1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This header defines the BitcodeReader class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/ReaderWriter.h" 15 #include "BitcodeReader.h" 16 #include "llvm/Constants.h" 17 #include "llvm/DerivedTypes.h" 18 #include "llvm/InlineAsm.h" 19 #include "llvm/IntrinsicInst.h" 20 #include "llvm/Module.h" 21 #include "llvm/Operator.h" 22 #include "llvm/AutoUpgrade.h" 23 #include "llvm/ADT/SmallString.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/Support/MathExtras.h" 26 #include "llvm/Support/MemoryBuffer.h" 27 #include "llvm/OperandTraits.h" 28 using namespace llvm; 29 30 void BitcodeReader::FreeState() { 31 if (BufferOwned) 32 delete Buffer; 33 Buffer = 0; 34 std::vector<PATypeHolder>().swap(TypeList); 35 ValueList.clear(); 36 MDValueList.clear(); 37 38 std::vector<AttrListPtr>().swap(MAttributes); 39 std::vector<BasicBlock*>().swap(FunctionBBs); 40 std::vector<Function*>().swap(FunctionsWithBodies); 41 DeferredFunctionInfo.clear(); 42 MDKindMap.clear(); 43 } 44 45 //===----------------------------------------------------------------------===// 46 // Helper functions to implement forward reference resolution, etc. 47 //===----------------------------------------------------------------------===// 48 49 /// ConvertToString - Convert a string from a record into an std::string, return 50 /// true on failure. 51 template<typename StrTy> 52 static bool ConvertToString(SmallVector<uint64_t, 64> &Record, unsigned Idx, 53 StrTy &Result) { 54 if (Idx > Record.size()) 55 return true; 56 57 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 58 Result += (char)Record[i]; 59 return false; 60 } 61 62 static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) { 63 switch (Val) { 64 default: // Map unknown/new linkages to external 65 case 0: return GlobalValue::ExternalLinkage; 66 case 1: return GlobalValue::WeakAnyLinkage; 67 case 2: return GlobalValue::AppendingLinkage; 68 case 3: return GlobalValue::InternalLinkage; 69 case 4: return GlobalValue::LinkOnceAnyLinkage; 70 case 5: return GlobalValue::DLLImportLinkage; 71 case 6: return GlobalValue::DLLExportLinkage; 72 case 7: return GlobalValue::ExternalWeakLinkage; 73 case 8: return GlobalValue::CommonLinkage; 74 case 9: return GlobalValue::PrivateLinkage; 75 case 10: return GlobalValue::WeakODRLinkage; 76 case 11: return GlobalValue::LinkOnceODRLinkage; 77 case 12: return GlobalValue::AvailableExternallyLinkage; 78 case 13: return GlobalValue::LinkerPrivateLinkage; 79 case 14: return GlobalValue::LinkerPrivateWeakLinkage; 80 case 15: return GlobalValue::LinkerPrivateWeakDefAutoLinkage; 81 } 82 } 83 84 static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) { 85 switch (Val) { 86 default: // Map unknown visibilities to default. 87 case 0: return GlobalValue::DefaultVisibility; 88 case 1: return GlobalValue::HiddenVisibility; 89 case 2: return GlobalValue::ProtectedVisibility; 90 } 91 } 92 93 static int GetDecodedCastOpcode(unsigned Val) { 94 switch (Val) { 95 default: return -1; 96 case bitc::CAST_TRUNC : return Instruction::Trunc; 97 case bitc::CAST_ZEXT : return Instruction::ZExt; 98 case bitc::CAST_SEXT : return Instruction::SExt; 99 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 100 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 101 case bitc::CAST_UITOFP : return Instruction::UIToFP; 102 case bitc::CAST_SITOFP : return Instruction::SIToFP; 103 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 104 case bitc::CAST_FPEXT : return Instruction::FPExt; 105 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 106 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 107 case bitc::CAST_BITCAST : return Instruction::BitCast; 108 } 109 } 110 static int GetDecodedBinaryOpcode(unsigned Val, const Type *Ty) { 111 switch (Val) { 112 default: return -1; 113 case bitc::BINOP_ADD: 114 return Ty->isFPOrFPVectorTy() ? Instruction::FAdd : Instruction::Add; 115 case bitc::BINOP_SUB: 116 return Ty->isFPOrFPVectorTy() ? Instruction::FSub : Instruction::Sub; 117 case bitc::BINOP_MUL: 118 return Ty->isFPOrFPVectorTy() ? Instruction::FMul : Instruction::Mul; 119 case bitc::BINOP_UDIV: return Instruction::UDiv; 120 case bitc::BINOP_SDIV: 121 return Ty->isFPOrFPVectorTy() ? Instruction::FDiv : Instruction::SDiv; 122 case bitc::BINOP_UREM: return Instruction::URem; 123 case bitc::BINOP_SREM: 124 return Ty->isFPOrFPVectorTy() ? Instruction::FRem : Instruction::SRem; 125 case bitc::BINOP_SHL: return Instruction::Shl; 126 case bitc::BINOP_LSHR: return Instruction::LShr; 127 case bitc::BINOP_ASHR: return Instruction::AShr; 128 case bitc::BINOP_AND: return Instruction::And; 129 case bitc::BINOP_OR: return Instruction::Or; 130 case bitc::BINOP_XOR: return Instruction::Xor; 131 } 132 } 133 134 namespace llvm { 135 namespace { 136 /// @brief A class for maintaining the slot number definition 137 /// as a placeholder for the actual definition for forward constants defs. 138 class ConstantPlaceHolder : public ConstantExpr { 139 ConstantPlaceHolder(); // DO NOT IMPLEMENT 140 void operator=(const ConstantPlaceHolder &); // DO NOT IMPLEMENT 141 public: 142 // allocate space for exactly one operand 143 void *operator new(size_t s) { 144 return User::operator new(s, 1); 145 } 146 explicit ConstantPlaceHolder(const Type *Ty, LLVMContext& Context) 147 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 148 Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); 149 } 150 151 /// @brief Methods to support type inquiry through isa, cast, and dyn_cast. 152 static inline bool classof(const ConstantPlaceHolder *) { return true; } 153 static bool classof(const Value *V) { 154 return isa<ConstantExpr>(V) && 155 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 156 } 157 158 159 /// Provide fast operand accessors 160 //DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 161 }; 162 } 163 164 // FIXME: can we inherit this from ConstantExpr? 165 template <> 166 struct OperandTraits<ConstantPlaceHolder> : public FixedNumOperandTraits<1> { 167 }; 168 } 169 170 171 void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) { 172 if (Idx == size()) { 173 push_back(V); 174 return; 175 } 176 177 if (Idx >= size()) 178 resize(Idx+1); 179 180 WeakVH &OldV = ValuePtrs[Idx]; 181 if (OldV == 0) { 182 OldV = V; 183 return; 184 } 185 186 // Handle constants and non-constants (e.g. instrs) differently for 187 // efficiency. 188 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 189 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 190 OldV = V; 191 } else { 192 // If there was a forward reference to this value, replace it. 193 Value *PrevVal = OldV; 194 OldV->replaceAllUsesWith(V); 195 delete PrevVal; 196 } 197 } 198 199 200 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 201 const Type *Ty) { 202 if (Idx >= size()) 203 resize(Idx + 1); 204 205 if (Value *V = ValuePtrs[Idx]) { 206 assert(Ty == V->getType() && "Type mismatch in constant table!"); 207 return cast<Constant>(V); 208 } 209 210 // Create and return a placeholder, which will later be RAUW'd. 211 Constant *C = new ConstantPlaceHolder(Ty, Context); 212 ValuePtrs[Idx] = C; 213 return C; 214 } 215 216 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, const Type *Ty) { 217 if (Idx >= size()) 218 resize(Idx + 1); 219 220 if (Value *V = ValuePtrs[Idx]) { 221 assert((Ty == 0 || Ty == V->getType()) && "Type mismatch in value table!"); 222 return V; 223 } 224 225 // No type specified, must be invalid reference. 226 if (Ty == 0) return 0; 227 228 // Create and return a placeholder, which will later be RAUW'd. 229 Value *V = new Argument(Ty); 230 ValuePtrs[Idx] = V; 231 return V; 232 } 233 234 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk 235 /// resolves any forward references. The idea behind this is that we sometimes 236 /// get constants (such as large arrays) which reference *many* forward ref 237 /// constants. Replacing each of these causes a lot of thrashing when 238 /// building/reuniquing the constant. Instead of doing this, we look at all the 239 /// uses and rewrite all the place holders at once for any constant that uses 240 /// a placeholder. 241 void BitcodeReaderValueList::ResolveConstantForwardRefs() { 242 // Sort the values by-pointer so that they are efficient to look up with a 243 // binary search. 244 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 245 246 SmallVector<Constant*, 64> NewOps; 247 248 while (!ResolveConstants.empty()) { 249 Value *RealVal = operator[](ResolveConstants.back().second); 250 Constant *Placeholder = ResolveConstants.back().first; 251 ResolveConstants.pop_back(); 252 253 // Loop over all users of the placeholder, updating them to reference the 254 // new value. If they reference more than one placeholder, update them all 255 // at once. 256 while (!Placeholder->use_empty()) { 257 Value::use_iterator UI = Placeholder->use_begin(); 258 User *U = *UI; 259 260 // If the using object isn't uniqued, just update the operands. This 261 // handles instructions and initializers for global variables. 262 if (!isa<Constant>(U) || isa<GlobalValue>(U)) { 263 UI.getUse().set(RealVal); 264 continue; 265 } 266 267 // Otherwise, we have a constant that uses the placeholder. Replace that 268 // constant with a new constant that has *all* placeholder uses updated. 269 Constant *UserC = cast<Constant>(U); 270 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 271 I != E; ++I) { 272 Value *NewOp; 273 if (!isa<ConstantPlaceHolder>(*I)) { 274 // Not a placeholder reference. 275 NewOp = *I; 276 } else if (*I == Placeholder) { 277 // Common case is that it just references this one placeholder. 278 NewOp = RealVal; 279 } else { 280 // Otherwise, look up the placeholder in ResolveConstants. 281 ResolveConstantsTy::iterator It = 282 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 283 std::pair<Constant*, unsigned>(cast<Constant>(*I), 284 0)); 285 assert(It != ResolveConstants.end() && It->first == *I); 286 NewOp = operator[](It->second); 287 } 288 289 NewOps.push_back(cast<Constant>(NewOp)); 290 } 291 292 // Make the new constant. 293 Constant *NewC; 294 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 295 NewC = ConstantArray::get(UserCA->getType(), &NewOps[0], 296 NewOps.size()); 297 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 298 NewC = ConstantStruct::get(Context, &NewOps[0], NewOps.size(), 299 UserCS->getType()->isPacked()); 300 } else if (isa<ConstantVector>(UserC)) { 301 NewC = ConstantVector::get(&NewOps[0], NewOps.size()); 302 } else { 303 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 304 NewC = cast<ConstantExpr>(UserC)->getWithOperands(&NewOps[0], 305 NewOps.size()); 306 } 307 308 UserC->replaceAllUsesWith(NewC); 309 UserC->destroyConstant(); 310 NewOps.clear(); 311 } 312 313 // Update all ValueHandles, they should be the only users at this point. 314 Placeholder->replaceAllUsesWith(RealVal); 315 delete Placeholder; 316 } 317 } 318 319 void BitcodeReaderMDValueList::AssignValue(Value *V, unsigned Idx) { 320 if (Idx == size()) { 321 push_back(V); 322 return; 323 } 324 325 if (Idx >= size()) 326 resize(Idx+1); 327 328 WeakVH &OldV = MDValuePtrs[Idx]; 329 if (OldV == 0) { 330 OldV = V; 331 return; 332 } 333 334 // If there was a forward reference to this value, replace it. 335 MDNode *PrevVal = cast<MDNode>(OldV); 336 OldV->replaceAllUsesWith(V); 337 MDNode::deleteTemporary(PrevVal); 338 // Deleting PrevVal sets Idx value in MDValuePtrs to null. Set new 339 // value for Idx. 340 MDValuePtrs[Idx] = V; 341 } 342 343 Value *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) { 344 if (Idx >= size()) 345 resize(Idx + 1); 346 347 if (Value *V = MDValuePtrs[Idx]) { 348 assert(V->getType()->isMetadataTy() && "Type mismatch in value table!"); 349 return V; 350 } 351 352 // Create and return a placeholder, which will later be RAUW'd. 353 Value *V = MDNode::getTemporary(Context, 0, 0); 354 MDValuePtrs[Idx] = V; 355 return V; 356 } 357 358 const Type *BitcodeReader::getTypeByID(unsigned ID, bool isTypeTable) { 359 // If the TypeID is in range, return it. 360 if (ID < TypeList.size()) 361 return TypeList[ID].get(); 362 if (!isTypeTable) return 0; 363 364 // The type table allows forward references. Push as many Opaque types as 365 // needed to get up to ID. 366 while (TypeList.size() <= ID) 367 TypeList.push_back(OpaqueType::get(Context)); 368 return TypeList.back().get(); 369 } 370 371 //===----------------------------------------------------------------------===// 372 // Functions for parsing blocks from the bitcode file 373 //===----------------------------------------------------------------------===// 374 375 bool BitcodeReader::ParseAttributeBlock() { 376 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 377 return Error("Malformed block record"); 378 379 if (!MAttributes.empty()) 380 return Error("Multiple PARAMATTR blocks found!"); 381 382 SmallVector<uint64_t, 64> Record; 383 384 SmallVector<AttributeWithIndex, 8> Attrs; 385 386 // Read all the records. 387 while (1) { 388 unsigned Code = Stream.ReadCode(); 389 if (Code == bitc::END_BLOCK) { 390 if (Stream.ReadBlockEnd()) 391 return Error("Error at end of PARAMATTR block"); 392 return false; 393 } 394 395 if (Code == bitc::ENTER_SUBBLOCK) { 396 // No known subblocks, always skip them. 397 Stream.ReadSubBlockID(); 398 if (Stream.SkipBlock()) 399 return Error("Malformed block record"); 400 continue; 401 } 402 403 if (Code == bitc::DEFINE_ABBREV) { 404 Stream.ReadAbbrevRecord(); 405 continue; 406 } 407 408 // Read a record. 409 Record.clear(); 410 switch (Stream.ReadRecord(Code, Record)) { 411 default: // Default behavior: ignore. 412 break; 413 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [paramidx0, attr0, ...] 414 if (Record.size() & 1) 415 return Error("Invalid ENTRY record"); 416 417 // FIXME : Remove this autoupgrade code in LLVM 3.0. 418 // If Function attributes are using index 0 then transfer them 419 // to index ~0. Index 0 is used for return value attributes but used to be 420 // used for function attributes. 421 Attributes RetAttribute = Attribute::None; 422 Attributes FnAttribute = Attribute::None; 423 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 424 // FIXME: remove in LLVM 3.0 425 // The alignment is stored as a 16-bit raw value from bits 31--16. 426 // We shift the bits above 31 down by 11 bits. 427 428 unsigned Alignment = (Record[i+1] & (0xffffull << 16)) >> 16; 429 if (Alignment && !isPowerOf2_32(Alignment)) 430 return Error("Alignment is not a power of two."); 431 432 Attributes ReconstitutedAttr = Record[i+1] & 0xffff; 433 if (Alignment) 434 ReconstitutedAttr |= Attribute::constructAlignmentFromInt(Alignment); 435 ReconstitutedAttr |= (Record[i+1] & (0xffffull << 32)) >> 11; 436 Record[i+1] = ReconstitutedAttr; 437 438 if (Record[i] == 0) 439 RetAttribute = Record[i+1]; 440 else if (Record[i] == ~0U) 441 FnAttribute = Record[i+1]; 442 } 443 444 unsigned OldRetAttrs = (Attribute::NoUnwind|Attribute::NoReturn| 445 Attribute::ReadOnly|Attribute::ReadNone); 446 447 if (FnAttribute == Attribute::None && RetAttribute != Attribute::None && 448 (RetAttribute & OldRetAttrs) != 0) { 449 if (FnAttribute == Attribute::None) { // add a slot so they get added. 450 Record.push_back(~0U); 451 Record.push_back(0); 452 } 453 454 FnAttribute |= RetAttribute & OldRetAttrs; 455 RetAttribute &= ~OldRetAttrs; 456 } 457 458 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 459 if (Record[i] == 0) { 460 if (RetAttribute != Attribute::None) 461 Attrs.push_back(AttributeWithIndex::get(0, RetAttribute)); 462 } else if (Record[i] == ~0U) { 463 if (FnAttribute != Attribute::None) 464 Attrs.push_back(AttributeWithIndex::get(~0U, FnAttribute)); 465 } else if (Record[i+1] != Attribute::None) 466 Attrs.push_back(AttributeWithIndex::get(Record[i], Record[i+1])); 467 } 468 469 MAttributes.push_back(AttrListPtr::get(Attrs.begin(), Attrs.end())); 470 Attrs.clear(); 471 break; 472 } 473 } 474 } 475 } 476 477 478 bool BitcodeReader::ParseTypeTable() { 479 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID)) 480 return Error("Malformed block record"); 481 482 if (!TypeList.empty()) 483 return Error("Multiple TYPE_BLOCKs found!"); 484 485 SmallVector<uint64_t, 64> Record; 486 unsigned NumRecords = 0; 487 488 // Read all the records for this type table. 489 while (1) { 490 unsigned Code = Stream.ReadCode(); 491 if (Code == bitc::END_BLOCK) { 492 if (NumRecords != TypeList.size()) 493 return Error("Invalid type forward reference in TYPE_BLOCK"); 494 if (Stream.ReadBlockEnd()) 495 return Error("Error at end of type table block"); 496 return false; 497 } 498 499 if (Code == bitc::ENTER_SUBBLOCK) { 500 // No known subblocks, always skip them. 501 Stream.ReadSubBlockID(); 502 if (Stream.SkipBlock()) 503 return Error("Malformed block record"); 504 continue; 505 } 506 507 if (Code == bitc::DEFINE_ABBREV) { 508 Stream.ReadAbbrevRecord(); 509 continue; 510 } 511 512 // Read a record. 513 Record.clear(); 514 const Type *ResultTy = 0; 515 switch (Stream.ReadRecord(Code, Record)) { 516 default: // Default behavior: unknown type. 517 ResultTy = 0; 518 break; 519 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 520 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 521 // type list. This allows us to reserve space. 522 if (Record.size() < 1) 523 return Error("Invalid TYPE_CODE_NUMENTRY record"); 524 TypeList.reserve(Record[0]); 525 continue; 526 case bitc::TYPE_CODE_VOID: // VOID 527 ResultTy = Type::getVoidTy(Context); 528 break; 529 case bitc::TYPE_CODE_FLOAT: // FLOAT 530 ResultTy = Type::getFloatTy(Context); 531 break; 532 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 533 ResultTy = Type::getDoubleTy(Context); 534 break; 535 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 536 ResultTy = Type::getX86_FP80Ty(Context); 537 break; 538 case bitc::TYPE_CODE_FP128: // FP128 539 ResultTy = Type::getFP128Ty(Context); 540 break; 541 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 542 ResultTy = Type::getPPC_FP128Ty(Context); 543 break; 544 case bitc::TYPE_CODE_LABEL: // LABEL 545 ResultTy = Type::getLabelTy(Context); 546 break; 547 case bitc::TYPE_CODE_OPAQUE: // OPAQUE 548 ResultTy = 0; 549 break; 550 case bitc::TYPE_CODE_METADATA: // METADATA 551 ResultTy = Type::getMetadataTy(Context); 552 break; 553 case bitc::TYPE_CODE_INTEGER: // INTEGER: [width] 554 if (Record.size() < 1) 555 return Error("Invalid Integer type record"); 556 557 ResultTy = IntegerType::get(Context, Record[0]); 558 break; 559 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 560 // [pointee type, address space] 561 if (Record.size() < 1) 562 return Error("Invalid POINTER type record"); 563 unsigned AddressSpace = 0; 564 if (Record.size() == 2) 565 AddressSpace = Record[1]; 566 ResultTy = PointerType::get(getTypeByID(Record[0], true), 567 AddressSpace); 568 break; 569 } 570 case bitc::TYPE_CODE_FUNCTION: { 571 // FIXME: attrid is dead, remove it in LLVM 3.0 572 // FUNCTION: [vararg, attrid, retty, paramty x N] 573 if (Record.size() < 3) 574 return Error("Invalid FUNCTION type record"); 575 std::vector<const Type*> ArgTys; 576 for (unsigned i = 3, e = Record.size(); i != e; ++i) 577 ArgTys.push_back(getTypeByID(Record[i], true)); 578 579 ResultTy = FunctionType::get(getTypeByID(Record[2], true), ArgTys, 580 Record[0]); 581 break; 582 } 583 case bitc::TYPE_CODE_STRUCT: { // STRUCT: [ispacked, eltty x N] 584 if (Record.size() < 1) 585 return Error("Invalid STRUCT type record"); 586 std::vector<const Type*> EltTys; 587 for (unsigned i = 1, e = Record.size(); i != e; ++i) 588 EltTys.push_back(getTypeByID(Record[i], true)); 589 ResultTy = StructType::get(Context, EltTys, Record[0]); 590 break; 591 } 592 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 593 if (Record.size() < 2) 594 return Error("Invalid ARRAY type record"); 595 ResultTy = ArrayType::get(getTypeByID(Record[1], true), Record[0]); 596 break; 597 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 598 if (Record.size() < 2) 599 return Error("Invalid VECTOR type record"); 600 ResultTy = VectorType::get(getTypeByID(Record[1], true), Record[0]); 601 break; 602 } 603 604 if (NumRecords == TypeList.size()) { 605 // If this is a new type slot, just append it. 606 TypeList.push_back(ResultTy ? ResultTy : OpaqueType::get(Context)); 607 ++NumRecords; 608 } else if (ResultTy == 0) { 609 // Otherwise, this was forward referenced, so an opaque type was created, 610 // but the result type is actually just an opaque. Leave the one we 611 // created previously. 612 ++NumRecords; 613 } else { 614 // Otherwise, this was forward referenced, so an opaque type was created. 615 // Resolve the opaque type to the real type now. 616 assert(NumRecords < TypeList.size() && "Typelist imbalance"); 617 const OpaqueType *OldTy = cast<OpaqueType>(TypeList[NumRecords++].get()); 618 619 // Don't directly push the new type on the Tab. Instead we want to replace 620 // the opaque type we previously inserted with the new concrete value. The 621 // refinement from the abstract (opaque) type to the new type causes all 622 // uses of the abstract type to use the concrete type (NewTy). This will 623 // also cause the opaque type to be deleted. 624 const_cast<OpaqueType*>(OldTy)->refineAbstractTypeTo(ResultTy); 625 626 // This should have replaced the old opaque type with the new type in the 627 // value table... or with a preexisting type that was already in the 628 // system. Let's just make sure it did. 629 assert(TypeList[NumRecords-1].get() != OldTy && 630 "refineAbstractType didn't work!"); 631 } 632 } 633 } 634 635 636 bool BitcodeReader::ParseTypeSymbolTable() { 637 if (Stream.EnterSubBlock(bitc::TYPE_SYMTAB_BLOCK_ID)) 638 return Error("Malformed block record"); 639 640 SmallVector<uint64_t, 64> Record; 641 642 // Read all the records for this type table. 643 std::string TypeName; 644 while (1) { 645 unsigned Code = Stream.ReadCode(); 646 if (Code == bitc::END_BLOCK) { 647 if (Stream.ReadBlockEnd()) 648 return Error("Error at end of type symbol table block"); 649 return false; 650 } 651 652 if (Code == bitc::ENTER_SUBBLOCK) { 653 // No known subblocks, always skip them. 654 Stream.ReadSubBlockID(); 655 if (Stream.SkipBlock()) 656 return Error("Malformed block record"); 657 continue; 658 } 659 660 if (Code == bitc::DEFINE_ABBREV) { 661 Stream.ReadAbbrevRecord(); 662 continue; 663 } 664 665 // Read a record. 666 Record.clear(); 667 switch (Stream.ReadRecord(Code, Record)) { 668 default: // Default behavior: unknown type. 669 break; 670 case bitc::TST_CODE_ENTRY: // TST_ENTRY: [typeid, namechar x N] 671 if (ConvertToString(Record, 1, TypeName)) 672 return Error("Invalid TST_ENTRY record"); 673 unsigned TypeID = Record[0]; 674 if (TypeID >= TypeList.size()) 675 return Error("Invalid Type ID in TST_ENTRY record"); 676 677 TheModule->addTypeName(TypeName, TypeList[TypeID].get()); 678 TypeName.clear(); 679 break; 680 } 681 } 682 } 683 684 bool BitcodeReader::ParseValueSymbolTable() { 685 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 686 return Error("Malformed block record"); 687 688 SmallVector<uint64_t, 64> Record; 689 690 // Read all the records for this value table. 691 SmallString<128> ValueName; 692 while (1) { 693 unsigned Code = Stream.ReadCode(); 694 if (Code == bitc::END_BLOCK) { 695 if (Stream.ReadBlockEnd()) 696 return Error("Error at end of value symbol table block"); 697 return false; 698 } 699 if (Code == bitc::ENTER_SUBBLOCK) { 700 // No known subblocks, always skip them. 701 Stream.ReadSubBlockID(); 702 if (Stream.SkipBlock()) 703 return Error("Malformed block record"); 704 continue; 705 } 706 707 if (Code == bitc::DEFINE_ABBREV) { 708 Stream.ReadAbbrevRecord(); 709 continue; 710 } 711 712 // Read a record. 713 Record.clear(); 714 switch (Stream.ReadRecord(Code, Record)) { 715 default: // Default behavior: unknown type. 716 break; 717 case bitc::VST_CODE_ENTRY: { // VST_ENTRY: [valueid, namechar x N] 718 if (ConvertToString(Record, 1, ValueName)) 719 return Error("Invalid VST_ENTRY record"); 720 unsigned ValueID = Record[0]; 721 if (ValueID >= ValueList.size()) 722 return Error("Invalid Value ID in VST_ENTRY record"); 723 Value *V = ValueList[ValueID]; 724 725 V->setName(StringRef(ValueName.data(), ValueName.size())); 726 ValueName.clear(); 727 break; 728 } 729 case bitc::VST_CODE_BBENTRY: { 730 if (ConvertToString(Record, 1, ValueName)) 731 return Error("Invalid VST_BBENTRY record"); 732 BasicBlock *BB = getBasicBlock(Record[0]); 733 if (BB == 0) 734 return Error("Invalid BB ID in VST_BBENTRY record"); 735 736 BB->setName(StringRef(ValueName.data(), ValueName.size())); 737 ValueName.clear(); 738 break; 739 } 740 } 741 } 742 } 743 744 bool BitcodeReader::ParseMetadata() { 745 unsigned NextMDValueNo = MDValueList.size(); 746 747 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) 748 return Error("Malformed block record"); 749 750 SmallVector<uint64_t, 64> Record; 751 752 // Read all the records. 753 while (1) { 754 unsigned Code = Stream.ReadCode(); 755 if (Code == bitc::END_BLOCK) { 756 if (Stream.ReadBlockEnd()) 757 return Error("Error at end of PARAMATTR block"); 758 return false; 759 } 760 761 if (Code == bitc::ENTER_SUBBLOCK) { 762 // No known subblocks, always skip them. 763 Stream.ReadSubBlockID(); 764 if (Stream.SkipBlock()) 765 return Error("Malformed block record"); 766 continue; 767 } 768 769 if (Code == bitc::DEFINE_ABBREV) { 770 Stream.ReadAbbrevRecord(); 771 continue; 772 } 773 774 bool IsFunctionLocal = false; 775 // Read a record. 776 Record.clear(); 777 switch (Stream.ReadRecord(Code, Record)) { 778 default: // Default behavior: ignore. 779 break; 780 case bitc::METADATA_NAME: { 781 // Read named of the named metadata. 782 unsigned NameLength = Record.size(); 783 SmallString<8> Name; 784 Name.resize(NameLength); 785 for (unsigned i = 0; i != NameLength; ++i) 786 Name[i] = Record[i]; 787 Record.clear(); 788 Code = Stream.ReadCode(); 789 790 // METADATA_NAME is always followed by METADATA_NAMED_NODE. 791 if (Stream.ReadRecord(Code, Record) != bitc::METADATA_NAMED_NODE) 792 assert ( 0 && "Inavlid Named Metadata record"); 793 794 // Read named metadata elements. 795 unsigned Size = Record.size(); 796 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name); 797 for (unsigned i = 0; i != Size; ++i) { 798 MDNode *MD = dyn_cast<MDNode>(MDValueList.getValueFwdRef(Record[i])); 799 if (MD == 0) 800 return Error("Malformed metadata record"); 801 NMD->addOperand(MD); 802 } 803 break; 804 } 805 case bitc::METADATA_FN_NODE: 806 IsFunctionLocal = true; 807 // fall-through 808 case bitc::METADATA_NODE: { 809 if (Record.size() % 2 == 1) 810 return Error("Invalid METADATA_NODE record"); 811 812 unsigned Size = Record.size(); 813 SmallVector<Value*, 8> Elts; 814 for (unsigned i = 0; i != Size; i += 2) { 815 const Type *Ty = getTypeByID(Record[i], false); 816 if (Ty->isMetadataTy()) 817 Elts.push_back(MDValueList.getValueFwdRef(Record[i+1])); 818 else if (!Ty->isVoidTy()) 819 Elts.push_back(ValueList.getValueFwdRef(Record[i+1], Ty)); 820 else 821 Elts.push_back(NULL); 822 } 823 Value *V = MDNode::getWhenValsUnresolved(Context, 824 Elts.data(), Elts.size(), 825 IsFunctionLocal); 826 IsFunctionLocal = false; 827 MDValueList.AssignValue(V, NextMDValueNo++); 828 break; 829 } 830 case bitc::METADATA_STRING: { 831 unsigned MDStringLength = Record.size(); 832 SmallString<8> String; 833 String.resize(MDStringLength); 834 for (unsigned i = 0; i != MDStringLength; ++i) 835 String[i] = Record[i]; 836 Value *V = MDString::get(Context, 837 StringRef(String.data(), String.size())); 838 MDValueList.AssignValue(V, NextMDValueNo++); 839 break; 840 } 841 case bitc::METADATA_KIND: { 842 unsigned RecordLength = Record.size(); 843 if (Record.empty() || RecordLength < 2) 844 return Error("Invalid METADATA_KIND record"); 845 SmallString<8> Name; 846 Name.resize(RecordLength-1); 847 unsigned Kind = Record[0]; 848 for (unsigned i = 1; i != RecordLength; ++i) 849 Name[i-1] = Record[i]; 850 851 unsigned NewKind = TheModule->getMDKindID(Name.str()); 852 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second) 853 return Error("Conflicting METADATA_KIND records"); 854 break; 855 } 856 } 857 } 858 } 859 860 /// DecodeSignRotatedValue - Decode a signed value stored with the sign bit in 861 /// the LSB for dense VBR encoding. 862 static uint64_t DecodeSignRotatedValue(uint64_t V) { 863 if ((V & 1) == 0) 864 return V >> 1; 865 if (V != 1) 866 return -(V >> 1); 867 // There is no such thing as -0 with integers. "-0" really means MININT. 868 return 1ULL << 63; 869 } 870 871 /// ResolveGlobalAndAliasInits - Resolve all of the initializers for global 872 /// values and aliases that we can. 873 bool BitcodeReader::ResolveGlobalAndAliasInits() { 874 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 875 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist; 876 877 GlobalInitWorklist.swap(GlobalInits); 878 AliasInitWorklist.swap(AliasInits); 879 880 while (!GlobalInitWorklist.empty()) { 881 unsigned ValID = GlobalInitWorklist.back().second; 882 if (ValID >= ValueList.size()) { 883 // Not ready to resolve this yet, it requires something later in the file. 884 GlobalInits.push_back(GlobalInitWorklist.back()); 885 } else { 886 if (Constant *C = dyn_cast<Constant>(ValueList[ValID])) 887 GlobalInitWorklist.back().first->setInitializer(C); 888 else 889 return Error("Global variable initializer is not a constant!"); 890 } 891 GlobalInitWorklist.pop_back(); 892 } 893 894 while (!AliasInitWorklist.empty()) { 895 unsigned ValID = AliasInitWorklist.back().second; 896 if (ValID >= ValueList.size()) { 897 AliasInits.push_back(AliasInitWorklist.back()); 898 } else { 899 if (Constant *C = dyn_cast<Constant>(ValueList[ValID])) 900 AliasInitWorklist.back().first->setAliasee(C); 901 else 902 return Error("Alias initializer is not a constant!"); 903 } 904 AliasInitWorklist.pop_back(); 905 } 906 return false; 907 } 908 909 bool BitcodeReader::ParseConstants() { 910 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 911 return Error("Malformed block record"); 912 913 SmallVector<uint64_t, 64> Record; 914 915 // Read all the records for this value table. 916 const Type *CurTy = Type::getInt32Ty(Context); 917 unsigned NextCstNo = ValueList.size(); 918 while (1) { 919 unsigned Code = Stream.ReadCode(); 920 if (Code == bitc::END_BLOCK) 921 break; 922 923 if (Code == bitc::ENTER_SUBBLOCK) { 924 // No known subblocks, always skip them. 925 Stream.ReadSubBlockID(); 926 if (Stream.SkipBlock()) 927 return Error("Malformed block record"); 928 continue; 929 } 930 931 if (Code == bitc::DEFINE_ABBREV) { 932 Stream.ReadAbbrevRecord(); 933 continue; 934 } 935 936 // Read a record. 937 Record.clear(); 938 Value *V = 0; 939 unsigned BitCode = Stream.ReadRecord(Code, Record); 940 switch (BitCode) { 941 default: // Default behavior: unknown constant 942 case bitc::CST_CODE_UNDEF: // UNDEF 943 V = UndefValue::get(CurTy); 944 break; 945 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 946 if (Record.empty()) 947 return Error("Malformed CST_SETTYPE record"); 948 if (Record[0] >= TypeList.size()) 949 return Error("Invalid Type ID in CST_SETTYPE record"); 950 CurTy = TypeList[Record[0]]; 951 continue; // Skip the ValueList manipulation. 952 case bitc::CST_CODE_NULL: // NULL 953 V = Constant::getNullValue(CurTy); 954 break; 955 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 956 if (!CurTy->isIntegerTy() || Record.empty()) 957 return Error("Invalid CST_INTEGER record"); 958 V = ConstantInt::get(CurTy, DecodeSignRotatedValue(Record[0])); 959 break; 960 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 961 if (!CurTy->isIntegerTy() || Record.empty()) 962 return Error("Invalid WIDE_INTEGER record"); 963 964 unsigned NumWords = Record.size(); 965 SmallVector<uint64_t, 8> Words; 966 Words.resize(NumWords); 967 for (unsigned i = 0; i != NumWords; ++i) 968 Words[i] = DecodeSignRotatedValue(Record[i]); 969 V = ConstantInt::get(Context, 970 APInt(cast<IntegerType>(CurTy)->getBitWidth(), 971 NumWords, &Words[0])); 972 break; 973 } 974 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 975 if (Record.empty()) 976 return Error("Invalid FLOAT record"); 977 if (CurTy->isFloatTy()) 978 V = ConstantFP::get(Context, APFloat(APInt(32, (uint32_t)Record[0]))); 979 else if (CurTy->isDoubleTy()) 980 V = ConstantFP::get(Context, APFloat(APInt(64, Record[0]))); 981 else if (CurTy->isX86_FP80Ty()) { 982 // Bits are not stored the same way as a normal i80 APInt, compensate. 983 uint64_t Rearrange[2]; 984 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 985 Rearrange[1] = Record[0] >> 48; 986 V = ConstantFP::get(Context, APFloat(APInt(80, 2, Rearrange))); 987 } else if (CurTy->isFP128Ty()) 988 V = ConstantFP::get(Context, APFloat(APInt(128, 2, &Record[0]), true)); 989 else if (CurTy->isPPC_FP128Ty()) 990 V = ConstantFP::get(Context, APFloat(APInt(128, 2, &Record[0]))); 991 else 992 V = UndefValue::get(CurTy); 993 break; 994 } 995 996 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 997 if (Record.empty()) 998 return Error("Invalid CST_AGGREGATE record"); 999 1000 unsigned Size = Record.size(); 1001 std::vector<Constant*> Elts; 1002 1003 if (const StructType *STy = dyn_cast<StructType>(CurTy)) { 1004 for (unsigned i = 0; i != Size; ++i) 1005 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 1006 STy->getElementType(i))); 1007 V = ConstantStruct::get(STy, Elts); 1008 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 1009 const Type *EltTy = ATy->getElementType(); 1010 for (unsigned i = 0; i != Size; ++i) 1011 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 1012 V = ConstantArray::get(ATy, Elts); 1013 } else if (const VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 1014 const Type *EltTy = VTy->getElementType(); 1015 for (unsigned i = 0; i != Size; ++i) 1016 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 1017 V = ConstantVector::get(Elts); 1018 } else { 1019 V = UndefValue::get(CurTy); 1020 } 1021 break; 1022 } 1023 case bitc::CST_CODE_STRING: { // STRING: [values] 1024 if (Record.empty()) 1025 return Error("Invalid CST_AGGREGATE record"); 1026 1027 const ArrayType *ATy = cast<ArrayType>(CurTy); 1028 const Type *EltTy = ATy->getElementType(); 1029 1030 unsigned Size = Record.size(); 1031 std::vector<Constant*> Elts; 1032 for (unsigned i = 0; i != Size; ++i) 1033 Elts.push_back(ConstantInt::get(EltTy, Record[i])); 1034 V = ConstantArray::get(ATy, Elts); 1035 break; 1036 } 1037 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 1038 if (Record.empty()) 1039 return Error("Invalid CST_AGGREGATE record"); 1040 1041 const ArrayType *ATy = cast<ArrayType>(CurTy); 1042 const Type *EltTy = ATy->getElementType(); 1043 1044 unsigned Size = Record.size(); 1045 std::vector<Constant*> Elts; 1046 for (unsigned i = 0; i != Size; ++i) 1047 Elts.push_back(ConstantInt::get(EltTy, Record[i])); 1048 Elts.push_back(Constant::getNullValue(EltTy)); 1049 V = ConstantArray::get(ATy, Elts); 1050 break; 1051 } 1052 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 1053 if (Record.size() < 3) return Error("Invalid CE_BINOP record"); 1054 int Opc = GetDecodedBinaryOpcode(Record[0], CurTy); 1055 if (Opc < 0) { 1056 V = UndefValue::get(CurTy); // Unknown binop. 1057 } else { 1058 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 1059 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 1060 unsigned Flags = 0; 1061 if (Record.size() >= 4) { 1062 if (Opc == Instruction::Add || 1063 Opc == Instruction::Sub || 1064 Opc == Instruction::Mul) { 1065 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 1066 Flags |= OverflowingBinaryOperator::NoSignedWrap; 1067 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 1068 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 1069 } else if (Opc == Instruction::SDiv) { 1070 if (Record[3] & (1 << bitc::SDIV_EXACT)) 1071 Flags |= SDivOperator::IsExact; 1072 } 1073 } 1074 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 1075 } 1076 break; 1077 } 1078 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 1079 if (Record.size() < 3) return Error("Invalid CE_CAST record"); 1080 int Opc = GetDecodedCastOpcode(Record[0]); 1081 if (Opc < 0) { 1082 V = UndefValue::get(CurTy); // Unknown cast. 1083 } else { 1084 const Type *OpTy = getTypeByID(Record[1]); 1085 if (!OpTy) return Error("Invalid CE_CAST record"); 1086 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 1087 V = ConstantExpr::getCast(Opc, Op, CurTy); 1088 } 1089 break; 1090 } 1091 case bitc::CST_CODE_CE_INBOUNDS_GEP: 1092 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 1093 if (Record.size() & 1) return Error("Invalid CE_GEP record"); 1094 SmallVector<Constant*, 16> Elts; 1095 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1096 const Type *ElTy = getTypeByID(Record[i]); 1097 if (!ElTy) return Error("Invalid CE_GEP record"); 1098 Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy)); 1099 } 1100 if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 1101 V = ConstantExpr::getInBoundsGetElementPtr(Elts[0], &Elts[1], 1102 Elts.size()-1); 1103 else 1104 V = ConstantExpr::getGetElementPtr(Elts[0], &Elts[1], 1105 Elts.size()-1); 1106 break; 1107 } 1108 case bitc::CST_CODE_CE_SELECT: // CE_SELECT: [opval#, opval#, opval#] 1109 if (Record.size() < 3) return Error("Invalid CE_SELECT record"); 1110 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 1111 Type::getInt1Ty(Context)), 1112 ValueList.getConstantFwdRef(Record[1],CurTy), 1113 ValueList.getConstantFwdRef(Record[2],CurTy)); 1114 break; 1115 case bitc::CST_CODE_CE_EXTRACTELT: { // CE_EXTRACTELT: [opty, opval, opval] 1116 if (Record.size() < 3) return Error("Invalid CE_EXTRACTELT record"); 1117 const VectorType *OpTy = 1118 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 1119 if (OpTy == 0) return Error("Invalid CE_EXTRACTELT record"); 1120 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1121 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 1122 V = ConstantExpr::getExtractElement(Op0, Op1); 1123 break; 1124 } 1125 case bitc::CST_CODE_CE_INSERTELT: { // CE_INSERTELT: [opval, opval, opval] 1126 const VectorType *OpTy = dyn_cast<VectorType>(CurTy); 1127 if (Record.size() < 3 || OpTy == 0) 1128 return Error("Invalid CE_INSERTELT record"); 1129 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 1130 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 1131 OpTy->getElementType()); 1132 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 1133 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 1134 break; 1135 } 1136 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 1137 const VectorType *OpTy = dyn_cast<VectorType>(CurTy); 1138 if (Record.size() < 3 || OpTy == 0) 1139 return Error("Invalid CE_SHUFFLEVEC record"); 1140 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 1141 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 1142 const Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 1143 OpTy->getNumElements()); 1144 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 1145 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 1146 break; 1147 } 1148 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 1149 const VectorType *RTy = dyn_cast<VectorType>(CurTy); 1150 const VectorType *OpTy = dyn_cast<VectorType>(getTypeByID(Record[0])); 1151 if (Record.size() < 4 || RTy == 0 || OpTy == 0) 1152 return Error("Invalid CE_SHUFVEC_EX record"); 1153 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1154 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 1155 const Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 1156 RTy->getNumElements()); 1157 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 1158 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 1159 break; 1160 } 1161 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 1162 if (Record.size() < 4) return Error("Invalid CE_CMP record"); 1163 const Type *OpTy = getTypeByID(Record[0]); 1164 if (OpTy == 0) return Error("Invalid CE_CMP record"); 1165 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1166 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 1167 1168 if (OpTy->isFPOrFPVectorTy()) 1169 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 1170 else 1171 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 1172 break; 1173 } 1174 case bitc::CST_CODE_INLINEASM: { 1175 if (Record.size() < 2) return Error("Invalid INLINEASM record"); 1176 std::string AsmStr, ConstrStr; 1177 bool HasSideEffects = Record[0] & 1; 1178 bool IsAlignStack = Record[0] >> 1; 1179 unsigned AsmStrSize = Record[1]; 1180 if (2+AsmStrSize >= Record.size()) 1181 return Error("Invalid INLINEASM record"); 1182 unsigned ConstStrSize = Record[2+AsmStrSize]; 1183 if (3+AsmStrSize+ConstStrSize > Record.size()) 1184 return Error("Invalid INLINEASM record"); 1185 1186 for (unsigned i = 0; i != AsmStrSize; ++i) 1187 AsmStr += (char)Record[2+i]; 1188 for (unsigned i = 0; i != ConstStrSize; ++i) 1189 ConstrStr += (char)Record[3+AsmStrSize+i]; 1190 const PointerType *PTy = cast<PointerType>(CurTy); 1191 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 1192 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 1193 break; 1194 } 1195 case bitc::CST_CODE_BLOCKADDRESS:{ 1196 if (Record.size() < 3) return Error("Invalid CE_BLOCKADDRESS record"); 1197 const Type *FnTy = getTypeByID(Record[0]); 1198 if (FnTy == 0) return Error("Invalid CE_BLOCKADDRESS record"); 1199 Function *Fn = 1200 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 1201 if (Fn == 0) return Error("Invalid CE_BLOCKADDRESS record"); 1202 1203 GlobalVariable *FwdRef = new GlobalVariable(*Fn->getParent(), 1204 Type::getInt8Ty(Context), 1205 false, GlobalValue::InternalLinkage, 1206 0, ""); 1207 BlockAddrFwdRefs[Fn].push_back(std::make_pair(Record[2], FwdRef)); 1208 V = FwdRef; 1209 break; 1210 } 1211 } 1212 1213 ValueList.AssignValue(V, NextCstNo); 1214 ++NextCstNo; 1215 } 1216 1217 if (NextCstNo != ValueList.size()) 1218 return Error("Invalid constant reference!"); 1219 1220 if (Stream.ReadBlockEnd()) 1221 return Error("Error at end of constants block"); 1222 1223 // Once all the constants have been read, go through and resolve forward 1224 // references. 1225 ValueList.ResolveConstantForwardRefs(); 1226 return false; 1227 } 1228 1229 /// RememberAndSkipFunctionBody - When we see the block for a function body, 1230 /// remember where it is and then skip it. This lets us lazily deserialize the 1231 /// functions. 1232 bool BitcodeReader::RememberAndSkipFunctionBody() { 1233 // Get the function we are talking about. 1234 if (FunctionsWithBodies.empty()) 1235 return Error("Insufficient function protos"); 1236 1237 Function *Fn = FunctionsWithBodies.back(); 1238 FunctionsWithBodies.pop_back(); 1239 1240 // Save the current stream state. 1241 uint64_t CurBit = Stream.GetCurrentBitNo(); 1242 DeferredFunctionInfo[Fn] = CurBit; 1243 1244 // Skip over the function block for now. 1245 if (Stream.SkipBlock()) 1246 return Error("Malformed block record"); 1247 return false; 1248 } 1249 1250 bool BitcodeReader::ParseModule() { 1251 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 1252 return Error("Malformed block record"); 1253 1254 SmallVector<uint64_t, 64> Record; 1255 std::vector<std::string> SectionTable; 1256 std::vector<std::string> GCTable; 1257 1258 // Read all the records for this module. 1259 while (!Stream.AtEndOfStream()) { 1260 unsigned Code = Stream.ReadCode(); 1261 if (Code == bitc::END_BLOCK) { 1262 if (Stream.ReadBlockEnd()) 1263 return Error("Error at end of module block"); 1264 1265 // Patch the initializers for globals and aliases up. 1266 ResolveGlobalAndAliasInits(); 1267 if (!GlobalInits.empty() || !AliasInits.empty()) 1268 return Error("Malformed global initializer set"); 1269 if (!FunctionsWithBodies.empty()) 1270 return Error("Too few function bodies found"); 1271 1272 // Look for intrinsic functions which need to be upgraded at some point 1273 for (Module::iterator FI = TheModule->begin(), FE = TheModule->end(); 1274 FI != FE; ++FI) { 1275 Function* NewFn; 1276 if (UpgradeIntrinsicFunction(FI, NewFn)) 1277 UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn)); 1278 } 1279 1280 // Force deallocation of memory for these vectors to favor the client that 1281 // want lazy deserialization. 1282 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 1283 std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits); 1284 std::vector<Function*>().swap(FunctionsWithBodies); 1285 return false; 1286 } 1287 1288 if (Code == bitc::ENTER_SUBBLOCK) { 1289 switch (Stream.ReadSubBlockID()) { 1290 default: // Skip unknown content. 1291 if (Stream.SkipBlock()) 1292 return Error("Malformed block record"); 1293 break; 1294 case bitc::BLOCKINFO_BLOCK_ID: 1295 if (Stream.ReadBlockInfoBlock()) 1296 return Error("Malformed BlockInfoBlock"); 1297 break; 1298 case bitc::PARAMATTR_BLOCK_ID: 1299 if (ParseAttributeBlock()) 1300 return true; 1301 break; 1302 case bitc::TYPE_BLOCK_ID: 1303 if (ParseTypeTable()) 1304 return true; 1305 break; 1306 case bitc::TYPE_SYMTAB_BLOCK_ID: 1307 if (ParseTypeSymbolTable()) 1308 return true; 1309 break; 1310 case bitc::VALUE_SYMTAB_BLOCK_ID: 1311 if (ParseValueSymbolTable()) 1312 return true; 1313 break; 1314 case bitc::CONSTANTS_BLOCK_ID: 1315 if (ParseConstants() || ResolveGlobalAndAliasInits()) 1316 return true; 1317 break; 1318 case bitc::METADATA_BLOCK_ID: 1319 if (ParseMetadata()) 1320 return true; 1321 break; 1322 case bitc::FUNCTION_BLOCK_ID: 1323 // If this is the first function body we've seen, reverse the 1324 // FunctionsWithBodies list. 1325 if (!HasReversedFunctionsWithBodies) { 1326 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 1327 HasReversedFunctionsWithBodies = true; 1328 } 1329 1330 if (RememberAndSkipFunctionBody()) 1331 return true; 1332 break; 1333 } 1334 continue; 1335 } 1336 1337 if (Code == bitc::DEFINE_ABBREV) { 1338 Stream.ReadAbbrevRecord(); 1339 continue; 1340 } 1341 1342 // Read a record. 1343 switch (Stream.ReadRecord(Code, Record)) { 1344 default: break; // Default behavior, ignore unknown content. 1345 case bitc::MODULE_CODE_VERSION: // VERSION: [version#] 1346 if (Record.size() < 1) 1347 return Error("Malformed MODULE_CODE_VERSION"); 1348 // Only version #0 is supported so far. 1349 if (Record[0] != 0) 1350 return Error("Unknown bitstream version!"); 1351 break; 1352 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 1353 std::string S; 1354 if (ConvertToString(Record, 0, S)) 1355 return Error("Invalid MODULE_CODE_TRIPLE record"); 1356 TheModule->setTargetTriple(S); 1357 break; 1358 } 1359 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 1360 std::string S; 1361 if (ConvertToString(Record, 0, S)) 1362 return Error("Invalid MODULE_CODE_DATALAYOUT record"); 1363 TheModule->setDataLayout(S); 1364 break; 1365 } 1366 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 1367 std::string S; 1368 if (ConvertToString(Record, 0, S)) 1369 return Error("Invalid MODULE_CODE_ASM record"); 1370 TheModule->setModuleInlineAsm(S); 1371 break; 1372 } 1373 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 1374 std::string S; 1375 if (ConvertToString(Record, 0, S)) 1376 return Error("Invalid MODULE_CODE_DEPLIB record"); 1377 TheModule->addLibrary(S); 1378 break; 1379 } 1380 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 1381 std::string S; 1382 if (ConvertToString(Record, 0, S)) 1383 return Error("Invalid MODULE_CODE_SECTIONNAME record"); 1384 SectionTable.push_back(S); 1385 break; 1386 } 1387 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 1388 std::string S; 1389 if (ConvertToString(Record, 0, S)) 1390 return Error("Invalid MODULE_CODE_GCNAME record"); 1391 GCTable.push_back(S); 1392 break; 1393 } 1394 // GLOBALVAR: [pointer type, isconst, initid, 1395 // linkage, alignment, section, visibility, threadlocal] 1396 case bitc::MODULE_CODE_GLOBALVAR: { 1397 if (Record.size() < 6) 1398 return Error("Invalid MODULE_CODE_GLOBALVAR record"); 1399 const Type *Ty = getTypeByID(Record[0]); 1400 if (!Ty->isPointerTy()) 1401 return Error("Global not a pointer type!"); 1402 unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 1403 Ty = cast<PointerType>(Ty)->getElementType(); 1404 1405 bool isConstant = Record[1]; 1406 GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]); 1407 unsigned Alignment = (1 << Record[4]) >> 1; 1408 std::string Section; 1409 if (Record[5]) { 1410 if (Record[5]-1 >= SectionTable.size()) 1411 return Error("Invalid section ID"); 1412 Section = SectionTable[Record[5]-1]; 1413 } 1414 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 1415 if (Record.size() > 6) 1416 Visibility = GetDecodedVisibility(Record[6]); 1417 bool isThreadLocal = false; 1418 if (Record.size() > 7) 1419 isThreadLocal = Record[7]; 1420 1421 GlobalVariable *NewGV = 1422 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, 0, "", 0, 1423 isThreadLocal, AddressSpace); 1424 NewGV->setAlignment(Alignment); 1425 if (!Section.empty()) 1426 NewGV->setSection(Section); 1427 NewGV->setVisibility(Visibility); 1428 NewGV->setThreadLocal(isThreadLocal); 1429 1430 ValueList.push_back(NewGV); 1431 1432 // Remember which value to use for the global initializer. 1433 if (unsigned InitID = Record[2]) 1434 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 1435 break; 1436 } 1437 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 1438 // alignment, section, visibility, gc] 1439 case bitc::MODULE_CODE_FUNCTION: { 1440 if (Record.size() < 8) 1441 return Error("Invalid MODULE_CODE_FUNCTION record"); 1442 const Type *Ty = getTypeByID(Record[0]); 1443 if (!Ty->isPointerTy()) 1444 return Error("Function not a pointer type!"); 1445 const FunctionType *FTy = 1446 dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType()); 1447 if (!FTy) 1448 return Error("Function not a pointer to function type!"); 1449 1450 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 1451 "", TheModule); 1452 1453 Func->setCallingConv(static_cast<CallingConv::ID>(Record[1])); 1454 bool isProto = Record[2]; 1455 Func->setLinkage(GetDecodedLinkage(Record[3])); 1456 Func->setAttributes(getAttributes(Record[4])); 1457 1458 Func->setAlignment((1 << Record[5]) >> 1); 1459 if (Record[6]) { 1460 if (Record[6]-1 >= SectionTable.size()) 1461 return Error("Invalid section ID"); 1462 Func->setSection(SectionTable[Record[6]-1]); 1463 } 1464 Func->setVisibility(GetDecodedVisibility(Record[7])); 1465 if (Record.size() > 8 && Record[8]) { 1466 if (Record[8]-1 > GCTable.size()) 1467 return Error("Invalid GC ID"); 1468 Func->setGC(GCTable[Record[8]-1].c_str()); 1469 } 1470 ValueList.push_back(Func); 1471 1472 // If this is a function with a body, remember the prototype we are 1473 // creating now, so that we can match up the body with them later. 1474 if (!isProto) 1475 FunctionsWithBodies.push_back(Func); 1476 break; 1477 } 1478 // ALIAS: [alias type, aliasee val#, linkage] 1479 // ALIAS: [alias type, aliasee val#, linkage, visibility] 1480 case bitc::MODULE_CODE_ALIAS: { 1481 if (Record.size() < 3) 1482 return Error("Invalid MODULE_ALIAS record"); 1483 const Type *Ty = getTypeByID(Record[0]); 1484 if (!Ty->isPointerTy()) 1485 return Error("Function not a pointer type!"); 1486 1487 GlobalAlias *NewGA = new GlobalAlias(Ty, GetDecodedLinkage(Record[2]), 1488 "", 0, TheModule); 1489 // Old bitcode files didn't have visibility field. 1490 if (Record.size() > 3) 1491 NewGA->setVisibility(GetDecodedVisibility(Record[3])); 1492 ValueList.push_back(NewGA); 1493 AliasInits.push_back(std::make_pair(NewGA, Record[1])); 1494 break; 1495 } 1496 /// MODULE_CODE_PURGEVALS: [numvals] 1497 case bitc::MODULE_CODE_PURGEVALS: 1498 // Trim down the value list to the specified size. 1499 if (Record.size() < 1 || Record[0] > ValueList.size()) 1500 return Error("Invalid MODULE_PURGEVALS record"); 1501 ValueList.shrinkTo(Record[0]); 1502 break; 1503 } 1504 Record.clear(); 1505 } 1506 1507 return Error("Premature end of bitstream"); 1508 } 1509 1510 bool BitcodeReader::ParseBitcodeInto(Module *M) { 1511 TheModule = 0; 1512 1513 unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart(); 1514 unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 1515 1516 if (Buffer->getBufferSize() & 3) { 1517 if (!isRawBitcode(BufPtr, BufEnd) && !isBitcodeWrapper(BufPtr, BufEnd)) 1518 return Error("Invalid bitcode signature"); 1519 else 1520 return Error("Bitcode stream should be a multiple of 4 bytes in length"); 1521 } 1522 1523 // If we have a wrapper header, parse it and ignore the non-bc file contents. 1524 // The magic number is 0x0B17C0DE stored in little endian. 1525 if (isBitcodeWrapper(BufPtr, BufEnd)) 1526 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd)) 1527 return Error("Invalid bitcode wrapper header"); 1528 1529 StreamFile.init(BufPtr, BufEnd); 1530 Stream.init(StreamFile); 1531 1532 // Sniff for the signature. 1533 if (Stream.Read(8) != 'B' || 1534 Stream.Read(8) != 'C' || 1535 Stream.Read(4) != 0x0 || 1536 Stream.Read(4) != 0xC || 1537 Stream.Read(4) != 0xE || 1538 Stream.Read(4) != 0xD) 1539 return Error("Invalid bitcode signature"); 1540 1541 // We expect a number of well-defined blocks, though we don't necessarily 1542 // need to understand them all. 1543 while (!Stream.AtEndOfStream()) { 1544 unsigned Code = Stream.ReadCode(); 1545 1546 if (Code != bitc::ENTER_SUBBLOCK) 1547 return Error("Invalid record at top-level"); 1548 1549 unsigned BlockID = Stream.ReadSubBlockID(); 1550 1551 // We only know the MODULE subblock ID. 1552 switch (BlockID) { 1553 case bitc::BLOCKINFO_BLOCK_ID: 1554 if (Stream.ReadBlockInfoBlock()) 1555 return Error("Malformed BlockInfoBlock"); 1556 break; 1557 case bitc::MODULE_BLOCK_ID: 1558 // Reject multiple MODULE_BLOCK's in a single bitstream. 1559 if (TheModule) 1560 return Error("Multiple MODULE_BLOCKs in same stream"); 1561 TheModule = M; 1562 if (ParseModule()) 1563 return true; 1564 break; 1565 default: 1566 if (Stream.SkipBlock()) 1567 return Error("Malformed block record"); 1568 break; 1569 } 1570 } 1571 1572 return false; 1573 } 1574 1575 /// ParseMetadataAttachment - Parse metadata attachments. 1576 bool BitcodeReader::ParseMetadataAttachment() { 1577 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) 1578 return Error("Malformed block record"); 1579 1580 SmallVector<uint64_t, 64> Record; 1581 while(1) { 1582 unsigned Code = Stream.ReadCode(); 1583 if (Code == bitc::END_BLOCK) { 1584 if (Stream.ReadBlockEnd()) 1585 return Error("Error at end of PARAMATTR block"); 1586 break; 1587 } 1588 if (Code == bitc::DEFINE_ABBREV) { 1589 Stream.ReadAbbrevRecord(); 1590 continue; 1591 } 1592 // Read a metadata attachment record. 1593 Record.clear(); 1594 switch (Stream.ReadRecord(Code, Record)) { 1595 default: // Default behavior: ignore. 1596 break; 1597 case bitc::METADATA_ATTACHMENT: { 1598 unsigned RecordLength = Record.size(); 1599 if (Record.empty() || (RecordLength - 1) % 2 == 1) 1600 return Error ("Invalid METADATA_ATTACHMENT reader!"); 1601 Instruction *Inst = InstructionList[Record[0]]; 1602 for (unsigned i = 1; i != RecordLength; i = i+2) { 1603 unsigned Kind = Record[i]; 1604 DenseMap<unsigned, unsigned>::iterator I = 1605 MDKindMap.find(Kind); 1606 if (I == MDKindMap.end()) 1607 return Error("Invalid metadata kind ID"); 1608 Value *Node = MDValueList.getValueFwdRef(Record[i+1]); 1609 Inst->setMetadata(I->second, cast<MDNode>(Node)); 1610 } 1611 break; 1612 } 1613 } 1614 } 1615 return false; 1616 } 1617 1618 /// ParseFunctionBody - Lazily parse the specified function body block. 1619 bool BitcodeReader::ParseFunctionBody(Function *F) { 1620 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 1621 return Error("Malformed block record"); 1622 1623 InstructionList.clear(); 1624 unsigned ModuleValueListSize = ValueList.size(); 1625 unsigned ModuleMDValueListSize = MDValueList.size(); 1626 1627 // Add all the function arguments to the value table. 1628 for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) 1629 ValueList.push_back(I); 1630 1631 unsigned NextValueNo = ValueList.size(); 1632 BasicBlock *CurBB = 0; 1633 unsigned CurBBNo = 0; 1634 1635 DebugLoc LastLoc; 1636 1637 // Read all the records. 1638 SmallVector<uint64_t, 64> Record; 1639 while (1) { 1640 unsigned Code = Stream.ReadCode(); 1641 if (Code == bitc::END_BLOCK) { 1642 if (Stream.ReadBlockEnd()) 1643 return Error("Error at end of function block"); 1644 break; 1645 } 1646 1647 if (Code == bitc::ENTER_SUBBLOCK) { 1648 switch (Stream.ReadSubBlockID()) { 1649 default: // Skip unknown content. 1650 if (Stream.SkipBlock()) 1651 return Error("Malformed block record"); 1652 break; 1653 case bitc::CONSTANTS_BLOCK_ID: 1654 if (ParseConstants()) return true; 1655 NextValueNo = ValueList.size(); 1656 break; 1657 case bitc::VALUE_SYMTAB_BLOCK_ID: 1658 if (ParseValueSymbolTable()) return true; 1659 break; 1660 case bitc::METADATA_ATTACHMENT_ID: 1661 if (ParseMetadataAttachment()) return true; 1662 break; 1663 case bitc::METADATA_BLOCK_ID: 1664 if (ParseMetadata()) return true; 1665 break; 1666 } 1667 continue; 1668 } 1669 1670 if (Code == bitc::DEFINE_ABBREV) { 1671 Stream.ReadAbbrevRecord(); 1672 continue; 1673 } 1674 1675 // Read a record. 1676 Record.clear(); 1677 Instruction *I = 0; 1678 unsigned BitCode = Stream.ReadRecord(Code, Record); 1679 switch (BitCode) { 1680 default: // Default behavior: reject 1681 return Error("Unknown instruction"); 1682 case bitc::FUNC_CODE_DECLAREBLOCKS: // DECLAREBLOCKS: [nblocks] 1683 if (Record.size() < 1 || Record[0] == 0) 1684 return Error("Invalid DECLAREBLOCKS record"); 1685 // Create all the basic blocks for the function. 1686 FunctionBBs.resize(Record[0]); 1687 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 1688 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 1689 CurBB = FunctionBBs[0]; 1690 continue; 1691 1692 1693 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 1694 // This record indicates that the last instruction is at the same 1695 // location as the previous instruction with a location. 1696 I = 0; 1697 1698 // Get the last instruction emitted. 1699 if (CurBB && !CurBB->empty()) 1700 I = &CurBB->back(); 1701 else if (CurBBNo && FunctionBBs[CurBBNo-1] && 1702 !FunctionBBs[CurBBNo-1]->empty()) 1703 I = &FunctionBBs[CurBBNo-1]->back(); 1704 1705 if (I == 0) return Error("Invalid DEBUG_LOC_AGAIN record"); 1706 I->setDebugLoc(LastLoc); 1707 I = 0; 1708 continue; 1709 1710 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 1711 I = 0; // Get the last instruction emitted. 1712 if (CurBB && !CurBB->empty()) 1713 I = &CurBB->back(); 1714 else if (CurBBNo && FunctionBBs[CurBBNo-1] && 1715 !FunctionBBs[CurBBNo-1]->empty()) 1716 I = &FunctionBBs[CurBBNo-1]->back(); 1717 if (I == 0 || Record.size() < 4) 1718 return Error("Invalid FUNC_CODE_DEBUG_LOC record"); 1719 1720 unsigned Line = Record[0], Col = Record[1]; 1721 unsigned ScopeID = Record[2], IAID = Record[3]; 1722 1723 MDNode *Scope = 0, *IA = 0; 1724 if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1)); 1725 if (IAID) IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1)); 1726 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 1727 I->setDebugLoc(LastLoc); 1728 I = 0; 1729 continue; 1730 } 1731 1732 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 1733 unsigned OpNum = 0; 1734 Value *LHS, *RHS; 1735 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 1736 getValue(Record, OpNum, LHS->getType(), RHS) || 1737 OpNum+1 > Record.size()) 1738 return Error("Invalid BINOP record"); 1739 1740 int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 1741 if (Opc == -1) return Error("Invalid BINOP record"); 1742 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 1743 InstructionList.push_back(I); 1744 if (OpNum < Record.size()) { 1745 if (Opc == Instruction::Add || 1746 Opc == Instruction::Sub || 1747 Opc == Instruction::Mul) { 1748 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 1749 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 1750 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 1751 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 1752 } else if (Opc == Instruction::SDiv) { 1753 if (Record[OpNum] & (1 << bitc::SDIV_EXACT)) 1754 cast<BinaryOperator>(I)->setIsExact(true); 1755 } 1756 } 1757 break; 1758 } 1759 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 1760 unsigned OpNum = 0; 1761 Value *Op; 1762 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 1763 OpNum+2 != Record.size()) 1764 return Error("Invalid CAST record"); 1765 1766 const Type *ResTy = getTypeByID(Record[OpNum]); 1767 int Opc = GetDecodedCastOpcode(Record[OpNum+1]); 1768 if (Opc == -1 || ResTy == 0) 1769 return Error("Invalid CAST record"); 1770 I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy); 1771 InstructionList.push_back(I); 1772 break; 1773 } 1774 case bitc::FUNC_CODE_INST_INBOUNDS_GEP: 1775 case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands] 1776 unsigned OpNum = 0; 1777 Value *BasePtr; 1778 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 1779 return Error("Invalid GEP record"); 1780 1781 SmallVector<Value*, 16> GEPIdx; 1782 while (OpNum != Record.size()) { 1783 Value *Op; 1784 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 1785 return Error("Invalid GEP record"); 1786 GEPIdx.push_back(Op); 1787 } 1788 1789 I = GetElementPtrInst::Create(BasePtr, GEPIdx.begin(), GEPIdx.end()); 1790 InstructionList.push_back(I); 1791 if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP) 1792 cast<GetElementPtrInst>(I)->setIsInBounds(true); 1793 break; 1794 } 1795 1796 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 1797 // EXTRACTVAL: [opty, opval, n x indices] 1798 unsigned OpNum = 0; 1799 Value *Agg; 1800 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 1801 return Error("Invalid EXTRACTVAL record"); 1802 1803 SmallVector<unsigned, 4> EXTRACTVALIdx; 1804 for (unsigned RecSize = Record.size(); 1805 OpNum != RecSize; ++OpNum) { 1806 uint64_t Index = Record[OpNum]; 1807 if ((unsigned)Index != Index) 1808 return Error("Invalid EXTRACTVAL index"); 1809 EXTRACTVALIdx.push_back((unsigned)Index); 1810 } 1811 1812 I = ExtractValueInst::Create(Agg, 1813 EXTRACTVALIdx.begin(), EXTRACTVALIdx.end()); 1814 InstructionList.push_back(I); 1815 break; 1816 } 1817 1818 case bitc::FUNC_CODE_INST_INSERTVAL: { 1819 // INSERTVAL: [opty, opval, opty, opval, n x indices] 1820 unsigned OpNum = 0; 1821 Value *Agg; 1822 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 1823 return Error("Invalid INSERTVAL record"); 1824 Value *Val; 1825 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 1826 return Error("Invalid INSERTVAL record"); 1827 1828 SmallVector<unsigned, 4> INSERTVALIdx; 1829 for (unsigned RecSize = Record.size(); 1830 OpNum != RecSize; ++OpNum) { 1831 uint64_t Index = Record[OpNum]; 1832 if ((unsigned)Index != Index) 1833 return Error("Invalid INSERTVAL index"); 1834 INSERTVALIdx.push_back((unsigned)Index); 1835 } 1836 1837 I = InsertValueInst::Create(Agg, Val, 1838 INSERTVALIdx.begin(), INSERTVALIdx.end()); 1839 InstructionList.push_back(I); 1840 break; 1841 } 1842 1843 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 1844 // obsolete form of select 1845 // handles select i1 ... in old bitcode 1846 unsigned OpNum = 0; 1847 Value *TrueVal, *FalseVal, *Cond; 1848 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 1849 getValue(Record, OpNum, TrueVal->getType(), FalseVal) || 1850 getValue(Record, OpNum, Type::getInt1Ty(Context), Cond)) 1851 return Error("Invalid SELECT record"); 1852 1853 I = SelectInst::Create(Cond, TrueVal, FalseVal); 1854 InstructionList.push_back(I); 1855 break; 1856 } 1857 1858 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 1859 // new form of select 1860 // handles select i1 or select [N x i1] 1861 unsigned OpNum = 0; 1862 Value *TrueVal, *FalseVal, *Cond; 1863 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 1864 getValue(Record, OpNum, TrueVal->getType(), FalseVal) || 1865 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 1866 return Error("Invalid SELECT record"); 1867 1868 // select condition can be either i1 or [N x i1] 1869 if (const VectorType* vector_type = 1870 dyn_cast<const VectorType>(Cond->getType())) { 1871 // expect <n x i1> 1872 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 1873 return Error("Invalid SELECT condition type"); 1874 } else { 1875 // expect i1 1876 if (Cond->getType() != Type::getInt1Ty(Context)) 1877 return Error("Invalid SELECT condition type"); 1878 } 1879 1880 I = SelectInst::Create(Cond, TrueVal, FalseVal); 1881 InstructionList.push_back(I); 1882 break; 1883 } 1884 1885 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 1886 unsigned OpNum = 0; 1887 Value *Vec, *Idx; 1888 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 1889 getValue(Record, OpNum, Type::getInt32Ty(Context), Idx)) 1890 return Error("Invalid EXTRACTELT record"); 1891 I = ExtractElementInst::Create(Vec, Idx); 1892 InstructionList.push_back(I); 1893 break; 1894 } 1895 1896 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 1897 unsigned OpNum = 0; 1898 Value *Vec, *Elt, *Idx; 1899 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 1900 getValue(Record, OpNum, 1901 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 1902 getValue(Record, OpNum, Type::getInt32Ty(Context), Idx)) 1903 return Error("Invalid INSERTELT record"); 1904 I = InsertElementInst::Create(Vec, Elt, Idx); 1905 InstructionList.push_back(I); 1906 break; 1907 } 1908 1909 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 1910 unsigned OpNum = 0; 1911 Value *Vec1, *Vec2, *Mask; 1912 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 1913 getValue(Record, OpNum, Vec1->getType(), Vec2)) 1914 return Error("Invalid SHUFFLEVEC record"); 1915 1916 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 1917 return Error("Invalid SHUFFLEVEC record"); 1918 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 1919 InstructionList.push_back(I); 1920 break; 1921 } 1922 1923 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 1924 // Old form of ICmp/FCmp returning bool 1925 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 1926 // both legal on vectors but had different behaviour. 1927 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 1928 // FCmp/ICmp returning bool or vector of bool 1929 1930 unsigned OpNum = 0; 1931 Value *LHS, *RHS; 1932 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 1933 getValue(Record, OpNum, LHS->getType(), RHS) || 1934 OpNum+1 != Record.size()) 1935 return Error("Invalid CMP record"); 1936 1937 if (LHS->getType()->isFPOrFPVectorTy()) 1938 I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS); 1939 else 1940 I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS); 1941 InstructionList.push_back(I); 1942 break; 1943 } 1944 1945 case bitc::FUNC_CODE_INST_GETRESULT: { // GETRESULT: [ty, val, n] 1946 if (Record.size() != 2) 1947 return Error("Invalid GETRESULT record"); 1948 unsigned OpNum = 0; 1949 Value *Op; 1950 getValueTypePair(Record, OpNum, NextValueNo, Op); 1951 unsigned Index = Record[1]; 1952 I = ExtractValueInst::Create(Op, Index); 1953 InstructionList.push_back(I); 1954 break; 1955 } 1956 1957 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 1958 { 1959 unsigned Size = Record.size(); 1960 if (Size == 0) { 1961 I = ReturnInst::Create(Context); 1962 InstructionList.push_back(I); 1963 break; 1964 } 1965 1966 unsigned OpNum = 0; 1967 SmallVector<Value *,4> Vs; 1968 do { 1969 Value *Op = NULL; 1970 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 1971 return Error("Invalid RET record"); 1972 Vs.push_back(Op); 1973 } while(OpNum != Record.size()); 1974 1975 const Type *ReturnType = F->getReturnType(); 1976 // Handle multiple return values. FIXME: Remove in LLVM 3.0. 1977 if (Vs.size() > 1 || 1978 (ReturnType->isStructTy() && 1979 (Vs.empty() || Vs[0]->getType() != ReturnType))) { 1980 Value *RV = UndefValue::get(ReturnType); 1981 for (unsigned i = 0, e = Vs.size(); i != e; ++i) { 1982 I = InsertValueInst::Create(RV, Vs[i], i, "mrv"); 1983 InstructionList.push_back(I); 1984 CurBB->getInstList().push_back(I); 1985 ValueList.AssignValue(I, NextValueNo++); 1986 RV = I; 1987 } 1988 I = ReturnInst::Create(Context, RV); 1989 InstructionList.push_back(I); 1990 break; 1991 } 1992 1993 I = ReturnInst::Create(Context, Vs[0]); 1994 InstructionList.push_back(I); 1995 break; 1996 } 1997 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 1998 if (Record.size() != 1 && Record.size() != 3) 1999 return Error("Invalid BR record"); 2000 BasicBlock *TrueDest = getBasicBlock(Record[0]); 2001 if (TrueDest == 0) 2002 return Error("Invalid BR record"); 2003 2004 if (Record.size() == 1) { 2005 I = BranchInst::Create(TrueDest); 2006 InstructionList.push_back(I); 2007 } 2008 else { 2009 BasicBlock *FalseDest = getBasicBlock(Record[1]); 2010 Value *Cond = getFnValueByID(Record[2], Type::getInt1Ty(Context)); 2011 if (FalseDest == 0 || Cond == 0) 2012 return Error("Invalid BR record"); 2013 I = BranchInst::Create(TrueDest, FalseDest, Cond); 2014 InstructionList.push_back(I); 2015 } 2016 break; 2017 } 2018 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 2019 if (Record.size() < 3 || (Record.size() & 1) == 0) 2020 return Error("Invalid SWITCH record"); 2021 const Type *OpTy = getTypeByID(Record[0]); 2022 Value *Cond = getFnValueByID(Record[1], OpTy); 2023 BasicBlock *Default = getBasicBlock(Record[2]); 2024 if (OpTy == 0 || Cond == 0 || Default == 0) 2025 return Error("Invalid SWITCH record"); 2026 unsigned NumCases = (Record.size()-3)/2; 2027 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 2028 InstructionList.push_back(SI); 2029 for (unsigned i = 0, e = NumCases; i != e; ++i) { 2030 ConstantInt *CaseVal = 2031 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 2032 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 2033 if (CaseVal == 0 || DestBB == 0) { 2034 delete SI; 2035 return Error("Invalid SWITCH record!"); 2036 } 2037 SI->addCase(CaseVal, DestBB); 2038 } 2039 I = SI; 2040 break; 2041 } 2042 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 2043 if (Record.size() < 2) 2044 return Error("Invalid INDIRECTBR record"); 2045 const Type *OpTy = getTypeByID(Record[0]); 2046 Value *Address = getFnValueByID(Record[1], OpTy); 2047 if (OpTy == 0 || Address == 0) 2048 return Error("Invalid INDIRECTBR record"); 2049 unsigned NumDests = Record.size()-2; 2050 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 2051 InstructionList.push_back(IBI); 2052 for (unsigned i = 0, e = NumDests; i != e; ++i) { 2053 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 2054 IBI->addDestination(DestBB); 2055 } else { 2056 delete IBI; 2057 return Error("Invalid INDIRECTBR record!"); 2058 } 2059 } 2060 I = IBI; 2061 break; 2062 } 2063 2064 case bitc::FUNC_CODE_INST_INVOKE: { 2065 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 2066 if (Record.size() < 4) return Error("Invalid INVOKE record"); 2067 AttrListPtr PAL = getAttributes(Record[0]); 2068 unsigned CCInfo = Record[1]; 2069 BasicBlock *NormalBB = getBasicBlock(Record[2]); 2070 BasicBlock *UnwindBB = getBasicBlock(Record[3]); 2071 2072 unsigned OpNum = 4; 2073 Value *Callee; 2074 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 2075 return Error("Invalid INVOKE record"); 2076 2077 const PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 2078 const FunctionType *FTy = !CalleeTy ? 0 : 2079 dyn_cast<FunctionType>(CalleeTy->getElementType()); 2080 2081 // Check that the right number of fixed parameters are here. 2082 if (FTy == 0 || NormalBB == 0 || UnwindBB == 0 || 2083 Record.size() < OpNum+FTy->getNumParams()) 2084 return Error("Invalid INVOKE record"); 2085 2086 SmallVector<Value*, 16> Ops; 2087 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 2088 Ops.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i))); 2089 if (Ops.back() == 0) return Error("Invalid INVOKE record"); 2090 } 2091 2092 if (!FTy->isVarArg()) { 2093 if (Record.size() != OpNum) 2094 return Error("Invalid INVOKE record"); 2095 } else { 2096 // Read type/value pairs for varargs params. 2097 while (OpNum != Record.size()) { 2098 Value *Op; 2099 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 2100 return Error("Invalid INVOKE record"); 2101 Ops.push_back(Op); 2102 } 2103 } 2104 2105 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, 2106 Ops.begin(), Ops.end()); 2107 InstructionList.push_back(I); 2108 cast<InvokeInst>(I)->setCallingConv( 2109 static_cast<CallingConv::ID>(CCInfo)); 2110 cast<InvokeInst>(I)->setAttributes(PAL); 2111 break; 2112 } 2113 case bitc::FUNC_CODE_INST_UNWIND: // UNWIND 2114 I = new UnwindInst(Context); 2115 InstructionList.push_back(I); 2116 break; 2117 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 2118 I = new UnreachableInst(Context); 2119 InstructionList.push_back(I); 2120 break; 2121 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 2122 if (Record.size() < 1 || ((Record.size()-1)&1)) 2123 return Error("Invalid PHI record"); 2124 const Type *Ty = getTypeByID(Record[0]); 2125 if (!Ty) return Error("Invalid PHI record"); 2126 2127 PHINode *PN = PHINode::Create(Ty); 2128 InstructionList.push_back(PN); 2129 PN->reserveOperandSpace((Record.size()-1)/2); 2130 2131 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 2132 Value *V = getFnValueByID(Record[1+i], Ty); 2133 BasicBlock *BB = getBasicBlock(Record[2+i]); 2134 if (!V || !BB) return Error("Invalid PHI record"); 2135 PN->addIncoming(V, BB); 2136 } 2137 I = PN; 2138 break; 2139 } 2140 2141 case bitc::FUNC_CODE_INST_MALLOC: { // MALLOC: [instty, op, align] 2142 // Autoupgrade malloc instruction to malloc call. 2143 // FIXME: Remove in LLVM 3.0. 2144 if (Record.size() < 3) 2145 return Error("Invalid MALLOC record"); 2146 const PointerType *Ty = 2147 dyn_cast_or_null<PointerType>(getTypeByID(Record[0])); 2148 Value *Size = getFnValueByID(Record[1], Type::getInt32Ty(Context)); 2149 if (!Ty || !Size) return Error("Invalid MALLOC record"); 2150 if (!CurBB) return Error("Invalid malloc instruction with no BB"); 2151 const Type *Int32Ty = IntegerType::getInt32Ty(CurBB->getContext()); 2152 Constant *AllocSize = ConstantExpr::getSizeOf(Ty->getElementType()); 2153 AllocSize = ConstantExpr::getTruncOrBitCast(AllocSize, Int32Ty); 2154 I = CallInst::CreateMalloc(CurBB, Int32Ty, Ty->getElementType(), 2155 AllocSize, Size, NULL); 2156 InstructionList.push_back(I); 2157 break; 2158 } 2159 case bitc::FUNC_CODE_INST_FREE: { // FREE: [op, opty] 2160 unsigned OpNum = 0; 2161 Value *Op; 2162 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 2163 OpNum != Record.size()) 2164 return Error("Invalid FREE record"); 2165 if (!CurBB) return Error("Invalid free instruction with no BB"); 2166 I = CallInst::CreateFree(Op, CurBB); 2167 InstructionList.push_back(I); 2168 break; 2169 } 2170 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 2171 // For backward compatibility, tolerate a lack of an opty, and use i32. 2172 // LLVM 3.0: Remove this. 2173 if (Record.size() < 3 || Record.size() > 4) 2174 return Error("Invalid ALLOCA record"); 2175 unsigned OpNum = 0; 2176 const PointerType *Ty = 2177 dyn_cast_or_null<PointerType>(getTypeByID(Record[OpNum++])); 2178 const Type *OpTy = Record.size() == 4 ? getTypeByID(Record[OpNum++]) : 2179 Type::getInt32Ty(Context); 2180 Value *Size = getFnValueByID(Record[OpNum++], OpTy); 2181 unsigned Align = Record[OpNum++]; 2182 if (!Ty || !Size) return Error("Invalid ALLOCA record"); 2183 I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1); 2184 InstructionList.push_back(I); 2185 break; 2186 } 2187 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 2188 unsigned OpNum = 0; 2189 Value *Op; 2190 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 2191 OpNum+2 != Record.size()) 2192 return Error("Invalid LOAD record"); 2193 2194 I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1); 2195 InstructionList.push_back(I); 2196 break; 2197 } 2198 case bitc::FUNC_CODE_INST_STORE2: { // STORE2:[ptrty, ptr, val, align, vol] 2199 unsigned OpNum = 0; 2200 Value *Val, *Ptr; 2201 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 2202 getValue(Record, OpNum, 2203 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 2204 OpNum+2 != Record.size()) 2205 return Error("Invalid STORE record"); 2206 2207 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1); 2208 InstructionList.push_back(I); 2209 break; 2210 } 2211 case bitc::FUNC_CODE_INST_STORE: { // STORE:[val, valty, ptr, align, vol] 2212 // FIXME: Legacy form of store instruction. Should be removed in LLVM 3.0. 2213 unsigned OpNum = 0; 2214 Value *Val, *Ptr; 2215 if (getValueTypePair(Record, OpNum, NextValueNo, Val) || 2216 getValue(Record, OpNum, 2217 PointerType::getUnqual(Val->getType()), Ptr)|| 2218 OpNum+2 != Record.size()) 2219 return Error("Invalid STORE record"); 2220 2221 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1); 2222 InstructionList.push_back(I); 2223 break; 2224 } 2225 case bitc::FUNC_CODE_INST_CALL: { 2226 // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...] 2227 if (Record.size() < 3) 2228 return Error("Invalid CALL record"); 2229 2230 AttrListPtr PAL = getAttributes(Record[0]); 2231 unsigned CCInfo = Record[1]; 2232 2233 unsigned OpNum = 2; 2234 Value *Callee; 2235 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 2236 return Error("Invalid CALL record"); 2237 2238 const PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 2239 const FunctionType *FTy = 0; 2240 if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 2241 if (!FTy || Record.size() < FTy->getNumParams()+OpNum) 2242 return Error("Invalid CALL record"); 2243 2244 SmallVector<Value*, 16> Args; 2245 // Read the fixed params. 2246 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 2247 if (FTy->getParamType(i)->getTypeID()==Type::LabelTyID) 2248 Args.push_back(getBasicBlock(Record[OpNum])); 2249 else 2250 Args.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i))); 2251 if (Args.back() == 0) return Error("Invalid CALL record"); 2252 } 2253 2254 // Read type/value pairs for varargs params. 2255 if (!FTy->isVarArg()) { 2256 if (OpNum != Record.size()) 2257 return Error("Invalid CALL record"); 2258 } else { 2259 while (OpNum != Record.size()) { 2260 Value *Op; 2261 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 2262 return Error("Invalid CALL record"); 2263 Args.push_back(Op); 2264 } 2265 } 2266 2267 I = CallInst::Create(Callee, Args.begin(), Args.end()); 2268 InstructionList.push_back(I); 2269 cast<CallInst>(I)->setCallingConv( 2270 static_cast<CallingConv::ID>(CCInfo>>1)); 2271 cast<CallInst>(I)->setTailCall(CCInfo & 1); 2272 cast<CallInst>(I)->setAttributes(PAL); 2273 break; 2274 } 2275 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 2276 if (Record.size() < 3) 2277 return Error("Invalid VAARG record"); 2278 const Type *OpTy = getTypeByID(Record[0]); 2279 Value *Op = getFnValueByID(Record[1], OpTy); 2280 const Type *ResTy = getTypeByID(Record[2]); 2281 if (!OpTy || !Op || !ResTy) 2282 return Error("Invalid VAARG record"); 2283 I = new VAArgInst(Op, ResTy); 2284 InstructionList.push_back(I); 2285 break; 2286 } 2287 } 2288 2289 // Add instruction to end of current BB. If there is no current BB, reject 2290 // this file. 2291 if (CurBB == 0) { 2292 delete I; 2293 return Error("Invalid instruction with no BB"); 2294 } 2295 CurBB->getInstList().push_back(I); 2296 2297 // If this was a terminator instruction, move to the next block. 2298 if (isa<TerminatorInst>(I)) { 2299 ++CurBBNo; 2300 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : 0; 2301 } 2302 2303 // Non-void values get registered in the value table for future use. 2304 if (I && !I->getType()->isVoidTy()) 2305 ValueList.AssignValue(I, NextValueNo++); 2306 } 2307 2308 // Check the function list for unresolved values. 2309 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 2310 if (A->getParent() == 0) { 2311 // We found at least one unresolved value. Nuke them all to avoid leaks. 2312 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 2313 if ((A = dyn_cast<Argument>(ValueList[i])) && A->getParent() == 0) { 2314 A->replaceAllUsesWith(UndefValue::get(A->getType())); 2315 delete A; 2316 } 2317 } 2318 return Error("Never resolved value found in function!"); 2319 } 2320 } 2321 2322 // FIXME: Check for unresolved forward-declared metadata references 2323 // and clean up leaks. 2324 2325 // See if anything took the address of blocks in this function. If so, 2326 // resolve them now. 2327 DenseMap<Function*, std::vector<BlockAddrRefTy> >::iterator BAFRI = 2328 BlockAddrFwdRefs.find(F); 2329 if (BAFRI != BlockAddrFwdRefs.end()) { 2330 std::vector<BlockAddrRefTy> &RefList = BAFRI->second; 2331 for (unsigned i = 0, e = RefList.size(); i != e; ++i) { 2332 unsigned BlockIdx = RefList[i].first; 2333 if (BlockIdx >= FunctionBBs.size()) 2334 return Error("Invalid blockaddress block #"); 2335 2336 GlobalVariable *FwdRef = RefList[i].second; 2337 FwdRef->replaceAllUsesWith(BlockAddress::get(F, FunctionBBs[BlockIdx])); 2338 FwdRef->eraseFromParent(); 2339 } 2340 2341 BlockAddrFwdRefs.erase(BAFRI); 2342 } 2343 2344 // Trim the value list down to the size it was before we parsed this function. 2345 ValueList.shrinkTo(ModuleValueListSize); 2346 MDValueList.shrinkTo(ModuleMDValueListSize); 2347 std::vector<BasicBlock*>().swap(FunctionBBs); 2348 2349 return false; 2350 } 2351 2352 //===----------------------------------------------------------------------===// 2353 // GVMaterializer implementation 2354 //===----------------------------------------------------------------------===// 2355 2356 2357 bool BitcodeReader::isMaterializable(const GlobalValue *GV) const { 2358 if (const Function *F = dyn_cast<Function>(GV)) { 2359 return F->isDeclaration() && 2360 DeferredFunctionInfo.count(const_cast<Function*>(F)); 2361 } 2362 return false; 2363 } 2364 2365 bool BitcodeReader::Materialize(GlobalValue *GV, std::string *ErrInfo) { 2366 Function *F = dyn_cast<Function>(GV); 2367 // If it's not a function or is already material, ignore the request. 2368 if (!F || !F->isMaterializable()) return false; 2369 2370 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 2371 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 2372 2373 // Move the bit stream to the saved position of the deferred function body. 2374 Stream.JumpToBit(DFII->second); 2375 2376 if (ParseFunctionBody(F)) { 2377 if (ErrInfo) *ErrInfo = ErrorString; 2378 return true; 2379 } 2380 2381 // Upgrade any old intrinsic calls in the function. 2382 for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(), 2383 E = UpgradedIntrinsics.end(); I != E; ++I) { 2384 if (I->first != I->second) { 2385 for (Value::use_iterator UI = I->first->use_begin(), 2386 UE = I->first->use_end(); UI != UE; ) { 2387 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 2388 UpgradeIntrinsicCall(CI, I->second); 2389 } 2390 } 2391 } 2392 2393 return false; 2394 } 2395 2396 bool BitcodeReader::isDematerializable(const GlobalValue *GV) const { 2397 const Function *F = dyn_cast<Function>(GV); 2398 if (!F || F->isDeclaration()) 2399 return false; 2400 return DeferredFunctionInfo.count(const_cast<Function*>(F)); 2401 } 2402 2403 void BitcodeReader::Dematerialize(GlobalValue *GV) { 2404 Function *F = dyn_cast<Function>(GV); 2405 // If this function isn't dematerializable, this is a noop. 2406 if (!F || !isDematerializable(F)) 2407 return; 2408 2409 assert(DeferredFunctionInfo.count(F) && "No info to read function later?"); 2410 2411 // Just forget the function body, we can remat it later. 2412 F->deleteBody(); 2413 } 2414 2415 2416 bool BitcodeReader::MaterializeModule(Module *M, std::string *ErrInfo) { 2417 assert(M == TheModule && 2418 "Can only Materialize the Module this BitcodeReader is attached to."); 2419 // Iterate over the module, deserializing any functions that are still on 2420 // disk. 2421 for (Module::iterator F = TheModule->begin(), E = TheModule->end(); 2422 F != E; ++F) 2423 if (F->isMaterializable() && 2424 Materialize(F, ErrInfo)) 2425 return true; 2426 2427 // Upgrade any intrinsic calls that slipped through (should not happen!) and 2428 // delete the old functions to clean up. We can't do this unless the entire 2429 // module is materialized because there could always be another function body 2430 // with calls to the old function. 2431 for (std::vector<std::pair<Function*, Function*> >::iterator I = 2432 UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) { 2433 if (I->first != I->second) { 2434 for (Value::use_iterator UI = I->first->use_begin(), 2435 UE = I->first->use_end(); UI != UE; ) { 2436 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 2437 UpgradeIntrinsicCall(CI, I->second); 2438 } 2439 if (!I->first->use_empty()) 2440 I->first->replaceAllUsesWith(I->second); 2441 I->first->eraseFromParent(); 2442 } 2443 } 2444 std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics); 2445 2446 // Check debug info intrinsics. 2447 CheckDebugInfoIntrinsics(TheModule); 2448 2449 return false; 2450 } 2451 2452 2453 //===----------------------------------------------------------------------===// 2454 // External interface 2455 //===----------------------------------------------------------------------===// 2456 2457 /// getLazyBitcodeModule - lazy function-at-a-time loading from a file. 2458 /// 2459 Module *llvm::getLazyBitcodeModule(MemoryBuffer *Buffer, 2460 LLVMContext& Context, 2461 std::string *ErrMsg) { 2462 Module *M = new Module(Buffer->getBufferIdentifier(), Context); 2463 BitcodeReader *R = new BitcodeReader(Buffer, Context); 2464 M->setMaterializer(R); 2465 if (R->ParseBitcodeInto(M)) { 2466 if (ErrMsg) 2467 *ErrMsg = R->getErrorString(); 2468 2469 delete M; // Also deletes R. 2470 return 0; 2471 } 2472 // Have the BitcodeReader dtor delete 'Buffer'. 2473 R->setBufferOwned(true); 2474 return M; 2475 } 2476 2477 /// ParseBitcodeFile - Read the specified bitcode file, returning the module. 2478 /// If an error occurs, return null and fill in *ErrMsg if non-null. 2479 Module *llvm::ParseBitcodeFile(MemoryBuffer *Buffer, LLVMContext& Context, 2480 std::string *ErrMsg){ 2481 Module *M = getLazyBitcodeModule(Buffer, Context, ErrMsg); 2482 if (!M) return 0; 2483 2484 // Don't let the BitcodeReader dtor delete 'Buffer', regardless of whether 2485 // there was an error. 2486 static_cast<BitcodeReader*>(M->getMaterializer())->setBufferOwned(false); 2487 2488 // Read in the entire module, and destroy the BitcodeReader. 2489 if (M->MaterializeAllPermanently(ErrMsg)) { 2490 delete M; 2491 return NULL; 2492 } 2493 return M; 2494 } 2495