1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Bitcode/BitcodeReader.h" 10 #include "MetadataLoader.h" 11 #include "ValueList.h" 12 #include "llvm/ADT/APFloat.h" 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/StringRef.h" 21 #include "llvm/ADT/Triple.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/Bitcode/BitcodeCommon.h" 24 #include "llvm/Bitcode/LLVMBitCodes.h" 25 #include "llvm/Bitstream/BitstreamReader.h" 26 #include "llvm/Config/llvm-config.h" 27 #include "llvm/IR/Argument.h" 28 #include "llvm/IR/Attributes.h" 29 #include "llvm/IR/AutoUpgrade.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/CallingConv.h" 32 #include "llvm/IR/Comdat.h" 33 #include "llvm/IR/Constant.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/DebugInfo.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GVMaterializer.h" 42 #include "llvm/IR/GetElementPtrTypeIterator.h" 43 #include "llvm/IR/GlobalAlias.h" 44 #include "llvm/IR/GlobalIFunc.h" 45 #include "llvm/IR/GlobalObject.h" 46 #include "llvm/IR/GlobalValue.h" 47 #include "llvm/IR/GlobalVariable.h" 48 #include "llvm/IR/InlineAsm.h" 49 #include "llvm/IR/InstIterator.h" 50 #include "llvm/IR/InstrTypes.h" 51 #include "llvm/IR/Instruction.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/IntrinsicsAArch64.h" 55 #include "llvm/IR/IntrinsicsARM.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/Metadata.h" 58 #include "llvm/IR/Module.h" 59 #include "llvm/IR/ModuleSummaryIndex.h" 60 #include "llvm/IR/Operator.h" 61 #include "llvm/IR/Type.h" 62 #include "llvm/IR/Value.h" 63 #include "llvm/IR/Verifier.h" 64 #include "llvm/Support/AtomicOrdering.h" 65 #include "llvm/Support/Casting.h" 66 #include "llvm/Support/CommandLine.h" 67 #include "llvm/Support/Compiler.h" 68 #include "llvm/Support/Debug.h" 69 #include "llvm/Support/Error.h" 70 #include "llvm/Support/ErrorHandling.h" 71 #include "llvm/Support/ErrorOr.h" 72 #include "llvm/Support/ManagedStatic.h" 73 #include "llvm/Support/MathExtras.h" 74 #include "llvm/Support/MemoryBuffer.h" 75 #include "llvm/Support/raw_ostream.h" 76 #include <algorithm> 77 #include <cassert> 78 #include <cstddef> 79 #include <cstdint> 80 #include <deque> 81 #include <map> 82 #include <memory> 83 #include <set> 84 #include <string> 85 #include <system_error> 86 #include <tuple> 87 #include <utility> 88 #include <vector> 89 90 using namespace llvm; 91 92 static cl::opt<bool> PrintSummaryGUIDs( 93 "print-summary-global-ids", cl::init(false), cl::Hidden, 94 cl::desc( 95 "Print the global id for each value when reading the module summary")); 96 97 namespace { 98 99 enum { 100 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 101 }; 102 103 } // end anonymous namespace 104 105 static Error error(const Twine &Message) { 106 return make_error<StringError>( 107 Message, make_error_code(BitcodeError::CorruptedBitcode)); 108 } 109 110 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) { 111 if (!Stream.canSkipToPos(4)) 112 return createStringError(std::errc::illegal_byte_sequence, 113 "file too small to contain bitcode header"); 114 for (unsigned C : {'B', 'C'}) 115 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) { 116 if (Res.get() != C) 117 return createStringError(std::errc::illegal_byte_sequence, 118 "file doesn't start with bitcode header"); 119 } else 120 return Res.takeError(); 121 for (unsigned C : {0x0, 0xC, 0xE, 0xD}) 122 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) { 123 if (Res.get() != C) 124 return createStringError(std::errc::illegal_byte_sequence, 125 "file doesn't start with bitcode header"); 126 } else 127 return Res.takeError(); 128 return Error::success(); 129 } 130 131 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) { 132 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart(); 133 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize(); 134 135 if (Buffer.getBufferSize() & 3) 136 return error("Invalid bitcode signature"); 137 138 // If we have a wrapper header, parse it and ignore the non-bc file contents. 139 // The magic number is 0x0B17C0DE stored in little endian. 140 if (isBitcodeWrapper(BufPtr, BufEnd)) 141 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 142 return error("Invalid bitcode wrapper header"); 143 144 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd)); 145 if (Error Err = hasInvalidBitcodeHeader(Stream)) 146 return std::move(Err); 147 148 return std::move(Stream); 149 } 150 151 /// Convert a string from a record into an std::string, return true on failure. 152 template <typename StrTy> 153 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 154 StrTy &Result) { 155 if (Idx > Record.size()) 156 return true; 157 158 Result.append(Record.begin() + Idx, Record.end()); 159 return false; 160 } 161 162 // Strip all the TBAA attachment for the module. 163 static void stripTBAA(Module *M) { 164 for (auto &F : *M) { 165 if (F.isMaterializable()) 166 continue; 167 for (auto &I : instructions(F)) 168 I.setMetadata(LLVMContext::MD_tbaa, nullptr); 169 } 170 } 171 172 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the 173 /// "epoch" encoded in the bitcode, and return the producer name if any. 174 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) { 175 if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 176 return std::move(Err); 177 178 // Read all the records. 179 SmallVector<uint64_t, 64> Record; 180 181 std::string ProducerIdentification; 182 183 while (true) { 184 BitstreamEntry Entry; 185 if (Error E = Stream.advance().moveInto(Entry)) 186 return std::move(E); 187 188 switch (Entry.Kind) { 189 default: 190 case BitstreamEntry::Error: 191 return error("Malformed block"); 192 case BitstreamEntry::EndBlock: 193 return ProducerIdentification; 194 case BitstreamEntry::Record: 195 // The interesting case. 196 break; 197 } 198 199 // Read a record. 200 Record.clear(); 201 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 202 if (!MaybeBitCode) 203 return MaybeBitCode.takeError(); 204 switch (MaybeBitCode.get()) { 205 default: // Default behavior: reject 206 return error("Invalid value"); 207 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N] 208 convertToString(Record, 0, ProducerIdentification); 209 break; 210 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 211 unsigned epoch = (unsigned)Record[0]; 212 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 213 return error( 214 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 215 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 216 } 217 } 218 } 219 } 220 } 221 222 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) { 223 // We expect a number of well-defined blocks, though we don't necessarily 224 // need to understand them all. 225 while (true) { 226 if (Stream.AtEndOfStream()) 227 return ""; 228 229 BitstreamEntry Entry; 230 if (Error E = Stream.advance().moveInto(Entry)) 231 return std::move(E); 232 233 switch (Entry.Kind) { 234 case BitstreamEntry::EndBlock: 235 case BitstreamEntry::Error: 236 return error("Malformed block"); 237 238 case BitstreamEntry::SubBlock: 239 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) 240 return readIdentificationBlock(Stream); 241 242 // Ignore other sub-blocks. 243 if (Error Err = Stream.SkipBlock()) 244 return std::move(Err); 245 continue; 246 case BitstreamEntry::Record: 247 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 248 return std::move(E); 249 continue; 250 } 251 } 252 } 253 254 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) { 255 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 256 return std::move(Err); 257 258 SmallVector<uint64_t, 64> Record; 259 // Read all the records for this module. 260 261 while (true) { 262 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 263 if (!MaybeEntry) 264 return MaybeEntry.takeError(); 265 BitstreamEntry Entry = MaybeEntry.get(); 266 267 switch (Entry.Kind) { 268 case BitstreamEntry::SubBlock: // Handled for us already. 269 case BitstreamEntry::Error: 270 return error("Malformed block"); 271 case BitstreamEntry::EndBlock: 272 return false; 273 case BitstreamEntry::Record: 274 // The interesting case. 275 break; 276 } 277 278 // Read a record. 279 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 280 if (!MaybeRecord) 281 return MaybeRecord.takeError(); 282 switch (MaybeRecord.get()) { 283 default: 284 break; // Default behavior, ignore unknown content. 285 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 286 std::string S; 287 if (convertToString(Record, 0, S)) 288 return error("Invalid section name record"); 289 // Check for the i386 and other (x86_64, ARM) conventions 290 if (S.find("__DATA,__objc_catlist") != std::string::npos || 291 S.find("__OBJC,__category") != std::string::npos) 292 return true; 293 break; 294 } 295 } 296 Record.clear(); 297 } 298 llvm_unreachable("Exit infinite loop"); 299 } 300 301 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) { 302 // We expect a number of well-defined blocks, though we don't necessarily 303 // need to understand them all. 304 while (true) { 305 BitstreamEntry Entry; 306 if (Error E = Stream.advance().moveInto(Entry)) 307 return std::move(E); 308 309 switch (Entry.Kind) { 310 case BitstreamEntry::Error: 311 return error("Malformed block"); 312 case BitstreamEntry::EndBlock: 313 return false; 314 315 case BitstreamEntry::SubBlock: 316 if (Entry.ID == bitc::MODULE_BLOCK_ID) 317 return hasObjCCategoryInModule(Stream); 318 319 // Ignore other sub-blocks. 320 if (Error Err = Stream.SkipBlock()) 321 return std::move(Err); 322 continue; 323 324 case BitstreamEntry::Record: 325 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 326 return std::move(E); 327 continue; 328 } 329 } 330 } 331 332 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) { 333 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 334 return std::move(Err); 335 336 SmallVector<uint64_t, 64> Record; 337 338 std::string Triple; 339 340 // Read all the records for this module. 341 while (true) { 342 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 343 if (!MaybeEntry) 344 return MaybeEntry.takeError(); 345 BitstreamEntry Entry = MaybeEntry.get(); 346 347 switch (Entry.Kind) { 348 case BitstreamEntry::SubBlock: // Handled for us already. 349 case BitstreamEntry::Error: 350 return error("Malformed block"); 351 case BitstreamEntry::EndBlock: 352 return Triple; 353 case BitstreamEntry::Record: 354 // The interesting case. 355 break; 356 } 357 358 // Read a record. 359 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 360 if (!MaybeRecord) 361 return MaybeRecord.takeError(); 362 switch (MaybeRecord.get()) { 363 default: break; // Default behavior, ignore unknown content. 364 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 365 std::string S; 366 if (convertToString(Record, 0, S)) 367 return error("Invalid triple record"); 368 Triple = S; 369 break; 370 } 371 } 372 Record.clear(); 373 } 374 llvm_unreachable("Exit infinite loop"); 375 } 376 377 static Expected<std::string> readTriple(BitstreamCursor &Stream) { 378 // We expect a number of well-defined blocks, though we don't necessarily 379 // need to understand them all. 380 while (true) { 381 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 382 if (!MaybeEntry) 383 return MaybeEntry.takeError(); 384 BitstreamEntry Entry = MaybeEntry.get(); 385 386 switch (Entry.Kind) { 387 case BitstreamEntry::Error: 388 return error("Malformed block"); 389 case BitstreamEntry::EndBlock: 390 return ""; 391 392 case BitstreamEntry::SubBlock: 393 if (Entry.ID == bitc::MODULE_BLOCK_ID) 394 return readModuleTriple(Stream); 395 396 // Ignore other sub-blocks. 397 if (Error Err = Stream.SkipBlock()) 398 return std::move(Err); 399 continue; 400 401 case BitstreamEntry::Record: 402 if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 403 continue; 404 else 405 return Skipped.takeError(); 406 } 407 } 408 } 409 410 namespace { 411 412 class BitcodeReaderBase { 413 protected: 414 BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab) 415 : Stream(std::move(Stream)), Strtab(Strtab) { 416 this->Stream.setBlockInfo(&BlockInfo); 417 } 418 419 BitstreamBlockInfo BlockInfo; 420 BitstreamCursor Stream; 421 StringRef Strtab; 422 423 /// In version 2 of the bitcode we store names of global values and comdats in 424 /// a string table rather than in the VST. 425 bool UseStrtab = false; 426 427 Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record); 428 429 /// If this module uses a string table, pop the reference to the string table 430 /// and return the referenced string and the rest of the record. Otherwise 431 /// just return the record itself. 432 std::pair<StringRef, ArrayRef<uint64_t>> 433 readNameFromStrtab(ArrayRef<uint64_t> Record); 434 435 Error readBlockInfo(); 436 437 // Contains an arbitrary and optional string identifying the bitcode producer 438 std::string ProducerIdentification; 439 440 Error error(const Twine &Message); 441 }; 442 443 } // end anonymous namespace 444 445 Error BitcodeReaderBase::error(const Twine &Message) { 446 std::string FullMsg = Message.str(); 447 if (!ProducerIdentification.empty()) 448 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " + 449 LLVM_VERSION_STRING "')"; 450 return ::error(FullMsg); 451 } 452 453 Expected<unsigned> 454 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) { 455 if (Record.empty()) 456 return error("Invalid version record"); 457 unsigned ModuleVersion = Record[0]; 458 if (ModuleVersion > 2) 459 return error("Invalid value"); 460 UseStrtab = ModuleVersion >= 2; 461 return ModuleVersion; 462 } 463 464 std::pair<StringRef, ArrayRef<uint64_t>> 465 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) { 466 if (!UseStrtab) 467 return {"", Record}; 468 // Invalid reference. Let the caller complain about the record being empty. 469 if (Record[0] + Record[1] > Strtab.size()) 470 return {"", {}}; 471 return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)}; 472 } 473 474 namespace { 475 476 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer { 477 LLVMContext &Context; 478 Module *TheModule = nullptr; 479 // Next offset to start scanning for lazy parsing of function bodies. 480 uint64_t NextUnreadBit = 0; 481 // Last function offset found in the VST. 482 uint64_t LastFunctionBlockBit = 0; 483 bool SeenValueSymbolTable = false; 484 uint64_t VSTOffset = 0; 485 486 std::vector<std::string> SectionTable; 487 std::vector<std::string> GCTable; 488 489 std::vector<Type *> TypeList; 490 /// Track type IDs of contained types. Order is the same as the contained 491 /// types of a Type*. This is used during upgrades of typed pointer IR in 492 /// opaque pointer mode. 493 DenseMap<unsigned, SmallVector<unsigned, 1>> ContainedTypeIDs; 494 /// In some cases, we need to create a type ID for a type that was not 495 /// explicitly encoded in the bitcode, or we don't know about at the current 496 /// point. For example, a global may explicitly encode the value type ID, but 497 /// not have a type ID for the pointer to value type, for which we create a 498 /// virtual type ID instead. This map stores the new type ID that was created 499 /// for the given pair of Type and contained type ID. 500 DenseMap<std::pair<Type *, unsigned>, unsigned> VirtualTypeIDs; 501 DenseMap<Function *, unsigned> FunctionTypeIDs; 502 BitcodeReaderValueList ValueList; 503 Optional<MetadataLoader> MDLoader; 504 std::vector<Comdat *> ComdatList; 505 DenseSet<GlobalObject *> ImplicitComdatObjects; 506 SmallVector<Instruction *, 64> InstructionList; 507 508 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits; 509 std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInits; 510 511 struct FunctionOperandInfo { 512 Function *F; 513 unsigned PersonalityFn; 514 unsigned Prefix; 515 unsigned Prologue; 516 }; 517 std::vector<FunctionOperandInfo> FunctionOperands; 518 519 /// The set of attributes by index. Index zero in the file is for null, and 520 /// is thus not represented here. As such all indices are off by one. 521 std::vector<AttributeList> MAttributes; 522 523 /// The set of attribute groups. 524 std::map<unsigned, AttributeList> MAttributeGroups; 525 526 /// While parsing a function body, this is a list of the basic blocks for the 527 /// function. 528 std::vector<BasicBlock*> FunctionBBs; 529 530 // When reading the module header, this list is populated with functions that 531 // have bodies later in the file. 532 std::vector<Function*> FunctionsWithBodies; 533 534 // When intrinsic functions are encountered which require upgrading they are 535 // stored here with their replacement function. 536 using UpdatedIntrinsicMap = DenseMap<Function *, Function *>; 537 UpdatedIntrinsicMap UpgradedIntrinsics; 538 // Intrinsics which were remangled because of types rename 539 UpdatedIntrinsicMap RemangledIntrinsics; 540 541 // Several operations happen after the module header has been read, but 542 // before function bodies are processed. This keeps track of whether 543 // we've done this yet. 544 bool SeenFirstFunctionBody = false; 545 546 /// When function bodies are initially scanned, this map contains info about 547 /// where to find deferred function body in the stream. 548 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 549 550 /// When Metadata block is initially scanned when parsing the module, we may 551 /// choose to defer parsing of the metadata. This vector contains info about 552 /// which Metadata blocks are deferred. 553 std::vector<uint64_t> DeferredMetadataInfo; 554 555 /// These are basic blocks forward-referenced by block addresses. They are 556 /// inserted lazily into functions when they're loaded. The basic block ID is 557 /// its index into the vector. 558 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 559 std::deque<Function *> BasicBlockFwdRefQueue; 560 561 /// Indicates that we are using a new encoding for instruction operands where 562 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 563 /// instruction number, for a more compact encoding. Some instruction 564 /// operands are not relative to the instruction ID: basic block numbers, and 565 /// types. Once the old style function blocks have been phased out, we would 566 /// not need this flag. 567 bool UseRelativeIDs = false; 568 569 /// True if all functions will be materialized, negating the need to process 570 /// (e.g.) blockaddress forward references. 571 bool WillMaterializeAllForwardRefs = false; 572 573 bool StripDebugInfo = false; 574 TBAAVerifier TBAAVerifyHelper; 575 576 std::vector<std::string> BundleTags; 577 SmallVector<SyncScope::ID, 8> SSIDs; 578 579 public: 580 BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 581 StringRef ProducerIdentification, LLVMContext &Context); 582 583 Error materializeForwardReferencedFunctions(); 584 585 Error materialize(GlobalValue *GV) override; 586 Error materializeModule() override; 587 std::vector<StructType *> getIdentifiedStructTypes() const override; 588 589 /// Main interface to parsing a bitcode buffer. 590 /// \returns true if an error occurred. 591 Error parseBitcodeInto( 592 Module *M, bool ShouldLazyLoadMetadata = false, bool IsImporting = false, 593 DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; }); 594 595 static uint64_t decodeSignRotatedValue(uint64_t V); 596 597 /// Materialize any deferred Metadata block. 598 Error materializeMetadata() override; 599 600 void setStripDebugInfo() override; 601 602 private: 603 std::vector<StructType *> IdentifiedStructTypes; 604 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 605 StructType *createIdentifiedStructType(LLVMContext &Context); 606 607 static constexpr unsigned InvalidTypeID = ~0u; 608 609 Type *getTypeByID(unsigned ID); 610 Type *getPtrElementTypeByID(unsigned ID); 611 unsigned getContainedTypeID(unsigned ID, unsigned Idx = 0); 612 unsigned getVirtualTypeID(Type *Ty, ArrayRef<unsigned> ContainedTypeIDs = {}); 613 614 Value *getFnValueByID(unsigned ID, Type *Ty, unsigned TyID) { 615 if (Ty && Ty->isMetadataTy()) 616 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 617 return ValueList.getValueFwdRef(ID, Ty, TyID); 618 } 619 620 Metadata *getFnMetadataByID(unsigned ID) { 621 return MDLoader->getMetadataFwdRefOrLoad(ID); 622 } 623 624 BasicBlock *getBasicBlock(unsigned ID) const { 625 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 626 return FunctionBBs[ID]; 627 } 628 629 AttributeList getAttributes(unsigned i) const { 630 if (i-1 < MAttributes.size()) 631 return MAttributes[i-1]; 632 return AttributeList(); 633 } 634 635 /// Read a value/type pair out of the specified record from slot 'Slot'. 636 /// Increment Slot past the number of slots used in the record. Return true on 637 /// failure. 638 bool getValueTypePair(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 639 unsigned InstNum, Value *&ResVal, unsigned &TypeID) { 640 if (Slot == Record.size()) return true; 641 unsigned ValNo = (unsigned)Record[Slot++]; 642 // Adjust the ValNo, if it was encoded relative to the InstNum. 643 if (UseRelativeIDs) 644 ValNo = InstNum - ValNo; 645 if (ValNo < InstNum) { 646 // If this is not a forward reference, just return the value we already 647 // have. 648 TypeID = ValueList.getTypeID(ValNo); 649 ResVal = getFnValueByID(ValNo, nullptr, TypeID); 650 assert((!ResVal || ResVal->getType() == getTypeByID(TypeID)) && 651 "Incorrect type ID stored for value"); 652 return ResVal == nullptr; 653 } 654 if (Slot == Record.size()) 655 return true; 656 657 TypeID = (unsigned)Record[Slot++]; 658 ResVal = getFnValueByID(ValNo, getTypeByID(TypeID), TypeID); 659 return ResVal == nullptr; 660 } 661 662 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 663 /// past the number of slots used by the value in the record. Return true if 664 /// there is an error. 665 bool popValue(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 666 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal) { 667 if (getValue(Record, Slot, InstNum, Ty, TyID, ResVal)) 668 return true; 669 // All values currently take a single record slot. 670 ++Slot; 671 return false; 672 } 673 674 /// Like popValue, but does not increment the Slot number. 675 bool getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 676 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal) { 677 ResVal = getValue(Record, Slot, InstNum, Ty, TyID); 678 return ResVal == nullptr; 679 } 680 681 /// Version of getValue that returns ResVal directly, or 0 if there is an 682 /// error. 683 Value *getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 684 unsigned InstNum, Type *Ty, unsigned TyID) { 685 if (Slot == Record.size()) return nullptr; 686 unsigned ValNo = (unsigned)Record[Slot]; 687 // Adjust the ValNo, if it was encoded relative to the InstNum. 688 if (UseRelativeIDs) 689 ValNo = InstNum - ValNo; 690 return getFnValueByID(ValNo, Ty, TyID); 691 } 692 693 /// Like getValue, but decodes signed VBRs. 694 Value *getValueSigned(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 695 unsigned InstNum, Type *Ty, unsigned TyID) { 696 if (Slot == Record.size()) return nullptr; 697 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 698 // Adjust the ValNo, if it was encoded relative to the InstNum. 699 if (UseRelativeIDs) 700 ValNo = InstNum - ValNo; 701 return getFnValueByID(ValNo, Ty, TyID); 702 } 703 704 /// Upgrades old-style typeless byval/sret/inalloca attributes by adding the 705 /// corresponding argument's pointee type. Also upgrades intrinsics that now 706 /// require an elementtype attribute. 707 Error propagateAttributeTypes(CallBase *CB, ArrayRef<unsigned> ArgsTys); 708 709 /// Converts alignment exponent (i.e. power of two (or zero)) to the 710 /// corresponding alignment to use. If alignment is too large, returns 711 /// a corresponding error code. 712 Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment); 713 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 714 Error parseModule( 715 uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false, 716 DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; }); 717 718 Error parseComdatRecord(ArrayRef<uint64_t> Record); 719 Error parseGlobalVarRecord(ArrayRef<uint64_t> Record); 720 Error parseFunctionRecord(ArrayRef<uint64_t> Record); 721 Error parseGlobalIndirectSymbolRecord(unsigned BitCode, 722 ArrayRef<uint64_t> Record); 723 724 Error parseAttributeBlock(); 725 Error parseAttributeGroupBlock(); 726 Error parseTypeTable(); 727 Error parseTypeTableBody(); 728 Error parseOperandBundleTags(); 729 Error parseSyncScopeNames(); 730 731 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 732 unsigned NameIndex, Triple &TT); 733 void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F, 734 ArrayRef<uint64_t> Record); 735 Error parseValueSymbolTable(uint64_t Offset = 0); 736 Error parseGlobalValueSymbolTable(); 737 Error parseConstants(); 738 Error rememberAndSkipFunctionBodies(); 739 Error rememberAndSkipFunctionBody(); 740 /// Save the positions of the Metadata blocks and skip parsing the blocks. 741 Error rememberAndSkipMetadata(); 742 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType); 743 Error parseFunctionBody(Function *F); 744 Error globalCleanup(); 745 Error resolveGlobalAndIndirectSymbolInits(); 746 Error parseUseLists(); 747 Error findFunctionInStream( 748 Function *F, 749 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 750 751 SyncScope::ID getDecodedSyncScopeID(unsigned Val); 752 }; 753 754 /// Class to manage reading and parsing function summary index bitcode 755 /// files/sections. 756 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase { 757 /// The module index built during parsing. 758 ModuleSummaryIndex &TheIndex; 759 760 /// Indicates whether we have encountered a global value summary section 761 /// yet during parsing. 762 bool SeenGlobalValSummary = false; 763 764 /// Indicates whether we have already parsed the VST, used for error checking. 765 bool SeenValueSymbolTable = false; 766 767 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 768 /// Used to enable on-demand parsing of the VST. 769 uint64_t VSTOffset = 0; 770 771 // Map to save ValueId to ValueInfo association that was recorded in the 772 // ValueSymbolTable. It is used after the VST is parsed to convert 773 // call graph edges read from the function summary from referencing 774 // callees by their ValueId to using the ValueInfo instead, which is how 775 // they are recorded in the summary index being built. 776 // We save a GUID which refers to the same global as the ValueInfo, but 777 // ignoring the linkage, i.e. for values other than local linkage they are 778 // identical. 779 DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>> 780 ValueIdToValueInfoMap; 781 782 /// Map populated during module path string table parsing, from the 783 /// module ID to a string reference owned by the index's module 784 /// path string table, used to correlate with combined index 785 /// summary records. 786 DenseMap<uint64_t, StringRef> ModuleIdMap; 787 788 /// Original source file name recorded in a bitcode record. 789 std::string SourceFileName; 790 791 /// The string identifier given to this module by the client, normally the 792 /// path to the bitcode file. 793 StringRef ModulePath; 794 795 /// For per-module summary indexes, the unique numerical identifier given to 796 /// this module by the client. 797 unsigned ModuleId; 798 799 public: 800 ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab, 801 ModuleSummaryIndex &TheIndex, 802 StringRef ModulePath, unsigned ModuleId); 803 804 Error parseModule(); 805 806 private: 807 void setValueGUID(uint64_t ValueID, StringRef ValueName, 808 GlobalValue::LinkageTypes Linkage, 809 StringRef SourceFileName); 810 Error parseValueSymbolTable( 811 uint64_t Offset, 812 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 813 std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record); 814 std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record, 815 bool IsOldProfileFormat, 816 bool HasProfile, 817 bool HasRelBF); 818 Error parseEntireSummary(unsigned ID); 819 Error parseModuleStringTable(); 820 void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record); 821 void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot, 822 TypeIdCompatibleVtableInfo &TypeId); 823 std::vector<FunctionSummary::ParamAccess> 824 parseParamAccesses(ArrayRef<uint64_t> Record); 825 826 std::pair<ValueInfo, GlobalValue::GUID> 827 getValueInfoFromValueId(unsigned ValueId); 828 829 void addThisModule(); 830 ModuleSummaryIndex::ModuleInfo *getThisModule(); 831 }; 832 833 } // end anonymous namespace 834 835 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx, 836 Error Err) { 837 if (Err) { 838 std::error_code EC; 839 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) { 840 EC = EIB.convertToErrorCode(); 841 Ctx.emitError(EIB.message()); 842 }); 843 return EC; 844 } 845 return std::error_code(); 846 } 847 848 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 849 StringRef ProducerIdentification, 850 LLVMContext &Context) 851 : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context), 852 ValueList(Context, this->Stream.SizeInBytes()) { 853 this->ProducerIdentification = std::string(ProducerIdentification); 854 } 855 856 Error BitcodeReader::materializeForwardReferencedFunctions() { 857 if (WillMaterializeAllForwardRefs) 858 return Error::success(); 859 860 // Prevent recursion. 861 WillMaterializeAllForwardRefs = true; 862 863 while (!BasicBlockFwdRefQueue.empty()) { 864 Function *F = BasicBlockFwdRefQueue.front(); 865 BasicBlockFwdRefQueue.pop_front(); 866 assert(F && "Expected valid function"); 867 if (!BasicBlockFwdRefs.count(F)) 868 // Already materialized. 869 continue; 870 871 // Check for a function that isn't materializable to prevent an infinite 872 // loop. When parsing a blockaddress stored in a global variable, there 873 // isn't a trivial way to check if a function will have a body without a 874 // linear search through FunctionsWithBodies, so just check it here. 875 if (!F->isMaterializable()) 876 return error("Never resolved function from blockaddress"); 877 878 // Try to materialize F. 879 if (Error Err = materialize(F)) 880 return Err; 881 } 882 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 883 884 // Reset state. 885 WillMaterializeAllForwardRefs = false; 886 return Error::success(); 887 } 888 889 //===----------------------------------------------------------------------===// 890 // Helper functions to implement forward reference resolution, etc. 891 //===----------------------------------------------------------------------===// 892 893 static bool hasImplicitComdat(size_t Val) { 894 switch (Val) { 895 default: 896 return false; 897 case 1: // Old WeakAnyLinkage 898 case 4: // Old LinkOnceAnyLinkage 899 case 10: // Old WeakODRLinkage 900 case 11: // Old LinkOnceODRLinkage 901 return true; 902 } 903 } 904 905 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 906 switch (Val) { 907 default: // Map unknown/new linkages to external 908 case 0: 909 return GlobalValue::ExternalLinkage; 910 case 2: 911 return GlobalValue::AppendingLinkage; 912 case 3: 913 return GlobalValue::InternalLinkage; 914 case 5: 915 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 916 case 6: 917 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 918 case 7: 919 return GlobalValue::ExternalWeakLinkage; 920 case 8: 921 return GlobalValue::CommonLinkage; 922 case 9: 923 return GlobalValue::PrivateLinkage; 924 case 12: 925 return GlobalValue::AvailableExternallyLinkage; 926 case 13: 927 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 928 case 14: 929 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 930 case 15: 931 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 932 case 1: // Old value with implicit comdat. 933 case 16: 934 return GlobalValue::WeakAnyLinkage; 935 case 10: // Old value with implicit comdat. 936 case 17: 937 return GlobalValue::WeakODRLinkage; 938 case 4: // Old value with implicit comdat. 939 case 18: 940 return GlobalValue::LinkOnceAnyLinkage; 941 case 11: // Old value with implicit comdat. 942 case 19: 943 return GlobalValue::LinkOnceODRLinkage; 944 } 945 } 946 947 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) { 948 FunctionSummary::FFlags Flags; 949 Flags.ReadNone = RawFlags & 0x1; 950 Flags.ReadOnly = (RawFlags >> 1) & 0x1; 951 Flags.NoRecurse = (RawFlags >> 2) & 0x1; 952 Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1; 953 Flags.NoInline = (RawFlags >> 4) & 0x1; 954 Flags.AlwaysInline = (RawFlags >> 5) & 0x1; 955 Flags.NoUnwind = (RawFlags >> 6) & 0x1; 956 Flags.MayThrow = (RawFlags >> 7) & 0x1; 957 Flags.HasUnknownCall = (RawFlags >> 8) & 0x1; 958 Flags.MustBeUnreachable = (RawFlags >> 9) & 0x1; 959 return Flags; 960 } 961 962 // Decode the flags for GlobalValue in the summary. The bits for each attribute: 963 // 964 // linkage: [0,4), notEligibleToImport: 4, live: 5, local: 6, canAutoHide: 7, 965 // visibility: [8, 10). 966 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 967 uint64_t Version) { 968 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 969 // like getDecodedLinkage() above. Any future change to the linkage enum and 970 // to getDecodedLinkage() will need to be taken into account here as above. 971 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 972 auto Visibility = GlobalValue::VisibilityTypes((RawFlags >> 8) & 3); // 2 bits 973 RawFlags = RawFlags >> 4; 974 bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3; 975 // The Live flag wasn't introduced until version 3. For dead stripping 976 // to work correctly on earlier versions, we must conservatively treat all 977 // values as live. 978 bool Live = (RawFlags & 0x2) || Version < 3; 979 bool Local = (RawFlags & 0x4); 980 bool AutoHide = (RawFlags & 0x8); 981 982 return GlobalValueSummary::GVFlags(Linkage, Visibility, NotEligibleToImport, 983 Live, Local, AutoHide); 984 } 985 986 // Decode the flags for GlobalVariable in the summary 987 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) { 988 return GlobalVarSummary::GVarFlags( 989 (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false, 990 (RawFlags & 0x4) ? true : false, 991 (GlobalObject::VCallVisibility)(RawFlags >> 3)); 992 } 993 994 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 995 switch (Val) { 996 default: // Map unknown visibilities to default. 997 case 0: return GlobalValue::DefaultVisibility; 998 case 1: return GlobalValue::HiddenVisibility; 999 case 2: return GlobalValue::ProtectedVisibility; 1000 } 1001 } 1002 1003 static GlobalValue::DLLStorageClassTypes 1004 getDecodedDLLStorageClass(unsigned Val) { 1005 switch (Val) { 1006 default: // Map unknown values to default. 1007 case 0: return GlobalValue::DefaultStorageClass; 1008 case 1: return GlobalValue::DLLImportStorageClass; 1009 case 2: return GlobalValue::DLLExportStorageClass; 1010 } 1011 } 1012 1013 static bool getDecodedDSOLocal(unsigned Val) { 1014 switch(Val) { 1015 default: // Map unknown values to preemptable. 1016 case 0: return false; 1017 case 1: return true; 1018 } 1019 } 1020 1021 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 1022 switch (Val) { 1023 case 0: return GlobalVariable::NotThreadLocal; 1024 default: // Map unknown non-zero value to general dynamic. 1025 case 1: return GlobalVariable::GeneralDynamicTLSModel; 1026 case 2: return GlobalVariable::LocalDynamicTLSModel; 1027 case 3: return GlobalVariable::InitialExecTLSModel; 1028 case 4: return GlobalVariable::LocalExecTLSModel; 1029 } 1030 } 1031 1032 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { 1033 switch (Val) { 1034 default: // Map unknown to UnnamedAddr::None. 1035 case 0: return GlobalVariable::UnnamedAddr::None; 1036 case 1: return GlobalVariable::UnnamedAddr::Global; 1037 case 2: return GlobalVariable::UnnamedAddr::Local; 1038 } 1039 } 1040 1041 static int getDecodedCastOpcode(unsigned Val) { 1042 switch (Val) { 1043 default: return -1; 1044 case bitc::CAST_TRUNC : return Instruction::Trunc; 1045 case bitc::CAST_ZEXT : return Instruction::ZExt; 1046 case bitc::CAST_SEXT : return Instruction::SExt; 1047 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 1048 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 1049 case bitc::CAST_UITOFP : return Instruction::UIToFP; 1050 case bitc::CAST_SITOFP : return Instruction::SIToFP; 1051 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 1052 case bitc::CAST_FPEXT : return Instruction::FPExt; 1053 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 1054 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 1055 case bitc::CAST_BITCAST : return Instruction::BitCast; 1056 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 1057 } 1058 } 1059 1060 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) { 1061 bool IsFP = Ty->isFPOrFPVectorTy(); 1062 // UnOps are only valid for int/fp or vector of int/fp types 1063 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1064 return -1; 1065 1066 switch (Val) { 1067 default: 1068 return -1; 1069 case bitc::UNOP_FNEG: 1070 return IsFP ? Instruction::FNeg : -1; 1071 } 1072 } 1073 1074 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 1075 bool IsFP = Ty->isFPOrFPVectorTy(); 1076 // BinOps are only valid for int/fp or vector of int/fp types 1077 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1078 return -1; 1079 1080 switch (Val) { 1081 default: 1082 return -1; 1083 case bitc::BINOP_ADD: 1084 return IsFP ? Instruction::FAdd : Instruction::Add; 1085 case bitc::BINOP_SUB: 1086 return IsFP ? Instruction::FSub : Instruction::Sub; 1087 case bitc::BINOP_MUL: 1088 return IsFP ? Instruction::FMul : Instruction::Mul; 1089 case bitc::BINOP_UDIV: 1090 return IsFP ? -1 : Instruction::UDiv; 1091 case bitc::BINOP_SDIV: 1092 return IsFP ? Instruction::FDiv : Instruction::SDiv; 1093 case bitc::BINOP_UREM: 1094 return IsFP ? -1 : Instruction::URem; 1095 case bitc::BINOP_SREM: 1096 return IsFP ? Instruction::FRem : Instruction::SRem; 1097 case bitc::BINOP_SHL: 1098 return IsFP ? -1 : Instruction::Shl; 1099 case bitc::BINOP_LSHR: 1100 return IsFP ? -1 : Instruction::LShr; 1101 case bitc::BINOP_ASHR: 1102 return IsFP ? -1 : Instruction::AShr; 1103 case bitc::BINOP_AND: 1104 return IsFP ? -1 : Instruction::And; 1105 case bitc::BINOP_OR: 1106 return IsFP ? -1 : Instruction::Or; 1107 case bitc::BINOP_XOR: 1108 return IsFP ? -1 : Instruction::Xor; 1109 } 1110 } 1111 1112 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 1113 switch (Val) { 1114 default: return AtomicRMWInst::BAD_BINOP; 1115 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 1116 case bitc::RMW_ADD: return AtomicRMWInst::Add; 1117 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 1118 case bitc::RMW_AND: return AtomicRMWInst::And; 1119 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 1120 case bitc::RMW_OR: return AtomicRMWInst::Or; 1121 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 1122 case bitc::RMW_MAX: return AtomicRMWInst::Max; 1123 case bitc::RMW_MIN: return AtomicRMWInst::Min; 1124 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 1125 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 1126 case bitc::RMW_FADD: return AtomicRMWInst::FAdd; 1127 case bitc::RMW_FSUB: return AtomicRMWInst::FSub; 1128 } 1129 } 1130 1131 static AtomicOrdering getDecodedOrdering(unsigned Val) { 1132 switch (Val) { 1133 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 1134 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 1135 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 1136 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 1137 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 1138 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 1139 default: // Map unknown orderings to sequentially-consistent. 1140 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 1141 } 1142 } 1143 1144 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 1145 switch (Val) { 1146 default: // Map unknown selection kinds to any. 1147 case bitc::COMDAT_SELECTION_KIND_ANY: 1148 return Comdat::Any; 1149 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 1150 return Comdat::ExactMatch; 1151 case bitc::COMDAT_SELECTION_KIND_LARGEST: 1152 return Comdat::Largest; 1153 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 1154 return Comdat::NoDeduplicate; 1155 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 1156 return Comdat::SameSize; 1157 } 1158 } 1159 1160 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 1161 FastMathFlags FMF; 1162 if (0 != (Val & bitc::UnsafeAlgebra)) 1163 FMF.setFast(); 1164 if (0 != (Val & bitc::AllowReassoc)) 1165 FMF.setAllowReassoc(); 1166 if (0 != (Val & bitc::NoNaNs)) 1167 FMF.setNoNaNs(); 1168 if (0 != (Val & bitc::NoInfs)) 1169 FMF.setNoInfs(); 1170 if (0 != (Val & bitc::NoSignedZeros)) 1171 FMF.setNoSignedZeros(); 1172 if (0 != (Val & bitc::AllowReciprocal)) 1173 FMF.setAllowReciprocal(); 1174 if (0 != (Val & bitc::AllowContract)) 1175 FMF.setAllowContract(true); 1176 if (0 != (Val & bitc::ApproxFunc)) 1177 FMF.setApproxFunc(); 1178 return FMF; 1179 } 1180 1181 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) { 1182 switch (Val) { 1183 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 1184 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 1185 } 1186 } 1187 1188 Type *BitcodeReader::getTypeByID(unsigned ID) { 1189 // The type table size is always specified correctly. 1190 if (ID >= TypeList.size()) 1191 return nullptr; 1192 1193 if (Type *Ty = TypeList[ID]) 1194 return Ty; 1195 1196 // If we have a forward reference, the only possible case is when it is to a 1197 // named struct. Just create a placeholder for now. 1198 return TypeList[ID] = createIdentifiedStructType(Context); 1199 } 1200 1201 unsigned BitcodeReader::getContainedTypeID(unsigned ID, unsigned Idx) { 1202 auto It = ContainedTypeIDs.find(ID); 1203 if (It == ContainedTypeIDs.end()) 1204 return InvalidTypeID; 1205 1206 if (Idx >= It->second.size()) 1207 return InvalidTypeID; 1208 1209 return It->second[Idx]; 1210 } 1211 1212 Type *BitcodeReader::getPtrElementTypeByID(unsigned ID) { 1213 if (ID >= TypeList.size()) 1214 return nullptr; 1215 1216 Type *Ty = TypeList[ID]; 1217 if (!Ty->isPointerTy()) 1218 return nullptr; 1219 1220 Type *ElemTy = getTypeByID(getContainedTypeID(ID, 0)); 1221 if (!ElemTy) 1222 return nullptr; 1223 1224 assert(cast<PointerType>(Ty)->isOpaqueOrPointeeTypeMatches(ElemTy) && 1225 "Incorrect element type"); 1226 return ElemTy; 1227 } 1228 1229 unsigned BitcodeReader::getVirtualTypeID(Type *Ty, 1230 ArrayRef<unsigned> ChildTypeIDs) { 1231 unsigned ChildTypeID = ChildTypeIDs.empty() ? InvalidTypeID : ChildTypeIDs[0]; 1232 auto CacheKey = std::make_pair(Ty, ChildTypeID); 1233 auto It = VirtualTypeIDs.find(CacheKey); 1234 if (It != VirtualTypeIDs.end()) { 1235 // The cmpxchg return value is the only place we need more than one 1236 // contained type ID, however the second one will always be the same (i1), 1237 // so we don't need to include it in the cache key. This asserts that the 1238 // contained types are indeed as expected and there are no collisions. 1239 assert((ChildTypeIDs.empty() || 1240 ContainedTypeIDs[It->second] == ChildTypeIDs) && 1241 "Incorrect cached contained type IDs"); 1242 return It->second; 1243 } 1244 1245 #ifndef NDEBUG 1246 if (!Ty->isOpaquePointerTy()) { 1247 assert(Ty->getNumContainedTypes() == ChildTypeIDs.size() && 1248 "Wrong number of contained types"); 1249 for (auto Pair : zip(Ty->subtypes(), ChildTypeIDs)) { 1250 assert(std::get<0>(Pair) == getTypeByID(std::get<1>(Pair)) && 1251 "Incorrect contained type ID"); 1252 } 1253 } 1254 #endif 1255 1256 unsigned TypeID = TypeList.size(); 1257 TypeList.push_back(Ty); 1258 if (!ChildTypeIDs.empty()) 1259 append_range(ContainedTypeIDs[TypeID], ChildTypeIDs); 1260 VirtualTypeIDs.insert({CacheKey, TypeID}); 1261 return TypeID; 1262 } 1263 1264 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1265 StringRef Name) { 1266 auto *Ret = StructType::create(Context, Name); 1267 IdentifiedStructTypes.push_back(Ret); 1268 return Ret; 1269 } 1270 1271 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1272 auto *Ret = StructType::create(Context); 1273 IdentifiedStructTypes.push_back(Ret); 1274 return Ret; 1275 } 1276 1277 //===----------------------------------------------------------------------===// 1278 // Functions for parsing blocks from the bitcode file 1279 //===----------------------------------------------------------------------===// 1280 1281 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) { 1282 switch (Val) { 1283 case Attribute::EndAttrKinds: 1284 case Attribute::EmptyKey: 1285 case Attribute::TombstoneKey: 1286 llvm_unreachable("Synthetic enumerators which should never get here"); 1287 1288 case Attribute::None: return 0; 1289 case Attribute::ZExt: return 1 << 0; 1290 case Attribute::SExt: return 1 << 1; 1291 case Attribute::NoReturn: return 1 << 2; 1292 case Attribute::InReg: return 1 << 3; 1293 case Attribute::StructRet: return 1 << 4; 1294 case Attribute::NoUnwind: return 1 << 5; 1295 case Attribute::NoAlias: return 1 << 6; 1296 case Attribute::ByVal: return 1 << 7; 1297 case Attribute::Nest: return 1 << 8; 1298 case Attribute::ReadNone: return 1 << 9; 1299 case Attribute::ReadOnly: return 1 << 10; 1300 case Attribute::NoInline: return 1 << 11; 1301 case Attribute::AlwaysInline: return 1 << 12; 1302 case Attribute::OptimizeForSize: return 1 << 13; 1303 case Attribute::StackProtect: return 1 << 14; 1304 case Attribute::StackProtectReq: return 1 << 15; 1305 case Attribute::Alignment: return 31 << 16; 1306 case Attribute::NoCapture: return 1 << 21; 1307 case Attribute::NoRedZone: return 1 << 22; 1308 case Attribute::NoImplicitFloat: return 1 << 23; 1309 case Attribute::Naked: return 1 << 24; 1310 case Attribute::InlineHint: return 1 << 25; 1311 case Attribute::StackAlignment: return 7 << 26; 1312 case Attribute::ReturnsTwice: return 1 << 29; 1313 case Attribute::UWTable: return 1 << 30; 1314 case Attribute::NonLazyBind: return 1U << 31; 1315 case Attribute::SanitizeAddress: return 1ULL << 32; 1316 case Attribute::MinSize: return 1ULL << 33; 1317 case Attribute::NoDuplicate: return 1ULL << 34; 1318 case Attribute::StackProtectStrong: return 1ULL << 35; 1319 case Attribute::SanitizeThread: return 1ULL << 36; 1320 case Attribute::SanitizeMemory: return 1ULL << 37; 1321 case Attribute::NoBuiltin: return 1ULL << 38; 1322 case Attribute::Returned: return 1ULL << 39; 1323 case Attribute::Cold: return 1ULL << 40; 1324 case Attribute::Builtin: return 1ULL << 41; 1325 case Attribute::OptimizeNone: return 1ULL << 42; 1326 case Attribute::InAlloca: return 1ULL << 43; 1327 case Attribute::NonNull: return 1ULL << 44; 1328 case Attribute::JumpTable: return 1ULL << 45; 1329 case Attribute::Convergent: return 1ULL << 46; 1330 case Attribute::SafeStack: return 1ULL << 47; 1331 case Attribute::NoRecurse: return 1ULL << 48; 1332 case Attribute::InaccessibleMemOnly: return 1ULL << 49; 1333 case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50; 1334 case Attribute::SwiftSelf: return 1ULL << 51; 1335 case Attribute::SwiftError: return 1ULL << 52; 1336 case Attribute::WriteOnly: return 1ULL << 53; 1337 case Attribute::Speculatable: return 1ULL << 54; 1338 case Attribute::StrictFP: return 1ULL << 55; 1339 case Attribute::SanitizeHWAddress: return 1ULL << 56; 1340 case Attribute::NoCfCheck: return 1ULL << 57; 1341 case Attribute::OptForFuzzing: return 1ULL << 58; 1342 case Attribute::ShadowCallStack: return 1ULL << 59; 1343 case Attribute::SpeculativeLoadHardening: 1344 return 1ULL << 60; 1345 case Attribute::ImmArg: 1346 return 1ULL << 61; 1347 case Attribute::WillReturn: 1348 return 1ULL << 62; 1349 case Attribute::NoFree: 1350 return 1ULL << 63; 1351 default: 1352 // Other attributes are not supported in the raw format, 1353 // as we ran out of space. 1354 return 0; 1355 } 1356 llvm_unreachable("Unsupported attribute type"); 1357 } 1358 1359 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) { 1360 if (!Val) return; 1361 1362 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; 1363 I = Attribute::AttrKind(I + 1)) { 1364 if (uint64_t A = (Val & getRawAttributeMask(I))) { 1365 if (I == Attribute::Alignment) 1366 B.addAlignmentAttr(1ULL << ((A >> 16) - 1)); 1367 else if (I == Attribute::StackAlignment) 1368 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1)); 1369 else if (Attribute::isTypeAttrKind(I)) 1370 B.addTypeAttr(I, nullptr); // Type will be auto-upgraded. 1371 else 1372 B.addAttribute(I); 1373 } 1374 } 1375 } 1376 1377 /// This fills an AttrBuilder object with the LLVM attributes that have 1378 /// been decoded from the given integer. This function must stay in sync with 1379 /// 'encodeLLVMAttributesForBitcode'. 1380 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1381 uint64_t EncodedAttrs) { 1382 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1383 // the bits above 31 down by 11 bits. 1384 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1385 assert((!Alignment || isPowerOf2_32(Alignment)) && 1386 "Alignment must be a power of two."); 1387 1388 if (Alignment) 1389 B.addAlignmentAttr(Alignment); 1390 addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1391 (EncodedAttrs & 0xffff)); 1392 } 1393 1394 Error BitcodeReader::parseAttributeBlock() { 1395 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1396 return Err; 1397 1398 if (!MAttributes.empty()) 1399 return error("Invalid multiple blocks"); 1400 1401 SmallVector<uint64_t, 64> Record; 1402 1403 SmallVector<AttributeList, 8> Attrs; 1404 1405 // Read all the records. 1406 while (true) { 1407 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1408 if (!MaybeEntry) 1409 return MaybeEntry.takeError(); 1410 BitstreamEntry Entry = MaybeEntry.get(); 1411 1412 switch (Entry.Kind) { 1413 case BitstreamEntry::SubBlock: // Handled for us already. 1414 case BitstreamEntry::Error: 1415 return error("Malformed block"); 1416 case BitstreamEntry::EndBlock: 1417 return Error::success(); 1418 case BitstreamEntry::Record: 1419 // The interesting case. 1420 break; 1421 } 1422 1423 // Read a record. 1424 Record.clear(); 1425 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1426 if (!MaybeRecord) 1427 return MaybeRecord.takeError(); 1428 switch (MaybeRecord.get()) { 1429 default: // Default behavior: ignore. 1430 break; 1431 case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...] 1432 // Deprecated, but still needed to read old bitcode files. 1433 if (Record.size() & 1) 1434 return error("Invalid parameter attribute record"); 1435 1436 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1437 AttrBuilder B(Context); 1438 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1439 Attrs.push_back(AttributeList::get(Context, Record[i], B)); 1440 } 1441 1442 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1443 Attrs.clear(); 1444 break; 1445 case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...] 1446 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1447 Attrs.push_back(MAttributeGroups[Record[i]]); 1448 1449 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1450 Attrs.clear(); 1451 break; 1452 } 1453 } 1454 } 1455 1456 // Returns Attribute::None on unrecognized codes. 1457 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1458 switch (Code) { 1459 default: 1460 return Attribute::None; 1461 case bitc::ATTR_KIND_ALIGNMENT: 1462 return Attribute::Alignment; 1463 case bitc::ATTR_KIND_ALWAYS_INLINE: 1464 return Attribute::AlwaysInline; 1465 case bitc::ATTR_KIND_ARGMEMONLY: 1466 return Attribute::ArgMemOnly; 1467 case bitc::ATTR_KIND_BUILTIN: 1468 return Attribute::Builtin; 1469 case bitc::ATTR_KIND_BY_VAL: 1470 return Attribute::ByVal; 1471 case bitc::ATTR_KIND_IN_ALLOCA: 1472 return Attribute::InAlloca; 1473 case bitc::ATTR_KIND_COLD: 1474 return Attribute::Cold; 1475 case bitc::ATTR_KIND_CONVERGENT: 1476 return Attribute::Convergent; 1477 case bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION: 1478 return Attribute::DisableSanitizerInstrumentation; 1479 case bitc::ATTR_KIND_ELEMENTTYPE: 1480 return Attribute::ElementType; 1481 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1482 return Attribute::InaccessibleMemOnly; 1483 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1484 return Attribute::InaccessibleMemOrArgMemOnly; 1485 case bitc::ATTR_KIND_INLINE_HINT: 1486 return Attribute::InlineHint; 1487 case bitc::ATTR_KIND_IN_REG: 1488 return Attribute::InReg; 1489 case bitc::ATTR_KIND_JUMP_TABLE: 1490 return Attribute::JumpTable; 1491 case bitc::ATTR_KIND_MIN_SIZE: 1492 return Attribute::MinSize; 1493 case bitc::ATTR_KIND_NAKED: 1494 return Attribute::Naked; 1495 case bitc::ATTR_KIND_NEST: 1496 return Attribute::Nest; 1497 case bitc::ATTR_KIND_NO_ALIAS: 1498 return Attribute::NoAlias; 1499 case bitc::ATTR_KIND_NO_BUILTIN: 1500 return Attribute::NoBuiltin; 1501 case bitc::ATTR_KIND_NO_CALLBACK: 1502 return Attribute::NoCallback; 1503 case bitc::ATTR_KIND_NO_CAPTURE: 1504 return Attribute::NoCapture; 1505 case bitc::ATTR_KIND_NO_DUPLICATE: 1506 return Attribute::NoDuplicate; 1507 case bitc::ATTR_KIND_NOFREE: 1508 return Attribute::NoFree; 1509 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1510 return Attribute::NoImplicitFloat; 1511 case bitc::ATTR_KIND_NO_INLINE: 1512 return Attribute::NoInline; 1513 case bitc::ATTR_KIND_NO_RECURSE: 1514 return Attribute::NoRecurse; 1515 case bitc::ATTR_KIND_NO_MERGE: 1516 return Attribute::NoMerge; 1517 case bitc::ATTR_KIND_NON_LAZY_BIND: 1518 return Attribute::NonLazyBind; 1519 case bitc::ATTR_KIND_NON_NULL: 1520 return Attribute::NonNull; 1521 case bitc::ATTR_KIND_DEREFERENCEABLE: 1522 return Attribute::Dereferenceable; 1523 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1524 return Attribute::DereferenceableOrNull; 1525 case bitc::ATTR_KIND_ALLOC_ALIGN: 1526 return Attribute::AllocAlign; 1527 case bitc::ATTR_KIND_ALLOC_SIZE: 1528 return Attribute::AllocSize; 1529 case bitc::ATTR_KIND_NO_RED_ZONE: 1530 return Attribute::NoRedZone; 1531 case bitc::ATTR_KIND_NO_RETURN: 1532 return Attribute::NoReturn; 1533 case bitc::ATTR_KIND_NOSYNC: 1534 return Attribute::NoSync; 1535 case bitc::ATTR_KIND_NOCF_CHECK: 1536 return Attribute::NoCfCheck; 1537 case bitc::ATTR_KIND_NO_PROFILE: 1538 return Attribute::NoProfile; 1539 case bitc::ATTR_KIND_NO_UNWIND: 1540 return Attribute::NoUnwind; 1541 case bitc::ATTR_KIND_NO_SANITIZE_BOUNDS: 1542 return Attribute::NoSanitizeBounds; 1543 case bitc::ATTR_KIND_NO_SANITIZE_COVERAGE: 1544 return Attribute::NoSanitizeCoverage; 1545 case bitc::ATTR_KIND_NULL_POINTER_IS_VALID: 1546 return Attribute::NullPointerIsValid; 1547 case bitc::ATTR_KIND_OPT_FOR_FUZZING: 1548 return Attribute::OptForFuzzing; 1549 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1550 return Attribute::OptimizeForSize; 1551 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1552 return Attribute::OptimizeNone; 1553 case bitc::ATTR_KIND_READ_NONE: 1554 return Attribute::ReadNone; 1555 case bitc::ATTR_KIND_READ_ONLY: 1556 return Attribute::ReadOnly; 1557 case bitc::ATTR_KIND_RETURNED: 1558 return Attribute::Returned; 1559 case bitc::ATTR_KIND_RETURNS_TWICE: 1560 return Attribute::ReturnsTwice; 1561 case bitc::ATTR_KIND_S_EXT: 1562 return Attribute::SExt; 1563 case bitc::ATTR_KIND_SPECULATABLE: 1564 return Attribute::Speculatable; 1565 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1566 return Attribute::StackAlignment; 1567 case bitc::ATTR_KIND_STACK_PROTECT: 1568 return Attribute::StackProtect; 1569 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1570 return Attribute::StackProtectReq; 1571 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1572 return Attribute::StackProtectStrong; 1573 case bitc::ATTR_KIND_SAFESTACK: 1574 return Attribute::SafeStack; 1575 case bitc::ATTR_KIND_SHADOWCALLSTACK: 1576 return Attribute::ShadowCallStack; 1577 case bitc::ATTR_KIND_STRICT_FP: 1578 return Attribute::StrictFP; 1579 case bitc::ATTR_KIND_STRUCT_RET: 1580 return Attribute::StructRet; 1581 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1582 return Attribute::SanitizeAddress; 1583 case bitc::ATTR_KIND_SANITIZE_HWADDRESS: 1584 return Attribute::SanitizeHWAddress; 1585 case bitc::ATTR_KIND_SANITIZE_THREAD: 1586 return Attribute::SanitizeThread; 1587 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1588 return Attribute::SanitizeMemory; 1589 case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING: 1590 return Attribute::SpeculativeLoadHardening; 1591 case bitc::ATTR_KIND_SWIFT_ERROR: 1592 return Attribute::SwiftError; 1593 case bitc::ATTR_KIND_SWIFT_SELF: 1594 return Attribute::SwiftSelf; 1595 case bitc::ATTR_KIND_SWIFT_ASYNC: 1596 return Attribute::SwiftAsync; 1597 case bitc::ATTR_KIND_UW_TABLE: 1598 return Attribute::UWTable; 1599 case bitc::ATTR_KIND_VSCALE_RANGE: 1600 return Attribute::VScaleRange; 1601 case bitc::ATTR_KIND_WILLRETURN: 1602 return Attribute::WillReturn; 1603 case bitc::ATTR_KIND_WRITEONLY: 1604 return Attribute::WriteOnly; 1605 case bitc::ATTR_KIND_Z_EXT: 1606 return Attribute::ZExt; 1607 case bitc::ATTR_KIND_IMMARG: 1608 return Attribute::ImmArg; 1609 case bitc::ATTR_KIND_SANITIZE_MEMTAG: 1610 return Attribute::SanitizeMemTag; 1611 case bitc::ATTR_KIND_PREALLOCATED: 1612 return Attribute::Preallocated; 1613 case bitc::ATTR_KIND_NOUNDEF: 1614 return Attribute::NoUndef; 1615 case bitc::ATTR_KIND_BYREF: 1616 return Attribute::ByRef; 1617 case bitc::ATTR_KIND_MUSTPROGRESS: 1618 return Attribute::MustProgress; 1619 case bitc::ATTR_KIND_HOT: 1620 return Attribute::Hot; 1621 } 1622 } 1623 1624 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1625 MaybeAlign &Alignment) { 1626 // Note: Alignment in bitcode files is incremented by 1, so that zero 1627 // can be used for default alignment. 1628 if (Exponent > Value::MaxAlignmentExponent + 1) 1629 return error("Invalid alignment value"); 1630 Alignment = decodeMaybeAlign(Exponent); 1631 return Error::success(); 1632 } 1633 1634 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) { 1635 *Kind = getAttrFromCode(Code); 1636 if (*Kind == Attribute::None) 1637 return error("Unknown attribute kind (" + Twine(Code) + ")"); 1638 return Error::success(); 1639 } 1640 1641 Error BitcodeReader::parseAttributeGroupBlock() { 1642 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1643 return Err; 1644 1645 if (!MAttributeGroups.empty()) 1646 return error("Invalid multiple blocks"); 1647 1648 SmallVector<uint64_t, 64> Record; 1649 1650 // Read all the records. 1651 while (true) { 1652 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1653 if (!MaybeEntry) 1654 return MaybeEntry.takeError(); 1655 BitstreamEntry Entry = MaybeEntry.get(); 1656 1657 switch (Entry.Kind) { 1658 case BitstreamEntry::SubBlock: // Handled for us already. 1659 case BitstreamEntry::Error: 1660 return error("Malformed block"); 1661 case BitstreamEntry::EndBlock: 1662 return Error::success(); 1663 case BitstreamEntry::Record: 1664 // The interesting case. 1665 break; 1666 } 1667 1668 // Read a record. 1669 Record.clear(); 1670 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1671 if (!MaybeRecord) 1672 return MaybeRecord.takeError(); 1673 switch (MaybeRecord.get()) { 1674 default: // Default behavior: ignore. 1675 break; 1676 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1677 if (Record.size() < 3) 1678 return error("Invalid grp record"); 1679 1680 uint64_t GrpID = Record[0]; 1681 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1682 1683 AttrBuilder B(Context); 1684 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1685 if (Record[i] == 0) { // Enum attribute 1686 Attribute::AttrKind Kind; 1687 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1688 return Err; 1689 1690 // Upgrade old-style byval attribute to one with a type, even if it's 1691 // nullptr. We will have to insert the real type when we associate 1692 // this AttributeList with a function. 1693 if (Kind == Attribute::ByVal) 1694 B.addByValAttr(nullptr); 1695 else if (Kind == Attribute::StructRet) 1696 B.addStructRetAttr(nullptr); 1697 else if (Kind == Attribute::InAlloca) 1698 B.addInAllocaAttr(nullptr); 1699 else if (Kind == Attribute::UWTable) 1700 B.addUWTableAttr(UWTableKind::Default); 1701 else if (Attribute::isEnumAttrKind(Kind)) 1702 B.addAttribute(Kind); 1703 else 1704 return error("Not an enum attribute"); 1705 } else if (Record[i] == 1) { // Integer attribute 1706 Attribute::AttrKind Kind; 1707 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1708 return Err; 1709 if (!Attribute::isIntAttrKind(Kind)) 1710 return error("Not an int attribute"); 1711 if (Kind == Attribute::Alignment) 1712 B.addAlignmentAttr(Record[++i]); 1713 else if (Kind == Attribute::StackAlignment) 1714 B.addStackAlignmentAttr(Record[++i]); 1715 else if (Kind == Attribute::Dereferenceable) 1716 B.addDereferenceableAttr(Record[++i]); 1717 else if (Kind == Attribute::DereferenceableOrNull) 1718 B.addDereferenceableOrNullAttr(Record[++i]); 1719 else if (Kind == Attribute::AllocSize) 1720 B.addAllocSizeAttrFromRawRepr(Record[++i]); 1721 else if (Kind == Attribute::VScaleRange) 1722 B.addVScaleRangeAttrFromRawRepr(Record[++i]); 1723 else if (Kind == Attribute::UWTable) 1724 B.addUWTableAttr(UWTableKind(Record[++i])); 1725 } else if (Record[i] == 3 || Record[i] == 4) { // String attribute 1726 bool HasValue = (Record[i++] == 4); 1727 SmallString<64> KindStr; 1728 SmallString<64> ValStr; 1729 1730 while (Record[i] != 0 && i != e) 1731 KindStr += Record[i++]; 1732 assert(Record[i] == 0 && "Kind string not null terminated"); 1733 1734 if (HasValue) { 1735 // Has a value associated with it. 1736 ++i; // Skip the '0' that terminates the "kind" string. 1737 while (Record[i] != 0 && i != e) 1738 ValStr += Record[i++]; 1739 assert(Record[i] == 0 && "Value string not null terminated"); 1740 } 1741 1742 B.addAttribute(KindStr.str(), ValStr.str()); 1743 } else if (Record[i] == 5 || Record[i] == 6) { 1744 bool HasType = Record[i] == 6; 1745 Attribute::AttrKind Kind; 1746 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1747 return Err; 1748 if (!Attribute::isTypeAttrKind(Kind)) 1749 return error("Not a type attribute"); 1750 1751 B.addTypeAttr(Kind, HasType ? getTypeByID(Record[++i]) : nullptr); 1752 } else { 1753 return error("Invalid attribute group entry"); 1754 } 1755 } 1756 1757 UpgradeAttributes(B); 1758 MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B); 1759 break; 1760 } 1761 } 1762 } 1763 } 1764 1765 Error BitcodeReader::parseTypeTable() { 1766 if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1767 return Err; 1768 1769 return parseTypeTableBody(); 1770 } 1771 1772 Error BitcodeReader::parseTypeTableBody() { 1773 if (!TypeList.empty()) 1774 return error("Invalid multiple blocks"); 1775 1776 SmallVector<uint64_t, 64> Record; 1777 unsigned NumRecords = 0; 1778 1779 SmallString<64> TypeName; 1780 1781 // Read all the records for this type table. 1782 while (true) { 1783 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1784 if (!MaybeEntry) 1785 return MaybeEntry.takeError(); 1786 BitstreamEntry Entry = MaybeEntry.get(); 1787 1788 switch (Entry.Kind) { 1789 case BitstreamEntry::SubBlock: // Handled for us already. 1790 case BitstreamEntry::Error: 1791 return error("Malformed block"); 1792 case BitstreamEntry::EndBlock: 1793 if (NumRecords != TypeList.size()) 1794 return error("Malformed block"); 1795 return Error::success(); 1796 case BitstreamEntry::Record: 1797 // The interesting case. 1798 break; 1799 } 1800 1801 // Read a record. 1802 Record.clear(); 1803 Type *ResultTy = nullptr; 1804 SmallVector<unsigned> ContainedIDs; 1805 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1806 if (!MaybeRecord) 1807 return MaybeRecord.takeError(); 1808 switch (MaybeRecord.get()) { 1809 default: 1810 return error("Invalid value"); 1811 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1812 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1813 // type list. This allows us to reserve space. 1814 if (Record.empty()) 1815 return error("Invalid numentry record"); 1816 TypeList.resize(Record[0]); 1817 continue; 1818 case bitc::TYPE_CODE_VOID: // VOID 1819 ResultTy = Type::getVoidTy(Context); 1820 break; 1821 case bitc::TYPE_CODE_HALF: // HALF 1822 ResultTy = Type::getHalfTy(Context); 1823 break; 1824 case bitc::TYPE_CODE_BFLOAT: // BFLOAT 1825 ResultTy = Type::getBFloatTy(Context); 1826 break; 1827 case bitc::TYPE_CODE_FLOAT: // FLOAT 1828 ResultTy = Type::getFloatTy(Context); 1829 break; 1830 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1831 ResultTy = Type::getDoubleTy(Context); 1832 break; 1833 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1834 ResultTy = Type::getX86_FP80Ty(Context); 1835 break; 1836 case bitc::TYPE_CODE_FP128: // FP128 1837 ResultTy = Type::getFP128Ty(Context); 1838 break; 1839 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1840 ResultTy = Type::getPPC_FP128Ty(Context); 1841 break; 1842 case bitc::TYPE_CODE_LABEL: // LABEL 1843 ResultTy = Type::getLabelTy(Context); 1844 break; 1845 case bitc::TYPE_CODE_METADATA: // METADATA 1846 ResultTy = Type::getMetadataTy(Context); 1847 break; 1848 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1849 ResultTy = Type::getX86_MMXTy(Context); 1850 break; 1851 case bitc::TYPE_CODE_X86_AMX: // X86_AMX 1852 ResultTy = Type::getX86_AMXTy(Context); 1853 break; 1854 case bitc::TYPE_CODE_TOKEN: // TOKEN 1855 ResultTy = Type::getTokenTy(Context); 1856 break; 1857 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1858 if (Record.empty()) 1859 return error("Invalid integer record"); 1860 1861 uint64_t NumBits = Record[0]; 1862 if (NumBits < IntegerType::MIN_INT_BITS || 1863 NumBits > IntegerType::MAX_INT_BITS) 1864 return error("Bitwidth for integer type out of range"); 1865 ResultTy = IntegerType::get(Context, NumBits); 1866 break; 1867 } 1868 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1869 // [pointee type, address space] 1870 if (Record.empty()) 1871 return error("Invalid pointer record"); 1872 unsigned AddressSpace = 0; 1873 if (Record.size() == 2) 1874 AddressSpace = Record[1]; 1875 ResultTy = getTypeByID(Record[0]); 1876 if (!ResultTy || 1877 !PointerType::isValidElementType(ResultTy)) 1878 return error("Invalid type"); 1879 ContainedIDs.push_back(Record[0]); 1880 ResultTy = PointerType::get(ResultTy, AddressSpace); 1881 break; 1882 } 1883 case bitc::TYPE_CODE_OPAQUE_POINTER: { // OPAQUE_POINTER: [addrspace] 1884 if (Record.size() != 1) 1885 return error("Invalid opaque pointer record"); 1886 if (LLVM_UNLIKELY(!Context.hasSetOpaquePointersValue())) { 1887 Context.enableOpaquePointers(); 1888 } else if (Context.supportsTypedPointers()) 1889 return error( 1890 "Opaque pointers are only supported in -opaque-pointers mode"); 1891 unsigned AddressSpace = Record[0]; 1892 ResultTy = PointerType::get(Context, AddressSpace); 1893 break; 1894 } 1895 case bitc::TYPE_CODE_FUNCTION_OLD: { 1896 // Deprecated, but still needed to read old bitcode files. 1897 // FUNCTION: [vararg, attrid, retty, paramty x N] 1898 if (Record.size() < 3) 1899 return error("Invalid function record"); 1900 SmallVector<Type*, 8> ArgTys; 1901 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1902 if (Type *T = getTypeByID(Record[i])) 1903 ArgTys.push_back(T); 1904 else 1905 break; 1906 } 1907 1908 ResultTy = getTypeByID(Record[2]); 1909 if (!ResultTy || ArgTys.size() < Record.size()-3) 1910 return error("Invalid type"); 1911 1912 ContainedIDs.append(Record.begin() + 2, Record.end()); 1913 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1914 break; 1915 } 1916 case bitc::TYPE_CODE_FUNCTION: { 1917 // FUNCTION: [vararg, retty, paramty x N] 1918 if (Record.size() < 2) 1919 return error("Invalid function record"); 1920 SmallVector<Type*, 8> ArgTys; 1921 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1922 if (Type *T = getTypeByID(Record[i])) { 1923 if (!FunctionType::isValidArgumentType(T)) 1924 return error("Invalid function argument type"); 1925 ArgTys.push_back(T); 1926 } 1927 else 1928 break; 1929 } 1930 1931 ResultTy = getTypeByID(Record[1]); 1932 if (!ResultTy || ArgTys.size() < Record.size()-2) 1933 return error("Invalid type"); 1934 1935 ContainedIDs.append(Record.begin() + 1, Record.end()); 1936 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1937 break; 1938 } 1939 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1940 if (Record.empty()) 1941 return error("Invalid anon struct record"); 1942 SmallVector<Type*, 8> EltTys; 1943 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1944 if (Type *T = getTypeByID(Record[i])) 1945 EltTys.push_back(T); 1946 else 1947 break; 1948 } 1949 if (EltTys.size() != Record.size()-1) 1950 return error("Invalid type"); 1951 ContainedIDs.append(Record.begin() + 1, Record.end()); 1952 ResultTy = StructType::get(Context, EltTys, Record[0]); 1953 break; 1954 } 1955 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1956 if (convertToString(Record, 0, TypeName)) 1957 return error("Invalid struct name record"); 1958 continue; 1959 1960 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1961 if (Record.empty()) 1962 return error("Invalid named struct record"); 1963 1964 if (NumRecords >= TypeList.size()) 1965 return error("Invalid TYPE table"); 1966 1967 // Check to see if this was forward referenced, if so fill in the temp. 1968 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1969 if (Res) { 1970 Res->setName(TypeName); 1971 TypeList[NumRecords] = nullptr; 1972 } else // Otherwise, create a new struct. 1973 Res = createIdentifiedStructType(Context, TypeName); 1974 TypeName.clear(); 1975 1976 SmallVector<Type*, 8> EltTys; 1977 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1978 if (Type *T = getTypeByID(Record[i])) 1979 EltTys.push_back(T); 1980 else 1981 break; 1982 } 1983 if (EltTys.size() != Record.size()-1) 1984 return error("Invalid named struct record"); 1985 Res->setBody(EltTys, Record[0]); 1986 ContainedIDs.append(Record.begin() + 1, Record.end()); 1987 ResultTy = Res; 1988 break; 1989 } 1990 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1991 if (Record.size() != 1) 1992 return error("Invalid opaque type record"); 1993 1994 if (NumRecords >= TypeList.size()) 1995 return error("Invalid TYPE table"); 1996 1997 // Check to see if this was forward referenced, if so fill in the temp. 1998 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1999 if (Res) { 2000 Res->setName(TypeName); 2001 TypeList[NumRecords] = nullptr; 2002 } else // Otherwise, create a new struct with no body. 2003 Res = createIdentifiedStructType(Context, TypeName); 2004 TypeName.clear(); 2005 ResultTy = Res; 2006 break; 2007 } 2008 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 2009 if (Record.size() < 2) 2010 return error("Invalid array type record"); 2011 ResultTy = getTypeByID(Record[1]); 2012 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 2013 return error("Invalid type"); 2014 ContainedIDs.push_back(Record[1]); 2015 ResultTy = ArrayType::get(ResultTy, Record[0]); 2016 break; 2017 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] or 2018 // [numelts, eltty, scalable] 2019 if (Record.size() < 2) 2020 return error("Invalid vector type record"); 2021 if (Record[0] == 0) 2022 return error("Invalid vector length"); 2023 ResultTy = getTypeByID(Record[1]); 2024 if (!ResultTy || !VectorType::isValidElementType(ResultTy)) 2025 return error("Invalid type"); 2026 bool Scalable = Record.size() > 2 ? Record[2] : false; 2027 ContainedIDs.push_back(Record[1]); 2028 ResultTy = VectorType::get(ResultTy, Record[0], Scalable); 2029 break; 2030 } 2031 2032 if (NumRecords >= TypeList.size()) 2033 return error("Invalid TYPE table"); 2034 if (TypeList[NumRecords]) 2035 return error( 2036 "Invalid TYPE table: Only named structs can be forward referenced"); 2037 assert(ResultTy && "Didn't read a type?"); 2038 TypeList[NumRecords] = ResultTy; 2039 if (!ContainedIDs.empty()) 2040 ContainedTypeIDs[NumRecords] = std::move(ContainedIDs); 2041 ++NumRecords; 2042 } 2043 } 2044 2045 Error BitcodeReader::parseOperandBundleTags() { 2046 if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 2047 return Err; 2048 2049 if (!BundleTags.empty()) 2050 return error("Invalid multiple blocks"); 2051 2052 SmallVector<uint64_t, 64> Record; 2053 2054 while (true) { 2055 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2056 if (!MaybeEntry) 2057 return MaybeEntry.takeError(); 2058 BitstreamEntry Entry = MaybeEntry.get(); 2059 2060 switch (Entry.Kind) { 2061 case BitstreamEntry::SubBlock: // Handled for us already. 2062 case BitstreamEntry::Error: 2063 return error("Malformed block"); 2064 case BitstreamEntry::EndBlock: 2065 return Error::success(); 2066 case BitstreamEntry::Record: 2067 // The interesting case. 2068 break; 2069 } 2070 2071 // Tags are implicitly mapped to integers by their order. 2072 2073 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2074 if (!MaybeRecord) 2075 return MaybeRecord.takeError(); 2076 if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG) 2077 return error("Invalid operand bundle record"); 2078 2079 // OPERAND_BUNDLE_TAG: [strchr x N] 2080 BundleTags.emplace_back(); 2081 if (convertToString(Record, 0, BundleTags.back())) 2082 return error("Invalid operand bundle record"); 2083 Record.clear(); 2084 } 2085 } 2086 2087 Error BitcodeReader::parseSyncScopeNames() { 2088 if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID)) 2089 return Err; 2090 2091 if (!SSIDs.empty()) 2092 return error("Invalid multiple synchronization scope names blocks"); 2093 2094 SmallVector<uint64_t, 64> Record; 2095 while (true) { 2096 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2097 if (!MaybeEntry) 2098 return MaybeEntry.takeError(); 2099 BitstreamEntry Entry = MaybeEntry.get(); 2100 2101 switch (Entry.Kind) { 2102 case BitstreamEntry::SubBlock: // Handled for us already. 2103 case BitstreamEntry::Error: 2104 return error("Malformed block"); 2105 case BitstreamEntry::EndBlock: 2106 if (SSIDs.empty()) 2107 return error("Invalid empty synchronization scope names block"); 2108 return Error::success(); 2109 case BitstreamEntry::Record: 2110 // The interesting case. 2111 break; 2112 } 2113 2114 // Synchronization scope names are implicitly mapped to synchronization 2115 // scope IDs by their order. 2116 2117 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2118 if (!MaybeRecord) 2119 return MaybeRecord.takeError(); 2120 if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME) 2121 return error("Invalid sync scope record"); 2122 2123 SmallString<16> SSN; 2124 if (convertToString(Record, 0, SSN)) 2125 return error("Invalid sync scope record"); 2126 2127 SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN)); 2128 Record.clear(); 2129 } 2130 } 2131 2132 /// Associate a value with its name from the given index in the provided record. 2133 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 2134 unsigned NameIndex, Triple &TT) { 2135 SmallString<128> ValueName; 2136 if (convertToString(Record, NameIndex, ValueName)) 2137 return error("Invalid record"); 2138 unsigned ValueID = Record[0]; 2139 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 2140 return error("Invalid record"); 2141 Value *V = ValueList[ValueID]; 2142 2143 StringRef NameStr(ValueName.data(), ValueName.size()); 2144 if (NameStr.find_first_of(0) != StringRef::npos) 2145 return error("Invalid value name"); 2146 V->setName(NameStr); 2147 auto *GO = dyn_cast<GlobalObject>(V); 2148 if (GO && ImplicitComdatObjects.contains(GO) && TT.supportsCOMDAT()) 2149 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 2150 return V; 2151 } 2152 2153 /// Helper to note and return the current location, and jump to the given 2154 /// offset. 2155 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset, 2156 BitstreamCursor &Stream) { 2157 // Save the current parsing location so we can jump back at the end 2158 // of the VST read. 2159 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 2160 if (Error JumpFailed = Stream.JumpToBit(Offset * 32)) 2161 return std::move(JumpFailed); 2162 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 2163 if (!MaybeEntry) 2164 return MaybeEntry.takeError(); 2165 if (MaybeEntry.get().Kind != BitstreamEntry::SubBlock || 2166 MaybeEntry.get().ID != bitc::VALUE_SYMTAB_BLOCK_ID) 2167 return error("Expected value symbol table subblock"); 2168 return CurrentBit; 2169 } 2170 2171 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, 2172 Function *F, 2173 ArrayRef<uint64_t> Record) { 2174 // Note that we subtract 1 here because the offset is relative to one word 2175 // before the start of the identification or module block, which was 2176 // historically always the start of the regular bitcode header. 2177 uint64_t FuncWordOffset = Record[1] - 1; 2178 uint64_t FuncBitOffset = FuncWordOffset * 32; 2179 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 2180 // Set the LastFunctionBlockBit to point to the last function block. 2181 // Later when parsing is resumed after function materialization, 2182 // we can simply skip that last function block. 2183 if (FuncBitOffset > LastFunctionBlockBit) 2184 LastFunctionBlockBit = FuncBitOffset; 2185 } 2186 2187 /// Read a new-style GlobalValue symbol table. 2188 Error BitcodeReader::parseGlobalValueSymbolTable() { 2189 unsigned FuncBitcodeOffsetDelta = 2190 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2191 2192 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2193 return Err; 2194 2195 SmallVector<uint64_t, 64> Record; 2196 while (true) { 2197 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2198 if (!MaybeEntry) 2199 return MaybeEntry.takeError(); 2200 BitstreamEntry Entry = MaybeEntry.get(); 2201 2202 switch (Entry.Kind) { 2203 case BitstreamEntry::SubBlock: 2204 case BitstreamEntry::Error: 2205 return error("Malformed block"); 2206 case BitstreamEntry::EndBlock: 2207 return Error::success(); 2208 case BitstreamEntry::Record: 2209 break; 2210 } 2211 2212 Record.clear(); 2213 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2214 if (!MaybeRecord) 2215 return MaybeRecord.takeError(); 2216 switch (MaybeRecord.get()) { 2217 case bitc::VST_CODE_FNENTRY: { // [valueid, offset] 2218 unsigned ValueID = Record[0]; 2219 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 2220 return error("Invalid value reference in symbol table"); 2221 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, 2222 cast<Function>(ValueList[ValueID]), Record); 2223 break; 2224 } 2225 } 2226 } 2227 } 2228 2229 /// Parse the value symbol table at either the current parsing location or 2230 /// at the given bit offset if provided. 2231 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 2232 uint64_t CurrentBit; 2233 // Pass in the Offset to distinguish between calling for the module-level 2234 // VST (where we want to jump to the VST offset) and the function-level 2235 // VST (where we don't). 2236 if (Offset > 0) { 2237 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 2238 if (!MaybeCurrentBit) 2239 return MaybeCurrentBit.takeError(); 2240 CurrentBit = MaybeCurrentBit.get(); 2241 // If this module uses a string table, read this as a module-level VST. 2242 if (UseStrtab) { 2243 if (Error Err = parseGlobalValueSymbolTable()) 2244 return Err; 2245 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2246 return JumpFailed; 2247 return Error::success(); 2248 } 2249 // Otherwise, the VST will be in a similar format to a function-level VST, 2250 // and will contain symbol names. 2251 } 2252 2253 // Compute the delta between the bitcode indices in the VST (the word offset 2254 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 2255 // expected by the lazy reader. The reader's EnterSubBlock expects to have 2256 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 2257 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 2258 // just before entering the VST subblock because: 1) the EnterSubBlock 2259 // changes the AbbrevID width; 2) the VST block is nested within the same 2260 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 2261 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 2262 // jump to the FUNCTION_BLOCK using this offset later, we don't want 2263 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 2264 unsigned FuncBitcodeOffsetDelta = 2265 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2266 2267 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2268 return Err; 2269 2270 SmallVector<uint64_t, 64> Record; 2271 2272 Triple TT(TheModule->getTargetTriple()); 2273 2274 // Read all the records for this value table. 2275 SmallString<128> ValueName; 2276 2277 while (true) { 2278 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2279 if (!MaybeEntry) 2280 return MaybeEntry.takeError(); 2281 BitstreamEntry Entry = MaybeEntry.get(); 2282 2283 switch (Entry.Kind) { 2284 case BitstreamEntry::SubBlock: // Handled for us already. 2285 case BitstreamEntry::Error: 2286 return error("Malformed block"); 2287 case BitstreamEntry::EndBlock: 2288 if (Offset > 0) 2289 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2290 return JumpFailed; 2291 return Error::success(); 2292 case BitstreamEntry::Record: 2293 // The interesting case. 2294 break; 2295 } 2296 2297 // Read a record. 2298 Record.clear(); 2299 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2300 if (!MaybeRecord) 2301 return MaybeRecord.takeError(); 2302 switch (MaybeRecord.get()) { 2303 default: // Default behavior: unknown type. 2304 break; 2305 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 2306 Expected<Value *> ValOrErr = recordValue(Record, 1, TT); 2307 if (Error Err = ValOrErr.takeError()) 2308 return Err; 2309 ValOrErr.get(); 2310 break; 2311 } 2312 case bitc::VST_CODE_FNENTRY: { 2313 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 2314 Expected<Value *> ValOrErr = recordValue(Record, 2, TT); 2315 if (Error Err = ValOrErr.takeError()) 2316 return Err; 2317 Value *V = ValOrErr.get(); 2318 2319 // Ignore function offsets emitted for aliases of functions in older 2320 // versions of LLVM. 2321 if (auto *F = dyn_cast<Function>(V)) 2322 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record); 2323 break; 2324 } 2325 case bitc::VST_CODE_BBENTRY: { 2326 if (convertToString(Record, 1, ValueName)) 2327 return error("Invalid bbentry record"); 2328 BasicBlock *BB = getBasicBlock(Record[0]); 2329 if (!BB) 2330 return error("Invalid bbentry record"); 2331 2332 BB->setName(StringRef(ValueName.data(), ValueName.size())); 2333 ValueName.clear(); 2334 break; 2335 } 2336 } 2337 } 2338 } 2339 2340 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2341 /// encoding. 2342 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2343 if ((V & 1) == 0) 2344 return V >> 1; 2345 if (V != 1) 2346 return -(V >> 1); 2347 // There is no such thing as -0 with integers. "-0" really means MININT. 2348 return 1ULL << 63; 2349 } 2350 2351 /// Resolve all of the initializers for global values and aliases that we can. 2352 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 2353 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist; 2354 std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInitWorklist; 2355 std::vector<FunctionOperandInfo> FunctionOperandWorklist; 2356 2357 GlobalInitWorklist.swap(GlobalInits); 2358 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 2359 FunctionOperandWorklist.swap(FunctionOperands); 2360 2361 while (!GlobalInitWorklist.empty()) { 2362 unsigned ValID = GlobalInitWorklist.back().second; 2363 if (ValID >= ValueList.size()) { 2364 // Not ready to resolve this yet, it requires something later in the file. 2365 GlobalInits.push_back(GlobalInitWorklist.back()); 2366 } else { 2367 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2368 GlobalInitWorklist.back().first->setInitializer(C); 2369 else 2370 return error("Expected a constant"); 2371 } 2372 GlobalInitWorklist.pop_back(); 2373 } 2374 2375 while (!IndirectSymbolInitWorklist.empty()) { 2376 unsigned ValID = IndirectSymbolInitWorklist.back().second; 2377 if (ValID >= ValueList.size()) { 2378 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 2379 } else { 2380 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2381 if (!C) 2382 return error("Expected a constant"); 2383 GlobalValue *GV = IndirectSymbolInitWorklist.back().first; 2384 if (auto *GA = dyn_cast<GlobalAlias>(GV)) { 2385 if (C->getType() != GV->getType()) 2386 return error("Alias and aliasee types don't match"); 2387 GA->setAliasee(C); 2388 } else if (auto *GI = dyn_cast<GlobalIFunc>(GV)) { 2389 Type *ResolverFTy = 2390 GlobalIFunc::getResolverFunctionType(GI->getValueType()); 2391 // Transparently fix up the type for compatiblity with older bitcode 2392 GI->setResolver( 2393 ConstantExpr::getBitCast(C, ResolverFTy->getPointerTo())); 2394 } else { 2395 return error("Expected an alias or an ifunc"); 2396 } 2397 } 2398 IndirectSymbolInitWorklist.pop_back(); 2399 } 2400 2401 while (!FunctionOperandWorklist.empty()) { 2402 FunctionOperandInfo &Info = FunctionOperandWorklist.back(); 2403 if (Info.PersonalityFn) { 2404 unsigned ValID = Info.PersonalityFn - 1; 2405 if (ValID < ValueList.size()) { 2406 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2407 Info.F->setPersonalityFn(C); 2408 else 2409 return error("Expected a constant"); 2410 Info.PersonalityFn = 0; 2411 } 2412 } 2413 if (Info.Prefix) { 2414 unsigned ValID = Info.Prefix - 1; 2415 if (ValID < ValueList.size()) { 2416 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2417 Info.F->setPrefixData(C); 2418 else 2419 return error("Expected a constant"); 2420 Info.Prefix = 0; 2421 } 2422 } 2423 if (Info.Prologue) { 2424 unsigned ValID = Info.Prologue - 1; 2425 if (ValID < ValueList.size()) { 2426 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2427 Info.F->setPrologueData(C); 2428 else 2429 return error("Expected a constant"); 2430 Info.Prologue = 0; 2431 } 2432 } 2433 if (Info.PersonalityFn || Info.Prefix || Info.Prologue) 2434 FunctionOperands.push_back(Info); 2435 FunctionOperandWorklist.pop_back(); 2436 } 2437 2438 return Error::success(); 2439 } 2440 2441 APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2442 SmallVector<uint64_t, 8> Words(Vals.size()); 2443 transform(Vals, Words.begin(), 2444 BitcodeReader::decodeSignRotatedValue); 2445 2446 return APInt(TypeBits, Words); 2447 } 2448 2449 Error BitcodeReader::parseConstants() { 2450 if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2451 return Err; 2452 2453 SmallVector<uint64_t, 64> Record; 2454 2455 // Read all the records for this value table. 2456 Type *CurTy = Type::getInt32Ty(Context); 2457 unsigned Int32TyID = getVirtualTypeID(CurTy); 2458 unsigned CurTyID = Int32TyID; 2459 Type *CurElemTy = nullptr; 2460 unsigned NextCstNo = ValueList.size(); 2461 2462 struct DelayedShufTy { 2463 VectorType *OpTy; 2464 unsigned OpTyID; 2465 VectorType *RTy; 2466 uint64_t Op0Idx; 2467 uint64_t Op1Idx; 2468 uint64_t Op2Idx; 2469 unsigned CstNo; 2470 }; 2471 std::vector<DelayedShufTy> DelayedShuffles; 2472 struct DelayedSelTy { 2473 Type *OpTy; 2474 unsigned OpTyID; 2475 uint64_t Op0Idx; 2476 uint64_t Op1Idx; 2477 uint64_t Op2Idx; 2478 unsigned CstNo; 2479 }; 2480 std::vector<DelayedSelTy> DelayedSelectors; 2481 2482 while (true) { 2483 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2484 if (!MaybeEntry) 2485 return MaybeEntry.takeError(); 2486 BitstreamEntry Entry = MaybeEntry.get(); 2487 2488 switch (Entry.Kind) { 2489 case BitstreamEntry::SubBlock: // Handled for us already. 2490 case BitstreamEntry::Error: 2491 return error("Malformed block"); 2492 case BitstreamEntry::EndBlock: 2493 // Once all the constants have been read, go through and resolve forward 2494 // references. 2495 // 2496 // We have to treat shuffles specially because they don't have three 2497 // operands anymore. We need to convert the shuffle mask into an array, 2498 // and we can't convert a forward reference. 2499 for (auto &DelayedShuffle : DelayedShuffles) { 2500 VectorType *OpTy = DelayedShuffle.OpTy; 2501 unsigned OpTyID = DelayedShuffle.OpTyID; 2502 VectorType *RTy = DelayedShuffle.RTy; 2503 uint64_t Op0Idx = DelayedShuffle.Op0Idx; 2504 uint64_t Op1Idx = DelayedShuffle.Op1Idx; 2505 uint64_t Op2Idx = DelayedShuffle.Op2Idx; 2506 uint64_t CstNo = DelayedShuffle.CstNo; 2507 Constant *Op0 = ValueList.getConstantFwdRef(Op0Idx, OpTy, OpTyID); 2508 Constant *Op1 = ValueList.getConstantFwdRef(Op1Idx, OpTy, OpTyID); 2509 Type *ShufTy = 2510 VectorType::get(Type::getInt32Ty(Context), RTy->getElementCount()); 2511 Constant *Op2 = ValueList.getConstantFwdRef( 2512 Op2Idx, ShufTy, getVirtualTypeID(ShufTy, Int32TyID)); 2513 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2)) 2514 return error("Invalid shufflevector operands"); 2515 SmallVector<int, 16> Mask; 2516 ShuffleVectorInst::getShuffleMask(Op2, Mask); 2517 Value *V = ConstantExpr::getShuffleVector(Op0, Op1, Mask); 2518 if (Error Err = ValueList.assignValue( 2519 CstNo, V, 2520 getVirtualTypeID(V->getType(), getContainedTypeID(OpTyID)))) 2521 return Err; 2522 } 2523 for (auto &DelayedSelector : DelayedSelectors) { 2524 Type *OpTy = DelayedSelector.OpTy; 2525 unsigned OpTyID = DelayedSelector.OpTyID; 2526 Type *SelectorTy = Type::getInt1Ty(Context); 2527 unsigned SelectorTyID = getVirtualTypeID(SelectorTy); 2528 uint64_t Op0Idx = DelayedSelector.Op0Idx; 2529 uint64_t Op1Idx = DelayedSelector.Op1Idx; 2530 uint64_t Op2Idx = DelayedSelector.Op2Idx; 2531 uint64_t CstNo = DelayedSelector.CstNo; 2532 Constant *Op1 = ValueList.getConstantFwdRef(Op1Idx, OpTy, OpTyID); 2533 Constant *Op2 = ValueList.getConstantFwdRef(Op2Idx, OpTy, OpTyID); 2534 // The selector might be an i1 or an <n x i1> 2535 // Get the type from the ValueList before getting a forward ref. 2536 if (VectorType *VTy = dyn_cast<VectorType>(OpTy)) { 2537 Value *V = ValueList[Op0Idx]; 2538 assert(V); 2539 if (SelectorTy != V->getType()) { 2540 SelectorTy = VectorType::get(SelectorTy, VTy->getElementCount()); 2541 SelectorTyID = getVirtualTypeID(SelectorTy, SelectorTyID); 2542 } 2543 } 2544 Constant *Op0 = 2545 ValueList.getConstantFwdRef(Op0Idx, SelectorTy, SelectorTyID); 2546 Value *V = ConstantExpr::getSelect(Op0, Op1, Op2); 2547 if (Error Err = ValueList.assignValue(CstNo, V, OpTyID)) 2548 return Err; 2549 } 2550 2551 if (NextCstNo != ValueList.size()) 2552 return error("Invalid constant reference"); 2553 2554 ValueList.resolveConstantForwardRefs(); 2555 return Error::success(); 2556 case BitstreamEntry::Record: 2557 // The interesting case. 2558 break; 2559 } 2560 2561 // Read a record. 2562 Record.clear(); 2563 Type *VoidType = Type::getVoidTy(Context); 2564 Value *V = nullptr; 2565 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 2566 if (!MaybeBitCode) 2567 return MaybeBitCode.takeError(); 2568 switch (unsigned BitCode = MaybeBitCode.get()) { 2569 default: // Default behavior: unknown constant 2570 case bitc::CST_CODE_UNDEF: // UNDEF 2571 V = UndefValue::get(CurTy); 2572 break; 2573 case bitc::CST_CODE_POISON: // POISON 2574 V = PoisonValue::get(CurTy); 2575 break; 2576 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2577 if (Record.empty()) 2578 return error("Invalid settype record"); 2579 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2580 return error("Invalid settype record"); 2581 if (TypeList[Record[0]] == VoidType) 2582 return error("Invalid constant type"); 2583 CurTyID = Record[0]; 2584 CurTy = TypeList[CurTyID]; 2585 CurElemTy = getPtrElementTypeByID(CurTyID); 2586 continue; // Skip the ValueList manipulation. 2587 case bitc::CST_CODE_NULL: // NULL 2588 if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy()) 2589 return error("Invalid type for a constant null value"); 2590 V = Constant::getNullValue(CurTy); 2591 break; 2592 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2593 if (!CurTy->isIntegerTy() || Record.empty()) 2594 return error("Invalid integer const record"); 2595 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2596 break; 2597 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2598 if (!CurTy->isIntegerTy() || Record.empty()) 2599 return error("Invalid wide integer const record"); 2600 2601 APInt VInt = 2602 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2603 V = ConstantInt::get(Context, VInt); 2604 2605 break; 2606 } 2607 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2608 if (Record.empty()) 2609 return error("Invalid float const record"); 2610 if (CurTy->isHalfTy()) 2611 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(), 2612 APInt(16, (uint16_t)Record[0]))); 2613 else if (CurTy->isBFloatTy()) 2614 V = ConstantFP::get(Context, APFloat(APFloat::BFloat(), 2615 APInt(16, (uint32_t)Record[0]))); 2616 else if (CurTy->isFloatTy()) 2617 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(), 2618 APInt(32, (uint32_t)Record[0]))); 2619 else if (CurTy->isDoubleTy()) 2620 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(), 2621 APInt(64, Record[0]))); 2622 else if (CurTy->isX86_FP80Ty()) { 2623 // Bits are not stored the same way as a normal i80 APInt, compensate. 2624 uint64_t Rearrange[2]; 2625 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2626 Rearrange[1] = Record[0] >> 48; 2627 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(), 2628 APInt(80, Rearrange))); 2629 } else if (CurTy->isFP128Ty()) 2630 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(), 2631 APInt(128, Record))); 2632 else if (CurTy->isPPC_FP128Ty()) 2633 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(), 2634 APInt(128, Record))); 2635 else 2636 V = UndefValue::get(CurTy); 2637 break; 2638 } 2639 2640 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2641 if (Record.empty()) 2642 return error("Invalid aggregate record"); 2643 2644 unsigned Size = Record.size(); 2645 SmallVector<Constant*, 16> Elts; 2646 2647 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2648 for (unsigned i = 0; i != Size; ++i) 2649 Elts.push_back(ValueList.getConstantFwdRef( 2650 Record[i], STy->getElementType(i), 2651 getContainedTypeID(CurTyID, i))); 2652 V = ConstantStruct::get(STy, Elts); 2653 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2654 Type *EltTy = ATy->getElementType(); 2655 unsigned EltTyID = getContainedTypeID(CurTyID); 2656 for (unsigned i = 0; i != Size; ++i) 2657 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy, 2658 EltTyID)); 2659 V = ConstantArray::get(ATy, Elts); 2660 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2661 Type *EltTy = VTy->getElementType(); 2662 unsigned EltTyID = getContainedTypeID(CurTyID); 2663 for (unsigned i = 0; i != Size; ++i) 2664 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy, 2665 EltTyID)); 2666 V = ConstantVector::get(Elts); 2667 } else { 2668 V = UndefValue::get(CurTy); 2669 } 2670 break; 2671 } 2672 case bitc::CST_CODE_STRING: // STRING: [values] 2673 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2674 if (Record.empty()) 2675 return error("Invalid string record"); 2676 2677 SmallString<16> Elts(Record.begin(), Record.end()); 2678 V = ConstantDataArray::getString(Context, Elts, 2679 BitCode == bitc::CST_CODE_CSTRING); 2680 break; 2681 } 2682 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2683 if (Record.empty()) 2684 return error("Invalid data record"); 2685 2686 Type *EltTy; 2687 if (auto *Array = dyn_cast<ArrayType>(CurTy)) 2688 EltTy = Array->getElementType(); 2689 else 2690 EltTy = cast<VectorType>(CurTy)->getElementType(); 2691 if (EltTy->isIntegerTy(8)) { 2692 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2693 if (isa<VectorType>(CurTy)) 2694 V = ConstantDataVector::get(Context, Elts); 2695 else 2696 V = ConstantDataArray::get(Context, Elts); 2697 } else if (EltTy->isIntegerTy(16)) { 2698 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2699 if (isa<VectorType>(CurTy)) 2700 V = ConstantDataVector::get(Context, Elts); 2701 else 2702 V = ConstantDataArray::get(Context, Elts); 2703 } else if (EltTy->isIntegerTy(32)) { 2704 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2705 if (isa<VectorType>(CurTy)) 2706 V = ConstantDataVector::get(Context, Elts); 2707 else 2708 V = ConstantDataArray::get(Context, Elts); 2709 } else if (EltTy->isIntegerTy(64)) { 2710 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2711 if (isa<VectorType>(CurTy)) 2712 V = ConstantDataVector::get(Context, Elts); 2713 else 2714 V = ConstantDataArray::get(Context, Elts); 2715 } else if (EltTy->isHalfTy()) { 2716 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2717 if (isa<VectorType>(CurTy)) 2718 V = ConstantDataVector::getFP(EltTy, Elts); 2719 else 2720 V = ConstantDataArray::getFP(EltTy, Elts); 2721 } else if (EltTy->isBFloatTy()) { 2722 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2723 if (isa<VectorType>(CurTy)) 2724 V = ConstantDataVector::getFP(EltTy, Elts); 2725 else 2726 V = ConstantDataArray::getFP(EltTy, Elts); 2727 } else if (EltTy->isFloatTy()) { 2728 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2729 if (isa<VectorType>(CurTy)) 2730 V = ConstantDataVector::getFP(EltTy, Elts); 2731 else 2732 V = ConstantDataArray::getFP(EltTy, Elts); 2733 } else if (EltTy->isDoubleTy()) { 2734 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2735 if (isa<VectorType>(CurTy)) 2736 V = ConstantDataVector::getFP(EltTy, Elts); 2737 else 2738 V = ConstantDataArray::getFP(EltTy, Elts); 2739 } else { 2740 return error("Invalid type for value"); 2741 } 2742 break; 2743 } 2744 case bitc::CST_CODE_CE_UNOP: { // CE_UNOP: [opcode, opval] 2745 if (Record.size() < 2) 2746 return error("Invalid unary op constexpr record"); 2747 int Opc = getDecodedUnaryOpcode(Record[0], CurTy); 2748 if (Opc < 0) { 2749 V = UndefValue::get(CurTy); // Unknown unop. 2750 } else { 2751 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy, CurTyID); 2752 unsigned Flags = 0; 2753 V = ConstantExpr::get(Opc, LHS, Flags); 2754 } 2755 break; 2756 } 2757 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2758 if (Record.size() < 3) 2759 return error("Invalid binary op constexpr record"); 2760 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 2761 if (Opc < 0) { 2762 V = UndefValue::get(CurTy); // Unknown binop. 2763 } else { 2764 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy, CurTyID); 2765 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy, CurTyID); 2766 unsigned Flags = 0; 2767 if (Record.size() >= 4) { 2768 if (Opc == Instruction::Add || 2769 Opc == Instruction::Sub || 2770 Opc == Instruction::Mul || 2771 Opc == Instruction::Shl) { 2772 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2773 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2774 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2775 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2776 } else if (Opc == Instruction::SDiv || 2777 Opc == Instruction::UDiv || 2778 Opc == Instruction::LShr || 2779 Opc == Instruction::AShr) { 2780 if (Record[3] & (1 << bitc::PEO_EXACT)) 2781 Flags |= SDivOperator::IsExact; 2782 } 2783 } 2784 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2785 } 2786 break; 2787 } 2788 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2789 if (Record.size() < 3) 2790 return error("Invalid cast constexpr record"); 2791 int Opc = getDecodedCastOpcode(Record[0]); 2792 if (Opc < 0) { 2793 V = UndefValue::get(CurTy); // Unknown cast. 2794 } else { 2795 unsigned OpTyID = Record[1]; 2796 Type *OpTy = getTypeByID(OpTyID); 2797 if (!OpTy) 2798 return error("Invalid cast constexpr record"); 2799 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy, OpTyID); 2800 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2801 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2802 } 2803 break; 2804 } 2805 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands] 2806 case bitc::CST_CODE_CE_GEP: // [ty, n x operands] 2807 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x 2808 // operands] 2809 if (Record.size() < 2) 2810 return error("Constant GEP record must have at least two elements"); 2811 unsigned OpNum = 0; 2812 Type *PointeeType = nullptr; 2813 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX || 2814 Record.size() % 2) 2815 PointeeType = getTypeByID(Record[OpNum++]); 2816 2817 bool InBounds = false; 2818 Optional<unsigned> InRangeIndex; 2819 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) { 2820 uint64_t Op = Record[OpNum++]; 2821 InBounds = Op & 1; 2822 InRangeIndex = Op >> 1; 2823 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 2824 InBounds = true; 2825 2826 SmallVector<Constant*, 16> Elts; 2827 unsigned BaseTypeID = Record[OpNum]; 2828 while (OpNum != Record.size()) { 2829 unsigned ElTyID = Record[OpNum++]; 2830 Type *ElTy = getTypeByID(ElTyID); 2831 if (!ElTy) 2832 return error("Invalid getelementptr constexpr record"); 2833 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy, 2834 ElTyID)); 2835 } 2836 2837 if (Elts.size() < 1) 2838 return error("Invalid gep with no operands"); 2839 2840 Type *BaseType = getTypeByID(BaseTypeID); 2841 if (isa<VectorType>(BaseType)) { 2842 BaseTypeID = getContainedTypeID(BaseTypeID, 0); 2843 BaseType = getTypeByID(BaseTypeID); 2844 } 2845 2846 PointerType *OrigPtrTy = dyn_cast_or_null<PointerType>(BaseType); 2847 if (!OrigPtrTy) 2848 return error("GEP base operand must be pointer or vector of pointer"); 2849 2850 if (!PointeeType) { 2851 PointeeType = getPtrElementTypeByID(BaseTypeID); 2852 if (!PointeeType) 2853 return error("Missing element type for old-style constant GEP"); 2854 } else if (!OrigPtrTy->isOpaqueOrPointeeTypeMatches(PointeeType)) 2855 return error("Explicit gep operator type does not match pointee type " 2856 "of pointer operand"); 2857 2858 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2859 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2860 InBounds, InRangeIndex); 2861 break; 2862 } 2863 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2864 if (Record.size() < 3) 2865 return error("Invalid select constexpr record"); 2866 2867 DelayedSelectors.push_back( 2868 {CurTy, CurTyID, Record[0], Record[1], Record[2], NextCstNo}); 2869 (void)ValueList.getConstantFwdRef(NextCstNo, CurTy, CurTyID); 2870 ++NextCstNo; 2871 continue; 2872 } 2873 case bitc::CST_CODE_CE_EXTRACTELT 2874 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2875 if (Record.size() < 3) 2876 return error("Invalid extractelement constexpr record"); 2877 unsigned OpTyID = Record[0]; 2878 VectorType *OpTy = 2879 dyn_cast_or_null<VectorType>(getTypeByID(OpTyID)); 2880 if (!OpTy) 2881 return error("Invalid extractelement constexpr record"); 2882 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy, OpTyID); 2883 Constant *Op1 = nullptr; 2884 if (Record.size() == 4) { 2885 unsigned IdxTyID = Record[2]; 2886 Type *IdxTy = getTypeByID(IdxTyID); 2887 if (!IdxTy) 2888 return error("Invalid extractelement constexpr record"); 2889 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy, IdxTyID); 2890 } else { 2891 // Deprecated, but still needed to read old bitcode files. 2892 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context), 2893 Int32TyID); 2894 } 2895 if (!Op1) 2896 return error("Invalid extractelement constexpr record"); 2897 V = ConstantExpr::getExtractElement(Op0, Op1); 2898 break; 2899 } 2900 case bitc::CST_CODE_CE_INSERTELT 2901 : { // CE_INSERTELT: [opval, opval, opty, opval] 2902 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2903 if (Record.size() < 3 || !OpTy) 2904 return error("Invalid insertelement constexpr record"); 2905 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy, CurTyID); 2906 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2907 OpTy->getElementType(), 2908 getContainedTypeID(CurTyID)); 2909 Constant *Op2 = nullptr; 2910 if (Record.size() == 4) { 2911 unsigned IdxTyID = Record[2]; 2912 Type *IdxTy = getTypeByID(IdxTyID); 2913 if (!IdxTy) 2914 return error("Invalid insertelement constexpr record"); 2915 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy, IdxTyID); 2916 } else { 2917 // Deprecated, but still needed to read old bitcode files. 2918 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context), 2919 Int32TyID); 2920 } 2921 if (!Op2) 2922 return error("Invalid insertelement constexpr record"); 2923 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2924 break; 2925 } 2926 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2927 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2928 if (Record.size() < 3 || !OpTy) 2929 return error("Invalid shufflevector constexpr record"); 2930 DelayedShuffles.push_back( 2931 {OpTy, CurTyID, OpTy, Record[0], Record[1], Record[2], NextCstNo}); 2932 ++NextCstNo; 2933 continue; 2934 } 2935 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2936 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2937 VectorType *OpTy = 2938 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2939 if (Record.size() < 4 || !RTy || !OpTy) 2940 return error("Invalid shufflevector constexpr record"); 2941 DelayedShuffles.push_back( 2942 {OpTy, CurTyID, RTy, Record[1], Record[2], Record[3], NextCstNo}); 2943 ++NextCstNo; 2944 continue; 2945 } 2946 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2947 if (Record.size() < 4) 2948 return error("Invalid cmp constexpt record"); 2949 unsigned OpTyID = Record[0]; 2950 Type *OpTy = getTypeByID(OpTyID); 2951 if (!OpTy) 2952 return error("Invalid cmp constexpr record"); 2953 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy, OpTyID); 2954 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy, OpTyID); 2955 2956 if (OpTy->isFPOrFPVectorTy()) 2957 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2958 else 2959 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2960 break; 2961 } 2962 // This maintains backward compatibility, pre-asm dialect keywords. 2963 // Deprecated, but still needed to read old bitcode files. 2964 case bitc::CST_CODE_INLINEASM_OLD: { 2965 if (Record.size() < 2) 2966 return error("Invalid inlineasm record"); 2967 std::string AsmStr, ConstrStr; 2968 bool HasSideEffects = Record[0] & 1; 2969 bool IsAlignStack = Record[0] >> 1; 2970 unsigned AsmStrSize = Record[1]; 2971 if (2+AsmStrSize >= Record.size()) 2972 return error("Invalid inlineasm record"); 2973 unsigned ConstStrSize = Record[2+AsmStrSize]; 2974 if (3+AsmStrSize+ConstStrSize > Record.size()) 2975 return error("Invalid inlineasm record"); 2976 2977 for (unsigned i = 0; i != AsmStrSize; ++i) 2978 AsmStr += (char)Record[2+i]; 2979 for (unsigned i = 0; i != ConstStrSize; ++i) 2980 ConstrStr += (char)Record[3+AsmStrSize+i]; 2981 UpgradeInlineAsmString(&AsmStr); 2982 if (!CurElemTy) 2983 return error("Missing element type for old-style inlineasm"); 2984 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr, 2985 HasSideEffects, IsAlignStack); 2986 break; 2987 } 2988 // This version adds support for the asm dialect keywords (e.g., 2989 // inteldialect). 2990 case bitc::CST_CODE_INLINEASM_OLD2: { 2991 if (Record.size() < 2) 2992 return error("Invalid inlineasm record"); 2993 std::string AsmStr, ConstrStr; 2994 bool HasSideEffects = Record[0] & 1; 2995 bool IsAlignStack = (Record[0] >> 1) & 1; 2996 unsigned AsmDialect = Record[0] >> 2; 2997 unsigned AsmStrSize = Record[1]; 2998 if (2+AsmStrSize >= Record.size()) 2999 return error("Invalid inlineasm record"); 3000 unsigned ConstStrSize = Record[2+AsmStrSize]; 3001 if (3+AsmStrSize+ConstStrSize > Record.size()) 3002 return error("Invalid inlineasm record"); 3003 3004 for (unsigned i = 0; i != AsmStrSize; ++i) 3005 AsmStr += (char)Record[2+i]; 3006 for (unsigned i = 0; i != ConstStrSize; ++i) 3007 ConstrStr += (char)Record[3+AsmStrSize+i]; 3008 UpgradeInlineAsmString(&AsmStr); 3009 if (!CurElemTy) 3010 return error("Missing element type for old-style inlineasm"); 3011 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr, 3012 HasSideEffects, IsAlignStack, 3013 InlineAsm::AsmDialect(AsmDialect)); 3014 break; 3015 } 3016 // This version adds support for the unwind keyword. 3017 case bitc::CST_CODE_INLINEASM_OLD3: { 3018 if (Record.size() < 2) 3019 return error("Invalid inlineasm record"); 3020 unsigned OpNum = 0; 3021 std::string AsmStr, ConstrStr; 3022 bool HasSideEffects = Record[OpNum] & 1; 3023 bool IsAlignStack = (Record[OpNum] >> 1) & 1; 3024 unsigned AsmDialect = (Record[OpNum] >> 2) & 1; 3025 bool CanThrow = (Record[OpNum] >> 3) & 1; 3026 ++OpNum; 3027 unsigned AsmStrSize = Record[OpNum]; 3028 ++OpNum; 3029 if (OpNum + AsmStrSize >= Record.size()) 3030 return error("Invalid inlineasm record"); 3031 unsigned ConstStrSize = Record[OpNum + AsmStrSize]; 3032 if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size()) 3033 return error("Invalid inlineasm record"); 3034 3035 for (unsigned i = 0; i != AsmStrSize; ++i) 3036 AsmStr += (char)Record[OpNum + i]; 3037 ++OpNum; 3038 for (unsigned i = 0; i != ConstStrSize; ++i) 3039 ConstrStr += (char)Record[OpNum + AsmStrSize + i]; 3040 UpgradeInlineAsmString(&AsmStr); 3041 if (!CurElemTy) 3042 return error("Missing element type for old-style inlineasm"); 3043 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr, 3044 HasSideEffects, IsAlignStack, 3045 InlineAsm::AsmDialect(AsmDialect), CanThrow); 3046 break; 3047 } 3048 // This version adds explicit function type. 3049 case bitc::CST_CODE_INLINEASM: { 3050 if (Record.size() < 3) 3051 return error("Invalid inlineasm record"); 3052 unsigned OpNum = 0; 3053 auto *FnTy = dyn_cast_or_null<FunctionType>(getTypeByID(Record[OpNum])); 3054 ++OpNum; 3055 if (!FnTy) 3056 return error("Invalid inlineasm record"); 3057 std::string AsmStr, ConstrStr; 3058 bool HasSideEffects = Record[OpNum] & 1; 3059 bool IsAlignStack = (Record[OpNum] >> 1) & 1; 3060 unsigned AsmDialect = (Record[OpNum] >> 2) & 1; 3061 bool CanThrow = (Record[OpNum] >> 3) & 1; 3062 ++OpNum; 3063 unsigned AsmStrSize = Record[OpNum]; 3064 ++OpNum; 3065 if (OpNum + AsmStrSize >= Record.size()) 3066 return error("Invalid inlineasm record"); 3067 unsigned ConstStrSize = Record[OpNum + AsmStrSize]; 3068 if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size()) 3069 return error("Invalid inlineasm record"); 3070 3071 for (unsigned i = 0; i != AsmStrSize; ++i) 3072 AsmStr += (char)Record[OpNum + i]; 3073 ++OpNum; 3074 for (unsigned i = 0; i != ConstStrSize; ++i) 3075 ConstrStr += (char)Record[OpNum + AsmStrSize + i]; 3076 UpgradeInlineAsmString(&AsmStr); 3077 V = InlineAsm::get(FnTy, AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 3078 InlineAsm::AsmDialect(AsmDialect), CanThrow); 3079 break; 3080 } 3081 case bitc::CST_CODE_BLOCKADDRESS:{ 3082 if (Record.size() < 3) 3083 return error("Invalid blockaddress record"); 3084 unsigned FnTyID = Record[0]; 3085 Type *FnTy = getTypeByID(FnTyID); 3086 if (!FnTy) 3087 return error("Invalid blockaddress record"); 3088 Function *Fn = dyn_cast_or_null<Function>( 3089 ValueList.getConstantFwdRef(Record[1], FnTy, FnTyID)); 3090 if (!Fn) 3091 return error("Invalid blockaddress record"); 3092 3093 // If the function is already parsed we can insert the block address right 3094 // away. 3095 BasicBlock *BB; 3096 unsigned BBID = Record[2]; 3097 if (!BBID) 3098 // Invalid reference to entry block. 3099 return error("Invalid ID"); 3100 if (!Fn->empty()) { 3101 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 3102 for (size_t I = 0, E = BBID; I != E; ++I) { 3103 if (BBI == BBE) 3104 return error("Invalid ID"); 3105 ++BBI; 3106 } 3107 BB = &*BBI; 3108 } else { 3109 // Otherwise insert a placeholder and remember it so it can be inserted 3110 // when the function is parsed. 3111 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 3112 if (FwdBBs.empty()) 3113 BasicBlockFwdRefQueue.push_back(Fn); 3114 if (FwdBBs.size() < BBID + 1) 3115 FwdBBs.resize(BBID + 1); 3116 if (!FwdBBs[BBID]) 3117 FwdBBs[BBID] = BasicBlock::Create(Context); 3118 BB = FwdBBs[BBID]; 3119 } 3120 V = BlockAddress::get(Fn, BB); 3121 break; 3122 } 3123 case bitc::CST_CODE_DSO_LOCAL_EQUIVALENT: { 3124 if (Record.size() < 2) 3125 return error("Invalid dso_local record"); 3126 unsigned GVTyID = Record[0]; 3127 Type *GVTy = getTypeByID(GVTyID); 3128 if (!GVTy) 3129 return error("Invalid dso_local record"); 3130 GlobalValue *GV = dyn_cast_or_null<GlobalValue>( 3131 ValueList.getConstantFwdRef(Record[1], GVTy, GVTyID)); 3132 if (!GV) 3133 return error("Invalid dso_local record"); 3134 3135 V = DSOLocalEquivalent::get(GV); 3136 break; 3137 } 3138 case bitc::CST_CODE_NO_CFI_VALUE: { 3139 if (Record.size() < 2) 3140 return error("Invalid no_cfi record"); 3141 unsigned GVTyID = Record[0]; 3142 Type *GVTy = getTypeByID(GVTyID); 3143 if (!GVTy) 3144 return error("Invalid no_cfi record"); 3145 GlobalValue *GV = dyn_cast_or_null<GlobalValue>( 3146 ValueList.getConstantFwdRef(Record[1], GVTy, GVTyID)); 3147 if (!GV) 3148 return error("Invalid no_cfi record"); 3149 V = NoCFIValue::get(GV); 3150 break; 3151 } 3152 } 3153 3154 assert(V->getType() == getTypeByID(CurTyID) && "Incorrect result type ID"); 3155 if (Error Err = ValueList.assignValue(NextCstNo, V, CurTyID)) 3156 return Err; 3157 ++NextCstNo; 3158 } 3159 } 3160 3161 Error BitcodeReader::parseUseLists() { 3162 if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 3163 return Err; 3164 3165 // Read all the records. 3166 SmallVector<uint64_t, 64> Record; 3167 3168 while (true) { 3169 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 3170 if (!MaybeEntry) 3171 return MaybeEntry.takeError(); 3172 BitstreamEntry Entry = MaybeEntry.get(); 3173 3174 switch (Entry.Kind) { 3175 case BitstreamEntry::SubBlock: // Handled for us already. 3176 case BitstreamEntry::Error: 3177 return error("Malformed block"); 3178 case BitstreamEntry::EndBlock: 3179 return Error::success(); 3180 case BitstreamEntry::Record: 3181 // The interesting case. 3182 break; 3183 } 3184 3185 // Read a use list record. 3186 Record.clear(); 3187 bool IsBB = false; 3188 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 3189 if (!MaybeRecord) 3190 return MaybeRecord.takeError(); 3191 switch (MaybeRecord.get()) { 3192 default: // Default behavior: unknown type. 3193 break; 3194 case bitc::USELIST_CODE_BB: 3195 IsBB = true; 3196 LLVM_FALLTHROUGH; 3197 case bitc::USELIST_CODE_DEFAULT: { 3198 unsigned RecordLength = Record.size(); 3199 if (RecordLength < 3) 3200 // Records should have at least an ID and two indexes. 3201 return error("Invalid record"); 3202 unsigned ID = Record.pop_back_val(); 3203 3204 Value *V; 3205 if (IsBB) { 3206 assert(ID < FunctionBBs.size() && "Basic block not found"); 3207 V = FunctionBBs[ID]; 3208 } else 3209 V = ValueList[ID]; 3210 unsigned NumUses = 0; 3211 SmallDenseMap<const Use *, unsigned, 16> Order; 3212 for (const Use &U : V->materialized_uses()) { 3213 if (++NumUses > Record.size()) 3214 break; 3215 Order[&U] = Record[NumUses - 1]; 3216 } 3217 if (Order.size() != Record.size() || NumUses > Record.size()) 3218 // Mismatches can happen if the functions are being materialized lazily 3219 // (out-of-order), or a value has been upgraded. 3220 break; 3221 3222 V->sortUseList([&](const Use &L, const Use &R) { 3223 return Order.lookup(&L) < Order.lookup(&R); 3224 }); 3225 break; 3226 } 3227 } 3228 } 3229 } 3230 3231 /// When we see the block for metadata, remember where it is and then skip it. 3232 /// This lets us lazily deserialize the metadata. 3233 Error BitcodeReader::rememberAndSkipMetadata() { 3234 // Save the current stream state. 3235 uint64_t CurBit = Stream.GetCurrentBitNo(); 3236 DeferredMetadataInfo.push_back(CurBit); 3237 3238 // Skip over the block for now. 3239 if (Error Err = Stream.SkipBlock()) 3240 return Err; 3241 return Error::success(); 3242 } 3243 3244 Error BitcodeReader::materializeMetadata() { 3245 for (uint64_t BitPos : DeferredMetadataInfo) { 3246 // Move the bit stream to the saved position. 3247 if (Error JumpFailed = Stream.JumpToBit(BitPos)) 3248 return JumpFailed; 3249 if (Error Err = MDLoader->parseModuleMetadata()) 3250 return Err; 3251 } 3252 3253 // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level 3254 // metadata. Only upgrade if the new option doesn't exist to avoid upgrade 3255 // multiple times. 3256 if (!TheModule->getNamedMetadata("llvm.linker.options")) { 3257 if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) { 3258 NamedMDNode *LinkerOpts = 3259 TheModule->getOrInsertNamedMetadata("llvm.linker.options"); 3260 for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands()) 3261 LinkerOpts->addOperand(cast<MDNode>(MDOptions)); 3262 } 3263 } 3264 3265 DeferredMetadataInfo.clear(); 3266 return Error::success(); 3267 } 3268 3269 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 3270 3271 /// When we see the block for a function body, remember where it is and then 3272 /// skip it. This lets us lazily deserialize the functions. 3273 Error BitcodeReader::rememberAndSkipFunctionBody() { 3274 // Get the function we are talking about. 3275 if (FunctionsWithBodies.empty()) 3276 return error("Insufficient function protos"); 3277 3278 Function *Fn = FunctionsWithBodies.back(); 3279 FunctionsWithBodies.pop_back(); 3280 3281 // Save the current stream state. 3282 uint64_t CurBit = Stream.GetCurrentBitNo(); 3283 assert( 3284 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 3285 "Mismatch between VST and scanned function offsets"); 3286 DeferredFunctionInfo[Fn] = CurBit; 3287 3288 // Skip over the function block for now. 3289 if (Error Err = Stream.SkipBlock()) 3290 return Err; 3291 return Error::success(); 3292 } 3293 3294 Error BitcodeReader::globalCleanup() { 3295 // Patch the initializers for globals and aliases up. 3296 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3297 return Err; 3298 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 3299 return error("Malformed global initializer set"); 3300 3301 // Look for intrinsic functions which need to be upgraded at some point 3302 // and functions that need to have their function attributes upgraded. 3303 for (Function &F : *TheModule) { 3304 MDLoader->upgradeDebugIntrinsics(F); 3305 Function *NewFn; 3306 if (UpgradeIntrinsicFunction(&F, NewFn)) 3307 UpgradedIntrinsics[&F] = NewFn; 3308 else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F)) 3309 // Some types could be renamed during loading if several modules are 3310 // loaded in the same LLVMContext (LTO scenario). In this case we should 3311 // remangle intrinsics names as well. 3312 RemangledIntrinsics[&F] = Remangled.getValue(); 3313 // Look for functions that rely on old function attribute behavior. 3314 UpgradeFunctionAttributes(F); 3315 } 3316 3317 // Look for global variables which need to be renamed. 3318 std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables; 3319 for (GlobalVariable &GV : TheModule->globals()) 3320 if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV)) 3321 UpgradedVariables.emplace_back(&GV, Upgraded); 3322 for (auto &Pair : UpgradedVariables) { 3323 Pair.first->eraseFromParent(); 3324 TheModule->getGlobalList().push_back(Pair.second); 3325 } 3326 3327 // Force deallocation of memory for these vectors to favor the client that 3328 // want lazy deserialization. 3329 std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits); 3330 std::vector<std::pair<GlobalValue *, unsigned>>().swap(IndirectSymbolInits); 3331 return Error::success(); 3332 } 3333 3334 /// Support for lazy parsing of function bodies. This is required if we 3335 /// either have an old bitcode file without a VST forward declaration record, 3336 /// or if we have an anonymous function being materialized, since anonymous 3337 /// functions do not have a name and are therefore not in the VST. 3338 Error BitcodeReader::rememberAndSkipFunctionBodies() { 3339 if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit)) 3340 return JumpFailed; 3341 3342 if (Stream.AtEndOfStream()) 3343 return error("Could not find function in stream"); 3344 3345 if (!SeenFirstFunctionBody) 3346 return error("Trying to materialize functions before seeing function blocks"); 3347 3348 // An old bitcode file with the symbol table at the end would have 3349 // finished the parse greedily. 3350 assert(SeenValueSymbolTable); 3351 3352 SmallVector<uint64_t, 64> Record; 3353 3354 while (true) { 3355 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3356 if (!MaybeEntry) 3357 return MaybeEntry.takeError(); 3358 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3359 3360 switch (Entry.Kind) { 3361 default: 3362 return error("Expect SubBlock"); 3363 case BitstreamEntry::SubBlock: 3364 switch (Entry.ID) { 3365 default: 3366 return error("Expect function block"); 3367 case bitc::FUNCTION_BLOCK_ID: 3368 if (Error Err = rememberAndSkipFunctionBody()) 3369 return Err; 3370 NextUnreadBit = Stream.GetCurrentBitNo(); 3371 return Error::success(); 3372 } 3373 } 3374 } 3375 } 3376 3377 Error BitcodeReaderBase::readBlockInfo() { 3378 Expected<Optional<BitstreamBlockInfo>> MaybeNewBlockInfo = 3379 Stream.ReadBlockInfoBlock(); 3380 if (!MaybeNewBlockInfo) 3381 return MaybeNewBlockInfo.takeError(); 3382 Optional<BitstreamBlockInfo> NewBlockInfo = 3383 std::move(MaybeNewBlockInfo.get()); 3384 if (!NewBlockInfo) 3385 return error("Malformed block"); 3386 BlockInfo = std::move(*NewBlockInfo); 3387 return Error::success(); 3388 } 3389 3390 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) { 3391 // v1: [selection_kind, name] 3392 // v2: [strtab_offset, strtab_size, selection_kind] 3393 StringRef Name; 3394 std::tie(Name, Record) = readNameFromStrtab(Record); 3395 3396 if (Record.empty()) 3397 return error("Invalid record"); 3398 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 3399 std::string OldFormatName; 3400 if (!UseStrtab) { 3401 if (Record.size() < 2) 3402 return error("Invalid record"); 3403 unsigned ComdatNameSize = Record[1]; 3404 if (ComdatNameSize > Record.size() - 2) 3405 return error("Comdat name size too large"); 3406 OldFormatName.reserve(ComdatNameSize); 3407 for (unsigned i = 0; i != ComdatNameSize; ++i) 3408 OldFormatName += (char)Record[2 + i]; 3409 Name = OldFormatName; 3410 } 3411 Comdat *C = TheModule->getOrInsertComdat(Name); 3412 C->setSelectionKind(SK); 3413 ComdatList.push_back(C); 3414 return Error::success(); 3415 } 3416 3417 static void inferDSOLocal(GlobalValue *GV) { 3418 // infer dso_local from linkage and visibility if it is not encoded. 3419 if (GV->hasLocalLinkage() || 3420 (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())) 3421 GV->setDSOLocal(true); 3422 } 3423 3424 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) { 3425 // v1: [pointer type, isconst, initid, linkage, alignment, section, 3426 // visibility, threadlocal, unnamed_addr, externally_initialized, 3427 // dllstorageclass, comdat, attributes, preemption specifier, 3428 // partition strtab offset, partition strtab size] (name in VST) 3429 // v2: [strtab_offset, strtab_size, v1] 3430 StringRef Name; 3431 std::tie(Name, Record) = readNameFromStrtab(Record); 3432 3433 if (Record.size() < 6) 3434 return error("Invalid record"); 3435 unsigned TyID = Record[0]; 3436 Type *Ty = getTypeByID(TyID); 3437 if (!Ty) 3438 return error("Invalid record"); 3439 bool isConstant = Record[1] & 1; 3440 bool explicitType = Record[1] & 2; 3441 unsigned AddressSpace; 3442 if (explicitType) { 3443 AddressSpace = Record[1] >> 2; 3444 } else { 3445 if (!Ty->isPointerTy()) 3446 return error("Invalid type for value"); 3447 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 3448 TyID = getContainedTypeID(TyID); 3449 Ty = getTypeByID(TyID); 3450 if (!Ty) 3451 return error("Missing element type for old-style global"); 3452 } 3453 3454 uint64_t RawLinkage = Record[3]; 3455 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 3456 MaybeAlign Alignment; 3457 if (Error Err = parseAlignmentValue(Record[4], Alignment)) 3458 return Err; 3459 std::string Section; 3460 if (Record[5]) { 3461 if (Record[5] - 1 >= SectionTable.size()) 3462 return error("Invalid ID"); 3463 Section = SectionTable[Record[5] - 1]; 3464 } 3465 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 3466 // Local linkage must have default visibility. 3467 // auto-upgrade `hidden` and `protected` for old bitcode. 3468 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 3469 Visibility = getDecodedVisibility(Record[6]); 3470 3471 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 3472 if (Record.size() > 7) 3473 TLM = getDecodedThreadLocalMode(Record[7]); 3474 3475 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3476 if (Record.size() > 8) 3477 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); 3478 3479 bool ExternallyInitialized = false; 3480 if (Record.size() > 9) 3481 ExternallyInitialized = Record[9]; 3482 3483 GlobalVariable *NewGV = 3484 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name, 3485 nullptr, TLM, AddressSpace, ExternallyInitialized); 3486 NewGV->setAlignment(Alignment); 3487 if (!Section.empty()) 3488 NewGV->setSection(Section); 3489 NewGV->setVisibility(Visibility); 3490 NewGV->setUnnamedAddr(UnnamedAddr); 3491 3492 if (Record.size() > 10) 3493 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 3494 else 3495 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 3496 3497 ValueList.push_back(NewGV, getVirtualTypeID(NewGV->getType(), TyID)); 3498 3499 // Remember which value to use for the global initializer. 3500 if (unsigned InitID = Record[2]) 3501 GlobalInits.push_back(std::make_pair(NewGV, InitID - 1)); 3502 3503 if (Record.size() > 11) { 3504 if (unsigned ComdatID = Record[11]) { 3505 if (ComdatID > ComdatList.size()) 3506 return error("Invalid global variable comdat ID"); 3507 NewGV->setComdat(ComdatList[ComdatID - 1]); 3508 } 3509 } else if (hasImplicitComdat(RawLinkage)) { 3510 ImplicitComdatObjects.insert(NewGV); 3511 } 3512 3513 if (Record.size() > 12) { 3514 auto AS = getAttributes(Record[12]).getFnAttrs(); 3515 NewGV->setAttributes(AS); 3516 } 3517 3518 if (Record.size() > 13) { 3519 NewGV->setDSOLocal(getDecodedDSOLocal(Record[13])); 3520 } 3521 inferDSOLocal(NewGV); 3522 3523 // Check whether we have enough values to read a partition name. 3524 if (Record.size() > 15) 3525 NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15])); 3526 3527 return Error::success(); 3528 } 3529 3530 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) { 3531 // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section, 3532 // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat, 3533 // prefixdata, personalityfn, preemption specifier, addrspace] (name in VST) 3534 // v2: [strtab_offset, strtab_size, v1] 3535 StringRef Name; 3536 std::tie(Name, Record) = readNameFromStrtab(Record); 3537 3538 if (Record.size() < 8) 3539 return error("Invalid record"); 3540 unsigned FTyID = Record[0]; 3541 Type *FTy = getTypeByID(FTyID); 3542 if (!FTy) 3543 return error("Invalid record"); 3544 if (isa<PointerType>(FTy)) { 3545 FTyID = getContainedTypeID(FTyID, 0); 3546 FTy = getTypeByID(FTyID); 3547 if (!FTy) 3548 return error("Missing element type for old-style function"); 3549 } 3550 3551 if (!isa<FunctionType>(FTy)) 3552 return error("Invalid type for value"); 3553 auto CC = static_cast<CallingConv::ID>(Record[1]); 3554 if (CC & ~CallingConv::MaxID) 3555 return error("Invalid calling convention ID"); 3556 3557 unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace(); 3558 if (Record.size() > 16) 3559 AddrSpace = Record[16]; 3560 3561 Function *Func = 3562 Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage, 3563 AddrSpace, Name, TheModule); 3564 3565 assert(Func->getFunctionType() == FTy && 3566 "Incorrect fully specified type provided for function"); 3567 FunctionTypeIDs[Func] = FTyID; 3568 3569 Func->setCallingConv(CC); 3570 bool isProto = Record[2]; 3571 uint64_t RawLinkage = Record[3]; 3572 Func->setLinkage(getDecodedLinkage(RawLinkage)); 3573 Func->setAttributes(getAttributes(Record[4])); 3574 3575 // Upgrade any old-style byval or sret without a type by propagating the 3576 // argument's pointee type. There should be no opaque pointers where the byval 3577 // type is implicit. 3578 for (unsigned i = 0; i != Func->arg_size(); ++i) { 3579 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet, 3580 Attribute::InAlloca}) { 3581 if (!Func->hasParamAttribute(i, Kind)) 3582 continue; 3583 3584 if (Func->getParamAttribute(i, Kind).getValueAsType()) 3585 continue; 3586 3587 Func->removeParamAttr(i, Kind); 3588 3589 unsigned ParamTypeID = getContainedTypeID(FTyID, i + 1); 3590 Type *PtrEltTy = getPtrElementTypeByID(ParamTypeID); 3591 if (!PtrEltTy) 3592 return error("Missing param element type for attribute upgrade"); 3593 3594 Attribute NewAttr; 3595 switch (Kind) { 3596 case Attribute::ByVal: 3597 NewAttr = Attribute::getWithByValType(Context, PtrEltTy); 3598 break; 3599 case Attribute::StructRet: 3600 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy); 3601 break; 3602 case Attribute::InAlloca: 3603 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy); 3604 break; 3605 default: 3606 llvm_unreachable("not an upgraded type attribute"); 3607 } 3608 3609 Func->addParamAttr(i, NewAttr); 3610 } 3611 } 3612 3613 if (Func->getCallingConv() == CallingConv::X86_INTR && 3614 !Func->arg_empty() && !Func->hasParamAttribute(0, Attribute::ByVal)) { 3615 unsigned ParamTypeID = getContainedTypeID(FTyID, 1); 3616 Type *ByValTy = getPtrElementTypeByID(ParamTypeID); 3617 if (!ByValTy) 3618 return error("Missing param element type for x86_intrcc upgrade"); 3619 Attribute NewAttr = Attribute::getWithByValType(Context, ByValTy); 3620 Func->addParamAttr(0, NewAttr); 3621 } 3622 3623 MaybeAlign Alignment; 3624 if (Error Err = parseAlignmentValue(Record[5], Alignment)) 3625 return Err; 3626 Func->setAlignment(Alignment); 3627 if (Record[6]) { 3628 if (Record[6] - 1 >= SectionTable.size()) 3629 return error("Invalid ID"); 3630 Func->setSection(SectionTable[Record[6] - 1]); 3631 } 3632 // Local linkage must have default visibility. 3633 // auto-upgrade `hidden` and `protected` for old bitcode. 3634 if (!Func->hasLocalLinkage()) 3635 Func->setVisibility(getDecodedVisibility(Record[7])); 3636 if (Record.size() > 8 && Record[8]) { 3637 if (Record[8] - 1 >= GCTable.size()) 3638 return error("Invalid ID"); 3639 Func->setGC(GCTable[Record[8] - 1]); 3640 } 3641 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3642 if (Record.size() > 9) 3643 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); 3644 Func->setUnnamedAddr(UnnamedAddr); 3645 3646 FunctionOperandInfo OperandInfo = {Func, 0, 0, 0}; 3647 if (Record.size() > 10) 3648 OperandInfo.Prologue = Record[10]; 3649 3650 if (Record.size() > 11) 3651 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 3652 else 3653 upgradeDLLImportExportLinkage(Func, RawLinkage); 3654 3655 if (Record.size() > 12) { 3656 if (unsigned ComdatID = Record[12]) { 3657 if (ComdatID > ComdatList.size()) 3658 return error("Invalid function comdat ID"); 3659 Func->setComdat(ComdatList[ComdatID - 1]); 3660 } 3661 } else if (hasImplicitComdat(RawLinkage)) { 3662 ImplicitComdatObjects.insert(Func); 3663 } 3664 3665 if (Record.size() > 13) 3666 OperandInfo.Prefix = Record[13]; 3667 3668 if (Record.size() > 14) 3669 OperandInfo.PersonalityFn = Record[14]; 3670 3671 if (Record.size() > 15) { 3672 Func->setDSOLocal(getDecodedDSOLocal(Record[15])); 3673 } 3674 inferDSOLocal(Func); 3675 3676 // Record[16] is the address space number. 3677 3678 // Check whether we have enough values to read a partition name. Also make 3679 // sure Strtab has enough values. 3680 if (Record.size() > 18 && Strtab.data() && 3681 Record[17] + Record[18] <= Strtab.size()) { 3682 Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18])); 3683 } 3684 3685 ValueList.push_back(Func, getVirtualTypeID(Func->getType(), FTyID)); 3686 3687 if (OperandInfo.PersonalityFn || OperandInfo.Prefix || OperandInfo.Prologue) 3688 FunctionOperands.push_back(OperandInfo); 3689 3690 // If this is a function with a body, remember the prototype we are 3691 // creating now, so that we can match up the body with them later. 3692 if (!isProto) { 3693 Func->setIsMaterializable(true); 3694 FunctionsWithBodies.push_back(Func); 3695 DeferredFunctionInfo[Func] = 0; 3696 } 3697 return Error::success(); 3698 } 3699 3700 Error BitcodeReader::parseGlobalIndirectSymbolRecord( 3701 unsigned BitCode, ArrayRef<uint64_t> Record) { 3702 // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST) 3703 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 3704 // dllstorageclass, threadlocal, unnamed_addr, 3705 // preemption specifier] (name in VST) 3706 // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage, 3707 // visibility, dllstorageclass, threadlocal, unnamed_addr, 3708 // preemption specifier] (name in VST) 3709 // v2: [strtab_offset, strtab_size, v1] 3710 StringRef Name; 3711 std::tie(Name, Record) = readNameFromStrtab(Record); 3712 3713 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 3714 if (Record.size() < (3 + (unsigned)NewRecord)) 3715 return error("Invalid record"); 3716 unsigned OpNum = 0; 3717 unsigned TypeID = Record[OpNum++]; 3718 Type *Ty = getTypeByID(TypeID); 3719 if (!Ty) 3720 return error("Invalid record"); 3721 3722 unsigned AddrSpace; 3723 if (!NewRecord) { 3724 auto *PTy = dyn_cast<PointerType>(Ty); 3725 if (!PTy) 3726 return error("Invalid type for value"); 3727 AddrSpace = PTy->getAddressSpace(); 3728 TypeID = getContainedTypeID(TypeID); 3729 Ty = getTypeByID(TypeID); 3730 if (!Ty) 3731 return error("Missing element type for old-style indirect symbol"); 3732 } else { 3733 AddrSpace = Record[OpNum++]; 3734 } 3735 3736 auto Val = Record[OpNum++]; 3737 auto Linkage = Record[OpNum++]; 3738 GlobalValue *NewGA; 3739 if (BitCode == bitc::MODULE_CODE_ALIAS || 3740 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 3741 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3742 TheModule); 3743 else 3744 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3745 nullptr, TheModule); 3746 3747 // Local linkage must have default visibility. 3748 // auto-upgrade `hidden` and `protected` for old bitcode. 3749 if (OpNum != Record.size()) { 3750 auto VisInd = OpNum++; 3751 if (!NewGA->hasLocalLinkage()) 3752 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 3753 } 3754 if (BitCode == bitc::MODULE_CODE_ALIAS || 3755 BitCode == bitc::MODULE_CODE_ALIAS_OLD) { 3756 if (OpNum != Record.size()) 3757 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 3758 else 3759 upgradeDLLImportExportLinkage(NewGA, Linkage); 3760 if (OpNum != Record.size()) 3761 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 3762 if (OpNum != Record.size()) 3763 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); 3764 } 3765 if (OpNum != Record.size()) 3766 NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++])); 3767 inferDSOLocal(NewGA); 3768 3769 // Check whether we have enough values to read a partition name. 3770 if (OpNum + 1 < Record.size()) { 3771 NewGA->setPartition( 3772 StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1])); 3773 OpNum += 2; 3774 } 3775 3776 ValueList.push_back(NewGA, getVirtualTypeID(NewGA->getType(), TypeID)); 3777 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 3778 return Error::success(); 3779 } 3780 3781 Error BitcodeReader::parseModule(uint64_t ResumeBit, 3782 bool ShouldLazyLoadMetadata, 3783 DataLayoutCallbackTy DataLayoutCallback) { 3784 if (ResumeBit) { 3785 if (Error JumpFailed = Stream.JumpToBit(ResumeBit)) 3786 return JumpFailed; 3787 } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3788 return Err; 3789 3790 SmallVector<uint64_t, 64> Record; 3791 3792 // Parts of bitcode parsing depend on the datalayout. Make sure we 3793 // finalize the datalayout before we run any of that code. 3794 bool ResolvedDataLayout = false; 3795 auto ResolveDataLayout = [&] { 3796 if (ResolvedDataLayout) 3797 return; 3798 3799 // datalayout and triple can't be parsed after this point. 3800 ResolvedDataLayout = true; 3801 3802 // Upgrade data layout string. 3803 std::string DL = llvm::UpgradeDataLayoutString( 3804 TheModule->getDataLayoutStr(), TheModule->getTargetTriple()); 3805 TheModule->setDataLayout(DL); 3806 3807 if (auto LayoutOverride = 3808 DataLayoutCallback(TheModule->getTargetTriple())) 3809 TheModule->setDataLayout(*LayoutOverride); 3810 }; 3811 3812 // Read all the records for this module. 3813 while (true) { 3814 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3815 if (!MaybeEntry) 3816 return MaybeEntry.takeError(); 3817 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3818 3819 switch (Entry.Kind) { 3820 case BitstreamEntry::Error: 3821 return error("Malformed block"); 3822 case BitstreamEntry::EndBlock: 3823 ResolveDataLayout(); 3824 return globalCleanup(); 3825 3826 case BitstreamEntry::SubBlock: 3827 switch (Entry.ID) { 3828 default: // Skip unknown content. 3829 if (Error Err = Stream.SkipBlock()) 3830 return Err; 3831 break; 3832 case bitc::BLOCKINFO_BLOCK_ID: 3833 if (Error Err = readBlockInfo()) 3834 return Err; 3835 break; 3836 case bitc::PARAMATTR_BLOCK_ID: 3837 if (Error Err = parseAttributeBlock()) 3838 return Err; 3839 break; 3840 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3841 if (Error Err = parseAttributeGroupBlock()) 3842 return Err; 3843 break; 3844 case bitc::TYPE_BLOCK_ID_NEW: 3845 if (Error Err = parseTypeTable()) 3846 return Err; 3847 break; 3848 case bitc::VALUE_SYMTAB_BLOCK_ID: 3849 if (!SeenValueSymbolTable) { 3850 // Either this is an old form VST without function index and an 3851 // associated VST forward declaration record (which would have caused 3852 // the VST to be jumped to and parsed before it was encountered 3853 // normally in the stream), or there were no function blocks to 3854 // trigger an earlier parsing of the VST. 3855 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3856 if (Error Err = parseValueSymbolTable()) 3857 return Err; 3858 SeenValueSymbolTable = true; 3859 } else { 3860 // We must have had a VST forward declaration record, which caused 3861 // the parser to jump to and parse the VST earlier. 3862 assert(VSTOffset > 0); 3863 if (Error Err = Stream.SkipBlock()) 3864 return Err; 3865 } 3866 break; 3867 case bitc::CONSTANTS_BLOCK_ID: 3868 if (Error Err = parseConstants()) 3869 return Err; 3870 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3871 return Err; 3872 break; 3873 case bitc::METADATA_BLOCK_ID: 3874 if (ShouldLazyLoadMetadata) { 3875 if (Error Err = rememberAndSkipMetadata()) 3876 return Err; 3877 break; 3878 } 3879 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3880 if (Error Err = MDLoader->parseModuleMetadata()) 3881 return Err; 3882 break; 3883 case bitc::METADATA_KIND_BLOCK_ID: 3884 if (Error Err = MDLoader->parseMetadataKinds()) 3885 return Err; 3886 break; 3887 case bitc::FUNCTION_BLOCK_ID: 3888 ResolveDataLayout(); 3889 3890 // If this is the first function body we've seen, reverse the 3891 // FunctionsWithBodies list. 3892 if (!SeenFirstFunctionBody) { 3893 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3894 if (Error Err = globalCleanup()) 3895 return Err; 3896 SeenFirstFunctionBody = true; 3897 } 3898 3899 if (VSTOffset > 0) { 3900 // If we have a VST forward declaration record, make sure we 3901 // parse the VST now if we haven't already. It is needed to 3902 // set up the DeferredFunctionInfo vector for lazy reading. 3903 if (!SeenValueSymbolTable) { 3904 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset)) 3905 return Err; 3906 SeenValueSymbolTable = true; 3907 // Fall through so that we record the NextUnreadBit below. 3908 // This is necessary in case we have an anonymous function that 3909 // is later materialized. Since it will not have a VST entry we 3910 // need to fall back to the lazy parse to find its offset. 3911 } else { 3912 // If we have a VST forward declaration record, but have already 3913 // parsed the VST (just above, when the first function body was 3914 // encountered here), then we are resuming the parse after 3915 // materializing functions. The ResumeBit points to the 3916 // start of the last function block recorded in the 3917 // DeferredFunctionInfo map. Skip it. 3918 if (Error Err = Stream.SkipBlock()) 3919 return Err; 3920 continue; 3921 } 3922 } 3923 3924 // Support older bitcode files that did not have the function 3925 // index in the VST, nor a VST forward declaration record, as 3926 // well as anonymous functions that do not have VST entries. 3927 // Build the DeferredFunctionInfo vector on the fly. 3928 if (Error Err = rememberAndSkipFunctionBody()) 3929 return Err; 3930 3931 // Suspend parsing when we reach the function bodies. Subsequent 3932 // materialization calls will resume it when necessary. If the bitcode 3933 // file is old, the symbol table will be at the end instead and will not 3934 // have been seen yet. In this case, just finish the parse now. 3935 if (SeenValueSymbolTable) { 3936 NextUnreadBit = Stream.GetCurrentBitNo(); 3937 // After the VST has been parsed, we need to make sure intrinsic name 3938 // are auto-upgraded. 3939 return globalCleanup(); 3940 } 3941 break; 3942 case bitc::USELIST_BLOCK_ID: 3943 if (Error Err = parseUseLists()) 3944 return Err; 3945 break; 3946 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3947 if (Error Err = parseOperandBundleTags()) 3948 return Err; 3949 break; 3950 case bitc::SYNC_SCOPE_NAMES_BLOCK_ID: 3951 if (Error Err = parseSyncScopeNames()) 3952 return Err; 3953 break; 3954 } 3955 continue; 3956 3957 case BitstreamEntry::Record: 3958 // The interesting case. 3959 break; 3960 } 3961 3962 // Read a record. 3963 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 3964 if (!MaybeBitCode) 3965 return MaybeBitCode.takeError(); 3966 switch (unsigned BitCode = MaybeBitCode.get()) { 3967 default: break; // Default behavior, ignore unknown content. 3968 case bitc::MODULE_CODE_VERSION: { 3969 Expected<unsigned> VersionOrErr = parseVersionRecord(Record); 3970 if (!VersionOrErr) 3971 return VersionOrErr.takeError(); 3972 UseRelativeIDs = *VersionOrErr >= 1; 3973 break; 3974 } 3975 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3976 if (ResolvedDataLayout) 3977 return error("target triple too late in module"); 3978 std::string S; 3979 if (convertToString(Record, 0, S)) 3980 return error("Invalid record"); 3981 TheModule->setTargetTriple(S); 3982 break; 3983 } 3984 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3985 if (ResolvedDataLayout) 3986 return error("datalayout too late in module"); 3987 std::string S; 3988 if (convertToString(Record, 0, S)) 3989 return error("Invalid record"); 3990 Expected<DataLayout> MaybeDL = DataLayout::parse(S); 3991 if (!MaybeDL) 3992 return MaybeDL.takeError(); 3993 TheModule->setDataLayout(MaybeDL.get()); 3994 break; 3995 } 3996 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3997 std::string S; 3998 if (convertToString(Record, 0, S)) 3999 return error("Invalid record"); 4000 TheModule->setModuleInlineAsm(S); 4001 break; 4002 } 4003 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 4004 // Deprecated, but still needed to read old bitcode files. 4005 std::string S; 4006 if (convertToString(Record, 0, S)) 4007 return error("Invalid record"); 4008 // Ignore value. 4009 break; 4010 } 4011 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 4012 std::string S; 4013 if (convertToString(Record, 0, S)) 4014 return error("Invalid record"); 4015 SectionTable.push_back(S); 4016 break; 4017 } 4018 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 4019 std::string S; 4020 if (convertToString(Record, 0, S)) 4021 return error("Invalid record"); 4022 GCTable.push_back(S); 4023 break; 4024 } 4025 case bitc::MODULE_CODE_COMDAT: 4026 if (Error Err = parseComdatRecord(Record)) 4027 return Err; 4028 break; 4029 // FIXME: BitcodeReader should handle {GLOBALVAR, FUNCTION, ALIAS, IFUNC} 4030 // written by ThinLinkBitcodeWriter. See 4031 // `ThinLinkBitcodeWriter::writeSimplifiedModuleInfo` for the format of each 4032 // record 4033 // (https://github.com/llvm/llvm-project/blob/b6a93967d9c11e79802b5e75cec1584d6c8aa472/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp#L4714) 4034 case bitc::MODULE_CODE_GLOBALVAR: 4035 if (Error Err = parseGlobalVarRecord(Record)) 4036 return Err; 4037 break; 4038 case bitc::MODULE_CODE_FUNCTION: 4039 ResolveDataLayout(); 4040 if (Error Err = parseFunctionRecord(Record)) 4041 return Err; 4042 break; 4043 case bitc::MODULE_CODE_IFUNC: 4044 case bitc::MODULE_CODE_ALIAS: 4045 case bitc::MODULE_CODE_ALIAS_OLD: 4046 if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record)) 4047 return Err; 4048 break; 4049 /// MODULE_CODE_VSTOFFSET: [offset] 4050 case bitc::MODULE_CODE_VSTOFFSET: 4051 if (Record.empty()) 4052 return error("Invalid record"); 4053 // Note that we subtract 1 here because the offset is relative to one word 4054 // before the start of the identification or module block, which was 4055 // historically always the start of the regular bitcode header. 4056 VSTOffset = Record[0] - 1; 4057 break; 4058 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4059 case bitc::MODULE_CODE_SOURCE_FILENAME: 4060 SmallString<128> ValueName; 4061 if (convertToString(Record, 0, ValueName)) 4062 return error("Invalid record"); 4063 TheModule->setSourceFileName(ValueName); 4064 break; 4065 } 4066 Record.clear(); 4067 } 4068 } 4069 4070 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 4071 bool IsImporting, 4072 DataLayoutCallbackTy DataLayoutCallback) { 4073 TheModule = M; 4074 MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, 4075 [&](unsigned ID) { return getTypeByID(ID); }); 4076 return parseModule(0, ShouldLazyLoadMetadata, DataLayoutCallback); 4077 } 4078 4079 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 4080 if (!isa<PointerType>(PtrType)) 4081 return error("Load/Store operand is not a pointer type"); 4082 4083 if (!cast<PointerType>(PtrType)->isOpaqueOrPointeeTypeMatches(ValType)) 4084 return error("Explicit load/store type does not match pointee " 4085 "type of pointer operand"); 4086 if (!PointerType::isLoadableOrStorableType(ValType)) 4087 return error("Cannot load/store from pointer"); 4088 return Error::success(); 4089 } 4090 4091 Error BitcodeReader::propagateAttributeTypes(CallBase *CB, 4092 ArrayRef<unsigned> ArgTyIDs) { 4093 AttributeList Attrs = CB->getAttributes(); 4094 for (unsigned i = 0; i != CB->arg_size(); ++i) { 4095 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet, 4096 Attribute::InAlloca}) { 4097 if (!Attrs.hasParamAttr(i, Kind) || 4098 Attrs.getParamAttr(i, Kind).getValueAsType()) 4099 continue; 4100 4101 Type *PtrEltTy = getPtrElementTypeByID(ArgTyIDs[i]); 4102 if (!PtrEltTy) 4103 return error("Missing element type for typed attribute upgrade"); 4104 4105 Attribute NewAttr; 4106 switch (Kind) { 4107 case Attribute::ByVal: 4108 NewAttr = Attribute::getWithByValType(Context, PtrEltTy); 4109 break; 4110 case Attribute::StructRet: 4111 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy); 4112 break; 4113 case Attribute::InAlloca: 4114 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy); 4115 break; 4116 default: 4117 llvm_unreachable("not an upgraded type attribute"); 4118 } 4119 4120 Attrs = Attrs.addParamAttribute(Context, i, NewAttr); 4121 } 4122 } 4123 4124 if (CB->isInlineAsm()) { 4125 const InlineAsm *IA = cast<InlineAsm>(CB->getCalledOperand()); 4126 unsigned ArgNo = 0; 4127 for (const InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 4128 if (!CI.hasArg()) 4129 continue; 4130 4131 if (CI.isIndirect && !Attrs.getParamElementType(ArgNo)) { 4132 Type *ElemTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]); 4133 if (!ElemTy) 4134 return error("Missing element type for inline asm upgrade"); 4135 Attrs = Attrs.addParamAttribute( 4136 Context, ArgNo, 4137 Attribute::get(Context, Attribute::ElementType, ElemTy)); 4138 } 4139 4140 ArgNo++; 4141 } 4142 } 4143 4144 switch (CB->getIntrinsicID()) { 4145 case Intrinsic::preserve_array_access_index: 4146 case Intrinsic::preserve_struct_access_index: 4147 case Intrinsic::aarch64_ldaxr: 4148 case Intrinsic::aarch64_ldxr: 4149 case Intrinsic::aarch64_stlxr: 4150 case Intrinsic::aarch64_stxr: 4151 case Intrinsic::arm_ldaex: 4152 case Intrinsic::arm_ldrex: 4153 case Intrinsic::arm_stlex: 4154 case Intrinsic::arm_strex: { 4155 unsigned ArgNo; 4156 switch (CB->getIntrinsicID()) { 4157 case Intrinsic::aarch64_stlxr: 4158 case Intrinsic::aarch64_stxr: 4159 case Intrinsic::arm_stlex: 4160 case Intrinsic::arm_strex: 4161 ArgNo = 1; 4162 break; 4163 default: 4164 ArgNo = 0; 4165 break; 4166 } 4167 if (!Attrs.getParamElementType(ArgNo)) { 4168 Type *ElTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]); 4169 if (!ElTy) 4170 return error("Missing element type for elementtype upgrade"); 4171 Attribute NewAttr = Attribute::get(Context, Attribute::ElementType, ElTy); 4172 Attrs = Attrs.addParamAttribute(Context, ArgNo, NewAttr); 4173 } 4174 break; 4175 } 4176 default: 4177 break; 4178 } 4179 4180 CB->setAttributes(Attrs); 4181 return Error::success(); 4182 } 4183 4184 /// Lazily parse the specified function body block. 4185 Error BitcodeReader::parseFunctionBody(Function *F) { 4186 if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 4187 return Err; 4188 4189 // Unexpected unresolved metadata when parsing function. 4190 if (MDLoader->hasFwdRefs()) 4191 return error("Invalid function metadata: incoming forward references"); 4192 4193 InstructionList.clear(); 4194 unsigned ModuleValueListSize = ValueList.size(); 4195 unsigned ModuleMDLoaderSize = MDLoader->size(); 4196 4197 // Add all the function arguments to the value table. 4198 unsigned ArgNo = 0; 4199 unsigned FTyID = FunctionTypeIDs[F]; 4200 for (Argument &I : F->args()) { 4201 unsigned ArgTyID = getContainedTypeID(FTyID, ArgNo + 1); 4202 assert(I.getType() == getTypeByID(ArgTyID) && 4203 "Incorrect fully specified type for Function Argument"); 4204 ValueList.push_back(&I, ArgTyID); 4205 ++ArgNo; 4206 } 4207 unsigned NextValueNo = ValueList.size(); 4208 BasicBlock *CurBB = nullptr; 4209 unsigned CurBBNo = 0; 4210 4211 DebugLoc LastLoc; 4212 auto getLastInstruction = [&]() -> Instruction * { 4213 if (CurBB && !CurBB->empty()) 4214 return &CurBB->back(); 4215 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 4216 !FunctionBBs[CurBBNo - 1]->empty()) 4217 return &FunctionBBs[CurBBNo - 1]->back(); 4218 return nullptr; 4219 }; 4220 4221 std::vector<OperandBundleDef> OperandBundles; 4222 4223 // Read all the records. 4224 SmallVector<uint64_t, 64> Record; 4225 4226 while (true) { 4227 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 4228 if (!MaybeEntry) 4229 return MaybeEntry.takeError(); 4230 llvm::BitstreamEntry Entry = MaybeEntry.get(); 4231 4232 switch (Entry.Kind) { 4233 case BitstreamEntry::Error: 4234 return error("Malformed block"); 4235 case BitstreamEntry::EndBlock: 4236 goto OutOfRecordLoop; 4237 4238 case BitstreamEntry::SubBlock: 4239 switch (Entry.ID) { 4240 default: // Skip unknown content. 4241 if (Error Err = Stream.SkipBlock()) 4242 return Err; 4243 break; 4244 case bitc::CONSTANTS_BLOCK_ID: 4245 if (Error Err = parseConstants()) 4246 return Err; 4247 NextValueNo = ValueList.size(); 4248 break; 4249 case bitc::VALUE_SYMTAB_BLOCK_ID: 4250 if (Error Err = parseValueSymbolTable()) 4251 return Err; 4252 break; 4253 case bitc::METADATA_ATTACHMENT_ID: 4254 if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList)) 4255 return Err; 4256 break; 4257 case bitc::METADATA_BLOCK_ID: 4258 assert(DeferredMetadataInfo.empty() && 4259 "Must read all module-level metadata before function-level"); 4260 if (Error Err = MDLoader->parseFunctionMetadata()) 4261 return Err; 4262 break; 4263 case bitc::USELIST_BLOCK_ID: 4264 if (Error Err = parseUseLists()) 4265 return Err; 4266 break; 4267 } 4268 continue; 4269 4270 case BitstreamEntry::Record: 4271 // The interesting case. 4272 break; 4273 } 4274 4275 // Read a record. 4276 Record.clear(); 4277 Instruction *I = nullptr; 4278 unsigned ResTypeID = InvalidTypeID; 4279 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 4280 if (!MaybeBitCode) 4281 return MaybeBitCode.takeError(); 4282 switch (unsigned BitCode = MaybeBitCode.get()) { 4283 default: // Default behavior: reject 4284 return error("Invalid value"); 4285 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 4286 if (Record.empty() || Record[0] == 0) 4287 return error("Invalid record"); 4288 // Create all the basic blocks for the function. 4289 FunctionBBs.resize(Record[0]); 4290 4291 // See if anything took the address of blocks in this function. 4292 auto BBFRI = BasicBlockFwdRefs.find(F); 4293 if (BBFRI == BasicBlockFwdRefs.end()) { 4294 for (BasicBlock *&BB : FunctionBBs) 4295 BB = BasicBlock::Create(Context, "", F); 4296 } else { 4297 auto &BBRefs = BBFRI->second; 4298 // Check for invalid basic block references. 4299 if (BBRefs.size() > FunctionBBs.size()) 4300 return error("Invalid ID"); 4301 assert(!BBRefs.empty() && "Unexpected empty array"); 4302 assert(!BBRefs.front() && "Invalid reference to entry block"); 4303 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 4304 ++I) 4305 if (I < RE && BBRefs[I]) { 4306 BBRefs[I]->insertInto(F); 4307 FunctionBBs[I] = BBRefs[I]; 4308 } else { 4309 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 4310 } 4311 4312 // Erase from the table. 4313 BasicBlockFwdRefs.erase(BBFRI); 4314 } 4315 4316 CurBB = FunctionBBs[0]; 4317 continue; 4318 } 4319 4320 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 4321 // This record indicates that the last instruction is at the same 4322 // location as the previous instruction with a location. 4323 I = getLastInstruction(); 4324 4325 if (!I) 4326 return error("Invalid record"); 4327 I->setDebugLoc(LastLoc); 4328 I = nullptr; 4329 continue; 4330 4331 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 4332 I = getLastInstruction(); 4333 if (!I || Record.size() < 4) 4334 return error("Invalid record"); 4335 4336 unsigned Line = Record[0], Col = Record[1]; 4337 unsigned ScopeID = Record[2], IAID = Record[3]; 4338 bool isImplicitCode = Record.size() == 5 && Record[4]; 4339 4340 MDNode *Scope = nullptr, *IA = nullptr; 4341 if (ScopeID) { 4342 Scope = dyn_cast_or_null<MDNode>( 4343 MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1)); 4344 if (!Scope) 4345 return error("Invalid record"); 4346 } 4347 if (IAID) { 4348 IA = dyn_cast_or_null<MDNode>( 4349 MDLoader->getMetadataFwdRefOrLoad(IAID - 1)); 4350 if (!IA) 4351 return error("Invalid record"); 4352 } 4353 LastLoc = DILocation::get(Scope->getContext(), Line, Col, Scope, IA, 4354 isImplicitCode); 4355 I->setDebugLoc(LastLoc); 4356 I = nullptr; 4357 continue; 4358 } 4359 case bitc::FUNC_CODE_INST_UNOP: { // UNOP: [opval, ty, opcode] 4360 unsigned OpNum = 0; 4361 Value *LHS; 4362 unsigned TypeID; 4363 if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID) || 4364 OpNum+1 > Record.size()) 4365 return error("Invalid record"); 4366 4367 int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType()); 4368 if (Opc == -1) 4369 return error("Invalid record"); 4370 I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 4371 ResTypeID = TypeID; 4372 InstructionList.push_back(I); 4373 if (OpNum < Record.size()) { 4374 if (isa<FPMathOperator>(I)) { 4375 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4376 if (FMF.any()) 4377 I->setFastMathFlags(FMF); 4378 } 4379 } 4380 break; 4381 } 4382 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 4383 unsigned OpNum = 0; 4384 Value *LHS, *RHS; 4385 unsigned TypeID; 4386 if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID) || 4387 popValue(Record, OpNum, NextValueNo, LHS->getType(), TypeID, RHS) || 4388 OpNum+1 > Record.size()) 4389 return error("Invalid record"); 4390 4391 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 4392 if (Opc == -1) 4393 return error("Invalid record"); 4394 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 4395 ResTypeID = TypeID; 4396 InstructionList.push_back(I); 4397 if (OpNum < Record.size()) { 4398 if (Opc == Instruction::Add || 4399 Opc == Instruction::Sub || 4400 Opc == Instruction::Mul || 4401 Opc == Instruction::Shl) { 4402 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 4403 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 4404 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 4405 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 4406 } else if (Opc == Instruction::SDiv || 4407 Opc == Instruction::UDiv || 4408 Opc == Instruction::LShr || 4409 Opc == Instruction::AShr) { 4410 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 4411 cast<BinaryOperator>(I)->setIsExact(true); 4412 } else if (isa<FPMathOperator>(I)) { 4413 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4414 if (FMF.any()) 4415 I->setFastMathFlags(FMF); 4416 } 4417 4418 } 4419 break; 4420 } 4421 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 4422 unsigned OpNum = 0; 4423 Value *Op; 4424 unsigned OpTypeID; 4425 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID) || 4426 OpNum+2 != Record.size()) 4427 return error("Invalid record"); 4428 4429 ResTypeID = Record[OpNum]; 4430 Type *ResTy = getTypeByID(ResTypeID); 4431 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 4432 if (Opc == -1 || !ResTy) 4433 return error("Invalid record"); 4434 Instruction *Temp = nullptr; 4435 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 4436 if (Temp) { 4437 InstructionList.push_back(Temp); 4438 assert(CurBB && "No current BB?"); 4439 CurBB->getInstList().push_back(Temp); 4440 } 4441 } else { 4442 auto CastOp = (Instruction::CastOps)Opc; 4443 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 4444 return error("Invalid cast"); 4445 I = CastInst::Create(CastOp, Op, ResTy); 4446 } 4447 InstructionList.push_back(I); 4448 break; 4449 } 4450 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 4451 case bitc::FUNC_CODE_INST_GEP_OLD: 4452 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 4453 unsigned OpNum = 0; 4454 4455 unsigned TyID; 4456 Type *Ty; 4457 bool InBounds; 4458 4459 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 4460 InBounds = Record[OpNum++]; 4461 TyID = Record[OpNum++]; 4462 Ty = getTypeByID(TyID); 4463 } else { 4464 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 4465 TyID = InvalidTypeID; 4466 Ty = nullptr; 4467 } 4468 4469 Value *BasePtr; 4470 unsigned BasePtrTypeID; 4471 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr, BasePtrTypeID)) 4472 return error("Invalid record"); 4473 4474 if (!Ty) { 4475 TyID = getContainedTypeID(BasePtrTypeID); 4476 if (BasePtr->getType()->isVectorTy()) 4477 TyID = getContainedTypeID(TyID); 4478 Ty = getTypeByID(TyID); 4479 } else if (!cast<PointerType>(BasePtr->getType()->getScalarType()) 4480 ->isOpaqueOrPointeeTypeMatches(Ty)) { 4481 return error( 4482 "Explicit gep type does not match pointee type of pointer operand"); 4483 } 4484 4485 SmallVector<Value*, 16> GEPIdx; 4486 while (OpNum != Record.size()) { 4487 Value *Op; 4488 unsigned OpTypeID; 4489 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID)) 4490 return error("Invalid record"); 4491 GEPIdx.push_back(Op); 4492 } 4493 4494 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 4495 4496 ResTypeID = TyID; 4497 if (cast<GEPOperator>(I)->getNumIndices() != 0) { 4498 auto GTI = std::next(gep_type_begin(I)); 4499 for (Value *Idx : drop_begin(cast<GEPOperator>(I)->indices())) { 4500 unsigned SubType = 0; 4501 if (GTI.isStruct()) { 4502 ConstantInt *IdxC = 4503 Idx->getType()->isVectorTy() 4504 ? cast<ConstantInt>(cast<Constant>(Idx)->getSplatValue()) 4505 : cast<ConstantInt>(Idx); 4506 SubType = IdxC->getZExtValue(); 4507 } 4508 ResTypeID = getContainedTypeID(ResTypeID, SubType); 4509 ++GTI; 4510 } 4511 } 4512 4513 // At this point ResTypeID is the result element type. We need a pointer 4514 // or vector of pointer to it. 4515 ResTypeID = getVirtualTypeID(I->getType()->getScalarType(), ResTypeID); 4516 if (I->getType()->isVectorTy()) 4517 ResTypeID = getVirtualTypeID(I->getType(), ResTypeID); 4518 4519 InstructionList.push_back(I); 4520 if (InBounds) 4521 cast<GetElementPtrInst>(I)->setIsInBounds(true); 4522 break; 4523 } 4524 4525 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 4526 // EXTRACTVAL: [opty, opval, n x indices] 4527 unsigned OpNum = 0; 4528 Value *Agg; 4529 unsigned AggTypeID; 4530 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID)) 4531 return error("Invalid record"); 4532 Type *Ty = Agg->getType(); 4533 4534 unsigned RecSize = Record.size(); 4535 if (OpNum == RecSize) 4536 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 4537 4538 SmallVector<unsigned, 4> EXTRACTVALIdx; 4539 ResTypeID = AggTypeID; 4540 for (; OpNum != RecSize; ++OpNum) { 4541 bool IsArray = Ty->isArrayTy(); 4542 bool IsStruct = Ty->isStructTy(); 4543 uint64_t Index = Record[OpNum]; 4544 4545 if (!IsStruct && !IsArray) 4546 return error("EXTRACTVAL: Invalid type"); 4547 if ((unsigned)Index != Index) 4548 return error("Invalid value"); 4549 if (IsStruct && Index >= Ty->getStructNumElements()) 4550 return error("EXTRACTVAL: Invalid struct index"); 4551 if (IsArray && Index >= Ty->getArrayNumElements()) 4552 return error("EXTRACTVAL: Invalid array index"); 4553 EXTRACTVALIdx.push_back((unsigned)Index); 4554 4555 if (IsStruct) { 4556 Ty = Ty->getStructElementType(Index); 4557 ResTypeID = getContainedTypeID(ResTypeID, Index); 4558 } else { 4559 Ty = Ty->getArrayElementType(); 4560 ResTypeID = getContainedTypeID(ResTypeID); 4561 } 4562 } 4563 4564 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 4565 InstructionList.push_back(I); 4566 break; 4567 } 4568 4569 case bitc::FUNC_CODE_INST_INSERTVAL: { 4570 // INSERTVAL: [opty, opval, opty, opval, n x indices] 4571 unsigned OpNum = 0; 4572 Value *Agg; 4573 unsigned AggTypeID; 4574 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID)) 4575 return error("Invalid record"); 4576 Value *Val; 4577 unsigned ValTypeID; 4578 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID)) 4579 return error("Invalid record"); 4580 4581 unsigned RecSize = Record.size(); 4582 if (OpNum == RecSize) 4583 return error("INSERTVAL: Invalid instruction with 0 indices"); 4584 4585 SmallVector<unsigned, 4> INSERTVALIdx; 4586 Type *CurTy = Agg->getType(); 4587 for (; OpNum != RecSize; ++OpNum) { 4588 bool IsArray = CurTy->isArrayTy(); 4589 bool IsStruct = CurTy->isStructTy(); 4590 uint64_t Index = Record[OpNum]; 4591 4592 if (!IsStruct && !IsArray) 4593 return error("INSERTVAL: Invalid type"); 4594 if ((unsigned)Index != Index) 4595 return error("Invalid value"); 4596 if (IsStruct && Index >= CurTy->getStructNumElements()) 4597 return error("INSERTVAL: Invalid struct index"); 4598 if (IsArray && Index >= CurTy->getArrayNumElements()) 4599 return error("INSERTVAL: Invalid array index"); 4600 4601 INSERTVALIdx.push_back((unsigned)Index); 4602 if (IsStruct) 4603 CurTy = CurTy->getStructElementType(Index); 4604 else 4605 CurTy = CurTy->getArrayElementType(); 4606 } 4607 4608 if (CurTy != Val->getType()) 4609 return error("Inserted value type doesn't match aggregate type"); 4610 4611 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 4612 ResTypeID = AggTypeID; 4613 InstructionList.push_back(I); 4614 break; 4615 } 4616 4617 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 4618 // obsolete form of select 4619 // handles select i1 ... in old bitcode 4620 unsigned OpNum = 0; 4621 Value *TrueVal, *FalseVal, *Cond; 4622 unsigned TypeID; 4623 Type *CondType = Type::getInt1Ty(Context); 4624 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, TypeID) || 4625 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), TypeID, 4626 FalseVal) || 4627 popValue(Record, OpNum, NextValueNo, CondType, 4628 getVirtualTypeID(CondType), Cond)) 4629 return error("Invalid record"); 4630 4631 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4632 ResTypeID = TypeID; 4633 InstructionList.push_back(I); 4634 break; 4635 } 4636 4637 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 4638 // new form of select 4639 // handles select i1 or select [N x i1] 4640 unsigned OpNum = 0; 4641 Value *TrueVal, *FalseVal, *Cond; 4642 unsigned ValTypeID, CondTypeID; 4643 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, ValTypeID) || 4644 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), ValTypeID, 4645 FalseVal) || 4646 getValueTypePair(Record, OpNum, NextValueNo, Cond, CondTypeID)) 4647 return error("Invalid record"); 4648 4649 // select condition can be either i1 or [N x i1] 4650 if (VectorType* vector_type = 4651 dyn_cast<VectorType>(Cond->getType())) { 4652 // expect <n x i1> 4653 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 4654 return error("Invalid type for value"); 4655 } else { 4656 // expect i1 4657 if (Cond->getType() != Type::getInt1Ty(Context)) 4658 return error("Invalid type for value"); 4659 } 4660 4661 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4662 ResTypeID = ValTypeID; 4663 InstructionList.push_back(I); 4664 if (OpNum < Record.size() && isa<FPMathOperator>(I)) { 4665 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4666 if (FMF.any()) 4667 I->setFastMathFlags(FMF); 4668 } 4669 break; 4670 } 4671 4672 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 4673 unsigned OpNum = 0; 4674 Value *Vec, *Idx; 4675 unsigned VecTypeID, IdxTypeID; 4676 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID) || 4677 getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID)) 4678 return error("Invalid record"); 4679 if (!Vec->getType()->isVectorTy()) 4680 return error("Invalid type for value"); 4681 I = ExtractElementInst::Create(Vec, Idx); 4682 ResTypeID = getContainedTypeID(VecTypeID); 4683 InstructionList.push_back(I); 4684 break; 4685 } 4686 4687 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 4688 unsigned OpNum = 0; 4689 Value *Vec, *Elt, *Idx; 4690 unsigned VecTypeID, IdxTypeID; 4691 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID)) 4692 return error("Invalid record"); 4693 if (!Vec->getType()->isVectorTy()) 4694 return error("Invalid type for value"); 4695 if (popValue(Record, OpNum, NextValueNo, 4696 cast<VectorType>(Vec->getType())->getElementType(), 4697 getContainedTypeID(VecTypeID), Elt) || 4698 getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID)) 4699 return error("Invalid record"); 4700 I = InsertElementInst::Create(Vec, Elt, Idx); 4701 ResTypeID = VecTypeID; 4702 InstructionList.push_back(I); 4703 break; 4704 } 4705 4706 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 4707 unsigned OpNum = 0; 4708 Value *Vec1, *Vec2, *Mask; 4709 unsigned Vec1TypeID; 4710 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1, Vec1TypeID) || 4711 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec1TypeID, 4712 Vec2)) 4713 return error("Invalid record"); 4714 4715 unsigned MaskTypeID; 4716 if (getValueTypePair(Record, OpNum, NextValueNo, Mask, MaskTypeID)) 4717 return error("Invalid record"); 4718 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 4719 return error("Invalid type for value"); 4720 4721 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 4722 ResTypeID = 4723 getVirtualTypeID(I->getType(), getContainedTypeID(Vec1TypeID)); 4724 InstructionList.push_back(I); 4725 break; 4726 } 4727 4728 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 4729 // Old form of ICmp/FCmp returning bool 4730 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 4731 // both legal on vectors but had different behaviour. 4732 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 4733 // FCmp/ICmp returning bool or vector of bool 4734 4735 unsigned OpNum = 0; 4736 Value *LHS, *RHS; 4737 unsigned LHSTypeID; 4738 if (getValueTypePair(Record, OpNum, NextValueNo, LHS, LHSTypeID) || 4739 popValue(Record, OpNum, NextValueNo, LHS->getType(), LHSTypeID, RHS)) 4740 return error("Invalid record"); 4741 4742 if (OpNum >= Record.size()) 4743 return error( 4744 "Invalid record: operand number exceeded available operands"); 4745 4746 unsigned PredVal = Record[OpNum]; 4747 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 4748 FastMathFlags FMF; 4749 if (IsFP && Record.size() > OpNum+1) 4750 FMF = getDecodedFastMathFlags(Record[++OpNum]); 4751 4752 if (OpNum+1 != Record.size()) 4753 return error("Invalid record"); 4754 4755 if (LHS->getType()->isFPOrFPVectorTy()) 4756 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 4757 else 4758 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 4759 4760 ResTypeID = getVirtualTypeID(I->getType()->getScalarType()); 4761 if (LHS->getType()->isVectorTy()) 4762 ResTypeID = getVirtualTypeID(I->getType(), ResTypeID); 4763 4764 if (FMF.any()) 4765 I->setFastMathFlags(FMF); 4766 InstructionList.push_back(I); 4767 break; 4768 } 4769 4770 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 4771 { 4772 unsigned Size = Record.size(); 4773 if (Size == 0) { 4774 I = ReturnInst::Create(Context); 4775 InstructionList.push_back(I); 4776 break; 4777 } 4778 4779 unsigned OpNum = 0; 4780 Value *Op = nullptr; 4781 unsigned OpTypeID; 4782 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID)) 4783 return error("Invalid record"); 4784 if (OpNum != Record.size()) 4785 return error("Invalid record"); 4786 4787 I = ReturnInst::Create(Context, Op); 4788 InstructionList.push_back(I); 4789 break; 4790 } 4791 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 4792 if (Record.size() != 1 && Record.size() != 3) 4793 return error("Invalid record"); 4794 BasicBlock *TrueDest = getBasicBlock(Record[0]); 4795 if (!TrueDest) 4796 return error("Invalid record"); 4797 4798 if (Record.size() == 1) { 4799 I = BranchInst::Create(TrueDest); 4800 InstructionList.push_back(I); 4801 } 4802 else { 4803 BasicBlock *FalseDest = getBasicBlock(Record[1]); 4804 Type *CondType = Type::getInt1Ty(Context); 4805 Value *Cond = getValue(Record, 2, NextValueNo, CondType, 4806 getVirtualTypeID(CondType)); 4807 if (!FalseDest || !Cond) 4808 return error("Invalid record"); 4809 I = BranchInst::Create(TrueDest, FalseDest, Cond); 4810 InstructionList.push_back(I); 4811 } 4812 break; 4813 } 4814 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 4815 if (Record.size() != 1 && Record.size() != 2) 4816 return error("Invalid record"); 4817 unsigned Idx = 0; 4818 Type *TokenTy = Type::getTokenTy(Context); 4819 Value *CleanupPad = getValue(Record, Idx++, NextValueNo, TokenTy, 4820 getVirtualTypeID(TokenTy)); 4821 if (!CleanupPad) 4822 return error("Invalid record"); 4823 BasicBlock *UnwindDest = nullptr; 4824 if (Record.size() == 2) { 4825 UnwindDest = getBasicBlock(Record[Idx++]); 4826 if (!UnwindDest) 4827 return error("Invalid record"); 4828 } 4829 4830 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 4831 InstructionList.push_back(I); 4832 break; 4833 } 4834 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 4835 if (Record.size() != 2) 4836 return error("Invalid record"); 4837 unsigned Idx = 0; 4838 Type *TokenTy = Type::getTokenTy(Context); 4839 Value *CatchPad = getValue(Record, Idx++, NextValueNo, TokenTy, 4840 getVirtualTypeID(TokenTy)); 4841 if (!CatchPad) 4842 return error("Invalid record"); 4843 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4844 if (!BB) 4845 return error("Invalid record"); 4846 4847 I = CatchReturnInst::Create(CatchPad, BB); 4848 InstructionList.push_back(I); 4849 break; 4850 } 4851 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 4852 // We must have, at minimum, the outer scope and the number of arguments. 4853 if (Record.size() < 2) 4854 return error("Invalid record"); 4855 4856 unsigned Idx = 0; 4857 4858 Type *TokenTy = Type::getTokenTy(Context); 4859 Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy, 4860 getVirtualTypeID(TokenTy)); 4861 4862 unsigned NumHandlers = Record[Idx++]; 4863 4864 SmallVector<BasicBlock *, 2> Handlers; 4865 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 4866 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4867 if (!BB) 4868 return error("Invalid record"); 4869 Handlers.push_back(BB); 4870 } 4871 4872 BasicBlock *UnwindDest = nullptr; 4873 if (Idx + 1 == Record.size()) { 4874 UnwindDest = getBasicBlock(Record[Idx++]); 4875 if (!UnwindDest) 4876 return error("Invalid record"); 4877 } 4878 4879 if (Record.size() != Idx) 4880 return error("Invalid record"); 4881 4882 auto *CatchSwitch = 4883 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 4884 for (BasicBlock *Handler : Handlers) 4885 CatchSwitch->addHandler(Handler); 4886 I = CatchSwitch; 4887 ResTypeID = getVirtualTypeID(I->getType()); 4888 InstructionList.push_back(I); 4889 break; 4890 } 4891 case bitc::FUNC_CODE_INST_CATCHPAD: 4892 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 4893 // We must have, at minimum, the outer scope and the number of arguments. 4894 if (Record.size() < 2) 4895 return error("Invalid record"); 4896 4897 unsigned Idx = 0; 4898 4899 Type *TokenTy = Type::getTokenTy(Context); 4900 Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy, 4901 getVirtualTypeID(TokenTy)); 4902 4903 unsigned NumArgOperands = Record[Idx++]; 4904 4905 SmallVector<Value *, 2> Args; 4906 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 4907 Value *Val; 4908 unsigned ValTypeID; 4909 if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID)) 4910 return error("Invalid record"); 4911 Args.push_back(Val); 4912 } 4913 4914 if (Record.size() != Idx) 4915 return error("Invalid record"); 4916 4917 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 4918 I = CleanupPadInst::Create(ParentPad, Args); 4919 else 4920 I = CatchPadInst::Create(ParentPad, Args); 4921 ResTypeID = getVirtualTypeID(I->getType()); 4922 InstructionList.push_back(I); 4923 break; 4924 } 4925 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 4926 // Check magic 4927 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 4928 // "New" SwitchInst format with case ranges. The changes to write this 4929 // format were reverted but we still recognize bitcode that uses it. 4930 // Hopefully someday we will have support for case ranges and can use 4931 // this format again. 4932 4933 unsigned OpTyID = Record[1]; 4934 Type *OpTy = getTypeByID(OpTyID); 4935 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 4936 4937 Value *Cond = getValue(Record, 2, NextValueNo, OpTy, OpTyID); 4938 BasicBlock *Default = getBasicBlock(Record[3]); 4939 if (!OpTy || !Cond || !Default) 4940 return error("Invalid record"); 4941 4942 unsigned NumCases = Record[4]; 4943 4944 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4945 InstructionList.push_back(SI); 4946 4947 unsigned CurIdx = 5; 4948 for (unsigned i = 0; i != NumCases; ++i) { 4949 SmallVector<ConstantInt*, 1> CaseVals; 4950 unsigned NumItems = Record[CurIdx++]; 4951 for (unsigned ci = 0; ci != NumItems; ++ci) { 4952 bool isSingleNumber = Record[CurIdx++]; 4953 4954 APInt Low; 4955 unsigned ActiveWords = 1; 4956 if (ValueBitWidth > 64) 4957 ActiveWords = Record[CurIdx++]; 4958 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 4959 ValueBitWidth); 4960 CurIdx += ActiveWords; 4961 4962 if (!isSingleNumber) { 4963 ActiveWords = 1; 4964 if (ValueBitWidth > 64) 4965 ActiveWords = Record[CurIdx++]; 4966 APInt High = readWideAPInt( 4967 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 4968 CurIdx += ActiveWords; 4969 4970 // FIXME: It is not clear whether values in the range should be 4971 // compared as signed or unsigned values. The partially 4972 // implemented changes that used this format in the past used 4973 // unsigned comparisons. 4974 for ( ; Low.ule(High); ++Low) 4975 CaseVals.push_back(ConstantInt::get(Context, Low)); 4976 } else 4977 CaseVals.push_back(ConstantInt::get(Context, Low)); 4978 } 4979 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 4980 for (ConstantInt *Cst : CaseVals) 4981 SI->addCase(Cst, DestBB); 4982 } 4983 I = SI; 4984 break; 4985 } 4986 4987 // Old SwitchInst format without case ranges. 4988 4989 if (Record.size() < 3 || (Record.size() & 1) == 0) 4990 return error("Invalid record"); 4991 unsigned OpTyID = Record[0]; 4992 Type *OpTy = getTypeByID(OpTyID); 4993 Value *Cond = getValue(Record, 1, NextValueNo, OpTy, OpTyID); 4994 BasicBlock *Default = getBasicBlock(Record[2]); 4995 if (!OpTy || !Cond || !Default) 4996 return error("Invalid record"); 4997 unsigned NumCases = (Record.size()-3)/2; 4998 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4999 InstructionList.push_back(SI); 5000 for (unsigned i = 0, e = NumCases; i != e; ++i) { 5001 ConstantInt *CaseVal = dyn_cast_or_null<ConstantInt>( 5002 getFnValueByID(Record[3+i*2], OpTy, OpTyID)); 5003 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 5004 if (!CaseVal || !DestBB) { 5005 delete SI; 5006 return error("Invalid record"); 5007 } 5008 SI->addCase(CaseVal, DestBB); 5009 } 5010 I = SI; 5011 break; 5012 } 5013 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 5014 if (Record.size() < 2) 5015 return error("Invalid record"); 5016 unsigned OpTyID = Record[0]; 5017 Type *OpTy = getTypeByID(OpTyID); 5018 Value *Address = getValue(Record, 1, NextValueNo, OpTy, OpTyID); 5019 if (!OpTy || !Address) 5020 return error("Invalid record"); 5021 unsigned NumDests = Record.size()-2; 5022 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 5023 InstructionList.push_back(IBI); 5024 for (unsigned i = 0, e = NumDests; i != e; ++i) { 5025 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 5026 IBI->addDestination(DestBB); 5027 } else { 5028 delete IBI; 5029 return error("Invalid record"); 5030 } 5031 } 5032 I = IBI; 5033 break; 5034 } 5035 5036 case bitc::FUNC_CODE_INST_INVOKE: { 5037 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 5038 if (Record.size() < 4) 5039 return error("Invalid record"); 5040 unsigned OpNum = 0; 5041 AttributeList PAL = getAttributes(Record[OpNum++]); 5042 unsigned CCInfo = Record[OpNum++]; 5043 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 5044 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 5045 5046 unsigned FTyID = InvalidTypeID; 5047 FunctionType *FTy = nullptr; 5048 if ((CCInfo >> 13) & 1) { 5049 FTyID = Record[OpNum++]; 5050 FTy = dyn_cast<FunctionType>(getTypeByID(FTyID)); 5051 if (!FTy) 5052 return error("Explicit invoke type is not a function type"); 5053 } 5054 5055 Value *Callee; 5056 unsigned CalleeTypeID; 5057 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID)) 5058 return error("Invalid record"); 5059 5060 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 5061 if (!CalleeTy) 5062 return error("Callee is not a pointer"); 5063 if (!FTy) { 5064 FTyID = getContainedTypeID(CalleeTypeID); 5065 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 5066 if (!FTy) 5067 return error("Callee is not of pointer to function type"); 5068 } else if (!CalleeTy->isOpaqueOrPointeeTypeMatches(FTy)) 5069 return error("Explicit invoke type does not match pointee type of " 5070 "callee operand"); 5071 if (Record.size() < FTy->getNumParams() + OpNum) 5072 return error("Insufficient operands to call"); 5073 5074 SmallVector<Value*, 16> Ops; 5075 SmallVector<unsigned, 16> ArgTyIDs; 5076 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5077 unsigned ArgTyID = getContainedTypeID(FTyID, i + 1); 5078 Ops.push_back(getValue(Record, OpNum, NextValueNo, FTy->getParamType(i), 5079 ArgTyID)); 5080 ArgTyIDs.push_back(ArgTyID); 5081 if (!Ops.back()) 5082 return error("Invalid record"); 5083 } 5084 5085 if (!FTy->isVarArg()) { 5086 if (Record.size() != OpNum) 5087 return error("Invalid record"); 5088 } else { 5089 // Read type/value pairs for varargs params. 5090 while (OpNum != Record.size()) { 5091 Value *Op; 5092 unsigned OpTypeID; 5093 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID)) 5094 return error("Invalid record"); 5095 Ops.push_back(Op); 5096 ArgTyIDs.push_back(OpTypeID); 5097 } 5098 } 5099 5100 I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops, 5101 OperandBundles); 5102 ResTypeID = getContainedTypeID(FTyID); 5103 OperandBundles.clear(); 5104 InstructionList.push_back(I); 5105 cast<InvokeInst>(I)->setCallingConv( 5106 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 5107 cast<InvokeInst>(I)->setAttributes(PAL); 5108 if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) { 5109 I->deleteValue(); 5110 return Err; 5111 } 5112 5113 break; 5114 } 5115 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 5116 unsigned Idx = 0; 5117 Value *Val = nullptr; 5118 unsigned ValTypeID; 5119 if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID)) 5120 return error("Invalid record"); 5121 I = ResumeInst::Create(Val); 5122 InstructionList.push_back(I); 5123 break; 5124 } 5125 case bitc::FUNC_CODE_INST_CALLBR: { 5126 // CALLBR: [attr, cc, norm, transfs, fty, fnid, args] 5127 unsigned OpNum = 0; 5128 AttributeList PAL = getAttributes(Record[OpNum++]); 5129 unsigned CCInfo = Record[OpNum++]; 5130 5131 BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]); 5132 unsigned NumIndirectDests = Record[OpNum++]; 5133 SmallVector<BasicBlock *, 16> IndirectDests; 5134 for (unsigned i = 0, e = NumIndirectDests; i != e; ++i) 5135 IndirectDests.push_back(getBasicBlock(Record[OpNum++])); 5136 5137 unsigned FTyID = InvalidTypeID; 5138 FunctionType *FTy = nullptr; 5139 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 5140 FTyID = Record[OpNum++]; 5141 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 5142 if (!FTy) 5143 return error("Explicit call type is not a function type"); 5144 } 5145 5146 Value *Callee; 5147 unsigned CalleeTypeID; 5148 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID)) 5149 return error("Invalid record"); 5150 5151 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5152 if (!OpTy) 5153 return error("Callee is not a pointer type"); 5154 if (!FTy) { 5155 FTyID = getContainedTypeID(CalleeTypeID); 5156 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 5157 if (!FTy) 5158 return error("Callee is not of pointer to function type"); 5159 } else if (!OpTy->isOpaqueOrPointeeTypeMatches(FTy)) 5160 return error("Explicit call type does not match pointee type of " 5161 "callee operand"); 5162 if (Record.size() < FTy->getNumParams() + OpNum) 5163 return error("Insufficient operands to call"); 5164 5165 SmallVector<Value*, 16> Args; 5166 SmallVector<unsigned, 16> ArgTyIDs; 5167 // Read the fixed params. 5168 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5169 Value *Arg; 5170 unsigned ArgTyID = getContainedTypeID(FTyID, i + 1); 5171 if (FTy->getParamType(i)->isLabelTy()) 5172 Arg = getBasicBlock(Record[OpNum]); 5173 else 5174 Arg = getValue(Record, OpNum, NextValueNo, FTy->getParamType(i), 5175 ArgTyID); 5176 if (!Arg) 5177 return error("Invalid record"); 5178 Args.push_back(Arg); 5179 ArgTyIDs.push_back(ArgTyID); 5180 } 5181 5182 // Read type/value pairs for varargs params. 5183 if (!FTy->isVarArg()) { 5184 if (OpNum != Record.size()) 5185 return error("Invalid record"); 5186 } else { 5187 while (OpNum != Record.size()) { 5188 Value *Op; 5189 unsigned OpTypeID; 5190 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID)) 5191 return error("Invalid record"); 5192 Args.push_back(Op); 5193 ArgTyIDs.push_back(OpTypeID); 5194 } 5195 } 5196 5197 I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args, 5198 OperandBundles); 5199 ResTypeID = getContainedTypeID(FTyID); 5200 OperandBundles.clear(); 5201 InstructionList.push_back(I); 5202 cast<CallBrInst>(I)->setCallingConv( 5203 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5204 cast<CallBrInst>(I)->setAttributes(PAL); 5205 if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) { 5206 I->deleteValue(); 5207 return Err; 5208 } 5209 break; 5210 } 5211 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 5212 I = new UnreachableInst(Context); 5213 InstructionList.push_back(I); 5214 break; 5215 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 5216 if (Record.empty()) 5217 return error("Invalid phi record"); 5218 // The first record specifies the type. 5219 unsigned TyID = Record[0]; 5220 Type *Ty = getTypeByID(TyID); 5221 if (!Ty) 5222 return error("Invalid phi record"); 5223 5224 // Phi arguments are pairs of records of [value, basic block]. 5225 // There is an optional final record for fast-math-flags if this phi has a 5226 // floating-point type. 5227 size_t NumArgs = (Record.size() - 1) / 2; 5228 PHINode *PN = PHINode::Create(Ty, NumArgs); 5229 if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN)) { 5230 PN->deleteValue(); 5231 return error("Invalid phi record"); 5232 } 5233 InstructionList.push_back(PN); 5234 5235 for (unsigned i = 0; i != NumArgs; i++) { 5236 Value *V; 5237 // With the new function encoding, it is possible that operands have 5238 // negative IDs (for forward references). Use a signed VBR 5239 // representation to keep the encoding small. 5240 if (UseRelativeIDs) 5241 V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty, TyID); 5242 else 5243 V = getValue(Record, i * 2 + 1, NextValueNo, Ty, TyID); 5244 BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]); 5245 if (!V || !BB) { 5246 PN->deleteValue(); 5247 return error("Invalid phi record"); 5248 } 5249 PN->addIncoming(V, BB); 5250 } 5251 I = PN; 5252 ResTypeID = TyID; 5253 5254 // If there are an even number of records, the final record must be FMF. 5255 if (Record.size() % 2 == 0) { 5256 assert(isa<FPMathOperator>(I) && "Unexpected phi type"); 5257 FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]); 5258 if (FMF.any()) 5259 I->setFastMathFlags(FMF); 5260 } 5261 5262 break; 5263 } 5264 5265 case bitc::FUNC_CODE_INST_LANDINGPAD: 5266 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 5267 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 5268 unsigned Idx = 0; 5269 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 5270 if (Record.size() < 3) 5271 return error("Invalid record"); 5272 } else { 5273 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 5274 if (Record.size() < 4) 5275 return error("Invalid record"); 5276 } 5277 ResTypeID = Record[Idx++]; 5278 Type *Ty = getTypeByID(ResTypeID); 5279 if (!Ty) 5280 return error("Invalid record"); 5281 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 5282 Value *PersFn = nullptr; 5283 unsigned PersFnTypeID; 5284 if (getValueTypePair(Record, Idx, NextValueNo, PersFn, PersFnTypeID)) 5285 return error("Invalid record"); 5286 5287 if (!F->hasPersonalityFn()) 5288 F->setPersonalityFn(cast<Constant>(PersFn)); 5289 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 5290 return error("Personality function mismatch"); 5291 } 5292 5293 bool IsCleanup = !!Record[Idx++]; 5294 unsigned NumClauses = Record[Idx++]; 5295 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 5296 LP->setCleanup(IsCleanup); 5297 for (unsigned J = 0; J != NumClauses; ++J) { 5298 LandingPadInst::ClauseType CT = 5299 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 5300 Value *Val; 5301 unsigned ValTypeID; 5302 5303 if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID)) { 5304 delete LP; 5305 return error("Invalid record"); 5306 } 5307 5308 assert((CT != LandingPadInst::Catch || 5309 !isa<ArrayType>(Val->getType())) && 5310 "Catch clause has a invalid type!"); 5311 assert((CT != LandingPadInst::Filter || 5312 isa<ArrayType>(Val->getType())) && 5313 "Filter clause has invalid type!"); 5314 LP->addClause(cast<Constant>(Val)); 5315 } 5316 5317 I = LP; 5318 InstructionList.push_back(I); 5319 break; 5320 } 5321 5322 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 5323 if (Record.size() != 4 && Record.size() != 5) 5324 return error("Invalid record"); 5325 using APV = AllocaPackedValues; 5326 const uint64_t Rec = Record[3]; 5327 const bool InAlloca = Bitfield::get<APV::UsedWithInAlloca>(Rec); 5328 const bool SwiftError = Bitfield::get<APV::SwiftError>(Rec); 5329 unsigned TyID = Record[0]; 5330 Type *Ty = getTypeByID(TyID); 5331 if (!Bitfield::get<APV::ExplicitType>(Rec)) { 5332 TyID = getContainedTypeID(TyID); 5333 Ty = getTypeByID(TyID); 5334 if (!Ty) 5335 return error("Missing element type for old-style alloca"); 5336 } 5337 unsigned OpTyID = Record[1]; 5338 Type *OpTy = getTypeByID(OpTyID); 5339 Value *Size = getFnValueByID(Record[2], OpTy, OpTyID); 5340 MaybeAlign Align; 5341 uint64_t AlignExp = 5342 Bitfield::get<APV::AlignLower>(Rec) | 5343 (Bitfield::get<APV::AlignUpper>(Rec) << APV::AlignLower::Bits); 5344 if (Error Err = parseAlignmentValue(AlignExp, Align)) { 5345 return Err; 5346 } 5347 if (!Ty || !Size) 5348 return error("Invalid record"); 5349 5350 const DataLayout &DL = TheModule->getDataLayout(); 5351 unsigned AS = Record.size() == 5 ? Record[4] : DL.getAllocaAddrSpace(); 5352 5353 SmallPtrSet<Type *, 4> Visited; 5354 if (!Align && !Ty->isSized(&Visited)) 5355 return error("alloca of unsized type"); 5356 if (!Align) 5357 Align = DL.getPrefTypeAlign(Ty); 5358 5359 AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align); 5360 AI->setUsedWithInAlloca(InAlloca); 5361 AI->setSwiftError(SwiftError); 5362 I = AI; 5363 ResTypeID = getVirtualTypeID(AI->getType(), TyID); 5364 InstructionList.push_back(I); 5365 break; 5366 } 5367 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 5368 unsigned OpNum = 0; 5369 Value *Op; 5370 unsigned OpTypeID; 5371 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID) || 5372 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 5373 return error("Invalid record"); 5374 5375 if (!isa<PointerType>(Op->getType())) 5376 return error("Load operand is not a pointer type"); 5377 5378 Type *Ty = nullptr; 5379 if (OpNum + 3 == Record.size()) { 5380 ResTypeID = Record[OpNum++]; 5381 Ty = getTypeByID(ResTypeID); 5382 } else { 5383 ResTypeID = getContainedTypeID(OpTypeID); 5384 Ty = getTypeByID(ResTypeID); 5385 if (!Ty) 5386 return error("Missing element type for old-style load"); 5387 } 5388 5389 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 5390 return Err; 5391 5392 MaybeAlign Align; 5393 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 5394 return Err; 5395 SmallPtrSet<Type *, 4> Visited; 5396 if (!Align && !Ty->isSized(&Visited)) 5397 return error("load of unsized type"); 5398 if (!Align) 5399 Align = TheModule->getDataLayout().getABITypeAlign(Ty); 5400 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align); 5401 InstructionList.push_back(I); 5402 break; 5403 } 5404 case bitc::FUNC_CODE_INST_LOADATOMIC: { 5405 // LOADATOMIC: [opty, op, align, vol, ordering, ssid] 5406 unsigned OpNum = 0; 5407 Value *Op; 5408 unsigned OpTypeID; 5409 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID) || 5410 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 5411 return error("Invalid record"); 5412 5413 if (!isa<PointerType>(Op->getType())) 5414 return error("Load operand is not a pointer type"); 5415 5416 Type *Ty = nullptr; 5417 if (OpNum + 5 == Record.size()) { 5418 ResTypeID = Record[OpNum++]; 5419 Ty = getTypeByID(ResTypeID); 5420 } else { 5421 ResTypeID = getContainedTypeID(OpTypeID); 5422 Ty = getTypeByID(ResTypeID); 5423 if (!Ty) 5424 return error("Missing element type for old style atomic load"); 5425 } 5426 5427 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 5428 return Err; 5429 5430 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5431 if (Ordering == AtomicOrdering::NotAtomic || 5432 Ordering == AtomicOrdering::Release || 5433 Ordering == AtomicOrdering::AcquireRelease) 5434 return error("Invalid record"); 5435 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 5436 return error("Invalid record"); 5437 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 5438 5439 MaybeAlign Align; 5440 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 5441 return Err; 5442 if (!Align) 5443 return error("Alignment missing from atomic load"); 5444 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID); 5445 InstructionList.push_back(I); 5446 break; 5447 } 5448 case bitc::FUNC_CODE_INST_STORE: 5449 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 5450 unsigned OpNum = 0; 5451 Value *Val, *Ptr; 5452 unsigned PtrTypeID, ValTypeID; 5453 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID)) 5454 return error("Invalid record"); 5455 5456 if (BitCode == bitc::FUNC_CODE_INST_STORE) { 5457 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID)) 5458 return error("Invalid record"); 5459 } else { 5460 ValTypeID = getContainedTypeID(PtrTypeID); 5461 if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID), 5462 ValTypeID, Val)) 5463 return error("Invalid record"); 5464 } 5465 5466 if (OpNum + 2 != Record.size()) 5467 return error("Invalid record"); 5468 5469 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 5470 return Err; 5471 MaybeAlign Align; 5472 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 5473 return Err; 5474 SmallPtrSet<Type *, 4> Visited; 5475 if (!Align && !Val->getType()->isSized(&Visited)) 5476 return error("store of unsized type"); 5477 if (!Align) 5478 Align = TheModule->getDataLayout().getABITypeAlign(Val->getType()); 5479 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align); 5480 InstructionList.push_back(I); 5481 break; 5482 } 5483 case bitc::FUNC_CODE_INST_STOREATOMIC: 5484 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 5485 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid] 5486 unsigned OpNum = 0; 5487 Value *Val, *Ptr; 5488 unsigned PtrTypeID, ValTypeID; 5489 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID) || 5490 !isa<PointerType>(Ptr->getType())) 5491 return error("Invalid record"); 5492 if (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC) { 5493 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID)) 5494 return error("Invalid record"); 5495 } else { 5496 ValTypeID = getContainedTypeID(PtrTypeID); 5497 if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID), 5498 ValTypeID, Val)) 5499 return error("Invalid record"); 5500 } 5501 5502 if (OpNum + 4 != Record.size()) 5503 return error("Invalid record"); 5504 5505 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 5506 return Err; 5507 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5508 if (Ordering == AtomicOrdering::NotAtomic || 5509 Ordering == AtomicOrdering::Acquire || 5510 Ordering == AtomicOrdering::AcquireRelease) 5511 return error("Invalid record"); 5512 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 5513 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 5514 return error("Invalid record"); 5515 5516 MaybeAlign Align; 5517 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 5518 return Err; 5519 if (!Align) 5520 return error("Alignment missing from atomic store"); 5521 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID); 5522 InstructionList.push_back(I); 5523 break; 5524 } 5525 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: { 5526 // CMPXCHG_OLD: [ptrty, ptr, cmp, val, vol, ordering, synchscope, 5527 // failure_ordering?, weak?] 5528 const size_t NumRecords = Record.size(); 5529 unsigned OpNum = 0; 5530 Value *Ptr = nullptr; 5531 unsigned PtrTypeID; 5532 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID)) 5533 return error("Invalid record"); 5534 5535 if (!isa<PointerType>(Ptr->getType())) 5536 return error("Cmpxchg operand is not a pointer type"); 5537 5538 Value *Cmp = nullptr; 5539 unsigned CmpTypeID = getContainedTypeID(PtrTypeID); 5540 if (popValue(Record, OpNum, NextValueNo, getTypeByID(CmpTypeID), 5541 CmpTypeID, Cmp)) 5542 return error("Invalid record"); 5543 5544 Value *New = nullptr; 5545 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID, 5546 New) || 5547 NumRecords < OpNum + 3 || NumRecords > OpNum + 5) 5548 return error("Invalid record"); 5549 5550 const AtomicOrdering SuccessOrdering = 5551 getDecodedOrdering(Record[OpNum + 1]); 5552 if (SuccessOrdering == AtomicOrdering::NotAtomic || 5553 SuccessOrdering == AtomicOrdering::Unordered) 5554 return error("Invalid record"); 5555 5556 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 5557 5558 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 5559 return Err; 5560 5561 const AtomicOrdering FailureOrdering = 5562 NumRecords < 7 5563 ? AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering) 5564 : getDecodedOrdering(Record[OpNum + 3]); 5565 5566 if (FailureOrdering == AtomicOrdering::NotAtomic || 5567 FailureOrdering == AtomicOrdering::Unordered) 5568 return error("Invalid record"); 5569 5570 const Align Alignment( 5571 TheModule->getDataLayout().getTypeStoreSize(Cmp->getType())); 5572 5573 I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering, 5574 FailureOrdering, SSID); 5575 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 5576 5577 if (NumRecords < 8) { 5578 // Before weak cmpxchgs existed, the instruction simply returned the 5579 // value loaded from memory, so bitcode files from that era will be 5580 // expecting the first component of a modern cmpxchg. 5581 CurBB->getInstList().push_back(I); 5582 I = ExtractValueInst::Create(I, 0); 5583 ResTypeID = CmpTypeID; 5584 } else { 5585 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]); 5586 unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context)); 5587 ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID}); 5588 } 5589 5590 InstructionList.push_back(I); 5591 break; 5592 } 5593 case bitc::FUNC_CODE_INST_CMPXCHG: { 5594 // CMPXCHG: [ptrty, ptr, cmp, val, vol, success_ordering, synchscope, 5595 // failure_ordering, weak, align?] 5596 const size_t NumRecords = Record.size(); 5597 unsigned OpNum = 0; 5598 Value *Ptr = nullptr; 5599 unsigned PtrTypeID; 5600 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID)) 5601 return error("Invalid record"); 5602 5603 if (!isa<PointerType>(Ptr->getType())) 5604 return error("Cmpxchg operand is not a pointer type"); 5605 5606 Value *Cmp = nullptr; 5607 unsigned CmpTypeID; 5608 if (getValueTypePair(Record, OpNum, NextValueNo, Cmp, CmpTypeID)) 5609 return error("Invalid record"); 5610 5611 Value *Val = nullptr; 5612 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID, Val)) 5613 return error("Invalid record"); 5614 5615 if (NumRecords < OpNum + 3 || NumRecords > OpNum + 6) 5616 return error("Invalid record"); 5617 5618 const bool IsVol = Record[OpNum]; 5619 5620 const AtomicOrdering SuccessOrdering = 5621 getDecodedOrdering(Record[OpNum + 1]); 5622 if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering)) 5623 return error("Invalid cmpxchg success ordering"); 5624 5625 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 5626 5627 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 5628 return Err; 5629 5630 const AtomicOrdering FailureOrdering = 5631 getDecodedOrdering(Record[OpNum + 3]); 5632 if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering)) 5633 return error("Invalid cmpxchg failure ordering"); 5634 5635 const bool IsWeak = Record[OpNum + 4]; 5636 5637 MaybeAlign Alignment; 5638 5639 if (NumRecords == (OpNum + 6)) { 5640 if (Error Err = parseAlignmentValue(Record[OpNum + 5], Alignment)) 5641 return Err; 5642 } 5643 if (!Alignment) 5644 Alignment = 5645 Align(TheModule->getDataLayout().getTypeStoreSize(Cmp->getType())); 5646 5647 I = new AtomicCmpXchgInst(Ptr, Cmp, Val, *Alignment, SuccessOrdering, 5648 FailureOrdering, SSID); 5649 cast<AtomicCmpXchgInst>(I)->setVolatile(IsVol); 5650 cast<AtomicCmpXchgInst>(I)->setWeak(IsWeak); 5651 5652 unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context)); 5653 ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID}); 5654 5655 InstructionList.push_back(I); 5656 break; 5657 } 5658 case bitc::FUNC_CODE_INST_ATOMICRMW_OLD: 5659 case bitc::FUNC_CODE_INST_ATOMICRMW: { 5660 // ATOMICRMW_OLD: [ptrty, ptr, val, op, vol, ordering, ssid, align?] 5661 // ATOMICRMW: [ptrty, ptr, valty, val, op, vol, ordering, ssid, align?] 5662 const size_t NumRecords = Record.size(); 5663 unsigned OpNum = 0; 5664 5665 Value *Ptr = nullptr; 5666 unsigned PtrTypeID; 5667 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID)) 5668 return error("Invalid record"); 5669 5670 if (!isa<PointerType>(Ptr->getType())) 5671 return error("Invalid record"); 5672 5673 Value *Val = nullptr; 5674 unsigned ValTypeID = InvalidTypeID; 5675 if (BitCode == bitc::FUNC_CODE_INST_ATOMICRMW_OLD) { 5676 ValTypeID = getContainedTypeID(PtrTypeID); 5677 if (popValue(Record, OpNum, NextValueNo, 5678 getTypeByID(ValTypeID), ValTypeID, Val)) 5679 return error("Invalid record"); 5680 } else { 5681 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID)) 5682 return error("Invalid record"); 5683 } 5684 5685 if (!(NumRecords == (OpNum + 4) || NumRecords == (OpNum + 5))) 5686 return error("Invalid record"); 5687 5688 const AtomicRMWInst::BinOp Operation = 5689 getDecodedRMWOperation(Record[OpNum]); 5690 if (Operation < AtomicRMWInst::FIRST_BINOP || 5691 Operation > AtomicRMWInst::LAST_BINOP) 5692 return error("Invalid record"); 5693 5694 const bool IsVol = Record[OpNum + 1]; 5695 5696 const AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5697 if (Ordering == AtomicOrdering::NotAtomic || 5698 Ordering == AtomicOrdering::Unordered) 5699 return error("Invalid record"); 5700 5701 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 5702 5703 MaybeAlign Alignment; 5704 5705 if (NumRecords == (OpNum + 5)) { 5706 if (Error Err = parseAlignmentValue(Record[OpNum + 4], Alignment)) 5707 return Err; 5708 } 5709 5710 if (!Alignment) 5711 Alignment = 5712 Align(TheModule->getDataLayout().getTypeStoreSize(Val->getType())); 5713 5714 I = new AtomicRMWInst(Operation, Ptr, Val, *Alignment, Ordering, SSID); 5715 ResTypeID = ValTypeID; 5716 cast<AtomicRMWInst>(I)->setVolatile(IsVol); 5717 5718 InstructionList.push_back(I); 5719 break; 5720 } 5721 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid] 5722 if (2 != Record.size()) 5723 return error("Invalid record"); 5724 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 5725 if (Ordering == AtomicOrdering::NotAtomic || 5726 Ordering == AtomicOrdering::Unordered || 5727 Ordering == AtomicOrdering::Monotonic) 5728 return error("Invalid record"); 5729 SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]); 5730 I = new FenceInst(Context, Ordering, SSID); 5731 InstructionList.push_back(I); 5732 break; 5733 } 5734 case bitc::FUNC_CODE_INST_CALL: { 5735 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 5736 if (Record.size() < 3) 5737 return error("Invalid record"); 5738 5739 unsigned OpNum = 0; 5740 AttributeList PAL = getAttributes(Record[OpNum++]); 5741 unsigned CCInfo = Record[OpNum++]; 5742 5743 FastMathFlags FMF; 5744 if ((CCInfo >> bitc::CALL_FMF) & 1) { 5745 FMF = getDecodedFastMathFlags(Record[OpNum++]); 5746 if (!FMF.any()) 5747 return error("Fast math flags indicator set for call with no FMF"); 5748 } 5749 5750 unsigned FTyID = InvalidTypeID; 5751 FunctionType *FTy = nullptr; 5752 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 5753 FTyID = Record[OpNum++]; 5754 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 5755 if (!FTy) 5756 return error("Explicit call type is not a function type"); 5757 } 5758 5759 Value *Callee; 5760 unsigned CalleeTypeID; 5761 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID)) 5762 return error("Invalid record"); 5763 5764 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5765 if (!OpTy) 5766 return error("Callee is not a pointer type"); 5767 if (!FTy) { 5768 FTyID = getContainedTypeID(CalleeTypeID); 5769 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 5770 if (!FTy) 5771 return error("Callee is not of pointer to function type"); 5772 } else if (!OpTy->isOpaqueOrPointeeTypeMatches(FTy)) 5773 return error("Explicit call type does not match pointee type of " 5774 "callee operand"); 5775 if (Record.size() < FTy->getNumParams() + OpNum) 5776 return error("Insufficient operands to call"); 5777 5778 SmallVector<Value*, 16> Args; 5779 SmallVector<unsigned, 16> ArgTyIDs; 5780 // Read the fixed params. 5781 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5782 unsigned ArgTyID = getContainedTypeID(FTyID, i + 1); 5783 if (FTy->getParamType(i)->isLabelTy()) 5784 Args.push_back(getBasicBlock(Record[OpNum])); 5785 else 5786 Args.push_back(getValue(Record, OpNum, NextValueNo, 5787 FTy->getParamType(i), ArgTyID)); 5788 ArgTyIDs.push_back(ArgTyID); 5789 if (!Args.back()) 5790 return error("Invalid record"); 5791 } 5792 5793 // Read type/value pairs for varargs params. 5794 if (!FTy->isVarArg()) { 5795 if (OpNum != Record.size()) 5796 return error("Invalid record"); 5797 } else { 5798 while (OpNum != Record.size()) { 5799 Value *Op; 5800 unsigned OpTypeID; 5801 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID)) 5802 return error("Invalid record"); 5803 Args.push_back(Op); 5804 ArgTyIDs.push_back(OpTypeID); 5805 } 5806 } 5807 5808 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 5809 ResTypeID = getContainedTypeID(FTyID); 5810 OperandBundles.clear(); 5811 InstructionList.push_back(I); 5812 cast<CallInst>(I)->setCallingConv( 5813 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5814 CallInst::TailCallKind TCK = CallInst::TCK_None; 5815 if (CCInfo & 1 << bitc::CALL_TAIL) 5816 TCK = CallInst::TCK_Tail; 5817 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 5818 TCK = CallInst::TCK_MustTail; 5819 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 5820 TCK = CallInst::TCK_NoTail; 5821 cast<CallInst>(I)->setTailCallKind(TCK); 5822 cast<CallInst>(I)->setAttributes(PAL); 5823 if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) { 5824 I->deleteValue(); 5825 return Err; 5826 } 5827 if (FMF.any()) { 5828 if (!isa<FPMathOperator>(I)) 5829 return error("Fast-math-flags specified for call without " 5830 "floating-point scalar or vector return type"); 5831 I->setFastMathFlags(FMF); 5832 } 5833 break; 5834 } 5835 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 5836 if (Record.size() < 3) 5837 return error("Invalid record"); 5838 unsigned OpTyID = Record[0]; 5839 Type *OpTy = getTypeByID(OpTyID); 5840 Value *Op = getValue(Record, 1, NextValueNo, OpTy, OpTyID); 5841 ResTypeID = Record[2]; 5842 Type *ResTy = getTypeByID(ResTypeID); 5843 if (!OpTy || !Op || !ResTy) 5844 return error("Invalid record"); 5845 I = new VAArgInst(Op, ResTy); 5846 InstructionList.push_back(I); 5847 break; 5848 } 5849 5850 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 5851 // A call or an invoke can be optionally prefixed with some variable 5852 // number of operand bundle blocks. These blocks are read into 5853 // OperandBundles and consumed at the next call or invoke instruction. 5854 5855 if (Record.empty() || Record[0] >= BundleTags.size()) 5856 return error("Invalid record"); 5857 5858 std::vector<Value *> Inputs; 5859 5860 unsigned OpNum = 1; 5861 while (OpNum != Record.size()) { 5862 Value *Op; 5863 unsigned OpTypeID; 5864 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID)) 5865 return error("Invalid record"); 5866 Inputs.push_back(Op); 5867 } 5868 5869 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 5870 continue; 5871 } 5872 5873 case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval] 5874 unsigned OpNum = 0; 5875 Value *Op = nullptr; 5876 unsigned OpTypeID; 5877 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID)) 5878 return error("Invalid record"); 5879 if (OpNum != Record.size()) 5880 return error("Invalid record"); 5881 5882 I = new FreezeInst(Op); 5883 ResTypeID = OpTypeID; 5884 InstructionList.push_back(I); 5885 break; 5886 } 5887 } 5888 5889 // Add instruction to end of current BB. If there is no current BB, reject 5890 // this file. 5891 if (!CurBB) { 5892 I->deleteValue(); 5893 return error("Invalid instruction with no BB"); 5894 } 5895 if (!OperandBundles.empty()) { 5896 I->deleteValue(); 5897 return error("Operand bundles found with no consumer"); 5898 } 5899 CurBB->getInstList().push_back(I); 5900 5901 // If this was a terminator instruction, move to the next block. 5902 if (I->isTerminator()) { 5903 ++CurBBNo; 5904 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 5905 } 5906 5907 // Non-void values get registered in the value table for future use. 5908 if (!I->getType()->isVoidTy()) { 5909 assert(I->getType() == getTypeByID(ResTypeID) && 5910 "Incorrect result type ID"); 5911 if (Error Err = ValueList.assignValue(NextValueNo++, I, ResTypeID)) 5912 return Err; 5913 } 5914 } 5915 5916 OutOfRecordLoop: 5917 5918 if (!OperandBundles.empty()) 5919 return error("Operand bundles found with no consumer"); 5920 5921 // Check the function list for unresolved values. 5922 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 5923 if (!A->getParent()) { 5924 // We found at least one unresolved value. Nuke them all to avoid leaks. 5925 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 5926 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 5927 A->replaceAllUsesWith(UndefValue::get(A->getType())); 5928 delete A; 5929 } 5930 } 5931 return error("Never resolved value found in function"); 5932 } 5933 } 5934 5935 // Unexpected unresolved metadata about to be dropped. 5936 if (MDLoader->hasFwdRefs()) 5937 return error("Invalid function metadata: outgoing forward refs"); 5938 5939 // Trim the value list down to the size it was before we parsed this function. 5940 ValueList.shrinkTo(ModuleValueListSize); 5941 MDLoader->shrinkTo(ModuleMDLoaderSize); 5942 std::vector<BasicBlock*>().swap(FunctionBBs); 5943 return Error::success(); 5944 } 5945 5946 /// Find the function body in the bitcode stream 5947 Error BitcodeReader::findFunctionInStream( 5948 Function *F, 5949 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 5950 while (DeferredFunctionInfoIterator->second == 0) { 5951 // This is the fallback handling for the old format bitcode that 5952 // didn't contain the function index in the VST, or when we have 5953 // an anonymous function which would not have a VST entry. 5954 // Assert that we have one of those two cases. 5955 assert(VSTOffset == 0 || !F->hasName()); 5956 // Parse the next body in the stream and set its position in the 5957 // DeferredFunctionInfo map. 5958 if (Error Err = rememberAndSkipFunctionBodies()) 5959 return Err; 5960 } 5961 return Error::success(); 5962 } 5963 5964 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) { 5965 if (Val == SyncScope::SingleThread || Val == SyncScope::System) 5966 return SyncScope::ID(Val); 5967 if (Val >= SSIDs.size()) 5968 return SyncScope::System; // Map unknown synchronization scopes to system. 5969 return SSIDs[Val]; 5970 } 5971 5972 //===----------------------------------------------------------------------===// 5973 // GVMaterializer implementation 5974 //===----------------------------------------------------------------------===// 5975 5976 Error BitcodeReader::materialize(GlobalValue *GV) { 5977 Function *F = dyn_cast<Function>(GV); 5978 // If it's not a function or is already material, ignore the request. 5979 if (!F || !F->isMaterializable()) 5980 return Error::success(); 5981 5982 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 5983 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 5984 // If its position is recorded as 0, its body is somewhere in the stream 5985 // but we haven't seen it yet. 5986 if (DFII->second == 0) 5987 if (Error Err = findFunctionInStream(F, DFII)) 5988 return Err; 5989 5990 // Materialize metadata before parsing any function bodies. 5991 if (Error Err = materializeMetadata()) 5992 return Err; 5993 5994 // Move the bit stream to the saved position of the deferred function body. 5995 if (Error JumpFailed = Stream.JumpToBit(DFII->second)) 5996 return JumpFailed; 5997 if (Error Err = parseFunctionBody(F)) 5998 return Err; 5999 F->setIsMaterializable(false); 6000 6001 if (StripDebugInfo) 6002 stripDebugInfo(*F); 6003 6004 // Upgrade any old intrinsic calls in the function. 6005 for (auto &I : UpgradedIntrinsics) { 6006 for (User *U : llvm::make_early_inc_range(I.first->materialized_users())) 6007 if (CallInst *CI = dyn_cast<CallInst>(U)) 6008 UpgradeIntrinsicCall(CI, I.second); 6009 } 6010 6011 // Update calls to the remangled intrinsics 6012 for (auto &I : RemangledIntrinsics) 6013 for (User *U : llvm::make_early_inc_range(I.first->materialized_users())) 6014 // Don't expect any other users than call sites 6015 cast<CallBase>(U)->setCalledFunction(I.second); 6016 6017 // Finish fn->subprogram upgrade for materialized functions. 6018 if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F)) 6019 F->setSubprogram(SP); 6020 6021 // Check if the TBAA Metadata are valid, otherwise we will need to strip them. 6022 if (!MDLoader->isStrippingTBAA()) { 6023 for (auto &I : instructions(F)) { 6024 MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa); 6025 if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA)) 6026 continue; 6027 MDLoader->setStripTBAA(true); 6028 stripTBAA(F->getParent()); 6029 } 6030 } 6031 6032 for (auto &I : instructions(F)) { 6033 // "Upgrade" older incorrect branch weights by dropping them. 6034 if (auto *MD = I.getMetadata(LLVMContext::MD_prof)) { 6035 if (MD->getOperand(0) != nullptr && isa<MDString>(MD->getOperand(0))) { 6036 MDString *MDS = cast<MDString>(MD->getOperand(0)); 6037 StringRef ProfName = MDS->getString(); 6038 // Check consistency of !prof branch_weights metadata. 6039 if (!ProfName.equals("branch_weights")) 6040 continue; 6041 unsigned ExpectedNumOperands = 0; 6042 if (BranchInst *BI = dyn_cast<BranchInst>(&I)) 6043 ExpectedNumOperands = BI->getNumSuccessors(); 6044 else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I)) 6045 ExpectedNumOperands = SI->getNumSuccessors(); 6046 else if (isa<CallInst>(&I)) 6047 ExpectedNumOperands = 1; 6048 else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I)) 6049 ExpectedNumOperands = IBI->getNumDestinations(); 6050 else if (isa<SelectInst>(&I)) 6051 ExpectedNumOperands = 2; 6052 else 6053 continue; // ignore and continue. 6054 6055 // If branch weight doesn't match, just strip branch weight. 6056 if (MD->getNumOperands() != 1 + ExpectedNumOperands) 6057 I.setMetadata(LLVMContext::MD_prof, nullptr); 6058 } 6059 } 6060 6061 // Remove incompatible attributes on function calls. 6062 if (auto *CI = dyn_cast<CallBase>(&I)) { 6063 CI->removeRetAttrs(AttributeFuncs::typeIncompatible( 6064 CI->getFunctionType()->getReturnType())); 6065 6066 for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ++ArgNo) 6067 CI->removeParamAttrs(ArgNo, AttributeFuncs::typeIncompatible( 6068 CI->getArgOperand(ArgNo)->getType())); 6069 } 6070 } 6071 6072 // Look for functions that rely on old function attribute behavior. 6073 UpgradeFunctionAttributes(*F); 6074 6075 // Bring in any functions that this function forward-referenced via 6076 // blockaddresses. 6077 return materializeForwardReferencedFunctions(); 6078 } 6079 6080 Error BitcodeReader::materializeModule() { 6081 if (Error Err = materializeMetadata()) 6082 return Err; 6083 6084 // Promise to materialize all forward references. 6085 WillMaterializeAllForwardRefs = true; 6086 6087 // Iterate over the module, deserializing any functions that are still on 6088 // disk. 6089 for (Function &F : *TheModule) { 6090 if (Error Err = materialize(&F)) 6091 return Err; 6092 } 6093 // At this point, if there are any function bodies, parse the rest of 6094 // the bits in the module past the last function block we have recorded 6095 // through either lazy scanning or the VST. 6096 if (LastFunctionBlockBit || NextUnreadBit) 6097 if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit 6098 ? LastFunctionBlockBit 6099 : NextUnreadBit)) 6100 return Err; 6101 6102 // Check that all block address forward references got resolved (as we 6103 // promised above). 6104 if (!BasicBlockFwdRefs.empty()) 6105 return error("Never resolved function from blockaddress"); 6106 6107 // Upgrade any intrinsic calls that slipped through (should not happen!) and 6108 // delete the old functions to clean up. We can't do this unless the entire 6109 // module is materialized because there could always be another function body 6110 // with calls to the old function. 6111 for (auto &I : UpgradedIntrinsics) { 6112 for (auto *U : I.first->users()) { 6113 if (CallInst *CI = dyn_cast<CallInst>(U)) 6114 UpgradeIntrinsicCall(CI, I.second); 6115 } 6116 if (!I.first->use_empty()) 6117 I.first->replaceAllUsesWith(I.second); 6118 I.first->eraseFromParent(); 6119 } 6120 UpgradedIntrinsics.clear(); 6121 // Do the same for remangled intrinsics 6122 for (auto &I : RemangledIntrinsics) { 6123 I.first->replaceAllUsesWith(I.second); 6124 I.first->eraseFromParent(); 6125 } 6126 RemangledIntrinsics.clear(); 6127 6128 UpgradeDebugInfo(*TheModule); 6129 6130 UpgradeModuleFlags(*TheModule); 6131 6132 UpgradeARCRuntime(*TheModule); 6133 6134 return Error::success(); 6135 } 6136 6137 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 6138 return IdentifiedStructTypes; 6139 } 6140 6141 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 6142 BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex, 6143 StringRef ModulePath, unsigned ModuleId) 6144 : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex), 6145 ModulePath(ModulePath), ModuleId(ModuleId) {} 6146 6147 void ModuleSummaryIndexBitcodeReader::addThisModule() { 6148 TheIndex.addModule(ModulePath, ModuleId); 6149 } 6150 6151 ModuleSummaryIndex::ModuleInfo * 6152 ModuleSummaryIndexBitcodeReader::getThisModule() { 6153 return TheIndex.getModule(ModulePath); 6154 } 6155 6156 std::pair<ValueInfo, GlobalValue::GUID> 6157 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) { 6158 auto VGI = ValueIdToValueInfoMap[ValueId]; 6159 assert(VGI.first); 6160 return VGI; 6161 } 6162 6163 void ModuleSummaryIndexBitcodeReader::setValueGUID( 6164 uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage, 6165 StringRef SourceFileName) { 6166 std::string GlobalId = 6167 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 6168 auto ValueGUID = GlobalValue::getGUID(GlobalId); 6169 auto OriginalNameID = ValueGUID; 6170 if (GlobalValue::isLocalLinkage(Linkage)) 6171 OriginalNameID = GlobalValue::getGUID(ValueName); 6172 if (PrintSummaryGUIDs) 6173 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 6174 << ValueName << "\n"; 6175 6176 // UseStrtab is false for legacy summary formats and value names are 6177 // created on stack. In that case we save the name in a string saver in 6178 // the index so that the value name can be recorded. 6179 ValueIdToValueInfoMap[ValueID] = std::make_pair( 6180 TheIndex.getOrInsertValueInfo( 6181 ValueGUID, 6182 UseStrtab ? ValueName : TheIndex.saveString(ValueName)), 6183 OriginalNameID); 6184 } 6185 6186 // Specialized value symbol table parser used when reading module index 6187 // blocks where we don't actually create global values. The parsed information 6188 // is saved in the bitcode reader for use when later parsing summaries. 6189 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 6190 uint64_t Offset, 6191 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 6192 // With a strtab the VST is not required to parse the summary. 6193 if (UseStrtab) 6194 return Error::success(); 6195 6196 assert(Offset > 0 && "Expected non-zero VST offset"); 6197 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 6198 if (!MaybeCurrentBit) 6199 return MaybeCurrentBit.takeError(); 6200 uint64_t CurrentBit = MaybeCurrentBit.get(); 6201 6202 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 6203 return Err; 6204 6205 SmallVector<uint64_t, 64> Record; 6206 6207 // Read all the records for this value table. 6208 SmallString<128> ValueName; 6209 6210 while (true) { 6211 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6212 if (!MaybeEntry) 6213 return MaybeEntry.takeError(); 6214 BitstreamEntry Entry = MaybeEntry.get(); 6215 6216 switch (Entry.Kind) { 6217 case BitstreamEntry::SubBlock: // Handled for us already. 6218 case BitstreamEntry::Error: 6219 return error("Malformed block"); 6220 case BitstreamEntry::EndBlock: 6221 // Done parsing VST, jump back to wherever we came from. 6222 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 6223 return JumpFailed; 6224 return Error::success(); 6225 case BitstreamEntry::Record: 6226 // The interesting case. 6227 break; 6228 } 6229 6230 // Read a record. 6231 Record.clear(); 6232 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 6233 if (!MaybeRecord) 6234 return MaybeRecord.takeError(); 6235 switch (MaybeRecord.get()) { 6236 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 6237 break; 6238 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 6239 if (convertToString(Record, 1, ValueName)) 6240 return error("Invalid record"); 6241 unsigned ValueID = Record[0]; 6242 assert(!SourceFileName.empty()); 6243 auto VLI = ValueIdToLinkageMap.find(ValueID); 6244 assert(VLI != ValueIdToLinkageMap.end() && 6245 "No linkage found for VST entry?"); 6246 auto Linkage = VLI->second; 6247 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 6248 ValueName.clear(); 6249 break; 6250 } 6251 case bitc::VST_CODE_FNENTRY: { 6252 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 6253 if (convertToString(Record, 2, ValueName)) 6254 return error("Invalid record"); 6255 unsigned ValueID = Record[0]; 6256 assert(!SourceFileName.empty()); 6257 auto VLI = ValueIdToLinkageMap.find(ValueID); 6258 assert(VLI != ValueIdToLinkageMap.end() && 6259 "No linkage found for VST entry?"); 6260 auto Linkage = VLI->second; 6261 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 6262 ValueName.clear(); 6263 break; 6264 } 6265 case bitc::VST_CODE_COMBINED_ENTRY: { 6266 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 6267 unsigned ValueID = Record[0]; 6268 GlobalValue::GUID RefGUID = Record[1]; 6269 // The "original name", which is the second value of the pair will be 6270 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 6271 ValueIdToValueInfoMap[ValueID] = 6272 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 6273 break; 6274 } 6275 } 6276 } 6277 } 6278 6279 // Parse just the blocks needed for building the index out of the module. 6280 // At the end of this routine the module Index is populated with a map 6281 // from global value id to GlobalValueSummary objects. 6282 Error ModuleSummaryIndexBitcodeReader::parseModule() { 6283 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 6284 return Err; 6285 6286 SmallVector<uint64_t, 64> Record; 6287 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 6288 unsigned ValueId = 0; 6289 6290 // Read the index for this module. 6291 while (true) { 6292 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6293 if (!MaybeEntry) 6294 return MaybeEntry.takeError(); 6295 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6296 6297 switch (Entry.Kind) { 6298 case BitstreamEntry::Error: 6299 return error("Malformed block"); 6300 case BitstreamEntry::EndBlock: 6301 return Error::success(); 6302 6303 case BitstreamEntry::SubBlock: 6304 switch (Entry.ID) { 6305 default: // Skip unknown content. 6306 if (Error Err = Stream.SkipBlock()) 6307 return Err; 6308 break; 6309 case bitc::BLOCKINFO_BLOCK_ID: 6310 // Need to parse these to get abbrev ids (e.g. for VST) 6311 if (Error Err = readBlockInfo()) 6312 return Err; 6313 break; 6314 case bitc::VALUE_SYMTAB_BLOCK_ID: 6315 // Should have been parsed earlier via VSTOffset, unless there 6316 // is no summary section. 6317 assert(((SeenValueSymbolTable && VSTOffset > 0) || 6318 !SeenGlobalValSummary) && 6319 "Expected early VST parse via VSTOffset record"); 6320 if (Error Err = Stream.SkipBlock()) 6321 return Err; 6322 break; 6323 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 6324 case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID: 6325 // Add the module if it is a per-module index (has a source file name). 6326 if (!SourceFileName.empty()) 6327 addThisModule(); 6328 assert(!SeenValueSymbolTable && 6329 "Already read VST when parsing summary block?"); 6330 // We might not have a VST if there were no values in the 6331 // summary. An empty summary block generated when we are 6332 // performing ThinLTO compiles so we don't later invoke 6333 // the regular LTO process on them. 6334 if (VSTOffset > 0) { 6335 if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 6336 return Err; 6337 SeenValueSymbolTable = true; 6338 } 6339 SeenGlobalValSummary = true; 6340 if (Error Err = parseEntireSummary(Entry.ID)) 6341 return Err; 6342 break; 6343 case bitc::MODULE_STRTAB_BLOCK_ID: 6344 if (Error Err = parseModuleStringTable()) 6345 return Err; 6346 break; 6347 } 6348 continue; 6349 6350 case BitstreamEntry::Record: { 6351 Record.clear(); 6352 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 6353 if (!MaybeBitCode) 6354 return MaybeBitCode.takeError(); 6355 switch (MaybeBitCode.get()) { 6356 default: 6357 break; // Default behavior, ignore unknown content. 6358 case bitc::MODULE_CODE_VERSION: { 6359 if (Error Err = parseVersionRecord(Record).takeError()) 6360 return Err; 6361 break; 6362 } 6363 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 6364 case bitc::MODULE_CODE_SOURCE_FILENAME: { 6365 SmallString<128> ValueName; 6366 if (convertToString(Record, 0, ValueName)) 6367 return error("Invalid record"); 6368 SourceFileName = ValueName.c_str(); 6369 break; 6370 } 6371 /// MODULE_CODE_HASH: [5*i32] 6372 case bitc::MODULE_CODE_HASH: { 6373 if (Record.size() != 5) 6374 return error("Invalid hash length " + Twine(Record.size()).str()); 6375 auto &Hash = getThisModule()->second.second; 6376 int Pos = 0; 6377 for (auto &Val : Record) { 6378 assert(!(Val >> 32) && "Unexpected high bits set"); 6379 Hash[Pos++] = Val; 6380 } 6381 break; 6382 } 6383 /// MODULE_CODE_VSTOFFSET: [offset] 6384 case bitc::MODULE_CODE_VSTOFFSET: 6385 if (Record.empty()) 6386 return error("Invalid record"); 6387 // Note that we subtract 1 here because the offset is relative to one 6388 // word before the start of the identification or module block, which 6389 // was historically always the start of the regular bitcode header. 6390 VSTOffset = Record[0] - 1; 6391 break; 6392 // v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...] 6393 // v1 FUNCTION: [type, callingconv, isproto, linkage, ...] 6394 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...] 6395 // v2: [strtab offset, strtab size, v1] 6396 case bitc::MODULE_CODE_GLOBALVAR: 6397 case bitc::MODULE_CODE_FUNCTION: 6398 case bitc::MODULE_CODE_ALIAS: { 6399 StringRef Name; 6400 ArrayRef<uint64_t> GVRecord; 6401 std::tie(Name, GVRecord) = readNameFromStrtab(Record); 6402 if (GVRecord.size() <= 3) 6403 return error("Invalid record"); 6404 uint64_t RawLinkage = GVRecord[3]; 6405 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 6406 if (!UseStrtab) { 6407 ValueIdToLinkageMap[ValueId++] = Linkage; 6408 break; 6409 } 6410 6411 setValueGUID(ValueId++, Name, Linkage, SourceFileName); 6412 break; 6413 } 6414 } 6415 } 6416 continue; 6417 } 6418 } 6419 } 6420 6421 std::vector<ValueInfo> 6422 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) { 6423 std::vector<ValueInfo> Ret; 6424 Ret.reserve(Record.size()); 6425 for (uint64_t RefValueId : Record) 6426 Ret.push_back(getValueInfoFromValueId(RefValueId).first); 6427 return Ret; 6428 } 6429 6430 std::vector<FunctionSummary::EdgeTy> 6431 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record, 6432 bool IsOldProfileFormat, 6433 bool HasProfile, bool HasRelBF) { 6434 std::vector<FunctionSummary::EdgeTy> Ret; 6435 Ret.reserve(Record.size()); 6436 for (unsigned I = 0, E = Record.size(); I != E; ++I) { 6437 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 6438 uint64_t RelBF = 0; 6439 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first; 6440 if (IsOldProfileFormat) { 6441 I += 1; // Skip old callsitecount field 6442 if (HasProfile) 6443 I += 1; // Skip old profilecount field 6444 } else if (HasProfile) 6445 Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]); 6446 else if (HasRelBF) 6447 RelBF = Record[++I]; 6448 Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)}); 6449 } 6450 return Ret; 6451 } 6452 6453 static void 6454 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot, 6455 WholeProgramDevirtResolution &Wpd) { 6456 uint64_t ArgNum = Record[Slot++]; 6457 WholeProgramDevirtResolution::ByArg &B = 6458 Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}]; 6459 Slot += ArgNum; 6460 6461 B.TheKind = 6462 static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]); 6463 B.Info = Record[Slot++]; 6464 B.Byte = Record[Slot++]; 6465 B.Bit = Record[Slot++]; 6466 } 6467 6468 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record, 6469 StringRef Strtab, size_t &Slot, 6470 TypeIdSummary &TypeId) { 6471 uint64_t Id = Record[Slot++]; 6472 WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id]; 6473 6474 Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]); 6475 Wpd.SingleImplName = {Strtab.data() + Record[Slot], 6476 static_cast<size_t>(Record[Slot + 1])}; 6477 Slot += 2; 6478 6479 uint64_t ResByArgNum = Record[Slot++]; 6480 for (uint64_t I = 0; I != ResByArgNum; ++I) 6481 parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd); 6482 } 6483 6484 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record, 6485 StringRef Strtab, 6486 ModuleSummaryIndex &TheIndex) { 6487 size_t Slot = 0; 6488 TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary( 6489 {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])}); 6490 Slot += 2; 6491 6492 TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]); 6493 TypeId.TTRes.SizeM1BitWidth = Record[Slot++]; 6494 TypeId.TTRes.AlignLog2 = Record[Slot++]; 6495 TypeId.TTRes.SizeM1 = Record[Slot++]; 6496 TypeId.TTRes.BitMask = Record[Slot++]; 6497 TypeId.TTRes.InlineBits = Record[Slot++]; 6498 6499 while (Slot < Record.size()) 6500 parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId); 6501 } 6502 6503 std::vector<FunctionSummary::ParamAccess> 6504 ModuleSummaryIndexBitcodeReader::parseParamAccesses(ArrayRef<uint64_t> Record) { 6505 auto ReadRange = [&]() { 6506 APInt Lower(FunctionSummary::ParamAccess::RangeWidth, 6507 BitcodeReader::decodeSignRotatedValue(Record.front())); 6508 Record = Record.drop_front(); 6509 APInt Upper(FunctionSummary::ParamAccess::RangeWidth, 6510 BitcodeReader::decodeSignRotatedValue(Record.front())); 6511 Record = Record.drop_front(); 6512 ConstantRange Range{Lower, Upper}; 6513 assert(!Range.isFullSet()); 6514 assert(!Range.isUpperSignWrapped()); 6515 return Range; 6516 }; 6517 6518 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; 6519 while (!Record.empty()) { 6520 PendingParamAccesses.emplace_back(); 6521 FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back(); 6522 ParamAccess.ParamNo = Record.front(); 6523 Record = Record.drop_front(); 6524 ParamAccess.Use = ReadRange(); 6525 ParamAccess.Calls.resize(Record.front()); 6526 Record = Record.drop_front(); 6527 for (auto &Call : ParamAccess.Calls) { 6528 Call.ParamNo = Record.front(); 6529 Record = Record.drop_front(); 6530 Call.Callee = getValueInfoFromValueId(Record.front()).first; 6531 Record = Record.drop_front(); 6532 Call.Offsets = ReadRange(); 6533 } 6534 } 6535 return PendingParamAccesses; 6536 } 6537 6538 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo( 6539 ArrayRef<uint64_t> Record, size_t &Slot, 6540 TypeIdCompatibleVtableInfo &TypeId) { 6541 uint64_t Offset = Record[Slot++]; 6542 ValueInfo Callee = getValueInfoFromValueId(Record[Slot++]).first; 6543 TypeId.push_back({Offset, Callee}); 6544 } 6545 6546 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord( 6547 ArrayRef<uint64_t> Record) { 6548 size_t Slot = 0; 6549 TypeIdCompatibleVtableInfo &TypeId = 6550 TheIndex.getOrInsertTypeIdCompatibleVtableSummary( 6551 {Strtab.data() + Record[Slot], 6552 static_cast<size_t>(Record[Slot + 1])}); 6553 Slot += 2; 6554 6555 while (Slot < Record.size()) 6556 parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId); 6557 } 6558 6559 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt, 6560 unsigned WOCnt) { 6561 // Readonly and writeonly refs are in the end of the refs list. 6562 assert(ROCnt + WOCnt <= Refs.size()); 6563 unsigned FirstWORef = Refs.size() - WOCnt; 6564 unsigned RefNo = FirstWORef - ROCnt; 6565 for (; RefNo < FirstWORef; ++RefNo) 6566 Refs[RefNo].setReadOnly(); 6567 for (; RefNo < Refs.size(); ++RefNo) 6568 Refs[RefNo].setWriteOnly(); 6569 } 6570 6571 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 6572 // objects in the index. 6573 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) { 6574 if (Error Err = Stream.EnterSubBlock(ID)) 6575 return Err; 6576 SmallVector<uint64_t, 64> Record; 6577 6578 // Parse version 6579 { 6580 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6581 if (!MaybeEntry) 6582 return MaybeEntry.takeError(); 6583 BitstreamEntry Entry = MaybeEntry.get(); 6584 6585 if (Entry.Kind != BitstreamEntry::Record) 6586 return error("Invalid Summary Block: record for version expected"); 6587 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 6588 if (!MaybeRecord) 6589 return MaybeRecord.takeError(); 6590 if (MaybeRecord.get() != bitc::FS_VERSION) 6591 return error("Invalid Summary Block: version expected"); 6592 } 6593 const uint64_t Version = Record[0]; 6594 const bool IsOldProfileFormat = Version == 1; 6595 if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion) 6596 return error("Invalid summary version " + Twine(Version) + 6597 ". Version should be in the range [1-" + 6598 Twine(ModuleSummaryIndex::BitcodeSummaryVersion) + 6599 "]."); 6600 Record.clear(); 6601 6602 // Keep around the last seen summary to be used when we see an optional 6603 // "OriginalName" attachement. 6604 GlobalValueSummary *LastSeenSummary = nullptr; 6605 GlobalValue::GUID LastSeenGUID = 0; 6606 6607 // We can expect to see any number of type ID information records before 6608 // each function summary records; these variables store the information 6609 // collected so far so that it can be used to create the summary object. 6610 std::vector<GlobalValue::GUID> PendingTypeTests; 6611 std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls, 6612 PendingTypeCheckedLoadVCalls; 6613 std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls, 6614 PendingTypeCheckedLoadConstVCalls; 6615 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; 6616 6617 while (true) { 6618 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6619 if (!MaybeEntry) 6620 return MaybeEntry.takeError(); 6621 BitstreamEntry Entry = MaybeEntry.get(); 6622 6623 switch (Entry.Kind) { 6624 case BitstreamEntry::SubBlock: // Handled for us already. 6625 case BitstreamEntry::Error: 6626 return error("Malformed block"); 6627 case BitstreamEntry::EndBlock: 6628 return Error::success(); 6629 case BitstreamEntry::Record: 6630 // The interesting case. 6631 break; 6632 } 6633 6634 // Read a record. The record format depends on whether this 6635 // is a per-module index or a combined index file. In the per-module 6636 // case the records contain the associated value's ID for correlation 6637 // with VST entries. In the combined index the correlation is done 6638 // via the bitcode offset of the summary records (which were saved 6639 // in the combined index VST entries). The records also contain 6640 // information used for ThinLTO renaming and importing. 6641 Record.clear(); 6642 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 6643 if (!MaybeBitCode) 6644 return MaybeBitCode.takeError(); 6645 switch (unsigned BitCode = MaybeBitCode.get()) { 6646 default: // Default behavior: ignore. 6647 break; 6648 case bitc::FS_FLAGS: { // [flags] 6649 TheIndex.setFlags(Record[0]); 6650 break; 6651 } 6652 case bitc::FS_VALUE_GUID: { // [valueid, refguid] 6653 uint64_t ValueID = Record[0]; 6654 GlobalValue::GUID RefGUID = Record[1]; 6655 ValueIdToValueInfoMap[ValueID] = 6656 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 6657 break; 6658 } 6659 // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs, 6660 // numrefs x valueid, n x (valueid)] 6661 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs, 6662 // numrefs x valueid, 6663 // n x (valueid, hotness)] 6664 // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs, 6665 // numrefs x valueid, 6666 // n x (valueid, relblockfreq)] 6667 case bitc::FS_PERMODULE: 6668 case bitc::FS_PERMODULE_RELBF: 6669 case bitc::FS_PERMODULE_PROFILE: { 6670 unsigned ValueID = Record[0]; 6671 uint64_t RawFlags = Record[1]; 6672 unsigned InstCount = Record[2]; 6673 uint64_t RawFunFlags = 0; 6674 unsigned NumRefs = Record[3]; 6675 unsigned NumRORefs = 0, NumWORefs = 0; 6676 int RefListStartIndex = 4; 6677 if (Version >= 4) { 6678 RawFunFlags = Record[3]; 6679 NumRefs = Record[4]; 6680 RefListStartIndex = 5; 6681 if (Version >= 5) { 6682 NumRORefs = Record[5]; 6683 RefListStartIndex = 6; 6684 if (Version >= 7) { 6685 NumWORefs = Record[6]; 6686 RefListStartIndex = 7; 6687 } 6688 } 6689 } 6690 6691 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6692 // The module path string ref set in the summary must be owned by the 6693 // index's module string table. Since we don't have a module path 6694 // string table section in the per-module index, we create a single 6695 // module path string table entry with an empty (0) ID to take 6696 // ownership. 6697 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 6698 assert(Record.size() >= RefListStartIndex + NumRefs && 6699 "Record size inconsistent with number of references"); 6700 std::vector<ValueInfo> Refs = makeRefList( 6701 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 6702 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 6703 bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF); 6704 std::vector<FunctionSummary::EdgeTy> Calls = makeCallList( 6705 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 6706 IsOldProfileFormat, HasProfile, HasRelBF); 6707 setSpecialRefs(Refs, NumRORefs, NumWORefs); 6708 auto FS = std::make_unique<FunctionSummary>( 6709 Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0, 6710 std::move(Refs), std::move(Calls), std::move(PendingTypeTests), 6711 std::move(PendingTypeTestAssumeVCalls), 6712 std::move(PendingTypeCheckedLoadVCalls), 6713 std::move(PendingTypeTestAssumeConstVCalls), 6714 std::move(PendingTypeCheckedLoadConstVCalls), 6715 std::move(PendingParamAccesses)); 6716 auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID); 6717 FS->setModulePath(getThisModule()->first()); 6718 FS->setOriginalName(VIAndOriginalGUID.second); 6719 TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS)); 6720 break; 6721 } 6722 // FS_ALIAS: [valueid, flags, valueid] 6723 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 6724 // they expect all aliasee summaries to be available. 6725 case bitc::FS_ALIAS: { 6726 unsigned ValueID = Record[0]; 6727 uint64_t RawFlags = Record[1]; 6728 unsigned AliaseeID = Record[2]; 6729 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6730 auto AS = std::make_unique<AliasSummary>(Flags); 6731 // The module path string ref set in the summary must be owned by the 6732 // index's module string table. Since we don't have a module path 6733 // string table section in the per-module index, we create a single 6734 // module path string table entry with an empty (0) ID to take 6735 // ownership. 6736 AS->setModulePath(getThisModule()->first()); 6737 6738 auto AliaseeVI = getValueInfoFromValueId(AliaseeID).first; 6739 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath); 6740 if (!AliaseeInModule) 6741 return error("Alias expects aliasee summary to be parsed"); 6742 AS->setAliasee(AliaseeVI, AliaseeInModule); 6743 6744 auto GUID = getValueInfoFromValueId(ValueID); 6745 AS->setOriginalName(GUID.second); 6746 TheIndex.addGlobalValueSummary(GUID.first, std::move(AS)); 6747 break; 6748 } 6749 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid] 6750 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 6751 unsigned ValueID = Record[0]; 6752 uint64_t RawFlags = Record[1]; 6753 unsigned RefArrayStart = 2; 6754 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 6755 /* WriteOnly */ false, 6756 /* Constant */ false, 6757 GlobalObject::VCallVisibilityPublic); 6758 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6759 if (Version >= 5) { 6760 GVF = getDecodedGVarFlags(Record[2]); 6761 RefArrayStart = 3; 6762 } 6763 std::vector<ValueInfo> Refs = 6764 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 6765 auto FS = 6766 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 6767 FS->setModulePath(getThisModule()->first()); 6768 auto GUID = getValueInfoFromValueId(ValueID); 6769 FS->setOriginalName(GUID.second); 6770 TheIndex.addGlobalValueSummary(GUID.first, std::move(FS)); 6771 break; 6772 } 6773 // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, 6774 // numrefs, numrefs x valueid, 6775 // n x (valueid, offset)] 6776 case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: { 6777 unsigned ValueID = Record[0]; 6778 uint64_t RawFlags = Record[1]; 6779 GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]); 6780 unsigned NumRefs = Record[3]; 6781 unsigned RefListStartIndex = 4; 6782 unsigned VTableListStartIndex = RefListStartIndex + NumRefs; 6783 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6784 std::vector<ValueInfo> Refs = makeRefList( 6785 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 6786 VTableFuncList VTableFuncs; 6787 for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) { 6788 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first; 6789 uint64_t Offset = Record[++I]; 6790 VTableFuncs.push_back({Callee, Offset}); 6791 } 6792 auto VS = 6793 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 6794 VS->setModulePath(getThisModule()->first()); 6795 VS->setVTableFuncs(VTableFuncs); 6796 auto GUID = getValueInfoFromValueId(ValueID); 6797 VS->setOriginalName(GUID.second); 6798 TheIndex.addGlobalValueSummary(GUID.first, std::move(VS)); 6799 break; 6800 } 6801 // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs, 6802 // numrefs x valueid, n x (valueid)] 6803 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs, 6804 // numrefs x valueid, n x (valueid, hotness)] 6805 case bitc::FS_COMBINED: 6806 case bitc::FS_COMBINED_PROFILE: { 6807 unsigned ValueID = Record[0]; 6808 uint64_t ModuleId = Record[1]; 6809 uint64_t RawFlags = Record[2]; 6810 unsigned InstCount = Record[3]; 6811 uint64_t RawFunFlags = 0; 6812 uint64_t EntryCount = 0; 6813 unsigned NumRefs = Record[4]; 6814 unsigned NumRORefs = 0, NumWORefs = 0; 6815 int RefListStartIndex = 5; 6816 6817 if (Version >= 4) { 6818 RawFunFlags = Record[4]; 6819 RefListStartIndex = 6; 6820 size_t NumRefsIndex = 5; 6821 if (Version >= 5) { 6822 unsigned NumRORefsOffset = 1; 6823 RefListStartIndex = 7; 6824 if (Version >= 6) { 6825 NumRefsIndex = 6; 6826 EntryCount = Record[5]; 6827 RefListStartIndex = 8; 6828 if (Version >= 7) { 6829 RefListStartIndex = 9; 6830 NumWORefs = Record[8]; 6831 NumRORefsOffset = 2; 6832 } 6833 } 6834 NumRORefs = Record[RefListStartIndex - NumRORefsOffset]; 6835 } 6836 NumRefs = Record[NumRefsIndex]; 6837 } 6838 6839 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6840 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 6841 assert(Record.size() >= RefListStartIndex + NumRefs && 6842 "Record size inconsistent with number of references"); 6843 std::vector<ValueInfo> Refs = makeRefList( 6844 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 6845 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 6846 std::vector<FunctionSummary::EdgeTy> Edges = makeCallList( 6847 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 6848 IsOldProfileFormat, HasProfile, false); 6849 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6850 setSpecialRefs(Refs, NumRORefs, NumWORefs); 6851 auto FS = std::make_unique<FunctionSummary>( 6852 Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount, 6853 std::move(Refs), std::move(Edges), std::move(PendingTypeTests), 6854 std::move(PendingTypeTestAssumeVCalls), 6855 std::move(PendingTypeCheckedLoadVCalls), 6856 std::move(PendingTypeTestAssumeConstVCalls), 6857 std::move(PendingTypeCheckedLoadConstVCalls), 6858 std::move(PendingParamAccesses)); 6859 LastSeenSummary = FS.get(); 6860 LastSeenGUID = VI.getGUID(); 6861 FS->setModulePath(ModuleIdMap[ModuleId]); 6862 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 6863 break; 6864 } 6865 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 6866 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 6867 // they expect all aliasee summaries to be available. 6868 case bitc::FS_COMBINED_ALIAS: { 6869 unsigned ValueID = Record[0]; 6870 uint64_t ModuleId = Record[1]; 6871 uint64_t RawFlags = Record[2]; 6872 unsigned AliaseeValueId = Record[3]; 6873 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6874 auto AS = std::make_unique<AliasSummary>(Flags); 6875 LastSeenSummary = AS.get(); 6876 AS->setModulePath(ModuleIdMap[ModuleId]); 6877 6878 auto AliaseeVI = getValueInfoFromValueId(AliaseeValueId).first; 6879 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath()); 6880 AS->setAliasee(AliaseeVI, AliaseeInModule); 6881 6882 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6883 LastSeenGUID = VI.getGUID(); 6884 TheIndex.addGlobalValueSummary(VI, std::move(AS)); 6885 break; 6886 } 6887 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 6888 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 6889 unsigned ValueID = Record[0]; 6890 uint64_t ModuleId = Record[1]; 6891 uint64_t RawFlags = Record[2]; 6892 unsigned RefArrayStart = 3; 6893 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 6894 /* WriteOnly */ false, 6895 /* Constant */ false, 6896 GlobalObject::VCallVisibilityPublic); 6897 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6898 if (Version >= 5) { 6899 GVF = getDecodedGVarFlags(Record[3]); 6900 RefArrayStart = 4; 6901 } 6902 std::vector<ValueInfo> Refs = 6903 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 6904 auto FS = 6905 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 6906 LastSeenSummary = FS.get(); 6907 FS->setModulePath(ModuleIdMap[ModuleId]); 6908 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6909 LastSeenGUID = VI.getGUID(); 6910 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 6911 break; 6912 } 6913 // FS_COMBINED_ORIGINAL_NAME: [original_name] 6914 case bitc::FS_COMBINED_ORIGINAL_NAME: { 6915 uint64_t OriginalName = Record[0]; 6916 if (!LastSeenSummary) 6917 return error("Name attachment that does not follow a combined record"); 6918 LastSeenSummary->setOriginalName(OriginalName); 6919 TheIndex.addOriginalName(LastSeenGUID, OriginalName); 6920 // Reset the LastSeenSummary 6921 LastSeenSummary = nullptr; 6922 LastSeenGUID = 0; 6923 break; 6924 } 6925 case bitc::FS_TYPE_TESTS: 6926 assert(PendingTypeTests.empty()); 6927 llvm::append_range(PendingTypeTests, Record); 6928 break; 6929 6930 case bitc::FS_TYPE_TEST_ASSUME_VCALLS: 6931 assert(PendingTypeTestAssumeVCalls.empty()); 6932 for (unsigned I = 0; I != Record.size(); I += 2) 6933 PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]}); 6934 break; 6935 6936 case bitc::FS_TYPE_CHECKED_LOAD_VCALLS: 6937 assert(PendingTypeCheckedLoadVCalls.empty()); 6938 for (unsigned I = 0; I != Record.size(); I += 2) 6939 PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]}); 6940 break; 6941 6942 case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL: 6943 PendingTypeTestAssumeConstVCalls.push_back( 6944 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 6945 break; 6946 6947 case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL: 6948 PendingTypeCheckedLoadConstVCalls.push_back( 6949 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 6950 break; 6951 6952 case bitc::FS_CFI_FUNCTION_DEFS: { 6953 std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs(); 6954 for (unsigned I = 0; I != Record.size(); I += 2) 6955 CfiFunctionDefs.insert( 6956 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 6957 break; 6958 } 6959 6960 case bitc::FS_CFI_FUNCTION_DECLS: { 6961 std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls(); 6962 for (unsigned I = 0; I != Record.size(); I += 2) 6963 CfiFunctionDecls.insert( 6964 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 6965 break; 6966 } 6967 6968 case bitc::FS_TYPE_ID: 6969 parseTypeIdSummaryRecord(Record, Strtab, TheIndex); 6970 break; 6971 6972 case bitc::FS_TYPE_ID_METADATA: 6973 parseTypeIdCompatibleVtableSummaryRecord(Record); 6974 break; 6975 6976 case bitc::FS_BLOCK_COUNT: 6977 TheIndex.addBlockCount(Record[0]); 6978 break; 6979 6980 case bitc::FS_PARAM_ACCESS: { 6981 PendingParamAccesses = parseParamAccesses(Record); 6982 break; 6983 } 6984 } 6985 } 6986 llvm_unreachable("Exit infinite loop"); 6987 } 6988 6989 // Parse the module string table block into the Index. 6990 // This populates the ModulePathStringTable map in the index. 6991 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 6992 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 6993 return Err; 6994 6995 SmallVector<uint64_t, 64> Record; 6996 6997 SmallString<128> ModulePath; 6998 ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr; 6999 7000 while (true) { 7001 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 7002 if (!MaybeEntry) 7003 return MaybeEntry.takeError(); 7004 BitstreamEntry Entry = MaybeEntry.get(); 7005 7006 switch (Entry.Kind) { 7007 case BitstreamEntry::SubBlock: // Handled for us already. 7008 case BitstreamEntry::Error: 7009 return error("Malformed block"); 7010 case BitstreamEntry::EndBlock: 7011 return Error::success(); 7012 case BitstreamEntry::Record: 7013 // The interesting case. 7014 break; 7015 } 7016 7017 Record.clear(); 7018 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 7019 if (!MaybeRecord) 7020 return MaybeRecord.takeError(); 7021 switch (MaybeRecord.get()) { 7022 default: // Default behavior: ignore. 7023 break; 7024 case bitc::MST_CODE_ENTRY: { 7025 // MST_ENTRY: [modid, namechar x N] 7026 uint64_t ModuleId = Record[0]; 7027 7028 if (convertToString(Record, 1, ModulePath)) 7029 return error("Invalid record"); 7030 7031 LastSeenModule = TheIndex.addModule(ModulePath, ModuleId); 7032 ModuleIdMap[ModuleId] = LastSeenModule->first(); 7033 7034 ModulePath.clear(); 7035 break; 7036 } 7037 /// MST_CODE_HASH: [5*i32] 7038 case bitc::MST_CODE_HASH: { 7039 if (Record.size() != 5) 7040 return error("Invalid hash length " + Twine(Record.size()).str()); 7041 if (!LastSeenModule) 7042 return error("Invalid hash that does not follow a module path"); 7043 int Pos = 0; 7044 for (auto &Val : Record) { 7045 assert(!(Val >> 32) && "Unexpected high bits set"); 7046 LastSeenModule->second.second[Pos++] = Val; 7047 } 7048 // Reset LastSeenModule to avoid overriding the hash unexpectedly. 7049 LastSeenModule = nullptr; 7050 break; 7051 } 7052 } 7053 } 7054 llvm_unreachable("Exit infinite loop"); 7055 } 7056 7057 namespace { 7058 7059 // FIXME: This class is only here to support the transition to llvm::Error. It 7060 // will be removed once this transition is complete. Clients should prefer to 7061 // deal with the Error value directly, rather than converting to error_code. 7062 class BitcodeErrorCategoryType : public std::error_category { 7063 const char *name() const noexcept override { 7064 return "llvm.bitcode"; 7065 } 7066 7067 std::string message(int IE) const override { 7068 BitcodeError E = static_cast<BitcodeError>(IE); 7069 switch (E) { 7070 case BitcodeError::CorruptedBitcode: 7071 return "Corrupted bitcode"; 7072 } 7073 llvm_unreachable("Unknown error type!"); 7074 } 7075 }; 7076 7077 } // end anonymous namespace 7078 7079 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 7080 7081 const std::error_category &llvm::BitcodeErrorCategory() { 7082 return *ErrorCategory; 7083 } 7084 7085 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream, 7086 unsigned Block, unsigned RecordID) { 7087 if (Error Err = Stream.EnterSubBlock(Block)) 7088 return std::move(Err); 7089 7090 StringRef Strtab; 7091 while (true) { 7092 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 7093 if (!MaybeEntry) 7094 return MaybeEntry.takeError(); 7095 llvm::BitstreamEntry Entry = MaybeEntry.get(); 7096 7097 switch (Entry.Kind) { 7098 case BitstreamEntry::EndBlock: 7099 return Strtab; 7100 7101 case BitstreamEntry::Error: 7102 return error("Malformed block"); 7103 7104 case BitstreamEntry::SubBlock: 7105 if (Error Err = Stream.SkipBlock()) 7106 return std::move(Err); 7107 break; 7108 7109 case BitstreamEntry::Record: 7110 StringRef Blob; 7111 SmallVector<uint64_t, 1> Record; 7112 Expected<unsigned> MaybeRecord = 7113 Stream.readRecord(Entry.ID, Record, &Blob); 7114 if (!MaybeRecord) 7115 return MaybeRecord.takeError(); 7116 if (MaybeRecord.get() == RecordID) 7117 Strtab = Blob; 7118 break; 7119 } 7120 } 7121 } 7122 7123 //===----------------------------------------------------------------------===// 7124 // External interface 7125 //===----------------------------------------------------------------------===// 7126 7127 Expected<std::vector<BitcodeModule>> 7128 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) { 7129 auto FOrErr = getBitcodeFileContents(Buffer); 7130 if (!FOrErr) 7131 return FOrErr.takeError(); 7132 return std::move(FOrErr->Mods); 7133 } 7134 7135 Expected<BitcodeFileContents> 7136 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) { 7137 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 7138 if (!StreamOrErr) 7139 return StreamOrErr.takeError(); 7140 BitstreamCursor &Stream = *StreamOrErr; 7141 7142 BitcodeFileContents F; 7143 while (true) { 7144 uint64_t BCBegin = Stream.getCurrentByteNo(); 7145 7146 // We may be consuming bitcode from a client that leaves garbage at the end 7147 // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to 7148 // the end that there cannot possibly be another module, stop looking. 7149 if (BCBegin + 8 >= Stream.getBitcodeBytes().size()) 7150 return F; 7151 7152 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 7153 if (!MaybeEntry) 7154 return MaybeEntry.takeError(); 7155 llvm::BitstreamEntry Entry = MaybeEntry.get(); 7156 7157 switch (Entry.Kind) { 7158 case BitstreamEntry::EndBlock: 7159 case BitstreamEntry::Error: 7160 return error("Malformed block"); 7161 7162 case BitstreamEntry::SubBlock: { 7163 uint64_t IdentificationBit = -1ull; 7164 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 7165 IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8; 7166 if (Error Err = Stream.SkipBlock()) 7167 return std::move(Err); 7168 7169 { 7170 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 7171 if (!MaybeEntry) 7172 return MaybeEntry.takeError(); 7173 Entry = MaybeEntry.get(); 7174 } 7175 7176 if (Entry.Kind != BitstreamEntry::SubBlock || 7177 Entry.ID != bitc::MODULE_BLOCK_ID) 7178 return error("Malformed block"); 7179 } 7180 7181 if (Entry.ID == bitc::MODULE_BLOCK_ID) { 7182 uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8; 7183 if (Error Err = Stream.SkipBlock()) 7184 return std::move(Err); 7185 7186 F.Mods.push_back({Stream.getBitcodeBytes().slice( 7187 BCBegin, Stream.getCurrentByteNo() - BCBegin), 7188 Buffer.getBufferIdentifier(), IdentificationBit, 7189 ModuleBit}); 7190 continue; 7191 } 7192 7193 if (Entry.ID == bitc::STRTAB_BLOCK_ID) { 7194 Expected<StringRef> Strtab = 7195 readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB); 7196 if (!Strtab) 7197 return Strtab.takeError(); 7198 // This string table is used by every preceding bitcode module that does 7199 // not have its own string table. A bitcode file may have multiple 7200 // string tables if it was created by binary concatenation, for example 7201 // with "llvm-cat -b". 7202 for (BitcodeModule &I : llvm::reverse(F.Mods)) { 7203 if (!I.Strtab.empty()) 7204 break; 7205 I.Strtab = *Strtab; 7206 } 7207 // Similarly, the string table is used by every preceding symbol table; 7208 // normally there will be just one unless the bitcode file was created 7209 // by binary concatenation. 7210 if (!F.Symtab.empty() && F.StrtabForSymtab.empty()) 7211 F.StrtabForSymtab = *Strtab; 7212 continue; 7213 } 7214 7215 if (Entry.ID == bitc::SYMTAB_BLOCK_ID) { 7216 Expected<StringRef> SymtabOrErr = 7217 readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB); 7218 if (!SymtabOrErr) 7219 return SymtabOrErr.takeError(); 7220 7221 // We can expect the bitcode file to have multiple symbol tables if it 7222 // was created by binary concatenation. In that case we silently 7223 // ignore any subsequent symbol tables, which is fine because this is a 7224 // low level function. The client is expected to notice that the number 7225 // of modules in the symbol table does not match the number of modules 7226 // in the input file and regenerate the symbol table. 7227 if (F.Symtab.empty()) 7228 F.Symtab = *SymtabOrErr; 7229 continue; 7230 } 7231 7232 if (Error Err = Stream.SkipBlock()) 7233 return std::move(Err); 7234 continue; 7235 } 7236 case BitstreamEntry::Record: 7237 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 7238 return std::move(E); 7239 continue; 7240 } 7241 } 7242 } 7243 7244 /// Get a lazy one-at-time loading module from bitcode. 7245 /// 7246 /// This isn't always used in a lazy context. In particular, it's also used by 7247 /// \a parseModule(). If this is truly lazy, then we need to eagerly pull 7248 /// in forward-referenced functions from block address references. 7249 /// 7250 /// \param[in] MaterializeAll Set to \c true if we should materialize 7251 /// everything. 7252 Expected<std::unique_ptr<Module>> 7253 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll, 7254 bool ShouldLazyLoadMetadata, bool IsImporting, 7255 DataLayoutCallbackTy DataLayoutCallback) { 7256 BitstreamCursor Stream(Buffer); 7257 7258 std::string ProducerIdentification; 7259 if (IdentificationBit != -1ull) { 7260 if (Error JumpFailed = Stream.JumpToBit(IdentificationBit)) 7261 return std::move(JumpFailed); 7262 if (Error E = 7263 readIdentificationBlock(Stream).moveInto(ProducerIdentification)) 7264 return std::move(E); 7265 } 7266 7267 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 7268 return std::move(JumpFailed); 7269 auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification, 7270 Context); 7271 7272 std::unique_ptr<Module> M = 7273 std::make_unique<Module>(ModuleIdentifier, Context); 7274 M->setMaterializer(R); 7275 7276 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 7277 if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, 7278 IsImporting, DataLayoutCallback)) 7279 return std::move(Err); 7280 7281 if (MaterializeAll) { 7282 // Read in the entire module, and destroy the BitcodeReader. 7283 if (Error Err = M->materializeAll()) 7284 return std::move(Err); 7285 } else { 7286 // Resolve forward references from blockaddresses. 7287 if (Error Err = R->materializeForwardReferencedFunctions()) 7288 return std::move(Err); 7289 } 7290 return std::move(M); 7291 } 7292 7293 Expected<std::unique_ptr<Module>> 7294 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata, 7295 bool IsImporting) { 7296 return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting, 7297 [](StringRef) { return None; }); 7298 } 7299 7300 // Parse the specified bitcode buffer and merge the index into CombinedIndex. 7301 // We don't use ModuleIdentifier here because the client may need to control the 7302 // module path used in the combined summary (e.g. when reading summaries for 7303 // regular LTO modules). 7304 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex, 7305 StringRef ModulePath, uint64_t ModuleId) { 7306 BitstreamCursor Stream(Buffer); 7307 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 7308 return JumpFailed; 7309 7310 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex, 7311 ModulePath, ModuleId); 7312 return R.parseModule(); 7313 } 7314 7315 // Parse the specified bitcode buffer, returning the function info index. 7316 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() { 7317 BitstreamCursor Stream(Buffer); 7318 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 7319 return std::move(JumpFailed); 7320 7321 auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false); 7322 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index, 7323 ModuleIdentifier, 0); 7324 7325 if (Error Err = R.parseModule()) 7326 return std::move(Err); 7327 7328 return std::move(Index); 7329 } 7330 7331 static Expected<bool> getEnableSplitLTOUnitFlag(BitstreamCursor &Stream, 7332 unsigned ID) { 7333 if (Error Err = Stream.EnterSubBlock(ID)) 7334 return std::move(Err); 7335 SmallVector<uint64_t, 64> Record; 7336 7337 while (true) { 7338 BitstreamEntry Entry; 7339 if (Error E = Stream.advanceSkippingSubblocks().moveInto(Entry)) 7340 return std::move(E); 7341 7342 switch (Entry.Kind) { 7343 case BitstreamEntry::SubBlock: // Handled for us already. 7344 case BitstreamEntry::Error: 7345 return error("Malformed block"); 7346 case BitstreamEntry::EndBlock: 7347 // If no flags record found, conservatively return true to mimic 7348 // behavior before this flag was added. 7349 return true; 7350 case BitstreamEntry::Record: 7351 // The interesting case. 7352 break; 7353 } 7354 7355 // Look for the FS_FLAGS record. 7356 Record.clear(); 7357 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 7358 if (!MaybeBitCode) 7359 return MaybeBitCode.takeError(); 7360 switch (MaybeBitCode.get()) { 7361 default: // Default behavior: ignore. 7362 break; 7363 case bitc::FS_FLAGS: { // [flags] 7364 uint64_t Flags = Record[0]; 7365 // Scan flags. 7366 assert(Flags <= 0x7f && "Unexpected bits in flag"); 7367 7368 return Flags & 0x8; 7369 } 7370 } 7371 } 7372 llvm_unreachable("Exit infinite loop"); 7373 } 7374 7375 // Check if the given bitcode buffer contains a global value summary block. 7376 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() { 7377 BitstreamCursor Stream(Buffer); 7378 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 7379 return std::move(JumpFailed); 7380 7381 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 7382 return std::move(Err); 7383 7384 while (true) { 7385 llvm::BitstreamEntry Entry; 7386 if (Error E = Stream.advance().moveInto(Entry)) 7387 return std::move(E); 7388 7389 switch (Entry.Kind) { 7390 case BitstreamEntry::Error: 7391 return error("Malformed block"); 7392 case BitstreamEntry::EndBlock: 7393 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false, 7394 /*EnableSplitLTOUnit=*/false}; 7395 7396 case BitstreamEntry::SubBlock: 7397 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) { 7398 Expected<bool> EnableSplitLTOUnit = 7399 getEnableSplitLTOUnitFlag(Stream, Entry.ID); 7400 if (!EnableSplitLTOUnit) 7401 return EnableSplitLTOUnit.takeError(); 7402 return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true, 7403 *EnableSplitLTOUnit}; 7404 } 7405 7406 if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) { 7407 Expected<bool> EnableSplitLTOUnit = 7408 getEnableSplitLTOUnitFlag(Stream, Entry.ID); 7409 if (!EnableSplitLTOUnit) 7410 return EnableSplitLTOUnit.takeError(); 7411 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true, 7412 *EnableSplitLTOUnit}; 7413 } 7414 7415 // Ignore other sub-blocks. 7416 if (Error Err = Stream.SkipBlock()) 7417 return std::move(Err); 7418 continue; 7419 7420 case BitstreamEntry::Record: 7421 if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID)) 7422 continue; 7423 else 7424 return StreamFailed.takeError(); 7425 } 7426 } 7427 } 7428 7429 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) { 7430 Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer); 7431 if (!MsOrErr) 7432 return MsOrErr.takeError(); 7433 7434 if (MsOrErr->size() != 1) 7435 return error("Expected a single module"); 7436 7437 return (*MsOrErr)[0]; 7438 } 7439 7440 Expected<std::unique_ptr<Module>> 7441 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context, 7442 bool ShouldLazyLoadMetadata, bool IsImporting) { 7443 Expected<BitcodeModule> BM = getSingleModule(Buffer); 7444 if (!BM) 7445 return BM.takeError(); 7446 7447 return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting); 7448 } 7449 7450 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule( 7451 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context, 7452 bool ShouldLazyLoadMetadata, bool IsImporting) { 7453 auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata, 7454 IsImporting); 7455 if (MOrErr) 7456 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer)); 7457 return MOrErr; 7458 } 7459 7460 Expected<std::unique_ptr<Module>> 7461 BitcodeModule::parseModule(LLVMContext &Context, 7462 DataLayoutCallbackTy DataLayoutCallback) { 7463 return getModuleImpl(Context, true, false, false, DataLayoutCallback); 7464 // TODO: Restore the use-lists to the in-memory state when the bitcode was 7465 // written. We must defer until the Module has been fully materialized. 7466 } 7467 7468 Expected<std::unique_ptr<Module>> 7469 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context, 7470 DataLayoutCallbackTy DataLayoutCallback) { 7471 Expected<BitcodeModule> BM = getSingleModule(Buffer); 7472 if (!BM) 7473 return BM.takeError(); 7474 7475 return BM->parseModule(Context, DataLayoutCallback); 7476 } 7477 7478 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) { 7479 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 7480 if (!StreamOrErr) 7481 return StreamOrErr.takeError(); 7482 7483 return readTriple(*StreamOrErr); 7484 } 7485 7486 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) { 7487 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 7488 if (!StreamOrErr) 7489 return StreamOrErr.takeError(); 7490 7491 return hasObjCCategory(*StreamOrErr); 7492 } 7493 7494 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) { 7495 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 7496 if (!StreamOrErr) 7497 return StreamOrErr.takeError(); 7498 7499 return readIdentificationCode(*StreamOrErr); 7500 } 7501 7502 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer, 7503 ModuleSummaryIndex &CombinedIndex, 7504 uint64_t ModuleId) { 7505 Expected<BitcodeModule> BM = getSingleModule(Buffer); 7506 if (!BM) 7507 return BM.takeError(); 7508 7509 return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId); 7510 } 7511 7512 Expected<std::unique_ptr<ModuleSummaryIndex>> 7513 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) { 7514 Expected<BitcodeModule> BM = getSingleModule(Buffer); 7515 if (!BM) 7516 return BM.takeError(); 7517 7518 return BM->getSummary(); 7519 } 7520 7521 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) { 7522 Expected<BitcodeModule> BM = getSingleModule(Buffer); 7523 if (!BM) 7524 return BM.takeError(); 7525 7526 return BM->getLTOInfo(); 7527 } 7528 7529 Expected<std::unique_ptr<ModuleSummaryIndex>> 7530 llvm::getModuleSummaryIndexForFile(StringRef Path, 7531 bool IgnoreEmptyThinLTOIndexFile) { 7532 ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr = 7533 MemoryBuffer::getFileOrSTDIN(Path); 7534 if (!FileOrErr) 7535 return errorCodeToError(FileOrErr.getError()); 7536 if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize()) 7537 return nullptr; 7538 return getModuleSummaryIndex(**FileOrErr); 7539 } 7540