1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Bitcode/BitcodeReader.h" 10 #include "MetadataLoader.h" 11 #include "ValueList.h" 12 #include "llvm/ADT/APFloat.h" 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallString.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/ADT/StringRef.h" 20 #include "llvm/ADT/Twine.h" 21 #include "llvm/Bitcode/BitcodeCommon.h" 22 #include "llvm/Bitcode/LLVMBitCodes.h" 23 #include "llvm/Bitstream/BitstreamReader.h" 24 #include "llvm/Config/llvm-config.h" 25 #include "llvm/IR/Argument.h" 26 #include "llvm/IR/AttributeMask.h" 27 #include "llvm/IR/Attributes.h" 28 #include "llvm/IR/AutoUpgrade.h" 29 #include "llvm/IR/BasicBlock.h" 30 #include "llvm/IR/CallingConv.h" 31 #include "llvm/IR/Comdat.h" 32 #include "llvm/IR/Constant.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/DebugInfo.h" 36 #include "llvm/IR/DebugInfoMetadata.h" 37 #include "llvm/IR/DebugLoc.h" 38 #include "llvm/IR/DerivedTypes.h" 39 #include "llvm/IR/Function.h" 40 #include "llvm/IR/GVMaterializer.h" 41 #include "llvm/IR/GetElementPtrTypeIterator.h" 42 #include "llvm/IR/GlobalAlias.h" 43 #include "llvm/IR/GlobalIFunc.h" 44 #include "llvm/IR/GlobalObject.h" 45 #include "llvm/IR/GlobalValue.h" 46 #include "llvm/IR/GlobalVariable.h" 47 #include "llvm/IR/InlineAsm.h" 48 #include "llvm/IR/InstIterator.h" 49 #include "llvm/IR/InstrTypes.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/IntrinsicsAArch64.h" 54 #include "llvm/IR/IntrinsicsARM.h" 55 #include "llvm/IR/LLVMContext.h" 56 #include "llvm/IR/Metadata.h" 57 #include "llvm/IR/Module.h" 58 #include "llvm/IR/ModuleSummaryIndex.h" 59 #include "llvm/IR/Operator.h" 60 #include "llvm/IR/Type.h" 61 #include "llvm/IR/Value.h" 62 #include "llvm/IR/Verifier.h" 63 #include "llvm/Support/AtomicOrdering.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Compiler.h" 67 #include "llvm/Support/Debug.h" 68 #include "llvm/Support/Error.h" 69 #include "llvm/Support/ErrorHandling.h" 70 #include "llvm/Support/ErrorOr.h" 71 #include "llvm/Support/MathExtras.h" 72 #include "llvm/Support/MemoryBuffer.h" 73 #include "llvm/Support/ModRef.h" 74 #include "llvm/Support/raw_ostream.h" 75 #include "llvm/TargetParser/Triple.h" 76 #include <algorithm> 77 #include <cassert> 78 #include <cstddef> 79 #include <cstdint> 80 #include <deque> 81 #include <map> 82 #include <memory> 83 #include <optional> 84 #include <set> 85 #include <string> 86 #include <system_error> 87 #include <tuple> 88 #include <utility> 89 #include <vector> 90 91 using namespace llvm; 92 93 static cl::opt<bool> PrintSummaryGUIDs( 94 "print-summary-global-ids", cl::init(false), cl::Hidden, 95 cl::desc( 96 "Print the global id for each value when reading the module summary")); 97 98 static cl::opt<bool> ExpandConstantExprs( 99 "expand-constant-exprs", cl::Hidden, 100 cl::desc( 101 "Expand constant expressions to instructions for testing purposes")); 102 103 /// Load bitcode directly into RemoveDIs format (use debug records instead 104 /// of debug intrinsics). UNSET is treated as FALSE, so the default action 105 /// is to do nothing. Individual tools can override this to incrementally add 106 /// support for the RemoveDIs format. 107 cl::opt<cl::boolOrDefault> LoadBitcodeIntoNewDbgInfoFormat( 108 "load-bitcode-into-experimental-debuginfo-iterators", cl::Hidden, 109 cl::desc("Load bitcode directly into the new debug info format (regardless " 110 "of input format)")); 111 extern cl::opt<cl::boolOrDefault> PreserveInputDbgFormat; 112 extern bool WriteNewDbgInfoFormatToBitcode; 113 extern cl::opt<bool> WriteNewDbgInfoFormat; 114 115 namespace { 116 117 enum { 118 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 119 }; 120 121 } // end anonymous namespace 122 123 static Error error(const Twine &Message) { 124 return make_error<StringError>( 125 Message, make_error_code(BitcodeError::CorruptedBitcode)); 126 } 127 128 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) { 129 if (!Stream.canSkipToPos(4)) 130 return createStringError(std::errc::illegal_byte_sequence, 131 "file too small to contain bitcode header"); 132 for (unsigned C : {'B', 'C'}) 133 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) { 134 if (Res.get() != C) 135 return createStringError(std::errc::illegal_byte_sequence, 136 "file doesn't start with bitcode header"); 137 } else 138 return Res.takeError(); 139 for (unsigned C : {0x0, 0xC, 0xE, 0xD}) 140 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) { 141 if (Res.get() != C) 142 return createStringError(std::errc::illegal_byte_sequence, 143 "file doesn't start with bitcode header"); 144 } else 145 return Res.takeError(); 146 return Error::success(); 147 } 148 149 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) { 150 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart(); 151 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize(); 152 153 if (Buffer.getBufferSize() & 3) 154 return error("Invalid bitcode signature"); 155 156 // If we have a wrapper header, parse it and ignore the non-bc file contents. 157 // The magic number is 0x0B17C0DE stored in little endian. 158 if (isBitcodeWrapper(BufPtr, BufEnd)) 159 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 160 return error("Invalid bitcode wrapper header"); 161 162 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd)); 163 if (Error Err = hasInvalidBitcodeHeader(Stream)) 164 return std::move(Err); 165 166 return std::move(Stream); 167 } 168 169 /// Convert a string from a record into an std::string, return true on failure. 170 template <typename StrTy> 171 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 172 StrTy &Result) { 173 if (Idx > Record.size()) 174 return true; 175 176 Result.append(Record.begin() + Idx, Record.end()); 177 return false; 178 } 179 180 // Strip all the TBAA attachment for the module. 181 static void stripTBAA(Module *M) { 182 for (auto &F : *M) { 183 if (F.isMaterializable()) 184 continue; 185 for (auto &I : instructions(F)) 186 I.setMetadata(LLVMContext::MD_tbaa, nullptr); 187 } 188 } 189 190 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the 191 /// "epoch" encoded in the bitcode, and return the producer name if any. 192 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) { 193 if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 194 return std::move(Err); 195 196 // Read all the records. 197 SmallVector<uint64_t, 64> Record; 198 199 std::string ProducerIdentification; 200 201 while (true) { 202 BitstreamEntry Entry; 203 if (Error E = Stream.advance().moveInto(Entry)) 204 return std::move(E); 205 206 switch (Entry.Kind) { 207 default: 208 case BitstreamEntry::Error: 209 return error("Malformed block"); 210 case BitstreamEntry::EndBlock: 211 return ProducerIdentification; 212 case BitstreamEntry::Record: 213 // The interesting case. 214 break; 215 } 216 217 // Read a record. 218 Record.clear(); 219 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 220 if (!MaybeBitCode) 221 return MaybeBitCode.takeError(); 222 switch (MaybeBitCode.get()) { 223 default: // Default behavior: reject 224 return error("Invalid value"); 225 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N] 226 convertToString(Record, 0, ProducerIdentification); 227 break; 228 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 229 unsigned epoch = (unsigned)Record[0]; 230 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 231 return error( 232 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 233 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 234 } 235 } 236 } 237 } 238 } 239 240 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) { 241 // We expect a number of well-defined blocks, though we don't necessarily 242 // need to understand them all. 243 while (true) { 244 if (Stream.AtEndOfStream()) 245 return ""; 246 247 BitstreamEntry Entry; 248 if (Error E = Stream.advance().moveInto(Entry)) 249 return std::move(E); 250 251 switch (Entry.Kind) { 252 case BitstreamEntry::EndBlock: 253 case BitstreamEntry::Error: 254 return error("Malformed block"); 255 256 case BitstreamEntry::SubBlock: 257 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) 258 return readIdentificationBlock(Stream); 259 260 // Ignore other sub-blocks. 261 if (Error Err = Stream.SkipBlock()) 262 return std::move(Err); 263 continue; 264 case BitstreamEntry::Record: 265 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 266 return std::move(E); 267 continue; 268 } 269 } 270 } 271 272 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) { 273 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 274 return std::move(Err); 275 276 SmallVector<uint64_t, 64> Record; 277 // Read all the records for this module. 278 279 while (true) { 280 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 281 if (!MaybeEntry) 282 return MaybeEntry.takeError(); 283 BitstreamEntry Entry = MaybeEntry.get(); 284 285 switch (Entry.Kind) { 286 case BitstreamEntry::SubBlock: // Handled for us already. 287 case BitstreamEntry::Error: 288 return error("Malformed block"); 289 case BitstreamEntry::EndBlock: 290 return false; 291 case BitstreamEntry::Record: 292 // The interesting case. 293 break; 294 } 295 296 // Read a record. 297 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 298 if (!MaybeRecord) 299 return MaybeRecord.takeError(); 300 switch (MaybeRecord.get()) { 301 default: 302 break; // Default behavior, ignore unknown content. 303 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 304 std::string S; 305 if (convertToString(Record, 0, S)) 306 return error("Invalid section name record"); 307 // Check for the i386 and other (x86_64, ARM) conventions 308 if (S.find("__DATA,__objc_catlist") != std::string::npos || 309 S.find("__OBJC,__category") != std::string::npos || 310 S.find("__TEXT,__swift") != std::string::npos) 311 return true; 312 break; 313 } 314 } 315 Record.clear(); 316 } 317 llvm_unreachable("Exit infinite loop"); 318 } 319 320 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) { 321 // We expect a number of well-defined blocks, though we don't necessarily 322 // need to understand them all. 323 while (true) { 324 BitstreamEntry Entry; 325 if (Error E = Stream.advance().moveInto(Entry)) 326 return std::move(E); 327 328 switch (Entry.Kind) { 329 case BitstreamEntry::Error: 330 return error("Malformed block"); 331 case BitstreamEntry::EndBlock: 332 return false; 333 334 case BitstreamEntry::SubBlock: 335 if (Entry.ID == bitc::MODULE_BLOCK_ID) 336 return hasObjCCategoryInModule(Stream); 337 338 // Ignore other sub-blocks. 339 if (Error Err = Stream.SkipBlock()) 340 return std::move(Err); 341 continue; 342 343 case BitstreamEntry::Record: 344 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 345 return std::move(E); 346 continue; 347 } 348 } 349 } 350 351 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) { 352 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 353 return std::move(Err); 354 355 SmallVector<uint64_t, 64> Record; 356 357 std::string Triple; 358 359 // Read all the records for this module. 360 while (true) { 361 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 362 if (!MaybeEntry) 363 return MaybeEntry.takeError(); 364 BitstreamEntry Entry = MaybeEntry.get(); 365 366 switch (Entry.Kind) { 367 case BitstreamEntry::SubBlock: // Handled for us already. 368 case BitstreamEntry::Error: 369 return error("Malformed block"); 370 case BitstreamEntry::EndBlock: 371 return Triple; 372 case BitstreamEntry::Record: 373 // The interesting case. 374 break; 375 } 376 377 // Read a record. 378 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 379 if (!MaybeRecord) 380 return MaybeRecord.takeError(); 381 switch (MaybeRecord.get()) { 382 default: break; // Default behavior, ignore unknown content. 383 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 384 std::string S; 385 if (convertToString(Record, 0, S)) 386 return error("Invalid triple record"); 387 Triple = S; 388 break; 389 } 390 } 391 Record.clear(); 392 } 393 llvm_unreachable("Exit infinite loop"); 394 } 395 396 static Expected<std::string> readTriple(BitstreamCursor &Stream) { 397 // We expect a number of well-defined blocks, though we don't necessarily 398 // need to understand them all. 399 while (true) { 400 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 401 if (!MaybeEntry) 402 return MaybeEntry.takeError(); 403 BitstreamEntry Entry = MaybeEntry.get(); 404 405 switch (Entry.Kind) { 406 case BitstreamEntry::Error: 407 return error("Malformed block"); 408 case BitstreamEntry::EndBlock: 409 return ""; 410 411 case BitstreamEntry::SubBlock: 412 if (Entry.ID == bitc::MODULE_BLOCK_ID) 413 return readModuleTriple(Stream); 414 415 // Ignore other sub-blocks. 416 if (Error Err = Stream.SkipBlock()) 417 return std::move(Err); 418 continue; 419 420 case BitstreamEntry::Record: 421 if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 422 continue; 423 else 424 return Skipped.takeError(); 425 } 426 } 427 } 428 429 namespace { 430 431 class BitcodeReaderBase { 432 protected: 433 BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab) 434 : Stream(std::move(Stream)), Strtab(Strtab) { 435 this->Stream.setBlockInfo(&BlockInfo); 436 } 437 438 BitstreamBlockInfo BlockInfo; 439 BitstreamCursor Stream; 440 StringRef Strtab; 441 442 /// In version 2 of the bitcode we store names of global values and comdats in 443 /// a string table rather than in the VST. 444 bool UseStrtab = false; 445 446 Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record); 447 448 /// If this module uses a string table, pop the reference to the string table 449 /// and return the referenced string and the rest of the record. Otherwise 450 /// just return the record itself. 451 std::pair<StringRef, ArrayRef<uint64_t>> 452 readNameFromStrtab(ArrayRef<uint64_t> Record); 453 454 Error readBlockInfo(); 455 456 // Contains an arbitrary and optional string identifying the bitcode producer 457 std::string ProducerIdentification; 458 459 Error error(const Twine &Message); 460 }; 461 462 } // end anonymous namespace 463 464 Error BitcodeReaderBase::error(const Twine &Message) { 465 std::string FullMsg = Message.str(); 466 if (!ProducerIdentification.empty()) 467 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " + 468 LLVM_VERSION_STRING "')"; 469 return ::error(FullMsg); 470 } 471 472 Expected<unsigned> 473 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) { 474 if (Record.empty()) 475 return error("Invalid version record"); 476 unsigned ModuleVersion = Record[0]; 477 if (ModuleVersion > 2) 478 return error("Invalid value"); 479 UseStrtab = ModuleVersion >= 2; 480 return ModuleVersion; 481 } 482 483 std::pair<StringRef, ArrayRef<uint64_t>> 484 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) { 485 if (!UseStrtab) 486 return {"", Record}; 487 // Invalid reference. Let the caller complain about the record being empty. 488 if (Record[0] + Record[1] > Strtab.size()) 489 return {"", {}}; 490 return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)}; 491 } 492 493 namespace { 494 495 /// This represents a constant expression or constant aggregate using a custom 496 /// structure internal to the bitcode reader. Later, this structure will be 497 /// expanded by materializeValue() either into a constant expression/aggregate, 498 /// or into an instruction sequence at the point of use. This allows us to 499 /// upgrade bitcode using constant expressions even if this kind of constant 500 /// expression is no longer supported. 501 class BitcodeConstant final : public Value, 502 TrailingObjects<BitcodeConstant, unsigned> { 503 friend TrailingObjects; 504 505 // Value subclass ID: Pick largest possible value to avoid any clashes. 506 static constexpr uint8_t SubclassID = 255; 507 508 public: 509 // Opcodes used for non-expressions. This includes constant aggregates 510 // (struct, array, vector) that might need expansion, as well as non-leaf 511 // constants that don't need expansion (no_cfi, dso_local, blockaddress), 512 // but still go through BitcodeConstant to avoid different uselist orders 513 // between the two cases. 514 static constexpr uint8_t ConstantStructOpcode = 255; 515 static constexpr uint8_t ConstantArrayOpcode = 254; 516 static constexpr uint8_t ConstantVectorOpcode = 253; 517 static constexpr uint8_t NoCFIOpcode = 252; 518 static constexpr uint8_t DSOLocalEquivalentOpcode = 251; 519 static constexpr uint8_t BlockAddressOpcode = 250; 520 static constexpr uint8_t FirstSpecialOpcode = BlockAddressOpcode; 521 522 // Separate struct to make passing different number of parameters to 523 // BitcodeConstant::create() more convenient. 524 struct ExtraInfo { 525 uint8_t Opcode; 526 uint8_t Flags; 527 unsigned BlockAddressBB = 0; 528 Type *SrcElemTy = nullptr; 529 std::optional<ConstantRange> InRange; 530 531 ExtraInfo(uint8_t Opcode, uint8_t Flags = 0, Type *SrcElemTy = nullptr, 532 std::optional<ConstantRange> InRange = std::nullopt) 533 : Opcode(Opcode), Flags(Flags), SrcElemTy(SrcElemTy), 534 InRange(std::move(InRange)) {} 535 536 ExtraInfo(uint8_t Opcode, uint8_t Flags, unsigned BlockAddressBB) 537 : Opcode(Opcode), Flags(Flags), BlockAddressBB(BlockAddressBB) {} 538 }; 539 540 uint8_t Opcode; 541 uint8_t Flags; 542 unsigned NumOperands; 543 unsigned BlockAddressBB; 544 Type *SrcElemTy; // GEP source element type. 545 std::optional<ConstantRange> InRange; // GEP inrange attribute. 546 547 private: 548 BitcodeConstant(Type *Ty, const ExtraInfo &Info, ArrayRef<unsigned> OpIDs) 549 : Value(Ty, SubclassID), Opcode(Info.Opcode), Flags(Info.Flags), 550 NumOperands(OpIDs.size()), BlockAddressBB(Info.BlockAddressBB), 551 SrcElemTy(Info.SrcElemTy), InRange(Info.InRange) { 552 std::uninitialized_copy(OpIDs.begin(), OpIDs.end(), 553 getTrailingObjects<unsigned>()); 554 } 555 556 BitcodeConstant &operator=(const BitcodeConstant &) = delete; 557 558 public: 559 static BitcodeConstant *create(BumpPtrAllocator &A, Type *Ty, 560 const ExtraInfo &Info, 561 ArrayRef<unsigned> OpIDs) { 562 void *Mem = A.Allocate(totalSizeToAlloc<unsigned>(OpIDs.size()), 563 alignof(BitcodeConstant)); 564 return new (Mem) BitcodeConstant(Ty, Info, OpIDs); 565 } 566 567 static bool classof(const Value *V) { return V->getValueID() == SubclassID; } 568 569 ArrayRef<unsigned> getOperandIDs() const { 570 return ArrayRef(getTrailingObjects<unsigned>(), NumOperands); 571 } 572 573 std::optional<ConstantRange> getInRange() const { 574 assert(Opcode == Instruction::GetElementPtr); 575 return InRange; 576 } 577 578 const char *getOpcodeName() const { 579 return Instruction::getOpcodeName(Opcode); 580 } 581 }; 582 583 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer { 584 LLVMContext &Context; 585 Module *TheModule = nullptr; 586 // Next offset to start scanning for lazy parsing of function bodies. 587 uint64_t NextUnreadBit = 0; 588 // Last function offset found in the VST. 589 uint64_t LastFunctionBlockBit = 0; 590 bool SeenValueSymbolTable = false; 591 uint64_t VSTOffset = 0; 592 593 std::vector<std::string> SectionTable; 594 std::vector<std::string> GCTable; 595 596 std::vector<Type *> TypeList; 597 /// Track type IDs of contained types. Order is the same as the contained 598 /// types of a Type*. This is used during upgrades of typed pointer IR in 599 /// opaque pointer mode. 600 DenseMap<unsigned, SmallVector<unsigned, 1>> ContainedTypeIDs; 601 /// In some cases, we need to create a type ID for a type that was not 602 /// explicitly encoded in the bitcode, or we don't know about at the current 603 /// point. For example, a global may explicitly encode the value type ID, but 604 /// not have a type ID for the pointer to value type, for which we create a 605 /// virtual type ID instead. This map stores the new type ID that was created 606 /// for the given pair of Type and contained type ID. 607 DenseMap<std::pair<Type *, unsigned>, unsigned> VirtualTypeIDs; 608 DenseMap<Function *, unsigned> FunctionTypeIDs; 609 /// Allocator for BitcodeConstants. This should come before ValueList, 610 /// because the ValueList might hold ValueHandles to these constants, so 611 /// ValueList must be destroyed before Alloc. 612 BumpPtrAllocator Alloc; 613 BitcodeReaderValueList ValueList; 614 std::optional<MetadataLoader> MDLoader; 615 std::vector<Comdat *> ComdatList; 616 DenseSet<GlobalObject *> ImplicitComdatObjects; 617 SmallVector<Instruction *, 64> InstructionList; 618 619 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits; 620 std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInits; 621 622 struct FunctionOperandInfo { 623 Function *F; 624 unsigned PersonalityFn; 625 unsigned Prefix; 626 unsigned Prologue; 627 }; 628 std::vector<FunctionOperandInfo> FunctionOperands; 629 630 /// The set of attributes by index. Index zero in the file is for null, and 631 /// is thus not represented here. As such all indices are off by one. 632 std::vector<AttributeList> MAttributes; 633 634 /// The set of attribute groups. 635 std::map<unsigned, AttributeList> MAttributeGroups; 636 637 /// While parsing a function body, this is a list of the basic blocks for the 638 /// function. 639 std::vector<BasicBlock*> FunctionBBs; 640 641 // When reading the module header, this list is populated with functions that 642 // have bodies later in the file. 643 std::vector<Function*> FunctionsWithBodies; 644 645 // When intrinsic functions are encountered which require upgrading they are 646 // stored here with their replacement function. 647 using UpdatedIntrinsicMap = DenseMap<Function *, Function *>; 648 UpdatedIntrinsicMap UpgradedIntrinsics; 649 650 // Several operations happen after the module header has been read, but 651 // before function bodies are processed. This keeps track of whether 652 // we've done this yet. 653 bool SeenFirstFunctionBody = false; 654 655 /// When function bodies are initially scanned, this map contains info about 656 /// where to find deferred function body in the stream. 657 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 658 659 /// When Metadata block is initially scanned when parsing the module, we may 660 /// choose to defer parsing of the metadata. This vector contains info about 661 /// which Metadata blocks are deferred. 662 std::vector<uint64_t> DeferredMetadataInfo; 663 664 /// These are basic blocks forward-referenced by block addresses. They are 665 /// inserted lazily into functions when they're loaded. The basic block ID is 666 /// its index into the vector. 667 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 668 std::deque<Function *> BasicBlockFwdRefQueue; 669 670 /// These are Functions that contain BlockAddresses which refer a different 671 /// Function. When parsing the different Function, queue Functions that refer 672 /// to the different Function. Those Functions must be materialized in order 673 /// to resolve their BlockAddress constants before the different Function 674 /// gets moved into another Module. 675 std::vector<Function *> BackwardRefFunctions; 676 677 /// Indicates that we are using a new encoding for instruction operands where 678 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 679 /// instruction number, for a more compact encoding. Some instruction 680 /// operands are not relative to the instruction ID: basic block numbers, and 681 /// types. Once the old style function blocks have been phased out, we would 682 /// not need this flag. 683 bool UseRelativeIDs = false; 684 685 /// True if all functions will be materialized, negating the need to process 686 /// (e.g.) blockaddress forward references. 687 bool WillMaterializeAllForwardRefs = false; 688 689 /// Tracks whether we have seen debug intrinsics or records in this bitcode; 690 /// seeing both in a single module is currently a fatal error. 691 bool SeenDebugIntrinsic = false; 692 bool SeenDebugRecord = false; 693 694 bool StripDebugInfo = false; 695 TBAAVerifier TBAAVerifyHelper; 696 697 std::vector<std::string> BundleTags; 698 SmallVector<SyncScope::ID, 8> SSIDs; 699 700 std::optional<ValueTypeCallbackTy> ValueTypeCallback; 701 702 public: 703 BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 704 StringRef ProducerIdentification, LLVMContext &Context); 705 706 Error materializeForwardReferencedFunctions(); 707 708 Error materialize(GlobalValue *GV) override; 709 Error materializeModule() override; 710 std::vector<StructType *> getIdentifiedStructTypes() const override; 711 712 /// Main interface to parsing a bitcode buffer. 713 /// \returns true if an error occurred. 714 Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 715 bool IsImporting, ParserCallbacks Callbacks = {}); 716 717 static uint64_t decodeSignRotatedValue(uint64_t V); 718 719 /// Materialize any deferred Metadata block. 720 Error materializeMetadata() override; 721 722 void setStripDebugInfo() override; 723 724 private: 725 std::vector<StructType *> IdentifiedStructTypes; 726 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 727 StructType *createIdentifiedStructType(LLVMContext &Context); 728 729 static constexpr unsigned InvalidTypeID = ~0u; 730 731 Type *getTypeByID(unsigned ID); 732 Type *getPtrElementTypeByID(unsigned ID); 733 unsigned getContainedTypeID(unsigned ID, unsigned Idx = 0); 734 unsigned getVirtualTypeID(Type *Ty, ArrayRef<unsigned> ContainedTypeIDs = {}); 735 736 void callValueTypeCallback(Value *F, unsigned TypeID); 737 Expected<Value *> materializeValue(unsigned ValID, BasicBlock *InsertBB); 738 Expected<Constant *> getValueForInitializer(unsigned ID); 739 740 Value *getFnValueByID(unsigned ID, Type *Ty, unsigned TyID, 741 BasicBlock *ConstExprInsertBB) { 742 if (Ty && Ty->isMetadataTy()) 743 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 744 return ValueList.getValueFwdRef(ID, Ty, TyID, ConstExprInsertBB); 745 } 746 747 Metadata *getFnMetadataByID(unsigned ID) { 748 return MDLoader->getMetadataFwdRefOrLoad(ID); 749 } 750 751 BasicBlock *getBasicBlock(unsigned ID) const { 752 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 753 return FunctionBBs[ID]; 754 } 755 756 AttributeList getAttributes(unsigned i) const { 757 if (i-1 < MAttributes.size()) 758 return MAttributes[i-1]; 759 return AttributeList(); 760 } 761 762 /// Read a value/type pair out of the specified record from slot 'Slot'. 763 /// Increment Slot past the number of slots used in the record. Return true on 764 /// failure. 765 bool getValueTypePair(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 766 unsigned InstNum, Value *&ResVal, unsigned &TypeID, 767 BasicBlock *ConstExprInsertBB) { 768 if (Slot == Record.size()) return true; 769 unsigned ValNo = (unsigned)Record[Slot++]; 770 // Adjust the ValNo, if it was encoded relative to the InstNum. 771 if (UseRelativeIDs) 772 ValNo = InstNum - ValNo; 773 if (ValNo < InstNum) { 774 // If this is not a forward reference, just return the value we already 775 // have. 776 TypeID = ValueList.getTypeID(ValNo); 777 ResVal = getFnValueByID(ValNo, nullptr, TypeID, ConstExprInsertBB); 778 assert((!ResVal || ResVal->getType() == getTypeByID(TypeID)) && 779 "Incorrect type ID stored for value"); 780 return ResVal == nullptr; 781 } 782 if (Slot == Record.size()) 783 return true; 784 785 TypeID = (unsigned)Record[Slot++]; 786 ResVal = getFnValueByID(ValNo, getTypeByID(TypeID), TypeID, 787 ConstExprInsertBB); 788 return ResVal == nullptr; 789 } 790 791 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 792 /// past the number of slots used by the value in the record. Return true if 793 /// there is an error. 794 bool popValue(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 795 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal, 796 BasicBlock *ConstExprInsertBB) { 797 if (getValue(Record, Slot, InstNum, Ty, TyID, ResVal, ConstExprInsertBB)) 798 return true; 799 // All values currently take a single record slot. 800 ++Slot; 801 return false; 802 } 803 804 /// Like popValue, but does not increment the Slot number. 805 bool getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 806 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal, 807 BasicBlock *ConstExprInsertBB) { 808 ResVal = getValue(Record, Slot, InstNum, Ty, TyID, ConstExprInsertBB); 809 return ResVal == nullptr; 810 } 811 812 /// Version of getValue that returns ResVal directly, or 0 if there is an 813 /// error. 814 Value *getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 815 unsigned InstNum, Type *Ty, unsigned TyID, 816 BasicBlock *ConstExprInsertBB) { 817 if (Slot == Record.size()) return nullptr; 818 unsigned ValNo = (unsigned)Record[Slot]; 819 // Adjust the ValNo, if it was encoded relative to the InstNum. 820 if (UseRelativeIDs) 821 ValNo = InstNum - ValNo; 822 return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB); 823 } 824 825 /// Like getValue, but decodes signed VBRs. 826 Value *getValueSigned(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 827 unsigned InstNum, Type *Ty, unsigned TyID, 828 BasicBlock *ConstExprInsertBB) { 829 if (Slot == Record.size()) return nullptr; 830 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 831 // Adjust the ValNo, if it was encoded relative to the InstNum. 832 if (UseRelativeIDs) 833 ValNo = InstNum - ValNo; 834 return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB); 835 } 836 837 Expected<ConstantRange> readConstantRange(ArrayRef<uint64_t> Record, 838 unsigned &OpNum) { 839 if (Record.size() - OpNum < 3) 840 return error("Too few records for range"); 841 unsigned BitWidth = Record[OpNum++]; 842 if (BitWidth > 64) { 843 unsigned LowerActiveWords = Record[OpNum]; 844 unsigned UpperActiveWords = Record[OpNum++] >> 32; 845 if (Record.size() - OpNum < LowerActiveWords + UpperActiveWords) 846 return error("Too few records for range"); 847 APInt Lower = 848 readWideAPInt(ArrayRef(&Record[OpNum], LowerActiveWords), BitWidth); 849 OpNum += LowerActiveWords; 850 APInt Upper = 851 readWideAPInt(ArrayRef(&Record[OpNum], UpperActiveWords), BitWidth); 852 OpNum += UpperActiveWords; 853 return ConstantRange(Lower, Upper); 854 } else { 855 int64_t Start = BitcodeReader::decodeSignRotatedValue(Record[OpNum++]); 856 int64_t End = BitcodeReader::decodeSignRotatedValue(Record[OpNum++]); 857 return ConstantRange(APInt(BitWidth, Start), APInt(BitWidth, End)); 858 } 859 } 860 861 /// Upgrades old-style typeless byval/sret/inalloca attributes by adding the 862 /// corresponding argument's pointee type. Also upgrades intrinsics that now 863 /// require an elementtype attribute. 864 Error propagateAttributeTypes(CallBase *CB, ArrayRef<unsigned> ArgsTys); 865 866 /// Converts alignment exponent (i.e. power of two (or zero)) to the 867 /// corresponding alignment to use. If alignment is too large, returns 868 /// a corresponding error code. 869 Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment); 870 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 871 Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false, 872 ParserCallbacks Callbacks = {}); 873 874 Error parseComdatRecord(ArrayRef<uint64_t> Record); 875 Error parseGlobalVarRecord(ArrayRef<uint64_t> Record); 876 Error parseFunctionRecord(ArrayRef<uint64_t> Record); 877 Error parseGlobalIndirectSymbolRecord(unsigned BitCode, 878 ArrayRef<uint64_t> Record); 879 880 Error parseAttributeBlock(); 881 Error parseAttributeGroupBlock(); 882 Error parseTypeTable(); 883 Error parseTypeTableBody(); 884 Error parseOperandBundleTags(); 885 Error parseSyncScopeNames(); 886 887 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 888 unsigned NameIndex, Triple &TT); 889 void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F, 890 ArrayRef<uint64_t> Record); 891 Error parseValueSymbolTable(uint64_t Offset = 0); 892 Error parseGlobalValueSymbolTable(); 893 Error parseConstants(); 894 Error rememberAndSkipFunctionBodies(); 895 Error rememberAndSkipFunctionBody(); 896 /// Save the positions of the Metadata blocks and skip parsing the blocks. 897 Error rememberAndSkipMetadata(); 898 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType); 899 Error parseFunctionBody(Function *F); 900 Error globalCleanup(); 901 Error resolveGlobalAndIndirectSymbolInits(); 902 Error parseUseLists(); 903 Error findFunctionInStream( 904 Function *F, 905 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 906 907 SyncScope::ID getDecodedSyncScopeID(unsigned Val); 908 }; 909 910 /// Class to manage reading and parsing function summary index bitcode 911 /// files/sections. 912 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase { 913 /// The module index built during parsing. 914 ModuleSummaryIndex &TheIndex; 915 916 /// Indicates whether we have encountered a global value summary section 917 /// yet during parsing. 918 bool SeenGlobalValSummary = false; 919 920 /// Indicates whether we have already parsed the VST, used for error checking. 921 bool SeenValueSymbolTable = false; 922 923 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 924 /// Used to enable on-demand parsing of the VST. 925 uint64_t VSTOffset = 0; 926 927 // Map to save ValueId to ValueInfo association that was recorded in the 928 // ValueSymbolTable. It is used after the VST is parsed to convert 929 // call graph edges read from the function summary from referencing 930 // callees by their ValueId to using the ValueInfo instead, which is how 931 // they are recorded in the summary index being built. 932 // We save a GUID which refers to the same global as the ValueInfo, but 933 // ignoring the linkage, i.e. for values other than local linkage they are 934 // identical (this is the second tuple member). 935 // The third tuple member is the real GUID of the ValueInfo. 936 DenseMap<unsigned, 937 std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID>> 938 ValueIdToValueInfoMap; 939 940 /// Map populated during module path string table parsing, from the 941 /// module ID to a string reference owned by the index's module 942 /// path string table, used to correlate with combined index 943 /// summary records. 944 DenseMap<uint64_t, StringRef> ModuleIdMap; 945 946 /// Original source file name recorded in a bitcode record. 947 std::string SourceFileName; 948 949 /// The string identifier given to this module by the client, normally the 950 /// path to the bitcode file. 951 StringRef ModulePath; 952 953 /// Callback to ask whether a symbol is the prevailing copy when invoked 954 /// during combined index building. 955 std::function<bool(GlobalValue::GUID)> IsPrevailing; 956 957 /// Saves the stack ids from the STACK_IDS record to consult when adding stack 958 /// ids from the lists in the callsite and alloc entries to the index. 959 std::vector<uint64_t> StackIds; 960 961 public: 962 ModuleSummaryIndexBitcodeReader( 963 BitstreamCursor Stream, StringRef Strtab, ModuleSummaryIndex &TheIndex, 964 StringRef ModulePath, 965 std::function<bool(GlobalValue::GUID)> IsPrevailing = nullptr); 966 967 Error parseModule(); 968 969 private: 970 void setValueGUID(uint64_t ValueID, StringRef ValueName, 971 GlobalValue::LinkageTypes Linkage, 972 StringRef SourceFileName); 973 Error parseValueSymbolTable( 974 uint64_t Offset, 975 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 976 std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record); 977 std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record, 978 bool IsOldProfileFormat, 979 bool HasProfile, 980 bool HasRelBF); 981 Error parseEntireSummary(unsigned ID); 982 Error parseModuleStringTable(); 983 void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record); 984 void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot, 985 TypeIdCompatibleVtableInfo &TypeId); 986 std::vector<FunctionSummary::ParamAccess> 987 parseParamAccesses(ArrayRef<uint64_t> Record); 988 989 template <bool AllowNullValueInfo = false> 990 std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID> 991 getValueInfoFromValueId(unsigned ValueId); 992 993 void addThisModule(); 994 ModuleSummaryIndex::ModuleInfo *getThisModule(); 995 }; 996 997 } // end anonymous namespace 998 999 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx, 1000 Error Err) { 1001 if (Err) { 1002 std::error_code EC; 1003 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) { 1004 EC = EIB.convertToErrorCode(); 1005 Ctx.emitError(EIB.message()); 1006 }); 1007 return EC; 1008 } 1009 return std::error_code(); 1010 } 1011 1012 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 1013 StringRef ProducerIdentification, 1014 LLVMContext &Context) 1015 : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context), 1016 ValueList(this->Stream.SizeInBytes(), 1017 [this](unsigned ValID, BasicBlock *InsertBB) { 1018 return materializeValue(ValID, InsertBB); 1019 }) { 1020 this->ProducerIdentification = std::string(ProducerIdentification); 1021 } 1022 1023 Error BitcodeReader::materializeForwardReferencedFunctions() { 1024 if (WillMaterializeAllForwardRefs) 1025 return Error::success(); 1026 1027 // Prevent recursion. 1028 WillMaterializeAllForwardRefs = true; 1029 1030 while (!BasicBlockFwdRefQueue.empty()) { 1031 Function *F = BasicBlockFwdRefQueue.front(); 1032 BasicBlockFwdRefQueue.pop_front(); 1033 assert(F && "Expected valid function"); 1034 if (!BasicBlockFwdRefs.count(F)) 1035 // Already materialized. 1036 continue; 1037 1038 // Check for a function that isn't materializable to prevent an infinite 1039 // loop. When parsing a blockaddress stored in a global variable, there 1040 // isn't a trivial way to check if a function will have a body without a 1041 // linear search through FunctionsWithBodies, so just check it here. 1042 if (!F->isMaterializable()) 1043 return error("Never resolved function from blockaddress"); 1044 1045 // Try to materialize F. 1046 if (Error Err = materialize(F)) 1047 return Err; 1048 } 1049 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 1050 1051 for (Function *F : BackwardRefFunctions) 1052 if (Error Err = materialize(F)) 1053 return Err; 1054 BackwardRefFunctions.clear(); 1055 1056 // Reset state. 1057 WillMaterializeAllForwardRefs = false; 1058 return Error::success(); 1059 } 1060 1061 //===----------------------------------------------------------------------===// 1062 // Helper functions to implement forward reference resolution, etc. 1063 //===----------------------------------------------------------------------===// 1064 1065 static bool hasImplicitComdat(size_t Val) { 1066 switch (Val) { 1067 default: 1068 return false; 1069 case 1: // Old WeakAnyLinkage 1070 case 4: // Old LinkOnceAnyLinkage 1071 case 10: // Old WeakODRLinkage 1072 case 11: // Old LinkOnceODRLinkage 1073 return true; 1074 } 1075 } 1076 1077 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 1078 switch (Val) { 1079 default: // Map unknown/new linkages to external 1080 case 0: 1081 return GlobalValue::ExternalLinkage; 1082 case 2: 1083 return GlobalValue::AppendingLinkage; 1084 case 3: 1085 return GlobalValue::InternalLinkage; 1086 case 5: 1087 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 1088 case 6: 1089 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 1090 case 7: 1091 return GlobalValue::ExternalWeakLinkage; 1092 case 8: 1093 return GlobalValue::CommonLinkage; 1094 case 9: 1095 return GlobalValue::PrivateLinkage; 1096 case 12: 1097 return GlobalValue::AvailableExternallyLinkage; 1098 case 13: 1099 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 1100 case 14: 1101 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 1102 case 15: 1103 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 1104 case 1: // Old value with implicit comdat. 1105 case 16: 1106 return GlobalValue::WeakAnyLinkage; 1107 case 10: // Old value with implicit comdat. 1108 case 17: 1109 return GlobalValue::WeakODRLinkage; 1110 case 4: // Old value with implicit comdat. 1111 case 18: 1112 return GlobalValue::LinkOnceAnyLinkage; 1113 case 11: // Old value with implicit comdat. 1114 case 19: 1115 return GlobalValue::LinkOnceODRLinkage; 1116 } 1117 } 1118 1119 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) { 1120 FunctionSummary::FFlags Flags; 1121 Flags.ReadNone = RawFlags & 0x1; 1122 Flags.ReadOnly = (RawFlags >> 1) & 0x1; 1123 Flags.NoRecurse = (RawFlags >> 2) & 0x1; 1124 Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1; 1125 Flags.NoInline = (RawFlags >> 4) & 0x1; 1126 Flags.AlwaysInline = (RawFlags >> 5) & 0x1; 1127 Flags.NoUnwind = (RawFlags >> 6) & 0x1; 1128 Flags.MayThrow = (RawFlags >> 7) & 0x1; 1129 Flags.HasUnknownCall = (RawFlags >> 8) & 0x1; 1130 Flags.MustBeUnreachable = (RawFlags >> 9) & 0x1; 1131 return Flags; 1132 } 1133 1134 // Decode the flags for GlobalValue in the summary. The bits for each attribute: 1135 // 1136 // linkage: [0,4), notEligibleToImport: 4, live: 5, local: 6, canAutoHide: 7, 1137 // visibility: [8, 10). 1138 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 1139 uint64_t Version) { 1140 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 1141 // like getDecodedLinkage() above. Any future change to the linkage enum and 1142 // to getDecodedLinkage() will need to be taken into account here as above. 1143 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 1144 auto Visibility = GlobalValue::VisibilityTypes((RawFlags >> 8) & 3); // 2 bits 1145 auto IK = GlobalValueSummary::ImportKind((RawFlags >> 10) & 1); // 1 bit 1146 RawFlags = RawFlags >> 4; 1147 bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3; 1148 // The Live flag wasn't introduced until version 3. For dead stripping 1149 // to work correctly on earlier versions, we must conservatively treat all 1150 // values as live. 1151 bool Live = (RawFlags & 0x2) || Version < 3; 1152 bool Local = (RawFlags & 0x4); 1153 bool AutoHide = (RawFlags & 0x8); 1154 1155 return GlobalValueSummary::GVFlags(Linkage, Visibility, NotEligibleToImport, 1156 Live, Local, AutoHide, IK); 1157 } 1158 1159 // Decode the flags for GlobalVariable in the summary 1160 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) { 1161 return GlobalVarSummary::GVarFlags( 1162 (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false, 1163 (RawFlags & 0x4) ? true : false, 1164 (GlobalObject::VCallVisibility)(RawFlags >> 3)); 1165 } 1166 1167 static std::pair<CalleeInfo::HotnessType, bool> 1168 getDecodedHotnessCallEdgeInfo(uint64_t RawFlags) { 1169 CalleeInfo::HotnessType Hotness = 1170 static_cast<CalleeInfo::HotnessType>(RawFlags & 0x7); // 3 bits 1171 bool HasTailCall = (RawFlags & 0x8); // 1 bit 1172 return {Hotness, HasTailCall}; 1173 } 1174 1175 static void getDecodedRelBFCallEdgeInfo(uint64_t RawFlags, uint64_t &RelBF, 1176 bool &HasTailCall) { 1177 static constexpr uint64_t RelBlockFreqMask = 1178 (1 << CalleeInfo::RelBlockFreqBits) - 1; 1179 RelBF = RawFlags & RelBlockFreqMask; // RelBlockFreqBits bits 1180 HasTailCall = (RawFlags & (1 << CalleeInfo::RelBlockFreqBits)); // 1 bit 1181 } 1182 1183 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 1184 switch (Val) { 1185 default: // Map unknown visibilities to default. 1186 case 0: return GlobalValue::DefaultVisibility; 1187 case 1: return GlobalValue::HiddenVisibility; 1188 case 2: return GlobalValue::ProtectedVisibility; 1189 } 1190 } 1191 1192 static GlobalValue::DLLStorageClassTypes 1193 getDecodedDLLStorageClass(unsigned Val) { 1194 switch (Val) { 1195 default: // Map unknown values to default. 1196 case 0: return GlobalValue::DefaultStorageClass; 1197 case 1: return GlobalValue::DLLImportStorageClass; 1198 case 2: return GlobalValue::DLLExportStorageClass; 1199 } 1200 } 1201 1202 static bool getDecodedDSOLocal(unsigned Val) { 1203 switch(Val) { 1204 default: // Map unknown values to preemptable. 1205 case 0: return false; 1206 case 1: return true; 1207 } 1208 } 1209 1210 static std::optional<CodeModel::Model> getDecodedCodeModel(unsigned Val) { 1211 switch (Val) { 1212 case 1: 1213 return CodeModel::Tiny; 1214 case 2: 1215 return CodeModel::Small; 1216 case 3: 1217 return CodeModel::Kernel; 1218 case 4: 1219 return CodeModel::Medium; 1220 case 5: 1221 return CodeModel::Large; 1222 } 1223 1224 return {}; 1225 } 1226 1227 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 1228 switch (Val) { 1229 case 0: return GlobalVariable::NotThreadLocal; 1230 default: // Map unknown non-zero value to general dynamic. 1231 case 1: return GlobalVariable::GeneralDynamicTLSModel; 1232 case 2: return GlobalVariable::LocalDynamicTLSModel; 1233 case 3: return GlobalVariable::InitialExecTLSModel; 1234 case 4: return GlobalVariable::LocalExecTLSModel; 1235 } 1236 } 1237 1238 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { 1239 switch (Val) { 1240 default: // Map unknown to UnnamedAddr::None. 1241 case 0: return GlobalVariable::UnnamedAddr::None; 1242 case 1: return GlobalVariable::UnnamedAddr::Global; 1243 case 2: return GlobalVariable::UnnamedAddr::Local; 1244 } 1245 } 1246 1247 static int getDecodedCastOpcode(unsigned Val) { 1248 switch (Val) { 1249 default: return -1; 1250 case bitc::CAST_TRUNC : return Instruction::Trunc; 1251 case bitc::CAST_ZEXT : return Instruction::ZExt; 1252 case bitc::CAST_SEXT : return Instruction::SExt; 1253 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 1254 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 1255 case bitc::CAST_UITOFP : return Instruction::UIToFP; 1256 case bitc::CAST_SITOFP : return Instruction::SIToFP; 1257 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 1258 case bitc::CAST_FPEXT : return Instruction::FPExt; 1259 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 1260 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 1261 case bitc::CAST_BITCAST : return Instruction::BitCast; 1262 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 1263 } 1264 } 1265 1266 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) { 1267 bool IsFP = Ty->isFPOrFPVectorTy(); 1268 // UnOps are only valid for int/fp or vector of int/fp types 1269 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1270 return -1; 1271 1272 switch (Val) { 1273 default: 1274 return -1; 1275 case bitc::UNOP_FNEG: 1276 return IsFP ? Instruction::FNeg : -1; 1277 } 1278 } 1279 1280 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 1281 bool IsFP = Ty->isFPOrFPVectorTy(); 1282 // BinOps are only valid for int/fp or vector of int/fp types 1283 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1284 return -1; 1285 1286 switch (Val) { 1287 default: 1288 return -1; 1289 case bitc::BINOP_ADD: 1290 return IsFP ? Instruction::FAdd : Instruction::Add; 1291 case bitc::BINOP_SUB: 1292 return IsFP ? Instruction::FSub : Instruction::Sub; 1293 case bitc::BINOP_MUL: 1294 return IsFP ? Instruction::FMul : Instruction::Mul; 1295 case bitc::BINOP_UDIV: 1296 return IsFP ? -1 : Instruction::UDiv; 1297 case bitc::BINOP_SDIV: 1298 return IsFP ? Instruction::FDiv : Instruction::SDiv; 1299 case bitc::BINOP_UREM: 1300 return IsFP ? -1 : Instruction::URem; 1301 case bitc::BINOP_SREM: 1302 return IsFP ? Instruction::FRem : Instruction::SRem; 1303 case bitc::BINOP_SHL: 1304 return IsFP ? -1 : Instruction::Shl; 1305 case bitc::BINOP_LSHR: 1306 return IsFP ? -1 : Instruction::LShr; 1307 case bitc::BINOP_ASHR: 1308 return IsFP ? -1 : Instruction::AShr; 1309 case bitc::BINOP_AND: 1310 return IsFP ? -1 : Instruction::And; 1311 case bitc::BINOP_OR: 1312 return IsFP ? -1 : Instruction::Or; 1313 case bitc::BINOP_XOR: 1314 return IsFP ? -1 : Instruction::Xor; 1315 } 1316 } 1317 1318 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 1319 switch (Val) { 1320 default: return AtomicRMWInst::BAD_BINOP; 1321 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 1322 case bitc::RMW_ADD: return AtomicRMWInst::Add; 1323 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 1324 case bitc::RMW_AND: return AtomicRMWInst::And; 1325 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 1326 case bitc::RMW_OR: return AtomicRMWInst::Or; 1327 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 1328 case bitc::RMW_MAX: return AtomicRMWInst::Max; 1329 case bitc::RMW_MIN: return AtomicRMWInst::Min; 1330 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 1331 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 1332 case bitc::RMW_FADD: return AtomicRMWInst::FAdd; 1333 case bitc::RMW_FSUB: return AtomicRMWInst::FSub; 1334 case bitc::RMW_FMAX: return AtomicRMWInst::FMax; 1335 case bitc::RMW_FMIN: return AtomicRMWInst::FMin; 1336 case bitc::RMW_UINC_WRAP: 1337 return AtomicRMWInst::UIncWrap; 1338 case bitc::RMW_UDEC_WRAP: 1339 return AtomicRMWInst::UDecWrap; 1340 } 1341 } 1342 1343 static AtomicOrdering getDecodedOrdering(unsigned Val) { 1344 switch (Val) { 1345 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 1346 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 1347 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 1348 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 1349 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 1350 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 1351 default: // Map unknown orderings to sequentially-consistent. 1352 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 1353 } 1354 } 1355 1356 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 1357 switch (Val) { 1358 default: // Map unknown selection kinds to any. 1359 case bitc::COMDAT_SELECTION_KIND_ANY: 1360 return Comdat::Any; 1361 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 1362 return Comdat::ExactMatch; 1363 case bitc::COMDAT_SELECTION_KIND_LARGEST: 1364 return Comdat::Largest; 1365 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 1366 return Comdat::NoDeduplicate; 1367 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 1368 return Comdat::SameSize; 1369 } 1370 } 1371 1372 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 1373 FastMathFlags FMF; 1374 if (0 != (Val & bitc::UnsafeAlgebra)) 1375 FMF.setFast(); 1376 if (0 != (Val & bitc::AllowReassoc)) 1377 FMF.setAllowReassoc(); 1378 if (0 != (Val & bitc::NoNaNs)) 1379 FMF.setNoNaNs(); 1380 if (0 != (Val & bitc::NoInfs)) 1381 FMF.setNoInfs(); 1382 if (0 != (Val & bitc::NoSignedZeros)) 1383 FMF.setNoSignedZeros(); 1384 if (0 != (Val & bitc::AllowReciprocal)) 1385 FMF.setAllowReciprocal(); 1386 if (0 != (Val & bitc::AllowContract)) 1387 FMF.setAllowContract(true); 1388 if (0 != (Val & bitc::ApproxFunc)) 1389 FMF.setApproxFunc(); 1390 return FMF; 1391 } 1392 1393 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) { 1394 // A GlobalValue with local linkage cannot have a DLL storage class. 1395 if (GV->hasLocalLinkage()) 1396 return; 1397 switch (Val) { 1398 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 1399 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 1400 } 1401 } 1402 1403 Type *BitcodeReader::getTypeByID(unsigned ID) { 1404 // The type table size is always specified correctly. 1405 if (ID >= TypeList.size()) 1406 return nullptr; 1407 1408 if (Type *Ty = TypeList[ID]) 1409 return Ty; 1410 1411 // If we have a forward reference, the only possible case is when it is to a 1412 // named struct. Just create a placeholder for now. 1413 return TypeList[ID] = createIdentifiedStructType(Context); 1414 } 1415 1416 unsigned BitcodeReader::getContainedTypeID(unsigned ID, unsigned Idx) { 1417 auto It = ContainedTypeIDs.find(ID); 1418 if (It == ContainedTypeIDs.end()) 1419 return InvalidTypeID; 1420 1421 if (Idx >= It->second.size()) 1422 return InvalidTypeID; 1423 1424 return It->second[Idx]; 1425 } 1426 1427 Type *BitcodeReader::getPtrElementTypeByID(unsigned ID) { 1428 if (ID >= TypeList.size()) 1429 return nullptr; 1430 1431 Type *Ty = TypeList[ID]; 1432 if (!Ty->isPointerTy()) 1433 return nullptr; 1434 1435 return getTypeByID(getContainedTypeID(ID, 0)); 1436 } 1437 1438 unsigned BitcodeReader::getVirtualTypeID(Type *Ty, 1439 ArrayRef<unsigned> ChildTypeIDs) { 1440 unsigned ChildTypeID = ChildTypeIDs.empty() ? InvalidTypeID : ChildTypeIDs[0]; 1441 auto CacheKey = std::make_pair(Ty, ChildTypeID); 1442 auto It = VirtualTypeIDs.find(CacheKey); 1443 if (It != VirtualTypeIDs.end()) { 1444 // The cmpxchg return value is the only place we need more than one 1445 // contained type ID, however the second one will always be the same (i1), 1446 // so we don't need to include it in the cache key. This asserts that the 1447 // contained types are indeed as expected and there are no collisions. 1448 assert((ChildTypeIDs.empty() || 1449 ContainedTypeIDs[It->second] == ChildTypeIDs) && 1450 "Incorrect cached contained type IDs"); 1451 return It->second; 1452 } 1453 1454 unsigned TypeID = TypeList.size(); 1455 TypeList.push_back(Ty); 1456 if (!ChildTypeIDs.empty()) 1457 append_range(ContainedTypeIDs[TypeID], ChildTypeIDs); 1458 VirtualTypeIDs.insert({CacheKey, TypeID}); 1459 return TypeID; 1460 } 1461 1462 static bool isConstExprSupported(const BitcodeConstant *BC) { 1463 uint8_t Opcode = BC->Opcode; 1464 1465 // These are not real constant expressions, always consider them supported. 1466 if (Opcode >= BitcodeConstant::FirstSpecialOpcode) 1467 return true; 1468 1469 // If -expand-constant-exprs is set, we want to consider all expressions 1470 // as unsupported. 1471 if (ExpandConstantExprs) 1472 return false; 1473 1474 if (Instruction::isBinaryOp(Opcode)) 1475 return ConstantExpr::isSupportedBinOp(Opcode); 1476 1477 if (Instruction::isCast(Opcode)) 1478 return ConstantExpr::isSupportedCastOp(Opcode); 1479 1480 if (Opcode == Instruction::GetElementPtr) 1481 return ConstantExpr::isSupportedGetElementPtr(BC->SrcElemTy); 1482 1483 switch (Opcode) { 1484 case Instruction::FNeg: 1485 case Instruction::Select: 1486 return false; 1487 default: 1488 return true; 1489 } 1490 } 1491 1492 Expected<Value *> BitcodeReader::materializeValue(unsigned StartValID, 1493 BasicBlock *InsertBB) { 1494 // Quickly handle the case where there is no BitcodeConstant to resolve. 1495 if (StartValID < ValueList.size() && ValueList[StartValID] && 1496 !isa<BitcodeConstant>(ValueList[StartValID])) 1497 return ValueList[StartValID]; 1498 1499 SmallDenseMap<unsigned, Value *> MaterializedValues; 1500 SmallVector<unsigned> Worklist; 1501 Worklist.push_back(StartValID); 1502 while (!Worklist.empty()) { 1503 unsigned ValID = Worklist.back(); 1504 if (MaterializedValues.count(ValID)) { 1505 // Duplicate expression that was already handled. 1506 Worklist.pop_back(); 1507 continue; 1508 } 1509 1510 if (ValID >= ValueList.size() || !ValueList[ValID]) 1511 return error("Invalid value ID"); 1512 1513 Value *V = ValueList[ValID]; 1514 auto *BC = dyn_cast<BitcodeConstant>(V); 1515 if (!BC) { 1516 MaterializedValues.insert({ValID, V}); 1517 Worklist.pop_back(); 1518 continue; 1519 } 1520 1521 // Iterate in reverse, so values will get popped from the worklist in 1522 // expected order. 1523 SmallVector<Value *> Ops; 1524 for (unsigned OpID : reverse(BC->getOperandIDs())) { 1525 auto It = MaterializedValues.find(OpID); 1526 if (It != MaterializedValues.end()) 1527 Ops.push_back(It->second); 1528 else 1529 Worklist.push_back(OpID); 1530 } 1531 1532 // Some expressions have not been resolved yet, handle them first and then 1533 // revisit this one. 1534 if (Ops.size() != BC->getOperandIDs().size()) 1535 continue; 1536 std::reverse(Ops.begin(), Ops.end()); 1537 1538 SmallVector<Constant *> ConstOps; 1539 for (Value *Op : Ops) 1540 if (auto *C = dyn_cast<Constant>(Op)) 1541 ConstOps.push_back(C); 1542 1543 // Materialize as constant expression if possible. 1544 if (isConstExprSupported(BC) && ConstOps.size() == Ops.size()) { 1545 Constant *C; 1546 if (Instruction::isCast(BC->Opcode)) { 1547 C = UpgradeBitCastExpr(BC->Opcode, ConstOps[0], BC->getType()); 1548 if (!C) 1549 C = ConstantExpr::getCast(BC->Opcode, ConstOps[0], BC->getType()); 1550 } else if (Instruction::isBinaryOp(BC->Opcode)) { 1551 C = ConstantExpr::get(BC->Opcode, ConstOps[0], ConstOps[1], BC->Flags); 1552 } else { 1553 switch (BC->Opcode) { 1554 case BitcodeConstant::NoCFIOpcode: { 1555 auto *GV = dyn_cast<GlobalValue>(ConstOps[0]); 1556 if (!GV) 1557 return error("no_cfi operand must be GlobalValue"); 1558 C = NoCFIValue::get(GV); 1559 break; 1560 } 1561 case BitcodeConstant::DSOLocalEquivalentOpcode: { 1562 auto *GV = dyn_cast<GlobalValue>(ConstOps[0]); 1563 if (!GV) 1564 return error("dso_local operand must be GlobalValue"); 1565 C = DSOLocalEquivalent::get(GV); 1566 break; 1567 } 1568 case BitcodeConstant::BlockAddressOpcode: { 1569 Function *Fn = dyn_cast<Function>(ConstOps[0]); 1570 if (!Fn) 1571 return error("blockaddress operand must be a function"); 1572 1573 // If the function is already parsed we can insert the block address 1574 // right away. 1575 BasicBlock *BB; 1576 unsigned BBID = BC->BlockAddressBB; 1577 if (!BBID) 1578 // Invalid reference to entry block. 1579 return error("Invalid ID"); 1580 if (!Fn->empty()) { 1581 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 1582 for (size_t I = 0, E = BBID; I != E; ++I) { 1583 if (BBI == BBE) 1584 return error("Invalid ID"); 1585 ++BBI; 1586 } 1587 BB = &*BBI; 1588 } else { 1589 // Otherwise insert a placeholder and remember it so it can be 1590 // inserted when the function is parsed. 1591 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 1592 if (FwdBBs.empty()) 1593 BasicBlockFwdRefQueue.push_back(Fn); 1594 if (FwdBBs.size() < BBID + 1) 1595 FwdBBs.resize(BBID + 1); 1596 if (!FwdBBs[BBID]) 1597 FwdBBs[BBID] = BasicBlock::Create(Context); 1598 BB = FwdBBs[BBID]; 1599 } 1600 C = BlockAddress::get(Fn, BB); 1601 break; 1602 } 1603 case BitcodeConstant::ConstantStructOpcode: 1604 C = ConstantStruct::get(cast<StructType>(BC->getType()), ConstOps); 1605 break; 1606 case BitcodeConstant::ConstantArrayOpcode: 1607 C = ConstantArray::get(cast<ArrayType>(BC->getType()), ConstOps); 1608 break; 1609 case BitcodeConstant::ConstantVectorOpcode: 1610 C = ConstantVector::get(ConstOps); 1611 break; 1612 case Instruction::ICmp: 1613 case Instruction::FCmp: 1614 C = ConstantExpr::getCompare(BC->Flags, ConstOps[0], ConstOps[1]); 1615 break; 1616 case Instruction::GetElementPtr: 1617 C = ConstantExpr::getGetElementPtr(BC->SrcElemTy, ConstOps[0], 1618 ArrayRef(ConstOps).drop_front(), 1619 BC->Flags, BC->getInRange()); 1620 break; 1621 case Instruction::ExtractElement: 1622 C = ConstantExpr::getExtractElement(ConstOps[0], ConstOps[1]); 1623 break; 1624 case Instruction::InsertElement: 1625 C = ConstantExpr::getInsertElement(ConstOps[0], ConstOps[1], 1626 ConstOps[2]); 1627 break; 1628 case Instruction::ShuffleVector: { 1629 SmallVector<int, 16> Mask; 1630 ShuffleVectorInst::getShuffleMask(ConstOps[2], Mask); 1631 C = ConstantExpr::getShuffleVector(ConstOps[0], ConstOps[1], Mask); 1632 break; 1633 } 1634 default: 1635 llvm_unreachable("Unhandled bitcode constant"); 1636 } 1637 } 1638 1639 // Cache resolved constant. 1640 ValueList.replaceValueWithoutRAUW(ValID, C); 1641 MaterializedValues.insert({ValID, C}); 1642 Worklist.pop_back(); 1643 continue; 1644 } 1645 1646 if (!InsertBB) 1647 return error(Twine("Value referenced by initializer is an unsupported " 1648 "constant expression of type ") + 1649 BC->getOpcodeName()); 1650 1651 // Materialize as instructions if necessary. 1652 Instruction *I; 1653 if (Instruction::isCast(BC->Opcode)) { 1654 I = CastInst::Create((Instruction::CastOps)BC->Opcode, Ops[0], 1655 BC->getType(), "constexpr", InsertBB); 1656 } else if (Instruction::isUnaryOp(BC->Opcode)) { 1657 I = UnaryOperator::Create((Instruction::UnaryOps)BC->Opcode, Ops[0], 1658 "constexpr", InsertBB); 1659 } else if (Instruction::isBinaryOp(BC->Opcode)) { 1660 I = BinaryOperator::Create((Instruction::BinaryOps)BC->Opcode, Ops[0], 1661 Ops[1], "constexpr", InsertBB); 1662 if (isa<OverflowingBinaryOperator>(I)) { 1663 if (BC->Flags & OverflowingBinaryOperator::NoSignedWrap) 1664 I->setHasNoSignedWrap(); 1665 if (BC->Flags & OverflowingBinaryOperator::NoUnsignedWrap) 1666 I->setHasNoUnsignedWrap(); 1667 } 1668 if (isa<PossiblyExactOperator>(I) && 1669 (BC->Flags & PossiblyExactOperator::IsExact)) 1670 I->setIsExact(); 1671 } else { 1672 switch (BC->Opcode) { 1673 case BitcodeConstant::ConstantVectorOpcode: { 1674 Type *IdxTy = Type::getInt32Ty(BC->getContext()); 1675 Value *V = PoisonValue::get(BC->getType()); 1676 for (auto Pair : enumerate(Ops)) { 1677 Value *Idx = ConstantInt::get(IdxTy, Pair.index()); 1678 V = InsertElementInst::Create(V, Pair.value(), Idx, "constexpr.ins", 1679 InsertBB); 1680 } 1681 I = cast<Instruction>(V); 1682 break; 1683 } 1684 case BitcodeConstant::ConstantStructOpcode: 1685 case BitcodeConstant::ConstantArrayOpcode: { 1686 Value *V = PoisonValue::get(BC->getType()); 1687 for (auto Pair : enumerate(Ops)) 1688 V = InsertValueInst::Create(V, Pair.value(), Pair.index(), 1689 "constexpr.ins", InsertBB); 1690 I = cast<Instruction>(V); 1691 break; 1692 } 1693 case Instruction::ICmp: 1694 case Instruction::FCmp: 1695 I = CmpInst::Create((Instruction::OtherOps)BC->Opcode, 1696 (CmpInst::Predicate)BC->Flags, Ops[0], Ops[1], 1697 "constexpr", InsertBB); 1698 break; 1699 case Instruction::GetElementPtr: 1700 I = GetElementPtrInst::Create(BC->SrcElemTy, Ops[0], 1701 ArrayRef(Ops).drop_front(), "constexpr", 1702 InsertBB); 1703 if (BC->Flags) 1704 cast<GetElementPtrInst>(I)->setIsInBounds(); 1705 break; 1706 case Instruction::Select: 1707 I = SelectInst::Create(Ops[0], Ops[1], Ops[2], "constexpr", InsertBB); 1708 break; 1709 case Instruction::ExtractElement: 1710 I = ExtractElementInst::Create(Ops[0], Ops[1], "constexpr", InsertBB); 1711 break; 1712 case Instruction::InsertElement: 1713 I = InsertElementInst::Create(Ops[0], Ops[1], Ops[2], "constexpr", 1714 InsertBB); 1715 break; 1716 case Instruction::ShuffleVector: 1717 I = new ShuffleVectorInst(Ops[0], Ops[1], Ops[2], "constexpr", 1718 InsertBB); 1719 break; 1720 default: 1721 llvm_unreachable("Unhandled bitcode constant"); 1722 } 1723 } 1724 1725 MaterializedValues.insert({ValID, I}); 1726 Worklist.pop_back(); 1727 } 1728 1729 return MaterializedValues[StartValID]; 1730 } 1731 1732 Expected<Constant *> BitcodeReader::getValueForInitializer(unsigned ID) { 1733 Expected<Value *> MaybeV = materializeValue(ID, /* InsertBB */ nullptr); 1734 if (!MaybeV) 1735 return MaybeV.takeError(); 1736 1737 // Result must be Constant if InsertBB is nullptr. 1738 return cast<Constant>(MaybeV.get()); 1739 } 1740 1741 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1742 StringRef Name) { 1743 auto *Ret = StructType::create(Context, Name); 1744 IdentifiedStructTypes.push_back(Ret); 1745 return Ret; 1746 } 1747 1748 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1749 auto *Ret = StructType::create(Context); 1750 IdentifiedStructTypes.push_back(Ret); 1751 return Ret; 1752 } 1753 1754 //===----------------------------------------------------------------------===// 1755 // Functions for parsing blocks from the bitcode file 1756 //===----------------------------------------------------------------------===// 1757 1758 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) { 1759 switch (Val) { 1760 case Attribute::EndAttrKinds: 1761 case Attribute::EmptyKey: 1762 case Attribute::TombstoneKey: 1763 llvm_unreachable("Synthetic enumerators which should never get here"); 1764 1765 case Attribute::None: return 0; 1766 case Attribute::ZExt: return 1 << 0; 1767 case Attribute::SExt: return 1 << 1; 1768 case Attribute::NoReturn: return 1 << 2; 1769 case Attribute::InReg: return 1 << 3; 1770 case Attribute::StructRet: return 1 << 4; 1771 case Attribute::NoUnwind: return 1 << 5; 1772 case Attribute::NoAlias: return 1 << 6; 1773 case Attribute::ByVal: return 1 << 7; 1774 case Attribute::Nest: return 1 << 8; 1775 case Attribute::ReadNone: return 1 << 9; 1776 case Attribute::ReadOnly: return 1 << 10; 1777 case Attribute::NoInline: return 1 << 11; 1778 case Attribute::AlwaysInline: return 1 << 12; 1779 case Attribute::OptimizeForSize: return 1 << 13; 1780 case Attribute::StackProtect: return 1 << 14; 1781 case Attribute::StackProtectReq: return 1 << 15; 1782 case Attribute::Alignment: return 31 << 16; 1783 case Attribute::NoCapture: return 1 << 21; 1784 case Attribute::NoRedZone: return 1 << 22; 1785 case Attribute::NoImplicitFloat: return 1 << 23; 1786 case Attribute::Naked: return 1 << 24; 1787 case Attribute::InlineHint: return 1 << 25; 1788 case Attribute::StackAlignment: return 7 << 26; 1789 case Attribute::ReturnsTwice: return 1 << 29; 1790 case Attribute::UWTable: return 1 << 30; 1791 case Attribute::NonLazyBind: return 1U << 31; 1792 case Attribute::SanitizeAddress: return 1ULL << 32; 1793 case Attribute::MinSize: return 1ULL << 33; 1794 case Attribute::NoDuplicate: return 1ULL << 34; 1795 case Attribute::StackProtectStrong: return 1ULL << 35; 1796 case Attribute::SanitizeThread: return 1ULL << 36; 1797 case Attribute::SanitizeMemory: return 1ULL << 37; 1798 case Attribute::NoBuiltin: return 1ULL << 38; 1799 case Attribute::Returned: return 1ULL << 39; 1800 case Attribute::Cold: return 1ULL << 40; 1801 case Attribute::Builtin: return 1ULL << 41; 1802 case Attribute::OptimizeNone: return 1ULL << 42; 1803 case Attribute::InAlloca: return 1ULL << 43; 1804 case Attribute::NonNull: return 1ULL << 44; 1805 case Attribute::JumpTable: return 1ULL << 45; 1806 case Attribute::Convergent: return 1ULL << 46; 1807 case Attribute::SafeStack: return 1ULL << 47; 1808 case Attribute::NoRecurse: return 1ULL << 48; 1809 // 1ULL << 49 is InaccessibleMemOnly, which is upgraded separately. 1810 // 1ULL << 50 is InaccessibleMemOrArgMemOnly, which is upgraded separately. 1811 case Attribute::SwiftSelf: return 1ULL << 51; 1812 case Attribute::SwiftError: return 1ULL << 52; 1813 case Attribute::WriteOnly: return 1ULL << 53; 1814 case Attribute::Speculatable: return 1ULL << 54; 1815 case Attribute::StrictFP: return 1ULL << 55; 1816 case Attribute::SanitizeHWAddress: return 1ULL << 56; 1817 case Attribute::NoCfCheck: return 1ULL << 57; 1818 case Attribute::OptForFuzzing: return 1ULL << 58; 1819 case Attribute::ShadowCallStack: return 1ULL << 59; 1820 case Attribute::SpeculativeLoadHardening: 1821 return 1ULL << 60; 1822 case Attribute::ImmArg: 1823 return 1ULL << 61; 1824 case Attribute::WillReturn: 1825 return 1ULL << 62; 1826 case Attribute::NoFree: 1827 return 1ULL << 63; 1828 default: 1829 // Other attributes are not supported in the raw format, 1830 // as we ran out of space. 1831 return 0; 1832 } 1833 llvm_unreachable("Unsupported attribute type"); 1834 } 1835 1836 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) { 1837 if (!Val) return; 1838 1839 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; 1840 I = Attribute::AttrKind(I + 1)) { 1841 if (uint64_t A = (Val & getRawAttributeMask(I))) { 1842 if (I == Attribute::Alignment) 1843 B.addAlignmentAttr(1ULL << ((A >> 16) - 1)); 1844 else if (I == Attribute::StackAlignment) 1845 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1)); 1846 else if (Attribute::isTypeAttrKind(I)) 1847 B.addTypeAttr(I, nullptr); // Type will be auto-upgraded. 1848 else 1849 B.addAttribute(I); 1850 } 1851 } 1852 } 1853 1854 /// This fills an AttrBuilder object with the LLVM attributes that have 1855 /// been decoded from the given integer. This function must stay in sync with 1856 /// 'encodeLLVMAttributesForBitcode'. 1857 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1858 uint64_t EncodedAttrs, 1859 uint64_t AttrIdx) { 1860 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1861 // the bits above 31 down by 11 bits. 1862 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1863 assert((!Alignment || isPowerOf2_32(Alignment)) && 1864 "Alignment must be a power of two."); 1865 1866 if (Alignment) 1867 B.addAlignmentAttr(Alignment); 1868 1869 uint64_t Attrs = ((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1870 (EncodedAttrs & 0xffff); 1871 1872 if (AttrIdx == AttributeList::FunctionIndex) { 1873 // Upgrade old memory attributes. 1874 MemoryEffects ME = MemoryEffects::unknown(); 1875 if (Attrs & (1ULL << 9)) { 1876 // ReadNone 1877 Attrs &= ~(1ULL << 9); 1878 ME &= MemoryEffects::none(); 1879 } 1880 if (Attrs & (1ULL << 10)) { 1881 // ReadOnly 1882 Attrs &= ~(1ULL << 10); 1883 ME &= MemoryEffects::readOnly(); 1884 } 1885 if (Attrs & (1ULL << 49)) { 1886 // InaccessibleMemOnly 1887 Attrs &= ~(1ULL << 49); 1888 ME &= MemoryEffects::inaccessibleMemOnly(); 1889 } 1890 if (Attrs & (1ULL << 50)) { 1891 // InaccessibleMemOrArgMemOnly 1892 Attrs &= ~(1ULL << 50); 1893 ME &= MemoryEffects::inaccessibleOrArgMemOnly(); 1894 } 1895 if (Attrs & (1ULL << 53)) { 1896 // WriteOnly 1897 Attrs &= ~(1ULL << 53); 1898 ME &= MemoryEffects::writeOnly(); 1899 } 1900 if (ME != MemoryEffects::unknown()) 1901 B.addMemoryAttr(ME); 1902 } 1903 1904 addRawAttributeValue(B, Attrs); 1905 } 1906 1907 Error BitcodeReader::parseAttributeBlock() { 1908 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1909 return Err; 1910 1911 if (!MAttributes.empty()) 1912 return error("Invalid multiple blocks"); 1913 1914 SmallVector<uint64_t, 64> Record; 1915 1916 SmallVector<AttributeList, 8> Attrs; 1917 1918 // Read all the records. 1919 while (true) { 1920 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1921 if (!MaybeEntry) 1922 return MaybeEntry.takeError(); 1923 BitstreamEntry Entry = MaybeEntry.get(); 1924 1925 switch (Entry.Kind) { 1926 case BitstreamEntry::SubBlock: // Handled for us already. 1927 case BitstreamEntry::Error: 1928 return error("Malformed block"); 1929 case BitstreamEntry::EndBlock: 1930 return Error::success(); 1931 case BitstreamEntry::Record: 1932 // The interesting case. 1933 break; 1934 } 1935 1936 // Read a record. 1937 Record.clear(); 1938 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1939 if (!MaybeRecord) 1940 return MaybeRecord.takeError(); 1941 switch (MaybeRecord.get()) { 1942 default: // Default behavior: ignore. 1943 break; 1944 case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...] 1945 // Deprecated, but still needed to read old bitcode files. 1946 if (Record.size() & 1) 1947 return error("Invalid parameter attribute record"); 1948 1949 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1950 AttrBuilder B(Context); 1951 decodeLLVMAttributesForBitcode(B, Record[i+1], Record[i]); 1952 Attrs.push_back(AttributeList::get(Context, Record[i], B)); 1953 } 1954 1955 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1956 Attrs.clear(); 1957 break; 1958 case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...] 1959 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1960 Attrs.push_back(MAttributeGroups[Record[i]]); 1961 1962 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1963 Attrs.clear(); 1964 break; 1965 } 1966 } 1967 } 1968 1969 // Returns Attribute::None on unrecognized codes. 1970 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1971 switch (Code) { 1972 default: 1973 return Attribute::None; 1974 case bitc::ATTR_KIND_ALIGNMENT: 1975 return Attribute::Alignment; 1976 case bitc::ATTR_KIND_ALWAYS_INLINE: 1977 return Attribute::AlwaysInline; 1978 case bitc::ATTR_KIND_BUILTIN: 1979 return Attribute::Builtin; 1980 case bitc::ATTR_KIND_BY_VAL: 1981 return Attribute::ByVal; 1982 case bitc::ATTR_KIND_IN_ALLOCA: 1983 return Attribute::InAlloca; 1984 case bitc::ATTR_KIND_COLD: 1985 return Attribute::Cold; 1986 case bitc::ATTR_KIND_CONVERGENT: 1987 return Attribute::Convergent; 1988 case bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION: 1989 return Attribute::DisableSanitizerInstrumentation; 1990 case bitc::ATTR_KIND_ELEMENTTYPE: 1991 return Attribute::ElementType; 1992 case bitc::ATTR_KIND_FNRETTHUNK_EXTERN: 1993 return Attribute::FnRetThunkExtern; 1994 case bitc::ATTR_KIND_INLINE_HINT: 1995 return Attribute::InlineHint; 1996 case bitc::ATTR_KIND_IN_REG: 1997 return Attribute::InReg; 1998 case bitc::ATTR_KIND_JUMP_TABLE: 1999 return Attribute::JumpTable; 2000 case bitc::ATTR_KIND_MEMORY: 2001 return Attribute::Memory; 2002 case bitc::ATTR_KIND_NOFPCLASS: 2003 return Attribute::NoFPClass; 2004 case bitc::ATTR_KIND_MIN_SIZE: 2005 return Attribute::MinSize; 2006 case bitc::ATTR_KIND_NAKED: 2007 return Attribute::Naked; 2008 case bitc::ATTR_KIND_NEST: 2009 return Attribute::Nest; 2010 case bitc::ATTR_KIND_NO_ALIAS: 2011 return Attribute::NoAlias; 2012 case bitc::ATTR_KIND_NO_BUILTIN: 2013 return Attribute::NoBuiltin; 2014 case bitc::ATTR_KIND_NO_CALLBACK: 2015 return Attribute::NoCallback; 2016 case bitc::ATTR_KIND_NO_CAPTURE: 2017 return Attribute::NoCapture; 2018 case bitc::ATTR_KIND_NO_DUPLICATE: 2019 return Attribute::NoDuplicate; 2020 case bitc::ATTR_KIND_NOFREE: 2021 return Attribute::NoFree; 2022 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 2023 return Attribute::NoImplicitFloat; 2024 case bitc::ATTR_KIND_NO_INLINE: 2025 return Attribute::NoInline; 2026 case bitc::ATTR_KIND_NO_RECURSE: 2027 return Attribute::NoRecurse; 2028 case bitc::ATTR_KIND_NO_MERGE: 2029 return Attribute::NoMerge; 2030 case bitc::ATTR_KIND_NON_LAZY_BIND: 2031 return Attribute::NonLazyBind; 2032 case bitc::ATTR_KIND_NON_NULL: 2033 return Attribute::NonNull; 2034 case bitc::ATTR_KIND_DEREFERENCEABLE: 2035 return Attribute::Dereferenceable; 2036 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 2037 return Attribute::DereferenceableOrNull; 2038 case bitc::ATTR_KIND_ALLOC_ALIGN: 2039 return Attribute::AllocAlign; 2040 case bitc::ATTR_KIND_ALLOC_KIND: 2041 return Attribute::AllocKind; 2042 case bitc::ATTR_KIND_ALLOC_SIZE: 2043 return Attribute::AllocSize; 2044 case bitc::ATTR_KIND_ALLOCATED_POINTER: 2045 return Attribute::AllocatedPointer; 2046 case bitc::ATTR_KIND_NO_RED_ZONE: 2047 return Attribute::NoRedZone; 2048 case bitc::ATTR_KIND_NO_RETURN: 2049 return Attribute::NoReturn; 2050 case bitc::ATTR_KIND_NOSYNC: 2051 return Attribute::NoSync; 2052 case bitc::ATTR_KIND_NOCF_CHECK: 2053 return Attribute::NoCfCheck; 2054 case bitc::ATTR_KIND_NO_PROFILE: 2055 return Attribute::NoProfile; 2056 case bitc::ATTR_KIND_SKIP_PROFILE: 2057 return Attribute::SkipProfile; 2058 case bitc::ATTR_KIND_NO_UNWIND: 2059 return Attribute::NoUnwind; 2060 case bitc::ATTR_KIND_NO_SANITIZE_BOUNDS: 2061 return Attribute::NoSanitizeBounds; 2062 case bitc::ATTR_KIND_NO_SANITIZE_COVERAGE: 2063 return Attribute::NoSanitizeCoverage; 2064 case bitc::ATTR_KIND_NULL_POINTER_IS_VALID: 2065 return Attribute::NullPointerIsValid; 2066 case bitc::ATTR_KIND_OPTIMIZE_FOR_DEBUGGING: 2067 return Attribute::OptimizeForDebugging; 2068 case bitc::ATTR_KIND_OPT_FOR_FUZZING: 2069 return Attribute::OptForFuzzing; 2070 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 2071 return Attribute::OptimizeForSize; 2072 case bitc::ATTR_KIND_OPTIMIZE_NONE: 2073 return Attribute::OptimizeNone; 2074 case bitc::ATTR_KIND_READ_NONE: 2075 return Attribute::ReadNone; 2076 case bitc::ATTR_KIND_READ_ONLY: 2077 return Attribute::ReadOnly; 2078 case bitc::ATTR_KIND_RETURNED: 2079 return Attribute::Returned; 2080 case bitc::ATTR_KIND_RETURNS_TWICE: 2081 return Attribute::ReturnsTwice; 2082 case bitc::ATTR_KIND_S_EXT: 2083 return Attribute::SExt; 2084 case bitc::ATTR_KIND_SPECULATABLE: 2085 return Attribute::Speculatable; 2086 case bitc::ATTR_KIND_STACK_ALIGNMENT: 2087 return Attribute::StackAlignment; 2088 case bitc::ATTR_KIND_STACK_PROTECT: 2089 return Attribute::StackProtect; 2090 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 2091 return Attribute::StackProtectReq; 2092 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 2093 return Attribute::StackProtectStrong; 2094 case bitc::ATTR_KIND_SAFESTACK: 2095 return Attribute::SafeStack; 2096 case bitc::ATTR_KIND_SHADOWCALLSTACK: 2097 return Attribute::ShadowCallStack; 2098 case bitc::ATTR_KIND_STRICT_FP: 2099 return Attribute::StrictFP; 2100 case bitc::ATTR_KIND_STRUCT_RET: 2101 return Attribute::StructRet; 2102 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 2103 return Attribute::SanitizeAddress; 2104 case bitc::ATTR_KIND_SANITIZE_HWADDRESS: 2105 return Attribute::SanitizeHWAddress; 2106 case bitc::ATTR_KIND_SANITIZE_THREAD: 2107 return Attribute::SanitizeThread; 2108 case bitc::ATTR_KIND_SANITIZE_MEMORY: 2109 return Attribute::SanitizeMemory; 2110 case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING: 2111 return Attribute::SpeculativeLoadHardening; 2112 case bitc::ATTR_KIND_SWIFT_ERROR: 2113 return Attribute::SwiftError; 2114 case bitc::ATTR_KIND_SWIFT_SELF: 2115 return Attribute::SwiftSelf; 2116 case bitc::ATTR_KIND_SWIFT_ASYNC: 2117 return Attribute::SwiftAsync; 2118 case bitc::ATTR_KIND_UW_TABLE: 2119 return Attribute::UWTable; 2120 case bitc::ATTR_KIND_VSCALE_RANGE: 2121 return Attribute::VScaleRange; 2122 case bitc::ATTR_KIND_WILLRETURN: 2123 return Attribute::WillReturn; 2124 case bitc::ATTR_KIND_WRITEONLY: 2125 return Attribute::WriteOnly; 2126 case bitc::ATTR_KIND_Z_EXT: 2127 return Attribute::ZExt; 2128 case bitc::ATTR_KIND_IMMARG: 2129 return Attribute::ImmArg; 2130 case bitc::ATTR_KIND_SANITIZE_MEMTAG: 2131 return Attribute::SanitizeMemTag; 2132 case bitc::ATTR_KIND_PREALLOCATED: 2133 return Attribute::Preallocated; 2134 case bitc::ATTR_KIND_NOUNDEF: 2135 return Attribute::NoUndef; 2136 case bitc::ATTR_KIND_BYREF: 2137 return Attribute::ByRef; 2138 case bitc::ATTR_KIND_MUSTPROGRESS: 2139 return Attribute::MustProgress; 2140 case bitc::ATTR_KIND_HOT: 2141 return Attribute::Hot; 2142 case bitc::ATTR_KIND_PRESPLIT_COROUTINE: 2143 return Attribute::PresplitCoroutine; 2144 case bitc::ATTR_KIND_WRITABLE: 2145 return Attribute::Writable; 2146 case bitc::ATTR_KIND_CORO_ONLY_DESTROY_WHEN_COMPLETE: 2147 return Attribute::CoroDestroyOnlyWhenComplete; 2148 case bitc::ATTR_KIND_DEAD_ON_UNWIND: 2149 return Attribute::DeadOnUnwind; 2150 case bitc::ATTR_KIND_RANGE: 2151 return Attribute::Range; 2152 } 2153 } 2154 2155 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent, 2156 MaybeAlign &Alignment) { 2157 // Note: Alignment in bitcode files is incremented by 1, so that zero 2158 // can be used for default alignment. 2159 if (Exponent > Value::MaxAlignmentExponent + 1) 2160 return error("Invalid alignment value"); 2161 Alignment = decodeMaybeAlign(Exponent); 2162 return Error::success(); 2163 } 2164 2165 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) { 2166 *Kind = getAttrFromCode(Code); 2167 if (*Kind == Attribute::None) 2168 return error("Unknown attribute kind (" + Twine(Code) + ")"); 2169 return Error::success(); 2170 } 2171 2172 static bool upgradeOldMemoryAttribute(MemoryEffects &ME, uint64_t EncodedKind) { 2173 switch (EncodedKind) { 2174 case bitc::ATTR_KIND_READ_NONE: 2175 ME &= MemoryEffects::none(); 2176 return true; 2177 case bitc::ATTR_KIND_READ_ONLY: 2178 ME &= MemoryEffects::readOnly(); 2179 return true; 2180 case bitc::ATTR_KIND_WRITEONLY: 2181 ME &= MemoryEffects::writeOnly(); 2182 return true; 2183 case bitc::ATTR_KIND_ARGMEMONLY: 2184 ME &= MemoryEffects::argMemOnly(); 2185 return true; 2186 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 2187 ME &= MemoryEffects::inaccessibleMemOnly(); 2188 return true; 2189 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 2190 ME &= MemoryEffects::inaccessibleOrArgMemOnly(); 2191 return true; 2192 default: 2193 return false; 2194 } 2195 } 2196 2197 Error BitcodeReader::parseAttributeGroupBlock() { 2198 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 2199 return Err; 2200 2201 if (!MAttributeGroups.empty()) 2202 return error("Invalid multiple blocks"); 2203 2204 SmallVector<uint64_t, 64> Record; 2205 2206 // Read all the records. 2207 while (true) { 2208 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2209 if (!MaybeEntry) 2210 return MaybeEntry.takeError(); 2211 BitstreamEntry Entry = MaybeEntry.get(); 2212 2213 switch (Entry.Kind) { 2214 case BitstreamEntry::SubBlock: // Handled for us already. 2215 case BitstreamEntry::Error: 2216 return error("Malformed block"); 2217 case BitstreamEntry::EndBlock: 2218 return Error::success(); 2219 case BitstreamEntry::Record: 2220 // The interesting case. 2221 break; 2222 } 2223 2224 // Read a record. 2225 Record.clear(); 2226 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2227 if (!MaybeRecord) 2228 return MaybeRecord.takeError(); 2229 switch (MaybeRecord.get()) { 2230 default: // Default behavior: ignore. 2231 break; 2232 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 2233 if (Record.size() < 3) 2234 return error("Invalid grp record"); 2235 2236 uint64_t GrpID = Record[0]; 2237 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 2238 2239 AttrBuilder B(Context); 2240 MemoryEffects ME = MemoryEffects::unknown(); 2241 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 2242 if (Record[i] == 0) { // Enum attribute 2243 Attribute::AttrKind Kind; 2244 uint64_t EncodedKind = Record[++i]; 2245 if (Idx == AttributeList::FunctionIndex && 2246 upgradeOldMemoryAttribute(ME, EncodedKind)) 2247 continue; 2248 2249 if (Error Err = parseAttrKind(EncodedKind, &Kind)) 2250 return Err; 2251 2252 // Upgrade old-style byval attribute to one with a type, even if it's 2253 // nullptr. We will have to insert the real type when we associate 2254 // this AttributeList with a function. 2255 if (Kind == Attribute::ByVal) 2256 B.addByValAttr(nullptr); 2257 else if (Kind == Attribute::StructRet) 2258 B.addStructRetAttr(nullptr); 2259 else if (Kind == Attribute::InAlloca) 2260 B.addInAllocaAttr(nullptr); 2261 else if (Kind == Attribute::UWTable) 2262 B.addUWTableAttr(UWTableKind::Default); 2263 else if (Attribute::isEnumAttrKind(Kind)) 2264 B.addAttribute(Kind); 2265 else 2266 return error("Not an enum attribute"); 2267 } else if (Record[i] == 1) { // Integer attribute 2268 Attribute::AttrKind Kind; 2269 if (Error Err = parseAttrKind(Record[++i], &Kind)) 2270 return Err; 2271 if (!Attribute::isIntAttrKind(Kind)) 2272 return error("Not an int attribute"); 2273 if (Kind == Attribute::Alignment) 2274 B.addAlignmentAttr(Record[++i]); 2275 else if (Kind == Attribute::StackAlignment) 2276 B.addStackAlignmentAttr(Record[++i]); 2277 else if (Kind == Attribute::Dereferenceable) 2278 B.addDereferenceableAttr(Record[++i]); 2279 else if (Kind == Attribute::DereferenceableOrNull) 2280 B.addDereferenceableOrNullAttr(Record[++i]); 2281 else if (Kind == Attribute::AllocSize) 2282 B.addAllocSizeAttrFromRawRepr(Record[++i]); 2283 else if (Kind == Attribute::VScaleRange) 2284 B.addVScaleRangeAttrFromRawRepr(Record[++i]); 2285 else if (Kind == Attribute::UWTable) 2286 B.addUWTableAttr(UWTableKind(Record[++i])); 2287 else if (Kind == Attribute::AllocKind) 2288 B.addAllocKindAttr(static_cast<AllocFnKind>(Record[++i])); 2289 else if (Kind == Attribute::Memory) 2290 B.addMemoryAttr(MemoryEffects::createFromIntValue(Record[++i])); 2291 else if (Kind == Attribute::NoFPClass) 2292 B.addNoFPClassAttr( 2293 static_cast<FPClassTest>(Record[++i] & fcAllFlags)); 2294 } else if (Record[i] == 3 || Record[i] == 4) { // String attribute 2295 bool HasValue = (Record[i++] == 4); 2296 SmallString<64> KindStr; 2297 SmallString<64> ValStr; 2298 2299 while (Record[i] != 0 && i != e) 2300 KindStr += Record[i++]; 2301 assert(Record[i] == 0 && "Kind string not null terminated"); 2302 2303 if (HasValue) { 2304 // Has a value associated with it. 2305 ++i; // Skip the '0' that terminates the "kind" string. 2306 while (Record[i] != 0 && i != e) 2307 ValStr += Record[i++]; 2308 assert(Record[i] == 0 && "Value string not null terminated"); 2309 } 2310 2311 B.addAttribute(KindStr.str(), ValStr.str()); 2312 } else if (Record[i] == 5 || Record[i] == 6) { 2313 bool HasType = Record[i] == 6; 2314 Attribute::AttrKind Kind; 2315 if (Error Err = parseAttrKind(Record[++i], &Kind)) 2316 return Err; 2317 if (!Attribute::isTypeAttrKind(Kind)) 2318 return error("Not a type attribute"); 2319 2320 B.addTypeAttr(Kind, HasType ? getTypeByID(Record[++i]) : nullptr); 2321 } else if (Record[i] == 7) { 2322 Attribute::AttrKind Kind; 2323 2324 i++; 2325 if (Error Err = parseAttrKind(Record[i++], &Kind)) 2326 return Err; 2327 if (!Attribute::isConstantRangeAttrKind(Kind)) 2328 return error("Not a ConstantRange attribute"); 2329 2330 Expected<ConstantRange> MaybeCR = readConstantRange(Record, i); 2331 if (!MaybeCR) 2332 return MaybeCR.takeError(); 2333 i--; 2334 2335 B.addConstantRangeAttr(Kind, MaybeCR.get()); 2336 } else { 2337 return error("Invalid attribute group entry"); 2338 } 2339 } 2340 2341 if (ME != MemoryEffects::unknown()) 2342 B.addMemoryAttr(ME); 2343 2344 UpgradeAttributes(B); 2345 MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B); 2346 break; 2347 } 2348 } 2349 } 2350 } 2351 2352 Error BitcodeReader::parseTypeTable() { 2353 if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 2354 return Err; 2355 2356 return parseTypeTableBody(); 2357 } 2358 2359 Error BitcodeReader::parseTypeTableBody() { 2360 if (!TypeList.empty()) 2361 return error("Invalid multiple blocks"); 2362 2363 SmallVector<uint64_t, 64> Record; 2364 unsigned NumRecords = 0; 2365 2366 SmallString<64> TypeName; 2367 2368 // Read all the records for this type table. 2369 while (true) { 2370 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2371 if (!MaybeEntry) 2372 return MaybeEntry.takeError(); 2373 BitstreamEntry Entry = MaybeEntry.get(); 2374 2375 switch (Entry.Kind) { 2376 case BitstreamEntry::SubBlock: // Handled for us already. 2377 case BitstreamEntry::Error: 2378 return error("Malformed block"); 2379 case BitstreamEntry::EndBlock: 2380 if (NumRecords != TypeList.size()) 2381 return error("Malformed block"); 2382 return Error::success(); 2383 case BitstreamEntry::Record: 2384 // The interesting case. 2385 break; 2386 } 2387 2388 // Read a record. 2389 Record.clear(); 2390 Type *ResultTy = nullptr; 2391 SmallVector<unsigned> ContainedIDs; 2392 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2393 if (!MaybeRecord) 2394 return MaybeRecord.takeError(); 2395 switch (MaybeRecord.get()) { 2396 default: 2397 return error("Invalid value"); 2398 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 2399 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 2400 // type list. This allows us to reserve space. 2401 if (Record.empty()) 2402 return error("Invalid numentry record"); 2403 TypeList.resize(Record[0]); 2404 continue; 2405 case bitc::TYPE_CODE_VOID: // VOID 2406 ResultTy = Type::getVoidTy(Context); 2407 break; 2408 case bitc::TYPE_CODE_HALF: // HALF 2409 ResultTy = Type::getHalfTy(Context); 2410 break; 2411 case bitc::TYPE_CODE_BFLOAT: // BFLOAT 2412 ResultTy = Type::getBFloatTy(Context); 2413 break; 2414 case bitc::TYPE_CODE_FLOAT: // FLOAT 2415 ResultTy = Type::getFloatTy(Context); 2416 break; 2417 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 2418 ResultTy = Type::getDoubleTy(Context); 2419 break; 2420 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 2421 ResultTy = Type::getX86_FP80Ty(Context); 2422 break; 2423 case bitc::TYPE_CODE_FP128: // FP128 2424 ResultTy = Type::getFP128Ty(Context); 2425 break; 2426 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 2427 ResultTy = Type::getPPC_FP128Ty(Context); 2428 break; 2429 case bitc::TYPE_CODE_LABEL: // LABEL 2430 ResultTy = Type::getLabelTy(Context); 2431 break; 2432 case bitc::TYPE_CODE_METADATA: // METADATA 2433 ResultTy = Type::getMetadataTy(Context); 2434 break; 2435 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 2436 ResultTy = Type::getX86_MMXTy(Context); 2437 break; 2438 case bitc::TYPE_CODE_X86_AMX: // X86_AMX 2439 ResultTy = Type::getX86_AMXTy(Context); 2440 break; 2441 case bitc::TYPE_CODE_TOKEN: // TOKEN 2442 ResultTy = Type::getTokenTy(Context); 2443 break; 2444 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 2445 if (Record.empty()) 2446 return error("Invalid integer record"); 2447 2448 uint64_t NumBits = Record[0]; 2449 if (NumBits < IntegerType::MIN_INT_BITS || 2450 NumBits > IntegerType::MAX_INT_BITS) 2451 return error("Bitwidth for integer type out of range"); 2452 ResultTy = IntegerType::get(Context, NumBits); 2453 break; 2454 } 2455 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 2456 // [pointee type, address space] 2457 if (Record.empty()) 2458 return error("Invalid pointer record"); 2459 unsigned AddressSpace = 0; 2460 if (Record.size() == 2) 2461 AddressSpace = Record[1]; 2462 ResultTy = getTypeByID(Record[0]); 2463 if (!ResultTy || 2464 !PointerType::isValidElementType(ResultTy)) 2465 return error("Invalid type"); 2466 ContainedIDs.push_back(Record[0]); 2467 ResultTy = PointerType::get(ResultTy, AddressSpace); 2468 break; 2469 } 2470 case bitc::TYPE_CODE_OPAQUE_POINTER: { // OPAQUE_POINTER: [addrspace] 2471 if (Record.size() != 1) 2472 return error("Invalid opaque pointer record"); 2473 unsigned AddressSpace = Record[0]; 2474 ResultTy = PointerType::get(Context, AddressSpace); 2475 break; 2476 } 2477 case bitc::TYPE_CODE_FUNCTION_OLD: { 2478 // Deprecated, but still needed to read old bitcode files. 2479 // FUNCTION: [vararg, attrid, retty, paramty x N] 2480 if (Record.size() < 3) 2481 return error("Invalid function record"); 2482 SmallVector<Type*, 8> ArgTys; 2483 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 2484 if (Type *T = getTypeByID(Record[i])) 2485 ArgTys.push_back(T); 2486 else 2487 break; 2488 } 2489 2490 ResultTy = getTypeByID(Record[2]); 2491 if (!ResultTy || ArgTys.size() < Record.size()-3) 2492 return error("Invalid type"); 2493 2494 ContainedIDs.append(Record.begin() + 2, Record.end()); 2495 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 2496 break; 2497 } 2498 case bitc::TYPE_CODE_FUNCTION: { 2499 // FUNCTION: [vararg, retty, paramty x N] 2500 if (Record.size() < 2) 2501 return error("Invalid function record"); 2502 SmallVector<Type*, 8> ArgTys; 2503 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 2504 if (Type *T = getTypeByID(Record[i])) { 2505 if (!FunctionType::isValidArgumentType(T)) 2506 return error("Invalid function argument type"); 2507 ArgTys.push_back(T); 2508 } 2509 else 2510 break; 2511 } 2512 2513 ResultTy = getTypeByID(Record[1]); 2514 if (!ResultTy || ArgTys.size() < Record.size()-2) 2515 return error("Invalid type"); 2516 2517 ContainedIDs.append(Record.begin() + 1, Record.end()); 2518 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 2519 break; 2520 } 2521 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 2522 if (Record.empty()) 2523 return error("Invalid anon struct record"); 2524 SmallVector<Type*, 8> EltTys; 2525 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 2526 if (Type *T = getTypeByID(Record[i])) 2527 EltTys.push_back(T); 2528 else 2529 break; 2530 } 2531 if (EltTys.size() != Record.size()-1) 2532 return error("Invalid type"); 2533 ContainedIDs.append(Record.begin() + 1, Record.end()); 2534 ResultTy = StructType::get(Context, EltTys, Record[0]); 2535 break; 2536 } 2537 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 2538 if (convertToString(Record, 0, TypeName)) 2539 return error("Invalid struct name record"); 2540 continue; 2541 2542 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 2543 if (Record.empty()) 2544 return error("Invalid named struct record"); 2545 2546 if (NumRecords >= TypeList.size()) 2547 return error("Invalid TYPE table"); 2548 2549 // Check to see if this was forward referenced, if so fill in the temp. 2550 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 2551 if (Res) { 2552 Res->setName(TypeName); 2553 TypeList[NumRecords] = nullptr; 2554 } else // Otherwise, create a new struct. 2555 Res = createIdentifiedStructType(Context, TypeName); 2556 TypeName.clear(); 2557 2558 SmallVector<Type*, 8> EltTys; 2559 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 2560 if (Type *T = getTypeByID(Record[i])) 2561 EltTys.push_back(T); 2562 else 2563 break; 2564 } 2565 if (EltTys.size() != Record.size()-1) 2566 return error("Invalid named struct record"); 2567 Res->setBody(EltTys, Record[0]); 2568 ContainedIDs.append(Record.begin() + 1, Record.end()); 2569 ResultTy = Res; 2570 break; 2571 } 2572 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 2573 if (Record.size() != 1) 2574 return error("Invalid opaque type record"); 2575 2576 if (NumRecords >= TypeList.size()) 2577 return error("Invalid TYPE table"); 2578 2579 // Check to see if this was forward referenced, if so fill in the temp. 2580 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 2581 if (Res) { 2582 Res->setName(TypeName); 2583 TypeList[NumRecords] = nullptr; 2584 } else // Otherwise, create a new struct with no body. 2585 Res = createIdentifiedStructType(Context, TypeName); 2586 TypeName.clear(); 2587 ResultTy = Res; 2588 break; 2589 } 2590 case bitc::TYPE_CODE_TARGET_TYPE: { // TARGET_TYPE: [NumTy, Tys..., Ints...] 2591 if (Record.size() < 1) 2592 return error("Invalid target extension type record"); 2593 2594 if (NumRecords >= TypeList.size()) 2595 return error("Invalid TYPE table"); 2596 2597 if (Record[0] >= Record.size()) 2598 return error("Too many type parameters"); 2599 2600 unsigned NumTys = Record[0]; 2601 SmallVector<Type *, 4> TypeParams; 2602 SmallVector<unsigned, 8> IntParams; 2603 for (unsigned i = 0; i < NumTys; i++) { 2604 if (Type *T = getTypeByID(Record[i + 1])) 2605 TypeParams.push_back(T); 2606 else 2607 return error("Invalid type"); 2608 } 2609 2610 for (unsigned i = NumTys + 1, e = Record.size(); i < e; i++) { 2611 if (Record[i] > UINT_MAX) 2612 return error("Integer parameter too large"); 2613 IntParams.push_back(Record[i]); 2614 } 2615 ResultTy = TargetExtType::get(Context, TypeName, TypeParams, IntParams); 2616 TypeName.clear(); 2617 break; 2618 } 2619 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 2620 if (Record.size() < 2) 2621 return error("Invalid array type record"); 2622 ResultTy = getTypeByID(Record[1]); 2623 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 2624 return error("Invalid type"); 2625 ContainedIDs.push_back(Record[1]); 2626 ResultTy = ArrayType::get(ResultTy, Record[0]); 2627 break; 2628 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] or 2629 // [numelts, eltty, scalable] 2630 if (Record.size() < 2) 2631 return error("Invalid vector type record"); 2632 if (Record[0] == 0) 2633 return error("Invalid vector length"); 2634 ResultTy = getTypeByID(Record[1]); 2635 if (!ResultTy || !VectorType::isValidElementType(ResultTy)) 2636 return error("Invalid type"); 2637 bool Scalable = Record.size() > 2 ? Record[2] : false; 2638 ContainedIDs.push_back(Record[1]); 2639 ResultTy = VectorType::get(ResultTy, Record[0], Scalable); 2640 break; 2641 } 2642 2643 if (NumRecords >= TypeList.size()) 2644 return error("Invalid TYPE table"); 2645 if (TypeList[NumRecords]) 2646 return error( 2647 "Invalid TYPE table: Only named structs can be forward referenced"); 2648 assert(ResultTy && "Didn't read a type?"); 2649 TypeList[NumRecords] = ResultTy; 2650 if (!ContainedIDs.empty()) 2651 ContainedTypeIDs[NumRecords] = std::move(ContainedIDs); 2652 ++NumRecords; 2653 } 2654 } 2655 2656 Error BitcodeReader::parseOperandBundleTags() { 2657 if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 2658 return Err; 2659 2660 if (!BundleTags.empty()) 2661 return error("Invalid multiple blocks"); 2662 2663 SmallVector<uint64_t, 64> Record; 2664 2665 while (true) { 2666 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2667 if (!MaybeEntry) 2668 return MaybeEntry.takeError(); 2669 BitstreamEntry Entry = MaybeEntry.get(); 2670 2671 switch (Entry.Kind) { 2672 case BitstreamEntry::SubBlock: // Handled for us already. 2673 case BitstreamEntry::Error: 2674 return error("Malformed block"); 2675 case BitstreamEntry::EndBlock: 2676 return Error::success(); 2677 case BitstreamEntry::Record: 2678 // The interesting case. 2679 break; 2680 } 2681 2682 // Tags are implicitly mapped to integers by their order. 2683 2684 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2685 if (!MaybeRecord) 2686 return MaybeRecord.takeError(); 2687 if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG) 2688 return error("Invalid operand bundle record"); 2689 2690 // OPERAND_BUNDLE_TAG: [strchr x N] 2691 BundleTags.emplace_back(); 2692 if (convertToString(Record, 0, BundleTags.back())) 2693 return error("Invalid operand bundle record"); 2694 Record.clear(); 2695 } 2696 } 2697 2698 Error BitcodeReader::parseSyncScopeNames() { 2699 if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID)) 2700 return Err; 2701 2702 if (!SSIDs.empty()) 2703 return error("Invalid multiple synchronization scope names blocks"); 2704 2705 SmallVector<uint64_t, 64> Record; 2706 while (true) { 2707 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2708 if (!MaybeEntry) 2709 return MaybeEntry.takeError(); 2710 BitstreamEntry Entry = MaybeEntry.get(); 2711 2712 switch (Entry.Kind) { 2713 case BitstreamEntry::SubBlock: // Handled for us already. 2714 case BitstreamEntry::Error: 2715 return error("Malformed block"); 2716 case BitstreamEntry::EndBlock: 2717 if (SSIDs.empty()) 2718 return error("Invalid empty synchronization scope names block"); 2719 return Error::success(); 2720 case BitstreamEntry::Record: 2721 // The interesting case. 2722 break; 2723 } 2724 2725 // Synchronization scope names are implicitly mapped to synchronization 2726 // scope IDs by their order. 2727 2728 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2729 if (!MaybeRecord) 2730 return MaybeRecord.takeError(); 2731 if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME) 2732 return error("Invalid sync scope record"); 2733 2734 SmallString<16> SSN; 2735 if (convertToString(Record, 0, SSN)) 2736 return error("Invalid sync scope record"); 2737 2738 SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN)); 2739 Record.clear(); 2740 } 2741 } 2742 2743 /// Associate a value with its name from the given index in the provided record. 2744 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 2745 unsigned NameIndex, Triple &TT) { 2746 SmallString<128> ValueName; 2747 if (convertToString(Record, NameIndex, ValueName)) 2748 return error("Invalid record"); 2749 unsigned ValueID = Record[0]; 2750 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 2751 return error("Invalid record"); 2752 Value *V = ValueList[ValueID]; 2753 2754 StringRef NameStr(ValueName.data(), ValueName.size()); 2755 if (NameStr.contains(0)) 2756 return error("Invalid value name"); 2757 V->setName(NameStr); 2758 auto *GO = dyn_cast<GlobalObject>(V); 2759 if (GO && ImplicitComdatObjects.contains(GO) && TT.supportsCOMDAT()) 2760 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 2761 return V; 2762 } 2763 2764 /// Helper to note and return the current location, and jump to the given 2765 /// offset. 2766 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset, 2767 BitstreamCursor &Stream) { 2768 // Save the current parsing location so we can jump back at the end 2769 // of the VST read. 2770 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 2771 if (Error JumpFailed = Stream.JumpToBit(Offset * 32)) 2772 return std::move(JumpFailed); 2773 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 2774 if (!MaybeEntry) 2775 return MaybeEntry.takeError(); 2776 if (MaybeEntry.get().Kind != BitstreamEntry::SubBlock || 2777 MaybeEntry.get().ID != bitc::VALUE_SYMTAB_BLOCK_ID) 2778 return error("Expected value symbol table subblock"); 2779 return CurrentBit; 2780 } 2781 2782 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, 2783 Function *F, 2784 ArrayRef<uint64_t> Record) { 2785 // Note that we subtract 1 here because the offset is relative to one word 2786 // before the start of the identification or module block, which was 2787 // historically always the start of the regular bitcode header. 2788 uint64_t FuncWordOffset = Record[1] - 1; 2789 uint64_t FuncBitOffset = FuncWordOffset * 32; 2790 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 2791 // Set the LastFunctionBlockBit to point to the last function block. 2792 // Later when parsing is resumed after function materialization, 2793 // we can simply skip that last function block. 2794 if (FuncBitOffset > LastFunctionBlockBit) 2795 LastFunctionBlockBit = FuncBitOffset; 2796 } 2797 2798 /// Read a new-style GlobalValue symbol table. 2799 Error BitcodeReader::parseGlobalValueSymbolTable() { 2800 unsigned FuncBitcodeOffsetDelta = 2801 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2802 2803 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2804 return Err; 2805 2806 SmallVector<uint64_t, 64> Record; 2807 while (true) { 2808 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2809 if (!MaybeEntry) 2810 return MaybeEntry.takeError(); 2811 BitstreamEntry Entry = MaybeEntry.get(); 2812 2813 switch (Entry.Kind) { 2814 case BitstreamEntry::SubBlock: 2815 case BitstreamEntry::Error: 2816 return error("Malformed block"); 2817 case BitstreamEntry::EndBlock: 2818 return Error::success(); 2819 case BitstreamEntry::Record: 2820 break; 2821 } 2822 2823 Record.clear(); 2824 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2825 if (!MaybeRecord) 2826 return MaybeRecord.takeError(); 2827 switch (MaybeRecord.get()) { 2828 case bitc::VST_CODE_FNENTRY: { // [valueid, offset] 2829 unsigned ValueID = Record[0]; 2830 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 2831 return error("Invalid value reference in symbol table"); 2832 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, 2833 cast<Function>(ValueList[ValueID]), Record); 2834 break; 2835 } 2836 } 2837 } 2838 } 2839 2840 /// Parse the value symbol table at either the current parsing location or 2841 /// at the given bit offset if provided. 2842 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 2843 uint64_t CurrentBit; 2844 // Pass in the Offset to distinguish between calling for the module-level 2845 // VST (where we want to jump to the VST offset) and the function-level 2846 // VST (where we don't). 2847 if (Offset > 0) { 2848 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 2849 if (!MaybeCurrentBit) 2850 return MaybeCurrentBit.takeError(); 2851 CurrentBit = MaybeCurrentBit.get(); 2852 // If this module uses a string table, read this as a module-level VST. 2853 if (UseStrtab) { 2854 if (Error Err = parseGlobalValueSymbolTable()) 2855 return Err; 2856 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2857 return JumpFailed; 2858 return Error::success(); 2859 } 2860 // Otherwise, the VST will be in a similar format to a function-level VST, 2861 // and will contain symbol names. 2862 } 2863 2864 // Compute the delta between the bitcode indices in the VST (the word offset 2865 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 2866 // expected by the lazy reader. The reader's EnterSubBlock expects to have 2867 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 2868 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 2869 // just before entering the VST subblock because: 1) the EnterSubBlock 2870 // changes the AbbrevID width; 2) the VST block is nested within the same 2871 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 2872 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 2873 // jump to the FUNCTION_BLOCK using this offset later, we don't want 2874 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 2875 unsigned FuncBitcodeOffsetDelta = 2876 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2877 2878 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2879 return Err; 2880 2881 SmallVector<uint64_t, 64> Record; 2882 2883 Triple TT(TheModule->getTargetTriple()); 2884 2885 // Read all the records for this value table. 2886 SmallString<128> ValueName; 2887 2888 while (true) { 2889 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2890 if (!MaybeEntry) 2891 return MaybeEntry.takeError(); 2892 BitstreamEntry Entry = MaybeEntry.get(); 2893 2894 switch (Entry.Kind) { 2895 case BitstreamEntry::SubBlock: // Handled for us already. 2896 case BitstreamEntry::Error: 2897 return error("Malformed block"); 2898 case BitstreamEntry::EndBlock: 2899 if (Offset > 0) 2900 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2901 return JumpFailed; 2902 return Error::success(); 2903 case BitstreamEntry::Record: 2904 // The interesting case. 2905 break; 2906 } 2907 2908 // Read a record. 2909 Record.clear(); 2910 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2911 if (!MaybeRecord) 2912 return MaybeRecord.takeError(); 2913 switch (MaybeRecord.get()) { 2914 default: // Default behavior: unknown type. 2915 break; 2916 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 2917 Expected<Value *> ValOrErr = recordValue(Record, 1, TT); 2918 if (Error Err = ValOrErr.takeError()) 2919 return Err; 2920 ValOrErr.get(); 2921 break; 2922 } 2923 case bitc::VST_CODE_FNENTRY: { 2924 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 2925 Expected<Value *> ValOrErr = recordValue(Record, 2, TT); 2926 if (Error Err = ValOrErr.takeError()) 2927 return Err; 2928 Value *V = ValOrErr.get(); 2929 2930 // Ignore function offsets emitted for aliases of functions in older 2931 // versions of LLVM. 2932 if (auto *F = dyn_cast<Function>(V)) 2933 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record); 2934 break; 2935 } 2936 case bitc::VST_CODE_BBENTRY: { 2937 if (convertToString(Record, 1, ValueName)) 2938 return error("Invalid bbentry record"); 2939 BasicBlock *BB = getBasicBlock(Record[0]); 2940 if (!BB) 2941 return error("Invalid bbentry record"); 2942 2943 BB->setName(StringRef(ValueName.data(), ValueName.size())); 2944 ValueName.clear(); 2945 break; 2946 } 2947 } 2948 } 2949 } 2950 2951 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2952 /// encoding. 2953 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2954 if ((V & 1) == 0) 2955 return V >> 1; 2956 if (V != 1) 2957 return -(V >> 1); 2958 // There is no such thing as -0 with integers. "-0" really means MININT. 2959 return 1ULL << 63; 2960 } 2961 2962 /// Resolve all of the initializers for global values and aliases that we can. 2963 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 2964 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist; 2965 std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInitWorklist; 2966 std::vector<FunctionOperandInfo> FunctionOperandWorklist; 2967 2968 GlobalInitWorklist.swap(GlobalInits); 2969 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 2970 FunctionOperandWorklist.swap(FunctionOperands); 2971 2972 while (!GlobalInitWorklist.empty()) { 2973 unsigned ValID = GlobalInitWorklist.back().second; 2974 if (ValID >= ValueList.size()) { 2975 // Not ready to resolve this yet, it requires something later in the file. 2976 GlobalInits.push_back(GlobalInitWorklist.back()); 2977 } else { 2978 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 2979 if (!MaybeC) 2980 return MaybeC.takeError(); 2981 GlobalInitWorklist.back().first->setInitializer(MaybeC.get()); 2982 } 2983 GlobalInitWorklist.pop_back(); 2984 } 2985 2986 while (!IndirectSymbolInitWorklist.empty()) { 2987 unsigned ValID = IndirectSymbolInitWorklist.back().second; 2988 if (ValID >= ValueList.size()) { 2989 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 2990 } else { 2991 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 2992 if (!MaybeC) 2993 return MaybeC.takeError(); 2994 Constant *C = MaybeC.get(); 2995 GlobalValue *GV = IndirectSymbolInitWorklist.back().first; 2996 if (auto *GA = dyn_cast<GlobalAlias>(GV)) { 2997 if (C->getType() != GV->getType()) 2998 return error("Alias and aliasee types don't match"); 2999 GA->setAliasee(C); 3000 } else if (auto *GI = dyn_cast<GlobalIFunc>(GV)) { 3001 GI->setResolver(C); 3002 } else { 3003 return error("Expected an alias or an ifunc"); 3004 } 3005 } 3006 IndirectSymbolInitWorklist.pop_back(); 3007 } 3008 3009 while (!FunctionOperandWorklist.empty()) { 3010 FunctionOperandInfo &Info = FunctionOperandWorklist.back(); 3011 if (Info.PersonalityFn) { 3012 unsigned ValID = Info.PersonalityFn - 1; 3013 if (ValID < ValueList.size()) { 3014 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 3015 if (!MaybeC) 3016 return MaybeC.takeError(); 3017 Info.F->setPersonalityFn(MaybeC.get()); 3018 Info.PersonalityFn = 0; 3019 } 3020 } 3021 if (Info.Prefix) { 3022 unsigned ValID = Info.Prefix - 1; 3023 if (ValID < ValueList.size()) { 3024 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 3025 if (!MaybeC) 3026 return MaybeC.takeError(); 3027 Info.F->setPrefixData(MaybeC.get()); 3028 Info.Prefix = 0; 3029 } 3030 } 3031 if (Info.Prologue) { 3032 unsigned ValID = Info.Prologue - 1; 3033 if (ValID < ValueList.size()) { 3034 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 3035 if (!MaybeC) 3036 return MaybeC.takeError(); 3037 Info.F->setPrologueData(MaybeC.get()); 3038 Info.Prologue = 0; 3039 } 3040 } 3041 if (Info.PersonalityFn || Info.Prefix || Info.Prologue) 3042 FunctionOperands.push_back(Info); 3043 FunctionOperandWorklist.pop_back(); 3044 } 3045 3046 return Error::success(); 3047 } 3048 3049 APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 3050 SmallVector<uint64_t, 8> Words(Vals.size()); 3051 transform(Vals, Words.begin(), 3052 BitcodeReader::decodeSignRotatedValue); 3053 3054 return APInt(TypeBits, Words); 3055 } 3056 3057 Error BitcodeReader::parseConstants() { 3058 if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 3059 return Err; 3060 3061 SmallVector<uint64_t, 64> Record; 3062 3063 // Read all the records for this value table. 3064 Type *CurTy = Type::getInt32Ty(Context); 3065 unsigned Int32TyID = getVirtualTypeID(CurTy); 3066 unsigned CurTyID = Int32TyID; 3067 Type *CurElemTy = nullptr; 3068 unsigned NextCstNo = ValueList.size(); 3069 3070 while (true) { 3071 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 3072 if (!MaybeEntry) 3073 return MaybeEntry.takeError(); 3074 BitstreamEntry Entry = MaybeEntry.get(); 3075 3076 switch (Entry.Kind) { 3077 case BitstreamEntry::SubBlock: // Handled for us already. 3078 case BitstreamEntry::Error: 3079 return error("Malformed block"); 3080 case BitstreamEntry::EndBlock: 3081 if (NextCstNo != ValueList.size()) 3082 return error("Invalid constant reference"); 3083 return Error::success(); 3084 case BitstreamEntry::Record: 3085 // The interesting case. 3086 break; 3087 } 3088 3089 // Read a record. 3090 Record.clear(); 3091 Type *VoidType = Type::getVoidTy(Context); 3092 Value *V = nullptr; 3093 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 3094 if (!MaybeBitCode) 3095 return MaybeBitCode.takeError(); 3096 switch (unsigned BitCode = MaybeBitCode.get()) { 3097 default: // Default behavior: unknown constant 3098 case bitc::CST_CODE_UNDEF: // UNDEF 3099 V = UndefValue::get(CurTy); 3100 break; 3101 case bitc::CST_CODE_POISON: // POISON 3102 V = PoisonValue::get(CurTy); 3103 break; 3104 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 3105 if (Record.empty()) 3106 return error("Invalid settype record"); 3107 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 3108 return error("Invalid settype record"); 3109 if (TypeList[Record[0]] == VoidType) 3110 return error("Invalid constant type"); 3111 CurTyID = Record[0]; 3112 CurTy = TypeList[CurTyID]; 3113 CurElemTy = getPtrElementTypeByID(CurTyID); 3114 continue; // Skip the ValueList manipulation. 3115 case bitc::CST_CODE_NULL: // NULL 3116 if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy()) 3117 return error("Invalid type for a constant null value"); 3118 if (auto *TETy = dyn_cast<TargetExtType>(CurTy)) 3119 if (!TETy->hasProperty(TargetExtType::HasZeroInit)) 3120 return error("Invalid type for a constant null value"); 3121 V = Constant::getNullValue(CurTy); 3122 break; 3123 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 3124 if (!CurTy->isIntOrIntVectorTy() || Record.empty()) 3125 return error("Invalid integer const record"); 3126 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 3127 break; 3128 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 3129 if (!CurTy->isIntOrIntVectorTy() || Record.empty()) 3130 return error("Invalid wide integer const record"); 3131 3132 auto *ScalarTy = cast<IntegerType>(CurTy->getScalarType()); 3133 APInt VInt = readWideAPInt(Record, ScalarTy->getBitWidth()); 3134 V = ConstantInt::get(CurTy, VInt); 3135 break; 3136 } 3137 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 3138 if (Record.empty()) 3139 return error("Invalid float const record"); 3140 3141 auto *ScalarTy = CurTy->getScalarType(); 3142 if (ScalarTy->isHalfTy()) 3143 V = ConstantFP::get(CurTy, APFloat(APFloat::IEEEhalf(), 3144 APInt(16, (uint16_t)Record[0]))); 3145 else if (ScalarTy->isBFloatTy()) 3146 V = ConstantFP::get( 3147 CurTy, APFloat(APFloat::BFloat(), APInt(16, (uint32_t)Record[0]))); 3148 else if (ScalarTy->isFloatTy()) 3149 V = ConstantFP::get(CurTy, APFloat(APFloat::IEEEsingle(), 3150 APInt(32, (uint32_t)Record[0]))); 3151 else if (ScalarTy->isDoubleTy()) 3152 V = ConstantFP::get( 3153 CurTy, APFloat(APFloat::IEEEdouble(), APInt(64, Record[0]))); 3154 else if (ScalarTy->isX86_FP80Ty()) { 3155 // Bits are not stored the same way as a normal i80 APInt, compensate. 3156 uint64_t Rearrange[2]; 3157 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 3158 Rearrange[1] = Record[0] >> 48; 3159 V = ConstantFP::get( 3160 CurTy, APFloat(APFloat::x87DoubleExtended(), APInt(80, Rearrange))); 3161 } else if (ScalarTy->isFP128Ty()) 3162 V = ConstantFP::get(CurTy, 3163 APFloat(APFloat::IEEEquad(), APInt(128, Record))); 3164 else if (ScalarTy->isPPC_FP128Ty()) 3165 V = ConstantFP::get( 3166 CurTy, APFloat(APFloat::PPCDoubleDouble(), APInt(128, Record))); 3167 else 3168 V = UndefValue::get(CurTy); 3169 break; 3170 } 3171 3172 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 3173 if (Record.empty()) 3174 return error("Invalid aggregate record"); 3175 3176 unsigned Size = Record.size(); 3177 SmallVector<unsigned, 16> Elts; 3178 for (unsigned i = 0; i != Size; ++i) 3179 Elts.push_back(Record[i]); 3180 3181 if (isa<StructType>(CurTy)) { 3182 V = BitcodeConstant::create( 3183 Alloc, CurTy, BitcodeConstant::ConstantStructOpcode, Elts); 3184 } else if (isa<ArrayType>(CurTy)) { 3185 V = BitcodeConstant::create(Alloc, CurTy, 3186 BitcodeConstant::ConstantArrayOpcode, Elts); 3187 } else if (isa<VectorType>(CurTy)) { 3188 V = BitcodeConstant::create( 3189 Alloc, CurTy, BitcodeConstant::ConstantVectorOpcode, Elts); 3190 } else { 3191 V = UndefValue::get(CurTy); 3192 } 3193 break; 3194 } 3195 case bitc::CST_CODE_STRING: // STRING: [values] 3196 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 3197 if (Record.empty()) 3198 return error("Invalid string record"); 3199 3200 SmallString<16> Elts(Record.begin(), Record.end()); 3201 V = ConstantDataArray::getString(Context, Elts, 3202 BitCode == bitc::CST_CODE_CSTRING); 3203 break; 3204 } 3205 case bitc::CST_CODE_DATA: {// DATA: [n x value] 3206 if (Record.empty()) 3207 return error("Invalid data record"); 3208 3209 Type *EltTy; 3210 if (auto *Array = dyn_cast<ArrayType>(CurTy)) 3211 EltTy = Array->getElementType(); 3212 else 3213 EltTy = cast<VectorType>(CurTy)->getElementType(); 3214 if (EltTy->isIntegerTy(8)) { 3215 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 3216 if (isa<VectorType>(CurTy)) 3217 V = ConstantDataVector::get(Context, Elts); 3218 else 3219 V = ConstantDataArray::get(Context, Elts); 3220 } else if (EltTy->isIntegerTy(16)) { 3221 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 3222 if (isa<VectorType>(CurTy)) 3223 V = ConstantDataVector::get(Context, Elts); 3224 else 3225 V = ConstantDataArray::get(Context, Elts); 3226 } else if (EltTy->isIntegerTy(32)) { 3227 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 3228 if (isa<VectorType>(CurTy)) 3229 V = ConstantDataVector::get(Context, Elts); 3230 else 3231 V = ConstantDataArray::get(Context, Elts); 3232 } else if (EltTy->isIntegerTy(64)) { 3233 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 3234 if (isa<VectorType>(CurTy)) 3235 V = ConstantDataVector::get(Context, Elts); 3236 else 3237 V = ConstantDataArray::get(Context, Elts); 3238 } else if (EltTy->isHalfTy()) { 3239 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 3240 if (isa<VectorType>(CurTy)) 3241 V = ConstantDataVector::getFP(EltTy, Elts); 3242 else 3243 V = ConstantDataArray::getFP(EltTy, Elts); 3244 } else if (EltTy->isBFloatTy()) { 3245 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 3246 if (isa<VectorType>(CurTy)) 3247 V = ConstantDataVector::getFP(EltTy, Elts); 3248 else 3249 V = ConstantDataArray::getFP(EltTy, Elts); 3250 } else if (EltTy->isFloatTy()) { 3251 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 3252 if (isa<VectorType>(CurTy)) 3253 V = ConstantDataVector::getFP(EltTy, Elts); 3254 else 3255 V = ConstantDataArray::getFP(EltTy, Elts); 3256 } else if (EltTy->isDoubleTy()) { 3257 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 3258 if (isa<VectorType>(CurTy)) 3259 V = ConstantDataVector::getFP(EltTy, Elts); 3260 else 3261 V = ConstantDataArray::getFP(EltTy, Elts); 3262 } else { 3263 return error("Invalid type for value"); 3264 } 3265 break; 3266 } 3267 case bitc::CST_CODE_CE_UNOP: { // CE_UNOP: [opcode, opval] 3268 if (Record.size() < 2) 3269 return error("Invalid unary op constexpr record"); 3270 int Opc = getDecodedUnaryOpcode(Record[0], CurTy); 3271 if (Opc < 0) { 3272 V = UndefValue::get(CurTy); // Unknown unop. 3273 } else { 3274 V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[1]); 3275 } 3276 break; 3277 } 3278 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 3279 if (Record.size() < 3) 3280 return error("Invalid binary op constexpr record"); 3281 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 3282 if (Opc < 0) { 3283 V = UndefValue::get(CurTy); // Unknown binop. 3284 } else { 3285 uint8_t Flags = 0; 3286 if (Record.size() >= 4) { 3287 if (Opc == Instruction::Add || 3288 Opc == Instruction::Sub || 3289 Opc == Instruction::Mul || 3290 Opc == Instruction::Shl) { 3291 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3292 Flags |= OverflowingBinaryOperator::NoSignedWrap; 3293 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3294 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 3295 } else if (Opc == Instruction::SDiv || 3296 Opc == Instruction::UDiv || 3297 Opc == Instruction::LShr || 3298 Opc == Instruction::AShr) { 3299 if (Record[3] & (1 << bitc::PEO_EXACT)) 3300 Flags |= PossiblyExactOperator::IsExact; 3301 } 3302 } 3303 V = BitcodeConstant::create(Alloc, CurTy, {(uint8_t)Opc, Flags}, 3304 {(unsigned)Record[1], (unsigned)Record[2]}); 3305 } 3306 break; 3307 } 3308 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 3309 if (Record.size() < 3) 3310 return error("Invalid cast constexpr record"); 3311 int Opc = getDecodedCastOpcode(Record[0]); 3312 if (Opc < 0) { 3313 V = UndefValue::get(CurTy); // Unknown cast. 3314 } else { 3315 unsigned OpTyID = Record[1]; 3316 Type *OpTy = getTypeByID(OpTyID); 3317 if (!OpTy) 3318 return error("Invalid cast constexpr record"); 3319 V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[2]); 3320 } 3321 break; 3322 } 3323 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands] 3324 case bitc::CST_CODE_CE_GEP: // [ty, n x operands] 3325 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX_OLD: // [ty, flags, n x 3326 // operands] 3327 case bitc::CST_CODE_CE_GEP_WITH_INRANGE: { // [ty, flags, start, end, n x 3328 // operands] 3329 if (Record.size() < 2) 3330 return error("Constant GEP record must have at least two elements"); 3331 unsigned OpNum = 0; 3332 Type *PointeeType = nullptr; 3333 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX_OLD || 3334 BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE || Record.size() % 2) 3335 PointeeType = getTypeByID(Record[OpNum++]); 3336 3337 bool InBounds = false; 3338 std::optional<ConstantRange> InRange; 3339 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX_OLD) { 3340 uint64_t Op = Record[OpNum++]; 3341 InBounds = Op & 1; 3342 unsigned InRangeIndex = Op >> 1; 3343 // "Upgrade" inrange by dropping it. The feature is too niche to 3344 // bother. 3345 (void)InRangeIndex; 3346 } else if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE) { 3347 uint64_t Op = Record[OpNum++]; 3348 InBounds = Op & 1; 3349 Expected<ConstantRange> MaybeInRange = readConstantRange(Record, OpNum); 3350 if (!MaybeInRange) 3351 return MaybeInRange.takeError(); 3352 InRange = MaybeInRange.get(); 3353 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 3354 InBounds = true; 3355 3356 SmallVector<unsigned, 16> Elts; 3357 unsigned BaseTypeID = Record[OpNum]; 3358 while (OpNum != Record.size()) { 3359 unsigned ElTyID = Record[OpNum++]; 3360 Type *ElTy = getTypeByID(ElTyID); 3361 if (!ElTy) 3362 return error("Invalid getelementptr constexpr record"); 3363 Elts.push_back(Record[OpNum++]); 3364 } 3365 3366 if (Elts.size() < 1) 3367 return error("Invalid gep with no operands"); 3368 3369 Type *BaseType = getTypeByID(BaseTypeID); 3370 if (isa<VectorType>(BaseType)) { 3371 BaseTypeID = getContainedTypeID(BaseTypeID, 0); 3372 BaseType = getTypeByID(BaseTypeID); 3373 } 3374 3375 PointerType *OrigPtrTy = dyn_cast_or_null<PointerType>(BaseType); 3376 if (!OrigPtrTy) 3377 return error("GEP base operand must be pointer or vector of pointer"); 3378 3379 if (!PointeeType) { 3380 PointeeType = getPtrElementTypeByID(BaseTypeID); 3381 if (!PointeeType) 3382 return error("Missing element type for old-style constant GEP"); 3383 } 3384 3385 V = BitcodeConstant::create( 3386 Alloc, CurTy, 3387 {Instruction::GetElementPtr, InBounds, PointeeType, InRange}, Elts); 3388 break; 3389 } 3390 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 3391 if (Record.size() < 3) 3392 return error("Invalid select constexpr record"); 3393 3394 V = BitcodeConstant::create( 3395 Alloc, CurTy, Instruction::Select, 3396 {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]}); 3397 break; 3398 } 3399 case bitc::CST_CODE_CE_EXTRACTELT 3400 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 3401 if (Record.size() < 3) 3402 return error("Invalid extractelement constexpr record"); 3403 unsigned OpTyID = Record[0]; 3404 VectorType *OpTy = 3405 dyn_cast_or_null<VectorType>(getTypeByID(OpTyID)); 3406 if (!OpTy) 3407 return error("Invalid extractelement constexpr record"); 3408 unsigned IdxRecord; 3409 if (Record.size() == 4) { 3410 unsigned IdxTyID = Record[2]; 3411 Type *IdxTy = getTypeByID(IdxTyID); 3412 if (!IdxTy) 3413 return error("Invalid extractelement constexpr record"); 3414 IdxRecord = Record[3]; 3415 } else { 3416 // Deprecated, but still needed to read old bitcode files. 3417 IdxRecord = Record[2]; 3418 } 3419 V = BitcodeConstant::create(Alloc, CurTy, Instruction::ExtractElement, 3420 {(unsigned)Record[1], IdxRecord}); 3421 break; 3422 } 3423 case bitc::CST_CODE_CE_INSERTELT 3424 : { // CE_INSERTELT: [opval, opval, opty, opval] 3425 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 3426 if (Record.size() < 3 || !OpTy) 3427 return error("Invalid insertelement constexpr record"); 3428 unsigned IdxRecord; 3429 if (Record.size() == 4) { 3430 unsigned IdxTyID = Record[2]; 3431 Type *IdxTy = getTypeByID(IdxTyID); 3432 if (!IdxTy) 3433 return error("Invalid insertelement constexpr record"); 3434 IdxRecord = Record[3]; 3435 } else { 3436 // Deprecated, but still needed to read old bitcode files. 3437 IdxRecord = Record[2]; 3438 } 3439 V = BitcodeConstant::create( 3440 Alloc, CurTy, Instruction::InsertElement, 3441 {(unsigned)Record[0], (unsigned)Record[1], IdxRecord}); 3442 break; 3443 } 3444 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 3445 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 3446 if (Record.size() < 3 || !OpTy) 3447 return error("Invalid shufflevector constexpr record"); 3448 V = BitcodeConstant::create( 3449 Alloc, CurTy, Instruction::ShuffleVector, 3450 {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]}); 3451 break; 3452 } 3453 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 3454 VectorType *RTy = dyn_cast<VectorType>(CurTy); 3455 VectorType *OpTy = 3456 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 3457 if (Record.size() < 4 || !RTy || !OpTy) 3458 return error("Invalid shufflevector constexpr record"); 3459 V = BitcodeConstant::create( 3460 Alloc, CurTy, Instruction::ShuffleVector, 3461 {(unsigned)Record[1], (unsigned)Record[2], (unsigned)Record[3]}); 3462 break; 3463 } 3464 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 3465 if (Record.size() < 4) 3466 return error("Invalid cmp constexpt record"); 3467 unsigned OpTyID = Record[0]; 3468 Type *OpTy = getTypeByID(OpTyID); 3469 if (!OpTy) 3470 return error("Invalid cmp constexpr record"); 3471 V = BitcodeConstant::create( 3472 Alloc, CurTy, 3473 {(uint8_t)(OpTy->isFPOrFPVectorTy() ? Instruction::FCmp 3474 : Instruction::ICmp), 3475 (uint8_t)Record[3]}, 3476 {(unsigned)Record[1], (unsigned)Record[2]}); 3477 break; 3478 } 3479 // This maintains backward compatibility, pre-asm dialect keywords. 3480 // Deprecated, but still needed to read old bitcode files. 3481 case bitc::CST_CODE_INLINEASM_OLD: { 3482 if (Record.size() < 2) 3483 return error("Invalid inlineasm record"); 3484 std::string AsmStr, ConstrStr; 3485 bool HasSideEffects = Record[0] & 1; 3486 bool IsAlignStack = Record[0] >> 1; 3487 unsigned AsmStrSize = Record[1]; 3488 if (2+AsmStrSize >= Record.size()) 3489 return error("Invalid inlineasm record"); 3490 unsigned ConstStrSize = Record[2+AsmStrSize]; 3491 if (3+AsmStrSize+ConstStrSize > Record.size()) 3492 return error("Invalid inlineasm record"); 3493 3494 for (unsigned i = 0; i != AsmStrSize; ++i) 3495 AsmStr += (char)Record[2+i]; 3496 for (unsigned i = 0; i != ConstStrSize; ++i) 3497 ConstrStr += (char)Record[3+AsmStrSize+i]; 3498 UpgradeInlineAsmString(&AsmStr); 3499 if (!CurElemTy) 3500 return error("Missing element type for old-style inlineasm"); 3501 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr, 3502 HasSideEffects, IsAlignStack); 3503 break; 3504 } 3505 // This version adds support for the asm dialect keywords (e.g., 3506 // inteldialect). 3507 case bitc::CST_CODE_INLINEASM_OLD2: { 3508 if (Record.size() < 2) 3509 return error("Invalid inlineasm record"); 3510 std::string AsmStr, ConstrStr; 3511 bool HasSideEffects = Record[0] & 1; 3512 bool IsAlignStack = (Record[0] >> 1) & 1; 3513 unsigned AsmDialect = Record[0] >> 2; 3514 unsigned AsmStrSize = Record[1]; 3515 if (2+AsmStrSize >= Record.size()) 3516 return error("Invalid inlineasm record"); 3517 unsigned ConstStrSize = Record[2+AsmStrSize]; 3518 if (3+AsmStrSize+ConstStrSize > Record.size()) 3519 return error("Invalid inlineasm record"); 3520 3521 for (unsigned i = 0; i != AsmStrSize; ++i) 3522 AsmStr += (char)Record[2+i]; 3523 for (unsigned i = 0; i != ConstStrSize; ++i) 3524 ConstrStr += (char)Record[3+AsmStrSize+i]; 3525 UpgradeInlineAsmString(&AsmStr); 3526 if (!CurElemTy) 3527 return error("Missing element type for old-style inlineasm"); 3528 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr, 3529 HasSideEffects, IsAlignStack, 3530 InlineAsm::AsmDialect(AsmDialect)); 3531 break; 3532 } 3533 // This version adds support for the unwind keyword. 3534 case bitc::CST_CODE_INLINEASM_OLD3: { 3535 if (Record.size() < 2) 3536 return error("Invalid inlineasm record"); 3537 unsigned OpNum = 0; 3538 std::string AsmStr, ConstrStr; 3539 bool HasSideEffects = Record[OpNum] & 1; 3540 bool IsAlignStack = (Record[OpNum] >> 1) & 1; 3541 unsigned AsmDialect = (Record[OpNum] >> 2) & 1; 3542 bool CanThrow = (Record[OpNum] >> 3) & 1; 3543 ++OpNum; 3544 unsigned AsmStrSize = Record[OpNum]; 3545 ++OpNum; 3546 if (OpNum + AsmStrSize >= Record.size()) 3547 return error("Invalid inlineasm record"); 3548 unsigned ConstStrSize = Record[OpNum + AsmStrSize]; 3549 if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size()) 3550 return error("Invalid inlineasm record"); 3551 3552 for (unsigned i = 0; i != AsmStrSize; ++i) 3553 AsmStr += (char)Record[OpNum + i]; 3554 ++OpNum; 3555 for (unsigned i = 0; i != ConstStrSize; ++i) 3556 ConstrStr += (char)Record[OpNum + AsmStrSize + i]; 3557 UpgradeInlineAsmString(&AsmStr); 3558 if (!CurElemTy) 3559 return error("Missing element type for old-style inlineasm"); 3560 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr, 3561 HasSideEffects, IsAlignStack, 3562 InlineAsm::AsmDialect(AsmDialect), CanThrow); 3563 break; 3564 } 3565 // This version adds explicit function type. 3566 case bitc::CST_CODE_INLINEASM: { 3567 if (Record.size() < 3) 3568 return error("Invalid inlineasm record"); 3569 unsigned OpNum = 0; 3570 auto *FnTy = dyn_cast_or_null<FunctionType>(getTypeByID(Record[OpNum])); 3571 ++OpNum; 3572 if (!FnTy) 3573 return error("Invalid inlineasm record"); 3574 std::string AsmStr, ConstrStr; 3575 bool HasSideEffects = Record[OpNum] & 1; 3576 bool IsAlignStack = (Record[OpNum] >> 1) & 1; 3577 unsigned AsmDialect = (Record[OpNum] >> 2) & 1; 3578 bool CanThrow = (Record[OpNum] >> 3) & 1; 3579 ++OpNum; 3580 unsigned AsmStrSize = Record[OpNum]; 3581 ++OpNum; 3582 if (OpNum + AsmStrSize >= Record.size()) 3583 return error("Invalid inlineasm record"); 3584 unsigned ConstStrSize = Record[OpNum + AsmStrSize]; 3585 if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size()) 3586 return error("Invalid inlineasm record"); 3587 3588 for (unsigned i = 0; i != AsmStrSize; ++i) 3589 AsmStr += (char)Record[OpNum + i]; 3590 ++OpNum; 3591 for (unsigned i = 0; i != ConstStrSize; ++i) 3592 ConstrStr += (char)Record[OpNum + AsmStrSize + i]; 3593 UpgradeInlineAsmString(&AsmStr); 3594 V = InlineAsm::get(FnTy, AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 3595 InlineAsm::AsmDialect(AsmDialect), CanThrow); 3596 break; 3597 } 3598 case bitc::CST_CODE_BLOCKADDRESS:{ 3599 if (Record.size() < 3) 3600 return error("Invalid blockaddress record"); 3601 unsigned FnTyID = Record[0]; 3602 Type *FnTy = getTypeByID(FnTyID); 3603 if (!FnTy) 3604 return error("Invalid blockaddress record"); 3605 V = BitcodeConstant::create( 3606 Alloc, CurTy, 3607 {BitcodeConstant::BlockAddressOpcode, 0, (unsigned)Record[2]}, 3608 Record[1]); 3609 break; 3610 } 3611 case bitc::CST_CODE_DSO_LOCAL_EQUIVALENT: { 3612 if (Record.size() < 2) 3613 return error("Invalid dso_local record"); 3614 unsigned GVTyID = Record[0]; 3615 Type *GVTy = getTypeByID(GVTyID); 3616 if (!GVTy) 3617 return error("Invalid dso_local record"); 3618 V = BitcodeConstant::create( 3619 Alloc, CurTy, BitcodeConstant::DSOLocalEquivalentOpcode, Record[1]); 3620 break; 3621 } 3622 case bitc::CST_CODE_NO_CFI_VALUE: { 3623 if (Record.size() < 2) 3624 return error("Invalid no_cfi record"); 3625 unsigned GVTyID = Record[0]; 3626 Type *GVTy = getTypeByID(GVTyID); 3627 if (!GVTy) 3628 return error("Invalid no_cfi record"); 3629 V = BitcodeConstant::create(Alloc, CurTy, BitcodeConstant::NoCFIOpcode, 3630 Record[1]); 3631 break; 3632 } 3633 } 3634 3635 assert(V->getType() == getTypeByID(CurTyID) && "Incorrect result type ID"); 3636 if (Error Err = ValueList.assignValue(NextCstNo, V, CurTyID)) 3637 return Err; 3638 ++NextCstNo; 3639 } 3640 } 3641 3642 Error BitcodeReader::parseUseLists() { 3643 if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 3644 return Err; 3645 3646 // Read all the records. 3647 SmallVector<uint64_t, 64> Record; 3648 3649 while (true) { 3650 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 3651 if (!MaybeEntry) 3652 return MaybeEntry.takeError(); 3653 BitstreamEntry Entry = MaybeEntry.get(); 3654 3655 switch (Entry.Kind) { 3656 case BitstreamEntry::SubBlock: // Handled for us already. 3657 case BitstreamEntry::Error: 3658 return error("Malformed block"); 3659 case BitstreamEntry::EndBlock: 3660 return Error::success(); 3661 case BitstreamEntry::Record: 3662 // The interesting case. 3663 break; 3664 } 3665 3666 // Read a use list record. 3667 Record.clear(); 3668 bool IsBB = false; 3669 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 3670 if (!MaybeRecord) 3671 return MaybeRecord.takeError(); 3672 switch (MaybeRecord.get()) { 3673 default: // Default behavior: unknown type. 3674 break; 3675 case bitc::USELIST_CODE_BB: 3676 IsBB = true; 3677 [[fallthrough]]; 3678 case bitc::USELIST_CODE_DEFAULT: { 3679 unsigned RecordLength = Record.size(); 3680 if (RecordLength < 3) 3681 // Records should have at least an ID and two indexes. 3682 return error("Invalid record"); 3683 unsigned ID = Record.pop_back_val(); 3684 3685 Value *V; 3686 if (IsBB) { 3687 assert(ID < FunctionBBs.size() && "Basic block not found"); 3688 V = FunctionBBs[ID]; 3689 } else 3690 V = ValueList[ID]; 3691 unsigned NumUses = 0; 3692 SmallDenseMap<const Use *, unsigned, 16> Order; 3693 for (const Use &U : V->materialized_uses()) { 3694 if (++NumUses > Record.size()) 3695 break; 3696 Order[&U] = Record[NumUses - 1]; 3697 } 3698 if (Order.size() != Record.size() || NumUses > Record.size()) 3699 // Mismatches can happen if the functions are being materialized lazily 3700 // (out-of-order), or a value has been upgraded. 3701 break; 3702 3703 V->sortUseList([&](const Use &L, const Use &R) { 3704 return Order.lookup(&L) < Order.lookup(&R); 3705 }); 3706 break; 3707 } 3708 } 3709 } 3710 } 3711 3712 /// When we see the block for metadata, remember where it is and then skip it. 3713 /// This lets us lazily deserialize the metadata. 3714 Error BitcodeReader::rememberAndSkipMetadata() { 3715 // Save the current stream state. 3716 uint64_t CurBit = Stream.GetCurrentBitNo(); 3717 DeferredMetadataInfo.push_back(CurBit); 3718 3719 // Skip over the block for now. 3720 if (Error Err = Stream.SkipBlock()) 3721 return Err; 3722 return Error::success(); 3723 } 3724 3725 Error BitcodeReader::materializeMetadata() { 3726 for (uint64_t BitPos : DeferredMetadataInfo) { 3727 // Move the bit stream to the saved position. 3728 if (Error JumpFailed = Stream.JumpToBit(BitPos)) 3729 return JumpFailed; 3730 if (Error Err = MDLoader->parseModuleMetadata()) 3731 return Err; 3732 } 3733 3734 // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level 3735 // metadata. Only upgrade if the new option doesn't exist to avoid upgrade 3736 // multiple times. 3737 if (!TheModule->getNamedMetadata("llvm.linker.options")) { 3738 if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) { 3739 NamedMDNode *LinkerOpts = 3740 TheModule->getOrInsertNamedMetadata("llvm.linker.options"); 3741 for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands()) 3742 LinkerOpts->addOperand(cast<MDNode>(MDOptions)); 3743 } 3744 } 3745 3746 DeferredMetadataInfo.clear(); 3747 return Error::success(); 3748 } 3749 3750 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 3751 3752 /// When we see the block for a function body, remember where it is and then 3753 /// skip it. This lets us lazily deserialize the functions. 3754 Error BitcodeReader::rememberAndSkipFunctionBody() { 3755 // Get the function we are talking about. 3756 if (FunctionsWithBodies.empty()) 3757 return error("Insufficient function protos"); 3758 3759 Function *Fn = FunctionsWithBodies.back(); 3760 FunctionsWithBodies.pop_back(); 3761 3762 // Save the current stream state. 3763 uint64_t CurBit = Stream.GetCurrentBitNo(); 3764 assert( 3765 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 3766 "Mismatch between VST and scanned function offsets"); 3767 DeferredFunctionInfo[Fn] = CurBit; 3768 3769 // Skip over the function block for now. 3770 if (Error Err = Stream.SkipBlock()) 3771 return Err; 3772 return Error::success(); 3773 } 3774 3775 Error BitcodeReader::globalCleanup() { 3776 // Patch the initializers for globals and aliases up. 3777 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3778 return Err; 3779 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 3780 return error("Malformed global initializer set"); 3781 3782 // Look for intrinsic functions which need to be upgraded at some point 3783 // and functions that need to have their function attributes upgraded. 3784 for (Function &F : *TheModule) { 3785 MDLoader->upgradeDebugIntrinsics(F); 3786 Function *NewFn; 3787 // If PreserveInputDbgFormat=true, then we don't know whether we want 3788 // intrinsics or records, and we won't perform any conversions in either 3789 // case, so don't upgrade intrinsics to records. 3790 if (UpgradeIntrinsicFunction( 3791 &F, NewFn, PreserveInputDbgFormat != cl::boolOrDefault::BOU_TRUE)) 3792 UpgradedIntrinsics[&F] = NewFn; 3793 // Look for functions that rely on old function attribute behavior. 3794 UpgradeFunctionAttributes(F); 3795 } 3796 3797 // Look for global variables which need to be renamed. 3798 std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables; 3799 for (GlobalVariable &GV : TheModule->globals()) 3800 if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV)) 3801 UpgradedVariables.emplace_back(&GV, Upgraded); 3802 for (auto &Pair : UpgradedVariables) { 3803 Pair.first->eraseFromParent(); 3804 TheModule->insertGlobalVariable(Pair.second); 3805 } 3806 3807 // Force deallocation of memory for these vectors to favor the client that 3808 // want lazy deserialization. 3809 std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits); 3810 std::vector<std::pair<GlobalValue *, unsigned>>().swap(IndirectSymbolInits); 3811 return Error::success(); 3812 } 3813 3814 /// Support for lazy parsing of function bodies. This is required if we 3815 /// either have an old bitcode file without a VST forward declaration record, 3816 /// or if we have an anonymous function being materialized, since anonymous 3817 /// functions do not have a name and are therefore not in the VST. 3818 Error BitcodeReader::rememberAndSkipFunctionBodies() { 3819 if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit)) 3820 return JumpFailed; 3821 3822 if (Stream.AtEndOfStream()) 3823 return error("Could not find function in stream"); 3824 3825 if (!SeenFirstFunctionBody) 3826 return error("Trying to materialize functions before seeing function blocks"); 3827 3828 // An old bitcode file with the symbol table at the end would have 3829 // finished the parse greedily. 3830 assert(SeenValueSymbolTable); 3831 3832 SmallVector<uint64_t, 64> Record; 3833 3834 while (true) { 3835 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3836 if (!MaybeEntry) 3837 return MaybeEntry.takeError(); 3838 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3839 3840 switch (Entry.Kind) { 3841 default: 3842 return error("Expect SubBlock"); 3843 case BitstreamEntry::SubBlock: 3844 switch (Entry.ID) { 3845 default: 3846 return error("Expect function block"); 3847 case bitc::FUNCTION_BLOCK_ID: 3848 if (Error Err = rememberAndSkipFunctionBody()) 3849 return Err; 3850 NextUnreadBit = Stream.GetCurrentBitNo(); 3851 return Error::success(); 3852 } 3853 } 3854 } 3855 } 3856 3857 Error BitcodeReaderBase::readBlockInfo() { 3858 Expected<std::optional<BitstreamBlockInfo>> MaybeNewBlockInfo = 3859 Stream.ReadBlockInfoBlock(); 3860 if (!MaybeNewBlockInfo) 3861 return MaybeNewBlockInfo.takeError(); 3862 std::optional<BitstreamBlockInfo> NewBlockInfo = 3863 std::move(MaybeNewBlockInfo.get()); 3864 if (!NewBlockInfo) 3865 return error("Malformed block"); 3866 BlockInfo = std::move(*NewBlockInfo); 3867 return Error::success(); 3868 } 3869 3870 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) { 3871 // v1: [selection_kind, name] 3872 // v2: [strtab_offset, strtab_size, selection_kind] 3873 StringRef Name; 3874 std::tie(Name, Record) = readNameFromStrtab(Record); 3875 3876 if (Record.empty()) 3877 return error("Invalid record"); 3878 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 3879 std::string OldFormatName; 3880 if (!UseStrtab) { 3881 if (Record.size() < 2) 3882 return error("Invalid record"); 3883 unsigned ComdatNameSize = Record[1]; 3884 if (ComdatNameSize > Record.size() - 2) 3885 return error("Comdat name size too large"); 3886 OldFormatName.reserve(ComdatNameSize); 3887 for (unsigned i = 0; i != ComdatNameSize; ++i) 3888 OldFormatName += (char)Record[2 + i]; 3889 Name = OldFormatName; 3890 } 3891 Comdat *C = TheModule->getOrInsertComdat(Name); 3892 C->setSelectionKind(SK); 3893 ComdatList.push_back(C); 3894 return Error::success(); 3895 } 3896 3897 static void inferDSOLocal(GlobalValue *GV) { 3898 // infer dso_local from linkage and visibility if it is not encoded. 3899 if (GV->hasLocalLinkage() || 3900 (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())) 3901 GV->setDSOLocal(true); 3902 } 3903 3904 GlobalValue::SanitizerMetadata deserializeSanitizerMetadata(unsigned V) { 3905 GlobalValue::SanitizerMetadata Meta; 3906 if (V & (1 << 0)) 3907 Meta.NoAddress = true; 3908 if (V & (1 << 1)) 3909 Meta.NoHWAddress = true; 3910 if (V & (1 << 2)) 3911 Meta.Memtag = true; 3912 if (V & (1 << 3)) 3913 Meta.IsDynInit = true; 3914 return Meta; 3915 } 3916 3917 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) { 3918 // v1: [pointer type, isconst, initid, linkage, alignment, section, 3919 // visibility, threadlocal, unnamed_addr, externally_initialized, 3920 // dllstorageclass, comdat, attributes, preemption specifier, 3921 // partition strtab offset, partition strtab size] (name in VST) 3922 // v2: [strtab_offset, strtab_size, v1] 3923 // v3: [v2, code_model] 3924 StringRef Name; 3925 std::tie(Name, Record) = readNameFromStrtab(Record); 3926 3927 if (Record.size() < 6) 3928 return error("Invalid record"); 3929 unsigned TyID = Record[0]; 3930 Type *Ty = getTypeByID(TyID); 3931 if (!Ty) 3932 return error("Invalid record"); 3933 bool isConstant = Record[1] & 1; 3934 bool explicitType = Record[1] & 2; 3935 unsigned AddressSpace; 3936 if (explicitType) { 3937 AddressSpace = Record[1] >> 2; 3938 } else { 3939 if (!Ty->isPointerTy()) 3940 return error("Invalid type for value"); 3941 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 3942 TyID = getContainedTypeID(TyID); 3943 Ty = getTypeByID(TyID); 3944 if (!Ty) 3945 return error("Missing element type for old-style global"); 3946 } 3947 3948 uint64_t RawLinkage = Record[3]; 3949 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 3950 MaybeAlign Alignment; 3951 if (Error Err = parseAlignmentValue(Record[4], Alignment)) 3952 return Err; 3953 std::string Section; 3954 if (Record[5]) { 3955 if (Record[5] - 1 >= SectionTable.size()) 3956 return error("Invalid ID"); 3957 Section = SectionTable[Record[5] - 1]; 3958 } 3959 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 3960 // Local linkage must have default visibility. 3961 // auto-upgrade `hidden` and `protected` for old bitcode. 3962 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 3963 Visibility = getDecodedVisibility(Record[6]); 3964 3965 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 3966 if (Record.size() > 7) 3967 TLM = getDecodedThreadLocalMode(Record[7]); 3968 3969 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3970 if (Record.size() > 8) 3971 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); 3972 3973 bool ExternallyInitialized = false; 3974 if (Record.size() > 9) 3975 ExternallyInitialized = Record[9]; 3976 3977 GlobalVariable *NewGV = 3978 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name, 3979 nullptr, TLM, AddressSpace, ExternallyInitialized); 3980 if (Alignment) 3981 NewGV->setAlignment(*Alignment); 3982 if (!Section.empty()) 3983 NewGV->setSection(Section); 3984 NewGV->setVisibility(Visibility); 3985 NewGV->setUnnamedAddr(UnnamedAddr); 3986 3987 if (Record.size() > 10) { 3988 // A GlobalValue with local linkage cannot have a DLL storage class. 3989 if (!NewGV->hasLocalLinkage()) { 3990 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 3991 } 3992 } else { 3993 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 3994 } 3995 3996 ValueList.push_back(NewGV, getVirtualTypeID(NewGV->getType(), TyID)); 3997 3998 // Remember which value to use for the global initializer. 3999 if (unsigned InitID = Record[2]) 4000 GlobalInits.push_back(std::make_pair(NewGV, InitID - 1)); 4001 4002 if (Record.size() > 11) { 4003 if (unsigned ComdatID = Record[11]) { 4004 if (ComdatID > ComdatList.size()) 4005 return error("Invalid global variable comdat ID"); 4006 NewGV->setComdat(ComdatList[ComdatID - 1]); 4007 } 4008 } else if (hasImplicitComdat(RawLinkage)) { 4009 ImplicitComdatObjects.insert(NewGV); 4010 } 4011 4012 if (Record.size() > 12) { 4013 auto AS = getAttributes(Record[12]).getFnAttrs(); 4014 NewGV->setAttributes(AS); 4015 } 4016 4017 if (Record.size() > 13) { 4018 NewGV->setDSOLocal(getDecodedDSOLocal(Record[13])); 4019 } 4020 inferDSOLocal(NewGV); 4021 4022 // Check whether we have enough values to read a partition name. 4023 if (Record.size() > 15) 4024 NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15])); 4025 4026 if (Record.size() > 16 && Record[16]) { 4027 llvm::GlobalValue::SanitizerMetadata Meta = 4028 deserializeSanitizerMetadata(Record[16]); 4029 NewGV->setSanitizerMetadata(Meta); 4030 } 4031 4032 if (Record.size() > 17 && Record[17]) { 4033 if (auto CM = getDecodedCodeModel(Record[17])) 4034 NewGV->setCodeModel(*CM); 4035 else 4036 return error("Invalid global variable code model"); 4037 } 4038 4039 return Error::success(); 4040 } 4041 4042 void BitcodeReader::callValueTypeCallback(Value *F, unsigned TypeID) { 4043 if (ValueTypeCallback) { 4044 (*ValueTypeCallback)( 4045 F, TypeID, [this](unsigned I) { return getTypeByID(I); }, 4046 [this](unsigned I, unsigned J) { return getContainedTypeID(I, J); }); 4047 } 4048 } 4049 4050 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) { 4051 // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section, 4052 // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat, 4053 // prefixdata, personalityfn, preemption specifier, addrspace] (name in VST) 4054 // v2: [strtab_offset, strtab_size, v1] 4055 StringRef Name; 4056 std::tie(Name, Record) = readNameFromStrtab(Record); 4057 4058 if (Record.size() < 8) 4059 return error("Invalid record"); 4060 unsigned FTyID = Record[0]; 4061 Type *FTy = getTypeByID(FTyID); 4062 if (!FTy) 4063 return error("Invalid record"); 4064 if (isa<PointerType>(FTy)) { 4065 FTyID = getContainedTypeID(FTyID, 0); 4066 FTy = getTypeByID(FTyID); 4067 if (!FTy) 4068 return error("Missing element type for old-style function"); 4069 } 4070 4071 if (!isa<FunctionType>(FTy)) 4072 return error("Invalid type for value"); 4073 auto CC = static_cast<CallingConv::ID>(Record[1]); 4074 if (CC & ~CallingConv::MaxID) 4075 return error("Invalid calling convention ID"); 4076 4077 unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace(); 4078 if (Record.size() > 16) 4079 AddrSpace = Record[16]; 4080 4081 Function *Func = 4082 Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage, 4083 AddrSpace, Name, TheModule); 4084 4085 assert(Func->getFunctionType() == FTy && 4086 "Incorrect fully specified type provided for function"); 4087 FunctionTypeIDs[Func] = FTyID; 4088 4089 Func->setCallingConv(CC); 4090 bool isProto = Record[2]; 4091 uint64_t RawLinkage = Record[3]; 4092 Func->setLinkage(getDecodedLinkage(RawLinkage)); 4093 Func->setAttributes(getAttributes(Record[4])); 4094 callValueTypeCallback(Func, FTyID); 4095 4096 // Upgrade any old-style byval or sret without a type by propagating the 4097 // argument's pointee type. There should be no opaque pointers where the byval 4098 // type is implicit. 4099 for (unsigned i = 0; i != Func->arg_size(); ++i) { 4100 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet, 4101 Attribute::InAlloca}) { 4102 if (!Func->hasParamAttribute(i, Kind)) 4103 continue; 4104 4105 if (Func->getParamAttribute(i, Kind).getValueAsType()) 4106 continue; 4107 4108 Func->removeParamAttr(i, Kind); 4109 4110 unsigned ParamTypeID = getContainedTypeID(FTyID, i + 1); 4111 Type *PtrEltTy = getPtrElementTypeByID(ParamTypeID); 4112 if (!PtrEltTy) 4113 return error("Missing param element type for attribute upgrade"); 4114 4115 Attribute NewAttr; 4116 switch (Kind) { 4117 case Attribute::ByVal: 4118 NewAttr = Attribute::getWithByValType(Context, PtrEltTy); 4119 break; 4120 case Attribute::StructRet: 4121 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy); 4122 break; 4123 case Attribute::InAlloca: 4124 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy); 4125 break; 4126 default: 4127 llvm_unreachable("not an upgraded type attribute"); 4128 } 4129 4130 Func->addParamAttr(i, NewAttr); 4131 } 4132 } 4133 4134 if (Func->getCallingConv() == CallingConv::X86_INTR && 4135 !Func->arg_empty() && !Func->hasParamAttribute(0, Attribute::ByVal)) { 4136 unsigned ParamTypeID = getContainedTypeID(FTyID, 1); 4137 Type *ByValTy = getPtrElementTypeByID(ParamTypeID); 4138 if (!ByValTy) 4139 return error("Missing param element type for x86_intrcc upgrade"); 4140 Attribute NewAttr = Attribute::getWithByValType(Context, ByValTy); 4141 Func->addParamAttr(0, NewAttr); 4142 } 4143 4144 MaybeAlign Alignment; 4145 if (Error Err = parseAlignmentValue(Record[5], Alignment)) 4146 return Err; 4147 if (Alignment) 4148 Func->setAlignment(*Alignment); 4149 if (Record[6]) { 4150 if (Record[6] - 1 >= SectionTable.size()) 4151 return error("Invalid ID"); 4152 Func->setSection(SectionTable[Record[6] - 1]); 4153 } 4154 // Local linkage must have default visibility. 4155 // auto-upgrade `hidden` and `protected` for old bitcode. 4156 if (!Func->hasLocalLinkage()) 4157 Func->setVisibility(getDecodedVisibility(Record[7])); 4158 if (Record.size() > 8 && Record[8]) { 4159 if (Record[8] - 1 >= GCTable.size()) 4160 return error("Invalid ID"); 4161 Func->setGC(GCTable[Record[8] - 1]); 4162 } 4163 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 4164 if (Record.size() > 9) 4165 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); 4166 Func->setUnnamedAddr(UnnamedAddr); 4167 4168 FunctionOperandInfo OperandInfo = {Func, 0, 0, 0}; 4169 if (Record.size() > 10) 4170 OperandInfo.Prologue = Record[10]; 4171 4172 if (Record.size() > 11) { 4173 // A GlobalValue with local linkage cannot have a DLL storage class. 4174 if (!Func->hasLocalLinkage()) { 4175 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 4176 } 4177 } else { 4178 upgradeDLLImportExportLinkage(Func, RawLinkage); 4179 } 4180 4181 if (Record.size() > 12) { 4182 if (unsigned ComdatID = Record[12]) { 4183 if (ComdatID > ComdatList.size()) 4184 return error("Invalid function comdat ID"); 4185 Func->setComdat(ComdatList[ComdatID - 1]); 4186 } 4187 } else if (hasImplicitComdat(RawLinkage)) { 4188 ImplicitComdatObjects.insert(Func); 4189 } 4190 4191 if (Record.size() > 13) 4192 OperandInfo.Prefix = Record[13]; 4193 4194 if (Record.size() > 14) 4195 OperandInfo.PersonalityFn = Record[14]; 4196 4197 if (Record.size() > 15) { 4198 Func->setDSOLocal(getDecodedDSOLocal(Record[15])); 4199 } 4200 inferDSOLocal(Func); 4201 4202 // Record[16] is the address space number. 4203 4204 // Check whether we have enough values to read a partition name. Also make 4205 // sure Strtab has enough values. 4206 if (Record.size() > 18 && Strtab.data() && 4207 Record[17] + Record[18] <= Strtab.size()) { 4208 Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18])); 4209 } 4210 4211 ValueList.push_back(Func, getVirtualTypeID(Func->getType(), FTyID)); 4212 4213 if (OperandInfo.PersonalityFn || OperandInfo.Prefix || OperandInfo.Prologue) 4214 FunctionOperands.push_back(OperandInfo); 4215 4216 // If this is a function with a body, remember the prototype we are 4217 // creating now, so that we can match up the body with them later. 4218 if (!isProto) { 4219 Func->setIsMaterializable(true); 4220 FunctionsWithBodies.push_back(Func); 4221 DeferredFunctionInfo[Func] = 0; 4222 } 4223 return Error::success(); 4224 } 4225 4226 Error BitcodeReader::parseGlobalIndirectSymbolRecord( 4227 unsigned BitCode, ArrayRef<uint64_t> Record) { 4228 // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST) 4229 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 4230 // dllstorageclass, threadlocal, unnamed_addr, 4231 // preemption specifier] (name in VST) 4232 // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage, 4233 // visibility, dllstorageclass, threadlocal, unnamed_addr, 4234 // preemption specifier] (name in VST) 4235 // v2: [strtab_offset, strtab_size, v1] 4236 StringRef Name; 4237 std::tie(Name, Record) = readNameFromStrtab(Record); 4238 4239 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 4240 if (Record.size() < (3 + (unsigned)NewRecord)) 4241 return error("Invalid record"); 4242 unsigned OpNum = 0; 4243 unsigned TypeID = Record[OpNum++]; 4244 Type *Ty = getTypeByID(TypeID); 4245 if (!Ty) 4246 return error("Invalid record"); 4247 4248 unsigned AddrSpace; 4249 if (!NewRecord) { 4250 auto *PTy = dyn_cast<PointerType>(Ty); 4251 if (!PTy) 4252 return error("Invalid type for value"); 4253 AddrSpace = PTy->getAddressSpace(); 4254 TypeID = getContainedTypeID(TypeID); 4255 Ty = getTypeByID(TypeID); 4256 if (!Ty) 4257 return error("Missing element type for old-style indirect symbol"); 4258 } else { 4259 AddrSpace = Record[OpNum++]; 4260 } 4261 4262 auto Val = Record[OpNum++]; 4263 auto Linkage = Record[OpNum++]; 4264 GlobalValue *NewGA; 4265 if (BitCode == bitc::MODULE_CODE_ALIAS || 4266 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 4267 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 4268 TheModule); 4269 else 4270 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 4271 nullptr, TheModule); 4272 4273 // Local linkage must have default visibility. 4274 // auto-upgrade `hidden` and `protected` for old bitcode. 4275 if (OpNum != Record.size()) { 4276 auto VisInd = OpNum++; 4277 if (!NewGA->hasLocalLinkage()) 4278 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 4279 } 4280 if (BitCode == bitc::MODULE_CODE_ALIAS || 4281 BitCode == bitc::MODULE_CODE_ALIAS_OLD) { 4282 if (OpNum != Record.size()) { 4283 auto S = Record[OpNum++]; 4284 // A GlobalValue with local linkage cannot have a DLL storage class. 4285 if (!NewGA->hasLocalLinkage()) 4286 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(S)); 4287 } 4288 else 4289 upgradeDLLImportExportLinkage(NewGA, Linkage); 4290 if (OpNum != Record.size()) 4291 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 4292 if (OpNum != Record.size()) 4293 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); 4294 } 4295 if (OpNum != Record.size()) 4296 NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++])); 4297 inferDSOLocal(NewGA); 4298 4299 // Check whether we have enough values to read a partition name. 4300 if (OpNum + 1 < Record.size()) { 4301 // Check Strtab has enough values for the partition. 4302 if (Record[OpNum] + Record[OpNum + 1] > Strtab.size()) 4303 return error("Malformed partition, too large."); 4304 NewGA->setPartition( 4305 StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1])); 4306 OpNum += 2; 4307 } 4308 4309 ValueList.push_back(NewGA, getVirtualTypeID(NewGA->getType(), TypeID)); 4310 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 4311 return Error::success(); 4312 } 4313 4314 Error BitcodeReader::parseModule(uint64_t ResumeBit, 4315 bool ShouldLazyLoadMetadata, 4316 ParserCallbacks Callbacks) { 4317 // Load directly into RemoveDIs format if LoadBitcodeIntoNewDbgInfoFormat 4318 // has been set to true and we aren't attempting to preserve the existing 4319 // format in the bitcode (default action: load into the old debug format). 4320 if (PreserveInputDbgFormat != cl::boolOrDefault::BOU_TRUE) { 4321 TheModule->IsNewDbgInfoFormat = 4322 UseNewDbgInfoFormat && 4323 LoadBitcodeIntoNewDbgInfoFormat == cl::boolOrDefault::BOU_TRUE; 4324 } 4325 4326 this->ValueTypeCallback = std::move(Callbacks.ValueType); 4327 if (ResumeBit) { 4328 if (Error JumpFailed = Stream.JumpToBit(ResumeBit)) 4329 return JumpFailed; 4330 } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 4331 return Err; 4332 4333 SmallVector<uint64_t, 64> Record; 4334 4335 // Parts of bitcode parsing depend on the datalayout. Make sure we 4336 // finalize the datalayout before we run any of that code. 4337 bool ResolvedDataLayout = false; 4338 // In order to support importing modules with illegal data layout strings, 4339 // delay parsing the data layout string until after upgrades and overrides 4340 // have been applied, allowing to fix illegal data layout strings. 4341 // Initialize to the current module's layout string in case none is specified. 4342 std::string TentativeDataLayoutStr = TheModule->getDataLayoutStr(); 4343 4344 auto ResolveDataLayout = [&]() -> Error { 4345 if (ResolvedDataLayout) 4346 return Error::success(); 4347 4348 // Datalayout and triple can't be parsed after this point. 4349 ResolvedDataLayout = true; 4350 4351 // Auto-upgrade the layout string 4352 TentativeDataLayoutStr = llvm::UpgradeDataLayoutString( 4353 TentativeDataLayoutStr, TheModule->getTargetTriple()); 4354 4355 // Apply override 4356 if (Callbacks.DataLayout) { 4357 if (auto LayoutOverride = (*Callbacks.DataLayout)( 4358 TheModule->getTargetTriple(), TentativeDataLayoutStr)) 4359 TentativeDataLayoutStr = *LayoutOverride; 4360 } 4361 4362 // Now the layout string is finalized in TentativeDataLayoutStr. Parse it. 4363 Expected<DataLayout> MaybeDL = DataLayout::parse(TentativeDataLayoutStr); 4364 if (!MaybeDL) 4365 return MaybeDL.takeError(); 4366 4367 TheModule->setDataLayout(MaybeDL.get()); 4368 return Error::success(); 4369 }; 4370 4371 // Read all the records for this module. 4372 while (true) { 4373 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 4374 if (!MaybeEntry) 4375 return MaybeEntry.takeError(); 4376 llvm::BitstreamEntry Entry = MaybeEntry.get(); 4377 4378 switch (Entry.Kind) { 4379 case BitstreamEntry::Error: 4380 return error("Malformed block"); 4381 case BitstreamEntry::EndBlock: 4382 if (Error Err = ResolveDataLayout()) 4383 return Err; 4384 return globalCleanup(); 4385 4386 case BitstreamEntry::SubBlock: 4387 switch (Entry.ID) { 4388 default: // Skip unknown content. 4389 if (Error Err = Stream.SkipBlock()) 4390 return Err; 4391 break; 4392 case bitc::BLOCKINFO_BLOCK_ID: 4393 if (Error Err = readBlockInfo()) 4394 return Err; 4395 break; 4396 case bitc::PARAMATTR_BLOCK_ID: 4397 if (Error Err = parseAttributeBlock()) 4398 return Err; 4399 break; 4400 case bitc::PARAMATTR_GROUP_BLOCK_ID: 4401 if (Error Err = parseAttributeGroupBlock()) 4402 return Err; 4403 break; 4404 case bitc::TYPE_BLOCK_ID_NEW: 4405 if (Error Err = parseTypeTable()) 4406 return Err; 4407 break; 4408 case bitc::VALUE_SYMTAB_BLOCK_ID: 4409 if (!SeenValueSymbolTable) { 4410 // Either this is an old form VST without function index and an 4411 // associated VST forward declaration record (which would have caused 4412 // the VST to be jumped to and parsed before it was encountered 4413 // normally in the stream), or there were no function blocks to 4414 // trigger an earlier parsing of the VST. 4415 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 4416 if (Error Err = parseValueSymbolTable()) 4417 return Err; 4418 SeenValueSymbolTable = true; 4419 } else { 4420 // We must have had a VST forward declaration record, which caused 4421 // the parser to jump to and parse the VST earlier. 4422 assert(VSTOffset > 0); 4423 if (Error Err = Stream.SkipBlock()) 4424 return Err; 4425 } 4426 break; 4427 case bitc::CONSTANTS_BLOCK_ID: 4428 if (Error Err = parseConstants()) 4429 return Err; 4430 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 4431 return Err; 4432 break; 4433 case bitc::METADATA_BLOCK_ID: 4434 if (ShouldLazyLoadMetadata) { 4435 if (Error Err = rememberAndSkipMetadata()) 4436 return Err; 4437 break; 4438 } 4439 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 4440 if (Error Err = MDLoader->parseModuleMetadata()) 4441 return Err; 4442 break; 4443 case bitc::METADATA_KIND_BLOCK_ID: 4444 if (Error Err = MDLoader->parseMetadataKinds()) 4445 return Err; 4446 break; 4447 case bitc::FUNCTION_BLOCK_ID: 4448 if (Error Err = ResolveDataLayout()) 4449 return Err; 4450 4451 // If this is the first function body we've seen, reverse the 4452 // FunctionsWithBodies list. 4453 if (!SeenFirstFunctionBody) { 4454 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 4455 if (Error Err = globalCleanup()) 4456 return Err; 4457 SeenFirstFunctionBody = true; 4458 } 4459 4460 if (VSTOffset > 0) { 4461 // If we have a VST forward declaration record, make sure we 4462 // parse the VST now if we haven't already. It is needed to 4463 // set up the DeferredFunctionInfo vector for lazy reading. 4464 if (!SeenValueSymbolTable) { 4465 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset)) 4466 return Err; 4467 SeenValueSymbolTable = true; 4468 // Fall through so that we record the NextUnreadBit below. 4469 // This is necessary in case we have an anonymous function that 4470 // is later materialized. Since it will not have a VST entry we 4471 // need to fall back to the lazy parse to find its offset. 4472 } else { 4473 // If we have a VST forward declaration record, but have already 4474 // parsed the VST (just above, when the first function body was 4475 // encountered here), then we are resuming the parse after 4476 // materializing functions. The ResumeBit points to the 4477 // start of the last function block recorded in the 4478 // DeferredFunctionInfo map. Skip it. 4479 if (Error Err = Stream.SkipBlock()) 4480 return Err; 4481 continue; 4482 } 4483 } 4484 4485 // Support older bitcode files that did not have the function 4486 // index in the VST, nor a VST forward declaration record, as 4487 // well as anonymous functions that do not have VST entries. 4488 // Build the DeferredFunctionInfo vector on the fly. 4489 if (Error Err = rememberAndSkipFunctionBody()) 4490 return Err; 4491 4492 // Suspend parsing when we reach the function bodies. Subsequent 4493 // materialization calls will resume it when necessary. If the bitcode 4494 // file is old, the symbol table will be at the end instead and will not 4495 // have been seen yet. In this case, just finish the parse now. 4496 if (SeenValueSymbolTable) { 4497 NextUnreadBit = Stream.GetCurrentBitNo(); 4498 // After the VST has been parsed, we need to make sure intrinsic name 4499 // are auto-upgraded. 4500 return globalCleanup(); 4501 } 4502 break; 4503 case bitc::USELIST_BLOCK_ID: 4504 if (Error Err = parseUseLists()) 4505 return Err; 4506 break; 4507 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 4508 if (Error Err = parseOperandBundleTags()) 4509 return Err; 4510 break; 4511 case bitc::SYNC_SCOPE_NAMES_BLOCK_ID: 4512 if (Error Err = parseSyncScopeNames()) 4513 return Err; 4514 break; 4515 } 4516 continue; 4517 4518 case BitstreamEntry::Record: 4519 // The interesting case. 4520 break; 4521 } 4522 4523 // Read a record. 4524 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 4525 if (!MaybeBitCode) 4526 return MaybeBitCode.takeError(); 4527 switch (unsigned BitCode = MaybeBitCode.get()) { 4528 default: break; // Default behavior, ignore unknown content. 4529 case bitc::MODULE_CODE_VERSION: { 4530 Expected<unsigned> VersionOrErr = parseVersionRecord(Record); 4531 if (!VersionOrErr) 4532 return VersionOrErr.takeError(); 4533 UseRelativeIDs = *VersionOrErr >= 1; 4534 break; 4535 } 4536 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 4537 if (ResolvedDataLayout) 4538 return error("target triple too late in module"); 4539 std::string S; 4540 if (convertToString(Record, 0, S)) 4541 return error("Invalid record"); 4542 TheModule->setTargetTriple(S); 4543 break; 4544 } 4545 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 4546 if (ResolvedDataLayout) 4547 return error("datalayout too late in module"); 4548 if (convertToString(Record, 0, TentativeDataLayoutStr)) 4549 return error("Invalid record"); 4550 break; 4551 } 4552 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 4553 std::string S; 4554 if (convertToString(Record, 0, S)) 4555 return error("Invalid record"); 4556 TheModule->setModuleInlineAsm(S); 4557 break; 4558 } 4559 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 4560 // Deprecated, but still needed to read old bitcode files. 4561 std::string S; 4562 if (convertToString(Record, 0, S)) 4563 return error("Invalid record"); 4564 // Ignore value. 4565 break; 4566 } 4567 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 4568 std::string S; 4569 if (convertToString(Record, 0, S)) 4570 return error("Invalid record"); 4571 SectionTable.push_back(S); 4572 break; 4573 } 4574 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 4575 std::string S; 4576 if (convertToString(Record, 0, S)) 4577 return error("Invalid record"); 4578 GCTable.push_back(S); 4579 break; 4580 } 4581 case bitc::MODULE_CODE_COMDAT: 4582 if (Error Err = parseComdatRecord(Record)) 4583 return Err; 4584 break; 4585 // FIXME: BitcodeReader should handle {GLOBALVAR, FUNCTION, ALIAS, IFUNC} 4586 // written by ThinLinkBitcodeWriter. See 4587 // `ThinLinkBitcodeWriter::writeSimplifiedModuleInfo` for the format of each 4588 // record 4589 // (https://github.com/llvm/llvm-project/blob/b6a93967d9c11e79802b5e75cec1584d6c8aa472/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp#L4714) 4590 case bitc::MODULE_CODE_GLOBALVAR: 4591 if (Error Err = parseGlobalVarRecord(Record)) 4592 return Err; 4593 break; 4594 case bitc::MODULE_CODE_FUNCTION: 4595 if (Error Err = ResolveDataLayout()) 4596 return Err; 4597 if (Error Err = parseFunctionRecord(Record)) 4598 return Err; 4599 break; 4600 case bitc::MODULE_CODE_IFUNC: 4601 case bitc::MODULE_CODE_ALIAS: 4602 case bitc::MODULE_CODE_ALIAS_OLD: 4603 if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record)) 4604 return Err; 4605 break; 4606 /// MODULE_CODE_VSTOFFSET: [offset] 4607 case bitc::MODULE_CODE_VSTOFFSET: 4608 if (Record.empty()) 4609 return error("Invalid record"); 4610 // Note that we subtract 1 here because the offset is relative to one word 4611 // before the start of the identification or module block, which was 4612 // historically always the start of the regular bitcode header. 4613 VSTOffset = Record[0] - 1; 4614 break; 4615 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4616 case bitc::MODULE_CODE_SOURCE_FILENAME: 4617 SmallString<128> ValueName; 4618 if (convertToString(Record, 0, ValueName)) 4619 return error("Invalid record"); 4620 TheModule->setSourceFileName(ValueName); 4621 break; 4622 } 4623 Record.clear(); 4624 } 4625 this->ValueTypeCallback = std::nullopt; 4626 return Error::success(); 4627 } 4628 4629 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 4630 bool IsImporting, 4631 ParserCallbacks Callbacks) { 4632 TheModule = M; 4633 MetadataLoaderCallbacks MDCallbacks; 4634 MDCallbacks.GetTypeByID = [&](unsigned ID) { return getTypeByID(ID); }; 4635 MDCallbacks.GetContainedTypeID = [&](unsigned I, unsigned J) { 4636 return getContainedTypeID(I, J); 4637 }; 4638 MDCallbacks.MDType = Callbacks.MDType; 4639 MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, MDCallbacks); 4640 return parseModule(0, ShouldLazyLoadMetadata, Callbacks); 4641 } 4642 4643 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 4644 if (!isa<PointerType>(PtrType)) 4645 return error("Load/Store operand is not a pointer type"); 4646 if (!PointerType::isLoadableOrStorableType(ValType)) 4647 return error("Cannot load/store from pointer"); 4648 return Error::success(); 4649 } 4650 4651 Error BitcodeReader::propagateAttributeTypes(CallBase *CB, 4652 ArrayRef<unsigned> ArgTyIDs) { 4653 AttributeList Attrs = CB->getAttributes(); 4654 for (unsigned i = 0; i != CB->arg_size(); ++i) { 4655 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet, 4656 Attribute::InAlloca}) { 4657 if (!Attrs.hasParamAttr(i, Kind) || 4658 Attrs.getParamAttr(i, Kind).getValueAsType()) 4659 continue; 4660 4661 Type *PtrEltTy = getPtrElementTypeByID(ArgTyIDs[i]); 4662 if (!PtrEltTy) 4663 return error("Missing element type for typed attribute upgrade"); 4664 4665 Attribute NewAttr; 4666 switch (Kind) { 4667 case Attribute::ByVal: 4668 NewAttr = Attribute::getWithByValType(Context, PtrEltTy); 4669 break; 4670 case Attribute::StructRet: 4671 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy); 4672 break; 4673 case Attribute::InAlloca: 4674 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy); 4675 break; 4676 default: 4677 llvm_unreachable("not an upgraded type attribute"); 4678 } 4679 4680 Attrs = Attrs.addParamAttribute(Context, i, NewAttr); 4681 } 4682 } 4683 4684 if (CB->isInlineAsm()) { 4685 const InlineAsm *IA = cast<InlineAsm>(CB->getCalledOperand()); 4686 unsigned ArgNo = 0; 4687 for (const InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 4688 if (!CI.hasArg()) 4689 continue; 4690 4691 if (CI.isIndirect && !Attrs.getParamElementType(ArgNo)) { 4692 Type *ElemTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]); 4693 if (!ElemTy) 4694 return error("Missing element type for inline asm upgrade"); 4695 Attrs = Attrs.addParamAttribute( 4696 Context, ArgNo, 4697 Attribute::get(Context, Attribute::ElementType, ElemTy)); 4698 } 4699 4700 ArgNo++; 4701 } 4702 } 4703 4704 switch (CB->getIntrinsicID()) { 4705 case Intrinsic::preserve_array_access_index: 4706 case Intrinsic::preserve_struct_access_index: 4707 case Intrinsic::aarch64_ldaxr: 4708 case Intrinsic::aarch64_ldxr: 4709 case Intrinsic::aarch64_stlxr: 4710 case Intrinsic::aarch64_stxr: 4711 case Intrinsic::arm_ldaex: 4712 case Intrinsic::arm_ldrex: 4713 case Intrinsic::arm_stlex: 4714 case Intrinsic::arm_strex: { 4715 unsigned ArgNo; 4716 switch (CB->getIntrinsicID()) { 4717 case Intrinsic::aarch64_stlxr: 4718 case Intrinsic::aarch64_stxr: 4719 case Intrinsic::arm_stlex: 4720 case Intrinsic::arm_strex: 4721 ArgNo = 1; 4722 break; 4723 default: 4724 ArgNo = 0; 4725 break; 4726 } 4727 if (!Attrs.getParamElementType(ArgNo)) { 4728 Type *ElTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]); 4729 if (!ElTy) 4730 return error("Missing element type for elementtype upgrade"); 4731 Attribute NewAttr = Attribute::get(Context, Attribute::ElementType, ElTy); 4732 Attrs = Attrs.addParamAttribute(Context, ArgNo, NewAttr); 4733 } 4734 break; 4735 } 4736 default: 4737 break; 4738 } 4739 4740 CB->setAttributes(Attrs); 4741 return Error::success(); 4742 } 4743 4744 /// Lazily parse the specified function body block. 4745 Error BitcodeReader::parseFunctionBody(Function *F) { 4746 if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 4747 return Err; 4748 4749 // Unexpected unresolved metadata when parsing function. 4750 if (MDLoader->hasFwdRefs()) 4751 return error("Invalid function metadata: incoming forward references"); 4752 4753 InstructionList.clear(); 4754 unsigned ModuleValueListSize = ValueList.size(); 4755 unsigned ModuleMDLoaderSize = MDLoader->size(); 4756 4757 // Add all the function arguments to the value table. 4758 unsigned ArgNo = 0; 4759 unsigned FTyID = FunctionTypeIDs[F]; 4760 for (Argument &I : F->args()) { 4761 unsigned ArgTyID = getContainedTypeID(FTyID, ArgNo + 1); 4762 assert(I.getType() == getTypeByID(ArgTyID) && 4763 "Incorrect fully specified type for Function Argument"); 4764 ValueList.push_back(&I, ArgTyID); 4765 ++ArgNo; 4766 } 4767 unsigned NextValueNo = ValueList.size(); 4768 BasicBlock *CurBB = nullptr; 4769 unsigned CurBBNo = 0; 4770 // Block into which constant expressions from phi nodes are materialized. 4771 BasicBlock *PhiConstExprBB = nullptr; 4772 // Edge blocks for phi nodes into which constant expressions have been 4773 // expanded. 4774 SmallMapVector<std::pair<BasicBlock *, BasicBlock *>, BasicBlock *, 4> 4775 ConstExprEdgeBBs; 4776 4777 DebugLoc LastLoc; 4778 auto getLastInstruction = [&]() -> Instruction * { 4779 if (CurBB && !CurBB->empty()) 4780 return &CurBB->back(); 4781 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 4782 !FunctionBBs[CurBBNo - 1]->empty()) 4783 return &FunctionBBs[CurBBNo - 1]->back(); 4784 return nullptr; 4785 }; 4786 4787 std::vector<OperandBundleDef> OperandBundles; 4788 4789 // Read all the records. 4790 SmallVector<uint64_t, 64> Record; 4791 4792 while (true) { 4793 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 4794 if (!MaybeEntry) 4795 return MaybeEntry.takeError(); 4796 llvm::BitstreamEntry Entry = MaybeEntry.get(); 4797 4798 switch (Entry.Kind) { 4799 case BitstreamEntry::Error: 4800 return error("Malformed block"); 4801 case BitstreamEntry::EndBlock: 4802 goto OutOfRecordLoop; 4803 4804 case BitstreamEntry::SubBlock: 4805 switch (Entry.ID) { 4806 default: // Skip unknown content. 4807 if (Error Err = Stream.SkipBlock()) 4808 return Err; 4809 break; 4810 case bitc::CONSTANTS_BLOCK_ID: 4811 if (Error Err = parseConstants()) 4812 return Err; 4813 NextValueNo = ValueList.size(); 4814 break; 4815 case bitc::VALUE_SYMTAB_BLOCK_ID: 4816 if (Error Err = parseValueSymbolTable()) 4817 return Err; 4818 break; 4819 case bitc::METADATA_ATTACHMENT_ID: 4820 if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList)) 4821 return Err; 4822 break; 4823 case bitc::METADATA_BLOCK_ID: 4824 assert(DeferredMetadataInfo.empty() && 4825 "Must read all module-level metadata before function-level"); 4826 if (Error Err = MDLoader->parseFunctionMetadata()) 4827 return Err; 4828 break; 4829 case bitc::USELIST_BLOCK_ID: 4830 if (Error Err = parseUseLists()) 4831 return Err; 4832 break; 4833 } 4834 continue; 4835 4836 case BitstreamEntry::Record: 4837 // The interesting case. 4838 break; 4839 } 4840 4841 // Read a record. 4842 Record.clear(); 4843 Instruction *I = nullptr; 4844 unsigned ResTypeID = InvalidTypeID; 4845 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 4846 if (!MaybeBitCode) 4847 return MaybeBitCode.takeError(); 4848 switch (unsigned BitCode = MaybeBitCode.get()) { 4849 default: // Default behavior: reject 4850 return error("Invalid value"); 4851 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 4852 if (Record.empty() || Record[0] == 0) 4853 return error("Invalid record"); 4854 // Create all the basic blocks for the function. 4855 FunctionBBs.resize(Record[0]); 4856 4857 // See if anything took the address of blocks in this function. 4858 auto BBFRI = BasicBlockFwdRefs.find(F); 4859 if (BBFRI == BasicBlockFwdRefs.end()) { 4860 for (BasicBlock *&BB : FunctionBBs) 4861 BB = BasicBlock::Create(Context, "", F); 4862 } else { 4863 auto &BBRefs = BBFRI->second; 4864 // Check for invalid basic block references. 4865 if (BBRefs.size() > FunctionBBs.size()) 4866 return error("Invalid ID"); 4867 assert(!BBRefs.empty() && "Unexpected empty array"); 4868 assert(!BBRefs.front() && "Invalid reference to entry block"); 4869 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 4870 ++I) 4871 if (I < RE && BBRefs[I]) { 4872 BBRefs[I]->insertInto(F); 4873 FunctionBBs[I] = BBRefs[I]; 4874 } else { 4875 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 4876 } 4877 4878 // Erase from the table. 4879 BasicBlockFwdRefs.erase(BBFRI); 4880 } 4881 4882 CurBB = FunctionBBs[0]; 4883 continue; 4884 } 4885 4886 case bitc::FUNC_CODE_BLOCKADDR_USERS: // BLOCKADDR_USERS: [vals...] 4887 // The record should not be emitted if it's an empty list. 4888 if (Record.empty()) 4889 return error("Invalid record"); 4890 // When we have the RARE case of a BlockAddress Constant that is not 4891 // scoped to the Function it refers to, we need to conservatively 4892 // materialize the referred to Function, regardless of whether or not 4893 // that Function will ultimately be linked, otherwise users of 4894 // BitcodeReader might start splicing out Function bodies such that we 4895 // might no longer be able to materialize the BlockAddress since the 4896 // BasicBlock (and entire body of the Function) the BlockAddress refers 4897 // to may have been moved. In the case that the user of BitcodeReader 4898 // decides ultimately not to link the Function body, materializing here 4899 // could be considered wasteful, but it's better than a deserialization 4900 // failure as described. This keeps BitcodeReader unaware of complex 4901 // linkage policy decisions such as those use by LTO, leaving those 4902 // decisions "one layer up." 4903 for (uint64_t ValID : Record) 4904 if (auto *F = dyn_cast<Function>(ValueList[ValID])) 4905 BackwardRefFunctions.push_back(F); 4906 else 4907 return error("Invalid record"); 4908 4909 continue; 4910 4911 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 4912 // This record indicates that the last instruction is at the same 4913 // location as the previous instruction with a location. 4914 I = getLastInstruction(); 4915 4916 if (!I) 4917 return error("Invalid record"); 4918 I->setDebugLoc(LastLoc); 4919 I = nullptr; 4920 continue; 4921 4922 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 4923 I = getLastInstruction(); 4924 if (!I || Record.size() < 4) 4925 return error("Invalid record"); 4926 4927 unsigned Line = Record[0], Col = Record[1]; 4928 unsigned ScopeID = Record[2], IAID = Record[3]; 4929 bool isImplicitCode = Record.size() == 5 && Record[4]; 4930 4931 MDNode *Scope = nullptr, *IA = nullptr; 4932 if (ScopeID) { 4933 Scope = dyn_cast_or_null<MDNode>( 4934 MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1)); 4935 if (!Scope) 4936 return error("Invalid record"); 4937 } 4938 if (IAID) { 4939 IA = dyn_cast_or_null<MDNode>( 4940 MDLoader->getMetadataFwdRefOrLoad(IAID - 1)); 4941 if (!IA) 4942 return error("Invalid record"); 4943 } 4944 LastLoc = DILocation::get(Scope->getContext(), Line, Col, Scope, IA, 4945 isImplicitCode); 4946 I->setDebugLoc(LastLoc); 4947 I = nullptr; 4948 continue; 4949 } 4950 case bitc::FUNC_CODE_INST_UNOP: { // UNOP: [opval, ty, opcode] 4951 unsigned OpNum = 0; 4952 Value *LHS; 4953 unsigned TypeID; 4954 if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) || 4955 OpNum+1 > Record.size()) 4956 return error("Invalid record"); 4957 4958 int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType()); 4959 if (Opc == -1) 4960 return error("Invalid record"); 4961 I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 4962 ResTypeID = TypeID; 4963 InstructionList.push_back(I); 4964 if (OpNum < Record.size()) { 4965 if (isa<FPMathOperator>(I)) { 4966 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4967 if (FMF.any()) 4968 I->setFastMathFlags(FMF); 4969 } 4970 } 4971 break; 4972 } 4973 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 4974 unsigned OpNum = 0; 4975 Value *LHS, *RHS; 4976 unsigned TypeID; 4977 if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) || 4978 popValue(Record, OpNum, NextValueNo, LHS->getType(), TypeID, RHS, 4979 CurBB) || 4980 OpNum+1 > Record.size()) 4981 return error("Invalid record"); 4982 4983 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 4984 if (Opc == -1) 4985 return error("Invalid record"); 4986 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 4987 ResTypeID = TypeID; 4988 InstructionList.push_back(I); 4989 if (OpNum < Record.size()) { 4990 if (Opc == Instruction::Add || 4991 Opc == Instruction::Sub || 4992 Opc == Instruction::Mul || 4993 Opc == Instruction::Shl) { 4994 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 4995 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 4996 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 4997 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 4998 } else if (Opc == Instruction::SDiv || 4999 Opc == Instruction::UDiv || 5000 Opc == Instruction::LShr || 5001 Opc == Instruction::AShr) { 5002 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 5003 cast<BinaryOperator>(I)->setIsExact(true); 5004 } else if (Opc == Instruction::Or) { 5005 if (Record[OpNum] & (1 << bitc::PDI_DISJOINT)) 5006 cast<PossiblyDisjointInst>(I)->setIsDisjoint(true); 5007 } else if (isa<FPMathOperator>(I)) { 5008 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 5009 if (FMF.any()) 5010 I->setFastMathFlags(FMF); 5011 } 5012 } 5013 break; 5014 } 5015 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 5016 unsigned OpNum = 0; 5017 Value *Op; 5018 unsigned OpTypeID; 5019 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) || 5020 OpNum + 1 > Record.size()) 5021 return error("Invalid record"); 5022 5023 ResTypeID = Record[OpNum++]; 5024 Type *ResTy = getTypeByID(ResTypeID); 5025 int Opc = getDecodedCastOpcode(Record[OpNum++]); 5026 5027 if (Opc == -1 || !ResTy) 5028 return error("Invalid record"); 5029 Instruction *Temp = nullptr; 5030 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 5031 if (Temp) { 5032 InstructionList.push_back(Temp); 5033 assert(CurBB && "No current BB?"); 5034 Temp->insertInto(CurBB, CurBB->end()); 5035 } 5036 } else { 5037 auto CastOp = (Instruction::CastOps)Opc; 5038 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 5039 return error("Invalid cast"); 5040 I = CastInst::Create(CastOp, Op, ResTy); 5041 } 5042 5043 if (OpNum < Record.size()) { 5044 if (Opc == Instruction::ZExt || Opc == Instruction::UIToFP) { 5045 if (Record[OpNum] & (1 << bitc::PNNI_NON_NEG)) 5046 cast<PossiblyNonNegInst>(I)->setNonNeg(true); 5047 } else if (Opc == Instruction::Trunc) { 5048 if (Record[OpNum] & (1 << bitc::TIO_NO_UNSIGNED_WRAP)) 5049 cast<TruncInst>(I)->setHasNoUnsignedWrap(true); 5050 if (Record[OpNum] & (1 << bitc::TIO_NO_SIGNED_WRAP)) 5051 cast<TruncInst>(I)->setHasNoSignedWrap(true); 5052 } 5053 } 5054 5055 InstructionList.push_back(I); 5056 break; 5057 } 5058 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 5059 case bitc::FUNC_CODE_INST_GEP_OLD: 5060 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 5061 unsigned OpNum = 0; 5062 5063 unsigned TyID; 5064 Type *Ty; 5065 bool InBounds; 5066 5067 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 5068 InBounds = Record[OpNum++]; 5069 TyID = Record[OpNum++]; 5070 Ty = getTypeByID(TyID); 5071 } else { 5072 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 5073 TyID = InvalidTypeID; 5074 Ty = nullptr; 5075 } 5076 5077 Value *BasePtr; 5078 unsigned BasePtrTypeID; 5079 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr, BasePtrTypeID, 5080 CurBB)) 5081 return error("Invalid record"); 5082 5083 if (!Ty) { 5084 TyID = getContainedTypeID(BasePtrTypeID); 5085 if (BasePtr->getType()->isVectorTy()) 5086 TyID = getContainedTypeID(TyID); 5087 Ty = getTypeByID(TyID); 5088 } 5089 5090 SmallVector<Value*, 16> GEPIdx; 5091 while (OpNum != Record.size()) { 5092 Value *Op; 5093 unsigned OpTypeID; 5094 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 5095 return error("Invalid record"); 5096 GEPIdx.push_back(Op); 5097 } 5098 5099 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 5100 5101 ResTypeID = TyID; 5102 if (cast<GEPOperator>(I)->getNumIndices() != 0) { 5103 auto GTI = std::next(gep_type_begin(I)); 5104 for (Value *Idx : drop_begin(cast<GEPOperator>(I)->indices())) { 5105 unsigned SubType = 0; 5106 if (GTI.isStruct()) { 5107 ConstantInt *IdxC = 5108 Idx->getType()->isVectorTy() 5109 ? cast<ConstantInt>(cast<Constant>(Idx)->getSplatValue()) 5110 : cast<ConstantInt>(Idx); 5111 SubType = IdxC->getZExtValue(); 5112 } 5113 ResTypeID = getContainedTypeID(ResTypeID, SubType); 5114 ++GTI; 5115 } 5116 } 5117 5118 // At this point ResTypeID is the result element type. We need a pointer 5119 // or vector of pointer to it. 5120 ResTypeID = getVirtualTypeID(I->getType()->getScalarType(), ResTypeID); 5121 if (I->getType()->isVectorTy()) 5122 ResTypeID = getVirtualTypeID(I->getType(), ResTypeID); 5123 5124 InstructionList.push_back(I); 5125 if (InBounds) 5126 cast<GetElementPtrInst>(I)->setIsInBounds(true); 5127 break; 5128 } 5129 5130 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 5131 // EXTRACTVAL: [opty, opval, n x indices] 5132 unsigned OpNum = 0; 5133 Value *Agg; 5134 unsigned AggTypeID; 5135 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB)) 5136 return error("Invalid record"); 5137 Type *Ty = Agg->getType(); 5138 5139 unsigned RecSize = Record.size(); 5140 if (OpNum == RecSize) 5141 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 5142 5143 SmallVector<unsigned, 4> EXTRACTVALIdx; 5144 ResTypeID = AggTypeID; 5145 for (; OpNum != RecSize; ++OpNum) { 5146 bool IsArray = Ty->isArrayTy(); 5147 bool IsStruct = Ty->isStructTy(); 5148 uint64_t Index = Record[OpNum]; 5149 5150 if (!IsStruct && !IsArray) 5151 return error("EXTRACTVAL: Invalid type"); 5152 if ((unsigned)Index != Index) 5153 return error("Invalid value"); 5154 if (IsStruct && Index >= Ty->getStructNumElements()) 5155 return error("EXTRACTVAL: Invalid struct index"); 5156 if (IsArray && Index >= Ty->getArrayNumElements()) 5157 return error("EXTRACTVAL: Invalid array index"); 5158 EXTRACTVALIdx.push_back((unsigned)Index); 5159 5160 if (IsStruct) { 5161 Ty = Ty->getStructElementType(Index); 5162 ResTypeID = getContainedTypeID(ResTypeID, Index); 5163 } else { 5164 Ty = Ty->getArrayElementType(); 5165 ResTypeID = getContainedTypeID(ResTypeID); 5166 } 5167 } 5168 5169 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 5170 InstructionList.push_back(I); 5171 break; 5172 } 5173 5174 case bitc::FUNC_CODE_INST_INSERTVAL: { 5175 // INSERTVAL: [opty, opval, opty, opval, n x indices] 5176 unsigned OpNum = 0; 5177 Value *Agg; 5178 unsigned AggTypeID; 5179 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB)) 5180 return error("Invalid record"); 5181 Value *Val; 5182 unsigned ValTypeID; 5183 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 5184 return error("Invalid record"); 5185 5186 unsigned RecSize = Record.size(); 5187 if (OpNum == RecSize) 5188 return error("INSERTVAL: Invalid instruction with 0 indices"); 5189 5190 SmallVector<unsigned, 4> INSERTVALIdx; 5191 Type *CurTy = Agg->getType(); 5192 for (; OpNum != RecSize; ++OpNum) { 5193 bool IsArray = CurTy->isArrayTy(); 5194 bool IsStruct = CurTy->isStructTy(); 5195 uint64_t Index = Record[OpNum]; 5196 5197 if (!IsStruct && !IsArray) 5198 return error("INSERTVAL: Invalid type"); 5199 if ((unsigned)Index != Index) 5200 return error("Invalid value"); 5201 if (IsStruct && Index >= CurTy->getStructNumElements()) 5202 return error("INSERTVAL: Invalid struct index"); 5203 if (IsArray && Index >= CurTy->getArrayNumElements()) 5204 return error("INSERTVAL: Invalid array index"); 5205 5206 INSERTVALIdx.push_back((unsigned)Index); 5207 if (IsStruct) 5208 CurTy = CurTy->getStructElementType(Index); 5209 else 5210 CurTy = CurTy->getArrayElementType(); 5211 } 5212 5213 if (CurTy != Val->getType()) 5214 return error("Inserted value type doesn't match aggregate type"); 5215 5216 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 5217 ResTypeID = AggTypeID; 5218 InstructionList.push_back(I); 5219 break; 5220 } 5221 5222 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 5223 // obsolete form of select 5224 // handles select i1 ... in old bitcode 5225 unsigned OpNum = 0; 5226 Value *TrueVal, *FalseVal, *Cond; 5227 unsigned TypeID; 5228 Type *CondType = Type::getInt1Ty(Context); 5229 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, TypeID, 5230 CurBB) || 5231 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), TypeID, 5232 FalseVal, CurBB) || 5233 popValue(Record, OpNum, NextValueNo, CondType, 5234 getVirtualTypeID(CondType), Cond, CurBB)) 5235 return error("Invalid record"); 5236 5237 I = SelectInst::Create(Cond, TrueVal, FalseVal); 5238 ResTypeID = TypeID; 5239 InstructionList.push_back(I); 5240 break; 5241 } 5242 5243 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 5244 // new form of select 5245 // handles select i1 or select [N x i1] 5246 unsigned OpNum = 0; 5247 Value *TrueVal, *FalseVal, *Cond; 5248 unsigned ValTypeID, CondTypeID; 5249 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, ValTypeID, 5250 CurBB) || 5251 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), ValTypeID, 5252 FalseVal, CurBB) || 5253 getValueTypePair(Record, OpNum, NextValueNo, Cond, CondTypeID, CurBB)) 5254 return error("Invalid record"); 5255 5256 // select condition can be either i1 or [N x i1] 5257 if (VectorType* vector_type = 5258 dyn_cast<VectorType>(Cond->getType())) { 5259 // expect <n x i1> 5260 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 5261 return error("Invalid type for value"); 5262 } else { 5263 // expect i1 5264 if (Cond->getType() != Type::getInt1Ty(Context)) 5265 return error("Invalid type for value"); 5266 } 5267 5268 I = SelectInst::Create(Cond, TrueVal, FalseVal); 5269 ResTypeID = ValTypeID; 5270 InstructionList.push_back(I); 5271 if (OpNum < Record.size() && isa<FPMathOperator>(I)) { 5272 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 5273 if (FMF.any()) 5274 I->setFastMathFlags(FMF); 5275 } 5276 break; 5277 } 5278 5279 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 5280 unsigned OpNum = 0; 5281 Value *Vec, *Idx; 5282 unsigned VecTypeID, IdxTypeID; 5283 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB) || 5284 getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB)) 5285 return error("Invalid record"); 5286 if (!Vec->getType()->isVectorTy()) 5287 return error("Invalid type for value"); 5288 I = ExtractElementInst::Create(Vec, Idx); 5289 ResTypeID = getContainedTypeID(VecTypeID); 5290 InstructionList.push_back(I); 5291 break; 5292 } 5293 5294 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 5295 unsigned OpNum = 0; 5296 Value *Vec, *Elt, *Idx; 5297 unsigned VecTypeID, IdxTypeID; 5298 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB)) 5299 return error("Invalid record"); 5300 if (!Vec->getType()->isVectorTy()) 5301 return error("Invalid type for value"); 5302 if (popValue(Record, OpNum, NextValueNo, 5303 cast<VectorType>(Vec->getType())->getElementType(), 5304 getContainedTypeID(VecTypeID), Elt, CurBB) || 5305 getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB)) 5306 return error("Invalid record"); 5307 I = InsertElementInst::Create(Vec, Elt, Idx); 5308 ResTypeID = VecTypeID; 5309 InstructionList.push_back(I); 5310 break; 5311 } 5312 5313 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 5314 unsigned OpNum = 0; 5315 Value *Vec1, *Vec2, *Mask; 5316 unsigned Vec1TypeID; 5317 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1, Vec1TypeID, 5318 CurBB) || 5319 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec1TypeID, 5320 Vec2, CurBB)) 5321 return error("Invalid record"); 5322 5323 unsigned MaskTypeID; 5324 if (getValueTypePair(Record, OpNum, NextValueNo, Mask, MaskTypeID, CurBB)) 5325 return error("Invalid record"); 5326 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 5327 return error("Invalid type for value"); 5328 5329 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 5330 ResTypeID = 5331 getVirtualTypeID(I->getType(), getContainedTypeID(Vec1TypeID)); 5332 InstructionList.push_back(I); 5333 break; 5334 } 5335 5336 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 5337 // Old form of ICmp/FCmp returning bool 5338 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 5339 // both legal on vectors but had different behaviour. 5340 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 5341 // FCmp/ICmp returning bool or vector of bool 5342 5343 unsigned OpNum = 0; 5344 Value *LHS, *RHS; 5345 unsigned LHSTypeID; 5346 if (getValueTypePair(Record, OpNum, NextValueNo, LHS, LHSTypeID, CurBB) || 5347 popValue(Record, OpNum, NextValueNo, LHS->getType(), LHSTypeID, RHS, 5348 CurBB)) 5349 return error("Invalid record"); 5350 5351 if (OpNum >= Record.size()) 5352 return error( 5353 "Invalid record: operand number exceeded available operands"); 5354 5355 CmpInst::Predicate PredVal = CmpInst::Predicate(Record[OpNum]); 5356 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 5357 FastMathFlags FMF; 5358 if (IsFP && Record.size() > OpNum+1) 5359 FMF = getDecodedFastMathFlags(Record[++OpNum]); 5360 5361 if (OpNum+1 != Record.size()) 5362 return error("Invalid record"); 5363 5364 if (IsFP) { 5365 if (!CmpInst::isFPPredicate(PredVal)) 5366 return error("Invalid fcmp predicate"); 5367 I = new FCmpInst(PredVal, LHS, RHS); 5368 } else { 5369 if (!CmpInst::isIntPredicate(PredVal)) 5370 return error("Invalid icmp predicate"); 5371 I = new ICmpInst(PredVal, LHS, RHS); 5372 } 5373 5374 ResTypeID = getVirtualTypeID(I->getType()->getScalarType()); 5375 if (LHS->getType()->isVectorTy()) 5376 ResTypeID = getVirtualTypeID(I->getType(), ResTypeID); 5377 5378 if (FMF.any()) 5379 I->setFastMathFlags(FMF); 5380 InstructionList.push_back(I); 5381 break; 5382 } 5383 5384 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 5385 { 5386 unsigned Size = Record.size(); 5387 if (Size == 0) { 5388 I = ReturnInst::Create(Context); 5389 InstructionList.push_back(I); 5390 break; 5391 } 5392 5393 unsigned OpNum = 0; 5394 Value *Op = nullptr; 5395 unsigned OpTypeID; 5396 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 5397 return error("Invalid record"); 5398 if (OpNum != Record.size()) 5399 return error("Invalid record"); 5400 5401 I = ReturnInst::Create(Context, Op); 5402 InstructionList.push_back(I); 5403 break; 5404 } 5405 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 5406 if (Record.size() != 1 && Record.size() != 3) 5407 return error("Invalid record"); 5408 BasicBlock *TrueDest = getBasicBlock(Record[0]); 5409 if (!TrueDest) 5410 return error("Invalid record"); 5411 5412 if (Record.size() == 1) { 5413 I = BranchInst::Create(TrueDest); 5414 InstructionList.push_back(I); 5415 } 5416 else { 5417 BasicBlock *FalseDest = getBasicBlock(Record[1]); 5418 Type *CondType = Type::getInt1Ty(Context); 5419 Value *Cond = getValue(Record, 2, NextValueNo, CondType, 5420 getVirtualTypeID(CondType), CurBB); 5421 if (!FalseDest || !Cond) 5422 return error("Invalid record"); 5423 I = BranchInst::Create(TrueDest, FalseDest, Cond); 5424 InstructionList.push_back(I); 5425 } 5426 break; 5427 } 5428 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 5429 if (Record.size() != 1 && Record.size() != 2) 5430 return error("Invalid record"); 5431 unsigned Idx = 0; 5432 Type *TokenTy = Type::getTokenTy(Context); 5433 Value *CleanupPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5434 getVirtualTypeID(TokenTy), CurBB); 5435 if (!CleanupPad) 5436 return error("Invalid record"); 5437 BasicBlock *UnwindDest = nullptr; 5438 if (Record.size() == 2) { 5439 UnwindDest = getBasicBlock(Record[Idx++]); 5440 if (!UnwindDest) 5441 return error("Invalid record"); 5442 } 5443 5444 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 5445 InstructionList.push_back(I); 5446 break; 5447 } 5448 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 5449 if (Record.size() != 2) 5450 return error("Invalid record"); 5451 unsigned Idx = 0; 5452 Type *TokenTy = Type::getTokenTy(Context); 5453 Value *CatchPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5454 getVirtualTypeID(TokenTy), CurBB); 5455 if (!CatchPad) 5456 return error("Invalid record"); 5457 BasicBlock *BB = getBasicBlock(Record[Idx++]); 5458 if (!BB) 5459 return error("Invalid record"); 5460 5461 I = CatchReturnInst::Create(CatchPad, BB); 5462 InstructionList.push_back(I); 5463 break; 5464 } 5465 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 5466 // We must have, at minimum, the outer scope and the number of arguments. 5467 if (Record.size() < 2) 5468 return error("Invalid record"); 5469 5470 unsigned Idx = 0; 5471 5472 Type *TokenTy = Type::getTokenTy(Context); 5473 Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5474 getVirtualTypeID(TokenTy), CurBB); 5475 if (!ParentPad) 5476 return error("Invalid record"); 5477 5478 unsigned NumHandlers = Record[Idx++]; 5479 5480 SmallVector<BasicBlock *, 2> Handlers; 5481 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 5482 BasicBlock *BB = getBasicBlock(Record[Idx++]); 5483 if (!BB) 5484 return error("Invalid record"); 5485 Handlers.push_back(BB); 5486 } 5487 5488 BasicBlock *UnwindDest = nullptr; 5489 if (Idx + 1 == Record.size()) { 5490 UnwindDest = getBasicBlock(Record[Idx++]); 5491 if (!UnwindDest) 5492 return error("Invalid record"); 5493 } 5494 5495 if (Record.size() != Idx) 5496 return error("Invalid record"); 5497 5498 auto *CatchSwitch = 5499 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 5500 for (BasicBlock *Handler : Handlers) 5501 CatchSwitch->addHandler(Handler); 5502 I = CatchSwitch; 5503 ResTypeID = getVirtualTypeID(I->getType()); 5504 InstructionList.push_back(I); 5505 break; 5506 } 5507 case bitc::FUNC_CODE_INST_CATCHPAD: 5508 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 5509 // We must have, at minimum, the outer scope and the number of arguments. 5510 if (Record.size() < 2) 5511 return error("Invalid record"); 5512 5513 unsigned Idx = 0; 5514 5515 Type *TokenTy = Type::getTokenTy(Context); 5516 Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5517 getVirtualTypeID(TokenTy), CurBB); 5518 if (!ParentPad) 5519 return error("Invald record"); 5520 5521 unsigned NumArgOperands = Record[Idx++]; 5522 5523 SmallVector<Value *, 2> Args; 5524 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 5525 Value *Val; 5526 unsigned ValTypeID; 5527 if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, nullptr)) 5528 return error("Invalid record"); 5529 Args.push_back(Val); 5530 } 5531 5532 if (Record.size() != Idx) 5533 return error("Invalid record"); 5534 5535 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 5536 I = CleanupPadInst::Create(ParentPad, Args); 5537 else 5538 I = CatchPadInst::Create(ParentPad, Args); 5539 ResTypeID = getVirtualTypeID(I->getType()); 5540 InstructionList.push_back(I); 5541 break; 5542 } 5543 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 5544 // Check magic 5545 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 5546 // "New" SwitchInst format with case ranges. The changes to write this 5547 // format were reverted but we still recognize bitcode that uses it. 5548 // Hopefully someday we will have support for case ranges and can use 5549 // this format again. 5550 5551 unsigned OpTyID = Record[1]; 5552 Type *OpTy = getTypeByID(OpTyID); 5553 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 5554 5555 Value *Cond = getValue(Record, 2, NextValueNo, OpTy, OpTyID, CurBB); 5556 BasicBlock *Default = getBasicBlock(Record[3]); 5557 if (!OpTy || !Cond || !Default) 5558 return error("Invalid record"); 5559 5560 unsigned NumCases = Record[4]; 5561 5562 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 5563 InstructionList.push_back(SI); 5564 5565 unsigned CurIdx = 5; 5566 for (unsigned i = 0; i != NumCases; ++i) { 5567 SmallVector<ConstantInt*, 1> CaseVals; 5568 unsigned NumItems = Record[CurIdx++]; 5569 for (unsigned ci = 0; ci != NumItems; ++ci) { 5570 bool isSingleNumber = Record[CurIdx++]; 5571 5572 APInt Low; 5573 unsigned ActiveWords = 1; 5574 if (ValueBitWidth > 64) 5575 ActiveWords = Record[CurIdx++]; 5576 Low = readWideAPInt(ArrayRef(&Record[CurIdx], ActiveWords), 5577 ValueBitWidth); 5578 CurIdx += ActiveWords; 5579 5580 if (!isSingleNumber) { 5581 ActiveWords = 1; 5582 if (ValueBitWidth > 64) 5583 ActiveWords = Record[CurIdx++]; 5584 APInt High = readWideAPInt(ArrayRef(&Record[CurIdx], ActiveWords), 5585 ValueBitWidth); 5586 CurIdx += ActiveWords; 5587 5588 // FIXME: It is not clear whether values in the range should be 5589 // compared as signed or unsigned values. The partially 5590 // implemented changes that used this format in the past used 5591 // unsigned comparisons. 5592 for ( ; Low.ule(High); ++Low) 5593 CaseVals.push_back(ConstantInt::get(Context, Low)); 5594 } else 5595 CaseVals.push_back(ConstantInt::get(Context, Low)); 5596 } 5597 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 5598 for (ConstantInt *Cst : CaseVals) 5599 SI->addCase(Cst, DestBB); 5600 } 5601 I = SI; 5602 break; 5603 } 5604 5605 // Old SwitchInst format without case ranges. 5606 5607 if (Record.size() < 3 || (Record.size() & 1) == 0) 5608 return error("Invalid record"); 5609 unsigned OpTyID = Record[0]; 5610 Type *OpTy = getTypeByID(OpTyID); 5611 Value *Cond = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB); 5612 BasicBlock *Default = getBasicBlock(Record[2]); 5613 if (!OpTy || !Cond || !Default) 5614 return error("Invalid record"); 5615 unsigned NumCases = (Record.size()-3)/2; 5616 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 5617 InstructionList.push_back(SI); 5618 for (unsigned i = 0, e = NumCases; i != e; ++i) { 5619 ConstantInt *CaseVal = dyn_cast_or_null<ConstantInt>( 5620 getFnValueByID(Record[3+i*2], OpTy, OpTyID, nullptr)); 5621 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 5622 if (!CaseVal || !DestBB) { 5623 delete SI; 5624 return error("Invalid record"); 5625 } 5626 SI->addCase(CaseVal, DestBB); 5627 } 5628 I = SI; 5629 break; 5630 } 5631 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 5632 if (Record.size() < 2) 5633 return error("Invalid record"); 5634 unsigned OpTyID = Record[0]; 5635 Type *OpTy = getTypeByID(OpTyID); 5636 Value *Address = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB); 5637 if (!OpTy || !Address) 5638 return error("Invalid record"); 5639 unsigned NumDests = Record.size()-2; 5640 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 5641 InstructionList.push_back(IBI); 5642 for (unsigned i = 0, e = NumDests; i != e; ++i) { 5643 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 5644 IBI->addDestination(DestBB); 5645 } else { 5646 delete IBI; 5647 return error("Invalid record"); 5648 } 5649 } 5650 I = IBI; 5651 break; 5652 } 5653 5654 case bitc::FUNC_CODE_INST_INVOKE: { 5655 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 5656 if (Record.size() < 4) 5657 return error("Invalid record"); 5658 unsigned OpNum = 0; 5659 AttributeList PAL = getAttributes(Record[OpNum++]); 5660 unsigned CCInfo = Record[OpNum++]; 5661 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 5662 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 5663 5664 unsigned FTyID = InvalidTypeID; 5665 FunctionType *FTy = nullptr; 5666 if ((CCInfo >> 13) & 1) { 5667 FTyID = Record[OpNum++]; 5668 FTy = dyn_cast<FunctionType>(getTypeByID(FTyID)); 5669 if (!FTy) 5670 return error("Explicit invoke type is not a function type"); 5671 } 5672 5673 Value *Callee; 5674 unsigned CalleeTypeID; 5675 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID, 5676 CurBB)) 5677 return error("Invalid record"); 5678 5679 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 5680 if (!CalleeTy) 5681 return error("Callee is not a pointer"); 5682 if (!FTy) { 5683 FTyID = getContainedTypeID(CalleeTypeID); 5684 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 5685 if (!FTy) 5686 return error("Callee is not of pointer to function type"); 5687 } 5688 if (Record.size() < FTy->getNumParams() + OpNum) 5689 return error("Insufficient operands to call"); 5690 5691 SmallVector<Value*, 16> Ops; 5692 SmallVector<unsigned, 16> ArgTyIDs; 5693 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5694 unsigned ArgTyID = getContainedTypeID(FTyID, i + 1); 5695 Ops.push_back(getValue(Record, OpNum, NextValueNo, FTy->getParamType(i), 5696 ArgTyID, CurBB)); 5697 ArgTyIDs.push_back(ArgTyID); 5698 if (!Ops.back()) 5699 return error("Invalid record"); 5700 } 5701 5702 if (!FTy->isVarArg()) { 5703 if (Record.size() != OpNum) 5704 return error("Invalid record"); 5705 } else { 5706 // Read type/value pairs for varargs params. 5707 while (OpNum != Record.size()) { 5708 Value *Op; 5709 unsigned OpTypeID; 5710 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 5711 return error("Invalid record"); 5712 Ops.push_back(Op); 5713 ArgTyIDs.push_back(OpTypeID); 5714 } 5715 } 5716 5717 // Upgrade the bundles if needed. 5718 if (!OperandBundles.empty()) 5719 UpgradeOperandBundles(OperandBundles); 5720 5721 I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops, 5722 OperandBundles); 5723 ResTypeID = getContainedTypeID(FTyID); 5724 OperandBundles.clear(); 5725 InstructionList.push_back(I); 5726 cast<InvokeInst>(I)->setCallingConv( 5727 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 5728 cast<InvokeInst>(I)->setAttributes(PAL); 5729 if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) { 5730 I->deleteValue(); 5731 return Err; 5732 } 5733 5734 break; 5735 } 5736 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 5737 unsigned Idx = 0; 5738 Value *Val = nullptr; 5739 unsigned ValTypeID; 5740 if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, CurBB)) 5741 return error("Invalid record"); 5742 I = ResumeInst::Create(Val); 5743 InstructionList.push_back(I); 5744 break; 5745 } 5746 case bitc::FUNC_CODE_INST_CALLBR: { 5747 // CALLBR: [attr, cc, norm, transfs, fty, fnid, args] 5748 unsigned OpNum = 0; 5749 AttributeList PAL = getAttributes(Record[OpNum++]); 5750 unsigned CCInfo = Record[OpNum++]; 5751 5752 BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]); 5753 unsigned NumIndirectDests = Record[OpNum++]; 5754 SmallVector<BasicBlock *, 16> IndirectDests; 5755 for (unsigned i = 0, e = NumIndirectDests; i != e; ++i) 5756 IndirectDests.push_back(getBasicBlock(Record[OpNum++])); 5757 5758 unsigned FTyID = InvalidTypeID; 5759 FunctionType *FTy = nullptr; 5760 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 5761 FTyID = Record[OpNum++]; 5762 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 5763 if (!FTy) 5764 return error("Explicit call type is not a function type"); 5765 } 5766 5767 Value *Callee; 5768 unsigned CalleeTypeID; 5769 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID, 5770 CurBB)) 5771 return error("Invalid record"); 5772 5773 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5774 if (!OpTy) 5775 return error("Callee is not a pointer type"); 5776 if (!FTy) { 5777 FTyID = getContainedTypeID(CalleeTypeID); 5778 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 5779 if (!FTy) 5780 return error("Callee is not of pointer to function type"); 5781 } 5782 if (Record.size() < FTy->getNumParams() + OpNum) 5783 return error("Insufficient operands to call"); 5784 5785 SmallVector<Value*, 16> Args; 5786 SmallVector<unsigned, 16> ArgTyIDs; 5787 // Read the fixed params. 5788 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5789 Value *Arg; 5790 unsigned ArgTyID = getContainedTypeID(FTyID, i + 1); 5791 if (FTy->getParamType(i)->isLabelTy()) 5792 Arg = getBasicBlock(Record[OpNum]); 5793 else 5794 Arg = getValue(Record, OpNum, NextValueNo, FTy->getParamType(i), 5795 ArgTyID, CurBB); 5796 if (!Arg) 5797 return error("Invalid record"); 5798 Args.push_back(Arg); 5799 ArgTyIDs.push_back(ArgTyID); 5800 } 5801 5802 // Read type/value pairs for varargs params. 5803 if (!FTy->isVarArg()) { 5804 if (OpNum != Record.size()) 5805 return error("Invalid record"); 5806 } else { 5807 while (OpNum != Record.size()) { 5808 Value *Op; 5809 unsigned OpTypeID; 5810 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 5811 return error("Invalid record"); 5812 Args.push_back(Op); 5813 ArgTyIDs.push_back(OpTypeID); 5814 } 5815 } 5816 5817 // Upgrade the bundles if needed. 5818 if (!OperandBundles.empty()) 5819 UpgradeOperandBundles(OperandBundles); 5820 5821 if (auto *IA = dyn_cast<InlineAsm>(Callee)) { 5822 InlineAsm::ConstraintInfoVector ConstraintInfo = IA->ParseConstraints(); 5823 auto IsLabelConstraint = [](const InlineAsm::ConstraintInfo &CI) { 5824 return CI.Type == InlineAsm::isLabel; 5825 }; 5826 if (none_of(ConstraintInfo, IsLabelConstraint)) { 5827 // Upgrade explicit blockaddress arguments to label constraints. 5828 // Verify that the last arguments are blockaddress arguments that 5829 // match the indirect destinations. Clang always generates callbr 5830 // in this form. We could support reordering with more effort. 5831 unsigned FirstBlockArg = Args.size() - IndirectDests.size(); 5832 for (unsigned ArgNo = FirstBlockArg; ArgNo < Args.size(); ++ArgNo) { 5833 unsigned LabelNo = ArgNo - FirstBlockArg; 5834 auto *BA = dyn_cast<BlockAddress>(Args[ArgNo]); 5835 if (!BA || BA->getFunction() != F || 5836 LabelNo > IndirectDests.size() || 5837 BA->getBasicBlock() != IndirectDests[LabelNo]) 5838 return error("callbr argument does not match indirect dest"); 5839 } 5840 5841 // Remove blockaddress arguments. 5842 Args.erase(Args.begin() + FirstBlockArg, Args.end()); 5843 ArgTyIDs.erase(ArgTyIDs.begin() + FirstBlockArg, ArgTyIDs.end()); 5844 5845 // Recreate the function type with less arguments. 5846 SmallVector<Type *> ArgTys; 5847 for (Value *Arg : Args) 5848 ArgTys.push_back(Arg->getType()); 5849 FTy = 5850 FunctionType::get(FTy->getReturnType(), ArgTys, FTy->isVarArg()); 5851 5852 // Update constraint string to use label constraints. 5853 std::string Constraints = IA->getConstraintString(); 5854 unsigned ArgNo = 0; 5855 size_t Pos = 0; 5856 for (const auto &CI : ConstraintInfo) { 5857 if (CI.hasArg()) { 5858 if (ArgNo >= FirstBlockArg) 5859 Constraints.insert(Pos, "!"); 5860 ++ArgNo; 5861 } 5862 5863 // Go to next constraint in string. 5864 Pos = Constraints.find(',', Pos); 5865 if (Pos == std::string::npos) 5866 break; 5867 ++Pos; 5868 } 5869 5870 Callee = InlineAsm::get(FTy, IA->getAsmString(), Constraints, 5871 IA->hasSideEffects(), IA->isAlignStack(), 5872 IA->getDialect(), IA->canThrow()); 5873 } 5874 } 5875 5876 I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args, 5877 OperandBundles); 5878 ResTypeID = getContainedTypeID(FTyID); 5879 OperandBundles.clear(); 5880 InstructionList.push_back(I); 5881 cast<CallBrInst>(I)->setCallingConv( 5882 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5883 cast<CallBrInst>(I)->setAttributes(PAL); 5884 if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) { 5885 I->deleteValue(); 5886 return Err; 5887 } 5888 break; 5889 } 5890 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 5891 I = new UnreachableInst(Context); 5892 InstructionList.push_back(I); 5893 break; 5894 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 5895 if (Record.empty()) 5896 return error("Invalid phi record"); 5897 // The first record specifies the type. 5898 unsigned TyID = Record[0]; 5899 Type *Ty = getTypeByID(TyID); 5900 if (!Ty) 5901 return error("Invalid phi record"); 5902 5903 // Phi arguments are pairs of records of [value, basic block]. 5904 // There is an optional final record for fast-math-flags if this phi has a 5905 // floating-point type. 5906 size_t NumArgs = (Record.size() - 1) / 2; 5907 PHINode *PN = PHINode::Create(Ty, NumArgs); 5908 if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN)) { 5909 PN->deleteValue(); 5910 return error("Invalid phi record"); 5911 } 5912 InstructionList.push_back(PN); 5913 5914 SmallDenseMap<BasicBlock *, Value *> Args; 5915 for (unsigned i = 0; i != NumArgs; i++) { 5916 BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]); 5917 if (!BB) { 5918 PN->deleteValue(); 5919 return error("Invalid phi BB"); 5920 } 5921 5922 // Phi nodes may contain the same predecessor multiple times, in which 5923 // case the incoming value must be identical. Directly reuse the already 5924 // seen value here, to avoid expanding a constant expression multiple 5925 // times. 5926 auto It = Args.find(BB); 5927 if (It != Args.end()) { 5928 PN->addIncoming(It->second, BB); 5929 continue; 5930 } 5931 5932 // If there already is a block for this edge (from a different phi), 5933 // use it. 5934 BasicBlock *EdgeBB = ConstExprEdgeBBs.lookup({BB, CurBB}); 5935 if (!EdgeBB) { 5936 // Otherwise, use a temporary block (that we will discard if it 5937 // turns out to be unnecessary). 5938 if (!PhiConstExprBB) 5939 PhiConstExprBB = BasicBlock::Create(Context, "phi.constexpr", F); 5940 EdgeBB = PhiConstExprBB; 5941 } 5942 5943 // With the new function encoding, it is possible that operands have 5944 // negative IDs (for forward references). Use a signed VBR 5945 // representation to keep the encoding small. 5946 Value *V; 5947 if (UseRelativeIDs) 5948 V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB); 5949 else 5950 V = getValue(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB); 5951 if (!V) { 5952 PN->deleteValue(); 5953 PhiConstExprBB->eraseFromParent(); 5954 return error("Invalid phi record"); 5955 } 5956 5957 if (EdgeBB == PhiConstExprBB && !EdgeBB->empty()) { 5958 ConstExprEdgeBBs.insert({{BB, CurBB}, EdgeBB}); 5959 PhiConstExprBB = nullptr; 5960 } 5961 PN->addIncoming(V, BB); 5962 Args.insert({BB, V}); 5963 } 5964 I = PN; 5965 ResTypeID = TyID; 5966 5967 // If there are an even number of records, the final record must be FMF. 5968 if (Record.size() % 2 == 0) { 5969 assert(isa<FPMathOperator>(I) && "Unexpected phi type"); 5970 FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]); 5971 if (FMF.any()) 5972 I->setFastMathFlags(FMF); 5973 } 5974 5975 break; 5976 } 5977 5978 case bitc::FUNC_CODE_INST_LANDINGPAD: 5979 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 5980 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 5981 unsigned Idx = 0; 5982 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 5983 if (Record.size() < 3) 5984 return error("Invalid record"); 5985 } else { 5986 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 5987 if (Record.size() < 4) 5988 return error("Invalid record"); 5989 } 5990 ResTypeID = Record[Idx++]; 5991 Type *Ty = getTypeByID(ResTypeID); 5992 if (!Ty) 5993 return error("Invalid record"); 5994 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 5995 Value *PersFn = nullptr; 5996 unsigned PersFnTypeID; 5997 if (getValueTypePair(Record, Idx, NextValueNo, PersFn, PersFnTypeID, 5998 nullptr)) 5999 return error("Invalid record"); 6000 6001 if (!F->hasPersonalityFn()) 6002 F->setPersonalityFn(cast<Constant>(PersFn)); 6003 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 6004 return error("Personality function mismatch"); 6005 } 6006 6007 bool IsCleanup = !!Record[Idx++]; 6008 unsigned NumClauses = Record[Idx++]; 6009 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 6010 LP->setCleanup(IsCleanup); 6011 for (unsigned J = 0; J != NumClauses; ++J) { 6012 LandingPadInst::ClauseType CT = 6013 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 6014 Value *Val; 6015 unsigned ValTypeID; 6016 6017 if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, 6018 nullptr)) { 6019 delete LP; 6020 return error("Invalid record"); 6021 } 6022 6023 assert((CT != LandingPadInst::Catch || 6024 !isa<ArrayType>(Val->getType())) && 6025 "Catch clause has a invalid type!"); 6026 assert((CT != LandingPadInst::Filter || 6027 isa<ArrayType>(Val->getType())) && 6028 "Filter clause has invalid type!"); 6029 LP->addClause(cast<Constant>(Val)); 6030 } 6031 6032 I = LP; 6033 InstructionList.push_back(I); 6034 break; 6035 } 6036 6037 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 6038 if (Record.size() != 4 && Record.size() != 5) 6039 return error("Invalid record"); 6040 using APV = AllocaPackedValues; 6041 const uint64_t Rec = Record[3]; 6042 const bool InAlloca = Bitfield::get<APV::UsedWithInAlloca>(Rec); 6043 const bool SwiftError = Bitfield::get<APV::SwiftError>(Rec); 6044 unsigned TyID = Record[0]; 6045 Type *Ty = getTypeByID(TyID); 6046 if (!Bitfield::get<APV::ExplicitType>(Rec)) { 6047 TyID = getContainedTypeID(TyID); 6048 Ty = getTypeByID(TyID); 6049 if (!Ty) 6050 return error("Missing element type for old-style alloca"); 6051 } 6052 unsigned OpTyID = Record[1]; 6053 Type *OpTy = getTypeByID(OpTyID); 6054 Value *Size = getFnValueByID(Record[2], OpTy, OpTyID, CurBB); 6055 MaybeAlign Align; 6056 uint64_t AlignExp = 6057 Bitfield::get<APV::AlignLower>(Rec) | 6058 (Bitfield::get<APV::AlignUpper>(Rec) << APV::AlignLower::Bits); 6059 if (Error Err = parseAlignmentValue(AlignExp, Align)) { 6060 return Err; 6061 } 6062 if (!Ty || !Size) 6063 return error("Invalid record"); 6064 6065 const DataLayout &DL = TheModule->getDataLayout(); 6066 unsigned AS = Record.size() == 5 ? Record[4] : DL.getAllocaAddrSpace(); 6067 6068 SmallPtrSet<Type *, 4> Visited; 6069 if (!Align && !Ty->isSized(&Visited)) 6070 return error("alloca of unsized type"); 6071 if (!Align) 6072 Align = DL.getPrefTypeAlign(Ty); 6073 6074 if (!Size->getType()->isIntegerTy()) 6075 return error("alloca element count must have integer type"); 6076 6077 AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align); 6078 AI->setUsedWithInAlloca(InAlloca); 6079 AI->setSwiftError(SwiftError); 6080 I = AI; 6081 ResTypeID = getVirtualTypeID(AI->getType(), TyID); 6082 InstructionList.push_back(I); 6083 break; 6084 } 6085 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 6086 unsigned OpNum = 0; 6087 Value *Op; 6088 unsigned OpTypeID; 6089 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) || 6090 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 6091 return error("Invalid record"); 6092 6093 if (!isa<PointerType>(Op->getType())) 6094 return error("Load operand is not a pointer type"); 6095 6096 Type *Ty = nullptr; 6097 if (OpNum + 3 == Record.size()) { 6098 ResTypeID = Record[OpNum++]; 6099 Ty = getTypeByID(ResTypeID); 6100 } else { 6101 ResTypeID = getContainedTypeID(OpTypeID); 6102 Ty = getTypeByID(ResTypeID); 6103 } 6104 6105 if (!Ty) 6106 return error("Missing load type"); 6107 6108 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 6109 return Err; 6110 6111 MaybeAlign Align; 6112 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 6113 return Err; 6114 SmallPtrSet<Type *, 4> Visited; 6115 if (!Align && !Ty->isSized(&Visited)) 6116 return error("load of unsized type"); 6117 if (!Align) 6118 Align = TheModule->getDataLayout().getABITypeAlign(Ty); 6119 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align); 6120 InstructionList.push_back(I); 6121 break; 6122 } 6123 case bitc::FUNC_CODE_INST_LOADATOMIC: { 6124 // LOADATOMIC: [opty, op, align, vol, ordering, ssid] 6125 unsigned OpNum = 0; 6126 Value *Op; 6127 unsigned OpTypeID; 6128 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) || 6129 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 6130 return error("Invalid record"); 6131 6132 if (!isa<PointerType>(Op->getType())) 6133 return error("Load operand is not a pointer type"); 6134 6135 Type *Ty = nullptr; 6136 if (OpNum + 5 == Record.size()) { 6137 ResTypeID = Record[OpNum++]; 6138 Ty = getTypeByID(ResTypeID); 6139 } else { 6140 ResTypeID = getContainedTypeID(OpTypeID); 6141 Ty = getTypeByID(ResTypeID); 6142 } 6143 6144 if (!Ty) 6145 return error("Missing atomic load type"); 6146 6147 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 6148 return Err; 6149 6150 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 6151 if (Ordering == AtomicOrdering::NotAtomic || 6152 Ordering == AtomicOrdering::Release || 6153 Ordering == AtomicOrdering::AcquireRelease) 6154 return error("Invalid record"); 6155 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 6156 return error("Invalid record"); 6157 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 6158 6159 MaybeAlign Align; 6160 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 6161 return Err; 6162 if (!Align) 6163 return error("Alignment missing from atomic load"); 6164 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID); 6165 InstructionList.push_back(I); 6166 break; 6167 } 6168 case bitc::FUNC_CODE_INST_STORE: 6169 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 6170 unsigned OpNum = 0; 6171 Value *Val, *Ptr; 6172 unsigned PtrTypeID, ValTypeID; 6173 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 6174 return error("Invalid record"); 6175 6176 if (BitCode == bitc::FUNC_CODE_INST_STORE) { 6177 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 6178 return error("Invalid record"); 6179 } else { 6180 ValTypeID = getContainedTypeID(PtrTypeID); 6181 if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID), 6182 ValTypeID, Val, CurBB)) 6183 return error("Invalid record"); 6184 } 6185 6186 if (OpNum + 2 != Record.size()) 6187 return error("Invalid record"); 6188 6189 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 6190 return Err; 6191 MaybeAlign Align; 6192 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 6193 return Err; 6194 SmallPtrSet<Type *, 4> Visited; 6195 if (!Align && !Val->getType()->isSized(&Visited)) 6196 return error("store of unsized type"); 6197 if (!Align) 6198 Align = TheModule->getDataLayout().getABITypeAlign(Val->getType()); 6199 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align); 6200 InstructionList.push_back(I); 6201 break; 6202 } 6203 case bitc::FUNC_CODE_INST_STOREATOMIC: 6204 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 6205 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid] 6206 unsigned OpNum = 0; 6207 Value *Val, *Ptr; 6208 unsigned PtrTypeID, ValTypeID; 6209 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB) || 6210 !isa<PointerType>(Ptr->getType())) 6211 return error("Invalid record"); 6212 if (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC) { 6213 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 6214 return error("Invalid record"); 6215 } else { 6216 ValTypeID = getContainedTypeID(PtrTypeID); 6217 if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID), 6218 ValTypeID, Val, CurBB)) 6219 return error("Invalid record"); 6220 } 6221 6222 if (OpNum + 4 != Record.size()) 6223 return error("Invalid record"); 6224 6225 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 6226 return Err; 6227 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 6228 if (Ordering == AtomicOrdering::NotAtomic || 6229 Ordering == AtomicOrdering::Acquire || 6230 Ordering == AtomicOrdering::AcquireRelease) 6231 return error("Invalid record"); 6232 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 6233 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 6234 return error("Invalid record"); 6235 6236 MaybeAlign Align; 6237 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 6238 return Err; 6239 if (!Align) 6240 return error("Alignment missing from atomic store"); 6241 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID); 6242 InstructionList.push_back(I); 6243 break; 6244 } 6245 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: { 6246 // CMPXCHG_OLD: [ptrty, ptr, cmp, val, vol, ordering, synchscope, 6247 // failure_ordering?, weak?] 6248 const size_t NumRecords = Record.size(); 6249 unsigned OpNum = 0; 6250 Value *Ptr = nullptr; 6251 unsigned PtrTypeID; 6252 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 6253 return error("Invalid record"); 6254 6255 if (!isa<PointerType>(Ptr->getType())) 6256 return error("Cmpxchg operand is not a pointer type"); 6257 6258 Value *Cmp = nullptr; 6259 unsigned CmpTypeID = getContainedTypeID(PtrTypeID); 6260 if (popValue(Record, OpNum, NextValueNo, getTypeByID(CmpTypeID), 6261 CmpTypeID, Cmp, CurBB)) 6262 return error("Invalid record"); 6263 6264 Value *New = nullptr; 6265 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID, 6266 New, CurBB) || 6267 NumRecords < OpNum + 3 || NumRecords > OpNum + 5) 6268 return error("Invalid record"); 6269 6270 const AtomicOrdering SuccessOrdering = 6271 getDecodedOrdering(Record[OpNum + 1]); 6272 if (SuccessOrdering == AtomicOrdering::NotAtomic || 6273 SuccessOrdering == AtomicOrdering::Unordered) 6274 return error("Invalid record"); 6275 6276 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 6277 6278 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 6279 return Err; 6280 6281 const AtomicOrdering FailureOrdering = 6282 NumRecords < 7 6283 ? AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering) 6284 : getDecodedOrdering(Record[OpNum + 3]); 6285 6286 if (FailureOrdering == AtomicOrdering::NotAtomic || 6287 FailureOrdering == AtomicOrdering::Unordered) 6288 return error("Invalid record"); 6289 6290 const Align Alignment( 6291 TheModule->getDataLayout().getTypeStoreSize(Cmp->getType())); 6292 6293 I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering, 6294 FailureOrdering, SSID); 6295 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 6296 6297 if (NumRecords < 8) { 6298 // Before weak cmpxchgs existed, the instruction simply returned the 6299 // value loaded from memory, so bitcode files from that era will be 6300 // expecting the first component of a modern cmpxchg. 6301 I->insertInto(CurBB, CurBB->end()); 6302 I = ExtractValueInst::Create(I, 0); 6303 ResTypeID = CmpTypeID; 6304 } else { 6305 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]); 6306 unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context)); 6307 ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID}); 6308 } 6309 6310 InstructionList.push_back(I); 6311 break; 6312 } 6313 case bitc::FUNC_CODE_INST_CMPXCHG: { 6314 // CMPXCHG: [ptrty, ptr, cmp, val, vol, success_ordering, synchscope, 6315 // failure_ordering, weak, align?] 6316 const size_t NumRecords = Record.size(); 6317 unsigned OpNum = 0; 6318 Value *Ptr = nullptr; 6319 unsigned PtrTypeID; 6320 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 6321 return error("Invalid record"); 6322 6323 if (!isa<PointerType>(Ptr->getType())) 6324 return error("Cmpxchg operand is not a pointer type"); 6325 6326 Value *Cmp = nullptr; 6327 unsigned CmpTypeID; 6328 if (getValueTypePair(Record, OpNum, NextValueNo, Cmp, CmpTypeID, CurBB)) 6329 return error("Invalid record"); 6330 6331 Value *Val = nullptr; 6332 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID, Val, 6333 CurBB)) 6334 return error("Invalid record"); 6335 6336 if (NumRecords < OpNum + 3 || NumRecords > OpNum + 6) 6337 return error("Invalid record"); 6338 6339 const bool IsVol = Record[OpNum]; 6340 6341 const AtomicOrdering SuccessOrdering = 6342 getDecodedOrdering(Record[OpNum + 1]); 6343 if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering)) 6344 return error("Invalid cmpxchg success ordering"); 6345 6346 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 6347 6348 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 6349 return Err; 6350 6351 const AtomicOrdering FailureOrdering = 6352 getDecodedOrdering(Record[OpNum + 3]); 6353 if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering)) 6354 return error("Invalid cmpxchg failure ordering"); 6355 6356 const bool IsWeak = Record[OpNum + 4]; 6357 6358 MaybeAlign Alignment; 6359 6360 if (NumRecords == (OpNum + 6)) { 6361 if (Error Err = parseAlignmentValue(Record[OpNum + 5], Alignment)) 6362 return Err; 6363 } 6364 if (!Alignment) 6365 Alignment = 6366 Align(TheModule->getDataLayout().getTypeStoreSize(Cmp->getType())); 6367 6368 I = new AtomicCmpXchgInst(Ptr, Cmp, Val, *Alignment, SuccessOrdering, 6369 FailureOrdering, SSID); 6370 cast<AtomicCmpXchgInst>(I)->setVolatile(IsVol); 6371 cast<AtomicCmpXchgInst>(I)->setWeak(IsWeak); 6372 6373 unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context)); 6374 ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID}); 6375 6376 InstructionList.push_back(I); 6377 break; 6378 } 6379 case bitc::FUNC_CODE_INST_ATOMICRMW_OLD: 6380 case bitc::FUNC_CODE_INST_ATOMICRMW: { 6381 // ATOMICRMW_OLD: [ptrty, ptr, val, op, vol, ordering, ssid, align?] 6382 // ATOMICRMW: [ptrty, ptr, valty, val, op, vol, ordering, ssid, align?] 6383 const size_t NumRecords = Record.size(); 6384 unsigned OpNum = 0; 6385 6386 Value *Ptr = nullptr; 6387 unsigned PtrTypeID; 6388 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 6389 return error("Invalid record"); 6390 6391 if (!isa<PointerType>(Ptr->getType())) 6392 return error("Invalid record"); 6393 6394 Value *Val = nullptr; 6395 unsigned ValTypeID = InvalidTypeID; 6396 if (BitCode == bitc::FUNC_CODE_INST_ATOMICRMW_OLD) { 6397 ValTypeID = getContainedTypeID(PtrTypeID); 6398 if (popValue(Record, OpNum, NextValueNo, 6399 getTypeByID(ValTypeID), ValTypeID, Val, CurBB)) 6400 return error("Invalid record"); 6401 } else { 6402 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 6403 return error("Invalid record"); 6404 } 6405 6406 if (!(NumRecords == (OpNum + 4) || NumRecords == (OpNum + 5))) 6407 return error("Invalid record"); 6408 6409 const AtomicRMWInst::BinOp Operation = 6410 getDecodedRMWOperation(Record[OpNum]); 6411 if (Operation < AtomicRMWInst::FIRST_BINOP || 6412 Operation > AtomicRMWInst::LAST_BINOP) 6413 return error("Invalid record"); 6414 6415 const bool IsVol = Record[OpNum + 1]; 6416 6417 const AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 6418 if (Ordering == AtomicOrdering::NotAtomic || 6419 Ordering == AtomicOrdering::Unordered) 6420 return error("Invalid record"); 6421 6422 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 6423 6424 MaybeAlign Alignment; 6425 6426 if (NumRecords == (OpNum + 5)) { 6427 if (Error Err = parseAlignmentValue(Record[OpNum + 4], Alignment)) 6428 return Err; 6429 } 6430 6431 if (!Alignment) 6432 Alignment = 6433 Align(TheModule->getDataLayout().getTypeStoreSize(Val->getType())); 6434 6435 I = new AtomicRMWInst(Operation, Ptr, Val, *Alignment, Ordering, SSID); 6436 ResTypeID = ValTypeID; 6437 cast<AtomicRMWInst>(I)->setVolatile(IsVol); 6438 6439 InstructionList.push_back(I); 6440 break; 6441 } 6442 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid] 6443 if (2 != Record.size()) 6444 return error("Invalid record"); 6445 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 6446 if (Ordering == AtomicOrdering::NotAtomic || 6447 Ordering == AtomicOrdering::Unordered || 6448 Ordering == AtomicOrdering::Monotonic) 6449 return error("Invalid record"); 6450 SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]); 6451 I = new FenceInst(Context, Ordering, SSID); 6452 InstructionList.push_back(I); 6453 break; 6454 } 6455 case bitc::FUNC_CODE_DEBUG_RECORD_LABEL: { 6456 // DbgLabelRecords are placed after the Instructions that they are 6457 // attached to. 6458 SeenDebugRecord = true; 6459 Instruction *Inst = getLastInstruction(); 6460 if (!Inst) 6461 return error("Invalid dbg record: missing instruction"); 6462 DILocation *DIL = cast<DILocation>(getFnMetadataByID(Record[0])); 6463 DILabel *Label = cast<DILabel>(getFnMetadataByID(Record[1])); 6464 Inst->getParent()->insertDbgRecordBefore( 6465 new DbgLabelRecord(Label, DebugLoc(DIL)), Inst->getIterator()); 6466 continue; // This isn't an instruction. 6467 } 6468 case bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE: 6469 case bitc::FUNC_CODE_DEBUG_RECORD_VALUE: 6470 case bitc::FUNC_CODE_DEBUG_RECORD_DECLARE: 6471 case bitc::FUNC_CODE_DEBUG_RECORD_ASSIGN: { 6472 // DbgVariableRecords are placed after the Instructions that they are 6473 // attached to. 6474 SeenDebugRecord = true; 6475 Instruction *Inst = getLastInstruction(); 6476 if (!Inst) 6477 return error("Invalid dbg record: missing instruction"); 6478 6479 // First 3 fields are common to all kinds: 6480 // DILocation, DILocalVariable, DIExpression 6481 // dbg_value (FUNC_CODE_DEBUG_RECORD_VALUE) 6482 // ..., LocationMetadata 6483 // dbg_value (FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE - abbrev'd) 6484 // ..., Value 6485 // dbg_declare (FUNC_CODE_DEBUG_RECORD_DECLARE) 6486 // ..., LocationMetadata 6487 // dbg_assign (FUNC_CODE_DEBUG_RECORD_ASSIGN) 6488 // ..., LocationMetadata, DIAssignID, DIExpression, LocationMetadata 6489 unsigned Slot = 0; 6490 // Common fields (0-2). 6491 DILocation *DIL = cast<DILocation>(getFnMetadataByID(Record[Slot++])); 6492 DILocalVariable *Var = 6493 cast<DILocalVariable>(getFnMetadataByID(Record[Slot++])); 6494 DIExpression *Expr = 6495 cast<DIExpression>(getFnMetadataByID(Record[Slot++])); 6496 6497 // Union field (3: LocationMetadata | Value). 6498 Metadata *RawLocation = nullptr; 6499 if (BitCode == bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE) { 6500 Value *V = nullptr; 6501 unsigned TyID = 0; 6502 // We never expect to see a fwd reference value here because 6503 // use-before-defs are encoded with the standard non-abbrev record 6504 // type (they'd require encoding the type too, and they're rare). As a 6505 // result, getValueTypePair only ever increments Slot by one here (once 6506 // for the value, never twice for value and type). 6507 unsigned SlotBefore = Slot; 6508 if (getValueTypePair(Record, Slot, NextValueNo, V, TyID, CurBB)) 6509 return error("Invalid dbg record: invalid value"); 6510 (void)SlotBefore; 6511 assert((SlotBefore == Slot - 1) && "unexpected fwd ref"); 6512 RawLocation = ValueAsMetadata::get(V); 6513 } else { 6514 RawLocation = getFnMetadataByID(Record[Slot++]); 6515 } 6516 6517 DbgVariableRecord *DVR = nullptr; 6518 switch (BitCode) { 6519 case bitc::FUNC_CODE_DEBUG_RECORD_VALUE: 6520 case bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE: 6521 DVR = new DbgVariableRecord(RawLocation, Var, Expr, DIL, 6522 DbgVariableRecord::LocationType::Value); 6523 break; 6524 case bitc::FUNC_CODE_DEBUG_RECORD_DECLARE: 6525 DVR = new DbgVariableRecord(RawLocation, Var, Expr, DIL, 6526 DbgVariableRecord::LocationType::Declare); 6527 break; 6528 case bitc::FUNC_CODE_DEBUG_RECORD_ASSIGN: { 6529 DIAssignID *ID = cast<DIAssignID>(getFnMetadataByID(Record[Slot++])); 6530 DIExpression *AddrExpr = 6531 cast<DIExpression>(getFnMetadataByID(Record[Slot++])); 6532 Metadata *Addr = getFnMetadataByID(Record[Slot++]); 6533 DVR = new DbgVariableRecord(RawLocation, Var, Expr, ID, Addr, AddrExpr, 6534 DIL); 6535 break; 6536 } 6537 default: 6538 llvm_unreachable("Unknown DbgVariableRecord bitcode"); 6539 } 6540 Inst->getParent()->insertDbgRecordBefore(DVR, Inst->getIterator()); 6541 continue; // This isn't an instruction. 6542 } 6543 case bitc::FUNC_CODE_INST_CALL: { 6544 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 6545 if (Record.size() < 3) 6546 return error("Invalid record"); 6547 6548 unsigned OpNum = 0; 6549 AttributeList PAL = getAttributes(Record[OpNum++]); 6550 unsigned CCInfo = Record[OpNum++]; 6551 6552 FastMathFlags FMF; 6553 if ((CCInfo >> bitc::CALL_FMF) & 1) { 6554 FMF = getDecodedFastMathFlags(Record[OpNum++]); 6555 if (!FMF.any()) 6556 return error("Fast math flags indicator set for call with no FMF"); 6557 } 6558 6559 unsigned FTyID = InvalidTypeID; 6560 FunctionType *FTy = nullptr; 6561 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 6562 FTyID = Record[OpNum++]; 6563 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 6564 if (!FTy) 6565 return error("Explicit call type is not a function type"); 6566 } 6567 6568 Value *Callee; 6569 unsigned CalleeTypeID; 6570 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID, 6571 CurBB)) 6572 return error("Invalid record"); 6573 6574 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 6575 if (!OpTy) 6576 return error("Callee is not a pointer type"); 6577 if (!FTy) { 6578 FTyID = getContainedTypeID(CalleeTypeID); 6579 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 6580 if (!FTy) 6581 return error("Callee is not of pointer to function type"); 6582 } 6583 if (Record.size() < FTy->getNumParams() + OpNum) 6584 return error("Insufficient operands to call"); 6585 6586 SmallVector<Value*, 16> Args; 6587 SmallVector<unsigned, 16> ArgTyIDs; 6588 // Read the fixed params. 6589 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 6590 unsigned ArgTyID = getContainedTypeID(FTyID, i + 1); 6591 if (FTy->getParamType(i)->isLabelTy()) 6592 Args.push_back(getBasicBlock(Record[OpNum])); 6593 else 6594 Args.push_back(getValue(Record, OpNum, NextValueNo, 6595 FTy->getParamType(i), ArgTyID, CurBB)); 6596 ArgTyIDs.push_back(ArgTyID); 6597 if (!Args.back()) 6598 return error("Invalid record"); 6599 } 6600 6601 // Read type/value pairs for varargs params. 6602 if (!FTy->isVarArg()) { 6603 if (OpNum != Record.size()) 6604 return error("Invalid record"); 6605 } else { 6606 while (OpNum != Record.size()) { 6607 Value *Op; 6608 unsigned OpTypeID; 6609 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 6610 return error("Invalid record"); 6611 Args.push_back(Op); 6612 ArgTyIDs.push_back(OpTypeID); 6613 } 6614 } 6615 6616 // Upgrade the bundles if needed. 6617 if (!OperandBundles.empty()) 6618 UpgradeOperandBundles(OperandBundles); 6619 6620 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 6621 ResTypeID = getContainedTypeID(FTyID); 6622 OperandBundles.clear(); 6623 InstructionList.push_back(I); 6624 cast<CallInst>(I)->setCallingConv( 6625 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 6626 CallInst::TailCallKind TCK = CallInst::TCK_None; 6627 if (CCInfo & (1 << bitc::CALL_TAIL)) 6628 TCK = CallInst::TCK_Tail; 6629 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 6630 TCK = CallInst::TCK_MustTail; 6631 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 6632 TCK = CallInst::TCK_NoTail; 6633 cast<CallInst>(I)->setTailCallKind(TCK); 6634 cast<CallInst>(I)->setAttributes(PAL); 6635 if (isa<DbgInfoIntrinsic>(I)) 6636 SeenDebugIntrinsic = true; 6637 if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) { 6638 I->deleteValue(); 6639 return Err; 6640 } 6641 if (FMF.any()) { 6642 if (!isa<FPMathOperator>(I)) 6643 return error("Fast-math-flags specified for call without " 6644 "floating-point scalar or vector return type"); 6645 I->setFastMathFlags(FMF); 6646 } 6647 break; 6648 } 6649 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 6650 if (Record.size() < 3) 6651 return error("Invalid record"); 6652 unsigned OpTyID = Record[0]; 6653 Type *OpTy = getTypeByID(OpTyID); 6654 Value *Op = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB); 6655 ResTypeID = Record[2]; 6656 Type *ResTy = getTypeByID(ResTypeID); 6657 if (!OpTy || !Op || !ResTy) 6658 return error("Invalid record"); 6659 I = new VAArgInst(Op, ResTy); 6660 InstructionList.push_back(I); 6661 break; 6662 } 6663 6664 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 6665 // A call or an invoke can be optionally prefixed with some variable 6666 // number of operand bundle blocks. These blocks are read into 6667 // OperandBundles and consumed at the next call or invoke instruction. 6668 6669 if (Record.empty() || Record[0] >= BundleTags.size()) 6670 return error("Invalid record"); 6671 6672 std::vector<Value *> Inputs; 6673 6674 unsigned OpNum = 1; 6675 while (OpNum != Record.size()) { 6676 Value *Op; 6677 unsigned OpTypeID; 6678 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 6679 return error("Invalid record"); 6680 Inputs.push_back(Op); 6681 } 6682 6683 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 6684 continue; 6685 } 6686 6687 case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval] 6688 unsigned OpNum = 0; 6689 Value *Op = nullptr; 6690 unsigned OpTypeID; 6691 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 6692 return error("Invalid record"); 6693 if (OpNum != Record.size()) 6694 return error("Invalid record"); 6695 6696 I = new FreezeInst(Op); 6697 ResTypeID = OpTypeID; 6698 InstructionList.push_back(I); 6699 break; 6700 } 6701 } 6702 6703 // Add instruction to end of current BB. If there is no current BB, reject 6704 // this file. 6705 if (!CurBB) { 6706 I->deleteValue(); 6707 return error("Invalid instruction with no BB"); 6708 } 6709 if (!OperandBundles.empty()) { 6710 I->deleteValue(); 6711 return error("Operand bundles found with no consumer"); 6712 } 6713 I->insertInto(CurBB, CurBB->end()); 6714 6715 // If this was a terminator instruction, move to the next block. 6716 if (I->isTerminator()) { 6717 ++CurBBNo; 6718 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 6719 } 6720 6721 // Non-void values get registered in the value table for future use. 6722 if (!I->getType()->isVoidTy()) { 6723 assert(I->getType() == getTypeByID(ResTypeID) && 6724 "Incorrect result type ID"); 6725 if (Error Err = ValueList.assignValue(NextValueNo++, I, ResTypeID)) 6726 return Err; 6727 } 6728 } 6729 6730 OutOfRecordLoop: 6731 6732 if (!OperandBundles.empty()) 6733 return error("Operand bundles found with no consumer"); 6734 6735 // Check the function list for unresolved values. 6736 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 6737 if (!A->getParent()) { 6738 // We found at least one unresolved value. Nuke them all to avoid leaks. 6739 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 6740 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 6741 A->replaceAllUsesWith(PoisonValue::get(A->getType())); 6742 delete A; 6743 } 6744 } 6745 return error("Never resolved value found in function"); 6746 } 6747 } 6748 6749 // Unexpected unresolved metadata about to be dropped. 6750 if (MDLoader->hasFwdRefs()) 6751 return error("Invalid function metadata: outgoing forward refs"); 6752 6753 if (PhiConstExprBB) 6754 PhiConstExprBB->eraseFromParent(); 6755 6756 for (const auto &Pair : ConstExprEdgeBBs) { 6757 BasicBlock *From = Pair.first.first; 6758 BasicBlock *To = Pair.first.second; 6759 BasicBlock *EdgeBB = Pair.second; 6760 BranchInst::Create(To, EdgeBB); 6761 From->getTerminator()->replaceSuccessorWith(To, EdgeBB); 6762 To->replacePhiUsesWith(From, EdgeBB); 6763 EdgeBB->moveBefore(To); 6764 } 6765 6766 // Trim the value list down to the size it was before we parsed this function. 6767 ValueList.shrinkTo(ModuleValueListSize); 6768 MDLoader->shrinkTo(ModuleMDLoaderSize); 6769 std::vector<BasicBlock*>().swap(FunctionBBs); 6770 return Error::success(); 6771 } 6772 6773 /// Find the function body in the bitcode stream 6774 Error BitcodeReader::findFunctionInStream( 6775 Function *F, 6776 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 6777 while (DeferredFunctionInfoIterator->second == 0) { 6778 // This is the fallback handling for the old format bitcode that 6779 // didn't contain the function index in the VST, or when we have 6780 // an anonymous function which would not have a VST entry. 6781 // Assert that we have one of those two cases. 6782 assert(VSTOffset == 0 || !F->hasName()); 6783 // Parse the next body in the stream and set its position in the 6784 // DeferredFunctionInfo map. 6785 if (Error Err = rememberAndSkipFunctionBodies()) 6786 return Err; 6787 } 6788 return Error::success(); 6789 } 6790 6791 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) { 6792 if (Val == SyncScope::SingleThread || Val == SyncScope::System) 6793 return SyncScope::ID(Val); 6794 if (Val >= SSIDs.size()) 6795 return SyncScope::System; // Map unknown synchronization scopes to system. 6796 return SSIDs[Val]; 6797 } 6798 6799 //===----------------------------------------------------------------------===// 6800 // GVMaterializer implementation 6801 //===----------------------------------------------------------------------===// 6802 6803 Error BitcodeReader::materialize(GlobalValue *GV) { 6804 Function *F = dyn_cast<Function>(GV); 6805 // If it's not a function or is already material, ignore the request. 6806 if (!F || !F->isMaterializable()) 6807 return Error::success(); 6808 6809 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 6810 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 6811 // If its position is recorded as 0, its body is somewhere in the stream 6812 // but we haven't seen it yet. 6813 if (DFII->second == 0) 6814 if (Error Err = findFunctionInStream(F, DFII)) 6815 return Err; 6816 6817 // Materialize metadata before parsing any function bodies. 6818 if (Error Err = materializeMetadata()) 6819 return Err; 6820 6821 // Move the bit stream to the saved position of the deferred function body. 6822 if (Error JumpFailed = Stream.JumpToBit(DFII->second)) 6823 return JumpFailed; 6824 6825 // Regardless of the debug info format we want to end up in, we need 6826 // IsNewDbgInfoFormat=true to construct any debug records seen in the bitcode. 6827 F->IsNewDbgInfoFormat = true; 6828 6829 if (Error Err = parseFunctionBody(F)) 6830 return Err; 6831 F->setIsMaterializable(false); 6832 6833 // All parsed Functions should load into the debug info format dictated by the 6834 // Module, unless we're attempting to preserve the input debug info format. 6835 if (SeenDebugIntrinsic && SeenDebugRecord) 6836 return error("Mixed debug intrinsics and debug records in bitcode module!"); 6837 if (PreserveInputDbgFormat == cl::boolOrDefault::BOU_TRUE) { 6838 bool SeenAnyDebugInfo = SeenDebugIntrinsic || SeenDebugRecord; 6839 bool NewDbgInfoFormatDesired = 6840 SeenAnyDebugInfo ? SeenDebugRecord : F->getParent()->IsNewDbgInfoFormat; 6841 if (SeenAnyDebugInfo) { 6842 UseNewDbgInfoFormat = SeenDebugRecord; 6843 WriteNewDbgInfoFormatToBitcode = SeenDebugRecord; 6844 WriteNewDbgInfoFormat = SeenDebugRecord; 6845 } 6846 // If the module's debug info format doesn't match the observed input 6847 // format, then set its format now; we don't need to call the conversion 6848 // function because there must be no existing intrinsics to convert. 6849 // Otherwise, just set the format on this function now. 6850 if (NewDbgInfoFormatDesired != F->getParent()->IsNewDbgInfoFormat) 6851 F->getParent()->setNewDbgInfoFormatFlag(NewDbgInfoFormatDesired); 6852 else 6853 F->setNewDbgInfoFormatFlag(NewDbgInfoFormatDesired); 6854 } else { 6855 // If we aren't preserving formats, we use the Module flag to get our 6856 // desired format instead of reading flags, in case we are lazy-loading and 6857 // the format of the module has been changed since it was set by the flags. 6858 // We only need to convert debug info here if we have debug records but 6859 // desire the intrinsic format; everything else is a no-op or handled by the 6860 // autoupgrader. 6861 bool ModuleIsNewDbgInfoFormat = F->getParent()->IsNewDbgInfoFormat; 6862 if (ModuleIsNewDbgInfoFormat || !SeenDebugRecord) 6863 F->setNewDbgInfoFormatFlag(ModuleIsNewDbgInfoFormat); 6864 else 6865 F->setIsNewDbgInfoFormat(ModuleIsNewDbgInfoFormat); 6866 } 6867 6868 if (StripDebugInfo) 6869 stripDebugInfo(*F); 6870 6871 // Upgrade any old intrinsic calls in the function. 6872 for (auto &I : UpgradedIntrinsics) { 6873 for (User *U : llvm::make_early_inc_range(I.first->materialized_users())) 6874 if (CallInst *CI = dyn_cast<CallInst>(U)) 6875 UpgradeIntrinsicCall(CI, I.second); 6876 } 6877 6878 // Finish fn->subprogram upgrade for materialized functions. 6879 if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F)) 6880 F->setSubprogram(SP); 6881 6882 // Check if the TBAA Metadata are valid, otherwise we will need to strip them. 6883 if (!MDLoader->isStrippingTBAA()) { 6884 for (auto &I : instructions(F)) { 6885 MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa); 6886 if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA)) 6887 continue; 6888 MDLoader->setStripTBAA(true); 6889 stripTBAA(F->getParent()); 6890 } 6891 } 6892 6893 for (auto &I : instructions(F)) { 6894 // "Upgrade" older incorrect branch weights by dropping them. 6895 if (auto *MD = I.getMetadata(LLVMContext::MD_prof)) { 6896 if (MD->getOperand(0) != nullptr && isa<MDString>(MD->getOperand(0))) { 6897 MDString *MDS = cast<MDString>(MD->getOperand(0)); 6898 StringRef ProfName = MDS->getString(); 6899 // Check consistency of !prof branch_weights metadata. 6900 if (ProfName != "branch_weights") 6901 continue; 6902 unsigned ExpectedNumOperands = 0; 6903 if (BranchInst *BI = dyn_cast<BranchInst>(&I)) 6904 ExpectedNumOperands = BI->getNumSuccessors(); 6905 else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I)) 6906 ExpectedNumOperands = SI->getNumSuccessors(); 6907 else if (isa<CallInst>(&I)) 6908 ExpectedNumOperands = 1; 6909 else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I)) 6910 ExpectedNumOperands = IBI->getNumDestinations(); 6911 else if (isa<SelectInst>(&I)) 6912 ExpectedNumOperands = 2; 6913 else 6914 continue; // ignore and continue. 6915 6916 // If branch weight doesn't match, just strip branch weight. 6917 if (MD->getNumOperands() != 1 + ExpectedNumOperands) 6918 I.setMetadata(LLVMContext::MD_prof, nullptr); 6919 } 6920 } 6921 6922 // Remove incompatible attributes on function calls. 6923 if (auto *CI = dyn_cast<CallBase>(&I)) { 6924 CI->removeRetAttrs(AttributeFuncs::typeIncompatible( 6925 CI->getFunctionType()->getReturnType())); 6926 6927 for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ++ArgNo) 6928 CI->removeParamAttrs(ArgNo, AttributeFuncs::typeIncompatible( 6929 CI->getArgOperand(ArgNo)->getType())); 6930 } 6931 } 6932 6933 // Look for functions that rely on old function attribute behavior. 6934 UpgradeFunctionAttributes(*F); 6935 6936 // Bring in any functions that this function forward-referenced via 6937 // blockaddresses. 6938 return materializeForwardReferencedFunctions(); 6939 } 6940 6941 Error BitcodeReader::materializeModule() { 6942 if (Error Err = materializeMetadata()) 6943 return Err; 6944 6945 // Promise to materialize all forward references. 6946 WillMaterializeAllForwardRefs = true; 6947 6948 // Iterate over the module, deserializing any functions that are still on 6949 // disk. 6950 for (Function &F : *TheModule) { 6951 if (Error Err = materialize(&F)) 6952 return Err; 6953 } 6954 // At this point, if there are any function bodies, parse the rest of 6955 // the bits in the module past the last function block we have recorded 6956 // through either lazy scanning or the VST. 6957 if (LastFunctionBlockBit || NextUnreadBit) 6958 if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit 6959 ? LastFunctionBlockBit 6960 : NextUnreadBit)) 6961 return Err; 6962 6963 // Check that all block address forward references got resolved (as we 6964 // promised above). 6965 if (!BasicBlockFwdRefs.empty()) 6966 return error("Never resolved function from blockaddress"); 6967 6968 // Upgrade any intrinsic calls that slipped through (should not happen!) and 6969 // delete the old functions to clean up. We can't do this unless the entire 6970 // module is materialized because there could always be another function body 6971 // with calls to the old function. 6972 for (auto &I : UpgradedIntrinsics) { 6973 for (auto *U : I.first->users()) { 6974 if (CallInst *CI = dyn_cast<CallInst>(U)) 6975 UpgradeIntrinsicCall(CI, I.second); 6976 } 6977 if (!I.first->use_empty()) 6978 I.first->replaceAllUsesWith(I.second); 6979 I.first->eraseFromParent(); 6980 } 6981 UpgradedIntrinsics.clear(); 6982 6983 UpgradeDebugInfo(*TheModule); 6984 6985 UpgradeModuleFlags(*TheModule); 6986 6987 UpgradeARCRuntime(*TheModule); 6988 6989 return Error::success(); 6990 } 6991 6992 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 6993 return IdentifiedStructTypes; 6994 } 6995 6996 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 6997 BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex, 6998 StringRef ModulePath, std::function<bool(GlobalValue::GUID)> IsPrevailing) 6999 : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex), 7000 ModulePath(ModulePath), IsPrevailing(IsPrevailing) {} 7001 7002 void ModuleSummaryIndexBitcodeReader::addThisModule() { 7003 TheIndex.addModule(ModulePath); 7004 } 7005 7006 ModuleSummaryIndex::ModuleInfo * 7007 ModuleSummaryIndexBitcodeReader::getThisModule() { 7008 return TheIndex.getModule(ModulePath); 7009 } 7010 7011 template <bool AllowNullValueInfo> 7012 std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID> 7013 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) { 7014 auto VGI = ValueIdToValueInfoMap[ValueId]; 7015 // We can have a null value info for memprof callsite info records in 7016 // distributed ThinLTO index files when the callee function summary is not 7017 // included in the index. The bitcode writer records 0 in that case, 7018 // and the caller of this helper will set AllowNullValueInfo to true. 7019 assert(AllowNullValueInfo || std::get<0>(VGI)); 7020 return VGI; 7021 } 7022 7023 void ModuleSummaryIndexBitcodeReader::setValueGUID( 7024 uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage, 7025 StringRef SourceFileName) { 7026 std::string GlobalId = 7027 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 7028 auto ValueGUID = GlobalValue::getGUID(GlobalId); 7029 auto OriginalNameID = ValueGUID; 7030 if (GlobalValue::isLocalLinkage(Linkage)) 7031 OriginalNameID = GlobalValue::getGUID(ValueName); 7032 if (PrintSummaryGUIDs) 7033 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 7034 << ValueName << "\n"; 7035 7036 // UseStrtab is false for legacy summary formats and value names are 7037 // created on stack. In that case we save the name in a string saver in 7038 // the index so that the value name can be recorded. 7039 ValueIdToValueInfoMap[ValueID] = std::make_tuple( 7040 TheIndex.getOrInsertValueInfo( 7041 ValueGUID, UseStrtab ? ValueName : TheIndex.saveString(ValueName)), 7042 OriginalNameID, ValueGUID); 7043 } 7044 7045 // Specialized value symbol table parser used when reading module index 7046 // blocks where we don't actually create global values. The parsed information 7047 // is saved in the bitcode reader for use when later parsing summaries. 7048 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 7049 uint64_t Offset, 7050 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 7051 // With a strtab the VST is not required to parse the summary. 7052 if (UseStrtab) 7053 return Error::success(); 7054 7055 assert(Offset > 0 && "Expected non-zero VST offset"); 7056 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 7057 if (!MaybeCurrentBit) 7058 return MaybeCurrentBit.takeError(); 7059 uint64_t CurrentBit = MaybeCurrentBit.get(); 7060 7061 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 7062 return Err; 7063 7064 SmallVector<uint64_t, 64> Record; 7065 7066 // Read all the records for this value table. 7067 SmallString<128> ValueName; 7068 7069 while (true) { 7070 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 7071 if (!MaybeEntry) 7072 return MaybeEntry.takeError(); 7073 BitstreamEntry Entry = MaybeEntry.get(); 7074 7075 switch (Entry.Kind) { 7076 case BitstreamEntry::SubBlock: // Handled for us already. 7077 case BitstreamEntry::Error: 7078 return error("Malformed block"); 7079 case BitstreamEntry::EndBlock: 7080 // Done parsing VST, jump back to wherever we came from. 7081 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 7082 return JumpFailed; 7083 return Error::success(); 7084 case BitstreamEntry::Record: 7085 // The interesting case. 7086 break; 7087 } 7088 7089 // Read a record. 7090 Record.clear(); 7091 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 7092 if (!MaybeRecord) 7093 return MaybeRecord.takeError(); 7094 switch (MaybeRecord.get()) { 7095 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 7096 break; 7097 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 7098 if (convertToString(Record, 1, ValueName)) 7099 return error("Invalid record"); 7100 unsigned ValueID = Record[0]; 7101 assert(!SourceFileName.empty()); 7102 auto VLI = ValueIdToLinkageMap.find(ValueID); 7103 assert(VLI != ValueIdToLinkageMap.end() && 7104 "No linkage found for VST entry?"); 7105 auto Linkage = VLI->second; 7106 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 7107 ValueName.clear(); 7108 break; 7109 } 7110 case bitc::VST_CODE_FNENTRY: { 7111 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 7112 if (convertToString(Record, 2, ValueName)) 7113 return error("Invalid record"); 7114 unsigned ValueID = Record[0]; 7115 assert(!SourceFileName.empty()); 7116 auto VLI = ValueIdToLinkageMap.find(ValueID); 7117 assert(VLI != ValueIdToLinkageMap.end() && 7118 "No linkage found for VST entry?"); 7119 auto Linkage = VLI->second; 7120 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 7121 ValueName.clear(); 7122 break; 7123 } 7124 case bitc::VST_CODE_COMBINED_ENTRY: { 7125 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 7126 unsigned ValueID = Record[0]; 7127 GlobalValue::GUID RefGUID = Record[1]; 7128 // The "original name", which is the second value of the pair will be 7129 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 7130 ValueIdToValueInfoMap[ValueID] = std::make_tuple( 7131 TheIndex.getOrInsertValueInfo(RefGUID), RefGUID, RefGUID); 7132 break; 7133 } 7134 } 7135 } 7136 } 7137 7138 // Parse just the blocks needed for building the index out of the module. 7139 // At the end of this routine the module Index is populated with a map 7140 // from global value id to GlobalValueSummary objects. 7141 Error ModuleSummaryIndexBitcodeReader::parseModule() { 7142 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 7143 return Err; 7144 7145 SmallVector<uint64_t, 64> Record; 7146 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 7147 unsigned ValueId = 0; 7148 7149 // Read the index for this module. 7150 while (true) { 7151 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 7152 if (!MaybeEntry) 7153 return MaybeEntry.takeError(); 7154 llvm::BitstreamEntry Entry = MaybeEntry.get(); 7155 7156 switch (Entry.Kind) { 7157 case BitstreamEntry::Error: 7158 return error("Malformed block"); 7159 case BitstreamEntry::EndBlock: 7160 return Error::success(); 7161 7162 case BitstreamEntry::SubBlock: 7163 switch (Entry.ID) { 7164 default: // Skip unknown content. 7165 if (Error Err = Stream.SkipBlock()) 7166 return Err; 7167 break; 7168 case bitc::BLOCKINFO_BLOCK_ID: 7169 // Need to parse these to get abbrev ids (e.g. for VST) 7170 if (Error Err = readBlockInfo()) 7171 return Err; 7172 break; 7173 case bitc::VALUE_SYMTAB_BLOCK_ID: 7174 // Should have been parsed earlier via VSTOffset, unless there 7175 // is no summary section. 7176 assert(((SeenValueSymbolTable && VSTOffset > 0) || 7177 !SeenGlobalValSummary) && 7178 "Expected early VST parse via VSTOffset record"); 7179 if (Error Err = Stream.SkipBlock()) 7180 return Err; 7181 break; 7182 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 7183 case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID: 7184 // Add the module if it is a per-module index (has a source file name). 7185 if (!SourceFileName.empty()) 7186 addThisModule(); 7187 assert(!SeenValueSymbolTable && 7188 "Already read VST when parsing summary block?"); 7189 // We might not have a VST if there were no values in the 7190 // summary. An empty summary block generated when we are 7191 // performing ThinLTO compiles so we don't later invoke 7192 // the regular LTO process on them. 7193 if (VSTOffset > 0) { 7194 if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 7195 return Err; 7196 SeenValueSymbolTable = true; 7197 } 7198 SeenGlobalValSummary = true; 7199 if (Error Err = parseEntireSummary(Entry.ID)) 7200 return Err; 7201 break; 7202 case bitc::MODULE_STRTAB_BLOCK_ID: 7203 if (Error Err = parseModuleStringTable()) 7204 return Err; 7205 break; 7206 } 7207 continue; 7208 7209 case BitstreamEntry::Record: { 7210 Record.clear(); 7211 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 7212 if (!MaybeBitCode) 7213 return MaybeBitCode.takeError(); 7214 switch (MaybeBitCode.get()) { 7215 default: 7216 break; // Default behavior, ignore unknown content. 7217 case bitc::MODULE_CODE_VERSION: { 7218 if (Error Err = parseVersionRecord(Record).takeError()) 7219 return Err; 7220 break; 7221 } 7222 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 7223 case bitc::MODULE_CODE_SOURCE_FILENAME: { 7224 SmallString<128> ValueName; 7225 if (convertToString(Record, 0, ValueName)) 7226 return error("Invalid record"); 7227 SourceFileName = ValueName.c_str(); 7228 break; 7229 } 7230 /// MODULE_CODE_HASH: [5*i32] 7231 case bitc::MODULE_CODE_HASH: { 7232 if (Record.size() != 5) 7233 return error("Invalid hash length " + Twine(Record.size()).str()); 7234 auto &Hash = getThisModule()->second; 7235 int Pos = 0; 7236 for (auto &Val : Record) { 7237 assert(!(Val >> 32) && "Unexpected high bits set"); 7238 Hash[Pos++] = Val; 7239 } 7240 break; 7241 } 7242 /// MODULE_CODE_VSTOFFSET: [offset] 7243 case bitc::MODULE_CODE_VSTOFFSET: 7244 if (Record.empty()) 7245 return error("Invalid record"); 7246 // Note that we subtract 1 here because the offset is relative to one 7247 // word before the start of the identification or module block, which 7248 // was historically always the start of the regular bitcode header. 7249 VSTOffset = Record[0] - 1; 7250 break; 7251 // v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...] 7252 // v1 FUNCTION: [type, callingconv, isproto, linkage, ...] 7253 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...] 7254 // v2: [strtab offset, strtab size, v1] 7255 case bitc::MODULE_CODE_GLOBALVAR: 7256 case bitc::MODULE_CODE_FUNCTION: 7257 case bitc::MODULE_CODE_ALIAS: { 7258 StringRef Name; 7259 ArrayRef<uint64_t> GVRecord; 7260 std::tie(Name, GVRecord) = readNameFromStrtab(Record); 7261 if (GVRecord.size() <= 3) 7262 return error("Invalid record"); 7263 uint64_t RawLinkage = GVRecord[3]; 7264 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 7265 if (!UseStrtab) { 7266 ValueIdToLinkageMap[ValueId++] = Linkage; 7267 break; 7268 } 7269 7270 setValueGUID(ValueId++, Name, Linkage, SourceFileName); 7271 break; 7272 } 7273 } 7274 } 7275 continue; 7276 } 7277 } 7278 } 7279 7280 std::vector<ValueInfo> 7281 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) { 7282 std::vector<ValueInfo> Ret; 7283 Ret.reserve(Record.size()); 7284 for (uint64_t RefValueId : Record) 7285 Ret.push_back(std::get<0>(getValueInfoFromValueId(RefValueId))); 7286 return Ret; 7287 } 7288 7289 std::vector<FunctionSummary::EdgeTy> 7290 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record, 7291 bool IsOldProfileFormat, 7292 bool HasProfile, bool HasRelBF) { 7293 std::vector<FunctionSummary::EdgeTy> Ret; 7294 Ret.reserve(Record.size()); 7295 for (unsigned I = 0, E = Record.size(); I != E; ++I) { 7296 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 7297 bool HasTailCall = false; 7298 uint64_t RelBF = 0; 7299 ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[I])); 7300 if (IsOldProfileFormat) { 7301 I += 1; // Skip old callsitecount field 7302 if (HasProfile) 7303 I += 1; // Skip old profilecount field 7304 } else if (HasProfile) 7305 std::tie(Hotness, HasTailCall) = 7306 getDecodedHotnessCallEdgeInfo(Record[++I]); 7307 else if (HasRelBF) 7308 getDecodedRelBFCallEdgeInfo(Record[++I], RelBF, HasTailCall); 7309 Ret.push_back(FunctionSummary::EdgeTy{ 7310 Callee, CalleeInfo(Hotness, HasTailCall, RelBF)}); 7311 } 7312 return Ret; 7313 } 7314 7315 static void 7316 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot, 7317 WholeProgramDevirtResolution &Wpd) { 7318 uint64_t ArgNum = Record[Slot++]; 7319 WholeProgramDevirtResolution::ByArg &B = 7320 Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}]; 7321 Slot += ArgNum; 7322 7323 B.TheKind = 7324 static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]); 7325 B.Info = Record[Slot++]; 7326 B.Byte = Record[Slot++]; 7327 B.Bit = Record[Slot++]; 7328 } 7329 7330 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record, 7331 StringRef Strtab, size_t &Slot, 7332 TypeIdSummary &TypeId) { 7333 uint64_t Id = Record[Slot++]; 7334 WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id]; 7335 7336 Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]); 7337 Wpd.SingleImplName = {Strtab.data() + Record[Slot], 7338 static_cast<size_t>(Record[Slot + 1])}; 7339 Slot += 2; 7340 7341 uint64_t ResByArgNum = Record[Slot++]; 7342 for (uint64_t I = 0; I != ResByArgNum; ++I) 7343 parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd); 7344 } 7345 7346 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record, 7347 StringRef Strtab, 7348 ModuleSummaryIndex &TheIndex) { 7349 size_t Slot = 0; 7350 TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary( 7351 {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])}); 7352 Slot += 2; 7353 7354 TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]); 7355 TypeId.TTRes.SizeM1BitWidth = Record[Slot++]; 7356 TypeId.TTRes.AlignLog2 = Record[Slot++]; 7357 TypeId.TTRes.SizeM1 = Record[Slot++]; 7358 TypeId.TTRes.BitMask = Record[Slot++]; 7359 TypeId.TTRes.InlineBits = Record[Slot++]; 7360 7361 while (Slot < Record.size()) 7362 parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId); 7363 } 7364 7365 std::vector<FunctionSummary::ParamAccess> 7366 ModuleSummaryIndexBitcodeReader::parseParamAccesses(ArrayRef<uint64_t> Record) { 7367 auto ReadRange = [&]() { 7368 APInt Lower(FunctionSummary::ParamAccess::RangeWidth, 7369 BitcodeReader::decodeSignRotatedValue(Record.front())); 7370 Record = Record.drop_front(); 7371 APInt Upper(FunctionSummary::ParamAccess::RangeWidth, 7372 BitcodeReader::decodeSignRotatedValue(Record.front())); 7373 Record = Record.drop_front(); 7374 ConstantRange Range{Lower, Upper}; 7375 assert(!Range.isFullSet()); 7376 assert(!Range.isUpperSignWrapped()); 7377 return Range; 7378 }; 7379 7380 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; 7381 while (!Record.empty()) { 7382 PendingParamAccesses.emplace_back(); 7383 FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back(); 7384 ParamAccess.ParamNo = Record.front(); 7385 Record = Record.drop_front(); 7386 ParamAccess.Use = ReadRange(); 7387 ParamAccess.Calls.resize(Record.front()); 7388 Record = Record.drop_front(); 7389 for (auto &Call : ParamAccess.Calls) { 7390 Call.ParamNo = Record.front(); 7391 Record = Record.drop_front(); 7392 Call.Callee = std::get<0>(getValueInfoFromValueId(Record.front())); 7393 Record = Record.drop_front(); 7394 Call.Offsets = ReadRange(); 7395 } 7396 } 7397 return PendingParamAccesses; 7398 } 7399 7400 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo( 7401 ArrayRef<uint64_t> Record, size_t &Slot, 7402 TypeIdCompatibleVtableInfo &TypeId) { 7403 uint64_t Offset = Record[Slot++]; 7404 ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[Slot++])); 7405 TypeId.push_back({Offset, Callee}); 7406 } 7407 7408 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord( 7409 ArrayRef<uint64_t> Record) { 7410 size_t Slot = 0; 7411 TypeIdCompatibleVtableInfo &TypeId = 7412 TheIndex.getOrInsertTypeIdCompatibleVtableSummary( 7413 {Strtab.data() + Record[Slot], 7414 static_cast<size_t>(Record[Slot + 1])}); 7415 Slot += 2; 7416 7417 while (Slot < Record.size()) 7418 parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId); 7419 } 7420 7421 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt, 7422 unsigned WOCnt) { 7423 // Readonly and writeonly refs are in the end of the refs list. 7424 assert(ROCnt + WOCnt <= Refs.size()); 7425 unsigned FirstWORef = Refs.size() - WOCnt; 7426 unsigned RefNo = FirstWORef - ROCnt; 7427 for (; RefNo < FirstWORef; ++RefNo) 7428 Refs[RefNo].setReadOnly(); 7429 for (; RefNo < Refs.size(); ++RefNo) 7430 Refs[RefNo].setWriteOnly(); 7431 } 7432 7433 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 7434 // objects in the index. 7435 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) { 7436 if (Error Err = Stream.EnterSubBlock(ID)) 7437 return Err; 7438 SmallVector<uint64_t, 64> Record; 7439 7440 // Parse version 7441 { 7442 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 7443 if (!MaybeEntry) 7444 return MaybeEntry.takeError(); 7445 BitstreamEntry Entry = MaybeEntry.get(); 7446 7447 if (Entry.Kind != BitstreamEntry::Record) 7448 return error("Invalid Summary Block: record for version expected"); 7449 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 7450 if (!MaybeRecord) 7451 return MaybeRecord.takeError(); 7452 if (MaybeRecord.get() != bitc::FS_VERSION) 7453 return error("Invalid Summary Block: version expected"); 7454 } 7455 const uint64_t Version = Record[0]; 7456 const bool IsOldProfileFormat = Version == 1; 7457 if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion) 7458 return error("Invalid summary version " + Twine(Version) + 7459 ". Version should be in the range [1-" + 7460 Twine(ModuleSummaryIndex::BitcodeSummaryVersion) + 7461 "]."); 7462 Record.clear(); 7463 7464 // Keep around the last seen summary to be used when we see an optional 7465 // "OriginalName" attachement. 7466 GlobalValueSummary *LastSeenSummary = nullptr; 7467 GlobalValue::GUID LastSeenGUID = 0; 7468 7469 // We can expect to see any number of type ID information records before 7470 // each function summary records; these variables store the information 7471 // collected so far so that it can be used to create the summary object. 7472 std::vector<GlobalValue::GUID> PendingTypeTests; 7473 std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls, 7474 PendingTypeCheckedLoadVCalls; 7475 std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls, 7476 PendingTypeCheckedLoadConstVCalls; 7477 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; 7478 7479 std::vector<CallsiteInfo> PendingCallsites; 7480 std::vector<AllocInfo> PendingAllocs; 7481 7482 while (true) { 7483 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 7484 if (!MaybeEntry) 7485 return MaybeEntry.takeError(); 7486 BitstreamEntry Entry = MaybeEntry.get(); 7487 7488 switch (Entry.Kind) { 7489 case BitstreamEntry::SubBlock: // Handled for us already. 7490 case BitstreamEntry::Error: 7491 return error("Malformed block"); 7492 case BitstreamEntry::EndBlock: 7493 return Error::success(); 7494 case BitstreamEntry::Record: 7495 // The interesting case. 7496 break; 7497 } 7498 7499 // Read a record. The record format depends on whether this 7500 // is a per-module index or a combined index file. In the per-module 7501 // case the records contain the associated value's ID for correlation 7502 // with VST entries. In the combined index the correlation is done 7503 // via the bitcode offset of the summary records (which were saved 7504 // in the combined index VST entries). The records also contain 7505 // information used for ThinLTO renaming and importing. 7506 Record.clear(); 7507 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 7508 if (!MaybeBitCode) 7509 return MaybeBitCode.takeError(); 7510 switch (unsigned BitCode = MaybeBitCode.get()) { 7511 default: // Default behavior: ignore. 7512 break; 7513 case bitc::FS_FLAGS: { // [flags] 7514 TheIndex.setFlags(Record[0]); 7515 break; 7516 } 7517 case bitc::FS_VALUE_GUID: { // [valueid, refguid] 7518 uint64_t ValueID = Record[0]; 7519 GlobalValue::GUID RefGUID = Record[1]; 7520 ValueIdToValueInfoMap[ValueID] = std::make_tuple( 7521 TheIndex.getOrInsertValueInfo(RefGUID), RefGUID, RefGUID); 7522 break; 7523 } 7524 // FS_PERMODULE is legacy and does not have support for the tail call flag. 7525 // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs, 7526 // numrefs x valueid, n x (valueid)] 7527 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs, 7528 // numrefs x valueid, 7529 // n x (valueid, hotness+tailcall flags)] 7530 // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs, 7531 // numrefs x valueid, 7532 // n x (valueid, relblockfreq+tailcall)] 7533 case bitc::FS_PERMODULE: 7534 case bitc::FS_PERMODULE_RELBF: 7535 case bitc::FS_PERMODULE_PROFILE: { 7536 unsigned ValueID = Record[0]; 7537 uint64_t RawFlags = Record[1]; 7538 unsigned InstCount = Record[2]; 7539 uint64_t RawFunFlags = 0; 7540 unsigned NumRefs = Record[3]; 7541 unsigned NumRORefs = 0, NumWORefs = 0; 7542 int RefListStartIndex = 4; 7543 if (Version >= 4) { 7544 RawFunFlags = Record[3]; 7545 NumRefs = Record[4]; 7546 RefListStartIndex = 5; 7547 if (Version >= 5) { 7548 NumRORefs = Record[5]; 7549 RefListStartIndex = 6; 7550 if (Version >= 7) { 7551 NumWORefs = Record[6]; 7552 RefListStartIndex = 7; 7553 } 7554 } 7555 } 7556 7557 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7558 // The module path string ref set in the summary must be owned by the 7559 // index's module string table. Since we don't have a module path 7560 // string table section in the per-module index, we create a single 7561 // module path string table entry with an empty (0) ID to take 7562 // ownership. 7563 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 7564 assert(Record.size() >= RefListStartIndex + NumRefs && 7565 "Record size inconsistent with number of references"); 7566 std::vector<ValueInfo> Refs = makeRefList( 7567 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 7568 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 7569 bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF); 7570 std::vector<FunctionSummary::EdgeTy> Calls = makeCallList( 7571 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 7572 IsOldProfileFormat, HasProfile, HasRelBF); 7573 setSpecialRefs(Refs, NumRORefs, NumWORefs); 7574 auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID); 7575 // In order to save memory, only record the memprof summaries if this is 7576 // the prevailing copy of a symbol. The linker doesn't resolve local 7577 // linkage values so don't check whether those are prevailing. 7578 auto LT = (GlobalValue::LinkageTypes)Flags.Linkage; 7579 if (IsPrevailing && 7580 !GlobalValue::isLocalLinkage(LT) && 7581 !IsPrevailing(std::get<2>(VIAndOriginalGUID))) { 7582 PendingCallsites.clear(); 7583 PendingAllocs.clear(); 7584 } 7585 auto FS = std::make_unique<FunctionSummary>( 7586 Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0, 7587 std::move(Refs), std::move(Calls), std::move(PendingTypeTests), 7588 std::move(PendingTypeTestAssumeVCalls), 7589 std::move(PendingTypeCheckedLoadVCalls), 7590 std::move(PendingTypeTestAssumeConstVCalls), 7591 std::move(PendingTypeCheckedLoadConstVCalls), 7592 std::move(PendingParamAccesses), std::move(PendingCallsites), 7593 std::move(PendingAllocs)); 7594 FS->setModulePath(getThisModule()->first()); 7595 FS->setOriginalName(std::get<1>(VIAndOriginalGUID)); 7596 TheIndex.addGlobalValueSummary(std::get<0>(VIAndOriginalGUID), 7597 std::move(FS)); 7598 break; 7599 } 7600 // FS_ALIAS: [valueid, flags, valueid] 7601 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 7602 // they expect all aliasee summaries to be available. 7603 case bitc::FS_ALIAS: { 7604 unsigned ValueID = Record[0]; 7605 uint64_t RawFlags = Record[1]; 7606 unsigned AliaseeID = Record[2]; 7607 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7608 auto AS = std::make_unique<AliasSummary>(Flags); 7609 // The module path string ref set in the summary must be owned by the 7610 // index's module string table. Since we don't have a module path 7611 // string table section in the per-module index, we create a single 7612 // module path string table entry with an empty (0) ID to take 7613 // ownership. 7614 AS->setModulePath(getThisModule()->first()); 7615 7616 auto AliaseeVI = std::get<0>(getValueInfoFromValueId(AliaseeID)); 7617 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath); 7618 if (!AliaseeInModule) 7619 return error("Alias expects aliasee summary to be parsed"); 7620 AS->setAliasee(AliaseeVI, AliaseeInModule); 7621 7622 auto GUID = getValueInfoFromValueId(ValueID); 7623 AS->setOriginalName(std::get<1>(GUID)); 7624 TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(AS)); 7625 break; 7626 } 7627 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid] 7628 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 7629 unsigned ValueID = Record[0]; 7630 uint64_t RawFlags = Record[1]; 7631 unsigned RefArrayStart = 2; 7632 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 7633 /* WriteOnly */ false, 7634 /* Constant */ false, 7635 GlobalObject::VCallVisibilityPublic); 7636 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7637 if (Version >= 5) { 7638 GVF = getDecodedGVarFlags(Record[2]); 7639 RefArrayStart = 3; 7640 } 7641 std::vector<ValueInfo> Refs = 7642 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 7643 auto FS = 7644 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 7645 FS->setModulePath(getThisModule()->first()); 7646 auto GUID = getValueInfoFromValueId(ValueID); 7647 FS->setOriginalName(std::get<1>(GUID)); 7648 TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(FS)); 7649 break; 7650 } 7651 // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, 7652 // numrefs, numrefs x valueid, 7653 // n x (valueid, offset)] 7654 case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: { 7655 unsigned ValueID = Record[0]; 7656 uint64_t RawFlags = Record[1]; 7657 GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]); 7658 unsigned NumRefs = Record[3]; 7659 unsigned RefListStartIndex = 4; 7660 unsigned VTableListStartIndex = RefListStartIndex + NumRefs; 7661 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7662 std::vector<ValueInfo> Refs = makeRefList( 7663 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 7664 VTableFuncList VTableFuncs; 7665 for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) { 7666 ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[I])); 7667 uint64_t Offset = Record[++I]; 7668 VTableFuncs.push_back({Callee, Offset}); 7669 } 7670 auto VS = 7671 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 7672 VS->setModulePath(getThisModule()->first()); 7673 VS->setVTableFuncs(VTableFuncs); 7674 auto GUID = getValueInfoFromValueId(ValueID); 7675 VS->setOriginalName(std::get<1>(GUID)); 7676 TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(VS)); 7677 break; 7678 } 7679 // FS_COMBINED is legacy and does not have support for the tail call flag. 7680 // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs, 7681 // numrefs x valueid, n x (valueid)] 7682 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs, 7683 // numrefs x valueid, 7684 // n x (valueid, hotness+tailcall flags)] 7685 case bitc::FS_COMBINED: 7686 case bitc::FS_COMBINED_PROFILE: { 7687 unsigned ValueID = Record[0]; 7688 uint64_t ModuleId = Record[1]; 7689 uint64_t RawFlags = Record[2]; 7690 unsigned InstCount = Record[3]; 7691 uint64_t RawFunFlags = 0; 7692 uint64_t EntryCount = 0; 7693 unsigned NumRefs = Record[4]; 7694 unsigned NumRORefs = 0, NumWORefs = 0; 7695 int RefListStartIndex = 5; 7696 7697 if (Version >= 4) { 7698 RawFunFlags = Record[4]; 7699 RefListStartIndex = 6; 7700 size_t NumRefsIndex = 5; 7701 if (Version >= 5) { 7702 unsigned NumRORefsOffset = 1; 7703 RefListStartIndex = 7; 7704 if (Version >= 6) { 7705 NumRefsIndex = 6; 7706 EntryCount = Record[5]; 7707 RefListStartIndex = 8; 7708 if (Version >= 7) { 7709 RefListStartIndex = 9; 7710 NumWORefs = Record[8]; 7711 NumRORefsOffset = 2; 7712 } 7713 } 7714 NumRORefs = Record[RefListStartIndex - NumRORefsOffset]; 7715 } 7716 NumRefs = Record[NumRefsIndex]; 7717 } 7718 7719 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7720 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 7721 assert(Record.size() >= RefListStartIndex + NumRefs && 7722 "Record size inconsistent with number of references"); 7723 std::vector<ValueInfo> Refs = makeRefList( 7724 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 7725 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 7726 std::vector<FunctionSummary::EdgeTy> Edges = makeCallList( 7727 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 7728 IsOldProfileFormat, HasProfile, false); 7729 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID)); 7730 setSpecialRefs(Refs, NumRORefs, NumWORefs); 7731 auto FS = std::make_unique<FunctionSummary>( 7732 Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount, 7733 std::move(Refs), std::move(Edges), std::move(PendingTypeTests), 7734 std::move(PendingTypeTestAssumeVCalls), 7735 std::move(PendingTypeCheckedLoadVCalls), 7736 std::move(PendingTypeTestAssumeConstVCalls), 7737 std::move(PendingTypeCheckedLoadConstVCalls), 7738 std::move(PendingParamAccesses), std::move(PendingCallsites), 7739 std::move(PendingAllocs)); 7740 LastSeenSummary = FS.get(); 7741 LastSeenGUID = VI.getGUID(); 7742 FS->setModulePath(ModuleIdMap[ModuleId]); 7743 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 7744 break; 7745 } 7746 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 7747 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 7748 // they expect all aliasee summaries to be available. 7749 case bitc::FS_COMBINED_ALIAS: { 7750 unsigned ValueID = Record[0]; 7751 uint64_t ModuleId = Record[1]; 7752 uint64_t RawFlags = Record[2]; 7753 unsigned AliaseeValueId = Record[3]; 7754 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7755 auto AS = std::make_unique<AliasSummary>(Flags); 7756 LastSeenSummary = AS.get(); 7757 AS->setModulePath(ModuleIdMap[ModuleId]); 7758 7759 auto AliaseeVI = std::get<0>(getValueInfoFromValueId(AliaseeValueId)); 7760 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath()); 7761 AS->setAliasee(AliaseeVI, AliaseeInModule); 7762 7763 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID)); 7764 LastSeenGUID = VI.getGUID(); 7765 TheIndex.addGlobalValueSummary(VI, std::move(AS)); 7766 break; 7767 } 7768 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 7769 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 7770 unsigned ValueID = Record[0]; 7771 uint64_t ModuleId = Record[1]; 7772 uint64_t RawFlags = Record[2]; 7773 unsigned RefArrayStart = 3; 7774 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 7775 /* WriteOnly */ false, 7776 /* Constant */ false, 7777 GlobalObject::VCallVisibilityPublic); 7778 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7779 if (Version >= 5) { 7780 GVF = getDecodedGVarFlags(Record[3]); 7781 RefArrayStart = 4; 7782 } 7783 std::vector<ValueInfo> Refs = 7784 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 7785 auto FS = 7786 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 7787 LastSeenSummary = FS.get(); 7788 FS->setModulePath(ModuleIdMap[ModuleId]); 7789 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID)); 7790 LastSeenGUID = VI.getGUID(); 7791 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 7792 break; 7793 } 7794 // FS_COMBINED_ORIGINAL_NAME: [original_name] 7795 case bitc::FS_COMBINED_ORIGINAL_NAME: { 7796 uint64_t OriginalName = Record[0]; 7797 if (!LastSeenSummary) 7798 return error("Name attachment that does not follow a combined record"); 7799 LastSeenSummary->setOriginalName(OriginalName); 7800 TheIndex.addOriginalName(LastSeenGUID, OriginalName); 7801 // Reset the LastSeenSummary 7802 LastSeenSummary = nullptr; 7803 LastSeenGUID = 0; 7804 break; 7805 } 7806 case bitc::FS_TYPE_TESTS: 7807 assert(PendingTypeTests.empty()); 7808 llvm::append_range(PendingTypeTests, Record); 7809 break; 7810 7811 case bitc::FS_TYPE_TEST_ASSUME_VCALLS: 7812 assert(PendingTypeTestAssumeVCalls.empty()); 7813 for (unsigned I = 0; I != Record.size(); I += 2) 7814 PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]}); 7815 break; 7816 7817 case bitc::FS_TYPE_CHECKED_LOAD_VCALLS: 7818 assert(PendingTypeCheckedLoadVCalls.empty()); 7819 for (unsigned I = 0; I != Record.size(); I += 2) 7820 PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]}); 7821 break; 7822 7823 case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL: 7824 PendingTypeTestAssumeConstVCalls.push_back( 7825 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 7826 break; 7827 7828 case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL: 7829 PendingTypeCheckedLoadConstVCalls.push_back( 7830 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 7831 break; 7832 7833 case bitc::FS_CFI_FUNCTION_DEFS: { 7834 std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs(); 7835 for (unsigned I = 0; I != Record.size(); I += 2) 7836 CfiFunctionDefs.insert( 7837 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 7838 break; 7839 } 7840 7841 case bitc::FS_CFI_FUNCTION_DECLS: { 7842 std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls(); 7843 for (unsigned I = 0; I != Record.size(); I += 2) 7844 CfiFunctionDecls.insert( 7845 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 7846 break; 7847 } 7848 7849 case bitc::FS_TYPE_ID: 7850 parseTypeIdSummaryRecord(Record, Strtab, TheIndex); 7851 break; 7852 7853 case bitc::FS_TYPE_ID_METADATA: 7854 parseTypeIdCompatibleVtableSummaryRecord(Record); 7855 break; 7856 7857 case bitc::FS_BLOCK_COUNT: 7858 TheIndex.addBlockCount(Record[0]); 7859 break; 7860 7861 case bitc::FS_PARAM_ACCESS: { 7862 PendingParamAccesses = parseParamAccesses(Record); 7863 break; 7864 } 7865 7866 case bitc::FS_STACK_IDS: { // [n x stackid] 7867 // Save stack ids in the reader to consult when adding stack ids from the 7868 // lists in the stack node and alloc node entries. 7869 StackIds = ArrayRef<uint64_t>(Record); 7870 break; 7871 } 7872 7873 case bitc::FS_PERMODULE_CALLSITE_INFO: { 7874 unsigned ValueID = Record[0]; 7875 SmallVector<unsigned> StackIdList; 7876 for (auto R = Record.begin() + 1; R != Record.end(); R++) { 7877 assert(*R < StackIds.size()); 7878 StackIdList.push_back(TheIndex.addOrGetStackIdIndex(StackIds[*R])); 7879 } 7880 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID)); 7881 PendingCallsites.push_back(CallsiteInfo({VI, std::move(StackIdList)})); 7882 break; 7883 } 7884 7885 case bitc::FS_COMBINED_CALLSITE_INFO: { 7886 auto RecordIter = Record.begin(); 7887 unsigned ValueID = *RecordIter++; 7888 unsigned NumStackIds = *RecordIter++; 7889 unsigned NumVersions = *RecordIter++; 7890 assert(Record.size() == 3 + NumStackIds + NumVersions); 7891 SmallVector<unsigned> StackIdList; 7892 for (unsigned J = 0; J < NumStackIds; J++) { 7893 assert(*RecordIter < StackIds.size()); 7894 StackIdList.push_back( 7895 TheIndex.addOrGetStackIdIndex(StackIds[*RecordIter++])); 7896 } 7897 SmallVector<unsigned> Versions; 7898 for (unsigned J = 0; J < NumVersions; J++) 7899 Versions.push_back(*RecordIter++); 7900 ValueInfo VI = std::get<0>( 7901 getValueInfoFromValueId</*AllowNullValueInfo*/ true>(ValueID)); 7902 PendingCallsites.push_back( 7903 CallsiteInfo({VI, std::move(Versions), std::move(StackIdList)})); 7904 break; 7905 } 7906 7907 case bitc::FS_PERMODULE_ALLOC_INFO: { 7908 unsigned I = 0; 7909 std::vector<MIBInfo> MIBs; 7910 while (I < Record.size()) { 7911 assert(Record.size() - I >= 2); 7912 AllocationType AllocType = (AllocationType)Record[I++]; 7913 unsigned NumStackEntries = Record[I++]; 7914 assert(Record.size() - I >= NumStackEntries); 7915 SmallVector<unsigned> StackIdList; 7916 for (unsigned J = 0; J < NumStackEntries; J++) { 7917 assert(Record[I] < StackIds.size()); 7918 StackIdList.push_back( 7919 TheIndex.addOrGetStackIdIndex(StackIds[Record[I++]])); 7920 } 7921 MIBs.push_back(MIBInfo(AllocType, std::move(StackIdList))); 7922 } 7923 PendingAllocs.push_back(AllocInfo(std::move(MIBs))); 7924 break; 7925 } 7926 7927 case bitc::FS_COMBINED_ALLOC_INFO: { 7928 unsigned I = 0; 7929 std::vector<MIBInfo> MIBs; 7930 unsigned NumMIBs = Record[I++]; 7931 unsigned NumVersions = Record[I++]; 7932 unsigned MIBsRead = 0; 7933 while (MIBsRead++ < NumMIBs) { 7934 assert(Record.size() - I >= 2); 7935 AllocationType AllocType = (AllocationType)Record[I++]; 7936 unsigned NumStackEntries = Record[I++]; 7937 assert(Record.size() - I >= NumStackEntries); 7938 SmallVector<unsigned> StackIdList; 7939 for (unsigned J = 0; J < NumStackEntries; J++) { 7940 assert(Record[I] < StackIds.size()); 7941 StackIdList.push_back( 7942 TheIndex.addOrGetStackIdIndex(StackIds[Record[I++]])); 7943 } 7944 MIBs.push_back(MIBInfo(AllocType, std::move(StackIdList))); 7945 } 7946 assert(Record.size() - I >= NumVersions); 7947 SmallVector<uint8_t> Versions; 7948 for (unsigned J = 0; J < NumVersions; J++) 7949 Versions.push_back(Record[I++]); 7950 PendingAllocs.push_back( 7951 AllocInfo(std::move(Versions), std::move(MIBs))); 7952 break; 7953 } 7954 } 7955 } 7956 llvm_unreachable("Exit infinite loop"); 7957 } 7958 7959 // Parse the module string table block into the Index. 7960 // This populates the ModulePathStringTable map in the index. 7961 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 7962 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 7963 return Err; 7964 7965 SmallVector<uint64_t, 64> Record; 7966 7967 SmallString<128> ModulePath; 7968 ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr; 7969 7970 while (true) { 7971 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 7972 if (!MaybeEntry) 7973 return MaybeEntry.takeError(); 7974 BitstreamEntry Entry = MaybeEntry.get(); 7975 7976 switch (Entry.Kind) { 7977 case BitstreamEntry::SubBlock: // Handled for us already. 7978 case BitstreamEntry::Error: 7979 return error("Malformed block"); 7980 case BitstreamEntry::EndBlock: 7981 return Error::success(); 7982 case BitstreamEntry::Record: 7983 // The interesting case. 7984 break; 7985 } 7986 7987 Record.clear(); 7988 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 7989 if (!MaybeRecord) 7990 return MaybeRecord.takeError(); 7991 switch (MaybeRecord.get()) { 7992 default: // Default behavior: ignore. 7993 break; 7994 case bitc::MST_CODE_ENTRY: { 7995 // MST_ENTRY: [modid, namechar x N] 7996 uint64_t ModuleId = Record[0]; 7997 7998 if (convertToString(Record, 1, ModulePath)) 7999 return error("Invalid record"); 8000 8001 LastSeenModule = TheIndex.addModule(ModulePath); 8002 ModuleIdMap[ModuleId] = LastSeenModule->first(); 8003 8004 ModulePath.clear(); 8005 break; 8006 } 8007 /// MST_CODE_HASH: [5*i32] 8008 case bitc::MST_CODE_HASH: { 8009 if (Record.size() != 5) 8010 return error("Invalid hash length " + Twine(Record.size()).str()); 8011 if (!LastSeenModule) 8012 return error("Invalid hash that does not follow a module path"); 8013 int Pos = 0; 8014 for (auto &Val : Record) { 8015 assert(!(Val >> 32) && "Unexpected high bits set"); 8016 LastSeenModule->second[Pos++] = Val; 8017 } 8018 // Reset LastSeenModule to avoid overriding the hash unexpectedly. 8019 LastSeenModule = nullptr; 8020 break; 8021 } 8022 } 8023 } 8024 llvm_unreachable("Exit infinite loop"); 8025 } 8026 8027 namespace { 8028 8029 // FIXME: This class is only here to support the transition to llvm::Error. It 8030 // will be removed once this transition is complete. Clients should prefer to 8031 // deal with the Error value directly, rather than converting to error_code. 8032 class BitcodeErrorCategoryType : public std::error_category { 8033 const char *name() const noexcept override { 8034 return "llvm.bitcode"; 8035 } 8036 8037 std::string message(int IE) const override { 8038 BitcodeError E = static_cast<BitcodeError>(IE); 8039 switch (E) { 8040 case BitcodeError::CorruptedBitcode: 8041 return "Corrupted bitcode"; 8042 } 8043 llvm_unreachable("Unknown error type!"); 8044 } 8045 }; 8046 8047 } // end anonymous namespace 8048 8049 const std::error_category &llvm::BitcodeErrorCategory() { 8050 static BitcodeErrorCategoryType ErrorCategory; 8051 return ErrorCategory; 8052 } 8053 8054 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream, 8055 unsigned Block, unsigned RecordID) { 8056 if (Error Err = Stream.EnterSubBlock(Block)) 8057 return std::move(Err); 8058 8059 StringRef Strtab; 8060 while (true) { 8061 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 8062 if (!MaybeEntry) 8063 return MaybeEntry.takeError(); 8064 llvm::BitstreamEntry Entry = MaybeEntry.get(); 8065 8066 switch (Entry.Kind) { 8067 case BitstreamEntry::EndBlock: 8068 return Strtab; 8069 8070 case BitstreamEntry::Error: 8071 return error("Malformed block"); 8072 8073 case BitstreamEntry::SubBlock: 8074 if (Error Err = Stream.SkipBlock()) 8075 return std::move(Err); 8076 break; 8077 8078 case BitstreamEntry::Record: 8079 StringRef Blob; 8080 SmallVector<uint64_t, 1> Record; 8081 Expected<unsigned> MaybeRecord = 8082 Stream.readRecord(Entry.ID, Record, &Blob); 8083 if (!MaybeRecord) 8084 return MaybeRecord.takeError(); 8085 if (MaybeRecord.get() == RecordID) 8086 Strtab = Blob; 8087 break; 8088 } 8089 } 8090 } 8091 8092 //===----------------------------------------------------------------------===// 8093 // External interface 8094 //===----------------------------------------------------------------------===// 8095 8096 Expected<std::vector<BitcodeModule>> 8097 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) { 8098 auto FOrErr = getBitcodeFileContents(Buffer); 8099 if (!FOrErr) 8100 return FOrErr.takeError(); 8101 return std::move(FOrErr->Mods); 8102 } 8103 8104 Expected<BitcodeFileContents> 8105 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) { 8106 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 8107 if (!StreamOrErr) 8108 return StreamOrErr.takeError(); 8109 BitstreamCursor &Stream = *StreamOrErr; 8110 8111 BitcodeFileContents F; 8112 while (true) { 8113 uint64_t BCBegin = Stream.getCurrentByteNo(); 8114 8115 // We may be consuming bitcode from a client that leaves garbage at the end 8116 // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to 8117 // the end that there cannot possibly be another module, stop looking. 8118 if (BCBegin + 8 >= Stream.getBitcodeBytes().size()) 8119 return F; 8120 8121 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 8122 if (!MaybeEntry) 8123 return MaybeEntry.takeError(); 8124 llvm::BitstreamEntry Entry = MaybeEntry.get(); 8125 8126 switch (Entry.Kind) { 8127 case BitstreamEntry::EndBlock: 8128 case BitstreamEntry::Error: 8129 return error("Malformed block"); 8130 8131 case BitstreamEntry::SubBlock: { 8132 uint64_t IdentificationBit = -1ull; 8133 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 8134 IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8; 8135 if (Error Err = Stream.SkipBlock()) 8136 return std::move(Err); 8137 8138 { 8139 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 8140 if (!MaybeEntry) 8141 return MaybeEntry.takeError(); 8142 Entry = MaybeEntry.get(); 8143 } 8144 8145 if (Entry.Kind != BitstreamEntry::SubBlock || 8146 Entry.ID != bitc::MODULE_BLOCK_ID) 8147 return error("Malformed block"); 8148 } 8149 8150 if (Entry.ID == bitc::MODULE_BLOCK_ID) { 8151 uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8; 8152 if (Error Err = Stream.SkipBlock()) 8153 return std::move(Err); 8154 8155 F.Mods.push_back({Stream.getBitcodeBytes().slice( 8156 BCBegin, Stream.getCurrentByteNo() - BCBegin), 8157 Buffer.getBufferIdentifier(), IdentificationBit, 8158 ModuleBit}); 8159 continue; 8160 } 8161 8162 if (Entry.ID == bitc::STRTAB_BLOCK_ID) { 8163 Expected<StringRef> Strtab = 8164 readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB); 8165 if (!Strtab) 8166 return Strtab.takeError(); 8167 // This string table is used by every preceding bitcode module that does 8168 // not have its own string table. A bitcode file may have multiple 8169 // string tables if it was created by binary concatenation, for example 8170 // with "llvm-cat -b". 8171 for (BitcodeModule &I : llvm::reverse(F.Mods)) { 8172 if (!I.Strtab.empty()) 8173 break; 8174 I.Strtab = *Strtab; 8175 } 8176 // Similarly, the string table is used by every preceding symbol table; 8177 // normally there will be just one unless the bitcode file was created 8178 // by binary concatenation. 8179 if (!F.Symtab.empty() && F.StrtabForSymtab.empty()) 8180 F.StrtabForSymtab = *Strtab; 8181 continue; 8182 } 8183 8184 if (Entry.ID == bitc::SYMTAB_BLOCK_ID) { 8185 Expected<StringRef> SymtabOrErr = 8186 readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB); 8187 if (!SymtabOrErr) 8188 return SymtabOrErr.takeError(); 8189 8190 // We can expect the bitcode file to have multiple symbol tables if it 8191 // was created by binary concatenation. In that case we silently 8192 // ignore any subsequent symbol tables, which is fine because this is a 8193 // low level function. The client is expected to notice that the number 8194 // of modules in the symbol table does not match the number of modules 8195 // in the input file and regenerate the symbol table. 8196 if (F.Symtab.empty()) 8197 F.Symtab = *SymtabOrErr; 8198 continue; 8199 } 8200 8201 if (Error Err = Stream.SkipBlock()) 8202 return std::move(Err); 8203 continue; 8204 } 8205 case BitstreamEntry::Record: 8206 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 8207 return std::move(E); 8208 continue; 8209 } 8210 } 8211 } 8212 8213 /// Get a lazy one-at-time loading module from bitcode. 8214 /// 8215 /// This isn't always used in a lazy context. In particular, it's also used by 8216 /// \a parseModule(). If this is truly lazy, then we need to eagerly pull 8217 /// in forward-referenced functions from block address references. 8218 /// 8219 /// \param[in] MaterializeAll Set to \c true if we should materialize 8220 /// everything. 8221 Expected<std::unique_ptr<Module>> 8222 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll, 8223 bool ShouldLazyLoadMetadata, bool IsImporting, 8224 ParserCallbacks Callbacks) { 8225 BitstreamCursor Stream(Buffer); 8226 8227 std::string ProducerIdentification; 8228 if (IdentificationBit != -1ull) { 8229 if (Error JumpFailed = Stream.JumpToBit(IdentificationBit)) 8230 return std::move(JumpFailed); 8231 if (Error E = 8232 readIdentificationBlock(Stream).moveInto(ProducerIdentification)) 8233 return std::move(E); 8234 } 8235 8236 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 8237 return std::move(JumpFailed); 8238 auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification, 8239 Context); 8240 8241 std::unique_ptr<Module> M = 8242 std::make_unique<Module>(ModuleIdentifier, Context); 8243 M->setMaterializer(R); 8244 8245 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 8246 if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, 8247 IsImporting, Callbacks)) 8248 return std::move(Err); 8249 8250 if (MaterializeAll) { 8251 // Read in the entire module, and destroy the BitcodeReader. 8252 if (Error Err = M->materializeAll()) 8253 return std::move(Err); 8254 } else { 8255 // Resolve forward references from blockaddresses. 8256 if (Error Err = R->materializeForwardReferencedFunctions()) 8257 return std::move(Err); 8258 } 8259 8260 return std::move(M); 8261 } 8262 8263 Expected<std::unique_ptr<Module>> 8264 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata, 8265 bool IsImporting, ParserCallbacks Callbacks) { 8266 return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting, 8267 Callbacks); 8268 } 8269 8270 // Parse the specified bitcode buffer and merge the index into CombinedIndex. 8271 // We don't use ModuleIdentifier here because the client may need to control the 8272 // module path used in the combined summary (e.g. when reading summaries for 8273 // regular LTO modules). 8274 Error BitcodeModule::readSummary( 8275 ModuleSummaryIndex &CombinedIndex, StringRef ModulePath, 8276 std::function<bool(GlobalValue::GUID)> IsPrevailing) { 8277 BitstreamCursor Stream(Buffer); 8278 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 8279 return JumpFailed; 8280 8281 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex, 8282 ModulePath, IsPrevailing); 8283 return R.parseModule(); 8284 } 8285 8286 // Parse the specified bitcode buffer, returning the function info index. 8287 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() { 8288 BitstreamCursor Stream(Buffer); 8289 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 8290 return std::move(JumpFailed); 8291 8292 auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false); 8293 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index, 8294 ModuleIdentifier, 0); 8295 8296 if (Error Err = R.parseModule()) 8297 return std::move(Err); 8298 8299 return std::move(Index); 8300 } 8301 8302 static Expected<std::pair<bool, bool>> 8303 getEnableSplitLTOUnitAndUnifiedFlag(BitstreamCursor &Stream, 8304 unsigned ID, 8305 BitcodeLTOInfo <OInfo) { 8306 if (Error Err = Stream.EnterSubBlock(ID)) 8307 return std::move(Err); 8308 SmallVector<uint64_t, 64> Record; 8309 8310 while (true) { 8311 BitstreamEntry Entry; 8312 std::pair<bool, bool> Result = {false,false}; 8313 if (Error E = Stream.advanceSkippingSubblocks().moveInto(Entry)) 8314 return std::move(E); 8315 8316 switch (Entry.Kind) { 8317 case BitstreamEntry::SubBlock: // Handled for us already. 8318 case BitstreamEntry::Error: 8319 return error("Malformed block"); 8320 case BitstreamEntry::EndBlock: { 8321 // If no flags record found, set both flags to false. 8322 return Result; 8323 } 8324 case BitstreamEntry::Record: 8325 // The interesting case. 8326 break; 8327 } 8328 8329 // Look for the FS_FLAGS record. 8330 Record.clear(); 8331 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 8332 if (!MaybeBitCode) 8333 return MaybeBitCode.takeError(); 8334 switch (MaybeBitCode.get()) { 8335 default: // Default behavior: ignore. 8336 break; 8337 case bitc::FS_FLAGS: { // [flags] 8338 uint64_t Flags = Record[0]; 8339 // Scan flags. 8340 assert(Flags <= 0x2ff && "Unexpected bits in flag"); 8341 8342 bool EnableSplitLTOUnit = Flags & 0x8; 8343 bool UnifiedLTO = Flags & 0x200; 8344 Result = {EnableSplitLTOUnit, UnifiedLTO}; 8345 8346 return Result; 8347 } 8348 } 8349 } 8350 llvm_unreachable("Exit infinite loop"); 8351 } 8352 8353 // Check if the given bitcode buffer contains a global value summary block. 8354 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() { 8355 BitstreamCursor Stream(Buffer); 8356 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 8357 return std::move(JumpFailed); 8358 8359 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 8360 return std::move(Err); 8361 8362 while (true) { 8363 llvm::BitstreamEntry Entry; 8364 if (Error E = Stream.advance().moveInto(Entry)) 8365 return std::move(E); 8366 8367 switch (Entry.Kind) { 8368 case BitstreamEntry::Error: 8369 return error("Malformed block"); 8370 case BitstreamEntry::EndBlock: 8371 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false, 8372 /*EnableSplitLTOUnit=*/false, /*UnifiedLTO=*/false}; 8373 8374 case BitstreamEntry::SubBlock: 8375 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) { 8376 BitcodeLTOInfo LTOInfo; 8377 Expected<std::pair<bool, bool>> Flags = 8378 getEnableSplitLTOUnitAndUnifiedFlag(Stream, Entry.ID, LTOInfo); 8379 if (!Flags) 8380 return Flags.takeError(); 8381 std::tie(LTOInfo.EnableSplitLTOUnit, LTOInfo.UnifiedLTO) = Flags.get(); 8382 LTOInfo.IsThinLTO = true; 8383 LTOInfo.HasSummary = true; 8384 return LTOInfo; 8385 } 8386 8387 if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) { 8388 BitcodeLTOInfo LTOInfo; 8389 Expected<std::pair<bool, bool>> Flags = 8390 getEnableSplitLTOUnitAndUnifiedFlag(Stream, Entry.ID, LTOInfo); 8391 if (!Flags) 8392 return Flags.takeError(); 8393 std::tie(LTOInfo.EnableSplitLTOUnit, LTOInfo.UnifiedLTO) = Flags.get(); 8394 LTOInfo.IsThinLTO = false; 8395 LTOInfo.HasSummary = true; 8396 return LTOInfo; 8397 } 8398 8399 // Ignore other sub-blocks. 8400 if (Error Err = Stream.SkipBlock()) 8401 return std::move(Err); 8402 continue; 8403 8404 case BitstreamEntry::Record: 8405 if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID)) 8406 continue; 8407 else 8408 return StreamFailed.takeError(); 8409 } 8410 } 8411 } 8412 8413 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) { 8414 Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer); 8415 if (!MsOrErr) 8416 return MsOrErr.takeError(); 8417 8418 if (MsOrErr->size() != 1) 8419 return error("Expected a single module"); 8420 8421 return (*MsOrErr)[0]; 8422 } 8423 8424 Expected<std::unique_ptr<Module>> 8425 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context, 8426 bool ShouldLazyLoadMetadata, bool IsImporting, 8427 ParserCallbacks Callbacks) { 8428 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8429 if (!BM) 8430 return BM.takeError(); 8431 8432 return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting, 8433 Callbacks); 8434 } 8435 8436 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule( 8437 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context, 8438 bool ShouldLazyLoadMetadata, bool IsImporting, ParserCallbacks Callbacks) { 8439 auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata, 8440 IsImporting, Callbacks); 8441 if (MOrErr) 8442 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer)); 8443 return MOrErr; 8444 } 8445 8446 Expected<std::unique_ptr<Module>> 8447 BitcodeModule::parseModule(LLVMContext &Context, ParserCallbacks Callbacks) { 8448 return getModuleImpl(Context, true, false, false, Callbacks); 8449 // TODO: Restore the use-lists to the in-memory state when the bitcode was 8450 // written. We must defer until the Module has been fully materialized. 8451 } 8452 8453 Expected<std::unique_ptr<Module>> 8454 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context, 8455 ParserCallbacks Callbacks) { 8456 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8457 if (!BM) 8458 return BM.takeError(); 8459 8460 return BM->parseModule(Context, Callbacks); 8461 } 8462 8463 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) { 8464 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 8465 if (!StreamOrErr) 8466 return StreamOrErr.takeError(); 8467 8468 return readTriple(*StreamOrErr); 8469 } 8470 8471 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) { 8472 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 8473 if (!StreamOrErr) 8474 return StreamOrErr.takeError(); 8475 8476 return hasObjCCategory(*StreamOrErr); 8477 } 8478 8479 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) { 8480 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 8481 if (!StreamOrErr) 8482 return StreamOrErr.takeError(); 8483 8484 return readIdentificationCode(*StreamOrErr); 8485 } 8486 8487 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer, 8488 ModuleSummaryIndex &CombinedIndex) { 8489 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8490 if (!BM) 8491 return BM.takeError(); 8492 8493 return BM->readSummary(CombinedIndex, BM->getModuleIdentifier()); 8494 } 8495 8496 Expected<std::unique_ptr<ModuleSummaryIndex>> 8497 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) { 8498 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8499 if (!BM) 8500 return BM.takeError(); 8501 8502 return BM->getSummary(); 8503 } 8504 8505 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) { 8506 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8507 if (!BM) 8508 return BM.takeError(); 8509 8510 return BM->getLTOInfo(); 8511 } 8512 8513 Expected<std::unique_ptr<ModuleSummaryIndex>> 8514 llvm::getModuleSummaryIndexForFile(StringRef Path, 8515 bool IgnoreEmptyThinLTOIndexFile) { 8516 ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr = 8517 MemoryBuffer::getFileOrSTDIN(Path); 8518 if (!FileOrErr) 8519 return errorCodeToError(FileOrErr.getError()); 8520 if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize()) 8521 return nullptr; 8522 return getModuleSummaryIndex(**FileOrErr); 8523 } 8524