xref: /llvm-project/llvm/lib/Bitcode/Reader/BitcodeReader.cpp (revision 2aabfc811670beb843074c765c056fff4a7b443b)
1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Bitcode/BitcodeReader.h"
10 #include "MetadataLoader.h"
11 #include "ValueList.h"
12 #include "llvm/ADT/APFloat.h"
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallString.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/StringRef.h"
20 #include "llvm/ADT/Twine.h"
21 #include "llvm/Bitcode/BitcodeCommon.h"
22 #include "llvm/Bitcode/LLVMBitCodes.h"
23 #include "llvm/Bitstream/BitstreamReader.h"
24 #include "llvm/Config/llvm-config.h"
25 #include "llvm/IR/Argument.h"
26 #include "llvm/IR/AttributeMask.h"
27 #include "llvm/IR/Attributes.h"
28 #include "llvm/IR/AutoUpgrade.h"
29 #include "llvm/IR/BasicBlock.h"
30 #include "llvm/IR/CallingConv.h"
31 #include "llvm/IR/Comdat.h"
32 #include "llvm/IR/Constant.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/DebugInfo.h"
36 #include "llvm/IR/DebugInfoMetadata.h"
37 #include "llvm/IR/DebugLoc.h"
38 #include "llvm/IR/DerivedTypes.h"
39 #include "llvm/IR/Function.h"
40 #include "llvm/IR/GVMaterializer.h"
41 #include "llvm/IR/GetElementPtrTypeIterator.h"
42 #include "llvm/IR/GlobalAlias.h"
43 #include "llvm/IR/GlobalIFunc.h"
44 #include "llvm/IR/GlobalObject.h"
45 #include "llvm/IR/GlobalValue.h"
46 #include "llvm/IR/GlobalVariable.h"
47 #include "llvm/IR/InlineAsm.h"
48 #include "llvm/IR/InstIterator.h"
49 #include "llvm/IR/InstrTypes.h"
50 #include "llvm/IR/Instruction.h"
51 #include "llvm/IR/Instructions.h"
52 #include "llvm/IR/Intrinsics.h"
53 #include "llvm/IR/IntrinsicsAArch64.h"
54 #include "llvm/IR/IntrinsicsARM.h"
55 #include "llvm/IR/LLVMContext.h"
56 #include "llvm/IR/Metadata.h"
57 #include "llvm/IR/Module.h"
58 #include "llvm/IR/ModuleSummaryIndex.h"
59 #include "llvm/IR/Operator.h"
60 #include "llvm/IR/Type.h"
61 #include "llvm/IR/Value.h"
62 #include "llvm/IR/Verifier.h"
63 #include "llvm/Support/AtomicOrdering.h"
64 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/CommandLine.h"
66 #include "llvm/Support/Compiler.h"
67 #include "llvm/Support/Debug.h"
68 #include "llvm/Support/Error.h"
69 #include "llvm/Support/ErrorHandling.h"
70 #include "llvm/Support/ErrorOr.h"
71 #include "llvm/Support/MathExtras.h"
72 #include "llvm/Support/MemoryBuffer.h"
73 #include "llvm/Support/ModRef.h"
74 #include "llvm/Support/raw_ostream.h"
75 #include "llvm/TargetParser/Triple.h"
76 #include <algorithm>
77 #include <cassert>
78 #include <cstddef>
79 #include <cstdint>
80 #include <deque>
81 #include <map>
82 #include <memory>
83 #include <optional>
84 #include <set>
85 #include <string>
86 #include <system_error>
87 #include <tuple>
88 #include <utility>
89 #include <vector>
90 
91 using namespace llvm;
92 
93 static cl::opt<bool> PrintSummaryGUIDs(
94     "print-summary-global-ids", cl::init(false), cl::Hidden,
95     cl::desc(
96         "Print the global id for each value when reading the module summary"));
97 
98 static cl::opt<bool> ExpandConstantExprs(
99     "expand-constant-exprs", cl::Hidden,
100     cl::desc(
101         "Expand constant expressions to instructions for testing purposes"));
102 
103 /// Load bitcode directly into RemoveDIs format (use debug records instead
104 /// of debug intrinsics). UNSET is treated as FALSE, so the default action
105 /// is to do nothing. Individual tools can override this to incrementally add
106 /// support for the RemoveDIs format.
107 cl::opt<cl::boolOrDefault> LoadBitcodeIntoNewDbgInfoFormat(
108     "load-bitcode-into-experimental-debuginfo-iterators", cl::Hidden,
109     cl::desc("Load bitcode directly into the new debug info format (regardless "
110              "of input format)"));
111 extern cl::opt<cl::boolOrDefault> PreserveInputDbgFormat;
112 extern bool WriteNewDbgInfoFormatToBitcode;
113 extern cl::opt<bool> WriteNewDbgInfoFormat;
114 
115 namespace {
116 
117 enum {
118   SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
119 };
120 
121 } // end anonymous namespace
122 
123 static Error error(const Twine &Message) {
124   return make_error<StringError>(
125       Message, make_error_code(BitcodeError::CorruptedBitcode));
126 }
127 
128 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) {
129   if (!Stream.canSkipToPos(4))
130     return createStringError(std::errc::illegal_byte_sequence,
131                              "file too small to contain bitcode header");
132   for (unsigned C : {'B', 'C'})
133     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) {
134       if (Res.get() != C)
135         return createStringError(std::errc::illegal_byte_sequence,
136                                  "file doesn't start with bitcode header");
137     } else
138       return Res.takeError();
139   for (unsigned C : {0x0, 0xC, 0xE, 0xD})
140     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) {
141       if (Res.get() != C)
142         return createStringError(std::errc::illegal_byte_sequence,
143                                  "file doesn't start with bitcode header");
144     } else
145       return Res.takeError();
146   return Error::success();
147 }
148 
149 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) {
150   const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart();
151   const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize();
152 
153   if (Buffer.getBufferSize() & 3)
154     return error("Invalid bitcode signature");
155 
156   // If we have a wrapper header, parse it and ignore the non-bc file contents.
157   // The magic number is 0x0B17C0DE stored in little endian.
158   if (isBitcodeWrapper(BufPtr, BufEnd))
159     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
160       return error("Invalid bitcode wrapper header");
161 
162   BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd));
163   if (Error Err = hasInvalidBitcodeHeader(Stream))
164     return std::move(Err);
165 
166   return std::move(Stream);
167 }
168 
169 /// Convert a string from a record into an std::string, return true on failure.
170 template <typename StrTy>
171 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
172                             StrTy &Result) {
173   if (Idx > Record.size())
174     return true;
175 
176   Result.append(Record.begin() + Idx, Record.end());
177   return false;
178 }
179 
180 // Strip all the TBAA attachment for the module.
181 static void stripTBAA(Module *M) {
182   for (auto &F : *M) {
183     if (F.isMaterializable())
184       continue;
185     for (auto &I : instructions(F))
186       I.setMetadata(LLVMContext::MD_tbaa, nullptr);
187   }
188 }
189 
190 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the
191 /// "epoch" encoded in the bitcode, and return the producer name if any.
192 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) {
193   if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID))
194     return std::move(Err);
195 
196   // Read all the records.
197   SmallVector<uint64_t, 64> Record;
198 
199   std::string ProducerIdentification;
200 
201   while (true) {
202     BitstreamEntry Entry;
203     if (Error E = Stream.advance().moveInto(Entry))
204       return std::move(E);
205 
206     switch (Entry.Kind) {
207     default:
208     case BitstreamEntry::Error:
209       return error("Malformed block");
210     case BitstreamEntry::EndBlock:
211       return ProducerIdentification;
212     case BitstreamEntry::Record:
213       // The interesting case.
214       break;
215     }
216 
217     // Read a record.
218     Record.clear();
219     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
220     if (!MaybeBitCode)
221       return MaybeBitCode.takeError();
222     switch (MaybeBitCode.get()) {
223     default: // Default behavior: reject
224       return error("Invalid value");
225     case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N]
226       convertToString(Record, 0, ProducerIdentification);
227       break;
228     case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#]
229       unsigned epoch = (unsigned)Record[0];
230       if (epoch != bitc::BITCODE_CURRENT_EPOCH) {
231         return error(
232           Twine("Incompatible epoch: Bitcode '") + Twine(epoch) +
233           "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'");
234       }
235     }
236     }
237   }
238 }
239 
240 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) {
241   // We expect a number of well-defined blocks, though we don't necessarily
242   // need to understand them all.
243   while (true) {
244     if (Stream.AtEndOfStream())
245       return "";
246 
247     BitstreamEntry Entry;
248     if (Error E = Stream.advance().moveInto(Entry))
249       return std::move(E);
250 
251     switch (Entry.Kind) {
252     case BitstreamEntry::EndBlock:
253     case BitstreamEntry::Error:
254       return error("Malformed block");
255 
256     case BitstreamEntry::SubBlock:
257       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID)
258         return readIdentificationBlock(Stream);
259 
260       // Ignore other sub-blocks.
261       if (Error Err = Stream.SkipBlock())
262         return std::move(Err);
263       continue;
264     case BitstreamEntry::Record:
265       if (Error E = Stream.skipRecord(Entry.ID).takeError())
266         return std::move(E);
267       continue;
268     }
269   }
270 }
271 
272 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) {
273   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
274     return std::move(Err);
275 
276   SmallVector<uint64_t, 64> Record;
277   // Read all the records for this module.
278 
279   while (true) {
280     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
281     if (!MaybeEntry)
282       return MaybeEntry.takeError();
283     BitstreamEntry Entry = MaybeEntry.get();
284 
285     switch (Entry.Kind) {
286     case BitstreamEntry::SubBlock: // Handled for us already.
287     case BitstreamEntry::Error:
288       return error("Malformed block");
289     case BitstreamEntry::EndBlock:
290       return false;
291     case BitstreamEntry::Record:
292       // The interesting case.
293       break;
294     }
295 
296     // Read a record.
297     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
298     if (!MaybeRecord)
299       return MaybeRecord.takeError();
300     switch (MaybeRecord.get()) {
301     default:
302       break; // Default behavior, ignore unknown content.
303     case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
304       std::string S;
305       if (convertToString(Record, 0, S))
306         return error("Invalid section name record");
307       // Check for the i386 and other (x86_64, ARM) conventions
308       if (S.find("__DATA,__objc_catlist") != std::string::npos ||
309           S.find("__OBJC,__category") != std::string::npos)
310         return true;
311       break;
312     }
313     }
314     Record.clear();
315   }
316   llvm_unreachable("Exit infinite loop");
317 }
318 
319 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) {
320   // We expect a number of well-defined blocks, though we don't necessarily
321   // need to understand them all.
322   while (true) {
323     BitstreamEntry Entry;
324     if (Error E = Stream.advance().moveInto(Entry))
325       return std::move(E);
326 
327     switch (Entry.Kind) {
328     case BitstreamEntry::Error:
329       return error("Malformed block");
330     case BitstreamEntry::EndBlock:
331       return false;
332 
333     case BitstreamEntry::SubBlock:
334       if (Entry.ID == bitc::MODULE_BLOCK_ID)
335         return hasObjCCategoryInModule(Stream);
336 
337       // Ignore other sub-blocks.
338       if (Error Err = Stream.SkipBlock())
339         return std::move(Err);
340       continue;
341 
342     case BitstreamEntry::Record:
343       if (Error E = Stream.skipRecord(Entry.ID).takeError())
344         return std::move(E);
345       continue;
346     }
347   }
348 }
349 
350 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) {
351   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
352     return std::move(Err);
353 
354   SmallVector<uint64_t, 64> Record;
355 
356   std::string Triple;
357 
358   // Read all the records for this module.
359   while (true) {
360     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
361     if (!MaybeEntry)
362       return MaybeEntry.takeError();
363     BitstreamEntry Entry = MaybeEntry.get();
364 
365     switch (Entry.Kind) {
366     case BitstreamEntry::SubBlock: // Handled for us already.
367     case BitstreamEntry::Error:
368       return error("Malformed block");
369     case BitstreamEntry::EndBlock:
370       return Triple;
371     case BitstreamEntry::Record:
372       // The interesting case.
373       break;
374     }
375 
376     // Read a record.
377     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
378     if (!MaybeRecord)
379       return MaybeRecord.takeError();
380     switch (MaybeRecord.get()) {
381     default: break;  // Default behavior, ignore unknown content.
382     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
383       std::string S;
384       if (convertToString(Record, 0, S))
385         return error("Invalid triple record");
386       Triple = S;
387       break;
388     }
389     }
390     Record.clear();
391   }
392   llvm_unreachable("Exit infinite loop");
393 }
394 
395 static Expected<std::string> readTriple(BitstreamCursor &Stream) {
396   // We expect a number of well-defined blocks, though we don't necessarily
397   // need to understand them all.
398   while (true) {
399     Expected<BitstreamEntry> MaybeEntry = Stream.advance();
400     if (!MaybeEntry)
401       return MaybeEntry.takeError();
402     BitstreamEntry Entry = MaybeEntry.get();
403 
404     switch (Entry.Kind) {
405     case BitstreamEntry::Error:
406       return error("Malformed block");
407     case BitstreamEntry::EndBlock:
408       return "";
409 
410     case BitstreamEntry::SubBlock:
411       if (Entry.ID == bitc::MODULE_BLOCK_ID)
412         return readModuleTriple(Stream);
413 
414       // Ignore other sub-blocks.
415       if (Error Err = Stream.SkipBlock())
416         return std::move(Err);
417       continue;
418 
419     case BitstreamEntry::Record:
420       if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
421         continue;
422       else
423         return Skipped.takeError();
424     }
425   }
426 }
427 
428 namespace {
429 
430 class BitcodeReaderBase {
431 protected:
432   BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab)
433       : Stream(std::move(Stream)), Strtab(Strtab) {
434     this->Stream.setBlockInfo(&BlockInfo);
435   }
436 
437   BitstreamBlockInfo BlockInfo;
438   BitstreamCursor Stream;
439   StringRef Strtab;
440 
441   /// In version 2 of the bitcode we store names of global values and comdats in
442   /// a string table rather than in the VST.
443   bool UseStrtab = false;
444 
445   Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record);
446 
447   /// If this module uses a string table, pop the reference to the string table
448   /// and return the referenced string and the rest of the record. Otherwise
449   /// just return the record itself.
450   std::pair<StringRef, ArrayRef<uint64_t>>
451   readNameFromStrtab(ArrayRef<uint64_t> Record);
452 
453   Error readBlockInfo();
454 
455   // Contains an arbitrary and optional string identifying the bitcode producer
456   std::string ProducerIdentification;
457 
458   Error error(const Twine &Message);
459 };
460 
461 } // end anonymous namespace
462 
463 Error BitcodeReaderBase::error(const Twine &Message) {
464   std::string FullMsg = Message.str();
465   if (!ProducerIdentification.empty())
466     FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " +
467                LLVM_VERSION_STRING "')";
468   return ::error(FullMsg);
469 }
470 
471 Expected<unsigned>
472 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) {
473   if (Record.empty())
474     return error("Invalid version record");
475   unsigned ModuleVersion = Record[0];
476   if (ModuleVersion > 2)
477     return error("Invalid value");
478   UseStrtab = ModuleVersion >= 2;
479   return ModuleVersion;
480 }
481 
482 std::pair<StringRef, ArrayRef<uint64_t>>
483 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) {
484   if (!UseStrtab)
485     return {"", Record};
486   // Invalid reference. Let the caller complain about the record being empty.
487   if (Record[0] + Record[1] > Strtab.size())
488     return {"", {}};
489   return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)};
490 }
491 
492 namespace {
493 
494 /// This represents a constant expression or constant aggregate using a custom
495 /// structure internal to the bitcode reader. Later, this structure will be
496 /// expanded by materializeValue() either into a constant expression/aggregate,
497 /// or into an instruction sequence at the point of use. This allows us to
498 /// upgrade bitcode using constant expressions even if this kind of constant
499 /// expression is no longer supported.
500 class BitcodeConstant final : public Value,
501                               TrailingObjects<BitcodeConstant, unsigned> {
502   friend TrailingObjects;
503 
504   // Value subclass ID: Pick largest possible value to avoid any clashes.
505   static constexpr uint8_t SubclassID = 255;
506 
507 public:
508   // Opcodes used for non-expressions. This includes constant aggregates
509   // (struct, array, vector) that might need expansion, as well as non-leaf
510   // constants that don't need expansion (no_cfi, dso_local, blockaddress),
511   // but still go through BitcodeConstant to avoid different uselist orders
512   // between the two cases.
513   static constexpr uint8_t ConstantStructOpcode = 255;
514   static constexpr uint8_t ConstantArrayOpcode = 254;
515   static constexpr uint8_t ConstantVectorOpcode = 253;
516   static constexpr uint8_t NoCFIOpcode = 252;
517   static constexpr uint8_t DSOLocalEquivalentOpcode = 251;
518   static constexpr uint8_t BlockAddressOpcode = 250;
519   static constexpr uint8_t FirstSpecialOpcode = BlockAddressOpcode;
520 
521   // Separate struct to make passing different number of parameters to
522   // BitcodeConstant::create() more convenient.
523   struct ExtraInfo {
524     uint8_t Opcode;
525     uint8_t Flags;
526     unsigned BlockAddressBB = 0;
527     Type *SrcElemTy = nullptr;
528     std::optional<ConstantRange> InRange;
529 
530     ExtraInfo(uint8_t Opcode, uint8_t Flags = 0, Type *SrcElemTy = nullptr,
531               std::optional<ConstantRange> InRange = std::nullopt)
532         : Opcode(Opcode), Flags(Flags), SrcElemTy(SrcElemTy),
533           InRange(std::move(InRange)) {}
534 
535     ExtraInfo(uint8_t Opcode, uint8_t Flags, unsigned BlockAddressBB)
536         : Opcode(Opcode), Flags(Flags), BlockAddressBB(BlockAddressBB) {}
537   };
538 
539   uint8_t Opcode;
540   uint8_t Flags;
541   unsigned NumOperands;
542   unsigned BlockAddressBB;
543   Type *SrcElemTy; // GEP source element type.
544   std::optional<ConstantRange> InRange; // GEP inrange attribute.
545 
546 private:
547   BitcodeConstant(Type *Ty, const ExtraInfo &Info, ArrayRef<unsigned> OpIDs)
548       : Value(Ty, SubclassID), Opcode(Info.Opcode), Flags(Info.Flags),
549         NumOperands(OpIDs.size()), BlockAddressBB(Info.BlockAddressBB),
550         SrcElemTy(Info.SrcElemTy), InRange(Info.InRange) {
551     std::uninitialized_copy(OpIDs.begin(), OpIDs.end(),
552                             getTrailingObjects<unsigned>());
553   }
554 
555   BitcodeConstant &operator=(const BitcodeConstant &) = delete;
556 
557 public:
558   static BitcodeConstant *create(BumpPtrAllocator &A, Type *Ty,
559                                  const ExtraInfo &Info,
560                                  ArrayRef<unsigned> OpIDs) {
561     void *Mem = A.Allocate(totalSizeToAlloc<unsigned>(OpIDs.size()),
562                            alignof(BitcodeConstant));
563     return new (Mem) BitcodeConstant(Ty, Info, OpIDs);
564   }
565 
566   static bool classof(const Value *V) { return V->getValueID() == SubclassID; }
567 
568   ArrayRef<unsigned> getOperandIDs() const {
569     return ArrayRef(getTrailingObjects<unsigned>(), NumOperands);
570   }
571 
572   std::optional<ConstantRange> getInRange() const {
573     assert(Opcode == Instruction::GetElementPtr);
574     return InRange;
575   }
576 
577   const char *getOpcodeName() const {
578     return Instruction::getOpcodeName(Opcode);
579   }
580 };
581 
582 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer {
583   LLVMContext &Context;
584   Module *TheModule = nullptr;
585   // Next offset to start scanning for lazy parsing of function bodies.
586   uint64_t NextUnreadBit = 0;
587   // Last function offset found in the VST.
588   uint64_t LastFunctionBlockBit = 0;
589   bool SeenValueSymbolTable = false;
590   uint64_t VSTOffset = 0;
591 
592   std::vector<std::string> SectionTable;
593   std::vector<std::string> GCTable;
594 
595   std::vector<Type *> TypeList;
596   /// Track type IDs of contained types. Order is the same as the contained
597   /// types of a Type*. This is used during upgrades of typed pointer IR in
598   /// opaque pointer mode.
599   DenseMap<unsigned, SmallVector<unsigned, 1>> ContainedTypeIDs;
600   /// In some cases, we need to create a type ID for a type that was not
601   /// explicitly encoded in the bitcode, or we don't know about at the current
602   /// point. For example, a global may explicitly encode the value type ID, but
603   /// not have a type ID for the pointer to value type, for which we create a
604   /// virtual type ID instead. This map stores the new type ID that was created
605   /// for the given pair of Type and contained type ID.
606   DenseMap<std::pair<Type *, unsigned>, unsigned> VirtualTypeIDs;
607   DenseMap<Function *, unsigned> FunctionTypeIDs;
608   /// Allocator for BitcodeConstants. This should come before ValueList,
609   /// because the ValueList might hold ValueHandles to these constants, so
610   /// ValueList must be destroyed before Alloc.
611   BumpPtrAllocator Alloc;
612   BitcodeReaderValueList ValueList;
613   std::optional<MetadataLoader> MDLoader;
614   std::vector<Comdat *> ComdatList;
615   DenseSet<GlobalObject *> ImplicitComdatObjects;
616   SmallVector<Instruction *, 64> InstructionList;
617 
618   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits;
619   std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInits;
620 
621   struct FunctionOperandInfo {
622     Function *F;
623     unsigned PersonalityFn;
624     unsigned Prefix;
625     unsigned Prologue;
626   };
627   std::vector<FunctionOperandInfo> FunctionOperands;
628 
629   /// The set of attributes by index.  Index zero in the file is for null, and
630   /// is thus not represented here.  As such all indices are off by one.
631   std::vector<AttributeList> MAttributes;
632 
633   /// The set of attribute groups.
634   std::map<unsigned, AttributeList> MAttributeGroups;
635 
636   /// While parsing a function body, this is a list of the basic blocks for the
637   /// function.
638   std::vector<BasicBlock*> FunctionBBs;
639 
640   // When reading the module header, this list is populated with functions that
641   // have bodies later in the file.
642   std::vector<Function*> FunctionsWithBodies;
643 
644   // When intrinsic functions are encountered which require upgrading they are
645   // stored here with their replacement function.
646   using UpdatedIntrinsicMap = DenseMap<Function *, Function *>;
647   UpdatedIntrinsicMap UpgradedIntrinsics;
648 
649   // Several operations happen after the module header has been read, but
650   // before function bodies are processed. This keeps track of whether
651   // we've done this yet.
652   bool SeenFirstFunctionBody = false;
653 
654   /// When function bodies are initially scanned, this map contains info about
655   /// where to find deferred function body in the stream.
656   DenseMap<Function*, uint64_t> DeferredFunctionInfo;
657 
658   /// When Metadata block is initially scanned when parsing the module, we may
659   /// choose to defer parsing of the metadata. This vector contains info about
660   /// which Metadata blocks are deferred.
661   std::vector<uint64_t> DeferredMetadataInfo;
662 
663   /// These are basic blocks forward-referenced by block addresses.  They are
664   /// inserted lazily into functions when they're loaded.  The basic block ID is
665   /// its index into the vector.
666   DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs;
667   std::deque<Function *> BasicBlockFwdRefQueue;
668 
669   /// These are Functions that contain BlockAddresses which refer a different
670   /// Function. When parsing the different Function, queue Functions that refer
671   /// to the different Function. Those Functions must be materialized in order
672   /// to resolve their BlockAddress constants before the different Function
673   /// gets moved into another Module.
674   std::vector<Function *> BackwardRefFunctions;
675 
676   /// Indicates that we are using a new encoding for instruction operands where
677   /// most operands in the current FUNCTION_BLOCK are encoded relative to the
678   /// instruction number, for a more compact encoding.  Some instruction
679   /// operands are not relative to the instruction ID: basic block numbers, and
680   /// types. Once the old style function blocks have been phased out, we would
681   /// not need this flag.
682   bool UseRelativeIDs = false;
683 
684   /// True if all functions will be materialized, negating the need to process
685   /// (e.g.) blockaddress forward references.
686   bool WillMaterializeAllForwardRefs = false;
687 
688   /// Tracks whether we have seen debug intrinsics or records in this bitcode;
689   /// seeing both in a single module is currently a fatal error.
690   bool SeenDebugIntrinsic = false;
691   bool SeenDebugRecord = false;
692 
693   bool StripDebugInfo = false;
694   TBAAVerifier TBAAVerifyHelper;
695 
696   std::vector<std::string> BundleTags;
697   SmallVector<SyncScope::ID, 8> SSIDs;
698 
699   std::optional<ValueTypeCallbackTy> ValueTypeCallback;
700 
701 public:
702   BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
703                 StringRef ProducerIdentification, LLVMContext &Context);
704 
705   Error materializeForwardReferencedFunctions();
706 
707   Error materialize(GlobalValue *GV) override;
708   Error materializeModule() override;
709   std::vector<StructType *> getIdentifiedStructTypes() const override;
710 
711   /// Main interface to parsing a bitcode buffer.
712   /// \returns true if an error occurred.
713   Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
714                          bool IsImporting, ParserCallbacks Callbacks = {});
715 
716   static uint64_t decodeSignRotatedValue(uint64_t V);
717 
718   /// Materialize any deferred Metadata block.
719   Error materializeMetadata() override;
720 
721   void setStripDebugInfo() override;
722 
723 private:
724   std::vector<StructType *> IdentifiedStructTypes;
725   StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
726   StructType *createIdentifiedStructType(LLVMContext &Context);
727 
728   static constexpr unsigned InvalidTypeID = ~0u;
729 
730   Type *getTypeByID(unsigned ID);
731   Type *getPtrElementTypeByID(unsigned ID);
732   unsigned getContainedTypeID(unsigned ID, unsigned Idx = 0);
733   unsigned getVirtualTypeID(Type *Ty, ArrayRef<unsigned> ContainedTypeIDs = {});
734 
735   void callValueTypeCallback(Value *F, unsigned TypeID);
736   Expected<Value *> materializeValue(unsigned ValID, BasicBlock *InsertBB);
737   Expected<Constant *> getValueForInitializer(unsigned ID);
738 
739   Value *getFnValueByID(unsigned ID, Type *Ty, unsigned TyID,
740                         BasicBlock *ConstExprInsertBB) {
741     if (Ty && Ty->isMetadataTy())
742       return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
743     return ValueList.getValueFwdRef(ID, Ty, TyID, ConstExprInsertBB);
744   }
745 
746   Metadata *getFnMetadataByID(unsigned ID) {
747     return MDLoader->getMetadataFwdRefOrLoad(ID);
748   }
749 
750   BasicBlock *getBasicBlock(unsigned ID) const {
751     if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
752     return FunctionBBs[ID];
753   }
754 
755   AttributeList getAttributes(unsigned i) const {
756     if (i-1 < MAttributes.size())
757       return MAttributes[i-1];
758     return AttributeList();
759   }
760 
761   /// Read a value/type pair out of the specified record from slot 'Slot'.
762   /// Increment Slot past the number of slots used in the record. Return true on
763   /// failure.
764   bool getValueTypePair(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
765                         unsigned InstNum, Value *&ResVal, unsigned &TypeID,
766                         BasicBlock *ConstExprInsertBB) {
767     if (Slot == Record.size()) return true;
768     unsigned ValNo = (unsigned)Record[Slot++];
769     // Adjust the ValNo, if it was encoded relative to the InstNum.
770     if (UseRelativeIDs)
771       ValNo = InstNum - ValNo;
772     if (ValNo < InstNum) {
773       // If this is not a forward reference, just return the value we already
774       // have.
775       TypeID = ValueList.getTypeID(ValNo);
776       ResVal = getFnValueByID(ValNo, nullptr, TypeID, ConstExprInsertBB);
777       assert((!ResVal || ResVal->getType() == getTypeByID(TypeID)) &&
778              "Incorrect type ID stored for value");
779       return ResVal == nullptr;
780     }
781     if (Slot == Record.size())
782       return true;
783 
784     TypeID = (unsigned)Record[Slot++];
785     ResVal = getFnValueByID(ValNo, getTypeByID(TypeID), TypeID,
786                             ConstExprInsertBB);
787     return ResVal == nullptr;
788   }
789 
790   /// Read a value out of the specified record from slot 'Slot'. Increment Slot
791   /// past the number of slots used by the value in the record. Return true if
792   /// there is an error.
793   bool popValue(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
794                 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal,
795                 BasicBlock *ConstExprInsertBB) {
796     if (getValue(Record, Slot, InstNum, Ty, TyID, ResVal, ConstExprInsertBB))
797       return true;
798     // All values currently take a single record slot.
799     ++Slot;
800     return false;
801   }
802 
803   /// Like popValue, but does not increment the Slot number.
804   bool getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
805                 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal,
806                 BasicBlock *ConstExprInsertBB) {
807     ResVal = getValue(Record, Slot, InstNum, Ty, TyID, ConstExprInsertBB);
808     return ResVal == nullptr;
809   }
810 
811   /// Version of getValue that returns ResVal directly, or 0 if there is an
812   /// error.
813   Value *getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
814                   unsigned InstNum, Type *Ty, unsigned TyID,
815                   BasicBlock *ConstExprInsertBB) {
816     if (Slot == Record.size()) return nullptr;
817     unsigned ValNo = (unsigned)Record[Slot];
818     // Adjust the ValNo, if it was encoded relative to the InstNum.
819     if (UseRelativeIDs)
820       ValNo = InstNum - ValNo;
821     return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB);
822   }
823 
824   /// Like getValue, but decodes signed VBRs.
825   Value *getValueSigned(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
826                         unsigned InstNum, Type *Ty, unsigned TyID,
827                         BasicBlock *ConstExprInsertBB) {
828     if (Slot == Record.size()) return nullptr;
829     unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
830     // Adjust the ValNo, if it was encoded relative to the InstNum.
831     if (UseRelativeIDs)
832       ValNo = InstNum - ValNo;
833     return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB);
834   }
835 
836   Expected<ConstantRange> readConstantRange(ArrayRef<uint64_t> Record,
837                                             unsigned &OpNum) {
838     if (Record.size() - OpNum < 3)
839       return error("Too few records for range");
840     unsigned BitWidth = Record[OpNum++];
841     if (BitWidth > 64) {
842       unsigned LowerActiveWords = Record[OpNum];
843       unsigned UpperActiveWords = Record[OpNum++] >> 32;
844       if (Record.size() - OpNum < LowerActiveWords + UpperActiveWords)
845         return error("Too few records for range");
846       APInt Lower =
847           readWideAPInt(ArrayRef(&Record[OpNum], LowerActiveWords), BitWidth);
848       OpNum += LowerActiveWords;
849       APInt Upper =
850           readWideAPInt(ArrayRef(&Record[OpNum], UpperActiveWords), BitWidth);
851       OpNum += UpperActiveWords;
852       return ConstantRange(Lower, Upper);
853     } else {
854       int64_t Start = BitcodeReader::decodeSignRotatedValue(Record[OpNum++]);
855       int64_t End = BitcodeReader::decodeSignRotatedValue(Record[OpNum++]);
856       return ConstantRange(APInt(BitWidth, Start), APInt(BitWidth, End));
857     }
858   }
859 
860   /// Upgrades old-style typeless byval/sret/inalloca attributes by adding the
861   /// corresponding argument's pointee type. Also upgrades intrinsics that now
862   /// require an elementtype attribute.
863   Error propagateAttributeTypes(CallBase *CB, ArrayRef<unsigned> ArgsTys);
864 
865   /// Converts alignment exponent (i.e. power of two (or zero)) to the
866   /// corresponding alignment to use. If alignment is too large, returns
867   /// a corresponding error code.
868   Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment);
869   Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
870   Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false,
871                     ParserCallbacks Callbacks = {});
872 
873   Error parseComdatRecord(ArrayRef<uint64_t> Record);
874   Error parseGlobalVarRecord(ArrayRef<uint64_t> Record);
875   Error parseFunctionRecord(ArrayRef<uint64_t> Record);
876   Error parseGlobalIndirectSymbolRecord(unsigned BitCode,
877                                         ArrayRef<uint64_t> Record);
878 
879   Error parseAttributeBlock();
880   Error parseAttributeGroupBlock();
881   Error parseTypeTable();
882   Error parseTypeTableBody();
883   Error parseOperandBundleTags();
884   Error parseSyncScopeNames();
885 
886   Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record,
887                                 unsigned NameIndex, Triple &TT);
888   void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F,
889                                ArrayRef<uint64_t> Record);
890   Error parseValueSymbolTable(uint64_t Offset = 0);
891   Error parseGlobalValueSymbolTable();
892   Error parseConstants();
893   Error rememberAndSkipFunctionBodies();
894   Error rememberAndSkipFunctionBody();
895   /// Save the positions of the Metadata blocks and skip parsing the blocks.
896   Error rememberAndSkipMetadata();
897   Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType);
898   Error parseFunctionBody(Function *F);
899   Error globalCleanup();
900   Error resolveGlobalAndIndirectSymbolInits();
901   Error parseUseLists();
902   Error findFunctionInStream(
903       Function *F,
904       DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
905 
906   SyncScope::ID getDecodedSyncScopeID(unsigned Val);
907 };
908 
909 /// Class to manage reading and parsing function summary index bitcode
910 /// files/sections.
911 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase {
912   /// The module index built during parsing.
913   ModuleSummaryIndex &TheIndex;
914 
915   /// Indicates whether we have encountered a global value summary section
916   /// yet during parsing.
917   bool SeenGlobalValSummary = false;
918 
919   /// Indicates whether we have already parsed the VST, used for error checking.
920   bool SeenValueSymbolTable = false;
921 
922   /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record.
923   /// Used to enable on-demand parsing of the VST.
924   uint64_t VSTOffset = 0;
925 
926   // Map to save ValueId to ValueInfo association that was recorded in the
927   // ValueSymbolTable. It is used after the VST is parsed to convert
928   // call graph edges read from the function summary from referencing
929   // callees by their ValueId to using the ValueInfo instead, which is how
930   // they are recorded in the summary index being built.
931   // We save a GUID which refers to the same global as the ValueInfo, but
932   // ignoring the linkage, i.e. for values other than local linkage they are
933   // identical (this is the second tuple member).
934   // The third tuple member is the real GUID of the ValueInfo.
935   DenseMap<unsigned,
936            std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID>>
937       ValueIdToValueInfoMap;
938 
939   /// Map populated during module path string table parsing, from the
940   /// module ID to a string reference owned by the index's module
941   /// path string table, used to correlate with combined index
942   /// summary records.
943   DenseMap<uint64_t, StringRef> ModuleIdMap;
944 
945   /// Original source file name recorded in a bitcode record.
946   std::string SourceFileName;
947 
948   /// The string identifier given to this module by the client, normally the
949   /// path to the bitcode file.
950   StringRef ModulePath;
951 
952   /// Callback to ask whether a symbol is the prevailing copy when invoked
953   /// during combined index building.
954   std::function<bool(GlobalValue::GUID)> IsPrevailing;
955 
956   /// Saves the stack ids from the STACK_IDS record to consult when adding stack
957   /// ids from the lists in the callsite and alloc entries to the index.
958   std::vector<uint64_t> StackIds;
959 
960 public:
961   ModuleSummaryIndexBitcodeReader(
962       BitstreamCursor Stream, StringRef Strtab, ModuleSummaryIndex &TheIndex,
963       StringRef ModulePath,
964       std::function<bool(GlobalValue::GUID)> IsPrevailing = nullptr);
965 
966   Error parseModule();
967 
968 private:
969   void setValueGUID(uint64_t ValueID, StringRef ValueName,
970                     GlobalValue::LinkageTypes Linkage,
971                     StringRef SourceFileName);
972   Error parseValueSymbolTable(
973       uint64_t Offset,
974       DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap);
975   std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record);
976   std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record,
977                                                     bool IsOldProfileFormat,
978                                                     bool HasProfile,
979                                                     bool HasRelBF);
980   Error parseEntireSummary(unsigned ID);
981   Error parseModuleStringTable();
982   void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record);
983   void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot,
984                                        TypeIdCompatibleVtableInfo &TypeId);
985   std::vector<FunctionSummary::ParamAccess>
986   parseParamAccesses(ArrayRef<uint64_t> Record);
987 
988   template <bool AllowNullValueInfo = false>
989   std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID>
990   getValueInfoFromValueId(unsigned ValueId);
991 
992   void addThisModule();
993   ModuleSummaryIndex::ModuleInfo *getThisModule();
994 };
995 
996 } // end anonymous namespace
997 
998 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx,
999                                                     Error Err) {
1000   if (Err) {
1001     std::error_code EC;
1002     handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) {
1003       EC = EIB.convertToErrorCode();
1004       Ctx.emitError(EIB.message());
1005     });
1006     return EC;
1007   }
1008   return std::error_code();
1009 }
1010 
1011 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
1012                              StringRef ProducerIdentification,
1013                              LLVMContext &Context)
1014     : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context),
1015       ValueList(this->Stream.SizeInBytes(),
1016                 [this](unsigned ValID, BasicBlock *InsertBB) {
1017                   return materializeValue(ValID, InsertBB);
1018                 }) {
1019   this->ProducerIdentification = std::string(ProducerIdentification);
1020 }
1021 
1022 Error BitcodeReader::materializeForwardReferencedFunctions() {
1023   if (WillMaterializeAllForwardRefs)
1024     return Error::success();
1025 
1026   // Prevent recursion.
1027   WillMaterializeAllForwardRefs = true;
1028 
1029   while (!BasicBlockFwdRefQueue.empty()) {
1030     Function *F = BasicBlockFwdRefQueue.front();
1031     BasicBlockFwdRefQueue.pop_front();
1032     assert(F && "Expected valid function");
1033     if (!BasicBlockFwdRefs.count(F))
1034       // Already materialized.
1035       continue;
1036 
1037     // Check for a function that isn't materializable to prevent an infinite
1038     // loop.  When parsing a blockaddress stored in a global variable, there
1039     // isn't a trivial way to check if a function will have a body without a
1040     // linear search through FunctionsWithBodies, so just check it here.
1041     if (!F->isMaterializable())
1042       return error("Never resolved function from blockaddress");
1043 
1044     // Try to materialize F.
1045     if (Error Err = materialize(F))
1046       return Err;
1047   }
1048   assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
1049 
1050   for (Function *F : BackwardRefFunctions)
1051     if (Error Err = materialize(F))
1052       return Err;
1053   BackwardRefFunctions.clear();
1054 
1055   // Reset state.
1056   WillMaterializeAllForwardRefs = false;
1057   return Error::success();
1058 }
1059 
1060 //===----------------------------------------------------------------------===//
1061 //  Helper functions to implement forward reference resolution, etc.
1062 //===----------------------------------------------------------------------===//
1063 
1064 static bool hasImplicitComdat(size_t Val) {
1065   switch (Val) {
1066   default:
1067     return false;
1068   case 1:  // Old WeakAnyLinkage
1069   case 4:  // Old LinkOnceAnyLinkage
1070   case 10: // Old WeakODRLinkage
1071   case 11: // Old LinkOnceODRLinkage
1072     return true;
1073   }
1074 }
1075 
1076 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
1077   switch (Val) {
1078   default: // Map unknown/new linkages to external
1079   case 0:
1080     return GlobalValue::ExternalLinkage;
1081   case 2:
1082     return GlobalValue::AppendingLinkage;
1083   case 3:
1084     return GlobalValue::InternalLinkage;
1085   case 5:
1086     return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
1087   case 6:
1088     return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
1089   case 7:
1090     return GlobalValue::ExternalWeakLinkage;
1091   case 8:
1092     return GlobalValue::CommonLinkage;
1093   case 9:
1094     return GlobalValue::PrivateLinkage;
1095   case 12:
1096     return GlobalValue::AvailableExternallyLinkage;
1097   case 13:
1098     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
1099   case 14:
1100     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
1101   case 15:
1102     return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
1103   case 1: // Old value with implicit comdat.
1104   case 16:
1105     return GlobalValue::WeakAnyLinkage;
1106   case 10: // Old value with implicit comdat.
1107   case 17:
1108     return GlobalValue::WeakODRLinkage;
1109   case 4: // Old value with implicit comdat.
1110   case 18:
1111     return GlobalValue::LinkOnceAnyLinkage;
1112   case 11: // Old value with implicit comdat.
1113   case 19:
1114     return GlobalValue::LinkOnceODRLinkage;
1115   }
1116 }
1117 
1118 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) {
1119   FunctionSummary::FFlags Flags;
1120   Flags.ReadNone = RawFlags & 0x1;
1121   Flags.ReadOnly = (RawFlags >> 1) & 0x1;
1122   Flags.NoRecurse = (RawFlags >> 2) & 0x1;
1123   Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1;
1124   Flags.NoInline = (RawFlags >> 4) & 0x1;
1125   Flags.AlwaysInline = (RawFlags >> 5) & 0x1;
1126   Flags.NoUnwind = (RawFlags >> 6) & 0x1;
1127   Flags.MayThrow = (RawFlags >> 7) & 0x1;
1128   Flags.HasUnknownCall = (RawFlags >> 8) & 0x1;
1129   Flags.MustBeUnreachable = (RawFlags >> 9) & 0x1;
1130   return Flags;
1131 }
1132 
1133 // Decode the flags for GlobalValue in the summary. The bits for each attribute:
1134 //
1135 // linkage: [0,4), notEligibleToImport: 4, live: 5, local: 6, canAutoHide: 7,
1136 // visibility: [8, 10).
1137 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags,
1138                                                             uint64_t Version) {
1139   // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage
1140   // like getDecodedLinkage() above. Any future change to the linkage enum and
1141   // to getDecodedLinkage() will need to be taken into account here as above.
1142   auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits
1143   auto Visibility = GlobalValue::VisibilityTypes((RawFlags >> 8) & 3); // 2 bits
1144   auto IK = GlobalValueSummary::ImportKind((RawFlags >> 10) & 1);      // 1 bit
1145   RawFlags = RawFlags >> 4;
1146   bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3;
1147   // The Live flag wasn't introduced until version 3. For dead stripping
1148   // to work correctly on earlier versions, we must conservatively treat all
1149   // values as live.
1150   bool Live = (RawFlags & 0x2) || Version < 3;
1151   bool Local = (RawFlags & 0x4);
1152   bool AutoHide = (RawFlags & 0x8);
1153 
1154   return GlobalValueSummary::GVFlags(Linkage, Visibility, NotEligibleToImport,
1155                                      Live, Local, AutoHide, IK);
1156 }
1157 
1158 // Decode the flags for GlobalVariable in the summary
1159 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) {
1160   return GlobalVarSummary::GVarFlags(
1161       (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false,
1162       (RawFlags & 0x4) ? true : false,
1163       (GlobalObject::VCallVisibility)(RawFlags >> 3));
1164 }
1165 
1166 static std::pair<CalleeInfo::HotnessType, bool>
1167 getDecodedHotnessCallEdgeInfo(uint64_t RawFlags) {
1168   CalleeInfo::HotnessType Hotness =
1169       static_cast<CalleeInfo::HotnessType>(RawFlags & 0x7); // 3 bits
1170   bool HasTailCall = (RawFlags & 0x8);                      // 1 bit
1171   return {Hotness, HasTailCall};
1172 }
1173 
1174 static void getDecodedRelBFCallEdgeInfo(uint64_t RawFlags, uint64_t &RelBF,
1175                                         bool &HasTailCall) {
1176   static constexpr uint64_t RelBlockFreqMask =
1177       (1 << CalleeInfo::RelBlockFreqBits) - 1;
1178   RelBF = RawFlags & RelBlockFreqMask; // RelBlockFreqBits bits
1179   HasTailCall = (RawFlags & (1 << CalleeInfo::RelBlockFreqBits)); // 1 bit
1180 }
1181 
1182 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) {
1183   switch (Val) {
1184   default: // Map unknown visibilities to default.
1185   case 0: return GlobalValue::DefaultVisibility;
1186   case 1: return GlobalValue::HiddenVisibility;
1187   case 2: return GlobalValue::ProtectedVisibility;
1188   }
1189 }
1190 
1191 static GlobalValue::DLLStorageClassTypes
1192 getDecodedDLLStorageClass(unsigned Val) {
1193   switch (Val) {
1194   default: // Map unknown values to default.
1195   case 0: return GlobalValue::DefaultStorageClass;
1196   case 1: return GlobalValue::DLLImportStorageClass;
1197   case 2: return GlobalValue::DLLExportStorageClass;
1198   }
1199 }
1200 
1201 static bool getDecodedDSOLocal(unsigned Val) {
1202   switch(Val) {
1203   default: // Map unknown values to preemptable.
1204   case 0:  return false;
1205   case 1:  return true;
1206   }
1207 }
1208 
1209 static std::optional<CodeModel::Model> getDecodedCodeModel(unsigned Val) {
1210   switch (Val) {
1211   case 1:
1212     return CodeModel::Tiny;
1213   case 2:
1214     return CodeModel::Small;
1215   case 3:
1216     return CodeModel::Kernel;
1217   case 4:
1218     return CodeModel::Medium;
1219   case 5:
1220     return CodeModel::Large;
1221   }
1222 
1223   return {};
1224 }
1225 
1226 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) {
1227   switch (Val) {
1228     case 0: return GlobalVariable::NotThreadLocal;
1229     default: // Map unknown non-zero value to general dynamic.
1230     case 1: return GlobalVariable::GeneralDynamicTLSModel;
1231     case 2: return GlobalVariable::LocalDynamicTLSModel;
1232     case 3: return GlobalVariable::InitialExecTLSModel;
1233     case 4: return GlobalVariable::LocalExecTLSModel;
1234   }
1235 }
1236 
1237 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) {
1238   switch (Val) {
1239     default: // Map unknown to UnnamedAddr::None.
1240     case 0: return GlobalVariable::UnnamedAddr::None;
1241     case 1: return GlobalVariable::UnnamedAddr::Global;
1242     case 2: return GlobalVariable::UnnamedAddr::Local;
1243   }
1244 }
1245 
1246 static int getDecodedCastOpcode(unsigned Val) {
1247   switch (Val) {
1248   default: return -1;
1249   case bitc::CAST_TRUNC   : return Instruction::Trunc;
1250   case bitc::CAST_ZEXT    : return Instruction::ZExt;
1251   case bitc::CAST_SEXT    : return Instruction::SExt;
1252   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
1253   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
1254   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
1255   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
1256   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
1257   case bitc::CAST_FPEXT   : return Instruction::FPExt;
1258   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
1259   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
1260   case bitc::CAST_BITCAST : return Instruction::BitCast;
1261   case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
1262   }
1263 }
1264 
1265 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) {
1266   bool IsFP = Ty->isFPOrFPVectorTy();
1267   // UnOps are only valid for int/fp or vector of int/fp types
1268   if (!IsFP && !Ty->isIntOrIntVectorTy())
1269     return -1;
1270 
1271   switch (Val) {
1272   default:
1273     return -1;
1274   case bitc::UNOP_FNEG:
1275     return IsFP ? Instruction::FNeg : -1;
1276   }
1277 }
1278 
1279 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
1280   bool IsFP = Ty->isFPOrFPVectorTy();
1281   // BinOps are only valid for int/fp or vector of int/fp types
1282   if (!IsFP && !Ty->isIntOrIntVectorTy())
1283     return -1;
1284 
1285   switch (Val) {
1286   default:
1287     return -1;
1288   case bitc::BINOP_ADD:
1289     return IsFP ? Instruction::FAdd : Instruction::Add;
1290   case bitc::BINOP_SUB:
1291     return IsFP ? Instruction::FSub : Instruction::Sub;
1292   case bitc::BINOP_MUL:
1293     return IsFP ? Instruction::FMul : Instruction::Mul;
1294   case bitc::BINOP_UDIV:
1295     return IsFP ? -1 : Instruction::UDiv;
1296   case bitc::BINOP_SDIV:
1297     return IsFP ? Instruction::FDiv : Instruction::SDiv;
1298   case bitc::BINOP_UREM:
1299     return IsFP ? -1 : Instruction::URem;
1300   case bitc::BINOP_SREM:
1301     return IsFP ? Instruction::FRem : Instruction::SRem;
1302   case bitc::BINOP_SHL:
1303     return IsFP ? -1 : Instruction::Shl;
1304   case bitc::BINOP_LSHR:
1305     return IsFP ? -1 : Instruction::LShr;
1306   case bitc::BINOP_ASHR:
1307     return IsFP ? -1 : Instruction::AShr;
1308   case bitc::BINOP_AND:
1309     return IsFP ? -1 : Instruction::And;
1310   case bitc::BINOP_OR:
1311     return IsFP ? -1 : Instruction::Or;
1312   case bitc::BINOP_XOR:
1313     return IsFP ? -1 : Instruction::Xor;
1314   }
1315 }
1316 
1317 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) {
1318   switch (Val) {
1319   default: return AtomicRMWInst::BAD_BINOP;
1320   case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
1321   case bitc::RMW_ADD: return AtomicRMWInst::Add;
1322   case bitc::RMW_SUB: return AtomicRMWInst::Sub;
1323   case bitc::RMW_AND: return AtomicRMWInst::And;
1324   case bitc::RMW_NAND: return AtomicRMWInst::Nand;
1325   case bitc::RMW_OR: return AtomicRMWInst::Or;
1326   case bitc::RMW_XOR: return AtomicRMWInst::Xor;
1327   case bitc::RMW_MAX: return AtomicRMWInst::Max;
1328   case bitc::RMW_MIN: return AtomicRMWInst::Min;
1329   case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
1330   case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
1331   case bitc::RMW_FADD: return AtomicRMWInst::FAdd;
1332   case bitc::RMW_FSUB: return AtomicRMWInst::FSub;
1333   case bitc::RMW_FMAX: return AtomicRMWInst::FMax;
1334   case bitc::RMW_FMIN: return AtomicRMWInst::FMin;
1335   case bitc::RMW_UINC_WRAP:
1336     return AtomicRMWInst::UIncWrap;
1337   case bitc::RMW_UDEC_WRAP:
1338     return AtomicRMWInst::UDecWrap;
1339   }
1340 }
1341 
1342 static AtomicOrdering getDecodedOrdering(unsigned Val) {
1343   switch (Val) {
1344   case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic;
1345   case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered;
1346   case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic;
1347   case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire;
1348   case bitc::ORDERING_RELEASE: return AtomicOrdering::Release;
1349   case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease;
1350   default: // Map unknown orderings to sequentially-consistent.
1351   case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent;
1352   }
1353 }
1354 
1355 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
1356   switch (Val) {
1357   default: // Map unknown selection kinds to any.
1358   case bitc::COMDAT_SELECTION_KIND_ANY:
1359     return Comdat::Any;
1360   case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
1361     return Comdat::ExactMatch;
1362   case bitc::COMDAT_SELECTION_KIND_LARGEST:
1363     return Comdat::Largest;
1364   case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
1365     return Comdat::NoDeduplicate;
1366   case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
1367     return Comdat::SameSize;
1368   }
1369 }
1370 
1371 static FastMathFlags getDecodedFastMathFlags(unsigned Val) {
1372   FastMathFlags FMF;
1373   if (0 != (Val & bitc::UnsafeAlgebra))
1374     FMF.setFast();
1375   if (0 != (Val & bitc::AllowReassoc))
1376     FMF.setAllowReassoc();
1377   if (0 != (Val & bitc::NoNaNs))
1378     FMF.setNoNaNs();
1379   if (0 != (Val & bitc::NoInfs))
1380     FMF.setNoInfs();
1381   if (0 != (Val & bitc::NoSignedZeros))
1382     FMF.setNoSignedZeros();
1383   if (0 != (Val & bitc::AllowReciprocal))
1384     FMF.setAllowReciprocal();
1385   if (0 != (Val & bitc::AllowContract))
1386     FMF.setAllowContract(true);
1387   if (0 != (Val & bitc::ApproxFunc))
1388     FMF.setApproxFunc();
1389   return FMF;
1390 }
1391 
1392 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) {
1393   // A GlobalValue with local linkage cannot have a DLL storage class.
1394   if (GV->hasLocalLinkage())
1395     return;
1396   switch (Val) {
1397   case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
1398   case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
1399   }
1400 }
1401 
1402 Type *BitcodeReader::getTypeByID(unsigned ID) {
1403   // The type table size is always specified correctly.
1404   if (ID >= TypeList.size())
1405     return nullptr;
1406 
1407   if (Type *Ty = TypeList[ID])
1408     return Ty;
1409 
1410   // If we have a forward reference, the only possible case is when it is to a
1411   // named struct.  Just create a placeholder for now.
1412   return TypeList[ID] = createIdentifiedStructType(Context);
1413 }
1414 
1415 unsigned BitcodeReader::getContainedTypeID(unsigned ID, unsigned Idx) {
1416   auto It = ContainedTypeIDs.find(ID);
1417   if (It == ContainedTypeIDs.end())
1418     return InvalidTypeID;
1419 
1420   if (Idx >= It->second.size())
1421     return InvalidTypeID;
1422 
1423   return It->second[Idx];
1424 }
1425 
1426 Type *BitcodeReader::getPtrElementTypeByID(unsigned ID) {
1427   if (ID >= TypeList.size())
1428     return nullptr;
1429 
1430   Type *Ty = TypeList[ID];
1431   if (!Ty->isPointerTy())
1432     return nullptr;
1433 
1434   return getTypeByID(getContainedTypeID(ID, 0));
1435 }
1436 
1437 unsigned BitcodeReader::getVirtualTypeID(Type *Ty,
1438                                          ArrayRef<unsigned> ChildTypeIDs) {
1439   unsigned ChildTypeID = ChildTypeIDs.empty() ? InvalidTypeID : ChildTypeIDs[0];
1440   auto CacheKey = std::make_pair(Ty, ChildTypeID);
1441   auto It = VirtualTypeIDs.find(CacheKey);
1442   if (It != VirtualTypeIDs.end()) {
1443     // The cmpxchg return value is the only place we need more than one
1444     // contained type ID, however the second one will always be the same (i1),
1445     // so we don't need to include it in the cache key. This asserts that the
1446     // contained types are indeed as expected and there are no collisions.
1447     assert((ChildTypeIDs.empty() ||
1448             ContainedTypeIDs[It->second] == ChildTypeIDs) &&
1449            "Incorrect cached contained type IDs");
1450     return It->second;
1451   }
1452 
1453   unsigned TypeID = TypeList.size();
1454   TypeList.push_back(Ty);
1455   if (!ChildTypeIDs.empty())
1456     append_range(ContainedTypeIDs[TypeID], ChildTypeIDs);
1457   VirtualTypeIDs.insert({CacheKey, TypeID});
1458   return TypeID;
1459 }
1460 
1461 static bool isConstExprSupported(const BitcodeConstant *BC) {
1462   uint8_t Opcode = BC->Opcode;
1463 
1464   // These are not real constant expressions, always consider them supported.
1465   if (Opcode >= BitcodeConstant::FirstSpecialOpcode)
1466     return true;
1467 
1468   // If -expand-constant-exprs is set, we want to consider all expressions
1469   // as unsupported.
1470   if (ExpandConstantExprs)
1471     return false;
1472 
1473   if (Instruction::isBinaryOp(Opcode))
1474     return ConstantExpr::isSupportedBinOp(Opcode);
1475 
1476   if (Instruction::isCast(Opcode))
1477     return ConstantExpr::isSupportedCastOp(Opcode);
1478 
1479   if (Opcode == Instruction::GetElementPtr)
1480     return ConstantExpr::isSupportedGetElementPtr(BC->SrcElemTy);
1481 
1482   switch (Opcode) {
1483   case Instruction::FNeg:
1484   case Instruction::Select:
1485     return false;
1486   default:
1487     return true;
1488   }
1489 }
1490 
1491 Expected<Value *> BitcodeReader::materializeValue(unsigned StartValID,
1492                                                   BasicBlock *InsertBB) {
1493   // Quickly handle the case where there is no BitcodeConstant to resolve.
1494   if (StartValID < ValueList.size() && ValueList[StartValID] &&
1495       !isa<BitcodeConstant>(ValueList[StartValID]))
1496     return ValueList[StartValID];
1497 
1498   SmallDenseMap<unsigned, Value *> MaterializedValues;
1499   SmallVector<unsigned> Worklist;
1500   Worklist.push_back(StartValID);
1501   while (!Worklist.empty()) {
1502     unsigned ValID = Worklist.back();
1503     if (MaterializedValues.count(ValID)) {
1504       // Duplicate expression that was already handled.
1505       Worklist.pop_back();
1506       continue;
1507     }
1508 
1509     if (ValID >= ValueList.size() || !ValueList[ValID])
1510       return error("Invalid value ID");
1511 
1512     Value *V = ValueList[ValID];
1513     auto *BC = dyn_cast<BitcodeConstant>(V);
1514     if (!BC) {
1515       MaterializedValues.insert({ValID, V});
1516       Worklist.pop_back();
1517       continue;
1518     }
1519 
1520     // Iterate in reverse, so values will get popped from the worklist in
1521     // expected order.
1522     SmallVector<Value *> Ops;
1523     for (unsigned OpID : reverse(BC->getOperandIDs())) {
1524       auto It = MaterializedValues.find(OpID);
1525       if (It != MaterializedValues.end())
1526         Ops.push_back(It->second);
1527       else
1528         Worklist.push_back(OpID);
1529     }
1530 
1531     // Some expressions have not been resolved yet, handle them first and then
1532     // revisit this one.
1533     if (Ops.size() != BC->getOperandIDs().size())
1534       continue;
1535     std::reverse(Ops.begin(), Ops.end());
1536 
1537     SmallVector<Constant *> ConstOps;
1538     for (Value *Op : Ops)
1539       if (auto *C = dyn_cast<Constant>(Op))
1540         ConstOps.push_back(C);
1541 
1542     // Materialize as constant expression if possible.
1543     if (isConstExprSupported(BC) && ConstOps.size() == Ops.size()) {
1544       Constant *C;
1545       if (Instruction::isCast(BC->Opcode)) {
1546         C = UpgradeBitCastExpr(BC->Opcode, ConstOps[0], BC->getType());
1547         if (!C)
1548           C = ConstantExpr::getCast(BC->Opcode, ConstOps[0], BC->getType());
1549       } else if (Instruction::isBinaryOp(BC->Opcode)) {
1550         C = ConstantExpr::get(BC->Opcode, ConstOps[0], ConstOps[1], BC->Flags);
1551       } else {
1552         switch (BC->Opcode) {
1553         case BitcodeConstant::NoCFIOpcode: {
1554           auto *GV = dyn_cast<GlobalValue>(ConstOps[0]);
1555           if (!GV)
1556             return error("no_cfi operand must be GlobalValue");
1557           C = NoCFIValue::get(GV);
1558           break;
1559         }
1560         case BitcodeConstant::DSOLocalEquivalentOpcode: {
1561           auto *GV = dyn_cast<GlobalValue>(ConstOps[0]);
1562           if (!GV)
1563             return error("dso_local operand must be GlobalValue");
1564           C = DSOLocalEquivalent::get(GV);
1565           break;
1566         }
1567         case BitcodeConstant::BlockAddressOpcode: {
1568           Function *Fn = dyn_cast<Function>(ConstOps[0]);
1569           if (!Fn)
1570             return error("blockaddress operand must be a function");
1571 
1572           // If the function is already parsed we can insert the block address
1573           // right away.
1574           BasicBlock *BB;
1575           unsigned BBID = BC->BlockAddressBB;
1576           if (!BBID)
1577             // Invalid reference to entry block.
1578             return error("Invalid ID");
1579           if (!Fn->empty()) {
1580             Function::iterator BBI = Fn->begin(), BBE = Fn->end();
1581             for (size_t I = 0, E = BBID; I != E; ++I) {
1582               if (BBI == BBE)
1583                 return error("Invalid ID");
1584               ++BBI;
1585             }
1586             BB = &*BBI;
1587           } else {
1588             // Otherwise insert a placeholder and remember it so it can be
1589             // inserted when the function is parsed.
1590             auto &FwdBBs = BasicBlockFwdRefs[Fn];
1591             if (FwdBBs.empty())
1592               BasicBlockFwdRefQueue.push_back(Fn);
1593             if (FwdBBs.size() < BBID + 1)
1594               FwdBBs.resize(BBID + 1);
1595             if (!FwdBBs[BBID])
1596               FwdBBs[BBID] = BasicBlock::Create(Context);
1597             BB = FwdBBs[BBID];
1598           }
1599           C = BlockAddress::get(Fn, BB);
1600           break;
1601         }
1602         case BitcodeConstant::ConstantStructOpcode:
1603           C = ConstantStruct::get(cast<StructType>(BC->getType()), ConstOps);
1604           break;
1605         case BitcodeConstant::ConstantArrayOpcode:
1606           C = ConstantArray::get(cast<ArrayType>(BC->getType()), ConstOps);
1607           break;
1608         case BitcodeConstant::ConstantVectorOpcode:
1609           C = ConstantVector::get(ConstOps);
1610           break;
1611         case Instruction::ICmp:
1612         case Instruction::FCmp:
1613           C = ConstantExpr::getCompare(BC->Flags, ConstOps[0], ConstOps[1]);
1614           break;
1615         case Instruction::GetElementPtr:
1616           C = ConstantExpr::getGetElementPtr(BC->SrcElemTy, ConstOps[0],
1617                                              ArrayRef(ConstOps).drop_front(),
1618                                              BC->Flags, BC->getInRange());
1619           break;
1620         case Instruction::ExtractElement:
1621           C = ConstantExpr::getExtractElement(ConstOps[0], ConstOps[1]);
1622           break;
1623         case Instruction::InsertElement:
1624           C = ConstantExpr::getInsertElement(ConstOps[0], ConstOps[1],
1625                                              ConstOps[2]);
1626           break;
1627         case Instruction::ShuffleVector: {
1628           SmallVector<int, 16> Mask;
1629           ShuffleVectorInst::getShuffleMask(ConstOps[2], Mask);
1630           C = ConstantExpr::getShuffleVector(ConstOps[0], ConstOps[1], Mask);
1631           break;
1632         }
1633         default:
1634           llvm_unreachable("Unhandled bitcode constant");
1635         }
1636       }
1637 
1638       // Cache resolved constant.
1639       ValueList.replaceValueWithoutRAUW(ValID, C);
1640       MaterializedValues.insert({ValID, C});
1641       Worklist.pop_back();
1642       continue;
1643     }
1644 
1645     if (!InsertBB)
1646       return error(Twine("Value referenced by initializer is an unsupported "
1647                          "constant expression of type ") +
1648                    BC->getOpcodeName());
1649 
1650     // Materialize as instructions if necessary.
1651     Instruction *I;
1652     if (Instruction::isCast(BC->Opcode)) {
1653       I = CastInst::Create((Instruction::CastOps)BC->Opcode, Ops[0],
1654                            BC->getType(), "constexpr", InsertBB);
1655     } else if (Instruction::isUnaryOp(BC->Opcode)) {
1656       I = UnaryOperator::Create((Instruction::UnaryOps)BC->Opcode, Ops[0],
1657                                 "constexpr", InsertBB);
1658     } else if (Instruction::isBinaryOp(BC->Opcode)) {
1659       I = BinaryOperator::Create((Instruction::BinaryOps)BC->Opcode, Ops[0],
1660                                  Ops[1], "constexpr", InsertBB);
1661       if (isa<OverflowingBinaryOperator>(I)) {
1662         if (BC->Flags & OverflowingBinaryOperator::NoSignedWrap)
1663           I->setHasNoSignedWrap();
1664         if (BC->Flags & OverflowingBinaryOperator::NoUnsignedWrap)
1665           I->setHasNoUnsignedWrap();
1666       }
1667       if (isa<PossiblyExactOperator>(I) &&
1668           (BC->Flags & PossiblyExactOperator::IsExact))
1669         I->setIsExact();
1670     } else {
1671       switch (BC->Opcode) {
1672       case BitcodeConstant::ConstantVectorOpcode: {
1673         Type *IdxTy = Type::getInt32Ty(BC->getContext());
1674         Value *V = PoisonValue::get(BC->getType());
1675         for (auto Pair : enumerate(Ops)) {
1676           Value *Idx = ConstantInt::get(IdxTy, Pair.index());
1677           V = InsertElementInst::Create(V, Pair.value(), Idx, "constexpr.ins",
1678                                         InsertBB);
1679         }
1680         I = cast<Instruction>(V);
1681         break;
1682       }
1683       case BitcodeConstant::ConstantStructOpcode:
1684       case BitcodeConstant::ConstantArrayOpcode: {
1685         Value *V = PoisonValue::get(BC->getType());
1686         for (auto Pair : enumerate(Ops))
1687           V = InsertValueInst::Create(V, Pair.value(), Pair.index(),
1688                                       "constexpr.ins", InsertBB);
1689         I = cast<Instruction>(V);
1690         break;
1691       }
1692       case Instruction::ICmp:
1693       case Instruction::FCmp:
1694         I = CmpInst::Create((Instruction::OtherOps)BC->Opcode,
1695                             (CmpInst::Predicate)BC->Flags, Ops[0], Ops[1],
1696                             "constexpr", InsertBB);
1697         break;
1698       case Instruction::GetElementPtr:
1699         I = GetElementPtrInst::Create(BC->SrcElemTy, Ops[0],
1700                                       ArrayRef(Ops).drop_front(), "constexpr",
1701                                       InsertBB);
1702         if (BC->Flags)
1703           cast<GetElementPtrInst>(I)->setIsInBounds();
1704         break;
1705       case Instruction::Select:
1706         I = SelectInst::Create(Ops[0], Ops[1], Ops[2], "constexpr", InsertBB);
1707         break;
1708       case Instruction::ExtractElement:
1709         I = ExtractElementInst::Create(Ops[0], Ops[1], "constexpr", InsertBB);
1710         break;
1711       case Instruction::InsertElement:
1712         I = InsertElementInst::Create(Ops[0], Ops[1], Ops[2], "constexpr",
1713                                       InsertBB);
1714         break;
1715       case Instruction::ShuffleVector:
1716         I = new ShuffleVectorInst(Ops[0], Ops[1], Ops[2], "constexpr",
1717                                   InsertBB);
1718         break;
1719       default:
1720         llvm_unreachable("Unhandled bitcode constant");
1721       }
1722     }
1723 
1724     MaterializedValues.insert({ValID, I});
1725     Worklist.pop_back();
1726   }
1727 
1728   return MaterializedValues[StartValID];
1729 }
1730 
1731 Expected<Constant *> BitcodeReader::getValueForInitializer(unsigned ID) {
1732   Expected<Value *> MaybeV = materializeValue(ID, /* InsertBB */ nullptr);
1733   if (!MaybeV)
1734     return MaybeV.takeError();
1735 
1736   // Result must be Constant if InsertBB is nullptr.
1737   return cast<Constant>(MaybeV.get());
1738 }
1739 
1740 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
1741                                                       StringRef Name) {
1742   auto *Ret = StructType::create(Context, Name);
1743   IdentifiedStructTypes.push_back(Ret);
1744   return Ret;
1745 }
1746 
1747 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
1748   auto *Ret = StructType::create(Context);
1749   IdentifiedStructTypes.push_back(Ret);
1750   return Ret;
1751 }
1752 
1753 //===----------------------------------------------------------------------===//
1754 //  Functions for parsing blocks from the bitcode file
1755 //===----------------------------------------------------------------------===//
1756 
1757 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) {
1758   switch (Val) {
1759   case Attribute::EndAttrKinds:
1760   case Attribute::EmptyKey:
1761   case Attribute::TombstoneKey:
1762     llvm_unreachable("Synthetic enumerators which should never get here");
1763 
1764   case Attribute::None:            return 0;
1765   case Attribute::ZExt:            return 1 << 0;
1766   case Attribute::SExt:            return 1 << 1;
1767   case Attribute::NoReturn:        return 1 << 2;
1768   case Attribute::InReg:           return 1 << 3;
1769   case Attribute::StructRet:       return 1 << 4;
1770   case Attribute::NoUnwind:        return 1 << 5;
1771   case Attribute::NoAlias:         return 1 << 6;
1772   case Attribute::ByVal:           return 1 << 7;
1773   case Attribute::Nest:            return 1 << 8;
1774   case Attribute::ReadNone:        return 1 << 9;
1775   case Attribute::ReadOnly:        return 1 << 10;
1776   case Attribute::NoInline:        return 1 << 11;
1777   case Attribute::AlwaysInline:    return 1 << 12;
1778   case Attribute::OptimizeForSize: return 1 << 13;
1779   case Attribute::StackProtect:    return 1 << 14;
1780   case Attribute::StackProtectReq: return 1 << 15;
1781   case Attribute::Alignment:       return 31 << 16;
1782   case Attribute::NoCapture:       return 1 << 21;
1783   case Attribute::NoRedZone:       return 1 << 22;
1784   case Attribute::NoImplicitFloat: return 1 << 23;
1785   case Attribute::Naked:           return 1 << 24;
1786   case Attribute::InlineHint:      return 1 << 25;
1787   case Attribute::StackAlignment:  return 7 << 26;
1788   case Attribute::ReturnsTwice:    return 1 << 29;
1789   case Attribute::UWTable:         return 1 << 30;
1790   case Attribute::NonLazyBind:     return 1U << 31;
1791   case Attribute::SanitizeAddress: return 1ULL << 32;
1792   case Attribute::MinSize:         return 1ULL << 33;
1793   case Attribute::NoDuplicate:     return 1ULL << 34;
1794   case Attribute::StackProtectStrong: return 1ULL << 35;
1795   case Attribute::SanitizeThread:  return 1ULL << 36;
1796   case Attribute::SanitizeMemory:  return 1ULL << 37;
1797   case Attribute::NoBuiltin:       return 1ULL << 38;
1798   case Attribute::Returned:        return 1ULL << 39;
1799   case Attribute::Cold:            return 1ULL << 40;
1800   case Attribute::Builtin:         return 1ULL << 41;
1801   case Attribute::OptimizeNone:    return 1ULL << 42;
1802   case Attribute::InAlloca:        return 1ULL << 43;
1803   case Attribute::NonNull:         return 1ULL << 44;
1804   case Attribute::JumpTable:       return 1ULL << 45;
1805   case Attribute::Convergent:      return 1ULL << 46;
1806   case Attribute::SafeStack:       return 1ULL << 47;
1807   case Attribute::NoRecurse:       return 1ULL << 48;
1808   // 1ULL << 49 is InaccessibleMemOnly, which is upgraded separately.
1809   // 1ULL << 50 is InaccessibleMemOrArgMemOnly, which is upgraded separately.
1810   case Attribute::SwiftSelf:       return 1ULL << 51;
1811   case Attribute::SwiftError:      return 1ULL << 52;
1812   case Attribute::WriteOnly:       return 1ULL << 53;
1813   case Attribute::Speculatable:    return 1ULL << 54;
1814   case Attribute::StrictFP:        return 1ULL << 55;
1815   case Attribute::SanitizeHWAddress: return 1ULL << 56;
1816   case Attribute::NoCfCheck:       return 1ULL << 57;
1817   case Attribute::OptForFuzzing:   return 1ULL << 58;
1818   case Attribute::ShadowCallStack: return 1ULL << 59;
1819   case Attribute::SpeculativeLoadHardening:
1820     return 1ULL << 60;
1821   case Attribute::ImmArg:
1822     return 1ULL << 61;
1823   case Attribute::WillReturn:
1824     return 1ULL << 62;
1825   case Attribute::NoFree:
1826     return 1ULL << 63;
1827   default:
1828     // Other attributes are not supported in the raw format,
1829     // as we ran out of space.
1830     return 0;
1831   }
1832   llvm_unreachable("Unsupported attribute type");
1833 }
1834 
1835 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) {
1836   if (!Val) return;
1837 
1838   for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds;
1839        I = Attribute::AttrKind(I + 1)) {
1840     if (uint64_t A = (Val & getRawAttributeMask(I))) {
1841       if (I == Attribute::Alignment)
1842         B.addAlignmentAttr(1ULL << ((A >> 16) - 1));
1843       else if (I == Attribute::StackAlignment)
1844         B.addStackAlignmentAttr(1ULL << ((A >> 26)-1));
1845       else if (Attribute::isTypeAttrKind(I))
1846         B.addTypeAttr(I, nullptr); // Type will be auto-upgraded.
1847       else
1848         B.addAttribute(I);
1849     }
1850   }
1851 }
1852 
1853 /// This fills an AttrBuilder object with the LLVM attributes that have
1854 /// been decoded from the given integer. This function must stay in sync with
1855 /// 'encodeLLVMAttributesForBitcode'.
1856 static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
1857                                            uint64_t EncodedAttrs,
1858                                            uint64_t AttrIdx) {
1859   // The alignment is stored as a 16-bit raw value from bits 31--16.  We shift
1860   // the bits above 31 down by 11 bits.
1861   unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
1862   assert((!Alignment || isPowerOf2_32(Alignment)) &&
1863          "Alignment must be a power of two.");
1864 
1865   if (Alignment)
1866     B.addAlignmentAttr(Alignment);
1867 
1868   uint64_t Attrs = ((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
1869                    (EncodedAttrs & 0xffff);
1870 
1871   if (AttrIdx == AttributeList::FunctionIndex) {
1872     // Upgrade old memory attributes.
1873     MemoryEffects ME = MemoryEffects::unknown();
1874     if (Attrs & (1ULL << 9)) {
1875       // ReadNone
1876       Attrs &= ~(1ULL << 9);
1877       ME &= MemoryEffects::none();
1878     }
1879     if (Attrs & (1ULL << 10)) {
1880       // ReadOnly
1881       Attrs &= ~(1ULL << 10);
1882       ME &= MemoryEffects::readOnly();
1883     }
1884     if (Attrs & (1ULL << 49)) {
1885       // InaccessibleMemOnly
1886       Attrs &= ~(1ULL << 49);
1887       ME &= MemoryEffects::inaccessibleMemOnly();
1888     }
1889     if (Attrs & (1ULL << 50)) {
1890       // InaccessibleMemOrArgMemOnly
1891       Attrs &= ~(1ULL << 50);
1892       ME &= MemoryEffects::inaccessibleOrArgMemOnly();
1893     }
1894     if (Attrs & (1ULL << 53)) {
1895       // WriteOnly
1896       Attrs &= ~(1ULL << 53);
1897       ME &= MemoryEffects::writeOnly();
1898     }
1899     if (ME != MemoryEffects::unknown())
1900       B.addMemoryAttr(ME);
1901   }
1902 
1903   addRawAttributeValue(B, Attrs);
1904 }
1905 
1906 Error BitcodeReader::parseAttributeBlock() {
1907   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
1908     return Err;
1909 
1910   if (!MAttributes.empty())
1911     return error("Invalid multiple blocks");
1912 
1913   SmallVector<uint64_t, 64> Record;
1914 
1915   SmallVector<AttributeList, 8> Attrs;
1916 
1917   // Read all the records.
1918   while (true) {
1919     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1920     if (!MaybeEntry)
1921       return MaybeEntry.takeError();
1922     BitstreamEntry Entry = MaybeEntry.get();
1923 
1924     switch (Entry.Kind) {
1925     case BitstreamEntry::SubBlock: // Handled for us already.
1926     case BitstreamEntry::Error:
1927       return error("Malformed block");
1928     case BitstreamEntry::EndBlock:
1929       return Error::success();
1930     case BitstreamEntry::Record:
1931       // The interesting case.
1932       break;
1933     }
1934 
1935     // Read a record.
1936     Record.clear();
1937     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1938     if (!MaybeRecord)
1939       return MaybeRecord.takeError();
1940     switch (MaybeRecord.get()) {
1941     default:  // Default behavior: ignore.
1942       break;
1943     case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...]
1944       // Deprecated, but still needed to read old bitcode files.
1945       if (Record.size() & 1)
1946         return error("Invalid parameter attribute record");
1947 
1948       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1949         AttrBuilder B(Context);
1950         decodeLLVMAttributesForBitcode(B, Record[i+1], Record[i]);
1951         Attrs.push_back(AttributeList::get(Context, Record[i], B));
1952       }
1953 
1954       MAttributes.push_back(AttributeList::get(Context, Attrs));
1955       Attrs.clear();
1956       break;
1957     case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...]
1958       for (unsigned i = 0, e = Record.size(); i != e; ++i)
1959         Attrs.push_back(MAttributeGroups[Record[i]]);
1960 
1961       MAttributes.push_back(AttributeList::get(Context, Attrs));
1962       Attrs.clear();
1963       break;
1964     }
1965   }
1966 }
1967 
1968 // Returns Attribute::None on unrecognized codes.
1969 static Attribute::AttrKind getAttrFromCode(uint64_t Code) {
1970   switch (Code) {
1971   default:
1972     return Attribute::None;
1973   case bitc::ATTR_KIND_ALIGNMENT:
1974     return Attribute::Alignment;
1975   case bitc::ATTR_KIND_ALWAYS_INLINE:
1976     return Attribute::AlwaysInline;
1977   case bitc::ATTR_KIND_BUILTIN:
1978     return Attribute::Builtin;
1979   case bitc::ATTR_KIND_BY_VAL:
1980     return Attribute::ByVal;
1981   case bitc::ATTR_KIND_IN_ALLOCA:
1982     return Attribute::InAlloca;
1983   case bitc::ATTR_KIND_COLD:
1984     return Attribute::Cold;
1985   case bitc::ATTR_KIND_CONVERGENT:
1986     return Attribute::Convergent;
1987   case bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION:
1988     return Attribute::DisableSanitizerInstrumentation;
1989   case bitc::ATTR_KIND_ELEMENTTYPE:
1990     return Attribute::ElementType;
1991   case bitc::ATTR_KIND_FNRETTHUNK_EXTERN:
1992     return Attribute::FnRetThunkExtern;
1993   case bitc::ATTR_KIND_INLINE_HINT:
1994     return Attribute::InlineHint;
1995   case bitc::ATTR_KIND_IN_REG:
1996     return Attribute::InReg;
1997   case bitc::ATTR_KIND_JUMP_TABLE:
1998     return Attribute::JumpTable;
1999   case bitc::ATTR_KIND_MEMORY:
2000     return Attribute::Memory;
2001   case bitc::ATTR_KIND_NOFPCLASS:
2002     return Attribute::NoFPClass;
2003   case bitc::ATTR_KIND_MIN_SIZE:
2004     return Attribute::MinSize;
2005   case bitc::ATTR_KIND_NAKED:
2006     return Attribute::Naked;
2007   case bitc::ATTR_KIND_NEST:
2008     return Attribute::Nest;
2009   case bitc::ATTR_KIND_NO_ALIAS:
2010     return Attribute::NoAlias;
2011   case bitc::ATTR_KIND_NO_BUILTIN:
2012     return Attribute::NoBuiltin;
2013   case bitc::ATTR_KIND_NO_CALLBACK:
2014     return Attribute::NoCallback;
2015   case bitc::ATTR_KIND_NO_CAPTURE:
2016     return Attribute::NoCapture;
2017   case bitc::ATTR_KIND_NO_DUPLICATE:
2018     return Attribute::NoDuplicate;
2019   case bitc::ATTR_KIND_NOFREE:
2020     return Attribute::NoFree;
2021   case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
2022     return Attribute::NoImplicitFloat;
2023   case bitc::ATTR_KIND_NO_INLINE:
2024     return Attribute::NoInline;
2025   case bitc::ATTR_KIND_NO_RECURSE:
2026     return Attribute::NoRecurse;
2027   case bitc::ATTR_KIND_NO_MERGE:
2028     return Attribute::NoMerge;
2029   case bitc::ATTR_KIND_NON_LAZY_BIND:
2030     return Attribute::NonLazyBind;
2031   case bitc::ATTR_KIND_NON_NULL:
2032     return Attribute::NonNull;
2033   case bitc::ATTR_KIND_DEREFERENCEABLE:
2034     return Attribute::Dereferenceable;
2035   case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL:
2036     return Attribute::DereferenceableOrNull;
2037   case bitc::ATTR_KIND_ALLOC_ALIGN:
2038     return Attribute::AllocAlign;
2039   case bitc::ATTR_KIND_ALLOC_KIND:
2040     return Attribute::AllocKind;
2041   case bitc::ATTR_KIND_ALLOC_SIZE:
2042     return Attribute::AllocSize;
2043   case bitc::ATTR_KIND_ALLOCATED_POINTER:
2044     return Attribute::AllocatedPointer;
2045   case bitc::ATTR_KIND_NO_RED_ZONE:
2046     return Attribute::NoRedZone;
2047   case bitc::ATTR_KIND_NO_RETURN:
2048     return Attribute::NoReturn;
2049   case bitc::ATTR_KIND_NOSYNC:
2050     return Attribute::NoSync;
2051   case bitc::ATTR_KIND_NOCF_CHECK:
2052     return Attribute::NoCfCheck;
2053   case bitc::ATTR_KIND_NO_PROFILE:
2054     return Attribute::NoProfile;
2055   case bitc::ATTR_KIND_SKIP_PROFILE:
2056     return Attribute::SkipProfile;
2057   case bitc::ATTR_KIND_NO_UNWIND:
2058     return Attribute::NoUnwind;
2059   case bitc::ATTR_KIND_NO_SANITIZE_BOUNDS:
2060     return Attribute::NoSanitizeBounds;
2061   case bitc::ATTR_KIND_NO_SANITIZE_COVERAGE:
2062     return Attribute::NoSanitizeCoverage;
2063   case bitc::ATTR_KIND_NULL_POINTER_IS_VALID:
2064     return Attribute::NullPointerIsValid;
2065   case bitc::ATTR_KIND_OPTIMIZE_FOR_DEBUGGING:
2066     return Attribute::OptimizeForDebugging;
2067   case bitc::ATTR_KIND_OPT_FOR_FUZZING:
2068     return Attribute::OptForFuzzing;
2069   case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
2070     return Attribute::OptimizeForSize;
2071   case bitc::ATTR_KIND_OPTIMIZE_NONE:
2072     return Attribute::OptimizeNone;
2073   case bitc::ATTR_KIND_READ_NONE:
2074     return Attribute::ReadNone;
2075   case bitc::ATTR_KIND_READ_ONLY:
2076     return Attribute::ReadOnly;
2077   case bitc::ATTR_KIND_RETURNED:
2078     return Attribute::Returned;
2079   case bitc::ATTR_KIND_RETURNS_TWICE:
2080     return Attribute::ReturnsTwice;
2081   case bitc::ATTR_KIND_S_EXT:
2082     return Attribute::SExt;
2083   case bitc::ATTR_KIND_SPECULATABLE:
2084     return Attribute::Speculatable;
2085   case bitc::ATTR_KIND_STACK_ALIGNMENT:
2086     return Attribute::StackAlignment;
2087   case bitc::ATTR_KIND_STACK_PROTECT:
2088     return Attribute::StackProtect;
2089   case bitc::ATTR_KIND_STACK_PROTECT_REQ:
2090     return Attribute::StackProtectReq;
2091   case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
2092     return Attribute::StackProtectStrong;
2093   case bitc::ATTR_KIND_SAFESTACK:
2094     return Attribute::SafeStack;
2095   case bitc::ATTR_KIND_SHADOWCALLSTACK:
2096     return Attribute::ShadowCallStack;
2097   case bitc::ATTR_KIND_STRICT_FP:
2098     return Attribute::StrictFP;
2099   case bitc::ATTR_KIND_STRUCT_RET:
2100     return Attribute::StructRet;
2101   case bitc::ATTR_KIND_SANITIZE_ADDRESS:
2102     return Attribute::SanitizeAddress;
2103   case bitc::ATTR_KIND_SANITIZE_HWADDRESS:
2104     return Attribute::SanitizeHWAddress;
2105   case bitc::ATTR_KIND_SANITIZE_THREAD:
2106     return Attribute::SanitizeThread;
2107   case bitc::ATTR_KIND_SANITIZE_MEMORY:
2108     return Attribute::SanitizeMemory;
2109   case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING:
2110     return Attribute::SpeculativeLoadHardening;
2111   case bitc::ATTR_KIND_SWIFT_ERROR:
2112     return Attribute::SwiftError;
2113   case bitc::ATTR_KIND_SWIFT_SELF:
2114     return Attribute::SwiftSelf;
2115   case bitc::ATTR_KIND_SWIFT_ASYNC:
2116     return Attribute::SwiftAsync;
2117   case bitc::ATTR_KIND_UW_TABLE:
2118     return Attribute::UWTable;
2119   case bitc::ATTR_KIND_VSCALE_RANGE:
2120     return Attribute::VScaleRange;
2121   case bitc::ATTR_KIND_WILLRETURN:
2122     return Attribute::WillReturn;
2123   case bitc::ATTR_KIND_WRITEONLY:
2124     return Attribute::WriteOnly;
2125   case bitc::ATTR_KIND_Z_EXT:
2126     return Attribute::ZExt;
2127   case bitc::ATTR_KIND_IMMARG:
2128     return Attribute::ImmArg;
2129   case bitc::ATTR_KIND_SANITIZE_MEMTAG:
2130     return Attribute::SanitizeMemTag;
2131   case bitc::ATTR_KIND_PREALLOCATED:
2132     return Attribute::Preallocated;
2133   case bitc::ATTR_KIND_NOUNDEF:
2134     return Attribute::NoUndef;
2135   case bitc::ATTR_KIND_BYREF:
2136     return Attribute::ByRef;
2137   case bitc::ATTR_KIND_MUSTPROGRESS:
2138     return Attribute::MustProgress;
2139   case bitc::ATTR_KIND_HOT:
2140     return Attribute::Hot;
2141   case bitc::ATTR_KIND_PRESPLIT_COROUTINE:
2142     return Attribute::PresplitCoroutine;
2143   case bitc::ATTR_KIND_WRITABLE:
2144     return Attribute::Writable;
2145   case bitc::ATTR_KIND_CORO_ONLY_DESTROY_WHEN_COMPLETE:
2146     return Attribute::CoroDestroyOnlyWhenComplete;
2147   case bitc::ATTR_KIND_DEAD_ON_UNWIND:
2148     return Attribute::DeadOnUnwind;
2149   case bitc::ATTR_KIND_RANGE:
2150     return Attribute::Range;
2151   }
2152 }
2153 
2154 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent,
2155                                          MaybeAlign &Alignment) {
2156   // Note: Alignment in bitcode files is incremented by 1, so that zero
2157   // can be used for default alignment.
2158   if (Exponent > Value::MaxAlignmentExponent + 1)
2159     return error("Invalid alignment value");
2160   Alignment = decodeMaybeAlign(Exponent);
2161   return Error::success();
2162 }
2163 
2164 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) {
2165   *Kind = getAttrFromCode(Code);
2166   if (*Kind == Attribute::None)
2167     return error("Unknown attribute kind (" + Twine(Code) + ")");
2168   return Error::success();
2169 }
2170 
2171 static bool upgradeOldMemoryAttribute(MemoryEffects &ME, uint64_t EncodedKind) {
2172   switch (EncodedKind) {
2173   case bitc::ATTR_KIND_READ_NONE:
2174     ME &= MemoryEffects::none();
2175     return true;
2176   case bitc::ATTR_KIND_READ_ONLY:
2177     ME &= MemoryEffects::readOnly();
2178     return true;
2179   case bitc::ATTR_KIND_WRITEONLY:
2180     ME &= MemoryEffects::writeOnly();
2181     return true;
2182   case bitc::ATTR_KIND_ARGMEMONLY:
2183     ME &= MemoryEffects::argMemOnly();
2184     return true;
2185   case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY:
2186     ME &= MemoryEffects::inaccessibleMemOnly();
2187     return true;
2188   case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY:
2189     ME &= MemoryEffects::inaccessibleOrArgMemOnly();
2190     return true;
2191   default:
2192     return false;
2193   }
2194 }
2195 
2196 Error BitcodeReader::parseAttributeGroupBlock() {
2197   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
2198     return Err;
2199 
2200   if (!MAttributeGroups.empty())
2201     return error("Invalid multiple blocks");
2202 
2203   SmallVector<uint64_t, 64> Record;
2204 
2205   // Read all the records.
2206   while (true) {
2207     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2208     if (!MaybeEntry)
2209       return MaybeEntry.takeError();
2210     BitstreamEntry Entry = MaybeEntry.get();
2211 
2212     switch (Entry.Kind) {
2213     case BitstreamEntry::SubBlock: // Handled for us already.
2214     case BitstreamEntry::Error:
2215       return error("Malformed block");
2216     case BitstreamEntry::EndBlock:
2217       return Error::success();
2218     case BitstreamEntry::Record:
2219       // The interesting case.
2220       break;
2221     }
2222 
2223     // Read a record.
2224     Record.clear();
2225     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2226     if (!MaybeRecord)
2227       return MaybeRecord.takeError();
2228     switch (MaybeRecord.get()) {
2229     default:  // Default behavior: ignore.
2230       break;
2231     case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
2232       if (Record.size() < 3)
2233         return error("Invalid grp record");
2234 
2235       uint64_t GrpID = Record[0];
2236       uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
2237 
2238       AttrBuilder B(Context);
2239       MemoryEffects ME = MemoryEffects::unknown();
2240       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
2241         if (Record[i] == 0) {        // Enum attribute
2242           Attribute::AttrKind Kind;
2243           uint64_t EncodedKind = Record[++i];
2244           if (Idx == AttributeList::FunctionIndex &&
2245               upgradeOldMemoryAttribute(ME, EncodedKind))
2246             continue;
2247 
2248           if (Error Err = parseAttrKind(EncodedKind, &Kind))
2249             return Err;
2250 
2251           // Upgrade old-style byval attribute to one with a type, even if it's
2252           // nullptr. We will have to insert the real type when we associate
2253           // this AttributeList with a function.
2254           if (Kind == Attribute::ByVal)
2255             B.addByValAttr(nullptr);
2256           else if (Kind == Attribute::StructRet)
2257             B.addStructRetAttr(nullptr);
2258           else if (Kind == Attribute::InAlloca)
2259             B.addInAllocaAttr(nullptr);
2260           else if (Kind == Attribute::UWTable)
2261             B.addUWTableAttr(UWTableKind::Default);
2262           else if (Attribute::isEnumAttrKind(Kind))
2263             B.addAttribute(Kind);
2264           else
2265             return error("Not an enum attribute");
2266         } else if (Record[i] == 1) { // Integer attribute
2267           Attribute::AttrKind Kind;
2268           if (Error Err = parseAttrKind(Record[++i], &Kind))
2269             return Err;
2270           if (!Attribute::isIntAttrKind(Kind))
2271             return error("Not an int attribute");
2272           if (Kind == Attribute::Alignment)
2273             B.addAlignmentAttr(Record[++i]);
2274           else if (Kind == Attribute::StackAlignment)
2275             B.addStackAlignmentAttr(Record[++i]);
2276           else if (Kind == Attribute::Dereferenceable)
2277             B.addDereferenceableAttr(Record[++i]);
2278           else if (Kind == Attribute::DereferenceableOrNull)
2279             B.addDereferenceableOrNullAttr(Record[++i]);
2280           else if (Kind == Attribute::AllocSize)
2281             B.addAllocSizeAttrFromRawRepr(Record[++i]);
2282           else if (Kind == Attribute::VScaleRange)
2283             B.addVScaleRangeAttrFromRawRepr(Record[++i]);
2284           else if (Kind == Attribute::UWTable)
2285             B.addUWTableAttr(UWTableKind(Record[++i]));
2286           else if (Kind == Attribute::AllocKind)
2287             B.addAllocKindAttr(static_cast<AllocFnKind>(Record[++i]));
2288           else if (Kind == Attribute::Memory)
2289             B.addMemoryAttr(MemoryEffects::createFromIntValue(Record[++i]));
2290           else if (Kind == Attribute::NoFPClass)
2291             B.addNoFPClassAttr(
2292                 static_cast<FPClassTest>(Record[++i] & fcAllFlags));
2293         } else if (Record[i] == 3 || Record[i] == 4) { // String attribute
2294           bool HasValue = (Record[i++] == 4);
2295           SmallString<64> KindStr;
2296           SmallString<64> ValStr;
2297 
2298           while (Record[i] != 0 && i != e)
2299             KindStr += Record[i++];
2300           assert(Record[i] == 0 && "Kind string not null terminated");
2301 
2302           if (HasValue) {
2303             // Has a value associated with it.
2304             ++i; // Skip the '0' that terminates the "kind" string.
2305             while (Record[i] != 0 && i != e)
2306               ValStr += Record[i++];
2307             assert(Record[i] == 0 && "Value string not null terminated");
2308           }
2309 
2310           B.addAttribute(KindStr.str(), ValStr.str());
2311         } else if (Record[i] == 5 || Record[i] == 6) {
2312           bool HasType = Record[i] == 6;
2313           Attribute::AttrKind Kind;
2314           if (Error Err = parseAttrKind(Record[++i], &Kind))
2315             return Err;
2316           if (!Attribute::isTypeAttrKind(Kind))
2317             return error("Not a type attribute");
2318 
2319           B.addTypeAttr(Kind, HasType ? getTypeByID(Record[++i]) : nullptr);
2320         } else if (Record[i] == 7) {
2321           Attribute::AttrKind Kind;
2322 
2323           i++;
2324           if (Error Err = parseAttrKind(Record[i++], &Kind))
2325             return Err;
2326           if (!Attribute::isConstantRangeAttrKind(Kind))
2327             return error("Not a ConstantRange attribute");
2328 
2329           Expected<ConstantRange> MaybeCR = readConstantRange(Record, i);
2330           if (!MaybeCR)
2331             return MaybeCR.takeError();
2332           i--;
2333 
2334           B.addConstantRangeAttr(Kind, MaybeCR.get());
2335         } else {
2336           return error("Invalid attribute group entry");
2337         }
2338       }
2339 
2340       if (ME != MemoryEffects::unknown())
2341         B.addMemoryAttr(ME);
2342 
2343       UpgradeAttributes(B);
2344       MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B);
2345       break;
2346     }
2347     }
2348   }
2349 }
2350 
2351 Error BitcodeReader::parseTypeTable() {
2352   if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
2353     return Err;
2354 
2355   return parseTypeTableBody();
2356 }
2357 
2358 Error BitcodeReader::parseTypeTableBody() {
2359   if (!TypeList.empty())
2360     return error("Invalid multiple blocks");
2361 
2362   SmallVector<uint64_t, 64> Record;
2363   unsigned NumRecords = 0;
2364 
2365   SmallString<64> TypeName;
2366 
2367   // Read all the records for this type table.
2368   while (true) {
2369     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2370     if (!MaybeEntry)
2371       return MaybeEntry.takeError();
2372     BitstreamEntry Entry = MaybeEntry.get();
2373 
2374     switch (Entry.Kind) {
2375     case BitstreamEntry::SubBlock: // Handled for us already.
2376     case BitstreamEntry::Error:
2377       return error("Malformed block");
2378     case BitstreamEntry::EndBlock:
2379       if (NumRecords != TypeList.size())
2380         return error("Malformed block");
2381       return Error::success();
2382     case BitstreamEntry::Record:
2383       // The interesting case.
2384       break;
2385     }
2386 
2387     // Read a record.
2388     Record.clear();
2389     Type *ResultTy = nullptr;
2390     SmallVector<unsigned> ContainedIDs;
2391     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2392     if (!MaybeRecord)
2393       return MaybeRecord.takeError();
2394     switch (MaybeRecord.get()) {
2395     default:
2396       return error("Invalid value");
2397     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
2398       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
2399       // type list.  This allows us to reserve space.
2400       if (Record.empty())
2401         return error("Invalid numentry record");
2402       TypeList.resize(Record[0]);
2403       continue;
2404     case bitc::TYPE_CODE_VOID:      // VOID
2405       ResultTy = Type::getVoidTy(Context);
2406       break;
2407     case bitc::TYPE_CODE_HALF:     // HALF
2408       ResultTy = Type::getHalfTy(Context);
2409       break;
2410     case bitc::TYPE_CODE_BFLOAT:    // BFLOAT
2411       ResultTy = Type::getBFloatTy(Context);
2412       break;
2413     case bitc::TYPE_CODE_FLOAT:     // FLOAT
2414       ResultTy = Type::getFloatTy(Context);
2415       break;
2416     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
2417       ResultTy = Type::getDoubleTy(Context);
2418       break;
2419     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
2420       ResultTy = Type::getX86_FP80Ty(Context);
2421       break;
2422     case bitc::TYPE_CODE_FP128:     // FP128
2423       ResultTy = Type::getFP128Ty(Context);
2424       break;
2425     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
2426       ResultTy = Type::getPPC_FP128Ty(Context);
2427       break;
2428     case bitc::TYPE_CODE_LABEL:     // LABEL
2429       ResultTy = Type::getLabelTy(Context);
2430       break;
2431     case bitc::TYPE_CODE_METADATA:  // METADATA
2432       ResultTy = Type::getMetadataTy(Context);
2433       break;
2434     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
2435       ResultTy = Type::getX86_MMXTy(Context);
2436       break;
2437     case bitc::TYPE_CODE_X86_AMX:   // X86_AMX
2438       ResultTy = Type::getX86_AMXTy(Context);
2439       break;
2440     case bitc::TYPE_CODE_TOKEN:     // TOKEN
2441       ResultTy = Type::getTokenTy(Context);
2442       break;
2443     case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
2444       if (Record.empty())
2445         return error("Invalid integer record");
2446 
2447       uint64_t NumBits = Record[0];
2448       if (NumBits < IntegerType::MIN_INT_BITS ||
2449           NumBits > IntegerType::MAX_INT_BITS)
2450         return error("Bitwidth for integer type out of range");
2451       ResultTy = IntegerType::get(Context, NumBits);
2452       break;
2453     }
2454     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
2455                                     //          [pointee type, address space]
2456       if (Record.empty())
2457         return error("Invalid pointer record");
2458       unsigned AddressSpace = 0;
2459       if (Record.size() == 2)
2460         AddressSpace = Record[1];
2461       ResultTy = getTypeByID(Record[0]);
2462       if (!ResultTy ||
2463           !PointerType::isValidElementType(ResultTy))
2464         return error("Invalid type");
2465       ContainedIDs.push_back(Record[0]);
2466       ResultTy = PointerType::get(ResultTy, AddressSpace);
2467       break;
2468     }
2469     case bitc::TYPE_CODE_OPAQUE_POINTER: { // OPAQUE_POINTER: [addrspace]
2470       if (Record.size() != 1)
2471         return error("Invalid opaque pointer record");
2472       unsigned AddressSpace = Record[0];
2473       ResultTy = PointerType::get(Context, AddressSpace);
2474       break;
2475     }
2476     case bitc::TYPE_CODE_FUNCTION_OLD: {
2477       // Deprecated, but still needed to read old bitcode files.
2478       // FUNCTION: [vararg, attrid, retty, paramty x N]
2479       if (Record.size() < 3)
2480         return error("Invalid function record");
2481       SmallVector<Type*, 8> ArgTys;
2482       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
2483         if (Type *T = getTypeByID(Record[i]))
2484           ArgTys.push_back(T);
2485         else
2486           break;
2487       }
2488 
2489       ResultTy = getTypeByID(Record[2]);
2490       if (!ResultTy || ArgTys.size() < Record.size()-3)
2491         return error("Invalid type");
2492 
2493       ContainedIDs.append(Record.begin() + 2, Record.end());
2494       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
2495       break;
2496     }
2497     case bitc::TYPE_CODE_FUNCTION: {
2498       // FUNCTION: [vararg, retty, paramty x N]
2499       if (Record.size() < 2)
2500         return error("Invalid function record");
2501       SmallVector<Type*, 8> ArgTys;
2502       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
2503         if (Type *T = getTypeByID(Record[i])) {
2504           if (!FunctionType::isValidArgumentType(T))
2505             return error("Invalid function argument type");
2506           ArgTys.push_back(T);
2507         }
2508         else
2509           break;
2510       }
2511 
2512       ResultTy = getTypeByID(Record[1]);
2513       if (!ResultTy || ArgTys.size() < Record.size()-2)
2514         return error("Invalid type");
2515 
2516       ContainedIDs.append(Record.begin() + 1, Record.end());
2517       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
2518       break;
2519     }
2520     case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
2521       if (Record.empty())
2522         return error("Invalid anon struct record");
2523       SmallVector<Type*, 8> EltTys;
2524       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
2525         if (Type *T = getTypeByID(Record[i]))
2526           EltTys.push_back(T);
2527         else
2528           break;
2529       }
2530       if (EltTys.size() != Record.size()-1)
2531         return error("Invalid type");
2532       ContainedIDs.append(Record.begin() + 1, Record.end());
2533       ResultTy = StructType::get(Context, EltTys, Record[0]);
2534       break;
2535     }
2536     case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
2537       if (convertToString(Record, 0, TypeName))
2538         return error("Invalid struct name record");
2539       continue;
2540 
2541     case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
2542       if (Record.empty())
2543         return error("Invalid named struct record");
2544 
2545       if (NumRecords >= TypeList.size())
2546         return error("Invalid TYPE table");
2547 
2548       // Check to see if this was forward referenced, if so fill in the temp.
2549       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
2550       if (Res) {
2551         Res->setName(TypeName);
2552         TypeList[NumRecords] = nullptr;
2553       } else  // Otherwise, create a new struct.
2554         Res = createIdentifiedStructType(Context, TypeName);
2555       TypeName.clear();
2556 
2557       SmallVector<Type*, 8> EltTys;
2558       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
2559         if (Type *T = getTypeByID(Record[i]))
2560           EltTys.push_back(T);
2561         else
2562           break;
2563       }
2564       if (EltTys.size() != Record.size()-1)
2565         return error("Invalid named struct record");
2566       Res->setBody(EltTys, Record[0]);
2567       ContainedIDs.append(Record.begin() + 1, Record.end());
2568       ResultTy = Res;
2569       break;
2570     }
2571     case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
2572       if (Record.size() != 1)
2573         return error("Invalid opaque type record");
2574 
2575       if (NumRecords >= TypeList.size())
2576         return error("Invalid TYPE table");
2577 
2578       // Check to see if this was forward referenced, if so fill in the temp.
2579       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
2580       if (Res) {
2581         Res->setName(TypeName);
2582         TypeList[NumRecords] = nullptr;
2583       } else  // Otherwise, create a new struct with no body.
2584         Res = createIdentifiedStructType(Context, TypeName);
2585       TypeName.clear();
2586       ResultTy = Res;
2587       break;
2588     }
2589     case bitc::TYPE_CODE_TARGET_TYPE: { // TARGET_TYPE: [NumTy, Tys..., Ints...]
2590       if (Record.size() < 1)
2591         return error("Invalid target extension type record");
2592 
2593       if (NumRecords >= TypeList.size())
2594         return error("Invalid TYPE table");
2595 
2596       if (Record[0] >= Record.size())
2597         return error("Too many type parameters");
2598 
2599       unsigned NumTys = Record[0];
2600       SmallVector<Type *, 4> TypeParams;
2601       SmallVector<unsigned, 8> IntParams;
2602       for (unsigned i = 0; i < NumTys; i++) {
2603         if (Type *T = getTypeByID(Record[i + 1]))
2604           TypeParams.push_back(T);
2605         else
2606           return error("Invalid type");
2607       }
2608 
2609       for (unsigned i = NumTys + 1, e = Record.size(); i < e; i++) {
2610         if (Record[i] > UINT_MAX)
2611           return error("Integer parameter too large");
2612         IntParams.push_back(Record[i]);
2613       }
2614       ResultTy = TargetExtType::get(Context, TypeName, TypeParams, IntParams);
2615       TypeName.clear();
2616       break;
2617     }
2618     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
2619       if (Record.size() < 2)
2620         return error("Invalid array type record");
2621       ResultTy = getTypeByID(Record[1]);
2622       if (!ResultTy || !ArrayType::isValidElementType(ResultTy))
2623         return error("Invalid type");
2624       ContainedIDs.push_back(Record[1]);
2625       ResultTy = ArrayType::get(ResultTy, Record[0]);
2626       break;
2627     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty] or
2628                                     //         [numelts, eltty, scalable]
2629       if (Record.size() < 2)
2630         return error("Invalid vector type record");
2631       if (Record[0] == 0)
2632         return error("Invalid vector length");
2633       ResultTy = getTypeByID(Record[1]);
2634       if (!ResultTy || !VectorType::isValidElementType(ResultTy))
2635         return error("Invalid type");
2636       bool Scalable = Record.size() > 2 ? Record[2] : false;
2637       ContainedIDs.push_back(Record[1]);
2638       ResultTy = VectorType::get(ResultTy, Record[0], Scalable);
2639       break;
2640     }
2641 
2642     if (NumRecords >= TypeList.size())
2643       return error("Invalid TYPE table");
2644     if (TypeList[NumRecords])
2645       return error(
2646           "Invalid TYPE table: Only named structs can be forward referenced");
2647     assert(ResultTy && "Didn't read a type?");
2648     TypeList[NumRecords] = ResultTy;
2649     if (!ContainedIDs.empty())
2650       ContainedTypeIDs[NumRecords] = std::move(ContainedIDs);
2651     ++NumRecords;
2652   }
2653 }
2654 
2655 Error BitcodeReader::parseOperandBundleTags() {
2656   if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID))
2657     return Err;
2658 
2659   if (!BundleTags.empty())
2660     return error("Invalid multiple blocks");
2661 
2662   SmallVector<uint64_t, 64> Record;
2663 
2664   while (true) {
2665     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2666     if (!MaybeEntry)
2667       return MaybeEntry.takeError();
2668     BitstreamEntry Entry = MaybeEntry.get();
2669 
2670     switch (Entry.Kind) {
2671     case BitstreamEntry::SubBlock: // Handled for us already.
2672     case BitstreamEntry::Error:
2673       return error("Malformed block");
2674     case BitstreamEntry::EndBlock:
2675       return Error::success();
2676     case BitstreamEntry::Record:
2677       // The interesting case.
2678       break;
2679     }
2680 
2681     // Tags are implicitly mapped to integers by their order.
2682 
2683     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2684     if (!MaybeRecord)
2685       return MaybeRecord.takeError();
2686     if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG)
2687       return error("Invalid operand bundle record");
2688 
2689     // OPERAND_BUNDLE_TAG: [strchr x N]
2690     BundleTags.emplace_back();
2691     if (convertToString(Record, 0, BundleTags.back()))
2692       return error("Invalid operand bundle record");
2693     Record.clear();
2694   }
2695 }
2696 
2697 Error BitcodeReader::parseSyncScopeNames() {
2698   if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID))
2699     return Err;
2700 
2701   if (!SSIDs.empty())
2702     return error("Invalid multiple synchronization scope names blocks");
2703 
2704   SmallVector<uint64_t, 64> Record;
2705   while (true) {
2706     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2707     if (!MaybeEntry)
2708       return MaybeEntry.takeError();
2709     BitstreamEntry Entry = MaybeEntry.get();
2710 
2711     switch (Entry.Kind) {
2712     case BitstreamEntry::SubBlock: // Handled for us already.
2713     case BitstreamEntry::Error:
2714       return error("Malformed block");
2715     case BitstreamEntry::EndBlock:
2716       if (SSIDs.empty())
2717         return error("Invalid empty synchronization scope names block");
2718       return Error::success();
2719     case BitstreamEntry::Record:
2720       // The interesting case.
2721       break;
2722     }
2723 
2724     // Synchronization scope names are implicitly mapped to synchronization
2725     // scope IDs by their order.
2726 
2727     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2728     if (!MaybeRecord)
2729       return MaybeRecord.takeError();
2730     if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME)
2731       return error("Invalid sync scope record");
2732 
2733     SmallString<16> SSN;
2734     if (convertToString(Record, 0, SSN))
2735       return error("Invalid sync scope record");
2736 
2737     SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN));
2738     Record.clear();
2739   }
2740 }
2741 
2742 /// Associate a value with its name from the given index in the provided record.
2743 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
2744                                              unsigned NameIndex, Triple &TT) {
2745   SmallString<128> ValueName;
2746   if (convertToString(Record, NameIndex, ValueName))
2747     return error("Invalid record");
2748   unsigned ValueID = Record[0];
2749   if (ValueID >= ValueList.size() || !ValueList[ValueID])
2750     return error("Invalid record");
2751   Value *V = ValueList[ValueID];
2752 
2753   StringRef NameStr(ValueName.data(), ValueName.size());
2754   if (NameStr.contains(0))
2755     return error("Invalid value name");
2756   V->setName(NameStr);
2757   auto *GO = dyn_cast<GlobalObject>(V);
2758   if (GO && ImplicitComdatObjects.contains(GO) && TT.supportsCOMDAT())
2759     GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
2760   return V;
2761 }
2762 
2763 /// Helper to note and return the current location, and jump to the given
2764 /// offset.
2765 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset,
2766                                                  BitstreamCursor &Stream) {
2767   // Save the current parsing location so we can jump back at the end
2768   // of the VST read.
2769   uint64_t CurrentBit = Stream.GetCurrentBitNo();
2770   if (Error JumpFailed = Stream.JumpToBit(Offset * 32))
2771     return std::move(JumpFailed);
2772   Expected<BitstreamEntry> MaybeEntry = Stream.advance();
2773   if (!MaybeEntry)
2774     return MaybeEntry.takeError();
2775   if (MaybeEntry.get().Kind != BitstreamEntry::SubBlock ||
2776       MaybeEntry.get().ID != bitc::VALUE_SYMTAB_BLOCK_ID)
2777     return error("Expected value symbol table subblock");
2778   return CurrentBit;
2779 }
2780 
2781 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta,
2782                                             Function *F,
2783                                             ArrayRef<uint64_t> Record) {
2784   // Note that we subtract 1 here because the offset is relative to one word
2785   // before the start of the identification or module block, which was
2786   // historically always the start of the regular bitcode header.
2787   uint64_t FuncWordOffset = Record[1] - 1;
2788   uint64_t FuncBitOffset = FuncWordOffset * 32;
2789   DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
2790   // Set the LastFunctionBlockBit to point to the last function block.
2791   // Later when parsing is resumed after function materialization,
2792   // we can simply skip that last function block.
2793   if (FuncBitOffset > LastFunctionBlockBit)
2794     LastFunctionBlockBit = FuncBitOffset;
2795 }
2796 
2797 /// Read a new-style GlobalValue symbol table.
2798 Error BitcodeReader::parseGlobalValueSymbolTable() {
2799   unsigned FuncBitcodeOffsetDelta =
2800       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2801 
2802   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2803     return Err;
2804 
2805   SmallVector<uint64_t, 64> Record;
2806   while (true) {
2807     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2808     if (!MaybeEntry)
2809       return MaybeEntry.takeError();
2810     BitstreamEntry Entry = MaybeEntry.get();
2811 
2812     switch (Entry.Kind) {
2813     case BitstreamEntry::SubBlock:
2814     case BitstreamEntry::Error:
2815       return error("Malformed block");
2816     case BitstreamEntry::EndBlock:
2817       return Error::success();
2818     case BitstreamEntry::Record:
2819       break;
2820     }
2821 
2822     Record.clear();
2823     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2824     if (!MaybeRecord)
2825       return MaybeRecord.takeError();
2826     switch (MaybeRecord.get()) {
2827     case bitc::VST_CODE_FNENTRY: { // [valueid, offset]
2828       unsigned ValueID = Record[0];
2829       if (ValueID >= ValueList.size() || !ValueList[ValueID])
2830         return error("Invalid value reference in symbol table");
2831       setDeferredFunctionInfo(FuncBitcodeOffsetDelta,
2832                               cast<Function>(ValueList[ValueID]), Record);
2833       break;
2834     }
2835     }
2836   }
2837 }
2838 
2839 /// Parse the value symbol table at either the current parsing location or
2840 /// at the given bit offset if provided.
2841 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) {
2842   uint64_t CurrentBit;
2843   // Pass in the Offset to distinguish between calling for the module-level
2844   // VST (where we want to jump to the VST offset) and the function-level
2845   // VST (where we don't).
2846   if (Offset > 0) {
2847     Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
2848     if (!MaybeCurrentBit)
2849       return MaybeCurrentBit.takeError();
2850     CurrentBit = MaybeCurrentBit.get();
2851     // If this module uses a string table, read this as a module-level VST.
2852     if (UseStrtab) {
2853       if (Error Err = parseGlobalValueSymbolTable())
2854         return Err;
2855       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2856         return JumpFailed;
2857       return Error::success();
2858     }
2859     // Otherwise, the VST will be in a similar format to a function-level VST,
2860     // and will contain symbol names.
2861   }
2862 
2863   // Compute the delta between the bitcode indices in the VST (the word offset
2864   // to the word-aligned ENTER_SUBBLOCK for the function block, and that
2865   // expected by the lazy reader. The reader's EnterSubBlock expects to have
2866   // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
2867   // (size BlockIDWidth). Note that we access the stream's AbbrevID width here
2868   // just before entering the VST subblock because: 1) the EnterSubBlock
2869   // changes the AbbrevID width; 2) the VST block is nested within the same
2870   // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
2871   // AbbrevID width before calling EnterSubBlock; and 3) when we want to
2872   // jump to the FUNCTION_BLOCK using this offset later, we don't want
2873   // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
2874   unsigned FuncBitcodeOffsetDelta =
2875       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2876 
2877   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2878     return Err;
2879 
2880   SmallVector<uint64_t, 64> Record;
2881 
2882   Triple TT(TheModule->getTargetTriple());
2883 
2884   // Read all the records for this value table.
2885   SmallString<128> ValueName;
2886 
2887   while (true) {
2888     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2889     if (!MaybeEntry)
2890       return MaybeEntry.takeError();
2891     BitstreamEntry Entry = MaybeEntry.get();
2892 
2893     switch (Entry.Kind) {
2894     case BitstreamEntry::SubBlock: // Handled for us already.
2895     case BitstreamEntry::Error:
2896       return error("Malformed block");
2897     case BitstreamEntry::EndBlock:
2898       if (Offset > 0)
2899         if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2900           return JumpFailed;
2901       return Error::success();
2902     case BitstreamEntry::Record:
2903       // The interesting case.
2904       break;
2905     }
2906 
2907     // Read a record.
2908     Record.clear();
2909     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2910     if (!MaybeRecord)
2911       return MaybeRecord.takeError();
2912     switch (MaybeRecord.get()) {
2913     default:  // Default behavior: unknown type.
2914       break;
2915     case bitc::VST_CODE_ENTRY: {  // VST_CODE_ENTRY: [valueid, namechar x N]
2916       Expected<Value *> ValOrErr = recordValue(Record, 1, TT);
2917       if (Error Err = ValOrErr.takeError())
2918         return Err;
2919       ValOrErr.get();
2920       break;
2921     }
2922     case bitc::VST_CODE_FNENTRY: {
2923       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
2924       Expected<Value *> ValOrErr = recordValue(Record, 2, TT);
2925       if (Error Err = ValOrErr.takeError())
2926         return Err;
2927       Value *V = ValOrErr.get();
2928 
2929       // Ignore function offsets emitted for aliases of functions in older
2930       // versions of LLVM.
2931       if (auto *F = dyn_cast<Function>(V))
2932         setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record);
2933       break;
2934     }
2935     case bitc::VST_CODE_BBENTRY: {
2936       if (convertToString(Record, 1, ValueName))
2937         return error("Invalid bbentry record");
2938       BasicBlock *BB = getBasicBlock(Record[0]);
2939       if (!BB)
2940         return error("Invalid bbentry record");
2941 
2942       BB->setName(StringRef(ValueName.data(), ValueName.size()));
2943       ValueName.clear();
2944       break;
2945     }
2946     }
2947   }
2948 }
2949 
2950 /// Decode a signed value stored with the sign bit in the LSB for dense VBR
2951 /// encoding.
2952 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
2953   if ((V & 1) == 0)
2954     return V >> 1;
2955   if (V != 1)
2956     return -(V >> 1);
2957   // There is no such thing as -0 with integers.  "-0" really means MININT.
2958   return 1ULL << 63;
2959 }
2960 
2961 /// Resolve all of the initializers for global values and aliases that we can.
2962 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() {
2963   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist;
2964   std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInitWorklist;
2965   std::vector<FunctionOperandInfo> FunctionOperandWorklist;
2966 
2967   GlobalInitWorklist.swap(GlobalInits);
2968   IndirectSymbolInitWorklist.swap(IndirectSymbolInits);
2969   FunctionOperandWorklist.swap(FunctionOperands);
2970 
2971   while (!GlobalInitWorklist.empty()) {
2972     unsigned ValID = GlobalInitWorklist.back().second;
2973     if (ValID >= ValueList.size()) {
2974       // Not ready to resolve this yet, it requires something later in the file.
2975       GlobalInits.push_back(GlobalInitWorklist.back());
2976     } else {
2977       Expected<Constant *> MaybeC = getValueForInitializer(ValID);
2978       if (!MaybeC)
2979         return MaybeC.takeError();
2980       GlobalInitWorklist.back().first->setInitializer(MaybeC.get());
2981     }
2982     GlobalInitWorklist.pop_back();
2983   }
2984 
2985   while (!IndirectSymbolInitWorklist.empty()) {
2986     unsigned ValID = IndirectSymbolInitWorklist.back().second;
2987     if (ValID >= ValueList.size()) {
2988       IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back());
2989     } else {
2990       Expected<Constant *> MaybeC = getValueForInitializer(ValID);
2991       if (!MaybeC)
2992         return MaybeC.takeError();
2993       Constant *C = MaybeC.get();
2994       GlobalValue *GV = IndirectSymbolInitWorklist.back().first;
2995       if (auto *GA = dyn_cast<GlobalAlias>(GV)) {
2996         if (C->getType() != GV->getType())
2997           return error("Alias and aliasee types don't match");
2998         GA->setAliasee(C);
2999       } else if (auto *GI = dyn_cast<GlobalIFunc>(GV)) {
3000         GI->setResolver(C);
3001       } else {
3002         return error("Expected an alias or an ifunc");
3003       }
3004     }
3005     IndirectSymbolInitWorklist.pop_back();
3006   }
3007 
3008   while (!FunctionOperandWorklist.empty()) {
3009     FunctionOperandInfo &Info = FunctionOperandWorklist.back();
3010     if (Info.PersonalityFn) {
3011       unsigned ValID = Info.PersonalityFn - 1;
3012       if (ValID < ValueList.size()) {
3013         Expected<Constant *> MaybeC = getValueForInitializer(ValID);
3014         if (!MaybeC)
3015           return MaybeC.takeError();
3016         Info.F->setPersonalityFn(MaybeC.get());
3017         Info.PersonalityFn = 0;
3018       }
3019     }
3020     if (Info.Prefix) {
3021       unsigned ValID = Info.Prefix - 1;
3022       if (ValID < ValueList.size()) {
3023         Expected<Constant *> MaybeC = getValueForInitializer(ValID);
3024         if (!MaybeC)
3025           return MaybeC.takeError();
3026         Info.F->setPrefixData(MaybeC.get());
3027         Info.Prefix = 0;
3028       }
3029     }
3030     if (Info.Prologue) {
3031       unsigned ValID = Info.Prologue - 1;
3032       if (ValID < ValueList.size()) {
3033         Expected<Constant *> MaybeC = getValueForInitializer(ValID);
3034         if (!MaybeC)
3035           return MaybeC.takeError();
3036         Info.F->setPrologueData(MaybeC.get());
3037         Info.Prologue = 0;
3038       }
3039     }
3040     if (Info.PersonalityFn || Info.Prefix || Info.Prologue)
3041       FunctionOperands.push_back(Info);
3042     FunctionOperandWorklist.pop_back();
3043   }
3044 
3045   return Error::success();
3046 }
3047 
3048 APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
3049   SmallVector<uint64_t, 8> Words(Vals.size());
3050   transform(Vals, Words.begin(),
3051                  BitcodeReader::decodeSignRotatedValue);
3052 
3053   return APInt(TypeBits, Words);
3054 }
3055 
3056 Error BitcodeReader::parseConstants() {
3057   if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
3058     return Err;
3059 
3060   SmallVector<uint64_t, 64> Record;
3061 
3062   // Read all the records for this value table.
3063   Type *CurTy = Type::getInt32Ty(Context);
3064   unsigned Int32TyID = getVirtualTypeID(CurTy);
3065   unsigned CurTyID = Int32TyID;
3066   Type *CurElemTy = nullptr;
3067   unsigned NextCstNo = ValueList.size();
3068 
3069   while (true) {
3070     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
3071     if (!MaybeEntry)
3072       return MaybeEntry.takeError();
3073     BitstreamEntry Entry = MaybeEntry.get();
3074 
3075     switch (Entry.Kind) {
3076     case BitstreamEntry::SubBlock: // Handled for us already.
3077     case BitstreamEntry::Error:
3078       return error("Malformed block");
3079     case BitstreamEntry::EndBlock:
3080       if (NextCstNo != ValueList.size())
3081         return error("Invalid constant reference");
3082       return Error::success();
3083     case BitstreamEntry::Record:
3084       // The interesting case.
3085       break;
3086     }
3087 
3088     // Read a record.
3089     Record.clear();
3090     Type *VoidType = Type::getVoidTy(Context);
3091     Value *V = nullptr;
3092     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
3093     if (!MaybeBitCode)
3094       return MaybeBitCode.takeError();
3095     switch (unsigned BitCode = MaybeBitCode.get()) {
3096     default:  // Default behavior: unknown constant
3097     case bitc::CST_CODE_UNDEF:     // UNDEF
3098       V = UndefValue::get(CurTy);
3099       break;
3100     case bitc::CST_CODE_POISON:    // POISON
3101       V = PoisonValue::get(CurTy);
3102       break;
3103     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
3104       if (Record.empty())
3105         return error("Invalid settype record");
3106       if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
3107         return error("Invalid settype record");
3108       if (TypeList[Record[0]] == VoidType)
3109         return error("Invalid constant type");
3110       CurTyID = Record[0];
3111       CurTy = TypeList[CurTyID];
3112       CurElemTy = getPtrElementTypeByID(CurTyID);
3113       continue;  // Skip the ValueList manipulation.
3114     case bitc::CST_CODE_NULL:      // NULL
3115       if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy())
3116         return error("Invalid type for a constant null value");
3117       if (auto *TETy = dyn_cast<TargetExtType>(CurTy))
3118         if (!TETy->hasProperty(TargetExtType::HasZeroInit))
3119           return error("Invalid type for a constant null value");
3120       V = Constant::getNullValue(CurTy);
3121       break;
3122     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
3123       if (!CurTy->isIntOrIntVectorTy() || Record.empty())
3124         return error("Invalid integer const record");
3125       V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
3126       break;
3127     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
3128       if (!CurTy->isIntOrIntVectorTy() || Record.empty())
3129         return error("Invalid wide integer const record");
3130 
3131       auto *ScalarTy = cast<IntegerType>(CurTy->getScalarType());
3132       APInt VInt = readWideAPInt(Record, ScalarTy->getBitWidth());
3133       V = ConstantInt::get(CurTy, VInt);
3134       break;
3135     }
3136     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
3137       if (Record.empty())
3138         return error("Invalid float const record");
3139 
3140       auto *ScalarTy = CurTy->getScalarType();
3141       if (ScalarTy->isHalfTy())
3142         V = ConstantFP::get(CurTy, APFloat(APFloat::IEEEhalf(),
3143                                            APInt(16, (uint16_t)Record[0])));
3144       else if (ScalarTy->isBFloatTy())
3145         V = ConstantFP::get(
3146             CurTy, APFloat(APFloat::BFloat(), APInt(16, (uint32_t)Record[0])));
3147       else if (ScalarTy->isFloatTy())
3148         V = ConstantFP::get(CurTy, APFloat(APFloat::IEEEsingle(),
3149                                            APInt(32, (uint32_t)Record[0])));
3150       else if (ScalarTy->isDoubleTy())
3151         V = ConstantFP::get(
3152             CurTy, APFloat(APFloat::IEEEdouble(), APInt(64, Record[0])));
3153       else if (ScalarTy->isX86_FP80Ty()) {
3154         // Bits are not stored the same way as a normal i80 APInt, compensate.
3155         uint64_t Rearrange[2];
3156         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
3157         Rearrange[1] = Record[0] >> 48;
3158         V = ConstantFP::get(
3159             CurTy, APFloat(APFloat::x87DoubleExtended(), APInt(80, Rearrange)));
3160       } else if (ScalarTy->isFP128Ty())
3161         V = ConstantFP::get(CurTy,
3162                             APFloat(APFloat::IEEEquad(), APInt(128, Record)));
3163       else if (ScalarTy->isPPC_FP128Ty())
3164         V = ConstantFP::get(
3165             CurTy, APFloat(APFloat::PPCDoubleDouble(), APInt(128, Record)));
3166       else
3167         V = UndefValue::get(CurTy);
3168       break;
3169     }
3170 
3171     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
3172       if (Record.empty())
3173         return error("Invalid aggregate record");
3174 
3175       unsigned Size = Record.size();
3176       SmallVector<unsigned, 16> Elts;
3177       for (unsigned i = 0; i != Size; ++i)
3178         Elts.push_back(Record[i]);
3179 
3180       if (isa<StructType>(CurTy)) {
3181         V = BitcodeConstant::create(
3182             Alloc, CurTy, BitcodeConstant::ConstantStructOpcode, Elts);
3183       } else if (isa<ArrayType>(CurTy)) {
3184         V = BitcodeConstant::create(Alloc, CurTy,
3185                                     BitcodeConstant::ConstantArrayOpcode, Elts);
3186       } else if (isa<VectorType>(CurTy)) {
3187         V = BitcodeConstant::create(
3188             Alloc, CurTy, BitcodeConstant::ConstantVectorOpcode, Elts);
3189       } else {
3190         V = UndefValue::get(CurTy);
3191       }
3192       break;
3193     }
3194     case bitc::CST_CODE_STRING:    // STRING: [values]
3195     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
3196       if (Record.empty())
3197         return error("Invalid string record");
3198 
3199       SmallString<16> Elts(Record.begin(), Record.end());
3200       V = ConstantDataArray::getString(Context, Elts,
3201                                        BitCode == bitc::CST_CODE_CSTRING);
3202       break;
3203     }
3204     case bitc::CST_CODE_DATA: {// DATA: [n x value]
3205       if (Record.empty())
3206         return error("Invalid data record");
3207 
3208       Type *EltTy;
3209       if (auto *Array = dyn_cast<ArrayType>(CurTy))
3210         EltTy = Array->getElementType();
3211       else
3212         EltTy = cast<VectorType>(CurTy)->getElementType();
3213       if (EltTy->isIntegerTy(8)) {
3214         SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
3215         if (isa<VectorType>(CurTy))
3216           V = ConstantDataVector::get(Context, Elts);
3217         else
3218           V = ConstantDataArray::get(Context, Elts);
3219       } else if (EltTy->isIntegerTy(16)) {
3220         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
3221         if (isa<VectorType>(CurTy))
3222           V = ConstantDataVector::get(Context, Elts);
3223         else
3224           V = ConstantDataArray::get(Context, Elts);
3225       } else if (EltTy->isIntegerTy(32)) {
3226         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
3227         if (isa<VectorType>(CurTy))
3228           V = ConstantDataVector::get(Context, Elts);
3229         else
3230           V = ConstantDataArray::get(Context, Elts);
3231       } else if (EltTy->isIntegerTy(64)) {
3232         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
3233         if (isa<VectorType>(CurTy))
3234           V = ConstantDataVector::get(Context, Elts);
3235         else
3236           V = ConstantDataArray::get(Context, Elts);
3237       } else if (EltTy->isHalfTy()) {
3238         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
3239         if (isa<VectorType>(CurTy))
3240           V = ConstantDataVector::getFP(EltTy, Elts);
3241         else
3242           V = ConstantDataArray::getFP(EltTy, Elts);
3243       } else if (EltTy->isBFloatTy()) {
3244         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
3245         if (isa<VectorType>(CurTy))
3246           V = ConstantDataVector::getFP(EltTy, Elts);
3247         else
3248           V = ConstantDataArray::getFP(EltTy, Elts);
3249       } else if (EltTy->isFloatTy()) {
3250         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
3251         if (isa<VectorType>(CurTy))
3252           V = ConstantDataVector::getFP(EltTy, Elts);
3253         else
3254           V = ConstantDataArray::getFP(EltTy, Elts);
3255       } else if (EltTy->isDoubleTy()) {
3256         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
3257         if (isa<VectorType>(CurTy))
3258           V = ConstantDataVector::getFP(EltTy, Elts);
3259         else
3260           V = ConstantDataArray::getFP(EltTy, Elts);
3261       } else {
3262         return error("Invalid type for value");
3263       }
3264       break;
3265     }
3266     case bitc::CST_CODE_CE_UNOP: {  // CE_UNOP: [opcode, opval]
3267       if (Record.size() < 2)
3268         return error("Invalid unary op constexpr record");
3269       int Opc = getDecodedUnaryOpcode(Record[0], CurTy);
3270       if (Opc < 0) {
3271         V = UndefValue::get(CurTy);  // Unknown unop.
3272       } else {
3273         V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[1]);
3274       }
3275       break;
3276     }
3277     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
3278       if (Record.size() < 3)
3279         return error("Invalid binary op constexpr record");
3280       int Opc = getDecodedBinaryOpcode(Record[0], CurTy);
3281       if (Opc < 0) {
3282         V = UndefValue::get(CurTy);  // Unknown binop.
3283       } else {
3284         uint8_t Flags = 0;
3285         if (Record.size() >= 4) {
3286           if (Opc == Instruction::Add ||
3287               Opc == Instruction::Sub ||
3288               Opc == Instruction::Mul ||
3289               Opc == Instruction::Shl) {
3290             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
3291               Flags |= OverflowingBinaryOperator::NoSignedWrap;
3292             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
3293               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
3294           } else if (Opc == Instruction::SDiv ||
3295                      Opc == Instruction::UDiv ||
3296                      Opc == Instruction::LShr ||
3297                      Opc == Instruction::AShr) {
3298             if (Record[3] & (1 << bitc::PEO_EXACT))
3299               Flags |= PossiblyExactOperator::IsExact;
3300           }
3301         }
3302         V = BitcodeConstant::create(Alloc, CurTy, {(uint8_t)Opc, Flags},
3303                                     {(unsigned)Record[1], (unsigned)Record[2]});
3304       }
3305       break;
3306     }
3307     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
3308       if (Record.size() < 3)
3309         return error("Invalid cast constexpr record");
3310       int Opc = getDecodedCastOpcode(Record[0]);
3311       if (Opc < 0) {
3312         V = UndefValue::get(CurTy);  // Unknown cast.
3313       } else {
3314         unsigned OpTyID = Record[1];
3315         Type *OpTy = getTypeByID(OpTyID);
3316         if (!OpTy)
3317           return error("Invalid cast constexpr record");
3318         V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[2]);
3319       }
3320       break;
3321     }
3322     case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands]
3323     case bitc::CST_CODE_CE_GEP: // [ty, n x operands]
3324     case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX_OLD: // [ty, flags, n x
3325                                                        // operands]
3326     case bitc::CST_CODE_CE_GEP_WITH_INRANGE: { // [ty, flags, start, end, n x
3327                                                // operands]
3328       if (Record.size() < 2)
3329         return error("Constant GEP record must have at least two elements");
3330       unsigned OpNum = 0;
3331       Type *PointeeType = nullptr;
3332       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX_OLD ||
3333           BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE || Record.size() % 2)
3334         PointeeType = getTypeByID(Record[OpNum++]);
3335 
3336       bool InBounds = false;
3337       std::optional<ConstantRange> InRange;
3338       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX_OLD) {
3339         uint64_t Op = Record[OpNum++];
3340         InBounds = Op & 1;
3341         unsigned InRangeIndex = Op >> 1;
3342         // "Upgrade" inrange by dropping it. The feature is too niche to
3343         // bother.
3344         (void)InRangeIndex;
3345       } else if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE) {
3346         uint64_t Op = Record[OpNum++];
3347         InBounds = Op & 1;
3348         Expected<ConstantRange> MaybeInRange = readConstantRange(Record, OpNum);
3349         if (!MaybeInRange)
3350           return MaybeInRange.takeError();
3351         InRange = MaybeInRange.get();
3352       } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
3353         InBounds = true;
3354 
3355       SmallVector<unsigned, 16> Elts;
3356       unsigned BaseTypeID = Record[OpNum];
3357       while (OpNum != Record.size()) {
3358         unsigned ElTyID = Record[OpNum++];
3359         Type *ElTy = getTypeByID(ElTyID);
3360         if (!ElTy)
3361           return error("Invalid getelementptr constexpr record");
3362         Elts.push_back(Record[OpNum++]);
3363       }
3364 
3365       if (Elts.size() < 1)
3366         return error("Invalid gep with no operands");
3367 
3368       Type *BaseType = getTypeByID(BaseTypeID);
3369       if (isa<VectorType>(BaseType)) {
3370         BaseTypeID = getContainedTypeID(BaseTypeID, 0);
3371         BaseType = getTypeByID(BaseTypeID);
3372       }
3373 
3374       PointerType *OrigPtrTy = dyn_cast_or_null<PointerType>(BaseType);
3375       if (!OrigPtrTy)
3376         return error("GEP base operand must be pointer or vector of pointer");
3377 
3378       if (!PointeeType) {
3379         PointeeType = getPtrElementTypeByID(BaseTypeID);
3380         if (!PointeeType)
3381           return error("Missing element type for old-style constant GEP");
3382       }
3383 
3384       V = BitcodeConstant::create(
3385           Alloc, CurTy,
3386           {Instruction::GetElementPtr, InBounds, PointeeType, InRange}, Elts);
3387       break;
3388     }
3389     case bitc::CST_CODE_CE_SELECT: {  // CE_SELECT: [opval#, opval#, opval#]
3390       if (Record.size() < 3)
3391         return error("Invalid select constexpr record");
3392 
3393       V = BitcodeConstant::create(
3394           Alloc, CurTy, Instruction::Select,
3395           {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]});
3396       break;
3397     }
3398     case bitc::CST_CODE_CE_EXTRACTELT
3399         : { // CE_EXTRACTELT: [opty, opval, opty, opval]
3400       if (Record.size() < 3)
3401         return error("Invalid extractelement constexpr record");
3402       unsigned OpTyID = Record[0];
3403       VectorType *OpTy =
3404         dyn_cast_or_null<VectorType>(getTypeByID(OpTyID));
3405       if (!OpTy)
3406         return error("Invalid extractelement constexpr record");
3407       unsigned IdxRecord;
3408       if (Record.size() == 4) {
3409         unsigned IdxTyID = Record[2];
3410         Type *IdxTy = getTypeByID(IdxTyID);
3411         if (!IdxTy)
3412           return error("Invalid extractelement constexpr record");
3413         IdxRecord = Record[3];
3414       } else {
3415         // Deprecated, but still needed to read old bitcode files.
3416         IdxRecord = Record[2];
3417       }
3418       V = BitcodeConstant::create(Alloc, CurTy, Instruction::ExtractElement,
3419                                   {(unsigned)Record[1], IdxRecord});
3420       break;
3421     }
3422     case bitc::CST_CODE_CE_INSERTELT
3423         : { // CE_INSERTELT: [opval, opval, opty, opval]
3424       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
3425       if (Record.size() < 3 || !OpTy)
3426         return error("Invalid insertelement constexpr record");
3427       unsigned IdxRecord;
3428       if (Record.size() == 4) {
3429         unsigned IdxTyID = Record[2];
3430         Type *IdxTy = getTypeByID(IdxTyID);
3431         if (!IdxTy)
3432           return error("Invalid insertelement constexpr record");
3433         IdxRecord = Record[3];
3434       } else {
3435         // Deprecated, but still needed to read old bitcode files.
3436         IdxRecord = Record[2];
3437       }
3438       V = BitcodeConstant::create(
3439           Alloc, CurTy, Instruction::InsertElement,
3440           {(unsigned)Record[0], (unsigned)Record[1], IdxRecord});
3441       break;
3442     }
3443     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
3444       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
3445       if (Record.size() < 3 || !OpTy)
3446         return error("Invalid shufflevector constexpr record");
3447       V = BitcodeConstant::create(
3448           Alloc, CurTy, Instruction::ShuffleVector,
3449           {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]});
3450       break;
3451     }
3452     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
3453       VectorType *RTy = dyn_cast<VectorType>(CurTy);
3454       VectorType *OpTy =
3455         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
3456       if (Record.size() < 4 || !RTy || !OpTy)
3457         return error("Invalid shufflevector constexpr record");
3458       V = BitcodeConstant::create(
3459           Alloc, CurTy, Instruction::ShuffleVector,
3460           {(unsigned)Record[1], (unsigned)Record[2], (unsigned)Record[3]});
3461       break;
3462     }
3463     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
3464       if (Record.size() < 4)
3465         return error("Invalid cmp constexpt record");
3466       unsigned OpTyID = Record[0];
3467       Type *OpTy = getTypeByID(OpTyID);
3468       if (!OpTy)
3469         return error("Invalid cmp constexpr record");
3470       V = BitcodeConstant::create(
3471           Alloc, CurTy,
3472           {(uint8_t)(OpTy->isFPOrFPVectorTy() ? Instruction::FCmp
3473                                               : Instruction::ICmp),
3474            (uint8_t)Record[3]},
3475           {(unsigned)Record[1], (unsigned)Record[2]});
3476       break;
3477     }
3478     // This maintains backward compatibility, pre-asm dialect keywords.
3479     // Deprecated, but still needed to read old bitcode files.
3480     case bitc::CST_CODE_INLINEASM_OLD: {
3481       if (Record.size() < 2)
3482         return error("Invalid inlineasm record");
3483       std::string AsmStr, ConstrStr;
3484       bool HasSideEffects = Record[0] & 1;
3485       bool IsAlignStack = Record[0] >> 1;
3486       unsigned AsmStrSize = Record[1];
3487       if (2+AsmStrSize >= Record.size())
3488         return error("Invalid inlineasm record");
3489       unsigned ConstStrSize = Record[2+AsmStrSize];
3490       if (3+AsmStrSize+ConstStrSize > Record.size())
3491         return error("Invalid inlineasm record");
3492 
3493       for (unsigned i = 0; i != AsmStrSize; ++i)
3494         AsmStr += (char)Record[2+i];
3495       for (unsigned i = 0; i != ConstStrSize; ++i)
3496         ConstrStr += (char)Record[3+AsmStrSize+i];
3497       UpgradeInlineAsmString(&AsmStr);
3498       if (!CurElemTy)
3499         return error("Missing element type for old-style inlineasm");
3500       V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr,
3501                          HasSideEffects, IsAlignStack);
3502       break;
3503     }
3504     // This version adds support for the asm dialect keywords (e.g.,
3505     // inteldialect).
3506     case bitc::CST_CODE_INLINEASM_OLD2: {
3507       if (Record.size() < 2)
3508         return error("Invalid inlineasm record");
3509       std::string AsmStr, ConstrStr;
3510       bool HasSideEffects = Record[0] & 1;
3511       bool IsAlignStack = (Record[0] >> 1) & 1;
3512       unsigned AsmDialect = Record[0] >> 2;
3513       unsigned AsmStrSize = Record[1];
3514       if (2+AsmStrSize >= Record.size())
3515         return error("Invalid inlineasm record");
3516       unsigned ConstStrSize = Record[2+AsmStrSize];
3517       if (3+AsmStrSize+ConstStrSize > Record.size())
3518         return error("Invalid inlineasm record");
3519 
3520       for (unsigned i = 0; i != AsmStrSize; ++i)
3521         AsmStr += (char)Record[2+i];
3522       for (unsigned i = 0; i != ConstStrSize; ++i)
3523         ConstrStr += (char)Record[3+AsmStrSize+i];
3524       UpgradeInlineAsmString(&AsmStr);
3525       if (!CurElemTy)
3526         return error("Missing element type for old-style inlineasm");
3527       V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr,
3528                          HasSideEffects, IsAlignStack,
3529                          InlineAsm::AsmDialect(AsmDialect));
3530       break;
3531     }
3532     // This version adds support for the unwind keyword.
3533     case bitc::CST_CODE_INLINEASM_OLD3: {
3534       if (Record.size() < 2)
3535         return error("Invalid inlineasm record");
3536       unsigned OpNum = 0;
3537       std::string AsmStr, ConstrStr;
3538       bool HasSideEffects = Record[OpNum] & 1;
3539       bool IsAlignStack = (Record[OpNum] >> 1) & 1;
3540       unsigned AsmDialect = (Record[OpNum] >> 2) & 1;
3541       bool CanThrow = (Record[OpNum] >> 3) & 1;
3542       ++OpNum;
3543       unsigned AsmStrSize = Record[OpNum];
3544       ++OpNum;
3545       if (OpNum + AsmStrSize >= Record.size())
3546         return error("Invalid inlineasm record");
3547       unsigned ConstStrSize = Record[OpNum + AsmStrSize];
3548       if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size())
3549         return error("Invalid inlineasm record");
3550 
3551       for (unsigned i = 0; i != AsmStrSize; ++i)
3552         AsmStr += (char)Record[OpNum + i];
3553       ++OpNum;
3554       for (unsigned i = 0; i != ConstStrSize; ++i)
3555         ConstrStr += (char)Record[OpNum + AsmStrSize + i];
3556       UpgradeInlineAsmString(&AsmStr);
3557       if (!CurElemTy)
3558         return error("Missing element type for old-style inlineasm");
3559       V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr,
3560                          HasSideEffects, IsAlignStack,
3561                          InlineAsm::AsmDialect(AsmDialect), CanThrow);
3562       break;
3563     }
3564     // This version adds explicit function type.
3565     case bitc::CST_CODE_INLINEASM: {
3566       if (Record.size() < 3)
3567         return error("Invalid inlineasm record");
3568       unsigned OpNum = 0;
3569       auto *FnTy = dyn_cast_or_null<FunctionType>(getTypeByID(Record[OpNum]));
3570       ++OpNum;
3571       if (!FnTy)
3572         return error("Invalid inlineasm record");
3573       std::string AsmStr, ConstrStr;
3574       bool HasSideEffects = Record[OpNum] & 1;
3575       bool IsAlignStack = (Record[OpNum] >> 1) & 1;
3576       unsigned AsmDialect = (Record[OpNum] >> 2) & 1;
3577       bool CanThrow = (Record[OpNum] >> 3) & 1;
3578       ++OpNum;
3579       unsigned AsmStrSize = Record[OpNum];
3580       ++OpNum;
3581       if (OpNum + AsmStrSize >= Record.size())
3582         return error("Invalid inlineasm record");
3583       unsigned ConstStrSize = Record[OpNum + AsmStrSize];
3584       if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size())
3585         return error("Invalid inlineasm record");
3586 
3587       for (unsigned i = 0; i != AsmStrSize; ++i)
3588         AsmStr += (char)Record[OpNum + i];
3589       ++OpNum;
3590       for (unsigned i = 0; i != ConstStrSize; ++i)
3591         ConstrStr += (char)Record[OpNum + AsmStrSize + i];
3592       UpgradeInlineAsmString(&AsmStr);
3593       V = InlineAsm::get(FnTy, AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
3594                          InlineAsm::AsmDialect(AsmDialect), CanThrow);
3595       break;
3596     }
3597     case bitc::CST_CODE_BLOCKADDRESS:{
3598       if (Record.size() < 3)
3599         return error("Invalid blockaddress record");
3600       unsigned FnTyID = Record[0];
3601       Type *FnTy = getTypeByID(FnTyID);
3602       if (!FnTy)
3603         return error("Invalid blockaddress record");
3604       V = BitcodeConstant::create(
3605           Alloc, CurTy,
3606           {BitcodeConstant::BlockAddressOpcode, 0, (unsigned)Record[2]},
3607           Record[1]);
3608       break;
3609     }
3610     case bitc::CST_CODE_DSO_LOCAL_EQUIVALENT: {
3611       if (Record.size() < 2)
3612         return error("Invalid dso_local record");
3613       unsigned GVTyID = Record[0];
3614       Type *GVTy = getTypeByID(GVTyID);
3615       if (!GVTy)
3616         return error("Invalid dso_local record");
3617       V = BitcodeConstant::create(
3618           Alloc, CurTy, BitcodeConstant::DSOLocalEquivalentOpcode, Record[1]);
3619       break;
3620     }
3621     case bitc::CST_CODE_NO_CFI_VALUE: {
3622       if (Record.size() < 2)
3623         return error("Invalid no_cfi record");
3624       unsigned GVTyID = Record[0];
3625       Type *GVTy = getTypeByID(GVTyID);
3626       if (!GVTy)
3627         return error("Invalid no_cfi record");
3628       V = BitcodeConstant::create(Alloc, CurTy, BitcodeConstant::NoCFIOpcode,
3629                                   Record[1]);
3630       break;
3631     }
3632     }
3633 
3634     assert(V->getType() == getTypeByID(CurTyID) && "Incorrect result type ID");
3635     if (Error Err = ValueList.assignValue(NextCstNo, V, CurTyID))
3636       return Err;
3637     ++NextCstNo;
3638   }
3639 }
3640 
3641 Error BitcodeReader::parseUseLists() {
3642   if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
3643     return Err;
3644 
3645   // Read all the records.
3646   SmallVector<uint64_t, 64> Record;
3647 
3648   while (true) {
3649     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
3650     if (!MaybeEntry)
3651       return MaybeEntry.takeError();
3652     BitstreamEntry Entry = MaybeEntry.get();
3653 
3654     switch (Entry.Kind) {
3655     case BitstreamEntry::SubBlock: // Handled for us already.
3656     case BitstreamEntry::Error:
3657       return error("Malformed block");
3658     case BitstreamEntry::EndBlock:
3659       return Error::success();
3660     case BitstreamEntry::Record:
3661       // The interesting case.
3662       break;
3663     }
3664 
3665     // Read a use list record.
3666     Record.clear();
3667     bool IsBB = false;
3668     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
3669     if (!MaybeRecord)
3670       return MaybeRecord.takeError();
3671     switch (MaybeRecord.get()) {
3672     default:  // Default behavior: unknown type.
3673       break;
3674     case bitc::USELIST_CODE_BB:
3675       IsBB = true;
3676       [[fallthrough]];
3677     case bitc::USELIST_CODE_DEFAULT: {
3678       unsigned RecordLength = Record.size();
3679       if (RecordLength < 3)
3680         // Records should have at least an ID and two indexes.
3681         return error("Invalid record");
3682       unsigned ID = Record.pop_back_val();
3683 
3684       Value *V;
3685       if (IsBB) {
3686         assert(ID < FunctionBBs.size() && "Basic block not found");
3687         V = FunctionBBs[ID];
3688       } else
3689         V = ValueList[ID];
3690       unsigned NumUses = 0;
3691       SmallDenseMap<const Use *, unsigned, 16> Order;
3692       for (const Use &U : V->materialized_uses()) {
3693         if (++NumUses > Record.size())
3694           break;
3695         Order[&U] = Record[NumUses - 1];
3696       }
3697       if (Order.size() != Record.size() || NumUses > Record.size())
3698         // Mismatches can happen if the functions are being materialized lazily
3699         // (out-of-order), or a value has been upgraded.
3700         break;
3701 
3702       V->sortUseList([&](const Use &L, const Use &R) {
3703         return Order.lookup(&L) < Order.lookup(&R);
3704       });
3705       break;
3706     }
3707     }
3708   }
3709 }
3710 
3711 /// When we see the block for metadata, remember where it is and then skip it.
3712 /// This lets us lazily deserialize the metadata.
3713 Error BitcodeReader::rememberAndSkipMetadata() {
3714   // Save the current stream state.
3715   uint64_t CurBit = Stream.GetCurrentBitNo();
3716   DeferredMetadataInfo.push_back(CurBit);
3717 
3718   // Skip over the block for now.
3719   if (Error Err = Stream.SkipBlock())
3720     return Err;
3721   return Error::success();
3722 }
3723 
3724 Error BitcodeReader::materializeMetadata() {
3725   for (uint64_t BitPos : DeferredMetadataInfo) {
3726     // Move the bit stream to the saved position.
3727     if (Error JumpFailed = Stream.JumpToBit(BitPos))
3728       return JumpFailed;
3729     if (Error Err = MDLoader->parseModuleMetadata())
3730       return Err;
3731   }
3732 
3733   // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level
3734   // metadata. Only upgrade if the new option doesn't exist to avoid upgrade
3735   // multiple times.
3736   if (!TheModule->getNamedMetadata("llvm.linker.options")) {
3737     if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) {
3738       NamedMDNode *LinkerOpts =
3739           TheModule->getOrInsertNamedMetadata("llvm.linker.options");
3740       for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands())
3741         LinkerOpts->addOperand(cast<MDNode>(MDOptions));
3742     }
3743   }
3744 
3745   DeferredMetadataInfo.clear();
3746   return Error::success();
3747 }
3748 
3749 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
3750 
3751 /// When we see the block for a function body, remember where it is and then
3752 /// skip it.  This lets us lazily deserialize the functions.
3753 Error BitcodeReader::rememberAndSkipFunctionBody() {
3754   // Get the function we are talking about.
3755   if (FunctionsWithBodies.empty())
3756     return error("Insufficient function protos");
3757 
3758   Function *Fn = FunctionsWithBodies.back();
3759   FunctionsWithBodies.pop_back();
3760 
3761   // Save the current stream state.
3762   uint64_t CurBit = Stream.GetCurrentBitNo();
3763   assert(
3764       (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) &&
3765       "Mismatch between VST and scanned function offsets");
3766   DeferredFunctionInfo[Fn] = CurBit;
3767 
3768   // Skip over the function block for now.
3769   if (Error Err = Stream.SkipBlock())
3770     return Err;
3771   return Error::success();
3772 }
3773 
3774 Error BitcodeReader::globalCleanup() {
3775   // Patch the initializers for globals and aliases up.
3776   if (Error Err = resolveGlobalAndIndirectSymbolInits())
3777     return Err;
3778   if (!GlobalInits.empty() || !IndirectSymbolInits.empty())
3779     return error("Malformed global initializer set");
3780 
3781   // Look for intrinsic functions which need to be upgraded at some point
3782   // and functions that need to have their function attributes upgraded.
3783   for (Function &F : *TheModule) {
3784     MDLoader->upgradeDebugIntrinsics(F);
3785     Function *NewFn;
3786     // If PreserveInputDbgFormat=true, then we don't know whether we want
3787     // intrinsics or records, and we won't perform any conversions in either
3788     // case, so don't upgrade intrinsics to records.
3789     if (UpgradeIntrinsicFunction(
3790             &F, NewFn, PreserveInputDbgFormat != cl::boolOrDefault::BOU_TRUE))
3791       UpgradedIntrinsics[&F] = NewFn;
3792     // Look for functions that rely on old function attribute behavior.
3793     UpgradeFunctionAttributes(F);
3794   }
3795 
3796   // Look for global variables which need to be renamed.
3797   std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables;
3798   for (GlobalVariable &GV : TheModule->globals())
3799     if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV))
3800       UpgradedVariables.emplace_back(&GV, Upgraded);
3801   for (auto &Pair : UpgradedVariables) {
3802     Pair.first->eraseFromParent();
3803     TheModule->insertGlobalVariable(Pair.second);
3804   }
3805 
3806   // Force deallocation of memory for these vectors to favor the client that
3807   // want lazy deserialization.
3808   std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits);
3809   std::vector<std::pair<GlobalValue *, unsigned>>().swap(IndirectSymbolInits);
3810   return Error::success();
3811 }
3812 
3813 /// Support for lazy parsing of function bodies. This is required if we
3814 /// either have an old bitcode file without a VST forward declaration record,
3815 /// or if we have an anonymous function being materialized, since anonymous
3816 /// functions do not have a name and are therefore not in the VST.
3817 Error BitcodeReader::rememberAndSkipFunctionBodies() {
3818   if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit))
3819     return JumpFailed;
3820 
3821   if (Stream.AtEndOfStream())
3822     return error("Could not find function in stream");
3823 
3824   if (!SeenFirstFunctionBody)
3825     return error("Trying to materialize functions before seeing function blocks");
3826 
3827   // An old bitcode file with the symbol table at the end would have
3828   // finished the parse greedily.
3829   assert(SeenValueSymbolTable);
3830 
3831   SmallVector<uint64_t, 64> Record;
3832 
3833   while (true) {
3834     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3835     if (!MaybeEntry)
3836       return MaybeEntry.takeError();
3837     llvm::BitstreamEntry Entry = MaybeEntry.get();
3838 
3839     switch (Entry.Kind) {
3840     default:
3841       return error("Expect SubBlock");
3842     case BitstreamEntry::SubBlock:
3843       switch (Entry.ID) {
3844       default:
3845         return error("Expect function block");
3846       case bitc::FUNCTION_BLOCK_ID:
3847         if (Error Err = rememberAndSkipFunctionBody())
3848           return Err;
3849         NextUnreadBit = Stream.GetCurrentBitNo();
3850         return Error::success();
3851       }
3852     }
3853   }
3854 }
3855 
3856 Error BitcodeReaderBase::readBlockInfo() {
3857   Expected<std::optional<BitstreamBlockInfo>> MaybeNewBlockInfo =
3858       Stream.ReadBlockInfoBlock();
3859   if (!MaybeNewBlockInfo)
3860     return MaybeNewBlockInfo.takeError();
3861   std::optional<BitstreamBlockInfo> NewBlockInfo =
3862       std::move(MaybeNewBlockInfo.get());
3863   if (!NewBlockInfo)
3864     return error("Malformed block");
3865   BlockInfo = std::move(*NewBlockInfo);
3866   return Error::success();
3867 }
3868 
3869 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) {
3870   // v1: [selection_kind, name]
3871   // v2: [strtab_offset, strtab_size, selection_kind]
3872   StringRef Name;
3873   std::tie(Name, Record) = readNameFromStrtab(Record);
3874 
3875   if (Record.empty())
3876     return error("Invalid record");
3877   Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
3878   std::string OldFormatName;
3879   if (!UseStrtab) {
3880     if (Record.size() < 2)
3881       return error("Invalid record");
3882     unsigned ComdatNameSize = Record[1];
3883     if (ComdatNameSize > Record.size() - 2)
3884       return error("Comdat name size too large");
3885     OldFormatName.reserve(ComdatNameSize);
3886     for (unsigned i = 0; i != ComdatNameSize; ++i)
3887       OldFormatName += (char)Record[2 + i];
3888     Name = OldFormatName;
3889   }
3890   Comdat *C = TheModule->getOrInsertComdat(Name);
3891   C->setSelectionKind(SK);
3892   ComdatList.push_back(C);
3893   return Error::success();
3894 }
3895 
3896 static void inferDSOLocal(GlobalValue *GV) {
3897   // infer dso_local from linkage and visibility if it is not encoded.
3898   if (GV->hasLocalLinkage() ||
3899       (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()))
3900     GV->setDSOLocal(true);
3901 }
3902 
3903 GlobalValue::SanitizerMetadata deserializeSanitizerMetadata(unsigned V) {
3904   GlobalValue::SanitizerMetadata Meta;
3905   if (V & (1 << 0))
3906     Meta.NoAddress = true;
3907   if (V & (1 << 1))
3908     Meta.NoHWAddress = true;
3909   if (V & (1 << 2))
3910     Meta.Memtag = true;
3911   if (V & (1 << 3))
3912     Meta.IsDynInit = true;
3913   return Meta;
3914 }
3915 
3916 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) {
3917   // v1: [pointer type, isconst, initid, linkage, alignment, section,
3918   // visibility, threadlocal, unnamed_addr, externally_initialized,
3919   // dllstorageclass, comdat, attributes, preemption specifier,
3920   // partition strtab offset, partition strtab size] (name in VST)
3921   // v2: [strtab_offset, strtab_size, v1]
3922   // v3: [v2, code_model]
3923   StringRef Name;
3924   std::tie(Name, Record) = readNameFromStrtab(Record);
3925 
3926   if (Record.size() < 6)
3927     return error("Invalid record");
3928   unsigned TyID = Record[0];
3929   Type *Ty = getTypeByID(TyID);
3930   if (!Ty)
3931     return error("Invalid record");
3932   bool isConstant = Record[1] & 1;
3933   bool explicitType = Record[1] & 2;
3934   unsigned AddressSpace;
3935   if (explicitType) {
3936     AddressSpace = Record[1] >> 2;
3937   } else {
3938     if (!Ty->isPointerTy())
3939       return error("Invalid type for value");
3940     AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
3941     TyID = getContainedTypeID(TyID);
3942     Ty = getTypeByID(TyID);
3943     if (!Ty)
3944       return error("Missing element type for old-style global");
3945   }
3946 
3947   uint64_t RawLinkage = Record[3];
3948   GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
3949   MaybeAlign Alignment;
3950   if (Error Err = parseAlignmentValue(Record[4], Alignment))
3951     return Err;
3952   std::string Section;
3953   if (Record[5]) {
3954     if (Record[5] - 1 >= SectionTable.size())
3955       return error("Invalid ID");
3956     Section = SectionTable[Record[5] - 1];
3957   }
3958   GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
3959   // Local linkage must have default visibility.
3960   // auto-upgrade `hidden` and `protected` for old bitcode.
3961   if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
3962     Visibility = getDecodedVisibility(Record[6]);
3963 
3964   GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
3965   if (Record.size() > 7)
3966     TLM = getDecodedThreadLocalMode(Record[7]);
3967 
3968   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3969   if (Record.size() > 8)
3970     UnnamedAddr = getDecodedUnnamedAddrType(Record[8]);
3971 
3972   bool ExternallyInitialized = false;
3973   if (Record.size() > 9)
3974     ExternallyInitialized = Record[9];
3975 
3976   GlobalVariable *NewGV =
3977       new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name,
3978                          nullptr, TLM, AddressSpace, ExternallyInitialized);
3979   if (Alignment)
3980     NewGV->setAlignment(*Alignment);
3981   if (!Section.empty())
3982     NewGV->setSection(Section);
3983   NewGV->setVisibility(Visibility);
3984   NewGV->setUnnamedAddr(UnnamedAddr);
3985 
3986   if (Record.size() > 10) {
3987     // A GlobalValue with local linkage cannot have a DLL storage class.
3988     if (!NewGV->hasLocalLinkage()) {
3989       NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10]));
3990     }
3991   } else {
3992     upgradeDLLImportExportLinkage(NewGV, RawLinkage);
3993   }
3994 
3995   ValueList.push_back(NewGV, getVirtualTypeID(NewGV->getType(), TyID));
3996 
3997   // Remember which value to use for the global initializer.
3998   if (unsigned InitID = Record[2])
3999     GlobalInits.push_back(std::make_pair(NewGV, InitID - 1));
4000 
4001   if (Record.size() > 11) {
4002     if (unsigned ComdatID = Record[11]) {
4003       if (ComdatID > ComdatList.size())
4004         return error("Invalid global variable comdat ID");
4005       NewGV->setComdat(ComdatList[ComdatID - 1]);
4006     }
4007   } else if (hasImplicitComdat(RawLinkage)) {
4008     ImplicitComdatObjects.insert(NewGV);
4009   }
4010 
4011   if (Record.size() > 12) {
4012     auto AS = getAttributes(Record[12]).getFnAttrs();
4013     NewGV->setAttributes(AS);
4014   }
4015 
4016   if (Record.size() > 13) {
4017     NewGV->setDSOLocal(getDecodedDSOLocal(Record[13]));
4018   }
4019   inferDSOLocal(NewGV);
4020 
4021   // Check whether we have enough values to read a partition name.
4022   if (Record.size() > 15)
4023     NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15]));
4024 
4025   if (Record.size() > 16 && Record[16]) {
4026     llvm::GlobalValue::SanitizerMetadata Meta =
4027         deserializeSanitizerMetadata(Record[16]);
4028     NewGV->setSanitizerMetadata(Meta);
4029   }
4030 
4031   if (Record.size() > 17 && Record[17]) {
4032     if (auto CM = getDecodedCodeModel(Record[17]))
4033       NewGV->setCodeModel(*CM);
4034     else
4035       return error("Invalid global variable code model");
4036   }
4037 
4038   return Error::success();
4039 }
4040 
4041 void BitcodeReader::callValueTypeCallback(Value *F, unsigned TypeID) {
4042   if (ValueTypeCallback) {
4043     (*ValueTypeCallback)(
4044         F, TypeID, [this](unsigned I) { return getTypeByID(I); },
4045         [this](unsigned I, unsigned J) { return getContainedTypeID(I, J); });
4046   }
4047 }
4048 
4049 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) {
4050   // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section,
4051   // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat,
4052   // prefixdata,  personalityfn, preemption specifier, addrspace] (name in VST)
4053   // v2: [strtab_offset, strtab_size, v1]
4054   StringRef Name;
4055   std::tie(Name, Record) = readNameFromStrtab(Record);
4056 
4057   if (Record.size() < 8)
4058     return error("Invalid record");
4059   unsigned FTyID = Record[0];
4060   Type *FTy = getTypeByID(FTyID);
4061   if (!FTy)
4062     return error("Invalid record");
4063   if (isa<PointerType>(FTy)) {
4064     FTyID = getContainedTypeID(FTyID, 0);
4065     FTy = getTypeByID(FTyID);
4066     if (!FTy)
4067       return error("Missing element type for old-style function");
4068   }
4069 
4070   if (!isa<FunctionType>(FTy))
4071     return error("Invalid type for value");
4072   auto CC = static_cast<CallingConv::ID>(Record[1]);
4073   if (CC & ~CallingConv::MaxID)
4074     return error("Invalid calling convention ID");
4075 
4076   unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace();
4077   if (Record.size() > 16)
4078     AddrSpace = Record[16];
4079 
4080   Function *Func =
4081       Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage,
4082                        AddrSpace, Name, TheModule);
4083 
4084   assert(Func->getFunctionType() == FTy &&
4085          "Incorrect fully specified type provided for function");
4086   FunctionTypeIDs[Func] = FTyID;
4087 
4088   Func->setCallingConv(CC);
4089   bool isProto = Record[2];
4090   uint64_t RawLinkage = Record[3];
4091   Func->setLinkage(getDecodedLinkage(RawLinkage));
4092   Func->setAttributes(getAttributes(Record[4]));
4093   callValueTypeCallback(Func, FTyID);
4094 
4095   // Upgrade any old-style byval or sret without a type by propagating the
4096   // argument's pointee type. There should be no opaque pointers where the byval
4097   // type is implicit.
4098   for (unsigned i = 0; i != Func->arg_size(); ++i) {
4099     for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet,
4100                                      Attribute::InAlloca}) {
4101       if (!Func->hasParamAttribute(i, Kind))
4102         continue;
4103 
4104       if (Func->getParamAttribute(i, Kind).getValueAsType())
4105         continue;
4106 
4107       Func->removeParamAttr(i, Kind);
4108 
4109       unsigned ParamTypeID = getContainedTypeID(FTyID, i + 1);
4110       Type *PtrEltTy = getPtrElementTypeByID(ParamTypeID);
4111       if (!PtrEltTy)
4112         return error("Missing param element type for attribute upgrade");
4113 
4114       Attribute NewAttr;
4115       switch (Kind) {
4116       case Attribute::ByVal:
4117         NewAttr = Attribute::getWithByValType(Context, PtrEltTy);
4118         break;
4119       case Attribute::StructRet:
4120         NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy);
4121         break;
4122       case Attribute::InAlloca:
4123         NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy);
4124         break;
4125       default:
4126         llvm_unreachable("not an upgraded type attribute");
4127       }
4128 
4129       Func->addParamAttr(i, NewAttr);
4130     }
4131   }
4132 
4133   if (Func->getCallingConv() == CallingConv::X86_INTR &&
4134       !Func->arg_empty() && !Func->hasParamAttribute(0, Attribute::ByVal)) {
4135     unsigned ParamTypeID = getContainedTypeID(FTyID, 1);
4136     Type *ByValTy = getPtrElementTypeByID(ParamTypeID);
4137     if (!ByValTy)
4138       return error("Missing param element type for x86_intrcc upgrade");
4139     Attribute NewAttr = Attribute::getWithByValType(Context, ByValTy);
4140     Func->addParamAttr(0, NewAttr);
4141   }
4142 
4143   MaybeAlign Alignment;
4144   if (Error Err = parseAlignmentValue(Record[5], Alignment))
4145     return Err;
4146   if (Alignment)
4147     Func->setAlignment(*Alignment);
4148   if (Record[6]) {
4149     if (Record[6] - 1 >= SectionTable.size())
4150       return error("Invalid ID");
4151     Func->setSection(SectionTable[Record[6] - 1]);
4152   }
4153   // Local linkage must have default visibility.
4154   // auto-upgrade `hidden` and `protected` for old bitcode.
4155   if (!Func->hasLocalLinkage())
4156     Func->setVisibility(getDecodedVisibility(Record[7]));
4157   if (Record.size() > 8 && Record[8]) {
4158     if (Record[8] - 1 >= GCTable.size())
4159       return error("Invalid ID");
4160     Func->setGC(GCTable[Record[8] - 1]);
4161   }
4162   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
4163   if (Record.size() > 9)
4164     UnnamedAddr = getDecodedUnnamedAddrType(Record[9]);
4165   Func->setUnnamedAddr(UnnamedAddr);
4166 
4167   FunctionOperandInfo OperandInfo = {Func, 0, 0, 0};
4168   if (Record.size() > 10)
4169     OperandInfo.Prologue = Record[10];
4170 
4171   if (Record.size() > 11) {
4172     // A GlobalValue with local linkage cannot have a DLL storage class.
4173     if (!Func->hasLocalLinkage()) {
4174       Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11]));
4175     }
4176   } else {
4177     upgradeDLLImportExportLinkage(Func, RawLinkage);
4178   }
4179 
4180   if (Record.size() > 12) {
4181     if (unsigned ComdatID = Record[12]) {
4182       if (ComdatID > ComdatList.size())
4183         return error("Invalid function comdat ID");
4184       Func->setComdat(ComdatList[ComdatID - 1]);
4185     }
4186   } else if (hasImplicitComdat(RawLinkage)) {
4187     ImplicitComdatObjects.insert(Func);
4188   }
4189 
4190   if (Record.size() > 13)
4191     OperandInfo.Prefix = Record[13];
4192 
4193   if (Record.size() > 14)
4194     OperandInfo.PersonalityFn = Record[14];
4195 
4196   if (Record.size() > 15) {
4197     Func->setDSOLocal(getDecodedDSOLocal(Record[15]));
4198   }
4199   inferDSOLocal(Func);
4200 
4201   // Record[16] is the address space number.
4202 
4203   // Check whether we have enough values to read a partition name. Also make
4204   // sure Strtab has enough values.
4205   if (Record.size() > 18 && Strtab.data() &&
4206       Record[17] + Record[18] <= Strtab.size()) {
4207     Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18]));
4208   }
4209 
4210   ValueList.push_back(Func, getVirtualTypeID(Func->getType(), FTyID));
4211 
4212   if (OperandInfo.PersonalityFn || OperandInfo.Prefix || OperandInfo.Prologue)
4213     FunctionOperands.push_back(OperandInfo);
4214 
4215   // If this is a function with a body, remember the prototype we are
4216   // creating now, so that we can match up the body with them later.
4217   if (!isProto) {
4218     Func->setIsMaterializable(true);
4219     FunctionsWithBodies.push_back(Func);
4220     DeferredFunctionInfo[Func] = 0;
4221   }
4222   return Error::success();
4223 }
4224 
4225 Error BitcodeReader::parseGlobalIndirectSymbolRecord(
4226     unsigned BitCode, ArrayRef<uint64_t> Record) {
4227   // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST)
4228   // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility,
4229   // dllstorageclass, threadlocal, unnamed_addr,
4230   // preemption specifier] (name in VST)
4231   // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage,
4232   // visibility, dllstorageclass, threadlocal, unnamed_addr,
4233   // preemption specifier] (name in VST)
4234   // v2: [strtab_offset, strtab_size, v1]
4235   StringRef Name;
4236   std::tie(Name, Record) = readNameFromStrtab(Record);
4237 
4238   bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD;
4239   if (Record.size() < (3 + (unsigned)NewRecord))
4240     return error("Invalid record");
4241   unsigned OpNum = 0;
4242   unsigned TypeID = Record[OpNum++];
4243   Type *Ty = getTypeByID(TypeID);
4244   if (!Ty)
4245     return error("Invalid record");
4246 
4247   unsigned AddrSpace;
4248   if (!NewRecord) {
4249     auto *PTy = dyn_cast<PointerType>(Ty);
4250     if (!PTy)
4251       return error("Invalid type for value");
4252     AddrSpace = PTy->getAddressSpace();
4253     TypeID = getContainedTypeID(TypeID);
4254     Ty = getTypeByID(TypeID);
4255     if (!Ty)
4256       return error("Missing element type for old-style indirect symbol");
4257   } else {
4258     AddrSpace = Record[OpNum++];
4259   }
4260 
4261   auto Val = Record[OpNum++];
4262   auto Linkage = Record[OpNum++];
4263   GlobalValue *NewGA;
4264   if (BitCode == bitc::MODULE_CODE_ALIAS ||
4265       BitCode == bitc::MODULE_CODE_ALIAS_OLD)
4266     NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
4267                                 TheModule);
4268   else
4269     NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
4270                                 nullptr, TheModule);
4271 
4272   // Local linkage must have default visibility.
4273   // auto-upgrade `hidden` and `protected` for old bitcode.
4274   if (OpNum != Record.size()) {
4275     auto VisInd = OpNum++;
4276     if (!NewGA->hasLocalLinkage())
4277       NewGA->setVisibility(getDecodedVisibility(Record[VisInd]));
4278   }
4279   if (BitCode == bitc::MODULE_CODE_ALIAS ||
4280       BitCode == bitc::MODULE_CODE_ALIAS_OLD) {
4281     if (OpNum != Record.size()) {
4282       auto S = Record[OpNum++];
4283       // A GlobalValue with local linkage cannot have a DLL storage class.
4284       if (!NewGA->hasLocalLinkage())
4285         NewGA->setDLLStorageClass(getDecodedDLLStorageClass(S));
4286     }
4287     else
4288       upgradeDLLImportExportLinkage(NewGA, Linkage);
4289     if (OpNum != Record.size())
4290       NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++]));
4291     if (OpNum != Record.size())
4292       NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++]));
4293   }
4294   if (OpNum != Record.size())
4295     NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++]));
4296   inferDSOLocal(NewGA);
4297 
4298   // Check whether we have enough values to read a partition name.
4299   if (OpNum + 1 < Record.size()) {
4300     // Check Strtab has enough values for the partition.
4301     if (Record[OpNum] + Record[OpNum + 1] > Strtab.size())
4302       return error("Malformed partition, too large.");
4303     NewGA->setPartition(
4304         StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1]));
4305     OpNum += 2;
4306   }
4307 
4308   ValueList.push_back(NewGA, getVirtualTypeID(NewGA->getType(), TypeID));
4309   IndirectSymbolInits.push_back(std::make_pair(NewGA, Val));
4310   return Error::success();
4311 }
4312 
4313 Error BitcodeReader::parseModule(uint64_t ResumeBit,
4314                                  bool ShouldLazyLoadMetadata,
4315                                  ParserCallbacks Callbacks) {
4316   // Load directly into RemoveDIs format if LoadBitcodeIntoNewDbgInfoFormat
4317   // has been set to true and we aren't attempting to preserve the existing
4318   // format in the bitcode (default action: load into the old debug format).
4319   if (PreserveInputDbgFormat != cl::boolOrDefault::BOU_TRUE) {
4320     TheModule->IsNewDbgInfoFormat =
4321         UseNewDbgInfoFormat &&
4322         LoadBitcodeIntoNewDbgInfoFormat == cl::boolOrDefault::BOU_TRUE;
4323   }
4324 
4325   this->ValueTypeCallback = std::move(Callbacks.ValueType);
4326   if (ResumeBit) {
4327     if (Error JumpFailed = Stream.JumpToBit(ResumeBit))
4328       return JumpFailed;
4329   } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
4330     return Err;
4331 
4332   SmallVector<uint64_t, 64> Record;
4333 
4334   // Parts of bitcode parsing depend on the datalayout.  Make sure we
4335   // finalize the datalayout before we run any of that code.
4336   bool ResolvedDataLayout = false;
4337   // In order to support importing modules with illegal data layout strings,
4338   // delay parsing the data layout string until after upgrades and overrides
4339   // have been applied, allowing to fix illegal data layout strings.
4340   // Initialize to the current module's layout string in case none is specified.
4341   std::string TentativeDataLayoutStr = TheModule->getDataLayoutStr();
4342 
4343   auto ResolveDataLayout = [&]() -> Error {
4344     if (ResolvedDataLayout)
4345       return Error::success();
4346 
4347     // Datalayout and triple can't be parsed after this point.
4348     ResolvedDataLayout = true;
4349 
4350     // Auto-upgrade the layout string
4351     TentativeDataLayoutStr = llvm::UpgradeDataLayoutString(
4352         TentativeDataLayoutStr, TheModule->getTargetTriple());
4353 
4354     // Apply override
4355     if (Callbacks.DataLayout) {
4356       if (auto LayoutOverride = (*Callbacks.DataLayout)(
4357               TheModule->getTargetTriple(), TentativeDataLayoutStr))
4358         TentativeDataLayoutStr = *LayoutOverride;
4359     }
4360 
4361     // Now the layout string is finalized in TentativeDataLayoutStr. Parse it.
4362     Expected<DataLayout> MaybeDL = DataLayout::parse(TentativeDataLayoutStr);
4363     if (!MaybeDL)
4364       return MaybeDL.takeError();
4365 
4366     TheModule->setDataLayout(MaybeDL.get());
4367     return Error::success();
4368   };
4369 
4370   // Read all the records for this module.
4371   while (true) {
4372     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
4373     if (!MaybeEntry)
4374       return MaybeEntry.takeError();
4375     llvm::BitstreamEntry Entry = MaybeEntry.get();
4376 
4377     switch (Entry.Kind) {
4378     case BitstreamEntry::Error:
4379       return error("Malformed block");
4380     case BitstreamEntry::EndBlock:
4381       if (Error Err = ResolveDataLayout())
4382         return Err;
4383       return globalCleanup();
4384 
4385     case BitstreamEntry::SubBlock:
4386       switch (Entry.ID) {
4387       default:  // Skip unknown content.
4388         if (Error Err = Stream.SkipBlock())
4389           return Err;
4390         break;
4391       case bitc::BLOCKINFO_BLOCK_ID:
4392         if (Error Err = readBlockInfo())
4393           return Err;
4394         break;
4395       case bitc::PARAMATTR_BLOCK_ID:
4396         if (Error Err = parseAttributeBlock())
4397           return Err;
4398         break;
4399       case bitc::PARAMATTR_GROUP_BLOCK_ID:
4400         if (Error Err = parseAttributeGroupBlock())
4401           return Err;
4402         break;
4403       case bitc::TYPE_BLOCK_ID_NEW:
4404         if (Error Err = parseTypeTable())
4405           return Err;
4406         break;
4407       case bitc::VALUE_SYMTAB_BLOCK_ID:
4408         if (!SeenValueSymbolTable) {
4409           // Either this is an old form VST without function index and an
4410           // associated VST forward declaration record (which would have caused
4411           // the VST to be jumped to and parsed before it was encountered
4412           // normally in the stream), or there were no function blocks to
4413           // trigger an earlier parsing of the VST.
4414           assert(VSTOffset == 0 || FunctionsWithBodies.empty());
4415           if (Error Err = parseValueSymbolTable())
4416             return Err;
4417           SeenValueSymbolTable = true;
4418         } else {
4419           // We must have had a VST forward declaration record, which caused
4420           // the parser to jump to and parse the VST earlier.
4421           assert(VSTOffset > 0);
4422           if (Error Err = Stream.SkipBlock())
4423             return Err;
4424         }
4425         break;
4426       case bitc::CONSTANTS_BLOCK_ID:
4427         if (Error Err = parseConstants())
4428           return Err;
4429         if (Error Err = resolveGlobalAndIndirectSymbolInits())
4430           return Err;
4431         break;
4432       case bitc::METADATA_BLOCK_ID:
4433         if (ShouldLazyLoadMetadata) {
4434           if (Error Err = rememberAndSkipMetadata())
4435             return Err;
4436           break;
4437         }
4438         assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata");
4439         if (Error Err = MDLoader->parseModuleMetadata())
4440           return Err;
4441         break;
4442       case bitc::METADATA_KIND_BLOCK_ID:
4443         if (Error Err = MDLoader->parseMetadataKinds())
4444           return Err;
4445         break;
4446       case bitc::FUNCTION_BLOCK_ID:
4447         if (Error Err = ResolveDataLayout())
4448           return Err;
4449 
4450         // If this is the first function body we've seen, reverse the
4451         // FunctionsWithBodies list.
4452         if (!SeenFirstFunctionBody) {
4453           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
4454           if (Error Err = globalCleanup())
4455             return Err;
4456           SeenFirstFunctionBody = true;
4457         }
4458 
4459         if (VSTOffset > 0) {
4460           // If we have a VST forward declaration record, make sure we
4461           // parse the VST now if we haven't already. It is needed to
4462           // set up the DeferredFunctionInfo vector for lazy reading.
4463           if (!SeenValueSymbolTable) {
4464             if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset))
4465               return Err;
4466             SeenValueSymbolTable = true;
4467             // Fall through so that we record the NextUnreadBit below.
4468             // This is necessary in case we have an anonymous function that
4469             // is later materialized. Since it will not have a VST entry we
4470             // need to fall back to the lazy parse to find its offset.
4471           } else {
4472             // If we have a VST forward declaration record, but have already
4473             // parsed the VST (just above, when the first function body was
4474             // encountered here), then we are resuming the parse after
4475             // materializing functions. The ResumeBit points to the
4476             // start of the last function block recorded in the
4477             // DeferredFunctionInfo map. Skip it.
4478             if (Error Err = Stream.SkipBlock())
4479               return Err;
4480             continue;
4481           }
4482         }
4483 
4484         // Support older bitcode files that did not have the function
4485         // index in the VST, nor a VST forward declaration record, as
4486         // well as anonymous functions that do not have VST entries.
4487         // Build the DeferredFunctionInfo vector on the fly.
4488         if (Error Err = rememberAndSkipFunctionBody())
4489           return Err;
4490 
4491         // Suspend parsing when we reach the function bodies. Subsequent
4492         // materialization calls will resume it when necessary. If the bitcode
4493         // file is old, the symbol table will be at the end instead and will not
4494         // have been seen yet. In this case, just finish the parse now.
4495         if (SeenValueSymbolTable) {
4496           NextUnreadBit = Stream.GetCurrentBitNo();
4497           // After the VST has been parsed, we need to make sure intrinsic name
4498           // are auto-upgraded.
4499           return globalCleanup();
4500         }
4501         break;
4502       case bitc::USELIST_BLOCK_ID:
4503         if (Error Err = parseUseLists())
4504           return Err;
4505         break;
4506       case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID:
4507         if (Error Err = parseOperandBundleTags())
4508           return Err;
4509         break;
4510       case bitc::SYNC_SCOPE_NAMES_BLOCK_ID:
4511         if (Error Err = parseSyncScopeNames())
4512           return Err;
4513         break;
4514       }
4515       continue;
4516 
4517     case BitstreamEntry::Record:
4518       // The interesting case.
4519       break;
4520     }
4521 
4522     // Read a record.
4523     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
4524     if (!MaybeBitCode)
4525       return MaybeBitCode.takeError();
4526     switch (unsigned BitCode = MaybeBitCode.get()) {
4527     default: break;  // Default behavior, ignore unknown content.
4528     case bitc::MODULE_CODE_VERSION: {
4529       Expected<unsigned> VersionOrErr = parseVersionRecord(Record);
4530       if (!VersionOrErr)
4531         return VersionOrErr.takeError();
4532       UseRelativeIDs = *VersionOrErr >= 1;
4533       break;
4534     }
4535     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
4536       if (ResolvedDataLayout)
4537         return error("target triple too late in module");
4538       std::string S;
4539       if (convertToString(Record, 0, S))
4540         return error("Invalid record");
4541       TheModule->setTargetTriple(S);
4542       break;
4543     }
4544     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
4545       if (ResolvedDataLayout)
4546         return error("datalayout too late in module");
4547       if (convertToString(Record, 0, TentativeDataLayoutStr))
4548         return error("Invalid record");
4549       break;
4550     }
4551     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
4552       std::string S;
4553       if (convertToString(Record, 0, S))
4554         return error("Invalid record");
4555       TheModule->setModuleInlineAsm(S);
4556       break;
4557     }
4558     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
4559       // Deprecated, but still needed to read old bitcode files.
4560       std::string S;
4561       if (convertToString(Record, 0, S))
4562         return error("Invalid record");
4563       // Ignore value.
4564       break;
4565     }
4566     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
4567       std::string S;
4568       if (convertToString(Record, 0, S))
4569         return error("Invalid record");
4570       SectionTable.push_back(S);
4571       break;
4572     }
4573     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
4574       std::string S;
4575       if (convertToString(Record, 0, S))
4576         return error("Invalid record");
4577       GCTable.push_back(S);
4578       break;
4579     }
4580     case bitc::MODULE_CODE_COMDAT:
4581       if (Error Err = parseComdatRecord(Record))
4582         return Err;
4583       break;
4584     // FIXME: BitcodeReader should handle {GLOBALVAR, FUNCTION, ALIAS, IFUNC}
4585     // written by ThinLinkBitcodeWriter. See
4586     // `ThinLinkBitcodeWriter::writeSimplifiedModuleInfo` for the format of each
4587     // record
4588     // (https://github.com/llvm/llvm-project/blob/b6a93967d9c11e79802b5e75cec1584d6c8aa472/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp#L4714)
4589     case bitc::MODULE_CODE_GLOBALVAR:
4590       if (Error Err = parseGlobalVarRecord(Record))
4591         return Err;
4592       break;
4593     case bitc::MODULE_CODE_FUNCTION:
4594       if (Error Err = ResolveDataLayout())
4595         return Err;
4596       if (Error Err = parseFunctionRecord(Record))
4597         return Err;
4598       break;
4599     case bitc::MODULE_CODE_IFUNC:
4600     case bitc::MODULE_CODE_ALIAS:
4601     case bitc::MODULE_CODE_ALIAS_OLD:
4602       if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record))
4603         return Err;
4604       break;
4605     /// MODULE_CODE_VSTOFFSET: [offset]
4606     case bitc::MODULE_CODE_VSTOFFSET:
4607       if (Record.empty())
4608         return error("Invalid record");
4609       // Note that we subtract 1 here because the offset is relative to one word
4610       // before the start of the identification or module block, which was
4611       // historically always the start of the regular bitcode header.
4612       VSTOffset = Record[0] - 1;
4613       break;
4614     /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
4615     case bitc::MODULE_CODE_SOURCE_FILENAME:
4616       SmallString<128> ValueName;
4617       if (convertToString(Record, 0, ValueName))
4618         return error("Invalid record");
4619       TheModule->setSourceFileName(ValueName);
4620       break;
4621     }
4622     Record.clear();
4623   }
4624   this->ValueTypeCallback = std::nullopt;
4625   return Error::success();
4626 }
4627 
4628 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
4629                                       bool IsImporting,
4630                                       ParserCallbacks Callbacks) {
4631   TheModule = M;
4632   MetadataLoaderCallbacks MDCallbacks;
4633   MDCallbacks.GetTypeByID = [&](unsigned ID) { return getTypeByID(ID); };
4634   MDCallbacks.GetContainedTypeID = [&](unsigned I, unsigned J) {
4635     return getContainedTypeID(I, J);
4636   };
4637   MDCallbacks.MDType = Callbacks.MDType;
4638   MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, MDCallbacks);
4639   return parseModule(0, ShouldLazyLoadMetadata, Callbacks);
4640 }
4641 
4642 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) {
4643   if (!isa<PointerType>(PtrType))
4644     return error("Load/Store operand is not a pointer type");
4645   if (!PointerType::isLoadableOrStorableType(ValType))
4646     return error("Cannot load/store from pointer");
4647   return Error::success();
4648 }
4649 
4650 Error BitcodeReader::propagateAttributeTypes(CallBase *CB,
4651                                              ArrayRef<unsigned> ArgTyIDs) {
4652   AttributeList Attrs = CB->getAttributes();
4653   for (unsigned i = 0; i != CB->arg_size(); ++i) {
4654     for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet,
4655                                      Attribute::InAlloca}) {
4656       if (!Attrs.hasParamAttr(i, Kind) ||
4657           Attrs.getParamAttr(i, Kind).getValueAsType())
4658         continue;
4659 
4660       Type *PtrEltTy = getPtrElementTypeByID(ArgTyIDs[i]);
4661       if (!PtrEltTy)
4662         return error("Missing element type for typed attribute upgrade");
4663 
4664       Attribute NewAttr;
4665       switch (Kind) {
4666       case Attribute::ByVal:
4667         NewAttr = Attribute::getWithByValType(Context, PtrEltTy);
4668         break;
4669       case Attribute::StructRet:
4670         NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy);
4671         break;
4672       case Attribute::InAlloca:
4673         NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy);
4674         break;
4675       default:
4676         llvm_unreachable("not an upgraded type attribute");
4677       }
4678 
4679       Attrs = Attrs.addParamAttribute(Context, i, NewAttr);
4680     }
4681   }
4682 
4683   if (CB->isInlineAsm()) {
4684     const InlineAsm *IA = cast<InlineAsm>(CB->getCalledOperand());
4685     unsigned ArgNo = 0;
4686     for (const InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
4687       if (!CI.hasArg())
4688         continue;
4689 
4690       if (CI.isIndirect && !Attrs.getParamElementType(ArgNo)) {
4691         Type *ElemTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]);
4692         if (!ElemTy)
4693           return error("Missing element type for inline asm upgrade");
4694         Attrs = Attrs.addParamAttribute(
4695             Context, ArgNo,
4696             Attribute::get(Context, Attribute::ElementType, ElemTy));
4697       }
4698 
4699       ArgNo++;
4700     }
4701   }
4702 
4703   switch (CB->getIntrinsicID()) {
4704   case Intrinsic::preserve_array_access_index:
4705   case Intrinsic::preserve_struct_access_index:
4706   case Intrinsic::aarch64_ldaxr:
4707   case Intrinsic::aarch64_ldxr:
4708   case Intrinsic::aarch64_stlxr:
4709   case Intrinsic::aarch64_stxr:
4710   case Intrinsic::arm_ldaex:
4711   case Intrinsic::arm_ldrex:
4712   case Intrinsic::arm_stlex:
4713   case Intrinsic::arm_strex: {
4714     unsigned ArgNo;
4715     switch (CB->getIntrinsicID()) {
4716     case Intrinsic::aarch64_stlxr:
4717     case Intrinsic::aarch64_stxr:
4718     case Intrinsic::arm_stlex:
4719     case Intrinsic::arm_strex:
4720       ArgNo = 1;
4721       break;
4722     default:
4723       ArgNo = 0;
4724       break;
4725     }
4726     if (!Attrs.getParamElementType(ArgNo)) {
4727       Type *ElTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]);
4728       if (!ElTy)
4729         return error("Missing element type for elementtype upgrade");
4730       Attribute NewAttr = Attribute::get(Context, Attribute::ElementType, ElTy);
4731       Attrs = Attrs.addParamAttribute(Context, ArgNo, NewAttr);
4732     }
4733     break;
4734   }
4735   default:
4736     break;
4737   }
4738 
4739   CB->setAttributes(Attrs);
4740   return Error::success();
4741 }
4742 
4743 /// Lazily parse the specified function body block.
4744 Error BitcodeReader::parseFunctionBody(Function *F) {
4745   if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
4746     return Err;
4747 
4748   // Unexpected unresolved metadata when parsing function.
4749   if (MDLoader->hasFwdRefs())
4750     return error("Invalid function metadata: incoming forward references");
4751 
4752   InstructionList.clear();
4753   unsigned ModuleValueListSize = ValueList.size();
4754   unsigned ModuleMDLoaderSize = MDLoader->size();
4755 
4756   // Add all the function arguments to the value table.
4757   unsigned ArgNo = 0;
4758   unsigned FTyID = FunctionTypeIDs[F];
4759   for (Argument &I : F->args()) {
4760     unsigned ArgTyID = getContainedTypeID(FTyID, ArgNo + 1);
4761     assert(I.getType() == getTypeByID(ArgTyID) &&
4762            "Incorrect fully specified type for Function Argument");
4763     ValueList.push_back(&I, ArgTyID);
4764     ++ArgNo;
4765   }
4766   unsigned NextValueNo = ValueList.size();
4767   BasicBlock *CurBB = nullptr;
4768   unsigned CurBBNo = 0;
4769   // Block into which constant expressions from phi nodes are materialized.
4770   BasicBlock *PhiConstExprBB = nullptr;
4771   // Edge blocks for phi nodes into which constant expressions have been
4772   // expanded.
4773   SmallMapVector<std::pair<BasicBlock *, BasicBlock *>, BasicBlock *, 4>
4774     ConstExprEdgeBBs;
4775 
4776   DebugLoc LastLoc;
4777   auto getLastInstruction = [&]() -> Instruction * {
4778     if (CurBB && !CurBB->empty())
4779       return &CurBB->back();
4780     else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
4781              !FunctionBBs[CurBBNo - 1]->empty())
4782       return &FunctionBBs[CurBBNo - 1]->back();
4783     return nullptr;
4784   };
4785 
4786   std::vector<OperandBundleDef> OperandBundles;
4787 
4788   // Read all the records.
4789   SmallVector<uint64_t, 64> Record;
4790 
4791   while (true) {
4792     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
4793     if (!MaybeEntry)
4794       return MaybeEntry.takeError();
4795     llvm::BitstreamEntry Entry = MaybeEntry.get();
4796 
4797     switch (Entry.Kind) {
4798     case BitstreamEntry::Error:
4799       return error("Malformed block");
4800     case BitstreamEntry::EndBlock:
4801       goto OutOfRecordLoop;
4802 
4803     case BitstreamEntry::SubBlock:
4804       switch (Entry.ID) {
4805       default:  // Skip unknown content.
4806         if (Error Err = Stream.SkipBlock())
4807           return Err;
4808         break;
4809       case bitc::CONSTANTS_BLOCK_ID:
4810         if (Error Err = parseConstants())
4811           return Err;
4812         NextValueNo = ValueList.size();
4813         break;
4814       case bitc::VALUE_SYMTAB_BLOCK_ID:
4815         if (Error Err = parseValueSymbolTable())
4816           return Err;
4817         break;
4818       case bitc::METADATA_ATTACHMENT_ID:
4819         if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList))
4820           return Err;
4821         break;
4822       case bitc::METADATA_BLOCK_ID:
4823         assert(DeferredMetadataInfo.empty() &&
4824                "Must read all module-level metadata before function-level");
4825         if (Error Err = MDLoader->parseFunctionMetadata())
4826           return Err;
4827         break;
4828       case bitc::USELIST_BLOCK_ID:
4829         if (Error Err = parseUseLists())
4830           return Err;
4831         break;
4832       }
4833       continue;
4834 
4835     case BitstreamEntry::Record:
4836       // The interesting case.
4837       break;
4838     }
4839 
4840     // Read a record.
4841     Record.clear();
4842     Instruction *I = nullptr;
4843     unsigned ResTypeID = InvalidTypeID;
4844     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
4845     if (!MaybeBitCode)
4846       return MaybeBitCode.takeError();
4847     switch (unsigned BitCode = MaybeBitCode.get()) {
4848     default: // Default behavior: reject
4849       return error("Invalid value");
4850     case bitc::FUNC_CODE_DECLAREBLOCKS: {   // DECLAREBLOCKS: [nblocks]
4851       if (Record.empty() || Record[0] == 0)
4852         return error("Invalid record");
4853       // Create all the basic blocks for the function.
4854       FunctionBBs.resize(Record[0]);
4855 
4856       // See if anything took the address of blocks in this function.
4857       auto BBFRI = BasicBlockFwdRefs.find(F);
4858       if (BBFRI == BasicBlockFwdRefs.end()) {
4859         for (BasicBlock *&BB : FunctionBBs)
4860           BB = BasicBlock::Create(Context, "", F);
4861       } else {
4862         auto &BBRefs = BBFRI->second;
4863         // Check for invalid basic block references.
4864         if (BBRefs.size() > FunctionBBs.size())
4865           return error("Invalid ID");
4866         assert(!BBRefs.empty() && "Unexpected empty array");
4867         assert(!BBRefs.front() && "Invalid reference to entry block");
4868         for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
4869              ++I)
4870           if (I < RE && BBRefs[I]) {
4871             BBRefs[I]->insertInto(F);
4872             FunctionBBs[I] = BBRefs[I];
4873           } else {
4874             FunctionBBs[I] = BasicBlock::Create(Context, "", F);
4875           }
4876 
4877         // Erase from the table.
4878         BasicBlockFwdRefs.erase(BBFRI);
4879       }
4880 
4881       CurBB = FunctionBBs[0];
4882       continue;
4883     }
4884 
4885     case bitc::FUNC_CODE_BLOCKADDR_USERS: // BLOCKADDR_USERS: [vals...]
4886       // The record should not be emitted if it's an empty list.
4887       if (Record.empty())
4888         return error("Invalid record");
4889       // When we have the RARE case of a BlockAddress Constant that is not
4890       // scoped to the Function it refers to, we need to conservatively
4891       // materialize the referred to Function, regardless of whether or not
4892       // that Function will ultimately be linked, otherwise users of
4893       // BitcodeReader might start splicing out Function bodies such that we
4894       // might no longer be able to materialize the BlockAddress since the
4895       // BasicBlock (and entire body of the Function) the BlockAddress refers
4896       // to may have been moved. In the case that the user of BitcodeReader
4897       // decides ultimately not to link the Function body, materializing here
4898       // could be considered wasteful, but it's better than a deserialization
4899       // failure as described. This keeps BitcodeReader unaware of complex
4900       // linkage policy decisions such as those use by LTO, leaving those
4901       // decisions "one layer up."
4902       for (uint64_t ValID : Record)
4903         if (auto *F = dyn_cast<Function>(ValueList[ValID]))
4904           BackwardRefFunctions.push_back(F);
4905         else
4906           return error("Invalid record");
4907 
4908       continue;
4909 
4910     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
4911       // This record indicates that the last instruction is at the same
4912       // location as the previous instruction with a location.
4913       I = getLastInstruction();
4914 
4915       if (!I)
4916         return error("Invalid record");
4917       I->setDebugLoc(LastLoc);
4918       I = nullptr;
4919       continue;
4920 
4921     case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
4922       I = getLastInstruction();
4923       if (!I || Record.size() < 4)
4924         return error("Invalid record");
4925 
4926       unsigned Line = Record[0], Col = Record[1];
4927       unsigned ScopeID = Record[2], IAID = Record[3];
4928       bool isImplicitCode = Record.size() == 5 && Record[4];
4929 
4930       MDNode *Scope = nullptr, *IA = nullptr;
4931       if (ScopeID) {
4932         Scope = dyn_cast_or_null<MDNode>(
4933             MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1));
4934         if (!Scope)
4935           return error("Invalid record");
4936       }
4937       if (IAID) {
4938         IA = dyn_cast_or_null<MDNode>(
4939             MDLoader->getMetadataFwdRefOrLoad(IAID - 1));
4940         if (!IA)
4941           return error("Invalid record");
4942       }
4943       LastLoc = DILocation::get(Scope->getContext(), Line, Col, Scope, IA,
4944                                 isImplicitCode);
4945       I->setDebugLoc(LastLoc);
4946       I = nullptr;
4947       continue;
4948     }
4949     case bitc::FUNC_CODE_INST_UNOP: {    // UNOP: [opval, ty, opcode]
4950       unsigned OpNum = 0;
4951       Value *LHS;
4952       unsigned TypeID;
4953       if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) ||
4954           OpNum+1 > Record.size())
4955         return error("Invalid record");
4956 
4957       int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType());
4958       if (Opc == -1)
4959         return error("Invalid record");
4960       I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
4961       ResTypeID = TypeID;
4962       InstructionList.push_back(I);
4963       if (OpNum < Record.size()) {
4964         if (isa<FPMathOperator>(I)) {
4965           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4966           if (FMF.any())
4967             I->setFastMathFlags(FMF);
4968         }
4969       }
4970       break;
4971     }
4972     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
4973       unsigned OpNum = 0;
4974       Value *LHS, *RHS;
4975       unsigned TypeID;
4976       if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) ||
4977           popValue(Record, OpNum, NextValueNo, LHS->getType(), TypeID, RHS,
4978                    CurBB) ||
4979           OpNum+1 > Record.size())
4980         return error("Invalid record");
4981 
4982       int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
4983       if (Opc == -1)
4984         return error("Invalid record");
4985       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
4986       ResTypeID = TypeID;
4987       InstructionList.push_back(I);
4988       if (OpNum < Record.size()) {
4989         if (Opc == Instruction::Add ||
4990             Opc == Instruction::Sub ||
4991             Opc == Instruction::Mul ||
4992             Opc == Instruction::Shl) {
4993           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
4994             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
4995           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
4996             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
4997         } else if (Opc == Instruction::SDiv ||
4998                    Opc == Instruction::UDiv ||
4999                    Opc == Instruction::LShr ||
5000                    Opc == Instruction::AShr) {
5001           if (Record[OpNum] & (1 << bitc::PEO_EXACT))
5002             cast<BinaryOperator>(I)->setIsExact(true);
5003         } else if (Opc == Instruction::Or) {
5004           if (Record[OpNum] & (1 << bitc::PDI_DISJOINT))
5005             cast<PossiblyDisjointInst>(I)->setIsDisjoint(true);
5006         } else if (isa<FPMathOperator>(I)) {
5007           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
5008           if (FMF.any())
5009             I->setFastMathFlags(FMF);
5010         }
5011       }
5012       break;
5013     }
5014     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
5015       unsigned OpNum = 0;
5016       Value *Op;
5017       unsigned OpTypeID;
5018       if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) ||
5019           OpNum + 1 > Record.size())
5020         return error("Invalid record");
5021 
5022       ResTypeID = Record[OpNum++];
5023       Type *ResTy = getTypeByID(ResTypeID);
5024       int Opc = getDecodedCastOpcode(Record[OpNum++]);
5025 
5026       if (Opc == -1 || !ResTy)
5027         return error("Invalid record");
5028       Instruction *Temp = nullptr;
5029       if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
5030         if (Temp) {
5031           InstructionList.push_back(Temp);
5032           assert(CurBB && "No current BB?");
5033           Temp->insertInto(CurBB, CurBB->end());
5034         }
5035       } else {
5036         auto CastOp = (Instruction::CastOps)Opc;
5037         if (!CastInst::castIsValid(CastOp, Op, ResTy))
5038           return error("Invalid cast");
5039         I = CastInst::Create(CastOp, Op, ResTy);
5040       }
5041 
5042       if (OpNum < Record.size()) {
5043         if (Opc == Instruction::ZExt || Opc == Instruction::UIToFP) {
5044           if (Record[OpNum] & (1 << bitc::PNNI_NON_NEG))
5045             cast<PossiblyNonNegInst>(I)->setNonNeg(true);
5046         } else if (Opc == Instruction::Trunc) {
5047           if (Record[OpNum] & (1 << bitc::TIO_NO_UNSIGNED_WRAP))
5048             cast<TruncInst>(I)->setHasNoUnsignedWrap(true);
5049           if (Record[OpNum] & (1 << bitc::TIO_NO_SIGNED_WRAP))
5050             cast<TruncInst>(I)->setHasNoSignedWrap(true);
5051         }
5052       }
5053 
5054       InstructionList.push_back(I);
5055       break;
5056     }
5057     case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
5058     case bitc::FUNC_CODE_INST_GEP_OLD:
5059     case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
5060       unsigned OpNum = 0;
5061 
5062       unsigned TyID;
5063       Type *Ty;
5064       bool InBounds;
5065 
5066       if (BitCode == bitc::FUNC_CODE_INST_GEP) {
5067         InBounds = Record[OpNum++];
5068         TyID = Record[OpNum++];
5069         Ty = getTypeByID(TyID);
5070       } else {
5071         InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
5072         TyID = InvalidTypeID;
5073         Ty = nullptr;
5074       }
5075 
5076       Value *BasePtr;
5077       unsigned BasePtrTypeID;
5078       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr, BasePtrTypeID,
5079                            CurBB))
5080         return error("Invalid record");
5081 
5082       if (!Ty) {
5083         TyID = getContainedTypeID(BasePtrTypeID);
5084         if (BasePtr->getType()->isVectorTy())
5085           TyID = getContainedTypeID(TyID);
5086         Ty = getTypeByID(TyID);
5087       }
5088 
5089       SmallVector<Value*, 16> GEPIdx;
5090       while (OpNum != Record.size()) {
5091         Value *Op;
5092         unsigned OpTypeID;
5093         if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
5094           return error("Invalid record");
5095         GEPIdx.push_back(Op);
5096       }
5097 
5098       I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
5099 
5100       ResTypeID = TyID;
5101       if (cast<GEPOperator>(I)->getNumIndices() != 0) {
5102         auto GTI = std::next(gep_type_begin(I));
5103         for (Value *Idx : drop_begin(cast<GEPOperator>(I)->indices())) {
5104           unsigned SubType = 0;
5105           if (GTI.isStruct()) {
5106             ConstantInt *IdxC =
5107                 Idx->getType()->isVectorTy()
5108                     ? cast<ConstantInt>(cast<Constant>(Idx)->getSplatValue())
5109                     : cast<ConstantInt>(Idx);
5110             SubType = IdxC->getZExtValue();
5111           }
5112           ResTypeID = getContainedTypeID(ResTypeID, SubType);
5113           ++GTI;
5114         }
5115       }
5116 
5117       // At this point ResTypeID is the result element type. We need a pointer
5118       // or vector of pointer to it.
5119       ResTypeID = getVirtualTypeID(I->getType()->getScalarType(), ResTypeID);
5120       if (I->getType()->isVectorTy())
5121         ResTypeID = getVirtualTypeID(I->getType(), ResTypeID);
5122 
5123       InstructionList.push_back(I);
5124       if (InBounds)
5125         cast<GetElementPtrInst>(I)->setIsInBounds(true);
5126       break;
5127     }
5128 
5129     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
5130                                        // EXTRACTVAL: [opty, opval, n x indices]
5131       unsigned OpNum = 0;
5132       Value *Agg;
5133       unsigned AggTypeID;
5134       if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB))
5135         return error("Invalid record");
5136       Type *Ty = Agg->getType();
5137 
5138       unsigned RecSize = Record.size();
5139       if (OpNum == RecSize)
5140         return error("EXTRACTVAL: Invalid instruction with 0 indices");
5141 
5142       SmallVector<unsigned, 4> EXTRACTVALIdx;
5143       ResTypeID = AggTypeID;
5144       for (; OpNum != RecSize; ++OpNum) {
5145         bool IsArray = Ty->isArrayTy();
5146         bool IsStruct = Ty->isStructTy();
5147         uint64_t Index = Record[OpNum];
5148 
5149         if (!IsStruct && !IsArray)
5150           return error("EXTRACTVAL: Invalid type");
5151         if ((unsigned)Index != Index)
5152           return error("Invalid value");
5153         if (IsStruct && Index >= Ty->getStructNumElements())
5154           return error("EXTRACTVAL: Invalid struct index");
5155         if (IsArray && Index >= Ty->getArrayNumElements())
5156           return error("EXTRACTVAL: Invalid array index");
5157         EXTRACTVALIdx.push_back((unsigned)Index);
5158 
5159         if (IsStruct) {
5160           Ty = Ty->getStructElementType(Index);
5161           ResTypeID = getContainedTypeID(ResTypeID, Index);
5162         } else {
5163           Ty = Ty->getArrayElementType();
5164           ResTypeID = getContainedTypeID(ResTypeID);
5165         }
5166       }
5167 
5168       I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
5169       InstructionList.push_back(I);
5170       break;
5171     }
5172 
5173     case bitc::FUNC_CODE_INST_INSERTVAL: {
5174                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
5175       unsigned OpNum = 0;
5176       Value *Agg;
5177       unsigned AggTypeID;
5178       if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB))
5179         return error("Invalid record");
5180       Value *Val;
5181       unsigned ValTypeID;
5182       if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB))
5183         return error("Invalid record");
5184 
5185       unsigned RecSize = Record.size();
5186       if (OpNum == RecSize)
5187         return error("INSERTVAL: Invalid instruction with 0 indices");
5188 
5189       SmallVector<unsigned, 4> INSERTVALIdx;
5190       Type *CurTy = Agg->getType();
5191       for (; OpNum != RecSize; ++OpNum) {
5192         bool IsArray = CurTy->isArrayTy();
5193         bool IsStruct = CurTy->isStructTy();
5194         uint64_t Index = Record[OpNum];
5195 
5196         if (!IsStruct && !IsArray)
5197           return error("INSERTVAL: Invalid type");
5198         if ((unsigned)Index != Index)
5199           return error("Invalid value");
5200         if (IsStruct && Index >= CurTy->getStructNumElements())
5201           return error("INSERTVAL: Invalid struct index");
5202         if (IsArray && Index >= CurTy->getArrayNumElements())
5203           return error("INSERTVAL: Invalid array index");
5204 
5205         INSERTVALIdx.push_back((unsigned)Index);
5206         if (IsStruct)
5207           CurTy = CurTy->getStructElementType(Index);
5208         else
5209           CurTy = CurTy->getArrayElementType();
5210       }
5211 
5212       if (CurTy != Val->getType())
5213         return error("Inserted value type doesn't match aggregate type");
5214 
5215       I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
5216       ResTypeID = AggTypeID;
5217       InstructionList.push_back(I);
5218       break;
5219     }
5220 
5221     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
5222       // obsolete form of select
5223       // handles select i1 ... in old bitcode
5224       unsigned OpNum = 0;
5225       Value *TrueVal, *FalseVal, *Cond;
5226       unsigned TypeID;
5227       Type *CondType = Type::getInt1Ty(Context);
5228       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, TypeID,
5229                            CurBB) ||
5230           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), TypeID,
5231                    FalseVal, CurBB) ||
5232           popValue(Record, OpNum, NextValueNo, CondType,
5233                    getVirtualTypeID(CondType), Cond, CurBB))
5234         return error("Invalid record");
5235 
5236       I = SelectInst::Create(Cond, TrueVal, FalseVal);
5237       ResTypeID = TypeID;
5238       InstructionList.push_back(I);
5239       break;
5240     }
5241 
5242     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
5243       // new form of select
5244       // handles select i1 or select [N x i1]
5245       unsigned OpNum = 0;
5246       Value *TrueVal, *FalseVal, *Cond;
5247       unsigned ValTypeID, CondTypeID;
5248       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, ValTypeID,
5249                            CurBB) ||
5250           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), ValTypeID,
5251                    FalseVal, CurBB) ||
5252           getValueTypePair(Record, OpNum, NextValueNo, Cond, CondTypeID, CurBB))
5253         return error("Invalid record");
5254 
5255       // select condition can be either i1 or [N x i1]
5256       if (VectorType* vector_type =
5257           dyn_cast<VectorType>(Cond->getType())) {
5258         // expect <n x i1>
5259         if (vector_type->getElementType() != Type::getInt1Ty(Context))
5260           return error("Invalid type for value");
5261       } else {
5262         // expect i1
5263         if (Cond->getType() != Type::getInt1Ty(Context))
5264           return error("Invalid type for value");
5265       }
5266 
5267       I = SelectInst::Create(Cond, TrueVal, FalseVal);
5268       ResTypeID = ValTypeID;
5269       InstructionList.push_back(I);
5270       if (OpNum < Record.size() && isa<FPMathOperator>(I)) {
5271         FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
5272         if (FMF.any())
5273           I->setFastMathFlags(FMF);
5274       }
5275       break;
5276     }
5277 
5278     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
5279       unsigned OpNum = 0;
5280       Value *Vec, *Idx;
5281       unsigned VecTypeID, IdxTypeID;
5282       if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB) ||
5283           getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB))
5284         return error("Invalid record");
5285       if (!Vec->getType()->isVectorTy())
5286         return error("Invalid type for value");
5287       I = ExtractElementInst::Create(Vec, Idx);
5288       ResTypeID = getContainedTypeID(VecTypeID);
5289       InstructionList.push_back(I);
5290       break;
5291     }
5292 
5293     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
5294       unsigned OpNum = 0;
5295       Value *Vec, *Elt, *Idx;
5296       unsigned VecTypeID, IdxTypeID;
5297       if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB))
5298         return error("Invalid record");
5299       if (!Vec->getType()->isVectorTy())
5300         return error("Invalid type for value");
5301       if (popValue(Record, OpNum, NextValueNo,
5302                    cast<VectorType>(Vec->getType())->getElementType(),
5303                    getContainedTypeID(VecTypeID), Elt, CurBB) ||
5304           getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB))
5305         return error("Invalid record");
5306       I = InsertElementInst::Create(Vec, Elt, Idx);
5307       ResTypeID = VecTypeID;
5308       InstructionList.push_back(I);
5309       break;
5310     }
5311 
5312     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
5313       unsigned OpNum = 0;
5314       Value *Vec1, *Vec2, *Mask;
5315       unsigned Vec1TypeID;
5316       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1, Vec1TypeID,
5317                            CurBB) ||
5318           popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec1TypeID,
5319                    Vec2, CurBB))
5320         return error("Invalid record");
5321 
5322       unsigned MaskTypeID;
5323       if (getValueTypePair(Record, OpNum, NextValueNo, Mask, MaskTypeID, CurBB))
5324         return error("Invalid record");
5325       if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
5326         return error("Invalid type for value");
5327 
5328       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
5329       ResTypeID =
5330           getVirtualTypeID(I->getType(), getContainedTypeID(Vec1TypeID));
5331       InstructionList.push_back(I);
5332       break;
5333     }
5334 
5335     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
5336       // Old form of ICmp/FCmp returning bool
5337       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
5338       // both legal on vectors but had different behaviour.
5339     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
5340       // FCmp/ICmp returning bool or vector of bool
5341 
5342       unsigned OpNum = 0;
5343       Value *LHS, *RHS;
5344       unsigned LHSTypeID;
5345       if (getValueTypePair(Record, OpNum, NextValueNo, LHS, LHSTypeID, CurBB) ||
5346           popValue(Record, OpNum, NextValueNo, LHS->getType(), LHSTypeID, RHS,
5347                    CurBB))
5348         return error("Invalid record");
5349 
5350       if (OpNum >= Record.size())
5351         return error(
5352             "Invalid record: operand number exceeded available operands");
5353 
5354       CmpInst::Predicate PredVal = CmpInst::Predicate(Record[OpNum]);
5355       bool IsFP = LHS->getType()->isFPOrFPVectorTy();
5356       FastMathFlags FMF;
5357       if (IsFP && Record.size() > OpNum+1)
5358         FMF = getDecodedFastMathFlags(Record[++OpNum]);
5359 
5360       if (OpNum+1 != Record.size())
5361         return error("Invalid record");
5362 
5363       if (IsFP) {
5364         if (!CmpInst::isFPPredicate(PredVal))
5365           return error("Invalid fcmp predicate");
5366         I = new FCmpInst(PredVal, LHS, RHS);
5367       } else {
5368         if (!CmpInst::isIntPredicate(PredVal))
5369           return error("Invalid icmp predicate");
5370         I = new ICmpInst(PredVal, LHS, RHS);
5371       }
5372 
5373       ResTypeID = getVirtualTypeID(I->getType()->getScalarType());
5374       if (LHS->getType()->isVectorTy())
5375         ResTypeID = getVirtualTypeID(I->getType(), ResTypeID);
5376 
5377       if (FMF.any())
5378         I->setFastMathFlags(FMF);
5379       InstructionList.push_back(I);
5380       break;
5381     }
5382 
5383     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
5384       {
5385         unsigned Size = Record.size();
5386         if (Size == 0) {
5387           I = ReturnInst::Create(Context);
5388           InstructionList.push_back(I);
5389           break;
5390         }
5391 
5392         unsigned OpNum = 0;
5393         Value *Op = nullptr;
5394         unsigned OpTypeID;
5395         if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
5396           return error("Invalid record");
5397         if (OpNum != Record.size())
5398           return error("Invalid record");
5399 
5400         I = ReturnInst::Create(Context, Op);
5401         InstructionList.push_back(I);
5402         break;
5403       }
5404     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
5405       if (Record.size() != 1 && Record.size() != 3)
5406         return error("Invalid record");
5407       BasicBlock *TrueDest = getBasicBlock(Record[0]);
5408       if (!TrueDest)
5409         return error("Invalid record");
5410 
5411       if (Record.size() == 1) {
5412         I = BranchInst::Create(TrueDest);
5413         InstructionList.push_back(I);
5414       }
5415       else {
5416         BasicBlock *FalseDest = getBasicBlock(Record[1]);
5417         Type *CondType = Type::getInt1Ty(Context);
5418         Value *Cond = getValue(Record, 2, NextValueNo, CondType,
5419                                getVirtualTypeID(CondType), CurBB);
5420         if (!FalseDest || !Cond)
5421           return error("Invalid record");
5422         I = BranchInst::Create(TrueDest, FalseDest, Cond);
5423         InstructionList.push_back(I);
5424       }
5425       break;
5426     }
5427     case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#]
5428       if (Record.size() != 1 && Record.size() != 2)
5429         return error("Invalid record");
5430       unsigned Idx = 0;
5431       Type *TokenTy = Type::getTokenTy(Context);
5432       Value *CleanupPad = getValue(Record, Idx++, NextValueNo, TokenTy,
5433                                    getVirtualTypeID(TokenTy), CurBB);
5434       if (!CleanupPad)
5435         return error("Invalid record");
5436       BasicBlock *UnwindDest = nullptr;
5437       if (Record.size() == 2) {
5438         UnwindDest = getBasicBlock(Record[Idx++]);
5439         if (!UnwindDest)
5440           return error("Invalid record");
5441       }
5442 
5443       I = CleanupReturnInst::Create(CleanupPad, UnwindDest);
5444       InstructionList.push_back(I);
5445       break;
5446     }
5447     case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#]
5448       if (Record.size() != 2)
5449         return error("Invalid record");
5450       unsigned Idx = 0;
5451       Type *TokenTy = Type::getTokenTy(Context);
5452       Value *CatchPad = getValue(Record, Idx++, NextValueNo, TokenTy,
5453                                  getVirtualTypeID(TokenTy), CurBB);
5454       if (!CatchPad)
5455         return error("Invalid record");
5456       BasicBlock *BB = getBasicBlock(Record[Idx++]);
5457       if (!BB)
5458         return error("Invalid record");
5459 
5460       I = CatchReturnInst::Create(CatchPad, BB);
5461       InstructionList.push_back(I);
5462       break;
5463     }
5464     case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?]
5465       // We must have, at minimum, the outer scope and the number of arguments.
5466       if (Record.size() < 2)
5467         return error("Invalid record");
5468 
5469       unsigned Idx = 0;
5470 
5471       Type *TokenTy = Type::getTokenTy(Context);
5472       Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy,
5473                                   getVirtualTypeID(TokenTy), CurBB);
5474       if (!ParentPad)
5475         return error("Invalid record");
5476 
5477       unsigned NumHandlers = Record[Idx++];
5478 
5479       SmallVector<BasicBlock *, 2> Handlers;
5480       for (unsigned Op = 0; Op != NumHandlers; ++Op) {
5481         BasicBlock *BB = getBasicBlock(Record[Idx++]);
5482         if (!BB)
5483           return error("Invalid record");
5484         Handlers.push_back(BB);
5485       }
5486 
5487       BasicBlock *UnwindDest = nullptr;
5488       if (Idx + 1 == Record.size()) {
5489         UnwindDest = getBasicBlock(Record[Idx++]);
5490         if (!UnwindDest)
5491           return error("Invalid record");
5492       }
5493 
5494       if (Record.size() != Idx)
5495         return error("Invalid record");
5496 
5497       auto *CatchSwitch =
5498           CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers);
5499       for (BasicBlock *Handler : Handlers)
5500         CatchSwitch->addHandler(Handler);
5501       I = CatchSwitch;
5502       ResTypeID = getVirtualTypeID(I->getType());
5503       InstructionList.push_back(I);
5504       break;
5505     }
5506     case bitc::FUNC_CODE_INST_CATCHPAD:
5507     case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*]
5508       // We must have, at minimum, the outer scope and the number of arguments.
5509       if (Record.size() < 2)
5510         return error("Invalid record");
5511 
5512       unsigned Idx = 0;
5513 
5514       Type *TokenTy = Type::getTokenTy(Context);
5515       Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy,
5516                                   getVirtualTypeID(TokenTy), CurBB);
5517       if (!ParentPad)
5518         return error("Invald record");
5519 
5520       unsigned NumArgOperands = Record[Idx++];
5521 
5522       SmallVector<Value *, 2> Args;
5523       for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
5524         Value *Val;
5525         unsigned ValTypeID;
5526         if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, nullptr))
5527           return error("Invalid record");
5528         Args.push_back(Val);
5529       }
5530 
5531       if (Record.size() != Idx)
5532         return error("Invalid record");
5533 
5534       if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD)
5535         I = CleanupPadInst::Create(ParentPad, Args);
5536       else
5537         I = CatchPadInst::Create(ParentPad, Args);
5538       ResTypeID = getVirtualTypeID(I->getType());
5539       InstructionList.push_back(I);
5540       break;
5541     }
5542     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
5543       // Check magic
5544       if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
5545         // "New" SwitchInst format with case ranges. The changes to write this
5546         // format were reverted but we still recognize bitcode that uses it.
5547         // Hopefully someday we will have support for case ranges and can use
5548         // this format again.
5549 
5550         unsigned OpTyID = Record[1];
5551         Type *OpTy = getTypeByID(OpTyID);
5552         unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
5553 
5554         Value *Cond = getValue(Record, 2, NextValueNo, OpTy, OpTyID, CurBB);
5555         BasicBlock *Default = getBasicBlock(Record[3]);
5556         if (!OpTy || !Cond || !Default)
5557           return error("Invalid record");
5558 
5559         unsigned NumCases = Record[4];
5560 
5561         SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
5562         InstructionList.push_back(SI);
5563 
5564         unsigned CurIdx = 5;
5565         for (unsigned i = 0; i != NumCases; ++i) {
5566           SmallVector<ConstantInt*, 1> CaseVals;
5567           unsigned NumItems = Record[CurIdx++];
5568           for (unsigned ci = 0; ci != NumItems; ++ci) {
5569             bool isSingleNumber = Record[CurIdx++];
5570 
5571             APInt Low;
5572             unsigned ActiveWords = 1;
5573             if (ValueBitWidth > 64)
5574               ActiveWords = Record[CurIdx++];
5575             Low = readWideAPInt(ArrayRef(&Record[CurIdx], ActiveWords),
5576                                 ValueBitWidth);
5577             CurIdx += ActiveWords;
5578 
5579             if (!isSingleNumber) {
5580               ActiveWords = 1;
5581               if (ValueBitWidth > 64)
5582                 ActiveWords = Record[CurIdx++];
5583               APInt High = readWideAPInt(ArrayRef(&Record[CurIdx], ActiveWords),
5584                                          ValueBitWidth);
5585               CurIdx += ActiveWords;
5586 
5587               // FIXME: It is not clear whether values in the range should be
5588               // compared as signed or unsigned values. The partially
5589               // implemented changes that used this format in the past used
5590               // unsigned comparisons.
5591               for ( ; Low.ule(High); ++Low)
5592                 CaseVals.push_back(ConstantInt::get(Context, Low));
5593             } else
5594               CaseVals.push_back(ConstantInt::get(Context, Low));
5595           }
5596           BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
5597           for (ConstantInt *Cst : CaseVals)
5598             SI->addCase(Cst, DestBB);
5599         }
5600         I = SI;
5601         break;
5602       }
5603 
5604       // Old SwitchInst format without case ranges.
5605 
5606       if (Record.size() < 3 || (Record.size() & 1) == 0)
5607         return error("Invalid record");
5608       unsigned OpTyID = Record[0];
5609       Type *OpTy = getTypeByID(OpTyID);
5610       Value *Cond = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB);
5611       BasicBlock *Default = getBasicBlock(Record[2]);
5612       if (!OpTy || !Cond || !Default)
5613         return error("Invalid record");
5614       unsigned NumCases = (Record.size()-3)/2;
5615       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
5616       InstructionList.push_back(SI);
5617       for (unsigned i = 0, e = NumCases; i != e; ++i) {
5618         ConstantInt *CaseVal = dyn_cast_or_null<ConstantInt>(
5619             getFnValueByID(Record[3+i*2], OpTy, OpTyID, nullptr));
5620         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
5621         if (!CaseVal || !DestBB) {
5622           delete SI;
5623           return error("Invalid record");
5624         }
5625         SI->addCase(CaseVal, DestBB);
5626       }
5627       I = SI;
5628       break;
5629     }
5630     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
5631       if (Record.size() < 2)
5632         return error("Invalid record");
5633       unsigned OpTyID = Record[0];
5634       Type *OpTy = getTypeByID(OpTyID);
5635       Value *Address = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB);
5636       if (!OpTy || !Address)
5637         return error("Invalid record");
5638       unsigned NumDests = Record.size()-2;
5639       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
5640       InstructionList.push_back(IBI);
5641       for (unsigned i = 0, e = NumDests; i != e; ++i) {
5642         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
5643           IBI->addDestination(DestBB);
5644         } else {
5645           delete IBI;
5646           return error("Invalid record");
5647         }
5648       }
5649       I = IBI;
5650       break;
5651     }
5652 
5653     case bitc::FUNC_CODE_INST_INVOKE: {
5654       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
5655       if (Record.size() < 4)
5656         return error("Invalid record");
5657       unsigned OpNum = 0;
5658       AttributeList PAL = getAttributes(Record[OpNum++]);
5659       unsigned CCInfo = Record[OpNum++];
5660       BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]);
5661       BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]);
5662 
5663       unsigned FTyID = InvalidTypeID;
5664       FunctionType *FTy = nullptr;
5665       if ((CCInfo >> 13) & 1) {
5666         FTyID = Record[OpNum++];
5667         FTy = dyn_cast<FunctionType>(getTypeByID(FTyID));
5668         if (!FTy)
5669           return error("Explicit invoke type is not a function type");
5670       }
5671 
5672       Value *Callee;
5673       unsigned CalleeTypeID;
5674       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID,
5675                            CurBB))
5676         return error("Invalid record");
5677 
5678       PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
5679       if (!CalleeTy)
5680         return error("Callee is not a pointer");
5681       if (!FTy) {
5682         FTyID = getContainedTypeID(CalleeTypeID);
5683         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
5684         if (!FTy)
5685           return error("Callee is not of pointer to function type");
5686       }
5687       if (Record.size() < FTy->getNumParams() + OpNum)
5688         return error("Insufficient operands to call");
5689 
5690       SmallVector<Value*, 16> Ops;
5691       SmallVector<unsigned, 16> ArgTyIDs;
5692       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5693         unsigned ArgTyID = getContainedTypeID(FTyID, i + 1);
5694         Ops.push_back(getValue(Record, OpNum, NextValueNo, FTy->getParamType(i),
5695                                ArgTyID, CurBB));
5696         ArgTyIDs.push_back(ArgTyID);
5697         if (!Ops.back())
5698           return error("Invalid record");
5699       }
5700 
5701       if (!FTy->isVarArg()) {
5702         if (Record.size() != OpNum)
5703           return error("Invalid record");
5704       } else {
5705         // Read type/value pairs for varargs params.
5706         while (OpNum != Record.size()) {
5707           Value *Op;
5708           unsigned OpTypeID;
5709           if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
5710             return error("Invalid record");
5711           Ops.push_back(Op);
5712           ArgTyIDs.push_back(OpTypeID);
5713         }
5714       }
5715 
5716       // Upgrade the bundles if needed.
5717       if (!OperandBundles.empty())
5718         UpgradeOperandBundles(OperandBundles);
5719 
5720       I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops,
5721                              OperandBundles);
5722       ResTypeID = getContainedTypeID(FTyID);
5723       OperandBundles.clear();
5724       InstructionList.push_back(I);
5725       cast<InvokeInst>(I)->setCallingConv(
5726           static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo));
5727       cast<InvokeInst>(I)->setAttributes(PAL);
5728       if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) {
5729         I->deleteValue();
5730         return Err;
5731       }
5732 
5733       break;
5734     }
5735     case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
5736       unsigned Idx = 0;
5737       Value *Val = nullptr;
5738       unsigned ValTypeID;
5739       if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, CurBB))
5740         return error("Invalid record");
5741       I = ResumeInst::Create(Val);
5742       InstructionList.push_back(I);
5743       break;
5744     }
5745     case bitc::FUNC_CODE_INST_CALLBR: {
5746       // CALLBR: [attr, cc, norm, transfs, fty, fnid, args]
5747       unsigned OpNum = 0;
5748       AttributeList PAL = getAttributes(Record[OpNum++]);
5749       unsigned CCInfo = Record[OpNum++];
5750 
5751       BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]);
5752       unsigned NumIndirectDests = Record[OpNum++];
5753       SmallVector<BasicBlock *, 16> IndirectDests;
5754       for (unsigned i = 0, e = NumIndirectDests; i != e; ++i)
5755         IndirectDests.push_back(getBasicBlock(Record[OpNum++]));
5756 
5757       unsigned FTyID = InvalidTypeID;
5758       FunctionType *FTy = nullptr;
5759       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
5760         FTyID = Record[OpNum++];
5761         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
5762         if (!FTy)
5763           return error("Explicit call type is not a function type");
5764       }
5765 
5766       Value *Callee;
5767       unsigned CalleeTypeID;
5768       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID,
5769                            CurBB))
5770         return error("Invalid record");
5771 
5772       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
5773       if (!OpTy)
5774         return error("Callee is not a pointer type");
5775       if (!FTy) {
5776         FTyID = getContainedTypeID(CalleeTypeID);
5777         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
5778         if (!FTy)
5779           return error("Callee is not of pointer to function type");
5780       }
5781       if (Record.size() < FTy->getNumParams() + OpNum)
5782         return error("Insufficient operands to call");
5783 
5784       SmallVector<Value*, 16> Args;
5785       SmallVector<unsigned, 16> ArgTyIDs;
5786       // Read the fixed params.
5787       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5788         Value *Arg;
5789         unsigned ArgTyID = getContainedTypeID(FTyID, i + 1);
5790         if (FTy->getParamType(i)->isLabelTy())
5791           Arg = getBasicBlock(Record[OpNum]);
5792         else
5793           Arg = getValue(Record, OpNum, NextValueNo, FTy->getParamType(i),
5794                          ArgTyID, CurBB);
5795         if (!Arg)
5796           return error("Invalid record");
5797         Args.push_back(Arg);
5798         ArgTyIDs.push_back(ArgTyID);
5799       }
5800 
5801       // Read type/value pairs for varargs params.
5802       if (!FTy->isVarArg()) {
5803         if (OpNum != Record.size())
5804           return error("Invalid record");
5805       } else {
5806         while (OpNum != Record.size()) {
5807           Value *Op;
5808           unsigned OpTypeID;
5809           if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
5810             return error("Invalid record");
5811           Args.push_back(Op);
5812           ArgTyIDs.push_back(OpTypeID);
5813         }
5814       }
5815 
5816       // Upgrade the bundles if needed.
5817       if (!OperandBundles.empty())
5818         UpgradeOperandBundles(OperandBundles);
5819 
5820       if (auto *IA = dyn_cast<InlineAsm>(Callee)) {
5821         InlineAsm::ConstraintInfoVector ConstraintInfo = IA->ParseConstraints();
5822         auto IsLabelConstraint = [](const InlineAsm::ConstraintInfo &CI) {
5823           return CI.Type == InlineAsm::isLabel;
5824         };
5825         if (none_of(ConstraintInfo, IsLabelConstraint)) {
5826           // Upgrade explicit blockaddress arguments to label constraints.
5827           // Verify that the last arguments are blockaddress arguments that
5828           // match the indirect destinations. Clang always generates callbr
5829           // in this form. We could support reordering with more effort.
5830           unsigned FirstBlockArg = Args.size() - IndirectDests.size();
5831           for (unsigned ArgNo = FirstBlockArg; ArgNo < Args.size(); ++ArgNo) {
5832             unsigned LabelNo = ArgNo - FirstBlockArg;
5833             auto *BA = dyn_cast<BlockAddress>(Args[ArgNo]);
5834             if (!BA || BA->getFunction() != F ||
5835                 LabelNo > IndirectDests.size() ||
5836                 BA->getBasicBlock() != IndirectDests[LabelNo])
5837               return error("callbr argument does not match indirect dest");
5838           }
5839 
5840           // Remove blockaddress arguments.
5841           Args.erase(Args.begin() + FirstBlockArg, Args.end());
5842           ArgTyIDs.erase(ArgTyIDs.begin() + FirstBlockArg, ArgTyIDs.end());
5843 
5844           // Recreate the function type with less arguments.
5845           SmallVector<Type *> ArgTys;
5846           for (Value *Arg : Args)
5847             ArgTys.push_back(Arg->getType());
5848           FTy =
5849               FunctionType::get(FTy->getReturnType(), ArgTys, FTy->isVarArg());
5850 
5851           // Update constraint string to use label constraints.
5852           std::string Constraints = IA->getConstraintString();
5853           unsigned ArgNo = 0;
5854           size_t Pos = 0;
5855           for (const auto &CI : ConstraintInfo) {
5856             if (CI.hasArg()) {
5857               if (ArgNo >= FirstBlockArg)
5858                 Constraints.insert(Pos, "!");
5859               ++ArgNo;
5860             }
5861 
5862             // Go to next constraint in string.
5863             Pos = Constraints.find(',', Pos);
5864             if (Pos == std::string::npos)
5865               break;
5866             ++Pos;
5867           }
5868 
5869           Callee = InlineAsm::get(FTy, IA->getAsmString(), Constraints,
5870                                   IA->hasSideEffects(), IA->isAlignStack(),
5871                                   IA->getDialect(), IA->canThrow());
5872         }
5873       }
5874 
5875       I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args,
5876                              OperandBundles);
5877       ResTypeID = getContainedTypeID(FTyID);
5878       OperandBundles.clear();
5879       InstructionList.push_back(I);
5880       cast<CallBrInst>(I)->setCallingConv(
5881           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
5882       cast<CallBrInst>(I)->setAttributes(PAL);
5883       if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) {
5884         I->deleteValue();
5885         return Err;
5886       }
5887       break;
5888     }
5889     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
5890       I = new UnreachableInst(Context);
5891       InstructionList.push_back(I);
5892       break;
5893     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
5894       if (Record.empty())
5895         return error("Invalid phi record");
5896       // The first record specifies the type.
5897       unsigned TyID = Record[0];
5898       Type *Ty = getTypeByID(TyID);
5899       if (!Ty)
5900         return error("Invalid phi record");
5901 
5902       // Phi arguments are pairs of records of [value, basic block].
5903       // There is an optional final record for fast-math-flags if this phi has a
5904       // floating-point type.
5905       size_t NumArgs = (Record.size() - 1) / 2;
5906       PHINode *PN = PHINode::Create(Ty, NumArgs);
5907       if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN)) {
5908         PN->deleteValue();
5909         return error("Invalid phi record");
5910       }
5911       InstructionList.push_back(PN);
5912 
5913       SmallDenseMap<BasicBlock *, Value *> Args;
5914       for (unsigned i = 0; i != NumArgs; i++) {
5915         BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]);
5916         if (!BB) {
5917           PN->deleteValue();
5918           return error("Invalid phi BB");
5919         }
5920 
5921         // Phi nodes may contain the same predecessor multiple times, in which
5922         // case the incoming value must be identical. Directly reuse the already
5923         // seen value here, to avoid expanding a constant expression multiple
5924         // times.
5925         auto It = Args.find(BB);
5926         if (It != Args.end()) {
5927           PN->addIncoming(It->second, BB);
5928           continue;
5929         }
5930 
5931         // If there already is a block for this edge (from a different phi),
5932         // use it.
5933         BasicBlock *EdgeBB = ConstExprEdgeBBs.lookup({BB, CurBB});
5934         if (!EdgeBB) {
5935           // Otherwise, use a temporary block (that we will discard if it
5936           // turns out to be unnecessary).
5937           if (!PhiConstExprBB)
5938             PhiConstExprBB = BasicBlock::Create(Context, "phi.constexpr", F);
5939           EdgeBB = PhiConstExprBB;
5940         }
5941 
5942         // With the new function encoding, it is possible that operands have
5943         // negative IDs (for forward references).  Use a signed VBR
5944         // representation to keep the encoding small.
5945         Value *V;
5946         if (UseRelativeIDs)
5947           V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB);
5948         else
5949           V = getValue(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB);
5950         if (!V) {
5951           PN->deleteValue();
5952           PhiConstExprBB->eraseFromParent();
5953           return error("Invalid phi record");
5954         }
5955 
5956         if (EdgeBB == PhiConstExprBB && !EdgeBB->empty()) {
5957           ConstExprEdgeBBs.insert({{BB, CurBB}, EdgeBB});
5958           PhiConstExprBB = nullptr;
5959         }
5960         PN->addIncoming(V, BB);
5961         Args.insert({BB, V});
5962       }
5963       I = PN;
5964       ResTypeID = TyID;
5965 
5966       // If there are an even number of records, the final record must be FMF.
5967       if (Record.size() % 2 == 0) {
5968         assert(isa<FPMathOperator>(I) && "Unexpected phi type");
5969         FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]);
5970         if (FMF.any())
5971           I->setFastMathFlags(FMF);
5972       }
5973 
5974       break;
5975     }
5976 
5977     case bitc::FUNC_CODE_INST_LANDINGPAD:
5978     case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: {
5979       // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
5980       unsigned Idx = 0;
5981       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) {
5982         if (Record.size() < 3)
5983           return error("Invalid record");
5984       } else {
5985         assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD);
5986         if (Record.size() < 4)
5987           return error("Invalid record");
5988       }
5989       ResTypeID = Record[Idx++];
5990       Type *Ty = getTypeByID(ResTypeID);
5991       if (!Ty)
5992         return error("Invalid record");
5993       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) {
5994         Value *PersFn = nullptr;
5995         unsigned PersFnTypeID;
5996         if (getValueTypePair(Record, Idx, NextValueNo, PersFn, PersFnTypeID,
5997                              nullptr))
5998           return error("Invalid record");
5999 
6000         if (!F->hasPersonalityFn())
6001           F->setPersonalityFn(cast<Constant>(PersFn));
6002         else if (F->getPersonalityFn() != cast<Constant>(PersFn))
6003           return error("Personality function mismatch");
6004       }
6005 
6006       bool IsCleanup = !!Record[Idx++];
6007       unsigned NumClauses = Record[Idx++];
6008       LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses);
6009       LP->setCleanup(IsCleanup);
6010       for (unsigned J = 0; J != NumClauses; ++J) {
6011         LandingPadInst::ClauseType CT =
6012           LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
6013         Value *Val;
6014         unsigned ValTypeID;
6015 
6016         if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID,
6017                              nullptr)) {
6018           delete LP;
6019           return error("Invalid record");
6020         }
6021 
6022         assert((CT != LandingPadInst::Catch ||
6023                 !isa<ArrayType>(Val->getType())) &&
6024                "Catch clause has a invalid type!");
6025         assert((CT != LandingPadInst::Filter ||
6026                 isa<ArrayType>(Val->getType())) &&
6027                "Filter clause has invalid type!");
6028         LP->addClause(cast<Constant>(Val));
6029       }
6030 
6031       I = LP;
6032       InstructionList.push_back(I);
6033       break;
6034     }
6035 
6036     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
6037       if (Record.size() != 4 && Record.size() != 5)
6038         return error("Invalid record");
6039       using APV = AllocaPackedValues;
6040       const uint64_t Rec = Record[3];
6041       const bool InAlloca = Bitfield::get<APV::UsedWithInAlloca>(Rec);
6042       const bool SwiftError = Bitfield::get<APV::SwiftError>(Rec);
6043       unsigned TyID = Record[0];
6044       Type *Ty = getTypeByID(TyID);
6045       if (!Bitfield::get<APV::ExplicitType>(Rec)) {
6046         TyID = getContainedTypeID(TyID);
6047         Ty = getTypeByID(TyID);
6048         if (!Ty)
6049           return error("Missing element type for old-style alloca");
6050       }
6051       unsigned OpTyID = Record[1];
6052       Type *OpTy = getTypeByID(OpTyID);
6053       Value *Size = getFnValueByID(Record[2], OpTy, OpTyID, CurBB);
6054       MaybeAlign Align;
6055       uint64_t AlignExp =
6056           Bitfield::get<APV::AlignLower>(Rec) |
6057           (Bitfield::get<APV::AlignUpper>(Rec) << APV::AlignLower::Bits);
6058       if (Error Err = parseAlignmentValue(AlignExp, Align)) {
6059         return Err;
6060       }
6061       if (!Ty || !Size)
6062         return error("Invalid record");
6063 
6064       const DataLayout &DL = TheModule->getDataLayout();
6065       unsigned AS = Record.size() == 5 ? Record[4] : DL.getAllocaAddrSpace();
6066 
6067       SmallPtrSet<Type *, 4> Visited;
6068       if (!Align && !Ty->isSized(&Visited))
6069         return error("alloca of unsized type");
6070       if (!Align)
6071         Align = DL.getPrefTypeAlign(Ty);
6072 
6073       if (!Size->getType()->isIntegerTy())
6074         return error("alloca element count must have integer type");
6075 
6076       AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align);
6077       AI->setUsedWithInAlloca(InAlloca);
6078       AI->setSwiftError(SwiftError);
6079       I = AI;
6080       ResTypeID = getVirtualTypeID(AI->getType(), TyID);
6081       InstructionList.push_back(I);
6082       break;
6083     }
6084     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
6085       unsigned OpNum = 0;
6086       Value *Op;
6087       unsigned OpTypeID;
6088       if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) ||
6089           (OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
6090         return error("Invalid record");
6091 
6092       if (!isa<PointerType>(Op->getType()))
6093         return error("Load operand is not a pointer type");
6094 
6095       Type *Ty = nullptr;
6096       if (OpNum + 3 == Record.size()) {
6097         ResTypeID = Record[OpNum++];
6098         Ty = getTypeByID(ResTypeID);
6099       } else {
6100         ResTypeID = getContainedTypeID(OpTypeID);
6101         Ty = getTypeByID(ResTypeID);
6102       }
6103 
6104       if (!Ty)
6105         return error("Missing load type");
6106 
6107       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
6108         return Err;
6109 
6110       MaybeAlign Align;
6111       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
6112         return Err;
6113       SmallPtrSet<Type *, 4> Visited;
6114       if (!Align && !Ty->isSized(&Visited))
6115         return error("load of unsized type");
6116       if (!Align)
6117         Align = TheModule->getDataLayout().getABITypeAlign(Ty);
6118       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align);
6119       InstructionList.push_back(I);
6120       break;
6121     }
6122     case bitc::FUNC_CODE_INST_LOADATOMIC: {
6123        // LOADATOMIC: [opty, op, align, vol, ordering, ssid]
6124       unsigned OpNum = 0;
6125       Value *Op;
6126       unsigned OpTypeID;
6127       if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) ||
6128           (OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
6129         return error("Invalid record");
6130 
6131       if (!isa<PointerType>(Op->getType()))
6132         return error("Load operand is not a pointer type");
6133 
6134       Type *Ty = nullptr;
6135       if (OpNum + 5 == Record.size()) {
6136         ResTypeID = Record[OpNum++];
6137         Ty = getTypeByID(ResTypeID);
6138       } else {
6139         ResTypeID = getContainedTypeID(OpTypeID);
6140         Ty = getTypeByID(ResTypeID);
6141       }
6142 
6143       if (!Ty)
6144         return error("Missing atomic load type");
6145 
6146       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
6147         return Err;
6148 
6149       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
6150       if (Ordering == AtomicOrdering::NotAtomic ||
6151           Ordering == AtomicOrdering::Release ||
6152           Ordering == AtomicOrdering::AcquireRelease)
6153         return error("Invalid record");
6154       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
6155         return error("Invalid record");
6156       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
6157 
6158       MaybeAlign Align;
6159       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
6160         return Err;
6161       if (!Align)
6162         return error("Alignment missing from atomic load");
6163       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID);
6164       InstructionList.push_back(I);
6165       break;
6166     }
6167     case bitc::FUNC_CODE_INST_STORE:
6168     case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
6169       unsigned OpNum = 0;
6170       Value *Val, *Ptr;
6171       unsigned PtrTypeID, ValTypeID;
6172       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB))
6173         return error("Invalid record");
6174 
6175       if (BitCode == bitc::FUNC_CODE_INST_STORE) {
6176         if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB))
6177           return error("Invalid record");
6178       } else {
6179         ValTypeID = getContainedTypeID(PtrTypeID);
6180         if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID),
6181                      ValTypeID, Val, CurBB))
6182           return error("Invalid record");
6183       }
6184 
6185       if (OpNum + 2 != Record.size())
6186         return error("Invalid record");
6187 
6188       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
6189         return Err;
6190       MaybeAlign Align;
6191       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
6192         return Err;
6193       SmallPtrSet<Type *, 4> Visited;
6194       if (!Align && !Val->getType()->isSized(&Visited))
6195         return error("store of unsized type");
6196       if (!Align)
6197         Align = TheModule->getDataLayout().getABITypeAlign(Val->getType());
6198       I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align);
6199       InstructionList.push_back(I);
6200       break;
6201     }
6202     case bitc::FUNC_CODE_INST_STOREATOMIC:
6203     case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: {
6204       // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid]
6205       unsigned OpNum = 0;
6206       Value *Val, *Ptr;
6207       unsigned PtrTypeID, ValTypeID;
6208       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB) ||
6209           !isa<PointerType>(Ptr->getType()))
6210         return error("Invalid record");
6211       if (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC) {
6212         if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB))
6213           return error("Invalid record");
6214       } else {
6215         ValTypeID = getContainedTypeID(PtrTypeID);
6216         if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID),
6217                      ValTypeID, Val, CurBB))
6218           return error("Invalid record");
6219       }
6220 
6221       if (OpNum + 4 != Record.size())
6222         return error("Invalid record");
6223 
6224       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
6225         return Err;
6226       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
6227       if (Ordering == AtomicOrdering::NotAtomic ||
6228           Ordering == AtomicOrdering::Acquire ||
6229           Ordering == AtomicOrdering::AcquireRelease)
6230         return error("Invalid record");
6231       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
6232       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
6233         return error("Invalid record");
6234 
6235       MaybeAlign Align;
6236       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
6237         return Err;
6238       if (!Align)
6239         return error("Alignment missing from atomic store");
6240       I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID);
6241       InstructionList.push_back(I);
6242       break;
6243     }
6244     case bitc::FUNC_CODE_INST_CMPXCHG_OLD: {
6245       // CMPXCHG_OLD: [ptrty, ptr, cmp, val, vol, ordering, synchscope,
6246       // failure_ordering?, weak?]
6247       const size_t NumRecords = Record.size();
6248       unsigned OpNum = 0;
6249       Value *Ptr = nullptr;
6250       unsigned PtrTypeID;
6251       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB))
6252         return error("Invalid record");
6253 
6254       if (!isa<PointerType>(Ptr->getType()))
6255         return error("Cmpxchg operand is not a pointer type");
6256 
6257       Value *Cmp = nullptr;
6258       unsigned CmpTypeID = getContainedTypeID(PtrTypeID);
6259       if (popValue(Record, OpNum, NextValueNo, getTypeByID(CmpTypeID),
6260                    CmpTypeID, Cmp, CurBB))
6261         return error("Invalid record");
6262 
6263       Value *New = nullptr;
6264       if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID,
6265                    New, CurBB) ||
6266           NumRecords < OpNum + 3 || NumRecords > OpNum + 5)
6267         return error("Invalid record");
6268 
6269       const AtomicOrdering SuccessOrdering =
6270           getDecodedOrdering(Record[OpNum + 1]);
6271       if (SuccessOrdering == AtomicOrdering::NotAtomic ||
6272           SuccessOrdering == AtomicOrdering::Unordered)
6273         return error("Invalid record");
6274 
6275       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
6276 
6277       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
6278         return Err;
6279 
6280       const AtomicOrdering FailureOrdering =
6281           NumRecords < 7
6282               ? AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering)
6283               : getDecodedOrdering(Record[OpNum + 3]);
6284 
6285       if (FailureOrdering == AtomicOrdering::NotAtomic ||
6286           FailureOrdering == AtomicOrdering::Unordered)
6287         return error("Invalid record");
6288 
6289       const Align Alignment(
6290           TheModule->getDataLayout().getTypeStoreSize(Cmp->getType()));
6291 
6292       I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering,
6293                                 FailureOrdering, SSID);
6294       cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
6295 
6296       if (NumRecords < 8) {
6297         // Before weak cmpxchgs existed, the instruction simply returned the
6298         // value loaded from memory, so bitcode files from that era will be
6299         // expecting the first component of a modern cmpxchg.
6300         I->insertInto(CurBB, CurBB->end());
6301         I = ExtractValueInst::Create(I, 0);
6302         ResTypeID = CmpTypeID;
6303       } else {
6304         cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]);
6305         unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context));
6306         ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID});
6307       }
6308 
6309       InstructionList.push_back(I);
6310       break;
6311     }
6312     case bitc::FUNC_CODE_INST_CMPXCHG: {
6313       // CMPXCHG: [ptrty, ptr, cmp, val, vol, success_ordering, synchscope,
6314       // failure_ordering, weak, align?]
6315       const size_t NumRecords = Record.size();
6316       unsigned OpNum = 0;
6317       Value *Ptr = nullptr;
6318       unsigned PtrTypeID;
6319       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB))
6320         return error("Invalid record");
6321 
6322       if (!isa<PointerType>(Ptr->getType()))
6323         return error("Cmpxchg operand is not a pointer type");
6324 
6325       Value *Cmp = nullptr;
6326       unsigned CmpTypeID;
6327       if (getValueTypePair(Record, OpNum, NextValueNo, Cmp, CmpTypeID, CurBB))
6328         return error("Invalid record");
6329 
6330       Value *Val = nullptr;
6331       if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID, Val,
6332                    CurBB))
6333         return error("Invalid record");
6334 
6335       if (NumRecords < OpNum + 3 || NumRecords > OpNum + 6)
6336         return error("Invalid record");
6337 
6338       const bool IsVol = Record[OpNum];
6339 
6340       const AtomicOrdering SuccessOrdering =
6341           getDecodedOrdering(Record[OpNum + 1]);
6342       if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering))
6343         return error("Invalid cmpxchg success ordering");
6344 
6345       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
6346 
6347       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
6348         return Err;
6349 
6350       const AtomicOrdering FailureOrdering =
6351           getDecodedOrdering(Record[OpNum + 3]);
6352       if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering))
6353         return error("Invalid cmpxchg failure ordering");
6354 
6355       const bool IsWeak = Record[OpNum + 4];
6356 
6357       MaybeAlign Alignment;
6358 
6359       if (NumRecords == (OpNum + 6)) {
6360         if (Error Err = parseAlignmentValue(Record[OpNum + 5], Alignment))
6361           return Err;
6362       }
6363       if (!Alignment)
6364         Alignment =
6365             Align(TheModule->getDataLayout().getTypeStoreSize(Cmp->getType()));
6366 
6367       I = new AtomicCmpXchgInst(Ptr, Cmp, Val, *Alignment, SuccessOrdering,
6368                                 FailureOrdering, SSID);
6369       cast<AtomicCmpXchgInst>(I)->setVolatile(IsVol);
6370       cast<AtomicCmpXchgInst>(I)->setWeak(IsWeak);
6371 
6372       unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context));
6373       ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID});
6374 
6375       InstructionList.push_back(I);
6376       break;
6377     }
6378     case bitc::FUNC_CODE_INST_ATOMICRMW_OLD:
6379     case bitc::FUNC_CODE_INST_ATOMICRMW: {
6380       // ATOMICRMW_OLD: [ptrty, ptr, val, op, vol, ordering, ssid, align?]
6381       // ATOMICRMW: [ptrty, ptr, valty, val, op, vol, ordering, ssid, align?]
6382       const size_t NumRecords = Record.size();
6383       unsigned OpNum = 0;
6384 
6385       Value *Ptr = nullptr;
6386       unsigned PtrTypeID;
6387       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB))
6388         return error("Invalid record");
6389 
6390       if (!isa<PointerType>(Ptr->getType()))
6391         return error("Invalid record");
6392 
6393       Value *Val = nullptr;
6394       unsigned ValTypeID = InvalidTypeID;
6395       if (BitCode == bitc::FUNC_CODE_INST_ATOMICRMW_OLD) {
6396         ValTypeID = getContainedTypeID(PtrTypeID);
6397         if (popValue(Record, OpNum, NextValueNo,
6398                      getTypeByID(ValTypeID), ValTypeID, Val, CurBB))
6399           return error("Invalid record");
6400       } else {
6401         if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB))
6402           return error("Invalid record");
6403       }
6404 
6405       if (!(NumRecords == (OpNum + 4) || NumRecords == (OpNum + 5)))
6406         return error("Invalid record");
6407 
6408       const AtomicRMWInst::BinOp Operation =
6409           getDecodedRMWOperation(Record[OpNum]);
6410       if (Operation < AtomicRMWInst::FIRST_BINOP ||
6411           Operation > AtomicRMWInst::LAST_BINOP)
6412         return error("Invalid record");
6413 
6414       const bool IsVol = Record[OpNum + 1];
6415 
6416       const AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
6417       if (Ordering == AtomicOrdering::NotAtomic ||
6418           Ordering == AtomicOrdering::Unordered)
6419         return error("Invalid record");
6420 
6421       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
6422 
6423       MaybeAlign Alignment;
6424 
6425       if (NumRecords == (OpNum + 5)) {
6426         if (Error Err = parseAlignmentValue(Record[OpNum + 4], Alignment))
6427           return Err;
6428       }
6429 
6430       if (!Alignment)
6431         Alignment =
6432             Align(TheModule->getDataLayout().getTypeStoreSize(Val->getType()));
6433 
6434       I = new AtomicRMWInst(Operation, Ptr, Val, *Alignment, Ordering, SSID);
6435       ResTypeID = ValTypeID;
6436       cast<AtomicRMWInst>(I)->setVolatile(IsVol);
6437 
6438       InstructionList.push_back(I);
6439       break;
6440     }
6441     case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid]
6442       if (2 != Record.size())
6443         return error("Invalid record");
6444       AtomicOrdering Ordering = getDecodedOrdering(Record[0]);
6445       if (Ordering == AtomicOrdering::NotAtomic ||
6446           Ordering == AtomicOrdering::Unordered ||
6447           Ordering == AtomicOrdering::Monotonic)
6448         return error("Invalid record");
6449       SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]);
6450       I = new FenceInst(Context, Ordering, SSID);
6451       InstructionList.push_back(I);
6452       break;
6453     }
6454     case bitc::FUNC_CODE_DEBUG_RECORD_LABEL: {
6455       // DbgLabelRecords are placed after the Instructions that they are
6456       // attached to.
6457       SeenDebugRecord = true;
6458       Instruction *Inst = getLastInstruction();
6459       if (!Inst)
6460         return error("Invalid dbg record: missing instruction");
6461       DILocation *DIL = cast<DILocation>(getFnMetadataByID(Record[0]));
6462       DILabel *Label = cast<DILabel>(getFnMetadataByID(Record[1]));
6463       Inst->getParent()->insertDbgRecordBefore(
6464           new DbgLabelRecord(Label, DebugLoc(DIL)), Inst->getIterator());
6465       continue; // This isn't an instruction.
6466     }
6467     case bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE:
6468     case bitc::FUNC_CODE_DEBUG_RECORD_VALUE:
6469     case bitc::FUNC_CODE_DEBUG_RECORD_DECLARE:
6470     case bitc::FUNC_CODE_DEBUG_RECORD_ASSIGN: {
6471       // DbgVariableRecords are placed after the Instructions that they are
6472       // attached to.
6473       SeenDebugRecord = true;
6474       Instruction *Inst = getLastInstruction();
6475       if (!Inst)
6476         return error("Invalid dbg record: missing instruction");
6477 
6478       // First 3 fields are common to all kinds:
6479       //   DILocation, DILocalVariable, DIExpression
6480       // dbg_value (FUNC_CODE_DEBUG_RECORD_VALUE)
6481       //   ..., LocationMetadata
6482       // dbg_value (FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE - abbrev'd)
6483       //   ..., Value
6484       // dbg_declare (FUNC_CODE_DEBUG_RECORD_DECLARE)
6485       //   ..., LocationMetadata
6486       // dbg_assign (FUNC_CODE_DEBUG_RECORD_ASSIGN)
6487       //   ..., LocationMetadata, DIAssignID, DIExpression, LocationMetadata
6488       unsigned Slot = 0;
6489       // Common fields (0-2).
6490       DILocation *DIL = cast<DILocation>(getFnMetadataByID(Record[Slot++]));
6491       DILocalVariable *Var =
6492           cast<DILocalVariable>(getFnMetadataByID(Record[Slot++]));
6493       DIExpression *Expr =
6494           cast<DIExpression>(getFnMetadataByID(Record[Slot++]));
6495 
6496       // Union field (3: LocationMetadata | Value).
6497       Metadata *RawLocation = nullptr;
6498       if (BitCode == bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE) {
6499         Value *V = nullptr;
6500         unsigned TyID = 0;
6501         // We never expect to see a fwd reference value here because
6502         // use-before-defs are encoded with the standard non-abbrev record
6503         // type (they'd require encoding the type too, and they're rare). As a
6504         // result, getValueTypePair only ever increments Slot by one here (once
6505         // for the value, never twice for value and type).
6506         unsigned SlotBefore = Slot;
6507         if (getValueTypePair(Record, Slot, NextValueNo, V, TyID, CurBB))
6508           return error("Invalid dbg record: invalid value");
6509         (void)SlotBefore;
6510         assert((SlotBefore == Slot - 1) && "unexpected fwd ref");
6511         RawLocation = ValueAsMetadata::get(V);
6512       } else {
6513         RawLocation = getFnMetadataByID(Record[Slot++]);
6514       }
6515 
6516       DbgVariableRecord *DVR = nullptr;
6517       switch (BitCode) {
6518       case bitc::FUNC_CODE_DEBUG_RECORD_VALUE:
6519       case bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE:
6520         DVR = new DbgVariableRecord(RawLocation, Var, Expr, DIL,
6521                                     DbgVariableRecord::LocationType::Value);
6522         break;
6523       case bitc::FUNC_CODE_DEBUG_RECORD_DECLARE:
6524         DVR = new DbgVariableRecord(RawLocation, Var, Expr, DIL,
6525                                     DbgVariableRecord::LocationType::Declare);
6526         break;
6527       case bitc::FUNC_CODE_DEBUG_RECORD_ASSIGN: {
6528         DIAssignID *ID = cast<DIAssignID>(getFnMetadataByID(Record[Slot++]));
6529         DIExpression *AddrExpr =
6530             cast<DIExpression>(getFnMetadataByID(Record[Slot++]));
6531         Metadata *Addr = getFnMetadataByID(Record[Slot++]);
6532         DVR = new DbgVariableRecord(RawLocation, Var, Expr, ID, Addr, AddrExpr,
6533                                     DIL);
6534         break;
6535       }
6536       default:
6537         llvm_unreachable("Unknown DbgVariableRecord bitcode");
6538       }
6539       Inst->getParent()->insertDbgRecordBefore(DVR, Inst->getIterator());
6540       continue; // This isn't an instruction.
6541     }
6542     case bitc::FUNC_CODE_INST_CALL: {
6543       // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...]
6544       if (Record.size() < 3)
6545         return error("Invalid record");
6546 
6547       unsigned OpNum = 0;
6548       AttributeList PAL = getAttributes(Record[OpNum++]);
6549       unsigned CCInfo = Record[OpNum++];
6550 
6551       FastMathFlags FMF;
6552       if ((CCInfo >> bitc::CALL_FMF) & 1) {
6553         FMF = getDecodedFastMathFlags(Record[OpNum++]);
6554         if (!FMF.any())
6555           return error("Fast math flags indicator set for call with no FMF");
6556       }
6557 
6558       unsigned FTyID = InvalidTypeID;
6559       FunctionType *FTy = nullptr;
6560       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
6561         FTyID = Record[OpNum++];
6562         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
6563         if (!FTy)
6564           return error("Explicit call type is not a function type");
6565       }
6566 
6567       Value *Callee;
6568       unsigned CalleeTypeID;
6569       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID,
6570                            CurBB))
6571         return error("Invalid record");
6572 
6573       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
6574       if (!OpTy)
6575         return error("Callee is not a pointer type");
6576       if (!FTy) {
6577         FTyID = getContainedTypeID(CalleeTypeID);
6578         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
6579         if (!FTy)
6580           return error("Callee is not of pointer to function type");
6581       }
6582       if (Record.size() < FTy->getNumParams() + OpNum)
6583         return error("Insufficient operands to call");
6584 
6585       SmallVector<Value*, 16> Args;
6586       SmallVector<unsigned, 16> ArgTyIDs;
6587       // Read the fixed params.
6588       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
6589         unsigned ArgTyID = getContainedTypeID(FTyID, i + 1);
6590         if (FTy->getParamType(i)->isLabelTy())
6591           Args.push_back(getBasicBlock(Record[OpNum]));
6592         else
6593           Args.push_back(getValue(Record, OpNum, NextValueNo,
6594                                   FTy->getParamType(i), ArgTyID, CurBB));
6595         ArgTyIDs.push_back(ArgTyID);
6596         if (!Args.back())
6597           return error("Invalid record");
6598       }
6599 
6600       // Read type/value pairs for varargs params.
6601       if (!FTy->isVarArg()) {
6602         if (OpNum != Record.size())
6603           return error("Invalid record");
6604       } else {
6605         while (OpNum != Record.size()) {
6606           Value *Op;
6607           unsigned OpTypeID;
6608           if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
6609             return error("Invalid record");
6610           Args.push_back(Op);
6611           ArgTyIDs.push_back(OpTypeID);
6612         }
6613       }
6614 
6615       // Upgrade the bundles if needed.
6616       if (!OperandBundles.empty())
6617         UpgradeOperandBundles(OperandBundles);
6618 
6619       I = CallInst::Create(FTy, Callee, Args, OperandBundles);
6620       ResTypeID = getContainedTypeID(FTyID);
6621       OperandBundles.clear();
6622       InstructionList.push_back(I);
6623       cast<CallInst>(I)->setCallingConv(
6624           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
6625       CallInst::TailCallKind TCK = CallInst::TCK_None;
6626       if (CCInfo & (1 << bitc::CALL_TAIL))
6627         TCK = CallInst::TCK_Tail;
6628       if (CCInfo & (1 << bitc::CALL_MUSTTAIL))
6629         TCK = CallInst::TCK_MustTail;
6630       if (CCInfo & (1 << bitc::CALL_NOTAIL))
6631         TCK = CallInst::TCK_NoTail;
6632       cast<CallInst>(I)->setTailCallKind(TCK);
6633       cast<CallInst>(I)->setAttributes(PAL);
6634       if (isa<DbgInfoIntrinsic>(I))
6635         SeenDebugIntrinsic = true;
6636       if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) {
6637         I->deleteValue();
6638         return Err;
6639       }
6640       if (FMF.any()) {
6641         if (!isa<FPMathOperator>(I))
6642           return error("Fast-math-flags specified for call without "
6643                        "floating-point scalar or vector return type");
6644         I->setFastMathFlags(FMF);
6645       }
6646       break;
6647     }
6648     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
6649       if (Record.size() < 3)
6650         return error("Invalid record");
6651       unsigned OpTyID = Record[0];
6652       Type *OpTy = getTypeByID(OpTyID);
6653       Value *Op = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB);
6654       ResTypeID = Record[2];
6655       Type *ResTy = getTypeByID(ResTypeID);
6656       if (!OpTy || !Op || !ResTy)
6657         return error("Invalid record");
6658       I = new VAArgInst(Op, ResTy);
6659       InstructionList.push_back(I);
6660       break;
6661     }
6662 
6663     case bitc::FUNC_CODE_OPERAND_BUNDLE: {
6664       // A call or an invoke can be optionally prefixed with some variable
6665       // number of operand bundle blocks.  These blocks are read into
6666       // OperandBundles and consumed at the next call or invoke instruction.
6667 
6668       if (Record.empty() || Record[0] >= BundleTags.size())
6669         return error("Invalid record");
6670 
6671       std::vector<Value *> Inputs;
6672 
6673       unsigned OpNum = 1;
6674       while (OpNum != Record.size()) {
6675         Value *Op;
6676         unsigned OpTypeID;
6677         if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
6678           return error("Invalid record");
6679         Inputs.push_back(Op);
6680       }
6681 
6682       OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs));
6683       continue;
6684     }
6685 
6686     case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval]
6687       unsigned OpNum = 0;
6688       Value *Op = nullptr;
6689       unsigned OpTypeID;
6690       if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
6691         return error("Invalid record");
6692       if (OpNum != Record.size())
6693         return error("Invalid record");
6694 
6695       I = new FreezeInst(Op);
6696       ResTypeID = OpTypeID;
6697       InstructionList.push_back(I);
6698       break;
6699     }
6700     }
6701 
6702     // Add instruction to end of current BB.  If there is no current BB, reject
6703     // this file.
6704     if (!CurBB) {
6705       I->deleteValue();
6706       return error("Invalid instruction with no BB");
6707     }
6708     if (!OperandBundles.empty()) {
6709       I->deleteValue();
6710       return error("Operand bundles found with no consumer");
6711     }
6712     I->insertInto(CurBB, CurBB->end());
6713 
6714     // If this was a terminator instruction, move to the next block.
6715     if (I->isTerminator()) {
6716       ++CurBBNo;
6717       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
6718     }
6719 
6720     // Non-void values get registered in the value table for future use.
6721     if (!I->getType()->isVoidTy()) {
6722       assert(I->getType() == getTypeByID(ResTypeID) &&
6723              "Incorrect result type ID");
6724       if (Error Err = ValueList.assignValue(NextValueNo++, I, ResTypeID))
6725         return Err;
6726     }
6727   }
6728 
6729 OutOfRecordLoop:
6730 
6731   if (!OperandBundles.empty())
6732     return error("Operand bundles found with no consumer");
6733 
6734   // Check the function list for unresolved values.
6735   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
6736     if (!A->getParent()) {
6737       // We found at least one unresolved value.  Nuke them all to avoid leaks.
6738       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
6739         if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
6740           A->replaceAllUsesWith(PoisonValue::get(A->getType()));
6741           delete A;
6742         }
6743       }
6744       return error("Never resolved value found in function");
6745     }
6746   }
6747 
6748   // Unexpected unresolved metadata about to be dropped.
6749   if (MDLoader->hasFwdRefs())
6750     return error("Invalid function metadata: outgoing forward refs");
6751 
6752   if (PhiConstExprBB)
6753     PhiConstExprBB->eraseFromParent();
6754 
6755   for (const auto &Pair : ConstExprEdgeBBs) {
6756     BasicBlock *From = Pair.first.first;
6757     BasicBlock *To = Pair.first.second;
6758     BasicBlock *EdgeBB = Pair.second;
6759     BranchInst::Create(To, EdgeBB);
6760     From->getTerminator()->replaceSuccessorWith(To, EdgeBB);
6761     To->replacePhiUsesWith(From, EdgeBB);
6762     EdgeBB->moveBefore(To);
6763   }
6764 
6765   // Trim the value list down to the size it was before we parsed this function.
6766   ValueList.shrinkTo(ModuleValueListSize);
6767   MDLoader->shrinkTo(ModuleMDLoaderSize);
6768   std::vector<BasicBlock*>().swap(FunctionBBs);
6769   return Error::success();
6770 }
6771 
6772 /// Find the function body in the bitcode stream
6773 Error BitcodeReader::findFunctionInStream(
6774     Function *F,
6775     DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
6776   while (DeferredFunctionInfoIterator->second == 0) {
6777     // This is the fallback handling for the old format bitcode that
6778     // didn't contain the function index in the VST, or when we have
6779     // an anonymous function which would not have a VST entry.
6780     // Assert that we have one of those two cases.
6781     assert(VSTOffset == 0 || !F->hasName());
6782     // Parse the next body in the stream and set its position in the
6783     // DeferredFunctionInfo map.
6784     if (Error Err = rememberAndSkipFunctionBodies())
6785       return Err;
6786   }
6787   return Error::success();
6788 }
6789 
6790 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) {
6791   if (Val == SyncScope::SingleThread || Val == SyncScope::System)
6792     return SyncScope::ID(Val);
6793   if (Val >= SSIDs.size())
6794     return SyncScope::System; // Map unknown synchronization scopes to system.
6795   return SSIDs[Val];
6796 }
6797 
6798 //===----------------------------------------------------------------------===//
6799 // GVMaterializer implementation
6800 //===----------------------------------------------------------------------===//
6801 
6802 Error BitcodeReader::materialize(GlobalValue *GV) {
6803   Function *F = dyn_cast<Function>(GV);
6804   // If it's not a function or is already material, ignore the request.
6805   if (!F || !F->isMaterializable())
6806     return Error::success();
6807 
6808   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
6809   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
6810   // If its position is recorded as 0, its body is somewhere in the stream
6811   // but we haven't seen it yet.
6812   if (DFII->second == 0)
6813     if (Error Err = findFunctionInStream(F, DFII))
6814       return Err;
6815 
6816   // Materialize metadata before parsing any function bodies.
6817   if (Error Err = materializeMetadata())
6818     return Err;
6819 
6820   // Move the bit stream to the saved position of the deferred function body.
6821   if (Error JumpFailed = Stream.JumpToBit(DFII->second))
6822     return JumpFailed;
6823 
6824   // Regardless of the debug info format we want to end up in, we need
6825   // IsNewDbgInfoFormat=true to construct any debug records seen in the bitcode.
6826   F->IsNewDbgInfoFormat = true;
6827 
6828   if (Error Err = parseFunctionBody(F))
6829     return Err;
6830   F->setIsMaterializable(false);
6831 
6832   // All parsed Functions should load into the debug info format dictated by the
6833   // Module, unless we're attempting to preserve the input debug info format.
6834   if (SeenDebugIntrinsic && SeenDebugRecord)
6835     return error("Mixed debug intrinsics and debug records in bitcode module!");
6836   if (PreserveInputDbgFormat == cl::boolOrDefault::BOU_TRUE) {
6837     bool SeenAnyDebugInfo = SeenDebugIntrinsic || SeenDebugRecord;
6838     bool NewDbgInfoFormatDesired =
6839         SeenAnyDebugInfo ? SeenDebugRecord : F->getParent()->IsNewDbgInfoFormat;
6840     if (SeenAnyDebugInfo) {
6841       UseNewDbgInfoFormat = SeenDebugRecord;
6842       WriteNewDbgInfoFormatToBitcode = SeenDebugRecord;
6843       WriteNewDbgInfoFormat = SeenDebugRecord;
6844     }
6845     // If the module's debug info format doesn't match the observed input
6846     // format, then set its format now; we don't need to call the conversion
6847     // function because there must be no existing intrinsics to convert.
6848     // Otherwise, just set the format on this function now.
6849     if (NewDbgInfoFormatDesired != F->getParent()->IsNewDbgInfoFormat)
6850       F->getParent()->setNewDbgInfoFormatFlag(NewDbgInfoFormatDesired);
6851     else
6852       F->setNewDbgInfoFormatFlag(NewDbgInfoFormatDesired);
6853   } else {
6854     // If we aren't preserving formats, we use the Module flag to get our
6855     // desired format instead of reading flags, in case we are lazy-loading and
6856     // the format of the module has been changed since it was set by the flags.
6857     // We only need to convert debug info here if we have debug records but
6858     // desire the intrinsic format; everything else is a no-op or handled by the
6859     // autoupgrader.
6860     bool ModuleIsNewDbgInfoFormat = F->getParent()->IsNewDbgInfoFormat;
6861     if (ModuleIsNewDbgInfoFormat || !SeenDebugRecord)
6862       F->setNewDbgInfoFormatFlag(ModuleIsNewDbgInfoFormat);
6863     else
6864       F->setIsNewDbgInfoFormat(ModuleIsNewDbgInfoFormat);
6865   }
6866 
6867   if (StripDebugInfo)
6868     stripDebugInfo(*F);
6869 
6870   // Upgrade any old intrinsic calls in the function.
6871   for (auto &I : UpgradedIntrinsics) {
6872     for (User *U : llvm::make_early_inc_range(I.first->materialized_users()))
6873       if (CallInst *CI = dyn_cast<CallInst>(U))
6874         UpgradeIntrinsicCall(CI, I.second);
6875   }
6876 
6877   // Finish fn->subprogram upgrade for materialized functions.
6878   if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F))
6879     F->setSubprogram(SP);
6880 
6881   // Check if the TBAA Metadata are valid, otherwise we will need to strip them.
6882   if (!MDLoader->isStrippingTBAA()) {
6883     for (auto &I : instructions(F)) {
6884       MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa);
6885       if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA))
6886         continue;
6887       MDLoader->setStripTBAA(true);
6888       stripTBAA(F->getParent());
6889     }
6890   }
6891 
6892   for (auto &I : instructions(F)) {
6893     // "Upgrade" older incorrect branch weights by dropping them.
6894     if (auto *MD = I.getMetadata(LLVMContext::MD_prof)) {
6895       if (MD->getOperand(0) != nullptr && isa<MDString>(MD->getOperand(0))) {
6896         MDString *MDS = cast<MDString>(MD->getOperand(0));
6897         StringRef ProfName = MDS->getString();
6898         // Check consistency of !prof branch_weights metadata.
6899         if (!ProfName.equals("branch_weights"))
6900           continue;
6901         unsigned ExpectedNumOperands = 0;
6902         if (BranchInst *BI = dyn_cast<BranchInst>(&I))
6903           ExpectedNumOperands = BI->getNumSuccessors();
6904         else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I))
6905           ExpectedNumOperands = SI->getNumSuccessors();
6906         else if (isa<CallInst>(&I))
6907           ExpectedNumOperands = 1;
6908         else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I))
6909           ExpectedNumOperands = IBI->getNumDestinations();
6910         else if (isa<SelectInst>(&I))
6911           ExpectedNumOperands = 2;
6912         else
6913           continue; // ignore and continue.
6914 
6915         // If branch weight doesn't match, just strip branch weight.
6916         if (MD->getNumOperands() != 1 + ExpectedNumOperands)
6917           I.setMetadata(LLVMContext::MD_prof, nullptr);
6918       }
6919     }
6920 
6921     // Remove incompatible attributes on function calls.
6922     if (auto *CI = dyn_cast<CallBase>(&I)) {
6923       CI->removeRetAttrs(AttributeFuncs::typeIncompatible(
6924           CI->getFunctionType()->getReturnType()));
6925 
6926       for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ++ArgNo)
6927         CI->removeParamAttrs(ArgNo, AttributeFuncs::typeIncompatible(
6928                                         CI->getArgOperand(ArgNo)->getType()));
6929     }
6930   }
6931 
6932   // Look for functions that rely on old function attribute behavior.
6933   UpgradeFunctionAttributes(*F);
6934 
6935   // Bring in any functions that this function forward-referenced via
6936   // blockaddresses.
6937   return materializeForwardReferencedFunctions();
6938 }
6939 
6940 Error BitcodeReader::materializeModule() {
6941   if (Error Err = materializeMetadata())
6942     return Err;
6943 
6944   // Promise to materialize all forward references.
6945   WillMaterializeAllForwardRefs = true;
6946 
6947   // Iterate over the module, deserializing any functions that are still on
6948   // disk.
6949   for (Function &F : *TheModule) {
6950     if (Error Err = materialize(&F))
6951       return Err;
6952   }
6953   // At this point, if there are any function bodies, parse the rest of
6954   // the bits in the module past the last function block we have recorded
6955   // through either lazy scanning or the VST.
6956   if (LastFunctionBlockBit || NextUnreadBit)
6957     if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit
6958                                     ? LastFunctionBlockBit
6959                                     : NextUnreadBit))
6960       return Err;
6961 
6962   // Check that all block address forward references got resolved (as we
6963   // promised above).
6964   if (!BasicBlockFwdRefs.empty())
6965     return error("Never resolved function from blockaddress");
6966 
6967   // Upgrade any intrinsic calls that slipped through (should not happen!) and
6968   // delete the old functions to clean up. We can't do this unless the entire
6969   // module is materialized because there could always be another function body
6970   // with calls to the old function.
6971   for (auto &I : UpgradedIntrinsics) {
6972     for (auto *U : I.first->users()) {
6973       if (CallInst *CI = dyn_cast<CallInst>(U))
6974         UpgradeIntrinsicCall(CI, I.second);
6975     }
6976     if (!I.first->use_empty())
6977       I.first->replaceAllUsesWith(I.second);
6978     I.first->eraseFromParent();
6979   }
6980   UpgradedIntrinsics.clear();
6981 
6982   UpgradeDebugInfo(*TheModule);
6983 
6984   UpgradeModuleFlags(*TheModule);
6985 
6986   UpgradeARCRuntime(*TheModule);
6987 
6988   return Error::success();
6989 }
6990 
6991 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
6992   return IdentifiedStructTypes;
6993 }
6994 
6995 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
6996     BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex,
6997     StringRef ModulePath, std::function<bool(GlobalValue::GUID)> IsPrevailing)
6998     : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex),
6999       ModulePath(ModulePath), IsPrevailing(IsPrevailing) {}
7000 
7001 void ModuleSummaryIndexBitcodeReader::addThisModule() {
7002   TheIndex.addModule(ModulePath);
7003 }
7004 
7005 ModuleSummaryIndex::ModuleInfo *
7006 ModuleSummaryIndexBitcodeReader::getThisModule() {
7007   return TheIndex.getModule(ModulePath);
7008 }
7009 
7010 template <bool AllowNullValueInfo>
7011 std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID>
7012 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) {
7013   auto VGI = ValueIdToValueInfoMap[ValueId];
7014   // We can have a null value info for memprof callsite info records in
7015   // distributed ThinLTO index files when the callee function summary is not
7016   // included in the index. The bitcode writer records 0 in that case,
7017   // and the caller of this helper will set AllowNullValueInfo to true.
7018   assert(AllowNullValueInfo || std::get<0>(VGI));
7019   return VGI;
7020 }
7021 
7022 void ModuleSummaryIndexBitcodeReader::setValueGUID(
7023     uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage,
7024     StringRef SourceFileName) {
7025   std::string GlobalId =
7026       GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName);
7027   auto ValueGUID = GlobalValue::getGUID(GlobalId);
7028   auto OriginalNameID = ValueGUID;
7029   if (GlobalValue::isLocalLinkage(Linkage))
7030     OriginalNameID = GlobalValue::getGUID(ValueName);
7031   if (PrintSummaryGUIDs)
7032     dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is "
7033            << ValueName << "\n";
7034 
7035   // UseStrtab is false for legacy summary formats and value names are
7036   // created on stack. In that case we save the name in a string saver in
7037   // the index so that the value name can be recorded.
7038   ValueIdToValueInfoMap[ValueID] = std::make_tuple(
7039       TheIndex.getOrInsertValueInfo(
7040           ValueGUID, UseStrtab ? ValueName : TheIndex.saveString(ValueName)),
7041       OriginalNameID, ValueGUID);
7042 }
7043 
7044 // Specialized value symbol table parser used when reading module index
7045 // blocks where we don't actually create global values. The parsed information
7046 // is saved in the bitcode reader for use when later parsing summaries.
7047 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable(
7048     uint64_t Offset,
7049     DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) {
7050   // With a strtab the VST is not required to parse the summary.
7051   if (UseStrtab)
7052     return Error::success();
7053 
7054   assert(Offset > 0 && "Expected non-zero VST offset");
7055   Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
7056   if (!MaybeCurrentBit)
7057     return MaybeCurrentBit.takeError();
7058   uint64_t CurrentBit = MaybeCurrentBit.get();
7059 
7060   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
7061     return Err;
7062 
7063   SmallVector<uint64_t, 64> Record;
7064 
7065   // Read all the records for this value table.
7066   SmallString<128> ValueName;
7067 
7068   while (true) {
7069     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
7070     if (!MaybeEntry)
7071       return MaybeEntry.takeError();
7072     BitstreamEntry Entry = MaybeEntry.get();
7073 
7074     switch (Entry.Kind) {
7075     case BitstreamEntry::SubBlock: // Handled for us already.
7076     case BitstreamEntry::Error:
7077       return error("Malformed block");
7078     case BitstreamEntry::EndBlock:
7079       // Done parsing VST, jump back to wherever we came from.
7080       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
7081         return JumpFailed;
7082       return Error::success();
7083     case BitstreamEntry::Record:
7084       // The interesting case.
7085       break;
7086     }
7087 
7088     // Read a record.
7089     Record.clear();
7090     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
7091     if (!MaybeRecord)
7092       return MaybeRecord.takeError();
7093     switch (MaybeRecord.get()) {
7094     default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records).
7095       break;
7096     case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
7097       if (convertToString(Record, 1, ValueName))
7098         return error("Invalid record");
7099       unsigned ValueID = Record[0];
7100       assert(!SourceFileName.empty());
7101       auto VLI = ValueIdToLinkageMap.find(ValueID);
7102       assert(VLI != ValueIdToLinkageMap.end() &&
7103              "No linkage found for VST entry?");
7104       auto Linkage = VLI->second;
7105       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
7106       ValueName.clear();
7107       break;
7108     }
7109     case bitc::VST_CODE_FNENTRY: {
7110       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
7111       if (convertToString(Record, 2, ValueName))
7112         return error("Invalid record");
7113       unsigned ValueID = Record[0];
7114       assert(!SourceFileName.empty());
7115       auto VLI = ValueIdToLinkageMap.find(ValueID);
7116       assert(VLI != ValueIdToLinkageMap.end() &&
7117              "No linkage found for VST entry?");
7118       auto Linkage = VLI->second;
7119       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
7120       ValueName.clear();
7121       break;
7122     }
7123     case bitc::VST_CODE_COMBINED_ENTRY: {
7124       // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
7125       unsigned ValueID = Record[0];
7126       GlobalValue::GUID RefGUID = Record[1];
7127       // The "original name", which is the second value of the pair will be
7128       // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index.
7129       ValueIdToValueInfoMap[ValueID] = std::make_tuple(
7130           TheIndex.getOrInsertValueInfo(RefGUID), RefGUID, RefGUID);
7131       break;
7132     }
7133     }
7134   }
7135 }
7136 
7137 // Parse just the blocks needed for building the index out of the module.
7138 // At the end of this routine the module Index is populated with a map
7139 // from global value id to GlobalValueSummary objects.
7140 Error ModuleSummaryIndexBitcodeReader::parseModule() {
7141   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
7142     return Err;
7143 
7144   SmallVector<uint64_t, 64> Record;
7145   DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap;
7146   unsigned ValueId = 0;
7147 
7148   // Read the index for this module.
7149   while (true) {
7150     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
7151     if (!MaybeEntry)
7152       return MaybeEntry.takeError();
7153     llvm::BitstreamEntry Entry = MaybeEntry.get();
7154 
7155     switch (Entry.Kind) {
7156     case BitstreamEntry::Error:
7157       return error("Malformed block");
7158     case BitstreamEntry::EndBlock:
7159       return Error::success();
7160 
7161     case BitstreamEntry::SubBlock:
7162       switch (Entry.ID) {
7163       default: // Skip unknown content.
7164         if (Error Err = Stream.SkipBlock())
7165           return Err;
7166         break;
7167       case bitc::BLOCKINFO_BLOCK_ID:
7168         // Need to parse these to get abbrev ids (e.g. for VST)
7169         if (Error Err = readBlockInfo())
7170           return Err;
7171         break;
7172       case bitc::VALUE_SYMTAB_BLOCK_ID:
7173         // Should have been parsed earlier via VSTOffset, unless there
7174         // is no summary section.
7175         assert(((SeenValueSymbolTable && VSTOffset > 0) ||
7176                 !SeenGlobalValSummary) &&
7177                "Expected early VST parse via VSTOffset record");
7178         if (Error Err = Stream.SkipBlock())
7179           return Err;
7180         break;
7181       case bitc::GLOBALVAL_SUMMARY_BLOCK_ID:
7182       case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID:
7183         // Add the module if it is a per-module index (has a source file name).
7184         if (!SourceFileName.empty())
7185           addThisModule();
7186         assert(!SeenValueSymbolTable &&
7187                "Already read VST when parsing summary block?");
7188         // We might not have a VST if there were no values in the
7189         // summary. An empty summary block generated when we are
7190         // performing ThinLTO compiles so we don't later invoke
7191         // the regular LTO process on them.
7192         if (VSTOffset > 0) {
7193           if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap))
7194             return Err;
7195           SeenValueSymbolTable = true;
7196         }
7197         SeenGlobalValSummary = true;
7198         if (Error Err = parseEntireSummary(Entry.ID))
7199           return Err;
7200         break;
7201       case bitc::MODULE_STRTAB_BLOCK_ID:
7202         if (Error Err = parseModuleStringTable())
7203           return Err;
7204         break;
7205       }
7206       continue;
7207 
7208     case BitstreamEntry::Record: {
7209         Record.clear();
7210         Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
7211         if (!MaybeBitCode)
7212           return MaybeBitCode.takeError();
7213         switch (MaybeBitCode.get()) {
7214         default:
7215           break; // Default behavior, ignore unknown content.
7216         case bitc::MODULE_CODE_VERSION: {
7217           if (Error Err = parseVersionRecord(Record).takeError())
7218             return Err;
7219           break;
7220         }
7221         /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
7222         case bitc::MODULE_CODE_SOURCE_FILENAME: {
7223           SmallString<128> ValueName;
7224           if (convertToString(Record, 0, ValueName))
7225             return error("Invalid record");
7226           SourceFileName = ValueName.c_str();
7227           break;
7228         }
7229         /// MODULE_CODE_HASH: [5*i32]
7230         case bitc::MODULE_CODE_HASH: {
7231           if (Record.size() != 5)
7232             return error("Invalid hash length " + Twine(Record.size()).str());
7233           auto &Hash = getThisModule()->second;
7234           int Pos = 0;
7235           for (auto &Val : Record) {
7236             assert(!(Val >> 32) && "Unexpected high bits set");
7237             Hash[Pos++] = Val;
7238           }
7239           break;
7240         }
7241         /// MODULE_CODE_VSTOFFSET: [offset]
7242         case bitc::MODULE_CODE_VSTOFFSET:
7243           if (Record.empty())
7244             return error("Invalid record");
7245           // Note that we subtract 1 here because the offset is relative to one
7246           // word before the start of the identification or module block, which
7247           // was historically always the start of the regular bitcode header.
7248           VSTOffset = Record[0] - 1;
7249           break;
7250         // v1 GLOBALVAR: [pointer type, isconst,     initid,       linkage, ...]
7251         // v1 FUNCTION:  [type,         callingconv, isproto,      linkage, ...]
7252         // v1 ALIAS:     [alias type,   addrspace,   aliasee val#, linkage, ...]
7253         // v2: [strtab offset, strtab size, v1]
7254         case bitc::MODULE_CODE_GLOBALVAR:
7255         case bitc::MODULE_CODE_FUNCTION:
7256         case bitc::MODULE_CODE_ALIAS: {
7257           StringRef Name;
7258           ArrayRef<uint64_t> GVRecord;
7259           std::tie(Name, GVRecord) = readNameFromStrtab(Record);
7260           if (GVRecord.size() <= 3)
7261             return error("Invalid record");
7262           uint64_t RawLinkage = GVRecord[3];
7263           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
7264           if (!UseStrtab) {
7265             ValueIdToLinkageMap[ValueId++] = Linkage;
7266             break;
7267           }
7268 
7269           setValueGUID(ValueId++, Name, Linkage, SourceFileName);
7270           break;
7271         }
7272         }
7273       }
7274       continue;
7275     }
7276   }
7277 }
7278 
7279 std::vector<ValueInfo>
7280 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) {
7281   std::vector<ValueInfo> Ret;
7282   Ret.reserve(Record.size());
7283   for (uint64_t RefValueId : Record)
7284     Ret.push_back(std::get<0>(getValueInfoFromValueId(RefValueId)));
7285   return Ret;
7286 }
7287 
7288 std::vector<FunctionSummary::EdgeTy>
7289 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record,
7290                                               bool IsOldProfileFormat,
7291                                               bool HasProfile, bool HasRelBF) {
7292   std::vector<FunctionSummary::EdgeTy> Ret;
7293   Ret.reserve(Record.size());
7294   for (unsigned I = 0, E = Record.size(); I != E; ++I) {
7295     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
7296     bool HasTailCall = false;
7297     uint64_t RelBF = 0;
7298     ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[I]));
7299     if (IsOldProfileFormat) {
7300       I += 1; // Skip old callsitecount field
7301       if (HasProfile)
7302         I += 1; // Skip old profilecount field
7303     } else if (HasProfile)
7304       std::tie(Hotness, HasTailCall) =
7305           getDecodedHotnessCallEdgeInfo(Record[++I]);
7306     else if (HasRelBF)
7307       getDecodedRelBFCallEdgeInfo(Record[++I], RelBF, HasTailCall);
7308     Ret.push_back(FunctionSummary::EdgeTy{
7309         Callee, CalleeInfo(Hotness, HasTailCall, RelBF)});
7310   }
7311   return Ret;
7312 }
7313 
7314 static void
7315 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot,
7316                                        WholeProgramDevirtResolution &Wpd) {
7317   uint64_t ArgNum = Record[Slot++];
7318   WholeProgramDevirtResolution::ByArg &B =
7319       Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}];
7320   Slot += ArgNum;
7321 
7322   B.TheKind =
7323       static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]);
7324   B.Info = Record[Slot++];
7325   B.Byte = Record[Slot++];
7326   B.Bit = Record[Slot++];
7327 }
7328 
7329 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record,
7330                                               StringRef Strtab, size_t &Slot,
7331                                               TypeIdSummary &TypeId) {
7332   uint64_t Id = Record[Slot++];
7333   WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id];
7334 
7335   Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]);
7336   Wpd.SingleImplName = {Strtab.data() + Record[Slot],
7337                         static_cast<size_t>(Record[Slot + 1])};
7338   Slot += 2;
7339 
7340   uint64_t ResByArgNum = Record[Slot++];
7341   for (uint64_t I = 0; I != ResByArgNum; ++I)
7342     parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd);
7343 }
7344 
7345 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record,
7346                                      StringRef Strtab,
7347                                      ModuleSummaryIndex &TheIndex) {
7348   size_t Slot = 0;
7349   TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary(
7350       {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])});
7351   Slot += 2;
7352 
7353   TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]);
7354   TypeId.TTRes.SizeM1BitWidth = Record[Slot++];
7355   TypeId.TTRes.AlignLog2 = Record[Slot++];
7356   TypeId.TTRes.SizeM1 = Record[Slot++];
7357   TypeId.TTRes.BitMask = Record[Slot++];
7358   TypeId.TTRes.InlineBits = Record[Slot++];
7359 
7360   while (Slot < Record.size())
7361     parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId);
7362 }
7363 
7364 std::vector<FunctionSummary::ParamAccess>
7365 ModuleSummaryIndexBitcodeReader::parseParamAccesses(ArrayRef<uint64_t> Record) {
7366   auto ReadRange = [&]() {
7367     APInt Lower(FunctionSummary::ParamAccess::RangeWidth,
7368                 BitcodeReader::decodeSignRotatedValue(Record.front()));
7369     Record = Record.drop_front();
7370     APInt Upper(FunctionSummary::ParamAccess::RangeWidth,
7371                 BitcodeReader::decodeSignRotatedValue(Record.front()));
7372     Record = Record.drop_front();
7373     ConstantRange Range{Lower, Upper};
7374     assert(!Range.isFullSet());
7375     assert(!Range.isUpperSignWrapped());
7376     return Range;
7377   };
7378 
7379   std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
7380   while (!Record.empty()) {
7381     PendingParamAccesses.emplace_back();
7382     FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back();
7383     ParamAccess.ParamNo = Record.front();
7384     Record = Record.drop_front();
7385     ParamAccess.Use = ReadRange();
7386     ParamAccess.Calls.resize(Record.front());
7387     Record = Record.drop_front();
7388     for (auto &Call : ParamAccess.Calls) {
7389       Call.ParamNo = Record.front();
7390       Record = Record.drop_front();
7391       Call.Callee = std::get<0>(getValueInfoFromValueId(Record.front()));
7392       Record = Record.drop_front();
7393       Call.Offsets = ReadRange();
7394     }
7395   }
7396   return PendingParamAccesses;
7397 }
7398 
7399 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo(
7400     ArrayRef<uint64_t> Record, size_t &Slot,
7401     TypeIdCompatibleVtableInfo &TypeId) {
7402   uint64_t Offset = Record[Slot++];
7403   ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[Slot++]));
7404   TypeId.push_back({Offset, Callee});
7405 }
7406 
7407 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord(
7408     ArrayRef<uint64_t> Record) {
7409   size_t Slot = 0;
7410   TypeIdCompatibleVtableInfo &TypeId =
7411       TheIndex.getOrInsertTypeIdCompatibleVtableSummary(
7412           {Strtab.data() + Record[Slot],
7413            static_cast<size_t>(Record[Slot + 1])});
7414   Slot += 2;
7415 
7416   while (Slot < Record.size())
7417     parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId);
7418 }
7419 
7420 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt,
7421                            unsigned WOCnt) {
7422   // Readonly and writeonly refs are in the end of the refs list.
7423   assert(ROCnt + WOCnt <= Refs.size());
7424   unsigned FirstWORef = Refs.size() - WOCnt;
7425   unsigned RefNo = FirstWORef - ROCnt;
7426   for (; RefNo < FirstWORef; ++RefNo)
7427     Refs[RefNo].setReadOnly();
7428   for (; RefNo < Refs.size(); ++RefNo)
7429     Refs[RefNo].setWriteOnly();
7430 }
7431 
7432 // Eagerly parse the entire summary block. This populates the GlobalValueSummary
7433 // objects in the index.
7434 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) {
7435   if (Error Err = Stream.EnterSubBlock(ID))
7436     return Err;
7437   SmallVector<uint64_t, 64> Record;
7438 
7439   // Parse version
7440   {
7441     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
7442     if (!MaybeEntry)
7443       return MaybeEntry.takeError();
7444     BitstreamEntry Entry = MaybeEntry.get();
7445 
7446     if (Entry.Kind != BitstreamEntry::Record)
7447       return error("Invalid Summary Block: record for version expected");
7448     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
7449     if (!MaybeRecord)
7450       return MaybeRecord.takeError();
7451     if (MaybeRecord.get() != bitc::FS_VERSION)
7452       return error("Invalid Summary Block: version expected");
7453   }
7454   const uint64_t Version = Record[0];
7455   const bool IsOldProfileFormat = Version == 1;
7456   if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion)
7457     return error("Invalid summary version " + Twine(Version) +
7458                  ". Version should be in the range [1-" +
7459                  Twine(ModuleSummaryIndex::BitcodeSummaryVersion) +
7460                  "].");
7461   Record.clear();
7462 
7463   // Keep around the last seen summary to be used when we see an optional
7464   // "OriginalName" attachement.
7465   GlobalValueSummary *LastSeenSummary = nullptr;
7466   GlobalValue::GUID LastSeenGUID = 0;
7467 
7468   // We can expect to see any number of type ID information records before
7469   // each function summary records; these variables store the information
7470   // collected so far so that it can be used to create the summary object.
7471   std::vector<GlobalValue::GUID> PendingTypeTests;
7472   std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls,
7473       PendingTypeCheckedLoadVCalls;
7474   std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls,
7475       PendingTypeCheckedLoadConstVCalls;
7476   std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
7477 
7478   std::vector<CallsiteInfo> PendingCallsites;
7479   std::vector<AllocInfo> PendingAllocs;
7480 
7481   while (true) {
7482     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
7483     if (!MaybeEntry)
7484       return MaybeEntry.takeError();
7485     BitstreamEntry Entry = MaybeEntry.get();
7486 
7487     switch (Entry.Kind) {
7488     case BitstreamEntry::SubBlock: // Handled for us already.
7489     case BitstreamEntry::Error:
7490       return error("Malformed block");
7491     case BitstreamEntry::EndBlock:
7492       return Error::success();
7493     case BitstreamEntry::Record:
7494       // The interesting case.
7495       break;
7496     }
7497 
7498     // Read a record. The record format depends on whether this
7499     // is a per-module index or a combined index file. In the per-module
7500     // case the records contain the associated value's ID for correlation
7501     // with VST entries. In the combined index the correlation is done
7502     // via the bitcode offset of the summary records (which were saved
7503     // in the combined index VST entries). The records also contain
7504     // information used for ThinLTO renaming and importing.
7505     Record.clear();
7506     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
7507     if (!MaybeBitCode)
7508       return MaybeBitCode.takeError();
7509     switch (unsigned BitCode = MaybeBitCode.get()) {
7510     default: // Default behavior: ignore.
7511       break;
7512     case bitc::FS_FLAGS: {  // [flags]
7513       TheIndex.setFlags(Record[0]);
7514       break;
7515     }
7516     case bitc::FS_VALUE_GUID: { // [valueid, refguid]
7517       uint64_t ValueID = Record[0];
7518       GlobalValue::GUID RefGUID = Record[1];
7519       ValueIdToValueInfoMap[ValueID] = std::make_tuple(
7520           TheIndex.getOrInsertValueInfo(RefGUID), RefGUID, RefGUID);
7521       break;
7522     }
7523     // FS_PERMODULE is legacy and does not have support for the tail call flag.
7524     // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs,
7525     //                numrefs x valueid, n x (valueid)]
7526     // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs,
7527     //                        numrefs x valueid,
7528     //                        n x (valueid, hotness+tailcall flags)]
7529     // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs,
7530     //                      numrefs x valueid,
7531     //                      n x (valueid, relblockfreq+tailcall)]
7532     case bitc::FS_PERMODULE:
7533     case bitc::FS_PERMODULE_RELBF:
7534     case bitc::FS_PERMODULE_PROFILE: {
7535       unsigned ValueID = Record[0];
7536       uint64_t RawFlags = Record[1];
7537       unsigned InstCount = Record[2];
7538       uint64_t RawFunFlags = 0;
7539       unsigned NumRefs = Record[3];
7540       unsigned NumRORefs = 0, NumWORefs = 0;
7541       int RefListStartIndex = 4;
7542       if (Version >= 4) {
7543         RawFunFlags = Record[3];
7544         NumRefs = Record[4];
7545         RefListStartIndex = 5;
7546         if (Version >= 5) {
7547           NumRORefs = Record[5];
7548           RefListStartIndex = 6;
7549           if (Version >= 7) {
7550             NumWORefs = Record[6];
7551             RefListStartIndex = 7;
7552           }
7553         }
7554       }
7555 
7556       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7557       // The module path string ref set in the summary must be owned by the
7558       // index's module string table. Since we don't have a module path
7559       // string table section in the per-module index, we create a single
7560       // module path string table entry with an empty (0) ID to take
7561       // ownership.
7562       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
7563       assert(Record.size() >= RefListStartIndex + NumRefs &&
7564              "Record size inconsistent with number of references");
7565       std::vector<ValueInfo> Refs = makeRefList(
7566           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
7567       bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE);
7568       bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF);
7569       std::vector<FunctionSummary::EdgeTy> Calls = makeCallList(
7570           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
7571           IsOldProfileFormat, HasProfile, HasRelBF);
7572       setSpecialRefs(Refs, NumRORefs, NumWORefs);
7573       auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID);
7574       // In order to save memory, only record the memprof summaries if this is
7575       // the prevailing copy of a symbol. The linker doesn't resolve local
7576       // linkage values so don't check whether those are prevailing.
7577       auto LT = (GlobalValue::LinkageTypes)Flags.Linkage;
7578       if (IsPrevailing &&
7579           !GlobalValue::isLocalLinkage(LT) &&
7580           !IsPrevailing(std::get<2>(VIAndOriginalGUID))) {
7581         PendingCallsites.clear();
7582         PendingAllocs.clear();
7583       }
7584       auto FS = std::make_unique<FunctionSummary>(
7585           Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0,
7586           std::move(Refs), std::move(Calls), std::move(PendingTypeTests),
7587           std::move(PendingTypeTestAssumeVCalls),
7588           std::move(PendingTypeCheckedLoadVCalls),
7589           std::move(PendingTypeTestAssumeConstVCalls),
7590           std::move(PendingTypeCheckedLoadConstVCalls),
7591           std::move(PendingParamAccesses), std::move(PendingCallsites),
7592           std::move(PendingAllocs));
7593       FS->setModulePath(getThisModule()->first());
7594       FS->setOriginalName(std::get<1>(VIAndOriginalGUID));
7595       TheIndex.addGlobalValueSummary(std::get<0>(VIAndOriginalGUID),
7596                                      std::move(FS));
7597       break;
7598     }
7599     // FS_ALIAS: [valueid, flags, valueid]
7600     // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as
7601     // they expect all aliasee summaries to be available.
7602     case bitc::FS_ALIAS: {
7603       unsigned ValueID = Record[0];
7604       uint64_t RawFlags = Record[1];
7605       unsigned AliaseeID = Record[2];
7606       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7607       auto AS = std::make_unique<AliasSummary>(Flags);
7608       // The module path string ref set in the summary must be owned by the
7609       // index's module string table. Since we don't have a module path
7610       // string table section in the per-module index, we create a single
7611       // module path string table entry with an empty (0) ID to take
7612       // ownership.
7613       AS->setModulePath(getThisModule()->first());
7614 
7615       auto AliaseeVI = std::get<0>(getValueInfoFromValueId(AliaseeID));
7616       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath);
7617       if (!AliaseeInModule)
7618         return error("Alias expects aliasee summary to be parsed");
7619       AS->setAliasee(AliaseeVI, AliaseeInModule);
7620 
7621       auto GUID = getValueInfoFromValueId(ValueID);
7622       AS->setOriginalName(std::get<1>(GUID));
7623       TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(AS));
7624       break;
7625     }
7626     // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid]
7627     case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: {
7628       unsigned ValueID = Record[0];
7629       uint64_t RawFlags = Record[1];
7630       unsigned RefArrayStart = 2;
7631       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
7632                                       /* WriteOnly */ false,
7633                                       /* Constant */ false,
7634                                       GlobalObject::VCallVisibilityPublic);
7635       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7636       if (Version >= 5) {
7637         GVF = getDecodedGVarFlags(Record[2]);
7638         RefArrayStart = 3;
7639       }
7640       std::vector<ValueInfo> Refs =
7641           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
7642       auto FS =
7643           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
7644       FS->setModulePath(getThisModule()->first());
7645       auto GUID = getValueInfoFromValueId(ValueID);
7646       FS->setOriginalName(std::get<1>(GUID));
7647       TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(FS));
7648       break;
7649     }
7650     // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags,
7651     //                        numrefs, numrefs x valueid,
7652     //                        n x (valueid, offset)]
7653     case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: {
7654       unsigned ValueID = Record[0];
7655       uint64_t RawFlags = Record[1];
7656       GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]);
7657       unsigned NumRefs = Record[3];
7658       unsigned RefListStartIndex = 4;
7659       unsigned VTableListStartIndex = RefListStartIndex + NumRefs;
7660       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7661       std::vector<ValueInfo> Refs = makeRefList(
7662           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
7663       VTableFuncList VTableFuncs;
7664       for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) {
7665         ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[I]));
7666         uint64_t Offset = Record[++I];
7667         VTableFuncs.push_back({Callee, Offset});
7668       }
7669       auto VS =
7670           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
7671       VS->setModulePath(getThisModule()->first());
7672       VS->setVTableFuncs(VTableFuncs);
7673       auto GUID = getValueInfoFromValueId(ValueID);
7674       VS->setOriginalName(std::get<1>(GUID));
7675       TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(VS));
7676       break;
7677     }
7678     // FS_COMBINED is legacy and does not have support for the tail call flag.
7679     // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs,
7680     //               numrefs x valueid, n x (valueid)]
7681     // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs,
7682     //                       numrefs x valueid,
7683     //                       n x (valueid, hotness+tailcall flags)]
7684     case bitc::FS_COMBINED:
7685     case bitc::FS_COMBINED_PROFILE: {
7686       unsigned ValueID = Record[0];
7687       uint64_t ModuleId = Record[1];
7688       uint64_t RawFlags = Record[2];
7689       unsigned InstCount = Record[3];
7690       uint64_t RawFunFlags = 0;
7691       uint64_t EntryCount = 0;
7692       unsigned NumRefs = Record[4];
7693       unsigned NumRORefs = 0, NumWORefs = 0;
7694       int RefListStartIndex = 5;
7695 
7696       if (Version >= 4) {
7697         RawFunFlags = Record[4];
7698         RefListStartIndex = 6;
7699         size_t NumRefsIndex = 5;
7700         if (Version >= 5) {
7701           unsigned NumRORefsOffset = 1;
7702           RefListStartIndex = 7;
7703           if (Version >= 6) {
7704             NumRefsIndex = 6;
7705             EntryCount = Record[5];
7706             RefListStartIndex = 8;
7707             if (Version >= 7) {
7708               RefListStartIndex = 9;
7709               NumWORefs = Record[8];
7710               NumRORefsOffset = 2;
7711             }
7712           }
7713           NumRORefs = Record[RefListStartIndex - NumRORefsOffset];
7714         }
7715         NumRefs = Record[NumRefsIndex];
7716       }
7717 
7718       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7719       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
7720       assert(Record.size() >= RefListStartIndex + NumRefs &&
7721              "Record size inconsistent with number of references");
7722       std::vector<ValueInfo> Refs = makeRefList(
7723           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
7724       bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE);
7725       std::vector<FunctionSummary::EdgeTy> Edges = makeCallList(
7726           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
7727           IsOldProfileFormat, HasProfile, false);
7728       ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID));
7729       setSpecialRefs(Refs, NumRORefs, NumWORefs);
7730       auto FS = std::make_unique<FunctionSummary>(
7731           Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount,
7732           std::move(Refs), std::move(Edges), std::move(PendingTypeTests),
7733           std::move(PendingTypeTestAssumeVCalls),
7734           std::move(PendingTypeCheckedLoadVCalls),
7735           std::move(PendingTypeTestAssumeConstVCalls),
7736           std::move(PendingTypeCheckedLoadConstVCalls),
7737           std::move(PendingParamAccesses), std::move(PendingCallsites),
7738           std::move(PendingAllocs));
7739       LastSeenSummary = FS.get();
7740       LastSeenGUID = VI.getGUID();
7741       FS->setModulePath(ModuleIdMap[ModuleId]);
7742       TheIndex.addGlobalValueSummary(VI, std::move(FS));
7743       break;
7744     }
7745     // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid]
7746     // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as
7747     // they expect all aliasee summaries to be available.
7748     case bitc::FS_COMBINED_ALIAS: {
7749       unsigned ValueID = Record[0];
7750       uint64_t ModuleId = Record[1];
7751       uint64_t RawFlags = Record[2];
7752       unsigned AliaseeValueId = Record[3];
7753       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7754       auto AS = std::make_unique<AliasSummary>(Flags);
7755       LastSeenSummary = AS.get();
7756       AS->setModulePath(ModuleIdMap[ModuleId]);
7757 
7758       auto AliaseeVI = std::get<0>(getValueInfoFromValueId(AliaseeValueId));
7759       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath());
7760       AS->setAliasee(AliaseeVI, AliaseeInModule);
7761 
7762       ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID));
7763       LastSeenGUID = VI.getGUID();
7764       TheIndex.addGlobalValueSummary(VI, std::move(AS));
7765       break;
7766     }
7767     // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid]
7768     case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: {
7769       unsigned ValueID = Record[0];
7770       uint64_t ModuleId = Record[1];
7771       uint64_t RawFlags = Record[2];
7772       unsigned RefArrayStart = 3;
7773       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
7774                                       /* WriteOnly */ false,
7775                                       /* Constant */ false,
7776                                       GlobalObject::VCallVisibilityPublic);
7777       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7778       if (Version >= 5) {
7779         GVF = getDecodedGVarFlags(Record[3]);
7780         RefArrayStart = 4;
7781       }
7782       std::vector<ValueInfo> Refs =
7783           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
7784       auto FS =
7785           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
7786       LastSeenSummary = FS.get();
7787       FS->setModulePath(ModuleIdMap[ModuleId]);
7788       ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID));
7789       LastSeenGUID = VI.getGUID();
7790       TheIndex.addGlobalValueSummary(VI, std::move(FS));
7791       break;
7792     }
7793     // FS_COMBINED_ORIGINAL_NAME: [original_name]
7794     case bitc::FS_COMBINED_ORIGINAL_NAME: {
7795       uint64_t OriginalName = Record[0];
7796       if (!LastSeenSummary)
7797         return error("Name attachment that does not follow a combined record");
7798       LastSeenSummary->setOriginalName(OriginalName);
7799       TheIndex.addOriginalName(LastSeenGUID, OriginalName);
7800       // Reset the LastSeenSummary
7801       LastSeenSummary = nullptr;
7802       LastSeenGUID = 0;
7803       break;
7804     }
7805     case bitc::FS_TYPE_TESTS:
7806       assert(PendingTypeTests.empty());
7807       llvm::append_range(PendingTypeTests, Record);
7808       break;
7809 
7810     case bitc::FS_TYPE_TEST_ASSUME_VCALLS:
7811       assert(PendingTypeTestAssumeVCalls.empty());
7812       for (unsigned I = 0; I != Record.size(); I += 2)
7813         PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]});
7814       break;
7815 
7816     case bitc::FS_TYPE_CHECKED_LOAD_VCALLS:
7817       assert(PendingTypeCheckedLoadVCalls.empty());
7818       for (unsigned I = 0; I != Record.size(); I += 2)
7819         PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]});
7820       break;
7821 
7822     case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL:
7823       PendingTypeTestAssumeConstVCalls.push_back(
7824           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
7825       break;
7826 
7827     case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL:
7828       PendingTypeCheckedLoadConstVCalls.push_back(
7829           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
7830       break;
7831 
7832     case bitc::FS_CFI_FUNCTION_DEFS: {
7833       std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs();
7834       for (unsigned I = 0; I != Record.size(); I += 2)
7835         CfiFunctionDefs.insert(
7836             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
7837       break;
7838     }
7839 
7840     case bitc::FS_CFI_FUNCTION_DECLS: {
7841       std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls();
7842       for (unsigned I = 0; I != Record.size(); I += 2)
7843         CfiFunctionDecls.insert(
7844             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
7845       break;
7846     }
7847 
7848     case bitc::FS_TYPE_ID:
7849       parseTypeIdSummaryRecord(Record, Strtab, TheIndex);
7850       break;
7851 
7852     case bitc::FS_TYPE_ID_METADATA:
7853       parseTypeIdCompatibleVtableSummaryRecord(Record);
7854       break;
7855 
7856     case bitc::FS_BLOCK_COUNT:
7857       TheIndex.addBlockCount(Record[0]);
7858       break;
7859 
7860     case bitc::FS_PARAM_ACCESS: {
7861       PendingParamAccesses = parseParamAccesses(Record);
7862       break;
7863     }
7864 
7865     case bitc::FS_STACK_IDS: { // [n x stackid]
7866       // Save stack ids in the reader to consult when adding stack ids from the
7867       // lists in the stack node and alloc node entries.
7868       StackIds = ArrayRef<uint64_t>(Record);
7869       break;
7870     }
7871 
7872     case bitc::FS_PERMODULE_CALLSITE_INFO: {
7873       unsigned ValueID = Record[0];
7874       SmallVector<unsigned> StackIdList;
7875       for (auto R = Record.begin() + 1; R != Record.end(); R++) {
7876         assert(*R < StackIds.size());
7877         StackIdList.push_back(TheIndex.addOrGetStackIdIndex(StackIds[*R]));
7878       }
7879       ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID));
7880       PendingCallsites.push_back(CallsiteInfo({VI, std::move(StackIdList)}));
7881       break;
7882     }
7883 
7884     case bitc::FS_COMBINED_CALLSITE_INFO: {
7885       auto RecordIter = Record.begin();
7886       unsigned ValueID = *RecordIter++;
7887       unsigned NumStackIds = *RecordIter++;
7888       unsigned NumVersions = *RecordIter++;
7889       assert(Record.size() == 3 + NumStackIds + NumVersions);
7890       SmallVector<unsigned> StackIdList;
7891       for (unsigned J = 0; J < NumStackIds; J++) {
7892         assert(*RecordIter < StackIds.size());
7893         StackIdList.push_back(
7894             TheIndex.addOrGetStackIdIndex(StackIds[*RecordIter++]));
7895       }
7896       SmallVector<unsigned> Versions;
7897       for (unsigned J = 0; J < NumVersions; J++)
7898         Versions.push_back(*RecordIter++);
7899       ValueInfo VI = std::get<0>(
7900           getValueInfoFromValueId</*AllowNullValueInfo*/ true>(ValueID));
7901       PendingCallsites.push_back(
7902           CallsiteInfo({VI, std::move(Versions), std::move(StackIdList)}));
7903       break;
7904     }
7905 
7906     case bitc::FS_PERMODULE_ALLOC_INFO: {
7907       unsigned I = 0;
7908       std::vector<MIBInfo> MIBs;
7909       while (I < Record.size()) {
7910         assert(Record.size() - I >= 2);
7911         AllocationType AllocType = (AllocationType)Record[I++];
7912         unsigned NumStackEntries = Record[I++];
7913         assert(Record.size() - I >= NumStackEntries);
7914         SmallVector<unsigned> StackIdList;
7915         for (unsigned J = 0; J < NumStackEntries; J++) {
7916           assert(Record[I] < StackIds.size());
7917           StackIdList.push_back(
7918               TheIndex.addOrGetStackIdIndex(StackIds[Record[I++]]));
7919         }
7920         MIBs.push_back(MIBInfo(AllocType, std::move(StackIdList)));
7921       }
7922       PendingAllocs.push_back(AllocInfo(std::move(MIBs)));
7923       break;
7924     }
7925 
7926     case bitc::FS_COMBINED_ALLOC_INFO: {
7927       unsigned I = 0;
7928       std::vector<MIBInfo> MIBs;
7929       unsigned NumMIBs = Record[I++];
7930       unsigned NumVersions = Record[I++];
7931       unsigned MIBsRead = 0;
7932       while (MIBsRead++ < NumMIBs) {
7933         assert(Record.size() - I >= 2);
7934         AllocationType AllocType = (AllocationType)Record[I++];
7935         unsigned NumStackEntries = Record[I++];
7936         assert(Record.size() - I >= NumStackEntries);
7937         SmallVector<unsigned> StackIdList;
7938         for (unsigned J = 0; J < NumStackEntries; J++) {
7939           assert(Record[I] < StackIds.size());
7940           StackIdList.push_back(
7941               TheIndex.addOrGetStackIdIndex(StackIds[Record[I++]]));
7942         }
7943         MIBs.push_back(MIBInfo(AllocType, std::move(StackIdList)));
7944       }
7945       assert(Record.size() - I >= NumVersions);
7946       SmallVector<uint8_t> Versions;
7947       for (unsigned J = 0; J < NumVersions; J++)
7948         Versions.push_back(Record[I++]);
7949       PendingAllocs.push_back(
7950           AllocInfo(std::move(Versions), std::move(MIBs)));
7951       break;
7952     }
7953     }
7954   }
7955   llvm_unreachable("Exit infinite loop");
7956 }
7957 
7958 // Parse the  module string table block into the Index.
7959 // This populates the ModulePathStringTable map in the index.
7960 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() {
7961   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID))
7962     return Err;
7963 
7964   SmallVector<uint64_t, 64> Record;
7965 
7966   SmallString<128> ModulePath;
7967   ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr;
7968 
7969   while (true) {
7970     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
7971     if (!MaybeEntry)
7972       return MaybeEntry.takeError();
7973     BitstreamEntry Entry = MaybeEntry.get();
7974 
7975     switch (Entry.Kind) {
7976     case BitstreamEntry::SubBlock: // Handled for us already.
7977     case BitstreamEntry::Error:
7978       return error("Malformed block");
7979     case BitstreamEntry::EndBlock:
7980       return Error::success();
7981     case BitstreamEntry::Record:
7982       // The interesting case.
7983       break;
7984     }
7985 
7986     Record.clear();
7987     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
7988     if (!MaybeRecord)
7989       return MaybeRecord.takeError();
7990     switch (MaybeRecord.get()) {
7991     default: // Default behavior: ignore.
7992       break;
7993     case bitc::MST_CODE_ENTRY: {
7994       // MST_ENTRY: [modid, namechar x N]
7995       uint64_t ModuleId = Record[0];
7996 
7997       if (convertToString(Record, 1, ModulePath))
7998         return error("Invalid record");
7999 
8000       LastSeenModule = TheIndex.addModule(ModulePath);
8001       ModuleIdMap[ModuleId] = LastSeenModule->first();
8002 
8003       ModulePath.clear();
8004       break;
8005     }
8006     /// MST_CODE_HASH: [5*i32]
8007     case bitc::MST_CODE_HASH: {
8008       if (Record.size() != 5)
8009         return error("Invalid hash length " + Twine(Record.size()).str());
8010       if (!LastSeenModule)
8011         return error("Invalid hash that does not follow a module path");
8012       int Pos = 0;
8013       for (auto &Val : Record) {
8014         assert(!(Val >> 32) && "Unexpected high bits set");
8015         LastSeenModule->second[Pos++] = Val;
8016       }
8017       // Reset LastSeenModule to avoid overriding the hash unexpectedly.
8018       LastSeenModule = nullptr;
8019       break;
8020     }
8021     }
8022   }
8023   llvm_unreachable("Exit infinite loop");
8024 }
8025 
8026 namespace {
8027 
8028 // FIXME: This class is only here to support the transition to llvm::Error. It
8029 // will be removed once this transition is complete. Clients should prefer to
8030 // deal with the Error value directly, rather than converting to error_code.
8031 class BitcodeErrorCategoryType : public std::error_category {
8032   const char *name() const noexcept override {
8033     return "llvm.bitcode";
8034   }
8035 
8036   std::string message(int IE) const override {
8037     BitcodeError E = static_cast<BitcodeError>(IE);
8038     switch (E) {
8039     case BitcodeError::CorruptedBitcode:
8040       return "Corrupted bitcode";
8041     }
8042     llvm_unreachable("Unknown error type!");
8043   }
8044 };
8045 
8046 } // end anonymous namespace
8047 
8048 const std::error_category &llvm::BitcodeErrorCategory() {
8049   static BitcodeErrorCategoryType ErrorCategory;
8050   return ErrorCategory;
8051 }
8052 
8053 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream,
8054                                             unsigned Block, unsigned RecordID) {
8055   if (Error Err = Stream.EnterSubBlock(Block))
8056     return std::move(Err);
8057 
8058   StringRef Strtab;
8059   while (true) {
8060     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
8061     if (!MaybeEntry)
8062       return MaybeEntry.takeError();
8063     llvm::BitstreamEntry Entry = MaybeEntry.get();
8064 
8065     switch (Entry.Kind) {
8066     case BitstreamEntry::EndBlock:
8067       return Strtab;
8068 
8069     case BitstreamEntry::Error:
8070       return error("Malformed block");
8071 
8072     case BitstreamEntry::SubBlock:
8073       if (Error Err = Stream.SkipBlock())
8074         return std::move(Err);
8075       break;
8076 
8077     case BitstreamEntry::Record:
8078       StringRef Blob;
8079       SmallVector<uint64_t, 1> Record;
8080       Expected<unsigned> MaybeRecord =
8081           Stream.readRecord(Entry.ID, Record, &Blob);
8082       if (!MaybeRecord)
8083         return MaybeRecord.takeError();
8084       if (MaybeRecord.get() == RecordID)
8085         Strtab = Blob;
8086       break;
8087     }
8088   }
8089 }
8090 
8091 //===----------------------------------------------------------------------===//
8092 // External interface
8093 //===----------------------------------------------------------------------===//
8094 
8095 Expected<std::vector<BitcodeModule>>
8096 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) {
8097   auto FOrErr = getBitcodeFileContents(Buffer);
8098   if (!FOrErr)
8099     return FOrErr.takeError();
8100   return std::move(FOrErr->Mods);
8101 }
8102 
8103 Expected<BitcodeFileContents>
8104 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) {
8105   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
8106   if (!StreamOrErr)
8107     return StreamOrErr.takeError();
8108   BitstreamCursor &Stream = *StreamOrErr;
8109 
8110   BitcodeFileContents F;
8111   while (true) {
8112     uint64_t BCBegin = Stream.getCurrentByteNo();
8113 
8114     // We may be consuming bitcode from a client that leaves garbage at the end
8115     // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to
8116     // the end that there cannot possibly be another module, stop looking.
8117     if (BCBegin + 8 >= Stream.getBitcodeBytes().size())
8118       return F;
8119 
8120     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
8121     if (!MaybeEntry)
8122       return MaybeEntry.takeError();
8123     llvm::BitstreamEntry Entry = MaybeEntry.get();
8124 
8125     switch (Entry.Kind) {
8126     case BitstreamEntry::EndBlock:
8127     case BitstreamEntry::Error:
8128       return error("Malformed block");
8129 
8130     case BitstreamEntry::SubBlock: {
8131       uint64_t IdentificationBit = -1ull;
8132       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
8133         IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8;
8134         if (Error Err = Stream.SkipBlock())
8135           return std::move(Err);
8136 
8137         {
8138           Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
8139           if (!MaybeEntry)
8140             return MaybeEntry.takeError();
8141           Entry = MaybeEntry.get();
8142         }
8143 
8144         if (Entry.Kind != BitstreamEntry::SubBlock ||
8145             Entry.ID != bitc::MODULE_BLOCK_ID)
8146           return error("Malformed block");
8147       }
8148 
8149       if (Entry.ID == bitc::MODULE_BLOCK_ID) {
8150         uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8;
8151         if (Error Err = Stream.SkipBlock())
8152           return std::move(Err);
8153 
8154         F.Mods.push_back({Stream.getBitcodeBytes().slice(
8155                               BCBegin, Stream.getCurrentByteNo() - BCBegin),
8156                           Buffer.getBufferIdentifier(), IdentificationBit,
8157                           ModuleBit});
8158         continue;
8159       }
8160 
8161       if (Entry.ID == bitc::STRTAB_BLOCK_ID) {
8162         Expected<StringRef> Strtab =
8163             readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB);
8164         if (!Strtab)
8165           return Strtab.takeError();
8166         // This string table is used by every preceding bitcode module that does
8167         // not have its own string table. A bitcode file may have multiple
8168         // string tables if it was created by binary concatenation, for example
8169         // with "llvm-cat -b".
8170         for (BitcodeModule &I : llvm::reverse(F.Mods)) {
8171           if (!I.Strtab.empty())
8172             break;
8173           I.Strtab = *Strtab;
8174         }
8175         // Similarly, the string table is used by every preceding symbol table;
8176         // normally there will be just one unless the bitcode file was created
8177         // by binary concatenation.
8178         if (!F.Symtab.empty() && F.StrtabForSymtab.empty())
8179           F.StrtabForSymtab = *Strtab;
8180         continue;
8181       }
8182 
8183       if (Entry.ID == bitc::SYMTAB_BLOCK_ID) {
8184         Expected<StringRef> SymtabOrErr =
8185             readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB);
8186         if (!SymtabOrErr)
8187           return SymtabOrErr.takeError();
8188 
8189         // We can expect the bitcode file to have multiple symbol tables if it
8190         // was created by binary concatenation. In that case we silently
8191         // ignore any subsequent symbol tables, which is fine because this is a
8192         // low level function. The client is expected to notice that the number
8193         // of modules in the symbol table does not match the number of modules
8194         // in the input file and regenerate the symbol table.
8195         if (F.Symtab.empty())
8196           F.Symtab = *SymtabOrErr;
8197         continue;
8198       }
8199 
8200       if (Error Err = Stream.SkipBlock())
8201         return std::move(Err);
8202       continue;
8203     }
8204     case BitstreamEntry::Record:
8205       if (Error E = Stream.skipRecord(Entry.ID).takeError())
8206         return std::move(E);
8207       continue;
8208     }
8209   }
8210 }
8211 
8212 /// Get a lazy one-at-time loading module from bitcode.
8213 ///
8214 /// This isn't always used in a lazy context.  In particular, it's also used by
8215 /// \a parseModule().  If this is truly lazy, then we need to eagerly pull
8216 /// in forward-referenced functions from block address references.
8217 ///
8218 /// \param[in] MaterializeAll Set to \c true if we should materialize
8219 /// everything.
8220 Expected<std::unique_ptr<Module>>
8221 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll,
8222                              bool ShouldLazyLoadMetadata, bool IsImporting,
8223                              ParserCallbacks Callbacks) {
8224   BitstreamCursor Stream(Buffer);
8225 
8226   std::string ProducerIdentification;
8227   if (IdentificationBit != -1ull) {
8228     if (Error JumpFailed = Stream.JumpToBit(IdentificationBit))
8229       return std::move(JumpFailed);
8230     if (Error E =
8231             readIdentificationBlock(Stream).moveInto(ProducerIdentification))
8232       return std::move(E);
8233   }
8234 
8235   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
8236     return std::move(JumpFailed);
8237   auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification,
8238                               Context);
8239 
8240   std::unique_ptr<Module> M =
8241       std::make_unique<Module>(ModuleIdentifier, Context);
8242   M->setMaterializer(R);
8243 
8244   // Delay parsing Metadata if ShouldLazyLoadMetadata is true.
8245   if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata,
8246                                       IsImporting, Callbacks))
8247     return std::move(Err);
8248 
8249   if (MaterializeAll) {
8250     // Read in the entire module, and destroy the BitcodeReader.
8251     if (Error Err = M->materializeAll())
8252       return std::move(Err);
8253   } else {
8254     // Resolve forward references from blockaddresses.
8255     if (Error Err = R->materializeForwardReferencedFunctions())
8256       return std::move(Err);
8257   }
8258 
8259   return std::move(M);
8260 }
8261 
8262 Expected<std::unique_ptr<Module>>
8263 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata,
8264                              bool IsImporting, ParserCallbacks Callbacks) {
8265   return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting,
8266                        Callbacks);
8267 }
8268 
8269 // Parse the specified bitcode buffer and merge the index into CombinedIndex.
8270 // We don't use ModuleIdentifier here because the client may need to control the
8271 // module path used in the combined summary (e.g. when reading summaries for
8272 // regular LTO modules).
8273 Error BitcodeModule::readSummary(
8274     ModuleSummaryIndex &CombinedIndex, StringRef ModulePath,
8275     std::function<bool(GlobalValue::GUID)> IsPrevailing) {
8276   BitstreamCursor Stream(Buffer);
8277   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
8278     return JumpFailed;
8279 
8280   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex,
8281                                     ModulePath, IsPrevailing);
8282   return R.parseModule();
8283 }
8284 
8285 // Parse the specified bitcode buffer, returning the function info index.
8286 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() {
8287   BitstreamCursor Stream(Buffer);
8288   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
8289     return std::move(JumpFailed);
8290 
8291   auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false);
8292   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index,
8293                                     ModuleIdentifier, 0);
8294 
8295   if (Error Err = R.parseModule())
8296     return std::move(Err);
8297 
8298   return std::move(Index);
8299 }
8300 
8301 static Expected<std::pair<bool, bool>>
8302 getEnableSplitLTOUnitAndUnifiedFlag(BitstreamCursor &Stream,
8303                                                  unsigned ID,
8304                                                  BitcodeLTOInfo &LTOInfo) {
8305   if (Error Err = Stream.EnterSubBlock(ID))
8306     return std::move(Err);
8307   SmallVector<uint64_t, 64> Record;
8308 
8309   while (true) {
8310     BitstreamEntry Entry;
8311     std::pair<bool, bool> Result = {false,false};
8312     if (Error E = Stream.advanceSkippingSubblocks().moveInto(Entry))
8313       return std::move(E);
8314 
8315     switch (Entry.Kind) {
8316     case BitstreamEntry::SubBlock: // Handled for us already.
8317     case BitstreamEntry::Error:
8318       return error("Malformed block");
8319     case BitstreamEntry::EndBlock: {
8320       // If no flags record found, set both flags to false.
8321       return Result;
8322     }
8323     case BitstreamEntry::Record:
8324       // The interesting case.
8325       break;
8326     }
8327 
8328     // Look for the FS_FLAGS record.
8329     Record.clear();
8330     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
8331     if (!MaybeBitCode)
8332       return MaybeBitCode.takeError();
8333     switch (MaybeBitCode.get()) {
8334     default: // Default behavior: ignore.
8335       break;
8336     case bitc::FS_FLAGS: { // [flags]
8337       uint64_t Flags = Record[0];
8338       // Scan flags.
8339       assert(Flags <= 0x2ff && "Unexpected bits in flag");
8340 
8341       bool EnableSplitLTOUnit = Flags & 0x8;
8342       bool UnifiedLTO = Flags & 0x200;
8343       Result = {EnableSplitLTOUnit, UnifiedLTO};
8344 
8345       return Result;
8346     }
8347     }
8348   }
8349   llvm_unreachable("Exit infinite loop");
8350 }
8351 
8352 // Check if the given bitcode buffer contains a global value summary block.
8353 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() {
8354   BitstreamCursor Stream(Buffer);
8355   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
8356     return std::move(JumpFailed);
8357 
8358   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
8359     return std::move(Err);
8360 
8361   while (true) {
8362     llvm::BitstreamEntry Entry;
8363     if (Error E = Stream.advance().moveInto(Entry))
8364       return std::move(E);
8365 
8366     switch (Entry.Kind) {
8367     case BitstreamEntry::Error:
8368       return error("Malformed block");
8369     case BitstreamEntry::EndBlock:
8370       return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false,
8371                             /*EnableSplitLTOUnit=*/false, /*UnifiedLTO=*/false};
8372 
8373     case BitstreamEntry::SubBlock:
8374       if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) {
8375         BitcodeLTOInfo LTOInfo;
8376         Expected<std::pair<bool, bool>> Flags =
8377             getEnableSplitLTOUnitAndUnifiedFlag(Stream, Entry.ID, LTOInfo);
8378         if (!Flags)
8379           return Flags.takeError();
8380         std::tie(LTOInfo.EnableSplitLTOUnit, LTOInfo.UnifiedLTO) = Flags.get();
8381         LTOInfo.IsThinLTO = true;
8382         LTOInfo.HasSummary = true;
8383         return LTOInfo;
8384       }
8385 
8386       if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) {
8387         BitcodeLTOInfo LTOInfo;
8388         Expected<std::pair<bool, bool>> Flags =
8389             getEnableSplitLTOUnitAndUnifiedFlag(Stream, Entry.ID, LTOInfo);
8390         if (!Flags)
8391           return Flags.takeError();
8392         std::tie(LTOInfo.EnableSplitLTOUnit, LTOInfo.UnifiedLTO) = Flags.get();
8393         LTOInfo.IsThinLTO = false;
8394         LTOInfo.HasSummary = true;
8395         return LTOInfo;
8396       }
8397 
8398       // Ignore other sub-blocks.
8399       if (Error Err = Stream.SkipBlock())
8400         return std::move(Err);
8401       continue;
8402 
8403     case BitstreamEntry::Record:
8404       if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID))
8405         continue;
8406       else
8407         return StreamFailed.takeError();
8408     }
8409   }
8410 }
8411 
8412 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) {
8413   Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer);
8414   if (!MsOrErr)
8415     return MsOrErr.takeError();
8416 
8417   if (MsOrErr->size() != 1)
8418     return error("Expected a single module");
8419 
8420   return (*MsOrErr)[0];
8421 }
8422 
8423 Expected<std::unique_ptr<Module>>
8424 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context,
8425                            bool ShouldLazyLoadMetadata, bool IsImporting,
8426                            ParserCallbacks Callbacks) {
8427   Expected<BitcodeModule> BM = getSingleModule(Buffer);
8428   if (!BM)
8429     return BM.takeError();
8430 
8431   return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting,
8432                            Callbacks);
8433 }
8434 
8435 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule(
8436     std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context,
8437     bool ShouldLazyLoadMetadata, bool IsImporting, ParserCallbacks Callbacks) {
8438   auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata,
8439                                      IsImporting, Callbacks);
8440   if (MOrErr)
8441     (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer));
8442   return MOrErr;
8443 }
8444 
8445 Expected<std::unique_ptr<Module>>
8446 BitcodeModule::parseModule(LLVMContext &Context, ParserCallbacks Callbacks) {
8447   return getModuleImpl(Context, true, false, false, Callbacks);
8448   // TODO: Restore the use-lists to the in-memory state when the bitcode was
8449   // written.  We must defer until the Module has been fully materialized.
8450 }
8451 
8452 Expected<std::unique_ptr<Module>>
8453 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context,
8454                        ParserCallbacks Callbacks) {
8455   Expected<BitcodeModule> BM = getSingleModule(Buffer);
8456   if (!BM)
8457     return BM.takeError();
8458 
8459   return BM->parseModule(Context, Callbacks);
8460 }
8461 
8462 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) {
8463   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
8464   if (!StreamOrErr)
8465     return StreamOrErr.takeError();
8466 
8467   return readTriple(*StreamOrErr);
8468 }
8469 
8470 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) {
8471   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
8472   if (!StreamOrErr)
8473     return StreamOrErr.takeError();
8474 
8475   return hasObjCCategory(*StreamOrErr);
8476 }
8477 
8478 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) {
8479   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
8480   if (!StreamOrErr)
8481     return StreamOrErr.takeError();
8482 
8483   return readIdentificationCode(*StreamOrErr);
8484 }
8485 
8486 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer,
8487                                    ModuleSummaryIndex &CombinedIndex) {
8488   Expected<BitcodeModule> BM = getSingleModule(Buffer);
8489   if (!BM)
8490     return BM.takeError();
8491 
8492   return BM->readSummary(CombinedIndex, BM->getModuleIdentifier());
8493 }
8494 
8495 Expected<std::unique_ptr<ModuleSummaryIndex>>
8496 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) {
8497   Expected<BitcodeModule> BM = getSingleModule(Buffer);
8498   if (!BM)
8499     return BM.takeError();
8500 
8501   return BM->getSummary();
8502 }
8503 
8504 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) {
8505   Expected<BitcodeModule> BM = getSingleModule(Buffer);
8506   if (!BM)
8507     return BM.takeError();
8508 
8509   return BM->getLTOInfo();
8510 }
8511 
8512 Expected<std::unique_ptr<ModuleSummaryIndex>>
8513 llvm::getModuleSummaryIndexForFile(StringRef Path,
8514                                    bool IgnoreEmptyThinLTOIndexFile) {
8515   ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr =
8516       MemoryBuffer::getFileOrSTDIN(Path);
8517   if (!FileOrErr)
8518     return errorCodeToError(FileOrErr.getError());
8519   if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize())
8520     return nullptr;
8521   return getModuleSummaryIndex(**FileOrErr);
8522 }
8523