLinkage(Func, RawLinkage); 4265 } 4266 4267 if (Record.size() > 12) { 4268 if (unsigned ComdatID = Record[12]) { 4269 if (ComdatID > ComdatList.size()) 4270 return error("Invalid function comdat ID"); 4271 Func->setComdat(ComdatList[ComdatID - 1]); 4272 } 4273 } else if (hasImplicitComdat(RawLinkage)) { 4274 ImplicitComdatObjects.insert(Func); 4275 } 4276 4277 if (Record.size() > 13) 4278 OperandInfo.Prefix = Record[13]; 4279 4280 if (Record.size() > 14) 4281 OperandInfo.PersonalityFn = Record[14]; 4282 4283 if (Record.size() > 15) { 4284 Func->setDSOLocal(getDecodedDSOLocal(Record[15])); 4285 } 4286 inferDSOLocal(Func); 4287 4288 // Record[16] is the address space number. 4289 4290 // Check whether we have enough values to read a partition name. Also make 4291 // sure Strtab has enough values. 4292 if (Record.size() > 18 && Strtab.data() && 4293 Record[17] + Record[18] <= Strtab.size()) { 4294 Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18])); 4295 } 4296 4297 ValueList.push_back(Func, getVirtualTypeID(Func->getType(), FTyID)); 4298 4299 if (OperandInfo.PersonalityFn || OperandInfo.Prefix || OperandInfo.Prologue) 4300 FunctionOperands.push_back(OperandInfo); 4301 4302 // If this is a function with a body, remember the prototype we are 4303 // creating now, so that we can match up the body with them later. 4304 if (!isProto) { 4305 Func->setIsMaterializable(true); 4306 FunctionsWithBodies.push_back(Func); 4307 DeferredFunctionInfo[Func] = 0; 4308 } 4309 return Error::success(); 4310 } 4311 4312 Error BitcodeReader::parseGlobalIndirectSymbolRecord( 4313 unsigned BitCode, ArrayRef<uint64_t> Record) { 4314 // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST) 4315 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 4316 // dllstorageclass, threadlocal, unnamed_addr, 4317 // preemption specifier] (name in VST) 4318 // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage, 4319 // visibility, dllstorageclass, threadlocal, unnamed_addr, 4320 // preemption specifier] (name in VST) 4321 // v2: [strtab_offset, strtab_size, v1] 4322 StringRef Name; 4323 std::tie(Name, Record) = readNameFromStrtab(Record); 4324 4325 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 4326 if (Record.size() < (3 + (unsigned)NewRecord)) 4327 return error("Invalid record"); 4328 unsigned OpNum = 0; 4329 unsigned TypeID = Record[OpNum++]; 4330 Type *Ty = getTypeByID(TypeID); 4331 if (!Ty) 4332 return error("Invalid record"); 4333 4334 unsigned AddrSpace; 4335 if (!NewRecord) { 4336 auto *PTy = dyn_cast<PointerType>(Ty); 4337 if (!PTy) 4338 return error("Invalid type for value"); 4339 AddrSpace = PTy->getAddressSpace(); 4340 TypeID = getContainedTypeID(TypeID); 4341 Ty = getTypeByID(TypeID); 4342 if (!Ty) 4343 return error("Missing element type for old-style indirect symbol"); 4344 } else { 4345 AddrSpace = Record[OpNum++]; 4346 } 4347 4348 auto Val = Record[OpNum++]; 4349 auto Linkage = Record[OpNum++]; 4350 GlobalValue *NewGA; 4351 if (BitCode == bitc::MODULE_CODE_ALIAS || 4352 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 4353 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 4354 TheModule); 4355 else 4356 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 4357 nullptr, TheModule); 4358 4359 // Local linkage must have default visibility. 4360 // auto-upgrade `hidden` and `protected` for old bitcode. 4361 if (OpNum != Record.size()) { 4362 auto VisInd = OpNum++; 4363 if (!NewGA->hasLocalLinkage()) 4364 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 4365 } 4366 if (BitCode == bitc::MODULE_CODE_ALIAS || 4367 BitCode == bitc::MODULE_CODE_ALIAS_OLD) { 4368 if (OpNum != Record.size()) { 4369 auto S = Record[OpNum++]; 4370 // A GlobalValue with local linkage cannot have a DLL storage class. 4371 if (!NewGA->hasLocalLinkage()) 4372 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(S)); 4373 } 4374 else 4375 upgradeDLLImportExportLinkage(NewGA, Linkage); 4376 if (OpNum != Record.size()) 4377 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 4378 if (OpNum != Record.size()) 4379 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); 4380 } 4381 if (OpNum != Record.size()) 4382 NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++])); 4383 inferDSOLocal(NewGA); 4384 4385 // Check whether we have enough values to read a partition name. 4386 if (OpNum + 1 < Record.size()) { 4387 // Check Strtab has enough values for the partition. 4388 if (Record[OpNum] + Record[OpNum + 1] > Strtab.size()) 4389 return error("Malformed partition, too large."); 4390 NewGA->setPartition( 4391 StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1])); 4392 } 4393 4394 ValueList.push_back(NewGA, getVirtualTypeID(NewGA->getType(), TypeID)); 4395 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 4396 return Error::success(); 4397 } 4398 4399 Error BitcodeReader::parseModule(uint64_t ResumeBit, 4400 bool ShouldLazyLoadMetadata, 4401 ParserCallbacks Callbacks) { 4402 // Load directly into RemoveDIs format if LoadBitcodeIntoNewDbgInfoFormat 4403 // has been set to true and we aren't attempting to preserve the existing 4404 // format in the bitcode (default action: load into the old debug format). 4405 if (PreserveInputDbgFormat != cl::boolOrDefault::BOU_TRUE) { 4406 TheModule->IsNewDbgInfoFormat = 4407 UseNewDbgInfoFormat && 4408 LoadBitcodeIntoNewDbgInfoFormat != cl::boolOrDefault::BOU_FALSE; 4409 } 4410 4411 this->ValueTypeCallback = std::move(Callbacks.ValueType); 4412 if (ResumeBit) { 4413 if (Error JumpFailed = Stream.JumpToBit(ResumeBit)) 4414 return JumpFailed; 4415 } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 4416 return Err; 4417 4418 SmallVector<uint64_t, 64> Record; 4419 4420 // Parts of bitcode parsing depend on the datalayout. Make sure we 4421 // finalize the datalayout before we run any of that code. 4422 bool ResolvedDataLayout = false; 4423 // In order to support importing modules with illegal data layout strings, 4424 // delay parsing the data layout string until after upgrades and overrides 4425 // have been applied, allowing to fix illegal data layout strings. 4426 // Initialize to the current module's layout string in case none is specified. 4427 std::string TentativeDataLayoutStr = TheModule->getDataLayoutStr(); 4428 4429 auto ResolveDataLayout = [&]() -> Error { 4430 if (ResolvedDataLayout) 4431 return Error::success(); 4432 4433 // Datalayout and triple can't be parsed after this point. 4434 ResolvedDataLayout = true; 4435 4436 // Auto-upgrade the layout string 4437 TentativeDataLayoutStr = llvm::UpgradeDataLayoutString( 4438 TentativeDataLayoutStr, TheModule->getTargetTriple()); 4439 4440 // Apply override 4441 if (Callbacks.DataLayout) { 4442 if (auto LayoutOverride = (*Callbacks.DataLayout)( 4443 TheModule->getTargetTriple(), TentativeDataLayoutStr)) 4444 TentativeDataLayoutStr = *LayoutOverride; 4445 } 4446 4447 // Now the layout string is finalized in TentativeDataLayoutStr. Parse it. 4448 Expected<DataLayout> MaybeDL = DataLayout::parse(TentativeDataLayoutStr); 4449 if (!MaybeDL) 4450 return MaybeDL.takeError(); 4451 4452 TheModule->setDataLayout(MaybeDL.get()); 4453 return Error::success(); 4454 }; 4455 4456 // Read all the records for this module. 4457 while (true) { 4458 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 4459 if (!MaybeEntry) 4460 return MaybeEntry.takeError(); 4461 llvm::BitstreamEntry Entry = MaybeEntry.get(); 4462 4463 switch (Entry.Kind) { 4464 case BitstreamEntry::Error: 4465 return error("Malformed block"); 4466 case BitstreamEntry::EndBlock: 4467 if (Error Err = ResolveDataLayout()) 4468 return Err; 4469 return globalCleanup(); 4470 4471 case BitstreamEntry::SubBlock: 4472 switch (Entry.ID) { 4473 default: // Skip unknown content. 4474 if (Error Err = Stream.SkipBlock()) 4475 return Err; 4476 break; 4477 case bitc::BLOCKINFO_BLOCK_ID: 4478 if (Error Err = readBlockInfo()) 4479 return Err; 4480 break; 4481 case bitc::PARAMATTR_BLOCK_ID: 4482 if (Error Err = parseAttributeBlock()) 4483 return Err; 4484 break; 4485 case bitc::PARAMATTR_GROUP_BLOCK_ID: 4486 if (Error Err = parseAttributeGroupBlock()) 4487 return Err; 4488 break; 4489 case bitc::TYPE_BLOCK_ID_NEW: 4490 if (Error Err = parseTypeTable()) 4491 return Err; 4492 break; 4493 case bitc::VALUE_SYMTAB_BLOCK_ID: 4494 if (!SeenValueSymbolTable) { 4495 // Either this is an old form VST without function index and an 4496 // associated VST forward declaration record (which would have caused 4497 // the VST to be jumped to and parsed before it was encountered 4498 // normally in the stream), or there were no function blocks to 4499 // trigger an earlier parsing of the VST. 4500 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 4501 if (Error Err = parseValueSymbolTable()) 4502 return Err; 4503 SeenValueSymbolTable = true; 4504 } else { 4505 // We must have had a VST forward declaration record, which caused 4506 // the parser to jump to and parse the VST earlier. 4507 assert(VSTOffset > 0); 4508 if (Error Err = Stream.SkipBlock()) 4509 return Err; 4510 } 4511 break; 4512 case bitc::CONSTANTS_BLOCK_ID: 4513 if (Error Err = parseConstants()) 4514 return Err; 4515 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 4516 return Err; 4517 break; 4518 case bitc::METADATA_BLOCK_ID: 4519 if (ShouldLazyLoadMetadata) { 4520 if (Error Err = rememberAndSkipMetadata()) 4521 return Err; 4522 break; 4523 } 4524 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 4525 if (Error Err = MDLoader->parseModuleMetadata()) 4526 return Err; 4527 break; 4528 case bitc::METADATA_KIND_BLOCK_ID: 4529 if (Error Err = MDLoader->parseMetadataKinds()) 4530 return Err; 4531 break; 4532 case bitc::FUNCTION_BLOCK_ID: 4533 if (Error Err = ResolveDataLayout()) 4534 return Err; 4535 4536 // If this is the first function body we've seen, reverse the 4537 // FunctionsWithBodies list. 4538 if (!SeenFirstFunctionBody) { 4539 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 4540 if (Error Err = globalCleanup()) 4541 return Err; 4542 SeenFirstFunctionBody = true; 4543 } 4544 4545 if (VSTOffset > 0) { 4546 // If we have a VST forward declaration record, make sure we 4547 // parse the VST now if we haven't already. It is needed to 4548 // set up the DeferredFunctionInfo vector for lazy reading. 4549 if (!SeenValueSymbolTable) { 4550 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset)) 4551 return Err; 4552 SeenValueSymbolTable = true; 4553 // Fall through so that we record the NextUnreadBit below. 4554 // This is necessary in case we have an anonymous function that 4555 // is later materialized. Since it will not have a VST entry we 4556 // need to fall back to the lazy parse to find its offset. 4557 } else { 4558 // If we have a VST forward declaration record, but have already 4559 // parsed the VST (just above, when the first function body was 4560 // encountered here), then we are resuming the parse after 4561 // materializing functions. The ResumeBit points to the 4562 // start of the last function block recorded in the 4563 // DeferredFunctionInfo map. Skip it. 4564 if (Error Err = Stream.SkipBlock()) 4565 return Err; 4566 continue; 4567 } 4568 } 4569 4570 // Support older bitcode files that did not have the function 4571 // index in the VST, nor a VST forward declaration record, as 4572 // well as anonymous functions that do not have VST entries. 4573 // Build the DeferredFunctionInfo vector on the fly. 4574 if (Error Err = rememberAndSkipFunctionBody()) 4575 return Err; 4576 4577 // Suspend parsing when we reach the function bodies. Subsequent 4578 // materialization calls will resume it when necessary. If the bitcode 4579 // file is old, the symbol table will be at the end instead and will not 4580 // have been seen yet. In this case, just finish the parse now. 4581 if (SeenValueSymbolTable) { 4582 NextUnreadBit = Stream.GetCurrentBitNo(); 4583 // After the VST has been parsed, we need to make sure intrinsic name 4584 // are auto-upgraded. 4585 return globalCleanup(); 4586 } 4587 break; 4588 case bitc::USELIST_BLOCK_ID: 4589 if (Error Err = parseUseLists()) 4590 return Err; 4591 break; 4592 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 4593 if (Error Err = parseOperandBundleTags()) 4594 return Err; 4595 break; 4596 case bitc::SYNC_SCOPE_NAMES_BLOCK_ID: 4597 if (Error Err = parseSyncScopeNames()) 4598 return Err; 4599 break; 4600 } 4601 continue; 4602 4603 case BitstreamEntry::Record: 4604 // The interesting case. 4605 break; 4606 } 4607 4608 // Read a record. 4609 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 4610 if (!MaybeBitCode) 4611 return MaybeBitCode.takeError(); 4612 switch (unsigned BitCode = MaybeBitCode.get()) { 4613 default: break; // Default behavior, ignore unknown content. 4614 case bitc::MODULE_CODE_VERSION: { 4615 Expected<unsigned> VersionOrErr = parseVersionRecord(Record); 4616 if (!VersionOrErr) 4617 return VersionOrErr.takeError(); 4618 UseRelativeIDs = *VersionOrErr >= 1; 4619 break; 4620 } 4621 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 4622 if (ResolvedDataLayout) 4623 return error("target triple too late in module"); 4624 std::string S; 4625 if (convertToString(Record, 0, S)) 4626 return error("Invalid record"); 4627 TheModule->setTargetTriple(S); 4628 break; 4629 } 4630 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 4631 if (ResolvedDataLayout) 4632 return error("datalayout too late in module"); 4633 if (convertToString(Record, 0, TentativeDataLayoutStr)) 4634 return error("Invalid record"); 4635 break; 4636 } 4637 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 4638 std::string S; 4639 if (convertToString(Record, 0, S)) 4640 return error("Invalid record"); 4641 TheModule->setModuleInlineAsm(S); 4642 break; 4643 } 4644 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 4645 // Deprecated, but still needed to read old bitcode files. 4646 std::string S; 4647 if (convertToString(Record, 0, S)) 4648 return error("Invalid record"); 4649 // Ignore value. 4650 break; 4651 } 4652 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 4653 std::string S; 4654 if (convertToString(Record, 0, S)) 4655 return error("Invalid record"); 4656 SectionTable.push_back(S); 4657 break; 4658 } 4659 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 4660 std::string S; 4661 if (convertToString(Record, 0, S)) 4662 return error("Invalid record"); 4663 GCTable.push_back(S); 4664 break; 4665 } 4666 case bitc::MODULE_CODE_COMDAT: 4667 if (Error Err = parseComdatRecord(Record)) 4668 return Err; 4669 break; 4670 // FIXME: BitcodeReader should handle {GLOBALVAR, FUNCTION, ALIAS, IFUNC} 4671 // written by ThinLinkBitcodeWriter. See 4672 // `ThinLinkBitcodeWriter::writeSimplifiedModuleInfo` for the format of each 4673 // record 4674 // (https://github.com/llvm/llvm-project/blob/b6a93967d9c11e79802b5e75cec1584d6c8aa472/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp#L4714) 4675 case bitc::MODULE_CODE_GLOBALVAR: 4676 if (Error Err = parseGlobalVarRecord(Record)) 4677 return Err; 4678 break; 4679 case bitc::MODULE_CODE_FUNCTION: 4680 if (Error Err = ResolveDataLayout()) 4681 return Err; 4682 if (Error Err = parseFunctionRecord(Record)) 4683 return Err; 4684 break; 4685 case bitc::MODULE_CODE_IFUNC: 4686 case bitc::MODULE_CODE_ALIAS: 4687 case bitc::MODULE_CODE_ALIAS_OLD: 4688 if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record)) 4689 return Err; 4690 break; 4691 /// MODULE_CODE_VSTOFFSET: [offset] 4692 case bitc::MODULE_CODE_VSTOFFSET: 4693 if (Record.empty()) 4694 return error("Invalid record"); 4695 // Note that we subtract 1 here because the offset is relative to one word 4696 // before the start of the identification or module block, which was 4697 // historically always the start of the regular bitcode header. 4698 VSTOffset = Record[0] - 1; 4699 break; 4700 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4701 case bitc::MODULE_CODE_SOURCE_FILENAME: 4702 SmallString<128> ValueName; 4703 if (convertToString(Record, 0, ValueName)) 4704 return error("Invalid record"); 4705 TheModule->setSourceFileName(ValueName); 4706 break; 4707 } 4708 Record.clear(); 4709 } 4710 this->ValueTypeCallback = std::nullopt; 4711 return Error::success(); 4712 } 4713 4714 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 4715 bool IsImporting, 4716 ParserCallbacks Callbacks) { 4717 TheModule = M; 4718 MetadataLoaderCallbacks MDCallbacks; 4719 MDCallbacks.GetTypeByID = [&](unsigned ID) { return getTypeByID(ID); }; 4720 MDCallbacks.GetContainedTypeID = [&](unsigned I, unsigned J) { 4721 return getContainedTypeID(I, J); 4722 }; 4723 MDCallbacks.MDType = Callbacks.MDType; 4724 MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, MDCallbacks); 4725 return parseModule(0, ShouldLazyLoadMetadata, Callbacks); 4726 } 4727 4728 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 4729 if (!isa<PointerType>(PtrType)) 4730 return error("Load/Store operand is not a pointer type"); 4731 if (!PointerType::isLoadableOrStorableType(ValType)) 4732 return error("Cannot load/store from pointer"); 4733 return Error::success(); 4734 } 4735 4736 Error BitcodeReader::propagateAttributeTypes(CallBase *CB, 4737 ArrayRef<unsigned> ArgTyIDs) { 4738 AttributeList Attrs = CB->getAttributes(); 4739 for (unsigned i = 0; i != CB->arg_size(); ++i) { 4740 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet, 4741 Attribute::InAlloca}) { 4742 if (!Attrs.hasParamAttr(i, Kind) || 4743 Attrs.getParamAttr(i, Kind).getValueAsType()) 4744 continue; 4745 4746 Type *PtrEltTy = getPtrElementTypeByID(ArgTyIDs[i]); 4747 if (!PtrEltTy) 4748 return error("Missing element type for typed attribute upgrade"); 4749 4750 Attribute NewAttr; 4751 switch (Kind) { 4752 case Attribute::ByVal: 4753 NewAttr = Attribute::getWithByValType(Context, PtrEltTy); 4754 break; 4755 case Attribute::StructRet: 4756 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy); 4757 break; 4758 case Attribute::InAlloca: 4759 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy); 4760 break; 4761 default: 4762 llvm_unreachable("not an upgraded type attribute"); 4763 } 4764 4765 Attrs = Attrs.addParamAttribute(Context, i, NewAttr); 4766 } 4767 } 4768 4769 if (CB->isInlineAsm()) { 4770 const InlineAsm *IA = cast<InlineAsm>(CB->getCalledOperand()); 4771 unsigned ArgNo = 0; 4772 for (const InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 4773 if (!CI.hasArg()) 4774 continue; 4775 4776 if (CI.isIndirect && !Attrs.getParamElementType(ArgNo)) { 4777 Type *ElemTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]); 4778 if (!ElemTy) 4779 return error("Missing element type for inline asm upgrade"); 4780 Attrs = Attrs.addParamAttribute( 4781 Context, ArgNo, 4782 Attribute::get(Context, Attribute::ElementType, ElemTy)); 4783 } 4784 4785 ArgNo++; 4786 } 4787 } 4788 4789 switch (CB->getIntrinsicID()) { 4790 case Intrinsic::preserve_array_access_index: 4791 case Intrinsic::preserve_struct_access_index: 4792 case Intrinsic::aarch64_ldaxr: 4793 case Intrinsic::aarch64_ldxr: 4794 case Intrinsic::aarch64_stlxr: 4795 case Intrinsic::aarch64_stxr: 4796 case Intrinsic::arm_ldaex: 4797 case Intrinsic::arm_ldrex: 4798 case Intrinsic::arm_stlex: 4799 case Intrinsic::arm_strex: { 4800 unsigned ArgNo; 4801 switch (CB->getIntrinsicID()) { 4802 case Intrinsic::aarch64_stlxr: 4803 case Intrinsic::aarch64_stxr: 4804 case Intrinsic::arm_stlex: 4805 case Intrinsic::arm_strex: 4806 ArgNo = 1; 4807 break; 4808 default: 4809 ArgNo = 0; 4810 break; 4811 } 4812 if (!Attrs.getParamElementType(ArgNo)) { 4813 Type *ElTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]); 4814 if (!ElTy) 4815 return error("Missing element type for elementtype upgrade"); 4816 Attribute NewAttr = Attribute::get(Context, Attribute::ElementType, ElTy); 4817 Attrs = Attrs.addParamAttribute(Context, ArgNo, NewAttr); 4818 } 4819 break; 4820 } 4821 default: 4822 break; 4823 } 4824 4825 CB->setAttributes(Attrs); 4826 return Error::success(); 4827 } 4828 4829 /// Lazily parse the specified function body block. 4830 Error BitcodeReader::parseFunctionBody(Function *F) { 4831 if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 4832 return Err; 4833 4834 // Unexpected unresolved metadata when parsing function. 4835 if (MDLoader->hasFwdRefs()) 4836 return error("Invalid function metadata: incoming forward references"); 4837 4838 InstructionList.clear(); 4839 unsigned ModuleValueListSize = ValueList.size(); 4840 unsigned ModuleMDLoaderSize = MDLoader->size(); 4841 4842 // Add all the function arguments to the value table. 4843 unsigned ArgNo = 0; 4844 unsigned FTyID = FunctionTypeIDs[F]; 4845 for (Argument &I : F->args()) { 4846 unsigned ArgTyID = getContainedTypeID(FTyID, ArgNo + 1); 4847 assert(I.getType() == getTypeByID(ArgTyID) && 4848 "Incorrect fully specified type for Function Argument"); 4849 ValueList.push_back(&I, ArgTyID); 4850 ++ArgNo; 4851 } 4852 unsigned NextValueNo = ValueList.size(); 4853 BasicBlock *CurBB = nullptr; 4854 unsigned CurBBNo = 0; 4855 // Block into which constant expressions from phi nodes are materialized. 4856 BasicBlock *PhiConstExprBB = nullptr; 4857 // Edge blocks for phi nodes into which constant expressions have been 4858 // expanded. 4859 SmallMapVector<std::pair<BasicBlock *, BasicBlock *>, BasicBlock *, 4> 4860 ConstExprEdgeBBs; 4861 4862 DebugLoc LastLoc; 4863 auto getLastInstruction = [&]() -> Instruction * { 4864 if (CurBB && !CurBB->empty()) 4865 return &CurBB->back(); 4866 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 4867 !FunctionBBs[CurBBNo - 1]->empty()) 4868 return &FunctionBBs[CurBBNo - 1]->back(); 4869 return nullptr; 4870 }; 4871 4872 std::vector<OperandBundleDef> OperandBundles; 4873 4874 // Read all the records. 4875 SmallVector<uint64_t, 64> Record; 4876 4877 while (true) { 4878 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 4879 if (!MaybeEntry) 4880 return MaybeEntry.takeError(); 4881 llvm::BitstreamEntry Entry = MaybeEntry.get(); 4882 4883 switch (Entry.Kind) { 4884 case BitstreamEntry::Error: 4885 return error("Malformed block"); 4886 case BitstreamEntry::EndBlock: 4887 goto OutOfRecordLoop; 4888 4889 case BitstreamEntry::SubBlock: 4890 switch (Entry.ID) { 4891 default: // Skip unknown content. 4892 if (Error Err = Stream.SkipBlock()) 4893 return Err; 4894 break; 4895 case bitc::CONSTANTS_BLOCK_ID: 4896 if (Error Err = parseConstants()) 4897 return Err; 4898 NextValueNo = ValueList.size(); 4899 break; 4900 case bitc::VALUE_SYMTAB_BLOCK_ID: 4901 if (Error Err = parseValueSymbolTable()) 4902 return Err; 4903 break; 4904 case bitc::METADATA_ATTACHMENT_ID: 4905 if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList)) 4906 return Err; 4907 break; 4908 case bitc::METADATA_BLOCK_ID: 4909 assert(DeferredMetadataInfo.empty() && 4910 "Must read all module-level metadata before function-level"); 4911 if (Error Err = MDLoader->parseFunctionMetadata()) 4912 return Err; 4913 break; 4914 case bitc::USELIST_BLOCK_ID: 4915 if (Error Err = parseUseLists()) 4916 return Err; 4917 break; 4918 } 4919 continue; 4920 4921 case BitstreamEntry::Record: 4922 // The interesting case. 4923 break; 4924 } 4925 4926 // Read a record. 4927 Record.clear(); 4928 Instruction *I = nullptr; 4929 unsigned ResTypeID = InvalidTypeID; 4930 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 4931 if (!MaybeBitCode) 4932 return MaybeBitCode.takeError(); 4933 switch (unsigned BitCode = MaybeBitCode.get()) { 4934 default: // Default behavior: reject 4935 return error("Invalid value"); 4936 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 4937 if (Record.empty() || Record[0] == 0) 4938 return error("Invalid record"); 4939 // Create all the basic blocks for the function. 4940 FunctionBBs.resize(Record[0]); 4941 4942 // See if anything took the address of blocks in this function. 4943 auto BBFRI = BasicBlockFwdRefs.find(F); 4944 if (BBFRI == BasicBlockFwdRefs.end()) { 4945 for (BasicBlock *&BB : FunctionBBs) 4946 BB = BasicBlock::Create(Context, "", F); 4947 } else { 4948 auto &BBRefs = BBFRI->second; 4949 // Check for invalid basic block references. 4950 if (BBRefs.size() > FunctionBBs.size()) 4951 return error("Invalid ID"); 4952 assert(!BBRefs.empty() && "Unexpected empty array"); 4953 assert(!BBRefs.front() && "Invalid reference to entry block"); 4954 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 4955 ++I) 4956 if (I < RE && BBRefs[I]) { 4957 BBRefs[I]->insertInto(F); 4958 FunctionBBs[I] = BBRefs[I]; 4959 } else { 4960 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 4961 } 4962 4963 // Erase from the table. 4964 BasicBlockFwdRefs.erase(BBFRI); 4965 } 4966 4967 CurBB = FunctionBBs[0]; 4968 continue; 4969 } 4970 4971 case bitc::FUNC_CODE_BLOCKADDR_USERS: // BLOCKADDR_USERS: [vals...] 4972 // The record should not be emitted if it's an empty list. 4973 if (Record.empty()) 4974 return error("Invalid record"); 4975 // When we have the RARE case of a BlockAddress Constant that is not 4976 // scoped to the Function it refers to, we need to conservatively 4977 // materialize the referred to Function, regardless of whether or not 4978 // that Function will ultimately be linked, otherwise users of 4979 // BitcodeReader might start splicing out Function bodies such that we 4980 // might no longer be able to materialize the BlockAddress since the 4981 // BasicBlock (and entire body of the Function) the BlockAddress refers 4982 // to may have been moved. In the case that the user of BitcodeReader 4983 // decides ultimately not to link the Function body, materializing here 4984 // could be considered wasteful, but it's better than a deserialization 4985 // failure as described. This keeps BitcodeReader unaware of complex 4986 // linkage policy decisions such as those use by LTO, leaving those 4987 // decisions "one layer up." 4988 for (uint64_t ValID : Record) 4989 if (auto *F = dyn_cast<Function>(ValueList[ValID])) 4990 BackwardRefFunctions.push_back(F); 4991 else 4992 return error("Invalid record"); 4993 4994 continue; 4995 4996 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 4997 // This record indicates that the last instruction is at the same 4998 // location as the previous instruction with a location. 4999 I = getLastInstruction(); 5000 5001 if (!I) 5002 return error("Invalid record"); 5003 I->setDebugLoc(LastLoc); 5004 I = nullptr; 5005 continue; 5006 5007 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 5008 I = getLastInstruction(); 5009 if (!I || Record.size() < 4) 5010 return error("Invalid record"); 5011 5012 unsigned Line = Record[0], Col = Record[1]; 5013 unsigned ScopeID = Record[2], IAID = Record[3]; 5014 bool isImplicitCode = Record.size() == 5 && Record[4]; 5015 5016 MDNode *Scope = nullptr, *IA = nullptr; 5017 if (ScopeID) { 5018 Scope = dyn_cast_or_null<MDNode>( 5019 MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1)); 5020 if (!Scope) 5021 return error("Invalid record"); 5022 } 5023 if (IAID) { 5024 IA = dyn_cast_or_null<MDNode>( 5025 MDLoader->getMetadataFwdRefOrLoad(IAID - 1)); 5026 if (!IA) 5027 return error("Invalid record"); 5028 } 5029 LastLoc = DILocation::get(Scope->getContext(), Line, Col, Scope, IA, 5030 isImplicitCode); 5031 I->setDebugLoc(LastLoc); 5032 I = nullptr; 5033 continue; 5034 } 5035 case bitc::FUNC_CODE_INST_UNOP: { // UNOP: [opval, ty, opcode] 5036 unsigned OpNum = 0; 5037 Value *LHS; 5038 unsigned TypeID; 5039 if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) || 5040 OpNum+1 > Record.size()) 5041 return error("Invalid record"); 5042 5043 int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType()); 5044 if (Opc == -1) 5045 return error("Invalid record"); 5046 I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 5047 ResTypeID = TypeID; 5048 InstructionList.push_back(I); 5049 if (OpNum < Record.size()) { 5050 if (isa<FPMathOperator>(I)) { 5051 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 5052 if (FMF.any()) 5053 I->setFastMathFlags(FMF); 5054 } 5055 } 5056 break; 5057 } 5058 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 5059 unsigned OpNum = 0; 5060 Value *LHS, *RHS; 5061 unsigned TypeID; 5062 if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) || 5063 popValue(Record, OpNum, NextValueNo, LHS->getType(), TypeID, RHS, 5064 CurBB) || 5065 OpNum+1 > Record.size()) 5066 return error("Invalid record"); 5067 5068 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 5069 if (Opc == -1) 5070 return error("Invalid record"); 5071 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 5072 ResTypeID = TypeID; 5073 InstructionList.push_back(I); 5074 if (OpNum < Record.size()) { 5075 if (Opc == Instruction::Add || 5076 Opc == Instruction::Sub || 5077 Opc == Instruction::Mul || 5078 Opc == Instruction::Shl) { 5079 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 5080 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 5081 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 5082 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 5083 } else if (Opc == Instruction::SDiv || 5084 Opc == Instruction::UDiv || 5085 Opc == Instruction::LShr || 5086 Opc == Instruction::AShr) { 5087 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 5088 cast<BinaryOperator>(I)->setIsExact(true); 5089 } else if (Opc == Instruction::Or) { 5090 if (Record[OpNum] & (1 << bitc::PDI_DISJOINT)) 5091 cast<PossiblyDisjointInst>(I)->setIsDisjoint(true); 5092 } else if (isa<FPMathOperator>(I)) { 5093 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 5094 if (FMF.any()) 5095 I->setFastMathFlags(FMF); 5096 } 5097 } 5098 break; 5099 } 5100 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 5101 unsigned OpNum = 0; 5102 Value *Op; 5103 unsigned OpTypeID; 5104 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) || 5105 OpNum + 1 > Record.size()) 5106 return error("Invalid record"); 5107 5108 ResTypeID = Record[OpNum++]; 5109 Type *ResTy = getTypeByID(ResTypeID); 5110 int Opc = getDecodedCastOpcode(Record[OpNum++]); 5111 5112 if (Opc == -1 || !ResTy) 5113 return error("Invalid record"); 5114 Instruction *Temp = nullptr; 5115 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 5116 if (Temp) { 5117 InstructionList.push_back(Temp); 5118 assert(CurBB && "No current BB?"); 5119 Temp->insertInto(CurBB, CurBB->end()); 5120 } 5121 } else { 5122 auto CastOp = (Instruction::CastOps)Opc; 5123 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 5124 return error("Invalid cast"); 5125 I = CastInst::Create(CastOp, Op, ResTy); 5126 } 5127 5128 if (OpNum < Record.size()) { 5129 if (Opc == Instruction::ZExt || Opc == Instruction::UIToFP) { 5130 if (Record[OpNum] & (1 << bitc::PNNI_NON_NEG)) 5131 cast<PossiblyNonNegInst>(I)->setNonNeg(true); 5132 } else if (Opc == Instruction::Trunc) { 5133 if (Record[OpNum] & (1 << bitc::TIO_NO_UNSIGNED_WRAP)) 5134 cast<TruncInst>(I)->setHasNoUnsignedWrap(true); 5135 if (Record[OpNum] & (1 << bitc::TIO_NO_SIGNED_WRAP)) 5136 cast<TruncInst>(I)->setHasNoSignedWrap(true); 5137 } 5138 } 5139 5140 InstructionList.push_back(I); 5141 break; 5142 } 5143 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 5144 case bitc::FUNC_CODE_INST_GEP_OLD: 5145 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 5146 unsigned OpNum = 0; 5147 5148 unsigned TyID; 5149 Type *Ty; 5150 GEPNoWrapFlags NW; 5151 5152 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 5153 NW = toGEPNoWrapFlags(Record[OpNum++]); 5154 TyID = Record[OpNum++]; 5155 Ty = getTypeByID(TyID); 5156 } else { 5157 if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD) 5158 NW = GEPNoWrapFlags::inBounds(); 5159 TyID = InvalidTypeID; 5160 Ty = nullptr; 5161 } 5162 5163 Value *BasePtr; 5164 unsigned BasePtrTypeID; 5165 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr, BasePtrTypeID, 5166 CurBB)) 5167 return error("Invalid record"); 5168 5169 if (!Ty) { 5170 TyID = getContainedTypeID(BasePtrTypeID); 5171 if (BasePtr->getType()->isVectorTy()) 5172 TyID = getContainedTypeID(TyID); 5173 Ty = getTypeByID(TyID); 5174 } 5175 5176 SmallVector<Value*, 16> GEPIdx; 5177 while (OpNum != Record.size()) { 5178 Value *Op; 5179 unsigned OpTypeID; 5180 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 5181 return error("Invalid record"); 5182 GEPIdx.push_back(Op); 5183 } 5184 5185 auto *GEP = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 5186 I = GEP; 5187 5188 ResTypeID = TyID; 5189 if (cast<GEPOperator>(I)->getNumIndices() != 0) { 5190 auto GTI = std::next(gep_type_begin(I)); 5191 for (Value *Idx : drop_begin(cast<GEPOperator>(I)->indices())) { 5192 unsigned SubType = 0; 5193 if (GTI.isStruct()) { 5194 ConstantInt *IdxC = 5195 Idx->getType()->isVectorTy() 5196 ? cast<ConstantInt>(cast<Constant>(Idx)->getSplatValue()) 5197 : cast<ConstantInt>(Idx); 5198 SubType = IdxC->getZExtValue(); 5199 } 5200 ResTypeID = getContainedTypeID(ResTypeID, SubType); 5201 ++GTI; 5202 } 5203 } 5204 5205 // At this point ResTypeID is the result element type. We need a pointer 5206 // or vector of pointer to it. 5207 ResTypeID = getVirtualTypeID(I->getType()->getScalarType(), ResTypeID); 5208 if (I->getType()->isVectorTy()) 5209 ResTypeID = getVirtualTypeID(I->getType(), ResTypeID); 5210 5211 InstructionList.push_back(I); 5212 GEP->setNoWrapFlags(NW); 5213 break; 5214 } 5215 5216 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 5217 // EXTRACTVAL: [opty, opval, n x indices] 5218 unsigned OpNum = 0; 5219 Value *Agg; 5220 unsigned AggTypeID; 5221 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB)) 5222 return error("Invalid record"); 5223 Type *Ty = Agg->getType(); 5224 5225 unsigned RecSize = Record.size(); 5226 if (OpNum == RecSize) 5227 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 5228 5229 SmallVector<unsigned, 4> EXTRACTVALIdx; 5230 ResTypeID = AggTypeID; 5231 for (; OpNum != RecSize; ++OpNum) { 5232 bool IsArray = Ty->isArrayTy(); 5233 bool IsStruct = Ty->isStructTy(); 5234 uint64_t Index = Record[OpNum]; 5235 5236 if (!IsStruct && !IsArray) 5237 return error("EXTRACTVAL: Invalid type"); 5238 if ((unsigned)Index != Index) 5239 return error("Invalid value"); 5240 if (IsStruct && Index >= Ty->getStructNumElements()) 5241 return error("EXTRACTVAL: Invalid struct index"); 5242 if (IsArray && Index >= Ty->getArrayNumElements()) 5243 return error("EXTRACTVAL: Invalid array index"); 5244 EXTRACTVALIdx.push_back((unsigned)Index); 5245 5246 if (IsStruct) { 5247 Ty = Ty->getStructElementType(Index); 5248 ResTypeID = getContainedTypeID(ResTypeID, Index); 5249 } else { 5250 Ty = Ty->getArrayElementType(); 5251 ResTypeID = getContainedTypeID(ResTypeID); 5252 } 5253 } 5254 5255 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 5256 InstructionList.push_back(I); 5257 break; 5258 } 5259 5260 case bitc::FUNC_CODE_INST_INSERTVAL: { 5261 // INSERTVAL: [opty, opval, opty, opval, n x indices] 5262 unsigned OpNum = 0; 5263 Value *Agg; 5264 unsigned AggTypeID; 5265 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB)) 5266 return error("Invalid record"); 5267 Value *Val; 5268 unsigned ValTypeID; 5269 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 5270 return error("Invalid record"); 5271 5272 unsigned RecSize = Record.size(); 5273 if (OpNum == RecSize) 5274 return error("INSERTVAL: Invalid instruction with 0 indices"); 5275 5276 SmallVector<unsigned, 4> INSERTVALIdx; 5277 Type *CurTy = Agg->getType(); 5278 for (; OpNum != RecSize; ++OpNum) { 5279 bool IsArray = CurTy->isArrayTy(); 5280 bool IsStruct = CurTy->isStructTy(); 5281 uint64_t Index = Record[OpNum]; 5282 5283 if (!IsStruct && !IsArray) 5284 return error("INSERTVAL: Invalid type"); 5285 if ((unsigned)Index != Index) 5286 return error("Invalid value"); 5287 if (IsStruct && Index >= CurTy->getStructNumElements()) 5288 return error("INSERTVAL: Invalid struct index"); 5289 if (IsArray && Index >= CurTy->getArrayNumElements()) 5290 return error("INSERTVAL: Invalid array index"); 5291 5292 INSERTVALIdx.push_back((unsigned)Index); 5293 if (IsStruct) 5294 CurTy = CurTy->getStructElementType(Index); 5295 else 5296 CurTy = CurTy->getArrayElementType(); 5297 } 5298 5299 if (CurTy != Val->getType()) 5300 return error("Inserted value type doesn't match aggregate type"); 5301 5302 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 5303 ResTypeID = AggTypeID; 5304 InstructionList.push_back(I); 5305 break; 5306 } 5307 5308 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 5309 // obsolete form of select 5310 // handles select i1 ... in old bitcode 5311 unsigned OpNum = 0; 5312 Value *TrueVal, *FalseVal, *Cond; 5313 unsigned TypeID; 5314 Type *CondType = Type::getInt1Ty(Context); 5315 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, TypeID, 5316 CurBB) || 5317 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), TypeID, 5318 FalseVal, CurBB) || 5319 popValue(Record, OpNum, NextValueNo, CondType, 5320 getVirtualTypeID(CondType), Cond, CurBB)) 5321 return error("Invalid record"); 5322 5323 I = SelectInst::Create(Cond, TrueVal, FalseVal); 5324 ResTypeID = TypeID; 5325 InstructionList.push_back(I); 5326 break; 5327 } 5328 5329 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 5330 // new form of select 5331 // handles select i1 or select [N x i1] 5332 unsigned OpNum = 0; 5333 Value *TrueVal, *FalseVal, *Cond; 5334 unsigned ValTypeID, CondTypeID; 5335 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, ValTypeID, 5336 CurBB) || 5337 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), ValTypeID, 5338 FalseVal, CurBB) || 5339 getValueTypePair(Record, OpNum, NextValueNo, Cond, CondTypeID, CurBB)) 5340 return error("Invalid record"); 5341 5342 // select condition can be either i1 or [N x i1] 5343 if (VectorType* vector_type = 5344 dyn_cast<VectorType>(Cond->getType())) { 5345 // expect <n x i1> 5346 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 5347 return error("Invalid type for value"); 5348 } else { 5349 // expect i1 5350 if (Cond->getType() != Type::getInt1Ty(Context)) 5351 return error("Invalid type for value"); 5352 } 5353 5354 I = SelectInst::Create(Cond, TrueVal, FalseVal); 5355 ResTypeID = ValTypeID; 5356 InstructionList.push_back(I); 5357 if (OpNum < Record.size() && isa<FPMathOperator>(I)) { 5358 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 5359 if (FMF.any()) 5360 I->setFastMathFlags(FMF); 5361 } 5362 break; 5363 } 5364 5365 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 5366 unsigned OpNum = 0; 5367 Value *Vec, *Idx; 5368 unsigned VecTypeID, IdxTypeID; 5369 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB) || 5370 getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB)) 5371 return error("Invalid record"); 5372 if (!Vec->getType()->isVectorTy()) 5373 return error("Invalid type for value"); 5374 I = ExtractElementInst::Create(Vec, Idx); 5375 ResTypeID = getContainedTypeID(VecTypeID); 5376 InstructionList.push_back(I); 5377 break; 5378 } 5379 5380 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 5381 unsigned OpNum = 0; 5382 Value *Vec, *Elt, *Idx; 5383 unsigned VecTypeID, IdxTypeID; 5384 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB)) 5385 return error("Invalid record"); 5386 if (!Vec->getType()->isVectorTy()) 5387 return error("Invalid type for value"); 5388 if (popValue(Record, OpNum, NextValueNo, 5389 cast<VectorType>(Vec->getType())->getElementType(), 5390 getContainedTypeID(VecTypeID), Elt, CurBB) || 5391 getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB)) 5392 return error("Invalid record"); 5393 I = InsertElementInst::Create(Vec, Elt, Idx); 5394 ResTypeID = VecTypeID; 5395 InstructionList.push_back(I); 5396 break; 5397 } 5398 5399 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 5400 unsigned OpNum = 0; 5401 Value *Vec1, *Vec2, *Mask; 5402 unsigned Vec1TypeID; 5403 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1, Vec1TypeID, 5404 CurBB) || 5405 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec1TypeID, 5406 Vec2, CurBB)) 5407 return error("Invalid record"); 5408 5409 unsigned MaskTypeID; 5410 if (getValueTypePair(Record, OpNum, NextValueNo, Mask, MaskTypeID, CurBB)) 5411 return error("Invalid record"); 5412 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 5413 return error("Invalid type for value"); 5414 5415 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 5416 ResTypeID = 5417 getVirtualTypeID(I->getType(), getContainedTypeID(Vec1TypeID)); 5418 InstructionList.push_back(I); 5419 break; 5420 } 5421 5422 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 5423 // Old form of ICmp/FCmp returning bool 5424 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 5425 // both legal on vectors but had different behaviour. 5426 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 5427 // FCmp/ICmp returning bool or vector of bool 5428 5429 unsigned OpNum = 0; 5430 Value *LHS, *RHS; 5431 unsigned LHSTypeID; 5432 if (getValueTypePair(Record, OpNum, NextValueNo, LHS, LHSTypeID, CurBB) || 5433 popValue(Record, OpNum, NextValueNo, LHS->getType(), LHSTypeID, RHS, 5434 CurBB)) 5435 return error("Invalid record"); 5436 5437 if (OpNum >= Record.size()) 5438 return error( 5439 "Invalid record: operand number exceeded available operands"); 5440 5441 CmpInst::Predicate PredVal = CmpInst::Predicate(Record[OpNum]); 5442 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 5443 FastMathFlags FMF; 5444 if (IsFP && Record.size() > OpNum+1) 5445 FMF = getDecodedFastMathFlags(Record[++OpNum]); 5446 5447 if (OpNum+1 != Record.size()) 5448 return error("Invalid record"); 5449 5450 if (IsFP) { 5451 if (!CmpInst::isFPPredicate(PredVal)) 5452 return error("Invalid fcmp predicate"); 5453 I = new FCmpInst(PredVal, LHS, RHS); 5454 } else { 5455 if (!CmpInst::isIntPredicate(PredVal)) 5456 return error("Invalid icmp predicate"); 5457 I = new ICmpInst(PredVal, LHS, RHS); 5458 } 5459 5460 ResTypeID = getVirtualTypeID(I->getType()->getScalarType()); 5461 if (LHS->getType()->isVectorTy()) 5462 ResTypeID = getVirtualTypeID(I->getType(), ResTypeID); 5463 5464 if (FMF.any()) 5465 I->setFastMathFlags(FMF); 5466 InstructionList.push_back(I); 5467 break; 5468 } 5469 5470 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 5471 { 5472 unsigned Size = Record.size(); 5473 if (Size == 0) { 5474 I = ReturnInst::Create(Context); 5475 InstructionList.push_back(I); 5476 break; 5477 } 5478 5479 unsigned OpNum = 0; 5480 Value *Op = nullptr; 5481 unsigned OpTypeID; 5482 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 5483 return error("Invalid record"); 5484 if (OpNum != Record.size()) 5485 return error("Invalid record"); 5486 5487 I = ReturnInst::Create(Context, Op); 5488 InstructionList.push_back(I); 5489 break; 5490 } 5491 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 5492 if (Record.size() != 1 && Record.size() != 3) 5493 return error("Invalid record"); 5494 BasicBlock *TrueDest = getBasicBlock(Record[0]); 5495 if (!TrueDest) 5496 return error("Invalid record"); 5497 5498 if (Record.size() == 1) { 5499 I = BranchInst::Create(TrueDest); 5500 InstructionList.push_back(I); 5501 } 5502 else { 5503 BasicBlock *FalseDest = getBasicBlock(Record[1]); 5504 Type *CondType = Type::getInt1Ty(Context); 5505 Value *Cond = getValue(Record, 2, NextValueNo, CondType, 5506 getVirtualTypeID(CondType), CurBB); 5507 if (!FalseDest || !Cond) 5508 return error("Invalid record"); 5509 I = BranchInst::Create(TrueDest, FalseDest, Cond); 5510 InstructionList.push_back(I); 5511 } 5512 break; 5513 } 5514 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 5515 if (Record.size() != 1 && Record.size() != 2) 5516 return error("Invalid record"); 5517 unsigned Idx = 0; 5518 Type *TokenTy = Type::getTokenTy(Context); 5519 Value *CleanupPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5520 getVirtualTypeID(TokenTy), CurBB); 5521 if (!CleanupPad) 5522 return error("Invalid record"); 5523 BasicBlock *UnwindDest = nullptr; 5524 if (Record.size() == 2) { 5525 UnwindDest = getBasicBlock(Record[Idx++]); 5526 if (!UnwindDest) 5527 return error("Invalid record"); 5528 } 5529 5530 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 5531 InstructionList.push_back(I); 5532 break; 5533 } 5534 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 5535 if (Record.size() != 2) 5536 return error("Invalid record"); 5537 unsigned Idx = 0; 5538 Type *TokenTy = Type::getTokenTy(Context); 5539 Value *CatchPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5540 getVirtualTypeID(TokenTy), CurBB); 5541 if (!CatchPad) 5542 return error("Invalid record"); 5543 BasicBlock *BB = getBasicBlock(Record[Idx++]); 5544 if (!BB) 5545 return error("Invalid record"); 5546 5547 I = CatchReturnInst::Create(CatchPad, BB); 5548 InstructionList.push_back(I); 5549 break; 5550 } 5551 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 5552 // We must have, at minimum, the outer scope and the number of arguments. 5553 if (Record.size() < 2) 5554 return error("Invalid record"); 5555 5556 unsigned Idx = 0; 5557 5558 Type *TokenTy = Type::getTokenTy(Context); 5559 Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5560 getVirtualTypeID(TokenTy), CurBB); 5561 if (!ParentPad) 5562 return error("Invalid record"); 5563 5564 unsigned NumHandlers = Record[Idx++]; 5565 5566 SmallVector<BasicBlock *, 2> Handlers; 5567 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 5568 BasicBlock *BB = getBasicBlock(Record[Idx++]); 5569 if (!BB) 5570 return error("Invalid record"); 5571 Handlers.push_back(BB); 5572 } 5573 5574 BasicBlock *UnwindDest = nullptr; 5575 if (Idx + 1 == Record.size()) { 5576 UnwindDest = getBasicBlock(Record[Idx++]); 5577 if (!UnwindDest) 5578 return error("Invalid record"); 5579 } 5580 5581 if (Record.size() != Idx) 5582 return error("Invalid record"); 5583 5584 auto *CatchSwitch = 5585 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 5586 for (BasicBlock *Handler : Handlers) 5587 CatchSwitch->addHandler(Handler); 5588 I = CatchSwitch; 5589 ResTypeID = getVirtualTypeID(I->getType()); 5590 InstructionList.push_back(I); 5591 break; 5592 } 5593 case bitc::FUNC_CODE_INST_CATCHPAD: 5594 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 5595 // We must have, at minimum, the outer scope and the number of arguments. 5596 if (Record.size() < 2) 5597 return error("Invalid record"); 5598 5599 unsigned Idx = 0; 5600 5601 Type *TokenTy = Type::getTokenTy(Context); 5602 Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5603 getVirtualTypeID(TokenTy), CurBB); 5604 if (!ParentPad) 5605 return error("Invald record"); 5606 5607 unsigned NumArgOperands = Record[Idx++]; 5608 5609 SmallVector<Value *, 2> Args; 5610 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 5611 Value *Val; 5612 unsigned ValTypeID; 5613 if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, nullptr)) 5614 return error("Invalid record"); 5615 Args.push_back(Val); 5616 } 5617 5618 if (Record.size() != Idx) 5619 return error("Invalid record"); 5620 5621 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 5622 I = CleanupPadInst::Create(ParentPad, Args); 5623 else 5624 I = CatchPadInst::Create(ParentPad, Args); 5625 ResTypeID = getVirtualTypeID(I->getType()); 5626 InstructionList.push_back(I); 5627 break; 5628 } 5629 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 5630 // Check magic 5631 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 5632 // "New" SwitchInst format with case ranges. The changes to write this 5633 // format were reverted but we still recognize bitcode that uses it. 5634 // Hopefully someday we will have support for case ranges and can use 5635 // this format again. 5636 5637 unsigned OpTyID = Record[1]; 5638 Type *OpTy = getTypeByID(OpTyID); 5639 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 5640 5641 Value *Cond = getValue(Record, 2, NextValueNo, OpTy, OpTyID, CurBB); 5642 BasicBlock *Default = getBasicBlock(Record[3]); 5643 if (!OpTy || !Cond || !Default) 5644 return error("Invalid record"); 5645 5646 unsigned NumCases = Record[4]; 5647 5648 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 5649 InstructionList.push_back(SI); 5650 5651 unsigned CurIdx = 5; 5652 for (unsigned i = 0; i != NumCases; ++i) { 5653 SmallVector<ConstantInt*, 1> CaseVals; 5654 unsigned NumItems = Record[CurIdx++]; 5655 for (unsigned ci = 0; ci != NumItems; ++ci) { 5656 bool isSingleNumber = Record[CurIdx++]; 5657 5658 APInt Low; 5659 unsigned ActiveWords = 1; 5660 if (ValueBitWidth > 64) 5661 ActiveWords = Record[CurIdx++]; 5662 Low = readWideAPInt(ArrayRef(&Record[CurIdx], ActiveWords), 5663 ValueBitWidth); 5664 CurIdx += ActiveWords; 5665 5666 if (!isSingleNumber) { 5667 ActiveWords = 1; 5668 if (ValueBitWidth > 64) 5669 ActiveWords = Record[CurIdx++]; 5670 APInt High = readWideAPInt(ArrayRef(&Record[CurIdx], ActiveWords), 5671 ValueBitWidth); 5672 CurIdx += ActiveWords; 5673 5674 // FIXME: It is not clear whether values in the range should be 5675 // compared as signed or unsigned values. The partially 5676 // implemented changes that used this format in the past used 5677 // unsigned comparisons. 5678 for ( ; Low.ule(High); ++Low) 5679 CaseVals.push_back(ConstantInt::get(Context, Low)); 5680 } else 5681 CaseVals.push_back(ConstantInt::get(Context, Low)); 5682 } 5683 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 5684 for (ConstantInt *Cst : CaseVals) 5685 SI->addCase(Cst, DestBB); 5686 } 5687 I = SI; 5688 break; 5689 } 5690 5691 // Old SwitchInst format without case ranges. 5692 5693 if (Record.size() < 3 || (Record.size() & 1) == 0) 5694 return error("Invalid record"); 5695 unsigned OpTyID = Record[0]; 5696 Type *OpTy = getTypeByID(OpTyID); 5697 Value *Cond = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB); 5698 BasicBlock *Default = getBasicBlock(Record[2]); 5699 if (!OpTy || !Cond || !Default) 5700 return error("Invalid record"); 5701 unsigned NumCases = (Record.size()-3)/2; 5702 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 5703 InstructionList.push_back(SI); 5704 for (unsigned i = 0, e = NumCases; i != e; ++i) { 5705 ConstantInt *CaseVal = dyn_cast_or_null<ConstantInt>( 5706 getFnValueByID(Record[3+i*2], OpTy, OpTyID, nullptr)); 5707 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 5708 if (!CaseVal || !DestBB) { 5709 delete SI; 5710 return error("Invalid record"); 5711 } 5712 SI->addCase(CaseVal, DestBB); 5713 } 5714 I = SI; 5715 break; 5716 } 5717 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 5718 if (Record.size() < 2) 5719 return error("Invalid record"); 5720 unsigned OpTyID = Record[0]; 5721 Type *OpTy = getTypeByID(OpTyID); 5722 Value *Address = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB); 5723 if (!OpTy || !Address) 5724 return error("Invalid record"); 5725 unsigned NumDests = Record.size()-2; 5726 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 5727 InstructionList.push_back(IBI); 5728 for (unsigned i = 0, e = NumDests; i != e; ++i) { 5729 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 5730 IBI->addDestination(DestBB); 5731 } else { 5732 delete IBI; 5733 return error("Invalid record"); 5734 } 5735 } 5736 I = IBI; 5737 break; 5738 } 5739 5740 case bitc::FUNC_CODE_INST_INVOKE: { 5741 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 5742 if (Record.size() < 4) 5743 return error("Invalid record"); 5744 unsigned OpNum = 0; 5745 AttributeList PAL = getAttributes(Record[OpNum++]); 5746 unsigned CCInfo = Record[OpNum++]; 5747 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 5748 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 5749 5750 unsigned FTyID = InvalidTypeID; 5751 FunctionType *FTy = nullptr; 5752 if ((CCInfo >> 13) & 1) { 5753 FTyID = Record[OpNum++]; 5754 FTy = dyn_cast<FunctionType>(getTypeByID(FTyID)); 5755 if (!FTy) 5756 return error("Explicit invoke type is not a function type"); 5757 } 5758 5759 Value *Callee; 5760 unsigned CalleeTypeID; 5761 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID, 5762 CurBB)) 5763 return error("Invalid record"); 5764 5765 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 5766 if (!CalleeTy) 5767 return error("Callee is not a pointer"); 5768 if (!FTy) { 5769 FTyID = getContainedTypeID(CalleeTypeID); 5770 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 5771 if (!FTy) 5772 return error("Callee is not of pointer to function type"); 5773 } 5774 if (Record.size() < FTy->getNumParams() + OpNum) 5775 return error("Insufficient operands to call"); 5776 5777 SmallVector<Value*, 16> Ops; 5778 SmallVector<unsigned, 16> ArgTyIDs; 5779 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5780 unsigned ArgTyID = getContainedTypeID(FTyID, i + 1); 5781 Ops.push_back(getValue(Record, OpNum, NextValueNo, FTy->getParamType(i), 5782 ArgTyID, CurBB)); 5783 ArgTyIDs.push_back(ArgTyID); 5784 if (!Ops.back()) 5785 return error("Invalid record"); 5786 } 5787 5788 if (!FTy->isVarArg()) { 5789 if (Record.size() != OpNum) 5790 return error("Invalid record"); 5791 } else { 5792 // Read type/value pairs for varargs params. 5793 while (OpNum != Record.size()) { 5794 Value *Op; 5795 unsigned OpTypeID; 5796 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 5797 return error("Invalid record"); 5798 Ops.push_back(Op); 5799 ArgTyIDs.push_back(OpTypeID); 5800 } 5801 } 5802 5803 // Upgrade the bundles if needed. 5804 if (!OperandBundles.empty()) 5805 UpgradeOperandBundles(OperandBundles); 5806 5807 I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops, 5808 OperandBundles); 5809 ResTypeID = getContainedTypeID(FTyID); 5810 OperandBundles.clear(); 5811 InstructionList.push_back(I); 5812 cast<InvokeInst>(I)->setCallingConv( 5813 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 5814 cast<InvokeInst>(I)->setAttributes(PAL); 5815 if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) { 5816 I->deleteValue(); 5817 return Err; 5818 } 5819 5820 break; 5821 } 5822 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 5823 unsigned Idx = 0; 5824 Value *Val = nullptr; 5825 unsigned ValTypeID; 5826 if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, CurBB)) 5827 return error("Invalid record"); 5828 I = ResumeInst::Create(Val); 5829 InstructionList.push_back(I); 5830 break; 5831 } 5832 case bitc::FUNC_CODE_INST_CALLBR: { 5833 // CALLBR: [attr, cc, norm, transfs, fty, fnid, args] 5834 unsigned OpNum = 0; 5835 AttributeList PAL = getAttributes(Record[OpNum++]); 5836 unsigned CCInfo = Record[OpNum++]; 5837 5838 BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]); 5839 unsigned NumIndirectDests = Record[OpNum++]; 5840 SmallVector<BasicBlock *, 16> IndirectDests; 5841 for (unsigned i = 0, e = NumIndirectDests; i != e; ++i) 5842 IndirectDests.push_back(getBasicBlock(Record[OpNum++])); 5843 5844 unsigned FTyID = InvalidTypeID; 5845 FunctionType *FTy = nullptr; 5846 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 5847 FTyID = Record[OpNum++]; 5848 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 5849 if (!FTy) 5850 return error("Explicit call type is not a function type"); 5851 } 5852 5853 Value *Callee; 5854 unsigned CalleeTypeID; 5855 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID, 5856 CurBB)) 5857 return error("Invalid record"); 5858 5859 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5860 if (!OpTy) 5861 return error("Callee is not a pointer type"); 5862 if (!FTy) { 5863 FTyID = getContainedTypeID(CalleeTypeID); 5864 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 5865 if (!FTy) 5866 return error("Callee is not of pointer to function type"); 5867 } 5868 if (Record.size() < FTy->getNumParams() + OpNum) 5869 return error("Insufficient operands to call"); 5870 5871 SmallVector<Value*, 16> Args; 5872 SmallVector<unsigned, 16> ArgTyIDs; 5873 // Read the fixed params. 5874 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5875 Value *Arg; 5876 unsigned ArgTyID = getContainedTypeID(FTyID, i + 1); 5877 if (FTy->getParamType(i)->isLabelTy()) 5878 Arg = getBasicBlock(Record[OpNum]); 5879 else 5880 Arg = getValue(Record, OpNum, NextValueNo, FTy->getParamType(i), 5881 ArgTyID, CurBB); 5882 if (!Arg) 5883 return error("Invalid record"); 5884 Args.push_back(Arg); 5885 ArgTyIDs.push_back(ArgTyID); 5886 } 5887 5888 // Read type/value pairs for varargs params. 5889 if (!FTy->isVarArg()) { 5890 if (OpNum != Record.size()) 5891 return error("Invalid record"); 5892 } else { 5893 while (OpNum != Record.size()) { 5894 Value *Op; 5895 unsigned OpTypeID; 5896 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 5897 return error("Invalid record"); 5898 Args.push_back(Op); 5899 ArgTyIDs.push_back(OpTypeID); 5900 } 5901 } 5902 5903 // Upgrade the bundles if needed. 5904 if (!OperandBundles.empty()) 5905 UpgradeOperandBundles(OperandBundles); 5906 5907 if (auto *IA = dyn_cast<InlineAsm>(Callee)) { 5908 InlineAsm::ConstraintInfoVector ConstraintInfo = IA->ParseConstraints(); 5909 auto IsLabelConstraint = [](const InlineAsm::ConstraintInfo &CI) { 5910 return CI.Type == InlineAsm::isLabel; 5911 }; 5912 if (none_of(ConstraintInfo, IsLabelConstraint)) { 5913 // Upgrade explicit blockaddress arguments to label constraints. 5914 // Verify that the last arguments are blockaddress arguments that 5915 // match the indirect destinations. Clang always generates callbr 5916 // in this form. We could support reordering with more effort. 5917 unsigned FirstBlockArg = Args.size() - IndirectDests.size(); 5918 for (unsigned ArgNo = FirstBlockArg; ArgNo < Args.size(); ++ArgNo) { 5919 unsigned LabelNo = ArgNo - FirstBlockArg; 5920 auto *BA = dyn_cast<BlockAddress>(Args[ArgNo]); 5921 if (!BA || BA->getFunction() != F || 5922 LabelNo > IndirectDests.size() || 5923 BA->getBasicBlock() != IndirectDests[LabelNo]) 5924 return error("callbr argument does not match indirect dest"); 5925 } 5926 5927 // Remove blockaddress arguments. 5928 Args.erase(Args.begin() + FirstBlockArg, Args.end()); 5929 ArgTyIDs.erase(ArgTyIDs.begin() + FirstBlockArg, ArgTyIDs.end()); 5930 5931 // Recreate the function type with less arguments. 5932 SmallVector<Type *> ArgTys; 5933 for (Value *Arg : Args) 5934 ArgTys.push_back(Arg->getType()); 5935 FTy = 5936 FunctionType::get(FTy->getReturnType(), ArgTys, FTy->isVarArg()); 5937 5938 // Update constraint string to use label constraints. 5939 std::string Constraints = IA->getConstraintString(); 5940 unsigned ArgNo = 0; 5941 size_t Pos = 0; 5942 for (const auto &CI : ConstraintInfo) { 5943 if (CI.hasArg()) { 5944 if (ArgNo >= FirstBlockArg) 5945 Constraints.insert(Pos, "!"); 5946 ++ArgNo; 5947 } 5948 5949 // Go to next constraint in string. 5950 Pos = Constraints.find(',', Pos); 5951 if (Pos == std::string::npos) 5952 break; 5953 ++Pos; 5954 } 5955 5956 Callee = InlineAsm::get(FTy, IA->getAsmString(), Constraints, 5957 IA->hasSideEffects(), IA->isAlignStack(), 5958 IA->getDialect(), IA->canThrow()); 5959 } 5960 } 5961 5962 I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args, 5963 OperandBundles); 5964 ResTypeID = getContainedTypeID(FTyID); 5965 OperandBundles.clear(); 5966 InstructionList.push_back(I); 5967 cast<CallBrInst>(I)->setCallingConv( 5968 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5969 cast<CallBrInst>(I)->setAttributes(PAL); 5970 if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) { 5971 I->deleteValue(); 5972 return Err; 5973 } 5974 break; 5975 } 5976 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 5977 I = new UnreachableInst(Context); 5978 InstructionList.push_back(I); 5979 break; 5980 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 5981 if (Record.empty()) 5982 return error("Invalid phi record"); 5983 // The first record specifies the type. 5984 unsigned TyID = Record[0]; 5985 Type *Ty = getTypeByID(TyID); 5986 if (!Ty) 5987 return error("Invalid phi record"); 5988 5989 // Phi arguments are pairs of records of [value, basic block]. 5990 // There is an optional final record for fast-math-flags if this phi has a 5991 // floating-point type. 5992 size_t NumArgs = (Record.size() - 1) / 2; 5993 PHINode *PN = PHINode::Create(Ty, NumArgs); 5994 if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN)) { 5995 PN->deleteValue(); 5996 return error("Invalid phi record"); 5997 } 5998 InstructionList.push_back(PN); 5999 6000 SmallDenseMap<BasicBlock *, Value *> Args; 6001 for (unsigned i = 0; i != NumArgs; i++) { 6002 BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]); 6003 if (!BB) { 6004 PN->deleteValue(); 6005 return error("Invalid phi BB"); 6006 } 6007 6008 // Phi nodes may contain the same predecessor multiple times, in which 6009 // case the incoming value must be identical. Directly reuse the already 6010 // seen value here, to avoid expanding a constant expression multiple 6011 // times. 6012 auto It = Args.find(BB); 6013 if (It != Args.end()) { 6014 PN->addIncoming(It->second, BB); 6015 continue; 6016 } 6017 6018 // If there already is a block for this edge (from a different phi), 6019 // use it. 6020 BasicBlock *EdgeBB = ConstExprEdgeBBs.lookup({BB, CurBB}); 6021 if (!EdgeBB) { 6022 // Otherwise, use a temporary block (that we will discard if it 6023 // turns out to be unnecessary). 6024 if (!PhiConstExprBB) 6025 PhiConstExprBB = BasicBlock::Create(Context, "phi.constexpr", F); 6026 EdgeBB = PhiConstExprBB; 6027 } 6028 6029 // With the new function encoding, it is possible that operands have 6030 // negative IDs (for forward references). Use a signed VBR 6031 // representation to keep the encoding small. 6032 Value *V; 6033 if (UseRelativeIDs) 6034 V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB); 6035 else 6036 V = getValue(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB); 6037 if (!V) { 6038 PN->deleteValue(); 6039 PhiConstExprBB->eraseFromParent(); 6040 return error("Invalid phi record"); 6041 } 6042 6043 if (EdgeBB == PhiConstExprBB && !EdgeBB->empty()) { 6044 ConstExprEdgeBBs.insert({{BB, CurBB}, EdgeBB}); 6045 PhiConstExprBB = nullptr; 6046 } 6047 PN->addIncoming(V, BB); 6048 Args.insert({BB, V}); 6049 } 6050 I = PN; 6051 ResTypeID = TyID; 6052 6053 // If there are an even number of records, the final record must be FMF. 6054 if (Record.size() % 2 == 0) { 6055 assert(isa<FPMathOperator>(I) && "Unexpected phi type"); 6056 FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]); 6057 if (FMF.any()) 6058 I->setFastMathFlags(FMF); 6059 } 6060 6061 break; 6062 } 6063 6064 case bitc::FUNC_CODE_INST_LANDINGPAD: 6065 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 6066 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 6067 unsigned Idx = 0; 6068 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 6069 if (Record.size() < 3) 6070 return error("Invalid record"); 6071 } else { 6072 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 6073 if (Record.size() < 4) 6074 return error("Invalid record"); 6075 } 6076 ResTypeID = Record[Idx++]; 6077 Type *Ty = getTypeByID(ResTypeID); 6078 if (!Ty) 6079 return error("Invalid record"); 6080 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 6081 Value *PersFn = nullptr; 6082 unsigned PersFnTypeID; 6083 if (getValueTypePair(Record, Idx, NextValueNo, PersFn, PersFnTypeID, 6084 nullptr)) 6085 return error("Invalid record"); 6086 6087 if (!F->hasPersonalityFn()) 6088 F->setPersonalityFn(cast<Constant>(PersFn)); 6089 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 6090 return error("Personality function mismatch"); 6091 } 6092 6093 bool IsCleanup = !!Record[Idx++]; 6094 unsigned NumClauses = Record[Idx++]; 6095 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 6096 LP->setCleanup(IsCleanup); 6097 for (unsigned J = 0; J != NumClauses; ++J) { 6098 LandingPadInst::ClauseType CT = 6099 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 6100 Value *Val; 6101 unsigned ValTypeID; 6102 6103 if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, 6104 nullptr)) { 6105 delete LP; 6106 return error("Invalid record"); 6107 } 6108 6109 assert((CT != LandingPadInst::Catch || 6110 !isa<ArrayType>(Val->getType())) && 6111 "Catch clause has a invalid type!"); 6112 assert((CT != LandingPadInst::Filter || 6113 isa<ArrayType>(Val->getType())) && 6114 "Filter clause has invalid type!"); 6115 LP->addClause(cast<Constant>(Val)); 6116 } 6117 6118 I = LP; 6119 InstructionList.push_back(I); 6120 break; 6121 } 6122 6123 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 6124 if (Record.size() != 4 && Record.size() != 5) 6125 return error("Invalid record"); 6126 using APV = AllocaPackedValues; 6127 const uint64_t Rec = Record[3]; 6128 const bool InAlloca = Bitfield::get<APV::UsedWithInAlloca>(Rec); 6129 const bool SwiftError = Bitfield::get<APV::SwiftError>(Rec); 6130 unsigned TyID = Record[0]; 6131 Type *Ty = getTypeByID(TyID); 6132 if (!Bitfield::get<APV::ExplicitType>(Rec)) { 6133 TyID = getContainedTypeID(TyID); 6134 Ty = getTypeByID(TyID); 6135 if (!Ty) 6136 return error("Missing element type for old-style alloca"); 6137 } 6138 unsigned OpTyID = Record[1]; 6139 Type *OpTy = getTypeByID(OpTyID); 6140 Value *Size = getFnValueByID(Record[2], OpTy, OpTyID, CurBB); 6141 MaybeAlign Align; 6142 uint64_t AlignExp = 6143 Bitfield::get<APV::AlignLower>(Rec) | 6144 (Bitfield::get<APV::AlignUpper>(Rec) << APV::AlignLower::Bits); 6145 if (Error Err = parseAlignmentValue(AlignExp, Align)) { 6146 return Err; 6147 } 6148 if (!Ty || !Size) 6149 return error("Invalid record"); 6150 6151 const DataLayout &DL = TheModule->getDataLayout(); 6152 unsigned AS = Record.size() == 5 ? Record[4] : DL.getAllocaAddrSpace(); 6153 6154 SmallPtrSet<Type *, 4> Visited; 6155 if (!Align && !Ty->isSized(&Visited)) 6156 return error("alloca of unsized type"); 6157 if (!Align) 6158 Align = DL.getPrefTypeAlign(Ty); 6159 6160 if (!Size->getType()->isIntegerTy()) 6161 return error("alloca element count must have integer type"); 6162 6163 AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align); 6164 AI->setUsedWithInAlloca(InAlloca); 6165 AI->setSwiftError(SwiftError); 6166 I = AI; 6167 ResTypeID = getVirtualTypeID(AI->getType(), TyID); 6168 InstructionList.push_back(I); 6169 break; 6170 } 6171 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 6172 unsigned OpNum = 0; 6173 Value *Op; 6174 unsigned OpTypeID; 6175 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) || 6176 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 6177 return error("Invalid record"); 6178 6179 if (!isa<PointerType>(Op->getType())) 6180 return error("Load operand is not a pointer type"); 6181 6182 Type *Ty = nullptr; 6183 if (OpNum + 3 == Record.size()) { 6184 ResTypeID = Record[OpNum++]; 6185 Ty = getTypeByID(ResTypeID); 6186 } else { 6187 ResTypeID = getContainedTypeID(OpTypeID); 6188 Ty = getTypeByID(ResTypeID); 6189 } 6190 6191 if (!Ty) 6192 return error("Missing load type"); 6193 6194 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 6195 return Err; 6196 6197 MaybeAlign Align; 6198 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 6199 return Err; 6200 SmallPtrSet<Type *, 4> Visited; 6201 if (!Align && !Ty->isSized(&Visited)) 6202 return error("load of unsized type"); 6203 if (!Align) 6204 Align = TheModule->getDataLayout().getABITypeAlign(Ty); 6205 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align); 6206 InstructionList.push_back(I); 6207 break; 6208 } 6209 case bitc::FUNC_CODE_INST_LOADATOMIC: { 6210 // LOADATOMIC: [opty, op, align, vol, ordering, ssid] 6211 unsigned OpNum = 0; 6212 Value *Op; 6213 unsigned OpTypeID; 6214 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) || 6215 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 6216 return error("Invalid record"); 6217 6218 if (!isa<PointerType>(Op->getType())) 6219 return error("Load operand is not a pointer type"); 6220 6221 Type *Ty = nullptr; 6222 if (OpNum + 5 == Record.size()) { 6223 ResTypeID = Record[OpNum++]; 6224 Ty = getTypeByID(ResTypeID); 6225 } else { 6226 ResTypeID = getContainedTypeID(OpTypeID); 6227 Ty = getTypeByID(ResTypeID); 6228 } 6229 6230 if (!Ty) 6231 return error("Missing atomic load type"); 6232 6233 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 6234 return Err; 6235 6236 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 6237 if (Ordering == AtomicOrdering::NotAtomic || 6238 Ordering == AtomicOrdering::Release || 6239 Ordering == AtomicOrdering::AcquireRelease) 6240 return error("Invalid record"); 6241 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 6242 return error("Invalid record"); 6243 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 6244 6245 MaybeAlign Align; 6246 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 6247 return Err; 6248 if (!Align) 6249 return error("Alignment missing from atomic load"); 6250 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID); 6251 InstructionList.push_back(I); 6252 break; 6253 } 6254 case bitc::FUNC_CODE_INST_STORE: 6255 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 6256 unsigned OpNum = 0; 6257 Value *Val, *Ptr; 6258 unsigned PtrTypeID, ValTypeID; 6259 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 6260 return error("Invalid record"); 6261 6262 if (BitCode == bitc::FUNC_CODE_INST_STORE) { 6263 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 6264 return error("Invalid record"); 6265 } else { 6266 ValTypeID = getContainedTypeID(PtrTypeID); 6267 if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID), 6268 ValTypeID, Val, CurBB)) 6269 return error("Invalid record"); 6270 } 6271 6272 if (OpNum + 2 != Record.size()) 6273 return error("Invalid record"); 6274 6275 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 6276 return Err; 6277 MaybeAlign Align; 6278 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 6279 return Err; 6280 SmallPtrSet<Type *, 4> Visited; 6281 if (!Align && !Val->getType()->isSized(&Visited)) 6282 return error("store of unsized type"); 6283 if (!Align) 6284 Align = TheModule->getDataLayout().getABITypeAlign(Val->getType()); 6285 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align); 6286 InstructionList.push_back(I); 6287 break; 6288 } 6289 case bitc::FUNC_CODE_INST_STOREATOMIC: 6290 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 6291 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid] 6292 unsigned OpNum = 0; 6293 Value *Val, *Ptr; 6294 unsigned PtrTypeID, ValTypeID; 6295 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB) || 6296 !isa<PointerType>(Ptr->getType())) 6297 return error("Invalid record"); 6298 if (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC) { 6299 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 6300 return error("Invalid record"); 6301 } else { 6302 ValTypeID = getContainedTypeID(PtrTypeID); 6303 if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID), 6304 ValTypeID, Val, CurBB)) 6305 return error("Invalid record"); 6306 } 6307 6308 if (OpNum + 4 != Record.size()) 6309 return error("Invalid record"); 6310 6311 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 6312 return Err; 6313 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 6314 if (Ordering == AtomicOrdering::NotAtomic || 6315 Ordering == AtomicOrdering::Acquire || 6316 Ordering == AtomicOrdering::AcquireRelease) 6317 return error("Invalid record"); 6318 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 6319 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 6320 return error("Invalid record"); 6321 6322 MaybeAlign Align; 6323 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 6324 return Err; 6325 if (!Align) 6326 return error("Alignment missing from atomic store"); 6327 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID); 6328 InstructionList.push_back(I); 6329 break; 6330 } 6331 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: { 6332 // CMPXCHG_OLD: [ptrty, ptr, cmp, val, vol, ordering, synchscope, 6333 // failure_ordering?, weak?] 6334 const size_t NumRecords = Record.size(); 6335 unsigned OpNum = 0; 6336 Value *Ptr = nullptr; 6337 unsigned PtrTypeID; 6338 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 6339 return error("Invalid record"); 6340 6341 if (!isa<PointerType>(Ptr->getType())) 6342 return error("Cmpxchg operand is not a pointer type"); 6343 6344 Value *Cmp = nullptr; 6345 unsigned CmpTypeID = getContainedTypeID(PtrTypeID); 6346 if (popValue(Record, OpNum, NextValueNo, getTypeByID(CmpTypeID), 6347 CmpTypeID, Cmp, CurBB)) 6348 return error("Invalid record"); 6349 6350 Value *New = nullptr; 6351 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID, 6352 New, CurBB) || 6353 NumRecords < OpNum + 3 || NumRecords > OpNum + 5) 6354 return error("Invalid record"); 6355 6356 const AtomicOrdering SuccessOrdering = 6357 getDecodedOrdering(Record[OpNum + 1]); 6358 if (SuccessOrdering == AtomicOrdering::NotAtomic || 6359 SuccessOrdering == AtomicOrdering::Unordered) 6360 return error("Invalid record"); 6361 6362 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 6363 6364 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 6365 return Err; 6366 6367 const AtomicOrdering FailureOrdering = 6368 NumRecords < 7 6369 ? AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering) 6370 : getDecodedOrdering(Record[OpNum + 3]); 6371 6372 if (FailureOrdering == AtomicOrdering::NotAtomic || 6373 FailureOrdering == AtomicOrdering::Unordered) 6374 return error("Invalid record"); 6375 6376 const Align Alignment( 6377 TheModule->getDataLayout().getTypeStoreSize(Cmp->getType())); 6378 6379 I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering, 6380 FailureOrdering, SSID); 6381 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 6382 6383 if (NumRecords < 8) { 6384 // Before weak cmpxchgs existed, the instruction simply returned the 6385 // value loaded from memory, so bitcode files from that era will be 6386 // expecting the first component of a modern cmpxchg. 6387 I->insertInto(CurBB, CurBB->end()); 6388 I = ExtractValueInst::Create(I, 0); 6389 ResTypeID = CmpTypeID; 6390 } else { 6391 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]); 6392 unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context)); 6393 ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID}); 6394 } 6395 6396 InstructionList.push_back(I); 6397 break; 6398 } 6399 case bitc::FUNC_CODE_INST_CMPXCHG: { 6400 // CMPXCHG: [ptrty, ptr, cmp, val, vol, success_ordering, synchscope, 6401 // failure_ordering, weak, align?] 6402 const size_t NumRecords = Record.size(); 6403 unsigned OpNum = 0; 6404 Value *Ptr = nullptr; 6405 unsigned PtrTypeID; 6406 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 6407 return error("Invalid record"); 6408 6409 if (!isa<PointerType>(Ptr->getType())) 6410 return error("Cmpxchg operand is not a pointer type"); 6411 6412 Value *Cmp = nullptr; 6413 unsigned CmpTypeID; 6414 if (getValueTypePair(Record, OpNum, NextValueNo, Cmp, CmpTypeID, CurBB)) 6415 return error("Invalid record"); 6416 6417 Value *Val = nullptr; 6418 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID, Val, 6419 CurBB)) 6420 return error("Invalid record"); 6421 6422 if (NumRecords < OpNum + 3 || NumRecords > OpNum + 6) 6423 return error("Invalid record"); 6424 6425 const bool IsVol = Record[OpNum]; 6426 6427 const AtomicOrdering SuccessOrdering = 6428 getDecodedOrdering(Record[OpNum + 1]); 6429 if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering)) 6430 return error("Invalid cmpxchg success ordering"); 6431 6432 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 6433 6434 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 6435 return Err; 6436 6437 const AtomicOrdering FailureOrdering = 6438 getDecodedOrdering(Record[OpNum + 3]); 6439 if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering)) 6440 return error("Invalid cmpxchg failure ordering"); 6441 6442 const bool IsWeak = Record[OpNum + 4]; 6443 6444 MaybeAlign Alignment; 6445 6446 if (NumRecords == (OpNum + 6)) { 6447 if (Error Err = parseAlignmentValue(Record[OpNum + 5], Alignment)) 6448 return Err; 6449 } 6450 if (!Alignment) 6451 Alignment = 6452 Align(TheModule->getDataLayout().getTypeStoreSize(Cmp->getType())); 6453 6454 I = new AtomicCmpXchgInst(Ptr, Cmp, Val, *Alignment, SuccessOrdering, 6455 FailureOrdering, SSID); 6456 cast<AtomicCmpXchgInst>(I)->setVolatile(IsVol); 6457 cast<AtomicCmpXchgInst>(I)->setWeak(IsWeak); 6458 6459 unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context)); 6460 ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID}); 6461 6462 InstructionList.push_back(I); 6463 break; 6464 } 6465 case bitc::FUNC_CODE_INST_ATOMICRMW_OLD: 6466 case bitc::FUNC_CODE_INST_ATOMICRMW: { 6467 // ATOMICRMW_OLD: [ptrty, ptr, val, op, vol, ordering, ssid, align?] 6468 // ATOMICRMW: [ptrty, ptr, valty, val, op, vol, ordering, ssid, align?] 6469 const size_t NumRecords = Record.size(); 6470 unsigned OpNum = 0; 6471 6472 Value *Ptr = nullptr; 6473 unsigned PtrTypeID; 6474 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 6475 return error("Invalid record"); 6476 6477 if (!isa<PointerType>(Ptr->getType())) 6478 return error("Invalid record"); 6479 6480 Value *Val = nullptr; 6481 unsigned ValTypeID = InvalidTypeID; 6482 if (BitCode == bitc::FUNC_CODE_INST_ATOMICRMW_OLD) { 6483 ValTypeID = getContainedTypeID(PtrTypeID); 6484 if (popValue(Record, OpNum, NextValueNo, 6485 getTypeByID(ValTypeID), ValTypeID, Val, CurBB)) 6486 return error("Invalid record"); 6487 } else { 6488 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 6489 return error("Invalid record"); 6490 } 6491 6492 if (!(NumRecords == (OpNum + 4) || NumRecords == (OpNum + 5))) 6493 return error("Invalid record"); 6494 6495 const AtomicRMWInst::BinOp Operation = 6496 getDecodedRMWOperation(Record[OpNum]); 6497 if (Operation < AtomicRMWInst::FIRST_BINOP || 6498 Operation > AtomicRMWInst::LAST_BINOP) 6499 return error("Invalid record"); 6500 6501 const bool IsVol = Record[OpNum + 1]; 6502 6503 const AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 6504 if (Ordering == AtomicOrdering::NotAtomic || 6505 Ordering == AtomicOrdering::Unordered) 6506 return error("Invalid record"); 6507 6508 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 6509 6510 MaybeAlign Alignment; 6511 6512 if (NumRecords == (OpNum + 5)) { 6513 if (Error Err = parseAlignmentValue(Record[OpNum + 4], Alignment)) 6514 return Err; 6515 } 6516 6517 if (!Alignment) 6518 Alignment = 6519 Align(TheModule->getDataLayout().getTypeStoreSize(Val->getType())); 6520 6521 I = new AtomicRMWInst(Operation, Ptr, Val, *Alignment, Ordering, SSID); 6522 ResTypeID = ValTypeID; 6523 cast<AtomicRMWInst>(I)->setVolatile(IsVol); 6524 6525 InstructionList.push_back(I); 6526 break; 6527 } 6528 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid] 6529 if (2 != Record.size()) 6530 return error("Invalid record"); 6531 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 6532 if (Ordering == AtomicOrdering::NotAtomic || 6533 Ordering == AtomicOrdering::Unordered || 6534 Ordering == AtomicOrdering::Monotonic) 6535 return error("Invalid record"); 6536 SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]); 6537 I = new FenceInst(Context, Ordering, SSID); 6538 InstructionList.push_back(I); 6539 break; 6540 } 6541 case bitc::FUNC_CODE_DEBUG_RECORD_LABEL: { 6542 // DbgLabelRecords are placed after the Instructions that they are 6543 // attached to. 6544 SeenDebugRecord = true; 6545 Instruction *Inst = getLastInstruction(); 6546 if (!Inst) 6547 return error("Invalid dbg record: missing instruction"); 6548 DILocation *DIL = cast<DILocation>(getFnMetadataByID(Record[0])); 6549 DILabel *Label = cast<DILabel>(getFnMetadataByID(Record[1])); 6550 Inst->getParent()->insertDbgRecordBefore( 6551 new DbgLabelRecord(Label, DebugLoc(DIL)), Inst->getIterator()); 6552 continue; // This isn't an instruction. 6553 } 6554 case bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE: 6555 case bitc::FUNC_CODE_DEBUG_RECORD_VALUE: 6556 case bitc::FUNC_CODE_DEBUG_RECORD_DECLARE: 6557 case bitc::FUNC_CODE_DEBUG_RECORD_ASSIGN: { 6558 // DbgVariableRecords are placed after the Instructions that they are 6559 // attached to. 6560 SeenDebugRecord = true; 6561 Instruction *Inst = getLastInstruction(); 6562 if (!Inst) 6563 return error("Invalid dbg record: missing instruction"); 6564 6565 // First 3 fields are common to all kinds: 6566 // DILocation, DILocalVariable, DIExpression 6567 // dbg_value (FUNC_CODE_DEBUG_RECORD_VALUE) 6568 // ..., LocationMetadata 6569 // dbg_value (FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE - abbrev'd) 6570 // ..., Value 6571 // dbg_declare (FUNC_CODE_DEBUG_RECORD_DECLARE) 6572 // ..., LocationMetadata 6573 // dbg_assign (FUNC_CODE_DEBUG_RECORD_ASSIGN) 6574 // ..., LocationMetadata, DIAssignID, DIExpression, LocationMetadata 6575 unsigned Slot = 0; 6576 // Common fields (0-2). 6577 DILocation *DIL = cast<DILocation>(getFnMetadataByID(Record[Slot++])); 6578 DILocalVariable *Var = 6579 cast<DILocalVariable>(getFnMetadataByID(Record[Slot++])); 6580 DIExpression *Expr = 6581 cast<DIExpression>(getFnMetadataByID(Record[Slot++])); 6582 6583 // Union field (3: LocationMetadata | Value). 6584 Metadata *RawLocation = nullptr; 6585 if (BitCode == bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE) { 6586 Value *V = nullptr; 6587 unsigned TyID = 0; 6588 // We never expect to see a fwd reference value here because 6589 // use-before-defs are encoded with the standard non-abbrev record 6590 // type (they'd require encoding the type too, and they're rare). As a 6591 // result, getValueTypePair only ever increments Slot by one here (once 6592 // for the value, never twice for value and type). 6593 unsigned SlotBefore = Slot; 6594 if (getValueTypePair(Record, Slot, NextValueNo, V, TyID, CurBB)) 6595 return error("Invalid dbg record: invalid value"); 6596 (void)SlotBefore; 6597 assert((SlotBefore == Slot - 1) && "unexpected fwd ref"); 6598 RawLocation = ValueAsMetadata::get(V); 6599 } else { 6600 RawLocation = getFnMetadataByID(Record[Slot++]); 6601 } 6602 6603 DbgVariableRecord *DVR = nullptr; 6604 switch (BitCode) { 6605 case bitc::FUNC_CODE_DEBUG_RECORD_VALUE: 6606 case bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE: 6607 DVR = new DbgVariableRecord(RawLocation, Var, Expr, DIL, 6608 DbgVariableRecord::LocationType::Value); 6609 break; 6610 case bitc::FUNC_CODE_DEBUG_RECORD_DECLARE: 6611 DVR = new DbgVariableRecord(RawLocation, Var, Expr, DIL, 6612 DbgVariableRecord::LocationType::Declare); 6613 break; 6614 case bitc::FUNC_CODE_DEBUG_RECORD_ASSIGN: { 6615 DIAssignID *ID = cast<DIAssignID>(getFnMetadataByID(Record[Slot++])); 6616 DIExpression *AddrExpr = 6617 cast<DIExpression>(getFnMetadataByID(Record[Slot++])); 6618 Metadata *Addr = getFnMetadataByID(Record[Slot++]); 6619 DVR = new DbgVariableRecord(RawLocation, Var, Expr, ID, Addr, AddrExpr, 6620 DIL); 6621 break; 6622 } 6623 default: 6624 llvm_unreachable("Unknown DbgVariableRecord bitcode"); 6625 } 6626 Inst->getParent()->insertDbgRecordBefore(DVR, Inst->getIterator()); 6627 continue; // This isn't an instruction. 6628 } 6629 case bitc::FUNC_CODE_INST_CALL: { 6630 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 6631 if (Record.size() < 3) 6632 return error("Invalid record"); 6633 6634 unsigned OpNum = 0; 6635 AttributeList PAL = getAttributes(Record[OpNum++]); 6636 unsigned CCInfo = Record[OpNum++]; 6637 6638 FastMathFlags FMF; 6639 if ((CCInfo >> bitc::CALL_FMF) & 1) { 6640 FMF = getDecodedFastMathFlags(Record[OpNum++]); 6641 if (!FMF.any()) 6642 return error("Fast math flags indicator set for call with no FMF"); 6643 } 6644 6645 unsigned FTyID = InvalidTypeID; 6646 FunctionType *FTy = nullptr; 6647 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 6648 FTyID = Record[OpNum++]; 6649 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 6650 if (!FTy) 6651 return error("Explicit call type is not a function type"); 6652 } 6653 6654 Value *Callee; 6655 unsigned CalleeTypeID; 6656 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID, 6657 CurBB)) 6658 return error("Invalid record"); 6659 6660 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 6661 if (!OpTy) 6662 return error("Callee is not a pointer type"); 6663 if (!FTy) { 6664 FTyID = getContainedTypeID(CalleeTypeID); 6665 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 6666 if (!FTy) 6667 return error("Callee is not of pointer to function type"); 6668 } 6669 if (Record.size() < FTy->getNumParams() + OpNum) 6670 return error("Insufficient operands to call"); 6671 6672 SmallVector<Value*, 16> Args; 6673 SmallVector<unsigned, 16> ArgTyIDs; 6674 // Read the fixed params. 6675 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 6676 unsigned ArgTyID = getContainedTypeID(FTyID, i + 1); 6677 if (FTy->getParamType(i)->isLabelTy()) 6678 Args.push_back(getBasicBlock(Record[OpNum])); 6679 else 6680 Args.push_back(getValue(Record, OpNum, NextValueNo, 6681 FTy->getParamType(i), ArgTyID, CurBB)); 6682 ArgTyIDs.push_back(ArgTyID); 6683 if (!Args.back()) 6684 return error("Invalid record"); 6685 } 6686 6687 // Read type/value pairs for varargs params. 6688 if (!FTy->isVarArg()) { 6689 if (OpNum != Record.size()) 6690 return error("Invalid record"); 6691 } else { 6692 while (OpNum != Record.size()) { 6693 Value *Op; 6694 unsigned OpTypeID; 6695 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 6696 return error("Invalid record"); 6697 Args.push_back(Op); 6698 ArgTyIDs.push_back(OpTypeID); 6699 } 6700 } 6701 6702 // Upgrade the bundles if needed. 6703 if (!OperandBundles.empty()) 6704 UpgradeOperandBundles(OperandBundles); 6705 6706 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 6707 ResTypeID = getContainedTypeID(FTyID); 6708 OperandBundles.clear(); 6709 InstructionList.push_back(I); 6710 cast<CallInst>(I)->setCallingConv( 6711 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 6712 CallInst::TailCallKind TCK = CallInst::TCK_None; 6713 if (CCInfo & (1 << bitc::CALL_TAIL)) 6714 TCK = CallInst::TCK_Tail; 6715 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 6716 TCK = CallInst::TCK_MustTail; 6717 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 6718 TCK = CallInst::TCK_NoTail; 6719 cast<CallInst>(I)->setTailCallKind(TCK); 6720 cast<CallInst>(I)->setAttributes(PAL); 6721 if (isa<DbgInfoIntrinsic>(I)) 6722 SeenDebugIntrinsic = true; 6723 if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) { 6724 I->deleteValue(); 6725 return Err; 6726 } 6727 if (FMF.any()) { 6728 if (!isa<FPMathOperator>(I)) 6729 return error("Fast-math-flags specified for call without " 6730 "floating-point scalar or vector return type"); 6731 I->setFastMathFlags(FMF); 6732 } 6733 break; 6734 } 6735 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 6736 if (Record.size() < 3) 6737 return error("Invalid record"); 6738 unsigned OpTyID = Record[0]; 6739 Type *OpTy = getTypeByID(OpTyID); 6740 Value *Op = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB); 6741 ResTypeID = Record[2]; 6742 Type *ResTy = getTypeByID(ResTypeID); 6743 if (!OpTy || !Op || !ResTy) 6744 return error("Invalid record"); 6745 I = new VAArgInst(Op, ResTy); 6746 InstructionList.push_back(I); 6747 break; 6748 } 6749 6750 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 6751 // A call or an invoke can be optionally prefixed with some variable 6752 // number of operand bundle blocks. These blocks are read into 6753 // OperandBundles and consumed at the next call or invoke instruction. 6754 6755 if (Record.empty() || Record[0] >= BundleTags.size()) 6756 return error("Invalid record"); 6757 6758 std::vector<Value *> Inputs; 6759 6760 unsigned OpNum = 1; 6761 while (OpNum != Record.size()) { 6762 Value *Op; 6763 unsigned OpTypeID; 6764 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 6765 return error("Invalid record"); 6766 Inputs.push_back(Op); 6767 } 6768 6769 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 6770 continue; 6771 } 6772 6773 case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval] 6774 unsigned OpNum = 0; 6775 Value *Op = nullptr; 6776 unsigned OpTypeID; 6777 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 6778 return error("Invalid record"); 6779 if (OpNum != Record.size()) 6780 return error("Invalid record"); 6781 6782 I = new FreezeInst(Op); 6783 ResTypeID = OpTypeID; 6784 InstructionList.push_back(I); 6785 break; 6786 } 6787 } 6788 6789 // Add instruction to end of current BB. If there is no current BB, reject 6790 // this file. 6791 if (!CurBB) { 6792 I->deleteValue(); 6793 return error("Invalid instruction with no BB"); 6794 } 6795 if (!OperandBundles.empty()) { 6796 I->deleteValue(); 6797 return error("Operand bundles found with no consumer"); 6798 } 6799 I->insertInto(CurBB, CurBB->end()); 6800 6801 // If this was a terminator instruction, move to the next block. 6802 if (I->isTerminator()) { 6803 ++CurBBNo; 6804 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 6805 } 6806 6807 // Non-void values get registered in the value table for future use. 6808 if (!I->getType()->isVoidTy()) { 6809 assert(I->getType() == getTypeByID(ResTypeID) && 6810 "Incorrect result type ID"); 6811 if (Error Err = ValueList.assignValue(NextValueNo++, I, ResTypeID)) 6812 return Err; 6813 } 6814 } 6815 6816 OutOfRecordLoop: 6817 6818 if (!OperandBundles.empty()) 6819 return error("Operand bundles found with no consumer"); 6820 6821 // Check the function list for unresolved values. 6822 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 6823 if (!A->getParent()) { 6824 // We found at least one unresolved value. Nuke them all to avoid leaks. 6825 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 6826 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 6827 A->replaceAllUsesWith(PoisonValue::get(A->getType())); 6828 delete A; 6829 } 6830 } 6831 return error("Never resolved value found in function"); 6832 } 6833 } 6834 6835 // Unexpected unresolved metadata about to be dropped. 6836 if (MDLoader->hasFwdRefs()) 6837 return error("Invalid function metadata: outgoing forward refs"); 6838 6839 if (PhiConstExprBB) 6840 PhiConstExprBB->eraseFromParent(); 6841 6842 for (const auto &Pair : ConstExprEdgeBBs) { 6843 BasicBlock *From = Pair.first.first; 6844 BasicBlock *To = Pair.first.second; 6845 BasicBlock *EdgeBB = Pair.second; 6846 BranchInst::Create(To, EdgeBB); 6847 From->getTerminator()->replaceSuccessorWith(To, EdgeBB); 6848 To->replacePhiUsesWith(From, EdgeBB); 6849 EdgeBB->moveBefore(To); 6850 } 6851 6852 // Trim the value list down to the size it was before we parsed this function. 6853 ValueList.shrinkTo(ModuleValueListSize); 6854 MDLoader->shrinkTo(ModuleMDLoaderSize); 6855 std::vector<BasicBlock*>().swap(FunctionBBs); 6856 return Error::success(); 6857 } 6858 6859 /// Find the function body in the bitcode stream 6860 Error BitcodeReader::findFunctionInStream( 6861 Function *F, 6862 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 6863 while (DeferredFunctionInfoIterator->second == 0) { 6864 // This is the fallback handling for the old format bitcode that 6865 // didn't contain the function index in the VST, or when we have 6866 // an anonymous function which would not have a VST entry. 6867 // Assert that we have one of those two cases. 6868 assert(VSTOffset == 0 || !F->hasName()); 6869 // Parse the next body in the stream and set its position in the 6870 // DeferredFunctionInfo map. 6871 if (Error Err = rememberAndSkipFunctionBodies()) 6872 return Err; 6873 } 6874 return Error::success(); 6875 } 6876 6877 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) { 6878 if (Val == SyncScope::SingleThread || Val == SyncScope::System) 6879 return SyncScope::ID(Val); 6880 if (Val >= SSIDs.size()) 6881 return SyncScope::System; // Map unknown synchronization scopes to system. 6882 return SSIDs[Val]; 6883 } 6884 6885 //===----------------------------------------------------------------------===// 6886 // GVMaterializer implementation 6887 //===----------------------------------------------------------------------===// 6888 6889 Error BitcodeReader::materialize(GlobalValue *GV) { 6890 Function *F = dyn_cast<Function>(GV); 6891 // If it's not a function or is already material, ignore the request. 6892 if (!F || !F->isMaterializable()) 6893 return Error::success(); 6894 6895 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 6896 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 6897 // If its position is recorded as 0, its body is somewhere in the stream 6898 // but we haven't seen it yet. 6899 if (DFII->second == 0) 6900 if (Error Err = findFunctionInStream(F, DFII)) 6901 return Err; 6902 6903 // Materialize metadata before parsing any function bodies. 6904 if (Error Err = materializeMetadata()) 6905 return Err; 6906 6907 // Move the bit stream to the saved position of the deferred function body. 6908 if (Error JumpFailed = Stream.JumpToBit(DFII->second)) 6909 return JumpFailed; 6910 6911 // Regardless of the debug info format we want to end up in, we need 6912 // IsNewDbgInfoFormat=true to construct any debug records seen in the bitcode. 6913 F->IsNewDbgInfoFormat = true; 6914 6915 if (Error Err = parseFunctionBody(F)) 6916 return Err; 6917 F->setIsMaterializable(false); 6918 6919 // All parsed Functions should load into the debug info format dictated by the 6920 // Module, unless we're attempting to preserve the input debug info format. 6921 if (SeenDebugIntrinsic && SeenDebugRecord) 6922 return error("Mixed debug intrinsics and debug records in bitcode module!"); 6923 if (PreserveInputDbgFormat == cl::boolOrDefault::BOU_TRUE) { 6924 bool SeenAnyDebugInfo = SeenDebugIntrinsic || SeenDebugRecord; 6925 bool NewDbgInfoFormatDesired = 6926 SeenAnyDebugInfo ? SeenDebugRecord : F->getParent()->IsNewDbgInfoFormat; 6927 if (SeenAnyDebugInfo) { 6928 UseNewDbgInfoFormat = SeenDebugRecord; 6929 WriteNewDbgInfoFormatToBitcode = SeenDebugRecord; 6930 WriteNewDbgInfoFormat = SeenDebugRecord; 6931 } 6932 // If the module's debug info format doesn't match the observed input 6933 // format, then set its format now; we don't need to call the conversion 6934 // function because there must be no existing intrinsics to convert. 6935 // Otherwise, just set the format on this function now. 6936 if (NewDbgInfoFormatDesired != F->getParent()->IsNewDbgInfoFormat) 6937 F->getParent()->setNewDbgInfoFormatFlag(NewDbgInfoFormatDesired); 6938 else 6939 F->setNewDbgInfoFormatFlag(NewDbgInfoFormatDesired); 6940 } else { 6941 // If we aren't preserving formats, we use the Module flag to get our 6942 // desired format instead of reading flags, in case we are lazy-loading and 6943 // the format of the module has been changed since it was set by the flags. 6944 // We only need to convert debug info here if we have debug records but 6945 // desire the intrinsic format; everything else is a no-op or handled by the 6946 // autoupgrader. 6947 bool ModuleIsNewDbgInfoFormat = F->getParent()->IsNewDbgInfoFormat; 6948 if (ModuleIsNewDbgInfoFormat || !SeenDebugRecord) 6949 F->setNewDbgInfoFormatFlag(ModuleIsNewDbgInfoFormat); 6950 else 6951 F->setIsNewDbgInfoFormat(ModuleIsNewDbgInfoFormat); 6952 } 6953 6954 if (StripDebugInfo) 6955 stripDebugInfo(*F); 6956 6957 // Upgrade any old intrinsic calls in the function. 6958 for (auto &I : UpgradedIntrinsics) { 6959 for (User *U : llvm::make_early_inc_range(I.first->materialized_users())) 6960 if (CallInst *CI = dyn_cast<CallInst>(U)) 6961 UpgradeIntrinsicCall(CI, I.second); 6962 } 6963 6964 // Finish fn->subprogram upgrade for materialized functions. 6965 if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F)) 6966 F->setSubprogram(SP); 6967 6968 // Check if the TBAA Metadata are valid, otherwise we will need to strip them. 6969 if (!MDLoader->isStrippingTBAA()) { 6970 for (auto &I : instructions(F)) { 6971 MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa); 6972 if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA)) 6973 continue; 6974 MDLoader->setStripTBAA(true); 6975 stripTBAA(F->getParent()); 6976 } 6977 } 6978 6979 for (auto &I : instructions(F)) { 6980 // "Upgrade" older incorrect branch weights by dropping them. 6981 if (auto *MD = I.getMetadata(LLVMContext::MD_prof)) { 6982 if (MD->getOperand(0) != nullptr && isa<MDString>(MD->getOperand(0))) { 6983 MDString *MDS = cast<MDString>(MD->getOperand(0)); 6984 StringRef ProfName = MDS->getString(); 6985 // Check consistency of !prof branch_weights metadata. 6986 if (ProfName != "branch_weights") 6987 continue; 6988 unsigned ExpectedNumOperands = 0; 6989 if (BranchInst *BI = dyn_cast<BranchInst>(&I)) 6990 ExpectedNumOperands = BI->getNumSuccessors(); 6991 else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I)) 6992 ExpectedNumOperands = SI->getNumSuccessors(); 6993 else if (isa<CallInst>(&I)) 6994 ExpectedNumOperands = 1; 6995 else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I)) 6996 ExpectedNumOperands = IBI->getNumDestinations(); 6997 else if (isa<SelectInst>(&I)) 6998 ExpectedNumOperands = 2; 6999 else 7000 continue; // ignore and continue. 7001 7002 unsigned Offset = getBranchWeightOffset(MD); 7003 7004 // If branch weight doesn't match, just strip branch weight. 7005 if (MD->getNumOperands() != Offset + ExpectedNumOperands) 7006 I.setMetadata(LLVMContext::MD_prof, nullptr); 7007 } 7008 } 7009 7010 // Remove incompatible attributes on function calls. 7011 if (auto *CI = dyn_cast<CallBase>(&I)) { 7012 CI->removeRetAttrs(AttributeFuncs::typeIncompatible( 7013 CI->getFunctionType()->getReturnType())); 7014 7015 for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ++ArgNo) 7016 CI->removeParamAttrs(ArgNo, AttributeFuncs::typeIncompatible( 7017 CI->getArgOperand(ArgNo)->getType())); 7018 } 7019 } 7020 7021 // Look for functions that rely on old function attribute behavior. 7022 UpgradeFunctionAttributes(*F); 7023 7024 // Bring in any functions that this function forward-referenced via 7025 // blockaddresses. 7026 return materializeForwardReferencedFunctions(); 7027 } 7028 7029 Error BitcodeReader::materializeModule() { 7030 if (Error Err = materializeMetadata()) 7031 return Err; 7032 7033 // Promise to materialize all forward references. 7034 WillMaterializeAllForwardRefs = true; 7035 7036 // Iterate over the module, deserializing any functions that are still on 7037 // disk. 7038 for (Function &F : *TheModule) { 7039 if (Error Err = materialize(&F)) 7040 return Err; 7041 } 7042 // At this point, if there are any function bodies, parse the rest of 7043 // the bits in the module past the last function block we have recorded 7044 // through either lazy scanning or the VST. 7045 if (LastFunctionBlockBit || NextUnreadBit) 7046 if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit 7047 ? LastFunctionBlockBit 7048 : NextUnreadBit)) 7049 return Err; 7050 7051 // Check that all block address forward references got resolved (as we 7052 // promised above). 7053 if (!BasicBlockFwdRefs.empty()) 7054 return error("Never resolved function from blockaddress"); 7055 7056 // Upgrade any intrinsic calls that slipped through (should not happen!) and 7057 // delete the old functions to clean up. We can't do this unless the entire 7058 // module is materialized because there could always be another function body 7059 // with calls to the old function. 7060 for (auto &I : UpgradedIntrinsics) { 7061 for (auto *U : I.first->users()) { 7062 if (CallInst *CI = dyn_cast<CallInst>(U)) 7063 UpgradeIntrinsicCall(CI, I.second); 7064 } 7065 if (!I.first->use_empty()) 7066 I.first->replaceAllUsesWith(I.second); 7067 I.first->eraseFromParent(); 7068 } 7069 UpgradedIntrinsics.clear(); 7070 7071 UpgradeDebugInfo(*TheModule); 7072 7073 UpgradeModuleFlags(*TheModule); 7074 7075 UpgradeARCRuntime(*TheModule); 7076 7077 return Error::success(); 7078 } 7079 7080 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 7081 return IdentifiedStructTypes; 7082 } 7083 7084 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 7085 BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex, 7086 StringRef ModulePath, std::function<bool(GlobalValue::GUID)> IsPrevailing) 7087 : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex), 7088 ModulePath(ModulePath), IsPrevailing(IsPrevailing) {} 7089 7090 void ModuleSummaryIndexBitcodeReader::addThisModule() { 7091 TheIndex.addModule(ModulePath); 7092 } 7093 7094 ModuleSummaryIndex::ModuleInfo * 7095 ModuleSummaryIndexBitcodeReader::getThisModule() { 7096 return TheIndex.getModule(ModulePath); 7097 } 7098 7099 template <bool AllowNullValueInfo> 7100 std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID> 7101 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) { 7102 auto VGI = ValueIdToValueInfoMap[ValueId]; 7103 // We can have a null value info for memprof callsite info records in 7104 // distributed ThinLTO index files when the callee function summary is not 7105 // included in the index. The bitcode writer records 0 in that case, 7106 // and the caller of this helper will set AllowNullValueInfo to true. 7107 assert(AllowNullValueInfo || std::get<0>(VGI)); 7108 return VGI; 7109 } 7110 7111 void ModuleSummaryIndexBitcodeReader::setValueGUID( 7112 uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage, 7113 StringRef SourceFileName) { 7114 std::string GlobalId = 7115 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 7116 auto ValueGUID = GlobalValue::getGUID(GlobalId); 7117 auto OriginalNameID = ValueGUID; 7118 if (GlobalValue::isLocalLinkage(Linkage)) 7119 OriginalNameID = GlobalValue::getGUID(ValueName); 7120 if (PrintSummaryGUIDs) 7121 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 7122 << ValueName << "\n"; 7123 7124 // UseStrtab is false for legacy summary formats and value names are 7125 // created on stack. In that case we save the name in a string saver in 7126 // the index so that the value name can be recorded. 7127 ValueIdToValueInfoMap[ValueID] = std::make_tuple( 7128 TheIndex.getOrInsertValueInfo( 7129 ValueGUID, UseStrtab ? ValueName : TheIndex.saveString(ValueName)), 7130 OriginalNameID, ValueGUID); 7131 } 7132 7133 // Specialized value symbol table parser used when reading module index 7134 // blocks where we don't actually create global values. The parsed information 7135 // is saved in the bitcode reader for use when later parsing summaries. 7136 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 7137 uint64_t Offset, 7138 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 7139 // With a strtab the VST is not required to parse the summary. 7140 if (UseStrtab) 7141 return Error::success(); 7142 7143 assert(Offset > 0 && "Expected non-zero VST offset"); 7144 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 7145 if (!MaybeCurrentBit) 7146 return MaybeCurrentBit.takeError(); 7147 uint64_t CurrentBit = MaybeCurrentBit.get(); 7148 7149 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 7150 return Err; 7151 7152 SmallVector<uint64_t, 64> Record; 7153 7154 // Read all the records for this value table. 7155 SmallString<128> ValueName; 7156 7157 while (true) { 7158 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 7159 if (!MaybeEntry) 7160 return MaybeEntry.takeError(); 7161 BitstreamEntry Entry = MaybeEntry.get(); 7162 7163 switch (Entry.Kind) { 7164 case BitstreamEntry::SubBlock: // Handled for us already. 7165 case BitstreamEntry::Error: 7166 return error("Malformed block"); 7167 case BitstreamEntry::EndBlock: 7168 // Done parsing VST, jump back to wherever we came from. 7169 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 7170 return JumpFailed; 7171 return Error::success(); 7172 case BitstreamEntry::Record: 7173 // The interesting case. 7174 break; 7175 } 7176 7177 // Read a record. 7178 Record.clear(); 7179 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 7180 if (!MaybeRecord) 7181 return MaybeRecord.takeError(); 7182 switch (MaybeRecord.get()) { 7183 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 7184 break; 7185 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 7186 if (convertToString(Record, 1, ValueName)) 7187 return error("Invalid record"); 7188 unsigned ValueID = Record[0]; 7189 assert(!SourceFileName.empty()); 7190 auto VLI = ValueIdToLinkageMap.find(ValueID); 7191 assert(VLI != ValueIdToLinkageMap.end() && 7192 "No linkage found for VST entry?"); 7193 auto Linkage = VLI->second; 7194 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 7195 ValueName.clear(); 7196 break; 7197 } 7198 case bitc::VST_CODE_FNENTRY: { 7199 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 7200 if (convertToString(Record, 2, ValueName)) 7201 return error("Invalid record"); 7202 unsigned ValueID = Record[0]; 7203 assert(!SourceFileName.empty()); 7204 auto VLI = ValueIdToLinkageMap.find(ValueID); 7205 assert(VLI != ValueIdToLinkageMap.end() && 7206 "No linkage found for VST entry?"); 7207 auto Linkage = VLI->second; 7208 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 7209 ValueName.clear(); 7210 break; 7211 } 7212 case bitc::VST_CODE_COMBINED_ENTRY: { 7213 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 7214 unsigned ValueID = Record[0]; 7215 GlobalValue::GUID RefGUID = Record[1]; 7216 // The "original name", which is the second value of the pair will be 7217 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 7218 ValueIdToValueInfoMap[ValueID] = std::make_tuple( 7219 TheIndex.getOrInsertValueInfo(RefGUID), RefGUID, RefGUID); 7220 break; 7221 } 7222 } 7223 } 7224 } 7225 7226 // Parse just the blocks needed for building the index out of the module. 7227 // At the end of this routine the module Index is populated with a map 7228 // from global value id to GlobalValueSummary objects. 7229 Error ModuleSummaryIndexBitcodeReader::parseModule() { 7230 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 7231 return Err; 7232 7233 SmallVector<uint64_t, 64> Record; 7234 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 7235 unsigned ValueId = 0; 7236 7237 // Read the index for this module. 7238 while (true) { 7239 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 7240 if (!MaybeEntry) 7241 return MaybeEntry.takeError(); 7242 llvm::BitstreamEntry Entry = MaybeEntry.get(); 7243 7244 switch (Entry.Kind) { 7245 case BitstreamEntry::Error: 7246 return error("Malformed block"); 7247 case BitstreamEntry::EndBlock: 7248 return Error::success(); 7249 7250 case BitstreamEntry::SubBlock: 7251 switch (Entry.ID) { 7252 default: // Skip unknown content. 7253 if (Error Err = Stream.SkipBlock()) 7254 return Err; 7255 break; 7256 case bitc::BLOCKINFO_BLOCK_ID: 7257 // Need to parse these to get abbrev ids (e.g. for VST) 7258 if (Error Err = readBlockInfo()) 7259 return Err; 7260 break; 7261 case bitc::VALUE_SYMTAB_BLOCK_ID: 7262 // Should have been parsed earlier via VSTOffset, unless there 7263 // is no summary section. 7264 assert(((SeenValueSymbolTable && VSTOffset > 0) || 7265 !SeenGlobalValSummary) && 7266 "Expected early VST parse via VSTOffset record"); 7267 if (Error Err = Stream.SkipBlock()) 7268 return Err; 7269 break; 7270 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 7271 case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID: 7272 // Add the module if it is a per-module index (has a source file name). 7273 if (!SourceFileName.empty()) 7274 addThisModule(); 7275 assert(!SeenValueSymbolTable && 7276 "Already read VST when parsing summary block?"); 7277 // We might not have a VST if there were no values in the 7278 // summary. An empty summary block generated when we are 7279 // performing ThinLTO compiles so we don't later invoke 7280 // the regular LTO process on them. 7281 if (VSTOffset > 0) { 7282 if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 7283 return Err; 7284 SeenValueSymbolTable = true; 7285 } 7286 SeenGlobalValSummary = true; 7287 if (Error Err = parseEntireSummary(Entry.ID)) 7288 return Err; 7289 break; 7290 case bitc::MODULE_STRTAB_BLOCK_ID: 7291 if (Error Err = parseModuleStringTable()) 7292 return Err; 7293 break; 7294 } 7295 continue; 7296 7297 case BitstreamEntry::Record: { 7298 Record.clear(); 7299 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 7300 if (!MaybeBitCode) 7301 return MaybeBitCode.takeError(); 7302 switch (MaybeBitCode.get()) { 7303 default: 7304 break; // Default behavior, ignore unknown content. 7305 case bitc::MODULE_CODE_VERSION: { 7306 if (Error Err = parseVersionRecord(Record).takeError()) 7307 return Err; 7308 break; 7309 } 7310 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 7311 case bitc::MODULE_CODE_SOURCE_FILENAME: { 7312 SmallString<128> ValueName; 7313 if (convertToString(Record, 0, ValueName)) 7314 return error("Invalid record"); 7315 SourceFileName = ValueName.c_str(); 7316 break; 7317 } 7318 /// MODULE_CODE_HASH: [5*i32] 7319 case bitc::MODULE_CODE_HASH: { 7320 if (Record.size() != 5) 7321 return error("Invalid hash length " + Twine(Record.size()).str()); 7322 auto &Hash = getThisModule()->second; 7323 int Pos = 0; 7324 for (auto &Val : Record) { 7325 assert(!(Val >> 32) && "Unexpected high bits set"); 7326 Hash[Pos++] = Val; 7327 } 7328 break; 7329 } 7330 /// MODULE_CODE_VSTOFFSET: [offset] 7331 case bitc::MODULE_CODE_VSTOFFSET: 7332 if (Record.empty()) 7333 return error("Invalid record"); 7334 // Note that we subtract 1 here because the offset is relative to one 7335 // word before the start of the identification or module block, which 7336 // was historically always the start of the regular bitcode header. 7337 VSTOffset = Record[0] - 1; 7338 break; 7339 // v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...] 7340 // v1 FUNCTION: [type, callingconv, isproto, linkage, ...] 7341 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...] 7342 // v2: [strtab offset, strtab size, v1] 7343 case bitc::MODULE_CODE_GLOBALVAR: 7344 case bitc::MODULE_CODE_FUNCTION: 7345 case bitc::MODULE_CODE_ALIAS: { 7346 StringRef Name; 7347 ArrayRef<uint64_t> GVRecord; 7348 std::tie(Name, GVRecord) = readNameFromStrtab(Record); 7349 if (GVRecord.size() <= 3) 7350 return error("Invalid record"); 7351 uint64_t RawLinkage = GVRecord[3]; 7352 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 7353 if (!UseStrtab) { 7354 ValueIdToLinkageMap[ValueId++] = Linkage; 7355 break; 7356 } 7357 7358 setValueGUID(ValueId++, Name, Linkage, SourceFileName); 7359 break; 7360 } 7361 } 7362 } 7363 continue; 7364 } 7365 } 7366 } 7367 7368 std::vector<ValueInfo> 7369 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) { 7370 std::vector<ValueInfo> Ret; 7371 Ret.reserve(Record.size()); 7372 for (uint64_t RefValueId : Record) 7373 Ret.push_back(std::get<0>(getValueInfoFromValueId(RefValueId))); 7374 return Ret; 7375 } 7376 7377 std::vector<FunctionSummary::EdgeTy> 7378 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record, 7379 bool IsOldProfileFormat, 7380 bool HasProfile, bool HasRelBF) { 7381 std::vector<FunctionSummary::EdgeTy> Ret; 7382 // In the case of new profile formats, there are two Record entries per 7383 // Edge. Otherwise, conservatively reserve up to Record.size. 7384 if (!IsOldProfileFormat && (HasProfile || HasRelBF)) 7385 Ret.reserve(Record.size() / 2); 7386 else 7387 Ret.reserve(Record.size()); 7388 7389 for (unsigned I = 0, E = Record.size(); I != E; ++I) { 7390 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 7391 bool HasTailCall = false; 7392 uint64_t RelBF = 0; 7393 ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[I])); 7394 if (IsOldProfileFormat) { 7395 I += 1; // Skip old callsitecount field 7396 if (HasProfile) 7397 I += 1; // Skip old profilecount field 7398 } else if (HasProfile) 7399 std::tie(Hotness, HasTailCall) = 7400 getDecodedHotnessCallEdgeInfo(Record[++I]); 7401 else if (HasRelBF) 7402 getDecodedRelBFCallEdgeInfo(Record[++I], RelBF, HasTailCall); 7403 Ret.push_back(FunctionSummary::EdgeTy{ 7404 Callee, CalleeInfo(Hotness, HasTailCall, RelBF)}); 7405 } 7406 return Ret; 7407 } 7408 7409 static void 7410 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot, 7411 WholeProgramDevirtResolution &Wpd) { 7412 uint64_t ArgNum = Record[Slot++]; 7413 WholeProgramDevirtResolution::ByArg &B = 7414 Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}]; 7415 Slot += ArgNum; 7416 7417 B.TheKind = 7418 static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]); 7419 B.Info = Record[Slot++]; 7420 B.Byte = Record[Slot++]; 7421 B.Bit = Record[Slot++]; 7422 } 7423 7424 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record, 7425 StringRef Strtab, size_t &Slot, 7426 TypeIdSummary &TypeId) { 7427 uint64_t Id = Record[Slot++]; 7428 WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id]; 7429 7430 Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]); 7431 Wpd.SingleImplName = {Strtab.data() + Record[Slot], 7432 static_cast<size_t>(Record[Slot + 1])}; 7433 Slot += 2; 7434 7435 uint64_t ResByArgNum = Record[Slot++]; 7436 for (uint64_t I = 0; I != ResByArgNum; ++I) 7437 parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd); 7438 } 7439 7440 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record, 7441 StringRef Strtab, 7442 ModuleSummaryIndex &TheIndex) { 7443 size_t Slot = 0; 7444 TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary( 7445 {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])}); 7446 Slot += 2; 7447 7448 TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]); 7449 TypeId.TTRes.SizeM1BitWidth = Record[Slot++]; 7450 TypeId.TTRes.AlignLog2 = Record[Slot++]; 7451 TypeId.TTRes.SizeM1 = Record[Slot++]; 7452 TypeId.TTRes.BitMask = Record[Slot++]; 7453 TypeId.TTRes.InlineBits = Record[Slot++]; 7454 7455 while (Slot < Record.size()) 7456 parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId); 7457 } 7458 7459 std::vector<FunctionSummary::ParamAccess> 7460 ModuleSummaryIndexBitcodeReader::parseParamAccesses(ArrayRef<uint64_t> Record) { 7461 auto ReadRange = [&]() { 7462 APInt Lower(FunctionSummary::ParamAccess::RangeWidth, 7463 BitcodeReader::decodeSignRotatedValue(Record.front())); 7464 Record = Record.drop_front(); 7465 APInt Upper(FunctionSummary::ParamAccess::RangeWidth, 7466 BitcodeReader::decodeSignRotatedValue(Record.front())); 7467 Record = Record.drop_front(); 7468 ConstantRange Range{Lower, Upper}; 7469 assert(!Range.isFullSet()); 7470 assert(!Range.isUpperSignWrapped()); 7471 return Range; 7472 }; 7473 7474 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; 7475 while (!Record.empty()) { 7476 PendingParamAccesses.emplace_back(); 7477 FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back(); 7478 ParamAccess.ParamNo = Record.front(); 7479 Record = Record.drop_front(); 7480 ParamAccess.Use = ReadRange(); 7481 ParamAccess.Calls.resize(Record.front()); 7482 Record = Record.drop_front(); 7483 for (auto &Call : ParamAccess.Calls) { 7484 Call.ParamNo = Record.front(); 7485 Record = Record.drop_front(); 7486 Call.Callee = std::get<0>(getValueInfoFromValueId(Record.front())); 7487 Record = Record.drop_front(); 7488 Call.Offsets = ReadRange(); 7489 } 7490 } 7491 return PendingParamAccesses; 7492 } 7493 7494 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo( 7495 ArrayRef<uint64_t> Record, size_t &Slot, 7496 TypeIdCompatibleVtableInfo &TypeId) { 7497 uint64_t Offset = Record[Slot++]; 7498 ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[Slot++])); 7499 TypeId.push_back({Offset, Callee}); 7500 } 7501 7502 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord( 7503 ArrayRef<uint64_t> Record) { 7504 size_t Slot = 0; 7505 TypeIdCompatibleVtableInfo &TypeId = 7506 TheIndex.getOrInsertTypeIdCompatibleVtableSummary( 7507 {Strtab.data() + Record[Slot], 7508 static_cast<size_t>(Record[Slot + 1])}); 7509 Slot += 2; 7510 7511 while (Slot < Record.size()) 7512 parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId); 7513 } 7514 7515 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt, 7516 unsigned WOCnt) { 7517 // Readonly and writeonly refs are in the end of the refs list. 7518 assert(ROCnt + WOCnt <= Refs.size()); 7519 unsigned FirstWORef = Refs.size() - WOCnt; 7520 unsigned RefNo = FirstWORef - ROCnt; 7521 for (; RefNo < FirstWORef; ++RefNo) 7522 Refs[RefNo].setReadOnly(); 7523 for (; RefNo < Refs.size(); ++RefNo) 7524 Refs[RefNo].setWriteOnly(); 7525 } 7526 7527 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 7528 // objects in the index. 7529 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) { 7530 if (Error Err = Stream.EnterSubBlock(ID)) 7531 return Err; 7532 SmallVector<uint64_t, 64> Record; 7533 7534 // Parse version 7535 { 7536 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 7537 if (!MaybeEntry) 7538 return MaybeEntry.takeError(); 7539 BitstreamEntry Entry = MaybeEntry.get(); 7540 7541 if (Entry.Kind != BitstreamEntry::Record) 7542 return error("Invalid Summary Block: record for version expected"); 7543 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 7544 if (!MaybeRecord) 7545 return MaybeRecord.takeError(); 7546 if (MaybeRecord.get() != bitc::FS_VERSION) 7547 return error("Invalid Summary Block: version expected"); 7548 } 7549 const uint64_t Version = Record[0]; 7550 const bool IsOldProfileFormat = Version == 1; 7551 if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion) 7552 return error("Invalid summary version " + Twine(Version) + 7553 ". Version should be in the range [1-" + 7554 Twine(ModuleSummaryIndex::BitcodeSummaryVersion) + 7555 "]."); 7556 Record.clear(); 7557 7558 // Keep around the last seen summary to be used when we see an optional 7559 // "OriginalName" attachement. 7560 GlobalValueSummary *LastSeenSummary = nullptr; 7561 GlobalValue::GUID LastSeenGUID = 0; 7562 7563 // We can expect to see any number of type ID information records before 7564 // each function summary records; these variables store the information 7565 // collected so far so that it can be used to create the summary object. 7566 std::vector<GlobalValue::GUID> PendingTypeTests; 7567 std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls, 7568 PendingTypeCheckedLoadVCalls; 7569 std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls, 7570 PendingTypeCheckedLoadConstVCalls; 7571 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; 7572 7573 std::vector<CallsiteInfo> PendingCallsites; 7574 std::vector<AllocInfo> PendingAllocs; 7575 7576 while (true) { 7577 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 7578 if (!MaybeEntry) 7579 return MaybeEntry.takeError(); 7580 BitstreamEntry Entry = MaybeEntry.get(); 7581 7582 switch (Entry.Kind) { 7583 case BitstreamEntry::SubBlock: // Handled for us already. 7584 case BitstreamEntry::Error: 7585 return error("Malformed block"); 7586 case BitstreamEntry::EndBlock: 7587 return Error::success(); 7588 case BitstreamEntry::Record: 7589 // The interesting case. 7590 break; 7591 } 7592 7593 // Read a record. The record format depends on whether this 7594 // is a per-module index or a combined index file. In the per-module 7595 // case the records contain the associated value's ID for correlation 7596 // with VST entries. In the combined index the correlation is done 7597 // via the bitcode offset of the summary records (which were saved 7598 // in the combined index VST entries). The records also contain 7599 // information used for ThinLTO renaming and importing. 7600 Record.clear(); 7601 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 7602 if (!MaybeBitCode) 7603 return MaybeBitCode.takeError(); 7604 switch (unsigned BitCode = MaybeBitCode.get()) { 7605 default: // Default behavior: ignore. 7606 break; 7607 case bitc::FS_FLAGS: { // [flags] 7608 TheIndex.setFlags(Record[0]); 7609 break; 7610 } 7611 case bitc::FS_VALUE_GUID: { // [valueid, refguid_upper32, refguid_lower32] 7612 uint64_t ValueID = Record[0]; 7613 GlobalValue::GUID RefGUID; 7614 if (Version >= 11) { 7615 RefGUID = Record[1] << 32 | Record[2]; 7616 } else { 7617 RefGUID = Record[1]; 7618 } 7619 ValueIdToValueInfoMap[ValueID] = std::make_tuple( 7620 TheIndex.getOrInsertValueInfo(RefGUID), RefGUID, RefGUID); 7621 break; 7622 } 7623 // FS_PERMODULE is legacy and does not have support for the tail call flag. 7624 // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs, 7625 // numrefs x valueid, n x (valueid)] 7626 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs, 7627 // numrefs x valueid, 7628 // n x (valueid, hotness+tailcall flags)] 7629 // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs, 7630 // numrefs x valueid, 7631 // n x (valueid, relblockfreq+tailcall)] 7632 case bitc::FS_PERMODULE: 7633 case bitc::FS_PERMODULE_RELBF: 7634 case bitc::FS_PERMODULE_PROFILE: { 7635 unsigned ValueID = Record[0]; 7636 uint64_t RawFlags = Record[1]; 7637 unsigned InstCount = Record[2]; 7638 uint64_t RawFunFlags = 0; 7639 unsigned NumRefs = Record[3]; 7640 unsigned NumRORefs = 0, NumWORefs = 0; 7641 int RefListStartIndex = 4; 7642 if (Version >= 4) { 7643 RawFunFlags = Record[3]; 7644 NumRefs = Record[4]; 7645 RefListStartIndex = 5; 7646 if (Version >= 5) { 7647 NumRORefs = Record[5]; 7648 RefListStartIndex = 6; 7649 if (Version >= 7) { 7650 NumWORefs = Record[6]; 7651 RefListStartIndex = 7; 7652 } 7653 } 7654 } 7655 7656 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7657 // The module path string ref set in the summary must be owned by the 7658 // index's module string table. Since we don't have a module path 7659 // string table section in the per-module index, we create a single 7660 // module path string table entry with an empty (0) ID to take 7661 // ownership. 7662 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 7663 assert(Record.size() >= RefListStartIndex + NumRefs && 7664 "Record size inconsistent with number of references"); 7665 std::vector<ValueInfo> Refs = makeRefList( 7666 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 7667 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 7668 bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF); 7669 std::vector<FunctionSummary::EdgeTy> Calls = makeCallList( 7670 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 7671 IsOldProfileFormat, HasProfile, HasRelBF); 7672 setSpecialRefs(Refs, NumRORefs, NumWORefs); 7673 auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID); 7674 // In order to save memory, only record the memprof summaries if this is 7675 // the prevailing copy of a symbol. The linker doesn't resolve local 7676 // linkage values so don't check whether those are prevailing. 7677 auto LT = (GlobalValue::LinkageTypes)Flags.Linkage; 7678 if (IsPrevailing && 7679 !GlobalValue::isLocalLinkage(LT) && 7680 !IsPrevailing(std::get<2>(VIAndOriginalGUID))) { 7681 PendingCallsites.clear(); 7682 PendingAllocs.clear(); 7683 } 7684 auto FS = std::make_unique<FunctionSummary>( 7685 Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0, 7686 std::move(Refs), std::move(Calls), std::move(PendingTypeTests), 7687 std::move(PendingTypeTestAssumeVCalls), 7688 std::move(PendingTypeCheckedLoadVCalls), 7689 std::move(PendingTypeTestAssumeConstVCalls), 7690 std::move(PendingTypeCheckedLoadConstVCalls), 7691 std::move(PendingParamAccesses), std::move(PendingCallsites), 7692 std::move(PendingAllocs)); 7693 FS->setModulePath(getThisModule()->first()); 7694 FS->setOriginalName(std::get<1>(VIAndOriginalGUID)); 7695 TheIndex.addGlobalValueSummary(std::get<0>(VIAndOriginalGUID), 7696 std::move(FS)); 7697 break; 7698 } 7699 // FS_ALIAS: [valueid, flags, valueid] 7700 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 7701 // they expect all aliasee summaries to be available. 7702 case bitc::FS_ALIAS: { 7703 unsigned ValueID = Record[0]; 7704 uint64_t RawFlags = Record[1]; 7705 unsigned AliaseeID = Record[2]; 7706 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7707 auto AS = std::make_unique<AliasSummary>(Flags); 7708 // The module path string ref set in the summary must be owned by the 7709 // index's module string table. Since we don't have a module path 7710 // string table section in the per-module index, we create a single 7711 // module path string table entry with an empty (0) ID to take 7712 // ownership. 7713 AS->setModulePath(getThisModule()->first()); 7714 7715 auto AliaseeVI = std::get<0>(getValueInfoFromValueId(AliaseeID)); 7716 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath); 7717 if (!AliaseeInModule) 7718 return error("Alias expects aliasee summary to be parsed"); 7719 AS->setAliasee(AliaseeVI, AliaseeInModule); 7720 7721 auto GUID = getValueInfoFromValueId(ValueID); 7722 AS->setOriginalName(std::get<1>(GUID)); 7723 TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(AS)); 7724 break; 7725 } 7726 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid] 7727 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 7728 unsigned ValueID = Record[0]; 7729 uint64_t RawFlags = Record[1]; 7730 unsigned RefArrayStart = 2; 7731 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 7732 /* WriteOnly */ false, 7733 /* Constant */ false, 7734 GlobalObject::VCallVisibilityPublic); 7735 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7736 if (Version >= 5) { 7737 GVF = getDecodedGVarFlags(Record[2]); 7738 RefArrayStart = 3; 7739 } 7740 std::vector<ValueInfo> Refs = 7741 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 7742 auto FS = 7743 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 7744 FS->setModulePath(getThisModule()->first()); 7745 auto GUID = getValueInfoFromValueId(ValueID); 7746 FS->setOriginalName(std::get<1>(GUID)); 7747 TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(FS)); 7748 break; 7749 } 7750 // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, 7751 // numrefs, numrefs x valueid, 7752 // n x (valueid, offset)] 7753 case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: { 7754 unsigned ValueID = Record[0]; 7755 uint64_t RawFlags = Record[1]; 7756 GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]); 7757 unsigned NumRefs = Record[3]; 7758 unsigned RefListStartIndex = 4; 7759 unsigned VTableListStartIndex = RefListStartIndex + NumRefs; 7760 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7761 std::vector<ValueInfo> Refs = makeRefList( 7762 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 7763 VTableFuncList VTableFuncs; 7764 for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) { 7765 ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[I])); 7766 uint64_t Offset = Record[++I]; 7767 VTableFuncs.push_back({Callee, Offset}); 7768 } 7769 auto VS = 7770 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 7771 VS->setModulePath(getThisModule()->first()); 7772 VS->setVTableFuncs(VTableFuncs); 7773 auto GUID = getValueInfoFromValueId(ValueID); 7774 VS->setOriginalName(std::get<1>(GUID)); 7775 TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(VS)); 7776 break; 7777 } 7778 // FS_COMBINED is legacy and does not have support for the tail call flag. 7779 // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs, 7780 // numrefs x valueid, n x (valueid)] 7781 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs, 7782 // numrefs x valueid, 7783 // n x (valueid, hotness+tailcall flags)] 7784 case bitc::FS_COMBINED: 7785 case bitc::FS_COMBINED_PROFILE: { 7786 unsigned ValueID = Record[0]; 7787 uint64_t ModuleId = Record[1]; 7788 uint64_t RawFlags = Record[2]; 7789 unsigned InstCount = Record[3]; 7790 uint64_t RawFunFlags = 0; 7791 uint64_t EntryCount = 0; 7792 unsigned NumRefs = Record[4]; 7793 unsigned NumRORefs = 0, NumWORefs = 0; 7794 int RefListStartIndex = 5; 7795 7796 if (Version >= 4) { 7797 RawFunFlags = Record[4]; 7798 RefListStartIndex = 6; 7799 size_t NumRefsIndex = 5; 7800 if (Version >= 5) { 7801 unsigned NumRORefsOffset = 1; 7802 RefListStartIndex = 7; 7803 if (Version >= 6) { 7804 NumRefsIndex = 6; 7805 EntryCount = Record[5]; 7806 RefListStartIndex = 8; 7807 if (Version >= 7) { 7808 RefListStartIndex = 9; 7809 NumWORefs = Record[8]; 7810 NumRORefsOffset = 2; 7811 } 7812 } 7813 NumRORefs = Record[RefListStartIndex - NumRORefsOffset]; 7814 } 7815 NumRefs = Record[NumRefsIndex]; 7816 } 7817 7818 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7819 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 7820 assert(Record.size() >= RefListStartIndex + NumRefs && 7821 "Record size inconsistent with number of references"); 7822 std::vector<ValueInfo> Refs = makeRefList( 7823 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 7824 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 7825 std::vector<FunctionSummary::EdgeTy> Edges = makeCallList( 7826 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 7827 IsOldProfileFormat, HasProfile, false); 7828 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID)); 7829 setSpecialRefs(Refs, NumRORefs, NumWORefs); 7830 auto FS = std::make_unique<FunctionSummary>( 7831 Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount, 7832 std::move(Refs), std::move(Edges), std::move(PendingTypeTests), 7833 std::move(PendingTypeTestAssumeVCalls), 7834 std::move(PendingTypeCheckedLoadVCalls), 7835 std::move(PendingTypeTestAssumeConstVCalls), 7836 std::move(PendingTypeCheckedLoadConstVCalls), 7837 std::move(PendingParamAccesses), std::move(PendingCallsites), 7838 std::move(PendingAllocs)); 7839 LastSeenSummary = FS.get(); 7840 LastSeenGUID = VI.getGUID(); 7841 FS->setModulePath(ModuleIdMap[ModuleId]); 7842 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 7843 break; 7844 } 7845 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 7846 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 7847 // they expect all aliasee summaries to be available. 7848 case bitc::FS_COMBINED_ALIAS: { 7849 unsigned ValueID = Record[0]; 7850 uint64_t ModuleId = Record[1]; 7851 uint64_t RawFlags = Record[2]; 7852 unsigned AliaseeValueId = Record[3]; 7853 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7854 auto AS = std::make_unique<AliasSummary>(Flags); 7855 LastSeenSummary = AS.get(); 7856 AS->setModulePath(ModuleIdMap[ModuleId]); 7857 7858 auto AliaseeVI = std::get<0>(getValueInfoFromValueId(AliaseeValueId)); 7859 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath()); 7860 AS->setAliasee(AliaseeVI, AliaseeInModule); 7861 7862 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID)); 7863 LastSeenGUID = VI.getGUID(); 7864 TheIndex.addGlobalValueSummary(VI, std::move(AS)); 7865 break; 7866 } 7867 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 7868 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 7869 unsigned ValueID = Record[0]; 7870 uint64_t ModuleId = Record[1]; 7871 uint64_t RawFlags = Record[2]; 7872 unsigned RefArrayStart = 3; 7873 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 7874 /* WriteOnly */ false, 7875 /* Constant */ false, 7876 GlobalObject::VCallVisibilityPublic); 7877 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7878 if (Version >= 5) { 7879 GVF = getDecodedGVarFlags(Record[3]); 7880 RefArrayStart = 4; 7881 } 7882 std::vector<ValueInfo> Refs = 7883 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 7884 auto FS = 7885 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 7886 LastSeenSummary = FS.get(); 7887 FS->setModulePath(ModuleIdMap[ModuleId]); 7888 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID)); 7889 LastSeenGUID = VI.getGUID(); 7890 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 7891 break; 7892 } 7893 // FS_COMBINED_ORIGINAL_NAME: [original_name] 7894 case bitc::FS_COMBINED_ORIGINAL_NAME: { 7895 uint64_t OriginalName = Record[0]; 7896 if (!LastSeenSummary) 7897 return error("Name attachment that does not follow a combined record"); 7898 LastSeenSummary->setOriginalName(OriginalName); 7899 TheIndex.addOriginalName(LastSeenGUID, OriginalName); 7900 // Reset the LastSeenSummary 7901 LastSeenSummary = nullptr; 7902 LastSeenGUID = 0; 7903 break; 7904 } 7905 case bitc::FS_TYPE_TESTS: 7906 assert(PendingTypeTests.empty()); 7907 llvm::append_range(PendingTypeTests, Record); 7908 break; 7909 7910 case bitc::FS_TYPE_TEST_ASSUME_VCALLS: 7911 assert(PendingTypeTestAssumeVCalls.empty()); 7912 for (unsigned I = 0; I != Record.size(); I += 2) 7913 PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]}); 7914 break; 7915 7916 case bitc::FS_TYPE_CHECKED_LOAD_VCALLS: 7917 assert(PendingTypeCheckedLoadVCalls.empty()); 7918 for (unsigned I = 0; I != Record.size(); I += 2) 7919 PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]}); 7920 break; 7921 7922 case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL: 7923 PendingTypeTestAssumeConstVCalls.push_back( 7924 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 7925 break; 7926 7927 case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL: 7928 PendingTypeCheckedLoadConstVCalls.push_back( 7929 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 7930 break; 7931 7932 case bitc::FS_CFI_FUNCTION_DEFS: { 7933 std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs(); 7934 for (unsigned I = 0; I != Record.size(); I += 2) 7935 CfiFunctionDefs.insert( 7936 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 7937 break; 7938 } 7939 7940 case bitc::FS_CFI_FUNCTION_DECLS: { 7941 std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls(); 7942 for (unsigned I = 0; I != Record.size(); I += 2) 7943 CfiFunctionDecls.insert( 7944 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 7945 break; 7946 } 7947 7948 case bitc::FS_TYPE_ID: 7949 parseTypeIdSummaryRecord(Record, Strtab, TheIndex); 7950 break; 7951 7952 case bitc::FS_TYPE_ID_METADATA: 7953 parseTypeIdCompatibleVtableSummaryRecord(Record); 7954 break; 7955 7956 case bitc::FS_BLOCK_COUNT: 7957 TheIndex.addBlockCount(Record[0]); 7958 break; 7959 7960 case bitc::FS_PARAM_ACCESS: { 7961 PendingParamAccesses = parseParamAccesses(Record); 7962 break; 7963 } 7964 7965 case bitc::FS_STACK_IDS: { // [n x stackid] 7966 // Save stack ids in the reader to consult when adding stack ids from the 7967 // lists in the stack node and alloc node entries. 7968 StackIds = ArrayRef<uint64_t>(Record); 7969 break; 7970 } 7971 7972 case bitc::FS_PERMODULE_CALLSITE_INFO: { 7973 unsigned ValueID = Record[0]; 7974 SmallVector<unsigned> StackIdList; 7975 for (auto R = Record.begin() + 1; R != Record.end(); R++) { 7976 assert(*R < StackIds.size()); 7977 StackIdList.push_back(TheIndex.addOrGetStackIdIndex(StackIds[*R])); 7978 } 7979 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID)); 7980 PendingCallsites.push_back(CallsiteInfo({VI, std::move(StackIdList)})); 7981 break; 7982 } 7983 7984 case bitc::FS_COMBINED_CALLSITE_INFO: { 7985 auto RecordIter = Record.begin(); 7986 unsigned ValueID = *RecordIter++; 7987 unsigned NumStackIds = *RecordIter++; 7988 unsigned NumVersions = *RecordIter++; 7989 assert(Record.size() == 3 + NumStackIds + NumVersions); 7990 SmallVector<unsigned> StackIdList; 7991 for (unsigned J = 0; J < NumStackIds; J++) { 7992 assert(*RecordIter < StackIds.size()); 7993 StackIdList.push_back( 7994 TheIndex.addOrGetStackIdIndex(StackIds[*RecordIter++])); 7995 } 7996 SmallVector<unsigned> Versions; 7997 for (unsigned J = 0; J < NumVersions; J++) 7998 Versions.push_back(*RecordIter++); 7999 ValueInfo VI = std::get<0>( 8000 getValueInfoFromValueId</*AllowNullValueInfo*/ true>(ValueID)); 8001 PendingCallsites.push_back( 8002 CallsiteInfo({VI, std::move(Versions), std::move(StackIdList)})); 8003 break; 8004 } 8005 8006 case bitc::FS_PERMODULE_ALLOC_INFO: { 8007 unsigned I = 0; 8008 std::vector<MIBInfo> MIBs; 8009 unsigned NumMIBs = 0; 8010 if (Version >= 10) 8011 NumMIBs = Record[I++]; 8012 unsigned MIBsRead = 0; 8013 while ((Version >= 10 && MIBsRead++ < NumMIBs) || 8014 (Version < 10 && I < Record.size())) { 8015 assert(Record.size() - I >= 2); 8016 AllocationType AllocType = (AllocationType)Record[I++]; 8017 unsigned NumStackEntries = Record[I++]; 8018 assert(Record.size() - I >= NumStackEntries); 8019 SmallVector<unsigned> StackIdList; 8020 for (unsigned J = 0; J < NumStackEntries; J++) { 8021 assert(Record[I] < StackIds.size()); 8022 StackIdList.push_back( 8023 TheIndex.addOrGetStackIdIndex(StackIds[Record[I++]])); 8024 } 8025 MIBs.push_back(MIBInfo(AllocType, std::move(StackIdList))); 8026 } 8027 std::vector<uint64_t> TotalSizes; 8028 // We either have no sizes or NumMIBs of them. 8029 assert(I == Record.size() || Record.size() - I == NumMIBs); 8030 if (I < Record.size()) { 8031 MIBsRead = 0; 8032 while (MIBsRead++ < NumMIBs) 8033 TotalSizes.push_back(Record[I++]); 8034 } 8035 PendingAllocs.push_back(AllocInfo(std::move(MIBs))); 8036 if (!TotalSizes.empty()) { 8037 assert(PendingAllocs.back().MIBs.size() == TotalSizes.size()); 8038 PendingAllocs.back().TotalSizes = std::move(TotalSizes); 8039 } 8040 break; 8041 } 8042 8043 case bitc::FS_COMBINED_ALLOC_INFO: { 8044 unsigned I = 0; 8045 std::vector<MIBInfo> MIBs; 8046 unsigned NumMIBs = Record[I++]; 8047 unsigned NumVersions = Record[I++]; 8048 unsigned MIBsRead = 0; 8049 while (MIBsRead++ < NumMIBs) { 8050 assert(Record.size() - I >= 2); 8051 AllocationType AllocType = (AllocationType)Record[I++]; 8052 unsigned NumStackEntries = Record[I++]; 8053 assert(Record.size() - I >= NumStackEntries); 8054 SmallVector<unsigned> StackIdList; 8055 for (unsigned J = 0; J < NumStackEntries; J++) { 8056 assert(Record[I] < StackIds.size()); 8057 StackIdList.push_back( 8058 TheIndex.addOrGetStackIdIndex(StackIds[Record[I++]])); 8059 } 8060 MIBs.push_back(MIBInfo(AllocType, std::move(StackIdList))); 8061 } 8062 assert(Record.size() - I >= NumVersions); 8063 SmallVector<uint8_t> Versions; 8064 for (unsigned J = 0; J < NumVersions; J++) 8065 Versions.push_back(Record[I++]); 8066 std::vector<uint64_t> TotalSizes; 8067 // We either have no sizes or NumMIBs of them. 8068 assert(I == Record.size() || Record.size() - I == NumMIBs); 8069 if (I < Record.size()) { 8070 MIBsRead = 0; 8071 while (MIBsRead++ < NumMIBs) { 8072 TotalSizes.push_back(Record[I++]); 8073 } 8074 } 8075 PendingAllocs.push_back( 8076 AllocInfo(std::move(Versions), std::move(MIBs))); 8077 if (!TotalSizes.empty()) { 8078 assert(PendingAllocs.back().MIBs.size() == TotalSizes.size()); 8079 PendingAllocs.back().TotalSizes = std::move(TotalSizes); 8080 } 8081 break; 8082 } 8083 } 8084 } 8085 llvm_unreachable("Exit infinite loop"); 8086 } 8087 8088 // Parse the module string table block into the Index. 8089 // This populates the ModulePathStringTable map in the index. 8090 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 8091 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 8092 return Err; 8093 8094 SmallVector<uint64_t, 64> Record; 8095 8096 SmallString<128> ModulePath; 8097 ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr; 8098 8099 while (true) { 8100 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 8101 if (!MaybeEntry) 8102 return MaybeEntry.takeError(); 8103 BitstreamEntry Entry = MaybeEntry.get(); 8104 8105 switch (Entry.Kind) { 8106 case BitstreamEntry::SubBlock: // Handled for us already. 8107 case BitstreamEntry::Error: 8108 return error("Malformed block"); 8109 case BitstreamEntry::EndBlock: 8110 return Error::success(); 8111 case BitstreamEntry::Record: 8112 // The interesting case. 8113 break; 8114 } 8115 8116 Record.clear(); 8117 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 8118 if (!MaybeRecord) 8119 return MaybeRecord.takeError(); 8120 switch (MaybeRecord.get()) { 8121 default: // Default behavior: ignore. 8122 break; 8123 case bitc::MST_CODE_ENTRY: { 8124 // MST_ENTRY: [modid, namechar x N] 8125 uint64_t ModuleId = Record[0]; 8126 8127 if (convertToString(Record, 1, ModulePath)) 8128 return error("Invalid record"); 8129 8130 LastSeenModule = TheIndex.addModule(ModulePath); 8131 ModuleIdMap[ModuleId] = LastSeenModule->first(); 8132 8133 ModulePath.clear(); 8134 break; 8135 } 8136 /// MST_CODE_HASH: [5*i32] 8137 case bitc::MST_CODE_HASH: { 8138 if (Record.size() != 5) 8139 return error("Invalid hash length " + Twine(Record.size()).str()); 8140 if (!LastSeenModule) 8141 return error("Invalid hash that does not follow a module path"); 8142 int Pos = 0; 8143 for (auto &Val : Record) { 8144 assert(!(Val >> 32) && "Unexpected high bits set"); 8145 LastSeenModule->second[Pos++] = Val; 8146 } 8147 // Reset LastSeenModule to avoid overriding the hash unexpectedly. 8148 LastSeenModule = nullptr; 8149 break; 8150 } 8151 } 8152 } 8153 llvm_unreachable("Exit infinite loop"); 8154 } 8155 8156 namespace { 8157 8158 // FIXME: This class is only here to support the transition to llvm::Error. It 8159 // will be removed once this transition is complete. Clients should prefer to 8160 // deal with the Error value directly, rather than converting to error_code. 8161 class BitcodeErrorCategoryType : public std::error_category { 8162 const char *name() const noexcept override { 8163 return "llvm.bitcode"; 8164 } 8165 8166 std::string message(int IE) const override { 8167 BitcodeError E = static_cast<BitcodeError>(IE); 8168 switch (E) { 8169 case BitcodeError::CorruptedBitcode: 8170 return "Corrupted bitcode"; 8171 } 8172 llvm_unreachable("Unknown error type!"); 8173 } 8174 }; 8175 8176 } // end anonymous namespace 8177 8178 const std::error_category &llvm::BitcodeErrorCategory() { 8179 static BitcodeErrorCategoryType ErrorCategory; 8180 return ErrorCategory; 8181 } 8182 8183 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream, 8184 unsigned Block, unsigned RecordID) { 8185 if (Error Err = Stream.EnterSubBlock(Block)) 8186 return std::move(Err); 8187 8188 StringRef Strtab; 8189 while (true) { 8190 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 8191 if (!MaybeEntry) 8192 return MaybeEntry.takeError(); 8193 llvm::BitstreamEntry Entry = MaybeEntry.get(); 8194 8195 switch (Entry.Kind) { 8196 case BitstreamEntry::EndBlock: 8197 return Strtab; 8198 8199 case BitstreamEntry::Error: 8200 return error("Malformed block"); 8201 8202 case BitstreamEntry::SubBlock: 8203 if (Error Err = Stream.SkipBlock()) 8204 return std::move(Err); 8205 break; 8206 8207 case BitstreamEntry::Record: 8208 StringRef Blob; 8209 SmallVector<uint64_t, 1> Record; 8210 Expected<unsigned> MaybeRecord = 8211 Stream.readRecord(Entry.ID, Record, &Blob); 8212 if (!MaybeRecord) 8213 return MaybeRecord.takeError(); 8214 if (MaybeRecord.get() == RecordID) 8215 Strtab = Blob; 8216 break; 8217 } 8218 } 8219 } 8220 8221 //===----------------------------------------------------------------------===// 8222 // External interface 8223 //===----------------------------------------------------------------------===// 8224 8225 Expected<std::vector<BitcodeModule>> 8226 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) { 8227 auto FOrErr = getBitcodeFileContents(Buffer); 8228 if (!FOrErr) 8229 return FOrErr.takeError(); 8230 return std::move(FOrErr->Mods); 8231 } 8232 8233 Expected<BitcodeFileContents> 8234 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) { 8235 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 8236 if (!StreamOrErr) 8237 return StreamOrErr.takeError(); 8238 BitstreamCursor &Stream = *StreamOrErr; 8239 8240 BitcodeFileContents F; 8241 while (true) { 8242 uint64_t BCBegin = Stream.getCurrentByteNo(); 8243 8244 // We may be consuming bitcode from a client that leaves garbage at the end 8245 // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to 8246 // the end that there cannot possibly be another module, stop looking. 8247 if (BCBegin + 8 >= Stream.getBitcodeBytes().size()) 8248 return F; 8249 8250 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 8251 if (!MaybeEntry) 8252 return MaybeEntry.takeError(); 8253 llvm::BitstreamEntry Entry = MaybeEntry.get(); 8254 8255 switch (Entry.Kind) { 8256 case BitstreamEntry::EndBlock: 8257 case BitstreamEntry::Error: 8258 return error("Malformed block"); 8259 8260 case BitstreamEntry::SubBlock: { 8261 uint64_t IdentificationBit = -1ull; 8262 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 8263 IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8; 8264 if (Error Err = Stream.SkipBlock()) 8265 return std::move(Err); 8266 8267 { 8268 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 8269 if (!MaybeEntry) 8270 return MaybeEntry.takeError(); 8271 Entry = MaybeEntry.get(); 8272 } 8273 8274 if (Entry.Kind != BitstreamEntry::SubBlock || 8275 Entry.ID != bitc::MODULE_BLOCK_ID) 8276 return error("Malformed block"); 8277 } 8278 8279 if (Entry.ID == bitc::MODULE_BLOCK_ID) { 8280 uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8; 8281 if (Error Err = Stream.SkipBlock()) 8282 return std::move(Err); 8283 8284 F.Mods.push_back({Stream.getBitcodeBytes().slice( 8285 BCBegin, Stream.getCurrentByteNo() - BCBegin), 8286 Buffer.getBufferIdentifier(), IdentificationBit, 8287 ModuleBit}); 8288 continue; 8289 } 8290 8291 if (Entry.ID == bitc::STRTAB_BLOCK_ID) { 8292 Expected<StringRef> Strtab = 8293 readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB); 8294 if (!Strtab) 8295 return Strtab.takeError(); 8296 // This string table is used by every preceding bitcode module that does 8297 // not have its own string table. A bitcode file may have multiple 8298 // string tables if it was created by binary concatenation, for example 8299 // with "llvm-cat -b". 8300 for (BitcodeModule &I : llvm::reverse(F.Mods)) { 8301 if (!I.Strtab.empty()) 8302 break; 8303 I.Strtab = *Strtab; 8304 } 8305 // Similarly, the string table is used by every preceding symbol table; 8306 // normally there will be just one unless the bitcode file was created 8307 // by binary concatenation. 8308 if (!F.Symtab.empty() && F.StrtabForSymtab.empty()) 8309 F.StrtabForSymtab = *Strtab; 8310 continue; 8311 } 8312 8313 if (Entry.ID == bitc::SYMTAB_BLOCK_ID) { 8314 Expected<StringRef> SymtabOrErr = 8315 readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB); 8316 if (!SymtabOrErr) 8317 return SymtabOrErr.takeError(); 8318 8319 // We can expect the bitcode file to have multiple symbol tables if it 8320 // was created by binary concatenation. In that case we silently 8321 // ignore any subsequent symbol tables, which is fine because this is a 8322 // low level function. The client is expected to notice that the number 8323 // of modules in the symbol table does not match the number of modules 8324 // in the input file and regenerate the symbol table. 8325 if (F.Symtab.empty()) 8326 F.Symtab = *SymtabOrErr; 8327 continue; 8328 } 8329 8330 if (Error Err = Stream.SkipBlock()) 8331 return std::move(Err); 8332 continue; 8333 } 8334 case BitstreamEntry::Record: 8335 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 8336 return std::move(E); 8337 continue; 8338 } 8339 } 8340 } 8341 8342 /// Get a lazy one-at-time loading module from bitcode. 8343 /// 8344 /// This isn't always used in a lazy context. In particular, it's also used by 8345 /// \a parseModule(). If this is truly lazy, then we need to eagerly pull 8346 /// in forward-referenced functions from block address references. 8347 /// 8348 /// \param[in] MaterializeAll Set to \c true if we should materialize 8349 /// everything. 8350 Expected<std::unique_ptr<Module>> 8351 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll, 8352 bool ShouldLazyLoadMetadata, bool IsImporting, 8353 ParserCallbacks Callbacks) { 8354 BitstreamCursor Stream(Buffer); 8355 8356 std::string ProducerIdentification; 8357 if (IdentificationBit != -1ull) { 8358 if (Error JumpFailed = Stream.JumpToBit(IdentificationBit)) 8359 return std::move(JumpFailed); 8360 if (Error E = 8361 readIdentificationBlock(Stream).moveInto(ProducerIdentification)) 8362 return std::move(E); 8363 } 8364 8365 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 8366 return std::move(JumpFailed); 8367 auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification, 8368 Context); 8369 8370 std::unique_ptr<Module> M = 8371 std::make_unique<Module>(ModuleIdentifier, Context); 8372 M->setMaterializer(R); 8373 8374 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 8375 if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, 8376 IsImporting, Callbacks)) 8377 return std::move(Err); 8378 8379 if (MaterializeAll) { 8380 // Read in the entire module, and destroy the BitcodeReader. 8381 if (Error Err = M->materializeAll()) 8382 return std::move(Err); 8383 } else { 8384 // Resolve forward references from blockaddresses. 8385 if (Error Err = R->materializeForwardReferencedFunctions()) 8386 return std::move(Err); 8387 } 8388 8389 return std::move(M); 8390 } 8391 8392 Expected<std::unique_ptr<Module>> 8393 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata, 8394 bool IsImporting, ParserCallbacks Callbacks) { 8395 return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting, 8396 Callbacks); 8397 } 8398 8399 // Parse the specified bitcode buffer and merge the index into CombinedIndex. 8400 // We don't use ModuleIdentifier here because the client may need to control the 8401 // module path used in the combined summary (e.g. when reading summaries for 8402 // regular LTO modules). 8403 Error BitcodeModule::readSummary( 8404 ModuleSummaryIndex &CombinedIndex, StringRef ModulePath, 8405 std::function<bool(GlobalValue::GUID)> IsPrevailing) { 8406 BitstreamCursor Stream(Buffer); 8407 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 8408 return JumpFailed; 8409 8410 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex, 8411 ModulePath, IsPrevailing); 8412 return R.parseModule(); 8413 } 8414 8415 // Parse the specified bitcode buffer, returning the function info index. 8416 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() { 8417 BitstreamCursor Stream(Buffer); 8418 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 8419 return std::move(JumpFailed); 8420 8421 auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false); 8422 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index, 8423 ModuleIdentifier, 0); 8424 8425 if (Error Err = R.parseModule()) 8426 return std::move(Err); 8427 8428 return std::move(Index); 8429 } 8430 8431 static Expected<std::pair<bool, bool>> 8432 getEnableSplitLTOUnitAndUnifiedFlag(BitstreamCursor &Stream, 8433 unsigned ID, 8434 BitcodeLTOInfo <OInfo) { 8435 if (Error Err = Stream.EnterSubBlock(ID)) 8436 return std::move(Err); 8437 SmallVector<uint64_t, 64> Record; 8438 8439 while (true) { 8440 BitstreamEntry Entry; 8441 std::pair<bool, bool> Result = {false,false}; 8442 if (Error E = Stream.advanceSkippingSubblocks().moveInto(Entry)) 8443 return std::move(E); 8444 8445 switch (Entry.Kind) { 8446 case BitstreamEntry::SubBlock: // Handled for us already. 8447 case BitstreamEntry::Error: 8448 return error("Malformed block"); 8449 case BitstreamEntry::EndBlock: { 8450 // If no flags record found, set both flags to false. 8451 return Result; 8452 } 8453 case BitstreamEntry::Record: 8454 // The interesting case. 8455 break; 8456 } 8457 8458 // Look for the FS_FLAGS record. 8459 Record.clear(); 8460 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 8461 if (!MaybeBitCode) 8462 return MaybeBitCode.takeError(); 8463 switch (MaybeBitCode.get()) { 8464 default: // Default behavior: ignore. 8465 break; 8466 case bitc::FS_FLAGS: { // [flags] 8467 uint64_t Flags = Record[0]; 8468 // Scan flags. 8469 assert(Flags <= 0x2ff && "Unexpected bits in flag"); 8470 8471 bool EnableSplitLTOUnit = Flags & 0x8; 8472 bool UnifiedLTO = Flags & 0x200; 8473 Result = {EnableSplitLTOUnit, UnifiedLTO}; 8474 8475 return Result; 8476 } 8477 } 8478 } 8479 llvm_unreachable("Exit infinite loop"); 8480 } 8481 8482 // Check if the given bitcode buffer contains a global value summary block. 8483 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() { 8484 BitstreamCursor Stream(Buffer); 8485 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 8486 return std::move(JumpFailed); 8487 8488 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 8489 return std::move(Err); 8490 8491 while (true) { 8492 llvm::BitstreamEntry Entry; 8493 if (Error E = Stream.advance().moveInto(Entry)) 8494 return std::move(E); 8495 8496 switch (Entry.Kind) { 8497 case BitstreamEntry::Error: 8498 return error("Malformed block"); 8499 case BitstreamEntry::EndBlock: 8500 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false, 8501 /*EnableSplitLTOUnit=*/false, /*UnifiedLTO=*/false}; 8502 8503 case BitstreamEntry::SubBlock: 8504 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) { 8505 BitcodeLTOInfo LTOInfo; 8506 Expected<std::pair<bool, bool>> Flags = 8507 getEnableSplitLTOUnitAndUnifiedFlag(Stream, Entry.ID, LTOInfo); 8508 if (!Flags) 8509 return Flags.takeError(); 8510 std::tie(LTOInfo.EnableSplitLTOUnit, LTOInfo.UnifiedLTO) = Flags.get(); 8511 LTOInfo.IsThinLTO = true; 8512 LTOInfo.HasSummary = true; 8513 return LTOInfo; 8514 } 8515 8516 if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) { 8517 BitcodeLTOInfo LTOInfo; 8518 Expected<std::pair<bool, bool>> Flags = 8519 getEnableSplitLTOUnitAndUnifiedFlag(Stream, Entry.ID, LTOInfo); 8520 if (!Flags) 8521 return Flags.takeError(); 8522 std::tie(LTOInfo.EnableSplitLTOUnit, LTOInfo.UnifiedLTO) = Flags.get(); 8523 LTOInfo.IsThinLTO = false; 8524 LTOInfo.HasSummary = true; 8525 return LTOInfo; 8526 } 8527 8528 // Ignore other sub-blocks. 8529 if (Error Err = Stream.SkipBlock()) 8530 return std::move(Err); 8531 continue; 8532 8533 case BitstreamEntry::Record: 8534 if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID)) 8535 continue; 8536 else 8537 return StreamFailed.takeError(); 8538 } 8539 } 8540 } 8541 8542 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) { 8543 Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer); 8544 if (!MsOrErr) 8545 return MsOrErr.takeError(); 8546 8547 if (MsOrErr->size() != 1) 8548 return error("Expected a single module"); 8549 8550 return (*MsOrErr)[0]; 8551 } 8552 8553 Expected<std::unique_ptr<Module>> 8554 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context, 8555 bool ShouldLazyLoadMetadata, bool IsImporting, 8556 ParserCallbacks Callbacks) { 8557 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8558 if (!BM) 8559 return BM.takeError(); 8560 8561 return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting, 8562 Callbacks); 8563 } 8564 8565 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule( 8566 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context, 8567 bool ShouldLazyLoadMetadata, bool IsImporting, ParserCallbacks Callbacks) { 8568 auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata, 8569 IsImporting, Callbacks); 8570 if (MOrErr) 8571 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer)); 8572 return MOrErr; 8573 } 8574 8575 Expected<std::unique_ptr<Module>> 8576 BitcodeModule::parseModule(LLVMContext &Context, ParserCallbacks Callbacks) { 8577 return getModuleImpl(Context, true, false, false, Callbacks); 8578 // TODO: Restore the use-lists to the in-memory state when the bitcode was 8579 // written. We must defer until the Module has been fully materialized. 8580 } 8581 8582 Expected<std::unique_ptr<Module>> 8583 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context, 8584 ParserCallbacks Callbacks) { 8585 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8586 if (!BM) 8587 return BM.takeError(); 8588 8589 return BM->parseModule(Context, Callbacks); 8590 } 8591 8592 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) { 8593 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 8594 if (!StreamOrErr) 8595 return StreamOrErr.takeError(); 8596 8597 return readTriple(*StreamOrErr); 8598 } 8599 8600 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) { 8601 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 8602 if (!StreamOrErr) 8603 return StreamOrErr.takeError(); 8604 8605 return hasObjCCategory(*StreamOrErr); 8606 } 8607 8608 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) { 8609 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 8610 if (!StreamOrErr) 8611 return StreamOrErr.takeError(); 8612 8613 return readIdentificationCode(*StreamOrErr); 8614 } 8615 8616 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer, 8617 ModuleSummaryIndex &CombinedIndex) { 8618 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8619 if (!BM) 8620 return BM.takeError(); 8621 8622 return BM->readSummary(CombinedIndex, BM->getModuleIdentifier()); 8623 } 8624 8625 Expected<std::unique_ptr<ModuleSummaryIndex>> 8626 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) { 8627 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8628 if (!BM) 8629 return BM.takeError(); 8630 8631 return BM->getSummary(); 8632 } 8633 8634 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) { 8635 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8636 if (!BM) 8637 return BM.takeError(); 8638 8639 return BM->getLTOInfo(); 8640 } 8641 8642 Expected<std::unique_ptr<ModuleSummaryIndex>> 8643 llvm::getModuleSummaryIndexForFile(StringRef Path, 8644 bool IgnoreEmptyThinLTOIndexFile) { 8645 ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr = 8646 MemoryBuffer::getFileOrSTDIN(Path); 8647 if (!FileOrErr) 8648 return errorCodeToError(FileOrErr.getError()); 8649 if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize()) 8650 return nullptr; 8651 return getModuleSummaryIndex(**FileOrErr); 8652 } 8653