1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Bitcode/BitcodeReader.h" 10 #include "MetadataLoader.h" 11 #include "ValueList.h" 12 #include "llvm/ADT/APFloat.h" 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallString.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/ADT/StringRef.h" 20 #include "llvm/ADT/Twine.h" 21 #include "llvm/Bitcode/BitcodeCommon.h" 22 #include "llvm/Bitcode/LLVMBitCodes.h" 23 #include "llvm/Bitstream/BitstreamReader.h" 24 #include "llvm/Config/llvm-config.h" 25 #include "llvm/IR/Argument.h" 26 #include "llvm/IR/AttributeMask.h" 27 #include "llvm/IR/Attributes.h" 28 #include "llvm/IR/AutoUpgrade.h" 29 #include "llvm/IR/BasicBlock.h" 30 #include "llvm/IR/CallingConv.h" 31 #include "llvm/IR/Comdat.h" 32 #include "llvm/IR/Constant.h" 33 #include "llvm/IR/ConstantRangeList.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/DebugInfo.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GVMaterializer.h" 42 #include "llvm/IR/GetElementPtrTypeIterator.h" 43 #include "llvm/IR/GlobalAlias.h" 44 #include "llvm/IR/GlobalIFunc.h" 45 #include "llvm/IR/GlobalObject.h" 46 #include "llvm/IR/GlobalValue.h" 47 #include "llvm/IR/GlobalVariable.h" 48 #include "llvm/IR/InlineAsm.h" 49 #include "llvm/IR/InstIterator.h" 50 #include "llvm/IR/InstrTypes.h" 51 #include "llvm/IR/Instruction.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/IntrinsicsAArch64.h" 55 #include "llvm/IR/IntrinsicsARM.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/Metadata.h" 58 #include "llvm/IR/Module.h" 59 #include "llvm/IR/ModuleSummaryIndex.h" 60 #include "llvm/IR/Operator.h" 61 #include "llvm/IR/ProfDataUtils.h" 62 #include "llvm/IR/Type.h" 63 #include "llvm/IR/Value.h" 64 #include "llvm/IR/Verifier.h" 65 #include "llvm/Support/AtomicOrdering.h" 66 #include "llvm/Support/Casting.h" 67 #include "llvm/Support/CommandLine.h" 68 #include "llvm/Support/Compiler.h" 69 #include "llvm/Support/Debug.h" 70 #include "llvm/Support/Error.h" 71 #include "llvm/Support/ErrorHandling.h" 72 #include "llvm/Support/ErrorOr.h" 73 #include "llvm/Support/MathExtras.h" 74 #include "llvm/Support/MemoryBuffer.h" 75 #include "llvm/Support/ModRef.h" 76 #include "llvm/Support/raw_ostream.h" 77 #include "llvm/TargetParser/Triple.h" 78 #include <algorithm> 79 #include <cassert> 80 #include <cstddef> 81 #include <cstdint> 82 #include <deque> 83 #include <map> 84 #include <memory> 85 #include <optional> 86 #include <set> 87 #include <string> 88 #include <system_error> 89 #include <tuple> 90 #include <utility> 91 #include <vector> 92 93 using namespace llvm; 94 95 static cl::opt<bool> PrintSummaryGUIDs( 96 "print-summary-global-ids", cl::init(false), cl::Hidden, 97 cl::desc( 98 "Print the global id for each value when reading the module summary")); 99 100 static cl::opt<bool> ExpandConstantExprs( 101 "expand-constant-exprs", cl::Hidden, 102 cl::desc( 103 "Expand constant expressions to instructions for testing purposes")); 104 105 /// Load bitcode directly into RemoveDIs format (use debug records instead 106 /// of debug intrinsics). UNSET is treated as FALSE, so the default action 107 /// is to do nothing. Individual tools can override this to incrementally add 108 /// support for the RemoveDIs format. 109 cl::opt<cl::boolOrDefault> LoadBitcodeIntoNewDbgInfoFormat( 110 "load-bitcode-into-experimental-debuginfo-iterators", cl::Hidden, 111 cl::desc("Load bitcode directly into the new debug info format (regardless " 112 "of input format)")); 113 extern cl::opt<bool> UseNewDbgInfoFormat; 114 extern cl::opt<cl::boolOrDefault> PreserveInputDbgFormat; 115 extern bool WriteNewDbgInfoFormatToBitcode; 116 extern cl::opt<bool> WriteNewDbgInfoFormat; 117 118 namespace { 119 120 enum { 121 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 122 }; 123 124 } // end anonymous namespace 125 126 static Error error(const Twine &Message) { 127 return make_error<StringError>( 128 Message, make_error_code(BitcodeError::CorruptedBitcode)); 129 } 130 131 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) { 132 if (!Stream.canSkipToPos(4)) 133 return createStringError(std::errc::illegal_byte_sequence, 134 "file too small to contain bitcode header"); 135 for (unsigned C : {'B', 'C'}) 136 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) { 137 if (Res.get() != C) 138 return createStringError(std::errc::illegal_byte_sequence, 139 "file doesn't start with bitcode header"); 140 } else 141 return Res.takeError(); 142 for (unsigned C : {0x0, 0xC, 0xE, 0xD}) 143 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) { 144 if (Res.get() != C) 145 return createStringError(std::errc::illegal_byte_sequence, 146 "file doesn't start with bitcode header"); 147 } else 148 return Res.takeError(); 149 return Error::success(); 150 } 151 152 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) { 153 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart(); 154 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize(); 155 156 if (Buffer.getBufferSize() & 3) 157 return error("Invalid bitcode signature"); 158 159 // If we have a wrapper header, parse it and ignore the non-bc file contents. 160 // The magic number is 0x0B17C0DE stored in little endian. 161 if (isBitcodeWrapper(BufPtr, BufEnd)) 162 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 163 return error("Invalid bitcode wrapper header"); 164 165 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd)); 166 if (Error Err = hasInvalidBitcodeHeader(Stream)) 167 return std::move(Err); 168 169 return std::move(Stream); 170 } 171 172 /// Convert a string from a record into an std::string, return true on failure. 173 template <typename StrTy> 174 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 175 StrTy &Result) { 176 if (Idx > Record.size()) 177 return true; 178 179 Result.append(Record.begin() + Idx, Record.end()); 180 return false; 181 } 182 183 // Strip all the TBAA attachment for the module. 184 static void stripTBAA(Module *M) { 185 for (auto &F : *M) { 186 if (F.isMaterializable()) 187 continue; 188 for (auto &I : instructions(F)) 189 I.setMetadata(LLVMContext::MD_tbaa, nullptr); 190 } 191 } 192 193 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the 194 /// "epoch" encoded in the bitcode, and return the producer name if any. 195 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) { 196 if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 197 return std::move(Err); 198 199 // Read all the records. 200 SmallVector<uint64_t, 64> Record; 201 202 std::string ProducerIdentification; 203 204 while (true) { 205 BitstreamEntry Entry; 206 if (Error E = Stream.advance().moveInto(Entry)) 207 return std::move(E); 208 209 switch (Entry.Kind) { 210 default: 211 case BitstreamEntry::Error: 212 return error("Malformed block"); 213 case BitstreamEntry::EndBlock: 214 return ProducerIdentification; 215 case BitstreamEntry::Record: 216 // The interesting case. 217 break; 218 } 219 220 // Read a record. 221 Record.clear(); 222 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 223 if (!MaybeBitCode) 224 return MaybeBitCode.takeError(); 225 switch (MaybeBitCode.get()) { 226 default: // Default behavior: reject 227 return error("Invalid value"); 228 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N] 229 convertToString(Record, 0, ProducerIdentification); 230 break; 231 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 232 unsigned epoch = (unsigned)Record[0]; 233 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 234 return error( 235 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 236 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 237 } 238 } 239 } 240 } 241 } 242 243 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) { 244 // We expect a number of well-defined blocks, though we don't necessarily 245 // need to understand them all. 246 while (true) { 247 if (Stream.AtEndOfStream()) 248 return ""; 249 250 BitstreamEntry Entry; 251 if (Error E = Stream.advance().moveInto(Entry)) 252 return std::move(E); 253 254 switch (Entry.Kind) { 255 case BitstreamEntry::EndBlock: 256 case BitstreamEntry::Error: 257 return error("Malformed block"); 258 259 case BitstreamEntry::SubBlock: 260 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) 261 return readIdentificationBlock(Stream); 262 263 // Ignore other sub-blocks. 264 if (Error Err = Stream.SkipBlock()) 265 return std::move(Err); 266 continue; 267 case BitstreamEntry::Record: 268 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 269 return std::move(E); 270 continue; 271 } 272 } 273 } 274 275 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) { 276 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 277 return std::move(Err); 278 279 SmallVector<uint64_t, 64> Record; 280 // Read all the records for this module. 281 282 while (true) { 283 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 284 if (!MaybeEntry) 285 return MaybeEntry.takeError(); 286 BitstreamEntry Entry = MaybeEntry.get(); 287 288 switch (Entry.Kind) { 289 case BitstreamEntry::SubBlock: // Handled for us already. 290 case BitstreamEntry::Error: 291 return error("Malformed block"); 292 case BitstreamEntry::EndBlock: 293 return false; 294 case BitstreamEntry::Record: 295 // The interesting case. 296 break; 297 } 298 299 // Read a record. 300 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 301 if (!MaybeRecord) 302 return MaybeRecord.takeError(); 303 switch (MaybeRecord.get()) { 304 default: 305 break; // Default behavior, ignore unknown content. 306 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 307 std::string S; 308 if (convertToString(Record, 0, S)) 309 return error("Invalid section name record"); 310 // Check for the i386 and other (x86_64, ARM) conventions 311 if (S.find("__DATA,__objc_catlist") != std::string::npos || 312 S.find("__OBJC,__category") != std::string::npos || 313 S.find("__TEXT,__swift") != std::string::npos) 314 return true; 315 break; 316 } 317 } 318 Record.clear(); 319 } 320 llvm_unreachable("Exit infinite loop"); 321 } 322 323 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) { 324 // We expect a number of well-defined blocks, though we don't necessarily 325 // need to understand them all. 326 while (true) { 327 BitstreamEntry Entry; 328 if (Error E = Stream.advance().moveInto(Entry)) 329 return std::move(E); 330 331 switch (Entry.Kind) { 332 case BitstreamEntry::Error: 333 return error("Malformed block"); 334 case BitstreamEntry::EndBlock: 335 return false; 336 337 case BitstreamEntry::SubBlock: 338 if (Entry.ID == bitc::MODULE_BLOCK_ID) 339 return hasObjCCategoryInModule(Stream); 340 341 // Ignore other sub-blocks. 342 if (Error Err = Stream.SkipBlock()) 343 return std::move(Err); 344 continue; 345 346 case BitstreamEntry::Record: 347 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 348 return std::move(E); 349 continue; 350 } 351 } 352 } 353 354 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) { 355 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 356 return std::move(Err); 357 358 SmallVector<uint64_t, 64> Record; 359 360 std::string Triple; 361 362 // Read all the records for this module. 363 while (true) { 364 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 365 if (!MaybeEntry) 366 return MaybeEntry.takeError(); 367 BitstreamEntry Entry = MaybeEntry.get(); 368 369 switch (Entry.Kind) { 370 case BitstreamEntry::SubBlock: // Handled for us already. 371 case BitstreamEntry::Error: 372 return error("Malformed block"); 373 case BitstreamEntry::EndBlock: 374 return Triple; 375 case BitstreamEntry::Record: 376 // The interesting case. 377 break; 378 } 379 380 // Read a record. 381 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 382 if (!MaybeRecord) 383 return MaybeRecord.takeError(); 384 switch (MaybeRecord.get()) { 385 default: break; // Default behavior, ignore unknown content. 386 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 387 std::string S; 388 if (convertToString(Record, 0, S)) 389 return error("Invalid triple record"); 390 Triple = S; 391 break; 392 } 393 } 394 Record.clear(); 395 } 396 llvm_unreachable("Exit infinite loop"); 397 } 398 399 static Expected<std::string> readTriple(BitstreamCursor &Stream) { 400 // We expect a number of well-defined blocks, though we don't necessarily 401 // need to understand them all. 402 while (true) { 403 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 404 if (!MaybeEntry) 405 return MaybeEntry.takeError(); 406 BitstreamEntry Entry = MaybeEntry.get(); 407 408 switch (Entry.Kind) { 409 case BitstreamEntry::Error: 410 return error("Malformed block"); 411 case BitstreamEntry::EndBlock: 412 return ""; 413 414 case BitstreamEntry::SubBlock: 415 if (Entry.ID == bitc::MODULE_BLOCK_ID) 416 return readModuleTriple(Stream); 417 418 // Ignore other sub-blocks. 419 if (Error Err = Stream.SkipBlock()) 420 return std::move(Err); 421 continue; 422 423 case BitstreamEntry::Record: 424 if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 425 continue; 426 else 427 return Skipped.takeError(); 428 } 429 } 430 } 431 432 namespace { 433 434 class BitcodeReaderBase { 435 protected: 436 BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab) 437 : Stream(std::move(Stream)), Strtab(Strtab) { 438 this->Stream.setBlockInfo(&BlockInfo); 439 } 440 441 BitstreamBlockInfo BlockInfo; 442 BitstreamCursor Stream; 443 StringRef Strtab; 444 445 /// In version 2 of the bitcode we store names of global values and comdats in 446 /// a string table rather than in the VST. 447 bool UseStrtab = false; 448 449 Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record); 450 451 /// If this module uses a string table, pop the reference to the string table 452 /// and return the referenced string and the rest of the record. Otherwise 453 /// just return the record itself. 454 std::pair<StringRef, ArrayRef<uint64_t>> 455 readNameFromStrtab(ArrayRef<uint64_t> Record); 456 457 Error readBlockInfo(); 458 459 // Contains an arbitrary and optional string identifying the bitcode producer 460 std::string ProducerIdentification; 461 462 Error error(const Twine &Message); 463 }; 464 465 } // end anonymous namespace 466 467 Error BitcodeReaderBase::error(const Twine &Message) { 468 std::string FullMsg = Message.str(); 469 if (!ProducerIdentification.empty()) 470 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " + 471 LLVM_VERSION_STRING "')"; 472 return ::error(FullMsg); 473 } 474 475 Expected<unsigned> 476 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) { 477 if (Record.empty()) 478 return error("Invalid version record"); 479 unsigned ModuleVersion = Record[0]; 480 if (ModuleVersion > 2) 481 return error("Invalid value"); 482 UseStrtab = ModuleVersion >= 2; 483 return ModuleVersion; 484 } 485 486 std::pair<StringRef, ArrayRef<uint64_t>> 487 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) { 488 if (!UseStrtab) 489 return {"", Record}; 490 // Invalid reference. Let the caller complain about the record being empty. 491 if (Record[0] + Record[1] > Strtab.size()) 492 return {"", {}}; 493 return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)}; 494 } 495 496 namespace { 497 498 /// This represents a constant expression or constant aggregate using a custom 499 /// structure internal to the bitcode reader. Later, this structure will be 500 /// expanded by materializeValue() either into a constant expression/aggregate, 501 /// or into an instruction sequence at the point of use. This allows us to 502 /// upgrade bitcode using constant expressions even if this kind of constant 503 /// expression is no longer supported. 504 class BitcodeConstant final : public Value, 505 TrailingObjects<BitcodeConstant, unsigned> { 506 friend TrailingObjects; 507 508 // Value subclass ID: Pick largest possible value to avoid any clashes. 509 static constexpr uint8_t SubclassID = 255; 510 511 public: 512 // Opcodes used for non-expressions. This includes constant aggregates 513 // (struct, array, vector) that might need expansion, as well as non-leaf 514 // constants that don't need expansion (no_cfi, dso_local, blockaddress), 515 // but still go through BitcodeConstant to avoid different uselist orders 516 // between the two cases. 517 static constexpr uint8_t ConstantStructOpcode = 255; 518 static constexpr uint8_t ConstantArrayOpcode = 254; 519 static constexpr uint8_t ConstantVectorOpcode = 253; 520 static constexpr uint8_t NoCFIOpcode = 252; 521 static constexpr uint8_t DSOLocalEquivalentOpcode = 251; 522 static constexpr uint8_t BlockAddressOpcode = 250; 523 static constexpr uint8_t ConstantPtrAuthOpcode = 249; 524 static constexpr uint8_t FirstSpecialOpcode = ConstantPtrAuthOpcode; 525 526 // Separate struct to make passing different number of parameters to 527 // BitcodeConstant::create() more convenient. 528 struct ExtraInfo { 529 uint8_t Opcode; 530 uint8_t Flags; 531 unsigned BlockAddressBB = 0; 532 Type *SrcElemTy = nullptr; 533 std::optional<ConstantRange> InRange; 534 535 ExtraInfo(uint8_t Opcode, uint8_t Flags = 0, Type *SrcElemTy = nullptr, 536 std::optional<ConstantRange> InRange = std::nullopt) 537 : Opcode(Opcode), Flags(Flags), SrcElemTy(SrcElemTy), 538 InRange(std::move(InRange)) {} 539 540 ExtraInfo(uint8_t Opcode, uint8_t Flags, unsigned BlockAddressBB) 541 : Opcode(Opcode), Flags(Flags), BlockAddressBB(BlockAddressBB) {} 542 }; 543 544 uint8_t Opcode; 545 uint8_t Flags; 546 unsigned NumOperands; 547 unsigned BlockAddressBB; 548 Type *SrcElemTy; // GEP source element type. 549 std::optional<ConstantRange> InRange; // GEP inrange attribute. 550 551 private: 552 BitcodeConstant(Type *Ty, const ExtraInfo &Info, ArrayRef<unsigned> OpIDs) 553 : Value(Ty, SubclassID), Opcode(Info.Opcode), Flags(Info.Flags), 554 NumOperands(OpIDs.size()), BlockAddressBB(Info.BlockAddressBB), 555 SrcElemTy(Info.SrcElemTy), InRange(Info.InRange) { 556 std::uninitialized_copy(OpIDs.begin(), OpIDs.end(), 557 getTrailingObjects<unsigned>()); 558 } 559 560 BitcodeConstant &operator=(const BitcodeConstant &) = delete; 561 562 public: 563 static BitcodeConstant *create(BumpPtrAllocator &A, Type *Ty, 564 const ExtraInfo &Info, 565 ArrayRef<unsigned> OpIDs) { 566 void *Mem = A.Allocate(totalSizeToAlloc<unsigned>(OpIDs.size()), 567 alignof(BitcodeConstant)); 568 return new (Mem) BitcodeConstant(Ty, Info, OpIDs); 569 } 570 571 static bool classof(const Value *V) { return V->getValueID() == SubclassID; } 572 573 ArrayRef<unsigned> getOperandIDs() const { 574 return ArrayRef(getTrailingObjects<unsigned>(), NumOperands); 575 } 576 577 std::optional<ConstantRange> getInRange() const { 578 assert(Opcode == Instruction::GetElementPtr); 579 return InRange; 580 } 581 582 const char *getOpcodeName() const { 583 return Instruction::getOpcodeName(Opcode); 584 } 585 }; 586 587 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer { 588 LLVMContext &Context; 589 Module *TheModule = nullptr; 590 // Next offset to start scanning for lazy parsing of function bodies. 591 uint64_t NextUnreadBit = 0; 592 // Last function offset found in the VST. 593 uint64_t LastFunctionBlockBit = 0; 594 bool SeenValueSymbolTable = false; 595 uint64_t VSTOffset = 0; 596 597 std::vector<std::string> SectionTable; 598 std::vector<std::string> GCTable; 599 600 std::vector<Type *> TypeList; 601 /// Track type IDs of contained types. Order is the same as the contained 602 /// types of a Type*. This is used during upgrades of typed pointer IR in 603 /// opaque pointer mode. 604 DenseMap<unsigned, SmallVector<unsigned, 1>> ContainedTypeIDs; 605 /// In some cases, we need to create a type ID for a type that was not 606 /// explicitly encoded in the bitcode, or we don't know about at the current 607 /// point. For example, a global may explicitly encode the value type ID, but 608 /// not have a type ID for the pointer to value type, for which we create a 609 /// virtual type ID instead. This map stores the new type ID that was created 610 /// for the given pair of Type and contained type ID. 611 DenseMap<std::pair<Type *, unsigned>, unsigned> VirtualTypeIDs; 612 DenseMap<Function *, unsigned> FunctionTypeIDs; 613 /// Allocator for BitcodeConstants. This should come before ValueList, 614 /// because the ValueList might hold ValueHandles to these constants, so 615 /// ValueList must be destroyed before Alloc. 616 BumpPtrAllocator Alloc; 617 BitcodeReaderValueList ValueList; 618 std::optional<MetadataLoader> MDLoader; 619 std::vector<Comdat *> ComdatList; 620 DenseSet<GlobalObject *> ImplicitComdatObjects; 621 SmallVector<Instruction *, 64> InstructionList; 622 623 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits; 624 std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInits; 625 626 struct FunctionOperandInfo { 627 Function *F; 628 unsigned PersonalityFn; 629 unsigned Prefix; 630 unsigned Prologue; 631 }; 632 std::vector<FunctionOperandInfo> FunctionOperands; 633 634 /// The set of attributes by index. Index zero in the file is for null, and 635 /// is thus not represented here. As such all indices are off by one. 636 std::vector<AttributeList> MAttributes; 637 638 /// The set of attribute groups. 639 std::map<unsigned, AttributeList> MAttributeGroups; 640 641 /// While parsing a function body, this is a list of the basic blocks for the 642 /// function. 643 std::vector<BasicBlock*> FunctionBBs; 644 645 // When reading the module header, this list is populated with functions that 646 // have bodies later in the file. 647 std::vector<Function*> FunctionsWithBodies; 648 649 // When intrinsic functions are encountered which require upgrading they are 650 // stored here with their replacement function. 651 using UpdatedIntrinsicMap = DenseMap<Function *, Function *>; 652 UpdatedIntrinsicMap UpgradedIntrinsics; 653 654 // Several operations happen after the module header has been read, but 655 // before function bodies are processed. This keeps track of whether 656 // we've done this yet. 657 bool SeenFirstFunctionBody = false; 658 659 /// When function bodies are initially scanned, this map contains info about 660 /// where to find deferred function body in the stream. 661 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 662 663 /// When Metadata block is initially scanned when parsing the module, we may 664 /// choose to defer parsing of the metadata. This vector contains info about 665 /// which Metadata blocks are deferred. 666 std::vector<uint64_t> DeferredMetadataInfo; 667 668 /// These are basic blocks forward-referenced by block addresses. They are 669 /// inserted lazily into functions when they're loaded. The basic block ID is 670 /// its index into the vector. 671 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 672 std::deque<Function *> BasicBlockFwdRefQueue; 673 674 /// These are Functions that contain BlockAddresses which refer a different 675 /// Function. When parsing the different Function, queue Functions that refer 676 /// to the different Function. Those Functions must be materialized in order 677 /// to resolve their BlockAddress constants before the different Function 678 /// gets moved into another Module. 679 std::vector<Function *> BackwardRefFunctions; 680 681 /// Indicates that we are using a new encoding for instruction operands where 682 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 683 /// instruction number, for a more compact encoding. Some instruction 684 /// operands are not relative to the instruction ID: basic block numbers, and 685 /// types. Once the old style function blocks have been phased out, we would 686 /// not need this flag. 687 bool UseRelativeIDs = false; 688 689 /// True if all functions will be materialized, negating the need to process 690 /// (e.g.) blockaddress forward references. 691 bool WillMaterializeAllForwardRefs = false; 692 693 /// Tracks whether we have seen debug intrinsics or records in this bitcode; 694 /// seeing both in a single module is currently a fatal error. 695 bool SeenDebugIntrinsic = false; 696 bool SeenDebugRecord = false; 697 698 bool StripDebugInfo = false; 699 TBAAVerifier TBAAVerifyHelper; 700 701 std::vector<std::string> BundleTags; 702 SmallVector<SyncScope::ID, 8> SSIDs; 703 704 std::optional<ValueTypeCallbackTy> ValueTypeCallback; 705 706 public: 707 BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 708 StringRef ProducerIdentification, LLVMContext &Context); 709 710 Error materializeForwardReferencedFunctions(); 711 712 Error materialize(GlobalValue *GV) override; 713 Error materializeModule() override; 714 std::vector<StructType *> getIdentifiedStructTypes() const override; 715 716 /// Main interface to parsing a bitcode buffer. 717 /// \returns true if an error occurred. 718 Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 719 bool IsImporting, ParserCallbacks Callbacks = {}); 720 721 static uint64_t decodeSignRotatedValue(uint64_t V); 722 723 /// Materialize any deferred Metadata block. 724 Error materializeMetadata() override; 725 726 void setStripDebugInfo() override; 727 728 private: 729 std::vector<StructType *> IdentifiedStructTypes; 730 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 731 StructType *createIdentifiedStructType(LLVMContext &Context); 732 733 static constexpr unsigned InvalidTypeID = ~0u; 734 735 Type *getTypeByID(unsigned ID); 736 Type *getPtrElementTypeByID(unsigned ID); 737 unsigned getContainedTypeID(unsigned ID, unsigned Idx = 0); 738 unsigned getVirtualTypeID(Type *Ty, ArrayRef<unsigned> ContainedTypeIDs = {}); 739 740 void callValueTypeCallback(Value *F, unsigned TypeID); 741 Expected<Value *> materializeValue(unsigned ValID, BasicBlock *InsertBB); 742 Expected<Constant *> getValueForInitializer(unsigned ID); 743 744 Value *getFnValueByID(unsigned ID, Type *Ty, unsigned TyID, 745 BasicBlock *ConstExprInsertBB) { 746 if (Ty && Ty->isMetadataTy()) 747 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 748 return ValueList.getValueFwdRef(ID, Ty, TyID, ConstExprInsertBB); 749 } 750 751 Metadata *getFnMetadataByID(unsigned ID) { 752 return MDLoader->getMetadataFwdRefOrLoad(ID); 753 } 754 755 BasicBlock *getBasicBlock(unsigned ID) const { 756 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 757 return FunctionBBs[ID]; 758 } 759 760 AttributeList getAttributes(unsigned i) const { 761 if (i-1 < MAttributes.size()) 762 return MAttributes[i-1]; 763 return AttributeList(); 764 } 765 766 /// Read a value/type pair out of the specified record from slot 'Slot'. 767 /// Increment Slot past the number of slots used in the record. Return true on 768 /// failure. 769 bool getValueTypePair(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 770 unsigned InstNum, Value *&ResVal, unsigned &TypeID, 771 BasicBlock *ConstExprInsertBB) { 772 if (Slot == Record.size()) return true; 773 unsigned ValNo = (unsigned)Record[Slot++]; 774 // Adjust the ValNo, if it was encoded relative to the InstNum. 775 if (UseRelativeIDs) 776 ValNo = InstNum - ValNo; 777 if (ValNo < InstNum) { 778 // If this is not a forward reference, just return the value we already 779 // have. 780 TypeID = ValueList.getTypeID(ValNo); 781 ResVal = getFnValueByID(ValNo, nullptr, TypeID, ConstExprInsertBB); 782 assert((!ResVal || ResVal->getType() == getTypeByID(TypeID)) && 783 "Incorrect type ID stored for value"); 784 return ResVal == nullptr; 785 } 786 if (Slot == Record.size()) 787 return true; 788 789 TypeID = (unsigned)Record[Slot++]; 790 ResVal = getFnValueByID(ValNo, getTypeByID(TypeID), TypeID, 791 ConstExprInsertBB); 792 return ResVal == nullptr; 793 } 794 795 bool getValueOrMetadata(const SmallVectorImpl<uint64_t> &Record, 796 unsigned &Slot, unsigned InstNum, Value *&ResVal, 797 BasicBlock *ConstExprInsertBB) { 798 if (Slot == Record.size()) 799 return true; 800 unsigned ValID = Record[Slot++]; 801 if (ValID != bitc::OB_METADATA) { 802 unsigned TypeId; 803 return getValueTypePair(Record, --Slot, InstNum, ResVal, TypeId, 804 ConstExprInsertBB); 805 } 806 if (Slot == Record.size()) 807 return true; 808 unsigned ValNo = InstNum - (unsigned)Record[Slot++]; 809 ResVal = MetadataAsValue::get(Context, getFnMetadataByID(ValNo)); 810 return false; 811 } 812 813 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 814 /// past the number of slots used by the value in the record. Return true if 815 /// there is an error. 816 bool popValue(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 817 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal, 818 BasicBlock *ConstExprInsertBB) { 819 if (getValue(Record, Slot, InstNum, Ty, TyID, ResVal, ConstExprInsertBB)) 820 return true; 821 // All values currently take a single record slot. 822 ++Slot; 823 return false; 824 } 825 826 /// Like popValue, but does not increment the Slot number. 827 bool getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 828 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal, 829 BasicBlock *ConstExprInsertBB) { 830 ResVal = getValue(Record, Slot, InstNum, Ty, TyID, ConstExprInsertBB); 831 return ResVal == nullptr; 832 } 833 834 /// Version of getValue that returns ResVal directly, or 0 if there is an 835 /// error. 836 Value *getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 837 unsigned InstNum, Type *Ty, unsigned TyID, 838 BasicBlock *ConstExprInsertBB) { 839 if (Slot == Record.size()) return nullptr; 840 unsigned ValNo = (unsigned)Record[Slot]; 841 // Adjust the ValNo, if it was encoded relative to the InstNum. 842 if (UseRelativeIDs) 843 ValNo = InstNum - ValNo; 844 return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB); 845 } 846 847 /// Like getValue, but decodes signed VBRs. 848 Value *getValueSigned(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 849 unsigned InstNum, Type *Ty, unsigned TyID, 850 BasicBlock *ConstExprInsertBB) { 851 if (Slot == Record.size()) return nullptr; 852 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 853 // Adjust the ValNo, if it was encoded relative to the InstNum. 854 if (UseRelativeIDs) 855 ValNo = InstNum - ValNo; 856 return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB); 857 } 858 859 Expected<ConstantRange> readConstantRange(ArrayRef<uint64_t> Record, 860 unsigned &OpNum, 861 unsigned BitWidth) { 862 if (Record.size() - OpNum < 2) 863 return error("Too few records for range"); 864 if (BitWidth > 64) { 865 unsigned LowerActiveWords = Record[OpNum]; 866 unsigned UpperActiveWords = Record[OpNum++] >> 32; 867 if (Record.size() - OpNum < LowerActiveWords + UpperActiveWords) 868 return error("Too few records for range"); 869 APInt Lower = 870 readWideAPInt(ArrayRef(&Record[OpNum], LowerActiveWords), BitWidth); 871 OpNum += LowerActiveWords; 872 APInt Upper = 873 readWideAPInt(ArrayRef(&Record[OpNum], UpperActiveWords), BitWidth); 874 OpNum += UpperActiveWords; 875 return ConstantRange(Lower, Upper); 876 } else { 877 int64_t Start = BitcodeReader::decodeSignRotatedValue(Record[OpNum++]); 878 int64_t End = BitcodeReader::decodeSignRotatedValue(Record[OpNum++]); 879 return ConstantRange(APInt(BitWidth, Start), APInt(BitWidth, End)); 880 } 881 } 882 883 Expected<ConstantRange> 884 readBitWidthAndConstantRange(ArrayRef<uint64_t> Record, unsigned &OpNum) { 885 if (Record.size() - OpNum < 1) 886 return error("Too few records for range"); 887 unsigned BitWidth = Record[OpNum++]; 888 return readConstantRange(Record, OpNum, BitWidth); 889 } 890 891 /// Upgrades old-style typeless byval/sret/inalloca attributes by adding the 892 /// corresponding argument's pointee type. Also upgrades intrinsics that now 893 /// require an elementtype attribute. 894 Error propagateAttributeTypes(CallBase *CB, ArrayRef<unsigned> ArgsTys); 895 896 /// Converts alignment exponent (i.e. power of two (or zero)) to the 897 /// corresponding alignment to use. If alignment is too large, returns 898 /// a corresponding error code. 899 Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment); 900 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 901 Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false, 902 ParserCallbacks Callbacks = {}); 903 904 Error parseComdatRecord(ArrayRef<uint64_t> Record); 905 Error parseGlobalVarRecord(ArrayRef<uint64_t> Record); 906 Error parseFunctionRecord(ArrayRef<uint64_t> Record); 907 Error parseGlobalIndirectSymbolRecord(unsigned BitCode, 908 ArrayRef<uint64_t> Record); 909 910 Error parseAttributeBlock(); 911 Error parseAttributeGroupBlock(); 912 Error parseTypeTable(); 913 Error parseTypeTableBody(); 914 Error parseOperandBundleTags(); 915 Error parseSyncScopeNames(); 916 917 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 918 unsigned NameIndex, Triple &TT); 919 void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F, 920 ArrayRef<uint64_t> Record); 921 Error parseValueSymbolTable(uint64_t Offset = 0); 922 Error parseGlobalValueSymbolTable(); 923 Error parseConstants(); 924 Error rememberAndSkipFunctionBodies(); 925 Error rememberAndSkipFunctionBody(); 926 /// Save the positions of the Metadata blocks and skip parsing the blocks. 927 Error rememberAndSkipMetadata(); 928 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType); 929 Error parseFunctionBody(Function *F); 930 Error globalCleanup(); 931 Error resolveGlobalAndIndirectSymbolInits(); 932 Error parseUseLists(); 933 Error findFunctionInStream( 934 Function *F, 935 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 936 937 SyncScope::ID getDecodedSyncScopeID(unsigned Val); 938 }; 939 940 /// Class to manage reading and parsing function summary index bitcode 941 /// files/sections. 942 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase { 943 /// The module index built during parsing. 944 ModuleSummaryIndex &TheIndex; 945 946 /// Indicates whether we have encountered a global value summary section 947 /// yet during parsing. 948 bool SeenGlobalValSummary = false; 949 950 /// Indicates whether we have already parsed the VST, used for error checking. 951 bool SeenValueSymbolTable = false; 952 953 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 954 /// Used to enable on-demand parsing of the VST. 955 uint64_t VSTOffset = 0; 956 957 // Map to save ValueId to ValueInfo association that was recorded in the 958 // ValueSymbolTable. It is used after the VST is parsed to convert 959 // call graph edges read from the function summary from referencing 960 // callees by their ValueId to using the ValueInfo instead, which is how 961 // they are recorded in the summary index being built. 962 // We save a GUID which refers to the same global as the ValueInfo, but 963 // ignoring the linkage, i.e. for values other than local linkage they are 964 // identical (this is the second member). ValueInfo has the real GUID. 965 DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>> 966 ValueIdToValueInfoMap; 967 968 /// Map populated during module path string table parsing, from the 969 /// module ID to a string reference owned by the index's module 970 /// path string table, used to correlate with combined index 971 /// summary records. 972 DenseMap<uint64_t, StringRef> ModuleIdMap; 973 974 /// Original source file name recorded in a bitcode record. 975 std::string SourceFileName; 976 977 /// The string identifier given to this module by the client, normally the 978 /// path to the bitcode file. 979 StringRef ModulePath; 980 981 /// Callback to ask whether a symbol is the prevailing copy when invoked 982 /// during combined index building. 983 std::function<bool(GlobalValue::GUID)> IsPrevailing; 984 985 /// Saves the stack ids from the STACK_IDS record to consult when adding stack 986 /// ids from the lists in the callsite and alloc entries to the index. 987 std::vector<uint64_t> StackIds; 988 989 public: 990 ModuleSummaryIndexBitcodeReader( 991 BitstreamCursor Stream, StringRef Strtab, ModuleSummaryIndex &TheIndex, 992 StringRef ModulePath, 993 std::function<bool(GlobalValue::GUID)> IsPrevailing = nullptr); 994 995 Error parseModule(); 996 997 private: 998 void setValueGUID(uint64_t ValueID, StringRef ValueName, 999 GlobalValue::LinkageTypes Linkage, 1000 StringRef SourceFileName); 1001 Error parseValueSymbolTable( 1002 uint64_t Offset, 1003 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 1004 SmallVector<ValueInfo, 0> makeRefList(ArrayRef<uint64_t> Record); 1005 SmallVector<FunctionSummary::EdgeTy, 0> 1006 makeCallList(ArrayRef<uint64_t> Record, bool IsOldProfileFormat, 1007 bool HasProfile, bool HasRelBF); 1008 Error parseEntireSummary(unsigned ID); 1009 Error parseModuleStringTable(); 1010 void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record); 1011 void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot, 1012 TypeIdCompatibleVtableInfo &TypeId); 1013 std::vector<FunctionSummary::ParamAccess> 1014 parseParamAccesses(ArrayRef<uint64_t> Record); 1015 1016 template <bool AllowNullValueInfo = false> 1017 std::pair<ValueInfo, GlobalValue::GUID> 1018 getValueInfoFromValueId(unsigned ValueId); 1019 1020 void addThisModule(); 1021 ModuleSummaryIndex::ModuleInfo *getThisModule(); 1022 }; 1023 1024 } // end anonymous namespace 1025 1026 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx, 1027 Error Err) { 1028 if (Err) { 1029 std::error_code EC; 1030 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) { 1031 EC = EIB.convertToErrorCode(); 1032 Ctx.emitError(EIB.message()); 1033 }); 1034 return EC; 1035 } 1036 return std::error_code(); 1037 } 1038 1039 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 1040 StringRef ProducerIdentification, 1041 LLVMContext &Context) 1042 : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context), 1043 ValueList(this->Stream.SizeInBytes(), 1044 [this](unsigned ValID, BasicBlock *InsertBB) { 1045 return materializeValue(ValID, InsertBB); 1046 }) { 1047 this->ProducerIdentification = std::string(ProducerIdentification); 1048 } 1049 1050 Error BitcodeReader::materializeForwardReferencedFunctions() { 1051 if (WillMaterializeAllForwardRefs) 1052 return Error::success(); 1053 1054 // Prevent recursion. 1055 WillMaterializeAllForwardRefs = true; 1056 1057 while (!BasicBlockFwdRefQueue.empty()) { 1058 Function *F = BasicBlockFwdRefQueue.front(); 1059 BasicBlockFwdRefQueue.pop_front(); 1060 assert(F && "Expected valid function"); 1061 if (!BasicBlockFwdRefs.count(F)) 1062 // Already materialized. 1063 continue; 1064 1065 // Check for a function that isn't materializable to prevent an infinite 1066 // loop. When parsing a blockaddress stored in a global variable, there 1067 // isn't a trivial way to check if a function will have a body without a 1068 // linear search through FunctionsWithBodies, so just check it here. 1069 if (!F->isMaterializable()) 1070 return error("Never resolved function from blockaddress"); 1071 1072 // Try to materialize F. 1073 if (Error Err = materialize(F)) 1074 return Err; 1075 } 1076 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 1077 1078 for (Function *F : BackwardRefFunctions) 1079 if (Error Err = materialize(F)) 1080 return Err; 1081 BackwardRefFunctions.clear(); 1082 1083 // Reset state. 1084 WillMaterializeAllForwardRefs = false; 1085 return Error::success(); 1086 } 1087 1088 //===----------------------------------------------------------------------===// 1089 // Helper functions to implement forward reference resolution, etc. 1090 //===----------------------------------------------------------------------===// 1091 1092 static bool hasImplicitComdat(size_t Val) { 1093 switch (Val) { 1094 default: 1095 return false; 1096 case 1: // Old WeakAnyLinkage 1097 case 4: // Old LinkOnceAnyLinkage 1098 case 10: // Old WeakODRLinkage 1099 case 11: // Old LinkOnceODRLinkage 1100 return true; 1101 } 1102 } 1103 1104 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 1105 switch (Val) { 1106 default: // Map unknown/new linkages to external 1107 case 0: 1108 return GlobalValue::ExternalLinkage; 1109 case 2: 1110 return GlobalValue::AppendingLinkage; 1111 case 3: 1112 return GlobalValue::InternalLinkage; 1113 case 5: 1114 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 1115 case 6: 1116 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 1117 case 7: 1118 return GlobalValue::ExternalWeakLinkage; 1119 case 8: 1120 return GlobalValue::CommonLinkage; 1121 case 9: 1122 return GlobalValue::PrivateLinkage; 1123 case 12: 1124 return GlobalValue::AvailableExternallyLinkage; 1125 case 13: 1126 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 1127 case 14: 1128 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 1129 case 15: 1130 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 1131 case 1: // Old value with implicit comdat. 1132 case 16: 1133 return GlobalValue::WeakAnyLinkage; 1134 case 10: // Old value with implicit comdat. 1135 case 17: 1136 return GlobalValue::WeakODRLinkage; 1137 case 4: // Old value with implicit comdat. 1138 case 18: 1139 return GlobalValue::LinkOnceAnyLinkage; 1140 case 11: // Old value with implicit comdat. 1141 case 19: 1142 return GlobalValue::LinkOnceODRLinkage; 1143 } 1144 } 1145 1146 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) { 1147 FunctionSummary::FFlags Flags; 1148 Flags.ReadNone = RawFlags & 0x1; 1149 Flags.ReadOnly = (RawFlags >> 1) & 0x1; 1150 Flags.NoRecurse = (RawFlags >> 2) & 0x1; 1151 Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1; 1152 Flags.NoInline = (RawFlags >> 4) & 0x1; 1153 Flags.AlwaysInline = (RawFlags >> 5) & 0x1; 1154 Flags.NoUnwind = (RawFlags >> 6) & 0x1; 1155 Flags.MayThrow = (RawFlags >> 7) & 0x1; 1156 Flags.HasUnknownCall = (RawFlags >> 8) & 0x1; 1157 Flags.MustBeUnreachable = (RawFlags >> 9) & 0x1; 1158 return Flags; 1159 } 1160 1161 // Decode the flags for GlobalValue in the summary. The bits for each attribute: 1162 // 1163 // linkage: [0,4), notEligibleToImport: 4, live: 5, local: 6, canAutoHide: 7, 1164 // visibility: [8, 10). 1165 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 1166 uint64_t Version) { 1167 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 1168 // like getDecodedLinkage() above. Any future change to the linkage enum and 1169 // to getDecodedLinkage() will need to be taken into account here as above. 1170 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 1171 auto Visibility = GlobalValue::VisibilityTypes((RawFlags >> 8) & 3); // 2 bits 1172 auto IK = GlobalValueSummary::ImportKind((RawFlags >> 10) & 1); // 1 bit 1173 RawFlags = RawFlags >> 4; 1174 bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3; 1175 // The Live flag wasn't introduced until version 3. For dead stripping 1176 // to work correctly on earlier versions, we must conservatively treat all 1177 // values as live. 1178 bool Live = (RawFlags & 0x2) || Version < 3; 1179 bool Local = (RawFlags & 0x4); 1180 bool AutoHide = (RawFlags & 0x8); 1181 1182 return GlobalValueSummary::GVFlags(Linkage, Visibility, NotEligibleToImport, 1183 Live, Local, AutoHide, IK); 1184 } 1185 1186 // Decode the flags for GlobalVariable in the summary 1187 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) { 1188 return GlobalVarSummary::GVarFlags( 1189 (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false, 1190 (RawFlags & 0x4) ? true : false, 1191 (GlobalObject::VCallVisibility)(RawFlags >> 3)); 1192 } 1193 1194 static std::pair<CalleeInfo::HotnessType, bool> 1195 getDecodedHotnessCallEdgeInfo(uint64_t RawFlags) { 1196 CalleeInfo::HotnessType Hotness = 1197 static_cast<CalleeInfo::HotnessType>(RawFlags & 0x7); // 3 bits 1198 bool HasTailCall = (RawFlags & 0x8); // 1 bit 1199 return {Hotness, HasTailCall}; 1200 } 1201 1202 static void getDecodedRelBFCallEdgeInfo(uint64_t RawFlags, uint64_t &RelBF, 1203 bool &HasTailCall) { 1204 static constexpr uint64_t RelBlockFreqMask = 1205 (1 << CalleeInfo::RelBlockFreqBits) - 1; 1206 RelBF = RawFlags & RelBlockFreqMask; // RelBlockFreqBits bits 1207 HasTailCall = (RawFlags & (1 << CalleeInfo::RelBlockFreqBits)); // 1 bit 1208 } 1209 1210 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 1211 switch (Val) { 1212 default: // Map unknown visibilities to default. 1213 case 0: return GlobalValue::DefaultVisibility; 1214 case 1: return GlobalValue::HiddenVisibility; 1215 case 2: return GlobalValue::ProtectedVisibility; 1216 } 1217 } 1218 1219 static GlobalValue::DLLStorageClassTypes 1220 getDecodedDLLStorageClass(unsigned Val) { 1221 switch (Val) { 1222 default: // Map unknown values to default. 1223 case 0: return GlobalValue::DefaultStorageClass; 1224 case 1: return GlobalValue::DLLImportStorageClass; 1225 case 2: return GlobalValue::DLLExportStorageClass; 1226 } 1227 } 1228 1229 static bool getDecodedDSOLocal(unsigned Val) { 1230 switch(Val) { 1231 default: // Map unknown values to preemptable. 1232 case 0: return false; 1233 case 1: return true; 1234 } 1235 } 1236 1237 static std::optional<CodeModel::Model> getDecodedCodeModel(unsigned Val) { 1238 switch (Val) { 1239 case 1: 1240 return CodeModel::Tiny; 1241 case 2: 1242 return CodeModel::Small; 1243 case 3: 1244 return CodeModel::Kernel; 1245 case 4: 1246 return CodeModel::Medium; 1247 case 5: 1248 return CodeModel::Large; 1249 } 1250 1251 return {}; 1252 } 1253 1254 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 1255 switch (Val) { 1256 case 0: return GlobalVariable::NotThreadLocal; 1257 default: // Map unknown non-zero value to general dynamic. 1258 case 1: return GlobalVariable::GeneralDynamicTLSModel; 1259 case 2: return GlobalVariable::LocalDynamicTLSModel; 1260 case 3: return GlobalVariable::InitialExecTLSModel; 1261 case 4: return GlobalVariable::LocalExecTLSModel; 1262 } 1263 } 1264 1265 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { 1266 switch (Val) { 1267 default: // Map unknown to UnnamedAddr::None. 1268 case 0: return GlobalVariable::UnnamedAddr::None; 1269 case 1: return GlobalVariable::UnnamedAddr::Global; 1270 case 2: return GlobalVariable::UnnamedAddr::Local; 1271 } 1272 } 1273 1274 static int getDecodedCastOpcode(unsigned Val) { 1275 switch (Val) { 1276 default: return -1; 1277 case bitc::CAST_TRUNC : return Instruction::Trunc; 1278 case bitc::CAST_ZEXT : return Instruction::ZExt; 1279 case bitc::CAST_SEXT : return Instruction::SExt; 1280 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 1281 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 1282 case bitc::CAST_UITOFP : return Instruction::UIToFP; 1283 case bitc::CAST_SITOFP : return Instruction::SIToFP; 1284 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 1285 case bitc::CAST_FPEXT : return Instruction::FPExt; 1286 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 1287 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 1288 case bitc::CAST_BITCAST : return Instruction::BitCast; 1289 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 1290 } 1291 } 1292 1293 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) { 1294 bool IsFP = Ty->isFPOrFPVectorTy(); 1295 // UnOps are only valid for int/fp or vector of int/fp types 1296 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1297 return -1; 1298 1299 switch (Val) { 1300 default: 1301 return -1; 1302 case bitc::UNOP_FNEG: 1303 return IsFP ? Instruction::FNeg : -1; 1304 } 1305 } 1306 1307 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 1308 bool IsFP = Ty->isFPOrFPVectorTy(); 1309 // BinOps are only valid for int/fp or vector of int/fp types 1310 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1311 return -1; 1312 1313 switch (Val) { 1314 default: 1315 return -1; 1316 case bitc::BINOP_ADD: 1317 return IsFP ? Instruction::FAdd : Instruction::Add; 1318 case bitc::BINOP_SUB: 1319 return IsFP ? Instruction::FSub : Instruction::Sub; 1320 case bitc::BINOP_MUL: 1321 return IsFP ? Instruction::FMul : Instruction::Mul; 1322 case bitc::BINOP_UDIV: 1323 return IsFP ? -1 : Instruction::UDiv; 1324 case bitc::BINOP_SDIV: 1325 return IsFP ? Instruction::FDiv : Instruction::SDiv; 1326 case bitc::BINOP_UREM: 1327 return IsFP ? -1 : Instruction::URem; 1328 case bitc::BINOP_SREM: 1329 return IsFP ? Instruction::FRem : Instruction::SRem; 1330 case bitc::BINOP_SHL: 1331 return IsFP ? -1 : Instruction::Shl; 1332 case bitc::BINOP_LSHR: 1333 return IsFP ? -1 : Instruction::LShr; 1334 case bitc::BINOP_ASHR: 1335 return IsFP ? -1 : Instruction::AShr; 1336 case bitc::BINOP_AND: 1337 return IsFP ? -1 : Instruction::And; 1338 case bitc::BINOP_OR: 1339 return IsFP ? -1 : Instruction::Or; 1340 case bitc::BINOP_XOR: 1341 return IsFP ? -1 : Instruction::Xor; 1342 } 1343 } 1344 1345 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 1346 switch (Val) { 1347 default: return AtomicRMWInst::BAD_BINOP; 1348 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 1349 case bitc::RMW_ADD: return AtomicRMWInst::Add; 1350 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 1351 case bitc::RMW_AND: return AtomicRMWInst::And; 1352 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 1353 case bitc::RMW_OR: return AtomicRMWInst::Or; 1354 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 1355 case bitc::RMW_MAX: return AtomicRMWInst::Max; 1356 case bitc::RMW_MIN: return AtomicRMWInst::Min; 1357 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 1358 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 1359 case bitc::RMW_FADD: return AtomicRMWInst::FAdd; 1360 case bitc::RMW_FSUB: return AtomicRMWInst::FSub; 1361 case bitc::RMW_FMAX: return AtomicRMWInst::FMax; 1362 case bitc::RMW_FMIN: return AtomicRMWInst::FMin; 1363 case bitc::RMW_UINC_WRAP: 1364 return AtomicRMWInst::UIncWrap; 1365 case bitc::RMW_UDEC_WRAP: 1366 return AtomicRMWInst::UDecWrap; 1367 case bitc::RMW_USUB_COND: 1368 return AtomicRMWInst::USubCond; 1369 case bitc::RMW_USUB_SAT: 1370 return AtomicRMWInst::USubSat; 1371 } 1372 } 1373 1374 static AtomicOrdering getDecodedOrdering(unsigned Val) { 1375 switch (Val) { 1376 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 1377 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 1378 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 1379 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 1380 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 1381 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 1382 default: // Map unknown orderings to sequentially-consistent. 1383 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 1384 } 1385 } 1386 1387 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 1388 switch (Val) { 1389 default: // Map unknown selection kinds to any. 1390 case bitc::COMDAT_SELECTION_KIND_ANY: 1391 return Comdat::Any; 1392 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 1393 return Comdat::ExactMatch; 1394 case bitc::COMDAT_SELECTION_KIND_LARGEST: 1395 return Comdat::Largest; 1396 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 1397 return Comdat::NoDeduplicate; 1398 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 1399 return Comdat::SameSize; 1400 } 1401 } 1402 1403 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 1404 FastMathFlags FMF; 1405 if (0 != (Val & bitc::UnsafeAlgebra)) 1406 FMF.setFast(); 1407 if (0 != (Val & bitc::AllowReassoc)) 1408 FMF.setAllowReassoc(); 1409 if (0 != (Val & bitc::NoNaNs)) 1410 FMF.setNoNaNs(); 1411 if (0 != (Val & bitc::NoInfs)) 1412 FMF.setNoInfs(); 1413 if (0 != (Val & bitc::NoSignedZeros)) 1414 FMF.setNoSignedZeros(); 1415 if (0 != (Val & bitc::AllowReciprocal)) 1416 FMF.setAllowReciprocal(); 1417 if (0 != (Val & bitc::AllowContract)) 1418 FMF.setAllowContract(true); 1419 if (0 != (Val & bitc::ApproxFunc)) 1420 FMF.setApproxFunc(); 1421 return FMF; 1422 } 1423 1424 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) { 1425 // A GlobalValue with local linkage cannot have a DLL storage class. 1426 if (GV->hasLocalLinkage()) 1427 return; 1428 switch (Val) { 1429 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 1430 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 1431 } 1432 } 1433 1434 Type *BitcodeReader::getTypeByID(unsigned ID) { 1435 // The type table size is always specified correctly. 1436 if (ID >= TypeList.size()) 1437 return nullptr; 1438 1439 if (Type *Ty = TypeList[ID]) 1440 return Ty; 1441 1442 // If we have a forward reference, the only possible case is when it is to a 1443 // named struct. Just create a placeholder for now. 1444 return TypeList[ID] = createIdentifiedStructType(Context); 1445 } 1446 1447 unsigned BitcodeReader::getContainedTypeID(unsigned ID, unsigned Idx) { 1448 auto It = ContainedTypeIDs.find(ID); 1449 if (It == ContainedTypeIDs.end()) 1450 return InvalidTypeID; 1451 1452 if (Idx >= It->second.size()) 1453 return InvalidTypeID; 1454 1455 return It->second[Idx]; 1456 } 1457 1458 Type *BitcodeReader::getPtrElementTypeByID(unsigned ID) { 1459 if (ID >= TypeList.size()) 1460 return nullptr; 1461 1462 Type *Ty = TypeList[ID]; 1463 if (!Ty->isPointerTy()) 1464 return nullptr; 1465 1466 return getTypeByID(getContainedTypeID(ID, 0)); 1467 } 1468 1469 unsigned BitcodeReader::getVirtualTypeID(Type *Ty, 1470 ArrayRef<unsigned> ChildTypeIDs) { 1471 unsigned ChildTypeID = ChildTypeIDs.empty() ? InvalidTypeID : ChildTypeIDs[0]; 1472 auto CacheKey = std::make_pair(Ty, ChildTypeID); 1473 auto It = VirtualTypeIDs.find(CacheKey); 1474 if (It != VirtualTypeIDs.end()) { 1475 // The cmpxchg return value is the only place we need more than one 1476 // contained type ID, however the second one will always be the same (i1), 1477 // so we don't need to include it in the cache key. This asserts that the 1478 // contained types are indeed as expected and there are no collisions. 1479 assert((ChildTypeIDs.empty() || 1480 ContainedTypeIDs[It->second] == ChildTypeIDs) && 1481 "Incorrect cached contained type IDs"); 1482 return It->second; 1483 } 1484 1485 unsigned TypeID = TypeList.size(); 1486 TypeList.push_back(Ty); 1487 if (!ChildTypeIDs.empty()) 1488 append_range(ContainedTypeIDs[TypeID], ChildTypeIDs); 1489 VirtualTypeIDs.insert({CacheKey, TypeID}); 1490 return TypeID; 1491 } 1492 1493 static GEPNoWrapFlags toGEPNoWrapFlags(uint64_t Flags) { 1494 GEPNoWrapFlags NW; 1495 if (Flags & (1 << bitc::GEP_INBOUNDS)) 1496 NW |= GEPNoWrapFlags::inBounds(); 1497 if (Flags & (1 << bitc::GEP_NUSW)) 1498 NW |= GEPNoWrapFlags::noUnsignedSignedWrap(); 1499 if (Flags & (1 << bitc::GEP_NUW)) 1500 NW |= GEPNoWrapFlags::noUnsignedWrap(); 1501 return NW; 1502 } 1503 1504 static bool isConstExprSupported(const BitcodeConstant *BC) { 1505 uint8_t Opcode = BC->Opcode; 1506 1507 // These are not real constant expressions, always consider them supported. 1508 if (Opcode >= BitcodeConstant::FirstSpecialOpcode) 1509 return true; 1510 1511 // If -expand-constant-exprs is set, we want to consider all expressions 1512 // as unsupported. 1513 if (ExpandConstantExprs) 1514 return false; 1515 1516 if (Instruction::isBinaryOp(Opcode)) 1517 return ConstantExpr::isSupportedBinOp(Opcode); 1518 1519 if (Instruction::isCast(Opcode)) 1520 return ConstantExpr::isSupportedCastOp(Opcode); 1521 1522 if (Opcode == Instruction::GetElementPtr) 1523 return ConstantExpr::isSupportedGetElementPtr(BC->SrcElemTy); 1524 1525 switch (Opcode) { 1526 case Instruction::FNeg: 1527 case Instruction::Select: 1528 case Instruction::ICmp: 1529 case Instruction::FCmp: 1530 return false; 1531 default: 1532 return true; 1533 } 1534 } 1535 1536 Expected<Value *> BitcodeReader::materializeValue(unsigned StartValID, 1537 BasicBlock *InsertBB) { 1538 // Quickly handle the case where there is no BitcodeConstant to resolve. 1539 if (StartValID < ValueList.size() && ValueList[StartValID] && 1540 !isa<BitcodeConstant>(ValueList[StartValID])) 1541 return ValueList[StartValID]; 1542 1543 SmallDenseMap<unsigned, Value *> MaterializedValues; 1544 SmallVector<unsigned> Worklist; 1545 Worklist.push_back(StartValID); 1546 while (!Worklist.empty()) { 1547 unsigned ValID = Worklist.back(); 1548 if (MaterializedValues.count(ValID)) { 1549 // Duplicate expression that was already handled. 1550 Worklist.pop_back(); 1551 continue; 1552 } 1553 1554 if (ValID >= ValueList.size() || !ValueList[ValID]) 1555 return error("Invalid value ID"); 1556 1557 Value *V = ValueList[ValID]; 1558 auto *BC = dyn_cast<BitcodeConstant>(V); 1559 if (!BC) { 1560 MaterializedValues.insert({ValID, V}); 1561 Worklist.pop_back(); 1562 continue; 1563 } 1564 1565 // Iterate in reverse, so values will get popped from the worklist in 1566 // expected order. 1567 SmallVector<Value *> Ops; 1568 for (unsigned OpID : reverse(BC->getOperandIDs())) { 1569 auto It = MaterializedValues.find(OpID); 1570 if (It != MaterializedValues.end()) 1571 Ops.push_back(It->second); 1572 else 1573 Worklist.push_back(OpID); 1574 } 1575 1576 // Some expressions have not been resolved yet, handle them first and then 1577 // revisit this one. 1578 if (Ops.size() != BC->getOperandIDs().size()) 1579 continue; 1580 std::reverse(Ops.begin(), Ops.end()); 1581 1582 SmallVector<Constant *> ConstOps; 1583 for (Value *Op : Ops) 1584 if (auto *C = dyn_cast<Constant>(Op)) 1585 ConstOps.push_back(C); 1586 1587 // Materialize as constant expression if possible. 1588 if (isConstExprSupported(BC) && ConstOps.size() == Ops.size()) { 1589 Constant *C; 1590 if (Instruction::isCast(BC->Opcode)) { 1591 C = UpgradeBitCastExpr(BC->Opcode, ConstOps[0], BC->getType()); 1592 if (!C) 1593 C = ConstantExpr::getCast(BC->Opcode, ConstOps[0], BC->getType()); 1594 } else if (Instruction::isBinaryOp(BC->Opcode)) { 1595 C = ConstantExpr::get(BC->Opcode, ConstOps[0], ConstOps[1], BC->Flags); 1596 } else { 1597 switch (BC->Opcode) { 1598 case BitcodeConstant::ConstantPtrAuthOpcode: { 1599 auto *Key = dyn_cast<ConstantInt>(ConstOps[1]); 1600 if (!Key) 1601 return error("ptrauth key operand must be ConstantInt"); 1602 1603 auto *Disc = dyn_cast<ConstantInt>(ConstOps[2]); 1604 if (!Disc) 1605 return error("ptrauth disc operand must be ConstantInt"); 1606 1607 C = ConstantPtrAuth::get(ConstOps[0], Key, Disc, ConstOps[3]); 1608 break; 1609 } 1610 case BitcodeConstant::NoCFIOpcode: { 1611 auto *GV = dyn_cast<GlobalValue>(ConstOps[0]); 1612 if (!GV) 1613 return error("no_cfi operand must be GlobalValue"); 1614 C = NoCFIValue::get(GV); 1615 break; 1616 } 1617 case BitcodeConstant::DSOLocalEquivalentOpcode: { 1618 auto *GV = dyn_cast<GlobalValue>(ConstOps[0]); 1619 if (!GV) 1620 return error("dso_local operand must be GlobalValue"); 1621 C = DSOLocalEquivalent::get(GV); 1622 break; 1623 } 1624 case BitcodeConstant::BlockAddressOpcode: { 1625 Function *Fn = dyn_cast<Function>(ConstOps[0]); 1626 if (!Fn) 1627 return error("blockaddress operand must be a function"); 1628 1629 // If the function is already parsed we can insert the block address 1630 // right away. 1631 BasicBlock *BB; 1632 unsigned BBID = BC->BlockAddressBB; 1633 if (!BBID) 1634 // Invalid reference to entry block. 1635 return error("Invalid ID"); 1636 if (!Fn->empty()) { 1637 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 1638 for (size_t I = 0, E = BBID; I != E; ++I) { 1639 if (BBI == BBE) 1640 return error("Invalid ID"); 1641 ++BBI; 1642 } 1643 BB = &*BBI; 1644 } else { 1645 // Otherwise insert a placeholder and remember it so it can be 1646 // inserted when the function is parsed. 1647 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 1648 if (FwdBBs.empty()) 1649 BasicBlockFwdRefQueue.push_back(Fn); 1650 if (FwdBBs.size() < BBID + 1) 1651 FwdBBs.resize(BBID + 1); 1652 if (!FwdBBs[BBID]) 1653 FwdBBs[BBID] = BasicBlock::Create(Context); 1654 BB = FwdBBs[BBID]; 1655 } 1656 C = BlockAddress::get(Fn, BB); 1657 break; 1658 } 1659 case BitcodeConstant::ConstantStructOpcode: 1660 C = ConstantStruct::get(cast<StructType>(BC->getType()), ConstOps); 1661 break; 1662 case BitcodeConstant::ConstantArrayOpcode: 1663 C = ConstantArray::get(cast<ArrayType>(BC->getType()), ConstOps); 1664 break; 1665 case BitcodeConstant::ConstantVectorOpcode: 1666 C = ConstantVector::get(ConstOps); 1667 break; 1668 case Instruction::GetElementPtr: 1669 C = ConstantExpr::getGetElementPtr( 1670 BC->SrcElemTy, ConstOps[0], ArrayRef(ConstOps).drop_front(), 1671 toGEPNoWrapFlags(BC->Flags), BC->getInRange()); 1672 break; 1673 case Instruction::ExtractElement: 1674 C = ConstantExpr::getExtractElement(ConstOps[0], ConstOps[1]); 1675 break; 1676 case Instruction::InsertElement: 1677 C = ConstantExpr::getInsertElement(ConstOps[0], ConstOps[1], 1678 ConstOps[2]); 1679 break; 1680 case Instruction::ShuffleVector: { 1681 SmallVector<int, 16> Mask; 1682 ShuffleVectorInst::getShuffleMask(ConstOps[2], Mask); 1683 C = ConstantExpr::getShuffleVector(ConstOps[0], ConstOps[1], Mask); 1684 break; 1685 } 1686 default: 1687 llvm_unreachable("Unhandled bitcode constant"); 1688 } 1689 } 1690 1691 // Cache resolved constant. 1692 ValueList.replaceValueWithoutRAUW(ValID, C); 1693 MaterializedValues.insert({ValID, C}); 1694 Worklist.pop_back(); 1695 continue; 1696 } 1697 1698 if (!InsertBB) 1699 return error(Twine("Value referenced by initializer is an unsupported " 1700 "constant expression of type ") + 1701 BC->getOpcodeName()); 1702 1703 // Materialize as instructions if necessary. 1704 Instruction *I; 1705 if (Instruction::isCast(BC->Opcode)) { 1706 I = CastInst::Create((Instruction::CastOps)BC->Opcode, Ops[0], 1707 BC->getType(), "constexpr", InsertBB); 1708 } else if (Instruction::isUnaryOp(BC->Opcode)) { 1709 I = UnaryOperator::Create((Instruction::UnaryOps)BC->Opcode, Ops[0], 1710 "constexpr", InsertBB); 1711 } else if (Instruction::isBinaryOp(BC->Opcode)) { 1712 I = BinaryOperator::Create((Instruction::BinaryOps)BC->Opcode, Ops[0], 1713 Ops[1], "constexpr", InsertBB); 1714 if (isa<OverflowingBinaryOperator>(I)) { 1715 if (BC->Flags & OverflowingBinaryOperator::NoSignedWrap) 1716 I->setHasNoSignedWrap(); 1717 if (BC->Flags & OverflowingBinaryOperator::NoUnsignedWrap) 1718 I->setHasNoUnsignedWrap(); 1719 } 1720 if (isa<PossiblyExactOperator>(I) && 1721 (BC->Flags & PossiblyExactOperator::IsExact)) 1722 I->setIsExact(); 1723 } else { 1724 switch (BC->Opcode) { 1725 case BitcodeConstant::ConstantVectorOpcode: { 1726 Type *IdxTy = Type::getInt32Ty(BC->getContext()); 1727 Value *V = PoisonValue::get(BC->getType()); 1728 for (auto Pair : enumerate(Ops)) { 1729 Value *Idx = ConstantInt::get(IdxTy, Pair.index()); 1730 V = InsertElementInst::Create(V, Pair.value(), Idx, "constexpr.ins", 1731 InsertBB); 1732 } 1733 I = cast<Instruction>(V); 1734 break; 1735 } 1736 case BitcodeConstant::ConstantStructOpcode: 1737 case BitcodeConstant::ConstantArrayOpcode: { 1738 Value *V = PoisonValue::get(BC->getType()); 1739 for (auto Pair : enumerate(Ops)) 1740 V = InsertValueInst::Create(V, Pair.value(), Pair.index(), 1741 "constexpr.ins", InsertBB); 1742 I = cast<Instruction>(V); 1743 break; 1744 } 1745 case Instruction::ICmp: 1746 case Instruction::FCmp: 1747 I = CmpInst::Create((Instruction::OtherOps)BC->Opcode, 1748 (CmpInst::Predicate)BC->Flags, Ops[0], Ops[1], 1749 "constexpr", InsertBB); 1750 break; 1751 case Instruction::GetElementPtr: 1752 I = GetElementPtrInst::Create(BC->SrcElemTy, Ops[0], 1753 ArrayRef(Ops).drop_front(), "constexpr", 1754 InsertBB); 1755 cast<GetElementPtrInst>(I)->setNoWrapFlags(toGEPNoWrapFlags(BC->Flags)); 1756 break; 1757 case Instruction::Select: 1758 I = SelectInst::Create(Ops[0], Ops[1], Ops[2], "constexpr", InsertBB); 1759 break; 1760 case Instruction::ExtractElement: 1761 I = ExtractElementInst::Create(Ops[0], Ops[1], "constexpr", InsertBB); 1762 break; 1763 case Instruction::InsertElement: 1764 I = InsertElementInst::Create(Ops[0], Ops[1], Ops[2], "constexpr", 1765 InsertBB); 1766 break; 1767 case Instruction::ShuffleVector: 1768 I = new ShuffleVectorInst(Ops[0], Ops[1], Ops[2], "constexpr", 1769 InsertBB); 1770 break; 1771 default: 1772 llvm_unreachable("Unhandled bitcode constant"); 1773 } 1774 } 1775 1776 MaterializedValues.insert({ValID, I}); 1777 Worklist.pop_back(); 1778 } 1779 1780 return MaterializedValues[StartValID]; 1781 } 1782 1783 Expected<Constant *> BitcodeReader::getValueForInitializer(unsigned ID) { 1784 Expected<Value *> MaybeV = materializeValue(ID, /* InsertBB */ nullptr); 1785 if (!MaybeV) 1786 return MaybeV.takeError(); 1787 1788 // Result must be Constant if InsertBB is nullptr. 1789 return cast<Constant>(MaybeV.get()); 1790 } 1791 1792 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1793 StringRef Name) { 1794 auto *Ret = StructType::create(Context, Name); 1795 IdentifiedStructTypes.push_back(Ret); 1796 return Ret; 1797 } 1798 1799 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1800 auto *Ret = StructType::create(Context); 1801 IdentifiedStructTypes.push_back(Ret); 1802 return Ret; 1803 } 1804 1805 //===----------------------------------------------------------------------===// 1806 // Functions for parsing blocks from the bitcode file 1807 //===----------------------------------------------------------------------===// 1808 1809 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) { 1810 switch (Val) { 1811 case Attribute::EndAttrKinds: 1812 case Attribute::EmptyKey: 1813 case Attribute::TombstoneKey: 1814 llvm_unreachable("Synthetic enumerators which should never get here"); 1815 1816 case Attribute::None: return 0; 1817 case Attribute::ZExt: return 1 << 0; 1818 case Attribute::SExt: return 1 << 1; 1819 case Attribute::NoReturn: return 1 << 2; 1820 case Attribute::InReg: return 1 << 3; 1821 case Attribute::StructRet: return 1 << 4; 1822 case Attribute::NoUnwind: return 1 << 5; 1823 case Attribute::NoAlias: return 1 << 6; 1824 case Attribute::ByVal: return 1 << 7; 1825 case Attribute::Nest: return 1 << 8; 1826 case Attribute::ReadNone: return 1 << 9; 1827 case Attribute::ReadOnly: return 1 << 10; 1828 case Attribute::NoInline: return 1 << 11; 1829 case Attribute::AlwaysInline: return 1 << 12; 1830 case Attribute::OptimizeForSize: return 1 << 13; 1831 case Attribute::StackProtect: return 1 << 14; 1832 case Attribute::StackProtectReq: return 1 << 15; 1833 case Attribute::Alignment: return 31 << 16; 1834 case Attribute::NoCapture: return 1 << 21; 1835 case Attribute::NoRedZone: return 1 << 22; 1836 case Attribute::NoImplicitFloat: return 1 << 23; 1837 case Attribute::Naked: return 1 << 24; 1838 case Attribute::InlineHint: return 1 << 25; 1839 case Attribute::StackAlignment: return 7 << 26; 1840 case Attribute::ReturnsTwice: return 1 << 29; 1841 case Attribute::UWTable: return 1 << 30; 1842 case Attribute::NonLazyBind: return 1U << 31; 1843 case Attribute::SanitizeAddress: return 1ULL << 32; 1844 case Attribute::MinSize: return 1ULL << 33; 1845 case Attribute::NoDuplicate: return 1ULL << 34; 1846 case Attribute::StackProtectStrong: return 1ULL << 35; 1847 case Attribute::SanitizeThread: return 1ULL << 36; 1848 case Attribute::SanitizeMemory: return 1ULL << 37; 1849 case Attribute::NoBuiltin: return 1ULL << 38; 1850 case Attribute::Returned: return 1ULL << 39; 1851 case Attribute::Cold: return 1ULL << 40; 1852 case Attribute::Builtin: return 1ULL << 41; 1853 case Attribute::OptimizeNone: return 1ULL << 42; 1854 case Attribute::InAlloca: return 1ULL << 43; 1855 case Attribute::NonNull: return 1ULL << 44; 1856 case Attribute::JumpTable: return 1ULL << 45; 1857 case Attribute::Convergent: return 1ULL << 46; 1858 case Attribute::SafeStack: return 1ULL << 47; 1859 case Attribute::NoRecurse: return 1ULL << 48; 1860 // 1ULL << 49 is InaccessibleMemOnly, which is upgraded separately. 1861 // 1ULL << 50 is InaccessibleMemOrArgMemOnly, which is upgraded separately. 1862 case Attribute::SwiftSelf: return 1ULL << 51; 1863 case Attribute::SwiftError: return 1ULL << 52; 1864 case Attribute::WriteOnly: return 1ULL << 53; 1865 case Attribute::Speculatable: return 1ULL << 54; 1866 case Attribute::StrictFP: return 1ULL << 55; 1867 case Attribute::SanitizeHWAddress: return 1ULL << 56; 1868 case Attribute::NoCfCheck: return 1ULL << 57; 1869 case Attribute::OptForFuzzing: return 1ULL << 58; 1870 case Attribute::ShadowCallStack: return 1ULL << 59; 1871 case Attribute::SpeculativeLoadHardening: 1872 return 1ULL << 60; 1873 case Attribute::ImmArg: 1874 return 1ULL << 61; 1875 case Attribute::WillReturn: 1876 return 1ULL << 62; 1877 case Attribute::NoFree: 1878 return 1ULL << 63; 1879 default: 1880 // Other attributes are not supported in the raw format, 1881 // as we ran out of space. 1882 return 0; 1883 } 1884 llvm_unreachable("Unsupported attribute type"); 1885 } 1886 1887 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) { 1888 if (!Val) return; 1889 1890 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; 1891 I = Attribute::AttrKind(I + 1)) { 1892 if (uint64_t A = (Val & getRawAttributeMask(I))) { 1893 if (I == Attribute::Alignment) 1894 B.addAlignmentAttr(1ULL << ((A >> 16) - 1)); 1895 else if (I == Attribute::StackAlignment) 1896 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1)); 1897 else if (Attribute::isTypeAttrKind(I)) 1898 B.addTypeAttr(I, nullptr); // Type will be auto-upgraded. 1899 else 1900 B.addAttribute(I); 1901 } 1902 } 1903 } 1904 1905 /// This fills an AttrBuilder object with the LLVM attributes that have 1906 /// been decoded from the given integer. This function must stay in sync with 1907 /// 'encodeLLVMAttributesForBitcode'. 1908 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1909 uint64_t EncodedAttrs, 1910 uint64_t AttrIdx) { 1911 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1912 // the bits above 31 down by 11 bits. 1913 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1914 assert((!Alignment || isPowerOf2_32(Alignment)) && 1915 "Alignment must be a power of two."); 1916 1917 if (Alignment) 1918 B.addAlignmentAttr(Alignment); 1919 1920 uint64_t Attrs = ((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1921 (EncodedAttrs & 0xffff); 1922 1923 if (AttrIdx == AttributeList::FunctionIndex) { 1924 // Upgrade old memory attributes. 1925 MemoryEffects ME = MemoryEffects::unknown(); 1926 if (Attrs & (1ULL << 9)) { 1927 // ReadNone 1928 Attrs &= ~(1ULL << 9); 1929 ME &= MemoryEffects::none(); 1930 } 1931 if (Attrs & (1ULL << 10)) { 1932 // ReadOnly 1933 Attrs &= ~(1ULL << 10); 1934 ME &= MemoryEffects::readOnly(); 1935 } 1936 if (Attrs & (1ULL << 49)) { 1937 // InaccessibleMemOnly 1938 Attrs &= ~(1ULL << 49); 1939 ME &= MemoryEffects::inaccessibleMemOnly(); 1940 } 1941 if (Attrs & (1ULL << 50)) { 1942 // InaccessibleMemOrArgMemOnly 1943 Attrs &= ~(1ULL << 50); 1944 ME &= MemoryEffects::inaccessibleOrArgMemOnly(); 1945 } 1946 if (Attrs & (1ULL << 53)) { 1947 // WriteOnly 1948 Attrs &= ~(1ULL << 53); 1949 ME &= MemoryEffects::writeOnly(); 1950 } 1951 if (ME != MemoryEffects::unknown()) 1952 B.addMemoryAttr(ME); 1953 } 1954 1955 addRawAttributeValue(B, Attrs); 1956 } 1957 1958 Error BitcodeReader::parseAttributeBlock() { 1959 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1960 return Err; 1961 1962 if (!MAttributes.empty()) 1963 return error("Invalid multiple blocks"); 1964 1965 SmallVector<uint64_t, 64> Record; 1966 1967 SmallVector<AttributeList, 8> Attrs; 1968 1969 // Read all the records. 1970 while (true) { 1971 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1972 if (!MaybeEntry) 1973 return MaybeEntry.takeError(); 1974 BitstreamEntry Entry = MaybeEntry.get(); 1975 1976 switch (Entry.Kind) { 1977 case BitstreamEntry::SubBlock: // Handled for us already. 1978 case BitstreamEntry::Error: 1979 return error("Malformed block"); 1980 case BitstreamEntry::EndBlock: 1981 return Error::success(); 1982 case BitstreamEntry::Record: 1983 // The interesting case. 1984 break; 1985 } 1986 1987 // Read a record. 1988 Record.clear(); 1989 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1990 if (!MaybeRecord) 1991 return MaybeRecord.takeError(); 1992 switch (MaybeRecord.get()) { 1993 default: // Default behavior: ignore. 1994 break; 1995 case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...] 1996 // Deprecated, but still needed to read old bitcode files. 1997 if (Record.size() & 1) 1998 return error("Invalid parameter attribute record"); 1999 2000 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 2001 AttrBuilder B(Context); 2002 decodeLLVMAttributesForBitcode(B, Record[i+1], Record[i]); 2003 Attrs.push_back(AttributeList::get(Context, Record[i], B)); 2004 } 2005 2006 MAttributes.push_back(AttributeList::get(Context, Attrs)); 2007 Attrs.clear(); 2008 break; 2009 case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...] 2010 for (uint64_t Val : Record) 2011 Attrs.push_back(MAttributeGroups[Val]); 2012 2013 MAttributes.push_back(AttributeList::get(Context, Attrs)); 2014 Attrs.clear(); 2015 break; 2016 } 2017 } 2018 } 2019 2020 // Returns Attribute::None on unrecognized codes. 2021 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 2022 switch (Code) { 2023 default: 2024 return Attribute::None; 2025 case bitc::ATTR_KIND_ALIGNMENT: 2026 return Attribute::Alignment; 2027 case bitc::ATTR_KIND_ALWAYS_INLINE: 2028 return Attribute::AlwaysInline; 2029 case bitc::ATTR_KIND_BUILTIN: 2030 return Attribute::Builtin; 2031 case bitc::ATTR_KIND_BY_VAL: 2032 return Attribute::ByVal; 2033 case bitc::ATTR_KIND_IN_ALLOCA: 2034 return Attribute::InAlloca; 2035 case bitc::ATTR_KIND_COLD: 2036 return Attribute::Cold; 2037 case bitc::ATTR_KIND_CONVERGENT: 2038 return Attribute::Convergent; 2039 case bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION: 2040 return Attribute::DisableSanitizerInstrumentation; 2041 case bitc::ATTR_KIND_ELEMENTTYPE: 2042 return Attribute::ElementType; 2043 case bitc::ATTR_KIND_FNRETTHUNK_EXTERN: 2044 return Attribute::FnRetThunkExtern; 2045 case bitc::ATTR_KIND_INLINE_HINT: 2046 return Attribute::InlineHint; 2047 case bitc::ATTR_KIND_IN_REG: 2048 return Attribute::InReg; 2049 case bitc::ATTR_KIND_JUMP_TABLE: 2050 return Attribute::JumpTable; 2051 case bitc::ATTR_KIND_MEMORY: 2052 return Attribute::Memory; 2053 case bitc::ATTR_KIND_NOFPCLASS: 2054 return Attribute::NoFPClass; 2055 case bitc::ATTR_KIND_MIN_SIZE: 2056 return Attribute::MinSize; 2057 case bitc::ATTR_KIND_NAKED: 2058 return Attribute::Naked; 2059 case bitc::ATTR_KIND_NEST: 2060 return Attribute::Nest; 2061 case bitc::ATTR_KIND_NO_ALIAS: 2062 return Attribute::NoAlias; 2063 case bitc::ATTR_KIND_NO_BUILTIN: 2064 return Attribute::NoBuiltin; 2065 case bitc::ATTR_KIND_NO_CALLBACK: 2066 return Attribute::NoCallback; 2067 case bitc::ATTR_KIND_NO_CAPTURE: 2068 return Attribute::NoCapture; 2069 case bitc::ATTR_KIND_NO_DUPLICATE: 2070 return Attribute::NoDuplicate; 2071 case bitc::ATTR_KIND_NOFREE: 2072 return Attribute::NoFree; 2073 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 2074 return Attribute::NoImplicitFloat; 2075 case bitc::ATTR_KIND_NO_INLINE: 2076 return Attribute::NoInline; 2077 case bitc::ATTR_KIND_NO_RECURSE: 2078 return Attribute::NoRecurse; 2079 case bitc::ATTR_KIND_NO_MERGE: 2080 return Attribute::NoMerge; 2081 case bitc::ATTR_KIND_NON_LAZY_BIND: 2082 return Attribute::NonLazyBind; 2083 case bitc::ATTR_KIND_NON_NULL: 2084 return Attribute::NonNull; 2085 case bitc::ATTR_KIND_DEREFERENCEABLE: 2086 return Attribute::Dereferenceable; 2087 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 2088 return Attribute::DereferenceableOrNull; 2089 case bitc::ATTR_KIND_ALLOC_ALIGN: 2090 return Attribute::AllocAlign; 2091 case bitc::ATTR_KIND_ALLOC_KIND: 2092 return Attribute::AllocKind; 2093 case bitc::ATTR_KIND_ALLOC_SIZE: 2094 return Attribute::AllocSize; 2095 case bitc::ATTR_KIND_ALLOCATED_POINTER: 2096 return Attribute::AllocatedPointer; 2097 case bitc::ATTR_KIND_NO_RED_ZONE: 2098 return Attribute::NoRedZone; 2099 case bitc::ATTR_KIND_NO_RETURN: 2100 return Attribute::NoReturn; 2101 case bitc::ATTR_KIND_NOSYNC: 2102 return Attribute::NoSync; 2103 case bitc::ATTR_KIND_NOCF_CHECK: 2104 return Attribute::NoCfCheck; 2105 case bitc::ATTR_KIND_NO_PROFILE: 2106 return Attribute::NoProfile; 2107 case bitc::ATTR_KIND_SKIP_PROFILE: 2108 return Attribute::SkipProfile; 2109 case bitc::ATTR_KIND_NO_UNWIND: 2110 return Attribute::NoUnwind; 2111 case bitc::ATTR_KIND_NO_SANITIZE_BOUNDS: 2112 return Attribute::NoSanitizeBounds; 2113 case bitc::ATTR_KIND_NO_SANITIZE_COVERAGE: 2114 return Attribute::NoSanitizeCoverage; 2115 case bitc::ATTR_KIND_NULL_POINTER_IS_VALID: 2116 return Attribute::NullPointerIsValid; 2117 case bitc::ATTR_KIND_OPTIMIZE_FOR_DEBUGGING: 2118 return Attribute::OptimizeForDebugging; 2119 case bitc::ATTR_KIND_OPT_FOR_FUZZING: 2120 return Attribute::OptForFuzzing; 2121 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 2122 return Attribute::OptimizeForSize; 2123 case bitc::ATTR_KIND_OPTIMIZE_NONE: 2124 return Attribute::OptimizeNone; 2125 case bitc::ATTR_KIND_READ_NONE: 2126 return Attribute::ReadNone; 2127 case bitc::ATTR_KIND_READ_ONLY: 2128 return Attribute::ReadOnly; 2129 case bitc::ATTR_KIND_RETURNED: 2130 return Attribute::Returned; 2131 case bitc::ATTR_KIND_RETURNS_TWICE: 2132 return Attribute::ReturnsTwice; 2133 case bitc::ATTR_KIND_S_EXT: 2134 return Attribute::SExt; 2135 case bitc::ATTR_KIND_SPECULATABLE: 2136 return Attribute::Speculatable; 2137 case bitc::ATTR_KIND_STACK_ALIGNMENT: 2138 return Attribute::StackAlignment; 2139 case bitc::ATTR_KIND_STACK_PROTECT: 2140 return Attribute::StackProtect; 2141 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 2142 return Attribute::StackProtectReq; 2143 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 2144 return Attribute::StackProtectStrong; 2145 case bitc::ATTR_KIND_SAFESTACK: 2146 return Attribute::SafeStack; 2147 case bitc::ATTR_KIND_SHADOWCALLSTACK: 2148 return Attribute::ShadowCallStack; 2149 case bitc::ATTR_KIND_STRICT_FP: 2150 return Attribute::StrictFP; 2151 case bitc::ATTR_KIND_STRUCT_RET: 2152 return Attribute::StructRet; 2153 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 2154 return Attribute::SanitizeAddress; 2155 case bitc::ATTR_KIND_SANITIZE_HWADDRESS: 2156 return Attribute::SanitizeHWAddress; 2157 case bitc::ATTR_KIND_SANITIZE_THREAD: 2158 return Attribute::SanitizeThread; 2159 case bitc::ATTR_KIND_SANITIZE_MEMORY: 2160 return Attribute::SanitizeMemory; 2161 case bitc::ATTR_KIND_SANITIZE_NUMERICAL_STABILITY: 2162 return Attribute::SanitizeNumericalStability; 2163 case bitc::ATTR_KIND_SANITIZE_REALTIME: 2164 return Attribute::SanitizeRealtime; 2165 case bitc::ATTR_KIND_SANITIZE_REALTIME_UNSAFE: 2166 return Attribute::SanitizeRealtimeUnsafe; 2167 case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING: 2168 return Attribute::SpeculativeLoadHardening; 2169 case bitc::ATTR_KIND_SWIFT_ERROR: 2170 return Attribute::SwiftError; 2171 case bitc::ATTR_KIND_SWIFT_SELF: 2172 return Attribute::SwiftSelf; 2173 case bitc::ATTR_KIND_SWIFT_ASYNC: 2174 return Attribute::SwiftAsync; 2175 case bitc::ATTR_KIND_UW_TABLE: 2176 return Attribute::UWTable; 2177 case bitc::ATTR_KIND_VSCALE_RANGE: 2178 return Attribute::VScaleRange; 2179 case bitc::ATTR_KIND_WILLRETURN: 2180 return Attribute::WillReturn; 2181 case bitc::ATTR_KIND_WRITEONLY: 2182 return Attribute::WriteOnly; 2183 case bitc::ATTR_KIND_Z_EXT: 2184 return Attribute::ZExt; 2185 case bitc::ATTR_KIND_IMMARG: 2186 return Attribute::ImmArg; 2187 case bitc::ATTR_KIND_SANITIZE_MEMTAG: 2188 return Attribute::SanitizeMemTag; 2189 case bitc::ATTR_KIND_PREALLOCATED: 2190 return Attribute::Preallocated; 2191 case bitc::ATTR_KIND_NOUNDEF: 2192 return Attribute::NoUndef; 2193 case bitc::ATTR_KIND_BYREF: 2194 return Attribute::ByRef; 2195 case bitc::ATTR_KIND_MUSTPROGRESS: 2196 return Attribute::MustProgress; 2197 case bitc::ATTR_KIND_HOT: 2198 return Attribute::Hot; 2199 case bitc::ATTR_KIND_PRESPLIT_COROUTINE: 2200 return Attribute::PresplitCoroutine; 2201 case bitc::ATTR_KIND_WRITABLE: 2202 return Attribute::Writable; 2203 case bitc::ATTR_KIND_CORO_ONLY_DESTROY_WHEN_COMPLETE: 2204 return Attribute::CoroDestroyOnlyWhenComplete; 2205 case bitc::ATTR_KIND_DEAD_ON_UNWIND: 2206 return Attribute::DeadOnUnwind; 2207 case bitc::ATTR_KIND_RANGE: 2208 return Attribute::Range; 2209 case bitc::ATTR_KIND_INITIALIZES: 2210 return Attribute::Initializes; 2211 case bitc::ATTR_KIND_CORO_ELIDE_SAFE: 2212 return Attribute::CoroElideSafe; 2213 case bitc::ATTR_KIND_NO_EXT: 2214 return Attribute::NoExt; 2215 } 2216 } 2217 2218 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent, 2219 MaybeAlign &Alignment) { 2220 // Note: Alignment in bitcode files is incremented by 1, so that zero 2221 // can be used for default alignment. 2222 if (Exponent > Value::MaxAlignmentExponent + 1) 2223 return error("Invalid alignment value"); 2224 Alignment = decodeMaybeAlign(Exponent); 2225 return Error::success(); 2226 } 2227 2228 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) { 2229 *Kind = getAttrFromCode(Code); 2230 if (*Kind == Attribute::None) 2231 return error("Unknown attribute kind (" + Twine(Code) + ")"); 2232 return Error::success(); 2233 } 2234 2235 static bool upgradeOldMemoryAttribute(MemoryEffects &ME, uint64_t EncodedKind) { 2236 switch (EncodedKind) { 2237 case bitc::ATTR_KIND_READ_NONE: 2238 ME &= MemoryEffects::none(); 2239 return true; 2240 case bitc::ATTR_KIND_READ_ONLY: 2241 ME &= MemoryEffects::readOnly(); 2242 return true; 2243 case bitc::ATTR_KIND_WRITEONLY: 2244 ME &= MemoryEffects::writeOnly(); 2245 return true; 2246 case bitc::ATTR_KIND_ARGMEMONLY: 2247 ME &= MemoryEffects::argMemOnly(); 2248 return true; 2249 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 2250 ME &= MemoryEffects::inaccessibleMemOnly(); 2251 return true; 2252 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 2253 ME &= MemoryEffects::inaccessibleOrArgMemOnly(); 2254 return true; 2255 default: 2256 return false; 2257 } 2258 } 2259 2260 Error BitcodeReader::parseAttributeGroupBlock() { 2261 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 2262 return Err; 2263 2264 if (!MAttributeGroups.empty()) 2265 return error("Invalid multiple blocks"); 2266 2267 SmallVector<uint64_t, 64> Record; 2268 2269 // Read all the records. 2270 while (true) { 2271 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2272 if (!MaybeEntry) 2273 return MaybeEntry.takeError(); 2274 BitstreamEntry Entry = MaybeEntry.get(); 2275 2276 switch (Entry.Kind) { 2277 case BitstreamEntry::SubBlock: // Handled for us already. 2278 case BitstreamEntry::Error: 2279 return error("Malformed block"); 2280 case BitstreamEntry::EndBlock: 2281 return Error::success(); 2282 case BitstreamEntry::Record: 2283 // The interesting case. 2284 break; 2285 } 2286 2287 // Read a record. 2288 Record.clear(); 2289 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2290 if (!MaybeRecord) 2291 return MaybeRecord.takeError(); 2292 switch (MaybeRecord.get()) { 2293 default: // Default behavior: ignore. 2294 break; 2295 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 2296 if (Record.size() < 3) 2297 return error("Invalid grp record"); 2298 2299 uint64_t GrpID = Record[0]; 2300 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 2301 2302 AttrBuilder B(Context); 2303 MemoryEffects ME = MemoryEffects::unknown(); 2304 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 2305 if (Record[i] == 0) { // Enum attribute 2306 Attribute::AttrKind Kind; 2307 uint64_t EncodedKind = Record[++i]; 2308 if (Idx == AttributeList::FunctionIndex && 2309 upgradeOldMemoryAttribute(ME, EncodedKind)) 2310 continue; 2311 2312 if (Error Err = parseAttrKind(EncodedKind, &Kind)) 2313 return Err; 2314 2315 // Upgrade old-style byval attribute to one with a type, even if it's 2316 // nullptr. We will have to insert the real type when we associate 2317 // this AttributeList with a function. 2318 if (Kind == Attribute::ByVal) 2319 B.addByValAttr(nullptr); 2320 else if (Kind == Attribute::StructRet) 2321 B.addStructRetAttr(nullptr); 2322 else if (Kind == Attribute::InAlloca) 2323 B.addInAllocaAttr(nullptr); 2324 else if (Kind == Attribute::UWTable) 2325 B.addUWTableAttr(UWTableKind::Default); 2326 else if (Attribute::isEnumAttrKind(Kind)) 2327 B.addAttribute(Kind); 2328 else 2329 return error("Not an enum attribute"); 2330 } else if (Record[i] == 1) { // Integer attribute 2331 Attribute::AttrKind Kind; 2332 if (Error Err = parseAttrKind(Record[++i], &Kind)) 2333 return Err; 2334 if (!Attribute::isIntAttrKind(Kind)) 2335 return error("Not an int attribute"); 2336 if (Kind == Attribute::Alignment) 2337 B.addAlignmentAttr(Record[++i]); 2338 else if (Kind == Attribute::StackAlignment) 2339 B.addStackAlignmentAttr(Record[++i]); 2340 else if (Kind == Attribute::Dereferenceable) 2341 B.addDereferenceableAttr(Record[++i]); 2342 else if (Kind == Attribute::DereferenceableOrNull) 2343 B.addDereferenceableOrNullAttr(Record[++i]); 2344 else if (Kind == Attribute::AllocSize) 2345 B.addAllocSizeAttrFromRawRepr(Record[++i]); 2346 else if (Kind == Attribute::VScaleRange) 2347 B.addVScaleRangeAttrFromRawRepr(Record[++i]); 2348 else if (Kind == Attribute::UWTable) 2349 B.addUWTableAttr(UWTableKind(Record[++i])); 2350 else if (Kind == Attribute::AllocKind) 2351 B.addAllocKindAttr(static_cast<AllocFnKind>(Record[++i])); 2352 else if (Kind == Attribute::Memory) 2353 B.addMemoryAttr(MemoryEffects::createFromIntValue(Record[++i])); 2354 else if (Kind == Attribute::NoFPClass) 2355 B.addNoFPClassAttr( 2356 static_cast<FPClassTest>(Record[++i] & fcAllFlags)); 2357 } else if (Record[i] == 3 || Record[i] == 4) { // String attribute 2358 bool HasValue = (Record[i++] == 4); 2359 SmallString<64> KindStr; 2360 SmallString<64> ValStr; 2361 2362 while (Record[i] != 0 && i != e) 2363 KindStr += Record[i++]; 2364 assert(Record[i] == 0 && "Kind string not null terminated"); 2365 2366 if (HasValue) { 2367 // Has a value associated with it. 2368 ++i; // Skip the '0' that terminates the "kind" string. 2369 while (Record[i] != 0 && i != e) 2370 ValStr += Record[i++]; 2371 assert(Record[i] == 0 && "Value string not null terminated"); 2372 } 2373 2374 B.addAttribute(KindStr.str(), ValStr.str()); 2375 } else if (Record[i] == 5 || Record[i] == 6) { 2376 bool HasType = Record[i] == 6; 2377 Attribute::AttrKind Kind; 2378 if (Error Err = parseAttrKind(Record[++i], &Kind)) 2379 return Err; 2380 if (!Attribute::isTypeAttrKind(Kind)) 2381 return error("Not a type attribute"); 2382 2383 B.addTypeAttr(Kind, HasType ? getTypeByID(Record[++i]) : nullptr); 2384 } else if (Record[i] == 7) { 2385 Attribute::AttrKind Kind; 2386 2387 i++; 2388 if (Error Err = parseAttrKind(Record[i++], &Kind)) 2389 return Err; 2390 if (!Attribute::isConstantRangeAttrKind(Kind)) 2391 return error("Not a ConstantRange attribute"); 2392 2393 Expected<ConstantRange> MaybeCR = 2394 readBitWidthAndConstantRange(Record, i); 2395 if (!MaybeCR) 2396 return MaybeCR.takeError(); 2397 i--; 2398 2399 B.addConstantRangeAttr(Kind, MaybeCR.get()); 2400 } else if (Record[i] == 8) { 2401 Attribute::AttrKind Kind; 2402 2403 i++; 2404 if (Error Err = parseAttrKind(Record[i++], &Kind)) 2405 return Err; 2406 if (!Attribute::isConstantRangeListAttrKind(Kind)) 2407 return error("Not a constant range list attribute"); 2408 2409 SmallVector<ConstantRange, 2> Val; 2410 if (i + 2 > e) 2411 return error("Too few records for constant range list"); 2412 unsigned RangeSize = Record[i++]; 2413 unsigned BitWidth = Record[i++]; 2414 for (unsigned Idx = 0; Idx < RangeSize; ++Idx) { 2415 Expected<ConstantRange> MaybeCR = 2416 readConstantRange(Record, i, BitWidth); 2417 if (!MaybeCR) 2418 return MaybeCR.takeError(); 2419 Val.push_back(MaybeCR.get()); 2420 } 2421 i--; 2422 2423 if (!ConstantRangeList::isOrderedRanges(Val)) 2424 return error("Invalid (unordered or overlapping) range list"); 2425 B.addConstantRangeListAttr(Kind, Val); 2426 } else { 2427 return error("Invalid attribute group entry"); 2428 } 2429 } 2430 2431 if (ME != MemoryEffects::unknown()) 2432 B.addMemoryAttr(ME); 2433 2434 UpgradeAttributes(B); 2435 MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B); 2436 break; 2437 } 2438 } 2439 } 2440 } 2441 2442 Error BitcodeReader::parseTypeTable() { 2443 if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 2444 return Err; 2445 2446 return parseTypeTableBody(); 2447 } 2448 2449 Error BitcodeReader::parseTypeTableBody() { 2450 if (!TypeList.empty()) 2451 return error("Invalid multiple blocks"); 2452 2453 SmallVector<uint64_t, 64> Record; 2454 unsigned NumRecords = 0; 2455 2456 SmallString<64> TypeName; 2457 2458 // Read all the records for this type table. 2459 while (true) { 2460 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2461 if (!MaybeEntry) 2462 return MaybeEntry.takeError(); 2463 BitstreamEntry Entry = MaybeEntry.get(); 2464 2465 switch (Entry.Kind) { 2466 case BitstreamEntry::SubBlock: // Handled for us already. 2467 case BitstreamEntry::Error: 2468 return error("Malformed block"); 2469 case BitstreamEntry::EndBlock: 2470 if (NumRecords != TypeList.size()) 2471 return error("Malformed block"); 2472 return Error::success(); 2473 case BitstreamEntry::Record: 2474 // The interesting case. 2475 break; 2476 } 2477 2478 // Read a record. 2479 Record.clear(); 2480 Type *ResultTy = nullptr; 2481 SmallVector<unsigned> ContainedIDs; 2482 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2483 if (!MaybeRecord) 2484 return MaybeRecord.takeError(); 2485 switch (MaybeRecord.get()) { 2486 default: 2487 return error("Invalid value"); 2488 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 2489 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 2490 // type list. This allows us to reserve space. 2491 if (Record.empty()) 2492 return error("Invalid numentry record"); 2493 TypeList.resize(Record[0]); 2494 continue; 2495 case bitc::TYPE_CODE_VOID: // VOID 2496 ResultTy = Type::getVoidTy(Context); 2497 break; 2498 case bitc::TYPE_CODE_HALF: // HALF 2499 ResultTy = Type::getHalfTy(Context); 2500 break; 2501 case bitc::TYPE_CODE_BFLOAT: // BFLOAT 2502 ResultTy = Type::getBFloatTy(Context); 2503 break; 2504 case bitc::TYPE_CODE_FLOAT: // FLOAT 2505 ResultTy = Type::getFloatTy(Context); 2506 break; 2507 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 2508 ResultTy = Type::getDoubleTy(Context); 2509 break; 2510 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 2511 ResultTy = Type::getX86_FP80Ty(Context); 2512 break; 2513 case bitc::TYPE_CODE_FP128: // FP128 2514 ResultTy = Type::getFP128Ty(Context); 2515 break; 2516 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 2517 ResultTy = Type::getPPC_FP128Ty(Context); 2518 break; 2519 case bitc::TYPE_CODE_LABEL: // LABEL 2520 ResultTy = Type::getLabelTy(Context); 2521 break; 2522 case bitc::TYPE_CODE_METADATA: // METADATA 2523 ResultTy = Type::getMetadataTy(Context); 2524 break; 2525 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 2526 // Deprecated: decodes as <1 x i64> 2527 ResultTy = 2528 llvm::FixedVectorType::get(llvm::IntegerType::get(Context, 64), 1); 2529 break; 2530 case bitc::TYPE_CODE_X86_AMX: // X86_AMX 2531 ResultTy = Type::getX86_AMXTy(Context); 2532 break; 2533 case bitc::TYPE_CODE_TOKEN: // TOKEN 2534 ResultTy = Type::getTokenTy(Context); 2535 break; 2536 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 2537 if (Record.empty()) 2538 return error("Invalid integer record"); 2539 2540 uint64_t NumBits = Record[0]; 2541 if (NumBits < IntegerType::MIN_INT_BITS || 2542 NumBits > IntegerType::MAX_INT_BITS) 2543 return error("Bitwidth for integer type out of range"); 2544 ResultTy = IntegerType::get(Context, NumBits); 2545 break; 2546 } 2547 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 2548 // [pointee type, address space] 2549 if (Record.empty()) 2550 return error("Invalid pointer record"); 2551 unsigned AddressSpace = 0; 2552 if (Record.size() == 2) 2553 AddressSpace = Record[1]; 2554 ResultTy = getTypeByID(Record[0]); 2555 if (!ResultTy || 2556 !PointerType::isValidElementType(ResultTy)) 2557 return error("Invalid type"); 2558 ContainedIDs.push_back(Record[0]); 2559 ResultTy = PointerType::get(ResultTy, AddressSpace); 2560 break; 2561 } 2562 case bitc::TYPE_CODE_OPAQUE_POINTER: { // OPAQUE_POINTER: [addrspace] 2563 if (Record.size() != 1) 2564 return error("Invalid opaque pointer record"); 2565 unsigned AddressSpace = Record[0]; 2566 ResultTy = PointerType::get(Context, AddressSpace); 2567 break; 2568 } 2569 case bitc::TYPE_CODE_FUNCTION_OLD: { 2570 // Deprecated, but still needed to read old bitcode files. 2571 // FUNCTION: [vararg, attrid, retty, paramty x N] 2572 if (Record.size() < 3) 2573 return error("Invalid function record"); 2574 SmallVector<Type*, 8> ArgTys; 2575 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 2576 if (Type *T = getTypeByID(Record[i])) 2577 ArgTys.push_back(T); 2578 else 2579 break; 2580 } 2581 2582 ResultTy = getTypeByID(Record[2]); 2583 if (!ResultTy || ArgTys.size() < Record.size()-3) 2584 return error("Invalid type"); 2585 2586 ContainedIDs.append(Record.begin() + 2, Record.end()); 2587 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 2588 break; 2589 } 2590 case bitc::TYPE_CODE_FUNCTION: { 2591 // FUNCTION: [vararg, retty, paramty x N] 2592 if (Record.size() < 2) 2593 return error("Invalid function record"); 2594 SmallVector<Type*, 8> ArgTys; 2595 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 2596 if (Type *T = getTypeByID(Record[i])) { 2597 if (!FunctionType::isValidArgumentType(T)) 2598 return error("Invalid function argument type"); 2599 ArgTys.push_back(T); 2600 } 2601 else 2602 break; 2603 } 2604 2605 ResultTy = getTypeByID(Record[1]); 2606 if (!ResultTy || ArgTys.size() < Record.size()-2) 2607 return error("Invalid type"); 2608 2609 ContainedIDs.append(Record.begin() + 1, Record.end()); 2610 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 2611 break; 2612 } 2613 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 2614 if (Record.empty()) 2615 return error("Invalid anon struct record"); 2616 SmallVector<Type*, 8> EltTys; 2617 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 2618 if (Type *T = getTypeByID(Record[i])) 2619 EltTys.push_back(T); 2620 else 2621 break; 2622 } 2623 if (EltTys.size() != Record.size()-1) 2624 return error("Invalid type"); 2625 ContainedIDs.append(Record.begin() + 1, Record.end()); 2626 ResultTy = StructType::get(Context, EltTys, Record[0]); 2627 break; 2628 } 2629 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 2630 if (convertToString(Record, 0, TypeName)) 2631 return error("Invalid struct name record"); 2632 continue; 2633 2634 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 2635 if (Record.empty()) 2636 return error("Invalid named struct record"); 2637 2638 if (NumRecords >= TypeList.size()) 2639 return error("Invalid TYPE table"); 2640 2641 // Check to see if this was forward referenced, if so fill in the temp. 2642 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 2643 if (Res) { 2644 Res->setName(TypeName); 2645 TypeList[NumRecords] = nullptr; 2646 } else // Otherwise, create a new struct. 2647 Res = createIdentifiedStructType(Context, TypeName); 2648 TypeName.clear(); 2649 2650 SmallVector<Type*, 8> EltTys; 2651 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 2652 if (Type *T = getTypeByID(Record[i])) 2653 EltTys.push_back(T); 2654 else 2655 break; 2656 } 2657 if (EltTys.size() != Record.size()-1) 2658 return error("Invalid named struct record"); 2659 Res->setBody(EltTys, Record[0]); 2660 ContainedIDs.append(Record.begin() + 1, Record.end()); 2661 ResultTy = Res; 2662 break; 2663 } 2664 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 2665 if (Record.size() != 1) 2666 return error("Invalid opaque type record"); 2667 2668 if (NumRecords >= TypeList.size()) 2669 return error("Invalid TYPE table"); 2670 2671 // Check to see if this was forward referenced, if so fill in the temp. 2672 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 2673 if (Res) { 2674 Res->setName(TypeName); 2675 TypeList[NumRecords] = nullptr; 2676 } else // Otherwise, create a new struct with no body. 2677 Res = createIdentifiedStructType(Context, TypeName); 2678 TypeName.clear(); 2679 ResultTy = Res; 2680 break; 2681 } 2682 case bitc::TYPE_CODE_TARGET_TYPE: { // TARGET_TYPE: [NumTy, Tys..., Ints...] 2683 if (Record.size() < 1) 2684 return error("Invalid target extension type record"); 2685 2686 if (NumRecords >= TypeList.size()) 2687 return error("Invalid TYPE table"); 2688 2689 if (Record[0] >= Record.size()) 2690 return error("Too many type parameters"); 2691 2692 unsigned NumTys = Record[0]; 2693 SmallVector<Type *, 4> TypeParams; 2694 SmallVector<unsigned, 8> IntParams; 2695 for (unsigned i = 0; i < NumTys; i++) { 2696 if (Type *T = getTypeByID(Record[i + 1])) 2697 TypeParams.push_back(T); 2698 else 2699 return error("Invalid type"); 2700 } 2701 2702 for (unsigned i = NumTys + 1, e = Record.size(); i < e; i++) { 2703 if (Record[i] > UINT_MAX) 2704 return error("Integer parameter too large"); 2705 IntParams.push_back(Record[i]); 2706 } 2707 auto TTy = 2708 TargetExtType::getOrError(Context, TypeName, TypeParams, IntParams); 2709 if (auto E = TTy.takeError()) 2710 return E; 2711 ResultTy = *TTy; 2712 TypeName.clear(); 2713 break; 2714 } 2715 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 2716 if (Record.size() < 2) 2717 return error("Invalid array type record"); 2718 ResultTy = getTypeByID(Record[1]); 2719 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 2720 return error("Invalid type"); 2721 ContainedIDs.push_back(Record[1]); 2722 ResultTy = ArrayType::get(ResultTy, Record[0]); 2723 break; 2724 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] or 2725 // [numelts, eltty, scalable] 2726 if (Record.size() < 2) 2727 return error("Invalid vector type record"); 2728 if (Record[0] == 0) 2729 return error("Invalid vector length"); 2730 ResultTy = getTypeByID(Record[1]); 2731 if (!ResultTy || !VectorType::isValidElementType(ResultTy)) 2732 return error("Invalid type"); 2733 bool Scalable = Record.size() > 2 ? Record[2] : false; 2734 ContainedIDs.push_back(Record[1]); 2735 ResultTy = VectorType::get(ResultTy, Record[0], Scalable); 2736 break; 2737 } 2738 2739 if (NumRecords >= TypeList.size()) 2740 return error("Invalid TYPE table"); 2741 if (TypeList[NumRecords]) 2742 return error( 2743 "Invalid TYPE table: Only named structs can be forward referenced"); 2744 assert(ResultTy && "Didn't read a type?"); 2745 TypeList[NumRecords] = ResultTy; 2746 if (!ContainedIDs.empty()) 2747 ContainedTypeIDs[NumRecords] = std::move(ContainedIDs); 2748 ++NumRecords; 2749 } 2750 } 2751 2752 Error BitcodeReader::parseOperandBundleTags() { 2753 if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 2754 return Err; 2755 2756 if (!BundleTags.empty()) 2757 return error("Invalid multiple blocks"); 2758 2759 SmallVector<uint64_t, 64> Record; 2760 2761 while (true) { 2762 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2763 if (!MaybeEntry) 2764 return MaybeEntry.takeError(); 2765 BitstreamEntry Entry = MaybeEntry.get(); 2766 2767 switch (Entry.Kind) { 2768 case BitstreamEntry::SubBlock: // Handled for us already. 2769 case BitstreamEntry::Error: 2770 return error("Malformed block"); 2771 case BitstreamEntry::EndBlock: 2772 return Error::success(); 2773 case BitstreamEntry::Record: 2774 // The interesting case. 2775 break; 2776 } 2777 2778 // Tags are implicitly mapped to integers by their order. 2779 2780 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2781 if (!MaybeRecord) 2782 return MaybeRecord.takeError(); 2783 if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG) 2784 return error("Invalid operand bundle record"); 2785 2786 // OPERAND_BUNDLE_TAG: [strchr x N] 2787 BundleTags.emplace_back(); 2788 if (convertToString(Record, 0, BundleTags.back())) 2789 return error("Invalid operand bundle record"); 2790 Record.clear(); 2791 } 2792 } 2793 2794 Error BitcodeReader::parseSyncScopeNames() { 2795 if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID)) 2796 return Err; 2797 2798 if (!SSIDs.empty()) 2799 return error("Invalid multiple synchronization scope names blocks"); 2800 2801 SmallVector<uint64_t, 64> Record; 2802 while (true) { 2803 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2804 if (!MaybeEntry) 2805 return MaybeEntry.takeError(); 2806 BitstreamEntry Entry = MaybeEntry.get(); 2807 2808 switch (Entry.Kind) { 2809 case BitstreamEntry::SubBlock: // Handled for us already. 2810 case BitstreamEntry::Error: 2811 return error("Malformed block"); 2812 case BitstreamEntry::EndBlock: 2813 if (SSIDs.empty()) 2814 return error("Invalid empty synchronization scope names block"); 2815 return Error::success(); 2816 case BitstreamEntry::Record: 2817 // The interesting case. 2818 break; 2819 } 2820 2821 // Synchronization scope names are implicitly mapped to synchronization 2822 // scope IDs by their order. 2823 2824 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2825 if (!MaybeRecord) 2826 return MaybeRecord.takeError(); 2827 if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME) 2828 return error("Invalid sync scope record"); 2829 2830 SmallString<16> SSN; 2831 if (convertToString(Record, 0, SSN)) 2832 return error("Invalid sync scope record"); 2833 2834 SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN)); 2835 Record.clear(); 2836 } 2837 } 2838 2839 /// Associate a value with its name from the given index in the provided record. 2840 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 2841 unsigned NameIndex, Triple &TT) { 2842 SmallString<128> ValueName; 2843 if (convertToString(Record, NameIndex, ValueName)) 2844 return error("Invalid record"); 2845 unsigned ValueID = Record[0]; 2846 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 2847 return error("Invalid record"); 2848 Value *V = ValueList[ValueID]; 2849 2850 StringRef NameStr(ValueName.data(), ValueName.size()); 2851 if (NameStr.contains(0)) 2852 return error("Invalid value name"); 2853 V->setName(NameStr); 2854 auto *GO = dyn_cast<GlobalObject>(V); 2855 if (GO && ImplicitComdatObjects.contains(GO) && TT.supportsCOMDAT()) 2856 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 2857 return V; 2858 } 2859 2860 /// Helper to note and return the current location, and jump to the given 2861 /// offset. 2862 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset, 2863 BitstreamCursor &Stream) { 2864 // Save the current parsing location so we can jump back at the end 2865 // of the VST read. 2866 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 2867 if (Error JumpFailed = Stream.JumpToBit(Offset * 32)) 2868 return std::move(JumpFailed); 2869 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 2870 if (!MaybeEntry) 2871 return MaybeEntry.takeError(); 2872 if (MaybeEntry.get().Kind != BitstreamEntry::SubBlock || 2873 MaybeEntry.get().ID != bitc::VALUE_SYMTAB_BLOCK_ID) 2874 return error("Expected value symbol table subblock"); 2875 return CurrentBit; 2876 } 2877 2878 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, 2879 Function *F, 2880 ArrayRef<uint64_t> Record) { 2881 // Note that we subtract 1 here because the offset is relative to one word 2882 // before the start of the identification or module block, which was 2883 // historically always the start of the regular bitcode header. 2884 uint64_t FuncWordOffset = Record[1] - 1; 2885 uint64_t FuncBitOffset = FuncWordOffset * 32; 2886 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 2887 // Set the LastFunctionBlockBit to point to the last function block. 2888 // Later when parsing is resumed after function materialization, 2889 // we can simply skip that last function block. 2890 if (FuncBitOffset > LastFunctionBlockBit) 2891 LastFunctionBlockBit = FuncBitOffset; 2892 } 2893 2894 /// Read a new-style GlobalValue symbol table. 2895 Error BitcodeReader::parseGlobalValueSymbolTable() { 2896 unsigned FuncBitcodeOffsetDelta = 2897 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2898 2899 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2900 return Err; 2901 2902 SmallVector<uint64_t, 64> Record; 2903 while (true) { 2904 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2905 if (!MaybeEntry) 2906 return MaybeEntry.takeError(); 2907 BitstreamEntry Entry = MaybeEntry.get(); 2908 2909 switch (Entry.Kind) { 2910 case BitstreamEntry::SubBlock: 2911 case BitstreamEntry::Error: 2912 return error("Malformed block"); 2913 case BitstreamEntry::EndBlock: 2914 return Error::success(); 2915 case BitstreamEntry::Record: 2916 break; 2917 } 2918 2919 Record.clear(); 2920 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2921 if (!MaybeRecord) 2922 return MaybeRecord.takeError(); 2923 switch (MaybeRecord.get()) { 2924 case bitc::VST_CODE_FNENTRY: { // [valueid, offset] 2925 unsigned ValueID = Record[0]; 2926 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 2927 return error("Invalid value reference in symbol table"); 2928 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, 2929 cast<Function>(ValueList[ValueID]), Record); 2930 break; 2931 } 2932 } 2933 } 2934 } 2935 2936 /// Parse the value symbol table at either the current parsing location or 2937 /// at the given bit offset if provided. 2938 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 2939 uint64_t CurrentBit; 2940 // Pass in the Offset to distinguish between calling for the module-level 2941 // VST (where we want to jump to the VST offset) and the function-level 2942 // VST (where we don't). 2943 if (Offset > 0) { 2944 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 2945 if (!MaybeCurrentBit) 2946 return MaybeCurrentBit.takeError(); 2947 CurrentBit = MaybeCurrentBit.get(); 2948 // If this module uses a string table, read this as a module-level VST. 2949 if (UseStrtab) { 2950 if (Error Err = parseGlobalValueSymbolTable()) 2951 return Err; 2952 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2953 return JumpFailed; 2954 return Error::success(); 2955 } 2956 // Otherwise, the VST will be in a similar format to a function-level VST, 2957 // and will contain symbol names. 2958 } 2959 2960 // Compute the delta between the bitcode indices in the VST (the word offset 2961 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 2962 // expected by the lazy reader. The reader's EnterSubBlock expects to have 2963 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 2964 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 2965 // just before entering the VST subblock because: 1) the EnterSubBlock 2966 // changes the AbbrevID width; 2) the VST block is nested within the same 2967 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 2968 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 2969 // jump to the FUNCTION_BLOCK using this offset later, we don't want 2970 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 2971 unsigned FuncBitcodeOffsetDelta = 2972 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2973 2974 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2975 return Err; 2976 2977 SmallVector<uint64_t, 64> Record; 2978 2979 Triple TT(TheModule->getTargetTriple()); 2980 2981 // Read all the records for this value table. 2982 SmallString<128> ValueName; 2983 2984 while (true) { 2985 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2986 if (!MaybeEntry) 2987 return MaybeEntry.takeError(); 2988 BitstreamEntry Entry = MaybeEntry.get(); 2989 2990 switch (Entry.Kind) { 2991 case BitstreamEntry::SubBlock: // Handled for us already. 2992 case BitstreamEntry::Error: 2993 return error("Malformed block"); 2994 case BitstreamEntry::EndBlock: 2995 if (Offset > 0) 2996 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2997 return JumpFailed; 2998 return Error::success(); 2999 case BitstreamEntry::Record: 3000 // The interesting case. 3001 break; 3002 } 3003 3004 // Read a record. 3005 Record.clear(); 3006 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 3007 if (!MaybeRecord) 3008 return MaybeRecord.takeError(); 3009 switch (MaybeRecord.get()) { 3010 default: // Default behavior: unknown type. 3011 break; 3012 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 3013 Expected<Value *> ValOrErr = recordValue(Record, 1, TT); 3014 if (Error Err = ValOrErr.takeError()) 3015 return Err; 3016 ValOrErr.get(); 3017 break; 3018 } 3019 case bitc::VST_CODE_FNENTRY: { 3020 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 3021 Expected<Value *> ValOrErr = recordValue(Record, 2, TT); 3022 if (Error Err = ValOrErr.takeError()) 3023 return Err; 3024 Value *V = ValOrErr.get(); 3025 3026 // Ignore function offsets emitted for aliases of functions in older 3027 // versions of LLVM. 3028 if (auto *F = dyn_cast<Function>(V)) 3029 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record); 3030 break; 3031 } 3032 case bitc::VST_CODE_BBENTRY: { 3033 if (convertToString(Record, 1, ValueName)) 3034 return error("Invalid bbentry record"); 3035 BasicBlock *BB = getBasicBlock(Record[0]); 3036 if (!BB) 3037 return error("Invalid bbentry record"); 3038 3039 BB->setName(ValueName.str()); 3040 ValueName.clear(); 3041 break; 3042 } 3043 } 3044 } 3045 } 3046 3047 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 3048 /// encoding. 3049 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 3050 if ((V & 1) == 0) 3051 return V >> 1; 3052 if (V != 1) 3053 return -(V >> 1); 3054 // There is no such thing as -0 with integers. "-0" really means MININT. 3055 return 1ULL << 63; 3056 } 3057 3058 /// Resolve all of the initializers for global values and aliases that we can. 3059 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 3060 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist; 3061 std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInitWorklist; 3062 std::vector<FunctionOperandInfo> FunctionOperandWorklist; 3063 3064 GlobalInitWorklist.swap(GlobalInits); 3065 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 3066 FunctionOperandWorklist.swap(FunctionOperands); 3067 3068 while (!GlobalInitWorklist.empty()) { 3069 unsigned ValID = GlobalInitWorklist.back().second; 3070 if (ValID >= ValueList.size()) { 3071 // Not ready to resolve this yet, it requires something later in the file. 3072 GlobalInits.push_back(GlobalInitWorklist.back()); 3073 } else { 3074 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 3075 if (!MaybeC) 3076 return MaybeC.takeError(); 3077 GlobalInitWorklist.back().first->setInitializer(MaybeC.get()); 3078 } 3079 GlobalInitWorklist.pop_back(); 3080 } 3081 3082 while (!IndirectSymbolInitWorklist.empty()) { 3083 unsigned ValID = IndirectSymbolInitWorklist.back().second; 3084 if (ValID >= ValueList.size()) { 3085 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 3086 } else { 3087 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 3088 if (!MaybeC) 3089 return MaybeC.takeError(); 3090 Constant *C = MaybeC.get(); 3091 GlobalValue *GV = IndirectSymbolInitWorklist.back().first; 3092 if (auto *GA = dyn_cast<GlobalAlias>(GV)) { 3093 if (C->getType() != GV->getType()) 3094 return error("Alias and aliasee types don't match"); 3095 GA->setAliasee(C); 3096 } else if (auto *GI = dyn_cast<GlobalIFunc>(GV)) { 3097 GI->setResolver(C); 3098 } else { 3099 return error("Expected an alias or an ifunc"); 3100 } 3101 } 3102 IndirectSymbolInitWorklist.pop_back(); 3103 } 3104 3105 while (!FunctionOperandWorklist.empty()) { 3106 FunctionOperandInfo &Info = FunctionOperandWorklist.back(); 3107 if (Info.PersonalityFn) { 3108 unsigned ValID = Info.PersonalityFn - 1; 3109 if (ValID < ValueList.size()) { 3110 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 3111 if (!MaybeC) 3112 return MaybeC.takeError(); 3113 Info.F->setPersonalityFn(MaybeC.get()); 3114 Info.PersonalityFn = 0; 3115 } 3116 } 3117 if (Info.Prefix) { 3118 unsigned ValID = Info.Prefix - 1; 3119 if (ValID < ValueList.size()) { 3120 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 3121 if (!MaybeC) 3122 return MaybeC.takeError(); 3123 Info.F->setPrefixData(MaybeC.get()); 3124 Info.Prefix = 0; 3125 } 3126 } 3127 if (Info.Prologue) { 3128 unsigned ValID = Info.Prologue - 1; 3129 if (ValID < ValueList.size()) { 3130 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 3131 if (!MaybeC) 3132 return MaybeC.takeError(); 3133 Info.F->setPrologueData(MaybeC.get()); 3134 Info.Prologue = 0; 3135 } 3136 } 3137 if (Info.PersonalityFn || Info.Prefix || Info.Prologue) 3138 FunctionOperands.push_back(Info); 3139 FunctionOperandWorklist.pop_back(); 3140 } 3141 3142 return Error::success(); 3143 } 3144 3145 APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 3146 SmallVector<uint64_t, 8> Words(Vals.size()); 3147 transform(Vals, Words.begin(), 3148 BitcodeReader::decodeSignRotatedValue); 3149 3150 return APInt(TypeBits, Words); 3151 } 3152 3153 Error BitcodeReader::parseConstants() { 3154 if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 3155 return Err; 3156 3157 SmallVector<uint64_t, 64> Record; 3158 3159 // Read all the records for this value table. 3160 Type *CurTy = Type::getInt32Ty(Context); 3161 unsigned Int32TyID = getVirtualTypeID(CurTy); 3162 unsigned CurTyID = Int32TyID; 3163 Type *CurElemTy = nullptr; 3164 unsigned NextCstNo = ValueList.size(); 3165 3166 while (true) { 3167 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 3168 if (!MaybeEntry) 3169 return MaybeEntry.takeError(); 3170 BitstreamEntry Entry = MaybeEntry.get(); 3171 3172 switch (Entry.Kind) { 3173 case BitstreamEntry::SubBlock: // Handled for us already. 3174 case BitstreamEntry::Error: 3175 return error("Malformed block"); 3176 case BitstreamEntry::EndBlock: 3177 if (NextCstNo != ValueList.size()) 3178 return error("Invalid constant reference"); 3179 return Error::success(); 3180 case BitstreamEntry::Record: 3181 // The interesting case. 3182 break; 3183 } 3184 3185 // Read a record. 3186 Record.clear(); 3187 Type *VoidType = Type::getVoidTy(Context); 3188 Value *V = nullptr; 3189 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 3190 if (!MaybeBitCode) 3191 return MaybeBitCode.takeError(); 3192 switch (unsigned BitCode = MaybeBitCode.get()) { 3193 default: // Default behavior: unknown constant 3194 case bitc::CST_CODE_UNDEF: // UNDEF 3195 V = UndefValue::get(CurTy); 3196 break; 3197 case bitc::CST_CODE_POISON: // POISON 3198 V = PoisonValue::get(CurTy); 3199 break; 3200 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 3201 if (Record.empty()) 3202 return error("Invalid settype record"); 3203 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 3204 return error("Invalid settype record"); 3205 if (TypeList[Record[0]] == VoidType) 3206 return error("Invalid constant type"); 3207 CurTyID = Record[0]; 3208 CurTy = TypeList[CurTyID]; 3209 CurElemTy = getPtrElementTypeByID(CurTyID); 3210 continue; // Skip the ValueList manipulation. 3211 case bitc::CST_CODE_NULL: // NULL 3212 if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy()) 3213 return error("Invalid type for a constant null value"); 3214 if (auto *TETy = dyn_cast<TargetExtType>(CurTy)) 3215 if (!TETy->hasProperty(TargetExtType::HasZeroInit)) 3216 return error("Invalid type for a constant null value"); 3217 V = Constant::getNullValue(CurTy); 3218 break; 3219 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 3220 if (!CurTy->isIntOrIntVectorTy() || Record.empty()) 3221 return error("Invalid integer const record"); 3222 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 3223 break; 3224 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 3225 if (!CurTy->isIntOrIntVectorTy() || Record.empty()) 3226 return error("Invalid wide integer const record"); 3227 3228 auto *ScalarTy = cast<IntegerType>(CurTy->getScalarType()); 3229 APInt VInt = readWideAPInt(Record, ScalarTy->getBitWidth()); 3230 V = ConstantInt::get(CurTy, VInt); 3231 break; 3232 } 3233 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 3234 if (Record.empty()) 3235 return error("Invalid float const record"); 3236 3237 auto *ScalarTy = CurTy->getScalarType(); 3238 if (ScalarTy->isHalfTy()) 3239 V = ConstantFP::get(CurTy, APFloat(APFloat::IEEEhalf(), 3240 APInt(16, (uint16_t)Record[0]))); 3241 else if (ScalarTy->isBFloatTy()) 3242 V = ConstantFP::get( 3243 CurTy, APFloat(APFloat::BFloat(), APInt(16, (uint32_t)Record[0]))); 3244 else if (ScalarTy->isFloatTy()) 3245 V = ConstantFP::get(CurTy, APFloat(APFloat::IEEEsingle(), 3246 APInt(32, (uint32_t)Record[0]))); 3247 else if (ScalarTy->isDoubleTy()) 3248 V = ConstantFP::get( 3249 CurTy, APFloat(APFloat::IEEEdouble(), APInt(64, Record[0]))); 3250 else if (ScalarTy->isX86_FP80Ty()) { 3251 // Bits are not stored the same way as a normal i80 APInt, compensate. 3252 uint64_t Rearrange[2]; 3253 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 3254 Rearrange[1] = Record[0] >> 48; 3255 V = ConstantFP::get( 3256 CurTy, APFloat(APFloat::x87DoubleExtended(), APInt(80, Rearrange))); 3257 } else if (ScalarTy->isFP128Ty()) 3258 V = ConstantFP::get(CurTy, 3259 APFloat(APFloat::IEEEquad(), APInt(128, Record))); 3260 else if (ScalarTy->isPPC_FP128Ty()) 3261 V = ConstantFP::get( 3262 CurTy, APFloat(APFloat::PPCDoubleDouble(), APInt(128, Record))); 3263 else 3264 V = PoisonValue::get(CurTy); 3265 break; 3266 } 3267 3268 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 3269 if (Record.empty()) 3270 return error("Invalid aggregate record"); 3271 3272 unsigned Size = Record.size(); 3273 SmallVector<unsigned, 16> Elts; 3274 for (unsigned i = 0; i != Size; ++i) 3275 Elts.push_back(Record[i]); 3276 3277 if (isa<StructType>(CurTy)) { 3278 V = BitcodeConstant::create( 3279 Alloc, CurTy, BitcodeConstant::ConstantStructOpcode, Elts); 3280 } else if (isa<ArrayType>(CurTy)) { 3281 V = BitcodeConstant::create(Alloc, CurTy, 3282 BitcodeConstant::ConstantArrayOpcode, Elts); 3283 } else if (isa<VectorType>(CurTy)) { 3284 V = BitcodeConstant::create( 3285 Alloc, CurTy, BitcodeConstant::ConstantVectorOpcode, Elts); 3286 } else { 3287 V = PoisonValue::get(CurTy); 3288 } 3289 break; 3290 } 3291 case bitc::CST_CODE_STRING: // STRING: [values] 3292 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 3293 if (Record.empty()) 3294 return error("Invalid string record"); 3295 3296 SmallString<16> Elts(Record.begin(), Record.end()); 3297 V = ConstantDataArray::getString(Context, Elts, 3298 BitCode == bitc::CST_CODE_CSTRING); 3299 break; 3300 } 3301 case bitc::CST_CODE_DATA: {// DATA: [n x value] 3302 if (Record.empty()) 3303 return error("Invalid data record"); 3304 3305 Type *EltTy; 3306 if (auto *Array = dyn_cast<ArrayType>(CurTy)) 3307 EltTy = Array->getElementType(); 3308 else 3309 EltTy = cast<VectorType>(CurTy)->getElementType(); 3310 if (EltTy->isIntegerTy(8)) { 3311 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 3312 if (isa<VectorType>(CurTy)) 3313 V = ConstantDataVector::get(Context, Elts); 3314 else 3315 V = ConstantDataArray::get(Context, Elts); 3316 } else if (EltTy->isIntegerTy(16)) { 3317 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 3318 if (isa<VectorType>(CurTy)) 3319 V = ConstantDataVector::get(Context, Elts); 3320 else 3321 V = ConstantDataArray::get(Context, Elts); 3322 } else if (EltTy->isIntegerTy(32)) { 3323 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 3324 if (isa<VectorType>(CurTy)) 3325 V = ConstantDataVector::get(Context, Elts); 3326 else 3327 V = ConstantDataArray::get(Context, Elts); 3328 } else if (EltTy->isIntegerTy(64)) { 3329 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 3330 if (isa<VectorType>(CurTy)) 3331 V = ConstantDataVector::get(Context, Elts); 3332 else 3333 V = ConstantDataArray::get(Context, Elts); 3334 } else if (EltTy->isHalfTy()) { 3335 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 3336 if (isa<VectorType>(CurTy)) 3337 V = ConstantDataVector::getFP(EltTy, Elts); 3338 else 3339 V = ConstantDataArray::getFP(EltTy, Elts); 3340 } else if (EltTy->isBFloatTy()) { 3341 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 3342 if (isa<VectorType>(CurTy)) 3343 V = ConstantDataVector::getFP(EltTy, Elts); 3344 else 3345 V = ConstantDataArray::getFP(EltTy, Elts); 3346 } else if (EltTy->isFloatTy()) { 3347 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 3348 if (isa<VectorType>(CurTy)) 3349 V = ConstantDataVector::getFP(EltTy, Elts); 3350 else 3351 V = ConstantDataArray::getFP(EltTy, Elts); 3352 } else if (EltTy->isDoubleTy()) { 3353 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 3354 if (isa<VectorType>(CurTy)) 3355 V = ConstantDataVector::getFP(EltTy, Elts); 3356 else 3357 V = ConstantDataArray::getFP(EltTy, Elts); 3358 } else { 3359 return error("Invalid type for value"); 3360 } 3361 break; 3362 } 3363 case bitc::CST_CODE_CE_UNOP: { // CE_UNOP: [opcode, opval] 3364 if (Record.size() < 2) 3365 return error("Invalid unary op constexpr record"); 3366 int Opc = getDecodedUnaryOpcode(Record[0], CurTy); 3367 if (Opc < 0) { 3368 V = PoisonValue::get(CurTy); // Unknown unop. 3369 } else { 3370 V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[1]); 3371 } 3372 break; 3373 } 3374 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 3375 if (Record.size() < 3) 3376 return error("Invalid binary op constexpr record"); 3377 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 3378 if (Opc < 0) { 3379 V = PoisonValue::get(CurTy); // Unknown binop. 3380 } else { 3381 uint8_t Flags = 0; 3382 if (Record.size() >= 4) { 3383 if (Opc == Instruction::Add || 3384 Opc == Instruction::Sub || 3385 Opc == Instruction::Mul || 3386 Opc == Instruction::Shl) { 3387 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3388 Flags |= OverflowingBinaryOperator::NoSignedWrap; 3389 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3390 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 3391 } else if (Opc == Instruction::SDiv || 3392 Opc == Instruction::UDiv || 3393 Opc == Instruction::LShr || 3394 Opc == Instruction::AShr) { 3395 if (Record[3] & (1 << bitc::PEO_EXACT)) 3396 Flags |= PossiblyExactOperator::IsExact; 3397 } 3398 } 3399 V = BitcodeConstant::create(Alloc, CurTy, {(uint8_t)Opc, Flags}, 3400 {(unsigned)Record[1], (unsigned)Record[2]}); 3401 } 3402 break; 3403 } 3404 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 3405 if (Record.size() < 3) 3406 return error("Invalid cast constexpr record"); 3407 int Opc = getDecodedCastOpcode(Record[0]); 3408 if (Opc < 0) { 3409 V = PoisonValue::get(CurTy); // Unknown cast. 3410 } else { 3411 unsigned OpTyID = Record[1]; 3412 Type *OpTy = getTypeByID(OpTyID); 3413 if (!OpTy) 3414 return error("Invalid cast constexpr record"); 3415 V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[2]); 3416 } 3417 break; 3418 } 3419 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands] 3420 case bitc::CST_CODE_CE_GEP_OLD: // [ty, n x operands] 3421 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX_OLD: // [ty, flags, n x 3422 // operands] 3423 case bitc::CST_CODE_CE_GEP: // [ty, flags, n x operands] 3424 case bitc::CST_CODE_CE_GEP_WITH_INRANGE: { // [ty, flags, start, end, n x 3425 // operands] 3426 if (Record.size() < 2) 3427 return error("Constant GEP record must have at least two elements"); 3428 unsigned OpNum = 0; 3429 Type *PointeeType = nullptr; 3430 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX_OLD || 3431 BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE || 3432 BitCode == bitc::CST_CODE_CE_GEP || Record.size() % 2) 3433 PointeeType = getTypeByID(Record[OpNum++]); 3434 3435 uint64_t Flags = 0; 3436 std::optional<ConstantRange> InRange; 3437 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX_OLD) { 3438 uint64_t Op = Record[OpNum++]; 3439 Flags = Op & 1; // inbounds 3440 unsigned InRangeIndex = Op >> 1; 3441 // "Upgrade" inrange by dropping it. The feature is too niche to 3442 // bother. 3443 (void)InRangeIndex; 3444 } else if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE) { 3445 Flags = Record[OpNum++]; 3446 Expected<ConstantRange> MaybeInRange = 3447 readBitWidthAndConstantRange(Record, OpNum); 3448 if (!MaybeInRange) 3449 return MaybeInRange.takeError(); 3450 InRange = MaybeInRange.get(); 3451 } else if (BitCode == bitc::CST_CODE_CE_GEP) { 3452 Flags = Record[OpNum++]; 3453 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 3454 Flags = (1 << bitc::GEP_INBOUNDS); 3455 3456 SmallVector<unsigned, 16> Elts; 3457 unsigned BaseTypeID = Record[OpNum]; 3458 while (OpNum != Record.size()) { 3459 unsigned ElTyID = Record[OpNum++]; 3460 Type *ElTy = getTypeByID(ElTyID); 3461 if (!ElTy) 3462 return error("Invalid getelementptr constexpr record"); 3463 Elts.push_back(Record[OpNum++]); 3464 } 3465 3466 if (Elts.size() < 1) 3467 return error("Invalid gep with no operands"); 3468 3469 Type *BaseType = getTypeByID(BaseTypeID); 3470 if (isa<VectorType>(BaseType)) { 3471 BaseTypeID = getContainedTypeID(BaseTypeID, 0); 3472 BaseType = getTypeByID(BaseTypeID); 3473 } 3474 3475 PointerType *OrigPtrTy = dyn_cast_or_null<PointerType>(BaseType); 3476 if (!OrigPtrTy) 3477 return error("GEP base operand must be pointer or vector of pointer"); 3478 3479 if (!PointeeType) { 3480 PointeeType = getPtrElementTypeByID(BaseTypeID); 3481 if (!PointeeType) 3482 return error("Missing element type for old-style constant GEP"); 3483 } 3484 3485 V = BitcodeConstant::create( 3486 Alloc, CurTy, 3487 {Instruction::GetElementPtr, uint8_t(Flags), PointeeType, InRange}, 3488 Elts); 3489 break; 3490 } 3491 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 3492 if (Record.size() < 3) 3493 return error("Invalid select constexpr record"); 3494 3495 V = BitcodeConstant::create( 3496 Alloc, CurTy, Instruction::Select, 3497 {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]}); 3498 break; 3499 } 3500 case bitc::CST_CODE_CE_EXTRACTELT 3501 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 3502 if (Record.size() < 3) 3503 return error("Invalid extractelement constexpr record"); 3504 unsigned OpTyID = Record[0]; 3505 VectorType *OpTy = 3506 dyn_cast_or_null<VectorType>(getTypeByID(OpTyID)); 3507 if (!OpTy) 3508 return error("Invalid extractelement constexpr record"); 3509 unsigned IdxRecord; 3510 if (Record.size() == 4) { 3511 unsigned IdxTyID = Record[2]; 3512 Type *IdxTy = getTypeByID(IdxTyID); 3513 if (!IdxTy) 3514 return error("Invalid extractelement constexpr record"); 3515 IdxRecord = Record[3]; 3516 } else { 3517 // Deprecated, but still needed to read old bitcode files. 3518 IdxRecord = Record[2]; 3519 } 3520 V = BitcodeConstant::create(Alloc, CurTy, Instruction::ExtractElement, 3521 {(unsigned)Record[1], IdxRecord}); 3522 break; 3523 } 3524 case bitc::CST_CODE_CE_INSERTELT 3525 : { // CE_INSERTELT: [opval, opval, opty, opval] 3526 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 3527 if (Record.size() < 3 || !OpTy) 3528 return error("Invalid insertelement constexpr record"); 3529 unsigned IdxRecord; 3530 if (Record.size() == 4) { 3531 unsigned IdxTyID = Record[2]; 3532 Type *IdxTy = getTypeByID(IdxTyID); 3533 if (!IdxTy) 3534 return error("Invalid insertelement constexpr record"); 3535 IdxRecord = Record[3]; 3536 } else { 3537 // Deprecated, but still needed to read old bitcode files. 3538 IdxRecord = Record[2]; 3539 } 3540 V = BitcodeConstant::create( 3541 Alloc, CurTy, Instruction::InsertElement, 3542 {(unsigned)Record[0], (unsigned)Record[1], IdxRecord}); 3543 break; 3544 } 3545 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 3546 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 3547 if (Record.size() < 3 || !OpTy) 3548 return error("Invalid shufflevector constexpr record"); 3549 V = BitcodeConstant::create( 3550 Alloc, CurTy, Instruction::ShuffleVector, 3551 {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]}); 3552 break; 3553 } 3554 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 3555 VectorType *RTy = dyn_cast<VectorType>(CurTy); 3556 VectorType *OpTy = 3557 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 3558 if (Record.size() < 4 || !RTy || !OpTy) 3559 return error("Invalid shufflevector constexpr record"); 3560 V = BitcodeConstant::create( 3561 Alloc, CurTy, Instruction::ShuffleVector, 3562 {(unsigned)Record[1], (unsigned)Record[2], (unsigned)Record[3]}); 3563 break; 3564 } 3565 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 3566 if (Record.size() < 4) 3567 return error("Invalid cmp constexpt record"); 3568 unsigned OpTyID = Record[0]; 3569 Type *OpTy = getTypeByID(OpTyID); 3570 if (!OpTy) 3571 return error("Invalid cmp constexpr record"); 3572 V = BitcodeConstant::create( 3573 Alloc, CurTy, 3574 {(uint8_t)(OpTy->isFPOrFPVectorTy() ? Instruction::FCmp 3575 : Instruction::ICmp), 3576 (uint8_t)Record[3]}, 3577 {(unsigned)Record[1], (unsigned)Record[2]}); 3578 break; 3579 } 3580 // This maintains backward compatibility, pre-asm dialect keywords. 3581 // Deprecated, but still needed to read old bitcode files. 3582 case bitc::CST_CODE_INLINEASM_OLD: { 3583 if (Record.size() < 2) 3584 return error("Invalid inlineasm record"); 3585 std::string AsmStr, ConstrStr; 3586 bool HasSideEffects = Record[0] & 1; 3587 bool IsAlignStack = Record[0] >> 1; 3588 unsigned AsmStrSize = Record[1]; 3589 if (2+AsmStrSize >= Record.size()) 3590 return error("Invalid inlineasm record"); 3591 unsigned ConstStrSize = Record[2+AsmStrSize]; 3592 if (3+AsmStrSize+ConstStrSize > Record.size()) 3593 return error("Invalid inlineasm record"); 3594 3595 for (unsigned i = 0; i != AsmStrSize; ++i) 3596 AsmStr += (char)Record[2+i]; 3597 for (unsigned i = 0; i != ConstStrSize; ++i) 3598 ConstrStr += (char)Record[3+AsmStrSize+i]; 3599 UpgradeInlineAsmString(&AsmStr); 3600 if (!CurElemTy) 3601 return error("Missing element type for old-style inlineasm"); 3602 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr, 3603 HasSideEffects, IsAlignStack); 3604 break; 3605 } 3606 // This version adds support for the asm dialect keywords (e.g., 3607 // inteldialect). 3608 case bitc::CST_CODE_INLINEASM_OLD2: { 3609 if (Record.size() < 2) 3610 return error("Invalid inlineasm record"); 3611 std::string AsmStr, ConstrStr; 3612 bool HasSideEffects = Record[0] & 1; 3613 bool IsAlignStack = (Record[0] >> 1) & 1; 3614 unsigned AsmDialect = Record[0] >> 2; 3615 unsigned AsmStrSize = Record[1]; 3616 if (2+AsmStrSize >= Record.size()) 3617 return error("Invalid inlineasm record"); 3618 unsigned ConstStrSize = Record[2+AsmStrSize]; 3619 if (3+AsmStrSize+ConstStrSize > Record.size()) 3620 return error("Invalid inlineasm record"); 3621 3622 for (unsigned i = 0; i != AsmStrSize; ++i) 3623 AsmStr += (char)Record[2+i]; 3624 for (unsigned i = 0; i != ConstStrSize; ++i) 3625 ConstrStr += (char)Record[3+AsmStrSize+i]; 3626 UpgradeInlineAsmString(&AsmStr); 3627 if (!CurElemTy) 3628 return error("Missing element type for old-style inlineasm"); 3629 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr, 3630 HasSideEffects, IsAlignStack, 3631 InlineAsm::AsmDialect(AsmDialect)); 3632 break; 3633 } 3634 // This version adds support for the unwind keyword. 3635 case bitc::CST_CODE_INLINEASM_OLD3: { 3636 if (Record.size() < 2) 3637 return error("Invalid inlineasm record"); 3638 unsigned OpNum = 0; 3639 std::string AsmStr, ConstrStr; 3640 bool HasSideEffects = Record[OpNum] & 1; 3641 bool IsAlignStack = (Record[OpNum] >> 1) & 1; 3642 unsigned AsmDialect = (Record[OpNum] >> 2) & 1; 3643 bool CanThrow = (Record[OpNum] >> 3) & 1; 3644 ++OpNum; 3645 unsigned AsmStrSize = Record[OpNum]; 3646 ++OpNum; 3647 if (OpNum + AsmStrSize >= Record.size()) 3648 return error("Invalid inlineasm record"); 3649 unsigned ConstStrSize = Record[OpNum + AsmStrSize]; 3650 if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size()) 3651 return error("Invalid inlineasm record"); 3652 3653 for (unsigned i = 0; i != AsmStrSize; ++i) 3654 AsmStr += (char)Record[OpNum + i]; 3655 ++OpNum; 3656 for (unsigned i = 0; i != ConstStrSize; ++i) 3657 ConstrStr += (char)Record[OpNum + AsmStrSize + i]; 3658 UpgradeInlineAsmString(&AsmStr); 3659 if (!CurElemTy) 3660 return error("Missing element type for old-style inlineasm"); 3661 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr, 3662 HasSideEffects, IsAlignStack, 3663 InlineAsm::AsmDialect(AsmDialect), CanThrow); 3664 break; 3665 } 3666 // This version adds explicit function type. 3667 case bitc::CST_CODE_INLINEASM: { 3668 if (Record.size() < 3) 3669 return error("Invalid inlineasm record"); 3670 unsigned OpNum = 0; 3671 auto *FnTy = dyn_cast_or_null<FunctionType>(getTypeByID(Record[OpNum])); 3672 ++OpNum; 3673 if (!FnTy) 3674 return error("Invalid inlineasm record"); 3675 std::string AsmStr, ConstrStr; 3676 bool HasSideEffects = Record[OpNum] & 1; 3677 bool IsAlignStack = (Record[OpNum] >> 1) & 1; 3678 unsigned AsmDialect = (Record[OpNum] >> 2) & 1; 3679 bool CanThrow = (Record[OpNum] >> 3) & 1; 3680 ++OpNum; 3681 unsigned AsmStrSize = Record[OpNum]; 3682 ++OpNum; 3683 if (OpNum + AsmStrSize >= Record.size()) 3684 return error("Invalid inlineasm record"); 3685 unsigned ConstStrSize = Record[OpNum + AsmStrSize]; 3686 if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size()) 3687 return error("Invalid inlineasm record"); 3688 3689 for (unsigned i = 0; i != AsmStrSize; ++i) 3690 AsmStr += (char)Record[OpNum + i]; 3691 ++OpNum; 3692 for (unsigned i = 0; i != ConstStrSize; ++i) 3693 ConstrStr += (char)Record[OpNum + AsmStrSize + i]; 3694 UpgradeInlineAsmString(&AsmStr); 3695 V = InlineAsm::get(FnTy, AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 3696 InlineAsm::AsmDialect(AsmDialect), CanThrow); 3697 break; 3698 } 3699 case bitc::CST_CODE_BLOCKADDRESS:{ 3700 if (Record.size() < 3) 3701 return error("Invalid blockaddress record"); 3702 unsigned FnTyID = Record[0]; 3703 Type *FnTy = getTypeByID(FnTyID); 3704 if (!FnTy) 3705 return error("Invalid blockaddress record"); 3706 V = BitcodeConstant::create( 3707 Alloc, CurTy, 3708 {BitcodeConstant::BlockAddressOpcode, 0, (unsigned)Record[2]}, 3709 Record[1]); 3710 break; 3711 } 3712 case bitc::CST_CODE_DSO_LOCAL_EQUIVALENT: { 3713 if (Record.size() < 2) 3714 return error("Invalid dso_local record"); 3715 unsigned GVTyID = Record[0]; 3716 Type *GVTy = getTypeByID(GVTyID); 3717 if (!GVTy) 3718 return error("Invalid dso_local record"); 3719 V = BitcodeConstant::create( 3720 Alloc, CurTy, BitcodeConstant::DSOLocalEquivalentOpcode, Record[1]); 3721 break; 3722 } 3723 case bitc::CST_CODE_NO_CFI_VALUE: { 3724 if (Record.size() < 2) 3725 return error("Invalid no_cfi record"); 3726 unsigned GVTyID = Record[0]; 3727 Type *GVTy = getTypeByID(GVTyID); 3728 if (!GVTy) 3729 return error("Invalid no_cfi record"); 3730 V = BitcodeConstant::create(Alloc, CurTy, BitcodeConstant::NoCFIOpcode, 3731 Record[1]); 3732 break; 3733 } 3734 case bitc::CST_CODE_PTRAUTH: { 3735 if (Record.size() < 4) 3736 return error("Invalid ptrauth record"); 3737 // Ptr, Key, Disc, AddrDisc 3738 V = BitcodeConstant::create(Alloc, CurTy, 3739 BitcodeConstant::ConstantPtrAuthOpcode, 3740 {(unsigned)Record[0], (unsigned)Record[1], 3741 (unsigned)Record[2], (unsigned)Record[3]}); 3742 break; 3743 } 3744 } 3745 3746 assert(V->getType() == getTypeByID(CurTyID) && "Incorrect result type ID"); 3747 if (Error Err = ValueList.assignValue(NextCstNo, V, CurTyID)) 3748 return Err; 3749 ++NextCstNo; 3750 } 3751 } 3752 3753 Error BitcodeReader::parseUseLists() { 3754 if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 3755 return Err; 3756 3757 // Read all the records. 3758 SmallVector<uint64_t, 64> Record; 3759 3760 while (true) { 3761 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 3762 if (!MaybeEntry) 3763 return MaybeEntry.takeError(); 3764 BitstreamEntry Entry = MaybeEntry.get(); 3765 3766 switch (Entry.Kind) { 3767 case BitstreamEntry::SubBlock: // Handled for us already. 3768 case BitstreamEntry::Error: 3769 return error("Malformed block"); 3770 case BitstreamEntry::EndBlock: 3771 return Error::success(); 3772 case BitstreamEntry::Record: 3773 // The interesting case. 3774 break; 3775 } 3776 3777 // Read a use list record. 3778 Record.clear(); 3779 bool IsBB = false; 3780 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 3781 if (!MaybeRecord) 3782 return MaybeRecord.takeError(); 3783 switch (MaybeRecord.get()) { 3784 default: // Default behavior: unknown type. 3785 break; 3786 case bitc::USELIST_CODE_BB: 3787 IsBB = true; 3788 [[fallthrough]]; 3789 case bitc::USELIST_CODE_DEFAULT: { 3790 unsigned RecordLength = Record.size(); 3791 if (RecordLength < 3) 3792 // Records should have at least an ID and two indexes. 3793 return error("Invalid record"); 3794 unsigned ID = Record.pop_back_val(); 3795 3796 Value *V; 3797 if (IsBB) { 3798 assert(ID < FunctionBBs.size() && "Basic block not found"); 3799 V = FunctionBBs[ID]; 3800 } else 3801 V = ValueList[ID]; 3802 unsigned NumUses = 0; 3803 SmallDenseMap<const Use *, unsigned, 16> Order; 3804 for (const Use &U : V->materialized_uses()) { 3805 if (++NumUses > Record.size()) 3806 break; 3807 Order[&U] = Record[NumUses - 1]; 3808 } 3809 if (Order.size() != Record.size() || NumUses > Record.size()) 3810 // Mismatches can happen if the functions are being materialized lazily 3811 // (out-of-order), or a value has been upgraded. 3812 break; 3813 3814 V->sortUseList([&](const Use &L, const Use &R) { 3815 return Order.lookup(&L) < Order.lookup(&R); 3816 }); 3817 break; 3818 } 3819 } 3820 } 3821 } 3822 3823 /// When we see the block for metadata, remember where it is and then skip it. 3824 /// This lets us lazily deserialize the metadata. 3825 Error BitcodeReader::rememberAndSkipMetadata() { 3826 // Save the current stream state. 3827 uint64_t CurBit = Stream.GetCurrentBitNo(); 3828 DeferredMetadataInfo.push_back(CurBit); 3829 3830 // Skip over the block for now. 3831 if (Error Err = Stream.SkipBlock()) 3832 return Err; 3833 return Error::success(); 3834 } 3835 3836 Error BitcodeReader::materializeMetadata() { 3837 for (uint64_t BitPos : DeferredMetadataInfo) { 3838 // Move the bit stream to the saved position. 3839 if (Error JumpFailed = Stream.JumpToBit(BitPos)) 3840 return JumpFailed; 3841 if (Error Err = MDLoader->parseModuleMetadata()) 3842 return Err; 3843 } 3844 3845 // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level 3846 // metadata. Only upgrade if the new option doesn't exist to avoid upgrade 3847 // multiple times. 3848 if (!TheModule->getNamedMetadata("llvm.linker.options")) { 3849 if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) { 3850 NamedMDNode *LinkerOpts = 3851 TheModule->getOrInsertNamedMetadata("llvm.linker.options"); 3852 for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands()) 3853 LinkerOpts->addOperand(cast<MDNode>(MDOptions)); 3854 } 3855 } 3856 3857 DeferredMetadataInfo.clear(); 3858 return Error::success(); 3859 } 3860 3861 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 3862 3863 /// When we see the block for a function body, remember where it is and then 3864 /// skip it. This lets us lazily deserialize the functions. 3865 Error BitcodeReader::rememberAndSkipFunctionBody() { 3866 // Get the function we are talking about. 3867 if (FunctionsWithBodies.empty()) 3868 return error("Insufficient function protos"); 3869 3870 Function *Fn = FunctionsWithBodies.back(); 3871 FunctionsWithBodies.pop_back(); 3872 3873 // Save the current stream state. 3874 uint64_t CurBit = Stream.GetCurrentBitNo(); 3875 assert( 3876 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 3877 "Mismatch between VST and scanned function offsets"); 3878 DeferredFunctionInfo[Fn] = CurBit; 3879 3880 // Skip over the function block for now. 3881 if (Error Err = Stream.SkipBlock()) 3882 return Err; 3883 return Error::success(); 3884 } 3885 3886 Error BitcodeReader::globalCleanup() { 3887 // Patch the initializers for globals and aliases up. 3888 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3889 return Err; 3890 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 3891 return error("Malformed global initializer set"); 3892 3893 // Look for intrinsic functions which need to be upgraded at some point 3894 // and functions that need to have their function attributes upgraded. 3895 for (Function &F : *TheModule) { 3896 MDLoader->upgradeDebugIntrinsics(F); 3897 Function *NewFn; 3898 // If PreserveInputDbgFormat=true, then we don't know whether we want 3899 // intrinsics or records, and we won't perform any conversions in either 3900 // case, so don't upgrade intrinsics to records. 3901 if (UpgradeIntrinsicFunction( 3902 &F, NewFn, PreserveInputDbgFormat != cl::boolOrDefault::BOU_TRUE)) 3903 UpgradedIntrinsics[&F] = NewFn; 3904 // Look for functions that rely on old function attribute behavior. 3905 UpgradeFunctionAttributes(F); 3906 } 3907 3908 // Look for global variables which need to be renamed. 3909 std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables; 3910 for (GlobalVariable &GV : TheModule->globals()) 3911 if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV)) 3912 UpgradedVariables.emplace_back(&GV, Upgraded); 3913 for (auto &Pair : UpgradedVariables) { 3914 Pair.first->eraseFromParent(); 3915 TheModule->insertGlobalVariable(Pair.second); 3916 } 3917 3918 // Force deallocation of memory for these vectors to favor the client that 3919 // want lazy deserialization. 3920 std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits); 3921 std::vector<std::pair<GlobalValue *, unsigned>>().swap(IndirectSymbolInits); 3922 return Error::success(); 3923 } 3924 3925 /// Support for lazy parsing of function bodies. This is required if we 3926 /// either have an old bitcode file without a VST forward declaration record, 3927 /// or if we have an anonymous function being materialized, since anonymous 3928 /// functions do not have a name and are therefore not in the VST. 3929 Error BitcodeReader::rememberAndSkipFunctionBodies() { 3930 if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit)) 3931 return JumpFailed; 3932 3933 if (Stream.AtEndOfStream()) 3934 return error("Could not find function in stream"); 3935 3936 if (!SeenFirstFunctionBody) 3937 return error("Trying to materialize functions before seeing function blocks"); 3938 3939 // An old bitcode file with the symbol table at the end would have 3940 // finished the parse greedily. 3941 assert(SeenValueSymbolTable); 3942 3943 SmallVector<uint64_t, 64> Record; 3944 3945 while (true) { 3946 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3947 if (!MaybeEntry) 3948 return MaybeEntry.takeError(); 3949 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3950 3951 switch (Entry.Kind) { 3952 default: 3953 return error("Expect SubBlock"); 3954 case BitstreamEntry::SubBlock: 3955 switch (Entry.ID) { 3956 default: 3957 return error("Expect function block"); 3958 case bitc::FUNCTION_BLOCK_ID: 3959 if (Error Err = rememberAndSkipFunctionBody()) 3960 return Err; 3961 NextUnreadBit = Stream.GetCurrentBitNo(); 3962 return Error::success(); 3963 } 3964 } 3965 } 3966 } 3967 3968 Error BitcodeReaderBase::readBlockInfo() { 3969 Expected<std::optional<BitstreamBlockInfo>> MaybeNewBlockInfo = 3970 Stream.ReadBlockInfoBlock(); 3971 if (!MaybeNewBlockInfo) 3972 return MaybeNewBlockInfo.takeError(); 3973 std::optional<BitstreamBlockInfo> NewBlockInfo = 3974 std::move(MaybeNewBlockInfo.get()); 3975 if (!NewBlockInfo) 3976 return error("Malformed block"); 3977 BlockInfo = std::move(*NewBlockInfo); 3978 return Error::success(); 3979 } 3980 3981 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) { 3982 // v1: [selection_kind, name] 3983 // v2: [strtab_offset, strtab_size, selection_kind] 3984 StringRef Name; 3985 std::tie(Name, Record) = readNameFromStrtab(Record); 3986 3987 if (Record.empty()) 3988 return error("Invalid record"); 3989 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 3990 std::string OldFormatName; 3991 if (!UseStrtab) { 3992 if (Record.size() < 2) 3993 return error("Invalid record"); 3994 unsigned ComdatNameSize = Record[1]; 3995 if (ComdatNameSize > Record.size() - 2) 3996 return error("Comdat name size too large"); 3997 OldFormatName.reserve(ComdatNameSize); 3998 for (unsigned i = 0; i != ComdatNameSize; ++i) 3999 OldFormatName += (char)Record[2 + i]; 4000 Name = OldFormatName; 4001 } 4002 Comdat *C = TheModule->getOrInsertComdat(Name); 4003 C->setSelectionKind(SK); 4004 ComdatList.push_back(C); 4005 return Error::success(); 4006 } 4007 4008 static void inferDSOLocal(GlobalValue *GV) { 4009 // infer dso_local from linkage and visibility if it is not encoded. 4010 if (GV->hasLocalLinkage() || 4011 (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())) 4012 GV->setDSOLocal(true); 4013 } 4014 4015 GlobalValue::SanitizerMetadata deserializeSanitizerMetadata(unsigned V) { 4016 GlobalValue::SanitizerMetadata Meta; 4017 if (V & (1 << 0)) 4018 Meta.NoAddress = true; 4019 if (V & (1 << 1)) 4020 Meta.NoHWAddress = true; 4021 if (V & (1 << 2)) 4022 Meta.Memtag = true; 4023 if (V & (1 << 3)) 4024 Meta.IsDynInit = true; 4025 return Meta; 4026 } 4027 4028 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) { 4029 // v1: [pointer type, isconst, initid, linkage, alignment, section, 4030 // visibility, threadlocal, unnamed_addr, externally_initialized, 4031 // dllstorageclass, comdat, attributes, preemption specifier, 4032 // partition strtab offset, partition strtab size] (name in VST) 4033 // v2: [strtab_offset, strtab_size, v1] 4034 // v3: [v2, code_model] 4035 StringRef Name; 4036 std::tie(Name, Record) = readNameFromStrtab(Record); 4037 4038 if (Record.size() < 6) 4039 return error("Invalid record"); 4040 unsigned TyID = Record[0]; 4041 Type *Ty = getTypeByID(TyID); 4042 if (!Ty) 4043 return error("Invalid record"); 4044 bool isConstant = Record[1] & 1; 4045 bool explicitType = Record[1] & 2; 4046 unsigned AddressSpace; 4047 if (explicitType) { 4048 AddressSpace = Record[1] >> 2; 4049 } else { 4050 if (!Ty->isPointerTy()) 4051 return error("Invalid type for value"); 4052 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 4053 TyID = getContainedTypeID(TyID); 4054 Ty = getTypeByID(TyID); 4055 if (!Ty) 4056 return error("Missing element type for old-style global"); 4057 } 4058 4059 uint64_t RawLinkage = Record[3]; 4060 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 4061 MaybeAlign Alignment; 4062 if (Error Err = parseAlignmentValue(Record[4], Alignment)) 4063 return Err; 4064 std::string Section; 4065 if (Record[5]) { 4066 if (Record[5] - 1 >= SectionTable.size()) 4067 return error("Invalid ID"); 4068 Section = SectionTable[Record[5] - 1]; 4069 } 4070 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 4071 // Local linkage must have default visibility. 4072 // auto-upgrade `hidden` and `protected` for old bitcode. 4073 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 4074 Visibility = getDecodedVisibility(Record[6]); 4075 4076 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 4077 if (Record.size() > 7) 4078 TLM = getDecodedThreadLocalMode(Record[7]); 4079 4080 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 4081 if (Record.size() > 8) 4082 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); 4083 4084 bool ExternallyInitialized = false; 4085 if (Record.size() > 9) 4086 ExternallyInitialized = Record[9]; 4087 4088 GlobalVariable *NewGV = 4089 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name, 4090 nullptr, TLM, AddressSpace, ExternallyInitialized); 4091 if (Alignment) 4092 NewGV->setAlignment(*Alignment); 4093 if (!Section.empty()) 4094 NewGV->setSection(Section); 4095 NewGV->setVisibility(Visibility); 4096 NewGV->setUnnamedAddr(UnnamedAddr); 4097 4098 if (Record.size() > 10) { 4099 // A GlobalValue with local linkage cannot have a DLL storage class. 4100 if (!NewGV->hasLocalLinkage()) { 4101 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 4102 } 4103 } else { 4104 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 4105 } 4106 4107 ValueList.push_back(NewGV, getVirtualTypeID(NewGV->getType(), TyID)); 4108 4109 // Remember which value to use for the global initializer. 4110 if (unsigned InitID = Record[2]) 4111 GlobalInits.push_back(std::make_pair(NewGV, InitID - 1)); 4112 4113 if (Record.size() > 11) { 4114 if (unsigned ComdatID = Record[11]) { 4115 if (ComdatID > ComdatList.size()) 4116 return error("Invalid global variable comdat ID"); 4117 NewGV->setComdat(ComdatList[ComdatID - 1]); 4118 } 4119 } else if (hasImplicitComdat(RawLinkage)) { 4120 ImplicitComdatObjects.insert(NewGV); 4121 } 4122 4123 if (Record.size() > 12) { 4124 auto AS = getAttributes(Record[12]).getFnAttrs(); 4125 NewGV->setAttributes(AS); 4126 } 4127 4128 if (Record.size() > 13) { 4129 NewGV->setDSOLocal(getDecodedDSOLocal(Record[13])); 4130 } 4131 inferDSOLocal(NewGV); 4132 4133 // Check whether we have enough values to read a partition name. 4134 if (Record.size() > 15) 4135 NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15])); 4136 4137 if (Record.size() > 16 && Record[16]) { 4138 llvm::GlobalValue::SanitizerMetadata Meta = 4139 deserializeSanitizerMetadata(Record[16]); 4140 NewGV->setSanitizerMetadata(Meta); 4141 } 4142 4143 if (Record.size() > 17 && Record[17]) { 4144 if (auto CM = getDecodedCodeModel(Record[17])) 4145 NewGV->setCodeModel(*CM); 4146 else 4147 return error("Invalid global variable code model"); 4148 } 4149 4150 return Error::success(); 4151 } 4152 4153 void BitcodeReader::callValueTypeCallback(Value *F, unsigned TypeID) { 4154 if (ValueTypeCallback) { 4155 (*ValueTypeCallback)( 4156 F, TypeID, [this](unsigned I) { return getTypeByID(I); }, 4157 [this](unsigned I, unsigned J) { return getContainedTypeID(I, J); }); 4158 } 4159 } 4160 4161 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) { 4162 // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section, 4163 // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat, 4164 // prefixdata, personalityfn, preemption specifier, addrspace] (name in VST) 4165 // v2: [strtab_offset, strtab_size, v1] 4166 StringRef Name; 4167 std::tie(Name, Record) = readNameFromStrtab(Record); 4168 4169 if (Record.size() < 8) 4170 return error("Invalid record"); 4171 unsigned FTyID = Record[0]; 4172 Type *FTy = getTypeByID(FTyID); 4173 if (!FTy) 4174 return error("Invalid record"); 4175 if (isa<PointerType>(FTy)) { 4176 FTyID = getContainedTypeID(FTyID, 0); 4177 FTy = getTypeByID(FTyID); 4178 if (!FTy) 4179 return error("Missing element type for old-style function"); 4180 } 4181 4182 if (!isa<FunctionType>(FTy)) 4183 return error("Invalid type for value"); 4184 auto CC = static_cast<CallingConv::ID>(Record[1]); 4185 if (CC & ~CallingConv::MaxID) 4186 return error("Invalid calling convention ID"); 4187 4188 unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace(); 4189 if (Record.size() > 16) 4190 AddrSpace = Record[16]; 4191 4192 Function *Func = 4193 Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage, 4194 AddrSpace, Name, TheModule); 4195 4196 assert(Func->getFunctionType() == FTy && 4197 "Incorrect fully specified type provided for function"); 4198 FunctionTypeIDs[Func] = FTyID; 4199 4200 Func->setCallingConv(CC); 4201 bool isProto = Record[2]; 4202 uint64_t RawLinkage = Record[3]; 4203 Func->setLinkage(getDecodedLinkage(RawLinkage)); 4204 Func->setAttributes(getAttributes(Record[4])); 4205 callValueTypeCallback(Func, FTyID); 4206 4207 // Upgrade any old-style byval or sret without a type by propagating the 4208 // argument's pointee type. There should be no opaque pointers where the byval 4209 // type is implicit. 4210 for (unsigned i = 0; i != Func->arg_size(); ++i) { 4211 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet, 4212 Attribute::InAlloca}) { 4213 if (!Func->hasParamAttribute(i, Kind)) 4214 continue; 4215 4216 if (Func->getParamAttribute(i, Kind).getValueAsType()) 4217 continue; 4218 4219 Func->removeParamAttr(i, Kind); 4220 4221 unsigned ParamTypeID = getContainedTypeID(FTyID, i + 1); 4222 Type *PtrEltTy = getPtrElementTypeByID(ParamTypeID); 4223 if (!PtrEltTy) 4224 return error("Missing param element type for attribute upgrade"); 4225 4226 Attribute NewAttr; 4227 switch (Kind) { 4228 case Attribute::ByVal: 4229 NewAttr = Attribute::getWithByValType(Context, PtrEltTy); 4230 break; 4231 case Attribute::StructRet: 4232 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy); 4233 break; 4234 case Attribute::InAlloca: 4235 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy); 4236 break; 4237 default: 4238 llvm_unreachable("not an upgraded type attribute"); 4239 } 4240 4241 Func->addParamAttr(i, NewAttr); 4242 } 4243 } 4244 4245 if (Func->getCallingConv() == CallingConv::X86_INTR && 4246 !Func->arg_empty() && !Func->hasParamAttribute(0, Attribute::ByVal)) { 4247 unsigned ParamTypeID = getContainedTypeID(FTyID, 1); 4248 Type *ByValTy = getPtrElementTypeByID(ParamTypeID); 4249 if (!ByValTy) 4250 return error("Missing param element type for x86_intrcc upgrade"); 4251 Attribute NewAttr = Attribute::getWithByValType(Context, ByValTy); 4252 Func->addParamAttr(0, NewAttr); 4253 } 4254 4255 MaybeAlign Alignment; 4256 if (Error Err = parseAlignmentValue(Record[5], Alignment)) 4257 return Err; 4258 if (Alignment) 4259 Func->setAlignment(*Alignment); 4260 if (Record[6]) { 4261 if (Record[6] - 1 >= SectionTable.size()) 4262 return error("Invalid ID"); 4263 Func->setSection(SectionTable[Record[6] - 1]); 4264 } 4265 // Local linkage must have default visibility. 4266 // auto-upgrade `hidden` and `protected` for old bitcode. 4267 if (!Func->hasLocalLinkage()) 4268 Func->setVisibility(getDecodedVisibility(Record[7])); 4269 if (Record.size() > 8 && Record[8]) { 4270 if (Record[8] - 1 >= GCTable.size()) 4271 return error("Invalid ID"); 4272 Func->setGC(GCTable[Record[8] - 1]); 4273 } 4274 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 4275 if (Record.size() > 9) 4276 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); 4277 Func->setUnnamedAddr(UnnamedAddr); 4278 4279 FunctionOperandInfo OperandInfo = {Func, 0, 0, 0}; 4280 if (Record.size() > 10) 4281 OperandInfo.Prologue = Record[10]; 4282 4283 if (Record.size() > 11) { 4284 // A GlobalValue with local linkage cannot have a DLL storage class. 4285 if (!Func->hasLocalLinkage()) { 4286 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 4287 } 4288 } else { 4289 upgradeDLLImportExportLinkage(Func, RawLinkage); 4290 } 4291 4292 if (Record.size() > 12) { 4293 if (unsigned ComdatID = Record[12]) { 4294 if (ComdatID > ComdatList.size()) 4295 return error("Invalid function comdat ID"); 4296 Func->setComdat(ComdatList[ComdatID - 1]); 4297 } 4298 } else if (hasImplicitComdat(RawLinkage)) { 4299 ImplicitComdatObjects.insert(Func); 4300 } 4301 4302 if (Record.size() > 13) 4303 OperandInfo.Prefix = Record[13]; 4304 4305 if (Record.size() > 14) 4306 OperandInfo.PersonalityFn = Record[14]; 4307 4308 if (Record.size() > 15) { 4309 Func->setDSOLocal(getDecodedDSOLocal(Record[15])); 4310 } 4311 inferDSOLocal(Func); 4312 4313 // Record[16] is the address space number. 4314 4315 // Check whether we have enough values to read a partition name. Also make 4316 // sure Strtab has enough values. 4317 if (Record.size() > 18 && Strtab.data() && 4318 Record[17] + Record[18] <= Strtab.size()) { 4319 Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18])); 4320 } 4321 4322 ValueList.push_back(Func, getVirtualTypeID(Func->getType(), FTyID)); 4323 4324 if (OperandInfo.PersonalityFn || OperandInfo.Prefix || OperandInfo.Prologue) 4325 FunctionOperands.push_back(OperandInfo); 4326 4327 // If this is a function with a body, remember the prototype we are 4328 // creating now, so that we can match up the body with them later. 4329 if (!isProto) { 4330 Func->setIsMaterializable(true); 4331 FunctionsWithBodies.push_back(Func); 4332 DeferredFunctionInfo[Func] = 0; 4333 } 4334 return Error::success(); 4335 } 4336 4337 Error BitcodeReader::parseGlobalIndirectSymbolRecord( 4338 unsigned BitCode, ArrayRef<uint64_t> Record) { 4339 // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST) 4340 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 4341 // dllstorageclass, threadlocal, unnamed_addr, 4342 // preemption specifier] (name in VST) 4343 // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage, 4344 // visibility, dllstorageclass, threadlocal, unnamed_addr, 4345 // preemption specifier] (name in VST) 4346 // v2: [strtab_offset, strtab_size, v1] 4347 StringRef Name; 4348 std::tie(Name, Record) = readNameFromStrtab(Record); 4349 4350 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 4351 if (Record.size() < (3 + (unsigned)NewRecord)) 4352 return error("Invalid record"); 4353 unsigned OpNum = 0; 4354 unsigned TypeID = Record[OpNum++]; 4355 Type *Ty = getTypeByID(TypeID); 4356 if (!Ty) 4357 return error("Invalid record"); 4358 4359 unsigned AddrSpace; 4360 if (!NewRecord) { 4361 auto *PTy = dyn_cast<PointerType>(Ty); 4362 if (!PTy) 4363 return error("Invalid type for value"); 4364 AddrSpace = PTy->getAddressSpace(); 4365 TypeID = getContainedTypeID(TypeID); 4366 Ty = getTypeByID(TypeID); 4367 if (!Ty) 4368 return error("Missing element type for old-style indirect symbol"); 4369 } else { 4370 AddrSpace = Record[OpNum++]; 4371 } 4372 4373 auto Val = Record[OpNum++]; 4374 auto Linkage = Record[OpNum++]; 4375 GlobalValue *NewGA; 4376 if (BitCode == bitc::MODULE_CODE_ALIAS || 4377 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 4378 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 4379 TheModule); 4380 else 4381 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 4382 nullptr, TheModule); 4383 4384 // Local linkage must have default visibility. 4385 // auto-upgrade `hidden` and `protected` for old bitcode. 4386 if (OpNum != Record.size()) { 4387 auto VisInd = OpNum++; 4388 if (!NewGA->hasLocalLinkage()) 4389 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 4390 } 4391 if (BitCode == bitc::MODULE_CODE_ALIAS || 4392 BitCode == bitc::MODULE_CODE_ALIAS_OLD) { 4393 if (OpNum != Record.size()) { 4394 auto S = Record[OpNum++]; 4395 // A GlobalValue with local linkage cannot have a DLL storage class. 4396 if (!NewGA->hasLocalLinkage()) 4397 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(S)); 4398 } 4399 else 4400 upgradeDLLImportExportLinkage(NewGA, Linkage); 4401 if (OpNum != Record.size()) 4402 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 4403 if (OpNum != Record.size()) 4404 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); 4405 } 4406 if (OpNum != Record.size()) 4407 NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++])); 4408 inferDSOLocal(NewGA); 4409 4410 // Check whether we have enough values to read a partition name. 4411 if (OpNum + 1 < Record.size()) { 4412 // Check Strtab has enough values for the partition. 4413 if (Record[OpNum] + Record[OpNum + 1] > Strtab.size()) 4414 return error("Malformed partition, too large."); 4415 NewGA->setPartition( 4416 StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1])); 4417 } 4418 4419 ValueList.push_back(NewGA, getVirtualTypeID(NewGA->getType(), TypeID)); 4420 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 4421 return Error::success(); 4422 } 4423 4424 Error BitcodeReader::parseModule(uint64_t ResumeBit, 4425 bool ShouldLazyLoadMetadata, 4426 ParserCallbacks Callbacks) { 4427 // Load directly into RemoveDIs format if LoadBitcodeIntoNewDbgInfoFormat 4428 // has been set to true and we aren't attempting to preserve the existing 4429 // format in the bitcode (default action: load into the old debug format). 4430 if (PreserveInputDbgFormat != cl::boolOrDefault::BOU_TRUE) { 4431 TheModule->IsNewDbgInfoFormat = 4432 UseNewDbgInfoFormat && 4433 LoadBitcodeIntoNewDbgInfoFormat != cl::boolOrDefault::BOU_FALSE; 4434 } 4435 4436 this->ValueTypeCallback = std::move(Callbacks.ValueType); 4437 if (ResumeBit) { 4438 if (Error JumpFailed = Stream.JumpToBit(ResumeBit)) 4439 return JumpFailed; 4440 } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 4441 return Err; 4442 4443 SmallVector<uint64_t, 64> Record; 4444 4445 // Parts of bitcode parsing depend on the datalayout. Make sure we 4446 // finalize the datalayout before we run any of that code. 4447 bool ResolvedDataLayout = false; 4448 // In order to support importing modules with illegal data layout strings, 4449 // delay parsing the data layout string until after upgrades and overrides 4450 // have been applied, allowing to fix illegal data layout strings. 4451 // Initialize to the current module's layout string in case none is specified. 4452 std::string TentativeDataLayoutStr = TheModule->getDataLayoutStr(); 4453 4454 auto ResolveDataLayout = [&]() -> Error { 4455 if (ResolvedDataLayout) 4456 return Error::success(); 4457 4458 // Datalayout and triple can't be parsed after this point. 4459 ResolvedDataLayout = true; 4460 4461 // Auto-upgrade the layout string 4462 TentativeDataLayoutStr = llvm::UpgradeDataLayoutString( 4463 TentativeDataLayoutStr, TheModule->getTargetTriple()); 4464 4465 // Apply override 4466 if (Callbacks.DataLayout) { 4467 if (auto LayoutOverride = (*Callbacks.DataLayout)( 4468 TheModule->getTargetTriple(), TentativeDataLayoutStr)) 4469 TentativeDataLayoutStr = *LayoutOverride; 4470 } 4471 4472 // Now the layout string is finalized in TentativeDataLayoutStr. Parse it. 4473 Expected<DataLayout> MaybeDL = DataLayout::parse(TentativeDataLayoutStr); 4474 if (!MaybeDL) 4475 return MaybeDL.takeError(); 4476 4477 TheModule->setDataLayout(MaybeDL.get()); 4478 return Error::success(); 4479 }; 4480 4481 // Read all the records for this module. 4482 while (true) { 4483 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 4484 if (!MaybeEntry) 4485 return MaybeEntry.takeError(); 4486 llvm::BitstreamEntry Entry = MaybeEntry.get(); 4487 4488 switch (Entry.Kind) { 4489 case BitstreamEntry::Error: 4490 return error("Malformed block"); 4491 case BitstreamEntry::EndBlock: 4492 if (Error Err = ResolveDataLayout()) 4493 return Err; 4494 return globalCleanup(); 4495 4496 case BitstreamEntry::SubBlock: 4497 switch (Entry.ID) { 4498 default: // Skip unknown content. 4499 if (Error Err = Stream.SkipBlock()) 4500 return Err; 4501 break; 4502 case bitc::BLOCKINFO_BLOCK_ID: 4503 if (Error Err = readBlockInfo()) 4504 return Err; 4505 break; 4506 case bitc::PARAMATTR_BLOCK_ID: 4507 if (Error Err = parseAttributeBlock()) 4508 return Err; 4509 break; 4510 case bitc::PARAMATTR_GROUP_BLOCK_ID: 4511 if (Error Err = parseAttributeGroupBlock()) 4512 return Err; 4513 break; 4514 case bitc::TYPE_BLOCK_ID_NEW: 4515 if (Error Err = parseTypeTable()) 4516 return Err; 4517 break; 4518 case bitc::VALUE_SYMTAB_BLOCK_ID: 4519 if (!SeenValueSymbolTable) { 4520 // Either this is an old form VST without function index and an 4521 // associated VST forward declaration record (which would have caused 4522 // the VST to be jumped to and parsed before it was encountered 4523 // normally in the stream), or there were no function blocks to 4524 // trigger an earlier parsing of the VST. 4525 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 4526 if (Error Err = parseValueSymbolTable()) 4527 return Err; 4528 SeenValueSymbolTable = true; 4529 } else { 4530 // We must have had a VST forward declaration record, which caused 4531 // the parser to jump to and parse the VST earlier. 4532 assert(VSTOffset > 0); 4533 if (Error Err = Stream.SkipBlock()) 4534 return Err; 4535 } 4536 break; 4537 case bitc::CONSTANTS_BLOCK_ID: 4538 if (Error Err = parseConstants()) 4539 return Err; 4540 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 4541 return Err; 4542 break; 4543 case bitc::METADATA_BLOCK_ID: 4544 if (ShouldLazyLoadMetadata) { 4545 if (Error Err = rememberAndSkipMetadata()) 4546 return Err; 4547 break; 4548 } 4549 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 4550 if (Error Err = MDLoader->parseModuleMetadata()) 4551 return Err; 4552 break; 4553 case bitc::METADATA_KIND_BLOCK_ID: 4554 if (Error Err = MDLoader->parseMetadataKinds()) 4555 return Err; 4556 break; 4557 case bitc::FUNCTION_BLOCK_ID: 4558 if (Error Err = ResolveDataLayout()) 4559 return Err; 4560 4561 // If this is the first function body we've seen, reverse the 4562 // FunctionsWithBodies list. 4563 if (!SeenFirstFunctionBody) { 4564 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 4565 if (Error Err = globalCleanup()) 4566 return Err; 4567 SeenFirstFunctionBody = true; 4568 } 4569 4570 if (VSTOffset > 0) { 4571 // If we have a VST forward declaration record, make sure we 4572 // parse the VST now if we haven't already. It is needed to 4573 // set up the DeferredFunctionInfo vector for lazy reading. 4574 if (!SeenValueSymbolTable) { 4575 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset)) 4576 return Err; 4577 SeenValueSymbolTable = true; 4578 // Fall through so that we record the NextUnreadBit below. 4579 // This is necessary in case we have an anonymous function that 4580 // is later materialized. Since it will not have a VST entry we 4581 // need to fall back to the lazy parse to find its offset. 4582 } else { 4583 // If we have a VST forward declaration record, but have already 4584 // parsed the VST (just above, when the first function body was 4585 // encountered here), then we are resuming the parse after 4586 // materializing functions. The ResumeBit points to the 4587 // start of the last function block recorded in the 4588 // DeferredFunctionInfo map. Skip it. 4589 if (Error Err = Stream.SkipBlock()) 4590 return Err; 4591 continue; 4592 } 4593 } 4594 4595 // Support older bitcode files that did not have the function 4596 // index in the VST, nor a VST forward declaration record, as 4597 // well as anonymous functions that do not have VST entries. 4598 // Build the DeferredFunctionInfo vector on the fly. 4599 if (Error Err = rememberAndSkipFunctionBody()) 4600 return Err; 4601 4602 // Suspend parsing when we reach the function bodies. Subsequent 4603 // materialization calls will resume it when necessary. If the bitcode 4604 // file is old, the symbol table will be at the end instead and will not 4605 // have been seen yet. In this case, just finish the parse now. 4606 if (SeenValueSymbolTable) { 4607 NextUnreadBit = Stream.GetCurrentBitNo(); 4608 // After the VST has been parsed, we need to make sure intrinsic name 4609 // are auto-upgraded. 4610 return globalCleanup(); 4611 } 4612 break; 4613 case bitc::USELIST_BLOCK_ID: 4614 if (Error Err = parseUseLists()) 4615 return Err; 4616 break; 4617 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 4618 if (Error Err = parseOperandBundleTags()) 4619 return Err; 4620 break; 4621 case bitc::SYNC_SCOPE_NAMES_BLOCK_ID: 4622 if (Error Err = parseSyncScopeNames()) 4623 return Err; 4624 break; 4625 } 4626 continue; 4627 4628 case BitstreamEntry::Record: 4629 // The interesting case. 4630 break; 4631 } 4632 4633 // Read a record. 4634 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 4635 if (!MaybeBitCode) 4636 return MaybeBitCode.takeError(); 4637 switch (unsigned BitCode = MaybeBitCode.get()) { 4638 default: break; // Default behavior, ignore unknown content. 4639 case bitc::MODULE_CODE_VERSION: { 4640 Expected<unsigned> VersionOrErr = parseVersionRecord(Record); 4641 if (!VersionOrErr) 4642 return VersionOrErr.takeError(); 4643 UseRelativeIDs = *VersionOrErr >= 1; 4644 break; 4645 } 4646 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 4647 if (ResolvedDataLayout) 4648 return error("target triple too late in module"); 4649 std::string S; 4650 if (convertToString(Record, 0, S)) 4651 return error("Invalid record"); 4652 TheModule->setTargetTriple(S); 4653 break; 4654 } 4655 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 4656 if (ResolvedDataLayout) 4657 return error("datalayout too late in module"); 4658 if (convertToString(Record, 0, TentativeDataLayoutStr)) 4659 return error("Invalid record"); 4660 break; 4661 } 4662 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 4663 std::string S; 4664 if (convertToString(Record, 0, S)) 4665 return error("Invalid record"); 4666 TheModule->setModuleInlineAsm(S); 4667 break; 4668 } 4669 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 4670 // Deprecated, but still needed to read old bitcode files. 4671 std::string S; 4672 if (convertToString(Record, 0, S)) 4673 return error("Invalid record"); 4674 // Ignore value. 4675 break; 4676 } 4677 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 4678 std::string S; 4679 if (convertToString(Record, 0, S)) 4680 return error("Invalid record"); 4681 SectionTable.push_back(S); 4682 break; 4683 } 4684 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 4685 std::string S; 4686 if (convertToString(Record, 0, S)) 4687 return error("Invalid record"); 4688 GCTable.push_back(S); 4689 break; 4690 } 4691 case bitc::MODULE_CODE_COMDAT: 4692 if (Error Err = parseComdatRecord(Record)) 4693 return Err; 4694 break; 4695 // FIXME: BitcodeReader should handle {GLOBALVAR, FUNCTION, ALIAS, IFUNC} 4696 // written by ThinLinkBitcodeWriter. See 4697 // `ThinLinkBitcodeWriter::writeSimplifiedModuleInfo` for the format of each 4698 // record 4699 // (https://github.com/llvm/llvm-project/blob/b6a93967d9c11e79802b5e75cec1584d6c8aa472/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp#L4714) 4700 case bitc::MODULE_CODE_GLOBALVAR: 4701 if (Error Err = parseGlobalVarRecord(Record)) 4702 return Err; 4703 break; 4704 case bitc::MODULE_CODE_FUNCTION: 4705 if (Error Err = ResolveDataLayout()) 4706 return Err; 4707 if (Error Err = parseFunctionRecord(Record)) 4708 return Err; 4709 break; 4710 case bitc::MODULE_CODE_IFUNC: 4711 case bitc::MODULE_CODE_ALIAS: 4712 case bitc::MODULE_CODE_ALIAS_OLD: 4713 if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record)) 4714 return Err; 4715 break; 4716 /// MODULE_CODE_VSTOFFSET: [offset] 4717 case bitc::MODULE_CODE_VSTOFFSET: 4718 if (Record.empty()) 4719 return error("Invalid record"); 4720 // Note that we subtract 1 here because the offset is relative to one word 4721 // before the start of the identification or module block, which was 4722 // historically always the start of the regular bitcode header. 4723 VSTOffset = Record[0] - 1; 4724 break; 4725 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4726 case bitc::MODULE_CODE_SOURCE_FILENAME: 4727 SmallString<128> ValueName; 4728 if (convertToString(Record, 0, ValueName)) 4729 return error("Invalid record"); 4730 TheModule->setSourceFileName(ValueName); 4731 break; 4732 } 4733 Record.clear(); 4734 } 4735 this->ValueTypeCallback = std::nullopt; 4736 return Error::success(); 4737 } 4738 4739 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 4740 bool IsImporting, 4741 ParserCallbacks Callbacks) { 4742 TheModule = M; 4743 MetadataLoaderCallbacks MDCallbacks; 4744 MDCallbacks.GetTypeByID = [&](unsigned ID) { return getTypeByID(ID); }; 4745 MDCallbacks.GetContainedTypeID = [&](unsigned I, unsigned J) { 4746 return getContainedTypeID(I, J); 4747 }; 4748 MDCallbacks.MDType = Callbacks.MDType; 4749 MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, MDCallbacks); 4750 return parseModule(0, ShouldLazyLoadMetadata, Callbacks); 4751 } 4752 4753 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 4754 if (!isa<PointerType>(PtrType)) 4755 return error("Load/Store operand is not a pointer type"); 4756 if (!PointerType::isLoadableOrStorableType(ValType)) 4757 return error("Cannot load/store from pointer"); 4758 return Error::success(); 4759 } 4760 4761 Error BitcodeReader::propagateAttributeTypes(CallBase *CB, 4762 ArrayRef<unsigned> ArgTyIDs) { 4763 AttributeList Attrs = CB->getAttributes(); 4764 for (unsigned i = 0; i != CB->arg_size(); ++i) { 4765 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet, 4766 Attribute::InAlloca}) { 4767 if (!Attrs.hasParamAttr(i, Kind) || 4768 Attrs.getParamAttr(i, Kind).getValueAsType()) 4769 continue; 4770 4771 Type *PtrEltTy = getPtrElementTypeByID(ArgTyIDs[i]); 4772 if (!PtrEltTy) 4773 return error("Missing element type for typed attribute upgrade"); 4774 4775 Attribute NewAttr; 4776 switch (Kind) { 4777 case Attribute::ByVal: 4778 NewAttr = Attribute::getWithByValType(Context, PtrEltTy); 4779 break; 4780 case Attribute::StructRet: 4781 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy); 4782 break; 4783 case Attribute::InAlloca: 4784 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy); 4785 break; 4786 default: 4787 llvm_unreachable("not an upgraded type attribute"); 4788 } 4789 4790 Attrs = Attrs.addParamAttribute(Context, i, NewAttr); 4791 } 4792 } 4793 4794 if (CB->isInlineAsm()) { 4795 const InlineAsm *IA = cast<InlineAsm>(CB->getCalledOperand()); 4796 unsigned ArgNo = 0; 4797 for (const InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 4798 if (!CI.hasArg()) 4799 continue; 4800 4801 if (CI.isIndirect && !Attrs.getParamElementType(ArgNo)) { 4802 Type *ElemTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]); 4803 if (!ElemTy) 4804 return error("Missing element type for inline asm upgrade"); 4805 Attrs = Attrs.addParamAttribute( 4806 Context, ArgNo, 4807 Attribute::get(Context, Attribute::ElementType, ElemTy)); 4808 } 4809 4810 ArgNo++; 4811 } 4812 } 4813 4814 switch (CB->getIntrinsicID()) { 4815 case Intrinsic::preserve_array_access_index: 4816 case Intrinsic::preserve_struct_access_index: 4817 case Intrinsic::aarch64_ldaxr: 4818 case Intrinsic::aarch64_ldxr: 4819 case Intrinsic::aarch64_stlxr: 4820 case Intrinsic::aarch64_stxr: 4821 case Intrinsic::arm_ldaex: 4822 case Intrinsic::arm_ldrex: 4823 case Intrinsic::arm_stlex: 4824 case Intrinsic::arm_strex: { 4825 unsigned ArgNo; 4826 switch (CB->getIntrinsicID()) { 4827 case Intrinsic::aarch64_stlxr: 4828 case Intrinsic::aarch64_stxr: 4829 case Intrinsic::arm_stlex: 4830 case Intrinsic::arm_strex: 4831 ArgNo = 1; 4832 break; 4833 default: 4834 ArgNo = 0; 4835 break; 4836 } 4837 if (!Attrs.getParamElementType(ArgNo)) { 4838 Type *ElTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]); 4839 if (!ElTy) 4840 return error("Missing element type for elementtype upgrade"); 4841 Attribute NewAttr = Attribute::get(Context, Attribute::ElementType, ElTy); 4842 Attrs = Attrs.addParamAttribute(Context, ArgNo, NewAttr); 4843 } 4844 break; 4845 } 4846 default: 4847 break; 4848 } 4849 4850 CB->setAttributes(Attrs); 4851 return Error::success(); 4852 } 4853 4854 /// Lazily parse the specified function body block. 4855 Error BitcodeReader::parseFunctionBody(Function *F) { 4856 if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 4857 return Err; 4858 4859 // Unexpected unresolved metadata when parsing function. 4860 if (MDLoader->hasFwdRefs()) 4861 return error("Invalid function metadata: incoming forward references"); 4862 4863 InstructionList.clear(); 4864 unsigned ModuleValueListSize = ValueList.size(); 4865 unsigned ModuleMDLoaderSize = MDLoader->size(); 4866 4867 // Add all the function arguments to the value table. 4868 unsigned ArgNo = 0; 4869 unsigned FTyID = FunctionTypeIDs[F]; 4870 for (Argument &I : F->args()) { 4871 unsigned ArgTyID = getContainedTypeID(FTyID, ArgNo + 1); 4872 assert(I.getType() == getTypeByID(ArgTyID) && 4873 "Incorrect fully specified type for Function Argument"); 4874 ValueList.push_back(&I, ArgTyID); 4875 ++ArgNo; 4876 } 4877 unsigned NextValueNo = ValueList.size(); 4878 BasicBlock *CurBB = nullptr; 4879 unsigned CurBBNo = 0; 4880 // Block into which constant expressions from phi nodes are materialized. 4881 BasicBlock *PhiConstExprBB = nullptr; 4882 // Edge blocks for phi nodes into which constant expressions have been 4883 // expanded. 4884 SmallMapVector<std::pair<BasicBlock *, BasicBlock *>, BasicBlock *, 4> 4885 ConstExprEdgeBBs; 4886 4887 DebugLoc LastLoc; 4888 auto getLastInstruction = [&]() -> Instruction * { 4889 if (CurBB && !CurBB->empty()) 4890 return &CurBB->back(); 4891 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 4892 !FunctionBBs[CurBBNo - 1]->empty()) 4893 return &FunctionBBs[CurBBNo - 1]->back(); 4894 return nullptr; 4895 }; 4896 4897 std::vector<OperandBundleDef> OperandBundles; 4898 4899 // Read all the records. 4900 SmallVector<uint64_t, 64> Record; 4901 4902 while (true) { 4903 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 4904 if (!MaybeEntry) 4905 return MaybeEntry.takeError(); 4906 llvm::BitstreamEntry Entry = MaybeEntry.get(); 4907 4908 switch (Entry.Kind) { 4909 case BitstreamEntry::Error: 4910 return error("Malformed block"); 4911 case BitstreamEntry::EndBlock: 4912 goto OutOfRecordLoop; 4913 4914 case BitstreamEntry::SubBlock: 4915 switch (Entry.ID) { 4916 default: // Skip unknown content. 4917 if (Error Err = Stream.SkipBlock()) 4918 return Err; 4919 break; 4920 case bitc::CONSTANTS_BLOCK_ID: 4921 if (Error Err = parseConstants()) 4922 return Err; 4923 NextValueNo = ValueList.size(); 4924 break; 4925 case bitc::VALUE_SYMTAB_BLOCK_ID: 4926 if (Error Err = parseValueSymbolTable()) 4927 return Err; 4928 break; 4929 case bitc::METADATA_ATTACHMENT_ID: 4930 if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList)) 4931 return Err; 4932 break; 4933 case bitc::METADATA_BLOCK_ID: 4934 assert(DeferredMetadataInfo.empty() && 4935 "Must read all module-level metadata before function-level"); 4936 if (Error Err = MDLoader->parseFunctionMetadata()) 4937 return Err; 4938 break; 4939 case bitc::USELIST_BLOCK_ID: 4940 if (Error Err = parseUseLists()) 4941 return Err; 4942 break; 4943 } 4944 continue; 4945 4946 case BitstreamEntry::Record: 4947 // The interesting case. 4948 break; 4949 } 4950 4951 // Read a record. 4952 Record.clear(); 4953 Instruction *I = nullptr; 4954 unsigned ResTypeID = InvalidTypeID; 4955 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 4956 if (!MaybeBitCode) 4957 return MaybeBitCode.takeError(); 4958 switch (unsigned BitCode = MaybeBitCode.get()) { 4959 default: // Default behavior: reject 4960 return error("Invalid value"); 4961 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 4962 if (Record.empty() || Record[0] == 0) 4963 return error("Invalid record"); 4964 // Create all the basic blocks for the function. 4965 FunctionBBs.resize(Record[0]); 4966 4967 // See if anything took the address of blocks in this function. 4968 auto BBFRI = BasicBlockFwdRefs.find(F); 4969 if (BBFRI == BasicBlockFwdRefs.end()) { 4970 for (BasicBlock *&BB : FunctionBBs) 4971 BB = BasicBlock::Create(Context, "", F); 4972 } else { 4973 auto &BBRefs = BBFRI->second; 4974 // Check for invalid basic block references. 4975 if (BBRefs.size() > FunctionBBs.size()) 4976 return error("Invalid ID"); 4977 assert(!BBRefs.empty() && "Unexpected empty array"); 4978 assert(!BBRefs.front() && "Invalid reference to entry block"); 4979 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 4980 ++I) 4981 if (I < RE && BBRefs[I]) { 4982 BBRefs[I]->insertInto(F); 4983 FunctionBBs[I] = BBRefs[I]; 4984 } else { 4985 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 4986 } 4987 4988 // Erase from the table. 4989 BasicBlockFwdRefs.erase(BBFRI); 4990 } 4991 4992 CurBB = FunctionBBs[0]; 4993 continue; 4994 } 4995 4996 case bitc::FUNC_CODE_BLOCKADDR_USERS: // BLOCKADDR_USERS: [vals...] 4997 // The record should not be emitted if it's an empty list. 4998 if (Record.empty()) 4999 return error("Invalid record"); 5000 // When we have the RARE case of a BlockAddress Constant that is not 5001 // scoped to the Function it refers to, we need to conservatively 5002 // materialize the referred to Function, regardless of whether or not 5003 // that Function will ultimately be linked, otherwise users of 5004 // BitcodeReader might start splicing out Function bodies such that we 5005 // might no longer be able to materialize the BlockAddress since the 5006 // BasicBlock (and entire body of the Function) the BlockAddress refers 5007 // to may have been moved. In the case that the user of BitcodeReader 5008 // decides ultimately not to link the Function body, materializing here 5009 // could be considered wasteful, but it's better than a deserialization 5010 // failure as described. This keeps BitcodeReader unaware of complex 5011 // linkage policy decisions such as those use by LTO, leaving those 5012 // decisions "one layer up." 5013 for (uint64_t ValID : Record) 5014 if (auto *F = dyn_cast<Function>(ValueList[ValID])) 5015 BackwardRefFunctions.push_back(F); 5016 else 5017 return error("Invalid record"); 5018 5019 continue; 5020 5021 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 5022 // This record indicates that the last instruction is at the same 5023 // location as the previous instruction with a location. 5024 I = getLastInstruction(); 5025 5026 if (!I) 5027 return error("Invalid record"); 5028 I->setDebugLoc(LastLoc); 5029 I = nullptr; 5030 continue; 5031 5032 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 5033 I = getLastInstruction(); 5034 if (!I || Record.size() < 4) 5035 return error("Invalid record"); 5036 5037 unsigned Line = Record[0], Col = Record[1]; 5038 unsigned ScopeID = Record[2], IAID = Record[3]; 5039 bool isImplicitCode = Record.size() == 5 && Record[4]; 5040 5041 MDNode *Scope = nullptr, *IA = nullptr; 5042 if (ScopeID) { 5043 Scope = dyn_cast_or_null<MDNode>( 5044 MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1)); 5045 if (!Scope) 5046 return error("Invalid record"); 5047 } 5048 if (IAID) { 5049 IA = dyn_cast_or_null<MDNode>( 5050 MDLoader->getMetadataFwdRefOrLoad(IAID - 1)); 5051 if (!IA) 5052 return error("Invalid record"); 5053 } 5054 LastLoc = DILocation::get(Scope->getContext(), Line, Col, Scope, IA, 5055 isImplicitCode); 5056 I->setDebugLoc(LastLoc); 5057 I = nullptr; 5058 continue; 5059 } 5060 case bitc::FUNC_CODE_INST_UNOP: { // UNOP: [opval, ty, opcode] 5061 unsigned OpNum = 0; 5062 Value *LHS; 5063 unsigned TypeID; 5064 if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) || 5065 OpNum+1 > Record.size()) 5066 return error("Invalid record"); 5067 5068 int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType()); 5069 if (Opc == -1) 5070 return error("Invalid record"); 5071 I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 5072 ResTypeID = TypeID; 5073 InstructionList.push_back(I); 5074 if (OpNum < Record.size()) { 5075 if (isa<FPMathOperator>(I)) { 5076 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 5077 if (FMF.any()) 5078 I->setFastMathFlags(FMF); 5079 } 5080 } 5081 break; 5082 } 5083 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 5084 unsigned OpNum = 0; 5085 Value *LHS, *RHS; 5086 unsigned TypeID; 5087 if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) || 5088 popValue(Record, OpNum, NextValueNo, LHS->getType(), TypeID, RHS, 5089 CurBB) || 5090 OpNum+1 > Record.size()) 5091 return error("Invalid record"); 5092 5093 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 5094 if (Opc == -1) 5095 return error("Invalid record"); 5096 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 5097 ResTypeID = TypeID; 5098 InstructionList.push_back(I); 5099 if (OpNum < Record.size()) { 5100 if (Opc == Instruction::Add || 5101 Opc == Instruction::Sub || 5102 Opc == Instruction::Mul || 5103 Opc == Instruction::Shl) { 5104 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 5105 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 5106 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 5107 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 5108 } else if (Opc == Instruction::SDiv || 5109 Opc == Instruction::UDiv || 5110 Opc == Instruction::LShr || 5111 Opc == Instruction::AShr) { 5112 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 5113 cast<BinaryOperator>(I)->setIsExact(true); 5114 } else if (Opc == Instruction::Or) { 5115 if (Record[OpNum] & (1 << bitc::PDI_DISJOINT)) 5116 cast<PossiblyDisjointInst>(I)->setIsDisjoint(true); 5117 } else if (isa<FPMathOperator>(I)) { 5118 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 5119 if (FMF.any()) 5120 I->setFastMathFlags(FMF); 5121 } 5122 } 5123 break; 5124 } 5125 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 5126 unsigned OpNum = 0; 5127 Value *Op; 5128 unsigned OpTypeID; 5129 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) || 5130 OpNum + 1 > Record.size()) 5131 return error("Invalid record"); 5132 5133 ResTypeID = Record[OpNum++]; 5134 Type *ResTy = getTypeByID(ResTypeID); 5135 int Opc = getDecodedCastOpcode(Record[OpNum++]); 5136 5137 if (Opc == -1 || !ResTy) 5138 return error("Invalid record"); 5139 Instruction *Temp = nullptr; 5140 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 5141 if (Temp) { 5142 InstructionList.push_back(Temp); 5143 assert(CurBB && "No current BB?"); 5144 Temp->insertInto(CurBB, CurBB->end()); 5145 } 5146 } else { 5147 auto CastOp = (Instruction::CastOps)Opc; 5148 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 5149 return error("Invalid cast"); 5150 I = CastInst::Create(CastOp, Op, ResTy); 5151 } 5152 5153 if (OpNum < Record.size()) { 5154 if (Opc == Instruction::ZExt || Opc == Instruction::UIToFP) { 5155 if (Record[OpNum] & (1 << bitc::PNNI_NON_NEG)) 5156 cast<PossiblyNonNegInst>(I)->setNonNeg(true); 5157 } else if (Opc == Instruction::Trunc) { 5158 if (Record[OpNum] & (1 << bitc::TIO_NO_UNSIGNED_WRAP)) 5159 cast<TruncInst>(I)->setHasNoUnsignedWrap(true); 5160 if (Record[OpNum] & (1 << bitc::TIO_NO_SIGNED_WRAP)) 5161 cast<TruncInst>(I)->setHasNoSignedWrap(true); 5162 } 5163 } 5164 5165 InstructionList.push_back(I); 5166 break; 5167 } 5168 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 5169 case bitc::FUNC_CODE_INST_GEP_OLD: 5170 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 5171 unsigned OpNum = 0; 5172 5173 unsigned TyID; 5174 Type *Ty; 5175 GEPNoWrapFlags NW; 5176 5177 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 5178 NW = toGEPNoWrapFlags(Record[OpNum++]); 5179 TyID = Record[OpNum++]; 5180 Ty = getTypeByID(TyID); 5181 } else { 5182 if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD) 5183 NW = GEPNoWrapFlags::inBounds(); 5184 TyID = InvalidTypeID; 5185 Ty = nullptr; 5186 } 5187 5188 Value *BasePtr; 5189 unsigned BasePtrTypeID; 5190 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr, BasePtrTypeID, 5191 CurBB)) 5192 return error("Invalid record"); 5193 5194 if (!Ty) { 5195 TyID = getContainedTypeID(BasePtrTypeID); 5196 if (BasePtr->getType()->isVectorTy()) 5197 TyID = getContainedTypeID(TyID); 5198 Ty = getTypeByID(TyID); 5199 } 5200 5201 SmallVector<Value*, 16> GEPIdx; 5202 while (OpNum != Record.size()) { 5203 Value *Op; 5204 unsigned OpTypeID; 5205 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 5206 return error("Invalid record"); 5207 GEPIdx.push_back(Op); 5208 } 5209 5210 auto *GEP = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 5211 I = GEP; 5212 5213 ResTypeID = TyID; 5214 if (cast<GEPOperator>(I)->getNumIndices() != 0) { 5215 auto GTI = std::next(gep_type_begin(I)); 5216 for (Value *Idx : drop_begin(cast<GEPOperator>(I)->indices())) { 5217 unsigned SubType = 0; 5218 if (GTI.isStruct()) { 5219 ConstantInt *IdxC = 5220 Idx->getType()->isVectorTy() 5221 ? cast<ConstantInt>(cast<Constant>(Idx)->getSplatValue()) 5222 : cast<ConstantInt>(Idx); 5223 SubType = IdxC->getZExtValue(); 5224 } 5225 ResTypeID = getContainedTypeID(ResTypeID, SubType); 5226 ++GTI; 5227 } 5228 } 5229 5230 // At this point ResTypeID is the result element type. We need a pointer 5231 // or vector of pointer to it. 5232 ResTypeID = getVirtualTypeID(I->getType()->getScalarType(), ResTypeID); 5233 if (I->getType()->isVectorTy()) 5234 ResTypeID = getVirtualTypeID(I->getType(), ResTypeID); 5235 5236 InstructionList.push_back(I); 5237 GEP->setNoWrapFlags(NW); 5238 break; 5239 } 5240 5241 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 5242 // EXTRACTVAL: [opty, opval, n x indices] 5243 unsigned OpNum = 0; 5244 Value *Agg; 5245 unsigned AggTypeID; 5246 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB)) 5247 return error("Invalid record"); 5248 Type *Ty = Agg->getType(); 5249 5250 unsigned RecSize = Record.size(); 5251 if (OpNum == RecSize) 5252 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 5253 5254 SmallVector<unsigned, 4> EXTRACTVALIdx; 5255 ResTypeID = AggTypeID; 5256 for (; OpNum != RecSize; ++OpNum) { 5257 bool IsArray = Ty->isArrayTy(); 5258 bool IsStruct = Ty->isStructTy(); 5259 uint64_t Index = Record[OpNum]; 5260 5261 if (!IsStruct && !IsArray) 5262 return error("EXTRACTVAL: Invalid type"); 5263 if ((unsigned)Index != Index) 5264 return error("Invalid value"); 5265 if (IsStruct && Index >= Ty->getStructNumElements()) 5266 return error("EXTRACTVAL: Invalid struct index"); 5267 if (IsArray && Index >= Ty->getArrayNumElements()) 5268 return error("EXTRACTVAL: Invalid array index"); 5269 EXTRACTVALIdx.push_back((unsigned)Index); 5270 5271 if (IsStruct) { 5272 Ty = Ty->getStructElementType(Index); 5273 ResTypeID = getContainedTypeID(ResTypeID, Index); 5274 } else { 5275 Ty = Ty->getArrayElementType(); 5276 ResTypeID = getContainedTypeID(ResTypeID); 5277 } 5278 } 5279 5280 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 5281 InstructionList.push_back(I); 5282 break; 5283 } 5284 5285 case bitc::FUNC_CODE_INST_INSERTVAL: { 5286 // INSERTVAL: [opty, opval, opty, opval, n x indices] 5287 unsigned OpNum = 0; 5288 Value *Agg; 5289 unsigned AggTypeID; 5290 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB)) 5291 return error("Invalid record"); 5292 Value *Val; 5293 unsigned ValTypeID; 5294 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 5295 return error("Invalid record"); 5296 5297 unsigned RecSize = Record.size(); 5298 if (OpNum == RecSize) 5299 return error("INSERTVAL: Invalid instruction with 0 indices"); 5300 5301 SmallVector<unsigned, 4> INSERTVALIdx; 5302 Type *CurTy = Agg->getType(); 5303 for (; OpNum != RecSize; ++OpNum) { 5304 bool IsArray = CurTy->isArrayTy(); 5305 bool IsStruct = CurTy->isStructTy(); 5306 uint64_t Index = Record[OpNum]; 5307 5308 if (!IsStruct && !IsArray) 5309 return error("INSERTVAL: Invalid type"); 5310 if ((unsigned)Index != Index) 5311 return error("Invalid value"); 5312 if (IsStruct && Index >= CurTy->getStructNumElements()) 5313 return error("INSERTVAL: Invalid struct index"); 5314 if (IsArray && Index >= CurTy->getArrayNumElements()) 5315 return error("INSERTVAL: Invalid array index"); 5316 5317 INSERTVALIdx.push_back((unsigned)Index); 5318 if (IsStruct) 5319 CurTy = CurTy->getStructElementType(Index); 5320 else 5321 CurTy = CurTy->getArrayElementType(); 5322 } 5323 5324 if (CurTy != Val->getType()) 5325 return error("Inserted value type doesn't match aggregate type"); 5326 5327 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 5328 ResTypeID = AggTypeID; 5329 InstructionList.push_back(I); 5330 break; 5331 } 5332 5333 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 5334 // obsolete form of select 5335 // handles select i1 ... in old bitcode 5336 unsigned OpNum = 0; 5337 Value *TrueVal, *FalseVal, *Cond; 5338 unsigned TypeID; 5339 Type *CondType = Type::getInt1Ty(Context); 5340 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, TypeID, 5341 CurBB) || 5342 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), TypeID, 5343 FalseVal, CurBB) || 5344 popValue(Record, OpNum, NextValueNo, CondType, 5345 getVirtualTypeID(CondType), Cond, CurBB)) 5346 return error("Invalid record"); 5347 5348 I = SelectInst::Create(Cond, TrueVal, FalseVal); 5349 ResTypeID = TypeID; 5350 InstructionList.push_back(I); 5351 break; 5352 } 5353 5354 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 5355 // new form of select 5356 // handles select i1 or select [N x i1] 5357 unsigned OpNum = 0; 5358 Value *TrueVal, *FalseVal, *Cond; 5359 unsigned ValTypeID, CondTypeID; 5360 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, ValTypeID, 5361 CurBB) || 5362 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), ValTypeID, 5363 FalseVal, CurBB) || 5364 getValueTypePair(Record, OpNum, NextValueNo, Cond, CondTypeID, CurBB)) 5365 return error("Invalid record"); 5366 5367 // select condition can be either i1 or [N x i1] 5368 if (VectorType* vector_type = 5369 dyn_cast<VectorType>(Cond->getType())) { 5370 // expect <n x i1> 5371 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 5372 return error("Invalid type for value"); 5373 } else { 5374 // expect i1 5375 if (Cond->getType() != Type::getInt1Ty(Context)) 5376 return error("Invalid type for value"); 5377 } 5378 5379 I = SelectInst::Create(Cond, TrueVal, FalseVal); 5380 ResTypeID = ValTypeID; 5381 InstructionList.push_back(I); 5382 if (OpNum < Record.size() && isa<FPMathOperator>(I)) { 5383 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 5384 if (FMF.any()) 5385 I->setFastMathFlags(FMF); 5386 } 5387 break; 5388 } 5389 5390 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 5391 unsigned OpNum = 0; 5392 Value *Vec, *Idx; 5393 unsigned VecTypeID, IdxTypeID; 5394 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB) || 5395 getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB)) 5396 return error("Invalid record"); 5397 if (!Vec->getType()->isVectorTy()) 5398 return error("Invalid type for value"); 5399 I = ExtractElementInst::Create(Vec, Idx); 5400 ResTypeID = getContainedTypeID(VecTypeID); 5401 InstructionList.push_back(I); 5402 break; 5403 } 5404 5405 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 5406 unsigned OpNum = 0; 5407 Value *Vec, *Elt, *Idx; 5408 unsigned VecTypeID, IdxTypeID; 5409 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB)) 5410 return error("Invalid record"); 5411 if (!Vec->getType()->isVectorTy()) 5412 return error("Invalid type for value"); 5413 if (popValue(Record, OpNum, NextValueNo, 5414 cast<VectorType>(Vec->getType())->getElementType(), 5415 getContainedTypeID(VecTypeID), Elt, CurBB) || 5416 getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB)) 5417 return error("Invalid record"); 5418 I = InsertElementInst::Create(Vec, Elt, Idx); 5419 ResTypeID = VecTypeID; 5420 InstructionList.push_back(I); 5421 break; 5422 } 5423 5424 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 5425 unsigned OpNum = 0; 5426 Value *Vec1, *Vec2, *Mask; 5427 unsigned Vec1TypeID; 5428 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1, Vec1TypeID, 5429 CurBB) || 5430 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec1TypeID, 5431 Vec2, CurBB)) 5432 return error("Invalid record"); 5433 5434 unsigned MaskTypeID; 5435 if (getValueTypePair(Record, OpNum, NextValueNo, Mask, MaskTypeID, CurBB)) 5436 return error("Invalid record"); 5437 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 5438 return error("Invalid type for value"); 5439 5440 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 5441 ResTypeID = 5442 getVirtualTypeID(I->getType(), getContainedTypeID(Vec1TypeID)); 5443 InstructionList.push_back(I); 5444 break; 5445 } 5446 5447 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 5448 // Old form of ICmp/FCmp returning bool 5449 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 5450 // both legal on vectors but had different behaviour. 5451 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 5452 // FCmp/ICmp returning bool or vector of bool 5453 5454 unsigned OpNum = 0; 5455 Value *LHS, *RHS; 5456 unsigned LHSTypeID; 5457 if (getValueTypePair(Record, OpNum, NextValueNo, LHS, LHSTypeID, CurBB) || 5458 popValue(Record, OpNum, NextValueNo, LHS->getType(), LHSTypeID, RHS, 5459 CurBB)) 5460 return error("Invalid record"); 5461 5462 if (OpNum >= Record.size()) 5463 return error( 5464 "Invalid record: operand number exceeded available operands"); 5465 5466 CmpInst::Predicate PredVal = CmpInst::Predicate(Record[OpNum]); 5467 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 5468 FastMathFlags FMF; 5469 if (IsFP && Record.size() > OpNum+1) 5470 FMF = getDecodedFastMathFlags(Record[++OpNum]); 5471 5472 if (OpNum+1 != Record.size()) 5473 return error("Invalid record"); 5474 5475 if (IsFP) { 5476 if (!CmpInst::isFPPredicate(PredVal)) 5477 return error("Invalid fcmp predicate"); 5478 I = new FCmpInst(PredVal, LHS, RHS); 5479 } else { 5480 if (!CmpInst::isIntPredicate(PredVal)) 5481 return error("Invalid icmp predicate"); 5482 I = new ICmpInst(PredVal, LHS, RHS); 5483 } 5484 5485 ResTypeID = getVirtualTypeID(I->getType()->getScalarType()); 5486 if (LHS->getType()->isVectorTy()) 5487 ResTypeID = getVirtualTypeID(I->getType(), ResTypeID); 5488 5489 if (FMF.any()) 5490 I->setFastMathFlags(FMF); 5491 InstructionList.push_back(I); 5492 break; 5493 } 5494 5495 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 5496 { 5497 unsigned Size = Record.size(); 5498 if (Size == 0) { 5499 I = ReturnInst::Create(Context); 5500 InstructionList.push_back(I); 5501 break; 5502 } 5503 5504 unsigned OpNum = 0; 5505 Value *Op = nullptr; 5506 unsigned OpTypeID; 5507 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 5508 return error("Invalid record"); 5509 if (OpNum != Record.size()) 5510 return error("Invalid record"); 5511 5512 I = ReturnInst::Create(Context, Op); 5513 InstructionList.push_back(I); 5514 break; 5515 } 5516 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 5517 if (Record.size() != 1 && Record.size() != 3) 5518 return error("Invalid record"); 5519 BasicBlock *TrueDest = getBasicBlock(Record[0]); 5520 if (!TrueDest) 5521 return error("Invalid record"); 5522 5523 if (Record.size() == 1) { 5524 I = BranchInst::Create(TrueDest); 5525 InstructionList.push_back(I); 5526 } 5527 else { 5528 BasicBlock *FalseDest = getBasicBlock(Record[1]); 5529 Type *CondType = Type::getInt1Ty(Context); 5530 Value *Cond = getValue(Record, 2, NextValueNo, CondType, 5531 getVirtualTypeID(CondType), CurBB); 5532 if (!FalseDest || !Cond) 5533 return error("Invalid record"); 5534 I = BranchInst::Create(TrueDest, FalseDest, Cond); 5535 InstructionList.push_back(I); 5536 } 5537 break; 5538 } 5539 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 5540 if (Record.size() != 1 && Record.size() != 2) 5541 return error("Invalid record"); 5542 unsigned Idx = 0; 5543 Type *TokenTy = Type::getTokenTy(Context); 5544 Value *CleanupPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5545 getVirtualTypeID(TokenTy), CurBB); 5546 if (!CleanupPad) 5547 return error("Invalid record"); 5548 BasicBlock *UnwindDest = nullptr; 5549 if (Record.size() == 2) { 5550 UnwindDest = getBasicBlock(Record[Idx++]); 5551 if (!UnwindDest) 5552 return error("Invalid record"); 5553 } 5554 5555 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 5556 InstructionList.push_back(I); 5557 break; 5558 } 5559 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 5560 if (Record.size() != 2) 5561 return error("Invalid record"); 5562 unsigned Idx = 0; 5563 Type *TokenTy = Type::getTokenTy(Context); 5564 Value *CatchPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5565 getVirtualTypeID(TokenTy), CurBB); 5566 if (!CatchPad) 5567 return error("Invalid record"); 5568 BasicBlock *BB = getBasicBlock(Record[Idx++]); 5569 if (!BB) 5570 return error("Invalid record"); 5571 5572 I = CatchReturnInst::Create(CatchPad, BB); 5573 InstructionList.push_back(I); 5574 break; 5575 } 5576 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 5577 // We must have, at minimum, the outer scope and the number of arguments. 5578 if (Record.size() < 2) 5579 return error("Invalid record"); 5580 5581 unsigned Idx = 0; 5582 5583 Type *TokenTy = Type::getTokenTy(Context); 5584 Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5585 getVirtualTypeID(TokenTy), CurBB); 5586 if (!ParentPad) 5587 return error("Invalid record"); 5588 5589 unsigned NumHandlers = Record[Idx++]; 5590 5591 SmallVector<BasicBlock *, 2> Handlers; 5592 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 5593 BasicBlock *BB = getBasicBlock(Record[Idx++]); 5594 if (!BB) 5595 return error("Invalid record"); 5596 Handlers.push_back(BB); 5597 } 5598 5599 BasicBlock *UnwindDest = nullptr; 5600 if (Idx + 1 == Record.size()) { 5601 UnwindDest = getBasicBlock(Record[Idx++]); 5602 if (!UnwindDest) 5603 return error("Invalid record"); 5604 } 5605 5606 if (Record.size() != Idx) 5607 return error("Invalid record"); 5608 5609 auto *CatchSwitch = 5610 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 5611 for (BasicBlock *Handler : Handlers) 5612 CatchSwitch->addHandler(Handler); 5613 I = CatchSwitch; 5614 ResTypeID = getVirtualTypeID(I->getType()); 5615 InstructionList.push_back(I); 5616 break; 5617 } 5618 case bitc::FUNC_CODE_INST_CATCHPAD: 5619 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 5620 // We must have, at minimum, the outer scope and the number of arguments. 5621 if (Record.size() < 2) 5622 return error("Invalid record"); 5623 5624 unsigned Idx = 0; 5625 5626 Type *TokenTy = Type::getTokenTy(Context); 5627 Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5628 getVirtualTypeID(TokenTy), CurBB); 5629 if (!ParentPad) 5630 return error("Invald record"); 5631 5632 unsigned NumArgOperands = Record[Idx++]; 5633 5634 SmallVector<Value *, 2> Args; 5635 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 5636 Value *Val; 5637 unsigned ValTypeID; 5638 if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, nullptr)) 5639 return error("Invalid record"); 5640 Args.push_back(Val); 5641 } 5642 5643 if (Record.size() != Idx) 5644 return error("Invalid record"); 5645 5646 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 5647 I = CleanupPadInst::Create(ParentPad, Args); 5648 else 5649 I = CatchPadInst::Create(ParentPad, Args); 5650 ResTypeID = getVirtualTypeID(I->getType()); 5651 InstructionList.push_back(I); 5652 break; 5653 } 5654 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 5655 // Check magic 5656 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 5657 // "New" SwitchInst format with case ranges. The changes to write this 5658 // format were reverted but we still recognize bitcode that uses it. 5659 // Hopefully someday we will have support for case ranges and can use 5660 // this format again. 5661 5662 unsigned OpTyID = Record[1]; 5663 Type *OpTy = getTypeByID(OpTyID); 5664 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 5665 5666 Value *Cond = getValue(Record, 2, NextValueNo, OpTy, OpTyID, CurBB); 5667 BasicBlock *Default = getBasicBlock(Record[3]); 5668 if (!OpTy || !Cond || !Default) 5669 return error("Invalid record"); 5670 5671 unsigned NumCases = Record[4]; 5672 5673 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 5674 InstructionList.push_back(SI); 5675 5676 unsigned CurIdx = 5; 5677 for (unsigned i = 0; i != NumCases; ++i) { 5678 SmallVector<ConstantInt*, 1> CaseVals; 5679 unsigned NumItems = Record[CurIdx++]; 5680 for (unsigned ci = 0; ci != NumItems; ++ci) { 5681 bool isSingleNumber = Record[CurIdx++]; 5682 5683 APInt Low; 5684 unsigned ActiveWords = 1; 5685 if (ValueBitWidth > 64) 5686 ActiveWords = Record[CurIdx++]; 5687 Low = readWideAPInt(ArrayRef(&Record[CurIdx], ActiveWords), 5688 ValueBitWidth); 5689 CurIdx += ActiveWords; 5690 5691 if (!isSingleNumber) { 5692 ActiveWords = 1; 5693 if (ValueBitWidth > 64) 5694 ActiveWords = Record[CurIdx++]; 5695 APInt High = readWideAPInt(ArrayRef(&Record[CurIdx], ActiveWords), 5696 ValueBitWidth); 5697 CurIdx += ActiveWords; 5698 5699 // FIXME: It is not clear whether values in the range should be 5700 // compared as signed or unsigned values. The partially 5701 // implemented changes that used this format in the past used 5702 // unsigned comparisons. 5703 for ( ; Low.ule(High); ++Low) 5704 CaseVals.push_back(ConstantInt::get(Context, Low)); 5705 } else 5706 CaseVals.push_back(ConstantInt::get(Context, Low)); 5707 } 5708 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 5709 for (ConstantInt *Cst : CaseVals) 5710 SI->addCase(Cst, DestBB); 5711 } 5712 I = SI; 5713 break; 5714 } 5715 5716 // Old SwitchInst format without case ranges. 5717 5718 if (Record.size() < 3 || (Record.size() & 1) == 0) 5719 return error("Invalid record"); 5720 unsigned OpTyID = Record[0]; 5721 Type *OpTy = getTypeByID(OpTyID); 5722 Value *Cond = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB); 5723 BasicBlock *Default = getBasicBlock(Record[2]); 5724 if (!OpTy || !Cond || !Default) 5725 return error("Invalid record"); 5726 unsigned NumCases = (Record.size()-3)/2; 5727 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 5728 InstructionList.push_back(SI); 5729 for (unsigned i = 0, e = NumCases; i != e; ++i) { 5730 ConstantInt *CaseVal = dyn_cast_or_null<ConstantInt>( 5731 getFnValueByID(Record[3+i*2], OpTy, OpTyID, nullptr)); 5732 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 5733 if (!CaseVal || !DestBB) { 5734 delete SI; 5735 return error("Invalid record"); 5736 } 5737 SI->addCase(CaseVal, DestBB); 5738 } 5739 I = SI; 5740 break; 5741 } 5742 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 5743 if (Record.size() < 2) 5744 return error("Invalid record"); 5745 unsigned OpTyID = Record[0]; 5746 Type *OpTy = getTypeByID(OpTyID); 5747 Value *Address = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB); 5748 if (!OpTy || !Address) 5749 return error("Invalid record"); 5750 unsigned NumDests = Record.size()-2; 5751 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 5752 InstructionList.push_back(IBI); 5753 for (unsigned i = 0, e = NumDests; i != e; ++i) { 5754 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 5755 IBI->addDestination(DestBB); 5756 } else { 5757 delete IBI; 5758 return error("Invalid record"); 5759 } 5760 } 5761 I = IBI; 5762 break; 5763 } 5764 5765 case bitc::FUNC_CODE_INST_INVOKE: { 5766 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 5767 if (Record.size() < 4) 5768 return error("Invalid record"); 5769 unsigned OpNum = 0; 5770 AttributeList PAL = getAttributes(Record[OpNum++]); 5771 unsigned CCInfo = Record[OpNum++]; 5772 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 5773 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 5774 5775 unsigned FTyID = InvalidTypeID; 5776 FunctionType *FTy = nullptr; 5777 if ((CCInfo >> 13) & 1) { 5778 FTyID = Record[OpNum++]; 5779 FTy = dyn_cast<FunctionType>(getTypeByID(FTyID)); 5780 if (!FTy) 5781 return error("Explicit invoke type is not a function type"); 5782 } 5783 5784 Value *Callee; 5785 unsigned CalleeTypeID; 5786 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID, 5787 CurBB)) 5788 return error("Invalid record"); 5789 5790 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 5791 if (!CalleeTy) 5792 return error("Callee is not a pointer"); 5793 if (!FTy) { 5794 FTyID = getContainedTypeID(CalleeTypeID); 5795 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 5796 if (!FTy) 5797 return error("Callee is not of pointer to function type"); 5798 } 5799 if (Record.size() < FTy->getNumParams() + OpNum) 5800 return error("Insufficient operands to call"); 5801 5802 SmallVector<Value*, 16> Ops; 5803 SmallVector<unsigned, 16> ArgTyIDs; 5804 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5805 unsigned ArgTyID = getContainedTypeID(FTyID, i + 1); 5806 Ops.push_back(getValue(Record, OpNum, NextValueNo, FTy->getParamType(i), 5807 ArgTyID, CurBB)); 5808 ArgTyIDs.push_back(ArgTyID); 5809 if (!Ops.back()) 5810 return error("Invalid record"); 5811 } 5812 5813 if (!FTy->isVarArg()) { 5814 if (Record.size() != OpNum) 5815 return error("Invalid record"); 5816 } else { 5817 // Read type/value pairs for varargs params. 5818 while (OpNum != Record.size()) { 5819 Value *Op; 5820 unsigned OpTypeID; 5821 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 5822 return error("Invalid record"); 5823 Ops.push_back(Op); 5824 ArgTyIDs.push_back(OpTypeID); 5825 } 5826 } 5827 5828 // Upgrade the bundles if needed. 5829 if (!OperandBundles.empty()) 5830 UpgradeOperandBundles(OperandBundles); 5831 5832 I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops, 5833 OperandBundles); 5834 ResTypeID = getContainedTypeID(FTyID); 5835 OperandBundles.clear(); 5836 InstructionList.push_back(I); 5837 cast<InvokeInst>(I)->setCallingConv( 5838 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 5839 cast<InvokeInst>(I)->setAttributes(PAL); 5840 if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) { 5841 I->deleteValue(); 5842 return Err; 5843 } 5844 5845 break; 5846 } 5847 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 5848 unsigned Idx = 0; 5849 Value *Val = nullptr; 5850 unsigned ValTypeID; 5851 if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, CurBB)) 5852 return error("Invalid record"); 5853 I = ResumeInst::Create(Val); 5854 InstructionList.push_back(I); 5855 break; 5856 } 5857 case bitc::FUNC_CODE_INST_CALLBR: { 5858 // CALLBR: [attr, cc, norm, transfs, fty, fnid, args] 5859 unsigned OpNum = 0; 5860 AttributeList PAL = getAttributes(Record[OpNum++]); 5861 unsigned CCInfo = Record[OpNum++]; 5862 5863 BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]); 5864 unsigned NumIndirectDests = Record[OpNum++]; 5865 SmallVector<BasicBlock *, 16> IndirectDests; 5866 for (unsigned i = 0, e = NumIndirectDests; i != e; ++i) 5867 IndirectDests.push_back(getBasicBlock(Record[OpNum++])); 5868 5869 unsigned FTyID = InvalidTypeID; 5870 FunctionType *FTy = nullptr; 5871 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 5872 FTyID = Record[OpNum++]; 5873 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 5874 if (!FTy) 5875 return error("Explicit call type is not a function type"); 5876 } 5877 5878 Value *Callee; 5879 unsigned CalleeTypeID; 5880 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID, 5881 CurBB)) 5882 return error("Invalid record"); 5883 5884 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5885 if (!OpTy) 5886 return error("Callee is not a pointer type"); 5887 if (!FTy) { 5888 FTyID = getContainedTypeID(CalleeTypeID); 5889 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 5890 if (!FTy) 5891 return error("Callee is not of pointer to function type"); 5892 } 5893 if (Record.size() < FTy->getNumParams() + OpNum) 5894 return error("Insufficient operands to call"); 5895 5896 SmallVector<Value*, 16> Args; 5897 SmallVector<unsigned, 16> ArgTyIDs; 5898 // Read the fixed params. 5899 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5900 Value *Arg; 5901 unsigned ArgTyID = getContainedTypeID(FTyID, i + 1); 5902 if (FTy->getParamType(i)->isLabelTy()) 5903 Arg = getBasicBlock(Record[OpNum]); 5904 else 5905 Arg = getValue(Record, OpNum, NextValueNo, FTy->getParamType(i), 5906 ArgTyID, CurBB); 5907 if (!Arg) 5908 return error("Invalid record"); 5909 Args.push_back(Arg); 5910 ArgTyIDs.push_back(ArgTyID); 5911 } 5912 5913 // Read type/value pairs for varargs params. 5914 if (!FTy->isVarArg()) { 5915 if (OpNum != Record.size()) 5916 return error("Invalid record"); 5917 } else { 5918 while (OpNum != Record.size()) { 5919 Value *Op; 5920 unsigned OpTypeID; 5921 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 5922 return error("Invalid record"); 5923 Args.push_back(Op); 5924 ArgTyIDs.push_back(OpTypeID); 5925 } 5926 } 5927 5928 // Upgrade the bundles if needed. 5929 if (!OperandBundles.empty()) 5930 UpgradeOperandBundles(OperandBundles); 5931 5932 if (auto *IA = dyn_cast<InlineAsm>(Callee)) { 5933 InlineAsm::ConstraintInfoVector ConstraintInfo = IA->ParseConstraints(); 5934 auto IsLabelConstraint = [](const InlineAsm::ConstraintInfo &CI) { 5935 return CI.Type == InlineAsm::isLabel; 5936 }; 5937 if (none_of(ConstraintInfo, IsLabelConstraint)) { 5938 // Upgrade explicit blockaddress arguments to label constraints. 5939 // Verify that the last arguments are blockaddress arguments that 5940 // match the indirect destinations. Clang always generates callbr 5941 // in this form. We could support reordering with more effort. 5942 unsigned FirstBlockArg = Args.size() - IndirectDests.size(); 5943 for (unsigned ArgNo = FirstBlockArg; ArgNo < Args.size(); ++ArgNo) { 5944 unsigned LabelNo = ArgNo - FirstBlockArg; 5945 auto *BA = dyn_cast<BlockAddress>(Args[ArgNo]); 5946 if (!BA || BA->getFunction() != F || 5947 LabelNo > IndirectDests.size() || 5948 BA->getBasicBlock() != IndirectDests[LabelNo]) 5949 return error("callbr argument does not match indirect dest"); 5950 } 5951 5952 // Remove blockaddress arguments. 5953 Args.erase(Args.begin() + FirstBlockArg, Args.end()); 5954 ArgTyIDs.erase(ArgTyIDs.begin() + FirstBlockArg, ArgTyIDs.end()); 5955 5956 // Recreate the function type with less arguments. 5957 SmallVector<Type *> ArgTys; 5958 for (Value *Arg : Args) 5959 ArgTys.push_back(Arg->getType()); 5960 FTy = 5961 FunctionType::get(FTy->getReturnType(), ArgTys, FTy->isVarArg()); 5962 5963 // Update constraint string to use label constraints. 5964 std::string Constraints = IA->getConstraintString(); 5965 unsigned ArgNo = 0; 5966 size_t Pos = 0; 5967 for (const auto &CI : ConstraintInfo) { 5968 if (CI.hasArg()) { 5969 if (ArgNo >= FirstBlockArg) 5970 Constraints.insert(Pos, "!"); 5971 ++ArgNo; 5972 } 5973 5974 // Go to next constraint in string. 5975 Pos = Constraints.find(',', Pos); 5976 if (Pos == std::string::npos) 5977 break; 5978 ++Pos; 5979 } 5980 5981 Callee = InlineAsm::get(FTy, IA->getAsmString(), Constraints, 5982 IA->hasSideEffects(), IA->isAlignStack(), 5983 IA->getDialect(), IA->canThrow()); 5984 } 5985 } 5986 5987 I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args, 5988 OperandBundles); 5989 ResTypeID = getContainedTypeID(FTyID); 5990 OperandBundles.clear(); 5991 InstructionList.push_back(I); 5992 cast<CallBrInst>(I)->setCallingConv( 5993 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5994 cast<CallBrInst>(I)->setAttributes(PAL); 5995 if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) { 5996 I->deleteValue(); 5997 return Err; 5998 } 5999 break; 6000 } 6001 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 6002 I = new UnreachableInst(Context); 6003 InstructionList.push_back(I); 6004 break; 6005 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 6006 if (Record.empty()) 6007 return error("Invalid phi record"); 6008 // The first record specifies the type. 6009 unsigned TyID = Record[0]; 6010 Type *Ty = getTypeByID(TyID); 6011 if (!Ty) 6012 return error("Invalid phi record"); 6013 6014 // Phi arguments are pairs of records of [value, basic block]. 6015 // There is an optional final record for fast-math-flags if this phi has a 6016 // floating-point type. 6017 size_t NumArgs = (Record.size() - 1) / 2; 6018 PHINode *PN = PHINode::Create(Ty, NumArgs); 6019 if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN)) { 6020 PN->deleteValue(); 6021 return error("Invalid phi record"); 6022 } 6023 InstructionList.push_back(PN); 6024 6025 SmallDenseMap<BasicBlock *, Value *> Args; 6026 for (unsigned i = 0; i != NumArgs; i++) { 6027 BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]); 6028 if (!BB) { 6029 PN->deleteValue(); 6030 return error("Invalid phi BB"); 6031 } 6032 6033 // Phi nodes may contain the same predecessor multiple times, in which 6034 // case the incoming value must be identical. Directly reuse the already 6035 // seen value here, to avoid expanding a constant expression multiple 6036 // times. 6037 auto It = Args.find(BB); 6038 if (It != Args.end()) { 6039 PN->addIncoming(It->second, BB); 6040 continue; 6041 } 6042 6043 // If there already is a block for this edge (from a different phi), 6044 // use it. 6045 BasicBlock *EdgeBB = ConstExprEdgeBBs.lookup({BB, CurBB}); 6046 if (!EdgeBB) { 6047 // Otherwise, use a temporary block (that we will discard if it 6048 // turns out to be unnecessary). 6049 if (!PhiConstExprBB) 6050 PhiConstExprBB = BasicBlock::Create(Context, "phi.constexpr", F); 6051 EdgeBB = PhiConstExprBB; 6052 } 6053 6054 // With the new function encoding, it is possible that operands have 6055 // negative IDs (for forward references). Use a signed VBR 6056 // representation to keep the encoding small. 6057 Value *V; 6058 if (UseRelativeIDs) 6059 V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB); 6060 else 6061 V = getValue(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB); 6062 if (!V) { 6063 PN->deleteValue(); 6064 PhiConstExprBB->eraseFromParent(); 6065 return error("Invalid phi record"); 6066 } 6067 6068 if (EdgeBB == PhiConstExprBB && !EdgeBB->empty()) { 6069 ConstExprEdgeBBs.insert({{BB, CurBB}, EdgeBB}); 6070 PhiConstExprBB = nullptr; 6071 } 6072 PN->addIncoming(V, BB); 6073 Args.insert({BB, V}); 6074 } 6075 I = PN; 6076 ResTypeID = TyID; 6077 6078 // If there are an even number of records, the final record must be FMF. 6079 if (Record.size() % 2 == 0) { 6080 assert(isa<FPMathOperator>(I) && "Unexpected phi type"); 6081 FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]); 6082 if (FMF.any()) 6083 I->setFastMathFlags(FMF); 6084 } 6085 6086 break; 6087 } 6088 6089 case bitc::FUNC_CODE_INST_LANDINGPAD: 6090 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 6091 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 6092 unsigned Idx = 0; 6093 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 6094 if (Record.size() < 3) 6095 return error("Invalid record"); 6096 } else { 6097 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 6098 if (Record.size() < 4) 6099 return error("Invalid record"); 6100 } 6101 ResTypeID = Record[Idx++]; 6102 Type *Ty = getTypeByID(ResTypeID); 6103 if (!Ty) 6104 return error("Invalid record"); 6105 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 6106 Value *PersFn = nullptr; 6107 unsigned PersFnTypeID; 6108 if (getValueTypePair(Record, Idx, NextValueNo, PersFn, PersFnTypeID, 6109 nullptr)) 6110 return error("Invalid record"); 6111 6112 if (!F->hasPersonalityFn()) 6113 F->setPersonalityFn(cast<Constant>(PersFn)); 6114 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 6115 return error("Personality function mismatch"); 6116 } 6117 6118 bool IsCleanup = !!Record[Idx++]; 6119 unsigned NumClauses = Record[Idx++]; 6120 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 6121 LP->setCleanup(IsCleanup); 6122 for (unsigned J = 0; J != NumClauses; ++J) { 6123 LandingPadInst::ClauseType CT = 6124 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 6125 Value *Val; 6126 unsigned ValTypeID; 6127 6128 if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, 6129 nullptr)) { 6130 delete LP; 6131 return error("Invalid record"); 6132 } 6133 6134 assert((CT != LandingPadInst::Catch || 6135 !isa<ArrayType>(Val->getType())) && 6136 "Catch clause has a invalid type!"); 6137 assert((CT != LandingPadInst::Filter || 6138 isa<ArrayType>(Val->getType())) && 6139 "Filter clause has invalid type!"); 6140 LP->addClause(cast<Constant>(Val)); 6141 } 6142 6143 I = LP; 6144 InstructionList.push_back(I); 6145 break; 6146 } 6147 6148 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 6149 if (Record.size() != 4 && Record.size() != 5) 6150 return error("Invalid record"); 6151 using APV = AllocaPackedValues; 6152 const uint64_t Rec = Record[3]; 6153 const bool InAlloca = Bitfield::get<APV::UsedWithInAlloca>(Rec); 6154 const bool SwiftError = Bitfield::get<APV::SwiftError>(Rec); 6155 unsigned TyID = Record[0]; 6156 Type *Ty = getTypeByID(TyID); 6157 if (!Bitfield::get<APV::ExplicitType>(Rec)) { 6158 TyID = getContainedTypeID(TyID); 6159 Ty = getTypeByID(TyID); 6160 if (!Ty) 6161 return error("Missing element type for old-style alloca"); 6162 } 6163 unsigned OpTyID = Record[1]; 6164 Type *OpTy = getTypeByID(OpTyID); 6165 Value *Size = getFnValueByID(Record[2], OpTy, OpTyID, CurBB); 6166 MaybeAlign Align; 6167 uint64_t AlignExp = 6168 Bitfield::get<APV::AlignLower>(Rec) | 6169 (Bitfield::get<APV::AlignUpper>(Rec) << APV::AlignLower::Bits); 6170 if (Error Err = parseAlignmentValue(AlignExp, Align)) { 6171 return Err; 6172 } 6173 if (!Ty || !Size) 6174 return error("Invalid record"); 6175 6176 const DataLayout &DL = TheModule->getDataLayout(); 6177 unsigned AS = Record.size() == 5 ? Record[4] : DL.getAllocaAddrSpace(); 6178 6179 SmallPtrSet<Type *, 4> Visited; 6180 if (!Align && !Ty->isSized(&Visited)) 6181 return error("alloca of unsized type"); 6182 if (!Align) 6183 Align = DL.getPrefTypeAlign(Ty); 6184 6185 if (!Size->getType()->isIntegerTy()) 6186 return error("alloca element count must have integer type"); 6187 6188 AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align); 6189 AI->setUsedWithInAlloca(InAlloca); 6190 AI->setSwiftError(SwiftError); 6191 I = AI; 6192 ResTypeID = getVirtualTypeID(AI->getType(), TyID); 6193 InstructionList.push_back(I); 6194 break; 6195 } 6196 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 6197 unsigned OpNum = 0; 6198 Value *Op; 6199 unsigned OpTypeID; 6200 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) || 6201 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 6202 return error("Invalid record"); 6203 6204 if (!isa<PointerType>(Op->getType())) 6205 return error("Load operand is not a pointer type"); 6206 6207 Type *Ty = nullptr; 6208 if (OpNum + 3 == Record.size()) { 6209 ResTypeID = Record[OpNum++]; 6210 Ty = getTypeByID(ResTypeID); 6211 } else { 6212 ResTypeID = getContainedTypeID(OpTypeID); 6213 Ty = getTypeByID(ResTypeID); 6214 } 6215 6216 if (!Ty) 6217 return error("Missing load type"); 6218 6219 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 6220 return Err; 6221 6222 MaybeAlign Align; 6223 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 6224 return Err; 6225 SmallPtrSet<Type *, 4> Visited; 6226 if (!Align && !Ty->isSized(&Visited)) 6227 return error("load of unsized type"); 6228 if (!Align) 6229 Align = TheModule->getDataLayout().getABITypeAlign(Ty); 6230 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align); 6231 InstructionList.push_back(I); 6232 break; 6233 } 6234 case bitc::FUNC_CODE_INST_LOADATOMIC: { 6235 // LOADATOMIC: [opty, op, align, vol, ordering, ssid] 6236 unsigned OpNum = 0; 6237 Value *Op; 6238 unsigned OpTypeID; 6239 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) || 6240 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 6241 return error("Invalid record"); 6242 6243 if (!isa<PointerType>(Op->getType())) 6244 return error("Load operand is not a pointer type"); 6245 6246 Type *Ty = nullptr; 6247 if (OpNum + 5 == Record.size()) { 6248 ResTypeID = Record[OpNum++]; 6249 Ty = getTypeByID(ResTypeID); 6250 } else { 6251 ResTypeID = getContainedTypeID(OpTypeID); 6252 Ty = getTypeByID(ResTypeID); 6253 } 6254 6255 if (!Ty) 6256 return error("Missing atomic load type"); 6257 6258 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 6259 return Err; 6260 6261 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 6262 if (Ordering == AtomicOrdering::NotAtomic || 6263 Ordering == AtomicOrdering::Release || 6264 Ordering == AtomicOrdering::AcquireRelease) 6265 return error("Invalid record"); 6266 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 6267 return error("Invalid record"); 6268 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 6269 6270 MaybeAlign Align; 6271 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 6272 return Err; 6273 if (!Align) 6274 return error("Alignment missing from atomic load"); 6275 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID); 6276 InstructionList.push_back(I); 6277 break; 6278 } 6279 case bitc::FUNC_CODE_INST_STORE: 6280 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 6281 unsigned OpNum = 0; 6282 Value *Val, *Ptr; 6283 unsigned PtrTypeID, ValTypeID; 6284 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 6285 return error("Invalid record"); 6286 6287 if (BitCode == bitc::FUNC_CODE_INST_STORE) { 6288 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 6289 return error("Invalid record"); 6290 } else { 6291 ValTypeID = getContainedTypeID(PtrTypeID); 6292 if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID), 6293 ValTypeID, Val, CurBB)) 6294 return error("Invalid record"); 6295 } 6296 6297 if (OpNum + 2 != Record.size()) 6298 return error("Invalid record"); 6299 6300 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 6301 return Err; 6302 MaybeAlign Align; 6303 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 6304 return Err; 6305 SmallPtrSet<Type *, 4> Visited; 6306 if (!Align && !Val->getType()->isSized(&Visited)) 6307 return error("store of unsized type"); 6308 if (!Align) 6309 Align = TheModule->getDataLayout().getABITypeAlign(Val->getType()); 6310 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align); 6311 InstructionList.push_back(I); 6312 break; 6313 } 6314 case bitc::FUNC_CODE_INST_STOREATOMIC: 6315 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 6316 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid] 6317 unsigned OpNum = 0; 6318 Value *Val, *Ptr; 6319 unsigned PtrTypeID, ValTypeID; 6320 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB) || 6321 !isa<PointerType>(Ptr->getType())) 6322 return error("Invalid record"); 6323 if (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC) { 6324 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 6325 return error("Invalid record"); 6326 } else { 6327 ValTypeID = getContainedTypeID(PtrTypeID); 6328 if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID), 6329 ValTypeID, Val, CurBB)) 6330 return error("Invalid record"); 6331 } 6332 6333 if (OpNum + 4 != Record.size()) 6334 return error("Invalid record"); 6335 6336 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 6337 return Err; 6338 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 6339 if (Ordering == AtomicOrdering::NotAtomic || 6340 Ordering == AtomicOrdering::Acquire || 6341 Ordering == AtomicOrdering::AcquireRelease) 6342 return error("Invalid record"); 6343 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 6344 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 6345 return error("Invalid record"); 6346 6347 MaybeAlign Align; 6348 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 6349 return Err; 6350 if (!Align) 6351 return error("Alignment missing from atomic store"); 6352 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID); 6353 InstructionList.push_back(I); 6354 break; 6355 } 6356 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: { 6357 // CMPXCHG_OLD: [ptrty, ptr, cmp, val, vol, ordering, synchscope, 6358 // failure_ordering?, weak?] 6359 const size_t NumRecords = Record.size(); 6360 unsigned OpNum = 0; 6361 Value *Ptr = nullptr; 6362 unsigned PtrTypeID; 6363 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 6364 return error("Invalid record"); 6365 6366 if (!isa<PointerType>(Ptr->getType())) 6367 return error("Cmpxchg operand is not a pointer type"); 6368 6369 Value *Cmp = nullptr; 6370 unsigned CmpTypeID = getContainedTypeID(PtrTypeID); 6371 if (popValue(Record, OpNum, NextValueNo, getTypeByID(CmpTypeID), 6372 CmpTypeID, Cmp, CurBB)) 6373 return error("Invalid record"); 6374 6375 Value *New = nullptr; 6376 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID, 6377 New, CurBB) || 6378 NumRecords < OpNum + 3 || NumRecords > OpNum + 5) 6379 return error("Invalid record"); 6380 6381 const AtomicOrdering SuccessOrdering = 6382 getDecodedOrdering(Record[OpNum + 1]); 6383 if (SuccessOrdering == AtomicOrdering::NotAtomic || 6384 SuccessOrdering == AtomicOrdering::Unordered) 6385 return error("Invalid record"); 6386 6387 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 6388 6389 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 6390 return Err; 6391 6392 const AtomicOrdering FailureOrdering = 6393 NumRecords < 7 6394 ? AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering) 6395 : getDecodedOrdering(Record[OpNum + 3]); 6396 6397 if (FailureOrdering == AtomicOrdering::NotAtomic || 6398 FailureOrdering == AtomicOrdering::Unordered) 6399 return error("Invalid record"); 6400 6401 const Align Alignment( 6402 TheModule->getDataLayout().getTypeStoreSize(Cmp->getType())); 6403 6404 I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering, 6405 FailureOrdering, SSID); 6406 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 6407 6408 if (NumRecords < 8) { 6409 // Before weak cmpxchgs existed, the instruction simply returned the 6410 // value loaded from memory, so bitcode files from that era will be 6411 // expecting the first component of a modern cmpxchg. 6412 I->insertInto(CurBB, CurBB->end()); 6413 I = ExtractValueInst::Create(I, 0); 6414 ResTypeID = CmpTypeID; 6415 } else { 6416 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]); 6417 unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context)); 6418 ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID}); 6419 } 6420 6421 InstructionList.push_back(I); 6422 break; 6423 } 6424 case bitc::FUNC_CODE_INST_CMPXCHG: { 6425 // CMPXCHG: [ptrty, ptr, cmp, val, vol, success_ordering, synchscope, 6426 // failure_ordering, weak, align?] 6427 const size_t NumRecords = Record.size(); 6428 unsigned OpNum = 0; 6429 Value *Ptr = nullptr; 6430 unsigned PtrTypeID; 6431 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 6432 return error("Invalid record"); 6433 6434 if (!isa<PointerType>(Ptr->getType())) 6435 return error("Cmpxchg operand is not a pointer type"); 6436 6437 Value *Cmp = nullptr; 6438 unsigned CmpTypeID; 6439 if (getValueTypePair(Record, OpNum, NextValueNo, Cmp, CmpTypeID, CurBB)) 6440 return error("Invalid record"); 6441 6442 Value *Val = nullptr; 6443 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID, Val, 6444 CurBB)) 6445 return error("Invalid record"); 6446 6447 if (NumRecords < OpNum + 3 || NumRecords > OpNum + 6) 6448 return error("Invalid record"); 6449 6450 const bool IsVol = Record[OpNum]; 6451 6452 const AtomicOrdering SuccessOrdering = 6453 getDecodedOrdering(Record[OpNum + 1]); 6454 if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering)) 6455 return error("Invalid cmpxchg success ordering"); 6456 6457 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 6458 6459 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 6460 return Err; 6461 6462 const AtomicOrdering FailureOrdering = 6463 getDecodedOrdering(Record[OpNum + 3]); 6464 if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering)) 6465 return error("Invalid cmpxchg failure ordering"); 6466 6467 const bool IsWeak = Record[OpNum + 4]; 6468 6469 MaybeAlign Alignment; 6470 6471 if (NumRecords == (OpNum + 6)) { 6472 if (Error Err = parseAlignmentValue(Record[OpNum + 5], Alignment)) 6473 return Err; 6474 } 6475 if (!Alignment) 6476 Alignment = 6477 Align(TheModule->getDataLayout().getTypeStoreSize(Cmp->getType())); 6478 6479 I = new AtomicCmpXchgInst(Ptr, Cmp, Val, *Alignment, SuccessOrdering, 6480 FailureOrdering, SSID); 6481 cast<AtomicCmpXchgInst>(I)->setVolatile(IsVol); 6482 cast<AtomicCmpXchgInst>(I)->setWeak(IsWeak); 6483 6484 unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context)); 6485 ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID}); 6486 6487 InstructionList.push_back(I); 6488 break; 6489 } 6490 case bitc::FUNC_CODE_INST_ATOMICRMW_OLD: 6491 case bitc::FUNC_CODE_INST_ATOMICRMW: { 6492 // ATOMICRMW_OLD: [ptrty, ptr, val, op, vol, ordering, ssid, align?] 6493 // ATOMICRMW: [ptrty, ptr, valty, val, op, vol, ordering, ssid, align?] 6494 const size_t NumRecords = Record.size(); 6495 unsigned OpNum = 0; 6496 6497 Value *Ptr = nullptr; 6498 unsigned PtrTypeID; 6499 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 6500 return error("Invalid record"); 6501 6502 if (!isa<PointerType>(Ptr->getType())) 6503 return error("Invalid record"); 6504 6505 Value *Val = nullptr; 6506 unsigned ValTypeID = InvalidTypeID; 6507 if (BitCode == bitc::FUNC_CODE_INST_ATOMICRMW_OLD) { 6508 ValTypeID = getContainedTypeID(PtrTypeID); 6509 if (popValue(Record, OpNum, NextValueNo, 6510 getTypeByID(ValTypeID), ValTypeID, Val, CurBB)) 6511 return error("Invalid record"); 6512 } else { 6513 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 6514 return error("Invalid record"); 6515 } 6516 6517 if (!(NumRecords == (OpNum + 4) || NumRecords == (OpNum + 5))) 6518 return error("Invalid record"); 6519 6520 const AtomicRMWInst::BinOp Operation = 6521 getDecodedRMWOperation(Record[OpNum]); 6522 if (Operation < AtomicRMWInst::FIRST_BINOP || 6523 Operation > AtomicRMWInst::LAST_BINOP) 6524 return error("Invalid record"); 6525 6526 const bool IsVol = Record[OpNum + 1]; 6527 6528 const AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 6529 if (Ordering == AtomicOrdering::NotAtomic || 6530 Ordering == AtomicOrdering::Unordered) 6531 return error("Invalid record"); 6532 6533 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 6534 6535 MaybeAlign Alignment; 6536 6537 if (NumRecords == (OpNum + 5)) { 6538 if (Error Err = parseAlignmentValue(Record[OpNum + 4], Alignment)) 6539 return Err; 6540 } 6541 6542 if (!Alignment) 6543 Alignment = 6544 Align(TheModule->getDataLayout().getTypeStoreSize(Val->getType())); 6545 6546 I = new AtomicRMWInst(Operation, Ptr, Val, *Alignment, Ordering, SSID); 6547 ResTypeID = ValTypeID; 6548 cast<AtomicRMWInst>(I)->setVolatile(IsVol); 6549 6550 InstructionList.push_back(I); 6551 break; 6552 } 6553 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid] 6554 if (2 != Record.size()) 6555 return error("Invalid record"); 6556 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 6557 if (Ordering == AtomicOrdering::NotAtomic || 6558 Ordering == AtomicOrdering::Unordered || 6559 Ordering == AtomicOrdering::Monotonic) 6560 return error("Invalid record"); 6561 SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]); 6562 I = new FenceInst(Context, Ordering, SSID); 6563 InstructionList.push_back(I); 6564 break; 6565 } 6566 case bitc::FUNC_CODE_DEBUG_RECORD_LABEL: { 6567 // DbgLabelRecords are placed after the Instructions that they are 6568 // attached to. 6569 SeenDebugRecord = true; 6570 Instruction *Inst = getLastInstruction(); 6571 if (!Inst) 6572 return error("Invalid dbg record: missing instruction"); 6573 DILocation *DIL = cast<DILocation>(getFnMetadataByID(Record[0])); 6574 DILabel *Label = cast<DILabel>(getFnMetadataByID(Record[1])); 6575 Inst->getParent()->insertDbgRecordBefore( 6576 new DbgLabelRecord(Label, DebugLoc(DIL)), Inst->getIterator()); 6577 continue; // This isn't an instruction. 6578 } 6579 case bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE: 6580 case bitc::FUNC_CODE_DEBUG_RECORD_VALUE: 6581 case bitc::FUNC_CODE_DEBUG_RECORD_DECLARE: 6582 case bitc::FUNC_CODE_DEBUG_RECORD_ASSIGN: { 6583 // DbgVariableRecords are placed after the Instructions that they are 6584 // attached to. 6585 SeenDebugRecord = true; 6586 Instruction *Inst = getLastInstruction(); 6587 if (!Inst) 6588 return error("Invalid dbg record: missing instruction"); 6589 6590 // First 3 fields are common to all kinds: 6591 // DILocation, DILocalVariable, DIExpression 6592 // dbg_value (FUNC_CODE_DEBUG_RECORD_VALUE) 6593 // ..., LocationMetadata 6594 // dbg_value (FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE - abbrev'd) 6595 // ..., Value 6596 // dbg_declare (FUNC_CODE_DEBUG_RECORD_DECLARE) 6597 // ..., LocationMetadata 6598 // dbg_assign (FUNC_CODE_DEBUG_RECORD_ASSIGN) 6599 // ..., LocationMetadata, DIAssignID, DIExpression, LocationMetadata 6600 unsigned Slot = 0; 6601 // Common fields (0-2). 6602 DILocation *DIL = cast<DILocation>(getFnMetadataByID(Record[Slot++])); 6603 DILocalVariable *Var = 6604 cast<DILocalVariable>(getFnMetadataByID(Record[Slot++])); 6605 DIExpression *Expr = 6606 cast<DIExpression>(getFnMetadataByID(Record[Slot++])); 6607 6608 // Union field (3: LocationMetadata | Value). 6609 Metadata *RawLocation = nullptr; 6610 if (BitCode == bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE) { 6611 Value *V = nullptr; 6612 unsigned TyID = 0; 6613 // We never expect to see a fwd reference value here because 6614 // use-before-defs are encoded with the standard non-abbrev record 6615 // type (they'd require encoding the type too, and they're rare). As a 6616 // result, getValueTypePair only ever increments Slot by one here (once 6617 // for the value, never twice for value and type). 6618 unsigned SlotBefore = Slot; 6619 if (getValueTypePair(Record, Slot, NextValueNo, V, TyID, CurBB)) 6620 return error("Invalid dbg record: invalid value"); 6621 (void)SlotBefore; 6622 assert((SlotBefore == Slot - 1) && "unexpected fwd ref"); 6623 RawLocation = ValueAsMetadata::get(V); 6624 } else { 6625 RawLocation = getFnMetadataByID(Record[Slot++]); 6626 } 6627 6628 DbgVariableRecord *DVR = nullptr; 6629 switch (BitCode) { 6630 case bitc::FUNC_CODE_DEBUG_RECORD_VALUE: 6631 case bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE: 6632 DVR = new DbgVariableRecord(RawLocation, Var, Expr, DIL, 6633 DbgVariableRecord::LocationType::Value); 6634 break; 6635 case bitc::FUNC_CODE_DEBUG_RECORD_DECLARE: 6636 DVR = new DbgVariableRecord(RawLocation, Var, Expr, DIL, 6637 DbgVariableRecord::LocationType::Declare); 6638 break; 6639 case bitc::FUNC_CODE_DEBUG_RECORD_ASSIGN: { 6640 DIAssignID *ID = cast<DIAssignID>(getFnMetadataByID(Record[Slot++])); 6641 DIExpression *AddrExpr = 6642 cast<DIExpression>(getFnMetadataByID(Record[Slot++])); 6643 Metadata *Addr = getFnMetadataByID(Record[Slot++]); 6644 DVR = new DbgVariableRecord(RawLocation, Var, Expr, ID, Addr, AddrExpr, 6645 DIL); 6646 break; 6647 } 6648 default: 6649 llvm_unreachable("Unknown DbgVariableRecord bitcode"); 6650 } 6651 Inst->getParent()->insertDbgRecordBefore(DVR, Inst->getIterator()); 6652 continue; // This isn't an instruction. 6653 } 6654 case bitc::FUNC_CODE_INST_CALL: { 6655 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 6656 if (Record.size() < 3) 6657 return error("Invalid record"); 6658 6659 unsigned OpNum = 0; 6660 AttributeList PAL = getAttributes(Record[OpNum++]); 6661 unsigned CCInfo = Record[OpNum++]; 6662 6663 FastMathFlags FMF; 6664 if ((CCInfo >> bitc::CALL_FMF) & 1) { 6665 FMF = getDecodedFastMathFlags(Record[OpNum++]); 6666 if (!FMF.any()) 6667 return error("Fast math flags indicator set for call with no FMF"); 6668 } 6669 6670 unsigned FTyID = InvalidTypeID; 6671 FunctionType *FTy = nullptr; 6672 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 6673 FTyID = Record[OpNum++]; 6674 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 6675 if (!FTy) 6676 return error("Explicit call type is not a function type"); 6677 } 6678 6679 Value *Callee; 6680 unsigned CalleeTypeID; 6681 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID, 6682 CurBB)) 6683 return error("Invalid record"); 6684 6685 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 6686 if (!OpTy) 6687 return error("Callee is not a pointer type"); 6688 if (!FTy) { 6689 FTyID = getContainedTypeID(CalleeTypeID); 6690 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 6691 if (!FTy) 6692 return error("Callee is not of pointer to function type"); 6693 } 6694 if (Record.size() < FTy->getNumParams() + OpNum) 6695 return error("Insufficient operands to call"); 6696 6697 SmallVector<Value*, 16> Args; 6698 SmallVector<unsigned, 16> ArgTyIDs; 6699 // Read the fixed params. 6700 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 6701 unsigned ArgTyID = getContainedTypeID(FTyID, i + 1); 6702 if (FTy->getParamType(i)->isLabelTy()) 6703 Args.push_back(getBasicBlock(Record[OpNum])); 6704 else 6705 Args.push_back(getValue(Record, OpNum, NextValueNo, 6706 FTy->getParamType(i), ArgTyID, CurBB)); 6707 ArgTyIDs.push_back(ArgTyID); 6708 if (!Args.back()) 6709 return error("Invalid record"); 6710 } 6711 6712 // Read type/value pairs for varargs params. 6713 if (!FTy->isVarArg()) { 6714 if (OpNum != Record.size()) 6715 return error("Invalid record"); 6716 } else { 6717 while (OpNum != Record.size()) { 6718 Value *Op; 6719 unsigned OpTypeID; 6720 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 6721 return error("Invalid record"); 6722 Args.push_back(Op); 6723 ArgTyIDs.push_back(OpTypeID); 6724 } 6725 } 6726 6727 // Upgrade the bundles if needed. 6728 if (!OperandBundles.empty()) 6729 UpgradeOperandBundles(OperandBundles); 6730 6731 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 6732 ResTypeID = getContainedTypeID(FTyID); 6733 OperandBundles.clear(); 6734 InstructionList.push_back(I); 6735 cast<CallInst>(I)->setCallingConv( 6736 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 6737 CallInst::TailCallKind TCK = CallInst::TCK_None; 6738 if (CCInfo & (1 << bitc::CALL_TAIL)) 6739 TCK = CallInst::TCK_Tail; 6740 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 6741 TCK = CallInst::TCK_MustTail; 6742 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 6743 TCK = CallInst::TCK_NoTail; 6744 cast<CallInst>(I)->setTailCallKind(TCK); 6745 cast<CallInst>(I)->setAttributes(PAL); 6746 if (isa<DbgInfoIntrinsic>(I)) 6747 SeenDebugIntrinsic = true; 6748 if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) { 6749 I->deleteValue(); 6750 return Err; 6751 } 6752 if (FMF.any()) { 6753 if (!isa<FPMathOperator>(I)) 6754 return error("Fast-math-flags specified for call without " 6755 "floating-point scalar or vector return type"); 6756 I->setFastMathFlags(FMF); 6757 } 6758 break; 6759 } 6760 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 6761 if (Record.size() < 3) 6762 return error("Invalid record"); 6763 unsigned OpTyID = Record[0]; 6764 Type *OpTy = getTypeByID(OpTyID); 6765 Value *Op = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB); 6766 ResTypeID = Record[2]; 6767 Type *ResTy = getTypeByID(ResTypeID); 6768 if (!OpTy || !Op || !ResTy) 6769 return error("Invalid record"); 6770 I = new VAArgInst(Op, ResTy); 6771 InstructionList.push_back(I); 6772 break; 6773 } 6774 6775 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 6776 // A call or an invoke can be optionally prefixed with some variable 6777 // number of operand bundle blocks. These blocks are read into 6778 // OperandBundles and consumed at the next call or invoke instruction. 6779 6780 if (Record.empty() || Record[0] >= BundleTags.size()) 6781 return error("Invalid record"); 6782 6783 std::vector<Value *> Inputs; 6784 6785 unsigned OpNum = 1; 6786 while (OpNum != Record.size()) { 6787 Value *Op; 6788 if (getValueOrMetadata(Record, OpNum, NextValueNo, Op, CurBB)) 6789 return error("Invalid record"); 6790 Inputs.push_back(Op); 6791 } 6792 6793 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 6794 continue; 6795 } 6796 6797 case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval] 6798 unsigned OpNum = 0; 6799 Value *Op = nullptr; 6800 unsigned OpTypeID; 6801 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 6802 return error("Invalid record"); 6803 if (OpNum != Record.size()) 6804 return error("Invalid record"); 6805 6806 I = new FreezeInst(Op); 6807 ResTypeID = OpTypeID; 6808 InstructionList.push_back(I); 6809 break; 6810 } 6811 } 6812 6813 // Add instruction to end of current BB. If there is no current BB, reject 6814 // this file. 6815 if (!CurBB) { 6816 I->deleteValue(); 6817 return error("Invalid instruction with no BB"); 6818 } 6819 if (!OperandBundles.empty()) { 6820 I->deleteValue(); 6821 return error("Operand bundles found with no consumer"); 6822 } 6823 I->insertInto(CurBB, CurBB->end()); 6824 6825 // If this was a terminator instruction, move to the next block. 6826 if (I->isTerminator()) { 6827 ++CurBBNo; 6828 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 6829 } 6830 6831 // Non-void values get registered in the value table for future use. 6832 if (!I->getType()->isVoidTy()) { 6833 assert(I->getType() == getTypeByID(ResTypeID) && 6834 "Incorrect result type ID"); 6835 if (Error Err = ValueList.assignValue(NextValueNo++, I, ResTypeID)) 6836 return Err; 6837 } 6838 } 6839 6840 OutOfRecordLoop: 6841 6842 if (!OperandBundles.empty()) 6843 return error("Operand bundles found with no consumer"); 6844 6845 // Check the function list for unresolved values. 6846 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 6847 if (!A->getParent()) { 6848 // We found at least one unresolved value. Nuke them all to avoid leaks. 6849 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 6850 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 6851 A->replaceAllUsesWith(PoisonValue::get(A->getType())); 6852 delete A; 6853 } 6854 } 6855 return error("Never resolved value found in function"); 6856 } 6857 } 6858 6859 // Unexpected unresolved metadata about to be dropped. 6860 if (MDLoader->hasFwdRefs()) 6861 return error("Invalid function metadata: outgoing forward refs"); 6862 6863 if (PhiConstExprBB) 6864 PhiConstExprBB->eraseFromParent(); 6865 6866 for (const auto &Pair : ConstExprEdgeBBs) { 6867 BasicBlock *From = Pair.first.first; 6868 BasicBlock *To = Pair.first.second; 6869 BasicBlock *EdgeBB = Pair.second; 6870 BranchInst::Create(To, EdgeBB); 6871 From->getTerminator()->replaceSuccessorWith(To, EdgeBB); 6872 To->replacePhiUsesWith(From, EdgeBB); 6873 EdgeBB->moveBefore(To); 6874 } 6875 6876 // Trim the value list down to the size it was before we parsed this function. 6877 ValueList.shrinkTo(ModuleValueListSize); 6878 MDLoader->shrinkTo(ModuleMDLoaderSize); 6879 std::vector<BasicBlock*>().swap(FunctionBBs); 6880 return Error::success(); 6881 } 6882 6883 /// Find the function body in the bitcode stream 6884 Error BitcodeReader::findFunctionInStream( 6885 Function *F, 6886 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 6887 while (DeferredFunctionInfoIterator->second == 0) { 6888 // This is the fallback handling for the old format bitcode that 6889 // didn't contain the function index in the VST, or when we have 6890 // an anonymous function which would not have a VST entry. 6891 // Assert that we have one of those two cases. 6892 assert(VSTOffset == 0 || !F->hasName()); 6893 // Parse the next body in the stream and set its position in the 6894 // DeferredFunctionInfo map. 6895 if (Error Err = rememberAndSkipFunctionBodies()) 6896 return Err; 6897 } 6898 return Error::success(); 6899 } 6900 6901 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) { 6902 if (Val == SyncScope::SingleThread || Val == SyncScope::System) 6903 return SyncScope::ID(Val); 6904 if (Val >= SSIDs.size()) 6905 return SyncScope::System; // Map unknown synchronization scopes to system. 6906 return SSIDs[Val]; 6907 } 6908 6909 //===----------------------------------------------------------------------===// 6910 // GVMaterializer implementation 6911 //===----------------------------------------------------------------------===// 6912 6913 Error BitcodeReader::materialize(GlobalValue *GV) { 6914 Function *F = dyn_cast<Function>(GV); 6915 // If it's not a function or is already material, ignore the request. 6916 if (!F || !F->isMaterializable()) 6917 return Error::success(); 6918 6919 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 6920 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 6921 // If its position is recorded as 0, its body is somewhere in the stream 6922 // but we haven't seen it yet. 6923 if (DFII->second == 0) 6924 if (Error Err = findFunctionInStream(F, DFII)) 6925 return Err; 6926 6927 // Materialize metadata before parsing any function bodies. 6928 if (Error Err = materializeMetadata()) 6929 return Err; 6930 6931 // Move the bit stream to the saved position of the deferred function body. 6932 if (Error JumpFailed = Stream.JumpToBit(DFII->second)) 6933 return JumpFailed; 6934 6935 // Regardless of the debug info format we want to end up in, we need 6936 // IsNewDbgInfoFormat=true to construct any debug records seen in the bitcode. 6937 F->IsNewDbgInfoFormat = true; 6938 6939 if (Error Err = parseFunctionBody(F)) 6940 return Err; 6941 F->setIsMaterializable(false); 6942 6943 // All parsed Functions should load into the debug info format dictated by the 6944 // Module, unless we're attempting to preserve the input debug info format. 6945 if (SeenDebugIntrinsic && SeenDebugRecord) 6946 return error("Mixed debug intrinsics and debug records in bitcode module!"); 6947 if (PreserveInputDbgFormat == cl::boolOrDefault::BOU_TRUE) { 6948 bool SeenAnyDebugInfo = SeenDebugIntrinsic || SeenDebugRecord; 6949 bool NewDbgInfoFormatDesired = 6950 SeenAnyDebugInfo ? SeenDebugRecord : F->getParent()->IsNewDbgInfoFormat; 6951 if (SeenAnyDebugInfo) { 6952 UseNewDbgInfoFormat = SeenDebugRecord; 6953 WriteNewDbgInfoFormatToBitcode = SeenDebugRecord; 6954 WriteNewDbgInfoFormat = SeenDebugRecord; 6955 } 6956 // If the module's debug info format doesn't match the observed input 6957 // format, then set its format now; we don't need to call the conversion 6958 // function because there must be no existing intrinsics to convert. 6959 // Otherwise, just set the format on this function now. 6960 if (NewDbgInfoFormatDesired != F->getParent()->IsNewDbgInfoFormat) 6961 F->getParent()->setNewDbgInfoFormatFlag(NewDbgInfoFormatDesired); 6962 else 6963 F->setNewDbgInfoFormatFlag(NewDbgInfoFormatDesired); 6964 } else { 6965 // If we aren't preserving formats, we use the Module flag to get our 6966 // desired format instead of reading flags, in case we are lazy-loading and 6967 // the format of the module has been changed since it was set by the flags. 6968 // We only need to convert debug info here if we have debug records but 6969 // desire the intrinsic format; everything else is a no-op or handled by the 6970 // autoupgrader. 6971 bool ModuleIsNewDbgInfoFormat = F->getParent()->IsNewDbgInfoFormat; 6972 if (ModuleIsNewDbgInfoFormat || !SeenDebugRecord) 6973 F->setNewDbgInfoFormatFlag(ModuleIsNewDbgInfoFormat); 6974 else 6975 F->setIsNewDbgInfoFormat(ModuleIsNewDbgInfoFormat); 6976 } 6977 6978 if (StripDebugInfo) 6979 stripDebugInfo(*F); 6980 6981 // Upgrade any old intrinsic calls in the function. 6982 for (auto &I : UpgradedIntrinsics) { 6983 for (User *U : llvm::make_early_inc_range(I.first->materialized_users())) 6984 if (CallInst *CI = dyn_cast<CallInst>(U)) 6985 UpgradeIntrinsicCall(CI, I.second); 6986 } 6987 6988 // Finish fn->subprogram upgrade for materialized functions. 6989 if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F)) 6990 F->setSubprogram(SP); 6991 6992 // Check if the TBAA Metadata are valid, otherwise we will need to strip them. 6993 if (!MDLoader->isStrippingTBAA()) { 6994 for (auto &I : instructions(F)) { 6995 MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa); 6996 if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA)) 6997 continue; 6998 MDLoader->setStripTBAA(true); 6999 stripTBAA(F->getParent()); 7000 } 7001 } 7002 7003 for (auto &I : instructions(F)) { 7004 // "Upgrade" older incorrect branch weights by dropping them. 7005 if (auto *MD = I.getMetadata(LLVMContext::MD_prof)) { 7006 if (MD->getOperand(0) != nullptr && isa<MDString>(MD->getOperand(0))) { 7007 MDString *MDS = cast<MDString>(MD->getOperand(0)); 7008 StringRef ProfName = MDS->getString(); 7009 // Check consistency of !prof branch_weights metadata. 7010 if (ProfName != "branch_weights") 7011 continue; 7012 unsigned ExpectedNumOperands = 0; 7013 if (BranchInst *BI = dyn_cast<BranchInst>(&I)) 7014 ExpectedNumOperands = BI->getNumSuccessors(); 7015 else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I)) 7016 ExpectedNumOperands = SI->getNumSuccessors(); 7017 else if (isa<CallInst>(&I)) 7018 ExpectedNumOperands = 1; 7019 else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I)) 7020 ExpectedNumOperands = IBI->getNumDestinations(); 7021 else if (isa<SelectInst>(&I)) 7022 ExpectedNumOperands = 2; 7023 else 7024 continue; // ignore and continue. 7025 7026 unsigned Offset = getBranchWeightOffset(MD); 7027 7028 // If branch weight doesn't match, just strip branch weight. 7029 if (MD->getNumOperands() != Offset + ExpectedNumOperands) 7030 I.setMetadata(LLVMContext::MD_prof, nullptr); 7031 } 7032 } 7033 7034 // Remove incompatible attributes on function calls. 7035 if (auto *CI = dyn_cast<CallBase>(&I)) { 7036 CI->removeRetAttrs(AttributeFuncs::typeIncompatible( 7037 CI->getFunctionType()->getReturnType())); 7038 7039 for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ++ArgNo) 7040 CI->removeParamAttrs(ArgNo, AttributeFuncs::typeIncompatible( 7041 CI->getArgOperand(ArgNo)->getType())); 7042 } 7043 } 7044 7045 // Look for functions that rely on old function attribute behavior. 7046 UpgradeFunctionAttributes(*F); 7047 7048 // Bring in any functions that this function forward-referenced via 7049 // blockaddresses. 7050 return materializeForwardReferencedFunctions(); 7051 } 7052 7053 Error BitcodeReader::materializeModule() { 7054 if (Error Err = materializeMetadata()) 7055 return Err; 7056 7057 // Promise to materialize all forward references. 7058 WillMaterializeAllForwardRefs = true; 7059 7060 // Iterate over the module, deserializing any functions that are still on 7061 // disk. 7062 for (Function &F : *TheModule) { 7063 if (Error Err = materialize(&F)) 7064 return Err; 7065 } 7066 // At this point, if there are any function bodies, parse the rest of 7067 // the bits in the module past the last function block we have recorded 7068 // through either lazy scanning or the VST. 7069 if (LastFunctionBlockBit || NextUnreadBit) 7070 if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit 7071 ? LastFunctionBlockBit 7072 : NextUnreadBit)) 7073 return Err; 7074 7075 // Check that all block address forward references got resolved (as we 7076 // promised above). 7077 if (!BasicBlockFwdRefs.empty()) 7078 return error("Never resolved function from blockaddress"); 7079 7080 // Upgrade any intrinsic calls that slipped through (should not happen!) and 7081 // delete the old functions to clean up. We can't do this unless the entire 7082 // module is materialized because there could always be another function body 7083 // with calls to the old function. 7084 for (auto &I : UpgradedIntrinsics) { 7085 for (auto *U : I.first->users()) { 7086 if (CallInst *CI = dyn_cast<CallInst>(U)) 7087 UpgradeIntrinsicCall(CI, I.second); 7088 } 7089 if (!I.first->use_empty()) 7090 I.first->replaceAllUsesWith(I.second); 7091 I.first->eraseFromParent(); 7092 } 7093 UpgradedIntrinsics.clear(); 7094 7095 UpgradeDebugInfo(*TheModule); 7096 7097 UpgradeModuleFlags(*TheModule); 7098 7099 UpgradeARCRuntime(*TheModule); 7100 7101 return Error::success(); 7102 } 7103 7104 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 7105 return IdentifiedStructTypes; 7106 } 7107 7108 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 7109 BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex, 7110 StringRef ModulePath, std::function<bool(GlobalValue::GUID)> IsPrevailing) 7111 : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex), 7112 ModulePath(ModulePath), IsPrevailing(IsPrevailing) {} 7113 7114 void ModuleSummaryIndexBitcodeReader::addThisModule() { 7115 TheIndex.addModule(ModulePath); 7116 } 7117 7118 ModuleSummaryIndex::ModuleInfo * 7119 ModuleSummaryIndexBitcodeReader::getThisModule() { 7120 return TheIndex.getModule(ModulePath); 7121 } 7122 7123 template <bool AllowNullValueInfo> 7124 std::pair<ValueInfo, GlobalValue::GUID> 7125 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) { 7126 auto VGI = ValueIdToValueInfoMap[ValueId]; 7127 // We can have a null value info for memprof callsite info records in 7128 // distributed ThinLTO index files when the callee function summary is not 7129 // included in the index. The bitcode writer records 0 in that case, 7130 // and the caller of this helper will set AllowNullValueInfo to true. 7131 assert(AllowNullValueInfo || std::get<0>(VGI)); 7132 return VGI; 7133 } 7134 7135 void ModuleSummaryIndexBitcodeReader::setValueGUID( 7136 uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage, 7137 StringRef SourceFileName) { 7138 std::string GlobalId = 7139 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 7140 auto ValueGUID = GlobalValue::getGUID(GlobalId); 7141 auto OriginalNameID = ValueGUID; 7142 if (GlobalValue::isLocalLinkage(Linkage)) 7143 OriginalNameID = GlobalValue::getGUID(ValueName); 7144 if (PrintSummaryGUIDs) 7145 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 7146 << ValueName << "\n"; 7147 7148 // UseStrtab is false for legacy summary formats and value names are 7149 // created on stack. In that case we save the name in a string saver in 7150 // the index so that the value name can be recorded. 7151 ValueIdToValueInfoMap[ValueID] = std::make_pair( 7152 TheIndex.getOrInsertValueInfo( 7153 ValueGUID, UseStrtab ? ValueName : TheIndex.saveString(ValueName)), 7154 OriginalNameID); 7155 } 7156 7157 // Specialized value symbol table parser used when reading module index 7158 // blocks where we don't actually create global values. The parsed information 7159 // is saved in the bitcode reader for use when later parsing summaries. 7160 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 7161 uint64_t Offset, 7162 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 7163 // With a strtab the VST is not required to parse the summary. 7164 if (UseStrtab) 7165 return Error::success(); 7166 7167 assert(Offset > 0 && "Expected non-zero VST offset"); 7168 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 7169 if (!MaybeCurrentBit) 7170 return MaybeCurrentBit.takeError(); 7171 uint64_t CurrentBit = MaybeCurrentBit.get(); 7172 7173 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 7174 return Err; 7175 7176 SmallVector<uint64_t, 64> Record; 7177 7178 // Read all the records for this value table. 7179 SmallString<128> ValueName; 7180 7181 while (true) { 7182 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 7183 if (!MaybeEntry) 7184 return MaybeEntry.takeError(); 7185 BitstreamEntry Entry = MaybeEntry.get(); 7186 7187 switch (Entry.Kind) { 7188 case BitstreamEntry::SubBlock: // Handled for us already. 7189 case BitstreamEntry::Error: 7190 return error("Malformed block"); 7191 case BitstreamEntry::EndBlock: 7192 // Done parsing VST, jump back to wherever we came from. 7193 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 7194 return JumpFailed; 7195 return Error::success(); 7196 case BitstreamEntry::Record: 7197 // The interesting case. 7198 break; 7199 } 7200 7201 // Read a record. 7202 Record.clear(); 7203 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 7204 if (!MaybeRecord) 7205 return MaybeRecord.takeError(); 7206 switch (MaybeRecord.get()) { 7207 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 7208 break; 7209 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 7210 if (convertToString(Record, 1, ValueName)) 7211 return error("Invalid record"); 7212 unsigned ValueID = Record[0]; 7213 assert(!SourceFileName.empty()); 7214 auto VLI = ValueIdToLinkageMap.find(ValueID); 7215 assert(VLI != ValueIdToLinkageMap.end() && 7216 "No linkage found for VST entry?"); 7217 auto Linkage = VLI->second; 7218 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 7219 ValueName.clear(); 7220 break; 7221 } 7222 case bitc::VST_CODE_FNENTRY: { 7223 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 7224 if (convertToString(Record, 2, ValueName)) 7225 return error("Invalid record"); 7226 unsigned ValueID = Record[0]; 7227 assert(!SourceFileName.empty()); 7228 auto VLI = ValueIdToLinkageMap.find(ValueID); 7229 assert(VLI != ValueIdToLinkageMap.end() && 7230 "No linkage found for VST entry?"); 7231 auto Linkage = VLI->second; 7232 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 7233 ValueName.clear(); 7234 break; 7235 } 7236 case bitc::VST_CODE_COMBINED_ENTRY: { 7237 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 7238 unsigned ValueID = Record[0]; 7239 GlobalValue::GUID RefGUID = Record[1]; 7240 // The "original name", which is the second value of the pair will be 7241 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 7242 ValueIdToValueInfoMap[ValueID] = 7243 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 7244 break; 7245 } 7246 } 7247 } 7248 } 7249 7250 // Parse just the blocks needed for building the index out of the module. 7251 // At the end of this routine the module Index is populated with a map 7252 // from global value id to GlobalValueSummary objects. 7253 Error ModuleSummaryIndexBitcodeReader::parseModule() { 7254 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 7255 return Err; 7256 7257 SmallVector<uint64_t, 64> Record; 7258 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 7259 unsigned ValueId = 0; 7260 7261 // Read the index for this module. 7262 while (true) { 7263 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 7264 if (!MaybeEntry) 7265 return MaybeEntry.takeError(); 7266 llvm::BitstreamEntry Entry = MaybeEntry.get(); 7267 7268 switch (Entry.Kind) { 7269 case BitstreamEntry::Error: 7270 return error("Malformed block"); 7271 case BitstreamEntry::EndBlock: 7272 return Error::success(); 7273 7274 case BitstreamEntry::SubBlock: 7275 switch (Entry.ID) { 7276 default: // Skip unknown content. 7277 if (Error Err = Stream.SkipBlock()) 7278 return Err; 7279 break; 7280 case bitc::BLOCKINFO_BLOCK_ID: 7281 // Need to parse these to get abbrev ids (e.g. for VST) 7282 if (Error Err = readBlockInfo()) 7283 return Err; 7284 break; 7285 case bitc::VALUE_SYMTAB_BLOCK_ID: 7286 // Should have been parsed earlier via VSTOffset, unless there 7287 // is no summary section. 7288 assert(((SeenValueSymbolTable && VSTOffset > 0) || 7289 !SeenGlobalValSummary) && 7290 "Expected early VST parse via VSTOffset record"); 7291 if (Error Err = Stream.SkipBlock()) 7292 return Err; 7293 break; 7294 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 7295 case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID: 7296 // Add the module if it is a per-module index (has a source file name). 7297 if (!SourceFileName.empty()) 7298 addThisModule(); 7299 assert(!SeenValueSymbolTable && 7300 "Already read VST when parsing summary block?"); 7301 // We might not have a VST if there were no values in the 7302 // summary. An empty summary block generated when we are 7303 // performing ThinLTO compiles so we don't later invoke 7304 // the regular LTO process on them. 7305 if (VSTOffset > 0) { 7306 if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 7307 return Err; 7308 SeenValueSymbolTable = true; 7309 } 7310 SeenGlobalValSummary = true; 7311 if (Error Err = parseEntireSummary(Entry.ID)) 7312 return Err; 7313 break; 7314 case bitc::MODULE_STRTAB_BLOCK_ID: 7315 if (Error Err = parseModuleStringTable()) 7316 return Err; 7317 break; 7318 } 7319 continue; 7320 7321 case BitstreamEntry::Record: { 7322 Record.clear(); 7323 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 7324 if (!MaybeBitCode) 7325 return MaybeBitCode.takeError(); 7326 switch (MaybeBitCode.get()) { 7327 default: 7328 break; // Default behavior, ignore unknown content. 7329 case bitc::MODULE_CODE_VERSION: { 7330 if (Error Err = parseVersionRecord(Record).takeError()) 7331 return Err; 7332 break; 7333 } 7334 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 7335 case bitc::MODULE_CODE_SOURCE_FILENAME: { 7336 SmallString<128> ValueName; 7337 if (convertToString(Record, 0, ValueName)) 7338 return error("Invalid record"); 7339 SourceFileName = ValueName.c_str(); 7340 break; 7341 } 7342 /// MODULE_CODE_HASH: [5*i32] 7343 case bitc::MODULE_CODE_HASH: { 7344 if (Record.size() != 5) 7345 return error("Invalid hash length " + Twine(Record.size()).str()); 7346 auto &Hash = getThisModule()->second; 7347 int Pos = 0; 7348 for (auto &Val : Record) { 7349 assert(!(Val >> 32) && "Unexpected high bits set"); 7350 Hash[Pos++] = Val; 7351 } 7352 break; 7353 } 7354 /// MODULE_CODE_VSTOFFSET: [offset] 7355 case bitc::MODULE_CODE_VSTOFFSET: 7356 if (Record.empty()) 7357 return error("Invalid record"); 7358 // Note that we subtract 1 here because the offset is relative to one 7359 // word before the start of the identification or module block, which 7360 // was historically always the start of the regular bitcode header. 7361 VSTOffset = Record[0] - 1; 7362 break; 7363 // v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...] 7364 // v1 FUNCTION: [type, callingconv, isproto, linkage, ...] 7365 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...] 7366 // v2: [strtab offset, strtab size, v1] 7367 case bitc::MODULE_CODE_GLOBALVAR: 7368 case bitc::MODULE_CODE_FUNCTION: 7369 case bitc::MODULE_CODE_ALIAS: { 7370 StringRef Name; 7371 ArrayRef<uint64_t> GVRecord; 7372 std::tie(Name, GVRecord) = readNameFromStrtab(Record); 7373 if (GVRecord.size() <= 3) 7374 return error("Invalid record"); 7375 uint64_t RawLinkage = GVRecord[3]; 7376 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 7377 if (!UseStrtab) { 7378 ValueIdToLinkageMap[ValueId++] = Linkage; 7379 break; 7380 } 7381 7382 setValueGUID(ValueId++, Name, Linkage, SourceFileName); 7383 break; 7384 } 7385 } 7386 } 7387 continue; 7388 } 7389 } 7390 } 7391 7392 SmallVector<ValueInfo, 0> 7393 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) { 7394 SmallVector<ValueInfo, 0> Ret; 7395 Ret.reserve(Record.size()); 7396 for (uint64_t RefValueId : Record) 7397 Ret.push_back(std::get<0>(getValueInfoFromValueId(RefValueId))); 7398 return Ret; 7399 } 7400 7401 SmallVector<FunctionSummary::EdgeTy, 0> 7402 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record, 7403 bool IsOldProfileFormat, 7404 bool HasProfile, bool HasRelBF) { 7405 SmallVector<FunctionSummary::EdgeTy, 0> Ret; 7406 // In the case of new profile formats, there are two Record entries per 7407 // Edge. Otherwise, conservatively reserve up to Record.size. 7408 if (!IsOldProfileFormat && (HasProfile || HasRelBF)) 7409 Ret.reserve(Record.size() / 2); 7410 else 7411 Ret.reserve(Record.size()); 7412 7413 for (unsigned I = 0, E = Record.size(); I != E; ++I) { 7414 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 7415 bool HasTailCall = false; 7416 uint64_t RelBF = 0; 7417 ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[I])); 7418 if (IsOldProfileFormat) { 7419 I += 1; // Skip old callsitecount field 7420 if (HasProfile) 7421 I += 1; // Skip old profilecount field 7422 } else if (HasProfile) 7423 std::tie(Hotness, HasTailCall) = 7424 getDecodedHotnessCallEdgeInfo(Record[++I]); 7425 else if (HasRelBF) 7426 getDecodedRelBFCallEdgeInfo(Record[++I], RelBF, HasTailCall); 7427 Ret.push_back(FunctionSummary::EdgeTy{ 7428 Callee, CalleeInfo(Hotness, HasTailCall, RelBF)}); 7429 } 7430 return Ret; 7431 } 7432 7433 static void 7434 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot, 7435 WholeProgramDevirtResolution &Wpd) { 7436 uint64_t ArgNum = Record[Slot++]; 7437 WholeProgramDevirtResolution::ByArg &B = 7438 Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}]; 7439 Slot += ArgNum; 7440 7441 B.TheKind = 7442 static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]); 7443 B.Info = Record[Slot++]; 7444 B.Byte = Record[Slot++]; 7445 B.Bit = Record[Slot++]; 7446 } 7447 7448 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record, 7449 StringRef Strtab, size_t &Slot, 7450 TypeIdSummary &TypeId) { 7451 uint64_t Id = Record[Slot++]; 7452 WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id]; 7453 7454 Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]); 7455 Wpd.SingleImplName = {Strtab.data() + Record[Slot], 7456 static_cast<size_t>(Record[Slot + 1])}; 7457 Slot += 2; 7458 7459 uint64_t ResByArgNum = Record[Slot++]; 7460 for (uint64_t I = 0; I != ResByArgNum; ++I) 7461 parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd); 7462 } 7463 7464 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record, 7465 StringRef Strtab, 7466 ModuleSummaryIndex &TheIndex) { 7467 size_t Slot = 0; 7468 TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary( 7469 {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])}); 7470 Slot += 2; 7471 7472 TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]); 7473 TypeId.TTRes.SizeM1BitWidth = Record[Slot++]; 7474 TypeId.TTRes.AlignLog2 = Record[Slot++]; 7475 TypeId.TTRes.SizeM1 = Record[Slot++]; 7476 TypeId.TTRes.BitMask = Record[Slot++]; 7477 TypeId.TTRes.InlineBits = Record[Slot++]; 7478 7479 while (Slot < Record.size()) 7480 parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId); 7481 } 7482 7483 std::vector<FunctionSummary::ParamAccess> 7484 ModuleSummaryIndexBitcodeReader::parseParamAccesses(ArrayRef<uint64_t> Record) { 7485 auto ReadRange = [&]() { 7486 APInt Lower(FunctionSummary::ParamAccess::RangeWidth, 7487 BitcodeReader::decodeSignRotatedValue(Record.front())); 7488 Record = Record.drop_front(); 7489 APInt Upper(FunctionSummary::ParamAccess::RangeWidth, 7490 BitcodeReader::decodeSignRotatedValue(Record.front())); 7491 Record = Record.drop_front(); 7492 ConstantRange Range{Lower, Upper}; 7493 assert(!Range.isFullSet()); 7494 assert(!Range.isUpperSignWrapped()); 7495 return Range; 7496 }; 7497 7498 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; 7499 while (!Record.empty()) { 7500 PendingParamAccesses.emplace_back(); 7501 FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back(); 7502 ParamAccess.ParamNo = Record.front(); 7503 Record = Record.drop_front(); 7504 ParamAccess.Use = ReadRange(); 7505 ParamAccess.Calls.resize(Record.front()); 7506 Record = Record.drop_front(); 7507 for (auto &Call : ParamAccess.Calls) { 7508 Call.ParamNo = Record.front(); 7509 Record = Record.drop_front(); 7510 Call.Callee = std::get<0>(getValueInfoFromValueId(Record.front())); 7511 Record = Record.drop_front(); 7512 Call.Offsets = ReadRange(); 7513 } 7514 } 7515 return PendingParamAccesses; 7516 } 7517 7518 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo( 7519 ArrayRef<uint64_t> Record, size_t &Slot, 7520 TypeIdCompatibleVtableInfo &TypeId) { 7521 uint64_t Offset = Record[Slot++]; 7522 ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[Slot++])); 7523 TypeId.push_back({Offset, Callee}); 7524 } 7525 7526 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord( 7527 ArrayRef<uint64_t> Record) { 7528 size_t Slot = 0; 7529 TypeIdCompatibleVtableInfo &TypeId = 7530 TheIndex.getOrInsertTypeIdCompatibleVtableSummary( 7531 {Strtab.data() + Record[Slot], 7532 static_cast<size_t>(Record[Slot + 1])}); 7533 Slot += 2; 7534 7535 while (Slot < Record.size()) 7536 parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId); 7537 } 7538 7539 static void setSpecialRefs(SmallVectorImpl<ValueInfo> &Refs, unsigned ROCnt, 7540 unsigned WOCnt) { 7541 // Readonly and writeonly refs are in the end of the refs list. 7542 assert(ROCnt + WOCnt <= Refs.size()); 7543 unsigned FirstWORef = Refs.size() - WOCnt; 7544 unsigned RefNo = FirstWORef - ROCnt; 7545 for (; RefNo < FirstWORef; ++RefNo) 7546 Refs[RefNo].setReadOnly(); 7547 for (; RefNo < Refs.size(); ++RefNo) 7548 Refs[RefNo].setWriteOnly(); 7549 } 7550 7551 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 7552 // objects in the index. 7553 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) { 7554 if (Error Err = Stream.EnterSubBlock(ID)) 7555 return Err; 7556 SmallVector<uint64_t, 64> Record; 7557 7558 // Parse version 7559 { 7560 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 7561 if (!MaybeEntry) 7562 return MaybeEntry.takeError(); 7563 BitstreamEntry Entry = MaybeEntry.get(); 7564 7565 if (Entry.Kind != BitstreamEntry::Record) 7566 return error("Invalid Summary Block: record for version expected"); 7567 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 7568 if (!MaybeRecord) 7569 return MaybeRecord.takeError(); 7570 if (MaybeRecord.get() != bitc::FS_VERSION) 7571 return error("Invalid Summary Block: version expected"); 7572 } 7573 const uint64_t Version = Record[0]; 7574 const bool IsOldProfileFormat = Version == 1; 7575 if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion) 7576 return error("Invalid summary version " + Twine(Version) + 7577 ". Version should be in the range [1-" + 7578 Twine(ModuleSummaryIndex::BitcodeSummaryVersion) + 7579 "]."); 7580 Record.clear(); 7581 7582 // Keep around the last seen summary to be used when we see an optional 7583 // "OriginalName" attachement. 7584 GlobalValueSummary *LastSeenSummary = nullptr; 7585 GlobalValue::GUID LastSeenGUID = 0; 7586 7587 // We can expect to see any number of type ID information records before 7588 // each function summary records; these variables store the information 7589 // collected so far so that it can be used to create the summary object. 7590 std::vector<GlobalValue::GUID> PendingTypeTests; 7591 std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls, 7592 PendingTypeCheckedLoadVCalls; 7593 std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls, 7594 PendingTypeCheckedLoadConstVCalls; 7595 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; 7596 7597 std::vector<CallsiteInfo> PendingCallsites; 7598 std::vector<AllocInfo> PendingAllocs; 7599 7600 while (true) { 7601 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 7602 if (!MaybeEntry) 7603 return MaybeEntry.takeError(); 7604 BitstreamEntry Entry = MaybeEntry.get(); 7605 7606 switch (Entry.Kind) { 7607 case BitstreamEntry::SubBlock: // Handled for us already. 7608 case BitstreamEntry::Error: 7609 return error("Malformed block"); 7610 case BitstreamEntry::EndBlock: 7611 return Error::success(); 7612 case BitstreamEntry::Record: 7613 // The interesting case. 7614 break; 7615 } 7616 7617 // Read a record. The record format depends on whether this 7618 // is a per-module index or a combined index file. In the per-module 7619 // case the records contain the associated value's ID for correlation 7620 // with VST entries. In the combined index the correlation is done 7621 // via the bitcode offset of the summary records (which were saved 7622 // in the combined index VST entries). The records also contain 7623 // information used for ThinLTO renaming and importing. 7624 Record.clear(); 7625 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 7626 if (!MaybeBitCode) 7627 return MaybeBitCode.takeError(); 7628 switch (unsigned BitCode = MaybeBitCode.get()) { 7629 default: // Default behavior: ignore. 7630 break; 7631 case bitc::FS_FLAGS: { // [flags] 7632 TheIndex.setFlags(Record[0]); 7633 break; 7634 } 7635 case bitc::FS_VALUE_GUID: { // [valueid, refguid_upper32, refguid_lower32] 7636 uint64_t ValueID = Record[0]; 7637 GlobalValue::GUID RefGUID; 7638 if (Version >= 11) { 7639 RefGUID = Record[1] << 32 | Record[2]; 7640 } else { 7641 RefGUID = Record[1]; 7642 } 7643 ValueIdToValueInfoMap[ValueID] = 7644 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 7645 break; 7646 } 7647 // FS_PERMODULE is legacy and does not have support for the tail call flag. 7648 // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs, 7649 // numrefs x valueid, n x (valueid)] 7650 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs, 7651 // numrefs x valueid, 7652 // n x (valueid, hotness+tailcall flags)] 7653 // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs, 7654 // numrefs x valueid, 7655 // n x (valueid, relblockfreq+tailcall)] 7656 case bitc::FS_PERMODULE: 7657 case bitc::FS_PERMODULE_RELBF: 7658 case bitc::FS_PERMODULE_PROFILE: { 7659 unsigned ValueID = Record[0]; 7660 uint64_t RawFlags = Record[1]; 7661 unsigned InstCount = Record[2]; 7662 uint64_t RawFunFlags = 0; 7663 unsigned NumRefs = Record[3]; 7664 unsigned NumRORefs = 0, NumWORefs = 0; 7665 int RefListStartIndex = 4; 7666 if (Version >= 4) { 7667 RawFunFlags = Record[3]; 7668 NumRefs = Record[4]; 7669 RefListStartIndex = 5; 7670 if (Version >= 5) { 7671 NumRORefs = Record[5]; 7672 RefListStartIndex = 6; 7673 if (Version >= 7) { 7674 NumWORefs = Record[6]; 7675 RefListStartIndex = 7; 7676 } 7677 } 7678 } 7679 7680 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7681 // The module path string ref set in the summary must be owned by the 7682 // index's module string table. Since we don't have a module path 7683 // string table section in the per-module index, we create a single 7684 // module path string table entry with an empty (0) ID to take 7685 // ownership. 7686 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 7687 assert(Record.size() >= RefListStartIndex + NumRefs && 7688 "Record size inconsistent with number of references"); 7689 SmallVector<ValueInfo, 0> Refs = makeRefList( 7690 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 7691 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 7692 bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF); 7693 SmallVector<FunctionSummary::EdgeTy, 0> Calls = makeCallList( 7694 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 7695 IsOldProfileFormat, HasProfile, HasRelBF); 7696 setSpecialRefs(Refs, NumRORefs, NumWORefs); 7697 auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID); 7698 // In order to save memory, only record the memprof summaries if this is 7699 // the prevailing copy of a symbol. The linker doesn't resolve local 7700 // linkage values so don't check whether those are prevailing. 7701 auto LT = (GlobalValue::LinkageTypes)Flags.Linkage; 7702 if (IsPrevailing && !GlobalValue::isLocalLinkage(LT) && 7703 !IsPrevailing(VIAndOriginalGUID.first.getGUID())) { 7704 PendingCallsites.clear(); 7705 PendingAllocs.clear(); 7706 } 7707 auto FS = std::make_unique<FunctionSummary>( 7708 Flags, InstCount, getDecodedFFlags(RawFunFlags), std::move(Refs), 7709 std::move(Calls), std::move(PendingTypeTests), 7710 std::move(PendingTypeTestAssumeVCalls), 7711 std::move(PendingTypeCheckedLoadVCalls), 7712 std::move(PendingTypeTestAssumeConstVCalls), 7713 std::move(PendingTypeCheckedLoadConstVCalls), 7714 std::move(PendingParamAccesses), std::move(PendingCallsites), 7715 std::move(PendingAllocs)); 7716 FS->setModulePath(getThisModule()->first()); 7717 FS->setOriginalName(std::get<1>(VIAndOriginalGUID)); 7718 TheIndex.addGlobalValueSummary(std::get<0>(VIAndOriginalGUID), 7719 std::move(FS)); 7720 break; 7721 } 7722 // FS_ALIAS: [valueid, flags, valueid] 7723 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 7724 // they expect all aliasee summaries to be available. 7725 case bitc::FS_ALIAS: { 7726 unsigned ValueID = Record[0]; 7727 uint64_t RawFlags = Record[1]; 7728 unsigned AliaseeID = Record[2]; 7729 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7730 auto AS = std::make_unique<AliasSummary>(Flags); 7731 // The module path string ref set in the summary must be owned by the 7732 // index's module string table. Since we don't have a module path 7733 // string table section in the per-module index, we create a single 7734 // module path string table entry with an empty (0) ID to take 7735 // ownership. 7736 AS->setModulePath(getThisModule()->first()); 7737 7738 auto AliaseeVI = std::get<0>(getValueInfoFromValueId(AliaseeID)); 7739 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath); 7740 if (!AliaseeInModule) 7741 return error("Alias expects aliasee summary to be parsed"); 7742 AS->setAliasee(AliaseeVI, AliaseeInModule); 7743 7744 auto GUID = getValueInfoFromValueId(ValueID); 7745 AS->setOriginalName(std::get<1>(GUID)); 7746 TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(AS)); 7747 break; 7748 } 7749 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid] 7750 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 7751 unsigned ValueID = Record[0]; 7752 uint64_t RawFlags = Record[1]; 7753 unsigned RefArrayStart = 2; 7754 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 7755 /* WriteOnly */ false, 7756 /* Constant */ false, 7757 GlobalObject::VCallVisibilityPublic); 7758 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7759 if (Version >= 5) { 7760 GVF = getDecodedGVarFlags(Record[2]); 7761 RefArrayStart = 3; 7762 } 7763 SmallVector<ValueInfo, 0> Refs = 7764 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 7765 auto FS = 7766 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 7767 FS->setModulePath(getThisModule()->first()); 7768 auto GUID = getValueInfoFromValueId(ValueID); 7769 FS->setOriginalName(std::get<1>(GUID)); 7770 TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(FS)); 7771 break; 7772 } 7773 // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, 7774 // numrefs, numrefs x valueid, 7775 // n x (valueid, offset)] 7776 case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: { 7777 unsigned ValueID = Record[0]; 7778 uint64_t RawFlags = Record[1]; 7779 GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]); 7780 unsigned NumRefs = Record[3]; 7781 unsigned RefListStartIndex = 4; 7782 unsigned VTableListStartIndex = RefListStartIndex + NumRefs; 7783 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7784 SmallVector<ValueInfo, 0> Refs = makeRefList( 7785 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 7786 VTableFuncList VTableFuncs; 7787 for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) { 7788 ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[I])); 7789 uint64_t Offset = Record[++I]; 7790 VTableFuncs.push_back({Callee, Offset}); 7791 } 7792 auto VS = 7793 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 7794 VS->setModulePath(getThisModule()->first()); 7795 VS->setVTableFuncs(VTableFuncs); 7796 auto GUID = getValueInfoFromValueId(ValueID); 7797 VS->setOriginalName(std::get<1>(GUID)); 7798 TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(VS)); 7799 break; 7800 } 7801 // FS_COMBINED is legacy and does not have support for the tail call flag. 7802 // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs, 7803 // numrefs x valueid, n x (valueid)] 7804 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs, 7805 // numrefs x valueid, 7806 // n x (valueid, hotness+tailcall flags)] 7807 case bitc::FS_COMBINED: 7808 case bitc::FS_COMBINED_PROFILE: { 7809 unsigned ValueID = Record[0]; 7810 uint64_t ModuleId = Record[1]; 7811 uint64_t RawFlags = Record[2]; 7812 unsigned InstCount = Record[3]; 7813 uint64_t RawFunFlags = 0; 7814 unsigned NumRefs = Record[4]; 7815 unsigned NumRORefs = 0, NumWORefs = 0; 7816 int RefListStartIndex = 5; 7817 7818 if (Version >= 4) { 7819 RawFunFlags = Record[4]; 7820 RefListStartIndex = 6; 7821 size_t NumRefsIndex = 5; 7822 if (Version >= 5) { 7823 unsigned NumRORefsOffset = 1; 7824 RefListStartIndex = 7; 7825 if (Version >= 6) { 7826 NumRefsIndex = 6; 7827 RefListStartIndex = 8; 7828 if (Version >= 7) { 7829 RefListStartIndex = 9; 7830 NumWORefs = Record[8]; 7831 NumRORefsOffset = 2; 7832 } 7833 } 7834 NumRORefs = Record[RefListStartIndex - NumRORefsOffset]; 7835 } 7836 NumRefs = Record[NumRefsIndex]; 7837 } 7838 7839 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7840 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 7841 assert(Record.size() >= RefListStartIndex + NumRefs && 7842 "Record size inconsistent with number of references"); 7843 SmallVector<ValueInfo, 0> Refs = makeRefList( 7844 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 7845 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 7846 SmallVector<FunctionSummary::EdgeTy, 0> Edges = makeCallList( 7847 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 7848 IsOldProfileFormat, HasProfile, false); 7849 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID)); 7850 setSpecialRefs(Refs, NumRORefs, NumWORefs); 7851 auto FS = std::make_unique<FunctionSummary>( 7852 Flags, InstCount, getDecodedFFlags(RawFunFlags), std::move(Refs), 7853 std::move(Edges), std::move(PendingTypeTests), 7854 std::move(PendingTypeTestAssumeVCalls), 7855 std::move(PendingTypeCheckedLoadVCalls), 7856 std::move(PendingTypeTestAssumeConstVCalls), 7857 std::move(PendingTypeCheckedLoadConstVCalls), 7858 std::move(PendingParamAccesses), std::move(PendingCallsites), 7859 std::move(PendingAllocs)); 7860 LastSeenSummary = FS.get(); 7861 LastSeenGUID = VI.getGUID(); 7862 FS->setModulePath(ModuleIdMap[ModuleId]); 7863 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 7864 break; 7865 } 7866 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 7867 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 7868 // they expect all aliasee summaries to be available. 7869 case bitc::FS_COMBINED_ALIAS: { 7870 unsigned ValueID = Record[0]; 7871 uint64_t ModuleId = Record[1]; 7872 uint64_t RawFlags = Record[2]; 7873 unsigned AliaseeValueId = Record[3]; 7874 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7875 auto AS = std::make_unique<AliasSummary>(Flags); 7876 LastSeenSummary = AS.get(); 7877 AS->setModulePath(ModuleIdMap[ModuleId]); 7878 7879 auto AliaseeVI = std::get<0>(getValueInfoFromValueId(AliaseeValueId)); 7880 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath()); 7881 AS->setAliasee(AliaseeVI, AliaseeInModule); 7882 7883 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID)); 7884 LastSeenGUID = VI.getGUID(); 7885 TheIndex.addGlobalValueSummary(VI, std::move(AS)); 7886 break; 7887 } 7888 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 7889 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 7890 unsigned ValueID = Record[0]; 7891 uint64_t ModuleId = Record[1]; 7892 uint64_t RawFlags = Record[2]; 7893 unsigned RefArrayStart = 3; 7894 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 7895 /* WriteOnly */ false, 7896 /* Constant */ false, 7897 GlobalObject::VCallVisibilityPublic); 7898 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7899 if (Version >= 5) { 7900 GVF = getDecodedGVarFlags(Record[3]); 7901 RefArrayStart = 4; 7902 } 7903 SmallVector<ValueInfo, 0> Refs = 7904 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 7905 auto FS = 7906 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 7907 LastSeenSummary = FS.get(); 7908 FS->setModulePath(ModuleIdMap[ModuleId]); 7909 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID)); 7910 LastSeenGUID = VI.getGUID(); 7911 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 7912 break; 7913 } 7914 // FS_COMBINED_ORIGINAL_NAME: [original_name] 7915 case bitc::FS_COMBINED_ORIGINAL_NAME: { 7916 uint64_t OriginalName = Record[0]; 7917 if (!LastSeenSummary) 7918 return error("Name attachment that does not follow a combined record"); 7919 LastSeenSummary->setOriginalName(OriginalName); 7920 TheIndex.addOriginalName(LastSeenGUID, OriginalName); 7921 // Reset the LastSeenSummary 7922 LastSeenSummary = nullptr; 7923 LastSeenGUID = 0; 7924 break; 7925 } 7926 case bitc::FS_TYPE_TESTS: 7927 assert(PendingTypeTests.empty()); 7928 llvm::append_range(PendingTypeTests, Record); 7929 break; 7930 7931 case bitc::FS_TYPE_TEST_ASSUME_VCALLS: 7932 assert(PendingTypeTestAssumeVCalls.empty()); 7933 for (unsigned I = 0; I != Record.size(); I += 2) 7934 PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]}); 7935 break; 7936 7937 case bitc::FS_TYPE_CHECKED_LOAD_VCALLS: 7938 assert(PendingTypeCheckedLoadVCalls.empty()); 7939 for (unsigned I = 0; I != Record.size(); I += 2) 7940 PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]}); 7941 break; 7942 7943 case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL: 7944 PendingTypeTestAssumeConstVCalls.push_back( 7945 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 7946 break; 7947 7948 case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL: 7949 PendingTypeCheckedLoadConstVCalls.push_back( 7950 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 7951 break; 7952 7953 case bitc::FS_CFI_FUNCTION_DEFS: { 7954 std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs(); 7955 for (unsigned I = 0; I != Record.size(); I += 2) 7956 CfiFunctionDefs.insert( 7957 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 7958 break; 7959 } 7960 7961 case bitc::FS_CFI_FUNCTION_DECLS: { 7962 std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls(); 7963 for (unsigned I = 0; I != Record.size(); I += 2) 7964 CfiFunctionDecls.insert( 7965 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 7966 break; 7967 } 7968 7969 case bitc::FS_TYPE_ID: 7970 parseTypeIdSummaryRecord(Record, Strtab, TheIndex); 7971 break; 7972 7973 case bitc::FS_TYPE_ID_METADATA: 7974 parseTypeIdCompatibleVtableSummaryRecord(Record); 7975 break; 7976 7977 case bitc::FS_BLOCK_COUNT: 7978 TheIndex.addBlockCount(Record[0]); 7979 break; 7980 7981 case bitc::FS_PARAM_ACCESS: { 7982 PendingParamAccesses = parseParamAccesses(Record); 7983 break; 7984 } 7985 7986 case bitc::FS_STACK_IDS: { // [n x stackid] 7987 // Save stack ids in the reader to consult when adding stack ids from the 7988 // lists in the stack node and alloc node entries. 7989 StackIds = ArrayRef<uint64_t>(Record); 7990 break; 7991 } 7992 7993 case bitc::FS_PERMODULE_CALLSITE_INFO: { 7994 unsigned ValueID = Record[0]; 7995 SmallVector<unsigned> StackIdList; 7996 for (auto R = Record.begin() + 1; R != Record.end(); R++) { 7997 assert(*R < StackIds.size()); 7998 StackIdList.push_back(TheIndex.addOrGetStackIdIndex(StackIds[*R])); 7999 } 8000 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID)); 8001 PendingCallsites.push_back(CallsiteInfo({VI, std::move(StackIdList)})); 8002 break; 8003 } 8004 8005 case bitc::FS_COMBINED_CALLSITE_INFO: { 8006 auto RecordIter = Record.begin(); 8007 unsigned ValueID = *RecordIter++; 8008 unsigned NumStackIds = *RecordIter++; 8009 unsigned NumVersions = *RecordIter++; 8010 assert(Record.size() == 3 + NumStackIds + NumVersions); 8011 SmallVector<unsigned> StackIdList; 8012 for (unsigned J = 0; J < NumStackIds; J++) { 8013 assert(*RecordIter < StackIds.size()); 8014 StackIdList.push_back( 8015 TheIndex.addOrGetStackIdIndex(StackIds[*RecordIter++])); 8016 } 8017 SmallVector<unsigned> Versions; 8018 for (unsigned J = 0; J < NumVersions; J++) 8019 Versions.push_back(*RecordIter++); 8020 ValueInfo VI = std::get<0>( 8021 getValueInfoFromValueId</*AllowNullValueInfo*/ true>(ValueID)); 8022 PendingCallsites.push_back( 8023 CallsiteInfo({VI, std::move(Versions), std::move(StackIdList)})); 8024 break; 8025 } 8026 8027 case bitc::FS_PERMODULE_ALLOC_INFO: { 8028 unsigned I = 0; 8029 std::vector<MIBInfo> MIBs; 8030 unsigned NumMIBs = 0; 8031 if (Version >= 10) 8032 NumMIBs = Record[I++]; 8033 unsigned MIBsRead = 0; 8034 while ((Version >= 10 && MIBsRead++ < NumMIBs) || 8035 (Version < 10 && I < Record.size())) { 8036 assert(Record.size() - I >= 2); 8037 AllocationType AllocType = (AllocationType)Record[I++]; 8038 unsigned NumStackEntries = Record[I++]; 8039 assert(Record.size() - I >= NumStackEntries); 8040 SmallVector<unsigned> StackIdList; 8041 for (unsigned J = 0; J < NumStackEntries; J++) { 8042 assert(Record[I] < StackIds.size()); 8043 StackIdList.push_back( 8044 TheIndex.addOrGetStackIdIndex(StackIds[Record[I++]])); 8045 } 8046 MIBs.push_back(MIBInfo(AllocType, std::move(StackIdList))); 8047 } 8048 std::vector<uint64_t> TotalSizes; 8049 // We either have no sizes or NumMIBs of them. 8050 assert(I == Record.size() || Record.size() - I == NumMIBs); 8051 if (I < Record.size()) { 8052 MIBsRead = 0; 8053 while (MIBsRead++ < NumMIBs) 8054 TotalSizes.push_back(Record[I++]); 8055 } 8056 PendingAllocs.push_back(AllocInfo(std::move(MIBs))); 8057 if (!TotalSizes.empty()) { 8058 assert(PendingAllocs.back().MIBs.size() == TotalSizes.size()); 8059 PendingAllocs.back().TotalSizes = std::move(TotalSizes); 8060 } 8061 break; 8062 } 8063 8064 case bitc::FS_COMBINED_ALLOC_INFO: { 8065 unsigned I = 0; 8066 std::vector<MIBInfo> MIBs; 8067 unsigned NumMIBs = Record[I++]; 8068 unsigned NumVersions = Record[I++]; 8069 unsigned MIBsRead = 0; 8070 while (MIBsRead++ < NumMIBs) { 8071 assert(Record.size() - I >= 2); 8072 AllocationType AllocType = (AllocationType)Record[I++]; 8073 unsigned NumStackEntries = Record[I++]; 8074 assert(Record.size() - I >= NumStackEntries); 8075 SmallVector<unsigned> StackIdList; 8076 for (unsigned J = 0; J < NumStackEntries; J++) { 8077 assert(Record[I] < StackIds.size()); 8078 StackIdList.push_back( 8079 TheIndex.addOrGetStackIdIndex(StackIds[Record[I++]])); 8080 } 8081 MIBs.push_back(MIBInfo(AllocType, std::move(StackIdList))); 8082 } 8083 assert(Record.size() - I >= NumVersions); 8084 SmallVector<uint8_t> Versions; 8085 for (unsigned J = 0; J < NumVersions; J++) 8086 Versions.push_back(Record[I++]); 8087 std::vector<uint64_t> TotalSizes; 8088 // We either have no sizes or NumMIBs of them. 8089 assert(I == Record.size() || Record.size() - I == NumMIBs); 8090 if (I < Record.size()) { 8091 MIBsRead = 0; 8092 while (MIBsRead++ < NumMIBs) { 8093 TotalSizes.push_back(Record[I++]); 8094 } 8095 } 8096 PendingAllocs.push_back( 8097 AllocInfo(std::move(Versions), std::move(MIBs))); 8098 if (!TotalSizes.empty()) { 8099 assert(PendingAllocs.back().MIBs.size() == TotalSizes.size()); 8100 PendingAllocs.back().TotalSizes = std::move(TotalSizes); 8101 } 8102 break; 8103 } 8104 } 8105 } 8106 llvm_unreachable("Exit infinite loop"); 8107 } 8108 8109 // Parse the module string table block into the Index. 8110 // This populates the ModulePathStringTable map in the index. 8111 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 8112 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 8113 return Err; 8114 8115 SmallVector<uint64_t, 64> Record; 8116 8117 SmallString<128> ModulePath; 8118 ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr; 8119 8120 while (true) { 8121 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 8122 if (!MaybeEntry) 8123 return MaybeEntry.takeError(); 8124 BitstreamEntry Entry = MaybeEntry.get(); 8125 8126 switch (Entry.Kind) { 8127 case BitstreamEntry::SubBlock: // Handled for us already. 8128 case BitstreamEntry::Error: 8129 return error("Malformed block"); 8130 case BitstreamEntry::EndBlock: 8131 return Error::success(); 8132 case BitstreamEntry::Record: 8133 // The interesting case. 8134 break; 8135 } 8136 8137 Record.clear(); 8138 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 8139 if (!MaybeRecord) 8140 return MaybeRecord.takeError(); 8141 switch (MaybeRecord.get()) { 8142 default: // Default behavior: ignore. 8143 break; 8144 case bitc::MST_CODE_ENTRY: { 8145 // MST_ENTRY: [modid, namechar x N] 8146 uint64_t ModuleId = Record[0]; 8147 8148 if (convertToString(Record, 1, ModulePath)) 8149 return error("Invalid record"); 8150 8151 LastSeenModule = TheIndex.addModule(ModulePath); 8152 ModuleIdMap[ModuleId] = LastSeenModule->first(); 8153 8154 ModulePath.clear(); 8155 break; 8156 } 8157 /// MST_CODE_HASH: [5*i32] 8158 case bitc::MST_CODE_HASH: { 8159 if (Record.size() != 5) 8160 return error("Invalid hash length " + Twine(Record.size()).str()); 8161 if (!LastSeenModule) 8162 return error("Invalid hash that does not follow a module path"); 8163 int Pos = 0; 8164 for (auto &Val : Record) { 8165 assert(!(Val >> 32) && "Unexpected high bits set"); 8166 LastSeenModule->second[Pos++] = Val; 8167 } 8168 // Reset LastSeenModule to avoid overriding the hash unexpectedly. 8169 LastSeenModule = nullptr; 8170 break; 8171 } 8172 } 8173 } 8174 llvm_unreachable("Exit infinite loop"); 8175 } 8176 8177 namespace { 8178 8179 // FIXME: This class is only here to support the transition to llvm::Error. It 8180 // will be removed once this transition is complete. Clients should prefer to 8181 // deal with the Error value directly, rather than converting to error_code. 8182 class BitcodeErrorCategoryType : public std::error_category { 8183 const char *name() const noexcept override { 8184 return "llvm.bitcode"; 8185 } 8186 8187 std::string message(int IE) const override { 8188 BitcodeError E = static_cast<BitcodeError>(IE); 8189 switch (E) { 8190 case BitcodeError::CorruptedBitcode: 8191 return "Corrupted bitcode"; 8192 } 8193 llvm_unreachable("Unknown error type!"); 8194 } 8195 }; 8196 8197 } // end anonymous namespace 8198 8199 const std::error_category &llvm::BitcodeErrorCategory() { 8200 static BitcodeErrorCategoryType ErrorCategory; 8201 return ErrorCategory; 8202 } 8203 8204 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream, 8205 unsigned Block, unsigned RecordID) { 8206 if (Error Err = Stream.EnterSubBlock(Block)) 8207 return std::move(Err); 8208 8209 StringRef Strtab; 8210 while (true) { 8211 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 8212 if (!MaybeEntry) 8213 return MaybeEntry.takeError(); 8214 llvm::BitstreamEntry Entry = MaybeEntry.get(); 8215 8216 switch (Entry.Kind) { 8217 case BitstreamEntry::EndBlock: 8218 return Strtab; 8219 8220 case BitstreamEntry::Error: 8221 return error("Malformed block"); 8222 8223 case BitstreamEntry::SubBlock: 8224 if (Error Err = Stream.SkipBlock()) 8225 return std::move(Err); 8226 break; 8227 8228 case BitstreamEntry::Record: 8229 StringRef Blob; 8230 SmallVector<uint64_t, 1> Record; 8231 Expected<unsigned> MaybeRecord = 8232 Stream.readRecord(Entry.ID, Record, &Blob); 8233 if (!MaybeRecord) 8234 return MaybeRecord.takeError(); 8235 if (MaybeRecord.get() == RecordID) 8236 Strtab = Blob; 8237 break; 8238 } 8239 } 8240 } 8241 8242 //===----------------------------------------------------------------------===// 8243 // External interface 8244 //===----------------------------------------------------------------------===// 8245 8246 Expected<std::vector<BitcodeModule>> 8247 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) { 8248 auto FOrErr = getBitcodeFileContents(Buffer); 8249 if (!FOrErr) 8250 return FOrErr.takeError(); 8251 return std::move(FOrErr->Mods); 8252 } 8253 8254 Expected<BitcodeFileContents> 8255 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) { 8256 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 8257 if (!StreamOrErr) 8258 return StreamOrErr.takeError(); 8259 BitstreamCursor &Stream = *StreamOrErr; 8260 8261 BitcodeFileContents F; 8262 while (true) { 8263 uint64_t BCBegin = Stream.getCurrentByteNo(); 8264 8265 // We may be consuming bitcode from a client that leaves garbage at the end 8266 // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to 8267 // the end that there cannot possibly be another module, stop looking. 8268 if (BCBegin + 8 >= Stream.getBitcodeBytes().size()) 8269 return F; 8270 8271 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 8272 if (!MaybeEntry) 8273 return MaybeEntry.takeError(); 8274 llvm::BitstreamEntry Entry = MaybeEntry.get(); 8275 8276 switch (Entry.Kind) { 8277 case BitstreamEntry::EndBlock: 8278 case BitstreamEntry::Error: 8279 return error("Malformed block"); 8280 8281 case BitstreamEntry::SubBlock: { 8282 uint64_t IdentificationBit = -1ull; 8283 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 8284 IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8; 8285 if (Error Err = Stream.SkipBlock()) 8286 return std::move(Err); 8287 8288 { 8289 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 8290 if (!MaybeEntry) 8291 return MaybeEntry.takeError(); 8292 Entry = MaybeEntry.get(); 8293 } 8294 8295 if (Entry.Kind != BitstreamEntry::SubBlock || 8296 Entry.ID != bitc::MODULE_BLOCK_ID) 8297 return error("Malformed block"); 8298 } 8299 8300 if (Entry.ID == bitc::MODULE_BLOCK_ID) { 8301 uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8; 8302 if (Error Err = Stream.SkipBlock()) 8303 return std::move(Err); 8304 8305 F.Mods.push_back({Stream.getBitcodeBytes().slice( 8306 BCBegin, Stream.getCurrentByteNo() - BCBegin), 8307 Buffer.getBufferIdentifier(), IdentificationBit, 8308 ModuleBit}); 8309 continue; 8310 } 8311 8312 if (Entry.ID == bitc::STRTAB_BLOCK_ID) { 8313 Expected<StringRef> Strtab = 8314 readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB); 8315 if (!Strtab) 8316 return Strtab.takeError(); 8317 // This string table is used by every preceding bitcode module that does 8318 // not have its own string table. A bitcode file may have multiple 8319 // string tables if it was created by binary concatenation, for example 8320 // with "llvm-cat -b". 8321 for (BitcodeModule &I : llvm::reverse(F.Mods)) { 8322 if (!I.Strtab.empty()) 8323 break; 8324 I.Strtab = *Strtab; 8325 } 8326 // Similarly, the string table is used by every preceding symbol table; 8327 // normally there will be just one unless the bitcode file was created 8328 // by binary concatenation. 8329 if (!F.Symtab.empty() && F.StrtabForSymtab.empty()) 8330 F.StrtabForSymtab = *Strtab; 8331 continue; 8332 } 8333 8334 if (Entry.ID == bitc::SYMTAB_BLOCK_ID) { 8335 Expected<StringRef> SymtabOrErr = 8336 readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB); 8337 if (!SymtabOrErr) 8338 return SymtabOrErr.takeError(); 8339 8340 // We can expect the bitcode file to have multiple symbol tables if it 8341 // was created by binary concatenation. In that case we silently 8342 // ignore any subsequent symbol tables, which is fine because this is a 8343 // low level function. The client is expected to notice that the number 8344 // of modules in the symbol table does not match the number of modules 8345 // in the input file and regenerate the symbol table. 8346 if (F.Symtab.empty()) 8347 F.Symtab = *SymtabOrErr; 8348 continue; 8349 } 8350 8351 if (Error Err = Stream.SkipBlock()) 8352 return std::move(Err); 8353 continue; 8354 } 8355 case BitstreamEntry::Record: 8356 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 8357 return std::move(E); 8358 continue; 8359 } 8360 } 8361 } 8362 8363 /// Get a lazy one-at-time loading module from bitcode. 8364 /// 8365 /// This isn't always used in a lazy context. In particular, it's also used by 8366 /// \a parseModule(). If this is truly lazy, then we need to eagerly pull 8367 /// in forward-referenced functions from block address references. 8368 /// 8369 /// \param[in] MaterializeAll Set to \c true if we should materialize 8370 /// everything. 8371 Expected<std::unique_ptr<Module>> 8372 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll, 8373 bool ShouldLazyLoadMetadata, bool IsImporting, 8374 ParserCallbacks Callbacks) { 8375 BitstreamCursor Stream(Buffer); 8376 8377 std::string ProducerIdentification; 8378 if (IdentificationBit != -1ull) { 8379 if (Error JumpFailed = Stream.JumpToBit(IdentificationBit)) 8380 return std::move(JumpFailed); 8381 if (Error E = 8382 readIdentificationBlock(Stream).moveInto(ProducerIdentification)) 8383 return std::move(E); 8384 } 8385 8386 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 8387 return std::move(JumpFailed); 8388 auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification, 8389 Context); 8390 8391 std::unique_ptr<Module> M = 8392 std::make_unique<Module>(ModuleIdentifier, Context); 8393 M->setMaterializer(R); 8394 8395 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 8396 if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, 8397 IsImporting, Callbacks)) 8398 return std::move(Err); 8399 8400 if (MaterializeAll) { 8401 // Read in the entire module, and destroy the BitcodeReader. 8402 if (Error Err = M->materializeAll()) 8403 return std::move(Err); 8404 } else { 8405 // Resolve forward references from blockaddresses. 8406 if (Error Err = R->materializeForwardReferencedFunctions()) 8407 return std::move(Err); 8408 } 8409 8410 return std::move(M); 8411 } 8412 8413 Expected<std::unique_ptr<Module>> 8414 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata, 8415 bool IsImporting, ParserCallbacks Callbacks) { 8416 return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting, 8417 Callbacks); 8418 } 8419 8420 // Parse the specified bitcode buffer and merge the index into CombinedIndex. 8421 // We don't use ModuleIdentifier here because the client may need to control the 8422 // module path used in the combined summary (e.g. when reading summaries for 8423 // regular LTO modules). 8424 Error BitcodeModule::readSummary( 8425 ModuleSummaryIndex &CombinedIndex, StringRef ModulePath, 8426 std::function<bool(GlobalValue::GUID)> IsPrevailing) { 8427 BitstreamCursor Stream(Buffer); 8428 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 8429 return JumpFailed; 8430 8431 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex, 8432 ModulePath, IsPrevailing); 8433 return R.parseModule(); 8434 } 8435 8436 // Parse the specified bitcode buffer, returning the function info index. 8437 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() { 8438 BitstreamCursor Stream(Buffer); 8439 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 8440 return std::move(JumpFailed); 8441 8442 auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false); 8443 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index, 8444 ModuleIdentifier, 0); 8445 8446 if (Error Err = R.parseModule()) 8447 return std::move(Err); 8448 8449 return std::move(Index); 8450 } 8451 8452 static Expected<std::pair<bool, bool>> 8453 getEnableSplitLTOUnitAndUnifiedFlag(BitstreamCursor &Stream, 8454 unsigned ID, 8455 BitcodeLTOInfo <OInfo) { 8456 if (Error Err = Stream.EnterSubBlock(ID)) 8457 return std::move(Err); 8458 SmallVector<uint64_t, 64> Record; 8459 8460 while (true) { 8461 BitstreamEntry Entry; 8462 std::pair<bool, bool> Result = {false,false}; 8463 if (Error E = Stream.advanceSkippingSubblocks().moveInto(Entry)) 8464 return std::move(E); 8465 8466 switch (Entry.Kind) { 8467 case BitstreamEntry::SubBlock: // Handled for us already. 8468 case BitstreamEntry::Error: 8469 return error("Malformed block"); 8470 case BitstreamEntry::EndBlock: { 8471 // If no flags record found, set both flags to false. 8472 return Result; 8473 } 8474 case BitstreamEntry::Record: 8475 // The interesting case. 8476 break; 8477 } 8478 8479 // Look for the FS_FLAGS record. 8480 Record.clear(); 8481 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 8482 if (!MaybeBitCode) 8483 return MaybeBitCode.takeError(); 8484 switch (MaybeBitCode.get()) { 8485 default: // Default behavior: ignore. 8486 break; 8487 case bitc::FS_FLAGS: { // [flags] 8488 uint64_t Flags = Record[0]; 8489 // Scan flags. 8490 assert(Flags <= 0x2ff && "Unexpected bits in flag"); 8491 8492 bool EnableSplitLTOUnit = Flags & 0x8; 8493 bool UnifiedLTO = Flags & 0x200; 8494 Result = {EnableSplitLTOUnit, UnifiedLTO}; 8495 8496 return Result; 8497 } 8498 } 8499 } 8500 llvm_unreachable("Exit infinite loop"); 8501 } 8502 8503 // Check if the given bitcode buffer contains a global value summary block. 8504 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() { 8505 BitstreamCursor Stream(Buffer); 8506 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 8507 return std::move(JumpFailed); 8508 8509 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 8510 return std::move(Err); 8511 8512 while (true) { 8513 llvm::BitstreamEntry Entry; 8514 if (Error E = Stream.advance().moveInto(Entry)) 8515 return std::move(E); 8516 8517 switch (Entry.Kind) { 8518 case BitstreamEntry::Error: 8519 return error("Malformed block"); 8520 case BitstreamEntry::EndBlock: 8521 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false, 8522 /*EnableSplitLTOUnit=*/false, /*UnifiedLTO=*/false}; 8523 8524 case BitstreamEntry::SubBlock: 8525 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) { 8526 BitcodeLTOInfo LTOInfo; 8527 Expected<std::pair<bool, bool>> Flags = 8528 getEnableSplitLTOUnitAndUnifiedFlag(Stream, Entry.ID, LTOInfo); 8529 if (!Flags) 8530 return Flags.takeError(); 8531 std::tie(LTOInfo.EnableSplitLTOUnit, LTOInfo.UnifiedLTO) = Flags.get(); 8532 LTOInfo.IsThinLTO = true; 8533 LTOInfo.HasSummary = true; 8534 return LTOInfo; 8535 } 8536 8537 if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) { 8538 BitcodeLTOInfo LTOInfo; 8539 Expected<std::pair<bool, bool>> Flags = 8540 getEnableSplitLTOUnitAndUnifiedFlag(Stream, Entry.ID, LTOInfo); 8541 if (!Flags) 8542 return Flags.takeError(); 8543 std::tie(LTOInfo.EnableSplitLTOUnit, LTOInfo.UnifiedLTO) = Flags.get(); 8544 LTOInfo.IsThinLTO = false; 8545 LTOInfo.HasSummary = true; 8546 return LTOInfo; 8547 } 8548 8549 // Ignore other sub-blocks. 8550 if (Error Err = Stream.SkipBlock()) 8551 return std::move(Err); 8552 continue; 8553 8554 case BitstreamEntry::Record: 8555 if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID)) 8556 continue; 8557 else 8558 return StreamFailed.takeError(); 8559 } 8560 } 8561 } 8562 8563 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) { 8564 Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer); 8565 if (!MsOrErr) 8566 return MsOrErr.takeError(); 8567 8568 if (MsOrErr->size() != 1) 8569 return error("Expected a single module"); 8570 8571 return (*MsOrErr)[0]; 8572 } 8573 8574 Expected<std::unique_ptr<Module>> 8575 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context, 8576 bool ShouldLazyLoadMetadata, bool IsImporting, 8577 ParserCallbacks Callbacks) { 8578 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8579 if (!BM) 8580 return BM.takeError(); 8581 8582 return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting, 8583 Callbacks); 8584 } 8585 8586 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule( 8587 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context, 8588 bool ShouldLazyLoadMetadata, bool IsImporting, ParserCallbacks Callbacks) { 8589 auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata, 8590 IsImporting, Callbacks); 8591 if (MOrErr) 8592 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer)); 8593 return MOrErr; 8594 } 8595 8596 Expected<std::unique_ptr<Module>> 8597 BitcodeModule::parseModule(LLVMContext &Context, ParserCallbacks Callbacks) { 8598 return getModuleImpl(Context, true, false, false, Callbacks); 8599 // TODO: Restore the use-lists to the in-memory state when the bitcode was 8600 // written. We must defer until the Module has been fully materialized. 8601 } 8602 8603 Expected<std::unique_ptr<Module>> 8604 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context, 8605 ParserCallbacks Callbacks) { 8606 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8607 if (!BM) 8608 return BM.takeError(); 8609 8610 return BM->parseModule(Context, Callbacks); 8611 } 8612 8613 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) { 8614 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 8615 if (!StreamOrErr) 8616 return StreamOrErr.takeError(); 8617 8618 return readTriple(*StreamOrErr); 8619 } 8620 8621 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) { 8622 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 8623 if (!StreamOrErr) 8624 return StreamOrErr.takeError(); 8625 8626 return hasObjCCategory(*StreamOrErr); 8627 } 8628 8629 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) { 8630 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 8631 if (!StreamOrErr) 8632 return StreamOrErr.takeError(); 8633 8634 return readIdentificationCode(*StreamOrErr); 8635 } 8636 8637 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer, 8638 ModuleSummaryIndex &CombinedIndex) { 8639 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8640 if (!BM) 8641 return BM.takeError(); 8642 8643 return BM->readSummary(CombinedIndex, BM->getModuleIdentifier()); 8644 } 8645 8646 Expected<std::unique_ptr<ModuleSummaryIndex>> 8647 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) { 8648 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8649 if (!BM) 8650 return BM.takeError(); 8651 8652 return BM->getSummary(); 8653 } 8654 8655 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) { 8656 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8657 if (!BM) 8658 return BM.takeError(); 8659 8660 return BM->getLTOInfo(); 8661 } 8662 8663 Expected<std::unique_ptr<ModuleSummaryIndex>> 8664 llvm::getModuleSummaryIndexForFile(StringRef Path, 8665 bool IgnoreEmptyThinLTOIndexFile) { 8666 ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr = 8667 MemoryBuffer::getFileOrSTDIN(Path); 8668 if (!FileOrErr) 8669 return errorCodeToError(FileOrErr.getError()); 8670 if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize()) 8671 return nullptr; 8672 return getModuleSummaryIndex(**FileOrErr); 8673 } 8674