1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Bitcode/BitcodeReader.h" 10 #include "MetadataLoader.h" 11 #include "ValueList.h" 12 #include "llvm/ADT/APFloat.h" 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/StringRef.h" 21 #include "llvm/ADT/Triple.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/Bitcode/BitcodeCommon.h" 24 #include "llvm/Bitcode/LLVMBitCodes.h" 25 #include "llvm/Bitstream/BitstreamReader.h" 26 #include "llvm/Config/llvm-config.h" 27 #include "llvm/IR/Argument.h" 28 #include "llvm/IR/Attributes.h" 29 #include "llvm/IR/AutoUpgrade.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/CallingConv.h" 32 #include "llvm/IR/Comdat.h" 33 #include "llvm/IR/Constant.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/DebugInfo.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GVMaterializer.h" 42 #include "llvm/IR/GetElementPtrTypeIterator.h" 43 #include "llvm/IR/GlobalAlias.h" 44 #include "llvm/IR/GlobalIFunc.h" 45 #include "llvm/IR/GlobalObject.h" 46 #include "llvm/IR/GlobalValue.h" 47 #include "llvm/IR/GlobalVariable.h" 48 #include "llvm/IR/InlineAsm.h" 49 #include "llvm/IR/InstIterator.h" 50 #include "llvm/IR/InstrTypes.h" 51 #include "llvm/IR/Instruction.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/IntrinsicsAArch64.h" 55 #include "llvm/IR/IntrinsicsARM.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/Metadata.h" 58 #include "llvm/IR/Module.h" 59 #include "llvm/IR/ModuleSummaryIndex.h" 60 #include "llvm/IR/Operator.h" 61 #include "llvm/IR/Type.h" 62 #include "llvm/IR/Value.h" 63 #include "llvm/IR/Verifier.h" 64 #include "llvm/Support/AtomicOrdering.h" 65 #include "llvm/Support/Casting.h" 66 #include "llvm/Support/CommandLine.h" 67 #include "llvm/Support/Compiler.h" 68 #include "llvm/Support/Debug.h" 69 #include "llvm/Support/Error.h" 70 #include "llvm/Support/ErrorHandling.h" 71 #include "llvm/Support/ErrorOr.h" 72 #include "llvm/Support/ManagedStatic.h" 73 #include "llvm/Support/MathExtras.h" 74 #include "llvm/Support/MemoryBuffer.h" 75 #include "llvm/Support/raw_ostream.h" 76 #include <algorithm> 77 #include <cassert> 78 #include <cstddef> 79 #include <cstdint> 80 #include <deque> 81 #include <map> 82 #include <memory> 83 #include <set> 84 #include <string> 85 #include <system_error> 86 #include <tuple> 87 #include <utility> 88 #include <vector> 89 90 using namespace llvm; 91 92 static cl::opt<bool> PrintSummaryGUIDs( 93 "print-summary-global-ids", cl::init(false), cl::Hidden, 94 cl::desc( 95 "Print the global id for each value when reading the module summary")); 96 97 static cl::opt<bool> ExpandConstantExprs( 98 "expand-constant-exprs", cl::Hidden, 99 cl::desc( 100 "Expand constant expressions to instructions for testing purposes")); 101 102 namespace { 103 104 enum { 105 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 106 }; 107 108 } // end anonymous namespace 109 110 static Error error(const Twine &Message) { 111 return make_error<StringError>( 112 Message, make_error_code(BitcodeError::CorruptedBitcode)); 113 } 114 115 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) { 116 if (!Stream.canSkipToPos(4)) 117 return createStringError(std::errc::illegal_byte_sequence, 118 "file too small to contain bitcode header"); 119 for (unsigned C : {'B', 'C'}) 120 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) { 121 if (Res.get() != C) 122 return createStringError(std::errc::illegal_byte_sequence, 123 "file doesn't start with bitcode header"); 124 } else 125 return Res.takeError(); 126 for (unsigned C : {0x0, 0xC, 0xE, 0xD}) 127 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) { 128 if (Res.get() != C) 129 return createStringError(std::errc::illegal_byte_sequence, 130 "file doesn't start with bitcode header"); 131 } else 132 return Res.takeError(); 133 return Error::success(); 134 } 135 136 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) { 137 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart(); 138 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize(); 139 140 if (Buffer.getBufferSize() & 3) 141 return error("Invalid bitcode signature"); 142 143 // If we have a wrapper header, parse it and ignore the non-bc file contents. 144 // The magic number is 0x0B17C0DE stored in little endian. 145 if (isBitcodeWrapper(BufPtr, BufEnd)) 146 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 147 return error("Invalid bitcode wrapper header"); 148 149 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd)); 150 if (Error Err = hasInvalidBitcodeHeader(Stream)) 151 return std::move(Err); 152 153 return std::move(Stream); 154 } 155 156 /// Convert a string from a record into an std::string, return true on failure. 157 template <typename StrTy> 158 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 159 StrTy &Result) { 160 if (Idx > Record.size()) 161 return true; 162 163 Result.append(Record.begin() + Idx, Record.end()); 164 return false; 165 } 166 167 // Strip all the TBAA attachment for the module. 168 static void stripTBAA(Module *M) { 169 for (auto &F : *M) { 170 if (F.isMaterializable()) 171 continue; 172 for (auto &I : instructions(F)) 173 I.setMetadata(LLVMContext::MD_tbaa, nullptr); 174 } 175 } 176 177 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the 178 /// "epoch" encoded in the bitcode, and return the producer name if any. 179 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) { 180 if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 181 return std::move(Err); 182 183 // Read all the records. 184 SmallVector<uint64_t, 64> Record; 185 186 std::string ProducerIdentification; 187 188 while (true) { 189 BitstreamEntry Entry; 190 if (Error E = Stream.advance().moveInto(Entry)) 191 return std::move(E); 192 193 switch (Entry.Kind) { 194 default: 195 case BitstreamEntry::Error: 196 return error("Malformed block"); 197 case BitstreamEntry::EndBlock: 198 return ProducerIdentification; 199 case BitstreamEntry::Record: 200 // The interesting case. 201 break; 202 } 203 204 // Read a record. 205 Record.clear(); 206 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 207 if (!MaybeBitCode) 208 return MaybeBitCode.takeError(); 209 switch (MaybeBitCode.get()) { 210 default: // Default behavior: reject 211 return error("Invalid value"); 212 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N] 213 convertToString(Record, 0, ProducerIdentification); 214 break; 215 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 216 unsigned epoch = (unsigned)Record[0]; 217 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 218 return error( 219 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 220 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 221 } 222 } 223 } 224 } 225 } 226 227 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) { 228 // We expect a number of well-defined blocks, though we don't necessarily 229 // need to understand them all. 230 while (true) { 231 if (Stream.AtEndOfStream()) 232 return ""; 233 234 BitstreamEntry Entry; 235 if (Error E = Stream.advance().moveInto(Entry)) 236 return std::move(E); 237 238 switch (Entry.Kind) { 239 case BitstreamEntry::EndBlock: 240 case BitstreamEntry::Error: 241 return error("Malformed block"); 242 243 case BitstreamEntry::SubBlock: 244 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) 245 return readIdentificationBlock(Stream); 246 247 // Ignore other sub-blocks. 248 if (Error Err = Stream.SkipBlock()) 249 return std::move(Err); 250 continue; 251 case BitstreamEntry::Record: 252 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 253 return std::move(E); 254 continue; 255 } 256 } 257 } 258 259 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) { 260 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 261 return std::move(Err); 262 263 SmallVector<uint64_t, 64> Record; 264 // Read all the records for this module. 265 266 while (true) { 267 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 268 if (!MaybeEntry) 269 return MaybeEntry.takeError(); 270 BitstreamEntry Entry = MaybeEntry.get(); 271 272 switch (Entry.Kind) { 273 case BitstreamEntry::SubBlock: // Handled for us already. 274 case BitstreamEntry::Error: 275 return error("Malformed block"); 276 case BitstreamEntry::EndBlock: 277 return false; 278 case BitstreamEntry::Record: 279 // The interesting case. 280 break; 281 } 282 283 // Read a record. 284 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 285 if (!MaybeRecord) 286 return MaybeRecord.takeError(); 287 switch (MaybeRecord.get()) { 288 default: 289 break; // Default behavior, ignore unknown content. 290 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 291 std::string S; 292 if (convertToString(Record, 0, S)) 293 return error("Invalid section name record"); 294 // Check for the i386 and other (x86_64, ARM) conventions 295 if (S.find("__DATA,__objc_catlist") != std::string::npos || 296 S.find("__OBJC,__category") != std::string::npos) 297 return true; 298 break; 299 } 300 } 301 Record.clear(); 302 } 303 llvm_unreachable("Exit infinite loop"); 304 } 305 306 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) { 307 // We expect a number of well-defined blocks, though we don't necessarily 308 // need to understand them all. 309 while (true) { 310 BitstreamEntry Entry; 311 if (Error E = Stream.advance().moveInto(Entry)) 312 return std::move(E); 313 314 switch (Entry.Kind) { 315 case BitstreamEntry::Error: 316 return error("Malformed block"); 317 case BitstreamEntry::EndBlock: 318 return false; 319 320 case BitstreamEntry::SubBlock: 321 if (Entry.ID == bitc::MODULE_BLOCK_ID) 322 return hasObjCCategoryInModule(Stream); 323 324 // Ignore other sub-blocks. 325 if (Error Err = Stream.SkipBlock()) 326 return std::move(Err); 327 continue; 328 329 case BitstreamEntry::Record: 330 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 331 return std::move(E); 332 continue; 333 } 334 } 335 } 336 337 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) { 338 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 339 return std::move(Err); 340 341 SmallVector<uint64_t, 64> Record; 342 343 std::string Triple; 344 345 // Read all the records for this module. 346 while (true) { 347 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 348 if (!MaybeEntry) 349 return MaybeEntry.takeError(); 350 BitstreamEntry Entry = MaybeEntry.get(); 351 352 switch (Entry.Kind) { 353 case BitstreamEntry::SubBlock: // Handled for us already. 354 case BitstreamEntry::Error: 355 return error("Malformed block"); 356 case BitstreamEntry::EndBlock: 357 return Triple; 358 case BitstreamEntry::Record: 359 // The interesting case. 360 break; 361 } 362 363 // Read a record. 364 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 365 if (!MaybeRecord) 366 return MaybeRecord.takeError(); 367 switch (MaybeRecord.get()) { 368 default: break; // Default behavior, ignore unknown content. 369 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 370 std::string S; 371 if (convertToString(Record, 0, S)) 372 return error("Invalid triple record"); 373 Triple = S; 374 break; 375 } 376 } 377 Record.clear(); 378 } 379 llvm_unreachable("Exit infinite loop"); 380 } 381 382 static Expected<std::string> readTriple(BitstreamCursor &Stream) { 383 // We expect a number of well-defined blocks, though we don't necessarily 384 // need to understand them all. 385 while (true) { 386 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 387 if (!MaybeEntry) 388 return MaybeEntry.takeError(); 389 BitstreamEntry Entry = MaybeEntry.get(); 390 391 switch (Entry.Kind) { 392 case BitstreamEntry::Error: 393 return error("Malformed block"); 394 case BitstreamEntry::EndBlock: 395 return ""; 396 397 case BitstreamEntry::SubBlock: 398 if (Entry.ID == bitc::MODULE_BLOCK_ID) 399 return readModuleTriple(Stream); 400 401 // Ignore other sub-blocks. 402 if (Error Err = Stream.SkipBlock()) 403 return std::move(Err); 404 continue; 405 406 case BitstreamEntry::Record: 407 if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 408 continue; 409 else 410 return Skipped.takeError(); 411 } 412 } 413 } 414 415 namespace { 416 417 class BitcodeReaderBase { 418 protected: 419 BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab) 420 : Stream(std::move(Stream)), Strtab(Strtab) { 421 this->Stream.setBlockInfo(&BlockInfo); 422 } 423 424 BitstreamBlockInfo BlockInfo; 425 BitstreamCursor Stream; 426 StringRef Strtab; 427 428 /// In version 2 of the bitcode we store names of global values and comdats in 429 /// a string table rather than in the VST. 430 bool UseStrtab = false; 431 432 Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record); 433 434 /// If this module uses a string table, pop the reference to the string table 435 /// and return the referenced string and the rest of the record. Otherwise 436 /// just return the record itself. 437 std::pair<StringRef, ArrayRef<uint64_t>> 438 readNameFromStrtab(ArrayRef<uint64_t> Record); 439 440 Error readBlockInfo(); 441 442 // Contains an arbitrary and optional string identifying the bitcode producer 443 std::string ProducerIdentification; 444 445 Error error(const Twine &Message); 446 }; 447 448 } // end anonymous namespace 449 450 Error BitcodeReaderBase::error(const Twine &Message) { 451 std::string FullMsg = Message.str(); 452 if (!ProducerIdentification.empty()) 453 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " + 454 LLVM_VERSION_STRING "')"; 455 return ::error(FullMsg); 456 } 457 458 Expected<unsigned> 459 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) { 460 if (Record.empty()) 461 return error("Invalid version record"); 462 unsigned ModuleVersion = Record[0]; 463 if (ModuleVersion > 2) 464 return error("Invalid value"); 465 UseStrtab = ModuleVersion >= 2; 466 return ModuleVersion; 467 } 468 469 std::pair<StringRef, ArrayRef<uint64_t>> 470 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) { 471 if (!UseStrtab) 472 return {"", Record}; 473 // Invalid reference. Let the caller complain about the record being empty. 474 if (Record[0] + Record[1] > Strtab.size()) 475 return {"", {}}; 476 return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)}; 477 } 478 479 namespace { 480 481 /// This represents a constant expression or constant aggregate using a custom 482 /// structure internal to the bitcode reader. Later, this structure will be 483 /// expanded by materializeValue() either into a constant expression/aggregate, 484 /// or into an instruction sequence at the point of use. This allows us to 485 /// upgrade bitcode using constant expressions even if this kind of constant 486 /// expression is no longer supported. 487 class BitcodeConstant final : public Value, 488 TrailingObjects<BitcodeConstant, unsigned> { 489 friend TrailingObjects; 490 491 // Value subclass ID: Pick largest possible value to avoid any clashes. 492 static constexpr uint8_t SubclassID = 255; 493 494 public: 495 // Opcodes used for non-expressions. This includes constant aggregates 496 // (struct, array, vector) that might need expansion, as well as non-leaf 497 // constants that don't need expansion (no_cfi, dso_local, blockaddress), 498 // but still go through BitcodeConstant to avoid different uselist orders 499 // between the two cases. 500 static constexpr uint8_t ConstantStructOpcode = 255; 501 static constexpr uint8_t ConstantArrayOpcode = 254; 502 static constexpr uint8_t ConstantVectorOpcode = 253; 503 static constexpr uint8_t NoCFIOpcode = 252; 504 static constexpr uint8_t DSOLocalEquivalentOpcode = 251; 505 static constexpr uint8_t BlockAddressOpcode = 250; 506 static constexpr uint8_t FirstSpecialOpcode = BlockAddressOpcode; 507 508 // Separate struct to make passing different number of parameters to 509 // BitcodeConstant::create() more convenient. 510 struct ExtraInfo { 511 uint8_t Opcode; 512 uint8_t Flags; 513 unsigned Extra; 514 Type *SrcElemTy; 515 516 ExtraInfo(uint8_t Opcode, uint8_t Flags = 0, unsigned Extra = 0, 517 Type *SrcElemTy = nullptr) 518 : Opcode(Opcode), Flags(Flags), Extra(Extra), SrcElemTy(SrcElemTy) {} 519 }; 520 521 uint8_t Opcode; 522 uint8_t Flags; 523 unsigned NumOperands; 524 unsigned Extra; // GEP inrange index or blockaddress BB id. 525 Type *SrcElemTy; // GEP source element type. 526 527 private: 528 BitcodeConstant(Type *Ty, const ExtraInfo &Info, ArrayRef<unsigned> OpIDs) 529 : Value(Ty, SubclassID), Opcode(Info.Opcode), Flags(Info.Flags), 530 NumOperands(OpIDs.size()), Extra(Info.Extra), 531 SrcElemTy(Info.SrcElemTy) { 532 std::uninitialized_copy(OpIDs.begin(), OpIDs.end(), 533 getTrailingObjects<unsigned>()); 534 } 535 536 BitcodeConstant &operator=(const BitcodeConstant &) = delete; 537 538 public: 539 static BitcodeConstant *create(BumpPtrAllocator &A, Type *Ty, 540 const ExtraInfo &Info, 541 ArrayRef<unsigned> OpIDs) { 542 void *Mem = A.Allocate(totalSizeToAlloc<unsigned>(OpIDs.size()), 543 alignof(BitcodeConstant)); 544 return new (Mem) BitcodeConstant(Ty, Info, OpIDs); 545 } 546 547 static bool classof(const Value *V) { return V->getValueID() == SubclassID; } 548 549 ArrayRef<unsigned> getOperandIDs() const { 550 return makeArrayRef(getTrailingObjects<unsigned>(), NumOperands); 551 } 552 553 Optional<unsigned> getInRangeIndex() const { 554 assert(Opcode == Instruction::GetElementPtr); 555 if (Extra == (unsigned)-1) 556 return None; 557 return Extra; 558 } 559 560 const char *getOpcodeName() const { 561 return Instruction::getOpcodeName(Opcode); 562 } 563 }; 564 565 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer { 566 LLVMContext &Context; 567 Module *TheModule = nullptr; 568 // Next offset to start scanning for lazy parsing of function bodies. 569 uint64_t NextUnreadBit = 0; 570 // Last function offset found in the VST. 571 uint64_t LastFunctionBlockBit = 0; 572 bool SeenValueSymbolTable = false; 573 uint64_t VSTOffset = 0; 574 575 std::vector<std::string> SectionTable; 576 std::vector<std::string> GCTable; 577 578 std::vector<Type *> TypeList; 579 /// Track type IDs of contained types. Order is the same as the contained 580 /// types of a Type*. This is used during upgrades of typed pointer IR in 581 /// opaque pointer mode. 582 DenseMap<unsigned, SmallVector<unsigned, 1>> ContainedTypeIDs; 583 /// In some cases, we need to create a type ID for a type that was not 584 /// explicitly encoded in the bitcode, or we don't know about at the current 585 /// point. For example, a global may explicitly encode the value type ID, but 586 /// not have a type ID for the pointer to value type, for which we create a 587 /// virtual type ID instead. This map stores the new type ID that was created 588 /// for the given pair of Type and contained type ID. 589 DenseMap<std::pair<Type *, unsigned>, unsigned> VirtualTypeIDs; 590 DenseMap<Function *, unsigned> FunctionTypeIDs; 591 /// Allocator for BitcodeConstants. This should come before ValueList, 592 /// because the ValueList might hold ValueHandles to these constants, so 593 /// ValueList must be destroyed before Alloc. 594 BumpPtrAllocator Alloc; 595 BitcodeReaderValueList ValueList; 596 Optional<MetadataLoader> MDLoader; 597 std::vector<Comdat *> ComdatList; 598 DenseSet<GlobalObject *> ImplicitComdatObjects; 599 SmallVector<Instruction *, 64> InstructionList; 600 601 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits; 602 std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInits; 603 604 struct FunctionOperandInfo { 605 Function *F; 606 unsigned PersonalityFn; 607 unsigned Prefix; 608 unsigned Prologue; 609 }; 610 std::vector<FunctionOperandInfo> FunctionOperands; 611 612 /// The set of attributes by index. Index zero in the file is for null, and 613 /// is thus not represented here. As such all indices are off by one. 614 std::vector<AttributeList> MAttributes; 615 616 /// The set of attribute groups. 617 std::map<unsigned, AttributeList> MAttributeGroups; 618 619 /// While parsing a function body, this is a list of the basic blocks for the 620 /// function. 621 std::vector<BasicBlock*> FunctionBBs; 622 623 // When reading the module header, this list is populated with functions that 624 // have bodies later in the file. 625 std::vector<Function*> FunctionsWithBodies; 626 627 // When intrinsic functions are encountered which require upgrading they are 628 // stored here with their replacement function. 629 using UpdatedIntrinsicMap = DenseMap<Function *, Function *>; 630 UpdatedIntrinsicMap UpgradedIntrinsics; 631 // Intrinsics which were remangled because of types rename 632 UpdatedIntrinsicMap RemangledIntrinsics; 633 634 // Several operations happen after the module header has been read, but 635 // before function bodies are processed. This keeps track of whether 636 // we've done this yet. 637 bool SeenFirstFunctionBody = false; 638 639 /// When function bodies are initially scanned, this map contains info about 640 /// where to find deferred function body in the stream. 641 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 642 643 /// When Metadata block is initially scanned when parsing the module, we may 644 /// choose to defer parsing of the metadata. This vector contains info about 645 /// which Metadata blocks are deferred. 646 std::vector<uint64_t> DeferredMetadataInfo; 647 648 /// These are basic blocks forward-referenced by block addresses. They are 649 /// inserted lazily into functions when they're loaded. The basic block ID is 650 /// its index into the vector. 651 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 652 std::deque<Function *> BasicBlockFwdRefQueue; 653 654 /// These are Functions that contain BlockAddresses which refer a different 655 /// Function. When parsing the different Function, queue Functions that refer 656 /// to the different Function. Those Functions must be materialized in order 657 /// to resolve their BlockAddress constants before the different Function 658 /// gets moved into another Module. 659 std::vector<Function *> BackwardRefFunctions; 660 661 /// Indicates that we are using a new encoding for instruction operands where 662 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 663 /// instruction number, for a more compact encoding. Some instruction 664 /// operands are not relative to the instruction ID: basic block numbers, and 665 /// types. Once the old style function blocks have been phased out, we would 666 /// not need this flag. 667 bool UseRelativeIDs = false; 668 669 /// True if all functions will be materialized, negating the need to process 670 /// (e.g.) blockaddress forward references. 671 bool WillMaterializeAllForwardRefs = false; 672 673 bool StripDebugInfo = false; 674 TBAAVerifier TBAAVerifyHelper; 675 676 std::vector<std::string> BundleTags; 677 SmallVector<SyncScope::ID, 8> SSIDs; 678 679 public: 680 BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 681 StringRef ProducerIdentification, LLVMContext &Context); 682 683 Error materializeForwardReferencedFunctions(); 684 685 Error materialize(GlobalValue *GV) override; 686 Error materializeModule() override; 687 std::vector<StructType *> getIdentifiedStructTypes() const override; 688 689 /// Main interface to parsing a bitcode buffer. 690 /// \returns true if an error occurred. 691 Error parseBitcodeInto( 692 Module *M, bool ShouldLazyLoadMetadata, bool IsImporting, 693 DataLayoutCallbackTy DataLayoutCallback); 694 695 static uint64_t decodeSignRotatedValue(uint64_t V); 696 697 /// Materialize any deferred Metadata block. 698 Error materializeMetadata() override; 699 700 void setStripDebugInfo() override; 701 702 private: 703 std::vector<StructType *> IdentifiedStructTypes; 704 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 705 StructType *createIdentifiedStructType(LLVMContext &Context); 706 707 static constexpr unsigned InvalidTypeID = ~0u; 708 709 Type *getTypeByID(unsigned ID); 710 Type *getPtrElementTypeByID(unsigned ID); 711 unsigned getContainedTypeID(unsigned ID, unsigned Idx = 0); 712 unsigned getVirtualTypeID(Type *Ty, ArrayRef<unsigned> ContainedTypeIDs = {}); 713 714 Expected<Value *> materializeValue(unsigned ValID, BasicBlock *InsertBB); 715 Expected<Constant *> getValueForInitializer(unsigned ID); 716 717 Value *getFnValueByID(unsigned ID, Type *Ty, unsigned TyID, 718 BasicBlock *ConstExprInsertBB) { 719 if (Ty && Ty->isMetadataTy()) 720 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 721 return ValueList.getValueFwdRef(ID, Ty, TyID, ConstExprInsertBB); 722 } 723 724 Metadata *getFnMetadataByID(unsigned ID) { 725 return MDLoader->getMetadataFwdRefOrLoad(ID); 726 } 727 728 BasicBlock *getBasicBlock(unsigned ID) const { 729 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 730 return FunctionBBs[ID]; 731 } 732 733 AttributeList getAttributes(unsigned i) const { 734 if (i-1 < MAttributes.size()) 735 return MAttributes[i-1]; 736 return AttributeList(); 737 } 738 739 /// Read a value/type pair out of the specified record from slot 'Slot'. 740 /// Increment Slot past the number of slots used in the record. Return true on 741 /// failure. 742 bool getValueTypePair(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 743 unsigned InstNum, Value *&ResVal, unsigned &TypeID, 744 BasicBlock *ConstExprInsertBB) { 745 if (Slot == Record.size()) return true; 746 unsigned ValNo = (unsigned)Record[Slot++]; 747 // Adjust the ValNo, if it was encoded relative to the InstNum. 748 if (UseRelativeIDs) 749 ValNo = InstNum - ValNo; 750 if (ValNo < InstNum) { 751 // If this is not a forward reference, just return the value we already 752 // have. 753 TypeID = ValueList.getTypeID(ValNo); 754 ResVal = getFnValueByID(ValNo, nullptr, TypeID, ConstExprInsertBB); 755 assert((!ResVal || ResVal->getType() == getTypeByID(TypeID)) && 756 "Incorrect type ID stored for value"); 757 return ResVal == nullptr; 758 } 759 if (Slot == Record.size()) 760 return true; 761 762 TypeID = (unsigned)Record[Slot++]; 763 ResVal = getFnValueByID(ValNo, getTypeByID(TypeID), TypeID, 764 ConstExprInsertBB); 765 return ResVal == nullptr; 766 } 767 768 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 769 /// past the number of slots used by the value in the record. Return true if 770 /// there is an error. 771 bool popValue(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 772 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal, 773 BasicBlock *ConstExprInsertBB) { 774 if (getValue(Record, Slot, InstNum, Ty, TyID, ResVal, ConstExprInsertBB)) 775 return true; 776 // All values currently take a single record slot. 777 ++Slot; 778 return false; 779 } 780 781 /// Like popValue, but does not increment the Slot number. 782 bool getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 783 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal, 784 BasicBlock *ConstExprInsertBB) { 785 ResVal = getValue(Record, Slot, InstNum, Ty, TyID, ConstExprInsertBB); 786 return ResVal == nullptr; 787 } 788 789 /// Version of getValue that returns ResVal directly, or 0 if there is an 790 /// error. 791 Value *getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 792 unsigned InstNum, Type *Ty, unsigned TyID, 793 BasicBlock *ConstExprInsertBB) { 794 if (Slot == Record.size()) return nullptr; 795 unsigned ValNo = (unsigned)Record[Slot]; 796 // Adjust the ValNo, if it was encoded relative to the InstNum. 797 if (UseRelativeIDs) 798 ValNo = InstNum - ValNo; 799 return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB); 800 } 801 802 /// Like getValue, but decodes signed VBRs. 803 Value *getValueSigned(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 804 unsigned InstNum, Type *Ty, unsigned TyID, 805 BasicBlock *ConstExprInsertBB) { 806 if (Slot == Record.size()) return nullptr; 807 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 808 // Adjust the ValNo, if it was encoded relative to the InstNum. 809 if (UseRelativeIDs) 810 ValNo = InstNum - ValNo; 811 return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB); 812 } 813 814 /// Upgrades old-style typeless byval/sret/inalloca attributes by adding the 815 /// corresponding argument's pointee type. Also upgrades intrinsics that now 816 /// require an elementtype attribute. 817 Error propagateAttributeTypes(CallBase *CB, ArrayRef<unsigned> ArgsTys); 818 819 /// Converts alignment exponent (i.e. power of two (or zero)) to the 820 /// corresponding alignment to use. If alignment is too large, returns 821 /// a corresponding error code. 822 Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment); 823 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 824 Error parseModule( 825 uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false, 826 DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; }); 827 828 Error parseComdatRecord(ArrayRef<uint64_t> Record); 829 Error parseGlobalVarRecord(ArrayRef<uint64_t> Record); 830 Error parseFunctionRecord(ArrayRef<uint64_t> Record); 831 Error parseGlobalIndirectSymbolRecord(unsigned BitCode, 832 ArrayRef<uint64_t> Record); 833 834 Error parseAttributeBlock(); 835 Error parseAttributeGroupBlock(); 836 Error parseTypeTable(); 837 Error parseTypeTableBody(); 838 Error parseOperandBundleTags(); 839 Error parseSyncScopeNames(); 840 841 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 842 unsigned NameIndex, Triple &TT); 843 void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F, 844 ArrayRef<uint64_t> Record); 845 Error parseValueSymbolTable(uint64_t Offset = 0); 846 Error parseGlobalValueSymbolTable(); 847 Error parseConstants(); 848 Error rememberAndSkipFunctionBodies(); 849 Error rememberAndSkipFunctionBody(); 850 /// Save the positions of the Metadata blocks and skip parsing the blocks. 851 Error rememberAndSkipMetadata(); 852 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType); 853 Error parseFunctionBody(Function *F); 854 Error globalCleanup(); 855 Error resolveGlobalAndIndirectSymbolInits(); 856 Error parseUseLists(); 857 Error findFunctionInStream( 858 Function *F, 859 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 860 861 SyncScope::ID getDecodedSyncScopeID(unsigned Val); 862 }; 863 864 /// Class to manage reading and parsing function summary index bitcode 865 /// files/sections. 866 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase { 867 /// The module index built during parsing. 868 ModuleSummaryIndex &TheIndex; 869 870 /// Indicates whether we have encountered a global value summary section 871 /// yet during parsing. 872 bool SeenGlobalValSummary = false; 873 874 /// Indicates whether we have already parsed the VST, used for error checking. 875 bool SeenValueSymbolTable = false; 876 877 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 878 /// Used to enable on-demand parsing of the VST. 879 uint64_t VSTOffset = 0; 880 881 // Map to save ValueId to ValueInfo association that was recorded in the 882 // ValueSymbolTable. It is used after the VST is parsed to convert 883 // call graph edges read from the function summary from referencing 884 // callees by their ValueId to using the ValueInfo instead, which is how 885 // they are recorded in the summary index being built. 886 // We save a GUID which refers to the same global as the ValueInfo, but 887 // ignoring the linkage, i.e. for values other than local linkage they are 888 // identical. 889 DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>> 890 ValueIdToValueInfoMap; 891 892 /// Map populated during module path string table parsing, from the 893 /// module ID to a string reference owned by the index's module 894 /// path string table, used to correlate with combined index 895 /// summary records. 896 DenseMap<uint64_t, StringRef> ModuleIdMap; 897 898 /// Original source file name recorded in a bitcode record. 899 std::string SourceFileName; 900 901 /// The string identifier given to this module by the client, normally the 902 /// path to the bitcode file. 903 StringRef ModulePath; 904 905 /// For per-module summary indexes, the unique numerical identifier given to 906 /// this module by the client. 907 unsigned ModuleId; 908 909 public: 910 ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab, 911 ModuleSummaryIndex &TheIndex, 912 StringRef ModulePath, unsigned ModuleId); 913 914 Error parseModule(); 915 916 private: 917 void setValueGUID(uint64_t ValueID, StringRef ValueName, 918 GlobalValue::LinkageTypes Linkage, 919 StringRef SourceFileName); 920 Error parseValueSymbolTable( 921 uint64_t Offset, 922 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 923 std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record); 924 std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record, 925 bool IsOldProfileFormat, 926 bool HasProfile, 927 bool HasRelBF); 928 Error parseEntireSummary(unsigned ID); 929 Error parseModuleStringTable(); 930 void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record); 931 void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot, 932 TypeIdCompatibleVtableInfo &TypeId); 933 std::vector<FunctionSummary::ParamAccess> 934 parseParamAccesses(ArrayRef<uint64_t> Record); 935 936 std::pair<ValueInfo, GlobalValue::GUID> 937 getValueInfoFromValueId(unsigned ValueId); 938 939 void addThisModule(); 940 ModuleSummaryIndex::ModuleInfo *getThisModule(); 941 }; 942 943 } // end anonymous namespace 944 945 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx, 946 Error Err) { 947 if (Err) { 948 std::error_code EC; 949 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) { 950 EC = EIB.convertToErrorCode(); 951 Ctx.emitError(EIB.message()); 952 }); 953 return EC; 954 } 955 return std::error_code(); 956 } 957 958 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 959 StringRef ProducerIdentification, 960 LLVMContext &Context) 961 : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context), 962 ValueList(this->Stream.SizeInBytes(), 963 [this](unsigned ValID, BasicBlock *InsertBB) { 964 return materializeValue(ValID, InsertBB); 965 }) { 966 this->ProducerIdentification = std::string(ProducerIdentification); 967 } 968 969 Error BitcodeReader::materializeForwardReferencedFunctions() { 970 if (WillMaterializeAllForwardRefs) 971 return Error::success(); 972 973 // Prevent recursion. 974 WillMaterializeAllForwardRefs = true; 975 976 while (!BasicBlockFwdRefQueue.empty()) { 977 Function *F = BasicBlockFwdRefQueue.front(); 978 BasicBlockFwdRefQueue.pop_front(); 979 assert(F && "Expected valid function"); 980 if (!BasicBlockFwdRefs.count(F)) 981 // Already materialized. 982 continue; 983 984 // Check for a function that isn't materializable to prevent an infinite 985 // loop. When parsing a blockaddress stored in a global variable, there 986 // isn't a trivial way to check if a function will have a body without a 987 // linear search through FunctionsWithBodies, so just check it here. 988 if (!F->isMaterializable()) 989 return error("Never resolved function from blockaddress"); 990 991 // Try to materialize F. 992 if (Error Err = materialize(F)) 993 return Err; 994 } 995 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 996 997 for (Function *F : BackwardRefFunctions) 998 if (Error Err = materialize(F)) 999 return Err; 1000 BackwardRefFunctions.clear(); 1001 1002 // Reset state. 1003 WillMaterializeAllForwardRefs = false; 1004 return Error::success(); 1005 } 1006 1007 //===----------------------------------------------------------------------===// 1008 // Helper functions to implement forward reference resolution, etc. 1009 //===----------------------------------------------------------------------===// 1010 1011 static bool hasImplicitComdat(size_t Val) { 1012 switch (Val) { 1013 default: 1014 return false; 1015 case 1: // Old WeakAnyLinkage 1016 case 4: // Old LinkOnceAnyLinkage 1017 case 10: // Old WeakODRLinkage 1018 case 11: // Old LinkOnceODRLinkage 1019 return true; 1020 } 1021 } 1022 1023 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 1024 switch (Val) { 1025 default: // Map unknown/new linkages to external 1026 case 0: 1027 return GlobalValue::ExternalLinkage; 1028 case 2: 1029 return GlobalValue::AppendingLinkage; 1030 case 3: 1031 return GlobalValue::InternalLinkage; 1032 case 5: 1033 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 1034 case 6: 1035 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 1036 case 7: 1037 return GlobalValue::ExternalWeakLinkage; 1038 case 8: 1039 return GlobalValue::CommonLinkage; 1040 case 9: 1041 return GlobalValue::PrivateLinkage; 1042 case 12: 1043 return GlobalValue::AvailableExternallyLinkage; 1044 case 13: 1045 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 1046 case 14: 1047 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 1048 case 15: 1049 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 1050 case 1: // Old value with implicit comdat. 1051 case 16: 1052 return GlobalValue::WeakAnyLinkage; 1053 case 10: // Old value with implicit comdat. 1054 case 17: 1055 return GlobalValue::WeakODRLinkage; 1056 case 4: // Old value with implicit comdat. 1057 case 18: 1058 return GlobalValue::LinkOnceAnyLinkage; 1059 case 11: // Old value with implicit comdat. 1060 case 19: 1061 return GlobalValue::LinkOnceODRLinkage; 1062 } 1063 } 1064 1065 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) { 1066 FunctionSummary::FFlags Flags; 1067 Flags.ReadNone = RawFlags & 0x1; 1068 Flags.ReadOnly = (RawFlags >> 1) & 0x1; 1069 Flags.NoRecurse = (RawFlags >> 2) & 0x1; 1070 Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1; 1071 Flags.NoInline = (RawFlags >> 4) & 0x1; 1072 Flags.AlwaysInline = (RawFlags >> 5) & 0x1; 1073 Flags.NoUnwind = (RawFlags >> 6) & 0x1; 1074 Flags.MayThrow = (RawFlags >> 7) & 0x1; 1075 Flags.HasUnknownCall = (RawFlags >> 8) & 0x1; 1076 Flags.MustBeUnreachable = (RawFlags >> 9) & 0x1; 1077 return Flags; 1078 } 1079 1080 // Decode the flags for GlobalValue in the summary. The bits for each attribute: 1081 // 1082 // linkage: [0,4), notEligibleToImport: 4, live: 5, local: 6, canAutoHide: 7, 1083 // visibility: [8, 10). 1084 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 1085 uint64_t Version) { 1086 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 1087 // like getDecodedLinkage() above. Any future change to the linkage enum and 1088 // to getDecodedLinkage() will need to be taken into account here as above. 1089 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 1090 auto Visibility = GlobalValue::VisibilityTypes((RawFlags >> 8) & 3); // 2 bits 1091 RawFlags = RawFlags >> 4; 1092 bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3; 1093 // The Live flag wasn't introduced until version 3. For dead stripping 1094 // to work correctly on earlier versions, we must conservatively treat all 1095 // values as live. 1096 bool Live = (RawFlags & 0x2) || Version < 3; 1097 bool Local = (RawFlags & 0x4); 1098 bool AutoHide = (RawFlags & 0x8); 1099 1100 return GlobalValueSummary::GVFlags(Linkage, Visibility, NotEligibleToImport, 1101 Live, Local, AutoHide); 1102 } 1103 1104 // Decode the flags for GlobalVariable in the summary 1105 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) { 1106 return GlobalVarSummary::GVarFlags( 1107 (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false, 1108 (RawFlags & 0x4) ? true : false, 1109 (GlobalObject::VCallVisibility)(RawFlags >> 3)); 1110 } 1111 1112 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 1113 switch (Val) { 1114 default: // Map unknown visibilities to default. 1115 case 0: return GlobalValue::DefaultVisibility; 1116 case 1: return GlobalValue::HiddenVisibility; 1117 case 2: return GlobalValue::ProtectedVisibility; 1118 } 1119 } 1120 1121 static GlobalValue::DLLStorageClassTypes 1122 getDecodedDLLStorageClass(unsigned Val) { 1123 switch (Val) { 1124 default: // Map unknown values to default. 1125 case 0: return GlobalValue::DefaultStorageClass; 1126 case 1: return GlobalValue::DLLImportStorageClass; 1127 case 2: return GlobalValue::DLLExportStorageClass; 1128 } 1129 } 1130 1131 static bool getDecodedDSOLocal(unsigned Val) { 1132 switch(Val) { 1133 default: // Map unknown values to preemptable. 1134 case 0: return false; 1135 case 1: return true; 1136 } 1137 } 1138 1139 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 1140 switch (Val) { 1141 case 0: return GlobalVariable::NotThreadLocal; 1142 default: // Map unknown non-zero value to general dynamic. 1143 case 1: return GlobalVariable::GeneralDynamicTLSModel; 1144 case 2: return GlobalVariable::LocalDynamicTLSModel; 1145 case 3: return GlobalVariable::InitialExecTLSModel; 1146 case 4: return GlobalVariable::LocalExecTLSModel; 1147 } 1148 } 1149 1150 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { 1151 switch (Val) { 1152 default: // Map unknown to UnnamedAddr::None. 1153 case 0: return GlobalVariable::UnnamedAddr::None; 1154 case 1: return GlobalVariable::UnnamedAddr::Global; 1155 case 2: return GlobalVariable::UnnamedAddr::Local; 1156 } 1157 } 1158 1159 static int getDecodedCastOpcode(unsigned Val) { 1160 switch (Val) { 1161 default: return -1; 1162 case bitc::CAST_TRUNC : return Instruction::Trunc; 1163 case bitc::CAST_ZEXT : return Instruction::ZExt; 1164 case bitc::CAST_SEXT : return Instruction::SExt; 1165 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 1166 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 1167 case bitc::CAST_UITOFP : return Instruction::UIToFP; 1168 case bitc::CAST_SITOFP : return Instruction::SIToFP; 1169 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 1170 case bitc::CAST_FPEXT : return Instruction::FPExt; 1171 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 1172 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 1173 case bitc::CAST_BITCAST : return Instruction::BitCast; 1174 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 1175 } 1176 } 1177 1178 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) { 1179 bool IsFP = Ty->isFPOrFPVectorTy(); 1180 // UnOps are only valid for int/fp or vector of int/fp types 1181 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1182 return -1; 1183 1184 switch (Val) { 1185 default: 1186 return -1; 1187 case bitc::UNOP_FNEG: 1188 return IsFP ? Instruction::FNeg : -1; 1189 } 1190 } 1191 1192 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 1193 bool IsFP = Ty->isFPOrFPVectorTy(); 1194 // BinOps are only valid for int/fp or vector of int/fp types 1195 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1196 return -1; 1197 1198 switch (Val) { 1199 default: 1200 return -1; 1201 case bitc::BINOP_ADD: 1202 return IsFP ? Instruction::FAdd : Instruction::Add; 1203 case bitc::BINOP_SUB: 1204 return IsFP ? Instruction::FSub : Instruction::Sub; 1205 case bitc::BINOP_MUL: 1206 return IsFP ? Instruction::FMul : Instruction::Mul; 1207 case bitc::BINOP_UDIV: 1208 return IsFP ? -1 : Instruction::UDiv; 1209 case bitc::BINOP_SDIV: 1210 return IsFP ? Instruction::FDiv : Instruction::SDiv; 1211 case bitc::BINOP_UREM: 1212 return IsFP ? -1 : Instruction::URem; 1213 case bitc::BINOP_SREM: 1214 return IsFP ? Instruction::FRem : Instruction::SRem; 1215 case bitc::BINOP_SHL: 1216 return IsFP ? -1 : Instruction::Shl; 1217 case bitc::BINOP_LSHR: 1218 return IsFP ? -1 : Instruction::LShr; 1219 case bitc::BINOP_ASHR: 1220 return IsFP ? -1 : Instruction::AShr; 1221 case bitc::BINOP_AND: 1222 return IsFP ? -1 : Instruction::And; 1223 case bitc::BINOP_OR: 1224 return IsFP ? -1 : Instruction::Or; 1225 case bitc::BINOP_XOR: 1226 return IsFP ? -1 : Instruction::Xor; 1227 } 1228 } 1229 1230 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 1231 switch (Val) { 1232 default: return AtomicRMWInst::BAD_BINOP; 1233 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 1234 case bitc::RMW_ADD: return AtomicRMWInst::Add; 1235 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 1236 case bitc::RMW_AND: return AtomicRMWInst::And; 1237 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 1238 case bitc::RMW_OR: return AtomicRMWInst::Or; 1239 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 1240 case bitc::RMW_MAX: return AtomicRMWInst::Max; 1241 case bitc::RMW_MIN: return AtomicRMWInst::Min; 1242 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 1243 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 1244 case bitc::RMW_FADD: return AtomicRMWInst::FAdd; 1245 case bitc::RMW_FSUB: return AtomicRMWInst::FSub; 1246 } 1247 } 1248 1249 static AtomicOrdering getDecodedOrdering(unsigned Val) { 1250 switch (Val) { 1251 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 1252 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 1253 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 1254 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 1255 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 1256 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 1257 default: // Map unknown orderings to sequentially-consistent. 1258 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 1259 } 1260 } 1261 1262 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 1263 switch (Val) { 1264 default: // Map unknown selection kinds to any. 1265 case bitc::COMDAT_SELECTION_KIND_ANY: 1266 return Comdat::Any; 1267 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 1268 return Comdat::ExactMatch; 1269 case bitc::COMDAT_SELECTION_KIND_LARGEST: 1270 return Comdat::Largest; 1271 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 1272 return Comdat::NoDeduplicate; 1273 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 1274 return Comdat::SameSize; 1275 } 1276 } 1277 1278 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 1279 FastMathFlags FMF; 1280 if (0 != (Val & bitc::UnsafeAlgebra)) 1281 FMF.setFast(); 1282 if (0 != (Val & bitc::AllowReassoc)) 1283 FMF.setAllowReassoc(); 1284 if (0 != (Val & bitc::NoNaNs)) 1285 FMF.setNoNaNs(); 1286 if (0 != (Val & bitc::NoInfs)) 1287 FMF.setNoInfs(); 1288 if (0 != (Val & bitc::NoSignedZeros)) 1289 FMF.setNoSignedZeros(); 1290 if (0 != (Val & bitc::AllowReciprocal)) 1291 FMF.setAllowReciprocal(); 1292 if (0 != (Val & bitc::AllowContract)) 1293 FMF.setAllowContract(true); 1294 if (0 != (Val & bitc::ApproxFunc)) 1295 FMF.setApproxFunc(); 1296 return FMF; 1297 } 1298 1299 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) { 1300 switch (Val) { 1301 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 1302 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 1303 } 1304 } 1305 1306 Type *BitcodeReader::getTypeByID(unsigned ID) { 1307 // The type table size is always specified correctly. 1308 if (ID >= TypeList.size()) 1309 return nullptr; 1310 1311 if (Type *Ty = TypeList[ID]) 1312 return Ty; 1313 1314 // If we have a forward reference, the only possible case is when it is to a 1315 // named struct. Just create a placeholder for now. 1316 return TypeList[ID] = createIdentifiedStructType(Context); 1317 } 1318 1319 unsigned BitcodeReader::getContainedTypeID(unsigned ID, unsigned Idx) { 1320 auto It = ContainedTypeIDs.find(ID); 1321 if (It == ContainedTypeIDs.end()) 1322 return InvalidTypeID; 1323 1324 if (Idx >= It->second.size()) 1325 return InvalidTypeID; 1326 1327 return It->second[Idx]; 1328 } 1329 1330 Type *BitcodeReader::getPtrElementTypeByID(unsigned ID) { 1331 if (ID >= TypeList.size()) 1332 return nullptr; 1333 1334 Type *Ty = TypeList[ID]; 1335 if (!Ty->isPointerTy()) 1336 return nullptr; 1337 1338 Type *ElemTy = getTypeByID(getContainedTypeID(ID, 0)); 1339 if (!ElemTy) 1340 return nullptr; 1341 1342 assert(cast<PointerType>(Ty)->isOpaqueOrPointeeTypeMatches(ElemTy) && 1343 "Incorrect element type"); 1344 return ElemTy; 1345 } 1346 1347 unsigned BitcodeReader::getVirtualTypeID(Type *Ty, 1348 ArrayRef<unsigned> ChildTypeIDs) { 1349 unsigned ChildTypeID = ChildTypeIDs.empty() ? InvalidTypeID : ChildTypeIDs[0]; 1350 auto CacheKey = std::make_pair(Ty, ChildTypeID); 1351 auto It = VirtualTypeIDs.find(CacheKey); 1352 if (It != VirtualTypeIDs.end()) { 1353 // The cmpxchg return value is the only place we need more than one 1354 // contained type ID, however the second one will always be the same (i1), 1355 // so we don't need to include it in the cache key. This asserts that the 1356 // contained types are indeed as expected and there are no collisions. 1357 assert((ChildTypeIDs.empty() || 1358 ContainedTypeIDs[It->second] == ChildTypeIDs) && 1359 "Incorrect cached contained type IDs"); 1360 return It->second; 1361 } 1362 1363 #ifndef NDEBUG 1364 if (!Ty->isOpaquePointerTy()) { 1365 assert(Ty->getNumContainedTypes() == ChildTypeIDs.size() && 1366 "Wrong number of contained types"); 1367 for (auto Pair : zip(Ty->subtypes(), ChildTypeIDs)) { 1368 assert(std::get<0>(Pair) == getTypeByID(std::get<1>(Pair)) && 1369 "Incorrect contained type ID"); 1370 } 1371 } 1372 #endif 1373 1374 unsigned TypeID = TypeList.size(); 1375 TypeList.push_back(Ty); 1376 if (!ChildTypeIDs.empty()) 1377 append_range(ContainedTypeIDs[TypeID], ChildTypeIDs); 1378 VirtualTypeIDs.insert({CacheKey, TypeID}); 1379 return TypeID; 1380 } 1381 1382 static bool isConstExprSupported(uint8_t Opcode) { 1383 // These are not real constant expressions, always consider them supported. 1384 if (Opcode >= BitcodeConstant::FirstSpecialOpcode) 1385 return true; 1386 1387 return !ExpandConstantExprs; 1388 } 1389 1390 Expected<Value *> BitcodeReader::materializeValue(unsigned StartValID, 1391 BasicBlock *InsertBB) { 1392 // Quickly handle the case where there is no BitcodeConstant to resolve. 1393 if (StartValID < ValueList.size() && ValueList[StartValID] && 1394 !isa<BitcodeConstant>(ValueList[StartValID])) 1395 return ValueList[StartValID]; 1396 1397 SmallDenseMap<unsigned, Value *> MaterializedValues; 1398 SmallVector<unsigned> Worklist; 1399 Worklist.push_back(StartValID); 1400 while (!Worklist.empty()) { 1401 unsigned ValID = Worklist.back(); 1402 if (MaterializedValues.count(ValID)) { 1403 // Duplicate expression that was already handled. 1404 Worklist.pop_back(); 1405 continue; 1406 } 1407 1408 if (ValID >= ValueList.size() || !ValueList[ValID]) 1409 return error("Invalid value ID"); 1410 1411 Value *V = ValueList[ValID]; 1412 auto *BC = dyn_cast<BitcodeConstant>(V); 1413 if (!BC) { 1414 MaterializedValues.insert({ValID, V}); 1415 Worklist.pop_back(); 1416 continue; 1417 } 1418 1419 // Iterate in reverse, so values will get popped from the worklist in 1420 // expected order. 1421 SmallVector<Value *> Ops; 1422 for (unsigned OpID : reverse(BC->getOperandIDs())) { 1423 auto It = MaterializedValues.find(OpID); 1424 if (It != MaterializedValues.end()) 1425 Ops.push_back(It->second); 1426 else 1427 Worklist.push_back(OpID); 1428 } 1429 1430 // Some expressions have not been resolved yet, handle them first and then 1431 // revisit this one. 1432 if (Ops.size() != BC->getOperandIDs().size()) 1433 continue; 1434 std::reverse(Ops.begin(), Ops.end()); 1435 1436 SmallVector<Constant *> ConstOps; 1437 for (Value *Op : Ops) 1438 if (auto *C = dyn_cast<Constant>(Op)) 1439 ConstOps.push_back(C); 1440 1441 // Materialize as constant expression if possible. 1442 if (isConstExprSupported(BC->Opcode) && ConstOps.size() == Ops.size()) { 1443 Constant *C; 1444 if (Instruction::isCast(BC->Opcode)) { 1445 C = UpgradeBitCastExpr(BC->Opcode, ConstOps[0], BC->getType()); 1446 if (!C) 1447 C = ConstantExpr::getCast(BC->Opcode, ConstOps[0], BC->getType()); 1448 } else if (Instruction::isUnaryOp(BC->Opcode)) { 1449 C = ConstantExpr::get(BC->Opcode, ConstOps[0], BC->Flags); 1450 } else if (Instruction::isBinaryOp(BC->Opcode)) { 1451 C = ConstantExpr::get(BC->Opcode, ConstOps[0], ConstOps[1], BC->Flags); 1452 } else { 1453 switch (BC->Opcode) { 1454 case BitcodeConstant::NoCFIOpcode: { 1455 auto *GV = dyn_cast<GlobalValue>(ConstOps[0]); 1456 if (!GV) 1457 return error("no_cfi operand must be GlobalValue"); 1458 C = NoCFIValue::get(GV); 1459 break; 1460 } 1461 case BitcodeConstant::DSOLocalEquivalentOpcode: { 1462 auto *GV = dyn_cast<GlobalValue>(ConstOps[0]); 1463 if (!GV) 1464 return error("dso_local operand must be GlobalValue"); 1465 C = DSOLocalEquivalent::get(GV); 1466 break; 1467 } 1468 case BitcodeConstant::BlockAddressOpcode: { 1469 Function *Fn = dyn_cast<Function>(ConstOps[0]); 1470 if (!Fn) 1471 return error("blockaddress operand must be a function"); 1472 1473 // If the function is already parsed we can insert the block address 1474 // right away. 1475 BasicBlock *BB; 1476 unsigned BBID = BC->Extra; 1477 if (!BBID) 1478 // Invalid reference to entry block. 1479 return error("Invalid ID"); 1480 if (!Fn->empty()) { 1481 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 1482 for (size_t I = 0, E = BBID; I != E; ++I) { 1483 if (BBI == BBE) 1484 return error("Invalid ID"); 1485 ++BBI; 1486 } 1487 BB = &*BBI; 1488 } else { 1489 // Otherwise insert a placeholder and remember it so it can be 1490 // inserted when the function is parsed. 1491 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 1492 if (FwdBBs.empty()) 1493 BasicBlockFwdRefQueue.push_back(Fn); 1494 if (FwdBBs.size() < BBID + 1) 1495 FwdBBs.resize(BBID + 1); 1496 if (!FwdBBs[BBID]) 1497 FwdBBs[BBID] = BasicBlock::Create(Context); 1498 BB = FwdBBs[BBID]; 1499 } 1500 C = BlockAddress::get(Fn, BB); 1501 break; 1502 } 1503 case BitcodeConstant::ConstantStructOpcode: 1504 C = ConstantStruct::get(cast<StructType>(BC->getType()), ConstOps); 1505 break; 1506 case BitcodeConstant::ConstantArrayOpcode: 1507 C = ConstantArray::get(cast<ArrayType>(BC->getType()), ConstOps); 1508 break; 1509 case BitcodeConstant::ConstantVectorOpcode: 1510 C = ConstantVector::get(ConstOps); 1511 break; 1512 case Instruction::ICmp: 1513 case Instruction::FCmp: 1514 C = ConstantExpr::getCompare(BC->Flags, ConstOps[0], ConstOps[1]); 1515 break; 1516 case Instruction::GetElementPtr: 1517 C = ConstantExpr::getGetElementPtr( 1518 BC->SrcElemTy, ConstOps[0], makeArrayRef(ConstOps).drop_front(), 1519 BC->Flags, BC->getInRangeIndex()); 1520 break; 1521 case Instruction::Select: 1522 C = ConstantExpr::getSelect(ConstOps[0], ConstOps[1], ConstOps[2]); 1523 break; 1524 case Instruction::ExtractElement: 1525 C = ConstantExpr::getExtractElement(ConstOps[0], ConstOps[1]); 1526 break; 1527 case Instruction::InsertElement: 1528 C = ConstantExpr::getInsertElement(ConstOps[0], ConstOps[1], 1529 ConstOps[2]); 1530 break; 1531 case Instruction::ShuffleVector: { 1532 SmallVector<int, 16> Mask; 1533 ShuffleVectorInst::getShuffleMask(ConstOps[2], Mask); 1534 C = ConstantExpr::getShuffleVector(ConstOps[0], ConstOps[1], Mask); 1535 break; 1536 } 1537 default: 1538 llvm_unreachable("Unhandled bitcode constant"); 1539 } 1540 } 1541 1542 // Cache resolved constant. 1543 ValueList.replaceValueWithoutRAUW(ValID, C); 1544 MaterializedValues.insert({ValID, C}); 1545 Worklist.pop_back(); 1546 continue; 1547 } 1548 1549 if (!InsertBB) 1550 return error(Twine("Value referenced by initializer is an unsupported " 1551 "constant expression of type ") + 1552 BC->getOpcodeName()); 1553 1554 // Materialize as instructions if necessary. 1555 Instruction *I; 1556 if (Instruction::isCast(BC->Opcode)) { 1557 I = CastInst::Create((Instruction::CastOps)BC->Opcode, Ops[0], 1558 BC->getType(), "constexpr", InsertBB); 1559 } else if (Instruction::isUnaryOp(BC->Opcode)) { 1560 I = UnaryOperator::Create((Instruction::UnaryOps)BC->Opcode, Ops[0], 1561 "constexpr", InsertBB); 1562 } else if (Instruction::isBinaryOp(BC->Opcode)) { 1563 I = BinaryOperator::Create((Instruction::BinaryOps)BC->Opcode, Ops[0], 1564 Ops[1], "constexpr", InsertBB); 1565 if (isa<OverflowingBinaryOperator>(I)) { 1566 if (BC->Flags & OverflowingBinaryOperator::NoSignedWrap) 1567 I->setHasNoSignedWrap(); 1568 if (BC->Flags & OverflowingBinaryOperator::NoUnsignedWrap) 1569 I->setHasNoUnsignedWrap(); 1570 } 1571 if (isa<PossiblyExactOperator>(I) && 1572 (BC->Flags & PossiblyExactOperator::IsExact)) 1573 I->setIsExact(); 1574 } else { 1575 switch (BC->Opcode) { 1576 case BitcodeConstant::ConstantStructOpcode: 1577 case BitcodeConstant::ConstantArrayOpcode: 1578 case BitcodeConstant::ConstantVectorOpcode: { 1579 Type *IdxTy = Type::getInt32Ty(BC->getContext()); 1580 Value *V = PoisonValue::get(BC->getType()); 1581 for (auto Pair : enumerate(Ops)) { 1582 Value *Idx = ConstantInt::get(IdxTy, Pair.index()); 1583 V = InsertElementInst::Create(V, Pair.value(), Idx, "constexpr.ins", 1584 InsertBB); 1585 } 1586 I = cast<Instruction>(V); 1587 break; 1588 } 1589 case Instruction::ICmp: 1590 case Instruction::FCmp: 1591 I = CmpInst::Create((Instruction::OtherOps)BC->Opcode, 1592 (CmpInst::Predicate)BC->Flags, Ops[0], Ops[1], 1593 "constexpr", InsertBB); 1594 break; 1595 case Instruction::GetElementPtr: 1596 I = GetElementPtrInst::Create(BC->SrcElemTy, Ops[0], 1597 makeArrayRef(Ops).drop_front(), 1598 "constexpr", InsertBB); 1599 if (BC->Flags) 1600 cast<GetElementPtrInst>(I)->setIsInBounds(); 1601 break; 1602 case Instruction::Select: 1603 I = SelectInst::Create(Ops[0], Ops[1], Ops[2], "constexpr", InsertBB); 1604 break; 1605 case Instruction::ExtractElement: 1606 I = ExtractElementInst::Create(Ops[0], Ops[1], "constexpr", InsertBB); 1607 break; 1608 case Instruction::InsertElement: 1609 I = InsertElementInst::Create(Ops[0], Ops[1], Ops[2], "constexpr", 1610 InsertBB); 1611 break; 1612 case Instruction::ShuffleVector: 1613 I = new ShuffleVectorInst(Ops[0], Ops[1], Ops[2], "constexpr", 1614 InsertBB); 1615 break; 1616 default: 1617 llvm_unreachable("Unhandled bitcode constant"); 1618 } 1619 } 1620 1621 MaterializedValues.insert({ValID, I}); 1622 Worklist.pop_back(); 1623 } 1624 1625 return MaterializedValues[StartValID]; 1626 } 1627 1628 Expected<Constant *> BitcodeReader::getValueForInitializer(unsigned ID) { 1629 Expected<Value *> MaybeV = materializeValue(ID, /* InsertBB */ nullptr); 1630 if (!MaybeV) 1631 return MaybeV.takeError(); 1632 1633 // Result must be Constant if InsertBB is nullptr. 1634 return cast<Constant>(MaybeV.get()); 1635 } 1636 1637 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1638 StringRef Name) { 1639 auto *Ret = StructType::create(Context, Name); 1640 IdentifiedStructTypes.push_back(Ret); 1641 return Ret; 1642 } 1643 1644 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1645 auto *Ret = StructType::create(Context); 1646 IdentifiedStructTypes.push_back(Ret); 1647 return Ret; 1648 } 1649 1650 //===----------------------------------------------------------------------===// 1651 // Functions for parsing blocks from the bitcode file 1652 //===----------------------------------------------------------------------===// 1653 1654 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) { 1655 switch (Val) { 1656 case Attribute::EndAttrKinds: 1657 case Attribute::EmptyKey: 1658 case Attribute::TombstoneKey: 1659 llvm_unreachable("Synthetic enumerators which should never get here"); 1660 1661 case Attribute::None: return 0; 1662 case Attribute::ZExt: return 1 << 0; 1663 case Attribute::SExt: return 1 << 1; 1664 case Attribute::NoReturn: return 1 << 2; 1665 case Attribute::InReg: return 1 << 3; 1666 case Attribute::StructRet: return 1 << 4; 1667 case Attribute::NoUnwind: return 1 << 5; 1668 case Attribute::NoAlias: return 1 << 6; 1669 case Attribute::ByVal: return 1 << 7; 1670 case Attribute::Nest: return 1 << 8; 1671 case Attribute::ReadNone: return 1 << 9; 1672 case Attribute::ReadOnly: return 1 << 10; 1673 case Attribute::NoInline: return 1 << 11; 1674 case Attribute::AlwaysInline: return 1 << 12; 1675 case Attribute::OptimizeForSize: return 1 << 13; 1676 case Attribute::StackProtect: return 1 << 14; 1677 case Attribute::StackProtectReq: return 1 << 15; 1678 case Attribute::Alignment: return 31 << 16; 1679 case Attribute::NoCapture: return 1 << 21; 1680 case Attribute::NoRedZone: return 1 << 22; 1681 case Attribute::NoImplicitFloat: return 1 << 23; 1682 case Attribute::Naked: return 1 << 24; 1683 case Attribute::InlineHint: return 1 << 25; 1684 case Attribute::StackAlignment: return 7 << 26; 1685 case Attribute::ReturnsTwice: return 1 << 29; 1686 case Attribute::UWTable: return 1 << 30; 1687 case Attribute::NonLazyBind: return 1U << 31; 1688 case Attribute::SanitizeAddress: return 1ULL << 32; 1689 case Attribute::MinSize: return 1ULL << 33; 1690 case Attribute::NoDuplicate: return 1ULL << 34; 1691 case Attribute::StackProtectStrong: return 1ULL << 35; 1692 case Attribute::SanitizeThread: return 1ULL << 36; 1693 case Attribute::SanitizeMemory: return 1ULL << 37; 1694 case Attribute::NoBuiltin: return 1ULL << 38; 1695 case Attribute::Returned: return 1ULL << 39; 1696 case Attribute::Cold: return 1ULL << 40; 1697 case Attribute::Builtin: return 1ULL << 41; 1698 case Attribute::OptimizeNone: return 1ULL << 42; 1699 case Attribute::InAlloca: return 1ULL << 43; 1700 case Attribute::NonNull: return 1ULL << 44; 1701 case Attribute::JumpTable: return 1ULL << 45; 1702 case Attribute::Convergent: return 1ULL << 46; 1703 case Attribute::SafeStack: return 1ULL << 47; 1704 case Attribute::NoRecurse: return 1ULL << 48; 1705 case Attribute::InaccessibleMemOnly: return 1ULL << 49; 1706 case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50; 1707 case Attribute::SwiftSelf: return 1ULL << 51; 1708 case Attribute::SwiftError: return 1ULL << 52; 1709 case Attribute::WriteOnly: return 1ULL << 53; 1710 case Attribute::Speculatable: return 1ULL << 54; 1711 case Attribute::StrictFP: return 1ULL << 55; 1712 case Attribute::SanitizeHWAddress: return 1ULL << 56; 1713 case Attribute::NoCfCheck: return 1ULL << 57; 1714 case Attribute::OptForFuzzing: return 1ULL << 58; 1715 case Attribute::ShadowCallStack: return 1ULL << 59; 1716 case Attribute::SpeculativeLoadHardening: 1717 return 1ULL << 60; 1718 case Attribute::ImmArg: 1719 return 1ULL << 61; 1720 case Attribute::WillReturn: 1721 return 1ULL << 62; 1722 case Attribute::NoFree: 1723 return 1ULL << 63; 1724 default: 1725 // Other attributes are not supported in the raw format, 1726 // as we ran out of space. 1727 return 0; 1728 } 1729 llvm_unreachable("Unsupported attribute type"); 1730 } 1731 1732 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) { 1733 if (!Val) return; 1734 1735 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; 1736 I = Attribute::AttrKind(I + 1)) { 1737 if (uint64_t A = (Val & getRawAttributeMask(I))) { 1738 if (I == Attribute::Alignment) 1739 B.addAlignmentAttr(1ULL << ((A >> 16) - 1)); 1740 else if (I == Attribute::StackAlignment) 1741 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1)); 1742 else if (Attribute::isTypeAttrKind(I)) 1743 B.addTypeAttr(I, nullptr); // Type will be auto-upgraded. 1744 else 1745 B.addAttribute(I); 1746 } 1747 } 1748 } 1749 1750 /// This fills an AttrBuilder object with the LLVM attributes that have 1751 /// been decoded from the given integer. This function must stay in sync with 1752 /// 'encodeLLVMAttributesForBitcode'. 1753 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1754 uint64_t EncodedAttrs) { 1755 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1756 // the bits above 31 down by 11 bits. 1757 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1758 assert((!Alignment || isPowerOf2_32(Alignment)) && 1759 "Alignment must be a power of two."); 1760 1761 if (Alignment) 1762 B.addAlignmentAttr(Alignment); 1763 addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1764 (EncodedAttrs & 0xffff)); 1765 } 1766 1767 Error BitcodeReader::parseAttributeBlock() { 1768 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1769 return Err; 1770 1771 if (!MAttributes.empty()) 1772 return error("Invalid multiple blocks"); 1773 1774 SmallVector<uint64_t, 64> Record; 1775 1776 SmallVector<AttributeList, 8> Attrs; 1777 1778 // Read all the records. 1779 while (true) { 1780 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1781 if (!MaybeEntry) 1782 return MaybeEntry.takeError(); 1783 BitstreamEntry Entry = MaybeEntry.get(); 1784 1785 switch (Entry.Kind) { 1786 case BitstreamEntry::SubBlock: // Handled for us already. 1787 case BitstreamEntry::Error: 1788 return error("Malformed block"); 1789 case BitstreamEntry::EndBlock: 1790 return Error::success(); 1791 case BitstreamEntry::Record: 1792 // The interesting case. 1793 break; 1794 } 1795 1796 // Read a record. 1797 Record.clear(); 1798 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1799 if (!MaybeRecord) 1800 return MaybeRecord.takeError(); 1801 switch (MaybeRecord.get()) { 1802 default: // Default behavior: ignore. 1803 break; 1804 case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...] 1805 // Deprecated, but still needed to read old bitcode files. 1806 if (Record.size() & 1) 1807 return error("Invalid parameter attribute record"); 1808 1809 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1810 AttrBuilder B(Context); 1811 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1812 Attrs.push_back(AttributeList::get(Context, Record[i], B)); 1813 } 1814 1815 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1816 Attrs.clear(); 1817 break; 1818 case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...] 1819 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1820 Attrs.push_back(MAttributeGroups[Record[i]]); 1821 1822 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1823 Attrs.clear(); 1824 break; 1825 } 1826 } 1827 } 1828 1829 // Returns Attribute::None on unrecognized codes. 1830 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1831 switch (Code) { 1832 default: 1833 return Attribute::None; 1834 case bitc::ATTR_KIND_ALIGNMENT: 1835 return Attribute::Alignment; 1836 case bitc::ATTR_KIND_ALWAYS_INLINE: 1837 return Attribute::AlwaysInline; 1838 case bitc::ATTR_KIND_ARGMEMONLY: 1839 return Attribute::ArgMemOnly; 1840 case bitc::ATTR_KIND_BUILTIN: 1841 return Attribute::Builtin; 1842 case bitc::ATTR_KIND_BY_VAL: 1843 return Attribute::ByVal; 1844 case bitc::ATTR_KIND_IN_ALLOCA: 1845 return Attribute::InAlloca; 1846 case bitc::ATTR_KIND_COLD: 1847 return Attribute::Cold; 1848 case bitc::ATTR_KIND_CONVERGENT: 1849 return Attribute::Convergent; 1850 case bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION: 1851 return Attribute::DisableSanitizerInstrumentation; 1852 case bitc::ATTR_KIND_ELEMENTTYPE: 1853 return Attribute::ElementType; 1854 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1855 return Attribute::InaccessibleMemOnly; 1856 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1857 return Attribute::InaccessibleMemOrArgMemOnly; 1858 case bitc::ATTR_KIND_INLINE_HINT: 1859 return Attribute::InlineHint; 1860 case bitc::ATTR_KIND_IN_REG: 1861 return Attribute::InReg; 1862 case bitc::ATTR_KIND_JUMP_TABLE: 1863 return Attribute::JumpTable; 1864 case bitc::ATTR_KIND_MIN_SIZE: 1865 return Attribute::MinSize; 1866 case bitc::ATTR_KIND_NAKED: 1867 return Attribute::Naked; 1868 case bitc::ATTR_KIND_NEST: 1869 return Attribute::Nest; 1870 case bitc::ATTR_KIND_NO_ALIAS: 1871 return Attribute::NoAlias; 1872 case bitc::ATTR_KIND_NO_BUILTIN: 1873 return Attribute::NoBuiltin; 1874 case bitc::ATTR_KIND_NO_CALLBACK: 1875 return Attribute::NoCallback; 1876 case bitc::ATTR_KIND_NO_CAPTURE: 1877 return Attribute::NoCapture; 1878 case bitc::ATTR_KIND_NO_DUPLICATE: 1879 return Attribute::NoDuplicate; 1880 case bitc::ATTR_KIND_NOFREE: 1881 return Attribute::NoFree; 1882 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1883 return Attribute::NoImplicitFloat; 1884 case bitc::ATTR_KIND_NO_INLINE: 1885 return Attribute::NoInline; 1886 case bitc::ATTR_KIND_NO_RECURSE: 1887 return Attribute::NoRecurse; 1888 case bitc::ATTR_KIND_NO_MERGE: 1889 return Attribute::NoMerge; 1890 case bitc::ATTR_KIND_NON_LAZY_BIND: 1891 return Attribute::NonLazyBind; 1892 case bitc::ATTR_KIND_NON_NULL: 1893 return Attribute::NonNull; 1894 case bitc::ATTR_KIND_DEREFERENCEABLE: 1895 return Attribute::Dereferenceable; 1896 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1897 return Attribute::DereferenceableOrNull; 1898 case bitc::ATTR_KIND_ALLOC_ALIGN: 1899 return Attribute::AllocAlign; 1900 case bitc::ATTR_KIND_ALLOC_KIND: 1901 return Attribute::AllocKind; 1902 case bitc::ATTR_KIND_ALLOC_SIZE: 1903 return Attribute::AllocSize; 1904 case bitc::ATTR_KIND_ALLOCATED_POINTER: 1905 return Attribute::AllocatedPointer; 1906 case bitc::ATTR_KIND_NO_RED_ZONE: 1907 return Attribute::NoRedZone; 1908 case bitc::ATTR_KIND_NO_RETURN: 1909 return Attribute::NoReturn; 1910 case bitc::ATTR_KIND_NOSYNC: 1911 return Attribute::NoSync; 1912 case bitc::ATTR_KIND_NOCF_CHECK: 1913 return Attribute::NoCfCheck; 1914 case bitc::ATTR_KIND_NO_PROFILE: 1915 return Attribute::NoProfile; 1916 case bitc::ATTR_KIND_NO_UNWIND: 1917 return Attribute::NoUnwind; 1918 case bitc::ATTR_KIND_NO_SANITIZE_BOUNDS: 1919 return Attribute::NoSanitizeBounds; 1920 case bitc::ATTR_KIND_NO_SANITIZE_COVERAGE: 1921 return Attribute::NoSanitizeCoverage; 1922 case bitc::ATTR_KIND_NULL_POINTER_IS_VALID: 1923 return Attribute::NullPointerIsValid; 1924 case bitc::ATTR_KIND_OPT_FOR_FUZZING: 1925 return Attribute::OptForFuzzing; 1926 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1927 return Attribute::OptimizeForSize; 1928 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1929 return Attribute::OptimizeNone; 1930 case bitc::ATTR_KIND_READ_NONE: 1931 return Attribute::ReadNone; 1932 case bitc::ATTR_KIND_READ_ONLY: 1933 return Attribute::ReadOnly; 1934 case bitc::ATTR_KIND_RETURNED: 1935 return Attribute::Returned; 1936 case bitc::ATTR_KIND_RETURNS_TWICE: 1937 return Attribute::ReturnsTwice; 1938 case bitc::ATTR_KIND_S_EXT: 1939 return Attribute::SExt; 1940 case bitc::ATTR_KIND_SPECULATABLE: 1941 return Attribute::Speculatable; 1942 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1943 return Attribute::StackAlignment; 1944 case bitc::ATTR_KIND_STACK_PROTECT: 1945 return Attribute::StackProtect; 1946 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1947 return Attribute::StackProtectReq; 1948 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1949 return Attribute::StackProtectStrong; 1950 case bitc::ATTR_KIND_SAFESTACK: 1951 return Attribute::SafeStack; 1952 case bitc::ATTR_KIND_SHADOWCALLSTACK: 1953 return Attribute::ShadowCallStack; 1954 case bitc::ATTR_KIND_STRICT_FP: 1955 return Attribute::StrictFP; 1956 case bitc::ATTR_KIND_STRUCT_RET: 1957 return Attribute::StructRet; 1958 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1959 return Attribute::SanitizeAddress; 1960 case bitc::ATTR_KIND_SANITIZE_HWADDRESS: 1961 return Attribute::SanitizeHWAddress; 1962 case bitc::ATTR_KIND_SANITIZE_THREAD: 1963 return Attribute::SanitizeThread; 1964 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1965 return Attribute::SanitizeMemory; 1966 case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING: 1967 return Attribute::SpeculativeLoadHardening; 1968 case bitc::ATTR_KIND_SWIFT_ERROR: 1969 return Attribute::SwiftError; 1970 case bitc::ATTR_KIND_SWIFT_SELF: 1971 return Attribute::SwiftSelf; 1972 case bitc::ATTR_KIND_SWIFT_ASYNC: 1973 return Attribute::SwiftAsync; 1974 case bitc::ATTR_KIND_UW_TABLE: 1975 return Attribute::UWTable; 1976 case bitc::ATTR_KIND_VSCALE_RANGE: 1977 return Attribute::VScaleRange; 1978 case bitc::ATTR_KIND_WILLRETURN: 1979 return Attribute::WillReturn; 1980 case bitc::ATTR_KIND_WRITEONLY: 1981 return Attribute::WriteOnly; 1982 case bitc::ATTR_KIND_Z_EXT: 1983 return Attribute::ZExt; 1984 case bitc::ATTR_KIND_IMMARG: 1985 return Attribute::ImmArg; 1986 case bitc::ATTR_KIND_SANITIZE_MEMTAG: 1987 return Attribute::SanitizeMemTag; 1988 case bitc::ATTR_KIND_PREALLOCATED: 1989 return Attribute::Preallocated; 1990 case bitc::ATTR_KIND_NOUNDEF: 1991 return Attribute::NoUndef; 1992 case bitc::ATTR_KIND_BYREF: 1993 return Attribute::ByRef; 1994 case bitc::ATTR_KIND_MUSTPROGRESS: 1995 return Attribute::MustProgress; 1996 case bitc::ATTR_KIND_HOT: 1997 return Attribute::Hot; 1998 case bitc::ATTR_KIND_PRESPLIT_COROUTINE: 1999 return Attribute::PresplitCoroutine; 2000 } 2001 } 2002 2003 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent, 2004 MaybeAlign &Alignment) { 2005 // Note: Alignment in bitcode files is incremented by 1, so that zero 2006 // can be used for default alignment. 2007 if (Exponent > Value::MaxAlignmentExponent + 1) 2008 return error("Invalid alignment value"); 2009 Alignment = decodeMaybeAlign(Exponent); 2010 return Error::success(); 2011 } 2012 2013 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) { 2014 *Kind = getAttrFromCode(Code); 2015 if (*Kind == Attribute::None) 2016 return error("Unknown attribute kind (" + Twine(Code) + ")"); 2017 return Error::success(); 2018 } 2019 2020 Error BitcodeReader::parseAttributeGroupBlock() { 2021 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 2022 return Err; 2023 2024 if (!MAttributeGroups.empty()) 2025 return error("Invalid multiple blocks"); 2026 2027 SmallVector<uint64_t, 64> Record; 2028 2029 // Read all the records. 2030 while (true) { 2031 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2032 if (!MaybeEntry) 2033 return MaybeEntry.takeError(); 2034 BitstreamEntry Entry = MaybeEntry.get(); 2035 2036 switch (Entry.Kind) { 2037 case BitstreamEntry::SubBlock: // Handled for us already. 2038 case BitstreamEntry::Error: 2039 return error("Malformed block"); 2040 case BitstreamEntry::EndBlock: 2041 return Error::success(); 2042 case BitstreamEntry::Record: 2043 // The interesting case. 2044 break; 2045 } 2046 2047 // Read a record. 2048 Record.clear(); 2049 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2050 if (!MaybeRecord) 2051 return MaybeRecord.takeError(); 2052 switch (MaybeRecord.get()) { 2053 default: // Default behavior: ignore. 2054 break; 2055 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 2056 if (Record.size() < 3) 2057 return error("Invalid grp record"); 2058 2059 uint64_t GrpID = Record[0]; 2060 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 2061 2062 AttrBuilder B(Context); 2063 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 2064 if (Record[i] == 0) { // Enum attribute 2065 Attribute::AttrKind Kind; 2066 if (Error Err = parseAttrKind(Record[++i], &Kind)) 2067 return Err; 2068 2069 // Upgrade old-style byval attribute to one with a type, even if it's 2070 // nullptr. We will have to insert the real type when we associate 2071 // this AttributeList with a function. 2072 if (Kind == Attribute::ByVal) 2073 B.addByValAttr(nullptr); 2074 else if (Kind == Attribute::StructRet) 2075 B.addStructRetAttr(nullptr); 2076 else if (Kind == Attribute::InAlloca) 2077 B.addInAllocaAttr(nullptr); 2078 else if (Kind == Attribute::UWTable) 2079 B.addUWTableAttr(UWTableKind::Default); 2080 else if (Attribute::isEnumAttrKind(Kind)) 2081 B.addAttribute(Kind); 2082 else 2083 return error("Not an enum attribute"); 2084 } else if (Record[i] == 1) { // Integer attribute 2085 Attribute::AttrKind Kind; 2086 if (Error Err = parseAttrKind(Record[++i], &Kind)) 2087 return Err; 2088 if (!Attribute::isIntAttrKind(Kind)) 2089 return error("Not an int attribute"); 2090 if (Kind == Attribute::Alignment) 2091 B.addAlignmentAttr(Record[++i]); 2092 else if (Kind == Attribute::StackAlignment) 2093 B.addStackAlignmentAttr(Record[++i]); 2094 else if (Kind == Attribute::Dereferenceable) 2095 B.addDereferenceableAttr(Record[++i]); 2096 else if (Kind == Attribute::DereferenceableOrNull) 2097 B.addDereferenceableOrNullAttr(Record[++i]); 2098 else if (Kind == Attribute::AllocSize) 2099 B.addAllocSizeAttrFromRawRepr(Record[++i]); 2100 else if (Kind == Attribute::VScaleRange) 2101 B.addVScaleRangeAttrFromRawRepr(Record[++i]); 2102 else if (Kind == Attribute::UWTable) 2103 B.addUWTableAttr(UWTableKind(Record[++i])); 2104 else if (Kind == Attribute::AllocKind) 2105 B.addAllocKindAttr(static_cast<AllocFnKind>(Record[++i])); 2106 } else if (Record[i] == 3 || Record[i] == 4) { // String attribute 2107 bool HasValue = (Record[i++] == 4); 2108 SmallString<64> KindStr; 2109 SmallString<64> ValStr; 2110 2111 while (Record[i] != 0 && i != e) 2112 KindStr += Record[i++]; 2113 assert(Record[i] == 0 && "Kind string not null terminated"); 2114 2115 if (HasValue) { 2116 // Has a value associated with it. 2117 ++i; // Skip the '0' that terminates the "kind" string. 2118 while (Record[i] != 0 && i != e) 2119 ValStr += Record[i++]; 2120 assert(Record[i] == 0 && "Value string not null terminated"); 2121 } 2122 2123 B.addAttribute(KindStr.str(), ValStr.str()); 2124 } else if (Record[i] == 5 || Record[i] == 6) { 2125 bool HasType = Record[i] == 6; 2126 Attribute::AttrKind Kind; 2127 if (Error Err = parseAttrKind(Record[++i], &Kind)) 2128 return Err; 2129 if (!Attribute::isTypeAttrKind(Kind)) 2130 return error("Not a type attribute"); 2131 2132 B.addTypeAttr(Kind, HasType ? getTypeByID(Record[++i]) : nullptr); 2133 } else { 2134 return error("Invalid attribute group entry"); 2135 } 2136 } 2137 2138 UpgradeAttributes(B); 2139 MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B); 2140 break; 2141 } 2142 } 2143 } 2144 } 2145 2146 Error BitcodeReader::parseTypeTable() { 2147 if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 2148 return Err; 2149 2150 return parseTypeTableBody(); 2151 } 2152 2153 Error BitcodeReader::parseTypeTableBody() { 2154 if (!TypeList.empty()) 2155 return error("Invalid multiple blocks"); 2156 2157 SmallVector<uint64_t, 64> Record; 2158 unsigned NumRecords = 0; 2159 2160 SmallString<64> TypeName; 2161 2162 // Read all the records for this type table. 2163 while (true) { 2164 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2165 if (!MaybeEntry) 2166 return MaybeEntry.takeError(); 2167 BitstreamEntry Entry = MaybeEntry.get(); 2168 2169 switch (Entry.Kind) { 2170 case BitstreamEntry::SubBlock: // Handled for us already. 2171 case BitstreamEntry::Error: 2172 return error("Malformed block"); 2173 case BitstreamEntry::EndBlock: 2174 if (NumRecords != TypeList.size()) 2175 return error("Malformed block"); 2176 return Error::success(); 2177 case BitstreamEntry::Record: 2178 // The interesting case. 2179 break; 2180 } 2181 2182 // Read a record. 2183 Record.clear(); 2184 Type *ResultTy = nullptr; 2185 SmallVector<unsigned> ContainedIDs; 2186 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2187 if (!MaybeRecord) 2188 return MaybeRecord.takeError(); 2189 switch (MaybeRecord.get()) { 2190 default: 2191 return error("Invalid value"); 2192 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 2193 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 2194 // type list. This allows us to reserve space. 2195 if (Record.empty()) 2196 return error("Invalid numentry record"); 2197 TypeList.resize(Record[0]); 2198 continue; 2199 case bitc::TYPE_CODE_VOID: // VOID 2200 ResultTy = Type::getVoidTy(Context); 2201 break; 2202 case bitc::TYPE_CODE_HALF: // HALF 2203 ResultTy = Type::getHalfTy(Context); 2204 break; 2205 case bitc::TYPE_CODE_BFLOAT: // BFLOAT 2206 ResultTy = Type::getBFloatTy(Context); 2207 break; 2208 case bitc::TYPE_CODE_FLOAT: // FLOAT 2209 ResultTy = Type::getFloatTy(Context); 2210 break; 2211 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 2212 ResultTy = Type::getDoubleTy(Context); 2213 break; 2214 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 2215 ResultTy = Type::getX86_FP80Ty(Context); 2216 break; 2217 case bitc::TYPE_CODE_FP128: // FP128 2218 ResultTy = Type::getFP128Ty(Context); 2219 break; 2220 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 2221 ResultTy = Type::getPPC_FP128Ty(Context); 2222 break; 2223 case bitc::TYPE_CODE_LABEL: // LABEL 2224 ResultTy = Type::getLabelTy(Context); 2225 break; 2226 case bitc::TYPE_CODE_METADATA: // METADATA 2227 ResultTy = Type::getMetadataTy(Context); 2228 break; 2229 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 2230 ResultTy = Type::getX86_MMXTy(Context); 2231 break; 2232 case bitc::TYPE_CODE_X86_AMX: // X86_AMX 2233 ResultTy = Type::getX86_AMXTy(Context); 2234 break; 2235 case bitc::TYPE_CODE_TOKEN: // TOKEN 2236 ResultTy = Type::getTokenTy(Context); 2237 break; 2238 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 2239 if (Record.empty()) 2240 return error("Invalid integer record"); 2241 2242 uint64_t NumBits = Record[0]; 2243 if (NumBits < IntegerType::MIN_INT_BITS || 2244 NumBits > IntegerType::MAX_INT_BITS) 2245 return error("Bitwidth for integer type out of range"); 2246 ResultTy = IntegerType::get(Context, NumBits); 2247 break; 2248 } 2249 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 2250 // [pointee type, address space] 2251 if (Record.empty()) 2252 return error("Invalid pointer record"); 2253 unsigned AddressSpace = 0; 2254 if (Record.size() == 2) 2255 AddressSpace = Record[1]; 2256 ResultTy = getTypeByID(Record[0]); 2257 if (!ResultTy || 2258 !PointerType::isValidElementType(ResultTy)) 2259 return error("Invalid type"); 2260 if (LLVM_UNLIKELY(!Context.hasSetOpaquePointersValue())) 2261 Context.setOpaquePointers(false); 2262 ContainedIDs.push_back(Record[0]); 2263 ResultTy = PointerType::get(ResultTy, AddressSpace); 2264 break; 2265 } 2266 case bitc::TYPE_CODE_OPAQUE_POINTER: { // OPAQUE_POINTER: [addrspace] 2267 if (Record.size() != 1) 2268 return error("Invalid opaque pointer record"); 2269 if (LLVM_UNLIKELY(!Context.hasSetOpaquePointersValue())) { 2270 Context.setOpaquePointers(true); 2271 } else if (Context.supportsTypedPointers()) 2272 return error( 2273 "Opaque pointers are only supported in -opaque-pointers mode"); 2274 unsigned AddressSpace = Record[0]; 2275 ResultTy = PointerType::get(Context, AddressSpace); 2276 break; 2277 } 2278 case bitc::TYPE_CODE_FUNCTION_OLD: { 2279 // Deprecated, but still needed to read old bitcode files. 2280 // FUNCTION: [vararg, attrid, retty, paramty x N] 2281 if (Record.size() < 3) 2282 return error("Invalid function record"); 2283 SmallVector<Type*, 8> ArgTys; 2284 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 2285 if (Type *T = getTypeByID(Record[i])) 2286 ArgTys.push_back(T); 2287 else 2288 break; 2289 } 2290 2291 ResultTy = getTypeByID(Record[2]); 2292 if (!ResultTy || ArgTys.size() < Record.size()-3) 2293 return error("Invalid type"); 2294 2295 ContainedIDs.append(Record.begin() + 2, Record.end()); 2296 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 2297 break; 2298 } 2299 case bitc::TYPE_CODE_FUNCTION: { 2300 // FUNCTION: [vararg, retty, paramty x N] 2301 if (Record.size() < 2) 2302 return error("Invalid function record"); 2303 SmallVector<Type*, 8> ArgTys; 2304 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 2305 if (Type *T = getTypeByID(Record[i])) { 2306 if (!FunctionType::isValidArgumentType(T)) 2307 return error("Invalid function argument type"); 2308 ArgTys.push_back(T); 2309 } 2310 else 2311 break; 2312 } 2313 2314 ResultTy = getTypeByID(Record[1]); 2315 if (!ResultTy || ArgTys.size() < Record.size()-2) 2316 return error("Invalid type"); 2317 2318 ContainedIDs.append(Record.begin() + 1, Record.end()); 2319 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 2320 break; 2321 } 2322 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 2323 if (Record.empty()) 2324 return error("Invalid anon struct record"); 2325 SmallVector<Type*, 8> EltTys; 2326 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 2327 if (Type *T = getTypeByID(Record[i])) 2328 EltTys.push_back(T); 2329 else 2330 break; 2331 } 2332 if (EltTys.size() != Record.size()-1) 2333 return error("Invalid type"); 2334 ContainedIDs.append(Record.begin() + 1, Record.end()); 2335 ResultTy = StructType::get(Context, EltTys, Record[0]); 2336 break; 2337 } 2338 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 2339 if (convertToString(Record, 0, TypeName)) 2340 return error("Invalid struct name record"); 2341 continue; 2342 2343 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 2344 if (Record.empty()) 2345 return error("Invalid named struct record"); 2346 2347 if (NumRecords >= TypeList.size()) 2348 return error("Invalid TYPE table"); 2349 2350 // Check to see if this was forward referenced, if so fill in the temp. 2351 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 2352 if (Res) { 2353 Res->setName(TypeName); 2354 TypeList[NumRecords] = nullptr; 2355 } else // Otherwise, create a new struct. 2356 Res = createIdentifiedStructType(Context, TypeName); 2357 TypeName.clear(); 2358 2359 SmallVector<Type*, 8> EltTys; 2360 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 2361 if (Type *T = getTypeByID(Record[i])) 2362 EltTys.push_back(T); 2363 else 2364 break; 2365 } 2366 if (EltTys.size() != Record.size()-1) 2367 return error("Invalid named struct record"); 2368 Res->setBody(EltTys, Record[0]); 2369 ContainedIDs.append(Record.begin() + 1, Record.end()); 2370 ResultTy = Res; 2371 break; 2372 } 2373 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 2374 if (Record.size() != 1) 2375 return error("Invalid opaque type record"); 2376 2377 if (NumRecords >= TypeList.size()) 2378 return error("Invalid TYPE table"); 2379 2380 // Check to see if this was forward referenced, if so fill in the temp. 2381 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 2382 if (Res) { 2383 Res->setName(TypeName); 2384 TypeList[NumRecords] = nullptr; 2385 } else // Otherwise, create a new struct with no body. 2386 Res = createIdentifiedStructType(Context, TypeName); 2387 TypeName.clear(); 2388 ResultTy = Res; 2389 break; 2390 } 2391 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 2392 if (Record.size() < 2) 2393 return error("Invalid array type record"); 2394 ResultTy = getTypeByID(Record[1]); 2395 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 2396 return error("Invalid type"); 2397 ContainedIDs.push_back(Record[1]); 2398 ResultTy = ArrayType::get(ResultTy, Record[0]); 2399 break; 2400 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] or 2401 // [numelts, eltty, scalable] 2402 if (Record.size() < 2) 2403 return error("Invalid vector type record"); 2404 if (Record[0] == 0) 2405 return error("Invalid vector length"); 2406 ResultTy = getTypeByID(Record[1]); 2407 if (!ResultTy || !VectorType::isValidElementType(ResultTy)) 2408 return error("Invalid type"); 2409 bool Scalable = Record.size() > 2 ? Record[2] : false; 2410 ContainedIDs.push_back(Record[1]); 2411 ResultTy = VectorType::get(ResultTy, Record[0], Scalable); 2412 break; 2413 } 2414 2415 if (NumRecords >= TypeList.size()) 2416 return error("Invalid TYPE table"); 2417 if (TypeList[NumRecords]) 2418 return error( 2419 "Invalid TYPE table: Only named structs can be forward referenced"); 2420 assert(ResultTy && "Didn't read a type?"); 2421 TypeList[NumRecords] = ResultTy; 2422 if (!ContainedIDs.empty()) 2423 ContainedTypeIDs[NumRecords] = std::move(ContainedIDs); 2424 ++NumRecords; 2425 } 2426 } 2427 2428 Error BitcodeReader::parseOperandBundleTags() { 2429 if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 2430 return Err; 2431 2432 if (!BundleTags.empty()) 2433 return error("Invalid multiple blocks"); 2434 2435 SmallVector<uint64_t, 64> Record; 2436 2437 while (true) { 2438 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2439 if (!MaybeEntry) 2440 return MaybeEntry.takeError(); 2441 BitstreamEntry Entry = MaybeEntry.get(); 2442 2443 switch (Entry.Kind) { 2444 case BitstreamEntry::SubBlock: // Handled for us already. 2445 case BitstreamEntry::Error: 2446 return error("Malformed block"); 2447 case BitstreamEntry::EndBlock: 2448 return Error::success(); 2449 case BitstreamEntry::Record: 2450 // The interesting case. 2451 break; 2452 } 2453 2454 // Tags are implicitly mapped to integers by their order. 2455 2456 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2457 if (!MaybeRecord) 2458 return MaybeRecord.takeError(); 2459 if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG) 2460 return error("Invalid operand bundle record"); 2461 2462 // OPERAND_BUNDLE_TAG: [strchr x N] 2463 BundleTags.emplace_back(); 2464 if (convertToString(Record, 0, BundleTags.back())) 2465 return error("Invalid operand bundle record"); 2466 Record.clear(); 2467 } 2468 } 2469 2470 Error BitcodeReader::parseSyncScopeNames() { 2471 if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID)) 2472 return Err; 2473 2474 if (!SSIDs.empty()) 2475 return error("Invalid multiple synchronization scope names blocks"); 2476 2477 SmallVector<uint64_t, 64> Record; 2478 while (true) { 2479 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2480 if (!MaybeEntry) 2481 return MaybeEntry.takeError(); 2482 BitstreamEntry Entry = MaybeEntry.get(); 2483 2484 switch (Entry.Kind) { 2485 case BitstreamEntry::SubBlock: // Handled for us already. 2486 case BitstreamEntry::Error: 2487 return error("Malformed block"); 2488 case BitstreamEntry::EndBlock: 2489 if (SSIDs.empty()) 2490 return error("Invalid empty synchronization scope names block"); 2491 return Error::success(); 2492 case BitstreamEntry::Record: 2493 // The interesting case. 2494 break; 2495 } 2496 2497 // Synchronization scope names are implicitly mapped to synchronization 2498 // scope IDs by their order. 2499 2500 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2501 if (!MaybeRecord) 2502 return MaybeRecord.takeError(); 2503 if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME) 2504 return error("Invalid sync scope record"); 2505 2506 SmallString<16> SSN; 2507 if (convertToString(Record, 0, SSN)) 2508 return error("Invalid sync scope record"); 2509 2510 SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN)); 2511 Record.clear(); 2512 } 2513 } 2514 2515 /// Associate a value with its name from the given index in the provided record. 2516 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 2517 unsigned NameIndex, Triple &TT) { 2518 SmallString<128> ValueName; 2519 if (convertToString(Record, NameIndex, ValueName)) 2520 return error("Invalid record"); 2521 unsigned ValueID = Record[0]; 2522 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 2523 return error("Invalid record"); 2524 Value *V = ValueList[ValueID]; 2525 2526 StringRef NameStr(ValueName.data(), ValueName.size()); 2527 if (NameStr.find_first_of(0) != StringRef::npos) 2528 return error("Invalid value name"); 2529 V->setName(NameStr); 2530 auto *GO = dyn_cast<GlobalObject>(V); 2531 if (GO && ImplicitComdatObjects.contains(GO) && TT.supportsCOMDAT()) 2532 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 2533 return V; 2534 } 2535 2536 /// Helper to note and return the current location, and jump to the given 2537 /// offset. 2538 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset, 2539 BitstreamCursor &Stream) { 2540 // Save the current parsing location so we can jump back at the end 2541 // of the VST read. 2542 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 2543 if (Error JumpFailed = Stream.JumpToBit(Offset * 32)) 2544 return std::move(JumpFailed); 2545 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 2546 if (!MaybeEntry) 2547 return MaybeEntry.takeError(); 2548 if (MaybeEntry.get().Kind != BitstreamEntry::SubBlock || 2549 MaybeEntry.get().ID != bitc::VALUE_SYMTAB_BLOCK_ID) 2550 return error("Expected value symbol table subblock"); 2551 return CurrentBit; 2552 } 2553 2554 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, 2555 Function *F, 2556 ArrayRef<uint64_t> Record) { 2557 // Note that we subtract 1 here because the offset is relative to one word 2558 // before the start of the identification or module block, which was 2559 // historically always the start of the regular bitcode header. 2560 uint64_t FuncWordOffset = Record[1] - 1; 2561 uint64_t FuncBitOffset = FuncWordOffset * 32; 2562 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 2563 // Set the LastFunctionBlockBit to point to the last function block. 2564 // Later when parsing is resumed after function materialization, 2565 // we can simply skip that last function block. 2566 if (FuncBitOffset > LastFunctionBlockBit) 2567 LastFunctionBlockBit = FuncBitOffset; 2568 } 2569 2570 /// Read a new-style GlobalValue symbol table. 2571 Error BitcodeReader::parseGlobalValueSymbolTable() { 2572 unsigned FuncBitcodeOffsetDelta = 2573 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2574 2575 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2576 return Err; 2577 2578 SmallVector<uint64_t, 64> Record; 2579 while (true) { 2580 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2581 if (!MaybeEntry) 2582 return MaybeEntry.takeError(); 2583 BitstreamEntry Entry = MaybeEntry.get(); 2584 2585 switch (Entry.Kind) { 2586 case BitstreamEntry::SubBlock: 2587 case BitstreamEntry::Error: 2588 return error("Malformed block"); 2589 case BitstreamEntry::EndBlock: 2590 return Error::success(); 2591 case BitstreamEntry::Record: 2592 break; 2593 } 2594 2595 Record.clear(); 2596 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2597 if (!MaybeRecord) 2598 return MaybeRecord.takeError(); 2599 switch (MaybeRecord.get()) { 2600 case bitc::VST_CODE_FNENTRY: { // [valueid, offset] 2601 unsigned ValueID = Record[0]; 2602 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 2603 return error("Invalid value reference in symbol table"); 2604 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, 2605 cast<Function>(ValueList[ValueID]), Record); 2606 break; 2607 } 2608 } 2609 } 2610 } 2611 2612 /// Parse the value symbol table at either the current parsing location or 2613 /// at the given bit offset if provided. 2614 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 2615 uint64_t CurrentBit; 2616 // Pass in the Offset to distinguish between calling for the module-level 2617 // VST (where we want to jump to the VST offset) and the function-level 2618 // VST (where we don't). 2619 if (Offset > 0) { 2620 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 2621 if (!MaybeCurrentBit) 2622 return MaybeCurrentBit.takeError(); 2623 CurrentBit = MaybeCurrentBit.get(); 2624 // If this module uses a string table, read this as a module-level VST. 2625 if (UseStrtab) { 2626 if (Error Err = parseGlobalValueSymbolTable()) 2627 return Err; 2628 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2629 return JumpFailed; 2630 return Error::success(); 2631 } 2632 // Otherwise, the VST will be in a similar format to a function-level VST, 2633 // and will contain symbol names. 2634 } 2635 2636 // Compute the delta between the bitcode indices in the VST (the word offset 2637 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 2638 // expected by the lazy reader. The reader's EnterSubBlock expects to have 2639 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 2640 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 2641 // just before entering the VST subblock because: 1) the EnterSubBlock 2642 // changes the AbbrevID width; 2) the VST block is nested within the same 2643 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 2644 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 2645 // jump to the FUNCTION_BLOCK using this offset later, we don't want 2646 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 2647 unsigned FuncBitcodeOffsetDelta = 2648 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2649 2650 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2651 return Err; 2652 2653 SmallVector<uint64_t, 64> Record; 2654 2655 Triple TT(TheModule->getTargetTriple()); 2656 2657 // Read all the records for this value table. 2658 SmallString<128> ValueName; 2659 2660 while (true) { 2661 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2662 if (!MaybeEntry) 2663 return MaybeEntry.takeError(); 2664 BitstreamEntry Entry = MaybeEntry.get(); 2665 2666 switch (Entry.Kind) { 2667 case BitstreamEntry::SubBlock: // Handled for us already. 2668 case BitstreamEntry::Error: 2669 return error("Malformed block"); 2670 case BitstreamEntry::EndBlock: 2671 if (Offset > 0) 2672 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2673 return JumpFailed; 2674 return Error::success(); 2675 case BitstreamEntry::Record: 2676 // The interesting case. 2677 break; 2678 } 2679 2680 // Read a record. 2681 Record.clear(); 2682 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2683 if (!MaybeRecord) 2684 return MaybeRecord.takeError(); 2685 switch (MaybeRecord.get()) { 2686 default: // Default behavior: unknown type. 2687 break; 2688 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 2689 Expected<Value *> ValOrErr = recordValue(Record, 1, TT); 2690 if (Error Err = ValOrErr.takeError()) 2691 return Err; 2692 ValOrErr.get(); 2693 break; 2694 } 2695 case bitc::VST_CODE_FNENTRY: { 2696 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 2697 Expected<Value *> ValOrErr = recordValue(Record, 2, TT); 2698 if (Error Err = ValOrErr.takeError()) 2699 return Err; 2700 Value *V = ValOrErr.get(); 2701 2702 // Ignore function offsets emitted for aliases of functions in older 2703 // versions of LLVM. 2704 if (auto *F = dyn_cast<Function>(V)) 2705 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record); 2706 break; 2707 } 2708 case bitc::VST_CODE_BBENTRY: { 2709 if (convertToString(Record, 1, ValueName)) 2710 return error("Invalid bbentry record"); 2711 BasicBlock *BB = getBasicBlock(Record[0]); 2712 if (!BB) 2713 return error("Invalid bbentry record"); 2714 2715 BB->setName(StringRef(ValueName.data(), ValueName.size())); 2716 ValueName.clear(); 2717 break; 2718 } 2719 } 2720 } 2721 } 2722 2723 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2724 /// encoding. 2725 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2726 if ((V & 1) == 0) 2727 return V >> 1; 2728 if (V != 1) 2729 return -(V >> 1); 2730 // There is no such thing as -0 with integers. "-0" really means MININT. 2731 return 1ULL << 63; 2732 } 2733 2734 /// Resolve all of the initializers for global values and aliases that we can. 2735 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 2736 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist; 2737 std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInitWorklist; 2738 std::vector<FunctionOperandInfo> FunctionOperandWorklist; 2739 2740 GlobalInitWorklist.swap(GlobalInits); 2741 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 2742 FunctionOperandWorklist.swap(FunctionOperands); 2743 2744 while (!GlobalInitWorklist.empty()) { 2745 unsigned ValID = GlobalInitWorklist.back().second; 2746 if (ValID >= ValueList.size()) { 2747 // Not ready to resolve this yet, it requires something later in the file. 2748 GlobalInits.push_back(GlobalInitWorklist.back()); 2749 } else { 2750 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 2751 if (!MaybeC) 2752 return MaybeC.takeError(); 2753 GlobalInitWorklist.back().first->setInitializer(MaybeC.get()); 2754 } 2755 GlobalInitWorklist.pop_back(); 2756 } 2757 2758 while (!IndirectSymbolInitWorklist.empty()) { 2759 unsigned ValID = IndirectSymbolInitWorklist.back().second; 2760 if (ValID >= ValueList.size()) { 2761 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 2762 } else { 2763 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 2764 if (!MaybeC) 2765 return MaybeC.takeError(); 2766 Constant *C = MaybeC.get(); 2767 GlobalValue *GV = IndirectSymbolInitWorklist.back().first; 2768 if (auto *GA = dyn_cast<GlobalAlias>(GV)) { 2769 if (C->getType() != GV->getType()) 2770 return error("Alias and aliasee types don't match"); 2771 GA->setAliasee(C); 2772 } else if (auto *GI = dyn_cast<GlobalIFunc>(GV)) { 2773 Type *ResolverFTy = 2774 GlobalIFunc::getResolverFunctionType(GI->getValueType()); 2775 // Transparently fix up the type for compatiblity with older bitcode 2776 GI->setResolver( 2777 ConstantExpr::getBitCast(C, ResolverFTy->getPointerTo())); 2778 } else { 2779 return error("Expected an alias or an ifunc"); 2780 } 2781 } 2782 IndirectSymbolInitWorklist.pop_back(); 2783 } 2784 2785 while (!FunctionOperandWorklist.empty()) { 2786 FunctionOperandInfo &Info = FunctionOperandWorklist.back(); 2787 if (Info.PersonalityFn) { 2788 unsigned ValID = Info.PersonalityFn - 1; 2789 if (ValID < ValueList.size()) { 2790 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 2791 if (!MaybeC) 2792 return MaybeC.takeError(); 2793 Info.F->setPersonalityFn(MaybeC.get()); 2794 Info.PersonalityFn = 0; 2795 } 2796 } 2797 if (Info.Prefix) { 2798 unsigned ValID = Info.Prefix - 1; 2799 if (ValID < ValueList.size()) { 2800 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 2801 if (!MaybeC) 2802 return MaybeC.takeError(); 2803 Info.F->setPrefixData(MaybeC.get()); 2804 Info.Prefix = 0; 2805 } 2806 } 2807 if (Info.Prologue) { 2808 unsigned ValID = Info.Prologue - 1; 2809 if (ValID < ValueList.size()) { 2810 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 2811 if (!MaybeC) 2812 return MaybeC.takeError(); 2813 Info.F->setPrologueData(MaybeC.get()); 2814 Info.Prologue = 0; 2815 } 2816 } 2817 if (Info.PersonalityFn || Info.Prefix || Info.Prologue) 2818 FunctionOperands.push_back(Info); 2819 FunctionOperandWorklist.pop_back(); 2820 } 2821 2822 return Error::success(); 2823 } 2824 2825 APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2826 SmallVector<uint64_t, 8> Words(Vals.size()); 2827 transform(Vals, Words.begin(), 2828 BitcodeReader::decodeSignRotatedValue); 2829 2830 return APInt(TypeBits, Words); 2831 } 2832 2833 Error BitcodeReader::parseConstants() { 2834 if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2835 return Err; 2836 2837 SmallVector<uint64_t, 64> Record; 2838 2839 // Read all the records for this value table. 2840 Type *CurTy = Type::getInt32Ty(Context); 2841 unsigned Int32TyID = getVirtualTypeID(CurTy); 2842 unsigned CurTyID = Int32TyID; 2843 Type *CurElemTy = nullptr; 2844 unsigned NextCstNo = ValueList.size(); 2845 2846 while (true) { 2847 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2848 if (!MaybeEntry) 2849 return MaybeEntry.takeError(); 2850 BitstreamEntry Entry = MaybeEntry.get(); 2851 2852 switch (Entry.Kind) { 2853 case BitstreamEntry::SubBlock: // Handled for us already. 2854 case BitstreamEntry::Error: 2855 return error("Malformed block"); 2856 case BitstreamEntry::EndBlock: 2857 if (NextCstNo != ValueList.size()) 2858 return error("Invalid constant reference"); 2859 return Error::success(); 2860 case BitstreamEntry::Record: 2861 // The interesting case. 2862 break; 2863 } 2864 2865 // Read a record. 2866 Record.clear(); 2867 Type *VoidType = Type::getVoidTy(Context); 2868 Value *V = nullptr; 2869 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 2870 if (!MaybeBitCode) 2871 return MaybeBitCode.takeError(); 2872 switch (unsigned BitCode = MaybeBitCode.get()) { 2873 default: // Default behavior: unknown constant 2874 case bitc::CST_CODE_UNDEF: // UNDEF 2875 V = UndefValue::get(CurTy); 2876 break; 2877 case bitc::CST_CODE_POISON: // POISON 2878 V = PoisonValue::get(CurTy); 2879 break; 2880 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2881 if (Record.empty()) 2882 return error("Invalid settype record"); 2883 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2884 return error("Invalid settype record"); 2885 if (TypeList[Record[0]] == VoidType) 2886 return error("Invalid constant type"); 2887 CurTyID = Record[0]; 2888 CurTy = TypeList[CurTyID]; 2889 CurElemTy = getPtrElementTypeByID(CurTyID); 2890 continue; // Skip the ValueList manipulation. 2891 case bitc::CST_CODE_NULL: // NULL 2892 if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy()) 2893 return error("Invalid type for a constant null value"); 2894 V = Constant::getNullValue(CurTy); 2895 break; 2896 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2897 if (!CurTy->isIntegerTy() || Record.empty()) 2898 return error("Invalid integer const record"); 2899 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2900 break; 2901 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2902 if (!CurTy->isIntegerTy() || Record.empty()) 2903 return error("Invalid wide integer const record"); 2904 2905 APInt VInt = 2906 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2907 V = ConstantInt::get(Context, VInt); 2908 2909 break; 2910 } 2911 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2912 if (Record.empty()) 2913 return error("Invalid float const record"); 2914 if (CurTy->isHalfTy()) 2915 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(), 2916 APInt(16, (uint16_t)Record[0]))); 2917 else if (CurTy->isBFloatTy()) 2918 V = ConstantFP::get(Context, APFloat(APFloat::BFloat(), 2919 APInt(16, (uint32_t)Record[0]))); 2920 else if (CurTy->isFloatTy()) 2921 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(), 2922 APInt(32, (uint32_t)Record[0]))); 2923 else if (CurTy->isDoubleTy()) 2924 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(), 2925 APInt(64, Record[0]))); 2926 else if (CurTy->isX86_FP80Ty()) { 2927 // Bits are not stored the same way as a normal i80 APInt, compensate. 2928 uint64_t Rearrange[2]; 2929 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2930 Rearrange[1] = Record[0] >> 48; 2931 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(), 2932 APInt(80, Rearrange))); 2933 } else if (CurTy->isFP128Ty()) 2934 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(), 2935 APInt(128, Record))); 2936 else if (CurTy->isPPC_FP128Ty()) 2937 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(), 2938 APInt(128, Record))); 2939 else 2940 V = UndefValue::get(CurTy); 2941 break; 2942 } 2943 2944 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2945 if (Record.empty()) 2946 return error("Invalid aggregate record"); 2947 2948 unsigned Size = Record.size(); 2949 SmallVector<unsigned, 16> Elts; 2950 for (unsigned i = 0; i != Size; ++i) 2951 Elts.push_back(Record[i]); 2952 2953 if (isa<StructType>(CurTy)) { 2954 V = BitcodeConstant::create( 2955 Alloc, CurTy, BitcodeConstant::ConstantStructOpcode, Elts); 2956 } else if (isa<ArrayType>(CurTy)) { 2957 V = BitcodeConstant::create(Alloc, CurTy, 2958 BitcodeConstant::ConstantArrayOpcode, Elts); 2959 } else if (isa<VectorType>(CurTy)) { 2960 V = BitcodeConstant::create( 2961 Alloc, CurTy, BitcodeConstant::ConstantVectorOpcode, Elts); 2962 } else { 2963 V = UndefValue::get(CurTy); 2964 } 2965 break; 2966 } 2967 case bitc::CST_CODE_STRING: // STRING: [values] 2968 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2969 if (Record.empty()) 2970 return error("Invalid string record"); 2971 2972 SmallString<16> Elts(Record.begin(), Record.end()); 2973 V = ConstantDataArray::getString(Context, Elts, 2974 BitCode == bitc::CST_CODE_CSTRING); 2975 break; 2976 } 2977 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2978 if (Record.empty()) 2979 return error("Invalid data record"); 2980 2981 Type *EltTy; 2982 if (auto *Array = dyn_cast<ArrayType>(CurTy)) 2983 EltTy = Array->getElementType(); 2984 else 2985 EltTy = cast<VectorType>(CurTy)->getElementType(); 2986 if (EltTy->isIntegerTy(8)) { 2987 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2988 if (isa<VectorType>(CurTy)) 2989 V = ConstantDataVector::get(Context, Elts); 2990 else 2991 V = ConstantDataArray::get(Context, Elts); 2992 } else if (EltTy->isIntegerTy(16)) { 2993 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2994 if (isa<VectorType>(CurTy)) 2995 V = ConstantDataVector::get(Context, Elts); 2996 else 2997 V = ConstantDataArray::get(Context, Elts); 2998 } else if (EltTy->isIntegerTy(32)) { 2999 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 3000 if (isa<VectorType>(CurTy)) 3001 V = ConstantDataVector::get(Context, Elts); 3002 else 3003 V = ConstantDataArray::get(Context, Elts); 3004 } else if (EltTy->isIntegerTy(64)) { 3005 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 3006 if (isa<VectorType>(CurTy)) 3007 V = ConstantDataVector::get(Context, Elts); 3008 else 3009 V = ConstantDataArray::get(Context, Elts); 3010 } else if (EltTy->isHalfTy()) { 3011 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 3012 if (isa<VectorType>(CurTy)) 3013 V = ConstantDataVector::getFP(EltTy, Elts); 3014 else 3015 V = ConstantDataArray::getFP(EltTy, Elts); 3016 } else if (EltTy->isBFloatTy()) { 3017 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 3018 if (isa<VectorType>(CurTy)) 3019 V = ConstantDataVector::getFP(EltTy, Elts); 3020 else 3021 V = ConstantDataArray::getFP(EltTy, Elts); 3022 } else if (EltTy->isFloatTy()) { 3023 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 3024 if (isa<VectorType>(CurTy)) 3025 V = ConstantDataVector::getFP(EltTy, Elts); 3026 else 3027 V = ConstantDataArray::getFP(EltTy, Elts); 3028 } else if (EltTy->isDoubleTy()) { 3029 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 3030 if (isa<VectorType>(CurTy)) 3031 V = ConstantDataVector::getFP(EltTy, Elts); 3032 else 3033 V = ConstantDataArray::getFP(EltTy, Elts); 3034 } else { 3035 return error("Invalid type for value"); 3036 } 3037 break; 3038 } 3039 case bitc::CST_CODE_CE_UNOP: { // CE_UNOP: [opcode, opval] 3040 if (Record.size() < 2) 3041 return error("Invalid unary op constexpr record"); 3042 int Opc = getDecodedUnaryOpcode(Record[0], CurTy); 3043 if (Opc < 0) { 3044 V = UndefValue::get(CurTy); // Unknown unop. 3045 } else { 3046 V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[1]); 3047 } 3048 break; 3049 } 3050 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 3051 if (Record.size() < 3) 3052 return error("Invalid binary op constexpr record"); 3053 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 3054 if (Opc < 0) { 3055 V = UndefValue::get(CurTy); // Unknown binop. 3056 } else { 3057 uint8_t Flags = 0; 3058 if (Record.size() >= 4) { 3059 if (Opc == Instruction::Add || 3060 Opc == Instruction::Sub || 3061 Opc == Instruction::Mul || 3062 Opc == Instruction::Shl) { 3063 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3064 Flags |= OverflowingBinaryOperator::NoSignedWrap; 3065 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3066 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 3067 } else if (Opc == Instruction::SDiv || 3068 Opc == Instruction::UDiv || 3069 Opc == Instruction::LShr || 3070 Opc == Instruction::AShr) { 3071 if (Record[3] & (1 << bitc::PEO_EXACT)) 3072 Flags |= SDivOperator::IsExact; 3073 } 3074 } 3075 V = BitcodeConstant::create(Alloc, CurTy, {(uint8_t)Opc, Flags}, 3076 {(unsigned)Record[1], (unsigned)Record[2]}); 3077 } 3078 break; 3079 } 3080 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 3081 if (Record.size() < 3) 3082 return error("Invalid cast constexpr record"); 3083 int Opc = getDecodedCastOpcode(Record[0]); 3084 if (Opc < 0) { 3085 V = UndefValue::get(CurTy); // Unknown cast. 3086 } else { 3087 unsigned OpTyID = Record[1]; 3088 Type *OpTy = getTypeByID(OpTyID); 3089 if (!OpTy) 3090 return error("Invalid cast constexpr record"); 3091 V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[2]); 3092 } 3093 break; 3094 } 3095 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands] 3096 case bitc::CST_CODE_CE_GEP: // [ty, n x operands] 3097 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x 3098 // operands] 3099 if (Record.size() < 2) 3100 return error("Constant GEP record must have at least two elements"); 3101 unsigned OpNum = 0; 3102 Type *PointeeType = nullptr; 3103 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX || 3104 Record.size() % 2) 3105 PointeeType = getTypeByID(Record[OpNum++]); 3106 3107 bool InBounds = false; 3108 Optional<unsigned> InRangeIndex; 3109 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) { 3110 uint64_t Op = Record[OpNum++]; 3111 InBounds = Op & 1; 3112 InRangeIndex = Op >> 1; 3113 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 3114 InBounds = true; 3115 3116 SmallVector<unsigned, 16> Elts; 3117 unsigned BaseTypeID = Record[OpNum]; 3118 while (OpNum != Record.size()) { 3119 unsigned ElTyID = Record[OpNum++]; 3120 Type *ElTy = getTypeByID(ElTyID); 3121 if (!ElTy) 3122 return error("Invalid getelementptr constexpr record"); 3123 Elts.push_back(Record[OpNum++]); 3124 } 3125 3126 if (Elts.size() < 1) 3127 return error("Invalid gep with no operands"); 3128 3129 Type *BaseType = getTypeByID(BaseTypeID); 3130 if (isa<VectorType>(BaseType)) { 3131 BaseTypeID = getContainedTypeID(BaseTypeID, 0); 3132 BaseType = getTypeByID(BaseTypeID); 3133 } 3134 3135 PointerType *OrigPtrTy = dyn_cast_or_null<PointerType>(BaseType); 3136 if (!OrigPtrTy) 3137 return error("GEP base operand must be pointer or vector of pointer"); 3138 3139 if (!PointeeType) { 3140 PointeeType = getPtrElementTypeByID(BaseTypeID); 3141 if (!PointeeType) 3142 return error("Missing element type for old-style constant GEP"); 3143 } else if (!OrigPtrTy->isOpaqueOrPointeeTypeMatches(PointeeType)) 3144 return error("Explicit gep operator type does not match pointee type " 3145 "of pointer operand"); 3146 3147 V = BitcodeConstant::create( 3148 Alloc, CurTy, 3149 {Instruction::GetElementPtr, InBounds, InRangeIndex.getValueOr(-1), 3150 PointeeType}, 3151 Elts); 3152 break; 3153 } 3154 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 3155 if (Record.size() < 3) 3156 return error("Invalid select constexpr record"); 3157 3158 V = BitcodeConstant::create( 3159 Alloc, CurTy, Instruction::Select, 3160 {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]}); 3161 break; 3162 } 3163 case bitc::CST_CODE_CE_EXTRACTELT 3164 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 3165 if (Record.size() < 3) 3166 return error("Invalid extractelement constexpr record"); 3167 unsigned OpTyID = Record[0]; 3168 VectorType *OpTy = 3169 dyn_cast_or_null<VectorType>(getTypeByID(OpTyID)); 3170 if (!OpTy) 3171 return error("Invalid extractelement constexpr record"); 3172 unsigned IdxRecord; 3173 if (Record.size() == 4) { 3174 unsigned IdxTyID = Record[2]; 3175 Type *IdxTy = getTypeByID(IdxTyID); 3176 if (!IdxTy) 3177 return error("Invalid extractelement constexpr record"); 3178 IdxRecord = Record[3]; 3179 } else { 3180 // Deprecated, but still needed to read old bitcode files. 3181 IdxRecord = Record[2]; 3182 } 3183 V = BitcodeConstant::create(Alloc, CurTy, Instruction::ExtractElement, 3184 {(unsigned)Record[1], IdxRecord}); 3185 break; 3186 } 3187 case bitc::CST_CODE_CE_INSERTELT 3188 : { // CE_INSERTELT: [opval, opval, opty, opval] 3189 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 3190 if (Record.size() < 3 || !OpTy) 3191 return error("Invalid insertelement constexpr record"); 3192 unsigned IdxRecord; 3193 if (Record.size() == 4) { 3194 unsigned IdxTyID = Record[2]; 3195 Type *IdxTy = getTypeByID(IdxTyID); 3196 if (!IdxTy) 3197 return error("Invalid insertelement constexpr record"); 3198 IdxRecord = Record[3]; 3199 } else { 3200 // Deprecated, but still needed to read old bitcode files. 3201 IdxRecord = Record[2]; 3202 } 3203 V = BitcodeConstant::create( 3204 Alloc, CurTy, Instruction::InsertElement, 3205 {(unsigned)Record[0], (unsigned)Record[1], IdxRecord}); 3206 break; 3207 } 3208 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 3209 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 3210 if (Record.size() < 3 || !OpTy) 3211 return error("Invalid shufflevector constexpr record"); 3212 V = BitcodeConstant::create( 3213 Alloc, CurTy, Instruction::ShuffleVector, 3214 {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]}); 3215 break; 3216 } 3217 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 3218 VectorType *RTy = dyn_cast<VectorType>(CurTy); 3219 VectorType *OpTy = 3220 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 3221 if (Record.size() < 4 || !RTy || !OpTy) 3222 return error("Invalid shufflevector constexpr record"); 3223 V = BitcodeConstant::create( 3224 Alloc, CurTy, Instruction::ShuffleVector, 3225 {(unsigned)Record[1], (unsigned)Record[2], (unsigned)Record[3]}); 3226 break; 3227 } 3228 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 3229 if (Record.size() < 4) 3230 return error("Invalid cmp constexpt record"); 3231 unsigned OpTyID = Record[0]; 3232 Type *OpTy = getTypeByID(OpTyID); 3233 if (!OpTy) 3234 return error("Invalid cmp constexpr record"); 3235 V = BitcodeConstant::create( 3236 Alloc, CurTy, 3237 {(uint8_t)(OpTy->isFPOrFPVectorTy() ? Instruction::FCmp 3238 : Instruction::ICmp), 3239 (uint8_t)Record[3]}, 3240 {(unsigned)Record[1], (unsigned)Record[2]}); 3241 break; 3242 } 3243 // This maintains backward compatibility, pre-asm dialect keywords. 3244 // Deprecated, but still needed to read old bitcode files. 3245 case bitc::CST_CODE_INLINEASM_OLD: { 3246 if (Record.size() < 2) 3247 return error("Invalid inlineasm record"); 3248 std::string AsmStr, ConstrStr; 3249 bool HasSideEffects = Record[0] & 1; 3250 bool IsAlignStack = Record[0] >> 1; 3251 unsigned AsmStrSize = Record[1]; 3252 if (2+AsmStrSize >= Record.size()) 3253 return error("Invalid inlineasm record"); 3254 unsigned ConstStrSize = Record[2+AsmStrSize]; 3255 if (3+AsmStrSize+ConstStrSize > Record.size()) 3256 return error("Invalid inlineasm record"); 3257 3258 for (unsigned i = 0; i != AsmStrSize; ++i) 3259 AsmStr += (char)Record[2+i]; 3260 for (unsigned i = 0; i != ConstStrSize; ++i) 3261 ConstrStr += (char)Record[3+AsmStrSize+i]; 3262 UpgradeInlineAsmString(&AsmStr); 3263 if (!CurElemTy) 3264 return error("Missing element type for old-style inlineasm"); 3265 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr, 3266 HasSideEffects, IsAlignStack); 3267 break; 3268 } 3269 // This version adds support for the asm dialect keywords (e.g., 3270 // inteldialect). 3271 case bitc::CST_CODE_INLINEASM_OLD2: { 3272 if (Record.size() < 2) 3273 return error("Invalid inlineasm record"); 3274 std::string AsmStr, ConstrStr; 3275 bool HasSideEffects = Record[0] & 1; 3276 bool IsAlignStack = (Record[0] >> 1) & 1; 3277 unsigned AsmDialect = Record[0] >> 2; 3278 unsigned AsmStrSize = Record[1]; 3279 if (2+AsmStrSize >= Record.size()) 3280 return error("Invalid inlineasm record"); 3281 unsigned ConstStrSize = Record[2+AsmStrSize]; 3282 if (3+AsmStrSize+ConstStrSize > Record.size()) 3283 return error("Invalid inlineasm record"); 3284 3285 for (unsigned i = 0; i != AsmStrSize; ++i) 3286 AsmStr += (char)Record[2+i]; 3287 for (unsigned i = 0; i != ConstStrSize; ++i) 3288 ConstrStr += (char)Record[3+AsmStrSize+i]; 3289 UpgradeInlineAsmString(&AsmStr); 3290 if (!CurElemTy) 3291 return error("Missing element type for old-style inlineasm"); 3292 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr, 3293 HasSideEffects, IsAlignStack, 3294 InlineAsm::AsmDialect(AsmDialect)); 3295 break; 3296 } 3297 // This version adds support for the unwind keyword. 3298 case bitc::CST_CODE_INLINEASM_OLD3: { 3299 if (Record.size() < 2) 3300 return error("Invalid inlineasm record"); 3301 unsigned OpNum = 0; 3302 std::string AsmStr, ConstrStr; 3303 bool HasSideEffects = Record[OpNum] & 1; 3304 bool IsAlignStack = (Record[OpNum] >> 1) & 1; 3305 unsigned AsmDialect = (Record[OpNum] >> 2) & 1; 3306 bool CanThrow = (Record[OpNum] >> 3) & 1; 3307 ++OpNum; 3308 unsigned AsmStrSize = Record[OpNum]; 3309 ++OpNum; 3310 if (OpNum + AsmStrSize >= Record.size()) 3311 return error("Invalid inlineasm record"); 3312 unsigned ConstStrSize = Record[OpNum + AsmStrSize]; 3313 if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size()) 3314 return error("Invalid inlineasm record"); 3315 3316 for (unsigned i = 0; i != AsmStrSize; ++i) 3317 AsmStr += (char)Record[OpNum + i]; 3318 ++OpNum; 3319 for (unsigned i = 0; i != ConstStrSize; ++i) 3320 ConstrStr += (char)Record[OpNum + AsmStrSize + i]; 3321 UpgradeInlineAsmString(&AsmStr); 3322 if (!CurElemTy) 3323 return error("Missing element type for old-style inlineasm"); 3324 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr, 3325 HasSideEffects, IsAlignStack, 3326 InlineAsm::AsmDialect(AsmDialect), CanThrow); 3327 break; 3328 } 3329 // This version adds explicit function type. 3330 case bitc::CST_CODE_INLINEASM: { 3331 if (Record.size() < 3) 3332 return error("Invalid inlineasm record"); 3333 unsigned OpNum = 0; 3334 auto *FnTy = dyn_cast_or_null<FunctionType>(getTypeByID(Record[OpNum])); 3335 ++OpNum; 3336 if (!FnTy) 3337 return error("Invalid inlineasm record"); 3338 std::string AsmStr, ConstrStr; 3339 bool HasSideEffects = Record[OpNum] & 1; 3340 bool IsAlignStack = (Record[OpNum] >> 1) & 1; 3341 unsigned AsmDialect = (Record[OpNum] >> 2) & 1; 3342 bool CanThrow = (Record[OpNum] >> 3) & 1; 3343 ++OpNum; 3344 unsigned AsmStrSize = Record[OpNum]; 3345 ++OpNum; 3346 if (OpNum + AsmStrSize >= Record.size()) 3347 return error("Invalid inlineasm record"); 3348 unsigned ConstStrSize = Record[OpNum + AsmStrSize]; 3349 if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size()) 3350 return error("Invalid inlineasm record"); 3351 3352 for (unsigned i = 0; i != AsmStrSize; ++i) 3353 AsmStr += (char)Record[OpNum + i]; 3354 ++OpNum; 3355 for (unsigned i = 0; i != ConstStrSize; ++i) 3356 ConstrStr += (char)Record[OpNum + AsmStrSize + i]; 3357 UpgradeInlineAsmString(&AsmStr); 3358 V = InlineAsm::get(FnTy, AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 3359 InlineAsm::AsmDialect(AsmDialect), CanThrow); 3360 break; 3361 } 3362 case bitc::CST_CODE_BLOCKADDRESS:{ 3363 if (Record.size() < 3) 3364 return error("Invalid blockaddress record"); 3365 unsigned FnTyID = Record[0]; 3366 Type *FnTy = getTypeByID(FnTyID); 3367 if (!FnTy) 3368 return error("Invalid blockaddress record"); 3369 V = BitcodeConstant::create( 3370 Alloc, CurTy, 3371 {BitcodeConstant::BlockAddressOpcode, 0, (unsigned)Record[2]}, 3372 Record[1]); 3373 break; 3374 } 3375 case bitc::CST_CODE_DSO_LOCAL_EQUIVALENT: { 3376 if (Record.size() < 2) 3377 return error("Invalid dso_local record"); 3378 unsigned GVTyID = Record[0]; 3379 Type *GVTy = getTypeByID(GVTyID); 3380 if (!GVTy) 3381 return error("Invalid dso_local record"); 3382 V = BitcodeConstant::create( 3383 Alloc, CurTy, BitcodeConstant::DSOLocalEquivalentOpcode, Record[1]); 3384 break; 3385 } 3386 case bitc::CST_CODE_NO_CFI_VALUE: { 3387 if (Record.size() < 2) 3388 return error("Invalid no_cfi record"); 3389 unsigned GVTyID = Record[0]; 3390 Type *GVTy = getTypeByID(GVTyID); 3391 if (!GVTy) 3392 return error("Invalid no_cfi record"); 3393 V = BitcodeConstant::create(Alloc, CurTy, BitcodeConstant::NoCFIOpcode, 3394 Record[1]); 3395 break; 3396 } 3397 } 3398 3399 assert(V->getType() == getTypeByID(CurTyID) && "Incorrect result type ID"); 3400 if (Error Err = ValueList.assignValue(NextCstNo, V, CurTyID)) 3401 return Err; 3402 ++NextCstNo; 3403 } 3404 } 3405 3406 Error BitcodeReader::parseUseLists() { 3407 if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 3408 return Err; 3409 3410 // Read all the records. 3411 SmallVector<uint64_t, 64> Record; 3412 3413 while (true) { 3414 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 3415 if (!MaybeEntry) 3416 return MaybeEntry.takeError(); 3417 BitstreamEntry Entry = MaybeEntry.get(); 3418 3419 switch (Entry.Kind) { 3420 case BitstreamEntry::SubBlock: // Handled for us already. 3421 case BitstreamEntry::Error: 3422 return error("Malformed block"); 3423 case BitstreamEntry::EndBlock: 3424 return Error::success(); 3425 case BitstreamEntry::Record: 3426 // The interesting case. 3427 break; 3428 } 3429 3430 // Read a use list record. 3431 Record.clear(); 3432 bool IsBB = false; 3433 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 3434 if (!MaybeRecord) 3435 return MaybeRecord.takeError(); 3436 switch (MaybeRecord.get()) { 3437 default: // Default behavior: unknown type. 3438 break; 3439 case bitc::USELIST_CODE_BB: 3440 IsBB = true; 3441 LLVM_FALLTHROUGH; 3442 case bitc::USELIST_CODE_DEFAULT: { 3443 unsigned RecordLength = Record.size(); 3444 if (RecordLength < 3) 3445 // Records should have at least an ID and two indexes. 3446 return error("Invalid record"); 3447 unsigned ID = Record.pop_back_val(); 3448 3449 Value *V; 3450 if (IsBB) { 3451 assert(ID < FunctionBBs.size() && "Basic block not found"); 3452 V = FunctionBBs[ID]; 3453 } else 3454 V = ValueList[ID]; 3455 unsigned NumUses = 0; 3456 SmallDenseMap<const Use *, unsigned, 16> Order; 3457 for (const Use &U : V->materialized_uses()) { 3458 if (++NumUses > Record.size()) 3459 break; 3460 Order[&U] = Record[NumUses - 1]; 3461 } 3462 if (Order.size() != Record.size() || NumUses > Record.size()) 3463 // Mismatches can happen if the functions are being materialized lazily 3464 // (out-of-order), or a value has been upgraded. 3465 break; 3466 3467 V->sortUseList([&](const Use &L, const Use &R) { 3468 return Order.lookup(&L) < Order.lookup(&R); 3469 }); 3470 break; 3471 } 3472 } 3473 } 3474 } 3475 3476 /// When we see the block for metadata, remember where it is and then skip it. 3477 /// This lets us lazily deserialize the metadata. 3478 Error BitcodeReader::rememberAndSkipMetadata() { 3479 // Save the current stream state. 3480 uint64_t CurBit = Stream.GetCurrentBitNo(); 3481 DeferredMetadataInfo.push_back(CurBit); 3482 3483 // Skip over the block for now. 3484 if (Error Err = Stream.SkipBlock()) 3485 return Err; 3486 return Error::success(); 3487 } 3488 3489 Error BitcodeReader::materializeMetadata() { 3490 for (uint64_t BitPos : DeferredMetadataInfo) { 3491 // Move the bit stream to the saved position. 3492 if (Error JumpFailed = Stream.JumpToBit(BitPos)) 3493 return JumpFailed; 3494 if (Error Err = MDLoader->parseModuleMetadata()) 3495 return Err; 3496 } 3497 3498 // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level 3499 // metadata. Only upgrade if the new option doesn't exist to avoid upgrade 3500 // multiple times. 3501 if (!TheModule->getNamedMetadata("llvm.linker.options")) { 3502 if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) { 3503 NamedMDNode *LinkerOpts = 3504 TheModule->getOrInsertNamedMetadata("llvm.linker.options"); 3505 for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands()) 3506 LinkerOpts->addOperand(cast<MDNode>(MDOptions)); 3507 } 3508 } 3509 3510 DeferredMetadataInfo.clear(); 3511 return Error::success(); 3512 } 3513 3514 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 3515 3516 /// When we see the block for a function body, remember where it is and then 3517 /// skip it. This lets us lazily deserialize the functions. 3518 Error BitcodeReader::rememberAndSkipFunctionBody() { 3519 // Get the function we are talking about. 3520 if (FunctionsWithBodies.empty()) 3521 return error("Insufficient function protos"); 3522 3523 Function *Fn = FunctionsWithBodies.back(); 3524 FunctionsWithBodies.pop_back(); 3525 3526 // Save the current stream state. 3527 uint64_t CurBit = Stream.GetCurrentBitNo(); 3528 assert( 3529 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 3530 "Mismatch between VST and scanned function offsets"); 3531 DeferredFunctionInfo[Fn] = CurBit; 3532 3533 // Skip over the function block for now. 3534 if (Error Err = Stream.SkipBlock()) 3535 return Err; 3536 return Error::success(); 3537 } 3538 3539 Error BitcodeReader::globalCleanup() { 3540 // Patch the initializers for globals and aliases up. 3541 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3542 return Err; 3543 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 3544 return error("Malformed global initializer set"); 3545 3546 // Look for intrinsic functions which need to be upgraded at some point 3547 // and functions that need to have their function attributes upgraded. 3548 for (Function &F : *TheModule) { 3549 MDLoader->upgradeDebugIntrinsics(F); 3550 Function *NewFn; 3551 if (UpgradeIntrinsicFunction(&F, NewFn)) 3552 UpgradedIntrinsics[&F] = NewFn; 3553 else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F)) 3554 // Some types could be renamed during loading if several modules are 3555 // loaded in the same LLVMContext (LTO scenario). In this case we should 3556 // remangle intrinsics names as well. 3557 RemangledIntrinsics[&F] = *Remangled; 3558 // Look for functions that rely on old function attribute behavior. 3559 UpgradeFunctionAttributes(F); 3560 } 3561 3562 // Look for global variables which need to be renamed. 3563 std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables; 3564 for (GlobalVariable &GV : TheModule->globals()) 3565 if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV)) 3566 UpgradedVariables.emplace_back(&GV, Upgraded); 3567 for (auto &Pair : UpgradedVariables) { 3568 Pair.first->eraseFromParent(); 3569 TheModule->getGlobalList().push_back(Pair.second); 3570 } 3571 3572 // Force deallocation of memory for these vectors to favor the client that 3573 // want lazy deserialization. 3574 std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits); 3575 std::vector<std::pair<GlobalValue *, unsigned>>().swap(IndirectSymbolInits); 3576 return Error::success(); 3577 } 3578 3579 /// Support for lazy parsing of function bodies. This is required if we 3580 /// either have an old bitcode file without a VST forward declaration record, 3581 /// or if we have an anonymous function being materialized, since anonymous 3582 /// functions do not have a name and are therefore not in the VST. 3583 Error BitcodeReader::rememberAndSkipFunctionBodies() { 3584 if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit)) 3585 return JumpFailed; 3586 3587 if (Stream.AtEndOfStream()) 3588 return error("Could not find function in stream"); 3589 3590 if (!SeenFirstFunctionBody) 3591 return error("Trying to materialize functions before seeing function blocks"); 3592 3593 // An old bitcode file with the symbol table at the end would have 3594 // finished the parse greedily. 3595 assert(SeenValueSymbolTable); 3596 3597 SmallVector<uint64_t, 64> Record; 3598 3599 while (true) { 3600 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3601 if (!MaybeEntry) 3602 return MaybeEntry.takeError(); 3603 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3604 3605 switch (Entry.Kind) { 3606 default: 3607 return error("Expect SubBlock"); 3608 case BitstreamEntry::SubBlock: 3609 switch (Entry.ID) { 3610 default: 3611 return error("Expect function block"); 3612 case bitc::FUNCTION_BLOCK_ID: 3613 if (Error Err = rememberAndSkipFunctionBody()) 3614 return Err; 3615 NextUnreadBit = Stream.GetCurrentBitNo(); 3616 return Error::success(); 3617 } 3618 } 3619 } 3620 } 3621 3622 Error BitcodeReaderBase::readBlockInfo() { 3623 Expected<Optional<BitstreamBlockInfo>> MaybeNewBlockInfo = 3624 Stream.ReadBlockInfoBlock(); 3625 if (!MaybeNewBlockInfo) 3626 return MaybeNewBlockInfo.takeError(); 3627 Optional<BitstreamBlockInfo> NewBlockInfo = 3628 std::move(MaybeNewBlockInfo.get()); 3629 if (!NewBlockInfo) 3630 return error("Malformed block"); 3631 BlockInfo = std::move(*NewBlockInfo); 3632 return Error::success(); 3633 } 3634 3635 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) { 3636 // v1: [selection_kind, name] 3637 // v2: [strtab_offset, strtab_size, selection_kind] 3638 StringRef Name; 3639 std::tie(Name, Record) = readNameFromStrtab(Record); 3640 3641 if (Record.empty()) 3642 return error("Invalid record"); 3643 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 3644 std::string OldFormatName; 3645 if (!UseStrtab) { 3646 if (Record.size() < 2) 3647 return error("Invalid record"); 3648 unsigned ComdatNameSize = Record[1]; 3649 if (ComdatNameSize > Record.size() - 2) 3650 return error("Comdat name size too large"); 3651 OldFormatName.reserve(ComdatNameSize); 3652 for (unsigned i = 0; i != ComdatNameSize; ++i) 3653 OldFormatName += (char)Record[2 + i]; 3654 Name = OldFormatName; 3655 } 3656 Comdat *C = TheModule->getOrInsertComdat(Name); 3657 C->setSelectionKind(SK); 3658 ComdatList.push_back(C); 3659 return Error::success(); 3660 } 3661 3662 static void inferDSOLocal(GlobalValue *GV) { 3663 // infer dso_local from linkage and visibility if it is not encoded. 3664 if (GV->hasLocalLinkage() || 3665 (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())) 3666 GV->setDSOLocal(true); 3667 } 3668 3669 GlobalValue::SanitizerMetadata deserializeSanitizerMetadata(unsigned V) { 3670 GlobalValue::SanitizerMetadata Meta; 3671 if (V & (1 << 0)) 3672 Meta.NoAddress = true; 3673 if (V & (1 << 1)) 3674 Meta.NoHWAddress = true; 3675 if (V & (1 << 2)) 3676 Meta.NoMemtag = true; 3677 if (V & (1 << 3)) 3678 Meta.IsDynInit = true; 3679 return Meta; 3680 } 3681 3682 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) { 3683 // v1: [pointer type, isconst, initid, linkage, alignment, section, 3684 // visibility, threadlocal, unnamed_addr, externally_initialized, 3685 // dllstorageclass, comdat, attributes, preemption specifier, 3686 // partition strtab offset, partition strtab size] (name in VST) 3687 // v2: [strtab_offset, strtab_size, v1] 3688 StringRef Name; 3689 std::tie(Name, Record) = readNameFromStrtab(Record); 3690 3691 if (Record.size() < 6) 3692 return error("Invalid record"); 3693 unsigned TyID = Record[0]; 3694 Type *Ty = getTypeByID(TyID); 3695 if (!Ty) 3696 return error("Invalid record"); 3697 bool isConstant = Record[1] & 1; 3698 bool explicitType = Record[1] & 2; 3699 unsigned AddressSpace; 3700 if (explicitType) { 3701 AddressSpace = Record[1] >> 2; 3702 } else { 3703 if (!Ty->isPointerTy()) 3704 return error("Invalid type for value"); 3705 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 3706 TyID = getContainedTypeID(TyID); 3707 Ty = getTypeByID(TyID); 3708 if (!Ty) 3709 return error("Missing element type for old-style global"); 3710 } 3711 3712 uint64_t RawLinkage = Record[3]; 3713 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 3714 MaybeAlign Alignment; 3715 if (Error Err = parseAlignmentValue(Record[4], Alignment)) 3716 return Err; 3717 std::string Section; 3718 if (Record[5]) { 3719 if (Record[5] - 1 >= SectionTable.size()) 3720 return error("Invalid ID"); 3721 Section = SectionTable[Record[5] - 1]; 3722 } 3723 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 3724 // Local linkage must have default visibility. 3725 // auto-upgrade `hidden` and `protected` for old bitcode. 3726 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 3727 Visibility = getDecodedVisibility(Record[6]); 3728 3729 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 3730 if (Record.size() > 7) 3731 TLM = getDecodedThreadLocalMode(Record[7]); 3732 3733 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3734 if (Record.size() > 8) 3735 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); 3736 3737 bool ExternallyInitialized = false; 3738 if (Record.size() > 9) 3739 ExternallyInitialized = Record[9]; 3740 3741 GlobalVariable *NewGV = 3742 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name, 3743 nullptr, TLM, AddressSpace, ExternallyInitialized); 3744 NewGV->setAlignment(Alignment); 3745 if (!Section.empty()) 3746 NewGV->setSection(Section); 3747 NewGV->setVisibility(Visibility); 3748 NewGV->setUnnamedAddr(UnnamedAddr); 3749 3750 if (Record.size() > 10) 3751 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 3752 else 3753 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 3754 3755 ValueList.push_back(NewGV, getVirtualTypeID(NewGV->getType(), TyID)); 3756 3757 // Remember which value to use for the global initializer. 3758 if (unsigned InitID = Record[2]) 3759 GlobalInits.push_back(std::make_pair(NewGV, InitID - 1)); 3760 3761 if (Record.size() > 11) { 3762 if (unsigned ComdatID = Record[11]) { 3763 if (ComdatID > ComdatList.size()) 3764 return error("Invalid global variable comdat ID"); 3765 NewGV->setComdat(ComdatList[ComdatID - 1]); 3766 } 3767 } else if (hasImplicitComdat(RawLinkage)) { 3768 ImplicitComdatObjects.insert(NewGV); 3769 } 3770 3771 if (Record.size() > 12) { 3772 auto AS = getAttributes(Record[12]).getFnAttrs(); 3773 NewGV->setAttributes(AS); 3774 } 3775 3776 if (Record.size() > 13) { 3777 NewGV->setDSOLocal(getDecodedDSOLocal(Record[13])); 3778 } 3779 inferDSOLocal(NewGV); 3780 3781 // Check whether we have enough values to read a partition name. 3782 if (Record.size() > 15) 3783 NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15])); 3784 3785 if (Record.size() > 16 && Record[16]) { 3786 llvm::GlobalValue::SanitizerMetadata Meta = 3787 deserializeSanitizerMetadata(Record[16]); 3788 NewGV->setSanitizerMetadata(Meta); 3789 } 3790 3791 return Error::success(); 3792 } 3793 3794 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) { 3795 // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section, 3796 // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat, 3797 // prefixdata, personalityfn, preemption specifier, addrspace] (name in VST) 3798 // v2: [strtab_offset, strtab_size, v1] 3799 StringRef Name; 3800 std::tie(Name, Record) = readNameFromStrtab(Record); 3801 3802 if (Record.size() < 8) 3803 return error("Invalid record"); 3804 unsigned FTyID = Record[0]; 3805 Type *FTy = getTypeByID(FTyID); 3806 if (!FTy) 3807 return error("Invalid record"); 3808 if (isa<PointerType>(FTy)) { 3809 FTyID = getContainedTypeID(FTyID, 0); 3810 FTy = getTypeByID(FTyID); 3811 if (!FTy) 3812 return error("Missing element type for old-style function"); 3813 } 3814 3815 if (!isa<FunctionType>(FTy)) 3816 return error("Invalid type for value"); 3817 auto CC = static_cast<CallingConv::ID>(Record[1]); 3818 if (CC & ~CallingConv::MaxID) 3819 return error("Invalid calling convention ID"); 3820 3821 unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace(); 3822 if (Record.size() > 16) 3823 AddrSpace = Record[16]; 3824 3825 Function *Func = 3826 Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage, 3827 AddrSpace, Name, TheModule); 3828 3829 assert(Func->getFunctionType() == FTy && 3830 "Incorrect fully specified type provided for function"); 3831 FunctionTypeIDs[Func] = FTyID; 3832 3833 Func->setCallingConv(CC); 3834 bool isProto = Record[2]; 3835 uint64_t RawLinkage = Record[3]; 3836 Func->setLinkage(getDecodedLinkage(RawLinkage)); 3837 Func->setAttributes(getAttributes(Record[4])); 3838 3839 // Upgrade any old-style byval or sret without a type by propagating the 3840 // argument's pointee type. There should be no opaque pointers where the byval 3841 // type is implicit. 3842 for (unsigned i = 0; i != Func->arg_size(); ++i) { 3843 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet, 3844 Attribute::InAlloca}) { 3845 if (!Func->hasParamAttribute(i, Kind)) 3846 continue; 3847 3848 if (Func->getParamAttribute(i, Kind).getValueAsType()) 3849 continue; 3850 3851 Func->removeParamAttr(i, Kind); 3852 3853 unsigned ParamTypeID = getContainedTypeID(FTyID, i + 1); 3854 Type *PtrEltTy = getPtrElementTypeByID(ParamTypeID); 3855 if (!PtrEltTy) 3856 return error("Missing param element type for attribute upgrade"); 3857 3858 Attribute NewAttr; 3859 switch (Kind) { 3860 case Attribute::ByVal: 3861 NewAttr = Attribute::getWithByValType(Context, PtrEltTy); 3862 break; 3863 case Attribute::StructRet: 3864 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy); 3865 break; 3866 case Attribute::InAlloca: 3867 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy); 3868 break; 3869 default: 3870 llvm_unreachable("not an upgraded type attribute"); 3871 } 3872 3873 Func->addParamAttr(i, NewAttr); 3874 } 3875 } 3876 3877 if (Func->getCallingConv() == CallingConv::X86_INTR && 3878 !Func->arg_empty() && !Func->hasParamAttribute(0, Attribute::ByVal)) { 3879 unsigned ParamTypeID = getContainedTypeID(FTyID, 1); 3880 Type *ByValTy = getPtrElementTypeByID(ParamTypeID); 3881 if (!ByValTy) 3882 return error("Missing param element type for x86_intrcc upgrade"); 3883 Attribute NewAttr = Attribute::getWithByValType(Context, ByValTy); 3884 Func->addParamAttr(0, NewAttr); 3885 } 3886 3887 MaybeAlign Alignment; 3888 if (Error Err = parseAlignmentValue(Record[5], Alignment)) 3889 return Err; 3890 Func->setAlignment(Alignment); 3891 if (Record[6]) { 3892 if (Record[6] - 1 >= SectionTable.size()) 3893 return error("Invalid ID"); 3894 Func->setSection(SectionTable[Record[6] - 1]); 3895 } 3896 // Local linkage must have default visibility. 3897 // auto-upgrade `hidden` and `protected` for old bitcode. 3898 if (!Func->hasLocalLinkage()) 3899 Func->setVisibility(getDecodedVisibility(Record[7])); 3900 if (Record.size() > 8 && Record[8]) { 3901 if (Record[8] - 1 >= GCTable.size()) 3902 return error("Invalid ID"); 3903 Func->setGC(GCTable[Record[8] - 1]); 3904 } 3905 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3906 if (Record.size() > 9) 3907 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); 3908 Func->setUnnamedAddr(UnnamedAddr); 3909 3910 FunctionOperandInfo OperandInfo = {Func, 0, 0, 0}; 3911 if (Record.size() > 10) 3912 OperandInfo.Prologue = Record[10]; 3913 3914 if (Record.size() > 11) 3915 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 3916 else 3917 upgradeDLLImportExportLinkage(Func, RawLinkage); 3918 3919 if (Record.size() > 12) { 3920 if (unsigned ComdatID = Record[12]) { 3921 if (ComdatID > ComdatList.size()) 3922 return error("Invalid function comdat ID"); 3923 Func->setComdat(ComdatList[ComdatID - 1]); 3924 } 3925 } else if (hasImplicitComdat(RawLinkage)) { 3926 ImplicitComdatObjects.insert(Func); 3927 } 3928 3929 if (Record.size() > 13) 3930 OperandInfo.Prefix = Record[13]; 3931 3932 if (Record.size() > 14) 3933 OperandInfo.PersonalityFn = Record[14]; 3934 3935 if (Record.size() > 15) { 3936 Func->setDSOLocal(getDecodedDSOLocal(Record[15])); 3937 } 3938 inferDSOLocal(Func); 3939 3940 // Record[16] is the address space number. 3941 3942 // Check whether we have enough values to read a partition name. Also make 3943 // sure Strtab has enough values. 3944 if (Record.size() > 18 && Strtab.data() && 3945 Record[17] + Record[18] <= Strtab.size()) { 3946 Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18])); 3947 } 3948 3949 ValueList.push_back(Func, getVirtualTypeID(Func->getType(), FTyID)); 3950 3951 if (OperandInfo.PersonalityFn || OperandInfo.Prefix || OperandInfo.Prologue) 3952 FunctionOperands.push_back(OperandInfo); 3953 3954 // If this is a function with a body, remember the prototype we are 3955 // creating now, so that we can match up the body with them later. 3956 if (!isProto) { 3957 Func->setIsMaterializable(true); 3958 FunctionsWithBodies.push_back(Func); 3959 DeferredFunctionInfo[Func] = 0; 3960 } 3961 return Error::success(); 3962 } 3963 3964 Error BitcodeReader::parseGlobalIndirectSymbolRecord( 3965 unsigned BitCode, ArrayRef<uint64_t> Record) { 3966 // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST) 3967 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 3968 // dllstorageclass, threadlocal, unnamed_addr, 3969 // preemption specifier] (name in VST) 3970 // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage, 3971 // visibility, dllstorageclass, threadlocal, unnamed_addr, 3972 // preemption specifier] (name in VST) 3973 // v2: [strtab_offset, strtab_size, v1] 3974 StringRef Name; 3975 std::tie(Name, Record) = readNameFromStrtab(Record); 3976 3977 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 3978 if (Record.size() < (3 + (unsigned)NewRecord)) 3979 return error("Invalid record"); 3980 unsigned OpNum = 0; 3981 unsigned TypeID = Record[OpNum++]; 3982 Type *Ty = getTypeByID(TypeID); 3983 if (!Ty) 3984 return error("Invalid record"); 3985 3986 unsigned AddrSpace; 3987 if (!NewRecord) { 3988 auto *PTy = dyn_cast<PointerType>(Ty); 3989 if (!PTy) 3990 return error("Invalid type for value"); 3991 AddrSpace = PTy->getAddressSpace(); 3992 TypeID = getContainedTypeID(TypeID); 3993 Ty = getTypeByID(TypeID); 3994 if (!Ty) 3995 return error("Missing element type for old-style indirect symbol"); 3996 } else { 3997 AddrSpace = Record[OpNum++]; 3998 } 3999 4000 auto Val = Record[OpNum++]; 4001 auto Linkage = Record[OpNum++]; 4002 GlobalValue *NewGA; 4003 if (BitCode == bitc::MODULE_CODE_ALIAS || 4004 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 4005 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 4006 TheModule); 4007 else 4008 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 4009 nullptr, TheModule); 4010 4011 // Local linkage must have default visibility. 4012 // auto-upgrade `hidden` and `protected` for old bitcode. 4013 if (OpNum != Record.size()) { 4014 auto VisInd = OpNum++; 4015 if (!NewGA->hasLocalLinkage()) 4016 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 4017 } 4018 if (BitCode == bitc::MODULE_CODE_ALIAS || 4019 BitCode == bitc::MODULE_CODE_ALIAS_OLD) { 4020 if (OpNum != Record.size()) 4021 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 4022 else 4023 upgradeDLLImportExportLinkage(NewGA, Linkage); 4024 if (OpNum != Record.size()) 4025 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 4026 if (OpNum != Record.size()) 4027 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); 4028 } 4029 if (OpNum != Record.size()) 4030 NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++])); 4031 inferDSOLocal(NewGA); 4032 4033 // Check whether we have enough values to read a partition name. 4034 if (OpNum + 1 < Record.size()) { 4035 NewGA->setPartition( 4036 StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1])); 4037 OpNum += 2; 4038 } 4039 4040 ValueList.push_back(NewGA, getVirtualTypeID(NewGA->getType(), TypeID)); 4041 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 4042 return Error::success(); 4043 } 4044 4045 Error BitcodeReader::parseModule(uint64_t ResumeBit, 4046 bool ShouldLazyLoadMetadata, 4047 DataLayoutCallbackTy DataLayoutCallback) { 4048 if (ResumeBit) { 4049 if (Error JumpFailed = Stream.JumpToBit(ResumeBit)) 4050 return JumpFailed; 4051 } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 4052 return Err; 4053 4054 SmallVector<uint64_t, 64> Record; 4055 4056 // Parts of bitcode parsing depend on the datalayout. Make sure we 4057 // finalize the datalayout before we run any of that code. 4058 bool ResolvedDataLayout = false; 4059 auto ResolveDataLayout = [&] { 4060 if (ResolvedDataLayout) 4061 return; 4062 4063 // datalayout and triple can't be parsed after this point. 4064 ResolvedDataLayout = true; 4065 4066 // Upgrade data layout string. 4067 std::string DL = llvm::UpgradeDataLayoutString( 4068 TheModule->getDataLayoutStr(), TheModule->getTargetTriple()); 4069 TheModule->setDataLayout(DL); 4070 4071 if (auto LayoutOverride = 4072 DataLayoutCallback(TheModule->getTargetTriple())) 4073 TheModule->setDataLayout(*LayoutOverride); 4074 }; 4075 4076 // Read all the records for this module. 4077 while (true) { 4078 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 4079 if (!MaybeEntry) 4080 return MaybeEntry.takeError(); 4081 llvm::BitstreamEntry Entry = MaybeEntry.get(); 4082 4083 switch (Entry.Kind) { 4084 case BitstreamEntry::Error: 4085 return error("Malformed block"); 4086 case BitstreamEntry::EndBlock: 4087 ResolveDataLayout(); 4088 return globalCleanup(); 4089 4090 case BitstreamEntry::SubBlock: 4091 switch (Entry.ID) { 4092 default: // Skip unknown content. 4093 if (Error Err = Stream.SkipBlock()) 4094 return Err; 4095 break; 4096 case bitc::BLOCKINFO_BLOCK_ID: 4097 if (Error Err = readBlockInfo()) 4098 return Err; 4099 break; 4100 case bitc::PARAMATTR_BLOCK_ID: 4101 if (Error Err = parseAttributeBlock()) 4102 return Err; 4103 break; 4104 case bitc::PARAMATTR_GROUP_BLOCK_ID: 4105 if (Error Err = parseAttributeGroupBlock()) 4106 return Err; 4107 break; 4108 case bitc::TYPE_BLOCK_ID_NEW: 4109 if (Error Err = parseTypeTable()) 4110 return Err; 4111 break; 4112 case bitc::VALUE_SYMTAB_BLOCK_ID: 4113 if (!SeenValueSymbolTable) { 4114 // Either this is an old form VST without function index and an 4115 // associated VST forward declaration record (which would have caused 4116 // the VST to be jumped to and parsed before it was encountered 4117 // normally in the stream), or there were no function blocks to 4118 // trigger an earlier parsing of the VST. 4119 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 4120 if (Error Err = parseValueSymbolTable()) 4121 return Err; 4122 SeenValueSymbolTable = true; 4123 } else { 4124 // We must have had a VST forward declaration record, which caused 4125 // the parser to jump to and parse the VST earlier. 4126 assert(VSTOffset > 0); 4127 if (Error Err = Stream.SkipBlock()) 4128 return Err; 4129 } 4130 break; 4131 case bitc::CONSTANTS_BLOCK_ID: 4132 if (Error Err = parseConstants()) 4133 return Err; 4134 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 4135 return Err; 4136 break; 4137 case bitc::METADATA_BLOCK_ID: 4138 if (ShouldLazyLoadMetadata) { 4139 if (Error Err = rememberAndSkipMetadata()) 4140 return Err; 4141 break; 4142 } 4143 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 4144 if (Error Err = MDLoader->parseModuleMetadata()) 4145 return Err; 4146 break; 4147 case bitc::METADATA_KIND_BLOCK_ID: 4148 if (Error Err = MDLoader->parseMetadataKinds()) 4149 return Err; 4150 break; 4151 case bitc::FUNCTION_BLOCK_ID: 4152 ResolveDataLayout(); 4153 4154 // If this is the first function body we've seen, reverse the 4155 // FunctionsWithBodies list. 4156 if (!SeenFirstFunctionBody) { 4157 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 4158 if (Error Err = globalCleanup()) 4159 return Err; 4160 SeenFirstFunctionBody = true; 4161 } 4162 4163 if (VSTOffset > 0) { 4164 // If we have a VST forward declaration record, make sure we 4165 // parse the VST now if we haven't already. It is needed to 4166 // set up the DeferredFunctionInfo vector for lazy reading. 4167 if (!SeenValueSymbolTable) { 4168 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset)) 4169 return Err; 4170 SeenValueSymbolTable = true; 4171 // Fall through so that we record the NextUnreadBit below. 4172 // This is necessary in case we have an anonymous function that 4173 // is later materialized. Since it will not have a VST entry we 4174 // need to fall back to the lazy parse to find its offset. 4175 } else { 4176 // If we have a VST forward declaration record, but have already 4177 // parsed the VST (just above, when the first function body was 4178 // encountered here), then we are resuming the parse after 4179 // materializing functions. The ResumeBit points to the 4180 // start of the last function block recorded in the 4181 // DeferredFunctionInfo map. Skip it. 4182 if (Error Err = Stream.SkipBlock()) 4183 return Err; 4184 continue; 4185 } 4186 } 4187 4188 // Support older bitcode files that did not have the function 4189 // index in the VST, nor a VST forward declaration record, as 4190 // well as anonymous functions that do not have VST entries. 4191 // Build the DeferredFunctionInfo vector on the fly. 4192 if (Error Err = rememberAndSkipFunctionBody()) 4193 return Err; 4194 4195 // Suspend parsing when we reach the function bodies. Subsequent 4196 // materialization calls will resume it when necessary. If the bitcode 4197 // file is old, the symbol table will be at the end instead and will not 4198 // have been seen yet. In this case, just finish the parse now. 4199 if (SeenValueSymbolTable) { 4200 NextUnreadBit = Stream.GetCurrentBitNo(); 4201 // After the VST has been parsed, we need to make sure intrinsic name 4202 // are auto-upgraded. 4203 return globalCleanup(); 4204 } 4205 break; 4206 case bitc::USELIST_BLOCK_ID: 4207 if (Error Err = parseUseLists()) 4208 return Err; 4209 break; 4210 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 4211 if (Error Err = parseOperandBundleTags()) 4212 return Err; 4213 break; 4214 case bitc::SYNC_SCOPE_NAMES_BLOCK_ID: 4215 if (Error Err = parseSyncScopeNames()) 4216 return Err; 4217 break; 4218 } 4219 continue; 4220 4221 case BitstreamEntry::Record: 4222 // The interesting case. 4223 break; 4224 } 4225 4226 // Read a record. 4227 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 4228 if (!MaybeBitCode) 4229 return MaybeBitCode.takeError(); 4230 switch (unsigned BitCode = MaybeBitCode.get()) { 4231 default: break; // Default behavior, ignore unknown content. 4232 case bitc::MODULE_CODE_VERSION: { 4233 Expected<unsigned> VersionOrErr = parseVersionRecord(Record); 4234 if (!VersionOrErr) 4235 return VersionOrErr.takeError(); 4236 UseRelativeIDs = *VersionOrErr >= 1; 4237 break; 4238 } 4239 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 4240 if (ResolvedDataLayout) 4241 return error("target triple too late in module"); 4242 std::string S; 4243 if (convertToString(Record, 0, S)) 4244 return error("Invalid record"); 4245 TheModule->setTargetTriple(S); 4246 break; 4247 } 4248 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 4249 if (ResolvedDataLayout) 4250 return error("datalayout too late in module"); 4251 std::string S; 4252 if (convertToString(Record, 0, S)) 4253 return error("Invalid record"); 4254 Expected<DataLayout> MaybeDL = DataLayout::parse(S); 4255 if (!MaybeDL) 4256 return MaybeDL.takeError(); 4257 TheModule->setDataLayout(MaybeDL.get()); 4258 break; 4259 } 4260 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 4261 std::string S; 4262 if (convertToString(Record, 0, S)) 4263 return error("Invalid record"); 4264 TheModule->setModuleInlineAsm(S); 4265 break; 4266 } 4267 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 4268 // Deprecated, but still needed to read old bitcode files. 4269 std::string S; 4270 if (convertToString(Record, 0, S)) 4271 return error("Invalid record"); 4272 // Ignore value. 4273 break; 4274 } 4275 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 4276 std::string S; 4277 if (convertToString(Record, 0, S)) 4278 return error("Invalid record"); 4279 SectionTable.push_back(S); 4280 break; 4281 } 4282 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 4283 std::string S; 4284 if (convertToString(Record, 0, S)) 4285 return error("Invalid record"); 4286 GCTable.push_back(S); 4287 break; 4288 } 4289 case bitc::MODULE_CODE_COMDAT: 4290 if (Error Err = parseComdatRecord(Record)) 4291 return Err; 4292 break; 4293 // FIXME: BitcodeReader should handle {GLOBALVAR, FUNCTION, ALIAS, IFUNC} 4294 // written by ThinLinkBitcodeWriter. See 4295 // `ThinLinkBitcodeWriter::writeSimplifiedModuleInfo` for the format of each 4296 // record 4297 // (https://github.com/llvm/llvm-project/blob/b6a93967d9c11e79802b5e75cec1584d6c8aa472/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp#L4714) 4298 case bitc::MODULE_CODE_GLOBALVAR: 4299 if (Error Err = parseGlobalVarRecord(Record)) 4300 return Err; 4301 break; 4302 case bitc::MODULE_CODE_FUNCTION: 4303 ResolveDataLayout(); 4304 if (Error Err = parseFunctionRecord(Record)) 4305 return Err; 4306 break; 4307 case bitc::MODULE_CODE_IFUNC: 4308 case bitc::MODULE_CODE_ALIAS: 4309 case bitc::MODULE_CODE_ALIAS_OLD: 4310 if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record)) 4311 return Err; 4312 break; 4313 /// MODULE_CODE_VSTOFFSET: [offset] 4314 case bitc::MODULE_CODE_VSTOFFSET: 4315 if (Record.empty()) 4316 return error("Invalid record"); 4317 // Note that we subtract 1 here because the offset is relative to one word 4318 // before the start of the identification or module block, which was 4319 // historically always the start of the regular bitcode header. 4320 VSTOffset = Record[0] - 1; 4321 break; 4322 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4323 case bitc::MODULE_CODE_SOURCE_FILENAME: 4324 SmallString<128> ValueName; 4325 if (convertToString(Record, 0, ValueName)) 4326 return error("Invalid record"); 4327 TheModule->setSourceFileName(ValueName); 4328 break; 4329 } 4330 Record.clear(); 4331 } 4332 } 4333 4334 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 4335 bool IsImporting, 4336 DataLayoutCallbackTy DataLayoutCallback) { 4337 TheModule = M; 4338 MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, 4339 [&](unsigned ID) { return getTypeByID(ID); }); 4340 return parseModule(0, ShouldLazyLoadMetadata, DataLayoutCallback); 4341 } 4342 4343 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 4344 if (!isa<PointerType>(PtrType)) 4345 return error("Load/Store operand is not a pointer type"); 4346 4347 if (!cast<PointerType>(PtrType)->isOpaqueOrPointeeTypeMatches(ValType)) 4348 return error("Explicit load/store type does not match pointee " 4349 "type of pointer operand"); 4350 if (!PointerType::isLoadableOrStorableType(ValType)) 4351 return error("Cannot load/store from pointer"); 4352 return Error::success(); 4353 } 4354 4355 Error BitcodeReader::propagateAttributeTypes(CallBase *CB, 4356 ArrayRef<unsigned> ArgTyIDs) { 4357 AttributeList Attrs = CB->getAttributes(); 4358 for (unsigned i = 0; i != CB->arg_size(); ++i) { 4359 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet, 4360 Attribute::InAlloca}) { 4361 if (!Attrs.hasParamAttr(i, Kind) || 4362 Attrs.getParamAttr(i, Kind).getValueAsType()) 4363 continue; 4364 4365 Type *PtrEltTy = getPtrElementTypeByID(ArgTyIDs[i]); 4366 if (!PtrEltTy) 4367 return error("Missing element type for typed attribute upgrade"); 4368 4369 Attribute NewAttr; 4370 switch (Kind) { 4371 case Attribute::ByVal: 4372 NewAttr = Attribute::getWithByValType(Context, PtrEltTy); 4373 break; 4374 case Attribute::StructRet: 4375 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy); 4376 break; 4377 case Attribute::InAlloca: 4378 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy); 4379 break; 4380 default: 4381 llvm_unreachable("not an upgraded type attribute"); 4382 } 4383 4384 Attrs = Attrs.addParamAttribute(Context, i, NewAttr); 4385 } 4386 } 4387 4388 if (CB->isInlineAsm()) { 4389 const InlineAsm *IA = cast<InlineAsm>(CB->getCalledOperand()); 4390 unsigned ArgNo = 0; 4391 for (const InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 4392 if (!CI.hasArg()) 4393 continue; 4394 4395 if (CI.isIndirect && !Attrs.getParamElementType(ArgNo)) { 4396 Type *ElemTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]); 4397 if (!ElemTy) 4398 return error("Missing element type for inline asm upgrade"); 4399 Attrs = Attrs.addParamAttribute( 4400 Context, ArgNo, 4401 Attribute::get(Context, Attribute::ElementType, ElemTy)); 4402 } 4403 4404 ArgNo++; 4405 } 4406 } 4407 4408 switch (CB->getIntrinsicID()) { 4409 case Intrinsic::preserve_array_access_index: 4410 case Intrinsic::preserve_struct_access_index: 4411 case Intrinsic::aarch64_ldaxr: 4412 case Intrinsic::aarch64_ldxr: 4413 case Intrinsic::aarch64_stlxr: 4414 case Intrinsic::aarch64_stxr: 4415 case Intrinsic::arm_ldaex: 4416 case Intrinsic::arm_ldrex: 4417 case Intrinsic::arm_stlex: 4418 case Intrinsic::arm_strex: { 4419 unsigned ArgNo; 4420 switch (CB->getIntrinsicID()) { 4421 case Intrinsic::aarch64_stlxr: 4422 case Intrinsic::aarch64_stxr: 4423 case Intrinsic::arm_stlex: 4424 case Intrinsic::arm_strex: 4425 ArgNo = 1; 4426 break; 4427 default: 4428 ArgNo = 0; 4429 break; 4430 } 4431 if (!Attrs.getParamElementType(ArgNo)) { 4432 Type *ElTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]); 4433 if (!ElTy) 4434 return error("Missing element type for elementtype upgrade"); 4435 Attribute NewAttr = Attribute::get(Context, Attribute::ElementType, ElTy); 4436 Attrs = Attrs.addParamAttribute(Context, ArgNo, NewAttr); 4437 } 4438 break; 4439 } 4440 default: 4441 break; 4442 } 4443 4444 CB->setAttributes(Attrs); 4445 return Error::success(); 4446 } 4447 4448 /// Lazily parse the specified function body block. 4449 Error BitcodeReader::parseFunctionBody(Function *F) { 4450 if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 4451 return Err; 4452 4453 // Unexpected unresolved metadata when parsing function. 4454 if (MDLoader->hasFwdRefs()) 4455 return error("Invalid function metadata: incoming forward references"); 4456 4457 InstructionList.clear(); 4458 unsigned ModuleValueListSize = ValueList.size(); 4459 unsigned ModuleMDLoaderSize = MDLoader->size(); 4460 4461 // Add all the function arguments to the value table. 4462 unsigned ArgNo = 0; 4463 unsigned FTyID = FunctionTypeIDs[F]; 4464 for (Argument &I : F->args()) { 4465 unsigned ArgTyID = getContainedTypeID(FTyID, ArgNo + 1); 4466 assert(I.getType() == getTypeByID(ArgTyID) && 4467 "Incorrect fully specified type for Function Argument"); 4468 ValueList.push_back(&I, ArgTyID); 4469 ++ArgNo; 4470 } 4471 unsigned NextValueNo = ValueList.size(); 4472 BasicBlock *CurBB = nullptr; 4473 unsigned CurBBNo = 0; 4474 // Block into which constant expressions from phi nodes are materialized. 4475 BasicBlock *PhiConstExprBB = nullptr; 4476 // Edge blocks for phi nodes into which constant expressions have been 4477 // expanded. 4478 SmallMapVector<std::pair<BasicBlock *, BasicBlock *>, BasicBlock *, 4> 4479 ConstExprEdgeBBs; 4480 4481 DebugLoc LastLoc; 4482 auto getLastInstruction = [&]() -> Instruction * { 4483 if (CurBB && !CurBB->empty()) 4484 return &CurBB->back(); 4485 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 4486 !FunctionBBs[CurBBNo - 1]->empty()) 4487 return &FunctionBBs[CurBBNo - 1]->back(); 4488 return nullptr; 4489 }; 4490 4491 std::vector<OperandBundleDef> OperandBundles; 4492 4493 // Read all the records. 4494 SmallVector<uint64_t, 64> Record; 4495 4496 while (true) { 4497 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 4498 if (!MaybeEntry) 4499 return MaybeEntry.takeError(); 4500 llvm::BitstreamEntry Entry = MaybeEntry.get(); 4501 4502 switch (Entry.Kind) { 4503 case BitstreamEntry::Error: 4504 return error("Malformed block"); 4505 case BitstreamEntry::EndBlock: 4506 goto OutOfRecordLoop; 4507 4508 case BitstreamEntry::SubBlock: 4509 switch (Entry.ID) { 4510 default: // Skip unknown content. 4511 if (Error Err = Stream.SkipBlock()) 4512 return Err; 4513 break; 4514 case bitc::CONSTANTS_BLOCK_ID: 4515 if (Error Err = parseConstants()) 4516 return Err; 4517 NextValueNo = ValueList.size(); 4518 break; 4519 case bitc::VALUE_SYMTAB_BLOCK_ID: 4520 if (Error Err = parseValueSymbolTable()) 4521 return Err; 4522 break; 4523 case bitc::METADATA_ATTACHMENT_ID: 4524 if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList)) 4525 return Err; 4526 break; 4527 case bitc::METADATA_BLOCK_ID: 4528 assert(DeferredMetadataInfo.empty() && 4529 "Must read all module-level metadata before function-level"); 4530 if (Error Err = MDLoader->parseFunctionMetadata()) 4531 return Err; 4532 break; 4533 case bitc::USELIST_BLOCK_ID: 4534 if (Error Err = parseUseLists()) 4535 return Err; 4536 break; 4537 } 4538 continue; 4539 4540 case BitstreamEntry::Record: 4541 // The interesting case. 4542 break; 4543 } 4544 4545 // Read a record. 4546 Record.clear(); 4547 Instruction *I = nullptr; 4548 unsigned ResTypeID = InvalidTypeID; 4549 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 4550 if (!MaybeBitCode) 4551 return MaybeBitCode.takeError(); 4552 switch (unsigned BitCode = MaybeBitCode.get()) { 4553 default: // Default behavior: reject 4554 return error("Invalid value"); 4555 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 4556 if (Record.empty() || Record[0] == 0) 4557 return error("Invalid record"); 4558 // Create all the basic blocks for the function. 4559 FunctionBBs.resize(Record[0]); 4560 4561 // See if anything took the address of blocks in this function. 4562 auto BBFRI = BasicBlockFwdRefs.find(F); 4563 if (BBFRI == BasicBlockFwdRefs.end()) { 4564 for (BasicBlock *&BB : FunctionBBs) 4565 BB = BasicBlock::Create(Context, "", F); 4566 } else { 4567 auto &BBRefs = BBFRI->second; 4568 // Check for invalid basic block references. 4569 if (BBRefs.size() > FunctionBBs.size()) 4570 return error("Invalid ID"); 4571 assert(!BBRefs.empty() && "Unexpected empty array"); 4572 assert(!BBRefs.front() && "Invalid reference to entry block"); 4573 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 4574 ++I) 4575 if (I < RE && BBRefs[I]) { 4576 BBRefs[I]->insertInto(F); 4577 FunctionBBs[I] = BBRefs[I]; 4578 } else { 4579 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 4580 } 4581 4582 // Erase from the table. 4583 BasicBlockFwdRefs.erase(BBFRI); 4584 } 4585 4586 CurBB = FunctionBBs[0]; 4587 continue; 4588 } 4589 4590 case bitc::FUNC_CODE_BLOCKADDR_USERS: // BLOCKADDR_USERS: [vals...] 4591 // The record should not be emitted if it's an empty list. 4592 if (Record.empty()) 4593 return error("Invalid record"); 4594 // When we have the RARE case of a BlockAddress Constant that is not 4595 // scoped to the Function it refers to, we need to conservatively 4596 // materialize the referred to Function, regardless of whether or not 4597 // that Function will ultimately be linked, otherwise users of 4598 // BitcodeReader might start splicing out Function bodies such that we 4599 // might no longer be able to materialize the BlockAddress since the 4600 // BasicBlock (and entire body of the Function) the BlockAddress refers 4601 // to may have been moved. In the case that the user of BitcodeReader 4602 // decides ultimately not to link the Function body, materializing here 4603 // could be considered wasteful, but it's better than a deserialization 4604 // failure as described. This keeps BitcodeReader unaware of complex 4605 // linkage policy decisions such as those use by LTO, leaving those 4606 // decisions "one layer up." 4607 for (uint64_t ValID : Record) 4608 if (auto *F = dyn_cast<Function>(ValueList[ValID])) 4609 BackwardRefFunctions.push_back(F); 4610 else 4611 return error("Invalid record"); 4612 4613 continue; 4614 4615 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 4616 // This record indicates that the last instruction is at the same 4617 // location as the previous instruction with a location. 4618 I = getLastInstruction(); 4619 4620 if (!I) 4621 return error("Invalid record"); 4622 I->setDebugLoc(LastLoc); 4623 I = nullptr; 4624 continue; 4625 4626 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 4627 I = getLastInstruction(); 4628 if (!I || Record.size() < 4) 4629 return error("Invalid record"); 4630 4631 unsigned Line = Record[0], Col = Record[1]; 4632 unsigned ScopeID = Record[2], IAID = Record[3]; 4633 bool isImplicitCode = Record.size() == 5 && Record[4]; 4634 4635 MDNode *Scope = nullptr, *IA = nullptr; 4636 if (ScopeID) { 4637 Scope = dyn_cast_or_null<MDNode>( 4638 MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1)); 4639 if (!Scope) 4640 return error("Invalid record"); 4641 } 4642 if (IAID) { 4643 IA = dyn_cast_or_null<MDNode>( 4644 MDLoader->getMetadataFwdRefOrLoad(IAID - 1)); 4645 if (!IA) 4646 return error("Invalid record"); 4647 } 4648 LastLoc = DILocation::get(Scope->getContext(), Line, Col, Scope, IA, 4649 isImplicitCode); 4650 I->setDebugLoc(LastLoc); 4651 I = nullptr; 4652 continue; 4653 } 4654 case bitc::FUNC_CODE_INST_UNOP: { // UNOP: [opval, ty, opcode] 4655 unsigned OpNum = 0; 4656 Value *LHS; 4657 unsigned TypeID; 4658 if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) || 4659 OpNum+1 > Record.size()) 4660 return error("Invalid record"); 4661 4662 int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType()); 4663 if (Opc == -1) 4664 return error("Invalid record"); 4665 I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 4666 ResTypeID = TypeID; 4667 InstructionList.push_back(I); 4668 if (OpNum < Record.size()) { 4669 if (isa<FPMathOperator>(I)) { 4670 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4671 if (FMF.any()) 4672 I->setFastMathFlags(FMF); 4673 } 4674 } 4675 break; 4676 } 4677 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 4678 unsigned OpNum = 0; 4679 Value *LHS, *RHS; 4680 unsigned TypeID; 4681 if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) || 4682 popValue(Record, OpNum, NextValueNo, LHS->getType(), TypeID, RHS, 4683 CurBB) || 4684 OpNum+1 > Record.size()) 4685 return error("Invalid record"); 4686 4687 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 4688 if (Opc == -1) 4689 return error("Invalid record"); 4690 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 4691 ResTypeID = TypeID; 4692 InstructionList.push_back(I); 4693 if (OpNum < Record.size()) { 4694 if (Opc == Instruction::Add || 4695 Opc == Instruction::Sub || 4696 Opc == Instruction::Mul || 4697 Opc == Instruction::Shl) { 4698 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 4699 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 4700 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 4701 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 4702 } else if (Opc == Instruction::SDiv || 4703 Opc == Instruction::UDiv || 4704 Opc == Instruction::LShr || 4705 Opc == Instruction::AShr) { 4706 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 4707 cast<BinaryOperator>(I)->setIsExact(true); 4708 } else if (isa<FPMathOperator>(I)) { 4709 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4710 if (FMF.any()) 4711 I->setFastMathFlags(FMF); 4712 } 4713 4714 } 4715 break; 4716 } 4717 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 4718 unsigned OpNum = 0; 4719 Value *Op; 4720 unsigned OpTypeID; 4721 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) || 4722 OpNum+2 != Record.size()) 4723 return error("Invalid record"); 4724 4725 ResTypeID = Record[OpNum]; 4726 Type *ResTy = getTypeByID(ResTypeID); 4727 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 4728 if (Opc == -1 || !ResTy) 4729 return error("Invalid record"); 4730 Instruction *Temp = nullptr; 4731 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 4732 if (Temp) { 4733 InstructionList.push_back(Temp); 4734 assert(CurBB && "No current BB?"); 4735 CurBB->getInstList().push_back(Temp); 4736 } 4737 } else { 4738 auto CastOp = (Instruction::CastOps)Opc; 4739 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 4740 return error("Invalid cast"); 4741 I = CastInst::Create(CastOp, Op, ResTy); 4742 } 4743 InstructionList.push_back(I); 4744 break; 4745 } 4746 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 4747 case bitc::FUNC_CODE_INST_GEP_OLD: 4748 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 4749 unsigned OpNum = 0; 4750 4751 unsigned TyID; 4752 Type *Ty; 4753 bool InBounds; 4754 4755 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 4756 InBounds = Record[OpNum++]; 4757 TyID = Record[OpNum++]; 4758 Ty = getTypeByID(TyID); 4759 } else { 4760 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 4761 TyID = InvalidTypeID; 4762 Ty = nullptr; 4763 } 4764 4765 Value *BasePtr; 4766 unsigned BasePtrTypeID; 4767 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr, BasePtrTypeID, 4768 CurBB)) 4769 return error("Invalid record"); 4770 4771 if (!Ty) { 4772 TyID = getContainedTypeID(BasePtrTypeID); 4773 if (BasePtr->getType()->isVectorTy()) 4774 TyID = getContainedTypeID(TyID); 4775 Ty = getTypeByID(TyID); 4776 } else if (!cast<PointerType>(BasePtr->getType()->getScalarType()) 4777 ->isOpaqueOrPointeeTypeMatches(Ty)) { 4778 return error( 4779 "Explicit gep type does not match pointee type of pointer operand"); 4780 } 4781 4782 SmallVector<Value*, 16> GEPIdx; 4783 while (OpNum != Record.size()) { 4784 Value *Op; 4785 unsigned OpTypeID; 4786 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 4787 return error("Invalid record"); 4788 GEPIdx.push_back(Op); 4789 } 4790 4791 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 4792 4793 ResTypeID = TyID; 4794 if (cast<GEPOperator>(I)->getNumIndices() != 0) { 4795 auto GTI = std::next(gep_type_begin(I)); 4796 for (Value *Idx : drop_begin(cast<GEPOperator>(I)->indices())) { 4797 unsigned SubType = 0; 4798 if (GTI.isStruct()) { 4799 ConstantInt *IdxC = 4800 Idx->getType()->isVectorTy() 4801 ? cast<ConstantInt>(cast<Constant>(Idx)->getSplatValue()) 4802 : cast<ConstantInt>(Idx); 4803 SubType = IdxC->getZExtValue(); 4804 } 4805 ResTypeID = getContainedTypeID(ResTypeID, SubType); 4806 ++GTI; 4807 } 4808 } 4809 4810 // At this point ResTypeID is the result element type. We need a pointer 4811 // or vector of pointer to it. 4812 ResTypeID = getVirtualTypeID(I->getType()->getScalarType(), ResTypeID); 4813 if (I->getType()->isVectorTy()) 4814 ResTypeID = getVirtualTypeID(I->getType(), ResTypeID); 4815 4816 InstructionList.push_back(I); 4817 if (InBounds) 4818 cast<GetElementPtrInst>(I)->setIsInBounds(true); 4819 break; 4820 } 4821 4822 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 4823 // EXTRACTVAL: [opty, opval, n x indices] 4824 unsigned OpNum = 0; 4825 Value *Agg; 4826 unsigned AggTypeID; 4827 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB)) 4828 return error("Invalid record"); 4829 Type *Ty = Agg->getType(); 4830 4831 unsigned RecSize = Record.size(); 4832 if (OpNum == RecSize) 4833 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 4834 4835 SmallVector<unsigned, 4> EXTRACTVALIdx; 4836 ResTypeID = AggTypeID; 4837 for (; OpNum != RecSize; ++OpNum) { 4838 bool IsArray = Ty->isArrayTy(); 4839 bool IsStruct = Ty->isStructTy(); 4840 uint64_t Index = Record[OpNum]; 4841 4842 if (!IsStruct && !IsArray) 4843 return error("EXTRACTVAL: Invalid type"); 4844 if ((unsigned)Index != Index) 4845 return error("Invalid value"); 4846 if (IsStruct && Index >= Ty->getStructNumElements()) 4847 return error("EXTRACTVAL: Invalid struct index"); 4848 if (IsArray && Index >= Ty->getArrayNumElements()) 4849 return error("EXTRACTVAL: Invalid array index"); 4850 EXTRACTVALIdx.push_back((unsigned)Index); 4851 4852 if (IsStruct) { 4853 Ty = Ty->getStructElementType(Index); 4854 ResTypeID = getContainedTypeID(ResTypeID, Index); 4855 } else { 4856 Ty = Ty->getArrayElementType(); 4857 ResTypeID = getContainedTypeID(ResTypeID); 4858 } 4859 } 4860 4861 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 4862 InstructionList.push_back(I); 4863 break; 4864 } 4865 4866 case bitc::FUNC_CODE_INST_INSERTVAL: { 4867 // INSERTVAL: [opty, opval, opty, opval, n x indices] 4868 unsigned OpNum = 0; 4869 Value *Agg; 4870 unsigned AggTypeID; 4871 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB)) 4872 return error("Invalid record"); 4873 Value *Val; 4874 unsigned ValTypeID; 4875 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 4876 return error("Invalid record"); 4877 4878 unsigned RecSize = Record.size(); 4879 if (OpNum == RecSize) 4880 return error("INSERTVAL: Invalid instruction with 0 indices"); 4881 4882 SmallVector<unsigned, 4> INSERTVALIdx; 4883 Type *CurTy = Agg->getType(); 4884 for (; OpNum != RecSize; ++OpNum) { 4885 bool IsArray = CurTy->isArrayTy(); 4886 bool IsStruct = CurTy->isStructTy(); 4887 uint64_t Index = Record[OpNum]; 4888 4889 if (!IsStruct && !IsArray) 4890 return error("INSERTVAL: Invalid type"); 4891 if ((unsigned)Index != Index) 4892 return error("Invalid value"); 4893 if (IsStruct && Index >= CurTy->getStructNumElements()) 4894 return error("INSERTVAL: Invalid struct index"); 4895 if (IsArray && Index >= CurTy->getArrayNumElements()) 4896 return error("INSERTVAL: Invalid array index"); 4897 4898 INSERTVALIdx.push_back((unsigned)Index); 4899 if (IsStruct) 4900 CurTy = CurTy->getStructElementType(Index); 4901 else 4902 CurTy = CurTy->getArrayElementType(); 4903 } 4904 4905 if (CurTy != Val->getType()) 4906 return error("Inserted value type doesn't match aggregate type"); 4907 4908 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 4909 ResTypeID = AggTypeID; 4910 InstructionList.push_back(I); 4911 break; 4912 } 4913 4914 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 4915 // obsolete form of select 4916 // handles select i1 ... in old bitcode 4917 unsigned OpNum = 0; 4918 Value *TrueVal, *FalseVal, *Cond; 4919 unsigned TypeID; 4920 Type *CondType = Type::getInt1Ty(Context); 4921 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, TypeID, 4922 CurBB) || 4923 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), TypeID, 4924 FalseVal, CurBB) || 4925 popValue(Record, OpNum, NextValueNo, CondType, 4926 getVirtualTypeID(CondType), Cond, CurBB)) 4927 return error("Invalid record"); 4928 4929 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4930 ResTypeID = TypeID; 4931 InstructionList.push_back(I); 4932 break; 4933 } 4934 4935 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 4936 // new form of select 4937 // handles select i1 or select [N x i1] 4938 unsigned OpNum = 0; 4939 Value *TrueVal, *FalseVal, *Cond; 4940 unsigned ValTypeID, CondTypeID; 4941 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, ValTypeID, 4942 CurBB) || 4943 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), ValTypeID, 4944 FalseVal, CurBB) || 4945 getValueTypePair(Record, OpNum, NextValueNo, Cond, CondTypeID, CurBB)) 4946 return error("Invalid record"); 4947 4948 // select condition can be either i1 or [N x i1] 4949 if (VectorType* vector_type = 4950 dyn_cast<VectorType>(Cond->getType())) { 4951 // expect <n x i1> 4952 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 4953 return error("Invalid type for value"); 4954 } else { 4955 // expect i1 4956 if (Cond->getType() != Type::getInt1Ty(Context)) 4957 return error("Invalid type for value"); 4958 } 4959 4960 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4961 ResTypeID = ValTypeID; 4962 InstructionList.push_back(I); 4963 if (OpNum < Record.size() && isa<FPMathOperator>(I)) { 4964 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4965 if (FMF.any()) 4966 I->setFastMathFlags(FMF); 4967 } 4968 break; 4969 } 4970 4971 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 4972 unsigned OpNum = 0; 4973 Value *Vec, *Idx; 4974 unsigned VecTypeID, IdxTypeID; 4975 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB) || 4976 getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB)) 4977 return error("Invalid record"); 4978 if (!Vec->getType()->isVectorTy()) 4979 return error("Invalid type for value"); 4980 I = ExtractElementInst::Create(Vec, Idx); 4981 ResTypeID = getContainedTypeID(VecTypeID); 4982 InstructionList.push_back(I); 4983 break; 4984 } 4985 4986 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 4987 unsigned OpNum = 0; 4988 Value *Vec, *Elt, *Idx; 4989 unsigned VecTypeID, IdxTypeID; 4990 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB)) 4991 return error("Invalid record"); 4992 if (!Vec->getType()->isVectorTy()) 4993 return error("Invalid type for value"); 4994 if (popValue(Record, OpNum, NextValueNo, 4995 cast<VectorType>(Vec->getType())->getElementType(), 4996 getContainedTypeID(VecTypeID), Elt, CurBB) || 4997 getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB)) 4998 return error("Invalid record"); 4999 I = InsertElementInst::Create(Vec, Elt, Idx); 5000 ResTypeID = VecTypeID; 5001 InstructionList.push_back(I); 5002 break; 5003 } 5004 5005 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 5006 unsigned OpNum = 0; 5007 Value *Vec1, *Vec2, *Mask; 5008 unsigned Vec1TypeID; 5009 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1, Vec1TypeID, 5010 CurBB) || 5011 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec1TypeID, 5012 Vec2, CurBB)) 5013 return error("Invalid record"); 5014 5015 unsigned MaskTypeID; 5016 if (getValueTypePair(Record, OpNum, NextValueNo, Mask, MaskTypeID, CurBB)) 5017 return error("Invalid record"); 5018 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 5019 return error("Invalid type for value"); 5020 5021 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 5022 ResTypeID = 5023 getVirtualTypeID(I->getType(), getContainedTypeID(Vec1TypeID)); 5024 InstructionList.push_back(I); 5025 break; 5026 } 5027 5028 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 5029 // Old form of ICmp/FCmp returning bool 5030 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 5031 // both legal on vectors but had different behaviour. 5032 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 5033 // FCmp/ICmp returning bool or vector of bool 5034 5035 unsigned OpNum = 0; 5036 Value *LHS, *RHS; 5037 unsigned LHSTypeID; 5038 if (getValueTypePair(Record, OpNum, NextValueNo, LHS, LHSTypeID, CurBB) || 5039 popValue(Record, OpNum, NextValueNo, LHS->getType(), LHSTypeID, RHS, 5040 CurBB)) 5041 return error("Invalid record"); 5042 5043 if (OpNum >= Record.size()) 5044 return error( 5045 "Invalid record: operand number exceeded available operands"); 5046 5047 unsigned PredVal = Record[OpNum]; 5048 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 5049 FastMathFlags FMF; 5050 if (IsFP && Record.size() > OpNum+1) 5051 FMF = getDecodedFastMathFlags(Record[++OpNum]); 5052 5053 if (OpNum+1 != Record.size()) 5054 return error("Invalid record"); 5055 5056 if (LHS->getType()->isFPOrFPVectorTy()) 5057 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 5058 else 5059 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 5060 5061 ResTypeID = getVirtualTypeID(I->getType()->getScalarType()); 5062 if (LHS->getType()->isVectorTy()) 5063 ResTypeID = getVirtualTypeID(I->getType(), ResTypeID); 5064 5065 if (FMF.any()) 5066 I->setFastMathFlags(FMF); 5067 InstructionList.push_back(I); 5068 break; 5069 } 5070 5071 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 5072 { 5073 unsigned Size = Record.size(); 5074 if (Size == 0) { 5075 I = ReturnInst::Create(Context); 5076 InstructionList.push_back(I); 5077 break; 5078 } 5079 5080 unsigned OpNum = 0; 5081 Value *Op = nullptr; 5082 unsigned OpTypeID; 5083 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 5084 return error("Invalid record"); 5085 if (OpNum != Record.size()) 5086 return error("Invalid record"); 5087 5088 I = ReturnInst::Create(Context, Op); 5089 InstructionList.push_back(I); 5090 break; 5091 } 5092 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 5093 if (Record.size() != 1 && Record.size() != 3) 5094 return error("Invalid record"); 5095 BasicBlock *TrueDest = getBasicBlock(Record[0]); 5096 if (!TrueDest) 5097 return error("Invalid record"); 5098 5099 if (Record.size() == 1) { 5100 I = BranchInst::Create(TrueDest); 5101 InstructionList.push_back(I); 5102 } 5103 else { 5104 BasicBlock *FalseDest = getBasicBlock(Record[1]); 5105 Type *CondType = Type::getInt1Ty(Context); 5106 Value *Cond = getValue(Record, 2, NextValueNo, CondType, 5107 getVirtualTypeID(CondType), CurBB); 5108 if (!FalseDest || !Cond) 5109 return error("Invalid record"); 5110 I = BranchInst::Create(TrueDest, FalseDest, Cond); 5111 InstructionList.push_back(I); 5112 } 5113 break; 5114 } 5115 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 5116 if (Record.size() != 1 && Record.size() != 2) 5117 return error("Invalid record"); 5118 unsigned Idx = 0; 5119 Type *TokenTy = Type::getTokenTy(Context); 5120 Value *CleanupPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5121 getVirtualTypeID(TokenTy), CurBB); 5122 if (!CleanupPad) 5123 return error("Invalid record"); 5124 BasicBlock *UnwindDest = nullptr; 5125 if (Record.size() == 2) { 5126 UnwindDest = getBasicBlock(Record[Idx++]); 5127 if (!UnwindDest) 5128 return error("Invalid record"); 5129 } 5130 5131 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 5132 InstructionList.push_back(I); 5133 break; 5134 } 5135 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 5136 if (Record.size() != 2) 5137 return error("Invalid record"); 5138 unsigned Idx = 0; 5139 Type *TokenTy = Type::getTokenTy(Context); 5140 Value *CatchPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5141 getVirtualTypeID(TokenTy), CurBB); 5142 if (!CatchPad) 5143 return error("Invalid record"); 5144 BasicBlock *BB = getBasicBlock(Record[Idx++]); 5145 if (!BB) 5146 return error("Invalid record"); 5147 5148 I = CatchReturnInst::Create(CatchPad, BB); 5149 InstructionList.push_back(I); 5150 break; 5151 } 5152 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 5153 // We must have, at minimum, the outer scope and the number of arguments. 5154 if (Record.size() < 2) 5155 return error("Invalid record"); 5156 5157 unsigned Idx = 0; 5158 5159 Type *TokenTy = Type::getTokenTy(Context); 5160 Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5161 getVirtualTypeID(TokenTy), CurBB); 5162 5163 unsigned NumHandlers = Record[Idx++]; 5164 5165 SmallVector<BasicBlock *, 2> Handlers; 5166 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 5167 BasicBlock *BB = getBasicBlock(Record[Idx++]); 5168 if (!BB) 5169 return error("Invalid record"); 5170 Handlers.push_back(BB); 5171 } 5172 5173 BasicBlock *UnwindDest = nullptr; 5174 if (Idx + 1 == Record.size()) { 5175 UnwindDest = getBasicBlock(Record[Idx++]); 5176 if (!UnwindDest) 5177 return error("Invalid record"); 5178 } 5179 5180 if (Record.size() != Idx) 5181 return error("Invalid record"); 5182 5183 auto *CatchSwitch = 5184 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 5185 for (BasicBlock *Handler : Handlers) 5186 CatchSwitch->addHandler(Handler); 5187 I = CatchSwitch; 5188 ResTypeID = getVirtualTypeID(I->getType()); 5189 InstructionList.push_back(I); 5190 break; 5191 } 5192 case bitc::FUNC_CODE_INST_CATCHPAD: 5193 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 5194 // We must have, at minimum, the outer scope and the number of arguments. 5195 if (Record.size() < 2) 5196 return error("Invalid record"); 5197 5198 unsigned Idx = 0; 5199 5200 Type *TokenTy = Type::getTokenTy(Context); 5201 Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5202 getVirtualTypeID(TokenTy), CurBB); 5203 5204 unsigned NumArgOperands = Record[Idx++]; 5205 5206 SmallVector<Value *, 2> Args; 5207 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 5208 Value *Val; 5209 unsigned ValTypeID; 5210 if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, nullptr)) 5211 return error("Invalid record"); 5212 Args.push_back(Val); 5213 } 5214 5215 if (Record.size() != Idx) 5216 return error("Invalid record"); 5217 5218 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 5219 I = CleanupPadInst::Create(ParentPad, Args); 5220 else 5221 I = CatchPadInst::Create(ParentPad, Args); 5222 ResTypeID = getVirtualTypeID(I->getType()); 5223 InstructionList.push_back(I); 5224 break; 5225 } 5226 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 5227 // Check magic 5228 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 5229 // "New" SwitchInst format with case ranges. The changes to write this 5230 // format were reverted but we still recognize bitcode that uses it. 5231 // Hopefully someday we will have support for case ranges and can use 5232 // this format again. 5233 5234 unsigned OpTyID = Record[1]; 5235 Type *OpTy = getTypeByID(OpTyID); 5236 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 5237 5238 Value *Cond = getValue(Record, 2, NextValueNo, OpTy, OpTyID, CurBB); 5239 BasicBlock *Default = getBasicBlock(Record[3]); 5240 if (!OpTy || !Cond || !Default) 5241 return error("Invalid record"); 5242 5243 unsigned NumCases = Record[4]; 5244 5245 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 5246 InstructionList.push_back(SI); 5247 5248 unsigned CurIdx = 5; 5249 for (unsigned i = 0; i != NumCases; ++i) { 5250 SmallVector<ConstantInt*, 1> CaseVals; 5251 unsigned NumItems = Record[CurIdx++]; 5252 for (unsigned ci = 0; ci != NumItems; ++ci) { 5253 bool isSingleNumber = Record[CurIdx++]; 5254 5255 APInt Low; 5256 unsigned ActiveWords = 1; 5257 if (ValueBitWidth > 64) 5258 ActiveWords = Record[CurIdx++]; 5259 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 5260 ValueBitWidth); 5261 CurIdx += ActiveWords; 5262 5263 if (!isSingleNumber) { 5264 ActiveWords = 1; 5265 if (ValueBitWidth > 64) 5266 ActiveWords = Record[CurIdx++]; 5267 APInt High = readWideAPInt( 5268 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 5269 CurIdx += ActiveWords; 5270 5271 // FIXME: It is not clear whether values in the range should be 5272 // compared as signed or unsigned values. The partially 5273 // implemented changes that used this format in the past used 5274 // unsigned comparisons. 5275 for ( ; Low.ule(High); ++Low) 5276 CaseVals.push_back(ConstantInt::get(Context, Low)); 5277 } else 5278 CaseVals.push_back(ConstantInt::get(Context, Low)); 5279 } 5280 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 5281 for (ConstantInt *Cst : CaseVals) 5282 SI->addCase(Cst, DestBB); 5283 } 5284 I = SI; 5285 break; 5286 } 5287 5288 // Old SwitchInst format without case ranges. 5289 5290 if (Record.size() < 3 || (Record.size() & 1) == 0) 5291 return error("Invalid record"); 5292 unsigned OpTyID = Record[0]; 5293 Type *OpTy = getTypeByID(OpTyID); 5294 Value *Cond = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB); 5295 BasicBlock *Default = getBasicBlock(Record[2]); 5296 if (!OpTy || !Cond || !Default) 5297 return error("Invalid record"); 5298 unsigned NumCases = (Record.size()-3)/2; 5299 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 5300 InstructionList.push_back(SI); 5301 for (unsigned i = 0, e = NumCases; i != e; ++i) { 5302 ConstantInt *CaseVal = dyn_cast_or_null<ConstantInt>( 5303 getFnValueByID(Record[3+i*2], OpTy, OpTyID, nullptr)); 5304 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 5305 if (!CaseVal || !DestBB) { 5306 delete SI; 5307 return error("Invalid record"); 5308 } 5309 SI->addCase(CaseVal, DestBB); 5310 } 5311 I = SI; 5312 break; 5313 } 5314 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 5315 if (Record.size() < 2) 5316 return error("Invalid record"); 5317 unsigned OpTyID = Record[0]; 5318 Type *OpTy = getTypeByID(OpTyID); 5319 Value *Address = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB); 5320 if (!OpTy || !Address) 5321 return error("Invalid record"); 5322 unsigned NumDests = Record.size()-2; 5323 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 5324 InstructionList.push_back(IBI); 5325 for (unsigned i = 0, e = NumDests; i != e; ++i) { 5326 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 5327 IBI->addDestination(DestBB); 5328 } else { 5329 delete IBI; 5330 return error("Invalid record"); 5331 } 5332 } 5333 I = IBI; 5334 break; 5335 } 5336 5337 case bitc::FUNC_CODE_INST_INVOKE: { 5338 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 5339 if (Record.size() < 4) 5340 return error("Invalid record"); 5341 unsigned OpNum = 0; 5342 AttributeList PAL = getAttributes(Record[OpNum++]); 5343 unsigned CCInfo = Record[OpNum++]; 5344 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 5345 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 5346 5347 unsigned FTyID = InvalidTypeID; 5348 FunctionType *FTy = nullptr; 5349 if ((CCInfo >> 13) & 1) { 5350 FTyID = Record[OpNum++]; 5351 FTy = dyn_cast<FunctionType>(getTypeByID(FTyID)); 5352 if (!FTy) 5353 return error("Explicit invoke type is not a function type"); 5354 } 5355 5356 Value *Callee; 5357 unsigned CalleeTypeID; 5358 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID, 5359 CurBB)) 5360 return error("Invalid record"); 5361 5362 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 5363 if (!CalleeTy) 5364 return error("Callee is not a pointer"); 5365 if (!FTy) { 5366 FTyID = getContainedTypeID(CalleeTypeID); 5367 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 5368 if (!FTy) 5369 return error("Callee is not of pointer to function type"); 5370 } else if (!CalleeTy->isOpaqueOrPointeeTypeMatches(FTy)) 5371 return error("Explicit invoke type does not match pointee type of " 5372 "callee operand"); 5373 if (Record.size() < FTy->getNumParams() + OpNum) 5374 return error("Insufficient operands to call"); 5375 5376 SmallVector<Value*, 16> Ops; 5377 SmallVector<unsigned, 16> ArgTyIDs; 5378 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5379 unsigned ArgTyID = getContainedTypeID(FTyID, i + 1); 5380 Ops.push_back(getValue(Record, OpNum, NextValueNo, FTy->getParamType(i), 5381 ArgTyID, CurBB)); 5382 ArgTyIDs.push_back(ArgTyID); 5383 if (!Ops.back()) 5384 return error("Invalid record"); 5385 } 5386 5387 if (!FTy->isVarArg()) { 5388 if (Record.size() != OpNum) 5389 return error("Invalid record"); 5390 } else { 5391 // Read type/value pairs for varargs params. 5392 while (OpNum != Record.size()) { 5393 Value *Op; 5394 unsigned OpTypeID; 5395 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 5396 return error("Invalid record"); 5397 Ops.push_back(Op); 5398 ArgTyIDs.push_back(OpTypeID); 5399 } 5400 } 5401 5402 // Upgrade the bundles if needed. 5403 if (!OperandBundles.empty()) 5404 UpgradeOperandBundles(OperandBundles); 5405 5406 I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops, 5407 OperandBundles); 5408 ResTypeID = getContainedTypeID(FTyID); 5409 OperandBundles.clear(); 5410 InstructionList.push_back(I); 5411 cast<InvokeInst>(I)->setCallingConv( 5412 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 5413 cast<InvokeInst>(I)->setAttributes(PAL); 5414 if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) { 5415 I->deleteValue(); 5416 return Err; 5417 } 5418 5419 break; 5420 } 5421 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 5422 unsigned Idx = 0; 5423 Value *Val = nullptr; 5424 unsigned ValTypeID; 5425 if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, CurBB)) 5426 return error("Invalid record"); 5427 I = ResumeInst::Create(Val); 5428 InstructionList.push_back(I); 5429 break; 5430 } 5431 case bitc::FUNC_CODE_INST_CALLBR: { 5432 // CALLBR: [attr, cc, norm, transfs, fty, fnid, args] 5433 unsigned OpNum = 0; 5434 AttributeList PAL = getAttributes(Record[OpNum++]); 5435 unsigned CCInfo = Record[OpNum++]; 5436 5437 BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]); 5438 unsigned NumIndirectDests = Record[OpNum++]; 5439 SmallVector<BasicBlock *, 16> IndirectDests; 5440 for (unsigned i = 0, e = NumIndirectDests; i != e; ++i) 5441 IndirectDests.push_back(getBasicBlock(Record[OpNum++])); 5442 5443 unsigned FTyID = InvalidTypeID; 5444 FunctionType *FTy = nullptr; 5445 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 5446 FTyID = Record[OpNum++]; 5447 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 5448 if (!FTy) 5449 return error("Explicit call type is not a function type"); 5450 } 5451 5452 Value *Callee; 5453 unsigned CalleeTypeID; 5454 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID, 5455 CurBB)) 5456 return error("Invalid record"); 5457 5458 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5459 if (!OpTy) 5460 return error("Callee is not a pointer type"); 5461 if (!FTy) { 5462 FTyID = getContainedTypeID(CalleeTypeID); 5463 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 5464 if (!FTy) 5465 return error("Callee is not of pointer to function type"); 5466 } else if (!OpTy->isOpaqueOrPointeeTypeMatches(FTy)) 5467 return error("Explicit call type does not match pointee type of " 5468 "callee operand"); 5469 if (Record.size() < FTy->getNumParams() + OpNum) 5470 return error("Insufficient operands to call"); 5471 5472 SmallVector<Value*, 16> Args; 5473 SmallVector<unsigned, 16> ArgTyIDs; 5474 // Read the fixed params. 5475 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5476 Value *Arg; 5477 unsigned ArgTyID = getContainedTypeID(FTyID, i + 1); 5478 if (FTy->getParamType(i)->isLabelTy()) 5479 Arg = getBasicBlock(Record[OpNum]); 5480 else 5481 Arg = getValue(Record, OpNum, NextValueNo, FTy->getParamType(i), 5482 ArgTyID, CurBB); 5483 if (!Arg) 5484 return error("Invalid record"); 5485 Args.push_back(Arg); 5486 ArgTyIDs.push_back(ArgTyID); 5487 } 5488 5489 // Read type/value pairs for varargs params. 5490 if (!FTy->isVarArg()) { 5491 if (OpNum != Record.size()) 5492 return error("Invalid record"); 5493 } else { 5494 while (OpNum != Record.size()) { 5495 Value *Op; 5496 unsigned OpTypeID; 5497 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 5498 return error("Invalid record"); 5499 Args.push_back(Op); 5500 ArgTyIDs.push_back(OpTypeID); 5501 } 5502 } 5503 5504 // Upgrade the bundles if needed. 5505 if (!OperandBundles.empty()) 5506 UpgradeOperandBundles(OperandBundles); 5507 5508 I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args, 5509 OperandBundles); 5510 ResTypeID = getContainedTypeID(FTyID); 5511 OperandBundles.clear(); 5512 InstructionList.push_back(I); 5513 cast<CallBrInst>(I)->setCallingConv( 5514 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5515 cast<CallBrInst>(I)->setAttributes(PAL); 5516 if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) { 5517 I->deleteValue(); 5518 return Err; 5519 } 5520 break; 5521 } 5522 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 5523 I = new UnreachableInst(Context); 5524 InstructionList.push_back(I); 5525 break; 5526 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 5527 if (Record.empty()) 5528 return error("Invalid phi record"); 5529 // The first record specifies the type. 5530 unsigned TyID = Record[0]; 5531 Type *Ty = getTypeByID(TyID); 5532 if (!Ty) 5533 return error("Invalid phi record"); 5534 5535 // Phi arguments are pairs of records of [value, basic block]. 5536 // There is an optional final record for fast-math-flags if this phi has a 5537 // floating-point type. 5538 size_t NumArgs = (Record.size() - 1) / 2; 5539 PHINode *PN = PHINode::Create(Ty, NumArgs); 5540 if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN)) { 5541 PN->deleteValue(); 5542 return error("Invalid phi record"); 5543 } 5544 InstructionList.push_back(PN); 5545 5546 SmallDenseMap<BasicBlock *, Value *> Args; 5547 for (unsigned i = 0; i != NumArgs; i++) { 5548 BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]); 5549 if (!BB) { 5550 PN->deleteValue(); 5551 return error("Invalid phi BB"); 5552 } 5553 5554 // Phi nodes may contain the same predecessor multiple times, in which 5555 // case the incoming value must be identical. Directly reuse the already 5556 // seen value here, to avoid expanding a constant expression multiple 5557 // times. 5558 auto It = Args.find(BB); 5559 if (It != Args.end()) { 5560 PN->addIncoming(It->second, BB); 5561 continue; 5562 } 5563 5564 // If there already is a block for this edge (from a different phi), 5565 // use it. 5566 BasicBlock *EdgeBB = ConstExprEdgeBBs.lookup({BB, CurBB}); 5567 if (!EdgeBB) { 5568 // Otherwise, use a temporary block (that we will discard if it 5569 // turns out to be unnecessary). 5570 if (!PhiConstExprBB) 5571 PhiConstExprBB = BasicBlock::Create(Context, "phi.constexpr", F); 5572 EdgeBB = PhiConstExprBB; 5573 } 5574 5575 // With the new function encoding, it is possible that operands have 5576 // negative IDs (for forward references). Use a signed VBR 5577 // representation to keep the encoding small. 5578 Value *V; 5579 if (UseRelativeIDs) 5580 V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB); 5581 else 5582 V = getValue(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB); 5583 if (!V) { 5584 PN->deleteValue(); 5585 PhiConstExprBB->eraseFromParent(); 5586 return error("Invalid phi record"); 5587 } 5588 5589 if (EdgeBB == PhiConstExprBB && !EdgeBB->empty()) { 5590 ConstExprEdgeBBs.insert({{BB, CurBB}, EdgeBB}); 5591 PhiConstExprBB = nullptr; 5592 } 5593 PN->addIncoming(V, BB); 5594 Args.insert({BB, V}); 5595 } 5596 I = PN; 5597 ResTypeID = TyID; 5598 5599 // If there are an even number of records, the final record must be FMF. 5600 if (Record.size() % 2 == 0) { 5601 assert(isa<FPMathOperator>(I) && "Unexpected phi type"); 5602 FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]); 5603 if (FMF.any()) 5604 I->setFastMathFlags(FMF); 5605 } 5606 5607 break; 5608 } 5609 5610 case bitc::FUNC_CODE_INST_LANDINGPAD: 5611 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 5612 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 5613 unsigned Idx = 0; 5614 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 5615 if (Record.size() < 3) 5616 return error("Invalid record"); 5617 } else { 5618 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 5619 if (Record.size() < 4) 5620 return error("Invalid record"); 5621 } 5622 ResTypeID = Record[Idx++]; 5623 Type *Ty = getTypeByID(ResTypeID); 5624 if (!Ty) 5625 return error("Invalid record"); 5626 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 5627 Value *PersFn = nullptr; 5628 unsigned PersFnTypeID; 5629 if (getValueTypePair(Record, Idx, NextValueNo, PersFn, PersFnTypeID, 5630 nullptr)) 5631 return error("Invalid record"); 5632 5633 if (!F->hasPersonalityFn()) 5634 F->setPersonalityFn(cast<Constant>(PersFn)); 5635 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 5636 return error("Personality function mismatch"); 5637 } 5638 5639 bool IsCleanup = !!Record[Idx++]; 5640 unsigned NumClauses = Record[Idx++]; 5641 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 5642 LP->setCleanup(IsCleanup); 5643 for (unsigned J = 0; J != NumClauses; ++J) { 5644 LandingPadInst::ClauseType CT = 5645 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 5646 Value *Val; 5647 unsigned ValTypeID; 5648 5649 if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, 5650 nullptr)) { 5651 delete LP; 5652 return error("Invalid record"); 5653 } 5654 5655 assert((CT != LandingPadInst::Catch || 5656 !isa<ArrayType>(Val->getType())) && 5657 "Catch clause has a invalid type!"); 5658 assert((CT != LandingPadInst::Filter || 5659 isa<ArrayType>(Val->getType())) && 5660 "Filter clause has invalid type!"); 5661 LP->addClause(cast<Constant>(Val)); 5662 } 5663 5664 I = LP; 5665 InstructionList.push_back(I); 5666 break; 5667 } 5668 5669 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 5670 if (Record.size() != 4 && Record.size() != 5) 5671 return error("Invalid record"); 5672 using APV = AllocaPackedValues; 5673 const uint64_t Rec = Record[3]; 5674 const bool InAlloca = Bitfield::get<APV::UsedWithInAlloca>(Rec); 5675 const bool SwiftError = Bitfield::get<APV::SwiftError>(Rec); 5676 unsigned TyID = Record[0]; 5677 Type *Ty = getTypeByID(TyID); 5678 if (!Bitfield::get<APV::ExplicitType>(Rec)) { 5679 TyID = getContainedTypeID(TyID); 5680 Ty = getTypeByID(TyID); 5681 if (!Ty) 5682 return error("Missing element type for old-style alloca"); 5683 } 5684 unsigned OpTyID = Record[1]; 5685 Type *OpTy = getTypeByID(OpTyID); 5686 Value *Size = getFnValueByID(Record[2], OpTy, OpTyID, CurBB); 5687 MaybeAlign Align; 5688 uint64_t AlignExp = 5689 Bitfield::get<APV::AlignLower>(Rec) | 5690 (Bitfield::get<APV::AlignUpper>(Rec) << APV::AlignLower::Bits); 5691 if (Error Err = parseAlignmentValue(AlignExp, Align)) { 5692 return Err; 5693 } 5694 if (!Ty || !Size) 5695 return error("Invalid record"); 5696 5697 const DataLayout &DL = TheModule->getDataLayout(); 5698 unsigned AS = Record.size() == 5 ? Record[4] : DL.getAllocaAddrSpace(); 5699 5700 SmallPtrSet<Type *, 4> Visited; 5701 if (!Align && !Ty->isSized(&Visited)) 5702 return error("alloca of unsized type"); 5703 if (!Align) 5704 Align = DL.getPrefTypeAlign(Ty); 5705 5706 AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align); 5707 AI->setUsedWithInAlloca(InAlloca); 5708 AI->setSwiftError(SwiftError); 5709 I = AI; 5710 ResTypeID = getVirtualTypeID(AI->getType(), TyID); 5711 InstructionList.push_back(I); 5712 break; 5713 } 5714 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 5715 unsigned OpNum = 0; 5716 Value *Op; 5717 unsigned OpTypeID; 5718 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) || 5719 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 5720 return error("Invalid record"); 5721 5722 if (!isa<PointerType>(Op->getType())) 5723 return error("Load operand is not a pointer type"); 5724 5725 Type *Ty = nullptr; 5726 if (OpNum + 3 == Record.size()) { 5727 ResTypeID = Record[OpNum++]; 5728 Ty = getTypeByID(ResTypeID); 5729 } else { 5730 ResTypeID = getContainedTypeID(OpTypeID); 5731 Ty = getTypeByID(ResTypeID); 5732 if (!Ty) 5733 return error("Missing element type for old-style load"); 5734 } 5735 5736 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 5737 return Err; 5738 5739 MaybeAlign Align; 5740 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 5741 return Err; 5742 SmallPtrSet<Type *, 4> Visited; 5743 if (!Align && !Ty->isSized(&Visited)) 5744 return error("load of unsized type"); 5745 if (!Align) 5746 Align = TheModule->getDataLayout().getABITypeAlign(Ty); 5747 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align); 5748 InstructionList.push_back(I); 5749 break; 5750 } 5751 case bitc::FUNC_CODE_INST_LOADATOMIC: { 5752 // LOADATOMIC: [opty, op, align, vol, ordering, ssid] 5753 unsigned OpNum = 0; 5754 Value *Op; 5755 unsigned OpTypeID; 5756 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) || 5757 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 5758 return error("Invalid record"); 5759 5760 if (!isa<PointerType>(Op->getType())) 5761 return error("Load operand is not a pointer type"); 5762 5763 Type *Ty = nullptr; 5764 if (OpNum + 5 == Record.size()) { 5765 ResTypeID = Record[OpNum++]; 5766 Ty = getTypeByID(ResTypeID); 5767 } else { 5768 ResTypeID = getContainedTypeID(OpTypeID); 5769 Ty = getTypeByID(ResTypeID); 5770 if (!Ty) 5771 return error("Missing element type for old style atomic load"); 5772 } 5773 5774 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 5775 return Err; 5776 5777 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5778 if (Ordering == AtomicOrdering::NotAtomic || 5779 Ordering == AtomicOrdering::Release || 5780 Ordering == AtomicOrdering::AcquireRelease) 5781 return error("Invalid record"); 5782 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 5783 return error("Invalid record"); 5784 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 5785 5786 MaybeAlign Align; 5787 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 5788 return Err; 5789 if (!Align) 5790 return error("Alignment missing from atomic load"); 5791 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID); 5792 InstructionList.push_back(I); 5793 break; 5794 } 5795 case bitc::FUNC_CODE_INST_STORE: 5796 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 5797 unsigned OpNum = 0; 5798 Value *Val, *Ptr; 5799 unsigned PtrTypeID, ValTypeID; 5800 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 5801 return error("Invalid record"); 5802 5803 if (BitCode == bitc::FUNC_CODE_INST_STORE) { 5804 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 5805 return error("Invalid record"); 5806 } else { 5807 ValTypeID = getContainedTypeID(PtrTypeID); 5808 if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID), 5809 ValTypeID, Val, CurBB)) 5810 return error("Invalid record"); 5811 } 5812 5813 if (OpNum + 2 != Record.size()) 5814 return error("Invalid record"); 5815 5816 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 5817 return Err; 5818 MaybeAlign Align; 5819 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 5820 return Err; 5821 SmallPtrSet<Type *, 4> Visited; 5822 if (!Align && !Val->getType()->isSized(&Visited)) 5823 return error("store of unsized type"); 5824 if (!Align) 5825 Align = TheModule->getDataLayout().getABITypeAlign(Val->getType()); 5826 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align); 5827 InstructionList.push_back(I); 5828 break; 5829 } 5830 case bitc::FUNC_CODE_INST_STOREATOMIC: 5831 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 5832 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid] 5833 unsigned OpNum = 0; 5834 Value *Val, *Ptr; 5835 unsigned PtrTypeID, ValTypeID; 5836 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB) || 5837 !isa<PointerType>(Ptr->getType())) 5838 return error("Invalid record"); 5839 if (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC) { 5840 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 5841 return error("Invalid record"); 5842 } else { 5843 ValTypeID = getContainedTypeID(PtrTypeID); 5844 if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID), 5845 ValTypeID, Val, CurBB)) 5846 return error("Invalid record"); 5847 } 5848 5849 if (OpNum + 4 != Record.size()) 5850 return error("Invalid record"); 5851 5852 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 5853 return Err; 5854 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5855 if (Ordering == AtomicOrdering::NotAtomic || 5856 Ordering == AtomicOrdering::Acquire || 5857 Ordering == AtomicOrdering::AcquireRelease) 5858 return error("Invalid record"); 5859 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 5860 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 5861 return error("Invalid record"); 5862 5863 MaybeAlign Align; 5864 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 5865 return Err; 5866 if (!Align) 5867 return error("Alignment missing from atomic store"); 5868 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID); 5869 InstructionList.push_back(I); 5870 break; 5871 } 5872 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: { 5873 // CMPXCHG_OLD: [ptrty, ptr, cmp, val, vol, ordering, synchscope, 5874 // failure_ordering?, weak?] 5875 const size_t NumRecords = Record.size(); 5876 unsigned OpNum = 0; 5877 Value *Ptr = nullptr; 5878 unsigned PtrTypeID; 5879 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 5880 return error("Invalid record"); 5881 5882 if (!isa<PointerType>(Ptr->getType())) 5883 return error("Cmpxchg operand is not a pointer type"); 5884 5885 Value *Cmp = nullptr; 5886 unsigned CmpTypeID = getContainedTypeID(PtrTypeID); 5887 if (popValue(Record, OpNum, NextValueNo, getTypeByID(CmpTypeID), 5888 CmpTypeID, Cmp, CurBB)) 5889 return error("Invalid record"); 5890 5891 Value *New = nullptr; 5892 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID, 5893 New, CurBB) || 5894 NumRecords < OpNum + 3 || NumRecords > OpNum + 5) 5895 return error("Invalid record"); 5896 5897 const AtomicOrdering SuccessOrdering = 5898 getDecodedOrdering(Record[OpNum + 1]); 5899 if (SuccessOrdering == AtomicOrdering::NotAtomic || 5900 SuccessOrdering == AtomicOrdering::Unordered) 5901 return error("Invalid record"); 5902 5903 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 5904 5905 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 5906 return Err; 5907 5908 const AtomicOrdering FailureOrdering = 5909 NumRecords < 7 5910 ? AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering) 5911 : getDecodedOrdering(Record[OpNum + 3]); 5912 5913 if (FailureOrdering == AtomicOrdering::NotAtomic || 5914 FailureOrdering == AtomicOrdering::Unordered) 5915 return error("Invalid record"); 5916 5917 const Align Alignment( 5918 TheModule->getDataLayout().getTypeStoreSize(Cmp->getType())); 5919 5920 I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering, 5921 FailureOrdering, SSID); 5922 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 5923 5924 if (NumRecords < 8) { 5925 // Before weak cmpxchgs existed, the instruction simply returned the 5926 // value loaded from memory, so bitcode files from that era will be 5927 // expecting the first component of a modern cmpxchg. 5928 CurBB->getInstList().push_back(I); 5929 I = ExtractValueInst::Create(I, 0); 5930 ResTypeID = CmpTypeID; 5931 } else { 5932 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]); 5933 unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context)); 5934 ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID}); 5935 } 5936 5937 InstructionList.push_back(I); 5938 break; 5939 } 5940 case bitc::FUNC_CODE_INST_CMPXCHG: { 5941 // CMPXCHG: [ptrty, ptr, cmp, val, vol, success_ordering, synchscope, 5942 // failure_ordering, weak, align?] 5943 const size_t NumRecords = Record.size(); 5944 unsigned OpNum = 0; 5945 Value *Ptr = nullptr; 5946 unsigned PtrTypeID; 5947 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 5948 return error("Invalid record"); 5949 5950 if (!isa<PointerType>(Ptr->getType())) 5951 return error("Cmpxchg operand is not a pointer type"); 5952 5953 Value *Cmp = nullptr; 5954 unsigned CmpTypeID; 5955 if (getValueTypePair(Record, OpNum, NextValueNo, Cmp, CmpTypeID, CurBB)) 5956 return error("Invalid record"); 5957 5958 Value *Val = nullptr; 5959 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID, Val, 5960 CurBB)) 5961 return error("Invalid record"); 5962 5963 if (NumRecords < OpNum + 3 || NumRecords > OpNum + 6) 5964 return error("Invalid record"); 5965 5966 const bool IsVol = Record[OpNum]; 5967 5968 const AtomicOrdering SuccessOrdering = 5969 getDecodedOrdering(Record[OpNum + 1]); 5970 if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering)) 5971 return error("Invalid cmpxchg success ordering"); 5972 5973 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 5974 5975 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 5976 return Err; 5977 5978 const AtomicOrdering FailureOrdering = 5979 getDecodedOrdering(Record[OpNum + 3]); 5980 if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering)) 5981 return error("Invalid cmpxchg failure ordering"); 5982 5983 const bool IsWeak = Record[OpNum + 4]; 5984 5985 MaybeAlign Alignment; 5986 5987 if (NumRecords == (OpNum + 6)) { 5988 if (Error Err = parseAlignmentValue(Record[OpNum + 5], Alignment)) 5989 return Err; 5990 } 5991 if (!Alignment) 5992 Alignment = 5993 Align(TheModule->getDataLayout().getTypeStoreSize(Cmp->getType())); 5994 5995 I = new AtomicCmpXchgInst(Ptr, Cmp, Val, *Alignment, SuccessOrdering, 5996 FailureOrdering, SSID); 5997 cast<AtomicCmpXchgInst>(I)->setVolatile(IsVol); 5998 cast<AtomicCmpXchgInst>(I)->setWeak(IsWeak); 5999 6000 unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context)); 6001 ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID}); 6002 6003 InstructionList.push_back(I); 6004 break; 6005 } 6006 case bitc::FUNC_CODE_INST_ATOMICRMW_OLD: 6007 case bitc::FUNC_CODE_INST_ATOMICRMW: { 6008 // ATOMICRMW_OLD: [ptrty, ptr, val, op, vol, ordering, ssid, align?] 6009 // ATOMICRMW: [ptrty, ptr, valty, val, op, vol, ordering, ssid, align?] 6010 const size_t NumRecords = Record.size(); 6011 unsigned OpNum = 0; 6012 6013 Value *Ptr = nullptr; 6014 unsigned PtrTypeID; 6015 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 6016 return error("Invalid record"); 6017 6018 if (!isa<PointerType>(Ptr->getType())) 6019 return error("Invalid record"); 6020 6021 Value *Val = nullptr; 6022 unsigned ValTypeID = InvalidTypeID; 6023 if (BitCode == bitc::FUNC_CODE_INST_ATOMICRMW_OLD) { 6024 ValTypeID = getContainedTypeID(PtrTypeID); 6025 if (popValue(Record, OpNum, NextValueNo, 6026 getTypeByID(ValTypeID), ValTypeID, Val, CurBB)) 6027 return error("Invalid record"); 6028 } else { 6029 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 6030 return error("Invalid record"); 6031 } 6032 6033 if (!(NumRecords == (OpNum + 4) || NumRecords == (OpNum + 5))) 6034 return error("Invalid record"); 6035 6036 const AtomicRMWInst::BinOp Operation = 6037 getDecodedRMWOperation(Record[OpNum]); 6038 if (Operation < AtomicRMWInst::FIRST_BINOP || 6039 Operation > AtomicRMWInst::LAST_BINOP) 6040 return error("Invalid record"); 6041 6042 const bool IsVol = Record[OpNum + 1]; 6043 6044 const AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 6045 if (Ordering == AtomicOrdering::NotAtomic || 6046 Ordering == AtomicOrdering::Unordered) 6047 return error("Invalid record"); 6048 6049 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 6050 6051 MaybeAlign Alignment; 6052 6053 if (NumRecords == (OpNum + 5)) { 6054 if (Error Err = parseAlignmentValue(Record[OpNum + 4], Alignment)) 6055 return Err; 6056 } 6057 6058 if (!Alignment) 6059 Alignment = 6060 Align(TheModule->getDataLayout().getTypeStoreSize(Val->getType())); 6061 6062 I = new AtomicRMWInst(Operation, Ptr, Val, *Alignment, Ordering, SSID); 6063 ResTypeID = ValTypeID; 6064 cast<AtomicRMWInst>(I)->setVolatile(IsVol); 6065 6066 InstructionList.push_back(I); 6067 break; 6068 } 6069 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid] 6070 if (2 != Record.size()) 6071 return error("Invalid record"); 6072 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 6073 if (Ordering == AtomicOrdering::NotAtomic || 6074 Ordering == AtomicOrdering::Unordered || 6075 Ordering == AtomicOrdering::Monotonic) 6076 return error("Invalid record"); 6077 SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]); 6078 I = new FenceInst(Context, Ordering, SSID); 6079 InstructionList.push_back(I); 6080 break; 6081 } 6082 case bitc::FUNC_CODE_INST_CALL: { 6083 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 6084 if (Record.size() < 3) 6085 return error("Invalid record"); 6086 6087 unsigned OpNum = 0; 6088 AttributeList PAL = getAttributes(Record[OpNum++]); 6089 unsigned CCInfo = Record[OpNum++]; 6090 6091 FastMathFlags FMF; 6092 if ((CCInfo >> bitc::CALL_FMF) & 1) { 6093 FMF = getDecodedFastMathFlags(Record[OpNum++]); 6094 if (!FMF.any()) 6095 return error("Fast math flags indicator set for call with no FMF"); 6096 } 6097 6098 unsigned FTyID = InvalidTypeID; 6099 FunctionType *FTy = nullptr; 6100 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 6101 FTyID = Record[OpNum++]; 6102 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 6103 if (!FTy) 6104 return error("Explicit call type is not a function type"); 6105 } 6106 6107 Value *Callee; 6108 unsigned CalleeTypeID; 6109 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID, 6110 CurBB)) 6111 return error("Invalid record"); 6112 6113 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 6114 if (!OpTy) 6115 return error("Callee is not a pointer type"); 6116 if (!FTy) { 6117 FTyID = getContainedTypeID(CalleeTypeID); 6118 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 6119 if (!FTy) 6120 return error("Callee is not of pointer to function type"); 6121 } else if (!OpTy->isOpaqueOrPointeeTypeMatches(FTy)) 6122 return error("Explicit call type does not match pointee type of " 6123 "callee operand"); 6124 if (Record.size() < FTy->getNumParams() + OpNum) 6125 return error("Insufficient operands to call"); 6126 6127 SmallVector<Value*, 16> Args; 6128 SmallVector<unsigned, 16> ArgTyIDs; 6129 // Read the fixed params. 6130 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 6131 unsigned ArgTyID = getContainedTypeID(FTyID, i + 1); 6132 if (FTy->getParamType(i)->isLabelTy()) 6133 Args.push_back(getBasicBlock(Record[OpNum])); 6134 else 6135 Args.push_back(getValue(Record, OpNum, NextValueNo, 6136 FTy->getParamType(i), ArgTyID, CurBB)); 6137 ArgTyIDs.push_back(ArgTyID); 6138 if (!Args.back()) 6139 return error("Invalid record"); 6140 } 6141 6142 // Read type/value pairs for varargs params. 6143 if (!FTy->isVarArg()) { 6144 if (OpNum != Record.size()) 6145 return error("Invalid record"); 6146 } else { 6147 while (OpNum != Record.size()) { 6148 Value *Op; 6149 unsigned OpTypeID; 6150 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 6151 return error("Invalid record"); 6152 Args.push_back(Op); 6153 ArgTyIDs.push_back(OpTypeID); 6154 } 6155 } 6156 6157 // Upgrade the bundles if needed. 6158 if (!OperandBundles.empty()) 6159 UpgradeOperandBundles(OperandBundles); 6160 6161 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 6162 ResTypeID = getContainedTypeID(FTyID); 6163 OperandBundles.clear(); 6164 InstructionList.push_back(I); 6165 cast<CallInst>(I)->setCallingConv( 6166 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 6167 CallInst::TailCallKind TCK = CallInst::TCK_None; 6168 if (CCInfo & 1 << bitc::CALL_TAIL) 6169 TCK = CallInst::TCK_Tail; 6170 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 6171 TCK = CallInst::TCK_MustTail; 6172 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 6173 TCK = CallInst::TCK_NoTail; 6174 cast<CallInst>(I)->setTailCallKind(TCK); 6175 cast<CallInst>(I)->setAttributes(PAL); 6176 if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) { 6177 I->deleteValue(); 6178 return Err; 6179 } 6180 if (FMF.any()) { 6181 if (!isa<FPMathOperator>(I)) 6182 return error("Fast-math-flags specified for call without " 6183 "floating-point scalar or vector return type"); 6184 I->setFastMathFlags(FMF); 6185 } 6186 break; 6187 } 6188 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 6189 if (Record.size() < 3) 6190 return error("Invalid record"); 6191 unsigned OpTyID = Record[0]; 6192 Type *OpTy = getTypeByID(OpTyID); 6193 Value *Op = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB); 6194 ResTypeID = Record[2]; 6195 Type *ResTy = getTypeByID(ResTypeID); 6196 if (!OpTy || !Op || !ResTy) 6197 return error("Invalid record"); 6198 I = new VAArgInst(Op, ResTy); 6199 InstructionList.push_back(I); 6200 break; 6201 } 6202 6203 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 6204 // A call or an invoke can be optionally prefixed with some variable 6205 // number of operand bundle blocks. These blocks are read into 6206 // OperandBundles and consumed at the next call or invoke instruction. 6207 6208 if (Record.empty() || Record[0] >= BundleTags.size()) 6209 return error("Invalid record"); 6210 6211 std::vector<Value *> Inputs; 6212 6213 unsigned OpNum = 1; 6214 while (OpNum != Record.size()) { 6215 Value *Op; 6216 unsigned OpTypeID; 6217 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 6218 return error("Invalid record"); 6219 Inputs.push_back(Op); 6220 } 6221 6222 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 6223 continue; 6224 } 6225 6226 case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval] 6227 unsigned OpNum = 0; 6228 Value *Op = nullptr; 6229 unsigned OpTypeID; 6230 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 6231 return error("Invalid record"); 6232 if (OpNum != Record.size()) 6233 return error("Invalid record"); 6234 6235 I = new FreezeInst(Op); 6236 ResTypeID = OpTypeID; 6237 InstructionList.push_back(I); 6238 break; 6239 } 6240 } 6241 6242 // Add instruction to end of current BB. If there is no current BB, reject 6243 // this file. 6244 if (!CurBB) { 6245 I->deleteValue(); 6246 return error("Invalid instruction with no BB"); 6247 } 6248 if (!OperandBundles.empty()) { 6249 I->deleteValue(); 6250 return error("Operand bundles found with no consumer"); 6251 } 6252 CurBB->getInstList().push_back(I); 6253 6254 // If this was a terminator instruction, move to the next block. 6255 if (I->isTerminator()) { 6256 ++CurBBNo; 6257 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 6258 } 6259 6260 // Non-void values get registered in the value table for future use. 6261 if (!I->getType()->isVoidTy()) { 6262 assert(I->getType() == getTypeByID(ResTypeID) && 6263 "Incorrect result type ID"); 6264 if (Error Err = ValueList.assignValue(NextValueNo++, I, ResTypeID)) 6265 return Err; 6266 } 6267 } 6268 6269 OutOfRecordLoop: 6270 6271 if (!OperandBundles.empty()) 6272 return error("Operand bundles found with no consumer"); 6273 6274 // Check the function list for unresolved values. 6275 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 6276 if (!A->getParent()) { 6277 // We found at least one unresolved value. Nuke them all to avoid leaks. 6278 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 6279 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 6280 A->replaceAllUsesWith(UndefValue::get(A->getType())); 6281 delete A; 6282 } 6283 } 6284 return error("Never resolved value found in function"); 6285 } 6286 } 6287 6288 // Unexpected unresolved metadata about to be dropped. 6289 if (MDLoader->hasFwdRefs()) 6290 return error("Invalid function metadata: outgoing forward refs"); 6291 6292 if (PhiConstExprBB) 6293 PhiConstExprBB->eraseFromParent(); 6294 6295 for (const auto &Pair : ConstExprEdgeBBs) { 6296 BasicBlock *From = Pair.first.first; 6297 BasicBlock *To = Pair.first.second; 6298 BasicBlock *EdgeBB = Pair.second; 6299 BranchInst::Create(To, EdgeBB); 6300 From->getTerminator()->replaceSuccessorWith(To, EdgeBB); 6301 To->replacePhiUsesWith(From, EdgeBB); 6302 EdgeBB->moveBefore(To); 6303 } 6304 6305 // Trim the value list down to the size it was before we parsed this function. 6306 ValueList.shrinkTo(ModuleValueListSize); 6307 MDLoader->shrinkTo(ModuleMDLoaderSize); 6308 std::vector<BasicBlock*>().swap(FunctionBBs); 6309 return Error::success(); 6310 } 6311 6312 /// Find the function body in the bitcode stream 6313 Error BitcodeReader::findFunctionInStream( 6314 Function *F, 6315 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 6316 while (DeferredFunctionInfoIterator->second == 0) { 6317 // This is the fallback handling for the old format bitcode that 6318 // didn't contain the function index in the VST, or when we have 6319 // an anonymous function which would not have a VST entry. 6320 // Assert that we have one of those two cases. 6321 assert(VSTOffset == 0 || !F->hasName()); 6322 // Parse the next body in the stream and set its position in the 6323 // DeferredFunctionInfo map. 6324 if (Error Err = rememberAndSkipFunctionBodies()) 6325 return Err; 6326 } 6327 return Error::success(); 6328 } 6329 6330 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) { 6331 if (Val == SyncScope::SingleThread || Val == SyncScope::System) 6332 return SyncScope::ID(Val); 6333 if (Val >= SSIDs.size()) 6334 return SyncScope::System; // Map unknown synchronization scopes to system. 6335 return SSIDs[Val]; 6336 } 6337 6338 //===----------------------------------------------------------------------===// 6339 // GVMaterializer implementation 6340 //===----------------------------------------------------------------------===// 6341 6342 Error BitcodeReader::materialize(GlobalValue *GV) { 6343 Function *F = dyn_cast<Function>(GV); 6344 // If it's not a function or is already material, ignore the request. 6345 if (!F || !F->isMaterializable()) 6346 return Error::success(); 6347 6348 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 6349 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 6350 // If its position is recorded as 0, its body is somewhere in the stream 6351 // but we haven't seen it yet. 6352 if (DFII->second == 0) 6353 if (Error Err = findFunctionInStream(F, DFII)) 6354 return Err; 6355 6356 // Materialize metadata before parsing any function bodies. 6357 if (Error Err = materializeMetadata()) 6358 return Err; 6359 6360 // Move the bit stream to the saved position of the deferred function body. 6361 if (Error JumpFailed = Stream.JumpToBit(DFII->second)) 6362 return JumpFailed; 6363 if (Error Err = parseFunctionBody(F)) 6364 return Err; 6365 F->setIsMaterializable(false); 6366 6367 if (StripDebugInfo) 6368 stripDebugInfo(*F); 6369 6370 // Upgrade any old intrinsic calls in the function. 6371 for (auto &I : UpgradedIntrinsics) { 6372 for (User *U : llvm::make_early_inc_range(I.first->materialized_users())) 6373 if (CallInst *CI = dyn_cast<CallInst>(U)) 6374 UpgradeIntrinsicCall(CI, I.second); 6375 } 6376 6377 // Update calls to the remangled intrinsics 6378 for (auto &I : RemangledIntrinsics) 6379 for (User *U : llvm::make_early_inc_range(I.first->materialized_users())) 6380 // Don't expect any other users than call sites 6381 cast<CallBase>(U)->setCalledFunction(I.second); 6382 6383 // Finish fn->subprogram upgrade for materialized functions. 6384 if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F)) 6385 F->setSubprogram(SP); 6386 6387 // Check if the TBAA Metadata are valid, otherwise we will need to strip them. 6388 if (!MDLoader->isStrippingTBAA()) { 6389 for (auto &I : instructions(F)) { 6390 MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa); 6391 if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA)) 6392 continue; 6393 MDLoader->setStripTBAA(true); 6394 stripTBAA(F->getParent()); 6395 } 6396 } 6397 6398 for (auto &I : instructions(F)) { 6399 // "Upgrade" older incorrect branch weights by dropping them. 6400 if (auto *MD = I.getMetadata(LLVMContext::MD_prof)) { 6401 if (MD->getOperand(0) != nullptr && isa<MDString>(MD->getOperand(0))) { 6402 MDString *MDS = cast<MDString>(MD->getOperand(0)); 6403 StringRef ProfName = MDS->getString(); 6404 // Check consistency of !prof branch_weights metadata. 6405 if (!ProfName.equals("branch_weights")) 6406 continue; 6407 unsigned ExpectedNumOperands = 0; 6408 if (BranchInst *BI = dyn_cast<BranchInst>(&I)) 6409 ExpectedNumOperands = BI->getNumSuccessors(); 6410 else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I)) 6411 ExpectedNumOperands = SI->getNumSuccessors(); 6412 else if (isa<CallInst>(&I)) 6413 ExpectedNumOperands = 1; 6414 else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I)) 6415 ExpectedNumOperands = IBI->getNumDestinations(); 6416 else if (isa<SelectInst>(&I)) 6417 ExpectedNumOperands = 2; 6418 else 6419 continue; // ignore and continue. 6420 6421 // If branch weight doesn't match, just strip branch weight. 6422 if (MD->getNumOperands() != 1 + ExpectedNumOperands) 6423 I.setMetadata(LLVMContext::MD_prof, nullptr); 6424 } 6425 } 6426 6427 // Remove incompatible attributes on function calls. 6428 if (auto *CI = dyn_cast<CallBase>(&I)) { 6429 CI->removeRetAttrs(AttributeFuncs::typeIncompatible( 6430 CI->getFunctionType()->getReturnType())); 6431 6432 for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ++ArgNo) 6433 CI->removeParamAttrs(ArgNo, AttributeFuncs::typeIncompatible( 6434 CI->getArgOperand(ArgNo)->getType())); 6435 } 6436 } 6437 6438 // Look for functions that rely on old function attribute behavior. 6439 UpgradeFunctionAttributes(*F); 6440 6441 // Bring in any functions that this function forward-referenced via 6442 // blockaddresses. 6443 return materializeForwardReferencedFunctions(); 6444 } 6445 6446 Error BitcodeReader::materializeModule() { 6447 if (Error Err = materializeMetadata()) 6448 return Err; 6449 6450 // Promise to materialize all forward references. 6451 WillMaterializeAllForwardRefs = true; 6452 6453 // Iterate over the module, deserializing any functions that are still on 6454 // disk. 6455 for (Function &F : *TheModule) { 6456 if (Error Err = materialize(&F)) 6457 return Err; 6458 } 6459 // At this point, if there are any function bodies, parse the rest of 6460 // the bits in the module past the last function block we have recorded 6461 // through either lazy scanning or the VST. 6462 if (LastFunctionBlockBit || NextUnreadBit) 6463 if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit 6464 ? LastFunctionBlockBit 6465 : NextUnreadBit)) 6466 return Err; 6467 6468 // Check that all block address forward references got resolved (as we 6469 // promised above). 6470 if (!BasicBlockFwdRefs.empty()) 6471 return error("Never resolved function from blockaddress"); 6472 6473 // Upgrade any intrinsic calls that slipped through (should not happen!) and 6474 // delete the old functions to clean up. We can't do this unless the entire 6475 // module is materialized because there could always be another function body 6476 // with calls to the old function. 6477 for (auto &I : UpgradedIntrinsics) { 6478 for (auto *U : I.first->users()) { 6479 if (CallInst *CI = dyn_cast<CallInst>(U)) 6480 UpgradeIntrinsicCall(CI, I.second); 6481 } 6482 if (!I.first->use_empty()) 6483 I.first->replaceAllUsesWith(I.second); 6484 I.first->eraseFromParent(); 6485 } 6486 UpgradedIntrinsics.clear(); 6487 // Do the same for remangled intrinsics 6488 for (auto &I : RemangledIntrinsics) { 6489 I.first->replaceAllUsesWith(I.second); 6490 I.first->eraseFromParent(); 6491 } 6492 RemangledIntrinsics.clear(); 6493 6494 UpgradeDebugInfo(*TheModule); 6495 6496 UpgradeModuleFlags(*TheModule); 6497 6498 UpgradeARCRuntime(*TheModule); 6499 6500 return Error::success(); 6501 } 6502 6503 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 6504 return IdentifiedStructTypes; 6505 } 6506 6507 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 6508 BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex, 6509 StringRef ModulePath, unsigned ModuleId) 6510 : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex), 6511 ModulePath(ModulePath), ModuleId(ModuleId) {} 6512 6513 void ModuleSummaryIndexBitcodeReader::addThisModule() { 6514 TheIndex.addModule(ModulePath, ModuleId); 6515 } 6516 6517 ModuleSummaryIndex::ModuleInfo * 6518 ModuleSummaryIndexBitcodeReader::getThisModule() { 6519 return TheIndex.getModule(ModulePath); 6520 } 6521 6522 std::pair<ValueInfo, GlobalValue::GUID> 6523 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) { 6524 auto VGI = ValueIdToValueInfoMap[ValueId]; 6525 assert(VGI.first); 6526 return VGI; 6527 } 6528 6529 void ModuleSummaryIndexBitcodeReader::setValueGUID( 6530 uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage, 6531 StringRef SourceFileName) { 6532 std::string GlobalId = 6533 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 6534 auto ValueGUID = GlobalValue::getGUID(GlobalId); 6535 auto OriginalNameID = ValueGUID; 6536 if (GlobalValue::isLocalLinkage(Linkage)) 6537 OriginalNameID = GlobalValue::getGUID(ValueName); 6538 if (PrintSummaryGUIDs) 6539 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 6540 << ValueName << "\n"; 6541 6542 // UseStrtab is false for legacy summary formats and value names are 6543 // created on stack. In that case we save the name in a string saver in 6544 // the index so that the value name can be recorded. 6545 ValueIdToValueInfoMap[ValueID] = std::make_pair( 6546 TheIndex.getOrInsertValueInfo( 6547 ValueGUID, 6548 UseStrtab ? ValueName : TheIndex.saveString(ValueName)), 6549 OriginalNameID); 6550 } 6551 6552 // Specialized value symbol table parser used when reading module index 6553 // blocks where we don't actually create global values. The parsed information 6554 // is saved in the bitcode reader for use when later parsing summaries. 6555 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 6556 uint64_t Offset, 6557 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 6558 // With a strtab the VST is not required to parse the summary. 6559 if (UseStrtab) 6560 return Error::success(); 6561 6562 assert(Offset > 0 && "Expected non-zero VST offset"); 6563 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 6564 if (!MaybeCurrentBit) 6565 return MaybeCurrentBit.takeError(); 6566 uint64_t CurrentBit = MaybeCurrentBit.get(); 6567 6568 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 6569 return Err; 6570 6571 SmallVector<uint64_t, 64> Record; 6572 6573 // Read all the records for this value table. 6574 SmallString<128> ValueName; 6575 6576 while (true) { 6577 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6578 if (!MaybeEntry) 6579 return MaybeEntry.takeError(); 6580 BitstreamEntry Entry = MaybeEntry.get(); 6581 6582 switch (Entry.Kind) { 6583 case BitstreamEntry::SubBlock: // Handled for us already. 6584 case BitstreamEntry::Error: 6585 return error("Malformed block"); 6586 case BitstreamEntry::EndBlock: 6587 // Done parsing VST, jump back to wherever we came from. 6588 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 6589 return JumpFailed; 6590 return Error::success(); 6591 case BitstreamEntry::Record: 6592 // The interesting case. 6593 break; 6594 } 6595 6596 // Read a record. 6597 Record.clear(); 6598 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 6599 if (!MaybeRecord) 6600 return MaybeRecord.takeError(); 6601 switch (MaybeRecord.get()) { 6602 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 6603 break; 6604 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 6605 if (convertToString(Record, 1, ValueName)) 6606 return error("Invalid record"); 6607 unsigned ValueID = Record[0]; 6608 assert(!SourceFileName.empty()); 6609 auto VLI = ValueIdToLinkageMap.find(ValueID); 6610 assert(VLI != ValueIdToLinkageMap.end() && 6611 "No linkage found for VST entry?"); 6612 auto Linkage = VLI->second; 6613 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 6614 ValueName.clear(); 6615 break; 6616 } 6617 case bitc::VST_CODE_FNENTRY: { 6618 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 6619 if (convertToString(Record, 2, ValueName)) 6620 return error("Invalid record"); 6621 unsigned ValueID = Record[0]; 6622 assert(!SourceFileName.empty()); 6623 auto VLI = ValueIdToLinkageMap.find(ValueID); 6624 assert(VLI != ValueIdToLinkageMap.end() && 6625 "No linkage found for VST entry?"); 6626 auto Linkage = VLI->second; 6627 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 6628 ValueName.clear(); 6629 break; 6630 } 6631 case bitc::VST_CODE_COMBINED_ENTRY: { 6632 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 6633 unsigned ValueID = Record[0]; 6634 GlobalValue::GUID RefGUID = Record[1]; 6635 // The "original name", which is the second value of the pair will be 6636 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 6637 ValueIdToValueInfoMap[ValueID] = 6638 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 6639 break; 6640 } 6641 } 6642 } 6643 } 6644 6645 // Parse just the blocks needed for building the index out of the module. 6646 // At the end of this routine the module Index is populated with a map 6647 // from global value id to GlobalValueSummary objects. 6648 Error ModuleSummaryIndexBitcodeReader::parseModule() { 6649 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 6650 return Err; 6651 6652 SmallVector<uint64_t, 64> Record; 6653 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 6654 unsigned ValueId = 0; 6655 6656 // Read the index for this module. 6657 while (true) { 6658 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6659 if (!MaybeEntry) 6660 return MaybeEntry.takeError(); 6661 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6662 6663 switch (Entry.Kind) { 6664 case BitstreamEntry::Error: 6665 return error("Malformed block"); 6666 case BitstreamEntry::EndBlock: 6667 return Error::success(); 6668 6669 case BitstreamEntry::SubBlock: 6670 switch (Entry.ID) { 6671 default: // Skip unknown content. 6672 if (Error Err = Stream.SkipBlock()) 6673 return Err; 6674 break; 6675 case bitc::BLOCKINFO_BLOCK_ID: 6676 // Need to parse these to get abbrev ids (e.g. for VST) 6677 if (Error Err = readBlockInfo()) 6678 return Err; 6679 break; 6680 case bitc::VALUE_SYMTAB_BLOCK_ID: 6681 // Should have been parsed earlier via VSTOffset, unless there 6682 // is no summary section. 6683 assert(((SeenValueSymbolTable && VSTOffset > 0) || 6684 !SeenGlobalValSummary) && 6685 "Expected early VST parse via VSTOffset record"); 6686 if (Error Err = Stream.SkipBlock()) 6687 return Err; 6688 break; 6689 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 6690 case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID: 6691 // Add the module if it is a per-module index (has a source file name). 6692 if (!SourceFileName.empty()) 6693 addThisModule(); 6694 assert(!SeenValueSymbolTable && 6695 "Already read VST when parsing summary block?"); 6696 // We might not have a VST if there were no values in the 6697 // summary. An empty summary block generated when we are 6698 // performing ThinLTO compiles so we don't later invoke 6699 // the regular LTO process on them. 6700 if (VSTOffset > 0) { 6701 if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 6702 return Err; 6703 SeenValueSymbolTable = true; 6704 } 6705 SeenGlobalValSummary = true; 6706 if (Error Err = parseEntireSummary(Entry.ID)) 6707 return Err; 6708 break; 6709 case bitc::MODULE_STRTAB_BLOCK_ID: 6710 if (Error Err = parseModuleStringTable()) 6711 return Err; 6712 break; 6713 } 6714 continue; 6715 6716 case BitstreamEntry::Record: { 6717 Record.clear(); 6718 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 6719 if (!MaybeBitCode) 6720 return MaybeBitCode.takeError(); 6721 switch (MaybeBitCode.get()) { 6722 default: 6723 break; // Default behavior, ignore unknown content. 6724 case bitc::MODULE_CODE_VERSION: { 6725 if (Error Err = parseVersionRecord(Record).takeError()) 6726 return Err; 6727 break; 6728 } 6729 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 6730 case bitc::MODULE_CODE_SOURCE_FILENAME: { 6731 SmallString<128> ValueName; 6732 if (convertToString(Record, 0, ValueName)) 6733 return error("Invalid record"); 6734 SourceFileName = ValueName.c_str(); 6735 break; 6736 } 6737 /// MODULE_CODE_HASH: [5*i32] 6738 case bitc::MODULE_CODE_HASH: { 6739 if (Record.size() != 5) 6740 return error("Invalid hash length " + Twine(Record.size()).str()); 6741 auto &Hash = getThisModule()->second.second; 6742 int Pos = 0; 6743 for (auto &Val : Record) { 6744 assert(!(Val >> 32) && "Unexpected high bits set"); 6745 Hash[Pos++] = Val; 6746 } 6747 break; 6748 } 6749 /// MODULE_CODE_VSTOFFSET: [offset] 6750 case bitc::MODULE_CODE_VSTOFFSET: 6751 if (Record.empty()) 6752 return error("Invalid record"); 6753 // Note that we subtract 1 here because the offset is relative to one 6754 // word before the start of the identification or module block, which 6755 // was historically always the start of the regular bitcode header. 6756 VSTOffset = Record[0] - 1; 6757 break; 6758 // v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...] 6759 // v1 FUNCTION: [type, callingconv, isproto, linkage, ...] 6760 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...] 6761 // v2: [strtab offset, strtab size, v1] 6762 case bitc::MODULE_CODE_GLOBALVAR: 6763 case bitc::MODULE_CODE_FUNCTION: 6764 case bitc::MODULE_CODE_ALIAS: { 6765 StringRef Name; 6766 ArrayRef<uint64_t> GVRecord; 6767 std::tie(Name, GVRecord) = readNameFromStrtab(Record); 6768 if (GVRecord.size() <= 3) 6769 return error("Invalid record"); 6770 uint64_t RawLinkage = GVRecord[3]; 6771 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 6772 if (!UseStrtab) { 6773 ValueIdToLinkageMap[ValueId++] = Linkage; 6774 break; 6775 } 6776 6777 setValueGUID(ValueId++, Name, Linkage, SourceFileName); 6778 break; 6779 } 6780 } 6781 } 6782 continue; 6783 } 6784 } 6785 } 6786 6787 std::vector<ValueInfo> 6788 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) { 6789 std::vector<ValueInfo> Ret; 6790 Ret.reserve(Record.size()); 6791 for (uint64_t RefValueId : Record) 6792 Ret.push_back(getValueInfoFromValueId(RefValueId).first); 6793 return Ret; 6794 } 6795 6796 std::vector<FunctionSummary::EdgeTy> 6797 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record, 6798 bool IsOldProfileFormat, 6799 bool HasProfile, bool HasRelBF) { 6800 std::vector<FunctionSummary::EdgeTy> Ret; 6801 Ret.reserve(Record.size()); 6802 for (unsigned I = 0, E = Record.size(); I != E; ++I) { 6803 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 6804 uint64_t RelBF = 0; 6805 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first; 6806 if (IsOldProfileFormat) { 6807 I += 1; // Skip old callsitecount field 6808 if (HasProfile) 6809 I += 1; // Skip old profilecount field 6810 } else if (HasProfile) 6811 Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]); 6812 else if (HasRelBF) 6813 RelBF = Record[++I]; 6814 Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)}); 6815 } 6816 return Ret; 6817 } 6818 6819 static void 6820 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot, 6821 WholeProgramDevirtResolution &Wpd) { 6822 uint64_t ArgNum = Record[Slot++]; 6823 WholeProgramDevirtResolution::ByArg &B = 6824 Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}]; 6825 Slot += ArgNum; 6826 6827 B.TheKind = 6828 static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]); 6829 B.Info = Record[Slot++]; 6830 B.Byte = Record[Slot++]; 6831 B.Bit = Record[Slot++]; 6832 } 6833 6834 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record, 6835 StringRef Strtab, size_t &Slot, 6836 TypeIdSummary &TypeId) { 6837 uint64_t Id = Record[Slot++]; 6838 WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id]; 6839 6840 Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]); 6841 Wpd.SingleImplName = {Strtab.data() + Record[Slot], 6842 static_cast<size_t>(Record[Slot + 1])}; 6843 Slot += 2; 6844 6845 uint64_t ResByArgNum = Record[Slot++]; 6846 for (uint64_t I = 0; I != ResByArgNum; ++I) 6847 parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd); 6848 } 6849 6850 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record, 6851 StringRef Strtab, 6852 ModuleSummaryIndex &TheIndex) { 6853 size_t Slot = 0; 6854 TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary( 6855 {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])}); 6856 Slot += 2; 6857 6858 TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]); 6859 TypeId.TTRes.SizeM1BitWidth = Record[Slot++]; 6860 TypeId.TTRes.AlignLog2 = Record[Slot++]; 6861 TypeId.TTRes.SizeM1 = Record[Slot++]; 6862 TypeId.TTRes.BitMask = Record[Slot++]; 6863 TypeId.TTRes.InlineBits = Record[Slot++]; 6864 6865 while (Slot < Record.size()) 6866 parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId); 6867 } 6868 6869 std::vector<FunctionSummary::ParamAccess> 6870 ModuleSummaryIndexBitcodeReader::parseParamAccesses(ArrayRef<uint64_t> Record) { 6871 auto ReadRange = [&]() { 6872 APInt Lower(FunctionSummary::ParamAccess::RangeWidth, 6873 BitcodeReader::decodeSignRotatedValue(Record.front())); 6874 Record = Record.drop_front(); 6875 APInt Upper(FunctionSummary::ParamAccess::RangeWidth, 6876 BitcodeReader::decodeSignRotatedValue(Record.front())); 6877 Record = Record.drop_front(); 6878 ConstantRange Range{Lower, Upper}; 6879 assert(!Range.isFullSet()); 6880 assert(!Range.isUpperSignWrapped()); 6881 return Range; 6882 }; 6883 6884 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; 6885 while (!Record.empty()) { 6886 PendingParamAccesses.emplace_back(); 6887 FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back(); 6888 ParamAccess.ParamNo = Record.front(); 6889 Record = Record.drop_front(); 6890 ParamAccess.Use = ReadRange(); 6891 ParamAccess.Calls.resize(Record.front()); 6892 Record = Record.drop_front(); 6893 for (auto &Call : ParamAccess.Calls) { 6894 Call.ParamNo = Record.front(); 6895 Record = Record.drop_front(); 6896 Call.Callee = getValueInfoFromValueId(Record.front()).first; 6897 Record = Record.drop_front(); 6898 Call.Offsets = ReadRange(); 6899 } 6900 } 6901 return PendingParamAccesses; 6902 } 6903 6904 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo( 6905 ArrayRef<uint64_t> Record, size_t &Slot, 6906 TypeIdCompatibleVtableInfo &TypeId) { 6907 uint64_t Offset = Record[Slot++]; 6908 ValueInfo Callee = getValueInfoFromValueId(Record[Slot++]).first; 6909 TypeId.push_back({Offset, Callee}); 6910 } 6911 6912 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord( 6913 ArrayRef<uint64_t> Record) { 6914 size_t Slot = 0; 6915 TypeIdCompatibleVtableInfo &TypeId = 6916 TheIndex.getOrInsertTypeIdCompatibleVtableSummary( 6917 {Strtab.data() + Record[Slot], 6918 static_cast<size_t>(Record[Slot + 1])}); 6919 Slot += 2; 6920 6921 while (Slot < Record.size()) 6922 parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId); 6923 } 6924 6925 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt, 6926 unsigned WOCnt) { 6927 // Readonly and writeonly refs are in the end of the refs list. 6928 assert(ROCnt + WOCnt <= Refs.size()); 6929 unsigned FirstWORef = Refs.size() - WOCnt; 6930 unsigned RefNo = FirstWORef - ROCnt; 6931 for (; RefNo < FirstWORef; ++RefNo) 6932 Refs[RefNo].setReadOnly(); 6933 for (; RefNo < Refs.size(); ++RefNo) 6934 Refs[RefNo].setWriteOnly(); 6935 } 6936 6937 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 6938 // objects in the index. 6939 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) { 6940 if (Error Err = Stream.EnterSubBlock(ID)) 6941 return Err; 6942 SmallVector<uint64_t, 64> Record; 6943 6944 // Parse version 6945 { 6946 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6947 if (!MaybeEntry) 6948 return MaybeEntry.takeError(); 6949 BitstreamEntry Entry = MaybeEntry.get(); 6950 6951 if (Entry.Kind != BitstreamEntry::Record) 6952 return error("Invalid Summary Block: record for version expected"); 6953 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 6954 if (!MaybeRecord) 6955 return MaybeRecord.takeError(); 6956 if (MaybeRecord.get() != bitc::FS_VERSION) 6957 return error("Invalid Summary Block: version expected"); 6958 } 6959 const uint64_t Version = Record[0]; 6960 const bool IsOldProfileFormat = Version == 1; 6961 if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion) 6962 return error("Invalid summary version " + Twine(Version) + 6963 ". Version should be in the range [1-" + 6964 Twine(ModuleSummaryIndex::BitcodeSummaryVersion) + 6965 "]."); 6966 Record.clear(); 6967 6968 // Keep around the last seen summary to be used when we see an optional 6969 // "OriginalName" attachement. 6970 GlobalValueSummary *LastSeenSummary = nullptr; 6971 GlobalValue::GUID LastSeenGUID = 0; 6972 6973 // We can expect to see any number of type ID information records before 6974 // each function summary records; these variables store the information 6975 // collected so far so that it can be used to create the summary object. 6976 std::vector<GlobalValue::GUID> PendingTypeTests; 6977 std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls, 6978 PendingTypeCheckedLoadVCalls; 6979 std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls, 6980 PendingTypeCheckedLoadConstVCalls; 6981 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; 6982 6983 while (true) { 6984 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6985 if (!MaybeEntry) 6986 return MaybeEntry.takeError(); 6987 BitstreamEntry Entry = MaybeEntry.get(); 6988 6989 switch (Entry.Kind) { 6990 case BitstreamEntry::SubBlock: // Handled for us already. 6991 case BitstreamEntry::Error: 6992 return error("Malformed block"); 6993 case BitstreamEntry::EndBlock: 6994 return Error::success(); 6995 case BitstreamEntry::Record: 6996 // The interesting case. 6997 break; 6998 } 6999 7000 // Read a record. The record format depends on whether this 7001 // is a per-module index or a combined index file. In the per-module 7002 // case the records contain the associated value's ID for correlation 7003 // with VST entries. In the combined index the correlation is done 7004 // via the bitcode offset of the summary records (which were saved 7005 // in the combined index VST entries). The records also contain 7006 // information used for ThinLTO renaming and importing. 7007 Record.clear(); 7008 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 7009 if (!MaybeBitCode) 7010 return MaybeBitCode.takeError(); 7011 switch (unsigned BitCode = MaybeBitCode.get()) { 7012 default: // Default behavior: ignore. 7013 break; 7014 case bitc::FS_FLAGS: { // [flags] 7015 TheIndex.setFlags(Record[0]); 7016 break; 7017 } 7018 case bitc::FS_VALUE_GUID: { // [valueid, refguid] 7019 uint64_t ValueID = Record[0]; 7020 GlobalValue::GUID RefGUID = Record[1]; 7021 ValueIdToValueInfoMap[ValueID] = 7022 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 7023 break; 7024 } 7025 // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs, 7026 // numrefs x valueid, n x (valueid)] 7027 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs, 7028 // numrefs x valueid, 7029 // n x (valueid, hotness)] 7030 // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs, 7031 // numrefs x valueid, 7032 // n x (valueid, relblockfreq)] 7033 case bitc::FS_PERMODULE: 7034 case bitc::FS_PERMODULE_RELBF: 7035 case bitc::FS_PERMODULE_PROFILE: { 7036 unsigned ValueID = Record[0]; 7037 uint64_t RawFlags = Record[1]; 7038 unsigned InstCount = Record[2]; 7039 uint64_t RawFunFlags = 0; 7040 unsigned NumRefs = Record[3]; 7041 unsigned NumRORefs = 0, NumWORefs = 0; 7042 int RefListStartIndex = 4; 7043 if (Version >= 4) { 7044 RawFunFlags = Record[3]; 7045 NumRefs = Record[4]; 7046 RefListStartIndex = 5; 7047 if (Version >= 5) { 7048 NumRORefs = Record[5]; 7049 RefListStartIndex = 6; 7050 if (Version >= 7) { 7051 NumWORefs = Record[6]; 7052 RefListStartIndex = 7; 7053 } 7054 } 7055 } 7056 7057 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7058 // The module path string ref set in the summary must be owned by the 7059 // index's module string table. Since we don't have a module path 7060 // string table section in the per-module index, we create a single 7061 // module path string table entry with an empty (0) ID to take 7062 // ownership. 7063 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 7064 assert(Record.size() >= RefListStartIndex + NumRefs && 7065 "Record size inconsistent with number of references"); 7066 std::vector<ValueInfo> Refs = makeRefList( 7067 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 7068 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 7069 bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF); 7070 std::vector<FunctionSummary::EdgeTy> Calls = makeCallList( 7071 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 7072 IsOldProfileFormat, HasProfile, HasRelBF); 7073 setSpecialRefs(Refs, NumRORefs, NumWORefs); 7074 auto FS = std::make_unique<FunctionSummary>( 7075 Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0, 7076 std::move(Refs), std::move(Calls), std::move(PendingTypeTests), 7077 std::move(PendingTypeTestAssumeVCalls), 7078 std::move(PendingTypeCheckedLoadVCalls), 7079 std::move(PendingTypeTestAssumeConstVCalls), 7080 std::move(PendingTypeCheckedLoadConstVCalls), 7081 std::move(PendingParamAccesses)); 7082 auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID); 7083 FS->setModulePath(getThisModule()->first()); 7084 FS->setOriginalName(VIAndOriginalGUID.second); 7085 TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS)); 7086 break; 7087 } 7088 // FS_ALIAS: [valueid, flags, valueid] 7089 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 7090 // they expect all aliasee summaries to be available. 7091 case bitc::FS_ALIAS: { 7092 unsigned ValueID = Record[0]; 7093 uint64_t RawFlags = Record[1]; 7094 unsigned AliaseeID = Record[2]; 7095 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7096 auto AS = std::make_unique<AliasSummary>(Flags); 7097 // The module path string ref set in the summary must be owned by the 7098 // index's module string table. Since we don't have a module path 7099 // string table section in the per-module index, we create a single 7100 // module path string table entry with an empty (0) ID to take 7101 // ownership. 7102 AS->setModulePath(getThisModule()->first()); 7103 7104 auto AliaseeVI = getValueInfoFromValueId(AliaseeID).first; 7105 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath); 7106 if (!AliaseeInModule) 7107 return error("Alias expects aliasee summary to be parsed"); 7108 AS->setAliasee(AliaseeVI, AliaseeInModule); 7109 7110 auto GUID = getValueInfoFromValueId(ValueID); 7111 AS->setOriginalName(GUID.second); 7112 TheIndex.addGlobalValueSummary(GUID.first, std::move(AS)); 7113 break; 7114 } 7115 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid] 7116 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 7117 unsigned ValueID = Record[0]; 7118 uint64_t RawFlags = Record[1]; 7119 unsigned RefArrayStart = 2; 7120 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 7121 /* WriteOnly */ false, 7122 /* Constant */ false, 7123 GlobalObject::VCallVisibilityPublic); 7124 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7125 if (Version >= 5) { 7126 GVF = getDecodedGVarFlags(Record[2]); 7127 RefArrayStart = 3; 7128 } 7129 std::vector<ValueInfo> Refs = 7130 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 7131 auto FS = 7132 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 7133 FS->setModulePath(getThisModule()->first()); 7134 auto GUID = getValueInfoFromValueId(ValueID); 7135 FS->setOriginalName(GUID.second); 7136 TheIndex.addGlobalValueSummary(GUID.first, std::move(FS)); 7137 break; 7138 } 7139 // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, 7140 // numrefs, numrefs x valueid, 7141 // n x (valueid, offset)] 7142 case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: { 7143 unsigned ValueID = Record[0]; 7144 uint64_t RawFlags = Record[1]; 7145 GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]); 7146 unsigned NumRefs = Record[3]; 7147 unsigned RefListStartIndex = 4; 7148 unsigned VTableListStartIndex = RefListStartIndex + NumRefs; 7149 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7150 std::vector<ValueInfo> Refs = makeRefList( 7151 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 7152 VTableFuncList VTableFuncs; 7153 for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) { 7154 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first; 7155 uint64_t Offset = Record[++I]; 7156 VTableFuncs.push_back({Callee, Offset}); 7157 } 7158 auto VS = 7159 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 7160 VS->setModulePath(getThisModule()->first()); 7161 VS->setVTableFuncs(VTableFuncs); 7162 auto GUID = getValueInfoFromValueId(ValueID); 7163 VS->setOriginalName(GUID.second); 7164 TheIndex.addGlobalValueSummary(GUID.first, std::move(VS)); 7165 break; 7166 } 7167 // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs, 7168 // numrefs x valueid, n x (valueid)] 7169 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs, 7170 // numrefs x valueid, n x (valueid, hotness)] 7171 case bitc::FS_COMBINED: 7172 case bitc::FS_COMBINED_PROFILE: { 7173 unsigned ValueID = Record[0]; 7174 uint64_t ModuleId = Record[1]; 7175 uint64_t RawFlags = Record[2]; 7176 unsigned InstCount = Record[3]; 7177 uint64_t RawFunFlags = 0; 7178 uint64_t EntryCount = 0; 7179 unsigned NumRefs = Record[4]; 7180 unsigned NumRORefs = 0, NumWORefs = 0; 7181 int RefListStartIndex = 5; 7182 7183 if (Version >= 4) { 7184 RawFunFlags = Record[4]; 7185 RefListStartIndex = 6; 7186 size_t NumRefsIndex = 5; 7187 if (Version >= 5) { 7188 unsigned NumRORefsOffset = 1; 7189 RefListStartIndex = 7; 7190 if (Version >= 6) { 7191 NumRefsIndex = 6; 7192 EntryCount = Record[5]; 7193 RefListStartIndex = 8; 7194 if (Version >= 7) { 7195 RefListStartIndex = 9; 7196 NumWORefs = Record[8]; 7197 NumRORefsOffset = 2; 7198 } 7199 } 7200 NumRORefs = Record[RefListStartIndex - NumRORefsOffset]; 7201 } 7202 NumRefs = Record[NumRefsIndex]; 7203 } 7204 7205 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7206 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 7207 assert(Record.size() >= RefListStartIndex + NumRefs && 7208 "Record size inconsistent with number of references"); 7209 std::vector<ValueInfo> Refs = makeRefList( 7210 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 7211 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 7212 std::vector<FunctionSummary::EdgeTy> Edges = makeCallList( 7213 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 7214 IsOldProfileFormat, HasProfile, false); 7215 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 7216 setSpecialRefs(Refs, NumRORefs, NumWORefs); 7217 auto FS = std::make_unique<FunctionSummary>( 7218 Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount, 7219 std::move(Refs), std::move(Edges), std::move(PendingTypeTests), 7220 std::move(PendingTypeTestAssumeVCalls), 7221 std::move(PendingTypeCheckedLoadVCalls), 7222 std::move(PendingTypeTestAssumeConstVCalls), 7223 std::move(PendingTypeCheckedLoadConstVCalls), 7224 std::move(PendingParamAccesses)); 7225 LastSeenSummary = FS.get(); 7226 LastSeenGUID = VI.getGUID(); 7227 FS->setModulePath(ModuleIdMap[ModuleId]); 7228 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 7229 break; 7230 } 7231 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 7232 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 7233 // they expect all aliasee summaries to be available. 7234 case bitc::FS_COMBINED_ALIAS: { 7235 unsigned ValueID = Record[0]; 7236 uint64_t ModuleId = Record[1]; 7237 uint64_t RawFlags = Record[2]; 7238 unsigned AliaseeValueId = Record[3]; 7239 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7240 auto AS = std::make_unique<AliasSummary>(Flags); 7241 LastSeenSummary = AS.get(); 7242 AS->setModulePath(ModuleIdMap[ModuleId]); 7243 7244 auto AliaseeVI = getValueInfoFromValueId(AliaseeValueId).first; 7245 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath()); 7246 AS->setAliasee(AliaseeVI, AliaseeInModule); 7247 7248 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 7249 LastSeenGUID = VI.getGUID(); 7250 TheIndex.addGlobalValueSummary(VI, std::move(AS)); 7251 break; 7252 } 7253 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 7254 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 7255 unsigned ValueID = Record[0]; 7256 uint64_t ModuleId = Record[1]; 7257 uint64_t RawFlags = Record[2]; 7258 unsigned RefArrayStart = 3; 7259 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 7260 /* WriteOnly */ false, 7261 /* Constant */ false, 7262 GlobalObject::VCallVisibilityPublic); 7263 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7264 if (Version >= 5) { 7265 GVF = getDecodedGVarFlags(Record[3]); 7266 RefArrayStart = 4; 7267 } 7268 std::vector<ValueInfo> Refs = 7269 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 7270 auto FS = 7271 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 7272 LastSeenSummary = FS.get(); 7273 FS->setModulePath(ModuleIdMap[ModuleId]); 7274 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 7275 LastSeenGUID = VI.getGUID(); 7276 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 7277 break; 7278 } 7279 // FS_COMBINED_ORIGINAL_NAME: [original_name] 7280 case bitc::FS_COMBINED_ORIGINAL_NAME: { 7281 uint64_t OriginalName = Record[0]; 7282 if (!LastSeenSummary) 7283 return error("Name attachment that does not follow a combined record"); 7284 LastSeenSummary->setOriginalName(OriginalName); 7285 TheIndex.addOriginalName(LastSeenGUID, OriginalName); 7286 // Reset the LastSeenSummary 7287 LastSeenSummary = nullptr; 7288 LastSeenGUID = 0; 7289 break; 7290 } 7291 case bitc::FS_TYPE_TESTS: 7292 assert(PendingTypeTests.empty()); 7293 llvm::append_range(PendingTypeTests, Record); 7294 break; 7295 7296 case bitc::FS_TYPE_TEST_ASSUME_VCALLS: 7297 assert(PendingTypeTestAssumeVCalls.empty()); 7298 for (unsigned I = 0; I != Record.size(); I += 2) 7299 PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]}); 7300 break; 7301 7302 case bitc::FS_TYPE_CHECKED_LOAD_VCALLS: 7303 assert(PendingTypeCheckedLoadVCalls.empty()); 7304 for (unsigned I = 0; I != Record.size(); I += 2) 7305 PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]}); 7306 break; 7307 7308 case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL: 7309 PendingTypeTestAssumeConstVCalls.push_back( 7310 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 7311 break; 7312 7313 case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL: 7314 PendingTypeCheckedLoadConstVCalls.push_back( 7315 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 7316 break; 7317 7318 case bitc::FS_CFI_FUNCTION_DEFS: { 7319 std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs(); 7320 for (unsigned I = 0; I != Record.size(); I += 2) 7321 CfiFunctionDefs.insert( 7322 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 7323 break; 7324 } 7325 7326 case bitc::FS_CFI_FUNCTION_DECLS: { 7327 std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls(); 7328 for (unsigned I = 0; I != Record.size(); I += 2) 7329 CfiFunctionDecls.insert( 7330 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 7331 break; 7332 } 7333 7334 case bitc::FS_TYPE_ID: 7335 parseTypeIdSummaryRecord(Record, Strtab, TheIndex); 7336 break; 7337 7338 case bitc::FS_TYPE_ID_METADATA: 7339 parseTypeIdCompatibleVtableSummaryRecord(Record); 7340 break; 7341 7342 case bitc::FS_BLOCK_COUNT: 7343 TheIndex.addBlockCount(Record[0]); 7344 break; 7345 7346 case bitc::FS_PARAM_ACCESS: { 7347 PendingParamAccesses = parseParamAccesses(Record); 7348 break; 7349 } 7350 } 7351 } 7352 llvm_unreachable("Exit infinite loop"); 7353 } 7354 7355 // Parse the module string table block into the Index. 7356 // This populates the ModulePathStringTable map in the index. 7357 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 7358 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 7359 return Err; 7360 7361 SmallVector<uint64_t, 64> Record; 7362 7363 SmallString<128> ModulePath; 7364 ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr; 7365 7366 while (true) { 7367 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 7368 if (!MaybeEntry) 7369 return MaybeEntry.takeError(); 7370 BitstreamEntry Entry = MaybeEntry.get(); 7371 7372 switch (Entry.Kind) { 7373 case BitstreamEntry::SubBlock: // Handled for us already. 7374 case BitstreamEntry::Error: 7375 return error("Malformed block"); 7376 case BitstreamEntry::EndBlock: 7377 return Error::success(); 7378 case BitstreamEntry::Record: 7379 // The interesting case. 7380 break; 7381 } 7382 7383 Record.clear(); 7384 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 7385 if (!MaybeRecord) 7386 return MaybeRecord.takeError(); 7387 switch (MaybeRecord.get()) { 7388 default: // Default behavior: ignore. 7389 break; 7390 case bitc::MST_CODE_ENTRY: { 7391 // MST_ENTRY: [modid, namechar x N] 7392 uint64_t ModuleId = Record[0]; 7393 7394 if (convertToString(Record, 1, ModulePath)) 7395 return error("Invalid record"); 7396 7397 LastSeenModule = TheIndex.addModule(ModulePath, ModuleId); 7398 ModuleIdMap[ModuleId] = LastSeenModule->first(); 7399 7400 ModulePath.clear(); 7401 break; 7402 } 7403 /// MST_CODE_HASH: [5*i32] 7404 case bitc::MST_CODE_HASH: { 7405 if (Record.size() != 5) 7406 return error("Invalid hash length " + Twine(Record.size()).str()); 7407 if (!LastSeenModule) 7408 return error("Invalid hash that does not follow a module path"); 7409 int Pos = 0; 7410 for (auto &Val : Record) { 7411 assert(!(Val >> 32) && "Unexpected high bits set"); 7412 LastSeenModule->second.second[Pos++] = Val; 7413 } 7414 // Reset LastSeenModule to avoid overriding the hash unexpectedly. 7415 LastSeenModule = nullptr; 7416 break; 7417 } 7418 } 7419 } 7420 llvm_unreachable("Exit infinite loop"); 7421 } 7422 7423 namespace { 7424 7425 // FIXME: This class is only here to support the transition to llvm::Error. It 7426 // will be removed once this transition is complete. Clients should prefer to 7427 // deal with the Error value directly, rather than converting to error_code. 7428 class BitcodeErrorCategoryType : public std::error_category { 7429 const char *name() const noexcept override { 7430 return "llvm.bitcode"; 7431 } 7432 7433 std::string message(int IE) const override { 7434 BitcodeError E = static_cast<BitcodeError>(IE); 7435 switch (E) { 7436 case BitcodeError::CorruptedBitcode: 7437 return "Corrupted bitcode"; 7438 } 7439 llvm_unreachable("Unknown error type!"); 7440 } 7441 }; 7442 7443 } // end anonymous namespace 7444 7445 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 7446 7447 const std::error_category &llvm::BitcodeErrorCategory() { 7448 return *ErrorCategory; 7449 } 7450 7451 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream, 7452 unsigned Block, unsigned RecordID) { 7453 if (Error Err = Stream.EnterSubBlock(Block)) 7454 return std::move(Err); 7455 7456 StringRef Strtab; 7457 while (true) { 7458 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 7459 if (!MaybeEntry) 7460 return MaybeEntry.takeError(); 7461 llvm::BitstreamEntry Entry = MaybeEntry.get(); 7462 7463 switch (Entry.Kind) { 7464 case BitstreamEntry::EndBlock: 7465 return Strtab; 7466 7467 case BitstreamEntry::Error: 7468 return error("Malformed block"); 7469 7470 case BitstreamEntry::SubBlock: 7471 if (Error Err = Stream.SkipBlock()) 7472 return std::move(Err); 7473 break; 7474 7475 case BitstreamEntry::Record: 7476 StringRef Blob; 7477 SmallVector<uint64_t, 1> Record; 7478 Expected<unsigned> MaybeRecord = 7479 Stream.readRecord(Entry.ID, Record, &Blob); 7480 if (!MaybeRecord) 7481 return MaybeRecord.takeError(); 7482 if (MaybeRecord.get() == RecordID) 7483 Strtab = Blob; 7484 break; 7485 } 7486 } 7487 } 7488 7489 //===----------------------------------------------------------------------===// 7490 // External interface 7491 //===----------------------------------------------------------------------===// 7492 7493 Expected<std::vector<BitcodeModule>> 7494 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) { 7495 auto FOrErr = getBitcodeFileContents(Buffer); 7496 if (!FOrErr) 7497 return FOrErr.takeError(); 7498 return std::move(FOrErr->Mods); 7499 } 7500 7501 Expected<BitcodeFileContents> 7502 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) { 7503 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 7504 if (!StreamOrErr) 7505 return StreamOrErr.takeError(); 7506 BitstreamCursor &Stream = *StreamOrErr; 7507 7508 BitcodeFileContents F; 7509 while (true) { 7510 uint64_t BCBegin = Stream.getCurrentByteNo(); 7511 7512 // We may be consuming bitcode from a client that leaves garbage at the end 7513 // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to 7514 // the end that there cannot possibly be another module, stop looking. 7515 if (BCBegin + 8 >= Stream.getBitcodeBytes().size()) 7516 return F; 7517 7518 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 7519 if (!MaybeEntry) 7520 return MaybeEntry.takeError(); 7521 llvm::BitstreamEntry Entry = MaybeEntry.get(); 7522 7523 switch (Entry.Kind) { 7524 case BitstreamEntry::EndBlock: 7525 case BitstreamEntry::Error: 7526 return error("Malformed block"); 7527 7528 case BitstreamEntry::SubBlock: { 7529 uint64_t IdentificationBit = -1ull; 7530 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 7531 IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8; 7532 if (Error Err = Stream.SkipBlock()) 7533 return std::move(Err); 7534 7535 { 7536 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 7537 if (!MaybeEntry) 7538 return MaybeEntry.takeError(); 7539 Entry = MaybeEntry.get(); 7540 } 7541 7542 if (Entry.Kind != BitstreamEntry::SubBlock || 7543 Entry.ID != bitc::MODULE_BLOCK_ID) 7544 return error("Malformed block"); 7545 } 7546 7547 if (Entry.ID == bitc::MODULE_BLOCK_ID) { 7548 uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8; 7549 if (Error Err = Stream.SkipBlock()) 7550 return std::move(Err); 7551 7552 F.Mods.push_back({Stream.getBitcodeBytes().slice( 7553 BCBegin, Stream.getCurrentByteNo() - BCBegin), 7554 Buffer.getBufferIdentifier(), IdentificationBit, 7555 ModuleBit}); 7556 continue; 7557 } 7558 7559 if (Entry.ID == bitc::STRTAB_BLOCK_ID) { 7560 Expected<StringRef> Strtab = 7561 readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB); 7562 if (!Strtab) 7563 return Strtab.takeError(); 7564 // This string table is used by every preceding bitcode module that does 7565 // not have its own string table. A bitcode file may have multiple 7566 // string tables if it was created by binary concatenation, for example 7567 // with "llvm-cat -b". 7568 for (BitcodeModule &I : llvm::reverse(F.Mods)) { 7569 if (!I.Strtab.empty()) 7570 break; 7571 I.Strtab = *Strtab; 7572 } 7573 // Similarly, the string table is used by every preceding symbol table; 7574 // normally there will be just one unless the bitcode file was created 7575 // by binary concatenation. 7576 if (!F.Symtab.empty() && F.StrtabForSymtab.empty()) 7577 F.StrtabForSymtab = *Strtab; 7578 continue; 7579 } 7580 7581 if (Entry.ID == bitc::SYMTAB_BLOCK_ID) { 7582 Expected<StringRef> SymtabOrErr = 7583 readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB); 7584 if (!SymtabOrErr) 7585 return SymtabOrErr.takeError(); 7586 7587 // We can expect the bitcode file to have multiple symbol tables if it 7588 // was created by binary concatenation. In that case we silently 7589 // ignore any subsequent symbol tables, which is fine because this is a 7590 // low level function. The client is expected to notice that the number 7591 // of modules in the symbol table does not match the number of modules 7592 // in the input file and regenerate the symbol table. 7593 if (F.Symtab.empty()) 7594 F.Symtab = *SymtabOrErr; 7595 continue; 7596 } 7597 7598 if (Error Err = Stream.SkipBlock()) 7599 return std::move(Err); 7600 continue; 7601 } 7602 case BitstreamEntry::Record: 7603 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 7604 return std::move(E); 7605 continue; 7606 } 7607 } 7608 } 7609 7610 /// Get a lazy one-at-time loading module from bitcode. 7611 /// 7612 /// This isn't always used in a lazy context. In particular, it's also used by 7613 /// \a parseModule(). If this is truly lazy, then we need to eagerly pull 7614 /// in forward-referenced functions from block address references. 7615 /// 7616 /// \param[in] MaterializeAll Set to \c true if we should materialize 7617 /// everything. 7618 Expected<std::unique_ptr<Module>> 7619 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll, 7620 bool ShouldLazyLoadMetadata, bool IsImporting, 7621 DataLayoutCallbackTy DataLayoutCallback) { 7622 BitstreamCursor Stream(Buffer); 7623 7624 std::string ProducerIdentification; 7625 if (IdentificationBit != -1ull) { 7626 if (Error JumpFailed = Stream.JumpToBit(IdentificationBit)) 7627 return std::move(JumpFailed); 7628 if (Error E = 7629 readIdentificationBlock(Stream).moveInto(ProducerIdentification)) 7630 return std::move(E); 7631 } 7632 7633 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 7634 return std::move(JumpFailed); 7635 auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification, 7636 Context); 7637 7638 std::unique_ptr<Module> M = 7639 std::make_unique<Module>(ModuleIdentifier, Context); 7640 M->setMaterializer(R); 7641 7642 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 7643 if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, 7644 IsImporting, DataLayoutCallback)) 7645 return std::move(Err); 7646 7647 if (MaterializeAll) { 7648 // Read in the entire module, and destroy the BitcodeReader. 7649 if (Error Err = M->materializeAll()) 7650 return std::move(Err); 7651 } else { 7652 // Resolve forward references from blockaddresses. 7653 if (Error Err = R->materializeForwardReferencedFunctions()) 7654 return std::move(Err); 7655 } 7656 return std::move(M); 7657 } 7658 7659 Expected<std::unique_ptr<Module>> 7660 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata, 7661 bool IsImporting) { 7662 return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting, 7663 [](StringRef) { return None; }); 7664 } 7665 7666 // Parse the specified bitcode buffer and merge the index into CombinedIndex. 7667 // We don't use ModuleIdentifier here because the client may need to control the 7668 // module path used in the combined summary (e.g. when reading summaries for 7669 // regular LTO modules). 7670 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex, 7671 StringRef ModulePath, uint64_t ModuleId) { 7672 BitstreamCursor Stream(Buffer); 7673 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 7674 return JumpFailed; 7675 7676 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex, 7677 ModulePath, ModuleId); 7678 return R.parseModule(); 7679 } 7680 7681 // Parse the specified bitcode buffer, returning the function info index. 7682 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() { 7683 BitstreamCursor Stream(Buffer); 7684 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 7685 return std::move(JumpFailed); 7686 7687 auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false); 7688 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index, 7689 ModuleIdentifier, 0); 7690 7691 if (Error Err = R.parseModule()) 7692 return std::move(Err); 7693 7694 return std::move(Index); 7695 } 7696 7697 static Expected<bool> getEnableSplitLTOUnitFlag(BitstreamCursor &Stream, 7698 unsigned ID) { 7699 if (Error Err = Stream.EnterSubBlock(ID)) 7700 return std::move(Err); 7701 SmallVector<uint64_t, 64> Record; 7702 7703 while (true) { 7704 BitstreamEntry Entry; 7705 if (Error E = Stream.advanceSkippingSubblocks().moveInto(Entry)) 7706 return std::move(E); 7707 7708 switch (Entry.Kind) { 7709 case BitstreamEntry::SubBlock: // Handled for us already. 7710 case BitstreamEntry::Error: 7711 return error("Malformed block"); 7712 case BitstreamEntry::EndBlock: 7713 // If no flags record found, conservatively return true to mimic 7714 // behavior before this flag was added. 7715 return true; 7716 case BitstreamEntry::Record: 7717 // The interesting case. 7718 break; 7719 } 7720 7721 // Look for the FS_FLAGS record. 7722 Record.clear(); 7723 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 7724 if (!MaybeBitCode) 7725 return MaybeBitCode.takeError(); 7726 switch (MaybeBitCode.get()) { 7727 default: // Default behavior: ignore. 7728 break; 7729 case bitc::FS_FLAGS: { // [flags] 7730 uint64_t Flags = Record[0]; 7731 // Scan flags. 7732 assert(Flags <= 0x7f && "Unexpected bits in flag"); 7733 7734 return Flags & 0x8; 7735 } 7736 } 7737 } 7738 llvm_unreachable("Exit infinite loop"); 7739 } 7740 7741 // Check if the given bitcode buffer contains a global value summary block. 7742 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() { 7743 BitstreamCursor Stream(Buffer); 7744 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 7745 return std::move(JumpFailed); 7746 7747 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 7748 return std::move(Err); 7749 7750 while (true) { 7751 llvm::BitstreamEntry Entry; 7752 if (Error E = Stream.advance().moveInto(Entry)) 7753 return std::move(E); 7754 7755 switch (Entry.Kind) { 7756 case BitstreamEntry::Error: 7757 return error("Malformed block"); 7758 case BitstreamEntry::EndBlock: 7759 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false, 7760 /*EnableSplitLTOUnit=*/false}; 7761 7762 case BitstreamEntry::SubBlock: 7763 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) { 7764 Expected<bool> EnableSplitLTOUnit = 7765 getEnableSplitLTOUnitFlag(Stream, Entry.ID); 7766 if (!EnableSplitLTOUnit) 7767 return EnableSplitLTOUnit.takeError(); 7768 return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true, 7769 *EnableSplitLTOUnit}; 7770 } 7771 7772 if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) { 7773 Expected<bool> EnableSplitLTOUnit = 7774 getEnableSplitLTOUnitFlag(Stream, Entry.ID); 7775 if (!EnableSplitLTOUnit) 7776 return EnableSplitLTOUnit.takeError(); 7777 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true, 7778 *EnableSplitLTOUnit}; 7779 } 7780 7781 // Ignore other sub-blocks. 7782 if (Error Err = Stream.SkipBlock()) 7783 return std::move(Err); 7784 continue; 7785 7786 case BitstreamEntry::Record: 7787 if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID)) 7788 continue; 7789 else 7790 return StreamFailed.takeError(); 7791 } 7792 } 7793 } 7794 7795 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) { 7796 Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer); 7797 if (!MsOrErr) 7798 return MsOrErr.takeError(); 7799 7800 if (MsOrErr->size() != 1) 7801 return error("Expected a single module"); 7802 7803 return (*MsOrErr)[0]; 7804 } 7805 7806 Expected<std::unique_ptr<Module>> 7807 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context, 7808 bool ShouldLazyLoadMetadata, bool IsImporting) { 7809 Expected<BitcodeModule> BM = getSingleModule(Buffer); 7810 if (!BM) 7811 return BM.takeError(); 7812 7813 return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting); 7814 } 7815 7816 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule( 7817 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context, 7818 bool ShouldLazyLoadMetadata, bool IsImporting) { 7819 auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata, 7820 IsImporting); 7821 if (MOrErr) 7822 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer)); 7823 return MOrErr; 7824 } 7825 7826 Expected<std::unique_ptr<Module>> 7827 BitcodeModule::parseModule(LLVMContext &Context, 7828 DataLayoutCallbackTy DataLayoutCallback) { 7829 return getModuleImpl(Context, true, false, false, DataLayoutCallback); 7830 // TODO: Restore the use-lists to the in-memory state when the bitcode was 7831 // written. We must defer until the Module has been fully materialized. 7832 } 7833 7834 Expected<std::unique_ptr<Module>> 7835 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context, 7836 DataLayoutCallbackTy DataLayoutCallback) { 7837 Expected<BitcodeModule> BM = getSingleModule(Buffer); 7838 if (!BM) 7839 return BM.takeError(); 7840 7841 return BM->parseModule(Context, DataLayoutCallback); 7842 } 7843 7844 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) { 7845 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 7846 if (!StreamOrErr) 7847 return StreamOrErr.takeError(); 7848 7849 return readTriple(*StreamOrErr); 7850 } 7851 7852 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) { 7853 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 7854 if (!StreamOrErr) 7855 return StreamOrErr.takeError(); 7856 7857 return hasObjCCategory(*StreamOrErr); 7858 } 7859 7860 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) { 7861 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 7862 if (!StreamOrErr) 7863 return StreamOrErr.takeError(); 7864 7865 return readIdentificationCode(*StreamOrErr); 7866 } 7867 7868 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer, 7869 ModuleSummaryIndex &CombinedIndex, 7870 uint64_t ModuleId) { 7871 Expected<BitcodeModule> BM = getSingleModule(Buffer); 7872 if (!BM) 7873 return BM.takeError(); 7874 7875 return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId); 7876 } 7877 7878 Expected<std::unique_ptr<ModuleSummaryIndex>> 7879 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) { 7880 Expected<BitcodeModule> BM = getSingleModule(Buffer); 7881 if (!BM) 7882 return BM.takeError(); 7883 7884 return BM->getSummary(); 7885 } 7886 7887 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) { 7888 Expected<BitcodeModule> BM = getSingleModule(Buffer); 7889 if (!BM) 7890 return BM.takeError(); 7891 7892 return BM->getLTOInfo(); 7893 } 7894 7895 Expected<std::unique_ptr<ModuleSummaryIndex>> 7896 llvm::getModuleSummaryIndexForFile(StringRef Path, 7897 bool IgnoreEmptyThinLTOIndexFile) { 7898 ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr = 7899 MemoryBuffer::getFileOrSTDIN(Path); 7900 if (!FileOrErr) 7901 return errorCodeToError(FileOrErr.getError()); 7902 if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize()) 7903 return nullptr; 7904 return getModuleSummaryIndex(**FileOrErr); 7905 } 7906