1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Bitcode/BitcodeReader.h" 10 #include "MetadataLoader.h" 11 #include "ValueList.h" 12 #include "llvm/ADT/APFloat.h" 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallString.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/ADT/StringRef.h" 20 #include "llvm/ADT/Twine.h" 21 #include "llvm/Bitcode/BitcodeCommon.h" 22 #include "llvm/Bitcode/LLVMBitCodes.h" 23 #include "llvm/Bitstream/BitstreamReader.h" 24 #include "llvm/Config/llvm-config.h" 25 #include "llvm/IR/Argument.h" 26 #include "llvm/IR/Attributes.h" 27 #include "llvm/IR/AutoUpgrade.h" 28 #include "llvm/IR/BasicBlock.h" 29 #include "llvm/IR/CallingConv.h" 30 #include "llvm/IR/Comdat.h" 31 #include "llvm/IR/Constant.h" 32 #include "llvm/IR/Constants.h" 33 #include "llvm/IR/DataLayout.h" 34 #include "llvm/IR/DebugInfo.h" 35 #include "llvm/IR/DebugInfoMetadata.h" 36 #include "llvm/IR/DebugLoc.h" 37 #include "llvm/IR/DerivedTypes.h" 38 #include "llvm/IR/Function.h" 39 #include "llvm/IR/GVMaterializer.h" 40 #include "llvm/IR/GetElementPtrTypeIterator.h" 41 #include "llvm/IR/GlobalAlias.h" 42 #include "llvm/IR/GlobalIFunc.h" 43 #include "llvm/IR/GlobalObject.h" 44 #include "llvm/IR/GlobalValue.h" 45 #include "llvm/IR/GlobalVariable.h" 46 #include "llvm/IR/InlineAsm.h" 47 #include "llvm/IR/InstIterator.h" 48 #include "llvm/IR/InstrTypes.h" 49 #include "llvm/IR/Instruction.h" 50 #include "llvm/IR/Instructions.h" 51 #include "llvm/IR/Intrinsics.h" 52 #include "llvm/IR/IntrinsicsAArch64.h" 53 #include "llvm/IR/IntrinsicsARM.h" 54 #include "llvm/IR/LLVMContext.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/IR/ModuleSummaryIndex.h" 58 #include "llvm/IR/Operator.h" 59 #include "llvm/IR/Type.h" 60 #include "llvm/IR/Value.h" 61 #include "llvm/IR/Verifier.h" 62 #include "llvm/Support/AtomicOrdering.h" 63 #include "llvm/Support/Casting.h" 64 #include "llvm/Support/CommandLine.h" 65 #include "llvm/Support/Compiler.h" 66 #include "llvm/Support/Debug.h" 67 #include "llvm/Support/Error.h" 68 #include "llvm/Support/ErrorHandling.h" 69 #include "llvm/Support/ErrorOr.h" 70 #include "llvm/Support/MathExtras.h" 71 #include "llvm/Support/MemoryBuffer.h" 72 #include "llvm/Support/ModRef.h" 73 #include "llvm/Support/raw_ostream.h" 74 #include "llvm/TargetParser/Triple.h" 75 #include <algorithm> 76 #include <cassert> 77 #include <cstddef> 78 #include <cstdint> 79 #include <deque> 80 #include <map> 81 #include <memory> 82 #include <optional> 83 #include <set> 84 #include <string> 85 #include <system_error> 86 #include <tuple> 87 #include <utility> 88 #include <vector> 89 90 using namespace llvm; 91 92 static cl::opt<bool> PrintSummaryGUIDs( 93 "print-summary-global-ids", cl::init(false), cl::Hidden, 94 cl::desc( 95 "Print the global id for each value when reading the module summary")); 96 97 static cl::opt<bool> ExpandConstantExprs( 98 "expand-constant-exprs", cl::Hidden, 99 cl::desc( 100 "Expand constant expressions to instructions for testing purposes")); 101 102 namespace { 103 104 enum { 105 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 106 }; 107 108 } // end anonymous namespace 109 110 static Error error(const Twine &Message) { 111 return make_error<StringError>( 112 Message, make_error_code(BitcodeError::CorruptedBitcode)); 113 } 114 115 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) { 116 if (!Stream.canSkipToPos(4)) 117 return createStringError(std::errc::illegal_byte_sequence, 118 "file too small to contain bitcode header"); 119 for (unsigned C : {'B', 'C'}) 120 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) { 121 if (Res.get() != C) 122 return createStringError(std::errc::illegal_byte_sequence, 123 "file doesn't start with bitcode header"); 124 } else 125 return Res.takeError(); 126 for (unsigned C : {0x0, 0xC, 0xE, 0xD}) 127 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) { 128 if (Res.get() != C) 129 return createStringError(std::errc::illegal_byte_sequence, 130 "file doesn't start with bitcode header"); 131 } else 132 return Res.takeError(); 133 return Error::success(); 134 } 135 136 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) { 137 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart(); 138 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize(); 139 140 if (Buffer.getBufferSize() & 3) 141 return error("Invalid bitcode signature"); 142 143 // If we have a wrapper header, parse it and ignore the non-bc file contents. 144 // The magic number is 0x0B17C0DE stored in little endian. 145 if (isBitcodeWrapper(BufPtr, BufEnd)) 146 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 147 return error("Invalid bitcode wrapper header"); 148 149 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd)); 150 if (Error Err = hasInvalidBitcodeHeader(Stream)) 151 return std::move(Err); 152 153 return std::move(Stream); 154 } 155 156 /// Convert a string from a record into an std::string, return true on failure. 157 template <typename StrTy> 158 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 159 StrTy &Result) { 160 if (Idx > Record.size()) 161 return true; 162 163 Result.append(Record.begin() + Idx, Record.end()); 164 return false; 165 } 166 167 // Strip all the TBAA attachment for the module. 168 static void stripTBAA(Module *M) { 169 for (auto &F : *M) { 170 if (F.isMaterializable()) 171 continue; 172 for (auto &I : instructions(F)) 173 I.setMetadata(LLVMContext::MD_tbaa, nullptr); 174 } 175 } 176 177 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the 178 /// "epoch" encoded in the bitcode, and return the producer name if any. 179 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) { 180 if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 181 return std::move(Err); 182 183 // Read all the records. 184 SmallVector<uint64_t, 64> Record; 185 186 std::string ProducerIdentification; 187 188 while (true) { 189 BitstreamEntry Entry; 190 if (Error E = Stream.advance().moveInto(Entry)) 191 return std::move(E); 192 193 switch (Entry.Kind) { 194 default: 195 case BitstreamEntry::Error: 196 return error("Malformed block"); 197 case BitstreamEntry::EndBlock: 198 return ProducerIdentification; 199 case BitstreamEntry::Record: 200 // The interesting case. 201 break; 202 } 203 204 // Read a record. 205 Record.clear(); 206 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 207 if (!MaybeBitCode) 208 return MaybeBitCode.takeError(); 209 switch (MaybeBitCode.get()) { 210 default: // Default behavior: reject 211 return error("Invalid value"); 212 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N] 213 convertToString(Record, 0, ProducerIdentification); 214 break; 215 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 216 unsigned epoch = (unsigned)Record[0]; 217 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 218 return error( 219 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 220 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 221 } 222 } 223 } 224 } 225 } 226 227 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) { 228 // We expect a number of well-defined blocks, though we don't necessarily 229 // need to understand them all. 230 while (true) { 231 if (Stream.AtEndOfStream()) 232 return ""; 233 234 BitstreamEntry Entry; 235 if (Error E = Stream.advance().moveInto(Entry)) 236 return std::move(E); 237 238 switch (Entry.Kind) { 239 case BitstreamEntry::EndBlock: 240 case BitstreamEntry::Error: 241 return error("Malformed block"); 242 243 case BitstreamEntry::SubBlock: 244 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) 245 return readIdentificationBlock(Stream); 246 247 // Ignore other sub-blocks. 248 if (Error Err = Stream.SkipBlock()) 249 return std::move(Err); 250 continue; 251 case BitstreamEntry::Record: 252 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 253 return std::move(E); 254 continue; 255 } 256 } 257 } 258 259 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) { 260 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 261 return std::move(Err); 262 263 SmallVector<uint64_t, 64> Record; 264 // Read all the records for this module. 265 266 while (true) { 267 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 268 if (!MaybeEntry) 269 return MaybeEntry.takeError(); 270 BitstreamEntry Entry = MaybeEntry.get(); 271 272 switch (Entry.Kind) { 273 case BitstreamEntry::SubBlock: // Handled for us already. 274 case BitstreamEntry::Error: 275 return error("Malformed block"); 276 case BitstreamEntry::EndBlock: 277 return false; 278 case BitstreamEntry::Record: 279 // The interesting case. 280 break; 281 } 282 283 // Read a record. 284 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 285 if (!MaybeRecord) 286 return MaybeRecord.takeError(); 287 switch (MaybeRecord.get()) { 288 default: 289 break; // Default behavior, ignore unknown content. 290 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 291 std::string S; 292 if (convertToString(Record, 0, S)) 293 return error("Invalid section name record"); 294 // Check for the i386 and other (x86_64, ARM) conventions 295 if (S.find("__DATA,__objc_catlist") != std::string::npos || 296 S.find("__OBJC,__category") != std::string::npos) 297 return true; 298 break; 299 } 300 } 301 Record.clear(); 302 } 303 llvm_unreachable("Exit infinite loop"); 304 } 305 306 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) { 307 // We expect a number of well-defined blocks, though we don't necessarily 308 // need to understand them all. 309 while (true) { 310 BitstreamEntry Entry; 311 if (Error E = Stream.advance().moveInto(Entry)) 312 return std::move(E); 313 314 switch (Entry.Kind) { 315 case BitstreamEntry::Error: 316 return error("Malformed block"); 317 case BitstreamEntry::EndBlock: 318 return false; 319 320 case BitstreamEntry::SubBlock: 321 if (Entry.ID == bitc::MODULE_BLOCK_ID) 322 return hasObjCCategoryInModule(Stream); 323 324 // Ignore other sub-blocks. 325 if (Error Err = Stream.SkipBlock()) 326 return std::move(Err); 327 continue; 328 329 case BitstreamEntry::Record: 330 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 331 return std::move(E); 332 continue; 333 } 334 } 335 } 336 337 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) { 338 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 339 return std::move(Err); 340 341 SmallVector<uint64_t, 64> Record; 342 343 std::string Triple; 344 345 // Read all the records for this module. 346 while (true) { 347 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 348 if (!MaybeEntry) 349 return MaybeEntry.takeError(); 350 BitstreamEntry Entry = MaybeEntry.get(); 351 352 switch (Entry.Kind) { 353 case BitstreamEntry::SubBlock: // Handled for us already. 354 case BitstreamEntry::Error: 355 return error("Malformed block"); 356 case BitstreamEntry::EndBlock: 357 return Triple; 358 case BitstreamEntry::Record: 359 // The interesting case. 360 break; 361 } 362 363 // Read a record. 364 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 365 if (!MaybeRecord) 366 return MaybeRecord.takeError(); 367 switch (MaybeRecord.get()) { 368 default: break; // Default behavior, ignore unknown content. 369 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 370 std::string S; 371 if (convertToString(Record, 0, S)) 372 return error("Invalid triple record"); 373 Triple = S; 374 break; 375 } 376 } 377 Record.clear(); 378 } 379 llvm_unreachable("Exit infinite loop"); 380 } 381 382 static Expected<std::string> readTriple(BitstreamCursor &Stream) { 383 // We expect a number of well-defined blocks, though we don't necessarily 384 // need to understand them all. 385 while (true) { 386 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 387 if (!MaybeEntry) 388 return MaybeEntry.takeError(); 389 BitstreamEntry Entry = MaybeEntry.get(); 390 391 switch (Entry.Kind) { 392 case BitstreamEntry::Error: 393 return error("Malformed block"); 394 case BitstreamEntry::EndBlock: 395 return ""; 396 397 case BitstreamEntry::SubBlock: 398 if (Entry.ID == bitc::MODULE_BLOCK_ID) 399 return readModuleTriple(Stream); 400 401 // Ignore other sub-blocks. 402 if (Error Err = Stream.SkipBlock()) 403 return std::move(Err); 404 continue; 405 406 case BitstreamEntry::Record: 407 if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 408 continue; 409 else 410 return Skipped.takeError(); 411 } 412 } 413 } 414 415 namespace { 416 417 class BitcodeReaderBase { 418 protected: 419 BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab) 420 : Stream(std::move(Stream)), Strtab(Strtab) { 421 this->Stream.setBlockInfo(&BlockInfo); 422 } 423 424 BitstreamBlockInfo BlockInfo; 425 BitstreamCursor Stream; 426 StringRef Strtab; 427 428 /// In version 2 of the bitcode we store names of global values and comdats in 429 /// a string table rather than in the VST. 430 bool UseStrtab = false; 431 432 Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record); 433 434 /// If this module uses a string table, pop the reference to the string table 435 /// and return the referenced string and the rest of the record. Otherwise 436 /// just return the record itself. 437 std::pair<StringRef, ArrayRef<uint64_t>> 438 readNameFromStrtab(ArrayRef<uint64_t> Record); 439 440 Error readBlockInfo(); 441 442 // Contains an arbitrary and optional string identifying the bitcode producer 443 std::string ProducerIdentification; 444 445 Error error(const Twine &Message); 446 }; 447 448 } // end anonymous namespace 449 450 Error BitcodeReaderBase::error(const Twine &Message) { 451 std::string FullMsg = Message.str(); 452 if (!ProducerIdentification.empty()) 453 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " + 454 LLVM_VERSION_STRING "')"; 455 return ::error(FullMsg); 456 } 457 458 Expected<unsigned> 459 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) { 460 if (Record.empty()) 461 return error("Invalid version record"); 462 unsigned ModuleVersion = Record[0]; 463 if (ModuleVersion > 2) 464 return error("Invalid value"); 465 UseStrtab = ModuleVersion >= 2; 466 return ModuleVersion; 467 } 468 469 std::pair<StringRef, ArrayRef<uint64_t>> 470 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) { 471 if (!UseStrtab) 472 return {"", Record}; 473 // Invalid reference. Let the caller complain about the record being empty. 474 if (Record[0] + Record[1] > Strtab.size()) 475 return {"", {}}; 476 return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)}; 477 } 478 479 namespace { 480 481 /// This represents a constant expression or constant aggregate using a custom 482 /// structure internal to the bitcode reader. Later, this structure will be 483 /// expanded by materializeValue() either into a constant expression/aggregate, 484 /// or into an instruction sequence at the point of use. This allows us to 485 /// upgrade bitcode using constant expressions even if this kind of constant 486 /// expression is no longer supported. 487 class BitcodeConstant final : public Value, 488 TrailingObjects<BitcodeConstant, unsigned> { 489 friend TrailingObjects; 490 491 // Value subclass ID: Pick largest possible value to avoid any clashes. 492 static constexpr uint8_t SubclassID = 255; 493 494 public: 495 // Opcodes used for non-expressions. This includes constant aggregates 496 // (struct, array, vector) that might need expansion, as well as non-leaf 497 // constants that don't need expansion (no_cfi, dso_local, blockaddress), 498 // but still go through BitcodeConstant to avoid different uselist orders 499 // between the two cases. 500 static constexpr uint8_t ConstantStructOpcode = 255; 501 static constexpr uint8_t ConstantArrayOpcode = 254; 502 static constexpr uint8_t ConstantVectorOpcode = 253; 503 static constexpr uint8_t NoCFIOpcode = 252; 504 static constexpr uint8_t DSOLocalEquivalentOpcode = 251; 505 static constexpr uint8_t BlockAddressOpcode = 250; 506 static constexpr uint8_t FirstSpecialOpcode = BlockAddressOpcode; 507 508 // Separate struct to make passing different number of parameters to 509 // BitcodeConstant::create() more convenient. 510 struct ExtraInfo { 511 uint8_t Opcode; 512 uint8_t Flags; 513 unsigned Extra; 514 Type *SrcElemTy; 515 516 ExtraInfo(uint8_t Opcode, uint8_t Flags = 0, unsigned Extra = 0, 517 Type *SrcElemTy = nullptr) 518 : Opcode(Opcode), Flags(Flags), Extra(Extra), SrcElemTy(SrcElemTy) {} 519 }; 520 521 uint8_t Opcode; 522 uint8_t Flags; 523 unsigned NumOperands; 524 unsigned Extra; // GEP inrange index or blockaddress BB id. 525 Type *SrcElemTy; // GEP source element type. 526 527 private: 528 BitcodeConstant(Type *Ty, const ExtraInfo &Info, ArrayRef<unsigned> OpIDs) 529 : Value(Ty, SubclassID), Opcode(Info.Opcode), Flags(Info.Flags), 530 NumOperands(OpIDs.size()), Extra(Info.Extra), 531 SrcElemTy(Info.SrcElemTy) { 532 std::uninitialized_copy(OpIDs.begin(), OpIDs.end(), 533 getTrailingObjects<unsigned>()); 534 } 535 536 BitcodeConstant &operator=(const BitcodeConstant &) = delete; 537 538 public: 539 static BitcodeConstant *create(BumpPtrAllocator &A, Type *Ty, 540 const ExtraInfo &Info, 541 ArrayRef<unsigned> OpIDs) { 542 void *Mem = A.Allocate(totalSizeToAlloc<unsigned>(OpIDs.size()), 543 alignof(BitcodeConstant)); 544 return new (Mem) BitcodeConstant(Ty, Info, OpIDs); 545 } 546 547 static bool classof(const Value *V) { return V->getValueID() == SubclassID; } 548 549 ArrayRef<unsigned> getOperandIDs() const { 550 return ArrayRef(getTrailingObjects<unsigned>(), NumOperands); 551 } 552 553 std::optional<unsigned> getInRangeIndex() const { 554 assert(Opcode == Instruction::GetElementPtr); 555 if (Extra == (unsigned)-1) 556 return std::nullopt; 557 return Extra; 558 } 559 560 const char *getOpcodeName() const { 561 return Instruction::getOpcodeName(Opcode); 562 } 563 }; 564 565 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer { 566 LLVMContext &Context; 567 Module *TheModule = nullptr; 568 // Next offset to start scanning for lazy parsing of function bodies. 569 uint64_t NextUnreadBit = 0; 570 // Last function offset found in the VST. 571 uint64_t LastFunctionBlockBit = 0; 572 bool SeenValueSymbolTable = false; 573 uint64_t VSTOffset = 0; 574 575 std::vector<std::string> SectionTable; 576 std::vector<std::string> GCTable; 577 578 std::vector<Type *> TypeList; 579 /// Track type IDs of contained types. Order is the same as the contained 580 /// types of a Type*. This is used during upgrades of typed pointer IR in 581 /// opaque pointer mode. 582 DenseMap<unsigned, SmallVector<unsigned, 1>> ContainedTypeIDs; 583 /// In some cases, we need to create a type ID for a type that was not 584 /// explicitly encoded in the bitcode, or we don't know about at the current 585 /// point. For example, a global may explicitly encode the value type ID, but 586 /// not have a type ID for the pointer to value type, for which we create a 587 /// virtual type ID instead. This map stores the new type ID that was created 588 /// for the given pair of Type and contained type ID. 589 DenseMap<std::pair<Type *, unsigned>, unsigned> VirtualTypeIDs; 590 DenseMap<Function *, unsigned> FunctionTypeIDs; 591 /// Allocator for BitcodeConstants. This should come before ValueList, 592 /// because the ValueList might hold ValueHandles to these constants, so 593 /// ValueList must be destroyed before Alloc. 594 BumpPtrAllocator Alloc; 595 BitcodeReaderValueList ValueList; 596 std::optional<MetadataLoader> MDLoader; 597 std::vector<Comdat *> ComdatList; 598 DenseSet<GlobalObject *> ImplicitComdatObjects; 599 SmallVector<Instruction *, 64> InstructionList; 600 601 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits; 602 std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInits; 603 604 struct FunctionOperandInfo { 605 Function *F; 606 unsigned PersonalityFn; 607 unsigned Prefix; 608 unsigned Prologue; 609 }; 610 std::vector<FunctionOperandInfo> FunctionOperands; 611 612 /// The set of attributes by index. Index zero in the file is for null, and 613 /// is thus not represented here. As such all indices are off by one. 614 std::vector<AttributeList> MAttributes; 615 616 /// The set of attribute groups. 617 std::map<unsigned, AttributeList> MAttributeGroups; 618 619 /// While parsing a function body, this is a list of the basic blocks for the 620 /// function. 621 std::vector<BasicBlock*> FunctionBBs; 622 623 // When reading the module header, this list is populated with functions that 624 // have bodies later in the file. 625 std::vector<Function*> FunctionsWithBodies; 626 627 // When intrinsic functions are encountered which require upgrading they are 628 // stored here with their replacement function. 629 using UpdatedIntrinsicMap = DenseMap<Function *, Function *>; 630 UpdatedIntrinsicMap UpgradedIntrinsics; 631 632 // Several operations happen after the module header has been read, but 633 // before function bodies are processed. This keeps track of whether 634 // we've done this yet. 635 bool SeenFirstFunctionBody = false; 636 637 /// When function bodies are initially scanned, this map contains info about 638 /// where to find deferred function body in the stream. 639 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 640 641 /// When Metadata block is initially scanned when parsing the module, we may 642 /// choose to defer parsing of the metadata. This vector contains info about 643 /// which Metadata blocks are deferred. 644 std::vector<uint64_t> DeferredMetadataInfo; 645 646 /// These are basic blocks forward-referenced by block addresses. They are 647 /// inserted lazily into functions when they're loaded. The basic block ID is 648 /// its index into the vector. 649 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 650 std::deque<Function *> BasicBlockFwdRefQueue; 651 652 /// These are Functions that contain BlockAddresses which refer a different 653 /// Function. When parsing the different Function, queue Functions that refer 654 /// to the different Function. Those Functions must be materialized in order 655 /// to resolve their BlockAddress constants before the different Function 656 /// gets moved into another Module. 657 std::vector<Function *> BackwardRefFunctions; 658 659 /// Indicates that we are using a new encoding for instruction operands where 660 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 661 /// instruction number, for a more compact encoding. Some instruction 662 /// operands are not relative to the instruction ID: basic block numbers, and 663 /// types. Once the old style function blocks have been phased out, we would 664 /// not need this flag. 665 bool UseRelativeIDs = false; 666 667 /// True if all functions will be materialized, negating the need to process 668 /// (e.g.) blockaddress forward references. 669 bool WillMaterializeAllForwardRefs = false; 670 671 bool StripDebugInfo = false; 672 TBAAVerifier TBAAVerifyHelper; 673 674 std::vector<std::string> BundleTags; 675 SmallVector<SyncScope::ID, 8> SSIDs; 676 677 std::optional<ValueTypeCallbackTy> ValueTypeCallback; 678 679 public: 680 BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 681 StringRef ProducerIdentification, LLVMContext &Context); 682 683 Error materializeForwardReferencedFunctions(); 684 685 Error materialize(GlobalValue *GV) override; 686 Error materializeModule() override; 687 std::vector<StructType *> getIdentifiedStructTypes() const override; 688 689 /// Main interface to parsing a bitcode buffer. 690 /// \returns true if an error occurred. 691 Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 692 bool IsImporting, ParserCallbacks Callbacks = {}); 693 694 static uint64_t decodeSignRotatedValue(uint64_t V); 695 696 /// Materialize any deferred Metadata block. 697 Error materializeMetadata() override; 698 699 void setStripDebugInfo() override; 700 701 private: 702 std::vector<StructType *> IdentifiedStructTypes; 703 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 704 StructType *createIdentifiedStructType(LLVMContext &Context); 705 706 static constexpr unsigned InvalidTypeID = ~0u; 707 708 Type *getTypeByID(unsigned ID); 709 Type *getPtrElementTypeByID(unsigned ID); 710 unsigned getContainedTypeID(unsigned ID, unsigned Idx = 0); 711 unsigned getVirtualTypeID(Type *Ty, ArrayRef<unsigned> ContainedTypeIDs = {}); 712 713 void callValueTypeCallback(Value *F, unsigned TypeID); 714 Expected<Value *> materializeValue(unsigned ValID, BasicBlock *InsertBB); 715 Expected<Constant *> getValueForInitializer(unsigned ID); 716 717 Value *getFnValueByID(unsigned ID, Type *Ty, unsigned TyID, 718 BasicBlock *ConstExprInsertBB) { 719 if (Ty && Ty->isMetadataTy()) 720 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 721 return ValueList.getValueFwdRef(ID, Ty, TyID, ConstExprInsertBB); 722 } 723 724 Metadata *getFnMetadataByID(unsigned ID) { 725 return MDLoader->getMetadataFwdRefOrLoad(ID); 726 } 727 728 BasicBlock *getBasicBlock(unsigned ID) const { 729 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 730 return FunctionBBs[ID]; 731 } 732 733 AttributeList getAttributes(unsigned i) const { 734 if (i-1 < MAttributes.size()) 735 return MAttributes[i-1]; 736 return AttributeList(); 737 } 738 739 /// Read a value/type pair out of the specified record from slot 'Slot'. 740 /// Increment Slot past the number of slots used in the record. Return true on 741 /// failure. 742 bool getValueTypePair(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 743 unsigned InstNum, Value *&ResVal, unsigned &TypeID, 744 BasicBlock *ConstExprInsertBB) { 745 if (Slot == Record.size()) return true; 746 unsigned ValNo = (unsigned)Record[Slot++]; 747 // Adjust the ValNo, if it was encoded relative to the InstNum. 748 if (UseRelativeIDs) 749 ValNo = InstNum - ValNo; 750 if (ValNo < InstNum) { 751 // If this is not a forward reference, just return the value we already 752 // have. 753 TypeID = ValueList.getTypeID(ValNo); 754 ResVal = getFnValueByID(ValNo, nullptr, TypeID, ConstExprInsertBB); 755 assert((!ResVal || ResVal->getType() == getTypeByID(TypeID)) && 756 "Incorrect type ID stored for value"); 757 return ResVal == nullptr; 758 } 759 if (Slot == Record.size()) 760 return true; 761 762 TypeID = (unsigned)Record[Slot++]; 763 ResVal = getFnValueByID(ValNo, getTypeByID(TypeID), TypeID, 764 ConstExprInsertBB); 765 return ResVal == nullptr; 766 } 767 768 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 769 /// past the number of slots used by the value in the record. Return true if 770 /// there is an error. 771 bool popValue(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 772 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal, 773 BasicBlock *ConstExprInsertBB) { 774 if (getValue(Record, Slot, InstNum, Ty, TyID, ResVal, ConstExprInsertBB)) 775 return true; 776 // All values currently take a single record slot. 777 ++Slot; 778 return false; 779 } 780 781 /// Like popValue, but does not increment the Slot number. 782 bool getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 783 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal, 784 BasicBlock *ConstExprInsertBB) { 785 ResVal = getValue(Record, Slot, InstNum, Ty, TyID, ConstExprInsertBB); 786 return ResVal == nullptr; 787 } 788 789 /// Version of getValue that returns ResVal directly, or 0 if there is an 790 /// error. 791 Value *getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 792 unsigned InstNum, Type *Ty, unsigned TyID, 793 BasicBlock *ConstExprInsertBB) { 794 if (Slot == Record.size()) return nullptr; 795 unsigned ValNo = (unsigned)Record[Slot]; 796 // Adjust the ValNo, if it was encoded relative to the InstNum. 797 if (UseRelativeIDs) 798 ValNo = InstNum - ValNo; 799 return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB); 800 } 801 802 /// Like getValue, but decodes signed VBRs. 803 Value *getValueSigned(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 804 unsigned InstNum, Type *Ty, unsigned TyID, 805 BasicBlock *ConstExprInsertBB) { 806 if (Slot == Record.size()) return nullptr; 807 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 808 // Adjust the ValNo, if it was encoded relative to the InstNum. 809 if (UseRelativeIDs) 810 ValNo = InstNum - ValNo; 811 return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB); 812 } 813 814 /// Upgrades old-style typeless byval/sret/inalloca attributes by adding the 815 /// corresponding argument's pointee type. Also upgrades intrinsics that now 816 /// require an elementtype attribute. 817 Error propagateAttributeTypes(CallBase *CB, ArrayRef<unsigned> ArgsTys); 818 819 /// Converts alignment exponent (i.e. power of two (or zero)) to the 820 /// corresponding alignment to use. If alignment is too large, returns 821 /// a corresponding error code. 822 Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment); 823 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 824 Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false, 825 ParserCallbacks Callbacks = {}); 826 827 Error parseComdatRecord(ArrayRef<uint64_t> Record); 828 Error parseGlobalVarRecord(ArrayRef<uint64_t> Record); 829 Error parseFunctionRecord(ArrayRef<uint64_t> Record); 830 Error parseGlobalIndirectSymbolRecord(unsigned BitCode, 831 ArrayRef<uint64_t> Record); 832 833 Error parseAttributeBlock(); 834 Error parseAttributeGroupBlock(); 835 Error parseTypeTable(); 836 Error parseTypeTableBody(); 837 Error parseOperandBundleTags(); 838 Error parseSyncScopeNames(); 839 840 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 841 unsigned NameIndex, Triple &TT); 842 void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F, 843 ArrayRef<uint64_t> Record); 844 Error parseValueSymbolTable(uint64_t Offset = 0); 845 Error parseGlobalValueSymbolTable(); 846 Error parseConstants(); 847 Error rememberAndSkipFunctionBodies(); 848 Error rememberAndSkipFunctionBody(); 849 /// Save the positions of the Metadata blocks and skip parsing the blocks. 850 Error rememberAndSkipMetadata(); 851 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType); 852 Error parseFunctionBody(Function *F); 853 Error globalCleanup(); 854 Error resolveGlobalAndIndirectSymbolInits(); 855 Error parseUseLists(); 856 Error findFunctionInStream( 857 Function *F, 858 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 859 860 SyncScope::ID getDecodedSyncScopeID(unsigned Val); 861 }; 862 863 /// Class to manage reading and parsing function summary index bitcode 864 /// files/sections. 865 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase { 866 /// The module index built during parsing. 867 ModuleSummaryIndex &TheIndex; 868 869 /// Indicates whether we have encountered a global value summary section 870 /// yet during parsing. 871 bool SeenGlobalValSummary = false; 872 873 /// Indicates whether we have already parsed the VST, used for error checking. 874 bool SeenValueSymbolTable = false; 875 876 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 877 /// Used to enable on-demand parsing of the VST. 878 uint64_t VSTOffset = 0; 879 880 // Map to save ValueId to ValueInfo association that was recorded in the 881 // ValueSymbolTable. It is used after the VST is parsed to convert 882 // call graph edges read from the function summary from referencing 883 // callees by their ValueId to using the ValueInfo instead, which is how 884 // they are recorded in the summary index being built. 885 // We save a GUID which refers to the same global as the ValueInfo, but 886 // ignoring the linkage, i.e. for values other than local linkage they are 887 // identical (this is the second tuple member). 888 // The third tuple member is the real GUID of the ValueInfo. 889 DenseMap<unsigned, 890 std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID>> 891 ValueIdToValueInfoMap; 892 893 /// Map populated during module path string table parsing, from the 894 /// module ID to a string reference owned by the index's module 895 /// path string table, used to correlate with combined index 896 /// summary records. 897 DenseMap<uint64_t, StringRef> ModuleIdMap; 898 899 /// Original source file name recorded in a bitcode record. 900 std::string SourceFileName; 901 902 /// The string identifier given to this module by the client, normally the 903 /// path to the bitcode file. 904 StringRef ModulePath; 905 906 /// For per-module summary indexes, the unique numerical identifier given to 907 /// this module by the client. 908 unsigned ModuleId; 909 910 /// Callback to ask whether a symbol is the prevailing copy when invoked 911 /// during combined index building. 912 std::function<bool(GlobalValue::GUID)> IsPrevailing; 913 914 /// Saves the stack ids from the STACK_IDS record to consult when adding stack 915 /// ids from the lists in the callsite and alloc entries to the index. 916 std::vector<uint64_t> StackIds; 917 918 public: 919 ModuleSummaryIndexBitcodeReader( 920 BitstreamCursor Stream, StringRef Strtab, ModuleSummaryIndex &TheIndex, 921 StringRef ModulePath, unsigned ModuleId, 922 std::function<bool(GlobalValue::GUID)> IsPrevailing = nullptr); 923 924 Error parseModule(); 925 926 private: 927 void setValueGUID(uint64_t ValueID, StringRef ValueName, 928 GlobalValue::LinkageTypes Linkage, 929 StringRef SourceFileName); 930 Error parseValueSymbolTable( 931 uint64_t Offset, 932 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 933 std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record); 934 std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record, 935 bool IsOldProfileFormat, 936 bool HasProfile, 937 bool HasRelBF); 938 Error parseEntireSummary(unsigned ID); 939 Error parseModuleStringTable(); 940 void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record); 941 void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot, 942 TypeIdCompatibleVtableInfo &TypeId); 943 std::vector<FunctionSummary::ParamAccess> 944 parseParamAccesses(ArrayRef<uint64_t> Record); 945 946 template <bool AllowNullValueInfo = false> 947 std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID> 948 getValueInfoFromValueId(unsigned ValueId); 949 950 void addThisModule(); 951 ModuleSummaryIndex::ModuleInfo *getThisModule(); 952 }; 953 954 } // end anonymous namespace 955 956 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx, 957 Error Err) { 958 if (Err) { 959 std::error_code EC; 960 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) { 961 EC = EIB.convertToErrorCode(); 962 Ctx.emitError(EIB.message()); 963 }); 964 return EC; 965 } 966 return std::error_code(); 967 } 968 969 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 970 StringRef ProducerIdentification, 971 LLVMContext &Context) 972 : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context), 973 ValueList(this->Stream.SizeInBytes(), 974 [this](unsigned ValID, BasicBlock *InsertBB) { 975 return materializeValue(ValID, InsertBB); 976 }) { 977 this->ProducerIdentification = std::string(ProducerIdentification); 978 } 979 980 Error BitcodeReader::materializeForwardReferencedFunctions() { 981 if (WillMaterializeAllForwardRefs) 982 return Error::success(); 983 984 // Prevent recursion. 985 WillMaterializeAllForwardRefs = true; 986 987 while (!BasicBlockFwdRefQueue.empty()) { 988 Function *F = BasicBlockFwdRefQueue.front(); 989 BasicBlockFwdRefQueue.pop_front(); 990 assert(F && "Expected valid function"); 991 if (!BasicBlockFwdRefs.count(F)) 992 // Already materialized. 993 continue; 994 995 // Check for a function that isn't materializable to prevent an infinite 996 // loop. When parsing a blockaddress stored in a global variable, there 997 // isn't a trivial way to check if a function will have a body without a 998 // linear search through FunctionsWithBodies, so just check it here. 999 if (!F->isMaterializable()) 1000 return error("Never resolved function from blockaddress"); 1001 1002 // Try to materialize F. 1003 if (Error Err = materialize(F)) 1004 return Err; 1005 } 1006 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 1007 1008 for (Function *F : BackwardRefFunctions) 1009 if (Error Err = materialize(F)) 1010 return Err; 1011 BackwardRefFunctions.clear(); 1012 1013 // Reset state. 1014 WillMaterializeAllForwardRefs = false; 1015 return Error::success(); 1016 } 1017 1018 //===----------------------------------------------------------------------===// 1019 // Helper functions to implement forward reference resolution, etc. 1020 //===----------------------------------------------------------------------===// 1021 1022 static bool hasImplicitComdat(size_t Val) { 1023 switch (Val) { 1024 default: 1025 return false; 1026 case 1: // Old WeakAnyLinkage 1027 case 4: // Old LinkOnceAnyLinkage 1028 case 10: // Old WeakODRLinkage 1029 case 11: // Old LinkOnceODRLinkage 1030 return true; 1031 } 1032 } 1033 1034 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 1035 switch (Val) { 1036 default: // Map unknown/new linkages to external 1037 case 0: 1038 return GlobalValue::ExternalLinkage; 1039 case 2: 1040 return GlobalValue::AppendingLinkage; 1041 case 3: 1042 return GlobalValue::InternalLinkage; 1043 case 5: 1044 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 1045 case 6: 1046 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 1047 case 7: 1048 return GlobalValue::ExternalWeakLinkage; 1049 case 8: 1050 return GlobalValue::CommonLinkage; 1051 case 9: 1052 return GlobalValue::PrivateLinkage; 1053 case 12: 1054 return GlobalValue::AvailableExternallyLinkage; 1055 case 13: 1056 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 1057 case 14: 1058 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 1059 case 15: 1060 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 1061 case 1: // Old value with implicit comdat. 1062 case 16: 1063 return GlobalValue::WeakAnyLinkage; 1064 case 10: // Old value with implicit comdat. 1065 case 17: 1066 return GlobalValue::WeakODRLinkage; 1067 case 4: // Old value with implicit comdat. 1068 case 18: 1069 return GlobalValue::LinkOnceAnyLinkage; 1070 case 11: // Old value with implicit comdat. 1071 case 19: 1072 return GlobalValue::LinkOnceODRLinkage; 1073 } 1074 } 1075 1076 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) { 1077 FunctionSummary::FFlags Flags; 1078 Flags.ReadNone = RawFlags & 0x1; 1079 Flags.ReadOnly = (RawFlags >> 1) & 0x1; 1080 Flags.NoRecurse = (RawFlags >> 2) & 0x1; 1081 Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1; 1082 Flags.NoInline = (RawFlags >> 4) & 0x1; 1083 Flags.AlwaysInline = (RawFlags >> 5) & 0x1; 1084 Flags.NoUnwind = (RawFlags >> 6) & 0x1; 1085 Flags.MayThrow = (RawFlags >> 7) & 0x1; 1086 Flags.HasUnknownCall = (RawFlags >> 8) & 0x1; 1087 Flags.MustBeUnreachable = (RawFlags >> 9) & 0x1; 1088 return Flags; 1089 } 1090 1091 // Decode the flags for GlobalValue in the summary. The bits for each attribute: 1092 // 1093 // linkage: [0,4), notEligibleToImport: 4, live: 5, local: 6, canAutoHide: 7, 1094 // visibility: [8, 10). 1095 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 1096 uint64_t Version) { 1097 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 1098 // like getDecodedLinkage() above. Any future change to the linkage enum and 1099 // to getDecodedLinkage() will need to be taken into account here as above. 1100 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 1101 auto Visibility = GlobalValue::VisibilityTypes((RawFlags >> 8) & 3); // 2 bits 1102 RawFlags = RawFlags >> 4; 1103 bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3; 1104 // The Live flag wasn't introduced until version 3. For dead stripping 1105 // to work correctly on earlier versions, we must conservatively treat all 1106 // values as live. 1107 bool Live = (RawFlags & 0x2) || Version < 3; 1108 bool Local = (RawFlags & 0x4); 1109 bool AutoHide = (RawFlags & 0x8); 1110 1111 return GlobalValueSummary::GVFlags(Linkage, Visibility, NotEligibleToImport, 1112 Live, Local, AutoHide); 1113 } 1114 1115 // Decode the flags for GlobalVariable in the summary 1116 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) { 1117 return GlobalVarSummary::GVarFlags( 1118 (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false, 1119 (RawFlags & 0x4) ? true : false, 1120 (GlobalObject::VCallVisibility)(RawFlags >> 3)); 1121 } 1122 1123 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 1124 switch (Val) { 1125 default: // Map unknown visibilities to default. 1126 case 0: return GlobalValue::DefaultVisibility; 1127 case 1: return GlobalValue::HiddenVisibility; 1128 case 2: return GlobalValue::ProtectedVisibility; 1129 } 1130 } 1131 1132 static GlobalValue::DLLStorageClassTypes 1133 getDecodedDLLStorageClass(unsigned Val) { 1134 switch (Val) { 1135 default: // Map unknown values to default. 1136 case 0: return GlobalValue::DefaultStorageClass; 1137 case 1: return GlobalValue::DLLImportStorageClass; 1138 case 2: return GlobalValue::DLLExportStorageClass; 1139 } 1140 } 1141 1142 static bool getDecodedDSOLocal(unsigned Val) { 1143 switch(Val) { 1144 default: // Map unknown values to preemptable. 1145 case 0: return false; 1146 case 1: return true; 1147 } 1148 } 1149 1150 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 1151 switch (Val) { 1152 case 0: return GlobalVariable::NotThreadLocal; 1153 default: // Map unknown non-zero value to general dynamic. 1154 case 1: return GlobalVariable::GeneralDynamicTLSModel; 1155 case 2: return GlobalVariable::LocalDynamicTLSModel; 1156 case 3: return GlobalVariable::InitialExecTLSModel; 1157 case 4: return GlobalVariable::LocalExecTLSModel; 1158 } 1159 } 1160 1161 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { 1162 switch (Val) { 1163 default: // Map unknown to UnnamedAddr::None. 1164 case 0: return GlobalVariable::UnnamedAddr::None; 1165 case 1: return GlobalVariable::UnnamedAddr::Global; 1166 case 2: return GlobalVariable::UnnamedAddr::Local; 1167 } 1168 } 1169 1170 static int getDecodedCastOpcode(unsigned Val) { 1171 switch (Val) { 1172 default: return -1; 1173 case bitc::CAST_TRUNC : return Instruction::Trunc; 1174 case bitc::CAST_ZEXT : return Instruction::ZExt; 1175 case bitc::CAST_SEXT : return Instruction::SExt; 1176 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 1177 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 1178 case bitc::CAST_UITOFP : return Instruction::UIToFP; 1179 case bitc::CAST_SITOFP : return Instruction::SIToFP; 1180 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 1181 case bitc::CAST_FPEXT : return Instruction::FPExt; 1182 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 1183 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 1184 case bitc::CAST_BITCAST : return Instruction::BitCast; 1185 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 1186 } 1187 } 1188 1189 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) { 1190 bool IsFP = Ty->isFPOrFPVectorTy(); 1191 // UnOps are only valid for int/fp or vector of int/fp types 1192 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1193 return -1; 1194 1195 switch (Val) { 1196 default: 1197 return -1; 1198 case bitc::UNOP_FNEG: 1199 return IsFP ? Instruction::FNeg : -1; 1200 } 1201 } 1202 1203 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 1204 bool IsFP = Ty->isFPOrFPVectorTy(); 1205 // BinOps are only valid for int/fp or vector of int/fp types 1206 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1207 return -1; 1208 1209 switch (Val) { 1210 default: 1211 return -1; 1212 case bitc::BINOP_ADD: 1213 return IsFP ? Instruction::FAdd : Instruction::Add; 1214 case bitc::BINOP_SUB: 1215 return IsFP ? Instruction::FSub : Instruction::Sub; 1216 case bitc::BINOP_MUL: 1217 return IsFP ? Instruction::FMul : Instruction::Mul; 1218 case bitc::BINOP_UDIV: 1219 return IsFP ? -1 : Instruction::UDiv; 1220 case bitc::BINOP_SDIV: 1221 return IsFP ? Instruction::FDiv : Instruction::SDiv; 1222 case bitc::BINOP_UREM: 1223 return IsFP ? -1 : Instruction::URem; 1224 case bitc::BINOP_SREM: 1225 return IsFP ? Instruction::FRem : Instruction::SRem; 1226 case bitc::BINOP_SHL: 1227 return IsFP ? -1 : Instruction::Shl; 1228 case bitc::BINOP_LSHR: 1229 return IsFP ? -1 : Instruction::LShr; 1230 case bitc::BINOP_ASHR: 1231 return IsFP ? -1 : Instruction::AShr; 1232 case bitc::BINOP_AND: 1233 return IsFP ? -1 : Instruction::And; 1234 case bitc::BINOP_OR: 1235 return IsFP ? -1 : Instruction::Or; 1236 case bitc::BINOP_XOR: 1237 return IsFP ? -1 : Instruction::Xor; 1238 } 1239 } 1240 1241 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 1242 switch (Val) { 1243 default: return AtomicRMWInst::BAD_BINOP; 1244 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 1245 case bitc::RMW_ADD: return AtomicRMWInst::Add; 1246 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 1247 case bitc::RMW_AND: return AtomicRMWInst::And; 1248 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 1249 case bitc::RMW_OR: return AtomicRMWInst::Or; 1250 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 1251 case bitc::RMW_MAX: return AtomicRMWInst::Max; 1252 case bitc::RMW_MIN: return AtomicRMWInst::Min; 1253 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 1254 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 1255 case bitc::RMW_FADD: return AtomicRMWInst::FAdd; 1256 case bitc::RMW_FSUB: return AtomicRMWInst::FSub; 1257 case bitc::RMW_FMAX: return AtomicRMWInst::FMax; 1258 case bitc::RMW_FMIN: return AtomicRMWInst::FMin; 1259 case bitc::RMW_UINC_WRAP: 1260 return AtomicRMWInst::UIncWrap; 1261 case bitc::RMW_UDEC_WRAP: 1262 return AtomicRMWInst::UDecWrap; 1263 } 1264 } 1265 1266 static AtomicOrdering getDecodedOrdering(unsigned Val) { 1267 switch (Val) { 1268 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 1269 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 1270 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 1271 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 1272 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 1273 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 1274 default: // Map unknown orderings to sequentially-consistent. 1275 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 1276 } 1277 } 1278 1279 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 1280 switch (Val) { 1281 default: // Map unknown selection kinds to any. 1282 case bitc::COMDAT_SELECTION_KIND_ANY: 1283 return Comdat::Any; 1284 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 1285 return Comdat::ExactMatch; 1286 case bitc::COMDAT_SELECTION_KIND_LARGEST: 1287 return Comdat::Largest; 1288 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 1289 return Comdat::NoDeduplicate; 1290 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 1291 return Comdat::SameSize; 1292 } 1293 } 1294 1295 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 1296 FastMathFlags FMF; 1297 if (0 != (Val & bitc::UnsafeAlgebra)) 1298 FMF.setFast(); 1299 if (0 != (Val & bitc::AllowReassoc)) 1300 FMF.setAllowReassoc(); 1301 if (0 != (Val & bitc::NoNaNs)) 1302 FMF.setNoNaNs(); 1303 if (0 != (Val & bitc::NoInfs)) 1304 FMF.setNoInfs(); 1305 if (0 != (Val & bitc::NoSignedZeros)) 1306 FMF.setNoSignedZeros(); 1307 if (0 != (Val & bitc::AllowReciprocal)) 1308 FMF.setAllowReciprocal(); 1309 if (0 != (Val & bitc::AllowContract)) 1310 FMF.setAllowContract(true); 1311 if (0 != (Val & bitc::ApproxFunc)) 1312 FMF.setApproxFunc(); 1313 return FMF; 1314 } 1315 1316 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) { 1317 // A GlobalValue with local linkage cannot have a DLL storage class. 1318 if (GV->hasLocalLinkage()) 1319 return; 1320 switch (Val) { 1321 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 1322 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 1323 } 1324 } 1325 1326 Type *BitcodeReader::getTypeByID(unsigned ID) { 1327 // The type table size is always specified correctly. 1328 if (ID >= TypeList.size()) 1329 return nullptr; 1330 1331 if (Type *Ty = TypeList[ID]) 1332 return Ty; 1333 1334 // If we have a forward reference, the only possible case is when it is to a 1335 // named struct. Just create a placeholder for now. 1336 return TypeList[ID] = createIdentifiedStructType(Context); 1337 } 1338 1339 unsigned BitcodeReader::getContainedTypeID(unsigned ID, unsigned Idx) { 1340 auto It = ContainedTypeIDs.find(ID); 1341 if (It == ContainedTypeIDs.end()) 1342 return InvalidTypeID; 1343 1344 if (Idx >= It->second.size()) 1345 return InvalidTypeID; 1346 1347 return It->second[Idx]; 1348 } 1349 1350 Type *BitcodeReader::getPtrElementTypeByID(unsigned ID) { 1351 if (ID >= TypeList.size()) 1352 return nullptr; 1353 1354 Type *Ty = TypeList[ID]; 1355 if (!Ty->isPointerTy()) 1356 return nullptr; 1357 1358 Type *ElemTy = getTypeByID(getContainedTypeID(ID, 0)); 1359 if (!ElemTy) 1360 return nullptr; 1361 1362 assert(cast<PointerType>(Ty)->isOpaqueOrPointeeTypeMatches(ElemTy) && 1363 "Incorrect element type"); 1364 return ElemTy; 1365 } 1366 1367 unsigned BitcodeReader::getVirtualTypeID(Type *Ty, 1368 ArrayRef<unsigned> ChildTypeIDs) { 1369 unsigned ChildTypeID = ChildTypeIDs.empty() ? InvalidTypeID : ChildTypeIDs[0]; 1370 auto CacheKey = std::make_pair(Ty, ChildTypeID); 1371 auto It = VirtualTypeIDs.find(CacheKey); 1372 if (It != VirtualTypeIDs.end()) { 1373 // The cmpxchg return value is the only place we need more than one 1374 // contained type ID, however the second one will always be the same (i1), 1375 // so we don't need to include it in the cache key. This asserts that the 1376 // contained types are indeed as expected and there are no collisions. 1377 assert((ChildTypeIDs.empty() || 1378 ContainedTypeIDs[It->second] == ChildTypeIDs) && 1379 "Incorrect cached contained type IDs"); 1380 return It->second; 1381 } 1382 1383 #ifndef NDEBUG 1384 if (!Ty->isOpaquePointerTy()) { 1385 assert(Ty->getNumContainedTypes() == ChildTypeIDs.size() && 1386 "Wrong number of contained types"); 1387 for (auto Pair : zip(Ty->subtypes(), ChildTypeIDs)) { 1388 assert(std::get<0>(Pair) == getTypeByID(std::get<1>(Pair)) && 1389 "Incorrect contained type ID"); 1390 } 1391 } 1392 #endif 1393 1394 unsigned TypeID = TypeList.size(); 1395 TypeList.push_back(Ty); 1396 if (!ChildTypeIDs.empty()) 1397 append_range(ContainedTypeIDs[TypeID], ChildTypeIDs); 1398 VirtualTypeIDs.insert({CacheKey, TypeID}); 1399 return TypeID; 1400 } 1401 1402 static bool isConstExprSupported(const BitcodeConstant *BC) { 1403 uint8_t Opcode = BC->Opcode; 1404 1405 // These are not real constant expressions, always consider them supported. 1406 if (Opcode >= BitcodeConstant::FirstSpecialOpcode) 1407 return true; 1408 1409 // If -expand-constant-exprs is set, we want to consider all expressions 1410 // as unsupported. 1411 if (ExpandConstantExprs) 1412 return false; 1413 1414 if (Instruction::isBinaryOp(Opcode)) 1415 return ConstantExpr::isSupportedBinOp(Opcode); 1416 1417 if (Opcode == Instruction::GetElementPtr) 1418 return ConstantExpr::isSupportedGetElementPtr(BC->SrcElemTy); 1419 1420 switch (Opcode) { 1421 case Instruction::FNeg: 1422 case Instruction::Select: 1423 return false; 1424 default: 1425 return true; 1426 } 1427 } 1428 1429 Expected<Value *> BitcodeReader::materializeValue(unsigned StartValID, 1430 BasicBlock *InsertBB) { 1431 // Quickly handle the case where there is no BitcodeConstant to resolve. 1432 if (StartValID < ValueList.size() && ValueList[StartValID] && 1433 !isa<BitcodeConstant>(ValueList[StartValID])) 1434 return ValueList[StartValID]; 1435 1436 SmallDenseMap<unsigned, Value *> MaterializedValues; 1437 SmallVector<unsigned> Worklist; 1438 Worklist.push_back(StartValID); 1439 while (!Worklist.empty()) { 1440 unsigned ValID = Worklist.back(); 1441 if (MaterializedValues.count(ValID)) { 1442 // Duplicate expression that was already handled. 1443 Worklist.pop_back(); 1444 continue; 1445 } 1446 1447 if (ValID >= ValueList.size() || !ValueList[ValID]) 1448 return error("Invalid value ID"); 1449 1450 Value *V = ValueList[ValID]; 1451 auto *BC = dyn_cast<BitcodeConstant>(V); 1452 if (!BC) { 1453 MaterializedValues.insert({ValID, V}); 1454 Worklist.pop_back(); 1455 continue; 1456 } 1457 1458 // Iterate in reverse, so values will get popped from the worklist in 1459 // expected order. 1460 SmallVector<Value *> Ops; 1461 for (unsigned OpID : reverse(BC->getOperandIDs())) { 1462 auto It = MaterializedValues.find(OpID); 1463 if (It != MaterializedValues.end()) 1464 Ops.push_back(It->second); 1465 else 1466 Worklist.push_back(OpID); 1467 } 1468 1469 // Some expressions have not been resolved yet, handle them first and then 1470 // revisit this one. 1471 if (Ops.size() != BC->getOperandIDs().size()) 1472 continue; 1473 std::reverse(Ops.begin(), Ops.end()); 1474 1475 SmallVector<Constant *> ConstOps; 1476 for (Value *Op : Ops) 1477 if (auto *C = dyn_cast<Constant>(Op)) 1478 ConstOps.push_back(C); 1479 1480 // Materialize as constant expression if possible. 1481 if (isConstExprSupported(BC) && ConstOps.size() == Ops.size()) { 1482 Constant *C; 1483 if (Instruction::isCast(BC->Opcode)) { 1484 C = UpgradeBitCastExpr(BC->Opcode, ConstOps[0], BC->getType()); 1485 if (!C) 1486 C = ConstantExpr::getCast(BC->Opcode, ConstOps[0], BC->getType()); 1487 } else if (Instruction::isBinaryOp(BC->Opcode)) { 1488 C = ConstantExpr::get(BC->Opcode, ConstOps[0], ConstOps[1], BC->Flags); 1489 } else { 1490 switch (BC->Opcode) { 1491 case BitcodeConstant::NoCFIOpcode: { 1492 auto *GV = dyn_cast<GlobalValue>(ConstOps[0]); 1493 if (!GV) 1494 return error("no_cfi operand must be GlobalValue"); 1495 C = NoCFIValue::get(GV); 1496 break; 1497 } 1498 case BitcodeConstant::DSOLocalEquivalentOpcode: { 1499 auto *GV = dyn_cast<GlobalValue>(ConstOps[0]); 1500 if (!GV) 1501 return error("dso_local operand must be GlobalValue"); 1502 C = DSOLocalEquivalent::get(GV); 1503 break; 1504 } 1505 case BitcodeConstant::BlockAddressOpcode: { 1506 Function *Fn = dyn_cast<Function>(ConstOps[0]); 1507 if (!Fn) 1508 return error("blockaddress operand must be a function"); 1509 1510 // If the function is already parsed we can insert the block address 1511 // right away. 1512 BasicBlock *BB; 1513 unsigned BBID = BC->Extra; 1514 if (!BBID) 1515 // Invalid reference to entry block. 1516 return error("Invalid ID"); 1517 if (!Fn->empty()) { 1518 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 1519 for (size_t I = 0, E = BBID; I != E; ++I) { 1520 if (BBI == BBE) 1521 return error("Invalid ID"); 1522 ++BBI; 1523 } 1524 BB = &*BBI; 1525 } else { 1526 // Otherwise insert a placeholder and remember it so it can be 1527 // inserted when the function is parsed. 1528 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 1529 if (FwdBBs.empty()) 1530 BasicBlockFwdRefQueue.push_back(Fn); 1531 if (FwdBBs.size() < BBID + 1) 1532 FwdBBs.resize(BBID + 1); 1533 if (!FwdBBs[BBID]) 1534 FwdBBs[BBID] = BasicBlock::Create(Context); 1535 BB = FwdBBs[BBID]; 1536 } 1537 C = BlockAddress::get(Fn, BB); 1538 break; 1539 } 1540 case BitcodeConstant::ConstantStructOpcode: 1541 C = ConstantStruct::get(cast<StructType>(BC->getType()), ConstOps); 1542 break; 1543 case BitcodeConstant::ConstantArrayOpcode: 1544 C = ConstantArray::get(cast<ArrayType>(BC->getType()), ConstOps); 1545 break; 1546 case BitcodeConstant::ConstantVectorOpcode: 1547 C = ConstantVector::get(ConstOps); 1548 break; 1549 case Instruction::ICmp: 1550 case Instruction::FCmp: 1551 C = ConstantExpr::getCompare(BC->Flags, ConstOps[0], ConstOps[1]); 1552 break; 1553 case Instruction::GetElementPtr: 1554 C = ConstantExpr::getGetElementPtr(BC->SrcElemTy, ConstOps[0], 1555 ArrayRef(ConstOps).drop_front(), 1556 BC->Flags, BC->getInRangeIndex()); 1557 break; 1558 case Instruction::ExtractElement: 1559 C = ConstantExpr::getExtractElement(ConstOps[0], ConstOps[1]); 1560 break; 1561 case Instruction::InsertElement: 1562 C = ConstantExpr::getInsertElement(ConstOps[0], ConstOps[1], 1563 ConstOps[2]); 1564 break; 1565 case Instruction::ShuffleVector: { 1566 SmallVector<int, 16> Mask; 1567 ShuffleVectorInst::getShuffleMask(ConstOps[2], Mask); 1568 C = ConstantExpr::getShuffleVector(ConstOps[0], ConstOps[1], Mask); 1569 break; 1570 } 1571 default: 1572 llvm_unreachable("Unhandled bitcode constant"); 1573 } 1574 } 1575 1576 // Cache resolved constant. 1577 ValueList.replaceValueWithoutRAUW(ValID, C); 1578 MaterializedValues.insert({ValID, C}); 1579 Worklist.pop_back(); 1580 continue; 1581 } 1582 1583 if (!InsertBB) 1584 return error(Twine("Value referenced by initializer is an unsupported " 1585 "constant expression of type ") + 1586 BC->getOpcodeName()); 1587 1588 // Materialize as instructions if necessary. 1589 Instruction *I; 1590 if (Instruction::isCast(BC->Opcode)) { 1591 I = CastInst::Create((Instruction::CastOps)BC->Opcode, Ops[0], 1592 BC->getType(), "constexpr", InsertBB); 1593 } else if (Instruction::isUnaryOp(BC->Opcode)) { 1594 I = UnaryOperator::Create((Instruction::UnaryOps)BC->Opcode, Ops[0], 1595 "constexpr", InsertBB); 1596 } else if (Instruction::isBinaryOp(BC->Opcode)) { 1597 I = BinaryOperator::Create((Instruction::BinaryOps)BC->Opcode, Ops[0], 1598 Ops[1], "constexpr", InsertBB); 1599 if (isa<OverflowingBinaryOperator>(I)) { 1600 if (BC->Flags & OverflowingBinaryOperator::NoSignedWrap) 1601 I->setHasNoSignedWrap(); 1602 if (BC->Flags & OverflowingBinaryOperator::NoUnsignedWrap) 1603 I->setHasNoUnsignedWrap(); 1604 } 1605 if (isa<PossiblyExactOperator>(I) && 1606 (BC->Flags & PossiblyExactOperator::IsExact)) 1607 I->setIsExact(); 1608 } else { 1609 switch (BC->Opcode) { 1610 case BitcodeConstant::ConstantVectorOpcode: { 1611 Type *IdxTy = Type::getInt32Ty(BC->getContext()); 1612 Value *V = PoisonValue::get(BC->getType()); 1613 for (auto Pair : enumerate(Ops)) { 1614 Value *Idx = ConstantInt::get(IdxTy, Pair.index()); 1615 V = InsertElementInst::Create(V, Pair.value(), Idx, "constexpr.ins", 1616 InsertBB); 1617 } 1618 I = cast<Instruction>(V); 1619 break; 1620 } 1621 case BitcodeConstant::ConstantStructOpcode: 1622 case BitcodeConstant::ConstantArrayOpcode: { 1623 Value *V = PoisonValue::get(BC->getType()); 1624 for (auto Pair : enumerate(Ops)) 1625 V = InsertValueInst::Create(V, Pair.value(), Pair.index(), 1626 "constexpr.ins", InsertBB); 1627 I = cast<Instruction>(V); 1628 break; 1629 } 1630 case Instruction::ICmp: 1631 case Instruction::FCmp: 1632 I = CmpInst::Create((Instruction::OtherOps)BC->Opcode, 1633 (CmpInst::Predicate)BC->Flags, Ops[0], Ops[1], 1634 "constexpr", InsertBB); 1635 break; 1636 case Instruction::GetElementPtr: 1637 I = GetElementPtrInst::Create(BC->SrcElemTy, Ops[0], 1638 ArrayRef(Ops).drop_front(), "constexpr", 1639 InsertBB); 1640 if (BC->Flags) 1641 cast<GetElementPtrInst>(I)->setIsInBounds(); 1642 break; 1643 case Instruction::Select: 1644 I = SelectInst::Create(Ops[0], Ops[1], Ops[2], "constexpr", InsertBB); 1645 break; 1646 case Instruction::ExtractElement: 1647 I = ExtractElementInst::Create(Ops[0], Ops[1], "constexpr", InsertBB); 1648 break; 1649 case Instruction::InsertElement: 1650 I = InsertElementInst::Create(Ops[0], Ops[1], Ops[2], "constexpr", 1651 InsertBB); 1652 break; 1653 case Instruction::ShuffleVector: 1654 I = new ShuffleVectorInst(Ops[0], Ops[1], Ops[2], "constexpr", 1655 InsertBB); 1656 break; 1657 default: 1658 llvm_unreachable("Unhandled bitcode constant"); 1659 } 1660 } 1661 1662 MaterializedValues.insert({ValID, I}); 1663 Worklist.pop_back(); 1664 } 1665 1666 return MaterializedValues[StartValID]; 1667 } 1668 1669 Expected<Constant *> BitcodeReader::getValueForInitializer(unsigned ID) { 1670 Expected<Value *> MaybeV = materializeValue(ID, /* InsertBB */ nullptr); 1671 if (!MaybeV) 1672 return MaybeV.takeError(); 1673 1674 // Result must be Constant if InsertBB is nullptr. 1675 return cast<Constant>(MaybeV.get()); 1676 } 1677 1678 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1679 StringRef Name) { 1680 auto *Ret = StructType::create(Context, Name); 1681 IdentifiedStructTypes.push_back(Ret); 1682 return Ret; 1683 } 1684 1685 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1686 auto *Ret = StructType::create(Context); 1687 IdentifiedStructTypes.push_back(Ret); 1688 return Ret; 1689 } 1690 1691 //===----------------------------------------------------------------------===// 1692 // Functions for parsing blocks from the bitcode file 1693 //===----------------------------------------------------------------------===// 1694 1695 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) { 1696 switch (Val) { 1697 case Attribute::EndAttrKinds: 1698 case Attribute::EmptyKey: 1699 case Attribute::TombstoneKey: 1700 llvm_unreachable("Synthetic enumerators which should never get here"); 1701 1702 case Attribute::None: return 0; 1703 case Attribute::ZExt: return 1 << 0; 1704 case Attribute::SExt: return 1 << 1; 1705 case Attribute::NoReturn: return 1 << 2; 1706 case Attribute::InReg: return 1 << 3; 1707 case Attribute::StructRet: return 1 << 4; 1708 case Attribute::NoUnwind: return 1 << 5; 1709 case Attribute::NoAlias: return 1 << 6; 1710 case Attribute::ByVal: return 1 << 7; 1711 case Attribute::Nest: return 1 << 8; 1712 case Attribute::ReadNone: return 1 << 9; 1713 case Attribute::ReadOnly: return 1 << 10; 1714 case Attribute::NoInline: return 1 << 11; 1715 case Attribute::AlwaysInline: return 1 << 12; 1716 case Attribute::OptimizeForSize: return 1 << 13; 1717 case Attribute::StackProtect: return 1 << 14; 1718 case Attribute::StackProtectReq: return 1 << 15; 1719 case Attribute::Alignment: return 31 << 16; 1720 case Attribute::NoCapture: return 1 << 21; 1721 case Attribute::NoRedZone: return 1 << 22; 1722 case Attribute::NoImplicitFloat: return 1 << 23; 1723 case Attribute::Naked: return 1 << 24; 1724 case Attribute::InlineHint: return 1 << 25; 1725 case Attribute::StackAlignment: return 7 << 26; 1726 case Attribute::ReturnsTwice: return 1 << 29; 1727 case Attribute::UWTable: return 1 << 30; 1728 case Attribute::NonLazyBind: return 1U << 31; 1729 case Attribute::SanitizeAddress: return 1ULL << 32; 1730 case Attribute::MinSize: return 1ULL << 33; 1731 case Attribute::NoDuplicate: return 1ULL << 34; 1732 case Attribute::StackProtectStrong: return 1ULL << 35; 1733 case Attribute::SanitizeThread: return 1ULL << 36; 1734 case Attribute::SanitizeMemory: return 1ULL << 37; 1735 case Attribute::NoBuiltin: return 1ULL << 38; 1736 case Attribute::Returned: return 1ULL << 39; 1737 case Attribute::Cold: return 1ULL << 40; 1738 case Attribute::Builtin: return 1ULL << 41; 1739 case Attribute::OptimizeNone: return 1ULL << 42; 1740 case Attribute::InAlloca: return 1ULL << 43; 1741 case Attribute::NonNull: return 1ULL << 44; 1742 case Attribute::JumpTable: return 1ULL << 45; 1743 case Attribute::Convergent: return 1ULL << 46; 1744 case Attribute::SafeStack: return 1ULL << 47; 1745 case Attribute::NoRecurse: return 1ULL << 48; 1746 // 1ULL << 49 is InaccessibleMemOnly, which is upgraded separately. 1747 // 1ULL << 50 is InaccessibleMemOrArgMemOnly, which is upgraded separately. 1748 case Attribute::SwiftSelf: return 1ULL << 51; 1749 case Attribute::SwiftError: return 1ULL << 52; 1750 case Attribute::WriteOnly: return 1ULL << 53; 1751 case Attribute::Speculatable: return 1ULL << 54; 1752 case Attribute::StrictFP: return 1ULL << 55; 1753 case Attribute::SanitizeHWAddress: return 1ULL << 56; 1754 case Attribute::NoCfCheck: return 1ULL << 57; 1755 case Attribute::OptForFuzzing: return 1ULL << 58; 1756 case Attribute::ShadowCallStack: return 1ULL << 59; 1757 case Attribute::SpeculativeLoadHardening: 1758 return 1ULL << 60; 1759 case Attribute::ImmArg: 1760 return 1ULL << 61; 1761 case Attribute::WillReturn: 1762 return 1ULL << 62; 1763 case Attribute::NoFree: 1764 return 1ULL << 63; 1765 default: 1766 // Other attributes are not supported in the raw format, 1767 // as we ran out of space. 1768 return 0; 1769 } 1770 llvm_unreachable("Unsupported attribute type"); 1771 } 1772 1773 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) { 1774 if (!Val) return; 1775 1776 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; 1777 I = Attribute::AttrKind(I + 1)) { 1778 if (uint64_t A = (Val & getRawAttributeMask(I))) { 1779 if (I == Attribute::Alignment) 1780 B.addAlignmentAttr(1ULL << ((A >> 16) - 1)); 1781 else if (I == Attribute::StackAlignment) 1782 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1)); 1783 else if (Attribute::isTypeAttrKind(I)) 1784 B.addTypeAttr(I, nullptr); // Type will be auto-upgraded. 1785 else 1786 B.addAttribute(I); 1787 } 1788 } 1789 } 1790 1791 /// This fills an AttrBuilder object with the LLVM attributes that have 1792 /// been decoded from the given integer. This function must stay in sync with 1793 /// 'encodeLLVMAttributesForBitcode'. 1794 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1795 uint64_t EncodedAttrs, 1796 uint64_t AttrIdx) { 1797 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1798 // the bits above 31 down by 11 bits. 1799 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1800 assert((!Alignment || isPowerOf2_32(Alignment)) && 1801 "Alignment must be a power of two."); 1802 1803 if (Alignment) 1804 B.addAlignmentAttr(Alignment); 1805 1806 uint64_t Attrs = ((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1807 (EncodedAttrs & 0xffff); 1808 1809 if (AttrIdx == AttributeList::FunctionIndex) { 1810 // Upgrade old memory attributes. 1811 MemoryEffects ME = MemoryEffects::unknown(); 1812 if (Attrs & (1ULL << 9)) { 1813 // ReadNone 1814 Attrs &= ~(1ULL << 9); 1815 ME &= MemoryEffects::none(); 1816 } 1817 if (Attrs & (1ULL << 10)) { 1818 // ReadOnly 1819 Attrs &= ~(1ULL << 10); 1820 ME &= MemoryEffects::readOnly(); 1821 } 1822 if (Attrs & (1ULL << 49)) { 1823 // InaccessibleMemOnly 1824 Attrs &= ~(1ULL << 49); 1825 ME &= MemoryEffects::inaccessibleMemOnly(); 1826 } 1827 if (Attrs & (1ULL << 50)) { 1828 // InaccessibleMemOrArgMemOnly 1829 Attrs &= ~(1ULL << 50); 1830 ME &= MemoryEffects::inaccessibleOrArgMemOnly(); 1831 } 1832 if (Attrs & (1ULL << 53)) { 1833 // WriteOnly 1834 Attrs &= ~(1ULL << 53); 1835 ME &= MemoryEffects::writeOnly(); 1836 } 1837 if (ME != MemoryEffects::unknown()) 1838 B.addMemoryAttr(ME); 1839 } 1840 1841 addRawAttributeValue(B, Attrs); 1842 } 1843 1844 Error BitcodeReader::parseAttributeBlock() { 1845 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1846 return Err; 1847 1848 if (!MAttributes.empty()) 1849 return error("Invalid multiple blocks"); 1850 1851 SmallVector<uint64_t, 64> Record; 1852 1853 SmallVector<AttributeList, 8> Attrs; 1854 1855 // Read all the records. 1856 while (true) { 1857 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1858 if (!MaybeEntry) 1859 return MaybeEntry.takeError(); 1860 BitstreamEntry Entry = MaybeEntry.get(); 1861 1862 switch (Entry.Kind) { 1863 case BitstreamEntry::SubBlock: // Handled for us already. 1864 case BitstreamEntry::Error: 1865 return error("Malformed block"); 1866 case BitstreamEntry::EndBlock: 1867 return Error::success(); 1868 case BitstreamEntry::Record: 1869 // The interesting case. 1870 break; 1871 } 1872 1873 // Read a record. 1874 Record.clear(); 1875 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1876 if (!MaybeRecord) 1877 return MaybeRecord.takeError(); 1878 switch (MaybeRecord.get()) { 1879 default: // Default behavior: ignore. 1880 break; 1881 case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...] 1882 // Deprecated, but still needed to read old bitcode files. 1883 if (Record.size() & 1) 1884 return error("Invalid parameter attribute record"); 1885 1886 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1887 AttrBuilder B(Context); 1888 decodeLLVMAttributesForBitcode(B, Record[i+1], Record[i]); 1889 Attrs.push_back(AttributeList::get(Context, Record[i], B)); 1890 } 1891 1892 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1893 Attrs.clear(); 1894 break; 1895 case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...] 1896 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1897 Attrs.push_back(MAttributeGroups[Record[i]]); 1898 1899 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1900 Attrs.clear(); 1901 break; 1902 } 1903 } 1904 } 1905 1906 // Returns Attribute::None on unrecognized codes. 1907 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1908 switch (Code) { 1909 default: 1910 return Attribute::None; 1911 case bitc::ATTR_KIND_ALIGNMENT: 1912 return Attribute::Alignment; 1913 case bitc::ATTR_KIND_ALWAYS_INLINE: 1914 return Attribute::AlwaysInline; 1915 case bitc::ATTR_KIND_BUILTIN: 1916 return Attribute::Builtin; 1917 case bitc::ATTR_KIND_BY_VAL: 1918 return Attribute::ByVal; 1919 case bitc::ATTR_KIND_IN_ALLOCA: 1920 return Attribute::InAlloca; 1921 case bitc::ATTR_KIND_COLD: 1922 return Attribute::Cold; 1923 case bitc::ATTR_KIND_CONVERGENT: 1924 return Attribute::Convergent; 1925 case bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION: 1926 return Attribute::DisableSanitizerInstrumentation; 1927 case bitc::ATTR_KIND_ELEMENTTYPE: 1928 return Attribute::ElementType; 1929 case bitc::ATTR_KIND_FNRETTHUNK_EXTERN: 1930 return Attribute::FnRetThunkExtern; 1931 case bitc::ATTR_KIND_INLINE_HINT: 1932 return Attribute::InlineHint; 1933 case bitc::ATTR_KIND_IN_REG: 1934 return Attribute::InReg; 1935 case bitc::ATTR_KIND_JUMP_TABLE: 1936 return Attribute::JumpTable; 1937 case bitc::ATTR_KIND_MEMORY: 1938 return Attribute::Memory; 1939 case bitc::ATTR_KIND_NOFPCLASS: 1940 return Attribute::NoFPClass; 1941 case bitc::ATTR_KIND_MIN_SIZE: 1942 return Attribute::MinSize; 1943 case bitc::ATTR_KIND_NAKED: 1944 return Attribute::Naked; 1945 case bitc::ATTR_KIND_NEST: 1946 return Attribute::Nest; 1947 case bitc::ATTR_KIND_NO_ALIAS: 1948 return Attribute::NoAlias; 1949 case bitc::ATTR_KIND_NO_BUILTIN: 1950 return Attribute::NoBuiltin; 1951 case bitc::ATTR_KIND_NO_CALLBACK: 1952 return Attribute::NoCallback; 1953 case bitc::ATTR_KIND_NO_CAPTURE: 1954 return Attribute::NoCapture; 1955 case bitc::ATTR_KIND_NO_DUPLICATE: 1956 return Attribute::NoDuplicate; 1957 case bitc::ATTR_KIND_NOFREE: 1958 return Attribute::NoFree; 1959 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1960 return Attribute::NoImplicitFloat; 1961 case bitc::ATTR_KIND_NO_INLINE: 1962 return Attribute::NoInline; 1963 case bitc::ATTR_KIND_NO_RECURSE: 1964 return Attribute::NoRecurse; 1965 case bitc::ATTR_KIND_NO_MERGE: 1966 return Attribute::NoMerge; 1967 case bitc::ATTR_KIND_NON_LAZY_BIND: 1968 return Attribute::NonLazyBind; 1969 case bitc::ATTR_KIND_NON_NULL: 1970 return Attribute::NonNull; 1971 case bitc::ATTR_KIND_DEREFERENCEABLE: 1972 return Attribute::Dereferenceable; 1973 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1974 return Attribute::DereferenceableOrNull; 1975 case bitc::ATTR_KIND_ALLOC_ALIGN: 1976 return Attribute::AllocAlign; 1977 case bitc::ATTR_KIND_ALLOC_KIND: 1978 return Attribute::AllocKind; 1979 case bitc::ATTR_KIND_ALLOC_SIZE: 1980 return Attribute::AllocSize; 1981 case bitc::ATTR_KIND_ALLOCATED_POINTER: 1982 return Attribute::AllocatedPointer; 1983 case bitc::ATTR_KIND_NO_RED_ZONE: 1984 return Attribute::NoRedZone; 1985 case bitc::ATTR_KIND_NO_RETURN: 1986 return Attribute::NoReturn; 1987 case bitc::ATTR_KIND_NOSYNC: 1988 return Attribute::NoSync; 1989 case bitc::ATTR_KIND_NOCF_CHECK: 1990 return Attribute::NoCfCheck; 1991 case bitc::ATTR_KIND_NO_PROFILE: 1992 return Attribute::NoProfile; 1993 case bitc::ATTR_KIND_SKIP_PROFILE: 1994 return Attribute::SkipProfile; 1995 case bitc::ATTR_KIND_NO_UNWIND: 1996 return Attribute::NoUnwind; 1997 case bitc::ATTR_KIND_NO_SANITIZE_BOUNDS: 1998 return Attribute::NoSanitizeBounds; 1999 case bitc::ATTR_KIND_NO_SANITIZE_COVERAGE: 2000 return Attribute::NoSanitizeCoverage; 2001 case bitc::ATTR_KIND_NULL_POINTER_IS_VALID: 2002 return Attribute::NullPointerIsValid; 2003 case bitc::ATTR_KIND_OPT_FOR_FUZZING: 2004 return Attribute::OptForFuzzing; 2005 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 2006 return Attribute::OptimizeForSize; 2007 case bitc::ATTR_KIND_OPTIMIZE_NONE: 2008 return Attribute::OptimizeNone; 2009 case bitc::ATTR_KIND_READ_NONE: 2010 return Attribute::ReadNone; 2011 case bitc::ATTR_KIND_READ_ONLY: 2012 return Attribute::ReadOnly; 2013 case bitc::ATTR_KIND_RETURNED: 2014 return Attribute::Returned; 2015 case bitc::ATTR_KIND_RETURNS_TWICE: 2016 return Attribute::ReturnsTwice; 2017 case bitc::ATTR_KIND_S_EXT: 2018 return Attribute::SExt; 2019 case bitc::ATTR_KIND_SPECULATABLE: 2020 return Attribute::Speculatable; 2021 case bitc::ATTR_KIND_STACK_ALIGNMENT: 2022 return Attribute::StackAlignment; 2023 case bitc::ATTR_KIND_STACK_PROTECT: 2024 return Attribute::StackProtect; 2025 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 2026 return Attribute::StackProtectReq; 2027 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 2028 return Attribute::StackProtectStrong; 2029 case bitc::ATTR_KIND_SAFESTACK: 2030 return Attribute::SafeStack; 2031 case bitc::ATTR_KIND_SHADOWCALLSTACK: 2032 return Attribute::ShadowCallStack; 2033 case bitc::ATTR_KIND_STRICT_FP: 2034 return Attribute::StrictFP; 2035 case bitc::ATTR_KIND_STRUCT_RET: 2036 return Attribute::StructRet; 2037 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 2038 return Attribute::SanitizeAddress; 2039 case bitc::ATTR_KIND_SANITIZE_HWADDRESS: 2040 return Attribute::SanitizeHWAddress; 2041 case bitc::ATTR_KIND_SANITIZE_THREAD: 2042 return Attribute::SanitizeThread; 2043 case bitc::ATTR_KIND_SANITIZE_MEMORY: 2044 return Attribute::SanitizeMemory; 2045 case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING: 2046 return Attribute::SpeculativeLoadHardening; 2047 case bitc::ATTR_KIND_SWIFT_ERROR: 2048 return Attribute::SwiftError; 2049 case bitc::ATTR_KIND_SWIFT_SELF: 2050 return Attribute::SwiftSelf; 2051 case bitc::ATTR_KIND_SWIFT_ASYNC: 2052 return Attribute::SwiftAsync; 2053 case bitc::ATTR_KIND_UW_TABLE: 2054 return Attribute::UWTable; 2055 case bitc::ATTR_KIND_VSCALE_RANGE: 2056 return Attribute::VScaleRange; 2057 case bitc::ATTR_KIND_WILLRETURN: 2058 return Attribute::WillReturn; 2059 case bitc::ATTR_KIND_WRITEONLY: 2060 return Attribute::WriteOnly; 2061 case bitc::ATTR_KIND_Z_EXT: 2062 return Attribute::ZExt; 2063 case bitc::ATTR_KIND_IMMARG: 2064 return Attribute::ImmArg; 2065 case bitc::ATTR_KIND_SANITIZE_MEMTAG: 2066 return Attribute::SanitizeMemTag; 2067 case bitc::ATTR_KIND_PREALLOCATED: 2068 return Attribute::Preallocated; 2069 case bitc::ATTR_KIND_NOUNDEF: 2070 return Attribute::NoUndef; 2071 case bitc::ATTR_KIND_BYREF: 2072 return Attribute::ByRef; 2073 case bitc::ATTR_KIND_MUSTPROGRESS: 2074 return Attribute::MustProgress; 2075 case bitc::ATTR_KIND_HOT: 2076 return Attribute::Hot; 2077 case bitc::ATTR_KIND_PRESPLIT_COROUTINE: 2078 return Attribute::PresplitCoroutine; 2079 } 2080 } 2081 2082 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent, 2083 MaybeAlign &Alignment) { 2084 // Note: Alignment in bitcode files is incremented by 1, so that zero 2085 // can be used for default alignment. 2086 if (Exponent > Value::MaxAlignmentExponent + 1) 2087 return error("Invalid alignment value"); 2088 Alignment = decodeMaybeAlign(Exponent); 2089 return Error::success(); 2090 } 2091 2092 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) { 2093 *Kind = getAttrFromCode(Code); 2094 if (*Kind == Attribute::None) 2095 return error("Unknown attribute kind (" + Twine(Code) + ")"); 2096 return Error::success(); 2097 } 2098 2099 static bool upgradeOldMemoryAttribute(MemoryEffects &ME, uint64_t EncodedKind) { 2100 switch (EncodedKind) { 2101 case bitc::ATTR_KIND_READ_NONE: 2102 ME &= MemoryEffects::none(); 2103 return true; 2104 case bitc::ATTR_KIND_READ_ONLY: 2105 ME &= MemoryEffects::readOnly(); 2106 return true; 2107 case bitc::ATTR_KIND_WRITEONLY: 2108 ME &= MemoryEffects::writeOnly(); 2109 return true; 2110 case bitc::ATTR_KIND_ARGMEMONLY: 2111 ME &= MemoryEffects::argMemOnly(); 2112 return true; 2113 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 2114 ME &= MemoryEffects::inaccessibleMemOnly(); 2115 return true; 2116 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 2117 ME &= MemoryEffects::inaccessibleOrArgMemOnly(); 2118 return true; 2119 default: 2120 return false; 2121 } 2122 } 2123 2124 Error BitcodeReader::parseAttributeGroupBlock() { 2125 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 2126 return Err; 2127 2128 if (!MAttributeGroups.empty()) 2129 return error("Invalid multiple blocks"); 2130 2131 SmallVector<uint64_t, 64> Record; 2132 2133 // Read all the records. 2134 while (true) { 2135 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2136 if (!MaybeEntry) 2137 return MaybeEntry.takeError(); 2138 BitstreamEntry Entry = MaybeEntry.get(); 2139 2140 switch (Entry.Kind) { 2141 case BitstreamEntry::SubBlock: // Handled for us already. 2142 case BitstreamEntry::Error: 2143 return error("Malformed block"); 2144 case BitstreamEntry::EndBlock: 2145 return Error::success(); 2146 case BitstreamEntry::Record: 2147 // The interesting case. 2148 break; 2149 } 2150 2151 // Read a record. 2152 Record.clear(); 2153 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2154 if (!MaybeRecord) 2155 return MaybeRecord.takeError(); 2156 switch (MaybeRecord.get()) { 2157 default: // Default behavior: ignore. 2158 break; 2159 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 2160 if (Record.size() < 3) 2161 return error("Invalid grp record"); 2162 2163 uint64_t GrpID = Record[0]; 2164 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 2165 2166 AttrBuilder B(Context); 2167 MemoryEffects ME = MemoryEffects::unknown(); 2168 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 2169 if (Record[i] == 0) { // Enum attribute 2170 Attribute::AttrKind Kind; 2171 uint64_t EncodedKind = Record[++i]; 2172 if (Idx == AttributeList::FunctionIndex && 2173 upgradeOldMemoryAttribute(ME, EncodedKind)) 2174 continue; 2175 2176 if (Error Err = parseAttrKind(EncodedKind, &Kind)) 2177 return Err; 2178 2179 // Upgrade old-style byval attribute to one with a type, even if it's 2180 // nullptr. We will have to insert the real type when we associate 2181 // this AttributeList with a function. 2182 if (Kind == Attribute::ByVal) 2183 B.addByValAttr(nullptr); 2184 else if (Kind == Attribute::StructRet) 2185 B.addStructRetAttr(nullptr); 2186 else if (Kind == Attribute::InAlloca) 2187 B.addInAllocaAttr(nullptr); 2188 else if (Kind == Attribute::UWTable) 2189 B.addUWTableAttr(UWTableKind::Default); 2190 else if (Attribute::isEnumAttrKind(Kind)) 2191 B.addAttribute(Kind); 2192 else 2193 return error("Not an enum attribute"); 2194 } else if (Record[i] == 1) { // Integer attribute 2195 Attribute::AttrKind Kind; 2196 if (Error Err = parseAttrKind(Record[++i], &Kind)) 2197 return Err; 2198 if (!Attribute::isIntAttrKind(Kind)) 2199 return error("Not an int attribute"); 2200 if (Kind == Attribute::Alignment) 2201 B.addAlignmentAttr(Record[++i]); 2202 else if (Kind == Attribute::StackAlignment) 2203 B.addStackAlignmentAttr(Record[++i]); 2204 else if (Kind == Attribute::Dereferenceable) 2205 B.addDereferenceableAttr(Record[++i]); 2206 else if (Kind == Attribute::DereferenceableOrNull) 2207 B.addDereferenceableOrNullAttr(Record[++i]); 2208 else if (Kind == Attribute::AllocSize) 2209 B.addAllocSizeAttrFromRawRepr(Record[++i]); 2210 else if (Kind == Attribute::VScaleRange) 2211 B.addVScaleRangeAttrFromRawRepr(Record[++i]); 2212 else if (Kind == Attribute::UWTable) 2213 B.addUWTableAttr(UWTableKind(Record[++i])); 2214 else if (Kind == Attribute::AllocKind) 2215 B.addAllocKindAttr(static_cast<AllocFnKind>(Record[++i])); 2216 else if (Kind == Attribute::Memory) 2217 B.addMemoryAttr(MemoryEffects::createFromIntValue(Record[++i])); 2218 else if (Kind == Attribute::NoFPClass) 2219 B.addNoFPClassAttr( 2220 static_cast<FPClassTest>(Record[++i] & fcAllFlags)); 2221 } else if (Record[i] == 3 || Record[i] == 4) { // String attribute 2222 bool HasValue = (Record[i++] == 4); 2223 SmallString<64> KindStr; 2224 SmallString<64> ValStr; 2225 2226 while (Record[i] != 0 && i != e) 2227 KindStr += Record[i++]; 2228 assert(Record[i] == 0 && "Kind string not null terminated"); 2229 2230 if (HasValue) { 2231 // Has a value associated with it. 2232 ++i; // Skip the '0' that terminates the "kind" string. 2233 while (Record[i] != 0 && i != e) 2234 ValStr += Record[i++]; 2235 assert(Record[i] == 0 && "Value string not null terminated"); 2236 } 2237 2238 B.addAttribute(KindStr.str(), ValStr.str()); 2239 } else if (Record[i] == 5 || Record[i] == 6) { 2240 bool HasType = Record[i] == 6; 2241 Attribute::AttrKind Kind; 2242 if (Error Err = parseAttrKind(Record[++i], &Kind)) 2243 return Err; 2244 if (!Attribute::isTypeAttrKind(Kind)) 2245 return error("Not a type attribute"); 2246 2247 B.addTypeAttr(Kind, HasType ? getTypeByID(Record[++i]) : nullptr); 2248 } else { 2249 return error("Invalid attribute group entry"); 2250 } 2251 } 2252 2253 if (ME != MemoryEffects::unknown()) 2254 B.addMemoryAttr(ME); 2255 2256 UpgradeAttributes(B); 2257 MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B); 2258 break; 2259 } 2260 } 2261 } 2262 } 2263 2264 Error BitcodeReader::parseTypeTable() { 2265 if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 2266 return Err; 2267 2268 return parseTypeTableBody(); 2269 } 2270 2271 Error BitcodeReader::parseTypeTableBody() { 2272 if (!TypeList.empty()) 2273 return error("Invalid multiple blocks"); 2274 2275 SmallVector<uint64_t, 64> Record; 2276 unsigned NumRecords = 0; 2277 2278 SmallString<64> TypeName; 2279 2280 // Read all the records for this type table. 2281 while (true) { 2282 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2283 if (!MaybeEntry) 2284 return MaybeEntry.takeError(); 2285 BitstreamEntry Entry = MaybeEntry.get(); 2286 2287 switch (Entry.Kind) { 2288 case BitstreamEntry::SubBlock: // Handled for us already. 2289 case BitstreamEntry::Error: 2290 return error("Malformed block"); 2291 case BitstreamEntry::EndBlock: 2292 if (NumRecords != TypeList.size()) 2293 return error("Malformed block"); 2294 return Error::success(); 2295 case BitstreamEntry::Record: 2296 // The interesting case. 2297 break; 2298 } 2299 2300 // Read a record. 2301 Record.clear(); 2302 Type *ResultTy = nullptr; 2303 SmallVector<unsigned> ContainedIDs; 2304 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2305 if (!MaybeRecord) 2306 return MaybeRecord.takeError(); 2307 switch (MaybeRecord.get()) { 2308 default: 2309 return error("Invalid value"); 2310 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 2311 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 2312 // type list. This allows us to reserve space. 2313 if (Record.empty()) 2314 return error("Invalid numentry record"); 2315 TypeList.resize(Record[0]); 2316 continue; 2317 case bitc::TYPE_CODE_VOID: // VOID 2318 ResultTy = Type::getVoidTy(Context); 2319 break; 2320 case bitc::TYPE_CODE_HALF: // HALF 2321 ResultTy = Type::getHalfTy(Context); 2322 break; 2323 case bitc::TYPE_CODE_BFLOAT: // BFLOAT 2324 ResultTy = Type::getBFloatTy(Context); 2325 break; 2326 case bitc::TYPE_CODE_FLOAT: // FLOAT 2327 ResultTy = Type::getFloatTy(Context); 2328 break; 2329 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 2330 ResultTy = Type::getDoubleTy(Context); 2331 break; 2332 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 2333 ResultTy = Type::getX86_FP80Ty(Context); 2334 break; 2335 case bitc::TYPE_CODE_FP128: // FP128 2336 ResultTy = Type::getFP128Ty(Context); 2337 break; 2338 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 2339 ResultTy = Type::getPPC_FP128Ty(Context); 2340 break; 2341 case bitc::TYPE_CODE_LABEL: // LABEL 2342 ResultTy = Type::getLabelTy(Context); 2343 break; 2344 case bitc::TYPE_CODE_METADATA: // METADATA 2345 ResultTy = Type::getMetadataTy(Context); 2346 break; 2347 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 2348 ResultTy = Type::getX86_MMXTy(Context); 2349 break; 2350 case bitc::TYPE_CODE_X86_AMX: // X86_AMX 2351 ResultTy = Type::getX86_AMXTy(Context); 2352 break; 2353 case bitc::TYPE_CODE_TOKEN: // TOKEN 2354 ResultTy = Type::getTokenTy(Context); 2355 break; 2356 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 2357 if (Record.empty()) 2358 return error("Invalid integer record"); 2359 2360 uint64_t NumBits = Record[0]; 2361 if (NumBits < IntegerType::MIN_INT_BITS || 2362 NumBits > IntegerType::MAX_INT_BITS) 2363 return error("Bitwidth for integer type out of range"); 2364 ResultTy = IntegerType::get(Context, NumBits); 2365 break; 2366 } 2367 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 2368 // [pointee type, address space] 2369 if (Record.empty()) 2370 return error("Invalid pointer record"); 2371 unsigned AddressSpace = 0; 2372 if (Record.size() == 2) 2373 AddressSpace = Record[1]; 2374 ResultTy = getTypeByID(Record[0]); 2375 if (!ResultTy || 2376 !PointerType::isValidElementType(ResultTy)) 2377 return error("Invalid type"); 2378 ContainedIDs.push_back(Record[0]); 2379 ResultTy = PointerType::get(ResultTy, AddressSpace); 2380 break; 2381 } 2382 case bitc::TYPE_CODE_OPAQUE_POINTER: { // OPAQUE_POINTER: [addrspace] 2383 if (Record.size() != 1) 2384 return error("Invalid opaque pointer record"); 2385 if (Context.supportsTypedPointers()) 2386 return error( 2387 "Opaque pointers are only supported in -opaque-pointers mode"); 2388 unsigned AddressSpace = Record[0]; 2389 ResultTy = PointerType::get(Context, AddressSpace); 2390 break; 2391 } 2392 case bitc::TYPE_CODE_FUNCTION_OLD: { 2393 // Deprecated, but still needed to read old bitcode files. 2394 // FUNCTION: [vararg, attrid, retty, paramty x N] 2395 if (Record.size() < 3) 2396 return error("Invalid function record"); 2397 SmallVector<Type*, 8> ArgTys; 2398 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 2399 if (Type *T = getTypeByID(Record[i])) 2400 ArgTys.push_back(T); 2401 else 2402 break; 2403 } 2404 2405 ResultTy = getTypeByID(Record[2]); 2406 if (!ResultTy || ArgTys.size() < Record.size()-3) 2407 return error("Invalid type"); 2408 2409 ContainedIDs.append(Record.begin() + 2, Record.end()); 2410 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 2411 break; 2412 } 2413 case bitc::TYPE_CODE_FUNCTION: { 2414 // FUNCTION: [vararg, retty, paramty x N] 2415 if (Record.size() < 2) 2416 return error("Invalid function record"); 2417 SmallVector<Type*, 8> ArgTys; 2418 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 2419 if (Type *T = getTypeByID(Record[i])) { 2420 if (!FunctionType::isValidArgumentType(T)) 2421 return error("Invalid function argument type"); 2422 ArgTys.push_back(T); 2423 } 2424 else 2425 break; 2426 } 2427 2428 ResultTy = getTypeByID(Record[1]); 2429 if (!ResultTy || ArgTys.size() < Record.size()-2) 2430 return error("Invalid type"); 2431 2432 ContainedIDs.append(Record.begin() + 1, Record.end()); 2433 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 2434 break; 2435 } 2436 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 2437 if (Record.empty()) 2438 return error("Invalid anon struct record"); 2439 SmallVector<Type*, 8> EltTys; 2440 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 2441 if (Type *T = getTypeByID(Record[i])) 2442 EltTys.push_back(T); 2443 else 2444 break; 2445 } 2446 if (EltTys.size() != Record.size()-1) 2447 return error("Invalid type"); 2448 ContainedIDs.append(Record.begin() + 1, Record.end()); 2449 ResultTy = StructType::get(Context, EltTys, Record[0]); 2450 break; 2451 } 2452 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 2453 if (convertToString(Record, 0, TypeName)) 2454 return error("Invalid struct name record"); 2455 continue; 2456 2457 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 2458 if (Record.empty()) 2459 return error("Invalid named struct record"); 2460 2461 if (NumRecords >= TypeList.size()) 2462 return error("Invalid TYPE table"); 2463 2464 // Check to see if this was forward referenced, if so fill in the temp. 2465 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 2466 if (Res) { 2467 Res->setName(TypeName); 2468 TypeList[NumRecords] = nullptr; 2469 } else // Otherwise, create a new struct. 2470 Res = createIdentifiedStructType(Context, TypeName); 2471 TypeName.clear(); 2472 2473 SmallVector<Type*, 8> EltTys; 2474 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 2475 if (Type *T = getTypeByID(Record[i])) 2476 EltTys.push_back(T); 2477 else 2478 break; 2479 } 2480 if (EltTys.size() != Record.size()-1) 2481 return error("Invalid named struct record"); 2482 Res->setBody(EltTys, Record[0]); 2483 ContainedIDs.append(Record.begin() + 1, Record.end()); 2484 ResultTy = Res; 2485 break; 2486 } 2487 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 2488 if (Record.size() != 1) 2489 return error("Invalid opaque type record"); 2490 2491 if (NumRecords >= TypeList.size()) 2492 return error("Invalid TYPE table"); 2493 2494 // Check to see if this was forward referenced, if so fill in the temp. 2495 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 2496 if (Res) { 2497 Res->setName(TypeName); 2498 TypeList[NumRecords] = nullptr; 2499 } else // Otherwise, create a new struct with no body. 2500 Res = createIdentifiedStructType(Context, TypeName); 2501 TypeName.clear(); 2502 ResultTy = Res; 2503 break; 2504 } 2505 case bitc::TYPE_CODE_TARGET_TYPE: { // TARGET_TYPE: [NumTy, Tys..., Ints...] 2506 if (Record.size() < 1) 2507 return error("Invalid target extension type record"); 2508 2509 if (NumRecords >= TypeList.size()) 2510 return error("Invalid TYPE table"); 2511 2512 if (Record[0] >= Record.size()) 2513 return error("Too many type parameters"); 2514 2515 unsigned NumTys = Record[0]; 2516 SmallVector<Type *, 4> TypeParams; 2517 SmallVector<unsigned, 8> IntParams; 2518 for (unsigned i = 0; i < NumTys; i++) { 2519 if (Type *T = getTypeByID(Record[i + 1])) 2520 TypeParams.push_back(T); 2521 else 2522 return error("Invalid type"); 2523 } 2524 2525 for (unsigned i = NumTys + 1, e = Record.size(); i < e; i++) { 2526 if (Record[i] > UINT_MAX) 2527 return error("Integer parameter too large"); 2528 IntParams.push_back(Record[i]); 2529 } 2530 ResultTy = TargetExtType::get(Context, TypeName, TypeParams, IntParams); 2531 TypeName.clear(); 2532 break; 2533 } 2534 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 2535 if (Record.size() < 2) 2536 return error("Invalid array type record"); 2537 ResultTy = getTypeByID(Record[1]); 2538 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 2539 return error("Invalid type"); 2540 ContainedIDs.push_back(Record[1]); 2541 ResultTy = ArrayType::get(ResultTy, Record[0]); 2542 break; 2543 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] or 2544 // [numelts, eltty, scalable] 2545 if (Record.size() < 2) 2546 return error("Invalid vector type record"); 2547 if (Record[0] == 0) 2548 return error("Invalid vector length"); 2549 ResultTy = getTypeByID(Record[1]); 2550 if (!ResultTy || !VectorType::isValidElementType(ResultTy)) 2551 return error("Invalid type"); 2552 bool Scalable = Record.size() > 2 ? Record[2] : false; 2553 ContainedIDs.push_back(Record[1]); 2554 ResultTy = VectorType::get(ResultTy, Record[0], Scalable); 2555 break; 2556 } 2557 2558 if (NumRecords >= TypeList.size()) 2559 return error("Invalid TYPE table"); 2560 if (TypeList[NumRecords]) 2561 return error( 2562 "Invalid TYPE table: Only named structs can be forward referenced"); 2563 assert(ResultTy && "Didn't read a type?"); 2564 TypeList[NumRecords] = ResultTy; 2565 if (!ContainedIDs.empty()) 2566 ContainedTypeIDs[NumRecords] = std::move(ContainedIDs); 2567 ++NumRecords; 2568 } 2569 } 2570 2571 Error BitcodeReader::parseOperandBundleTags() { 2572 if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 2573 return Err; 2574 2575 if (!BundleTags.empty()) 2576 return error("Invalid multiple blocks"); 2577 2578 SmallVector<uint64_t, 64> Record; 2579 2580 while (true) { 2581 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2582 if (!MaybeEntry) 2583 return MaybeEntry.takeError(); 2584 BitstreamEntry Entry = MaybeEntry.get(); 2585 2586 switch (Entry.Kind) { 2587 case BitstreamEntry::SubBlock: // Handled for us already. 2588 case BitstreamEntry::Error: 2589 return error("Malformed block"); 2590 case BitstreamEntry::EndBlock: 2591 return Error::success(); 2592 case BitstreamEntry::Record: 2593 // The interesting case. 2594 break; 2595 } 2596 2597 // Tags are implicitly mapped to integers by their order. 2598 2599 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2600 if (!MaybeRecord) 2601 return MaybeRecord.takeError(); 2602 if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG) 2603 return error("Invalid operand bundle record"); 2604 2605 // OPERAND_BUNDLE_TAG: [strchr x N] 2606 BundleTags.emplace_back(); 2607 if (convertToString(Record, 0, BundleTags.back())) 2608 return error("Invalid operand bundle record"); 2609 Record.clear(); 2610 } 2611 } 2612 2613 Error BitcodeReader::parseSyncScopeNames() { 2614 if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID)) 2615 return Err; 2616 2617 if (!SSIDs.empty()) 2618 return error("Invalid multiple synchronization scope names blocks"); 2619 2620 SmallVector<uint64_t, 64> Record; 2621 while (true) { 2622 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2623 if (!MaybeEntry) 2624 return MaybeEntry.takeError(); 2625 BitstreamEntry Entry = MaybeEntry.get(); 2626 2627 switch (Entry.Kind) { 2628 case BitstreamEntry::SubBlock: // Handled for us already. 2629 case BitstreamEntry::Error: 2630 return error("Malformed block"); 2631 case BitstreamEntry::EndBlock: 2632 if (SSIDs.empty()) 2633 return error("Invalid empty synchronization scope names block"); 2634 return Error::success(); 2635 case BitstreamEntry::Record: 2636 // The interesting case. 2637 break; 2638 } 2639 2640 // Synchronization scope names are implicitly mapped to synchronization 2641 // scope IDs by their order. 2642 2643 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2644 if (!MaybeRecord) 2645 return MaybeRecord.takeError(); 2646 if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME) 2647 return error("Invalid sync scope record"); 2648 2649 SmallString<16> SSN; 2650 if (convertToString(Record, 0, SSN)) 2651 return error("Invalid sync scope record"); 2652 2653 SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN)); 2654 Record.clear(); 2655 } 2656 } 2657 2658 /// Associate a value with its name from the given index in the provided record. 2659 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 2660 unsigned NameIndex, Triple &TT) { 2661 SmallString<128> ValueName; 2662 if (convertToString(Record, NameIndex, ValueName)) 2663 return error("Invalid record"); 2664 unsigned ValueID = Record[0]; 2665 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 2666 return error("Invalid record"); 2667 Value *V = ValueList[ValueID]; 2668 2669 StringRef NameStr(ValueName.data(), ValueName.size()); 2670 if (NameStr.find_first_of(0) != StringRef::npos) 2671 return error("Invalid value name"); 2672 V->setName(NameStr); 2673 auto *GO = dyn_cast<GlobalObject>(V); 2674 if (GO && ImplicitComdatObjects.contains(GO) && TT.supportsCOMDAT()) 2675 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 2676 return V; 2677 } 2678 2679 /// Helper to note and return the current location, and jump to the given 2680 /// offset. 2681 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset, 2682 BitstreamCursor &Stream) { 2683 // Save the current parsing location so we can jump back at the end 2684 // of the VST read. 2685 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 2686 if (Error JumpFailed = Stream.JumpToBit(Offset * 32)) 2687 return std::move(JumpFailed); 2688 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 2689 if (!MaybeEntry) 2690 return MaybeEntry.takeError(); 2691 if (MaybeEntry.get().Kind != BitstreamEntry::SubBlock || 2692 MaybeEntry.get().ID != bitc::VALUE_SYMTAB_BLOCK_ID) 2693 return error("Expected value symbol table subblock"); 2694 return CurrentBit; 2695 } 2696 2697 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, 2698 Function *F, 2699 ArrayRef<uint64_t> Record) { 2700 // Note that we subtract 1 here because the offset is relative to one word 2701 // before the start of the identification or module block, which was 2702 // historically always the start of the regular bitcode header. 2703 uint64_t FuncWordOffset = Record[1] - 1; 2704 uint64_t FuncBitOffset = FuncWordOffset * 32; 2705 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 2706 // Set the LastFunctionBlockBit to point to the last function block. 2707 // Later when parsing is resumed after function materialization, 2708 // we can simply skip that last function block. 2709 if (FuncBitOffset > LastFunctionBlockBit) 2710 LastFunctionBlockBit = FuncBitOffset; 2711 } 2712 2713 /// Read a new-style GlobalValue symbol table. 2714 Error BitcodeReader::parseGlobalValueSymbolTable() { 2715 unsigned FuncBitcodeOffsetDelta = 2716 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2717 2718 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2719 return Err; 2720 2721 SmallVector<uint64_t, 64> Record; 2722 while (true) { 2723 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2724 if (!MaybeEntry) 2725 return MaybeEntry.takeError(); 2726 BitstreamEntry Entry = MaybeEntry.get(); 2727 2728 switch (Entry.Kind) { 2729 case BitstreamEntry::SubBlock: 2730 case BitstreamEntry::Error: 2731 return error("Malformed block"); 2732 case BitstreamEntry::EndBlock: 2733 return Error::success(); 2734 case BitstreamEntry::Record: 2735 break; 2736 } 2737 2738 Record.clear(); 2739 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2740 if (!MaybeRecord) 2741 return MaybeRecord.takeError(); 2742 switch (MaybeRecord.get()) { 2743 case bitc::VST_CODE_FNENTRY: { // [valueid, offset] 2744 unsigned ValueID = Record[0]; 2745 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 2746 return error("Invalid value reference in symbol table"); 2747 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, 2748 cast<Function>(ValueList[ValueID]), Record); 2749 break; 2750 } 2751 } 2752 } 2753 } 2754 2755 /// Parse the value symbol table at either the current parsing location or 2756 /// at the given bit offset if provided. 2757 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 2758 uint64_t CurrentBit; 2759 // Pass in the Offset to distinguish between calling for the module-level 2760 // VST (where we want to jump to the VST offset) and the function-level 2761 // VST (where we don't). 2762 if (Offset > 0) { 2763 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 2764 if (!MaybeCurrentBit) 2765 return MaybeCurrentBit.takeError(); 2766 CurrentBit = MaybeCurrentBit.get(); 2767 // If this module uses a string table, read this as a module-level VST. 2768 if (UseStrtab) { 2769 if (Error Err = parseGlobalValueSymbolTable()) 2770 return Err; 2771 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2772 return JumpFailed; 2773 return Error::success(); 2774 } 2775 // Otherwise, the VST will be in a similar format to a function-level VST, 2776 // and will contain symbol names. 2777 } 2778 2779 // Compute the delta between the bitcode indices in the VST (the word offset 2780 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 2781 // expected by the lazy reader. The reader's EnterSubBlock expects to have 2782 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 2783 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 2784 // just before entering the VST subblock because: 1) the EnterSubBlock 2785 // changes the AbbrevID width; 2) the VST block is nested within the same 2786 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 2787 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 2788 // jump to the FUNCTION_BLOCK using this offset later, we don't want 2789 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 2790 unsigned FuncBitcodeOffsetDelta = 2791 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2792 2793 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2794 return Err; 2795 2796 SmallVector<uint64_t, 64> Record; 2797 2798 Triple TT(TheModule->getTargetTriple()); 2799 2800 // Read all the records for this value table. 2801 SmallString<128> ValueName; 2802 2803 while (true) { 2804 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2805 if (!MaybeEntry) 2806 return MaybeEntry.takeError(); 2807 BitstreamEntry Entry = MaybeEntry.get(); 2808 2809 switch (Entry.Kind) { 2810 case BitstreamEntry::SubBlock: // Handled for us already. 2811 case BitstreamEntry::Error: 2812 return error("Malformed block"); 2813 case BitstreamEntry::EndBlock: 2814 if (Offset > 0) 2815 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2816 return JumpFailed; 2817 return Error::success(); 2818 case BitstreamEntry::Record: 2819 // The interesting case. 2820 break; 2821 } 2822 2823 // Read a record. 2824 Record.clear(); 2825 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2826 if (!MaybeRecord) 2827 return MaybeRecord.takeError(); 2828 switch (MaybeRecord.get()) { 2829 default: // Default behavior: unknown type. 2830 break; 2831 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 2832 Expected<Value *> ValOrErr = recordValue(Record, 1, TT); 2833 if (Error Err = ValOrErr.takeError()) 2834 return Err; 2835 ValOrErr.get(); 2836 break; 2837 } 2838 case bitc::VST_CODE_FNENTRY: { 2839 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 2840 Expected<Value *> ValOrErr = recordValue(Record, 2, TT); 2841 if (Error Err = ValOrErr.takeError()) 2842 return Err; 2843 Value *V = ValOrErr.get(); 2844 2845 // Ignore function offsets emitted for aliases of functions in older 2846 // versions of LLVM. 2847 if (auto *F = dyn_cast<Function>(V)) 2848 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record); 2849 break; 2850 } 2851 case bitc::VST_CODE_BBENTRY: { 2852 if (convertToString(Record, 1, ValueName)) 2853 return error("Invalid bbentry record"); 2854 BasicBlock *BB = getBasicBlock(Record[0]); 2855 if (!BB) 2856 return error("Invalid bbentry record"); 2857 2858 BB->setName(StringRef(ValueName.data(), ValueName.size())); 2859 ValueName.clear(); 2860 break; 2861 } 2862 } 2863 } 2864 } 2865 2866 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2867 /// encoding. 2868 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2869 if ((V & 1) == 0) 2870 return V >> 1; 2871 if (V != 1) 2872 return -(V >> 1); 2873 // There is no such thing as -0 with integers. "-0" really means MININT. 2874 return 1ULL << 63; 2875 } 2876 2877 /// Resolve all of the initializers for global values and aliases that we can. 2878 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 2879 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist; 2880 std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInitWorklist; 2881 std::vector<FunctionOperandInfo> FunctionOperandWorklist; 2882 2883 GlobalInitWorklist.swap(GlobalInits); 2884 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 2885 FunctionOperandWorklist.swap(FunctionOperands); 2886 2887 while (!GlobalInitWorklist.empty()) { 2888 unsigned ValID = GlobalInitWorklist.back().second; 2889 if (ValID >= ValueList.size()) { 2890 // Not ready to resolve this yet, it requires something later in the file. 2891 GlobalInits.push_back(GlobalInitWorklist.back()); 2892 } else { 2893 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 2894 if (!MaybeC) 2895 return MaybeC.takeError(); 2896 GlobalInitWorklist.back().first->setInitializer(MaybeC.get()); 2897 } 2898 GlobalInitWorklist.pop_back(); 2899 } 2900 2901 while (!IndirectSymbolInitWorklist.empty()) { 2902 unsigned ValID = IndirectSymbolInitWorklist.back().second; 2903 if (ValID >= ValueList.size()) { 2904 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 2905 } else { 2906 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 2907 if (!MaybeC) 2908 return MaybeC.takeError(); 2909 Constant *C = MaybeC.get(); 2910 GlobalValue *GV = IndirectSymbolInitWorklist.back().first; 2911 if (auto *GA = dyn_cast<GlobalAlias>(GV)) { 2912 if (C->getType() != GV->getType()) 2913 return error("Alias and aliasee types don't match"); 2914 GA->setAliasee(C); 2915 } else if (auto *GI = dyn_cast<GlobalIFunc>(GV)) { 2916 Type *ResolverFTy = 2917 GlobalIFunc::getResolverFunctionType(GI->getValueType()); 2918 // Transparently fix up the type for compatibility with older bitcode 2919 GI->setResolver(ConstantExpr::getBitCast( 2920 C, ResolverFTy->getPointerTo(GI->getAddressSpace()))); 2921 } else { 2922 return error("Expected an alias or an ifunc"); 2923 } 2924 } 2925 IndirectSymbolInitWorklist.pop_back(); 2926 } 2927 2928 while (!FunctionOperandWorklist.empty()) { 2929 FunctionOperandInfo &Info = FunctionOperandWorklist.back(); 2930 if (Info.PersonalityFn) { 2931 unsigned ValID = Info.PersonalityFn - 1; 2932 if (ValID < ValueList.size()) { 2933 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 2934 if (!MaybeC) 2935 return MaybeC.takeError(); 2936 Info.F->setPersonalityFn(MaybeC.get()); 2937 Info.PersonalityFn = 0; 2938 } 2939 } 2940 if (Info.Prefix) { 2941 unsigned ValID = Info.Prefix - 1; 2942 if (ValID < ValueList.size()) { 2943 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 2944 if (!MaybeC) 2945 return MaybeC.takeError(); 2946 Info.F->setPrefixData(MaybeC.get()); 2947 Info.Prefix = 0; 2948 } 2949 } 2950 if (Info.Prologue) { 2951 unsigned ValID = Info.Prologue - 1; 2952 if (ValID < ValueList.size()) { 2953 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 2954 if (!MaybeC) 2955 return MaybeC.takeError(); 2956 Info.F->setPrologueData(MaybeC.get()); 2957 Info.Prologue = 0; 2958 } 2959 } 2960 if (Info.PersonalityFn || Info.Prefix || Info.Prologue) 2961 FunctionOperands.push_back(Info); 2962 FunctionOperandWorklist.pop_back(); 2963 } 2964 2965 return Error::success(); 2966 } 2967 2968 APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2969 SmallVector<uint64_t, 8> Words(Vals.size()); 2970 transform(Vals, Words.begin(), 2971 BitcodeReader::decodeSignRotatedValue); 2972 2973 return APInt(TypeBits, Words); 2974 } 2975 2976 Error BitcodeReader::parseConstants() { 2977 if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2978 return Err; 2979 2980 SmallVector<uint64_t, 64> Record; 2981 2982 // Read all the records for this value table. 2983 Type *CurTy = Type::getInt32Ty(Context); 2984 unsigned Int32TyID = getVirtualTypeID(CurTy); 2985 unsigned CurTyID = Int32TyID; 2986 Type *CurElemTy = nullptr; 2987 unsigned NextCstNo = ValueList.size(); 2988 2989 while (true) { 2990 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2991 if (!MaybeEntry) 2992 return MaybeEntry.takeError(); 2993 BitstreamEntry Entry = MaybeEntry.get(); 2994 2995 switch (Entry.Kind) { 2996 case BitstreamEntry::SubBlock: // Handled for us already. 2997 case BitstreamEntry::Error: 2998 return error("Malformed block"); 2999 case BitstreamEntry::EndBlock: 3000 if (NextCstNo != ValueList.size()) 3001 return error("Invalid constant reference"); 3002 return Error::success(); 3003 case BitstreamEntry::Record: 3004 // The interesting case. 3005 break; 3006 } 3007 3008 // Read a record. 3009 Record.clear(); 3010 Type *VoidType = Type::getVoidTy(Context); 3011 Value *V = nullptr; 3012 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 3013 if (!MaybeBitCode) 3014 return MaybeBitCode.takeError(); 3015 switch (unsigned BitCode = MaybeBitCode.get()) { 3016 default: // Default behavior: unknown constant 3017 case bitc::CST_CODE_UNDEF: // UNDEF 3018 V = UndefValue::get(CurTy); 3019 break; 3020 case bitc::CST_CODE_POISON: // POISON 3021 V = PoisonValue::get(CurTy); 3022 break; 3023 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 3024 if (Record.empty()) 3025 return error("Invalid settype record"); 3026 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 3027 return error("Invalid settype record"); 3028 if (TypeList[Record[0]] == VoidType) 3029 return error("Invalid constant type"); 3030 CurTyID = Record[0]; 3031 CurTy = TypeList[CurTyID]; 3032 CurElemTy = getPtrElementTypeByID(CurTyID); 3033 continue; // Skip the ValueList manipulation. 3034 case bitc::CST_CODE_NULL: // NULL 3035 if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy()) 3036 return error("Invalid type for a constant null value"); 3037 if (auto *TETy = dyn_cast<TargetExtType>(CurTy)) 3038 if (!TETy->hasProperty(TargetExtType::HasZeroInit)) 3039 return error("Invalid type for a constant null value"); 3040 V = Constant::getNullValue(CurTy); 3041 break; 3042 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 3043 if (!CurTy->isIntegerTy() || Record.empty()) 3044 return error("Invalid integer const record"); 3045 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 3046 break; 3047 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 3048 if (!CurTy->isIntegerTy() || Record.empty()) 3049 return error("Invalid wide integer const record"); 3050 3051 APInt VInt = 3052 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 3053 V = ConstantInt::get(Context, VInt); 3054 3055 break; 3056 } 3057 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 3058 if (Record.empty()) 3059 return error("Invalid float const record"); 3060 if (CurTy->isHalfTy()) 3061 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(), 3062 APInt(16, (uint16_t)Record[0]))); 3063 else if (CurTy->isBFloatTy()) 3064 V = ConstantFP::get(Context, APFloat(APFloat::BFloat(), 3065 APInt(16, (uint32_t)Record[0]))); 3066 else if (CurTy->isFloatTy()) 3067 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(), 3068 APInt(32, (uint32_t)Record[0]))); 3069 else if (CurTy->isDoubleTy()) 3070 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(), 3071 APInt(64, Record[0]))); 3072 else if (CurTy->isX86_FP80Ty()) { 3073 // Bits are not stored the same way as a normal i80 APInt, compensate. 3074 uint64_t Rearrange[2]; 3075 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 3076 Rearrange[1] = Record[0] >> 48; 3077 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(), 3078 APInt(80, Rearrange))); 3079 } else if (CurTy->isFP128Ty()) 3080 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(), 3081 APInt(128, Record))); 3082 else if (CurTy->isPPC_FP128Ty()) 3083 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(), 3084 APInt(128, Record))); 3085 else 3086 V = UndefValue::get(CurTy); 3087 break; 3088 } 3089 3090 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 3091 if (Record.empty()) 3092 return error("Invalid aggregate record"); 3093 3094 unsigned Size = Record.size(); 3095 SmallVector<unsigned, 16> Elts; 3096 for (unsigned i = 0; i != Size; ++i) 3097 Elts.push_back(Record[i]); 3098 3099 if (isa<StructType>(CurTy)) { 3100 V = BitcodeConstant::create( 3101 Alloc, CurTy, BitcodeConstant::ConstantStructOpcode, Elts); 3102 } else if (isa<ArrayType>(CurTy)) { 3103 V = BitcodeConstant::create(Alloc, CurTy, 3104 BitcodeConstant::ConstantArrayOpcode, Elts); 3105 } else if (isa<VectorType>(CurTy)) { 3106 V = BitcodeConstant::create( 3107 Alloc, CurTy, BitcodeConstant::ConstantVectorOpcode, Elts); 3108 } else { 3109 V = UndefValue::get(CurTy); 3110 } 3111 break; 3112 } 3113 case bitc::CST_CODE_STRING: // STRING: [values] 3114 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 3115 if (Record.empty()) 3116 return error("Invalid string record"); 3117 3118 SmallString<16> Elts(Record.begin(), Record.end()); 3119 V = ConstantDataArray::getString(Context, Elts, 3120 BitCode == bitc::CST_CODE_CSTRING); 3121 break; 3122 } 3123 case bitc::CST_CODE_DATA: {// DATA: [n x value] 3124 if (Record.empty()) 3125 return error("Invalid data record"); 3126 3127 Type *EltTy; 3128 if (auto *Array = dyn_cast<ArrayType>(CurTy)) 3129 EltTy = Array->getElementType(); 3130 else 3131 EltTy = cast<VectorType>(CurTy)->getElementType(); 3132 if (EltTy->isIntegerTy(8)) { 3133 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 3134 if (isa<VectorType>(CurTy)) 3135 V = ConstantDataVector::get(Context, Elts); 3136 else 3137 V = ConstantDataArray::get(Context, Elts); 3138 } else if (EltTy->isIntegerTy(16)) { 3139 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 3140 if (isa<VectorType>(CurTy)) 3141 V = ConstantDataVector::get(Context, Elts); 3142 else 3143 V = ConstantDataArray::get(Context, Elts); 3144 } else if (EltTy->isIntegerTy(32)) { 3145 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 3146 if (isa<VectorType>(CurTy)) 3147 V = ConstantDataVector::get(Context, Elts); 3148 else 3149 V = ConstantDataArray::get(Context, Elts); 3150 } else if (EltTy->isIntegerTy(64)) { 3151 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 3152 if (isa<VectorType>(CurTy)) 3153 V = ConstantDataVector::get(Context, Elts); 3154 else 3155 V = ConstantDataArray::get(Context, Elts); 3156 } else if (EltTy->isHalfTy()) { 3157 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 3158 if (isa<VectorType>(CurTy)) 3159 V = ConstantDataVector::getFP(EltTy, Elts); 3160 else 3161 V = ConstantDataArray::getFP(EltTy, Elts); 3162 } else if (EltTy->isBFloatTy()) { 3163 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 3164 if (isa<VectorType>(CurTy)) 3165 V = ConstantDataVector::getFP(EltTy, Elts); 3166 else 3167 V = ConstantDataArray::getFP(EltTy, Elts); 3168 } else if (EltTy->isFloatTy()) { 3169 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 3170 if (isa<VectorType>(CurTy)) 3171 V = ConstantDataVector::getFP(EltTy, Elts); 3172 else 3173 V = ConstantDataArray::getFP(EltTy, Elts); 3174 } else if (EltTy->isDoubleTy()) { 3175 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 3176 if (isa<VectorType>(CurTy)) 3177 V = ConstantDataVector::getFP(EltTy, Elts); 3178 else 3179 V = ConstantDataArray::getFP(EltTy, Elts); 3180 } else { 3181 return error("Invalid type for value"); 3182 } 3183 break; 3184 } 3185 case bitc::CST_CODE_CE_UNOP: { // CE_UNOP: [opcode, opval] 3186 if (Record.size() < 2) 3187 return error("Invalid unary op constexpr record"); 3188 int Opc = getDecodedUnaryOpcode(Record[0], CurTy); 3189 if (Opc < 0) { 3190 V = UndefValue::get(CurTy); // Unknown unop. 3191 } else { 3192 V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[1]); 3193 } 3194 break; 3195 } 3196 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 3197 if (Record.size() < 3) 3198 return error("Invalid binary op constexpr record"); 3199 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 3200 if (Opc < 0) { 3201 V = UndefValue::get(CurTy); // Unknown binop. 3202 } else { 3203 uint8_t Flags = 0; 3204 if (Record.size() >= 4) { 3205 if (Opc == Instruction::Add || 3206 Opc == Instruction::Sub || 3207 Opc == Instruction::Mul || 3208 Opc == Instruction::Shl) { 3209 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3210 Flags |= OverflowingBinaryOperator::NoSignedWrap; 3211 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3212 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 3213 } else if (Opc == Instruction::SDiv || 3214 Opc == Instruction::UDiv || 3215 Opc == Instruction::LShr || 3216 Opc == Instruction::AShr) { 3217 if (Record[3] & (1 << bitc::PEO_EXACT)) 3218 Flags |= SDivOperator::IsExact; 3219 } 3220 } 3221 V = BitcodeConstant::create(Alloc, CurTy, {(uint8_t)Opc, Flags}, 3222 {(unsigned)Record[1], (unsigned)Record[2]}); 3223 } 3224 break; 3225 } 3226 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 3227 if (Record.size() < 3) 3228 return error("Invalid cast constexpr record"); 3229 int Opc = getDecodedCastOpcode(Record[0]); 3230 if (Opc < 0) { 3231 V = UndefValue::get(CurTy); // Unknown cast. 3232 } else { 3233 unsigned OpTyID = Record[1]; 3234 Type *OpTy = getTypeByID(OpTyID); 3235 if (!OpTy) 3236 return error("Invalid cast constexpr record"); 3237 V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[2]); 3238 } 3239 break; 3240 } 3241 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands] 3242 case bitc::CST_CODE_CE_GEP: // [ty, n x operands] 3243 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x 3244 // operands] 3245 if (Record.size() < 2) 3246 return error("Constant GEP record must have at least two elements"); 3247 unsigned OpNum = 0; 3248 Type *PointeeType = nullptr; 3249 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX || 3250 Record.size() % 2) 3251 PointeeType = getTypeByID(Record[OpNum++]); 3252 3253 bool InBounds = false; 3254 std::optional<unsigned> InRangeIndex; 3255 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) { 3256 uint64_t Op = Record[OpNum++]; 3257 InBounds = Op & 1; 3258 InRangeIndex = Op >> 1; 3259 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 3260 InBounds = true; 3261 3262 SmallVector<unsigned, 16> Elts; 3263 unsigned BaseTypeID = Record[OpNum]; 3264 while (OpNum != Record.size()) { 3265 unsigned ElTyID = Record[OpNum++]; 3266 Type *ElTy = getTypeByID(ElTyID); 3267 if (!ElTy) 3268 return error("Invalid getelementptr constexpr record"); 3269 Elts.push_back(Record[OpNum++]); 3270 } 3271 3272 if (Elts.size() < 1) 3273 return error("Invalid gep with no operands"); 3274 3275 Type *BaseType = getTypeByID(BaseTypeID); 3276 if (isa<VectorType>(BaseType)) { 3277 BaseTypeID = getContainedTypeID(BaseTypeID, 0); 3278 BaseType = getTypeByID(BaseTypeID); 3279 } 3280 3281 PointerType *OrigPtrTy = dyn_cast_or_null<PointerType>(BaseType); 3282 if (!OrigPtrTy) 3283 return error("GEP base operand must be pointer or vector of pointer"); 3284 3285 if (!PointeeType) { 3286 PointeeType = getPtrElementTypeByID(BaseTypeID); 3287 if (!PointeeType) 3288 return error("Missing element type for old-style constant GEP"); 3289 } else if (!OrigPtrTy->isOpaqueOrPointeeTypeMatches(PointeeType)) 3290 return error("Explicit gep operator type does not match pointee type " 3291 "of pointer operand"); 3292 3293 V = BitcodeConstant::create(Alloc, CurTy, 3294 {Instruction::GetElementPtr, InBounds, 3295 InRangeIndex.value_or(-1), PointeeType}, 3296 Elts); 3297 break; 3298 } 3299 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 3300 if (Record.size() < 3) 3301 return error("Invalid select constexpr record"); 3302 3303 V = BitcodeConstant::create( 3304 Alloc, CurTy, Instruction::Select, 3305 {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]}); 3306 break; 3307 } 3308 case bitc::CST_CODE_CE_EXTRACTELT 3309 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 3310 if (Record.size() < 3) 3311 return error("Invalid extractelement constexpr record"); 3312 unsigned OpTyID = Record[0]; 3313 VectorType *OpTy = 3314 dyn_cast_or_null<VectorType>(getTypeByID(OpTyID)); 3315 if (!OpTy) 3316 return error("Invalid extractelement constexpr record"); 3317 unsigned IdxRecord; 3318 if (Record.size() == 4) { 3319 unsigned IdxTyID = Record[2]; 3320 Type *IdxTy = getTypeByID(IdxTyID); 3321 if (!IdxTy) 3322 return error("Invalid extractelement constexpr record"); 3323 IdxRecord = Record[3]; 3324 } else { 3325 // Deprecated, but still needed to read old bitcode files. 3326 IdxRecord = Record[2]; 3327 } 3328 V = BitcodeConstant::create(Alloc, CurTy, Instruction::ExtractElement, 3329 {(unsigned)Record[1], IdxRecord}); 3330 break; 3331 } 3332 case bitc::CST_CODE_CE_INSERTELT 3333 : { // CE_INSERTELT: [opval, opval, opty, opval] 3334 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 3335 if (Record.size() < 3 || !OpTy) 3336 return error("Invalid insertelement constexpr record"); 3337 unsigned IdxRecord; 3338 if (Record.size() == 4) { 3339 unsigned IdxTyID = Record[2]; 3340 Type *IdxTy = getTypeByID(IdxTyID); 3341 if (!IdxTy) 3342 return error("Invalid insertelement constexpr record"); 3343 IdxRecord = Record[3]; 3344 } else { 3345 // Deprecated, but still needed to read old bitcode files. 3346 IdxRecord = Record[2]; 3347 } 3348 V = BitcodeConstant::create( 3349 Alloc, CurTy, Instruction::InsertElement, 3350 {(unsigned)Record[0], (unsigned)Record[1], IdxRecord}); 3351 break; 3352 } 3353 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 3354 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 3355 if (Record.size() < 3 || !OpTy) 3356 return error("Invalid shufflevector constexpr record"); 3357 V = BitcodeConstant::create( 3358 Alloc, CurTy, Instruction::ShuffleVector, 3359 {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]}); 3360 break; 3361 } 3362 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 3363 VectorType *RTy = dyn_cast<VectorType>(CurTy); 3364 VectorType *OpTy = 3365 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 3366 if (Record.size() < 4 || !RTy || !OpTy) 3367 return error("Invalid shufflevector constexpr record"); 3368 V = BitcodeConstant::create( 3369 Alloc, CurTy, Instruction::ShuffleVector, 3370 {(unsigned)Record[1], (unsigned)Record[2], (unsigned)Record[3]}); 3371 break; 3372 } 3373 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 3374 if (Record.size() < 4) 3375 return error("Invalid cmp constexpt record"); 3376 unsigned OpTyID = Record[0]; 3377 Type *OpTy = getTypeByID(OpTyID); 3378 if (!OpTy) 3379 return error("Invalid cmp constexpr record"); 3380 V = BitcodeConstant::create( 3381 Alloc, CurTy, 3382 {(uint8_t)(OpTy->isFPOrFPVectorTy() ? Instruction::FCmp 3383 : Instruction::ICmp), 3384 (uint8_t)Record[3]}, 3385 {(unsigned)Record[1], (unsigned)Record[2]}); 3386 break; 3387 } 3388 // This maintains backward compatibility, pre-asm dialect keywords. 3389 // Deprecated, but still needed to read old bitcode files. 3390 case bitc::CST_CODE_INLINEASM_OLD: { 3391 if (Record.size() < 2) 3392 return error("Invalid inlineasm record"); 3393 std::string AsmStr, ConstrStr; 3394 bool HasSideEffects = Record[0] & 1; 3395 bool IsAlignStack = Record[0] >> 1; 3396 unsigned AsmStrSize = Record[1]; 3397 if (2+AsmStrSize >= Record.size()) 3398 return error("Invalid inlineasm record"); 3399 unsigned ConstStrSize = Record[2+AsmStrSize]; 3400 if (3+AsmStrSize+ConstStrSize > Record.size()) 3401 return error("Invalid inlineasm record"); 3402 3403 for (unsigned i = 0; i != AsmStrSize; ++i) 3404 AsmStr += (char)Record[2+i]; 3405 for (unsigned i = 0; i != ConstStrSize; ++i) 3406 ConstrStr += (char)Record[3+AsmStrSize+i]; 3407 UpgradeInlineAsmString(&AsmStr); 3408 if (!CurElemTy) 3409 return error("Missing element type for old-style inlineasm"); 3410 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr, 3411 HasSideEffects, IsAlignStack); 3412 break; 3413 } 3414 // This version adds support for the asm dialect keywords (e.g., 3415 // inteldialect). 3416 case bitc::CST_CODE_INLINEASM_OLD2: { 3417 if (Record.size() < 2) 3418 return error("Invalid inlineasm record"); 3419 std::string AsmStr, ConstrStr; 3420 bool HasSideEffects = Record[0] & 1; 3421 bool IsAlignStack = (Record[0] >> 1) & 1; 3422 unsigned AsmDialect = Record[0] >> 2; 3423 unsigned AsmStrSize = Record[1]; 3424 if (2+AsmStrSize >= Record.size()) 3425 return error("Invalid inlineasm record"); 3426 unsigned ConstStrSize = Record[2+AsmStrSize]; 3427 if (3+AsmStrSize+ConstStrSize > Record.size()) 3428 return error("Invalid inlineasm record"); 3429 3430 for (unsigned i = 0; i != AsmStrSize; ++i) 3431 AsmStr += (char)Record[2+i]; 3432 for (unsigned i = 0; i != ConstStrSize; ++i) 3433 ConstrStr += (char)Record[3+AsmStrSize+i]; 3434 UpgradeInlineAsmString(&AsmStr); 3435 if (!CurElemTy) 3436 return error("Missing element type for old-style inlineasm"); 3437 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr, 3438 HasSideEffects, IsAlignStack, 3439 InlineAsm::AsmDialect(AsmDialect)); 3440 break; 3441 } 3442 // This version adds support for the unwind keyword. 3443 case bitc::CST_CODE_INLINEASM_OLD3: { 3444 if (Record.size() < 2) 3445 return error("Invalid inlineasm record"); 3446 unsigned OpNum = 0; 3447 std::string AsmStr, ConstrStr; 3448 bool HasSideEffects = Record[OpNum] & 1; 3449 bool IsAlignStack = (Record[OpNum] >> 1) & 1; 3450 unsigned AsmDialect = (Record[OpNum] >> 2) & 1; 3451 bool CanThrow = (Record[OpNum] >> 3) & 1; 3452 ++OpNum; 3453 unsigned AsmStrSize = Record[OpNum]; 3454 ++OpNum; 3455 if (OpNum + AsmStrSize >= Record.size()) 3456 return error("Invalid inlineasm record"); 3457 unsigned ConstStrSize = Record[OpNum + AsmStrSize]; 3458 if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size()) 3459 return error("Invalid inlineasm record"); 3460 3461 for (unsigned i = 0; i != AsmStrSize; ++i) 3462 AsmStr += (char)Record[OpNum + i]; 3463 ++OpNum; 3464 for (unsigned i = 0; i != ConstStrSize; ++i) 3465 ConstrStr += (char)Record[OpNum + AsmStrSize + i]; 3466 UpgradeInlineAsmString(&AsmStr); 3467 if (!CurElemTy) 3468 return error("Missing element type for old-style inlineasm"); 3469 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr, 3470 HasSideEffects, IsAlignStack, 3471 InlineAsm::AsmDialect(AsmDialect), CanThrow); 3472 break; 3473 } 3474 // This version adds explicit function type. 3475 case bitc::CST_CODE_INLINEASM: { 3476 if (Record.size() < 3) 3477 return error("Invalid inlineasm record"); 3478 unsigned OpNum = 0; 3479 auto *FnTy = dyn_cast_or_null<FunctionType>(getTypeByID(Record[OpNum])); 3480 ++OpNum; 3481 if (!FnTy) 3482 return error("Invalid inlineasm record"); 3483 std::string AsmStr, ConstrStr; 3484 bool HasSideEffects = Record[OpNum] & 1; 3485 bool IsAlignStack = (Record[OpNum] >> 1) & 1; 3486 unsigned AsmDialect = (Record[OpNum] >> 2) & 1; 3487 bool CanThrow = (Record[OpNum] >> 3) & 1; 3488 ++OpNum; 3489 unsigned AsmStrSize = Record[OpNum]; 3490 ++OpNum; 3491 if (OpNum + AsmStrSize >= Record.size()) 3492 return error("Invalid inlineasm record"); 3493 unsigned ConstStrSize = Record[OpNum + AsmStrSize]; 3494 if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size()) 3495 return error("Invalid inlineasm record"); 3496 3497 for (unsigned i = 0; i != AsmStrSize; ++i) 3498 AsmStr += (char)Record[OpNum + i]; 3499 ++OpNum; 3500 for (unsigned i = 0; i != ConstStrSize; ++i) 3501 ConstrStr += (char)Record[OpNum + AsmStrSize + i]; 3502 UpgradeInlineAsmString(&AsmStr); 3503 V = InlineAsm::get(FnTy, AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 3504 InlineAsm::AsmDialect(AsmDialect), CanThrow); 3505 break; 3506 } 3507 case bitc::CST_CODE_BLOCKADDRESS:{ 3508 if (Record.size() < 3) 3509 return error("Invalid blockaddress record"); 3510 unsigned FnTyID = Record[0]; 3511 Type *FnTy = getTypeByID(FnTyID); 3512 if (!FnTy) 3513 return error("Invalid blockaddress record"); 3514 V = BitcodeConstant::create( 3515 Alloc, CurTy, 3516 {BitcodeConstant::BlockAddressOpcode, 0, (unsigned)Record[2]}, 3517 Record[1]); 3518 break; 3519 } 3520 case bitc::CST_CODE_DSO_LOCAL_EQUIVALENT: { 3521 if (Record.size() < 2) 3522 return error("Invalid dso_local record"); 3523 unsigned GVTyID = Record[0]; 3524 Type *GVTy = getTypeByID(GVTyID); 3525 if (!GVTy) 3526 return error("Invalid dso_local record"); 3527 V = BitcodeConstant::create( 3528 Alloc, CurTy, BitcodeConstant::DSOLocalEquivalentOpcode, Record[1]); 3529 break; 3530 } 3531 case bitc::CST_CODE_NO_CFI_VALUE: { 3532 if (Record.size() < 2) 3533 return error("Invalid no_cfi record"); 3534 unsigned GVTyID = Record[0]; 3535 Type *GVTy = getTypeByID(GVTyID); 3536 if (!GVTy) 3537 return error("Invalid no_cfi record"); 3538 V = BitcodeConstant::create(Alloc, CurTy, BitcodeConstant::NoCFIOpcode, 3539 Record[1]); 3540 break; 3541 } 3542 } 3543 3544 assert(V->getType() == getTypeByID(CurTyID) && "Incorrect result type ID"); 3545 if (Error Err = ValueList.assignValue(NextCstNo, V, CurTyID)) 3546 return Err; 3547 ++NextCstNo; 3548 } 3549 } 3550 3551 Error BitcodeReader::parseUseLists() { 3552 if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 3553 return Err; 3554 3555 // Read all the records. 3556 SmallVector<uint64_t, 64> Record; 3557 3558 while (true) { 3559 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 3560 if (!MaybeEntry) 3561 return MaybeEntry.takeError(); 3562 BitstreamEntry Entry = MaybeEntry.get(); 3563 3564 switch (Entry.Kind) { 3565 case BitstreamEntry::SubBlock: // Handled for us already. 3566 case BitstreamEntry::Error: 3567 return error("Malformed block"); 3568 case BitstreamEntry::EndBlock: 3569 return Error::success(); 3570 case BitstreamEntry::Record: 3571 // The interesting case. 3572 break; 3573 } 3574 3575 // Read a use list record. 3576 Record.clear(); 3577 bool IsBB = false; 3578 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 3579 if (!MaybeRecord) 3580 return MaybeRecord.takeError(); 3581 switch (MaybeRecord.get()) { 3582 default: // Default behavior: unknown type. 3583 break; 3584 case bitc::USELIST_CODE_BB: 3585 IsBB = true; 3586 [[fallthrough]]; 3587 case bitc::USELIST_CODE_DEFAULT: { 3588 unsigned RecordLength = Record.size(); 3589 if (RecordLength < 3) 3590 // Records should have at least an ID and two indexes. 3591 return error("Invalid record"); 3592 unsigned ID = Record.pop_back_val(); 3593 3594 Value *V; 3595 if (IsBB) { 3596 assert(ID < FunctionBBs.size() && "Basic block not found"); 3597 V = FunctionBBs[ID]; 3598 } else 3599 V = ValueList[ID]; 3600 unsigned NumUses = 0; 3601 SmallDenseMap<const Use *, unsigned, 16> Order; 3602 for (const Use &U : V->materialized_uses()) { 3603 if (++NumUses > Record.size()) 3604 break; 3605 Order[&U] = Record[NumUses - 1]; 3606 } 3607 if (Order.size() != Record.size() || NumUses > Record.size()) 3608 // Mismatches can happen if the functions are being materialized lazily 3609 // (out-of-order), or a value has been upgraded. 3610 break; 3611 3612 V->sortUseList([&](const Use &L, const Use &R) { 3613 return Order.lookup(&L) < Order.lookup(&R); 3614 }); 3615 break; 3616 } 3617 } 3618 } 3619 } 3620 3621 /// When we see the block for metadata, remember where it is and then skip it. 3622 /// This lets us lazily deserialize the metadata. 3623 Error BitcodeReader::rememberAndSkipMetadata() { 3624 // Save the current stream state. 3625 uint64_t CurBit = Stream.GetCurrentBitNo(); 3626 DeferredMetadataInfo.push_back(CurBit); 3627 3628 // Skip over the block for now. 3629 if (Error Err = Stream.SkipBlock()) 3630 return Err; 3631 return Error::success(); 3632 } 3633 3634 Error BitcodeReader::materializeMetadata() { 3635 for (uint64_t BitPos : DeferredMetadataInfo) { 3636 // Move the bit stream to the saved position. 3637 if (Error JumpFailed = Stream.JumpToBit(BitPos)) 3638 return JumpFailed; 3639 if (Error Err = MDLoader->parseModuleMetadata()) 3640 return Err; 3641 } 3642 3643 // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level 3644 // metadata. Only upgrade if the new option doesn't exist to avoid upgrade 3645 // multiple times. 3646 if (!TheModule->getNamedMetadata("llvm.linker.options")) { 3647 if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) { 3648 NamedMDNode *LinkerOpts = 3649 TheModule->getOrInsertNamedMetadata("llvm.linker.options"); 3650 for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands()) 3651 LinkerOpts->addOperand(cast<MDNode>(MDOptions)); 3652 } 3653 } 3654 3655 DeferredMetadataInfo.clear(); 3656 return Error::success(); 3657 } 3658 3659 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 3660 3661 /// When we see the block for a function body, remember where it is and then 3662 /// skip it. This lets us lazily deserialize the functions. 3663 Error BitcodeReader::rememberAndSkipFunctionBody() { 3664 // Get the function we are talking about. 3665 if (FunctionsWithBodies.empty()) 3666 return error("Insufficient function protos"); 3667 3668 Function *Fn = FunctionsWithBodies.back(); 3669 FunctionsWithBodies.pop_back(); 3670 3671 // Save the current stream state. 3672 uint64_t CurBit = Stream.GetCurrentBitNo(); 3673 assert( 3674 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 3675 "Mismatch between VST and scanned function offsets"); 3676 DeferredFunctionInfo[Fn] = CurBit; 3677 3678 // Skip over the function block for now. 3679 if (Error Err = Stream.SkipBlock()) 3680 return Err; 3681 return Error::success(); 3682 } 3683 3684 Error BitcodeReader::globalCleanup() { 3685 // Patch the initializers for globals and aliases up. 3686 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3687 return Err; 3688 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 3689 return error("Malformed global initializer set"); 3690 3691 // Look for intrinsic functions which need to be upgraded at some point 3692 // and functions that need to have their function attributes upgraded. 3693 for (Function &F : *TheModule) { 3694 MDLoader->upgradeDebugIntrinsics(F); 3695 Function *NewFn; 3696 if (UpgradeIntrinsicFunction(&F, NewFn)) 3697 UpgradedIntrinsics[&F] = NewFn; 3698 // Look for functions that rely on old function attribute behavior. 3699 UpgradeFunctionAttributes(F); 3700 } 3701 3702 // Look for global variables which need to be renamed. 3703 std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables; 3704 for (GlobalVariable &GV : TheModule->globals()) 3705 if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV)) 3706 UpgradedVariables.emplace_back(&GV, Upgraded); 3707 for (auto &Pair : UpgradedVariables) { 3708 Pair.first->eraseFromParent(); 3709 TheModule->insertGlobalVariable(Pair.second); 3710 } 3711 3712 // Force deallocation of memory for these vectors to favor the client that 3713 // want lazy deserialization. 3714 std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits); 3715 std::vector<std::pair<GlobalValue *, unsigned>>().swap(IndirectSymbolInits); 3716 return Error::success(); 3717 } 3718 3719 /// Support for lazy parsing of function bodies. This is required if we 3720 /// either have an old bitcode file without a VST forward declaration record, 3721 /// or if we have an anonymous function being materialized, since anonymous 3722 /// functions do not have a name and are therefore not in the VST. 3723 Error BitcodeReader::rememberAndSkipFunctionBodies() { 3724 if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit)) 3725 return JumpFailed; 3726 3727 if (Stream.AtEndOfStream()) 3728 return error("Could not find function in stream"); 3729 3730 if (!SeenFirstFunctionBody) 3731 return error("Trying to materialize functions before seeing function blocks"); 3732 3733 // An old bitcode file with the symbol table at the end would have 3734 // finished the parse greedily. 3735 assert(SeenValueSymbolTable); 3736 3737 SmallVector<uint64_t, 64> Record; 3738 3739 while (true) { 3740 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3741 if (!MaybeEntry) 3742 return MaybeEntry.takeError(); 3743 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3744 3745 switch (Entry.Kind) { 3746 default: 3747 return error("Expect SubBlock"); 3748 case BitstreamEntry::SubBlock: 3749 switch (Entry.ID) { 3750 default: 3751 return error("Expect function block"); 3752 case bitc::FUNCTION_BLOCK_ID: 3753 if (Error Err = rememberAndSkipFunctionBody()) 3754 return Err; 3755 NextUnreadBit = Stream.GetCurrentBitNo(); 3756 return Error::success(); 3757 } 3758 } 3759 } 3760 } 3761 3762 Error BitcodeReaderBase::readBlockInfo() { 3763 Expected<std::optional<BitstreamBlockInfo>> MaybeNewBlockInfo = 3764 Stream.ReadBlockInfoBlock(); 3765 if (!MaybeNewBlockInfo) 3766 return MaybeNewBlockInfo.takeError(); 3767 std::optional<BitstreamBlockInfo> NewBlockInfo = 3768 std::move(MaybeNewBlockInfo.get()); 3769 if (!NewBlockInfo) 3770 return error("Malformed block"); 3771 BlockInfo = std::move(*NewBlockInfo); 3772 return Error::success(); 3773 } 3774 3775 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) { 3776 // v1: [selection_kind, name] 3777 // v2: [strtab_offset, strtab_size, selection_kind] 3778 StringRef Name; 3779 std::tie(Name, Record) = readNameFromStrtab(Record); 3780 3781 if (Record.empty()) 3782 return error("Invalid record"); 3783 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 3784 std::string OldFormatName; 3785 if (!UseStrtab) { 3786 if (Record.size() < 2) 3787 return error("Invalid record"); 3788 unsigned ComdatNameSize = Record[1]; 3789 if (ComdatNameSize > Record.size() - 2) 3790 return error("Comdat name size too large"); 3791 OldFormatName.reserve(ComdatNameSize); 3792 for (unsigned i = 0; i != ComdatNameSize; ++i) 3793 OldFormatName += (char)Record[2 + i]; 3794 Name = OldFormatName; 3795 } 3796 Comdat *C = TheModule->getOrInsertComdat(Name); 3797 C->setSelectionKind(SK); 3798 ComdatList.push_back(C); 3799 return Error::success(); 3800 } 3801 3802 static void inferDSOLocal(GlobalValue *GV) { 3803 // infer dso_local from linkage and visibility if it is not encoded. 3804 if (GV->hasLocalLinkage() || 3805 (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())) 3806 GV->setDSOLocal(true); 3807 } 3808 3809 GlobalValue::SanitizerMetadata deserializeSanitizerMetadata(unsigned V) { 3810 GlobalValue::SanitizerMetadata Meta; 3811 if (V & (1 << 0)) 3812 Meta.NoAddress = true; 3813 if (V & (1 << 1)) 3814 Meta.NoHWAddress = true; 3815 if (V & (1 << 2)) 3816 Meta.Memtag = true; 3817 if (V & (1 << 3)) 3818 Meta.IsDynInit = true; 3819 return Meta; 3820 } 3821 3822 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) { 3823 // v1: [pointer type, isconst, initid, linkage, alignment, section, 3824 // visibility, threadlocal, unnamed_addr, externally_initialized, 3825 // dllstorageclass, comdat, attributes, preemption specifier, 3826 // partition strtab offset, partition strtab size] (name in VST) 3827 // v2: [strtab_offset, strtab_size, v1] 3828 StringRef Name; 3829 std::tie(Name, Record) = readNameFromStrtab(Record); 3830 3831 if (Record.size() < 6) 3832 return error("Invalid record"); 3833 unsigned TyID = Record[0]; 3834 Type *Ty = getTypeByID(TyID); 3835 if (!Ty) 3836 return error("Invalid record"); 3837 bool isConstant = Record[1] & 1; 3838 bool explicitType = Record[1] & 2; 3839 unsigned AddressSpace; 3840 if (explicitType) { 3841 AddressSpace = Record[1] >> 2; 3842 } else { 3843 if (!Ty->isPointerTy()) 3844 return error("Invalid type for value"); 3845 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 3846 TyID = getContainedTypeID(TyID); 3847 Ty = getTypeByID(TyID); 3848 if (!Ty) 3849 return error("Missing element type for old-style global"); 3850 } 3851 3852 uint64_t RawLinkage = Record[3]; 3853 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 3854 MaybeAlign Alignment; 3855 if (Error Err = parseAlignmentValue(Record[4], Alignment)) 3856 return Err; 3857 std::string Section; 3858 if (Record[5]) { 3859 if (Record[5] - 1 >= SectionTable.size()) 3860 return error("Invalid ID"); 3861 Section = SectionTable[Record[5] - 1]; 3862 } 3863 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 3864 // Local linkage must have default visibility. 3865 // auto-upgrade `hidden` and `protected` for old bitcode. 3866 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 3867 Visibility = getDecodedVisibility(Record[6]); 3868 3869 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 3870 if (Record.size() > 7) 3871 TLM = getDecodedThreadLocalMode(Record[7]); 3872 3873 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3874 if (Record.size() > 8) 3875 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); 3876 3877 bool ExternallyInitialized = false; 3878 if (Record.size() > 9) 3879 ExternallyInitialized = Record[9]; 3880 3881 GlobalVariable *NewGV = 3882 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name, 3883 nullptr, TLM, AddressSpace, ExternallyInitialized); 3884 if (Alignment) 3885 NewGV->setAlignment(*Alignment); 3886 if (!Section.empty()) 3887 NewGV->setSection(Section); 3888 NewGV->setVisibility(Visibility); 3889 NewGV->setUnnamedAddr(UnnamedAddr); 3890 3891 if (Record.size() > 10) { 3892 // A GlobalValue with local linkage cannot have a DLL storage class. 3893 if (!NewGV->hasLocalLinkage()) { 3894 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 3895 } 3896 } else { 3897 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 3898 } 3899 3900 ValueList.push_back(NewGV, getVirtualTypeID(NewGV->getType(), TyID)); 3901 3902 // Remember which value to use for the global initializer. 3903 if (unsigned InitID = Record[2]) 3904 GlobalInits.push_back(std::make_pair(NewGV, InitID - 1)); 3905 3906 if (Record.size() > 11) { 3907 if (unsigned ComdatID = Record[11]) { 3908 if (ComdatID > ComdatList.size()) 3909 return error("Invalid global variable comdat ID"); 3910 NewGV->setComdat(ComdatList[ComdatID - 1]); 3911 } 3912 } else if (hasImplicitComdat(RawLinkage)) { 3913 ImplicitComdatObjects.insert(NewGV); 3914 } 3915 3916 if (Record.size() > 12) { 3917 auto AS = getAttributes(Record[12]).getFnAttrs(); 3918 NewGV->setAttributes(AS); 3919 } 3920 3921 if (Record.size() > 13) { 3922 NewGV->setDSOLocal(getDecodedDSOLocal(Record[13])); 3923 } 3924 inferDSOLocal(NewGV); 3925 3926 // Check whether we have enough values to read a partition name. 3927 if (Record.size() > 15) 3928 NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15])); 3929 3930 if (Record.size() > 16 && Record[16]) { 3931 llvm::GlobalValue::SanitizerMetadata Meta = 3932 deserializeSanitizerMetadata(Record[16]); 3933 NewGV->setSanitizerMetadata(Meta); 3934 } 3935 3936 return Error::success(); 3937 } 3938 3939 void BitcodeReader::callValueTypeCallback(Value *F, unsigned TypeID) { 3940 if (ValueTypeCallback) { 3941 (*ValueTypeCallback)( 3942 F, TypeID, [this](unsigned I) { return getTypeByID(I); }, 3943 [this](unsigned I, unsigned J) { return getContainedTypeID(I, J); }); 3944 } 3945 } 3946 3947 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) { 3948 // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section, 3949 // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat, 3950 // prefixdata, personalityfn, preemption specifier, addrspace] (name in VST) 3951 // v2: [strtab_offset, strtab_size, v1] 3952 StringRef Name; 3953 std::tie(Name, Record) = readNameFromStrtab(Record); 3954 3955 if (Record.size() < 8) 3956 return error("Invalid record"); 3957 unsigned FTyID = Record[0]; 3958 Type *FTy = getTypeByID(FTyID); 3959 if (!FTy) 3960 return error("Invalid record"); 3961 if (isa<PointerType>(FTy)) { 3962 FTyID = getContainedTypeID(FTyID, 0); 3963 FTy = getTypeByID(FTyID); 3964 if (!FTy) 3965 return error("Missing element type for old-style function"); 3966 } 3967 3968 if (!isa<FunctionType>(FTy)) 3969 return error("Invalid type for value"); 3970 auto CC = static_cast<CallingConv::ID>(Record[1]); 3971 if (CC & ~CallingConv::MaxID) 3972 return error("Invalid calling convention ID"); 3973 3974 unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace(); 3975 if (Record.size() > 16) 3976 AddrSpace = Record[16]; 3977 3978 Function *Func = 3979 Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage, 3980 AddrSpace, Name, TheModule); 3981 3982 assert(Func->getFunctionType() == FTy && 3983 "Incorrect fully specified type provided for function"); 3984 FunctionTypeIDs[Func] = FTyID; 3985 3986 Func->setCallingConv(CC); 3987 bool isProto = Record[2]; 3988 uint64_t RawLinkage = Record[3]; 3989 Func->setLinkage(getDecodedLinkage(RawLinkage)); 3990 Func->setAttributes(getAttributes(Record[4])); 3991 callValueTypeCallback(Func, FTyID); 3992 3993 // Upgrade any old-style byval or sret without a type by propagating the 3994 // argument's pointee type. There should be no opaque pointers where the byval 3995 // type is implicit. 3996 for (unsigned i = 0; i != Func->arg_size(); ++i) { 3997 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet, 3998 Attribute::InAlloca}) { 3999 if (!Func->hasParamAttribute(i, Kind)) 4000 continue; 4001 4002 if (Func->getParamAttribute(i, Kind).getValueAsType()) 4003 continue; 4004 4005 Func->removeParamAttr(i, Kind); 4006 4007 unsigned ParamTypeID = getContainedTypeID(FTyID, i + 1); 4008 Type *PtrEltTy = getPtrElementTypeByID(ParamTypeID); 4009 if (!PtrEltTy) 4010 return error("Missing param element type for attribute upgrade"); 4011 4012 Attribute NewAttr; 4013 switch (Kind) { 4014 case Attribute::ByVal: 4015 NewAttr = Attribute::getWithByValType(Context, PtrEltTy); 4016 break; 4017 case Attribute::StructRet: 4018 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy); 4019 break; 4020 case Attribute::InAlloca: 4021 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy); 4022 break; 4023 default: 4024 llvm_unreachable("not an upgraded type attribute"); 4025 } 4026 4027 Func->addParamAttr(i, NewAttr); 4028 } 4029 } 4030 4031 if (Func->getCallingConv() == CallingConv::X86_INTR && 4032 !Func->arg_empty() && !Func->hasParamAttribute(0, Attribute::ByVal)) { 4033 unsigned ParamTypeID = getContainedTypeID(FTyID, 1); 4034 Type *ByValTy = getPtrElementTypeByID(ParamTypeID); 4035 if (!ByValTy) 4036 return error("Missing param element type for x86_intrcc upgrade"); 4037 Attribute NewAttr = Attribute::getWithByValType(Context, ByValTy); 4038 Func->addParamAttr(0, NewAttr); 4039 } 4040 4041 MaybeAlign Alignment; 4042 if (Error Err = parseAlignmentValue(Record[5], Alignment)) 4043 return Err; 4044 if (Alignment) 4045 Func->setAlignment(*Alignment); 4046 if (Record[6]) { 4047 if (Record[6] - 1 >= SectionTable.size()) 4048 return error("Invalid ID"); 4049 Func->setSection(SectionTable[Record[6] - 1]); 4050 } 4051 // Local linkage must have default visibility. 4052 // auto-upgrade `hidden` and `protected` for old bitcode. 4053 if (!Func->hasLocalLinkage()) 4054 Func->setVisibility(getDecodedVisibility(Record[7])); 4055 if (Record.size() > 8 && Record[8]) { 4056 if (Record[8] - 1 >= GCTable.size()) 4057 return error("Invalid ID"); 4058 Func->setGC(GCTable[Record[8] - 1]); 4059 } 4060 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 4061 if (Record.size() > 9) 4062 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); 4063 Func->setUnnamedAddr(UnnamedAddr); 4064 4065 FunctionOperandInfo OperandInfo = {Func, 0, 0, 0}; 4066 if (Record.size() > 10) 4067 OperandInfo.Prologue = Record[10]; 4068 4069 if (Record.size() > 11) { 4070 // A GlobalValue with local linkage cannot have a DLL storage class. 4071 if (!Func->hasLocalLinkage()) { 4072 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 4073 } 4074 } else { 4075 upgradeDLLImportExportLinkage(Func, RawLinkage); 4076 } 4077 4078 if (Record.size() > 12) { 4079 if (unsigned ComdatID = Record[12]) { 4080 if (ComdatID > ComdatList.size()) 4081 return error("Invalid function comdat ID"); 4082 Func->setComdat(ComdatList[ComdatID - 1]); 4083 } 4084 } else if (hasImplicitComdat(RawLinkage)) { 4085 ImplicitComdatObjects.insert(Func); 4086 } 4087 4088 if (Record.size() > 13) 4089 OperandInfo.Prefix = Record[13]; 4090 4091 if (Record.size() > 14) 4092 OperandInfo.PersonalityFn = Record[14]; 4093 4094 if (Record.size() > 15) { 4095 Func->setDSOLocal(getDecodedDSOLocal(Record[15])); 4096 } 4097 inferDSOLocal(Func); 4098 4099 // Record[16] is the address space number. 4100 4101 // Check whether we have enough values to read a partition name. Also make 4102 // sure Strtab has enough values. 4103 if (Record.size() > 18 && Strtab.data() && 4104 Record[17] + Record[18] <= Strtab.size()) { 4105 Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18])); 4106 } 4107 4108 ValueList.push_back(Func, getVirtualTypeID(Func->getType(), FTyID)); 4109 4110 if (OperandInfo.PersonalityFn || OperandInfo.Prefix || OperandInfo.Prologue) 4111 FunctionOperands.push_back(OperandInfo); 4112 4113 // If this is a function with a body, remember the prototype we are 4114 // creating now, so that we can match up the body with them later. 4115 if (!isProto) { 4116 Func->setIsMaterializable(true); 4117 FunctionsWithBodies.push_back(Func); 4118 DeferredFunctionInfo[Func] = 0; 4119 } 4120 return Error::success(); 4121 } 4122 4123 Error BitcodeReader::parseGlobalIndirectSymbolRecord( 4124 unsigned BitCode, ArrayRef<uint64_t> Record) { 4125 // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST) 4126 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 4127 // dllstorageclass, threadlocal, unnamed_addr, 4128 // preemption specifier] (name in VST) 4129 // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage, 4130 // visibility, dllstorageclass, threadlocal, unnamed_addr, 4131 // preemption specifier] (name in VST) 4132 // v2: [strtab_offset, strtab_size, v1] 4133 StringRef Name; 4134 std::tie(Name, Record) = readNameFromStrtab(Record); 4135 4136 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 4137 if (Record.size() < (3 + (unsigned)NewRecord)) 4138 return error("Invalid record"); 4139 unsigned OpNum = 0; 4140 unsigned TypeID = Record[OpNum++]; 4141 Type *Ty = getTypeByID(TypeID); 4142 if (!Ty) 4143 return error("Invalid record"); 4144 4145 unsigned AddrSpace; 4146 if (!NewRecord) { 4147 auto *PTy = dyn_cast<PointerType>(Ty); 4148 if (!PTy) 4149 return error("Invalid type for value"); 4150 AddrSpace = PTy->getAddressSpace(); 4151 TypeID = getContainedTypeID(TypeID); 4152 Ty = getTypeByID(TypeID); 4153 if (!Ty) 4154 return error("Missing element type for old-style indirect symbol"); 4155 } else { 4156 AddrSpace = Record[OpNum++]; 4157 } 4158 4159 auto Val = Record[OpNum++]; 4160 auto Linkage = Record[OpNum++]; 4161 GlobalValue *NewGA; 4162 if (BitCode == bitc::MODULE_CODE_ALIAS || 4163 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 4164 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 4165 TheModule); 4166 else 4167 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 4168 nullptr, TheModule); 4169 4170 // Local linkage must have default visibility. 4171 // auto-upgrade `hidden` and `protected` for old bitcode. 4172 if (OpNum != Record.size()) { 4173 auto VisInd = OpNum++; 4174 if (!NewGA->hasLocalLinkage()) 4175 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 4176 } 4177 if (BitCode == bitc::MODULE_CODE_ALIAS || 4178 BitCode == bitc::MODULE_CODE_ALIAS_OLD) { 4179 if (OpNum != Record.size()) { 4180 auto S = Record[OpNum++]; 4181 // A GlobalValue with local linkage cannot have a DLL storage class. 4182 if (!NewGA->hasLocalLinkage()) 4183 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(S)); 4184 } 4185 else 4186 upgradeDLLImportExportLinkage(NewGA, Linkage); 4187 if (OpNum != Record.size()) 4188 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 4189 if (OpNum != Record.size()) 4190 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); 4191 } 4192 if (OpNum != Record.size()) 4193 NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++])); 4194 inferDSOLocal(NewGA); 4195 4196 // Check whether we have enough values to read a partition name. 4197 if (OpNum + 1 < Record.size()) { 4198 NewGA->setPartition( 4199 StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1])); 4200 OpNum += 2; 4201 } 4202 4203 ValueList.push_back(NewGA, getVirtualTypeID(NewGA->getType(), TypeID)); 4204 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 4205 return Error::success(); 4206 } 4207 4208 Error BitcodeReader::parseModule(uint64_t ResumeBit, 4209 bool ShouldLazyLoadMetadata, 4210 ParserCallbacks Callbacks) { 4211 this->ValueTypeCallback = std::move(Callbacks.ValueType); 4212 if (ResumeBit) { 4213 if (Error JumpFailed = Stream.JumpToBit(ResumeBit)) 4214 return JumpFailed; 4215 } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 4216 return Err; 4217 4218 SmallVector<uint64_t, 64> Record; 4219 4220 // Parts of bitcode parsing depend on the datalayout. Make sure we 4221 // finalize the datalayout before we run any of that code. 4222 bool ResolvedDataLayout = false; 4223 // In order to support importing modules with illegal data layout strings, 4224 // delay parsing the data layout string until after upgrades and overrides 4225 // have been applied, allowing to fix illegal data layout strings. 4226 // Initialize to the current module's layout string in case none is specified. 4227 std::string TentativeDataLayoutStr = TheModule->getDataLayoutStr(); 4228 4229 auto ResolveDataLayout = [&]() -> Error { 4230 if (ResolvedDataLayout) 4231 return Error::success(); 4232 4233 // Datalayout and triple can't be parsed after this point. 4234 ResolvedDataLayout = true; 4235 4236 // Auto-upgrade the layout string 4237 TentativeDataLayoutStr = llvm::UpgradeDataLayoutString( 4238 TentativeDataLayoutStr, TheModule->getTargetTriple()); 4239 4240 // Apply override 4241 if (Callbacks.DataLayout) { 4242 if (auto LayoutOverride = (*Callbacks.DataLayout)( 4243 TheModule->getTargetTriple(), TentativeDataLayoutStr)) 4244 TentativeDataLayoutStr = *LayoutOverride; 4245 } 4246 4247 // Now the layout string is finalized in TentativeDataLayoutStr. Parse it. 4248 Expected<DataLayout> MaybeDL = DataLayout::parse(TentativeDataLayoutStr); 4249 if (!MaybeDL) 4250 return MaybeDL.takeError(); 4251 4252 TheModule->setDataLayout(MaybeDL.get()); 4253 return Error::success(); 4254 }; 4255 4256 // Read all the records for this module. 4257 while (true) { 4258 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 4259 if (!MaybeEntry) 4260 return MaybeEntry.takeError(); 4261 llvm::BitstreamEntry Entry = MaybeEntry.get(); 4262 4263 switch (Entry.Kind) { 4264 case BitstreamEntry::Error: 4265 return error("Malformed block"); 4266 case BitstreamEntry::EndBlock: 4267 if (Error Err = ResolveDataLayout()) 4268 return Err; 4269 return globalCleanup(); 4270 4271 case BitstreamEntry::SubBlock: 4272 switch (Entry.ID) { 4273 default: // Skip unknown content. 4274 if (Error Err = Stream.SkipBlock()) 4275 return Err; 4276 break; 4277 case bitc::BLOCKINFO_BLOCK_ID: 4278 if (Error Err = readBlockInfo()) 4279 return Err; 4280 break; 4281 case bitc::PARAMATTR_BLOCK_ID: 4282 if (Error Err = parseAttributeBlock()) 4283 return Err; 4284 break; 4285 case bitc::PARAMATTR_GROUP_BLOCK_ID: 4286 if (Error Err = parseAttributeGroupBlock()) 4287 return Err; 4288 break; 4289 case bitc::TYPE_BLOCK_ID_NEW: 4290 if (Error Err = parseTypeTable()) 4291 return Err; 4292 break; 4293 case bitc::VALUE_SYMTAB_BLOCK_ID: 4294 if (!SeenValueSymbolTable) { 4295 // Either this is an old form VST without function index and an 4296 // associated VST forward declaration record (which would have caused 4297 // the VST to be jumped to and parsed before it was encountered 4298 // normally in the stream), or there were no function blocks to 4299 // trigger an earlier parsing of the VST. 4300 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 4301 if (Error Err = parseValueSymbolTable()) 4302 return Err; 4303 SeenValueSymbolTable = true; 4304 } else { 4305 // We must have had a VST forward declaration record, which caused 4306 // the parser to jump to and parse the VST earlier. 4307 assert(VSTOffset > 0); 4308 if (Error Err = Stream.SkipBlock()) 4309 return Err; 4310 } 4311 break; 4312 case bitc::CONSTANTS_BLOCK_ID: 4313 if (Error Err = parseConstants()) 4314 return Err; 4315 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 4316 return Err; 4317 break; 4318 case bitc::METADATA_BLOCK_ID: 4319 if (ShouldLazyLoadMetadata) { 4320 if (Error Err = rememberAndSkipMetadata()) 4321 return Err; 4322 break; 4323 } 4324 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 4325 if (Error Err = MDLoader->parseModuleMetadata()) 4326 return Err; 4327 break; 4328 case bitc::METADATA_KIND_BLOCK_ID: 4329 if (Error Err = MDLoader->parseMetadataKinds()) 4330 return Err; 4331 break; 4332 case bitc::FUNCTION_BLOCK_ID: 4333 if (Error Err = ResolveDataLayout()) 4334 return Err; 4335 4336 // If this is the first function body we've seen, reverse the 4337 // FunctionsWithBodies list. 4338 if (!SeenFirstFunctionBody) { 4339 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 4340 if (Error Err = globalCleanup()) 4341 return Err; 4342 SeenFirstFunctionBody = true; 4343 } 4344 4345 if (VSTOffset > 0) { 4346 // If we have a VST forward declaration record, make sure we 4347 // parse the VST now if we haven't already. It is needed to 4348 // set up the DeferredFunctionInfo vector for lazy reading. 4349 if (!SeenValueSymbolTable) { 4350 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset)) 4351 return Err; 4352 SeenValueSymbolTable = true; 4353 // Fall through so that we record the NextUnreadBit below. 4354 // This is necessary in case we have an anonymous function that 4355 // is later materialized. Since it will not have a VST entry we 4356 // need to fall back to the lazy parse to find its offset. 4357 } else { 4358 // If we have a VST forward declaration record, but have already 4359 // parsed the VST (just above, when the first function body was 4360 // encountered here), then we are resuming the parse after 4361 // materializing functions. The ResumeBit points to the 4362 // start of the last function block recorded in the 4363 // DeferredFunctionInfo map. Skip it. 4364 if (Error Err = Stream.SkipBlock()) 4365 return Err; 4366 continue; 4367 } 4368 } 4369 4370 // Support older bitcode files that did not have the function 4371 // index in the VST, nor a VST forward declaration record, as 4372 // well as anonymous functions that do not have VST entries. 4373 // Build the DeferredFunctionInfo vector on the fly. 4374 if (Error Err = rememberAndSkipFunctionBody()) 4375 return Err; 4376 4377 // Suspend parsing when we reach the function bodies. Subsequent 4378 // materialization calls will resume it when necessary. If the bitcode 4379 // file is old, the symbol table will be at the end instead and will not 4380 // have been seen yet. In this case, just finish the parse now. 4381 if (SeenValueSymbolTable) { 4382 NextUnreadBit = Stream.GetCurrentBitNo(); 4383 // After the VST has been parsed, we need to make sure intrinsic name 4384 // are auto-upgraded. 4385 return globalCleanup(); 4386 } 4387 break; 4388 case bitc::USELIST_BLOCK_ID: 4389 if (Error Err = parseUseLists()) 4390 return Err; 4391 break; 4392 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 4393 if (Error Err = parseOperandBundleTags()) 4394 return Err; 4395 break; 4396 case bitc::SYNC_SCOPE_NAMES_BLOCK_ID: 4397 if (Error Err = parseSyncScopeNames()) 4398 return Err; 4399 break; 4400 } 4401 continue; 4402 4403 case BitstreamEntry::Record: 4404 // The interesting case. 4405 break; 4406 } 4407 4408 // Read a record. 4409 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 4410 if (!MaybeBitCode) 4411 return MaybeBitCode.takeError(); 4412 switch (unsigned BitCode = MaybeBitCode.get()) { 4413 default: break; // Default behavior, ignore unknown content. 4414 case bitc::MODULE_CODE_VERSION: { 4415 Expected<unsigned> VersionOrErr = parseVersionRecord(Record); 4416 if (!VersionOrErr) 4417 return VersionOrErr.takeError(); 4418 UseRelativeIDs = *VersionOrErr >= 1; 4419 break; 4420 } 4421 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 4422 if (ResolvedDataLayout) 4423 return error("target triple too late in module"); 4424 std::string S; 4425 if (convertToString(Record, 0, S)) 4426 return error("Invalid record"); 4427 TheModule->setTargetTriple(S); 4428 break; 4429 } 4430 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 4431 if (ResolvedDataLayout) 4432 return error("datalayout too late in module"); 4433 if (convertToString(Record, 0, TentativeDataLayoutStr)) 4434 return error("Invalid record"); 4435 break; 4436 } 4437 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 4438 std::string S; 4439 if (convertToString(Record, 0, S)) 4440 return error("Invalid record"); 4441 TheModule->setModuleInlineAsm(S); 4442 break; 4443 } 4444 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 4445 // Deprecated, but still needed to read old bitcode files. 4446 std::string S; 4447 if (convertToString(Record, 0, S)) 4448 return error("Invalid record"); 4449 // Ignore value. 4450 break; 4451 } 4452 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 4453 std::string S; 4454 if (convertToString(Record, 0, S)) 4455 return error("Invalid record"); 4456 SectionTable.push_back(S); 4457 break; 4458 } 4459 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 4460 std::string S; 4461 if (convertToString(Record, 0, S)) 4462 return error("Invalid record"); 4463 GCTable.push_back(S); 4464 break; 4465 } 4466 case bitc::MODULE_CODE_COMDAT: 4467 if (Error Err = parseComdatRecord(Record)) 4468 return Err; 4469 break; 4470 // FIXME: BitcodeReader should handle {GLOBALVAR, FUNCTION, ALIAS, IFUNC} 4471 // written by ThinLinkBitcodeWriter. See 4472 // `ThinLinkBitcodeWriter::writeSimplifiedModuleInfo` for the format of each 4473 // record 4474 // (https://github.com/llvm/llvm-project/blob/b6a93967d9c11e79802b5e75cec1584d6c8aa472/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp#L4714) 4475 case bitc::MODULE_CODE_GLOBALVAR: 4476 if (Error Err = parseGlobalVarRecord(Record)) 4477 return Err; 4478 break; 4479 case bitc::MODULE_CODE_FUNCTION: 4480 if (Error Err = ResolveDataLayout()) 4481 return Err; 4482 if (Error Err = parseFunctionRecord(Record)) 4483 return Err; 4484 break; 4485 case bitc::MODULE_CODE_IFUNC: 4486 case bitc::MODULE_CODE_ALIAS: 4487 case bitc::MODULE_CODE_ALIAS_OLD: 4488 if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record)) 4489 return Err; 4490 break; 4491 /// MODULE_CODE_VSTOFFSET: [offset] 4492 case bitc::MODULE_CODE_VSTOFFSET: 4493 if (Record.empty()) 4494 return error("Invalid record"); 4495 // Note that we subtract 1 here because the offset is relative to one word 4496 // before the start of the identification or module block, which was 4497 // historically always the start of the regular bitcode header. 4498 VSTOffset = Record[0] - 1; 4499 break; 4500 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4501 case bitc::MODULE_CODE_SOURCE_FILENAME: 4502 SmallString<128> ValueName; 4503 if (convertToString(Record, 0, ValueName)) 4504 return error("Invalid record"); 4505 TheModule->setSourceFileName(ValueName); 4506 break; 4507 } 4508 Record.clear(); 4509 } 4510 this->ValueTypeCallback = std::nullopt; 4511 return Error::success(); 4512 } 4513 4514 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 4515 bool IsImporting, 4516 ParserCallbacks Callbacks) { 4517 TheModule = M; 4518 MetadataLoaderCallbacks MDCallbacks; 4519 MDCallbacks.GetTypeByID = [&](unsigned ID) { return getTypeByID(ID); }; 4520 MDCallbacks.GetContainedTypeID = [&](unsigned I, unsigned J) { 4521 return getContainedTypeID(I, J); 4522 }; 4523 MDCallbacks.MDType = Callbacks.MDType; 4524 MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, MDCallbacks); 4525 return parseModule(0, ShouldLazyLoadMetadata, Callbacks); 4526 } 4527 4528 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 4529 if (!isa<PointerType>(PtrType)) 4530 return error("Load/Store operand is not a pointer type"); 4531 4532 if (!cast<PointerType>(PtrType)->isOpaqueOrPointeeTypeMatches(ValType)) 4533 return error("Explicit load/store type does not match pointee " 4534 "type of pointer operand"); 4535 if (!PointerType::isLoadableOrStorableType(ValType)) 4536 return error("Cannot load/store from pointer"); 4537 return Error::success(); 4538 } 4539 4540 Error BitcodeReader::propagateAttributeTypes(CallBase *CB, 4541 ArrayRef<unsigned> ArgTyIDs) { 4542 AttributeList Attrs = CB->getAttributes(); 4543 for (unsigned i = 0; i != CB->arg_size(); ++i) { 4544 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet, 4545 Attribute::InAlloca}) { 4546 if (!Attrs.hasParamAttr(i, Kind) || 4547 Attrs.getParamAttr(i, Kind).getValueAsType()) 4548 continue; 4549 4550 Type *PtrEltTy = getPtrElementTypeByID(ArgTyIDs[i]); 4551 if (!PtrEltTy) 4552 return error("Missing element type for typed attribute upgrade"); 4553 4554 Attribute NewAttr; 4555 switch (Kind) { 4556 case Attribute::ByVal: 4557 NewAttr = Attribute::getWithByValType(Context, PtrEltTy); 4558 break; 4559 case Attribute::StructRet: 4560 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy); 4561 break; 4562 case Attribute::InAlloca: 4563 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy); 4564 break; 4565 default: 4566 llvm_unreachable("not an upgraded type attribute"); 4567 } 4568 4569 Attrs = Attrs.addParamAttribute(Context, i, NewAttr); 4570 } 4571 } 4572 4573 if (CB->isInlineAsm()) { 4574 const InlineAsm *IA = cast<InlineAsm>(CB->getCalledOperand()); 4575 unsigned ArgNo = 0; 4576 for (const InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 4577 if (!CI.hasArg()) 4578 continue; 4579 4580 if (CI.isIndirect && !Attrs.getParamElementType(ArgNo)) { 4581 Type *ElemTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]); 4582 if (!ElemTy) 4583 return error("Missing element type for inline asm upgrade"); 4584 Attrs = Attrs.addParamAttribute( 4585 Context, ArgNo, 4586 Attribute::get(Context, Attribute::ElementType, ElemTy)); 4587 } 4588 4589 ArgNo++; 4590 } 4591 } 4592 4593 switch (CB->getIntrinsicID()) { 4594 case Intrinsic::preserve_array_access_index: 4595 case Intrinsic::preserve_struct_access_index: 4596 case Intrinsic::aarch64_ldaxr: 4597 case Intrinsic::aarch64_ldxr: 4598 case Intrinsic::aarch64_stlxr: 4599 case Intrinsic::aarch64_stxr: 4600 case Intrinsic::arm_ldaex: 4601 case Intrinsic::arm_ldrex: 4602 case Intrinsic::arm_stlex: 4603 case Intrinsic::arm_strex: { 4604 unsigned ArgNo; 4605 switch (CB->getIntrinsicID()) { 4606 case Intrinsic::aarch64_stlxr: 4607 case Intrinsic::aarch64_stxr: 4608 case Intrinsic::arm_stlex: 4609 case Intrinsic::arm_strex: 4610 ArgNo = 1; 4611 break; 4612 default: 4613 ArgNo = 0; 4614 break; 4615 } 4616 if (!Attrs.getParamElementType(ArgNo)) { 4617 Type *ElTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]); 4618 if (!ElTy) 4619 return error("Missing element type for elementtype upgrade"); 4620 Attribute NewAttr = Attribute::get(Context, Attribute::ElementType, ElTy); 4621 Attrs = Attrs.addParamAttribute(Context, ArgNo, NewAttr); 4622 } 4623 break; 4624 } 4625 default: 4626 break; 4627 } 4628 4629 CB->setAttributes(Attrs); 4630 return Error::success(); 4631 } 4632 4633 /// Lazily parse the specified function body block. 4634 Error BitcodeReader::parseFunctionBody(Function *F) { 4635 if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 4636 return Err; 4637 4638 // Unexpected unresolved metadata when parsing function. 4639 if (MDLoader->hasFwdRefs()) 4640 return error("Invalid function metadata: incoming forward references"); 4641 4642 InstructionList.clear(); 4643 unsigned ModuleValueListSize = ValueList.size(); 4644 unsigned ModuleMDLoaderSize = MDLoader->size(); 4645 4646 // Add all the function arguments to the value table. 4647 unsigned ArgNo = 0; 4648 unsigned FTyID = FunctionTypeIDs[F]; 4649 for (Argument &I : F->args()) { 4650 unsigned ArgTyID = getContainedTypeID(FTyID, ArgNo + 1); 4651 assert(I.getType() == getTypeByID(ArgTyID) && 4652 "Incorrect fully specified type for Function Argument"); 4653 ValueList.push_back(&I, ArgTyID); 4654 ++ArgNo; 4655 } 4656 unsigned NextValueNo = ValueList.size(); 4657 BasicBlock *CurBB = nullptr; 4658 unsigned CurBBNo = 0; 4659 // Block into which constant expressions from phi nodes are materialized. 4660 BasicBlock *PhiConstExprBB = nullptr; 4661 // Edge blocks for phi nodes into which constant expressions have been 4662 // expanded. 4663 SmallMapVector<std::pair<BasicBlock *, BasicBlock *>, BasicBlock *, 4> 4664 ConstExprEdgeBBs; 4665 4666 DebugLoc LastLoc; 4667 auto getLastInstruction = [&]() -> Instruction * { 4668 if (CurBB && !CurBB->empty()) 4669 return &CurBB->back(); 4670 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 4671 !FunctionBBs[CurBBNo - 1]->empty()) 4672 return &FunctionBBs[CurBBNo - 1]->back(); 4673 return nullptr; 4674 }; 4675 4676 std::vector<OperandBundleDef> OperandBundles; 4677 4678 // Read all the records. 4679 SmallVector<uint64_t, 64> Record; 4680 4681 while (true) { 4682 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 4683 if (!MaybeEntry) 4684 return MaybeEntry.takeError(); 4685 llvm::BitstreamEntry Entry = MaybeEntry.get(); 4686 4687 switch (Entry.Kind) { 4688 case BitstreamEntry::Error: 4689 return error("Malformed block"); 4690 case BitstreamEntry::EndBlock: 4691 goto OutOfRecordLoop; 4692 4693 case BitstreamEntry::SubBlock: 4694 switch (Entry.ID) { 4695 default: // Skip unknown content. 4696 if (Error Err = Stream.SkipBlock()) 4697 return Err; 4698 break; 4699 case bitc::CONSTANTS_BLOCK_ID: 4700 if (Error Err = parseConstants()) 4701 return Err; 4702 NextValueNo = ValueList.size(); 4703 break; 4704 case bitc::VALUE_SYMTAB_BLOCK_ID: 4705 if (Error Err = parseValueSymbolTable()) 4706 return Err; 4707 break; 4708 case bitc::METADATA_ATTACHMENT_ID: 4709 if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList)) 4710 return Err; 4711 break; 4712 case bitc::METADATA_BLOCK_ID: 4713 assert(DeferredMetadataInfo.empty() && 4714 "Must read all module-level metadata before function-level"); 4715 if (Error Err = MDLoader->parseFunctionMetadata()) 4716 return Err; 4717 break; 4718 case bitc::USELIST_BLOCK_ID: 4719 if (Error Err = parseUseLists()) 4720 return Err; 4721 break; 4722 } 4723 continue; 4724 4725 case BitstreamEntry::Record: 4726 // The interesting case. 4727 break; 4728 } 4729 4730 // Read a record. 4731 Record.clear(); 4732 Instruction *I = nullptr; 4733 unsigned ResTypeID = InvalidTypeID; 4734 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 4735 if (!MaybeBitCode) 4736 return MaybeBitCode.takeError(); 4737 switch (unsigned BitCode = MaybeBitCode.get()) { 4738 default: // Default behavior: reject 4739 return error("Invalid value"); 4740 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 4741 if (Record.empty() || Record[0] == 0) 4742 return error("Invalid record"); 4743 // Create all the basic blocks for the function. 4744 FunctionBBs.resize(Record[0]); 4745 4746 // See if anything took the address of blocks in this function. 4747 auto BBFRI = BasicBlockFwdRefs.find(F); 4748 if (BBFRI == BasicBlockFwdRefs.end()) { 4749 for (BasicBlock *&BB : FunctionBBs) 4750 BB = BasicBlock::Create(Context, "", F); 4751 } else { 4752 auto &BBRefs = BBFRI->second; 4753 // Check for invalid basic block references. 4754 if (BBRefs.size() > FunctionBBs.size()) 4755 return error("Invalid ID"); 4756 assert(!BBRefs.empty() && "Unexpected empty array"); 4757 assert(!BBRefs.front() && "Invalid reference to entry block"); 4758 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 4759 ++I) 4760 if (I < RE && BBRefs[I]) { 4761 BBRefs[I]->insertInto(F); 4762 FunctionBBs[I] = BBRefs[I]; 4763 } else { 4764 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 4765 } 4766 4767 // Erase from the table. 4768 BasicBlockFwdRefs.erase(BBFRI); 4769 } 4770 4771 CurBB = FunctionBBs[0]; 4772 continue; 4773 } 4774 4775 case bitc::FUNC_CODE_BLOCKADDR_USERS: // BLOCKADDR_USERS: [vals...] 4776 // The record should not be emitted if it's an empty list. 4777 if (Record.empty()) 4778 return error("Invalid record"); 4779 // When we have the RARE case of a BlockAddress Constant that is not 4780 // scoped to the Function it refers to, we need to conservatively 4781 // materialize the referred to Function, regardless of whether or not 4782 // that Function will ultimately be linked, otherwise users of 4783 // BitcodeReader might start splicing out Function bodies such that we 4784 // might no longer be able to materialize the BlockAddress since the 4785 // BasicBlock (and entire body of the Function) the BlockAddress refers 4786 // to may have been moved. In the case that the user of BitcodeReader 4787 // decides ultimately not to link the Function body, materializing here 4788 // could be considered wasteful, but it's better than a deserialization 4789 // failure as described. This keeps BitcodeReader unaware of complex 4790 // linkage policy decisions such as those use by LTO, leaving those 4791 // decisions "one layer up." 4792 for (uint64_t ValID : Record) 4793 if (auto *F = dyn_cast<Function>(ValueList[ValID])) 4794 BackwardRefFunctions.push_back(F); 4795 else 4796 return error("Invalid record"); 4797 4798 continue; 4799 4800 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 4801 // This record indicates that the last instruction is at the same 4802 // location as the previous instruction with a location. 4803 I = getLastInstruction(); 4804 4805 if (!I) 4806 return error("Invalid record"); 4807 I->setDebugLoc(LastLoc); 4808 I = nullptr; 4809 continue; 4810 4811 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 4812 I = getLastInstruction(); 4813 if (!I || Record.size() < 4) 4814 return error("Invalid record"); 4815 4816 unsigned Line = Record[0], Col = Record[1]; 4817 unsigned ScopeID = Record[2], IAID = Record[3]; 4818 bool isImplicitCode = Record.size() == 5 && Record[4]; 4819 4820 MDNode *Scope = nullptr, *IA = nullptr; 4821 if (ScopeID) { 4822 Scope = dyn_cast_or_null<MDNode>( 4823 MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1)); 4824 if (!Scope) 4825 return error("Invalid record"); 4826 } 4827 if (IAID) { 4828 IA = dyn_cast_or_null<MDNode>( 4829 MDLoader->getMetadataFwdRefOrLoad(IAID - 1)); 4830 if (!IA) 4831 return error("Invalid record"); 4832 } 4833 LastLoc = DILocation::get(Scope->getContext(), Line, Col, Scope, IA, 4834 isImplicitCode); 4835 I->setDebugLoc(LastLoc); 4836 I = nullptr; 4837 continue; 4838 } 4839 case bitc::FUNC_CODE_INST_UNOP: { // UNOP: [opval, ty, opcode] 4840 unsigned OpNum = 0; 4841 Value *LHS; 4842 unsigned TypeID; 4843 if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) || 4844 OpNum+1 > Record.size()) 4845 return error("Invalid record"); 4846 4847 int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType()); 4848 if (Opc == -1) 4849 return error("Invalid record"); 4850 I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 4851 ResTypeID = TypeID; 4852 InstructionList.push_back(I); 4853 if (OpNum < Record.size()) { 4854 if (isa<FPMathOperator>(I)) { 4855 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4856 if (FMF.any()) 4857 I->setFastMathFlags(FMF); 4858 } 4859 } 4860 break; 4861 } 4862 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 4863 unsigned OpNum = 0; 4864 Value *LHS, *RHS; 4865 unsigned TypeID; 4866 if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) || 4867 popValue(Record, OpNum, NextValueNo, LHS->getType(), TypeID, RHS, 4868 CurBB) || 4869 OpNum+1 > Record.size()) 4870 return error("Invalid record"); 4871 4872 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 4873 if (Opc == -1) 4874 return error("Invalid record"); 4875 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 4876 ResTypeID = TypeID; 4877 InstructionList.push_back(I); 4878 if (OpNum < Record.size()) { 4879 if (Opc == Instruction::Add || 4880 Opc == Instruction::Sub || 4881 Opc == Instruction::Mul || 4882 Opc == Instruction::Shl) { 4883 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 4884 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 4885 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 4886 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 4887 } else if (Opc == Instruction::SDiv || 4888 Opc == Instruction::UDiv || 4889 Opc == Instruction::LShr || 4890 Opc == Instruction::AShr) { 4891 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 4892 cast<BinaryOperator>(I)->setIsExact(true); 4893 } else if (isa<FPMathOperator>(I)) { 4894 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4895 if (FMF.any()) 4896 I->setFastMathFlags(FMF); 4897 } 4898 4899 } 4900 break; 4901 } 4902 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 4903 unsigned OpNum = 0; 4904 Value *Op; 4905 unsigned OpTypeID; 4906 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) || 4907 OpNum+2 != Record.size()) 4908 return error("Invalid record"); 4909 4910 ResTypeID = Record[OpNum]; 4911 Type *ResTy = getTypeByID(ResTypeID); 4912 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 4913 if (Opc == -1 || !ResTy) 4914 return error("Invalid record"); 4915 Instruction *Temp = nullptr; 4916 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 4917 if (Temp) { 4918 InstructionList.push_back(Temp); 4919 assert(CurBB && "No current BB?"); 4920 Temp->insertInto(CurBB, CurBB->end()); 4921 } 4922 } else { 4923 auto CastOp = (Instruction::CastOps)Opc; 4924 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 4925 return error("Invalid cast"); 4926 I = CastInst::Create(CastOp, Op, ResTy); 4927 } 4928 InstructionList.push_back(I); 4929 break; 4930 } 4931 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 4932 case bitc::FUNC_CODE_INST_GEP_OLD: 4933 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 4934 unsigned OpNum = 0; 4935 4936 unsigned TyID; 4937 Type *Ty; 4938 bool InBounds; 4939 4940 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 4941 InBounds = Record[OpNum++]; 4942 TyID = Record[OpNum++]; 4943 Ty = getTypeByID(TyID); 4944 } else { 4945 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 4946 TyID = InvalidTypeID; 4947 Ty = nullptr; 4948 } 4949 4950 Value *BasePtr; 4951 unsigned BasePtrTypeID; 4952 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr, BasePtrTypeID, 4953 CurBB)) 4954 return error("Invalid record"); 4955 4956 if (!Ty) { 4957 TyID = getContainedTypeID(BasePtrTypeID); 4958 if (BasePtr->getType()->isVectorTy()) 4959 TyID = getContainedTypeID(TyID); 4960 Ty = getTypeByID(TyID); 4961 } else if (!cast<PointerType>(BasePtr->getType()->getScalarType()) 4962 ->isOpaqueOrPointeeTypeMatches(Ty)) { 4963 return error( 4964 "Explicit gep type does not match pointee type of pointer operand"); 4965 } 4966 4967 SmallVector<Value*, 16> GEPIdx; 4968 while (OpNum != Record.size()) { 4969 Value *Op; 4970 unsigned OpTypeID; 4971 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 4972 return error("Invalid record"); 4973 GEPIdx.push_back(Op); 4974 } 4975 4976 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 4977 4978 ResTypeID = TyID; 4979 if (cast<GEPOperator>(I)->getNumIndices() != 0) { 4980 auto GTI = std::next(gep_type_begin(I)); 4981 for (Value *Idx : drop_begin(cast<GEPOperator>(I)->indices())) { 4982 unsigned SubType = 0; 4983 if (GTI.isStruct()) { 4984 ConstantInt *IdxC = 4985 Idx->getType()->isVectorTy() 4986 ? cast<ConstantInt>(cast<Constant>(Idx)->getSplatValue()) 4987 : cast<ConstantInt>(Idx); 4988 SubType = IdxC->getZExtValue(); 4989 } 4990 ResTypeID = getContainedTypeID(ResTypeID, SubType); 4991 ++GTI; 4992 } 4993 } 4994 4995 // At this point ResTypeID is the result element type. We need a pointer 4996 // or vector of pointer to it. 4997 ResTypeID = getVirtualTypeID(I->getType()->getScalarType(), ResTypeID); 4998 if (I->getType()->isVectorTy()) 4999 ResTypeID = getVirtualTypeID(I->getType(), ResTypeID); 5000 5001 InstructionList.push_back(I); 5002 if (InBounds) 5003 cast<GetElementPtrInst>(I)->setIsInBounds(true); 5004 break; 5005 } 5006 5007 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 5008 // EXTRACTVAL: [opty, opval, n x indices] 5009 unsigned OpNum = 0; 5010 Value *Agg; 5011 unsigned AggTypeID; 5012 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB)) 5013 return error("Invalid record"); 5014 Type *Ty = Agg->getType(); 5015 5016 unsigned RecSize = Record.size(); 5017 if (OpNum == RecSize) 5018 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 5019 5020 SmallVector<unsigned, 4> EXTRACTVALIdx; 5021 ResTypeID = AggTypeID; 5022 for (; OpNum != RecSize; ++OpNum) { 5023 bool IsArray = Ty->isArrayTy(); 5024 bool IsStruct = Ty->isStructTy(); 5025 uint64_t Index = Record[OpNum]; 5026 5027 if (!IsStruct && !IsArray) 5028 return error("EXTRACTVAL: Invalid type"); 5029 if ((unsigned)Index != Index) 5030 return error("Invalid value"); 5031 if (IsStruct && Index >= Ty->getStructNumElements()) 5032 return error("EXTRACTVAL: Invalid struct index"); 5033 if (IsArray && Index >= Ty->getArrayNumElements()) 5034 return error("EXTRACTVAL: Invalid array index"); 5035 EXTRACTVALIdx.push_back((unsigned)Index); 5036 5037 if (IsStruct) { 5038 Ty = Ty->getStructElementType(Index); 5039 ResTypeID = getContainedTypeID(ResTypeID, Index); 5040 } else { 5041 Ty = Ty->getArrayElementType(); 5042 ResTypeID = getContainedTypeID(ResTypeID); 5043 } 5044 } 5045 5046 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 5047 InstructionList.push_back(I); 5048 break; 5049 } 5050 5051 case bitc::FUNC_CODE_INST_INSERTVAL: { 5052 // INSERTVAL: [opty, opval, opty, opval, n x indices] 5053 unsigned OpNum = 0; 5054 Value *Agg; 5055 unsigned AggTypeID; 5056 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB)) 5057 return error("Invalid record"); 5058 Value *Val; 5059 unsigned ValTypeID; 5060 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 5061 return error("Invalid record"); 5062 5063 unsigned RecSize = Record.size(); 5064 if (OpNum == RecSize) 5065 return error("INSERTVAL: Invalid instruction with 0 indices"); 5066 5067 SmallVector<unsigned, 4> INSERTVALIdx; 5068 Type *CurTy = Agg->getType(); 5069 for (; OpNum != RecSize; ++OpNum) { 5070 bool IsArray = CurTy->isArrayTy(); 5071 bool IsStruct = CurTy->isStructTy(); 5072 uint64_t Index = Record[OpNum]; 5073 5074 if (!IsStruct && !IsArray) 5075 return error("INSERTVAL: Invalid type"); 5076 if ((unsigned)Index != Index) 5077 return error("Invalid value"); 5078 if (IsStruct && Index >= CurTy->getStructNumElements()) 5079 return error("INSERTVAL: Invalid struct index"); 5080 if (IsArray && Index >= CurTy->getArrayNumElements()) 5081 return error("INSERTVAL: Invalid array index"); 5082 5083 INSERTVALIdx.push_back((unsigned)Index); 5084 if (IsStruct) 5085 CurTy = CurTy->getStructElementType(Index); 5086 else 5087 CurTy = CurTy->getArrayElementType(); 5088 } 5089 5090 if (CurTy != Val->getType()) 5091 return error("Inserted value type doesn't match aggregate type"); 5092 5093 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 5094 ResTypeID = AggTypeID; 5095 InstructionList.push_back(I); 5096 break; 5097 } 5098 5099 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 5100 // obsolete form of select 5101 // handles select i1 ... in old bitcode 5102 unsigned OpNum = 0; 5103 Value *TrueVal, *FalseVal, *Cond; 5104 unsigned TypeID; 5105 Type *CondType = Type::getInt1Ty(Context); 5106 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, TypeID, 5107 CurBB) || 5108 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), TypeID, 5109 FalseVal, CurBB) || 5110 popValue(Record, OpNum, NextValueNo, CondType, 5111 getVirtualTypeID(CondType), Cond, CurBB)) 5112 return error("Invalid record"); 5113 5114 I = SelectInst::Create(Cond, TrueVal, FalseVal); 5115 ResTypeID = TypeID; 5116 InstructionList.push_back(I); 5117 break; 5118 } 5119 5120 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 5121 // new form of select 5122 // handles select i1 or select [N x i1] 5123 unsigned OpNum = 0; 5124 Value *TrueVal, *FalseVal, *Cond; 5125 unsigned ValTypeID, CondTypeID; 5126 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, ValTypeID, 5127 CurBB) || 5128 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), ValTypeID, 5129 FalseVal, CurBB) || 5130 getValueTypePair(Record, OpNum, NextValueNo, Cond, CondTypeID, CurBB)) 5131 return error("Invalid record"); 5132 5133 // select condition can be either i1 or [N x i1] 5134 if (VectorType* vector_type = 5135 dyn_cast<VectorType>(Cond->getType())) { 5136 // expect <n x i1> 5137 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 5138 return error("Invalid type for value"); 5139 } else { 5140 // expect i1 5141 if (Cond->getType() != Type::getInt1Ty(Context)) 5142 return error("Invalid type for value"); 5143 } 5144 5145 I = SelectInst::Create(Cond, TrueVal, FalseVal); 5146 ResTypeID = ValTypeID; 5147 InstructionList.push_back(I); 5148 if (OpNum < Record.size() && isa<FPMathOperator>(I)) { 5149 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 5150 if (FMF.any()) 5151 I->setFastMathFlags(FMF); 5152 } 5153 break; 5154 } 5155 5156 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 5157 unsigned OpNum = 0; 5158 Value *Vec, *Idx; 5159 unsigned VecTypeID, IdxTypeID; 5160 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB) || 5161 getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB)) 5162 return error("Invalid record"); 5163 if (!Vec->getType()->isVectorTy()) 5164 return error("Invalid type for value"); 5165 I = ExtractElementInst::Create(Vec, Idx); 5166 ResTypeID = getContainedTypeID(VecTypeID); 5167 InstructionList.push_back(I); 5168 break; 5169 } 5170 5171 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 5172 unsigned OpNum = 0; 5173 Value *Vec, *Elt, *Idx; 5174 unsigned VecTypeID, IdxTypeID; 5175 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB)) 5176 return error("Invalid record"); 5177 if (!Vec->getType()->isVectorTy()) 5178 return error("Invalid type for value"); 5179 if (popValue(Record, OpNum, NextValueNo, 5180 cast<VectorType>(Vec->getType())->getElementType(), 5181 getContainedTypeID(VecTypeID), Elt, CurBB) || 5182 getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB)) 5183 return error("Invalid record"); 5184 I = InsertElementInst::Create(Vec, Elt, Idx); 5185 ResTypeID = VecTypeID; 5186 InstructionList.push_back(I); 5187 break; 5188 } 5189 5190 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 5191 unsigned OpNum = 0; 5192 Value *Vec1, *Vec2, *Mask; 5193 unsigned Vec1TypeID; 5194 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1, Vec1TypeID, 5195 CurBB) || 5196 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec1TypeID, 5197 Vec2, CurBB)) 5198 return error("Invalid record"); 5199 5200 unsigned MaskTypeID; 5201 if (getValueTypePair(Record, OpNum, NextValueNo, Mask, MaskTypeID, CurBB)) 5202 return error("Invalid record"); 5203 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 5204 return error("Invalid type for value"); 5205 5206 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 5207 ResTypeID = 5208 getVirtualTypeID(I->getType(), getContainedTypeID(Vec1TypeID)); 5209 InstructionList.push_back(I); 5210 break; 5211 } 5212 5213 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 5214 // Old form of ICmp/FCmp returning bool 5215 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 5216 // both legal on vectors but had different behaviour. 5217 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 5218 // FCmp/ICmp returning bool or vector of bool 5219 5220 unsigned OpNum = 0; 5221 Value *LHS, *RHS; 5222 unsigned LHSTypeID; 5223 if (getValueTypePair(Record, OpNum, NextValueNo, LHS, LHSTypeID, CurBB) || 5224 popValue(Record, OpNum, NextValueNo, LHS->getType(), LHSTypeID, RHS, 5225 CurBB)) 5226 return error("Invalid record"); 5227 5228 if (OpNum >= Record.size()) 5229 return error( 5230 "Invalid record: operand number exceeded available operands"); 5231 5232 unsigned PredVal = Record[OpNum]; 5233 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 5234 FastMathFlags FMF; 5235 if (IsFP && Record.size() > OpNum+1) 5236 FMF = getDecodedFastMathFlags(Record[++OpNum]); 5237 5238 if (OpNum+1 != Record.size()) 5239 return error("Invalid record"); 5240 5241 if (LHS->getType()->isFPOrFPVectorTy()) 5242 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 5243 else 5244 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 5245 5246 ResTypeID = getVirtualTypeID(I->getType()->getScalarType()); 5247 if (LHS->getType()->isVectorTy()) 5248 ResTypeID = getVirtualTypeID(I->getType(), ResTypeID); 5249 5250 if (FMF.any()) 5251 I->setFastMathFlags(FMF); 5252 InstructionList.push_back(I); 5253 break; 5254 } 5255 5256 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 5257 { 5258 unsigned Size = Record.size(); 5259 if (Size == 0) { 5260 I = ReturnInst::Create(Context); 5261 InstructionList.push_back(I); 5262 break; 5263 } 5264 5265 unsigned OpNum = 0; 5266 Value *Op = nullptr; 5267 unsigned OpTypeID; 5268 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 5269 return error("Invalid record"); 5270 if (OpNum != Record.size()) 5271 return error("Invalid record"); 5272 5273 I = ReturnInst::Create(Context, Op); 5274 InstructionList.push_back(I); 5275 break; 5276 } 5277 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 5278 if (Record.size() != 1 && Record.size() != 3) 5279 return error("Invalid record"); 5280 BasicBlock *TrueDest = getBasicBlock(Record[0]); 5281 if (!TrueDest) 5282 return error("Invalid record"); 5283 5284 if (Record.size() == 1) { 5285 I = BranchInst::Create(TrueDest); 5286 InstructionList.push_back(I); 5287 } 5288 else { 5289 BasicBlock *FalseDest = getBasicBlock(Record[1]); 5290 Type *CondType = Type::getInt1Ty(Context); 5291 Value *Cond = getValue(Record, 2, NextValueNo, CondType, 5292 getVirtualTypeID(CondType), CurBB); 5293 if (!FalseDest || !Cond) 5294 return error("Invalid record"); 5295 I = BranchInst::Create(TrueDest, FalseDest, Cond); 5296 InstructionList.push_back(I); 5297 } 5298 break; 5299 } 5300 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 5301 if (Record.size() != 1 && Record.size() != 2) 5302 return error("Invalid record"); 5303 unsigned Idx = 0; 5304 Type *TokenTy = Type::getTokenTy(Context); 5305 Value *CleanupPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5306 getVirtualTypeID(TokenTy), CurBB); 5307 if (!CleanupPad) 5308 return error("Invalid record"); 5309 BasicBlock *UnwindDest = nullptr; 5310 if (Record.size() == 2) { 5311 UnwindDest = getBasicBlock(Record[Idx++]); 5312 if (!UnwindDest) 5313 return error("Invalid record"); 5314 } 5315 5316 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 5317 InstructionList.push_back(I); 5318 break; 5319 } 5320 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 5321 if (Record.size() != 2) 5322 return error("Invalid record"); 5323 unsigned Idx = 0; 5324 Type *TokenTy = Type::getTokenTy(Context); 5325 Value *CatchPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5326 getVirtualTypeID(TokenTy), CurBB); 5327 if (!CatchPad) 5328 return error("Invalid record"); 5329 BasicBlock *BB = getBasicBlock(Record[Idx++]); 5330 if (!BB) 5331 return error("Invalid record"); 5332 5333 I = CatchReturnInst::Create(CatchPad, BB); 5334 InstructionList.push_back(I); 5335 break; 5336 } 5337 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 5338 // We must have, at minimum, the outer scope and the number of arguments. 5339 if (Record.size() < 2) 5340 return error("Invalid record"); 5341 5342 unsigned Idx = 0; 5343 5344 Type *TokenTy = Type::getTokenTy(Context); 5345 Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5346 getVirtualTypeID(TokenTy), CurBB); 5347 5348 unsigned NumHandlers = Record[Idx++]; 5349 5350 SmallVector<BasicBlock *, 2> Handlers; 5351 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 5352 BasicBlock *BB = getBasicBlock(Record[Idx++]); 5353 if (!BB) 5354 return error("Invalid record"); 5355 Handlers.push_back(BB); 5356 } 5357 5358 BasicBlock *UnwindDest = nullptr; 5359 if (Idx + 1 == Record.size()) { 5360 UnwindDest = getBasicBlock(Record[Idx++]); 5361 if (!UnwindDest) 5362 return error("Invalid record"); 5363 } 5364 5365 if (Record.size() != Idx) 5366 return error("Invalid record"); 5367 5368 auto *CatchSwitch = 5369 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 5370 for (BasicBlock *Handler : Handlers) 5371 CatchSwitch->addHandler(Handler); 5372 I = CatchSwitch; 5373 ResTypeID = getVirtualTypeID(I->getType()); 5374 InstructionList.push_back(I); 5375 break; 5376 } 5377 case bitc::FUNC_CODE_INST_CATCHPAD: 5378 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 5379 // We must have, at minimum, the outer scope and the number of arguments. 5380 if (Record.size() < 2) 5381 return error("Invalid record"); 5382 5383 unsigned Idx = 0; 5384 5385 Type *TokenTy = Type::getTokenTy(Context); 5386 Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5387 getVirtualTypeID(TokenTy), CurBB); 5388 5389 unsigned NumArgOperands = Record[Idx++]; 5390 5391 SmallVector<Value *, 2> Args; 5392 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 5393 Value *Val; 5394 unsigned ValTypeID; 5395 if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, nullptr)) 5396 return error("Invalid record"); 5397 Args.push_back(Val); 5398 } 5399 5400 if (Record.size() != Idx) 5401 return error("Invalid record"); 5402 5403 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 5404 I = CleanupPadInst::Create(ParentPad, Args); 5405 else 5406 I = CatchPadInst::Create(ParentPad, Args); 5407 ResTypeID = getVirtualTypeID(I->getType()); 5408 InstructionList.push_back(I); 5409 break; 5410 } 5411 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 5412 // Check magic 5413 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 5414 // "New" SwitchInst format with case ranges. The changes to write this 5415 // format were reverted but we still recognize bitcode that uses it. 5416 // Hopefully someday we will have support for case ranges and can use 5417 // this format again. 5418 5419 unsigned OpTyID = Record[1]; 5420 Type *OpTy = getTypeByID(OpTyID); 5421 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 5422 5423 Value *Cond = getValue(Record, 2, NextValueNo, OpTy, OpTyID, CurBB); 5424 BasicBlock *Default = getBasicBlock(Record[3]); 5425 if (!OpTy || !Cond || !Default) 5426 return error("Invalid record"); 5427 5428 unsigned NumCases = Record[4]; 5429 5430 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 5431 InstructionList.push_back(SI); 5432 5433 unsigned CurIdx = 5; 5434 for (unsigned i = 0; i != NumCases; ++i) { 5435 SmallVector<ConstantInt*, 1> CaseVals; 5436 unsigned NumItems = Record[CurIdx++]; 5437 for (unsigned ci = 0; ci != NumItems; ++ci) { 5438 bool isSingleNumber = Record[CurIdx++]; 5439 5440 APInt Low; 5441 unsigned ActiveWords = 1; 5442 if (ValueBitWidth > 64) 5443 ActiveWords = Record[CurIdx++]; 5444 Low = readWideAPInt(ArrayRef(&Record[CurIdx], ActiveWords), 5445 ValueBitWidth); 5446 CurIdx += ActiveWords; 5447 5448 if (!isSingleNumber) { 5449 ActiveWords = 1; 5450 if (ValueBitWidth > 64) 5451 ActiveWords = Record[CurIdx++]; 5452 APInt High = readWideAPInt(ArrayRef(&Record[CurIdx], ActiveWords), 5453 ValueBitWidth); 5454 CurIdx += ActiveWords; 5455 5456 // FIXME: It is not clear whether values in the range should be 5457 // compared as signed or unsigned values. The partially 5458 // implemented changes that used this format in the past used 5459 // unsigned comparisons. 5460 for ( ; Low.ule(High); ++Low) 5461 CaseVals.push_back(ConstantInt::get(Context, Low)); 5462 } else 5463 CaseVals.push_back(ConstantInt::get(Context, Low)); 5464 } 5465 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 5466 for (ConstantInt *Cst : CaseVals) 5467 SI->addCase(Cst, DestBB); 5468 } 5469 I = SI; 5470 break; 5471 } 5472 5473 // Old SwitchInst format without case ranges. 5474 5475 if (Record.size() < 3 || (Record.size() & 1) == 0) 5476 return error("Invalid record"); 5477 unsigned OpTyID = Record[0]; 5478 Type *OpTy = getTypeByID(OpTyID); 5479 Value *Cond = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB); 5480 BasicBlock *Default = getBasicBlock(Record[2]); 5481 if (!OpTy || !Cond || !Default) 5482 return error("Invalid record"); 5483 unsigned NumCases = (Record.size()-3)/2; 5484 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 5485 InstructionList.push_back(SI); 5486 for (unsigned i = 0, e = NumCases; i != e; ++i) { 5487 ConstantInt *CaseVal = dyn_cast_or_null<ConstantInt>( 5488 getFnValueByID(Record[3+i*2], OpTy, OpTyID, nullptr)); 5489 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 5490 if (!CaseVal || !DestBB) { 5491 delete SI; 5492 return error("Invalid record"); 5493 } 5494 SI->addCase(CaseVal, DestBB); 5495 } 5496 I = SI; 5497 break; 5498 } 5499 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 5500 if (Record.size() < 2) 5501 return error("Invalid record"); 5502 unsigned OpTyID = Record[0]; 5503 Type *OpTy = getTypeByID(OpTyID); 5504 Value *Address = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB); 5505 if (!OpTy || !Address) 5506 return error("Invalid record"); 5507 unsigned NumDests = Record.size()-2; 5508 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 5509 InstructionList.push_back(IBI); 5510 for (unsigned i = 0, e = NumDests; i != e; ++i) { 5511 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 5512 IBI->addDestination(DestBB); 5513 } else { 5514 delete IBI; 5515 return error("Invalid record"); 5516 } 5517 } 5518 I = IBI; 5519 break; 5520 } 5521 5522 case bitc::FUNC_CODE_INST_INVOKE: { 5523 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 5524 if (Record.size() < 4) 5525 return error("Invalid record"); 5526 unsigned OpNum = 0; 5527 AttributeList PAL = getAttributes(Record[OpNum++]); 5528 unsigned CCInfo = Record[OpNum++]; 5529 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 5530 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 5531 5532 unsigned FTyID = InvalidTypeID; 5533 FunctionType *FTy = nullptr; 5534 if ((CCInfo >> 13) & 1) { 5535 FTyID = Record[OpNum++]; 5536 FTy = dyn_cast<FunctionType>(getTypeByID(FTyID)); 5537 if (!FTy) 5538 return error("Explicit invoke type is not a function type"); 5539 } 5540 5541 Value *Callee; 5542 unsigned CalleeTypeID; 5543 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID, 5544 CurBB)) 5545 return error("Invalid record"); 5546 5547 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 5548 if (!CalleeTy) 5549 return error("Callee is not a pointer"); 5550 if (!FTy) { 5551 FTyID = getContainedTypeID(CalleeTypeID); 5552 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 5553 if (!FTy) 5554 return error("Callee is not of pointer to function type"); 5555 } else if (!CalleeTy->isOpaqueOrPointeeTypeMatches(FTy)) 5556 return error("Explicit invoke type does not match pointee type of " 5557 "callee operand"); 5558 if (Record.size() < FTy->getNumParams() + OpNum) 5559 return error("Insufficient operands to call"); 5560 5561 SmallVector<Value*, 16> Ops; 5562 SmallVector<unsigned, 16> ArgTyIDs; 5563 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5564 unsigned ArgTyID = getContainedTypeID(FTyID, i + 1); 5565 Ops.push_back(getValue(Record, OpNum, NextValueNo, FTy->getParamType(i), 5566 ArgTyID, CurBB)); 5567 ArgTyIDs.push_back(ArgTyID); 5568 if (!Ops.back()) 5569 return error("Invalid record"); 5570 } 5571 5572 if (!FTy->isVarArg()) { 5573 if (Record.size() != OpNum) 5574 return error("Invalid record"); 5575 } else { 5576 // Read type/value pairs for varargs params. 5577 while (OpNum != Record.size()) { 5578 Value *Op; 5579 unsigned OpTypeID; 5580 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 5581 return error("Invalid record"); 5582 Ops.push_back(Op); 5583 ArgTyIDs.push_back(OpTypeID); 5584 } 5585 } 5586 5587 // Upgrade the bundles if needed. 5588 if (!OperandBundles.empty()) 5589 UpgradeOperandBundles(OperandBundles); 5590 5591 I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops, 5592 OperandBundles); 5593 ResTypeID = getContainedTypeID(FTyID); 5594 OperandBundles.clear(); 5595 InstructionList.push_back(I); 5596 cast<InvokeInst>(I)->setCallingConv( 5597 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 5598 cast<InvokeInst>(I)->setAttributes(PAL); 5599 if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) { 5600 I->deleteValue(); 5601 return Err; 5602 } 5603 5604 break; 5605 } 5606 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 5607 unsigned Idx = 0; 5608 Value *Val = nullptr; 5609 unsigned ValTypeID; 5610 if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, CurBB)) 5611 return error("Invalid record"); 5612 I = ResumeInst::Create(Val); 5613 InstructionList.push_back(I); 5614 break; 5615 } 5616 case bitc::FUNC_CODE_INST_CALLBR: { 5617 // CALLBR: [attr, cc, norm, transfs, fty, fnid, args] 5618 unsigned OpNum = 0; 5619 AttributeList PAL = getAttributes(Record[OpNum++]); 5620 unsigned CCInfo = Record[OpNum++]; 5621 5622 BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]); 5623 unsigned NumIndirectDests = Record[OpNum++]; 5624 SmallVector<BasicBlock *, 16> IndirectDests; 5625 for (unsigned i = 0, e = NumIndirectDests; i != e; ++i) 5626 IndirectDests.push_back(getBasicBlock(Record[OpNum++])); 5627 5628 unsigned FTyID = InvalidTypeID; 5629 FunctionType *FTy = nullptr; 5630 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 5631 FTyID = Record[OpNum++]; 5632 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 5633 if (!FTy) 5634 return error("Explicit call type is not a function type"); 5635 } 5636 5637 Value *Callee; 5638 unsigned CalleeTypeID; 5639 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID, 5640 CurBB)) 5641 return error("Invalid record"); 5642 5643 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5644 if (!OpTy) 5645 return error("Callee is not a pointer type"); 5646 if (!FTy) { 5647 FTyID = getContainedTypeID(CalleeTypeID); 5648 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 5649 if (!FTy) 5650 return error("Callee is not of pointer to function type"); 5651 } else if (!OpTy->isOpaqueOrPointeeTypeMatches(FTy)) 5652 return error("Explicit call type does not match pointee type of " 5653 "callee operand"); 5654 if (Record.size() < FTy->getNumParams() + OpNum) 5655 return error("Insufficient operands to call"); 5656 5657 SmallVector<Value*, 16> Args; 5658 SmallVector<unsigned, 16> ArgTyIDs; 5659 // Read the fixed params. 5660 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5661 Value *Arg; 5662 unsigned ArgTyID = getContainedTypeID(FTyID, i + 1); 5663 if (FTy->getParamType(i)->isLabelTy()) 5664 Arg = getBasicBlock(Record[OpNum]); 5665 else 5666 Arg = getValue(Record, OpNum, NextValueNo, FTy->getParamType(i), 5667 ArgTyID, CurBB); 5668 if (!Arg) 5669 return error("Invalid record"); 5670 Args.push_back(Arg); 5671 ArgTyIDs.push_back(ArgTyID); 5672 } 5673 5674 // Read type/value pairs for varargs params. 5675 if (!FTy->isVarArg()) { 5676 if (OpNum != Record.size()) 5677 return error("Invalid record"); 5678 } else { 5679 while (OpNum != Record.size()) { 5680 Value *Op; 5681 unsigned OpTypeID; 5682 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 5683 return error("Invalid record"); 5684 Args.push_back(Op); 5685 ArgTyIDs.push_back(OpTypeID); 5686 } 5687 } 5688 5689 // Upgrade the bundles if needed. 5690 if (!OperandBundles.empty()) 5691 UpgradeOperandBundles(OperandBundles); 5692 5693 if (auto *IA = dyn_cast<InlineAsm>(Callee)) { 5694 InlineAsm::ConstraintInfoVector ConstraintInfo = IA->ParseConstraints(); 5695 auto IsLabelConstraint = [](const InlineAsm::ConstraintInfo &CI) { 5696 return CI.Type == InlineAsm::isLabel; 5697 }; 5698 if (none_of(ConstraintInfo, IsLabelConstraint)) { 5699 // Upgrade explicit blockaddress arguments to label constraints. 5700 // Verify that the last arguments are blockaddress arguments that 5701 // match the indirect destinations. Clang always generates callbr 5702 // in this form. We could support reordering with more effort. 5703 unsigned FirstBlockArg = Args.size() - IndirectDests.size(); 5704 for (unsigned ArgNo = FirstBlockArg; ArgNo < Args.size(); ++ArgNo) { 5705 unsigned LabelNo = ArgNo - FirstBlockArg; 5706 auto *BA = dyn_cast<BlockAddress>(Args[ArgNo]); 5707 if (!BA || BA->getFunction() != F || 5708 LabelNo > IndirectDests.size() || 5709 BA->getBasicBlock() != IndirectDests[LabelNo]) 5710 return error("callbr argument does not match indirect dest"); 5711 } 5712 5713 // Remove blockaddress arguments. 5714 Args.erase(Args.begin() + FirstBlockArg, Args.end()); 5715 ArgTyIDs.erase(ArgTyIDs.begin() + FirstBlockArg, ArgTyIDs.end()); 5716 5717 // Recreate the function type with less arguments. 5718 SmallVector<Type *> ArgTys; 5719 for (Value *Arg : Args) 5720 ArgTys.push_back(Arg->getType()); 5721 FTy = 5722 FunctionType::get(FTy->getReturnType(), ArgTys, FTy->isVarArg()); 5723 5724 // Update constraint string to use label constraints. 5725 std::string Constraints = IA->getConstraintString(); 5726 unsigned ArgNo = 0; 5727 size_t Pos = 0; 5728 for (const auto &CI : ConstraintInfo) { 5729 if (CI.hasArg()) { 5730 if (ArgNo >= FirstBlockArg) 5731 Constraints.insert(Pos, "!"); 5732 ++ArgNo; 5733 } 5734 5735 // Go to next constraint in string. 5736 Pos = Constraints.find(',', Pos); 5737 if (Pos == std::string::npos) 5738 break; 5739 ++Pos; 5740 } 5741 5742 Callee = InlineAsm::get(FTy, IA->getAsmString(), Constraints, 5743 IA->hasSideEffects(), IA->isAlignStack(), 5744 IA->getDialect(), IA->canThrow()); 5745 } 5746 } 5747 5748 I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args, 5749 OperandBundles); 5750 ResTypeID = getContainedTypeID(FTyID); 5751 OperandBundles.clear(); 5752 InstructionList.push_back(I); 5753 cast<CallBrInst>(I)->setCallingConv( 5754 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5755 cast<CallBrInst>(I)->setAttributes(PAL); 5756 if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) { 5757 I->deleteValue(); 5758 return Err; 5759 } 5760 break; 5761 } 5762 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 5763 I = new UnreachableInst(Context); 5764 InstructionList.push_back(I); 5765 break; 5766 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 5767 if (Record.empty()) 5768 return error("Invalid phi record"); 5769 // The first record specifies the type. 5770 unsigned TyID = Record[0]; 5771 Type *Ty = getTypeByID(TyID); 5772 if (!Ty) 5773 return error("Invalid phi record"); 5774 5775 // Phi arguments are pairs of records of [value, basic block]. 5776 // There is an optional final record for fast-math-flags if this phi has a 5777 // floating-point type. 5778 size_t NumArgs = (Record.size() - 1) / 2; 5779 PHINode *PN = PHINode::Create(Ty, NumArgs); 5780 if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN)) { 5781 PN->deleteValue(); 5782 return error("Invalid phi record"); 5783 } 5784 InstructionList.push_back(PN); 5785 5786 SmallDenseMap<BasicBlock *, Value *> Args; 5787 for (unsigned i = 0; i != NumArgs; i++) { 5788 BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]); 5789 if (!BB) { 5790 PN->deleteValue(); 5791 return error("Invalid phi BB"); 5792 } 5793 5794 // Phi nodes may contain the same predecessor multiple times, in which 5795 // case the incoming value must be identical. Directly reuse the already 5796 // seen value here, to avoid expanding a constant expression multiple 5797 // times. 5798 auto It = Args.find(BB); 5799 if (It != Args.end()) { 5800 PN->addIncoming(It->second, BB); 5801 continue; 5802 } 5803 5804 // If there already is a block for this edge (from a different phi), 5805 // use it. 5806 BasicBlock *EdgeBB = ConstExprEdgeBBs.lookup({BB, CurBB}); 5807 if (!EdgeBB) { 5808 // Otherwise, use a temporary block (that we will discard if it 5809 // turns out to be unnecessary). 5810 if (!PhiConstExprBB) 5811 PhiConstExprBB = BasicBlock::Create(Context, "phi.constexpr", F); 5812 EdgeBB = PhiConstExprBB; 5813 } 5814 5815 // With the new function encoding, it is possible that operands have 5816 // negative IDs (for forward references). Use a signed VBR 5817 // representation to keep the encoding small. 5818 Value *V; 5819 if (UseRelativeIDs) 5820 V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB); 5821 else 5822 V = getValue(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB); 5823 if (!V) { 5824 PN->deleteValue(); 5825 PhiConstExprBB->eraseFromParent(); 5826 return error("Invalid phi record"); 5827 } 5828 5829 if (EdgeBB == PhiConstExprBB && !EdgeBB->empty()) { 5830 ConstExprEdgeBBs.insert({{BB, CurBB}, EdgeBB}); 5831 PhiConstExprBB = nullptr; 5832 } 5833 PN->addIncoming(V, BB); 5834 Args.insert({BB, V}); 5835 } 5836 I = PN; 5837 ResTypeID = TyID; 5838 5839 // If there are an even number of records, the final record must be FMF. 5840 if (Record.size() % 2 == 0) { 5841 assert(isa<FPMathOperator>(I) && "Unexpected phi type"); 5842 FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]); 5843 if (FMF.any()) 5844 I->setFastMathFlags(FMF); 5845 } 5846 5847 break; 5848 } 5849 5850 case bitc::FUNC_CODE_INST_LANDINGPAD: 5851 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 5852 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 5853 unsigned Idx = 0; 5854 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 5855 if (Record.size() < 3) 5856 return error("Invalid record"); 5857 } else { 5858 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 5859 if (Record.size() < 4) 5860 return error("Invalid record"); 5861 } 5862 ResTypeID = Record[Idx++]; 5863 Type *Ty = getTypeByID(ResTypeID); 5864 if (!Ty) 5865 return error("Invalid record"); 5866 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 5867 Value *PersFn = nullptr; 5868 unsigned PersFnTypeID; 5869 if (getValueTypePair(Record, Idx, NextValueNo, PersFn, PersFnTypeID, 5870 nullptr)) 5871 return error("Invalid record"); 5872 5873 if (!F->hasPersonalityFn()) 5874 F->setPersonalityFn(cast<Constant>(PersFn)); 5875 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 5876 return error("Personality function mismatch"); 5877 } 5878 5879 bool IsCleanup = !!Record[Idx++]; 5880 unsigned NumClauses = Record[Idx++]; 5881 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 5882 LP->setCleanup(IsCleanup); 5883 for (unsigned J = 0; J != NumClauses; ++J) { 5884 LandingPadInst::ClauseType CT = 5885 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 5886 Value *Val; 5887 unsigned ValTypeID; 5888 5889 if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, 5890 nullptr)) { 5891 delete LP; 5892 return error("Invalid record"); 5893 } 5894 5895 assert((CT != LandingPadInst::Catch || 5896 !isa<ArrayType>(Val->getType())) && 5897 "Catch clause has a invalid type!"); 5898 assert((CT != LandingPadInst::Filter || 5899 isa<ArrayType>(Val->getType())) && 5900 "Filter clause has invalid type!"); 5901 LP->addClause(cast<Constant>(Val)); 5902 } 5903 5904 I = LP; 5905 InstructionList.push_back(I); 5906 break; 5907 } 5908 5909 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 5910 if (Record.size() != 4 && Record.size() != 5) 5911 return error("Invalid record"); 5912 using APV = AllocaPackedValues; 5913 const uint64_t Rec = Record[3]; 5914 const bool InAlloca = Bitfield::get<APV::UsedWithInAlloca>(Rec); 5915 const bool SwiftError = Bitfield::get<APV::SwiftError>(Rec); 5916 unsigned TyID = Record[0]; 5917 Type *Ty = getTypeByID(TyID); 5918 if (!Bitfield::get<APV::ExplicitType>(Rec)) { 5919 TyID = getContainedTypeID(TyID); 5920 Ty = getTypeByID(TyID); 5921 if (!Ty) 5922 return error("Missing element type for old-style alloca"); 5923 } 5924 unsigned OpTyID = Record[1]; 5925 Type *OpTy = getTypeByID(OpTyID); 5926 Value *Size = getFnValueByID(Record[2], OpTy, OpTyID, CurBB); 5927 MaybeAlign Align; 5928 uint64_t AlignExp = 5929 Bitfield::get<APV::AlignLower>(Rec) | 5930 (Bitfield::get<APV::AlignUpper>(Rec) << APV::AlignLower::Bits); 5931 if (Error Err = parseAlignmentValue(AlignExp, Align)) { 5932 return Err; 5933 } 5934 if (!Ty || !Size) 5935 return error("Invalid record"); 5936 5937 const DataLayout &DL = TheModule->getDataLayout(); 5938 unsigned AS = Record.size() == 5 ? Record[4] : DL.getAllocaAddrSpace(); 5939 5940 SmallPtrSet<Type *, 4> Visited; 5941 if (!Align && !Ty->isSized(&Visited)) 5942 return error("alloca of unsized type"); 5943 if (!Align) 5944 Align = DL.getPrefTypeAlign(Ty); 5945 5946 AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align); 5947 AI->setUsedWithInAlloca(InAlloca); 5948 AI->setSwiftError(SwiftError); 5949 I = AI; 5950 ResTypeID = getVirtualTypeID(AI->getType(), TyID); 5951 InstructionList.push_back(I); 5952 break; 5953 } 5954 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 5955 unsigned OpNum = 0; 5956 Value *Op; 5957 unsigned OpTypeID; 5958 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) || 5959 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 5960 return error("Invalid record"); 5961 5962 if (!isa<PointerType>(Op->getType())) 5963 return error("Load operand is not a pointer type"); 5964 5965 Type *Ty = nullptr; 5966 if (OpNum + 3 == Record.size()) { 5967 ResTypeID = Record[OpNum++]; 5968 Ty = getTypeByID(ResTypeID); 5969 } else { 5970 ResTypeID = getContainedTypeID(OpTypeID); 5971 Ty = getTypeByID(ResTypeID); 5972 if (!Ty) 5973 return error("Missing element type for old-style load"); 5974 } 5975 5976 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 5977 return Err; 5978 5979 MaybeAlign Align; 5980 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 5981 return Err; 5982 SmallPtrSet<Type *, 4> Visited; 5983 if (!Align && !Ty->isSized(&Visited)) 5984 return error("load of unsized type"); 5985 if (!Align) 5986 Align = TheModule->getDataLayout().getABITypeAlign(Ty); 5987 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align); 5988 InstructionList.push_back(I); 5989 break; 5990 } 5991 case bitc::FUNC_CODE_INST_LOADATOMIC: { 5992 // LOADATOMIC: [opty, op, align, vol, ordering, ssid] 5993 unsigned OpNum = 0; 5994 Value *Op; 5995 unsigned OpTypeID; 5996 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) || 5997 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 5998 return error("Invalid record"); 5999 6000 if (!isa<PointerType>(Op->getType())) 6001 return error("Load operand is not a pointer type"); 6002 6003 Type *Ty = nullptr; 6004 if (OpNum + 5 == Record.size()) { 6005 ResTypeID = Record[OpNum++]; 6006 Ty = getTypeByID(ResTypeID); 6007 } else { 6008 ResTypeID = getContainedTypeID(OpTypeID); 6009 Ty = getTypeByID(ResTypeID); 6010 if (!Ty) 6011 return error("Missing element type for old style atomic load"); 6012 } 6013 6014 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 6015 return Err; 6016 6017 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 6018 if (Ordering == AtomicOrdering::NotAtomic || 6019 Ordering == AtomicOrdering::Release || 6020 Ordering == AtomicOrdering::AcquireRelease) 6021 return error("Invalid record"); 6022 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 6023 return error("Invalid record"); 6024 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 6025 6026 MaybeAlign Align; 6027 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 6028 return Err; 6029 if (!Align) 6030 return error("Alignment missing from atomic load"); 6031 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID); 6032 InstructionList.push_back(I); 6033 break; 6034 } 6035 case bitc::FUNC_CODE_INST_STORE: 6036 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 6037 unsigned OpNum = 0; 6038 Value *Val, *Ptr; 6039 unsigned PtrTypeID, ValTypeID; 6040 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 6041 return error("Invalid record"); 6042 6043 if (BitCode == bitc::FUNC_CODE_INST_STORE) { 6044 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 6045 return error("Invalid record"); 6046 } else { 6047 ValTypeID = getContainedTypeID(PtrTypeID); 6048 if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID), 6049 ValTypeID, Val, CurBB)) 6050 return error("Invalid record"); 6051 } 6052 6053 if (OpNum + 2 != Record.size()) 6054 return error("Invalid record"); 6055 6056 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 6057 return Err; 6058 MaybeAlign Align; 6059 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 6060 return Err; 6061 SmallPtrSet<Type *, 4> Visited; 6062 if (!Align && !Val->getType()->isSized(&Visited)) 6063 return error("store of unsized type"); 6064 if (!Align) 6065 Align = TheModule->getDataLayout().getABITypeAlign(Val->getType()); 6066 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align); 6067 InstructionList.push_back(I); 6068 break; 6069 } 6070 case bitc::FUNC_CODE_INST_STOREATOMIC: 6071 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 6072 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid] 6073 unsigned OpNum = 0; 6074 Value *Val, *Ptr; 6075 unsigned PtrTypeID, ValTypeID; 6076 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB) || 6077 !isa<PointerType>(Ptr->getType())) 6078 return error("Invalid record"); 6079 if (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC) { 6080 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 6081 return error("Invalid record"); 6082 } else { 6083 ValTypeID = getContainedTypeID(PtrTypeID); 6084 if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID), 6085 ValTypeID, Val, CurBB)) 6086 return error("Invalid record"); 6087 } 6088 6089 if (OpNum + 4 != Record.size()) 6090 return error("Invalid record"); 6091 6092 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 6093 return Err; 6094 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 6095 if (Ordering == AtomicOrdering::NotAtomic || 6096 Ordering == AtomicOrdering::Acquire || 6097 Ordering == AtomicOrdering::AcquireRelease) 6098 return error("Invalid record"); 6099 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 6100 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 6101 return error("Invalid record"); 6102 6103 MaybeAlign Align; 6104 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 6105 return Err; 6106 if (!Align) 6107 return error("Alignment missing from atomic store"); 6108 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID); 6109 InstructionList.push_back(I); 6110 break; 6111 } 6112 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: { 6113 // CMPXCHG_OLD: [ptrty, ptr, cmp, val, vol, ordering, synchscope, 6114 // failure_ordering?, weak?] 6115 const size_t NumRecords = Record.size(); 6116 unsigned OpNum = 0; 6117 Value *Ptr = nullptr; 6118 unsigned PtrTypeID; 6119 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 6120 return error("Invalid record"); 6121 6122 if (!isa<PointerType>(Ptr->getType())) 6123 return error("Cmpxchg operand is not a pointer type"); 6124 6125 Value *Cmp = nullptr; 6126 unsigned CmpTypeID = getContainedTypeID(PtrTypeID); 6127 if (popValue(Record, OpNum, NextValueNo, getTypeByID(CmpTypeID), 6128 CmpTypeID, Cmp, CurBB)) 6129 return error("Invalid record"); 6130 6131 Value *New = nullptr; 6132 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID, 6133 New, CurBB) || 6134 NumRecords < OpNum + 3 || NumRecords > OpNum + 5) 6135 return error("Invalid record"); 6136 6137 const AtomicOrdering SuccessOrdering = 6138 getDecodedOrdering(Record[OpNum + 1]); 6139 if (SuccessOrdering == AtomicOrdering::NotAtomic || 6140 SuccessOrdering == AtomicOrdering::Unordered) 6141 return error("Invalid record"); 6142 6143 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 6144 6145 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 6146 return Err; 6147 6148 const AtomicOrdering FailureOrdering = 6149 NumRecords < 7 6150 ? AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering) 6151 : getDecodedOrdering(Record[OpNum + 3]); 6152 6153 if (FailureOrdering == AtomicOrdering::NotAtomic || 6154 FailureOrdering == AtomicOrdering::Unordered) 6155 return error("Invalid record"); 6156 6157 const Align Alignment( 6158 TheModule->getDataLayout().getTypeStoreSize(Cmp->getType())); 6159 6160 I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering, 6161 FailureOrdering, SSID); 6162 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 6163 6164 if (NumRecords < 8) { 6165 // Before weak cmpxchgs existed, the instruction simply returned the 6166 // value loaded from memory, so bitcode files from that era will be 6167 // expecting the first component of a modern cmpxchg. 6168 I->insertInto(CurBB, CurBB->end()); 6169 I = ExtractValueInst::Create(I, 0); 6170 ResTypeID = CmpTypeID; 6171 } else { 6172 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]); 6173 unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context)); 6174 ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID}); 6175 } 6176 6177 InstructionList.push_back(I); 6178 break; 6179 } 6180 case bitc::FUNC_CODE_INST_CMPXCHG: { 6181 // CMPXCHG: [ptrty, ptr, cmp, val, vol, success_ordering, synchscope, 6182 // failure_ordering, weak, align?] 6183 const size_t NumRecords = Record.size(); 6184 unsigned OpNum = 0; 6185 Value *Ptr = nullptr; 6186 unsigned PtrTypeID; 6187 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 6188 return error("Invalid record"); 6189 6190 if (!isa<PointerType>(Ptr->getType())) 6191 return error("Cmpxchg operand is not a pointer type"); 6192 6193 Value *Cmp = nullptr; 6194 unsigned CmpTypeID; 6195 if (getValueTypePair(Record, OpNum, NextValueNo, Cmp, CmpTypeID, CurBB)) 6196 return error("Invalid record"); 6197 6198 Value *Val = nullptr; 6199 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID, Val, 6200 CurBB)) 6201 return error("Invalid record"); 6202 6203 if (NumRecords < OpNum + 3 || NumRecords > OpNum + 6) 6204 return error("Invalid record"); 6205 6206 const bool IsVol = Record[OpNum]; 6207 6208 const AtomicOrdering SuccessOrdering = 6209 getDecodedOrdering(Record[OpNum + 1]); 6210 if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering)) 6211 return error("Invalid cmpxchg success ordering"); 6212 6213 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 6214 6215 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 6216 return Err; 6217 6218 const AtomicOrdering FailureOrdering = 6219 getDecodedOrdering(Record[OpNum + 3]); 6220 if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering)) 6221 return error("Invalid cmpxchg failure ordering"); 6222 6223 const bool IsWeak = Record[OpNum + 4]; 6224 6225 MaybeAlign Alignment; 6226 6227 if (NumRecords == (OpNum + 6)) { 6228 if (Error Err = parseAlignmentValue(Record[OpNum + 5], Alignment)) 6229 return Err; 6230 } 6231 if (!Alignment) 6232 Alignment = 6233 Align(TheModule->getDataLayout().getTypeStoreSize(Cmp->getType())); 6234 6235 I = new AtomicCmpXchgInst(Ptr, Cmp, Val, *Alignment, SuccessOrdering, 6236 FailureOrdering, SSID); 6237 cast<AtomicCmpXchgInst>(I)->setVolatile(IsVol); 6238 cast<AtomicCmpXchgInst>(I)->setWeak(IsWeak); 6239 6240 unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context)); 6241 ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID}); 6242 6243 InstructionList.push_back(I); 6244 break; 6245 } 6246 case bitc::FUNC_CODE_INST_ATOMICRMW_OLD: 6247 case bitc::FUNC_CODE_INST_ATOMICRMW: { 6248 // ATOMICRMW_OLD: [ptrty, ptr, val, op, vol, ordering, ssid, align?] 6249 // ATOMICRMW: [ptrty, ptr, valty, val, op, vol, ordering, ssid, align?] 6250 const size_t NumRecords = Record.size(); 6251 unsigned OpNum = 0; 6252 6253 Value *Ptr = nullptr; 6254 unsigned PtrTypeID; 6255 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 6256 return error("Invalid record"); 6257 6258 if (!isa<PointerType>(Ptr->getType())) 6259 return error("Invalid record"); 6260 6261 Value *Val = nullptr; 6262 unsigned ValTypeID = InvalidTypeID; 6263 if (BitCode == bitc::FUNC_CODE_INST_ATOMICRMW_OLD) { 6264 ValTypeID = getContainedTypeID(PtrTypeID); 6265 if (popValue(Record, OpNum, NextValueNo, 6266 getTypeByID(ValTypeID), ValTypeID, Val, CurBB)) 6267 return error("Invalid record"); 6268 } else { 6269 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 6270 return error("Invalid record"); 6271 } 6272 6273 if (!(NumRecords == (OpNum + 4) || NumRecords == (OpNum + 5))) 6274 return error("Invalid record"); 6275 6276 const AtomicRMWInst::BinOp Operation = 6277 getDecodedRMWOperation(Record[OpNum]); 6278 if (Operation < AtomicRMWInst::FIRST_BINOP || 6279 Operation > AtomicRMWInst::LAST_BINOP) 6280 return error("Invalid record"); 6281 6282 const bool IsVol = Record[OpNum + 1]; 6283 6284 const AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 6285 if (Ordering == AtomicOrdering::NotAtomic || 6286 Ordering == AtomicOrdering::Unordered) 6287 return error("Invalid record"); 6288 6289 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 6290 6291 MaybeAlign Alignment; 6292 6293 if (NumRecords == (OpNum + 5)) { 6294 if (Error Err = parseAlignmentValue(Record[OpNum + 4], Alignment)) 6295 return Err; 6296 } 6297 6298 if (!Alignment) 6299 Alignment = 6300 Align(TheModule->getDataLayout().getTypeStoreSize(Val->getType())); 6301 6302 I = new AtomicRMWInst(Operation, Ptr, Val, *Alignment, Ordering, SSID); 6303 ResTypeID = ValTypeID; 6304 cast<AtomicRMWInst>(I)->setVolatile(IsVol); 6305 6306 InstructionList.push_back(I); 6307 break; 6308 } 6309 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid] 6310 if (2 != Record.size()) 6311 return error("Invalid record"); 6312 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 6313 if (Ordering == AtomicOrdering::NotAtomic || 6314 Ordering == AtomicOrdering::Unordered || 6315 Ordering == AtomicOrdering::Monotonic) 6316 return error("Invalid record"); 6317 SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]); 6318 I = new FenceInst(Context, Ordering, SSID); 6319 InstructionList.push_back(I); 6320 break; 6321 } 6322 case bitc::FUNC_CODE_INST_CALL: { 6323 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 6324 if (Record.size() < 3) 6325 return error("Invalid record"); 6326 6327 unsigned OpNum = 0; 6328 AttributeList PAL = getAttributes(Record[OpNum++]); 6329 unsigned CCInfo = Record[OpNum++]; 6330 6331 FastMathFlags FMF; 6332 if ((CCInfo >> bitc::CALL_FMF) & 1) { 6333 FMF = getDecodedFastMathFlags(Record[OpNum++]); 6334 if (!FMF.any()) 6335 return error("Fast math flags indicator set for call with no FMF"); 6336 } 6337 6338 unsigned FTyID = InvalidTypeID; 6339 FunctionType *FTy = nullptr; 6340 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 6341 FTyID = Record[OpNum++]; 6342 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 6343 if (!FTy) 6344 return error("Explicit call type is not a function type"); 6345 } 6346 6347 Value *Callee; 6348 unsigned CalleeTypeID; 6349 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID, 6350 CurBB)) 6351 return error("Invalid record"); 6352 6353 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 6354 if (!OpTy) 6355 return error("Callee is not a pointer type"); 6356 if (!FTy) { 6357 FTyID = getContainedTypeID(CalleeTypeID); 6358 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 6359 if (!FTy) 6360 return error("Callee is not of pointer to function type"); 6361 } else if (!OpTy->isOpaqueOrPointeeTypeMatches(FTy)) 6362 return error("Explicit call type does not match pointee type of " 6363 "callee operand"); 6364 if (Record.size() < FTy->getNumParams() + OpNum) 6365 return error("Insufficient operands to call"); 6366 6367 SmallVector<Value*, 16> Args; 6368 SmallVector<unsigned, 16> ArgTyIDs; 6369 // Read the fixed params. 6370 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 6371 unsigned ArgTyID = getContainedTypeID(FTyID, i + 1); 6372 if (FTy->getParamType(i)->isLabelTy()) 6373 Args.push_back(getBasicBlock(Record[OpNum])); 6374 else 6375 Args.push_back(getValue(Record, OpNum, NextValueNo, 6376 FTy->getParamType(i), ArgTyID, CurBB)); 6377 ArgTyIDs.push_back(ArgTyID); 6378 if (!Args.back()) 6379 return error("Invalid record"); 6380 } 6381 6382 // Read type/value pairs for varargs params. 6383 if (!FTy->isVarArg()) { 6384 if (OpNum != Record.size()) 6385 return error("Invalid record"); 6386 } else { 6387 while (OpNum != Record.size()) { 6388 Value *Op; 6389 unsigned OpTypeID; 6390 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 6391 return error("Invalid record"); 6392 Args.push_back(Op); 6393 ArgTyIDs.push_back(OpTypeID); 6394 } 6395 } 6396 6397 // Upgrade the bundles if needed. 6398 if (!OperandBundles.empty()) 6399 UpgradeOperandBundles(OperandBundles); 6400 6401 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 6402 ResTypeID = getContainedTypeID(FTyID); 6403 OperandBundles.clear(); 6404 InstructionList.push_back(I); 6405 cast<CallInst>(I)->setCallingConv( 6406 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 6407 CallInst::TailCallKind TCK = CallInst::TCK_None; 6408 if (CCInfo & 1 << bitc::CALL_TAIL) 6409 TCK = CallInst::TCK_Tail; 6410 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 6411 TCK = CallInst::TCK_MustTail; 6412 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 6413 TCK = CallInst::TCK_NoTail; 6414 cast<CallInst>(I)->setTailCallKind(TCK); 6415 cast<CallInst>(I)->setAttributes(PAL); 6416 if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) { 6417 I->deleteValue(); 6418 return Err; 6419 } 6420 if (FMF.any()) { 6421 if (!isa<FPMathOperator>(I)) 6422 return error("Fast-math-flags specified for call without " 6423 "floating-point scalar or vector return type"); 6424 I->setFastMathFlags(FMF); 6425 } 6426 break; 6427 } 6428 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 6429 if (Record.size() < 3) 6430 return error("Invalid record"); 6431 unsigned OpTyID = Record[0]; 6432 Type *OpTy = getTypeByID(OpTyID); 6433 Value *Op = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB); 6434 ResTypeID = Record[2]; 6435 Type *ResTy = getTypeByID(ResTypeID); 6436 if (!OpTy || !Op || !ResTy) 6437 return error("Invalid record"); 6438 I = new VAArgInst(Op, ResTy); 6439 InstructionList.push_back(I); 6440 break; 6441 } 6442 6443 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 6444 // A call or an invoke can be optionally prefixed with some variable 6445 // number of operand bundle blocks. These blocks are read into 6446 // OperandBundles and consumed at the next call or invoke instruction. 6447 6448 if (Record.empty() || Record[0] >= BundleTags.size()) 6449 return error("Invalid record"); 6450 6451 std::vector<Value *> Inputs; 6452 6453 unsigned OpNum = 1; 6454 while (OpNum != Record.size()) { 6455 Value *Op; 6456 unsigned OpTypeID; 6457 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 6458 return error("Invalid record"); 6459 Inputs.push_back(Op); 6460 } 6461 6462 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 6463 continue; 6464 } 6465 6466 case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval] 6467 unsigned OpNum = 0; 6468 Value *Op = nullptr; 6469 unsigned OpTypeID; 6470 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 6471 return error("Invalid record"); 6472 if (OpNum != Record.size()) 6473 return error("Invalid record"); 6474 6475 I = new FreezeInst(Op); 6476 ResTypeID = OpTypeID; 6477 InstructionList.push_back(I); 6478 break; 6479 } 6480 } 6481 6482 // Add instruction to end of current BB. If there is no current BB, reject 6483 // this file. 6484 if (!CurBB) { 6485 I->deleteValue(); 6486 return error("Invalid instruction with no BB"); 6487 } 6488 if (!OperandBundles.empty()) { 6489 I->deleteValue(); 6490 return error("Operand bundles found with no consumer"); 6491 } 6492 I->insertInto(CurBB, CurBB->end()); 6493 6494 // If this was a terminator instruction, move to the next block. 6495 if (I->isTerminator()) { 6496 ++CurBBNo; 6497 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 6498 } 6499 6500 // Non-void values get registered in the value table for future use. 6501 if (!I->getType()->isVoidTy()) { 6502 assert(I->getType() == getTypeByID(ResTypeID) && 6503 "Incorrect result type ID"); 6504 if (Error Err = ValueList.assignValue(NextValueNo++, I, ResTypeID)) 6505 return Err; 6506 } 6507 } 6508 6509 OutOfRecordLoop: 6510 6511 if (!OperandBundles.empty()) 6512 return error("Operand bundles found with no consumer"); 6513 6514 // Check the function list for unresolved values. 6515 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 6516 if (!A->getParent()) { 6517 // We found at least one unresolved value. Nuke them all to avoid leaks. 6518 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 6519 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 6520 A->replaceAllUsesWith(PoisonValue::get(A->getType())); 6521 delete A; 6522 } 6523 } 6524 return error("Never resolved value found in function"); 6525 } 6526 } 6527 6528 // Unexpected unresolved metadata about to be dropped. 6529 if (MDLoader->hasFwdRefs()) 6530 return error("Invalid function metadata: outgoing forward refs"); 6531 6532 if (PhiConstExprBB) 6533 PhiConstExprBB->eraseFromParent(); 6534 6535 for (const auto &Pair : ConstExprEdgeBBs) { 6536 BasicBlock *From = Pair.first.first; 6537 BasicBlock *To = Pair.first.second; 6538 BasicBlock *EdgeBB = Pair.second; 6539 BranchInst::Create(To, EdgeBB); 6540 From->getTerminator()->replaceSuccessorWith(To, EdgeBB); 6541 To->replacePhiUsesWith(From, EdgeBB); 6542 EdgeBB->moveBefore(To); 6543 } 6544 6545 // Trim the value list down to the size it was before we parsed this function. 6546 ValueList.shrinkTo(ModuleValueListSize); 6547 MDLoader->shrinkTo(ModuleMDLoaderSize); 6548 std::vector<BasicBlock*>().swap(FunctionBBs); 6549 return Error::success(); 6550 } 6551 6552 /// Find the function body in the bitcode stream 6553 Error BitcodeReader::findFunctionInStream( 6554 Function *F, 6555 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 6556 while (DeferredFunctionInfoIterator->second == 0) { 6557 // This is the fallback handling for the old format bitcode that 6558 // didn't contain the function index in the VST, or when we have 6559 // an anonymous function which would not have a VST entry. 6560 // Assert that we have one of those two cases. 6561 assert(VSTOffset == 0 || !F->hasName()); 6562 // Parse the next body in the stream and set its position in the 6563 // DeferredFunctionInfo map. 6564 if (Error Err = rememberAndSkipFunctionBodies()) 6565 return Err; 6566 } 6567 return Error::success(); 6568 } 6569 6570 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) { 6571 if (Val == SyncScope::SingleThread || Val == SyncScope::System) 6572 return SyncScope::ID(Val); 6573 if (Val >= SSIDs.size()) 6574 return SyncScope::System; // Map unknown synchronization scopes to system. 6575 return SSIDs[Val]; 6576 } 6577 6578 //===----------------------------------------------------------------------===// 6579 // GVMaterializer implementation 6580 //===----------------------------------------------------------------------===// 6581 6582 Error BitcodeReader::materialize(GlobalValue *GV) { 6583 Function *F = dyn_cast<Function>(GV); 6584 // If it's not a function or is already material, ignore the request. 6585 if (!F || !F->isMaterializable()) 6586 return Error::success(); 6587 6588 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 6589 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 6590 // If its position is recorded as 0, its body is somewhere in the stream 6591 // but we haven't seen it yet. 6592 if (DFII->second == 0) 6593 if (Error Err = findFunctionInStream(F, DFII)) 6594 return Err; 6595 6596 // Materialize metadata before parsing any function bodies. 6597 if (Error Err = materializeMetadata()) 6598 return Err; 6599 6600 // Move the bit stream to the saved position of the deferred function body. 6601 if (Error JumpFailed = Stream.JumpToBit(DFII->second)) 6602 return JumpFailed; 6603 if (Error Err = parseFunctionBody(F)) 6604 return Err; 6605 F->setIsMaterializable(false); 6606 6607 if (StripDebugInfo) 6608 stripDebugInfo(*F); 6609 6610 // Upgrade any old intrinsic calls in the function. 6611 for (auto &I : UpgradedIntrinsics) { 6612 for (User *U : llvm::make_early_inc_range(I.first->materialized_users())) 6613 if (CallInst *CI = dyn_cast<CallInst>(U)) 6614 UpgradeIntrinsicCall(CI, I.second); 6615 } 6616 6617 // Finish fn->subprogram upgrade for materialized functions. 6618 if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F)) 6619 F->setSubprogram(SP); 6620 6621 // Check if the TBAA Metadata are valid, otherwise we will need to strip them. 6622 if (!MDLoader->isStrippingTBAA()) { 6623 for (auto &I : instructions(F)) { 6624 MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa); 6625 if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA)) 6626 continue; 6627 MDLoader->setStripTBAA(true); 6628 stripTBAA(F->getParent()); 6629 } 6630 } 6631 6632 for (auto &I : instructions(F)) { 6633 // "Upgrade" older incorrect branch weights by dropping them. 6634 if (auto *MD = I.getMetadata(LLVMContext::MD_prof)) { 6635 if (MD->getOperand(0) != nullptr && isa<MDString>(MD->getOperand(0))) { 6636 MDString *MDS = cast<MDString>(MD->getOperand(0)); 6637 StringRef ProfName = MDS->getString(); 6638 // Check consistency of !prof branch_weights metadata. 6639 if (!ProfName.equals("branch_weights")) 6640 continue; 6641 unsigned ExpectedNumOperands = 0; 6642 if (BranchInst *BI = dyn_cast<BranchInst>(&I)) 6643 ExpectedNumOperands = BI->getNumSuccessors(); 6644 else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I)) 6645 ExpectedNumOperands = SI->getNumSuccessors(); 6646 else if (isa<CallInst>(&I)) 6647 ExpectedNumOperands = 1; 6648 else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I)) 6649 ExpectedNumOperands = IBI->getNumDestinations(); 6650 else if (isa<SelectInst>(&I)) 6651 ExpectedNumOperands = 2; 6652 else 6653 continue; // ignore and continue. 6654 6655 // If branch weight doesn't match, just strip branch weight. 6656 if (MD->getNumOperands() != 1 + ExpectedNumOperands) 6657 I.setMetadata(LLVMContext::MD_prof, nullptr); 6658 } 6659 } 6660 6661 // Remove incompatible attributes on function calls. 6662 if (auto *CI = dyn_cast<CallBase>(&I)) { 6663 CI->removeRetAttrs(AttributeFuncs::typeIncompatible( 6664 CI->getFunctionType()->getReturnType())); 6665 6666 for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ++ArgNo) 6667 CI->removeParamAttrs(ArgNo, AttributeFuncs::typeIncompatible( 6668 CI->getArgOperand(ArgNo)->getType())); 6669 } 6670 } 6671 6672 // Look for functions that rely on old function attribute behavior. 6673 UpgradeFunctionAttributes(*F); 6674 6675 // Bring in any functions that this function forward-referenced via 6676 // blockaddresses. 6677 return materializeForwardReferencedFunctions(); 6678 } 6679 6680 Error BitcodeReader::materializeModule() { 6681 if (Error Err = materializeMetadata()) 6682 return Err; 6683 6684 // Promise to materialize all forward references. 6685 WillMaterializeAllForwardRefs = true; 6686 6687 // Iterate over the module, deserializing any functions that are still on 6688 // disk. 6689 for (Function &F : *TheModule) { 6690 if (Error Err = materialize(&F)) 6691 return Err; 6692 } 6693 // At this point, if there are any function bodies, parse the rest of 6694 // the bits in the module past the last function block we have recorded 6695 // through either lazy scanning or the VST. 6696 if (LastFunctionBlockBit || NextUnreadBit) 6697 if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit 6698 ? LastFunctionBlockBit 6699 : NextUnreadBit)) 6700 return Err; 6701 6702 // Check that all block address forward references got resolved (as we 6703 // promised above). 6704 if (!BasicBlockFwdRefs.empty()) 6705 return error("Never resolved function from blockaddress"); 6706 6707 // Upgrade any intrinsic calls that slipped through (should not happen!) and 6708 // delete the old functions to clean up. We can't do this unless the entire 6709 // module is materialized because there could always be another function body 6710 // with calls to the old function. 6711 for (auto &I : UpgradedIntrinsics) { 6712 for (auto *U : I.first->users()) { 6713 if (CallInst *CI = dyn_cast<CallInst>(U)) 6714 UpgradeIntrinsicCall(CI, I.second); 6715 } 6716 if (!I.first->use_empty()) 6717 I.first->replaceAllUsesWith(I.second); 6718 I.first->eraseFromParent(); 6719 } 6720 UpgradedIntrinsics.clear(); 6721 6722 UpgradeDebugInfo(*TheModule); 6723 6724 UpgradeModuleFlags(*TheModule); 6725 6726 UpgradeARCRuntime(*TheModule); 6727 6728 return Error::success(); 6729 } 6730 6731 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 6732 return IdentifiedStructTypes; 6733 } 6734 6735 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 6736 BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex, 6737 StringRef ModulePath, unsigned ModuleId, 6738 std::function<bool(GlobalValue::GUID)> IsPrevailing) 6739 : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex), 6740 ModulePath(ModulePath), ModuleId(ModuleId), IsPrevailing(IsPrevailing) {} 6741 6742 void ModuleSummaryIndexBitcodeReader::addThisModule() { 6743 TheIndex.addModule(ModulePath, ModuleId); 6744 } 6745 6746 ModuleSummaryIndex::ModuleInfo * 6747 ModuleSummaryIndexBitcodeReader::getThisModule() { 6748 return TheIndex.getModule(ModulePath); 6749 } 6750 6751 template <bool AllowNullValueInfo> 6752 std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID> 6753 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) { 6754 auto VGI = ValueIdToValueInfoMap[ValueId]; 6755 // We can have a null value info for memprof callsite info records in 6756 // distributed ThinLTO index files when the callee function summary is not 6757 // included in the index. The bitcode writer records 0 in that case, 6758 // and the caller of this helper will set AllowNullValueInfo to true. 6759 assert(AllowNullValueInfo || std::get<0>(VGI)); 6760 return VGI; 6761 } 6762 6763 void ModuleSummaryIndexBitcodeReader::setValueGUID( 6764 uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage, 6765 StringRef SourceFileName) { 6766 std::string GlobalId = 6767 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 6768 auto ValueGUID = GlobalValue::getGUID(GlobalId); 6769 auto OriginalNameID = ValueGUID; 6770 if (GlobalValue::isLocalLinkage(Linkage)) 6771 OriginalNameID = GlobalValue::getGUID(ValueName); 6772 if (PrintSummaryGUIDs) 6773 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 6774 << ValueName << "\n"; 6775 6776 // UseStrtab is false for legacy summary formats and value names are 6777 // created on stack. In that case we save the name in a string saver in 6778 // the index so that the value name can be recorded. 6779 ValueIdToValueInfoMap[ValueID] = std::make_tuple( 6780 TheIndex.getOrInsertValueInfo( 6781 ValueGUID, UseStrtab ? ValueName : TheIndex.saveString(ValueName)), 6782 OriginalNameID, ValueGUID); 6783 } 6784 6785 // Specialized value symbol table parser used when reading module index 6786 // blocks where we don't actually create global values. The parsed information 6787 // is saved in the bitcode reader for use when later parsing summaries. 6788 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 6789 uint64_t Offset, 6790 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 6791 // With a strtab the VST is not required to parse the summary. 6792 if (UseStrtab) 6793 return Error::success(); 6794 6795 assert(Offset > 0 && "Expected non-zero VST offset"); 6796 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 6797 if (!MaybeCurrentBit) 6798 return MaybeCurrentBit.takeError(); 6799 uint64_t CurrentBit = MaybeCurrentBit.get(); 6800 6801 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 6802 return Err; 6803 6804 SmallVector<uint64_t, 64> Record; 6805 6806 // Read all the records for this value table. 6807 SmallString<128> ValueName; 6808 6809 while (true) { 6810 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6811 if (!MaybeEntry) 6812 return MaybeEntry.takeError(); 6813 BitstreamEntry Entry = MaybeEntry.get(); 6814 6815 switch (Entry.Kind) { 6816 case BitstreamEntry::SubBlock: // Handled for us already. 6817 case BitstreamEntry::Error: 6818 return error("Malformed block"); 6819 case BitstreamEntry::EndBlock: 6820 // Done parsing VST, jump back to wherever we came from. 6821 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 6822 return JumpFailed; 6823 return Error::success(); 6824 case BitstreamEntry::Record: 6825 // The interesting case. 6826 break; 6827 } 6828 6829 // Read a record. 6830 Record.clear(); 6831 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 6832 if (!MaybeRecord) 6833 return MaybeRecord.takeError(); 6834 switch (MaybeRecord.get()) { 6835 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 6836 break; 6837 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 6838 if (convertToString(Record, 1, ValueName)) 6839 return error("Invalid record"); 6840 unsigned ValueID = Record[0]; 6841 assert(!SourceFileName.empty()); 6842 auto VLI = ValueIdToLinkageMap.find(ValueID); 6843 assert(VLI != ValueIdToLinkageMap.end() && 6844 "No linkage found for VST entry?"); 6845 auto Linkage = VLI->second; 6846 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 6847 ValueName.clear(); 6848 break; 6849 } 6850 case bitc::VST_CODE_FNENTRY: { 6851 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 6852 if (convertToString(Record, 2, ValueName)) 6853 return error("Invalid record"); 6854 unsigned ValueID = Record[0]; 6855 assert(!SourceFileName.empty()); 6856 auto VLI = ValueIdToLinkageMap.find(ValueID); 6857 assert(VLI != ValueIdToLinkageMap.end() && 6858 "No linkage found for VST entry?"); 6859 auto Linkage = VLI->second; 6860 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 6861 ValueName.clear(); 6862 break; 6863 } 6864 case bitc::VST_CODE_COMBINED_ENTRY: { 6865 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 6866 unsigned ValueID = Record[0]; 6867 GlobalValue::GUID RefGUID = Record[1]; 6868 // The "original name", which is the second value of the pair will be 6869 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 6870 ValueIdToValueInfoMap[ValueID] = std::make_tuple( 6871 TheIndex.getOrInsertValueInfo(RefGUID), RefGUID, RefGUID); 6872 break; 6873 } 6874 } 6875 } 6876 } 6877 6878 // Parse just the blocks needed for building the index out of the module. 6879 // At the end of this routine the module Index is populated with a map 6880 // from global value id to GlobalValueSummary objects. 6881 Error ModuleSummaryIndexBitcodeReader::parseModule() { 6882 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 6883 return Err; 6884 6885 SmallVector<uint64_t, 64> Record; 6886 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 6887 unsigned ValueId = 0; 6888 6889 // Read the index for this module. 6890 while (true) { 6891 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6892 if (!MaybeEntry) 6893 return MaybeEntry.takeError(); 6894 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6895 6896 switch (Entry.Kind) { 6897 case BitstreamEntry::Error: 6898 return error("Malformed block"); 6899 case BitstreamEntry::EndBlock: 6900 return Error::success(); 6901 6902 case BitstreamEntry::SubBlock: 6903 switch (Entry.ID) { 6904 default: // Skip unknown content. 6905 if (Error Err = Stream.SkipBlock()) 6906 return Err; 6907 break; 6908 case bitc::BLOCKINFO_BLOCK_ID: 6909 // Need to parse these to get abbrev ids (e.g. for VST) 6910 if (Error Err = readBlockInfo()) 6911 return Err; 6912 break; 6913 case bitc::VALUE_SYMTAB_BLOCK_ID: 6914 // Should have been parsed earlier via VSTOffset, unless there 6915 // is no summary section. 6916 assert(((SeenValueSymbolTable && VSTOffset > 0) || 6917 !SeenGlobalValSummary) && 6918 "Expected early VST parse via VSTOffset record"); 6919 if (Error Err = Stream.SkipBlock()) 6920 return Err; 6921 break; 6922 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 6923 case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID: 6924 // Add the module if it is a per-module index (has a source file name). 6925 if (!SourceFileName.empty()) 6926 addThisModule(); 6927 assert(!SeenValueSymbolTable && 6928 "Already read VST when parsing summary block?"); 6929 // We might not have a VST if there were no values in the 6930 // summary. An empty summary block generated when we are 6931 // performing ThinLTO compiles so we don't later invoke 6932 // the regular LTO process on them. 6933 if (VSTOffset > 0) { 6934 if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 6935 return Err; 6936 SeenValueSymbolTable = true; 6937 } 6938 SeenGlobalValSummary = true; 6939 if (Error Err = parseEntireSummary(Entry.ID)) 6940 return Err; 6941 break; 6942 case bitc::MODULE_STRTAB_BLOCK_ID: 6943 if (Error Err = parseModuleStringTable()) 6944 return Err; 6945 break; 6946 } 6947 continue; 6948 6949 case BitstreamEntry::Record: { 6950 Record.clear(); 6951 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 6952 if (!MaybeBitCode) 6953 return MaybeBitCode.takeError(); 6954 switch (MaybeBitCode.get()) { 6955 default: 6956 break; // Default behavior, ignore unknown content. 6957 case bitc::MODULE_CODE_VERSION: { 6958 if (Error Err = parseVersionRecord(Record).takeError()) 6959 return Err; 6960 break; 6961 } 6962 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 6963 case bitc::MODULE_CODE_SOURCE_FILENAME: { 6964 SmallString<128> ValueName; 6965 if (convertToString(Record, 0, ValueName)) 6966 return error("Invalid record"); 6967 SourceFileName = ValueName.c_str(); 6968 break; 6969 } 6970 /// MODULE_CODE_HASH: [5*i32] 6971 case bitc::MODULE_CODE_HASH: { 6972 if (Record.size() != 5) 6973 return error("Invalid hash length " + Twine(Record.size()).str()); 6974 auto &Hash = getThisModule()->second.second; 6975 int Pos = 0; 6976 for (auto &Val : Record) { 6977 assert(!(Val >> 32) && "Unexpected high bits set"); 6978 Hash[Pos++] = Val; 6979 } 6980 break; 6981 } 6982 /// MODULE_CODE_VSTOFFSET: [offset] 6983 case bitc::MODULE_CODE_VSTOFFSET: 6984 if (Record.empty()) 6985 return error("Invalid record"); 6986 // Note that we subtract 1 here because the offset is relative to one 6987 // word before the start of the identification or module block, which 6988 // was historically always the start of the regular bitcode header. 6989 VSTOffset = Record[0] - 1; 6990 break; 6991 // v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...] 6992 // v1 FUNCTION: [type, callingconv, isproto, linkage, ...] 6993 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...] 6994 // v2: [strtab offset, strtab size, v1] 6995 case bitc::MODULE_CODE_GLOBALVAR: 6996 case bitc::MODULE_CODE_FUNCTION: 6997 case bitc::MODULE_CODE_ALIAS: { 6998 StringRef Name; 6999 ArrayRef<uint64_t> GVRecord; 7000 std::tie(Name, GVRecord) = readNameFromStrtab(Record); 7001 if (GVRecord.size() <= 3) 7002 return error("Invalid record"); 7003 uint64_t RawLinkage = GVRecord[3]; 7004 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 7005 if (!UseStrtab) { 7006 ValueIdToLinkageMap[ValueId++] = Linkage; 7007 break; 7008 } 7009 7010 setValueGUID(ValueId++, Name, Linkage, SourceFileName); 7011 break; 7012 } 7013 } 7014 } 7015 continue; 7016 } 7017 } 7018 } 7019 7020 std::vector<ValueInfo> 7021 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) { 7022 std::vector<ValueInfo> Ret; 7023 Ret.reserve(Record.size()); 7024 for (uint64_t RefValueId : Record) 7025 Ret.push_back(std::get<0>(getValueInfoFromValueId(RefValueId))); 7026 return Ret; 7027 } 7028 7029 std::vector<FunctionSummary::EdgeTy> 7030 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record, 7031 bool IsOldProfileFormat, 7032 bool HasProfile, bool HasRelBF) { 7033 std::vector<FunctionSummary::EdgeTy> Ret; 7034 Ret.reserve(Record.size()); 7035 for (unsigned I = 0, E = Record.size(); I != E; ++I) { 7036 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 7037 uint64_t RelBF = 0; 7038 ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[I])); 7039 if (IsOldProfileFormat) { 7040 I += 1; // Skip old callsitecount field 7041 if (HasProfile) 7042 I += 1; // Skip old profilecount field 7043 } else if (HasProfile) 7044 Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]); 7045 else if (HasRelBF) 7046 RelBF = Record[++I]; 7047 Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)}); 7048 } 7049 return Ret; 7050 } 7051 7052 static void 7053 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot, 7054 WholeProgramDevirtResolution &Wpd) { 7055 uint64_t ArgNum = Record[Slot++]; 7056 WholeProgramDevirtResolution::ByArg &B = 7057 Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}]; 7058 Slot += ArgNum; 7059 7060 B.TheKind = 7061 static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]); 7062 B.Info = Record[Slot++]; 7063 B.Byte = Record[Slot++]; 7064 B.Bit = Record[Slot++]; 7065 } 7066 7067 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record, 7068 StringRef Strtab, size_t &Slot, 7069 TypeIdSummary &TypeId) { 7070 uint64_t Id = Record[Slot++]; 7071 WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id]; 7072 7073 Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]); 7074 Wpd.SingleImplName = {Strtab.data() + Record[Slot], 7075 static_cast<size_t>(Record[Slot + 1])}; 7076 Slot += 2; 7077 7078 uint64_t ResByArgNum = Record[Slot++]; 7079 for (uint64_t I = 0; I != ResByArgNum; ++I) 7080 parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd); 7081 } 7082 7083 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record, 7084 StringRef Strtab, 7085 ModuleSummaryIndex &TheIndex) { 7086 size_t Slot = 0; 7087 TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary( 7088 {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])}); 7089 Slot += 2; 7090 7091 TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]); 7092 TypeId.TTRes.SizeM1BitWidth = Record[Slot++]; 7093 TypeId.TTRes.AlignLog2 = Record[Slot++]; 7094 TypeId.TTRes.SizeM1 = Record[Slot++]; 7095 TypeId.TTRes.BitMask = Record[Slot++]; 7096 TypeId.TTRes.InlineBits = Record[Slot++]; 7097 7098 while (Slot < Record.size()) 7099 parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId); 7100 } 7101 7102 std::vector<FunctionSummary::ParamAccess> 7103 ModuleSummaryIndexBitcodeReader::parseParamAccesses(ArrayRef<uint64_t> Record) { 7104 auto ReadRange = [&]() { 7105 APInt Lower(FunctionSummary::ParamAccess::RangeWidth, 7106 BitcodeReader::decodeSignRotatedValue(Record.front())); 7107 Record = Record.drop_front(); 7108 APInt Upper(FunctionSummary::ParamAccess::RangeWidth, 7109 BitcodeReader::decodeSignRotatedValue(Record.front())); 7110 Record = Record.drop_front(); 7111 ConstantRange Range{Lower, Upper}; 7112 assert(!Range.isFullSet()); 7113 assert(!Range.isUpperSignWrapped()); 7114 return Range; 7115 }; 7116 7117 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; 7118 while (!Record.empty()) { 7119 PendingParamAccesses.emplace_back(); 7120 FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back(); 7121 ParamAccess.ParamNo = Record.front(); 7122 Record = Record.drop_front(); 7123 ParamAccess.Use = ReadRange(); 7124 ParamAccess.Calls.resize(Record.front()); 7125 Record = Record.drop_front(); 7126 for (auto &Call : ParamAccess.Calls) { 7127 Call.ParamNo = Record.front(); 7128 Record = Record.drop_front(); 7129 Call.Callee = std::get<0>(getValueInfoFromValueId(Record.front())); 7130 Record = Record.drop_front(); 7131 Call.Offsets = ReadRange(); 7132 } 7133 } 7134 return PendingParamAccesses; 7135 } 7136 7137 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo( 7138 ArrayRef<uint64_t> Record, size_t &Slot, 7139 TypeIdCompatibleVtableInfo &TypeId) { 7140 uint64_t Offset = Record[Slot++]; 7141 ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[Slot++])); 7142 TypeId.push_back({Offset, Callee}); 7143 } 7144 7145 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord( 7146 ArrayRef<uint64_t> Record) { 7147 size_t Slot = 0; 7148 TypeIdCompatibleVtableInfo &TypeId = 7149 TheIndex.getOrInsertTypeIdCompatibleVtableSummary( 7150 {Strtab.data() + Record[Slot], 7151 static_cast<size_t>(Record[Slot + 1])}); 7152 Slot += 2; 7153 7154 while (Slot < Record.size()) 7155 parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId); 7156 } 7157 7158 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt, 7159 unsigned WOCnt) { 7160 // Readonly and writeonly refs are in the end of the refs list. 7161 assert(ROCnt + WOCnt <= Refs.size()); 7162 unsigned FirstWORef = Refs.size() - WOCnt; 7163 unsigned RefNo = FirstWORef - ROCnt; 7164 for (; RefNo < FirstWORef; ++RefNo) 7165 Refs[RefNo].setReadOnly(); 7166 for (; RefNo < Refs.size(); ++RefNo) 7167 Refs[RefNo].setWriteOnly(); 7168 } 7169 7170 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 7171 // objects in the index. 7172 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) { 7173 if (Error Err = Stream.EnterSubBlock(ID)) 7174 return Err; 7175 SmallVector<uint64_t, 64> Record; 7176 7177 // Parse version 7178 { 7179 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 7180 if (!MaybeEntry) 7181 return MaybeEntry.takeError(); 7182 BitstreamEntry Entry = MaybeEntry.get(); 7183 7184 if (Entry.Kind != BitstreamEntry::Record) 7185 return error("Invalid Summary Block: record for version expected"); 7186 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 7187 if (!MaybeRecord) 7188 return MaybeRecord.takeError(); 7189 if (MaybeRecord.get() != bitc::FS_VERSION) 7190 return error("Invalid Summary Block: version expected"); 7191 } 7192 const uint64_t Version = Record[0]; 7193 const bool IsOldProfileFormat = Version == 1; 7194 if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion) 7195 return error("Invalid summary version " + Twine(Version) + 7196 ". Version should be in the range [1-" + 7197 Twine(ModuleSummaryIndex::BitcodeSummaryVersion) + 7198 "]."); 7199 Record.clear(); 7200 7201 // Keep around the last seen summary to be used when we see an optional 7202 // "OriginalName" attachement. 7203 GlobalValueSummary *LastSeenSummary = nullptr; 7204 GlobalValue::GUID LastSeenGUID = 0; 7205 7206 // We can expect to see any number of type ID information records before 7207 // each function summary records; these variables store the information 7208 // collected so far so that it can be used to create the summary object. 7209 std::vector<GlobalValue::GUID> PendingTypeTests; 7210 std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls, 7211 PendingTypeCheckedLoadVCalls; 7212 std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls, 7213 PendingTypeCheckedLoadConstVCalls; 7214 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; 7215 7216 std::vector<CallsiteInfo> PendingCallsites; 7217 std::vector<AllocInfo> PendingAllocs; 7218 7219 while (true) { 7220 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 7221 if (!MaybeEntry) 7222 return MaybeEntry.takeError(); 7223 BitstreamEntry Entry = MaybeEntry.get(); 7224 7225 switch (Entry.Kind) { 7226 case BitstreamEntry::SubBlock: // Handled for us already. 7227 case BitstreamEntry::Error: 7228 return error("Malformed block"); 7229 case BitstreamEntry::EndBlock: 7230 return Error::success(); 7231 case BitstreamEntry::Record: 7232 // The interesting case. 7233 break; 7234 } 7235 7236 // Read a record. The record format depends on whether this 7237 // is a per-module index or a combined index file. In the per-module 7238 // case the records contain the associated value's ID for correlation 7239 // with VST entries. In the combined index the correlation is done 7240 // via the bitcode offset of the summary records (which were saved 7241 // in the combined index VST entries). The records also contain 7242 // information used for ThinLTO renaming and importing. 7243 Record.clear(); 7244 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 7245 if (!MaybeBitCode) 7246 return MaybeBitCode.takeError(); 7247 switch (unsigned BitCode = MaybeBitCode.get()) { 7248 default: // Default behavior: ignore. 7249 break; 7250 case bitc::FS_FLAGS: { // [flags] 7251 TheIndex.setFlags(Record[0]); 7252 break; 7253 } 7254 case bitc::FS_VALUE_GUID: { // [valueid, refguid] 7255 uint64_t ValueID = Record[0]; 7256 GlobalValue::GUID RefGUID = Record[1]; 7257 ValueIdToValueInfoMap[ValueID] = std::make_tuple( 7258 TheIndex.getOrInsertValueInfo(RefGUID), RefGUID, RefGUID); 7259 break; 7260 } 7261 // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs, 7262 // numrefs x valueid, n x (valueid)] 7263 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs, 7264 // numrefs x valueid, 7265 // n x (valueid, hotness)] 7266 // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs, 7267 // numrefs x valueid, 7268 // n x (valueid, relblockfreq)] 7269 case bitc::FS_PERMODULE: 7270 case bitc::FS_PERMODULE_RELBF: 7271 case bitc::FS_PERMODULE_PROFILE: { 7272 unsigned ValueID = Record[0]; 7273 uint64_t RawFlags = Record[1]; 7274 unsigned InstCount = Record[2]; 7275 uint64_t RawFunFlags = 0; 7276 unsigned NumRefs = Record[3]; 7277 unsigned NumRORefs = 0, NumWORefs = 0; 7278 int RefListStartIndex = 4; 7279 if (Version >= 4) { 7280 RawFunFlags = Record[3]; 7281 NumRefs = Record[4]; 7282 RefListStartIndex = 5; 7283 if (Version >= 5) { 7284 NumRORefs = Record[5]; 7285 RefListStartIndex = 6; 7286 if (Version >= 7) { 7287 NumWORefs = Record[6]; 7288 RefListStartIndex = 7; 7289 } 7290 } 7291 } 7292 7293 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7294 // The module path string ref set in the summary must be owned by the 7295 // index's module string table. Since we don't have a module path 7296 // string table section in the per-module index, we create a single 7297 // module path string table entry with an empty (0) ID to take 7298 // ownership. 7299 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 7300 assert(Record.size() >= RefListStartIndex + NumRefs && 7301 "Record size inconsistent with number of references"); 7302 std::vector<ValueInfo> Refs = makeRefList( 7303 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 7304 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 7305 bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF); 7306 std::vector<FunctionSummary::EdgeTy> Calls = makeCallList( 7307 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 7308 IsOldProfileFormat, HasProfile, HasRelBF); 7309 setSpecialRefs(Refs, NumRORefs, NumWORefs); 7310 auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID); 7311 // In order to save memory, only record the memprof summaries if this is 7312 // the prevailing copy of a symbol. The linker doesn't resolve local 7313 // linkage values so don't check whether those are prevailing. 7314 auto LT = (GlobalValue::LinkageTypes)Flags.Linkage; 7315 if (IsPrevailing && 7316 !GlobalValue::isLocalLinkage(LT) && 7317 !IsPrevailing(std::get<2>(VIAndOriginalGUID))) { 7318 PendingCallsites.clear(); 7319 PendingAllocs.clear(); 7320 } 7321 auto FS = std::make_unique<FunctionSummary>( 7322 Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0, 7323 std::move(Refs), std::move(Calls), std::move(PendingTypeTests), 7324 std::move(PendingTypeTestAssumeVCalls), 7325 std::move(PendingTypeCheckedLoadVCalls), 7326 std::move(PendingTypeTestAssumeConstVCalls), 7327 std::move(PendingTypeCheckedLoadConstVCalls), 7328 std::move(PendingParamAccesses), std::move(PendingCallsites), 7329 std::move(PendingAllocs)); 7330 FS->setModulePath(getThisModule()->first()); 7331 FS->setOriginalName(std::get<1>(VIAndOriginalGUID)); 7332 TheIndex.addGlobalValueSummary(std::get<0>(VIAndOriginalGUID), 7333 std::move(FS)); 7334 break; 7335 } 7336 // FS_ALIAS: [valueid, flags, valueid] 7337 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 7338 // they expect all aliasee summaries to be available. 7339 case bitc::FS_ALIAS: { 7340 unsigned ValueID = Record[0]; 7341 uint64_t RawFlags = Record[1]; 7342 unsigned AliaseeID = Record[2]; 7343 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7344 auto AS = std::make_unique<AliasSummary>(Flags); 7345 // The module path string ref set in the summary must be owned by the 7346 // index's module string table. Since we don't have a module path 7347 // string table section in the per-module index, we create a single 7348 // module path string table entry with an empty (0) ID to take 7349 // ownership. 7350 AS->setModulePath(getThisModule()->first()); 7351 7352 auto AliaseeVI = std::get<0>(getValueInfoFromValueId(AliaseeID)); 7353 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath); 7354 if (!AliaseeInModule) 7355 return error("Alias expects aliasee summary to be parsed"); 7356 AS->setAliasee(AliaseeVI, AliaseeInModule); 7357 7358 auto GUID = getValueInfoFromValueId(ValueID); 7359 AS->setOriginalName(std::get<1>(GUID)); 7360 TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(AS)); 7361 break; 7362 } 7363 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid] 7364 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 7365 unsigned ValueID = Record[0]; 7366 uint64_t RawFlags = Record[1]; 7367 unsigned RefArrayStart = 2; 7368 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 7369 /* WriteOnly */ false, 7370 /* Constant */ false, 7371 GlobalObject::VCallVisibilityPublic); 7372 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7373 if (Version >= 5) { 7374 GVF = getDecodedGVarFlags(Record[2]); 7375 RefArrayStart = 3; 7376 } 7377 std::vector<ValueInfo> Refs = 7378 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 7379 auto FS = 7380 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 7381 FS->setModulePath(getThisModule()->first()); 7382 auto GUID = getValueInfoFromValueId(ValueID); 7383 FS->setOriginalName(std::get<1>(GUID)); 7384 TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(FS)); 7385 break; 7386 } 7387 // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, 7388 // numrefs, numrefs x valueid, 7389 // n x (valueid, offset)] 7390 case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: { 7391 unsigned ValueID = Record[0]; 7392 uint64_t RawFlags = Record[1]; 7393 GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]); 7394 unsigned NumRefs = Record[3]; 7395 unsigned RefListStartIndex = 4; 7396 unsigned VTableListStartIndex = RefListStartIndex + NumRefs; 7397 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7398 std::vector<ValueInfo> Refs = makeRefList( 7399 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 7400 VTableFuncList VTableFuncs; 7401 for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) { 7402 ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[I])); 7403 uint64_t Offset = Record[++I]; 7404 VTableFuncs.push_back({Callee, Offset}); 7405 } 7406 auto VS = 7407 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 7408 VS->setModulePath(getThisModule()->first()); 7409 VS->setVTableFuncs(VTableFuncs); 7410 auto GUID = getValueInfoFromValueId(ValueID); 7411 VS->setOriginalName(std::get<1>(GUID)); 7412 TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(VS)); 7413 break; 7414 } 7415 // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs, 7416 // numrefs x valueid, n x (valueid)] 7417 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs, 7418 // numrefs x valueid, n x (valueid, hotness)] 7419 case bitc::FS_COMBINED: 7420 case bitc::FS_COMBINED_PROFILE: { 7421 unsigned ValueID = Record[0]; 7422 uint64_t ModuleId = Record[1]; 7423 uint64_t RawFlags = Record[2]; 7424 unsigned InstCount = Record[3]; 7425 uint64_t RawFunFlags = 0; 7426 uint64_t EntryCount = 0; 7427 unsigned NumRefs = Record[4]; 7428 unsigned NumRORefs = 0, NumWORefs = 0; 7429 int RefListStartIndex = 5; 7430 7431 if (Version >= 4) { 7432 RawFunFlags = Record[4]; 7433 RefListStartIndex = 6; 7434 size_t NumRefsIndex = 5; 7435 if (Version >= 5) { 7436 unsigned NumRORefsOffset = 1; 7437 RefListStartIndex = 7; 7438 if (Version >= 6) { 7439 NumRefsIndex = 6; 7440 EntryCount = Record[5]; 7441 RefListStartIndex = 8; 7442 if (Version >= 7) { 7443 RefListStartIndex = 9; 7444 NumWORefs = Record[8]; 7445 NumRORefsOffset = 2; 7446 } 7447 } 7448 NumRORefs = Record[RefListStartIndex - NumRORefsOffset]; 7449 } 7450 NumRefs = Record[NumRefsIndex]; 7451 } 7452 7453 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7454 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 7455 assert(Record.size() >= RefListStartIndex + NumRefs && 7456 "Record size inconsistent with number of references"); 7457 std::vector<ValueInfo> Refs = makeRefList( 7458 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 7459 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 7460 std::vector<FunctionSummary::EdgeTy> Edges = makeCallList( 7461 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 7462 IsOldProfileFormat, HasProfile, false); 7463 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID)); 7464 setSpecialRefs(Refs, NumRORefs, NumWORefs); 7465 auto FS = std::make_unique<FunctionSummary>( 7466 Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount, 7467 std::move(Refs), std::move(Edges), std::move(PendingTypeTests), 7468 std::move(PendingTypeTestAssumeVCalls), 7469 std::move(PendingTypeCheckedLoadVCalls), 7470 std::move(PendingTypeTestAssumeConstVCalls), 7471 std::move(PendingTypeCheckedLoadConstVCalls), 7472 std::move(PendingParamAccesses), std::move(PendingCallsites), 7473 std::move(PendingAllocs)); 7474 LastSeenSummary = FS.get(); 7475 LastSeenGUID = VI.getGUID(); 7476 FS->setModulePath(ModuleIdMap[ModuleId]); 7477 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 7478 break; 7479 } 7480 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 7481 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 7482 // they expect all aliasee summaries to be available. 7483 case bitc::FS_COMBINED_ALIAS: { 7484 unsigned ValueID = Record[0]; 7485 uint64_t ModuleId = Record[1]; 7486 uint64_t RawFlags = Record[2]; 7487 unsigned AliaseeValueId = Record[3]; 7488 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7489 auto AS = std::make_unique<AliasSummary>(Flags); 7490 LastSeenSummary = AS.get(); 7491 AS->setModulePath(ModuleIdMap[ModuleId]); 7492 7493 auto AliaseeVI = std::get<0>(getValueInfoFromValueId(AliaseeValueId)); 7494 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath()); 7495 AS->setAliasee(AliaseeVI, AliaseeInModule); 7496 7497 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID)); 7498 LastSeenGUID = VI.getGUID(); 7499 TheIndex.addGlobalValueSummary(VI, std::move(AS)); 7500 break; 7501 } 7502 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 7503 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 7504 unsigned ValueID = Record[0]; 7505 uint64_t ModuleId = Record[1]; 7506 uint64_t RawFlags = Record[2]; 7507 unsigned RefArrayStart = 3; 7508 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 7509 /* WriteOnly */ false, 7510 /* Constant */ false, 7511 GlobalObject::VCallVisibilityPublic); 7512 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7513 if (Version >= 5) { 7514 GVF = getDecodedGVarFlags(Record[3]); 7515 RefArrayStart = 4; 7516 } 7517 std::vector<ValueInfo> Refs = 7518 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 7519 auto FS = 7520 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 7521 LastSeenSummary = FS.get(); 7522 FS->setModulePath(ModuleIdMap[ModuleId]); 7523 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID)); 7524 LastSeenGUID = VI.getGUID(); 7525 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 7526 break; 7527 } 7528 // FS_COMBINED_ORIGINAL_NAME: [original_name] 7529 case bitc::FS_COMBINED_ORIGINAL_NAME: { 7530 uint64_t OriginalName = Record[0]; 7531 if (!LastSeenSummary) 7532 return error("Name attachment that does not follow a combined record"); 7533 LastSeenSummary->setOriginalName(OriginalName); 7534 TheIndex.addOriginalName(LastSeenGUID, OriginalName); 7535 // Reset the LastSeenSummary 7536 LastSeenSummary = nullptr; 7537 LastSeenGUID = 0; 7538 break; 7539 } 7540 case bitc::FS_TYPE_TESTS: 7541 assert(PendingTypeTests.empty()); 7542 llvm::append_range(PendingTypeTests, Record); 7543 break; 7544 7545 case bitc::FS_TYPE_TEST_ASSUME_VCALLS: 7546 assert(PendingTypeTestAssumeVCalls.empty()); 7547 for (unsigned I = 0; I != Record.size(); I += 2) 7548 PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]}); 7549 break; 7550 7551 case bitc::FS_TYPE_CHECKED_LOAD_VCALLS: 7552 assert(PendingTypeCheckedLoadVCalls.empty()); 7553 for (unsigned I = 0; I != Record.size(); I += 2) 7554 PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]}); 7555 break; 7556 7557 case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL: 7558 PendingTypeTestAssumeConstVCalls.push_back( 7559 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 7560 break; 7561 7562 case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL: 7563 PendingTypeCheckedLoadConstVCalls.push_back( 7564 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 7565 break; 7566 7567 case bitc::FS_CFI_FUNCTION_DEFS: { 7568 std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs(); 7569 for (unsigned I = 0; I != Record.size(); I += 2) 7570 CfiFunctionDefs.insert( 7571 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 7572 break; 7573 } 7574 7575 case bitc::FS_CFI_FUNCTION_DECLS: { 7576 std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls(); 7577 for (unsigned I = 0; I != Record.size(); I += 2) 7578 CfiFunctionDecls.insert( 7579 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 7580 break; 7581 } 7582 7583 case bitc::FS_TYPE_ID: 7584 parseTypeIdSummaryRecord(Record, Strtab, TheIndex); 7585 break; 7586 7587 case bitc::FS_TYPE_ID_METADATA: 7588 parseTypeIdCompatibleVtableSummaryRecord(Record); 7589 break; 7590 7591 case bitc::FS_BLOCK_COUNT: 7592 TheIndex.addBlockCount(Record[0]); 7593 break; 7594 7595 case bitc::FS_PARAM_ACCESS: { 7596 PendingParamAccesses = parseParamAccesses(Record); 7597 break; 7598 } 7599 7600 case bitc::FS_STACK_IDS: { // [n x stackid] 7601 // Save stack ids in the reader to consult when adding stack ids from the 7602 // lists in the stack node and alloc node entries. 7603 StackIds = ArrayRef<uint64_t>(Record); 7604 break; 7605 } 7606 7607 case bitc::FS_PERMODULE_CALLSITE_INFO: { 7608 unsigned ValueID = Record[0]; 7609 SmallVector<unsigned> StackIdList; 7610 for (auto R = Record.begin() + 1; R != Record.end(); R++) { 7611 assert(*R < StackIds.size()); 7612 StackIdList.push_back(TheIndex.addOrGetStackIdIndex(StackIds[*R])); 7613 } 7614 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID)); 7615 PendingCallsites.push_back(CallsiteInfo({VI, std::move(StackIdList)})); 7616 break; 7617 } 7618 7619 case bitc::FS_COMBINED_CALLSITE_INFO: { 7620 auto RecordIter = Record.begin(); 7621 unsigned ValueID = *RecordIter++; 7622 unsigned NumStackIds = *RecordIter++; 7623 unsigned NumVersions = *RecordIter++; 7624 assert(Record.size() == 3 + NumStackIds + NumVersions); 7625 SmallVector<unsigned> StackIdList; 7626 for (unsigned J = 0; J < NumStackIds; J++) { 7627 assert(*RecordIter < StackIds.size()); 7628 StackIdList.push_back( 7629 TheIndex.addOrGetStackIdIndex(StackIds[*RecordIter++])); 7630 } 7631 SmallVector<unsigned> Versions; 7632 for (unsigned J = 0; J < NumVersions; J++) 7633 Versions.push_back(*RecordIter++); 7634 ValueInfo VI = std::get<0>( 7635 getValueInfoFromValueId</*AllowNullValueInfo*/ true>(ValueID)); 7636 PendingCallsites.push_back( 7637 CallsiteInfo({VI, std::move(Versions), std::move(StackIdList)})); 7638 break; 7639 } 7640 7641 case bitc::FS_PERMODULE_ALLOC_INFO: { 7642 unsigned I = 0; 7643 std::vector<MIBInfo> MIBs; 7644 while (I < Record.size()) { 7645 assert(Record.size() - I >= 2); 7646 AllocationType AllocType = (AllocationType)Record[I++]; 7647 unsigned NumStackEntries = Record[I++]; 7648 assert(Record.size() - I >= NumStackEntries); 7649 SmallVector<unsigned> StackIdList; 7650 for (unsigned J = 0; J < NumStackEntries; J++) { 7651 assert(Record[I] < StackIds.size()); 7652 StackIdList.push_back( 7653 TheIndex.addOrGetStackIdIndex(StackIds[Record[I++]])); 7654 } 7655 MIBs.push_back(MIBInfo(AllocType, std::move(StackIdList))); 7656 } 7657 PendingAllocs.push_back(AllocInfo(std::move(MIBs))); 7658 break; 7659 } 7660 7661 case bitc::FS_COMBINED_ALLOC_INFO: { 7662 unsigned I = 0; 7663 std::vector<MIBInfo> MIBs; 7664 unsigned NumMIBs = Record[I++]; 7665 unsigned NumVersions = Record[I++]; 7666 unsigned MIBsRead = 0; 7667 while (MIBsRead++ < NumMIBs) { 7668 assert(Record.size() - I >= 2); 7669 AllocationType AllocType = (AllocationType)Record[I++]; 7670 unsigned NumStackEntries = Record[I++]; 7671 assert(Record.size() - I >= NumStackEntries); 7672 SmallVector<unsigned> StackIdList; 7673 for (unsigned J = 0; J < NumStackEntries; J++) { 7674 assert(Record[I] < StackIds.size()); 7675 StackIdList.push_back( 7676 TheIndex.addOrGetStackIdIndex(StackIds[Record[I++]])); 7677 } 7678 MIBs.push_back(MIBInfo(AllocType, std::move(StackIdList))); 7679 } 7680 assert(Record.size() - I >= NumVersions); 7681 SmallVector<uint8_t> Versions; 7682 for (unsigned J = 0; J < NumVersions; J++) 7683 Versions.push_back(Record[I++]); 7684 PendingAllocs.push_back( 7685 AllocInfo(std::move(Versions), std::move(MIBs))); 7686 break; 7687 } 7688 } 7689 } 7690 llvm_unreachable("Exit infinite loop"); 7691 } 7692 7693 // Parse the module string table block into the Index. 7694 // This populates the ModulePathStringTable map in the index. 7695 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 7696 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 7697 return Err; 7698 7699 SmallVector<uint64_t, 64> Record; 7700 7701 SmallString<128> ModulePath; 7702 ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr; 7703 7704 while (true) { 7705 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 7706 if (!MaybeEntry) 7707 return MaybeEntry.takeError(); 7708 BitstreamEntry Entry = MaybeEntry.get(); 7709 7710 switch (Entry.Kind) { 7711 case BitstreamEntry::SubBlock: // Handled for us already. 7712 case BitstreamEntry::Error: 7713 return error("Malformed block"); 7714 case BitstreamEntry::EndBlock: 7715 return Error::success(); 7716 case BitstreamEntry::Record: 7717 // The interesting case. 7718 break; 7719 } 7720 7721 Record.clear(); 7722 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 7723 if (!MaybeRecord) 7724 return MaybeRecord.takeError(); 7725 switch (MaybeRecord.get()) { 7726 default: // Default behavior: ignore. 7727 break; 7728 case bitc::MST_CODE_ENTRY: { 7729 // MST_ENTRY: [modid, namechar x N] 7730 uint64_t ModuleId = Record[0]; 7731 7732 if (convertToString(Record, 1, ModulePath)) 7733 return error("Invalid record"); 7734 7735 LastSeenModule = TheIndex.addModule(ModulePath, ModuleId); 7736 ModuleIdMap[ModuleId] = LastSeenModule->first(); 7737 7738 ModulePath.clear(); 7739 break; 7740 } 7741 /// MST_CODE_HASH: [5*i32] 7742 case bitc::MST_CODE_HASH: { 7743 if (Record.size() != 5) 7744 return error("Invalid hash length " + Twine(Record.size()).str()); 7745 if (!LastSeenModule) 7746 return error("Invalid hash that does not follow a module path"); 7747 int Pos = 0; 7748 for (auto &Val : Record) { 7749 assert(!(Val >> 32) && "Unexpected high bits set"); 7750 LastSeenModule->second.second[Pos++] = Val; 7751 } 7752 // Reset LastSeenModule to avoid overriding the hash unexpectedly. 7753 LastSeenModule = nullptr; 7754 break; 7755 } 7756 } 7757 } 7758 llvm_unreachable("Exit infinite loop"); 7759 } 7760 7761 namespace { 7762 7763 // FIXME: This class is only here to support the transition to llvm::Error. It 7764 // will be removed once this transition is complete. Clients should prefer to 7765 // deal with the Error value directly, rather than converting to error_code. 7766 class BitcodeErrorCategoryType : public std::error_category { 7767 const char *name() const noexcept override { 7768 return "llvm.bitcode"; 7769 } 7770 7771 std::string message(int IE) const override { 7772 BitcodeError E = static_cast<BitcodeError>(IE); 7773 switch (E) { 7774 case BitcodeError::CorruptedBitcode: 7775 return "Corrupted bitcode"; 7776 } 7777 llvm_unreachable("Unknown error type!"); 7778 } 7779 }; 7780 7781 } // end anonymous namespace 7782 7783 const std::error_category &llvm::BitcodeErrorCategory() { 7784 static BitcodeErrorCategoryType ErrorCategory; 7785 return ErrorCategory; 7786 } 7787 7788 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream, 7789 unsigned Block, unsigned RecordID) { 7790 if (Error Err = Stream.EnterSubBlock(Block)) 7791 return std::move(Err); 7792 7793 StringRef Strtab; 7794 while (true) { 7795 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 7796 if (!MaybeEntry) 7797 return MaybeEntry.takeError(); 7798 llvm::BitstreamEntry Entry = MaybeEntry.get(); 7799 7800 switch (Entry.Kind) { 7801 case BitstreamEntry::EndBlock: 7802 return Strtab; 7803 7804 case BitstreamEntry::Error: 7805 return error("Malformed block"); 7806 7807 case BitstreamEntry::SubBlock: 7808 if (Error Err = Stream.SkipBlock()) 7809 return std::move(Err); 7810 break; 7811 7812 case BitstreamEntry::Record: 7813 StringRef Blob; 7814 SmallVector<uint64_t, 1> Record; 7815 Expected<unsigned> MaybeRecord = 7816 Stream.readRecord(Entry.ID, Record, &Blob); 7817 if (!MaybeRecord) 7818 return MaybeRecord.takeError(); 7819 if (MaybeRecord.get() == RecordID) 7820 Strtab = Blob; 7821 break; 7822 } 7823 } 7824 } 7825 7826 //===----------------------------------------------------------------------===// 7827 // External interface 7828 //===----------------------------------------------------------------------===// 7829 7830 Expected<std::vector<BitcodeModule>> 7831 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) { 7832 auto FOrErr = getBitcodeFileContents(Buffer); 7833 if (!FOrErr) 7834 return FOrErr.takeError(); 7835 return std::move(FOrErr->Mods); 7836 } 7837 7838 Expected<BitcodeFileContents> 7839 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) { 7840 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 7841 if (!StreamOrErr) 7842 return StreamOrErr.takeError(); 7843 BitstreamCursor &Stream = *StreamOrErr; 7844 7845 BitcodeFileContents F; 7846 while (true) { 7847 uint64_t BCBegin = Stream.getCurrentByteNo(); 7848 7849 // We may be consuming bitcode from a client that leaves garbage at the end 7850 // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to 7851 // the end that there cannot possibly be another module, stop looking. 7852 if (BCBegin + 8 >= Stream.getBitcodeBytes().size()) 7853 return F; 7854 7855 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 7856 if (!MaybeEntry) 7857 return MaybeEntry.takeError(); 7858 llvm::BitstreamEntry Entry = MaybeEntry.get(); 7859 7860 switch (Entry.Kind) { 7861 case BitstreamEntry::EndBlock: 7862 case BitstreamEntry::Error: 7863 return error("Malformed block"); 7864 7865 case BitstreamEntry::SubBlock: { 7866 uint64_t IdentificationBit = -1ull; 7867 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 7868 IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8; 7869 if (Error Err = Stream.SkipBlock()) 7870 return std::move(Err); 7871 7872 { 7873 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 7874 if (!MaybeEntry) 7875 return MaybeEntry.takeError(); 7876 Entry = MaybeEntry.get(); 7877 } 7878 7879 if (Entry.Kind != BitstreamEntry::SubBlock || 7880 Entry.ID != bitc::MODULE_BLOCK_ID) 7881 return error("Malformed block"); 7882 } 7883 7884 if (Entry.ID == bitc::MODULE_BLOCK_ID) { 7885 uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8; 7886 if (Error Err = Stream.SkipBlock()) 7887 return std::move(Err); 7888 7889 F.Mods.push_back({Stream.getBitcodeBytes().slice( 7890 BCBegin, Stream.getCurrentByteNo() - BCBegin), 7891 Buffer.getBufferIdentifier(), IdentificationBit, 7892 ModuleBit}); 7893 continue; 7894 } 7895 7896 if (Entry.ID == bitc::STRTAB_BLOCK_ID) { 7897 Expected<StringRef> Strtab = 7898 readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB); 7899 if (!Strtab) 7900 return Strtab.takeError(); 7901 // This string table is used by every preceding bitcode module that does 7902 // not have its own string table. A bitcode file may have multiple 7903 // string tables if it was created by binary concatenation, for example 7904 // with "llvm-cat -b". 7905 for (BitcodeModule &I : llvm::reverse(F.Mods)) { 7906 if (!I.Strtab.empty()) 7907 break; 7908 I.Strtab = *Strtab; 7909 } 7910 // Similarly, the string table is used by every preceding symbol table; 7911 // normally there will be just one unless the bitcode file was created 7912 // by binary concatenation. 7913 if (!F.Symtab.empty() && F.StrtabForSymtab.empty()) 7914 F.StrtabForSymtab = *Strtab; 7915 continue; 7916 } 7917 7918 if (Entry.ID == bitc::SYMTAB_BLOCK_ID) { 7919 Expected<StringRef> SymtabOrErr = 7920 readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB); 7921 if (!SymtabOrErr) 7922 return SymtabOrErr.takeError(); 7923 7924 // We can expect the bitcode file to have multiple symbol tables if it 7925 // was created by binary concatenation. In that case we silently 7926 // ignore any subsequent symbol tables, which is fine because this is a 7927 // low level function. The client is expected to notice that the number 7928 // of modules in the symbol table does not match the number of modules 7929 // in the input file and regenerate the symbol table. 7930 if (F.Symtab.empty()) 7931 F.Symtab = *SymtabOrErr; 7932 continue; 7933 } 7934 7935 if (Error Err = Stream.SkipBlock()) 7936 return std::move(Err); 7937 continue; 7938 } 7939 case BitstreamEntry::Record: 7940 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 7941 return std::move(E); 7942 continue; 7943 } 7944 } 7945 } 7946 7947 /// Get a lazy one-at-time loading module from bitcode. 7948 /// 7949 /// This isn't always used in a lazy context. In particular, it's also used by 7950 /// \a parseModule(). If this is truly lazy, then we need to eagerly pull 7951 /// in forward-referenced functions from block address references. 7952 /// 7953 /// \param[in] MaterializeAll Set to \c true if we should materialize 7954 /// everything. 7955 Expected<std::unique_ptr<Module>> 7956 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll, 7957 bool ShouldLazyLoadMetadata, bool IsImporting, 7958 ParserCallbacks Callbacks) { 7959 BitstreamCursor Stream(Buffer); 7960 7961 std::string ProducerIdentification; 7962 if (IdentificationBit != -1ull) { 7963 if (Error JumpFailed = Stream.JumpToBit(IdentificationBit)) 7964 return std::move(JumpFailed); 7965 if (Error E = 7966 readIdentificationBlock(Stream).moveInto(ProducerIdentification)) 7967 return std::move(E); 7968 } 7969 7970 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 7971 return std::move(JumpFailed); 7972 auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification, 7973 Context); 7974 7975 std::unique_ptr<Module> M = 7976 std::make_unique<Module>(ModuleIdentifier, Context); 7977 M->setMaterializer(R); 7978 7979 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 7980 if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, 7981 IsImporting, Callbacks)) 7982 return std::move(Err); 7983 7984 if (MaterializeAll) { 7985 // Read in the entire module, and destroy the BitcodeReader. 7986 if (Error Err = M->materializeAll()) 7987 return std::move(Err); 7988 } else { 7989 // Resolve forward references from blockaddresses. 7990 if (Error Err = R->materializeForwardReferencedFunctions()) 7991 return std::move(Err); 7992 } 7993 return std::move(M); 7994 } 7995 7996 Expected<std::unique_ptr<Module>> 7997 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata, 7998 bool IsImporting, ParserCallbacks Callbacks) { 7999 return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting, 8000 Callbacks); 8001 } 8002 8003 // Parse the specified bitcode buffer and merge the index into CombinedIndex. 8004 // We don't use ModuleIdentifier here because the client may need to control the 8005 // module path used in the combined summary (e.g. when reading summaries for 8006 // regular LTO modules). 8007 Error BitcodeModule::readSummary( 8008 ModuleSummaryIndex &CombinedIndex, StringRef ModulePath, uint64_t ModuleId, 8009 std::function<bool(GlobalValue::GUID)> IsPrevailing) { 8010 BitstreamCursor Stream(Buffer); 8011 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 8012 return JumpFailed; 8013 8014 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex, 8015 ModulePath, ModuleId, IsPrevailing); 8016 return R.parseModule(); 8017 } 8018 8019 // Parse the specified bitcode buffer, returning the function info index. 8020 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() { 8021 BitstreamCursor Stream(Buffer); 8022 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 8023 return std::move(JumpFailed); 8024 8025 auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false); 8026 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index, 8027 ModuleIdentifier, 0); 8028 8029 if (Error Err = R.parseModule()) 8030 return std::move(Err); 8031 8032 return std::move(Index); 8033 } 8034 8035 static Expected<bool> getEnableSplitLTOUnitFlag(BitstreamCursor &Stream, 8036 unsigned ID) { 8037 if (Error Err = Stream.EnterSubBlock(ID)) 8038 return std::move(Err); 8039 SmallVector<uint64_t, 64> Record; 8040 8041 while (true) { 8042 BitstreamEntry Entry; 8043 if (Error E = Stream.advanceSkippingSubblocks().moveInto(Entry)) 8044 return std::move(E); 8045 8046 switch (Entry.Kind) { 8047 case BitstreamEntry::SubBlock: // Handled for us already. 8048 case BitstreamEntry::Error: 8049 return error("Malformed block"); 8050 case BitstreamEntry::EndBlock: 8051 // If no flags record found, conservatively return true to mimic 8052 // behavior before this flag was added. 8053 return true; 8054 case BitstreamEntry::Record: 8055 // The interesting case. 8056 break; 8057 } 8058 8059 // Look for the FS_FLAGS record. 8060 Record.clear(); 8061 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 8062 if (!MaybeBitCode) 8063 return MaybeBitCode.takeError(); 8064 switch (MaybeBitCode.get()) { 8065 default: // Default behavior: ignore. 8066 break; 8067 case bitc::FS_FLAGS: { // [flags] 8068 uint64_t Flags = Record[0]; 8069 // Scan flags. 8070 assert(Flags <= 0x1ff && "Unexpected bits in flag"); 8071 8072 return Flags & 0x8; 8073 } 8074 } 8075 } 8076 llvm_unreachable("Exit infinite loop"); 8077 } 8078 8079 // Check if the given bitcode buffer contains a global value summary block. 8080 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() { 8081 BitstreamCursor Stream(Buffer); 8082 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 8083 return std::move(JumpFailed); 8084 8085 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 8086 return std::move(Err); 8087 8088 while (true) { 8089 llvm::BitstreamEntry Entry; 8090 if (Error E = Stream.advance().moveInto(Entry)) 8091 return std::move(E); 8092 8093 switch (Entry.Kind) { 8094 case BitstreamEntry::Error: 8095 return error("Malformed block"); 8096 case BitstreamEntry::EndBlock: 8097 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false, 8098 /*EnableSplitLTOUnit=*/false}; 8099 8100 case BitstreamEntry::SubBlock: 8101 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) { 8102 Expected<bool> EnableSplitLTOUnit = 8103 getEnableSplitLTOUnitFlag(Stream, Entry.ID); 8104 if (!EnableSplitLTOUnit) 8105 return EnableSplitLTOUnit.takeError(); 8106 return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true, 8107 *EnableSplitLTOUnit}; 8108 } 8109 8110 if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) { 8111 Expected<bool> EnableSplitLTOUnit = 8112 getEnableSplitLTOUnitFlag(Stream, Entry.ID); 8113 if (!EnableSplitLTOUnit) 8114 return EnableSplitLTOUnit.takeError(); 8115 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true, 8116 *EnableSplitLTOUnit}; 8117 } 8118 8119 // Ignore other sub-blocks. 8120 if (Error Err = Stream.SkipBlock()) 8121 return std::move(Err); 8122 continue; 8123 8124 case BitstreamEntry::Record: 8125 if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID)) 8126 continue; 8127 else 8128 return StreamFailed.takeError(); 8129 } 8130 } 8131 } 8132 8133 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) { 8134 Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer); 8135 if (!MsOrErr) 8136 return MsOrErr.takeError(); 8137 8138 if (MsOrErr->size() != 1) 8139 return error("Expected a single module"); 8140 8141 return (*MsOrErr)[0]; 8142 } 8143 8144 Expected<std::unique_ptr<Module>> 8145 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context, 8146 bool ShouldLazyLoadMetadata, bool IsImporting, 8147 ParserCallbacks Callbacks) { 8148 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8149 if (!BM) 8150 return BM.takeError(); 8151 8152 return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting, 8153 Callbacks); 8154 } 8155 8156 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule( 8157 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context, 8158 bool ShouldLazyLoadMetadata, bool IsImporting, ParserCallbacks Callbacks) { 8159 auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata, 8160 IsImporting, Callbacks); 8161 if (MOrErr) 8162 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer)); 8163 return MOrErr; 8164 } 8165 8166 Expected<std::unique_ptr<Module>> 8167 BitcodeModule::parseModule(LLVMContext &Context, ParserCallbacks Callbacks) { 8168 return getModuleImpl(Context, true, false, false, Callbacks); 8169 // TODO: Restore the use-lists to the in-memory state when the bitcode was 8170 // written. We must defer until the Module has been fully materialized. 8171 } 8172 8173 Expected<std::unique_ptr<Module>> 8174 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context, 8175 ParserCallbacks Callbacks) { 8176 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8177 if (!BM) 8178 return BM.takeError(); 8179 8180 return BM->parseModule(Context, Callbacks); 8181 } 8182 8183 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) { 8184 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 8185 if (!StreamOrErr) 8186 return StreamOrErr.takeError(); 8187 8188 return readTriple(*StreamOrErr); 8189 } 8190 8191 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) { 8192 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 8193 if (!StreamOrErr) 8194 return StreamOrErr.takeError(); 8195 8196 return hasObjCCategory(*StreamOrErr); 8197 } 8198 8199 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) { 8200 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 8201 if (!StreamOrErr) 8202 return StreamOrErr.takeError(); 8203 8204 return readIdentificationCode(*StreamOrErr); 8205 } 8206 8207 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer, 8208 ModuleSummaryIndex &CombinedIndex, 8209 uint64_t ModuleId) { 8210 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8211 if (!BM) 8212 return BM.takeError(); 8213 8214 return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId); 8215 } 8216 8217 Expected<std::unique_ptr<ModuleSummaryIndex>> 8218 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) { 8219 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8220 if (!BM) 8221 return BM.takeError(); 8222 8223 return BM->getSummary(); 8224 } 8225 8226 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) { 8227 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8228 if (!BM) 8229 return BM.takeError(); 8230 8231 return BM->getLTOInfo(); 8232 } 8233 8234 Expected<std::unique_ptr<ModuleSummaryIndex>> 8235 llvm::getModuleSummaryIndexForFile(StringRef Path, 8236 bool IgnoreEmptyThinLTOIndexFile) { 8237 ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr = 8238 MemoryBuffer::getFileOrSTDIN(Path); 8239 if (!FileOrErr) 8240 return errorCodeToError(FileOrErr.getError()); 8241 if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize()) 8242 return nullptr; 8243 return getModuleSummaryIndex(**FileOrErr); 8244 } 8245