1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Bitcode/BitcodeReader.h" 10 #include "MetadataLoader.h" 11 #include "ValueList.h" 12 #include "llvm/ADT/APFloat.h" 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/StringRef.h" 21 #include "llvm/ADT/Triple.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/Bitcode/BitcodeCommon.h" 24 #include "llvm/Bitcode/LLVMBitCodes.h" 25 #include "llvm/Bitstream/BitstreamReader.h" 26 #include "llvm/Config/llvm-config.h" 27 #include "llvm/IR/Argument.h" 28 #include "llvm/IR/Attributes.h" 29 #include "llvm/IR/AutoUpgrade.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/CallingConv.h" 32 #include "llvm/IR/Comdat.h" 33 #include "llvm/IR/Constant.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/DebugInfo.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GVMaterializer.h" 42 #include "llvm/IR/GetElementPtrTypeIterator.h" 43 #include "llvm/IR/GlobalAlias.h" 44 #include "llvm/IR/GlobalIFunc.h" 45 #include "llvm/IR/GlobalObject.h" 46 #include "llvm/IR/GlobalValue.h" 47 #include "llvm/IR/GlobalVariable.h" 48 #include "llvm/IR/InlineAsm.h" 49 #include "llvm/IR/InstIterator.h" 50 #include "llvm/IR/InstrTypes.h" 51 #include "llvm/IR/Instruction.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/IntrinsicsAArch64.h" 55 #include "llvm/IR/IntrinsicsARM.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/Metadata.h" 58 #include "llvm/IR/Module.h" 59 #include "llvm/IR/ModuleSummaryIndex.h" 60 #include "llvm/IR/Operator.h" 61 #include "llvm/IR/Type.h" 62 #include "llvm/IR/Value.h" 63 #include "llvm/IR/Verifier.h" 64 #include "llvm/Support/AtomicOrdering.h" 65 #include "llvm/Support/Casting.h" 66 #include "llvm/Support/CommandLine.h" 67 #include "llvm/Support/Compiler.h" 68 #include "llvm/Support/Debug.h" 69 #include "llvm/Support/Error.h" 70 #include "llvm/Support/ErrorHandling.h" 71 #include "llvm/Support/ErrorOr.h" 72 #include "llvm/Support/ManagedStatic.h" 73 #include "llvm/Support/MathExtras.h" 74 #include "llvm/Support/MemoryBuffer.h" 75 #include "llvm/Support/raw_ostream.h" 76 #include <algorithm> 77 #include <cassert> 78 #include <cstddef> 79 #include <cstdint> 80 #include <deque> 81 #include <map> 82 #include <memory> 83 #include <set> 84 #include <string> 85 #include <system_error> 86 #include <tuple> 87 #include <utility> 88 #include <vector> 89 90 using namespace llvm; 91 92 static cl::opt<bool> PrintSummaryGUIDs( 93 "print-summary-global-ids", cl::init(false), cl::Hidden, 94 cl::desc( 95 "Print the global id for each value when reading the module summary")); 96 97 static cl::opt<bool> ExpandConstantExprs( 98 "expand-constant-exprs", cl::Hidden, 99 cl::desc( 100 "Expand constant expressions to instructions for testing purposes")); 101 102 namespace { 103 104 enum { 105 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 106 }; 107 108 } // end anonymous namespace 109 110 static Error error(const Twine &Message) { 111 return make_error<StringError>( 112 Message, make_error_code(BitcodeError::CorruptedBitcode)); 113 } 114 115 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) { 116 if (!Stream.canSkipToPos(4)) 117 return createStringError(std::errc::illegal_byte_sequence, 118 "file too small to contain bitcode header"); 119 for (unsigned C : {'B', 'C'}) 120 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) { 121 if (Res.get() != C) 122 return createStringError(std::errc::illegal_byte_sequence, 123 "file doesn't start with bitcode header"); 124 } else 125 return Res.takeError(); 126 for (unsigned C : {0x0, 0xC, 0xE, 0xD}) 127 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) { 128 if (Res.get() != C) 129 return createStringError(std::errc::illegal_byte_sequence, 130 "file doesn't start with bitcode header"); 131 } else 132 return Res.takeError(); 133 return Error::success(); 134 } 135 136 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) { 137 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart(); 138 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize(); 139 140 if (Buffer.getBufferSize() & 3) 141 return error("Invalid bitcode signature"); 142 143 // If we have a wrapper header, parse it and ignore the non-bc file contents. 144 // The magic number is 0x0B17C0DE stored in little endian. 145 if (isBitcodeWrapper(BufPtr, BufEnd)) 146 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 147 return error("Invalid bitcode wrapper header"); 148 149 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd)); 150 if (Error Err = hasInvalidBitcodeHeader(Stream)) 151 return std::move(Err); 152 153 return std::move(Stream); 154 } 155 156 /// Convert a string from a record into an std::string, return true on failure. 157 template <typename StrTy> 158 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 159 StrTy &Result) { 160 if (Idx > Record.size()) 161 return true; 162 163 Result.append(Record.begin() + Idx, Record.end()); 164 return false; 165 } 166 167 // Strip all the TBAA attachment for the module. 168 static void stripTBAA(Module *M) { 169 for (auto &F : *M) { 170 if (F.isMaterializable()) 171 continue; 172 for (auto &I : instructions(F)) 173 I.setMetadata(LLVMContext::MD_tbaa, nullptr); 174 } 175 } 176 177 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the 178 /// "epoch" encoded in the bitcode, and return the producer name if any. 179 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) { 180 if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 181 return std::move(Err); 182 183 // Read all the records. 184 SmallVector<uint64_t, 64> Record; 185 186 std::string ProducerIdentification; 187 188 while (true) { 189 BitstreamEntry Entry; 190 if (Error E = Stream.advance().moveInto(Entry)) 191 return std::move(E); 192 193 switch (Entry.Kind) { 194 default: 195 case BitstreamEntry::Error: 196 return error("Malformed block"); 197 case BitstreamEntry::EndBlock: 198 return ProducerIdentification; 199 case BitstreamEntry::Record: 200 // The interesting case. 201 break; 202 } 203 204 // Read a record. 205 Record.clear(); 206 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 207 if (!MaybeBitCode) 208 return MaybeBitCode.takeError(); 209 switch (MaybeBitCode.get()) { 210 default: // Default behavior: reject 211 return error("Invalid value"); 212 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N] 213 convertToString(Record, 0, ProducerIdentification); 214 break; 215 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 216 unsigned epoch = (unsigned)Record[0]; 217 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 218 return error( 219 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 220 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 221 } 222 } 223 } 224 } 225 } 226 227 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) { 228 // We expect a number of well-defined blocks, though we don't necessarily 229 // need to understand them all. 230 while (true) { 231 if (Stream.AtEndOfStream()) 232 return ""; 233 234 BitstreamEntry Entry; 235 if (Error E = Stream.advance().moveInto(Entry)) 236 return std::move(E); 237 238 switch (Entry.Kind) { 239 case BitstreamEntry::EndBlock: 240 case BitstreamEntry::Error: 241 return error("Malformed block"); 242 243 case BitstreamEntry::SubBlock: 244 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) 245 return readIdentificationBlock(Stream); 246 247 // Ignore other sub-blocks. 248 if (Error Err = Stream.SkipBlock()) 249 return std::move(Err); 250 continue; 251 case BitstreamEntry::Record: 252 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 253 return std::move(E); 254 continue; 255 } 256 } 257 } 258 259 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) { 260 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 261 return std::move(Err); 262 263 SmallVector<uint64_t, 64> Record; 264 // Read all the records for this module. 265 266 while (true) { 267 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 268 if (!MaybeEntry) 269 return MaybeEntry.takeError(); 270 BitstreamEntry Entry = MaybeEntry.get(); 271 272 switch (Entry.Kind) { 273 case BitstreamEntry::SubBlock: // Handled for us already. 274 case BitstreamEntry::Error: 275 return error("Malformed block"); 276 case BitstreamEntry::EndBlock: 277 return false; 278 case BitstreamEntry::Record: 279 // The interesting case. 280 break; 281 } 282 283 // Read a record. 284 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 285 if (!MaybeRecord) 286 return MaybeRecord.takeError(); 287 switch (MaybeRecord.get()) { 288 default: 289 break; // Default behavior, ignore unknown content. 290 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 291 std::string S; 292 if (convertToString(Record, 0, S)) 293 return error("Invalid section name record"); 294 // Check for the i386 and other (x86_64, ARM) conventions 295 if (S.find("__DATA,__objc_catlist") != std::string::npos || 296 S.find("__OBJC,__category") != std::string::npos) 297 return true; 298 break; 299 } 300 } 301 Record.clear(); 302 } 303 llvm_unreachable("Exit infinite loop"); 304 } 305 306 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) { 307 // We expect a number of well-defined blocks, though we don't necessarily 308 // need to understand them all. 309 while (true) { 310 BitstreamEntry Entry; 311 if (Error E = Stream.advance().moveInto(Entry)) 312 return std::move(E); 313 314 switch (Entry.Kind) { 315 case BitstreamEntry::Error: 316 return error("Malformed block"); 317 case BitstreamEntry::EndBlock: 318 return false; 319 320 case BitstreamEntry::SubBlock: 321 if (Entry.ID == bitc::MODULE_BLOCK_ID) 322 return hasObjCCategoryInModule(Stream); 323 324 // Ignore other sub-blocks. 325 if (Error Err = Stream.SkipBlock()) 326 return std::move(Err); 327 continue; 328 329 case BitstreamEntry::Record: 330 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 331 return std::move(E); 332 continue; 333 } 334 } 335 } 336 337 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) { 338 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 339 return std::move(Err); 340 341 SmallVector<uint64_t, 64> Record; 342 343 std::string Triple; 344 345 // Read all the records for this module. 346 while (true) { 347 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 348 if (!MaybeEntry) 349 return MaybeEntry.takeError(); 350 BitstreamEntry Entry = MaybeEntry.get(); 351 352 switch (Entry.Kind) { 353 case BitstreamEntry::SubBlock: // Handled for us already. 354 case BitstreamEntry::Error: 355 return error("Malformed block"); 356 case BitstreamEntry::EndBlock: 357 return Triple; 358 case BitstreamEntry::Record: 359 // The interesting case. 360 break; 361 } 362 363 // Read a record. 364 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 365 if (!MaybeRecord) 366 return MaybeRecord.takeError(); 367 switch (MaybeRecord.get()) { 368 default: break; // Default behavior, ignore unknown content. 369 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 370 std::string S; 371 if (convertToString(Record, 0, S)) 372 return error("Invalid triple record"); 373 Triple = S; 374 break; 375 } 376 } 377 Record.clear(); 378 } 379 llvm_unreachable("Exit infinite loop"); 380 } 381 382 static Expected<std::string> readTriple(BitstreamCursor &Stream) { 383 // We expect a number of well-defined blocks, though we don't necessarily 384 // need to understand them all. 385 while (true) { 386 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 387 if (!MaybeEntry) 388 return MaybeEntry.takeError(); 389 BitstreamEntry Entry = MaybeEntry.get(); 390 391 switch (Entry.Kind) { 392 case BitstreamEntry::Error: 393 return error("Malformed block"); 394 case BitstreamEntry::EndBlock: 395 return ""; 396 397 case BitstreamEntry::SubBlock: 398 if (Entry.ID == bitc::MODULE_BLOCK_ID) 399 return readModuleTriple(Stream); 400 401 // Ignore other sub-blocks. 402 if (Error Err = Stream.SkipBlock()) 403 return std::move(Err); 404 continue; 405 406 case BitstreamEntry::Record: 407 if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 408 continue; 409 else 410 return Skipped.takeError(); 411 } 412 } 413 } 414 415 namespace { 416 417 class BitcodeReaderBase { 418 protected: 419 BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab) 420 : Stream(std::move(Stream)), Strtab(Strtab) { 421 this->Stream.setBlockInfo(&BlockInfo); 422 } 423 424 BitstreamBlockInfo BlockInfo; 425 BitstreamCursor Stream; 426 StringRef Strtab; 427 428 /// In version 2 of the bitcode we store names of global values and comdats in 429 /// a string table rather than in the VST. 430 bool UseStrtab = false; 431 432 Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record); 433 434 /// If this module uses a string table, pop the reference to the string table 435 /// and return the referenced string and the rest of the record. Otherwise 436 /// just return the record itself. 437 std::pair<StringRef, ArrayRef<uint64_t>> 438 readNameFromStrtab(ArrayRef<uint64_t> Record); 439 440 Error readBlockInfo(); 441 442 // Contains an arbitrary and optional string identifying the bitcode producer 443 std::string ProducerIdentification; 444 445 Error error(const Twine &Message); 446 }; 447 448 } // end anonymous namespace 449 450 Error BitcodeReaderBase::error(const Twine &Message) { 451 std::string FullMsg = Message.str(); 452 if (!ProducerIdentification.empty()) 453 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " + 454 LLVM_VERSION_STRING "')"; 455 return ::error(FullMsg); 456 } 457 458 Expected<unsigned> 459 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) { 460 if (Record.empty()) 461 return error("Invalid version record"); 462 unsigned ModuleVersion = Record[0]; 463 if (ModuleVersion > 2) 464 return error("Invalid value"); 465 UseStrtab = ModuleVersion >= 2; 466 return ModuleVersion; 467 } 468 469 std::pair<StringRef, ArrayRef<uint64_t>> 470 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) { 471 if (!UseStrtab) 472 return {"", Record}; 473 // Invalid reference. Let the caller complain about the record being empty. 474 if (Record[0] + Record[1] > Strtab.size()) 475 return {"", {}}; 476 return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)}; 477 } 478 479 namespace { 480 481 /// This represents a constant expression or constant aggregate using a custom 482 /// structure internal to the bitcode reader. Later, this structure will be 483 /// expanded by materializeValue() either into a constant expression/aggregate, 484 /// or into an instruction sequence at the point of use. This allows us to 485 /// upgrade bitcode using constant expressions even if this kind of constant 486 /// expression is no longer supported. 487 class BitcodeConstant final : public Value, 488 TrailingObjects<BitcodeConstant, unsigned> { 489 friend TrailingObjects; 490 491 // Value subclass ID: Pick largest possible value to avoid any clashes. 492 static constexpr uint8_t SubclassID = 255; 493 494 public: 495 // Opcodes used for non-expressions. This includes constant aggregates 496 // (struct, array, vector) that might need expansion, as well as non-leaf 497 // constants that don't need expansion (no_cfi, dso_local, blockaddress), 498 // but still go through BitcodeConstant to avoid different uselist orders 499 // between the two cases. 500 static constexpr uint8_t ConstantStructOpcode = 255; 501 static constexpr uint8_t ConstantArrayOpcode = 254; 502 static constexpr uint8_t ConstantVectorOpcode = 253; 503 static constexpr uint8_t NoCFIOpcode = 252; 504 static constexpr uint8_t DSOLocalEquivalentOpcode = 251; 505 static constexpr uint8_t BlockAddressOpcode = 250; 506 static constexpr uint8_t FirstSpecialOpcode = BlockAddressOpcode; 507 508 // Separate struct to make passing different number of parameters to 509 // BitcodeConstant::create() more convenient. 510 struct ExtraInfo { 511 uint8_t Opcode; 512 uint8_t Flags; 513 unsigned Extra; 514 Type *SrcElemTy; 515 516 ExtraInfo(uint8_t Opcode, uint8_t Flags = 0, unsigned Extra = 0, 517 Type *SrcElemTy = nullptr) 518 : Opcode(Opcode), Flags(Flags), Extra(Extra), SrcElemTy(SrcElemTy) {} 519 }; 520 521 uint8_t Opcode; 522 uint8_t Flags; 523 unsigned NumOperands; 524 unsigned Extra; // GEP inrange index or blockaddress BB id. 525 Type *SrcElemTy; // GEP source element type. 526 527 private: 528 BitcodeConstant(Type *Ty, const ExtraInfo &Info, ArrayRef<unsigned> OpIDs) 529 : Value(Ty, SubclassID), Opcode(Info.Opcode), Flags(Info.Flags), 530 NumOperands(OpIDs.size()), Extra(Info.Extra), 531 SrcElemTy(Info.SrcElemTy) { 532 std::uninitialized_copy(OpIDs.begin(), OpIDs.end(), 533 getTrailingObjects<unsigned>()); 534 } 535 536 BitcodeConstant &operator=(const BitcodeConstant &) = delete; 537 538 public: 539 static BitcodeConstant *create(BumpPtrAllocator &A, Type *Ty, 540 const ExtraInfo &Info, 541 ArrayRef<unsigned> OpIDs) { 542 void *Mem = A.Allocate(totalSizeToAlloc<unsigned>(OpIDs.size()), 543 alignof(BitcodeConstant)); 544 return new (Mem) BitcodeConstant(Ty, Info, OpIDs); 545 } 546 547 static bool classof(const Value *V) { return V->getValueID() == SubclassID; } 548 549 ArrayRef<unsigned> getOperandIDs() const { 550 return makeArrayRef(getTrailingObjects<unsigned>(), NumOperands); 551 } 552 553 Optional<unsigned> getInRangeIndex() const { 554 assert(Opcode == Instruction::GetElementPtr); 555 if (Extra == (unsigned)-1) 556 return None; 557 return Extra; 558 } 559 560 const char *getOpcodeName() const { 561 return Instruction::getOpcodeName(Opcode); 562 } 563 }; 564 565 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer { 566 LLVMContext &Context; 567 Module *TheModule = nullptr; 568 // Next offset to start scanning for lazy parsing of function bodies. 569 uint64_t NextUnreadBit = 0; 570 // Last function offset found in the VST. 571 uint64_t LastFunctionBlockBit = 0; 572 bool SeenValueSymbolTable = false; 573 uint64_t VSTOffset = 0; 574 575 std::vector<std::string> SectionTable; 576 std::vector<std::string> GCTable; 577 578 std::vector<Type *> TypeList; 579 /// Track type IDs of contained types. Order is the same as the contained 580 /// types of a Type*. This is used during upgrades of typed pointer IR in 581 /// opaque pointer mode. 582 DenseMap<unsigned, SmallVector<unsigned, 1>> ContainedTypeIDs; 583 /// In some cases, we need to create a type ID for a type that was not 584 /// explicitly encoded in the bitcode, or we don't know about at the current 585 /// point. For example, a global may explicitly encode the value type ID, but 586 /// not have a type ID for the pointer to value type, for which we create a 587 /// virtual type ID instead. This map stores the new type ID that was created 588 /// for the given pair of Type and contained type ID. 589 DenseMap<std::pair<Type *, unsigned>, unsigned> VirtualTypeIDs; 590 DenseMap<Function *, unsigned> FunctionTypeIDs; 591 /// Allocator for BitcodeConstants. This should come before ValueList, 592 /// because the ValueList might hold ValueHandles to these constants, so 593 /// ValueList must be destroyed before Alloc. 594 BumpPtrAllocator Alloc; 595 BitcodeReaderValueList ValueList; 596 Optional<MetadataLoader> MDLoader; 597 std::vector<Comdat *> ComdatList; 598 DenseSet<GlobalObject *> ImplicitComdatObjects; 599 SmallVector<Instruction *, 64> InstructionList; 600 601 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits; 602 std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInits; 603 604 struct FunctionOperandInfo { 605 Function *F; 606 unsigned PersonalityFn; 607 unsigned Prefix; 608 unsigned Prologue; 609 }; 610 std::vector<FunctionOperandInfo> FunctionOperands; 611 612 /// The set of attributes by index. Index zero in the file is for null, and 613 /// is thus not represented here. As such all indices are off by one. 614 std::vector<AttributeList> MAttributes; 615 616 /// The set of attribute groups. 617 std::map<unsigned, AttributeList> MAttributeGroups; 618 619 /// While parsing a function body, this is a list of the basic blocks for the 620 /// function. 621 std::vector<BasicBlock*> FunctionBBs; 622 623 // When reading the module header, this list is populated with functions that 624 // have bodies later in the file. 625 std::vector<Function*> FunctionsWithBodies; 626 627 // When intrinsic functions are encountered which require upgrading they are 628 // stored here with their replacement function. 629 using UpdatedIntrinsicMap = DenseMap<Function *, Function *>; 630 UpdatedIntrinsicMap UpgradedIntrinsics; 631 // Intrinsics which were remangled because of types rename 632 UpdatedIntrinsicMap RemangledIntrinsics; 633 634 // Several operations happen after the module header has been read, but 635 // before function bodies are processed. This keeps track of whether 636 // we've done this yet. 637 bool SeenFirstFunctionBody = false; 638 639 /// When function bodies are initially scanned, this map contains info about 640 /// where to find deferred function body in the stream. 641 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 642 643 /// When Metadata block is initially scanned when parsing the module, we may 644 /// choose to defer parsing of the metadata. This vector contains info about 645 /// which Metadata blocks are deferred. 646 std::vector<uint64_t> DeferredMetadataInfo; 647 648 /// These are basic blocks forward-referenced by block addresses. They are 649 /// inserted lazily into functions when they're loaded. The basic block ID is 650 /// its index into the vector. 651 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 652 std::deque<Function *> BasicBlockFwdRefQueue; 653 654 /// These are Functions that contain BlockAddresses which refer a different 655 /// Function. When parsing the different Function, queue Functions that refer 656 /// to the different Function. Those Functions must be materialized in order 657 /// to resolve their BlockAddress constants before the different Function 658 /// gets moved into another Module. 659 std::vector<Function *> BackwardRefFunctions; 660 661 /// Indicates that we are using a new encoding for instruction operands where 662 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 663 /// instruction number, for a more compact encoding. Some instruction 664 /// operands are not relative to the instruction ID: basic block numbers, and 665 /// types. Once the old style function blocks have been phased out, we would 666 /// not need this flag. 667 bool UseRelativeIDs = false; 668 669 /// True if all functions will be materialized, negating the need to process 670 /// (e.g.) blockaddress forward references. 671 bool WillMaterializeAllForwardRefs = false; 672 673 bool StripDebugInfo = false; 674 TBAAVerifier TBAAVerifyHelper; 675 676 std::vector<std::string> BundleTags; 677 SmallVector<SyncScope::ID, 8> SSIDs; 678 679 public: 680 BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 681 StringRef ProducerIdentification, LLVMContext &Context); 682 683 Error materializeForwardReferencedFunctions(); 684 685 Error materialize(GlobalValue *GV) override; 686 Error materializeModule() override; 687 std::vector<StructType *> getIdentifiedStructTypes() const override; 688 689 /// Main interface to parsing a bitcode buffer. 690 /// \returns true if an error occurred. 691 Error parseBitcodeInto( 692 Module *M, bool ShouldLazyLoadMetadata, bool IsImporting, 693 DataLayoutCallbackTy DataLayoutCallback); 694 695 static uint64_t decodeSignRotatedValue(uint64_t V); 696 697 /// Materialize any deferred Metadata block. 698 Error materializeMetadata() override; 699 700 void setStripDebugInfo() override; 701 702 private: 703 std::vector<StructType *> IdentifiedStructTypes; 704 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 705 StructType *createIdentifiedStructType(LLVMContext &Context); 706 707 static constexpr unsigned InvalidTypeID = ~0u; 708 709 Type *getTypeByID(unsigned ID); 710 Type *getPtrElementTypeByID(unsigned ID); 711 unsigned getContainedTypeID(unsigned ID, unsigned Idx = 0); 712 unsigned getVirtualTypeID(Type *Ty, ArrayRef<unsigned> ContainedTypeIDs = {}); 713 714 Expected<Value *> materializeValue(unsigned ValID, BasicBlock *InsertBB); 715 Expected<Constant *> getValueForInitializer(unsigned ID); 716 717 Value *getFnValueByID(unsigned ID, Type *Ty, unsigned TyID, 718 BasicBlock *ConstExprInsertBB) { 719 if (Ty && Ty->isMetadataTy()) 720 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 721 return ValueList.getValueFwdRef(ID, Ty, TyID, ConstExprInsertBB); 722 } 723 724 Metadata *getFnMetadataByID(unsigned ID) { 725 return MDLoader->getMetadataFwdRefOrLoad(ID); 726 } 727 728 BasicBlock *getBasicBlock(unsigned ID) const { 729 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 730 return FunctionBBs[ID]; 731 } 732 733 AttributeList getAttributes(unsigned i) const { 734 if (i-1 < MAttributes.size()) 735 return MAttributes[i-1]; 736 return AttributeList(); 737 } 738 739 /// Read a value/type pair out of the specified record from slot 'Slot'. 740 /// Increment Slot past the number of slots used in the record. Return true on 741 /// failure. 742 bool getValueTypePair(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 743 unsigned InstNum, Value *&ResVal, unsigned &TypeID, 744 BasicBlock *ConstExprInsertBB) { 745 if (Slot == Record.size()) return true; 746 unsigned ValNo = (unsigned)Record[Slot++]; 747 // Adjust the ValNo, if it was encoded relative to the InstNum. 748 if (UseRelativeIDs) 749 ValNo = InstNum - ValNo; 750 if (ValNo < InstNum) { 751 // If this is not a forward reference, just return the value we already 752 // have. 753 TypeID = ValueList.getTypeID(ValNo); 754 ResVal = getFnValueByID(ValNo, nullptr, TypeID, ConstExprInsertBB); 755 assert((!ResVal || ResVal->getType() == getTypeByID(TypeID)) && 756 "Incorrect type ID stored for value"); 757 return ResVal == nullptr; 758 } 759 if (Slot == Record.size()) 760 return true; 761 762 TypeID = (unsigned)Record[Slot++]; 763 ResVal = getFnValueByID(ValNo, getTypeByID(TypeID), TypeID, 764 ConstExprInsertBB); 765 return ResVal == nullptr; 766 } 767 768 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 769 /// past the number of slots used by the value in the record. Return true if 770 /// there is an error. 771 bool popValue(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 772 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal, 773 BasicBlock *ConstExprInsertBB) { 774 if (getValue(Record, Slot, InstNum, Ty, TyID, ResVal, ConstExprInsertBB)) 775 return true; 776 // All values currently take a single record slot. 777 ++Slot; 778 return false; 779 } 780 781 /// Like popValue, but does not increment the Slot number. 782 bool getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 783 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal, 784 BasicBlock *ConstExprInsertBB) { 785 ResVal = getValue(Record, Slot, InstNum, Ty, TyID, ConstExprInsertBB); 786 return ResVal == nullptr; 787 } 788 789 /// Version of getValue that returns ResVal directly, or 0 if there is an 790 /// error. 791 Value *getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 792 unsigned InstNum, Type *Ty, unsigned TyID, 793 BasicBlock *ConstExprInsertBB) { 794 if (Slot == Record.size()) return nullptr; 795 unsigned ValNo = (unsigned)Record[Slot]; 796 // Adjust the ValNo, if it was encoded relative to the InstNum. 797 if (UseRelativeIDs) 798 ValNo = InstNum - ValNo; 799 return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB); 800 } 801 802 /// Like getValue, but decodes signed VBRs. 803 Value *getValueSigned(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 804 unsigned InstNum, Type *Ty, unsigned TyID, 805 BasicBlock *ConstExprInsertBB) { 806 if (Slot == Record.size()) return nullptr; 807 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 808 // Adjust the ValNo, if it was encoded relative to the InstNum. 809 if (UseRelativeIDs) 810 ValNo = InstNum - ValNo; 811 return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB); 812 } 813 814 /// Upgrades old-style typeless byval/sret/inalloca attributes by adding the 815 /// corresponding argument's pointee type. Also upgrades intrinsics that now 816 /// require an elementtype attribute. 817 Error propagateAttributeTypes(CallBase *CB, ArrayRef<unsigned> ArgsTys); 818 819 /// Converts alignment exponent (i.e. power of two (or zero)) to the 820 /// corresponding alignment to use. If alignment is too large, returns 821 /// a corresponding error code. 822 Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment); 823 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 824 Error parseModule( 825 uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false, 826 DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; }); 827 828 Error parseComdatRecord(ArrayRef<uint64_t> Record); 829 Error parseGlobalVarRecord(ArrayRef<uint64_t> Record); 830 Error parseFunctionRecord(ArrayRef<uint64_t> Record); 831 Error parseGlobalIndirectSymbolRecord(unsigned BitCode, 832 ArrayRef<uint64_t> Record); 833 834 Error parseAttributeBlock(); 835 Error parseAttributeGroupBlock(); 836 Error parseTypeTable(); 837 Error parseTypeTableBody(); 838 Error parseOperandBundleTags(); 839 Error parseSyncScopeNames(); 840 841 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 842 unsigned NameIndex, Triple &TT); 843 void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F, 844 ArrayRef<uint64_t> Record); 845 Error parseValueSymbolTable(uint64_t Offset = 0); 846 Error parseGlobalValueSymbolTable(); 847 Error parseConstants(); 848 Error rememberAndSkipFunctionBodies(); 849 Error rememberAndSkipFunctionBody(); 850 /// Save the positions of the Metadata blocks and skip parsing the blocks. 851 Error rememberAndSkipMetadata(); 852 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType); 853 Error parseFunctionBody(Function *F); 854 Error globalCleanup(); 855 Error resolveGlobalAndIndirectSymbolInits(); 856 Error parseUseLists(); 857 Error findFunctionInStream( 858 Function *F, 859 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 860 861 SyncScope::ID getDecodedSyncScopeID(unsigned Val); 862 }; 863 864 /// Class to manage reading and parsing function summary index bitcode 865 /// files/sections. 866 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase { 867 /// The module index built during parsing. 868 ModuleSummaryIndex &TheIndex; 869 870 /// Indicates whether we have encountered a global value summary section 871 /// yet during parsing. 872 bool SeenGlobalValSummary = false; 873 874 /// Indicates whether we have already parsed the VST, used for error checking. 875 bool SeenValueSymbolTable = false; 876 877 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 878 /// Used to enable on-demand parsing of the VST. 879 uint64_t VSTOffset = 0; 880 881 // Map to save ValueId to ValueInfo association that was recorded in the 882 // ValueSymbolTable. It is used after the VST is parsed to convert 883 // call graph edges read from the function summary from referencing 884 // callees by their ValueId to using the ValueInfo instead, which is how 885 // they are recorded in the summary index being built. 886 // We save a GUID which refers to the same global as the ValueInfo, but 887 // ignoring the linkage, i.e. for values other than local linkage they are 888 // identical. 889 DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>> 890 ValueIdToValueInfoMap; 891 892 /// Map populated during module path string table parsing, from the 893 /// module ID to a string reference owned by the index's module 894 /// path string table, used to correlate with combined index 895 /// summary records. 896 DenseMap<uint64_t, StringRef> ModuleIdMap; 897 898 /// Original source file name recorded in a bitcode record. 899 std::string SourceFileName; 900 901 /// The string identifier given to this module by the client, normally the 902 /// path to the bitcode file. 903 StringRef ModulePath; 904 905 /// For per-module summary indexes, the unique numerical identifier given to 906 /// this module by the client. 907 unsigned ModuleId; 908 909 public: 910 ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab, 911 ModuleSummaryIndex &TheIndex, 912 StringRef ModulePath, unsigned ModuleId); 913 914 Error parseModule(); 915 916 private: 917 void setValueGUID(uint64_t ValueID, StringRef ValueName, 918 GlobalValue::LinkageTypes Linkage, 919 StringRef SourceFileName); 920 Error parseValueSymbolTable( 921 uint64_t Offset, 922 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 923 std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record); 924 std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record, 925 bool IsOldProfileFormat, 926 bool HasProfile, 927 bool HasRelBF); 928 Error parseEntireSummary(unsigned ID); 929 Error parseModuleStringTable(); 930 void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record); 931 void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot, 932 TypeIdCompatibleVtableInfo &TypeId); 933 std::vector<FunctionSummary::ParamAccess> 934 parseParamAccesses(ArrayRef<uint64_t> Record); 935 936 std::pair<ValueInfo, GlobalValue::GUID> 937 getValueInfoFromValueId(unsigned ValueId); 938 939 void addThisModule(); 940 ModuleSummaryIndex::ModuleInfo *getThisModule(); 941 }; 942 943 } // end anonymous namespace 944 945 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx, 946 Error Err) { 947 if (Err) { 948 std::error_code EC; 949 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) { 950 EC = EIB.convertToErrorCode(); 951 Ctx.emitError(EIB.message()); 952 }); 953 return EC; 954 } 955 return std::error_code(); 956 } 957 958 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 959 StringRef ProducerIdentification, 960 LLVMContext &Context) 961 : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context), 962 ValueList(this->Stream.SizeInBytes(), 963 [this](unsigned ValID, BasicBlock *InsertBB) { 964 return materializeValue(ValID, InsertBB); 965 }) { 966 this->ProducerIdentification = std::string(ProducerIdentification); 967 } 968 969 Error BitcodeReader::materializeForwardReferencedFunctions() { 970 if (WillMaterializeAllForwardRefs) 971 return Error::success(); 972 973 // Prevent recursion. 974 WillMaterializeAllForwardRefs = true; 975 976 while (!BasicBlockFwdRefQueue.empty()) { 977 Function *F = BasicBlockFwdRefQueue.front(); 978 BasicBlockFwdRefQueue.pop_front(); 979 assert(F && "Expected valid function"); 980 if (!BasicBlockFwdRefs.count(F)) 981 // Already materialized. 982 continue; 983 984 // Check for a function that isn't materializable to prevent an infinite 985 // loop. When parsing a blockaddress stored in a global variable, there 986 // isn't a trivial way to check if a function will have a body without a 987 // linear search through FunctionsWithBodies, so just check it here. 988 if (!F->isMaterializable()) 989 return error("Never resolved function from blockaddress"); 990 991 // Try to materialize F. 992 if (Error Err = materialize(F)) 993 return Err; 994 } 995 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 996 997 for (Function *F : BackwardRefFunctions) 998 if (Error Err = materialize(F)) 999 return Err; 1000 BackwardRefFunctions.clear(); 1001 1002 // Reset state. 1003 WillMaterializeAllForwardRefs = false; 1004 return Error::success(); 1005 } 1006 1007 //===----------------------------------------------------------------------===// 1008 // Helper functions to implement forward reference resolution, etc. 1009 //===----------------------------------------------------------------------===// 1010 1011 static bool hasImplicitComdat(size_t Val) { 1012 switch (Val) { 1013 default: 1014 return false; 1015 case 1: // Old WeakAnyLinkage 1016 case 4: // Old LinkOnceAnyLinkage 1017 case 10: // Old WeakODRLinkage 1018 case 11: // Old LinkOnceODRLinkage 1019 return true; 1020 } 1021 } 1022 1023 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 1024 switch (Val) { 1025 default: // Map unknown/new linkages to external 1026 case 0: 1027 return GlobalValue::ExternalLinkage; 1028 case 2: 1029 return GlobalValue::AppendingLinkage; 1030 case 3: 1031 return GlobalValue::InternalLinkage; 1032 case 5: 1033 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 1034 case 6: 1035 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 1036 case 7: 1037 return GlobalValue::ExternalWeakLinkage; 1038 case 8: 1039 return GlobalValue::CommonLinkage; 1040 case 9: 1041 return GlobalValue::PrivateLinkage; 1042 case 12: 1043 return GlobalValue::AvailableExternallyLinkage; 1044 case 13: 1045 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 1046 case 14: 1047 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 1048 case 15: 1049 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 1050 case 1: // Old value with implicit comdat. 1051 case 16: 1052 return GlobalValue::WeakAnyLinkage; 1053 case 10: // Old value with implicit comdat. 1054 case 17: 1055 return GlobalValue::WeakODRLinkage; 1056 case 4: // Old value with implicit comdat. 1057 case 18: 1058 return GlobalValue::LinkOnceAnyLinkage; 1059 case 11: // Old value with implicit comdat. 1060 case 19: 1061 return GlobalValue::LinkOnceODRLinkage; 1062 } 1063 } 1064 1065 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) { 1066 FunctionSummary::FFlags Flags; 1067 Flags.ReadNone = RawFlags & 0x1; 1068 Flags.ReadOnly = (RawFlags >> 1) & 0x1; 1069 Flags.NoRecurse = (RawFlags >> 2) & 0x1; 1070 Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1; 1071 Flags.NoInline = (RawFlags >> 4) & 0x1; 1072 Flags.AlwaysInline = (RawFlags >> 5) & 0x1; 1073 Flags.NoUnwind = (RawFlags >> 6) & 0x1; 1074 Flags.MayThrow = (RawFlags >> 7) & 0x1; 1075 Flags.HasUnknownCall = (RawFlags >> 8) & 0x1; 1076 Flags.MustBeUnreachable = (RawFlags >> 9) & 0x1; 1077 return Flags; 1078 } 1079 1080 // Decode the flags for GlobalValue in the summary. The bits for each attribute: 1081 // 1082 // linkage: [0,4), notEligibleToImport: 4, live: 5, local: 6, canAutoHide: 7, 1083 // visibility: [8, 10). 1084 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 1085 uint64_t Version) { 1086 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 1087 // like getDecodedLinkage() above. Any future change to the linkage enum and 1088 // to getDecodedLinkage() will need to be taken into account here as above. 1089 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 1090 auto Visibility = GlobalValue::VisibilityTypes((RawFlags >> 8) & 3); // 2 bits 1091 RawFlags = RawFlags >> 4; 1092 bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3; 1093 // The Live flag wasn't introduced until version 3. For dead stripping 1094 // to work correctly on earlier versions, we must conservatively treat all 1095 // values as live. 1096 bool Live = (RawFlags & 0x2) || Version < 3; 1097 bool Local = (RawFlags & 0x4); 1098 bool AutoHide = (RawFlags & 0x8); 1099 1100 return GlobalValueSummary::GVFlags(Linkage, Visibility, NotEligibleToImport, 1101 Live, Local, AutoHide); 1102 } 1103 1104 // Decode the flags for GlobalVariable in the summary 1105 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) { 1106 return GlobalVarSummary::GVarFlags( 1107 (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false, 1108 (RawFlags & 0x4) ? true : false, 1109 (GlobalObject::VCallVisibility)(RawFlags >> 3)); 1110 } 1111 1112 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 1113 switch (Val) { 1114 default: // Map unknown visibilities to default. 1115 case 0: return GlobalValue::DefaultVisibility; 1116 case 1: return GlobalValue::HiddenVisibility; 1117 case 2: return GlobalValue::ProtectedVisibility; 1118 } 1119 } 1120 1121 static GlobalValue::DLLStorageClassTypes 1122 getDecodedDLLStorageClass(unsigned Val) { 1123 switch (Val) { 1124 default: // Map unknown values to default. 1125 case 0: return GlobalValue::DefaultStorageClass; 1126 case 1: return GlobalValue::DLLImportStorageClass; 1127 case 2: return GlobalValue::DLLExportStorageClass; 1128 } 1129 } 1130 1131 static bool getDecodedDSOLocal(unsigned Val) { 1132 switch(Val) { 1133 default: // Map unknown values to preemptable. 1134 case 0: return false; 1135 case 1: return true; 1136 } 1137 } 1138 1139 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 1140 switch (Val) { 1141 case 0: return GlobalVariable::NotThreadLocal; 1142 default: // Map unknown non-zero value to general dynamic. 1143 case 1: return GlobalVariable::GeneralDynamicTLSModel; 1144 case 2: return GlobalVariable::LocalDynamicTLSModel; 1145 case 3: return GlobalVariable::InitialExecTLSModel; 1146 case 4: return GlobalVariable::LocalExecTLSModel; 1147 } 1148 } 1149 1150 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { 1151 switch (Val) { 1152 default: // Map unknown to UnnamedAddr::None. 1153 case 0: return GlobalVariable::UnnamedAddr::None; 1154 case 1: return GlobalVariable::UnnamedAddr::Global; 1155 case 2: return GlobalVariable::UnnamedAddr::Local; 1156 } 1157 } 1158 1159 static int getDecodedCastOpcode(unsigned Val) { 1160 switch (Val) { 1161 default: return -1; 1162 case bitc::CAST_TRUNC : return Instruction::Trunc; 1163 case bitc::CAST_ZEXT : return Instruction::ZExt; 1164 case bitc::CAST_SEXT : return Instruction::SExt; 1165 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 1166 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 1167 case bitc::CAST_UITOFP : return Instruction::UIToFP; 1168 case bitc::CAST_SITOFP : return Instruction::SIToFP; 1169 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 1170 case bitc::CAST_FPEXT : return Instruction::FPExt; 1171 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 1172 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 1173 case bitc::CAST_BITCAST : return Instruction::BitCast; 1174 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 1175 } 1176 } 1177 1178 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) { 1179 bool IsFP = Ty->isFPOrFPVectorTy(); 1180 // UnOps are only valid for int/fp or vector of int/fp types 1181 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1182 return -1; 1183 1184 switch (Val) { 1185 default: 1186 return -1; 1187 case bitc::UNOP_FNEG: 1188 return IsFP ? Instruction::FNeg : -1; 1189 } 1190 } 1191 1192 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 1193 bool IsFP = Ty->isFPOrFPVectorTy(); 1194 // BinOps are only valid for int/fp or vector of int/fp types 1195 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1196 return -1; 1197 1198 switch (Val) { 1199 default: 1200 return -1; 1201 case bitc::BINOP_ADD: 1202 return IsFP ? Instruction::FAdd : Instruction::Add; 1203 case bitc::BINOP_SUB: 1204 return IsFP ? Instruction::FSub : Instruction::Sub; 1205 case bitc::BINOP_MUL: 1206 return IsFP ? Instruction::FMul : Instruction::Mul; 1207 case bitc::BINOP_UDIV: 1208 return IsFP ? -1 : Instruction::UDiv; 1209 case bitc::BINOP_SDIV: 1210 return IsFP ? Instruction::FDiv : Instruction::SDiv; 1211 case bitc::BINOP_UREM: 1212 return IsFP ? -1 : Instruction::URem; 1213 case bitc::BINOP_SREM: 1214 return IsFP ? Instruction::FRem : Instruction::SRem; 1215 case bitc::BINOP_SHL: 1216 return IsFP ? -1 : Instruction::Shl; 1217 case bitc::BINOP_LSHR: 1218 return IsFP ? -1 : Instruction::LShr; 1219 case bitc::BINOP_ASHR: 1220 return IsFP ? -1 : Instruction::AShr; 1221 case bitc::BINOP_AND: 1222 return IsFP ? -1 : Instruction::And; 1223 case bitc::BINOP_OR: 1224 return IsFP ? -1 : Instruction::Or; 1225 case bitc::BINOP_XOR: 1226 return IsFP ? -1 : Instruction::Xor; 1227 } 1228 } 1229 1230 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 1231 switch (Val) { 1232 default: return AtomicRMWInst::BAD_BINOP; 1233 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 1234 case bitc::RMW_ADD: return AtomicRMWInst::Add; 1235 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 1236 case bitc::RMW_AND: return AtomicRMWInst::And; 1237 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 1238 case bitc::RMW_OR: return AtomicRMWInst::Or; 1239 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 1240 case bitc::RMW_MAX: return AtomicRMWInst::Max; 1241 case bitc::RMW_MIN: return AtomicRMWInst::Min; 1242 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 1243 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 1244 case bitc::RMW_FADD: return AtomicRMWInst::FAdd; 1245 case bitc::RMW_FSUB: return AtomicRMWInst::FSub; 1246 case bitc::RMW_FMAX: return AtomicRMWInst::FMax; 1247 case bitc::RMW_FMIN: return AtomicRMWInst::FMin; 1248 } 1249 } 1250 1251 static AtomicOrdering getDecodedOrdering(unsigned Val) { 1252 switch (Val) { 1253 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 1254 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 1255 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 1256 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 1257 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 1258 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 1259 default: // Map unknown orderings to sequentially-consistent. 1260 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 1261 } 1262 } 1263 1264 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 1265 switch (Val) { 1266 default: // Map unknown selection kinds to any. 1267 case bitc::COMDAT_SELECTION_KIND_ANY: 1268 return Comdat::Any; 1269 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 1270 return Comdat::ExactMatch; 1271 case bitc::COMDAT_SELECTION_KIND_LARGEST: 1272 return Comdat::Largest; 1273 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 1274 return Comdat::NoDeduplicate; 1275 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 1276 return Comdat::SameSize; 1277 } 1278 } 1279 1280 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 1281 FastMathFlags FMF; 1282 if (0 != (Val & bitc::UnsafeAlgebra)) 1283 FMF.setFast(); 1284 if (0 != (Val & bitc::AllowReassoc)) 1285 FMF.setAllowReassoc(); 1286 if (0 != (Val & bitc::NoNaNs)) 1287 FMF.setNoNaNs(); 1288 if (0 != (Val & bitc::NoInfs)) 1289 FMF.setNoInfs(); 1290 if (0 != (Val & bitc::NoSignedZeros)) 1291 FMF.setNoSignedZeros(); 1292 if (0 != (Val & bitc::AllowReciprocal)) 1293 FMF.setAllowReciprocal(); 1294 if (0 != (Val & bitc::AllowContract)) 1295 FMF.setAllowContract(true); 1296 if (0 != (Val & bitc::ApproxFunc)) 1297 FMF.setApproxFunc(); 1298 return FMF; 1299 } 1300 1301 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) { 1302 switch (Val) { 1303 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 1304 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 1305 } 1306 } 1307 1308 Type *BitcodeReader::getTypeByID(unsigned ID) { 1309 // The type table size is always specified correctly. 1310 if (ID >= TypeList.size()) 1311 return nullptr; 1312 1313 if (Type *Ty = TypeList[ID]) 1314 return Ty; 1315 1316 // If we have a forward reference, the only possible case is when it is to a 1317 // named struct. Just create a placeholder for now. 1318 return TypeList[ID] = createIdentifiedStructType(Context); 1319 } 1320 1321 unsigned BitcodeReader::getContainedTypeID(unsigned ID, unsigned Idx) { 1322 auto It = ContainedTypeIDs.find(ID); 1323 if (It == ContainedTypeIDs.end()) 1324 return InvalidTypeID; 1325 1326 if (Idx >= It->second.size()) 1327 return InvalidTypeID; 1328 1329 return It->second[Idx]; 1330 } 1331 1332 Type *BitcodeReader::getPtrElementTypeByID(unsigned ID) { 1333 if (ID >= TypeList.size()) 1334 return nullptr; 1335 1336 Type *Ty = TypeList[ID]; 1337 if (!Ty->isPointerTy()) 1338 return nullptr; 1339 1340 Type *ElemTy = getTypeByID(getContainedTypeID(ID, 0)); 1341 if (!ElemTy) 1342 return nullptr; 1343 1344 assert(cast<PointerType>(Ty)->isOpaqueOrPointeeTypeMatches(ElemTy) && 1345 "Incorrect element type"); 1346 return ElemTy; 1347 } 1348 1349 unsigned BitcodeReader::getVirtualTypeID(Type *Ty, 1350 ArrayRef<unsigned> ChildTypeIDs) { 1351 unsigned ChildTypeID = ChildTypeIDs.empty() ? InvalidTypeID : ChildTypeIDs[0]; 1352 auto CacheKey = std::make_pair(Ty, ChildTypeID); 1353 auto It = VirtualTypeIDs.find(CacheKey); 1354 if (It != VirtualTypeIDs.end()) { 1355 // The cmpxchg return value is the only place we need more than one 1356 // contained type ID, however the second one will always be the same (i1), 1357 // so we don't need to include it in the cache key. This asserts that the 1358 // contained types are indeed as expected and there are no collisions. 1359 assert((ChildTypeIDs.empty() || 1360 ContainedTypeIDs[It->second] == ChildTypeIDs) && 1361 "Incorrect cached contained type IDs"); 1362 return It->second; 1363 } 1364 1365 #ifndef NDEBUG 1366 if (!Ty->isOpaquePointerTy()) { 1367 assert(Ty->getNumContainedTypes() == ChildTypeIDs.size() && 1368 "Wrong number of contained types"); 1369 for (auto Pair : zip(Ty->subtypes(), ChildTypeIDs)) { 1370 assert(std::get<0>(Pair) == getTypeByID(std::get<1>(Pair)) && 1371 "Incorrect contained type ID"); 1372 } 1373 } 1374 #endif 1375 1376 unsigned TypeID = TypeList.size(); 1377 TypeList.push_back(Ty); 1378 if (!ChildTypeIDs.empty()) 1379 append_range(ContainedTypeIDs[TypeID], ChildTypeIDs); 1380 VirtualTypeIDs.insert({CacheKey, TypeID}); 1381 return TypeID; 1382 } 1383 1384 static bool isConstExprSupported(uint8_t Opcode) { 1385 // These are not real constant expressions, always consider them supported. 1386 if (Opcode >= BitcodeConstant::FirstSpecialOpcode) 1387 return true; 1388 1389 if (Instruction::isBinaryOp(Opcode)) 1390 return ConstantExpr::isSupportedBinOp(Opcode); 1391 1392 return !ExpandConstantExprs; 1393 } 1394 1395 Expected<Value *> BitcodeReader::materializeValue(unsigned StartValID, 1396 BasicBlock *InsertBB) { 1397 // Quickly handle the case where there is no BitcodeConstant to resolve. 1398 if (StartValID < ValueList.size() && ValueList[StartValID] && 1399 !isa<BitcodeConstant>(ValueList[StartValID])) 1400 return ValueList[StartValID]; 1401 1402 SmallDenseMap<unsigned, Value *> MaterializedValues; 1403 SmallVector<unsigned> Worklist; 1404 Worklist.push_back(StartValID); 1405 while (!Worklist.empty()) { 1406 unsigned ValID = Worklist.back(); 1407 if (MaterializedValues.count(ValID)) { 1408 // Duplicate expression that was already handled. 1409 Worklist.pop_back(); 1410 continue; 1411 } 1412 1413 if (ValID >= ValueList.size() || !ValueList[ValID]) 1414 return error("Invalid value ID"); 1415 1416 Value *V = ValueList[ValID]; 1417 auto *BC = dyn_cast<BitcodeConstant>(V); 1418 if (!BC) { 1419 MaterializedValues.insert({ValID, V}); 1420 Worklist.pop_back(); 1421 continue; 1422 } 1423 1424 // Iterate in reverse, so values will get popped from the worklist in 1425 // expected order. 1426 SmallVector<Value *> Ops; 1427 for (unsigned OpID : reverse(BC->getOperandIDs())) { 1428 auto It = MaterializedValues.find(OpID); 1429 if (It != MaterializedValues.end()) 1430 Ops.push_back(It->second); 1431 else 1432 Worklist.push_back(OpID); 1433 } 1434 1435 // Some expressions have not been resolved yet, handle them first and then 1436 // revisit this one. 1437 if (Ops.size() != BC->getOperandIDs().size()) 1438 continue; 1439 std::reverse(Ops.begin(), Ops.end()); 1440 1441 SmallVector<Constant *> ConstOps; 1442 for (Value *Op : Ops) 1443 if (auto *C = dyn_cast<Constant>(Op)) 1444 ConstOps.push_back(C); 1445 1446 // Materialize as constant expression if possible. 1447 if (isConstExprSupported(BC->Opcode) && ConstOps.size() == Ops.size()) { 1448 Constant *C; 1449 if (Instruction::isCast(BC->Opcode)) { 1450 C = UpgradeBitCastExpr(BC->Opcode, ConstOps[0], BC->getType()); 1451 if (!C) 1452 C = ConstantExpr::getCast(BC->Opcode, ConstOps[0], BC->getType()); 1453 } else if (Instruction::isUnaryOp(BC->Opcode)) { 1454 C = ConstantExpr::get(BC->Opcode, ConstOps[0], BC->Flags); 1455 } else if (Instruction::isBinaryOp(BC->Opcode)) { 1456 C = ConstantExpr::get(BC->Opcode, ConstOps[0], ConstOps[1], BC->Flags); 1457 } else { 1458 switch (BC->Opcode) { 1459 case BitcodeConstant::NoCFIOpcode: { 1460 auto *GV = dyn_cast<GlobalValue>(ConstOps[0]); 1461 if (!GV) 1462 return error("no_cfi operand must be GlobalValue"); 1463 C = NoCFIValue::get(GV); 1464 break; 1465 } 1466 case BitcodeConstant::DSOLocalEquivalentOpcode: { 1467 auto *GV = dyn_cast<GlobalValue>(ConstOps[0]); 1468 if (!GV) 1469 return error("dso_local operand must be GlobalValue"); 1470 C = DSOLocalEquivalent::get(GV); 1471 break; 1472 } 1473 case BitcodeConstant::BlockAddressOpcode: { 1474 Function *Fn = dyn_cast<Function>(ConstOps[0]); 1475 if (!Fn) 1476 return error("blockaddress operand must be a function"); 1477 1478 // If the function is already parsed we can insert the block address 1479 // right away. 1480 BasicBlock *BB; 1481 unsigned BBID = BC->Extra; 1482 if (!BBID) 1483 // Invalid reference to entry block. 1484 return error("Invalid ID"); 1485 if (!Fn->empty()) { 1486 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 1487 for (size_t I = 0, E = BBID; I != E; ++I) { 1488 if (BBI == BBE) 1489 return error("Invalid ID"); 1490 ++BBI; 1491 } 1492 BB = &*BBI; 1493 } else { 1494 // Otherwise insert a placeholder and remember it so it can be 1495 // inserted when the function is parsed. 1496 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 1497 if (FwdBBs.empty()) 1498 BasicBlockFwdRefQueue.push_back(Fn); 1499 if (FwdBBs.size() < BBID + 1) 1500 FwdBBs.resize(BBID + 1); 1501 if (!FwdBBs[BBID]) 1502 FwdBBs[BBID] = BasicBlock::Create(Context); 1503 BB = FwdBBs[BBID]; 1504 } 1505 C = BlockAddress::get(Fn, BB); 1506 break; 1507 } 1508 case BitcodeConstant::ConstantStructOpcode: 1509 C = ConstantStruct::get(cast<StructType>(BC->getType()), ConstOps); 1510 break; 1511 case BitcodeConstant::ConstantArrayOpcode: 1512 C = ConstantArray::get(cast<ArrayType>(BC->getType()), ConstOps); 1513 break; 1514 case BitcodeConstant::ConstantVectorOpcode: 1515 C = ConstantVector::get(ConstOps); 1516 break; 1517 case Instruction::ICmp: 1518 case Instruction::FCmp: 1519 C = ConstantExpr::getCompare(BC->Flags, ConstOps[0], ConstOps[1]); 1520 break; 1521 case Instruction::GetElementPtr: 1522 C = ConstantExpr::getGetElementPtr( 1523 BC->SrcElemTy, ConstOps[0], makeArrayRef(ConstOps).drop_front(), 1524 BC->Flags, BC->getInRangeIndex()); 1525 break; 1526 case Instruction::Select: 1527 C = ConstantExpr::getSelect(ConstOps[0], ConstOps[1], ConstOps[2]); 1528 break; 1529 case Instruction::ExtractElement: 1530 C = ConstantExpr::getExtractElement(ConstOps[0], ConstOps[1]); 1531 break; 1532 case Instruction::InsertElement: 1533 C = ConstantExpr::getInsertElement(ConstOps[0], ConstOps[1], 1534 ConstOps[2]); 1535 break; 1536 case Instruction::ShuffleVector: { 1537 SmallVector<int, 16> Mask; 1538 ShuffleVectorInst::getShuffleMask(ConstOps[2], Mask); 1539 C = ConstantExpr::getShuffleVector(ConstOps[0], ConstOps[1], Mask); 1540 break; 1541 } 1542 default: 1543 llvm_unreachable("Unhandled bitcode constant"); 1544 } 1545 } 1546 1547 // Cache resolved constant. 1548 ValueList.replaceValueWithoutRAUW(ValID, C); 1549 MaterializedValues.insert({ValID, C}); 1550 Worklist.pop_back(); 1551 continue; 1552 } 1553 1554 if (!InsertBB) 1555 return error(Twine("Value referenced by initializer is an unsupported " 1556 "constant expression of type ") + 1557 BC->getOpcodeName()); 1558 1559 // Materialize as instructions if necessary. 1560 Instruction *I; 1561 if (Instruction::isCast(BC->Opcode)) { 1562 I = CastInst::Create((Instruction::CastOps)BC->Opcode, Ops[0], 1563 BC->getType(), "constexpr", InsertBB); 1564 } else if (Instruction::isUnaryOp(BC->Opcode)) { 1565 I = UnaryOperator::Create((Instruction::UnaryOps)BC->Opcode, Ops[0], 1566 "constexpr", InsertBB); 1567 } else if (Instruction::isBinaryOp(BC->Opcode)) { 1568 I = BinaryOperator::Create((Instruction::BinaryOps)BC->Opcode, Ops[0], 1569 Ops[1], "constexpr", InsertBB); 1570 if (isa<OverflowingBinaryOperator>(I)) { 1571 if (BC->Flags & OverflowingBinaryOperator::NoSignedWrap) 1572 I->setHasNoSignedWrap(); 1573 if (BC->Flags & OverflowingBinaryOperator::NoUnsignedWrap) 1574 I->setHasNoUnsignedWrap(); 1575 } 1576 if (isa<PossiblyExactOperator>(I) && 1577 (BC->Flags & PossiblyExactOperator::IsExact)) 1578 I->setIsExact(); 1579 } else { 1580 switch (BC->Opcode) { 1581 case BitcodeConstant::ConstantStructOpcode: 1582 case BitcodeConstant::ConstantArrayOpcode: 1583 case BitcodeConstant::ConstantVectorOpcode: { 1584 Type *IdxTy = Type::getInt32Ty(BC->getContext()); 1585 Value *V = PoisonValue::get(BC->getType()); 1586 for (auto Pair : enumerate(Ops)) { 1587 Value *Idx = ConstantInt::get(IdxTy, Pair.index()); 1588 V = InsertElementInst::Create(V, Pair.value(), Idx, "constexpr.ins", 1589 InsertBB); 1590 } 1591 I = cast<Instruction>(V); 1592 break; 1593 } 1594 case Instruction::ICmp: 1595 case Instruction::FCmp: 1596 I = CmpInst::Create((Instruction::OtherOps)BC->Opcode, 1597 (CmpInst::Predicate)BC->Flags, Ops[0], Ops[1], 1598 "constexpr", InsertBB); 1599 break; 1600 case Instruction::GetElementPtr: 1601 I = GetElementPtrInst::Create(BC->SrcElemTy, Ops[0], 1602 makeArrayRef(Ops).drop_front(), 1603 "constexpr", InsertBB); 1604 if (BC->Flags) 1605 cast<GetElementPtrInst>(I)->setIsInBounds(); 1606 break; 1607 case Instruction::Select: 1608 I = SelectInst::Create(Ops[0], Ops[1], Ops[2], "constexpr", InsertBB); 1609 break; 1610 case Instruction::ExtractElement: 1611 I = ExtractElementInst::Create(Ops[0], Ops[1], "constexpr", InsertBB); 1612 break; 1613 case Instruction::InsertElement: 1614 I = InsertElementInst::Create(Ops[0], Ops[1], Ops[2], "constexpr", 1615 InsertBB); 1616 break; 1617 case Instruction::ShuffleVector: 1618 I = new ShuffleVectorInst(Ops[0], Ops[1], Ops[2], "constexpr", 1619 InsertBB); 1620 break; 1621 default: 1622 llvm_unreachable("Unhandled bitcode constant"); 1623 } 1624 } 1625 1626 MaterializedValues.insert({ValID, I}); 1627 Worklist.pop_back(); 1628 } 1629 1630 return MaterializedValues[StartValID]; 1631 } 1632 1633 Expected<Constant *> BitcodeReader::getValueForInitializer(unsigned ID) { 1634 Expected<Value *> MaybeV = materializeValue(ID, /* InsertBB */ nullptr); 1635 if (!MaybeV) 1636 return MaybeV.takeError(); 1637 1638 // Result must be Constant if InsertBB is nullptr. 1639 return cast<Constant>(MaybeV.get()); 1640 } 1641 1642 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1643 StringRef Name) { 1644 auto *Ret = StructType::create(Context, Name); 1645 IdentifiedStructTypes.push_back(Ret); 1646 return Ret; 1647 } 1648 1649 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1650 auto *Ret = StructType::create(Context); 1651 IdentifiedStructTypes.push_back(Ret); 1652 return Ret; 1653 } 1654 1655 //===----------------------------------------------------------------------===// 1656 // Functions for parsing blocks from the bitcode file 1657 //===----------------------------------------------------------------------===// 1658 1659 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) { 1660 switch (Val) { 1661 case Attribute::EndAttrKinds: 1662 case Attribute::EmptyKey: 1663 case Attribute::TombstoneKey: 1664 llvm_unreachable("Synthetic enumerators which should never get here"); 1665 1666 case Attribute::None: return 0; 1667 case Attribute::ZExt: return 1 << 0; 1668 case Attribute::SExt: return 1 << 1; 1669 case Attribute::NoReturn: return 1 << 2; 1670 case Attribute::InReg: return 1 << 3; 1671 case Attribute::StructRet: return 1 << 4; 1672 case Attribute::NoUnwind: return 1 << 5; 1673 case Attribute::NoAlias: return 1 << 6; 1674 case Attribute::ByVal: return 1 << 7; 1675 case Attribute::Nest: return 1 << 8; 1676 case Attribute::ReadNone: return 1 << 9; 1677 case Attribute::ReadOnly: return 1 << 10; 1678 case Attribute::NoInline: return 1 << 11; 1679 case Attribute::AlwaysInline: return 1 << 12; 1680 case Attribute::OptimizeForSize: return 1 << 13; 1681 case Attribute::StackProtect: return 1 << 14; 1682 case Attribute::StackProtectReq: return 1 << 15; 1683 case Attribute::Alignment: return 31 << 16; 1684 case Attribute::NoCapture: return 1 << 21; 1685 case Attribute::NoRedZone: return 1 << 22; 1686 case Attribute::NoImplicitFloat: return 1 << 23; 1687 case Attribute::Naked: return 1 << 24; 1688 case Attribute::InlineHint: return 1 << 25; 1689 case Attribute::StackAlignment: return 7 << 26; 1690 case Attribute::ReturnsTwice: return 1 << 29; 1691 case Attribute::UWTable: return 1 << 30; 1692 case Attribute::NonLazyBind: return 1U << 31; 1693 case Attribute::SanitizeAddress: return 1ULL << 32; 1694 case Attribute::MinSize: return 1ULL << 33; 1695 case Attribute::NoDuplicate: return 1ULL << 34; 1696 case Attribute::StackProtectStrong: return 1ULL << 35; 1697 case Attribute::SanitizeThread: return 1ULL << 36; 1698 case Attribute::SanitizeMemory: return 1ULL << 37; 1699 case Attribute::NoBuiltin: return 1ULL << 38; 1700 case Attribute::Returned: return 1ULL << 39; 1701 case Attribute::Cold: return 1ULL << 40; 1702 case Attribute::Builtin: return 1ULL << 41; 1703 case Attribute::OptimizeNone: return 1ULL << 42; 1704 case Attribute::InAlloca: return 1ULL << 43; 1705 case Attribute::NonNull: return 1ULL << 44; 1706 case Attribute::JumpTable: return 1ULL << 45; 1707 case Attribute::Convergent: return 1ULL << 46; 1708 case Attribute::SafeStack: return 1ULL << 47; 1709 case Attribute::NoRecurse: return 1ULL << 48; 1710 case Attribute::InaccessibleMemOnly: return 1ULL << 49; 1711 case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50; 1712 case Attribute::SwiftSelf: return 1ULL << 51; 1713 case Attribute::SwiftError: return 1ULL << 52; 1714 case Attribute::WriteOnly: return 1ULL << 53; 1715 case Attribute::Speculatable: return 1ULL << 54; 1716 case Attribute::StrictFP: return 1ULL << 55; 1717 case Attribute::SanitizeHWAddress: return 1ULL << 56; 1718 case Attribute::NoCfCheck: return 1ULL << 57; 1719 case Attribute::OptForFuzzing: return 1ULL << 58; 1720 case Attribute::ShadowCallStack: return 1ULL << 59; 1721 case Attribute::SpeculativeLoadHardening: 1722 return 1ULL << 60; 1723 case Attribute::ImmArg: 1724 return 1ULL << 61; 1725 case Attribute::WillReturn: 1726 return 1ULL << 62; 1727 case Attribute::NoFree: 1728 return 1ULL << 63; 1729 default: 1730 // Other attributes are not supported in the raw format, 1731 // as we ran out of space. 1732 return 0; 1733 } 1734 llvm_unreachable("Unsupported attribute type"); 1735 } 1736 1737 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) { 1738 if (!Val) return; 1739 1740 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; 1741 I = Attribute::AttrKind(I + 1)) { 1742 if (uint64_t A = (Val & getRawAttributeMask(I))) { 1743 if (I == Attribute::Alignment) 1744 B.addAlignmentAttr(1ULL << ((A >> 16) - 1)); 1745 else if (I == Attribute::StackAlignment) 1746 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1)); 1747 else if (Attribute::isTypeAttrKind(I)) 1748 B.addTypeAttr(I, nullptr); // Type will be auto-upgraded. 1749 else 1750 B.addAttribute(I); 1751 } 1752 } 1753 } 1754 1755 /// This fills an AttrBuilder object with the LLVM attributes that have 1756 /// been decoded from the given integer. This function must stay in sync with 1757 /// 'encodeLLVMAttributesForBitcode'. 1758 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1759 uint64_t EncodedAttrs) { 1760 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1761 // the bits above 31 down by 11 bits. 1762 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1763 assert((!Alignment || isPowerOf2_32(Alignment)) && 1764 "Alignment must be a power of two."); 1765 1766 if (Alignment) 1767 B.addAlignmentAttr(Alignment); 1768 addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1769 (EncodedAttrs & 0xffff)); 1770 } 1771 1772 Error BitcodeReader::parseAttributeBlock() { 1773 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1774 return Err; 1775 1776 if (!MAttributes.empty()) 1777 return error("Invalid multiple blocks"); 1778 1779 SmallVector<uint64_t, 64> Record; 1780 1781 SmallVector<AttributeList, 8> Attrs; 1782 1783 // Read all the records. 1784 while (true) { 1785 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1786 if (!MaybeEntry) 1787 return MaybeEntry.takeError(); 1788 BitstreamEntry Entry = MaybeEntry.get(); 1789 1790 switch (Entry.Kind) { 1791 case BitstreamEntry::SubBlock: // Handled for us already. 1792 case BitstreamEntry::Error: 1793 return error("Malformed block"); 1794 case BitstreamEntry::EndBlock: 1795 return Error::success(); 1796 case BitstreamEntry::Record: 1797 // The interesting case. 1798 break; 1799 } 1800 1801 // Read a record. 1802 Record.clear(); 1803 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1804 if (!MaybeRecord) 1805 return MaybeRecord.takeError(); 1806 switch (MaybeRecord.get()) { 1807 default: // Default behavior: ignore. 1808 break; 1809 case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...] 1810 // Deprecated, but still needed to read old bitcode files. 1811 if (Record.size() & 1) 1812 return error("Invalid parameter attribute record"); 1813 1814 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1815 AttrBuilder B(Context); 1816 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1817 Attrs.push_back(AttributeList::get(Context, Record[i], B)); 1818 } 1819 1820 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1821 Attrs.clear(); 1822 break; 1823 case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...] 1824 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1825 Attrs.push_back(MAttributeGroups[Record[i]]); 1826 1827 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1828 Attrs.clear(); 1829 break; 1830 } 1831 } 1832 } 1833 1834 // Returns Attribute::None on unrecognized codes. 1835 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1836 switch (Code) { 1837 default: 1838 return Attribute::None; 1839 case bitc::ATTR_KIND_ALIGNMENT: 1840 return Attribute::Alignment; 1841 case bitc::ATTR_KIND_ALWAYS_INLINE: 1842 return Attribute::AlwaysInline; 1843 case bitc::ATTR_KIND_ARGMEMONLY: 1844 return Attribute::ArgMemOnly; 1845 case bitc::ATTR_KIND_BUILTIN: 1846 return Attribute::Builtin; 1847 case bitc::ATTR_KIND_BY_VAL: 1848 return Attribute::ByVal; 1849 case bitc::ATTR_KIND_IN_ALLOCA: 1850 return Attribute::InAlloca; 1851 case bitc::ATTR_KIND_COLD: 1852 return Attribute::Cold; 1853 case bitc::ATTR_KIND_CONVERGENT: 1854 return Attribute::Convergent; 1855 case bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION: 1856 return Attribute::DisableSanitizerInstrumentation; 1857 case bitc::ATTR_KIND_ELEMENTTYPE: 1858 return Attribute::ElementType; 1859 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1860 return Attribute::InaccessibleMemOnly; 1861 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1862 return Attribute::InaccessibleMemOrArgMemOnly; 1863 case bitc::ATTR_KIND_INLINE_HINT: 1864 return Attribute::InlineHint; 1865 case bitc::ATTR_KIND_IN_REG: 1866 return Attribute::InReg; 1867 case bitc::ATTR_KIND_JUMP_TABLE: 1868 return Attribute::JumpTable; 1869 case bitc::ATTR_KIND_MIN_SIZE: 1870 return Attribute::MinSize; 1871 case bitc::ATTR_KIND_NAKED: 1872 return Attribute::Naked; 1873 case bitc::ATTR_KIND_NEST: 1874 return Attribute::Nest; 1875 case bitc::ATTR_KIND_NO_ALIAS: 1876 return Attribute::NoAlias; 1877 case bitc::ATTR_KIND_NO_BUILTIN: 1878 return Attribute::NoBuiltin; 1879 case bitc::ATTR_KIND_NO_CALLBACK: 1880 return Attribute::NoCallback; 1881 case bitc::ATTR_KIND_NO_CAPTURE: 1882 return Attribute::NoCapture; 1883 case bitc::ATTR_KIND_NO_DUPLICATE: 1884 return Attribute::NoDuplicate; 1885 case bitc::ATTR_KIND_NOFREE: 1886 return Attribute::NoFree; 1887 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1888 return Attribute::NoImplicitFloat; 1889 case bitc::ATTR_KIND_NO_INLINE: 1890 return Attribute::NoInline; 1891 case bitc::ATTR_KIND_NO_RECURSE: 1892 return Attribute::NoRecurse; 1893 case bitc::ATTR_KIND_NO_MERGE: 1894 return Attribute::NoMerge; 1895 case bitc::ATTR_KIND_NON_LAZY_BIND: 1896 return Attribute::NonLazyBind; 1897 case bitc::ATTR_KIND_NON_NULL: 1898 return Attribute::NonNull; 1899 case bitc::ATTR_KIND_DEREFERENCEABLE: 1900 return Attribute::Dereferenceable; 1901 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1902 return Attribute::DereferenceableOrNull; 1903 case bitc::ATTR_KIND_ALLOC_ALIGN: 1904 return Attribute::AllocAlign; 1905 case bitc::ATTR_KIND_ALLOC_KIND: 1906 return Attribute::AllocKind; 1907 case bitc::ATTR_KIND_ALLOC_SIZE: 1908 return Attribute::AllocSize; 1909 case bitc::ATTR_KIND_ALLOCATED_POINTER: 1910 return Attribute::AllocatedPointer; 1911 case bitc::ATTR_KIND_NO_RED_ZONE: 1912 return Attribute::NoRedZone; 1913 case bitc::ATTR_KIND_NO_RETURN: 1914 return Attribute::NoReturn; 1915 case bitc::ATTR_KIND_NOSYNC: 1916 return Attribute::NoSync; 1917 case bitc::ATTR_KIND_NOCF_CHECK: 1918 return Attribute::NoCfCheck; 1919 case bitc::ATTR_KIND_NO_PROFILE: 1920 return Attribute::NoProfile; 1921 case bitc::ATTR_KIND_NO_UNWIND: 1922 return Attribute::NoUnwind; 1923 case bitc::ATTR_KIND_NO_SANITIZE_BOUNDS: 1924 return Attribute::NoSanitizeBounds; 1925 case bitc::ATTR_KIND_NO_SANITIZE_COVERAGE: 1926 return Attribute::NoSanitizeCoverage; 1927 case bitc::ATTR_KIND_NULL_POINTER_IS_VALID: 1928 return Attribute::NullPointerIsValid; 1929 case bitc::ATTR_KIND_OPT_FOR_FUZZING: 1930 return Attribute::OptForFuzzing; 1931 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1932 return Attribute::OptimizeForSize; 1933 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1934 return Attribute::OptimizeNone; 1935 case bitc::ATTR_KIND_READ_NONE: 1936 return Attribute::ReadNone; 1937 case bitc::ATTR_KIND_READ_ONLY: 1938 return Attribute::ReadOnly; 1939 case bitc::ATTR_KIND_RETURNED: 1940 return Attribute::Returned; 1941 case bitc::ATTR_KIND_RETURNS_TWICE: 1942 return Attribute::ReturnsTwice; 1943 case bitc::ATTR_KIND_S_EXT: 1944 return Attribute::SExt; 1945 case bitc::ATTR_KIND_SPECULATABLE: 1946 return Attribute::Speculatable; 1947 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1948 return Attribute::StackAlignment; 1949 case bitc::ATTR_KIND_STACK_PROTECT: 1950 return Attribute::StackProtect; 1951 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1952 return Attribute::StackProtectReq; 1953 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1954 return Attribute::StackProtectStrong; 1955 case bitc::ATTR_KIND_SAFESTACK: 1956 return Attribute::SafeStack; 1957 case bitc::ATTR_KIND_SHADOWCALLSTACK: 1958 return Attribute::ShadowCallStack; 1959 case bitc::ATTR_KIND_STRICT_FP: 1960 return Attribute::StrictFP; 1961 case bitc::ATTR_KIND_STRUCT_RET: 1962 return Attribute::StructRet; 1963 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1964 return Attribute::SanitizeAddress; 1965 case bitc::ATTR_KIND_SANITIZE_HWADDRESS: 1966 return Attribute::SanitizeHWAddress; 1967 case bitc::ATTR_KIND_SANITIZE_THREAD: 1968 return Attribute::SanitizeThread; 1969 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1970 return Attribute::SanitizeMemory; 1971 case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING: 1972 return Attribute::SpeculativeLoadHardening; 1973 case bitc::ATTR_KIND_SWIFT_ERROR: 1974 return Attribute::SwiftError; 1975 case bitc::ATTR_KIND_SWIFT_SELF: 1976 return Attribute::SwiftSelf; 1977 case bitc::ATTR_KIND_SWIFT_ASYNC: 1978 return Attribute::SwiftAsync; 1979 case bitc::ATTR_KIND_UW_TABLE: 1980 return Attribute::UWTable; 1981 case bitc::ATTR_KIND_VSCALE_RANGE: 1982 return Attribute::VScaleRange; 1983 case bitc::ATTR_KIND_WILLRETURN: 1984 return Attribute::WillReturn; 1985 case bitc::ATTR_KIND_WRITEONLY: 1986 return Attribute::WriteOnly; 1987 case bitc::ATTR_KIND_Z_EXT: 1988 return Attribute::ZExt; 1989 case bitc::ATTR_KIND_IMMARG: 1990 return Attribute::ImmArg; 1991 case bitc::ATTR_KIND_SANITIZE_MEMTAG: 1992 return Attribute::SanitizeMemTag; 1993 case bitc::ATTR_KIND_PREALLOCATED: 1994 return Attribute::Preallocated; 1995 case bitc::ATTR_KIND_NOUNDEF: 1996 return Attribute::NoUndef; 1997 case bitc::ATTR_KIND_BYREF: 1998 return Attribute::ByRef; 1999 case bitc::ATTR_KIND_MUSTPROGRESS: 2000 return Attribute::MustProgress; 2001 case bitc::ATTR_KIND_HOT: 2002 return Attribute::Hot; 2003 case bitc::ATTR_KIND_PRESPLIT_COROUTINE: 2004 return Attribute::PresplitCoroutine; 2005 } 2006 } 2007 2008 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent, 2009 MaybeAlign &Alignment) { 2010 // Note: Alignment in bitcode files is incremented by 1, so that zero 2011 // can be used for default alignment. 2012 if (Exponent > Value::MaxAlignmentExponent + 1) 2013 return error("Invalid alignment value"); 2014 Alignment = decodeMaybeAlign(Exponent); 2015 return Error::success(); 2016 } 2017 2018 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) { 2019 *Kind = getAttrFromCode(Code); 2020 if (*Kind == Attribute::None) 2021 return error("Unknown attribute kind (" + Twine(Code) + ")"); 2022 return Error::success(); 2023 } 2024 2025 Error BitcodeReader::parseAttributeGroupBlock() { 2026 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 2027 return Err; 2028 2029 if (!MAttributeGroups.empty()) 2030 return error("Invalid multiple blocks"); 2031 2032 SmallVector<uint64_t, 64> Record; 2033 2034 // Read all the records. 2035 while (true) { 2036 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2037 if (!MaybeEntry) 2038 return MaybeEntry.takeError(); 2039 BitstreamEntry Entry = MaybeEntry.get(); 2040 2041 switch (Entry.Kind) { 2042 case BitstreamEntry::SubBlock: // Handled for us already. 2043 case BitstreamEntry::Error: 2044 return error("Malformed block"); 2045 case BitstreamEntry::EndBlock: 2046 return Error::success(); 2047 case BitstreamEntry::Record: 2048 // The interesting case. 2049 break; 2050 } 2051 2052 // Read a record. 2053 Record.clear(); 2054 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2055 if (!MaybeRecord) 2056 return MaybeRecord.takeError(); 2057 switch (MaybeRecord.get()) { 2058 default: // Default behavior: ignore. 2059 break; 2060 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 2061 if (Record.size() < 3) 2062 return error("Invalid grp record"); 2063 2064 uint64_t GrpID = Record[0]; 2065 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 2066 2067 AttrBuilder B(Context); 2068 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 2069 if (Record[i] == 0) { // Enum attribute 2070 Attribute::AttrKind Kind; 2071 if (Error Err = parseAttrKind(Record[++i], &Kind)) 2072 return Err; 2073 2074 // Upgrade old-style byval attribute to one with a type, even if it's 2075 // nullptr. We will have to insert the real type when we associate 2076 // this AttributeList with a function. 2077 if (Kind == Attribute::ByVal) 2078 B.addByValAttr(nullptr); 2079 else if (Kind == Attribute::StructRet) 2080 B.addStructRetAttr(nullptr); 2081 else if (Kind == Attribute::InAlloca) 2082 B.addInAllocaAttr(nullptr); 2083 else if (Kind == Attribute::UWTable) 2084 B.addUWTableAttr(UWTableKind::Default); 2085 else if (Attribute::isEnumAttrKind(Kind)) 2086 B.addAttribute(Kind); 2087 else 2088 return error("Not an enum attribute"); 2089 } else if (Record[i] == 1) { // Integer attribute 2090 Attribute::AttrKind Kind; 2091 if (Error Err = parseAttrKind(Record[++i], &Kind)) 2092 return Err; 2093 if (!Attribute::isIntAttrKind(Kind)) 2094 return error("Not an int attribute"); 2095 if (Kind == Attribute::Alignment) 2096 B.addAlignmentAttr(Record[++i]); 2097 else if (Kind == Attribute::StackAlignment) 2098 B.addStackAlignmentAttr(Record[++i]); 2099 else if (Kind == Attribute::Dereferenceable) 2100 B.addDereferenceableAttr(Record[++i]); 2101 else if (Kind == Attribute::DereferenceableOrNull) 2102 B.addDereferenceableOrNullAttr(Record[++i]); 2103 else if (Kind == Attribute::AllocSize) 2104 B.addAllocSizeAttrFromRawRepr(Record[++i]); 2105 else if (Kind == Attribute::VScaleRange) 2106 B.addVScaleRangeAttrFromRawRepr(Record[++i]); 2107 else if (Kind == Attribute::UWTable) 2108 B.addUWTableAttr(UWTableKind(Record[++i])); 2109 else if (Kind == Attribute::AllocKind) 2110 B.addAllocKindAttr(static_cast<AllocFnKind>(Record[++i])); 2111 } else if (Record[i] == 3 || Record[i] == 4) { // String attribute 2112 bool HasValue = (Record[i++] == 4); 2113 SmallString<64> KindStr; 2114 SmallString<64> ValStr; 2115 2116 while (Record[i] != 0 && i != e) 2117 KindStr += Record[i++]; 2118 assert(Record[i] == 0 && "Kind string not null terminated"); 2119 2120 if (HasValue) { 2121 // Has a value associated with it. 2122 ++i; // Skip the '0' that terminates the "kind" string. 2123 while (Record[i] != 0 && i != e) 2124 ValStr += Record[i++]; 2125 assert(Record[i] == 0 && "Value string not null terminated"); 2126 } 2127 2128 B.addAttribute(KindStr.str(), ValStr.str()); 2129 } else if (Record[i] == 5 || Record[i] == 6) { 2130 bool HasType = Record[i] == 6; 2131 Attribute::AttrKind Kind; 2132 if (Error Err = parseAttrKind(Record[++i], &Kind)) 2133 return Err; 2134 if (!Attribute::isTypeAttrKind(Kind)) 2135 return error("Not a type attribute"); 2136 2137 B.addTypeAttr(Kind, HasType ? getTypeByID(Record[++i]) : nullptr); 2138 } else { 2139 return error("Invalid attribute group entry"); 2140 } 2141 } 2142 2143 UpgradeAttributes(B); 2144 MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B); 2145 break; 2146 } 2147 } 2148 } 2149 } 2150 2151 Error BitcodeReader::parseTypeTable() { 2152 if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 2153 return Err; 2154 2155 return parseTypeTableBody(); 2156 } 2157 2158 Error BitcodeReader::parseTypeTableBody() { 2159 if (!TypeList.empty()) 2160 return error("Invalid multiple blocks"); 2161 2162 SmallVector<uint64_t, 64> Record; 2163 unsigned NumRecords = 0; 2164 2165 SmallString<64> TypeName; 2166 2167 // Read all the records for this type table. 2168 while (true) { 2169 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2170 if (!MaybeEntry) 2171 return MaybeEntry.takeError(); 2172 BitstreamEntry Entry = MaybeEntry.get(); 2173 2174 switch (Entry.Kind) { 2175 case BitstreamEntry::SubBlock: // Handled for us already. 2176 case BitstreamEntry::Error: 2177 return error("Malformed block"); 2178 case BitstreamEntry::EndBlock: 2179 if (NumRecords != TypeList.size()) 2180 return error("Malformed block"); 2181 return Error::success(); 2182 case BitstreamEntry::Record: 2183 // The interesting case. 2184 break; 2185 } 2186 2187 // Read a record. 2188 Record.clear(); 2189 Type *ResultTy = nullptr; 2190 SmallVector<unsigned> ContainedIDs; 2191 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2192 if (!MaybeRecord) 2193 return MaybeRecord.takeError(); 2194 switch (MaybeRecord.get()) { 2195 default: 2196 return error("Invalid value"); 2197 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 2198 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 2199 // type list. This allows us to reserve space. 2200 if (Record.empty()) 2201 return error("Invalid numentry record"); 2202 TypeList.resize(Record[0]); 2203 continue; 2204 case bitc::TYPE_CODE_VOID: // VOID 2205 ResultTy = Type::getVoidTy(Context); 2206 break; 2207 case bitc::TYPE_CODE_HALF: // HALF 2208 ResultTy = Type::getHalfTy(Context); 2209 break; 2210 case bitc::TYPE_CODE_BFLOAT: // BFLOAT 2211 ResultTy = Type::getBFloatTy(Context); 2212 break; 2213 case bitc::TYPE_CODE_FLOAT: // FLOAT 2214 ResultTy = Type::getFloatTy(Context); 2215 break; 2216 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 2217 ResultTy = Type::getDoubleTy(Context); 2218 break; 2219 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 2220 ResultTy = Type::getX86_FP80Ty(Context); 2221 break; 2222 case bitc::TYPE_CODE_FP128: // FP128 2223 ResultTy = Type::getFP128Ty(Context); 2224 break; 2225 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 2226 ResultTy = Type::getPPC_FP128Ty(Context); 2227 break; 2228 case bitc::TYPE_CODE_LABEL: // LABEL 2229 ResultTy = Type::getLabelTy(Context); 2230 break; 2231 case bitc::TYPE_CODE_METADATA: // METADATA 2232 ResultTy = Type::getMetadataTy(Context); 2233 break; 2234 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 2235 ResultTy = Type::getX86_MMXTy(Context); 2236 break; 2237 case bitc::TYPE_CODE_X86_AMX: // X86_AMX 2238 ResultTy = Type::getX86_AMXTy(Context); 2239 break; 2240 case bitc::TYPE_CODE_TOKEN: // TOKEN 2241 ResultTy = Type::getTokenTy(Context); 2242 break; 2243 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 2244 if (Record.empty()) 2245 return error("Invalid integer record"); 2246 2247 uint64_t NumBits = Record[0]; 2248 if (NumBits < IntegerType::MIN_INT_BITS || 2249 NumBits > IntegerType::MAX_INT_BITS) 2250 return error("Bitwidth for integer type out of range"); 2251 ResultTy = IntegerType::get(Context, NumBits); 2252 break; 2253 } 2254 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 2255 // [pointee type, address space] 2256 if (Record.empty()) 2257 return error("Invalid pointer record"); 2258 unsigned AddressSpace = 0; 2259 if (Record.size() == 2) 2260 AddressSpace = Record[1]; 2261 ResultTy = getTypeByID(Record[0]); 2262 if (!ResultTy || 2263 !PointerType::isValidElementType(ResultTy)) 2264 return error("Invalid type"); 2265 if (LLVM_UNLIKELY(!Context.hasSetOpaquePointersValue())) 2266 Context.setOpaquePointers(false); 2267 ContainedIDs.push_back(Record[0]); 2268 ResultTy = PointerType::get(ResultTy, AddressSpace); 2269 break; 2270 } 2271 case bitc::TYPE_CODE_OPAQUE_POINTER: { // OPAQUE_POINTER: [addrspace] 2272 if (Record.size() != 1) 2273 return error("Invalid opaque pointer record"); 2274 if (LLVM_UNLIKELY(!Context.hasSetOpaquePointersValue())) { 2275 Context.setOpaquePointers(true); 2276 } else if (Context.supportsTypedPointers()) 2277 return error( 2278 "Opaque pointers are only supported in -opaque-pointers mode"); 2279 unsigned AddressSpace = Record[0]; 2280 ResultTy = PointerType::get(Context, AddressSpace); 2281 break; 2282 } 2283 case bitc::TYPE_CODE_FUNCTION_OLD: { 2284 // Deprecated, but still needed to read old bitcode files. 2285 // FUNCTION: [vararg, attrid, retty, paramty x N] 2286 if (Record.size() < 3) 2287 return error("Invalid function record"); 2288 SmallVector<Type*, 8> ArgTys; 2289 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 2290 if (Type *T = getTypeByID(Record[i])) 2291 ArgTys.push_back(T); 2292 else 2293 break; 2294 } 2295 2296 ResultTy = getTypeByID(Record[2]); 2297 if (!ResultTy || ArgTys.size() < Record.size()-3) 2298 return error("Invalid type"); 2299 2300 ContainedIDs.append(Record.begin() + 2, Record.end()); 2301 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 2302 break; 2303 } 2304 case bitc::TYPE_CODE_FUNCTION: { 2305 // FUNCTION: [vararg, retty, paramty x N] 2306 if (Record.size() < 2) 2307 return error("Invalid function record"); 2308 SmallVector<Type*, 8> ArgTys; 2309 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 2310 if (Type *T = getTypeByID(Record[i])) { 2311 if (!FunctionType::isValidArgumentType(T)) 2312 return error("Invalid function argument type"); 2313 ArgTys.push_back(T); 2314 } 2315 else 2316 break; 2317 } 2318 2319 ResultTy = getTypeByID(Record[1]); 2320 if (!ResultTy || ArgTys.size() < Record.size()-2) 2321 return error("Invalid type"); 2322 2323 ContainedIDs.append(Record.begin() + 1, Record.end()); 2324 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 2325 break; 2326 } 2327 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 2328 if (Record.empty()) 2329 return error("Invalid anon struct record"); 2330 SmallVector<Type*, 8> EltTys; 2331 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 2332 if (Type *T = getTypeByID(Record[i])) 2333 EltTys.push_back(T); 2334 else 2335 break; 2336 } 2337 if (EltTys.size() != Record.size()-1) 2338 return error("Invalid type"); 2339 ContainedIDs.append(Record.begin() + 1, Record.end()); 2340 ResultTy = StructType::get(Context, EltTys, Record[0]); 2341 break; 2342 } 2343 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 2344 if (convertToString(Record, 0, TypeName)) 2345 return error("Invalid struct name record"); 2346 continue; 2347 2348 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 2349 if (Record.empty()) 2350 return error("Invalid named struct record"); 2351 2352 if (NumRecords >= TypeList.size()) 2353 return error("Invalid TYPE table"); 2354 2355 // Check to see if this was forward referenced, if so fill in the temp. 2356 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 2357 if (Res) { 2358 Res->setName(TypeName); 2359 TypeList[NumRecords] = nullptr; 2360 } else // Otherwise, create a new struct. 2361 Res = createIdentifiedStructType(Context, TypeName); 2362 TypeName.clear(); 2363 2364 SmallVector<Type*, 8> EltTys; 2365 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 2366 if (Type *T = getTypeByID(Record[i])) 2367 EltTys.push_back(T); 2368 else 2369 break; 2370 } 2371 if (EltTys.size() != Record.size()-1) 2372 return error("Invalid named struct record"); 2373 Res->setBody(EltTys, Record[0]); 2374 ContainedIDs.append(Record.begin() + 1, Record.end()); 2375 ResultTy = Res; 2376 break; 2377 } 2378 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 2379 if (Record.size() != 1) 2380 return error("Invalid opaque type record"); 2381 2382 if (NumRecords >= TypeList.size()) 2383 return error("Invalid TYPE table"); 2384 2385 // Check to see if this was forward referenced, if so fill in the temp. 2386 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 2387 if (Res) { 2388 Res->setName(TypeName); 2389 TypeList[NumRecords] = nullptr; 2390 } else // Otherwise, create a new struct with no body. 2391 Res = createIdentifiedStructType(Context, TypeName); 2392 TypeName.clear(); 2393 ResultTy = Res; 2394 break; 2395 } 2396 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 2397 if (Record.size() < 2) 2398 return error("Invalid array type record"); 2399 ResultTy = getTypeByID(Record[1]); 2400 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 2401 return error("Invalid type"); 2402 ContainedIDs.push_back(Record[1]); 2403 ResultTy = ArrayType::get(ResultTy, Record[0]); 2404 break; 2405 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] or 2406 // [numelts, eltty, scalable] 2407 if (Record.size() < 2) 2408 return error("Invalid vector type record"); 2409 if (Record[0] == 0) 2410 return error("Invalid vector length"); 2411 ResultTy = getTypeByID(Record[1]); 2412 if (!ResultTy || !VectorType::isValidElementType(ResultTy)) 2413 return error("Invalid type"); 2414 bool Scalable = Record.size() > 2 ? Record[2] : false; 2415 ContainedIDs.push_back(Record[1]); 2416 ResultTy = VectorType::get(ResultTy, Record[0], Scalable); 2417 break; 2418 } 2419 2420 if (NumRecords >= TypeList.size()) 2421 return error("Invalid TYPE table"); 2422 if (TypeList[NumRecords]) 2423 return error( 2424 "Invalid TYPE table: Only named structs can be forward referenced"); 2425 assert(ResultTy && "Didn't read a type?"); 2426 TypeList[NumRecords] = ResultTy; 2427 if (!ContainedIDs.empty()) 2428 ContainedTypeIDs[NumRecords] = std::move(ContainedIDs); 2429 ++NumRecords; 2430 } 2431 } 2432 2433 Error BitcodeReader::parseOperandBundleTags() { 2434 if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 2435 return Err; 2436 2437 if (!BundleTags.empty()) 2438 return error("Invalid multiple blocks"); 2439 2440 SmallVector<uint64_t, 64> Record; 2441 2442 while (true) { 2443 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2444 if (!MaybeEntry) 2445 return MaybeEntry.takeError(); 2446 BitstreamEntry Entry = MaybeEntry.get(); 2447 2448 switch (Entry.Kind) { 2449 case BitstreamEntry::SubBlock: // Handled for us already. 2450 case BitstreamEntry::Error: 2451 return error("Malformed block"); 2452 case BitstreamEntry::EndBlock: 2453 return Error::success(); 2454 case BitstreamEntry::Record: 2455 // The interesting case. 2456 break; 2457 } 2458 2459 // Tags are implicitly mapped to integers by their order. 2460 2461 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2462 if (!MaybeRecord) 2463 return MaybeRecord.takeError(); 2464 if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG) 2465 return error("Invalid operand bundle record"); 2466 2467 // OPERAND_BUNDLE_TAG: [strchr x N] 2468 BundleTags.emplace_back(); 2469 if (convertToString(Record, 0, BundleTags.back())) 2470 return error("Invalid operand bundle record"); 2471 Record.clear(); 2472 } 2473 } 2474 2475 Error BitcodeReader::parseSyncScopeNames() { 2476 if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID)) 2477 return Err; 2478 2479 if (!SSIDs.empty()) 2480 return error("Invalid multiple synchronization scope names blocks"); 2481 2482 SmallVector<uint64_t, 64> Record; 2483 while (true) { 2484 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2485 if (!MaybeEntry) 2486 return MaybeEntry.takeError(); 2487 BitstreamEntry Entry = MaybeEntry.get(); 2488 2489 switch (Entry.Kind) { 2490 case BitstreamEntry::SubBlock: // Handled for us already. 2491 case BitstreamEntry::Error: 2492 return error("Malformed block"); 2493 case BitstreamEntry::EndBlock: 2494 if (SSIDs.empty()) 2495 return error("Invalid empty synchronization scope names block"); 2496 return Error::success(); 2497 case BitstreamEntry::Record: 2498 // The interesting case. 2499 break; 2500 } 2501 2502 // Synchronization scope names are implicitly mapped to synchronization 2503 // scope IDs by their order. 2504 2505 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2506 if (!MaybeRecord) 2507 return MaybeRecord.takeError(); 2508 if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME) 2509 return error("Invalid sync scope record"); 2510 2511 SmallString<16> SSN; 2512 if (convertToString(Record, 0, SSN)) 2513 return error("Invalid sync scope record"); 2514 2515 SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN)); 2516 Record.clear(); 2517 } 2518 } 2519 2520 /// Associate a value with its name from the given index in the provided record. 2521 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 2522 unsigned NameIndex, Triple &TT) { 2523 SmallString<128> ValueName; 2524 if (convertToString(Record, NameIndex, ValueName)) 2525 return error("Invalid record"); 2526 unsigned ValueID = Record[0]; 2527 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 2528 return error("Invalid record"); 2529 Value *V = ValueList[ValueID]; 2530 2531 StringRef NameStr(ValueName.data(), ValueName.size()); 2532 if (NameStr.find_first_of(0) != StringRef::npos) 2533 return error("Invalid value name"); 2534 V->setName(NameStr); 2535 auto *GO = dyn_cast<GlobalObject>(V); 2536 if (GO && ImplicitComdatObjects.contains(GO) && TT.supportsCOMDAT()) 2537 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 2538 return V; 2539 } 2540 2541 /// Helper to note and return the current location, and jump to the given 2542 /// offset. 2543 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset, 2544 BitstreamCursor &Stream) { 2545 // Save the current parsing location so we can jump back at the end 2546 // of the VST read. 2547 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 2548 if (Error JumpFailed = Stream.JumpToBit(Offset * 32)) 2549 return std::move(JumpFailed); 2550 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 2551 if (!MaybeEntry) 2552 return MaybeEntry.takeError(); 2553 if (MaybeEntry.get().Kind != BitstreamEntry::SubBlock || 2554 MaybeEntry.get().ID != bitc::VALUE_SYMTAB_BLOCK_ID) 2555 return error("Expected value symbol table subblock"); 2556 return CurrentBit; 2557 } 2558 2559 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, 2560 Function *F, 2561 ArrayRef<uint64_t> Record) { 2562 // Note that we subtract 1 here because the offset is relative to one word 2563 // before the start of the identification or module block, which was 2564 // historically always the start of the regular bitcode header. 2565 uint64_t FuncWordOffset = Record[1] - 1; 2566 uint64_t FuncBitOffset = FuncWordOffset * 32; 2567 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 2568 // Set the LastFunctionBlockBit to point to the last function block. 2569 // Later when parsing is resumed after function materialization, 2570 // we can simply skip that last function block. 2571 if (FuncBitOffset > LastFunctionBlockBit) 2572 LastFunctionBlockBit = FuncBitOffset; 2573 } 2574 2575 /// Read a new-style GlobalValue symbol table. 2576 Error BitcodeReader::parseGlobalValueSymbolTable() { 2577 unsigned FuncBitcodeOffsetDelta = 2578 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2579 2580 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2581 return Err; 2582 2583 SmallVector<uint64_t, 64> Record; 2584 while (true) { 2585 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2586 if (!MaybeEntry) 2587 return MaybeEntry.takeError(); 2588 BitstreamEntry Entry = MaybeEntry.get(); 2589 2590 switch (Entry.Kind) { 2591 case BitstreamEntry::SubBlock: 2592 case BitstreamEntry::Error: 2593 return error("Malformed block"); 2594 case BitstreamEntry::EndBlock: 2595 return Error::success(); 2596 case BitstreamEntry::Record: 2597 break; 2598 } 2599 2600 Record.clear(); 2601 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2602 if (!MaybeRecord) 2603 return MaybeRecord.takeError(); 2604 switch (MaybeRecord.get()) { 2605 case bitc::VST_CODE_FNENTRY: { // [valueid, offset] 2606 unsigned ValueID = Record[0]; 2607 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 2608 return error("Invalid value reference in symbol table"); 2609 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, 2610 cast<Function>(ValueList[ValueID]), Record); 2611 break; 2612 } 2613 } 2614 } 2615 } 2616 2617 /// Parse the value symbol table at either the current parsing location or 2618 /// at the given bit offset if provided. 2619 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 2620 uint64_t CurrentBit; 2621 // Pass in the Offset to distinguish between calling for the module-level 2622 // VST (where we want to jump to the VST offset) and the function-level 2623 // VST (where we don't). 2624 if (Offset > 0) { 2625 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 2626 if (!MaybeCurrentBit) 2627 return MaybeCurrentBit.takeError(); 2628 CurrentBit = MaybeCurrentBit.get(); 2629 // If this module uses a string table, read this as a module-level VST. 2630 if (UseStrtab) { 2631 if (Error Err = parseGlobalValueSymbolTable()) 2632 return Err; 2633 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2634 return JumpFailed; 2635 return Error::success(); 2636 } 2637 // Otherwise, the VST will be in a similar format to a function-level VST, 2638 // and will contain symbol names. 2639 } 2640 2641 // Compute the delta between the bitcode indices in the VST (the word offset 2642 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 2643 // expected by the lazy reader. The reader's EnterSubBlock expects to have 2644 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 2645 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 2646 // just before entering the VST subblock because: 1) the EnterSubBlock 2647 // changes the AbbrevID width; 2) the VST block is nested within the same 2648 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 2649 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 2650 // jump to the FUNCTION_BLOCK using this offset later, we don't want 2651 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 2652 unsigned FuncBitcodeOffsetDelta = 2653 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2654 2655 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2656 return Err; 2657 2658 SmallVector<uint64_t, 64> Record; 2659 2660 Triple TT(TheModule->getTargetTriple()); 2661 2662 // Read all the records for this value table. 2663 SmallString<128> ValueName; 2664 2665 while (true) { 2666 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2667 if (!MaybeEntry) 2668 return MaybeEntry.takeError(); 2669 BitstreamEntry Entry = MaybeEntry.get(); 2670 2671 switch (Entry.Kind) { 2672 case BitstreamEntry::SubBlock: // Handled for us already. 2673 case BitstreamEntry::Error: 2674 return error("Malformed block"); 2675 case BitstreamEntry::EndBlock: 2676 if (Offset > 0) 2677 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2678 return JumpFailed; 2679 return Error::success(); 2680 case BitstreamEntry::Record: 2681 // The interesting case. 2682 break; 2683 } 2684 2685 // Read a record. 2686 Record.clear(); 2687 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2688 if (!MaybeRecord) 2689 return MaybeRecord.takeError(); 2690 switch (MaybeRecord.get()) { 2691 default: // Default behavior: unknown type. 2692 break; 2693 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 2694 Expected<Value *> ValOrErr = recordValue(Record, 1, TT); 2695 if (Error Err = ValOrErr.takeError()) 2696 return Err; 2697 ValOrErr.get(); 2698 break; 2699 } 2700 case bitc::VST_CODE_FNENTRY: { 2701 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 2702 Expected<Value *> ValOrErr = recordValue(Record, 2, TT); 2703 if (Error Err = ValOrErr.takeError()) 2704 return Err; 2705 Value *V = ValOrErr.get(); 2706 2707 // Ignore function offsets emitted for aliases of functions in older 2708 // versions of LLVM. 2709 if (auto *F = dyn_cast<Function>(V)) 2710 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record); 2711 break; 2712 } 2713 case bitc::VST_CODE_BBENTRY: { 2714 if (convertToString(Record, 1, ValueName)) 2715 return error("Invalid bbentry record"); 2716 BasicBlock *BB = getBasicBlock(Record[0]); 2717 if (!BB) 2718 return error("Invalid bbentry record"); 2719 2720 BB->setName(StringRef(ValueName.data(), ValueName.size())); 2721 ValueName.clear(); 2722 break; 2723 } 2724 } 2725 } 2726 } 2727 2728 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2729 /// encoding. 2730 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2731 if ((V & 1) == 0) 2732 return V >> 1; 2733 if (V != 1) 2734 return -(V >> 1); 2735 // There is no such thing as -0 with integers. "-0" really means MININT. 2736 return 1ULL << 63; 2737 } 2738 2739 /// Resolve all of the initializers for global values and aliases that we can. 2740 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 2741 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist; 2742 std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInitWorklist; 2743 std::vector<FunctionOperandInfo> FunctionOperandWorklist; 2744 2745 GlobalInitWorklist.swap(GlobalInits); 2746 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 2747 FunctionOperandWorklist.swap(FunctionOperands); 2748 2749 while (!GlobalInitWorklist.empty()) { 2750 unsigned ValID = GlobalInitWorklist.back().second; 2751 if (ValID >= ValueList.size()) { 2752 // Not ready to resolve this yet, it requires something later in the file. 2753 GlobalInits.push_back(GlobalInitWorklist.back()); 2754 } else { 2755 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 2756 if (!MaybeC) 2757 return MaybeC.takeError(); 2758 GlobalInitWorklist.back().first->setInitializer(MaybeC.get()); 2759 } 2760 GlobalInitWorklist.pop_back(); 2761 } 2762 2763 while (!IndirectSymbolInitWorklist.empty()) { 2764 unsigned ValID = IndirectSymbolInitWorklist.back().second; 2765 if (ValID >= ValueList.size()) { 2766 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 2767 } else { 2768 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 2769 if (!MaybeC) 2770 return MaybeC.takeError(); 2771 Constant *C = MaybeC.get(); 2772 GlobalValue *GV = IndirectSymbolInitWorklist.back().first; 2773 if (auto *GA = dyn_cast<GlobalAlias>(GV)) { 2774 if (C->getType() != GV->getType()) 2775 return error("Alias and aliasee types don't match"); 2776 GA->setAliasee(C); 2777 } else if (auto *GI = dyn_cast<GlobalIFunc>(GV)) { 2778 Type *ResolverFTy = 2779 GlobalIFunc::getResolverFunctionType(GI->getValueType()); 2780 // Transparently fix up the type for compatiblity with older bitcode 2781 GI->setResolver( 2782 ConstantExpr::getBitCast(C, ResolverFTy->getPointerTo())); 2783 } else { 2784 return error("Expected an alias or an ifunc"); 2785 } 2786 } 2787 IndirectSymbolInitWorklist.pop_back(); 2788 } 2789 2790 while (!FunctionOperandWorklist.empty()) { 2791 FunctionOperandInfo &Info = FunctionOperandWorklist.back(); 2792 if (Info.PersonalityFn) { 2793 unsigned ValID = Info.PersonalityFn - 1; 2794 if (ValID < ValueList.size()) { 2795 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 2796 if (!MaybeC) 2797 return MaybeC.takeError(); 2798 Info.F->setPersonalityFn(MaybeC.get()); 2799 Info.PersonalityFn = 0; 2800 } 2801 } 2802 if (Info.Prefix) { 2803 unsigned ValID = Info.Prefix - 1; 2804 if (ValID < ValueList.size()) { 2805 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 2806 if (!MaybeC) 2807 return MaybeC.takeError(); 2808 Info.F->setPrefixData(MaybeC.get()); 2809 Info.Prefix = 0; 2810 } 2811 } 2812 if (Info.Prologue) { 2813 unsigned ValID = Info.Prologue - 1; 2814 if (ValID < ValueList.size()) { 2815 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 2816 if (!MaybeC) 2817 return MaybeC.takeError(); 2818 Info.F->setPrologueData(MaybeC.get()); 2819 Info.Prologue = 0; 2820 } 2821 } 2822 if (Info.PersonalityFn || Info.Prefix || Info.Prologue) 2823 FunctionOperands.push_back(Info); 2824 FunctionOperandWorklist.pop_back(); 2825 } 2826 2827 return Error::success(); 2828 } 2829 2830 APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2831 SmallVector<uint64_t, 8> Words(Vals.size()); 2832 transform(Vals, Words.begin(), 2833 BitcodeReader::decodeSignRotatedValue); 2834 2835 return APInt(TypeBits, Words); 2836 } 2837 2838 Error BitcodeReader::parseConstants() { 2839 if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2840 return Err; 2841 2842 SmallVector<uint64_t, 64> Record; 2843 2844 // Read all the records for this value table. 2845 Type *CurTy = Type::getInt32Ty(Context); 2846 unsigned Int32TyID = getVirtualTypeID(CurTy); 2847 unsigned CurTyID = Int32TyID; 2848 Type *CurElemTy = nullptr; 2849 unsigned NextCstNo = ValueList.size(); 2850 2851 while (true) { 2852 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2853 if (!MaybeEntry) 2854 return MaybeEntry.takeError(); 2855 BitstreamEntry Entry = MaybeEntry.get(); 2856 2857 switch (Entry.Kind) { 2858 case BitstreamEntry::SubBlock: // Handled for us already. 2859 case BitstreamEntry::Error: 2860 return error("Malformed block"); 2861 case BitstreamEntry::EndBlock: 2862 if (NextCstNo != ValueList.size()) 2863 return error("Invalid constant reference"); 2864 return Error::success(); 2865 case BitstreamEntry::Record: 2866 // The interesting case. 2867 break; 2868 } 2869 2870 // Read a record. 2871 Record.clear(); 2872 Type *VoidType = Type::getVoidTy(Context); 2873 Value *V = nullptr; 2874 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 2875 if (!MaybeBitCode) 2876 return MaybeBitCode.takeError(); 2877 switch (unsigned BitCode = MaybeBitCode.get()) { 2878 default: // Default behavior: unknown constant 2879 case bitc::CST_CODE_UNDEF: // UNDEF 2880 V = UndefValue::get(CurTy); 2881 break; 2882 case bitc::CST_CODE_POISON: // POISON 2883 V = PoisonValue::get(CurTy); 2884 break; 2885 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2886 if (Record.empty()) 2887 return error("Invalid settype record"); 2888 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2889 return error("Invalid settype record"); 2890 if (TypeList[Record[0]] == VoidType) 2891 return error("Invalid constant type"); 2892 CurTyID = Record[0]; 2893 CurTy = TypeList[CurTyID]; 2894 CurElemTy = getPtrElementTypeByID(CurTyID); 2895 continue; // Skip the ValueList manipulation. 2896 case bitc::CST_CODE_NULL: // NULL 2897 if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy()) 2898 return error("Invalid type for a constant null value"); 2899 V = Constant::getNullValue(CurTy); 2900 break; 2901 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2902 if (!CurTy->isIntegerTy() || Record.empty()) 2903 return error("Invalid integer const record"); 2904 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2905 break; 2906 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2907 if (!CurTy->isIntegerTy() || Record.empty()) 2908 return error("Invalid wide integer const record"); 2909 2910 APInt VInt = 2911 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2912 V = ConstantInt::get(Context, VInt); 2913 2914 break; 2915 } 2916 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2917 if (Record.empty()) 2918 return error("Invalid float const record"); 2919 if (CurTy->isHalfTy()) 2920 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(), 2921 APInt(16, (uint16_t)Record[0]))); 2922 else if (CurTy->isBFloatTy()) 2923 V = ConstantFP::get(Context, APFloat(APFloat::BFloat(), 2924 APInt(16, (uint32_t)Record[0]))); 2925 else if (CurTy->isFloatTy()) 2926 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(), 2927 APInt(32, (uint32_t)Record[0]))); 2928 else if (CurTy->isDoubleTy()) 2929 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(), 2930 APInt(64, Record[0]))); 2931 else if (CurTy->isX86_FP80Ty()) { 2932 // Bits are not stored the same way as a normal i80 APInt, compensate. 2933 uint64_t Rearrange[2]; 2934 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2935 Rearrange[1] = Record[0] >> 48; 2936 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(), 2937 APInt(80, Rearrange))); 2938 } else if (CurTy->isFP128Ty()) 2939 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(), 2940 APInt(128, Record))); 2941 else if (CurTy->isPPC_FP128Ty()) 2942 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(), 2943 APInt(128, Record))); 2944 else 2945 V = UndefValue::get(CurTy); 2946 break; 2947 } 2948 2949 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2950 if (Record.empty()) 2951 return error("Invalid aggregate record"); 2952 2953 unsigned Size = Record.size(); 2954 SmallVector<unsigned, 16> Elts; 2955 for (unsigned i = 0; i != Size; ++i) 2956 Elts.push_back(Record[i]); 2957 2958 if (isa<StructType>(CurTy)) { 2959 V = BitcodeConstant::create( 2960 Alloc, CurTy, BitcodeConstant::ConstantStructOpcode, Elts); 2961 } else if (isa<ArrayType>(CurTy)) { 2962 V = BitcodeConstant::create(Alloc, CurTy, 2963 BitcodeConstant::ConstantArrayOpcode, Elts); 2964 } else if (isa<VectorType>(CurTy)) { 2965 V = BitcodeConstant::create( 2966 Alloc, CurTy, BitcodeConstant::ConstantVectorOpcode, Elts); 2967 } else { 2968 V = UndefValue::get(CurTy); 2969 } 2970 break; 2971 } 2972 case bitc::CST_CODE_STRING: // STRING: [values] 2973 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2974 if (Record.empty()) 2975 return error("Invalid string record"); 2976 2977 SmallString<16> Elts(Record.begin(), Record.end()); 2978 V = ConstantDataArray::getString(Context, Elts, 2979 BitCode == bitc::CST_CODE_CSTRING); 2980 break; 2981 } 2982 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2983 if (Record.empty()) 2984 return error("Invalid data record"); 2985 2986 Type *EltTy; 2987 if (auto *Array = dyn_cast<ArrayType>(CurTy)) 2988 EltTy = Array->getElementType(); 2989 else 2990 EltTy = cast<VectorType>(CurTy)->getElementType(); 2991 if (EltTy->isIntegerTy(8)) { 2992 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2993 if (isa<VectorType>(CurTy)) 2994 V = ConstantDataVector::get(Context, Elts); 2995 else 2996 V = ConstantDataArray::get(Context, Elts); 2997 } else if (EltTy->isIntegerTy(16)) { 2998 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2999 if (isa<VectorType>(CurTy)) 3000 V = ConstantDataVector::get(Context, Elts); 3001 else 3002 V = ConstantDataArray::get(Context, Elts); 3003 } else if (EltTy->isIntegerTy(32)) { 3004 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 3005 if (isa<VectorType>(CurTy)) 3006 V = ConstantDataVector::get(Context, Elts); 3007 else 3008 V = ConstantDataArray::get(Context, Elts); 3009 } else if (EltTy->isIntegerTy(64)) { 3010 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 3011 if (isa<VectorType>(CurTy)) 3012 V = ConstantDataVector::get(Context, Elts); 3013 else 3014 V = ConstantDataArray::get(Context, Elts); 3015 } else if (EltTy->isHalfTy()) { 3016 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 3017 if (isa<VectorType>(CurTy)) 3018 V = ConstantDataVector::getFP(EltTy, Elts); 3019 else 3020 V = ConstantDataArray::getFP(EltTy, Elts); 3021 } else if (EltTy->isBFloatTy()) { 3022 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 3023 if (isa<VectorType>(CurTy)) 3024 V = ConstantDataVector::getFP(EltTy, Elts); 3025 else 3026 V = ConstantDataArray::getFP(EltTy, Elts); 3027 } else if (EltTy->isFloatTy()) { 3028 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 3029 if (isa<VectorType>(CurTy)) 3030 V = ConstantDataVector::getFP(EltTy, Elts); 3031 else 3032 V = ConstantDataArray::getFP(EltTy, Elts); 3033 } else if (EltTy->isDoubleTy()) { 3034 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 3035 if (isa<VectorType>(CurTy)) 3036 V = ConstantDataVector::getFP(EltTy, Elts); 3037 else 3038 V = ConstantDataArray::getFP(EltTy, Elts); 3039 } else { 3040 return error("Invalid type for value"); 3041 } 3042 break; 3043 } 3044 case bitc::CST_CODE_CE_UNOP: { // CE_UNOP: [opcode, opval] 3045 if (Record.size() < 2) 3046 return error("Invalid unary op constexpr record"); 3047 int Opc = getDecodedUnaryOpcode(Record[0], CurTy); 3048 if (Opc < 0) { 3049 V = UndefValue::get(CurTy); // Unknown unop. 3050 } else { 3051 V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[1]); 3052 } 3053 break; 3054 } 3055 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 3056 if (Record.size() < 3) 3057 return error("Invalid binary op constexpr record"); 3058 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 3059 if (Opc < 0) { 3060 V = UndefValue::get(CurTy); // Unknown binop. 3061 } else { 3062 uint8_t Flags = 0; 3063 if (Record.size() >= 4) { 3064 if (Opc == Instruction::Add || 3065 Opc == Instruction::Sub || 3066 Opc == Instruction::Mul || 3067 Opc == Instruction::Shl) { 3068 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3069 Flags |= OverflowingBinaryOperator::NoSignedWrap; 3070 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3071 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 3072 } else if (Opc == Instruction::SDiv || 3073 Opc == Instruction::UDiv || 3074 Opc == Instruction::LShr || 3075 Opc == Instruction::AShr) { 3076 if (Record[3] & (1 << bitc::PEO_EXACT)) 3077 Flags |= SDivOperator::IsExact; 3078 } 3079 } 3080 V = BitcodeConstant::create(Alloc, CurTy, {(uint8_t)Opc, Flags}, 3081 {(unsigned)Record[1], (unsigned)Record[2]}); 3082 } 3083 break; 3084 } 3085 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 3086 if (Record.size() < 3) 3087 return error("Invalid cast constexpr record"); 3088 int Opc = getDecodedCastOpcode(Record[0]); 3089 if (Opc < 0) { 3090 V = UndefValue::get(CurTy); // Unknown cast. 3091 } else { 3092 unsigned OpTyID = Record[1]; 3093 Type *OpTy = getTypeByID(OpTyID); 3094 if (!OpTy) 3095 return error("Invalid cast constexpr record"); 3096 V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[2]); 3097 } 3098 break; 3099 } 3100 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands] 3101 case bitc::CST_CODE_CE_GEP: // [ty, n x operands] 3102 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x 3103 // operands] 3104 if (Record.size() < 2) 3105 return error("Constant GEP record must have at least two elements"); 3106 unsigned OpNum = 0; 3107 Type *PointeeType = nullptr; 3108 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX || 3109 Record.size() % 2) 3110 PointeeType = getTypeByID(Record[OpNum++]); 3111 3112 bool InBounds = false; 3113 Optional<unsigned> InRangeIndex; 3114 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) { 3115 uint64_t Op = Record[OpNum++]; 3116 InBounds = Op & 1; 3117 InRangeIndex = Op >> 1; 3118 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 3119 InBounds = true; 3120 3121 SmallVector<unsigned, 16> Elts; 3122 unsigned BaseTypeID = Record[OpNum]; 3123 while (OpNum != Record.size()) { 3124 unsigned ElTyID = Record[OpNum++]; 3125 Type *ElTy = getTypeByID(ElTyID); 3126 if (!ElTy) 3127 return error("Invalid getelementptr constexpr record"); 3128 Elts.push_back(Record[OpNum++]); 3129 } 3130 3131 if (Elts.size() < 1) 3132 return error("Invalid gep with no operands"); 3133 3134 Type *BaseType = getTypeByID(BaseTypeID); 3135 if (isa<VectorType>(BaseType)) { 3136 BaseTypeID = getContainedTypeID(BaseTypeID, 0); 3137 BaseType = getTypeByID(BaseTypeID); 3138 } 3139 3140 PointerType *OrigPtrTy = dyn_cast_or_null<PointerType>(BaseType); 3141 if (!OrigPtrTy) 3142 return error("GEP base operand must be pointer or vector of pointer"); 3143 3144 if (!PointeeType) { 3145 PointeeType = getPtrElementTypeByID(BaseTypeID); 3146 if (!PointeeType) 3147 return error("Missing element type for old-style constant GEP"); 3148 } else if (!OrigPtrTy->isOpaqueOrPointeeTypeMatches(PointeeType)) 3149 return error("Explicit gep operator type does not match pointee type " 3150 "of pointer operand"); 3151 3152 V = BitcodeConstant::create(Alloc, CurTy, 3153 {Instruction::GetElementPtr, InBounds, 3154 InRangeIndex.value_or(-1), PointeeType}, 3155 Elts); 3156 break; 3157 } 3158 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 3159 if (Record.size() < 3) 3160 return error("Invalid select constexpr record"); 3161 3162 V = BitcodeConstant::create( 3163 Alloc, CurTy, Instruction::Select, 3164 {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]}); 3165 break; 3166 } 3167 case bitc::CST_CODE_CE_EXTRACTELT 3168 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 3169 if (Record.size() < 3) 3170 return error("Invalid extractelement constexpr record"); 3171 unsigned OpTyID = Record[0]; 3172 VectorType *OpTy = 3173 dyn_cast_or_null<VectorType>(getTypeByID(OpTyID)); 3174 if (!OpTy) 3175 return error("Invalid extractelement constexpr record"); 3176 unsigned IdxRecord; 3177 if (Record.size() == 4) { 3178 unsigned IdxTyID = Record[2]; 3179 Type *IdxTy = getTypeByID(IdxTyID); 3180 if (!IdxTy) 3181 return error("Invalid extractelement constexpr record"); 3182 IdxRecord = Record[3]; 3183 } else { 3184 // Deprecated, but still needed to read old bitcode files. 3185 IdxRecord = Record[2]; 3186 } 3187 V = BitcodeConstant::create(Alloc, CurTy, Instruction::ExtractElement, 3188 {(unsigned)Record[1], IdxRecord}); 3189 break; 3190 } 3191 case bitc::CST_CODE_CE_INSERTELT 3192 : { // CE_INSERTELT: [opval, opval, opty, opval] 3193 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 3194 if (Record.size() < 3 || !OpTy) 3195 return error("Invalid insertelement constexpr record"); 3196 unsigned IdxRecord; 3197 if (Record.size() == 4) { 3198 unsigned IdxTyID = Record[2]; 3199 Type *IdxTy = getTypeByID(IdxTyID); 3200 if (!IdxTy) 3201 return error("Invalid insertelement constexpr record"); 3202 IdxRecord = Record[3]; 3203 } else { 3204 // Deprecated, but still needed to read old bitcode files. 3205 IdxRecord = Record[2]; 3206 } 3207 V = BitcodeConstant::create( 3208 Alloc, CurTy, Instruction::InsertElement, 3209 {(unsigned)Record[0], (unsigned)Record[1], IdxRecord}); 3210 break; 3211 } 3212 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 3213 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 3214 if (Record.size() < 3 || !OpTy) 3215 return error("Invalid shufflevector constexpr record"); 3216 V = BitcodeConstant::create( 3217 Alloc, CurTy, Instruction::ShuffleVector, 3218 {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]}); 3219 break; 3220 } 3221 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 3222 VectorType *RTy = dyn_cast<VectorType>(CurTy); 3223 VectorType *OpTy = 3224 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 3225 if (Record.size() < 4 || !RTy || !OpTy) 3226 return error("Invalid shufflevector constexpr record"); 3227 V = BitcodeConstant::create( 3228 Alloc, CurTy, Instruction::ShuffleVector, 3229 {(unsigned)Record[1], (unsigned)Record[2], (unsigned)Record[3]}); 3230 break; 3231 } 3232 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 3233 if (Record.size() < 4) 3234 return error("Invalid cmp constexpt record"); 3235 unsigned OpTyID = Record[0]; 3236 Type *OpTy = getTypeByID(OpTyID); 3237 if (!OpTy) 3238 return error("Invalid cmp constexpr record"); 3239 V = BitcodeConstant::create( 3240 Alloc, CurTy, 3241 {(uint8_t)(OpTy->isFPOrFPVectorTy() ? Instruction::FCmp 3242 : Instruction::ICmp), 3243 (uint8_t)Record[3]}, 3244 {(unsigned)Record[1], (unsigned)Record[2]}); 3245 break; 3246 } 3247 // This maintains backward compatibility, pre-asm dialect keywords. 3248 // Deprecated, but still needed to read old bitcode files. 3249 case bitc::CST_CODE_INLINEASM_OLD: { 3250 if (Record.size() < 2) 3251 return error("Invalid inlineasm record"); 3252 std::string AsmStr, ConstrStr; 3253 bool HasSideEffects = Record[0] & 1; 3254 bool IsAlignStack = Record[0] >> 1; 3255 unsigned AsmStrSize = Record[1]; 3256 if (2+AsmStrSize >= Record.size()) 3257 return error("Invalid inlineasm record"); 3258 unsigned ConstStrSize = Record[2+AsmStrSize]; 3259 if (3+AsmStrSize+ConstStrSize > Record.size()) 3260 return error("Invalid inlineasm record"); 3261 3262 for (unsigned i = 0; i != AsmStrSize; ++i) 3263 AsmStr += (char)Record[2+i]; 3264 for (unsigned i = 0; i != ConstStrSize; ++i) 3265 ConstrStr += (char)Record[3+AsmStrSize+i]; 3266 UpgradeInlineAsmString(&AsmStr); 3267 if (!CurElemTy) 3268 return error("Missing element type for old-style inlineasm"); 3269 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr, 3270 HasSideEffects, IsAlignStack); 3271 break; 3272 } 3273 // This version adds support for the asm dialect keywords (e.g., 3274 // inteldialect). 3275 case bitc::CST_CODE_INLINEASM_OLD2: { 3276 if (Record.size() < 2) 3277 return error("Invalid inlineasm record"); 3278 std::string AsmStr, ConstrStr; 3279 bool HasSideEffects = Record[0] & 1; 3280 bool IsAlignStack = (Record[0] >> 1) & 1; 3281 unsigned AsmDialect = Record[0] >> 2; 3282 unsigned AsmStrSize = Record[1]; 3283 if (2+AsmStrSize >= Record.size()) 3284 return error("Invalid inlineasm record"); 3285 unsigned ConstStrSize = Record[2+AsmStrSize]; 3286 if (3+AsmStrSize+ConstStrSize > Record.size()) 3287 return error("Invalid inlineasm record"); 3288 3289 for (unsigned i = 0; i != AsmStrSize; ++i) 3290 AsmStr += (char)Record[2+i]; 3291 for (unsigned i = 0; i != ConstStrSize; ++i) 3292 ConstrStr += (char)Record[3+AsmStrSize+i]; 3293 UpgradeInlineAsmString(&AsmStr); 3294 if (!CurElemTy) 3295 return error("Missing element type for old-style inlineasm"); 3296 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr, 3297 HasSideEffects, IsAlignStack, 3298 InlineAsm::AsmDialect(AsmDialect)); 3299 break; 3300 } 3301 // This version adds support for the unwind keyword. 3302 case bitc::CST_CODE_INLINEASM_OLD3: { 3303 if (Record.size() < 2) 3304 return error("Invalid inlineasm record"); 3305 unsigned OpNum = 0; 3306 std::string AsmStr, ConstrStr; 3307 bool HasSideEffects = Record[OpNum] & 1; 3308 bool IsAlignStack = (Record[OpNum] >> 1) & 1; 3309 unsigned AsmDialect = (Record[OpNum] >> 2) & 1; 3310 bool CanThrow = (Record[OpNum] >> 3) & 1; 3311 ++OpNum; 3312 unsigned AsmStrSize = Record[OpNum]; 3313 ++OpNum; 3314 if (OpNum + AsmStrSize >= Record.size()) 3315 return error("Invalid inlineasm record"); 3316 unsigned ConstStrSize = Record[OpNum + AsmStrSize]; 3317 if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size()) 3318 return error("Invalid inlineasm record"); 3319 3320 for (unsigned i = 0; i != AsmStrSize; ++i) 3321 AsmStr += (char)Record[OpNum + i]; 3322 ++OpNum; 3323 for (unsigned i = 0; i != ConstStrSize; ++i) 3324 ConstrStr += (char)Record[OpNum + AsmStrSize + i]; 3325 UpgradeInlineAsmString(&AsmStr); 3326 if (!CurElemTy) 3327 return error("Missing element type for old-style inlineasm"); 3328 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr, 3329 HasSideEffects, IsAlignStack, 3330 InlineAsm::AsmDialect(AsmDialect), CanThrow); 3331 break; 3332 } 3333 // This version adds explicit function type. 3334 case bitc::CST_CODE_INLINEASM: { 3335 if (Record.size() < 3) 3336 return error("Invalid inlineasm record"); 3337 unsigned OpNum = 0; 3338 auto *FnTy = dyn_cast_or_null<FunctionType>(getTypeByID(Record[OpNum])); 3339 ++OpNum; 3340 if (!FnTy) 3341 return error("Invalid inlineasm record"); 3342 std::string AsmStr, ConstrStr; 3343 bool HasSideEffects = Record[OpNum] & 1; 3344 bool IsAlignStack = (Record[OpNum] >> 1) & 1; 3345 unsigned AsmDialect = (Record[OpNum] >> 2) & 1; 3346 bool CanThrow = (Record[OpNum] >> 3) & 1; 3347 ++OpNum; 3348 unsigned AsmStrSize = Record[OpNum]; 3349 ++OpNum; 3350 if (OpNum + AsmStrSize >= Record.size()) 3351 return error("Invalid inlineasm record"); 3352 unsigned ConstStrSize = Record[OpNum + AsmStrSize]; 3353 if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size()) 3354 return error("Invalid inlineasm record"); 3355 3356 for (unsigned i = 0; i != AsmStrSize; ++i) 3357 AsmStr += (char)Record[OpNum + i]; 3358 ++OpNum; 3359 for (unsigned i = 0; i != ConstStrSize; ++i) 3360 ConstrStr += (char)Record[OpNum + AsmStrSize + i]; 3361 UpgradeInlineAsmString(&AsmStr); 3362 V = InlineAsm::get(FnTy, AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 3363 InlineAsm::AsmDialect(AsmDialect), CanThrow); 3364 break; 3365 } 3366 case bitc::CST_CODE_BLOCKADDRESS:{ 3367 if (Record.size() < 3) 3368 return error("Invalid blockaddress record"); 3369 unsigned FnTyID = Record[0]; 3370 Type *FnTy = getTypeByID(FnTyID); 3371 if (!FnTy) 3372 return error("Invalid blockaddress record"); 3373 V = BitcodeConstant::create( 3374 Alloc, CurTy, 3375 {BitcodeConstant::BlockAddressOpcode, 0, (unsigned)Record[2]}, 3376 Record[1]); 3377 break; 3378 } 3379 case bitc::CST_CODE_DSO_LOCAL_EQUIVALENT: { 3380 if (Record.size() < 2) 3381 return error("Invalid dso_local record"); 3382 unsigned GVTyID = Record[0]; 3383 Type *GVTy = getTypeByID(GVTyID); 3384 if (!GVTy) 3385 return error("Invalid dso_local record"); 3386 V = BitcodeConstant::create( 3387 Alloc, CurTy, BitcodeConstant::DSOLocalEquivalentOpcode, Record[1]); 3388 break; 3389 } 3390 case bitc::CST_CODE_NO_CFI_VALUE: { 3391 if (Record.size() < 2) 3392 return error("Invalid no_cfi record"); 3393 unsigned GVTyID = Record[0]; 3394 Type *GVTy = getTypeByID(GVTyID); 3395 if (!GVTy) 3396 return error("Invalid no_cfi record"); 3397 V = BitcodeConstant::create(Alloc, CurTy, BitcodeConstant::NoCFIOpcode, 3398 Record[1]); 3399 break; 3400 } 3401 } 3402 3403 assert(V->getType() == getTypeByID(CurTyID) && "Incorrect result type ID"); 3404 if (Error Err = ValueList.assignValue(NextCstNo, V, CurTyID)) 3405 return Err; 3406 ++NextCstNo; 3407 } 3408 } 3409 3410 Error BitcodeReader::parseUseLists() { 3411 if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 3412 return Err; 3413 3414 // Read all the records. 3415 SmallVector<uint64_t, 64> Record; 3416 3417 while (true) { 3418 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 3419 if (!MaybeEntry) 3420 return MaybeEntry.takeError(); 3421 BitstreamEntry Entry = MaybeEntry.get(); 3422 3423 switch (Entry.Kind) { 3424 case BitstreamEntry::SubBlock: // Handled for us already. 3425 case BitstreamEntry::Error: 3426 return error("Malformed block"); 3427 case BitstreamEntry::EndBlock: 3428 return Error::success(); 3429 case BitstreamEntry::Record: 3430 // The interesting case. 3431 break; 3432 } 3433 3434 // Read a use list record. 3435 Record.clear(); 3436 bool IsBB = false; 3437 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 3438 if (!MaybeRecord) 3439 return MaybeRecord.takeError(); 3440 switch (MaybeRecord.get()) { 3441 default: // Default behavior: unknown type. 3442 break; 3443 case bitc::USELIST_CODE_BB: 3444 IsBB = true; 3445 LLVM_FALLTHROUGH; 3446 case bitc::USELIST_CODE_DEFAULT: { 3447 unsigned RecordLength = Record.size(); 3448 if (RecordLength < 3) 3449 // Records should have at least an ID and two indexes. 3450 return error("Invalid record"); 3451 unsigned ID = Record.pop_back_val(); 3452 3453 Value *V; 3454 if (IsBB) { 3455 assert(ID < FunctionBBs.size() && "Basic block not found"); 3456 V = FunctionBBs[ID]; 3457 } else 3458 V = ValueList[ID]; 3459 unsigned NumUses = 0; 3460 SmallDenseMap<const Use *, unsigned, 16> Order; 3461 for (const Use &U : V->materialized_uses()) { 3462 if (++NumUses > Record.size()) 3463 break; 3464 Order[&U] = Record[NumUses - 1]; 3465 } 3466 if (Order.size() != Record.size() || NumUses > Record.size()) 3467 // Mismatches can happen if the functions are being materialized lazily 3468 // (out-of-order), or a value has been upgraded. 3469 break; 3470 3471 V->sortUseList([&](const Use &L, const Use &R) { 3472 return Order.lookup(&L) < Order.lookup(&R); 3473 }); 3474 break; 3475 } 3476 } 3477 } 3478 } 3479 3480 /// When we see the block for metadata, remember where it is and then skip it. 3481 /// This lets us lazily deserialize the metadata. 3482 Error BitcodeReader::rememberAndSkipMetadata() { 3483 // Save the current stream state. 3484 uint64_t CurBit = Stream.GetCurrentBitNo(); 3485 DeferredMetadataInfo.push_back(CurBit); 3486 3487 // Skip over the block for now. 3488 if (Error Err = Stream.SkipBlock()) 3489 return Err; 3490 return Error::success(); 3491 } 3492 3493 Error BitcodeReader::materializeMetadata() { 3494 for (uint64_t BitPos : DeferredMetadataInfo) { 3495 // Move the bit stream to the saved position. 3496 if (Error JumpFailed = Stream.JumpToBit(BitPos)) 3497 return JumpFailed; 3498 if (Error Err = MDLoader->parseModuleMetadata()) 3499 return Err; 3500 } 3501 3502 // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level 3503 // metadata. Only upgrade if the new option doesn't exist to avoid upgrade 3504 // multiple times. 3505 if (!TheModule->getNamedMetadata("llvm.linker.options")) { 3506 if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) { 3507 NamedMDNode *LinkerOpts = 3508 TheModule->getOrInsertNamedMetadata("llvm.linker.options"); 3509 for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands()) 3510 LinkerOpts->addOperand(cast<MDNode>(MDOptions)); 3511 } 3512 } 3513 3514 DeferredMetadataInfo.clear(); 3515 return Error::success(); 3516 } 3517 3518 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 3519 3520 /// When we see the block for a function body, remember where it is and then 3521 /// skip it. This lets us lazily deserialize the functions. 3522 Error BitcodeReader::rememberAndSkipFunctionBody() { 3523 // Get the function we are talking about. 3524 if (FunctionsWithBodies.empty()) 3525 return error("Insufficient function protos"); 3526 3527 Function *Fn = FunctionsWithBodies.back(); 3528 FunctionsWithBodies.pop_back(); 3529 3530 // Save the current stream state. 3531 uint64_t CurBit = Stream.GetCurrentBitNo(); 3532 assert( 3533 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 3534 "Mismatch between VST and scanned function offsets"); 3535 DeferredFunctionInfo[Fn] = CurBit; 3536 3537 // Skip over the function block for now. 3538 if (Error Err = Stream.SkipBlock()) 3539 return Err; 3540 return Error::success(); 3541 } 3542 3543 Error BitcodeReader::globalCleanup() { 3544 // Patch the initializers for globals and aliases up. 3545 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3546 return Err; 3547 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 3548 return error("Malformed global initializer set"); 3549 3550 // Look for intrinsic functions which need to be upgraded at some point 3551 // and functions that need to have their function attributes upgraded. 3552 for (Function &F : *TheModule) { 3553 MDLoader->upgradeDebugIntrinsics(F); 3554 Function *NewFn; 3555 if (UpgradeIntrinsicFunction(&F, NewFn)) 3556 UpgradedIntrinsics[&F] = NewFn; 3557 else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F)) 3558 // Some types could be renamed during loading if several modules are 3559 // loaded in the same LLVMContext (LTO scenario). In this case we should 3560 // remangle intrinsics names as well. 3561 RemangledIntrinsics[&F] = *Remangled; 3562 // Look for functions that rely on old function attribute behavior. 3563 UpgradeFunctionAttributes(F); 3564 } 3565 3566 // Look for global variables which need to be renamed. 3567 std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables; 3568 for (GlobalVariable &GV : TheModule->globals()) 3569 if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV)) 3570 UpgradedVariables.emplace_back(&GV, Upgraded); 3571 for (auto &Pair : UpgradedVariables) { 3572 Pair.first->eraseFromParent(); 3573 TheModule->getGlobalList().push_back(Pair.second); 3574 } 3575 3576 // Force deallocation of memory for these vectors to favor the client that 3577 // want lazy deserialization. 3578 std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits); 3579 std::vector<std::pair<GlobalValue *, unsigned>>().swap(IndirectSymbolInits); 3580 return Error::success(); 3581 } 3582 3583 /// Support for lazy parsing of function bodies. This is required if we 3584 /// either have an old bitcode file without a VST forward declaration record, 3585 /// or if we have an anonymous function being materialized, since anonymous 3586 /// functions do not have a name and are therefore not in the VST. 3587 Error BitcodeReader::rememberAndSkipFunctionBodies() { 3588 if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit)) 3589 return JumpFailed; 3590 3591 if (Stream.AtEndOfStream()) 3592 return error("Could not find function in stream"); 3593 3594 if (!SeenFirstFunctionBody) 3595 return error("Trying to materialize functions before seeing function blocks"); 3596 3597 // An old bitcode file with the symbol table at the end would have 3598 // finished the parse greedily. 3599 assert(SeenValueSymbolTable); 3600 3601 SmallVector<uint64_t, 64> Record; 3602 3603 while (true) { 3604 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3605 if (!MaybeEntry) 3606 return MaybeEntry.takeError(); 3607 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3608 3609 switch (Entry.Kind) { 3610 default: 3611 return error("Expect SubBlock"); 3612 case BitstreamEntry::SubBlock: 3613 switch (Entry.ID) { 3614 default: 3615 return error("Expect function block"); 3616 case bitc::FUNCTION_BLOCK_ID: 3617 if (Error Err = rememberAndSkipFunctionBody()) 3618 return Err; 3619 NextUnreadBit = Stream.GetCurrentBitNo(); 3620 return Error::success(); 3621 } 3622 } 3623 } 3624 } 3625 3626 Error BitcodeReaderBase::readBlockInfo() { 3627 Expected<Optional<BitstreamBlockInfo>> MaybeNewBlockInfo = 3628 Stream.ReadBlockInfoBlock(); 3629 if (!MaybeNewBlockInfo) 3630 return MaybeNewBlockInfo.takeError(); 3631 Optional<BitstreamBlockInfo> NewBlockInfo = 3632 std::move(MaybeNewBlockInfo.get()); 3633 if (!NewBlockInfo) 3634 return error("Malformed block"); 3635 BlockInfo = std::move(*NewBlockInfo); 3636 return Error::success(); 3637 } 3638 3639 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) { 3640 // v1: [selection_kind, name] 3641 // v2: [strtab_offset, strtab_size, selection_kind] 3642 StringRef Name; 3643 std::tie(Name, Record) = readNameFromStrtab(Record); 3644 3645 if (Record.empty()) 3646 return error("Invalid record"); 3647 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 3648 std::string OldFormatName; 3649 if (!UseStrtab) { 3650 if (Record.size() < 2) 3651 return error("Invalid record"); 3652 unsigned ComdatNameSize = Record[1]; 3653 if (ComdatNameSize > Record.size() - 2) 3654 return error("Comdat name size too large"); 3655 OldFormatName.reserve(ComdatNameSize); 3656 for (unsigned i = 0; i != ComdatNameSize; ++i) 3657 OldFormatName += (char)Record[2 + i]; 3658 Name = OldFormatName; 3659 } 3660 Comdat *C = TheModule->getOrInsertComdat(Name); 3661 C->setSelectionKind(SK); 3662 ComdatList.push_back(C); 3663 return Error::success(); 3664 } 3665 3666 static void inferDSOLocal(GlobalValue *GV) { 3667 // infer dso_local from linkage and visibility if it is not encoded. 3668 if (GV->hasLocalLinkage() || 3669 (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())) 3670 GV->setDSOLocal(true); 3671 } 3672 3673 GlobalValue::SanitizerMetadata deserializeSanitizerMetadata(unsigned V) { 3674 GlobalValue::SanitizerMetadata Meta; 3675 if (V & (1 << 0)) 3676 Meta.NoAddress = true; 3677 if (V & (1 << 1)) 3678 Meta.NoHWAddress = true; 3679 if (V & (1 << 2)) 3680 Meta.NoMemtag = true; 3681 if (V & (1 << 3)) 3682 Meta.IsDynInit = true; 3683 return Meta; 3684 } 3685 3686 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) { 3687 // v1: [pointer type, isconst, initid, linkage, alignment, section, 3688 // visibility, threadlocal, unnamed_addr, externally_initialized, 3689 // dllstorageclass, comdat, attributes, preemption specifier, 3690 // partition strtab offset, partition strtab size] (name in VST) 3691 // v2: [strtab_offset, strtab_size, v1] 3692 StringRef Name; 3693 std::tie(Name, Record) = readNameFromStrtab(Record); 3694 3695 if (Record.size() < 6) 3696 return error("Invalid record"); 3697 unsigned TyID = Record[0]; 3698 Type *Ty = getTypeByID(TyID); 3699 if (!Ty) 3700 return error("Invalid record"); 3701 bool isConstant = Record[1] & 1; 3702 bool explicitType = Record[1] & 2; 3703 unsigned AddressSpace; 3704 if (explicitType) { 3705 AddressSpace = Record[1] >> 2; 3706 } else { 3707 if (!Ty->isPointerTy()) 3708 return error("Invalid type for value"); 3709 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 3710 TyID = getContainedTypeID(TyID); 3711 Ty = getTypeByID(TyID); 3712 if (!Ty) 3713 return error("Missing element type for old-style global"); 3714 } 3715 3716 uint64_t RawLinkage = Record[3]; 3717 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 3718 MaybeAlign Alignment; 3719 if (Error Err = parseAlignmentValue(Record[4], Alignment)) 3720 return Err; 3721 std::string Section; 3722 if (Record[5]) { 3723 if (Record[5] - 1 >= SectionTable.size()) 3724 return error("Invalid ID"); 3725 Section = SectionTable[Record[5] - 1]; 3726 } 3727 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 3728 // Local linkage must have default visibility. 3729 // auto-upgrade `hidden` and `protected` for old bitcode. 3730 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 3731 Visibility = getDecodedVisibility(Record[6]); 3732 3733 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 3734 if (Record.size() > 7) 3735 TLM = getDecodedThreadLocalMode(Record[7]); 3736 3737 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3738 if (Record.size() > 8) 3739 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); 3740 3741 bool ExternallyInitialized = false; 3742 if (Record.size() > 9) 3743 ExternallyInitialized = Record[9]; 3744 3745 GlobalVariable *NewGV = 3746 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name, 3747 nullptr, TLM, AddressSpace, ExternallyInitialized); 3748 NewGV->setAlignment(Alignment); 3749 if (!Section.empty()) 3750 NewGV->setSection(Section); 3751 NewGV->setVisibility(Visibility); 3752 NewGV->setUnnamedAddr(UnnamedAddr); 3753 3754 if (Record.size() > 10) 3755 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 3756 else 3757 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 3758 3759 ValueList.push_back(NewGV, getVirtualTypeID(NewGV->getType(), TyID)); 3760 3761 // Remember which value to use for the global initializer. 3762 if (unsigned InitID = Record[2]) 3763 GlobalInits.push_back(std::make_pair(NewGV, InitID - 1)); 3764 3765 if (Record.size() > 11) { 3766 if (unsigned ComdatID = Record[11]) { 3767 if (ComdatID > ComdatList.size()) 3768 return error("Invalid global variable comdat ID"); 3769 NewGV->setComdat(ComdatList[ComdatID - 1]); 3770 } 3771 } else if (hasImplicitComdat(RawLinkage)) { 3772 ImplicitComdatObjects.insert(NewGV); 3773 } 3774 3775 if (Record.size() > 12) { 3776 auto AS = getAttributes(Record[12]).getFnAttrs(); 3777 NewGV->setAttributes(AS); 3778 } 3779 3780 if (Record.size() > 13) { 3781 NewGV->setDSOLocal(getDecodedDSOLocal(Record[13])); 3782 } 3783 inferDSOLocal(NewGV); 3784 3785 // Check whether we have enough values to read a partition name. 3786 if (Record.size() > 15) 3787 NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15])); 3788 3789 if (Record.size() > 16 && Record[16]) { 3790 llvm::GlobalValue::SanitizerMetadata Meta = 3791 deserializeSanitizerMetadata(Record[16]); 3792 NewGV->setSanitizerMetadata(Meta); 3793 } 3794 3795 return Error::success(); 3796 } 3797 3798 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) { 3799 // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section, 3800 // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat, 3801 // prefixdata, personalityfn, preemption specifier, addrspace] (name in VST) 3802 // v2: [strtab_offset, strtab_size, v1] 3803 StringRef Name; 3804 std::tie(Name, Record) = readNameFromStrtab(Record); 3805 3806 if (Record.size() < 8) 3807 return error("Invalid record"); 3808 unsigned FTyID = Record[0]; 3809 Type *FTy = getTypeByID(FTyID); 3810 if (!FTy) 3811 return error("Invalid record"); 3812 if (isa<PointerType>(FTy)) { 3813 FTyID = getContainedTypeID(FTyID, 0); 3814 FTy = getTypeByID(FTyID); 3815 if (!FTy) 3816 return error("Missing element type for old-style function"); 3817 } 3818 3819 if (!isa<FunctionType>(FTy)) 3820 return error("Invalid type for value"); 3821 auto CC = static_cast<CallingConv::ID>(Record[1]); 3822 if (CC & ~CallingConv::MaxID) 3823 return error("Invalid calling convention ID"); 3824 3825 unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace(); 3826 if (Record.size() > 16) 3827 AddrSpace = Record[16]; 3828 3829 Function *Func = 3830 Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage, 3831 AddrSpace, Name, TheModule); 3832 3833 assert(Func->getFunctionType() == FTy && 3834 "Incorrect fully specified type provided for function"); 3835 FunctionTypeIDs[Func] = FTyID; 3836 3837 Func->setCallingConv(CC); 3838 bool isProto = Record[2]; 3839 uint64_t RawLinkage = Record[3]; 3840 Func->setLinkage(getDecodedLinkage(RawLinkage)); 3841 Func->setAttributes(getAttributes(Record[4])); 3842 3843 // Upgrade any old-style byval or sret without a type by propagating the 3844 // argument's pointee type. There should be no opaque pointers where the byval 3845 // type is implicit. 3846 for (unsigned i = 0; i != Func->arg_size(); ++i) { 3847 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet, 3848 Attribute::InAlloca}) { 3849 if (!Func->hasParamAttribute(i, Kind)) 3850 continue; 3851 3852 if (Func->getParamAttribute(i, Kind).getValueAsType()) 3853 continue; 3854 3855 Func->removeParamAttr(i, Kind); 3856 3857 unsigned ParamTypeID = getContainedTypeID(FTyID, i + 1); 3858 Type *PtrEltTy = getPtrElementTypeByID(ParamTypeID); 3859 if (!PtrEltTy) 3860 return error("Missing param element type for attribute upgrade"); 3861 3862 Attribute NewAttr; 3863 switch (Kind) { 3864 case Attribute::ByVal: 3865 NewAttr = Attribute::getWithByValType(Context, PtrEltTy); 3866 break; 3867 case Attribute::StructRet: 3868 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy); 3869 break; 3870 case Attribute::InAlloca: 3871 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy); 3872 break; 3873 default: 3874 llvm_unreachable("not an upgraded type attribute"); 3875 } 3876 3877 Func->addParamAttr(i, NewAttr); 3878 } 3879 } 3880 3881 if (Func->getCallingConv() == CallingConv::X86_INTR && 3882 !Func->arg_empty() && !Func->hasParamAttribute(0, Attribute::ByVal)) { 3883 unsigned ParamTypeID = getContainedTypeID(FTyID, 1); 3884 Type *ByValTy = getPtrElementTypeByID(ParamTypeID); 3885 if (!ByValTy) 3886 return error("Missing param element type for x86_intrcc upgrade"); 3887 Attribute NewAttr = Attribute::getWithByValType(Context, ByValTy); 3888 Func->addParamAttr(0, NewAttr); 3889 } 3890 3891 MaybeAlign Alignment; 3892 if (Error Err = parseAlignmentValue(Record[5], Alignment)) 3893 return Err; 3894 Func->setAlignment(Alignment); 3895 if (Record[6]) { 3896 if (Record[6] - 1 >= SectionTable.size()) 3897 return error("Invalid ID"); 3898 Func->setSection(SectionTable[Record[6] - 1]); 3899 } 3900 // Local linkage must have default visibility. 3901 // auto-upgrade `hidden` and `protected` for old bitcode. 3902 if (!Func->hasLocalLinkage()) 3903 Func->setVisibility(getDecodedVisibility(Record[7])); 3904 if (Record.size() > 8 && Record[8]) { 3905 if (Record[8] - 1 >= GCTable.size()) 3906 return error("Invalid ID"); 3907 Func->setGC(GCTable[Record[8] - 1]); 3908 } 3909 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3910 if (Record.size() > 9) 3911 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); 3912 Func->setUnnamedAddr(UnnamedAddr); 3913 3914 FunctionOperandInfo OperandInfo = {Func, 0, 0, 0}; 3915 if (Record.size() > 10) 3916 OperandInfo.Prologue = Record[10]; 3917 3918 if (Record.size() > 11) 3919 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 3920 else 3921 upgradeDLLImportExportLinkage(Func, RawLinkage); 3922 3923 if (Record.size() > 12) { 3924 if (unsigned ComdatID = Record[12]) { 3925 if (ComdatID > ComdatList.size()) 3926 return error("Invalid function comdat ID"); 3927 Func->setComdat(ComdatList[ComdatID - 1]); 3928 } 3929 } else if (hasImplicitComdat(RawLinkage)) { 3930 ImplicitComdatObjects.insert(Func); 3931 } 3932 3933 if (Record.size() > 13) 3934 OperandInfo.Prefix = Record[13]; 3935 3936 if (Record.size() > 14) 3937 OperandInfo.PersonalityFn = Record[14]; 3938 3939 if (Record.size() > 15) { 3940 Func->setDSOLocal(getDecodedDSOLocal(Record[15])); 3941 } 3942 inferDSOLocal(Func); 3943 3944 // Record[16] is the address space number. 3945 3946 // Check whether we have enough values to read a partition name. Also make 3947 // sure Strtab has enough values. 3948 if (Record.size() > 18 && Strtab.data() && 3949 Record[17] + Record[18] <= Strtab.size()) { 3950 Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18])); 3951 } 3952 3953 ValueList.push_back(Func, getVirtualTypeID(Func->getType(), FTyID)); 3954 3955 if (OperandInfo.PersonalityFn || OperandInfo.Prefix || OperandInfo.Prologue) 3956 FunctionOperands.push_back(OperandInfo); 3957 3958 // If this is a function with a body, remember the prototype we are 3959 // creating now, so that we can match up the body with them later. 3960 if (!isProto) { 3961 Func->setIsMaterializable(true); 3962 FunctionsWithBodies.push_back(Func); 3963 DeferredFunctionInfo[Func] = 0; 3964 } 3965 return Error::success(); 3966 } 3967 3968 Error BitcodeReader::parseGlobalIndirectSymbolRecord( 3969 unsigned BitCode, ArrayRef<uint64_t> Record) { 3970 // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST) 3971 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 3972 // dllstorageclass, threadlocal, unnamed_addr, 3973 // preemption specifier] (name in VST) 3974 // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage, 3975 // visibility, dllstorageclass, threadlocal, unnamed_addr, 3976 // preemption specifier] (name in VST) 3977 // v2: [strtab_offset, strtab_size, v1] 3978 StringRef Name; 3979 std::tie(Name, Record) = readNameFromStrtab(Record); 3980 3981 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 3982 if (Record.size() < (3 + (unsigned)NewRecord)) 3983 return error("Invalid record"); 3984 unsigned OpNum = 0; 3985 unsigned TypeID = Record[OpNum++]; 3986 Type *Ty = getTypeByID(TypeID); 3987 if (!Ty) 3988 return error("Invalid record"); 3989 3990 unsigned AddrSpace; 3991 if (!NewRecord) { 3992 auto *PTy = dyn_cast<PointerType>(Ty); 3993 if (!PTy) 3994 return error("Invalid type for value"); 3995 AddrSpace = PTy->getAddressSpace(); 3996 TypeID = getContainedTypeID(TypeID); 3997 Ty = getTypeByID(TypeID); 3998 if (!Ty) 3999 return error("Missing element type for old-style indirect symbol"); 4000 } else { 4001 AddrSpace = Record[OpNum++]; 4002 } 4003 4004 auto Val = Record[OpNum++]; 4005 auto Linkage = Record[OpNum++]; 4006 GlobalValue *NewGA; 4007 if (BitCode == bitc::MODULE_CODE_ALIAS || 4008 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 4009 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 4010 TheModule); 4011 else 4012 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 4013 nullptr, TheModule); 4014 4015 // Local linkage must have default visibility. 4016 // auto-upgrade `hidden` and `protected` for old bitcode. 4017 if (OpNum != Record.size()) { 4018 auto VisInd = OpNum++; 4019 if (!NewGA->hasLocalLinkage()) 4020 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 4021 } 4022 if (BitCode == bitc::MODULE_CODE_ALIAS || 4023 BitCode == bitc::MODULE_CODE_ALIAS_OLD) { 4024 if (OpNum != Record.size()) 4025 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 4026 else 4027 upgradeDLLImportExportLinkage(NewGA, Linkage); 4028 if (OpNum != Record.size()) 4029 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 4030 if (OpNum != Record.size()) 4031 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); 4032 } 4033 if (OpNum != Record.size()) 4034 NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++])); 4035 inferDSOLocal(NewGA); 4036 4037 // Check whether we have enough values to read a partition name. 4038 if (OpNum + 1 < Record.size()) { 4039 NewGA->setPartition( 4040 StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1])); 4041 OpNum += 2; 4042 } 4043 4044 ValueList.push_back(NewGA, getVirtualTypeID(NewGA->getType(), TypeID)); 4045 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 4046 return Error::success(); 4047 } 4048 4049 Error BitcodeReader::parseModule(uint64_t ResumeBit, 4050 bool ShouldLazyLoadMetadata, 4051 DataLayoutCallbackTy DataLayoutCallback) { 4052 if (ResumeBit) { 4053 if (Error JumpFailed = Stream.JumpToBit(ResumeBit)) 4054 return JumpFailed; 4055 } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 4056 return Err; 4057 4058 SmallVector<uint64_t, 64> Record; 4059 4060 // Parts of bitcode parsing depend on the datalayout. Make sure we 4061 // finalize the datalayout before we run any of that code. 4062 bool ResolvedDataLayout = false; 4063 auto ResolveDataLayout = [&] { 4064 if (ResolvedDataLayout) 4065 return; 4066 4067 // datalayout and triple can't be parsed after this point. 4068 ResolvedDataLayout = true; 4069 4070 // Upgrade data layout string. 4071 std::string DL = llvm::UpgradeDataLayoutString( 4072 TheModule->getDataLayoutStr(), TheModule->getTargetTriple()); 4073 TheModule->setDataLayout(DL); 4074 4075 if (auto LayoutOverride = 4076 DataLayoutCallback(TheModule->getTargetTriple())) 4077 TheModule->setDataLayout(*LayoutOverride); 4078 }; 4079 4080 // Read all the records for this module. 4081 while (true) { 4082 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 4083 if (!MaybeEntry) 4084 return MaybeEntry.takeError(); 4085 llvm::BitstreamEntry Entry = MaybeEntry.get(); 4086 4087 switch (Entry.Kind) { 4088 case BitstreamEntry::Error: 4089 return error("Malformed block"); 4090 case BitstreamEntry::EndBlock: 4091 ResolveDataLayout(); 4092 return globalCleanup(); 4093 4094 case BitstreamEntry::SubBlock: 4095 switch (Entry.ID) { 4096 default: // Skip unknown content. 4097 if (Error Err = Stream.SkipBlock()) 4098 return Err; 4099 break; 4100 case bitc::BLOCKINFO_BLOCK_ID: 4101 if (Error Err = readBlockInfo()) 4102 return Err; 4103 break; 4104 case bitc::PARAMATTR_BLOCK_ID: 4105 if (Error Err = parseAttributeBlock()) 4106 return Err; 4107 break; 4108 case bitc::PARAMATTR_GROUP_BLOCK_ID: 4109 if (Error Err = parseAttributeGroupBlock()) 4110 return Err; 4111 break; 4112 case bitc::TYPE_BLOCK_ID_NEW: 4113 if (Error Err = parseTypeTable()) 4114 return Err; 4115 break; 4116 case bitc::VALUE_SYMTAB_BLOCK_ID: 4117 if (!SeenValueSymbolTable) { 4118 // Either this is an old form VST without function index and an 4119 // associated VST forward declaration record (which would have caused 4120 // the VST to be jumped to and parsed before it was encountered 4121 // normally in the stream), or there were no function blocks to 4122 // trigger an earlier parsing of the VST. 4123 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 4124 if (Error Err = parseValueSymbolTable()) 4125 return Err; 4126 SeenValueSymbolTable = true; 4127 } else { 4128 // We must have had a VST forward declaration record, which caused 4129 // the parser to jump to and parse the VST earlier. 4130 assert(VSTOffset > 0); 4131 if (Error Err = Stream.SkipBlock()) 4132 return Err; 4133 } 4134 break; 4135 case bitc::CONSTANTS_BLOCK_ID: 4136 if (Error Err = parseConstants()) 4137 return Err; 4138 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 4139 return Err; 4140 break; 4141 case bitc::METADATA_BLOCK_ID: 4142 if (ShouldLazyLoadMetadata) { 4143 if (Error Err = rememberAndSkipMetadata()) 4144 return Err; 4145 break; 4146 } 4147 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 4148 if (Error Err = MDLoader->parseModuleMetadata()) 4149 return Err; 4150 break; 4151 case bitc::METADATA_KIND_BLOCK_ID: 4152 if (Error Err = MDLoader->parseMetadataKinds()) 4153 return Err; 4154 break; 4155 case bitc::FUNCTION_BLOCK_ID: 4156 ResolveDataLayout(); 4157 4158 // If this is the first function body we've seen, reverse the 4159 // FunctionsWithBodies list. 4160 if (!SeenFirstFunctionBody) { 4161 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 4162 if (Error Err = globalCleanup()) 4163 return Err; 4164 SeenFirstFunctionBody = true; 4165 } 4166 4167 if (VSTOffset > 0) { 4168 // If we have a VST forward declaration record, make sure we 4169 // parse the VST now if we haven't already. It is needed to 4170 // set up the DeferredFunctionInfo vector for lazy reading. 4171 if (!SeenValueSymbolTable) { 4172 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset)) 4173 return Err; 4174 SeenValueSymbolTable = true; 4175 // Fall through so that we record the NextUnreadBit below. 4176 // This is necessary in case we have an anonymous function that 4177 // is later materialized. Since it will not have a VST entry we 4178 // need to fall back to the lazy parse to find its offset. 4179 } else { 4180 // If we have a VST forward declaration record, but have already 4181 // parsed the VST (just above, when the first function body was 4182 // encountered here), then we are resuming the parse after 4183 // materializing functions. The ResumeBit points to the 4184 // start of the last function block recorded in the 4185 // DeferredFunctionInfo map. Skip it. 4186 if (Error Err = Stream.SkipBlock()) 4187 return Err; 4188 continue; 4189 } 4190 } 4191 4192 // Support older bitcode files that did not have the function 4193 // index in the VST, nor a VST forward declaration record, as 4194 // well as anonymous functions that do not have VST entries. 4195 // Build the DeferredFunctionInfo vector on the fly. 4196 if (Error Err = rememberAndSkipFunctionBody()) 4197 return Err; 4198 4199 // Suspend parsing when we reach the function bodies. Subsequent 4200 // materialization calls will resume it when necessary. If the bitcode 4201 // file is old, the symbol table will be at the end instead and will not 4202 // have been seen yet. In this case, just finish the parse now. 4203 if (SeenValueSymbolTable) { 4204 NextUnreadBit = Stream.GetCurrentBitNo(); 4205 // After the VST has been parsed, we need to make sure intrinsic name 4206 // are auto-upgraded. 4207 return globalCleanup(); 4208 } 4209 break; 4210 case bitc::USELIST_BLOCK_ID: 4211 if (Error Err = parseUseLists()) 4212 return Err; 4213 break; 4214 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 4215 if (Error Err = parseOperandBundleTags()) 4216 return Err; 4217 break; 4218 case bitc::SYNC_SCOPE_NAMES_BLOCK_ID: 4219 if (Error Err = parseSyncScopeNames()) 4220 return Err; 4221 break; 4222 } 4223 continue; 4224 4225 case BitstreamEntry::Record: 4226 // The interesting case. 4227 break; 4228 } 4229 4230 // Read a record. 4231 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 4232 if (!MaybeBitCode) 4233 return MaybeBitCode.takeError(); 4234 switch (unsigned BitCode = MaybeBitCode.get()) { 4235 default: break; // Default behavior, ignore unknown content. 4236 case bitc::MODULE_CODE_VERSION: { 4237 Expected<unsigned> VersionOrErr = parseVersionRecord(Record); 4238 if (!VersionOrErr) 4239 return VersionOrErr.takeError(); 4240 UseRelativeIDs = *VersionOrErr >= 1; 4241 break; 4242 } 4243 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 4244 if (ResolvedDataLayout) 4245 return error("target triple too late in module"); 4246 std::string S; 4247 if (convertToString(Record, 0, S)) 4248 return error("Invalid record"); 4249 TheModule->setTargetTriple(S); 4250 break; 4251 } 4252 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 4253 if (ResolvedDataLayout) 4254 return error("datalayout too late in module"); 4255 std::string S; 4256 if (convertToString(Record, 0, S)) 4257 return error("Invalid record"); 4258 Expected<DataLayout> MaybeDL = DataLayout::parse(S); 4259 if (!MaybeDL) 4260 return MaybeDL.takeError(); 4261 TheModule->setDataLayout(MaybeDL.get()); 4262 break; 4263 } 4264 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 4265 std::string S; 4266 if (convertToString(Record, 0, S)) 4267 return error("Invalid record"); 4268 TheModule->setModuleInlineAsm(S); 4269 break; 4270 } 4271 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 4272 // Deprecated, but still needed to read old bitcode files. 4273 std::string S; 4274 if (convertToString(Record, 0, S)) 4275 return error("Invalid record"); 4276 // Ignore value. 4277 break; 4278 } 4279 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 4280 std::string S; 4281 if (convertToString(Record, 0, S)) 4282 return error("Invalid record"); 4283 SectionTable.push_back(S); 4284 break; 4285 } 4286 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 4287 std::string S; 4288 if (convertToString(Record, 0, S)) 4289 return error("Invalid record"); 4290 GCTable.push_back(S); 4291 break; 4292 } 4293 case bitc::MODULE_CODE_COMDAT: 4294 if (Error Err = parseComdatRecord(Record)) 4295 return Err; 4296 break; 4297 // FIXME: BitcodeReader should handle {GLOBALVAR, FUNCTION, ALIAS, IFUNC} 4298 // written by ThinLinkBitcodeWriter. See 4299 // `ThinLinkBitcodeWriter::writeSimplifiedModuleInfo` for the format of each 4300 // record 4301 // (https://github.com/llvm/llvm-project/blob/b6a93967d9c11e79802b5e75cec1584d6c8aa472/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp#L4714) 4302 case bitc::MODULE_CODE_GLOBALVAR: 4303 if (Error Err = parseGlobalVarRecord(Record)) 4304 return Err; 4305 break; 4306 case bitc::MODULE_CODE_FUNCTION: 4307 ResolveDataLayout(); 4308 if (Error Err = parseFunctionRecord(Record)) 4309 return Err; 4310 break; 4311 case bitc::MODULE_CODE_IFUNC: 4312 case bitc::MODULE_CODE_ALIAS: 4313 case bitc::MODULE_CODE_ALIAS_OLD: 4314 if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record)) 4315 return Err; 4316 break; 4317 /// MODULE_CODE_VSTOFFSET: [offset] 4318 case bitc::MODULE_CODE_VSTOFFSET: 4319 if (Record.empty()) 4320 return error("Invalid record"); 4321 // Note that we subtract 1 here because the offset is relative to one word 4322 // before the start of the identification or module block, which was 4323 // historically always the start of the regular bitcode header. 4324 VSTOffset = Record[0] - 1; 4325 break; 4326 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4327 case bitc::MODULE_CODE_SOURCE_FILENAME: 4328 SmallString<128> ValueName; 4329 if (convertToString(Record, 0, ValueName)) 4330 return error("Invalid record"); 4331 TheModule->setSourceFileName(ValueName); 4332 break; 4333 } 4334 Record.clear(); 4335 } 4336 } 4337 4338 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 4339 bool IsImporting, 4340 DataLayoutCallbackTy DataLayoutCallback) { 4341 TheModule = M; 4342 MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, 4343 [&](unsigned ID) { return getTypeByID(ID); }); 4344 return parseModule(0, ShouldLazyLoadMetadata, DataLayoutCallback); 4345 } 4346 4347 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 4348 if (!isa<PointerType>(PtrType)) 4349 return error("Load/Store operand is not a pointer type"); 4350 4351 if (!cast<PointerType>(PtrType)->isOpaqueOrPointeeTypeMatches(ValType)) 4352 return error("Explicit load/store type does not match pointee " 4353 "type of pointer operand"); 4354 if (!PointerType::isLoadableOrStorableType(ValType)) 4355 return error("Cannot load/store from pointer"); 4356 return Error::success(); 4357 } 4358 4359 Error BitcodeReader::propagateAttributeTypes(CallBase *CB, 4360 ArrayRef<unsigned> ArgTyIDs) { 4361 AttributeList Attrs = CB->getAttributes(); 4362 for (unsigned i = 0; i != CB->arg_size(); ++i) { 4363 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet, 4364 Attribute::InAlloca}) { 4365 if (!Attrs.hasParamAttr(i, Kind) || 4366 Attrs.getParamAttr(i, Kind).getValueAsType()) 4367 continue; 4368 4369 Type *PtrEltTy = getPtrElementTypeByID(ArgTyIDs[i]); 4370 if (!PtrEltTy) 4371 return error("Missing element type for typed attribute upgrade"); 4372 4373 Attribute NewAttr; 4374 switch (Kind) { 4375 case Attribute::ByVal: 4376 NewAttr = Attribute::getWithByValType(Context, PtrEltTy); 4377 break; 4378 case Attribute::StructRet: 4379 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy); 4380 break; 4381 case Attribute::InAlloca: 4382 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy); 4383 break; 4384 default: 4385 llvm_unreachable("not an upgraded type attribute"); 4386 } 4387 4388 Attrs = Attrs.addParamAttribute(Context, i, NewAttr); 4389 } 4390 } 4391 4392 if (CB->isInlineAsm()) { 4393 const InlineAsm *IA = cast<InlineAsm>(CB->getCalledOperand()); 4394 unsigned ArgNo = 0; 4395 for (const InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 4396 if (!CI.hasArg()) 4397 continue; 4398 4399 if (CI.isIndirect && !Attrs.getParamElementType(ArgNo)) { 4400 Type *ElemTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]); 4401 if (!ElemTy) 4402 return error("Missing element type for inline asm upgrade"); 4403 Attrs = Attrs.addParamAttribute( 4404 Context, ArgNo, 4405 Attribute::get(Context, Attribute::ElementType, ElemTy)); 4406 } 4407 4408 ArgNo++; 4409 } 4410 } 4411 4412 switch (CB->getIntrinsicID()) { 4413 case Intrinsic::preserve_array_access_index: 4414 case Intrinsic::preserve_struct_access_index: 4415 case Intrinsic::aarch64_ldaxr: 4416 case Intrinsic::aarch64_ldxr: 4417 case Intrinsic::aarch64_stlxr: 4418 case Intrinsic::aarch64_stxr: 4419 case Intrinsic::arm_ldaex: 4420 case Intrinsic::arm_ldrex: 4421 case Intrinsic::arm_stlex: 4422 case Intrinsic::arm_strex: { 4423 unsigned ArgNo; 4424 switch (CB->getIntrinsicID()) { 4425 case Intrinsic::aarch64_stlxr: 4426 case Intrinsic::aarch64_stxr: 4427 case Intrinsic::arm_stlex: 4428 case Intrinsic::arm_strex: 4429 ArgNo = 1; 4430 break; 4431 default: 4432 ArgNo = 0; 4433 break; 4434 } 4435 if (!Attrs.getParamElementType(ArgNo)) { 4436 Type *ElTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]); 4437 if (!ElTy) 4438 return error("Missing element type for elementtype upgrade"); 4439 Attribute NewAttr = Attribute::get(Context, Attribute::ElementType, ElTy); 4440 Attrs = Attrs.addParamAttribute(Context, ArgNo, NewAttr); 4441 } 4442 break; 4443 } 4444 default: 4445 break; 4446 } 4447 4448 CB->setAttributes(Attrs); 4449 return Error::success(); 4450 } 4451 4452 /// Lazily parse the specified function body block. 4453 Error BitcodeReader::parseFunctionBody(Function *F) { 4454 if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 4455 return Err; 4456 4457 // Unexpected unresolved metadata when parsing function. 4458 if (MDLoader->hasFwdRefs()) 4459 return error("Invalid function metadata: incoming forward references"); 4460 4461 InstructionList.clear(); 4462 unsigned ModuleValueListSize = ValueList.size(); 4463 unsigned ModuleMDLoaderSize = MDLoader->size(); 4464 4465 // Add all the function arguments to the value table. 4466 unsigned ArgNo = 0; 4467 unsigned FTyID = FunctionTypeIDs[F]; 4468 for (Argument &I : F->args()) { 4469 unsigned ArgTyID = getContainedTypeID(FTyID, ArgNo + 1); 4470 assert(I.getType() == getTypeByID(ArgTyID) && 4471 "Incorrect fully specified type for Function Argument"); 4472 ValueList.push_back(&I, ArgTyID); 4473 ++ArgNo; 4474 } 4475 unsigned NextValueNo = ValueList.size(); 4476 BasicBlock *CurBB = nullptr; 4477 unsigned CurBBNo = 0; 4478 // Block into which constant expressions from phi nodes are materialized. 4479 BasicBlock *PhiConstExprBB = nullptr; 4480 // Edge blocks for phi nodes into which constant expressions have been 4481 // expanded. 4482 SmallMapVector<std::pair<BasicBlock *, BasicBlock *>, BasicBlock *, 4> 4483 ConstExprEdgeBBs; 4484 4485 DebugLoc LastLoc; 4486 auto getLastInstruction = [&]() -> Instruction * { 4487 if (CurBB && !CurBB->empty()) 4488 return &CurBB->back(); 4489 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 4490 !FunctionBBs[CurBBNo - 1]->empty()) 4491 return &FunctionBBs[CurBBNo - 1]->back(); 4492 return nullptr; 4493 }; 4494 4495 std::vector<OperandBundleDef> OperandBundles; 4496 4497 // Read all the records. 4498 SmallVector<uint64_t, 64> Record; 4499 4500 while (true) { 4501 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 4502 if (!MaybeEntry) 4503 return MaybeEntry.takeError(); 4504 llvm::BitstreamEntry Entry = MaybeEntry.get(); 4505 4506 switch (Entry.Kind) { 4507 case BitstreamEntry::Error: 4508 return error("Malformed block"); 4509 case BitstreamEntry::EndBlock: 4510 goto OutOfRecordLoop; 4511 4512 case BitstreamEntry::SubBlock: 4513 switch (Entry.ID) { 4514 default: // Skip unknown content. 4515 if (Error Err = Stream.SkipBlock()) 4516 return Err; 4517 break; 4518 case bitc::CONSTANTS_BLOCK_ID: 4519 if (Error Err = parseConstants()) 4520 return Err; 4521 NextValueNo = ValueList.size(); 4522 break; 4523 case bitc::VALUE_SYMTAB_BLOCK_ID: 4524 if (Error Err = parseValueSymbolTable()) 4525 return Err; 4526 break; 4527 case bitc::METADATA_ATTACHMENT_ID: 4528 if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList)) 4529 return Err; 4530 break; 4531 case bitc::METADATA_BLOCK_ID: 4532 assert(DeferredMetadataInfo.empty() && 4533 "Must read all module-level metadata before function-level"); 4534 if (Error Err = MDLoader->parseFunctionMetadata()) 4535 return Err; 4536 break; 4537 case bitc::USELIST_BLOCK_ID: 4538 if (Error Err = parseUseLists()) 4539 return Err; 4540 break; 4541 } 4542 continue; 4543 4544 case BitstreamEntry::Record: 4545 // The interesting case. 4546 break; 4547 } 4548 4549 // Read a record. 4550 Record.clear(); 4551 Instruction *I = nullptr; 4552 unsigned ResTypeID = InvalidTypeID; 4553 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 4554 if (!MaybeBitCode) 4555 return MaybeBitCode.takeError(); 4556 switch (unsigned BitCode = MaybeBitCode.get()) { 4557 default: // Default behavior: reject 4558 return error("Invalid value"); 4559 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 4560 if (Record.empty() || Record[0] == 0) 4561 return error("Invalid record"); 4562 // Create all the basic blocks for the function. 4563 FunctionBBs.resize(Record[0]); 4564 4565 // See if anything took the address of blocks in this function. 4566 auto BBFRI = BasicBlockFwdRefs.find(F); 4567 if (BBFRI == BasicBlockFwdRefs.end()) { 4568 for (BasicBlock *&BB : FunctionBBs) 4569 BB = BasicBlock::Create(Context, "", F); 4570 } else { 4571 auto &BBRefs = BBFRI->second; 4572 // Check for invalid basic block references. 4573 if (BBRefs.size() > FunctionBBs.size()) 4574 return error("Invalid ID"); 4575 assert(!BBRefs.empty() && "Unexpected empty array"); 4576 assert(!BBRefs.front() && "Invalid reference to entry block"); 4577 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 4578 ++I) 4579 if (I < RE && BBRefs[I]) { 4580 BBRefs[I]->insertInto(F); 4581 FunctionBBs[I] = BBRefs[I]; 4582 } else { 4583 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 4584 } 4585 4586 // Erase from the table. 4587 BasicBlockFwdRefs.erase(BBFRI); 4588 } 4589 4590 CurBB = FunctionBBs[0]; 4591 continue; 4592 } 4593 4594 case bitc::FUNC_CODE_BLOCKADDR_USERS: // BLOCKADDR_USERS: [vals...] 4595 // The record should not be emitted if it's an empty list. 4596 if (Record.empty()) 4597 return error("Invalid record"); 4598 // When we have the RARE case of a BlockAddress Constant that is not 4599 // scoped to the Function it refers to, we need to conservatively 4600 // materialize the referred to Function, regardless of whether or not 4601 // that Function will ultimately be linked, otherwise users of 4602 // BitcodeReader might start splicing out Function bodies such that we 4603 // might no longer be able to materialize the BlockAddress since the 4604 // BasicBlock (and entire body of the Function) the BlockAddress refers 4605 // to may have been moved. In the case that the user of BitcodeReader 4606 // decides ultimately not to link the Function body, materializing here 4607 // could be considered wasteful, but it's better than a deserialization 4608 // failure as described. This keeps BitcodeReader unaware of complex 4609 // linkage policy decisions such as those use by LTO, leaving those 4610 // decisions "one layer up." 4611 for (uint64_t ValID : Record) 4612 if (auto *F = dyn_cast<Function>(ValueList[ValID])) 4613 BackwardRefFunctions.push_back(F); 4614 else 4615 return error("Invalid record"); 4616 4617 continue; 4618 4619 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 4620 // This record indicates that the last instruction is at the same 4621 // location as the previous instruction with a location. 4622 I = getLastInstruction(); 4623 4624 if (!I) 4625 return error("Invalid record"); 4626 I->setDebugLoc(LastLoc); 4627 I = nullptr; 4628 continue; 4629 4630 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 4631 I = getLastInstruction(); 4632 if (!I || Record.size() < 4) 4633 return error("Invalid record"); 4634 4635 unsigned Line = Record[0], Col = Record[1]; 4636 unsigned ScopeID = Record[2], IAID = Record[3]; 4637 bool isImplicitCode = Record.size() == 5 && Record[4]; 4638 4639 MDNode *Scope = nullptr, *IA = nullptr; 4640 if (ScopeID) { 4641 Scope = dyn_cast_or_null<MDNode>( 4642 MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1)); 4643 if (!Scope) 4644 return error("Invalid record"); 4645 } 4646 if (IAID) { 4647 IA = dyn_cast_or_null<MDNode>( 4648 MDLoader->getMetadataFwdRefOrLoad(IAID - 1)); 4649 if (!IA) 4650 return error("Invalid record"); 4651 } 4652 LastLoc = DILocation::get(Scope->getContext(), Line, Col, Scope, IA, 4653 isImplicitCode); 4654 I->setDebugLoc(LastLoc); 4655 I = nullptr; 4656 continue; 4657 } 4658 case bitc::FUNC_CODE_INST_UNOP: { // UNOP: [opval, ty, opcode] 4659 unsigned OpNum = 0; 4660 Value *LHS; 4661 unsigned TypeID; 4662 if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) || 4663 OpNum+1 > Record.size()) 4664 return error("Invalid record"); 4665 4666 int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType()); 4667 if (Opc == -1) 4668 return error("Invalid record"); 4669 I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 4670 ResTypeID = TypeID; 4671 InstructionList.push_back(I); 4672 if (OpNum < Record.size()) { 4673 if (isa<FPMathOperator>(I)) { 4674 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4675 if (FMF.any()) 4676 I->setFastMathFlags(FMF); 4677 } 4678 } 4679 break; 4680 } 4681 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 4682 unsigned OpNum = 0; 4683 Value *LHS, *RHS; 4684 unsigned TypeID; 4685 if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) || 4686 popValue(Record, OpNum, NextValueNo, LHS->getType(), TypeID, RHS, 4687 CurBB) || 4688 OpNum+1 > Record.size()) 4689 return error("Invalid record"); 4690 4691 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 4692 if (Opc == -1) 4693 return error("Invalid record"); 4694 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 4695 ResTypeID = TypeID; 4696 InstructionList.push_back(I); 4697 if (OpNum < Record.size()) { 4698 if (Opc == Instruction::Add || 4699 Opc == Instruction::Sub || 4700 Opc == Instruction::Mul || 4701 Opc == Instruction::Shl) { 4702 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 4703 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 4704 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 4705 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 4706 } else if (Opc == Instruction::SDiv || 4707 Opc == Instruction::UDiv || 4708 Opc == Instruction::LShr || 4709 Opc == Instruction::AShr) { 4710 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 4711 cast<BinaryOperator>(I)->setIsExact(true); 4712 } else if (isa<FPMathOperator>(I)) { 4713 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4714 if (FMF.any()) 4715 I->setFastMathFlags(FMF); 4716 } 4717 4718 } 4719 break; 4720 } 4721 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 4722 unsigned OpNum = 0; 4723 Value *Op; 4724 unsigned OpTypeID; 4725 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) || 4726 OpNum+2 != Record.size()) 4727 return error("Invalid record"); 4728 4729 ResTypeID = Record[OpNum]; 4730 Type *ResTy = getTypeByID(ResTypeID); 4731 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 4732 if (Opc == -1 || !ResTy) 4733 return error("Invalid record"); 4734 Instruction *Temp = nullptr; 4735 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 4736 if (Temp) { 4737 InstructionList.push_back(Temp); 4738 assert(CurBB && "No current BB?"); 4739 CurBB->getInstList().push_back(Temp); 4740 } 4741 } else { 4742 auto CastOp = (Instruction::CastOps)Opc; 4743 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 4744 return error("Invalid cast"); 4745 I = CastInst::Create(CastOp, Op, ResTy); 4746 } 4747 InstructionList.push_back(I); 4748 break; 4749 } 4750 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 4751 case bitc::FUNC_CODE_INST_GEP_OLD: 4752 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 4753 unsigned OpNum = 0; 4754 4755 unsigned TyID; 4756 Type *Ty; 4757 bool InBounds; 4758 4759 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 4760 InBounds = Record[OpNum++]; 4761 TyID = Record[OpNum++]; 4762 Ty = getTypeByID(TyID); 4763 } else { 4764 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 4765 TyID = InvalidTypeID; 4766 Ty = nullptr; 4767 } 4768 4769 Value *BasePtr; 4770 unsigned BasePtrTypeID; 4771 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr, BasePtrTypeID, 4772 CurBB)) 4773 return error("Invalid record"); 4774 4775 if (!Ty) { 4776 TyID = getContainedTypeID(BasePtrTypeID); 4777 if (BasePtr->getType()->isVectorTy()) 4778 TyID = getContainedTypeID(TyID); 4779 Ty = getTypeByID(TyID); 4780 } else if (!cast<PointerType>(BasePtr->getType()->getScalarType()) 4781 ->isOpaqueOrPointeeTypeMatches(Ty)) { 4782 return error( 4783 "Explicit gep type does not match pointee type of pointer operand"); 4784 } 4785 4786 SmallVector<Value*, 16> GEPIdx; 4787 while (OpNum != Record.size()) { 4788 Value *Op; 4789 unsigned OpTypeID; 4790 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 4791 return error("Invalid record"); 4792 GEPIdx.push_back(Op); 4793 } 4794 4795 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 4796 4797 ResTypeID = TyID; 4798 if (cast<GEPOperator>(I)->getNumIndices() != 0) { 4799 auto GTI = std::next(gep_type_begin(I)); 4800 for (Value *Idx : drop_begin(cast<GEPOperator>(I)->indices())) { 4801 unsigned SubType = 0; 4802 if (GTI.isStruct()) { 4803 ConstantInt *IdxC = 4804 Idx->getType()->isVectorTy() 4805 ? cast<ConstantInt>(cast<Constant>(Idx)->getSplatValue()) 4806 : cast<ConstantInt>(Idx); 4807 SubType = IdxC->getZExtValue(); 4808 } 4809 ResTypeID = getContainedTypeID(ResTypeID, SubType); 4810 ++GTI; 4811 } 4812 } 4813 4814 // At this point ResTypeID is the result element type. We need a pointer 4815 // or vector of pointer to it. 4816 ResTypeID = getVirtualTypeID(I->getType()->getScalarType(), ResTypeID); 4817 if (I->getType()->isVectorTy()) 4818 ResTypeID = getVirtualTypeID(I->getType(), ResTypeID); 4819 4820 InstructionList.push_back(I); 4821 if (InBounds) 4822 cast<GetElementPtrInst>(I)->setIsInBounds(true); 4823 break; 4824 } 4825 4826 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 4827 // EXTRACTVAL: [opty, opval, n x indices] 4828 unsigned OpNum = 0; 4829 Value *Agg; 4830 unsigned AggTypeID; 4831 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB)) 4832 return error("Invalid record"); 4833 Type *Ty = Agg->getType(); 4834 4835 unsigned RecSize = Record.size(); 4836 if (OpNum == RecSize) 4837 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 4838 4839 SmallVector<unsigned, 4> EXTRACTVALIdx; 4840 ResTypeID = AggTypeID; 4841 for (; OpNum != RecSize; ++OpNum) { 4842 bool IsArray = Ty->isArrayTy(); 4843 bool IsStruct = Ty->isStructTy(); 4844 uint64_t Index = Record[OpNum]; 4845 4846 if (!IsStruct && !IsArray) 4847 return error("EXTRACTVAL: Invalid type"); 4848 if ((unsigned)Index != Index) 4849 return error("Invalid value"); 4850 if (IsStruct && Index >= Ty->getStructNumElements()) 4851 return error("EXTRACTVAL: Invalid struct index"); 4852 if (IsArray && Index >= Ty->getArrayNumElements()) 4853 return error("EXTRACTVAL: Invalid array index"); 4854 EXTRACTVALIdx.push_back((unsigned)Index); 4855 4856 if (IsStruct) { 4857 Ty = Ty->getStructElementType(Index); 4858 ResTypeID = getContainedTypeID(ResTypeID, Index); 4859 } else { 4860 Ty = Ty->getArrayElementType(); 4861 ResTypeID = getContainedTypeID(ResTypeID); 4862 } 4863 } 4864 4865 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 4866 InstructionList.push_back(I); 4867 break; 4868 } 4869 4870 case bitc::FUNC_CODE_INST_INSERTVAL: { 4871 // INSERTVAL: [opty, opval, opty, opval, n x indices] 4872 unsigned OpNum = 0; 4873 Value *Agg; 4874 unsigned AggTypeID; 4875 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB)) 4876 return error("Invalid record"); 4877 Value *Val; 4878 unsigned ValTypeID; 4879 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 4880 return error("Invalid record"); 4881 4882 unsigned RecSize = Record.size(); 4883 if (OpNum == RecSize) 4884 return error("INSERTVAL: Invalid instruction with 0 indices"); 4885 4886 SmallVector<unsigned, 4> INSERTVALIdx; 4887 Type *CurTy = Agg->getType(); 4888 for (; OpNum != RecSize; ++OpNum) { 4889 bool IsArray = CurTy->isArrayTy(); 4890 bool IsStruct = CurTy->isStructTy(); 4891 uint64_t Index = Record[OpNum]; 4892 4893 if (!IsStruct && !IsArray) 4894 return error("INSERTVAL: Invalid type"); 4895 if ((unsigned)Index != Index) 4896 return error("Invalid value"); 4897 if (IsStruct && Index >= CurTy->getStructNumElements()) 4898 return error("INSERTVAL: Invalid struct index"); 4899 if (IsArray && Index >= CurTy->getArrayNumElements()) 4900 return error("INSERTVAL: Invalid array index"); 4901 4902 INSERTVALIdx.push_back((unsigned)Index); 4903 if (IsStruct) 4904 CurTy = CurTy->getStructElementType(Index); 4905 else 4906 CurTy = CurTy->getArrayElementType(); 4907 } 4908 4909 if (CurTy != Val->getType()) 4910 return error("Inserted value type doesn't match aggregate type"); 4911 4912 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 4913 ResTypeID = AggTypeID; 4914 InstructionList.push_back(I); 4915 break; 4916 } 4917 4918 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 4919 // obsolete form of select 4920 // handles select i1 ... in old bitcode 4921 unsigned OpNum = 0; 4922 Value *TrueVal, *FalseVal, *Cond; 4923 unsigned TypeID; 4924 Type *CondType = Type::getInt1Ty(Context); 4925 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, TypeID, 4926 CurBB) || 4927 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), TypeID, 4928 FalseVal, CurBB) || 4929 popValue(Record, OpNum, NextValueNo, CondType, 4930 getVirtualTypeID(CondType), Cond, CurBB)) 4931 return error("Invalid record"); 4932 4933 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4934 ResTypeID = TypeID; 4935 InstructionList.push_back(I); 4936 break; 4937 } 4938 4939 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 4940 // new form of select 4941 // handles select i1 or select [N x i1] 4942 unsigned OpNum = 0; 4943 Value *TrueVal, *FalseVal, *Cond; 4944 unsigned ValTypeID, CondTypeID; 4945 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, ValTypeID, 4946 CurBB) || 4947 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), ValTypeID, 4948 FalseVal, CurBB) || 4949 getValueTypePair(Record, OpNum, NextValueNo, Cond, CondTypeID, CurBB)) 4950 return error("Invalid record"); 4951 4952 // select condition can be either i1 or [N x i1] 4953 if (VectorType* vector_type = 4954 dyn_cast<VectorType>(Cond->getType())) { 4955 // expect <n x i1> 4956 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 4957 return error("Invalid type for value"); 4958 } else { 4959 // expect i1 4960 if (Cond->getType() != Type::getInt1Ty(Context)) 4961 return error("Invalid type for value"); 4962 } 4963 4964 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4965 ResTypeID = ValTypeID; 4966 InstructionList.push_back(I); 4967 if (OpNum < Record.size() && isa<FPMathOperator>(I)) { 4968 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4969 if (FMF.any()) 4970 I->setFastMathFlags(FMF); 4971 } 4972 break; 4973 } 4974 4975 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 4976 unsigned OpNum = 0; 4977 Value *Vec, *Idx; 4978 unsigned VecTypeID, IdxTypeID; 4979 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB) || 4980 getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB)) 4981 return error("Invalid record"); 4982 if (!Vec->getType()->isVectorTy()) 4983 return error("Invalid type for value"); 4984 I = ExtractElementInst::Create(Vec, Idx); 4985 ResTypeID = getContainedTypeID(VecTypeID); 4986 InstructionList.push_back(I); 4987 break; 4988 } 4989 4990 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 4991 unsigned OpNum = 0; 4992 Value *Vec, *Elt, *Idx; 4993 unsigned VecTypeID, IdxTypeID; 4994 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB)) 4995 return error("Invalid record"); 4996 if (!Vec->getType()->isVectorTy()) 4997 return error("Invalid type for value"); 4998 if (popValue(Record, OpNum, NextValueNo, 4999 cast<VectorType>(Vec->getType())->getElementType(), 5000 getContainedTypeID(VecTypeID), Elt, CurBB) || 5001 getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB)) 5002 return error("Invalid record"); 5003 I = InsertElementInst::Create(Vec, Elt, Idx); 5004 ResTypeID = VecTypeID; 5005 InstructionList.push_back(I); 5006 break; 5007 } 5008 5009 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 5010 unsigned OpNum = 0; 5011 Value *Vec1, *Vec2, *Mask; 5012 unsigned Vec1TypeID; 5013 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1, Vec1TypeID, 5014 CurBB) || 5015 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec1TypeID, 5016 Vec2, CurBB)) 5017 return error("Invalid record"); 5018 5019 unsigned MaskTypeID; 5020 if (getValueTypePair(Record, OpNum, NextValueNo, Mask, MaskTypeID, CurBB)) 5021 return error("Invalid record"); 5022 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 5023 return error("Invalid type for value"); 5024 5025 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 5026 ResTypeID = 5027 getVirtualTypeID(I->getType(), getContainedTypeID(Vec1TypeID)); 5028 InstructionList.push_back(I); 5029 break; 5030 } 5031 5032 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 5033 // Old form of ICmp/FCmp returning bool 5034 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 5035 // both legal on vectors but had different behaviour. 5036 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 5037 // FCmp/ICmp returning bool or vector of bool 5038 5039 unsigned OpNum = 0; 5040 Value *LHS, *RHS; 5041 unsigned LHSTypeID; 5042 if (getValueTypePair(Record, OpNum, NextValueNo, LHS, LHSTypeID, CurBB) || 5043 popValue(Record, OpNum, NextValueNo, LHS->getType(), LHSTypeID, RHS, 5044 CurBB)) 5045 return error("Invalid record"); 5046 5047 if (OpNum >= Record.size()) 5048 return error( 5049 "Invalid record: operand number exceeded available operands"); 5050 5051 unsigned PredVal = Record[OpNum]; 5052 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 5053 FastMathFlags FMF; 5054 if (IsFP && Record.size() > OpNum+1) 5055 FMF = getDecodedFastMathFlags(Record[++OpNum]); 5056 5057 if (OpNum+1 != Record.size()) 5058 return error("Invalid record"); 5059 5060 if (LHS->getType()->isFPOrFPVectorTy()) 5061 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 5062 else 5063 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 5064 5065 ResTypeID = getVirtualTypeID(I->getType()->getScalarType()); 5066 if (LHS->getType()->isVectorTy()) 5067 ResTypeID = getVirtualTypeID(I->getType(), ResTypeID); 5068 5069 if (FMF.any()) 5070 I->setFastMathFlags(FMF); 5071 InstructionList.push_back(I); 5072 break; 5073 } 5074 5075 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 5076 { 5077 unsigned Size = Record.size(); 5078 if (Size == 0) { 5079 I = ReturnInst::Create(Context); 5080 InstructionList.push_back(I); 5081 break; 5082 } 5083 5084 unsigned OpNum = 0; 5085 Value *Op = nullptr; 5086 unsigned OpTypeID; 5087 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 5088 return error("Invalid record"); 5089 if (OpNum != Record.size()) 5090 return error("Invalid record"); 5091 5092 I = ReturnInst::Create(Context, Op); 5093 InstructionList.push_back(I); 5094 break; 5095 } 5096 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 5097 if (Record.size() != 1 && Record.size() != 3) 5098 return error("Invalid record"); 5099 BasicBlock *TrueDest = getBasicBlock(Record[0]); 5100 if (!TrueDest) 5101 return error("Invalid record"); 5102 5103 if (Record.size() == 1) { 5104 I = BranchInst::Create(TrueDest); 5105 InstructionList.push_back(I); 5106 } 5107 else { 5108 BasicBlock *FalseDest = getBasicBlock(Record[1]); 5109 Type *CondType = Type::getInt1Ty(Context); 5110 Value *Cond = getValue(Record, 2, NextValueNo, CondType, 5111 getVirtualTypeID(CondType), CurBB); 5112 if (!FalseDest || !Cond) 5113 return error("Invalid record"); 5114 I = BranchInst::Create(TrueDest, FalseDest, Cond); 5115 InstructionList.push_back(I); 5116 } 5117 break; 5118 } 5119 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 5120 if (Record.size() != 1 && Record.size() != 2) 5121 return error("Invalid record"); 5122 unsigned Idx = 0; 5123 Type *TokenTy = Type::getTokenTy(Context); 5124 Value *CleanupPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5125 getVirtualTypeID(TokenTy), CurBB); 5126 if (!CleanupPad) 5127 return error("Invalid record"); 5128 BasicBlock *UnwindDest = nullptr; 5129 if (Record.size() == 2) { 5130 UnwindDest = getBasicBlock(Record[Idx++]); 5131 if (!UnwindDest) 5132 return error("Invalid record"); 5133 } 5134 5135 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 5136 InstructionList.push_back(I); 5137 break; 5138 } 5139 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 5140 if (Record.size() != 2) 5141 return error("Invalid record"); 5142 unsigned Idx = 0; 5143 Type *TokenTy = Type::getTokenTy(Context); 5144 Value *CatchPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5145 getVirtualTypeID(TokenTy), CurBB); 5146 if (!CatchPad) 5147 return error("Invalid record"); 5148 BasicBlock *BB = getBasicBlock(Record[Idx++]); 5149 if (!BB) 5150 return error("Invalid record"); 5151 5152 I = CatchReturnInst::Create(CatchPad, BB); 5153 InstructionList.push_back(I); 5154 break; 5155 } 5156 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 5157 // We must have, at minimum, the outer scope and the number of arguments. 5158 if (Record.size() < 2) 5159 return error("Invalid record"); 5160 5161 unsigned Idx = 0; 5162 5163 Type *TokenTy = Type::getTokenTy(Context); 5164 Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5165 getVirtualTypeID(TokenTy), CurBB); 5166 5167 unsigned NumHandlers = Record[Idx++]; 5168 5169 SmallVector<BasicBlock *, 2> Handlers; 5170 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 5171 BasicBlock *BB = getBasicBlock(Record[Idx++]); 5172 if (!BB) 5173 return error("Invalid record"); 5174 Handlers.push_back(BB); 5175 } 5176 5177 BasicBlock *UnwindDest = nullptr; 5178 if (Idx + 1 == Record.size()) { 5179 UnwindDest = getBasicBlock(Record[Idx++]); 5180 if (!UnwindDest) 5181 return error("Invalid record"); 5182 } 5183 5184 if (Record.size() != Idx) 5185 return error("Invalid record"); 5186 5187 auto *CatchSwitch = 5188 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 5189 for (BasicBlock *Handler : Handlers) 5190 CatchSwitch->addHandler(Handler); 5191 I = CatchSwitch; 5192 ResTypeID = getVirtualTypeID(I->getType()); 5193 InstructionList.push_back(I); 5194 break; 5195 } 5196 case bitc::FUNC_CODE_INST_CATCHPAD: 5197 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 5198 // We must have, at minimum, the outer scope and the number of arguments. 5199 if (Record.size() < 2) 5200 return error("Invalid record"); 5201 5202 unsigned Idx = 0; 5203 5204 Type *TokenTy = Type::getTokenTy(Context); 5205 Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5206 getVirtualTypeID(TokenTy), CurBB); 5207 5208 unsigned NumArgOperands = Record[Idx++]; 5209 5210 SmallVector<Value *, 2> Args; 5211 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 5212 Value *Val; 5213 unsigned ValTypeID; 5214 if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, nullptr)) 5215 return error("Invalid record"); 5216 Args.push_back(Val); 5217 } 5218 5219 if (Record.size() != Idx) 5220 return error("Invalid record"); 5221 5222 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 5223 I = CleanupPadInst::Create(ParentPad, Args); 5224 else 5225 I = CatchPadInst::Create(ParentPad, Args); 5226 ResTypeID = getVirtualTypeID(I->getType()); 5227 InstructionList.push_back(I); 5228 break; 5229 } 5230 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 5231 // Check magic 5232 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 5233 // "New" SwitchInst format with case ranges. The changes to write this 5234 // format were reverted but we still recognize bitcode that uses it. 5235 // Hopefully someday we will have support for case ranges and can use 5236 // this format again. 5237 5238 unsigned OpTyID = Record[1]; 5239 Type *OpTy = getTypeByID(OpTyID); 5240 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 5241 5242 Value *Cond = getValue(Record, 2, NextValueNo, OpTy, OpTyID, CurBB); 5243 BasicBlock *Default = getBasicBlock(Record[3]); 5244 if (!OpTy || !Cond || !Default) 5245 return error("Invalid record"); 5246 5247 unsigned NumCases = Record[4]; 5248 5249 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 5250 InstructionList.push_back(SI); 5251 5252 unsigned CurIdx = 5; 5253 for (unsigned i = 0; i != NumCases; ++i) { 5254 SmallVector<ConstantInt*, 1> CaseVals; 5255 unsigned NumItems = Record[CurIdx++]; 5256 for (unsigned ci = 0; ci != NumItems; ++ci) { 5257 bool isSingleNumber = Record[CurIdx++]; 5258 5259 APInt Low; 5260 unsigned ActiveWords = 1; 5261 if (ValueBitWidth > 64) 5262 ActiveWords = Record[CurIdx++]; 5263 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 5264 ValueBitWidth); 5265 CurIdx += ActiveWords; 5266 5267 if (!isSingleNumber) { 5268 ActiveWords = 1; 5269 if (ValueBitWidth > 64) 5270 ActiveWords = Record[CurIdx++]; 5271 APInt High = readWideAPInt( 5272 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 5273 CurIdx += ActiveWords; 5274 5275 // FIXME: It is not clear whether values in the range should be 5276 // compared as signed or unsigned values. The partially 5277 // implemented changes that used this format in the past used 5278 // unsigned comparisons. 5279 for ( ; Low.ule(High); ++Low) 5280 CaseVals.push_back(ConstantInt::get(Context, Low)); 5281 } else 5282 CaseVals.push_back(ConstantInt::get(Context, Low)); 5283 } 5284 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 5285 for (ConstantInt *Cst : CaseVals) 5286 SI->addCase(Cst, DestBB); 5287 } 5288 I = SI; 5289 break; 5290 } 5291 5292 // Old SwitchInst format without case ranges. 5293 5294 if (Record.size() < 3 || (Record.size() & 1) == 0) 5295 return error("Invalid record"); 5296 unsigned OpTyID = Record[0]; 5297 Type *OpTy = getTypeByID(OpTyID); 5298 Value *Cond = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB); 5299 BasicBlock *Default = getBasicBlock(Record[2]); 5300 if (!OpTy || !Cond || !Default) 5301 return error("Invalid record"); 5302 unsigned NumCases = (Record.size()-3)/2; 5303 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 5304 InstructionList.push_back(SI); 5305 for (unsigned i = 0, e = NumCases; i != e; ++i) { 5306 ConstantInt *CaseVal = dyn_cast_or_null<ConstantInt>( 5307 getFnValueByID(Record[3+i*2], OpTy, OpTyID, nullptr)); 5308 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 5309 if (!CaseVal || !DestBB) { 5310 delete SI; 5311 return error("Invalid record"); 5312 } 5313 SI->addCase(CaseVal, DestBB); 5314 } 5315 I = SI; 5316 break; 5317 } 5318 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 5319 if (Record.size() < 2) 5320 return error("Invalid record"); 5321 unsigned OpTyID = Record[0]; 5322 Type *OpTy = getTypeByID(OpTyID); 5323 Value *Address = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB); 5324 if (!OpTy || !Address) 5325 return error("Invalid record"); 5326 unsigned NumDests = Record.size()-2; 5327 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 5328 InstructionList.push_back(IBI); 5329 for (unsigned i = 0, e = NumDests; i != e; ++i) { 5330 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 5331 IBI->addDestination(DestBB); 5332 } else { 5333 delete IBI; 5334 return error("Invalid record"); 5335 } 5336 } 5337 I = IBI; 5338 break; 5339 } 5340 5341 case bitc::FUNC_CODE_INST_INVOKE: { 5342 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 5343 if (Record.size() < 4) 5344 return error("Invalid record"); 5345 unsigned OpNum = 0; 5346 AttributeList PAL = getAttributes(Record[OpNum++]); 5347 unsigned CCInfo = Record[OpNum++]; 5348 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 5349 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 5350 5351 unsigned FTyID = InvalidTypeID; 5352 FunctionType *FTy = nullptr; 5353 if ((CCInfo >> 13) & 1) { 5354 FTyID = Record[OpNum++]; 5355 FTy = dyn_cast<FunctionType>(getTypeByID(FTyID)); 5356 if (!FTy) 5357 return error("Explicit invoke type is not a function type"); 5358 } 5359 5360 Value *Callee; 5361 unsigned CalleeTypeID; 5362 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID, 5363 CurBB)) 5364 return error("Invalid record"); 5365 5366 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 5367 if (!CalleeTy) 5368 return error("Callee is not a pointer"); 5369 if (!FTy) { 5370 FTyID = getContainedTypeID(CalleeTypeID); 5371 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 5372 if (!FTy) 5373 return error("Callee is not of pointer to function type"); 5374 } else if (!CalleeTy->isOpaqueOrPointeeTypeMatches(FTy)) 5375 return error("Explicit invoke type does not match pointee type of " 5376 "callee operand"); 5377 if (Record.size() < FTy->getNumParams() + OpNum) 5378 return error("Insufficient operands to call"); 5379 5380 SmallVector<Value*, 16> Ops; 5381 SmallVector<unsigned, 16> ArgTyIDs; 5382 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5383 unsigned ArgTyID = getContainedTypeID(FTyID, i + 1); 5384 Ops.push_back(getValue(Record, OpNum, NextValueNo, FTy->getParamType(i), 5385 ArgTyID, CurBB)); 5386 ArgTyIDs.push_back(ArgTyID); 5387 if (!Ops.back()) 5388 return error("Invalid record"); 5389 } 5390 5391 if (!FTy->isVarArg()) { 5392 if (Record.size() != OpNum) 5393 return error("Invalid record"); 5394 } else { 5395 // Read type/value pairs for varargs params. 5396 while (OpNum != Record.size()) { 5397 Value *Op; 5398 unsigned OpTypeID; 5399 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 5400 return error("Invalid record"); 5401 Ops.push_back(Op); 5402 ArgTyIDs.push_back(OpTypeID); 5403 } 5404 } 5405 5406 // Upgrade the bundles if needed. 5407 if (!OperandBundles.empty()) 5408 UpgradeOperandBundles(OperandBundles); 5409 5410 I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops, 5411 OperandBundles); 5412 ResTypeID = getContainedTypeID(FTyID); 5413 OperandBundles.clear(); 5414 InstructionList.push_back(I); 5415 cast<InvokeInst>(I)->setCallingConv( 5416 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 5417 cast<InvokeInst>(I)->setAttributes(PAL); 5418 if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) { 5419 I->deleteValue(); 5420 return Err; 5421 } 5422 5423 break; 5424 } 5425 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 5426 unsigned Idx = 0; 5427 Value *Val = nullptr; 5428 unsigned ValTypeID; 5429 if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, CurBB)) 5430 return error("Invalid record"); 5431 I = ResumeInst::Create(Val); 5432 InstructionList.push_back(I); 5433 break; 5434 } 5435 case bitc::FUNC_CODE_INST_CALLBR: { 5436 // CALLBR: [attr, cc, norm, transfs, fty, fnid, args] 5437 unsigned OpNum = 0; 5438 AttributeList PAL = getAttributes(Record[OpNum++]); 5439 unsigned CCInfo = Record[OpNum++]; 5440 5441 BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]); 5442 unsigned NumIndirectDests = Record[OpNum++]; 5443 SmallVector<BasicBlock *, 16> IndirectDests; 5444 for (unsigned i = 0, e = NumIndirectDests; i != e; ++i) 5445 IndirectDests.push_back(getBasicBlock(Record[OpNum++])); 5446 5447 unsigned FTyID = InvalidTypeID; 5448 FunctionType *FTy = nullptr; 5449 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 5450 FTyID = Record[OpNum++]; 5451 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 5452 if (!FTy) 5453 return error("Explicit call type is not a function type"); 5454 } 5455 5456 Value *Callee; 5457 unsigned CalleeTypeID; 5458 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID, 5459 CurBB)) 5460 return error("Invalid record"); 5461 5462 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5463 if (!OpTy) 5464 return error("Callee is not a pointer type"); 5465 if (!FTy) { 5466 FTyID = getContainedTypeID(CalleeTypeID); 5467 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 5468 if (!FTy) 5469 return error("Callee is not of pointer to function type"); 5470 } else if (!OpTy->isOpaqueOrPointeeTypeMatches(FTy)) 5471 return error("Explicit call type does not match pointee type of " 5472 "callee operand"); 5473 if (Record.size() < FTy->getNumParams() + OpNum) 5474 return error("Insufficient operands to call"); 5475 5476 SmallVector<Value*, 16> Args; 5477 SmallVector<unsigned, 16> ArgTyIDs; 5478 // Read the fixed params. 5479 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5480 Value *Arg; 5481 unsigned ArgTyID = getContainedTypeID(FTyID, i + 1); 5482 if (FTy->getParamType(i)->isLabelTy()) 5483 Arg = getBasicBlock(Record[OpNum]); 5484 else 5485 Arg = getValue(Record, OpNum, NextValueNo, FTy->getParamType(i), 5486 ArgTyID, CurBB); 5487 if (!Arg) 5488 return error("Invalid record"); 5489 Args.push_back(Arg); 5490 ArgTyIDs.push_back(ArgTyID); 5491 } 5492 5493 // Read type/value pairs for varargs params. 5494 if (!FTy->isVarArg()) { 5495 if (OpNum != Record.size()) 5496 return error("Invalid record"); 5497 } else { 5498 while (OpNum != Record.size()) { 5499 Value *Op; 5500 unsigned OpTypeID; 5501 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 5502 return error("Invalid record"); 5503 Args.push_back(Op); 5504 ArgTyIDs.push_back(OpTypeID); 5505 } 5506 } 5507 5508 // Upgrade the bundles if needed. 5509 if (!OperandBundles.empty()) 5510 UpgradeOperandBundles(OperandBundles); 5511 5512 I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args, 5513 OperandBundles); 5514 ResTypeID = getContainedTypeID(FTyID); 5515 OperandBundles.clear(); 5516 InstructionList.push_back(I); 5517 cast<CallBrInst>(I)->setCallingConv( 5518 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5519 cast<CallBrInst>(I)->setAttributes(PAL); 5520 if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) { 5521 I->deleteValue(); 5522 return Err; 5523 } 5524 break; 5525 } 5526 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 5527 I = new UnreachableInst(Context); 5528 InstructionList.push_back(I); 5529 break; 5530 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 5531 if (Record.empty()) 5532 return error("Invalid phi record"); 5533 // The first record specifies the type. 5534 unsigned TyID = Record[0]; 5535 Type *Ty = getTypeByID(TyID); 5536 if (!Ty) 5537 return error("Invalid phi record"); 5538 5539 // Phi arguments are pairs of records of [value, basic block]. 5540 // There is an optional final record for fast-math-flags if this phi has a 5541 // floating-point type. 5542 size_t NumArgs = (Record.size() - 1) / 2; 5543 PHINode *PN = PHINode::Create(Ty, NumArgs); 5544 if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN)) { 5545 PN->deleteValue(); 5546 return error("Invalid phi record"); 5547 } 5548 InstructionList.push_back(PN); 5549 5550 SmallDenseMap<BasicBlock *, Value *> Args; 5551 for (unsigned i = 0; i != NumArgs; i++) { 5552 BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]); 5553 if (!BB) { 5554 PN->deleteValue(); 5555 return error("Invalid phi BB"); 5556 } 5557 5558 // Phi nodes may contain the same predecessor multiple times, in which 5559 // case the incoming value must be identical. Directly reuse the already 5560 // seen value here, to avoid expanding a constant expression multiple 5561 // times. 5562 auto It = Args.find(BB); 5563 if (It != Args.end()) { 5564 PN->addIncoming(It->second, BB); 5565 continue; 5566 } 5567 5568 // If there already is a block for this edge (from a different phi), 5569 // use it. 5570 BasicBlock *EdgeBB = ConstExprEdgeBBs.lookup({BB, CurBB}); 5571 if (!EdgeBB) { 5572 // Otherwise, use a temporary block (that we will discard if it 5573 // turns out to be unnecessary). 5574 if (!PhiConstExprBB) 5575 PhiConstExprBB = BasicBlock::Create(Context, "phi.constexpr", F); 5576 EdgeBB = PhiConstExprBB; 5577 } 5578 5579 // With the new function encoding, it is possible that operands have 5580 // negative IDs (for forward references). Use a signed VBR 5581 // representation to keep the encoding small. 5582 Value *V; 5583 if (UseRelativeIDs) 5584 V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB); 5585 else 5586 V = getValue(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB); 5587 if (!V) { 5588 PN->deleteValue(); 5589 PhiConstExprBB->eraseFromParent(); 5590 return error("Invalid phi record"); 5591 } 5592 5593 if (EdgeBB == PhiConstExprBB && !EdgeBB->empty()) { 5594 ConstExprEdgeBBs.insert({{BB, CurBB}, EdgeBB}); 5595 PhiConstExprBB = nullptr; 5596 } 5597 PN->addIncoming(V, BB); 5598 Args.insert({BB, V}); 5599 } 5600 I = PN; 5601 ResTypeID = TyID; 5602 5603 // If there are an even number of records, the final record must be FMF. 5604 if (Record.size() % 2 == 0) { 5605 assert(isa<FPMathOperator>(I) && "Unexpected phi type"); 5606 FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]); 5607 if (FMF.any()) 5608 I->setFastMathFlags(FMF); 5609 } 5610 5611 break; 5612 } 5613 5614 case bitc::FUNC_CODE_INST_LANDINGPAD: 5615 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 5616 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 5617 unsigned Idx = 0; 5618 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 5619 if (Record.size() < 3) 5620 return error("Invalid record"); 5621 } else { 5622 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 5623 if (Record.size() < 4) 5624 return error("Invalid record"); 5625 } 5626 ResTypeID = Record[Idx++]; 5627 Type *Ty = getTypeByID(ResTypeID); 5628 if (!Ty) 5629 return error("Invalid record"); 5630 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 5631 Value *PersFn = nullptr; 5632 unsigned PersFnTypeID; 5633 if (getValueTypePair(Record, Idx, NextValueNo, PersFn, PersFnTypeID, 5634 nullptr)) 5635 return error("Invalid record"); 5636 5637 if (!F->hasPersonalityFn()) 5638 F->setPersonalityFn(cast<Constant>(PersFn)); 5639 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 5640 return error("Personality function mismatch"); 5641 } 5642 5643 bool IsCleanup = !!Record[Idx++]; 5644 unsigned NumClauses = Record[Idx++]; 5645 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 5646 LP->setCleanup(IsCleanup); 5647 for (unsigned J = 0; J != NumClauses; ++J) { 5648 LandingPadInst::ClauseType CT = 5649 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 5650 Value *Val; 5651 unsigned ValTypeID; 5652 5653 if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, 5654 nullptr)) { 5655 delete LP; 5656 return error("Invalid record"); 5657 } 5658 5659 assert((CT != LandingPadInst::Catch || 5660 !isa<ArrayType>(Val->getType())) && 5661 "Catch clause has a invalid type!"); 5662 assert((CT != LandingPadInst::Filter || 5663 isa<ArrayType>(Val->getType())) && 5664 "Filter clause has invalid type!"); 5665 LP->addClause(cast<Constant>(Val)); 5666 } 5667 5668 I = LP; 5669 InstructionList.push_back(I); 5670 break; 5671 } 5672 5673 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 5674 if (Record.size() != 4 && Record.size() != 5) 5675 return error("Invalid record"); 5676 using APV = AllocaPackedValues; 5677 const uint64_t Rec = Record[3]; 5678 const bool InAlloca = Bitfield::get<APV::UsedWithInAlloca>(Rec); 5679 const bool SwiftError = Bitfield::get<APV::SwiftError>(Rec); 5680 unsigned TyID = Record[0]; 5681 Type *Ty = getTypeByID(TyID); 5682 if (!Bitfield::get<APV::ExplicitType>(Rec)) { 5683 TyID = getContainedTypeID(TyID); 5684 Ty = getTypeByID(TyID); 5685 if (!Ty) 5686 return error("Missing element type for old-style alloca"); 5687 } 5688 unsigned OpTyID = Record[1]; 5689 Type *OpTy = getTypeByID(OpTyID); 5690 Value *Size = getFnValueByID(Record[2], OpTy, OpTyID, CurBB); 5691 MaybeAlign Align; 5692 uint64_t AlignExp = 5693 Bitfield::get<APV::AlignLower>(Rec) | 5694 (Bitfield::get<APV::AlignUpper>(Rec) << APV::AlignLower::Bits); 5695 if (Error Err = parseAlignmentValue(AlignExp, Align)) { 5696 return Err; 5697 } 5698 if (!Ty || !Size) 5699 return error("Invalid record"); 5700 5701 const DataLayout &DL = TheModule->getDataLayout(); 5702 unsigned AS = Record.size() == 5 ? Record[4] : DL.getAllocaAddrSpace(); 5703 5704 SmallPtrSet<Type *, 4> Visited; 5705 if (!Align && !Ty->isSized(&Visited)) 5706 return error("alloca of unsized type"); 5707 if (!Align) 5708 Align = DL.getPrefTypeAlign(Ty); 5709 5710 AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align); 5711 AI->setUsedWithInAlloca(InAlloca); 5712 AI->setSwiftError(SwiftError); 5713 I = AI; 5714 ResTypeID = getVirtualTypeID(AI->getType(), TyID); 5715 InstructionList.push_back(I); 5716 break; 5717 } 5718 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 5719 unsigned OpNum = 0; 5720 Value *Op; 5721 unsigned OpTypeID; 5722 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) || 5723 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 5724 return error("Invalid record"); 5725 5726 if (!isa<PointerType>(Op->getType())) 5727 return error("Load operand is not a pointer type"); 5728 5729 Type *Ty = nullptr; 5730 if (OpNum + 3 == Record.size()) { 5731 ResTypeID = Record[OpNum++]; 5732 Ty = getTypeByID(ResTypeID); 5733 } else { 5734 ResTypeID = getContainedTypeID(OpTypeID); 5735 Ty = getTypeByID(ResTypeID); 5736 if (!Ty) 5737 return error("Missing element type for old-style load"); 5738 } 5739 5740 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 5741 return Err; 5742 5743 MaybeAlign Align; 5744 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 5745 return Err; 5746 SmallPtrSet<Type *, 4> Visited; 5747 if (!Align && !Ty->isSized(&Visited)) 5748 return error("load of unsized type"); 5749 if (!Align) 5750 Align = TheModule->getDataLayout().getABITypeAlign(Ty); 5751 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align); 5752 InstructionList.push_back(I); 5753 break; 5754 } 5755 case bitc::FUNC_CODE_INST_LOADATOMIC: { 5756 // LOADATOMIC: [opty, op, align, vol, ordering, ssid] 5757 unsigned OpNum = 0; 5758 Value *Op; 5759 unsigned OpTypeID; 5760 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) || 5761 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 5762 return error("Invalid record"); 5763 5764 if (!isa<PointerType>(Op->getType())) 5765 return error("Load operand is not a pointer type"); 5766 5767 Type *Ty = nullptr; 5768 if (OpNum + 5 == Record.size()) { 5769 ResTypeID = Record[OpNum++]; 5770 Ty = getTypeByID(ResTypeID); 5771 } else { 5772 ResTypeID = getContainedTypeID(OpTypeID); 5773 Ty = getTypeByID(ResTypeID); 5774 if (!Ty) 5775 return error("Missing element type for old style atomic load"); 5776 } 5777 5778 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 5779 return Err; 5780 5781 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5782 if (Ordering == AtomicOrdering::NotAtomic || 5783 Ordering == AtomicOrdering::Release || 5784 Ordering == AtomicOrdering::AcquireRelease) 5785 return error("Invalid record"); 5786 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 5787 return error("Invalid record"); 5788 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 5789 5790 MaybeAlign Align; 5791 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 5792 return Err; 5793 if (!Align) 5794 return error("Alignment missing from atomic load"); 5795 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID); 5796 InstructionList.push_back(I); 5797 break; 5798 } 5799 case bitc::FUNC_CODE_INST_STORE: 5800 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 5801 unsigned OpNum = 0; 5802 Value *Val, *Ptr; 5803 unsigned PtrTypeID, ValTypeID; 5804 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 5805 return error("Invalid record"); 5806 5807 if (BitCode == bitc::FUNC_CODE_INST_STORE) { 5808 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 5809 return error("Invalid record"); 5810 } else { 5811 ValTypeID = getContainedTypeID(PtrTypeID); 5812 if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID), 5813 ValTypeID, Val, CurBB)) 5814 return error("Invalid record"); 5815 } 5816 5817 if (OpNum + 2 != Record.size()) 5818 return error("Invalid record"); 5819 5820 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 5821 return Err; 5822 MaybeAlign Align; 5823 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 5824 return Err; 5825 SmallPtrSet<Type *, 4> Visited; 5826 if (!Align && !Val->getType()->isSized(&Visited)) 5827 return error("store of unsized type"); 5828 if (!Align) 5829 Align = TheModule->getDataLayout().getABITypeAlign(Val->getType()); 5830 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align); 5831 InstructionList.push_back(I); 5832 break; 5833 } 5834 case bitc::FUNC_CODE_INST_STOREATOMIC: 5835 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 5836 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid] 5837 unsigned OpNum = 0; 5838 Value *Val, *Ptr; 5839 unsigned PtrTypeID, ValTypeID; 5840 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB) || 5841 !isa<PointerType>(Ptr->getType())) 5842 return error("Invalid record"); 5843 if (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC) { 5844 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 5845 return error("Invalid record"); 5846 } else { 5847 ValTypeID = getContainedTypeID(PtrTypeID); 5848 if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID), 5849 ValTypeID, Val, CurBB)) 5850 return error("Invalid record"); 5851 } 5852 5853 if (OpNum + 4 != Record.size()) 5854 return error("Invalid record"); 5855 5856 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 5857 return Err; 5858 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5859 if (Ordering == AtomicOrdering::NotAtomic || 5860 Ordering == AtomicOrdering::Acquire || 5861 Ordering == AtomicOrdering::AcquireRelease) 5862 return error("Invalid record"); 5863 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 5864 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 5865 return error("Invalid record"); 5866 5867 MaybeAlign Align; 5868 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 5869 return Err; 5870 if (!Align) 5871 return error("Alignment missing from atomic store"); 5872 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID); 5873 InstructionList.push_back(I); 5874 break; 5875 } 5876 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: { 5877 // CMPXCHG_OLD: [ptrty, ptr, cmp, val, vol, ordering, synchscope, 5878 // failure_ordering?, weak?] 5879 const size_t NumRecords = Record.size(); 5880 unsigned OpNum = 0; 5881 Value *Ptr = nullptr; 5882 unsigned PtrTypeID; 5883 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 5884 return error("Invalid record"); 5885 5886 if (!isa<PointerType>(Ptr->getType())) 5887 return error("Cmpxchg operand is not a pointer type"); 5888 5889 Value *Cmp = nullptr; 5890 unsigned CmpTypeID = getContainedTypeID(PtrTypeID); 5891 if (popValue(Record, OpNum, NextValueNo, getTypeByID(CmpTypeID), 5892 CmpTypeID, Cmp, CurBB)) 5893 return error("Invalid record"); 5894 5895 Value *New = nullptr; 5896 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID, 5897 New, CurBB) || 5898 NumRecords < OpNum + 3 || NumRecords > OpNum + 5) 5899 return error("Invalid record"); 5900 5901 const AtomicOrdering SuccessOrdering = 5902 getDecodedOrdering(Record[OpNum + 1]); 5903 if (SuccessOrdering == AtomicOrdering::NotAtomic || 5904 SuccessOrdering == AtomicOrdering::Unordered) 5905 return error("Invalid record"); 5906 5907 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 5908 5909 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 5910 return Err; 5911 5912 const AtomicOrdering FailureOrdering = 5913 NumRecords < 7 5914 ? AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering) 5915 : getDecodedOrdering(Record[OpNum + 3]); 5916 5917 if (FailureOrdering == AtomicOrdering::NotAtomic || 5918 FailureOrdering == AtomicOrdering::Unordered) 5919 return error("Invalid record"); 5920 5921 const Align Alignment( 5922 TheModule->getDataLayout().getTypeStoreSize(Cmp->getType())); 5923 5924 I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering, 5925 FailureOrdering, SSID); 5926 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 5927 5928 if (NumRecords < 8) { 5929 // Before weak cmpxchgs existed, the instruction simply returned the 5930 // value loaded from memory, so bitcode files from that era will be 5931 // expecting the first component of a modern cmpxchg. 5932 CurBB->getInstList().push_back(I); 5933 I = ExtractValueInst::Create(I, 0); 5934 ResTypeID = CmpTypeID; 5935 } else { 5936 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]); 5937 unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context)); 5938 ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID}); 5939 } 5940 5941 InstructionList.push_back(I); 5942 break; 5943 } 5944 case bitc::FUNC_CODE_INST_CMPXCHG: { 5945 // CMPXCHG: [ptrty, ptr, cmp, val, vol, success_ordering, synchscope, 5946 // failure_ordering, weak, align?] 5947 const size_t NumRecords = Record.size(); 5948 unsigned OpNum = 0; 5949 Value *Ptr = nullptr; 5950 unsigned PtrTypeID; 5951 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 5952 return error("Invalid record"); 5953 5954 if (!isa<PointerType>(Ptr->getType())) 5955 return error("Cmpxchg operand is not a pointer type"); 5956 5957 Value *Cmp = nullptr; 5958 unsigned CmpTypeID; 5959 if (getValueTypePair(Record, OpNum, NextValueNo, Cmp, CmpTypeID, CurBB)) 5960 return error("Invalid record"); 5961 5962 Value *Val = nullptr; 5963 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID, Val, 5964 CurBB)) 5965 return error("Invalid record"); 5966 5967 if (NumRecords < OpNum + 3 || NumRecords > OpNum + 6) 5968 return error("Invalid record"); 5969 5970 const bool IsVol = Record[OpNum]; 5971 5972 const AtomicOrdering SuccessOrdering = 5973 getDecodedOrdering(Record[OpNum + 1]); 5974 if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering)) 5975 return error("Invalid cmpxchg success ordering"); 5976 5977 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 5978 5979 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 5980 return Err; 5981 5982 const AtomicOrdering FailureOrdering = 5983 getDecodedOrdering(Record[OpNum + 3]); 5984 if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering)) 5985 return error("Invalid cmpxchg failure ordering"); 5986 5987 const bool IsWeak = Record[OpNum + 4]; 5988 5989 MaybeAlign Alignment; 5990 5991 if (NumRecords == (OpNum + 6)) { 5992 if (Error Err = parseAlignmentValue(Record[OpNum + 5], Alignment)) 5993 return Err; 5994 } 5995 if (!Alignment) 5996 Alignment = 5997 Align(TheModule->getDataLayout().getTypeStoreSize(Cmp->getType())); 5998 5999 I = new AtomicCmpXchgInst(Ptr, Cmp, Val, *Alignment, SuccessOrdering, 6000 FailureOrdering, SSID); 6001 cast<AtomicCmpXchgInst>(I)->setVolatile(IsVol); 6002 cast<AtomicCmpXchgInst>(I)->setWeak(IsWeak); 6003 6004 unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context)); 6005 ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID}); 6006 6007 InstructionList.push_back(I); 6008 break; 6009 } 6010 case bitc::FUNC_CODE_INST_ATOMICRMW_OLD: 6011 case bitc::FUNC_CODE_INST_ATOMICRMW: { 6012 // ATOMICRMW_OLD: [ptrty, ptr, val, op, vol, ordering, ssid, align?] 6013 // ATOMICRMW: [ptrty, ptr, valty, val, op, vol, ordering, ssid, align?] 6014 const size_t NumRecords = Record.size(); 6015 unsigned OpNum = 0; 6016 6017 Value *Ptr = nullptr; 6018 unsigned PtrTypeID; 6019 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 6020 return error("Invalid record"); 6021 6022 if (!isa<PointerType>(Ptr->getType())) 6023 return error("Invalid record"); 6024 6025 Value *Val = nullptr; 6026 unsigned ValTypeID = InvalidTypeID; 6027 if (BitCode == bitc::FUNC_CODE_INST_ATOMICRMW_OLD) { 6028 ValTypeID = getContainedTypeID(PtrTypeID); 6029 if (popValue(Record, OpNum, NextValueNo, 6030 getTypeByID(ValTypeID), ValTypeID, Val, CurBB)) 6031 return error("Invalid record"); 6032 } else { 6033 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 6034 return error("Invalid record"); 6035 } 6036 6037 if (!(NumRecords == (OpNum + 4) || NumRecords == (OpNum + 5))) 6038 return error("Invalid record"); 6039 6040 const AtomicRMWInst::BinOp Operation = 6041 getDecodedRMWOperation(Record[OpNum]); 6042 if (Operation < AtomicRMWInst::FIRST_BINOP || 6043 Operation > AtomicRMWInst::LAST_BINOP) 6044 return error("Invalid record"); 6045 6046 const bool IsVol = Record[OpNum + 1]; 6047 6048 const AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 6049 if (Ordering == AtomicOrdering::NotAtomic || 6050 Ordering == AtomicOrdering::Unordered) 6051 return error("Invalid record"); 6052 6053 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 6054 6055 MaybeAlign Alignment; 6056 6057 if (NumRecords == (OpNum + 5)) { 6058 if (Error Err = parseAlignmentValue(Record[OpNum + 4], Alignment)) 6059 return Err; 6060 } 6061 6062 if (!Alignment) 6063 Alignment = 6064 Align(TheModule->getDataLayout().getTypeStoreSize(Val->getType())); 6065 6066 I = new AtomicRMWInst(Operation, Ptr, Val, *Alignment, Ordering, SSID); 6067 ResTypeID = ValTypeID; 6068 cast<AtomicRMWInst>(I)->setVolatile(IsVol); 6069 6070 InstructionList.push_back(I); 6071 break; 6072 } 6073 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid] 6074 if (2 != Record.size()) 6075 return error("Invalid record"); 6076 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 6077 if (Ordering == AtomicOrdering::NotAtomic || 6078 Ordering == AtomicOrdering::Unordered || 6079 Ordering == AtomicOrdering::Monotonic) 6080 return error("Invalid record"); 6081 SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]); 6082 I = new FenceInst(Context, Ordering, SSID); 6083 InstructionList.push_back(I); 6084 break; 6085 } 6086 case bitc::FUNC_CODE_INST_CALL: { 6087 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 6088 if (Record.size() < 3) 6089 return error("Invalid record"); 6090 6091 unsigned OpNum = 0; 6092 AttributeList PAL = getAttributes(Record[OpNum++]); 6093 unsigned CCInfo = Record[OpNum++]; 6094 6095 FastMathFlags FMF; 6096 if ((CCInfo >> bitc::CALL_FMF) & 1) { 6097 FMF = getDecodedFastMathFlags(Record[OpNum++]); 6098 if (!FMF.any()) 6099 return error("Fast math flags indicator set for call with no FMF"); 6100 } 6101 6102 unsigned FTyID = InvalidTypeID; 6103 FunctionType *FTy = nullptr; 6104 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 6105 FTyID = Record[OpNum++]; 6106 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 6107 if (!FTy) 6108 return error("Explicit call type is not a function type"); 6109 } 6110 6111 Value *Callee; 6112 unsigned CalleeTypeID; 6113 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID, 6114 CurBB)) 6115 return error("Invalid record"); 6116 6117 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 6118 if (!OpTy) 6119 return error("Callee is not a pointer type"); 6120 if (!FTy) { 6121 FTyID = getContainedTypeID(CalleeTypeID); 6122 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 6123 if (!FTy) 6124 return error("Callee is not of pointer to function type"); 6125 } else if (!OpTy->isOpaqueOrPointeeTypeMatches(FTy)) 6126 return error("Explicit call type does not match pointee type of " 6127 "callee operand"); 6128 if (Record.size() < FTy->getNumParams() + OpNum) 6129 return error("Insufficient operands to call"); 6130 6131 SmallVector<Value*, 16> Args; 6132 SmallVector<unsigned, 16> ArgTyIDs; 6133 // Read the fixed params. 6134 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 6135 unsigned ArgTyID = getContainedTypeID(FTyID, i + 1); 6136 if (FTy->getParamType(i)->isLabelTy()) 6137 Args.push_back(getBasicBlock(Record[OpNum])); 6138 else 6139 Args.push_back(getValue(Record, OpNum, NextValueNo, 6140 FTy->getParamType(i), ArgTyID, CurBB)); 6141 ArgTyIDs.push_back(ArgTyID); 6142 if (!Args.back()) 6143 return error("Invalid record"); 6144 } 6145 6146 // Read type/value pairs for varargs params. 6147 if (!FTy->isVarArg()) { 6148 if (OpNum != Record.size()) 6149 return error("Invalid record"); 6150 } else { 6151 while (OpNum != Record.size()) { 6152 Value *Op; 6153 unsigned OpTypeID; 6154 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 6155 return error("Invalid record"); 6156 Args.push_back(Op); 6157 ArgTyIDs.push_back(OpTypeID); 6158 } 6159 } 6160 6161 // Upgrade the bundles if needed. 6162 if (!OperandBundles.empty()) 6163 UpgradeOperandBundles(OperandBundles); 6164 6165 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 6166 ResTypeID = getContainedTypeID(FTyID); 6167 OperandBundles.clear(); 6168 InstructionList.push_back(I); 6169 cast<CallInst>(I)->setCallingConv( 6170 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 6171 CallInst::TailCallKind TCK = CallInst::TCK_None; 6172 if (CCInfo & 1 << bitc::CALL_TAIL) 6173 TCK = CallInst::TCK_Tail; 6174 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 6175 TCK = CallInst::TCK_MustTail; 6176 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 6177 TCK = CallInst::TCK_NoTail; 6178 cast<CallInst>(I)->setTailCallKind(TCK); 6179 cast<CallInst>(I)->setAttributes(PAL); 6180 if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) { 6181 I->deleteValue(); 6182 return Err; 6183 } 6184 if (FMF.any()) { 6185 if (!isa<FPMathOperator>(I)) 6186 return error("Fast-math-flags specified for call without " 6187 "floating-point scalar or vector return type"); 6188 I->setFastMathFlags(FMF); 6189 } 6190 break; 6191 } 6192 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 6193 if (Record.size() < 3) 6194 return error("Invalid record"); 6195 unsigned OpTyID = Record[0]; 6196 Type *OpTy = getTypeByID(OpTyID); 6197 Value *Op = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB); 6198 ResTypeID = Record[2]; 6199 Type *ResTy = getTypeByID(ResTypeID); 6200 if (!OpTy || !Op || !ResTy) 6201 return error("Invalid record"); 6202 I = new VAArgInst(Op, ResTy); 6203 InstructionList.push_back(I); 6204 break; 6205 } 6206 6207 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 6208 // A call or an invoke can be optionally prefixed with some variable 6209 // number of operand bundle blocks. These blocks are read into 6210 // OperandBundles and consumed at the next call or invoke instruction. 6211 6212 if (Record.empty() || Record[0] >= BundleTags.size()) 6213 return error("Invalid record"); 6214 6215 std::vector<Value *> Inputs; 6216 6217 unsigned OpNum = 1; 6218 while (OpNum != Record.size()) { 6219 Value *Op; 6220 unsigned OpTypeID; 6221 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 6222 return error("Invalid record"); 6223 Inputs.push_back(Op); 6224 } 6225 6226 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 6227 continue; 6228 } 6229 6230 case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval] 6231 unsigned OpNum = 0; 6232 Value *Op = nullptr; 6233 unsigned OpTypeID; 6234 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 6235 return error("Invalid record"); 6236 if (OpNum != Record.size()) 6237 return error("Invalid record"); 6238 6239 I = new FreezeInst(Op); 6240 ResTypeID = OpTypeID; 6241 InstructionList.push_back(I); 6242 break; 6243 } 6244 } 6245 6246 // Add instruction to end of current BB. If there is no current BB, reject 6247 // this file. 6248 if (!CurBB) { 6249 I->deleteValue(); 6250 return error("Invalid instruction with no BB"); 6251 } 6252 if (!OperandBundles.empty()) { 6253 I->deleteValue(); 6254 return error("Operand bundles found with no consumer"); 6255 } 6256 CurBB->getInstList().push_back(I); 6257 6258 // If this was a terminator instruction, move to the next block. 6259 if (I->isTerminator()) { 6260 ++CurBBNo; 6261 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 6262 } 6263 6264 // Non-void values get registered in the value table for future use. 6265 if (!I->getType()->isVoidTy()) { 6266 assert(I->getType() == getTypeByID(ResTypeID) && 6267 "Incorrect result type ID"); 6268 if (Error Err = ValueList.assignValue(NextValueNo++, I, ResTypeID)) 6269 return Err; 6270 } 6271 } 6272 6273 OutOfRecordLoop: 6274 6275 if (!OperandBundles.empty()) 6276 return error("Operand bundles found with no consumer"); 6277 6278 // Check the function list for unresolved values. 6279 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 6280 if (!A->getParent()) { 6281 // We found at least one unresolved value. Nuke them all to avoid leaks. 6282 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 6283 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 6284 A->replaceAllUsesWith(UndefValue::get(A->getType())); 6285 delete A; 6286 } 6287 } 6288 return error("Never resolved value found in function"); 6289 } 6290 } 6291 6292 // Unexpected unresolved metadata about to be dropped. 6293 if (MDLoader->hasFwdRefs()) 6294 return error("Invalid function metadata: outgoing forward refs"); 6295 6296 if (PhiConstExprBB) 6297 PhiConstExprBB->eraseFromParent(); 6298 6299 for (const auto &Pair : ConstExprEdgeBBs) { 6300 BasicBlock *From = Pair.first.first; 6301 BasicBlock *To = Pair.first.second; 6302 BasicBlock *EdgeBB = Pair.second; 6303 BranchInst::Create(To, EdgeBB); 6304 From->getTerminator()->replaceSuccessorWith(To, EdgeBB); 6305 To->replacePhiUsesWith(From, EdgeBB); 6306 EdgeBB->moveBefore(To); 6307 } 6308 6309 // Trim the value list down to the size it was before we parsed this function. 6310 ValueList.shrinkTo(ModuleValueListSize); 6311 MDLoader->shrinkTo(ModuleMDLoaderSize); 6312 std::vector<BasicBlock*>().swap(FunctionBBs); 6313 return Error::success(); 6314 } 6315 6316 /// Find the function body in the bitcode stream 6317 Error BitcodeReader::findFunctionInStream( 6318 Function *F, 6319 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 6320 while (DeferredFunctionInfoIterator->second == 0) { 6321 // This is the fallback handling for the old format bitcode that 6322 // didn't contain the function index in the VST, or when we have 6323 // an anonymous function which would not have a VST entry. 6324 // Assert that we have one of those two cases. 6325 assert(VSTOffset == 0 || !F->hasName()); 6326 // Parse the next body in the stream and set its position in the 6327 // DeferredFunctionInfo map. 6328 if (Error Err = rememberAndSkipFunctionBodies()) 6329 return Err; 6330 } 6331 return Error::success(); 6332 } 6333 6334 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) { 6335 if (Val == SyncScope::SingleThread || Val == SyncScope::System) 6336 return SyncScope::ID(Val); 6337 if (Val >= SSIDs.size()) 6338 return SyncScope::System; // Map unknown synchronization scopes to system. 6339 return SSIDs[Val]; 6340 } 6341 6342 //===----------------------------------------------------------------------===// 6343 // GVMaterializer implementation 6344 //===----------------------------------------------------------------------===// 6345 6346 Error BitcodeReader::materialize(GlobalValue *GV) { 6347 Function *F = dyn_cast<Function>(GV); 6348 // If it's not a function or is already material, ignore the request. 6349 if (!F || !F->isMaterializable()) 6350 return Error::success(); 6351 6352 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 6353 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 6354 // If its position is recorded as 0, its body is somewhere in the stream 6355 // but we haven't seen it yet. 6356 if (DFII->second == 0) 6357 if (Error Err = findFunctionInStream(F, DFII)) 6358 return Err; 6359 6360 // Materialize metadata before parsing any function bodies. 6361 if (Error Err = materializeMetadata()) 6362 return Err; 6363 6364 // Move the bit stream to the saved position of the deferred function body. 6365 if (Error JumpFailed = Stream.JumpToBit(DFII->second)) 6366 return JumpFailed; 6367 if (Error Err = parseFunctionBody(F)) 6368 return Err; 6369 F->setIsMaterializable(false); 6370 6371 if (StripDebugInfo) 6372 stripDebugInfo(*F); 6373 6374 // Upgrade any old intrinsic calls in the function. 6375 for (auto &I : UpgradedIntrinsics) { 6376 for (User *U : llvm::make_early_inc_range(I.first->materialized_users())) 6377 if (CallInst *CI = dyn_cast<CallInst>(U)) 6378 UpgradeIntrinsicCall(CI, I.second); 6379 } 6380 6381 // Update calls to the remangled intrinsics 6382 for (auto &I : RemangledIntrinsics) 6383 for (User *U : llvm::make_early_inc_range(I.first->materialized_users())) 6384 // Don't expect any other users than call sites 6385 cast<CallBase>(U)->setCalledFunction(I.second); 6386 6387 // Finish fn->subprogram upgrade for materialized functions. 6388 if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F)) 6389 F->setSubprogram(SP); 6390 6391 // Check if the TBAA Metadata are valid, otherwise we will need to strip them. 6392 if (!MDLoader->isStrippingTBAA()) { 6393 for (auto &I : instructions(F)) { 6394 MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa); 6395 if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA)) 6396 continue; 6397 MDLoader->setStripTBAA(true); 6398 stripTBAA(F->getParent()); 6399 } 6400 } 6401 6402 for (auto &I : instructions(F)) { 6403 // "Upgrade" older incorrect branch weights by dropping them. 6404 if (auto *MD = I.getMetadata(LLVMContext::MD_prof)) { 6405 if (MD->getOperand(0) != nullptr && isa<MDString>(MD->getOperand(0))) { 6406 MDString *MDS = cast<MDString>(MD->getOperand(0)); 6407 StringRef ProfName = MDS->getString(); 6408 // Check consistency of !prof branch_weights metadata. 6409 if (!ProfName.equals("branch_weights")) 6410 continue; 6411 unsigned ExpectedNumOperands = 0; 6412 if (BranchInst *BI = dyn_cast<BranchInst>(&I)) 6413 ExpectedNumOperands = BI->getNumSuccessors(); 6414 else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I)) 6415 ExpectedNumOperands = SI->getNumSuccessors(); 6416 else if (isa<CallInst>(&I)) 6417 ExpectedNumOperands = 1; 6418 else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I)) 6419 ExpectedNumOperands = IBI->getNumDestinations(); 6420 else if (isa<SelectInst>(&I)) 6421 ExpectedNumOperands = 2; 6422 else 6423 continue; // ignore and continue. 6424 6425 // If branch weight doesn't match, just strip branch weight. 6426 if (MD->getNumOperands() != 1 + ExpectedNumOperands) 6427 I.setMetadata(LLVMContext::MD_prof, nullptr); 6428 } 6429 } 6430 6431 // Remove incompatible attributes on function calls. 6432 if (auto *CI = dyn_cast<CallBase>(&I)) { 6433 CI->removeRetAttrs(AttributeFuncs::typeIncompatible( 6434 CI->getFunctionType()->getReturnType())); 6435 6436 for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ++ArgNo) 6437 CI->removeParamAttrs(ArgNo, AttributeFuncs::typeIncompatible( 6438 CI->getArgOperand(ArgNo)->getType())); 6439 } 6440 } 6441 6442 // Look for functions that rely on old function attribute behavior. 6443 UpgradeFunctionAttributes(*F); 6444 6445 // Bring in any functions that this function forward-referenced via 6446 // blockaddresses. 6447 return materializeForwardReferencedFunctions(); 6448 } 6449 6450 Error BitcodeReader::materializeModule() { 6451 if (Error Err = materializeMetadata()) 6452 return Err; 6453 6454 // Promise to materialize all forward references. 6455 WillMaterializeAllForwardRefs = true; 6456 6457 // Iterate over the module, deserializing any functions that are still on 6458 // disk. 6459 for (Function &F : *TheModule) { 6460 if (Error Err = materialize(&F)) 6461 return Err; 6462 } 6463 // At this point, if there are any function bodies, parse the rest of 6464 // the bits in the module past the last function block we have recorded 6465 // through either lazy scanning or the VST. 6466 if (LastFunctionBlockBit || NextUnreadBit) 6467 if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit 6468 ? LastFunctionBlockBit 6469 : NextUnreadBit)) 6470 return Err; 6471 6472 // Check that all block address forward references got resolved (as we 6473 // promised above). 6474 if (!BasicBlockFwdRefs.empty()) 6475 return error("Never resolved function from blockaddress"); 6476 6477 // Upgrade any intrinsic calls that slipped through (should not happen!) and 6478 // delete the old functions to clean up. We can't do this unless the entire 6479 // module is materialized because there could always be another function body 6480 // with calls to the old function. 6481 for (auto &I : UpgradedIntrinsics) { 6482 for (auto *U : I.first->users()) { 6483 if (CallInst *CI = dyn_cast<CallInst>(U)) 6484 UpgradeIntrinsicCall(CI, I.second); 6485 } 6486 if (!I.first->use_empty()) 6487 I.first->replaceAllUsesWith(I.second); 6488 I.first->eraseFromParent(); 6489 } 6490 UpgradedIntrinsics.clear(); 6491 // Do the same for remangled intrinsics 6492 for (auto &I : RemangledIntrinsics) { 6493 I.first->replaceAllUsesWith(I.second); 6494 I.first->eraseFromParent(); 6495 } 6496 RemangledIntrinsics.clear(); 6497 6498 UpgradeDebugInfo(*TheModule); 6499 6500 UpgradeModuleFlags(*TheModule); 6501 6502 UpgradeARCRuntime(*TheModule); 6503 6504 return Error::success(); 6505 } 6506 6507 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 6508 return IdentifiedStructTypes; 6509 } 6510 6511 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 6512 BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex, 6513 StringRef ModulePath, unsigned ModuleId) 6514 : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex), 6515 ModulePath(ModulePath), ModuleId(ModuleId) {} 6516 6517 void ModuleSummaryIndexBitcodeReader::addThisModule() { 6518 TheIndex.addModule(ModulePath, ModuleId); 6519 } 6520 6521 ModuleSummaryIndex::ModuleInfo * 6522 ModuleSummaryIndexBitcodeReader::getThisModule() { 6523 return TheIndex.getModule(ModulePath); 6524 } 6525 6526 std::pair<ValueInfo, GlobalValue::GUID> 6527 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) { 6528 auto VGI = ValueIdToValueInfoMap[ValueId]; 6529 assert(VGI.first); 6530 return VGI; 6531 } 6532 6533 void ModuleSummaryIndexBitcodeReader::setValueGUID( 6534 uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage, 6535 StringRef SourceFileName) { 6536 std::string GlobalId = 6537 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 6538 auto ValueGUID = GlobalValue::getGUID(GlobalId); 6539 auto OriginalNameID = ValueGUID; 6540 if (GlobalValue::isLocalLinkage(Linkage)) 6541 OriginalNameID = GlobalValue::getGUID(ValueName); 6542 if (PrintSummaryGUIDs) 6543 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 6544 << ValueName << "\n"; 6545 6546 // UseStrtab is false for legacy summary formats and value names are 6547 // created on stack. In that case we save the name in a string saver in 6548 // the index so that the value name can be recorded. 6549 ValueIdToValueInfoMap[ValueID] = std::make_pair( 6550 TheIndex.getOrInsertValueInfo( 6551 ValueGUID, 6552 UseStrtab ? ValueName : TheIndex.saveString(ValueName)), 6553 OriginalNameID); 6554 } 6555 6556 // Specialized value symbol table parser used when reading module index 6557 // blocks where we don't actually create global values. The parsed information 6558 // is saved in the bitcode reader for use when later parsing summaries. 6559 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 6560 uint64_t Offset, 6561 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 6562 // With a strtab the VST is not required to parse the summary. 6563 if (UseStrtab) 6564 return Error::success(); 6565 6566 assert(Offset > 0 && "Expected non-zero VST offset"); 6567 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 6568 if (!MaybeCurrentBit) 6569 return MaybeCurrentBit.takeError(); 6570 uint64_t CurrentBit = MaybeCurrentBit.get(); 6571 6572 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 6573 return Err; 6574 6575 SmallVector<uint64_t, 64> Record; 6576 6577 // Read all the records for this value table. 6578 SmallString<128> ValueName; 6579 6580 while (true) { 6581 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6582 if (!MaybeEntry) 6583 return MaybeEntry.takeError(); 6584 BitstreamEntry Entry = MaybeEntry.get(); 6585 6586 switch (Entry.Kind) { 6587 case BitstreamEntry::SubBlock: // Handled for us already. 6588 case BitstreamEntry::Error: 6589 return error("Malformed block"); 6590 case BitstreamEntry::EndBlock: 6591 // Done parsing VST, jump back to wherever we came from. 6592 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 6593 return JumpFailed; 6594 return Error::success(); 6595 case BitstreamEntry::Record: 6596 // The interesting case. 6597 break; 6598 } 6599 6600 // Read a record. 6601 Record.clear(); 6602 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 6603 if (!MaybeRecord) 6604 return MaybeRecord.takeError(); 6605 switch (MaybeRecord.get()) { 6606 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 6607 break; 6608 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 6609 if (convertToString(Record, 1, ValueName)) 6610 return error("Invalid record"); 6611 unsigned ValueID = Record[0]; 6612 assert(!SourceFileName.empty()); 6613 auto VLI = ValueIdToLinkageMap.find(ValueID); 6614 assert(VLI != ValueIdToLinkageMap.end() && 6615 "No linkage found for VST entry?"); 6616 auto Linkage = VLI->second; 6617 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 6618 ValueName.clear(); 6619 break; 6620 } 6621 case bitc::VST_CODE_FNENTRY: { 6622 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 6623 if (convertToString(Record, 2, ValueName)) 6624 return error("Invalid record"); 6625 unsigned ValueID = Record[0]; 6626 assert(!SourceFileName.empty()); 6627 auto VLI = ValueIdToLinkageMap.find(ValueID); 6628 assert(VLI != ValueIdToLinkageMap.end() && 6629 "No linkage found for VST entry?"); 6630 auto Linkage = VLI->second; 6631 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 6632 ValueName.clear(); 6633 break; 6634 } 6635 case bitc::VST_CODE_COMBINED_ENTRY: { 6636 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 6637 unsigned ValueID = Record[0]; 6638 GlobalValue::GUID RefGUID = Record[1]; 6639 // The "original name", which is the second value of the pair will be 6640 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 6641 ValueIdToValueInfoMap[ValueID] = 6642 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 6643 break; 6644 } 6645 } 6646 } 6647 } 6648 6649 // Parse just the blocks needed for building the index out of the module. 6650 // At the end of this routine the module Index is populated with a map 6651 // from global value id to GlobalValueSummary objects. 6652 Error ModuleSummaryIndexBitcodeReader::parseModule() { 6653 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 6654 return Err; 6655 6656 SmallVector<uint64_t, 64> Record; 6657 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 6658 unsigned ValueId = 0; 6659 6660 // Read the index for this module. 6661 while (true) { 6662 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6663 if (!MaybeEntry) 6664 return MaybeEntry.takeError(); 6665 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6666 6667 switch (Entry.Kind) { 6668 case BitstreamEntry::Error: 6669 return error("Malformed block"); 6670 case BitstreamEntry::EndBlock: 6671 return Error::success(); 6672 6673 case BitstreamEntry::SubBlock: 6674 switch (Entry.ID) { 6675 default: // Skip unknown content. 6676 if (Error Err = Stream.SkipBlock()) 6677 return Err; 6678 break; 6679 case bitc::BLOCKINFO_BLOCK_ID: 6680 // Need to parse these to get abbrev ids (e.g. for VST) 6681 if (Error Err = readBlockInfo()) 6682 return Err; 6683 break; 6684 case bitc::VALUE_SYMTAB_BLOCK_ID: 6685 // Should have been parsed earlier via VSTOffset, unless there 6686 // is no summary section. 6687 assert(((SeenValueSymbolTable && VSTOffset > 0) || 6688 !SeenGlobalValSummary) && 6689 "Expected early VST parse via VSTOffset record"); 6690 if (Error Err = Stream.SkipBlock()) 6691 return Err; 6692 break; 6693 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 6694 case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID: 6695 // Add the module if it is a per-module index (has a source file name). 6696 if (!SourceFileName.empty()) 6697 addThisModule(); 6698 assert(!SeenValueSymbolTable && 6699 "Already read VST when parsing summary block?"); 6700 // We might not have a VST if there were no values in the 6701 // summary. An empty summary block generated when we are 6702 // performing ThinLTO compiles so we don't later invoke 6703 // the regular LTO process on them. 6704 if (VSTOffset > 0) { 6705 if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 6706 return Err; 6707 SeenValueSymbolTable = true; 6708 } 6709 SeenGlobalValSummary = true; 6710 if (Error Err = parseEntireSummary(Entry.ID)) 6711 return Err; 6712 break; 6713 case bitc::MODULE_STRTAB_BLOCK_ID: 6714 if (Error Err = parseModuleStringTable()) 6715 return Err; 6716 break; 6717 } 6718 continue; 6719 6720 case BitstreamEntry::Record: { 6721 Record.clear(); 6722 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 6723 if (!MaybeBitCode) 6724 return MaybeBitCode.takeError(); 6725 switch (MaybeBitCode.get()) { 6726 default: 6727 break; // Default behavior, ignore unknown content. 6728 case bitc::MODULE_CODE_VERSION: { 6729 if (Error Err = parseVersionRecord(Record).takeError()) 6730 return Err; 6731 break; 6732 } 6733 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 6734 case bitc::MODULE_CODE_SOURCE_FILENAME: { 6735 SmallString<128> ValueName; 6736 if (convertToString(Record, 0, ValueName)) 6737 return error("Invalid record"); 6738 SourceFileName = ValueName.c_str(); 6739 break; 6740 } 6741 /// MODULE_CODE_HASH: [5*i32] 6742 case bitc::MODULE_CODE_HASH: { 6743 if (Record.size() != 5) 6744 return error("Invalid hash length " + Twine(Record.size()).str()); 6745 auto &Hash = getThisModule()->second.second; 6746 int Pos = 0; 6747 for (auto &Val : Record) { 6748 assert(!(Val >> 32) && "Unexpected high bits set"); 6749 Hash[Pos++] = Val; 6750 } 6751 break; 6752 } 6753 /// MODULE_CODE_VSTOFFSET: [offset] 6754 case bitc::MODULE_CODE_VSTOFFSET: 6755 if (Record.empty()) 6756 return error("Invalid record"); 6757 // Note that we subtract 1 here because the offset is relative to one 6758 // word before the start of the identification or module block, which 6759 // was historically always the start of the regular bitcode header. 6760 VSTOffset = Record[0] - 1; 6761 break; 6762 // v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...] 6763 // v1 FUNCTION: [type, callingconv, isproto, linkage, ...] 6764 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...] 6765 // v2: [strtab offset, strtab size, v1] 6766 case bitc::MODULE_CODE_GLOBALVAR: 6767 case bitc::MODULE_CODE_FUNCTION: 6768 case bitc::MODULE_CODE_ALIAS: { 6769 StringRef Name; 6770 ArrayRef<uint64_t> GVRecord; 6771 std::tie(Name, GVRecord) = readNameFromStrtab(Record); 6772 if (GVRecord.size() <= 3) 6773 return error("Invalid record"); 6774 uint64_t RawLinkage = GVRecord[3]; 6775 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 6776 if (!UseStrtab) { 6777 ValueIdToLinkageMap[ValueId++] = Linkage; 6778 break; 6779 } 6780 6781 setValueGUID(ValueId++, Name, Linkage, SourceFileName); 6782 break; 6783 } 6784 } 6785 } 6786 continue; 6787 } 6788 } 6789 } 6790 6791 std::vector<ValueInfo> 6792 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) { 6793 std::vector<ValueInfo> Ret; 6794 Ret.reserve(Record.size()); 6795 for (uint64_t RefValueId : Record) 6796 Ret.push_back(getValueInfoFromValueId(RefValueId).first); 6797 return Ret; 6798 } 6799 6800 std::vector<FunctionSummary::EdgeTy> 6801 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record, 6802 bool IsOldProfileFormat, 6803 bool HasProfile, bool HasRelBF) { 6804 std::vector<FunctionSummary::EdgeTy> Ret; 6805 Ret.reserve(Record.size()); 6806 for (unsigned I = 0, E = Record.size(); I != E; ++I) { 6807 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 6808 uint64_t RelBF = 0; 6809 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first; 6810 if (IsOldProfileFormat) { 6811 I += 1; // Skip old callsitecount field 6812 if (HasProfile) 6813 I += 1; // Skip old profilecount field 6814 } else if (HasProfile) 6815 Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]); 6816 else if (HasRelBF) 6817 RelBF = Record[++I]; 6818 Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)}); 6819 } 6820 return Ret; 6821 } 6822 6823 static void 6824 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot, 6825 WholeProgramDevirtResolution &Wpd) { 6826 uint64_t ArgNum = Record[Slot++]; 6827 WholeProgramDevirtResolution::ByArg &B = 6828 Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}]; 6829 Slot += ArgNum; 6830 6831 B.TheKind = 6832 static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]); 6833 B.Info = Record[Slot++]; 6834 B.Byte = Record[Slot++]; 6835 B.Bit = Record[Slot++]; 6836 } 6837 6838 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record, 6839 StringRef Strtab, size_t &Slot, 6840 TypeIdSummary &TypeId) { 6841 uint64_t Id = Record[Slot++]; 6842 WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id]; 6843 6844 Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]); 6845 Wpd.SingleImplName = {Strtab.data() + Record[Slot], 6846 static_cast<size_t>(Record[Slot + 1])}; 6847 Slot += 2; 6848 6849 uint64_t ResByArgNum = Record[Slot++]; 6850 for (uint64_t I = 0; I != ResByArgNum; ++I) 6851 parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd); 6852 } 6853 6854 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record, 6855 StringRef Strtab, 6856 ModuleSummaryIndex &TheIndex) { 6857 size_t Slot = 0; 6858 TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary( 6859 {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])}); 6860 Slot += 2; 6861 6862 TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]); 6863 TypeId.TTRes.SizeM1BitWidth = Record[Slot++]; 6864 TypeId.TTRes.AlignLog2 = Record[Slot++]; 6865 TypeId.TTRes.SizeM1 = Record[Slot++]; 6866 TypeId.TTRes.BitMask = Record[Slot++]; 6867 TypeId.TTRes.InlineBits = Record[Slot++]; 6868 6869 while (Slot < Record.size()) 6870 parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId); 6871 } 6872 6873 std::vector<FunctionSummary::ParamAccess> 6874 ModuleSummaryIndexBitcodeReader::parseParamAccesses(ArrayRef<uint64_t> Record) { 6875 auto ReadRange = [&]() { 6876 APInt Lower(FunctionSummary::ParamAccess::RangeWidth, 6877 BitcodeReader::decodeSignRotatedValue(Record.front())); 6878 Record = Record.drop_front(); 6879 APInt Upper(FunctionSummary::ParamAccess::RangeWidth, 6880 BitcodeReader::decodeSignRotatedValue(Record.front())); 6881 Record = Record.drop_front(); 6882 ConstantRange Range{Lower, Upper}; 6883 assert(!Range.isFullSet()); 6884 assert(!Range.isUpperSignWrapped()); 6885 return Range; 6886 }; 6887 6888 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; 6889 while (!Record.empty()) { 6890 PendingParamAccesses.emplace_back(); 6891 FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back(); 6892 ParamAccess.ParamNo = Record.front(); 6893 Record = Record.drop_front(); 6894 ParamAccess.Use = ReadRange(); 6895 ParamAccess.Calls.resize(Record.front()); 6896 Record = Record.drop_front(); 6897 for (auto &Call : ParamAccess.Calls) { 6898 Call.ParamNo = Record.front(); 6899 Record = Record.drop_front(); 6900 Call.Callee = getValueInfoFromValueId(Record.front()).first; 6901 Record = Record.drop_front(); 6902 Call.Offsets = ReadRange(); 6903 } 6904 } 6905 return PendingParamAccesses; 6906 } 6907 6908 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo( 6909 ArrayRef<uint64_t> Record, size_t &Slot, 6910 TypeIdCompatibleVtableInfo &TypeId) { 6911 uint64_t Offset = Record[Slot++]; 6912 ValueInfo Callee = getValueInfoFromValueId(Record[Slot++]).first; 6913 TypeId.push_back({Offset, Callee}); 6914 } 6915 6916 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord( 6917 ArrayRef<uint64_t> Record) { 6918 size_t Slot = 0; 6919 TypeIdCompatibleVtableInfo &TypeId = 6920 TheIndex.getOrInsertTypeIdCompatibleVtableSummary( 6921 {Strtab.data() + Record[Slot], 6922 static_cast<size_t>(Record[Slot + 1])}); 6923 Slot += 2; 6924 6925 while (Slot < Record.size()) 6926 parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId); 6927 } 6928 6929 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt, 6930 unsigned WOCnt) { 6931 // Readonly and writeonly refs are in the end of the refs list. 6932 assert(ROCnt + WOCnt <= Refs.size()); 6933 unsigned FirstWORef = Refs.size() - WOCnt; 6934 unsigned RefNo = FirstWORef - ROCnt; 6935 for (; RefNo < FirstWORef; ++RefNo) 6936 Refs[RefNo].setReadOnly(); 6937 for (; RefNo < Refs.size(); ++RefNo) 6938 Refs[RefNo].setWriteOnly(); 6939 } 6940 6941 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 6942 // objects in the index. 6943 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) { 6944 if (Error Err = Stream.EnterSubBlock(ID)) 6945 return Err; 6946 SmallVector<uint64_t, 64> Record; 6947 6948 // Parse version 6949 { 6950 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6951 if (!MaybeEntry) 6952 return MaybeEntry.takeError(); 6953 BitstreamEntry Entry = MaybeEntry.get(); 6954 6955 if (Entry.Kind != BitstreamEntry::Record) 6956 return error("Invalid Summary Block: record for version expected"); 6957 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 6958 if (!MaybeRecord) 6959 return MaybeRecord.takeError(); 6960 if (MaybeRecord.get() != bitc::FS_VERSION) 6961 return error("Invalid Summary Block: version expected"); 6962 } 6963 const uint64_t Version = Record[0]; 6964 const bool IsOldProfileFormat = Version == 1; 6965 if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion) 6966 return error("Invalid summary version " + Twine(Version) + 6967 ". Version should be in the range [1-" + 6968 Twine(ModuleSummaryIndex::BitcodeSummaryVersion) + 6969 "]."); 6970 Record.clear(); 6971 6972 // Keep around the last seen summary to be used when we see an optional 6973 // "OriginalName" attachement. 6974 GlobalValueSummary *LastSeenSummary = nullptr; 6975 GlobalValue::GUID LastSeenGUID = 0; 6976 6977 // We can expect to see any number of type ID information records before 6978 // each function summary records; these variables store the information 6979 // collected so far so that it can be used to create the summary object. 6980 std::vector<GlobalValue::GUID> PendingTypeTests; 6981 std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls, 6982 PendingTypeCheckedLoadVCalls; 6983 std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls, 6984 PendingTypeCheckedLoadConstVCalls; 6985 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; 6986 6987 while (true) { 6988 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6989 if (!MaybeEntry) 6990 return MaybeEntry.takeError(); 6991 BitstreamEntry Entry = MaybeEntry.get(); 6992 6993 switch (Entry.Kind) { 6994 case BitstreamEntry::SubBlock: // Handled for us already. 6995 case BitstreamEntry::Error: 6996 return error("Malformed block"); 6997 case BitstreamEntry::EndBlock: 6998 return Error::success(); 6999 case BitstreamEntry::Record: 7000 // The interesting case. 7001 break; 7002 } 7003 7004 // Read a record. The record format depends on whether this 7005 // is a per-module index or a combined index file. In the per-module 7006 // case the records contain the associated value's ID for correlation 7007 // with VST entries. In the combined index the correlation is done 7008 // via the bitcode offset of the summary records (which were saved 7009 // in the combined index VST entries). The records also contain 7010 // information used for ThinLTO renaming and importing. 7011 Record.clear(); 7012 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 7013 if (!MaybeBitCode) 7014 return MaybeBitCode.takeError(); 7015 switch (unsigned BitCode = MaybeBitCode.get()) { 7016 default: // Default behavior: ignore. 7017 break; 7018 case bitc::FS_FLAGS: { // [flags] 7019 TheIndex.setFlags(Record[0]); 7020 break; 7021 } 7022 case bitc::FS_VALUE_GUID: { // [valueid, refguid] 7023 uint64_t ValueID = Record[0]; 7024 GlobalValue::GUID RefGUID = Record[1]; 7025 ValueIdToValueInfoMap[ValueID] = 7026 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 7027 break; 7028 } 7029 // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs, 7030 // numrefs x valueid, n x (valueid)] 7031 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs, 7032 // numrefs x valueid, 7033 // n x (valueid, hotness)] 7034 // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs, 7035 // numrefs x valueid, 7036 // n x (valueid, relblockfreq)] 7037 case bitc::FS_PERMODULE: 7038 case bitc::FS_PERMODULE_RELBF: 7039 case bitc::FS_PERMODULE_PROFILE: { 7040 unsigned ValueID = Record[0]; 7041 uint64_t RawFlags = Record[1]; 7042 unsigned InstCount = Record[2]; 7043 uint64_t RawFunFlags = 0; 7044 unsigned NumRefs = Record[3]; 7045 unsigned NumRORefs = 0, NumWORefs = 0; 7046 int RefListStartIndex = 4; 7047 if (Version >= 4) { 7048 RawFunFlags = Record[3]; 7049 NumRefs = Record[4]; 7050 RefListStartIndex = 5; 7051 if (Version >= 5) { 7052 NumRORefs = Record[5]; 7053 RefListStartIndex = 6; 7054 if (Version >= 7) { 7055 NumWORefs = Record[6]; 7056 RefListStartIndex = 7; 7057 } 7058 } 7059 } 7060 7061 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7062 // The module path string ref set in the summary must be owned by the 7063 // index's module string table. Since we don't have a module path 7064 // string table section in the per-module index, we create a single 7065 // module path string table entry with an empty (0) ID to take 7066 // ownership. 7067 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 7068 assert(Record.size() >= RefListStartIndex + NumRefs && 7069 "Record size inconsistent with number of references"); 7070 std::vector<ValueInfo> Refs = makeRefList( 7071 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 7072 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 7073 bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF); 7074 std::vector<FunctionSummary::EdgeTy> Calls = makeCallList( 7075 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 7076 IsOldProfileFormat, HasProfile, HasRelBF); 7077 setSpecialRefs(Refs, NumRORefs, NumWORefs); 7078 auto FS = std::make_unique<FunctionSummary>( 7079 Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0, 7080 std::move(Refs), std::move(Calls), std::move(PendingTypeTests), 7081 std::move(PendingTypeTestAssumeVCalls), 7082 std::move(PendingTypeCheckedLoadVCalls), 7083 std::move(PendingTypeTestAssumeConstVCalls), 7084 std::move(PendingTypeCheckedLoadConstVCalls), 7085 std::move(PendingParamAccesses)); 7086 auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID); 7087 FS->setModulePath(getThisModule()->first()); 7088 FS->setOriginalName(VIAndOriginalGUID.second); 7089 TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS)); 7090 break; 7091 } 7092 // FS_ALIAS: [valueid, flags, valueid] 7093 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 7094 // they expect all aliasee summaries to be available. 7095 case bitc::FS_ALIAS: { 7096 unsigned ValueID = Record[0]; 7097 uint64_t RawFlags = Record[1]; 7098 unsigned AliaseeID = Record[2]; 7099 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7100 auto AS = std::make_unique<AliasSummary>(Flags); 7101 // The module path string ref set in the summary must be owned by the 7102 // index's module string table. Since we don't have a module path 7103 // string table section in the per-module index, we create a single 7104 // module path string table entry with an empty (0) ID to take 7105 // ownership. 7106 AS->setModulePath(getThisModule()->first()); 7107 7108 auto AliaseeVI = getValueInfoFromValueId(AliaseeID).first; 7109 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath); 7110 if (!AliaseeInModule) 7111 return error("Alias expects aliasee summary to be parsed"); 7112 AS->setAliasee(AliaseeVI, AliaseeInModule); 7113 7114 auto GUID = getValueInfoFromValueId(ValueID); 7115 AS->setOriginalName(GUID.second); 7116 TheIndex.addGlobalValueSummary(GUID.first, std::move(AS)); 7117 break; 7118 } 7119 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid] 7120 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 7121 unsigned ValueID = Record[0]; 7122 uint64_t RawFlags = Record[1]; 7123 unsigned RefArrayStart = 2; 7124 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 7125 /* WriteOnly */ false, 7126 /* Constant */ false, 7127 GlobalObject::VCallVisibilityPublic); 7128 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7129 if (Version >= 5) { 7130 GVF = getDecodedGVarFlags(Record[2]); 7131 RefArrayStart = 3; 7132 } 7133 std::vector<ValueInfo> Refs = 7134 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 7135 auto FS = 7136 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 7137 FS->setModulePath(getThisModule()->first()); 7138 auto GUID = getValueInfoFromValueId(ValueID); 7139 FS->setOriginalName(GUID.second); 7140 TheIndex.addGlobalValueSummary(GUID.first, std::move(FS)); 7141 break; 7142 } 7143 // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, 7144 // numrefs, numrefs x valueid, 7145 // n x (valueid, offset)] 7146 case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: { 7147 unsigned ValueID = Record[0]; 7148 uint64_t RawFlags = Record[1]; 7149 GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]); 7150 unsigned NumRefs = Record[3]; 7151 unsigned RefListStartIndex = 4; 7152 unsigned VTableListStartIndex = RefListStartIndex + NumRefs; 7153 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7154 std::vector<ValueInfo> Refs = makeRefList( 7155 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 7156 VTableFuncList VTableFuncs; 7157 for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) { 7158 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first; 7159 uint64_t Offset = Record[++I]; 7160 VTableFuncs.push_back({Callee, Offset}); 7161 } 7162 auto VS = 7163 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 7164 VS->setModulePath(getThisModule()->first()); 7165 VS->setVTableFuncs(VTableFuncs); 7166 auto GUID = getValueInfoFromValueId(ValueID); 7167 VS->setOriginalName(GUID.second); 7168 TheIndex.addGlobalValueSummary(GUID.first, std::move(VS)); 7169 break; 7170 } 7171 // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs, 7172 // numrefs x valueid, n x (valueid)] 7173 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs, 7174 // numrefs x valueid, n x (valueid, hotness)] 7175 case bitc::FS_COMBINED: 7176 case bitc::FS_COMBINED_PROFILE: { 7177 unsigned ValueID = Record[0]; 7178 uint64_t ModuleId = Record[1]; 7179 uint64_t RawFlags = Record[2]; 7180 unsigned InstCount = Record[3]; 7181 uint64_t RawFunFlags = 0; 7182 uint64_t EntryCount = 0; 7183 unsigned NumRefs = Record[4]; 7184 unsigned NumRORefs = 0, NumWORefs = 0; 7185 int RefListStartIndex = 5; 7186 7187 if (Version >= 4) { 7188 RawFunFlags = Record[4]; 7189 RefListStartIndex = 6; 7190 size_t NumRefsIndex = 5; 7191 if (Version >= 5) { 7192 unsigned NumRORefsOffset = 1; 7193 RefListStartIndex = 7; 7194 if (Version >= 6) { 7195 NumRefsIndex = 6; 7196 EntryCount = Record[5]; 7197 RefListStartIndex = 8; 7198 if (Version >= 7) { 7199 RefListStartIndex = 9; 7200 NumWORefs = Record[8]; 7201 NumRORefsOffset = 2; 7202 } 7203 } 7204 NumRORefs = Record[RefListStartIndex - NumRORefsOffset]; 7205 } 7206 NumRefs = Record[NumRefsIndex]; 7207 } 7208 7209 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7210 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 7211 assert(Record.size() >= RefListStartIndex + NumRefs && 7212 "Record size inconsistent with number of references"); 7213 std::vector<ValueInfo> Refs = makeRefList( 7214 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 7215 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 7216 std::vector<FunctionSummary::EdgeTy> Edges = makeCallList( 7217 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 7218 IsOldProfileFormat, HasProfile, false); 7219 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 7220 setSpecialRefs(Refs, NumRORefs, NumWORefs); 7221 auto FS = std::make_unique<FunctionSummary>( 7222 Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount, 7223 std::move(Refs), std::move(Edges), std::move(PendingTypeTests), 7224 std::move(PendingTypeTestAssumeVCalls), 7225 std::move(PendingTypeCheckedLoadVCalls), 7226 std::move(PendingTypeTestAssumeConstVCalls), 7227 std::move(PendingTypeCheckedLoadConstVCalls), 7228 std::move(PendingParamAccesses)); 7229 LastSeenSummary = FS.get(); 7230 LastSeenGUID = VI.getGUID(); 7231 FS->setModulePath(ModuleIdMap[ModuleId]); 7232 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 7233 break; 7234 } 7235 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 7236 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 7237 // they expect all aliasee summaries to be available. 7238 case bitc::FS_COMBINED_ALIAS: { 7239 unsigned ValueID = Record[0]; 7240 uint64_t ModuleId = Record[1]; 7241 uint64_t RawFlags = Record[2]; 7242 unsigned AliaseeValueId = Record[3]; 7243 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7244 auto AS = std::make_unique<AliasSummary>(Flags); 7245 LastSeenSummary = AS.get(); 7246 AS->setModulePath(ModuleIdMap[ModuleId]); 7247 7248 auto AliaseeVI = getValueInfoFromValueId(AliaseeValueId).first; 7249 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath()); 7250 AS->setAliasee(AliaseeVI, AliaseeInModule); 7251 7252 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 7253 LastSeenGUID = VI.getGUID(); 7254 TheIndex.addGlobalValueSummary(VI, std::move(AS)); 7255 break; 7256 } 7257 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 7258 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 7259 unsigned ValueID = Record[0]; 7260 uint64_t ModuleId = Record[1]; 7261 uint64_t RawFlags = Record[2]; 7262 unsigned RefArrayStart = 3; 7263 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 7264 /* WriteOnly */ false, 7265 /* Constant */ false, 7266 GlobalObject::VCallVisibilityPublic); 7267 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7268 if (Version >= 5) { 7269 GVF = getDecodedGVarFlags(Record[3]); 7270 RefArrayStart = 4; 7271 } 7272 std::vector<ValueInfo> Refs = 7273 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 7274 auto FS = 7275 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 7276 LastSeenSummary = FS.get(); 7277 FS->setModulePath(ModuleIdMap[ModuleId]); 7278 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 7279 LastSeenGUID = VI.getGUID(); 7280 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 7281 break; 7282 } 7283 // FS_COMBINED_ORIGINAL_NAME: [original_name] 7284 case bitc::FS_COMBINED_ORIGINAL_NAME: { 7285 uint64_t OriginalName = Record[0]; 7286 if (!LastSeenSummary) 7287 return error("Name attachment that does not follow a combined record"); 7288 LastSeenSummary->setOriginalName(OriginalName); 7289 TheIndex.addOriginalName(LastSeenGUID, OriginalName); 7290 // Reset the LastSeenSummary 7291 LastSeenSummary = nullptr; 7292 LastSeenGUID = 0; 7293 break; 7294 } 7295 case bitc::FS_TYPE_TESTS: 7296 assert(PendingTypeTests.empty()); 7297 llvm::append_range(PendingTypeTests, Record); 7298 break; 7299 7300 case bitc::FS_TYPE_TEST_ASSUME_VCALLS: 7301 assert(PendingTypeTestAssumeVCalls.empty()); 7302 for (unsigned I = 0; I != Record.size(); I += 2) 7303 PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]}); 7304 break; 7305 7306 case bitc::FS_TYPE_CHECKED_LOAD_VCALLS: 7307 assert(PendingTypeCheckedLoadVCalls.empty()); 7308 for (unsigned I = 0; I != Record.size(); I += 2) 7309 PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]}); 7310 break; 7311 7312 case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL: 7313 PendingTypeTestAssumeConstVCalls.push_back( 7314 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 7315 break; 7316 7317 case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL: 7318 PendingTypeCheckedLoadConstVCalls.push_back( 7319 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 7320 break; 7321 7322 case bitc::FS_CFI_FUNCTION_DEFS: { 7323 std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs(); 7324 for (unsigned I = 0; I != Record.size(); I += 2) 7325 CfiFunctionDefs.insert( 7326 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 7327 break; 7328 } 7329 7330 case bitc::FS_CFI_FUNCTION_DECLS: { 7331 std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls(); 7332 for (unsigned I = 0; I != Record.size(); I += 2) 7333 CfiFunctionDecls.insert( 7334 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 7335 break; 7336 } 7337 7338 case bitc::FS_TYPE_ID: 7339 parseTypeIdSummaryRecord(Record, Strtab, TheIndex); 7340 break; 7341 7342 case bitc::FS_TYPE_ID_METADATA: 7343 parseTypeIdCompatibleVtableSummaryRecord(Record); 7344 break; 7345 7346 case bitc::FS_BLOCK_COUNT: 7347 TheIndex.addBlockCount(Record[0]); 7348 break; 7349 7350 case bitc::FS_PARAM_ACCESS: { 7351 PendingParamAccesses = parseParamAccesses(Record); 7352 break; 7353 } 7354 } 7355 } 7356 llvm_unreachable("Exit infinite loop"); 7357 } 7358 7359 // Parse the module string table block into the Index. 7360 // This populates the ModulePathStringTable map in the index. 7361 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 7362 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 7363 return Err; 7364 7365 SmallVector<uint64_t, 64> Record; 7366 7367 SmallString<128> ModulePath; 7368 ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr; 7369 7370 while (true) { 7371 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 7372 if (!MaybeEntry) 7373 return MaybeEntry.takeError(); 7374 BitstreamEntry Entry = MaybeEntry.get(); 7375 7376 switch (Entry.Kind) { 7377 case BitstreamEntry::SubBlock: // Handled for us already. 7378 case BitstreamEntry::Error: 7379 return error("Malformed block"); 7380 case BitstreamEntry::EndBlock: 7381 return Error::success(); 7382 case BitstreamEntry::Record: 7383 // The interesting case. 7384 break; 7385 } 7386 7387 Record.clear(); 7388 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 7389 if (!MaybeRecord) 7390 return MaybeRecord.takeError(); 7391 switch (MaybeRecord.get()) { 7392 default: // Default behavior: ignore. 7393 break; 7394 case bitc::MST_CODE_ENTRY: { 7395 // MST_ENTRY: [modid, namechar x N] 7396 uint64_t ModuleId = Record[0]; 7397 7398 if (convertToString(Record, 1, ModulePath)) 7399 return error("Invalid record"); 7400 7401 LastSeenModule = TheIndex.addModule(ModulePath, ModuleId); 7402 ModuleIdMap[ModuleId] = LastSeenModule->first(); 7403 7404 ModulePath.clear(); 7405 break; 7406 } 7407 /// MST_CODE_HASH: [5*i32] 7408 case bitc::MST_CODE_HASH: { 7409 if (Record.size() != 5) 7410 return error("Invalid hash length " + Twine(Record.size()).str()); 7411 if (!LastSeenModule) 7412 return error("Invalid hash that does not follow a module path"); 7413 int Pos = 0; 7414 for (auto &Val : Record) { 7415 assert(!(Val >> 32) && "Unexpected high bits set"); 7416 LastSeenModule->second.second[Pos++] = Val; 7417 } 7418 // Reset LastSeenModule to avoid overriding the hash unexpectedly. 7419 LastSeenModule = nullptr; 7420 break; 7421 } 7422 } 7423 } 7424 llvm_unreachable("Exit infinite loop"); 7425 } 7426 7427 namespace { 7428 7429 // FIXME: This class is only here to support the transition to llvm::Error. It 7430 // will be removed once this transition is complete. Clients should prefer to 7431 // deal with the Error value directly, rather than converting to error_code. 7432 class BitcodeErrorCategoryType : public std::error_category { 7433 const char *name() const noexcept override { 7434 return "llvm.bitcode"; 7435 } 7436 7437 std::string message(int IE) const override { 7438 BitcodeError E = static_cast<BitcodeError>(IE); 7439 switch (E) { 7440 case BitcodeError::CorruptedBitcode: 7441 return "Corrupted bitcode"; 7442 } 7443 llvm_unreachable("Unknown error type!"); 7444 } 7445 }; 7446 7447 } // end anonymous namespace 7448 7449 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 7450 7451 const std::error_category &llvm::BitcodeErrorCategory() { 7452 return *ErrorCategory; 7453 } 7454 7455 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream, 7456 unsigned Block, unsigned RecordID) { 7457 if (Error Err = Stream.EnterSubBlock(Block)) 7458 return std::move(Err); 7459 7460 StringRef Strtab; 7461 while (true) { 7462 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 7463 if (!MaybeEntry) 7464 return MaybeEntry.takeError(); 7465 llvm::BitstreamEntry Entry = MaybeEntry.get(); 7466 7467 switch (Entry.Kind) { 7468 case BitstreamEntry::EndBlock: 7469 return Strtab; 7470 7471 case BitstreamEntry::Error: 7472 return error("Malformed block"); 7473 7474 case BitstreamEntry::SubBlock: 7475 if (Error Err = Stream.SkipBlock()) 7476 return std::move(Err); 7477 break; 7478 7479 case BitstreamEntry::Record: 7480 StringRef Blob; 7481 SmallVector<uint64_t, 1> Record; 7482 Expected<unsigned> MaybeRecord = 7483 Stream.readRecord(Entry.ID, Record, &Blob); 7484 if (!MaybeRecord) 7485 return MaybeRecord.takeError(); 7486 if (MaybeRecord.get() == RecordID) 7487 Strtab = Blob; 7488 break; 7489 } 7490 } 7491 } 7492 7493 //===----------------------------------------------------------------------===// 7494 // External interface 7495 //===----------------------------------------------------------------------===// 7496 7497 Expected<std::vector<BitcodeModule>> 7498 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) { 7499 auto FOrErr = getBitcodeFileContents(Buffer); 7500 if (!FOrErr) 7501 return FOrErr.takeError(); 7502 return std::move(FOrErr->Mods); 7503 } 7504 7505 Expected<BitcodeFileContents> 7506 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) { 7507 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 7508 if (!StreamOrErr) 7509 return StreamOrErr.takeError(); 7510 BitstreamCursor &Stream = *StreamOrErr; 7511 7512 BitcodeFileContents F; 7513 while (true) { 7514 uint64_t BCBegin = Stream.getCurrentByteNo(); 7515 7516 // We may be consuming bitcode from a client that leaves garbage at the end 7517 // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to 7518 // the end that there cannot possibly be another module, stop looking. 7519 if (BCBegin + 8 >= Stream.getBitcodeBytes().size()) 7520 return F; 7521 7522 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 7523 if (!MaybeEntry) 7524 return MaybeEntry.takeError(); 7525 llvm::BitstreamEntry Entry = MaybeEntry.get(); 7526 7527 switch (Entry.Kind) { 7528 case BitstreamEntry::EndBlock: 7529 case BitstreamEntry::Error: 7530 return error("Malformed block"); 7531 7532 case BitstreamEntry::SubBlock: { 7533 uint64_t IdentificationBit = -1ull; 7534 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 7535 IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8; 7536 if (Error Err = Stream.SkipBlock()) 7537 return std::move(Err); 7538 7539 { 7540 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 7541 if (!MaybeEntry) 7542 return MaybeEntry.takeError(); 7543 Entry = MaybeEntry.get(); 7544 } 7545 7546 if (Entry.Kind != BitstreamEntry::SubBlock || 7547 Entry.ID != bitc::MODULE_BLOCK_ID) 7548 return error("Malformed block"); 7549 } 7550 7551 if (Entry.ID == bitc::MODULE_BLOCK_ID) { 7552 uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8; 7553 if (Error Err = Stream.SkipBlock()) 7554 return std::move(Err); 7555 7556 F.Mods.push_back({Stream.getBitcodeBytes().slice( 7557 BCBegin, Stream.getCurrentByteNo() - BCBegin), 7558 Buffer.getBufferIdentifier(), IdentificationBit, 7559 ModuleBit}); 7560 continue; 7561 } 7562 7563 if (Entry.ID == bitc::STRTAB_BLOCK_ID) { 7564 Expected<StringRef> Strtab = 7565 readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB); 7566 if (!Strtab) 7567 return Strtab.takeError(); 7568 // This string table is used by every preceding bitcode module that does 7569 // not have its own string table. A bitcode file may have multiple 7570 // string tables if it was created by binary concatenation, for example 7571 // with "llvm-cat -b". 7572 for (BitcodeModule &I : llvm::reverse(F.Mods)) { 7573 if (!I.Strtab.empty()) 7574 break; 7575 I.Strtab = *Strtab; 7576 } 7577 // Similarly, the string table is used by every preceding symbol table; 7578 // normally there will be just one unless the bitcode file was created 7579 // by binary concatenation. 7580 if (!F.Symtab.empty() && F.StrtabForSymtab.empty()) 7581 F.StrtabForSymtab = *Strtab; 7582 continue; 7583 } 7584 7585 if (Entry.ID == bitc::SYMTAB_BLOCK_ID) { 7586 Expected<StringRef> SymtabOrErr = 7587 readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB); 7588 if (!SymtabOrErr) 7589 return SymtabOrErr.takeError(); 7590 7591 // We can expect the bitcode file to have multiple symbol tables if it 7592 // was created by binary concatenation. In that case we silently 7593 // ignore any subsequent symbol tables, which is fine because this is a 7594 // low level function. The client is expected to notice that the number 7595 // of modules in the symbol table does not match the number of modules 7596 // in the input file and regenerate the symbol table. 7597 if (F.Symtab.empty()) 7598 F.Symtab = *SymtabOrErr; 7599 continue; 7600 } 7601 7602 if (Error Err = Stream.SkipBlock()) 7603 return std::move(Err); 7604 continue; 7605 } 7606 case BitstreamEntry::Record: 7607 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 7608 return std::move(E); 7609 continue; 7610 } 7611 } 7612 } 7613 7614 /// Get a lazy one-at-time loading module from bitcode. 7615 /// 7616 /// This isn't always used in a lazy context. In particular, it's also used by 7617 /// \a parseModule(). If this is truly lazy, then we need to eagerly pull 7618 /// in forward-referenced functions from block address references. 7619 /// 7620 /// \param[in] MaterializeAll Set to \c true if we should materialize 7621 /// everything. 7622 Expected<std::unique_ptr<Module>> 7623 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll, 7624 bool ShouldLazyLoadMetadata, bool IsImporting, 7625 DataLayoutCallbackTy DataLayoutCallback) { 7626 BitstreamCursor Stream(Buffer); 7627 7628 std::string ProducerIdentification; 7629 if (IdentificationBit != -1ull) { 7630 if (Error JumpFailed = Stream.JumpToBit(IdentificationBit)) 7631 return std::move(JumpFailed); 7632 if (Error E = 7633 readIdentificationBlock(Stream).moveInto(ProducerIdentification)) 7634 return std::move(E); 7635 } 7636 7637 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 7638 return std::move(JumpFailed); 7639 auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification, 7640 Context); 7641 7642 std::unique_ptr<Module> M = 7643 std::make_unique<Module>(ModuleIdentifier, Context); 7644 M->setMaterializer(R); 7645 7646 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 7647 if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, 7648 IsImporting, DataLayoutCallback)) 7649 return std::move(Err); 7650 7651 if (MaterializeAll) { 7652 // Read in the entire module, and destroy the BitcodeReader. 7653 if (Error Err = M->materializeAll()) 7654 return std::move(Err); 7655 } else { 7656 // Resolve forward references from blockaddresses. 7657 if (Error Err = R->materializeForwardReferencedFunctions()) 7658 return std::move(Err); 7659 } 7660 return std::move(M); 7661 } 7662 7663 Expected<std::unique_ptr<Module>> 7664 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata, 7665 bool IsImporting) { 7666 return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting, 7667 [](StringRef) { return None; }); 7668 } 7669 7670 // Parse the specified bitcode buffer and merge the index into CombinedIndex. 7671 // We don't use ModuleIdentifier here because the client may need to control the 7672 // module path used in the combined summary (e.g. when reading summaries for 7673 // regular LTO modules). 7674 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex, 7675 StringRef ModulePath, uint64_t ModuleId) { 7676 BitstreamCursor Stream(Buffer); 7677 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 7678 return JumpFailed; 7679 7680 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex, 7681 ModulePath, ModuleId); 7682 return R.parseModule(); 7683 } 7684 7685 // Parse the specified bitcode buffer, returning the function info index. 7686 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() { 7687 BitstreamCursor Stream(Buffer); 7688 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 7689 return std::move(JumpFailed); 7690 7691 auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false); 7692 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index, 7693 ModuleIdentifier, 0); 7694 7695 if (Error Err = R.parseModule()) 7696 return std::move(Err); 7697 7698 return std::move(Index); 7699 } 7700 7701 static Expected<bool> getEnableSplitLTOUnitFlag(BitstreamCursor &Stream, 7702 unsigned ID) { 7703 if (Error Err = Stream.EnterSubBlock(ID)) 7704 return std::move(Err); 7705 SmallVector<uint64_t, 64> Record; 7706 7707 while (true) { 7708 BitstreamEntry Entry; 7709 if (Error E = Stream.advanceSkippingSubblocks().moveInto(Entry)) 7710 return std::move(E); 7711 7712 switch (Entry.Kind) { 7713 case BitstreamEntry::SubBlock: // Handled for us already. 7714 case BitstreamEntry::Error: 7715 return error("Malformed block"); 7716 case BitstreamEntry::EndBlock: 7717 // If no flags record found, conservatively return true to mimic 7718 // behavior before this flag was added. 7719 return true; 7720 case BitstreamEntry::Record: 7721 // The interesting case. 7722 break; 7723 } 7724 7725 // Look for the FS_FLAGS record. 7726 Record.clear(); 7727 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 7728 if (!MaybeBitCode) 7729 return MaybeBitCode.takeError(); 7730 switch (MaybeBitCode.get()) { 7731 default: // Default behavior: ignore. 7732 break; 7733 case bitc::FS_FLAGS: { // [flags] 7734 uint64_t Flags = Record[0]; 7735 // Scan flags. 7736 assert(Flags <= 0x7f && "Unexpected bits in flag"); 7737 7738 return Flags & 0x8; 7739 } 7740 } 7741 } 7742 llvm_unreachable("Exit infinite loop"); 7743 } 7744 7745 // Check if the given bitcode buffer contains a global value summary block. 7746 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() { 7747 BitstreamCursor Stream(Buffer); 7748 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 7749 return std::move(JumpFailed); 7750 7751 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 7752 return std::move(Err); 7753 7754 while (true) { 7755 llvm::BitstreamEntry Entry; 7756 if (Error E = Stream.advance().moveInto(Entry)) 7757 return std::move(E); 7758 7759 switch (Entry.Kind) { 7760 case BitstreamEntry::Error: 7761 return error("Malformed block"); 7762 case BitstreamEntry::EndBlock: 7763 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false, 7764 /*EnableSplitLTOUnit=*/false}; 7765 7766 case BitstreamEntry::SubBlock: 7767 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) { 7768 Expected<bool> EnableSplitLTOUnit = 7769 getEnableSplitLTOUnitFlag(Stream, Entry.ID); 7770 if (!EnableSplitLTOUnit) 7771 return EnableSplitLTOUnit.takeError(); 7772 return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true, 7773 *EnableSplitLTOUnit}; 7774 } 7775 7776 if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) { 7777 Expected<bool> EnableSplitLTOUnit = 7778 getEnableSplitLTOUnitFlag(Stream, Entry.ID); 7779 if (!EnableSplitLTOUnit) 7780 return EnableSplitLTOUnit.takeError(); 7781 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true, 7782 *EnableSplitLTOUnit}; 7783 } 7784 7785 // Ignore other sub-blocks. 7786 if (Error Err = Stream.SkipBlock()) 7787 return std::move(Err); 7788 continue; 7789 7790 case BitstreamEntry::Record: 7791 if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID)) 7792 continue; 7793 else 7794 return StreamFailed.takeError(); 7795 } 7796 } 7797 } 7798 7799 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) { 7800 Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer); 7801 if (!MsOrErr) 7802 return MsOrErr.takeError(); 7803 7804 if (MsOrErr->size() != 1) 7805 return error("Expected a single module"); 7806 7807 return (*MsOrErr)[0]; 7808 } 7809 7810 Expected<std::unique_ptr<Module>> 7811 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context, 7812 bool ShouldLazyLoadMetadata, bool IsImporting) { 7813 Expected<BitcodeModule> BM = getSingleModule(Buffer); 7814 if (!BM) 7815 return BM.takeError(); 7816 7817 return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting); 7818 } 7819 7820 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule( 7821 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context, 7822 bool ShouldLazyLoadMetadata, bool IsImporting) { 7823 auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata, 7824 IsImporting); 7825 if (MOrErr) 7826 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer)); 7827 return MOrErr; 7828 } 7829 7830 Expected<std::unique_ptr<Module>> 7831 BitcodeModule::parseModule(LLVMContext &Context, 7832 DataLayoutCallbackTy DataLayoutCallback) { 7833 return getModuleImpl(Context, true, false, false, DataLayoutCallback); 7834 // TODO: Restore the use-lists to the in-memory state when the bitcode was 7835 // written. We must defer until the Module has been fully materialized. 7836 } 7837 7838 Expected<std::unique_ptr<Module>> 7839 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context, 7840 DataLayoutCallbackTy DataLayoutCallback) { 7841 Expected<BitcodeModule> BM = getSingleModule(Buffer); 7842 if (!BM) 7843 return BM.takeError(); 7844 7845 return BM->parseModule(Context, DataLayoutCallback); 7846 } 7847 7848 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) { 7849 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 7850 if (!StreamOrErr) 7851 return StreamOrErr.takeError(); 7852 7853 return readTriple(*StreamOrErr); 7854 } 7855 7856 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) { 7857 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 7858 if (!StreamOrErr) 7859 return StreamOrErr.takeError(); 7860 7861 return hasObjCCategory(*StreamOrErr); 7862 } 7863 7864 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) { 7865 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 7866 if (!StreamOrErr) 7867 return StreamOrErr.takeError(); 7868 7869 return readIdentificationCode(*StreamOrErr); 7870 } 7871 7872 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer, 7873 ModuleSummaryIndex &CombinedIndex, 7874 uint64_t ModuleId) { 7875 Expected<BitcodeModule> BM = getSingleModule(Buffer); 7876 if (!BM) 7877 return BM.takeError(); 7878 7879 return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId); 7880 } 7881 7882 Expected<std::unique_ptr<ModuleSummaryIndex>> 7883 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) { 7884 Expected<BitcodeModule> BM = getSingleModule(Buffer); 7885 if (!BM) 7886 return BM.takeError(); 7887 7888 return BM->getSummary(); 7889 } 7890 7891 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) { 7892 Expected<BitcodeModule> BM = getSingleModule(Buffer); 7893 if (!BM) 7894 return BM.takeError(); 7895 7896 return BM->getLTOInfo(); 7897 } 7898 7899 Expected<std::unique_ptr<ModuleSummaryIndex>> 7900 llvm::getModuleSummaryIndexForFile(StringRef Path, 7901 bool IgnoreEmptyThinLTOIndexFile) { 7902 ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr = 7903 MemoryBuffer::getFileOrSTDIN(Path); 7904 if (!FileOrErr) 7905 return errorCodeToError(FileOrErr.getError()); 7906 if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize()) 7907 return nullptr; 7908 return getModuleSummaryIndex(**FileOrErr); 7909 } 7910