xref: /llvm-project/llvm/lib/Bitcode/Reader/BitcodeReader.cpp (revision 176889868024d98db032842bc47b416997d9e349)
1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Bitcode/BitcodeReader.h"
10 #include "MetadataLoader.h"
11 #include "ValueList.h"
12 #include "llvm/ADT/APFloat.h"
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallString.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/StringRef.h"
20 #include "llvm/ADT/Twine.h"
21 #include "llvm/Bitcode/BitcodeCommon.h"
22 #include "llvm/Bitcode/LLVMBitCodes.h"
23 #include "llvm/Bitstream/BitstreamReader.h"
24 #include "llvm/Config/llvm-config.h"
25 #include "llvm/IR/Argument.h"
26 #include "llvm/IR/Attributes.h"
27 #include "llvm/IR/AutoUpgrade.h"
28 #include "llvm/IR/BasicBlock.h"
29 #include "llvm/IR/CallingConv.h"
30 #include "llvm/IR/Comdat.h"
31 #include "llvm/IR/Constant.h"
32 #include "llvm/IR/Constants.h"
33 #include "llvm/IR/DataLayout.h"
34 #include "llvm/IR/DebugInfo.h"
35 #include "llvm/IR/DebugInfoMetadata.h"
36 #include "llvm/IR/DebugLoc.h"
37 #include "llvm/IR/DerivedTypes.h"
38 #include "llvm/IR/Function.h"
39 #include "llvm/IR/GVMaterializer.h"
40 #include "llvm/IR/GetElementPtrTypeIterator.h"
41 #include "llvm/IR/GlobalAlias.h"
42 #include "llvm/IR/GlobalIFunc.h"
43 #include "llvm/IR/GlobalObject.h"
44 #include "llvm/IR/GlobalValue.h"
45 #include "llvm/IR/GlobalVariable.h"
46 #include "llvm/IR/InlineAsm.h"
47 #include "llvm/IR/InstIterator.h"
48 #include "llvm/IR/InstrTypes.h"
49 #include "llvm/IR/Instruction.h"
50 #include "llvm/IR/Instructions.h"
51 #include "llvm/IR/Intrinsics.h"
52 #include "llvm/IR/IntrinsicsAArch64.h"
53 #include "llvm/IR/IntrinsicsARM.h"
54 #include "llvm/IR/LLVMContext.h"
55 #include "llvm/IR/Metadata.h"
56 #include "llvm/IR/Module.h"
57 #include "llvm/IR/ModuleSummaryIndex.h"
58 #include "llvm/IR/Operator.h"
59 #include "llvm/IR/Type.h"
60 #include "llvm/IR/Value.h"
61 #include "llvm/IR/Verifier.h"
62 #include "llvm/Support/AtomicOrdering.h"
63 #include "llvm/Support/Casting.h"
64 #include "llvm/Support/CommandLine.h"
65 #include "llvm/Support/Compiler.h"
66 #include "llvm/Support/Debug.h"
67 #include "llvm/Support/Error.h"
68 #include "llvm/Support/ErrorHandling.h"
69 #include "llvm/Support/ErrorOr.h"
70 #include "llvm/Support/MathExtras.h"
71 #include "llvm/Support/MemoryBuffer.h"
72 #include "llvm/Support/ModRef.h"
73 #include "llvm/Support/raw_ostream.h"
74 #include "llvm/TargetParser/Triple.h"
75 #include <algorithm>
76 #include <cassert>
77 #include <cstddef>
78 #include <cstdint>
79 #include <deque>
80 #include <map>
81 #include <memory>
82 #include <optional>
83 #include <set>
84 #include <string>
85 #include <system_error>
86 #include <tuple>
87 #include <utility>
88 #include <vector>
89 
90 using namespace llvm;
91 
92 static cl::opt<bool> PrintSummaryGUIDs(
93     "print-summary-global-ids", cl::init(false), cl::Hidden,
94     cl::desc(
95         "Print the global id for each value when reading the module summary"));
96 
97 static cl::opt<bool> ExpandConstantExprs(
98     "expand-constant-exprs", cl::Hidden,
99     cl::desc(
100         "Expand constant expressions to instructions for testing purposes"));
101 
102 namespace {
103 
104 enum {
105   SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
106 };
107 
108 } // end anonymous namespace
109 
110 static Error error(const Twine &Message) {
111   return make_error<StringError>(
112       Message, make_error_code(BitcodeError::CorruptedBitcode));
113 }
114 
115 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) {
116   if (!Stream.canSkipToPos(4))
117     return createStringError(std::errc::illegal_byte_sequence,
118                              "file too small to contain bitcode header");
119   for (unsigned C : {'B', 'C'})
120     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) {
121       if (Res.get() != C)
122         return createStringError(std::errc::illegal_byte_sequence,
123                                  "file doesn't start with bitcode header");
124     } else
125       return Res.takeError();
126   for (unsigned C : {0x0, 0xC, 0xE, 0xD})
127     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) {
128       if (Res.get() != C)
129         return createStringError(std::errc::illegal_byte_sequence,
130                                  "file doesn't start with bitcode header");
131     } else
132       return Res.takeError();
133   return Error::success();
134 }
135 
136 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) {
137   const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart();
138   const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize();
139 
140   if (Buffer.getBufferSize() & 3)
141     return error("Invalid bitcode signature");
142 
143   // If we have a wrapper header, parse it and ignore the non-bc file contents.
144   // The magic number is 0x0B17C0DE stored in little endian.
145   if (isBitcodeWrapper(BufPtr, BufEnd))
146     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
147       return error("Invalid bitcode wrapper header");
148 
149   BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd));
150   if (Error Err = hasInvalidBitcodeHeader(Stream))
151     return std::move(Err);
152 
153   return std::move(Stream);
154 }
155 
156 /// Convert a string from a record into an std::string, return true on failure.
157 template <typename StrTy>
158 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
159                             StrTy &Result) {
160   if (Idx > Record.size())
161     return true;
162 
163   Result.append(Record.begin() + Idx, Record.end());
164   return false;
165 }
166 
167 // Strip all the TBAA attachment for the module.
168 static void stripTBAA(Module *M) {
169   for (auto &F : *M) {
170     if (F.isMaterializable())
171       continue;
172     for (auto &I : instructions(F))
173       I.setMetadata(LLVMContext::MD_tbaa, nullptr);
174   }
175 }
176 
177 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the
178 /// "epoch" encoded in the bitcode, and return the producer name if any.
179 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) {
180   if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID))
181     return std::move(Err);
182 
183   // Read all the records.
184   SmallVector<uint64_t, 64> Record;
185 
186   std::string ProducerIdentification;
187 
188   while (true) {
189     BitstreamEntry Entry;
190     if (Error E = Stream.advance().moveInto(Entry))
191       return std::move(E);
192 
193     switch (Entry.Kind) {
194     default:
195     case BitstreamEntry::Error:
196       return error("Malformed block");
197     case BitstreamEntry::EndBlock:
198       return ProducerIdentification;
199     case BitstreamEntry::Record:
200       // The interesting case.
201       break;
202     }
203 
204     // Read a record.
205     Record.clear();
206     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
207     if (!MaybeBitCode)
208       return MaybeBitCode.takeError();
209     switch (MaybeBitCode.get()) {
210     default: // Default behavior: reject
211       return error("Invalid value");
212     case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N]
213       convertToString(Record, 0, ProducerIdentification);
214       break;
215     case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#]
216       unsigned epoch = (unsigned)Record[0];
217       if (epoch != bitc::BITCODE_CURRENT_EPOCH) {
218         return error(
219           Twine("Incompatible epoch: Bitcode '") + Twine(epoch) +
220           "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'");
221       }
222     }
223     }
224   }
225 }
226 
227 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) {
228   // We expect a number of well-defined blocks, though we don't necessarily
229   // need to understand them all.
230   while (true) {
231     if (Stream.AtEndOfStream())
232       return "";
233 
234     BitstreamEntry Entry;
235     if (Error E = Stream.advance().moveInto(Entry))
236       return std::move(E);
237 
238     switch (Entry.Kind) {
239     case BitstreamEntry::EndBlock:
240     case BitstreamEntry::Error:
241       return error("Malformed block");
242 
243     case BitstreamEntry::SubBlock:
244       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID)
245         return readIdentificationBlock(Stream);
246 
247       // Ignore other sub-blocks.
248       if (Error Err = Stream.SkipBlock())
249         return std::move(Err);
250       continue;
251     case BitstreamEntry::Record:
252       if (Error E = Stream.skipRecord(Entry.ID).takeError())
253         return std::move(E);
254       continue;
255     }
256   }
257 }
258 
259 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) {
260   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
261     return std::move(Err);
262 
263   SmallVector<uint64_t, 64> Record;
264   // Read all the records for this module.
265 
266   while (true) {
267     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
268     if (!MaybeEntry)
269       return MaybeEntry.takeError();
270     BitstreamEntry Entry = MaybeEntry.get();
271 
272     switch (Entry.Kind) {
273     case BitstreamEntry::SubBlock: // Handled for us already.
274     case BitstreamEntry::Error:
275       return error("Malformed block");
276     case BitstreamEntry::EndBlock:
277       return false;
278     case BitstreamEntry::Record:
279       // The interesting case.
280       break;
281     }
282 
283     // Read a record.
284     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
285     if (!MaybeRecord)
286       return MaybeRecord.takeError();
287     switch (MaybeRecord.get()) {
288     default:
289       break; // Default behavior, ignore unknown content.
290     case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
291       std::string S;
292       if (convertToString(Record, 0, S))
293         return error("Invalid section name record");
294       // Check for the i386 and other (x86_64, ARM) conventions
295       if (S.find("__DATA,__objc_catlist") != std::string::npos ||
296           S.find("__OBJC,__category") != std::string::npos)
297         return true;
298       break;
299     }
300     }
301     Record.clear();
302   }
303   llvm_unreachable("Exit infinite loop");
304 }
305 
306 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) {
307   // We expect a number of well-defined blocks, though we don't necessarily
308   // need to understand them all.
309   while (true) {
310     BitstreamEntry Entry;
311     if (Error E = Stream.advance().moveInto(Entry))
312       return std::move(E);
313 
314     switch (Entry.Kind) {
315     case BitstreamEntry::Error:
316       return error("Malformed block");
317     case BitstreamEntry::EndBlock:
318       return false;
319 
320     case BitstreamEntry::SubBlock:
321       if (Entry.ID == bitc::MODULE_BLOCK_ID)
322         return hasObjCCategoryInModule(Stream);
323 
324       // Ignore other sub-blocks.
325       if (Error Err = Stream.SkipBlock())
326         return std::move(Err);
327       continue;
328 
329     case BitstreamEntry::Record:
330       if (Error E = Stream.skipRecord(Entry.ID).takeError())
331         return std::move(E);
332       continue;
333     }
334   }
335 }
336 
337 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) {
338   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
339     return std::move(Err);
340 
341   SmallVector<uint64_t, 64> Record;
342 
343   std::string Triple;
344 
345   // Read all the records for this module.
346   while (true) {
347     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
348     if (!MaybeEntry)
349       return MaybeEntry.takeError();
350     BitstreamEntry Entry = MaybeEntry.get();
351 
352     switch (Entry.Kind) {
353     case BitstreamEntry::SubBlock: // Handled for us already.
354     case BitstreamEntry::Error:
355       return error("Malformed block");
356     case BitstreamEntry::EndBlock:
357       return Triple;
358     case BitstreamEntry::Record:
359       // The interesting case.
360       break;
361     }
362 
363     // Read a record.
364     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
365     if (!MaybeRecord)
366       return MaybeRecord.takeError();
367     switch (MaybeRecord.get()) {
368     default: break;  // Default behavior, ignore unknown content.
369     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
370       std::string S;
371       if (convertToString(Record, 0, S))
372         return error("Invalid triple record");
373       Triple = S;
374       break;
375     }
376     }
377     Record.clear();
378   }
379   llvm_unreachable("Exit infinite loop");
380 }
381 
382 static Expected<std::string> readTriple(BitstreamCursor &Stream) {
383   // We expect a number of well-defined blocks, though we don't necessarily
384   // need to understand them all.
385   while (true) {
386     Expected<BitstreamEntry> MaybeEntry = Stream.advance();
387     if (!MaybeEntry)
388       return MaybeEntry.takeError();
389     BitstreamEntry Entry = MaybeEntry.get();
390 
391     switch (Entry.Kind) {
392     case BitstreamEntry::Error:
393       return error("Malformed block");
394     case BitstreamEntry::EndBlock:
395       return "";
396 
397     case BitstreamEntry::SubBlock:
398       if (Entry.ID == bitc::MODULE_BLOCK_ID)
399         return readModuleTriple(Stream);
400 
401       // Ignore other sub-blocks.
402       if (Error Err = Stream.SkipBlock())
403         return std::move(Err);
404       continue;
405 
406     case BitstreamEntry::Record:
407       if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
408         continue;
409       else
410         return Skipped.takeError();
411     }
412   }
413 }
414 
415 namespace {
416 
417 class BitcodeReaderBase {
418 protected:
419   BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab)
420       : Stream(std::move(Stream)), Strtab(Strtab) {
421     this->Stream.setBlockInfo(&BlockInfo);
422   }
423 
424   BitstreamBlockInfo BlockInfo;
425   BitstreamCursor Stream;
426   StringRef Strtab;
427 
428   /// In version 2 of the bitcode we store names of global values and comdats in
429   /// a string table rather than in the VST.
430   bool UseStrtab = false;
431 
432   Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record);
433 
434   /// If this module uses a string table, pop the reference to the string table
435   /// and return the referenced string and the rest of the record. Otherwise
436   /// just return the record itself.
437   std::pair<StringRef, ArrayRef<uint64_t>>
438   readNameFromStrtab(ArrayRef<uint64_t> Record);
439 
440   Error readBlockInfo();
441 
442   // Contains an arbitrary and optional string identifying the bitcode producer
443   std::string ProducerIdentification;
444 
445   Error error(const Twine &Message);
446 };
447 
448 } // end anonymous namespace
449 
450 Error BitcodeReaderBase::error(const Twine &Message) {
451   std::string FullMsg = Message.str();
452   if (!ProducerIdentification.empty())
453     FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " +
454                LLVM_VERSION_STRING "')";
455   return ::error(FullMsg);
456 }
457 
458 Expected<unsigned>
459 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) {
460   if (Record.empty())
461     return error("Invalid version record");
462   unsigned ModuleVersion = Record[0];
463   if (ModuleVersion > 2)
464     return error("Invalid value");
465   UseStrtab = ModuleVersion >= 2;
466   return ModuleVersion;
467 }
468 
469 std::pair<StringRef, ArrayRef<uint64_t>>
470 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) {
471   if (!UseStrtab)
472     return {"", Record};
473   // Invalid reference. Let the caller complain about the record being empty.
474   if (Record[0] + Record[1] > Strtab.size())
475     return {"", {}};
476   return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)};
477 }
478 
479 namespace {
480 
481 /// This represents a constant expression or constant aggregate using a custom
482 /// structure internal to the bitcode reader. Later, this structure will be
483 /// expanded by materializeValue() either into a constant expression/aggregate,
484 /// or into an instruction sequence at the point of use. This allows us to
485 /// upgrade bitcode using constant expressions even if this kind of constant
486 /// expression is no longer supported.
487 class BitcodeConstant final : public Value,
488                               TrailingObjects<BitcodeConstant, unsigned> {
489   friend TrailingObjects;
490 
491   // Value subclass ID: Pick largest possible value to avoid any clashes.
492   static constexpr uint8_t SubclassID = 255;
493 
494 public:
495   // Opcodes used for non-expressions. This includes constant aggregates
496   // (struct, array, vector) that might need expansion, as well as non-leaf
497   // constants that don't need expansion (no_cfi, dso_local, blockaddress),
498   // but still go through BitcodeConstant to avoid different uselist orders
499   // between the two cases.
500   static constexpr uint8_t ConstantStructOpcode = 255;
501   static constexpr uint8_t ConstantArrayOpcode = 254;
502   static constexpr uint8_t ConstantVectorOpcode = 253;
503   static constexpr uint8_t NoCFIOpcode = 252;
504   static constexpr uint8_t DSOLocalEquivalentOpcode = 251;
505   static constexpr uint8_t BlockAddressOpcode = 250;
506   static constexpr uint8_t FirstSpecialOpcode = BlockAddressOpcode;
507 
508   // Separate struct to make passing different number of parameters to
509   // BitcodeConstant::create() more convenient.
510   struct ExtraInfo {
511     uint8_t Opcode;
512     uint8_t Flags;
513     unsigned Extra;
514     Type *SrcElemTy;
515 
516     ExtraInfo(uint8_t Opcode, uint8_t Flags = 0, unsigned Extra = 0,
517               Type *SrcElemTy = nullptr)
518         : Opcode(Opcode), Flags(Flags), Extra(Extra), SrcElemTy(SrcElemTy) {}
519   };
520 
521   uint8_t Opcode;
522   uint8_t Flags;
523   unsigned NumOperands;
524   unsigned Extra;  // GEP inrange index or blockaddress BB id.
525   Type *SrcElemTy; // GEP source element type.
526 
527 private:
528   BitcodeConstant(Type *Ty, const ExtraInfo &Info, ArrayRef<unsigned> OpIDs)
529       : Value(Ty, SubclassID), Opcode(Info.Opcode), Flags(Info.Flags),
530         NumOperands(OpIDs.size()), Extra(Info.Extra),
531         SrcElemTy(Info.SrcElemTy) {
532     std::uninitialized_copy(OpIDs.begin(), OpIDs.end(),
533                             getTrailingObjects<unsigned>());
534   }
535 
536   BitcodeConstant &operator=(const BitcodeConstant &) = delete;
537 
538 public:
539   static BitcodeConstant *create(BumpPtrAllocator &A, Type *Ty,
540                                  const ExtraInfo &Info,
541                                  ArrayRef<unsigned> OpIDs) {
542     void *Mem = A.Allocate(totalSizeToAlloc<unsigned>(OpIDs.size()),
543                            alignof(BitcodeConstant));
544     return new (Mem) BitcodeConstant(Ty, Info, OpIDs);
545   }
546 
547   static bool classof(const Value *V) { return V->getValueID() == SubclassID; }
548 
549   ArrayRef<unsigned> getOperandIDs() const {
550     return ArrayRef(getTrailingObjects<unsigned>(), NumOperands);
551   }
552 
553   std::optional<unsigned> getInRangeIndex() const {
554     assert(Opcode == Instruction::GetElementPtr);
555     if (Extra == (unsigned)-1)
556       return std::nullopt;
557     return Extra;
558   }
559 
560   const char *getOpcodeName() const {
561     return Instruction::getOpcodeName(Opcode);
562   }
563 };
564 
565 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer {
566   LLVMContext &Context;
567   Module *TheModule = nullptr;
568   // Next offset to start scanning for lazy parsing of function bodies.
569   uint64_t NextUnreadBit = 0;
570   // Last function offset found in the VST.
571   uint64_t LastFunctionBlockBit = 0;
572   bool SeenValueSymbolTable = false;
573   uint64_t VSTOffset = 0;
574 
575   std::vector<std::string> SectionTable;
576   std::vector<std::string> GCTable;
577 
578   std::vector<Type *> TypeList;
579   /// Track type IDs of contained types. Order is the same as the contained
580   /// types of a Type*. This is used during upgrades of typed pointer IR in
581   /// opaque pointer mode.
582   DenseMap<unsigned, SmallVector<unsigned, 1>> ContainedTypeIDs;
583   /// In some cases, we need to create a type ID for a type that was not
584   /// explicitly encoded in the bitcode, or we don't know about at the current
585   /// point. For example, a global may explicitly encode the value type ID, but
586   /// not have a type ID for the pointer to value type, for which we create a
587   /// virtual type ID instead. This map stores the new type ID that was created
588   /// for the given pair of Type and contained type ID.
589   DenseMap<std::pair<Type *, unsigned>, unsigned> VirtualTypeIDs;
590   DenseMap<Function *, unsigned> FunctionTypeIDs;
591   /// Allocator for BitcodeConstants. This should come before ValueList,
592   /// because the ValueList might hold ValueHandles to these constants, so
593   /// ValueList must be destroyed before Alloc.
594   BumpPtrAllocator Alloc;
595   BitcodeReaderValueList ValueList;
596   std::optional<MetadataLoader> MDLoader;
597   std::vector<Comdat *> ComdatList;
598   DenseSet<GlobalObject *> ImplicitComdatObjects;
599   SmallVector<Instruction *, 64> InstructionList;
600 
601   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits;
602   std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInits;
603 
604   struct FunctionOperandInfo {
605     Function *F;
606     unsigned PersonalityFn;
607     unsigned Prefix;
608     unsigned Prologue;
609   };
610   std::vector<FunctionOperandInfo> FunctionOperands;
611 
612   /// The set of attributes by index.  Index zero in the file is for null, and
613   /// is thus not represented here.  As such all indices are off by one.
614   std::vector<AttributeList> MAttributes;
615 
616   /// The set of attribute groups.
617   std::map<unsigned, AttributeList> MAttributeGroups;
618 
619   /// While parsing a function body, this is a list of the basic blocks for the
620   /// function.
621   std::vector<BasicBlock*> FunctionBBs;
622 
623   // When reading the module header, this list is populated with functions that
624   // have bodies later in the file.
625   std::vector<Function*> FunctionsWithBodies;
626 
627   // When intrinsic functions are encountered which require upgrading they are
628   // stored here with their replacement function.
629   using UpdatedIntrinsicMap = DenseMap<Function *, Function *>;
630   UpdatedIntrinsicMap UpgradedIntrinsics;
631 
632   // Several operations happen after the module header has been read, but
633   // before function bodies are processed. This keeps track of whether
634   // we've done this yet.
635   bool SeenFirstFunctionBody = false;
636 
637   /// When function bodies are initially scanned, this map contains info about
638   /// where to find deferred function body in the stream.
639   DenseMap<Function*, uint64_t> DeferredFunctionInfo;
640 
641   /// When Metadata block is initially scanned when parsing the module, we may
642   /// choose to defer parsing of the metadata. This vector contains info about
643   /// which Metadata blocks are deferred.
644   std::vector<uint64_t> DeferredMetadataInfo;
645 
646   /// These are basic blocks forward-referenced by block addresses.  They are
647   /// inserted lazily into functions when they're loaded.  The basic block ID is
648   /// its index into the vector.
649   DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs;
650   std::deque<Function *> BasicBlockFwdRefQueue;
651 
652   /// These are Functions that contain BlockAddresses which refer a different
653   /// Function. When parsing the different Function, queue Functions that refer
654   /// to the different Function. Those Functions must be materialized in order
655   /// to resolve their BlockAddress constants before the different Function
656   /// gets moved into another Module.
657   std::vector<Function *> BackwardRefFunctions;
658 
659   /// Indicates that we are using a new encoding for instruction operands where
660   /// most operands in the current FUNCTION_BLOCK are encoded relative to the
661   /// instruction number, for a more compact encoding.  Some instruction
662   /// operands are not relative to the instruction ID: basic block numbers, and
663   /// types. Once the old style function blocks have been phased out, we would
664   /// not need this flag.
665   bool UseRelativeIDs = false;
666 
667   /// True if all functions will be materialized, negating the need to process
668   /// (e.g.) blockaddress forward references.
669   bool WillMaterializeAllForwardRefs = false;
670 
671   bool StripDebugInfo = false;
672   TBAAVerifier TBAAVerifyHelper;
673 
674   std::vector<std::string> BundleTags;
675   SmallVector<SyncScope::ID, 8> SSIDs;
676 
677   std::optional<ValueTypeCallbackTy> ValueTypeCallback;
678 
679 public:
680   BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
681                 StringRef ProducerIdentification, LLVMContext &Context);
682 
683   Error materializeForwardReferencedFunctions();
684 
685   Error materialize(GlobalValue *GV) override;
686   Error materializeModule() override;
687   std::vector<StructType *> getIdentifiedStructTypes() const override;
688 
689   /// Main interface to parsing a bitcode buffer.
690   /// \returns true if an error occurred.
691   Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
692                          bool IsImporting, ParserCallbacks Callbacks = {});
693 
694   static uint64_t decodeSignRotatedValue(uint64_t V);
695 
696   /// Materialize any deferred Metadata block.
697   Error materializeMetadata() override;
698 
699   void setStripDebugInfo() override;
700 
701 private:
702   std::vector<StructType *> IdentifiedStructTypes;
703   StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
704   StructType *createIdentifiedStructType(LLVMContext &Context);
705 
706   static constexpr unsigned InvalidTypeID = ~0u;
707 
708   Type *getTypeByID(unsigned ID);
709   Type *getPtrElementTypeByID(unsigned ID);
710   unsigned getContainedTypeID(unsigned ID, unsigned Idx = 0);
711   unsigned getVirtualTypeID(Type *Ty, ArrayRef<unsigned> ContainedTypeIDs = {});
712 
713   void callValueTypeCallback(Value *F, unsigned TypeID);
714   Expected<Value *> materializeValue(unsigned ValID, BasicBlock *InsertBB);
715   Expected<Constant *> getValueForInitializer(unsigned ID);
716 
717   Value *getFnValueByID(unsigned ID, Type *Ty, unsigned TyID,
718                         BasicBlock *ConstExprInsertBB) {
719     if (Ty && Ty->isMetadataTy())
720       return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
721     return ValueList.getValueFwdRef(ID, Ty, TyID, ConstExprInsertBB);
722   }
723 
724   Metadata *getFnMetadataByID(unsigned ID) {
725     return MDLoader->getMetadataFwdRefOrLoad(ID);
726   }
727 
728   BasicBlock *getBasicBlock(unsigned ID) const {
729     if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
730     return FunctionBBs[ID];
731   }
732 
733   AttributeList getAttributes(unsigned i) const {
734     if (i-1 < MAttributes.size())
735       return MAttributes[i-1];
736     return AttributeList();
737   }
738 
739   /// Read a value/type pair out of the specified record from slot 'Slot'.
740   /// Increment Slot past the number of slots used in the record. Return true on
741   /// failure.
742   bool getValueTypePair(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
743                         unsigned InstNum, Value *&ResVal, unsigned &TypeID,
744                         BasicBlock *ConstExprInsertBB) {
745     if (Slot == Record.size()) return true;
746     unsigned ValNo = (unsigned)Record[Slot++];
747     // Adjust the ValNo, if it was encoded relative to the InstNum.
748     if (UseRelativeIDs)
749       ValNo = InstNum - ValNo;
750     if (ValNo < InstNum) {
751       // If this is not a forward reference, just return the value we already
752       // have.
753       TypeID = ValueList.getTypeID(ValNo);
754       ResVal = getFnValueByID(ValNo, nullptr, TypeID, ConstExprInsertBB);
755       assert((!ResVal || ResVal->getType() == getTypeByID(TypeID)) &&
756              "Incorrect type ID stored for value");
757       return ResVal == nullptr;
758     }
759     if (Slot == Record.size())
760       return true;
761 
762     TypeID = (unsigned)Record[Slot++];
763     ResVal = getFnValueByID(ValNo, getTypeByID(TypeID), TypeID,
764                             ConstExprInsertBB);
765     return ResVal == nullptr;
766   }
767 
768   /// Read a value out of the specified record from slot 'Slot'. Increment Slot
769   /// past the number of slots used by the value in the record. Return true if
770   /// there is an error.
771   bool popValue(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
772                 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal,
773                 BasicBlock *ConstExprInsertBB) {
774     if (getValue(Record, Slot, InstNum, Ty, TyID, ResVal, ConstExprInsertBB))
775       return true;
776     // All values currently take a single record slot.
777     ++Slot;
778     return false;
779   }
780 
781   /// Like popValue, but does not increment the Slot number.
782   bool getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
783                 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal,
784                 BasicBlock *ConstExprInsertBB) {
785     ResVal = getValue(Record, Slot, InstNum, Ty, TyID, ConstExprInsertBB);
786     return ResVal == nullptr;
787   }
788 
789   /// Version of getValue that returns ResVal directly, or 0 if there is an
790   /// error.
791   Value *getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
792                   unsigned InstNum, Type *Ty, unsigned TyID,
793                   BasicBlock *ConstExprInsertBB) {
794     if (Slot == Record.size()) return nullptr;
795     unsigned ValNo = (unsigned)Record[Slot];
796     // Adjust the ValNo, if it was encoded relative to the InstNum.
797     if (UseRelativeIDs)
798       ValNo = InstNum - ValNo;
799     return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB);
800   }
801 
802   /// Like getValue, but decodes signed VBRs.
803   Value *getValueSigned(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
804                         unsigned InstNum, Type *Ty, unsigned TyID,
805                         BasicBlock *ConstExprInsertBB) {
806     if (Slot == Record.size()) return nullptr;
807     unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
808     // Adjust the ValNo, if it was encoded relative to the InstNum.
809     if (UseRelativeIDs)
810       ValNo = InstNum - ValNo;
811     return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB);
812   }
813 
814   /// Upgrades old-style typeless byval/sret/inalloca attributes by adding the
815   /// corresponding argument's pointee type. Also upgrades intrinsics that now
816   /// require an elementtype attribute.
817   Error propagateAttributeTypes(CallBase *CB, ArrayRef<unsigned> ArgsTys);
818 
819   /// Converts alignment exponent (i.e. power of two (or zero)) to the
820   /// corresponding alignment to use. If alignment is too large, returns
821   /// a corresponding error code.
822   Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment);
823   Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
824   Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false,
825                     ParserCallbacks Callbacks = {});
826 
827   Error parseComdatRecord(ArrayRef<uint64_t> Record);
828   Error parseGlobalVarRecord(ArrayRef<uint64_t> Record);
829   Error parseFunctionRecord(ArrayRef<uint64_t> Record);
830   Error parseGlobalIndirectSymbolRecord(unsigned BitCode,
831                                         ArrayRef<uint64_t> Record);
832 
833   Error parseAttributeBlock();
834   Error parseAttributeGroupBlock();
835   Error parseTypeTable();
836   Error parseTypeTableBody();
837   Error parseOperandBundleTags();
838   Error parseSyncScopeNames();
839 
840   Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record,
841                                 unsigned NameIndex, Triple &TT);
842   void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F,
843                                ArrayRef<uint64_t> Record);
844   Error parseValueSymbolTable(uint64_t Offset = 0);
845   Error parseGlobalValueSymbolTable();
846   Error parseConstants();
847   Error rememberAndSkipFunctionBodies();
848   Error rememberAndSkipFunctionBody();
849   /// Save the positions of the Metadata blocks and skip parsing the blocks.
850   Error rememberAndSkipMetadata();
851   Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType);
852   Error parseFunctionBody(Function *F);
853   Error globalCleanup();
854   Error resolveGlobalAndIndirectSymbolInits();
855   Error parseUseLists();
856   Error findFunctionInStream(
857       Function *F,
858       DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
859 
860   SyncScope::ID getDecodedSyncScopeID(unsigned Val);
861 };
862 
863 /// Class to manage reading and parsing function summary index bitcode
864 /// files/sections.
865 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase {
866   /// The module index built during parsing.
867   ModuleSummaryIndex &TheIndex;
868 
869   /// Indicates whether we have encountered a global value summary section
870   /// yet during parsing.
871   bool SeenGlobalValSummary = false;
872 
873   /// Indicates whether we have already parsed the VST, used for error checking.
874   bool SeenValueSymbolTable = false;
875 
876   /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record.
877   /// Used to enable on-demand parsing of the VST.
878   uint64_t VSTOffset = 0;
879 
880   // Map to save ValueId to ValueInfo association that was recorded in the
881   // ValueSymbolTable. It is used after the VST is parsed to convert
882   // call graph edges read from the function summary from referencing
883   // callees by their ValueId to using the ValueInfo instead, which is how
884   // they are recorded in the summary index being built.
885   // We save a GUID which refers to the same global as the ValueInfo, but
886   // ignoring the linkage, i.e. for values other than local linkage they are
887   // identical (this is the second tuple member).
888   // The third tuple member is the real GUID of the ValueInfo.
889   DenseMap<unsigned,
890            std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID>>
891       ValueIdToValueInfoMap;
892 
893   /// Map populated during module path string table parsing, from the
894   /// module ID to a string reference owned by the index's module
895   /// path string table, used to correlate with combined index
896   /// summary records.
897   DenseMap<uint64_t, StringRef> ModuleIdMap;
898 
899   /// Original source file name recorded in a bitcode record.
900   std::string SourceFileName;
901 
902   /// The string identifier given to this module by the client, normally the
903   /// path to the bitcode file.
904   StringRef ModulePath;
905 
906   /// For per-module summary indexes, the unique numerical identifier given to
907   /// this module by the client.
908   unsigned ModuleId;
909 
910   /// Callback to ask whether a symbol is the prevailing copy when invoked
911   /// during combined index building.
912   std::function<bool(GlobalValue::GUID)> IsPrevailing;
913 
914   /// Saves the stack ids from the STACK_IDS record to consult when adding stack
915   /// ids from the lists in the callsite and alloc entries to the index.
916   std::vector<uint64_t> StackIds;
917 
918 public:
919   ModuleSummaryIndexBitcodeReader(
920       BitstreamCursor Stream, StringRef Strtab, ModuleSummaryIndex &TheIndex,
921       StringRef ModulePath, unsigned ModuleId,
922       std::function<bool(GlobalValue::GUID)> IsPrevailing = nullptr);
923 
924   Error parseModule();
925 
926 private:
927   void setValueGUID(uint64_t ValueID, StringRef ValueName,
928                     GlobalValue::LinkageTypes Linkage,
929                     StringRef SourceFileName);
930   Error parseValueSymbolTable(
931       uint64_t Offset,
932       DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap);
933   std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record);
934   std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record,
935                                                     bool IsOldProfileFormat,
936                                                     bool HasProfile,
937                                                     bool HasRelBF);
938   Error parseEntireSummary(unsigned ID);
939   Error parseModuleStringTable();
940   void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record);
941   void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot,
942                                        TypeIdCompatibleVtableInfo &TypeId);
943   std::vector<FunctionSummary::ParamAccess>
944   parseParamAccesses(ArrayRef<uint64_t> Record);
945 
946   template <bool AllowNullValueInfo = false>
947   std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID>
948   getValueInfoFromValueId(unsigned ValueId);
949 
950   void addThisModule();
951   ModuleSummaryIndex::ModuleInfo *getThisModule();
952 };
953 
954 } // end anonymous namespace
955 
956 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx,
957                                                     Error Err) {
958   if (Err) {
959     std::error_code EC;
960     handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) {
961       EC = EIB.convertToErrorCode();
962       Ctx.emitError(EIB.message());
963     });
964     return EC;
965   }
966   return std::error_code();
967 }
968 
969 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
970                              StringRef ProducerIdentification,
971                              LLVMContext &Context)
972     : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context),
973       ValueList(this->Stream.SizeInBytes(),
974                 [this](unsigned ValID, BasicBlock *InsertBB) {
975                   return materializeValue(ValID, InsertBB);
976                 }) {
977   this->ProducerIdentification = std::string(ProducerIdentification);
978 }
979 
980 Error BitcodeReader::materializeForwardReferencedFunctions() {
981   if (WillMaterializeAllForwardRefs)
982     return Error::success();
983 
984   // Prevent recursion.
985   WillMaterializeAllForwardRefs = true;
986 
987   while (!BasicBlockFwdRefQueue.empty()) {
988     Function *F = BasicBlockFwdRefQueue.front();
989     BasicBlockFwdRefQueue.pop_front();
990     assert(F && "Expected valid function");
991     if (!BasicBlockFwdRefs.count(F))
992       // Already materialized.
993       continue;
994 
995     // Check for a function that isn't materializable to prevent an infinite
996     // loop.  When parsing a blockaddress stored in a global variable, there
997     // isn't a trivial way to check if a function will have a body without a
998     // linear search through FunctionsWithBodies, so just check it here.
999     if (!F->isMaterializable())
1000       return error("Never resolved function from blockaddress");
1001 
1002     // Try to materialize F.
1003     if (Error Err = materialize(F))
1004       return Err;
1005   }
1006   assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
1007 
1008   for (Function *F : BackwardRefFunctions)
1009     if (Error Err = materialize(F))
1010       return Err;
1011   BackwardRefFunctions.clear();
1012 
1013   // Reset state.
1014   WillMaterializeAllForwardRefs = false;
1015   return Error::success();
1016 }
1017 
1018 //===----------------------------------------------------------------------===//
1019 //  Helper functions to implement forward reference resolution, etc.
1020 //===----------------------------------------------------------------------===//
1021 
1022 static bool hasImplicitComdat(size_t Val) {
1023   switch (Val) {
1024   default:
1025     return false;
1026   case 1:  // Old WeakAnyLinkage
1027   case 4:  // Old LinkOnceAnyLinkage
1028   case 10: // Old WeakODRLinkage
1029   case 11: // Old LinkOnceODRLinkage
1030     return true;
1031   }
1032 }
1033 
1034 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
1035   switch (Val) {
1036   default: // Map unknown/new linkages to external
1037   case 0:
1038     return GlobalValue::ExternalLinkage;
1039   case 2:
1040     return GlobalValue::AppendingLinkage;
1041   case 3:
1042     return GlobalValue::InternalLinkage;
1043   case 5:
1044     return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
1045   case 6:
1046     return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
1047   case 7:
1048     return GlobalValue::ExternalWeakLinkage;
1049   case 8:
1050     return GlobalValue::CommonLinkage;
1051   case 9:
1052     return GlobalValue::PrivateLinkage;
1053   case 12:
1054     return GlobalValue::AvailableExternallyLinkage;
1055   case 13:
1056     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
1057   case 14:
1058     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
1059   case 15:
1060     return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
1061   case 1: // Old value with implicit comdat.
1062   case 16:
1063     return GlobalValue::WeakAnyLinkage;
1064   case 10: // Old value with implicit comdat.
1065   case 17:
1066     return GlobalValue::WeakODRLinkage;
1067   case 4: // Old value with implicit comdat.
1068   case 18:
1069     return GlobalValue::LinkOnceAnyLinkage;
1070   case 11: // Old value with implicit comdat.
1071   case 19:
1072     return GlobalValue::LinkOnceODRLinkage;
1073   }
1074 }
1075 
1076 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) {
1077   FunctionSummary::FFlags Flags;
1078   Flags.ReadNone = RawFlags & 0x1;
1079   Flags.ReadOnly = (RawFlags >> 1) & 0x1;
1080   Flags.NoRecurse = (RawFlags >> 2) & 0x1;
1081   Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1;
1082   Flags.NoInline = (RawFlags >> 4) & 0x1;
1083   Flags.AlwaysInline = (RawFlags >> 5) & 0x1;
1084   Flags.NoUnwind = (RawFlags >> 6) & 0x1;
1085   Flags.MayThrow = (RawFlags >> 7) & 0x1;
1086   Flags.HasUnknownCall = (RawFlags >> 8) & 0x1;
1087   Flags.MustBeUnreachable = (RawFlags >> 9) & 0x1;
1088   return Flags;
1089 }
1090 
1091 // Decode the flags for GlobalValue in the summary. The bits for each attribute:
1092 //
1093 // linkage: [0,4), notEligibleToImport: 4, live: 5, local: 6, canAutoHide: 7,
1094 // visibility: [8, 10).
1095 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags,
1096                                                             uint64_t Version) {
1097   // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage
1098   // like getDecodedLinkage() above. Any future change to the linkage enum and
1099   // to getDecodedLinkage() will need to be taken into account here as above.
1100   auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits
1101   auto Visibility = GlobalValue::VisibilityTypes((RawFlags >> 8) & 3); // 2 bits
1102   RawFlags = RawFlags >> 4;
1103   bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3;
1104   // The Live flag wasn't introduced until version 3. For dead stripping
1105   // to work correctly on earlier versions, we must conservatively treat all
1106   // values as live.
1107   bool Live = (RawFlags & 0x2) || Version < 3;
1108   bool Local = (RawFlags & 0x4);
1109   bool AutoHide = (RawFlags & 0x8);
1110 
1111   return GlobalValueSummary::GVFlags(Linkage, Visibility, NotEligibleToImport,
1112                                      Live, Local, AutoHide);
1113 }
1114 
1115 // Decode the flags for GlobalVariable in the summary
1116 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) {
1117   return GlobalVarSummary::GVarFlags(
1118       (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false,
1119       (RawFlags & 0x4) ? true : false,
1120       (GlobalObject::VCallVisibility)(RawFlags >> 3));
1121 }
1122 
1123 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) {
1124   switch (Val) {
1125   default: // Map unknown visibilities to default.
1126   case 0: return GlobalValue::DefaultVisibility;
1127   case 1: return GlobalValue::HiddenVisibility;
1128   case 2: return GlobalValue::ProtectedVisibility;
1129   }
1130 }
1131 
1132 static GlobalValue::DLLStorageClassTypes
1133 getDecodedDLLStorageClass(unsigned Val) {
1134   switch (Val) {
1135   default: // Map unknown values to default.
1136   case 0: return GlobalValue::DefaultStorageClass;
1137   case 1: return GlobalValue::DLLImportStorageClass;
1138   case 2: return GlobalValue::DLLExportStorageClass;
1139   }
1140 }
1141 
1142 static bool getDecodedDSOLocal(unsigned Val) {
1143   switch(Val) {
1144   default: // Map unknown values to preemptable.
1145   case 0:  return false;
1146   case 1:  return true;
1147   }
1148 }
1149 
1150 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) {
1151   switch (Val) {
1152     case 0: return GlobalVariable::NotThreadLocal;
1153     default: // Map unknown non-zero value to general dynamic.
1154     case 1: return GlobalVariable::GeneralDynamicTLSModel;
1155     case 2: return GlobalVariable::LocalDynamicTLSModel;
1156     case 3: return GlobalVariable::InitialExecTLSModel;
1157     case 4: return GlobalVariable::LocalExecTLSModel;
1158   }
1159 }
1160 
1161 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) {
1162   switch (Val) {
1163     default: // Map unknown to UnnamedAddr::None.
1164     case 0: return GlobalVariable::UnnamedAddr::None;
1165     case 1: return GlobalVariable::UnnamedAddr::Global;
1166     case 2: return GlobalVariable::UnnamedAddr::Local;
1167   }
1168 }
1169 
1170 static int getDecodedCastOpcode(unsigned Val) {
1171   switch (Val) {
1172   default: return -1;
1173   case bitc::CAST_TRUNC   : return Instruction::Trunc;
1174   case bitc::CAST_ZEXT    : return Instruction::ZExt;
1175   case bitc::CAST_SEXT    : return Instruction::SExt;
1176   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
1177   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
1178   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
1179   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
1180   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
1181   case bitc::CAST_FPEXT   : return Instruction::FPExt;
1182   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
1183   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
1184   case bitc::CAST_BITCAST : return Instruction::BitCast;
1185   case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
1186   }
1187 }
1188 
1189 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) {
1190   bool IsFP = Ty->isFPOrFPVectorTy();
1191   // UnOps are only valid for int/fp or vector of int/fp types
1192   if (!IsFP && !Ty->isIntOrIntVectorTy())
1193     return -1;
1194 
1195   switch (Val) {
1196   default:
1197     return -1;
1198   case bitc::UNOP_FNEG:
1199     return IsFP ? Instruction::FNeg : -1;
1200   }
1201 }
1202 
1203 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
1204   bool IsFP = Ty->isFPOrFPVectorTy();
1205   // BinOps are only valid for int/fp or vector of int/fp types
1206   if (!IsFP && !Ty->isIntOrIntVectorTy())
1207     return -1;
1208 
1209   switch (Val) {
1210   default:
1211     return -1;
1212   case bitc::BINOP_ADD:
1213     return IsFP ? Instruction::FAdd : Instruction::Add;
1214   case bitc::BINOP_SUB:
1215     return IsFP ? Instruction::FSub : Instruction::Sub;
1216   case bitc::BINOP_MUL:
1217     return IsFP ? Instruction::FMul : Instruction::Mul;
1218   case bitc::BINOP_UDIV:
1219     return IsFP ? -1 : Instruction::UDiv;
1220   case bitc::BINOP_SDIV:
1221     return IsFP ? Instruction::FDiv : Instruction::SDiv;
1222   case bitc::BINOP_UREM:
1223     return IsFP ? -1 : Instruction::URem;
1224   case bitc::BINOP_SREM:
1225     return IsFP ? Instruction::FRem : Instruction::SRem;
1226   case bitc::BINOP_SHL:
1227     return IsFP ? -1 : Instruction::Shl;
1228   case bitc::BINOP_LSHR:
1229     return IsFP ? -1 : Instruction::LShr;
1230   case bitc::BINOP_ASHR:
1231     return IsFP ? -1 : Instruction::AShr;
1232   case bitc::BINOP_AND:
1233     return IsFP ? -1 : Instruction::And;
1234   case bitc::BINOP_OR:
1235     return IsFP ? -1 : Instruction::Or;
1236   case bitc::BINOP_XOR:
1237     return IsFP ? -1 : Instruction::Xor;
1238   }
1239 }
1240 
1241 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) {
1242   switch (Val) {
1243   default: return AtomicRMWInst::BAD_BINOP;
1244   case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
1245   case bitc::RMW_ADD: return AtomicRMWInst::Add;
1246   case bitc::RMW_SUB: return AtomicRMWInst::Sub;
1247   case bitc::RMW_AND: return AtomicRMWInst::And;
1248   case bitc::RMW_NAND: return AtomicRMWInst::Nand;
1249   case bitc::RMW_OR: return AtomicRMWInst::Or;
1250   case bitc::RMW_XOR: return AtomicRMWInst::Xor;
1251   case bitc::RMW_MAX: return AtomicRMWInst::Max;
1252   case bitc::RMW_MIN: return AtomicRMWInst::Min;
1253   case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
1254   case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
1255   case bitc::RMW_FADD: return AtomicRMWInst::FAdd;
1256   case bitc::RMW_FSUB: return AtomicRMWInst::FSub;
1257   case bitc::RMW_FMAX: return AtomicRMWInst::FMax;
1258   case bitc::RMW_FMIN: return AtomicRMWInst::FMin;
1259   case bitc::RMW_UINC_WRAP:
1260     return AtomicRMWInst::UIncWrap;
1261   case bitc::RMW_UDEC_WRAP:
1262     return AtomicRMWInst::UDecWrap;
1263   }
1264 }
1265 
1266 static AtomicOrdering getDecodedOrdering(unsigned Val) {
1267   switch (Val) {
1268   case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic;
1269   case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered;
1270   case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic;
1271   case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire;
1272   case bitc::ORDERING_RELEASE: return AtomicOrdering::Release;
1273   case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease;
1274   default: // Map unknown orderings to sequentially-consistent.
1275   case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent;
1276   }
1277 }
1278 
1279 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
1280   switch (Val) {
1281   default: // Map unknown selection kinds to any.
1282   case bitc::COMDAT_SELECTION_KIND_ANY:
1283     return Comdat::Any;
1284   case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
1285     return Comdat::ExactMatch;
1286   case bitc::COMDAT_SELECTION_KIND_LARGEST:
1287     return Comdat::Largest;
1288   case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
1289     return Comdat::NoDeduplicate;
1290   case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
1291     return Comdat::SameSize;
1292   }
1293 }
1294 
1295 static FastMathFlags getDecodedFastMathFlags(unsigned Val) {
1296   FastMathFlags FMF;
1297   if (0 != (Val & bitc::UnsafeAlgebra))
1298     FMF.setFast();
1299   if (0 != (Val & bitc::AllowReassoc))
1300     FMF.setAllowReassoc();
1301   if (0 != (Val & bitc::NoNaNs))
1302     FMF.setNoNaNs();
1303   if (0 != (Val & bitc::NoInfs))
1304     FMF.setNoInfs();
1305   if (0 != (Val & bitc::NoSignedZeros))
1306     FMF.setNoSignedZeros();
1307   if (0 != (Val & bitc::AllowReciprocal))
1308     FMF.setAllowReciprocal();
1309   if (0 != (Val & bitc::AllowContract))
1310     FMF.setAllowContract(true);
1311   if (0 != (Val & bitc::ApproxFunc))
1312     FMF.setApproxFunc();
1313   return FMF;
1314 }
1315 
1316 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) {
1317   // A GlobalValue with local linkage cannot have a DLL storage class.
1318   if (GV->hasLocalLinkage())
1319     return;
1320   switch (Val) {
1321   case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
1322   case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
1323   }
1324 }
1325 
1326 Type *BitcodeReader::getTypeByID(unsigned ID) {
1327   // The type table size is always specified correctly.
1328   if (ID >= TypeList.size())
1329     return nullptr;
1330 
1331   if (Type *Ty = TypeList[ID])
1332     return Ty;
1333 
1334   // If we have a forward reference, the only possible case is when it is to a
1335   // named struct.  Just create a placeholder for now.
1336   return TypeList[ID] = createIdentifiedStructType(Context);
1337 }
1338 
1339 unsigned BitcodeReader::getContainedTypeID(unsigned ID, unsigned Idx) {
1340   auto It = ContainedTypeIDs.find(ID);
1341   if (It == ContainedTypeIDs.end())
1342     return InvalidTypeID;
1343 
1344   if (Idx >= It->second.size())
1345     return InvalidTypeID;
1346 
1347   return It->second[Idx];
1348 }
1349 
1350 Type *BitcodeReader::getPtrElementTypeByID(unsigned ID) {
1351   if (ID >= TypeList.size())
1352     return nullptr;
1353 
1354   Type *Ty = TypeList[ID];
1355   if (!Ty->isPointerTy())
1356     return nullptr;
1357 
1358   Type *ElemTy = getTypeByID(getContainedTypeID(ID, 0));
1359   if (!ElemTy)
1360     return nullptr;
1361 
1362   assert(cast<PointerType>(Ty)->isOpaqueOrPointeeTypeMatches(ElemTy) &&
1363          "Incorrect element type");
1364   return ElemTy;
1365 }
1366 
1367 unsigned BitcodeReader::getVirtualTypeID(Type *Ty,
1368                                          ArrayRef<unsigned> ChildTypeIDs) {
1369   unsigned ChildTypeID = ChildTypeIDs.empty() ? InvalidTypeID : ChildTypeIDs[0];
1370   auto CacheKey = std::make_pair(Ty, ChildTypeID);
1371   auto It = VirtualTypeIDs.find(CacheKey);
1372   if (It != VirtualTypeIDs.end()) {
1373     // The cmpxchg return value is the only place we need more than one
1374     // contained type ID, however the second one will always be the same (i1),
1375     // so we don't need to include it in the cache key. This asserts that the
1376     // contained types are indeed as expected and there are no collisions.
1377     assert((ChildTypeIDs.empty() ||
1378             ContainedTypeIDs[It->second] == ChildTypeIDs) &&
1379            "Incorrect cached contained type IDs");
1380     return It->second;
1381   }
1382 
1383 #ifndef NDEBUG
1384   if (!Ty->isOpaquePointerTy()) {
1385     assert(Ty->getNumContainedTypes() == ChildTypeIDs.size() &&
1386            "Wrong number of contained types");
1387     for (auto Pair : zip(Ty->subtypes(), ChildTypeIDs)) {
1388       assert(std::get<0>(Pair) == getTypeByID(std::get<1>(Pair)) &&
1389              "Incorrect contained type ID");
1390     }
1391   }
1392 #endif
1393 
1394   unsigned TypeID = TypeList.size();
1395   TypeList.push_back(Ty);
1396   if (!ChildTypeIDs.empty())
1397     append_range(ContainedTypeIDs[TypeID], ChildTypeIDs);
1398   VirtualTypeIDs.insert({CacheKey, TypeID});
1399   return TypeID;
1400 }
1401 
1402 static bool isConstExprSupported(const BitcodeConstant *BC) {
1403   uint8_t Opcode = BC->Opcode;
1404 
1405   // These are not real constant expressions, always consider them supported.
1406   if (Opcode >= BitcodeConstant::FirstSpecialOpcode)
1407     return true;
1408 
1409   // If -expand-constant-exprs is set, we want to consider all expressions
1410   // as unsupported.
1411   if (ExpandConstantExprs)
1412     return false;
1413 
1414   if (Instruction::isBinaryOp(Opcode))
1415     return ConstantExpr::isSupportedBinOp(Opcode);
1416 
1417   if (Opcode == Instruction::GetElementPtr)
1418     return ConstantExpr::isSupportedGetElementPtr(BC->SrcElemTy);
1419 
1420   switch (Opcode) {
1421   case Instruction::FNeg:
1422   case Instruction::Select:
1423     return false;
1424   default:
1425     return true;
1426   }
1427 }
1428 
1429 Expected<Value *> BitcodeReader::materializeValue(unsigned StartValID,
1430                                                   BasicBlock *InsertBB) {
1431   // Quickly handle the case where there is no BitcodeConstant to resolve.
1432   if (StartValID < ValueList.size() && ValueList[StartValID] &&
1433       !isa<BitcodeConstant>(ValueList[StartValID]))
1434     return ValueList[StartValID];
1435 
1436   SmallDenseMap<unsigned, Value *> MaterializedValues;
1437   SmallVector<unsigned> Worklist;
1438   Worklist.push_back(StartValID);
1439   while (!Worklist.empty()) {
1440     unsigned ValID = Worklist.back();
1441     if (MaterializedValues.count(ValID)) {
1442       // Duplicate expression that was already handled.
1443       Worklist.pop_back();
1444       continue;
1445     }
1446 
1447     if (ValID >= ValueList.size() || !ValueList[ValID])
1448       return error("Invalid value ID");
1449 
1450     Value *V = ValueList[ValID];
1451     auto *BC = dyn_cast<BitcodeConstant>(V);
1452     if (!BC) {
1453       MaterializedValues.insert({ValID, V});
1454       Worklist.pop_back();
1455       continue;
1456     }
1457 
1458     // Iterate in reverse, so values will get popped from the worklist in
1459     // expected order.
1460     SmallVector<Value *> Ops;
1461     for (unsigned OpID : reverse(BC->getOperandIDs())) {
1462       auto It = MaterializedValues.find(OpID);
1463       if (It != MaterializedValues.end())
1464         Ops.push_back(It->second);
1465       else
1466         Worklist.push_back(OpID);
1467     }
1468 
1469     // Some expressions have not been resolved yet, handle them first and then
1470     // revisit this one.
1471     if (Ops.size() != BC->getOperandIDs().size())
1472       continue;
1473     std::reverse(Ops.begin(), Ops.end());
1474 
1475     SmallVector<Constant *> ConstOps;
1476     for (Value *Op : Ops)
1477       if (auto *C = dyn_cast<Constant>(Op))
1478         ConstOps.push_back(C);
1479 
1480     // Materialize as constant expression if possible.
1481     if (isConstExprSupported(BC) && ConstOps.size() == Ops.size()) {
1482       Constant *C;
1483       if (Instruction::isCast(BC->Opcode)) {
1484         C = UpgradeBitCastExpr(BC->Opcode, ConstOps[0], BC->getType());
1485         if (!C)
1486           C = ConstantExpr::getCast(BC->Opcode, ConstOps[0], BC->getType());
1487       } else if (Instruction::isBinaryOp(BC->Opcode)) {
1488         C = ConstantExpr::get(BC->Opcode, ConstOps[0], ConstOps[1], BC->Flags);
1489       } else {
1490         switch (BC->Opcode) {
1491         case BitcodeConstant::NoCFIOpcode: {
1492           auto *GV = dyn_cast<GlobalValue>(ConstOps[0]);
1493           if (!GV)
1494             return error("no_cfi operand must be GlobalValue");
1495           C = NoCFIValue::get(GV);
1496           break;
1497         }
1498         case BitcodeConstant::DSOLocalEquivalentOpcode: {
1499           auto *GV = dyn_cast<GlobalValue>(ConstOps[0]);
1500           if (!GV)
1501             return error("dso_local operand must be GlobalValue");
1502           C = DSOLocalEquivalent::get(GV);
1503           break;
1504         }
1505         case BitcodeConstant::BlockAddressOpcode: {
1506           Function *Fn = dyn_cast<Function>(ConstOps[0]);
1507           if (!Fn)
1508             return error("blockaddress operand must be a function");
1509 
1510           // If the function is already parsed we can insert the block address
1511           // right away.
1512           BasicBlock *BB;
1513           unsigned BBID = BC->Extra;
1514           if (!BBID)
1515             // Invalid reference to entry block.
1516             return error("Invalid ID");
1517           if (!Fn->empty()) {
1518             Function::iterator BBI = Fn->begin(), BBE = Fn->end();
1519             for (size_t I = 0, E = BBID; I != E; ++I) {
1520               if (BBI == BBE)
1521                 return error("Invalid ID");
1522               ++BBI;
1523             }
1524             BB = &*BBI;
1525           } else {
1526             // Otherwise insert a placeholder and remember it so it can be
1527             // inserted when the function is parsed.
1528             auto &FwdBBs = BasicBlockFwdRefs[Fn];
1529             if (FwdBBs.empty())
1530               BasicBlockFwdRefQueue.push_back(Fn);
1531             if (FwdBBs.size() < BBID + 1)
1532               FwdBBs.resize(BBID + 1);
1533             if (!FwdBBs[BBID])
1534               FwdBBs[BBID] = BasicBlock::Create(Context);
1535             BB = FwdBBs[BBID];
1536           }
1537           C = BlockAddress::get(Fn, BB);
1538           break;
1539         }
1540         case BitcodeConstant::ConstantStructOpcode:
1541           C = ConstantStruct::get(cast<StructType>(BC->getType()), ConstOps);
1542           break;
1543         case BitcodeConstant::ConstantArrayOpcode:
1544           C = ConstantArray::get(cast<ArrayType>(BC->getType()), ConstOps);
1545           break;
1546         case BitcodeConstant::ConstantVectorOpcode:
1547           C = ConstantVector::get(ConstOps);
1548           break;
1549         case Instruction::ICmp:
1550         case Instruction::FCmp:
1551           C = ConstantExpr::getCompare(BC->Flags, ConstOps[0], ConstOps[1]);
1552           break;
1553         case Instruction::GetElementPtr:
1554           C = ConstantExpr::getGetElementPtr(BC->SrcElemTy, ConstOps[0],
1555                                              ArrayRef(ConstOps).drop_front(),
1556                                              BC->Flags, BC->getInRangeIndex());
1557           break;
1558         case Instruction::ExtractElement:
1559           C = ConstantExpr::getExtractElement(ConstOps[0], ConstOps[1]);
1560           break;
1561         case Instruction::InsertElement:
1562           C = ConstantExpr::getInsertElement(ConstOps[0], ConstOps[1],
1563                                              ConstOps[2]);
1564           break;
1565         case Instruction::ShuffleVector: {
1566           SmallVector<int, 16> Mask;
1567           ShuffleVectorInst::getShuffleMask(ConstOps[2], Mask);
1568           C = ConstantExpr::getShuffleVector(ConstOps[0], ConstOps[1], Mask);
1569           break;
1570         }
1571         default:
1572           llvm_unreachable("Unhandled bitcode constant");
1573         }
1574       }
1575 
1576       // Cache resolved constant.
1577       ValueList.replaceValueWithoutRAUW(ValID, C);
1578       MaterializedValues.insert({ValID, C});
1579       Worklist.pop_back();
1580       continue;
1581     }
1582 
1583     if (!InsertBB)
1584       return error(Twine("Value referenced by initializer is an unsupported "
1585                          "constant expression of type ") +
1586                    BC->getOpcodeName());
1587 
1588     // Materialize as instructions if necessary.
1589     Instruction *I;
1590     if (Instruction::isCast(BC->Opcode)) {
1591       I = CastInst::Create((Instruction::CastOps)BC->Opcode, Ops[0],
1592                            BC->getType(), "constexpr", InsertBB);
1593     } else if (Instruction::isUnaryOp(BC->Opcode)) {
1594       I = UnaryOperator::Create((Instruction::UnaryOps)BC->Opcode, Ops[0],
1595                                 "constexpr", InsertBB);
1596     } else if (Instruction::isBinaryOp(BC->Opcode)) {
1597       I = BinaryOperator::Create((Instruction::BinaryOps)BC->Opcode, Ops[0],
1598                                  Ops[1], "constexpr", InsertBB);
1599       if (isa<OverflowingBinaryOperator>(I)) {
1600         if (BC->Flags & OverflowingBinaryOperator::NoSignedWrap)
1601           I->setHasNoSignedWrap();
1602         if (BC->Flags & OverflowingBinaryOperator::NoUnsignedWrap)
1603           I->setHasNoUnsignedWrap();
1604       }
1605       if (isa<PossiblyExactOperator>(I) &&
1606           (BC->Flags & PossiblyExactOperator::IsExact))
1607         I->setIsExact();
1608     } else {
1609       switch (BC->Opcode) {
1610       case BitcodeConstant::ConstantVectorOpcode: {
1611         Type *IdxTy = Type::getInt32Ty(BC->getContext());
1612         Value *V = PoisonValue::get(BC->getType());
1613         for (auto Pair : enumerate(Ops)) {
1614           Value *Idx = ConstantInt::get(IdxTy, Pair.index());
1615           V = InsertElementInst::Create(V, Pair.value(), Idx, "constexpr.ins",
1616                                         InsertBB);
1617         }
1618         I = cast<Instruction>(V);
1619         break;
1620       }
1621       case BitcodeConstant::ConstantStructOpcode:
1622       case BitcodeConstant::ConstantArrayOpcode: {
1623         Value *V = PoisonValue::get(BC->getType());
1624         for (auto Pair : enumerate(Ops))
1625           V = InsertValueInst::Create(V, Pair.value(), Pair.index(),
1626                                       "constexpr.ins", InsertBB);
1627         I = cast<Instruction>(V);
1628         break;
1629       }
1630       case Instruction::ICmp:
1631       case Instruction::FCmp:
1632         I = CmpInst::Create((Instruction::OtherOps)BC->Opcode,
1633                             (CmpInst::Predicate)BC->Flags, Ops[0], Ops[1],
1634                             "constexpr", InsertBB);
1635         break;
1636       case Instruction::GetElementPtr:
1637         I = GetElementPtrInst::Create(BC->SrcElemTy, Ops[0],
1638                                       ArrayRef(Ops).drop_front(), "constexpr",
1639                                       InsertBB);
1640         if (BC->Flags)
1641           cast<GetElementPtrInst>(I)->setIsInBounds();
1642         break;
1643       case Instruction::Select:
1644         I = SelectInst::Create(Ops[0], Ops[1], Ops[2], "constexpr", InsertBB);
1645         break;
1646       case Instruction::ExtractElement:
1647         I = ExtractElementInst::Create(Ops[0], Ops[1], "constexpr", InsertBB);
1648         break;
1649       case Instruction::InsertElement:
1650         I = InsertElementInst::Create(Ops[0], Ops[1], Ops[2], "constexpr",
1651                                       InsertBB);
1652         break;
1653       case Instruction::ShuffleVector:
1654         I = new ShuffleVectorInst(Ops[0], Ops[1], Ops[2], "constexpr",
1655                                   InsertBB);
1656         break;
1657       default:
1658         llvm_unreachable("Unhandled bitcode constant");
1659       }
1660     }
1661 
1662     MaterializedValues.insert({ValID, I});
1663     Worklist.pop_back();
1664   }
1665 
1666   return MaterializedValues[StartValID];
1667 }
1668 
1669 Expected<Constant *> BitcodeReader::getValueForInitializer(unsigned ID) {
1670   Expected<Value *> MaybeV = materializeValue(ID, /* InsertBB */ nullptr);
1671   if (!MaybeV)
1672     return MaybeV.takeError();
1673 
1674   // Result must be Constant if InsertBB is nullptr.
1675   return cast<Constant>(MaybeV.get());
1676 }
1677 
1678 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
1679                                                       StringRef Name) {
1680   auto *Ret = StructType::create(Context, Name);
1681   IdentifiedStructTypes.push_back(Ret);
1682   return Ret;
1683 }
1684 
1685 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
1686   auto *Ret = StructType::create(Context);
1687   IdentifiedStructTypes.push_back(Ret);
1688   return Ret;
1689 }
1690 
1691 //===----------------------------------------------------------------------===//
1692 //  Functions for parsing blocks from the bitcode file
1693 //===----------------------------------------------------------------------===//
1694 
1695 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) {
1696   switch (Val) {
1697   case Attribute::EndAttrKinds:
1698   case Attribute::EmptyKey:
1699   case Attribute::TombstoneKey:
1700     llvm_unreachable("Synthetic enumerators which should never get here");
1701 
1702   case Attribute::None:            return 0;
1703   case Attribute::ZExt:            return 1 << 0;
1704   case Attribute::SExt:            return 1 << 1;
1705   case Attribute::NoReturn:        return 1 << 2;
1706   case Attribute::InReg:           return 1 << 3;
1707   case Attribute::StructRet:       return 1 << 4;
1708   case Attribute::NoUnwind:        return 1 << 5;
1709   case Attribute::NoAlias:         return 1 << 6;
1710   case Attribute::ByVal:           return 1 << 7;
1711   case Attribute::Nest:            return 1 << 8;
1712   case Attribute::ReadNone:        return 1 << 9;
1713   case Attribute::ReadOnly:        return 1 << 10;
1714   case Attribute::NoInline:        return 1 << 11;
1715   case Attribute::AlwaysInline:    return 1 << 12;
1716   case Attribute::OptimizeForSize: return 1 << 13;
1717   case Attribute::StackProtect:    return 1 << 14;
1718   case Attribute::StackProtectReq: return 1 << 15;
1719   case Attribute::Alignment:       return 31 << 16;
1720   case Attribute::NoCapture:       return 1 << 21;
1721   case Attribute::NoRedZone:       return 1 << 22;
1722   case Attribute::NoImplicitFloat: return 1 << 23;
1723   case Attribute::Naked:           return 1 << 24;
1724   case Attribute::InlineHint:      return 1 << 25;
1725   case Attribute::StackAlignment:  return 7 << 26;
1726   case Attribute::ReturnsTwice:    return 1 << 29;
1727   case Attribute::UWTable:         return 1 << 30;
1728   case Attribute::NonLazyBind:     return 1U << 31;
1729   case Attribute::SanitizeAddress: return 1ULL << 32;
1730   case Attribute::MinSize:         return 1ULL << 33;
1731   case Attribute::NoDuplicate:     return 1ULL << 34;
1732   case Attribute::StackProtectStrong: return 1ULL << 35;
1733   case Attribute::SanitizeThread:  return 1ULL << 36;
1734   case Attribute::SanitizeMemory:  return 1ULL << 37;
1735   case Attribute::NoBuiltin:       return 1ULL << 38;
1736   case Attribute::Returned:        return 1ULL << 39;
1737   case Attribute::Cold:            return 1ULL << 40;
1738   case Attribute::Builtin:         return 1ULL << 41;
1739   case Attribute::OptimizeNone:    return 1ULL << 42;
1740   case Attribute::InAlloca:        return 1ULL << 43;
1741   case Attribute::NonNull:         return 1ULL << 44;
1742   case Attribute::JumpTable:       return 1ULL << 45;
1743   case Attribute::Convergent:      return 1ULL << 46;
1744   case Attribute::SafeStack:       return 1ULL << 47;
1745   case Attribute::NoRecurse:       return 1ULL << 48;
1746   // 1ULL << 49 is InaccessibleMemOnly, which is upgraded separately.
1747   // 1ULL << 50 is InaccessibleMemOrArgMemOnly, which is upgraded separately.
1748   case Attribute::SwiftSelf:       return 1ULL << 51;
1749   case Attribute::SwiftError:      return 1ULL << 52;
1750   case Attribute::WriteOnly:       return 1ULL << 53;
1751   case Attribute::Speculatable:    return 1ULL << 54;
1752   case Attribute::StrictFP:        return 1ULL << 55;
1753   case Attribute::SanitizeHWAddress: return 1ULL << 56;
1754   case Attribute::NoCfCheck:       return 1ULL << 57;
1755   case Attribute::OptForFuzzing:   return 1ULL << 58;
1756   case Attribute::ShadowCallStack: return 1ULL << 59;
1757   case Attribute::SpeculativeLoadHardening:
1758     return 1ULL << 60;
1759   case Attribute::ImmArg:
1760     return 1ULL << 61;
1761   case Attribute::WillReturn:
1762     return 1ULL << 62;
1763   case Attribute::NoFree:
1764     return 1ULL << 63;
1765   default:
1766     // Other attributes are not supported in the raw format,
1767     // as we ran out of space.
1768     return 0;
1769   }
1770   llvm_unreachable("Unsupported attribute type");
1771 }
1772 
1773 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) {
1774   if (!Val) return;
1775 
1776   for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds;
1777        I = Attribute::AttrKind(I + 1)) {
1778     if (uint64_t A = (Val & getRawAttributeMask(I))) {
1779       if (I == Attribute::Alignment)
1780         B.addAlignmentAttr(1ULL << ((A >> 16) - 1));
1781       else if (I == Attribute::StackAlignment)
1782         B.addStackAlignmentAttr(1ULL << ((A >> 26)-1));
1783       else if (Attribute::isTypeAttrKind(I))
1784         B.addTypeAttr(I, nullptr); // Type will be auto-upgraded.
1785       else
1786         B.addAttribute(I);
1787     }
1788   }
1789 }
1790 
1791 /// This fills an AttrBuilder object with the LLVM attributes that have
1792 /// been decoded from the given integer. This function must stay in sync with
1793 /// 'encodeLLVMAttributesForBitcode'.
1794 static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
1795                                            uint64_t EncodedAttrs,
1796                                            uint64_t AttrIdx) {
1797   // The alignment is stored as a 16-bit raw value from bits 31--16.  We shift
1798   // the bits above 31 down by 11 bits.
1799   unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
1800   assert((!Alignment || isPowerOf2_32(Alignment)) &&
1801          "Alignment must be a power of two.");
1802 
1803   if (Alignment)
1804     B.addAlignmentAttr(Alignment);
1805 
1806   uint64_t Attrs = ((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
1807                    (EncodedAttrs & 0xffff);
1808 
1809   if (AttrIdx == AttributeList::FunctionIndex) {
1810     // Upgrade old memory attributes.
1811     MemoryEffects ME = MemoryEffects::unknown();
1812     if (Attrs & (1ULL << 9)) {
1813       // ReadNone
1814       Attrs &= ~(1ULL << 9);
1815       ME &= MemoryEffects::none();
1816     }
1817     if (Attrs & (1ULL << 10)) {
1818       // ReadOnly
1819       Attrs &= ~(1ULL << 10);
1820       ME &= MemoryEffects::readOnly();
1821     }
1822     if (Attrs & (1ULL << 49)) {
1823       // InaccessibleMemOnly
1824       Attrs &= ~(1ULL << 49);
1825       ME &= MemoryEffects::inaccessibleMemOnly();
1826     }
1827     if (Attrs & (1ULL << 50)) {
1828       // InaccessibleMemOrArgMemOnly
1829       Attrs &= ~(1ULL << 50);
1830       ME &= MemoryEffects::inaccessibleOrArgMemOnly();
1831     }
1832     if (Attrs & (1ULL << 53)) {
1833       // WriteOnly
1834       Attrs &= ~(1ULL << 53);
1835       ME &= MemoryEffects::writeOnly();
1836     }
1837     if (ME != MemoryEffects::unknown())
1838       B.addMemoryAttr(ME);
1839   }
1840 
1841   addRawAttributeValue(B, Attrs);
1842 }
1843 
1844 Error BitcodeReader::parseAttributeBlock() {
1845   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
1846     return Err;
1847 
1848   if (!MAttributes.empty())
1849     return error("Invalid multiple blocks");
1850 
1851   SmallVector<uint64_t, 64> Record;
1852 
1853   SmallVector<AttributeList, 8> Attrs;
1854 
1855   // Read all the records.
1856   while (true) {
1857     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1858     if (!MaybeEntry)
1859       return MaybeEntry.takeError();
1860     BitstreamEntry Entry = MaybeEntry.get();
1861 
1862     switch (Entry.Kind) {
1863     case BitstreamEntry::SubBlock: // Handled for us already.
1864     case BitstreamEntry::Error:
1865       return error("Malformed block");
1866     case BitstreamEntry::EndBlock:
1867       return Error::success();
1868     case BitstreamEntry::Record:
1869       // The interesting case.
1870       break;
1871     }
1872 
1873     // Read a record.
1874     Record.clear();
1875     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1876     if (!MaybeRecord)
1877       return MaybeRecord.takeError();
1878     switch (MaybeRecord.get()) {
1879     default:  // Default behavior: ignore.
1880       break;
1881     case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...]
1882       // Deprecated, but still needed to read old bitcode files.
1883       if (Record.size() & 1)
1884         return error("Invalid parameter attribute record");
1885 
1886       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1887         AttrBuilder B(Context);
1888         decodeLLVMAttributesForBitcode(B, Record[i+1], Record[i]);
1889         Attrs.push_back(AttributeList::get(Context, Record[i], B));
1890       }
1891 
1892       MAttributes.push_back(AttributeList::get(Context, Attrs));
1893       Attrs.clear();
1894       break;
1895     case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...]
1896       for (unsigned i = 0, e = Record.size(); i != e; ++i)
1897         Attrs.push_back(MAttributeGroups[Record[i]]);
1898 
1899       MAttributes.push_back(AttributeList::get(Context, Attrs));
1900       Attrs.clear();
1901       break;
1902     }
1903   }
1904 }
1905 
1906 // Returns Attribute::None on unrecognized codes.
1907 static Attribute::AttrKind getAttrFromCode(uint64_t Code) {
1908   switch (Code) {
1909   default:
1910     return Attribute::None;
1911   case bitc::ATTR_KIND_ALIGNMENT:
1912     return Attribute::Alignment;
1913   case bitc::ATTR_KIND_ALWAYS_INLINE:
1914     return Attribute::AlwaysInline;
1915   case bitc::ATTR_KIND_BUILTIN:
1916     return Attribute::Builtin;
1917   case bitc::ATTR_KIND_BY_VAL:
1918     return Attribute::ByVal;
1919   case bitc::ATTR_KIND_IN_ALLOCA:
1920     return Attribute::InAlloca;
1921   case bitc::ATTR_KIND_COLD:
1922     return Attribute::Cold;
1923   case bitc::ATTR_KIND_CONVERGENT:
1924     return Attribute::Convergent;
1925   case bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION:
1926     return Attribute::DisableSanitizerInstrumentation;
1927   case bitc::ATTR_KIND_ELEMENTTYPE:
1928     return Attribute::ElementType;
1929   case bitc::ATTR_KIND_FNRETTHUNK_EXTERN:
1930     return Attribute::FnRetThunkExtern;
1931   case bitc::ATTR_KIND_INLINE_HINT:
1932     return Attribute::InlineHint;
1933   case bitc::ATTR_KIND_IN_REG:
1934     return Attribute::InReg;
1935   case bitc::ATTR_KIND_JUMP_TABLE:
1936     return Attribute::JumpTable;
1937   case bitc::ATTR_KIND_MEMORY:
1938     return Attribute::Memory;
1939   case bitc::ATTR_KIND_NOFPCLASS:
1940     return Attribute::NoFPClass;
1941   case bitc::ATTR_KIND_MIN_SIZE:
1942     return Attribute::MinSize;
1943   case bitc::ATTR_KIND_NAKED:
1944     return Attribute::Naked;
1945   case bitc::ATTR_KIND_NEST:
1946     return Attribute::Nest;
1947   case bitc::ATTR_KIND_NO_ALIAS:
1948     return Attribute::NoAlias;
1949   case bitc::ATTR_KIND_NO_BUILTIN:
1950     return Attribute::NoBuiltin;
1951   case bitc::ATTR_KIND_NO_CALLBACK:
1952     return Attribute::NoCallback;
1953   case bitc::ATTR_KIND_NO_CAPTURE:
1954     return Attribute::NoCapture;
1955   case bitc::ATTR_KIND_NO_DUPLICATE:
1956     return Attribute::NoDuplicate;
1957   case bitc::ATTR_KIND_NOFREE:
1958     return Attribute::NoFree;
1959   case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
1960     return Attribute::NoImplicitFloat;
1961   case bitc::ATTR_KIND_NO_INLINE:
1962     return Attribute::NoInline;
1963   case bitc::ATTR_KIND_NO_RECURSE:
1964     return Attribute::NoRecurse;
1965   case bitc::ATTR_KIND_NO_MERGE:
1966     return Attribute::NoMerge;
1967   case bitc::ATTR_KIND_NON_LAZY_BIND:
1968     return Attribute::NonLazyBind;
1969   case bitc::ATTR_KIND_NON_NULL:
1970     return Attribute::NonNull;
1971   case bitc::ATTR_KIND_DEREFERENCEABLE:
1972     return Attribute::Dereferenceable;
1973   case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL:
1974     return Attribute::DereferenceableOrNull;
1975   case bitc::ATTR_KIND_ALLOC_ALIGN:
1976     return Attribute::AllocAlign;
1977   case bitc::ATTR_KIND_ALLOC_KIND:
1978     return Attribute::AllocKind;
1979   case bitc::ATTR_KIND_ALLOC_SIZE:
1980     return Attribute::AllocSize;
1981   case bitc::ATTR_KIND_ALLOCATED_POINTER:
1982     return Attribute::AllocatedPointer;
1983   case bitc::ATTR_KIND_NO_RED_ZONE:
1984     return Attribute::NoRedZone;
1985   case bitc::ATTR_KIND_NO_RETURN:
1986     return Attribute::NoReturn;
1987   case bitc::ATTR_KIND_NOSYNC:
1988     return Attribute::NoSync;
1989   case bitc::ATTR_KIND_NOCF_CHECK:
1990     return Attribute::NoCfCheck;
1991   case bitc::ATTR_KIND_NO_PROFILE:
1992     return Attribute::NoProfile;
1993   case bitc::ATTR_KIND_SKIP_PROFILE:
1994     return Attribute::SkipProfile;
1995   case bitc::ATTR_KIND_NO_UNWIND:
1996     return Attribute::NoUnwind;
1997   case bitc::ATTR_KIND_NO_SANITIZE_BOUNDS:
1998     return Attribute::NoSanitizeBounds;
1999   case bitc::ATTR_KIND_NO_SANITIZE_COVERAGE:
2000     return Attribute::NoSanitizeCoverage;
2001   case bitc::ATTR_KIND_NULL_POINTER_IS_VALID:
2002     return Attribute::NullPointerIsValid;
2003   case bitc::ATTR_KIND_OPT_FOR_FUZZING:
2004     return Attribute::OptForFuzzing;
2005   case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
2006     return Attribute::OptimizeForSize;
2007   case bitc::ATTR_KIND_OPTIMIZE_NONE:
2008     return Attribute::OptimizeNone;
2009   case bitc::ATTR_KIND_READ_NONE:
2010     return Attribute::ReadNone;
2011   case bitc::ATTR_KIND_READ_ONLY:
2012     return Attribute::ReadOnly;
2013   case bitc::ATTR_KIND_RETURNED:
2014     return Attribute::Returned;
2015   case bitc::ATTR_KIND_RETURNS_TWICE:
2016     return Attribute::ReturnsTwice;
2017   case bitc::ATTR_KIND_S_EXT:
2018     return Attribute::SExt;
2019   case bitc::ATTR_KIND_SPECULATABLE:
2020     return Attribute::Speculatable;
2021   case bitc::ATTR_KIND_STACK_ALIGNMENT:
2022     return Attribute::StackAlignment;
2023   case bitc::ATTR_KIND_STACK_PROTECT:
2024     return Attribute::StackProtect;
2025   case bitc::ATTR_KIND_STACK_PROTECT_REQ:
2026     return Attribute::StackProtectReq;
2027   case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
2028     return Attribute::StackProtectStrong;
2029   case bitc::ATTR_KIND_SAFESTACK:
2030     return Attribute::SafeStack;
2031   case bitc::ATTR_KIND_SHADOWCALLSTACK:
2032     return Attribute::ShadowCallStack;
2033   case bitc::ATTR_KIND_STRICT_FP:
2034     return Attribute::StrictFP;
2035   case bitc::ATTR_KIND_STRUCT_RET:
2036     return Attribute::StructRet;
2037   case bitc::ATTR_KIND_SANITIZE_ADDRESS:
2038     return Attribute::SanitizeAddress;
2039   case bitc::ATTR_KIND_SANITIZE_HWADDRESS:
2040     return Attribute::SanitizeHWAddress;
2041   case bitc::ATTR_KIND_SANITIZE_THREAD:
2042     return Attribute::SanitizeThread;
2043   case bitc::ATTR_KIND_SANITIZE_MEMORY:
2044     return Attribute::SanitizeMemory;
2045   case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING:
2046     return Attribute::SpeculativeLoadHardening;
2047   case bitc::ATTR_KIND_SWIFT_ERROR:
2048     return Attribute::SwiftError;
2049   case bitc::ATTR_KIND_SWIFT_SELF:
2050     return Attribute::SwiftSelf;
2051   case bitc::ATTR_KIND_SWIFT_ASYNC:
2052     return Attribute::SwiftAsync;
2053   case bitc::ATTR_KIND_UW_TABLE:
2054     return Attribute::UWTable;
2055   case bitc::ATTR_KIND_VSCALE_RANGE:
2056     return Attribute::VScaleRange;
2057   case bitc::ATTR_KIND_WILLRETURN:
2058     return Attribute::WillReturn;
2059   case bitc::ATTR_KIND_WRITEONLY:
2060     return Attribute::WriteOnly;
2061   case bitc::ATTR_KIND_Z_EXT:
2062     return Attribute::ZExt;
2063   case bitc::ATTR_KIND_IMMARG:
2064     return Attribute::ImmArg;
2065   case bitc::ATTR_KIND_SANITIZE_MEMTAG:
2066     return Attribute::SanitizeMemTag;
2067   case bitc::ATTR_KIND_PREALLOCATED:
2068     return Attribute::Preallocated;
2069   case bitc::ATTR_KIND_NOUNDEF:
2070     return Attribute::NoUndef;
2071   case bitc::ATTR_KIND_BYREF:
2072     return Attribute::ByRef;
2073   case bitc::ATTR_KIND_MUSTPROGRESS:
2074     return Attribute::MustProgress;
2075   case bitc::ATTR_KIND_HOT:
2076     return Attribute::Hot;
2077   case bitc::ATTR_KIND_PRESPLIT_COROUTINE:
2078     return Attribute::PresplitCoroutine;
2079   }
2080 }
2081 
2082 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent,
2083                                          MaybeAlign &Alignment) {
2084   // Note: Alignment in bitcode files is incremented by 1, so that zero
2085   // can be used for default alignment.
2086   if (Exponent > Value::MaxAlignmentExponent + 1)
2087     return error("Invalid alignment value");
2088   Alignment = decodeMaybeAlign(Exponent);
2089   return Error::success();
2090 }
2091 
2092 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) {
2093   *Kind = getAttrFromCode(Code);
2094   if (*Kind == Attribute::None)
2095     return error("Unknown attribute kind (" + Twine(Code) + ")");
2096   return Error::success();
2097 }
2098 
2099 static bool upgradeOldMemoryAttribute(MemoryEffects &ME, uint64_t EncodedKind) {
2100   switch (EncodedKind) {
2101   case bitc::ATTR_KIND_READ_NONE:
2102     ME &= MemoryEffects::none();
2103     return true;
2104   case bitc::ATTR_KIND_READ_ONLY:
2105     ME &= MemoryEffects::readOnly();
2106     return true;
2107   case bitc::ATTR_KIND_WRITEONLY:
2108     ME &= MemoryEffects::writeOnly();
2109     return true;
2110   case bitc::ATTR_KIND_ARGMEMONLY:
2111     ME &= MemoryEffects::argMemOnly();
2112     return true;
2113   case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY:
2114     ME &= MemoryEffects::inaccessibleMemOnly();
2115     return true;
2116   case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY:
2117     ME &= MemoryEffects::inaccessibleOrArgMemOnly();
2118     return true;
2119   default:
2120     return false;
2121   }
2122 }
2123 
2124 Error BitcodeReader::parseAttributeGroupBlock() {
2125   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
2126     return Err;
2127 
2128   if (!MAttributeGroups.empty())
2129     return error("Invalid multiple blocks");
2130 
2131   SmallVector<uint64_t, 64> Record;
2132 
2133   // Read all the records.
2134   while (true) {
2135     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2136     if (!MaybeEntry)
2137       return MaybeEntry.takeError();
2138     BitstreamEntry Entry = MaybeEntry.get();
2139 
2140     switch (Entry.Kind) {
2141     case BitstreamEntry::SubBlock: // Handled for us already.
2142     case BitstreamEntry::Error:
2143       return error("Malformed block");
2144     case BitstreamEntry::EndBlock:
2145       return Error::success();
2146     case BitstreamEntry::Record:
2147       // The interesting case.
2148       break;
2149     }
2150 
2151     // Read a record.
2152     Record.clear();
2153     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2154     if (!MaybeRecord)
2155       return MaybeRecord.takeError();
2156     switch (MaybeRecord.get()) {
2157     default:  // Default behavior: ignore.
2158       break;
2159     case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
2160       if (Record.size() < 3)
2161         return error("Invalid grp record");
2162 
2163       uint64_t GrpID = Record[0];
2164       uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
2165 
2166       AttrBuilder B(Context);
2167       MemoryEffects ME = MemoryEffects::unknown();
2168       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
2169         if (Record[i] == 0) {        // Enum attribute
2170           Attribute::AttrKind Kind;
2171           uint64_t EncodedKind = Record[++i];
2172           if (Idx == AttributeList::FunctionIndex &&
2173               upgradeOldMemoryAttribute(ME, EncodedKind))
2174             continue;
2175 
2176           if (Error Err = parseAttrKind(EncodedKind, &Kind))
2177             return Err;
2178 
2179           // Upgrade old-style byval attribute to one with a type, even if it's
2180           // nullptr. We will have to insert the real type when we associate
2181           // this AttributeList with a function.
2182           if (Kind == Attribute::ByVal)
2183             B.addByValAttr(nullptr);
2184           else if (Kind == Attribute::StructRet)
2185             B.addStructRetAttr(nullptr);
2186           else if (Kind == Attribute::InAlloca)
2187             B.addInAllocaAttr(nullptr);
2188           else if (Kind == Attribute::UWTable)
2189             B.addUWTableAttr(UWTableKind::Default);
2190           else if (Attribute::isEnumAttrKind(Kind))
2191             B.addAttribute(Kind);
2192           else
2193             return error("Not an enum attribute");
2194         } else if (Record[i] == 1) { // Integer attribute
2195           Attribute::AttrKind Kind;
2196           if (Error Err = parseAttrKind(Record[++i], &Kind))
2197             return Err;
2198           if (!Attribute::isIntAttrKind(Kind))
2199             return error("Not an int attribute");
2200           if (Kind == Attribute::Alignment)
2201             B.addAlignmentAttr(Record[++i]);
2202           else if (Kind == Attribute::StackAlignment)
2203             B.addStackAlignmentAttr(Record[++i]);
2204           else if (Kind == Attribute::Dereferenceable)
2205             B.addDereferenceableAttr(Record[++i]);
2206           else if (Kind == Attribute::DereferenceableOrNull)
2207             B.addDereferenceableOrNullAttr(Record[++i]);
2208           else if (Kind == Attribute::AllocSize)
2209             B.addAllocSizeAttrFromRawRepr(Record[++i]);
2210           else if (Kind == Attribute::VScaleRange)
2211             B.addVScaleRangeAttrFromRawRepr(Record[++i]);
2212           else if (Kind == Attribute::UWTable)
2213             B.addUWTableAttr(UWTableKind(Record[++i]));
2214           else if (Kind == Attribute::AllocKind)
2215             B.addAllocKindAttr(static_cast<AllocFnKind>(Record[++i]));
2216           else if (Kind == Attribute::Memory)
2217             B.addMemoryAttr(MemoryEffects::createFromIntValue(Record[++i]));
2218           else if (Kind == Attribute::NoFPClass)
2219             B.addNoFPClassAttr(
2220                 static_cast<FPClassTest>(Record[++i] & fcAllFlags));
2221         } else if (Record[i] == 3 || Record[i] == 4) { // String attribute
2222           bool HasValue = (Record[i++] == 4);
2223           SmallString<64> KindStr;
2224           SmallString<64> ValStr;
2225 
2226           while (Record[i] != 0 && i != e)
2227             KindStr += Record[i++];
2228           assert(Record[i] == 0 && "Kind string not null terminated");
2229 
2230           if (HasValue) {
2231             // Has a value associated with it.
2232             ++i; // Skip the '0' that terminates the "kind" string.
2233             while (Record[i] != 0 && i != e)
2234               ValStr += Record[i++];
2235             assert(Record[i] == 0 && "Value string not null terminated");
2236           }
2237 
2238           B.addAttribute(KindStr.str(), ValStr.str());
2239         } else if (Record[i] == 5 || Record[i] == 6) {
2240           bool HasType = Record[i] == 6;
2241           Attribute::AttrKind Kind;
2242           if (Error Err = parseAttrKind(Record[++i], &Kind))
2243             return Err;
2244           if (!Attribute::isTypeAttrKind(Kind))
2245             return error("Not a type attribute");
2246 
2247           B.addTypeAttr(Kind, HasType ? getTypeByID(Record[++i]) : nullptr);
2248         } else {
2249           return error("Invalid attribute group entry");
2250         }
2251       }
2252 
2253       if (ME != MemoryEffects::unknown())
2254         B.addMemoryAttr(ME);
2255 
2256       UpgradeAttributes(B);
2257       MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B);
2258       break;
2259     }
2260     }
2261   }
2262 }
2263 
2264 Error BitcodeReader::parseTypeTable() {
2265   if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
2266     return Err;
2267 
2268   return parseTypeTableBody();
2269 }
2270 
2271 Error BitcodeReader::parseTypeTableBody() {
2272   if (!TypeList.empty())
2273     return error("Invalid multiple blocks");
2274 
2275   SmallVector<uint64_t, 64> Record;
2276   unsigned NumRecords = 0;
2277 
2278   SmallString<64> TypeName;
2279 
2280   // Read all the records for this type table.
2281   while (true) {
2282     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2283     if (!MaybeEntry)
2284       return MaybeEntry.takeError();
2285     BitstreamEntry Entry = MaybeEntry.get();
2286 
2287     switch (Entry.Kind) {
2288     case BitstreamEntry::SubBlock: // Handled for us already.
2289     case BitstreamEntry::Error:
2290       return error("Malformed block");
2291     case BitstreamEntry::EndBlock:
2292       if (NumRecords != TypeList.size())
2293         return error("Malformed block");
2294       return Error::success();
2295     case BitstreamEntry::Record:
2296       // The interesting case.
2297       break;
2298     }
2299 
2300     // Read a record.
2301     Record.clear();
2302     Type *ResultTy = nullptr;
2303     SmallVector<unsigned> ContainedIDs;
2304     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2305     if (!MaybeRecord)
2306       return MaybeRecord.takeError();
2307     switch (MaybeRecord.get()) {
2308     default:
2309       return error("Invalid value");
2310     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
2311       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
2312       // type list.  This allows us to reserve space.
2313       if (Record.empty())
2314         return error("Invalid numentry record");
2315       TypeList.resize(Record[0]);
2316       continue;
2317     case bitc::TYPE_CODE_VOID:      // VOID
2318       ResultTy = Type::getVoidTy(Context);
2319       break;
2320     case bitc::TYPE_CODE_HALF:     // HALF
2321       ResultTy = Type::getHalfTy(Context);
2322       break;
2323     case bitc::TYPE_CODE_BFLOAT:    // BFLOAT
2324       ResultTy = Type::getBFloatTy(Context);
2325       break;
2326     case bitc::TYPE_CODE_FLOAT:     // FLOAT
2327       ResultTy = Type::getFloatTy(Context);
2328       break;
2329     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
2330       ResultTy = Type::getDoubleTy(Context);
2331       break;
2332     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
2333       ResultTy = Type::getX86_FP80Ty(Context);
2334       break;
2335     case bitc::TYPE_CODE_FP128:     // FP128
2336       ResultTy = Type::getFP128Ty(Context);
2337       break;
2338     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
2339       ResultTy = Type::getPPC_FP128Ty(Context);
2340       break;
2341     case bitc::TYPE_CODE_LABEL:     // LABEL
2342       ResultTy = Type::getLabelTy(Context);
2343       break;
2344     case bitc::TYPE_CODE_METADATA:  // METADATA
2345       ResultTy = Type::getMetadataTy(Context);
2346       break;
2347     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
2348       ResultTy = Type::getX86_MMXTy(Context);
2349       break;
2350     case bitc::TYPE_CODE_X86_AMX:   // X86_AMX
2351       ResultTy = Type::getX86_AMXTy(Context);
2352       break;
2353     case bitc::TYPE_CODE_TOKEN:     // TOKEN
2354       ResultTy = Type::getTokenTy(Context);
2355       break;
2356     case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
2357       if (Record.empty())
2358         return error("Invalid integer record");
2359 
2360       uint64_t NumBits = Record[0];
2361       if (NumBits < IntegerType::MIN_INT_BITS ||
2362           NumBits > IntegerType::MAX_INT_BITS)
2363         return error("Bitwidth for integer type out of range");
2364       ResultTy = IntegerType::get(Context, NumBits);
2365       break;
2366     }
2367     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
2368                                     //          [pointee type, address space]
2369       if (Record.empty())
2370         return error("Invalid pointer record");
2371       unsigned AddressSpace = 0;
2372       if (Record.size() == 2)
2373         AddressSpace = Record[1];
2374       ResultTy = getTypeByID(Record[0]);
2375       if (!ResultTy ||
2376           !PointerType::isValidElementType(ResultTy))
2377         return error("Invalid type");
2378       ContainedIDs.push_back(Record[0]);
2379       ResultTy = PointerType::get(ResultTy, AddressSpace);
2380       break;
2381     }
2382     case bitc::TYPE_CODE_OPAQUE_POINTER: { // OPAQUE_POINTER: [addrspace]
2383       if (Record.size() != 1)
2384         return error("Invalid opaque pointer record");
2385       if (Context.supportsTypedPointers())
2386         return error(
2387             "Opaque pointers are only supported in -opaque-pointers mode");
2388       unsigned AddressSpace = Record[0];
2389       ResultTy = PointerType::get(Context, AddressSpace);
2390       break;
2391     }
2392     case bitc::TYPE_CODE_FUNCTION_OLD: {
2393       // Deprecated, but still needed to read old bitcode files.
2394       // FUNCTION: [vararg, attrid, retty, paramty x N]
2395       if (Record.size() < 3)
2396         return error("Invalid function record");
2397       SmallVector<Type*, 8> ArgTys;
2398       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
2399         if (Type *T = getTypeByID(Record[i]))
2400           ArgTys.push_back(T);
2401         else
2402           break;
2403       }
2404 
2405       ResultTy = getTypeByID(Record[2]);
2406       if (!ResultTy || ArgTys.size() < Record.size()-3)
2407         return error("Invalid type");
2408 
2409       ContainedIDs.append(Record.begin() + 2, Record.end());
2410       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
2411       break;
2412     }
2413     case bitc::TYPE_CODE_FUNCTION: {
2414       // FUNCTION: [vararg, retty, paramty x N]
2415       if (Record.size() < 2)
2416         return error("Invalid function record");
2417       SmallVector<Type*, 8> ArgTys;
2418       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
2419         if (Type *T = getTypeByID(Record[i])) {
2420           if (!FunctionType::isValidArgumentType(T))
2421             return error("Invalid function argument type");
2422           ArgTys.push_back(T);
2423         }
2424         else
2425           break;
2426       }
2427 
2428       ResultTy = getTypeByID(Record[1]);
2429       if (!ResultTy || ArgTys.size() < Record.size()-2)
2430         return error("Invalid type");
2431 
2432       ContainedIDs.append(Record.begin() + 1, Record.end());
2433       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
2434       break;
2435     }
2436     case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
2437       if (Record.empty())
2438         return error("Invalid anon struct record");
2439       SmallVector<Type*, 8> EltTys;
2440       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
2441         if (Type *T = getTypeByID(Record[i]))
2442           EltTys.push_back(T);
2443         else
2444           break;
2445       }
2446       if (EltTys.size() != Record.size()-1)
2447         return error("Invalid type");
2448       ContainedIDs.append(Record.begin() + 1, Record.end());
2449       ResultTy = StructType::get(Context, EltTys, Record[0]);
2450       break;
2451     }
2452     case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
2453       if (convertToString(Record, 0, TypeName))
2454         return error("Invalid struct name record");
2455       continue;
2456 
2457     case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
2458       if (Record.empty())
2459         return error("Invalid named struct record");
2460 
2461       if (NumRecords >= TypeList.size())
2462         return error("Invalid TYPE table");
2463 
2464       // Check to see if this was forward referenced, if so fill in the temp.
2465       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
2466       if (Res) {
2467         Res->setName(TypeName);
2468         TypeList[NumRecords] = nullptr;
2469       } else  // Otherwise, create a new struct.
2470         Res = createIdentifiedStructType(Context, TypeName);
2471       TypeName.clear();
2472 
2473       SmallVector<Type*, 8> EltTys;
2474       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
2475         if (Type *T = getTypeByID(Record[i]))
2476           EltTys.push_back(T);
2477         else
2478           break;
2479       }
2480       if (EltTys.size() != Record.size()-1)
2481         return error("Invalid named struct record");
2482       Res->setBody(EltTys, Record[0]);
2483       ContainedIDs.append(Record.begin() + 1, Record.end());
2484       ResultTy = Res;
2485       break;
2486     }
2487     case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
2488       if (Record.size() != 1)
2489         return error("Invalid opaque type record");
2490 
2491       if (NumRecords >= TypeList.size())
2492         return error("Invalid TYPE table");
2493 
2494       // Check to see if this was forward referenced, if so fill in the temp.
2495       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
2496       if (Res) {
2497         Res->setName(TypeName);
2498         TypeList[NumRecords] = nullptr;
2499       } else  // Otherwise, create a new struct with no body.
2500         Res = createIdentifiedStructType(Context, TypeName);
2501       TypeName.clear();
2502       ResultTy = Res;
2503       break;
2504     }
2505     case bitc::TYPE_CODE_TARGET_TYPE: { // TARGET_TYPE: [NumTy, Tys..., Ints...]
2506       if (Record.size() < 1)
2507         return error("Invalid target extension type record");
2508 
2509       if (NumRecords >= TypeList.size())
2510         return error("Invalid TYPE table");
2511 
2512       if (Record[0] >= Record.size())
2513         return error("Too many type parameters");
2514 
2515       unsigned NumTys = Record[0];
2516       SmallVector<Type *, 4> TypeParams;
2517       SmallVector<unsigned, 8> IntParams;
2518       for (unsigned i = 0; i < NumTys; i++) {
2519         if (Type *T = getTypeByID(Record[i + 1]))
2520           TypeParams.push_back(T);
2521         else
2522           return error("Invalid type");
2523       }
2524 
2525       for (unsigned i = NumTys + 1, e = Record.size(); i < e; i++) {
2526         if (Record[i] > UINT_MAX)
2527           return error("Integer parameter too large");
2528         IntParams.push_back(Record[i]);
2529       }
2530       ResultTy = TargetExtType::get(Context, TypeName, TypeParams, IntParams);
2531       TypeName.clear();
2532       break;
2533     }
2534     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
2535       if (Record.size() < 2)
2536         return error("Invalid array type record");
2537       ResultTy = getTypeByID(Record[1]);
2538       if (!ResultTy || !ArrayType::isValidElementType(ResultTy))
2539         return error("Invalid type");
2540       ContainedIDs.push_back(Record[1]);
2541       ResultTy = ArrayType::get(ResultTy, Record[0]);
2542       break;
2543     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty] or
2544                                     //         [numelts, eltty, scalable]
2545       if (Record.size() < 2)
2546         return error("Invalid vector type record");
2547       if (Record[0] == 0)
2548         return error("Invalid vector length");
2549       ResultTy = getTypeByID(Record[1]);
2550       if (!ResultTy || !VectorType::isValidElementType(ResultTy))
2551         return error("Invalid type");
2552       bool Scalable = Record.size() > 2 ? Record[2] : false;
2553       ContainedIDs.push_back(Record[1]);
2554       ResultTy = VectorType::get(ResultTy, Record[0], Scalable);
2555       break;
2556     }
2557 
2558     if (NumRecords >= TypeList.size())
2559       return error("Invalid TYPE table");
2560     if (TypeList[NumRecords])
2561       return error(
2562           "Invalid TYPE table: Only named structs can be forward referenced");
2563     assert(ResultTy && "Didn't read a type?");
2564     TypeList[NumRecords] = ResultTy;
2565     if (!ContainedIDs.empty())
2566       ContainedTypeIDs[NumRecords] = std::move(ContainedIDs);
2567     ++NumRecords;
2568   }
2569 }
2570 
2571 Error BitcodeReader::parseOperandBundleTags() {
2572   if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID))
2573     return Err;
2574 
2575   if (!BundleTags.empty())
2576     return error("Invalid multiple blocks");
2577 
2578   SmallVector<uint64_t, 64> Record;
2579 
2580   while (true) {
2581     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2582     if (!MaybeEntry)
2583       return MaybeEntry.takeError();
2584     BitstreamEntry Entry = MaybeEntry.get();
2585 
2586     switch (Entry.Kind) {
2587     case BitstreamEntry::SubBlock: // Handled for us already.
2588     case BitstreamEntry::Error:
2589       return error("Malformed block");
2590     case BitstreamEntry::EndBlock:
2591       return Error::success();
2592     case BitstreamEntry::Record:
2593       // The interesting case.
2594       break;
2595     }
2596 
2597     // Tags are implicitly mapped to integers by their order.
2598 
2599     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2600     if (!MaybeRecord)
2601       return MaybeRecord.takeError();
2602     if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG)
2603       return error("Invalid operand bundle record");
2604 
2605     // OPERAND_BUNDLE_TAG: [strchr x N]
2606     BundleTags.emplace_back();
2607     if (convertToString(Record, 0, BundleTags.back()))
2608       return error("Invalid operand bundle record");
2609     Record.clear();
2610   }
2611 }
2612 
2613 Error BitcodeReader::parseSyncScopeNames() {
2614   if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID))
2615     return Err;
2616 
2617   if (!SSIDs.empty())
2618     return error("Invalid multiple synchronization scope names blocks");
2619 
2620   SmallVector<uint64_t, 64> Record;
2621   while (true) {
2622     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2623     if (!MaybeEntry)
2624       return MaybeEntry.takeError();
2625     BitstreamEntry Entry = MaybeEntry.get();
2626 
2627     switch (Entry.Kind) {
2628     case BitstreamEntry::SubBlock: // Handled for us already.
2629     case BitstreamEntry::Error:
2630       return error("Malformed block");
2631     case BitstreamEntry::EndBlock:
2632       if (SSIDs.empty())
2633         return error("Invalid empty synchronization scope names block");
2634       return Error::success();
2635     case BitstreamEntry::Record:
2636       // The interesting case.
2637       break;
2638     }
2639 
2640     // Synchronization scope names are implicitly mapped to synchronization
2641     // scope IDs by their order.
2642 
2643     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2644     if (!MaybeRecord)
2645       return MaybeRecord.takeError();
2646     if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME)
2647       return error("Invalid sync scope record");
2648 
2649     SmallString<16> SSN;
2650     if (convertToString(Record, 0, SSN))
2651       return error("Invalid sync scope record");
2652 
2653     SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN));
2654     Record.clear();
2655   }
2656 }
2657 
2658 /// Associate a value with its name from the given index in the provided record.
2659 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
2660                                              unsigned NameIndex, Triple &TT) {
2661   SmallString<128> ValueName;
2662   if (convertToString(Record, NameIndex, ValueName))
2663     return error("Invalid record");
2664   unsigned ValueID = Record[0];
2665   if (ValueID >= ValueList.size() || !ValueList[ValueID])
2666     return error("Invalid record");
2667   Value *V = ValueList[ValueID];
2668 
2669   StringRef NameStr(ValueName.data(), ValueName.size());
2670   if (NameStr.find_first_of(0) != StringRef::npos)
2671     return error("Invalid value name");
2672   V->setName(NameStr);
2673   auto *GO = dyn_cast<GlobalObject>(V);
2674   if (GO && ImplicitComdatObjects.contains(GO) && TT.supportsCOMDAT())
2675     GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
2676   return V;
2677 }
2678 
2679 /// Helper to note and return the current location, and jump to the given
2680 /// offset.
2681 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset,
2682                                                  BitstreamCursor &Stream) {
2683   // Save the current parsing location so we can jump back at the end
2684   // of the VST read.
2685   uint64_t CurrentBit = Stream.GetCurrentBitNo();
2686   if (Error JumpFailed = Stream.JumpToBit(Offset * 32))
2687     return std::move(JumpFailed);
2688   Expected<BitstreamEntry> MaybeEntry = Stream.advance();
2689   if (!MaybeEntry)
2690     return MaybeEntry.takeError();
2691   if (MaybeEntry.get().Kind != BitstreamEntry::SubBlock ||
2692       MaybeEntry.get().ID != bitc::VALUE_SYMTAB_BLOCK_ID)
2693     return error("Expected value symbol table subblock");
2694   return CurrentBit;
2695 }
2696 
2697 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta,
2698                                             Function *F,
2699                                             ArrayRef<uint64_t> Record) {
2700   // Note that we subtract 1 here because the offset is relative to one word
2701   // before the start of the identification or module block, which was
2702   // historically always the start of the regular bitcode header.
2703   uint64_t FuncWordOffset = Record[1] - 1;
2704   uint64_t FuncBitOffset = FuncWordOffset * 32;
2705   DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
2706   // Set the LastFunctionBlockBit to point to the last function block.
2707   // Later when parsing is resumed after function materialization,
2708   // we can simply skip that last function block.
2709   if (FuncBitOffset > LastFunctionBlockBit)
2710     LastFunctionBlockBit = FuncBitOffset;
2711 }
2712 
2713 /// Read a new-style GlobalValue symbol table.
2714 Error BitcodeReader::parseGlobalValueSymbolTable() {
2715   unsigned FuncBitcodeOffsetDelta =
2716       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2717 
2718   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2719     return Err;
2720 
2721   SmallVector<uint64_t, 64> Record;
2722   while (true) {
2723     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2724     if (!MaybeEntry)
2725       return MaybeEntry.takeError();
2726     BitstreamEntry Entry = MaybeEntry.get();
2727 
2728     switch (Entry.Kind) {
2729     case BitstreamEntry::SubBlock:
2730     case BitstreamEntry::Error:
2731       return error("Malformed block");
2732     case BitstreamEntry::EndBlock:
2733       return Error::success();
2734     case BitstreamEntry::Record:
2735       break;
2736     }
2737 
2738     Record.clear();
2739     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2740     if (!MaybeRecord)
2741       return MaybeRecord.takeError();
2742     switch (MaybeRecord.get()) {
2743     case bitc::VST_CODE_FNENTRY: { // [valueid, offset]
2744       unsigned ValueID = Record[0];
2745       if (ValueID >= ValueList.size() || !ValueList[ValueID])
2746         return error("Invalid value reference in symbol table");
2747       setDeferredFunctionInfo(FuncBitcodeOffsetDelta,
2748                               cast<Function>(ValueList[ValueID]), Record);
2749       break;
2750     }
2751     }
2752   }
2753 }
2754 
2755 /// Parse the value symbol table at either the current parsing location or
2756 /// at the given bit offset if provided.
2757 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) {
2758   uint64_t CurrentBit;
2759   // Pass in the Offset to distinguish between calling for the module-level
2760   // VST (where we want to jump to the VST offset) and the function-level
2761   // VST (where we don't).
2762   if (Offset > 0) {
2763     Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
2764     if (!MaybeCurrentBit)
2765       return MaybeCurrentBit.takeError();
2766     CurrentBit = MaybeCurrentBit.get();
2767     // If this module uses a string table, read this as a module-level VST.
2768     if (UseStrtab) {
2769       if (Error Err = parseGlobalValueSymbolTable())
2770         return Err;
2771       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2772         return JumpFailed;
2773       return Error::success();
2774     }
2775     // Otherwise, the VST will be in a similar format to a function-level VST,
2776     // and will contain symbol names.
2777   }
2778 
2779   // Compute the delta between the bitcode indices in the VST (the word offset
2780   // to the word-aligned ENTER_SUBBLOCK for the function block, and that
2781   // expected by the lazy reader. The reader's EnterSubBlock expects to have
2782   // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
2783   // (size BlockIDWidth). Note that we access the stream's AbbrevID width here
2784   // just before entering the VST subblock because: 1) the EnterSubBlock
2785   // changes the AbbrevID width; 2) the VST block is nested within the same
2786   // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
2787   // AbbrevID width before calling EnterSubBlock; and 3) when we want to
2788   // jump to the FUNCTION_BLOCK using this offset later, we don't want
2789   // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
2790   unsigned FuncBitcodeOffsetDelta =
2791       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2792 
2793   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2794     return Err;
2795 
2796   SmallVector<uint64_t, 64> Record;
2797 
2798   Triple TT(TheModule->getTargetTriple());
2799 
2800   // Read all the records for this value table.
2801   SmallString<128> ValueName;
2802 
2803   while (true) {
2804     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2805     if (!MaybeEntry)
2806       return MaybeEntry.takeError();
2807     BitstreamEntry Entry = MaybeEntry.get();
2808 
2809     switch (Entry.Kind) {
2810     case BitstreamEntry::SubBlock: // Handled for us already.
2811     case BitstreamEntry::Error:
2812       return error("Malformed block");
2813     case BitstreamEntry::EndBlock:
2814       if (Offset > 0)
2815         if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2816           return JumpFailed;
2817       return Error::success();
2818     case BitstreamEntry::Record:
2819       // The interesting case.
2820       break;
2821     }
2822 
2823     // Read a record.
2824     Record.clear();
2825     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2826     if (!MaybeRecord)
2827       return MaybeRecord.takeError();
2828     switch (MaybeRecord.get()) {
2829     default:  // Default behavior: unknown type.
2830       break;
2831     case bitc::VST_CODE_ENTRY: {  // VST_CODE_ENTRY: [valueid, namechar x N]
2832       Expected<Value *> ValOrErr = recordValue(Record, 1, TT);
2833       if (Error Err = ValOrErr.takeError())
2834         return Err;
2835       ValOrErr.get();
2836       break;
2837     }
2838     case bitc::VST_CODE_FNENTRY: {
2839       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
2840       Expected<Value *> ValOrErr = recordValue(Record, 2, TT);
2841       if (Error Err = ValOrErr.takeError())
2842         return Err;
2843       Value *V = ValOrErr.get();
2844 
2845       // Ignore function offsets emitted for aliases of functions in older
2846       // versions of LLVM.
2847       if (auto *F = dyn_cast<Function>(V))
2848         setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record);
2849       break;
2850     }
2851     case bitc::VST_CODE_BBENTRY: {
2852       if (convertToString(Record, 1, ValueName))
2853         return error("Invalid bbentry record");
2854       BasicBlock *BB = getBasicBlock(Record[0]);
2855       if (!BB)
2856         return error("Invalid bbentry record");
2857 
2858       BB->setName(StringRef(ValueName.data(), ValueName.size()));
2859       ValueName.clear();
2860       break;
2861     }
2862     }
2863   }
2864 }
2865 
2866 /// Decode a signed value stored with the sign bit in the LSB for dense VBR
2867 /// encoding.
2868 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
2869   if ((V & 1) == 0)
2870     return V >> 1;
2871   if (V != 1)
2872     return -(V >> 1);
2873   // There is no such thing as -0 with integers.  "-0" really means MININT.
2874   return 1ULL << 63;
2875 }
2876 
2877 /// Resolve all of the initializers for global values and aliases that we can.
2878 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() {
2879   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist;
2880   std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInitWorklist;
2881   std::vector<FunctionOperandInfo> FunctionOperandWorklist;
2882 
2883   GlobalInitWorklist.swap(GlobalInits);
2884   IndirectSymbolInitWorklist.swap(IndirectSymbolInits);
2885   FunctionOperandWorklist.swap(FunctionOperands);
2886 
2887   while (!GlobalInitWorklist.empty()) {
2888     unsigned ValID = GlobalInitWorklist.back().second;
2889     if (ValID >= ValueList.size()) {
2890       // Not ready to resolve this yet, it requires something later in the file.
2891       GlobalInits.push_back(GlobalInitWorklist.back());
2892     } else {
2893       Expected<Constant *> MaybeC = getValueForInitializer(ValID);
2894       if (!MaybeC)
2895         return MaybeC.takeError();
2896       GlobalInitWorklist.back().first->setInitializer(MaybeC.get());
2897     }
2898     GlobalInitWorklist.pop_back();
2899   }
2900 
2901   while (!IndirectSymbolInitWorklist.empty()) {
2902     unsigned ValID = IndirectSymbolInitWorklist.back().second;
2903     if (ValID >= ValueList.size()) {
2904       IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back());
2905     } else {
2906       Expected<Constant *> MaybeC = getValueForInitializer(ValID);
2907       if (!MaybeC)
2908         return MaybeC.takeError();
2909       Constant *C = MaybeC.get();
2910       GlobalValue *GV = IndirectSymbolInitWorklist.back().first;
2911       if (auto *GA = dyn_cast<GlobalAlias>(GV)) {
2912         if (C->getType() != GV->getType())
2913           return error("Alias and aliasee types don't match");
2914         GA->setAliasee(C);
2915       } else if (auto *GI = dyn_cast<GlobalIFunc>(GV)) {
2916         Type *ResolverFTy =
2917             GlobalIFunc::getResolverFunctionType(GI->getValueType());
2918         // Transparently fix up the type for compatibility with older bitcode
2919         GI->setResolver(ConstantExpr::getBitCast(
2920             C, ResolverFTy->getPointerTo(GI->getAddressSpace())));
2921       } else {
2922         return error("Expected an alias or an ifunc");
2923       }
2924     }
2925     IndirectSymbolInitWorklist.pop_back();
2926   }
2927 
2928   while (!FunctionOperandWorklist.empty()) {
2929     FunctionOperandInfo &Info = FunctionOperandWorklist.back();
2930     if (Info.PersonalityFn) {
2931       unsigned ValID = Info.PersonalityFn - 1;
2932       if (ValID < ValueList.size()) {
2933         Expected<Constant *> MaybeC = getValueForInitializer(ValID);
2934         if (!MaybeC)
2935           return MaybeC.takeError();
2936         Info.F->setPersonalityFn(MaybeC.get());
2937         Info.PersonalityFn = 0;
2938       }
2939     }
2940     if (Info.Prefix) {
2941       unsigned ValID = Info.Prefix - 1;
2942       if (ValID < ValueList.size()) {
2943         Expected<Constant *> MaybeC = getValueForInitializer(ValID);
2944         if (!MaybeC)
2945           return MaybeC.takeError();
2946         Info.F->setPrefixData(MaybeC.get());
2947         Info.Prefix = 0;
2948       }
2949     }
2950     if (Info.Prologue) {
2951       unsigned ValID = Info.Prologue - 1;
2952       if (ValID < ValueList.size()) {
2953         Expected<Constant *> MaybeC = getValueForInitializer(ValID);
2954         if (!MaybeC)
2955           return MaybeC.takeError();
2956         Info.F->setPrologueData(MaybeC.get());
2957         Info.Prologue = 0;
2958       }
2959     }
2960     if (Info.PersonalityFn || Info.Prefix || Info.Prologue)
2961       FunctionOperands.push_back(Info);
2962     FunctionOperandWorklist.pop_back();
2963   }
2964 
2965   return Error::success();
2966 }
2967 
2968 APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
2969   SmallVector<uint64_t, 8> Words(Vals.size());
2970   transform(Vals, Words.begin(),
2971                  BitcodeReader::decodeSignRotatedValue);
2972 
2973   return APInt(TypeBits, Words);
2974 }
2975 
2976 Error BitcodeReader::parseConstants() {
2977   if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
2978     return Err;
2979 
2980   SmallVector<uint64_t, 64> Record;
2981 
2982   // Read all the records for this value table.
2983   Type *CurTy = Type::getInt32Ty(Context);
2984   unsigned Int32TyID = getVirtualTypeID(CurTy);
2985   unsigned CurTyID = Int32TyID;
2986   Type *CurElemTy = nullptr;
2987   unsigned NextCstNo = ValueList.size();
2988 
2989   while (true) {
2990     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2991     if (!MaybeEntry)
2992       return MaybeEntry.takeError();
2993     BitstreamEntry Entry = MaybeEntry.get();
2994 
2995     switch (Entry.Kind) {
2996     case BitstreamEntry::SubBlock: // Handled for us already.
2997     case BitstreamEntry::Error:
2998       return error("Malformed block");
2999     case BitstreamEntry::EndBlock:
3000       if (NextCstNo != ValueList.size())
3001         return error("Invalid constant reference");
3002       return Error::success();
3003     case BitstreamEntry::Record:
3004       // The interesting case.
3005       break;
3006     }
3007 
3008     // Read a record.
3009     Record.clear();
3010     Type *VoidType = Type::getVoidTy(Context);
3011     Value *V = nullptr;
3012     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
3013     if (!MaybeBitCode)
3014       return MaybeBitCode.takeError();
3015     switch (unsigned BitCode = MaybeBitCode.get()) {
3016     default:  // Default behavior: unknown constant
3017     case bitc::CST_CODE_UNDEF:     // UNDEF
3018       V = UndefValue::get(CurTy);
3019       break;
3020     case bitc::CST_CODE_POISON:    // POISON
3021       V = PoisonValue::get(CurTy);
3022       break;
3023     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
3024       if (Record.empty())
3025         return error("Invalid settype record");
3026       if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
3027         return error("Invalid settype record");
3028       if (TypeList[Record[0]] == VoidType)
3029         return error("Invalid constant type");
3030       CurTyID = Record[0];
3031       CurTy = TypeList[CurTyID];
3032       CurElemTy = getPtrElementTypeByID(CurTyID);
3033       continue;  // Skip the ValueList manipulation.
3034     case bitc::CST_CODE_NULL:      // NULL
3035       if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy())
3036         return error("Invalid type for a constant null value");
3037       if (auto *TETy = dyn_cast<TargetExtType>(CurTy))
3038         if (!TETy->hasProperty(TargetExtType::HasZeroInit))
3039           return error("Invalid type for a constant null value");
3040       V = Constant::getNullValue(CurTy);
3041       break;
3042     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
3043       if (!CurTy->isIntegerTy() || Record.empty())
3044         return error("Invalid integer const record");
3045       V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
3046       break;
3047     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
3048       if (!CurTy->isIntegerTy() || Record.empty())
3049         return error("Invalid wide integer const record");
3050 
3051       APInt VInt =
3052           readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth());
3053       V = ConstantInt::get(Context, VInt);
3054 
3055       break;
3056     }
3057     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
3058       if (Record.empty())
3059         return error("Invalid float const record");
3060       if (CurTy->isHalfTy())
3061         V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(),
3062                                              APInt(16, (uint16_t)Record[0])));
3063       else if (CurTy->isBFloatTy())
3064         V = ConstantFP::get(Context, APFloat(APFloat::BFloat(),
3065                                              APInt(16, (uint32_t)Record[0])));
3066       else if (CurTy->isFloatTy())
3067         V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(),
3068                                              APInt(32, (uint32_t)Record[0])));
3069       else if (CurTy->isDoubleTy())
3070         V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(),
3071                                              APInt(64, Record[0])));
3072       else if (CurTy->isX86_FP80Ty()) {
3073         // Bits are not stored the same way as a normal i80 APInt, compensate.
3074         uint64_t Rearrange[2];
3075         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
3076         Rearrange[1] = Record[0] >> 48;
3077         V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(),
3078                                              APInt(80, Rearrange)));
3079       } else if (CurTy->isFP128Ty())
3080         V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(),
3081                                              APInt(128, Record)));
3082       else if (CurTy->isPPC_FP128Ty())
3083         V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(),
3084                                              APInt(128, Record)));
3085       else
3086         V = UndefValue::get(CurTy);
3087       break;
3088     }
3089 
3090     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
3091       if (Record.empty())
3092         return error("Invalid aggregate record");
3093 
3094       unsigned Size = Record.size();
3095       SmallVector<unsigned, 16> Elts;
3096       for (unsigned i = 0; i != Size; ++i)
3097         Elts.push_back(Record[i]);
3098 
3099       if (isa<StructType>(CurTy)) {
3100         V = BitcodeConstant::create(
3101             Alloc, CurTy, BitcodeConstant::ConstantStructOpcode, Elts);
3102       } else if (isa<ArrayType>(CurTy)) {
3103         V = BitcodeConstant::create(Alloc, CurTy,
3104                                     BitcodeConstant::ConstantArrayOpcode, Elts);
3105       } else if (isa<VectorType>(CurTy)) {
3106         V = BitcodeConstant::create(
3107             Alloc, CurTy, BitcodeConstant::ConstantVectorOpcode, Elts);
3108       } else {
3109         V = UndefValue::get(CurTy);
3110       }
3111       break;
3112     }
3113     case bitc::CST_CODE_STRING:    // STRING: [values]
3114     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
3115       if (Record.empty())
3116         return error("Invalid string record");
3117 
3118       SmallString<16> Elts(Record.begin(), Record.end());
3119       V = ConstantDataArray::getString(Context, Elts,
3120                                        BitCode == bitc::CST_CODE_CSTRING);
3121       break;
3122     }
3123     case bitc::CST_CODE_DATA: {// DATA: [n x value]
3124       if (Record.empty())
3125         return error("Invalid data record");
3126 
3127       Type *EltTy;
3128       if (auto *Array = dyn_cast<ArrayType>(CurTy))
3129         EltTy = Array->getElementType();
3130       else
3131         EltTy = cast<VectorType>(CurTy)->getElementType();
3132       if (EltTy->isIntegerTy(8)) {
3133         SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
3134         if (isa<VectorType>(CurTy))
3135           V = ConstantDataVector::get(Context, Elts);
3136         else
3137           V = ConstantDataArray::get(Context, Elts);
3138       } else if (EltTy->isIntegerTy(16)) {
3139         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
3140         if (isa<VectorType>(CurTy))
3141           V = ConstantDataVector::get(Context, Elts);
3142         else
3143           V = ConstantDataArray::get(Context, Elts);
3144       } else if (EltTy->isIntegerTy(32)) {
3145         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
3146         if (isa<VectorType>(CurTy))
3147           V = ConstantDataVector::get(Context, Elts);
3148         else
3149           V = ConstantDataArray::get(Context, Elts);
3150       } else if (EltTy->isIntegerTy(64)) {
3151         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
3152         if (isa<VectorType>(CurTy))
3153           V = ConstantDataVector::get(Context, Elts);
3154         else
3155           V = ConstantDataArray::get(Context, Elts);
3156       } else if (EltTy->isHalfTy()) {
3157         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
3158         if (isa<VectorType>(CurTy))
3159           V = ConstantDataVector::getFP(EltTy, Elts);
3160         else
3161           V = ConstantDataArray::getFP(EltTy, Elts);
3162       } else if (EltTy->isBFloatTy()) {
3163         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
3164         if (isa<VectorType>(CurTy))
3165           V = ConstantDataVector::getFP(EltTy, Elts);
3166         else
3167           V = ConstantDataArray::getFP(EltTy, Elts);
3168       } else if (EltTy->isFloatTy()) {
3169         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
3170         if (isa<VectorType>(CurTy))
3171           V = ConstantDataVector::getFP(EltTy, Elts);
3172         else
3173           V = ConstantDataArray::getFP(EltTy, Elts);
3174       } else if (EltTy->isDoubleTy()) {
3175         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
3176         if (isa<VectorType>(CurTy))
3177           V = ConstantDataVector::getFP(EltTy, Elts);
3178         else
3179           V = ConstantDataArray::getFP(EltTy, Elts);
3180       } else {
3181         return error("Invalid type for value");
3182       }
3183       break;
3184     }
3185     case bitc::CST_CODE_CE_UNOP: {  // CE_UNOP: [opcode, opval]
3186       if (Record.size() < 2)
3187         return error("Invalid unary op constexpr record");
3188       int Opc = getDecodedUnaryOpcode(Record[0], CurTy);
3189       if (Opc < 0) {
3190         V = UndefValue::get(CurTy);  // Unknown unop.
3191       } else {
3192         V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[1]);
3193       }
3194       break;
3195     }
3196     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
3197       if (Record.size() < 3)
3198         return error("Invalid binary op constexpr record");
3199       int Opc = getDecodedBinaryOpcode(Record[0], CurTy);
3200       if (Opc < 0) {
3201         V = UndefValue::get(CurTy);  // Unknown binop.
3202       } else {
3203         uint8_t Flags = 0;
3204         if (Record.size() >= 4) {
3205           if (Opc == Instruction::Add ||
3206               Opc == Instruction::Sub ||
3207               Opc == Instruction::Mul ||
3208               Opc == Instruction::Shl) {
3209             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
3210               Flags |= OverflowingBinaryOperator::NoSignedWrap;
3211             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
3212               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
3213           } else if (Opc == Instruction::SDiv ||
3214                      Opc == Instruction::UDiv ||
3215                      Opc == Instruction::LShr ||
3216                      Opc == Instruction::AShr) {
3217             if (Record[3] & (1 << bitc::PEO_EXACT))
3218               Flags |= SDivOperator::IsExact;
3219           }
3220         }
3221         V = BitcodeConstant::create(Alloc, CurTy, {(uint8_t)Opc, Flags},
3222                                     {(unsigned)Record[1], (unsigned)Record[2]});
3223       }
3224       break;
3225     }
3226     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
3227       if (Record.size() < 3)
3228         return error("Invalid cast constexpr record");
3229       int Opc = getDecodedCastOpcode(Record[0]);
3230       if (Opc < 0) {
3231         V = UndefValue::get(CurTy);  // Unknown cast.
3232       } else {
3233         unsigned OpTyID = Record[1];
3234         Type *OpTy = getTypeByID(OpTyID);
3235         if (!OpTy)
3236           return error("Invalid cast constexpr record");
3237         V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[2]);
3238       }
3239       break;
3240     }
3241     case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands]
3242     case bitc::CST_CODE_CE_GEP: // [ty, n x operands]
3243     case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x
3244                                                      // operands]
3245       if (Record.size() < 2)
3246         return error("Constant GEP record must have at least two elements");
3247       unsigned OpNum = 0;
3248       Type *PointeeType = nullptr;
3249       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX ||
3250           Record.size() % 2)
3251         PointeeType = getTypeByID(Record[OpNum++]);
3252 
3253       bool InBounds = false;
3254       std::optional<unsigned> InRangeIndex;
3255       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) {
3256         uint64_t Op = Record[OpNum++];
3257         InBounds = Op & 1;
3258         InRangeIndex = Op >> 1;
3259       } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
3260         InBounds = true;
3261 
3262       SmallVector<unsigned, 16> Elts;
3263       unsigned BaseTypeID = Record[OpNum];
3264       while (OpNum != Record.size()) {
3265         unsigned ElTyID = Record[OpNum++];
3266         Type *ElTy = getTypeByID(ElTyID);
3267         if (!ElTy)
3268           return error("Invalid getelementptr constexpr record");
3269         Elts.push_back(Record[OpNum++]);
3270       }
3271 
3272       if (Elts.size() < 1)
3273         return error("Invalid gep with no operands");
3274 
3275       Type *BaseType = getTypeByID(BaseTypeID);
3276       if (isa<VectorType>(BaseType)) {
3277         BaseTypeID = getContainedTypeID(BaseTypeID, 0);
3278         BaseType = getTypeByID(BaseTypeID);
3279       }
3280 
3281       PointerType *OrigPtrTy = dyn_cast_or_null<PointerType>(BaseType);
3282       if (!OrigPtrTy)
3283         return error("GEP base operand must be pointer or vector of pointer");
3284 
3285       if (!PointeeType) {
3286         PointeeType = getPtrElementTypeByID(BaseTypeID);
3287         if (!PointeeType)
3288           return error("Missing element type for old-style constant GEP");
3289       } else if (!OrigPtrTy->isOpaqueOrPointeeTypeMatches(PointeeType))
3290         return error("Explicit gep operator type does not match pointee type "
3291                      "of pointer operand");
3292 
3293       V = BitcodeConstant::create(Alloc, CurTy,
3294                                   {Instruction::GetElementPtr, InBounds,
3295                                    InRangeIndex.value_or(-1), PointeeType},
3296                                   Elts);
3297       break;
3298     }
3299     case bitc::CST_CODE_CE_SELECT: {  // CE_SELECT: [opval#, opval#, opval#]
3300       if (Record.size() < 3)
3301         return error("Invalid select constexpr record");
3302 
3303       V = BitcodeConstant::create(
3304           Alloc, CurTy, Instruction::Select,
3305           {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]});
3306       break;
3307     }
3308     case bitc::CST_CODE_CE_EXTRACTELT
3309         : { // CE_EXTRACTELT: [opty, opval, opty, opval]
3310       if (Record.size() < 3)
3311         return error("Invalid extractelement constexpr record");
3312       unsigned OpTyID = Record[0];
3313       VectorType *OpTy =
3314         dyn_cast_or_null<VectorType>(getTypeByID(OpTyID));
3315       if (!OpTy)
3316         return error("Invalid extractelement constexpr record");
3317       unsigned IdxRecord;
3318       if (Record.size() == 4) {
3319         unsigned IdxTyID = Record[2];
3320         Type *IdxTy = getTypeByID(IdxTyID);
3321         if (!IdxTy)
3322           return error("Invalid extractelement constexpr record");
3323         IdxRecord = Record[3];
3324       } else {
3325         // Deprecated, but still needed to read old bitcode files.
3326         IdxRecord = Record[2];
3327       }
3328       V = BitcodeConstant::create(Alloc, CurTy, Instruction::ExtractElement,
3329                                   {(unsigned)Record[1], IdxRecord});
3330       break;
3331     }
3332     case bitc::CST_CODE_CE_INSERTELT
3333         : { // CE_INSERTELT: [opval, opval, opty, opval]
3334       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
3335       if (Record.size() < 3 || !OpTy)
3336         return error("Invalid insertelement constexpr record");
3337       unsigned IdxRecord;
3338       if (Record.size() == 4) {
3339         unsigned IdxTyID = Record[2];
3340         Type *IdxTy = getTypeByID(IdxTyID);
3341         if (!IdxTy)
3342           return error("Invalid insertelement constexpr record");
3343         IdxRecord = Record[3];
3344       } else {
3345         // Deprecated, but still needed to read old bitcode files.
3346         IdxRecord = Record[2];
3347       }
3348       V = BitcodeConstant::create(
3349           Alloc, CurTy, Instruction::InsertElement,
3350           {(unsigned)Record[0], (unsigned)Record[1], IdxRecord});
3351       break;
3352     }
3353     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
3354       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
3355       if (Record.size() < 3 || !OpTy)
3356         return error("Invalid shufflevector constexpr record");
3357       V = BitcodeConstant::create(
3358           Alloc, CurTy, Instruction::ShuffleVector,
3359           {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]});
3360       break;
3361     }
3362     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
3363       VectorType *RTy = dyn_cast<VectorType>(CurTy);
3364       VectorType *OpTy =
3365         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
3366       if (Record.size() < 4 || !RTy || !OpTy)
3367         return error("Invalid shufflevector constexpr record");
3368       V = BitcodeConstant::create(
3369           Alloc, CurTy, Instruction::ShuffleVector,
3370           {(unsigned)Record[1], (unsigned)Record[2], (unsigned)Record[3]});
3371       break;
3372     }
3373     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
3374       if (Record.size() < 4)
3375         return error("Invalid cmp constexpt record");
3376       unsigned OpTyID = Record[0];
3377       Type *OpTy = getTypeByID(OpTyID);
3378       if (!OpTy)
3379         return error("Invalid cmp constexpr record");
3380       V = BitcodeConstant::create(
3381           Alloc, CurTy,
3382           {(uint8_t)(OpTy->isFPOrFPVectorTy() ? Instruction::FCmp
3383                                               : Instruction::ICmp),
3384            (uint8_t)Record[3]},
3385           {(unsigned)Record[1], (unsigned)Record[2]});
3386       break;
3387     }
3388     // This maintains backward compatibility, pre-asm dialect keywords.
3389     // Deprecated, but still needed to read old bitcode files.
3390     case bitc::CST_CODE_INLINEASM_OLD: {
3391       if (Record.size() < 2)
3392         return error("Invalid inlineasm record");
3393       std::string AsmStr, ConstrStr;
3394       bool HasSideEffects = Record[0] & 1;
3395       bool IsAlignStack = Record[0] >> 1;
3396       unsigned AsmStrSize = Record[1];
3397       if (2+AsmStrSize >= Record.size())
3398         return error("Invalid inlineasm record");
3399       unsigned ConstStrSize = Record[2+AsmStrSize];
3400       if (3+AsmStrSize+ConstStrSize > Record.size())
3401         return error("Invalid inlineasm record");
3402 
3403       for (unsigned i = 0; i != AsmStrSize; ++i)
3404         AsmStr += (char)Record[2+i];
3405       for (unsigned i = 0; i != ConstStrSize; ++i)
3406         ConstrStr += (char)Record[3+AsmStrSize+i];
3407       UpgradeInlineAsmString(&AsmStr);
3408       if (!CurElemTy)
3409         return error("Missing element type for old-style inlineasm");
3410       V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr,
3411                          HasSideEffects, IsAlignStack);
3412       break;
3413     }
3414     // This version adds support for the asm dialect keywords (e.g.,
3415     // inteldialect).
3416     case bitc::CST_CODE_INLINEASM_OLD2: {
3417       if (Record.size() < 2)
3418         return error("Invalid inlineasm record");
3419       std::string AsmStr, ConstrStr;
3420       bool HasSideEffects = Record[0] & 1;
3421       bool IsAlignStack = (Record[0] >> 1) & 1;
3422       unsigned AsmDialect = Record[0] >> 2;
3423       unsigned AsmStrSize = Record[1];
3424       if (2+AsmStrSize >= Record.size())
3425         return error("Invalid inlineasm record");
3426       unsigned ConstStrSize = Record[2+AsmStrSize];
3427       if (3+AsmStrSize+ConstStrSize > Record.size())
3428         return error("Invalid inlineasm record");
3429 
3430       for (unsigned i = 0; i != AsmStrSize; ++i)
3431         AsmStr += (char)Record[2+i];
3432       for (unsigned i = 0; i != ConstStrSize; ++i)
3433         ConstrStr += (char)Record[3+AsmStrSize+i];
3434       UpgradeInlineAsmString(&AsmStr);
3435       if (!CurElemTy)
3436         return error("Missing element type for old-style inlineasm");
3437       V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr,
3438                          HasSideEffects, IsAlignStack,
3439                          InlineAsm::AsmDialect(AsmDialect));
3440       break;
3441     }
3442     // This version adds support for the unwind keyword.
3443     case bitc::CST_CODE_INLINEASM_OLD3: {
3444       if (Record.size() < 2)
3445         return error("Invalid inlineasm record");
3446       unsigned OpNum = 0;
3447       std::string AsmStr, ConstrStr;
3448       bool HasSideEffects = Record[OpNum] & 1;
3449       bool IsAlignStack = (Record[OpNum] >> 1) & 1;
3450       unsigned AsmDialect = (Record[OpNum] >> 2) & 1;
3451       bool CanThrow = (Record[OpNum] >> 3) & 1;
3452       ++OpNum;
3453       unsigned AsmStrSize = Record[OpNum];
3454       ++OpNum;
3455       if (OpNum + AsmStrSize >= Record.size())
3456         return error("Invalid inlineasm record");
3457       unsigned ConstStrSize = Record[OpNum + AsmStrSize];
3458       if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size())
3459         return error("Invalid inlineasm record");
3460 
3461       for (unsigned i = 0; i != AsmStrSize; ++i)
3462         AsmStr += (char)Record[OpNum + i];
3463       ++OpNum;
3464       for (unsigned i = 0; i != ConstStrSize; ++i)
3465         ConstrStr += (char)Record[OpNum + AsmStrSize + i];
3466       UpgradeInlineAsmString(&AsmStr);
3467       if (!CurElemTy)
3468         return error("Missing element type for old-style inlineasm");
3469       V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr,
3470                          HasSideEffects, IsAlignStack,
3471                          InlineAsm::AsmDialect(AsmDialect), CanThrow);
3472       break;
3473     }
3474     // This version adds explicit function type.
3475     case bitc::CST_CODE_INLINEASM: {
3476       if (Record.size() < 3)
3477         return error("Invalid inlineasm record");
3478       unsigned OpNum = 0;
3479       auto *FnTy = dyn_cast_or_null<FunctionType>(getTypeByID(Record[OpNum]));
3480       ++OpNum;
3481       if (!FnTy)
3482         return error("Invalid inlineasm record");
3483       std::string AsmStr, ConstrStr;
3484       bool HasSideEffects = Record[OpNum] & 1;
3485       bool IsAlignStack = (Record[OpNum] >> 1) & 1;
3486       unsigned AsmDialect = (Record[OpNum] >> 2) & 1;
3487       bool CanThrow = (Record[OpNum] >> 3) & 1;
3488       ++OpNum;
3489       unsigned AsmStrSize = Record[OpNum];
3490       ++OpNum;
3491       if (OpNum + AsmStrSize >= Record.size())
3492         return error("Invalid inlineasm record");
3493       unsigned ConstStrSize = Record[OpNum + AsmStrSize];
3494       if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size())
3495         return error("Invalid inlineasm record");
3496 
3497       for (unsigned i = 0; i != AsmStrSize; ++i)
3498         AsmStr += (char)Record[OpNum + i];
3499       ++OpNum;
3500       for (unsigned i = 0; i != ConstStrSize; ++i)
3501         ConstrStr += (char)Record[OpNum + AsmStrSize + i];
3502       UpgradeInlineAsmString(&AsmStr);
3503       V = InlineAsm::get(FnTy, AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
3504                          InlineAsm::AsmDialect(AsmDialect), CanThrow);
3505       break;
3506     }
3507     case bitc::CST_CODE_BLOCKADDRESS:{
3508       if (Record.size() < 3)
3509         return error("Invalid blockaddress record");
3510       unsigned FnTyID = Record[0];
3511       Type *FnTy = getTypeByID(FnTyID);
3512       if (!FnTy)
3513         return error("Invalid blockaddress record");
3514       V = BitcodeConstant::create(
3515           Alloc, CurTy,
3516           {BitcodeConstant::BlockAddressOpcode, 0, (unsigned)Record[2]},
3517           Record[1]);
3518       break;
3519     }
3520     case bitc::CST_CODE_DSO_LOCAL_EQUIVALENT: {
3521       if (Record.size() < 2)
3522         return error("Invalid dso_local record");
3523       unsigned GVTyID = Record[0];
3524       Type *GVTy = getTypeByID(GVTyID);
3525       if (!GVTy)
3526         return error("Invalid dso_local record");
3527       V = BitcodeConstant::create(
3528           Alloc, CurTy, BitcodeConstant::DSOLocalEquivalentOpcode, Record[1]);
3529       break;
3530     }
3531     case bitc::CST_CODE_NO_CFI_VALUE: {
3532       if (Record.size() < 2)
3533         return error("Invalid no_cfi record");
3534       unsigned GVTyID = Record[0];
3535       Type *GVTy = getTypeByID(GVTyID);
3536       if (!GVTy)
3537         return error("Invalid no_cfi record");
3538       V = BitcodeConstant::create(Alloc, CurTy, BitcodeConstant::NoCFIOpcode,
3539                                   Record[1]);
3540       break;
3541     }
3542     }
3543 
3544     assert(V->getType() == getTypeByID(CurTyID) && "Incorrect result type ID");
3545     if (Error Err = ValueList.assignValue(NextCstNo, V, CurTyID))
3546       return Err;
3547     ++NextCstNo;
3548   }
3549 }
3550 
3551 Error BitcodeReader::parseUseLists() {
3552   if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
3553     return Err;
3554 
3555   // Read all the records.
3556   SmallVector<uint64_t, 64> Record;
3557 
3558   while (true) {
3559     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
3560     if (!MaybeEntry)
3561       return MaybeEntry.takeError();
3562     BitstreamEntry Entry = MaybeEntry.get();
3563 
3564     switch (Entry.Kind) {
3565     case BitstreamEntry::SubBlock: // Handled for us already.
3566     case BitstreamEntry::Error:
3567       return error("Malformed block");
3568     case BitstreamEntry::EndBlock:
3569       return Error::success();
3570     case BitstreamEntry::Record:
3571       // The interesting case.
3572       break;
3573     }
3574 
3575     // Read a use list record.
3576     Record.clear();
3577     bool IsBB = false;
3578     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
3579     if (!MaybeRecord)
3580       return MaybeRecord.takeError();
3581     switch (MaybeRecord.get()) {
3582     default:  // Default behavior: unknown type.
3583       break;
3584     case bitc::USELIST_CODE_BB:
3585       IsBB = true;
3586       [[fallthrough]];
3587     case bitc::USELIST_CODE_DEFAULT: {
3588       unsigned RecordLength = Record.size();
3589       if (RecordLength < 3)
3590         // Records should have at least an ID and two indexes.
3591         return error("Invalid record");
3592       unsigned ID = Record.pop_back_val();
3593 
3594       Value *V;
3595       if (IsBB) {
3596         assert(ID < FunctionBBs.size() && "Basic block not found");
3597         V = FunctionBBs[ID];
3598       } else
3599         V = ValueList[ID];
3600       unsigned NumUses = 0;
3601       SmallDenseMap<const Use *, unsigned, 16> Order;
3602       for (const Use &U : V->materialized_uses()) {
3603         if (++NumUses > Record.size())
3604           break;
3605         Order[&U] = Record[NumUses - 1];
3606       }
3607       if (Order.size() != Record.size() || NumUses > Record.size())
3608         // Mismatches can happen if the functions are being materialized lazily
3609         // (out-of-order), or a value has been upgraded.
3610         break;
3611 
3612       V->sortUseList([&](const Use &L, const Use &R) {
3613         return Order.lookup(&L) < Order.lookup(&R);
3614       });
3615       break;
3616     }
3617     }
3618   }
3619 }
3620 
3621 /// When we see the block for metadata, remember where it is and then skip it.
3622 /// This lets us lazily deserialize the metadata.
3623 Error BitcodeReader::rememberAndSkipMetadata() {
3624   // Save the current stream state.
3625   uint64_t CurBit = Stream.GetCurrentBitNo();
3626   DeferredMetadataInfo.push_back(CurBit);
3627 
3628   // Skip over the block for now.
3629   if (Error Err = Stream.SkipBlock())
3630     return Err;
3631   return Error::success();
3632 }
3633 
3634 Error BitcodeReader::materializeMetadata() {
3635   for (uint64_t BitPos : DeferredMetadataInfo) {
3636     // Move the bit stream to the saved position.
3637     if (Error JumpFailed = Stream.JumpToBit(BitPos))
3638       return JumpFailed;
3639     if (Error Err = MDLoader->parseModuleMetadata())
3640       return Err;
3641   }
3642 
3643   // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level
3644   // metadata. Only upgrade if the new option doesn't exist to avoid upgrade
3645   // multiple times.
3646   if (!TheModule->getNamedMetadata("llvm.linker.options")) {
3647     if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) {
3648       NamedMDNode *LinkerOpts =
3649           TheModule->getOrInsertNamedMetadata("llvm.linker.options");
3650       for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands())
3651         LinkerOpts->addOperand(cast<MDNode>(MDOptions));
3652     }
3653   }
3654 
3655   DeferredMetadataInfo.clear();
3656   return Error::success();
3657 }
3658 
3659 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
3660 
3661 /// When we see the block for a function body, remember where it is and then
3662 /// skip it.  This lets us lazily deserialize the functions.
3663 Error BitcodeReader::rememberAndSkipFunctionBody() {
3664   // Get the function we are talking about.
3665   if (FunctionsWithBodies.empty())
3666     return error("Insufficient function protos");
3667 
3668   Function *Fn = FunctionsWithBodies.back();
3669   FunctionsWithBodies.pop_back();
3670 
3671   // Save the current stream state.
3672   uint64_t CurBit = Stream.GetCurrentBitNo();
3673   assert(
3674       (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) &&
3675       "Mismatch between VST and scanned function offsets");
3676   DeferredFunctionInfo[Fn] = CurBit;
3677 
3678   // Skip over the function block for now.
3679   if (Error Err = Stream.SkipBlock())
3680     return Err;
3681   return Error::success();
3682 }
3683 
3684 Error BitcodeReader::globalCleanup() {
3685   // Patch the initializers for globals and aliases up.
3686   if (Error Err = resolveGlobalAndIndirectSymbolInits())
3687     return Err;
3688   if (!GlobalInits.empty() || !IndirectSymbolInits.empty())
3689     return error("Malformed global initializer set");
3690 
3691   // Look for intrinsic functions which need to be upgraded at some point
3692   // and functions that need to have their function attributes upgraded.
3693   for (Function &F : *TheModule) {
3694     MDLoader->upgradeDebugIntrinsics(F);
3695     Function *NewFn;
3696     if (UpgradeIntrinsicFunction(&F, NewFn))
3697       UpgradedIntrinsics[&F] = NewFn;
3698     // Look for functions that rely on old function attribute behavior.
3699     UpgradeFunctionAttributes(F);
3700   }
3701 
3702   // Look for global variables which need to be renamed.
3703   std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables;
3704   for (GlobalVariable &GV : TheModule->globals())
3705     if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV))
3706       UpgradedVariables.emplace_back(&GV, Upgraded);
3707   for (auto &Pair : UpgradedVariables) {
3708     Pair.first->eraseFromParent();
3709     TheModule->insertGlobalVariable(Pair.second);
3710   }
3711 
3712   // Force deallocation of memory for these vectors to favor the client that
3713   // want lazy deserialization.
3714   std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits);
3715   std::vector<std::pair<GlobalValue *, unsigned>>().swap(IndirectSymbolInits);
3716   return Error::success();
3717 }
3718 
3719 /// Support for lazy parsing of function bodies. This is required if we
3720 /// either have an old bitcode file without a VST forward declaration record,
3721 /// or if we have an anonymous function being materialized, since anonymous
3722 /// functions do not have a name and are therefore not in the VST.
3723 Error BitcodeReader::rememberAndSkipFunctionBodies() {
3724   if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit))
3725     return JumpFailed;
3726 
3727   if (Stream.AtEndOfStream())
3728     return error("Could not find function in stream");
3729 
3730   if (!SeenFirstFunctionBody)
3731     return error("Trying to materialize functions before seeing function blocks");
3732 
3733   // An old bitcode file with the symbol table at the end would have
3734   // finished the parse greedily.
3735   assert(SeenValueSymbolTable);
3736 
3737   SmallVector<uint64_t, 64> Record;
3738 
3739   while (true) {
3740     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3741     if (!MaybeEntry)
3742       return MaybeEntry.takeError();
3743     llvm::BitstreamEntry Entry = MaybeEntry.get();
3744 
3745     switch (Entry.Kind) {
3746     default:
3747       return error("Expect SubBlock");
3748     case BitstreamEntry::SubBlock:
3749       switch (Entry.ID) {
3750       default:
3751         return error("Expect function block");
3752       case bitc::FUNCTION_BLOCK_ID:
3753         if (Error Err = rememberAndSkipFunctionBody())
3754           return Err;
3755         NextUnreadBit = Stream.GetCurrentBitNo();
3756         return Error::success();
3757       }
3758     }
3759   }
3760 }
3761 
3762 Error BitcodeReaderBase::readBlockInfo() {
3763   Expected<std::optional<BitstreamBlockInfo>> MaybeNewBlockInfo =
3764       Stream.ReadBlockInfoBlock();
3765   if (!MaybeNewBlockInfo)
3766     return MaybeNewBlockInfo.takeError();
3767   std::optional<BitstreamBlockInfo> NewBlockInfo =
3768       std::move(MaybeNewBlockInfo.get());
3769   if (!NewBlockInfo)
3770     return error("Malformed block");
3771   BlockInfo = std::move(*NewBlockInfo);
3772   return Error::success();
3773 }
3774 
3775 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) {
3776   // v1: [selection_kind, name]
3777   // v2: [strtab_offset, strtab_size, selection_kind]
3778   StringRef Name;
3779   std::tie(Name, Record) = readNameFromStrtab(Record);
3780 
3781   if (Record.empty())
3782     return error("Invalid record");
3783   Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
3784   std::string OldFormatName;
3785   if (!UseStrtab) {
3786     if (Record.size() < 2)
3787       return error("Invalid record");
3788     unsigned ComdatNameSize = Record[1];
3789     if (ComdatNameSize > Record.size() - 2)
3790       return error("Comdat name size too large");
3791     OldFormatName.reserve(ComdatNameSize);
3792     for (unsigned i = 0; i != ComdatNameSize; ++i)
3793       OldFormatName += (char)Record[2 + i];
3794     Name = OldFormatName;
3795   }
3796   Comdat *C = TheModule->getOrInsertComdat(Name);
3797   C->setSelectionKind(SK);
3798   ComdatList.push_back(C);
3799   return Error::success();
3800 }
3801 
3802 static void inferDSOLocal(GlobalValue *GV) {
3803   // infer dso_local from linkage and visibility if it is not encoded.
3804   if (GV->hasLocalLinkage() ||
3805       (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()))
3806     GV->setDSOLocal(true);
3807 }
3808 
3809 GlobalValue::SanitizerMetadata deserializeSanitizerMetadata(unsigned V) {
3810   GlobalValue::SanitizerMetadata Meta;
3811   if (V & (1 << 0))
3812     Meta.NoAddress = true;
3813   if (V & (1 << 1))
3814     Meta.NoHWAddress = true;
3815   if (V & (1 << 2))
3816     Meta.Memtag = true;
3817   if (V & (1 << 3))
3818     Meta.IsDynInit = true;
3819   return Meta;
3820 }
3821 
3822 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) {
3823   // v1: [pointer type, isconst, initid, linkage, alignment, section,
3824   // visibility, threadlocal, unnamed_addr, externally_initialized,
3825   // dllstorageclass, comdat, attributes, preemption specifier,
3826   // partition strtab offset, partition strtab size] (name in VST)
3827   // v2: [strtab_offset, strtab_size, v1]
3828   StringRef Name;
3829   std::tie(Name, Record) = readNameFromStrtab(Record);
3830 
3831   if (Record.size() < 6)
3832     return error("Invalid record");
3833   unsigned TyID = Record[0];
3834   Type *Ty = getTypeByID(TyID);
3835   if (!Ty)
3836     return error("Invalid record");
3837   bool isConstant = Record[1] & 1;
3838   bool explicitType = Record[1] & 2;
3839   unsigned AddressSpace;
3840   if (explicitType) {
3841     AddressSpace = Record[1] >> 2;
3842   } else {
3843     if (!Ty->isPointerTy())
3844       return error("Invalid type for value");
3845     AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
3846     TyID = getContainedTypeID(TyID);
3847     Ty = getTypeByID(TyID);
3848     if (!Ty)
3849       return error("Missing element type for old-style global");
3850   }
3851 
3852   uint64_t RawLinkage = Record[3];
3853   GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
3854   MaybeAlign Alignment;
3855   if (Error Err = parseAlignmentValue(Record[4], Alignment))
3856     return Err;
3857   std::string Section;
3858   if (Record[5]) {
3859     if (Record[5] - 1 >= SectionTable.size())
3860       return error("Invalid ID");
3861     Section = SectionTable[Record[5] - 1];
3862   }
3863   GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
3864   // Local linkage must have default visibility.
3865   // auto-upgrade `hidden` and `protected` for old bitcode.
3866   if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
3867     Visibility = getDecodedVisibility(Record[6]);
3868 
3869   GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
3870   if (Record.size() > 7)
3871     TLM = getDecodedThreadLocalMode(Record[7]);
3872 
3873   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3874   if (Record.size() > 8)
3875     UnnamedAddr = getDecodedUnnamedAddrType(Record[8]);
3876 
3877   bool ExternallyInitialized = false;
3878   if (Record.size() > 9)
3879     ExternallyInitialized = Record[9];
3880 
3881   GlobalVariable *NewGV =
3882       new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name,
3883                          nullptr, TLM, AddressSpace, ExternallyInitialized);
3884   if (Alignment)
3885     NewGV->setAlignment(*Alignment);
3886   if (!Section.empty())
3887     NewGV->setSection(Section);
3888   NewGV->setVisibility(Visibility);
3889   NewGV->setUnnamedAddr(UnnamedAddr);
3890 
3891   if (Record.size() > 10) {
3892     // A GlobalValue with local linkage cannot have a DLL storage class.
3893     if (!NewGV->hasLocalLinkage()) {
3894       NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10]));
3895     }
3896   } else {
3897     upgradeDLLImportExportLinkage(NewGV, RawLinkage);
3898   }
3899 
3900   ValueList.push_back(NewGV, getVirtualTypeID(NewGV->getType(), TyID));
3901 
3902   // Remember which value to use for the global initializer.
3903   if (unsigned InitID = Record[2])
3904     GlobalInits.push_back(std::make_pair(NewGV, InitID - 1));
3905 
3906   if (Record.size() > 11) {
3907     if (unsigned ComdatID = Record[11]) {
3908       if (ComdatID > ComdatList.size())
3909         return error("Invalid global variable comdat ID");
3910       NewGV->setComdat(ComdatList[ComdatID - 1]);
3911     }
3912   } else if (hasImplicitComdat(RawLinkage)) {
3913     ImplicitComdatObjects.insert(NewGV);
3914   }
3915 
3916   if (Record.size() > 12) {
3917     auto AS = getAttributes(Record[12]).getFnAttrs();
3918     NewGV->setAttributes(AS);
3919   }
3920 
3921   if (Record.size() > 13) {
3922     NewGV->setDSOLocal(getDecodedDSOLocal(Record[13]));
3923   }
3924   inferDSOLocal(NewGV);
3925 
3926   // Check whether we have enough values to read a partition name.
3927   if (Record.size() > 15)
3928     NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15]));
3929 
3930   if (Record.size() > 16 && Record[16]) {
3931     llvm::GlobalValue::SanitizerMetadata Meta =
3932         deserializeSanitizerMetadata(Record[16]);
3933     NewGV->setSanitizerMetadata(Meta);
3934   }
3935 
3936   return Error::success();
3937 }
3938 
3939 void BitcodeReader::callValueTypeCallback(Value *F, unsigned TypeID) {
3940   if (ValueTypeCallback) {
3941     (*ValueTypeCallback)(
3942         F, TypeID, [this](unsigned I) { return getTypeByID(I); },
3943         [this](unsigned I, unsigned J) { return getContainedTypeID(I, J); });
3944   }
3945 }
3946 
3947 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) {
3948   // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section,
3949   // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat,
3950   // prefixdata,  personalityfn, preemption specifier, addrspace] (name in VST)
3951   // v2: [strtab_offset, strtab_size, v1]
3952   StringRef Name;
3953   std::tie(Name, Record) = readNameFromStrtab(Record);
3954 
3955   if (Record.size() < 8)
3956     return error("Invalid record");
3957   unsigned FTyID = Record[0];
3958   Type *FTy = getTypeByID(FTyID);
3959   if (!FTy)
3960     return error("Invalid record");
3961   if (isa<PointerType>(FTy)) {
3962     FTyID = getContainedTypeID(FTyID, 0);
3963     FTy = getTypeByID(FTyID);
3964     if (!FTy)
3965       return error("Missing element type for old-style function");
3966   }
3967 
3968   if (!isa<FunctionType>(FTy))
3969     return error("Invalid type for value");
3970   auto CC = static_cast<CallingConv::ID>(Record[1]);
3971   if (CC & ~CallingConv::MaxID)
3972     return error("Invalid calling convention ID");
3973 
3974   unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace();
3975   if (Record.size() > 16)
3976     AddrSpace = Record[16];
3977 
3978   Function *Func =
3979       Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage,
3980                        AddrSpace, Name, TheModule);
3981 
3982   assert(Func->getFunctionType() == FTy &&
3983          "Incorrect fully specified type provided for function");
3984   FunctionTypeIDs[Func] = FTyID;
3985 
3986   Func->setCallingConv(CC);
3987   bool isProto = Record[2];
3988   uint64_t RawLinkage = Record[3];
3989   Func->setLinkage(getDecodedLinkage(RawLinkage));
3990   Func->setAttributes(getAttributes(Record[4]));
3991   callValueTypeCallback(Func, FTyID);
3992 
3993   // Upgrade any old-style byval or sret without a type by propagating the
3994   // argument's pointee type. There should be no opaque pointers where the byval
3995   // type is implicit.
3996   for (unsigned i = 0; i != Func->arg_size(); ++i) {
3997     for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet,
3998                                      Attribute::InAlloca}) {
3999       if (!Func->hasParamAttribute(i, Kind))
4000         continue;
4001 
4002       if (Func->getParamAttribute(i, Kind).getValueAsType())
4003         continue;
4004 
4005       Func->removeParamAttr(i, Kind);
4006 
4007       unsigned ParamTypeID = getContainedTypeID(FTyID, i + 1);
4008       Type *PtrEltTy = getPtrElementTypeByID(ParamTypeID);
4009       if (!PtrEltTy)
4010         return error("Missing param element type for attribute upgrade");
4011 
4012       Attribute NewAttr;
4013       switch (Kind) {
4014       case Attribute::ByVal:
4015         NewAttr = Attribute::getWithByValType(Context, PtrEltTy);
4016         break;
4017       case Attribute::StructRet:
4018         NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy);
4019         break;
4020       case Attribute::InAlloca:
4021         NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy);
4022         break;
4023       default:
4024         llvm_unreachable("not an upgraded type attribute");
4025       }
4026 
4027       Func->addParamAttr(i, NewAttr);
4028     }
4029   }
4030 
4031   if (Func->getCallingConv() == CallingConv::X86_INTR &&
4032       !Func->arg_empty() && !Func->hasParamAttribute(0, Attribute::ByVal)) {
4033     unsigned ParamTypeID = getContainedTypeID(FTyID, 1);
4034     Type *ByValTy = getPtrElementTypeByID(ParamTypeID);
4035     if (!ByValTy)
4036       return error("Missing param element type for x86_intrcc upgrade");
4037     Attribute NewAttr = Attribute::getWithByValType(Context, ByValTy);
4038     Func->addParamAttr(0, NewAttr);
4039   }
4040 
4041   MaybeAlign Alignment;
4042   if (Error Err = parseAlignmentValue(Record[5], Alignment))
4043     return Err;
4044   if (Alignment)
4045     Func->setAlignment(*Alignment);
4046   if (Record[6]) {
4047     if (Record[6] - 1 >= SectionTable.size())
4048       return error("Invalid ID");
4049     Func->setSection(SectionTable[Record[6] - 1]);
4050   }
4051   // Local linkage must have default visibility.
4052   // auto-upgrade `hidden` and `protected` for old bitcode.
4053   if (!Func->hasLocalLinkage())
4054     Func->setVisibility(getDecodedVisibility(Record[7]));
4055   if (Record.size() > 8 && Record[8]) {
4056     if (Record[8] - 1 >= GCTable.size())
4057       return error("Invalid ID");
4058     Func->setGC(GCTable[Record[8] - 1]);
4059   }
4060   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
4061   if (Record.size() > 9)
4062     UnnamedAddr = getDecodedUnnamedAddrType(Record[9]);
4063   Func->setUnnamedAddr(UnnamedAddr);
4064 
4065   FunctionOperandInfo OperandInfo = {Func, 0, 0, 0};
4066   if (Record.size() > 10)
4067     OperandInfo.Prologue = Record[10];
4068 
4069   if (Record.size() > 11) {
4070     // A GlobalValue with local linkage cannot have a DLL storage class.
4071     if (!Func->hasLocalLinkage()) {
4072       Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11]));
4073     }
4074   } else {
4075     upgradeDLLImportExportLinkage(Func, RawLinkage);
4076   }
4077 
4078   if (Record.size() > 12) {
4079     if (unsigned ComdatID = Record[12]) {
4080       if (ComdatID > ComdatList.size())
4081         return error("Invalid function comdat ID");
4082       Func->setComdat(ComdatList[ComdatID - 1]);
4083     }
4084   } else if (hasImplicitComdat(RawLinkage)) {
4085     ImplicitComdatObjects.insert(Func);
4086   }
4087 
4088   if (Record.size() > 13)
4089     OperandInfo.Prefix = Record[13];
4090 
4091   if (Record.size() > 14)
4092     OperandInfo.PersonalityFn = Record[14];
4093 
4094   if (Record.size() > 15) {
4095     Func->setDSOLocal(getDecodedDSOLocal(Record[15]));
4096   }
4097   inferDSOLocal(Func);
4098 
4099   // Record[16] is the address space number.
4100 
4101   // Check whether we have enough values to read a partition name. Also make
4102   // sure Strtab has enough values.
4103   if (Record.size() > 18 && Strtab.data() &&
4104       Record[17] + Record[18] <= Strtab.size()) {
4105     Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18]));
4106   }
4107 
4108   ValueList.push_back(Func, getVirtualTypeID(Func->getType(), FTyID));
4109 
4110   if (OperandInfo.PersonalityFn || OperandInfo.Prefix || OperandInfo.Prologue)
4111     FunctionOperands.push_back(OperandInfo);
4112 
4113   // If this is a function with a body, remember the prototype we are
4114   // creating now, so that we can match up the body with them later.
4115   if (!isProto) {
4116     Func->setIsMaterializable(true);
4117     FunctionsWithBodies.push_back(Func);
4118     DeferredFunctionInfo[Func] = 0;
4119   }
4120   return Error::success();
4121 }
4122 
4123 Error BitcodeReader::parseGlobalIndirectSymbolRecord(
4124     unsigned BitCode, ArrayRef<uint64_t> Record) {
4125   // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST)
4126   // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility,
4127   // dllstorageclass, threadlocal, unnamed_addr,
4128   // preemption specifier] (name in VST)
4129   // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage,
4130   // visibility, dllstorageclass, threadlocal, unnamed_addr,
4131   // preemption specifier] (name in VST)
4132   // v2: [strtab_offset, strtab_size, v1]
4133   StringRef Name;
4134   std::tie(Name, Record) = readNameFromStrtab(Record);
4135 
4136   bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD;
4137   if (Record.size() < (3 + (unsigned)NewRecord))
4138     return error("Invalid record");
4139   unsigned OpNum = 0;
4140   unsigned TypeID = Record[OpNum++];
4141   Type *Ty = getTypeByID(TypeID);
4142   if (!Ty)
4143     return error("Invalid record");
4144 
4145   unsigned AddrSpace;
4146   if (!NewRecord) {
4147     auto *PTy = dyn_cast<PointerType>(Ty);
4148     if (!PTy)
4149       return error("Invalid type for value");
4150     AddrSpace = PTy->getAddressSpace();
4151     TypeID = getContainedTypeID(TypeID);
4152     Ty = getTypeByID(TypeID);
4153     if (!Ty)
4154       return error("Missing element type for old-style indirect symbol");
4155   } else {
4156     AddrSpace = Record[OpNum++];
4157   }
4158 
4159   auto Val = Record[OpNum++];
4160   auto Linkage = Record[OpNum++];
4161   GlobalValue *NewGA;
4162   if (BitCode == bitc::MODULE_CODE_ALIAS ||
4163       BitCode == bitc::MODULE_CODE_ALIAS_OLD)
4164     NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
4165                                 TheModule);
4166   else
4167     NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
4168                                 nullptr, TheModule);
4169 
4170   // Local linkage must have default visibility.
4171   // auto-upgrade `hidden` and `protected` for old bitcode.
4172   if (OpNum != Record.size()) {
4173     auto VisInd = OpNum++;
4174     if (!NewGA->hasLocalLinkage())
4175       NewGA->setVisibility(getDecodedVisibility(Record[VisInd]));
4176   }
4177   if (BitCode == bitc::MODULE_CODE_ALIAS ||
4178       BitCode == bitc::MODULE_CODE_ALIAS_OLD) {
4179     if (OpNum != Record.size()) {
4180       auto S = Record[OpNum++];
4181       // A GlobalValue with local linkage cannot have a DLL storage class.
4182       if (!NewGA->hasLocalLinkage())
4183         NewGA->setDLLStorageClass(getDecodedDLLStorageClass(S));
4184     }
4185     else
4186       upgradeDLLImportExportLinkage(NewGA, Linkage);
4187     if (OpNum != Record.size())
4188       NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++]));
4189     if (OpNum != Record.size())
4190       NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++]));
4191   }
4192   if (OpNum != Record.size())
4193     NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++]));
4194   inferDSOLocal(NewGA);
4195 
4196   // Check whether we have enough values to read a partition name.
4197   if (OpNum + 1 < Record.size()) {
4198     NewGA->setPartition(
4199         StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1]));
4200     OpNum += 2;
4201   }
4202 
4203   ValueList.push_back(NewGA, getVirtualTypeID(NewGA->getType(), TypeID));
4204   IndirectSymbolInits.push_back(std::make_pair(NewGA, Val));
4205   return Error::success();
4206 }
4207 
4208 Error BitcodeReader::parseModule(uint64_t ResumeBit,
4209                                  bool ShouldLazyLoadMetadata,
4210                                  ParserCallbacks Callbacks) {
4211   this->ValueTypeCallback = std::move(Callbacks.ValueType);
4212   if (ResumeBit) {
4213     if (Error JumpFailed = Stream.JumpToBit(ResumeBit))
4214       return JumpFailed;
4215   } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
4216     return Err;
4217 
4218   SmallVector<uint64_t, 64> Record;
4219 
4220   // Parts of bitcode parsing depend on the datalayout.  Make sure we
4221   // finalize the datalayout before we run any of that code.
4222   bool ResolvedDataLayout = false;
4223   // In order to support importing modules with illegal data layout strings,
4224   // delay parsing the data layout string until after upgrades and overrides
4225   // have been applied, allowing to fix illegal data layout strings.
4226   // Initialize to the current module's layout string in case none is specified.
4227   std::string TentativeDataLayoutStr = TheModule->getDataLayoutStr();
4228 
4229   auto ResolveDataLayout = [&]() -> Error {
4230     if (ResolvedDataLayout)
4231       return Error::success();
4232 
4233     // Datalayout and triple can't be parsed after this point.
4234     ResolvedDataLayout = true;
4235 
4236     // Auto-upgrade the layout string
4237     TentativeDataLayoutStr = llvm::UpgradeDataLayoutString(
4238         TentativeDataLayoutStr, TheModule->getTargetTriple());
4239 
4240     // Apply override
4241     if (Callbacks.DataLayout) {
4242       if (auto LayoutOverride = (*Callbacks.DataLayout)(
4243               TheModule->getTargetTriple(), TentativeDataLayoutStr))
4244         TentativeDataLayoutStr = *LayoutOverride;
4245     }
4246 
4247     // Now the layout string is finalized in TentativeDataLayoutStr. Parse it.
4248     Expected<DataLayout> MaybeDL = DataLayout::parse(TentativeDataLayoutStr);
4249     if (!MaybeDL)
4250       return MaybeDL.takeError();
4251 
4252     TheModule->setDataLayout(MaybeDL.get());
4253     return Error::success();
4254   };
4255 
4256   // Read all the records for this module.
4257   while (true) {
4258     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
4259     if (!MaybeEntry)
4260       return MaybeEntry.takeError();
4261     llvm::BitstreamEntry Entry = MaybeEntry.get();
4262 
4263     switch (Entry.Kind) {
4264     case BitstreamEntry::Error:
4265       return error("Malformed block");
4266     case BitstreamEntry::EndBlock:
4267       if (Error Err = ResolveDataLayout())
4268         return Err;
4269       return globalCleanup();
4270 
4271     case BitstreamEntry::SubBlock:
4272       switch (Entry.ID) {
4273       default:  // Skip unknown content.
4274         if (Error Err = Stream.SkipBlock())
4275           return Err;
4276         break;
4277       case bitc::BLOCKINFO_BLOCK_ID:
4278         if (Error Err = readBlockInfo())
4279           return Err;
4280         break;
4281       case bitc::PARAMATTR_BLOCK_ID:
4282         if (Error Err = parseAttributeBlock())
4283           return Err;
4284         break;
4285       case bitc::PARAMATTR_GROUP_BLOCK_ID:
4286         if (Error Err = parseAttributeGroupBlock())
4287           return Err;
4288         break;
4289       case bitc::TYPE_BLOCK_ID_NEW:
4290         if (Error Err = parseTypeTable())
4291           return Err;
4292         break;
4293       case bitc::VALUE_SYMTAB_BLOCK_ID:
4294         if (!SeenValueSymbolTable) {
4295           // Either this is an old form VST without function index and an
4296           // associated VST forward declaration record (which would have caused
4297           // the VST to be jumped to and parsed before it was encountered
4298           // normally in the stream), or there were no function blocks to
4299           // trigger an earlier parsing of the VST.
4300           assert(VSTOffset == 0 || FunctionsWithBodies.empty());
4301           if (Error Err = parseValueSymbolTable())
4302             return Err;
4303           SeenValueSymbolTable = true;
4304         } else {
4305           // We must have had a VST forward declaration record, which caused
4306           // the parser to jump to and parse the VST earlier.
4307           assert(VSTOffset > 0);
4308           if (Error Err = Stream.SkipBlock())
4309             return Err;
4310         }
4311         break;
4312       case bitc::CONSTANTS_BLOCK_ID:
4313         if (Error Err = parseConstants())
4314           return Err;
4315         if (Error Err = resolveGlobalAndIndirectSymbolInits())
4316           return Err;
4317         break;
4318       case bitc::METADATA_BLOCK_ID:
4319         if (ShouldLazyLoadMetadata) {
4320           if (Error Err = rememberAndSkipMetadata())
4321             return Err;
4322           break;
4323         }
4324         assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata");
4325         if (Error Err = MDLoader->parseModuleMetadata())
4326           return Err;
4327         break;
4328       case bitc::METADATA_KIND_BLOCK_ID:
4329         if (Error Err = MDLoader->parseMetadataKinds())
4330           return Err;
4331         break;
4332       case bitc::FUNCTION_BLOCK_ID:
4333         if (Error Err = ResolveDataLayout())
4334           return Err;
4335 
4336         // If this is the first function body we've seen, reverse the
4337         // FunctionsWithBodies list.
4338         if (!SeenFirstFunctionBody) {
4339           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
4340           if (Error Err = globalCleanup())
4341             return Err;
4342           SeenFirstFunctionBody = true;
4343         }
4344 
4345         if (VSTOffset > 0) {
4346           // If we have a VST forward declaration record, make sure we
4347           // parse the VST now if we haven't already. It is needed to
4348           // set up the DeferredFunctionInfo vector for lazy reading.
4349           if (!SeenValueSymbolTable) {
4350             if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset))
4351               return Err;
4352             SeenValueSymbolTable = true;
4353             // Fall through so that we record the NextUnreadBit below.
4354             // This is necessary in case we have an anonymous function that
4355             // is later materialized. Since it will not have a VST entry we
4356             // need to fall back to the lazy parse to find its offset.
4357           } else {
4358             // If we have a VST forward declaration record, but have already
4359             // parsed the VST (just above, when the first function body was
4360             // encountered here), then we are resuming the parse after
4361             // materializing functions. The ResumeBit points to the
4362             // start of the last function block recorded in the
4363             // DeferredFunctionInfo map. Skip it.
4364             if (Error Err = Stream.SkipBlock())
4365               return Err;
4366             continue;
4367           }
4368         }
4369 
4370         // Support older bitcode files that did not have the function
4371         // index in the VST, nor a VST forward declaration record, as
4372         // well as anonymous functions that do not have VST entries.
4373         // Build the DeferredFunctionInfo vector on the fly.
4374         if (Error Err = rememberAndSkipFunctionBody())
4375           return Err;
4376 
4377         // Suspend parsing when we reach the function bodies. Subsequent
4378         // materialization calls will resume it when necessary. If the bitcode
4379         // file is old, the symbol table will be at the end instead and will not
4380         // have been seen yet. In this case, just finish the parse now.
4381         if (SeenValueSymbolTable) {
4382           NextUnreadBit = Stream.GetCurrentBitNo();
4383           // After the VST has been parsed, we need to make sure intrinsic name
4384           // are auto-upgraded.
4385           return globalCleanup();
4386         }
4387         break;
4388       case bitc::USELIST_BLOCK_ID:
4389         if (Error Err = parseUseLists())
4390           return Err;
4391         break;
4392       case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID:
4393         if (Error Err = parseOperandBundleTags())
4394           return Err;
4395         break;
4396       case bitc::SYNC_SCOPE_NAMES_BLOCK_ID:
4397         if (Error Err = parseSyncScopeNames())
4398           return Err;
4399         break;
4400       }
4401       continue;
4402 
4403     case BitstreamEntry::Record:
4404       // The interesting case.
4405       break;
4406     }
4407 
4408     // Read a record.
4409     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
4410     if (!MaybeBitCode)
4411       return MaybeBitCode.takeError();
4412     switch (unsigned BitCode = MaybeBitCode.get()) {
4413     default: break;  // Default behavior, ignore unknown content.
4414     case bitc::MODULE_CODE_VERSION: {
4415       Expected<unsigned> VersionOrErr = parseVersionRecord(Record);
4416       if (!VersionOrErr)
4417         return VersionOrErr.takeError();
4418       UseRelativeIDs = *VersionOrErr >= 1;
4419       break;
4420     }
4421     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
4422       if (ResolvedDataLayout)
4423         return error("target triple too late in module");
4424       std::string S;
4425       if (convertToString(Record, 0, S))
4426         return error("Invalid record");
4427       TheModule->setTargetTriple(S);
4428       break;
4429     }
4430     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
4431       if (ResolvedDataLayout)
4432         return error("datalayout too late in module");
4433       if (convertToString(Record, 0, TentativeDataLayoutStr))
4434         return error("Invalid record");
4435       break;
4436     }
4437     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
4438       std::string S;
4439       if (convertToString(Record, 0, S))
4440         return error("Invalid record");
4441       TheModule->setModuleInlineAsm(S);
4442       break;
4443     }
4444     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
4445       // Deprecated, but still needed to read old bitcode files.
4446       std::string S;
4447       if (convertToString(Record, 0, S))
4448         return error("Invalid record");
4449       // Ignore value.
4450       break;
4451     }
4452     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
4453       std::string S;
4454       if (convertToString(Record, 0, S))
4455         return error("Invalid record");
4456       SectionTable.push_back(S);
4457       break;
4458     }
4459     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
4460       std::string S;
4461       if (convertToString(Record, 0, S))
4462         return error("Invalid record");
4463       GCTable.push_back(S);
4464       break;
4465     }
4466     case bitc::MODULE_CODE_COMDAT:
4467       if (Error Err = parseComdatRecord(Record))
4468         return Err;
4469       break;
4470     // FIXME: BitcodeReader should handle {GLOBALVAR, FUNCTION, ALIAS, IFUNC}
4471     // written by ThinLinkBitcodeWriter. See
4472     // `ThinLinkBitcodeWriter::writeSimplifiedModuleInfo` for the format of each
4473     // record
4474     // (https://github.com/llvm/llvm-project/blob/b6a93967d9c11e79802b5e75cec1584d6c8aa472/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp#L4714)
4475     case bitc::MODULE_CODE_GLOBALVAR:
4476       if (Error Err = parseGlobalVarRecord(Record))
4477         return Err;
4478       break;
4479     case bitc::MODULE_CODE_FUNCTION:
4480       if (Error Err = ResolveDataLayout())
4481         return Err;
4482       if (Error Err = parseFunctionRecord(Record))
4483         return Err;
4484       break;
4485     case bitc::MODULE_CODE_IFUNC:
4486     case bitc::MODULE_CODE_ALIAS:
4487     case bitc::MODULE_CODE_ALIAS_OLD:
4488       if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record))
4489         return Err;
4490       break;
4491     /// MODULE_CODE_VSTOFFSET: [offset]
4492     case bitc::MODULE_CODE_VSTOFFSET:
4493       if (Record.empty())
4494         return error("Invalid record");
4495       // Note that we subtract 1 here because the offset is relative to one word
4496       // before the start of the identification or module block, which was
4497       // historically always the start of the regular bitcode header.
4498       VSTOffset = Record[0] - 1;
4499       break;
4500     /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
4501     case bitc::MODULE_CODE_SOURCE_FILENAME:
4502       SmallString<128> ValueName;
4503       if (convertToString(Record, 0, ValueName))
4504         return error("Invalid record");
4505       TheModule->setSourceFileName(ValueName);
4506       break;
4507     }
4508     Record.clear();
4509   }
4510   this->ValueTypeCallback = std::nullopt;
4511   return Error::success();
4512 }
4513 
4514 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
4515                                       bool IsImporting,
4516                                       ParserCallbacks Callbacks) {
4517   TheModule = M;
4518   MetadataLoaderCallbacks MDCallbacks;
4519   MDCallbacks.GetTypeByID = [&](unsigned ID) { return getTypeByID(ID); };
4520   MDCallbacks.GetContainedTypeID = [&](unsigned I, unsigned J) {
4521     return getContainedTypeID(I, J);
4522   };
4523   MDCallbacks.MDType = Callbacks.MDType;
4524   MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, MDCallbacks);
4525   return parseModule(0, ShouldLazyLoadMetadata, Callbacks);
4526 }
4527 
4528 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) {
4529   if (!isa<PointerType>(PtrType))
4530     return error("Load/Store operand is not a pointer type");
4531 
4532   if (!cast<PointerType>(PtrType)->isOpaqueOrPointeeTypeMatches(ValType))
4533     return error("Explicit load/store type does not match pointee "
4534                  "type of pointer operand");
4535   if (!PointerType::isLoadableOrStorableType(ValType))
4536     return error("Cannot load/store from pointer");
4537   return Error::success();
4538 }
4539 
4540 Error BitcodeReader::propagateAttributeTypes(CallBase *CB,
4541                                              ArrayRef<unsigned> ArgTyIDs) {
4542   AttributeList Attrs = CB->getAttributes();
4543   for (unsigned i = 0; i != CB->arg_size(); ++i) {
4544     for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet,
4545                                      Attribute::InAlloca}) {
4546       if (!Attrs.hasParamAttr(i, Kind) ||
4547           Attrs.getParamAttr(i, Kind).getValueAsType())
4548         continue;
4549 
4550       Type *PtrEltTy = getPtrElementTypeByID(ArgTyIDs[i]);
4551       if (!PtrEltTy)
4552         return error("Missing element type for typed attribute upgrade");
4553 
4554       Attribute NewAttr;
4555       switch (Kind) {
4556       case Attribute::ByVal:
4557         NewAttr = Attribute::getWithByValType(Context, PtrEltTy);
4558         break;
4559       case Attribute::StructRet:
4560         NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy);
4561         break;
4562       case Attribute::InAlloca:
4563         NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy);
4564         break;
4565       default:
4566         llvm_unreachable("not an upgraded type attribute");
4567       }
4568 
4569       Attrs = Attrs.addParamAttribute(Context, i, NewAttr);
4570     }
4571   }
4572 
4573   if (CB->isInlineAsm()) {
4574     const InlineAsm *IA = cast<InlineAsm>(CB->getCalledOperand());
4575     unsigned ArgNo = 0;
4576     for (const InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
4577       if (!CI.hasArg())
4578         continue;
4579 
4580       if (CI.isIndirect && !Attrs.getParamElementType(ArgNo)) {
4581         Type *ElemTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]);
4582         if (!ElemTy)
4583           return error("Missing element type for inline asm upgrade");
4584         Attrs = Attrs.addParamAttribute(
4585             Context, ArgNo,
4586             Attribute::get(Context, Attribute::ElementType, ElemTy));
4587       }
4588 
4589       ArgNo++;
4590     }
4591   }
4592 
4593   switch (CB->getIntrinsicID()) {
4594   case Intrinsic::preserve_array_access_index:
4595   case Intrinsic::preserve_struct_access_index:
4596   case Intrinsic::aarch64_ldaxr:
4597   case Intrinsic::aarch64_ldxr:
4598   case Intrinsic::aarch64_stlxr:
4599   case Intrinsic::aarch64_stxr:
4600   case Intrinsic::arm_ldaex:
4601   case Intrinsic::arm_ldrex:
4602   case Intrinsic::arm_stlex:
4603   case Intrinsic::arm_strex: {
4604     unsigned ArgNo;
4605     switch (CB->getIntrinsicID()) {
4606     case Intrinsic::aarch64_stlxr:
4607     case Intrinsic::aarch64_stxr:
4608     case Intrinsic::arm_stlex:
4609     case Intrinsic::arm_strex:
4610       ArgNo = 1;
4611       break;
4612     default:
4613       ArgNo = 0;
4614       break;
4615     }
4616     if (!Attrs.getParamElementType(ArgNo)) {
4617       Type *ElTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]);
4618       if (!ElTy)
4619         return error("Missing element type for elementtype upgrade");
4620       Attribute NewAttr = Attribute::get(Context, Attribute::ElementType, ElTy);
4621       Attrs = Attrs.addParamAttribute(Context, ArgNo, NewAttr);
4622     }
4623     break;
4624   }
4625   default:
4626     break;
4627   }
4628 
4629   CB->setAttributes(Attrs);
4630   return Error::success();
4631 }
4632 
4633 /// Lazily parse the specified function body block.
4634 Error BitcodeReader::parseFunctionBody(Function *F) {
4635   if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
4636     return Err;
4637 
4638   // Unexpected unresolved metadata when parsing function.
4639   if (MDLoader->hasFwdRefs())
4640     return error("Invalid function metadata: incoming forward references");
4641 
4642   InstructionList.clear();
4643   unsigned ModuleValueListSize = ValueList.size();
4644   unsigned ModuleMDLoaderSize = MDLoader->size();
4645 
4646   // Add all the function arguments to the value table.
4647   unsigned ArgNo = 0;
4648   unsigned FTyID = FunctionTypeIDs[F];
4649   for (Argument &I : F->args()) {
4650     unsigned ArgTyID = getContainedTypeID(FTyID, ArgNo + 1);
4651     assert(I.getType() == getTypeByID(ArgTyID) &&
4652            "Incorrect fully specified type for Function Argument");
4653     ValueList.push_back(&I, ArgTyID);
4654     ++ArgNo;
4655   }
4656   unsigned NextValueNo = ValueList.size();
4657   BasicBlock *CurBB = nullptr;
4658   unsigned CurBBNo = 0;
4659   // Block into which constant expressions from phi nodes are materialized.
4660   BasicBlock *PhiConstExprBB = nullptr;
4661   // Edge blocks for phi nodes into which constant expressions have been
4662   // expanded.
4663   SmallMapVector<std::pair<BasicBlock *, BasicBlock *>, BasicBlock *, 4>
4664     ConstExprEdgeBBs;
4665 
4666   DebugLoc LastLoc;
4667   auto getLastInstruction = [&]() -> Instruction * {
4668     if (CurBB && !CurBB->empty())
4669       return &CurBB->back();
4670     else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
4671              !FunctionBBs[CurBBNo - 1]->empty())
4672       return &FunctionBBs[CurBBNo - 1]->back();
4673     return nullptr;
4674   };
4675 
4676   std::vector<OperandBundleDef> OperandBundles;
4677 
4678   // Read all the records.
4679   SmallVector<uint64_t, 64> Record;
4680 
4681   while (true) {
4682     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
4683     if (!MaybeEntry)
4684       return MaybeEntry.takeError();
4685     llvm::BitstreamEntry Entry = MaybeEntry.get();
4686 
4687     switch (Entry.Kind) {
4688     case BitstreamEntry::Error:
4689       return error("Malformed block");
4690     case BitstreamEntry::EndBlock:
4691       goto OutOfRecordLoop;
4692 
4693     case BitstreamEntry::SubBlock:
4694       switch (Entry.ID) {
4695       default:  // Skip unknown content.
4696         if (Error Err = Stream.SkipBlock())
4697           return Err;
4698         break;
4699       case bitc::CONSTANTS_BLOCK_ID:
4700         if (Error Err = parseConstants())
4701           return Err;
4702         NextValueNo = ValueList.size();
4703         break;
4704       case bitc::VALUE_SYMTAB_BLOCK_ID:
4705         if (Error Err = parseValueSymbolTable())
4706           return Err;
4707         break;
4708       case bitc::METADATA_ATTACHMENT_ID:
4709         if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList))
4710           return Err;
4711         break;
4712       case bitc::METADATA_BLOCK_ID:
4713         assert(DeferredMetadataInfo.empty() &&
4714                "Must read all module-level metadata before function-level");
4715         if (Error Err = MDLoader->parseFunctionMetadata())
4716           return Err;
4717         break;
4718       case bitc::USELIST_BLOCK_ID:
4719         if (Error Err = parseUseLists())
4720           return Err;
4721         break;
4722       }
4723       continue;
4724 
4725     case BitstreamEntry::Record:
4726       // The interesting case.
4727       break;
4728     }
4729 
4730     // Read a record.
4731     Record.clear();
4732     Instruction *I = nullptr;
4733     unsigned ResTypeID = InvalidTypeID;
4734     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
4735     if (!MaybeBitCode)
4736       return MaybeBitCode.takeError();
4737     switch (unsigned BitCode = MaybeBitCode.get()) {
4738     default: // Default behavior: reject
4739       return error("Invalid value");
4740     case bitc::FUNC_CODE_DECLAREBLOCKS: {   // DECLAREBLOCKS: [nblocks]
4741       if (Record.empty() || Record[0] == 0)
4742         return error("Invalid record");
4743       // Create all the basic blocks for the function.
4744       FunctionBBs.resize(Record[0]);
4745 
4746       // See if anything took the address of blocks in this function.
4747       auto BBFRI = BasicBlockFwdRefs.find(F);
4748       if (BBFRI == BasicBlockFwdRefs.end()) {
4749         for (BasicBlock *&BB : FunctionBBs)
4750           BB = BasicBlock::Create(Context, "", F);
4751       } else {
4752         auto &BBRefs = BBFRI->second;
4753         // Check for invalid basic block references.
4754         if (BBRefs.size() > FunctionBBs.size())
4755           return error("Invalid ID");
4756         assert(!BBRefs.empty() && "Unexpected empty array");
4757         assert(!BBRefs.front() && "Invalid reference to entry block");
4758         for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
4759              ++I)
4760           if (I < RE && BBRefs[I]) {
4761             BBRefs[I]->insertInto(F);
4762             FunctionBBs[I] = BBRefs[I];
4763           } else {
4764             FunctionBBs[I] = BasicBlock::Create(Context, "", F);
4765           }
4766 
4767         // Erase from the table.
4768         BasicBlockFwdRefs.erase(BBFRI);
4769       }
4770 
4771       CurBB = FunctionBBs[0];
4772       continue;
4773     }
4774 
4775     case bitc::FUNC_CODE_BLOCKADDR_USERS: // BLOCKADDR_USERS: [vals...]
4776       // The record should not be emitted if it's an empty list.
4777       if (Record.empty())
4778         return error("Invalid record");
4779       // When we have the RARE case of a BlockAddress Constant that is not
4780       // scoped to the Function it refers to, we need to conservatively
4781       // materialize the referred to Function, regardless of whether or not
4782       // that Function will ultimately be linked, otherwise users of
4783       // BitcodeReader might start splicing out Function bodies such that we
4784       // might no longer be able to materialize the BlockAddress since the
4785       // BasicBlock (and entire body of the Function) the BlockAddress refers
4786       // to may have been moved. In the case that the user of BitcodeReader
4787       // decides ultimately not to link the Function body, materializing here
4788       // could be considered wasteful, but it's better than a deserialization
4789       // failure as described. This keeps BitcodeReader unaware of complex
4790       // linkage policy decisions such as those use by LTO, leaving those
4791       // decisions "one layer up."
4792       for (uint64_t ValID : Record)
4793         if (auto *F = dyn_cast<Function>(ValueList[ValID]))
4794           BackwardRefFunctions.push_back(F);
4795         else
4796           return error("Invalid record");
4797 
4798       continue;
4799 
4800     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
4801       // This record indicates that the last instruction is at the same
4802       // location as the previous instruction with a location.
4803       I = getLastInstruction();
4804 
4805       if (!I)
4806         return error("Invalid record");
4807       I->setDebugLoc(LastLoc);
4808       I = nullptr;
4809       continue;
4810 
4811     case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
4812       I = getLastInstruction();
4813       if (!I || Record.size() < 4)
4814         return error("Invalid record");
4815 
4816       unsigned Line = Record[0], Col = Record[1];
4817       unsigned ScopeID = Record[2], IAID = Record[3];
4818       bool isImplicitCode = Record.size() == 5 && Record[4];
4819 
4820       MDNode *Scope = nullptr, *IA = nullptr;
4821       if (ScopeID) {
4822         Scope = dyn_cast_or_null<MDNode>(
4823             MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1));
4824         if (!Scope)
4825           return error("Invalid record");
4826       }
4827       if (IAID) {
4828         IA = dyn_cast_or_null<MDNode>(
4829             MDLoader->getMetadataFwdRefOrLoad(IAID - 1));
4830         if (!IA)
4831           return error("Invalid record");
4832       }
4833       LastLoc = DILocation::get(Scope->getContext(), Line, Col, Scope, IA,
4834                                 isImplicitCode);
4835       I->setDebugLoc(LastLoc);
4836       I = nullptr;
4837       continue;
4838     }
4839     case bitc::FUNC_CODE_INST_UNOP: {    // UNOP: [opval, ty, opcode]
4840       unsigned OpNum = 0;
4841       Value *LHS;
4842       unsigned TypeID;
4843       if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) ||
4844           OpNum+1 > Record.size())
4845         return error("Invalid record");
4846 
4847       int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType());
4848       if (Opc == -1)
4849         return error("Invalid record");
4850       I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
4851       ResTypeID = TypeID;
4852       InstructionList.push_back(I);
4853       if (OpNum < Record.size()) {
4854         if (isa<FPMathOperator>(I)) {
4855           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4856           if (FMF.any())
4857             I->setFastMathFlags(FMF);
4858         }
4859       }
4860       break;
4861     }
4862     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
4863       unsigned OpNum = 0;
4864       Value *LHS, *RHS;
4865       unsigned TypeID;
4866       if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) ||
4867           popValue(Record, OpNum, NextValueNo, LHS->getType(), TypeID, RHS,
4868                    CurBB) ||
4869           OpNum+1 > Record.size())
4870         return error("Invalid record");
4871 
4872       int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
4873       if (Opc == -1)
4874         return error("Invalid record");
4875       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
4876       ResTypeID = TypeID;
4877       InstructionList.push_back(I);
4878       if (OpNum < Record.size()) {
4879         if (Opc == Instruction::Add ||
4880             Opc == Instruction::Sub ||
4881             Opc == Instruction::Mul ||
4882             Opc == Instruction::Shl) {
4883           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
4884             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
4885           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
4886             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
4887         } else if (Opc == Instruction::SDiv ||
4888                    Opc == Instruction::UDiv ||
4889                    Opc == Instruction::LShr ||
4890                    Opc == Instruction::AShr) {
4891           if (Record[OpNum] & (1 << bitc::PEO_EXACT))
4892             cast<BinaryOperator>(I)->setIsExact(true);
4893         } else if (isa<FPMathOperator>(I)) {
4894           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4895           if (FMF.any())
4896             I->setFastMathFlags(FMF);
4897         }
4898 
4899       }
4900       break;
4901     }
4902     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
4903       unsigned OpNum = 0;
4904       Value *Op;
4905       unsigned OpTypeID;
4906       if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) ||
4907           OpNum+2 != Record.size())
4908         return error("Invalid record");
4909 
4910       ResTypeID = Record[OpNum];
4911       Type *ResTy = getTypeByID(ResTypeID);
4912       int Opc = getDecodedCastOpcode(Record[OpNum + 1]);
4913       if (Opc == -1 || !ResTy)
4914         return error("Invalid record");
4915       Instruction *Temp = nullptr;
4916       if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
4917         if (Temp) {
4918           InstructionList.push_back(Temp);
4919           assert(CurBB && "No current BB?");
4920           Temp->insertInto(CurBB, CurBB->end());
4921         }
4922       } else {
4923         auto CastOp = (Instruction::CastOps)Opc;
4924         if (!CastInst::castIsValid(CastOp, Op, ResTy))
4925           return error("Invalid cast");
4926         I = CastInst::Create(CastOp, Op, ResTy);
4927       }
4928       InstructionList.push_back(I);
4929       break;
4930     }
4931     case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
4932     case bitc::FUNC_CODE_INST_GEP_OLD:
4933     case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
4934       unsigned OpNum = 0;
4935 
4936       unsigned TyID;
4937       Type *Ty;
4938       bool InBounds;
4939 
4940       if (BitCode == bitc::FUNC_CODE_INST_GEP) {
4941         InBounds = Record[OpNum++];
4942         TyID = Record[OpNum++];
4943         Ty = getTypeByID(TyID);
4944       } else {
4945         InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
4946         TyID = InvalidTypeID;
4947         Ty = nullptr;
4948       }
4949 
4950       Value *BasePtr;
4951       unsigned BasePtrTypeID;
4952       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr, BasePtrTypeID,
4953                            CurBB))
4954         return error("Invalid record");
4955 
4956       if (!Ty) {
4957         TyID = getContainedTypeID(BasePtrTypeID);
4958         if (BasePtr->getType()->isVectorTy())
4959           TyID = getContainedTypeID(TyID);
4960         Ty = getTypeByID(TyID);
4961       } else if (!cast<PointerType>(BasePtr->getType()->getScalarType())
4962                       ->isOpaqueOrPointeeTypeMatches(Ty)) {
4963         return error(
4964             "Explicit gep type does not match pointee type of pointer operand");
4965       }
4966 
4967       SmallVector<Value*, 16> GEPIdx;
4968       while (OpNum != Record.size()) {
4969         Value *Op;
4970         unsigned OpTypeID;
4971         if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
4972           return error("Invalid record");
4973         GEPIdx.push_back(Op);
4974       }
4975 
4976       I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
4977 
4978       ResTypeID = TyID;
4979       if (cast<GEPOperator>(I)->getNumIndices() != 0) {
4980         auto GTI = std::next(gep_type_begin(I));
4981         for (Value *Idx : drop_begin(cast<GEPOperator>(I)->indices())) {
4982           unsigned SubType = 0;
4983           if (GTI.isStruct()) {
4984             ConstantInt *IdxC =
4985                 Idx->getType()->isVectorTy()
4986                     ? cast<ConstantInt>(cast<Constant>(Idx)->getSplatValue())
4987                     : cast<ConstantInt>(Idx);
4988             SubType = IdxC->getZExtValue();
4989           }
4990           ResTypeID = getContainedTypeID(ResTypeID, SubType);
4991           ++GTI;
4992         }
4993       }
4994 
4995       // At this point ResTypeID is the result element type. We need a pointer
4996       // or vector of pointer to it.
4997       ResTypeID = getVirtualTypeID(I->getType()->getScalarType(), ResTypeID);
4998       if (I->getType()->isVectorTy())
4999         ResTypeID = getVirtualTypeID(I->getType(), ResTypeID);
5000 
5001       InstructionList.push_back(I);
5002       if (InBounds)
5003         cast<GetElementPtrInst>(I)->setIsInBounds(true);
5004       break;
5005     }
5006 
5007     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
5008                                        // EXTRACTVAL: [opty, opval, n x indices]
5009       unsigned OpNum = 0;
5010       Value *Agg;
5011       unsigned AggTypeID;
5012       if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB))
5013         return error("Invalid record");
5014       Type *Ty = Agg->getType();
5015 
5016       unsigned RecSize = Record.size();
5017       if (OpNum == RecSize)
5018         return error("EXTRACTVAL: Invalid instruction with 0 indices");
5019 
5020       SmallVector<unsigned, 4> EXTRACTVALIdx;
5021       ResTypeID = AggTypeID;
5022       for (; OpNum != RecSize; ++OpNum) {
5023         bool IsArray = Ty->isArrayTy();
5024         bool IsStruct = Ty->isStructTy();
5025         uint64_t Index = Record[OpNum];
5026 
5027         if (!IsStruct && !IsArray)
5028           return error("EXTRACTVAL: Invalid type");
5029         if ((unsigned)Index != Index)
5030           return error("Invalid value");
5031         if (IsStruct && Index >= Ty->getStructNumElements())
5032           return error("EXTRACTVAL: Invalid struct index");
5033         if (IsArray && Index >= Ty->getArrayNumElements())
5034           return error("EXTRACTVAL: Invalid array index");
5035         EXTRACTVALIdx.push_back((unsigned)Index);
5036 
5037         if (IsStruct) {
5038           Ty = Ty->getStructElementType(Index);
5039           ResTypeID = getContainedTypeID(ResTypeID, Index);
5040         } else {
5041           Ty = Ty->getArrayElementType();
5042           ResTypeID = getContainedTypeID(ResTypeID);
5043         }
5044       }
5045 
5046       I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
5047       InstructionList.push_back(I);
5048       break;
5049     }
5050 
5051     case bitc::FUNC_CODE_INST_INSERTVAL: {
5052                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
5053       unsigned OpNum = 0;
5054       Value *Agg;
5055       unsigned AggTypeID;
5056       if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB))
5057         return error("Invalid record");
5058       Value *Val;
5059       unsigned ValTypeID;
5060       if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB))
5061         return error("Invalid record");
5062 
5063       unsigned RecSize = Record.size();
5064       if (OpNum == RecSize)
5065         return error("INSERTVAL: Invalid instruction with 0 indices");
5066 
5067       SmallVector<unsigned, 4> INSERTVALIdx;
5068       Type *CurTy = Agg->getType();
5069       for (; OpNum != RecSize; ++OpNum) {
5070         bool IsArray = CurTy->isArrayTy();
5071         bool IsStruct = CurTy->isStructTy();
5072         uint64_t Index = Record[OpNum];
5073 
5074         if (!IsStruct && !IsArray)
5075           return error("INSERTVAL: Invalid type");
5076         if ((unsigned)Index != Index)
5077           return error("Invalid value");
5078         if (IsStruct && Index >= CurTy->getStructNumElements())
5079           return error("INSERTVAL: Invalid struct index");
5080         if (IsArray && Index >= CurTy->getArrayNumElements())
5081           return error("INSERTVAL: Invalid array index");
5082 
5083         INSERTVALIdx.push_back((unsigned)Index);
5084         if (IsStruct)
5085           CurTy = CurTy->getStructElementType(Index);
5086         else
5087           CurTy = CurTy->getArrayElementType();
5088       }
5089 
5090       if (CurTy != Val->getType())
5091         return error("Inserted value type doesn't match aggregate type");
5092 
5093       I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
5094       ResTypeID = AggTypeID;
5095       InstructionList.push_back(I);
5096       break;
5097     }
5098 
5099     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
5100       // obsolete form of select
5101       // handles select i1 ... in old bitcode
5102       unsigned OpNum = 0;
5103       Value *TrueVal, *FalseVal, *Cond;
5104       unsigned TypeID;
5105       Type *CondType = Type::getInt1Ty(Context);
5106       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, TypeID,
5107                            CurBB) ||
5108           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), TypeID,
5109                    FalseVal, CurBB) ||
5110           popValue(Record, OpNum, NextValueNo, CondType,
5111                    getVirtualTypeID(CondType), Cond, CurBB))
5112         return error("Invalid record");
5113 
5114       I = SelectInst::Create(Cond, TrueVal, FalseVal);
5115       ResTypeID = TypeID;
5116       InstructionList.push_back(I);
5117       break;
5118     }
5119 
5120     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
5121       // new form of select
5122       // handles select i1 or select [N x i1]
5123       unsigned OpNum = 0;
5124       Value *TrueVal, *FalseVal, *Cond;
5125       unsigned ValTypeID, CondTypeID;
5126       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, ValTypeID,
5127                            CurBB) ||
5128           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), ValTypeID,
5129                    FalseVal, CurBB) ||
5130           getValueTypePair(Record, OpNum, NextValueNo, Cond, CondTypeID, CurBB))
5131         return error("Invalid record");
5132 
5133       // select condition can be either i1 or [N x i1]
5134       if (VectorType* vector_type =
5135           dyn_cast<VectorType>(Cond->getType())) {
5136         // expect <n x i1>
5137         if (vector_type->getElementType() != Type::getInt1Ty(Context))
5138           return error("Invalid type for value");
5139       } else {
5140         // expect i1
5141         if (Cond->getType() != Type::getInt1Ty(Context))
5142           return error("Invalid type for value");
5143       }
5144 
5145       I = SelectInst::Create(Cond, TrueVal, FalseVal);
5146       ResTypeID = ValTypeID;
5147       InstructionList.push_back(I);
5148       if (OpNum < Record.size() && isa<FPMathOperator>(I)) {
5149         FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
5150         if (FMF.any())
5151           I->setFastMathFlags(FMF);
5152       }
5153       break;
5154     }
5155 
5156     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
5157       unsigned OpNum = 0;
5158       Value *Vec, *Idx;
5159       unsigned VecTypeID, IdxTypeID;
5160       if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB) ||
5161           getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB))
5162         return error("Invalid record");
5163       if (!Vec->getType()->isVectorTy())
5164         return error("Invalid type for value");
5165       I = ExtractElementInst::Create(Vec, Idx);
5166       ResTypeID = getContainedTypeID(VecTypeID);
5167       InstructionList.push_back(I);
5168       break;
5169     }
5170 
5171     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
5172       unsigned OpNum = 0;
5173       Value *Vec, *Elt, *Idx;
5174       unsigned VecTypeID, IdxTypeID;
5175       if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB))
5176         return error("Invalid record");
5177       if (!Vec->getType()->isVectorTy())
5178         return error("Invalid type for value");
5179       if (popValue(Record, OpNum, NextValueNo,
5180                    cast<VectorType>(Vec->getType())->getElementType(),
5181                    getContainedTypeID(VecTypeID), Elt, CurBB) ||
5182           getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB))
5183         return error("Invalid record");
5184       I = InsertElementInst::Create(Vec, Elt, Idx);
5185       ResTypeID = VecTypeID;
5186       InstructionList.push_back(I);
5187       break;
5188     }
5189 
5190     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
5191       unsigned OpNum = 0;
5192       Value *Vec1, *Vec2, *Mask;
5193       unsigned Vec1TypeID;
5194       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1, Vec1TypeID,
5195                            CurBB) ||
5196           popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec1TypeID,
5197                    Vec2, CurBB))
5198         return error("Invalid record");
5199 
5200       unsigned MaskTypeID;
5201       if (getValueTypePair(Record, OpNum, NextValueNo, Mask, MaskTypeID, CurBB))
5202         return error("Invalid record");
5203       if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
5204         return error("Invalid type for value");
5205 
5206       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
5207       ResTypeID =
5208           getVirtualTypeID(I->getType(), getContainedTypeID(Vec1TypeID));
5209       InstructionList.push_back(I);
5210       break;
5211     }
5212 
5213     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
5214       // Old form of ICmp/FCmp returning bool
5215       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
5216       // both legal on vectors but had different behaviour.
5217     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
5218       // FCmp/ICmp returning bool or vector of bool
5219 
5220       unsigned OpNum = 0;
5221       Value *LHS, *RHS;
5222       unsigned LHSTypeID;
5223       if (getValueTypePair(Record, OpNum, NextValueNo, LHS, LHSTypeID, CurBB) ||
5224           popValue(Record, OpNum, NextValueNo, LHS->getType(), LHSTypeID, RHS,
5225                    CurBB))
5226         return error("Invalid record");
5227 
5228       if (OpNum >= Record.size())
5229         return error(
5230             "Invalid record: operand number exceeded available operands");
5231 
5232       unsigned PredVal = Record[OpNum];
5233       bool IsFP = LHS->getType()->isFPOrFPVectorTy();
5234       FastMathFlags FMF;
5235       if (IsFP && Record.size() > OpNum+1)
5236         FMF = getDecodedFastMathFlags(Record[++OpNum]);
5237 
5238       if (OpNum+1 != Record.size())
5239         return error("Invalid record");
5240 
5241       if (LHS->getType()->isFPOrFPVectorTy())
5242         I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS);
5243       else
5244         I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS);
5245 
5246       ResTypeID = getVirtualTypeID(I->getType()->getScalarType());
5247       if (LHS->getType()->isVectorTy())
5248         ResTypeID = getVirtualTypeID(I->getType(), ResTypeID);
5249 
5250       if (FMF.any())
5251         I->setFastMathFlags(FMF);
5252       InstructionList.push_back(I);
5253       break;
5254     }
5255 
5256     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
5257       {
5258         unsigned Size = Record.size();
5259         if (Size == 0) {
5260           I = ReturnInst::Create(Context);
5261           InstructionList.push_back(I);
5262           break;
5263         }
5264 
5265         unsigned OpNum = 0;
5266         Value *Op = nullptr;
5267         unsigned OpTypeID;
5268         if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
5269           return error("Invalid record");
5270         if (OpNum != Record.size())
5271           return error("Invalid record");
5272 
5273         I = ReturnInst::Create(Context, Op);
5274         InstructionList.push_back(I);
5275         break;
5276       }
5277     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
5278       if (Record.size() != 1 && Record.size() != 3)
5279         return error("Invalid record");
5280       BasicBlock *TrueDest = getBasicBlock(Record[0]);
5281       if (!TrueDest)
5282         return error("Invalid record");
5283 
5284       if (Record.size() == 1) {
5285         I = BranchInst::Create(TrueDest);
5286         InstructionList.push_back(I);
5287       }
5288       else {
5289         BasicBlock *FalseDest = getBasicBlock(Record[1]);
5290         Type *CondType = Type::getInt1Ty(Context);
5291         Value *Cond = getValue(Record, 2, NextValueNo, CondType,
5292                                getVirtualTypeID(CondType), CurBB);
5293         if (!FalseDest || !Cond)
5294           return error("Invalid record");
5295         I = BranchInst::Create(TrueDest, FalseDest, Cond);
5296         InstructionList.push_back(I);
5297       }
5298       break;
5299     }
5300     case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#]
5301       if (Record.size() != 1 && Record.size() != 2)
5302         return error("Invalid record");
5303       unsigned Idx = 0;
5304       Type *TokenTy = Type::getTokenTy(Context);
5305       Value *CleanupPad = getValue(Record, Idx++, NextValueNo, TokenTy,
5306                                    getVirtualTypeID(TokenTy), CurBB);
5307       if (!CleanupPad)
5308         return error("Invalid record");
5309       BasicBlock *UnwindDest = nullptr;
5310       if (Record.size() == 2) {
5311         UnwindDest = getBasicBlock(Record[Idx++]);
5312         if (!UnwindDest)
5313           return error("Invalid record");
5314       }
5315 
5316       I = CleanupReturnInst::Create(CleanupPad, UnwindDest);
5317       InstructionList.push_back(I);
5318       break;
5319     }
5320     case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#]
5321       if (Record.size() != 2)
5322         return error("Invalid record");
5323       unsigned Idx = 0;
5324       Type *TokenTy = Type::getTokenTy(Context);
5325       Value *CatchPad = getValue(Record, Idx++, NextValueNo, TokenTy,
5326                                  getVirtualTypeID(TokenTy), CurBB);
5327       if (!CatchPad)
5328         return error("Invalid record");
5329       BasicBlock *BB = getBasicBlock(Record[Idx++]);
5330       if (!BB)
5331         return error("Invalid record");
5332 
5333       I = CatchReturnInst::Create(CatchPad, BB);
5334       InstructionList.push_back(I);
5335       break;
5336     }
5337     case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?]
5338       // We must have, at minimum, the outer scope and the number of arguments.
5339       if (Record.size() < 2)
5340         return error("Invalid record");
5341 
5342       unsigned Idx = 0;
5343 
5344       Type *TokenTy = Type::getTokenTy(Context);
5345       Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy,
5346                                   getVirtualTypeID(TokenTy), CurBB);
5347 
5348       unsigned NumHandlers = Record[Idx++];
5349 
5350       SmallVector<BasicBlock *, 2> Handlers;
5351       for (unsigned Op = 0; Op != NumHandlers; ++Op) {
5352         BasicBlock *BB = getBasicBlock(Record[Idx++]);
5353         if (!BB)
5354           return error("Invalid record");
5355         Handlers.push_back(BB);
5356       }
5357 
5358       BasicBlock *UnwindDest = nullptr;
5359       if (Idx + 1 == Record.size()) {
5360         UnwindDest = getBasicBlock(Record[Idx++]);
5361         if (!UnwindDest)
5362           return error("Invalid record");
5363       }
5364 
5365       if (Record.size() != Idx)
5366         return error("Invalid record");
5367 
5368       auto *CatchSwitch =
5369           CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers);
5370       for (BasicBlock *Handler : Handlers)
5371         CatchSwitch->addHandler(Handler);
5372       I = CatchSwitch;
5373       ResTypeID = getVirtualTypeID(I->getType());
5374       InstructionList.push_back(I);
5375       break;
5376     }
5377     case bitc::FUNC_CODE_INST_CATCHPAD:
5378     case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*]
5379       // We must have, at minimum, the outer scope and the number of arguments.
5380       if (Record.size() < 2)
5381         return error("Invalid record");
5382 
5383       unsigned Idx = 0;
5384 
5385       Type *TokenTy = Type::getTokenTy(Context);
5386       Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy,
5387                                   getVirtualTypeID(TokenTy), CurBB);
5388 
5389       unsigned NumArgOperands = Record[Idx++];
5390 
5391       SmallVector<Value *, 2> Args;
5392       for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
5393         Value *Val;
5394         unsigned ValTypeID;
5395         if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, nullptr))
5396           return error("Invalid record");
5397         Args.push_back(Val);
5398       }
5399 
5400       if (Record.size() != Idx)
5401         return error("Invalid record");
5402 
5403       if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD)
5404         I = CleanupPadInst::Create(ParentPad, Args);
5405       else
5406         I = CatchPadInst::Create(ParentPad, Args);
5407       ResTypeID = getVirtualTypeID(I->getType());
5408       InstructionList.push_back(I);
5409       break;
5410     }
5411     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
5412       // Check magic
5413       if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
5414         // "New" SwitchInst format with case ranges. The changes to write this
5415         // format were reverted but we still recognize bitcode that uses it.
5416         // Hopefully someday we will have support for case ranges and can use
5417         // this format again.
5418 
5419         unsigned OpTyID = Record[1];
5420         Type *OpTy = getTypeByID(OpTyID);
5421         unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
5422 
5423         Value *Cond = getValue(Record, 2, NextValueNo, OpTy, OpTyID, CurBB);
5424         BasicBlock *Default = getBasicBlock(Record[3]);
5425         if (!OpTy || !Cond || !Default)
5426           return error("Invalid record");
5427 
5428         unsigned NumCases = Record[4];
5429 
5430         SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
5431         InstructionList.push_back(SI);
5432 
5433         unsigned CurIdx = 5;
5434         for (unsigned i = 0; i != NumCases; ++i) {
5435           SmallVector<ConstantInt*, 1> CaseVals;
5436           unsigned NumItems = Record[CurIdx++];
5437           for (unsigned ci = 0; ci != NumItems; ++ci) {
5438             bool isSingleNumber = Record[CurIdx++];
5439 
5440             APInt Low;
5441             unsigned ActiveWords = 1;
5442             if (ValueBitWidth > 64)
5443               ActiveWords = Record[CurIdx++];
5444             Low = readWideAPInt(ArrayRef(&Record[CurIdx], ActiveWords),
5445                                 ValueBitWidth);
5446             CurIdx += ActiveWords;
5447 
5448             if (!isSingleNumber) {
5449               ActiveWords = 1;
5450               if (ValueBitWidth > 64)
5451                 ActiveWords = Record[CurIdx++];
5452               APInt High = readWideAPInt(ArrayRef(&Record[CurIdx], ActiveWords),
5453                                          ValueBitWidth);
5454               CurIdx += ActiveWords;
5455 
5456               // FIXME: It is not clear whether values in the range should be
5457               // compared as signed or unsigned values. The partially
5458               // implemented changes that used this format in the past used
5459               // unsigned comparisons.
5460               for ( ; Low.ule(High); ++Low)
5461                 CaseVals.push_back(ConstantInt::get(Context, Low));
5462             } else
5463               CaseVals.push_back(ConstantInt::get(Context, Low));
5464           }
5465           BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
5466           for (ConstantInt *Cst : CaseVals)
5467             SI->addCase(Cst, DestBB);
5468         }
5469         I = SI;
5470         break;
5471       }
5472 
5473       // Old SwitchInst format without case ranges.
5474 
5475       if (Record.size() < 3 || (Record.size() & 1) == 0)
5476         return error("Invalid record");
5477       unsigned OpTyID = Record[0];
5478       Type *OpTy = getTypeByID(OpTyID);
5479       Value *Cond = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB);
5480       BasicBlock *Default = getBasicBlock(Record[2]);
5481       if (!OpTy || !Cond || !Default)
5482         return error("Invalid record");
5483       unsigned NumCases = (Record.size()-3)/2;
5484       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
5485       InstructionList.push_back(SI);
5486       for (unsigned i = 0, e = NumCases; i != e; ++i) {
5487         ConstantInt *CaseVal = dyn_cast_or_null<ConstantInt>(
5488             getFnValueByID(Record[3+i*2], OpTy, OpTyID, nullptr));
5489         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
5490         if (!CaseVal || !DestBB) {
5491           delete SI;
5492           return error("Invalid record");
5493         }
5494         SI->addCase(CaseVal, DestBB);
5495       }
5496       I = SI;
5497       break;
5498     }
5499     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
5500       if (Record.size() < 2)
5501         return error("Invalid record");
5502       unsigned OpTyID = Record[0];
5503       Type *OpTy = getTypeByID(OpTyID);
5504       Value *Address = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB);
5505       if (!OpTy || !Address)
5506         return error("Invalid record");
5507       unsigned NumDests = Record.size()-2;
5508       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
5509       InstructionList.push_back(IBI);
5510       for (unsigned i = 0, e = NumDests; i != e; ++i) {
5511         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
5512           IBI->addDestination(DestBB);
5513         } else {
5514           delete IBI;
5515           return error("Invalid record");
5516         }
5517       }
5518       I = IBI;
5519       break;
5520     }
5521 
5522     case bitc::FUNC_CODE_INST_INVOKE: {
5523       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
5524       if (Record.size() < 4)
5525         return error("Invalid record");
5526       unsigned OpNum = 0;
5527       AttributeList PAL = getAttributes(Record[OpNum++]);
5528       unsigned CCInfo = Record[OpNum++];
5529       BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]);
5530       BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]);
5531 
5532       unsigned FTyID = InvalidTypeID;
5533       FunctionType *FTy = nullptr;
5534       if ((CCInfo >> 13) & 1) {
5535         FTyID = Record[OpNum++];
5536         FTy = dyn_cast<FunctionType>(getTypeByID(FTyID));
5537         if (!FTy)
5538           return error("Explicit invoke type is not a function type");
5539       }
5540 
5541       Value *Callee;
5542       unsigned CalleeTypeID;
5543       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID,
5544                            CurBB))
5545         return error("Invalid record");
5546 
5547       PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
5548       if (!CalleeTy)
5549         return error("Callee is not a pointer");
5550       if (!FTy) {
5551         FTyID = getContainedTypeID(CalleeTypeID);
5552         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
5553         if (!FTy)
5554           return error("Callee is not of pointer to function type");
5555       } else if (!CalleeTy->isOpaqueOrPointeeTypeMatches(FTy))
5556         return error("Explicit invoke type does not match pointee type of "
5557                      "callee operand");
5558       if (Record.size() < FTy->getNumParams() + OpNum)
5559         return error("Insufficient operands to call");
5560 
5561       SmallVector<Value*, 16> Ops;
5562       SmallVector<unsigned, 16> ArgTyIDs;
5563       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5564         unsigned ArgTyID = getContainedTypeID(FTyID, i + 1);
5565         Ops.push_back(getValue(Record, OpNum, NextValueNo, FTy->getParamType(i),
5566                                ArgTyID, CurBB));
5567         ArgTyIDs.push_back(ArgTyID);
5568         if (!Ops.back())
5569           return error("Invalid record");
5570       }
5571 
5572       if (!FTy->isVarArg()) {
5573         if (Record.size() != OpNum)
5574           return error("Invalid record");
5575       } else {
5576         // Read type/value pairs for varargs params.
5577         while (OpNum != Record.size()) {
5578           Value *Op;
5579           unsigned OpTypeID;
5580           if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
5581             return error("Invalid record");
5582           Ops.push_back(Op);
5583           ArgTyIDs.push_back(OpTypeID);
5584         }
5585       }
5586 
5587       // Upgrade the bundles if needed.
5588       if (!OperandBundles.empty())
5589         UpgradeOperandBundles(OperandBundles);
5590 
5591       I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops,
5592                              OperandBundles);
5593       ResTypeID = getContainedTypeID(FTyID);
5594       OperandBundles.clear();
5595       InstructionList.push_back(I);
5596       cast<InvokeInst>(I)->setCallingConv(
5597           static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo));
5598       cast<InvokeInst>(I)->setAttributes(PAL);
5599       if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) {
5600         I->deleteValue();
5601         return Err;
5602       }
5603 
5604       break;
5605     }
5606     case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
5607       unsigned Idx = 0;
5608       Value *Val = nullptr;
5609       unsigned ValTypeID;
5610       if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, CurBB))
5611         return error("Invalid record");
5612       I = ResumeInst::Create(Val);
5613       InstructionList.push_back(I);
5614       break;
5615     }
5616     case bitc::FUNC_CODE_INST_CALLBR: {
5617       // CALLBR: [attr, cc, norm, transfs, fty, fnid, args]
5618       unsigned OpNum = 0;
5619       AttributeList PAL = getAttributes(Record[OpNum++]);
5620       unsigned CCInfo = Record[OpNum++];
5621 
5622       BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]);
5623       unsigned NumIndirectDests = Record[OpNum++];
5624       SmallVector<BasicBlock *, 16> IndirectDests;
5625       for (unsigned i = 0, e = NumIndirectDests; i != e; ++i)
5626         IndirectDests.push_back(getBasicBlock(Record[OpNum++]));
5627 
5628       unsigned FTyID = InvalidTypeID;
5629       FunctionType *FTy = nullptr;
5630       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
5631         FTyID = Record[OpNum++];
5632         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
5633         if (!FTy)
5634           return error("Explicit call type is not a function type");
5635       }
5636 
5637       Value *Callee;
5638       unsigned CalleeTypeID;
5639       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID,
5640                            CurBB))
5641         return error("Invalid record");
5642 
5643       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
5644       if (!OpTy)
5645         return error("Callee is not a pointer type");
5646       if (!FTy) {
5647         FTyID = getContainedTypeID(CalleeTypeID);
5648         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
5649         if (!FTy)
5650           return error("Callee is not of pointer to function type");
5651       } else if (!OpTy->isOpaqueOrPointeeTypeMatches(FTy))
5652         return error("Explicit call type does not match pointee type of "
5653                      "callee operand");
5654       if (Record.size() < FTy->getNumParams() + OpNum)
5655         return error("Insufficient operands to call");
5656 
5657       SmallVector<Value*, 16> Args;
5658       SmallVector<unsigned, 16> ArgTyIDs;
5659       // Read the fixed params.
5660       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5661         Value *Arg;
5662         unsigned ArgTyID = getContainedTypeID(FTyID, i + 1);
5663         if (FTy->getParamType(i)->isLabelTy())
5664           Arg = getBasicBlock(Record[OpNum]);
5665         else
5666           Arg = getValue(Record, OpNum, NextValueNo, FTy->getParamType(i),
5667                          ArgTyID, CurBB);
5668         if (!Arg)
5669           return error("Invalid record");
5670         Args.push_back(Arg);
5671         ArgTyIDs.push_back(ArgTyID);
5672       }
5673 
5674       // Read type/value pairs for varargs params.
5675       if (!FTy->isVarArg()) {
5676         if (OpNum != Record.size())
5677           return error("Invalid record");
5678       } else {
5679         while (OpNum != Record.size()) {
5680           Value *Op;
5681           unsigned OpTypeID;
5682           if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
5683             return error("Invalid record");
5684           Args.push_back(Op);
5685           ArgTyIDs.push_back(OpTypeID);
5686         }
5687       }
5688 
5689       // Upgrade the bundles if needed.
5690       if (!OperandBundles.empty())
5691         UpgradeOperandBundles(OperandBundles);
5692 
5693       if (auto *IA = dyn_cast<InlineAsm>(Callee)) {
5694         InlineAsm::ConstraintInfoVector ConstraintInfo = IA->ParseConstraints();
5695         auto IsLabelConstraint = [](const InlineAsm::ConstraintInfo &CI) {
5696           return CI.Type == InlineAsm::isLabel;
5697         };
5698         if (none_of(ConstraintInfo, IsLabelConstraint)) {
5699           // Upgrade explicit blockaddress arguments to label constraints.
5700           // Verify that the last arguments are blockaddress arguments that
5701           // match the indirect destinations. Clang always generates callbr
5702           // in this form. We could support reordering with more effort.
5703           unsigned FirstBlockArg = Args.size() - IndirectDests.size();
5704           for (unsigned ArgNo = FirstBlockArg; ArgNo < Args.size(); ++ArgNo) {
5705             unsigned LabelNo = ArgNo - FirstBlockArg;
5706             auto *BA = dyn_cast<BlockAddress>(Args[ArgNo]);
5707             if (!BA || BA->getFunction() != F ||
5708                 LabelNo > IndirectDests.size() ||
5709                 BA->getBasicBlock() != IndirectDests[LabelNo])
5710               return error("callbr argument does not match indirect dest");
5711           }
5712 
5713           // Remove blockaddress arguments.
5714           Args.erase(Args.begin() + FirstBlockArg, Args.end());
5715           ArgTyIDs.erase(ArgTyIDs.begin() + FirstBlockArg, ArgTyIDs.end());
5716 
5717           // Recreate the function type with less arguments.
5718           SmallVector<Type *> ArgTys;
5719           for (Value *Arg : Args)
5720             ArgTys.push_back(Arg->getType());
5721           FTy =
5722               FunctionType::get(FTy->getReturnType(), ArgTys, FTy->isVarArg());
5723 
5724           // Update constraint string to use label constraints.
5725           std::string Constraints = IA->getConstraintString();
5726           unsigned ArgNo = 0;
5727           size_t Pos = 0;
5728           for (const auto &CI : ConstraintInfo) {
5729             if (CI.hasArg()) {
5730               if (ArgNo >= FirstBlockArg)
5731                 Constraints.insert(Pos, "!");
5732               ++ArgNo;
5733             }
5734 
5735             // Go to next constraint in string.
5736             Pos = Constraints.find(',', Pos);
5737             if (Pos == std::string::npos)
5738               break;
5739             ++Pos;
5740           }
5741 
5742           Callee = InlineAsm::get(FTy, IA->getAsmString(), Constraints,
5743                                   IA->hasSideEffects(), IA->isAlignStack(),
5744                                   IA->getDialect(), IA->canThrow());
5745         }
5746       }
5747 
5748       I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args,
5749                              OperandBundles);
5750       ResTypeID = getContainedTypeID(FTyID);
5751       OperandBundles.clear();
5752       InstructionList.push_back(I);
5753       cast<CallBrInst>(I)->setCallingConv(
5754           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
5755       cast<CallBrInst>(I)->setAttributes(PAL);
5756       if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) {
5757         I->deleteValue();
5758         return Err;
5759       }
5760       break;
5761     }
5762     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
5763       I = new UnreachableInst(Context);
5764       InstructionList.push_back(I);
5765       break;
5766     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
5767       if (Record.empty())
5768         return error("Invalid phi record");
5769       // The first record specifies the type.
5770       unsigned TyID = Record[0];
5771       Type *Ty = getTypeByID(TyID);
5772       if (!Ty)
5773         return error("Invalid phi record");
5774 
5775       // Phi arguments are pairs of records of [value, basic block].
5776       // There is an optional final record for fast-math-flags if this phi has a
5777       // floating-point type.
5778       size_t NumArgs = (Record.size() - 1) / 2;
5779       PHINode *PN = PHINode::Create(Ty, NumArgs);
5780       if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN)) {
5781         PN->deleteValue();
5782         return error("Invalid phi record");
5783       }
5784       InstructionList.push_back(PN);
5785 
5786       SmallDenseMap<BasicBlock *, Value *> Args;
5787       for (unsigned i = 0; i != NumArgs; i++) {
5788         BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]);
5789         if (!BB) {
5790           PN->deleteValue();
5791           return error("Invalid phi BB");
5792         }
5793 
5794         // Phi nodes may contain the same predecessor multiple times, in which
5795         // case the incoming value must be identical. Directly reuse the already
5796         // seen value here, to avoid expanding a constant expression multiple
5797         // times.
5798         auto It = Args.find(BB);
5799         if (It != Args.end()) {
5800           PN->addIncoming(It->second, BB);
5801           continue;
5802         }
5803 
5804         // If there already is a block for this edge (from a different phi),
5805         // use it.
5806         BasicBlock *EdgeBB = ConstExprEdgeBBs.lookup({BB, CurBB});
5807         if (!EdgeBB) {
5808           // Otherwise, use a temporary block (that we will discard if it
5809           // turns out to be unnecessary).
5810           if (!PhiConstExprBB)
5811             PhiConstExprBB = BasicBlock::Create(Context, "phi.constexpr", F);
5812           EdgeBB = PhiConstExprBB;
5813         }
5814 
5815         // With the new function encoding, it is possible that operands have
5816         // negative IDs (for forward references).  Use a signed VBR
5817         // representation to keep the encoding small.
5818         Value *V;
5819         if (UseRelativeIDs)
5820           V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB);
5821         else
5822           V = getValue(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB);
5823         if (!V) {
5824           PN->deleteValue();
5825           PhiConstExprBB->eraseFromParent();
5826           return error("Invalid phi record");
5827         }
5828 
5829         if (EdgeBB == PhiConstExprBB && !EdgeBB->empty()) {
5830           ConstExprEdgeBBs.insert({{BB, CurBB}, EdgeBB});
5831           PhiConstExprBB = nullptr;
5832         }
5833         PN->addIncoming(V, BB);
5834         Args.insert({BB, V});
5835       }
5836       I = PN;
5837       ResTypeID = TyID;
5838 
5839       // If there are an even number of records, the final record must be FMF.
5840       if (Record.size() % 2 == 0) {
5841         assert(isa<FPMathOperator>(I) && "Unexpected phi type");
5842         FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]);
5843         if (FMF.any())
5844           I->setFastMathFlags(FMF);
5845       }
5846 
5847       break;
5848     }
5849 
5850     case bitc::FUNC_CODE_INST_LANDINGPAD:
5851     case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: {
5852       // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
5853       unsigned Idx = 0;
5854       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) {
5855         if (Record.size() < 3)
5856           return error("Invalid record");
5857       } else {
5858         assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD);
5859         if (Record.size() < 4)
5860           return error("Invalid record");
5861       }
5862       ResTypeID = Record[Idx++];
5863       Type *Ty = getTypeByID(ResTypeID);
5864       if (!Ty)
5865         return error("Invalid record");
5866       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) {
5867         Value *PersFn = nullptr;
5868         unsigned PersFnTypeID;
5869         if (getValueTypePair(Record, Idx, NextValueNo, PersFn, PersFnTypeID,
5870                              nullptr))
5871           return error("Invalid record");
5872 
5873         if (!F->hasPersonalityFn())
5874           F->setPersonalityFn(cast<Constant>(PersFn));
5875         else if (F->getPersonalityFn() != cast<Constant>(PersFn))
5876           return error("Personality function mismatch");
5877       }
5878 
5879       bool IsCleanup = !!Record[Idx++];
5880       unsigned NumClauses = Record[Idx++];
5881       LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses);
5882       LP->setCleanup(IsCleanup);
5883       for (unsigned J = 0; J != NumClauses; ++J) {
5884         LandingPadInst::ClauseType CT =
5885           LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
5886         Value *Val;
5887         unsigned ValTypeID;
5888 
5889         if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID,
5890                              nullptr)) {
5891           delete LP;
5892           return error("Invalid record");
5893         }
5894 
5895         assert((CT != LandingPadInst::Catch ||
5896                 !isa<ArrayType>(Val->getType())) &&
5897                "Catch clause has a invalid type!");
5898         assert((CT != LandingPadInst::Filter ||
5899                 isa<ArrayType>(Val->getType())) &&
5900                "Filter clause has invalid type!");
5901         LP->addClause(cast<Constant>(Val));
5902       }
5903 
5904       I = LP;
5905       InstructionList.push_back(I);
5906       break;
5907     }
5908 
5909     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
5910       if (Record.size() != 4 && Record.size() != 5)
5911         return error("Invalid record");
5912       using APV = AllocaPackedValues;
5913       const uint64_t Rec = Record[3];
5914       const bool InAlloca = Bitfield::get<APV::UsedWithInAlloca>(Rec);
5915       const bool SwiftError = Bitfield::get<APV::SwiftError>(Rec);
5916       unsigned TyID = Record[0];
5917       Type *Ty = getTypeByID(TyID);
5918       if (!Bitfield::get<APV::ExplicitType>(Rec)) {
5919         TyID = getContainedTypeID(TyID);
5920         Ty = getTypeByID(TyID);
5921         if (!Ty)
5922           return error("Missing element type for old-style alloca");
5923       }
5924       unsigned OpTyID = Record[1];
5925       Type *OpTy = getTypeByID(OpTyID);
5926       Value *Size = getFnValueByID(Record[2], OpTy, OpTyID, CurBB);
5927       MaybeAlign Align;
5928       uint64_t AlignExp =
5929           Bitfield::get<APV::AlignLower>(Rec) |
5930           (Bitfield::get<APV::AlignUpper>(Rec) << APV::AlignLower::Bits);
5931       if (Error Err = parseAlignmentValue(AlignExp, Align)) {
5932         return Err;
5933       }
5934       if (!Ty || !Size)
5935         return error("Invalid record");
5936 
5937       const DataLayout &DL = TheModule->getDataLayout();
5938       unsigned AS = Record.size() == 5 ? Record[4] : DL.getAllocaAddrSpace();
5939 
5940       SmallPtrSet<Type *, 4> Visited;
5941       if (!Align && !Ty->isSized(&Visited))
5942         return error("alloca of unsized type");
5943       if (!Align)
5944         Align = DL.getPrefTypeAlign(Ty);
5945 
5946       AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align);
5947       AI->setUsedWithInAlloca(InAlloca);
5948       AI->setSwiftError(SwiftError);
5949       I = AI;
5950       ResTypeID = getVirtualTypeID(AI->getType(), TyID);
5951       InstructionList.push_back(I);
5952       break;
5953     }
5954     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
5955       unsigned OpNum = 0;
5956       Value *Op;
5957       unsigned OpTypeID;
5958       if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) ||
5959           (OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
5960         return error("Invalid record");
5961 
5962       if (!isa<PointerType>(Op->getType()))
5963         return error("Load operand is not a pointer type");
5964 
5965       Type *Ty = nullptr;
5966       if (OpNum + 3 == Record.size()) {
5967         ResTypeID = Record[OpNum++];
5968         Ty = getTypeByID(ResTypeID);
5969       } else {
5970         ResTypeID = getContainedTypeID(OpTypeID);
5971         Ty = getTypeByID(ResTypeID);
5972         if (!Ty)
5973           return error("Missing element type for old-style load");
5974       }
5975 
5976       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
5977         return Err;
5978 
5979       MaybeAlign Align;
5980       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
5981         return Err;
5982       SmallPtrSet<Type *, 4> Visited;
5983       if (!Align && !Ty->isSized(&Visited))
5984         return error("load of unsized type");
5985       if (!Align)
5986         Align = TheModule->getDataLayout().getABITypeAlign(Ty);
5987       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align);
5988       InstructionList.push_back(I);
5989       break;
5990     }
5991     case bitc::FUNC_CODE_INST_LOADATOMIC: {
5992        // LOADATOMIC: [opty, op, align, vol, ordering, ssid]
5993       unsigned OpNum = 0;
5994       Value *Op;
5995       unsigned OpTypeID;
5996       if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) ||
5997           (OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
5998         return error("Invalid record");
5999 
6000       if (!isa<PointerType>(Op->getType()))
6001         return error("Load operand is not a pointer type");
6002 
6003       Type *Ty = nullptr;
6004       if (OpNum + 5 == Record.size()) {
6005         ResTypeID = Record[OpNum++];
6006         Ty = getTypeByID(ResTypeID);
6007       } else {
6008         ResTypeID = getContainedTypeID(OpTypeID);
6009         Ty = getTypeByID(ResTypeID);
6010         if (!Ty)
6011           return error("Missing element type for old style atomic load");
6012       }
6013 
6014       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
6015         return Err;
6016 
6017       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
6018       if (Ordering == AtomicOrdering::NotAtomic ||
6019           Ordering == AtomicOrdering::Release ||
6020           Ordering == AtomicOrdering::AcquireRelease)
6021         return error("Invalid record");
6022       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
6023         return error("Invalid record");
6024       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
6025 
6026       MaybeAlign Align;
6027       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
6028         return Err;
6029       if (!Align)
6030         return error("Alignment missing from atomic load");
6031       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID);
6032       InstructionList.push_back(I);
6033       break;
6034     }
6035     case bitc::FUNC_CODE_INST_STORE:
6036     case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
6037       unsigned OpNum = 0;
6038       Value *Val, *Ptr;
6039       unsigned PtrTypeID, ValTypeID;
6040       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB))
6041         return error("Invalid record");
6042 
6043       if (BitCode == bitc::FUNC_CODE_INST_STORE) {
6044         if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB))
6045           return error("Invalid record");
6046       } else {
6047         ValTypeID = getContainedTypeID(PtrTypeID);
6048         if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID),
6049                      ValTypeID, Val, CurBB))
6050           return error("Invalid record");
6051       }
6052 
6053       if (OpNum + 2 != Record.size())
6054         return error("Invalid record");
6055 
6056       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
6057         return Err;
6058       MaybeAlign Align;
6059       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
6060         return Err;
6061       SmallPtrSet<Type *, 4> Visited;
6062       if (!Align && !Val->getType()->isSized(&Visited))
6063         return error("store of unsized type");
6064       if (!Align)
6065         Align = TheModule->getDataLayout().getABITypeAlign(Val->getType());
6066       I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align);
6067       InstructionList.push_back(I);
6068       break;
6069     }
6070     case bitc::FUNC_CODE_INST_STOREATOMIC:
6071     case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: {
6072       // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid]
6073       unsigned OpNum = 0;
6074       Value *Val, *Ptr;
6075       unsigned PtrTypeID, ValTypeID;
6076       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB) ||
6077           !isa<PointerType>(Ptr->getType()))
6078         return error("Invalid record");
6079       if (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC) {
6080         if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB))
6081           return error("Invalid record");
6082       } else {
6083         ValTypeID = getContainedTypeID(PtrTypeID);
6084         if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID),
6085                      ValTypeID, Val, CurBB))
6086           return error("Invalid record");
6087       }
6088 
6089       if (OpNum + 4 != Record.size())
6090         return error("Invalid record");
6091 
6092       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
6093         return Err;
6094       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
6095       if (Ordering == AtomicOrdering::NotAtomic ||
6096           Ordering == AtomicOrdering::Acquire ||
6097           Ordering == AtomicOrdering::AcquireRelease)
6098         return error("Invalid record");
6099       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
6100       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
6101         return error("Invalid record");
6102 
6103       MaybeAlign Align;
6104       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
6105         return Err;
6106       if (!Align)
6107         return error("Alignment missing from atomic store");
6108       I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID);
6109       InstructionList.push_back(I);
6110       break;
6111     }
6112     case bitc::FUNC_CODE_INST_CMPXCHG_OLD: {
6113       // CMPXCHG_OLD: [ptrty, ptr, cmp, val, vol, ordering, synchscope,
6114       // failure_ordering?, weak?]
6115       const size_t NumRecords = Record.size();
6116       unsigned OpNum = 0;
6117       Value *Ptr = nullptr;
6118       unsigned PtrTypeID;
6119       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB))
6120         return error("Invalid record");
6121 
6122       if (!isa<PointerType>(Ptr->getType()))
6123         return error("Cmpxchg operand is not a pointer type");
6124 
6125       Value *Cmp = nullptr;
6126       unsigned CmpTypeID = getContainedTypeID(PtrTypeID);
6127       if (popValue(Record, OpNum, NextValueNo, getTypeByID(CmpTypeID),
6128                    CmpTypeID, Cmp, CurBB))
6129         return error("Invalid record");
6130 
6131       Value *New = nullptr;
6132       if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID,
6133                    New, CurBB) ||
6134           NumRecords < OpNum + 3 || NumRecords > OpNum + 5)
6135         return error("Invalid record");
6136 
6137       const AtomicOrdering SuccessOrdering =
6138           getDecodedOrdering(Record[OpNum + 1]);
6139       if (SuccessOrdering == AtomicOrdering::NotAtomic ||
6140           SuccessOrdering == AtomicOrdering::Unordered)
6141         return error("Invalid record");
6142 
6143       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
6144 
6145       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
6146         return Err;
6147 
6148       const AtomicOrdering FailureOrdering =
6149           NumRecords < 7
6150               ? AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering)
6151               : getDecodedOrdering(Record[OpNum + 3]);
6152 
6153       if (FailureOrdering == AtomicOrdering::NotAtomic ||
6154           FailureOrdering == AtomicOrdering::Unordered)
6155         return error("Invalid record");
6156 
6157       const Align Alignment(
6158           TheModule->getDataLayout().getTypeStoreSize(Cmp->getType()));
6159 
6160       I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering,
6161                                 FailureOrdering, SSID);
6162       cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
6163 
6164       if (NumRecords < 8) {
6165         // Before weak cmpxchgs existed, the instruction simply returned the
6166         // value loaded from memory, so bitcode files from that era will be
6167         // expecting the first component of a modern cmpxchg.
6168         I->insertInto(CurBB, CurBB->end());
6169         I = ExtractValueInst::Create(I, 0);
6170         ResTypeID = CmpTypeID;
6171       } else {
6172         cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]);
6173         unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context));
6174         ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID});
6175       }
6176 
6177       InstructionList.push_back(I);
6178       break;
6179     }
6180     case bitc::FUNC_CODE_INST_CMPXCHG: {
6181       // CMPXCHG: [ptrty, ptr, cmp, val, vol, success_ordering, synchscope,
6182       // failure_ordering, weak, align?]
6183       const size_t NumRecords = Record.size();
6184       unsigned OpNum = 0;
6185       Value *Ptr = nullptr;
6186       unsigned PtrTypeID;
6187       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB))
6188         return error("Invalid record");
6189 
6190       if (!isa<PointerType>(Ptr->getType()))
6191         return error("Cmpxchg operand is not a pointer type");
6192 
6193       Value *Cmp = nullptr;
6194       unsigned CmpTypeID;
6195       if (getValueTypePair(Record, OpNum, NextValueNo, Cmp, CmpTypeID, CurBB))
6196         return error("Invalid record");
6197 
6198       Value *Val = nullptr;
6199       if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID, Val,
6200                    CurBB))
6201         return error("Invalid record");
6202 
6203       if (NumRecords < OpNum + 3 || NumRecords > OpNum + 6)
6204         return error("Invalid record");
6205 
6206       const bool IsVol = Record[OpNum];
6207 
6208       const AtomicOrdering SuccessOrdering =
6209           getDecodedOrdering(Record[OpNum + 1]);
6210       if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering))
6211         return error("Invalid cmpxchg success ordering");
6212 
6213       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
6214 
6215       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
6216         return Err;
6217 
6218       const AtomicOrdering FailureOrdering =
6219           getDecodedOrdering(Record[OpNum + 3]);
6220       if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering))
6221         return error("Invalid cmpxchg failure ordering");
6222 
6223       const bool IsWeak = Record[OpNum + 4];
6224 
6225       MaybeAlign Alignment;
6226 
6227       if (NumRecords == (OpNum + 6)) {
6228         if (Error Err = parseAlignmentValue(Record[OpNum + 5], Alignment))
6229           return Err;
6230       }
6231       if (!Alignment)
6232         Alignment =
6233             Align(TheModule->getDataLayout().getTypeStoreSize(Cmp->getType()));
6234 
6235       I = new AtomicCmpXchgInst(Ptr, Cmp, Val, *Alignment, SuccessOrdering,
6236                                 FailureOrdering, SSID);
6237       cast<AtomicCmpXchgInst>(I)->setVolatile(IsVol);
6238       cast<AtomicCmpXchgInst>(I)->setWeak(IsWeak);
6239 
6240       unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context));
6241       ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID});
6242 
6243       InstructionList.push_back(I);
6244       break;
6245     }
6246     case bitc::FUNC_CODE_INST_ATOMICRMW_OLD:
6247     case bitc::FUNC_CODE_INST_ATOMICRMW: {
6248       // ATOMICRMW_OLD: [ptrty, ptr, val, op, vol, ordering, ssid, align?]
6249       // ATOMICRMW: [ptrty, ptr, valty, val, op, vol, ordering, ssid, align?]
6250       const size_t NumRecords = Record.size();
6251       unsigned OpNum = 0;
6252 
6253       Value *Ptr = nullptr;
6254       unsigned PtrTypeID;
6255       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB))
6256         return error("Invalid record");
6257 
6258       if (!isa<PointerType>(Ptr->getType()))
6259         return error("Invalid record");
6260 
6261       Value *Val = nullptr;
6262       unsigned ValTypeID = InvalidTypeID;
6263       if (BitCode == bitc::FUNC_CODE_INST_ATOMICRMW_OLD) {
6264         ValTypeID = getContainedTypeID(PtrTypeID);
6265         if (popValue(Record, OpNum, NextValueNo,
6266                      getTypeByID(ValTypeID), ValTypeID, Val, CurBB))
6267           return error("Invalid record");
6268       } else {
6269         if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB))
6270           return error("Invalid record");
6271       }
6272 
6273       if (!(NumRecords == (OpNum + 4) || NumRecords == (OpNum + 5)))
6274         return error("Invalid record");
6275 
6276       const AtomicRMWInst::BinOp Operation =
6277           getDecodedRMWOperation(Record[OpNum]);
6278       if (Operation < AtomicRMWInst::FIRST_BINOP ||
6279           Operation > AtomicRMWInst::LAST_BINOP)
6280         return error("Invalid record");
6281 
6282       const bool IsVol = Record[OpNum + 1];
6283 
6284       const AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
6285       if (Ordering == AtomicOrdering::NotAtomic ||
6286           Ordering == AtomicOrdering::Unordered)
6287         return error("Invalid record");
6288 
6289       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
6290 
6291       MaybeAlign Alignment;
6292 
6293       if (NumRecords == (OpNum + 5)) {
6294         if (Error Err = parseAlignmentValue(Record[OpNum + 4], Alignment))
6295           return Err;
6296       }
6297 
6298       if (!Alignment)
6299         Alignment =
6300             Align(TheModule->getDataLayout().getTypeStoreSize(Val->getType()));
6301 
6302       I = new AtomicRMWInst(Operation, Ptr, Val, *Alignment, Ordering, SSID);
6303       ResTypeID = ValTypeID;
6304       cast<AtomicRMWInst>(I)->setVolatile(IsVol);
6305 
6306       InstructionList.push_back(I);
6307       break;
6308     }
6309     case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid]
6310       if (2 != Record.size())
6311         return error("Invalid record");
6312       AtomicOrdering Ordering = getDecodedOrdering(Record[0]);
6313       if (Ordering == AtomicOrdering::NotAtomic ||
6314           Ordering == AtomicOrdering::Unordered ||
6315           Ordering == AtomicOrdering::Monotonic)
6316         return error("Invalid record");
6317       SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]);
6318       I = new FenceInst(Context, Ordering, SSID);
6319       InstructionList.push_back(I);
6320       break;
6321     }
6322     case bitc::FUNC_CODE_INST_CALL: {
6323       // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...]
6324       if (Record.size() < 3)
6325         return error("Invalid record");
6326 
6327       unsigned OpNum = 0;
6328       AttributeList PAL = getAttributes(Record[OpNum++]);
6329       unsigned CCInfo = Record[OpNum++];
6330 
6331       FastMathFlags FMF;
6332       if ((CCInfo >> bitc::CALL_FMF) & 1) {
6333         FMF = getDecodedFastMathFlags(Record[OpNum++]);
6334         if (!FMF.any())
6335           return error("Fast math flags indicator set for call with no FMF");
6336       }
6337 
6338       unsigned FTyID = InvalidTypeID;
6339       FunctionType *FTy = nullptr;
6340       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
6341         FTyID = Record[OpNum++];
6342         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
6343         if (!FTy)
6344           return error("Explicit call type is not a function type");
6345       }
6346 
6347       Value *Callee;
6348       unsigned CalleeTypeID;
6349       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID,
6350                            CurBB))
6351         return error("Invalid record");
6352 
6353       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
6354       if (!OpTy)
6355         return error("Callee is not a pointer type");
6356       if (!FTy) {
6357         FTyID = getContainedTypeID(CalleeTypeID);
6358         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
6359         if (!FTy)
6360           return error("Callee is not of pointer to function type");
6361       } else if (!OpTy->isOpaqueOrPointeeTypeMatches(FTy))
6362         return error("Explicit call type does not match pointee type of "
6363                      "callee operand");
6364       if (Record.size() < FTy->getNumParams() + OpNum)
6365         return error("Insufficient operands to call");
6366 
6367       SmallVector<Value*, 16> Args;
6368       SmallVector<unsigned, 16> ArgTyIDs;
6369       // Read the fixed params.
6370       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
6371         unsigned ArgTyID = getContainedTypeID(FTyID, i + 1);
6372         if (FTy->getParamType(i)->isLabelTy())
6373           Args.push_back(getBasicBlock(Record[OpNum]));
6374         else
6375           Args.push_back(getValue(Record, OpNum, NextValueNo,
6376                                   FTy->getParamType(i), ArgTyID, CurBB));
6377         ArgTyIDs.push_back(ArgTyID);
6378         if (!Args.back())
6379           return error("Invalid record");
6380       }
6381 
6382       // Read type/value pairs for varargs params.
6383       if (!FTy->isVarArg()) {
6384         if (OpNum != Record.size())
6385           return error("Invalid record");
6386       } else {
6387         while (OpNum != Record.size()) {
6388           Value *Op;
6389           unsigned OpTypeID;
6390           if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
6391             return error("Invalid record");
6392           Args.push_back(Op);
6393           ArgTyIDs.push_back(OpTypeID);
6394         }
6395       }
6396 
6397       // Upgrade the bundles if needed.
6398       if (!OperandBundles.empty())
6399         UpgradeOperandBundles(OperandBundles);
6400 
6401       I = CallInst::Create(FTy, Callee, Args, OperandBundles);
6402       ResTypeID = getContainedTypeID(FTyID);
6403       OperandBundles.clear();
6404       InstructionList.push_back(I);
6405       cast<CallInst>(I)->setCallingConv(
6406           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
6407       CallInst::TailCallKind TCK = CallInst::TCK_None;
6408       if (CCInfo & 1 << bitc::CALL_TAIL)
6409         TCK = CallInst::TCK_Tail;
6410       if (CCInfo & (1 << bitc::CALL_MUSTTAIL))
6411         TCK = CallInst::TCK_MustTail;
6412       if (CCInfo & (1 << bitc::CALL_NOTAIL))
6413         TCK = CallInst::TCK_NoTail;
6414       cast<CallInst>(I)->setTailCallKind(TCK);
6415       cast<CallInst>(I)->setAttributes(PAL);
6416       if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) {
6417         I->deleteValue();
6418         return Err;
6419       }
6420       if (FMF.any()) {
6421         if (!isa<FPMathOperator>(I))
6422           return error("Fast-math-flags specified for call without "
6423                        "floating-point scalar or vector return type");
6424         I->setFastMathFlags(FMF);
6425       }
6426       break;
6427     }
6428     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
6429       if (Record.size() < 3)
6430         return error("Invalid record");
6431       unsigned OpTyID = Record[0];
6432       Type *OpTy = getTypeByID(OpTyID);
6433       Value *Op = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB);
6434       ResTypeID = Record[2];
6435       Type *ResTy = getTypeByID(ResTypeID);
6436       if (!OpTy || !Op || !ResTy)
6437         return error("Invalid record");
6438       I = new VAArgInst(Op, ResTy);
6439       InstructionList.push_back(I);
6440       break;
6441     }
6442 
6443     case bitc::FUNC_CODE_OPERAND_BUNDLE: {
6444       // A call or an invoke can be optionally prefixed with some variable
6445       // number of operand bundle blocks.  These blocks are read into
6446       // OperandBundles and consumed at the next call or invoke instruction.
6447 
6448       if (Record.empty() || Record[0] >= BundleTags.size())
6449         return error("Invalid record");
6450 
6451       std::vector<Value *> Inputs;
6452 
6453       unsigned OpNum = 1;
6454       while (OpNum != Record.size()) {
6455         Value *Op;
6456         unsigned OpTypeID;
6457         if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
6458           return error("Invalid record");
6459         Inputs.push_back(Op);
6460       }
6461 
6462       OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs));
6463       continue;
6464     }
6465 
6466     case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval]
6467       unsigned OpNum = 0;
6468       Value *Op = nullptr;
6469       unsigned OpTypeID;
6470       if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
6471         return error("Invalid record");
6472       if (OpNum != Record.size())
6473         return error("Invalid record");
6474 
6475       I = new FreezeInst(Op);
6476       ResTypeID = OpTypeID;
6477       InstructionList.push_back(I);
6478       break;
6479     }
6480     }
6481 
6482     // Add instruction to end of current BB.  If there is no current BB, reject
6483     // this file.
6484     if (!CurBB) {
6485       I->deleteValue();
6486       return error("Invalid instruction with no BB");
6487     }
6488     if (!OperandBundles.empty()) {
6489       I->deleteValue();
6490       return error("Operand bundles found with no consumer");
6491     }
6492     I->insertInto(CurBB, CurBB->end());
6493 
6494     // If this was a terminator instruction, move to the next block.
6495     if (I->isTerminator()) {
6496       ++CurBBNo;
6497       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
6498     }
6499 
6500     // Non-void values get registered in the value table for future use.
6501     if (!I->getType()->isVoidTy()) {
6502       assert(I->getType() == getTypeByID(ResTypeID) &&
6503              "Incorrect result type ID");
6504       if (Error Err = ValueList.assignValue(NextValueNo++, I, ResTypeID))
6505         return Err;
6506     }
6507   }
6508 
6509 OutOfRecordLoop:
6510 
6511   if (!OperandBundles.empty())
6512     return error("Operand bundles found with no consumer");
6513 
6514   // Check the function list for unresolved values.
6515   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
6516     if (!A->getParent()) {
6517       // We found at least one unresolved value.  Nuke them all to avoid leaks.
6518       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
6519         if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
6520           A->replaceAllUsesWith(PoisonValue::get(A->getType()));
6521           delete A;
6522         }
6523       }
6524       return error("Never resolved value found in function");
6525     }
6526   }
6527 
6528   // Unexpected unresolved metadata about to be dropped.
6529   if (MDLoader->hasFwdRefs())
6530     return error("Invalid function metadata: outgoing forward refs");
6531 
6532   if (PhiConstExprBB)
6533     PhiConstExprBB->eraseFromParent();
6534 
6535   for (const auto &Pair : ConstExprEdgeBBs) {
6536     BasicBlock *From = Pair.first.first;
6537     BasicBlock *To = Pair.first.second;
6538     BasicBlock *EdgeBB = Pair.second;
6539     BranchInst::Create(To, EdgeBB);
6540     From->getTerminator()->replaceSuccessorWith(To, EdgeBB);
6541     To->replacePhiUsesWith(From, EdgeBB);
6542     EdgeBB->moveBefore(To);
6543   }
6544 
6545   // Trim the value list down to the size it was before we parsed this function.
6546   ValueList.shrinkTo(ModuleValueListSize);
6547   MDLoader->shrinkTo(ModuleMDLoaderSize);
6548   std::vector<BasicBlock*>().swap(FunctionBBs);
6549   return Error::success();
6550 }
6551 
6552 /// Find the function body in the bitcode stream
6553 Error BitcodeReader::findFunctionInStream(
6554     Function *F,
6555     DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
6556   while (DeferredFunctionInfoIterator->second == 0) {
6557     // This is the fallback handling for the old format bitcode that
6558     // didn't contain the function index in the VST, or when we have
6559     // an anonymous function which would not have a VST entry.
6560     // Assert that we have one of those two cases.
6561     assert(VSTOffset == 0 || !F->hasName());
6562     // Parse the next body in the stream and set its position in the
6563     // DeferredFunctionInfo map.
6564     if (Error Err = rememberAndSkipFunctionBodies())
6565       return Err;
6566   }
6567   return Error::success();
6568 }
6569 
6570 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) {
6571   if (Val == SyncScope::SingleThread || Val == SyncScope::System)
6572     return SyncScope::ID(Val);
6573   if (Val >= SSIDs.size())
6574     return SyncScope::System; // Map unknown synchronization scopes to system.
6575   return SSIDs[Val];
6576 }
6577 
6578 //===----------------------------------------------------------------------===//
6579 // GVMaterializer implementation
6580 //===----------------------------------------------------------------------===//
6581 
6582 Error BitcodeReader::materialize(GlobalValue *GV) {
6583   Function *F = dyn_cast<Function>(GV);
6584   // If it's not a function or is already material, ignore the request.
6585   if (!F || !F->isMaterializable())
6586     return Error::success();
6587 
6588   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
6589   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
6590   // If its position is recorded as 0, its body is somewhere in the stream
6591   // but we haven't seen it yet.
6592   if (DFII->second == 0)
6593     if (Error Err = findFunctionInStream(F, DFII))
6594       return Err;
6595 
6596   // Materialize metadata before parsing any function bodies.
6597   if (Error Err = materializeMetadata())
6598     return Err;
6599 
6600   // Move the bit stream to the saved position of the deferred function body.
6601   if (Error JumpFailed = Stream.JumpToBit(DFII->second))
6602     return JumpFailed;
6603   if (Error Err = parseFunctionBody(F))
6604     return Err;
6605   F->setIsMaterializable(false);
6606 
6607   if (StripDebugInfo)
6608     stripDebugInfo(*F);
6609 
6610   // Upgrade any old intrinsic calls in the function.
6611   for (auto &I : UpgradedIntrinsics) {
6612     for (User *U : llvm::make_early_inc_range(I.first->materialized_users()))
6613       if (CallInst *CI = dyn_cast<CallInst>(U))
6614         UpgradeIntrinsicCall(CI, I.second);
6615   }
6616 
6617   // Finish fn->subprogram upgrade for materialized functions.
6618   if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F))
6619     F->setSubprogram(SP);
6620 
6621   // Check if the TBAA Metadata are valid, otherwise we will need to strip them.
6622   if (!MDLoader->isStrippingTBAA()) {
6623     for (auto &I : instructions(F)) {
6624       MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa);
6625       if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA))
6626         continue;
6627       MDLoader->setStripTBAA(true);
6628       stripTBAA(F->getParent());
6629     }
6630   }
6631 
6632   for (auto &I : instructions(F)) {
6633     // "Upgrade" older incorrect branch weights by dropping them.
6634     if (auto *MD = I.getMetadata(LLVMContext::MD_prof)) {
6635       if (MD->getOperand(0) != nullptr && isa<MDString>(MD->getOperand(0))) {
6636         MDString *MDS = cast<MDString>(MD->getOperand(0));
6637         StringRef ProfName = MDS->getString();
6638         // Check consistency of !prof branch_weights metadata.
6639         if (!ProfName.equals("branch_weights"))
6640           continue;
6641         unsigned ExpectedNumOperands = 0;
6642         if (BranchInst *BI = dyn_cast<BranchInst>(&I))
6643           ExpectedNumOperands = BI->getNumSuccessors();
6644         else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I))
6645           ExpectedNumOperands = SI->getNumSuccessors();
6646         else if (isa<CallInst>(&I))
6647           ExpectedNumOperands = 1;
6648         else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I))
6649           ExpectedNumOperands = IBI->getNumDestinations();
6650         else if (isa<SelectInst>(&I))
6651           ExpectedNumOperands = 2;
6652         else
6653           continue; // ignore and continue.
6654 
6655         // If branch weight doesn't match, just strip branch weight.
6656         if (MD->getNumOperands() != 1 + ExpectedNumOperands)
6657           I.setMetadata(LLVMContext::MD_prof, nullptr);
6658       }
6659     }
6660 
6661     // Remove incompatible attributes on function calls.
6662     if (auto *CI = dyn_cast<CallBase>(&I)) {
6663       CI->removeRetAttrs(AttributeFuncs::typeIncompatible(
6664           CI->getFunctionType()->getReturnType()));
6665 
6666       for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ++ArgNo)
6667         CI->removeParamAttrs(ArgNo, AttributeFuncs::typeIncompatible(
6668                                         CI->getArgOperand(ArgNo)->getType()));
6669     }
6670   }
6671 
6672   // Look for functions that rely on old function attribute behavior.
6673   UpgradeFunctionAttributes(*F);
6674 
6675   // Bring in any functions that this function forward-referenced via
6676   // blockaddresses.
6677   return materializeForwardReferencedFunctions();
6678 }
6679 
6680 Error BitcodeReader::materializeModule() {
6681   if (Error Err = materializeMetadata())
6682     return Err;
6683 
6684   // Promise to materialize all forward references.
6685   WillMaterializeAllForwardRefs = true;
6686 
6687   // Iterate over the module, deserializing any functions that are still on
6688   // disk.
6689   for (Function &F : *TheModule) {
6690     if (Error Err = materialize(&F))
6691       return Err;
6692   }
6693   // At this point, if there are any function bodies, parse the rest of
6694   // the bits in the module past the last function block we have recorded
6695   // through either lazy scanning or the VST.
6696   if (LastFunctionBlockBit || NextUnreadBit)
6697     if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit
6698                                     ? LastFunctionBlockBit
6699                                     : NextUnreadBit))
6700       return Err;
6701 
6702   // Check that all block address forward references got resolved (as we
6703   // promised above).
6704   if (!BasicBlockFwdRefs.empty())
6705     return error("Never resolved function from blockaddress");
6706 
6707   // Upgrade any intrinsic calls that slipped through (should not happen!) and
6708   // delete the old functions to clean up. We can't do this unless the entire
6709   // module is materialized because there could always be another function body
6710   // with calls to the old function.
6711   for (auto &I : UpgradedIntrinsics) {
6712     for (auto *U : I.first->users()) {
6713       if (CallInst *CI = dyn_cast<CallInst>(U))
6714         UpgradeIntrinsicCall(CI, I.second);
6715     }
6716     if (!I.first->use_empty())
6717       I.first->replaceAllUsesWith(I.second);
6718     I.first->eraseFromParent();
6719   }
6720   UpgradedIntrinsics.clear();
6721 
6722   UpgradeDebugInfo(*TheModule);
6723 
6724   UpgradeModuleFlags(*TheModule);
6725 
6726   UpgradeARCRuntime(*TheModule);
6727 
6728   return Error::success();
6729 }
6730 
6731 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
6732   return IdentifiedStructTypes;
6733 }
6734 
6735 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
6736     BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex,
6737     StringRef ModulePath, unsigned ModuleId,
6738     std::function<bool(GlobalValue::GUID)> IsPrevailing)
6739     : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex),
6740       ModulePath(ModulePath), ModuleId(ModuleId), IsPrevailing(IsPrevailing) {}
6741 
6742 void ModuleSummaryIndexBitcodeReader::addThisModule() {
6743   TheIndex.addModule(ModulePath, ModuleId);
6744 }
6745 
6746 ModuleSummaryIndex::ModuleInfo *
6747 ModuleSummaryIndexBitcodeReader::getThisModule() {
6748   return TheIndex.getModule(ModulePath);
6749 }
6750 
6751 template <bool AllowNullValueInfo>
6752 std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID>
6753 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) {
6754   auto VGI = ValueIdToValueInfoMap[ValueId];
6755   // We can have a null value info for memprof callsite info records in
6756   // distributed ThinLTO index files when the callee function summary is not
6757   // included in the index. The bitcode writer records 0 in that case,
6758   // and the caller of this helper will set AllowNullValueInfo to true.
6759   assert(AllowNullValueInfo || std::get<0>(VGI));
6760   return VGI;
6761 }
6762 
6763 void ModuleSummaryIndexBitcodeReader::setValueGUID(
6764     uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage,
6765     StringRef SourceFileName) {
6766   std::string GlobalId =
6767       GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName);
6768   auto ValueGUID = GlobalValue::getGUID(GlobalId);
6769   auto OriginalNameID = ValueGUID;
6770   if (GlobalValue::isLocalLinkage(Linkage))
6771     OriginalNameID = GlobalValue::getGUID(ValueName);
6772   if (PrintSummaryGUIDs)
6773     dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is "
6774            << ValueName << "\n";
6775 
6776   // UseStrtab is false for legacy summary formats and value names are
6777   // created on stack. In that case we save the name in a string saver in
6778   // the index so that the value name can be recorded.
6779   ValueIdToValueInfoMap[ValueID] = std::make_tuple(
6780       TheIndex.getOrInsertValueInfo(
6781           ValueGUID, UseStrtab ? ValueName : TheIndex.saveString(ValueName)),
6782       OriginalNameID, ValueGUID);
6783 }
6784 
6785 // Specialized value symbol table parser used when reading module index
6786 // blocks where we don't actually create global values. The parsed information
6787 // is saved in the bitcode reader for use when later parsing summaries.
6788 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable(
6789     uint64_t Offset,
6790     DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) {
6791   // With a strtab the VST is not required to parse the summary.
6792   if (UseStrtab)
6793     return Error::success();
6794 
6795   assert(Offset > 0 && "Expected non-zero VST offset");
6796   Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
6797   if (!MaybeCurrentBit)
6798     return MaybeCurrentBit.takeError();
6799   uint64_t CurrentBit = MaybeCurrentBit.get();
6800 
6801   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
6802     return Err;
6803 
6804   SmallVector<uint64_t, 64> Record;
6805 
6806   // Read all the records for this value table.
6807   SmallString<128> ValueName;
6808 
6809   while (true) {
6810     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6811     if (!MaybeEntry)
6812       return MaybeEntry.takeError();
6813     BitstreamEntry Entry = MaybeEntry.get();
6814 
6815     switch (Entry.Kind) {
6816     case BitstreamEntry::SubBlock: // Handled for us already.
6817     case BitstreamEntry::Error:
6818       return error("Malformed block");
6819     case BitstreamEntry::EndBlock:
6820       // Done parsing VST, jump back to wherever we came from.
6821       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
6822         return JumpFailed;
6823       return Error::success();
6824     case BitstreamEntry::Record:
6825       // The interesting case.
6826       break;
6827     }
6828 
6829     // Read a record.
6830     Record.clear();
6831     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
6832     if (!MaybeRecord)
6833       return MaybeRecord.takeError();
6834     switch (MaybeRecord.get()) {
6835     default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records).
6836       break;
6837     case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
6838       if (convertToString(Record, 1, ValueName))
6839         return error("Invalid record");
6840       unsigned ValueID = Record[0];
6841       assert(!SourceFileName.empty());
6842       auto VLI = ValueIdToLinkageMap.find(ValueID);
6843       assert(VLI != ValueIdToLinkageMap.end() &&
6844              "No linkage found for VST entry?");
6845       auto Linkage = VLI->second;
6846       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
6847       ValueName.clear();
6848       break;
6849     }
6850     case bitc::VST_CODE_FNENTRY: {
6851       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
6852       if (convertToString(Record, 2, ValueName))
6853         return error("Invalid record");
6854       unsigned ValueID = Record[0];
6855       assert(!SourceFileName.empty());
6856       auto VLI = ValueIdToLinkageMap.find(ValueID);
6857       assert(VLI != ValueIdToLinkageMap.end() &&
6858              "No linkage found for VST entry?");
6859       auto Linkage = VLI->second;
6860       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
6861       ValueName.clear();
6862       break;
6863     }
6864     case bitc::VST_CODE_COMBINED_ENTRY: {
6865       // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
6866       unsigned ValueID = Record[0];
6867       GlobalValue::GUID RefGUID = Record[1];
6868       // The "original name", which is the second value of the pair will be
6869       // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index.
6870       ValueIdToValueInfoMap[ValueID] = std::make_tuple(
6871           TheIndex.getOrInsertValueInfo(RefGUID), RefGUID, RefGUID);
6872       break;
6873     }
6874     }
6875   }
6876 }
6877 
6878 // Parse just the blocks needed for building the index out of the module.
6879 // At the end of this routine the module Index is populated with a map
6880 // from global value id to GlobalValueSummary objects.
6881 Error ModuleSummaryIndexBitcodeReader::parseModule() {
6882   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
6883     return Err;
6884 
6885   SmallVector<uint64_t, 64> Record;
6886   DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap;
6887   unsigned ValueId = 0;
6888 
6889   // Read the index for this module.
6890   while (true) {
6891     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6892     if (!MaybeEntry)
6893       return MaybeEntry.takeError();
6894     llvm::BitstreamEntry Entry = MaybeEntry.get();
6895 
6896     switch (Entry.Kind) {
6897     case BitstreamEntry::Error:
6898       return error("Malformed block");
6899     case BitstreamEntry::EndBlock:
6900       return Error::success();
6901 
6902     case BitstreamEntry::SubBlock:
6903       switch (Entry.ID) {
6904       default: // Skip unknown content.
6905         if (Error Err = Stream.SkipBlock())
6906           return Err;
6907         break;
6908       case bitc::BLOCKINFO_BLOCK_ID:
6909         // Need to parse these to get abbrev ids (e.g. for VST)
6910         if (Error Err = readBlockInfo())
6911           return Err;
6912         break;
6913       case bitc::VALUE_SYMTAB_BLOCK_ID:
6914         // Should have been parsed earlier via VSTOffset, unless there
6915         // is no summary section.
6916         assert(((SeenValueSymbolTable && VSTOffset > 0) ||
6917                 !SeenGlobalValSummary) &&
6918                "Expected early VST parse via VSTOffset record");
6919         if (Error Err = Stream.SkipBlock())
6920           return Err;
6921         break;
6922       case bitc::GLOBALVAL_SUMMARY_BLOCK_ID:
6923       case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID:
6924         // Add the module if it is a per-module index (has a source file name).
6925         if (!SourceFileName.empty())
6926           addThisModule();
6927         assert(!SeenValueSymbolTable &&
6928                "Already read VST when parsing summary block?");
6929         // We might not have a VST if there were no values in the
6930         // summary. An empty summary block generated when we are
6931         // performing ThinLTO compiles so we don't later invoke
6932         // the regular LTO process on them.
6933         if (VSTOffset > 0) {
6934           if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap))
6935             return Err;
6936           SeenValueSymbolTable = true;
6937         }
6938         SeenGlobalValSummary = true;
6939         if (Error Err = parseEntireSummary(Entry.ID))
6940           return Err;
6941         break;
6942       case bitc::MODULE_STRTAB_BLOCK_ID:
6943         if (Error Err = parseModuleStringTable())
6944           return Err;
6945         break;
6946       }
6947       continue;
6948 
6949     case BitstreamEntry::Record: {
6950         Record.clear();
6951         Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
6952         if (!MaybeBitCode)
6953           return MaybeBitCode.takeError();
6954         switch (MaybeBitCode.get()) {
6955         default:
6956           break; // Default behavior, ignore unknown content.
6957         case bitc::MODULE_CODE_VERSION: {
6958           if (Error Err = parseVersionRecord(Record).takeError())
6959             return Err;
6960           break;
6961         }
6962         /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
6963         case bitc::MODULE_CODE_SOURCE_FILENAME: {
6964           SmallString<128> ValueName;
6965           if (convertToString(Record, 0, ValueName))
6966             return error("Invalid record");
6967           SourceFileName = ValueName.c_str();
6968           break;
6969         }
6970         /// MODULE_CODE_HASH: [5*i32]
6971         case bitc::MODULE_CODE_HASH: {
6972           if (Record.size() != 5)
6973             return error("Invalid hash length " + Twine(Record.size()).str());
6974           auto &Hash = getThisModule()->second.second;
6975           int Pos = 0;
6976           for (auto &Val : Record) {
6977             assert(!(Val >> 32) && "Unexpected high bits set");
6978             Hash[Pos++] = Val;
6979           }
6980           break;
6981         }
6982         /// MODULE_CODE_VSTOFFSET: [offset]
6983         case bitc::MODULE_CODE_VSTOFFSET:
6984           if (Record.empty())
6985             return error("Invalid record");
6986           // Note that we subtract 1 here because the offset is relative to one
6987           // word before the start of the identification or module block, which
6988           // was historically always the start of the regular bitcode header.
6989           VSTOffset = Record[0] - 1;
6990           break;
6991         // v1 GLOBALVAR: [pointer type, isconst,     initid,       linkage, ...]
6992         // v1 FUNCTION:  [type,         callingconv, isproto,      linkage, ...]
6993         // v1 ALIAS:     [alias type,   addrspace,   aliasee val#, linkage, ...]
6994         // v2: [strtab offset, strtab size, v1]
6995         case bitc::MODULE_CODE_GLOBALVAR:
6996         case bitc::MODULE_CODE_FUNCTION:
6997         case bitc::MODULE_CODE_ALIAS: {
6998           StringRef Name;
6999           ArrayRef<uint64_t> GVRecord;
7000           std::tie(Name, GVRecord) = readNameFromStrtab(Record);
7001           if (GVRecord.size() <= 3)
7002             return error("Invalid record");
7003           uint64_t RawLinkage = GVRecord[3];
7004           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
7005           if (!UseStrtab) {
7006             ValueIdToLinkageMap[ValueId++] = Linkage;
7007             break;
7008           }
7009 
7010           setValueGUID(ValueId++, Name, Linkage, SourceFileName);
7011           break;
7012         }
7013         }
7014       }
7015       continue;
7016     }
7017   }
7018 }
7019 
7020 std::vector<ValueInfo>
7021 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) {
7022   std::vector<ValueInfo> Ret;
7023   Ret.reserve(Record.size());
7024   for (uint64_t RefValueId : Record)
7025     Ret.push_back(std::get<0>(getValueInfoFromValueId(RefValueId)));
7026   return Ret;
7027 }
7028 
7029 std::vector<FunctionSummary::EdgeTy>
7030 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record,
7031                                               bool IsOldProfileFormat,
7032                                               bool HasProfile, bool HasRelBF) {
7033   std::vector<FunctionSummary::EdgeTy> Ret;
7034   Ret.reserve(Record.size());
7035   for (unsigned I = 0, E = Record.size(); I != E; ++I) {
7036     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
7037     uint64_t RelBF = 0;
7038     ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[I]));
7039     if (IsOldProfileFormat) {
7040       I += 1; // Skip old callsitecount field
7041       if (HasProfile)
7042         I += 1; // Skip old profilecount field
7043     } else if (HasProfile)
7044       Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]);
7045     else if (HasRelBF)
7046       RelBF = Record[++I];
7047     Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)});
7048   }
7049   return Ret;
7050 }
7051 
7052 static void
7053 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot,
7054                                        WholeProgramDevirtResolution &Wpd) {
7055   uint64_t ArgNum = Record[Slot++];
7056   WholeProgramDevirtResolution::ByArg &B =
7057       Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}];
7058   Slot += ArgNum;
7059 
7060   B.TheKind =
7061       static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]);
7062   B.Info = Record[Slot++];
7063   B.Byte = Record[Slot++];
7064   B.Bit = Record[Slot++];
7065 }
7066 
7067 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record,
7068                                               StringRef Strtab, size_t &Slot,
7069                                               TypeIdSummary &TypeId) {
7070   uint64_t Id = Record[Slot++];
7071   WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id];
7072 
7073   Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]);
7074   Wpd.SingleImplName = {Strtab.data() + Record[Slot],
7075                         static_cast<size_t>(Record[Slot + 1])};
7076   Slot += 2;
7077 
7078   uint64_t ResByArgNum = Record[Slot++];
7079   for (uint64_t I = 0; I != ResByArgNum; ++I)
7080     parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd);
7081 }
7082 
7083 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record,
7084                                      StringRef Strtab,
7085                                      ModuleSummaryIndex &TheIndex) {
7086   size_t Slot = 0;
7087   TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary(
7088       {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])});
7089   Slot += 2;
7090 
7091   TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]);
7092   TypeId.TTRes.SizeM1BitWidth = Record[Slot++];
7093   TypeId.TTRes.AlignLog2 = Record[Slot++];
7094   TypeId.TTRes.SizeM1 = Record[Slot++];
7095   TypeId.TTRes.BitMask = Record[Slot++];
7096   TypeId.TTRes.InlineBits = Record[Slot++];
7097 
7098   while (Slot < Record.size())
7099     parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId);
7100 }
7101 
7102 std::vector<FunctionSummary::ParamAccess>
7103 ModuleSummaryIndexBitcodeReader::parseParamAccesses(ArrayRef<uint64_t> Record) {
7104   auto ReadRange = [&]() {
7105     APInt Lower(FunctionSummary::ParamAccess::RangeWidth,
7106                 BitcodeReader::decodeSignRotatedValue(Record.front()));
7107     Record = Record.drop_front();
7108     APInt Upper(FunctionSummary::ParamAccess::RangeWidth,
7109                 BitcodeReader::decodeSignRotatedValue(Record.front()));
7110     Record = Record.drop_front();
7111     ConstantRange Range{Lower, Upper};
7112     assert(!Range.isFullSet());
7113     assert(!Range.isUpperSignWrapped());
7114     return Range;
7115   };
7116 
7117   std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
7118   while (!Record.empty()) {
7119     PendingParamAccesses.emplace_back();
7120     FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back();
7121     ParamAccess.ParamNo = Record.front();
7122     Record = Record.drop_front();
7123     ParamAccess.Use = ReadRange();
7124     ParamAccess.Calls.resize(Record.front());
7125     Record = Record.drop_front();
7126     for (auto &Call : ParamAccess.Calls) {
7127       Call.ParamNo = Record.front();
7128       Record = Record.drop_front();
7129       Call.Callee = std::get<0>(getValueInfoFromValueId(Record.front()));
7130       Record = Record.drop_front();
7131       Call.Offsets = ReadRange();
7132     }
7133   }
7134   return PendingParamAccesses;
7135 }
7136 
7137 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo(
7138     ArrayRef<uint64_t> Record, size_t &Slot,
7139     TypeIdCompatibleVtableInfo &TypeId) {
7140   uint64_t Offset = Record[Slot++];
7141   ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[Slot++]));
7142   TypeId.push_back({Offset, Callee});
7143 }
7144 
7145 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord(
7146     ArrayRef<uint64_t> Record) {
7147   size_t Slot = 0;
7148   TypeIdCompatibleVtableInfo &TypeId =
7149       TheIndex.getOrInsertTypeIdCompatibleVtableSummary(
7150           {Strtab.data() + Record[Slot],
7151            static_cast<size_t>(Record[Slot + 1])});
7152   Slot += 2;
7153 
7154   while (Slot < Record.size())
7155     parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId);
7156 }
7157 
7158 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt,
7159                            unsigned WOCnt) {
7160   // Readonly and writeonly refs are in the end of the refs list.
7161   assert(ROCnt + WOCnt <= Refs.size());
7162   unsigned FirstWORef = Refs.size() - WOCnt;
7163   unsigned RefNo = FirstWORef - ROCnt;
7164   for (; RefNo < FirstWORef; ++RefNo)
7165     Refs[RefNo].setReadOnly();
7166   for (; RefNo < Refs.size(); ++RefNo)
7167     Refs[RefNo].setWriteOnly();
7168 }
7169 
7170 // Eagerly parse the entire summary block. This populates the GlobalValueSummary
7171 // objects in the index.
7172 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) {
7173   if (Error Err = Stream.EnterSubBlock(ID))
7174     return Err;
7175   SmallVector<uint64_t, 64> Record;
7176 
7177   // Parse version
7178   {
7179     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
7180     if (!MaybeEntry)
7181       return MaybeEntry.takeError();
7182     BitstreamEntry Entry = MaybeEntry.get();
7183 
7184     if (Entry.Kind != BitstreamEntry::Record)
7185       return error("Invalid Summary Block: record for version expected");
7186     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
7187     if (!MaybeRecord)
7188       return MaybeRecord.takeError();
7189     if (MaybeRecord.get() != bitc::FS_VERSION)
7190       return error("Invalid Summary Block: version expected");
7191   }
7192   const uint64_t Version = Record[0];
7193   const bool IsOldProfileFormat = Version == 1;
7194   if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion)
7195     return error("Invalid summary version " + Twine(Version) +
7196                  ". Version should be in the range [1-" +
7197                  Twine(ModuleSummaryIndex::BitcodeSummaryVersion) +
7198                  "].");
7199   Record.clear();
7200 
7201   // Keep around the last seen summary to be used when we see an optional
7202   // "OriginalName" attachement.
7203   GlobalValueSummary *LastSeenSummary = nullptr;
7204   GlobalValue::GUID LastSeenGUID = 0;
7205 
7206   // We can expect to see any number of type ID information records before
7207   // each function summary records; these variables store the information
7208   // collected so far so that it can be used to create the summary object.
7209   std::vector<GlobalValue::GUID> PendingTypeTests;
7210   std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls,
7211       PendingTypeCheckedLoadVCalls;
7212   std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls,
7213       PendingTypeCheckedLoadConstVCalls;
7214   std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
7215 
7216   std::vector<CallsiteInfo> PendingCallsites;
7217   std::vector<AllocInfo> PendingAllocs;
7218 
7219   while (true) {
7220     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
7221     if (!MaybeEntry)
7222       return MaybeEntry.takeError();
7223     BitstreamEntry Entry = MaybeEntry.get();
7224 
7225     switch (Entry.Kind) {
7226     case BitstreamEntry::SubBlock: // Handled for us already.
7227     case BitstreamEntry::Error:
7228       return error("Malformed block");
7229     case BitstreamEntry::EndBlock:
7230       return Error::success();
7231     case BitstreamEntry::Record:
7232       // The interesting case.
7233       break;
7234     }
7235 
7236     // Read a record. The record format depends on whether this
7237     // is a per-module index or a combined index file. In the per-module
7238     // case the records contain the associated value's ID for correlation
7239     // with VST entries. In the combined index the correlation is done
7240     // via the bitcode offset of the summary records (which were saved
7241     // in the combined index VST entries). The records also contain
7242     // information used for ThinLTO renaming and importing.
7243     Record.clear();
7244     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
7245     if (!MaybeBitCode)
7246       return MaybeBitCode.takeError();
7247     switch (unsigned BitCode = MaybeBitCode.get()) {
7248     default: // Default behavior: ignore.
7249       break;
7250     case bitc::FS_FLAGS: {  // [flags]
7251       TheIndex.setFlags(Record[0]);
7252       break;
7253     }
7254     case bitc::FS_VALUE_GUID: { // [valueid, refguid]
7255       uint64_t ValueID = Record[0];
7256       GlobalValue::GUID RefGUID = Record[1];
7257       ValueIdToValueInfoMap[ValueID] = std::make_tuple(
7258           TheIndex.getOrInsertValueInfo(RefGUID), RefGUID, RefGUID);
7259       break;
7260     }
7261     // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs,
7262     //                numrefs x valueid, n x (valueid)]
7263     // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs,
7264     //                        numrefs x valueid,
7265     //                        n x (valueid, hotness)]
7266     // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs,
7267     //                      numrefs x valueid,
7268     //                      n x (valueid, relblockfreq)]
7269     case bitc::FS_PERMODULE:
7270     case bitc::FS_PERMODULE_RELBF:
7271     case bitc::FS_PERMODULE_PROFILE: {
7272       unsigned ValueID = Record[0];
7273       uint64_t RawFlags = Record[1];
7274       unsigned InstCount = Record[2];
7275       uint64_t RawFunFlags = 0;
7276       unsigned NumRefs = Record[3];
7277       unsigned NumRORefs = 0, NumWORefs = 0;
7278       int RefListStartIndex = 4;
7279       if (Version >= 4) {
7280         RawFunFlags = Record[3];
7281         NumRefs = Record[4];
7282         RefListStartIndex = 5;
7283         if (Version >= 5) {
7284           NumRORefs = Record[5];
7285           RefListStartIndex = 6;
7286           if (Version >= 7) {
7287             NumWORefs = Record[6];
7288             RefListStartIndex = 7;
7289           }
7290         }
7291       }
7292 
7293       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7294       // The module path string ref set in the summary must be owned by the
7295       // index's module string table. Since we don't have a module path
7296       // string table section in the per-module index, we create a single
7297       // module path string table entry with an empty (0) ID to take
7298       // ownership.
7299       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
7300       assert(Record.size() >= RefListStartIndex + NumRefs &&
7301              "Record size inconsistent with number of references");
7302       std::vector<ValueInfo> Refs = makeRefList(
7303           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
7304       bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE);
7305       bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF);
7306       std::vector<FunctionSummary::EdgeTy> Calls = makeCallList(
7307           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
7308           IsOldProfileFormat, HasProfile, HasRelBF);
7309       setSpecialRefs(Refs, NumRORefs, NumWORefs);
7310       auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID);
7311       // In order to save memory, only record the memprof summaries if this is
7312       // the prevailing copy of a symbol. The linker doesn't resolve local
7313       // linkage values so don't check whether those are prevailing.
7314       auto LT = (GlobalValue::LinkageTypes)Flags.Linkage;
7315       if (IsPrevailing &&
7316           !GlobalValue::isLocalLinkage(LT) &&
7317           !IsPrevailing(std::get<2>(VIAndOriginalGUID))) {
7318         PendingCallsites.clear();
7319         PendingAllocs.clear();
7320       }
7321       auto FS = std::make_unique<FunctionSummary>(
7322           Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0,
7323           std::move(Refs), std::move(Calls), std::move(PendingTypeTests),
7324           std::move(PendingTypeTestAssumeVCalls),
7325           std::move(PendingTypeCheckedLoadVCalls),
7326           std::move(PendingTypeTestAssumeConstVCalls),
7327           std::move(PendingTypeCheckedLoadConstVCalls),
7328           std::move(PendingParamAccesses), std::move(PendingCallsites),
7329           std::move(PendingAllocs));
7330       FS->setModulePath(getThisModule()->first());
7331       FS->setOriginalName(std::get<1>(VIAndOriginalGUID));
7332       TheIndex.addGlobalValueSummary(std::get<0>(VIAndOriginalGUID),
7333                                      std::move(FS));
7334       break;
7335     }
7336     // FS_ALIAS: [valueid, flags, valueid]
7337     // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as
7338     // they expect all aliasee summaries to be available.
7339     case bitc::FS_ALIAS: {
7340       unsigned ValueID = Record[0];
7341       uint64_t RawFlags = Record[1];
7342       unsigned AliaseeID = Record[2];
7343       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7344       auto AS = std::make_unique<AliasSummary>(Flags);
7345       // The module path string ref set in the summary must be owned by the
7346       // index's module string table. Since we don't have a module path
7347       // string table section in the per-module index, we create a single
7348       // module path string table entry with an empty (0) ID to take
7349       // ownership.
7350       AS->setModulePath(getThisModule()->first());
7351 
7352       auto AliaseeVI = std::get<0>(getValueInfoFromValueId(AliaseeID));
7353       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath);
7354       if (!AliaseeInModule)
7355         return error("Alias expects aliasee summary to be parsed");
7356       AS->setAliasee(AliaseeVI, AliaseeInModule);
7357 
7358       auto GUID = getValueInfoFromValueId(ValueID);
7359       AS->setOriginalName(std::get<1>(GUID));
7360       TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(AS));
7361       break;
7362     }
7363     // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid]
7364     case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: {
7365       unsigned ValueID = Record[0];
7366       uint64_t RawFlags = Record[1];
7367       unsigned RefArrayStart = 2;
7368       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
7369                                       /* WriteOnly */ false,
7370                                       /* Constant */ false,
7371                                       GlobalObject::VCallVisibilityPublic);
7372       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7373       if (Version >= 5) {
7374         GVF = getDecodedGVarFlags(Record[2]);
7375         RefArrayStart = 3;
7376       }
7377       std::vector<ValueInfo> Refs =
7378           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
7379       auto FS =
7380           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
7381       FS->setModulePath(getThisModule()->first());
7382       auto GUID = getValueInfoFromValueId(ValueID);
7383       FS->setOriginalName(std::get<1>(GUID));
7384       TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(FS));
7385       break;
7386     }
7387     // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags,
7388     //                        numrefs, numrefs x valueid,
7389     //                        n x (valueid, offset)]
7390     case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: {
7391       unsigned ValueID = Record[0];
7392       uint64_t RawFlags = Record[1];
7393       GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]);
7394       unsigned NumRefs = Record[3];
7395       unsigned RefListStartIndex = 4;
7396       unsigned VTableListStartIndex = RefListStartIndex + NumRefs;
7397       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7398       std::vector<ValueInfo> Refs = makeRefList(
7399           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
7400       VTableFuncList VTableFuncs;
7401       for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) {
7402         ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[I]));
7403         uint64_t Offset = Record[++I];
7404         VTableFuncs.push_back({Callee, Offset});
7405       }
7406       auto VS =
7407           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
7408       VS->setModulePath(getThisModule()->first());
7409       VS->setVTableFuncs(VTableFuncs);
7410       auto GUID = getValueInfoFromValueId(ValueID);
7411       VS->setOriginalName(std::get<1>(GUID));
7412       TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(VS));
7413       break;
7414     }
7415     // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs,
7416     //               numrefs x valueid, n x (valueid)]
7417     // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs,
7418     //                       numrefs x valueid, n x (valueid, hotness)]
7419     case bitc::FS_COMBINED:
7420     case bitc::FS_COMBINED_PROFILE: {
7421       unsigned ValueID = Record[0];
7422       uint64_t ModuleId = Record[1];
7423       uint64_t RawFlags = Record[2];
7424       unsigned InstCount = Record[3];
7425       uint64_t RawFunFlags = 0;
7426       uint64_t EntryCount = 0;
7427       unsigned NumRefs = Record[4];
7428       unsigned NumRORefs = 0, NumWORefs = 0;
7429       int RefListStartIndex = 5;
7430 
7431       if (Version >= 4) {
7432         RawFunFlags = Record[4];
7433         RefListStartIndex = 6;
7434         size_t NumRefsIndex = 5;
7435         if (Version >= 5) {
7436           unsigned NumRORefsOffset = 1;
7437           RefListStartIndex = 7;
7438           if (Version >= 6) {
7439             NumRefsIndex = 6;
7440             EntryCount = Record[5];
7441             RefListStartIndex = 8;
7442             if (Version >= 7) {
7443               RefListStartIndex = 9;
7444               NumWORefs = Record[8];
7445               NumRORefsOffset = 2;
7446             }
7447           }
7448           NumRORefs = Record[RefListStartIndex - NumRORefsOffset];
7449         }
7450         NumRefs = Record[NumRefsIndex];
7451       }
7452 
7453       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7454       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
7455       assert(Record.size() >= RefListStartIndex + NumRefs &&
7456              "Record size inconsistent with number of references");
7457       std::vector<ValueInfo> Refs = makeRefList(
7458           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
7459       bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE);
7460       std::vector<FunctionSummary::EdgeTy> Edges = makeCallList(
7461           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
7462           IsOldProfileFormat, HasProfile, false);
7463       ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID));
7464       setSpecialRefs(Refs, NumRORefs, NumWORefs);
7465       auto FS = std::make_unique<FunctionSummary>(
7466           Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount,
7467           std::move(Refs), std::move(Edges), std::move(PendingTypeTests),
7468           std::move(PendingTypeTestAssumeVCalls),
7469           std::move(PendingTypeCheckedLoadVCalls),
7470           std::move(PendingTypeTestAssumeConstVCalls),
7471           std::move(PendingTypeCheckedLoadConstVCalls),
7472           std::move(PendingParamAccesses), std::move(PendingCallsites),
7473           std::move(PendingAllocs));
7474       LastSeenSummary = FS.get();
7475       LastSeenGUID = VI.getGUID();
7476       FS->setModulePath(ModuleIdMap[ModuleId]);
7477       TheIndex.addGlobalValueSummary(VI, std::move(FS));
7478       break;
7479     }
7480     // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid]
7481     // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as
7482     // they expect all aliasee summaries to be available.
7483     case bitc::FS_COMBINED_ALIAS: {
7484       unsigned ValueID = Record[0];
7485       uint64_t ModuleId = Record[1];
7486       uint64_t RawFlags = Record[2];
7487       unsigned AliaseeValueId = Record[3];
7488       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7489       auto AS = std::make_unique<AliasSummary>(Flags);
7490       LastSeenSummary = AS.get();
7491       AS->setModulePath(ModuleIdMap[ModuleId]);
7492 
7493       auto AliaseeVI = std::get<0>(getValueInfoFromValueId(AliaseeValueId));
7494       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath());
7495       AS->setAliasee(AliaseeVI, AliaseeInModule);
7496 
7497       ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID));
7498       LastSeenGUID = VI.getGUID();
7499       TheIndex.addGlobalValueSummary(VI, std::move(AS));
7500       break;
7501     }
7502     // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid]
7503     case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: {
7504       unsigned ValueID = Record[0];
7505       uint64_t ModuleId = Record[1];
7506       uint64_t RawFlags = Record[2];
7507       unsigned RefArrayStart = 3;
7508       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
7509                                       /* WriteOnly */ false,
7510                                       /* Constant */ false,
7511                                       GlobalObject::VCallVisibilityPublic);
7512       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7513       if (Version >= 5) {
7514         GVF = getDecodedGVarFlags(Record[3]);
7515         RefArrayStart = 4;
7516       }
7517       std::vector<ValueInfo> Refs =
7518           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
7519       auto FS =
7520           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
7521       LastSeenSummary = FS.get();
7522       FS->setModulePath(ModuleIdMap[ModuleId]);
7523       ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID));
7524       LastSeenGUID = VI.getGUID();
7525       TheIndex.addGlobalValueSummary(VI, std::move(FS));
7526       break;
7527     }
7528     // FS_COMBINED_ORIGINAL_NAME: [original_name]
7529     case bitc::FS_COMBINED_ORIGINAL_NAME: {
7530       uint64_t OriginalName = Record[0];
7531       if (!LastSeenSummary)
7532         return error("Name attachment that does not follow a combined record");
7533       LastSeenSummary->setOriginalName(OriginalName);
7534       TheIndex.addOriginalName(LastSeenGUID, OriginalName);
7535       // Reset the LastSeenSummary
7536       LastSeenSummary = nullptr;
7537       LastSeenGUID = 0;
7538       break;
7539     }
7540     case bitc::FS_TYPE_TESTS:
7541       assert(PendingTypeTests.empty());
7542       llvm::append_range(PendingTypeTests, Record);
7543       break;
7544 
7545     case bitc::FS_TYPE_TEST_ASSUME_VCALLS:
7546       assert(PendingTypeTestAssumeVCalls.empty());
7547       for (unsigned I = 0; I != Record.size(); I += 2)
7548         PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]});
7549       break;
7550 
7551     case bitc::FS_TYPE_CHECKED_LOAD_VCALLS:
7552       assert(PendingTypeCheckedLoadVCalls.empty());
7553       for (unsigned I = 0; I != Record.size(); I += 2)
7554         PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]});
7555       break;
7556 
7557     case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL:
7558       PendingTypeTestAssumeConstVCalls.push_back(
7559           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
7560       break;
7561 
7562     case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL:
7563       PendingTypeCheckedLoadConstVCalls.push_back(
7564           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
7565       break;
7566 
7567     case bitc::FS_CFI_FUNCTION_DEFS: {
7568       std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs();
7569       for (unsigned I = 0; I != Record.size(); I += 2)
7570         CfiFunctionDefs.insert(
7571             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
7572       break;
7573     }
7574 
7575     case bitc::FS_CFI_FUNCTION_DECLS: {
7576       std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls();
7577       for (unsigned I = 0; I != Record.size(); I += 2)
7578         CfiFunctionDecls.insert(
7579             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
7580       break;
7581     }
7582 
7583     case bitc::FS_TYPE_ID:
7584       parseTypeIdSummaryRecord(Record, Strtab, TheIndex);
7585       break;
7586 
7587     case bitc::FS_TYPE_ID_METADATA:
7588       parseTypeIdCompatibleVtableSummaryRecord(Record);
7589       break;
7590 
7591     case bitc::FS_BLOCK_COUNT:
7592       TheIndex.addBlockCount(Record[0]);
7593       break;
7594 
7595     case bitc::FS_PARAM_ACCESS: {
7596       PendingParamAccesses = parseParamAccesses(Record);
7597       break;
7598     }
7599 
7600     case bitc::FS_STACK_IDS: { // [n x stackid]
7601       // Save stack ids in the reader to consult when adding stack ids from the
7602       // lists in the stack node and alloc node entries.
7603       StackIds = ArrayRef<uint64_t>(Record);
7604       break;
7605     }
7606 
7607     case bitc::FS_PERMODULE_CALLSITE_INFO: {
7608       unsigned ValueID = Record[0];
7609       SmallVector<unsigned> StackIdList;
7610       for (auto R = Record.begin() + 1; R != Record.end(); R++) {
7611         assert(*R < StackIds.size());
7612         StackIdList.push_back(TheIndex.addOrGetStackIdIndex(StackIds[*R]));
7613       }
7614       ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID));
7615       PendingCallsites.push_back(CallsiteInfo({VI, std::move(StackIdList)}));
7616       break;
7617     }
7618 
7619     case bitc::FS_COMBINED_CALLSITE_INFO: {
7620       auto RecordIter = Record.begin();
7621       unsigned ValueID = *RecordIter++;
7622       unsigned NumStackIds = *RecordIter++;
7623       unsigned NumVersions = *RecordIter++;
7624       assert(Record.size() == 3 + NumStackIds + NumVersions);
7625       SmallVector<unsigned> StackIdList;
7626       for (unsigned J = 0; J < NumStackIds; J++) {
7627         assert(*RecordIter < StackIds.size());
7628         StackIdList.push_back(
7629             TheIndex.addOrGetStackIdIndex(StackIds[*RecordIter++]));
7630       }
7631       SmallVector<unsigned> Versions;
7632       for (unsigned J = 0; J < NumVersions; J++)
7633         Versions.push_back(*RecordIter++);
7634       ValueInfo VI = std::get<0>(
7635           getValueInfoFromValueId</*AllowNullValueInfo*/ true>(ValueID));
7636       PendingCallsites.push_back(
7637           CallsiteInfo({VI, std::move(Versions), std::move(StackIdList)}));
7638       break;
7639     }
7640 
7641     case bitc::FS_PERMODULE_ALLOC_INFO: {
7642       unsigned I = 0;
7643       std::vector<MIBInfo> MIBs;
7644       while (I < Record.size()) {
7645         assert(Record.size() - I >= 2);
7646         AllocationType AllocType = (AllocationType)Record[I++];
7647         unsigned NumStackEntries = Record[I++];
7648         assert(Record.size() - I >= NumStackEntries);
7649         SmallVector<unsigned> StackIdList;
7650         for (unsigned J = 0; J < NumStackEntries; J++) {
7651           assert(Record[I] < StackIds.size());
7652           StackIdList.push_back(
7653               TheIndex.addOrGetStackIdIndex(StackIds[Record[I++]]));
7654         }
7655         MIBs.push_back(MIBInfo(AllocType, std::move(StackIdList)));
7656       }
7657       PendingAllocs.push_back(AllocInfo(std::move(MIBs)));
7658       break;
7659     }
7660 
7661     case bitc::FS_COMBINED_ALLOC_INFO: {
7662       unsigned I = 0;
7663       std::vector<MIBInfo> MIBs;
7664       unsigned NumMIBs = Record[I++];
7665       unsigned NumVersions = Record[I++];
7666       unsigned MIBsRead = 0;
7667       while (MIBsRead++ < NumMIBs) {
7668         assert(Record.size() - I >= 2);
7669         AllocationType AllocType = (AllocationType)Record[I++];
7670         unsigned NumStackEntries = Record[I++];
7671         assert(Record.size() - I >= NumStackEntries);
7672         SmallVector<unsigned> StackIdList;
7673         for (unsigned J = 0; J < NumStackEntries; J++) {
7674           assert(Record[I] < StackIds.size());
7675           StackIdList.push_back(
7676               TheIndex.addOrGetStackIdIndex(StackIds[Record[I++]]));
7677         }
7678         MIBs.push_back(MIBInfo(AllocType, std::move(StackIdList)));
7679       }
7680       assert(Record.size() - I >= NumVersions);
7681       SmallVector<uint8_t> Versions;
7682       for (unsigned J = 0; J < NumVersions; J++)
7683         Versions.push_back(Record[I++]);
7684       PendingAllocs.push_back(
7685           AllocInfo(std::move(Versions), std::move(MIBs)));
7686       break;
7687     }
7688     }
7689   }
7690   llvm_unreachable("Exit infinite loop");
7691 }
7692 
7693 // Parse the  module string table block into the Index.
7694 // This populates the ModulePathStringTable map in the index.
7695 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() {
7696   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID))
7697     return Err;
7698 
7699   SmallVector<uint64_t, 64> Record;
7700 
7701   SmallString<128> ModulePath;
7702   ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr;
7703 
7704   while (true) {
7705     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
7706     if (!MaybeEntry)
7707       return MaybeEntry.takeError();
7708     BitstreamEntry Entry = MaybeEntry.get();
7709 
7710     switch (Entry.Kind) {
7711     case BitstreamEntry::SubBlock: // Handled for us already.
7712     case BitstreamEntry::Error:
7713       return error("Malformed block");
7714     case BitstreamEntry::EndBlock:
7715       return Error::success();
7716     case BitstreamEntry::Record:
7717       // The interesting case.
7718       break;
7719     }
7720 
7721     Record.clear();
7722     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
7723     if (!MaybeRecord)
7724       return MaybeRecord.takeError();
7725     switch (MaybeRecord.get()) {
7726     default: // Default behavior: ignore.
7727       break;
7728     case bitc::MST_CODE_ENTRY: {
7729       // MST_ENTRY: [modid, namechar x N]
7730       uint64_t ModuleId = Record[0];
7731 
7732       if (convertToString(Record, 1, ModulePath))
7733         return error("Invalid record");
7734 
7735       LastSeenModule = TheIndex.addModule(ModulePath, ModuleId);
7736       ModuleIdMap[ModuleId] = LastSeenModule->first();
7737 
7738       ModulePath.clear();
7739       break;
7740     }
7741     /// MST_CODE_HASH: [5*i32]
7742     case bitc::MST_CODE_HASH: {
7743       if (Record.size() != 5)
7744         return error("Invalid hash length " + Twine(Record.size()).str());
7745       if (!LastSeenModule)
7746         return error("Invalid hash that does not follow a module path");
7747       int Pos = 0;
7748       for (auto &Val : Record) {
7749         assert(!(Val >> 32) && "Unexpected high bits set");
7750         LastSeenModule->second.second[Pos++] = Val;
7751       }
7752       // Reset LastSeenModule to avoid overriding the hash unexpectedly.
7753       LastSeenModule = nullptr;
7754       break;
7755     }
7756     }
7757   }
7758   llvm_unreachable("Exit infinite loop");
7759 }
7760 
7761 namespace {
7762 
7763 // FIXME: This class is only here to support the transition to llvm::Error. It
7764 // will be removed once this transition is complete. Clients should prefer to
7765 // deal with the Error value directly, rather than converting to error_code.
7766 class BitcodeErrorCategoryType : public std::error_category {
7767   const char *name() const noexcept override {
7768     return "llvm.bitcode";
7769   }
7770 
7771   std::string message(int IE) const override {
7772     BitcodeError E = static_cast<BitcodeError>(IE);
7773     switch (E) {
7774     case BitcodeError::CorruptedBitcode:
7775       return "Corrupted bitcode";
7776     }
7777     llvm_unreachable("Unknown error type!");
7778   }
7779 };
7780 
7781 } // end anonymous namespace
7782 
7783 const std::error_category &llvm::BitcodeErrorCategory() {
7784   static BitcodeErrorCategoryType ErrorCategory;
7785   return ErrorCategory;
7786 }
7787 
7788 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream,
7789                                             unsigned Block, unsigned RecordID) {
7790   if (Error Err = Stream.EnterSubBlock(Block))
7791     return std::move(Err);
7792 
7793   StringRef Strtab;
7794   while (true) {
7795     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
7796     if (!MaybeEntry)
7797       return MaybeEntry.takeError();
7798     llvm::BitstreamEntry Entry = MaybeEntry.get();
7799 
7800     switch (Entry.Kind) {
7801     case BitstreamEntry::EndBlock:
7802       return Strtab;
7803 
7804     case BitstreamEntry::Error:
7805       return error("Malformed block");
7806 
7807     case BitstreamEntry::SubBlock:
7808       if (Error Err = Stream.SkipBlock())
7809         return std::move(Err);
7810       break;
7811 
7812     case BitstreamEntry::Record:
7813       StringRef Blob;
7814       SmallVector<uint64_t, 1> Record;
7815       Expected<unsigned> MaybeRecord =
7816           Stream.readRecord(Entry.ID, Record, &Blob);
7817       if (!MaybeRecord)
7818         return MaybeRecord.takeError();
7819       if (MaybeRecord.get() == RecordID)
7820         Strtab = Blob;
7821       break;
7822     }
7823   }
7824 }
7825 
7826 //===----------------------------------------------------------------------===//
7827 // External interface
7828 //===----------------------------------------------------------------------===//
7829 
7830 Expected<std::vector<BitcodeModule>>
7831 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) {
7832   auto FOrErr = getBitcodeFileContents(Buffer);
7833   if (!FOrErr)
7834     return FOrErr.takeError();
7835   return std::move(FOrErr->Mods);
7836 }
7837 
7838 Expected<BitcodeFileContents>
7839 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) {
7840   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
7841   if (!StreamOrErr)
7842     return StreamOrErr.takeError();
7843   BitstreamCursor &Stream = *StreamOrErr;
7844 
7845   BitcodeFileContents F;
7846   while (true) {
7847     uint64_t BCBegin = Stream.getCurrentByteNo();
7848 
7849     // We may be consuming bitcode from a client that leaves garbage at the end
7850     // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to
7851     // the end that there cannot possibly be another module, stop looking.
7852     if (BCBegin + 8 >= Stream.getBitcodeBytes().size())
7853       return F;
7854 
7855     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
7856     if (!MaybeEntry)
7857       return MaybeEntry.takeError();
7858     llvm::BitstreamEntry Entry = MaybeEntry.get();
7859 
7860     switch (Entry.Kind) {
7861     case BitstreamEntry::EndBlock:
7862     case BitstreamEntry::Error:
7863       return error("Malformed block");
7864 
7865     case BitstreamEntry::SubBlock: {
7866       uint64_t IdentificationBit = -1ull;
7867       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
7868         IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8;
7869         if (Error Err = Stream.SkipBlock())
7870           return std::move(Err);
7871 
7872         {
7873           Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
7874           if (!MaybeEntry)
7875             return MaybeEntry.takeError();
7876           Entry = MaybeEntry.get();
7877         }
7878 
7879         if (Entry.Kind != BitstreamEntry::SubBlock ||
7880             Entry.ID != bitc::MODULE_BLOCK_ID)
7881           return error("Malformed block");
7882       }
7883 
7884       if (Entry.ID == bitc::MODULE_BLOCK_ID) {
7885         uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8;
7886         if (Error Err = Stream.SkipBlock())
7887           return std::move(Err);
7888 
7889         F.Mods.push_back({Stream.getBitcodeBytes().slice(
7890                               BCBegin, Stream.getCurrentByteNo() - BCBegin),
7891                           Buffer.getBufferIdentifier(), IdentificationBit,
7892                           ModuleBit});
7893         continue;
7894       }
7895 
7896       if (Entry.ID == bitc::STRTAB_BLOCK_ID) {
7897         Expected<StringRef> Strtab =
7898             readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB);
7899         if (!Strtab)
7900           return Strtab.takeError();
7901         // This string table is used by every preceding bitcode module that does
7902         // not have its own string table. A bitcode file may have multiple
7903         // string tables if it was created by binary concatenation, for example
7904         // with "llvm-cat -b".
7905         for (BitcodeModule &I : llvm::reverse(F.Mods)) {
7906           if (!I.Strtab.empty())
7907             break;
7908           I.Strtab = *Strtab;
7909         }
7910         // Similarly, the string table is used by every preceding symbol table;
7911         // normally there will be just one unless the bitcode file was created
7912         // by binary concatenation.
7913         if (!F.Symtab.empty() && F.StrtabForSymtab.empty())
7914           F.StrtabForSymtab = *Strtab;
7915         continue;
7916       }
7917 
7918       if (Entry.ID == bitc::SYMTAB_BLOCK_ID) {
7919         Expected<StringRef> SymtabOrErr =
7920             readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB);
7921         if (!SymtabOrErr)
7922           return SymtabOrErr.takeError();
7923 
7924         // We can expect the bitcode file to have multiple symbol tables if it
7925         // was created by binary concatenation. In that case we silently
7926         // ignore any subsequent symbol tables, which is fine because this is a
7927         // low level function. The client is expected to notice that the number
7928         // of modules in the symbol table does not match the number of modules
7929         // in the input file and regenerate the symbol table.
7930         if (F.Symtab.empty())
7931           F.Symtab = *SymtabOrErr;
7932         continue;
7933       }
7934 
7935       if (Error Err = Stream.SkipBlock())
7936         return std::move(Err);
7937       continue;
7938     }
7939     case BitstreamEntry::Record:
7940       if (Error E = Stream.skipRecord(Entry.ID).takeError())
7941         return std::move(E);
7942       continue;
7943     }
7944   }
7945 }
7946 
7947 /// Get a lazy one-at-time loading module from bitcode.
7948 ///
7949 /// This isn't always used in a lazy context.  In particular, it's also used by
7950 /// \a parseModule().  If this is truly lazy, then we need to eagerly pull
7951 /// in forward-referenced functions from block address references.
7952 ///
7953 /// \param[in] MaterializeAll Set to \c true if we should materialize
7954 /// everything.
7955 Expected<std::unique_ptr<Module>>
7956 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll,
7957                              bool ShouldLazyLoadMetadata, bool IsImporting,
7958                              ParserCallbacks Callbacks) {
7959   BitstreamCursor Stream(Buffer);
7960 
7961   std::string ProducerIdentification;
7962   if (IdentificationBit != -1ull) {
7963     if (Error JumpFailed = Stream.JumpToBit(IdentificationBit))
7964       return std::move(JumpFailed);
7965     if (Error E =
7966             readIdentificationBlock(Stream).moveInto(ProducerIdentification))
7967       return std::move(E);
7968   }
7969 
7970   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
7971     return std::move(JumpFailed);
7972   auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification,
7973                               Context);
7974 
7975   std::unique_ptr<Module> M =
7976       std::make_unique<Module>(ModuleIdentifier, Context);
7977   M->setMaterializer(R);
7978 
7979   // Delay parsing Metadata if ShouldLazyLoadMetadata is true.
7980   if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata,
7981                                       IsImporting, Callbacks))
7982     return std::move(Err);
7983 
7984   if (MaterializeAll) {
7985     // Read in the entire module, and destroy the BitcodeReader.
7986     if (Error Err = M->materializeAll())
7987       return std::move(Err);
7988   } else {
7989     // Resolve forward references from blockaddresses.
7990     if (Error Err = R->materializeForwardReferencedFunctions())
7991       return std::move(Err);
7992   }
7993   return std::move(M);
7994 }
7995 
7996 Expected<std::unique_ptr<Module>>
7997 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata,
7998                              bool IsImporting, ParserCallbacks Callbacks) {
7999   return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting,
8000                        Callbacks);
8001 }
8002 
8003 // Parse the specified bitcode buffer and merge the index into CombinedIndex.
8004 // We don't use ModuleIdentifier here because the client may need to control the
8005 // module path used in the combined summary (e.g. when reading summaries for
8006 // regular LTO modules).
8007 Error BitcodeModule::readSummary(
8008     ModuleSummaryIndex &CombinedIndex, StringRef ModulePath, uint64_t ModuleId,
8009     std::function<bool(GlobalValue::GUID)> IsPrevailing) {
8010   BitstreamCursor Stream(Buffer);
8011   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
8012     return JumpFailed;
8013 
8014   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex,
8015                                     ModulePath, ModuleId, IsPrevailing);
8016   return R.parseModule();
8017 }
8018 
8019 // Parse the specified bitcode buffer, returning the function info index.
8020 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() {
8021   BitstreamCursor Stream(Buffer);
8022   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
8023     return std::move(JumpFailed);
8024 
8025   auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false);
8026   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index,
8027                                     ModuleIdentifier, 0);
8028 
8029   if (Error Err = R.parseModule())
8030     return std::move(Err);
8031 
8032   return std::move(Index);
8033 }
8034 
8035 static Expected<bool> getEnableSplitLTOUnitFlag(BitstreamCursor &Stream,
8036                                                 unsigned ID) {
8037   if (Error Err = Stream.EnterSubBlock(ID))
8038     return std::move(Err);
8039   SmallVector<uint64_t, 64> Record;
8040 
8041   while (true) {
8042     BitstreamEntry Entry;
8043     if (Error E = Stream.advanceSkippingSubblocks().moveInto(Entry))
8044       return std::move(E);
8045 
8046     switch (Entry.Kind) {
8047     case BitstreamEntry::SubBlock: // Handled for us already.
8048     case BitstreamEntry::Error:
8049       return error("Malformed block");
8050     case BitstreamEntry::EndBlock:
8051       // If no flags record found, conservatively return true to mimic
8052       // behavior before this flag was added.
8053       return true;
8054     case BitstreamEntry::Record:
8055       // The interesting case.
8056       break;
8057     }
8058 
8059     // Look for the FS_FLAGS record.
8060     Record.clear();
8061     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
8062     if (!MaybeBitCode)
8063       return MaybeBitCode.takeError();
8064     switch (MaybeBitCode.get()) {
8065     default: // Default behavior: ignore.
8066       break;
8067     case bitc::FS_FLAGS: { // [flags]
8068       uint64_t Flags = Record[0];
8069       // Scan flags.
8070       assert(Flags <= 0x1ff && "Unexpected bits in flag");
8071 
8072       return Flags & 0x8;
8073     }
8074     }
8075   }
8076   llvm_unreachable("Exit infinite loop");
8077 }
8078 
8079 // Check if the given bitcode buffer contains a global value summary block.
8080 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() {
8081   BitstreamCursor Stream(Buffer);
8082   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
8083     return std::move(JumpFailed);
8084 
8085   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
8086     return std::move(Err);
8087 
8088   while (true) {
8089     llvm::BitstreamEntry Entry;
8090     if (Error E = Stream.advance().moveInto(Entry))
8091       return std::move(E);
8092 
8093     switch (Entry.Kind) {
8094     case BitstreamEntry::Error:
8095       return error("Malformed block");
8096     case BitstreamEntry::EndBlock:
8097       return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false,
8098                             /*EnableSplitLTOUnit=*/false};
8099 
8100     case BitstreamEntry::SubBlock:
8101       if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) {
8102         Expected<bool> EnableSplitLTOUnit =
8103             getEnableSplitLTOUnitFlag(Stream, Entry.ID);
8104         if (!EnableSplitLTOUnit)
8105           return EnableSplitLTOUnit.takeError();
8106         return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true,
8107                               *EnableSplitLTOUnit};
8108       }
8109 
8110       if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) {
8111         Expected<bool> EnableSplitLTOUnit =
8112             getEnableSplitLTOUnitFlag(Stream, Entry.ID);
8113         if (!EnableSplitLTOUnit)
8114           return EnableSplitLTOUnit.takeError();
8115         return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true,
8116                               *EnableSplitLTOUnit};
8117       }
8118 
8119       // Ignore other sub-blocks.
8120       if (Error Err = Stream.SkipBlock())
8121         return std::move(Err);
8122       continue;
8123 
8124     case BitstreamEntry::Record:
8125       if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID))
8126         continue;
8127       else
8128         return StreamFailed.takeError();
8129     }
8130   }
8131 }
8132 
8133 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) {
8134   Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer);
8135   if (!MsOrErr)
8136     return MsOrErr.takeError();
8137 
8138   if (MsOrErr->size() != 1)
8139     return error("Expected a single module");
8140 
8141   return (*MsOrErr)[0];
8142 }
8143 
8144 Expected<std::unique_ptr<Module>>
8145 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context,
8146                            bool ShouldLazyLoadMetadata, bool IsImporting,
8147                            ParserCallbacks Callbacks) {
8148   Expected<BitcodeModule> BM = getSingleModule(Buffer);
8149   if (!BM)
8150     return BM.takeError();
8151 
8152   return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting,
8153                            Callbacks);
8154 }
8155 
8156 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule(
8157     std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context,
8158     bool ShouldLazyLoadMetadata, bool IsImporting, ParserCallbacks Callbacks) {
8159   auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata,
8160                                      IsImporting, Callbacks);
8161   if (MOrErr)
8162     (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer));
8163   return MOrErr;
8164 }
8165 
8166 Expected<std::unique_ptr<Module>>
8167 BitcodeModule::parseModule(LLVMContext &Context, ParserCallbacks Callbacks) {
8168   return getModuleImpl(Context, true, false, false, Callbacks);
8169   // TODO: Restore the use-lists to the in-memory state when the bitcode was
8170   // written.  We must defer until the Module has been fully materialized.
8171 }
8172 
8173 Expected<std::unique_ptr<Module>>
8174 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context,
8175                        ParserCallbacks Callbacks) {
8176   Expected<BitcodeModule> BM = getSingleModule(Buffer);
8177   if (!BM)
8178     return BM.takeError();
8179 
8180   return BM->parseModule(Context, Callbacks);
8181 }
8182 
8183 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) {
8184   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
8185   if (!StreamOrErr)
8186     return StreamOrErr.takeError();
8187 
8188   return readTriple(*StreamOrErr);
8189 }
8190 
8191 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) {
8192   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
8193   if (!StreamOrErr)
8194     return StreamOrErr.takeError();
8195 
8196   return hasObjCCategory(*StreamOrErr);
8197 }
8198 
8199 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) {
8200   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
8201   if (!StreamOrErr)
8202     return StreamOrErr.takeError();
8203 
8204   return readIdentificationCode(*StreamOrErr);
8205 }
8206 
8207 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer,
8208                                    ModuleSummaryIndex &CombinedIndex,
8209                                    uint64_t ModuleId) {
8210   Expected<BitcodeModule> BM = getSingleModule(Buffer);
8211   if (!BM)
8212     return BM.takeError();
8213 
8214   return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId);
8215 }
8216 
8217 Expected<std::unique_ptr<ModuleSummaryIndex>>
8218 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) {
8219   Expected<BitcodeModule> BM = getSingleModule(Buffer);
8220   if (!BM)
8221     return BM.takeError();
8222 
8223   return BM->getSummary();
8224 }
8225 
8226 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) {
8227   Expected<BitcodeModule> BM = getSingleModule(Buffer);
8228   if (!BM)
8229     return BM.takeError();
8230 
8231   return BM->getLTOInfo();
8232 }
8233 
8234 Expected<std::unique_ptr<ModuleSummaryIndex>>
8235 llvm::getModuleSummaryIndexForFile(StringRef Path,
8236                                    bool IgnoreEmptyThinLTOIndexFile) {
8237   ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr =
8238       MemoryBuffer::getFileOrSTDIN(Path);
8239   if (!FileOrErr)
8240     return errorCodeToError(FileOrErr.getError());
8241   if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize())
8242     return nullptr;
8243   return getModuleSummaryIndex(**FileOrErr);
8244 }
8245