xref: /llvm-project/llvm/lib/Bitcode/Reader/BitcodeReader.cpp (revision 11950efe06822590ff3ee4048df741136c5295bd)
1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Bitcode/BitcodeReader.h"
10 #include "MetadataLoader.h"
11 #include "ValueList.h"
12 #include "llvm/ADT/APFloat.h"
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallString.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/ADT/Triple.h"
22 #include "llvm/ADT/Twine.h"
23 #include "llvm/Bitcode/BitcodeCommon.h"
24 #include "llvm/Bitcode/LLVMBitCodes.h"
25 #include "llvm/Bitstream/BitstreamReader.h"
26 #include "llvm/Config/llvm-config.h"
27 #include "llvm/IR/Argument.h"
28 #include "llvm/IR/Attributes.h"
29 #include "llvm/IR/AutoUpgrade.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/CallingConv.h"
32 #include "llvm/IR/Comdat.h"
33 #include "llvm/IR/Constant.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/DebugInfo.h"
37 #include "llvm/IR/DebugInfoMetadata.h"
38 #include "llvm/IR/DebugLoc.h"
39 #include "llvm/IR/DerivedTypes.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/GVMaterializer.h"
42 #include "llvm/IR/GetElementPtrTypeIterator.h"
43 #include "llvm/IR/GlobalAlias.h"
44 #include "llvm/IR/GlobalIFunc.h"
45 #include "llvm/IR/GlobalObject.h"
46 #include "llvm/IR/GlobalValue.h"
47 #include "llvm/IR/GlobalVariable.h"
48 #include "llvm/IR/InlineAsm.h"
49 #include "llvm/IR/InstIterator.h"
50 #include "llvm/IR/InstrTypes.h"
51 #include "llvm/IR/Instruction.h"
52 #include "llvm/IR/Instructions.h"
53 #include "llvm/IR/Intrinsics.h"
54 #include "llvm/IR/IntrinsicsAArch64.h"
55 #include "llvm/IR/IntrinsicsARM.h"
56 #include "llvm/IR/LLVMContext.h"
57 #include "llvm/IR/Metadata.h"
58 #include "llvm/IR/Module.h"
59 #include "llvm/IR/ModuleSummaryIndex.h"
60 #include "llvm/IR/Operator.h"
61 #include "llvm/IR/Type.h"
62 #include "llvm/IR/Value.h"
63 #include "llvm/IR/Verifier.h"
64 #include "llvm/Support/AtomicOrdering.h"
65 #include "llvm/Support/Casting.h"
66 #include "llvm/Support/CommandLine.h"
67 #include "llvm/Support/Compiler.h"
68 #include "llvm/Support/Debug.h"
69 #include "llvm/Support/Error.h"
70 #include "llvm/Support/ErrorHandling.h"
71 #include "llvm/Support/ErrorOr.h"
72 #include "llvm/Support/ManagedStatic.h"
73 #include "llvm/Support/MathExtras.h"
74 #include "llvm/Support/MemoryBuffer.h"
75 #include "llvm/Support/raw_ostream.h"
76 #include <algorithm>
77 #include <cassert>
78 #include <cstddef>
79 #include <cstdint>
80 #include <deque>
81 #include <map>
82 #include <memory>
83 #include <set>
84 #include <string>
85 #include <system_error>
86 #include <tuple>
87 #include <utility>
88 #include <vector>
89 
90 using namespace llvm;
91 
92 static cl::opt<bool> PrintSummaryGUIDs(
93     "print-summary-global-ids", cl::init(false), cl::Hidden,
94     cl::desc(
95         "Print the global id for each value when reading the module summary"));
96 
97 static cl::opt<bool> ExpandConstantExprs(
98     "expand-constant-exprs", cl::Hidden,
99     cl::desc(
100         "Expand constant expressions to instructions for testing purposes"));
101 
102 namespace {
103 
104 enum {
105   SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
106 };
107 
108 } // end anonymous namespace
109 
110 static Error error(const Twine &Message) {
111   return make_error<StringError>(
112       Message, make_error_code(BitcodeError::CorruptedBitcode));
113 }
114 
115 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) {
116   if (!Stream.canSkipToPos(4))
117     return createStringError(std::errc::illegal_byte_sequence,
118                              "file too small to contain bitcode header");
119   for (unsigned C : {'B', 'C'})
120     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) {
121       if (Res.get() != C)
122         return createStringError(std::errc::illegal_byte_sequence,
123                                  "file doesn't start with bitcode header");
124     } else
125       return Res.takeError();
126   for (unsigned C : {0x0, 0xC, 0xE, 0xD})
127     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) {
128       if (Res.get() != C)
129         return createStringError(std::errc::illegal_byte_sequence,
130                                  "file doesn't start with bitcode header");
131     } else
132       return Res.takeError();
133   return Error::success();
134 }
135 
136 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) {
137   const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart();
138   const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize();
139 
140   if (Buffer.getBufferSize() & 3)
141     return error("Invalid bitcode signature");
142 
143   // If we have a wrapper header, parse it and ignore the non-bc file contents.
144   // The magic number is 0x0B17C0DE stored in little endian.
145   if (isBitcodeWrapper(BufPtr, BufEnd))
146     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
147       return error("Invalid bitcode wrapper header");
148 
149   BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd));
150   if (Error Err = hasInvalidBitcodeHeader(Stream))
151     return std::move(Err);
152 
153   return std::move(Stream);
154 }
155 
156 /// Convert a string from a record into an std::string, return true on failure.
157 template <typename StrTy>
158 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
159                             StrTy &Result) {
160   if (Idx > Record.size())
161     return true;
162 
163   Result.append(Record.begin() + Idx, Record.end());
164   return false;
165 }
166 
167 // Strip all the TBAA attachment for the module.
168 static void stripTBAA(Module *M) {
169   for (auto &F : *M) {
170     if (F.isMaterializable())
171       continue;
172     for (auto &I : instructions(F))
173       I.setMetadata(LLVMContext::MD_tbaa, nullptr);
174   }
175 }
176 
177 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the
178 /// "epoch" encoded in the bitcode, and return the producer name if any.
179 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) {
180   if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID))
181     return std::move(Err);
182 
183   // Read all the records.
184   SmallVector<uint64_t, 64> Record;
185 
186   std::string ProducerIdentification;
187 
188   while (true) {
189     BitstreamEntry Entry;
190     if (Error E = Stream.advance().moveInto(Entry))
191       return std::move(E);
192 
193     switch (Entry.Kind) {
194     default:
195     case BitstreamEntry::Error:
196       return error("Malformed block");
197     case BitstreamEntry::EndBlock:
198       return ProducerIdentification;
199     case BitstreamEntry::Record:
200       // The interesting case.
201       break;
202     }
203 
204     // Read a record.
205     Record.clear();
206     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
207     if (!MaybeBitCode)
208       return MaybeBitCode.takeError();
209     switch (MaybeBitCode.get()) {
210     default: // Default behavior: reject
211       return error("Invalid value");
212     case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N]
213       convertToString(Record, 0, ProducerIdentification);
214       break;
215     case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#]
216       unsigned epoch = (unsigned)Record[0];
217       if (epoch != bitc::BITCODE_CURRENT_EPOCH) {
218         return error(
219           Twine("Incompatible epoch: Bitcode '") + Twine(epoch) +
220           "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'");
221       }
222     }
223     }
224   }
225 }
226 
227 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) {
228   // We expect a number of well-defined blocks, though we don't necessarily
229   // need to understand them all.
230   while (true) {
231     if (Stream.AtEndOfStream())
232       return "";
233 
234     BitstreamEntry Entry;
235     if (Error E = Stream.advance().moveInto(Entry))
236       return std::move(E);
237 
238     switch (Entry.Kind) {
239     case BitstreamEntry::EndBlock:
240     case BitstreamEntry::Error:
241       return error("Malformed block");
242 
243     case BitstreamEntry::SubBlock:
244       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID)
245         return readIdentificationBlock(Stream);
246 
247       // Ignore other sub-blocks.
248       if (Error Err = Stream.SkipBlock())
249         return std::move(Err);
250       continue;
251     case BitstreamEntry::Record:
252       if (Error E = Stream.skipRecord(Entry.ID).takeError())
253         return std::move(E);
254       continue;
255     }
256   }
257 }
258 
259 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) {
260   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
261     return std::move(Err);
262 
263   SmallVector<uint64_t, 64> Record;
264   // Read all the records for this module.
265 
266   while (true) {
267     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
268     if (!MaybeEntry)
269       return MaybeEntry.takeError();
270     BitstreamEntry Entry = MaybeEntry.get();
271 
272     switch (Entry.Kind) {
273     case BitstreamEntry::SubBlock: // Handled for us already.
274     case BitstreamEntry::Error:
275       return error("Malformed block");
276     case BitstreamEntry::EndBlock:
277       return false;
278     case BitstreamEntry::Record:
279       // The interesting case.
280       break;
281     }
282 
283     // Read a record.
284     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
285     if (!MaybeRecord)
286       return MaybeRecord.takeError();
287     switch (MaybeRecord.get()) {
288     default:
289       break; // Default behavior, ignore unknown content.
290     case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
291       std::string S;
292       if (convertToString(Record, 0, S))
293         return error("Invalid section name record");
294       // Check for the i386 and other (x86_64, ARM) conventions
295       if (S.find("__DATA,__objc_catlist") != std::string::npos ||
296           S.find("__OBJC,__category") != std::string::npos)
297         return true;
298       break;
299     }
300     }
301     Record.clear();
302   }
303   llvm_unreachable("Exit infinite loop");
304 }
305 
306 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) {
307   // We expect a number of well-defined blocks, though we don't necessarily
308   // need to understand them all.
309   while (true) {
310     BitstreamEntry Entry;
311     if (Error E = Stream.advance().moveInto(Entry))
312       return std::move(E);
313 
314     switch (Entry.Kind) {
315     case BitstreamEntry::Error:
316       return error("Malformed block");
317     case BitstreamEntry::EndBlock:
318       return false;
319 
320     case BitstreamEntry::SubBlock:
321       if (Entry.ID == bitc::MODULE_BLOCK_ID)
322         return hasObjCCategoryInModule(Stream);
323 
324       // Ignore other sub-blocks.
325       if (Error Err = Stream.SkipBlock())
326         return std::move(Err);
327       continue;
328 
329     case BitstreamEntry::Record:
330       if (Error E = Stream.skipRecord(Entry.ID).takeError())
331         return std::move(E);
332       continue;
333     }
334   }
335 }
336 
337 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) {
338   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
339     return std::move(Err);
340 
341   SmallVector<uint64_t, 64> Record;
342 
343   std::string Triple;
344 
345   // Read all the records for this module.
346   while (true) {
347     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
348     if (!MaybeEntry)
349       return MaybeEntry.takeError();
350     BitstreamEntry Entry = MaybeEntry.get();
351 
352     switch (Entry.Kind) {
353     case BitstreamEntry::SubBlock: // Handled for us already.
354     case BitstreamEntry::Error:
355       return error("Malformed block");
356     case BitstreamEntry::EndBlock:
357       return Triple;
358     case BitstreamEntry::Record:
359       // The interesting case.
360       break;
361     }
362 
363     // Read a record.
364     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
365     if (!MaybeRecord)
366       return MaybeRecord.takeError();
367     switch (MaybeRecord.get()) {
368     default: break;  // Default behavior, ignore unknown content.
369     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
370       std::string S;
371       if (convertToString(Record, 0, S))
372         return error("Invalid triple record");
373       Triple = S;
374       break;
375     }
376     }
377     Record.clear();
378   }
379   llvm_unreachable("Exit infinite loop");
380 }
381 
382 static Expected<std::string> readTriple(BitstreamCursor &Stream) {
383   // We expect a number of well-defined blocks, though we don't necessarily
384   // need to understand them all.
385   while (true) {
386     Expected<BitstreamEntry> MaybeEntry = Stream.advance();
387     if (!MaybeEntry)
388       return MaybeEntry.takeError();
389     BitstreamEntry Entry = MaybeEntry.get();
390 
391     switch (Entry.Kind) {
392     case BitstreamEntry::Error:
393       return error("Malformed block");
394     case BitstreamEntry::EndBlock:
395       return "";
396 
397     case BitstreamEntry::SubBlock:
398       if (Entry.ID == bitc::MODULE_BLOCK_ID)
399         return readModuleTriple(Stream);
400 
401       // Ignore other sub-blocks.
402       if (Error Err = Stream.SkipBlock())
403         return std::move(Err);
404       continue;
405 
406     case BitstreamEntry::Record:
407       if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
408         continue;
409       else
410         return Skipped.takeError();
411     }
412   }
413 }
414 
415 namespace {
416 
417 class BitcodeReaderBase {
418 protected:
419   BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab)
420       : Stream(std::move(Stream)), Strtab(Strtab) {
421     this->Stream.setBlockInfo(&BlockInfo);
422   }
423 
424   BitstreamBlockInfo BlockInfo;
425   BitstreamCursor Stream;
426   StringRef Strtab;
427 
428   /// In version 2 of the bitcode we store names of global values and comdats in
429   /// a string table rather than in the VST.
430   bool UseStrtab = false;
431 
432   Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record);
433 
434   /// If this module uses a string table, pop the reference to the string table
435   /// and return the referenced string and the rest of the record. Otherwise
436   /// just return the record itself.
437   std::pair<StringRef, ArrayRef<uint64_t>>
438   readNameFromStrtab(ArrayRef<uint64_t> Record);
439 
440   Error readBlockInfo();
441 
442   // Contains an arbitrary and optional string identifying the bitcode producer
443   std::string ProducerIdentification;
444 
445   Error error(const Twine &Message);
446 };
447 
448 } // end anonymous namespace
449 
450 Error BitcodeReaderBase::error(const Twine &Message) {
451   std::string FullMsg = Message.str();
452   if (!ProducerIdentification.empty())
453     FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " +
454                LLVM_VERSION_STRING "')";
455   return ::error(FullMsg);
456 }
457 
458 Expected<unsigned>
459 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) {
460   if (Record.empty())
461     return error("Invalid version record");
462   unsigned ModuleVersion = Record[0];
463   if (ModuleVersion > 2)
464     return error("Invalid value");
465   UseStrtab = ModuleVersion >= 2;
466   return ModuleVersion;
467 }
468 
469 std::pair<StringRef, ArrayRef<uint64_t>>
470 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) {
471   if (!UseStrtab)
472     return {"", Record};
473   // Invalid reference. Let the caller complain about the record being empty.
474   if (Record[0] + Record[1] > Strtab.size())
475     return {"", {}};
476   return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)};
477 }
478 
479 namespace {
480 
481 /// This represents a constant expression or constant aggregate using a custom
482 /// structure internal to the bitcode reader. Later, this structure will be
483 /// expanded by materializeValue() either into a constant expression/aggregate,
484 /// or into an instruction sequence at the point of use. This allows us to
485 /// upgrade bitcode using constant expressions even if this kind of constant
486 /// expression is no longer supported.
487 class BitcodeConstant final : public Value,
488                               TrailingObjects<BitcodeConstant, unsigned> {
489   friend TrailingObjects;
490 
491   // Value subclass ID: Pick largest possible value to avoid any clashes.
492   static constexpr uint8_t SubclassID = 255;
493 
494 public:
495   // Opcodes used for non-expressions. This includes constant aggregates
496   // (struct, array, vector) that might need expansion, as well as non-leaf
497   // constants that don't need expansion (no_cfi, dso_local, blockaddress),
498   // but still go through BitcodeConstant to avoid different uselist orders
499   // between the two cases.
500   static constexpr uint8_t ConstantStructOpcode = 255;
501   static constexpr uint8_t ConstantArrayOpcode = 254;
502   static constexpr uint8_t ConstantVectorOpcode = 253;
503   static constexpr uint8_t NoCFIOpcode = 252;
504   static constexpr uint8_t DSOLocalEquivalentOpcode = 251;
505   static constexpr uint8_t BlockAddressOpcode = 250;
506   static constexpr uint8_t FirstSpecialOpcode = BlockAddressOpcode;
507 
508   // Separate struct to make passing different number of parameters to
509   // BitcodeConstant::create() more convenient.
510   struct ExtraInfo {
511     uint8_t Opcode;
512     uint8_t Flags;
513     unsigned Extra;
514     Type *SrcElemTy;
515 
516     ExtraInfo(uint8_t Opcode, uint8_t Flags = 0, unsigned Extra = 0,
517               Type *SrcElemTy = nullptr)
518         : Opcode(Opcode), Flags(Flags), Extra(Extra), SrcElemTy(SrcElemTy) {}
519   };
520 
521   uint8_t Opcode;
522   uint8_t Flags;
523   unsigned NumOperands;
524   unsigned Extra;  // GEP inrange index or blockaddress BB id.
525   Type *SrcElemTy; // GEP source element type.
526 
527 private:
528   BitcodeConstant(Type *Ty, const ExtraInfo &Info, ArrayRef<unsigned> OpIDs)
529       : Value(Ty, SubclassID), Opcode(Info.Opcode), Flags(Info.Flags),
530         NumOperands(OpIDs.size()), Extra(Info.Extra),
531         SrcElemTy(Info.SrcElemTy) {
532     std::uninitialized_copy(OpIDs.begin(), OpIDs.end(),
533                             getTrailingObjects<unsigned>());
534   }
535 
536   BitcodeConstant &operator=(const BitcodeConstant &) = delete;
537 
538 public:
539   static BitcodeConstant *create(BumpPtrAllocator &A, Type *Ty,
540                                  const ExtraInfo &Info,
541                                  ArrayRef<unsigned> OpIDs) {
542     void *Mem = A.Allocate(totalSizeToAlloc<unsigned>(OpIDs.size()),
543                            alignof(BitcodeConstant));
544     return new (Mem) BitcodeConstant(Ty, Info, OpIDs);
545   }
546 
547   static bool classof(const Value *V) { return V->getValueID() == SubclassID; }
548 
549   ArrayRef<unsigned> getOperandIDs() const {
550     return makeArrayRef(getTrailingObjects<unsigned>(), NumOperands);
551   }
552 
553   Optional<unsigned> getInRangeIndex() const {
554     assert(Opcode == Instruction::GetElementPtr);
555     if (Extra == (unsigned)-1)
556       return None;
557     return Extra;
558   }
559 
560   const char *getOpcodeName() const {
561     return Instruction::getOpcodeName(Opcode);
562   }
563 };
564 
565 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer {
566   LLVMContext &Context;
567   Module *TheModule = nullptr;
568   // Next offset to start scanning for lazy parsing of function bodies.
569   uint64_t NextUnreadBit = 0;
570   // Last function offset found in the VST.
571   uint64_t LastFunctionBlockBit = 0;
572   bool SeenValueSymbolTable = false;
573   uint64_t VSTOffset = 0;
574 
575   std::vector<std::string> SectionTable;
576   std::vector<std::string> GCTable;
577 
578   std::vector<Type *> TypeList;
579   /// Track type IDs of contained types. Order is the same as the contained
580   /// types of a Type*. This is used during upgrades of typed pointer IR in
581   /// opaque pointer mode.
582   DenseMap<unsigned, SmallVector<unsigned, 1>> ContainedTypeIDs;
583   /// In some cases, we need to create a type ID for a type that was not
584   /// explicitly encoded in the bitcode, or we don't know about at the current
585   /// point. For example, a global may explicitly encode the value type ID, but
586   /// not have a type ID for the pointer to value type, for which we create a
587   /// virtual type ID instead. This map stores the new type ID that was created
588   /// for the given pair of Type and contained type ID.
589   DenseMap<std::pair<Type *, unsigned>, unsigned> VirtualTypeIDs;
590   DenseMap<Function *, unsigned> FunctionTypeIDs;
591   /// Allocator for BitcodeConstants. This should come before ValueList,
592   /// because the ValueList might hold ValueHandles to these constants, so
593   /// ValueList must be destroyed before Alloc.
594   BumpPtrAllocator Alloc;
595   BitcodeReaderValueList ValueList;
596   Optional<MetadataLoader> MDLoader;
597   std::vector<Comdat *> ComdatList;
598   DenseSet<GlobalObject *> ImplicitComdatObjects;
599   SmallVector<Instruction *, 64> InstructionList;
600 
601   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits;
602   std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInits;
603 
604   struct FunctionOperandInfo {
605     Function *F;
606     unsigned PersonalityFn;
607     unsigned Prefix;
608     unsigned Prologue;
609   };
610   std::vector<FunctionOperandInfo> FunctionOperands;
611 
612   /// The set of attributes by index.  Index zero in the file is for null, and
613   /// is thus not represented here.  As such all indices are off by one.
614   std::vector<AttributeList> MAttributes;
615 
616   /// The set of attribute groups.
617   std::map<unsigned, AttributeList> MAttributeGroups;
618 
619   /// While parsing a function body, this is a list of the basic blocks for the
620   /// function.
621   std::vector<BasicBlock*> FunctionBBs;
622 
623   // When reading the module header, this list is populated with functions that
624   // have bodies later in the file.
625   std::vector<Function*> FunctionsWithBodies;
626 
627   // When intrinsic functions are encountered which require upgrading they are
628   // stored here with their replacement function.
629   using UpdatedIntrinsicMap = DenseMap<Function *, Function *>;
630   UpdatedIntrinsicMap UpgradedIntrinsics;
631   // Intrinsics which were remangled because of types rename
632   UpdatedIntrinsicMap RemangledIntrinsics;
633 
634   // Several operations happen after the module header has been read, but
635   // before function bodies are processed. This keeps track of whether
636   // we've done this yet.
637   bool SeenFirstFunctionBody = false;
638 
639   /// When function bodies are initially scanned, this map contains info about
640   /// where to find deferred function body in the stream.
641   DenseMap<Function*, uint64_t> DeferredFunctionInfo;
642 
643   /// When Metadata block is initially scanned when parsing the module, we may
644   /// choose to defer parsing of the metadata. This vector contains info about
645   /// which Metadata blocks are deferred.
646   std::vector<uint64_t> DeferredMetadataInfo;
647 
648   /// These are basic blocks forward-referenced by block addresses.  They are
649   /// inserted lazily into functions when they're loaded.  The basic block ID is
650   /// its index into the vector.
651   DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs;
652   std::deque<Function *> BasicBlockFwdRefQueue;
653 
654   /// These are Functions that contain BlockAddresses which refer a different
655   /// Function. When parsing the different Function, queue Functions that refer
656   /// to the different Function. Those Functions must be materialized in order
657   /// to resolve their BlockAddress constants before the different Function
658   /// gets moved into another Module.
659   std::vector<Function *> BackwardRefFunctions;
660 
661   /// Indicates that we are using a new encoding for instruction operands where
662   /// most operands in the current FUNCTION_BLOCK are encoded relative to the
663   /// instruction number, for a more compact encoding.  Some instruction
664   /// operands are not relative to the instruction ID: basic block numbers, and
665   /// types. Once the old style function blocks have been phased out, we would
666   /// not need this flag.
667   bool UseRelativeIDs = false;
668 
669   /// True if all functions will be materialized, negating the need to process
670   /// (e.g.) blockaddress forward references.
671   bool WillMaterializeAllForwardRefs = false;
672 
673   bool StripDebugInfo = false;
674   TBAAVerifier TBAAVerifyHelper;
675 
676   std::vector<std::string> BundleTags;
677   SmallVector<SyncScope::ID, 8> SSIDs;
678 
679 public:
680   BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
681                 StringRef ProducerIdentification, LLVMContext &Context);
682 
683   Error materializeForwardReferencedFunctions();
684 
685   Error materialize(GlobalValue *GV) override;
686   Error materializeModule() override;
687   std::vector<StructType *> getIdentifiedStructTypes() const override;
688 
689   /// Main interface to parsing a bitcode buffer.
690   /// \returns true if an error occurred.
691   Error parseBitcodeInto(
692       Module *M, bool ShouldLazyLoadMetadata, bool IsImporting,
693       DataLayoutCallbackTy DataLayoutCallback);
694 
695   static uint64_t decodeSignRotatedValue(uint64_t V);
696 
697   /// Materialize any deferred Metadata block.
698   Error materializeMetadata() override;
699 
700   void setStripDebugInfo() override;
701 
702 private:
703   std::vector<StructType *> IdentifiedStructTypes;
704   StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
705   StructType *createIdentifiedStructType(LLVMContext &Context);
706 
707   static constexpr unsigned InvalidTypeID = ~0u;
708 
709   Type *getTypeByID(unsigned ID);
710   Type *getPtrElementTypeByID(unsigned ID);
711   unsigned getContainedTypeID(unsigned ID, unsigned Idx = 0);
712   unsigned getVirtualTypeID(Type *Ty, ArrayRef<unsigned> ContainedTypeIDs = {});
713 
714   Expected<Value *> materializeValue(unsigned ValID, BasicBlock *InsertBB);
715   Expected<Constant *> getValueForInitializer(unsigned ID);
716 
717   Value *getFnValueByID(unsigned ID, Type *Ty, unsigned TyID,
718                         BasicBlock *ConstExprInsertBB) {
719     if (Ty && Ty->isMetadataTy())
720       return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
721     return ValueList.getValueFwdRef(ID, Ty, TyID, ConstExprInsertBB);
722   }
723 
724   Metadata *getFnMetadataByID(unsigned ID) {
725     return MDLoader->getMetadataFwdRefOrLoad(ID);
726   }
727 
728   BasicBlock *getBasicBlock(unsigned ID) const {
729     if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
730     return FunctionBBs[ID];
731   }
732 
733   AttributeList getAttributes(unsigned i) const {
734     if (i-1 < MAttributes.size())
735       return MAttributes[i-1];
736     return AttributeList();
737   }
738 
739   /// Read a value/type pair out of the specified record from slot 'Slot'.
740   /// Increment Slot past the number of slots used in the record. Return true on
741   /// failure.
742   bool getValueTypePair(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
743                         unsigned InstNum, Value *&ResVal, unsigned &TypeID,
744                         BasicBlock *ConstExprInsertBB) {
745     if (Slot == Record.size()) return true;
746     unsigned ValNo = (unsigned)Record[Slot++];
747     // Adjust the ValNo, if it was encoded relative to the InstNum.
748     if (UseRelativeIDs)
749       ValNo = InstNum - ValNo;
750     if (ValNo < InstNum) {
751       // If this is not a forward reference, just return the value we already
752       // have.
753       TypeID = ValueList.getTypeID(ValNo);
754       ResVal = getFnValueByID(ValNo, nullptr, TypeID, ConstExprInsertBB);
755       assert((!ResVal || ResVal->getType() == getTypeByID(TypeID)) &&
756              "Incorrect type ID stored for value");
757       return ResVal == nullptr;
758     }
759     if (Slot == Record.size())
760       return true;
761 
762     TypeID = (unsigned)Record[Slot++];
763     ResVal = getFnValueByID(ValNo, getTypeByID(TypeID), TypeID,
764                             ConstExprInsertBB);
765     return ResVal == nullptr;
766   }
767 
768   /// Read a value out of the specified record from slot 'Slot'. Increment Slot
769   /// past the number of slots used by the value in the record. Return true if
770   /// there is an error.
771   bool popValue(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
772                 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal,
773                 BasicBlock *ConstExprInsertBB) {
774     if (getValue(Record, Slot, InstNum, Ty, TyID, ResVal, ConstExprInsertBB))
775       return true;
776     // All values currently take a single record slot.
777     ++Slot;
778     return false;
779   }
780 
781   /// Like popValue, but does not increment the Slot number.
782   bool getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
783                 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal,
784                 BasicBlock *ConstExprInsertBB) {
785     ResVal = getValue(Record, Slot, InstNum, Ty, TyID, ConstExprInsertBB);
786     return ResVal == nullptr;
787   }
788 
789   /// Version of getValue that returns ResVal directly, or 0 if there is an
790   /// error.
791   Value *getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
792                   unsigned InstNum, Type *Ty, unsigned TyID,
793                   BasicBlock *ConstExprInsertBB) {
794     if (Slot == Record.size()) return nullptr;
795     unsigned ValNo = (unsigned)Record[Slot];
796     // Adjust the ValNo, if it was encoded relative to the InstNum.
797     if (UseRelativeIDs)
798       ValNo = InstNum - ValNo;
799     return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB);
800   }
801 
802   /// Like getValue, but decodes signed VBRs.
803   Value *getValueSigned(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
804                         unsigned InstNum, Type *Ty, unsigned TyID,
805                         BasicBlock *ConstExprInsertBB) {
806     if (Slot == Record.size()) return nullptr;
807     unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
808     // Adjust the ValNo, if it was encoded relative to the InstNum.
809     if (UseRelativeIDs)
810       ValNo = InstNum - ValNo;
811     return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB);
812   }
813 
814   /// Upgrades old-style typeless byval/sret/inalloca attributes by adding the
815   /// corresponding argument's pointee type. Also upgrades intrinsics that now
816   /// require an elementtype attribute.
817   Error propagateAttributeTypes(CallBase *CB, ArrayRef<unsigned> ArgsTys);
818 
819   /// Converts alignment exponent (i.e. power of two (or zero)) to the
820   /// corresponding alignment to use. If alignment is too large, returns
821   /// a corresponding error code.
822   Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment);
823   Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
824   Error parseModule(
825       uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false,
826       DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; });
827 
828   Error parseComdatRecord(ArrayRef<uint64_t> Record);
829   Error parseGlobalVarRecord(ArrayRef<uint64_t> Record);
830   Error parseFunctionRecord(ArrayRef<uint64_t> Record);
831   Error parseGlobalIndirectSymbolRecord(unsigned BitCode,
832                                         ArrayRef<uint64_t> Record);
833 
834   Error parseAttributeBlock();
835   Error parseAttributeGroupBlock();
836   Error parseTypeTable();
837   Error parseTypeTableBody();
838   Error parseOperandBundleTags();
839   Error parseSyncScopeNames();
840 
841   Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record,
842                                 unsigned NameIndex, Triple &TT);
843   void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F,
844                                ArrayRef<uint64_t> Record);
845   Error parseValueSymbolTable(uint64_t Offset = 0);
846   Error parseGlobalValueSymbolTable();
847   Error parseConstants();
848   Error rememberAndSkipFunctionBodies();
849   Error rememberAndSkipFunctionBody();
850   /// Save the positions of the Metadata blocks and skip parsing the blocks.
851   Error rememberAndSkipMetadata();
852   Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType);
853   Error parseFunctionBody(Function *F);
854   Error globalCleanup();
855   Error resolveGlobalAndIndirectSymbolInits();
856   Error parseUseLists();
857   Error findFunctionInStream(
858       Function *F,
859       DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
860 
861   SyncScope::ID getDecodedSyncScopeID(unsigned Val);
862 };
863 
864 /// Class to manage reading and parsing function summary index bitcode
865 /// files/sections.
866 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase {
867   /// The module index built during parsing.
868   ModuleSummaryIndex &TheIndex;
869 
870   /// Indicates whether we have encountered a global value summary section
871   /// yet during parsing.
872   bool SeenGlobalValSummary = false;
873 
874   /// Indicates whether we have already parsed the VST, used for error checking.
875   bool SeenValueSymbolTable = false;
876 
877   /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record.
878   /// Used to enable on-demand parsing of the VST.
879   uint64_t VSTOffset = 0;
880 
881   // Map to save ValueId to ValueInfo association that was recorded in the
882   // ValueSymbolTable. It is used after the VST is parsed to convert
883   // call graph edges read from the function summary from referencing
884   // callees by their ValueId to using the ValueInfo instead, which is how
885   // they are recorded in the summary index being built.
886   // We save a GUID which refers to the same global as the ValueInfo, but
887   // ignoring the linkage, i.e. for values other than local linkage they are
888   // identical.
889   DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>>
890       ValueIdToValueInfoMap;
891 
892   /// Map populated during module path string table parsing, from the
893   /// module ID to a string reference owned by the index's module
894   /// path string table, used to correlate with combined index
895   /// summary records.
896   DenseMap<uint64_t, StringRef> ModuleIdMap;
897 
898   /// Original source file name recorded in a bitcode record.
899   std::string SourceFileName;
900 
901   /// The string identifier given to this module by the client, normally the
902   /// path to the bitcode file.
903   StringRef ModulePath;
904 
905   /// For per-module summary indexes, the unique numerical identifier given to
906   /// this module by the client.
907   unsigned ModuleId;
908 
909 public:
910   ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab,
911                                   ModuleSummaryIndex &TheIndex,
912                                   StringRef ModulePath, unsigned ModuleId);
913 
914   Error parseModule();
915 
916 private:
917   void setValueGUID(uint64_t ValueID, StringRef ValueName,
918                     GlobalValue::LinkageTypes Linkage,
919                     StringRef SourceFileName);
920   Error parseValueSymbolTable(
921       uint64_t Offset,
922       DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap);
923   std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record);
924   std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record,
925                                                     bool IsOldProfileFormat,
926                                                     bool HasProfile,
927                                                     bool HasRelBF);
928   Error parseEntireSummary(unsigned ID);
929   Error parseModuleStringTable();
930   void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record);
931   void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot,
932                                        TypeIdCompatibleVtableInfo &TypeId);
933   std::vector<FunctionSummary::ParamAccess>
934   parseParamAccesses(ArrayRef<uint64_t> Record);
935 
936   std::pair<ValueInfo, GlobalValue::GUID>
937   getValueInfoFromValueId(unsigned ValueId);
938 
939   void addThisModule();
940   ModuleSummaryIndex::ModuleInfo *getThisModule();
941 };
942 
943 } // end anonymous namespace
944 
945 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx,
946                                                     Error Err) {
947   if (Err) {
948     std::error_code EC;
949     handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) {
950       EC = EIB.convertToErrorCode();
951       Ctx.emitError(EIB.message());
952     });
953     return EC;
954   }
955   return std::error_code();
956 }
957 
958 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
959                              StringRef ProducerIdentification,
960                              LLVMContext &Context)
961     : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context),
962       ValueList(this->Stream.SizeInBytes(),
963                 [this](unsigned ValID, BasicBlock *InsertBB) {
964                   return materializeValue(ValID, InsertBB);
965                 }) {
966   this->ProducerIdentification = std::string(ProducerIdentification);
967 }
968 
969 Error BitcodeReader::materializeForwardReferencedFunctions() {
970   if (WillMaterializeAllForwardRefs)
971     return Error::success();
972 
973   // Prevent recursion.
974   WillMaterializeAllForwardRefs = true;
975 
976   while (!BasicBlockFwdRefQueue.empty()) {
977     Function *F = BasicBlockFwdRefQueue.front();
978     BasicBlockFwdRefQueue.pop_front();
979     assert(F && "Expected valid function");
980     if (!BasicBlockFwdRefs.count(F))
981       // Already materialized.
982       continue;
983 
984     // Check for a function that isn't materializable to prevent an infinite
985     // loop.  When parsing a blockaddress stored in a global variable, there
986     // isn't a trivial way to check if a function will have a body without a
987     // linear search through FunctionsWithBodies, so just check it here.
988     if (!F->isMaterializable())
989       return error("Never resolved function from blockaddress");
990 
991     // Try to materialize F.
992     if (Error Err = materialize(F))
993       return Err;
994   }
995   assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
996 
997   for (Function *F : BackwardRefFunctions)
998     if (Error Err = materialize(F))
999       return Err;
1000   BackwardRefFunctions.clear();
1001 
1002   // Reset state.
1003   WillMaterializeAllForwardRefs = false;
1004   return Error::success();
1005 }
1006 
1007 //===----------------------------------------------------------------------===//
1008 //  Helper functions to implement forward reference resolution, etc.
1009 //===----------------------------------------------------------------------===//
1010 
1011 static bool hasImplicitComdat(size_t Val) {
1012   switch (Val) {
1013   default:
1014     return false;
1015   case 1:  // Old WeakAnyLinkage
1016   case 4:  // Old LinkOnceAnyLinkage
1017   case 10: // Old WeakODRLinkage
1018   case 11: // Old LinkOnceODRLinkage
1019     return true;
1020   }
1021 }
1022 
1023 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
1024   switch (Val) {
1025   default: // Map unknown/new linkages to external
1026   case 0:
1027     return GlobalValue::ExternalLinkage;
1028   case 2:
1029     return GlobalValue::AppendingLinkage;
1030   case 3:
1031     return GlobalValue::InternalLinkage;
1032   case 5:
1033     return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
1034   case 6:
1035     return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
1036   case 7:
1037     return GlobalValue::ExternalWeakLinkage;
1038   case 8:
1039     return GlobalValue::CommonLinkage;
1040   case 9:
1041     return GlobalValue::PrivateLinkage;
1042   case 12:
1043     return GlobalValue::AvailableExternallyLinkage;
1044   case 13:
1045     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
1046   case 14:
1047     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
1048   case 15:
1049     return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
1050   case 1: // Old value with implicit comdat.
1051   case 16:
1052     return GlobalValue::WeakAnyLinkage;
1053   case 10: // Old value with implicit comdat.
1054   case 17:
1055     return GlobalValue::WeakODRLinkage;
1056   case 4: // Old value with implicit comdat.
1057   case 18:
1058     return GlobalValue::LinkOnceAnyLinkage;
1059   case 11: // Old value with implicit comdat.
1060   case 19:
1061     return GlobalValue::LinkOnceODRLinkage;
1062   }
1063 }
1064 
1065 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) {
1066   FunctionSummary::FFlags Flags;
1067   Flags.ReadNone = RawFlags & 0x1;
1068   Flags.ReadOnly = (RawFlags >> 1) & 0x1;
1069   Flags.NoRecurse = (RawFlags >> 2) & 0x1;
1070   Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1;
1071   Flags.NoInline = (RawFlags >> 4) & 0x1;
1072   Flags.AlwaysInline = (RawFlags >> 5) & 0x1;
1073   Flags.NoUnwind = (RawFlags >> 6) & 0x1;
1074   Flags.MayThrow = (RawFlags >> 7) & 0x1;
1075   Flags.HasUnknownCall = (RawFlags >> 8) & 0x1;
1076   Flags.MustBeUnreachable = (RawFlags >> 9) & 0x1;
1077   return Flags;
1078 }
1079 
1080 // Decode the flags for GlobalValue in the summary. The bits for each attribute:
1081 //
1082 // linkage: [0,4), notEligibleToImport: 4, live: 5, local: 6, canAutoHide: 7,
1083 // visibility: [8, 10).
1084 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags,
1085                                                             uint64_t Version) {
1086   // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage
1087   // like getDecodedLinkage() above. Any future change to the linkage enum and
1088   // to getDecodedLinkage() will need to be taken into account here as above.
1089   auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits
1090   auto Visibility = GlobalValue::VisibilityTypes((RawFlags >> 8) & 3); // 2 bits
1091   RawFlags = RawFlags >> 4;
1092   bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3;
1093   // The Live flag wasn't introduced until version 3. For dead stripping
1094   // to work correctly on earlier versions, we must conservatively treat all
1095   // values as live.
1096   bool Live = (RawFlags & 0x2) || Version < 3;
1097   bool Local = (RawFlags & 0x4);
1098   bool AutoHide = (RawFlags & 0x8);
1099 
1100   return GlobalValueSummary::GVFlags(Linkage, Visibility, NotEligibleToImport,
1101                                      Live, Local, AutoHide);
1102 }
1103 
1104 // Decode the flags for GlobalVariable in the summary
1105 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) {
1106   return GlobalVarSummary::GVarFlags(
1107       (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false,
1108       (RawFlags & 0x4) ? true : false,
1109       (GlobalObject::VCallVisibility)(RawFlags >> 3));
1110 }
1111 
1112 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) {
1113   switch (Val) {
1114   default: // Map unknown visibilities to default.
1115   case 0: return GlobalValue::DefaultVisibility;
1116   case 1: return GlobalValue::HiddenVisibility;
1117   case 2: return GlobalValue::ProtectedVisibility;
1118   }
1119 }
1120 
1121 static GlobalValue::DLLStorageClassTypes
1122 getDecodedDLLStorageClass(unsigned Val) {
1123   switch (Val) {
1124   default: // Map unknown values to default.
1125   case 0: return GlobalValue::DefaultStorageClass;
1126   case 1: return GlobalValue::DLLImportStorageClass;
1127   case 2: return GlobalValue::DLLExportStorageClass;
1128   }
1129 }
1130 
1131 static bool getDecodedDSOLocal(unsigned Val) {
1132   switch(Val) {
1133   default: // Map unknown values to preemptable.
1134   case 0:  return false;
1135   case 1:  return true;
1136   }
1137 }
1138 
1139 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) {
1140   switch (Val) {
1141     case 0: return GlobalVariable::NotThreadLocal;
1142     default: // Map unknown non-zero value to general dynamic.
1143     case 1: return GlobalVariable::GeneralDynamicTLSModel;
1144     case 2: return GlobalVariable::LocalDynamicTLSModel;
1145     case 3: return GlobalVariable::InitialExecTLSModel;
1146     case 4: return GlobalVariable::LocalExecTLSModel;
1147   }
1148 }
1149 
1150 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) {
1151   switch (Val) {
1152     default: // Map unknown to UnnamedAddr::None.
1153     case 0: return GlobalVariable::UnnamedAddr::None;
1154     case 1: return GlobalVariable::UnnamedAddr::Global;
1155     case 2: return GlobalVariable::UnnamedAddr::Local;
1156   }
1157 }
1158 
1159 static int getDecodedCastOpcode(unsigned Val) {
1160   switch (Val) {
1161   default: return -1;
1162   case bitc::CAST_TRUNC   : return Instruction::Trunc;
1163   case bitc::CAST_ZEXT    : return Instruction::ZExt;
1164   case bitc::CAST_SEXT    : return Instruction::SExt;
1165   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
1166   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
1167   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
1168   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
1169   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
1170   case bitc::CAST_FPEXT   : return Instruction::FPExt;
1171   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
1172   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
1173   case bitc::CAST_BITCAST : return Instruction::BitCast;
1174   case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
1175   }
1176 }
1177 
1178 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) {
1179   bool IsFP = Ty->isFPOrFPVectorTy();
1180   // UnOps are only valid for int/fp or vector of int/fp types
1181   if (!IsFP && !Ty->isIntOrIntVectorTy())
1182     return -1;
1183 
1184   switch (Val) {
1185   default:
1186     return -1;
1187   case bitc::UNOP_FNEG:
1188     return IsFP ? Instruction::FNeg : -1;
1189   }
1190 }
1191 
1192 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
1193   bool IsFP = Ty->isFPOrFPVectorTy();
1194   // BinOps are only valid for int/fp or vector of int/fp types
1195   if (!IsFP && !Ty->isIntOrIntVectorTy())
1196     return -1;
1197 
1198   switch (Val) {
1199   default:
1200     return -1;
1201   case bitc::BINOP_ADD:
1202     return IsFP ? Instruction::FAdd : Instruction::Add;
1203   case bitc::BINOP_SUB:
1204     return IsFP ? Instruction::FSub : Instruction::Sub;
1205   case bitc::BINOP_MUL:
1206     return IsFP ? Instruction::FMul : Instruction::Mul;
1207   case bitc::BINOP_UDIV:
1208     return IsFP ? -1 : Instruction::UDiv;
1209   case bitc::BINOP_SDIV:
1210     return IsFP ? Instruction::FDiv : Instruction::SDiv;
1211   case bitc::BINOP_UREM:
1212     return IsFP ? -1 : Instruction::URem;
1213   case bitc::BINOP_SREM:
1214     return IsFP ? Instruction::FRem : Instruction::SRem;
1215   case bitc::BINOP_SHL:
1216     return IsFP ? -1 : Instruction::Shl;
1217   case bitc::BINOP_LSHR:
1218     return IsFP ? -1 : Instruction::LShr;
1219   case bitc::BINOP_ASHR:
1220     return IsFP ? -1 : Instruction::AShr;
1221   case bitc::BINOP_AND:
1222     return IsFP ? -1 : Instruction::And;
1223   case bitc::BINOP_OR:
1224     return IsFP ? -1 : Instruction::Or;
1225   case bitc::BINOP_XOR:
1226     return IsFP ? -1 : Instruction::Xor;
1227   }
1228 }
1229 
1230 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) {
1231   switch (Val) {
1232   default: return AtomicRMWInst::BAD_BINOP;
1233   case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
1234   case bitc::RMW_ADD: return AtomicRMWInst::Add;
1235   case bitc::RMW_SUB: return AtomicRMWInst::Sub;
1236   case bitc::RMW_AND: return AtomicRMWInst::And;
1237   case bitc::RMW_NAND: return AtomicRMWInst::Nand;
1238   case bitc::RMW_OR: return AtomicRMWInst::Or;
1239   case bitc::RMW_XOR: return AtomicRMWInst::Xor;
1240   case bitc::RMW_MAX: return AtomicRMWInst::Max;
1241   case bitc::RMW_MIN: return AtomicRMWInst::Min;
1242   case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
1243   case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
1244   case bitc::RMW_FADD: return AtomicRMWInst::FAdd;
1245   case bitc::RMW_FSUB: return AtomicRMWInst::FSub;
1246   }
1247 }
1248 
1249 static AtomicOrdering getDecodedOrdering(unsigned Val) {
1250   switch (Val) {
1251   case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic;
1252   case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered;
1253   case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic;
1254   case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire;
1255   case bitc::ORDERING_RELEASE: return AtomicOrdering::Release;
1256   case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease;
1257   default: // Map unknown orderings to sequentially-consistent.
1258   case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent;
1259   }
1260 }
1261 
1262 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
1263   switch (Val) {
1264   default: // Map unknown selection kinds to any.
1265   case bitc::COMDAT_SELECTION_KIND_ANY:
1266     return Comdat::Any;
1267   case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
1268     return Comdat::ExactMatch;
1269   case bitc::COMDAT_SELECTION_KIND_LARGEST:
1270     return Comdat::Largest;
1271   case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
1272     return Comdat::NoDeduplicate;
1273   case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
1274     return Comdat::SameSize;
1275   }
1276 }
1277 
1278 static FastMathFlags getDecodedFastMathFlags(unsigned Val) {
1279   FastMathFlags FMF;
1280   if (0 != (Val & bitc::UnsafeAlgebra))
1281     FMF.setFast();
1282   if (0 != (Val & bitc::AllowReassoc))
1283     FMF.setAllowReassoc();
1284   if (0 != (Val & bitc::NoNaNs))
1285     FMF.setNoNaNs();
1286   if (0 != (Val & bitc::NoInfs))
1287     FMF.setNoInfs();
1288   if (0 != (Val & bitc::NoSignedZeros))
1289     FMF.setNoSignedZeros();
1290   if (0 != (Val & bitc::AllowReciprocal))
1291     FMF.setAllowReciprocal();
1292   if (0 != (Val & bitc::AllowContract))
1293     FMF.setAllowContract(true);
1294   if (0 != (Val & bitc::ApproxFunc))
1295     FMF.setApproxFunc();
1296   return FMF;
1297 }
1298 
1299 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) {
1300   switch (Val) {
1301   case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
1302   case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
1303   }
1304 }
1305 
1306 Type *BitcodeReader::getTypeByID(unsigned ID) {
1307   // The type table size is always specified correctly.
1308   if (ID >= TypeList.size())
1309     return nullptr;
1310 
1311   if (Type *Ty = TypeList[ID])
1312     return Ty;
1313 
1314   // If we have a forward reference, the only possible case is when it is to a
1315   // named struct.  Just create a placeholder for now.
1316   return TypeList[ID] = createIdentifiedStructType(Context);
1317 }
1318 
1319 unsigned BitcodeReader::getContainedTypeID(unsigned ID, unsigned Idx) {
1320   auto It = ContainedTypeIDs.find(ID);
1321   if (It == ContainedTypeIDs.end())
1322     return InvalidTypeID;
1323 
1324   if (Idx >= It->second.size())
1325     return InvalidTypeID;
1326 
1327   return It->second[Idx];
1328 }
1329 
1330 Type *BitcodeReader::getPtrElementTypeByID(unsigned ID) {
1331   if (ID >= TypeList.size())
1332     return nullptr;
1333 
1334   Type *Ty = TypeList[ID];
1335   if (!Ty->isPointerTy())
1336     return nullptr;
1337 
1338   Type *ElemTy = getTypeByID(getContainedTypeID(ID, 0));
1339   if (!ElemTy)
1340     return nullptr;
1341 
1342   assert(cast<PointerType>(Ty)->isOpaqueOrPointeeTypeMatches(ElemTy) &&
1343          "Incorrect element type");
1344   return ElemTy;
1345 }
1346 
1347 unsigned BitcodeReader::getVirtualTypeID(Type *Ty,
1348                                          ArrayRef<unsigned> ChildTypeIDs) {
1349   unsigned ChildTypeID = ChildTypeIDs.empty() ? InvalidTypeID : ChildTypeIDs[0];
1350   auto CacheKey = std::make_pair(Ty, ChildTypeID);
1351   auto It = VirtualTypeIDs.find(CacheKey);
1352   if (It != VirtualTypeIDs.end()) {
1353     // The cmpxchg return value is the only place we need more than one
1354     // contained type ID, however the second one will always be the same (i1),
1355     // so we don't need to include it in the cache key. This asserts that the
1356     // contained types are indeed as expected and there are no collisions.
1357     assert((ChildTypeIDs.empty() ||
1358             ContainedTypeIDs[It->second] == ChildTypeIDs) &&
1359            "Incorrect cached contained type IDs");
1360     return It->second;
1361   }
1362 
1363 #ifndef NDEBUG
1364   if (!Ty->isOpaquePointerTy()) {
1365     assert(Ty->getNumContainedTypes() == ChildTypeIDs.size() &&
1366            "Wrong number of contained types");
1367     for (auto Pair : zip(Ty->subtypes(), ChildTypeIDs)) {
1368       assert(std::get<0>(Pair) == getTypeByID(std::get<1>(Pair)) &&
1369              "Incorrect contained type ID");
1370     }
1371   }
1372 #endif
1373 
1374   unsigned TypeID = TypeList.size();
1375   TypeList.push_back(Ty);
1376   if (!ChildTypeIDs.empty())
1377     append_range(ContainedTypeIDs[TypeID], ChildTypeIDs);
1378   VirtualTypeIDs.insert({CacheKey, TypeID});
1379   return TypeID;
1380 }
1381 
1382 static bool isConstExprSupported(uint8_t Opcode) {
1383   // These are not real constant expressions, always consider them supported.
1384   if (Opcode >= BitcodeConstant::FirstSpecialOpcode)
1385     return true;
1386 
1387   if (Instruction::isBinaryOp(Opcode))
1388     return ConstantExpr::isSupportedBinOp(Opcode);
1389 
1390   return !ExpandConstantExprs;
1391 }
1392 
1393 Expected<Value *> BitcodeReader::materializeValue(unsigned StartValID,
1394                                                   BasicBlock *InsertBB) {
1395   // Quickly handle the case where there is no BitcodeConstant to resolve.
1396   if (StartValID < ValueList.size() && ValueList[StartValID] &&
1397       !isa<BitcodeConstant>(ValueList[StartValID]))
1398     return ValueList[StartValID];
1399 
1400   SmallDenseMap<unsigned, Value *> MaterializedValues;
1401   SmallVector<unsigned> Worklist;
1402   Worklist.push_back(StartValID);
1403   while (!Worklist.empty()) {
1404     unsigned ValID = Worklist.back();
1405     if (MaterializedValues.count(ValID)) {
1406       // Duplicate expression that was already handled.
1407       Worklist.pop_back();
1408       continue;
1409     }
1410 
1411     if (ValID >= ValueList.size() || !ValueList[ValID])
1412       return error("Invalid value ID");
1413 
1414     Value *V = ValueList[ValID];
1415     auto *BC = dyn_cast<BitcodeConstant>(V);
1416     if (!BC) {
1417       MaterializedValues.insert({ValID, V});
1418       Worklist.pop_back();
1419       continue;
1420     }
1421 
1422     // Iterate in reverse, so values will get popped from the worklist in
1423     // expected order.
1424     SmallVector<Value *> Ops;
1425     for (unsigned OpID : reverse(BC->getOperandIDs())) {
1426       auto It = MaterializedValues.find(OpID);
1427       if (It != MaterializedValues.end())
1428         Ops.push_back(It->second);
1429       else
1430         Worklist.push_back(OpID);
1431     }
1432 
1433     // Some expressions have not been resolved yet, handle them first and then
1434     // revisit this one.
1435     if (Ops.size() != BC->getOperandIDs().size())
1436       continue;
1437     std::reverse(Ops.begin(), Ops.end());
1438 
1439     SmallVector<Constant *> ConstOps;
1440     for (Value *Op : Ops)
1441       if (auto *C = dyn_cast<Constant>(Op))
1442         ConstOps.push_back(C);
1443 
1444     // Materialize as constant expression if possible.
1445     if (isConstExprSupported(BC->Opcode) && ConstOps.size() == Ops.size()) {
1446       Constant *C;
1447       if (Instruction::isCast(BC->Opcode)) {
1448         C = UpgradeBitCastExpr(BC->Opcode, ConstOps[0], BC->getType());
1449         if (!C)
1450           C = ConstantExpr::getCast(BC->Opcode, ConstOps[0], BC->getType());
1451       } else if (Instruction::isUnaryOp(BC->Opcode)) {
1452         C = ConstantExpr::get(BC->Opcode, ConstOps[0], BC->Flags);
1453       } else if (Instruction::isBinaryOp(BC->Opcode)) {
1454         C = ConstantExpr::get(BC->Opcode, ConstOps[0], ConstOps[1], BC->Flags);
1455       } else {
1456         switch (BC->Opcode) {
1457         case BitcodeConstant::NoCFIOpcode: {
1458           auto *GV = dyn_cast<GlobalValue>(ConstOps[0]);
1459           if (!GV)
1460             return error("no_cfi operand must be GlobalValue");
1461           C = NoCFIValue::get(GV);
1462           break;
1463         }
1464         case BitcodeConstant::DSOLocalEquivalentOpcode: {
1465           auto *GV = dyn_cast<GlobalValue>(ConstOps[0]);
1466           if (!GV)
1467             return error("dso_local operand must be GlobalValue");
1468           C = DSOLocalEquivalent::get(GV);
1469           break;
1470         }
1471         case BitcodeConstant::BlockAddressOpcode: {
1472           Function *Fn = dyn_cast<Function>(ConstOps[0]);
1473           if (!Fn)
1474             return error("blockaddress operand must be a function");
1475 
1476           // If the function is already parsed we can insert the block address
1477           // right away.
1478           BasicBlock *BB;
1479           unsigned BBID = BC->Extra;
1480           if (!BBID)
1481             // Invalid reference to entry block.
1482             return error("Invalid ID");
1483           if (!Fn->empty()) {
1484             Function::iterator BBI = Fn->begin(), BBE = Fn->end();
1485             for (size_t I = 0, E = BBID; I != E; ++I) {
1486               if (BBI == BBE)
1487                 return error("Invalid ID");
1488               ++BBI;
1489             }
1490             BB = &*BBI;
1491           } else {
1492             // Otherwise insert a placeholder and remember it so it can be
1493             // inserted when the function is parsed.
1494             auto &FwdBBs = BasicBlockFwdRefs[Fn];
1495             if (FwdBBs.empty())
1496               BasicBlockFwdRefQueue.push_back(Fn);
1497             if (FwdBBs.size() < BBID + 1)
1498               FwdBBs.resize(BBID + 1);
1499             if (!FwdBBs[BBID])
1500               FwdBBs[BBID] = BasicBlock::Create(Context);
1501             BB = FwdBBs[BBID];
1502           }
1503           C = BlockAddress::get(Fn, BB);
1504           break;
1505         }
1506         case BitcodeConstant::ConstantStructOpcode:
1507           C = ConstantStruct::get(cast<StructType>(BC->getType()), ConstOps);
1508           break;
1509         case BitcodeConstant::ConstantArrayOpcode:
1510           C = ConstantArray::get(cast<ArrayType>(BC->getType()), ConstOps);
1511           break;
1512         case BitcodeConstant::ConstantVectorOpcode:
1513           C = ConstantVector::get(ConstOps);
1514           break;
1515         case Instruction::ICmp:
1516         case Instruction::FCmp:
1517           C = ConstantExpr::getCompare(BC->Flags, ConstOps[0], ConstOps[1]);
1518           break;
1519         case Instruction::GetElementPtr:
1520           C = ConstantExpr::getGetElementPtr(
1521               BC->SrcElemTy, ConstOps[0], makeArrayRef(ConstOps).drop_front(),
1522               BC->Flags, BC->getInRangeIndex());
1523           break;
1524         case Instruction::Select:
1525           C = ConstantExpr::getSelect(ConstOps[0], ConstOps[1], ConstOps[2]);
1526           break;
1527         case Instruction::ExtractElement:
1528           C = ConstantExpr::getExtractElement(ConstOps[0], ConstOps[1]);
1529           break;
1530         case Instruction::InsertElement:
1531           C = ConstantExpr::getInsertElement(ConstOps[0], ConstOps[1],
1532                                              ConstOps[2]);
1533           break;
1534         case Instruction::ShuffleVector: {
1535           SmallVector<int, 16> Mask;
1536           ShuffleVectorInst::getShuffleMask(ConstOps[2], Mask);
1537           C = ConstantExpr::getShuffleVector(ConstOps[0], ConstOps[1], Mask);
1538           break;
1539         }
1540         default:
1541           llvm_unreachable("Unhandled bitcode constant");
1542         }
1543       }
1544 
1545       // Cache resolved constant.
1546       ValueList.replaceValueWithoutRAUW(ValID, C);
1547       MaterializedValues.insert({ValID, C});
1548       Worklist.pop_back();
1549       continue;
1550     }
1551 
1552     if (!InsertBB)
1553       return error(Twine("Value referenced by initializer is an unsupported "
1554                          "constant expression of type ") +
1555                    BC->getOpcodeName());
1556 
1557     // Materialize as instructions if necessary.
1558     Instruction *I;
1559     if (Instruction::isCast(BC->Opcode)) {
1560       I = CastInst::Create((Instruction::CastOps)BC->Opcode, Ops[0],
1561                            BC->getType(), "constexpr", InsertBB);
1562     } else if (Instruction::isUnaryOp(BC->Opcode)) {
1563       I = UnaryOperator::Create((Instruction::UnaryOps)BC->Opcode, Ops[0],
1564                                 "constexpr", InsertBB);
1565     } else if (Instruction::isBinaryOp(BC->Opcode)) {
1566       I = BinaryOperator::Create((Instruction::BinaryOps)BC->Opcode, Ops[0],
1567                                  Ops[1], "constexpr", InsertBB);
1568       if (isa<OverflowingBinaryOperator>(I)) {
1569         if (BC->Flags & OverflowingBinaryOperator::NoSignedWrap)
1570           I->setHasNoSignedWrap();
1571         if (BC->Flags & OverflowingBinaryOperator::NoUnsignedWrap)
1572           I->setHasNoUnsignedWrap();
1573       }
1574       if (isa<PossiblyExactOperator>(I) &&
1575           (BC->Flags & PossiblyExactOperator::IsExact))
1576         I->setIsExact();
1577     } else {
1578       switch (BC->Opcode) {
1579       case BitcodeConstant::ConstantStructOpcode:
1580       case BitcodeConstant::ConstantArrayOpcode:
1581       case BitcodeConstant::ConstantVectorOpcode: {
1582         Type *IdxTy = Type::getInt32Ty(BC->getContext());
1583         Value *V = PoisonValue::get(BC->getType());
1584         for (auto Pair : enumerate(Ops)) {
1585           Value *Idx = ConstantInt::get(IdxTy, Pair.index());
1586           V = InsertElementInst::Create(V, Pair.value(), Idx, "constexpr.ins",
1587                                         InsertBB);
1588         }
1589         I = cast<Instruction>(V);
1590         break;
1591       }
1592       case Instruction::ICmp:
1593       case Instruction::FCmp:
1594         I = CmpInst::Create((Instruction::OtherOps)BC->Opcode,
1595                             (CmpInst::Predicate)BC->Flags, Ops[0], Ops[1],
1596                             "constexpr", InsertBB);
1597         break;
1598       case Instruction::GetElementPtr:
1599         I = GetElementPtrInst::Create(BC->SrcElemTy, Ops[0],
1600                                       makeArrayRef(Ops).drop_front(),
1601                                       "constexpr", InsertBB);
1602         if (BC->Flags)
1603           cast<GetElementPtrInst>(I)->setIsInBounds();
1604         break;
1605       case Instruction::Select:
1606         I = SelectInst::Create(Ops[0], Ops[1], Ops[2], "constexpr", InsertBB);
1607         break;
1608       case Instruction::ExtractElement:
1609         I = ExtractElementInst::Create(Ops[0], Ops[1], "constexpr", InsertBB);
1610         break;
1611       case Instruction::InsertElement:
1612         I = InsertElementInst::Create(Ops[0], Ops[1], Ops[2], "constexpr",
1613                                       InsertBB);
1614         break;
1615       case Instruction::ShuffleVector:
1616         I = new ShuffleVectorInst(Ops[0], Ops[1], Ops[2], "constexpr",
1617                                   InsertBB);
1618         break;
1619       default:
1620         llvm_unreachable("Unhandled bitcode constant");
1621       }
1622     }
1623 
1624     MaterializedValues.insert({ValID, I});
1625     Worklist.pop_back();
1626   }
1627 
1628   return MaterializedValues[StartValID];
1629 }
1630 
1631 Expected<Constant *> BitcodeReader::getValueForInitializer(unsigned ID) {
1632   Expected<Value *> MaybeV = materializeValue(ID, /* InsertBB */ nullptr);
1633   if (!MaybeV)
1634     return MaybeV.takeError();
1635 
1636   // Result must be Constant if InsertBB is nullptr.
1637   return cast<Constant>(MaybeV.get());
1638 }
1639 
1640 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
1641                                                       StringRef Name) {
1642   auto *Ret = StructType::create(Context, Name);
1643   IdentifiedStructTypes.push_back(Ret);
1644   return Ret;
1645 }
1646 
1647 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
1648   auto *Ret = StructType::create(Context);
1649   IdentifiedStructTypes.push_back(Ret);
1650   return Ret;
1651 }
1652 
1653 //===----------------------------------------------------------------------===//
1654 //  Functions for parsing blocks from the bitcode file
1655 //===----------------------------------------------------------------------===//
1656 
1657 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) {
1658   switch (Val) {
1659   case Attribute::EndAttrKinds:
1660   case Attribute::EmptyKey:
1661   case Attribute::TombstoneKey:
1662     llvm_unreachable("Synthetic enumerators which should never get here");
1663 
1664   case Attribute::None:            return 0;
1665   case Attribute::ZExt:            return 1 << 0;
1666   case Attribute::SExt:            return 1 << 1;
1667   case Attribute::NoReturn:        return 1 << 2;
1668   case Attribute::InReg:           return 1 << 3;
1669   case Attribute::StructRet:       return 1 << 4;
1670   case Attribute::NoUnwind:        return 1 << 5;
1671   case Attribute::NoAlias:         return 1 << 6;
1672   case Attribute::ByVal:           return 1 << 7;
1673   case Attribute::Nest:            return 1 << 8;
1674   case Attribute::ReadNone:        return 1 << 9;
1675   case Attribute::ReadOnly:        return 1 << 10;
1676   case Attribute::NoInline:        return 1 << 11;
1677   case Attribute::AlwaysInline:    return 1 << 12;
1678   case Attribute::OptimizeForSize: return 1 << 13;
1679   case Attribute::StackProtect:    return 1 << 14;
1680   case Attribute::StackProtectReq: return 1 << 15;
1681   case Attribute::Alignment:       return 31 << 16;
1682   case Attribute::NoCapture:       return 1 << 21;
1683   case Attribute::NoRedZone:       return 1 << 22;
1684   case Attribute::NoImplicitFloat: return 1 << 23;
1685   case Attribute::Naked:           return 1 << 24;
1686   case Attribute::InlineHint:      return 1 << 25;
1687   case Attribute::StackAlignment:  return 7 << 26;
1688   case Attribute::ReturnsTwice:    return 1 << 29;
1689   case Attribute::UWTable:         return 1 << 30;
1690   case Attribute::NonLazyBind:     return 1U << 31;
1691   case Attribute::SanitizeAddress: return 1ULL << 32;
1692   case Attribute::MinSize:         return 1ULL << 33;
1693   case Attribute::NoDuplicate:     return 1ULL << 34;
1694   case Attribute::StackProtectStrong: return 1ULL << 35;
1695   case Attribute::SanitizeThread:  return 1ULL << 36;
1696   case Attribute::SanitizeMemory:  return 1ULL << 37;
1697   case Attribute::NoBuiltin:       return 1ULL << 38;
1698   case Attribute::Returned:        return 1ULL << 39;
1699   case Attribute::Cold:            return 1ULL << 40;
1700   case Attribute::Builtin:         return 1ULL << 41;
1701   case Attribute::OptimizeNone:    return 1ULL << 42;
1702   case Attribute::InAlloca:        return 1ULL << 43;
1703   case Attribute::NonNull:         return 1ULL << 44;
1704   case Attribute::JumpTable:       return 1ULL << 45;
1705   case Attribute::Convergent:      return 1ULL << 46;
1706   case Attribute::SafeStack:       return 1ULL << 47;
1707   case Attribute::NoRecurse:       return 1ULL << 48;
1708   case Attribute::InaccessibleMemOnly:         return 1ULL << 49;
1709   case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50;
1710   case Attribute::SwiftSelf:       return 1ULL << 51;
1711   case Attribute::SwiftError:      return 1ULL << 52;
1712   case Attribute::WriteOnly:       return 1ULL << 53;
1713   case Attribute::Speculatable:    return 1ULL << 54;
1714   case Attribute::StrictFP:        return 1ULL << 55;
1715   case Attribute::SanitizeHWAddress: return 1ULL << 56;
1716   case Attribute::NoCfCheck:       return 1ULL << 57;
1717   case Attribute::OptForFuzzing:   return 1ULL << 58;
1718   case Attribute::ShadowCallStack: return 1ULL << 59;
1719   case Attribute::SpeculativeLoadHardening:
1720     return 1ULL << 60;
1721   case Attribute::ImmArg:
1722     return 1ULL << 61;
1723   case Attribute::WillReturn:
1724     return 1ULL << 62;
1725   case Attribute::NoFree:
1726     return 1ULL << 63;
1727   default:
1728     // Other attributes are not supported in the raw format,
1729     // as we ran out of space.
1730     return 0;
1731   }
1732   llvm_unreachable("Unsupported attribute type");
1733 }
1734 
1735 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) {
1736   if (!Val) return;
1737 
1738   for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds;
1739        I = Attribute::AttrKind(I + 1)) {
1740     if (uint64_t A = (Val & getRawAttributeMask(I))) {
1741       if (I == Attribute::Alignment)
1742         B.addAlignmentAttr(1ULL << ((A >> 16) - 1));
1743       else if (I == Attribute::StackAlignment)
1744         B.addStackAlignmentAttr(1ULL << ((A >> 26)-1));
1745       else if (Attribute::isTypeAttrKind(I))
1746         B.addTypeAttr(I, nullptr); // Type will be auto-upgraded.
1747       else
1748         B.addAttribute(I);
1749     }
1750   }
1751 }
1752 
1753 /// This fills an AttrBuilder object with the LLVM attributes that have
1754 /// been decoded from the given integer. This function must stay in sync with
1755 /// 'encodeLLVMAttributesForBitcode'.
1756 static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
1757                                            uint64_t EncodedAttrs) {
1758   // The alignment is stored as a 16-bit raw value from bits 31--16.  We shift
1759   // the bits above 31 down by 11 bits.
1760   unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
1761   assert((!Alignment || isPowerOf2_32(Alignment)) &&
1762          "Alignment must be a power of two.");
1763 
1764   if (Alignment)
1765     B.addAlignmentAttr(Alignment);
1766   addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
1767                           (EncodedAttrs & 0xffff));
1768 }
1769 
1770 Error BitcodeReader::parseAttributeBlock() {
1771   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
1772     return Err;
1773 
1774   if (!MAttributes.empty())
1775     return error("Invalid multiple blocks");
1776 
1777   SmallVector<uint64_t, 64> Record;
1778 
1779   SmallVector<AttributeList, 8> Attrs;
1780 
1781   // Read all the records.
1782   while (true) {
1783     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1784     if (!MaybeEntry)
1785       return MaybeEntry.takeError();
1786     BitstreamEntry Entry = MaybeEntry.get();
1787 
1788     switch (Entry.Kind) {
1789     case BitstreamEntry::SubBlock: // Handled for us already.
1790     case BitstreamEntry::Error:
1791       return error("Malformed block");
1792     case BitstreamEntry::EndBlock:
1793       return Error::success();
1794     case BitstreamEntry::Record:
1795       // The interesting case.
1796       break;
1797     }
1798 
1799     // Read a record.
1800     Record.clear();
1801     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1802     if (!MaybeRecord)
1803       return MaybeRecord.takeError();
1804     switch (MaybeRecord.get()) {
1805     default:  // Default behavior: ignore.
1806       break;
1807     case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...]
1808       // Deprecated, but still needed to read old bitcode files.
1809       if (Record.size() & 1)
1810         return error("Invalid parameter attribute record");
1811 
1812       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1813         AttrBuilder B(Context);
1814         decodeLLVMAttributesForBitcode(B, Record[i+1]);
1815         Attrs.push_back(AttributeList::get(Context, Record[i], B));
1816       }
1817 
1818       MAttributes.push_back(AttributeList::get(Context, Attrs));
1819       Attrs.clear();
1820       break;
1821     case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...]
1822       for (unsigned i = 0, e = Record.size(); i != e; ++i)
1823         Attrs.push_back(MAttributeGroups[Record[i]]);
1824 
1825       MAttributes.push_back(AttributeList::get(Context, Attrs));
1826       Attrs.clear();
1827       break;
1828     }
1829   }
1830 }
1831 
1832 // Returns Attribute::None on unrecognized codes.
1833 static Attribute::AttrKind getAttrFromCode(uint64_t Code) {
1834   switch (Code) {
1835   default:
1836     return Attribute::None;
1837   case bitc::ATTR_KIND_ALIGNMENT:
1838     return Attribute::Alignment;
1839   case bitc::ATTR_KIND_ALWAYS_INLINE:
1840     return Attribute::AlwaysInline;
1841   case bitc::ATTR_KIND_ARGMEMONLY:
1842     return Attribute::ArgMemOnly;
1843   case bitc::ATTR_KIND_BUILTIN:
1844     return Attribute::Builtin;
1845   case bitc::ATTR_KIND_BY_VAL:
1846     return Attribute::ByVal;
1847   case bitc::ATTR_KIND_IN_ALLOCA:
1848     return Attribute::InAlloca;
1849   case bitc::ATTR_KIND_COLD:
1850     return Attribute::Cold;
1851   case bitc::ATTR_KIND_CONVERGENT:
1852     return Attribute::Convergent;
1853   case bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION:
1854     return Attribute::DisableSanitizerInstrumentation;
1855   case bitc::ATTR_KIND_ELEMENTTYPE:
1856     return Attribute::ElementType;
1857   case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY:
1858     return Attribute::InaccessibleMemOnly;
1859   case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY:
1860     return Attribute::InaccessibleMemOrArgMemOnly;
1861   case bitc::ATTR_KIND_INLINE_HINT:
1862     return Attribute::InlineHint;
1863   case bitc::ATTR_KIND_IN_REG:
1864     return Attribute::InReg;
1865   case bitc::ATTR_KIND_JUMP_TABLE:
1866     return Attribute::JumpTable;
1867   case bitc::ATTR_KIND_MIN_SIZE:
1868     return Attribute::MinSize;
1869   case bitc::ATTR_KIND_NAKED:
1870     return Attribute::Naked;
1871   case bitc::ATTR_KIND_NEST:
1872     return Attribute::Nest;
1873   case bitc::ATTR_KIND_NO_ALIAS:
1874     return Attribute::NoAlias;
1875   case bitc::ATTR_KIND_NO_BUILTIN:
1876     return Attribute::NoBuiltin;
1877   case bitc::ATTR_KIND_NO_CALLBACK:
1878     return Attribute::NoCallback;
1879   case bitc::ATTR_KIND_NO_CAPTURE:
1880     return Attribute::NoCapture;
1881   case bitc::ATTR_KIND_NO_DUPLICATE:
1882     return Attribute::NoDuplicate;
1883   case bitc::ATTR_KIND_NOFREE:
1884     return Attribute::NoFree;
1885   case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
1886     return Attribute::NoImplicitFloat;
1887   case bitc::ATTR_KIND_NO_INLINE:
1888     return Attribute::NoInline;
1889   case bitc::ATTR_KIND_NO_RECURSE:
1890     return Attribute::NoRecurse;
1891   case bitc::ATTR_KIND_NO_MERGE:
1892     return Attribute::NoMerge;
1893   case bitc::ATTR_KIND_NON_LAZY_BIND:
1894     return Attribute::NonLazyBind;
1895   case bitc::ATTR_KIND_NON_NULL:
1896     return Attribute::NonNull;
1897   case bitc::ATTR_KIND_DEREFERENCEABLE:
1898     return Attribute::Dereferenceable;
1899   case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL:
1900     return Attribute::DereferenceableOrNull;
1901   case bitc::ATTR_KIND_ALLOC_ALIGN:
1902     return Attribute::AllocAlign;
1903   case bitc::ATTR_KIND_ALLOC_KIND:
1904     return Attribute::AllocKind;
1905   case bitc::ATTR_KIND_ALLOC_SIZE:
1906     return Attribute::AllocSize;
1907   case bitc::ATTR_KIND_ALLOCATED_POINTER:
1908     return Attribute::AllocatedPointer;
1909   case bitc::ATTR_KIND_NO_RED_ZONE:
1910     return Attribute::NoRedZone;
1911   case bitc::ATTR_KIND_NO_RETURN:
1912     return Attribute::NoReturn;
1913   case bitc::ATTR_KIND_NOSYNC:
1914     return Attribute::NoSync;
1915   case bitc::ATTR_KIND_NOCF_CHECK:
1916     return Attribute::NoCfCheck;
1917   case bitc::ATTR_KIND_NO_PROFILE:
1918     return Attribute::NoProfile;
1919   case bitc::ATTR_KIND_NO_UNWIND:
1920     return Attribute::NoUnwind;
1921   case bitc::ATTR_KIND_NO_SANITIZE_BOUNDS:
1922     return Attribute::NoSanitizeBounds;
1923   case bitc::ATTR_KIND_NO_SANITIZE_COVERAGE:
1924     return Attribute::NoSanitizeCoverage;
1925   case bitc::ATTR_KIND_NULL_POINTER_IS_VALID:
1926     return Attribute::NullPointerIsValid;
1927   case bitc::ATTR_KIND_OPT_FOR_FUZZING:
1928     return Attribute::OptForFuzzing;
1929   case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
1930     return Attribute::OptimizeForSize;
1931   case bitc::ATTR_KIND_OPTIMIZE_NONE:
1932     return Attribute::OptimizeNone;
1933   case bitc::ATTR_KIND_READ_NONE:
1934     return Attribute::ReadNone;
1935   case bitc::ATTR_KIND_READ_ONLY:
1936     return Attribute::ReadOnly;
1937   case bitc::ATTR_KIND_RETURNED:
1938     return Attribute::Returned;
1939   case bitc::ATTR_KIND_RETURNS_TWICE:
1940     return Attribute::ReturnsTwice;
1941   case bitc::ATTR_KIND_S_EXT:
1942     return Attribute::SExt;
1943   case bitc::ATTR_KIND_SPECULATABLE:
1944     return Attribute::Speculatable;
1945   case bitc::ATTR_KIND_STACK_ALIGNMENT:
1946     return Attribute::StackAlignment;
1947   case bitc::ATTR_KIND_STACK_PROTECT:
1948     return Attribute::StackProtect;
1949   case bitc::ATTR_KIND_STACK_PROTECT_REQ:
1950     return Attribute::StackProtectReq;
1951   case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
1952     return Attribute::StackProtectStrong;
1953   case bitc::ATTR_KIND_SAFESTACK:
1954     return Attribute::SafeStack;
1955   case bitc::ATTR_KIND_SHADOWCALLSTACK:
1956     return Attribute::ShadowCallStack;
1957   case bitc::ATTR_KIND_STRICT_FP:
1958     return Attribute::StrictFP;
1959   case bitc::ATTR_KIND_STRUCT_RET:
1960     return Attribute::StructRet;
1961   case bitc::ATTR_KIND_SANITIZE_ADDRESS:
1962     return Attribute::SanitizeAddress;
1963   case bitc::ATTR_KIND_SANITIZE_HWADDRESS:
1964     return Attribute::SanitizeHWAddress;
1965   case bitc::ATTR_KIND_SANITIZE_THREAD:
1966     return Attribute::SanitizeThread;
1967   case bitc::ATTR_KIND_SANITIZE_MEMORY:
1968     return Attribute::SanitizeMemory;
1969   case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING:
1970     return Attribute::SpeculativeLoadHardening;
1971   case bitc::ATTR_KIND_SWIFT_ERROR:
1972     return Attribute::SwiftError;
1973   case bitc::ATTR_KIND_SWIFT_SELF:
1974     return Attribute::SwiftSelf;
1975   case bitc::ATTR_KIND_SWIFT_ASYNC:
1976     return Attribute::SwiftAsync;
1977   case bitc::ATTR_KIND_UW_TABLE:
1978     return Attribute::UWTable;
1979   case bitc::ATTR_KIND_VSCALE_RANGE:
1980     return Attribute::VScaleRange;
1981   case bitc::ATTR_KIND_WILLRETURN:
1982     return Attribute::WillReturn;
1983   case bitc::ATTR_KIND_WRITEONLY:
1984     return Attribute::WriteOnly;
1985   case bitc::ATTR_KIND_Z_EXT:
1986     return Attribute::ZExt;
1987   case bitc::ATTR_KIND_IMMARG:
1988     return Attribute::ImmArg;
1989   case bitc::ATTR_KIND_SANITIZE_MEMTAG:
1990     return Attribute::SanitizeMemTag;
1991   case bitc::ATTR_KIND_PREALLOCATED:
1992     return Attribute::Preallocated;
1993   case bitc::ATTR_KIND_NOUNDEF:
1994     return Attribute::NoUndef;
1995   case bitc::ATTR_KIND_BYREF:
1996     return Attribute::ByRef;
1997   case bitc::ATTR_KIND_MUSTPROGRESS:
1998     return Attribute::MustProgress;
1999   case bitc::ATTR_KIND_HOT:
2000     return Attribute::Hot;
2001   case bitc::ATTR_KIND_PRESPLIT_COROUTINE:
2002     return Attribute::PresplitCoroutine;
2003   }
2004 }
2005 
2006 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent,
2007                                          MaybeAlign &Alignment) {
2008   // Note: Alignment in bitcode files is incremented by 1, so that zero
2009   // can be used for default alignment.
2010   if (Exponent > Value::MaxAlignmentExponent + 1)
2011     return error("Invalid alignment value");
2012   Alignment = decodeMaybeAlign(Exponent);
2013   return Error::success();
2014 }
2015 
2016 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) {
2017   *Kind = getAttrFromCode(Code);
2018   if (*Kind == Attribute::None)
2019     return error("Unknown attribute kind (" + Twine(Code) + ")");
2020   return Error::success();
2021 }
2022 
2023 Error BitcodeReader::parseAttributeGroupBlock() {
2024   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
2025     return Err;
2026 
2027   if (!MAttributeGroups.empty())
2028     return error("Invalid multiple blocks");
2029 
2030   SmallVector<uint64_t, 64> Record;
2031 
2032   // Read all the records.
2033   while (true) {
2034     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2035     if (!MaybeEntry)
2036       return MaybeEntry.takeError();
2037     BitstreamEntry Entry = MaybeEntry.get();
2038 
2039     switch (Entry.Kind) {
2040     case BitstreamEntry::SubBlock: // Handled for us already.
2041     case BitstreamEntry::Error:
2042       return error("Malformed block");
2043     case BitstreamEntry::EndBlock:
2044       return Error::success();
2045     case BitstreamEntry::Record:
2046       // The interesting case.
2047       break;
2048     }
2049 
2050     // Read a record.
2051     Record.clear();
2052     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2053     if (!MaybeRecord)
2054       return MaybeRecord.takeError();
2055     switch (MaybeRecord.get()) {
2056     default:  // Default behavior: ignore.
2057       break;
2058     case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
2059       if (Record.size() < 3)
2060         return error("Invalid grp record");
2061 
2062       uint64_t GrpID = Record[0];
2063       uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
2064 
2065       AttrBuilder B(Context);
2066       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
2067         if (Record[i] == 0) {        // Enum attribute
2068           Attribute::AttrKind Kind;
2069           if (Error Err = parseAttrKind(Record[++i], &Kind))
2070             return Err;
2071 
2072           // Upgrade old-style byval attribute to one with a type, even if it's
2073           // nullptr. We will have to insert the real type when we associate
2074           // this AttributeList with a function.
2075           if (Kind == Attribute::ByVal)
2076             B.addByValAttr(nullptr);
2077           else if (Kind == Attribute::StructRet)
2078             B.addStructRetAttr(nullptr);
2079           else if (Kind == Attribute::InAlloca)
2080             B.addInAllocaAttr(nullptr);
2081           else if (Kind == Attribute::UWTable)
2082             B.addUWTableAttr(UWTableKind::Default);
2083           else if (Attribute::isEnumAttrKind(Kind))
2084             B.addAttribute(Kind);
2085           else
2086             return error("Not an enum attribute");
2087         } else if (Record[i] == 1) { // Integer attribute
2088           Attribute::AttrKind Kind;
2089           if (Error Err = parseAttrKind(Record[++i], &Kind))
2090             return Err;
2091           if (!Attribute::isIntAttrKind(Kind))
2092             return error("Not an int attribute");
2093           if (Kind == Attribute::Alignment)
2094             B.addAlignmentAttr(Record[++i]);
2095           else if (Kind == Attribute::StackAlignment)
2096             B.addStackAlignmentAttr(Record[++i]);
2097           else if (Kind == Attribute::Dereferenceable)
2098             B.addDereferenceableAttr(Record[++i]);
2099           else if (Kind == Attribute::DereferenceableOrNull)
2100             B.addDereferenceableOrNullAttr(Record[++i]);
2101           else if (Kind == Attribute::AllocSize)
2102             B.addAllocSizeAttrFromRawRepr(Record[++i]);
2103           else if (Kind == Attribute::VScaleRange)
2104             B.addVScaleRangeAttrFromRawRepr(Record[++i]);
2105           else if (Kind == Attribute::UWTable)
2106             B.addUWTableAttr(UWTableKind(Record[++i]));
2107           else if (Kind == Attribute::AllocKind)
2108             B.addAllocKindAttr(static_cast<AllocFnKind>(Record[++i]));
2109         } else if (Record[i] == 3 || Record[i] == 4) { // String attribute
2110           bool HasValue = (Record[i++] == 4);
2111           SmallString<64> KindStr;
2112           SmallString<64> ValStr;
2113 
2114           while (Record[i] != 0 && i != e)
2115             KindStr += Record[i++];
2116           assert(Record[i] == 0 && "Kind string not null terminated");
2117 
2118           if (HasValue) {
2119             // Has a value associated with it.
2120             ++i; // Skip the '0' that terminates the "kind" string.
2121             while (Record[i] != 0 && i != e)
2122               ValStr += Record[i++];
2123             assert(Record[i] == 0 && "Value string not null terminated");
2124           }
2125 
2126           B.addAttribute(KindStr.str(), ValStr.str());
2127         } else if (Record[i] == 5 || Record[i] == 6) {
2128           bool HasType = Record[i] == 6;
2129           Attribute::AttrKind Kind;
2130           if (Error Err = parseAttrKind(Record[++i], &Kind))
2131             return Err;
2132           if (!Attribute::isTypeAttrKind(Kind))
2133             return error("Not a type attribute");
2134 
2135           B.addTypeAttr(Kind, HasType ? getTypeByID(Record[++i]) : nullptr);
2136         } else {
2137           return error("Invalid attribute group entry");
2138         }
2139       }
2140 
2141       UpgradeAttributes(B);
2142       MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B);
2143       break;
2144     }
2145     }
2146   }
2147 }
2148 
2149 Error BitcodeReader::parseTypeTable() {
2150   if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
2151     return Err;
2152 
2153   return parseTypeTableBody();
2154 }
2155 
2156 Error BitcodeReader::parseTypeTableBody() {
2157   if (!TypeList.empty())
2158     return error("Invalid multiple blocks");
2159 
2160   SmallVector<uint64_t, 64> Record;
2161   unsigned NumRecords = 0;
2162 
2163   SmallString<64> TypeName;
2164 
2165   // Read all the records for this type table.
2166   while (true) {
2167     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2168     if (!MaybeEntry)
2169       return MaybeEntry.takeError();
2170     BitstreamEntry Entry = MaybeEntry.get();
2171 
2172     switch (Entry.Kind) {
2173     case BitstreamEntry::SubBlock: // Handled for us already.
2174     case BitstreamEntry::Error:
2175       return error("Malformed block");
2176     case BitstreamEntry::EndBlock:
2177       if (NumRecords != TypeList.size())
2178         return error("Malformed block");
2179       return Error::success();
2180     case BitstreamEntry::Record:
2181       // The interesting case.
2182       break;
2183     }
2184 
2185     // Read a record.
2186     Record.clear();
2187     Type *ResultTy = nullptr;
2188     SmallVector<unsigned> ContainedIDs;
2189     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2190     if (!MaybeRecord)
2191       return MaybeRecord.takeError();
2192     switch (MaybeRecord.get()) {
2193     default:
2194       return error("Invalid value");
2195     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
2196       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
2197       // type list.  This allows us to reserve space.
2198       if (Record.empty())
2199         return error("Invalid numentry record");
2200       TypeList.resize(Record[0]);
2201       continue;
2202     case bitc::TYPE_CODE_VOID:      // VOID
2203       ResultTy = Type::getVoidTy(Context);
2204       break;
2205     case bitc::TYPE_CODE_HALF:     // HALF
2206       ResultTy = Type::getHalfTy(Context);
2207       break;
2208     case bitc::TYPE_CODE_BFLOAT:    // BFLOAT
2209       ResultTy = Type::getBFloatTy(Context);
2210       break;
2211     case bitc::TYPE_CODE_FLOAT:     // FLOAT
2212       ResultTy = Type::getFloatTy(Context);
2213       break;
2214     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
2215       ResultTy = Type::getDoubleTy(Context);
2216       break;
2217     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
2218       ResultTy = Type::getX86_FP80Ty(Context);
2219       break;
2220     case bitc::TYPE_CODE_FP128:     // FP128
2221       ResultTy = Type::getFP128Ty(Context);
2222       break;
2223     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
2224       ResultTy = Type::getPPC_FP128Ty(Context);
2225       break;
2226     case bitc::TYPE_CODE_LABEL:     // LABEL
2227       ResultTy = Type::getLabelTy(Context);
2228       break;
2229     case bitc::TYPE_CODE_METADATA:  // METADATA
2230       ResultTy = Type::getMetadataTy(Context);
2231       break;
2232     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
2233       ResultTy = Type::getX86_MMXTy(Context);
2234       break;
2235     case bitc::TYPE_CODE_X86_AMX:   // X86_AMX
2236       ResultTy = Type::getX86_AMXTy(Context);
2237       break;
2238     case bitc::TYPE_CODE_TOKEN:     // TOKEN
2239       ResultTy = Type::getTokenTy(Context);
2240       break;
2241     case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
2242       if (Record.empty())
2243         return error("Invalid integer record");
2244 
2245       uint64_t NumBits = Record[0];
2246       if (NumBits < IntegerType::MIN_INT_BITS ||
2247           NumBits > IntegerType::MAX_INT_BITS)
2248         return error("Bitwidth for integer type out of range");
2249       ResultTy = IntegerType::get(Context, NumBits);
2250       break;
2251     }
2252     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
2253                                     //          [pointee type, address space]
2254       if (Record.empty())
2255         return error("Invalid pointer record");
2256       unsigned AddressSpace = 0;
2257       if (Record.size() == 2)
2258         AddressSpace = Record[1];
2259       ResultTy = getTypeByID(Record[0]);
2260       if (!ResultTy ||
2261           !PointerType::isValidElementType(ResultTy))
2262         return error("Invalid type");
2263       if (LLVM_UNLIKELY(!Context.hasSetOpaquePointersValue()))
2264         Context.setOpaquePointers(false);
2265       ContainedIDs.push_back(Record[0]);
2266       ResultTy = PointerType::get(ResultTy, AddressSpace);
2267       break;
2268     }
2269     case bitc::TYPE_CODE_OPAQUE_POINTER: { // OPAQUE_POINTER: [addrspace]
2270       if (Record.size() != 1)
2271         return error("Invalid opaque pointer record");
2272       if (LLVM_UNLIKELY(!Context.hasSetOpaquePointersValue())) {
2273         Context.setOpaquePointers(true);
2274       } else if (Context.supportsTypedPointers())
2275         return error(
2276             "Opaque pointers are only supported in -opaque-pointers mode");
2277       unsigned AddressSpace = Record[0];
2278       ResultTy = PointerType::get(Context, AddressSpace);
2279       break;
2280     }
2281     case bitc::TYPE_CODE_FUNCTION_OLD: {
2282       // Deprecated, but still needed to read old bitcode files.
2283       // FUNCTION: [vararg, attrid, retty, paramty x N]
2284       if (Record.size() < 3)
2285         return error("Invalid function record");
2286       SmallVector<Type*, 8> ArgTys;
2287       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
2288         if (Type *T = getTypeByID(Record[i]))
2289           ArgTys.push_back(T);
2290         else
2291           break;
2292       }
2293 
2294       ResultTy = getTypeByID(Record[2]);
2295       if (!ResultTy || ArgTys.size() < Record.size()-3)
2296         return error("Invalid type");
2297 
2298       ContainedIDs.append(Record.begin() + 2, Record.end());
2299       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
2300       break;
2301     }
2302     case bitc::TYPE_CODE_FUNCTION: {
2303       // FUNCTION: [vararg, retty, paramty x N]
2304       if (Record.size() < 2)
2305         return error("Invalid function record");
2306       SmallVector<Type*, 8> ArgTys;
2307       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
2308         if (Type *T = getTypeByID(Record[i])) {
2309           if (!FunctionType::isValidArgumentType(T))
2310             return error("Invalid function argument type");
2311           ArgTys.push_back(T);
2312         }
2313         else
2314           break;
2315       }
2316 
2317       ResultTy = getTypeByID(Record[1]);
2318       if (!ResultTy || ArgTys.size() < Record.size()-2)
2319         return error("Invalid type");
2320 
2321       ContainedIDs.append(Record.begin() + 1, Record.end());
2322       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
2323       break;
2324     }
2325     case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
2326       if (Record.empty())
2327         return error("Invalid anon struct record");
2328       SmallVector<Type*, 8> EltTys;
2329       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
2330         if (Type *T = getTypeByID(Record[i]))
2331           EltTys.push_back(T);
2332         else
2333           break;
2334       }
2335       if (EltTys.size() != Record.size()-1)
2336         return error("Invalid type");
2337       ContainedIDs.append(Record.begin() + 1, Record.end());
2338       ResultTy = StructType::get(Context, EltTys, Record[0]);
2339       break;
2340     }
2341     case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
2342       if (convertToString(Record, 0, TypeName))
2343         return error("Invalid struct name record");
2344       continue;
2345 
2346     case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
2347       if (Record.empty())
2348         return error("Invalid named struct record");
2349 
2350       if (NumRecords >= TypeList.size())
2351         return error("Invalid TYPE table");
2352 
2353       // Check to see if this was forward referenced, if so fill in the temp.
2354       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
2355       if (Res) {
2356         Res->setName(TypeName);
2357         TypeList[NumRecords] = nullptr;
2358       } else  // Otherwise, create a new struct.
2359         Res = createIdentifiedStructType(Context, TypeName);
2360       TypeName.clear();
2361 
2362       SmallVector<Type*, 8> EltTys;
2363       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
2364         if (Type *T = getTypeByID(Record[i]))
2365           EltTys.push_back(T);
2366         else
2367           break;
2368       }
2369       if (EltTys.size() != Record.size()-1)
2370         return error("Invalid named struct record");
2371       Res->setBody(EltTys, Record[0]);
2372       ContainedIDs.append(Record.begin() + 1, Record.end());
2373       ResultTy = Res;
2374       break;
2375     }
2376     case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
2377       if (Record.size() != 1)
2378         return error("Invalid opaque type record");
2379 
2380       if (NumRecords >= TypeList.size())
2381         return error("Invalid TYPE table");
2382 
2383       // Check to see if this was forward referenced, if so fill in the temp.
2384       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
2385       if (Res) {
2386         Res->setName(TypeName);
2387         TypeList[NumRecords] = nullptr;
2388       } else  // Otherwise, create a new struct with no body.
2389         Res = createIdentifiedStructType(Context, TypeName);
2390       TypeName.clear();
2391       ResultTy = Res;
2392       break;
2393     }
2394     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
2395       if (Record.size() < 2)
2396         return error("Invalid array type record");
2397       ResultTy = getTypeByID(Record[1]);
2398       if (!ResultTy || !ArrayType::isValidElementType(ResultTy))
2399         return error("Invalid type");
2400       ContainedIDs.push_back(Record[1]);
2401       ResultTy = ArrayType::get(ResultTy, Record[0]);
2402       break;
2403     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty] or
2404                                     //         [numelts, eltty, scalable]
2405       if (Record.size() < 2)
2406         return error("Invalid vector type record");
2407       if (Record[0] == 0)
2408         return error("Invalid vector length");
2409       ResultTy = getTypeByID(Record[1]);
2410       if (!ResultTy || !VectorType::isValidElementType(ResultTy))
2411         return error("Invalid type");
2412       bool Scalable = Record.size() > 2 ? Record[2] : false;
2413       ContainedIDs.push_back(Record[1]);
2414       ResultTy = VectorType::get(ResultTy, Record[0], Scalable);
2415       break;
2416     }
2417 
2418     if (NumRecords >= TypeList.size())
2419       return error("Invalid TYPE table");
2420     if (TypeList[NumRecords])
2421       return error(
2422           "Invalid TYPE table: Only named structs can be forward referenced");
2423     assert(ResultTy && "Didn't read a type?");
2424     TypeList[NumRecords] = ResultTy;
2425     if (!ContainedIDs.empty())
2426       ContainedTypeIDs[NumRecords] = std::move(ContainedIDs);
2427     ++NumRecords;
2428   }
2429 }
2430 
2431 Error BitcodeReader::parseOperandBundleTags() {
2432   if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID))
2433     return Err;
2434 
2435   if (!BundleTags.empty())
2436     return error("Invalid multiple blocks");
2437 
2438   SmallVector<uint64_t, 64> Record;
2439 
2440   while (true) {
2441     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2442     if (!MaybeEntry)
2443       return MaybeEntry.takeError();
2444     BitstreamEntry Entry = MaybeEntry.get();
2445 
2446     switch (Entry.Kind) {
2447     case BitstreamEntry::SubBlock: // Handled for us already.
2448     case BitstreamEntry::Error:
2449       return error("Malformed block");
2450     case BitstreamEntry::EndBlock:
2451       return Error::success();
2452     case BitstreamEntry::Record:
2453       // The interesting case.
2454       break;
2455     }
2456 
2457     // Tags are implicitly mapped to integers by their order.
2458 
2459     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2460     if (!MaybeRecord)
2461       return MaybeRecord.takeError();
2462     if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG)
2463       return error("Invalid operand bundle record");
2464 
2465     // OPERAND_BUNDLE_TAG: [strchr x N]
2466     BundleTags.emplace_back();
2467     if (convertToString(Record, 0, BundleTags.back()))
2468       return error("Invalid operand bundle record");
2469     Record.clear();
2470   }
2471 }
2472 
2473 Error BitcodeReader::parseSyncScopeNames() {
2474   if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID))
2475     return Err;
2476 
2477   if (!SSIDs.empty())
2478     return error("Invalid multiple synchronization scope names blocks");
2479 
2480   SmallVector<uint64_t, 64> Record;
2481   while (true) {
2482     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2483     if (!MaybeEntry)
2484       return MaybeEntry.takeError();
2485     BitstreamEntry Entry = MaybeEntry.get();
2486 
2487     switch (Entry.Kind) {
2488     case BitstreamEntry::SubBlock: // Handled for us already.
2489     case BitstreamEntry::Error:
2490       return error("Malformed block");
2491     case BitstreamEntry::EndBlock:
2492       if (SSIDs.empty())
2493         return error("Invalid empty synchronization scope names block");
2494       return Error::success();
2495     case BitstreamEntry::Record:
2496       // The interesting case.
2497       break;
2498     }
2499 
2500     // Synchronization scope names are implicitly mapped to synchronization
2501     // scope IDs by their order.
2502 
2503     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2504     if (!MaybeRecord)
2505       return MaybeRecord.takeError();
2506     if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME)
2507       return error("Invalid sync scope record");
2508 
2509     SmallString<16> SSN;
2510     if (convertToString(Record, 0, SSN))
2511       return error("Invalid sync scope record");
2512 
2513     SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN));
2514     Record.clear();
2515   }
2516 }
2517 
2518 /// Associate a value with its name from the given index in the provided record.
2519 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
2520                                              unsigned NameIndex, Triple &TT) {
2521   SmallString<128> ValueName;
2522   if (convertToString(Record, NameIndex, ValueName))
2523     return error("Invalid record");
2524   unsigned ValueID = Record[0];
2525   if (ValueID >= ValueList.size() || !ValueList[ValueID])
2526     return error("Invalid record");
2527   Value *V = ValueList[ValueID];
2528 
2529   StringRef NameStr(ValueName.data(), ValueName.size());
2530   if (NameStr.find_first_of(0) != StringRef::npos)
2531     return error("Invalid value name");
2532   V->setName(NameStr);
2533   auto *GO = dyn_cast<GlobalObject>(V);
2534   if (GO && ImplicitComdatObjects.contains(GO) && TT.supportsCOMDAT())
2535     GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
2536   return V;
2537 }
2538 
2539 /// Helper to note and return the current location, and jump to the given
2540 /// offset.
2541 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset,
2542                                                  BitstreamCursor &Stream) {
2543   // Save the current parsing location so we can jump back at the end
2544   // of the VST read.
2545   uint64_t CurrentBit = Stream.GetCurrentBitNo();
2546   if (Error JumpFailed = Stream.JumpToBit(Offset * 32))
2547     return std::move(JumpFailed);
2548   Expected<BitstreamEntry> MaybeEntry = Stream.advance();
2549   if (!MaybeEntry)
2550     return MaybeEntry.takeError();
2551   if (MaybeEntry.get().Kind != BitstreamEntry::SubBlock ||
2552       MaybeEntry.get().ID != bitc::VALUE_SYMTAB_BLOCK_ID)
2553     return error("Expected value symbol table subblock");
2554   return CurrentBit;
2555 }
2556 
2557 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta,
2558                                             Function *F,
2559                                             ArrayRef<uint64_t> Record) {
2560   // Note that we subtract 1 here because the offset is relative to one word
2561   // before the start of the identification or module block, which was
2562   // historically always the start of the regular bitcode header.
2563   uint64_t FuncWordOffset = Record[1] - 1;
2564   uint64_t FuncBitOffset = FuncWordOffset * 32;
2565   DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
2566   // Set the LastFunctionBlockBit to point to the last function block.
2567   // Later when parsing is resumed after function materialization,
2568   // we can simply skip that last function block.
2569   if (FuncBitOffset > LastFunctionBlockBit)
2570     LastFunctionBlockBit = FuncBitOffset;
2571 }
2572 
2573 /// Read a new-style GlobalValue symbol table.
2574 Error BitcodeReader::parseGlobalValueSymbolTable() {
2575   unsigned FuncBitcodeOffsetDelta =
2576       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2577 
2578   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2579     return Err;
2580 
2581   SmallVector<uint64_t, 64> Record;
2582   while (true) {
2583     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2584     if (!MaybeEntry)
2585       return MaybeEntry.takeError();
2586     BitstreamEntry Entry = MaybeEntry.get();
2587 
2588     switch (Entry.Kind) {
2589     case BitstreamEntry::SubBlock:
2590     case BitstreamEntry::Error:
2591       return error("Malformed block");
2592     case BitstreamEntry::EndBlock:
2593       return Error::success();
2594     case BitstreamEntry::Record:
2595       break;
2596     }
2597 
2598     Record.clear();
2599     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2600     if (!MaybeRecord)
2601       return MaybeRecord.takeError();
2602     switch (MaybeRecord.get()) {
2603     case bitc::VST_CODE_FNENTRY: { // [valueid, offset]
2604       unsigned ValueID = Record[0];
2605       if (ValueID >= ValueList.size() || !ValueList[ValueID])
2606         return error("Invalid value reference in symbol table");
2607       setDeferredFunctionInfo(FuncBitcodeOffsetDelta,
2608                               cast<Function>(ValueList[ValueID]), Record);
2609       break;
2610     }
2611     }
2612   }
2613 }
2614 
2615 /// Parse the value symbol table at either the current parsing location or
2616 /// at the given bit offset if provided.
2617 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) {
2618   uint64_t CurrentBit;
2619   // Pass in the Offset to distinguish between calling for the module-level
2620   // VST (where we want to jump to the VST offset) and the function-level
2621   // VST (where we don't).
2622   if (Offset > 0) {
2623     Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
2624     if (!MaybeCurrentBit)
2625       return MaybeCurrentBit.takeError();
2626     CurrentBit = MaybeCurrentBit.get();
2627     // If this module uses a string table, read this as a module-level VST.
2628     if (UseStrtab) {
2629       if (Error Err = parseGlobalValueSymbolTable())
2630         return Err;
2631       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2632         return JumpFailed;
2633       return Error::success();
2634     }
2635     // Otherwise, the VST will be in a similar format to a function-level VST,
2636     // and will contain symbol names.
2637   }
2638 
2639   // Compute the delta between the bitcode indices in the VST (the word offset
2640   // to the word-aligned ENTER_SUBBLOCK for the function block, and that
2641   // expected by the lazy reader. The reader's EnterSubBlock expects to have
2642   // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
2643   // (size BlockIDWidth). Note that we access the stream's AbbrevID width here
2644   // just before entering the VST subblock because: 1) the EnterSubBlock
2645   // changes the AbbrevID width; 2) the VST block is nested within the same
2646   // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
2647   // AbbrevID width before calling EnterSubBlock; and 3) when we want to
2648   // jump to the FUNCTION_BLOCK using this offset later, we don't want
2649   // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
2650   unsigned FuncBitcodeOffsetDelta =
2651       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2652 
2653   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2654     return Err;
2655 
2656   SmallVector<uint64_t, 64> Record;
2657 
2658   Triple TT(TheModule->getTargetTriple());
2659 
2660   // Read all the records for this value table.
2661   SmallString<128> ValueName;
2662 
2663   while (true) {
2664     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2665     if (!MaybeEntry)
2666       return MaybeEntry.takeError();
2667     BitstreamEntry Entry = MaybeEntry.get();
2668 
2669     switch (Entry.Kind) {
2670     case BitstreamEntry::SubBlock: // Handled for us already.
2671     case BitstreamEntry::Error:
2672       return error("Malformed block");
2673     case BitstreamEntry::EndBlock:
2674       if (Offset > 0)
2675         if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2676           return JumpFailed;
2677       return Error::success();
2678     case BitstreamEntry::Record:
2679       // The interesting case.
2680       break;
2681     }
2682 
2683     // Read a record.
2684     Record.clear();
2685     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2686     if (!MaybeRecord)
2687       return MaybeRecord.takeError();
2688     switch (MaybeRecord.get()) {
2689     default:  // Default behavior: unknown type.
2690       break;
2691     case bitc::VST_CODE_ENTRY: {  // VST_CODE_ENTRY: [valueid, namechar x N]
2692       Expected<Value *> ValOrErr = recordValue(Record, 1, TT);
2693       if (Error Err = ValOrErr.takeError())
2694         return Err;
2695       ValOrErr.get();
2696       break;
2697     }
2698     case bitc::VST_CODE_FNENTRY: {
2699       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
2700       Expected<Value *> ValOrErr = recordValue(Record, 2, TT);
2701       if (Error Err = ValOrErr.takeError())
2702         return Err;
2703       Value *V = ValOrErr.get();
2704 
2705       // Ignore function offsets emitted for aliases of functions in older
2706       // versions of LLVM.
2707       if (auto *F = dyn_cast<Function>(V))
2708         setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record);
2709       break;
2710     }
2711     case bitc::VST_CODE_BBENTRY: {
2712       if (convertToString(Record, 1, ValueName))
2713         return error("Invalid bbentry record");
2714       BasicBlock *BB = getBasicBlock(Record[0]);
2715       if (!BB)
2716         return error("Invalid bbentry record");
2717 
2718       BB->setName(StringRef(ValueName.data(), ValueName.size()));
2719       ValueName.clear();
2720       break;
2721     }
2722     }
2723   }
2724 }
2725 
2726 /// Decode a signed value stored with the sign bit in the LSB for dense VBR
2727 /// encoding.
2728 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
2729   if ((V & 1) == 0)
2730     return V >> 1;
2731   if (V != 1)
2732     return -(V >> 1);
2733   // There is no such thing as -0 with integers.  "-0" really means MININT.
2734   return 1ULL << 63;
2735 }
2736 
2737 /// Resolve all of the initializers for global values and aliases that we can.
2738 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() {
2739   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist;
2740   std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInitWorklist;
2741   std::vector<FunctionOperandInfo> FunctionOperandWorklist;
2742 
2743   GlobalInitWorklist.swap(GlobalInits);
2744   IndirectSymbolInitWorklist.swap(IndirectSymbolInits);
2745   FunctionOperandWorklist.swap(FunctionOperands);
2746 
2747   while (!GlobalInitWorklist.empty()) {
2748     unsigned ValID = GlobalInitWorklist.back().second;
2749     if (ValID >= ValueList.size()) {
2750       // Not ready to resolve this yet, it requires something later in the file.
2751       GlobalInits.push_back(GlobalInitWorklist.back());
2752     } else {
2753       Expected<Constant *> MaybeC = getValueForInitializer(ValID);
2754       if (!MaybeC)
2755         return MaybeC.takeError();
2756       GlobalInitWorklist.back().first->setInitializer(MaybeC.get());
2757     }
2758     GlobalInitWorklist.pop_back();
2759   }
2760 
2761   while (!IndirectSymbolInitWorklist.empty()) {
2762     unsigned ValID = IndirectSymbolInitWorklist.back().second;
2763     if (ValID >= ValueList.size()) {
2764       IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back());
2765     } else {
2766       Expected<Constant *> MaybeC = getValueForInitializer(ValID);
2767       if (!MaybeC)
2768         return MaybeC.takeError();
2769       Constant *C = MaybeC.get();
2770       GlobalValue *GV = IndirectSymbolInitWorklist.back().first;
2771       if (auto *GA = dyn_cast<GlobalAlias>(GV)) {
2772         if (C->getType() != GV->getType())
2773           return error("Alias and aliasee types don't match");
2774         GA->setAliasee(C);
2775       } else if (auto *GI = dyn_cast<GlobalIFunc>(GV)) {
2776         Type *ResolverFTy =
2777             GlobalIFunc::getResolverFunctionType(GI->getValueType());
2778         // Transparently fix up the type for compatiblity with older bitcode
2779         GI->setResolver(
2780             ConstantExpr::getBitCast(C, ResolverFTy->getPointerTo()));
2781       } else {
2782         return error("Expected an alias or an ifunc");
2783       }
2784     }
2785     IndirectSymbolInitWorklist.pop_back();
2786   }
2787 
2788   while (!FunctionOperandWorklist.empty()) {
2789     FunctionOperandInfo &Info = FunctionOperandWorklist.back();
2790     if (Info.PersonalityFn) {
2791       unsigned ValID = Info.PersonalityFn - 1;
2792       if (ValID < ValueList.size()) {
2793         Expected<Constant *> MaybeC = getValueForInitializer(ValID);
2794         if (!MaybeC)
2795           return MaybeC.takeError();
2796         Info.F->setPersonalityFn(MaybeC.get());
2797         Info.PersonalityFn = 0;
2798       }
2799     }
2800     if (Info.Prefix) {
2801       unsigned ValID = Info.Prefix - 1;
2802       if (ValID < ValueList.size()) {
2803         Expected<Constant *> MaybeC = getValueForInitializer(ValID);
2804         if (!MaybeC)
2805           return MaybeC.takeError();
2806         Info.F->setPrefixData(MaybeC.get());
2807         Info.Prefix = 0;
2808       }
2809     }
2810     if (Info.Prologue) {
2811       unsigned ValID = Info.Prologue - 1;
2812       if (ValID < ValueList.size()) {
2813         Expected<Constant *> MaybeC = getValueForInitializer(ValID);
2814         if (!MaybeC)
2815           return MaybeC.takeError();
2816         Info.F->setPrologueData(MaybeC.get());
2817         Info.Prologue = 0;
2818       }
2819     }
2820     if (Info.PersonalityFn || Info.Prefix || Info.Prologue)
2821       FunctionOperands.push_back(Info);
2822     FunctionOperandWorklist.pop_back();
2823   }
2824 
2825   return Error::success();
2826 }
2827 
2828 APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
2829   SmallVector<uint64_t, 8> Words(Vals.size());
2830   transform(Vals, Words.begin(),
2831                  BitcodeReader::decodeSignRotatedValue);
2832 
2833   return APInt(TypeBits, Words);
2834 }
2835 
2836 Error BitcodeReader::parseConstants() {
2837   if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
2838     return Err;
2839 
2840   SmallVector<uint64_t, 64> Record;
2841 
2842   // Read all the records for this value table.
2843   Type *CurTy = Type::getInt32Ty(Context);
2844   unsigned Int32TyID = getVirtualTypeID(CurTy);
2845   unsigned CurTyID = Int32TyID;
2846   Type *CurElemTy = nullptr;
2847   unsigned NextCstNo = ValueList.size();
2848 
2849   while (true) {
2850     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2851     if (!MaybeEntry)
2852       return MaybeEntry.takeError();
2853     BitstreamEntry Entry = MaybeEntry.get();
2854 
2855     switch (Entry.Kind) {
2856     case BitstreamEntry::SubBlock: // Handled for us already.
2857     case BitstreamEntry::Error:
2858       return error("Malformed block");
2859     case BitstreamEntry::EndBlock:
2860       if (NextCstNo != ValueList.size())
2861         return error("Invalid constant reference");
2862       return Error::success();
2863     case BitstreamEntry::Record:
2864       // The interesting case.
2865       break;
2866     }
2867 
2868     // Read a record.
2869     Record.clear();
2870     Type *VoidType = Type::getVoidTy(Context);
2871     Value *V = nullptr;
2872     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
2873     if (!MaybeBitCode)
2874       return MaybeBitCode.takeError();
2875     switch (unsigned BitCode = MaybeBitCode.get()) {
2876     default:  // Default behavior: unknown constant
2877     case bitc::CST_CODE_UNDEF:     // UNDEF
2878       V = UndefValue::get(CurTy);
2879       break;
2880     case bitc::CST_CODE_POISON:    // POISON
2881       V = PoisonValue::get(CurTy);
2882       break;
2883     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
2884       if (Record.empty())
2885         return error("Invalid settype record");
2886       if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
2887         return error("Invalid settype record");
2888       if (TypeList[Record[0]] == VoidType)
2889         return error("Invalid constant type");
2890       CurTyID = Record[0];
2891       CurTy = TypeList[CurTyID];
2892       CurElemTy = getPtrElementTypeByID(CurTyID);
2893       continue;  // Skip the ValueList manipulation.
2894     case bitc::CST_CODE_NULL:      // NULL
2895       if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy())
2896         return error("Invalid type for a constant null value");
2897       V = Constant::getNullValue(CurTy);
2898       break;
2899     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
2900       if (!CurTy->isIntegerTy() || Record.empty())
2901         return error("Invalid integer const record");
2902       V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
2903       break;
2904     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
2905       if (!CurTy->isIntegerTy() || Record.empty())
2906         return error("Invalid wide integer const record");
2907 
2908       APInt VInt =
2909           readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth());
2910       V = ConstantInt::get(Context, VInt);
2911 
2912       break;
2913     }
2914     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
2915       if (Record.empty())
2916         return error("Invalid float const record");
2917       if (CurTy->isHalfTy())
2918         V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(),
2919                                              APInt(16, (uint16_t)Record[0])));
2920       else if (CurTy->isBFloatTy())
2921         V = ConstantFP::get(Context, APFloat(APFloat::BFloat(),
2922                                              APInt(16, (uint32_t)Record[0])));
2923       else if (CurTy->isFloatTy())
2924         V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(),
2925                                              APInt(32, (uint32_t)Record[0])));
2926       else if (CurTy->isDoubleTy())
2927         V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(),
2928                                              APInt(64, Record[0])));
2929       else if (CurTy->isX86_FP80Ty()) {
2930         // Bits are not stored the same way as a normal i80 APInt, compensate.
2931         uint64_t Rearrange[2];
2932         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
2933         Rearrange[1] = Record[0] >> 48;
2934         V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(),
2935                                              APInt(80, Rearrange)));
2936       } else if (CurTy->isFP128Ty())
2937         V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(),
2938                                              APInt(128, Record)));
2939       else if (CurTy->isPPC_FP128Ty())
2940         V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(),
2941                                              APInt(128, Record)));
2942       else
2943         V = UndefValue::get(CurTy);
2944       break;
2945     }
2946 
2947     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
2948       if (Record.empty())
2949         return error("Invalid aggregate record");
2950 
2951       unsigned Size = Record.size();
2952       SmallVector<unsigned, 16> Elts;
2953       for (unsigned i = 0; i != Size; ++i)
2954         Elts.push_back(Record[i]);
2955 
2956       if (isa<StructType>(CurTy)) {
2957         V = BitcodeConstant::create(
2958             Alloc, CurTy, BitcodeConstant::ConstantStructOpcode, Elts);
2959       } else if (isa<ArrayType>(CurTy)) {
2960         V = BitcodeConstant::create(Alloc, CurTy,
2961                                     BitcodeConstant::ConstantArrayOpcode, Elts);
2962       } else if (isa<VectorType>(CurTy)) {
2963         V = BitcodeConstant::create(
2964             Alloc, CurTy, BitcodeConstant::ConstantVectorOpcode, Elts);
2965       } else {
2966         V = UndefValue::get(CurTy);
2967       }
2968       break;
2969     }
2970     case bitc::CST_CODE_STRING:    // STRING: [values]
2971     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
2972       if (Record.empty())
2973         return error("Invalid string record");
2974 
2975       SmallString<16> Elts(Record.begin(), Record.end());
2976       V = ConstantDataArray::getString(Context, Elts,
2977                                        BitCode == bitc::CST_CODE_CSTRING);
2978       break;
2979     }
2980     case bitc::CST_CODE_DATA: {// DATA: [n x value]
2981       if (Record.empty())
2982         return error("Invalid data record");
2983 
2984       Type *EltTy;
2985       if (auto *Array = dyn_cast<ArrayType>(CurTy))
2986         EltTy = Array->getElementType();
2987       else
2988         EltTy = cast<VectorType>(CurTy)->getElementType();
2989       if (EltTy->isIntegerTy(8)) {
2990         SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
2991         if (isa<VectorType>(CurTy))
2992           V = ConstantDataVector::get(Context, Elts);
2993         else
2994           V = ConstantDataArray::get(Context, Elts);
2995       } else if (EltTy->isIntegerTy(16)) {
2996         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2997         if (isa<VectorType>(CurTy))
2998           V = ConstantDataVector::get(Context, Elts);
2999         else
3000           V = ConstantDataArray::get(Context, Elts);
3001       } else if (EltTy->isIntegerTy(32)) {
3002         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
3003         if (isa<VectorType>(CurTy))
3004           V = ConstantDataVector::get(Context, Elts);
3005         else
3006           V = ConstantDataArray::get(Context, Elts);
3007       } else if (EltTy->isIntegerTy(64)) {
3008         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
3009         if (isa<VectorType>(CurTy))
3010           V = ConstantDataVector::get(Context, Elts);
3011         else
3012           V = ConstantDataArray::get(Context, Elts);
3013       } else if (EltTy->isHalfTy()) {
3014         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
3015         if (isa<VectorType>(CurTy))
3016           V = ConstantDataVector::getFP(EltTy, Elts);
3017         else
3018           V = ConstantDataArray::getFP(EltTy, Elts);
3019       } else if (EltTy->isBFloatTy()) {
3020         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
3021         if (isa<VectorType>(CurTy))
3022           V = ConstantDataVector::getFP(EltTy, Elts);
3023         else
3024           V = ConstantDataArray::getFP(EltTy, Elts);
3025       } else if (EltTy->isFloatTy()) {
3026         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
3027         if (isa<VectorType>(CurTy))
3028           V = ConstantDataVector::getFP(EltTy, Elts);
3029         else
3030           V = ConstantDataArray::getFP(EltTy, Elts);
3031       } else if (EltTy->isDoubleTy()) {
3032         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
3033         if (isa<VectorType>(CurTy))
3034           V = ConstantDataVector::getFP(EltTy, Elts);
3035         else
3036           V = ConstantDataArray::getFP(EltTy, Elts);
3037       } else {
3038         return error("Invalid type for value");
3039       }
3040       break;
3041     }
3042     case bitc::CST_CODE_CE_UNOP: {  // CE_UNOP: [opcode, opval]
3043       if (Record.size() < 2)
3044         return error("Invalid unary op constexpr record");
3045       int Opc = getDecodedUnaryOpcode(Record[0], CurTy);
3046       if (Opc < 0) {
3047         V = UndefValue::get(CurTy);  // Unknown unop.
3048       } else {
3049         V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[1]);
3050       }
3051       break;
3052     }
3053     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
3054       if (Record.size() < 3)
3055         return error("Invalid binary op constexpr record");
3056       int Opc = getDecodedBinaryOpcode(Record[0], CurTy);
3057       if (Opc < 0) {
3058         V = UndefValue::get(CurTy);  // Unknown binop.
3059       } else {
3060         uint8_t Flags = 0;
3061         if (Record.size() >= 4) {
3062           if (Opc == Instruction::Add ||
3063               Opc == Instruction::Sub ||
3064               Opc == Instruction::Mul ||
3065               Opc == Instruction::Shl) {
3066             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
3067               Flags |= OverflowingBinaryOperator::NoSignedWrap;
3068             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
3069               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
3070           } else if (Opc == Instruction::SDiv ||
3071                      Opc == Instruction::UDiv ||
3072                      Opc == Instruction::LShr ||
3073                      Opc == Instruction::AShr) {
3074             if (Record[3] & (1 << bitc::PEO_EXACT))
3075               Flags |= SDivOperator::IsExact;
3076           }
3077         }
3078         V = BitcodeConstant::create(Alloc, CurTy, {(uint8_t)Opc, Flags},
3079                                     {(unsigned)Record[1], (unsigned)Record[2]});
3080       }
3081       break;
3082     }
3083     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
3084       if (Record.size() < 3)
3085         return error("Invalid cast constexpr record");
3086       int Opc = getDecodedCastOpcode(Record[0]);
3087       if (Opc < 0) {
3088         V = UndefValue::get(CurTy);  // Unknown cast.
3089       } else {
3090         unsigned OpTyID = Record[1];
3091         Type *OpTy = getTypeByID(OpTyID);
3092         if (!OpTy)
3093           return error("Invalid cast constexpr record");
3094         V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[2]);
3095       }
3096       break;
3097     }
3098     case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands]
3099     case bitc::CST_CODE_CE_GEP: // [ty, n x operands]
3100     case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x
3101                                                      // operands]
3102       if (Record.size() < 2)
3103         return error("Constant GEP record must have at least two elements");
3104       unsigned OpNum = 0;
3105       Type *PointeeType = nullptr;
3106       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX ||
3107           Record.size() % 2)
3108         PointeeType = getTypeByID(Record[OpNum++]);
3109 
3110       bool InBounds = false;
3111       Optional<unsigned> InRangeIndex;
3112       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) {
3113         uint64_t Op = Record[OpNum++];
3114         InBounds = Op & 1;
3115         InRangeIndex = Op >> 1;
3116       } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
3117         InBounds = true;
3118 
3119       SmallVector<unsigned, 16> Elts;
3120       unsigned BaseTypeID = Record[OpNum];
3121       while (OpNum != Record.size()) {
3122         unsigned ElTyID = Record[OpNum++];
3123         Type *ElTy = getTypeByID(ElTyID);
3124         if (!ElTy)
3125           return error("Invalid getelementptr constexpr record");
3126         Elts.push_back(Record[OpNum++]);
3127       }
3128 
3129       if (Elts.size() < 1)
3130         return error("Invalid gep with no operands");
3131 
3132       Type *BaseType = getTypeByID(BaseTypeID);
3133       if (isa<VectorType>(BaseType)) {
3134         BaseTypeID = getContainedTypeID(BaseTypeID, 0);
3135         BaseType = getTypeByID(BaseTypeID);
3136       }
3137 
3138       PointerType *OrigPtrTy = dyn_cast_or_null<PointerType>(BaseType);
3139       if (!OrigPtrTy)
3140         return error("GEP base operand must be pointer or vector of pointer");
3141 
3142       if (!PointeeType) {
3143         PointeeType = getPtrElementTypeByID(BaseTypeID);
3144         if (!PointeeType)
3145           return error("Missing element type for old-style constant GEP");
3146       } else if (!OrigPtrTy->isOpaqueOrPointeeTypeMatches(PointeeType))
3147         return error("Explicit gep operator type does not match pointee type "
3148                      "of pointer operand");
3149 
3150       V = BitcodeConstant::create(Alloc, CurTy,
3151                                   {Instruction::GetElementPtr, InBounds,
3152                                    InRangeIndex.value_or(-1), PointeeType},
3153                                   Elts);
3154       break;
3155     }
3156     case bitc::CST_CODE_CE_SELECT: {  // CE_SELECT: [opval#, opval#, opval#]
3157       if (Record.size() < 3)
3158         return error("Invalid select constexpr record");
3159 
3160       V = BitcodeConstant::create(
3161           Alloc, CurTy, Instruction::Select,
3162           {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]});
3163       break;
3164     }
3165     case bitc::CST_CODE_CE_EXTRACTELT
3166         : { // CE_EXTRACTELT: [opty, opval, opty, opval]
3167       if (Record.size() < 3)
3168         return error("Invalid extractelement constexpr record");
3169       unsigned OpTyID = Record[0];
3170       VectorType *OpTy =
3171         dyn_cast_or_null<VectorType>(getTypeByID(OpTyID));
3172       if (!OpTy)
3173         return error("Invalid extractelement constexpr record");
3174       unsigned IdxRecord;
3175       if (Record.size() == 4) {
3176         unsigned IdxTyID = Record[2];
3177         Type *IdxTy = getTypeByID(IdxTyID);
3178         if (!IdxTy)
3179           return error("Invalid extractelement constexpr record");
3180         IdxRecord = Record[3];
3181       } else {
3182         // Deprecated, but still needed to read old bitcode files.
3183         IdxRecord = Record[2];
3184       }
3185       V = BitcodeConstant::create(Alloc, CurTy, Instruction::ExtractElement,
3186                                   {(unsigned)Record[1], IdxRecord});
3187       break;
3188     }
3189     case bitc::CST_CODE_CE_INSERTELT
3190         : { // CE_INSERTELT: [opval, opval, opty, opval]
3191       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
3192       if (Record.size() < 3 || !OpTy)
3193         return error("Invalid insertelement constexpr record");
3194       unsigned IdxRecord;
3195       if (Record.size() == 4) {
3196         unsigned IdxTyID = Record[2];
3197         Type *IdxTy = getTypeByID(IdxTyID);
3198         if (!IdxTy)
3199           return error("Invalid insertelement constexpr record");
3200         IdxRecord = Record[3];
3201       } else {
3202         // Deprecated, but still needed to read old bitcode files.
3203         IdxRecord = Record[2];
3204       }
3205       V = BitcodeConstant::create(
3206           Alloc, CurTy, Instruction::InsertElement,
3207           {(unsigned)Record[0], (unsigned)Record[1], IdxRecord});
3208       break;
3209     }
3210     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
3211       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
3212       if (Record.size() < 3 || !OpTy)
3213         return error("Invalid shufflevector constexpr record");
3214       V = BitcodeConstant::create(
3215           Alloc, CurTy, Instruction::ShuffleVector,
3216           {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]});
3217       break;
3218     }
3219     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
3220       VectorType *RTy = dyn_cast<VectorType>(CurTy);
3221       VectorType *OpTy =
3222         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
3223       if (Record.size() < 4 || !RTy || !OpTy)
3224         return error("Invalid shufflevector constexpr record");
3225       V = BitcodeConstant::create(
3226           Alloc, CurTy, Instruction::ShuffleVector,
3227           {(unsigned)Record[1], (unsigned)Record[2], (unsigned)Record[3]});
3228       break;
3229     }
3230     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
3231       if (Record.size() < 4)
3232         return error("Invalid cmp constexpt record");
3233       unsigned OpTyID = Record[0];
3234       Type *OpTy = getTypeByID(OpTyID);
3235       if (!OpTy)
3236         return error("Invalid cmp constexpr record");
3237       V = BitcodeConstant::create(
3238           Alloc, CurTy,
3239           {(uint8_t)(OpTy->isFPOrFPVectorTy() ? Instruction::FCmp
3240                                               : Instruction::ICmp),
3241            (uint8_t)Record[3]},
3242           {(unsigned)Record[1], (unsigned)Record[2]});
3243       break;
3244     }
3245     // This maintains backward compatibility, pre-asm dialect keywords.
3246     // Deprecated, but still needed to read old bitcode files.
3247     case bitc::CST_CODE_INLINEASM_OLD: {
3248       if (Record.size() < 2)
3249         return error("Invalid inlineasm record");
3250       std::string AsmStr, ConstrStr;
3251       bool HasSideEffects = Record[0] & 1;
3252       bool IsAlignStack = Record[0] >> 1;
3253       unsigned AsmStrSize = Record[1];
3254       if (2+AsmStrSize >= Record.size())
3255         return error("Invalid inlineasm record");
3256       unsigned ConstStrSize = Record[2+AsmStrSize];
3257       if (3+AsmStrSize+ConstStrSize > Record.size())
3258         return error("Invalid inlineasm record");
3259 
3260       for (unsigned i = 0; i != AsmStrSize; ++i)
3261         AsmStr += (char)Record[2+i];
3262       for (unsigned i = 0; i != ConstStrSize; ++i)
3263         ConstrStr += (char)Record[3+AsmStrSize+i];
3264       UpgradeInlineAsmString(&AsmStr);
3265       if (!CurElemTy)
3266         return error("Missing element type for old-style inlineasm");
3267       V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr,
3268                          HasSideEffects, IsAlignStack);
3269       break;
3270     }
3271     // This version adds support for the asm dialect keywords (e.g.,
3272     // inteldialect).
3273     case bitc::CST_CODE_INLINEASM_OLD2: {
3274       if (Record.size() < 2)
3275         return error("Invalid inlineasm record");
3276       std::string AsmStr, ConstrStr;
3277       bool HasSideEffects = Record[0] & 1;
3278       bool IsAlignStack = (Record[0] >> 1) & 1;
3279       unsigned AsmDialect = Record[0] >> 2;
3280       unsigned AsmStrSize = Record[1];
3281       if (2+AsmStrSize >= Record.size())
3282         return error("Invalid inlineasm record");
3283       unsigned ConstStrSize = Record[2+AsmStrSize];
3284       if (3+AsmStrSize+ConstStrSize > Record.size())
3285         return error("Invalid inlineasm record");
3286 
3287       for (unsigned i = 0; i != AsmStrSize; ++i)
3288         AsmStr += (char)Record[2+i];
3289       for (unsigned i = 0; i != ConstStrSize; ++i)
3290         ConstrStr += (char)Record[3+AsmStrSize+i];
3291       UpgradeInlineAsmString(&AsmStr);
3292       if (!CurElemTy)
3293         return error("Missing element type for old-style inlineasm");
3294       V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr,
3295                          HasSideEffects, IsAlignStack,
3296                          InlineAsm::AsmDialect(AsmDialect));
3297       break;
3298     }
3299     // This version adds support for the unwind keyword.
3300     case bitc::CST_CODE_INLINEASM_OLD3: {
3301       if (Record.size() < 2)
3302         return error("Invalid inlineasm record");
3303       unsigned OpNum = 0;
3304       std::string AsmStr, ConstrStr;
3305       bool HasSideEffects = Record[OpNum] & 1;
3306       bool IsAlignStack = (Record[OpNum] >> 1) & 1;
3307       unsigned AsmDialect = (Record[OpNum] >> 2) & 1;
3308       bool CanThrow = (Record[OpNum] >> 3) & 1;
3309       ++OpNum;
3310       unsigned AsmStrSize = Record[OpNum];
3311       ++OpNum;
3312       if (OpNum + AsmStrSize >= Record.size())
3313         return error("Invalid inlineasm record");
3314       unsigned ConstStrSize = Record[OpNum + AsmStrSize];
3315       if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size())
3316         return error("Invalid inlineasm record");
3317 
3318       for (unsigned i = 0; i != AsmStrSize; ++i)
3319         AsmStr += (char)Record[OpNum + i];
3320       ++OpNum;
3321       for (unsigned i = 0; i != ConstStrSize; ++i)
3322         ConstrStr += (char)Record[OpNum + AsmStrSize + i];
3323       UpgradeInlineAsmString(&AsmStr);
3324       if (!CurElemTy)
3325         return error("Missing element type for old-style inlineasm");
3326       V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr,
3327                          HasSideEffects, IsAlignStack,
3328                          InlineAsm::AsmDialect(AsmDialect), CanThrow);
3329       break;
3330     }
3331     // This version adds explicit function type.
3332     case bitc::CST_CODE_INLINEASM: {
3333       if (Record.size() < 3)
3334         return error("Invalid inlineasm record");
3335       unsigned OpNum = 0;
3336       auto *FnTy = dyn_cast_or_null<FunctionType>(getTypeByID(Record[OpNum]));
3337       ++OpNum;
3338       if (!FnTy)
3339         return error("Invalid inlineasm record");
3340       std::string AsmStr, ConstrStr;
3341       bool HasSideEffects = Record[OpNum] & 1;
3342       bool IsAlignStack = (Record[OpNum] >> 1) & 1;
3343       unsigned AsmDialect = (Record[OpNum] >> 2) & 1;
3344       bool CanThrow = (Record[OpNum] >> 3) & 1;
3345       ++OpNum;
3346       unsigned AsmStrSize = Record[OpNum];
3347       ++OpNum;
3348       if (OpNum + AsmStrSize >= Record.size())
3349         return error("Invalid inlineasm record");
3350       unsigned ConstStrSize = Record[OpNum + AsmStrSize];
3351       if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size())
3352         return error("Invalid inlineasm record");
3353 
3354       for (unsigned i = 0; i != AsmStrSize; ++i)
3355         AsmStr += (char)Record[OpNum + i];
3356       ++OpNum;
3357       for (unsigned i = 0; i != ConstStrSize; ++i)
3358         ConstrStr += (char)Record[OpNum + AsmStrSize + i];
3359       UpgradeInlineAsmString(&AsmStr);
3360       V = InlineAsm::get(FnTy, AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
3361                          InlineAsm::AsmDialect(AsmDialect), CanThrow);
3362       break;
3363     }
3364     case bitc::CST_CODE_BLOCKADDRESS:{
3365       if (Record.size() < 3)
3366         return error("Invalid blockaddress record");
3367       unsigned FnTyID = Record[0];
3368       Type *FnTy = getTypeByID(FnTyID);
3369       if (!FnTy)
3370         return error("Invalid blockaddress record");
3371       V = BitcodeConstant::create(
3372           Alloc, CurTy,
3373           {BitcodeConstant::BlockAddressOpcode, 0, (unsigned)Record[2]},
3374           Record[1]);
3375       break;
3376     }
3377     case bitc::CST_CODE_DSO_LOCAL_EQUIVALENT: {
3378       if (Record.size() < 2)
3379         return error("Invalid dso_local record");
3380       unsigned GVTyID = Record[0];
3381       Type *GVTy = getTypeByID(GVTyID);
3382       if (!GVTy)
3383         return error("Invalid dso_local record");
3384       V = BitcodeConstant::create(
3385           Alloc, CurTy, BitcodeConstant::DSOLocalEquivalentOpcode, Record[1]);
3386       break;
3387     }
3388     case bitc::CST_CODE_NO_CFI_VALUE: {
3389       if (Record.size() < 2)
3390         return error("Invalid no_cfi record");
3391       unsigned GVTyID = Record[0];
3392       Type *GVTy = getTypeByID(GVTyID);
3393       if (!GVTy)
3394         return error("Invalid no_cfi record");
3395       V = BitcodeConstant::create(Alloc, CurTy, BitcodeConstant::NoCFIOpcode,
3396                                   Record[1]);
3397       break;
3398     }
3399     }
3400 
3401     assert(V->getType() == getTypeByID(CurTyID) && "Incorrect result type ID");
3402     if (Error Err = ValueList.assignValue(NextCstNo, V, CurTyID))
3403       return Err;
3404     ++NextCstNo;
3405   }
3406 }
3407 
3408 Error BitcodeReader::parseUseLists() {
3409   if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
3410     return Err;
3411 
3412   // Read all the records.
3413   SmallVector<uint64_t, 64> Record;
3414 
3415   while (true) {
3416     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
3417     if (!MaybeEntry)
3418       return MaybeEntry.takeError();
3419     BitstreamEntry Entry = MaybeEntry.get();
3420 
3421     switch (Entry.Kind) {
3422     case BitstreamEntry::SubBlock: // Handled for us already.
3423     case BitstreamEntry::Error:
3424       return error("Malformed block");
3425     case BitstreamEntry::EndBlock:
3426       return Error::success();
3427     case BitstreamEntry::Record:
3428       // The interesting case.
3429       break;
3430     }
3431 
3432     // Read a use list record.
3433     Record.clear();
3434     bool IsBB = false;
3435     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
3436     if (!MaybeRecord)
3437       return MaybeRecord.takeError();
3438     switch (MaybeRecord.get()) {
3439     default:  // Default behavior: unknown type.
3440       break;
3441     case bitc::USELIST_CODE_BB:
3442       IsBB = true;
3443       LLVM_FALLTHROUGH;
3444     case bitc::USELIST_CODE_DEFAULT: {
3445       unsigned RecordLength = Record.size();
3446       if (RecordLength < 3)
3447         // Records should have at least an ID and two indexes.
3448         return error("Invalid record");
3449       unsigned ID = Record.pop_back_val();
3450 
3451       Value *V;
3452       if (IsBB) {
3453         assert(ID < FunctionBBs.size() && "Basic block not found");
3454         V = FunctionBBs[ID];
3455       } else
3456         V = ValueList[ID];
3457       unsigned NumUses = 0;
3458       SmallDenseMap<const Use *, unsigned, 16> Order;
3459       for (const Use &U : V->materialized_uses()) {
3460         if (++NumUses > Record.size())
3461           break;
3462         Order[&U] = Record[NumUses - 1];
3463       }
3464       if (Order.size() != Record.size() || NumUses > Record.size())
3465         // Mismatches can happen if the functions are being materialized lazily
3466         // (out-of-order), or a value has been upgraded.
3467         break;
3468 
3469       V->sortUseList([&](const Use &L, const Use &R) {
3470         return Order.lookup(&L) < Order.lookup(&R);
3471       });
3472       break;
3473     }
3474     }
3475   }
3476 }
3477 
3478 /// When we see the block for metadata, remember where it is and then skip it.
3479 /// This lets us lazily deserialize the metadata.
3480 Error BitcodeReader::rememberAndSkipMetadata() {
3481   // Save the current stream state.
3482   uint64_t CurBit = Stream.GetCurrentBitNo();
3483   DeferredMetadataInfo.push_back(CurBit);
3484 
3485   // Skip over the block for now.
3486   if (Error Err = Stream.SkipBlock())
3487     return Err;
3488   return Error::success();
3489 }
3490 
3491 Error BitcodeReader::materializeMetadata() {
3492   for (uint64_t BitPos : DeferredMetadataInfo) {
3493     // Move the bit stream to the saved position.
3494     if (Error JumpFailed = Stream.JumpToBit(BitPos))
3495       return JumpFailed;
3496     if (Error Err = MDLoader->parseModuleMetadata())
3497       return Err;
3498   }
3499 
3500   // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level
3501   // metadata. Only upgrade if the new option doesn't exist to avoid upgrade
3502   // multiple times.
3503   if (!TheModule->getNamedMetadata("llvm.linker.options")) {
3504     if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) {
3505       NamedMDNode *LinkerOpts =
3506           TheModule->getOrInsertNamedMetadata("llvm.linker.options");
3507       for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands())
3508         LinkerOpts->addOperand(cast<MDNode>(MDOptions));
3509     }
3510   }
3511 
3512   DeferredMetadataInfo.clear();
3513   return Error::success();
3514 }
3515 
3516 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
3517 
3518 /// When we see the block for a function body, remember where it is and then
3519 /// skip it.  This lets us lazily deserialize the functions.
3520 Error BitcodeReader::rememberAndSkipFunctionBody() {
3521   // Get the function we are talking about.
3522   if (FunctionsWithBodies.empty())
3523     return error("Insufficient function protos");
3524 
3525   Function *Fn = FunctionsWithBodies.back();
3526   FunctionsWithBodies.pop_back();
3527 
3528   // Save the current stream state.
3529   uint64_t CurBit = Stream.GetCurrentBitNo();
3530   assert(
3531       (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) &&
3532       "Mismatch between VST and scanned function offsets");
3533   DeferredFunctionInfo[Fn] = CurBit;
3534 
3535   // Skip over the function block for now.
3536   if (Error Err = Stream.SkipBlock())
3537     return Err;
3538   return Error::success();
3539 }
3540 
3541 Error BitcodeReader::globalCleanup() {
3542   // Patch the initializers for globals and aliases up.
3543   if (Error Err = resolveGlobalAndIndirectSymbolInits())
3544     return Err;
3545   if (!GlobalInits.empty() || !IndirectSymbolInits.empty())
3546     return error("Malformed global initializer set");
3547 
3548   // Look for intrinsic functions which need to be upgraded at some point
3549   // and functions that need to have their function attributes upgraded.
3550   for (Function &F : *TheModule) {
3551     MDLoader->upgradeDebugIntrinsics(F);
3552     Function *NewFn;
3553     if (UpgradeIntrinsicFunction(&F, NewFn))
3554       UpgradedIntrinsics[&F] = NewFn;
3555     else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F))
3556       // Some types could be renamed during loading if several modules are
3557       // loaded in the same LLVMContext (LTO scenario). In this case we should
3558       // remangle intrinsics names as well.
3559       RemangledIntrinsics[&F] = *Remangled;
3560     // Look for functions that rely on old function attribute behavior.
3561     UpgradeFunctionAttributes(F);
3562   }
3563 
3564   // Look for global variables which need to be renamed.
3565   std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables;
3566   for (GlobalVariable &GV : TheModule->globals())
3567     if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV))
3568       UpgradedVariables.emplace_back(&GV, Upgraded);
3569   for (auto &Pair : UpgradedVariables) {
3570     Pair.first->eraseFromParent();
3571     TheModule->getGlobalList().push_back(Pair.second);
3572   }
3573 
3574   // Force deallocation of memory for these vectors to favor the client that
3575   // want lazy deserialization.
3576   std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits);
3577   std::vector<std::pair<GlobalValue *, unsigned>>().swap(IndirectSymbolInits);
3578   return Error::success();
3579 }
3580 
3581 /// Support for lazy parsing of function bodies. This is required if we
3582 /// either have an old bitcode file without a VST forward declaration record,
3583 /// or if we have an anonymous function being materialized, since anonymous
3584 /// functions do not have a name and are therefore not in the VST.
3585 Error BitcodeReader::rememberAndSkipFunctionBodies() {
3586   if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit))
3587     return JumpFailed;
3588 
3589   if (Stream.AtEndOfStream())
3590     return error("Could not find function in stream");
3591 
3592   if (!SeenFirstFunctionBody)
3593     return error("Trying to materialize functions before seeing function blocks");
3594 
3595   // An old bitcode file with the symbol table at the end would have
3596   // finished the parse greedily.
3597   assert(SeenValueSymbolTable);
3598 
3599   SmallVector<uint64_t, 64> Record;
3600 
3601   while (true) {
3602     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3603     if (!MaybeEntry)
3604       return MaybeEntry.takeError();
3605     llvm::BitstreamEntry Entry = MaybeEntry.get();
3606 
3607     switch (Entry.Kind) {
3608     default:
3609       return error("Expect SubBlock");
3610     case BitstreamEntry::SubBlock:
3611       switch (Entry.ID) {
3612       default:
3613         return error("Expect function block");
3614       case bitc::FUNCTION_BLOCK_ID:
3615         if (Error Err = rememberAndSkipFunctionBody())
3616           return Err;
3617         NextUnreadBit = Stream.GetCurrentBitNo();
3618         return Error::success();
3619       }
3620     }
3621   }
3622 }
3623 
3624 Error BitcodeReaderBase::readBlockInfo() {
3625   Expected<Optional<BitstreamBlockInfo>> MaybeNewBlockInfo =
3626       Stream.ReadBlockInfoBlock();
3627   if (!MaybeNewBlockInfo)
3628     return MaybeNewBlockInfo.takeError();
3629   Optional<BitstreamBlockInfo> NewBlockInfo =
3630       std::move(MaybeNewBlockInfo.get());
3631   if (!NewBlockInfo)
3632     return error("Malformed block");
3633   BlockInfo = std::move(*NewBlockInfo);
3634   return Error::success();
3635 }
3636 
3637 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) {
3638   // v1: [selection_kind, name]
3639   // v2: [strtab_offset, strtab_size, selection_kind]
3640   StringRef Name;
3641   std::tie(Name, Record) = readNameFromStrtab(Record);
3642 
3643   if (Record.empty())
3644     return error("Invalid record");
3645   Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
3646   std::string OldFormatName;
3647   if (!UseStrtab) {
3648     if (Record.size() < 2)
3649       return error("Invalid record");
3650     unsigned ComdatNameSize = Record[1];
3651     if (ComdatNameSize > Record.size() - 2)
3652       return error("Comdat name size too large");
3653     OldFormatName.reserve(ComdatNameSize);
3654     for (unsigned i = 0; i != ComdatNameSize; ++i)
3655       OldFormatName += (char)Record[2 + i];
3656     Name = OldFormatName;
3657   }
3658   Comdat *C = TheModule->getOrInsertComdat(Name);
3659   C->setSelectionKind(SK);
3660   ComdatList.push_back(C);
3661   return Error::success();
3662 }
3663 
3664 static void inferDSOLocal(GlobalValue *GV) {
3665   // infer dso_local from linkage and visibility if it is not encoded.
3666   if (GV->hasLocalLinkage() ||
3667       (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()))
3668     GV->setDSOLocal(true);
3669 }
3670 
3671 GlobalValue::SanitizerMetadata deserializeSanitizerMetadata(unsigned V) {
3672   GlobalValue::SanitizerMetadata Meta;
3673   if (V & (1 << 0))
3674     Meta.NoAddress = true;
3675   if (V & (1 << 1))
3676     Meta.NoHWAddress = true;
3677   if (V & (1 << 2))
3678     Meta.NoMemtag = true;
3679   if (V & (1 << 3))
3680     Meta.IsDynInit = true;
3681   return Meta;
3682 }
3683 
3684 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) {
3685   // v1: [pointer type, isconst, initid, linkage, alignment, section,
3686   // visibility, threadlocal, unnamed_addr, externally_initialized,
3687   // dllstorageclass, comdat, attributes, preemption specifier,
3688   // partition strtab offset, partition strtab size] (name in VST)
3689   // v2: [strtab_offset, strtab_size, v1]
3690   StringRef Name;
3691   std::tie(Name, Record) = readNameFromStrtab(Record);
3692 
3693   if (Record.size() < 6)
3694     return error("Invalid record");
3695   unsigned TyID = Record[0];
3696   Type *Ty = getTypeByID(TyID);
3697   if (!Ty)
3698     return error("Invalid record");
3699   bool isConstant = Record[1] & 1;
3700   bool explicitType = Record[1] & 2;
3701   unsigned AddressSpace;
3702   if (explicitType) {
3703     AddressSpace = Record[1] >> 2;
3704   } else {
3705     if (!Ty->isPointerTy())
3706       return error("Invalid type for value");
3707     AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
3708     TyID = getContainedTypeID(TyID);
3709     Ty = getTypeByID(TyID);
3710     if (!Ty)
3711       return error("Missing element type for old-style global");
3712   }
3713 
3714   uint64_t RawLinkage = Record[3];
3715   GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
3716   MaybeAlign Alignment;
3717   if (Error Err = parseAlignmentValue(Record[4], Alignment))
3718     return Err;
3719   std::string Section;
3720   if (Record[5]) {
3721     if (Record[5] - 1 >= SectionTable.size())
3722       return error("Invalid ID");
3723     Section = SectionTable[Record[5] - 1];
3724   }
3725   GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
3726   // Local linkage must have default visibility.
3727   // auto-upgrade `hidden` and `protected` for old bitcode.
3728   if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
3729     Visibility = getDecodedVisibility(Record[6]);
3730 
3731   GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
3732   if (Record.size() > 7)
3733     TLM = getDecodedThreadLocalMode(Record[7]);
3734 
3735   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3736   if (Record.size() > 8)
3737     UnnamedAddr = getDecodedUnnamedAddrType(Record[8]);
3738 
3739   bool ExternallyInitialized = false;
3740   if (Record.size() > 9)
3741     ExternallyInitialized = Record[9];
3742 
3743   GlobalVariable *NewGV =
3744       new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name,
3745                          nullptr, TLM, AddressSpace, ExternallyInitialized);
3746   NewGV->setAlignment(Alignment);
3747   if (!Section.empty())
3748     NewGV->setSection(Section);
3749   NewGV->setVisibility(Visibility);
3750   NewGV->setUnnamedAddr(UnnamedAddr);
3751 
3752   if (Record.size() > 10)
3753     NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10]));
3754   else
3755     upgradeDLLImportExportLinkage(NewGV, RawLinkage);
3756 
3757   ValueList.push_back(NewGV, getVirtualTypeID(NewGV->getType(), TyID));
3758 
3759   // Remember which value to use for the global initializer.
3760   if (unsigned InitID = Record[2])
3761     GlobalInits.push_back(std::make_pair(NewGV, InitID - 1));
3762 
3763   if (Record.size() > 11) {
3764     if (unsigned ComdatID = Record[11]) {
3765       if (ComdatID > ComdatList.size())
3766         return error("Invalid global variable comdat ID");
3767       NewGV->setComdat(ComdatList[ComdatID - 1]);
3768     }
3769   } else if (hasImplicitComdat(RawLinkage)) {
3770     ImplicitComdatObjects.insert(NewGV);
3771   }
3772 
3773   if (Record.size() > 12) {
3774     auto AS = getAttributes(Record[12]).getFnAttrs();
3775     NewGV->setAttributes(AS);
3776   }
3777 
3778   if (Record.size() > 13) {
3779     NewGV->setDSOLocal(getDecodedDSOLocal(Record[13]));
3780   }
3781   inferDSOLocal(NewGV);
3782 
3783   // Check whether we have enough values to read a partition name.
3784   if (Record.size() > 15)
3785     NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15]));
3786 
3787   if (Record.size() > 16 && Record[16]) {
3788     llvm::GlobalValue::SanitizerMetadata Meta =
3789         deserializeSanitizerMetadata(Record[16]);
3790     NewGV->setSanitizerMetadata(Meta);
3791   }
3792 
3793   return Error::success();
3794 }
3795 
3796 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) {
3797   // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section,
3798   // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat,
3799   // prefixdata,  personalityfn, preemption specifier, addrspace] (name in VST)
3800   // v2: [strtab_offset, strtab_size, v1]
3801   StringRef Name;
3802   std::tie(Name, Record) = readNameFromStrtab(Record);
3803 
3804   if (Record.size() < 8)
3805     return error("Invalid record");
3806   unsigned FTyID = Record[0];
3807   Type *FTy = getTypeByID(FTyID);
3808   if (!FTy)
3809     return error("Invalid record");
3810   if (isa<PointerType>(FTy)) {
3811     FTyID = getContainedTypeID(FTyID, 0);
3812     FTy = getTypeByID(FTyID);
3813     if (!FTy)
3814       return error("Missing element type for old-style function");
3815   }
3816 
3817   if (!isa<FunctionType>(FTy))
3818     return error("Invalid type for value");
3819   auto CC = static_cast<CallingConv::ID>(Record[1]);
3820   if (CC & ~CallingConv::MaxID)
3821     return error("Invalid calling convention ID");
3822 
3823   unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace();
3824   if (Record.size() > 16)
3825     AddrSpace = Record[16];
3826 
3827   Function *Func =
3828       Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage,
3829                        AddrSpace, Name, TheModule);
3830 
3831   assert(Func->getFunctionType() == FTy &&
3832          "Incorrect fully specified type provided for function");
3833   FunctionTypeIDs[Func] = FTyID;
3834 
3835   Func->setCallingConv(CC);
3836   bool isProto = Record[2];
3837   uint64_t RawLinkage = Record[3];
3838   Func->setLinkage(getDecodedLinkage(RawLinkage));
3839   Func->setAttributes(getAttributes(Record[4]));
3840 
3841   // Upgrade any old-style byval or sret without a type by propagating the
3842   // argument's pointee type. There should be no opaque pointers where the byval
3843   // type is implicit.
3844   for (unsigned i = 0; i != Func->arg_size(); ++i) {
3845     for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet,
3846                                      Attribute::InAlloca}) {
3847       if (!Func->hasParamAttribute(i, Kind))
3848         continue;
3849 
3850       if (Func->getParamAttribute(i, Kind).getValueAsType())
3851         continue;
3852 
3853       Func->removeParamAttr(i, Kind);
3854 
3855       unsigned ParamTypeID = getContainedTypeID(FTyID, i + 1);
3856       Type *PtrEltTy = getPtrElementTypeByID(ParamTypeID);
3857       if (!PtrEltTy)
3858         return error("Missing param element type for attribute upgrade");
3859 
3860       Attribute NewAttr;
3861       switch (Kind) {
3862       case Attribute::ByVal:
3863         NewAttr = Attribute::getWithByValType(Context, PtrEltTy);
3864         break;
3865       case Attribute::StructRet:
3866         NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy);
3867         break;
3868       case Attribute::InAlloca:
3869         NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy);
3870         break;
3871       default:
3872         llvm_unreachable("not an upgraded type attribute");
3873       }
3874 
3875       Func->addParamAttr(i, NewAttr);
3876     }
3877   }
3878 
3879   if (Func->getCallingConv() == CallingConv::X86_INTR &&
3880       !Func->arg_empty() && !Func->hasParamAttribute(0, Attribute::ByVal)) {
3881     unsigned ParamTypeID = getContainedTypeID(FTyID, 1);
3882     Type *ByValTy = getPtrElementTypeByID(ParamTypeID);
3883     if (!ByValTy)
3884       return error("Missing param element type for x86_intrcc upgrade");
3885     Attribute NewAttr = Attribute::getWithByValType(Context, ByValTy);
3886     Func->addParamAttr(0, NewAttr);
3887   }
3888 
3889   MaybeAlign Alignment;
3890   if (Error Err = parseAlignmentValue(Record[5], Alignment))
3891     return Err;
3892   Func->setAlignment(Alignment);
3893   if (Record[6]) {
3894     if (Record[6] - 1 >= SectionTable.size())
3895       return error("Invalid ID");
3896     Func->setSection(SectionTable[Record[6] - 1]);
3897   }
3898   // Local linkage must have default visibility.
3899   // auto-upgrade `hidden` and `protected` for old bitcode.
3900   if (!Func->hasLocalLinkage())
3901     Func->setVisibility(getDecodedVisibility(Record[7]));
3902   if (Record.size() > 8 && Record[8]) {
3903     if (Record[8] - 1 >= GCTable.size())
3904       return error("Invalid ID");
3905     Func->setGC(GCTable[Record[8] - 1]);
3906   }
3907   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3908   if (Record.size() > 9)
3909     UnnamedAddr = getDecodedUnnamedAddrType(Record[9]);
3910   Func->setUnnamedAddr(UnnamedAddr);
3911 
3912   FunctionOperandInfo OperandInfo = {Func, 0, 0, 0};
3913   if (Record.size() > 10)
3914     OperandInfo.Prologue = Record[10];
3915 
3916   if (Record.size() > 11)
3917     Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11]));
3918   else
3919     upgradeDLLImportExportLinkage(Func, RawLinkage);
3920 
3921   if (Record.size() > 12) {
3922     if (unsigned ComdatID = Record[12]) {
3923       if (ComdatID > ComdatList.size())
3924         return error("Invalid function comdat ID");
3925       Func->setComdat(ComdatList[ComdatID - 1]);
3926     }
3927   } else if (hasImplicitComdat(RawLinkage)) {
3928     ImplicitComdatObjects.insert(Func);
3929   }
3930 
3931   if (Record.size() > 13)
3932     OperandInfo.Prefix = Record[13];
3933 
3934   if (Record.size() > 14)
3935     OperandInfo.PersonalityFn = Record[14];
3936 
3937   if (Record.size() > 15) {
3938     Func->setDSOLocal(getDecodedDSOLocal(Record[15]));
3939   }
3940   inferDSOLocal(Func);
3941 
3942   // Record[16] is the address space number.
3943 
3944   // Check whether we have enough values to read a partition name. Also make
3945   // sure Strtab has enough values.
3946   if (Record.size() > 18 && Strtab.data() &&
3947       Record[17] + Record[18] <= Strtab.size()) {
3948     Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18]));
3949   }
3950 
3951   ValueList.push_back(Func, getVirtualTypeID(Func->getType(), FTyID));
3952 
3953   if (OperandInfo.PersonalityFn || OperandInfo.Prefix || OperandInfo.Prologue)
3954     FunctionOperands.push_back(OperandInfo);
3955 
3956   // If this is a function with a body, remember the prototype we are
3957   // creating now, so that we can match up the body with them later.
3958   if (!isProto) {
3959     Func->setIsMaterializable(true);
3960     FunctionsWithBodies.push_back(Func);
3961     DeferredFunctionInfo[Func] = 0;
3962   }
3963   return Error::success();
3964 }
3965 
3966 Error BitcodeReader::parseGlobalIndirectSymbolRecord(
3967     unsigned BitCode, ArrayRef<uint64_t> Record) {
3968   // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST)
3969   // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility,
3970   // dllstorageclass, threadlocal, unnamed_addr,
3971   // preemption specifier] (name in VST)
3972   // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage,
3973   // visibility, dllstorageclass, threadlocal, unnamed_addr,
3974   // preemption specifier] (name in VST)
3975   // v2: [strtab_offset, strtab_size, v1]
3976   StringRef Name;
3977   std::tie(Name, Record) = readNameFromStrtab(Record);
3978 
3979   bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD;
3980   if (Record.size() < (3 + (unsigned)NewRecord))
3981     return error("Invalid record");
3982   unsigned OpNum = 0;
3983   unsigned TypeID = Record[OpNum++];
3984   Type *Ty = getTypeByID(TypeID);
3985   if (!Ty)
3986     return error("Invalid record");
3987 
3988   unsigned AddrSpace;
3989   if (!NewRecord) {
3990     auto *PTy = dyn_cast<PointerType>(Ty);
3991     if (!PTy)
3992       return error("Invalid type for value");
3993     AddrSpace = PTy->getAddressSpace();
3994     TypeID = getContainedTypeID(TypeID);
3995     Ty = getTypeByID(TypeID);
3996     if (!Ty)
3997       return error("Missing element type for old-style indirect symbol");
3998   } else {
3999     AddrSpace = Record[OpNum++];
4000   }
4001 
4002   auto Val = Record[OpNum++];
4003   auto Linkage = Record[OpNum++];
4004   GlobalValue *NewGA;
4005   if (BitCode == bitc::MODULE_CODE_ALIAS ||
4006       BitCode == bitc::MODULE_CODE_ALIAS_OLD)
4007     NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
4008                                 TheModule);
4009   else
4010     NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
4011                                 nullptr, TheModule);
4012 
4013   // Local linkage must have default visibility.
4014   // auto-upgrade `hidden` and `protected` for old bitcode.
4015   if (OpNum != Record.size()) {
4016     auto VisInd = OpNum++;
4017     if (!NewGA->hasLocalLinkage())
4018       NewGA->setVisibility(getDecodedVisibility(Record[VisInd]));
4019   }
4020   if (BitCode == bitc::MODULE_CODE_ALIAS ||
4021       BitCode == bitc::MODULE_CODE_ALIAS_OLD) {
4022     if (OpNum != Record.size())
4023       NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++]));
4024     else
4025       upgradeDLLImportExportLinkage(NewGA, Linkage);
4026     if (OpNum != Record.size())
4027       NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++]));
4028     if (OpNum != Record.size())
4029       NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++]));
4030   }
4031   if (OpNum != Record.size())
4032     NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++]));
4033   inferDSOLocal(NewGA);
4034 
4035   // Check whether we have enough values to read a partition name.
4036   if (OpNum + 1 < Record.size()) {
4037     NewGA->setPartition(
4038         StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1]));
4039     OpNum += 2;
4040   }
4041 
4042   ValueList.push_back(NewGA, getVirtualTypeID(NewGA->getType(), TypeID));
4043   IndirectSymbolInits.push_back(std::make_pair(NewGA, Val));
4044   return Error::success();
4045 }
4046 
4047 Error BitcodeReader::parseModule(uint64_t ResumeBit,
4048                                  bool ShouldLazyLoadMetadata,
4049                                  DataLayoutCallbackTy DataLayoutCallback) {
4050   if (ResumeBit) {
4051     if (Error JumpFailed = Stream.JumpToBit(ResumeBit))
4052       return JumpFailed;
4053   } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
4054     return Err;
4055 
4056   SmallVector<uint64_t, 64> Record;
4057 
4058   // Parts of bitcode parsing depend on the datalayout.  Make sure we
4059   // finalize the datalayout before we run any of that code.
4060   bool ResolvedDataLayout = false;
4061   auto ResolveDataLayout = [&] {
4062     if (ResolvedDataLayout)
4063       return;
4064 
4065     // datalayout and triple can't be parsed after this point.
4066     ResolvedDataLayout = true;
4067 
4068     // Upgrade data layout string.
4069     std::string DL = llvm::UpgradeDataLayoutString(
4070         TheModule->getDataLayoutStr(), TheModule->getTargetTriple());
4071     TheModule->setDataLayout(DL);
4072 
4073     if (auto LayoutOverride =
4074             DataLayoutCallback(TheModule->getTargetTriple()))
4075       TheModule->setDataLayout(*LayoutOverride);
4076   };
4077 
4078   // Read all the records for this module.
4079   while (true) {
4080     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
4081     if (!MaybeEntry)
4082       return MaybeEntry.takeError();
4083     llvm::BitstreamEntry Entry = MaybeEntry.get();
4084 
4085     switch (Entry.Kind) {
4086     case BitstreamEntry::Error:
4087       return error("Malformed block");
4088     case BitstreamEntry::EndBlock:
4089       ResolveDataLayout();
4090       return globalCleanup();
4091 
4092     case BitstreamEntry::SubBlock:
4093       switch (Entry.ID) {
4094       default:  // Skip unknown content.
4095         if (Error Err = Stream.SkipBlock())
4096           return Err;
4097         break;
4098       case bitc::BLOCKINFO_BLOCK_ID:
4099         if (Error Err = readBlockInfo())
4100           return Err;
4101         break;
4102       case bitc::PARAMATTR_BLOCK_ID:
4103         if (Error Err = parseAttributeBlock())
4104           return Err;
4105         break;
4106       case bitc::PARAMATTR_GROUP_BLOCK_ID:
4107         if (Error Err = parseAttributeGroupBlock())
4108           return Err;
4109         break;
4110       case bitc::TYPE_BLOCK_ID_NEW:
4111         if (Error Err = parseTypeTable())
4112           return Err;
4113         break;
4114       case bitc::VALUE_SYMTAB_BLOCK_ID:
4115         if (!SeenValueSymbolTable) {
4116           // Either this is an old form VST without function index and an
4117           // associated VST forward declaration record (which would have caused
4118           // the VST to be jumped to and parsed before it was encountered
4119           // normally in the stream), or there were no function blocks to
4120           // trigger an earlier parsing of the VST.
4121           assert(VSTOffset == 0 || FunctionsWithBodies.empty());
4122           if (Error Err = parseValueSymbolTable())
4123             return Err;
4124           SeenValueSymbolTable = true;
4125         } else {
4126           // We must have had a VST forward declaration record, which caused
4127           // the parser to jump to and parse the VST earlier.
4128           assert(VSTOffset > 0);
4129           if (Error Err = Stream.SkipBlock())
4130             return Err;
4131         }
4132         break;
4133       case bitc::CONSTANTS_BLOCK_ID:
4134         if (Error Err = parseConstants())
4135           return Err;
4136         if (Error Err = resolveGlobalAndIndirectSymbolInits())
4137           return Err;
4138         break;
4139       case bitc::METADATA_BLOCK_ID:
4140         if (ShouldLazyLoadMetadata) {
4141           if (Error Err = rememberAndSkipMetadata())
4142             return Err;
4143           break;
4144         }
4145         assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata");
4146         if (Error Err = MDLoader->parseModuleMetadata())
4147           return Err;
4148         break;
4149       case bitc::METADATA_KIND_BLOCK_ID:
4150         if (Error Err = MDLoader->parseMetadataKinds())
4151           return Err;
4152         break;
4153       case bitc::FUNCTION_BLOCK_ID:
4154         ResolveDataLayout();
4155 
4156         // If this is the first function body we've seen, reverse the
4157         // FunctionsWithBodies list.
4158         if (!SeenFirstFunctionBody) {
4159           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
4160           if (Error Err = globalCleanup())
4161             return Err;
4162           SeenFirstFunctionBody = true;
4163         }
4164 
4165         if (VSTOffset > 0) {
4166           // If we have a VST forward declaration record, make sure we
4167           // parse the VST now if we haven't already. It is needed to
4168           // set up the DeferredFunctionInfo vector for lazy reading.
4169           if (!SeenValueSymbolTable) {
4170             if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset))
4171               return Err;
4172             SeenValueSymbolTable = true;
4173             // Fall through so that we record the NextUnreadBit below.
4174             // This is necessary in case we have an anonymous function that
4175             // is later materialized. Since it will not have a VST entry we
4176             // need to fall back to the lazy parse to find its offset.
4177           } else {
4178             // If we have a VST forward declaration record, but have already
4179             // parsed the VST (just above, when the first function body was
4180             // encountered here), then we are resuming the parse after
4181             // materializing functions. The ResumeBit points to the
4182             // start of the last function block recorded in the
4183             // DeferredFunctionInfo map. Skip it.
4184             if (Error Err = Stream.SkipBlock())
4185               return Err;
4186             continue;
4187           }
4188         }
4189 
4190         // Support older bitcode files that did not have the function
4191         // index in the VST, nor a VST forward declaration record, as
4192         // well as anonymous functions that do not have VST entries.
4193         // Build the DeferredFunctionInfo vector on the fly.
4194         if (Error Err = rememberAndSkipFunctionBody())
4195           return Err;
4196 
4197         // Suspend parsing when we reach the function bodies. Subsequent
4198         // materialization calls will resume it when necessary. If the bitcode
4199         // file is old, the symbol table will be at the end instead and will not
4200         // have been seen yet. In this case, just finish the parse now.
4201         if (SeenValueSymbolTable) {
4202           NextUnreadBit = Stream.GetCurrentBitNo();
4203           // After the VST has been parsed, we need to make sure intrinsic name
4204           // are auto-upgraded.
4205           return globalCleanup();
4206         }
4207         break;
4208       case bitc::USELIST_BLOCK_ID:
4209         if (Error Err = parseUseLists())
4210           return Err;
4211         break;
4212       case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID:
4213         if (Error Err = parseOperandBundleTags())
4214           return Err;
4215         break;
4216       case bitc::SYNC_SCOPE_NAMES_BLOCK_ID:
4217         if (Error Err = parseSyncScopeNames())
4218           return Err;
4219         break;
4220       }
4221       continue;
4222 
4223     case BitstreamEntry::Record:
4224       // The interesting case.
4225       break;
4226     }
4227 
4228     // Read a record.
4229     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
4230     if (!MaybeBitCode)
4231       return MaybeBitCode.takeError();
4232     switch (unsigned BitCode = MaybeBitCode.get()) {
4233     default: break;  // Default behavior, ignore unknown content.
4234     case bitc::MODULE_CODE_VERSION: {
4235       Expected<unsigned> VersionOrErr = parseVersionRecord(Record);
4236       if (!VersionOrErr)
4237         return VersionOrErr.takeError();
4238       UseRelativeIDs = *VersionOrErr >= 1;
4239       break;
4240     }
4241     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
4242       if (ResolvedDataLayout)
4243         return error("target triple too late in module");
4244       std::string S;
4245       if (convertToString(Record, 0, S))
4246         return error("Invalid record");
4247       TheModule->setTargetTriple(S);
4248       break;
4249     }
4250     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
4251       if (ResolvedDataLayout)
4252         return error("datalayout too late in module");
4253       std::string S;
4254       if (convertToString(Record, 0, S))
4255         return error("Invalid record");
4256       Expected<DataLayout> MaybeDL = DataLayout::parse(S);
4257       if (!MaybeDL)
4258         return MaybeDL.takeError();
4259       TheModule->setDataLayout(MaybeDL.get());
4260       break;
4261     }
4262     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
4263       std::string S;
4264       if (convertToString(Record, 0, S))
4265         return error("Invalid record");
4266       TheModule->setModuleInlineAsm(S);
4267       break;
4268     }
4269     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
4270       // Deprecated, but still needed to read old bitcode files.
4271       std::string S;
4272       if (convertToString(Record, 0, S))
4273         return error("Invalid record");
4274       // Ignore value.
4275       break;
4276     }
4277     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
4278       std::string S;
4279       if (convertToString(Record, 0, S))
4280         return error("Invalid record");
4281       SectionTable.push_back(S);
4282       break;
4283     }
4284     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
4285       std::string S;
4286       if (convertToString(Record, 0, S))
4287         return error("Invalid record");
4288       GCTable.push_back(S);
4289       break;
4290     }
4291     case bitc::MODULE_CODE_COMDAT:
4292       if (Error Err = parseComdatRecord(Record))
4293         return Err;
4294       break;
4295     // FIXME: BitcodeReader should handle {GLOBALVAR, FUNCTION, ALIAS, IFUNC}
4296     // written by ThinLinkBitcodeWriter. See
4297     // `ThinLinkBitcodeWriter::writeSimplifiedModuleInfo` for the format of each
4298     // record
4299     // (https://github.com/llvm/llvm-project/blob/b6a93967d9c11e79802b5e75cec1584d6c8aa472/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp#L4714)
4300     case bitc::MODULE_CODE_GLOBALVAR:
4301       if (Error Err = parseGlobalVarRecord(Record))
4302         return Err;
4303       break;
4304     case bitc::MODULE_CODE_FUNCTION:
4305       ResolveDataLayout();
4306       if (Error Err = parseFunctionRecord(Record))
4307         return Err;
4308       break;
4309     case bitc::MODULE_CODE_IFUNC:
4310     case bitc::MODULE_CODE_ALIAS:
4311     case bitc::MODULE_CODE_ALIAS_OLD:
4312       if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record))
4313         return Err;
4314       break;
4315     /// MODULE_CODE_VSTOFFSET: [offset]
4316     case bitc::MODULE_CODE_VSTOFFSET:
4317       if (Record.empty())
4318         return error("Invalid record");
4319       // Note that we subtract 1 here because the offset is relative to one word
4320       // before the start of the identification or module block, which was
4321       // historically always the start of the regular bitcode header.
4322       VSTOffset = Record[0] - 1;
4323       break;
4324     /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
4325     case bitc::MODULE_CODE_SOURCE_FILENAME:
4326       SmallString<128> ValueName;
4327       if (convertToString(Record, 0, ValueName))
4328         return error("Invalid record");
4329       TheModule->setSourceFileName(ValueName);
4330       break;
4331     }
4332     Record.clear();
4333   }
4334 }
4335 
4336 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
4337                                       bool IsImporting,
4338                                       DataLayoutCallbackTy DataLayoutCallback) {
4339   TheModule = M;
4340   MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting,
4341                             [&](unsigned ID) { return getTypeByID(ID); });
4342   return parseModule(0, ShouldLazyLoadMetadata, DataLayoutCallback);
4343 }
4344 
4345 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) {
4346   if (!isa<PointerType>(PtrType))
4347     return error("Load/Store operand is not a pointer type");
4348 
4349   if (!cast<PointerType>(PtrType)->isOpaqueOrPointeeTypeMatches(ValType))
4350     return error("Explicit load/store type does not match pointee "
4351                  "type of pointer operand");
4352   if (!PointerType::isLoadableOrStorableType(ValType))
4353     return error("Cannot load/store from pointer");
4354   return Error::success();
4355 }
4356 
4357 Error BitcodeReader::propagateAttributeTypes(CallBase *CB,
4358                                              ArrayRef<unsigned> ArgTyIDs) {
4359   AttributeList Attrs = CB->getAttributes();
4360   for (unsigned i = 0; i != CB->arg_size(); ++i) {
4361     for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet,
4362                                      Attribute::InAlloca}) {
4363       if (!Attrs.hasParamAttr(i, Kind) ||
4364           Attrs.getParamAttr(i, Kind).getValueAsType())
4365         continue;
4366 
4367       Type *PtrEltTy = getPtrElementTypeByID(ArgTyIDs[i]);
4368       if (!PtrEltTy)
4369         return error("Missing element type for typed attribute upgrade");
4370 
4371       Attribute NewAttr;
4372       switch (Kind) {
4373       case Attribute::ByVal:
4374         NewAttr = Attribute::getWithByValType(Context, PtrEltTy);
4375         break;
4376       case Attribute::StructRet:
4377         NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy);
4378         break;
4379       case Attribute::InAlloca:
4380         NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy);
4381         break;
4382       default:
4383         llvm_unreachable("not an upgraded type attribute");
4384       }
4385 
4386       Attrs = Attrs.addParamAttribute(Context, i, NewAttr);
4387     }
4388   }
4389 
4390   if (CB->isInlineAsm()) {
4391     const InlineAsm *IA = cast<InlineAsm>(CB->getCalledOperand());
4392     unsigned ArgNo = 0;
4393     for (const InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
4394       if (!CI.hasArg())
4395         continue;
4396 
4397       if (CI.isIndirect && !Attrs.getParamElementType(ArgNo)) {
4398         Type *ElemTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]);
4399         if (!ElemTy)
4400           return error("Missing element type for inline asm upgrade");
4401         Attrs = Attrs.addParamAttribute(
4402             Context, ArgNo,
4403             Attribute::get(Context, Attribute::ElementType, ElemTy));
4404       }
4405 
4406       ArgNo++;
4407     }
4408   }
4409 
4410   switch (CB->getIntrinsicID()) {
4411   case Intrinsic::preserve_array_access_index:
4412   case Intrinsic::preserve_struct_access_index:
4413   case Intrinsic::aarch64_ldaxr:
4414   case Intrinsic::aarch64_ldxr:
4415   case Intrinsic::aarch64_stlxr:
4416   case Intrinsic::aarch64_stxr:
4417   case Intrinsic::arm_ldaex:
4418   case Intrinsic::arm_ldrex:
4419   case Intrinsic::arm_stlex:
4420   case Intrinsic::arm_strex: {
4421     unsigned ArgNo;
4422     switch (CB->getIntrinsicID()) {
4423     case Intrinsic::aarch64_stlxr:
4424     case Intrinsic::aarch64_stxr:
4425     case Intrinsic::arm_stlex:
4426     case Intrinsic::arm_strex:
4427       ArgNo = 1;
4428       break;
4429     default:
4430       ArgNo = 0;
4431       break;
4432     }
4433     if (!Attrs.getParamElementType(ArgNo)) {
4434       Type *ElTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]);
4435       if (!ElTy)
4436         return error("Missing element type for elementtype upgrade");
4437       Attribute NewAttr = Attribute::get(Context, Attribute::ElementType, ElTy);
4438       Attrs = Attrs.addParamAttribute(Context, ArgNo, NewAttr);
4439     }
4440     break;
4441   }
4442   default:
4443     break;
4444   }
4445 
4446   CB->setAttributes(Attrs);
4447   return Error::success();
4448 }
4449 
4450 /// Lazily parse the specified function body block.
4451 Error BitcodeReader::parseFunctionBody(Function *F) {
4452   if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
4453     return Err;
4454 
4455   // Unexpected unresolved metadata when parsing function.
4456   if (MDLoader->hasFwdRefs())
4457     return error("Invalid function metadata: incoming forward references");
4458 
4459   InstructionList.clear();
4460   unsigned ModuleValueListSize = ValueList.size();
4461   unsigned ModuleMDLoaderSize = MDLoader->size();
4462 
4463   // Add all the function arguments to the value table.
4464   unsigned ArgNo = 0;
4465   unsigned FTyID = FunctionTypeIDs[F];
4466   for (Argument &I : F->args()) {
4467     unsigned ArgTyID = getContainedTypeID(FTyID, ArgNo + 1);
4468     assert(I.getType() == getTypeByID(ArgTyID) &&
4469            "Incorrect fully specified type for Function Argument");
4470     ValueList.push_back(&I, ArgTyID);
4471     ++ArgNo;
4472   }
4473   unsigned NextValueNo = ValueList.size();
4474   BasicBlock *CurBB = nullptr;
4475   unsigned CurBBNo = 0;
4476   // Block into which constant expressions from phi nodes are materialized.
4477   BasicBlock *PhiConstExprBB = nullptr;
4478   // Edge blocks for phi nodes into which constant expressions have been
4479   // expanded.
4480   SmallMapVector<std::pair<BasicBlock *, BasicBlock *>, BasicBlock *, 4>
4481     ConstExprEdgeBBs;
4482 
4483   DebugLoc LastLoc;
4484   auto getLastInstruction = [&]() -> Instruction * {
4485     if (CurBB && !CurBB->empty())
4486       return &CurBB->back();
4487     else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
4488              !FunctionBBs[CurBBNo - 1]->empty())
4489       return &FunctionBBs[CurBBNo - 1]->back();
4490     return nullptr;
4491   };
4492 
4493   std::vector<OperandBundleDef> OperandBundles;
4494 
4495   // Read all the records.
4496   SmallVector<uint64_t, 64> Record;
4497 
4498   while (true) {
4499     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
4500     if (!MaybeEntry)
4501       return MaybeEntry.takeError();
4502     llvm::BitstreamEntry Entry = MaybeEntry.get();
4503 
4504     switch (Entry.Kind) {
4505     case BitstreamEntry::Error:
4506       return error("Malformed block");
4507     case BitstreamEntry::EndBlock:
4508       goto OutOfRecordLoop;
4509 
4510     case BitstreamEntry::SubBlock:
4511       switch (Entry.ID) {
4512       default:  // Skip unknown content.
4513         if (Error Err = Stream.SkipBlock())
4514           return Err;
4515         break;
4516       case bitc::CONSTANTS_BLOCK_ID:
4517         if (Error Err = parseConstants())
4518           return Err;
4519         NextValueNo = ValueList.size();
4520         break;
4521       case bitc::VALUE_SYMTAB_BLOCK_ID:
4522         if (Error Err = parseValueSymbolTable())
4523           return Err;
4524         break;
4525       case bitc::METADATA_ATTACHMENT_ID:
4526         if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList))
4527           return Err;
4528         break;
4529       case bitc::METADATA_BLOCK_ID:
4530         assert(DeferredMetadataInfo.empty() &&
4531                "Must read all module-level metadata before function-level");
4532         if (Error Err = MDLoader->parseFunctionMetadata())
4533           return Err;
4534         break;
4535       case bitc::USELIST_BLOCK_ID:
4536         if (Error Err = parseUseLists())
4537           return Err;
4538         break;
4539       }
4540       continue;
4541 
4542     case BitstreamEntry::Record:
4543       // The interesting case.
4544       break;
4545     }
4546 
4547     // Read a record.
4548     Record.clear();
4549     Instruction *I = nullptr;
4550     unsigned ResTypeID = InvalidTypeID;
4551     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
4552     if (!MaybeBitCode)
4553       return MaybeBitCode.takeError();
4554     switch (unsigned BitCode = MaybeBitCode.get()) {
4555     default: // Default behavior: reject
4556       return error("Invalid value");
4557     case bitc::FUNC_CODE_DECLAREBLOCKS: {   // DECLAREBLOCKS: [nblocks]
4558       if (Record.empty() || Record[0] == 0)
4559         return error("Invalid record");
4560       // Create all the basic blocks for the function.
4561       FunctionBBs.resize(Record[0]);
4562 
4563       // See if anything took the address of blocks in this function.
4564       auto BBFRI = BasicBlockFwdRefs.find(F);
4565       if (BBFRI == BasicBlockFwdRefs.end()) {
4566         for (BasicBlock *&BB : FunctionBBs)
4567           BB = BasicBlock::Create(Context, "", F);
4568       } else {
4569         auto &BBRefs = BBFRI->second;
4570         // Check for invalid basic block references.
4571         if (BBRefs.size() > FunctionBBs.size())
4572           return error("Invalid ID");
4573         assert(!BBRefs.empty() && "Unexpected empty array");
4574         assert(!BBRefs.front() && "Invalid reference to entry block");
4575         for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
4576              ++I)
4577           if (I < RE && BBRefs[I]) {
4578             BBRefs[I]->insertInto(F);
4579             FunctionBBs[I] = BBRefs[I];
4580           } else {
4581             FunctionBBs[I] = BasicBlock::Create(Context, "", F);
4582           }
4583 
4584         // Erase from the table.
4585         BasicBlockFwdRefs.erase(BBFRI);
4586       }
4587 
4588       CurBB = FunctionBBs[0];
4589       continue;
4590     }
4591 
4592     case bitc::FUNC_CODE_BLOCKADDR_USERS: // BLOCKADDR_USERS: [vals...]
4593       // The record should not be emitted if it's an empty list.
4594       if (Record.empty())
4595         return error("Invalid record");
4596       // When we have the RARE case of a BlockAddress Constant that is not
4597       // scoped to the Function it refers to, we need to conservatively
4598       // materialize the referred to Function, regardless of whether or not
4599       // that Function will ultimately be linked, otherwise users of
4600       // BitcodeReader might start splicing out Function bodies such that we
4601       // might no longer be able to materialize the BlockAddress since the
4602       // BasicBlock (and entire body of the Function) the BlockAddress refers
4603       // to may have been moved. In the case that the user of BitcodeReader
4604       // decides ultimately not to link the Function body, materializing here
4605       // could be considered wasteful, but it's better than a deserialization
4606       // failure as described. This keeps BitcodeReader unaware of complex
4607       // linkage policy decisions such as those use by LTO, leaving those
4608       // decisions "one layer up."
4609       for (uint64_t ValID : Record)
4610         if (auto *F = dyn_cast<Function>(ValueList[ValID]))
4611           BackwardRefFunctions.push_back(F);
4612         else
4613           return error("Invalid record");
4614 
4615       continue;
4616 
4617     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
4618       // This record indicates that the last instruction is at the same
4619       // location as the previous instruction with a location.
4620       I = getLastInstruction();
4621 
4622       if (!I)
4623         return error("Invalid record");
4624       I->setDebugLoc(LastLoc);
4625       I = nullptr;
4626       continue;
4627 
4628     case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
4629       I = getLastInstruction();
4630       if (!I || Record.size() < 4)
4631         return error("Invalid record");
4632 
4633       unsigned Line = Record[0], Col = Record[1];
4634       unsigned ScopeID = Record[2], IAID = Record[3];
4635       bool isImplicitCode = Record.size() == 5 && Record[4];
4636 
4637       MDNode *Scope = nullptr, *IA = nullptr;
4638       if (ScopeID) {
4639         Scope = dyn_cast_or_null<MDNode>(
4640             MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1));
4641         if (!Scope)
4642           return error("Invalid record");
4643       }
4644       if (IAID) {
4645         IA = dyn_cast_or_null<MDNode>(
4646             MDLoader->getMetadataFwdRefOrLoad(IAID - 1));
4647         if (!IA)
4648           return error("Invalid record");
4649       }
4650       LastLoc = DILocation::get(Scope->getContext(), Line, Col, Scope, IA,
4651                                 isImplicitCode);
4652       I->setDebugLoc(LastLoc);
4653       I = nullptr;
4654       continue;
4655     }
4656     case bitc::FUNC_CODE_INST_UNOP: {    // UNOP: [opval, ty, opcode]
4657       unsigned OpNum = 0;
4658       Value *LHS;
4659       unsigned TypeID;
4660       if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) ||
4661           OpNum+1 > Record.size())
4662         return error("Invalid record");
4663 
4664       int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType());
4665       if (Opc == -1)
4666         return error("Invalid record");
4667       I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
4668       ResTypeID = TypeID;
4669       InstructionList.push_back(I);
4670       if (OpNum < Record.size()) {
4671         if (isa<FPMathOperator>(I)) {
4672           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4673           if (FMF.any())
4674             I->setFastMathFlags(FMF);
4675         }
4676       }
4677       break;
4678     }
4679     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
4680       unsigned OpNum = 0;
4681       Value *LHS, *RHS;
4682       unsigned TypeID;
4683       if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) ||
4684           popValue(Record, OpNum, NextValueNo, LHS->getType(), TypeID, RHS,
4685                    CurBB) ||
4686           OpNum+1 > Record.size())
4687         return error("Invalid record");
4688 
4689       int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
4690       if (Opc == -1)
4691         return error("Invalid record");
4692       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
4693       ResTypeID = TypeID;
4694       InstructionList.push_back(I);
4695       if (OpNum < Record.size()) {
4696         if (Opc == Instruction::Add ||
4697             Opc == Instruction::Sub ||
4698             Opc == Instruction::Mul ||
4699             Opc == Instruction::Shl) {
4700           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
4701             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
4702           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
4703             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
4704         } else if (Opc == Instruction::SDiv ||
4705                    Opc == Instruction::UDiv ||
4706                    Opc == Instruction::LShr ||
4707                    Opc == Instruction::AShr) {
4708           if (Record[OpNum] & (1 << bitc::PEO_EXACT))
4709             cast<BinaryOperator>(I)->setIsExact(true);
4710         } else if (isa<FPMathOperator>(I)) {
4711           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4712           if (FMF.any())
4713             I->setFastMathFlags(FMF);
4714         }
4715 
4716       }
4717       break;
4718     }
4719     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
4720       unsigned OpNum = 0;
4721       Value *Op;
4722       unsigned OpTypeID;
4723       if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) ||
4724           OpNum+2 != Record.size())
4725         return error("Invalid record");
4726 
4727       ResTypeID = Record[OpNum];
4728       Type *ResTy = getTypeByID(ResTypeID);
4729       int Opc = getDecodedCastOpcode(Record[OpNum + 1]);
4730       if (Opc == -1 || !ResTy)
4731         return error("Invalid record");
4732       Instruction *Temp = nullptr;
4733       if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
4734         if (Temp) {
4735           InstructionList.push_back(Temp);
4736           assert(CurBB && "No current BB?");
4737           CurBB->getInstList().push_back(Temp);
4738         }
4739       } else {
4740         auto CastOp = (Instruction::CastOps)Opc;
4741         if (!CastInst::castIsValid(CastOp, Op, ResTy))
4742           return error("Invalid cast");
4743         I = CastInst::Create(CastOp, Op, ResTy);
4744       }
4745       InstructionList.push_back(I);
4746       break;
4747     }
4748     case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
4749     case bitc::FUNC_CODE_INST_GEP_OLD:
4750     case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
4751       unsigned OpNum = 0;
4752 
4753       unsigned TyID;
4754       Type *Ty;
4755       bool InBounds;
4756 
4757       if (BitCode == bitc::FUNC_CODE_INST_GEP) {
4758         InBounds = Record[OpNum++];
4759         TyID = Record[OpNum++];
4760         Ty = getTypeByID(TyID);
4761       } else {
4762         InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
4763         TyID = InvalidTypeID;
4764         Ty = nullptr;
4765       }
4766 
4767       Value *BasePtr;
4768       unsigned BasePtrTypeID;
4769       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr, BasePtrTypeID,
4770                            CurBB))
4771         return error("Invalid record");
4772 
4773       if (!Ty) {
4774         TyID = getContainedTypeID(BasePtrTypeID);
4775         if (BasePtr->getType()->isVectorTy())
4776           TyID = getContainedTypeID(TyID);
4777         Ty = getTypeByID(TyID);
4778       } else if (!cast<PointerType>(BasePtr->getType()->getScalarType())
4779                       ->isOpaqueOrPointeeTypeMatches(Ty)) {
4780         return error(
4781             "Explicit gep type does not match pointee type of pointer operand");
4782       }
4783 
4784       SmallVector<Value*, 16> GEPIdx;
4785       while (OpNum != Record.size()) {
4786         Value *Op;
4787         unsigned OpTypeID;
4788         if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
4789           return error("Invalid record");
4790         GEPIdx.push_back(Op);
4791       }
4792 
4793       I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
4794 
4795       ResTypeID = TyID;
4796       if (cast<GEPOperator>(I)->getNumIndices() != 0) {
4797         auto GTI = std::next(gep_type_begin(I));
4798         for (Value *Idx : drop_begin(cast<GEPOperator>(I)->indices())) {
4799           unsigned SubType = 0;
4800           if (GTI.isStruct()) {
4801             ConstantInt *IdxC =
4802                 Idx->getType()->isVectorTy()
4803                     ? cast<ConstantInt>(cast<Constant>(Idx)->getSplatValue())
4804                     : cast<ConstantInt>(Idx);
4805             SubType = IdxC->getZExtValue();
4806           }
4807           ResTypeID = getContainedTypeID(ResTypeID, SubType);
4808           ++GTI;
4809         }
4810       }
4811 
4812       // At this point ResTypeID is the result element type. We need a pointer
4813       // or vector of pointer to it.
4814       ResTypeID = getVirtualTypeID(I->getType()->getScalarType(), ResTypeID);
4815       if (I->getType()->isVectorTy())
4816         ResTypeID = getVirtualTypeID(I->getType(), ResTypeID);
4817 
4818       InstructionList.push_back(I);
4819       if (InBounds)
4820         cast<GetElementPtrInst>(I)->setIsInBounds(true);
4821       break;
4822     }
4823 
4824     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
4825                                        // EXTRACTVAL: [opty, opval, n x indices]
4826       unsigned OpNum = 0;
4827       Value *Agg;
4828       unsigned AggTypeID;
4829       if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB))
4830         return error("Invalid record");
4831       Type *Ty = Agg->getType();
4832 
4833       unsigned RecSize = Record.size();
4834       if (OpNum == RecSize)
4835         return error("EXTRACTVAL: Invalid instruction with 0 indices");
4836 
4837       SmallVector<unsigned, 4> EXTRACTVALIdx;
4838       ResTypeID = AggTypeID;
4839       for (; OpNum != RecSize; ++OpNum) {
4840         bool IsArray = Ty->isArrayTy();
4841         bool IsStruct = Ty->isStructTy();
4842         uint64_t Index = Record[OpNum];
4843 
4844         if (!IsStruct && !IsArray)
4845           return error("EXTRACTVAL: Invalid type");
4846         if ((unsigned)Index != Index)
4847           return error("Invalid value");
4848         if (IsStruct && Index >= Ty->getStructNumElements())
4849           return error("EXTRACTVAL: Invalid struct index");
4850         if (IsArray && Index >= Ty->getArrayNumElements())
4851           return error("EXTRACTVAL: Invalid array index");
4852         EXTRACTVALIdx.push_back((unsigned)Index);
4853 
4854         if (IsStruct) {
4855           Ty = Ty->getStructElementType(Index);
4856           ResTypeID = getContainedTypeID(ResTypeID, Index);
4857         } else {
4858           Ty = Ty->getArrayElementType();
4859           ResTypeID = getContainedTypeID(ResTypeID);
4860         }
4861       }
4862 
4863       I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
4864       InstructionList.push_back(I);
4865       break;
4866     }
4867 
4868     case bitc::FUNC_CODE_INST_INSERTVAL: {
4869                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
4870       unsigned OpNum = 0;
4871       Value *Agg;
4872       unsigned AggTypeID;
4873       if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB))
4874         return error("Invalid record");
4875       Value *Val;
4876       unsigned ValTypeID;
4877       if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB))
4878         return error("Invalid record");
4879 
4880       unsigned RecSize = Record.size();
4881       if (OpNum == RecSize)
4882         return error("INSERTVAL: Invalid instruction with 0 indices");
4883 
4884       SmallVector<unsigned, 4> INSERTVALIdx;
4885       Type *CurTy = Agg->getType();
4886       for (; OpNum != RecSize; ++OpNum) {
4887         bool IsArray = CurTy->isArrayTy();
4888         bool IsStruct = CurTy->isStructTy();
4889         uint64_t Index = Record[OpNum];
4890 
4891         if (!IsStruct && !IsArray)
4892           return error("INSERTVAL: Invalid type");
4893         if ((unsigned)Index != Index)
4894           return error("Invalid value");
4895         if (IsStruct && Index >= CurTy->getStructNumElements())
4896           return error("INSERTVAL: Invalid struct index");
4897         if (IsArray && Index >= CurTy->getArrayNumElements())
4898           return error("INSERTVAL: Invalid array index");
4899 
4900         INSERTVALIdx.push_back((unsigned)Index);
4901         if (IsStruct)
4902           CurTy = CurTy->getStructElementType(Index);
4903         else
4904           CurTy = CurTy->getArrayElementType();
4905       }
4906 
4907       if (CurTy != Val->getType())
4908         return error("Inserted value type doesn't match aggregate type");
4909 
4910       I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
4911       ResTypeID = AggTypeID;
4912       InstructionList.push_back(I);
4913       break;
4914     }
4915 
4916     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
4917       // obsolete form of select
4918       // handles select i1 ... in old bitcode
4919       unsigned OpNum = 0;
4920       Value *TrueVal, *FalseVal, *Cond;
4921       unsigned TypeID;
4922       Type *CondType = Type::getInt1Ty(Context);
4923       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, TypeID,
4924                            CurBB) ||
4925           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), TypeID,
4926                    FalseVal, CurBB) ||
4927           popValue(Record, OpNum, NextValueNo, CondType,
4928                    getVirtualTypeID(CondType), Cond, CurBB))
4929         return error("Invalid record");
4930 
4931       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4932       ResTypeID = TypeID;
4933       InstructionList.push_back(I);
4934       break;
4935     }
4936 
4937     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
4938       // new form of select
4939       // handles select i1 or select [N x i1]
4940       unsigned OpNum = 0;
4941       Value *TrueVal, *FalseVal, *Cond;
4942       unsigned ValTypeID, CondTypeID;
4943       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, ValTypeID,
4944                            CurBB) ||
4945           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), ValTypeID,
4946                    FalseVal, CurBB) ||
4947           getValueTypePair(Record, OpNum, NextValueNo, Cond, CondTypeID, CurBB))
4948         return error("Invalid record");
4949 
4950       // select condition can be either i1 or [N x i1]
4951       if (VectorType* vector_type =
4952           dyn_cast<VectorType>(Cond->getType())) {
4953         // expect <n x i1>
4954         if (vector_type->getElementType() != Type::getInt1Ty(Context))
4955           return error("Invalid type for value");
4956       } else {
4957         // expect i1
4958         if (Cond->getType() != Type::getInt1Ty(Context))
4959           return error("Invalid type for value");
4960       }
4961 
4962       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4963       ResTypeID = ValTypeID;
4964       InstructionList.push_back(I);
4965       if (OpNum < Record.size() && isa<FPMathOperator>(I)) {
4966         FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4967         if (FMF.any())
4968           I->setFastMathFlags(FMF);
4969       }
4970       break;
4971     }
4972 
4973     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
4974       unsigned OpNum = 0;
4975       Value *Vec, *Idx;
4976       unsigned VecTypeID, IdxTypeID;
4977       if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB) ||
4978           getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB))
4979         return error("Invalid record");
4980       if (!Vec->getType()->isVectorTy())
4981         return error("Invalid type for value");
4982       I = ExtractElementInst::Create(Vec, Idx);
4983       ResTypeID = getContainedTypeID(VecTypeID);
4984       InstructionList.push_back(I);
4985       break;
4986     }
4987 
4988     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
4989       unsigned OpNum = 0;
4990       Value *Vec, *Elt, *Idx;
4991       unsigned VecTypeID, IdxTypeID;
4992       if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB))
4993         return error("Invalid record");
4994       if (!Vec->getType()->isVectorTy())
4995         return error("Invalid type for value");
4996       if (popValue(Record, OpNum, NextValueNo,
4997                    cast<VectorType>(Vec->getType())->getElementType(),
4998                    getContainedTypeID(VecTypeID), Elt, CurBB) ||
4999           getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB))
5000         return error("Invalid record");
5001       I = InsertElementInst::Create(Vec, Elt, Idx);
5002       ResTypeID = VecTypeID;
5003       InstructionList.push_back(I);
5004       break;
5005     }
5006 
5007     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
5008       unsigned OpNum = 0;
5009       Value *Vec1, *Vec2, *Mask;
5010       unsigned Vec1TypeID;
5011       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1, Vec1TypeID,
5012                            CurBB) ||
5013           popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec1TypeID,
5014                    Vec2, CurBB))
5015         return error("Invalid record");
5016 
5017       unsigned MaskTypeID;
5018       if (getValueTypePair(Record, OpNum, NextValueNo, Mask, MaskTypeID, CurBB))
5019         return error("Invalid record");
5020       if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
5021         return error("Invalid type for value");
5022 
5023       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
5024       ResTypeID =
5025           getVirtualTypeID(I->getType(), getContainedTypeID(Vec1TypeID));
5026       InstructionList.push_back(I);
5027       break;
5028     }
5029 
5030     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
5031       // Old form of ICmp/FCmp returning bool
5032       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
5033       // both legal on vectors but had different behaviour.
5034     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
5035       // FCmp/ICmp returning bool or vector of bool
5036 
5037       unsigned OpNum = 0;
5038       Value *LHS, *RHS;
5039       unsigned LHSTypeID;
5040       if (getValueTypePair(Record, OpNum, NextValueNo, LHS, LHSTypeID, CurBB) ||
5041           popValue(Record, OpNum, NextValueNo, LHS->getType(), LHSTypeID, RHS,
5042                    CurBB))
5043         return error("Invalid record");
5044 
5045       if (OpNum >= Record.size())
5046         return error(
5047             "Invalid record: operand number exceeded available operands");
5048 
5049       unsigned PredVal = Record[OpNum];
5050       bool IsFP = LHS->getType()->isFPOrFPVectorTy();
5051       FastMathFlags FMF;
5052       if (IsFP && Record.size() > OpNum+1)
5053         FMF = getDecodedFastMathFlags(Record[++OpNum]);
5054 
5055       if (OpNum+1 != Record.size())
5056         return error("Invalid record");
5057 
5058       if (LHS->getType()->isFPOrFPVectorTy())
5059         I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS);
5060       else
5061         I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS);
5062 
5063       ResTypeID = getVirtualTypeID(I->getType()->getScalarType());
5064       if (LHS->getType()->isVectorTy())
5065         ResTypeID = getVirtualTypeID(I->getType(), ResTypeID);
5066 
5067       if (FMF.any())
5068         I->setFastMathFlags(FMF);
5069       InstructionList.push_back(I);
5070       break;
5071     }
5072 
5073     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
5074       {
5075         unsigned Size = Record.size();
5076         if (Size == 0) {
5077           I = ReturnInst::Create(Context);
5078           InstructionList.push_back(I);
5079           break;
5080         }
5081 
5082         unsigned OpNum = 0;
5083         Value *Op = nullptr;
5084         unsigned OpTypeID;
5085         if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
5086           return error("Invalid record");
5087         if (OpNum != Record.size())
5088           return error("Invalid record");
5089 
5090         I = ReturnInst::Create(Context, Op);
5091         InstructionList.push_back(I);
5092         break;
5093       }
5094     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
5095       if (Record.size() != 1 && Record.size() != 3)
5096         return error("Invalid record");
5097       BasicBlock *TrueDest = getBasicBlock(Record[0]);
5098       if (!TrueDest)
5099         return error("Invalid record");
5100 
5101       if (Record.size() == 1) {
5102         I = BranchInst::Create(TrueDest);
5103         InstructionList.push_back(I);
5104       }
5105       else {
5106         BasicBlock *FalseDest = getBasicBlock(Record[1]);
5107         Type *CondType = Type::getInt1Ty(Context);
5108         Value *Cond = getValue(Record, 2, NextValueNo, CondType,
5109                                getVirtualTypeID(CondType), CurBB);
5110         if (!FalseDest || !Cond)
5111           return error("Invalid record");
5112         I = BranchInst::Create(TrueDest, FalseDest, Cond);
5113         InstructionList.push_back(I);
5114       }
5115       break;
5116     }
5117     case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#]
5118       if (Record.size() != 1 && Record.size() != 2)
5119         return error("Invalid record");
5120       unsigned Idx = 0;
5121       Type *TokenTy = Type::getTokenTy(Context);
5122       Value *CleanupPad = getValue(Record, Idx++, NextValueNo, TokenTy,
5123                                    getVirtualTypeID(TokenTy), CurBB);
5124       if (!CleanupPad)
5125         return error("Invalid record");
5126       BasicBlock *UnwindDest = nullptr;
5127       if (Record.size() == 2) {
5128         UnwindDest = getBasicBlock(Record[Idx++]);
5129         if (!UnwindDest)
5130           return error("Invalid record");
5131       }
5132 
5133       I = CleanupReturnInst::Create(CleanupPad, UnwindDest);
5134       InstructionList.push_back(I);
5135       break;
5136     }
5137     case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#]
5138       if (Record.size() != 2)
5139         return error("Invalid record");
5140       unsigned Idx = 0;
5141       Type *TokenTy = Type::getTokenTy(Context);
5142       Value *CatchPad = getValue(Record, Idx++, NextValueNo, TokenTy,
5143                                  getVirtualTypeID(TokenTy), CurBB);
5144       if (!CatchPad)
5145         return error("Invalid record");
5146       BasicBlock *BB = getBasicBlock(Record[Idx++]);
5147       if (!BB)
5148         return error("Invalid record");
5149 
5150       I = CatchReturnInst::Create(CatchPad, BB);
5151       InstructionList.push_back(I);
5152       break;
5153     }
5154     case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?]
5155       // We must have, at minimum, the outer scope and the number of arguments.
5156       if (Record.size() < 2)
5157         return error("Invalid record");
5158 
5159       unsigned Idx = 0;
5160 
5161       Type *TokenTy = Type::getTokenTy(Context);
5162       Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy,
5163                                   getVirtualTypeID(TokenTy), CurBB);
5164 
5165       unsigned NumHandlers = Record[Idx++];
5166 
5167       SmallVector<BasicBlock *, 2> Handlers;
5168       for (unsigned Op = 0; Op != NumHandlers; ++Op) {
5169         BasicBlock *BB = getBasicBlock(Record[Idx++]);
5170         if (!BB)
5171           return error("Invalid record");
5172         Handlers.push_back(BB);
5173       }
5174 
5175       BasicBlock *UnwindDest = nullptr;
5176       if (Idx + 1 == Record.size()) {
5177         UnwindDest = getBasicBlock(Record[Idx++]);
5178         if (!UnwindDest)
5179           return error("Invalid record");
5180       }
5181 
5182       if (Record.size() != Idx)
5183         return error("Invalid record");
5184 
5185       auto *CatchSwitch =
5186           CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers);
5187       for (BasicBlock *Handler : Handlers)
5188         CatchSwitch->addHandler(Handler);
5189       I = CatchSwitch;
5190       ResTypeID = getVirtualTypeID(I->getType());
5191       InstructionList.push_back(I);
5192       break;
5193     }
5194     case bitc::FUNC_CODE_INST_CATCHPAD:
5195     case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*]
5196       // We must have, at minimum, the outer scope and the number of arguments.
5197       if (Record.size() < 2)
5198         return error("Invalid record");
5199 
5200       unsigned Idx = 0;
5201 
5202       Type *TokenTy = Type::getTokenTy(Context);
5203       Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy,
5204                                   getVirtualTypeID(TokenTy), CurBB);
5205 
5206       unsigned NumArgOperands = Record[Idx++];
5207 
5208       SmallVector<Value *, 2> Args;
5209       for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
5210         Value *Val;
5211         unsigned ValTypeID;
5212         if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, nullptr))
5213           return error("Invalid record");
5214         Args.push_back(Val);
5215       }
5216 
5217       if (Record.size() != Idx)
5218         return error("Invalid record");
5219 
5220       if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD)
5221         I = CleanupPadInst::Create(ParentPad, Args);
5222       else
5223         I = CatchPadInst::Create(ParentPad, Args);
5224       ResTypeID = getVirtualTypeID(I->getType());
5225       InstructionList.push_back(I);
5226       break;
5227     }
5228     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
5229       // Check magic
5230       if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
5231         // "New" SwitchInst format with case ranges. The changes to write this
5232         // format were reverted but we still recognize bitcode that uses it.
5233         // Hopefully someday we will have support for case ranges and can use
5234         // this format again.
5235 
5236         unsigned OpTyID = Record[1];
5237         Type *OpTy = getTypeByID(OpTyID);
5238         unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
5239 
5240         Value *Cond = getValue(Record, 2, NextValueNo, OpTy, OpTyID, CurBB);
5241         BasicBlock *Default = getBasicBlock(Record[3]);
5242         if (!OpTy || !Cond || !Default)
5243           return error("Invalid record");
5244 
5245         unsigned NumCases = Record[4];
5246 
5247         SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
5248         InstructionList.push_back(SI);
5249 
5250         unsigned CurIdx = 5;
5251         for (unsigned i = 0; i != NumCases; ++i) {
5252           SmallVector<ConstantInt*, 1> CaseVals;
5253           unsigned NumItems = Record[CurIdx++];
5254           for (unsigned ci = 0; ci != NumItems; ++ci) {
5255             bool isSingleNumber = Record[CurIdx++];
5256 
5257             APInt Low;
5258             unsigned ActiveWords = 1;
5259             if (ValueBitWidth > 64)
5260               ActiveWords = Record[CurIdx++];
5261             Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
5262                                 ValueBitWidth);
5263             CurIdx += ActiveWords;
5264 
5265             if (!isSingleNumber) {
5266               ActiveWords = 1;
5267               if (ValueBitWidth > 64)
5268                 ActiveWords = Record[CurIdx++];
5269               APInt High = readWideAPInt(
5270                   makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth);
5271               CurIdx += ActiveWords;
5272 
5273               // FIXME: It is not clear whether values in the range should be
5274               // compared as signed or unsigned values. The partially
5275               // implemented changes that used this format in the past used
5276               // unsigned comparisons.
5277               for ( ; Low.ule(High); ++Low)
5278                 CaseVals.push_back(ConstantInt::get(Context, Low));
5279             } else
5280               CaseVals.push_back(ConstantInt::get(Context, Low));
5281           }
5282           BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
5283           for (ConstantInt *Cst : CaseVals)
5284             SI->addCase(Cst, DestBB);
5285         }
5286         I = SI;
5287         break;
5288       }
5289 
5290       // Old SwitchInst format without case ranges.
5291 
5292       if (Record.size() < 3 || (Record.size() & 1) == 0)
5293         return error("Invalid record");
5294       unsigned OpTyID = Record[0];
5295       Type *OpTy = getTypeByID(OpTyID);
5296       Value *Cond = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB);
5297       BasicBlock *Default = getBasicBlock(Record[2]);
5298       if (!OpTy || !Cond || !Default)
5299         return error("Invalid record");
5300       unsigned NumCases = (Record.size()-3)/2;
5301       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
5302       InstructionList.push_back(SI);
5303       for (unsigned i = 0, e = NumCases; i != e; ++i) {
5304         ConstantInt *CaseVal = dyn_cast_or_null<ConstantInt>(
5305             getFnValueByID(Record[3+i*2], OpTy, OpTyID, nullptr));
5306         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
5307         if (!CaseVal || !DestBB) {
5308           delete SI;
5309           return error("Invalid record");
5310         }
5311         SI->addCase(CaseVal, DestBB);
5312       }
5313       I = SI;
5314       break;
5315     }
5316     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
5317       if (Record.size() < 2)
5318         return error("Invalid record");
5319       unsigned OpTyID = Record[0];
5320       Type *OpTy = getTypeByID(OpTyID);
5321       Value *Address = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB);
5322       if (!OpTy || !Address)
5323         return error("Invalid record");
5324       unsigned NumDests = Record.size()-2;
5325       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
5326       InstructionList.push_back(IBI);
5327       for (unsigned i = 0, e = NumDests; i != e; ++i) {
5328         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
5329           IBI->addDestination(DestBB);
5330         } else {
5331           delete IBI;
5332           return error("Invalid record");
5333         }
5334       }
5335       I = IBI;
5336       break;
5337     }
5338 
5339     case bitc::FUNC_CODE_INST_INVOKE: {
5340       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
5341       if (Record.size() < 4)
5342         return error("Invalid record");
5343       unsigned OpNum = 0;
5344       AttributeList PAL = getAttributes(Record[OpNum++]);
5345       unsigned CCInfo = Record[OpNum++];
5346       BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]);
5347       BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]);
5348 
5349       unsigned FTyID = InvalidTypeID;
5350       FunctionType *FTy = nullptr;
5351       if ((CCInfo >> 13) & 1) {
5352         FTyID = Record[OpNum++];
5353         FTy = dyn_cast<FunctionType>(getTypeByID(FTyID));
5354         if (!FTy)
5355           return error("Explicit invoke type is not a function type");
5356       }
5357 
5358       Value *Callee;
5359       unsigned CalleeTypeID;
5360       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID,
5361                            CurBB))
5362         return error("Invalid record");
5363 
5364       PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
5365       if (!CalleeTy)
5366         return error("Callee is not a pointer");
5367       if (!FTy) {
5368         FTyID = getContainedTypeID(CalleeTypeID);
5369         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
5370         if (!FTy)
5371           return error("Callee is not of pointer to function type");
5372       } else if (!CalleeTy->isOpaqueOrPointeeTypeMatches(FTy))
5373         return error("Explicit invoke type does not match pointee type of "
5374                      "callee operand");
5375       if (Record.size() < FTy->getNumParams() + OpNum)
5376         return error("Insufficient operands to call");
5377 
5378       SmallVector<Value*, 16> Ops;
5379       SmallVector<unsigned, 16> ArgTyIDs;
5380       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5381         unsigned ArgTyID = getContainedTypeID(FTyID, i + 1);
5382         Ops.push_back(getValue(Record, OpNum, NextValueNo, FTy->getParamType(i),
5383                                ArgTyID, CurBB));
5384         ArgTyIDs.push_back(ArgTyID);
5385         if (!Ops.back())
5386           return error("Invalid record");
5387       }
5388 
5389       if (!FTy->isVarArg()) {
5390         if (Record.size() != OpNum)
5391           return error("Invalid record");
5392       } else {
5393         // Read type/value pairs for varargs params.
5394         while (OpNum != Record.size()) {
5395           Value *Op;
5396           unsigned OpTypeID;
5397           if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
5398             return error("Invalid record");
5399           Ops.push_back(Op);
5400           ArgTyIDs.push_back(OpTypeID);
5401         }
5402       }
5403 
5404       // Upgrade the bundles if needed.
5405       if (!OperandBundles.empty())
5406         UpgradeOperandBundles(OperandBundles);
5407 
5408       I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops,
5409                              OperandBundles);
5410       ResTypeID = getContainedTypeID(FTyID);
5411       OperandBundles.clear();
5412       InstructionList.push_back(I);
5413       cast<InvokeInst>(I)->setCallingConv(
5414           static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo));
5415       cast<InvokeInst>(I)->setAttributes(PAL);
5416       if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) {
5417         I->deleteValue();
5418         return Err;
5419       }
5420 
5421       break;
5422     }
5423     case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
5424       unsigned Idx = 0;
5425       Value *Val = nullptr;
5426       unsigned ValTypeID;
5427       if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, CurBB))
5428         return error("Invalid record");
5429       I = ResumeInst::Create(Val);
5430       InstructionList.push_back(I);
5431       break;
5432     }
5433     case bitc::FUNC_CODE_INST_CALLBR: {
5434       // CALLBR: [attr, cc, norm, transfs, fty, fnid, args]
5435       unsigned OpNum = 0;
5436       AttributeList PAL = getAttributes(Record[OpNum++]);
5437       unsigned CCInfo = Record[OpNum++];
5438 
5439       BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]);
5440       unsigned NumIndirectDests = Record[OpNum++];
5441       SmallVector<BasicBlock *, 16> IndirectDests;
5442       for (unsigned i = 0, e = NumIndirectDests; i != e; ++i)
5443         IndirectDests.push_back(getBasicBlock(Record[OpNum++]));
5444 
5445       unsigned FTyID = InvalidTypeID;
5446       FunctionType *FTy = nullptr;
5447       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
5448         FTyID = Record[OpNum++];
5449         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
5450         if (!FTy)
5451           return error("Explicit call type is not a function type");
5452       }
5453 
5454       Value *Callee;
5455       unsigned CalleeTypeID;
5456       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID,
5457                            CurBB))
5458         return error("Invalid record");
5459 
5460       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
5461       if (!OpTy)
5462         return error("Callee is not a pointer type");
5463       if (!FTy) {
5464         FTyID = getContainedTypeID(CalleeTypeID);
5465         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
5466         if (!FTy)
5467           return error("Callee is not of pointer to function type");
5468       } else if (!OpTy->isOpaqueOrPointeeTypeMatches(FTy))
5469         return error("Explicit call type does not match pointee type of "
5470                      "callee operand");
5471       if (Record.size() < FTy->getNumParams() + OpNum)
5472         return error("Insufficient operands to call");
5473 
5474       SmallVector<Value*, 16> Args;
5475       SmallVector<unsigned, 16> ArgTyIDs;
5476       // Read the fixed params.
5477       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5478         Value *Arg;
5479         unsigned ArgTyID = getContainedTypeID(FTyID, i + 1);
5480         if (FTy->getParamType(i)->isLabelTy())
5481           Arg = getBasicBlock(Record[OpNum]);
5482         else
5483           Arg = getValue(Record, OpNum, NextValueNo, FTy->getParamType(i),
5484                          ArgTyID, CurBB);
5485         if (!Arg)
5486           return error("Invalid record");
5487         Args.push_back(Arg);
5488         ArgTyIDs.push_back(ArgTyID);
5489       }
5490 
5491       // Read type/value pairs for varargs params.
5492       if (!FTy->isVarArg()) {
5493         if (OpNum != Record.size())
5494           return error("Invalid record");
5495       } else {
5496         while (OpNum != Record.size()) {
5497           Value *Op;
5498           unsigned OpTypeID;
5499           if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
5500             return error("Invalid record");
5501           Args.push_back(Op);
5502           ArgTyIDs.push_back(OpTypeID);
5503         }
5504       }
5505 
5506       // Upgrade the bundles if needed.
5507       if (!OperandBundles.empty())
5508         UpgradeOperandBundles(OperandBundles);
5509 
5510       I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args,
5511                              OperandBundles);
5512       ResTypeID = getContainedTypeID(FTyID);
5513       OperandBundles.clear();
5514       InstructionList.push_back(I);
5515       cast<CallBrInst>(I)->setCallingConv(
5516           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
5517       cast<CallBrInst>(I)->setAttributes(PAL);
5518       if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) {
5519         I->deleteValue();
5520         return Err;
5521       }
5522       break;
5523     }
5524     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
5525       I = new UnreachableInst(Context);
5526       InstructionList.push_back(I);
5527       break;
5528     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
5529       if (Record.empty())
5530         return error("Invalid phi record");
5531       // The first record specifies the type.
5532       unsigned TyID = Record[0];
5533       Type *Ty = getTypeByID(TyID);
5534       if (!Ty)
5535         return error("Invalid phi record");
5536 
5537       // Phi arguments are pairs of records of [value, basic block].
5538       // There is an optional final record for fast-math-flags if this phi has a
5539       // floating-point type.
5540       size_t NumArgs = (Record.size() - 1) / 2;
5541       PHINode *PN = PHINode::Create(Ty, NumArgs);
5542       if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN)) {
5543         PN->deleteValue();
5544         return error("Invalid phi record");
5545       }
5546       InstructionList.push_back(PN);
5547 
5548       SmallDenseMap<BasicBlock *, Value *> Args;
5549       for (unsigned i = 0; i != NumArgs; i++) {
5550         BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]);
5551         if (!BB) {
5552           PN->deleteValue();
5553           return error("Invalid phi BB");
5554         }
5555 
5556         // Phi nodes may contain the same predecessor multiple times, in which
5557         // case the incoming value must be identical. Directly reuse the already
5558         // seen value here, to avoid expanding a constant expression multiple
5559         // times.
5560         auto It = Args.find(BB);
5561         if (It != Args.end()) {
5562           PN->addIncoming(It->second, BB);
5563           continue;
5564         }
5565 
5566         // If there already is a block for this edge (from a different phi),
5567         // use it.
5568         BasicBlock *EdgeBB = ConstExprEdgeBBs.lookup({BB, CurBB});
5569         if (!EdgeBB) {
5570           // Otherwise, use a temporary block (that we will discard if it
5571           // turns out to be unnecessary).
5572           if (!PhiConstExprBB)
5573             PhiConstExprBB = BasicBlock::Create(Context, "phi.constexpr", F);
5574           EdgeBB = PhiConstExprBB;
5575         }
5576 
5577         // With the new function encoding, it is possible that operands have
5578         // negative IDs (for forward references).  Use a signed VBR
5579         // representation to keep the encoding small.
5580         Value *V;
5581         if (UseRelativeIDs)
5582           V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB);
5583         else
5584           V = getValue(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB);
5585         if (!V) {
5586           PN->deleteValue();
5587           PhiConstExprBB->eraseFromParent();
5588           return error("Invalid phi record");
5589         }
5590 
5591         if (EdgeBB == PhiConstExprBB && !EdgeBB->empty()) {
5592           ConstExprEdgeBBs.insert({{BB, CurBB}, EdgeBB});
5593           PhiConstExprBB = nullptr;
5594         }
5595         PN->addIncoming(V, BB);
5596         Args.insert({BB, V});
5597       }
5598       I = PN;
5599       ResTypeID = TyID;
5600 
5601       // If there are an even number of records, the final record must be FMF.
5602       if (Record.size() % 2 == 0) {
5603         assert(isa<FPMathOperator>(I) && "Unexpected phi type");
5604         FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]);
5605         if (FMF.any())
5606           I->setFastMathFlags(FMF);
5607       }
5608 
5609       break;
5610     }
5611 
5612     case bitc::FUNC_CODE_INST_LANDINGPAD:
5613     case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: {
5614       // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
5615       unsigned Idx = 0;
5616       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) {
5617         if (Record.size() < 3)
5618           return error("Invalid record");
5619       } else {
5620         assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD);
5621         if (Record.size() < 4)
5622           return error("Invalid record");
5623       }
5624       ResTypeID = Record[Idx++];
5625       Type *Ty = getTypeByID(ResTypeID);
5626       if (!Ty)
5627         return error("Invalid record");
5628       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) {
5629         Value *PersFn = nullptr;
5630         unsigned PersFnTypeID;
5631         if (getValueTypePair(Record, Idx, NextValueNo, PersFn, PersFnTypeID,
5632                              nullptr))
5633           return error("Invalid record");
5634 
5635         if (!F->hasPersonalityFn())
5636           F->setPersonalityFn(cast<Constant>(PersFn));
5637         else if (F->getPersonalityFn() != cast<Constant>(PersFn))
5638           return error("Personality function mismatch");
5639       }
5640 
5641       bool IsCleanup = !!Record[Idx++];
5642       unsigned NumClauses = Record[Idx++];
5643       LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses);
5644       LP->setCleanup(IsCleanup);
5645       for (unsigned J = 0; J != NumClauses; ++J) {
5646         LandingPadInst::ClauseType CT =
5647           LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
5648         Value *Val;
5649         unsigned ValTypeID;
5650 
5651         if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID,
5652                              nullptr)) {
5653           delete LP;
5654           return error("Invalid record");
5655         }
5656 
5657         assert((CT != LandingPadInst::Catch ||
5658                 !isa<ArrayType>(Val->getType())) &&
5659                "Catch clause has a invalid type!");
5660         assert((CT != LandingPadInst::Filter ||
5661                 isa<ArrayType>(Val->getType())) &&
5662                "Filter clause has invalid type!");
5663         LP->addClause(cast<Constant>(Val));
5664       }
5665 
5666       I = LP;
5667       InstructionList.push_back(I);
5668       break;
5669     }
5670 
5671     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
5672       if (Record.size() != 4 && Record.size() != 5)
5673         return error("Invalid record");
5674       using APV = AllocaPackedValues;
5675       const uint64_t Rec = Record[3];
5676       const bool InAlloca = Bitfield::get<APV::UsedWithInAlloca>(Rec);
5677       const bool SwiftError = Bitfield::get<APV::SwiftError>(Rec);
5678       unsigned TyID = Record[0];
5679       Type *Ty = getTypeByID(TyID);
5680       if (!Bitfield::get<APV::ExplicitType>(Rec)) {
5681         TyID = getContainedTypeID(TyID);
5682         Ty = getTypeByID(TyID);
5683         if (!Ty)
5684           return error("Missing element type for old-style alloca");
5685       }
5686       unsigned OpTyID = Record[1];
5687       Type *OpTy = getTypeByID(OpTyID);
5688       Value *Size = getFnValueByID(Record[2], OpTy, OpTyID, CurBB);
5689       MaybeAlign Align;
5690       uint64_t AlignExp =
5691           Bitfield::get<APV::AlignLower>(Rec) |
5692           (Bitfield::get<APV::AlignUpper>(Rec) << APV::AlignLower::Bits);
5693       if (Error Err = parseAlignmentValue(AlignExp, Align)) {
5694         return Err;
5695       }
5696       if (!Ty || !Size)
5697         return error("Invalid record");
5698 
5699       const DataLayout &DL = TheModule->getDataLayout();
5700       unsigned AS = Record.size() == 5 ? Record[4] : DL.getAllocaAddrSpace();
5701 
5702       SmallPtrSet<Type *, 4> Visited;
5703       if (!Align && !Ty->isSized(&Visited))
5704         return error("alloca of unsized type");
5705       if (!Align)
5706         Align = DL.getPrefTypeAlign(Ty);
5707 
5708       AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align);
5709       AI->setUsedWithInAlloca(InAlloca);
5710       AI->setSwiftError(SwiftError);
5711       I = AI;
5712       ResTypeID = getVirtualTypeID(AI->getType(), TyID);
5713       InstructionList.push_back(I);
5714       break;
5715     }
5716     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
5717       unsigned OpNum = 0;
5718       Value *Op;
5719       unsigned OpTypeID;
5720       if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) ||
5721           (OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
5722         return error("Invalid record");
5723 
5724       if (!isa<PointerType>(Op->getType()))
5725         return error("Load operand is not a pointer type");
5726 
5727       Type *Ty = nullptr;
5728       if (OpNum + 3 == Record.size()) {
5729         ResTypeID = Record[OpNum++];
5730         Ty = getTypeByID(ResTypeID);
5731       } else {
5732         ResTypeID = getContainedTypeID(OpTypeID);
5733         Ty = getTypeByID(ResTypeID);
5734         if (!Ty)
5735           return error("Missing element type for old-style load");
5736       }
5737 
5738       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
5739         return Err;
5740 
5741       MaybeAlign Align;
5742       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
5743         return Err;
5744       SmallPtrSet<Type *, 4> Visited;
5745       if (!Align && !Ty->isSized(&Visited))
5746         return error("load of unsized type");
5747       if (!Align)
5748         Align = TheModule->getDataLayout().getABITypeAlign(Ty);
5749       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align);
5750       InstructionList.push_back(I);
5751       break;
5752     }
5753     case bitc::FUNC_CODE_INST_LOADATOMIC: {
5754        // LOADATOMIC: [opty, op, align, vol, ordering, ssid]
5755       unsigned OpNum = 0;
5756       Value *Op;
5757       unsigned OpTypeID;
5758       if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) ||
5759           (OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
5760         return error("Invalid record");
5761 
5762       if (!isa<PointerType>(Op->getType()))
5763         return error("Load operand is not a pointer type");
5764 
5765       Type *Ty = nullptr;
5766       if (OpNum + 5 == Record.size()) {
5767         ResTypeID = Record[OpNum++];
5768         Ty = getTypeByID(ResTypeID);
5769       } else {
5770         ResTypeID = getContainedTypeID(OpTypeID);
5771         Ty = getTypeByID(ResTypeID);
5772         if (!Ty)
5773           return error("Missing element type for old style atomic load");
5774       }
5775 
5776       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
5777         return Err;
5778 
5779       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5780       if (Ordering == AtomicOrdering::NotAtomic ||
5781           Ordering == AtomicOrdering::Release ||
5782           Ordering == AtomicOrdering::AcquireRelease)
5783         return error("Invalid record");
5784       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
5785         return error("Invalid record");
5786       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
5787 
5788       MaybeAlign Align;
5789       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
5790         return Err;
5791       if (!Align)
5792         return error("Alignment missing from atomic load");
5793       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID);
5794       InstructionList.push_back(I);
5795       break;
5796     }
5797     case bitc::FUNC_CODE_INST_STORE:
5798     case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
5799       unsigned OpNum = 0;
5800       Value *Val, *Ptr;
5801       unsigned PtrTypeID, ValTypeID;
5802       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB))
5803         return error("Invalid record");
5804 
5805       if (BitCode == bitc::FUNC_CODE_INST_STORE) {
5806         if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB))
5807           return error("Invalid record");
5808       } else {
5809         ValTypeID = getContainedTypeID(PtrTypeID);
5810         if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID),
5811                      ValTypeID, Val, CurBB))
5812           return error("Invalid record");
5813       }
5814 
5815       if (OpNum + 2 != Record.size())
5816         return error("Invalid record");
5817 
5818       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
5819         return Err;
5820       MaybeAlign Align;
5821       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
5822         return Err;
5823       SmallPtrSet<Type *, 4> Visited;
5824       if (!Align && !Val->getType()->isSized(&Visited))
5825         return error("store of unsized type");
5826       if (!Align)
5827         Align = TheModule->getDataLayout().getABITypeAlign(Val->getType());
5828       I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align);
5829       InstructionList.push_back(I);
5830       break;
5831     }
5832     case bitc::FUNC_CODE_INST_STOREATOMIC:
5833     case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: {
5834       // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid]
5835       unsigned OpNum = 0;
5836       Value *Val, *Ptr;
5837       unsigned PtrTypeID, ValTypeID;
5838       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB) ||
5839           !isa<PointerType>(Ptr->getType()))
5840         return error("Invalid record");
5841       if (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC) {
5842         if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB))
5843           return error("Invalid record");
5844       } else {
5845         ValTypeID = getContainedTypeID(PtrTypeID);
5846         if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID),
5847                      ValTypeID, Val, CurBB))
5848           return error("Invalid record");
5849       }
5850 
5851       if (OpNum + 4 != Record.size())
5852         return error("Invalid record");
5853 
5854       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
5855         return Err;
5856       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5857       if (Ordering == AtomicOrdering::NotAtomic ||
5858           Ordering == AtomicOrdering::Acquire ||
5859           Ordering == AtomicOrdering::AcquireRelease)
5860         return error("Invalid record");
5861       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
5862       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
5863         return error("Invalid record");
5864 
5865       MaybeAlign Align;
5866       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
5867         return Err;
5868       if (!Align)
5869         return error("Alignment missing from atomic store");
5870       I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID);
5871       InstructionList.push_back(I);
5872       break;
5873     }
5874     case bitc::FUNC_CODE_INST_CMPXCHG_OLD: {
5875       // CMPXCHG_OLD: [ptrty, ptr, cmp, val, vol, ordering, synchscope,
5876       // failure_ordering?, weak?]
5877       const size_t NumRecords = Record.size();
5878       unsigned OpNum = 0;
5879       Value *Ptr = nullptr;
5880       unsigned PtrTypeID;
5881       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB))
5882         return error("Invalid record");
5883 
5884       if (!isa<PointerType>(Ptr->getType()))
5885         return error("Cmpxchg operand is not a pointer type");
5886 
5887       Value *Cmp = nullptr;
5888       unsigned CmpTypeID = getContainedTypeID(PtrTypeID);
5889       if (popValue(Record, OpNum, NextValueNo, getTypeByID(CmpTypeID),
5890                    CmpTypeID, Cmp, CurBB))
5891         return error("Invalid record");
5892 
5893       Value *New = nullptr;
5894       if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID,
5895                    New, CurBB) ||
5896           NumRecords < OpNum + 3 || NumRecords > OpNum + 5)
5897         return error("Invalid record");
5898 
5899       const AtomicOrdering SuccessOrdering =
5900           getDecodedOrdering(Record[OpNum + 1]);
5901       if (SuccessOrdering == AtomicOrdering::NotAtomic ||
5902           SuccessOrdering == AtomicOrdering::Unordered)
5903         return error("Invalid record");
5904 
5905       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
5906 
5907       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
5908         return Err;
5909 
5910       const AtomicOrdering FailureOrdering =
5911           NumRecords < 7
5912               ? AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering)
5913               : getDecodedOrdering(Record[OpNum + 3]);
5914 
5915       if (FailureOrdering == AtomicOrdering::NotAtomic ||
5916           FailureOrdering == AtomicOrdering::Unordered)
5917         return error("Invalid record");
5918 
5919       const Align Alignment(
5920           TheModule->getDataLayout().getTypeStoreSize(Cmp->getType()));
5921 
5922       I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering,
5923                                 FailureOrdering, SSID);
5924       cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
5925 
5926       if (NumRecords < 8) {
5927         // Before weak cmpxchgs existed, the instruction simply returned the
5928         // value loaded from memory, so bitcode files from that era will be
5929         // expecting the first component of a modern cmpxchg.
5930         CurBB->getInstList().push_back(I);
5931         I = ExtractValueInst::Create(I, 0);
5932         ResTypeID = CmpTypeID;
5933       } else {
5934         cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]);
5935         unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context));
5936         ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID});
5937       }
5938 
5939       InstructionList.push_back(I);
5940       break;
5941     }
5942     case bitc::FUNC_CODE_INST_CMPXCHG: {
5943       // CMPXCHG: [ptrty, ptr, cmp, val, vol, success_ordering, synchscope,
5944       // failure_ordering, weak, align?]
5945       const size_t NumRecords = Record.size();
5946       unsigned OpNum = 0;
5947       Value *Ptr = nullptr;
5948       unsigned PtrTypeID;
5949       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB))
5950         return error("Invalid record");
5951 
5952       if (!isa<PointerType>(Ptr->getType()))
5953         return error("Cmpxchg operand is not a pointer type");
5954 
5955       Value *Cmp = nullptr;
5956       unsigned CmpTypeID;
5957       if (getValueTypePair(Record, OpNum, NextValueNo, Cmp, CmpTypeID, CurBB))
5958         return error("Invalid record");
5959 
5960       Value *Val = nullptr;
5961       if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID, Val,
5962                    CurBB))
5963         return error("Invalid record");
5964 
5965       if (NumRecords < OpNum + 3 || NumRecords > OpNum + 6)
5966         return error("Invalid record");
5967 
5968       const bool IsVol = Record[OpNum];
5969 
5970       const AtomicOrdering SuccessOrdering =
5971           getDecodedOrdering(Record[OpNum + 1]);
5972       if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering))
5973         return error("Invalid cmpxchg success ordering");
5974 
5975       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
5976 
5977       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
5978         return Err;
5979 
5980       const AtomicOrdering FailureOrdering =
5981           getDecodedOrdering(Record[OpNum + 3]);
5982       if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering))
5983         return error("Invalid cmpxchg failure ordering");
5984 
5985       const bool IsWeak = Record[OpNum + 4];
5986 
5987       MaybeAlign Alignment;
5988 
5989       if (NumRecords == (OpNum + 6)) {
5990         if (Error Err = parseAlignmentValue(Record[OpNum + 5], Alignment))
5991           return Err;
5992       }
5993       if (!Alignment)
5994         Alignment =
5995             Align(TheModule->getDataLayout().getTypeStoreSize(Cmp->getType()));
5996 
5997       I = new AtomicCmpXchgInst(Ptr, Cmp, Val, *Alignment, SuccessOrdering,
5998                                 FailureOrdering, SSID);
5999       cast<AtomicCmpXchgInst>(I)->setVolatile(IsVol);
6000       cast<AtomicCmpXchgInst>(I)->setWeak(IsWeak);
6001 
6002       unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context));
6003       ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID});
6004 
6005       InstructionList.push_back(I);
6006       break;
6007     }
6008     case bitc::FUNC_CODE_INST_ATOMICRMW_OLD:
6009     case bitc::FUNC_CODE_INST_ATOMICRMW: {
6010       // ATOMICRMW_OLD: [ptrty, ptr, val, op, vol, ordering, ssid, align?]
6011       // ATOMICRMW: [ptrty, ptr, valty, val, op, vol, ordering, ssid, align?]
6012       const size_t NumRecords = Record.size();
6013       unsigned OpNum = 0;
6014 
6015       Value *Ptr = nullptr;
6016       unsigned PtrTypeID;
6017       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB))
6018         return error("Invalid record");
6019 
6020       if (!isa<PointerType>(Ptr->getType()))
6021         return error("Invalid record");
6022 
6023       Value *Val = nullptr;
6024       unsigned ValTypeID = InvalidTypeID;
6025       if (BitCode == bitc::FUNC_CODE_INST_ATOMICRMW_OLD) {
6026         ValTypeID = getContainedTypeID(PtrTypeID);
6027         if (popValue(Record, OpNum, NextValueNo,
6028                      getTypeByID(ValTypeID), ValTypeID, Val, CurBB))
6029           return error("Invalid record");
6030       } else {
6031         if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB))
6032           return error("Invalid record");
6033       }
6034 
6035       if (!(NumRecords == (OpNum + 4) || NumRecords == (OpNum + 5)))
6036         return error("Invalid record");
6037 
6038       const AtomicRMWInst::BinOp Operation =
6039           getDecodedRMWOperation(Record[OpNum]);
6040       if (Operation < AtomicRMWInst::FIRST_BINOP ||
6041           Operation > AtomicRMWInst::LAST_BINOP)
6042         return error("Invalid record");
6043 
6044       const bool IsVol = Record[OpNum + 1];
6045 
6046       const AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
6047       if (Ordering == AtomicOrdering::NotAtomic ||
6048           Ordering == AtomicOrdering::Unordered)
6049         return error("Invalid record");
6050 
6051       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
6052 
6053       MaybeAlign Alignment;
6054 
6055       if (NumRecords == (OpNum + 5)) {
6056         if (Error Err = parseAlignmentValue(Record[OpNum + 4], Alignment))
6057           return Err;
6058       }
6059 
6060       if (!Alignment)
6061         Alignment =
6062             Align(TheModule->getDataLayout().getTypeStoreSize(Val->getType()));
6063 
6064       I = new AtomicRMWInst(Operation, Ptr, Val, *Alignment, Ordering, SSID);
6065       ResTypeID = ValTypeID;
6066       cast<AtomicRMWInst>(I)->setVolatile(IsVol);
6067 
6068       InstructionList.push_back(I);
6069       break;
6070     }
6071     case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid]
6072       if (2 != Record.size())
6073         return error("Invalid record");
6074       AtomicOrdering Ordering = getDecodedOrdering(Record[0]);
6075       if (Ordering == AtomicOrdering::NotAtomic ||
6076           Ordering == AtomicOrdering::Unordered ||
6077           Ordering == AtomicOrdering::Monotonic)
6078         return error("Invalid record");
6079       SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]);
6080       I = new FenceInst(Context, Ordering, SSID);
6081       InstructionList.push_back(I);
6082       break;
6083     }
6084     case bitc::FUNC_CODE_INST_CALL: {
6085       // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...]
6086       if (Record.size() < 3)
6087         return error("Invalid record");
6088 
6089       unsigned OpNum = 0;
6090       AttributeList PAL = getAttributes(Record[OpNum++]);
6091       unsigned CCInfo = Record[OpNum++];
6092 
6093       FastMathFlags FMF;
6094       if ((CCInfo >> bitc::CALL_FMF) & 1) {
6095         FMF = getDecodedFastMathFlags(Record[OpNum++]);
6096         if (!FMF.any())
6097           return error("Fast math flags indicator set for call with no FMF");
6098       }
6099 
6100       unsigned FTyID = InvalidTypeID;
6101       FunctionType *FTy = nullptr;
6102       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
6103         FTyID = Record[OpNum++];
6104         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
6105         if (!FTy)
6106           return error("Explicit call type is not a function type");
6107       }
6108 
6109       Value *Callee;
6110       unsigned CalleeTypeID;
6111       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID,
6112                            CurBB))
6113         return error("Invalid record");
6114 
6115       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
6116       if (!OpTy)
6117         return error("Callee is not a pointer type");
6118       if (!FTy) {
6119         FTyID = getContainedTypeID(CalleeTypeID);
6120         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
6121         if (!FTy)
6122           return error("Callee is not of pointer to function type");
6123       } else if (!OpTy->isOpaqueOrPointeeTypeMatches(FTy))
6124         return error("Explicit call type does not match pointee type of "
6125                      "callee operand");
6126       if (Record.size() < FTy->getNumParams() + OpNum)
6127         return error("Insufficient operands to call");
6128 
6129       SmallVector<Value*, 16> Args;
6130       SmallVector<unsigned, 16> ArgTyIDs;
6131       // Read the fixed params.
6132       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
6133         unsigned ArgTyID = getContainedTypeID(FTyID, i + 1);
6134         if (FTy->getParamType(i)->isLabelTy())
6135           Args.push_back(getBasicBlock(Record[OpNum]));
6136         else
6137           Args.push_back(getValue(Record, OpNum, NextValueNo,
6138                                   FTy->getParamType(i), ArgTyID, CurBB));
6139         ArgTyIDs.push_back(ArgTyID);
6140         if (!Args.back())
6141           return error("Invalid record");
6142       }
6143 
6144       // Read type/value pairs for varargs params.
6145       if (!FTy->isVarArg()) {
6146         if (OpNum != Record.size())
6147           return error("Invalid record");
6148       } else {
6149         while (OpNum != Record.size()) {
6150           Value *Op;
6151           unsigned OpTypeID;
6152           if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
6153             return error("Invalid record");
6154           Args.push_back(Op);
6155           ArgTyIDs.push_back(OpTypeID);
6156         }
6157       }
6158 
6159       // Upgrade the bundles if needed.
6160       if (!OperandBundles.empty())
6161         UpgradeOperandBundles(OperandBundles);
6162 
6163       I = CallInst::Create(FTy, Callee, Args, OperandBundles);
6164       ResTypeID = getContainedTypeID(FTyID);
6165       OperandBundles.clear();
6166       InstructionList.push_back(I);
6167       cast<CallInst>(I)->setCallingConv(
6168           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
6169       CallInst::TailCallKind TCK = CallInst::TCK_None;
6170       if (CCInfo & 1 << bitc::CALL_TAIL)
6171         TCK = CallInst::TCK_Tail;
6172       if (CCInfo & (1 << bitc::CALL_MUSTTAIL))
6173         TCK = CallInst::TCK_MustTail;
6174       if (CCInfo & (1 << bitc::CALL_NOTAIL))
6175         TCK = CallInst::TCK_NoTail;
6176       cast<CallInst>(I)->setTailCallKind(TCK);
6177       cast<CallInst>(I)->setAttributes(PAL);
6178       if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) {
6179         I->deleteValue();
6180         return Err;
6181       }
6182       if (FMF.any()) {
6183         if (!isa<FPMathOperator>(I))
6184           return error("Fast-math-flags specified for call without "
6185                        "floating-point scalar or vector return type");
6186         I->setFastMathFlags(FMF);
6187       }
6188       break;
6189     }
6190     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
6191       if (Record.size() < 3)
6192         return error("Invalid record");
6193       unsigned OpTyID = Record[0];
6194       Type *OpTy = getTypeByID(OpTyID);
6195       Value *Op = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB);
6196       ResTypeID = Record[2];
6197       Type *ResTy = getTypeByID(ResTypeID);
6198       if (!OpTy || !Op || !ResTy)
6199         return error("Invalid record");
6200       I = new VAArgInst(Op, ResTy);
6201       InstructionList.push_back(I);
6202       break;
6203     }
6204 
6205     case bitc::FUNC_CODE_OPERAND_BUNDLE: {
6206       // A call or an invoke can be optionally prefixed with some variable
6207       // number of operand bundle blocks.  These blocks are read into
6208       // OperandBundles and consumed at the next call or invoke instruction.
6209 
6210       if (Record.empty() || Record[0] >= BundleTags.size())
6211         return error("Invalid record");
6212 
6213       std::vector<Value *> Inputs;
6214 
6215       unsigned OpNum = 1;
6216       while (OpNum != Record.size()) {
6217         Value *Op;
6218         unsigned OpTypeID;
6219         if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
6220           return error("Invalid record");
6221         Inputs.push_back(Op);
6222       }
6223 
6224       OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs));
6225       continue;
6226     }
6227 
6228     case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval]
6229       unsigned OpNum = 0;
6230       Value *Op = nullptr;
6231       unsigned OpTypeID;
6232       if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
6233         return error("Invalid record");
6234       if (OpNum != Record.size())
6235         return error("Invalid record");
6236 
6237       I = new FreezeInst(Op);
6238       ResTypeID = OpTypeID;
6239       InstructionList.push_back(I);
6240       break;
6241     }
6242     }
6243 
6244     // Add instruction to end of current BB.  If there is no current BB, reject
6245     // this file.
6246     if (!CurBB) {
6247       I->deleteValue();
6248       return error("Invalid instruction with no BB");
6249     }
6250     if (!OperandBundles.empty()) {
6251       I->deleteValue();
6252       return error("Operand bundles found with no consumer");
6253     }
6254     CurBB->getInstList().push_back(I);
6255 
6256     // If this was a terminator instruction, move to the next block.
6257     if (I->isTerminator()) {
6258       ++CurBBNo;
6259       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
6260     }
6261 
6262     // Non-void values get registered in the value table for future use.
6263     if (!I->getType()->isVoidTy()) {
6264       assert(I->getType() == getTypeByID(ResTypeID) &&
6265              "Incorrect result type ID");
6266       if (Error Err = ValueList.assignValue(NextValueNo++, I, ResTypeID))
6267         return Err;
6268     }
6269   }
6270 
6271 OutOfRecordLoop:
6272 
6273   if (!OperandBundles.empty())
6274     return error("Operand bundles found with no consumer");
6275 
6276   // Check the function list for unresolved values.
6277   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
6278     if (!A->getParent()) {
6279       // We found at least one unresolved value.  Nuke them all to avoid leaks.
6280       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
6281         if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
6282           A->replaceAllUsesWith(UndefValue::get(A->getType()));
6283           delete A;
6284         }
6285       }
6286       return error("Never resolved value found in function");
6287     }
6288   }
6289 
6290   // Unexpected unresolved metadata about to be dropped.
6291   if (MDLoader->hasFwdRefs())
6292     return error("Invalid function metadata: outgoing forward refs");
6293 
6294   if (PhiConstExprBB)
6295     PhiConstExprBB->eraseFromParent();
6296 
6297   for (const auto &Pair : ConstExprEdgeBBs) {
6298     BasicBlock *From = Pair.first.first;
6299     BasicBlock *To = Pair.first.second;
6300     BasicBlock *EdgeBB = Pair.second;
6301     BranchInst::Create(To, EdgeBB);
6302     From->getTerminator()->replaceSuccessorWith(To, EdgeBB);
6303     To->replacePhiUsesWith(From, EdgeBB);
6304     EdgeBB->moveBefore(To);
6305   }
6306 
6307   // Trim the value list down to the size it was before we parsed this function.
6308   ValueList.shrinkTo(ModuleValueListSize);
6309   MDLoader->shrinkTo(ModuleMDLoaderSize);
6310   std::vector<BasicBlock*>().swap(FunctionBBs);
6311   return Error::success();
6312 }
6313 
6314 /// Find the function body in the bitcode stream
6315 Error BitcodeReader::findFunctionInStream(
6316     Function *F,
6317     DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
6318   while (DeferredFunctionInfoIterator->second == 0) {
6319     // This is the fallback handling for the old format bitcode that
6320     // didn't contain the function index in the VST, or when we have
6321     // an anonymous function which would not have a VST entry.
6322     // Assert that we have one of those two cases.
6323     assert(VSTOffset == 0 || !F->hasName());
6324     // Parse the next body in the stream and set its position in the
6325     // DeferredFunctionInfo map.
6326     if (Error Err = rememberAndSkipFunctionBodies())
6327       return Err;
6328   }
6329   return Error::success();
6330 }
6331 
6332 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) {
6333   if (Val == SyncScope::SingleThread || Val == SyncScope::System)
6334     return SyncScope::ID(Val);
6335   if (Val >= SSIDs.size())
6336     return SyncScope::System; // Map unknown synchronization scopes to system.
6337   return SSIDs[Val];
6338 }
6339 
6340 //===----------------------------------------------------------------------===//
6341 // GVMaterializer implementation
6342 //===----------------------------------------------------------------------===//
6343 
6344 Error BitcodeReader::materialize(GlobalValue *GV) {
6345   Function *F = dyn_cast<Function>(GV);
6346   // If it's not a function or is already material, ignore the request.
6347   if (!F || !F->isMaterializable())
6348     return Error::success();
6349 
6350   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
6351   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
6352   // If its position is recorded as 0, its body is somewhere in the stream
6353   // but we haven't seen it yet.
6354   if (DFII->second == 0)
6355     if (Error Err = findFunctionInStream(F, DFII))
6356       return Err;
6357 
6358   // Materialize metadata before parsing any function bodies.
6359   if (Error Err = materializeMetadata())
6360     return Err;
6361 
6362   // Move the bit stream to the saved position of the deferred function body.
6363   if (Error JumpFailed = Stream.JumpToBit(DFII->second))
6364     return JumpFailed;
6365   if (Error Err = parseFunctionBody(F))
6366     return Err;
6367   F->setIsMaterializable(false);
6368 
6369   if (StripDebugInfo)
6370     stripDebugInfo(*F);
6371 
6372   // Upgrade any old intrinsic calls in the function.
6373   for (auto &I : UpgradedIntrinsics) {
6374     for (User *U : llvm::make_early_inc_range(I.first->materialized_users()))
6375       if (CallInst *CI = dyn_cast<CallInst>(U))
6376         UpgradeIntrinsicCall(CI, I.second);
6377   }
6378 
6379   // Update calls to the remangled intrinsics
6380   for (auto &I : RemangledIntrinsics)
6381     for (User *U : llvm::make_early_inc_range(I.first->materialized_users()))
6382       // Don't expect any other users than call sites
6383       cast<CallBase>(U)->setCalledFunction(I.second);
6384 
6385   // Finish fn->subprogram upgrade for materialized functions.
6386   if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F))
6387     F->setSubprogram(SP);
6388 
6389   // Check if the TBAA Metadata are valid, otherwise we will need to strip them.
6390   if (!MDLoader->isStrippingTBAA()) {
6391     for (auto &I : instructions(F)) {
6392       MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa);
6393       if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA))
6394         continue;
6395       MDLoader->setStripTBAA(true);
6396       stripTBAA(F->getParent());
6397     }
6398   }
6399 
6400   for (auto &I : instructions(F)) {
6401     // "Upgrade" older incorrect branch weights by dropping them.
6402     if (auto *MD = I.getMetadata(LLVMContext::MD_prof)) {
6403       if (MD->getOperand(0) != nullptr && isa<MDString>(MD->getOperand(0))) {
6404         MDString *MDS = cast<MDString>(MD->getOperand(0));
6405         StringRef ProfName = MDS->getString();
6406         // Check consistency of !prof branch_weights metadata.
6407         if (!ProfName.equals("branch_weights"))
6408           continue;
6409         unsigned ExpectedNumOperands = 0;
6410         if (BranchInst *BI = dyn_cast<BranchInst>(&I))
6411           ExpectedNumOperands = BI->getNumSuccessors();
6412         else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I))
6413           ExpectedNumOperands = SI->getNumSuccessors();
6414         else if (isa<CallInst>(&I))
6415           ExpectedNumOperands = 1;
6416         else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I))
6417           ExpectedNumOperands = IBI->getNumDestinations();
6418         else if (isa<SelectInst>(&I))
6419           ExpectedNumOperands = 2;
6420         else
6421           continue; // ignore and continue.
6422 
6423         // If branch weight doesn't match, just strip branch weight.
6424         if (MD->getNumOperands() != 1 + ExpectedNumOperands)
6425           I.setMetadata(LLVMContext::MD_prof, nullptr);
6426       }
6427     }
6428 
6429     // Remove incompatible attributes on function calls.
6430     if (auto *CI = dyn_cast<CallBase>(&I)) {
6431       CI->removeRetAttrs(AttributeFuncs::typeIncompatible(
6432           CI->getFunctionType()->getReturnType()));
6433 
6434       for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ++ArgNo)
6435         CI->removeParamAttrs(ArgNo, AttributeFuncs::typeIncompatible(
6436                                         CI->getArgOperand(ArgNo)->getType()));
6437     }
6438   }
6439 
6440   // Look for functions that rely on old function attribute behavior.
6441   UpgradeFunctionAttributes(*F);
6442 
6443   // Bring in any functions that this function forward-referenced via
6444   // blockaddresses.
6445   return materializeForwardReferencedFunctions();
6446 }
6447 
6448 Error BitcodeReader::materializeModule() {
6449   if (Error Err = materializeMetadata())
6450     return Err;
6451 
6452   // Promise to materialize all forward references.
6453   WillMaterializeAllForwardRefs = true;
6454 
6455   // Iterate over the module, deserializing any functions that are still on
6456   // disk.
6457   for (Function &F : *TheModule) {
6458     if (Error Err = materialize(&F))
6459       return Err;
6460   }
6461   // At this point, if there are any function bodies, parse the rest of
6462   // the bits in the module past the last function block we have recorded
6463   // through either lazy scanning or the VST.
6464   if (LastFunctionBlockBit || NextUnreadBit)
6465     if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit
6466                                     ? LastFunctionBlockBit
6467                                     : NextUnreadBit))
6468       return Err;
6469 
6470   // Check that all block address forward references got resolved (as we
6471   // promised above).
6472   if (!BasicBlockFwdRefs.empty())
6473     return error("Never resolved function from blockaddress");
6474 
6475   // Upgrade any intrinsic calls that slipped through (should not happen!) and
6476   // delete the old functions to clean up. We can't do this unless the entire
6477   // module is materialized because there could always be another function body
6478   // with calls to the old function.
6479   for (auto &I : UpgradedIntrinsics) {
6480     for (auto *U : I.first->users()) {
6481       if (CallInst *CI = dyn_cast<CallInst>(U))
6482         UpgradeIntrinsicCall(CI, I.second);
6483     }
6484     if (!I.first->use_empty())
6485       I.first->replaceAllUsesWith(I.second);
6486     I.first->eraseFromParent();
6487   }
6488   UpgradedIntrinsics.clear();
6489   // Do the same for remangled intrinsics
6490   for (auto &I : RemangledIntrinsics) {
6491     I.first->replaceAllUsesWith(I.second);
6492     I.first->eraseFromParent();
6493   }
6494   RemangledIntrinsics.clear();
6495 
6496   UpgradeDebugInfo(*TheModule);
6497 
6498   UpgradeModuleFlags(*TheModule);
6499 
6500   UpgradeARCRuntime(*TheModule);
6501 
6502   return Error::success();
6503 }
6504 
6505 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
6506   return IdentifiedStructTypes;
6507 }
6508 
6509 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
6510     BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex,
6511     StringRef ModulePath, unsigned ModuleId)
6512     : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex),
6513       ModulePath(ModulePath), ModuleId(ModuleId) {}
6514 
6515 void ModuleSummaryIndexBitcodeReader::addThisModule() {
6516   TheIndex.addModule(ModulePath, ModuleId);
6517 }
6518 
6519 ModuleSummaryIndex::ModuleInfo *
6520 ModuleSummaryIndexBitcodeReader::getThisModule() {
6521   return TheIndex.getModule(ModulePath);
6522 }
6523 
6524 std::pair<ValueInfo, GlobalValue::GUID>
6525 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) {
6526   auto VGI = ValueIdToValueInfoMap[ValueId];
6527   assert(VGI.first);
6528   return VGI;
6529 }
6530 
6531 void ModuleSummaryIndexBitcodeReader::setValueGUID(
6532     uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage,
6533     StringRef SourceFileName) {
6534   std::string GlobalId =
6535       GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName);
6536   auto ValueGUID = GlobalValue::getGUID(GlobalId);
6537   auto OriginalNameID = ValueGUID;
6538   if (GlobalValue::isLocalLinkage(Linkage))
6539     OriginalNameID = GlobalValue::getGUID(ValueName);
6540   if (PrintSummaryGUIDs)
6541     dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is "
6542            << ValueName << "\n";
6543 
6544   // UseStrtab is false for legacy summary formats and value names are
6545   // created on stack. In that case we save the name in a string saver in
6546   // the index so that the value name can be recorded.
6547   ValueIdToValueInfoMap[ValueID] = std::make_pair(
6548       TheIndex.getOrInsertValueInfo(
6549           ValueGUID,
6550           UseStrtab ? ValueName : TheIndex.saveString(ValueName)),
6551       OriginalNameID);
6552 }
6553 
6554 // Specialized value symbol table parser used when reading module index
6555 // blocks where we don't actually create global values. The parsed information
6556 // is saved in the bitcode reader for use when later parsing summaries.
6557 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable(
6558     uint64_t Offset,
6559     DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) {
6560   // With a strtab the VST is not required to parse the summary.
6561   if (UseStrtab)
6562     return Error::success();
6563 
6564   assert(Offset > 0 && "Expected non-zero VST offset");
6565   Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
6566   if (!MaybeCurrentBit)
6567     return MaybeCurrentBit.takeError();
6568   uint64_t CurrentBit = MaybeCurrentBit.get();
6569 
6570   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
6571     return Err;
6572 
6573   SmallVector<uint64_t, 64> Record;
6574 
6575   // Read all the records for this value table.
6576   SmallString<128> ValueName;
6577 
6578   while (true) {
6579     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6580     if (!MaybeEntry)
6581       return MaybeEntry.takeError();
6582     BitstreamEntry Entry = MaybeEntry.get();
6583 
6584     switch (Entry.Kind) {
6585     case BitstreamEntry::SubBlock: // Handled for us already.
6586     case BitstreamEntry::Error:
6587       return error("Malformed block");
6588     case BitstreamEntry::EndBlock:
6589       // Done parsing VST, jump back to wherever we came from.
6590       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
6591         return JumpFailed;
6592       return Error::success();
6593     case BitstreamEntry::Record:
6594       // The interesting case.
6595       break;
6596     }
6597 
6598     // Read a record.
6599     Record.clear();
6600     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
6601     if (!MaybeRecord)
6602       return MaybeRecord.takeError();
6603     switch (MaybeRecord.get()) {
6604     default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records).
6605       break;
6606     case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
6607       if (convertToString(Record, 1, ValueName))
6608         return error("Invalid record");
6609       unsigned ValueID = Record[0];
6610       assert(!SourceFileName.empty());
6611       auto VLI = ValueIdToLinkageMap.find(ValueID);
6612       assert(VLI != ValueIdToLinkageMap.end() &&
6613              "No linkage found for VST entry?");
6614       auto Linkage = VLI->second;
6615       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
6616       ValueName.clear();
6617       break;
6618     }
6619     case bitc::VST_CODE_FNENTRY: {
6620       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
6621       if (convertToString(Record, 2, ValueName))
6622         return error("Invalid record");
6623       unsigned ValueID = Record[0];
6624       assert(!SourceFileName.empty());
6625       auto VLI = ValueIdToLinkageMap.find(ValueID);
6626       assert(VLI != ValueIdToLinkageMap.end() &&
6627              "No linkage found for VST entry?");
6628       auto Linkage = VLI->second;
6629       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
6630       ValueName.clear();
6631       break;
6632     }
6633     case bitc::VST_CODE_COMBINED_ENTRY: {
6634       // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
6635       unsigned ValueID = Record[0];
6636       GlobalValue::GUID RefGUID = Record[1];
6637       // The "original name", which is the second value of the pair will be
6638       // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index.
6639       ValueIdToValueInfoMap[ValueID] =
6640           std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
6641       break;
6642     }
6643     }
6644   }
6645 }
6646 
6647 // Parse just the blocks needed for building the index out of the module.
6648 // At the end of this routine the module Index is populated with a map
6649 // from global value id to GlobalValueSummary objects.
6650 Error ModuleSummaryIndexBitcodeReader::parseModule() {
6651   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
6652     return Err;
6653 
6654   SmallVector<uint64_t, 64> Record;
6655   DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap;
6656   unsigned ValueId = 0;
6657 
6658   // Read the index for this module.
6659   while (true) {
6660     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6661     if (!MaybeEntry)
6662       return MaybeEntry.takeError();
6663     llvm::BitstreamEntry Entry = MaybeEntry.get();
6664 
6665     switch (Entry.Kind) {
6666     case BitstreamEntry::Error:
6667       return error("Malformed block");
6668     case BitstreamEntry::EndBlock:
6669       return Error::success();
6670 
6671     case BitstreamEntry::SubBlock:
6672       switch (Entry.ID) {
6673       default: // Skip unknown content.
6674         if (Error Err = Stream.SkipBlock())
6675           return Err;
6676         break;
6677       case bitc::BLOCKINFO_BLOCK_ID:
6678         // Need to parse these to get abbrev ids (e.g. for VST)
6679         if (Error Err = readBlockInfo())
6680           return Err;
6681         break;
6682       case bitc::VALUE_SYMTAB_BLOCK_ID:
6683         // Should have been parsed earlier via VSTOffset, unless there
6684         // is no summary section.
6685         assert(((SeenValueSymbolTable && VSTOffset > 0) ||
6686                 !SeenGlobalValSummary) &&
6687                "Expected early VST parse via VSTOffset record");
6688         if (Error Err = Stream.SkipBlock())
6689           return Err;
6690         break;
6691       case bitc::GLOBALVAL_SUMMARY_BLOCK_ID:
6692       case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID:
6693         // Add the module if it is a per-module index (has a source file name).
6694         if (!SourceFileName.empty())
6695           addThisModule();
6696         assert(!SeenValueSymbolTable &&
6697                "Already read VST when parsing summary block?");
6698         // We might not have a VST if there were no values in the
6699         // summary. An empty summary block generated when we are
6700         // performing ThinLTO compiles so we don't later invoke
6701         // the regular LTO process on them.
6702         if (VSTOffset > 0) {
6703           if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap))
6704             return Err;
6705           SeenValueSymbolTable = true;
6706         }
6707         SeenGlobalValSummary = true;
6708         if (Error Err = parseEntireSummary(Entry.ID))
6709           return Err;
6710         break;
6711       case bitc::MODULE_STRTAB_BLOCK_ID:
6712         if (Error Err = parseModuleStringTable())
6713           return Err;
6714         break;
6715       }
6716       continue;
6717 
6718     case BitstreamEntry::Record: {
6719         Record.clear();
6720         Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
6721         if (!MaybeBitCode)
6722           return MaybeBitCode.takeError();
6723         switch (MaybeBitCode.get()) {
6724         default:
6725           break; // Default behavior, ignore unknown content.
6726         case bitc::MODULE_CODE_VERSION: {
6727           if (Error Err = parseVersionRecord(Record).takeError())
6728             return Err;
6729           break;
6730         }
6731         /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
6732         case bitc::MODULE_CODE_SOURCE_FILENAME: {
6733           SmallString<128> ValueName;
6734           if (convertToString(Record, 0, ValueName))
6735             return error("Invalid record");
6736           SourceFileName = ValueName.c_str();
6737           break;
6738         }
6739         /// MODULE_CODE_HASH: [5*i32]
6740         case bitc::MODULE_CODE_HASH: {
6741           if (Record.size() != 5)
6742             return error("Invalid hash length " + Twine(Record.size()).str());
6743           auto &Hash = getThisModule()->second.second;
6744           int Pos = 0;
6745           for (auto &Val : Record) {
6746             assert(!(Val >> 32) && "Unexpected high bits set");
6747             Hash[Pos++] = Val;
6748           }
6749           break;
6750         }
6751         /// MODULE_CODE_VSTOFFSET: [offset]
6752         case bitc::MODULE_CODE_VSTOFFSET:
6753           if (Record.empty())
6754             return error("Invalid record");
6755           // Note that we subtract 1 here because the offset is relative to one
6756           // word before the start of the identification or module block, which
6757           // was historically always the start of the regular bitcode header.
6758           VSTOffset = Record[0] - 1;
6759           break;
6760         // v1 GLOBALVAR: [pointer type, isconst,     initid,       linkage, ...]
6761         // v1 FUNCTION:  [type,         callingconv, isproto,      linkage, ...]
6762         // v1 ALIAS:     [alias type,   addrspace,   aliasee val#, linkage, ...]
6763         // v2: [strtab offset, strtab size, v1]
6764         case bitc::MODULE_CODE_GLOBALVAR:
6765         case bitc::MODULE_CODE_FUNCTION:
6766         case bitc::MODULE_CODE_ALIAS: {
6767           StringRef Name;
6768           ArrayRef<uint64_t> GVRecord;
6769           std::tie(Name, GVRecord) = readNameFromStrtab(Record);
6770           if (GVRecord.size() <= 3)
6771             return error("Invalid record");
6772           uint64_t RawLinkage = GVRecord[3];
6773           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
6774           if (!UseStrtab) {
6775             ValueIdToLinkageMap[ValueId++] = Linkage;
6776             break;
6777           }
6778 
6779           setValueGUID(ValueId++, Name, Linkage, SourceFileName);
6780           break;
6781         }
6782         }
6783       }
6784       continue;
6785     }
6786   }
6787 }
6788 
6789 std::vector<ValueInfo>
6790 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) {
6791   std::vector<ValueInfo> Ret;
6792   Ret.reserve(Record.size());
6793   for (uint64_t RefValueId : Record)
6794     Ret.push_back(getValueInfoFromValueId(RefValueId).first);
6795   return Ret;
6796 }
6797 
6798 std::vector<FunctionSummary::EdgeTy>
6799 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record,
6800                                               bool IsOldProfileFormat,
6801                                               bool HasProfile, bool HasRelBF) {
6802   std::vector<FunctionSummary::EdgeTy> Ret;
6803   Ret.reserve(Record.size());
6804   for (unsigned I = 0, E = Record.size(); I != E; ++I) {
6805     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
6806     uint64_t RelBF = 0;
6807     ValueInfo Callee = getValueInfoFromValueId(Record[I]).first;
6808     if (IsOldProfileFormat) {
6809       I += 1; // Skip old callsitecount field
6810       if (HasProfile)
6811         I += 1; // Skip old profilecount field
6812     } else if (HasProfile)
6813       Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]);
6814     else if (HasRelBF)
6815       RelBF = Record[++I];
6816     Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)});
6817   }
6818   return Ret;
6819 }
6820 
6821 static void
6822 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot,
6823                                        WholeProgramDevirtResolution &Wpd) {
6824   uint64_t ArgNum = Record[Slot++];
6825   WholeProgramDevirtResolution::ByArg &B =
6826       Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}];
6827   Slot += ArgNum;
6828 
6829   B.TheKind =
6830       static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]);
6831   B.Info = Record[Slot++];
6832   B.Byte = Record[Slot++];
6833   B.Bit = Record[Slot++];
6834 }
6835 
6836 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record,
6837                                               StringRef Strtab, size_t &Slot,
6838                                               TypeIdSummary &TypeId) {
6839   uint64_t Id = Record[Slot++];
6840   WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id];
6841 
6842   Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]);
6843   Wpd.SingleImplName = {Strtab.data() + Record[Slot],
6844                         static_cast<size_t>(Record[Slot + 1])};
6845   Slot += 2;
6846 
6847   uint64_t ResByArgNum = Record[Slot++];
6848   for (uint64_t I = 0; I != ResByArgNum; ++I)
6849     parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd);
6850 }
6851 
6852 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record,
6853                                      StringRef Strtab,
6854                                      ModuleSummaryIndex &TheIndex) {
6855   size_t Slot = 0;
6856   TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary(
6857       {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])});
6858   Slot += 2;
6859 
6860   TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]);
6861   TypeId.TTRes.SizeM1BitWidth = Record[Slot++];
6862   TypeId.TTRes.AlignLog2 = Record[Slot++];
6863   TypeId.TTRes.SizeM1 = Record[Slot++];
6864   TypeId.TTRes.BitMask = Record[Slot++];
6865   TypeId.TTRes.InlineBits = Record[Slot++];
6866 
6867   while (Slot < Record.size())
6868     parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId);
6869 }
6870 
6871 std::vector<FunctionSummary::ParamAccess>
6872 ModuleSummaryIndexBitcodeReader::parseParamAccesses(ArrayRef<uint64_t> Record) {
6873   auto ReadRange = [&]() {
6874     APInt Lower(FunctionSummary::ParamAccess::RangeWidth,
6875                 BitcodeReader::decodeSignRotatedValue(Record.front()));
6876     Record = Record.drop_front();
6877     APInt Upper(FunctionSummary::ParamAccess::RangeWidth,
6878                 BitcodeReader::decodeSignRotatedValue(Record.front()));
6879     Record = Record.drop_front();
6880     ConstantRange Range{Lower, Upper};
6881     assert(!Range.isFullSet());
6882     assert(!Range.isUpperSignWrapped());
6883     return Range;
6884   };
6885 
6886   std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
6887   while (!Record.empty()) {
6888     PendingParamAccesses.emplace_back();
6889     FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back();
6890     ParamAccess.ParamNo = Record.front();
6891     Record = Record.drop_front();
6892     ParamAccess.Use = ReadRange();
6893     ParamAccess.Calls.resize(Record.front());
6894     Record = Record.drop_front();
6895     for (auto &Call : ParamAccess.Calls) {
6896       Call.ParamNo = Record.front();
6897       Record = Record.drop_front();
6898       Call.Callee = getValueInfoFromValueId(Record.front()).first;
6899       Record = Record.drop_front();
6900       Call.Offsets = ReadRange();
6901     }
6902   }
6903   return PendingParamAccesses;
6904 }
6905 
6906 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo(
6907     ArrayRef<uint64_t> Record, size_t &Slot,
6908     TypeIdCompatibleVtableInfo &TypeId) {
6909   uint64_t Offset = Record[Slot++];
6910   ValueInfo Callee = getValueInfoFromValueId(Record[Slot++]).first;
6911   TypeId.push_back({Offset, Callee});
6912 }
6913 
6914 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord(
6915     ArrayRef<uint64_t> Record) {
6916   size_t Slot = 0;
6917   TypeIdCompatibleVtableInfo &TypeId =
6918       TheIndex.getOrInsertTypeIdCompatibleVtableSummary(
6919           {Strtab.data() + Record[Slot],
6920            static_cast<size_t>(Record[Slot + 1])});
6921   Slot += 2;
6922 
6923   while (Slot < Record.size())
6924     parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId);
6925 }
6926 
6927 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt,
6928                            unsigned WOCnt) {
6929   // Readonly and writeonly refs are in the end of the refs list.
6930   assert(ROCnt + WOCnt <= Refs.size());
6931   unsigned FirstWORef = Refs.size() - WOCnt;
6932   unsigned RefNo = FirstWORef - ROCnt;
6933   for (; RefNo < FirstWORef; ++RefNo)
6934     Refs[RefNo].setReadOnly();
6935   for (; RefNo < Refs.size(); ++RefNo)
6936     Refs[RefNo].setWriteOnly();
6937 }
6938 
6939 // Eagerly parse the entire summary block. This populates the GlobalValueSummary
6940 // objects in the index.
6941 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) {
6942   if (Error Err = Stream.EnterSubBlock(ID))
6943     return Err;
6944   SmallVector<uint64_t, 64> Record;
6945 
6946   // Parse version
6947   {
6948     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6949     if (!MaybeEntry)
6950       return MaybeEntry.takeError();
6951     BitstreamEntry Entry = MaybeEntry.get();
6952 
6953     if (Entry.Kind != BitstreamEntry::Record)
6954       return error("Invalid Summary Block: record for version expected");
6955     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
6956     if (!MaybeRecord)
6957       return MaybeRecord.takeError();
6958     if (MaybeRecord.get() != bitc::FS_VERSION)
6959       return error("Invalid Summary Block: version expected");
6960   }
6961   const uint64_t Version = Record[0];
6962   const bool IsOldProfileFormat = Version == 1;
6963   if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion)
6964     return error("Invalid summary version " + Twine(Version) +
6965                  ". Version should be in the range [1-" +
6966                  Twine(ModuleSummaryIndex::BitcodeSummaryVersion) +
6967                  "].");
6968   Record.clear();
6969 
6970   // Keep around the last seen summary to be used when we see an optional
6971   // "OriginalName" attachement.
6972   GlobalValueSummary *LastSeenSummary = nullptr;
6973   GlobalValue::GUID LastSeenGUID = 0;
6974 
6975   // We can expect to see any number of type ID information records before
6976   // each function summary records; these variables store the information
6977   // collected so far so that it can be used to create the summary object.
6978   std::vector<GlobalValue::GUID> PendingTypeTests;
6979   std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls,
6980       PendingTypeCheckedLoadVCalls;
6981   std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls,
6982       PendingTypeCheckedLoadConstVCalls;
6983   std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
6984 
6985   while (true) {
6986     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6987     if (!MaybeEntry)
6988       return MaybeEntry.takeError();
6989     BitstreamEntry Entry = MaybeEntry.get();
6990 
6991     switch (Entry.Kind) {
6992     case BitstreamEntry::SubBlock: // Handled for us already.
6993     case BitstreamEntry::Error:
6994       return error("Malformed block");
6995     case BitstreamEntry::EndBlock:
6996       return Error::success();
6997     case BitstreamEntry::Record:
6998       // The interesting case.
6999       break;
7000     }
7001 
7002     // Read a record. The record format depends on whether this
7003     // is a per-module index or a combined index file. In the per-module
7004     // case the records contain the associated value's ID for correlation
7005     // with VST entries. In the combined index the correlation is done
7006     // via the bitcode offset of the summary records (which were saved
7007     // in the combined index VST entries). The records also contain
7008     // information used for ThinLTO renaming and importing.
7009     Record.clear();
7010     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
7011     if (!MaybeBitCode)
7012       return MaybeBitCode.takeError();
7013     switch (unsigned BitCode = MaybeBitCode.get()) {
7014     default: // Default behavior: ignore.
7015       break;
7016     case bitc::FS_FLAGS: {  // [flags]
7017       TheIndex.setFlags(Record[0]);
7018       break;
7019     }
7020     case bitc::FS_VALUE_GUID: { // [valueid, refguid]
7021       uint64_t ValueID = Record[0];
7022       GlobalValue::GUID RefGUID = Record[1];
7023       ValueIdToValueInfoMap[ValueID] =
7024           std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
7025       break;
7026     }
7027     // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs,
7028     //                numrefs x valueid, n x (valueid)]
7029     // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs,
7030     //                        numrefs x valueid,
7031     //                        n x (valueid, hotness)]
7032     // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs,
7033     //                      numrefs x valueid,
7034     //                      n x (valueid, relblockfreq)]
7035     case bitc::FS_PERMODULE:
7036     case bitc::FS_PERMODULE_RELBF:
7037     case bitc::FS_PERMODULE_PROFILE: {
7038       unsigned ValueID = Record[0];
7039       uint64_t RawFlags = Record[1];
7040       unsigned InstCount = Record[2];
7041       uint64_t RawFunFlags = 0;
7042       unsigned NumRefs = Record[3];
7043       unsigned NumRORefs = 0, NumWORefs = 0;
7044       int RefListStartIndex = 4;
7045       if (Version >= 4) {
7046         RawFunFlags = Record[3];
7047         NumRefs = Record[4];
7048         RefListStartIndex = 5;
7049         if (Version >= 5) {
7050           NumRORefs = Record[5];
7051           RefListStartIndex = 6;
7052           if (Version >= 7) {
7053             NumWORefs = Record[6];
7054             RefListStartIndex = 7;
7055           }
7056         }
7057       }
7058 
7059       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7060       // The module path string ref set in the summary must be owned by the
7061       // index's module string table. Since we don't have a module path
7062       // string table section in the per-module index, we create a single
7063       // module path string table entry with an empty (0) ID to take
7064       // ownership.
7065       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
7066       assert(Record.size() >= RefListStartIndex + NumRefs &&
7067              "Record size inconsistent with number of references");
7068       std::vector<ValueInfo> Refs = makeRefList(
7069           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
7070       bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE);
7071       bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF);
7072       std::vector<FunctionSummary::EdgeTy> Calls = makeCallList(
7073           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
7074           IsOldProfileFormat, HasProfile, HasRelBF);
7075       setSpecialRefs(Refs, NumRORefs, NumWORefs);
7076       auto FS = std::make_unique<FunctionSummary>(
7077           Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0,
7078           std::move(Refs), std::move(Calls), std::move(PendingTypeTests),
7079           std::move(PendingTypeTestAssumeVCalls),
7080           std::move(PendingTypeCheckedLoadVCalls),
7081           std::move(PendingTypeTestAssumeConstVCalls),
7082           std::move(PendingTypeCheckedLoadConstVCalls),
7083           std::move(PendingParamAccesses));
7084       auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID);
7085       FS->setModulePath(getThisModule()->first());
7086       FS->setOriginalName(VIAndOriginalGUID.second);
7087       TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS));
7088       break;
7089     }
7090     // FS_ALIAS: [valueid, flags, valueid]
7091     // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as
7092     // they expect all aliasee summaries to be available.
7093     case bitc::FS_ALIAS: {
7094       unsigned ValueID = Record[0];
7095       uint64_t RawFlags = Record[1];
7096       unsigned AliaseeID = Record[2];
7097       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7098       auto AS = std::make_unique<AliasSummary>(Flags);
7099       // The module path string ref set in the summary must be owned by the
7100       // index's module string table. Since we don't have a module path
7101       // string table section in the per-module index, we create a single
7102       // module path string table entry with an empty (0) ID to take
7103       // ownership.
7104       AS->setModulePath(getThisModule()->first());
7105 
7106       auto AliaseeVI = getValueInfoFromValueId(AliaseeID).first;
7107       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath);
7108       if (!AliaseeInModule)
7109         return error("Alias expects aliasee summary to be parsed");
7110       AS->setAliasee(AliaseeVI, AliaseeInModule);
7111 
7112       auto GUID = getValueInfoFromValueId(ValueID);
7113       AS->setOriginalName(GUID.second);
7114       TheIndex.addGlobalValueSummary(GUID.first, std::move(AS));
7115       break;
7116     }
7117     // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid]
7118     case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: {
7119       unsigned ValueID = Record[0];
7120       uint64_t RawFlags = Record[1];
7121       unsigned RefArrayStart = 2;
7122       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
7123                                       /* WriteOnly */ false,
7124                                       /* Constant */ false,
7125                                       GlobalObject::VCallVisibilityPublic);
7126       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7127       if (Version >= 5) {
7128         GVF = getDecodedGVarFlags(Record[2]);
7129         RefArrayStart = 3;
7130       }
7131       std::vector<ValueInfo> Refs =
7132           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
7133       auto FS =
7134           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
7135       FS->setModulePath(getThisModule()->first());
7136       auto GUID = getValueInfoFromValueId(ValueID);
7137       FS->setOriginalName(GUID.second);
7138       TheIndex.addGlobalValueSummary(GUID.first, std::move(FS));
7139       break;
7140     }
7141     // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags,
7142     //                        numrefs, numrefs x valueid,
7143     //                        n x (valueid, offset)]
7144     case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: {
7145       unsigned ValueID = Record[0];
7146       uint64_t RawFlags = Record[1];
7147       GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]);
7148       unsigned NumRefs = Record[3];
7149       unsigned RefListStartIndex = 4;
7150       unsigned VTableListStartIndex = RefListStartIndex + NumRefs;
7151       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7152       std::vector<ValueInfo> Refs = makeRefList(
7153           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
7154       VTableFuncList VTableFuncs;
7155       for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) {
7156         ValueInfo Callee = getValueInfoFromValueId(Record[I]).first;
7157         uint64_t Offset = Record[++I];
7158         VTableFuncs.push_back({Callee, Offset});
7159       }
7160       auto VS =
7161           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
7162       VS->setModulePath(getThisModule()->first());
7163       VS->setVTableFuncs(VTableFuncs);
7164       auto GUID = getValueInfoFromValueId(ValueID);
7165       VS->setOriginalName(GUID.second);
7166       TheIndex.addGlobalValueSummary(GUID.first, std::move(VS));
7167       break;
7168     }
7169     // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs,
7170     //               numrefs x valueid, n x (valueid)]
7171     // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs,
7172     //                       numrefs x valueid, n x (valueid, hotness)]
7173     case bitc::FS_COMBINED:
7174     case bitc::FS_COMBINED_PROFILE: {
7175       unsigned ValueID = Record[0];
7176       uint64_t ModuleId = Record[1];
7177       uint64_t RawFlags = Record[2];
7178       unsigned InstCount = Record[3];
7179       uint64_t RawFunFlags = 0;
7180       uint64_t EntryCount = 0;
7181       unsigned NumRefs = Record[4];
7182       unsigned NumRORefs = 0, NumWORefs = 0;
7183       int RefListStartIndex = 5;
7184 
7185       if (Version >= 4) {
7186         RawFunFlags = Record[4];
7187         RefListStartIndex = 6;
7188         size_t NumRefsIndex = 5;
7189         if (Version >= 5) {
7190           unsigned NumRORefsOffset = 1;
7191           RefListStartIndex = 7;
7192           if (Version >= 6) {
7193             NumRefsIndex = 6;
7194             EntryCount = Record[5];
7195             RefListStartIndex = 8;
7196             if (Version >= 7) {
7197               RefListStartIndex = 9;
7198               NumWORefs = Record[8];
7199               NumRORefsOffset = 2;
7200             }
7201           }
7202           NumRORefs = Record[RefListStartIndex - NumRORefsOffset];
7203         }
7204         NumRefs = Record[NumRefsIndex];
7205       }
7206 
7207       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7208       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
7209       assert(Record.size() >= RefListStartIndex + NumRefs &&
7210              "Record size inconsistent with number of references");
7211       std::vector<ValueInfo> Refs = makeRefList(
7212           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
7213       bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE);
7214       std::vector<FunctionSummary::EdgeTy> Edges = makeCallList(
7215           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
7216           IsOldProfileFormat, HasProfile, false);
7217       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
7218       setSpecialRefs(Refs, NumRORefs, NumWORefs);
7219       auto FS = std::make_unique<FunctionSummary>(
7220           Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount,
7221           std::move(Refs), std::move(Edges), std::move(PendingTypeTests),
7222           std::move(PendingTypeTestAssumeVCalls),
7223           std::move(PendingTypeCheckedLoadVCalls),
7224           std::move(PendingTypeTestAssumeConstVCalls),
7225           std::move(PendingTypeCheckedLoadConstVCalls),
7226           std::move(PendingParamAccesses));
7227       LastSeenSummary = FS.get();
7228       LastSeenGUID = VI.getGUID();
7229       FS->setModulePath(ModuleIdMap[ModuleId]);
7230       TheIndex.addGlobalValueSummary(VI, std::move(FS));
7231       break;
7232     }
7233     // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid]
7234     // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as
7235     // they expect all aliasee summaries to be available.
7236     case bitc::FS_COMBINED_ALIAS: {
7237       unsigned ValueID = Record[0];
7238       uint64_t ModuleId = Record[1];
7239       uint64_t RawFlags = Record[2];
7240       unsigned AliaseeValueId = Record[3];
7241       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7242       auto AS = std::make_unique<AliasSummary>(Flags);
7243       LastSeenSummary = AS.get();
7244       AS->setModulePath(ModuleIdMap[ModuleId]);
7245 
7246       auto AliaseeVI = getValueInfoFromValueId(AliaseeValueId).first;
7247       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath());
7248       AS->setAliasee(AliaseeVI, AliaseeInModule);
7249 
7250       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
7251       LastSeenGUID = VI.getGUID();
7252       TheIndex.addGlobalValueSummary(VI, std::move(AS));
7253       break;
7254     }
7255     // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid]
7256     case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: {
7257       unsigned ValueID = Record[0];
7258       uint64_t ModuleId = Record[1];
7259       uint64_t RawFlags = Record[2];
7260       unsigned RefArrayStart = 3;
7261       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
7262                                       /* WriteOnly */ false,
7263                                       /* Constant */ false,
7264                                       GlobalObject::VCallVisibilityPublic);
7265       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7266       if (Version >= 5) {
7267         GVF = getDecodedGVarFlags(Record[3]);
7268         RefArrayStart = 4;
7269       }
7270       std::vector<ValueInfo> Refs =
7271           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
7272       auto FS =
7273           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
7274       LastSeenSummary = FS.get();
7275       FS->setModulePath(ModuleIdMap[ModuleId]);
7276       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
7277       LastSeenGUID = VI.getGUID();
7278       TheIndex.addGlobalValueSummary(VI, std::move(FS));
7279       break;
7280     }
7281     // FS_COMBINED_ORIGINAL_NAME: [original_name]
7282     case bitc::FS_COMBINED_ORIGINAL_NAME: {
7283       uint64_t OriginalName = Record[0];
7284       if (!LastSeenSummary)
7285         return error("Name attachment that does not follow a combined record");
7286       LastSeenSummary->setOriginalName(OriginalName);
7287       TheIndex.addOriginalName(LastSeenGUID, OriginalName);
7288       // Reset the LastSeenSummary
7289       LastSeenSummary = nullptr;
7290       LastSeenGUID = 0;
7291       break;
7292     }
7293     case bitc::FS_TYPE_TESTS:
7294       assert(PendingTypeTests.empty());
7295       llvm::append_range(PendingTypeTests, Record);
7296       break;
7297 
7298     case bitc::FS_TYPE_TEST_ASSUME_VCALLS:
7299       assert(PendingTypeTestAssumeVCalls.empty());
7300       for (unsigned I = 0; I != Record.size(); I += 2)
7301         PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]});
7302       break;
7303 
7304     case bitc::FS_TYPE_CHECKED_LOAD_VCALLS:
7305       assert(PendingTypeCheckedLoadVCalls.empty());
7306       for (unsigned I = 0; I != Record.size(); I += 2)
7307         PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]});
7308       break;
7309 
7310     case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL:
7311       PendingTypeTestAssumeConstVCalls.push_back(
7312           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
7313       break;
7314 
7315     case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL:
7316       PendingTypeCheckedLoadConstVCalls.push_back(
7317           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
7318       break;
7319 
7320     case bitc::FS_CFI_FUNCTION_DEFS: {
7321       std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs();
7322       for (unsigned I = 0; I != Record.size(); I += 2)
7323         CfiFunctionDefs.insert(
7324             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
7325       break;
7326     }
7327 
7328     case bitc::FS_CFI_FUNCTION_DECLS: {
7329       std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls();
7330       for (unsigned I = 0; I != Record.size(); I += 2)
7331         CfiFunctionDecls.insert(
7332             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
7333       break;
7334     }
7335 
7336     case bitc::FS_TYPE_ID:
7337       parseTypeIdSummaryRecord(Record, Strtab, TheIndex);
7338       break;
7339 
7340     case bitc::FS_TYPE_ID_METADATA:
7341       parseTypeIdCompatibleVtableSummaryRecord(Record);
7342       break;
7343 
7344     case bitc::FS_BLOCK_COUNT:
7345       TheIndex.addBlockCount(Record[0]);
7346       break;
7347 
7348     case bitc::FS_PARAM_ACCESS: {
7349       PendingParamAccesses = parseParamAccesses(Record);
7350       break;
7351     }
7352     }
7353   }
7354   llvm_unreachable("Exit infinite loop");
7355 }
7356 
7357 // Parse the  module string table block into the Index.
7358 // This populates the ModulePathStringTable map in the index.
7359 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() {
7360   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID))
7361     return Err;
7362 
7363   SmallVector<uint64_t, 64> Record;
7364 
7365   SmallString<128> ModulePath;
7366   ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr;
7367 
7368   while (true) {
7369     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
7370     if (!MaybeEntry)
7371       return MaybeEntry.takeError();
7372     BitstreamEntry Entry = MaybeEntry.get();
7373 
7374     switch (Entry.Kind) {
7375     case BitstreamEntry::SubBlock: // Handled for us already.
7376     case BitstreamEntry::Error:
7377       return error("Malformed block");
7378     case BitstreamEntry::EndBlock:
7379       return Error::success();
7380     case BitstreamEntry::Record:
7381       // The interesting case.
7382       break;
7383     }
7384 
7385     Record.clear();
7386     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
7387     if (!MaybeRecord)
7388       return MaybeRecord.takeError();
7389     switch (MaybeRecord.get()) {
7390     default: // Default behavior: ignore.
7391       break;
7392     case bitc::MST_CODE_ENTRY: {
7393       // MST_ENTRY: [modid, namechar x N]
7394       uint64_t ModuleId = Record[0];
7395 
7396       if (convertToString(Record, 1, ModulePath))
7397         return error("Invalid record");
7398 
7399       LastSeenModule = TheIndex.addModule(ModulePath, ModuleId);
7400       ModuleIdMap[ModuleId] = LastSeenModule->first();
7401 
7402       ModulePath.clear();
7403       break;
7404     }
7405     /// MST_CODE_HASH: [5*i32]
7406     case bitc::MST_CODE_HASH: {
7407       if (Record.size() != 5)
7408         return error("Invalid hash length " + Twine(Record.size()).str());
7409       if (!LastSeenModule)
7410         return error("Invalid hash that does not follow a module path");
7411       int Pos = 0;
7412       for (auto &Val : Record) {
7413         assert(!(Val >> 32) && "Unexpected high bits set");
7414         LastSeenModule->second.second[Pos++] = Val;
7415       }
7416       // Reset LastSeenModule to avoid overriding the hash unexpectedly.
7417       LastSeenModule = nullptr;
7418       break;
7419     }
7420     }
7421   }
7422   llvm_unreachable("Exit infinite loop");
7423 }
7424 
7425 namespace {
7426 
7427 // FIXME: This class is only here to support the transition to llvm::Error. It
7428 // will be removed once this transition is complete. Clients should prefer to
7429 // deal with the Error value directly, rather than converting to error_code.
7430 class BitcodeErrorCategoryType : public std::error_category {
7431   const char *name() const noexcept override {
7432     return "llvm.bitcode";
7433   }
7434 
7435   std::string message(int IE) const override {
7436     BitcodeError E = static_cast<BitcodeError>(IE);
7437     switch (E) {
7438     case BitcodeError::CorruptedBitcode:
7439       return "Corrupted bitcode";
7440     }
7441     llvm_unreachable("Unknown error type!");
7442   }
7443 };
7444 
7445 } // end anonymous namespace
7446 
7447 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory;
7448 
7449 const std::error_category &llvm::BitcodeErrorCategory() {
7450   return *ErrorCategory;
7451 }
7452 
7453 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream,
7454                                             unsigned Block, unsigned RecordID) {
7455   if (Error Err = Stream.EnterSubBlock(Block))
7456     return std::move(Err);
7457 
7458   StringRef Strtab;
7459   while (true) {
7460     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
7461     if (!MaybeEntry)
7462       return MaybeEntry.takeError();
7463     llvm::BitstreamEntry Entry = MaybeEntry.get();
7464 
7465     switch (Entry.Kind) {
7466     case BitstreamEntry::EndBlock:
7467       return Strtab;
7468 
7469     case BitstreamEntry::Error:
7470       return error("Malformed block");
7471 
7472     case BitstreamEntry::SubBlock:
7473       if (Error Err = Stream.SkipBlock())
7474         return std::move(Err);
7475       break;
7476 
7477     case BitstreamEntry::Record:
7478       StringRef Blob;
7479       SmallVector<uint64_t, 1> Record;
7480       Expected<unsigned> MaybeRecord =
7481           Stream.readRecord(Entry.ID, Record, &Blob);
7482       if (!MaybeRecord)
7483         return MaybeRecord.takeError();
7484       if (MaybeRecord.get() == RecordID)
7485         Strtab = Blob;
7486       break;
7487     }
7488   }
7489 }
7490 
7491 //===----------------------------------------------------------------------===//
7492 // External interface
7493 //===----------------------------------------------------------------------===//
7494 
7495 Expected<std::vector<BitcodeModule>>
7496 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) {
7497   auto FOrErr = getBitcodeFileContents(Buffer);
7498   if (!FOrErr)
7499     return FOrErr.takeError();
7500   return std::move(FOrErr->Mods);
7501 }
7502 
7503 Expected<BitcodeFileContents>
7504 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) {
7505   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
7506   if (!StreamOrErr)
7507     return StreamOrErr.takeError();
7508   BitstreamCursor &Stream = *StreamOrErr;
7509 
7510   BitcodeFileContents F;
7511   while (true) {
7512     uint64_t BCBegin = Stream.getCurrentByteNo();
7513 
7514     // We may be consuming bitcode from a client that leaves garbage at the end
7515     // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to
7516     // the end that there cannot possibly be another module, stop looking.
7517     if (BCBegin + 8 >= Stream.getBitcodeBytes().size())
7518       return F;
7519 
7520     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
7521     if (!MaybeEntry)
7522       return MaybeEntry.takeError();
7523     llvm::BitstreamEntry Entry = MaybeEntry.get();
7524 
7525     switch (Entry.Kind) {
7526     case BitstreamEntry::EndBlock:
7527     case BitstreamEntry::Error:
7528       return error("Malformed block");
7529 
7530     case BitstreamEntry::SubBlock: {
7531       uint64_t IdentificationBit = -1ull;
7532       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
7533         IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8;
7534         if (Error Err = Stream.SkipBlock())
7535           return std::move(Err);
7536 
7537         {
7538           Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
7539           if (!MaybeEntry)
7540             return MaybeEntry.takeError();
7541           Entry = MaybeEntry.get();
7542         }
7543 
7544         if (Entry.Kind != BitstreamEntry::SubBlock ||
7545             Entry.ID != bitc::MODULE_BLOCK_ID)
7546           return error("Malformed block");
7547       }
7548 
7549       if (Entry.ID == bitc::MODULE_BLOCK_ID) {
7550         uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8;
7551         if (Error Err = Stream.SkipBlock())
7552           return std::move(Err);
7553 
7554         F.Mods.push_back({Stream.getBitcodeBytes().slice(
7555                               BCBegin, Stream.getCurrentByteNo() - BCBegin),
7556                           Buffer.getBufferIdentifier(), IdentificationBit,
7557                           ModuleBit});
7558         continue;
7559       }
7560 
7561       if (Entry.ID == bitc::STRTAB_BLOCK_ID) {
7562         Expected<StringRef> Strtab =
7563             readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB);
7564         if (!Strtab)
7565           return Strtab.takeError();
7566         // This string table is used by every preceding bitcode module that does
7567         // not have its own string table. A bitcode file may have multiple
7568         // string tables if it was created by binary concatenation, for example
7569         // with "llvm-cat -b".
7570         for (BitcodeModule &I : llvm::reverse(F.Mods)) {
7571           if (!I.Strtab.empty())
7572             break;
7573           I.Strtab = *Strtab;
7574         }
7575         // Similarly, the string table is used by every preceding symbol table;
7576         // normally there will be just one unless the bitcode file was created
7577         // by binary concatenation.
7578         if (!F.Symtab.empty() && F.StrtabForSymtab.empty())
7579           F.StrtabForSymtab = *Strtab;
7580         continue;
7581       }
7582 
7583       if (Entry.ID == bitc::SYMTAB_BLOCK_ID) {
7584         Expected<StringRef> SymtabOrErr =
7585             readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB);
7586         if (!SymtabOrErr)
7587           return SymtabOrErr.takeError();
7588 
7589         // We can expect the bitcode file to have multiple symbol tables if it
7590         // was created by binary concatenation. In that case we silently
7591         // ignore any subsequent symbol tables, which is fine because this is a
7592         // low level function. The client is expected to notice that the number
7593         // of modules in the symbol table does not match the number of modules
7594         // in the input file and regenerate the symbol table.
7595         if (F.Symtab.empty())
7596           F.Symtab = *SymtabOrErr;
7597         continue;
7598       }
7599 
7600       if (Error Err = Stream.SkipBlock())
7601         return std::move(Err);
7602       continue;
7603     }
7604     case BitstreamEntry::Record:
7605       if (Error E = Stream.skipRecord(Entry.ID).takeError())
7606         return std::move(E);
7607       continue;
7608     }
7609   }
7610 }
7611 
7612 /// Get a lazy one-at-time loading module from bitcode.
7613 ///
7614 /// This isn't always used in a lazy context.  In particular, it's also used by
7615 /// \a parseModule().  If this is truly lazy, then we need to eagerly pull
7616 /// in forward-referenced functions from block address references.
7617 ///
7618 /// \param[in] MaterializeAll Set to \c true if we should materialize
7619 /// everything.
7620 Expected<std::unique_ptr<Module>>
7621 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll,
7622                              bool ShouldLazyLoadMetadata, bool IsImporting,
7623                              DataLayoutCallbackTy DataLayoutCallback) {
7624   BitstreamCursor Stream(Buffer);
7625 
7626   std::string ProducerIdentification;
7627   if (IdentificationBit != -1ull) {
7628     if (Error JumpFailed = Stream.JumpToBit(IdentificationBit))
7629       return std::move(JumpFailed);
7630     if (Error E =
7631             readIdentificationBlock(Stream).moveInto(ProducerIdentification))
7632       return std::move(E);
7633   }
7634 
7635   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
7636     return std::move(JumpFailed);
7637   auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification,
7638                               Context);
7639 
7640   std::unique_ptr<Module> M =
7641       std::make_unique<Module>(ModuleIdentifier, Context);
7642   M->setMaterializer(R);
7643 
7644   // Delay parsing Metadata if ShouldLazyLoadMetadata is true.
7645   if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata,
7646                                       IsImporting, DataLayoutCallback))
7647     return std::move(Err);
7648 
7649   if (MaterializeAll) {
7650     // Read in the entire module, and destroy the BitcodeReader.
7651     if (Error Err = M->materializeAll())
7652       return std::move(Err);
7653   } else {
7654     // Resolve forward references from blockaddresses.
7655     if (Error Err = R->materializeForwardReferencedFunctions())
7656       return std::move(Err);
7657   }
7658   return std::move(M);
7659 }
7660 
7661 Expected<std::unique_ptr<Module>>
7662 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata,
7663                              bool IsImporting) {
7664   return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting,
7665                        [](StringRef) { return None; });
7666 }
7667 
7668 // Parse the specified bitcode buffer and merge the index into CombinedIndex.
7669 // We don't use ModuleIdentifier here because the client may need to control the
7670 // module path used in the combined summary (e.g. when reading summaries for
7671 // regular LTO modules).
7672 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex,
7673                                  StringRef ModulePath, uint64_t ModuleId) {
7674   BitstreamCursor Stream(Buffer);
7675   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
7676     return JumpFailed;
7677 
7678   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex,
7679                                     ModulePath, ModuleId);
7680   return R.parseModule();
7681 }
7682 
7683 // Parse the specified bitcode buffer, returning the function info index.
7684 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() {
7685   BitstreamCursor Stream(Buffer);
7686   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
7687     return std::move(JumpFailed);
7688 
7689   auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false);
7690   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index,
7691                                     ModuleIdentifier, 0);
7692 
7693   if (Error Err = R.parseModule())
7694     return std::move(Err);
7695 
7696   return std::move(Index);
7697 }
7698 
7699 static Expected<bool> getEnableSplitLTOUnitFlag(BitstreamCursor &Stream,
7700                                                 unsigned ID) {
7701   if (Error Err = Stream.EnterSubBlock(ID))
7702     return std::move(Err);
7703   SmallVector<uint64_t, 64> Record;
7704 
7705   while (true) {
7706     BitstreamEntry Entry;
7707     if (Error E = Stream.advanceSkippingSubblocks().moveInto(Entry))
7708       return std::move(E);
7709 
7710     switch (Entry.Kind) {
7711     case BitstreamEntry::SubBlock: // Handled for us already.
7712     case BitstreamEntry::Error:
7713       return error("Malformed block");
7714     case BitstreamEntry::EndBlock:
7715       // If no flags record found, conservatively return true to mimic
7716       // behavior before this flag was added.
7717       return true;
7718     case BitstreamEntry::Record:
7719       // The interesting case.
7720       break;
7721     }
7722 
7723     // Look for the FS_FLAGS record.
7724     Record.clear();
7725     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
7726     if (!MaybeBitCode)
7727       return MaybeBitCode.takeError();
7728     switch (MaybeBitCode.get()) {
7729     default: // Default behavior: ignore.
7730       break;
7731     case bitc::FS_FLAGS: { // [flags]
7732       uint64_t Flags = Record[0];
7733       // Scan flags.
7734       assert(Flags <= 0x7f && "Unexpected bits in flag");
7735 
7736       return Flags & 0x8;
7737     }
7738     }
7739   }
7740   llvm_unreachable("Exit infinite loop");
7741 }
7742 
7743 // Check if the given bitcode buffer contains a global value summary block.
7744 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() {
7745   BitstreamCursor Stream(Buffer);
7746   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
7747     return std::move(JumpFailed);
7748 
7749   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
7750     return std::move(Err);
7751 
7752   while (true) {
7753     llvm::BitstreamEntry Entry;
7754     if (Error E = Stream.advance().moveInto(Entry))
7755       return std::move(E);
7756 
7757     switch (Entry.Kind) {
7758     case BitstreamEntry::Error:
7759       return error("Malformed block");
7760     case BitstreamEntry::EndBlock:
7761       return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false,
7762                             /*EnableSplitLTOUnit=*/false};
7763 
7764     case BitstreamEntry::SubBlock:
7765       if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) {
7766         Expected<bool> EnableSplitLTOUnit =
7767             getEnableSplitLTOUnitFlag(Stream, Entry.ID);
7768         if (!EnableSplitLTOUnit)
7769           return EnableSplitLTOUnit.takeError();
7770         return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true,
7771                               *EnableSplitLTOUnit};
7772       }
7773 
7774       if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) {
7775         Expected<bool> EnableSplitLTOUnit =
7776             getEnableSplitLTOUnitFlag(Stream, Entry.ID);
7777         if (!EnableSplitLTOUnit)
7778           return EnableSplitLTOUnit.takeError();
7779         return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true,
7780                               *EnableSplitLTOUnit};
7781       }
7782 
7783       // Ignore other sub-blocks.
7784       if (Error Err = Stream.SkipBlock())
7785         return std::move(Err);
7786       continue;
7787 
7788     case BitstreamEntry::Record:
7789       if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID))
7790         continue;
7791       else
7792         return StreamFailed.takeError();
7793     }
7794   }
7795 }
7796 
7797 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) {
7798   Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer);
7799   if (!MsOrErr)
7800     return MsOrErr.takeError();
7801 
7802   if (MsOrErr->size() != 1)
7803     return error("Expected a single module");
7804 
7805   return (*MsOrErr)[0];
7806 }
7807 
7808 Expected<std::unique_ptr<Module>>
7809 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context,
7810                            bool ShouldLazyLoadMetadata, bool IsImporting) {
7811   Expected<BitcodeModule> BM = getSingleModule(Buffer);
7812   if (!BM)
7813     return BM.takeError();
7814 
7815   return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting);
7816 }
7817 
7818 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule(
7819     std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context,
7820     bool ShouldLazyLoadMetadata, bool IsImporting) {
7821   auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata,
7822                                      IsImporting);
7823   if (MOrErr)
7824     (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer));
7825   return MOrErr;
7826 }
7827 
7828 Expected<std::unique_ptr<Module>>
7829 BitcodeModule::parseModule(LLVMContext &Context,
7830                            DataLayoutCallbackTy DataLayoutCallback) {
7831   return getModuleImpl(Context, true, false, false, DataLayoutCallback);
7832   // TODO: Restore the use-lists to the in-memory state when the bitcode was
7833   // written.  We must defer until the Module has been fully materialized.
7834 }
7835 
7836 Expected<std::unique_ptr<Module>>
7837 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context,
7838                        DataLayoutCallbackTy DataLayoutCallback) {
7839   Expected<BitcodeModule> BM = getSingleModule(Buffer);
7840   if (!BM)
7841     return BM.takeError();
7842 
7843   return BM->parseModule(Context, DataLayoutCallback);
7844 }
7845 
7846 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) {
7847   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
7848   if (!StreamOrErr)
7849     return StreamOrErr.takeError();
7850 
7851   return readTriple(*StreamOrErr);
7852 }
7853 
7854 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) {
7855   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
7856   if (!StreamOrErr)
7857     return StreamOrErr.takeError();
7858 
7859   return hasObjCCategory(*StreamOrErr);
7860 }
7861 
7862 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) {
7863   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
7864   if (!StreamOrErr)
7865     return StreamOrErr.takeError();
7866 
7867   return readIdentificationCode(*StreamOrErr);
7868 }
7869 
7870 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer,
7871                                    ModuleSummaryIndex &CombinedIndex,
7872                                    uint64_t ModuleId) {
7873   Expected<BitcodeModule> BM = getSingleModule(Buffer);
7874   if (!BM)
7875     return BM.takeError();
7876 
7877   return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId);
7878 }
7879 
7880 Expected<std::unique_ptr<ModuleSummaryIndex>>
7881 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) {
7882   Expected<BitcodeModule> BM = getSingleModule(Buffer);
7883   if (!BM)
7884     return BM.takeError();
7885 
7886   return BM->getSummary();
7887 }
7888 
7889 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) {
7890   Expected<BitcodeModule> BM = getSingleModule(Buffer);
7891   if (!BM)
7892     return BM.takeError();
7893 
7894   return BM->getLTOInfo();
7895 }
7896 
7897 Expected<std::unique_ptr<ModuleSummaryIndex>>
7898 llvm::getModuleSummaryIndexForFile(StringRef Path,
7899                                    bool IgnoreEmptyThinLTOIndexFile) {
7900   ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr =
7901       MemoryBuffer::getFileOrSTDIN(Path);
7902   if (!FileOrErr)
7903     return errorCodeToError(FileOrErr.getError());
7904   if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize())
7905     return nullptr;
7906   return getModuleSummaryIndex(**FileOrErr);
7907 }
7908