1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file was developed by Chris Lattner and is distributed under 6 // the University of Illinois Open Source License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This header defines the BitcodeReader class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/ReaderWriter.h" 15 #include "BitcodeReader.h" 16 #include "llvm/Constants.h" 17 #include "llvm/DerivedTypes.h" 18 #include "llvm/InlineAsm.h" 19 #include "llvm/Instructions.h" 20 #include "llvm/Module.h" 21 #include "llvm/ParameterAttributes.h" 22 #include "llvm/AutoUpgrade.h" 23 #include "llvm/ADT/SmallString.h" 24 #include "llvm/Support/MathExtras.h" 25 #include "llvm/Support/MemoryBuffer.h" 26 using namespace llvm; 27 28 void BitcodeReader::FreeState() { 29 delete Buffer; 30 Buffer = 0; 31 std::vector<PATypeHolder>().swap(TypeList); 32 ValueList.clear(); 33 std::vector<const ParamAttrsList*>().swap(ParamAttrs); 34 std::vector<BasicBlock*>().swap(FunctionBBs); 35 std::vector<Function*>().swap(FunctionsWithBodies); 36 DeferredFunctionInfo.clear(); 37 } 38 39 //===----------------------------------------------------------------------===// 40 // Helper functions to implement forward reference resolution, etc. 41 //===----------------------------------------------------------------------===// 42 43 /// ConvertToString - Convert a string from a record into an std::string, return 44 /// true on failure. 45 template<typename StrTy> 46 static bool ConvertToString(SmallVector<uint64_t, 64> &Record, unsigned Idx, 47 StrTy &Result) { 48 if (Idx > Record.size()) 49 return true; 50 51 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 52 Result += (char)Record[i]; 53 return false; 54 } 55 56 static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) { 57 switch (Val) { 58 default: // Map unknown/new linkages to external 59 case 0: return GlobalValue::ExternalLinkage; 60 case 1: return GlobalValue::WeakLinkage; 61 case 2: return GlobalValue::AppendingLinkage; 62 case 3: return GlobalValue::InternalLinkage; 63 case 4: return GlobalValue::LinkOnceLinkage; 64 case 5: return GlobalValue::DLLImportLinkage; 65 case 6: return GlobalValue::DLLExportLinkage; 66 case 7: return GlobalValue::ExternalWeakLinkage; 67 } 68 } 69 70 static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) { 71 switch (Val) { 72 default: // Map unknown visibilities to default. 73 case 0: return GlobalValue::DefaultVisibility; 74 case 1: return GlobalValue::HiddenVisibility; 75 case 2: return GlobalValue::ProtectedVisibility; 76 } 77 } 78 79 static int GetDecodedCastOpcode(unsigned Val) { 80 switch (Val) { 81 default: return -1; 82 case bitc::CAST_TRUNC : return Instruction::Trunc; 83 case bitc::CAST_ZEXT : return Instruction::ZExt; 84 case bitc::CAST_SEXT : return Instruction::SExt; 85 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 86 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 87 case bitc::CAST_UITOFP : return Instruction::UIToFP; 88 case bitc::CAST_SITOFP : return Instruction::SIToFP; 89 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 90 case bitc::CAST_FPEXT : return Instruction::FPExt; 91 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 92 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 93 case bitc::CAST_BITCAST : return Instruction::BitCast; 94 } 95 } 96 static int GetDecodedBinaryOpcode(unsigned Val, const Type *Ty) { 97 switch (Val) { 98 default: return -1; 99 case bitc::BINOP_ADD: return Instruction::Add; 100 case bitc::BINOP_SUB: return Instruction::Sub; 101 case bitc::BINOP_MUL: return Instruction::Mul; 102 case bitc::BINOP_UDIV: return Instruction::UDiv; 103 case bitc::BINOP_SDIV: 104 return Ty->isFPOrFPVector() ? Instruction::FDiv : Instruction::SDiv; 105 case bitc::BINOP_UREM: return Instruction::URem; 106 case bitc::BINOP_SREM: 107 return Ty->isFPOrFPVector() ? Instruction::FRem : Instruction::SRem; 108 case bitc::BINOP_SHL: return Instruction::Shl; 109 case bitc::BINOP_LSHR: return Instruction::LShr; 110 case bitc::BINOP_ASHR: return Instruction::AShr; 111 case bitc::BINOP_AND: return Instruction::And; 112 case bitc::BINOP_OR: return Instruction::Or; 113 case bitc::BINOP_XOR: return Instruction::Xor; 114 } 115 } 116 117 118 namespace { 119 /// @brief A class for maintaining the slot number definition 120 /// as a placeholder for the actual definition for forward constants defs. 121 class ConstantPlaceHolder : public ConstantExpr { 122 ConstantPlaceHolder(); // DO NOT IMPLEMENT 123 void operator=(const ConstantPlaceHolder &); // DO NOT IMPLEMENT 124 public: 125 Use Op; 126 explicit ConstantPlaceHolder(const Type *Ty) 127 : ConstantExpr(Ty, Instruction::UserOp1, &Op, 1), 128 Op(UndefValue::get(Type::Int32Ty), this) { 129 } 130 }; 131 } 132 133 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 134 const Type *Ty) { 135 if (Idx >= size()) { 136 // Insert a bunch of null values. 137 Uses.resize(Idx+1); 138 OperandList = &Uses[0]; 139 NumOperands = Idx+1; 140 } 141 142 if (Value *V = Uses[Idx]) { 143 assert(Ty == V->getType() && "Type mismatch in constant table!"); 144 return cast<Constant>(V); 145 } 146 147 // Create and return a placeholder, which will later be RAUW'd. 148 Constant *C = new ConstantPlaceHolder(Ty); 149 Uses[Idx].init(C, this); 150 return C; 151 } 152 153 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, const Type *Ty) { 154 if (Idx >= size()) { 155 // Insert a bunch of null values. 156 Uses.resize(Idx+1); 157 OperandList = &Uses[0]; 158 NumOperands = Idx+1; 159 } 160 161 if (Value *V = Uses[Idx]) { 162 assert((Ty == 0 || Ty == V->getType()) && "Type mismatch in value table!"); 163 return V; 164 } 165 166 // No type specified, must be invalid reference. 167 if (Ty == 0) return 0; 168 169 // Create and return a placeholder, which will later be RAUW'd. 170 Value *V = new Argument(Ty); 171 Uses[Idx].init(V, this); 172 return V; 173 } 174 175 176 const Type *BitcodeReader::getTypeByID(unsigned ID, bool isTypeTable) { 177 // If the TypeID is in range, return it. 178 if (ID < TypeList.size()) 179 return TypeList[ID].get(); 180 if (!isTypeTable) return 0; 181 182 // The type table allows forward references. Push as many Opaque types as 183 // needed to get up to ID. 184 while (TypeList.size() <= ID) 185 TypeList.push_back(OpaqueType::get()); 186 return TypeList.back().get(); 187 } 188 189 //===----------------------------------------------------------------------===// 190 // Functions for parsing blocks from the bitcode file 191 //===----------------------------------------------------------------------===// 192 193 bool BitcodeReader::ParseParamAttrBlock() { 194 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 195 return Error("Malformed block record"); 196 197 if (!ParamAttrs.empty()) 198 return Error("Multiple PARAMATTR blocks found!"); 199 200 SmallVector<uint64_t, 64> Record; 201 202 ParamAttrsVector Attrs; 203 204 // Read all the records. 205 while (1) { 206 unsigned Code = Stream.ReadCode(); 207 if (Code == bitc::END_BLOCK) { 208 if (Stream.ReadBlockEnd()) 209 return Error("Error at end of PARAMATTR block"); 210 return false; 211 } 212 213 if (Code == bitc::ENTER_SUBBLOCK) { 214 // No known subblocks, always skip them. 215 Stream.ReadSubBlockID(); 216 if (Stream.SkipBlock()) 217 return Error("Malformed block record"); 218 continue; 219 } 220 221 if (Code == bitc::DEFINE_ABBREV) { 222 Stream.ReadAbbrevRecord(); 223 continue; 224 } 225 226 // Read a record. 227 Record.clear(); 228 switch (Stream.ReadRecord(Code, Record)) { 229 default: // Default behavior: ignore. 230 break; 231 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [paramidx0, attr0, ...] 232 if (Record.size() & 1) 233 return Error("Invalid ENTRY record"); 234 235 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 236 if (Record[i+1] != ParamAttr::None) 237 Attrs.push_back(ParamAttrsWithIndex::get(Record[i], Record[i+1])); 238 } 239 ParamAttrs.push_back(Attrs.empty() ? NULL : ParamAttrsList::get(Attrs)); 240 Attrs.clear(); 241 break; 242 } 243 } 244 } 245 } 246 247 248 bool BitcodeReader::ParseTypeTable() { 249 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID)) 250 return Error("Malformed block record"); 251 252 if (!TypeList.empty()) 253 return Error("Multiple TYPE_BLOCKs found!"); 254 255 SmallVector<uint64_t, 64> Record; 256 unsigned NumRecords = 0; 257 258 // Read all the records for this type table. 259 while (1) { 260 unsigned Code = Stream.ReadCode(); 261 if (Code == bitc::END_BLOCK) { 262 if (NumRecords != TypeList.size()) 263 return Error("Invalid type forward reference in TYPE_BLOCK"); 264 if (Stream.ReadBlockEnd()) 265 return Error("Error at end of type table block"); 266 return false; 267 } 268 269 if (Code == bitc::ENTER_SUBBLOCK) { 270 // No known subblocks, always skip them. 271 Stream.ReadSubBlockID(); 272 if (Stream.SkipBlock()) 273 return Error("Malformed block record"); 274 continue; 275 } 276 277 if (Code == bitc::DEFINE_ABBREV) { 278 Stream.ReadAbbrevRecord(); 279 continue; 280 } 281 282 // Read a record. 283 Record.clear(); 284 const Type *ResultTy = 0; 285 switch (Stream.ReadRecord(Code, Record)) { 286 default: // Default behavior: unknown type. 287 ResultTy = 0; 288 break; 289 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 290 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 291 // type list. This allows us to reserve space. 292 if (Record.size() < 1) 293 return Error("Invalid TYPE_CODE_NUMENTRY record"); 294 TypeList.reserve(Record[0]); 295 continue; 296 case bitc::TYPE_CODE_VOID: // VOID 297 ResultTy = Type::VoidTy; 298 break; 299 case bitc::TYPE_CODE_FLOAT: // FLOAT 300 ResultTy = Type::FloatTy; 301 break; 302 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 303 ResultTy = Type::DoubleTy; 304 break; 305 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 306 ResultTy = Type::X86_FP80Ty; 307 break; 308 case bitc::TYPE_CODE_FP128: // FP128 309 ResultTy = Type::FP128Ty; 310 break; 311 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 312 ResultTy = Type::PPC_FP128Ty; 313 break; 314 case bitc::TYPE_CODE_LABEL: // LABEL 315 ResultTy = Type::LabelTy; 316 break; 317 case bitc::TYPE_CODE_OPAQUE: // OPAQUE 318 ResultTy = 0; 319 break; 320 case bitc::TYPE_CODE_INTEGER: // INTEGER: [width] 321 if (Record.size() < 1) 322 return Error("Invalid Integer type record"); 323 324 ResultTy = IntegerType::get(Record[0]); 325 break; 326 case bitc::TYPE_CODE_POINTER: // POINTER: [pointee type] 327 if (Record.size() < 1) 328 return Error("Invalid POINTER type record"); 329 ResultTy = PointerType::get(getTypeByID(Record[0], true)); 330 break; 331 case bitc::TYPE_CODE_FUNCTION: { 332 // FIXME: attrid is dead, remove it in LLVM 3.0 333 // FUNCTION: [vararg, attrid, retty, paramty x N] 334 if (Record.size() < 3) 335 return Error("Invalid FUNCTION type record"); 336 std::vector<const Type*> ArgTys; 337 for (unsigned i = 3, e = Record.size(); i != e; ++i) 338 ArgTys.push_back(getTypeByID(Record[i], true)); 339 340 ResultTy = FunctionType::get(getTypeByID(Record[2], true), ArgTys, 341 Record[0]); 342 break; 343 } 344 case bitc::TYPE_CODE_STRUCT: { // STRUCT: [ispacked, eltty x N] 345 if (Record.size() < 1) 346 return Error("Invalid STRUCT type record"); 347 std::vector<const Type*> EltTys; 348 for (unsigned i = 1, e = Record.size(); i != e; ++i) 349 EltTys.push_back(getTypeByID(Record[i], true)); 350 ResultTy = StructType::get(EltTys, Record[0]); 351 break; 352 } 353 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 354 if (Record.size() < 2) 355 return Error("Invalid ARRAY type record"); 356 ResultTy = ArrayType::get(getTypeByID(Record[1], true), Record[0]); 357 break; 358 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 359 if (Record.size() < 2) 360 return Error("Invalid VECTOR type record"); 361 ResultTy = VectorType::get(getTypeByID(Record[1], true), Record[0]); 362 break; 363 } 364 365 if (NumRecords == TypeList.size()) { 366 // If this is a new type slot, just append it. 367 TypeList.push_back(ResultTy ? ResultTy : OpaqueType::get()); 368 ++NumRecords; 369 } else if (ResultTy == 0) { 370 // Otherwise, this was forward referenced, so an opaque type was created, 371 // but the result type is actually just an opaque. Leave the one we 372 // created previously. 373 ++NumRecords; 374 } else { 375 // Otherwise, this was forward referenced, so an opaque type was created. 376 // Resolve the opaque type to the real type now. 377 assert(NumRecords < TypeList.size() && "Typelist imbalance"); 378 const OpaqueType *OldTy = cast<OpaqueType>(TypeList[NumRecords++].get()); 379 380 // Don't directly push the new type on the Tab. Instead we want to replace 381 // the opaque type we previously inserted with the new concrete value. The 382 // refinement from the abstract (opaque) type to the new type causes all 383 // uses of the abstract type to use the concrete type (NewTy). This will 384 // also cause the opaque type to be deleted. 385 const_cast<OpaqueType*>(OldTy)->refineAbstractTypeTo(ResultTy); 386 387 // This should have replaced the old opaque type with the new type in the 388 // value table... or with a preexisting type that was already in the 389 // system. Let's just make sure it did. 390 assert(TypeList[NumRecords-1].get() != OldTy && 391 "refineAbstractType didn't work!"); 392 } 393 } 394 } 395 396 397 bool BitcodeReader::ParseTypeSymbolTable() { 398 if (Stream.EnterSubBlock(bitc::TYPE_SYMTAB_BLOCK_ID)) 399 return Error("Malformed block record"); 400 401 SmallVector<uint64_t, 64> Record; 402 403 // Read all the records for this type table. 404 std::string TypeName; 405 while (1) { 406 unsigned Code = Stream.ReadCode(); 407 if (Code == bitc::END_BLOCK) { 408 if (Stream.ReadBlockEnd()) 409 return Error("Error at end of type symbol table block"); 410 return false; 411 } 412 413 if (Code == bitc::ENTER_SUBBLOCK) { 414 // No known subblocks, always skip them. 415 Stream.ReadSubBlockID(); 416 if (Stream.SkipBlock()) 417 return Error("Malformed block record"); 418 continue; 419 } 420 421 if (Code == bitc::DEFINE_ABBREV) { 422 Stream.ReadAbbrevRecord(); 423 continue; 424 } 425 426 // Read a record. 427 Record.clear(); 428 switch (Stream.ReadRecord(Code, Record)) { 429 default: // Default behavior: unknown type. 430 break; 431 case bitc::TST_CODE_ENTRY: // TST_ENTRY: [typeid, namechar x N] 432 if (ConvertToString(Record, 1, TypeName)) 433 return Error("Invalid TST_ENTRY record"); 434 unsigned TypeID = Record[0]; 435 if (TypeID >= TypeList.size()) 436 return Error("Invalid Type ID in TST_ENTRY record"); 437 438 TheModule->addTypeName(TypeName, TypeList[TypeID].get()); 439 TypeName.clear(); 440 break; 441 } 442 } 443 } 444 445 bool BitcodeReader::ParseValueSymbolTable() { 446 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 447 return Error("Malformed block record"); 448 449 SmallVector<uint64_t, 64> Record; 450 451 // Read all the records for this value table. 452 SmallString<128> ValueName; 453 while (1) { 454 unsigned Code = Stream.ReadCode(); 455 if (Code == bitc::END_BLOCK) { 456 if (Stream.ReadBlockEnd()) 457 return Error("Error at end of value symbol table block"); 458 return false; 459 } 460 if (Code == bitc::ENTER_SUBBLOCK) { 461 // No known subblocks, always skip them. 462 Stream.ReadSubBlockID(); 463 if (Stream.SkipBlock()) 464 return Error("Malformed block record"); 465 continue; 466 } 467 468 if (Code == bitc::DEFINE_ABBREV) { 469 Stream.ReadAbbrevRecord(); 470 continue; 471 } 472 473 // Read a record. 474 Record.clear(); 475 switch (Stream.ReadRecord(Code, Record)) { 476 default: // Default behavior: unknown type. 477 break; 478 case bitc::VST_CODE_ENTRY: { // VST_ENTRY: [valueid, namechar x N] 479 if (ConvertToString(Record, 1, ValueName)) 480 return Error("Invalid TST_ENTRY record"); 481 unsigned ValueID = Record[0]; 482 if (ValueID >= ValueList.size()) 483 return Error("Invalid Value ID in VST_ENTRY record"); 484 Value *V = ValueList[ValueID]; 485 486 V->setName(&ValueName[0], ValueName.size()); 487 ValueName.clear(); 488 break; 489 } 490 case bitc::VST_CODE_BBENTRY: { 491 if (ConvertToString(Record, 1, ValueName)) 492 return Error("Invalid VST_BBENTRY record"); 493 BasicBlock *BB = getBasicBlock(Record[0]); 494 if (BB == 0) 495 return Error("Invalid BB ID in VST_BBENTRY record"); 496 497 BB->setName(&ValueName[0], ValueName.size()); 498 ValueName.clear(); 499 break; 500 } 501 } 502 } 503 } 504 505 /// DecodeSignRotatedValue - Decode a signed value stored with the sign bit in 506 /// the LSB for dense VBR encoding. 507 static uint64_t DecodeSignRotatedValue(uint64_t V) { 508 if ((V & 1) == 0) 509 return V >> 1; 510 if (V != 1) 511 return -(V >> 1); 512 // There is no such thing as -0 with integers. "-0" really means MININT. 513 return 1ULL << 63; 514 } 515 516 /// ResolveGlobalAndAliasInits - Resolve all of the initializers for global 517 /// values and aliases that we can. 518 bool BitcodeReader::ResolveGlobalAndAliasInits() { 519 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 520 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist; 521 522 GlobalInitWorklist.swap(GlobalInits); 523 AliasInitWorklist.swap(AliasInits); 524 525 while (!GlobalInitWorklist.empty()) { 526 unsigned ValID = GlobalInitWorklist.back().second; 527 if (ValID >= ValueList.size()) { 528 // Not ready to resolve this yet, it requires something later in the file. 529 GlobalInits.push_back(GlobalInitWorklist.back()); 530 } else { 531 if (Constant *C = dyn_cast<Constant>(ValueList[ValID])) 532 GlobalInitWorklist.back().first->setInitializer(C); 533 else 534 return Error("Global variable initializer is not a constant!"); 535 } 536 GlobalInitWorklist.pop_back(); 537 } 538 539 while (!AliasInitWorklist.empty()) { 540 unsigned ValID = AliasInitWorklist.back().second; 541 if (ValID >= ValueList.size()) { 542 AliasInits.push_back(AliasInitWorklist.back()); 543 } else { 544 if (Constant *C = dyn_cast<Constant>(ValueList[ValID])) 545 AliasInitWorklist.back().first->setAliasee(C); 546 else 547 return Error("Alias initializer is not a constant!"); 548 } 549 AliasInitWorklist.pop_back(); 550 } 551 return false; 552 } 553 554 555 bool BitcodeReader::ParseConstants() { 556 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 557 return Error("Malformed block record"); 558 559 SmallVector<uint64_t, 64> Record; 560 561 // Read all the records for this value table. 562 const Type *CurTy = Type::Int32Ty; 563 unsigned NextCstNo = ValueList.size(); 564 while (1) { 565 unsigned Code = Stream.ReadCode(); 566 if (Code == bitc::END_BLOCK) { 567 if (NextCstNo != ValueList.size()) 568 return Error("Invalid constant reference!"); 569 570 if (Stream.ReadBlockEnd()) 571 return Error("Error at end of constants block"); 572 return false; 573 } 574 575 if (Code == bitc::ENTER_SUBBLOCK) { 576 // No known subblocks, always skip them. 577 Stream.ReadSubBlockID(); 578 if (Stream.SkipBlock()) 579 return Error("Malformed block record"); 580 continue; 581 } 582 583 if (Code == bitc::DEFINE_ABBREV) { 584 Stream.ReadAbbrevRecord(); 585 continue; 586 } 587 588 // Read a record. 589 Record.clear(); 590 Value *V = 0; 591 switch (Stream.ReadRecord(Code, Record)) { 592 default: // Default behavior: unknown constant 593 case bitc::CST_CODE_UNDEF: // UNDEF 594 V = UndefValue::get(CurTy); 595 break; 596 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 597 if (Record.empty()) 598 return Error("Malformed CST_SETTYPE record"); 599 if (Record[0] >= TypeList.size()) 600 return Error("Invalid Type ID in CST_SETTYPE record"); 601 CurTy = TypeList[Record[0]]; 602 continue; // Skip the ValueList manipulation. 603 case bitc::CST_CODE_NULL: // NULL 604 V = Constant::getNullValue(CurTy); 605 break; 606 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 607 if (!isa<IntegerType>(CurTy) || Record.empty()) 608 return Error("Invalid CST_INTEGER record"); 609 V = ConstantInt::get(CurTy, DecodeSignRotatedValue(Record[0])); 610 break; 611 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 612 if (!isa<IntegerType>(CurTy) || Record.empty()) 613 return Error("Invalid WIDE_INTEGER record"); 614 615 unsigned NumWords = Record.size(); 616 SmallVector<uint64_t, 8> Words; 617 Words.resize(NumWords); 618 for (unsigned i = 0; i != NumWords; ++i) 619 Words[i] = DecodeSignRotatedValue(Record[i]); 620 V = ConstantInt::get(APInt(cast<IntegerType>(CurTy)->getBitWidth(), 621 NumWords, &Words[0])); 622 break; 623 } 624 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 625 if (Record.empty()) 626 return Error("Invalid FLOAT record"); 627 if (CurTy == Type::FloatTy) 628 V = ConstantFP::get(CurTy, APFloat(APInt(32, (uint32_t)Record[0]))); 629 else if (CurTy == Type::DoubleTy) 630 V = ConstantFP::get(CurTy, APFloat(APInt(64, Record[0]))); 631 else if (CurTy == Type::X86_FP80Ty) 632 V = ConstantFP::get(CurTy, APFloat(APInt(80, 2, &Record[0]))); 633 else if (CurTy == Type::FP128Ty) 634 V = ConstantFP::get(CurTy, APFloat(APInt(128, 2, &Record[0]), true)); 635 else if (CurTy == Type::PPC_FP128Ty) 636 V = ConstantFP::get(CurTy, APFloat(APInt(128, 2, &Record[0]))); 637 else 638 V = UndefValue::get(CurTy); 639 break; 640 } 641 642 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 643 if (Record.empty()) 644 return Error("Invalid CST_AGGREGATE record"); 645 646 unsigned Size = Record.size(); 647 std::vector<Constant*> Elts; 648 649 if (const StructType *STy = dyn_cast<StructType>(CurTy)) { 650 for (unsigned i = 0; i != Size; ++i) 651 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 652 STy->getElementType(i))); 653 V = ConstantStruct::get(STy, Elts); 654 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 655 const Type *EltTy = ATy->getElementType(); 656 for (unsigned i = 0; i != Size; ++i) 657 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 658 V = ConstantArray::get(ATy, Elts); 659 } else if (const VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 660 const Type *EltTy = VTy->getElementType(); 661 for (unsigned i = 0; i != Size; ++i) 662 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 663 V = ConstantVector::get(Elts); 664 } else { 665 V = UndefValue::get(CurTy); 666 } 667 break; 668 } 669 case bitc::CST_CODE_STRING: { // STRING: [values] 670 if (Record.empty()) 671 return Error("Invalid CST_AGGREGATE record"); 672 673 const ArrayType *ATy = cast<ArrayType>(CurTy); 674 const Type *EltTy = ATy->getElementType(); 675 676 unsigned Size = Record.size(); 677 std::vector<Constant*> Elts; 678 for (unsigned i = 0; i != Size; ++i) 679 Elts.push_back(ConstantInt::get(EltTy, Record[i])); 680 V = ConstantArray::get(ATy, Elts); 681 break; 682 } 683 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 684 if (Record.empty()) 685 return Error("Invalid CST_AGGREGATE record"); 686 687 const ArrayType *ATy = cast<ArrayType>(CurTy); 688 const Type *EltTy = ATy->getElementType(); 689 690 unsigned Size = Record.size(); 691 std::vector<Constant*> Elts; 692 for (unsigned i = 0; i != Size; ++i) 693 Elts.push_back(ConstantInt::get(EltTy, Record[i])); 694 Elts.push_back(Constant::getNullValue(EltTy)); 695 V = ConstantArray::get(ATy, Elts); 696 break; 697 } 698 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 699 if (Record.size() < 3) return Error("Invalid CE_BINOP record"); 700 int Opc = GetDecodedBinaryOpcode(Record[0], CurTy); 701 if (Opc < 0) { 702 V = UndefValue::get(CurTy); // Unknown binop. 703 } else { 704 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 705 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 706 V = ConstantExpr::get(Opc, LHS, RHS); 707 } 708 break; 709 } 710 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 711 if (Record.size() < 3) return Error("Invalid CE_CAST record"); 712 int Opc = GetDecodedCastOpcode(Record[0]); 713 if (Opc < 0) { 714 V = UndefValue::get(CurTy); // Unknown cast. 715 } else { 716 const Type *OpTy = getTypeByID(Record[1]); 717 if (!OpTy) return Error("Invalid CE_CAST record"); 718 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 719 V = ConstantExpr::getCast(Opc, Op, CurTy); 720 } 721 break; 722 } 723 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 724 if (Record.size() & 1) return Error("Invalid CE_GEP record"); 725 SmallVector<Constant*, 16> Elts; 726 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 727 const Type *ElTy = getTypeByID(Record[i]); 728 if (!ElTy) return Error("Invalid CE_GEP record"); 729 Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy)); 730 } 731 V = ConstantExpr::getGetElementPtr(Elts[0], &Elts[1], Elts.size()-1); 732 break; 733 } 734 case bitc::CST_CODE_CE_SELECT: // CE_SELECT: [opval#, opval#, opval#] 735 if (Record.size() < 3) return Error("Invalid CE_SELECT record"); 736 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 737 Type::Int1Ty), 738 ValueList.getConstantFwdRef(Record[1],CurTy), 739 ValueList.getConstantFwdRef(Record[2],CurTy)); 740 break; 741 case bitc::CST_CODE_CE_EXTRACTELT: { // CE_EXTRACTELT: [opty, opval, opval] 742 if (Record.size() < 3) return Error("Invalid CE_EXTRACTELT record"); 743 const VectorType *OpTy = 744 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 745 if (OpTy == 0) return Error("Invalid CE_EXTRACTELT record"); 746 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 747 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], 748 OpTy->getElementType()); 749 V = ConstantExpr::getExtractElement(Op0, Op1); 750 break; 751 } 752 case bitc::CST_CODE_CE_INSERTELT: { // CE_INSERTELT: [opval, opval, opval] 753 const VectorType *OpTy = dyn_cast<VectorType>(CurTy); 754 if (Record.size() < 3 || OpTy == 0) 755 return Error("Invalid CE_INSERTELT record"); 756 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 757 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 758 OpTy->getElementType()); 759 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], Type::Int32Ty); 760 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 761 break; 762 } 763 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 764 const VectorType *OpTy = dyn_cast<VectorType>(CurTy); 765 if (Record.size() < 3 || OpTy == 0) 766 return Error("Invalid CE_INSERTELT record"); 767 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 768 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 769 const Type *ShufTy=VectorType::get(Type::Int32Ty, OpTy->getNumElements()); 770 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 771 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 772 break; 773 } 774 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 775 if (Record.size() < 4) return Error("Invalid CE_CMP record"); 776 const Type *OpTy = getTypeByID(Record[0]); 777 if (OpTy == 0) return Error("Invalid CE_CMP record"); 778 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 779 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 780 781 if (OpTy->isFloatingPoint()) 782 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 783 else 784 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 785 break; 786 } 787 case bitc::CST_CODE_INLINEASM: { 788 if (Record.size() < 2) return Error("Invalid INLINEASM record"); 789 std::string AsmStr, ConstrStr; 790 bool HasSideEffects = Record[0]; 791 unsigned AsmStrSize = Record[1]; 792 if (2+AsmStrSize >= Record.size()) 793 return Error("Invalid INLINEASM record"); 794 unsigned ConstStrSize = Record[2+AsmStrSize]; 795 if (3+AsmStrSize+ConstStrSize > Record.size()) 796 return Error("Invalid INLINEASM record"); 797 798 for (unsigned i = 0; i != AsmStrSize; ++i) 799 AsmStr += (char)Record[2+i]; 800 for (unsigned i = 0; i != ConstStrSize; ++i) 801 ConstrStr += (char)Record[3+AsmStrSize+i]; 802 const PointerType *PTy = cast<PointerType>(CurTy); 803 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 804 AsmStr, ConstrStr, HasSideEffects); 805 break; 806 } 807 } 808 809 ValueList.AssignValue(V, NextCstNo); 810 ++NextCstNo; 811 } 812 } 813 814 /// RememberAndSkipFunctionBody - When we see the block for a function body, 815 /// remember where it is and then skip it. This lets us lazily deserialize the 816 /// functions. 817 bool BitcodeReader::RememberAndSkipFunctionBody() { 818 // Get the function we are talking about. 819 if (FunctionsWithBodies.empty()) 820 return Error("Insufficient function protos"); 821 822 Function *Fn = FunctionsWithBodies.back(); 823 FunctionsWithBodies.pop_back(); 824 825 // Save the current stream state. 826 uint64_t CurBit = Stream.GetCurrentBitNo(); 827 DeferredFunctionInfo[Fn] = std::make_pair(CurBit, Fn->getLinkage()); 828 829 // Set the functions linkage to GhostLinkage so we know it is lazily 830 // deserialized. 831 Fn->setLinkage(GlobalValue::GhostLinkage); 832 833 // Skip over the function block for now. 834 if (Stream.SkipBlock()) 835 return Error("Malformed block record"); 836 return false; 837 } 838 839 bool BitcodeReader::ParseModule(const std::string &ModuleID) { 840 // Reject multiple MODULE_BLOCK's in a single bitstream. 841 if (TheModule) 842 return Error("Multiple MODULE_BLOCKs in same stream"); 843 844 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 845 return Error("Malformed block record"); 846 847 // Otherwise, create the module. 848 TheModule = new Module(ModuleID); 849 850 SmallVector<uint64_t, 64> Record; 851 std::vector<std::string> SectionTable; 852 853 // Read all the records for this module. 854 while (!Stream.AtEndOfStream()) { 855 unsigned Code = Stream.ReadCode(); 856 if (Code == bitc::END_BLOCK) { 857 if (Stream.ReadBlockEnd()) 858 return Error("Error at end of module block"); 859 860 // Patch the initializers for globals and aliases up. 861 ResolveGlobalAndAliasInits(); 862 if (!GlobalInits.empty() || !AliasInits.empty()) 863 return Error("Malformed global initializer set"); 864 if (!FunctionsWithBodies.empty()) 865 return Error("Too few function bodies found"); 866 867 // Look for intrinsic functions which need to be upgraded at some point 868 for (Module::iterator FI = TheModule->begin(), FE = TheModule->end(); 869 FI != FE; ++FI) { 870 if (Function* NewFn = UpgradeIntrinsicFunction(FI)) 871 UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn)); 872 } 873 874 // Force deallocation of memory for these vectors to favor the client that 875 // want lazy deserialization. 876 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 877 std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits); 878 std::vector<Function*>().swap(FunctionsWithBodies); 879 return false; 880 } 881 882 if (Code == bitc::ENTER_SUBBLOCK) { 883 switch (Stream.ReadSubBlockID()) { 884 default: // Skip unknown content. 885 if (Stream.SkipBlock()) 886 return Error("Malformed block record"); 887 break; 888 case bitc::BLOCKINFO_BLOCK_ID: 889 if (Stream.ReadBlockInfoBlock()) 890 return Error("Malformed BlockInfoBlock"); 891 break; 892 case bitc::PARAMATTR_BLOCK_ID: 893 if (ParseParamAttrBlock()) 894 return true; 895 break; 896 case bitc::TYPE_BLOCK_ID: 897 if (ParseTypeTable()) 898 return true; 899 break; 900 case bitc::TYPE_SYMTAB_BLOCK_ID: 901 if (ParseTypeSymbolTable()) 902 return true; 903 break; 904 case bitc::VALUE_SYMTAB_BLOCK_ID: 905 if (ParseValueSymbolTable()) 906 return true; 907 break; 908 case bitc::CONSTANTS_BLOCK_ID: 909 if (ParseConstants() || ResolveGlobalAndAliasInits()) 910 return true; 911 break; 912 case bitc::FUNCTION_BLOCK_ID: 913 // If this is the first function body we've seen, reverse the 914 // FunctionsWithBodies list. 915 if (!HasReversedFunctionsWithBodies) { 916 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 917 HasReversedFunctionsWithBodies = true; 918 } 919 920 if (RememberAndSkipFunctionBody()) 921 return true; 922 break; 923 } 924 continue; 925 } 926 927 if (Code == bitc::DEFINE_ABBREV) { 928 Stream.ReadAbbrevRecord(); 929 continue; 930 } 931 932 // Read a record. 933 switch (Stream.ReadRecord(Code, Record)) { 934 default: break; // Default behavior, ignore unknown content. 935 case bitc::MODULE_CODE_VERSION: // VERSION: [version#] 936 if (Record.size() < 1) 937 return Error("Malformed MODULE_CODE_VERSION"); 938 // Only version #0 is supported so far. 939 if (Record[0] != 0) 940 return Error("Unknown bitstream version!"); 941 break; 942 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 943 std::string S; 944 if (ConvertToString(Record, 0, S)) 945 return Error("Invalid MODULE_CODE_TRIPLE record"); 946 TheModule->setTargetTriple(S); 947 break; 948 } 949 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 950 std::string S; 951 if (ConvertToString(Record, 0, S)) 952 return Error("Invalid MODULE_CODE_DATALAYOUT record"); 953 TheModule->setDataLayout(S); 954 break; 955 } 956 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 957 std::string S; 958 if (ConvertToString(Record, 0, S)) 959 return Error("Invalid MODULE_CODE_ASM record"); 960 TheModule->setModuleInlineAsm(S); 961 break; 962 } 963 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 964 std::string S; 965 if (ConvertToString(Record, 0, S)) 966 return Error("Invalid MODULE_CODE_DEPLIB record"); 967 TheModule->addLibrary(S); 968 break; 969 } 970 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 971 std::string S; 972 if (ConvertToString(Record, 0, S)) 973 return Error("Invalid MODULE_CODE_SECTIONNAME record"); 974 SectionTable.push_back(S); 975 break; 976 } 977 // GLOBALVAR: [type, isconst, initid, 978 // linkage, alignment, section, visibility, threadlocal] 979 case bitc::MODULE_CODE_GLOBALVAR: { 980 if (Record.size() < 6) 981 return Error("Invalid MODULE_CODE_GLOBALVAR record"); 982 const Type *Ty = getTypeByID(Record[0]); 983 if (!isa<PointerType>(Ty)) 984 return Error("Global not a pointer type!"); 985 Ty = cast<PointerType>(Ty)->getElementType(); 986 987 bool isConstant = Record[1]; 988 GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]); 989 unsigned Alignment = (1 << Record[4]) >> 1; 990 std::string Section; 991 if (Record[5]) { 992 if (Record[5]-1 >= SectionTable.size()) 993 return Error("Invalid section ID"); 994 Section = SectionTable[Record[5]-1]; 995 } 996 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 997 if (Record.size() > 6) 998 Visibility = GetDecodedVisibility(Record[6]); 999 bool isThreadLocal = false; 1000 if (Record.size() > 7) 1001 isThreadLocal = Record[7]; 1002 1003 GlobalVariable *NewGV = 1004 new GlobalVariable(Ty, isConstant, Linkage, 0, "", TheModule); 1005 NewGV->setAlignment(Alignment); 1006 if (!Section.empty()) 1007 NewGV->setSection(Section); 1008 NewGV->setVisibility(Visibility); 1009 NewGV->setThreadLocal(isThreadLocal); 1010 1011 ValueList.push_back(NewGV); 1012 1013 // Remember which value to use for the global initializer. 1014 if (unsigned InitID = Record[2]) 1015 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 1016 break; 1017 } 1018 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 1019 // alignment, section, visibility] 1020 case bitc::MODULE_CODE_FUNCTION: { 1021 if (Record.size() < 8) 1022 return Error("Invalid MODULE_CODE_FUNCTION record"); 1023 const Type *Ty = getTypeByID(Record[0]); 1024 if (!isa<PointerType>(Ty)) 1025 return Error("Function not a pointer type!"); 1026 const FunctionType *FTy = 1027 dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType()); 1028 if (!FTy) 1029 return Error("Function not a pointer to function type!"); 1030 1031 Function *Func = new Function(FTy, GlobalValue::ExternalLinkage, 1032 "", TheModule); 1033 1034 Func->setCallingConv(Record[1]); 1035 bool isProto = Record[2]; 1036 Func->setLinkage(GetDecodedLinkage(Record[3])); 1037 const ParamAttrsList *PAL = getParamAttrs(Record[4]); 1038 Func->setParamAttrs(PAL); 1039 1040 Func->setAlignment((1 << Record[5]) >> 1); 1041 if (Record[6]) { 1042 if (Record[6]-1 >= SectionTable.size()) 1043 return Error("Invalid section ID"); 1044 Func->setSection(SectionTable[Record[6]-1]); 1045 } 1046 Func->setVisibility(GetDecodedVisibility(Record[7])); 1047 1048 ValueList.push_back(Func); 1049 1050 // If this is a function with a body, remember the prototype we are 1051 // creating now, so that we can match up the body with them later. 1052 if (!isProto) 1053 FunctionsWithBodies.push_back(Func); 1054 break; 1055 } 1056 // ALIAS: [alias type, aliasee val#, linkage] 1057 case bitc::MODULE_CODE_ALIAS: { 1058 if (Record.size() < 3) 1059 return Error("Invalid MODULE_ALIAS record"); 1060 const Type *Ty = getTypeByID(Record[0]); 1061 if (!isa<PointerType>(Ty)) 1062 return Error("Function not a pointer type!"); 1063 1064 GlobalAlias *NewGA = new GlobalAlias(Ty, GetDecodedLinkage(Record[2]), 1065 "", 0, TheModule); 1066 ValueList.push_back(NewGA); 1067 AliasInits.push_back(std::make_pair(NewGA, Record[1])); 1068 break; 1069 } 1070 /// MODULE_CODE_PURGEVALS: [numvals] 1071 case bitc::MODULE_CODE_PURGEVALS: 1072 // Trim down the value list to the specified size. 1073 if (Record.size() < 1 || Record[0] > ValueList.size()) 1074 return Error("Invalid MODULE_PURGEVALS record"); 1075 ValueList.shrinkTo(Record[0]); 1076 break; 1077 } 1078 Record.clear(); 1079 } 1080 1081 return Error("Premature end of bitstream"); 1082 } 1083 1084 1085 bool BitcodeReader::ParseBitcode() { 1086 TheModule = 0; 1087 1088 if (Buffer->getBufferSize() & 3) 1089 return Error("Bitcode stream should be a multiple of 4 bytes in length"); 1090 1091 unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart(); 1092 Stream.init(BufPtr, BufPtr+Buffer->getBufferSize()); 1093 1094 // Sniff for the signature. 1095 if (Stream.Read(8) != 'B' || 1096 Stream.Read(8) != 'C' || 1097 Stream.Read(4) != 0x0 || 1098 Stream.Read(4) != 0xC || 1099 Stream.Read(4) != 0xE || 1100 Stream.Read(4) != 0xD) 1101 return Error("Invalid bitcode signature"); 1102 1103 // We expect a number of well-defined blocks, though we don't necessarily 1104 // need to understand them all. 1105 while (!Stream.AtEndOfStream()) { 1106 unsigned Code = Stream.ReadCode(); 1107 1108 if (Code != bitc::ENTER_SUBBLOCK) 1109 return Error("Invalid record at top-level"); 1110 1111 unsigned BlockID = Stream.ReadSubBlockID(); 1112 1113 // We only know the MODULE subblock ID. 1114 switch (BlockID) { 1115 case bitc::BLOCKINFO_BLOCK_ID: 1116 if (Stream.ReadBlockInfoBlock()) 1117 return Error("Malformed BlockInfoBlock"); 1118 break; 1119 case bitc::MODULE_BLOCK_ID: 1120 if (ParseModule(Buffer->getBufferIdentifier())) 1121 return true; 1122 break; 1123 default: 1124 if (Stream.SkipBlock()) 1125 return Error("Malformed block record"); 1126 break; 1127 } 1128 } 1129 1130 return false; 1131 } 1132 1133 1134 /// ParseFunctionBody - Lazily parse the specified function body block. 1135 bool BitcodeReader::ParseFunctionBody(Function *F) { 1136 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 1137 return Error("Malformed block record"); 1138 1139 unsigned ModuleValueListSize = ValueList.size(); 1140 1141 // Add all the function arguments to the value table. 1142 for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) 1143 ValueList.push_back(I); 1144 1145 unsigned NextValueNo = ValueList.size(); 1146 BasicBlock *CurBB = 0; 1147 unsigned CurBBNo = 0; 1148 1149 // Read all the records. 1150 SmallVector<uint64_t, 64> Record; 1151 while (1) { 1152 unsigned Code = Stream.ReadCode(); 1153 if (Code == bitc::END_BLOCK) { 1154 if (Stream.ReadBlockEnd()) 1155 return Error("Error at end of function block"); 1156 break; 1157 } 1158 1159 if (Code == bitc::ENTER_SUBBLOCK) { 1160 switch (Stream.ReadSubBlockID()) { 1161 default: // Skip unknown content. 1162 if (Stream.SkipBlock()) 1163 return Error("Malformed block record"); 1164 break; 1165 case bitc::CONSTANTS_BLOCK_ID: 1166 if (ParseConstants()) return true; 1167 NextValueNo = ValueList.size(); 1168 break; 1169 case bitc::VALUE_SYMTAB_BLOCK_ID: 1170 if (ParseValueSymbolTable()) return true; 1171 break; 1172 } 1173 continue; 1174 } 1175 1176 if (Code == bitc::DEFINE_ABBREV) { 1177 Stream.ReadAbbrevRecord(); 1178 continue; 1179 } 1180 1181 // Read a record. 1182 Record.clear(); 1183 Instruction *I = 0; 1184 switch (Stream.ReadRecord(Code, Record)) { 1185 default: // Default behavior: reject 1186 return Error("Unknown instruction"); 1187 case bitc::FUNC_CODE_DECLAREBLOCKS: // DECLAREBLOCKS: [nblocks] 1188 if (Record.size() < 1 || Record[0] == 0) 1189 return Error("Invalid DECLAREBLOCKS record"); 1190 // Create all the basic blocks for the function. 1191 FunctionBBs.resize(Record[0]); 1192 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 1193 FunctionBBs[i] = new BasicBlock("", F); 1194 CurBB = FunctionBBs[0]; 1195 continue; 1196 1197 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 1198 unsigned OpNum = 0; 1199 Value *LHS, *RHS; 1200 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 1201 getValue(Record, OpNum, LHS->getType(), RHS) || 1202 OpNum+1 != Record.size()) 1203 return Error("Invalid BINOP record"); 1204 1205 int Opc = GetDecodedBinaryOpcode(Record[OpNum], LHS->getType()); 1206 if (Opc == -1) return Error("Invalid BINOP record"); 1207 I = BinaryOperator::create((Instruction::BinaryOps)Opc, LHS, RHS); 1208 break; 1209 } 1210 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 1211 unsigned OpNum = 0; 1212 Value *Op; 1213 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 1214 OpNum+2 != Record.size()) 1215 return Error("Invalid CAST record"); 1216 1217 const Type *ResTy = getTypeByID(Record[OpNum]); 1218 int Opc = GetDecodedCastOpcode(Record[OpNum+1]); 1219 if (Opc == -1 || ResTy == 0) 1220 return Error("Invalid CAST record"); 1221 I = CastInst::create((Instruction::CastOps)Opc, Op, ResTy); 1222 break; 1223 } 1224 case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands] 1225 unsigned OpNum = 0; 1226 Value *BasePtr; 1227 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 1228 return Error("Invalid GEP record"); 1229 1230 SmallVector<Value*, 16> GEPIdx; 1231 while (OpNum != Record.size()) { 1232 Value *Op; 1233 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 1234 return Error("Invalid GEP record"); 1235 GEPIdx.push_back(Op); 1236 } 1237 1238 I = new GetElementPtrInst(BasePtr, GEPIdx.begin(), GEPIdx.end()); 1239 break; 1240 } 1241 1242 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 1243 unsigned OpNum = 0; 1244 Value *TrueVal, *FalseVal, *Cond; 1245 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 1246 getValue(Record, OpNum, TrueVal->getType(), FalseVal) || 1247 getValue(Record, OpNum, Type::Int1Ty, Cond)) 1248 return Error("Invalid SELECT record"); 1249 1250 I = new SelectInst(Cond, TrueVal, FalseVal); 1251 break; 1252 } 1253 1254 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 1255 unsigned OpNum = 0; 1256 Value *Vec, *Idx; 1257 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 1258 getValue(Record, OpNum, Type::Int32Ty, Idx)) 1259 return Error("Invalid EXTRACTELT record"); 1260 I = new ExtractElementInst(Vec, Idx); 1261 break; 1262 } 1263 1264 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 1265 unsigned OpNum = 0; 1266 Value *Vec, *Elt, *Idx; 1267 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 1268 getValue(Record, OpNum, 1269 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 1270 getValue(Record, OpNum, Type::Int32Ty, Idx)) 1271 return Error("Invalid INSERTELT record"); 1272 I = new InsertElementInst(Vec, Elt, Idx); 1273 break; 1274 } 1275 1276 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 1277 unsigned OpNum = 0; 1278 Value *Vec1, *Vec2, *Mask; 1279 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 1280 getValue(Record, OpNum, Vec1->getType(), Vec2)) 1281 return Error("Invalid SHUFFLEVEC record"); 1282 1283 const Type *MaskTy = 1284 VectorType::get(Type::Int32Ty, 1285 cast<VectorType>(Vec1->getType())->getNumElements()); 1286 1287 if (getValue(Record, OpNum, MaskTy, Mask)) 1288 return Error("Invalid SHUFFLEVEC record"); 1289 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 1290 break; 1291 } 1292 1293 case bitc::FUNC_CODE_INST_CMP: { // CMP: [opty, opval, opval, pred] 1294 unsigned OpNum = 0; 1295 Value *LHS, *RHS; 1296 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 1297 getValue(Record, OpNum, LHS->getType(), RHS) || 1298 OpNum+1 != Record.size()) 1299 return Error("Invalid CMP record"); 1300 1301 if (LHS->getType()->isFPOrFPVector()) 1302 I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS); 1303 else 1304 I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS); 1305 break; 1306 } 1307 1308 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 1309 if (Record.size() == 0) { 1310 I = new ReturnInst(); 1311 break; 1312 } else { 1313 unsigned OpNum = 0; 1314 Value *Op; 1315 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 1316 OpNum != Record.size()) 1317 return Error("Invalid RET record"); 1318 I = new ReturnInst(Op); 1319 break; 1320 } 1321 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 1322 if (Record.size() != 1 && Record.size() != 3) 1323 return Error("Invalid BR record"); 1324 BasicBlock *TrueDest = getBasicBlock(Record[0]); 1325 if (TrueDest == 0) 1326 return Error("Invalid BR record"); 1327 1328 if (Record.size() == 1) 1329 I = new BranchInst(TrueDest); 1330 else { 1331 BasicBlock *FalseDest = getBasicBlock(Record[1]); 1332 Value *Cond = getFnValueByID(Record[2], Type::Int1Ty); 1333 if (FalseDest == 0 || Cond == 0) 1334 return Error("Invalid BR record"); 1335 I = new BranchInst(TrueDest, FalseDest, Cond); 1336 } 1337 break; 1338 } 1339 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, opval, n, n x ops] 1340 if (Record.size() < 3 || (Record.size() & 1) == 0) 1341 return Error("Invalid SWITCH record"); 1342 const Type *OpTy = getTypeByID(Record[0]); 1343 Value *Cond = getFnValueByID(Record[1], OpTy); 1344 BasicBlock *Default = getBasicBlock(Record[2]); 1345 if (OpTy == 0 || Cond == 0 || Default == 0) 1346 return Error("Invalid SWITCH record"); 1347 unsigned NumCases = (Record.size()-3)/2; 1348 SwitchInst *SI = new SwitchInst(Cond, Default, NumCases); 1349 for (unsigned i = 0, e = NumCases; i != e; ++i) { 1350 ConstantInt *CaseVal = 1351 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 1352 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 1353 if (CaseVal == 0 || DestBB == 0) { 1354 delete SI; 1355 return Error("Invalid SWITCH record!"); 1356 } 1357 SI->addCase(CaseVal, DestBB); 1358 } 1359 I = SI; 1360 break; 1361 } 1362 1363 case bitc::FUNC_CODE_INST_INVOKE: { 1364 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 1365 if (Record.size() < 4) return Error("Invalid INVOKE record"); 1366 const ParamAttrsList *PAL = getParamAttrs(Record[0]); 1367 unsigned CCInfo = Record[1]; 1368 BasicBlock *NormalBB = getBasicBlock(Record[2]); 1369 BasicBlock *UnwindBB = getBasicBlock(Record[3]); 1370 1371 unsigned OpNum = 4; 1372 Value *Callee; 1373 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 1374 return Error("Invalid INVOKE record"); 1375 1376 const PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 1377 const FunctionType *FTy = !CalleeTy ? 0 : 1378 dyn_cast<FunctionType>(CalleeTy->getElementType()); 1379 1380 // Check that the right number of fixed parameters are here. 1381 if (FTy == 0 || NormalBB == 0 || UnwindBB == 0 || 1382 Record.size() < OpNum+FTy->getNumParams()) 1383 return Error("Invalid INVOKE record"); 1384 1385 SmallVector<Value*, 16> Ops; 1386 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 1387 Ops.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i))); 1388 if (Ops.back() == 0) return Error("Invalid INVOKE record"); 1389 } 1390 1391 if (!FTy->isVarArg()) { 1392 if (Record.size() != OpNum) 1393 return Error("Invalid INVOKE record"); 1394 } else { 1395 // Read type/value pairs for varargs params. 1396 while (OpNum != Record.size()) { 1397 Value *Op; 1398 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 1399 return Error("Invalid INVOKE record"); 1400 Ops.push_back(Op); 1401 } 1402 } 1403 1404 I = new InvokeInst(Callee, NormalBB, UnwindBB, Ops.begin(), Ops.end()); 1405 cast<InvokeInst>(I)->setCallingConv(CCInfo); 1406 cast<InvokeInst>(I)->setParamAttrs(PAL); 1407 break; 1408 } 1409 case bitc::FUNC_CODE_INST_UNWIND: // UNWIND 1410 I = new UnwindInst(); 1411 break; 1412 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 1413 I = new UnreachableInst(); 1414 break; 1415 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 1416 if (Record.size() < 1 || ((Record.size()-1)&1)) 1417 return Error("Invalid PHI record"); 1418 const Type *Ty = getTypeByID(Record[0]); 1419 if (!Ty) return Error("Invalid PHI record"); 1420 1421 PHINode *PN = new PHINode(Ty); 1422 PN->reserveOperandSpace(Record.size()-1); 1423 1424 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 1425 Value *V = getFnValueByID(Record[1+i], Ty); 1426 BasicBlock *BB = getBasicBlock(Record[2+i]); 1427 if (!V || !BB) return Error("Invalid PHI record"); 1428 PN->addIncoming(V, BB); 1429 } 1430 I = PN; 1431 break; 1432 } 1433 1434 case bitc::FUNC_CODE_INST_MALLOC: { // MALLOC: [instty, op, align] 1435 if (Record.size() < 3) 1436 return Error("Invalid MALLOC record"); 1437 const PointerType *Ty = 1438 dyn_cast_or_null<PointerType>(getTypeByID(Record[0])); 1439 Value *Size = getFnValueByID(Record[1], Type::Int32Ty); 1440 unsigned Align = Record[2]; 1441 if (!Ty || !Size) return Error("Invalid MALLOC record"); 1442 I = new MallocInst(Ty->getElementType(), Size, (1 << Align) >> 1); 1443 break; 1444 } 1445 case bitc::FUNC_CODE_INST_FREE: { // FREE: [op, opty] 1446 unsigned OpNum = 0; 1447 Value *Op; 1448 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 1449 OpNum != Record.size()) 1450 return Error("Invalid FREE record"); 1451 I = new FreeInst(Op); 1452 break; 1453 } 1454 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, op, align] 1455 if (Record.size() < 3) 1456 return Error("Invalid ALLOCA record"); 1457 const PointerType *Ty = 1458 dyn_cast_or_null<PointerType>(getTypeByID(Record[0])); 1459 Value *Size = getFnValueByID(Record[1], Type::Int32Ty); 1460 unsigned Align = Record[2]; 1461 if (!Ty || !Size) return Error("Invalid ALLOCA record"); 1462 I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1); 1463 break; 1464 } 1465 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 1466 unsigned OpNum = 0; 1467 Value *Op; 1468 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 1469 OpNum+2 != Record.size()) 1470 return Error("Invalid LOAD record"); 1471 1472 I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1); 1473 break; 1474 } 1475 case bitc::FUNC_CODE_INST_STORE: { // STORE:[val, valty, ptr, align, vol] 1476 unsigned OpNum = 0; 1477 Value *Val, *Ptr; 1478 if (getValueTypePair(Record, OpNum, NextValueNo, Val) || 1479 getValue(Record, OpNum, PointerType::get(Val->getType()), Ptr) || 1480 OpNum+2 != Record.size()) 1481 return Error("Invalid STORE record"); 1482 1483 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1); 1484 break; 1485 } 1486 case bitc::FUNC_CODE_INST_CALL: { 1487 // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...] 1488 if (Record.size() < 3) 1489 return Error("Invalid CALL record"); 1490 1491 const ParamAttrsList *PAL = getParamAttrs(Record[0]); 1492 unsigned CCInfo = Record[1]; 1493 1494 unsigned OpNum = 2; 1495 Value *Callee; 1496 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 1497 return Error("Invalid CALL record"); 1498 1499 const PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 1500 const FunctionType *FTy = 0; 1501 if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 1502 if (!FTy || Record.size() < FTy->getNumParams()+OpNum) 1503 return Error("Invalid CALL record"); 1504 1505 SmallVector<Value*, 16> Args; 1506 // Read the fixed params. 1507 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 1508 if (FTy->getParamType(i)->getTypeID()==Type::LabelTyID) 1509 Args.push_back(getBasicBlock(Record[OpNum])); 1510 else 1511 Args.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i))); 1512 if (Args.back() == 0) return Error("Invalid CALL record"); 1513 } 1514 1515 // Read type/value pairs for varargs params. 1516 if (!FTy->isVarArg()) { 1517 if (OpNum != Record.size()) 1518 return Error("Invalid CALL record"); 1519 } else { 1520 while (OpNum != Record.size()) { 1521 Value *Op; 1522 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 1523 return Error("Invalid CALL record"); 1524 Args.push_back(Op); 1525 } 1526 } 1527 1528 I = new CallInst(Callee, Args.begin(), Args.end()); 1529 cast<CallInst>(I)->setCallingConv(CCInfo>>1); 1530 cast<CallInst>(I)->setTailCall(CCInfo & 1); 1531 cast<CallInst>(I)->setParamAttrs(PAL); 1532 break; 1533 } 1534 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 1535 if (Record.size() < 3) 1536 return Error("Invalid VAARG record"); 1537 const Type *OpTy = getTypeByID(Record[0]); 1538 Value *Op = getFnValueByID(Record[1], OpTy); 1539 const Type *ResTy = getTypeByID(Record[2]); 1540 if (!OpTy || !Op || !ResTy) 1541 return Error("Invalid VAARG record"); 1542 I = new VAArgInst(Op, ResTy); 1543 break; 1544 } 1545 } 1546 1547 // Add instruction to end of current BB. If there is no current BB, reject 1548 // this file. 1549 if (CurBB == 0) { 1550 delete I; 1551 return Error("Invalid instruction with no BB"); 1552 } 1553 CurBB->getInstList().push_back(I); 1554 1555 // If this was a terminator instruction, move to the next block. 1556 if (isa<TerminatorInst>(I)) { 1557 ++CurBBNo; 1558 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : 0; 1559 } 1560 1561 // Non-void values get registered in the value table for future use. 1562 if (I && I->getType() != Type::VoidTy) 1563 ValueList.AssignValue(I, NextValueNo++); 1564 } 1565 1566 // Check the function list for unresolved values. 1567 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 1568 if (A->getParent() == 0) { 1569 // We found at least one unresolved value. Nuke them all to avoid leaks. 1570 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 1571 if ((A = dyn_cast<Argument>(ValueList.back())) && A->getParent() == 0) { 1572 A->replaceAllUsesWith(UndefValue::get(A->getType())); 1573 delete A; 1574 } 1575 } 1576 return Error("Never resolved value found in function!"); 1577 } 1578 } 1579 1580 // Trim the value list down to the size it was before we parsed this function. 1581 ValueList.shrinkTo(ModuleValueListSize); 1582 std::vector<BasicBlock*>().swap(FunctionBBs); 1583 1584 return false; 1585 } 1586 1587 //===----------------------------------------------------------------------===// 1588 // ModuleProvider implementation 1589 //===----------------------------------------------------------------------===// 1590 1591 1592 bool BitcodeReader::materializeFunction(Function *F, std::string *ErrInfo) { 1593 // If it already is material, ignore the request. 1594 if (!F->hasNotBeenReadFromBitcode()) return false; 1595 1596 DenseMap<Function*, std::pair<uint64_t, unsigned> >::iterator DFII = 1597 DeferredFunctionInfo.find(F); 1598 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 1599 1600 // Move the bit stream to the saved position of the deferred function body and 1601 // restore the real linkage type for the function. 1602 Stream.JumpToBit(DFII->second.first); 1603 F->setLinkage((GlobalValue::LinkageTypes)DFII->second.second); 1604 1605 if (ParseFunctionBody(F)) { 1606 if (ErrInfo) *ErrInfo = ErrorString; 1607 return true; 1608 } 1609 1610 // Upgrade any old intrinsic calls in the function. 1611 for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(), 1612 E = UpgradedIntrinsics.end(); I != E; ++I) { 1613 if (I->first != I->second) { 1614 for (Value::use_iterator UI = I->first->use_begin(), 1615 UE = I->first->use_end(); UI != UE; ) { 1616 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 1617 UpgradeIntrinsicCall(CI, I->second); 1618 } 1619 } 1620 } 1621 1622 return false; 1623 } 1624 1625 void BitcodeReader::dematerializeFunction(Function *F) { 1626 // If this function isn't materialized, or if it is a proto, this is a noop. 1627 if (F->hasNotBeenReadFromBitcode() || F->isDeclaration()) 1628 return; 1629 1630 assert(DeferredFunctionInfo.count(F) && "No info to read function later?"); 1631 1632 // Just forget the function body, we can remat it later. 1633 F->deleteBody(); 1634 F->setLinkage(GlobalValue::GhostLinkage); 1635 } 1636 1637 1638 Module *BitcodeReader::materializeModule(std::string *ErrInfo) { 1639 for (DenseMap<Function*, std::pair<uint64_t, unsigned> >::iterator I = 1640 DeferredFunctionInfo.begin(), E = DeferredFunctionInfo.end(); I != E; 1641 ++I) { 1642 Function *F = I->first; 1643 if (F->hasNotBeenReadFromBitcode() && 1644 materializeFunction(F, ErrInfo)) 1645 return 0; 1646 } 1647 1648 // Upgrade any intrinsic calls that slipped through (should not happen!) and 1649 // delete the old functions to clean up. We can't do this unless the entire 1650 // module is materialized because there could always be another function body 1651 // with calls to the old function. 1652 for (std::vector<std::pair<Function*, Function*> >::iterator I = 1653 UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) { 1654 if (I->first != I->second) { 1655 for (Value::use_iterator UI = I->first->use_begin(), 1656 UE = I->first->use_end(); UI != UE; ) { 1657 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 1658 UpgradeIntrinsicCall(CI, I->second); 1659 } 1660 ValueList.replaceUsesOfWith(I->first, I->second); 1661 I->first->eraseFromParent(); 1662 } 1663 } 1664 std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics); 1665 1666 return TheModule; 1667 } 1668 1669 1670 /// This method is provided by the parent ModuleProvde class and overriden 1671 /// here. It simply releases the module from its provided and frees up our 1672 /// state. 1673 /// @brief Release our hold on the generated module 1674 Module *BitcodeReader::releaseModule(std::string *ErrInfo) { 1675 // Since we're losing control of this Module, we must hand it back complete 1676 Module *M = ModuleProvider::releaseModule(ErrInfo); 1677 FreeState(); 1678 return M; 1679 } 1680 1681 1682 //===----------------------------------------------------------------------===// 1683 // External interface 1684 //===----------------------------------------------------------------------===// 1685 1686 /// getBitcodeModuleProvider - lazy function-at-a-time loading from a file. 1687 /// 1688 ModuleProvider *llvm::getBitcodeModuleProvider(MemoryBuffer *Buffer, 1689 std::string *ErrMsg) { 1690 BitcodeReader *R = new BitcodeReader(Buffer); 1691 if (R->ParseBitcode()) { 1692 if (ErrMsg) 1693 *ErrMsg = R->getErrorString(); 1694 1695 // Don't let the BitcodeReader dtor delete 'Buffer'. 1696 R->releaseMemoryBuffer(); 1697 delete R; 1698 return 0; 1699 } 1700 return R; 1701 } 1702 1703 /// ParseBitcodeFile - Read the specified bitcode file, returning the module. 1704 /// If an error occurs, return null and fill in *ErrMsg if non-null. 1705 Module *llvm::ParseBitcodeFile(MemoryBuffer *Buffer, std::string *ErrMsg){ 1706 BitcodeReader *R; 1707 R = static_cast<BitcodeReader*>(getBitcodeModuleProvider(Buffer, ErrMsg)); 1708 if (!R) return 0; 1709 1710 // Read in the entire module. 1711 Module *M = R->materializeModule(ErrMsg); 1712 1713 // Don't let the BitcodeReader dtor delete 'Buffer', regardless of whether 1714 // there was an error. 1715 R->releaseMemoryBuffer(); 1716 1717 // If there was no error, tell ModuleProvider not to delete it when its dtor 1718 // is run. 1719 if (M) 1720 M = R->releaseModule(ErrMsg); 1721 1722 delete R; 1723 return M; 1724 } 1725