xref: /llvm-project/llvm/lib/Bitcode/Reader/BitcodeReader.cpp (revision 13ee795c428d73b6d15a126143800762f34db3f0)
1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This header defines the BitcodeReader class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Bitcode/ReaderWriter.h"
15 #include "BitcodeReader.h"
16 #include "llvm/Constants.h"
17 #include "llvm/DerivedTypes.h"
18 #include "llvm/InlineAsm.h"
19 #include "llvm/IntrinsicInst.h"
20 #include "llvm/Module.h"
21 #include "llvm/Operator.h"
22 #include "llvm/AutoUpgrade.h"
23 #include "llvm/ADT/SmallString.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/Support/MathExtras.h"
26 #include "llvm/Support/MemoryBuffer.h"
27 #include "llvm/OperandTraits.h"
28 using namespace llvm;
29 
30 void BitcodeReader::FreeState() {
31   if (BufferOwned)
32     delete Buffer;
33   Buffer = 0;
34   std::vector<PATypeHolder>().swap(TypeList);
35   ValueList.clear();
36   MDValueList.clear();
37 
38   std::vector<AttrListPtr>().swap(MAttributes);
39   std::vector<BasicBlock*>().swap(FunctionBBs);
40   std::vector<Function*>().swap(FunctionsWithBodies);
41   DeferredFunctionInfo.clear();
42   MDKindMap.clear();
43 }
44 
45 //===----------------------------------------------------------------------===//
46 //  Helper functions to implement forward reference resolution, etc.
47 //===----------------------------------------------------------------------===//
48 
49 /// ConvertToString - Convert a string from a record into an std::string, return
50 /// true on failure.
51 template<typename StrTy>
52 static bool ConvertToString(SmallVector<uint64_t, 64> &Record, unsigned Idx,
53                             StrTy &Result) {
54   if (Idx > Record.size())
55     return true;
56 
57   for (unsigned i = Idx, e = Record.size(); i != e; ++i)
58     Result += (char)Record[i];
59   return false;
60 }
61 
62 static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) {
63   switch (Val) {
64   default: // Map unknown/new linkages to external
65   case 0:  return GlobalValue::ExternalLinkage;
66   case 1:  return GlobalValue::WeakAnyLinkage;
67   case 2:  return GlobalValue::AppendingLinkage;
68   case 3:  return GlobalValue::InternalLinkage;
69   case 4:  return GlobalValue::LinkOnceAnyLinkage;
70   case 5:  return GlobalValue::DLLImportLinkage;
71   case 6:  return GlobalValue::DLLExportLinkage;
72   case 7:  return GlobalValue::ExternalWeakLinkage;
73   case 8:  return GlobalValue::CommonLinkage;
74   case 9:  return GlobalValue::PrivateLinkage;
75   case 10: return GlobalValue::WeakODRLinkage;
76   case 11: return GlobalValue::LinkOnceODRLinkage;
77   case 12: return GlobalValue::AvailableExternallyLinkage;
78   case 13: return GlobalValue::LinkerPrivateLinkage;
79   case 14: return GlobalValue::LinkerPrivateWeakLinkage;
80   case 15: return GlobalValue::LinkerPrivateWeakDefAutoLinkage;
81   }
82 }
83 
84 static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) {
85   switch (Val) {
86   default: // Map unknown visibilities to default.
87   case 0: return GlobalValue::DefaultVisibility;
88   case 1: return GlobalValue::HiddenVisibility;
89   case 2: return GlobalValue::ProtectedVisibility;
90   }
91 }
92 
93 static int GetDecodedCastOpcode(unsigned Val) {
94   switch (Val) {
95   default: return -1;
96   case bitc::CAST_TRUNC   : return Instruction::Trunc;
97   case bitc::CAST_ZEXT    : return Instruction::ZExt;
98   case bitc::CAST_SEXT    : return Instruction::SExt;
99   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
100   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
101   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
102   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
103   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
104   case bitc::CAST_FPEXT   : return Instruction::FPExt;
105   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
106   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
107   case bitc::CAST_BITCAST : return Instruction::BitCast;
108   }
109 }
110 static int GetDecodedBinaryOpcode(unsigned Val, const Type *Ty) {
111   switch (Val) {
112   default: return -1;
113   case bitc::BINOP_ADD:
114     return Ty->isFPOrFPVectorTy() ? Instruction::FAdd : Instruction::Add;
115   case bitc::BINOP_SUB:
116     return Ty->isFPOrFPVectorTy() ? Instruction::FSub : Instruction::Sub;
117   case bitc::BINOP_MUL:
118     return Ty->isFPOrFPVectorTy() ? Instruction::FMul : Instruction::Mul;
119   case bitc::BINOP_UDIV: return Instruction::UDiv;
120   case bitc::BINOP_SDIV:
121     return Ty->isFPOrFPVectorTy() ? Instruction::FDiv : Instruction::SDiv;
122   case bitc::BINOP_UREM: return Instruction::URem;
123   case bitc::BINOP_SREM:
124     return Ty->isFPOrFPVectorTy() ? Instruction::FRem : Instruction::SRem;
125   case bitc::BINOP_SHL:  return Instruction::Shl;
126   case bitc::BINOP_LSHR: return Instruction::LShr;
127   case bitc::BINOP_ASHR: return Instruction::AShr;
128   case bitc::BINOP_AND:  return Instruction::And;
129   case bitc::BINOP_OR:   return Instruction::Or;
130   case bitc::BINOP_XOR:  return Instruction::Xor;
131   }
132 }
133 
134 namespace llvm {
135 namespace {
136   /// @brief A class for maintaining the slot number definition
137   /// as a placeholder for the actual definition for forward constants defs.
138   class ConstantPlaceHolder : public ConstantExpr {
139     ConstantPlaceHolder();                       // DO NOT IMPLEMENT
140     void operator=(const ConstantPlaceHolder &); // DO NOT IMPLEMENT
141   public:
142     // allocate space for exactly one operand
143     void *operator new(size_t s) {
144       return User::operator new(s, 1);
145     }
146     explicit ConstantPlaceHolder(const Type *Ty, LLVMContext& Context)
147       : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) {
148       Op<0>() = UndefValue::get(Type::getInt32Ty(Context));
149     }
150 
151     /// @brief Methods to support type inquiry through isa, cast, and dyn_cast.
152     static inline bool classof(const ConstantPlaceHolder *) { return true; }
153     static bool classof(const Value *V) {
154       return isa<ConstantExpr>(V) &&
155              cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1;
156     }
157 
158 
159     /// Provide fast operand accessors
160     //DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
161   };
162 }
163 
164 // FIXME: can we inherit this from ConstantExpr?
165 template <>
166 struct OperandTraits<ConstantPlaceHolder> : public FixedNumOperandTraits<1> {
167 };
168 }
169 
170 
171 void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) {
172   if (Idx == size()) {
173     push_back(V);
174     return;
175   }
176 
177   if (Idx >= size())
178     resize(Idx+1);
179 
180   WeakVH &OldV = ValuePtrs[Idx];
181   if (OldV == 0) {
182     OldV = V;
183     return;
184   }
185 
186   // Handle constants and non-constants (e.g. instrs) differently for
187   // efficiency.
188   if (Constant *PHC = dyn_cast<Constant>(&*OldV)) {
189     ResolveConstants.push_back(std::make_pair(PHC, Idx));
190     OldV = V;
191   } else {
192     // If there was a forward reference to this value, replace it.
193     Value *PrevVal = OldV;
194     OldV->replaceAllUsesWith(V);
195     delete PrevVal;
196   }
197 }
198 
199 
200 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
201                                                     const Type *Ty) {
202   if (Idx >= size())
203     resize(Idx + 1);
204 
205   if (Value *V = ValuePtrs[Idx]) {
206     assert(Ty == V->getType() && "Type mismatch in constant table!");
207     return cast<Constant>(V);
208   }
209 
210   // Create and return a placeholder, which will later be RAUW'd.
211   Constant *C = new ConstantPlaceHolder(Ty, Context);
212   ValuePtrs[Idx] = C;
213   return C;
214 }
215 
216 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, const Type *Ty) {
217   if (Idx >= size())
218     resize(Idx + 1);
219 
220   if (Value *V = ValuePtrs[Idx]) {
221     assert((Ty == 0 || Ty == V->getType()) && "Type mismatch in value table!");
222     return V;
223   }
224 
225   // No type specified, must be invalid reference.
226   if (Ty == 0) return 0;
227 
228   // Create and return a placeholder, which will later be RAUW'd.
229   Value *V = new Argument(Ty);
230   ValuePtrs[Idx] = V;
231   return V;
232 }
233 
234 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk
235 /// resolves any forward references.  The idea behind this is that we sometimes
236 /// get constants (such as large arrays) which reference *many* forward ref
237 /// constants.  Replacing each of these causes a lot of thrashing when
238 /// building/reuniquing the constant.  Instead of doing this, we look at all the
239 /// uses and rewrite all the place holders at once for any constant that uses
240 /// a placeholder.
241 void BitcodeReaderValueList::ResolveConstantForwardRefs() {
242   // Sort the values by-pointer so that they are efficient to look up with a
243   // binary search.
244   std::sort(ResolveConstants.begin(), ResolveConstants.end());
245 
246   SmallVector<Constant*, 64> NewOps;
247 
248   while (!ResolveConstants.empty()) {
249     Value *RealVal = operator[](ResolveConstants.back().second);
250     Constant *Placeholder = ResolveConstants.back().first;
251     ResolveConstants.pop_back();
252 
253     // Loop over all users of the placeholder, updating them to reference the
254     // new value.  If they reference more than one placeholder, update them all
255     // at once.
256     while (!Placeholder->use_empty()) {
257       Value::use_iterator UI = Placeholder->use_begin();
258       User *U = *UI;
259 
260       // If the using object isn't uniqued, just update the operands.  This
261       // handles instructions and initializers for global variables.
262       if (!isa<Constant>(U) || isa<GlobalValue>(U)) {
263         UI.getUse().set(RealVal);
264         continue;
265       }
266 
267       // Otherwise, we have a constant that uses the placeholder.  Replace that
268       // constant with a new constant that has *all* placeholder uses updated.
269       Constant *UserC = cast<Constant>(U);
270       for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end();
271            I != E; ++I) {
272         Value *NewOp;
273         if (!isa<ConstantPlaceHolder>(*I)) {
274           // Not a placeholder reference.
275           NewOp = *I;
276         } else if (*I == Placeholder) {
277           // Common case is that it just references this one placeholder.
278           NewOp = RealVal;
279         } else {
280           // Otherwise, look up the placeholder in ResolveConstants.
281           ResolveConstantsTy::iterator It =
282             std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(),
283                              std::pair<Constant*, unsigned>(cast<Constant>(*I),
284                                                             0));
285           assert(It != ResolveConstants.end() && It->first == *I);
286           NewOp = operator[](It->second);
287         }
288 
289         NewOps.push_back(cast<Constant>(NewOp));
290       }
291 
292       // Make the new constant.
293       Constant *NewC;
294       if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) {
295         NewC = ConstantArray::get(UserCA->getType(), &NewOps[0],
296                                         NewOps.size());
297       } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) {
298         NewC = ConstantStruct::get(Context, &NewOps[0], NewOps.size(),
299                                          UserCS->getType()->isPacked());
300       } else if (isa<ConstantVector>(UserC)) {
301         NewC = ConstantVector::get(&NewOps[0], NewOps.size());
302       } else {
303         assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr.");
304         NewC = cast<ConstantExpr>(UserC)->getWithOperands(&NewOps[0],
305                                                           NewOps.size());
306       }
307 
308       UserC->replaceAllUsesWith(NewC);
309       UserC->destroyConstant();
310       NewOps.clear();
311     }
312 
313     // Update all ValueHandles, they should be the only users at this point.
314     Placeholder->replaceAllUsesWith(RealVal);
315     delete Placeholder;
316   }
317 }
318 
319 void BitcodeReaderMDValueList::AssignValue(Value *V, unsigned Idx) {
320   if (Idx == size()) {
321     push_back(V);
322     return;
323   }
324 
325   if (Idx >= size())
326     resize(Idx+1);
327 
328   WeakVH &OldV = MDValuePtrs[Idx];
329   if (OldV == 0) {
330     OldV = V;
331     return;
332   }
333 
334   // If there was a forward reference to this value, replace it.
335   MDNode *PrevVal = cast<MDNode>(OldV);
336   OldV->replaceAllUsesWith(V);
337   MDNode::deleteTemporary(PrevVal);
338   // Deleting PrevVal sets Idx value in MDValuePtrs to null. Set new
339   // value for Idx.
340   MDValuePtrs[Idx] = V;
341 }
342 
343 Value *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) {
344   if (Idx >= size())
345     resize(Idx + 1);
346 
347   if (Value *V = MDValuePtrs[Idx]) {
348     assert(V->getType()->isMetadataTy() && "Type mismatch in value table!");
349     return V;
350   }
351 
352   // Create and return a placeholder, which will later be RAUW'd.
353   Value *V = MDNode::getTemporary(Context, 0, 0);
354   MDValuePtrs[Idx] = V;
355   return V;
356 }
357 
358 const Type *BitcodeReader::getTypeByID(unsigned ID, bool isTypeTable) {
359   // If the TypeID is in range, return it.
360   if (ID < TypeList.size())
361     return TypeList[ID].get();
362   if (!isTypeTable) return 0;
363 
364   // The type table allows forward references.  Push as many Opaque types as
365   // needed to get up to ID.
366   while (TypeList.size() <= ID)
367     TypeList.push_back(OpaqueType::get(Context));
368   return TypeList.back().get();
369 }
370 
371 //===----------------------------------------------------------------------===//
372 //  Functions for parsing blocks from the bitcode file
373 //===----------------------------------------------------------------------===//
374 
375 bool BitcodeReader::ParseAttributeBlock() {
376   if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
377     return Error("Malformed block record");
378 
379   if (!MAttributes.empty())
380     return Error("Multiple PARAMATTR blocks found!");
381 
382   SmallVector<uint64_t, 64> Record;
383 
384   SmallVector<AttributeWithIndex, 8> Attrs;
385 
386   // Read all the records.
387   while (1) {
388     unsigned Code = Stream.ReadCode();
389     if (Code == bitc::END_BLOCK) {
390       if (Stream.ReadBlockEnd())
391         return Error("Error at end of PARAMATTR block");
392       return false;
393     }
394 
395     if (Code == bitc::ENTER_SUBBLOCK) {
396       // No known subblocks, always skip them.
397       Stream.ReadSubBlockID();
398       if (Stream.SkipBlock())
399         return Error("Malformed block record");
400       continue;
401     }
402 
403     if (Code == bitc::DEFINE_ABBREV) {
404       Stream.ReadAbbrevRecord();
405       continue;
406     }
407 
408     // Read a record.
409     Record.clear();
410     switch (Stream.ReadRecord(Code, Record)) {
411     default:  // Default behavior: ignore.
412       break;
413     case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [paramidx0, attr0, ...]
414       if (Record.size() & 1)
415         return Error("Invalid ENTRY record");
416 
417       // FIXME : Remove this autoupgrade code in LLVM 3.0.
418       // If Function attributes are using index 0 then transfer them
419       // to index ~0. Index 0 is used for return value attributes but used to be
420       // used for function attributes.
421       Attributes RetAttribute = Attribute::None;
422       Attributes FnAttribute = Attribute::None;
423       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
424         // FIXME: remove in LLVM 3.0
425         // The alignment is stored as a 16-bit raw value from bits 31--16.
426         // We shift the bits above 31 down by 11 bits.
427 
428         unsigned Alignment = (Record[i+1] & (0xffffull << 16)) >> 16;
429         if (Alignment && !isPowerOf2_32(Alignment))
430           return Error("Alignment is not a power of two.");
431 
432         Attributes ReconstitutedAttr = Record[i+1] & 0xffff;
433         if (Alignment)
434           ReconstitutedAttr |= Attribute::constructAlignmentFromInt(Alignment);
435         ReconstitutedAttr |= (Record[i+1] & (0xffffull << 32)) >> 11;
436         Record[i+1] = ReconstitutedAttr;
437 
438         if (Record[i] == 0)
439           RetAttribute = Record[i+1];
440         else if (Record[i] == ~0U)
441           FnAttribute = Record[i+1];
442       }
443 
444       unsigned OldRetAttrs = (Attribute::NoUnwind|Attribute::NoReturn|
445                               Attribute::ReadOnly|Attribute::ReadNone);
446 
447       if (FnAttribute == Attribute::None && RetAttribute != Attribute::None &&
448           (RetAttribute & OldRetAttrs) != 0) {
449         if (FnAttribute == Attribute::None) { // add a slot so they get added.
450           Record.push_back(~0U);
451           Record.push_back(0);
452         }
453 
454         FnAttribute  |= RetAttribute & OldRetAttrs;
455         RetAttribute &= ~OldRetAttrs;
456       }
457 
458       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
459         if (Record[i] == 0) {
460           if (RetAttribute != Attribute::None)
461             Attrs.push_back(AttributeWithIndex::get(0, RetAttribute));
462         } else if (Record[i] == ~0U) {
463           if (FnAttribute != Attribute::None)
464             Attrs.push_back(AttributeWithIndex::get(~0U, FnAttribute));
465         } else if (Record[i+1] != Attribute::None)
466           Attrs.push_back(AttributeWithIndex::get(Record[i], Record[i+1]));
467       }
468 
469       MAttributes.push_back(AttrListPtr::get(Attrs.begin(), Attrs.end()));
470       Attrs.clear();
471       break;
472     }
473     }
474   }
475 }
476 
477 
478 bool BitcodeReader::ParseTypeTable() {
479   if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID))
480     return Error("Malformed block record");
481 
482   if (!TypeList.empty())
483     return Error("Multiple TYPE_BLOCKs found!");
484 
485   SmallVector<uint64_t, 64> Record;
486   unsigned NumRecords = 0;
487 
488   // Read all the records for this type table.
489   while (1) {
490     unsigned Code = Stream.ReadCode();
491     if (Code == bitc::END_BLOCK) {
492       if (NumRecords != TypeList.size())
493         return Error("Invalid type forward reference in TYPE_BLOCK");
494       if (Stream.ReadBlockEnd())
495         return Error("Error at end of type table block");
496       return false;
497     }
498 
499     if (Code == bitc::ENTER_SUBBLOCK) {
500       // No known subblocks, always skip them.
501       Stream.ReadSubBlockID();
502       if (Stream.SkipBlock())
503         return Error("Malformed block record");
504       continue;
505     }
506 
507     if (Code == bitc::DEFINE_ABBREV) {
508       Stream.ReadAbbrevRecord();
509       continue;
510     }
511 
512     // Read a record.
513     Record.clear();
514     const Type *ResultTy = 0;
515     switch (Stream.ReadRecord(Code, Record)) {
516     default:  // Default behavior: unknown type.
517       ResultTy = 0;
518       break;
519     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
520       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
521       // type list.  This allows us to reserve space.
522       if (Record.size() < 1)
523         return Error("Invalid TYPE_CODE_NUMENTRY record");
524       TypeList.reserve(Record[0]);
525       continue;
526     case bitc::TYPE_CODE_VOID:      // VOID
527       ResultTy = Type::getVoidTy(Context);
528       break;
529     case bitc::TYPE_CODE_FLOAT:     // FLOAT
530       ResultTy = Type::getFloatTy(Context);
531       break;
532     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
533       ResultTy = Type::getDoubleTy(Context);
534       break;
535     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
536       ResultTy = Type::getX86_FP80Ty(Context);
537       break;
538     case bitc::TYPE_CODE_FP128:     // FP128
539       ResultTy = Type::getFP128Ty(Context);
540       break;
541     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
542       ResultTy = Type::getPPC_FP128Ty(Context);
543       break;
544     case bitc::TYPE_CODE_LABEL:     // LABEL
545       ResultTy = Type::getLabelTy(Context);
546       break;
547     case bitc::TYPE_CODE_OPAQUE:    // OPAQUE
548       ResultTy = 0;
549       break;
550     case bitc::TYPE_CODE_METADATA:  // METADATA
551       ResultTy = Type::getMetadataTy(Context);
552       break;
553     case bitc::TYPE_CODE_INTEGER:   // INTEGER: [width]
554       if (Record.size() < 1)
555         return Error("Invalid Integer type record");
556 
557       ResultTy = IntegerType::get(Context, Record[0]);
558       break;
559     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
560                                     //          [pointee type, address space]
561       if (Record.size() < 1)
562         return Error("Invalid POINTER type record");
563       unsigned AddressSpace = 0;
564       if (Record.size() == 2)
565         AddressSpace = Record[1];
566       ResultTy = PointerType::get(getTypeByID(Record[0], true),
567                                         AddressSpace);
568       break;
569     }
570     case bitc::TYPE_CODE_FUNCTION: {
571       // FIXME: attrid is dead, remove it in LLVM 3.0
572       // FUNCTION: [vararg, attrid, retty, paramty x N]
573       if (Record.size() < 3)
574         return Error("Invalid FUNCTION type record");
575       std::vector<const Type*> ArgTys;
576       for (unsigned i = 3, e = Record.size(); i != e; ++i)
577         ArgTys.push_back(getTypeByID(Record[i], true));
578 
579       ResultTy = FunctionType::get(getTypeByID(Record[2], true), ArgTys,
580                                    Record[0]);
581       break;
582     }
583     case bitc::TYPE_CODE_STRUCT: {  // STRUCT: [ispacked, eltty x N]
584       if (Record.size() < 1)
585         return Error("Invalid STRUCT type record");
586       std::vector<const Type*> EltTys;
587       for (unsigned i = 1, e = Record.size(); i != e; ++i)
588         EltTys.push_back(getTypeByID(Record[i], true));
589       ResultTy = StructType::get(Context, EltTys, Record[0]);
590       break;
591     }
592     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
593       if (Record.size() < 2)
594         return Error("Invalid ARRAY type record");
595       ResultTy = ArrayType::get(getTypeByID(Record[1], true), Record[0]);
596       break;
597     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
598       if (Record.size() < 2)
599         return Error("Invalid VECTOR type record");
600       ResultTy = VectorType::get(getTypeByID(Record[1], true), Record[0]);
601       break;
602     }
603 
604     if (NumRecords == TypeList.size()) {
605       // If this is a new type slot, just append it.
606       TypeList.push_back(ResultTy ? ResultTy : OpaqueType::get(Context));
607       ++NumRecords;
608     } else if (ResultTy == 0) {
609       // Otherwise, this was forward referenced, so an opaque type was created,
610       // but the result type is actually just an opaque.  Leave the one we
611       // created previously.
612       ++NumRecords;
613     } else {
614       // Otherwise, this was forward referenced, so an opaque type was created.
615       // Resolve the opaque type to the real type now.
616       assert(NumRecords < TypeList.size() && "Typelist imbalance");
617       const OpaqueType *OldTy = cast<OpaqueType>(TypeList[NumRecords++].get());
618 
619       // Don't directly push the new type on the Tab. Instead we want to replace
620       // the opaque type we previously inserted with the new concrete value. The
621       // refinement from the abstract (opaque) type to the new type causes all
622       // uses of the abstract type to use the concrete type (NewTy). This will
623       // also cause the opaque type to be deleted.
624       const_cast<OpaqueType*>(OldTy)->refineAbstractTypeTo(ResultTy);
625 
626       // This should have replaced the old opaque type with the new type in the
627       // value table... or with a preexisting type that was already in the
628       // system.  Let's just make sure it did.
629       assert(TypeList[NumRecords-1].get() != OldTy &&
630              "refineAbstractType didn't work!");
631     }
632   }
633 }
634 
635 
636 bool BitcodeReader::ParseTypeSymbolTable() {
637   if (Stream.EnterSubBlock(bitc::TYPE_SYMTAB_BLOCK_ID))
638     return Error("Malformed block record");
639 
640   SmallVector<uint64_t, 64> Record;
641 
642   // Read all the records for this type table.
643   std::string TypeName;
644   while (1) {
645     unsigned Code = Stream.ReadCode();
646     if (Code == bitc::END_BLOCK) {
647       if (Stream.ReadBlockEnd())
648         return Error("Error at end of type symbol table block");
649       return false;
650     }
651 
652     if (Code == bitc::ENTER_SUBBLOCK) {
653       // No known subblocks, always skip them.
654       Stream.ReadSubBlockID();
655       if (Stream.SkipBlock())
656         return Error("Malformed block record");
657       continue;
658     }
659 
660     if (Code == bitc::DEFINE_ABBREV) {
661       Stream.ReadAbbrevRecord();
662       continue;
663     }
664 
665     // Read a record.
666     Record.clear();
667     switch (Stream.ReadRecord(Code, Record)) {
668     default:  // Default behavior: unknown type.
669       break;
670     case bitc::TST_CODE_ENTRY:    // TST_ENTRY: [typeid, namechar x N]
671       if (ConvertToString(Record, 1, TypeName))
672         return Error("Invalid TST_ENTRY record");
673       unsigned TypeID = Record[0];
674       if (TypeID >= TypeList.size())
675         return Error("Invalid Type ID in TST_ENTRY record");
676 
677       TheModule->addTypeName(TypeName, TypeList[TypeID].get());
678       TypeName.clear();
679       break;
680     }
681   }
682 }
683 
684 bool BitcodeReader::ParseValueSymbolTable() {
685   if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
686     return Error("Malformed block record");
687 
688   SmallVector<uint64_t, 64> Record;
689 
690   // Read all the records for this value table.
691   SmallString<128> ValueName;
692   while (1) {
693     unsigned Code = Stream.ReadCode();
694     if (Code == bitc::END_BLOCK) {
695       if (Stream.ReadBlockEnd())
696         return Error("Error at end of value symbol table block");
697       return false;
698     }
699     if (Code == bitc::ENTER_SUBBLOCK) {
700       // No known subblocks, always skip them.
701       Stream.ReadSubBlockID();
702       if (Stream.SkipBlock())
703         return Error("Malformed block record");
704       continue;
705     }
706 
707     if (Code == bitc::DEFINE_ABBREV) {
708       Stream.ReadAbbrevRecord();
709       continue;
710     }
711 
712     // Read a record.
713     Record.clear();
714     switch (Stream.ReadRecord(Code, Record)) {
715     default:  // Default behavior: unknown type.
716       break;
717     case bitc::VST_CODE_ENTRY: {  // VST_ENTRY: [valueid, namechar x N]
718       if (ConvertToString(Record, 1, ValueName))
719         return Error("Invalid VST_ENTRY record");
720       unsigned ValueID = Record[0];
721       if (ValueID >= ValueList.size())
722         return Error("Invalid Value ID in VST_ENTRY record");
723       Value *V = ValueList[ValueID];
724 
725       V->setName(StringRef(ValueName.data(), ValueName.size()));
726       ValueName.clear();
727       break;
728     }
729     case bitc::VST_CODE_BBENTRY: {
730       if (ConvertToString(Record, 1, ValueName))
731         return Error("Invalid VST_BBENTRY record");
732       BasicBlock *BB = getBasicBlock(Record[0]);
733       if (BB == 0)
734         return Error("Invalid BB ID in VST_BBENTRY record");
735 
736       BB->setName(StringRef(ValueName.data(), ValueName.size()));
737       ValueName.clear();
738       break;
739     }
740     }
741   }
742 }
743 
744 bool BitcodeReader::ParseMetadata() {
745   unsigned NextMDValueNo = MDValueList.size();
746 
747   if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID))
748     return Error("Malformed block record");
749 
750   SmallVector<uint64_t, 64> Record;
751 
752   // Read all the records.
753   while (1) {
754     unsigned Code = Stream.ReadCode();
755     if (Code == bitc::END_BLOCK) {
756       if (Stream.ReadBlockEnd())
757         return Error("Error at end of PARAMATTR block");
758       return false;
759     }
760 
761     if (Code == bitc::ENTER_SUBBLOCK) {
762       // No known subblocks, always skip them.
763       Stream.ReadSubBlockID();
764       if (Stream.SkipBlock())
765         return Error("Malformed block record");
766       continue;
767     }
768 
769     if (Code == bitc::DEFINE_ABBREV) {
770       Stream.ReadAbbrevRecord();
771       continue;
772     }
773 
774     bool IsFunctionLocal = false;
775     // Read a record.
776     Record.clear();
777     switch (Stream.ReadRecord(Code, Record)) {
778     default:  // Default behavior: ignore.
779       break;
780     case bitc::METADATA_NAME: {
781       // Read named of the named metadata.
782       unsigned NameLength = Record.size();
783       SmallString<8> Name;
784       Name.resize(NameLength);
785       for (unsigned i = 0; i != NameLength; ++i)
786         Name[i] = Record[i];
787       Record.clear();
788       Code = Stream.ReadCode();
789 
790       // METADATA_NAME is always followed by METADATA_NAMED_NODE.
791       if (Stream.ReadRecord(Code, Record) != bitc::METADATA_NAMED_NODE)
792         assert ( 0 && "Inavlid Named Metadata record");
793 
794       // Read named metadata elements.
795       unsigned Size = Record.size();
796       NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name);
797       for (unsigned i = 0; i != Size; ++i) {
798         MDNode *MD = dyn_cast<MDNode>(MDValueList.getValueFwdRef(Record[i]));
799         if (MD == 0)
800           return Error("Malformed metadata record");
801         NMD->addOperand(MD);
802       }
803       break;
804     }
805     case bitc::METADATA_FN_NODE:
806       IsFunctionLocal = true;
807       // fall-through
808     case bitc::METADATA_NODE: {
809       if (Record.size() % 2 == 1)
810         return Error("Invalid METADATA_NODE record");
811 
812       unsigned Size = Record.size();
813       SmallVector<Value*, 8> Elts;
814       for (unsigned i = 0; i != Size; i += 2) {
815         const Type *Ty = getTypeByID(Record[i], false);
816         if (Ty->isMetadataTy())
817           Elts.push_back(MDValueList.getValueFwdRef(Record[i+1]));
818         else if (!Ty->isVoidTy())
819           Elts.push_back(ValueList.getValueFwdRef(Record[i+1], Ty));
820         else
821           Elts.push_back(NULL);
822       }
823       Value *V = MDNode::getWhenValsUnresolved(Context,
824                                                Elts.data(), Elts.size(),
825                                                IsFunctionLocal);
826       IsFunctionLocal = false;
827       MDValueList.AssignValue(V, NextMDValueNo++);
828       break;
829     }
830     case bitc::METADATA_STRING: {
831       unsigned MDStringLength = Record.size();
832       SmallString<8> String;
833       String.resize(MDStringLength);
834       for (unsigned i = 0; i != MDStringLength; ++i)
835         String[i] = Record[i];
836       Value *V = MDString::get(Context,
837                                StringRef(String.data(), String.size()));
838       MDValueList.AssignValue(V, NextMDValueNo++);
839       break;
840     }
841     case bitc::METADATA_KIND: {
842       unsigned RecordLength = Record.size();
843       if (Record.empty() || RecordLength < 2)
844         return Error("Invalid METADATA_KIND record");
845       SmallString<8> Name;
846       Name.resize(RecordLength-1);
847       unsigned Kind = Record[0];
848       for (unsigned i = 1; i != RecordLength; ++i)
849         Name[i-1] = Record[i];
850 
851       unsigned NewKind = TheModule->getMDKindID(Name.str());
852       if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second)
853         return Error("Conflicting METADATA_KIND records");
854       break;
855     }
856     }
857   }
858 }
859 
860 /// DecodeSignRotatedValue - Decode a signed value stored with the sign bit in
861 /// the LSB for dense VBR encoding.
862 static uint64_t DecodeSignRotatedValue(uint64_t V) {
863   if ((V & 1) == 0)
864     return V >> 1;
865   if (V != 1)
866     return -(V >> 1);
867   // There is no such thing as -0 with integers.  "-0" really means MININT.
868   return 1ULL << 63;
869 }
870 
871 /// ResolveGlobalAndAliasInits - Resolve all of the initializers for global
872 /// values and aliases that we can.
873 bool BitcodeReader::ResolveGlobalAndAliasInits() {
874   std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
875   std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist;
876 
877   GlobalInitWorklist.swap(GlobalInits);
878   AliasInitWorklist.swap(AliasInits);
879 
880   while (!GlobalInitWorklist.empty()) {
881     unsigned ValID = GlobalInitWorklist.back().second;
882     if (ValID >= ValueList.size()) {
883       // Not ready to resolve this yet, it requires something later in the file.
884       GlobalInits.push_back(GlobalInitWorklist.back());
885     } else {
886       if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
887         GlobalInitWorklist.back().first->setInitializer(C);
888       else
889         return Error("Global variable initializer is not a constant!");
890     }
891     GlobalInitWorklist.pop_back();
892   }
893 
894   while (!AliasInitWorklist.empty()) {
895     unsigned ValID = AliasInitWorklist.back().second;
896     if (ValID >= ValueList.size()) {
897       AliasInits.push_back(AliasInitWorklist.back());
898     } else {
899       if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
900         AliasInitWorklist.back().first->setAliasee(C);
901       else
902         return Error("Alias initializer is not a constant!");
903     }
904     AliasInitWorklist.pop_back();
905   }
906   return false;
907 }
908 
909 bool BitcodeReader::ParseConstants() {
910   if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
911     return Error("Malformed block record");
912 
913   SmallVector<uint64_t, 64> Record;
914 
915   // Read all the records for this value table.
916   const Type *CurTy = Type::getInt32Ty(Context);
917   unsigned NextCstNo = ValueList.size();
918   while (1) {
919     unsigned Code = Stream.ReadCode();
920     if (Code == bitc::END_BLOCK)
921       break;
922 
923     if (Code == bitc::ENTER_SUBBLOCK) {
924       // No known subblocks, always skip them.
925       Stream.ReadSubBlockID();
926       if (Stream.SkipBlock())
927         return Error("Malformed block record");
928       continue;
929     }
930 
931     if (Code == bitc::DEFINE_ABBREV) {
932       Stream.ReadAbbrevRecord();
933       continue;
934     }
935 
936     // Read a record.
937     Record.clear();
938     Value *V = 0;
939     unsigned BitCode = Stream.ReadRecord(Code, Record);
940     switch (BitCode) {
941     default:  // Default behavior: unknown constant
942     case bitc::CST_CODE_UNDEF:     // UNDEF
943       V = UndefValue::get(CurTy);
944       break;
945     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
946       if (Record.empty())
947         return Error("Malformed CST_SETTYPE record");
948       if (Record[0] >= TypeList.size())
949         return Error("Invalid Type ID in CST_SETTYPE record");
950       CurTy = TypeList[Record[0]];
951       continue;  // Skip the ValueList manipulation.
952     case bitc::CST_CODE_NULL:      // NULL
953       V = Constant::getNullValue(CurTy);
954       break;
955     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
956       if (!CurTy->isIntegerTy() || Record.empty())
957         return Error("Invalid CST_INTEGER record");
958       V = ConstantInt::get(CurTy, DecodeSignRotatedValue(Record[0]));
959       break;
960     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
961       if (!CurTy->isIntegerTy() || Record.empty())
962         return Error("Invalid WIDE_INTEGER record");
963 
964       unsigned NumWords = Record.size();
965       SmallVector<uint64_t, 8> Words;
966       Words.resize(NumWords);
967       for (unsigned i = 0; i != NumWords; ++i)
968         Words[i] = DecodeSignRotatedValue(Record[i]);
969       V = ConstantInt::get(Context,
970                            APInt(cast<IntegerType>(CurTy)->getBitWidth(),
971                            NumWords, &Words[0]));
972       break;
973     }
974     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
975       if (Record.empty())
976         return Error("Invalid FLOAT record");
977       if (CurTy->isFloatTy())
978         V = ConstantFP::get(Context, APFloat(APInt(32, (uint32_t)Record[0])));
979       else if (CurTy->isDoubleTy())
980         V = ConstantFP::get(Context, APFloat(APInt(64, Record[0])));
981       else if (CurTy->isX86_FP80Ty()) {
982         // Bits are not stored the same way as a normal i80 APInt, compensate.
983         uint64_t Rearrange[2];
984         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
985         Rearrange[1] = Record[0] >> 48;
986         V = ConstantFP::get(Context, APFloat(APInt(80, 2, Rearrange)));
987       } else if (CurTy->isFP128Ty())
988         V = ConstantFP::get(Context, APFloat(APInt(128, 2, &Record[0]), true));
989       else if (CurTy->isPPC_FP128Ty())
990         V = ConstantFP::get(Context, APFloat(APInt(128, 2, &Record[0])));
991       else
992         V = UndefValue::get(CurTy);
993       break;
994     }
995 
996     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
997       if (Record.empty())
998         return Error("Invalid CST_AGGREGATE record");
999 
1000       unsigned Size = Record.size();
1001       std::vector<Constant*> Elts;
1002 
1003       if (const StructType *STy = dyn_cast<StructType>(CurTy)) {
1004         for (unsigned i = 0; i != Size; ++i)
1005           Elts.push_back(ValueList.getConstantFwdRef(Record[i],
1006                                                      STy->getElementType(i)));
1007         V = ConstantStruct::get(STy, Elts);
1008       } else if (const ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
1009         const Type *EltTy = ATy->getElementType();
1010         for (unsigned i = 0; i != Size; ++i)
1011           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
1012         V = ConstantArray::get(ATy, Elts);
1013       } else if (const VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
1014         const Type *EltTy = VTy->getElementType();
1015         for (unsigned i = 0; i != Size; ++i)
1016           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
1017         V = ConstantVector::get(Elts);
1018       } else {
1019         V = UndefValue::get(CurTy);
1020       }
1021       break;
1022     }
1023     case bitc::CST_CODE_STRING: { // STRING: [values]
1024       if (Record.empty())
1025         return Error("Invalid CST_AGGREGATE record");
1026 
1027       const ArrayType *ATy = cast<ArrayType>(CurTy);
1028       const Type *EltTy = ATy->getElementType();
1029 
1030       unsigned Size = Record.size();
1031       std::vector<Constant*> Elts;
1032       for (unsigned i = 0; i != Size; ++i)
1033         Elts.push_back(ConstantInt::get(EltTy, Record[i]));
1034       V = ConstantArray::get(ATy, Elts);
1035       break;
1036     }
1037     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
1038       if (Record.empty())
1039         return Error("Invalid CST_AGGREGATE record");
1040 
1041       const ArrayType *ATy = cast<ArrayType>(CurTy);
1042       const Type *EltTy = ATy->getElementType();
1043 
1044       unsigned Size = Record.size();
1045       std::vector<Constant*> Elts;
1046       for (unsigned i = 0; i != Size; ++i)
1047         Elts.push_back(ConstantInt::get(EltTy, Record[i]));
1048       Elts.push_back(Constant::getNullValue(EltTy));
1049       V = ConstantArray::get(ATy, Elts);
1050       break;
1051     }
1052     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
1053       if (Record.size() < 3) return Error("Invalid CE_BINOP record");
1054       int Opc = GetDecodedBinaryOpcode(Record[0], CurTy);
1055       if (Opc < 0) {
1056         V = UndefValue::get(CurTy);  // Unknown binop.
1057       } else {
1058         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
1059         Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
1060         unsigned Flags = 0;
1061         if (Record.size() >= 4) {
1062           if (Opc == Instruction::Add ||
1063               Opc == Instruction::Sub ||
1064               Opc == Instruction::Mul) {
1065             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
1066               Flags |= OverflowingBinaryOperator::NoSignedWrap;
1067             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
1068               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
1069           } else if (Opc == Instruction::SDiv) {
1070             if (Record[3] & (1 << bitc::SDIV_EXACT))
1071               Flags |= SDivOperator::IsExact;
1072           }
1073         }
1074         V = ConstantExpr::get(Opc, LHS, RHS, Flags);
1075       }
1076       break;
1077     }
1078     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
1079       if (Record.size() < 3) return Error("Invalid CE_CAST record");
1080       int Opc = GetDecodedCastOpcode(Record[0]);
1081       if (Opc < 0) {
1082         V = UndefValue::get(CurTy);  // Unknown cast.
1083       } else {
1084         const Type *OpTy = getTypeByID(Record[1]);
1085         if (!OpTy) return Error("Invalid CE_CAST record");
1086         Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
1087         V = ConstantExpr::getCast(Opc, Op, CurTy);
1088       }
1089       break;
1090     }
1091     case bitc::CST_CODE_CE_INBOUNDS_GEP:
1092     case bitc::CST_CODE_CE_GEP: {  // CE_GEP:        [n x operands]
1093       if (Record.size() & 1) return Error("Invalid CE_GEP record");
1094       SmallVector<Constant*, 16> Elts;
1095       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1096         const Type *ElTy = getTypeByID(Record[i]);
1097         if (!ElTy) return Error("Invalid CE_GEP record");
1098         Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy));
1099       }
1100       if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
1101         V = ConstantExpr::getInBoundsGetElementPtr(Elts[0], &Elts[1],
1102                                                    Elts.size()-1);
1103       else
1104         V = ConstantExpr::getGetElementPtr(Elts[0], &Elts[1],
1105                                            Elts.size()-1);
1106       break;
1107     }
1108     case bitc::CST_CODE_CE_SELECT:  // CE_SELECT: [opval#, opval#, opval#]
1109       if (Record.size() < 3) return Error("Invalid CE_SELECT record");
1110       V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
1111                                                               Type::getInt1Ty(Context)),
1112                                   ValueList.getConstantFwdRef(Record[1],CurTy),
1113                                   ValueList.getConstantFwdRef(Record[2],CurTy));
1114       break;
1115     case bitc::CST_CODE_CE_EXTRACTELT: { // CE_EXTRACTELT: [opty, opval, opval]
1116       if (Record.size() < 3) return Error("Invalid CE_EXTRACTELT record");
1117       const VectorType *OpTy =
1118         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
1119       if (OpTy == 0) return Error("Invalid CE_EXTRACTELT record");
1120       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1121       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
1122       V = ConstantExpr::getExtractElement(Op0, Op1);
1123       break;
1124     }
1125     case bitc::CST_CODE_CE_INSERTELT: { // CE_INSERTELT: [opval, opval, opval]
1126       const VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1127       if (Record.size() < 3 || OpTy == 0)
1128         return Error("Invalid CE_INSERTELT record");
1129       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1130       Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
1131                                                   OpTy->getElementType());
1132       Constant *Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
1133       V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
1134       break;
1135     }
1136     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
1137       const VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1138       if (Record.size() < 3 || OpTy == 0)
1139         return Error("Invalid CE_SHUFFLEVEC record");
1140       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1141       Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
1142       const Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
1143                                                  OpTy->getNumElements());
1144       Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
1145       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
1146       break;
1147     }
1148     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
1149       const VectorType *RTy = dyn_cast<VectorType>(CurTy);
1150       const VectorType *OpTy = dyn_cast<VectorType>(getTypeByID(Record[0]));
1151       if (Record.size() < 4 || RTy == 0 || OpTy == 0)
1152         return Error("Invalid CE_SHUFVEC_EX record");
1153       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1154       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1155       const Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
1156                                                  RTy->getNumElements());
1157       Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
1158       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
1159       break;
1160     }
1161     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
1162       if (Record.size() < 4) return Error("Invalid CE_CMP record");
1163       const Type *OpTy = getTypeByID(Record[0]);
1164       if (OpTy == 0) return Error("Invalid CE_CMP record");
1165       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1166       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1167 
1168       if (OpTy->isFPOrFPVectorTy())
1169         V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
1170       else
1171         V = ConstantExpr::getICmp(Record[3], Op0, Op1);
1172       break;
1173     }
1174     case bitc::CST_CODE_INLINEASM: {
1175       if (Record.size() < 2) return Error("Invalid INLINEASM record");
1176       std::string AsmStr, ConstrStr;
1177       bool HasSideEffects = Record[0] & 1;
1178       bool IsAlignStack = Record[0] >> 1;
1179       unsigned AsmStrSize = Record[1];
1180       if (2+AsmStrSize >= Record.size())
1181         return Error("Invalid INLINEASM record");
1182       unsigned ConstStrSize = Record[2+AsmStrSize];
1183       if (3+AsmStrSize+ConstStrSize > Record.size())
1184         return Error("Invalid INLINEASM record");
1185 
1186       for (unsigned i = 0; i != AsmStrSize; ++i)
1187         AsmStr += (char)Record[2+i];
1188       for (unsigned i = 0; i != ConstStrSize; ++i)
1189         ConstrStr += (char)Record[3+AsmStrSize+i];
1190       const PointerType *PTy = cast<PointerType>(CurTy);
1191       V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
1192                          AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
1193       break;
1194     }
1195     case bitc::CST_CODE_BLOCKADDRESS:{
1196       if (Record.size() < 3) return Error("Invalid CE_BLOCKADDRESS record");
1197       const Type *FnTy = getTypeByID(Record[0]);
1198       if (FnTy == 0) return Error("Invalid CE_BLOCKADDRESS record");
1199       Function *Fn =
1200         dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
1201       if (Fn == 0) return Error("Invalid CE_BLOCKADDRESS record");
1202 
1203       GlobalVariable *FwdRef = new GlobalVariable(*Fn->getParent(),
1204                                                   Type::getInt8Ty(Context),
1205                                             false, GlobalValue::InternalLinkage,
1206                                                   0, "");
1207       BlockAddrFwdRefs[Fn].push_back(std::make_pair(Record[2], FwdRef));
1208       V = FwdRef;
1209       break;
1210     }
1211     }
1212 
1213     ValueList.AssignValue(V, NextCstNo);
1214     ++NextCstNo;
1215   }
1216 
1217   if (NextCstNo != ValueList.size())
1218     return Error("Invalid constant reference!");
1219 
1220   if (Stream.ReadBlockEnd())
1221     return Error("Error at end of constants block");
1222 
1223   // Once all the constants have been read, go through and resolve forward
1224   // references.
1225   ValueList.ResolveConstantForwardRefs();
1226   return false;
1227 }
1228 
1229 /// RememberAndSkipFunctionBody - When we see the block for a function body,
1230 /// remember where it is and then skip it.  This lets us lazily deserialize the
1231 /// functions.
1232 bool BitcodeReader::RememberAndSkipFunctionBody() {
1233   // Get the function we are talking about.
1234   if (FunctionsWithBodies.empty())
1235     return Error("Insufficient function protos");
1236 
1237   Function *Fn = FunctionsWithBodies.back();
1238   FunctionsWithBodies.pop_back();
1239 
1240   // Save the current stream state.
1241   uint64_t CurBit = Stream.GetCurrentBitNo();
1242   DeferredFunctionInfo[Fn] = CurBit;
1243 
1244   // Skip over the function block for now.
1245   if (Stream.SkipBlock())
1246     return Error("Malformed block record");
1247   return false;
1248 }
1249 
1250 bool BitcodeReader::ParseModule() {
1251   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
1252     return Error("Malformed block record");
1253 
1254   SmallVector<uint64_t, 64> Record;
1255   std::vector<std::string> SectionTable;
1256   std::vector<std::string> GCTable;
1257 
1258   // Read all the records for this module.
1259   while (!Stream.AtEndOfStream()) {
1260     unsigned Code = Stream.ReadCode();
1261     if (Code == bitc::END_BLOCK) {
1262       if (Stream.ReadBlockEnd())
1263         return Error("Error at end of module block");
1264 
1265       // Patch the initializers for globals and aliases up.
1266       ResolveGlobalAndAliasInits();
1267       if (!GlobalInits.empty() || !AliasInits.empty())
1268         return Error("Malformed global initializer set");
1269       if (!FunctionsWithBodies.empty())
1270         return Error("Too few function bodies found");
1271 
1272       // Look for intrinsic functions which need to be upgraded at some point
1273       for (Module::iterator FI = TheModule->begin(), FE = TheModule->end();
1274            FI != FE; ++FI) {
1275         Function* NewFn;
1276         if (UpgradeIntrinsicFunction(FI, NewFn))
1277           UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn));
1278       }
1279 
1280       // Force deallocation of memory for these vectors to favor the client that
1281       // want lazy deserialization.
1282       std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
1283       std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits);
1284       std::vector<Function*>().swap(FunctionsWithBodies);
1285       return false;
1286     }
1287 
1288     if (Code == bitc::ENTER_SUBBLOCK) {
1289       switch (Stream.ReadSubBlockID()) {
1290       default:  // Skip unknown content.
1291         if (Stream.SkipBlock())
1292           return Error("Malformed block record");
1293         break;
1294       case bitc::BLOCKINFO_BLOCK_ID:
1295         if (Stream.ReadBlockInfoBlock())
1296           return Error("Malformed BlockInfoBlock");
1297         break;
1298       case bitc::PARAMATTR_BLOCK_ID:
1299         if (ParseAttributeBlock())
1300           return true;
1301         break;
1302       case bitc::TYPE_BLOCK_ID:
1303         if (ParseTypeTable())
1304           return true;
1305         break;
1306       case bitc::TYPE_SYMTAB_BLOCK_ID:
1307         if (ParseTypeSymbolTable())
1308           return true;
1309         break;
1310       case bitc::VALUE_SYMTAB_BLOCK_ID:
1311         if (ParseValueSymbolTable())
1312           return true;
1313         break;
1314       case bitc::CONSTANTS_BLOCK_ID:
1315         if (ParseConstants() || ResolveGlobalAndAliasInits())
1316           return true;
1317         break;
1318       case bitc::METADATA_BLOCK_ID:
1319         if (ParseMetadata())
1320           return true;
1321         break;
1322       case bitc::FUNCTION_BLOCK_ID:
1323         // If this is the first function body we've seen, reverse the
1324         // FunctionsWithBodies list.
1325         if (!HasReversedFunctionsWithBodies) {
1326           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
1327           HasReversedFunctionsWithBodies = true;
1328         }
1329 
1330         if (RememberAndSkipFunctionBody())
1331           return true;
1332         break;
1333       }
1334       continue;
1335     }
1336 
1337     if (Code == bitc::DEFINE_ABBREV) {
1338       Stream.ReadAbbrevRecord();
1339       continue;
1340     }
1341 
1342     // Read a record.
1343     switch (Stream.ReadRecord(Code, Record)) {
1344     default: break;  // Default behavior, ignore unknown content.
1345     case bitc::MODULE_CODE_VERSION:  // VERSION: [version#]
1346       if (Record.size() < 1)
1347         return Error("Malformed MODULE_CODE_VERSION");
1348       // Only version #0 is supported so far.
1349       if (Record[0] != 0)
1350         return Error("Unknown bitstream version!");
1351       break;
1352     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
1353       std::string S;
1354       if (ConvertToString(Record, 0, S))
1355         return Error("Invalid MODULE_CODE_TRIPLE record");
1356       TheModule->setTargetTriple(S);
1357       break;
1358     }
1359     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
1360       std::string S;
1361       if (ConvertToString(Record, 0, S))
1362         return Error("Invalid MODULE_CODE_DATALAYOUT record");
1363       TheModule->setDataLayout(S);
1364       break;
1365     }
1366     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
1367       std::string S;
1368       if (ConvertToString(Record, 0, S))
1369         return Error("Invalid MODULE_CODE_ASM record");
1370       TheModule->setModuleInlineAsm(S);
1371       break;
1372     }
1373     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
1374       std::string S;
1375       if (ConvertToString(Record, 0, S))
1376         return Error("Invalid MODULE_CODE_DEPLIB record");
1377       TheModule->addLibrary(S);
1378       break;
1379     }
1380     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
1381       std::string S;
1382       if (ConvertToString(Record, 0, S))
1383         return Error("Invalid MODULE_CODE_SECTIONNAME record");
1384       SectionTable.push_back(S);
1385       break;
1386     }
1387     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
1388       std::string S;
1389       if (ConvertToString(Record, 0, S))
1390         return Error("Invalid MODULE_CODE_GCNAME record");
1391       GCTable.push_back(S);
1392       break;
1393     }
1394     // GLOBALVAR: [pointer type, isconst, initid,
1395     //             linkage, alignment, section, visibility, threadlocal]
1396     case bitc::MODULE_CODE_GLOBALVAR: {
1397       if (Record.size() < 6)
1398         return Error("Invalid MODULE_CODE_GLOBALVAR record");
1399       const Type *Ty = getTypeByID(Record[0]);
1400       if (!Ty->isPointerTy())
1401         return Error("Global not a pointer type!");
1402       unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
1403       Ty = cast<PointerType>(Ty)->getElementType();
1404 
1405       bool isConstant = Record[1];
1406       GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]);
1407       unsigned Alignment = (1 << Record[4]) >> 1;
1408       std::string Section;
1409       if (Record[5]) {
1410         if (Record[5]-1 >= SectionTable.size())
1411           return Error("Invalid section ID");
1412         Section = SectionTable[Record[5]-1];
1413       }
1414       GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
1415       if (Record.size() > 6)
1416         Visibility = GetDecodedVisibility(Record[6]);
1417       bool isThreadLocal = false;
1418       if (Record.size() > 7)
1419         isThreadLocal = Record[7];
1420 
1421       GlobalVariable *NewGV =
1422         new GlobalVariable(*TheModule, Ty, isConstant, Linkage, 0, "", 0,
1423                            isThreadLocal, AddressSpace);
1424       NewGV->setAlignment(Alignment);
1425       if (!Section.empty())
1426         NewGV->setSection(Section);
1427       NewGV->setVisibility(Visibility);
1428       NewGV->setThreadLocal(isThreadLocal);
1429 
1430       ValueList.push_back(NewGV);
1431 
1432       // Remember which value to use for the global initializer.
1433       if (unsigned InitID = Record[2])
1434         GlobalInits.push_back(std::make_pair(NewGV, InitID-1));
1435       break;
1436     }
1437     // FUNCTION:  [type, callingconv, isproto, linkage, paramattr,
1438     //             alignment, section, visibility, gc]
1439     case bitc::MODULE_CODE_FUNCTION: {
1440       if (Record.size() < 8)
1441         return Error("Invalid MODULE_CODE_FUNCTION record");
1442       const Type *Ty = getTypeByID(Record[0]);
1443       if (!Ty->isPointerTy())
1444         return Error("Function not a pointer type!");
1445       const FunctionType *FTy =
1446         dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType());
1447       if (!FTy)
1448         return Error("Function not a pointer to function type!");
1449 
1450       Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
1451                                         "", TheModule);
1452 
1453       Func->setCallingConv(static_cast<CallingConv::ID>(Record[1]));
1454       bool isProto = Record[2];
1455       Func->setLinkage(GetDecodedLinkage(Record[3]));
1456       Func->setAttributes(getAttributes(Record[4]));
1457 
1458       Func->setAlignment((1 << Record[5]) >> 1);
1459       if (Record[6]) {
1460         if (Record[6]-1 >= SectionTable.size())
1461           return Error("Invalid section ID");
1462         Func->setSection(SectionTable[Record[6]-1]);
1463       }
1464       Func->setVisibility(GetDecodedVisibility(Record[7]));
1465       if (Record.size() > 8 && Record[8]) {
1466         if (Record[8]-1 > GCTable.size())
1467           return Error("Invalid GC ID");
1468         Func->setGC(GCTable[Record[8]-1].c_str());
1469       }
1470       ValueList.push_back(Func);
1471 
1472       // If this is a function with a body, remember the prototype we are
1473       // creating now, so that we can match up the body with them later.
1474       if (!isProto)
1475         FunctionsWithBodies.push_back(Func);
1476       break;
1477     }
1478     // ALIAS: [alias type, aliasee val#, linkage]
1479     // ALIAS: [alias type, aliasee val#, linkage, visibility]
1480     case bitc::MODULE_CODE_ALIAS: {
1481       if (Record.size() < 3)
1482         return Error("Invalid MODULE_ALIAS record");
1483       const Type *Ty = getTypeByID(Record[0]);
1484       if (!Ty->isPointerTy())
1485         return Error("Function not a pointer type!");
1486 
1487       GlobalAlias *NewGA = new GlobalAlias(Ty, GetDecodedLinkage(Record[2]),
1488                                            "", 0, TheModule);
1489       // Old bitcode files didn't have visibility field.
1490       if (Record.size() > 3)
1491         NewGA->setVisibility(GetDecodedVisibility(Record[3]));
1492       ValueList.push_back(NewGA);
1493       AliasInits.push_back(std::make_pair(NewGA, Record[1]));
1494       break;
1495     }
1496     /// MODULE_CODE_PURGEVALS: [numvals]
1497     case bitc::MODULE_CODE_PURGEVALS:
1498       // Trim down the value list to the specified size.
1499       if (Record.size() < 1 || Record[0] > ValueList.size())
1500         return Error("Invalid MODULE_PURGEVALS record");
1501       ValueList.shrinkTo(Record[0]);
1502       break;
1503     }
1504     Record.clear();
1505   }
1506 
1507   return Error("Premature end of bitstream");
1508 }
1509 
1510 bool BitcodeReader::ParseBitcodeInto(Module *M) {
1511   TheModule = 0;
1512 
1513   unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart();
1514   unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
1515 
1516   if (Buffer->getBufferSize() & 3) {
1517     if (!isRawBitcode(BufPtr, BufEnd) && !isBitcodeWrapper(BufPtr, BufEnd))
1518       return Error("Invalid bitcode signature");
1519     else
1520       return Error("Bitcode stream should be a multiple of 4 bytes in length");
1521   }
1522 
1523   // If we have a wrapper header, parse it and ignore the non-bc file contents.
1524   // The magic number is 0x0B17C0DE stored in little endian.
1525   if (isBitcodeWrapper(BufPtr, BufEnd))
1526     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd))
1527       return Error("Invalid bitcode wrapper header");
1528 
1529   StreamFile.init(BufPtr, BufEnd);
1530   Stream.init(StreamFile);
1531 
1532   // Sniff for the signature.
1533   if (Stream.Read(8) != 'B' ||
1534       Stream.Read(8) != 'C' ||
1535       Stream.Read(4) != 0x0 ||
1536       Stream.Read(4) != 0xC ||
1537       Stream.Read(4) != 0xE ||
1538       Stream.Read(4) != 0xD)
1539     return Error("Invalid bitcode signature");
1540 
1541   // We expect a number of well-defined blocks, though we don't necessarily
1542   // need to understand them all.
1543   while (!Stream.AtEndOfStream()) {
1544     unsigned Code = Stream.ReadCode();
1545 
1546     if (Code != bitc::ENTER_SUBBLOCK)
1547       return Error("Invalid record at top-level");
1548 
1549     unsigned BlockID = Stream.ReadSubBlockID();
1550 
1551     // We only know the MODULE subblock ID.
1552     switch (BlockID) {
1553     case bitc::BLOCKINFO_BLOCK_ID:
1554       if (Stream.ReadBlockInfoBlock())
1555         return Error("Malformed BlockInfoBlock");
1556       break;
1557     case bitc::MODULE_BLOCK_ID:
1558       // Reject multiple MODULE_BLOCK's in a single bitstream.
1559       if (TheModule)
1560         return Error("Multiple MODULE_BLOCKs in same stream");
1561       TheModule = M;
1562       if (ParseModule())
1563         return true;
1564       break;
1565     default:
1566       if (Stream.SkipBlock())
1567         return Error("Malformed block record");
1568       break;
1569     }
1570   }
1571 
1572   return false;
1573 }
1574 
1575 /// ParseMetadataAttachment - Parse metadata attachments.
1576 bool BitcodeReader::ParseMetadataAttachment() {
1577   if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID))
1578     return Error("Malformed block record");
1579 
1580   SmallVector<uint64_t, 64> Record;
1581   while(1) {
1582     unsigned Code = Stream.ReadCode();
1583     if (Code == bitc::END_BLOCK) {
1584       if (Stream.ReadBlockEnd())
1585         return Error("Error at end of PARAMATTR block");
1586       break;
1587     }
1588     if (Code == bitc::DEFINE_ABBREV) {
1589       Stream.ReadAbbrevRecord();
1590       continue;
1591     }
1592     // Read a metadata attachment record.
1593     Record.clear();
1594     switch (Stream.ReadRecord(Code, Record)) {
1595     default:  // Default behavior: ignore.
1596       break;
1597     case bitc::METADATA_ATTACHMENT: {
1598       unsigned RecordLength = Record.size();
1599       if (Record.empty() || (RecordLength - 1) % 2 == 1)
1600         return Error ("Invalid METADATA_ATTACHMENT reader!");
1601       Instruction *Inst = InstructionList[Record[0]];
1602       for (unsigned i = 1; i != RecordLength; i = i+2) {
1603         unsigned Kind = Record[i];
1604         DenseMap<unsigned, unsigned>::iterator I =
1605           MDKindMap.find(Kind);
1606         if (I == MDKindMap.end())
1607           return Error("Invalid metadata kind ID");
1608         Value *Node = MDValueList.getValueFwdRef(Record[i+1]);
1609         Inst->setMetadata(I->second, cast<MDNode>(Node));
1610       }
1611       break;
1612     }
1613     }
1614   }
1615   return false;
1616 }
1617 
1618 /// ParseFunctionBody - Lazily parse the specified function body block.
1619 bool BitcodeReader::ParseFunctionBody(Function *F) {
1620   if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
1621     return Error("Malformed block record");
1622 
1623   InstructionList.clear();
1624   unsigned ModuleValueListSize = ValueList.size();
1625   unsigned ModuleMDValueListSize = MDValueList.size();
1626 
1627   // Add all the function arguments to the value table.
1628   for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
1629     ValueList.push_back(I);
1630 
1631   unsigned NextValueNo = ValueList.size();
1632   BasicBlock *CurBB = 0;
1633   unsigned CurBBNo = 0;
1634 
1635   DebugLoc LastLoc;
1636 
1637   // Read all the records.
1638   SmallVector<uint64_t, 64> Record;
1639   while (1) {
1640     unsigned Code = Stream.ReadCode();
1641     if (Code == bitc::END_BLOCK) {
1642       if (Stream.ReadBlockEnd())
1643         return Error("Error at end of function block");
1644       break;
1645     }
1646 
1647     if (Code == bitc::ENTER_SUBBLOCK) {
1648       switch (Stream.ReadSubBlockID()) {
1649       default:  // Skip unknown content.
1650         if (Stream.SkipBlock())
1651           return Error("Malformed block record");
1652         break;
1653       case bitc::CONSTANTS_BLOCK_ID:
1654         if (ParseConstants()) return true;
1655         NextValueNo = ValueList.size();
1656         break;
1657       case bitc::VALUE_SYMTAB_BLOCK_ID:
1658         if (ParseValueSymbolTable()) return true;
1659         break;
1660       case bitc::METADATA_ATTACHMENT_ID:
1661         if (ParseMetadataAttachment()) return true;
1662         break;
1663       case bitc::METADATA_BLOCK_ID:
1664         if (ParseMetadata()) return true;
1665         break;
1666       }
1667       continue;
1668     }
1669 
1670     if (Code == bitc::DEFINE_ABBREV) {
1671       Stream.ReadAbbrevRecord();
1672       continue;
1673     }
1674 
1675     // Read a record.
1676     Record.clear();
1677     Instruction *I = 0;
1678     unsigned BitCode = Stream.ReadRecord(Code, Record);
1679     switch (BitCode) {
1680     default: // Default behavior: reject
1681       return Error("Unknown instruction");
1682     case bitc::FUNC_CODE_DECLAREBLOCKS:     // DECLAREBLOCKS: [nblocks]
1683       if (Record.size() < 1 || Record[0] == 0)
1684         return Error("Invalid DECLAREBLOCKS record");
1685       // Create all the basic blocks for the function.
1686       FunctionBBs.resize(Record[0]);
1687       for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
1688         FunctionBBs[i] = BasicBlock::Create(Context, "", F);
1689       CurBB = FunctionBBs[0];
1690       continue;
1691 
1692 
1693     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
1694       // This record indicates that the last instruction is at the same
1695       // location as the previous instruction with a location.
1696       I = 0;
1697 
1698       // Get the last instruction emitted.
1699       if (CurBB && !CurBB->empty())
1700         I = &CurBB->back();
1701       else if (CurBBNo && FunctionBBs[CurBBNo-1] &&
1702                !FunctionBBs[CurBBNo-1]->empty())
1703         I = &FunctionBBs[CurBBNo-1]->back();
1704 
1705       if (I == 0) return Error("Invalid DEBUG_LOC_AGAIN record");
1706       I->setDebugLoc(LastLoc);
1707       I = 0;
1708       continue;
1709 
1710     case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
1711       I = 0;     // Get the last instruction emitted.
1712       if (CurBB && !CurBB->empty())
1713         I = &CurBB->back();
1714       else if (CurBBNo && FunctionBBs[CurBBNo-1] &&
1715                !FunctionBBs[CurBBNo-1]->empty())
1716         I = &FunctionBBs[CurBBNo-1]->back();
1717       if (I == 0 || Record.size() < 4)
1718         return Error("Invalid FUNC_CODE_DEBUG_LOC record");
1719 
1720       unsigned Line = Record[0], Col = Record[1];
1721       unsigned ScopeID = Record[2], IAID = Record[3];
1722 
1723       MDNode *Scope = 0, *IA = 0;
1724       if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1));
1725       if (IAID)    IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1));
1726       LastLoc = DebugLoc::get(Line, Col, Scope, IA);
1727       I->setDebugLoc(LastLoc);
1728       I = 0;
1729       continue;
1730     }
1731 
1732     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
1733       unsigned OpNum = 0;
1734       Value *LHS, *RHS;
1735       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
1736           getValue(Record, OpNum, LHS->getType(), RHS) ||
1737           OpNum+1 > Record.size())
1738         return Error("Invalid BINOP record");
1739 
1740       int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
1741       if (Opc == -1) return Error("Invalid BINOP record");
1742       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
1743       InstructionList.push_back(I);
1744       if (OpNum < Record.size()) {
1745         if (Opc == Instruction::Add ||
1746             Opc == Instruction::Sub ||
1747             Opc == Instruction::Mul) {
1748           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
1749             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
1750           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
1751             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
1752         } else if (Opc == Instruction::SDiv) {
1753           if (Record[OpNum] & (1 << bitc::SDIV_EXACT))
1754             cast<BinaryOperator>(I)->setIsExact(true);
1755         }
1756       }
1757       break;
1758     }
1759     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
1760       unsigned OpNum = 0;
1761       Value *Op;
1762       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
1763           OpNum+2 != Record.size())
1764         return Error("Invalid CAST record");
1765 
1766       const Type *ResTy = getTypeByID(Record[OpNum]);
1767       int Opc = GetDecodedCastOpcode(Record[OpNum+1]);
1768       if (Opc == -1 || ResTy == 0)
1769         return Error("Invalid CAST record");
1770       I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy);
1771       InstructionList.push_back(I);
1772       break;
1773     }
1774     case bitc::FUNC_CODE_INST_INBOUNDS_GEP:
1775     case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands]
1776       unsigned OpNum = 0;
1777       Value *BasePtr;
1778       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
1779         return Error("Invalid GEP record");
1780 
1781       SmallVector<Value*, 16> GEPIdx;
1782       while (OpNum != Record.size()) {
1783         Value *Op;
1784         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
1785           return Error("Invalid GEP record");
1786         GEPIdx.push_back(Op);
1787       }
1788 
1789       I = GetElementPtrInst::Create(BasePtr, GEPIdx.begin(), GEPIdx.end());
1790       InstructionList.push_back(I);
1791       if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP)
1792         cast<GetElementPtrInst>(I)->setIsInBounds(true);
1793       break;
1794     }
1795 
1796     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
1797                                        // EXTRACTVAL: [opty, opval, n x indices]
1798       unsigned OpNum = 0;
1799       Value *Agg;
1800       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
1801         return Error("Invalid EXTRACTVAL record");
1802 
1803       SmallVector<unsigned, 4> EXTRACTVALIdx;
1804       for (unsigned RecSize = Record.size();
1805            OpNum != RecSize; ++OpNum) {
1806         uint64_t Index = Record[OpNum];
1807         if ((unsigned)Index != Index)
1808           return Error("Invalid EXTRACTVAL index");
1809         EXTRACTVALIdx.push_back((unsigned)Index);
1810       }
1811 
1812       I = ExtractValueInst::Create(Agg,
1813                                    EXTRACTVALIdx.begin(), EXTRACTVALIdx.end());
1814       InstructionList.push_back(I);
1815       break;
1816     }
1817 
1818     case bitc::FUNC_CODE_INST_INSERTVAL: {
1819                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
1820       unsigned OpNum = 0;
1821       Value *Agg;
1822       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
1823         return Error("Invalid INSERTVAL record");
1824       Value *Val;
1825       if (getValueTypePair(Record, OpNum, NextValueNo, Val))
1826         return Error("Invalid INSERTVAL record");
1827 
1828       SmallVector<unsigned, 4> INSERTVALIdx;
1829       for (unsigned RecSize = Record.size();
1830            OpNum != RecSize; ++OpNum) {
1831         uint64_t Index = Record[OpNum];
1832         if ((unsigned)Index != Index)
1833           return Error("Invalid INSERTVAL index");
1834         INSERTVALIdx.push_back((unsigned)Index);
1835       }
1836 
1837       I = InsertValueInst::Create(Agg, Val,
1838                                   INSERTVALIdx.begin(), INSERTVALIdx.end());
1839       InstructionList.push_back(I);
1840       break;
1841     }
1842 
1843     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
1844       // obsolete form of select
1845       // handles select i1 ... in old bitcode
1846       unsigned OpNum = 0;
1847       Value *TrueVal, *FalseVal, *Cond;
1848       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
1849           getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
1850           getValue(Record, OpNum, Type::getInt1Ty(Context), Cond))
1851         return Error("Invalid SELECT record");
1852 
1853       I = SelectInst::Create(Cond, TrueVal, FalseVal);
1854       InstructionList.push_back(I);
1855       break;
1856     }
1857 
1858     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
1859       // new form of select
1860       // handles select i1 or select [N x i1]
1861       unsigned OpNum = 0;
1862       Value *TrueVal, *FalseVal, *Cond;
1863       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
1864           getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
1865           getValueTypePair(Record, OpNum, NextValueNo, Cond))
1866         return Error("Invalid SELECT record");
1867 
1868       // select condition can be either i1 or [N x i1]
1869       if (const VectorType* vector_type =
1870           dyn_cast<const VectorType>(Cond->getType())) {
1871         // expect <n x i1>
1872         if (vector_type->getElementType() != Type::getInt1Ty(Context))
1873           return Error("Invalid SELECT condition type");
1874       } else {
1875         // expect i1
1876         if (Cond->getType() != Type::getInt1Ty(Context))
1877           return Error("Invalid SELECT condition type");
1878       }
1879 
1880       I = SelectInst::Create(Cond, TrueVal, FalseVal);
1881       InstructionList.push_back(I);
1882       break;
1883     }
1884 
1885     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
1886       unsigned OpNum = 0;
1887       Value *Vec, *Idx;
1888       if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
1889           getValue(Record, OpNum, Type::getInt32Ty(Context), Idx))
1890         return Error("Invalid EXTRACTELT record");
1891       I = ExtractElementInst::Create(Vec, Idx);
1892       InstructionList.push_back(I);
1893       break;
1894     }
1895 
1896     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
1897       unsigned OpNum = 0;
1898       Value *Vec, *Elt, *Idx;
1899       if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
1900           getValue(Record, OpNum,
1901                    cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
1902           getValue(Record, OpNum, Type::getInt32Ty(Context), Idx))
1903         return Error("Invalid INSERTELT record");
1904       I = InsertElementInst::Create(Vec, Elt, Idx);
1905       InstructionList.push_back(I);
1906       break;
1907     }
1908 
1909     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
1910       unsigned OpNum = 0;
1911       Value *Vec1, *Vec2, *Mask;
1912       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
1913           getValue(Record, OpNum, Vec1->getType(), Vec2))
1914         return Error("Invalid SHUFFLEVEC record");
1915 
1916       if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
1917         return Error("Invalid SHUFFLEVEC record");
1918       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
1919       InstructionList.push_back(I);
1920       break;
1921     }
1922 
1923     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
1924       // Old form of ICmp/FCmp returning bool
1925       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
1926       // both legal on vectors but had different behaviour.
1927     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
1928       // FCmp/ICmp returning bool or vector of bool
1929 
1930       unsigned OpNum = 0;
1931       Value *LHS, *RHS;
1932       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
1933           getValue(Record, OpNum, LHS->getType(), RHS) ||
1934           OpNum+1 != Record.size())
1935         return Error("Invalid CMP record");
1936 
1937       if (LHS->getType()->isFPOrFPVectorTy())
1938         I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS);
1939       else
1940         I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS);
1941       InstructionList.push_back(I);
1942       break;
1943     }
1944 
1945     case bitc::FUNC_CODE_INST_GETRESULT: { // GETRESULT: [ty, val, n]
1946       if (Record.size() != 2)
1947         return Error("Invalid GETRESULT record");
1948       unsigned OpNum = 0;
1949       Value *Op;
1950       getValueTypePair(Record, OpNum, NextValueNo, Op);
1951       unsigned Index = Record[1];
1952       I = ExtractValueInst::Create(Op, Index);
1953       InstructionList.push_back(I);
1954       break;
1955     }
1956 
1957     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
1958       {
1959         unsigned Size = Record.size();
1960         if (Size == 0) {
1961           I = ReturnInst::Create(Context);
1962           InstructionList.push_back(I);
1963           break;
1964         }
1965 
1966         unsigned OpNum = 0;
1967         SmallVector<Value *,4> Vs;
1968         do {
1969           Value *Op = NULL;
1970           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
1971             return Error("Invalid RET record");
1972           Vs.push_back(Op);
1973         } while(OpNum != Record.size());
1974 
1975         const Type *ReturnType = F->getReturnType();
1976         // Handle multiple return values. FIXME: Remove in LLVM 3.0.
1977         if (Vs.size() > 1 ||
1978             (ReturnType->isStructTy() &&
1979              (Vs.empty() || Vs[0]->getType() != ReturnType))) {
1980           Value *RV = UndefValue::get(ReturnType);
1981           for (unsigned i = 0, e = Vs.size(); i != e; ++i) {
1982             I = InsertValueInst::Create(RV, Vs[i], i, "mrv");
1983             InstructionList.push_back(I);
1984             CurBB->getInstList().push_back(I);
1985             ValueList.AssignValue(I, NextValueNo++);
1986             RV = I;
1987           }
1988           I = ReturnInst::Create(Context, RV);
1989           InstructionList.push_back(I);
1990           break;
1991         }
1992 
1993         I = ReturnInst::Create(Context, Vs[0]);
1994         InstructionList.push_back(I);
1995         break;
1996       }
1997     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
1998       if (Record.size() != 1 && Record.size() != 3)
1999         return Error("Invalid BR record");
2000       BasicBlock *TrueDest = getBasicBlock(Record[0]);
2001       if (TrueDest == 0)
2002         return Error("Invalid BR record");
2003 
2004       if (Record.size() == 1) {
2005         I = BranchInst::Create(TrueDest);
2006         InstructionList.push_back(I);
2007       }
2008       else {
2009         BasicBlock *FalseDest = getBasicBlock(Record[1]);
2010         Value *Cond = getFnValueByID(Record[2], Type::getInt1Ty(Context));
2011         if (FalseDest == 0 || Cond == 0)
2012           return Error("Invalid BR record");
2013         I = BranchInst::Create(TrueDest, FalseDest, Cond);
2014         InstructionList.push_back(I);
2015       }
2016       break;
2017     }
2018     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
2019       if (Record.size() < 3 || (Record.size() & 1) == 0)
2020         return Error("Invalid SWITCH record");
2021       const Type *OpTy = getTypeByID(Record[0]);
2022       Value *Cond = getFnValueByID(Record[1], OpTy);
2023       BasicBlock *Default = getBasicBlock(Record[2]);
2024       if (OpTy == 0 || Cond == 0 || Default == 0)
2025         return Error("Invalid SWITCH record");
2026       unsigned NumCases = (Record.size()-3)/2;
2027       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
2028       InstructionList.push_back(SI);
2029       for (unsigned i = 0, e = NumCases; i != e; ++i) {
2030         ConstantInt *CaseVal =
2031           dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
2032         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
2033         if (CaseVal == 0 || DestBB == 0) {
2034           delete SI;
2035           return Error("Invalid SWITCH record!");
2036         }
2037         SI->addCase(CaseVal, DestBB);
2038       }
2039       I = SI;
2040       break;
2041     }
2042     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
2043       if (Record.size() < 2)
2044         return Error("Invalid INDIRECTBR record");
2045       const Type *OpTy = getTypeByID(Record[0]);
2046       Value *Address = getFnValueByID(Record[1], OpTy);
2047       if (OpTy == 0 || Address == 0)
2048         return Error("Invalid INDIRECTBR record");
2049       unsigned NumDests = Record.size()-2;
2050       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
2051       InstructionList.push_back(IBI);
2052       for (unsigned i = 0, e = NumDests; i != e; ++i) {
2053         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
2054           IBI->addDestination(DestBB);
2055         } else {
2056           delete IBI;
2057           return Error("Invalid INDIRECTBR record!");
2058         }
2059       }
2060       I = IBI;
2061       break;
2062     }
2063 
2064     case bitc::FUNC_CODE_INST_INVOKE: {
2065       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
2066       if (Record.size() < 4) return Error("Invalid INVOKE record");
2067       AttrListPtr PAL = getAttributes(Record[0]);
2068       unsigned CCInfo = Record[1];
2069       BasicBlock *NormalBB = getBasicBlock(Record[2]);
2070       BasicBlock *UnwindBB = getBasicBlock(Record[3]);
2071 
2072       unsigned OpNum = 4;
2073       Value *Callee;
2074       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
2075         return Error("Invalid INVOKE record");
2076 
2077       const PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
2078       const FunctionType *FTy = !CalleeTy ? 0 :
2079         dyn_cast<FunctionType>(CalleeTy->getElementType());
2080 
2081       // Check that the right number of fixed parameters are here.
2082       if (FTy == 0 || NormalBB == 0 || UnwindBB == 0 ||
2083           Record.size() < OpNum+FTy->getNumParams())
2084         return Error("Invalid INVOKE record");
2085 
2086       SmallVector<Value*, 16> Ops;
2087       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
2088         Ops.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
2089         if (Ops.back() == 0) return Error("Invalid INVOKE record");
2090       }
2091 
2092       if (!FTy->isVarArg()) {
2093         if (Record.size() != OpNum)
2094           return Error("Invalid INVOKE record");
2095       } else {
2096         // Read type/value pairs for varargs params.
2097         while (OpNum != Record.size()) {
2098           Value *Op;
2099           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2100             return Error("Invalid INVOKE record");
2101           Ops.push_back(Op);
2102         }
2103       }
2104 
2105       I = InvokeInst::Create(Callee, NormalBB, UnwindBB,
2106                              Ops.begin(), Ops.end());
2107       InstructionList.push_back(I);
2108       cast<InvokeInst>(I)->setCallingConv(
2109         static_cast<CallingConv::ID>(CCInfo));
2110       cast<InvokeInst>(I)->setAttributes(PAL);
2111       break;
2112     }
2113     case bitc::FUNC_CODE_INST_UNWIND: // UNWIND
2114       I = new UnwindInst(Context);
2115       InstructionList.push_back(I);
2116       break;
2117     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
2118       I = new UnreachableInst(Context);
2119       InstructionList.push_back(I);
2120       break;
2121     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
2122       if (Record.size() < 1 || ((Record.size()-1)&1))
2123         return Error("Invalid PHI record");
2124       const Type *Ty = getTypeByID(Record[0]);
2125       if (!Ty) return Error("Invalid PHI record");
2126 
2127       PHINode *PN = PHINode::Create(Ty);
2128       InstructionList.push_back(PN);
2129       PN->reserveOperandSpace((Record.size()-1)/2);
2130 
2131       for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
2132         Value *V = getFnValueByID(Record[1+i], Ty);
2133         BasicBlock *BB = getBasicBlock(Record[2+i]);
2134         if (!V || !BB) return Error("Invalid PHI record");
2135         PN->addIncoming(V, BB);
2136       }
2137       I = PN;
2138       break;
2139     }
2140 
2141     case bitc::FUNC_CODE_INST_MALLOC: { // MALLOC: [instty, op, align]
2142       // Autoupgrade malloc instruction to malloc call.
2143       // FIXME: Remove in LLVM 3.0.
2144       if (Record.size() < 3)
2145         return Error("Invalid MALLOC record");
2146       const PointerType *Ty =
2147         dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
2148       Value *Size = getFnValueByID(Record[1], Type::getInt32Ty(Context));
2149       if (!Ty || !Size) return Error("Invalid MALLOC record");
2150       if (!CurBB) return Error("Invalid malloc instruction with no BB");
2151       const Type *Int32Ty = IntegerType::getInt32Ty(CurBB->getContext());
2152       Constant *AllocSize = ConstantExpr::getSizeOf(Ty->getElementType());
2153       AllocSize = ConstantExpr::getTruncOrBitCast(AllocSize, Int32Ty);
2154       I = CallInst::CreateMalloc(CurBB, Int32Ty, Ty->getElementType(),
2155                                  AllocSize, Size, NULL);
2156       InstructionList.push_back(I);
2157       break;
2158     }
2159     case bitc::FUNC_CODE_INST_FREE: { // FREE: [op, opty]
2160       unsigned OpNum = 0;
2161       Value *Op;
2162       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2163           OpNum != Record.size())
2164         return Error("Invalid FREE record");
2165       if (!CurBB) return Error("Invalid free instruction with no BB");
2166       I = CallInst::CreateFree(Op, CurBB);
2167       InstructionList.push_back(I);
2168       break;
2169     }
2170     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
2171       // For backward compatibility, tolerate a lack of an opty, and use i32.
2172       // LLVM 3.0: Remove this.
2173       if (Record.size() < 3 || Record.size() > 4)
2174         return Error("Invalid ALLOCA record");
2175       unsigned OpNum = 0;
2176       const PointerType *Ty =
2177         dyn_cast_or_null<PointerType>(getTypeByID(Record[OpNum++]));
2178       const Type *OpTy = Record.size() == 4 ? getTypeByID(Record[OpNum++]) :
2179                                               Type::getInt32Ty(Context);
2180       Value *Size = getFnValueByID(Record[OpNum++], OpTy);
2181       unsigned Align = Record[OpNum++];
2182       if (!Ty || !Size) return Error("Invalid ALLOCA record");
2183       I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1);
2184       InstructionList.push_back(I);
2185       break;
2186     }
2187     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
2188       unsigned OpNum = 0;
2189       Value *Op;
2190       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2191           OpNum+2 != Record.size())
2192         return Error("Invalid LOAD record");
2193 
2194       I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2195       InstructionList.push_back(I);
2196       break;
2197     }
2198     case bitc::FUNC_CODE_INST_STORE2: { // STORE2:[ptrty, ptr, val, align, vol]
2199       unsigned OpNum = 0;
2200       Value *Val, *Ptr;
2201       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
2202           getValue(Record, OpNum,
2203                     cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
2204           OpNum+2 != Record.size())
2205         return Error("Invalid STORE record");
2206 
2207       I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2208       InstructionList.push_back(I);
2209       break;
2210     }
2211     case bitc::FUNC_CODE_INST_STORE: { // STORE:[val, valty, ptr, align, vol]
2212       // FIXME: Legacy form of store instruction. Should be removed in LLVM 3.0.
2213       unsigned OpNum = 0;
2214       Value *Val, *Ptr;
2215       if (getValueTypePair(Record, OpNum, NextValueNo, Val) ||
2216           getValue(Record, OpNum,
2217                    PointerType::getUnqual(Val->getType()), Ptr)||
2218           OpNum+2 != Record.size())
2219         return Error("Invalid STORE record");
2220 
2221       I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2222       InstructionList.push_back(I);
2223       break;
2224     }
2225     case bitc::FUNC_CODE_INST_CALL: {
2226       // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...]
2227       if (Record.size() < 3)
2228         return Error("Invalid CALL record");
2229 
2230       AttrListPtr PAL = getAttributes(Record[0]);
2231       unsigned CCInfo = Record[1];
2232 
2233       unsigned OpNum = 2;
2234       Value *Callee;
2235       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
2236         return Error("Invalid CALL record");
2237 
2238       const PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
2239       const FunctionType *FTy = 0;
2240       if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType());
2241       if (!FTy || Record.size() < FTy->getNumParams()+OpNum)
2242         return Error("Invalid CALL record");
2243 
2244       SmallVector<Value*, 16> Args;
2245       // Read the fixed params.
2246       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
2247         if (FTy->getParamType(i)->getTypeID()==Type::LabelTyID)
2248           Args.push_back(getBasicBlock(Record[OpNum]));
2249         else
2250           Args.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
2251         if (Args.back() == 0) return Error("Invalid CALL record");
2252       }
2253 
2254       // Read type/value pairs for varargs params.
2255       if (!FTy->isVarArg()) {
2256         if (OpNum != Record.size())
2257           return Error("Invalid CALL record");
2258       } else {
2259         while (OpNum != Record.size()) {
2260           Value *Op;
2261           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2262             return Error("Invalid CALL record");
2263           Args.push_back(Op);
2264         }
2265       }
2266 
2267       I = CallInst::Create(Callee, Args.begin(), Args.end());
2268       InstructionList.push_back(I);
2269       cast<CallInst>(I)->setCallingConv(
2270         static_cast<CallingConv::ID>(CCInfo>>1));
2271       cast<CallInst>(I)->setTailCall(CCInfo & 1);
2272       cast<CallInst>(I)->setAttributes(PAL);
2273       break;
2274     }
2275     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
2276       if (Record.size() < 3)
2277         return Error("Invalid VAARG record");
2278       const Type *OpTy = getTypeByID(Record[0]);
2279       Value *Op = getFnValueByID(Record[1], OpTy);
2280       const Type *ResTy = getTypeByID(Record[2]);
2281       if (!OpTy || !Op || !ResTy)
2282         return Error("Invalid VAARG record");
2283       I = new VAArgInst(Op, ResTy);
2284       InstructionList.push_back(I);
2285       break;
2286     }
2287     }
2288 
2289     // Add instruction to end of current BB.  If there is no current BB, reject
2290     // this file.
2291     if (CurBB == 0) {
2292       delete I;
2293       return Error("Invalid instruction with no BB");
2294     }
2295     CurBB->getInstList().push_back(I);
2296 
2297     // If this was a terminator instruction, move to the next block.
2298     if (isa<TerminatorInst>(I)) {
2299       ++CurBBNo;
2300       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : 0;
2301     }
2302 
2303     // Non-void values get registered in the value table for future use.
2304     if (I && !I->getType()->isVoidTy())
2305       ValueList.AssignValue(I, NextValueNo++);
2306   }
2307 
2308   // Check the function list for unresolved values.
2309   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
2310     if (A->getParent() == 0) {
2311       // We found at least one unresolved value.  Nuke them all to avoid leaks.
2312       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
2313         if ((A = dyn_cast<Argument>(ValueList[i])) && A->getParent() == 0) {
2314           A->replaceAllUsesWith(UndefValue::get(A->getType()));
2315           delete A;
2316         }
2317       }
2318       return Error("Never resolved value found in function!");
2319     }
2320   }
2321 
2322   // FIXME: Check for unresolved forward-declared metadata references
2323   // and clean up leaks.
2324 
2325   // See if anything took the address of blocks in this function.  If so,
2326   // resolve them now.
2327   DenseMap<Function*, std::vector<BlockAddrRefTy> >::iterator BAFRI =
2328     BlockAddrFwdRefs.find(F);
2329   if (BAFRI != BlockAddrFwdRefs.end()) {
2330     std::vector<BlockAddrRefTy> &RefList = BAFRI->second;
2331     for (unsigned i = 0, e = RefList.size(); i != e; ++i) {
2332       unsigned BlockIdx = RefList[i].first;
2333       if (BlockIdx >= FunctionBBs.size())
2334         return Error("Invalid blockaddress block #");
2335 
2336       GlobalVariable *FwdRef = RefList[i].second;
2337       FwdRef->replaceAllUsesWith(BlockAddress::get(F, FunctionBBs[BlockIdx]));
2338       FwdRef->eraseFromParent();
2339     }
2340 
2341     BlockAddrFwdRefs.erase(BAFRI);
2342   }
2343 
2344   // Trim the value list down to the size it was before we parsed this function.
2345   ValueList.shrinkTo(ModuleValueListSize);
2346   MDValueList.shrinkTo(ModuleMDValueListSize);
2347   std::vector<BasicBlock*>().swap(FunctionBBs);
2348 
2349   return false;
2350 }
2351 
2352 //===----------------------------------------------------------------------===//
2353 // GVMaterializer implementation
2354 //===----------------------------------------------------------------------===//
2355 
2356 
2357 bool BitcodeReader::isMaterializable(const GlobalValue *GV) const {
2358   if (const Function *F = dyn_cast<Function>(GV)) {
2359     return F->isDeclaration() &&
2360       DeferredFunctionInfo.count(const_cast<Function*>(F));
2361   }
2362   return false;
2363 }
2364 
2365 bool BitcodeReader::Materialize(GlobalValue *GV, std::string *ErrInfo) {
2366   Function *F = dyn_cast<Function>(GV);
2367   // If it's not a function or is already material, ignore the request.
2368   if (!F || !F->isMaterializable()) return false;
2369 
2370   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
2371   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
2372 
2373   // Move the bit stream to the saved position of the deferred function body.
2374   Stream.JumpToBit(DFII->second);
2375 
2376   if (ParseFunctionBody(F)) {
2377     if (ErrInfo) *ErrInfo = ErrorString;
2378     return true;
2379   }
2380 
2381   // Upgrade any old intrinsic calls in the function.
2382   for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(),
2383        E = UpgradedIntrinsics.end(); I != E; ++I) {
2384     if (I->first != I->second) {
2385       for (Value::use_iterator UI = I->first->use_begin(),
2386            UE = I->first->use_end(); UI != UE; ) {
2387         if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2388           UpgradeIntrinsicCall(CI, I->second);
2389       }
2390     }
2391   }
2392 
2393   return false;
2394 }
2395 
2396 bool BitcodeReader::isDematerializable(const GlobalValue *GV) const {
2397   const Function *F = dyn_cast<Function>(GV);
2398   if (!F || F->isDeclaration())
2399     return false;
2400   return DeferredFunctionInfo.count(const_cast<Function*>(F));
2401 }
2402 
2403 void BitcodeReader::Dematerialize(GlobalValue *GV) {
2404   Function *F = dyn_cast<Function>(GV);
2405   // If this function isn't dematerializable, this is a noop.
2406   if (!F || !isDematerializable(F))
2407     return;
2408 
2409   assert(DeferredFunctionInfo.count(F) && "No info to read function later?");
2410 
2411   // Just forget the function body, we can remat it later.
2412   F->deleteBody();
2413 }
2414 
2415 
2416 bool BitcodeReader::MaterializeModule(Module *M, std::string *ErrInfo) {
2417   assert(M == TheModule &&
2418          "Can only Materialize the Module this BitcodeReader is attached to.");
2419   // Iterate over the module, deserializing any functions that are still on
2420   // disk.
2421   for (Module::iterator F = TheModule->begin(), E = TheModule->end();
2422        F != E; ++F)
2423     if (F->isMaterializable() &&
2424         Materialize(F, ErrInfo))
2425       return true;
2426 
2427   // Upgrade any intrinsic calls that slipped through (should not happen!) and
2428   // delete the old functions to clean up. We can't do this unless the entire
2429   // module is materialized because there could always be another function body
2430   // with calls to the old function.
2431   for (std::vector<std::pair<Function*, Function*> >::iterator I =
2432        UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) {
2433     if (I->first != I->second) {
2434       for (Value::use_iterator UI = I->first->use_begin(),
2435            UE = I->first->use_end(); UI != UE; ) {
2436         if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2437           UpgradeIntrinsicCall(CI, I->second);
2438       }
2439       if (!I->first->use_empty())
2440         I->first->replaceAllUsesWith(I->second);
2441       I->first->eraseFromParent();
2442     }
2443   }
2444   std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics);
2445 
2446   // Check debug info intrinsics.
2447   CheckDebugInfoIntrinsics(TheModule);
2448 
2449   return false;
2450 }
2451 
2452 
2453 //===----------------------------------------------------------------------===//
2454 // External interface
2455 //===----------------------------------------------------------------------===//
2456 
2457 /// getLazyBitcodeModule - lazy function-at-a-time loading from a file.
2458 ///
2459 Module *llvm::getLazyBitcodeModule(MemoryBuffer *Buffer,
2460                                    LLVMContext& Context,
2461                                    std::string *ErrMsg) {
2462   Module *M = new Module(Buffer->getBufferIdentifier(), Context);
2463   BitcodeReader *R = new BitcodeReader(Buffer, Context);
2464   M->setMaterializer(R);
2465   if (R->ParseBitcodeInto(M)) {
2466     if (ErrMsg)
2467       *ErrMsg = R->getErrorString();
2468 
2469     delete M;  // Also deletes R.
2470     return 0;
2471   }
2472   // Have the BitcodeReader dtor delete 'Buffer'.
2473   R->setBufferOwned(true);
2474   return M;
2475 }
2476 
2477 /// ParseBitcodeFile - Read the specified bitcode file, returning the module.
2478 /// If an error occurs, return null and fill in *ErrMsg if non-null.
2479 Module *llvm::ParseBitcodeFile(MemoryBuffer *Buffer, LLVMContext& Context,
2480                                std::string *ErrMsg){
2481   Module *M = getLazyBitcodeModule(Buffer, Context, ErrMsg);
2482   if (!M) return 0;
2483 
2484   // Don't let the BitcodeReader dtor delete 'Buffer', regardless of whether
2485   // there was an error.
2486   static_cast<BitcodeReader*>(M->getMaterializer())->setBufferOwned(false);
2487 
2488   // Read in the entire module, and destroy the BitcodeReader.
2489   if (M->MaterializeAllPermanently(ErrMsg)) {
2490     delete M;
2491     return NULL;
2492   }
2493   return M;
2494 }
2495