1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Bitcode/BitcodeReader.h" 10 #include "MetadataLoader.h" 11 #include "ValueList.h" 12 #include "llvm/ADT/APFloat.h" 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallString.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/ADT/StringRef.h" 20 #include "llvm/ADT/Twine.h" 21 #include "llvm/Bitcode/BitcodeCommon.h" 22 #include "llvm/Bitcode/LLVMBitCodes.h" 23 #include "llvm/Bitstream/BitstreamReader.h" 24 #include "llvm/Config/llvm-config.h" 25 #include "llvm/IR/Argument.h" 26 #include "llvm/IR/AttributeMask.h" 27 #include "llvm/IR/Attributes.h" 28 #include "llvm/IR/AutoUpgrade.h" 29 #include "llvm/IR/BasicBlock.h" 30 #include "llvm/IR/CallingConv.h" 31 #include "llvm/IR/Comdat.h" 32 #include "llvm/IR/Constant.h" 33 #include "llvm/IR/ConstantRangeList.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/DebugInfo.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GVMaterializer.h" 42 #include "llvm/IR/GetElementPtrTypeIterator.h" 43 #include "llvm/IR/GlobalAlias.h" 44 #include "llvm/IR/GlobalIFunc.h" 45 #include "llvm/IR/GlobalObject.h" 46 #include "llvm/IR/GlobalValue.h" 47 #include "llvm/IR/GlobalVariable.h" 48 #include "llvm/IR/InlineAsm.h" 49 #include "llvm/IR/InstIterator.h" 50 #include "llvm/IR/InstrTypes.h" 51 #include "llvm/IR/Instruction.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/IntrinsicsAArch64.h" 55 #include "llvm/IR/IntrinsicsARM.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/Metadata.h" 58 #include "llvm/IR/Module.h" 59 #include "llvm/IR/ModuleSummaryIndex.h" 60 #include "llvm/IR/Operator.h" 61 #include "llvm/IR/ProfDataUtils.h" 62 #include "llvm/IR/Type.h" 63 #include "llvm/IR/Value.h" 64 #include "llvm/IR/Verifier.h" 65 #include "llvm/Support/AtomicOrdering.h" 66 #include "llvm/Support/Casting.h" 67 #include "llvm/Support/CommandLine.h" 68 #include "llvm/Support/Compiler.h" 69 #include "llvm/Support/Debug.h" 70 #include "llvm/Support/Error.h" 71 #include "llvm/Support/ErrorHandling.h" 72 #include "llvm/Support/ErrorOr.h" 73 #include "llvm/Support/MathExtras.h" 74 #include "llvm/Support/MemoryBuffer.h" 75 #include "llvm/Support/ModRef.h" 76 #include "llvm/Support/raw_ostream.h" 77 #include "llvm/TargetParser/Triple.h" 78 #include <algorithm> 79 #include <cassert> 80 #include <cstddef> 81 #include <cstdint> 82 #include <deque> 83 #include <map> 84 #include <memory> 85 #include <optional> 86 #include <set> 87 #include <string> 88 #include <system_error> 89 #include <tuple> 90 #include <utility> 91 #include <vector> 92 93 using namespace llvm; 94 95 static cl::opt<bool> PrintSummaryGUIDs( 96 "print-summary-global-ids", cl::init(false), cl::Hidden, 97 cl::desc( 98 "Print the global id for each value when reading the module summary")); 99 100 static cl::opt<bool> ExpandConstantExprs( 101 "expand-constant-exprs", cl::Hidden, 102 cl::desc( 103 "Expand constant expressions to instructions for testing purposes")); 104 105 /// Load bitcode directly into RemoveDIs format (use debug records instead 106 /// of debug intrinsics). UNSET is treated as FALSE, so the default action 107 /// is to do nothing. Individual tools can override this to incrementally add 108 /// support for the RemoveDIs format. 109 cl::opt<cl::boolOrDefault> LoadBitcodeIntoNewDbgInfoFormat( 110 "load-bitcode-into-experimental-debuginfo-iterators", cl::Hidden, 111 cl::desc("Load bitcode directly into the new debug info format (regardless " 112 "of input format)")); 113 extern cl::opt<bool> UseNewDbgInfoFormat; 114 extern cl::opt<cl::boolOrDefault> PreserveInputDbgFormat; 115 extern bool WriteNewDbgInfoFormatToBitcode; 116 extern cl::opt<bool> WriteNewDbgInfoFormat; 117 118 namespace { 119 120 enum { 121 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 122 }; 123 124 } // end anonymous namespace 125 126 static Error error(const Twine &Message) { 127 return make_error<StringError>( 128 Message, make_error_code(BitcodeError::CorruptedBitcode)); 129 } 130 131 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) { 132 if (!Stream.canSkipToPos(4)) 133 return createStringError(std::errc::illegal_byte_sequence, 134 "file too small to contain bitcode header"); 135 for (unsigned C : {'B', 'C'}) 136 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) { 137 if (Res.get() != C) 138 return createStringError(std::errc::illegal_byte_sequence, 139 "file doesn't start with bitcode header"); 140 } else 141 return Res.takeError(); 142 for (unsigned C : {0x0, 0xC, 0xE, 0xD}) 143 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) { 144 if (Res.get() != C) 145 return createStringError(std::errc::illegal_byte_sequence, 146 "file doesn't start with bitcode header"); 147 } else 148 return Res.takeError(); 149 return Error::success(); 150 } 151 152 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) { 153 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart(); 154 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize(); 155 156 if (Buffer.getBufferSize() & 3) 157 return error("Invalid bitcode signature"); 158 159 // If we have a wrapper header, parse it and ignore the non-bc file contents. 160 // The magic number is 0x0B17C0DE stored in little endian. 161 if (isBitcodeWrapper(BufPtr, BufEnd)) 162 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 163 return error("Invalid bitcode wrapper header"); 164 165 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd)); 166 if (Error Err = hasInvalidBitcodeHeader(Stream)) 167 return std::move(Err); 168 169 return std::move(Stream); 170 } 171 172 /// Convert a string from a record into an std::string, return true on failure. 173 template <typename StrTy> 174 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 175 StrTy &Result) { 176 if (Idx > Record.size()) 177 return true; 178 179 Result.append(Record.begin() + Idx, Record.end()); 180 return false; 181 } 182 183 // Strip all the TBAA attachment for the module. 184 static void stripTBAA(Module *M) { 185 for (auto &F : *M) { 186 if (F.isMaterializable()) 187 continue; 188 for (auto &I : instructions(F)) 189 I.setMetadata(LLVMContext::MD_tbaa, nullptr); 190 } 191 } 192 193 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the 194 /// "epoch" encoded in the bitcode, and return the producer name if any. 195 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) { 196 if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 197 return std::move(Err); 198 199 // Read all the records. 200 SmallVector<uint64_t, 64> Record; 201 202 std::string ProducerIdentification; 203 204 while (true) { 205 BitstreamEntry Entry; 206 if (Error E = Stream.advance().moveInto(Entry)) 207 return std::move(E); 208 209 switch (Entry.Kind) { 210 default: 211 case BitstreamEntry::Error: 212 return error("Malformed block"); 213 case BitstreamEntry::EndBlock: 214 return ProducerIdentification; 215 case BitstreamEntry::Record: 216 // The interesting case. 217 break; 218 } 219 220 // Read a record. 221 Record.clear(); 222 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 223 if (!MaybeBitCode) 224 return MaybeBitCode.takeError(); 225 switch (MaybeBitCode.get()) { 226 default: // Default behavior: reject 227 return error("Invalid value"); 228 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N] 229 convertToString(Record, 0, ProducerIdentification); 230 break; 231 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 232 unsigned epoch = (unsigned)Record[0]; 233 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 234 return error( 235 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 236 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 237 } 238 } 239 } 240 } 241 } 242 243 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) { 244 // We expect a number of well-defined blocks, though we don't necessarily 245 // need to understand them all. 246 while (true) { 247 if (Stream.AtEndOfStream()) 248 return ""; 249 250 BitstreamEntry Entry; 251 if (Error E = Stream.advance().moveInto(Entry)) 252 return std::move(E); 253 254 switch (Entry.Kind) { 255 case BitstreamEntry::EndBlock: 256 case BitstreamEntry::Error: 257 return error("Malformed block"); 258 259 case BitstreamEntry::SubBlock: 260 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) 261 return readIdentificationBlock(Stream); 262 263 // Ignore other sub-blocks. 264 if (Error Err = Stream.SkipBlock()) 265 return std::move(Err); 266 continue; 267 case BitstreamEntry::Record: 268 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 269 return std::move(E); 270 continue; 271 } 272 } 273 } 274 275 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) { 276 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 277 return std::move(Err); 278 279 SmallVector<uint64_t, 64> Record; 280 // Read all the records for this module. 281 282 while (true) { 283 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 284 if (!MaybeEntry) 285 return MaybeEntry.takeError(); 286 BitstreamEntry Entry = MaybeEntry.get(); 287 288 switch (Entry.Kind) { 289 case BitstreamEntry::SubBlock: // Handled for us already. 290 case BitstreamEntry::Error: 291 return error("Malformed block"); 292 case BitstreamEntry::EndBlock: 293 return false; 294 case BitstreamEntry::Record: 295 // The interesting case. 296 break; 297 } 298 299 // Read a record. 300 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 301 if (!MaybeRecord) 302 return MaybeRecord.takeError(); 303 switch (MaybeRecord.get()) { 304 default: 305 break; // Default behavior, ignore unknown content. 306 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 307 std::string S; 308 if (convertToString(Record, 0, S)) 309 return error("Invalid section name record"); 310 // Check for the i386 and other (x86_64, ARM) conventions 311 if (S.find("__DATA,__objc_catlist") != std::string::npos || 312 S.find("__OBJC,__category") != std::string::npos || 313 S.find("__TEXT,__swift") != std::string::npos) 314 return true; 315 break; 316 } 317 } 318 Record.clear(); 319 } 320 llvm_unreachable("Exit infinite loop"); 321 } 322 323 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) { 324 // We expect a number of well-defined blocks, though we don't necessarily 325 // need to understand them all. 326 while (true) { 327 BitstreamEntry Entry; 328 if (Error E = Stream.advance().moveInto(Entry)) 329 return std::move(E); 330 331 switch (Entry.Kind) { 332 case BitstreamEntry::Error: 333 return error("Malformed block"); 334 case BitstreamEntry::EndBlock: 335 return false; 336 337 case BitstreamEntry::SubBlock: 338 if (Entry.ID == bitc::MODULE_BLOCK_ID) 339 return hasObjCCategoryInModule(Stream); 340 341 // Ignore other sub-blocks. 342 if (Error Err = Stream.SkipBlock()) 343 return std::move(Err); 344 continue; 345 346 case BitstreamEntry::Record: 347 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 348 return std::move(E); 349 continue; 350 } 351 } 352 } 353 354 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) { 355 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 356 return std::move(Err); 357 358 SmallVector<uint64_t, 64> Record; 359 360 std::string Triple; 361 362 // Read all the records for this module. 363 while (true) { 364 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 365 if (!MaybeEntry) 366 return MaybeEntry.takeError(); 367 BitstreamEntry Entry = MaybeEntry.get(); 368 369 switch (Entry.Kind) { 370 case BitstreamEntry::SubBlock: // Handled for us already. 371 case BitstreamEntry::Error: 372 return error("Malformed block"); 373 case BitstreamEntry::EndBlock: 374 return Triple; 375 case BitstreamEntry::Record: 376 // The interesting case. 377 break; 378 } 379 380 // Read a record. 381 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 382 if (!MaybeRecord) 383 return MaybeRecord.takeError(); 384 switch (MaybeRecord.get()) { 385 default: break; // Default behavior, ignore unknown content. 386 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 387 std::string S; 388 if (convertToString(Record, 0, S)) 389 return error("Invalid triple record"); 390 Triple = S; 391 break; 392 } 393 } 394 Record.clear(); 395 } 396 llvm_unreachable("Exit infinite loop"); 397 } 398 399 static Expected<std::string> readTriple(BitstreamCursor &Stream) { 400 // We expect a number of well-defined blocks, though we don't necessarily 401 // need to understand them all. 402 while (true) { 403 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 404 if (!MaybeEntry) 405 return MaybeEntry.takeError(); 406 BitstreamEntry Entry = MaybeEntry.get(); 407 408 switch (Entry.Kind) { 409 case BitstreamEntry::Error: 410 return error("Malformed block"); 411 case BitstreamEntry::EndBlock: 412 return ""; 413 414 case BitstreamEntry::SubBlock: 415 if (Entry.ID == bitc::MODULE_BLOCK_ID) 416 return readModuleTriple(Stream); 417 418 // Ignore other sub-blocks. 419 if (Error Err = Stream.SkipBlock()) 420 return std::move(Err); 421 continue; 422 423 case BitstreamEntry::Record: 424 if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 425 continue; 426 else 427 return Skipped.takeError(); 428 } 429 } 430 } 431 432 namespace { 433 434 class BitcodeReaderBase { 435 protected: 436 BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab) 437 : Stream(std::move(Stream)), Strtab(Strtab) { 438 this->Stream.setBlockInfo(&BlockInfo); 439 } 440 441 BitstreamBlockInfo BlockInfo; 442 BitstreamCursor Stream; 443 StringRef Strtab; 444 445 /// In version 2 of the bitcode we store names of global values and comdats in 446 /// a string table rather than in the VST. 447 bool UseStrtab = false; 448 449 Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record); 450 451 /// If this module uses a string table, pop the reference to the string table 452 /// and return the referenced string and the rest of the record. Otherwise 453 /// just return the record itself. 454 std::pair<StringRef, ArrayRef<uint64_t>> 455 readNameFromStrtab(ArrayRef<uint64_t> Record); 456 457 Error readBlockInfo(); 458 459 // Contains an arbitrary and optional string identifying the bitcode producer 460 std::string ProducerIdentification; 461 462 Error error(const Twine &Message); 463 }; 464 465 } // end anonymous namespace 466 467 Error BitcodeReaderBase::error(const Twine &Message) { 468 std::string FullMsg = Message.str(); 469 if (!ProducerIdentification.empty()) 470 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " + 471 LLVM_VERSION_STRING "')"; 472 return ::error(FullMsg); 473 } 474 475 Expected<unsigned> 476 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) { 477 if (Record.empty()) 478 return error("Invalid version record"); 479 unsigned ModuleVersion = Record[0]; 480 if (ModuleVersion > 2) 481 return error("Invalid value"); 482 UseStrtab = ModuleVersion >= 2; 483 return ModuleVersion; 484 } 485 486 std::pair<StringRef, ArrayRef<uint64_t>> 487 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) { 488 if (!UseStrtab) 489 return {"", Record}; 490 // Invalid reference. Let the caller complain about the record being empty. 491 if (Record[0] + Record[1] > Strtab.size()) 492 return {"", {}}; 493 return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)}; 494 } 495 496 namespace { 497 498 /// This represents a constant expression or constant aggregate using a custom 499 /// structure internal to the bitcode reader. Later, this structure will be 500 /// expanded by materializeValue() either into a constant expression/aggregate, 501 /// or into an instruction sequence at the point of use. This allows us to 502 /// upgrade bitcode using constant expressions even if this kind of constant 503 /// expression is no longer supported. 504 class BitcodeConstant final : public Value, 505 TrailingObjects<BitcodeConstant, unsigned> { 506 friend TrailingObjects; 507 508 // Value subclass ID: Pick largest possible value to avoid any clashes. 509 static constexpr uint8_t SubclassID = 255; 510 511 public: 512 // Opcodes used for non-expressions. This includes constant aggregates 513 // (struct, array, vector) that might need expansion, as well as non-leaf 514 // constants that don't need expansion (no_cfi, dso_local, blockaddress), 515 // but still go through BitcodeConstant to avoid different uselist orders 516 // between the two cases. 517 static constexpr uint8_t ConstantStructOpcode = 255; 518 static constexpr uint8_t ConstantArrayOpcode = 254; 519 static constexpr uint8_t ConstantVectorOpcode = 253; 520 static constexpr uint8_t NoCFIOpcode = 252; 521 static constexpr uint8_t DSOLocalEquivalentOpcode = 251; 522 static constexpr uint8_t BlockAddressOpcode = 250; 523 static constexpr uint8_t ConstantPtrAuthOpcode = 249; 524 static constexpr uint8_t FirstSpecialOpcode = ConstantPtrAuthOpcode; 525 526 // Separate struct to make passing different number of parameters to 527 // BitcodeConstant::create() more convenient. 528 struct ExtraInfo { 529 uint8_t Opcode; 530 uint8_t Flags; 531 unsigned BlockAddressBB = 0; 532 Type *SrcElemTy = nullptr; 533 std::optional<ConstantRange> InRange; 534 535 ExtraInfo(uint8_t Opcode, uint8_t Flags = 0, Type *SrcElemTy = nullptr, 536 std::optional<ConstantRange> InRange = std::nullopt) 537 : Opcode(Opcode), Flags(Flags), SrcElemTy(SrcElemTy), 538 InRange(std::move(InRange)) {} 539 540 ExtraInfo(uint8_t Opcode, uint8_t Flags, unsigned BlockAddressBB) 541 : Opcode(Opcode), Flags(Flags), BlockAddressBB(BlockAddressBB) {} 542 }; 543 544 uint8_t Opcode; 545 uint8_t Flags; 546 unsigned NumOperands; 547 unsigned BlockAddressBB; 548 Type *SrcElemTy; // GEP source element type. 549 std::optional<ConstantRange> InRange; // GEP inrange attribute. 550 551 private: 552 BitcodeConstant(Type *Ty, const ExtraInfo &Info, ArrayRef<unsigned> OpIDs) 553 : Value(Ty, SubclassID), Opcode(Info.Opcode), Flags(Info.Flags), 554 NumOperands(OpIDs.size()), BlockAddressBB(Info.BlockAddressBB), 555 SrcElemTy(Info.SrcElemTy), InRange(Info.InRange) { 556 std::uninitialized_copy(OpIDs.begin(), OpIDs.end(), 557 getTrailingObjects<unsigned>()); 558 } 559 560 BitcodeConstant &operator=(const BitcodeConstant &) = delete; 561 562 public: 563 static BitcodeConstant *create(BumpPtrAllocator &A, Type *Ty, 564 const ExtraInfo &Info, 565 ArrayRef<unsigned> OpIDs) { 566 void *Mem = A.Allocate(totalSizeToAlloc<unsigned>(OpIDs.size()), 567 alignof(BitcodeConstant)); 568 return new (Mem) BitcodeConstant(Ty, Info, OpIDs); 569 } 570 571 static bool classof(const Value *V) { return V->getValueID() == SubclassID; } 572 573 ArrayRef<unsigned> getOperandIDs() const { 574 return ArrayRef(getTrailingObjects<unsigned>(), NumOperands); 575 } 576 577 std::optional<ConstantRange> getInRange() const { 578 assert(Opcode == Instruction::GetElementPtr); 579 return InRange; 580 } 581 582 const char *getOpcodeName() const { 583 return Instruction::getOpcodeName(Opcode); 584 } 585 }; 586 587 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer { 588 LLVMContext &Context; 589 Module *TheModule = nullptr; 590 // Next offset to start scanning for lazy parsing of function bodies. 591 uint64_t NextUnreadBit = 0; 592 // Last function offset found in the VST. 593 uint64_t LastFunctionBlockBit = 0; 594 bool SeenValueSymbolTable = false; 595 uint64_t VSTOffset = 0; 596 597 std::vector<std::string> SectionTable; 598 std::vector<std::string> GCTable; 599 600 std::vector<Type *> TypeList; 601 /// Track type IDs of contained types. Order is the same as the contained 602 /// types of a Type*. This is used during upgrades of typed pointer IR in 603 /// opaque pointer mode. 604 DenseMap<unsigned, SmallVector<unsigned, 1>> ContainedTypeIDs; 605 /// In some cases, we need to create a type ID for a type that was not 606 /// explicitly encoded in the bitcode, or we don't know about at the current 607 /// point. For example, a global may explicitly encode the value type ID, but 608 /// not have a type ID for the pointer to value type, for which we create a 609 /// virtual type ID instead. This map stores the new type ID that was created 610 /// for the given pair of Type and contained type ID. 611 DenseMap<std::pair<Type *, unsigned>, unsigned> VirtualTypeIDs; 612 DenseMap<Function *, unsigned> FunctionTypeIDs; 613 /// Allocator for BitcodeConstants. This should come before ValueList, 614 /// because the ValueList might hold ValueHandles to these constants, so 615 /// ValueList must be destroyed before Alloc. 616 BumpPtrAllocator Alloc; 617 BitcodeReaderValueList ValueList; 618 std::optional<MetadataLoader> MDLoader; 619 std::vector<Comdat *> ComdatList; 620 DenseSet<GlobalObject *> ImplicitComdatObjects; 621 SmallVector<Instruction *, 64> InstructionList; 622 623 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits; 624 std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInits; 625 626 struct FunctionOperandInfo { 627 Function *F; 628 unsigned PersonalityFn; 629 unsigned Prefix; 630 unsigned Prologue; 631 }; 632 std::vector<FunctionOperandInfo> FunctionOperands; 633 634 /// The set of attributes by index. Index zero in the file is for null, and 635 /// is thus not represented here. As such all indices are off by one. 636 std::vector<AttributeList> MAttributes; 637 638 /// The set of attribute groups. 639 std::map<unsigned, AttributeList> MAttributeGroups; 640 641 /// While parsing a function body, this is a list of the basic blocks for the 642 /// function. 643 std::vector<BasicBlock*> FunctionBBs; 644 645 // When reading the module header, this list is populated with functions that 646 // have bodies later in the file. 647 std::vector<Function*> FunctionsWithBodies; 648 649 // When intrinsic functions are encountered which require upgrading they are 650 // stored here with their replacement function. 651 using UpdatedIntrinsicMap = DenseMap<Function *, Function *>; 652 UpdatedIntrinsicMap UpgradedIntrinsics; 653 654 // Several operations happen after the module header has been read, but 655 // before function bodies are processed. This keeps track of whether 656 // we've done this yet. 657 bool SeenFirstFunctionBody = false; 658 659 /// When function bodies are initially scanned, this map contains info about 660 /// where to find deferred function body in the stream. 661 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 662 663 /// When Metadata block is initially scanned when parsing the module, we may 664 /// choose to defer parsing of the metadata. This vector contains info about 665 /// which Metadata blocks are deferred. 666 std::vector<uint64_t> DeferredMetadataInfo; 667 668 /// These are basic blocks forward-referenced by block addresses. They are 669 /// inserted lazily into functions when they're loaded. The basic block ID is 670 /// its index into the vector. 671 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 672 std::deque<Function *> BasicBlockFwdRefQueue; 673 674 /// These are Functions that contain BlockAddresses which refer a different 675 /// Function. When parsing the different Function, queue Functions that refer 676 /// to the different Function. Those Functions must be materialized in order 677 /// to resolve their BlockAddress constants before the different Function 678 /// gets moved into another Module. 679 std::vector<Function *> BackwardRefFunctions; 680 681 /// Indicates that we are using a new encoding for instruction operands where 682 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 683 /// instruction number, for a more compact encoding. Some instruction 684 /// operands are not relative to the instruction ID: basic block numbers, and 685 /// types. Once the old style function blocks have been phased out, we would 686 /// not need this flag. 687 bool UseRelativeIDs = false; 688 689 /// True if all functions will be materialized, negating the need to process 690 /// (e.g.) blockaddress forward references. 691 bool WillMaterializeAllForwardRefs = false; 692 693 /// Tracks whether we have seen debug intrinsics or records in this bitcode; 694 /// seeing both in a single module is currently a fatal error. 695 bool SeenDebugIntrinsic = false; 696 bool SeenDebugRecord = false; 697 698 bool StripDebugInfo = false; 699 TBAAVerifier TBAAVerifyHelper; 700 701 std::vector<std::string> BundleTags; 702 SmallVector<SyncScope::ID, 8> SSIDs; 703 704 std::optional<ValueTypeCallbackTy> ValueTypeCallback; 705 706 public: 707 BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 708 StringRef ProducerIdentification, LLVMContext &Context); 709 710 Error materializeForwardReferencedFunctions(); 711 712 Error materialize(GlobalValue *GV) override; 713 Error materializeModule() override; 714 std::vector<StructType *> getIdentifiedStructTypes() const override; 715 716 /// Main interface to parsing a bitcode buffer. 717 /// \returns true if an error occurred. 718 Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 719 bool IsImporting, ParserCallbacks Callbacks = {}); 720 721 static uint64_t decodeSignRotatedValue(uint64_t V); 722 723 /// Materialize any deferred Metadata block. 724 Error materializeMetadata() override; 725 726 void setStripDebugInfo() override; 727 728 private: 729 std::vector<StructType *> IdentifiedStructTypes; 730 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 731 StructType *createIdentifiedStructType(LLVMContext &Context); 732 733 static constexpr unsigned InvalidTypeID = ~0u; 734 735 Type *getTypeByID(unsigned ID); 736 Type *getPtrElementTypeByID(unsigned ID); 737 unsigned getContainedTypeID(unsigned ID, unsigned Idx = 0); 738 unsigned getVirtualTypeID(Type *Ty, ArrayRef<unsigned> ContainedTypeIDs = {}); 739 740 void callValueTypeCallback(Value *F, unsigned TypeID); 741 Expected<Value *> materializeValue(unsigned ValID, BasicBlock *InsertBB); 742 Expected<Constant *> getValueForInitializer(unsigned ID); 743 744 Value *getFnValueByID(unsigned ID, Type *Ty, unsigned TyID, 745 BasicBlock *ConstExprInsertBB) { 746 if (Ty && Ty->isMetadataTy()) 747 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 748 return ValueList.getValueFwdRef(ID, Ty, TyID, ConstExprInsertBB); 749 } 750 751 Metadata *getFnMetadataByID(unsigned ID) { 752 return MDLoader->getMetadataFwdRefOrLoad(ID); 753 } 754 755 BasicBlock *getBasicBlock(unsigned ID) const { 756 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 757 return FunctionBBs[ID]; 758 } 759 760 AttributeList getAttributes(unsigned i) const { 761 if (i-1 < MAttributes.size()) 762 return MAttributes[i-1]; 763 return AttributeList(); 764 } 765 766 /// Read a value/type pair out of the specified record from slot 'Slot'. 767 /// Increment Slot past the number of slots used in the record. Return true on 768 /// failure. 769 bool getValueTypePair(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 770 unsigned InstNum, Value *&ResVal, unsigned &TypeID, 771 BasicBlock *ConstExprInsertBB) { 772 if (Slot == Record.size()) return true; 773 unsigned ValNo = (unsigned)Record[Slot++]; 774 // Adjust the ValNo, if it was encoded relative to the InstNum. 775 if (UseRelativeIDs) 776 ValNo = InstNum - ValNo; 777 if (ValNo < InstNum) { 778 // If this is not a forward reference, just return the value we already 779 // have. 780 TypeID = ValueList.getTypeID(ValNo); 781 ResVal = getFnValueByID(ValNo, nullptr, TypeID, ConstExprInsertBB); 782 assert((!ResVal || ResVal->getType() == getTypeByID(TypeID)) && 783 "Incorrect type ID stored for value"); 784 return ResVal == nullptr; 785 } 786 if (Slot == Record.size()) 787 return true; 788 789 TypeID = (unsigned)Record[Slot++]; 790 ResVal = getFnValueByID(ValNo, getTypeByID(TypeID), TypeID, 791 ConstExprInsertBB); 792 return ResVal == nullptr; 793 } 794 795 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 796 /// past the number of slots used by the value in the record. Return true if 797 /// there is an error. 798 bool popValue(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 799 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal, 800 BasicBlock *ConstExprInsertBB) { 801 if (getValue(Record, Slot, InstNum, Ty, TyID, ResVal, ConstExprInsertBB)) 802 return true; 803 // All values currently take a single record slot. 804 ++Slot; 805 return false; 806 } 807 808 /// Like popValue, but does not increment the Slot number. 809 bool getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 810 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal, 811 BasicBlock *ConstExprInsertBB) { 812 ResVal = getValue(Record, Slot, InstNum, Ty, TyID, ConstExprInsertBB); 813 return ResVal == nullptr; 814 } 815 816 /// Version of getValue that returns ResVal directly, or 0 if there is an 817 /// error. 818 Value *getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 819 unsigned InstNum, Type *Ty, unsigned TyID, 820 BasicBlock *ConstExprInsertBB) { 821 if (Slot == Record.size()) return nullptr; 822 unsigned ValNo = (unsigned)Record[Slot]; 823 // Adjust the ValNo, if it was encoded relative to the InstNum. 824 if (UseRelativeIDs) 825 ValNo = InstNum - ValNo; 826 return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB); 827 } 828 829 /// Like getValue, but decodes signed VBRs. 830 Value *getValueSigned(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 831 unsigned InstNum, Type *Ty, unsigned TyID, 832 BasicBlock *ConstExprInsertBB) { 833 if (Slot == Record.size()) return nullptr; 834 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 835 // Adjust the ValNo, if it was encoded relative to the InstNum. 836 if (UseRelativeIDs) 837 ValNo = InstNum - ValNo; 838 return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB); 839 } 840 841 Expected<ConstantRange> readConstantRange(ArrayRef<uint64_t> Record, 842 unsigned &OpNum, 843 unsigned BitWidth) { 844 if (Record.size() - OpNum < 2) 845 return error("Too few records for range"); 846 if (BitWidth > 64) { 847 unsigned LowerActiveWords = Record[OpNum]; 848 unsigned UpperActiveWords = Record[OpNum++] >> 32; 849 if (Record.size() - OpNum < LowerActiveWords + UpperActiveWords) 850 return error("Too few records for range"); 851 APInt Lower = 852 readWideAPInt(ArrayRef(&Record[OpNum], LowerActiveWords), BitWidth); 853 OpNum += LowerActiveWords; 854 APInt Upper = 855 readWideAPInt(ArrayRef(&Record[OpNum], UpperActiveWords), BitWidth); 856 OpNum += UpperActiveWords; 857 return ConstantRange(Lower, Upper); 858 } else { 859 int64_t Start = BitcodeReader::decodeSignRotatedValue(Record[OpNum++]); 860 int64_t End = BitcodeReader::decodeSignRotatedValue(Record[OpNum++]); 861 return ConstantRange(APInt(BitWidth, Start), APInt(BitWidth, End)); 862 } 863 } 864 865 Expected<ConstantRange> 866 readBitWidthAndConstantRange(ArrayRef<uint64_t> Record, unsigned &OpNum) { 867 if (Record.size() - OpNum < 1) 868 return error("Too few records for range"); 869 unsigned BitWidth = Record[OpNum++]; 870 return readConstantRange(Record, OpNum, BitWidth); 871 } 872 873 /// Upgrades old-style typeless byval/sret/inalloca attributes by adding the 874 /// corresponding argument's pointee type. Also upgrades intrinsics that now 875 /// require an elementtype attribute. 876 Error propagateAttributeTypes(CallBase *CB, ArrayRef<unsigned> ArgsTys); 877 878 /// Converts alignment exponent (i.e. power of two (or zero)) to the 879 /// corresponding alignment to use. If alignment is too large, returns 880 /// a corresponding error code. 881 Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment); 882 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 883 Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false, 884 ParserCallbacks Callbacks = {}); 885 886 Error parseComdatRecord(ArrayRef<uint64_t> Record); 887 Error parseGlobalVarRecord(ArrayRef<uint64_t> Record); 888 Error parseFunctionRecord(ArrayRef<uint64_t> Record); 889 Error parseGlobalIndirectSymbolRecord(unsigned BitCode, 890 ArrayRef<uint64_t> Record); 891 892 Error parseAttributeBlock(); 893 Error parseAttributeGroupBlock(); 894 Error parseTypeTable(); 895 Error parseTypeTableBody(); 896 Error parseOperandBundleTags(); 897 Error parseSyncScopeNames(); 898 899 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 900 unsigned NameIndex, Triple &TT); 901 void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F, 902 ArrayRef<uint64_t> Record); 903 Error parseValueSymbolTable(uint64_t Offset = 0); 904 Error parseGlobalValueSymbolTable(); 905 Error parseConstants(); 906 Error rememberAndSkipFunctionBodies(); 907 Error rememberAndSkipFunctionBody(); 908 /// Save the positions of the Metadata blocks and skip parsing the blocks. 909 Error rememberAndSkipMetadata(); 910 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType); 911 Error parseFunctionBody(Function *F); 912 Error globalCleanup(); 913 Error resolveGlobalAndIndirectSymbolInits(); 914 Error parseUseLists(); 915 Error findFunctionInStream( 916 Function *F, 917 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 918 919 SyncScope::ID getDecodedSyncScopeID(unsigned Val); 920 }; 921 922 /// Class to manage reading and parsing function summary index bitcode 923 /// files/sections. 924 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase { 925 /// The module index built during parsing. 926 ModuleSummaryIndex &TheIndex; 927 928 /// Indicates whether we have encountered a global value summary section 929 /// yet during parsing. 930 bool SeenGlobalValSummary = false; 931 932 /// Indicates whether we have already parsed the VST, used for error checking. 933 bool SeenValueSymbolTable = false; 934 935 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 936 /// Used to enable on-demand parsing of the VST. 937 uint64_t VSTOffset = 0; 938 939 // Map to save ValueId to ValueInfo association that was recorded in the 940 // ValueSymbolTable. It is used after the VST is parsed to convert 941 // call graph edges read from the function summary from referencing 942 // callees by their ValueId to using the ValueInfo instead, which is how 943 // they are recorded in the summary index being built. 944 // We save a GUID which refers to the same global as the ValueInfo, but 945 // ignoring the linkage, i.e. for values other than local linkage they are 946 // identical (this is the second tuple member). 947 // The third tuple member is the real GUID of the ValueInfo. 948 DenseMap<unsigned, 949 std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID>> 950 ValueIdToValueInfoMap; 951 952 /// Map populated during module path string table parsing, from the 953 /// module ID to a string reference owned by the index's module 954 /// path string table, used to correlate with combined index 955 /// summary records. 956 DenseMap<uint64_t, StringRef> ModuleIdMap; 957 958 /// Original source file name recorded in a bitcode record. 959 std::string SourceFileName; 960 961 /// The string identifier given to this module by the client, normally the 962 /// path to the bitcode file. 963 StringRef ModulePath; 964 965 /// Callback to ask whether a symbol is the prevailing copy when invoked 966 /// during combined index building. 967 std::function<bool(GlobalValue::GUID)> IsPrevailing; 968 969 /// Saves the stack ids from the STACK_IDS record to consult when adding stack 970 /// ids from the lists in the callsite and alloc entries to the index. 971 std::vector<uint64_t> StackIds; 972 973 public: 974 ModuleSummaryIndexBitcodeReader( 975 BitstreamCursor Stream, StringRef Strtab, ModuleSummaryIndex &TheIndex, 976 StringRef ModulePath, 977 std::function<bool(GlobalValue::GUID)> IsPrevailing = nullptr); 978 979 Error parseModule(); 980 981 private: 982 void setValueGUID(uint64_t ValueID, StringRef ValueName, 983 GlobalValue::LinkageTypes Linkage, 984 StringRef SourceFileName); 985 Error parseValueSymbolTable( 986 uint64_t Offset, 987 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 988 SmallVector<ValueInfo, 0> makeRefList(ArrayRef<uint64_t> Record); 989 std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record, 990 bool IsOldProfileFormat, 991 bool HasProfile, 992 bool HasRelBF); 993 Error parseEntireSummary(unsigned ID); 994 Error parseModuleStringTable(); 995 void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record); 996 void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot, 997 TypeIdCompatibleVtableInfo &TypeId); 998 std::vector<FunctionSummary::ParamAccess> 999 parseParamAccesses(ArrayRef<uint64_t> Record); 1000 1001 template <bool AllowNullValueInfo = false> 1002 std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID> 1003 getValueInfoFromValueId(unsigned ValueId); 1004 1005 void addThisModule(); 1006 ModuleSummaryIndex::ModuleInfo *getThisModule(); 1007 }; 1008 1009 } // end anonymous namespace 1010 1011 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx, 1012 Error Err) { 1013 if (Err) { 1014 std::error_code EC; 1015 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) { 1016 EC = EIB.convertToErrorCode(); 1017 Ctx.emitError(EIB.message()); 1018 }); 1019 return EC; 1020 } 1021 return std::error_code(); 1022 } 1023 1024 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 1025 StringRef ProducerIdentification, 1026 LLVMContext &Context) 1027 : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context), 1028 ValueList(this->Stream.SizeInBytes(), 1029 [this](unsigned ValID, BasicBlock *InsertBB) { 1030 return materializeValue(ValID, InsertBB); 1031 }) { 1032 this->ProducerIdentification = std::string(ProducerIdentification); 1033 } 1034 1035 Error BitcodeReader::materializeForwardReferencedFunctions() { 1036 if (WillMaterializeAllForwardRefs) 1037 return Error::success(); 1038 1039 // Prevent recursion. 1040 WillMaterializeAllForwardRefs = true; 1041 1042 while (!BasicBlockFwdRefQueue.empty()) { 1043 Function *F = BasicBlockFwdRefQueue.front(); 1044 BasicBlockFwdRefQueue.pop_front(); 1045 assert(F && "Expected valid function"); 1046 if (!BasicBlockFwdRefs.count(F)) 1047 // Already materialized. 1048 continue; 1049 1050 // Check for a function that isn't materializable to prevent an infinite 1051 // loop. When parsing a blockaddress stored in a global variable, there 1052 // isn't a trivial way to check if a function will have a body without a 1053 // linear search through FunctionsWithBodies, so just check it here. 1054 if (!F->isMaterializable()) 1055 return error("Never resolved function from blockaddress"); 1056 1057 // Try to materialize F. 1058 if (Error Err = materialize(F)) 1059 return Err; 1060 } 1061 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 1062 1063 for (Function *F : BackwardRefFunctions) 1064 if (Error Err = materialize(F)) 1065 return Err; 1066 BackwardRefFunctions.clear(); 1067 1068 // Reset state. 1069 WillMaterializeAllForwardRefs = false; 1070 return Error::success(); 1071 } 1072 1073 //===----------------------------------------------------------------------===// 1074 // Helper functions to implement forward reference resolution, etc. 1075 //===----------------------------------------------------------------------===// 1076 1077 static bool hasImplicitComdat(size_t Val) { 1078 switch (Val) { 1079 default: 1080 return false; 1081 case 1: // Old WeakAnyLinkage 1082 case 4: // Old LinkOnceAnyLinkage 1083 case 10: // Old WeakODRLinkage 1084 case 11: // Old LinkOnceODRLinkage 1085 return true; 1086 } 1087 } 1088 1089 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 1090 switch (Val) { 1091 default: // Map unknown/new linkages to external 1092 case 0: 1093 return GlobalValue::ExternalLinkage; 1094 case 2: 1095 return GlobalValue::AppendingLinkage; 1096 case 3: 1097 return GlobalValue::InternalLinkage; 1098 case 5: 1099 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 1100 case 6: 1101 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 1102 case 7: 1103 return GlobalValue::ExternalWeakLinkage; 1104 case 8: 1105 return GlobalValue::CommonLinkage; 1106 case 9: 1107 return GlobalValue::PrivateLinkage; 1108 case 12: 1109 return GlobalValue::AvailableExternallyLinkage; 1110 case 13: 1111 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 1112 case 14: 1113 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 1114 case 15: 1115 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 1116 case 1: // Old value with implicit comdat. 1117 case 16: 1118 return GlobalValue::WeakAnyLinkage; 1119 case 10: // Old value with implicit comdat. 1120 case 17: 1121 return GlobalValue::WeakODRLinkage; 1122 case 4: // Old value with implicit comdat. 1123 case 18: 1124 return GlobalValue::LinkOnceAnyLinkage; 1125 case 11: // Old value with implicit comdat. 1126 case 19: 1127 return GlobalValue::LinkOnceODRLinkage; 1128 } 1129 } 1130 1131 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) { 1132 FunctionSummary::FFlags Flags; 1133 Flags.ReadNone = RawFlags & 0x1; 1134 Flags.ReadOnly = (RawFlags >> 1) & 0x1; 1135 Flags.NoRecurse = (RawFlags >> 2) & 0x1; 1136 Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1; 1137 Flags.NoInline = (RawFlags >> 4) & 0x1; 1138 Flags.AlwaysInline = (RawFlags >> 5) & 0x1; 1139 Flags.NoUnwind = (RawFlags >> 6) & 0x1; 1140 Flags.MayThrow = (RawFlags >> 7) & 0x1; 1141 Flags.HasUnknownCall = (RawFlags >> 8) & 0x1; 1142 Flags.MustBeUnreachable = (RawFlags >> 9) & 0x1; 1143 return Flags; 1144 } 1145 1146 // Decode the flags for GlobalValue in the summary. The bits for each attribute: 1147 // 1148 // linkage: [0,4), notEligibleToImport: 4, live: 5, local: 6, canAutoHide: 7, 1149 // visibility: [8, 10). 1150 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 1151 uint64_t Version) { 1152 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 1153 // like getDecodedLinkage() above. Any future change to the linkage enum and 1154 // to getDecodedLinkage() will need to be taken into account here as above. 1155 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 1156 auto Visibility = GlobalValue::VisibilityTypes((RawFlags >> 8) & 3); // 2 bits 1157 auto IK = GlobalValueSummary::ImportKind((RawFlags >> 10) & 1); // 1 bit 1158 RawFlags = RawFlags >> 4; 1159 bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3; 1160 // The Live flag wasn't introduced until version 3. For dead stripping 1161 // to work correctly on earlier versions, we must conservatively treat all 1162 // values as live. 1163 bool Live = (RawFlags & 0x2) || Version < 3; 1164 bool Local = (RawFlags & 0x4); 1165 bool AutoHide = (RawFlags & 0x8); 1166 1167 return GlobalValueSummary::GVFlags(Linkage, Visibility, NotEligibleToImport, 1168 Live, Local, AutoHide, IK); 1169 } 1170 1171 // Decode the flags for GlobalVariable in the summary 1172 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) { 1173 return GlobalVarSummary::GVarFlags( 1174 (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false, 1175 (RawFlags & 0x4) ? true : false, 1176 (GlobalObject::VCallVisibility)(RawFlags >> 3)); 1177 } 1178 1179 static std::pair<CalleeInfo::HotnessType, bool> 1180 getDecodedHotnessCallEdgeInfo(uint64_t RawFlags) { 1181 CalleeInfo::HotnessType Hotness = 1182 static_cast<CalleeInfo::HotnessType>(RawFlags & 0x7); // 3 bits 1183 bool HasTailCall = (RawFlags & 0x8); // 1 bit 1184 return {Hotness, HasTailCall}; 1185 } 1186 1187 static void getDecodedRelBFCallEdgeInfo(uint64_t RawFlags, uint64_t &RelBF, 1188 bool &HasTailCall) { 1189 static constexpr uint64_t RelBlockFreqMask = 1190 (1 << CalleeInfo::RelBlockFreqBits) - 1; 1191 RelBF = RawFlags & RelBlockFreqMask; // RelBlockFreqBits bits 1192 HasTailCall = (RawFlags & (1 << CalleeInfo::RelBlockFreqBits)); // 1 bit 1193 } 1194 1195 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 1196 switch (Val) { 1197 default: // Map unknown visibilities to default. 1198 case 0: return GlobalValue::DefaultVisibility; 1199 case 1: return GlobalValue::HiddenVisibility; 1200 case 2: return GlobalValue::ProtectedVisibility; 1201 } 1202 } 1203 1204 static GlobalValue::DLLStorageClassTypes 1205 getDecodedDLLStorageClass(unsigned Val) { 1206 switch (Val) { 1207 default: // Map unknown values to default. 1208 case 0: return GlobalValue::DefaultStorageClass; 1209 case 1: return GlobalValue::DLLImportStorageClass; 1210 case 2: return GlobalValue::DLLExportStorageClass; 1211 } 1212 } 1213 1214 static bool getDecodedDSOLocal(unsigned Val) { 1215 switch(Val) { 1216 default: // Map unknown values to preemptable. 1217 case 0: return false; 1218 case 1: return true; 1219 } 1220 } 1221 1222 static std::optional<CodeModel::Model> getDecodedCodeModel(unsigned Val) { 1223 switch (Val) { 1224 case 1: 1225 return CodeModel::Tiny; 1226 case 2: 1227 return CodeModel::Small; 1228 case 3: 1229 return CodeModel::Kernel; 1230 case 4: 1231 return CodeModel::Medium; 1232 case 5: 1233 return CodeModel::Large; 1234 } 1235 1236 return {}; 1237 } 1238 1239 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 1240 switch (Val) { 1241 case 0: return GlobalVariable::NotThreadLocal; 1242 default: // Map unknown non-zero value to general dynamic. 1243 case 1: return GlobalVariable::GeneralDynamicTLSModel; 1244 case 2: return GlobalVariable::LocalDynamicTLSModel; 1245 case 3: return GlobalVariable::InitialExecTLSModel; 1246 case 4: return GlobalVariable::LocalExecTLSModel; 1247 } 1248 } 1249 1250 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { 1251 switch (Val) { 1252 default: // Map unknown to UnnamedAddr::None. 1253 case 0: return GlobalVariable::UnnamedAddr::None; 1254 case 1: return GlobalVariable::UnnamedAddr::Global; 1255 case 2: return GlobalVariable::UnnamedAddr::Local; 1256 } 1257 } 1258 1259 static int getDecodedCastOpcode(unsigned Val) { 1260 switch (Val) { 1261 default: return -1; 1262 case bitc::CAST_TRUNC : return Instruction::Trunc; 1263 case bitc::CAST_ZEXT : return Instruction::ZExt; 1264 case bitc::CAST_SEXT : return Instruction::SExt; 1265 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 1266 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 1267 case bitc::CAST_UITOFP : return Instruction::UIToFP; 1268 case bitc::CAST_SITOFP : return Instruction::SIToFP; 1269 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 1270 case bitc::CAST_FPEXT : return Instruction::FPExt; 1271 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 1272 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 1273 case bitc::CAST_BITCAST : return Instruction::BitCast; 1274 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 1275 } 1276 } 1277 1278 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) { 1279 bool IsFP = Ty->isFPOrFPVectorTy(); 1280 // UnOps are only valid for int/fp or vector of int/fp types 1281 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1282 return -1; 1283 1284 switch (Val) { 1285 default: 1286 return -1; 1287 case bitc::UNOP_FNEG: 1288 return IsFP ? Instruction::FNeg : -1; 1289 } 1290 } 1291 1292 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 1293 bool IsFP = Ty->isFPOrFPVectorTy(); 1294 // BinOps are only valid for int/fp or vector of int/fp types 1295 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1296 return -1; 1297 1298 switch (Val) { 1299 default: 1300 return -1; 1301 case bitc::BINOP_ADD: 1302 return IsFP ? Instruction::FAdd : Instruction::Add; 1303 case bitc::BINOP_SUB: 1304 return IsFP ? Instruction::FSub : Instruction::Sub; 1305 case bitc::BINOP_MUL: 1306 return IsFP ? Instruction::FMul : Instruction::Mul; 1307 case bitc::BINOP_UDIV: 1308 return IsFP ? -1 : Instruction::UDiv; 1309 case bitc::BINOP_SDIV: 1310 return IsFP ? Instruction::FDiv : Instruction::SDiv; 1311 case bitc::BINOP_UREM: 1312 return IsFP ? -1 : Instruction::URem; 1313 case bitc::BINOP_SREM: 1314 return IsFP ? Instruction::FRem : Instruction::SRem; 1315 case bitc::BINOP_SHL: 1316 return IsFP ? -1 : Instruction::Shl; 1317 case bitc::BINOP_LSHR: 1318 return IsFP ? -1 : Instruction::LShr; 1319 case bitc::BINOP_ASHR: 1320 return IsFP ? -1 : Instruction::AShr; 1321 case bitc::BINOP_AND: 1322 return IsFP ? -1 : Instruction::And; 1323 case bitc::BINOP_OR: 1324 return IsFP ? -1 : Instruction::Or; 1325 case bitc::BINOP_XOR: 1326 return IsFP ? -1 : Instruction::Xor; 1327 } 1328 } 1329 1330 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 1331 switch (Val) { 1332 default: return AtomicRMWInst::BAD_BINOP; 1333 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 1334 case bitc::RMW_ADD: return AtomicRMWInst::Add; 1335 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 1336 case bitc::RMW_AND: return AtomicRMWInst::And; 1337 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 1338 case bitc::RMW_OR: return AtomicRMWInst::Or; 1339 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 1340 case bitc::RMW_MAX: return AtomicRMWInst::Max; 1341 case bitc::RMW_MIN: return AtomicRMWInst::Min; 1342 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 1343 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 1344 case bitc::RMW_FADD: return AtomicRMWInst::FAdd; 1345 case bitc::RMW_FSUB: return AtomicRMWInst::FSub; 1346 case bitc::RMW_FMAX: return AtomicRMWInst::FMax; 1347 case bitc::RMW_FMIN: return AtomicRMWInst::FMin; 1348 case bitc::RMW_UINC_WRAP: 1349 return AtomicRMWInst::UIncWrap; 1350 case bitc::RMW_UDEC_WRAP: 1351 return AtomicRMWInst::UDecWrap; 1352 case bitc::RMW_USUB_COND: 1353 return AtomicRMWInst::USubCond; 1354 case bitc::RMW_USUB_SAT: 1355 return AtomicRMWInst::USubSat; 1356 } 1357 } 1358 1359 static AtomicOrdering getDecodedOrdering(unsigned Val) { 1360 switch (Val) { 1361 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 1362 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 1363 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 1364 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 1365 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 1366 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 1367 default: // Map unknown orderings to sequentially-consistent. 1368 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 1369 } 1370 } 1371 1372 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 1373 switch (Val) { 1374 default: // Map unknown selection kinds to any. 1375 case bitc::COMDAT_SELECTION_KIND_ANY: 1376 return Comdat::Any; 1377 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 1378 return Comdat::ExactMatch; 1379 case bitc::COMDAT_SELECTION_KIND_LARGEST: 1380 return Comdat::Largest; 1381 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 1382 return Comdat::NoDeduplicate; 1383 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 1384 return Comdat::SameSize; 1385 } 1386 } 1387 1388 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 1389 FastMathFlags FMF; 1390 if (0 != (Val & bitc::UnsafeAlgebra)) 1391 FMF.setFast(); 1392 if (0 != (Val & bitc::AllowReassoc)) 1393 FMF.setAllowReassoc(); 1394 if (0 != (Val & bitc::NoNaNs)) 1395 FMF.setNoNaNs(); 1396 if (0 != (Val & bitc::NoInfs)) 1397 FMF.setNoInfs(); 1398 if (0 != (Val & bitc::NoSignedZeros)) 1399 FMF.setNoSignedZeros(); 1400 if (0 != (Val & bitc::AllowReciprocal)) 1401 FMF.setAllowReciprocal(); 1402 if (0 != (Val & bitc::AllowContract)) 1403 FMF.setAllowContract(true); 1404 if (0 != (Val & bitc::ApproxFunc)) 1405 FMF.setApproxFunc(); 1406 return FMF; 1407 } 1408 1409 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) { 1410 // A GlobalValue with local linkage cannot have a DLL storage class. 1411 if (GV->hasLocalLinkage()) 1412 return; 1413 switch (Val) { 1414 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 1415 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 1416 } 1417 } 1418 1419 Type *BitcodeReader::getTypeByID(unsigned ID) { 1420 // The type table size is always specified correctly. 1421 if (ID >= TypeList.size()) 1422 return nullptr; 1423 1424 if (Type *Ty = TypeList[ID]) 1425 return Ty; 1426 1427 // If we have a forward reference, the only possible case is when it is to a 1428 // named struct. Just create a placeholder for now. 1429 return TypeList[ID] = createIdentifiedStructType(Context); 1430 } 1431 1432 unsigned BitcodeReader::getContainedTypeID(unsigned ID, unsigned Idx) { 1433 auto It = ContainedTypeIDs.find(ID); 1434 if (It == ContainedTypeIDs.end()) 1435 return InvalidTypeID; 1436 1437 if (Idx >= It->second.size()) 1438 return InvalidTypeID; 1439 1440 return It->second[Idx]; 1441 } 1442 1443 Type *BitcodeReader::getPtrElementTypeByID(unsigned ID) { 1444 if (ID >= TypeList.size()) 1445 return nullptr; 1446 1447 Type *Ty = TypeList[ID]; 1448 if (!Ty->isPointerTy()) 1449 return nullptr; 1450 1451 return getTypeByID(getContainedTypeID(ID, 0)); 1452 } 1453 1454 unsigned BitcodeReader::getVirtualTypeID(Type *Ty, 1455 ArrayRef<unsigned> ChildTypeIDs) { 1456 unsigned ChildTypeID = ChildTypeIDs.empty() ? InvalidTypeID : ChildTypeIDs[0]; 1457 auto CacheKey = std::make_pair(Ty, ChildTypeID); 1458 auto It = VirtualTypeIDs.find(CacheKey); 1459 if (It != VirtualTypeIDs.end()) { 1460 // The cmpxchg return value is the only place we need more than one 1461 // contained type ID, however the second one will always be the same (i1), 1462 // so we don't need to include it in the cache key. This asserts that the 1463 // contained types are indeed as expected and there are no collisions. 1464 assert((ChildTypeIDs.empty() || 1465 ContainedTypeIDs[It->second] == ChildTypeIDs) && 1466 "Incorrect cached contained type IDs"); 1467 return It->second; 1468 } 1469 1470 unsigned TypeID = TypeList.size(); 1471 TypeList.push_back(Ty); 1472 if (!ChildTypeIDs.empty()) 1473 append_range(ContainedTypeIDs[TypeID], ChildTypeIDs); 1474 VirtualTypeIDs.insert({CacheKey, TypeID}); 1475 return TypeID; 1476 } 1477 1478 static GEPNoWrapFlags toGEPNoWrapFlags(uint64_t Flags) { 1479 GEPNoWrapFlags NW; 1480 if (Flags & (1 << bitc::GEP_INBOUNDS)) 1481 NW |= GEPNoWrapFlags::inBounds(); 1482 if (Flags & (1 << bitc::GEP_NUSW)) 1483 NW |= GEPNoWrapFlags::noUnsignedSignedWrap(); 1484 if (Flags & (1 << bitc::GEP_NUW)) 1485 NW |= GEPNoWrapFlags::noUnsignedWrap(); 1486 return NW; 1487 } 1488 1489 static bool isConstExprSupported(const BitcodeConstant *BC) { 1490 uint8_t Opcode = BC->Opcode; 1491 1492 // These are not real constant expressions, always consider them supported. 1493 if (Opcode >= BitcodeConstant::FirstSpecialOpcode) 1494 return true; 1495 1496 // If -expand-constant-exprs is set, we want to consider all expressions 1497 // as unsupported. 1498 if (ExpandConstantExprs) 1499 return false; 1500 1501 if (Instruction::isBinaryOp(Opcode)) 1502 return ConstantExpr::isSupportedBinOp(Opcode); 1503 1504 if (Instruction::isCast(Opcode)) 1505 return ConstantExpr::isSupportedCastOp(Opcode); 1506 1507 if (Opcode == Instruction::GetElementPtr) 1508 return ConstantExpr::isSupportedGetElementPtr(BC->SrcElemTy); 1509 1510 switch (Opcode) { 1511 case Instruction::FNeg: 1512 case Instruction::Select: 1513 case Instruction::ICmp: 1514 case Instruction::FCmp: 1515 return false; 1516 default: 1517 return true; 1518 } 1519 } 1520 1521 Expected<Value *> BitcodeReader::materializeValue(unsigned StartValID, 1522 BasicBlock *InsertBB) { 1523 // Quickly handle the case where there is no BitcodeConstant to resolve. 1524 if (StartValID < ValueList.size() && ValueList[StartValID] && 1525 !isa<BitcodeConstant>(ValueList[StartValID])) 1526 return ValueList[StartValID]; 1527 1528 SmallDenseMap<unsigned, Value *> MaterializedValues; 1529 SmallVector<unsigned> Worklist; 1530 Worklist.push_back(StartValID); 1531 while (!Worklist.empty()) { 1532 unsigned ValID = Worklist.back(); 1533 if (MaterializedValues.count(ValID)) { 1534 // Duplicate expression that was already handled. 1535 Worklist.pop_back(); 1536 continue; 1537 } 1538 1539 if (ValID >= ValueList.size() || !ValueList[ValID]) 1540 return error("Invalid value ID"); 1541 1542 Value *V = ValueList[ValID]; 1543 auto *BC = dyn_cast<BitcodeConstant>(V); 1544 if (!BC) { 1545 MaterializedValues.insert({ValID, V}); 1546 Worklist.pop_back(); 1547 continue; 1548 } 1549 1550 // Iterate in reverse, so values will get popped from the worklist in 1551 // expected order. 1552 SmallVector<Value *> Ops; 1553 for (unsigned OpID : reverse(BC->getOperandIDs())) { 1554 auto It = MaterializedValues.find(OpID); 1555 if (It != MaterializedValues.end()) 1556 Ops.push_back(It->second); 1557 else 1558 Worklist.push_back(OpID); 1559 } 1560 1561 // Some expressions have not been resolved yet, handle them first and then 1562 // revisit this one. 1563 if (Ops.size() != BC->getOperandIDs().size()) 1564 continue; 1565 std::reverse(Ops.begin(), Ops.end()); 1566 1567 SmallVector<Constant *> ConstOps; 1568 for (Value *Op : Ops) 1569 if (auto *C = dyn_cast<Constant>(Op)) 1570 ConstOps.push_back(C); 1571 1572 // Materialize as constant expression if possible. 1573 if (isConstExprSupported(BC) && ConstOps.size() == Ops.size()) { 1574 Constant *C; 1575 if (Instruction::isCast(BC->Opcode)) { 1576 C = UpgradeBitCastExpr(BC->Opcode, ConstOps[0], BC->getType()); 1577 if (!C) 1578 C = ConstantExpr::getCast(BC->Opcode, ConstOps[0], BC->getType()); 1579 } else if (Instruction::isBinaryOp(BC->Opcode)) { 1580 C = ConstantExpr::get(BC->Opcode, ConstOps[0], ConstOps[1], BC->Flags); 1581 } else { 1582 switch (BC->Opcode) { 1583 case BitcodeConstant::ConstantPtrAuthOpcode: { 1584 auto *Key = dyn_cast<ConstantInt>(ConstOps[1]); 1585 if (!Key) 1586 return error("ptrauth key operand must be ConstantInt"); 1587 1588 auto *Disc = dyn_cast<ConstantInt>(ConstOps[2]); 1589 if (!Disc) 1590 return error("ptrauth disc operand must be ConstantInt"); 1591 1592 C = ConstantPtrAuth::get(ConstOps[0], Key, Disc, ConstOps[3]); 1593 break; 1594 } 1595 case BitcodeConstant::NoCFIOpcode: { 1596 auto *GV = dyn_cast<GlobalValue>(ConstOps[0]); 1597 if (!GV) 1598 return error("no_cfi operand must be GlobalValue"); 1599 C = NoCFIValue::get(GV); 1600 break; 1601 } 1602 case BitcodeConstant::DSOLocalEquivalentOpcode: { 1603 auto *GV = dyn_cast<GlobalValue>(ConstOps[0]); 1604 if (!GV) 1605 return error("dso_local operand must be GlobalValue"); 1606 C = DSOLocalEquivalent::get(GV); 1607 break; 1608 } 1609 case BitcodeConstant::BlockAddressOpcode: { 1610 Function *Fn = dyn_cast<Function>(ConstOps[0]); 1611 if (!Fn) 1612 return error("blockaddress operand must be a function"); 1613 1614 // If the function is already parsed we can insert the block address 1615 // right away. 1616 BasicBlock *BB; 1617 unsigned BBID = BC->BlockAddressBB; 1618 if (!BBID) 1619 // Invalid reference to entry block. 1620 return error("Invalid ID"); 1621 if (!Fn->empty()) { 1622 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 1623 for (size_t I = 0, E = BBID; I != E; ++I) { 1624 if (BBI == BBE) 1625 return error("Invalid ID"); 1626 ++BBI; 1627 } 1628 BB = &*BBI; 1629 } else { 1630 // Otherwise insert a placeholder and remember it so it can be 1631 // inserted when the function is parsed. 1632 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 1633 if (FwdBBs.empty()) 1634 BasicBlockFwdRefQueue.push_back(Fn); 1635 if (FwdBBs.size() < BBID + 1) 1636 FwdBBs.resize(BBID + 1); 1637 if (!FwdBBs[BBID]) 1638 FwdBBs[BBID] = BasicBlock::Create(Context); 1639 BB = FwdBBs[BBID]; 1640 } 1641 C = BlockAddress::get(Fn, BB); 1642 break; 1643 } 1644 case BitcodeConstant::ConstantStructOpcode: 1645 C = ConstantStruct::get(cast<StructType>(BC->getType()), ConstOps); 1646 break; 1647 case BitcodeConstant::ConstantArrayOpcode: 1648 C = ConstantArray::get(cast<ArrayType>(BC->getType()), ConstOps); 1649 break; 1650 case BitcodeConstant::ConstantVectorOpcode: 1651 C = ConstantVector::get(ConstOps); 1652 break; 1653 case Instruction::GetElementPtr: 1654 C = ConstantExpr::getGetElementPtr( 1655 BC->SrcElemTy, ConstOps[0], ArrayRef(ConstOps).drop_front(), 1656 toGEPNoWrapFlags(BC->Flags), BC->getInRange()); 1657 break; 1658 case Instruction::ExtractElement: 1659 C = ConstantExpr::getExtractElement(ConstOps[0], ConstOps[1]); 1660 break; 1661 case Instruction::InsertElement: 1662 C = ConstantExpr::getInsertElement(ConstOps[0], ConstOps[1], 1663 ConstOps[2]); 1664 break; 1665 case Instruction::ShuffleVector: { 1666 SmallVector<int, 16> Mask; 1667 ShuffleVectorInst::getShuffleMask(ConstOps[2], Mask); 1668 C = ConstantExpr::getShuffleVector(ConstOps[0], ConstOps[1], Mask); 1669 break; 1670 } 1671 default: 1672 llvm_unreachable("Unhandled bitcode constant"); 1673 } 1674 } 1675 1676 // Cache resolved constant. 1677 ValueList.replaceValueWithoutRAUW(ValID, C); 1678 MaterializedValues.insert({ValID, C}); 1679 Worklist.pop_back(); 1680 continue; 1681 } 1682 1683 if (!InsertBB) 1684 return error(Twine("Value referenced by initializer is an unsupported " 1685 "constant expression of type ") + 1686 BC->getOpcodeName()); 1687 1688 // Materialize as instructions if necessary. 1689 Instruction *I; 1690 if (Instruction::isCast(BC->Opcode)) { 1691 I = CastInst::Create((Instruction::CastOps)BC->Opcode, Ops[0], 1692 BC->getType(), "constexpr", InsertBB); 1693 } else if (Instruction::isUnaryOp(BC->Opcode)) { 1694 I = UnaryOperator::Create((Instruction::UnaryOps)BC->Opcode, Ops[0], 1695 "constexpr", InsertBB); 1696 } else if (Instruction::isBinaryOp(BC->Opcode)) { 1697 I = BinaryOperator::Create((Instruction::BinaryOps)BC->Opcode, Ops[0], 1698 Ops[1], "constexpr", InsertBB); 1699 if (isa<OverflowingBinaryOperator>(I)) { 1700 if (BC->Flags & OverflowingBinaryOperator::NoSignedWrap) 1701 I->setHasNoSignedWrap(); 1702 if (BC->Flags & OverflowingBinaryOperator::NoUnsignedWrap) 1703 I->setHasNoUnsignedWrap(); 1704 } 1705 if (isa<PossiblyExactOperator>(I) && 1706 (BC->Flags & PossiblyExactOperator::IsExact)) 1707 I->setIsExact(); 1708 } else { 1709 switch (BC->Opcode) { 1710 case BitcodeConstant::ConstantVectorOpcode: { 1711 Type *IdxTy = Type::getInt32Ty(BC->getContext()); 1712 Value *V = PoisonValue::get(BC->getType()); 1713 for (auto Pair : enumerate(Ops)) { 1714 Value *Idx = ConstantInt::get(IdxTy, Pair.index()); 1715 V = InsertElementInst::Create(V, Pair.value(), Idx, "constexpr.ins", 1716 InsertBB); 1717 } 1718 I = cast<Instruction>(V); 1719 break; 1720 } 1721 case BitcodeConstant::ConstantStructOpcode: 1722 case BitcodeConstant::ConstantArrayOpcode: { 1723 Value *V = PoisonValue::get(BC->getType()); 1724 for (auto Pair : enumerate(Ops)) 1725 V = InsertValueInst::Create(V, Pair.value(), Pair.index(), 1726 "constexpr.ins", InsertBB); 1727 I = cast<Instruction>(V); 1728 break; 1729 } 1730 case Instruction::ICmp: 1731 case Instruction::FCmp: 1732 I = CmpInst::Create((Instruction::OtherOps)BC->Opcode, 1733 (CmpInst::Predicate)BC->Flags, Ops[0], Ops[1], 1734 "constexpr", InsertBB); 1735 break; 1736 case Instruction::GetElementPtr: 1737 I = GetElementPtrInst::Create(BC->SrcElemTy, Ops[0], 1738 ArrayRef(Ops).drop_front(), "constexpr", 1739 InsertBB); 1740 cast<GetElementPtrInst>(I)->setNoWrapFlags(toGEPNoWrapFlags(BC->Flags)); 1741 break; 1742 case Instruction::Select: 1743 I = SelectInst::Create(Ops[0], Ops[1], Ops[2], "constexpr", InsertBB); 1744 break; 1745 case Instruction::ExtractElement: 1746 I = ExtractElementInst::Create(Ops[0], Ops[1], "constexpr", InsertBB); 1747 break; 1748 case Instruction::InsertElement: 1749 I = InsertElementInst::Create(Ops[0], Ops[1], Ops[2], "constexpr", 1750 InsertBB); 1751 break; 1752 case Instruction::ShuffleVector: 1753 I = new ShuffleVectorInst(Ops[0], Ops[1], Ops[2], "constexpr", 1754 InsertBB); 1755 break; 1756 default: 1757 llvm_unreachable("Unhandled bitcode constant"); 1758 } 1759 } 1760 1761 MaterializedValues.insert({ValID, I}); 1762 Worklist.pop_back(); 1763 } 1764 1765 return MaterializedValues[StartValID]; 1766 } 1767 1768 Expected<Constant *> BitcodeReader::getValueForInitializer(unsigned ID) { 1769 Expected<Value *> MaybeV = materializeValue(ID, /* InsertBB */ nullptr); 1770 if (!MaybeV) 1771 return MaybeV.takeError(); 1772 1773 // Result must be Constant if InsertBB is nullptr. 1774 return cast<Constant>(MaybeV.get()); 1775 } 1776 1777 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1778 StringRef Name) { 1779 auto *Ret = StructType::create(Context, Name); 1780 IdentifiedStructTypes.push_back(Ret); 1781 return Ret; 1782 } 1783 1784 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1785 auto *Ret = StructType::create(Context); 1786 IdentifiedStructTypes.push_back(Ret); 1787 return Ret; 1788 } 1789 1790 //===----------------------------------------------------------------------===// 1791 // Functions for parsing blocks from the bitcode file 1792 //===----------------------------------------------------------------------===// 1793 1794 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) { 1795 switch (Val) { 1796 case Attribute::EndAttrKinds: 1797 case Attribute::EmptyKey: 1798 case Attribute::TombstoneKey: 1799 llvm_unreachable("Synthetic enumerators which should never get here"); 1800 1801 case Attribute::None: return 0; 1802 case Attribute::ZExt: return 1 << 0; 1803 case Attribute::SExt: return 1 << 1; 1804 case Attribute::NoReturn: return 1 << 2; 1805 case Attribute::InReg: return 1 << 3; 1806 case Attribute::StructRet: return 1 << 4; 1807 case Attribute::NoUnwind: return 1 << 5; 1808 case Attribute::NoAlias: return 1 << 6; 1809 case Attribute::ByVal: return 1 << 7; 1810 case Attribute::Nest: return 1 << 8; 1811 case Attribute::ReadNone: return 1 << 9; 1812 case Attribute::ReadOnly: return 1 << 10; 1813 case Attribute::NoInline: return 1 << 11; 1814 case Attribute::AlwaysInline: return 1 << 12; 1815 case Attribute::OptimizeForSize: return 1 << 13; 1816 case Attribute::StackProtect: return 1 << 14; 1817 case Attribute::StackProtectReq: return 1 << 15; 1818 case Attribute::Alignment: return 31 << 16; 1819 case Attribute::NoCapture: return 1 << 21; 1820 case Attribute::NoRedZone: return 1 << 22; 1821 case Attribute::NoImplicitFloat: return 1 << 23; 1822 case Attribute::Naked: return 1 << 24; 1823 case Attribute::InlineHint: return 1 << 25; 1824 case Attribute::StackAlignment: return 7 << 26; 1825 case Attribute::ReturnsTwice: return 1 << 29; 1826 case Attribute::UWTable: return 1 << 30; 1827 case Attribute::NonLazyBind: return 1U << 31; 1828 case Attribute::SanitizeAddress: return 1ULL << 32; 1829 case Attribute::MinSize: return 1ULL << 33; 1830 case Attribute::NoDuplicate: return 1ULL << 34; 1831 case Attribute::StackProtectStrong: return 1ULL << 35; 1832 case Attribute::SanitizeThread: return 1ULL << 36; 1833 case Attribute::SanitizeMemory: return 1ULL << 37; 1834 case Attribute::NoBuiltin: return 1ULL << 38; 1835 case Attribute::Returned: return 1ULL << 39; 1836 case Attribute::Cold: return 1ULL << 40; 1837 case Attribute::Builtin: return 1ULL << 41; 1838 case Attribute::OptimizeNone: return 1ULL << 42; 1839 case Attribute::InAlloca: return 1ULL << 43; 1840 case Attribute::NonNull: return 1ULL << 44; 1841 case Attribute::JumpTable: return 1ULL << 45; 1842 case Attribute::Convergent: return 1ULL << 46; 1843 case Attribute::SafeStack: return 1ULL << 47; 1844 case Attribute::NoRecurse: return 1ULL << 48; 1845 // 1ULL << 49 is InaccessibleMemOnly, which is upgraded separately. 1846 // 1ULL << 50 is InaccessibleMemOrArgMemOnly, which is upgraded separately. 1847 case Attribute::SwiftSelf: return 1ULL << 51; 1848 case Attribute::SwiftError: return 1ULL << 52; 1849 case Attribute::WriteOnly: return 1ULL << 53; 1850 case Attribute::Speculatable: return 1ULL << 54; 1851 case Attribute::StrictFP: return 1ULL << 55; 1852 case Attribute::SanitizeHWAddress: return 1ULL << 56; 1853 case Attribute::NoCfCheck: return 1ULL << 57; 1854 case Attribute::OptForFuzzing: return 1ULL << 58; 1855 case Attribute::ShadowCallStack: return 1ULL << 59; 1856 case Attribute::SpeculativeLoadHardening: 1857 return 1ULL << 60; 1858 case Attribute::ImmArg: 1859 return 1ULL << 61; 1860 case Attribute::WillReturn: 1861 return 1ULL << 62; 1862 case Attribute::NoFree: 1863 return 1ULL << 63; 1864 default: 1865 // Other attributes are not supported in the raw format, 1866 // as we ran out of space. 1867 return 0; 1868 } 1869 llvm_unreachable("Unsupported attribute type"); 1870 } 1871 1872 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) { 1873 if (!Val) return; 1874 1875 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; 1876 I = Attribute::AttrKind(I + 1)) { 1877 if (uint64_t A = (Val & getRawAttributeMask(I))) { 1878 if (I == Attribute::Alignment) 1879 B.addAlignmentAttr(1ULL << ((A >> 16) - 1)); 1880 else if (I == Attribute::StackAlignment) 1881 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1)); 1882 else if (Attribute::isTypeAttrKind(I)) 1883 B.addTypeAttr(I, nullptr); // Type will be auto-upgraded. 1884 else 1885 B.addAttribute(I); 1886 } 1887 } 1888 } 1889 1890 /// This fills an AttrBuilder object with the LLVM attributes that have 1891 /// been decoded from the given integer. This function must stay in sync with 1892 /// 'encodeLLVMAttributesForBitcode'. 1893 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1894 uint64_t EncodedAttrs, 1895 uint64_t AttrIdx) { 1896 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1897 // the bits above 31 down by 11 bits. 1898 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1899 assert((!Alignment || isPowerOf2_32(Alignment)) && 1900 "Alignment must be a power of two."); 1901 1902 if (Alignment) 1903 B.addAlignmentAttr(Alignment); 1904 1905 uint64_t Attrs = ((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1906 (EncodedAttrs & 0xffff); 1907 1908 if (AttrIdx == AttributeList::FunctionIndex) { 1909 // Upgrade old memory attributes. 1910 MemoryEffects ME = MemoryEffects::unknown(); 1911 if (Attrs & (1ULL << 9)) { 1912 // ReadNone 1913 Attrs &= ~(1ULL << 9); 1914 ME &= MemoryEffects::none(); 1915 } 1916 if (Attrs & (1ULL << 10)) { 1917 // ReadOnly 1918 Attrs &= ~(1ULL << 10); 1919 ME &= MemoryEffects::readOnly(); 1920 } 1921 if (Attrs & (1ULL << 49)) { 1922 // InaccessibleMemOnly 1923 Attrs &= ~(1ULL << 49); 1924 ME &= MemoryEffects::inaccessibleMemOnly(); 1925 } 1926 if (Attrs & (1ULL << 50)) { 1927 // InaccessibleMemOrArgMemOnly 1928 Attrs &= ~(1ULL << 50); 1929 ME &= MemoryEffects::inaccessibleOrArgMemOnly(); 1930 } 1931 if (Attrs & (1ULL << 53)) { 1932 // WriteOnly 1933 Attrs &= ~(1ULL << 53); 1934 ME &= MemoryEffects::writeOnly(); 1935 } 1936 if (ME != MemoryEffects::unknown()) 1937 B.addMemoryAttr(ME); 1938 } 1939 1940 addRawAttributeValue(B, Attrs); 1941 } 1942 1943 Error BitcodeReader::parseAttributeBlock() { 1944 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1945 return Err; 1946 1947 if (!MAttributes.empty()) 1948 return error("Invalid multiple blocks"); 1949 1950 SmallVector<uint64_t, 64> Record; 1951 1952 SmallVector<AttributeList, 8> Attrs; 1953 1954 // Read all the records. 1955 while (true) { 1956 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1957 if (!MaybeEntry) 1958 return MaybeEntry.takeError(); 1959 BitstreamEntry Entry = MaybeEntry.get(); 1960 1961 switch (Entry.Kind) { 1962 case BitstreamEntry::SubBlock: // Handled for us already. 1963 case BitstreamEntry::Error: 1964 return error("Malformed block"); 1965 case BitstreamEntry::EndBlock: 1966 return Error::success(); 1967 case BitstreamEntry::Record: 1968 // The interesting case. 1969 break; 1970 } 1971 1972 // Read a record. 1973 Record.clear(); 1974 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1975 if (!MaybeRecord) 1976 return MaybeRecord.takeError(); 1977 switch (MaybeRecord.get()) { 1978 default: // Default behavior: ignore. 1979 break; 1980 case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...] 1981 // Deprecated, but still needed to read old bitcode files. 1982 if (Record.size() & 1) 1983 return error("Invalid parameter attribute record"); 1984 1985 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1986 AttrBuilder B(Context); 1987 decodeLLVMAttributesForBitcode(B, Record[i+1], Record[i]); 1988 Attrs.push_back(AttributeList::get(Context, Record[i], B)); 1989 } 1990 1991 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1992 Attrs.clear(); 1993 break; 1994 case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...] 1995 for (uint64_t Val : Record) 1996 Attrs.push_back(MAttributeGroups[Val]); 1997 1998 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1999 Attrs.clear(); 2000 break; 2001 } 2002 } 2003 } 2004 2005 // Returns Attribute::None on unrecognized codes. 2006 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 2007 switch (Code) { 2008 default: 2009 return Attribute::None; 2010 case bitc::ATTR_KIND_ALIGNMENT: 2011 return Attribute::Alignment; 2012 case bitc::ATTR_KIND_ALWAYS_INLINE: 2013 return Attribute::AlwaysInline; 2014 case bitc::ATTR_KIND_BUILTIN: 2015 return Attribute::Builtin; 2016 case bitc::ATTR_KIND_BY_VAL: 2017 return Attribute::ByVal; 2018 case bitc::ATTR_KIND_IN_ALLOCA: 2019 return Attribute::InAlloca; 2020 case bitc::ATTR_KIND_COLD: 2021 return Attribute::Cold; 2022 case bitc::ATTR_KIND_CONVERGENT: 2023 return Attribute::Convergent; 2024 case bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION: 2025 return Attribute::DisableSanitizerInstrumentation; 2026 case bitc::ATTR_KIND_ELEMENTTYPE: 2027 return Attribute::ElementType; 2028 case bitc::ATTR_KIND_FNRETTHUNK_EXTERN: 2029 return Attribute::FnRetThunkExtern; 2030 case bitc::ATTR_KIND_INLINE_HINT: 2031 return Attribute::InlineHint; 2032 case bitc::ATTR_KIND_IN_REG: 2033 return Attribute::InReg; 2034 case bitc::ATTR_KIND_JUMP_TABLE: 2035 return Attribute::JumpTable; 2036 case bitc::ATTR_KIND_MEMORY: 2037 return Attribute::Memory; 2038 case bitc::ATTR_KIND_NOFPCLASS: 2039 return Attribute::NoFPClass; 2040 case bitc::ATTR_KIND_MIN_SIZE: 2041 return Attribute::MinSize; 2042 case bitc::ATTR_KIND_NAKED: 2043 return Attribute::Naked; 2044 case bitc::ATTR_KIND_NEST: 2045 return Attribute::Nest; 2046 case bitc::ATTR_KIND_NO_ALIAS: 2047 return Attribute::NoAlias; 2048 case bitc::ATTR_KIND_NO_BUILTIN: 2049 return Attribute::NoBuiltin; 2050 case bitc::ATTR_KIND_NO_CALLBACK: 2051 return Attribute::NoCallback; 2052 case bitc::ATTR_KIND_NO_CAPTURE: 2053 return Attribute::NoCapture; 2054 case bitc::ATTR_KIND_NO_DUPLICATE: 2055 return Attribute::NoDuplicate; 2056 case bitc::ATTR_KIND_NOFREE: 2057 return Attribute::NoFree; 2058 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 2059 return Attribute::NoImplicitFloat; 2060 case bitc::ATTR_KIND_NO_INLINE: 2061 return Attribute::NoInline; 2062 case bitc::ATTR_KIND_NO_RECURSE: 2063 return Attribute::NoRecurse; 2064 case bitc::ATTR_KIND_NO_MERGE: 2065 return Attribute::NoMerge; 2066 case bitc::ATTR_KIND_NON_LAZY_BIND: 2067 return Attribute::NonLazyBind; 2068 case bitc::ATTR_KIND_NON_NULL: 2069 return Attribute::NonNull; 2070 case bitc::ATTR_KIND_DEREFERENCEABLE: 2071 return Attribute::Dereferenceable; 2072 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 2073 return Attribute::DereferenceableOrNull; 2074 case bitc::ATTR_KIND_ALLOC_ALIGN: 2075 return Attribute::AllocAlign; 2076 case bitc::ATTR_KIND_ALLOC_KIND: 2077 return Attribute::AllocKind; 2078 case bitc::ATTR_KIND_ALLOC_SIZE: 2079 return Attribute::AllocSize; 2080 case bitc::ATTR_KIND_ALLOCATED_POINTER: 2081 return Attribute::AllocatedPointer; 2082 case bitc::ATTR_KIND_NO_RED_ZONE: 2083 return Attribute::NoRedZone; 2084 case bitc::ATTR_KIND_NO_RETURN: 2085 return Attribute::NoReturn; 2086 case bitc::ATTR_KIND_NOSYNC: 2087 return Attribute::NoSync; 2088 case bitc::ATTR_KIND_NOCF_CHECK: 2089 return Attribute::NoCfCheck; 2090 case bitc::ATTR_KIND_NO_PROFILE: 2091 return Attribute::NoProfile; 2092 case bitc::ATTR_KIND_SKIP_PROFILE: 2093 return Attribute::SkipProfile; 2094 case bitc::ATTR_KIND_NO_UNWIND: 2095 return Attribute::NoUnwind; 2096 case bitc::ATTR_KIND_NO_SANITIZE_BOUNDS: 2097 return Attribute::NoSanitizeBounds; 2098 case bitc::ATTR_KIND_NO_SANITIZE_COVERAGE: 2099 return Attribute::NoSanitizeCoverage; 2100 case bitc::ATTR_KIND_NULL_POINTER_IS_VALID: 2101 return Attribute::NullPointerIsValid; 2102 case bitc::ATTR_KIND_OPTIMIZE_FOR_DEBUGGING: 2103 return Attribute::OptimizeForDebugging; 2104 case bitc::ATTR_KIND_OPT_FOR_FUZZING: 2105 return Attribute::OptForFuzzing; 2106 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 2107 return Attribute::OptimizeForSize; 2108 case bitc::ATTR_KIND_OPTIMIZE_NONE: 2109 return Attribute::OptimizeNone; 2110 case bitc::ATTR_KIND_READ_NONE: 2111 return Attribute::ReadNone; 2112 case bitc::ATTR_KIND_READ_ONLY: 2113 return Attribute::ReadOnly; 2114 case bitc::ATTR_KIND_RETURNED: 2115 return Attribute::Returned; 2116 case bitc::ATTR_KIND_RETURNS_TWICE: 2117 return Attribute::ReturnsTwice; 2118 case bitc::ATTR_KIND_S_EXT: 2119 return Attribute::SExt; 2120 case bitc::ATTR_KIND_SPECULATABLE: 2121 return Attribute::Speculatable; 2122 case bitc::ATTR_KIND_STACK_ALIGNMENT: 2123 return Attribute::StackAlignment; 2124 case bitc::ATTR_KIND_STACK_PROTECT: 2125 return Attribute::StackProtect; 2126 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 2127 return Attribute::StackProtectReq; 2128 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 2129 return Attribute::StackProtectStrong; 2130 case bitc::ATTR_KIND_SAFESTACK: 2131 return Attribute::SafeStack; 2132 case bitc::ATTR_KIND_SHADOWCALLSTACK: 2133 return Attribute::ShadowCallStack; 2134 case bitc::ATTR_KIND_STRICT_FP: 2135 return Attribute::StrictFP; 2136 case bitc::ATTR_KIND_STRUCT_RET: 2137 return Attribute::StructRet; 2138 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 2139 return Attribute::SanitizeAddress; 2140 case bitc::ATTR_KIND_SANITIZE_HWADDRESS: 2141 return Attribute::SanitizeHWAddress; 2142 case bitc::ATTR_KIND_SANITIZE_THREAD: 2143 return Attribute::SanitizeThread; 2144 case bitc::ATTR_KIND_SANITIZE_MEMORY: 2145 return Attribute::SanitizeMemory; 2146 case bitc::ATTR_KIND_SANITIZE_NUMERICAL_STABILITY: 2147 return Attribute::SanitizeNumericalStability; 2148 case bitc::ATTR_KIND_SANITIZE_REALTIME: 2149 return Attribute::SanitizeRealtime; 2150 case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING: 2151 return Attribute::SpeculativeLoadHardening; 2152 case bitc::ATTR_KIND_SWIFT_ERROR: 2153 return Attribute::SwiftError; 2154 case bitc::ATTR_KIND_SWIFT_SELF: 2155 return Attribute::SwiftSelf; 2156 case bitc::ATTR_KIND_SWIFT_ASYNC: 2157 return Attribute::SwiftAsync; 2158 case bitc::ATTR_KIND_UW_TABLE: 2159 return Attribute::UWTable; 2160 case bitc::ATTR_KIND_VSCALE_RANGE: 2161 return Attribute::VScaleRange; 2162 case bitc::ATTR_KIND_WILLRETURN: 2163 return Attribute::WillReturn; 2164 case bitc::ATTR_KIND_WRITEONLY: 2165 return Attribute::WriteOnly; 2166 case bitc::ATTR_KIND_Z_EXT: 2167 return Attribute::ZExt; 2168 case bitc::ATTR_KIND_IMMARG: 2169 return Attribute::ImmArg; 2170 case bitc::ATTR_KIND_SANITIZE_MEMTAG: 2171 return Attribute::SanitizeMemTag; 2172 case bitc::ATTR_KIND_PREALLOCATED: 2173 return Attribute::Preallocated; 2174 case bitc::ATTR_KIND_NOUNDEF: 2175 return Attribute::NoUndef; 2176 case bitc::ATTR_KIND_BYREF: 2177 return Attribute::ByRef; 2178 case bitc::ATTR_KIND_MUSTPROGRESS: 2179 return Attribute::MustProgress; 2180 case bitc::ATTR_KIND_HOT: 2181 return Attribute::Hot; 2182 case bitc::ATTR_KIND_PRESPLIT_COROUTINE: 2183 return Attribute::PresplitCoroutine; 2184 case bitc::ATTR_KIND_WRITABLE: 2185 return Attribute::Writable; 2186 case bitc::ATTR_KIND_CORO_ONLY_DESTROY_WHEN_COMPLETE: 2187 return Attribute::CoroDestroyOnlyWhenComplete; 2188 case bitc::ATTR_KIND_DEAD_ON_UNWIND: 2189 return Attribute::DeadOnUnwind; 2190 case bitc::ATTR_KIND_RANGE: 2191 return Attribute::Range; 2192 case bitc::ATTR_KIND_INITIALIZES: 2193 return Attribute::Initializes; 2194 } 2195 } 2196 2197 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent, 2198 MaybeAlign &Alignment) { 2199 // Note: Alignment in bitcode files is incremented by 1, so that zero 2200 // can be used for default alignment. 2201 if (Exponent > Value::MaxAlignmentExponent + 1) 2202 return error("Invalid alignment value"); 2203 Alignment = decodeMaybeAlign(Exponent); 2204 return Error::success(); 2205 } 2206 2207 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) { 2208 *Kind = getAttrFromCode(Code); 2209 if (*Kind == Attribute::None) 2210 return error("Unknown attribute kind (" + Twine(Code) + ")"); 2211 return Error::success(); 2212 } 2213 2214 static bool upgradeOldMemoryAttribute(MemoryEffects &ME, uint64_t EncodedKind) { 2215 switch (EncodedKind) { 2216 case bitc::ATTR_KIND_READ_NONE: 2217 ME &= MemoryEffects::none(); 2218 return true; 2219 case bitc::ATTR_KIND_READ_ONLY: 2220 ME &= MemoryEffects::readOnly(); 2221 return true; 2222 case bitc::ATTR_KIND_WRITEONLY: 2223 ME &= MemoryEffects::writeOnly(); 2224 return true; 2225 case bitc::ATTR_KIND_ARGMEMONLY: 2226 ME &= MemoryEffects::argMemOnly(); 2227 return true; 2228 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 2229 ME &= MemoryEffects::inaccessibleMemOnly(); 2230 return true; 2231 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 2232 ME &= MemoryEffects::inaccessibleOrArgMemOnly(); 2233 return true; 2234 default: 2235 return false; 2236 } 2237 } 2238 2239 Error BitcodeReader::parseAttributeGroupBlock() { 2240 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 2241 return Err; 2242 2243 if (!MAttributeGroups.empty()) 2244 return error("Invalid multiple blocks"); 2245 2246 SmallVector<uint64_t, 64> Record; 2247 2248 // Read all the records. 2249 while (true) { 2250 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2251 if (!MaybeEntry) 2252 return MaybeEntry.takeError(); 2253 BitstreamEntry Entry = MaybeEntry.get(); 2254 2255 switch (Entry.Kind) { 2256 case BitstreamEntry::SubBlock: // Handled for us already. 2257 case BitstreamEntry::Error: 2258 return error("Malformed block"); 2259 case BitstreamEntry::EndBlock: 2260 return Error::success(); 2261 case BitstreamEntry::Record: 2262 // The interesting case. 2263 break; 2264 } 2265 2266 // Read a record. 2267 Record.clear(); 2268 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2269 if (!MaybeRecord) 2270 return MaybeRecord.takeError(); 2271 switch (MaybeRecord.get()) { 2272 default: // Default behavior: ignore. 2273 break; 2274 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 2275 if (Record.size() < 3) 2276 return error("Invalid grp record"); 2277 2278 uint64_t GrpID = Record[0]; 2279 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 2280 2281 AttrBuilder B(Context); 2282 MemoryEffects ME = MemoryEffects::unknown(); 2283 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 2284 if (Record[i] == 0) { // Enum attribute 2285 Attribute::AttrKind Kind; 2286 uint64_t EncodedKind = Record[++i]; 2287 if (Idx == AttributeList::FunctionIndex && 2288 upgradeOldMemoryAttribute(ME, EncodedKind)) 2289 continue; 2290 2291 if (Error Err = parseAttrKind(EncodedKind, &Kind)) 2292 return Err; 2293 2294 // Upgrade old-style byval attribute to one with a type, even if it's 2295 // nullptr. We will have to insert the real type when we associate 2296 // this AttributeList with a function. 2297 if (Kind == Attribute::ByVal) 2298 B.addByValAttr(nullptr); 2299 else if (Kind == Attribute::StructRet) 2300 B.addStructRetAttr(nullptr); 2301 else if (Kind == Attribute::InAlloca) 2302 B.addInAllocaAttr(nullptr); 2303 else if (Kind == Attribute::UWTable) 2304 B.addUWTableAttr(UWTableKind::Default); 2305 else if (Attribute::isEnumAttrKind(Kind)) 2306 B.addAttribute(Kind); 2307 else 2308 return error("Not an enum attribute"); 2309 } else if (Record[i] == 1) { // Integer attribute 2310 Attribute::AttrKind Kind; 2311 if (Error Err = parseAttrKind(Record[++i], &Kind)) 2312 return Err; 2313 if (!Attribute::isIntAttrKind(Kind)) 2314 return error("Not an int attribute"); 2315 if (Kind == Attribute::Alignment) 2316 B.addAlignmentAttr(Record[++i]); 2317 else if (Kind == Attribute::StackAlignment) 2318 B.addStackAlignmentAttr(Record[++i]); 2319 else if (Kind == Attribute::Dereferenceable) 2320 B.addDereferenceableAttr(Record[++i]); 2321 else if (Kind == Attribute::DereferenceableOrNull) 2322 B.addDereferenceableOrNullAttr(Record[++i]); 2323 else if (Kind == Attribute::AllocSize) 2324 B.addAllocSizeAttrFromRawRepr(Record[++i]); 2325 else if (Kind == Attribute::VScaleRange) 2326 B.addVScaleRangeAttrFromRawRepr(Record[++i]); 2327 else if (Kind == Attribute::UWTable) 2328 B.addUWTableAttr(UWTableKind(Record[++i])); 2329 else if (Kind == Attribute::AllocKind) 2330 B.addAllocKindAttr(static_cast<AllocFnKind>(Record[++i])); 2331 else if (Kind == Attribute::Memory) 2332 B.addMemoryAttr(MemoryEffects::createFromIntValue(Record[++i])); 2333 else if (Kind == Attribute::NoFPClass) 2334 B.addNoFPClassAttr( 2335 static_cast<FPClassTest>(Record[++i] & fcAllFlags)); 2336 } else if (Record[i] == 3 || Record[i] == 4) { // String attribute 2337 bool HasValue = (Record[i++] == 4); 2338 SmallString<64> KindStr; 2339 SmallString<64> ValStr; 2340 2341 while (Record[i] != 0 && i != e) 2342 KindStr += Record[i++]; 2343 assert(Record[i] == 0 && "Kind string not null terminated"); 2344 2345 if (HasValue) { 2346 // Has a value associated with it. 2347 ++i; // Skip the '0' that terminates the "kind" string. 2348 while (Record[i] != 0 && i != e) 2349 ValStr += Record[i++]; 2350 assert(Record[i] == 0 && "Value string not null terminated"); 2351 } 2352 2353 B.addAttribute(KindStr.str(), ValStr.str()); 2354 } else if (Record[i] == 5 || Record[i] == 6) { 2355 bool HasType = Record[i] == 6; 2356 Attribute::AttrKind Kind; 2357 if (Error Err = parseAttrKind(Record[++i], &Kind)) 2358 return Err; 2359 if (!Attribute::isTypeAttrKind(Kind)) 2360 return error("Not a type attribute"); 2361 2362 B.addTypeAttr(Kind, HasType ? getTypeByID(Record[++i]) : nullptr); 2363 } else if (Record[i] == 7) { 2364 Attribute::AttrKind Kind; 2365 2366 i++; 2367 if (Error Err = parseAttrKind(Record[i++], &Kind)) 2368 return Err; 2369 if (!Attribute::isConstantRangeAttrKind(Kind)) 2370 return error("Not a ConstantRange attribute"); 2371 2372 Expected<ConstantRange> MaybeCR = 2373 readBitWidthAndConstantRange(Record, i); 2374 if (!MaybeCR) 2375 return MaybeCR.takeError(); 2376 i--; 2377 2378 B.addConstantRangeAttr(Kind, MaybeCR.get()); 2379 } else if (Record[i] == 8) { 2380 Attribute::AttrKind Kind; 2381 2382 i++; 2383 if (Error Err = parseAttrKind(Record[i++], &Kind)) 2384 return Err; 2385 if (!Attribute::isConstantRangeListAttrKind(Kind)) 2386 return error("Not a constant range list attribute"); 2387 2388 SmallVector<ConstantRange, 2> Val; 2389 if (i + 2 > e) 2390 return error("Too few records for constant range list"); 2391 unsigned RangeSize = Record[i++]; 2392 unsigned BitWidth = Record[i++]; 2393 for (unsigned Idx = 0; Idx < RangeSize; ++Idx) { 2394 Expected<ConstantRange> MaybeCR = 2395 readConstantRange(Record, i, BitWidth); 2396 if (!MaybeCR) 2397 return MaybeCR.takeError(); 2398 Val.push_back(MaybeCR.get()); 2399 } 2400 i--; 2401 2402 if (!ConstantRangeList::isOrderedRanges(Val)) 2403 return error("Invalid (unordered or overlapping) range list"); 2404 B.addConstantRangeListAttr(Kind, Val); 2405 } else { 2406 return error("Invalid attribute group entry"); 2407 } 2408 } 2409 2410 if (ME != MemoryEffects::unknown()) 2411 B.addMemoryAttr(ME); 2412 2413 UpgradeAttributes(B); 2414 MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B); 2415 break; 2416 } 2417 } 2418 } 2419 } 2420 2421 Error BitcodeReader::parseTypeTable() { 2422 if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 2423 return Err; 2424 2425 return parseTypeTableBody(); 2426 } 2427 2428 Error BitcodeReader::parseTypeTableBody() { 2429 if (!TypeList.empty()) 2430 return error("Invalid multiple blocks"); 2431 2432 SmallVector<uint64_t, 64> Record; 2433 unsigned NumRecords = 0; 2434 2435 SmallString<64> TypeName; 2436 2437 // Read all the records for this type table. 2438 while (true) { 2439 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2440 if (!MaybeEntry) 2441 return MaybeEntry.takeError(); 2442 BitstreamEntry Entry = MaybeEntry.get(); 2443 2444 switch (Entry.Kind) { 2445 case BitstreamEntry::SubBlock: // Handled for us already. 2446 case BitstreamEntry::Error: 2447 return error("Malformed block"); 2448 case BitstreamEntry::EndBlock: 2449 if (NumRecords != TypeList.size()) 2450 return error("Malformed block"); 2451 return Error::success(); 2452 case BitstreamEntry::Record: 2453 // The interesting case. 2454 break; 2455 } 2456 2457 // Read a record. 2458 Record.clear(); 2459 Type *ResultTy = nullptr; 2460 SmallVector<unsigned> ContainedIDs; 2461 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2462 if (!MaybeRecord) 2463 return MaybeRecord.takeError(); 2464 switch (MaybeRecord.get()) { 2465 default: 2466 return error("Invalid value"); 2467 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 2468 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 2469 // type list. This allows us to reserve space. 2470 if (Record.empty()) 2471 return error("Invalid numentry record"); 2472 TypeList.resize(Record[0]); 2473 continue; 2474 case bitc::TYPE_CODE_VOID: // VOID 2475 ResultTy = Type::getVoidTy(Context); 2476 break; 2477 case bitc::TYPE_CODE_HALF: // HALF 2478 ResultTy = Type::getHalfTy(Context); 2479 break; 2480 case bitc::TYPE_CODE_BFLOAT: // BFLOAT 2481 ResultTy = Type::getBFloatTy(Context); 2482 break; 2483 case bitc::TYPE_CODE_FLOAT: // FLOAT 2484 ResultTy = Type::getFloatTy(Context); 2485 break; 2486 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 2487 ResultTy = Type::getDoubleTy(Context); 2488 break; 2489 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 2490 ResultTy = Type::getX86_FP80Ty(Context); 2491 break; 2492 case bitc::TYPE_CODE_FP128: // FP128 2493 ResultTy = Type::getFP128Ty(Context); 2494 break; 2495 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 2496 ResultTy = Type::getPPC_FP128Ty(Context); 2497 break; 2498 case bitc::TYPE_CODE_LABEL: // LABEL 2499 ResultTy = Type::getLabelTy(Context); 2500 break; 2501 case bitc::TYPE_CODE_METADATA: // METADATA 2502 ResultTy = Type::getMetadataTy(Context); 2503 break; 2504 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 2505 // Deprecated: decodes as <1 x i64> 2506 ResultTy = 2507 llvm::FixedVectorType::get(llvm::IntegerType::get(Context, 64), 1); 2508 break; 2509 case bitc::TYPE_CODE_X86_AMX: // X86_AMX 2510 ResultTy = Type::getX86_AMXTy(Context); 2511 break; 2512 case bitc::TYPE_CODE_TOKEN: // TOKEN 2513 ResultTy = Type::getTokenTy(Context); 2514 break; 2515 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 2516 if (Record.empty()) 2517 return error("Invalid integer record"); 2518 2519 uint64_t NumBits = Record[0]; 2520 if (NumBits < IntegerType::MIN_INT_BITS || 2521 NumBits > IntegerType::MAX_INT_BITS) 2522 return error("Bitwidth for integer type out of range"); 2523 ResultTy = IntegerType::get(Context, NumBits); 2524 break; 2525 } 2526 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 2527 // [pointee type, address space] 2528 if (Record.empty()) 2529 return error("Invalid pointer record"); 2530 unsigned AddressSpace = 0; 2531 if (Record.size() == 2) 2532 AddressSpace = Record[1]; 2533 ResultTy = getTypeByID(Record[0]); 2534 if (!ResultTy || 2535 !PointerType::isValidElementType(ResultTy)) 2536 return error("Invalid type"); 2537 ContainedIDs.push_back(Record[0]); 2538 ResultTy = PointerType::get(ResultTy, AddressSpace); 2539 break; 2540 } 2541 case bitc::TYPE_CODE_OPAQUE_POINTER: { // OPAQUE_POINTER: [addrspace] 2542 if (Record.size() != 1) 2543 return error("Invalid opaque pointer record"); 2544 unsigned AddressSpace = Record[0]; 2545 ResultTy = PointerType::get(Context, AddressSpace); 2546 break; 2547 } 2548 case bitc::TYPE_CODE_FUNCTION_OLD: { 2549 // Deprecated, but still needed to read old bitcode files. 2550 // FUNCTION: [vararg, attrid, retty, paramty x N] 2551 if (Record.size() < 3) 2552 return error("Invalid function record"); 2553 SmallVector<Type*, 8> ArgTys; 2554 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 2555 if (Type *T = getTypeByID(Record[i])) 2556 ArgTys.push_back(T); 2557 else 2558 break; 2559 } 2560 2561 ResultTy = getTypeByID(Record[2]); 2562 if (!ResultTy || ArgTys.size() < Record.size()-3) 2563 return error("Invalid type"); 2564 2565 ContainedIDs.append(Record.begin() + 2, Record.end()); 2566 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 2567 break; 2568 } 2569 case bitc::TYPE_CODE_FUNCTION: { 2570 // FUNCTION: [vararg, retty, paramty x N] 2571 if (Record.size() < 2) 2572 return error("Invalid function record"); 2573 SmallVector<Type*, 8> ArgTys; 2574 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 2575 if (Type *T = getTypeByID(Record[i])) { 2576 if (!FunctionType::isValidArgumentType(T)) 2577 return error("Invalid function argument type"); 2578 ArgTys.push_back(T); 2579 } 2580 else 2581 break; 2582 } 2583 2584 ResultTy = getTypeByID(Record[1]); 2585 if (!ResultTy || ArgTys.size() < Record.size()-2) 2586 return error("Invalid type"); 2587 2588 ContainedIDs.append(Record.begin() + 1, Record.end()); 2589 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 2590 break; 2591 } 2592 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 2593 if (Record.empty()) 2594 return error("Invalid anon struct record"); 2595 SmallVector<Type*, 8> EltTys; 2596 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 2597 if (Type *T = getTypeByID(Record[i])) 2598 EltTys.push_back(T); 2599 else 2600 break; 2601 } 2602 if (EltTys.size() != Record.size()-1) 2603 return error("Invalid type"); 2604 ContainedIDs.append(Record.begin() + 1, Record.end()); 2605 ResultTy = StructType::get(Context, EltTys, Record[0]); 2606 break; 2607 } 2608 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 2609 if (convertToString(Record, 0, TypeName)) 2610 return error("Invalid struct name record"); 2611 continue; 2612 2613 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 2614 if (Record.empty()) 2615 return error("Invalid named struct record"); 2616 2617 if (NumRecords >= TypeList.size()) 2618 return error("Invalid TYPE table"); 2619 2620 // Check to see if this was forward referenced, if so fill in the temp. 2621 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 2622 if (Res) { 2623 Res->setName(TypeName); 2624 TypeList[NumRecords] = nullptr; 2625 } else // Otherwise, create a new struct. 2626 Res = createIdentifiedStructType(Context, TypeName); 2627 TypeName.clear(); 2628 2629 SmallVector<Type*, 8> EltTys; 2630 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 2631 if (Type *T = getTypeByID(Record[i])) 2632 EltTys.push_back(T); 2633 else 2634 break; 2635 } 2636 if (EltTys.size() != Record.size()-1) 2637 return error("Invalid named struct record"); 2638 Res->setBody(EltTys, Record[0]); 2639 ContainedIDs.append(Record.begin() + 1, Record.end()); 2640 ResultTy = Res; 2641 break; 2642 } 2643 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 2644 if (Record.size() != 1) 2645 return error("Invalid opaque type record"); 2646 2647 if (NumRecords >= TypeList.size()) 2648 return error("Invalid TYPE table"); 2649 2650 // Check to see if this was forward referenced, if so fill in the temp. 2651 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 2652 if (Res) { 2653 Res->setName(TypeName); 2654 TypeList[NumRecords] = nullptr; 2655 } else // Otherwise, create a new struct with no body. 2656 Res = createIdentifiedStructType(Context, TypeName); 2657 TypeName.clear(); 2658 ResultTy = Res; 2659 break; 2660 } 2661 case bitc::TYPE_CODE_TARGET_TYPE: { // TARGET_TYPE: [NumTy, Tys..., Ints...] 2662 if (Record.size() < 1) 2663 return error("Invalid target extension type record"); 2664 2665 if (NumRecords >= TypeList.size()) 2666 return error("Invalid TYPE table"); 2667 2668 if (Record[0] >= Record.size()) 2669 return error("Too many type parameters"); 2670 2671 unsigned NumTys = Record[0]; 2672 SmallVector<Type *, 4> TypeParams; 2673 SmallVector<unsigned, 8> IntParams; 2674 for (unsigned i = 0; i < NumTys; i++) { 2675 if (Type *T = getTypeByID(Record[i + 1])) 2676 TypeParams.push_back(T); 2677 else 2678 return error("Invalid type"); 2679 } 2680 2681 for (unsigned i = NumTys + 1, e = Record.size(); i < e; i++) { 2682 if (Record[i] > UINT_MAX) 2683 return error("Integer parameter too large"); 2684 IntParams.push_back(Record[i]); 2685 } 2686 auto TTy = 2687 TargetExtType::getOrError(Context, TypeName, TypeParams, IntParams); 2688 if (auto E = TTy.takeError()) 2689 return E; 2690 ResultTy = *TTy; 2691 TypeName.clear(); 2692 break; 2693 } 2694 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 2695 if (Record.size() < 2) 2696 return error("Invalid array type record"); 2697 ResultTy = getTypeByID(Record[1]); 2698 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 2699 return error("Invalid type"); 2700 ContainedIDs.push_back(Record[1]); 2701 ResultTy = ArrayType::get(ResultTy, Record[0]); 2702 break; 2703 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] or 2704 // [numelts, eltty, scalable] 2705 if (Record.size() < 2) 2706 return error("Invalid vector type record"); 2707 if (Record[0] == 0) 2708 return error("Invalid vector length"); 2709 ResultTy = getTypeByID(Record[1]); 2710 if (!ResultTy || !VectorType::isValidElementType(ResultTy)) 2711 return error("Invalid type"); 2712 bool Scalable = Record.size() > 2 ? Record[2] : false; 2713 ContainedIDs.push_back(Record[1]); 2714 ResultTy = VectorType::get(ResultTy, Record[0], Scalable); 2715 break; 2716 } 2717 2718 if (NumRecords >= TypeList.size()) 2719 return error("Invalid TYPE table"); 2720 if (TypeList[NumRecords]) 2721 return error( 2722 "Invalid TYPE table: Only named structs can be forward referenced"); 2723 assert(ResultTy && "Didn't read a type?"); 2724 TypeList[NumRecords] = ResultTy; 2725 if (!ContainedIDs.empty()) 2726 ContainedTypeIDs[NumRecords] = std::move(ContainedIDs); 2727 ++NumRecords; 2728 } 2729 } 2730 2731 Error BitcodeReader::parseOperandBundleTags() { 2732 if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 2733 return Err; 2734 2735 if (!BundleTags.empty()) 2736 return error("Invalid multiple blocks"); 2737 2738 SmallVector<uint64_t, 64> Record; 2739 2740 while (true) { 2741 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2742 if (!MaybeEntry) 2743 return MaybeEntry.takeError(); 2744 BitstreamEntry Entry = MaybeEntry.get(); 2745 2746 switch (Entry.Kind) { 2747 case BitstreamEntry::SubBlock: // Handled for us already. 2748 case BitstreamEntry::Error: 2749 return error("Malformed block"); 2750 case BitstreamEntry::EndBlock: 2751 return Error::success(); 2752 case BitstreamEntry::Record: 2753 // The interesting case. 2754 break; 2755 } 2756 2757 // Tags are implicitly mapped to integers by their order. 2758 2759 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2760 if (!MaybeRecord) 2761 return MaybeRecord.takeError(); 2762 if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG) 2763 return error("Invalid operand bundle record"); 2764 2765 // OPERAND_BUNDLE_TAG: [strchr x N] 2766 BundleTags.emplace_back(); 2767 if (convertToString(Record, 0, BundleTags.back())) 2768 return error("Invalid operand bundle record"); 2769 Record.clear(); 2770 } 2771 } 2772 2773 Error BitcodeReader::parseSyncScopeNames() { 2774 if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID)) 2775 return Err; 2776 2777 if (!SSIDs.empty()) 2778 return error("Invalid multiple synchronization scope names blocks"); 2779 2780 SmallVector<uint64_t, 64> Record; 2781 while (true) { 2782 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2783 if (!MaybeEntry) 2784 return MaybeEntry.takeError(); 2785 BitstreamEntry Entry = MaybeEntry.get(); 2786 2787 switch (Entry.Kind) { 2788 case BitstreamEntry::SubBlock: // Handled for us already. 2789 case BitstreamEntry::Error: 2790 return error("Malformed block"); 2791 case BitstreamEntry::EndBlock: 2792 if (SSIDs.empty()) 2793 return error("Invalid empty synchronization scope names block"); 2794 return Error::success(); 2795 case BitstreamEntry::Record: 2796 // The interesting case. 2797 break; 2798 } 2799 2800 // Synchronization scope names are implicitly mapped to synchronization 2801 // scope IDs by their order. 2802 2803 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2804 if (!MaybeRecord) 2805 return MaybeRecord.takeError(); 2806 if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME) 2807 return error("Invalid sync scope record"); 2808 2809 SmallString<16> SSN; 2810 if (convertToString(Record, 0, SSN)) 2811 return error("Invalid sync scope record"); 2812 2813 SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN)); 2814 Record.clear(); 2815 } 2816 } 2817 2818 /// Associate a value with its name from the given index in the provided record. 2819 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 2820 unsigned NameIndex, Triple &TT) { 2821 SmallString<128> ValueName; 2822 if (convertToString(Record, NameIndex, ValueName)) 2823 return error("Invalid record"); 2824 unsigned ValueID = Record[0]; 2825 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 2826 return error("Invalid record"); 2827 Value *V = ValueList[ValueID]; 2828 2829 StringRef NameStr(ValueName.data(), ValueName.size()); 2830 if (NameStr.contains(0)) 2831 return error("Invalid value name"); 2832 V->setName(NameStr); 2833 auto *GO = dyn_cast<GlobalObject>(V); 2834 if (GO && ImplicitComdatObjects.contains(GO) && TT.supportsCOMDAT()) 2835 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 2836 return V; 2837 } 2838 2839 /// Helper to note and return the current location, and jump to the given 2840 /// offset. 2841 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset, 2842 BitstreamCursor &Stream) { 2843 // Save the current parsing location so we can jump back at the end 2844 // of the VST read. 2845 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 2846 if (Error JumpFailed = Stream.JumpToBit(Offset * 32)) 2847 return std::move(JumpFailed); 2848 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 2849 if (!MaybeEntry) 2850 return MaybeEntry.takeError(); 2851 if (MaybeEntry.get().Kind != BitstreamEntry::SubBlock || 2852 MaybeEntry.get().ID != bitc::VALUE_SYMTAB_BLOCK_ID) 2853 return error("Expected value symbol table subblock"); 2854 return CurrentBit; 2855 } 2856 2857 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, 2858 Function *F, 2859 ArrayRef<uint64_t> Record) { 2860 // Note that we subtract 1 here because the offset is relative to one word 2861 // before the start of the identification or module block, which was 2862 // historically always the start of the regular bitcode header. 2863 uint64_t FuncWordOffset = Record[1] - 1; 2864 uint64_t FuncBitOffset = FuncWordOffset * 32; 2865 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 2866 // Set the LastFunctionBlockBit to point to the last function block. 2867 // Later when parsing is resumed after function materialization, 2868 // we can simply skip that last function block. 2869 if (FuncBitOffset > LastFunctionBlockBit) 2870 LastFunctionBlockBit = FuncBitOffset; 2871 } 2872 2873 /// Read a new-style GlobalValue symbol table. 2874 Error BitcodeReader::parseGlobalValueSymbolTable() { 2875 unsigned FuncBitcodeOffsetDelta = 2876 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2877 2878 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2879 return Err; 2880 2881 SmallVector<uint64_t, 64> Record; 2882 while (true) { 2883 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2884 if (!MaybeEntry) 2885 return MaybeEntry.takeError(); 2886 BitstreamEntry Entry = MaybeEntry.get(); 2887 2888 switch (Entry.Kind) { 2889 case BitstreamEntry::SubBlock: 2890 case BitstreamEntry::Error: 2891 return error("Malformed block"); 2892 case BitstreamEntry::EndBlock: 2893 return Error::success(); 2894 case BitstreamEntry::Record: 2895 break; 2896 } 2897 2898 Record.clear(); 2899 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2900 if (!MaybeRecord) 2901 return MaybeRecord.takeError(); 2902 switch (MaybeRecord.get()) { 2903 case bitc::VST_CODE_FNENTRY: { // [valueid, offset] 2904 unsigned ValueID = Record[0]; 2905 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 2906 return error("Invalid value reference in symbol table"); 2907 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, 2908 cast<Function>(ValueList[ValueID]), Record); 2909 break; 2910 } 2911 } 2912 } 2913 } 2914 2915 /// Parse the value symbol table at either the current parsing location or 2916 /// at the given bit offset if provided. 2917 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 2918 uint64_t CurrentBit; 2919 // Pass in the Offset to distinguish between calling for the module-level 2920 // VST (where we want to jump to the VST offset) and the function-level 2921 // VST (where we don't). 2922 if (Offset > 0) { 2923 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 2924 if (!MaybeCurrentBit) 2925 return MaybeCurrentBit.takeError(); 2926 CurrentBit = MaybeCurrentBit.get(); 2927 // If this module uses a string table, read this as a module-level VST. 2928 if (UseStrtab) { 2929 if (Error Err = parseGlobalValueSymbolTable()) 2930 return Err; 2931 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2932 return JumpFailed; 2933 return Error::success(); 2934 } 2935 // Otherwise, the VST will be in a similar format to a function-level VST, 2936 // and will contain symbol names. 2937 } 2938 2939 // Compute the delta between the bitcode indices in the VST (the word offset 2940 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 2941 // expected by the lazy reader. The reader's EnterSubBlock expects to have 2942 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 2943 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 2944 // just before entering the VST subblock because: 1) the EnterSubBlock 2945 // changes the AbbrevID width; 2) the VST block is nested within the same 2946 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 2947 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 2948 // jump to the FUNCTION_BLOCK using this offset later, we don't want 2949 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 2950 unsigned FuncBitcodeOffsetDelta = 2951 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2952 2953 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2954 return Err; 2955 2956 SmallVector<uint64_t, 64> Record; 2957 2958 Triple TT(TheModule->getTargetTriple()); 2959 2960 // Read all the records for this value table. 2961 SmallString<128> ValueName; 2962 2963 while (true) { 2964 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2965 if (!MaybeEntry) 2966 return MaybeEntry.takeError(); 2967 BitstreamEntry Entry = MaybeEntry.get(); 2968 2969 switch (Entry.Kind) { 2970 case BitstreamEntry::SubBlock: // Handled for us already. 2971 case BitstreamEntry::Error: 2972 return error("Malformed block"); 2973 case BitstreamEntry::EndBlock: 2974 if (Offset > 0) 2975 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2976 return JumpFailed; 2977 return Error::success(); 2978 case BitstreamEntry::Record: 2979 // The interesting case. 2980 break; 2981 } 2982 2983 // Read a record. 2984 Record.clear(); 2985 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2986 if (!MaybeRecord) 2987 return MaybeRecord.takeError(); 2988 switch (MaybeRecord.get()) { 2989 default: // Default behavior: unknown type. 2990 break; 2991 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 2992 Expected<Value *> ValOrErr = recordValue(Record, 1, TT); 2993 if (Error Err = ValOrErr.takeError()) 2994 return Err; 2995 ValOrErr.get(); 2996 break; 2997 } 2998 case bitc::VST_CODE_FNENTRY: { 2999 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 3000 Expected<Value *> ValOrErr = recordValue(Record, 2, TT); 3001 if (Error Err = ValOrErr.takeError()) 3002 return Err; 3003 Value *V = ValOrErr.get(); 3004 3005 // Ignore function offsets emitted for aliases of functions in older 3006 // versions of LLVM. 3007 if (auto *F = dyn_cast<Function>(V)) 3008 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record); 3009 break; 3010 } 3011 case bitc::VST_CODE_BBENTRY: { 3012 if (convertToString(Record, 1, ValueName)) 3013 return error("Invalid bbentry record"); 3014 BasicBlock *BB = getBasicBlock(Record[0]); 3015 if (!BB) 3016 return error("Invalid bbentry record"); 3017 3018 BB->setName(ValueName.str()); 3019 ValueName.clear(); 3020 break; 3021 } 3022 } 3023 } 3024 } 3025 3026 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 3027 /// encoding. 3028 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 3029 if ((V & 1) == 0) 3030 return V >> 1; 3031 if (V != 1) 3032 return -(V >> 1); 3033 // There is no such thing as -0 with integers. "-0" really means MININT. 3034 return 1ULL << 63; 3035 } 3036 3037 /// Resolve all of the initializers for global values and aliases that we can. 3038 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 3039 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist; 3040 std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInitWorklist; 3041 std::vector<FunctionOperandInfo> FunctionOperandWorklist; 3042 3043 GlobalInitWorklist.swap(GlobalInits); 3044 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 3045 FunctionOperandWorklist.swap(FunctionOperands); 3046 3047 while (!GlobalInitWorklist.empty()) { 3048 unsigned ValID = GlobalInitWorklist.back().second; 3049 if (ValID >= ValueList.size()) { 3050 // Not ready to resolve this yet, it requires something later in the file. 3051 GlobalInits.push_back(GlobalInitWorklist.back()); 3052 } else { 3053 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 3054 if (!MaybeC) 3055 return MaybeC.takeError(); 3056 GlobalInitWorklist.back().first->setInitializer(MaybeC.get()); 3057 } 3058 GlobalInitWorklist.pop_back(); 3059 } 3060 3061 while (!IndirectSymbolInitWorklist.empty()) { 3062 unsigned ValID = IndirectSymbolInitWorklist.back().second; 3063 if (ValID >= ValueList.size()) { 3064 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 3065 } else { 3066 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 3067 if (!MaybeC) 3068 return MaybeC.takeError(); 3069 Constant *C = MaybeC.get(); 3070 GlobalValue *GV = IndirectSymbolInitWorklist.back().first; 3071 if (auto *GA = dyn_cast<GlobalAlias>(GV)) { 3072 if (C->getType() != GV->getType()) 3073 return error("Alias and aliasee types don't match"); 3074 GA->setAliasee(C); 3075 } else if (auto *GI = dyn_cast<GlobalIFunc>(GV)) { 3076 GI->setResolver(C); 3077 } else { 3078 return error("Expected an alias or an ifunc"); 3079 } 3080 } 3081 IndirectSymbolInitWorklist.pop_back(); 3082 } 3083 3084 while (!FunctionOperandWorklist.empty()) { 3085 FunctionOperandInfo &Info = FunctionOperandWorklist.back(); 3086 if (Info.PersonalityFn) { 3087 unsigned ValID = Info.PersonalityFn - 1; 3088 if (ValID < ValueList.size()) { 3089 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 3090 if (!MaybeC) 3091 return MaybeC.takeError(); 3092 Info.F->setPersonalityFn(MaybeC.get()); 3093 Info.PersonalityFn = 0; 3094 } 3095 } 3096 if (Info.Prefix) { 3097 unsigned ValID = Info.Prefix - 1; 3098 if (ValID < ValueList.size()) { 3099 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 3100 if (!MaybeC) 3101 return MaybeC.takeError(); 3102 Info.F->setPrefixData(MaybeC.get()); 3103 Info.Prefix = 0; 3104 } 3105 } 3106 if (Info.Prologue) { 3107 unsigned ValID = Info.Prologue - 1; 3108 if (ValID < ValueList.size()) { 3109 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 3110 if (!MaybeC) 3111 return MaybeC.takeError(); 3112 Info.F->setPrologueData(MaybeC.get()); 3113 Info.Prologue = 0; 3114 } 3115 } 3116 if (Info.PersonalityFn || Info.Prefix || Info.Prologue) 3117 FunctionOperands.push_back(Info); 3118 FunctionOperandWorklist.pop_back(); 3119 } 3120 3121 return Error::success(); 3122 } 3123 3124 APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 3125 SmallVector<uint64_t, 8> Words(Vals.size()); 3126 transform(Vals, Words.begin(), 3127 BitcodeReader::decodeSignRotatedValue); 3128 3129 return APInt(TypeBits, Words); 3130 } 3131 3132 Error BitcodeReader::parseConstants() { 3133 if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 3134 return Err; 3135 3136 SmallVector<uint64_t, 64> Record; 3137 3138 // Read all the records for this value table. 3139 Type *CurTy = Type::getInt32Ty(Context); 3140 unsigned Int32TyID = getVirtualTypeID(CurTy); 3141 unsigned CurTyID = Int32TyID; 3142 Type *CurElemTy = nullptr; 3143 unsigned NextCstNo = ValueList.size(); 3144 3145 while (true) { 3146 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 3147 if (!MaybeEntry) 3148 return MaybeEntry.takeError(); 3149 BitstreamEntry Entry = MaybeEntry.get(); 3150 3151 switch (Entry.Kind) { 3152 case BitstreamEntry::SubBlock: // Handled for us already. 3153 case BitstreamEntry::Error: 3154 return error("Malformed block"); 3155 case BitstreamEntry::EndBlock: 3156 if (NextCstNo != ValueList.size()) 3157 return error("Invalid constant reference"); 3158 return Error::success(); 3159 case BitstreamEntry::Record: 3160 // The interesting case. 3161 break; 3162 } 3163 3164 // Read a record. 3165 Record.clear(); 3166 Type *VoidType = Type::getVoidTy(Context); 3167 Value *V = nullptr; 3168 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 3169 if (!MaybeBitCode) 3170 return MaybeBitCode.takeError(); 3171 switch (unsigned BitCode = MaybeBitCode.get()) { 3172 default: // Default behavior: unknown constant 3173 case bitc::CST_CODE_UNDEF: // UNDEF 3174 V = UndefValue::get(CurTy); 3175 break; 3176 case bitc::CST_CODE_POISON: // POISON 3177 V = PoisonValue::get(CurTy); 3178 break; 3179 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 3180 if (Record.empty()) 3181 return error("Invalid settype record"); 3182 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 3183 return error("Invalid settype record"); 3184 if (TypeList[Record[0]] == VoidType) 3185 return error("Invalid constant type"); 3186 CurTyID = Record[0]; 3187 CurTy = TypeList[CurTyID]; 3188 CurElemTy = getPtrElementTypeByID(CurTyID); 3189 continue; // Skip the ValueList manipulation. 3190 case bitc::CST_CODE_NULL: // NULL 3191 if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy()) 3192 return error("Invalid type for a constant null value"); 3193 if (auto *TETy = dyn_cast<TargetExtType>(CurTy)) 3194 if (!TETy->hasProperty(TargetExtType::HasZeroInit)) 3195 return error("Invalid type for a constant null value"); 3196 V = Constant::getNullValue(CurTy); 3197 break; 3198 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 3199 if (!CurTy->isIntOrIntVectorTy() || Record.empty()) 3200 return error("Invalid integer const record"); 3201 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 3202 break; 3203 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 3204 if (!CurTy->isIntOrIntVectorTy() || Record.empty()) 3205 return error("Invalid wide integer const record"); 3206 3207 auto *ScalarTy = cast<IntegerType>(CurTy->getScalarType()); 3208 APInt VInt = readWideAPInt(Record, ScalarTy->getBitWidth()); 3209 V = ConstantInt::get(CurTy, VInt); 3210 break; 3211 } 3212 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 3213 if (Record.empty()) 3214 return error("Invalid float const record"); 3215 3216 auto *ScalarTy = CurTy->getScalarType(); 3217 if (ScalarTy->isHalfTy()) 3218 V = ConstantFP::get(CurTy, APFloat(APFloat::IEEEhalf(), 3219 APInt(16, (uint16_t)Record[0]))); 3220 else if (ScalarTy->isBFloatTy()) 3221 V = ConstantFP::get( 3222 CurTy, APFloat(APFloat::BFloat(), APInt(16, (uint32_t)Record[0]))); 3223 else if (ScalarTy->isFloatTy()) 3224 V = ConstantFP::get(CurTy, APFloat(APFloat::IEEEsingle(), 3225 APInt(32, (uint32_t)Record[0]))); 3226 else if (ScalarTy->isDoubleTy()) 3227 V = ConstantFP::get( 3228 CurTy, APFloat(APFloat::IEEEdouble(), APInt(64, Record[0]))); 3229 else if (ScalarTy->isX86_FP80Ty()) { 3230 // Bits are not stored the same way as a normal i80 APInt, compensate. 3231 uint64_t Rearrange[2]; 3232 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 3233 Rearrange[1] = Record[0] >> 48; 3234 V = ConstantFP::get( 3235 CurTy, APFloat(APFloat::x87DoubleExtended(), APInt(80, Rearrange))); 3236 } else if (ScalarTy->isFP128Ty()) 3237 V = ConstantFP::get(CurTy, 3238 APFloat(APFloat::IEEEquad(), APInt(128, Record))); 3239 else if (ScalarTy->isPPC_FP128Ty()) 3240 V = ConstantFP::get( 3241 CurTy, APFloat(APFloat::PPCDoubleDouble(), APInt(128, Record))); 3242 else 3243 V = PoisonValue::get(CurTy); 3244 break; 3245 } 3246 3247 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 3248 if (Record.empty()) 3249 return error("Invalid aggregate record"); 3250 3251 unsigned Size = Record.size(); 3252 SmallVector<unsigned, 16> Elts; 3253 for (unsigned i = 0; i != Size; ++i) 3254 Elts.push_back(Record[i]); 3255 3256 if (isa<StructType>(CurTy)) { 3257 V = BitcodeConstant::create( 3258 Alloc, CurTy, BitcodeConstant::ConstantStructOpcode, Elts); 3259 } else if (isa<ArrayType>(CurTy)) { 3260 V = BitcodeConstant::create(Alloc, CurTy, 3261 BitcodeConstant::ConstantArrayOpcode, Elts); 3262 } else if (isa<VectorType>(CurTy)) { 3263 V = BitcodeConstant::create( 3264 Alloc, CurTy, BitcodeConstant::ConstantVectorOpcode, Elts); 3265 } else { 3266 V = PoisonValue::get(CurTy); 3267 } 3268 break; 3269 } 3270 case bitc::CST_CODE_STRING: // STRING: [values] 3271 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 3272 if (Record.empty()) 3273 return error("Invalid string record"); 3274 3275 SmallString<16> Elts(Record.begin(), Record.end()); 3276 V = ConstantDataArray::getString(Context, Elts, 3277 BitCode == bitc::CST_CODE_CSTRING); 3278 break; 3279 } 3280 case bitc::CST_CODE_DATA: {// DATA: [n x value] 3281 if (Record.empty()) 3282 return error("Invalid data record"); 3283 3284 Type *EltTy; 3285 if (auto *Array = dyn_cast<ArrayType>(CurTy)) 3286 EltTy = Array->getElementType(); 3287 else 3288 EltTy = cast<VectorType>(CurTy)->getElementType(); 3289 if (EltTy->isIntegerTy(8)) { 3290 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 3291 if (isa<VectorType>(CurTy)) 3292 V = ConstantDataVector::get(Context, Elts); 3293 else 3294 V = ConstantDataArray::get(Context, Elts); 3295 } else if (EltTy->isIntegerTy(16)) { 3296 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 3297 if (isa<VectorType>(CurTy)) 3298 V = ConstantDataVector::get(Context, Elts); 3299 else 3300 V = ConstantDataArray::get(Context, Elts); 3301 } else if (EltTy->isIntegerTy(32)) { 3302 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 3303 if (isa<VectorType>(CurTy)) 3304 V = ConstantDataVector::get(Context, Elts); 3305 else 3306 V = ConstantDataArray::get(Context, Elts); 3307 } else if (EltTy->isIntegerTy(64)) { 3308 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 3309 if (isa<VectorType>(CurTy)) 3310 V = ConstantDataVector::get(Context, Elts); 3311 else 3312 V = ConstantDataArray::get(Context, Elts); 3313 } else if (EltTy->isHalfTy()) { 3314 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 3315 if (isa<VectorType>(CurTy)) 3316 V = ConstantDataVector::getFP(EltTy, Elts); 3317 else 3318 V = ConstantDataArray::getFP(EltTy, Elts); 3319 } else if (EltTy->isBFloatTy()) { 3320 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 3321 if (isa<VectorType>(CurTy)) 3322 V = ConstantDataVector::getFP(EltTy, Elts); 3323 else 3324 V = ConstantDataArray::getFP(EltTy, Elts); 3325 } else if (EltTy->isFloatTy()) { 3326 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 3327 if (isa<VectorType>(CurTy)) 3328 V = ConstantDataVector::getFP(EltTy, Elts); 3329 else 3330 V = ConstantDataArray::getFP(EltTy, Elts); 3331 } else if (EltTy->isDoubleTy()) { 3332 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 3333 if (isa<VectorType>(CurTy)) 3334 V = ConstantDataVector::getFP(EltTy, Elts); 3335 else 3336 V = ConstantDataArray::getFP(EltTy, Elts); 3337 } else { 3338 return error("Invalid type for value"); 3339 } 3340 break; 3341 } 3342 case bitc::CST_CODE_CE_UNOP: { // CE_UNOP: [opcode, opval] 3343 if (Record.size() < 2) 3344 return error("Invalid unary op constexpr record"); 3345 int Opc = getDecodedUnaryOpcode(Record[0], CurTy); 3346 if (Opc < 0) { 3347 V = PoisonValue::get(CurTy); // Unknown unop. 3348 } else { 3349 V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[1]); 3350 } 3351 break; 3352 } 3353 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 3354 if (Record.size() < 3) 3355 return error("Invalid binary op constexpr record"); 3356 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 3357 if (Opc < 0) { 3358 V = PoisonValue::get(CurTy); // Unknown binop. 3359 } else { 3360 uint8_t Flags = 0; 3361 if (Record.size() >= 4) { 3362 if (Opc == Instruction::Add || 3363 Opc == Instruction::Sub || 3364 Opc == Instruction::Mul || 3365 Opc == Instruction::Shl) { 3366 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3367 Flags |= OverflowingBinaryOperator::NoSignedWrap; 3368 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3369 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 3370 } else if (Opc == Instruction::SDiv || 3371 Opc == Instruction::UDiv || 3372 Opc == Instruction::LShr || 3373 Opc == Instruction::AShr) { 3374 if (Record[3] & (1 << bitc::PEO_EXACT)) 3375 Flags |= PossiblyExactOperator::IsExact; 3376 } 3377 } 3378 V = BitcodeConstant::create(Alloc, CurTy, {(uint8_t)Opc, Flags}, 3379 {(unsigned)Record[1], (unsigned)Record[2]}); 3380 } 3381 break; 3382 } 3383 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 3384 if (Record.size() < 3) 3385 return error("Invalid cast constexpr record"); 3386 int Opc = getDecodedCastOpcode(Record[0]); 3387 if (Opc < 0) { 3388 V = PoisonValue::get(CurTy); // Unknown cast. 3389 } else { 3390 unsigned OpTyID = Record[1]; 3391 Type *OpTy = getTypeByID(OpTyID); 3392 if (!OpTy) 3393 return error("Invalid cast constexpr record"); 3394 V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[2]); 3395 } 3396 break; 3397 } 3398 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands] 3399 case bitc::CST_CODE_CE_GEP_OLD: // [ty, n x operands] 3400 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX_OLD: // [ty, flags, n x 3401 // operands] 3402 case bitc::CST_CODE_CE_GEP: // [ty, flags, n x operands] 3403 case bitc::CST_CODE_CE_GEP_WITH_INRANGE: { // [ty, flags, start, end, n x 3404 // operands] 3405 if (Record.size() < 2) 3406 return error("Constant GEP record must have at least two elements"); 3407 unsigned OpNum = 0; 3408 Type *PointeeType = nullptr; 3409 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX_OLD || 3410 BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE || 3411 BitCode == bitc::CST_CODE_CE_GEP || Record.size() % 2) 3412 PointeeType = getTypeByID(Record[OpNum++]); 3413 3414 uint64_t Flags = 0; 3415 std::optional<ConstantRange> InRange; 3416 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX_OLD) { 3417 uint64_t Op = Record[OpNum++]; 3418 Flags = Op & 1; // inbounds 3419 unsigned InRangeIndex = Op >> 1; 3420 // "Upgrade" inrange by dropping it. The feature is too niche to 3421 // bother. 3422 (void)InRangeIndex; 3423 } else if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE) { 3424 Flags = Record[OpNum++]; 3425 Expected<ConstantRange> MaybeInRange = 3426 readBitWidthAndConstantRange(Record, OpNum); 3427 if (!MaybeInRange) 3428 return MaybeInRange.takeError(); 3429 InRange = MaybeInRange.get(); 3430 } else if (BitCode == bitc::CST_CODE_CE_GEP) { 3431 Flags = Record[OpNum++]; 3432 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 3433 Flags = (1 << bitc::GEP_INBOUNDS); 3434 3435 SmallVector<unsigned, 16> Elts; 3436 unsigned BaseTypeID = Record[OpNum]; 3437 while (OpNum != Record.size()) { 3438 unsigned ElTyID = Record[OpNum++]; 3439 Type *ElTy = getTypeByID(ElTyID); 3440 if (!ElTy) 3441 return error("Invalid getelementptr constexpr record"); 3442 Elts.push_back(Record[OpNum++]); 3443 } 3444 3445 if (Elts.size() < 1) 3446 return error("Invalid gep with no operands"); 3447 3448 Type *BaseType = getTypeByID(BaseTypeID); 3449 if (isa<VectorType>(BaseType)) { 3450 BaseTypeID = getContainedTypeID(BaseTypeID, 0); 3451 BaseType = getTypeByID(BaseTypeID); 3452 } 3453 3454 PointerType *OrigPtrTy = dyn_cast_or_null<PointerType>(BaseType); 3455 if (!OrigPtrTy) 3456 return error("GEP base operand must be pointer or vector of pointer"); 3457 3458 if (!PointeeType) { 3459 PointeeType = getPtrElementTypeByID(BaseTypeID); 3460 if (!PointeeType) 3461 return error("Missing element type for old-style constant GEP"); 3462 } 3463 3464 V = BitcodeConstant::create( 3465 Alloc, CurTy, 3466 {Instruction::GetElementPtr, uint8_t(Flags), PointeeType, InRange}, 3467 Elts); 3468 break; 3469 } 3470 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 3471 if (Record.size() < 3) 3472 return error("Invalid select constexpr record"); 3473 3474 V = BitcodeConstant::create( 3475 Alloc, CurTy, Instruction::Select, 3476 {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]}); 3477 break; 3478 } 3479 case bitc::CST_CODE_CE_EXTRACTELT 3480 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 3481 if (Record.size() < 3) 3482 return error("Invalid extractelement constexpr record"); 3483 unsigned OpTyID = Record[0]; 3484 VectorType *OpTy = 3485 dyn_cast_or_null<VectorType>(getTypeByID(OpTyID)); 3486 if (!OpTy) 3487 return error("Invalid extractelement constexpr record"); 3488 unsigned IdxRecord; 3489 if (Record.size() == 4) { 3490 unsigned IdxTyID = Record[2]; 3491 Type *IdxTy = getTypeByID(IdxTyID); 3492 if (!IdxTy) 3493 return error("Invalid extractelement constexpr record"); 3494 IdxRecord = Record[3]; 3495 } else { 3496 // Deprecated, but still needed to read old bitcode files. 3497 IdxRecord = Record[2]; 3498 } 3499 V = BitcodeConstant::create(Alloc, CurTy, Instruction::ExtractElement, 3500 {(unsigned)Record[1], IdxRecord}); 3501 break; 3502 } 3503 case bitc::CST_CODE_CE_INSERTELT 3504 : { // CE_INSERTELT: [opval, opval, opty, opval] 3505 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 3506 if (Record.size() < 3 || !OpTy) 3507 return error("Invalid insertelement constexpr record"); 3508 unsigned IdxRecord; 3509 if (Record.size() == 4) { 3510 unsigned IdxTyID = Record[2]; 3511 Type *IdxTy = getTypeByID(IdxTyID); 3512 if (!IdxTy) 3513 return error("Invalid insertelement constexpr record"); 3514 IdxRecord = Record[3]; 3515 } else { 3516 // Deprecated, but still needed to read old bitcode files. 3517 IdxRecord = Record[2]; 3518 } 3519 V = BitcodeConstant::create( 3520 Alloc, CurTy, Instruction::InsertElement, 3521 {(unsigned)Record[0], (unsigned)Record[1], IdxRecord}); 3522 break; 3523 } 3524 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 3525 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 3526 if (Record.size() < 3 || !OpTy) 3527 return error("Invalid shufflevector constexpr record"); 3528 V = BitcodeConstant::create( 3529 Alloc, CurTy, Instruction::ShuffleVector, 3530 {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]}); 3531 break; 3532 } 3533 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 3534 VectorType *RTy = dyn_cast<VectorType>(CurTy); 3535 VectorType *OpTy = 3536 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 3537 if (Record.size() < 4 || !RTy || !OpTy) 3538 return error("Invalid shufflevector constexpr record"); 3539 V = BitcodeConstant::create( 3540 Alloc, CurTy, Instruction::ShuffleVector, 3541 {(unsigned)Record[1], (unsigned)Record[2], (unsigned)Record[3]}); 3542 break; 3543 } 3544 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 3545 if (Record.size() < 4) 3546 return error("Invalid cmp constexpt record"); 3547 unsigned OpTyID = Record[0]; 3548 Type *OpTy = getTypeByID(OpTyID); 3549 if (!OpTy) 3550 return error("Invalid cmp constexpr record"); 3551 V = BitcodeConstant::create( 3552 Alloc, CurTy, 3553 {(uint8_t)(OpTy->isFPOrFPVectorTy() ? Instruction::FCmp 3554 : Instruction::ICmp), 3555 (uint8_t)Record[3]}, 3556 {(unsigned)Record[1], (unsigned)Record[2]}); 3557 break; 3558 } 3559 // This maintains backward compatibility, pre-asm dialect keywords. 3560 // Deprecated, but still needed to read old bitcode files. 3561 case bitc::CST_CODE_INLINEASM_OLD: { 3562 if (Record.size() < 2) 3563 return error("Invalid inlineasm record"); 3564 std::string AsmStr, ConstrStr; 3565 bool HasSideEffects = Record[0] & 1; 3566 bool IsAlignStack = Record[0] >> 1; 3567 unsigned AsmStrSize = Record[1]; 3568 if (2+AsmStrSize >= Record.size()) 3569 return error("Invalid inlineasm record"); 3570 unsigned ConstStrSize = Record[2+AsmStrSize]; 3571 if (3+AsmStrSize+ConstStrSize > Record.size()) 3572 return error("Invalid inlineasm record"); 3573 3574 for (unsigned i = 0; i != AsmStrSize; ++i) 3575 AsmStr += (char)Record[2+i]; 3576 for (unsigned i = 0; i != ConstStrSize; ++i) 3577 ConstrStr += (char)Record[3+AsmStrSize+i]; 3578 UpgradeInlineAsmString(&AsmStr); 3579 if (!CurElemTy) 3580 return error("Missing element type for old-style inlineasm"); 3581 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr, 3582 HasSideEffects, IsAlignStack); 3583 break; 3584 } 3585 // This version adds support for the asm dialect keywords (e.g., 3586 // inteldialect). 3587 case bitc::CST_CODE_INLINEASM_OLD2: { 3588 if (Record.size() < 2) 3589 return error("Invalid inlineasm record"); 3590 std::string AsmStr, ConstrStr; 3591 bool HasSideEffects = Record[0] & 1; 3592 bool IsAlignStack = (Record[0] >> 1) & 1; 3593 unsigned AsmDialect = Record[0] >> 2; 3594 unsigned AsmStrSize = Record[1]; 3595 if (2+AsmStrSize >= Record.size()) 3596 return error("Invalid inlineasm record"); 3597 unsigned ConstStrSize = Record[2+AsmStrSize]; 3598 if (3+AsmStrSize+ConstStrSize > Record.size()) 3599 return error("Invalid inlineasm record"); 3600 3601 for (unsigned i = 0; i != AsmStrSize; ++i) 3602 AsmStr += (char)Record[2+i]; 3603 for (unsigned i = 0; i != ConstStrSize; ++i) 3604 ConstrStr += (char)Record[3+AsmStrSize+i]; 3605 UpgradeInlineAsmString(&AsmStr); 3606 if (!CurElemTy) 3607 return error("Missing element type for old-style inlineasm"); 3608 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr, 3609 HasSideEffects, IsAlignStack, 3610 InlineAsm::AsmDialect(AsmDialect)); 3611 break; 3612 } 3613 // This version adds support for the unwind keyword. 3614 case bitc::CST_CODE_INLINEASM_OLD3: { 3615 if (Record.size() < 2) 3616 return error("Invalid inlineasm record"); 3617 unsigned OpNum = 0; 3618 std::string AsmStr, ConstrStr; 3619 bool HasSideEffects = Record[OpNum] & 1; 3620 bool IsAlignStack = (Record[OpNum] >> 1) & 1; 3621 unsigned AsmDialect = (Record[OpNum] >> 2) & 1; 3622 bool CanThrow = (Record[OpNum] >> 3) & 1; 3623 ++OpNum; 3624 unsigned AsmStrSize = Record[OpNum]; 3625 ++OpNum; 3626 if (OpNum + AsmStrSize >= Record.size()) 3627 return error("Invalid inlineasm record"); 3628 unsigned ConstStrSize = Record[OpNum + AsmStrSize]; 3629 if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size()) 3630 return error("Invalid inlineasm record"); 3631 3632 for (unsigned i = 0; i != AsmStrSize; ++i) 3633 AsmStr += (char)Record[OpNum + i]; 3634 ++OpNum; 3635 for (unsigned i = 0; i != ConstStrSize; ++i) 3636 ConstrStr += (char)Record[OpNum + AsmStrSize + i]; 3637 UpgradeInlineAsmString(&AsmStr); 3638 if (!CurElemTy) 3639 return error("Missing element type for old-style inlineasm"); 3640 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr, 3641 HasSideEffects, IsAlignStack, 3642 InlineAsm::AsmDialect(AsmDialect), CanThrow); 3643 break; 3644 } 3645 // This version adds explicit function type. 3646 case bitc::CST_CODE_INLINEASM: { 3647 if (Record.size() < 3) 3648 return error("Invalid inlineasm record"); 3649 unsigned OpNum = 0; 3650 auto *FnTy = dyn_cast_or_null<FunctionType>(getTypeByID(Record[OpNum])); 3651 ++OpNum; 3652 if (!FnTy) 3653 return error("Invalid inlineasm record"); 3654 std::string AsmStr, ConstrStr; 3655 bool HasSideEffects = Record[OpNum] & 1; 3656 bool IsAlignStack = (Record[OpNum] >> 1) & 1; 3657 unsigned AsmDialect = (Record[OpNum] >> 2) & 1; 3658 bool CanThrow = (Record[OpNum] >> 3) & 1; 3659 ++OpNum; 3660 unsigned AsmStrSize = Record[OpNum]; 3661 ++OpNum; 3662 if (OpNum + AsmStrSize >= Record.size()) 3663 return error("Invalid inlineasm record"); 3664 unsigned ConstStrSize = Record[OpNum + AsmStrSize]; 3665 if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size()) 3666 return error("Invalid inlineasm record"); 3667 3668 for (unsigned i = 0; i != AsmStrSize; ++i) 3669 AsmStr += (char)Record[OpNum + i]; 3670 ++OpNum; 3671 for (unsigned i = 0; i != ConstStrSize; ++i) 3672 ConstrStr += (char)Record[OpNum + AsmStrSize + i]; 3673 UpgradeInlineAsmString(&AsmStr); 3674 V = InlineAsm::get(FnTy, AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 3675 InlineAsm::AsmDialect(AsmDialect), CanThrow); 3676 break; 3677 } 3678 case bitc::CST_CODE_BLOCKADDRESS:{ 3679 if (Record.size() < 3) 3680 return error("Invalid blockaddress record"); 3681 unsigned FnTyID = Record[0]; 3682 Type *FnTy = getTypeByID(FnTyID); 3683 if (!FnTy) 3684 return error("Invalid blockaddress record"); 3685 V = BitcodeConstant::create( 3686 Alloc, CurTy, 3687 {BitcodeConstant::BlockAddressOpcode, 0, (unsigned)Record[2]}, 3688 Record[1]); 3689 break; 3690 } 3691 case bitc::CST_CODE_DSO_LOCAL_EQUIVALENT: { 3692 if (Record.size() < 2) 3693 return error("Invalid dso_local record"); 3694 unsigned GVTyID = Record[0]; 3695 Type *GVTy = getTypeByID(GVTyID); 3696 if (!GVTy) 3697 return error("Invalid dso_local record"); 3698 V = BitcodeConstant::create( 3699 Alloc, CurTy, BitcodeConstant::DSOLocalEquivalentOpcode, Record[1]); 3700 break; 3701 } 3702 case bitc::CST_CODE_NO_CFI_VALUE: { 3703 if (Record.size() < 2) 3704 return error("Invalid no_cfi record"); 3705 unsigned GVTyID = Record[0]; 3706 Type *GVTy = getTypeByID(GVTyID); 3707 if (!GVTy) 3708 return error("Invalid no_cfi record"); 3709 V = BitcodeConstant::create(Alloc, CurTy, BitcodeConstant::NoCFIOpcode, 3710 Record[1]); 3711 break; 3712 } 3713 case bitc::CST_CODE_PTRAUTH: { 3714 if (Record.size() < 4) 3715 return error("Invalid ptrauth record"); 3716 // Ptr, Key, Disc, AddrDisc 3717 V = BitcodeConstant::create(Alloc, CurTy, 3718 BitcodeConstant::ConstantPtrAuthOpcode, 3719 {(unsigned)Record[0], (unsigned)Record[1], 3720 (unsigned)Record[2], (unsigned)Record[3]}); 3721 break; 3722 } 3723 } 3724 3725 assert(V->getType() == getTypeByID(CurTyID) && "Incorrect result type ID"); 3726 if (Error Err = ValueList.assignValue(NextCstNo, V, CurTyID)) 3727 return Err; 3728 ++NextCstNo; 3729 } 3730 } 3731 3732 Error BitcodeReader::parseUseLists() { 3733 if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 3734 return Err; 3735 3736 // Read all the records. 3737 SmallVector<uint64_t, 64> Record; 3738 3739 while (true) { 3740 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 3741 if (!MaybeEntry) 3742 return MaybeEntry.takeError(); 3743 BitstreamEntry Entry = MaybeEntry.get(); 3744 3745 switch (Entry.Kind) { 3746 case BitstreamEntry::SubBlock: // Handled for us already. 3747 case BitstreamEntry::Error: 3748 return error("Malformed block"); 3749 case BitstreamEntry::EndBlock: 3750 return Error::success(); 3751 case BitstreamEntry::Record: 3752 // The interesting case. 3753 break; 3754 } 3755 3756 // Read a use list record. 3757 Record.clear(); 3758 bool IsBB = false; 3759 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 3760 if (!MaybeRecord) 3761 return MaybeRecord.takeError(); 3762 switch (MaybeRecord.get()) { 3763 default: // Default behavior: unknown type. 3764 break; 3765 case bitc::USELIST_CODE_BB: 3766 IsBB = true; 3767 [[fallthrough]]; 3768 case bitc::USELIST_CODE_DEFAULT: { 3769 unsigned RecordLength = Record.size(); 3770 if (RecordLength < 3) 3771 // Records should have at least an ID and two indexes. 3772 return error("Invalid record"); 3773 unsigned ID = Record.pop_back_val(); 3774 3775 Value *V; 3776 if (IsBB) { 3777 assert(ID < FunctionBBs.size() && "Basic block not found"); 3778 V = FunctionBBs[ID]; 3779 } else 3780 V = ValueList[ID]; 3781 unsigned NumUses = 0; 3782 SmallDenseMap<const Use *, unsigned, 16> Order; 3783 for (const Use &U : V->materialized_uses()) { 3784 if (++NumUses > Record.size()) 3785 break; 3786 Order[&U] = Record[NumUses - 1]; 3787 } 3788 if (Order.size() != Record.size() || NumUses > Record.size()) 3789 // Mismatches can happen if the functions are being materialized lazily 3790 // (out-of-order), or a value has been upgraded. 3791 break; 3792 3793 V->sortUseList([&](const Use &L, const Use &R) { 3794 return Order.lookup(&L) < Order.lookup(&R); 3795 }); 3796 break; 3797 } 3798 } 3799 } 3800 } 3801 3802 /// When we see the block for metadata, remember where it is and then skip it. 3803 /// This lets us lazily deserialize the metadata. 3804 Error BitcodeReader::rememberAndSkipMetadata() { 3805 // Save the current stream state. 3806 uint64_t CurBit = Stream.GetCurrentBitNo(); 3807 DeferredMetadataInfo.push_back(CurBit); 3808 3809 // Skip over the block for now. 3810 if (Error Err = Stream.SkipBlock()) 3811 return Err; 3812 return Error::success(); 3813 } 3814 3815 Error BitcodeReader::materializeMetadata() { 3816 for (uint64_t BitPos : DeferredMetadataInfo) { 3817 // Move the bit stream to the saved position. 3818 if (Error JumpFailed = Stream.JumpToBit(BitPos)) 3819 return JumpFailed; 3820 if (Error Err = MDLoader->parseModuleMetadata()) 3821 return Err; 3822 } 3823 3824 // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level 3825 // metadata. Only upgrade if the new option doesn't exist to avoid upgrade 3826 // multiple times. 3827 if (!TheModule->getNamedMetadata("llvm.linker.options")) { 3828 if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) { 3829 NamedMDNode *LinkerOpts = 3830 TheModule->getOrInsertNamedMetadata("llvm.linker.options"); 3831 for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands()) 3832 LinkerOpts->addOperand(cast<MDNode>(MDOptions)); 3833 } 3834 } 3835 3836 DeferredMetadataInfo.clear(); 3837 return Error::success(); 3838 } 3839 3840 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 3841 3842 /// When we see the block for a function body, remember where it is and then 3843 /// skip it. This lets us lazily deserialize the functions. 3844 Error BitcodeReader::rememberAndSkipFunctionBody() { 3845 // Get the function we are talking about. 3846 if (FunctionsWithBodies.empty()) 3847 return error("Insufficient function protos"); 3848 3849 Function *Fn = FunctionsWithBodies.back(); 3850 FunctionsWithBodies.pop_back(); 3851 3852 // Save the current stream state. 3853 uint64_t CurBit = Stream.GetCurrentBitNo(); 3854 assert( 3855 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 3856 "Mismatch between VST and scanned function offsets"); 3857 DeferredFunctionInfo[Fn] = CurBit; 3858 3859 // Skip over the function block for now. 3860 if (Error Err = Stream.SkipBlock()) 3861 return Err; 3862 return Error::success(); 3863 } 3864 3865 Error BitcodeReader::globalCleanup() { 3866 // Patch the initializers for globals and aliases up. 3867 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3868 return Err; 3869 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 3870 return error("Malformed global initializer set"); 3871 3872 // Look for intrinsic functions which need to be upgraded at some point 3873 // and functions that need to have their function attributes upgraded. 3874 for (Function &F : *TheModule) { 3875 MDLoader->upgradeDebugIntrinsics(F); 3876 Function *NewFn; 3877 // If PreserveInputDbgFormat=true, then we don't know whether we want 3878 // intrinsics or records, and we won't perform any conversions in either 3879 // case, so don't upgrade intrinsics to records. 3880 if (UpgradeIntrinsicFunction( 3881 &F, NewFn, PreserveInputDbgFormat != cl::boolOrDefault::BOU_TRUE)) 3882 UpgradedIntrinsics[&F] = NewFn; 3883 // Look for functions that rely on old function attribute behavior. 3884 UpgradeFunctionAttributes(F); 3885 } 3886 3887 // Look for global variables which need to be renamed. 3888 std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables; 3889 for (GlobalVariable &GV : TheModule->globals()) 3890 if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV)) 3891 UpgradedVariables.emplace_back(&GV, Upgraded); 3892 for (auto &Pair : UpgradedVariables) { 3893 Pair.first->eraseFromParent(); 3894 TheModule->insertGlobalVariable(Pair.second); 3895 } 3896 3897 // Force deallocation of memory for these vectors to favor the client that 3898 // want lazy deserialization. 3899 std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits); 3900 std::vector<std::pair<GlobalValue *, unsigned>>().swap(IndirectSymbolInits); 3901 return Error::success(); 3902 } 3903 3904 /// Support for lazy parsing of function bodies. This is required if we 3905 /// either have an old bitcode file without a VST forward declaration record, 3906 /// or if we have an anonymous function being materialized, since anonymous 3907 /// functions do not have a name and are therefore not in the VST. 3908 Error BitcodeReader::rememberAndSkipFunctionBodies() { 3909 if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit)) 3910 return JumpFailed; 3911 3912 if (Stream.AtEndOfStream()) 3913 return error("Could not find function in stream"); 3914 3915 if (!SeenFirstFunctionBody) 3916 return error("Trying to materialize functions before seeing function blocks"); 3917 3918 // An old bitcode file with the symbol table at the end would have 3919 // finished the parse greedily. 3920 assert(SeenValueSymbolTable); 3921 3922 SmallVector<uint64_t, 64> Record; 3923 3924 while (true) { 3925 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3926 if (!MaybeEntry) 3927 return MaybeEntry.takeError(); 3928 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3929 3930 switch (Entry.Kind) { 3931 default: 3932 return error("Expect SubBlock"); 3933 case BitstreamEntry::SubBlock: 3934 switch (Entry.ID) { 3935 default: 3936 return error("Expect function block"); 3937 case bitc::FUNCTION_BLOCK_ID: 3938 if (Error Err = rememberAndSkipFunctionBody()) 3939 return Err; 3940 NextUnreadBit = Stream.GetCurrentBitNo(); 3941 return Error::success(); 3942 } 3943 } 3944 } 3945 } 3946 3947 Error BitcodeReaderBase::readBlockInfo() { 3948 Expected<std::optional<BitstreamBlockInfo>> MaybeNewBlockInfo = 3949 Stream.ReadBlockInfoBlock(); 3950 if (!MaybeNewBlockInfo) 3951 return MaybeNewBlockInfo.takeError(); 3952 std::optional<BitstreamBlockInfo> NewBlockInfo = 3953 std::move(MaybeNewBlockInfo.get()); 3954 if (!NewBlockInfo) 3955 return error("Malformed block"); 3956 BlockInfo = std::move(*NewBlockInfo); 3957 return Error::success(); 3958 } 3959 3960 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) { 3961 // v1: [selection_kind, name] 3962 // v2: [strtab_offset, strtab_size, selection_kind] 3963 StringRef Name; 3964 std::tie(Name, Record) = readNameFromStrtab(Record); 3965 3966 if (Record.empty()) 3967 return error("Invalid record"); 3968 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 3969 std::string OldFormatName; 3970 if (!UseStrtab) { 3971 if (Record.size() < 2) 3972 return error("Invalid record"); 3973 unsigned ComdatNameSize = Record[1]; 3974 if (ComdatNameSize > Record.size() - 2) 3975 return error("Comdat name size too large"); 3976 OldFormatName.reserve(ComdatNameSize); 3977 for (unsigned i = 0; i != ComdatNameSize; ++i) 3978 OldFormatName += (char)Record[2 + i]; 3979 Name = OldFormatName; 3980 } 3981 Comdat *C = TheModule->getOrInsertComdat(Name); 3982 C->setSelectionKind(SK); 3983 ComdatList.push_back(C); 3984 return Error::success(); 3985 } 3986 3987 static void inferDSOLocal(GlobalValue *GV) { 3988 // infer dso_local from linkage and visibility if it is not encoded. 3989 if (GV->hasLocalLinkage() || 3990 (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())) 3991 GV->setDSOLocal(true); 3992 } 3993 3994 GlobalValue::SanitizerMetadata deserializeSanitizerMetadata(unsigned V) { 3995 GlobalValue::SanitizerMetadata Meta; 3996 if (V & (1 << 0)) 3997 Meta.NoAddress = true; 3998 if (V & (1 << 1)) 3999 Meta.NoHWAddress = true; 4000 if (V & (1 << 2)) 4001 Meta.Memtag = true; 4002 if (V & (1 << 3)) 4003 Meta.IsDynInit = true; 4004 return Meta; 4005 } 4006 4007 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) { 4008 // v1: [pointer type, isconst, initid, linkage, alignment, section, 4009 // visibility, threadlocal, unnamed_addr, externally_initialized, 4010 // dllstorageclass, comdat, attributes, preemption specifier, 4011 // partition strtab offset, partition strtab size] (name in VST) 4012 // v2: [strtab_offset, strtab_size, v1] 4013 // v3: [v2, code_model] 4014 StringRef Name; 4015 std::tie(Name, Record) = readNameFromStrtab(Record); 4016 4017 if (Record.size() < 6) 4018 return error("Invalid record"); 4019 unsigned TyID = Record[0]; 4020 Type *Ty = getTypeByID(TyID); 4021 if (!Ty) 4022 return error("Invalid record"); 4023 bool isConstant = Record[1] & 1; 4024 bool explicitType = Record[1] & 2; 4025 unsigned AddressSpace; 4026 if (explicitType) { 4027 AddressSpace = Record[1] >> 2; 4028 } else { 4029 if (!Ty->isPointerTy()) 4030 return error("Invalid type for value"); 4031 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 4032 TyID = getContainedTypeID(TyID); 4033 Ty = getTypeByID(TyID); 4034 if (!Ty) 4035 return error("Missing element type for old-style global"); 4036 } 4037 4038 uint64_t RawLinkage = Record[3]; 4039 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 4040 MaybeAlign Alignment; 4041 if (Error Err = parseAlignmentValue(Record[4], Alignment)) 4042 return Err; 4043 std::string Section; 4044 if (Record[5]) { 4045 if (Record[5] - 1 >= SectionTable.size()) 4046 return error("Invalid ID"); 4047 Section = SectionTable[Record[5] - 1]; 4048 } 4049 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 4050 // Local linkage must have default visibility. 4051 // auto-upgrade `hidden` and `protected` for old bitcode. 4052 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 4053 Visibility = getDecodedVisibility(Record[6]); 4054 4055 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 4056 if (Record.size() > 7) 4057 TLM = getDecodedThreadLocalMode(Record[7]); 4058 4059 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 4060 if (Record.size() > 8) 4061 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); 4062 4063 bool ExternallyInitialized = false; 4064 if (Record.size() > 9) 4065 ExternallyInitialized = Record[9]; 4066 4067 GlobalVariable *NewGV = 4068 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name, 4069 nullptr, TLM, AddressSpace, ExternallyInitialized); 4070 if (Alignment) 4071 NewGV->setAlignment(*Alignment); 4072 if (!Section.empty()) 4073 NewGV->setSection(Section); 4074 NewGV->setVisibility(Visibility); 4075 NewGV->setUnnamedAddr(UnnamedAddr); 4076 4077 if (Record.size() > 10) { 4078 // A GlobalValue with local linkage cannot have a DLL storage class. 4079 if (!NewGV->hasLocalLinkage()) { 4080 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 4081 } 4082 } else { 4083 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 4084 } 4085 4086 ValueList.push_back(NewGV, getVirtualTypeID(NewGV->getType(), TyID)); 4087 4088 // Remember which value to use for the global initializer. 4089 if (unsigned InitID = Record[2]) 4090 GlobalInits.push_back(std::make_pair(NewGV, InitID - 1)); 4091 4092 if (Record.size() > 11) { 4093 if (unsigned ComdatID = Record[11]) { 4094 if (ComdatID > ComdatList.size()) 4095 return error("Invalid global variable comdat ID"); 4096 NewGV->setComdat(ComdatList[ComdatID - 1]); 4097 } 4098 } else if (hasImplicitComdat(RawLinkage)) { 4099 ImplicitComdatObjects.insert(NewGV); 4100 } 4101 4102 if (Record.size() > 12) { 4103 auto AS = getAttributes(Record[12]).getFnAttrs(); 4104 NewGV->setAttributes(AS); 4105 } 4106 4107 if (Record.size() > 13) { 4108 NewGV->setDSOLocal(getDecodedDSOLocal(Record[13])); 4109 } 4110 inferDSOLocal(NewGV); 4111 4112 // Check whether we have enough values to read a partition name. 4113 if (Record.size() > 15) 4114 NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15])); 4115 4116 if (Record.size() > 16 && Record[16]) { 4117 llvm::GlobalValue::SanitizerMetadata Meta = 4118 deserializeSanitizerMetadata(Record[16]); 4119 NewGV->setSanitizerMetadata(Meta); 4120 } 4121 4122 if (Record.size() > 17 && Record[17]) { 4123 if (auto CM = getDecodedCodeModel(Record[17])) 4124 NewGV->setCodeModel(*CM); 4125 else 4126 return error("Invalid global variable code model"); 4127 } 4128 4129 return Error::success(); 4130 } 4131 4132 void BitcodeReader::callValueTypeCallback(Value *F, unsigned TypeID) { 4133 if (ValueTypeCallback) { 4134 (*ValueTypeCallback)( 4135 F, TypeID, [this](unsigned I) { return getTypeByID(I); }, 4136 [this](unsigned I, unsigned J) { return getContainedTypeID(I, J); }); 4137 } 4138 } 4139 4140 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) { 4141 // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section, 4142 // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat, 4143 // prefixdata, personalityfn, preemption specifier, addrspace] (name in VST) 4144 // v2: [strtab_offset, strtab_size, v1] 4145 StringRef Name; 4146 std::tie(Name, Record) = readNameFromStrtab(Record); 4147 4148 if (Record.size() < 8) 4149 return error("Invalid record"); 4150 unsigned FTyID = Record[0]; 4151 Type *FTy = getTypeByID(FTyID); 4152 if (!FTy) 4153 return error("Invalid record"); 4154 if (isa<PointerType>(FTy)) { 4155 FTyID = getContainedTypeID(FTyID, 0); 4156 FTy = getTypeByID(FTyID); 4157 if (!FTy) 4158 return error("Missing element type for old-style function"); 4159 } 4160 4161 if (!isa<FunctionType>(FTy)) 4162 return error("Invalid type for value"); 4163 auto CC = static_cast<CallingConv::ID>(Record[1]); 4164 if (CC & ~CallingConv::MaxID) 4165 return error("Invalid calling convention ID"); 4166 4167 unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace(); 4168 if (Record.size() > 16) 4169 AddrSpace = Record[16]; 4170 4171 Function *Func = 4172 Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage, 4173 AddrSpace, Name, TheModule); 4174 4175 assert(Func->getFunctionType() == FTy && 4176 "Incorrect fully specified type provided for function"); 4177 FunctionTypeIDs[Func] = FTyID; 4178 4179 Func->setCallingConv(CC); 4180 bool isProto = Record[2]; 4181 uint64_t RawLinkage = Record[3]; 4182 Func->setLinkage(getDecodedLinkage(RawLinkage)); 4183 Func->setAttributes(getAttributes(Record[4])); 4184 callValueTypeCallback(Func, FTyID); 4185 4186 // Upgrade any old-style byval or sret without a type by propagating the 4187 // argument's pointee type. There should be no opaque pointers where the byval 4188 // type is implicit. 4189 for (unsigned i = 0; i != Func->arg_size(); ++i) { 4190 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet, 4191 Attribute::InAlloca}) { 4192 if (!Func->hasParamAttribute(i, Kind)) 4193 continue; 4194 4195 if (Func->getParamAttribute(i, Kind).getValueAsType()) 4196 continue; 4197 4198 Func->removeParamAttr(i, Kind); 4199 4200 unsigned ParamTypeID = getContainedTypeID(FTyID, i + 1); 4201 Type *PtrEltTy = getPtrElementTypeByID(ParamTypeID); 4202 if (!PtrEltTy) 4203 return error("Missing param element type for attribute upgrade"); 4204 4205 Attribute NewAttr; 4206 switch (Kind) { 4207 case Attribute::ByVal: 4208 NewAttr = Attribute::getWithByValType(Context, PtrEltTy); 4209 break; 4210 case Attribute::StructRet: 4211 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy); 4212 break; 4213 case Attribute::InAlloca: 4214 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy); 4215 break; 4216 default: 4217 llvm_unreachable("not an upgraded type attribute"); 4218 } 4219 4220 Func->addParamAttr(i, NewAttr); 4221 } 4222 } 4223 4224 if (Func->getCallingConv() == CallingConv::X86_INTR && 4225 !Func->arg_empty() && !Func->hasParamAttribute(0, Attribute::ByVal)) { 4226 unsigned ParamTypeID = getContainedTypeID(FTyID, 1); 4227 Type *ByValTy = getPtrElementTypeByID(ParamTypeID); 4228 if (!ByValTy) 4229 return error("Missing param element type for x86_intrcc upgrade"); 4230 Attribute NewAttr = Attribute::getWithByValType(Context, ByValTy); 4231 Func->addParamAttr(0, NewAttr); 4232 } 4233 4234 MaybeAlign Alignment; 4235 if (Error Err = parseAlignmentValue(Record[5], Alignment)) 4236 return Err; 4237 if (Alignment) 4238 Func->setAlignment(*Alignment); 4239 if (Record[6]) { 4240 if (Record[6] - 1 >= SectionTable.size()) 4241 return error("Invalid ID"); 4242 Func->setSection(SectionTable[Record[6] - 1]); 4243 } 4244 // Local linkage must have default visibility. 4245 // auto-upgrade `hidden` and `protected` for old bitcode. 4246 if (!Func->hasLocalLinkage()) 4247 Func->setVisibility(getDecodedVisibility(Record[7])); 4248 if (Record.size() > 8 && Record[8]) { 4249 if (Record[8] - 1 >= GCTable.size()) 4250 return error("Invalid ID"); 4251 Func->setGC(GCTable[Record[8] - 1]); 4252 } 4253 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 4254 if (Record.size() > 9) 4255 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); 4256 Func->setUnnamedAddr(UnnamedAddr); 4257 4258 FunctionOperandInfo OperandInfo = {Func, 0, 0, 0}; 4259 if (Record.size() > 10) 4260 OperandInfo.Prologue = Record[10]; 4261 4262 if (Record.size() > 11) { 4263 // A GlobalValue with local linkage cannot have a DLL storage class. 4264 if (!Func->hasLocalLinkage()) { 4265 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 4266 } 4267 } else { 4268 upgradeDLLImportExportLinkage(Func, RawLinkage); 4269 } 4270 4271 if (Record.size() > 12) { 4272 if (unsigned ComdatID = Record[12]) { 4273 if (ComdatID > ComdatList.size()) 4274 return error("Invalid function comdat ID"); 4275 Func->setComdat(ComdatList[ComdatID - 1]); 4276 } 4277 } else if (hasImplicitComdat(RawLinkage)) { 4278 ImplicitComdatObjects.insert(Func); 4279 } 4280 4281 if (Record.size() > 13) 4282 OperandInfo.Prefix = Record[13]; 4283 4284 if (Record.size() > 14) 4285 OperandInfo.PersonalityFn = Record[14]; 4286 4287 if (Record.size() > 15) { 4288 Func->setDSOLocal(getDecodedDSOLocal(Record[15])); 4289 } 4290 inferDSOLocal(Func); 4291 4292 // Record[16] is the address space number. 4293 4294 // Check whether we have enough values to read a partition name. Also make 4295 // sure Strtab has enough values. 4296 if (Record.size() > 18 && Strtab.data() && 4297 Record[17] + Record[18] <= Strtab.size()) { 4298 Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18])); 4299 } 4300 4301 ValueList.push_back(Func, getVirtualTypeID(Func->getType(), FTyID)); 4302 4303 if (OperandInfo.PersonalityFn || OperandInfo.Prefix || OperandInfo.Prologue) 4304 FunctionOperands.push_back(OperandInfo); 4305 4306 // If this is a function with a body, remember the prototype we are 4307 // creating now, so that we can match up the body with them later. 4308 if (!isProto) { 4309 Func->setIsMaterializable(true); 4310 FunctionsWithBodies.push_back(Func); 4311 DeferredFunctionInfo[Func] = 0; 4312 } 4313 return Error::success(); 4314 } 4315 4316 Error BitcodeReader::parseGlobalIndirectSymbolRecord( 4317 unsigned BitCode, ArrayRef<uint64_t> Record) { 4318 // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST) 4319 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 4320 // dllstorageclass, threadlocal, unnamed_addr, 4321 // preemption specifier] (name in VST) 4322 // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage, 4323 // visibility, dllstorageclass, threadlocal, unnamed_addr, 4324 // preemption specifier] (name in VST) 4325 // v2: [strtab_offset, strtab_size, v1] 4326 StringRef Name; 4327 std::tie(Name, Record) = readNameFromStrtab(Record); 4328 4329 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 4330 if (Record.size() < (3 + (unsigned)NewRecord)) 4331 return error("Invalid record"); 4332 unsigned OpNum = 0; 4333 unsigned TypeID = Record[OpNum++]; 4334 Type *Ty = getTypeByID(TypeID); 4335 if (!Ty) 4336 return error("Invalid record"); 4337 4338 unsigned AddrSpace; 4339 if (!NewRecord) { 4340 auto *PTy = dyn_cast<PointerType>(Ty); 4341 if (!PTy) 4342 return error("Invalid type for value"); 4343 AddrSpace = PTy->getAddressSpace(); 4344 TypeID = getContainedTypeID(TypeID); 4345 Ty = getTypeByID(TypeID); 4346 if (!Ty) 4347 return error("Missing element type for old-style indirect symbol"); 4348 } else { 4349 AddrSpace = Record[OpNum++]; 4350 } 4351 4352 auto Val = Record[OpNum++]; 4353 auto Linkage = Record[OpNum++]; 4354 GlobalValue *NewGA; 4355 if (BitCode == bitc::MODULE_CODE_ALIAS || 4356 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 4357 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 4358 TheModule); 4359 else 4360 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 4361 nullptr, TheModule); 4362 4363 // Local linkage must have default visibility. 4364 // auto-upgrade `hidden` and `protected` for old bitcode. 4365 if (OpNum != Record.size()) { 4366 auto VisInd = OpNum++; 4367 if (!NewGA->hasLocalLinkage()) 4368 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 4369 } 4370 if (BitCode == bitc::MODULE_CODE_ALIAS || 4371 BitCode == bitc::MODULE_CODE_ALIAS_OLD) { 4372 if (OpNum != Record.size()) { 4373 auto S = Record[OpNum++]; 4374 // A GlobalValue with local linkage cannot have a DLL storage class. 4375 if (!NewGA->hasLocalLinkage()) 4376 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(S)); 4377 } 4378 else 4379 upgradeDLLImportExportLinkage(NewGA, Linkage); 4380 if (OpNum != Record.size()) 4381 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 4382 if (OpNum != Record.size()) 4383 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); 4384 } 4385 if (OpNum != Record.size()) 4386 NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++])); 4387 inferDSOLocal(NewGA); 4388 4389 // Check whether we have enough values to read a partition name. 4390 if (OpNum + 1 < Record.size()) { 4391 // Check Strtab has enough values for the partition. 4392 if (Record[OpNum] + Record[OpNum + 1] > Strtab.size()) 4393 return error("Malformed partition, too large."); 4394 NewGA->setPartition( 4395 StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1])); 4396 } 4397 4398 ValueList.push_back(NewGA, getVirtualTypeID(NewGA->getType(), TypeID)); 4399 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 4400 return Error::success(); 4401 } 4402 4403 Error BitcodeReader::parseModule(uint64_t ResumeBit, 4404 bool ShouldLazyLoadMetadata, 4405 ParserCallbacks Callbacks) { 4406 // Load directly into RemoveDIs format if LoadBitcodeIntoNewDbgInfoFormat 4407 // has been set to true and we aren't attempting to preserve the existing 4408 // format in the bitcode (default action: load into the old debug format). 4409 if (PreserveInputDbgFormat != cl::boolOrDefault::BOU_TRUE) { 4410 TheModule->IsNewDbgInfoFormat = 4411 UseNewDbgInfoFormat && 4412 LoadBitcodeIntoNewDbgInfoFormat != cl::boolOrDefault::BOU_FALSE; 4413 } 4414 4415 this->ValueTypeCallback = std::move(Callbacks.ValueType); 4416 if (ResumeBit) { 4417 if (Error JumpFailed = Stream.JumpToBit(ResumeBit)) 4418 return JumpFailed; 4419 } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 4420 return Err; 4421 4422 SmallVector<uint64_t, 64> Record; 4423 4424 // Parts of bitcode parsing depend on the datalayout. Make sure we 4425 // finalize the datalayout before we run any of that code. 4426 bool ResolvedDataLayout = false; 4427 // In order to support importing modules with illegal data layout strings, 4428 // delay parsing the data layout string until after upgrades and overrides 4429 // have been applied, allowing to fix illegal data layout strings. 4430 // Initialize to the current module's layout string in case none is specified. 4431 std::string TentativeDataLayoutStr = TheModule->getDataLayoutStr(); 4432 4433 auto ResolveDataLayout = [&]() -> Error { 4434 if (ResolvedDataLayout) 4435 return Error::success(); 4436 4437 // Datalayout and triple can't be parsed after this point. 4438 ResolvedDataLayout = true; 4439 4440 // Auto-upgrade the layout string 4441 TentativeDataLayoutStr = llvm::UpgradeDataLayoutString( 4442 TentativeDataLayoutStr, TheModule->getTargetTriple()); 4443 4444 // Apply override 4445 if (Callbacks.DataLayout) { 4446 if (auto LayoutOverride = (*Callbacks.DataLayout)( 4447 TheModule->getTargetTriple(), TentativeDataLayoutStr)) 4448 TentativeDataLayoutStr = *LayoutOverride; 4449 } 4450 4451 // Now the layout string is finalized in TentativeDataLayoutStr. Parse it. 4452 Expected<DataLayout> MaybeDL = DataLayout::parse(TentativeDataLayoutStr); 4453 if (!MaybeDL) 4454 return MaybeDL.takeError(); 4455 4456 TheModule->setDataLayout(MaybeDL.get()); 4457 return Error::success(); 4458 }; 4459 4460 // Read all the records for this module. 4461 while (true) { 4462 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 4463 if (!MaybeEntry) 4464 return MaybeEntry.takeError(); 4465 llvm::BitstreamEntry Entry = MaybeEntry.get(); 4466 4467 switch (Entry.Kind) { 4468 case BitstreamEntry::Error: 4469 return error("Malformed block"); 4470 case BitstreamEntry::EndBlock: 4471 if (Error Err = ResolveDataLayout()) 4472 return Err; 4473 return globalCleanup(); 4474 4475 case BitstreamEntry::SubBlock: 4476 switch (Entry.ID) { 4477 default: // Skip unknown content. 4478 if (Error Err = Stream.SkipBlock()) 4479 return Err; 4480 break; 4481 case bitc::BLOCKINFO_BLOCK_ID: 4482 if (Error Err = readBlockInfo()) 4483 return Err; 4484 break; 4485 case bitc::PARAMATTR_BLOCK_ID: 4486 if (Error Err = parseAttributeBlock()) 4487 return Err; 4488 break; 4489 case bitc::PARAMATTR_GROUP_BLOCK_ID: 4490 if (Error Err = parseAttributeGroupBlock()) 4491 return Err; 4492 break; 4493 case bitc::TYPE_BLOCK_ID_NEW: 4494 if (Error Err = parseTypeTable()) 4495 return Err; 4496 break; 4497 case bitc::VALUE_SYMTAB_BLOCK_ID: 4498 if (!SeenValueSymbolTable) { 4499 // Either this is an old form VST without function index and an 4500 // associated VST forward declaration record (which would have caused 4501 // the VST to be jumped to and parsed before it was encountered 4502 // normally in the stream), or there were no function blocks to 4503 // trigger an earlier parsing of the VST. 4504 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 4505 if (Error Err = parseValueSymbolTable()) 4506 return Err; 4507 SeenValueSymbolTable = true; 4508 } else { 4509 // We must have had a VST forward declaration record, which caused 4510 // the parser to jump to and parse the VST earlier. 4511 assert(VSTOffset > 0); 4512 if (Error Err = Stream.SkipBlock()) 4513 return Err; 4514 } 4515 break; 4516 case bitc::CONSTANTS_BLOCK_ID: 4517 if (Error Err = parseConstants()) 4518 return Err; 4519 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 4520 return Err; 4521 break; 4522 case bitc::METADATA_BLOCK_ID: 4523 if (ShouldLazyLoadMetadata) { 4524 if (Error Err = rememberAndSkipMetadata()) 4525 return Err; 4526 break; 4527 } 4528 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 4529 if (Error Err = MDLoader->parseModuleMetadata()) 4530 return Err; 4531 break; 4532 case bitc::METADATA_KIND_BLOCK_ID: 4533 if (Error Err = MDLoader->parseMetadataKinds()) 4534 return Err; 4535 break; 4536 case bitc::FUNCTION_BLOCK_ID: 4537 if (Error Err = ResolveDataLayout()) 4538 return Err; 4539 4540 // If this is the first function body we've seen, reverse the 4541 // FunctionsWithBodies list. 4542 if (!SeenFirstFunctionBody) { 4543 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 4544 if (Error Err = globalCleanup()) 4545 return Err; 4546 SeenFirstFunctionBody = true; 4547 } 4548 4549 if (VSTOffset > 0) { 4550 // If we have a VST forward declaration record, make sure we 4551 // parse the VST now if we haven't already. It is needed to 4552 // set up the DeferredFunctionInfo vector for lazy reading. 4553 if (!SeenValueSymbolTable) { 4554 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset)) 4555 return Err; 4556 SeenValueSymbolTable = true; 4557 // Fall through so that we record the NextUnreadBit below. 4558 // This is necessary in case we have an anonymous function that 4559 // is later materialized. Since it will not have a VST entry we 4560 // need to fall back to the lazy parse to find its offset. 4561 } else { 4562 // If we have a VST forward declaration record, but have already 4563 // parsed the VST (just above, when the first function body was 4564 // encountered here), then we are resuming the parse after 4565 // materializing functions. The ResumeBit points to the 4566 // start of the last function block recorded in the 4567 // DeferredFunctionInfo map. Skip it. 4568 if (Error Err = Stream.SkipBlock()) 4569 return Err; 4570 continue; 4571 } 4572 } 4573 4574 // Support older bitcode files that did not have the function 4575 // index in the VST, nor a VST forward declaration record, as 4576 // well as anonymous functions that do not have VST entries. 4577 // Build the DeferredFunctionInfo vector on the fly. 4578 if (Error Err = rememberAndSkipFunctionBody()) 4579 return Err; 4580 4581 // Suspend parsing when we reach the function bodies. Subsequent 4582 // materialization calls will resume it when necessary. If the bitcode 4583 // file is old, the symbol table will be at the end instead and will not 4584 // have been seen yet. In this case, just finish the parse now. 4585 if (SeenValueSymbolTable) { 4586 NextUnreadBit = Stream.GetCurrentBitNo(); 4587 // After the VST has been parsed, we need to make sure intrinsic name 4588 // are auto-upgraded. 4589 return globalCleanup(); 4590 } 4591 break; 4592 case bitc::USELIST_BLOCK_ID: 4593 if (Error Err = parseUseLists()) 4594 return Err; 4595 break; 4596 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 4597 if (Error Err = parseOperandBundleTags()) 4598 return Err; 4599 break; 4600 case bitc::SYNC_SCOPE_NAMES_BLOCK_ID: 4601 if (Error Err = parseSyncScopeNames()) 4602 return Err; 4603 break; 4604 } 4605 continue; 4606 4607 case BitstreamEntry::Record: 4608 // The interesting case. 4609 break; 4610 } 4611 4612 // Read a record. 4613 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 4614 if (!MaybeBitCode) 4615 return MaybeBitCode.takeError(); 4616 switch (unsigned BitCode = MaybeBitCode.get()) { 4617 default: break; // Default behavior, ignore unknown content. 4618 case bitc::MODULE_CODE_VERSION: { 4619 Expected<unsigned> VersionOrErr = parseVersionRecord(Record); 4620 if (!VersionOrErr) 4621 return VersionOrErr.takeError(); 4622 UseRelativeIDs = *VersionOrErr >= 1; 4623 break; 4624 } 4625 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 4626 if (ResolvedDataLayout) 4627 return error("target triple too late in module"); 4628 std::string S; 4629 if (convertToString(Record, 0, S)) 4630 return error("Invalid record"); 4631 TheModule->setTargetTriple(S); 4632 break; 4633 } 4634 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 4635 if (ResolvedDataLayout) 4636 return error("datalayout too late in module"); 4637 if (convertToString(Record, 0, TentativeDataLayoutStr)) 4638 return error("Invalid record"); 4639 break; 4640 } 4641 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 4642 std::string S; 4643 if (convertToString(Record, 0, S)) 4644 return error("Invalid record"); 4645 TheModule->setModuleInlineAsm(S); 4646 break; 4647 } 4648 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 4649 // Deprecated, but still needed to read old bitcode files. 4650 std::string S; 4651 if (convertToString(Record, 0, S)) 4652 return error("Invalid record"); 4653 // Ignore value. 4654 break; 4655 } 4656 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 4657 std::string S; 4658 if (convertToString(Record, 0, S)) 4659 return error("Invalid record"); 4660 SectionTable.push_back(S); 4661 break; 4662 } 4663 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 4664 std::string S; 4665 if (convertToString(Record, 0, S)) 4666 return error("Invalid record"); 4667 GCTable.push_back(S); 4668 break; 4669 } 4670 case bitc::MODULE_CODE_COMDAT: 4671 if (Error Err = parseComdatRecord(Record)) 4672 return Err; 4673 break; 4674 // FIXME: BitcodeReader should handle {GLOBALVAR, FUNCTION, ALIAS, IFUNC} 4675 // written by ThinLinkBitcodeWriter. See 4676 // `ThinLinkBitcodeWriter::writeSimplifiedModuleInfo` for the format of each 4677 // record 4678 // (https://github.com/llvm/llvm-project/blob/b6a93967d9c11e79802b5e75cec1584d6c8aa472/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp#L4714) 4679 case bitc::MODULE_CODE_GLOBALVAR: 4680 if (Error Err = parseGlobalVarRecord(Record)) 4681 return Err; 4682 break; 4683 case bitc::MODULE_CODE_FUNCTION: 4684 if (Error Err = ResolveDataLayout()) 4685 return Err; 4686 if (Error Err = parseFunctionRecord(Record)) 4687 return Err; 4688 break; 4689 case bitc::MODULE_CODE_IFUNC: 4690 case bitc::MODULE_CODE_ALIAS: 4691 case bitc::MODULE_CODE_ALIAS_OLD: 4692 if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record)) 4693 return Err; 4694 break; 4695 /// MODULE_CODE_VSTOFFSET: [offset] 4696 case bitc::MODULE_CODE_VSTOFFSET: 4697 if (Record.empty()) 4698 return error("Invalid record"); 4699 // Note that we subtract 1 here because the offset is relative to one word 4700 // before the start of the identification or module block, which was 4701 // historically always the start of the regular bitcode header. 4702 VSTOffset = Record[0] - 1; 4703 break; 4704 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4705 case bitc::MODULE_CODE_SOURCE_FILENAME: 4706 SmallString<128> ValueName; 4707 if (convertToString(Record, 0, ValueName)) 4708 return error("Invalid record"); 4709 TheModule->setSourceFileName(ValueName); 4710 break; 4711 } 4712 Record.clear(); 4713 } 4714 this->ValueTypeCallback = std::nullopt; 4715 return Error::success(); 4716 } 4717 4718 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 4719 bool IsImporting, 4720 ParserCallbacks Callbacks) { 4721 TheModule = M; 4722 MetadataLoaderCallbacks MDCallbacks; 4723 MDCallbacks.GetTypeByID = [&](unsigned ID) { return getTypeByID(ID); }; 4724 MDCallbacks.GetContainedTypeID = [&](unsigned I, unsigned J) { 4725 return getContainedTypeID(I, J); 4726 }; 4727 MDCallbacks.MDType = Callbacks.MDType; 4728 MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, MDCallbacks); 4729 return parseModule(0, ShouldLazyLoadMetadata, Callbacks); 4730 } 4731 4732 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 4733 if (!isa<PointerType>(PtrType)) 4734 return error("Load/Store operand is not a pointer type"); 4735 if (!PointerType::isLoadableOrStorableType(ValType)) 4736 return error("Cannot load/store from pointer"); 4737 return Error::success(); 4738 } 4739 4740 Error BitcodeReader::propagateAttributeTypes(CallBase *CB, 4741 ArrayRef<unsigned> ArgTyIDs) { 4742 AttributeList Attrs = CB->getAttributes(); 4743 for (unsigned i = 0; i != CB->arg_size(); ++i) { 4744 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet, 4745 Attribute::InAlloca}) { 4746 if (!Attrs.hasParamAttr(i, Kind) || 4747 Attrs.getParamAttr(i, Kind).getValueAsType()) 4748 continue; 4749 4750 Type *PtrEltTy = getPtrElementTypeByID(ArgTyIDs[i]); 4751 if (!PtrEltTy) 4752 return error("Missing element type for typed attribute upgrade"); 4753 4754 Attribute NewAttr; 4755 switch (Kind) { 4756 case Attribute::ByVal: 4757 NewAttr = Attribute::getWithByValType(Context, PtrEltTy); 4758 break; 4759 case Attribute::StructRet: 4760 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy); 4761 break; 4762 case Attribute::InAlloca: 4763 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy); 4764 break; 4765 default: 4766 llvm_unreachable("not an upgraded type attribute"); 4767 } 4768 4769 Attrs = Attrs.addParamAttribute(Context, i, NewAttr); 4770 } 4771 } 4772 4773 if (CB->isInlineAsm()) { 4774 const InlineAsm *IA = cast<InlineAsm>(CB->getCalledOperand()); 4775 unsigned ArgNo = 0; 4776 for (const InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 4777 if (!CI.hasArg()) 4778 continue; 4779 4780 if (CI.isIndirect && !Attrs.getParamElementType(ArgNo)) { 4781 Type *ElemTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]); 4782 if (!ElemTy) 4783 return error("Missing element type for inline asm upgrade"); 4784 Attrs = Attrs.addParamAttribute( 4785 Context, ArgNo, 4786 Attribute::get(Context, Attribute::ElementType, ElemTy)); 4787 } 4788 4789 ArgNo++; 4790 } 4791 } 4792 4793 switch (CB->getIntrinsicID()) { 4794 case Intrinsic::preserve_array_access_index: 4795 case Intrinsic::preserve_struct_access_index: 4796 case Intrinsic::aarch64_ldaxr: 4797 case Intrinsic::aarch64_ldxr: 4798 case Intrinsic::aarch64_stlxr: 4799 case Intrinsic::aarch64_stxr: 4800 case Intrinsic::arm_ldaex: 4801 case Intrinsic::arm_ldrex: 4802 case Intrinsic::arm_stlex: 4803 case Intrinsic::arm_strex: { 4804 unsigned ArgNo; 4805 switch (CB->getIntrinsicID()) { 4806 case Intrinsic::aarch64_stlxr: 4807 case Intrinsic::aarch64_stxr: 4808 case Intrinsic::arm_stlex: 4809 case Intrinsic::arm_strex: 4810 ArgNo = 1; 4811 break; 4812 default: 4813 ArgNo = 0; 4814 break; 4815 } 4816 if (!Attrs.getParamElementType(ArgNo)) { 4817 Type *ElTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]); 4818 if (!ElTy) 4819 return error("Missing element type for elementtype upgrade"); 4820 Attribute NewAttr = Attribute::get(Context, Attribute::ElementType, ElTy); 4821 Attrs = Attrs.addParamAttribute(Context, ArgNo, NewAttr); 4822 } 4823 break; 4824 } 4825 default: 4826 break; 4827 } 4828 4829 CB->setAttributes(Attrs); 4830 return Error::success(); 4831 } 4832 4833 /// Lazily parse the specified function body block. 4834 Error BitcodeReader::parseFunctionBody(Function *F) { 4835 if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 4836 return Err; 4837 4838 // Unexpected unresolved metadata when parsing function. 4839 if (MDLoader->hasFwdRefs()) 4840 return error("Invalid function metadata: incoming forward references"); 4841 4842 InstructionList.clear(); 4843 unsigned ModuleValueListSize = ValueList.size(); 4844 unsigned ModuleMDLoaderSize = MDLoader->size(); 4845 4846 // Add all the function arguments to the value table. 4847 unsigned ArgNo = 0; 4848 unsigned FTyID = FunctionTypeIDs[F]; 4849 for (Argument &I : F->args()) { 4850 unsigned ArgTyID = getContainedTypeID(FTyID, ArgNo + 1); 4851 assert(I.getType() == getTypeByID(ArgTyID) && 4852 "Incorrect fully specified type for Function Argument"); 4853 ValueList.push_back(&I, ArgTyID); 4854 ++ArgNo; 4855 } 4856 unsigned NextValueNo = ValueList.size(); 4857 BasicBlock *CurBB = nullptr; 4858 unsigned CurBBNo = 0; 4859 // Block into which constant expressions from phi nodes are materialized. 4860 BasicBlock *PhiConstExprBB = nullptr; 4861 // Edge blocks for phi nodes into which constant expressions have been 4862 // expanded. 4863 SmallMapVector<std::pair<BasicBlock *, BasicBlock *>, BasicBlock *, 4> 4864 ConstExprEdgeBBs; 4865 4866 DebugLoc LastLoc; 4867 auto getLastInstruction = [&]() -> Instruction * { 4868 if (CurBB && !CurBB->empty()) 4869 return &CurBB->back(); 4870 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 4871 !FunctionBBs[CurBBNo - 1]->empty()) 4872 return &FunctionBBs[CurBBNo - 1]->back(); 4873 return nullptr; 4874 }; 4875 4876 std::vector<OperandBundleDef> OperandBundles; 4877 4878 // Read all the records. 4879 SmallVector<uint64_t, 64> Record; 4880 4881 while (true) { 4882 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 4883 if (!MaybeEntry) 4884 return MaybeEntry.takeError(); 4885 llvm::BitstreamEntry Entry = MaybeEntry.get(); 4886 4887 switch (Entry.Kind) { 4888 case BitstreamEntry::Error: 4889 return error("Malformed block"); 4890 case BitstreamEntry::EndBlock: 4891 goto OutOfRecordLoop; 4892 4893 case BitstreamEntry::SubBlock: 4894 switch (Entry.ID) { 4895 default: // Skip unknown content. 4896 if (Error Err = Stream.SkipBlock()) 4897 return Err; 4898 break; 4899 case bitc::CONSTANTS_BLOCK_ID: 4900 if (Error Err = parseConstants()) 4901 return Err; 4902 NextValueNo = ValueList.size(); 4903 break; 4904 case bitc::VALUE_SYMTAB_BLOCK_ID: 4905 if (Error Err = parseValueSymbolTable()) 4906 return Err; 4907 break; 4908 case bitc::METADATA_ATTACHMENT_ID: 4909 if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList)) 4910 return Err; 4911 break; 4912 case bitc::METADATA_BLOCK_ID: 4913 assert(DeferredMetadataInfo.empty() && 4914 "Must read all module-level metadata before function-level"); 4915 if (Error Err = MDLoader->parseFunctionMetadata()) 4916 return Err; 4917 break; 4918 case bitc::USELIST_BLOCK_ID: 4919 if (Error Err = parseUseLists()) 4920 return Err; 4921 break; 4922 } 4923 continue; 4924 4925 case BitstreamEntry::Record: 4926 // The interesting case. 4927 break; 4928 } 4929 4930 // Read a record. 4931 Record.clear(); 4932 Instruction *I = nullptr; 4933 unsigned ResTypeID = InvalidTypeID; 4934 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 4935 if (!MaybeBitCode) 4936 return MaybeBitCode.takeError(); 4937 switch (unsigned BitCode = MaybeBitCode.get()) { 4938 default: // Default behavior: reject 4939 return error("Invalid value"); 4940 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 4941 if (Record.empty() || Record[0] == 0) 4942 return error("Invalid record"); 4943 // Create all the basic blocks for the function. 4944 FunctionBBs.resize(Record[0]); 4945 4946 // See if anything took the address of blocks in this function. 4947 auto BBFRI = BasicBlockFwdRefs.find(F); 4948 if (BBFRI == BasicBlockFwdRefs.end()) { 4949 for (BasicBlock *&BB : FunctionBBs) 4950 BB = BasicBlock::Create(Context, "", F); 4951 } else { 4952 auto &BBRefs = BBFRI->second; 4953 // Check for invalid basic block references. 4954 if (BBRefs.size() > FunctionBBs.size()) 4955 return error("Invalid ID"); 4956 assert(!BBRefs.empty() && "Unexpected empty array"); 4957 assert(!BBRefs.front() && "Invalid reference to entry block"); 4958 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 4959 ++I) 4960 if (I < RE && BBRefs[I]) { 4961 BBRefs[I]->insertInto(F); 4962 FunctionBBs[I] = BBRefs[I]; 4963 } else { 4964 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 4965 } 4966 4967 // Erase from the table. 4968 BasicBlockFwdRefs.erase(BBFRI); 4969 } 4970 4971 CurBB = FunctionBBs[0]; 4972 continue; 4973 } 4974 4975 case bitc::FUNC_CODE_BLOCKADDR_USERS: // BLOCKADDR_USERS: [vals...] 4976 // The record should not be emitted if it's an empty list. 4977 if (Record.empty()) 4978 return error("Invalid record"); 4979 // When we have the RARE case of a BlockAddress Constant that is not 4980 // scoped to the Function it refers to, we need to conservatively 4981 // materialize the referred to Function, regardless of whether or not 4982 // that Function will ultimately be linked, otherwise users of 4983 // BitcodeReader might start splicing out Function bodies such that we 4984 // might no longer be able to materialize the BlockAddress since the 4985 // BasicBlock (and entire body of the Function) the BlockAddress refers 4986 // to may have been moved. In the case that the user of BitcodeReader 4987 // decides ultimately not to link the Function body, materializing here 4988 // could be considered wasteful, but it's better than a deserialization 4989 // failure as described. This keeps BitcodeReader unaware of complex 4990 // linkage policy decisions such as those use by LTO, leaving those 4991 // decisions "one layer up." 4992 for (uint64_t ValID : Record) 4993 if (auto *F = dyn_cast<Function>(ValueList[ValID])) 4994 BackwardRefFunctions.push_back(F); 4995 else 4996 return error("Invalid record"); 4997 4998 continue; 4999 5000 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 5001 // This record indicates that the last instruction is at the same 5002 // location as the previous instruction with a location. 5003 I = getLastInstruction(); 5004 5005 if (!I) 5006 return error("Invalid record"); 5007 I->setDebugLoc(LastLoc); 5008 I = nullptr; 5009 continue; 5010 5011 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 5012 I = getLastInstruction(); 5013 if (!I || Record.size() < 4) 5014 return error("Invalid record"); 5015 5016 unsigned Line = Record[0], Col = Record[1]; 5017 unsigned ScopeID = Record[2], IAID = Record[3]; 5018 bool isImplicitCode = Record.size() == 5 && Record[4]; 5019 5020 MDNode *Scope = nullptr, *IA = nullptr; 5021 if (ScopeID) { 5022 Scope = dyn_cast_or_null<MDNode>( 5023 MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1)); 5024 if (!Scope) 5025 return error("Invalid record"); 5026 } 5027 if (IAID) { 5028 IA = dyn_cast_or_null<MDNode>( 5029 MDLoader->getMetadataFwdRefOrLoad(IAID - 1)); 5030 if (!IA) 5031 return error("Invalid record"); 5032 } 5033 LastLoc = DILocation::get(Scope->getContext(), Line, Col, Scope, IA, 5034 isImplicitCode); 5035 I->setDebugLoc(LastLoc); 5036 I = nullptr; 5037 continue; 5038 } 5039 case bitc::FUNC_CODE_INST_UNOP: { // UNOP: [opval, ty, opcode] 5040 unsigned OpNum = 0; 5041 Value *LHS; 5042 unsigned TypeID; 5043 if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) || 5044 OpNum+1 > Record.size()) 5045 return error("Invalid record"); 5046 5047 int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType()); 5048 if (Opc == -1) 5049 return error("Invalid record"); 5050 I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 5051 ResTypeID = TypeID; 5052 InstructionList.push_back(I); 5053 if (OpNum < Record.size()) { 5054 if (isa<FPMathOperator>(I)) { 5055 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 5056 if (FMF.any()) 5057 I->setFastMathFlags(FMF); 5058 } 5059 } 5060 break; 5061 } 5062 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 5063 unsigned OpNum = 0; 5064 Value *LHS, *RHS; 5065 unsigned TypeID; 5066 if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) || 5067 popValue(Record, OpNum, NextValueNo, LHS->getType(), TypeID, RHS, 5068 CurBB) || 5069 OpNum+1 > Record.size()) 5070 return error("Invalid record"); 5071 5072 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 5073 if (Opc == -1) 5074 return error("Invalid record"); 5075 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 5076 ResTypeID = TypeID; 5077 InstructionList.push_back(I); 5078 if (OpNum < Record.size()) { 5079 if (Opc == Instruction::Add || 5080 Opc == Instruction::Sub || 5081 Opc == Instruction::Mul || 5082 Opc == Instruction::Shl) { 5083 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 5084 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 5085 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 5086 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 5087 } else if (Opc == Instruction::SDiv || 5088 Opc == Instruction::UDiv || 5089 Opc == Instruction::LShr || 5090 Opc == Instruction::AShr) { 5091 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 5092 cast<BinaryOperator>(I)->setIsExact(true); 5093 } else if (Opc == Instruction::Or) { 5094 if (Record[OpNum] & (1 << bitc::PDI_DISJOINT)) 5095 cast<PossiblyDisjointInst>(I)->setIsDisjoint(true); 5096 } else if (isa<FPMathOperator>(I)) { 5097 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 5098 if (FMF.any()) 5099 I->setFastMathFlags(FMF); 5100 } 5101 } 5102 break; 5103 } 5104 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 5105 unsigned OpNum = 0; 5106 Value *Op; 5107 unsigned OpTypeID; 5108 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) || 5109 OpNum + 1 > Record.size()) 5110 return error("Invalid record"); 5111 5112 ResTypeID = Record[OpNum++]; 5113 Type *ResTy = getTypeByID(ResTypeID); 5114 int Opc = getDecodedCastOpcode(Record[OpNum++]); 5115 5116 if (Opc == -1 || !ResTy) 5117 return error("Invalid record"); 5118 Instruction *Temp = nullptr; 5119 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 5120 if (Temp) { 5121 InstructionList.push_back(Temp); 5122 assert(CurBB && "No current BB?"); 5123 Temp->insertInto(CurBB, CurBB->end()); 5124 } 5125 } else { 5126 auto CastOp = (Instruction::CastOps)Opc; 5127 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 5128 return error("Invalid cast"); 5129 I = CastInst::Create(CastOp, Op, ResTy); 5130 } 5131 5132 if (OpNum < Record.size()) { 5133 if (Opc == Instruction::ZExt || Opc == Instruction::UIToFP) { 5134 if (Record[OpNum] & (1 << bitc::PNNI_NON_NEG)) 5135 cast<PossiblyNonNegInst>(I)->setNonNeg(true); 5136 } else if (Opc == Instruction::Trunc) { 5137 if (Record[OpNum] & (1 << bitc::TIO_NO_UNSIGNED_WRAP)) 5138 cast<TruncInst>(I)->setHasNoUnsignedWrap(true); 5139 if (Record[OpNum] & (1 << bitc::TIO_NO_SIGNED_WRAP)) 5140 cast<TruncInst>(I)->setHasNoSignedWrap(true); 5141 } 5142 } 5143 5144 InstructionList.push_back(I); 5145 break; 5146 } 5147 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 5148 case bitc::FUNC_CODE_INST_GEP_OLD: 5149 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 5150 unsigned OpNum = 0; 5151 5152 unsigned TyID; 5153 Type *Ty; 5154 GEPNoWrapFlags NW; 5155 5156 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 5157 NW = toGEPNoWrapFlags(Record[OpNum++]); 5158 TyID = Record[OpNum++]; 5159 Ty = getTypeByID(TyID); 5160 } else { 5161 if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD) 5162 NW = GEPNoWrapFlags::inBounds(); 5163 TyID = InvalidTypeID; 5164 Ty = nullptr; 5165 } 5166 5167 Value *BasePtr; 5168 unsigned BasePtrTypeID; 5169 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr, BasePtrTypeID, 5170 CurBB)) 5171 return error("Invalid record"); 5172 5173 if (!Ty) { 5174 TyID = getContainedTypeID(BasePtrTypeID); 5175 if (BasePtr->getType()->isVectorTy()) 5176 TyID = getContainedTypeID(TyID); 5177 Ty = getTypeByID(TyID); 5178 } 5179 5180 SmallVector<Value*, 16> GEPIdx; 5181 while (OpNum != Record.size()) { 5182 Value *Op; 5183 unsigned OpTypeID; 5184 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 5185 return error("Invalid record"); 5186 GEPIdx.push_back(Op); 5187 } 5188 5189 auto *GEP = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 5190 I = GEP; 5191 5192 ResTypeID = TyID; 5193 if (cast<GEPOperator>(I)->getNumIndices() != 0) { 5194 auto GTI = std::next(gep_type_begin(I)); 5195 for (Value *Idx : drop_begin(cast<GEPOperator>(I)->indices())) { 5196 unsigned SubType = 0; 5197 if (GTI.isStruct()) { 5198 ConstantInt *IdxC = 5199 Idx->getType()->isVectorTy() 5200 ? cast<ConstantInt>(cast<Constant>(Idx)->getSplatValue()) 5201 : cast<ConstantInt>(Idx); 5202 SubType = IdxC->getZExtValue(); 5203 } 5204 ResTypeID = getContainedTypeID(ResTypeID, SubType); 5205 ++GTI; 5206 } 5207 } 5208 5209 // At this point ResTypeID is the result element type. We need a pointer 5210 // or vector of pointer to it. 5211 ResTypeID = getVirtualTypeID(I->getType()->getScalarType(), ResTypeID); 5212 if (I->getType()->isVectorTy()) 5213 ResTypeID = getVirtualTypeID(I->getType(), ResTypeID); 5214 5215 InstructionList.push_back(I); 5216 GEP->setNoWrapFlags(NW); 5217 break; 5218 } 5219 5220 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 5221 // EXTRACTVAL: [opty, opval, n x indices] 5222 unsigned OpNum = 0; 5223 Value *Agg; 5224 unsigned AggTypeID; 5225 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB)) 5226 return error("Invalid record"); 5227 Type *Ty = Agg->getType(); 5228 5229 unsigned RecSize = Record.size(); 5230 if (OpNum == RecSize) 5231 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 5232 5233 SmallVector<unsigned, 4> EXTRACTVALIdx; 5234 ResTypeID = AggTypeID; 5235 for (; OpNum != RecSize; ++OpNum) { 5236 bool IsArray = Ty->isArrayTy(); 5237 bool IsStruct = Ty->isStructTy(); 5238 uint64_t Index = Record[OpNum]; 5239 5240 if (!IsStruct && !IsArray) 5241 return error("EXTRACTVAL: Invalid type"); 5242 if ((unsigned)Index != Index) 5243 return error("Invalid value"); 5244 if (IsStruct && Index >= Ty->getStructNumElements()) 5245 return error("EXTRACTVAL: Invalid struct index"); 5246 if (IsArray && Index >= Ty->getArrayNumElements()) 5247 return error("EXTRACTVAL: Invalid array index"); 5248 EXTRACTVALIdx.push_back((unsigned)Index); 5249 5250 if (IsStruct) { 5251 Ty = Ty->getStructElementType(Index); 5252 ResTypeID = getContainedTypeID(ResTypeID, Index); 5253 } else { 5254 Ty = Ty->getArrayElementType(); 5255 ResTypeID = getContainedTypeID(ResTypeID); 5256 } 5257 } 5258 5259 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 5260 InstructionList.push_back(I); 5261 break; 5262 } 5263 5264 case bitc::FUNC_CODE_INST_INSERTVAL: { 5265 // INSERTVAL: [opty, opval, opty, opval, n x indices] 5266 unsigned OpNum = 0; 5267 Value *Agg; 5268 unsigned AggTypeID; 5269 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB)) 5270 return error("Invalid record"); 5271 Value *Val; 5272 unsigned ValTypeID; 5273 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 5274 return error("Invalid record"); 5275 5276 unsigned RecSize = Record.size(); 5277 if (OpNum == RecSize) 5278 return error("INSERTVAL: Invalid instruction with 0 indices"); 5279 5280 SmallVector<unsigned, 4> INSERTVALIdx; 5281 Type *CurTy = Agg->getType(); 5282 for (; OpNum != RecSize; ++OpNum) { 5283 bool IsArray = CurTy->isArrayTy(); 5284 bool IsStruct = CurTy->isStructTy(); 5285 uint64_t Index = Record[OpNum]; 5286 5287 if (!IsStruct && !IsArray) 5288 return error("INSERTVAL: Invalid type"); 5289 if ((unsigned)Index != Index) 5290 return error("Invalid value"); 5291 if (IsStruct && Index >= CurTy->getStructNumElements()) 5292 return error("INSERTVAL: Invalid struct index"); 5293 if (IsArray && Index >= CurTy->getArrayNumElements()) 5294 return error("INSERTVAL: Invalid array index"); 5295 5296 INSERTVALIdx.push_back((unsigned)Index); 5297 if (IsStruct) 5298 CurTy = CurTy->getStructElementType(Index); 5299 else 5300 CurTy = CurTy->getArrayElementType(); 5301 } 5302 5303 if (CurTy != Val->getType()) 5304 return error("Inserted value type doesn't match aggregate type"); 5305 5306 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 5307 ResTypeID = AggTypeID; 5308 InstructionList.push_back(I); 5309 break; 5310 } 5311 5312 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 5313 // obsolete form of select 5314 // handles select i1 ... in old bitcode 5315 unsigned OpNum = 0; 5316 Value *TrueVal, *FalseVal, *Cond; 5317 unsigned TypeID; 5318 Type *CondType = Type::getInt1Ty(Context); 5319 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, TypeID, 5320 CurBB) || 5321 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), TypeID, 5322 FalseVal, CurBB) || 5323 popValue(Record, OpNum, NextValueNo, CondType, 5324 getVirtualTypeID(CondType), Cond, CurBB)) 5325 return error("Invalid record"); 5326 5327 I = SelectInst::Create(Cond, TrueVal, FalseVal); 5328 ResTypeID = TypeID; 5329 InstructionList.push_back(I); 5330 break; 5331 } 5332 5333 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 5334 // new form of select 5335 // handles select i1 or select [N x i1] 5336 unsigned OpNum = 0; 5337 Value *TrueVal, *FalseVal, *Cond; 5338 unsigned ValTypeID, CondTypeID; 5339 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, ValTypeID, 5340 CurBB) || 5341 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), ValTypeID, 5342 FalseVal, CurBB) || 5343 getValueTypePair(Record, OpNum, NextValueNo, Cond, CondTypeID, CurBB)) 5344 return error("Invalid record"); 5345 5346 // select condition can be either i1 or [N x i1] 5347 if (VectorType* vector_type = 5348 dyn_cast<VectorType>(Cond->getType())) { 5349 // expect <n x i1> 5350 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 5351 return error("Invalid type for value"); 5352 } else { 5353 // expect i1 5354 if (Cond->getType() != Type::getInt1Ty(Context)) 5355 return error("Invalid type for value"); 5356 } 5357 5358 I = SelectInst::Create(Cond, TrueVal, FalseVal); 5359 ResTypeID = ValTypeID; 5360 InstructionList.push_back(I); 5361 if (OpNum < Record.size() && isa<FPMathOperator>(I)) { 5362 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 5363 if (FMF.any()) 5364 I->setFastMathFlags(FMF); 5365 } 5366 break; 5367 } 5368 5369 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 5370 unsigned OpNum = 0; 5371 Value *Vec, *Idx; 5372 unsigned VecTypeID, IdxTypeID; 5373 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB) || 5374 getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB)) 5375 return error("Invalid record"); 5376 if (!Vec->getType()->isVectorTy()) 5377 return error("Invalid type for value"); 5378 I = ExtractElementInst::Create(Vec, Idx); 5379 ResTypeID = getContainedTypeID(VecTypeID); 5380 InstructionList.push_back(I); 5381 break; 5382 } 5383 5384 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 5385 unsigned OpNum = 0; 5386 Value *Vec, *Elt, *Idx; 5387 unsigned VecTypeID, IdxTypeID; 5388 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB)) 5389 return error("Invalid record"); 5390 if (!Vec->getType()->isVectorTy()) 5391 return error("Invalid type for value"); 5392 if (popValue(Record, OpNum, NextValueNo, 5393 cast<VectorType>(Vec->getType())->getElementType(), 5394 getContainedTypeID(VecTypeID), Elt, CurBB) || 5395 getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB)) 5396 return error("Invalid record"); 5397 I = InsertElementInst::Create(Vec, Elt, Idx); 5398 ResTypeID = VecTypeID; 5399 InstructionList.push_back(I); 5400 break; 5401 } 5402 5403 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 5404 unsigned OpNum = 0; 5405 Value *Vec1, *Vec2, *Mask; 5406 unsigned Vec1TypeID; 5407 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1, Vec1TypeID, 5408 CurBB) || 5409 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec1TypeID, 5410 Vec2, CurBB)) 5411 return error("Invalid record"); 5412 5413 unsigned MaskTypeID; 5414 if (getValueTypePair(Record, OpNum, NextValueNo, Mask, MaskTypeID, CurBB)) 5415 return error("Invalid record"); 5416 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 5417 return error("Invalid type for value"); 5418 5419 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 5420 ResTypeID = 5421 getVirtualTypeID(I->getType(), getContainedTypeID(Vec1TypeID)); 5422 InstructionList.push_back(I); 5423 break; 5424 } 5425 5426 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 5427 // Old form of ICmp/FCmp returning bool 5428 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 5429 // both legal on vectors but had different behaviour. 5430 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 5431 // FCmp/ICmp returning bool or vector of bool 5432 5433 unsigned OpNum = 0; 5434 Value *LHS, *RHS; 5435 unsigned LHSTypeID; 5436 if (getValueTypePair(Record, OpNum, NextValueNo, LHS, LHSTypeID, CurBB) || 5437 popValue(Record, OpNum, NextValueNo, LHS->getType(), LHSTypeID, RHS, 5438 CurBB)) 5439 return error("Invalid record"); 5440 5441 if (OpNum >= Record.size()) 5442 return error( 5443 "Invalid record: operand number exceeded available operands"); 5444 5445 CmpInst::Predicate PredVal = CmpInst::Predicate(Record[OpNum]); 5446 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 5447 FastMathFlags FMF; 5448 if (IsFP && Record.size() > OpNum+1) 5449 FMF = getDecodedFastMathFlags(Record[++OpNum]); 5450 5451 if (OpNum+1 != Record.size()) 5452 return error("Invalid record"); 5453 5454 if (IsFP) { 5455 if (!CmpInst::isFPPredicate(PredVal)) 5456 return error("Invalid fcmp predicate"); 5457 I = new FCmpInst(PredVal, LHS, RHS); 5458 } else { 5459 if (!CmpInst::isIntPredicate(PredVal)) 5460 return error("Invalid icmp predicate"); 5461 I = new ICmpInst(PredVal, LHS, RHS); 5462 } 5463 5464 ResTypeID = getVirtualTypeID(I->getType()->getScalarType()); 5465 if (LHS->getType()->isVectorTy()) 5466 ResTypeID = getVirtualTypeID(I->getType(), ResTypeID); 5467 5468 if (FMF.any()) 5469 I->setFastMathFlags(FMF); 5470 InstructionList.push_back(I); 5471 break; 5472 } 5473 5474 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 5475 { 5476 unsigned Size = Record.size(); 5477 if (Size == 0) { 5478 I = ReturnInst::Create(Context); 5479 InstructionList.push_back(I); 5480 break; 5481 } 5482 5483 unsigned OpNum = 0; 5484 Value *Op = nullptr; 5485 unsigned OpTypeID; 5486 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 5487 return error("Invalid record"); 5488 if (OpNum != Record.size()) 5489 return error("Invalid record"); 5490 5491 I = ReturnInst::Create(Context, Op); 5492 InstructionList.push_back(I); 5493 break; 5494 } 5495 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 5496 if (Record.size() != 1 && Record.size() != 3) 5497 return error("Invalid record"); 5498 BasicBlock *TrueDest = getBasicBlock(Record[0]); 5499 if (!TrueDest) 5500 return error("Invalid record"); 5501 5502 if (Record.size() == 1) { 5503 I = BranchInst::Create(TrueDest); 5504 InstructionList.push_back(I); 5505 } 5506 else { 5507 BasicBlock *FalseDest = getBasicBlock(Record[1]); 5508 Type *CondType = Type::getInt1Ty(Context); 5509 Value *Cond = getValue(Record, 2, NextValueNo, CondType, 5510 getVirtualTypeID(CondType), CurBB); 5511 if (!FalseDest || !Cond) 5512 return error("Invalid record"); 5513 I = BranchInst::Create(TrueDest, FalseDest, Cond); 5514 InstructionList.push_back(I); 5515 } 5516 break; 5517 } 5518 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 5519 if (Record.size() != 1 && Record.size() != 2) 5520 return error("Invalid record"); 5521 unsigned Idx = 0; 5522 Type *TokenTy = Type::getTokenTy(Context); 5523 Value *CleanupPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5524 getVirtualTypeID(TokenTy), CurBB); 5525 if (!CleanupPad) 5526 return error("Invalid record"); 5527 BasicBlock *UnwindDest = nullptr; 5528 if (Record.size() == 2) { 5529 UnwindDest = getBasicBlock(Record[Idx++]); 5530 if (!UnwindDest) 5531 return error("Invalid record"); 5532 } 5533 5534 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 5535 InstructionList.push_back(I); 5536 break; 5537 } 5538 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 5539 if (Record.size() != 2) 5540 return error("Invalid record"); 5541 unsigned Idx = 0; 5542 Type *TokenTy = Type::getTokenTy(Context); 5543 Value *CatchPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5544 getVirtualTypeID(TokenTy), CurBB); 5545 if (!CatchPad) 5546 return error("Invalid record"); 5547 BasicBlock *BB = getBasicBlock(Record[Idx++]); 5548 if (!BB) 5549 return error("Invalid record"); 5550 5551 I = CatchReturnInst::Create(CatchPad, BB); 5552 InstructionList.push_back(I); 5553 break; 5554 } 5555 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 5556 // We must have, at minimum, the outer scope and the number of arguments. 5557 if (Record.size() < 2) 5558 return error("Invalid record"); 5559 5560 unsigned Idx = 0; 5561 5562 Type *TokenTy = Type::getTokenTy(Context); 5563 Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5564 getVirtualTypeID(TokenTy), CurBB); 5565 if (!ParentPad) 5566 return error("Invalid record"); 5567 5568 unsigned NumHandlers = Record[Idx++]; 5569 5570 SmallVector<BasicBlock *, 2> Handlers; 5571 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 5572 BasicBlock *BB = getBasicBlock(Record[Idx++]); 5573 if (!BB) 5574 return error("Invalid record"); 5575 Handlers.push_back(BB); 5576 } 5577 5578 BasicBlock *UnwindDest = nullptr; 5579 if (Idx + 1 == Record.size()) { 5580 UnwindDest = getBasicBlock(Record[Idx++]); 5581 if (!UnwindDest) 5582 return error("Invalid record"); 5583 } 5584 5585 if (Record.size() != Idx) 5586 return error("Invalid record"); 5587 5588 auto *CatchSwitch = 5589 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 5590 for (BasicBlock *Handler : Handlers) 5591 CatchSwitch->addHandler(Handler); 5592 I = CatchSwitch; 5593 ResTypeID = getVirtualTypeID(I->getType()); 5594 InstructionList.push_back(I); 5595 break; 5596 } 5597 case bitc::FUNC_CODE_INST_CATCHPAD: 5598 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 5599 // We must have, at minimum, the outer scope and the number of arguments. 5600 if (Record.size() < 2) 5601 return error("Invalid record"); 5602 5603 unsigned Idx = 0; 5604 5605 Type *TokenTy = Type::getTokenTy(Context); 5606 Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5607 getVirtualTypeID(TokenTy), CurBB); 5608 if (!ParentPad) 5609 return error("Invald record"); 5610 5611 unsigned NumArgOperands = Record[Idx++]; 5612 5613 SmallVector<Value *, 2> Args; 5614 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 5615 Value *Val; 5616 unsigned ValTypeID; 5617 if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, nullptr)) 5618 return error("Invalid record"); 5619 Args.push_back(Val); 5620 } 5621 5622 if (Record.size() != Idx) 5623 return error("Invalid record"); 5624 5625 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 5626 I = CleanupPadInst::Create(ParentPad, Args); 5627 else 5628 I = CatchPadInst::Create(ParentPad, Args); 5629 ResTypeID = getVirtualTypeID(I->getType()); 5630 InstructionList.push_back(I); 5631 break; 5632 } 5633 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 5634 // Check magic 5635 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 5636 // "New" SwitchInst format with case ranges. The changes to write this 5637 // format were reverted but we still recognize bitcode that uses it. 5638 // Hopefully someday we will have support for case ranges and can use 5639 // this format again. 5640 5641 unsigned OpTyID = Record[1]; 5642 Type *OpTy = getTypeByID(OpTyID); 5643 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 5644 5645 Value *Cond = getValue(Record, 2, NextValueNo, OpTy, OpTyID, CurBB); 5646 BasicBlock *Default = getBasicBlock(Record[3]); 5647 if (!OpTy || !Cond || !Default) 5648 return error("Invalid record"); 5649 5650 unsigned NumCases = Record[4]; 5651 5652 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 5653 InstructionList.push_back(SI); 5654 5655 unsigned CurIdx = 5; 5656 for (unsigned i = 0; i != NumCases; ++i) { 5657 SmallVector<ConstantInt*, 1> CaseVals; 5658 unsigned NumItems = Record[CurIdx++]; 5659 for (unsigned ci = 0; ci != NumItems; ++ci) { 5660 bool isSingleNumber = Record[CurIdx++]; 5661 5662 APInt Low; 5663 unsigned ActiveWords = 1; 5664 if (ValueBitWidth > 64) 5665 ActiveWords = Record[CurIdx++]; 5666 Low = readWideAPInt(ArrayRef(&Record[CurIdx], ActiveWords), 5667 ValueBitWidth); 5668 CurIdx += ActiveWords; 5669 5670 if (!isSingleNumber) { 5671 ActiveWords = 1; 5672 if (ValueBitWidth > 64) 5673 ActiveWords = Record[CurIdx++]; 5674 APInt High = readWideAPInt(ArrayRef(&Record[CurIdx], ActiveWords), 5675 ValueBitWidth); 5676 CurIdx += ActiveWords; 5677 5678 // FIXME: It is not clear whether values in the range should be 5679 // compared as signed or unsigned values. The partially 5680 // implemented changes that used this format in the past used 5681 // unsigned comparisons. 5682 for ( ; Low.ule(High); ++Low) 5683 CaseVals.push_back(ConstantInt::get(Context, Low)); 5684 } else 5685 CaseVals.push_back(ConstantInt::get(Context, Low)); 5686 } 5687 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 5688 for (ConstantInt *Cst : CaseVals) 5689 SI->addCase(Cst, DestBB); 5690 } 5691 I = SI; 5692 break; 5693 } 5694 5695 // Old SwitchInst format without case ranges. 5696 5697 if (Record.size() < 3 || (Record.size() & 1) == 0) 5698 return error("Invalid record"); 5699 unsigned OpTyID = Record[0]; 5700 Type *OpTy = getTypeByID(OpTyID); 5701 Value *Cond = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB); 5702 BasicBlock *Default = getBasicBlock(Record[2]); 5703 if (!OpTy || !Cond || !Default) 5704 return error("Invalid record"); 5705 unsigned NumCases = (Record.size()-3)/2; 5706 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 5707 InstructionList.push_back(SI); 5708 for (unsigned i = 0, e = NumCases; i != e; ++i) { 5709 ConstantInt *CaseVal = dyn_cast_or_null<ConstantInt>( 5710 getFnValueByID(Record[3+i*2], OpTy, OpTyID, nullptr)); 5711 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 5712 if (!CaseVal || !DestBB) { 5713 delete SI; 5714 return error("Invalid record"); 5715 } 5716 SI->addCase(CaseVal, DestBB); 5717 } 5718 I = SI; 5719 break; 5720 } 5721 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 5722 if (Record.size() < 2) 5723 return error("Invalid record"); 5724 unsigned OpTyID = Record[0]; 5725 Type *OpTy = getTypeByID(OpTyID); 5726 Value *Address = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB); 5727 if (!OpTy || !Address) 5728 return error("Invalid record"); 5729 unsigned NumDests = Record.size()-2; 5730 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 5731 InstructionList.push_back(IBI); 5732 for (unsigned i = 0, e = NumDests; i != e; ++i) { 5733 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 5734 IBI->addDestination(DestBB); 5735 } else { 5736 delete IBI; 5737 return error("Invalid record"); 5738 } 5739 } 5740 I = IBI; 5741 break; 5742 } 5743 5744 case bitc::FUNC_CODE_INST_INVOKE: { 5745 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 5746 if (Record.size() < 4) 5747 return error("Invalid record"); 5748 unsigned OpNum = 0; 5749 AttributeList PAL = getAttributes(Record[OpNum++]); 5750 unsigned CCInfo = Record[OpNum++]; 5751 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 5752 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 5753 5754 unsigned FTyID = InvalidTypeID; 5755 FunctionType *FTy = nullptr; 5756 if ((CCInfo >> 13) & 1) { 5757 FTyID = Record[OpNum++]; 5758 FTy = dyn_cast<FunctionType>(getTypeByID(FTyID)); 5759 if (!FTy) 5760 return error("Explicit invoke type is not a function type"); 5761 } 5762 5763 Value *Callee; 5764 unsigned CalleeTypeID; 5765 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID, 5766 CurBB)) 5767 return error("Invalid record"); 5768 5769 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 5770 if (!CalleeTy) 5771 return error("Callee is not a pointer"); 5772 if (!FTy) { 5773 FTyID = getContainedTypeID(CalleeTypeID); 5774 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 5775 if (!FTy) 5776 return error("Callee is not of pointer to function type"); 5777 } 5778 if (Record.size() < FTy->getNumParams() + OpNum) 5779 return error("Insufficient operands to call"); 5780 5781 SmallVector<Value*, 16> Ops; 5782 SmallVector<unsigned, 16> ArgTyIDs; 5783 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5784 unsigned ArgTyID = getContainedTypeID(FTyID, i + 1); 5785 Ops.push_back(getValue(Record, OpNum, NextValueNo, FTy->getParamType(i), 5786 ArgTyID, CurBB)); 5787 ArgTyIDs.push_back(ArgTyID); 5788 if (!Ops.back()) 5789 return error("Invalid record"); 5790 } 5791 5792 if (!FTy->isVarArg()) { 5793 if (Record.size() != OpNum) 5794 return error("Invalid record"); 5795 } else { 5796 // Read type/value pairs for varargs params. 5797 while (OpNum != Record.size()) { 5798 Value *Op; 5799 unsigned OpTypeID; 5800 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 5801 return error("Invalid record"); 5802 Ops.push_back(Op); 5803 ArgTyIDs.push_back(OpTypeID); 5804 } 5805 } 5806 5807 // Upgrade the bundles if needed. 5808 if (!OperandBundles.empty()) 5809 UpgradeOperandBundles(OperandBundles); 5810 5811 I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops, 5812 OperandBundles); 5813 ResTypeID = getContainedTypeID(FTyID); 5814 OperandBundles.clear(); 5815 InstructionList.push_back(I); 5816 cast<InvokeInst>(I)->setCallingConv( 5817 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 5818 cast<InvokeInst>(I)->setAttributes(PAL); 5819 if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) { 5820 I->deleteValue(); 5821 return Err; 5822 } 5823 5824 break; 5825 } 5826 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 5827 unsigned Idx = 0; 5828 Value *Val = nullptr; 5829 unsigned ValTypeID; 5830 if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, CurBB)) 5831 return error("Invalid record"); 5832 I = ResumeInst::Create(Val); 5833 InstructionList.push_back(I); 5834 break; 5835 } 5836 case bitc::FUNC_CODE_INST_CALLBR: { 5837 // CALLBR: [attr, cc, norm, transfs, fty, fnid, args] 5838 unsigned OpNum = 0; 5839 AttributeList PAL = getAttributes(Record[OpNum++]); 5840 unsigned CCInfo = Record[OpNum++]; 5841 5842 BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]); 5843 unsigned NumIndirectDests = Record[OpNum++]; 5844 SmallVector<BasicBlock *, 16> IndirectDests; 5845 for (unsigned i = 0, e = NumIndirectDests; i != e; ++i) 5846 IndirectDests.push_back(getBasicBlock(Record[OpNum++])); 5847 5848 unsigned FTyID = InvalidTypeID; 5849 FunctionType *FTy = nullptr; 5850 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 5851 FTyID = Record[OpNum++]; 5852 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 5853 if (!FTy) 5854 return error("Explicit call type is not a function type"); 5855 } 5856 5857 Value *Callee; 5858 unsigned CalleeTypeID; 5859 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID, 5860 CurBB)) 5861 return error("Invalid record"); 5862 5863 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5864 if (!OpTy) 5865 return error("Callee is not a pointer type"); 5866 if (!FTy) { 5867 FTyID = getContainedTypeID(CalleeTypeID); 5868 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 5869 if (!FTy) 5870 return error("Callee is not of pointer to function type"); 5871 } 5872 if (Record.size() < FTy->getNumParams() + OpNum) 5873 return error("Insufficient operands to call"); 5874 5875 SmallVector<Value*, 16> Args; 5876 SmallVector<unsigned, 16> ArgTyIDs; 5877 // Read the fixed params. 5878 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5879 Value *Arg; 5880 unsigned ArgTyID = getContainedTypeID(FTyID, i + 1); 5881 if (FTy->getParamType(i)->isLabelTy()) 5882 Arg = getBasicBlock(Record[OpNum]); 5883 else 5884 Arg = getValue(Record, OpNum, NextValueNo, FTy->getParamType(i), 5885 ArgTyID, CurBB); 5886 if (!Arg) 5887 return error("Invalid record"); 5888 Args.push_back(Arg); 5889 ArgTyIDs.push_back(ArgTyID); 5890 } 5891 5892 // Read type/value pairs for varargs params. 5893 if (!FTy->isVarArg()) { 5894 if (OpNum != Record.size()) 5895 return error("Invalid record"); 5896 } else { 5897 while (OpNum != Record.size()) { 5898 Value *Op; 5899 unsigned OpTypeID; 5900 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 5901 return error("Invalid record"); 5902 Args.push_back(Op); 5903 ArgTyIDs.push_back(OpTypeID); 5904 } 5905 } 5906 5907 // Upgrade the bundles if needed. 5908 if (!OperandBundles.empty()) 5909 UpgradeOperandBundles(OperandBundles); 5910 5911 if (auto *IA = dyn_cast<InlineAsm>(Callee)) { 5912 InlineAsm::ConstraintInfoVector ConstraintInfo = IA->ParseConstraints(); 5913 auto IsLabelConstraint = [](const InlineAsm::ConstraintInfo &CI) { 5914 return CI.Type == InlineAsm::isLabel; 5915 }; 5916 if (none_of(ConstraintInfo, IsLabelConstraint)) { 5917 // Upgrade explicit blockaddress arguments to label constraints. 5918 // Verify that the last arguments are blockaddress arguments that 5919 // match the indirect destinations. Clang always generates callbr 5920 // in this form. We could support reordering with more effort. 5921 unsigned FirstBlockArg = Args.size() - IndirectDests.size(); 5922 for (unsigned ArgNo = FirstBlockArg; ArgNo < Args.size(); ++ArgNo) { 5923 unsigned LabelNo = ArgNo - FirstBlockArg; 5924 auto *BA = dyn_cast<BlockAddress>(Args[ArgNo]); 5925 if (!BA || BA->getFunction() != F || 5926 LabelNo > IndirectDests.size() || 5927 BA->getBasicBlock() != IndirectDests[LabelNo]) 5928 return error("callbr argument does not match indirect dest"); 5929 } 5930 5931 // Remove blockaddress arguments. 5932 Args.erase(Args.begin() + FirstBlockArg, Args.end()); 5933 ArgTyIDs.erase(ArgTyIDs.begin() + FirstBlockArg, ArgTyIDs.end()); 5934 5935 // Recreate the function type with less arguments. 5936 SmallVector<Type *> ArgTys; 5937 for (Value *Arg : Args) 5938 ArgTys.push_back(Arg->getType()); 5939 FTy = 5940 FunctionType::get(FTy->getReturnType(), ArgTys, FTy->isVarArg()); 5941 5942 // Update constraint string to use label constraints. 5943 std::string Constraints = IA->getConstraintString(); 5944 unsigned ArgNo = 0; 5945 size_t Pos = 0; 5946 for (const auto &CI : ConstraintInfo) { 5947 if (CI.hasArg()) { 5948 if (ArgNo >= FirstBlockArg) 5949 Constraints.insert(Pos, "!"); 5950 ++ArgNo; 5951 } 5952 5953 // Go to next constraint in string. 5954 Pos = Constraints.find(',', Pos); 5955 if (Pos == std::string::npos) 5956 break; 5957 ++Pos; 5958 } 5959 5960 Callee = InlineAsm::get(FTy, IA->getAsmString(), Constraints, 5961 IA->hasSideEffects(), IA->isAlignStack(), 5962 IA->getDialect(), IA->canThrow()); 5963 } 5964 } 5965 5966 I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args, 5967 OperandBundles); 5968 ResTypeID = getContainedTypeID(FTyID); 5969 OperandBundles.clear(); 5970 InstructionList.push_back(I); 5971 cast<CallBrInst>(I)->setCallingConv( 5972 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5973 cast<CallBrInst>(I)->setAttributes(PAL); 5974 if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) { 5975 I->deleteValue(); 5976 return Err; 5977 } 5978 break; 5979 } 5980 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 5981 I = new UnreachableInst(Context); 5982 InstructionList.push_back(I); 5983 break; 5984 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 5985 if (Record.empty()) 5986 return error("Invalid phi record"); 5987 // The first record specifies the type. 5988 unsigned TyID = Record[0]; 5989 Type *Ty = getTypeByID(TyID); 5990 if (!Ty) 5991 return error("Invalid phi record"); 5992 5993 // Phi arguments are pairs of records of [value, basic block]. 5994 // There is an optional final record for fast-math-flags if this phi has a 5995 // floating-point type. 5996 size_t NumArgs = (Record.size() - 1) / 2; 5997 PHINode *PN = PHINode::Create(Ty, NumArgs); 5998 if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN)) { 5999 PN->deleteValue(); 6000 return error("Invalid phi record"); 6001 } 6002 InstructionList.push_back(PN); 6003 6004 SmallDenseMap<BasicBlock *, Value *> Args; 6005 for (unsigned i = 0; i != NumArgs; i++) { 6006 BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]); 6007 if (!BB) { 6008 PN->deleteValue(); 6009 return error("Invalid phi BB"); 6010 } 6011 6012 // Phi nodes may contain the same predecessor multiple times, in which 6013 // case the incoming value must be identical. Directly reuse the already 6014 // seen value here, to avoid expanding a constant expression multiple 6015 // times. 6016 auto It = Args.find(BB); 6017 if (It != Args.end()) { 6018 PN->addIncoming(It->second, BB); 6019 continue; 6020 } 6021 6022 // If there already is a block for this edge (from a different phi), 6023 // use it. 6024 BasicBlock *EdgeBB = ConstExprEdgeBBs.lookup({BB, CurBB}); 6025 if (!EdgeBB) { 6026 // Otherwise, use a temporary block (that we will discard if it 6027 // turns out to be unnecessary). 6028 if (!PhiConstExprBB) 6029 PhiConstExprBB = BasicBlock::Create(Context, "phi.constexpr", F); 6030 EdgeBB = PhiConstExprBB; 6031 } 6032 6033 // With the new function encoding, it is possible that operands have 6034 // negative IDs (for forward references). Use a signed VBR 6035 // representation to keep the encoding small. 6036 Value *V; 6037 if (UseRelativeIDs) 6038 V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB); 6039 else 6040 V = getValue(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB); 6041 if (!V) { 6042 PN->deleteValue(); 6043 PhiConstExprBB->eraseFromParent(); 6044 return error("Invalid phi record"); 6045 } 6046 6047 if (EdgeBB == PhiConstExprBB && !EdgeBB->empty()) { 6048 ConstExprEdgeBBs.insert({{BB, CurBB}, EdgeBB}); 6049 PhiConstExprBB = nullptr; 6050 } 6051 PN->addIncoming(V, BB); 6052 Args.insert({BB, V}); 6053 } 6054 I = PN; 6055 ResTypeID = TyID; 6056 6057 // If there are an even number of records, the final record must be FMF. 6058 if (Record.size() % 2 == 0) { 6059 assert(isa<FPMathOperator>(I) && "Unexpected phi type"); 6060 FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]); 6061 if (FMF.any()) 6062 I->setFastMathFlags(FMF); 6063 } 6064 6065 break; 6066 } 6067 6068 case bitc::FUNC_CODE_INST_LANDINGPAD: 6069 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 6070 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 6071 unsigned Idx = 0; 6072 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 6073 if (Record.size() < 3) 6074 return error("Invalid record"); 6075 } else { 6076 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 6077 if (Record.size() < 4) 6078 return error("Invalid record"); 6079 } 6080 ResTypeID = Record[Idx++]; 6081 Type *Ty = getTypeByID(ResTypeID); 6082 if (!Ty) 6083 return error("Invalid record"); 6084 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 6085 Value *PersFn = nullptr; 6086 unsigned PersFnTypeID; 6087 if (getValueTypePair(Record, Idx, NextValueNo, PersFn, PersFnTypeID, 6088 nullptr)) 6089 return error("Invalid record"); 6090 6091 if (!F->hasPersonalityFn()) 6092 F->setPersonalityFn(cast<Constant>(PersFn)); 6093 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 6094 return error("Personality function mismatch"); 6095 } 6096 6097 bool IsCleanup = !!Record[Idx++]; 6098 unsigned NumClauses = Record[Idx++]; 6099 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 6100 LP->setCleanup(IsCleanup); 6101 for (unsigned J = 0; J != NumClauses; ++J) { 6102 LandingPadInst::ClauseType CT = 6103 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 6104 Value *Val; 6105 unsigned ValTypeID; 6106 6107 if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, 6108 nullptr)) { 6109 delete LP; 6110 return error("Invalid record"); 6111 } 6112 6113 assert((CT != LandingPadInst::Catch || 6114 !isa<ArrayType>(Val->getType())) && 6115 "Catch clause has a invalid type!"); 6116 assert((CT != LandingPadInst::Filter || 6117 isa<ArrayType>(Val->getType())) && 6118 "Filter clause has invalid type!"); 6119 LP->addClause(cast<Constant>(Val)); 6120 } 6121 6122 I = LP; 6123 InstructionList.push_back(I); 6124 break; 6125 } 6126 6127 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 6128 if (Record.size() != 4 && Record.size() != 5) 6129 return error("Invalid record"); 6130 using APV = AllocaPackedValues; 6131 const uint64_t Rec = Record[3]; 6132 const bool InAlloca = Bitfield::get<APV::UsedWithInAlloca>(Rec); 6133 const bool SwiftError = Bitfield::get<APV::SwiftError>(Rec); 6134 unsigned TyID = Record[0]; 6135 Type *Ty = getTypeByID(TyID); 6136 if (!Bitfield::get<APV::ExplicitType>(Rec)) { 6137 TyID = getContainedTypeID(TyID); 6138 Ty = getTypeByID(TyID); 6139 if (!Ty) 6140 return error("Missing element type for old-style alloca"); 6141 } 6142 unsigned OpTyID = Record[1]; 6143 Type *OpTy = getTypeByID(OpTyID); 6144 Value *Size = getFnValueByID(Record[2], OpTy, OpTyID, CurBB); 6145 MaybeAlign Align; 6146 uint64_t AlignExp = 6147 Bitfield::get<APV::AlignLower>(Rec) | 6148 (Bitfield::get<APV::AlignUpper>(Rec) << APV::AlignLower::Bits); 6149 if (Error Err = parseAlignmentValue(AlignExp, Align)) { 6150 return Err; 6151 } 6152 if (!Ty || !Size) 6153 return error("Invalid record"); 6154 6155 const DataLayout &DL = TheModule->getDataLayout(); 6156 unsigned AS = Record.size() == 5 ? Record[4] : DL.getAllocaAddrSpace(); 6157 6158 SmallPtrSet<Type *, 4> Visited; 6159 if (!Align && !Ty->isSized(&Visited)) 6160 return error("alloca of unsized type"); 6161 if (!Align) 6162 Align = DL.getPrefTypeAlign(Ty); 6163 6164 if (!Size->getType()->isIntegerTy()) 6165 return error("alloca element count must have integer type"); 6166 6167 AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align); 6168 AI->setUsedWithInAlloca(InAlloca); 6169 AI->setSwiftError(SwiftError); 6170 I = AI; 6171 ResTypeID = getVirtualTypeID(AI->getType(), TyID); 6172 InstructionList.push_back(I); 6173 break; 6174 } 6175 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 6176 unsigned OpNum = 0; 6177 Value *Op; 6178 unsigned OpTypeID; 6179 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) || 6180 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 6181 return error("Invalid record"); 6182 6183 if (!isa<PointerType>(Op->getType())) 6184 return error("Load operand is not a pointer type"); 6185 6186 Type *Ty = nullptr; 6187 if (OpNum + 3 == Record.size()) { 6188 ResTypeID = Record[OpNum++]; 6189 Ty = getTypeByID(ResTypeID); 6190 } else { 6191 ResTypeID = getContainedTypeID(OpTypeID); 6192 Ty = getTypeByID(ResTypeID); 6193 } 6194 6195 if (!Ty) 6196 return error("Missing load type"); 6197 6198 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 6199 return Err; 6200 6201 MaybeAlign Align; 6202 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 6203 return Err; 6204 SmallPtrSet<Type *, 4> Visited; 6205 if (!Align && !Ty->isSized(&Visited)) 6206 return error("load of unsized type"); 6207 if (!Align) 6208 Align = TheModule->getDataLayout().getABITypeAlign(Ty); 6209 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align); 6210 InstructionList.push_back(I); 6211 break; 6212 } 6213 case bitc::FUNC_CODE_INST_LOADATOMIC: { 6214 // LOADATOMIC: [opty, op, align, vol, ordering, ssid] 6215 unsigned OpNum = 0; 6216 Value *Op; 6217 unsigned OpTypeID; 6218 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) || 6219 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 6220 return error("Invalid record"); 6221 6222 if (!isa<PointerType>(Op->getType())) 6223 return error("Load operand is not a pointer type"); 6224 6225 Type *Ty = nullptr; 6226 if (OpNum + 5 == Record.size()) { 6227 ResTypeID = Record[OpNum++]; 6228 Ty = getTypeByID(ResTypeID); 6229 } else { 6230 ResTypeID = getContainedTypeID(OpTypeID); 6231 Ty = getTypeByID(ResTypeID); 6232 } 6233 6234 if (!Ty) 6235 return error("Missing atomic load type"); 6236 6237 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 6238 return Err; 6239 6240 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 6241 if (Ordering == AtomicOrdering::NotAtomic || 6242 Ordering == AtomicOrdering::Release || 6243 Ordering == AtomicOrdering::AcquireRelease) 6244 return error("Invalid record"); 6245 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 6246 return error("Invalid record"); 6247 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 6248 6249 MaybeAlign Align; 6250 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 6251 return Err; 6252 if (!Align) 6253 return error("Alignment missing from atomic load"); 6254 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID); 6255 InstructionList.push_back(I); 6256 break; 6257 } 6258 case bitc::FUNC_CODE_INST_STORE: 6259 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 6260 unsigned OpNum = 0; 6261 Value *Val, *Ptr; 6262 unsigned PtrTypeID, ValTypeID; 6263 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 6264 return error("Invalid record"); 6265 6266 if (BitCode == bitc::FUNC_CODE_INST_STORE) { 6267 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 6268 return error("Invalid record"); 6269 } else { 6270 ValTypeID = getContainedTypeID(PtrTypeID); 6271 if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID), 6272 ValTypeID, Val, CurBB)) 6273 return error("Invalid record"); 6274 } 6275 6276 if (OpNum + 2 != Record.size()) 6277 return error("Invalid record"); 6278 6279 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 6280 return Err; 6281 MaybeAlign Align; 6282 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 6283 return Err; 6284 SmallPtrSet<Type *, 4> Visited; 6285 if (!Align && !Val->getType()->isSized(&Visited)) 6286 return error("store of unsized type"); 6287 if (!Align) 6288 Align = TheModule->getDataLayout().getABITypeAlign(Val->getType()); 6289 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align); 6290 InstructionList.push_back(I); 6291 break; 6292 } 6293 case bitc::FUNC_CODE_INST_STOREATOMIC: 6294 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 6295 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid] 6296 unsigned OpNum = 0; 6297 Value *Val, *Ptr; 6298 unsigned PtrTypeID, ValTypeID; 6299 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB) || 6300 !isa<PointerType>(Ptr->getType())) 6301 return error("Invalid record"); 6302 if (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC) { 6303 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 6304 return error("Invalid record"); 6305 } else { 6306 ValTypeID = getContainedTypeID(PtrTypeID); 6307 if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID), 6308 ValTypeID, Val, CurBB)) 6309 return error("Invalid record"); 6310 } 6311 6312 if (OpNum + 4 != Record.size()) 6313 return error("Invalid record"); 6314 6315 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 6316 return Err; 6317 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 6318 if (Ordering == AtomicOrdering::NotAtomic || 6319 Ordering == AtomicOrdering::Acquire || 6320 Ordering == AtomicOrdering::AcquireRelease) 6321 return error("Invalid record"); 6322 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 6323 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 6324 return error("Invalid record"); 6325 6326 MaybeAlign Align; 6327 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 6328 return Err; 6329 if (!Align) 6330 return error("Alignment missing from atomic store"); 6331 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID); 6332 InstructionList.push_back(I); 6333 break; 6334 } 6335 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: { 6336 // CMPXCHG_OLD: [ptrty, ptr, cmp, val, vol, ordering, synchscope, 6337 // failure_ordering?, weak?] 6338 const size_t NumRecords = Record.size(); 6339 unsigned OpNum = 0; 6340 Value *Ptr = nullptr; 6341 unsigned PtrTypeID; 6342 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 6343 return error("Invalid record"); 6344 6345 if (!isa<PointerType>(Ptr->getType())) 6346 return error("Cmpxchg operand is not a pointer type"); 6347 6348 Value *Cmp = nullptr; 6349 unsigned CmpTypeID = getContainedTypeID(PtrTypeID); 6350 if (popValue(Record, OpNum, NextValueNo, getTypeByID(CmpTypeID), 6351 CmpTypeID, Cmp, CurBB)) 6352 return error("Invalid record"); 6353 6354 Value *New = nullptr; 6355 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID, 6356 New, CurBB) || 6357 NumRecords < OpNum + 3 || NumRecords > OpNum + 5) 6358 return error("Invalid record"); 6359 6360 const AtomicOrdering SuccessOrdering = 6361 getDecodedOrdering(Record[OpNum + 1]); 6362 if (SuccessOrdering == AtomicOrdering::NotAtomic || 6363 SuccessOrdering == AtomicOrdering::Unordered) 6364 return error("Invalid record"); 6365 6366 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 6367 6368 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 6369 return Err; 6370 6371 const AtomicOrdering FailureOrdering = 6372 NumRecords < 7 6373 ? AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering) 6374 : getDecodedOrdering(Record[OpNum + 3]); 6375 6376 if (FailureOrdering == AtomicOrdering::NotAtomic || 6377 FailureOrdering == AtomicOrdering::Unordered) 6378 return error("Invalid record"); 6379 6380 const Align Alignment( 6381 TheModule->getDataLayout().getTypeStoreSize(Cmp->getType())); 6382 6383 I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering, 6384 FailureOrdering, SSID); 6385 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 6386 6387 if (NumRecords < 8) { 6388 // Before weak cmpxchgs existed, the instruction simply returned the 6389 // value loaded from memory, so bitcode files from that era will be 6390 // expecting the first component of a modern cmpxchg. 6391 I->insertInto(CurBB, CurBB->end()); 6392 I = ExtractValueInst::Create(I, 0); 6393 ResTypeID = CmpTypeID; 6394 } else { 6395 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]); 6396 unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context)); 6397 ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID}); 6398 } 6399 6400 InstructionList.push_back(I); 6401 break; 6402 } 6403 case bitc::FUNC_CODE_INST_CMPXCHG: { 6404 // CMPXCHG: [ptrty, ptr, cmp, val, vol, success_ordering, synchscope, 6405 // failure_ordering, weak, align?] 6406 const size_t NumRecords = Record.size(); 6407 unsigned OpNum = 0; 6408 Value *Ptr = nullptr; 6409 unsigned PtrTypeID; 6410 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 6411 return error("Invalid record"); 6412 6413 if (!isa<PointerType>(Ptr->getType())) 6414 return error("Cmpxchg operand is not a pointer type"); 6415 6416 Value *Cmp = nullptr; 6417 unsigned CmpTypeID; 6418 if (getValueTypePair(Record, OpNum, NextValueNo, Cmp, CmpTypeID, CurBB)) 6419 return error("Invalid record"); 6420 6421 Value *Val = nullptr; 6422 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID, Val, 6423 CurBB)) 6424 return error("Invalid record"); 6425 6426 if (NumRecords < OpNum + 3 || NumRecords > OpNum + 6) 6427 return error("Invalid record"); 6428 6429 const bool IsVol = Record[OpNum]; 6430 6431 const AtomicOrdering SuccessOrdering = 6432 getDecodedOrdering(Record[OpNum + 1]); 6433 if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering)) 6434 return error("Invalid cmpxchg success ordering"); 6435 6436 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 6437 6438 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 6439 return Err; 6440 6441 const AtomicOrdering FailureOrdering = 6442 getDecodedOrdering(Record[OpNum + 3]); 6443 if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering)) 6444 return error("Invalid cmpxchg failure ordering"); 6445 6446 const bool IsWeak = Record[OpNum + 4]; 6447 6448 MaybeAlign Alignment; 6449 6450 if (NumRecords == (OpNum + 6)) { 6451 if (Error Err = parseAlignmentValue(Record[OpNum + 5], Alignment)) 6452 return Err; 6453 } 6454 if (!Alignment) 6455 Alignment = 6456 Align(TheModule->getDataLayout().getTypeStoreSize(Cmp->getType())); 6457 6458 I = new AtomicCmpXchgInst(Ptr, Cmp, Val, *Alignment, SuccessOrdering, 6459 FailureOrdering, SSID); 6460 cast<AtomicCmpXchgInst>(I)->setVolatile(IsVol); 6461 cast<AtomicCmpXchgInst>(I)->setWeak(IsWeak); 6462 6463 unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context)); 6464 ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID}); 6465 6466 InstructionList.push_back(I); 6467 break; 6468 } 6469 case bitc::FUNC_CODE_INST_ATOMICRMW_OLD: 6470 case bitc::FUNC_CODE_INST_ATOMICRMW: { 6471 // ATOMICRMW_OLD: [ptrty, ptr, val, op, vol, ordering, ssid, align?] 6472 // ATOMICRMW: [ptrty, ptr, valty, val, op, vol, ordering, ssid, align?] 6473 const size_t NumRecords = Record.size(); 6474 unsigned OpNum = 0; 6475 6476 Value *Ptr = nullptr; 6477 unsigned PtrTypeID; 6478 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 6479 return error("Invalid record"); 6480 6481 if (!isa<PointerType>(Ptr->getType())) 6482 return error("Invalid record"); 6483 6484 Value *Val = nullptr; 6485 unsigned ValTypeID = InvalidTypeID; 6486 if (BitCode == bitc::FUNC_CODE_INST_ATOMICRMW_OLD) { 6487 ValTypeID = getContainedTypeID(PtrTypeID); 6488 if (popValue(Record, OpNum, NextValueNo, 6489 getTypeByID(ValTypeID), ValTypeID, Val, CurBB)) 6490 return error("Invalid record"); 6491 } else { 6492 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 6493 return error("Invalid record"); 6494 } 6495 6496 if (!(NumRecords == (OpNum + 4) || NumRecords == (OpNum + 5))) 6497 return error("Invalid record"); 6498 6499 const AtomicRMWInst::BinOp Operation = 6500 getDecodedRMWOperation(Record[OpNum]); 6501 if (Operation < AtomicRMWInst::FIRST_BINOP || 6502 Operation > AtomicRMWInst::LAST_BINOP) 6503 return error("Invalid record"); 6504 6505 const bool IsVol = Record[OpNum + 1]; 6506 6507 const AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 6508 if (Ordering == AtomicOrdering::NotAtomic || 6509 Ordering == AtomicOrdering::Unordered) 6510 return error("Invalid record"); 6511 6512 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 6513 6514 MaybeAlign Alignment; 6515 6516 if (NumRecords == (OpNum + 5)) { 6517 if (Error Err = parseAlignmentValue(Record[OpNum + 4], Alignment)) 6518 return Err; 6519 } 6520 6521 if (!Alignment) 6522 Alignment = 6523 Align(TheModule->getDataLayout().getTypeStoreSize(Val->getType())); 6524 6525 I = new AtomicRMWInst(Operation, Ptr, Val, *Alignment, Ordering, SSID); 6526 ResTypeID = ValTypeID; 6527 cast<AtomicRMWInst>(I)->setVolatile(IsVol); 6528 6529 InstructionList.push_back(I); 6530 break; 6531 } 6532 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid] 6533 if (2 != Record.size()) 6534 return error("Invalid record"); 6535 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 6536 if (Ordering == AtomicOrdering::NotAtomic || 6537 Ordering == AtomicOrdering::Unordered || 6538 Ordering == AtomicOrdering::Monotonic) 6539 return error("Invalid record"); 6540 SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]); 6541 I = new FenceInst(Context, Ordering, SSID); 6542 InstructionList.push_back(I); 6543 break; 6544 } 6545 case bitc::FUNC_CODE_DEBUG_RECORD_LABEL: { 6546 // DbgLabelRecords are placed after the Instructions that they are 6547 // attached to. 6548 SeenDebugRecord = true; 6549 Instruction *Inst = getLastInstruction(); 6550 if (!Inst) 6551 return error("Invalid dbg record: missing instruction"); 6552 DILocation *DIL = cast<DILocation>(getFnMetadataByID(Record[0])); 6553 DILabel *Label = cast<DILabel>(getFnMetadataByID(Record[1])); 6554 Inst->getParent()->insertDbgRecordBefore( 6555 new DbgLabelRecord(Label, DebugLoc(DIL)), Inst->getIterator()); 6556 continue; // This isn't an instruction. 6557 } 6558 case bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE: 6559 case bitc::FUNC_CODE_DEBUG_RECORD_VALUE: 6560 case bitc::FUNC_CODE_DEBUG_RECORD_DECLARE: 6561 case bitc::FUNC_CODE_DEBUG_RECORD_ASSIGN: { 6562 // DbgVariableRecords are placed after the Instructions that they are 6563 // attached to. 6564 SeenDebugRecord = true; 6565 Instruction *Inst = getLastInstruction(); 6566 if (!Inst) 6567 return error("Invalid dbg record: missing instruction"); 6568 6569 // First 3 fields are common to all kinds: 6570 // DILocation, DILocalVariable, DIExpression 6571 // dbg_value (FUNC_CODE_DEBUG_RECORD_VALUE) 6572 // ..., LocationMetadata 6573 // dbg_value (FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE - abbrev'd) 6574 // ..., Value 6575 // dbg_declare (FUNC_CODE_DEBUG_RECORD_DECLARE) 6576 // ..., LocationMetadata 6577 // dbg_assign (FUNC_CODE_DEBUG_RECORD_ASSIGN) 6578 // ..., LocationMetadata, DIAssignID, DIExpression, LocationMetadata 6579 unsigned Slot = 0; 6580 // Common fields (0-2). 6581 DILocation *DIL = cast<DILocation>(getFnMetadataByID(Record[Slot++])); 6582 DILocalVariable *Var = 6583 cast<DILocalVariable>(getFnMetadataByID(Record[Slot++])); 6584 DIExpression *Expr = 6585 cast<DIExpression>(getFnMetadataByID(Record[Slot++])); 6586 6587 // Union field (3: LocationMetadata | Value). 6588 Metadata *RawLocation = nullptr; 6589 if (BitCode == bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE) { 6590 Value *V = nullptr; 6591 unsigned TyID = 0; 6592 // We never expect to see a fwd reference value here because 6593 // use-before-defs are encoded with the standard non-abbrev record 6594 // type (they'd require encoding the type too, and they're rare). As a 6595 // result, getValueTypePair only ever increments Slot by one here (once 6596 // for the value, never twice for value and type). 6597 unsigned SlotBefore = Slot; 6598 if (getValueTypePair(Record, Slot, NextValueNo, V, TyID, CurBB)) 6599 return error("Invalid dbg record: invalid value"); 6600 (void)SlotBefore; 6601 assert((SlotBefore == Slot - 1) && "unexpected fwd ref"); 6602 RawLocation = ValueAsMetadata::get(V); 6603 } else { 6604 RawLocation = getFnMetadataByID(Record[Slot++]); 6605 } 6606 6607 DbgVariableRecord *DVR = nullptr; 6608 switch (BitCode) { 6609 case bitc::FUNC_CODE_DEBUG_RECORD_VALUE: 6610 case bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE: 6611 DVR = new DbgVariableRecord(RawLocation, Var, Expr, DIL, 6612 DbgVariableRecord::LocationType::Value); 6613 break; 6614 case bitc::FUNC_CODE_DEBUG_RECORD_DECLARE: 6615 DVR = new DbgVariableRecord(RawLocation, Var, Expr, DIL, 6616 DbgVariableRecord::LocationType::Declare); 6617 break; 6618 case bitc::FUNC_CODE_DEBUG_RECORD_ASSIGN: { 6619 DIAssignID *ID = cast<DIAssignID>(getFnMetadataByID(Record[Slot++])); 6620 DIExpression *AddrExpr = 6621 cast<DIExpression>(getFnMetadataByID(Record[Slot++])); 6622 Metadata *Addr = getFnMetadataByID(Record[Slot++]); 6623 DVR = new DbgVariableRecord(RawLocation, Var, Expr, ID, Addr, AddrExpr, 6624 DIL); 6625 break; 6626 } 6627 default: 6628 llvm_unreachable("Unknown DbgVariableRecord bitcode"); 6629 } 6630 Inst->getParent()->insertDbgRecordBefore(DVR, Inst->getIterator()); 6631 continue; // This isn't an instruction. 6632 } 6633 case bitc::FUNC_CODE_INST_CALL: { 6634 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 6635 if (Record.size() < 3) 6636 return error("Invalid record"); 6637 6638 unsigned OpNum = 0; 6639 AttributeList PAL = getAttributes(Record[OpNum++]); 6640 unsigned CCInfo = Record[OpNum++]; 6641 6642 FastMathFlags FMF; 6643 if ((CCInfo >> bitc::CALL_FMF) & 1) { 6644 FMF = getDecodedFastMathFlags(Record[OpNum++]); 6645 if (!FMF.any()) 6646 return error("Fast math flags indicator set for call with no FMF"); 6647 } 6648 6649 unsigned FTyID = InvalidTypeID; 6650 FunctionType *FTy = nullptr; 6651 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 6652 FTyID = Record[OpNum++]; 6653 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 6654 if (!FTy) 6655 return error("Explicit call type is not a function type"); 6656 } 6657 6658 Value *Callee; 6659 unsigned CalleeTypeID; 6660 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID, 6661 CurBB)) 6662 return error("Invalid record"); 6663 6664 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 6665 if (!OpTy) 6666 return error("Callee is not a pointer type"); 6667 if (!FTy) { 6668 FTyID = getContainedTypeID(CalleeTypeID); 6669 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 6670 if (!FTy) 6671 return error("Callee is not of pointer to function type"); 6672 } 6673 if (Record.size() < FTy->getNumParams() + OpNum) 6674 return error("Insufficient operands to call"); 6675 6676 SmallVector<Value*, 16> Args; 6677 SmallVector<unsigned, 16> ArgTyIDs; 6678 // Read the fixed params. 6679 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 6680 unsigned ArgTyID = getContainedTypeID(FTyID, i + 1); 6681 if (FTy->getParamType(i)->isLabelTy()) 6682 Args.push_back(getBasicBlock(Record[OpNum])); 6683 else 6684 Args.push_back(getValue(Record, OpNum, NextValueNo, 6685 FTy->getParamType(i), ArgTyID, CurBB)); 6686 ArgTyIDs.push_back(ArgTyID); 6687 if (!Args.back()) 6688 return error("Invalid record"); 6689 } 6690 6691 // Read type/value pairs for varargs params. 6692 if (!FTy->isVarArg()) { 6693 if (OpNum != Record.size()) 6694 return error("Invalid record"); 6695 } else { 6696 while (OpNum != Record.size()) { 6697 Value *Op; 6698 unsigned OpTypeID; 6699 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 6700 return error("Invalid record"); 6701 Args.push_back(Op); 6702 ArgTyIDs.push_back(OpTypeID); 6703 } 6704 } 6705 6706 // Upgrade the bundles if needed. 6707 if (!OperandBundles.empty()) 6708 UpgradeOperandBundles(OperandBundles); 6709 6710 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 6711 ResTypeID = getContainedTypeID(FTyID); 6712 OperandBundles.clear(); 6713 InstructionList.push_back(I); 6714 cast<CallInst>(I)->setCallingConv( 6715 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 6716 CallInst::TailCallKind TCK = CallInst::TCK_None; 6717 if (CCInfo & (1 << bitc::CALL_TAIL)) 6718 TCK = CallInst::TCK_Tail; 6719 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 6720 TCK = CallInst::TCK_MustTail; 6721 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 6722 TCK = CallInst::TCK_NoTail; 6723 cast<CallInst>(I)->setTailCallKind(TCK); 6724 cast<CallInst>(I)->setAttributes(PAL); 6725 if (isa<DbgInfoIntrinsic>(I)) 6726 SeenDebugIntrinsic = true; 6727 if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) { 6728 I->deleteValue(); 6729 return Err; 6730 } 6731 if (FMF.any()) { 6732 if (!isa<FPMathOperator>(I)) 6733 return error("Fast-math-flags specified for call without " 6734 "floating-point scalar or vector return type"); 6735 I->setFastMathFlags(FMF); 6736 } 6737 break; 6738 } 6739 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 6740 if (Record.size() < 3) 6741 return error("Invalid record"); 6742 unsigned OpTyID = Record[0]; 6743 Type *OpTy = getTypeByID(OpTyID); 6744 Value *Op = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB); 6745 ResTypeID = Record[2]; 6746 Type *ResTy = getTypeByID(ResTypeID); 6747 if (!OpTy || !Op || !ResTy) 6748 return error("Invalid record"); 6749 I = new VAArgInst(Op, ResTy); 6750 InstructionList.push_back(I); 6751 break; 6752 } 6753 6754 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 6755 // A call or an invoke can be optionally prefixed with some variable 6756 // number of operand bundle blocks. These blocks are read into 6757 // OperandBundles and consumed at the next call or invoke instruction. 6758 6759 if (Record.empty() || Record[0] >= BundleTags.size()) 6760 return error("Invalid record"); 6761 6762 std::vector<Value *> Inputs; 6763 6764 unsigned OpNum = 1; 6765 while (OpNum != Record.size()) { 6766 Value *Op; 6767 unsigned OpTypeID; 6768 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 6769 return error("Invalid record"); 6770 Inputs.push_back(Op); 6771 } 6772 6773 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 6774 continue; 6775 } 6776 6777 case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval] 6778 unsigned OpNum = 0; 6779 Value *Op = nullptr; 6780 unsigned OpTypeID; 6781 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 6782 return error("Invalid record"); 6783 if (OpNum != Record.size()) 6784 return error("Invalid record"); 6785 6786 I = new FreezeInst(Op); 6787 ResTypeID = OpTypeID; 6788 InstructionList.push_back(I); 6789 break; 6790 } 6791 } 6792 6793 // Add instruction to end of current BB. If there is no current BB, reject 6794 // this file. 6795 if (!CurBB) { 6796 I->deleteValue(); 6797 return error("Invalid instruction with no BB"); 6798 } 6799 if (!OperandBundles.empty()) { 6800 I->deleteValue(); 6801 return error("Operand bundles found with no consumer"); 6802 } 6803 I->insertInto(CurBB, CurBB->end()); 6804 6805 // If this was a terminator instruction, move to the next block. 6806 if (I->isTerminator()) { 6807 ++CurBBNo; 6808 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 6809 } 6810 6811 // Non-void values get registered in the value table for future use. 6812 if (!I->getType()->isVoidTy()) { 6813 assert(I->getType() == getTypeByID(ResTypeID) && 6814 "Incorrect result type ID"); 6815 if (Error Err = ValueList.assignValue(NextValueNo++, I, ResTypeID)) 6816 return Err; 6817 } 6818 } 6819 6820 OutOfRecordLoop: 6821 6822 if (!OperandBundles.empty()) 6823 return error("Operand bundles found with no consumer"); 6824 6825 // Check the function list for unresolved values. 6826 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 6827 if (!A->getParent()) { 6828 // We found at least one unresolved value. Nuke them all to avoid leaks. 6829 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 6830 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 6831 A->replaceAllUsesWith(PoisonValue::get(A->getType())); 6832 delete A; 6833 } 6834 } 6835 return error("Never resolved value found in function"); 6836 } 6837 } 6838 6839 // Unexpected unresolved metadata about to be dropped. 6840 if (MDLoader->hasFwdRefs()) 6841 return error("Invalid function metadata: outgoing forward refs"); 6842 6843 if (PhiConstExprBB) 6844 PhiConstExprBB->eraseFromParent(); 6845 6846 for (const auto &Pair : ConstExprEdgeBBs) { 6847 BasicBlock *From = Pair.first.first; 6848 BasicBlock *To = Pair.first.second; 6849 BasicBlock *EdgeBB = Pair.second; 6850 BranchInst::Create(To, EdgeBB); 6851 From->getTerminator()->replaceSuccessorWith(To, EdgeBB); 6852 To->replacePhiUsesWith(From, EdgeBB); 6853 EdgeBB->moveBefore(To); 6854 } 6855 6856 // Trim the value list down to the size it was before we parsed this function. 6857 ValueList.shrinkTo(ModuleValueListSize); 6858 MDLoader->shrinkTo(ModuleMDLoaderSize); 6859 std::vector<BasicBlock*>().swap(FunctionBBs); 6860 return Error::success(); 6861 } 6862 6863 /// Find the function body in the bitcode stream 6864 Error BitcodeReader::findFunctionInStream( 6865 Function *F, 6866 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 6867 while (DeferredFunctionInfoIterator->second == 0) { 6868 // This is the fallback handling for the old format bitcode that 6869 // didn't contain the function index in the VST, or when we have 6870 // an anonymous function which would not have a VST entry. 6871 // Assert that we have one of those two cases. 6872 assert(VSTOffset == 0 || !F->hasName()); 6873 // Parse the next body in the stream and set its position in the 6874 // DeferredFunctionInfo map. 6875 if (Error Err = rememberAndSkipFunctionBodies()) 6876 return Err; 6877 } 6878 return Error::success(); 6879 } 6880 6881 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) { 6882 if (Val == SyncScope::SingleThread || Val == SyncScope::System) 6883 return SyncScope::ID(Val); 6884 if (Val >= SSIDs.size()) 6885 return SyncScope::System; // Map unknown synchronization scopes to system. 6886 return SSIDs[Val]; 6887 } 6888 6889 //===----------------------------------------------------------------------===// 6890 // GVMaterializer implementation 6891 //===----------------------------------------------------------------------===// 6892 6893 Error BitcodeReader::materialize(GlobalValue *GV) { 6894 Function *F = dyn_cast<Function>(GV); 6895 // If it's not a function or is already material, ignore the request. 6896 if (!F || !F->isMaterializable()) 6897 return Error::success(); 6898 6899 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 6900 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 6901 // If its position is recorded as 0, its body is somewhere in the stream 6902 // but we haven't seen it yet. 6903 if (DFII->second == 0) 6904 if (Error Err = findFunctionInStream(F, DFII)) 6905 return Err; 6906 6907 // Materialize metadata before parsing any function bodies. 6908 if (Error Err = materializeMetadata()) 6909 return Err; 6910 6911 // Move the bit stream to the saved position of the deferred function body. 6912 if (Error JumpFailed = Stream.JumpToBit(DFII->second)) 6913 return JumpFailed; 6914 6915 // Regardless of the debug info format we want to end up in, we need 6916 // IsNewDbgInfoFormat=true to construct any debug records seen in the bitcode. 6917 F->IsNewDbgInfoFormat = true; 6918 6919 if (Error Err = parseFunctionBody(F)) 6920 return Err; 6921 F->setIsMaterializable(false); 6922 6923 // All parsed Functions should load into the debug info format dictated by the 6924 // Module, unless we're attempting to preserve the input debug info format. 6925 if (SeenDebugIntrinsic && SeenDebugRecord) 6926 return error("Mixed debug intrinsics and debug records in bitcode module!"); 6927 if (PreserveInputDbgFormat == cl::boolOrDefault::BOU_TRUE) { 6928 bool SeenAnyDebugInfo = SeenDebugIntrinsic || SeenDebugRecord; 6929 bool NewDbgInfoFormatDesired = 6930 SeenAnyDebugInfo ? SeenDebugRecord : F->getParent()->IsNewDbgInfoFormat; 6931 if (SeenAnyDebugInfo) { 6932 UseNewDbgInfoFormat = SeenDebugRecord; 6933 WriteNewDbgInfoFormatToBitcode = SeenDebugRecord; 6934 WriteNewDbgInfoFormat = SeenDebugRecord; 6935 } 6936 // If the module's debug info format doesn't match the observed input 6937 // format, then set its format now; we don't need to call the conversion 6938 // function because there must be no existing intrinsics to convert. 6939 // Otherwise, just set the format on this function now. 6940 if (NewDbgInfoFormatDesired != F->getParent()->IsNewDbgInfoFormat) 6941 F->getParent()->setNewDbgInfoFormatFlag(NewDbgInfoFormatDesired); 6942 else 6943 F->setNewDbgInfoFormatFlag(NewDbgInfoFormatDesired); 6944 } else { 6945 // If we aren't preserving formats, we use the Module flag to get our 6946 // desired format instead of reading flags, in case we are lazy-loading and 6947 // the format of the module has been changed since it was set by the flags. 6948 // We only need to convert debug info here if we have debug records but 6949 // desire the intrinsic format; everything else is a no-op or handled by the 6950 // autoupgrader. 6951 bool ModuleIsNewDbgInfoFormat = F->getParent()->IsNewDbgInfoFormat; 6952 if (ModuleIsNewDbgInfoFormat || !SeenDebugRecord) 6953 F->setNewDbgInfoFormatFlag(ModuleIsNewDbgInfoFormat); 6954 else 6955 F->setIsNewDbgInfoFormat(ModuleIsNewDbgInfoFormat); 6956 } 6957 6958 if (StripDebugInfo) 6959 stripDebugInfo(*F); 6960 6961 // Upgrade any old intrinsic calls in the function. 6962 for (auto &I : UpgradedIntrinsics) { 6963 for (User *U : llvm::make_early_inc_range(I.first->materialized_users())) 6964 if (CallInst *CI = dyn_cast<CallInst>(U)) 6965 UpgradeIntrinsicCall(CI, I.second); 6966 } 6967 6968 // Finish fn->subprogram upgrade for materialized functions. 6969 if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F)) 6970 F->setSubprogram(SP); 6971 6972 // Check if the TBAA Metadata are valid, otherwise we will need to strip them. 6973 if (!MDLoader->isStrippingTBAA()) { 6974 for (auto &I : instructions(F)) { 6975 MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa); 6976 if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA)) 6977 continue; 6978 MDLoader->setStripTBAA(true); 6979 stripTBAA(F->getParent()); 6980 } 6981 } 6982 6983 for (auto &I : instructions(F)) { 6984 // "Upgrade" older incorrect branch weights by dropping them. 6985 if (auto *MD = I.getMetadata(LLVMContext::MD_prof)) { 6986 if (MD->getOperand(0) != nullptr && isa<MDString>(MD->getOperand(0))) { 6987 MDString *MDS = cast<MDString>(MD->getOperand(0)); 6988 StringRef ProfName = MDS->getString(); 6989 // Check consistency of !prof branch_weights metadata. 6990 if (ProfName != "branch_weights") 6991 continue; 6992 unsigned ExpectedNumOperands = 0; 6993 if (BranchInst *BI = dyn_cast<BranchInst>(&I)) 6994 ExpectedNumOperands = BI->getNumSuccessors(); 6995 else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I)) 6996 ExpectedNumOperands = SI->getNumSuccessors(); 6997 else if (isa<CallInst>(&I)) 6998 ExpectedNumOperands = 1; 6999 else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I)) 7000 ExpectedNumOperands = IBI->getNumDestinations(); 7001 else if (isa<SelectInst>(&I)) 7002 ExpectedNumOperands = 2; 7003 else 7004 continue; // ignore and continue. 7005 7006 unsigned Offset = getBranchWeightOffset(MD); 7007 7008 // If branch weight doesn't match, just strip branch weight. 7009 if (MD->getNumOperands() != Offset + ExpectedNumOperands) 7010 I.setMetadata(LLVMContext::MD_prof, nullptr); 7011 } 7012 } 7013 7014 // Remove incompatible attributes on function calls. 7015 if (auto *CI = dyn_cast<CallBase>(&I)) { 7016 CI->removeRetAttrs(AttributeFuncs::typeIncompatible( 7017 CI->getFunctionType()->getReturnType())); 7018 7019 for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ++ArgNo) 7020 CI->removeParamAttrs(ArgNo, AttributeFuncs::typeIncompatible( 7021 CI->getArgOperand(ArgNo)->getType())); 7022 } 7023 } 7024 7025 // Look for functions that rely on old function attribute behavior. 7026 UpgradeFunctionAttributes(*F); 7027 7028 // Bring in any functions that this function forward-referenced via 7029 // blockaddresses. 7030 return materializeForwardReferencedFunctions(); 7031 } 7032 7033 Error BitcodeReader::materializeModule() { 7034 if (Error Err = materializeMetadata()) 7035 return Err; 7036 7037 // Promise to materialize all forward references. 7038 WillMaterializeAllForwardRefs = true; 7039 7040 // Iterate over the module, deserializing any functions that are still on 7041 // disk. 7042 for (Function &F : *TheModule) { 7043 if (Error Err = materialize(&F)) 7044 return Err; 7045 } 7046 // At this point, if there are any function bodies, parse the rest of 7047 // the bits in the module past the last function block we have recorded 7048 // through either lazy scanning or the VST. 7049 if (LastFunctionBlockBit || NextUnreadBit) 7050 if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit 7051 ? LastFunctionBlockBit 7052 : NextUnreadBit)) 7053 return Err; 7054 7055 // Check that all block address forward references got resolved (as we 7056 // promised above). 7057 if (!BasicBlockFwdRefs.empty()) 7058 return error("Never resolved function from blockaddress"); 7059 7060 // Upgrade any intrinsic calls that slipped through (should not happen!) and 7061 // delete the old functions to clean up. We can't do this unless the entire 7062 // module is materialized because there could always be another function body 7063 // with calls to the old function. 7064 for (auto &I : UpgradedIntrinsics) { 7065 for (auto *U : I.first->users()) { 7066 if (CallInst *CI = dyn_cast<CallInst>(U)) 7067 UpgradeIntrinsicCall(CI, I.second); 7068 } 7069 if (!I.first->use_empty()) 7070 I.first->replaceAllUsesWith(I.second); 7071 I.first->eraseFromParent(); 7072 } 7073 UpgradedIntrinsics.clear(); 7074 7075 UpgradeDebugInfo(*TheModule); 7076 7077 UpgradeModuleFlags(*TheModule); 7078 7079 UpgradeARCRuntime(*TheModule); 7080 7081 return Error::success(); 7082 } 7083 7084 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 7085 return IdentifiedStructTypes; 7086 } 7087 7088 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 7089 BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex, 7090 StringRef ModulePath, std::function<bool(GlobalValue::GUID)> IsPrevailing) 7091 : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex), 7092 ModulePath(ModulePath), IsPrevailing(IsPrevailing) {} 7093 7094 void ModuleSummaryIndexBitcodeReader::addThisModule() { 7095 TheIndex.addModule(ModulePath); 7096 } 7097 7098 ModuleSummaryIndex::ModuleInfo * 7099 ModuleSummaryIndexBitcodeReader::getThisModule() { 7100 return TheIndex.getModule(ModulePath); 7101 } 7102 7103 template <bool AllowNullValueInfo> 7104 std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID> 7105 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) { 7106 auto VGI = ValueIdToValueInfoMap[ValueId]; 7107 // We can have a null value info for memprof callsite info records in 7108 // distributed ThinLTO index files when the callee function summary is not 7109 // included in the index. The bitcode writer records 0 in that case, 7110 // and the caller of this helper will set AllowNullValueInfo to true. 7111 assert(AllowNullValueInfo || std::get<0>(VGI)); 7112 return VGI; 7113 } 7114 7115 void ModuleSummaryIndexBitcodeReader::setValueGUID( 7116 uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage, 7117 StringRef SourceFileName) { 7118 std::string GlobalId = 7119 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 7120 auto ValueGUID = GlobalValue::getGUID(GlobalId); 7121 auto OriginalNameID = ValueGUID; 7122 if (GlobalValue::isLocalLinkage(Linkage)) 7123 OriginalNameID = GlobalValue::getGUID(ValueName); 7124 if (PrintSummaryGUIDs) 7125 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 7126 << ValueName << "\n"; 7127 7128 // UseStrtab is false for legacy summary formats and value names are 7129 // created on stack. In that case we save the name in a string saver in 7130 // the index so that the value name can be recorded. 7131 ValueIdToValueInfoMap[ValueID] = std::make_tuple( 7132 TheIndex.getOrInsertValueInfo( 7133 ValueGUID, UseStrtab ? ValueName : TheIndex.saveString(ValueName)), 7134 OriginalNameID, ValueGUID); 7135 } 7136 7137 // Specialized value symbol table parser used when reading module index 7138 // blocks where we don't actually create global values. The parsed information 7139 // is saved in the bitcode reader for use when later parsing summaries. 7140 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 7141 uint64_t Offset, 7142 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 7143 // With a strtab the VST is not required to parse the summary. 7144 if (UseStrtab) 7145 return Error::success(); 7146 7147 assert(Offset > 0 && "Expected non-zero VST offset"); 7148 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 7149 if (!MaybeCurrentBit) 7150 return MaybeCurrentBit.takeError(); 7151 uint64_t CurrentBit = MaybeCurrentBit.get(); 7152 7153 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 7154 return Err; 7155 7156 SmallVector<uint64_t, 64> Record; 7157 7158 // Read all the records for this value table. 7159 SmallString<128> ValueName; 7160 7161 while (true) { 7162 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 7163 if (!MaybeEntry) 7164 return MaybeEntry.takeError(); 7165 BitstreamEntry Entry = MaybeEntry.get(); 7166 7167 switch (Entry.Kind) { 7168 case BitstreamEntry::SubBlock: // Handled for us already. 7169 case BitstreamEntry::Error: 7170 return error("Malformed block"); 7171 case BitstreamEntry::EndBlock: 7172 // Done parsing VST, jump back to wherever we came from. 7173 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 7174 return JumpFailed; 7175 return Error::success(); 7176 case BitstreamEntry::Record: 7177 // The interesting case. 7178 break; 7179 } 7180 7181 // Read a record. 7182 Record.clear(); 7183 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 7184 if (!MaybeRecord) 7185 return MaybeRecord.takeError(); 7186 switch (MaybeRecord.get()) { 7187 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 7188 break; 7189 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 7190 if (convertToString(Record, 1, ValueName)) 7191 return error("Invalid record"); 7192 unsigned ValueID = Record[0]; 7193 assert(!SourceFileName.empty()); 7194 auto VLI = ValueIdToLinkageMap.find(ValueID); 7195 assert(VLI != ValueIdToLinkageMap.end() && 7196 "No linkage found for VST entry?"); 7197 auto Linkage = VLI->second; 7198 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 7199 ValueName.clear(); 7200 break; 7201 } 7202 case bitc::VST_CODE_FNENTRY: { 7203 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 7204 if (convertToString(Record, 2, ValueName)) 7205 return error("Invalid record"); 7206 unsigned ValueID = Record[0]; 7207 assert(!SourceFileName.empty()); 7208 auto VLI = ValueIdToLinkageMap.find(ValueID); 7209 assert(VLI != ValueIdToLinkageMap.end() && 7210 "No linkage found for VST entry?"); 7211 auto Linkage = VLI->second; 7212 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 7213 ValueName.clear(); 7214 break; 7215 } 7216 case bitc::VST_CODE_COMBINED_ENTRY: { 7217 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 7218 unsigned ValueID = Record[0]; 7219 GlobalValue::GUID RefGUID = Record[1]; 7220 // The "original name", which is the second value of the pair will be 7221 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 7222 ValueIdToValueInfoMap[ValueID] = std::make_tuple( 7223 TheIndex.getOrInsertValueInfo(RefGUID), RefGUID, RefGUID); 7224 break; 7225 } 7226 } 7227 } 7228 } 7229 7230 // Parse just the blocks needed for building the index out of the module. 7231 // At the end of this routine the module Index is populated with a map 7232 // from global value id to GlobalValueSummary objects. 7233 Error ModuleSummaryIndexBitcodeReader::parseModule() { 7234 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 7235 return Err; 7236 7237 SmallVector<uint64_t, 64> Record; 7238 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 7239 unsigned ValueId = 0; 7240 7241 // Read the index for this module. 7242 while (true) { 7243 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 7244 if (!MaybeEntry) 7245 return MaybeEntry.takeError(); 7246 llvm::BitstreamEntry Entry = MaybeEntry.get(); 7247 7248 switch (Entry.Kind) { 7249 case BitstreamEntry::Error: 7250 return error("Malformed block"); 7251 case BitstreamEntry::EndBlock: 7252 return Error::success(); 7253 7254 case BitstreamEntry::SubBlock: 7255 switch (Entry.ID) { 7256 default: // Skip unknown content. 7257 if (Error Err = Stream.SkipBlock()) 7258 return Err; 7259 break; 7260 case bitc::BLOCKINFO_BLOCK_ID: 7261 // Need to parse these to get abbrev ids (e.g. for VST) 7262 if (Error Err = readBlockInfo()) 7263 return Err; 7264 break; 7265 case bitc::VALUE_SYMTAB_BLOCK_ID: 7266 // Should have been parsed earlier via VSTOffset, unless there 7267 // is no summary section. 7268 assert(((SeenValueSymbolTable && VSTOffset > 0) || 7269 !SeenGlobalValSummary) && 7270 "Expected early VST parse via VSTOffset record"); 7271 if (Error Err = Stream.SkipBlock()) 7272 return Err; 7273 break; 7274 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 7275 case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID: 7276 // Add the module if it is a per-module index (has a source file name). 7277 if (!SourceFileName.empty()) 7278 addThisModule(); 7279 assert(!SeenValueSymbolTable && 7280 "Already read VST when parsing summary block?"); 7281 // We might not have a VST if there were no values in the 7282 // summary. An empty summary block generated when we are 7283 // performing ThinLTO compiles so we don't later invoke 7284 // the regular LTO process on them. 7285 if (VSTOffset > 0) { 7286 if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 7287 return Err; 7288 SeenValueSymbolTable = true; 7289 } 7290 SeenGlobalValSummary = true; 7291 if (Error Err = parseEntireSummary(Entry.ID)) 7292 return Err; 7293 break; 7294 case bitc::MODULE_STRTAB_BLOCK_ID: 7295 if (Error Err = parseModuleStringTable()) 7296 return Err; 7297 break; 7298 } 7299 continue; 7300 7301 case BitstreamEntry::Record: { 7302 Record.clear(); 7303 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 7304 if (!MaybeBitCode) 7305 return MaybeBitCode.takeError(); 7306 switch (MaybeBitCode.get()) { 7307 default: 7308 break; // Default behavior, ignore unknown content. 7309 case bitc::MODULE_CODE_VERSION: { 7310 if (Error Err = parseVersionRecord(Record).takeError()) 7311 return Err; 7312 break; 7313 } 7314 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 7315 case bitc::MODULE_CODE_SOURCE_FILENAME: { 7316 SmallString<128> ValueName; 7317 if (convertToString(Record, 0, ValueName)) 7318 return error("Invalid record"); 7319 SourceFileName = ValueName.c_str(); 7320 break; 7321 } 7322 /// MODULE_CODE_HASH: [5*i32] 7323 case bitc::MODULE_CODE_HASH: { 7324 if (Record.size() != 5) 7325 return error("Invalid hash length " + Twine(Record.size()).str()); 7326 auto &Hash = getThisModule()->second; 7327 int Pos = 0; 7328 for (auto &Val : Record) { 7329 assert(!(Val >> 32) && "Unexpected high bits set"); 7330 Hash[Pos++] = Val; 7331 } 7332 break; 7333 } 7334 /// MODULE_CODE_VSTOFFSET: [offset] 7335 case bitc::MODULE_CODE_VSTOFFSET: 7336 if (Record.empty()) 7337 return error("Invalid record"); 7338 // Note that we subtract 1 here because the offset is relative to one 7339 // word before the start of the identification or module block, which 7340 // was historically always the start of the regular bitcode header. 7341 VSTOffset = Record[0] - 1; 7342 break; 7343 // v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...] 7344 // v1 FUNCTION: [type, callingconv, isproto, linkage, ...] 7345 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...] 7346 // v2: [strtab offset, strtab size, v1] 7347 case bitc::MODULE_CODE_GLOBALVAR: 7348 case bitc::MODULE_CODE_FUNCTION: 7349 case bitc::MODULE_CODE_ALIAS: { 7350 StringRef Name; 7351 ArrayRef<uint64_t> GVRecord; 7352 std::tie(Name, GVRecord) = readNameFromStrtab(Record); 7353 if (GVRecord.size() <= 3) 7354 return error("Invalid record"); 7355 uint64_t RawLinkage = GVRecord[3]; 7356 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 7357 if (!UseStrtab) { 7358 ValueIdToLinkageMap[ValueId++] = Linkage; 7359 break; 7360 } 7361 7362 setValueGUID(ValueId++, Name, Linkage, SourceFileName); 7363 break; 7364 } 7365 } 7366 } 7367 continue; 7368 } 7369 } 7370 } 7371 7372 SmallVector<ValueInfo, 0> 7373 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) { 7374 SmallVector<ValueInfo, 0> Ret; 7375 Ret.reserve(Record.size()); 7376 for (uint64_t RefValueId : Record) 7377 Ret.push_back(std::get<0>(getValueInfoFromValueId(RefValueId))); 7378 return Ret; 7379 } 7380 7381 std::vector<FunctionSummary::EdgeTy> 7382 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record, 7383 bool IsOldProfileFormat, 7384 bool HasProfile, bool HasRelBF) { 7385 std::vector<FunctionSummary::EdgeTy> Ret; 7386 // In the case of new profile formats, there are two Record entries per 7387 // Edge. Otherwise, conservatively reserve up to Record.size. 7388 if (!IsOldProfileFormat && (HasProfile || HasRelBF)) 7389 Ret.reserve(Record.size() / 2); 7390 else 7391 Ret.reserve(Record.size()); 7392 7393 for (unsigned I = 0, E = Record.size(); I != E; ++I) { 7394 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 7395 bool HasTailCall = false; 7396 uint64_t RelBF = 0; 7397 ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[I])); 7398 if (IsOldProfileFormat) { 7399 I += 1; // Skip old callsitecount field 7400 if (HasProfile) 7401 I += 1; // Skip old profilecount field 7402 } else if (HasProfile) 7403 std::tie(Hotness, HasTailCall) = 7404 getDecodedHotnessCallEdgeInfo(Record[++I]); 7405 else if (HasRelBF) 7406 getDecodedRelBFCallEdgeInfo(Record[++I], RelBF, HasTailCall); 7407 Ret.push_back(FunctionSummary::EdgeTy{ 7408 Callee, CalleeInfo(Hotness, HasTailCall, RelBF)}); 7409 } 7410 return Ret; 7411 } 7412 7413 static void 7414 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot, 7415 WholeProgramDevirtResolution &Wpd) { 7416 uint64_t ArgNum = Record[Slot++]; 7417 WholeProgramDevirtResolution::ByArg &B = 7418 Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}]; 7419 Slot += ArgNum; 7420 7421 B.TheKind = 7422 static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]); 7423 B.Info = Record[Slot++]; 7424 B.Byte = Record[Slot++]; 7425 B.Bit = Record[Slot++]; 7426 } 7427 7428 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record, 7429 StringRef Strtab, size_t &Slot, 7430 TypeIdSummary &TypeId) { 7431 uint64_t Id = Record[Slot++]; 7432 WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id]; 7433 7434 Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]); 7435 Wpd.SingleImplName = {Strtab.data() + Record[Slot], 7436 static_cast<size_t>(Record[Slot + 1])}; 7437 Slot += 2; 7438 7439 uint64_t ResByArgNum = Record[Slot++]; 7440 for (uint64_t I = 0; I != ResByArgNum; ++I) 7441 parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd); 7442 } 7443 7444 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record, 7445 StringRef Strtab, 7446 ModuleSummaryIndex &TheIndex) { 7447 size_t Slot = 0; 7448 TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary( 7449 {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])}); 7450 Slot += 2; 7451 7452 TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]); 7453 TypeId.TTRes.SizeM1BitWidth = Record[Slot++]; 7454 TypeId.TTRes.AlignLog2 = Record[Slot++]; 7455 TypeId.TTRes.SizeM1 = Record[Slot++]; 7456 TypeId.TTRes.BitMask = Record[Slot++]; 7457 TypeId.TTRes.InlineBits = Record[Slot++]; 7458 7459 while (Slot < Record.size()) 7460 parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId); 7461 } 7462 7463 std::vector<FunctionSummary::ParamAccess> 7464 ModuleSummaryIndexBitcodeReader::parseParamAccesses(ArrayRef<uint64_t> Record) { 7465 auto ReadRange = [&]() { 7466 APInt Lower(FunctionSummary::ParamAccess::RangeWidth, 7467 BitcodeReader::decodeSignRotatedValue(Record.front())); 7468 Record = Record.drop_front(); 7469 APInt Upper(FunctionSummary::ParamAccess::RangeWidth, 7470 BitcodeReader::decodeSignRotatedValue(Record.front())); 7471 Record = Record.drop_front(); 7472 ConstantRange Range{Lower, Upper}; 7473 assert(!Range.isFullSet()); 7474 assert(!Range.isUpperSignWrapped()); 7475 return Range; 7476 }; 7477 7478 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; 7479 while (!Record.empty()) { 7480 PendingParamAccesses.emplace_back(); 7481 FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back(); 7482 ParamAccess.ParamNo = Record.front(); 7483 Record = Record.drop_front(); 7484 ParamAccess.Use = ReadRange(); 7485 ParamAccess.Calls.resize(Record.front()); 7486 Record = Record.drop_front(); 7487 for (auto &Call : ParamAccess.Calls) { 7488 Call.ParamNo = Record.front(); 7489 Record = Record.drop_front(); 7490 Call.Callee = std::get<0>(getValueInfoFromValueId(Record.front())); 7491 Record = Record.drop_front(); 7492 Call.Offsets = ReadRange(); 7493 } 7494 } 7495 return PendingParamAccesses; 7496 } 7497 7498 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo( 7499 ArrayRef<uint64_t> Record, size_t &Slot, 7500 TypeIdCompatibleVtableInfo &TypeId) { 7501 uint64_t Offset = Record[Slot++]; 7502 ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[Slot++])); 7503 TypeId.push_back({Offset, Callee}); 7504 } 7505 7506 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord( 7507 ArrayRef<uint64_t> Record) { 7508 size_t Slot = 0; 7509 TypeIdCompatibleVtableInfo &TypeId = 7510 TheIndex.getOrInsertTypeIdCompatibleVtableSummary( 7511 {Strtab.data() + Record[Slot], 7512 static_cast<size_t>(Record[Slot + 1])}); 7513 Slot += 2; 7514 7515 while (Slot < Record.size()) 7516 parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId); 7517 } 7518 7519 static void setSpecialRefs(SmallVectorImpl<ValueInfo> &Refs, unsigned ROCnt, 7520 unsigned WOCnt) { 7521 // Readonly and writeonly refs are in the end of the refs list. 7522 assert(ROCnt + WOCnt <= Refs.size()); 7523 unsigned FirstWORef = Refs.size() - WOCnt; 7524 unsigned RefNo = FirstWORef - ROCnt; 7525 for (; RefNo < FirstWORef; ++RefNo) 7526 Refs[RefNo].setReadOnly(); 7527 for (; RefNo < Refs.size(); ++RefNo) 7528 Refs[RefNo].setWriteOnly(); 7529 } 7530 7531 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 7532 // objects in the index. 7533 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) { 7534 if (Error Err = Stream.EnterSubBlock(ID)) 7535 return Err; 7536 SmallVector<uint64_t, 64> Record; 7537 7538 // Parse version 7539 { 7540 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 7541 if (!MaybeEntry) 7542 return MaybeEntry.takeError(); 7543 BitstreamEntry Entry = MaybeEntry.get(); 7544 7545 if (Entry.Kind != BitstreamEntry::Record) 7546 return error("Invalid Summary Block: record for version expected"); 7547 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 7548 if (!MaybeRecord) 7549 return MaybeRecord.takeError(); 7550 if (MaybeRecord.get() != bitc::FS_VERSION) 7551 return error("Invalid Summary Block: version expected"); 7552 } 7553 const uint64_t Version = Record[0]; 7554 const bool IsOldProfileFormat = Version == 1; 7555 if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion) 7556 return error("Invalid summary version " + Twine(Version) + 7557 ". Version should be in the range [1-" + 7558 Twine(ModuleSummaryIndex::BitcodeSummaryVersion) + 7559 "]."); 7560 Record.clear(); 7561 7562 // Keep around the last seen summary to be used when we see an optional 7563 // "OriginalName" attachement. 7564 GlobalValueSummary *LastSeenSummary = nullptr; 7565 GlobalValue::GUID LastSeenGUID = 0; 7566 7567 // We can expect to see any number of type ID information records before 7568 // each function summary records; these variables store the information 7569 // collected so far so that it can be used to create the summary object. 7570 std::vector<GlobalValue::GUID> PendingTypeTests; 7571 std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls, 7572 PendingTypeCheckedLoadVCalls; 7573 std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls, 7574 PendingTypeCheckedLoadConstVCalls; 7575 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; 7576 7577 std::vector<CallsiteInfo> PendingCallsites; 7578 std::vector<AllocInfo> PendingAllocs; 7579 7580 while (true) { 7581 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 7582 if (!MaybeEntry) 7583 return MaybeEntry.takeError(); 7584 BitstreamEntry Entry = MaybeEntry.get(); 7585 7586 switch (Entry.Kind) { 7587 case BitstreamEntry::SubBlock: // Handled for us already. 7588 case BitstreamEntry::Error: 7589 return error("Malformed block"); 7590 case BitstreamEntry::EndBlock: 7591 return Error::success(); 7592 case BitstreamEntry::Record: 7593 // The interesting case. 7594 break; 7595 } 7596 7597 // Read a record. The record format depends on whether this 7598 // is a per-module index or a combined index file. In the per-module 7599 // case the records contain the associated value's ID for correlation 7600 // with VST entries. In the combined index the correlation is done 7601 // via the bitcode offset of the summary records (which were saved 7602 // in the combined index VST entries). The records also contain 7603 // information used for ThinLTO renaming and importing. 7604 Record.clear(); 7605 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 7606 if (!MaybeBitCode) 7607 return MaybeBitCode.takeError(); 7608 switch (unsigned BitCode = MaybeBitCode.get()) { 7609 default: // Default behavior: ignore. 7610 break; 7611 case bitc::FS_FLAGS: { // [flags] 7612 TheIndex.setFlags(Record[0]); 7613 break; 7614 } 7615 case bitc::FS_VALUE_GUID: { // [valueid, refguid_upper32, refguid_lower32] 7616 uint64_t ValueID = Record[0]; 7617 GlobalValue::GUID RefGUID; 7618 if (Version >= 11) { 7619 RefGUID = Record[1] << 32 | Record[2]; 7620 } else { 7621 RefGUID = Record[1]; 7622 } 7623 ValueIdToValueInfoMap[ValueID] = std::make_tuple( 7624 TheIndex.getOrInsertValueInfo(RefGUID), RefGUID, RefGUID); 7625 break; 7626 } 7627 // FS_PERMODULE is legacy and does not have support for the tail call flag. 7628 // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs, 7629 // numrefs x valueid, n x (valueid)] 7630 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs, 7631 // numrefs x valueid, 7632 // n x (valueid, hotness+tailcall flags)] 7633 // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs, 7634 // numrefs x valueid, 7635 // n x (valueid, relblockfreq+tailcall)] 7636 case bitc::FS_PERMODULE: 7637 case bitc::FS_PERMODULE_RELBF: 7638 case bitc::FS_PERMODULE_PROFILE: { 7639 unsigned ValueID = Record[0]; 7640 uint64_t RawFlags = Record[1]; 7641 unsigned InstCount = Record[2]; 7642 uint64_t RawFunFlags = 0; 7643 unsigned NumRefs = Record[3]; 7644 unsigned NumRORefs = 0, NumWORefs = 0; 7645 int RefListStartIndex = 4; 7646 if (Version >= 4) { 7647 RawFunFlags = Record[3]; 7648 NumRefs = Record[4]; 7649 RefListStartIndex = 5; 7650 if (Version >= 5) { 7651 NumRORefs = Record[5]; 7652 RefListStartIndex = 6; 7653 if (Version >= 7) { 7654 NumWORefs = Record[6]; 7655 RefListStartIndex = 7; 7656 } 7657 } 7658 } 7659 7660 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7661 // The module path string ref set in the summary must be owned by the 7662 // index's module string table. Since we don't have a module path 7663 // string table section in the per-module index, we create a single 7664 // module path string table entry with an empty (0) ID to take 7665 // ownership. 7666 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 7667 assert(Record.size() >= RefListStartIndex + NumRefs && 7668 "Record size inconsistent with number of references"); 7669 SmallVector<ValueInfo, 0> Refs = makeRefList( 7670 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 7671 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 7672 bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF); 7673 std::vector<FunctionSummary::EdgeTy> Calls = makeCallList( 7674 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 7675 IsOldProfileFormat, HasProfile, HasRelBF); 7676 setSpecialRefs(Refs, NumRORefs, NumWORefs); 7677 auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID); 7678 // In order to save memory, only record the memprof summaries if this is 7679 // the prevailing copy of a symbol. The linker doesn't resolve local 7680 // linkage values so don't check whether those are prevailing. 7681 auto LT = (GlobalValue::LinkageTypes)Flags.Linkage; 7682 if (IsPrevailing && 7683 !GlobalValue::isLocalLinkage(LT) && 7684 !IsPrevailing(std::get<2>(VIAndOriginalGUID))) { 7685 PendingCallsites.clear(); 7686 PendingAllocs.clear(); 7687 } 7688 auto FS = std::make_unique<FunctionSummary>( 7689 Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0, 7690 std::move(Refs), std::move(Calls), std::move(PendingTypeTests), 7691 std::move(PendingTypeTestAssumeVCalls), 7692 std::move(PendingTypeCheckedLoadVCalls), 7693 std::move(PendingTypeTestAssumeConstVCalls), 7694 std::move(PendingTypeCheckedLoadConstVCalls), 7695 std::move(PendingParamAccesses), std::move(PendingCallsites), 7696 std::move(PendingAllocs)); 7697 FS->setModulePath(getThisModule()->first()); 7698 FS->setOriginalName(std::get<1>(VIAndOriginalGUID)); 7699 TheIndex.addGlobalValueSummary(std::get<0>(VIAndOriginalGUID), 7700 std::move(FS)); 7701 break; 7702 } 7703 // FS_ALIAS: [valueid, flags, valueid] 7704 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 7705 // they expect all aliasee summaries to be available. 7706 case bitc::FS_ALIAS: { 7707 unsigned ValueID = Record[0]; 7708 uint64_t RawFlags = Record[1]; 7709 unsigned AliaseeID = Record[2]; 7710 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7711 auto AS = std::make_unique<AliasSummary>(Flags); 7712 // The module path string ref set in the summary must be owned by the 7713 // index's module string table. Since we don't have a module path 7714 // string table section in the per-module index, we create a single 7715 // module path string table entry with an empty (0) ID to take 7716 // ownership. 7717 AS->setModulePath(getThisModule()->first()); 7718 7719 auto AliaseeVI = std::get<0>(getValueInfoFromValueId(AliaseeID)); 7720 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath); 7721 if (!AliaseeInModule) 7722 return error("Alias expects aliasee summary to be parsed"); 7723 AS->setAliasee(AliaseeVI, AliaseeInModule); 7724 7725 auto GUID = getValueInfoFromValueId(ValueID); 7726 AS->setOriginalName(std::get<1>(GUID)); 7727 TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(AS)); 7728 break; 7729 } 7730 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid] 7731 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 7732 unsigned ValueID = Record[0]; 7733 uint64_t RawFlags = Record[1]; 7734 unsigned RefArrayStart = 2; 7735 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 7736 /* WriteOnly */ false, 7737 /* Constant */ false, 7738 GlobalObject::VCallVisibilityPublic); 7739 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7740 if (Version >= 5) { 7741 GVF = getDecodedGVarFlags(Record[2]); 7742 RefArrayStart = 3; 7743 } 7744 SmallVector<ValueInfo, 0> Refs = 7745 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 7746 auto FS = 7747 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 7748 FS->setModulePath(getThisModule()->first()); 7749 auto GUID = getValueInfoFromValueId(ValueID); 7750 FS->setOriginalName(std::get<1>(GUID)); 7751 TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(FS)); 7752 break; 7753 } 7754 // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, 7755 // numrefs, numrefs x valueid, 7756 // n x (valueid, offset)] 7757 case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: { 7758 unsigned ValueID = Record[0]; 7759 uint64_t RawFlags = Record[1]; 7760 GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]); 7761 unsigned NumRefs = Record[3]; 7762 unsigned RefListStartIndex = 4; 7763 unsigned VTableListStartIndex = RefListStartIndex + NumRefs; 7764 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7765 SmallVector<ValueInfo, 0> Refs = makeRefList( 7766 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 7767 VTableFuncList VTableFuncs; 7768 for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) { 7769 ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[I])); 7770 uint64_t Offset = Record[++I]; 7771 VTableFuncs.push_back({Callee, Offset}); 7772 } 7773 auto VS = 7774 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 7775 VS->setModulePath(getThisModule()->first()); 7776 VS->setVTableFuncs(VTableFuncs); 7777 auto GUID = getValueInfoFromValueId(ValueID); 7778 VS->setOriginalName(std::get<1>(GUID)); 7779 TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(VS)); 7780 break; 7781 } 7782 // FS_COMBINED is legacy and does not have support for the tail call flag. 7783 // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs, 7784 // numrefs x valueid, n x (valueid)] 7785 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs, 7786 // numrefs x valueid, 7787 // n x (valueid, hotness+tailcall flags)] 7788 case bitc::FS_COMBINED: 7789 case bitc::FS_COMBINED_PROFILE: { 7790 unsigned ValueID = Record[0]; 7791 uint64_t ModuleId = Record[1]; 7792 uint64_t RawFlags = Record[2]; 7793 unsigned InstCount = Record[3]; 7794 uint64_t RawFunFlags = 0; 7795 uint64_t EntryCount = 0; 7796 unsigned NumRefs = Record[4]; 7797 unsigned NumRORefs = 0, NumWORefs = 0; 7798 int RefListStartIndex = 5; 7799 7800 if (Version >= 4) { 7801 RawFunFlags = Record[4]; 7802 RefListStartIndex = 6; 7803 size_t NumRefsIndex = 5; 7804 if (Version >= 5) { 7805 unsigned NumRORefsOffset = 1; 7806 RefListStartIndex = 7; 7807 if (Version >= 6) { 7808 NumRefsIndex = 6; 7809 EntryCount = Record[5]; 7810 RefListStartIndex = 8; 7811 if (Version >= 7) { 7812 RefListStartIndex = 9; 7813 NumWORefs = Record[8]; 7814 NumRORefsOffset = 2; 7815 } 7816 } 7817 NumRORefs = Record[RefListStartIndex - NumRORefsOffset]; 7818 } 7819 NumRefs = Record[NumRefsIndex]; 7820 } 7821 7822 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7823 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 7824 assert(Record.size() >= RefListStartIndex + NumRefs && 7825 "Record size inconsistent with number of references"); 7826 SmallVector<ValueInfo, 0> Refs = makeRefList( 7827 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 7828 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 7829 std::vector<FunctionSummary::EdgeTy> Edges = makeCallList( 7830 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 7831 IsOldProfileFormat, HasProfile, false); 7832 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID)); 7833 setSpecialRefs(Refs, NumRORefs, NumWORefs); 7834 auto FS = std::make_unique<FunctionSummary>( 7835 Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount, 7836 std::move(Refs), std::move(Edges), std::move(PendingTypeTests), 7837 std::move(PendingTypeTestAssumeVCalls), 7838 std::move(PendingTypeCheckedLoadVCalls), 7839 std::move(PendingTypeTestAssumeConstVCalls), 7840 std::move(PendingTypeCheckedLoadConstVCalls), 7841 std::move(PendingParamAccesses), std::move(PendingCallsites), 7842 std::move(PendingAllocs)); 7843 LastSeenSummary = FS.get(); 7844 LastSeenGUID = VI.getGUID(); 7845 FS->setModulePath(ModuleIdMap[ModuleId]); 7846 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 7847 break; 7848 } 7849 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 7850 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 7851 // they expect all aliasee summaries to be available. 7852 case bitc::FS_COMBINED_ALIAS: { 7853 unsigned ValueID = Record[0]; 7854 uint64_t ModuleId = Record[1]; 7855 uint64_t RawFlags = Record[2]; 7856 unsigned AliaseeValueId = Record[3]; 7857 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7858 auto AS = std::make_unique<AliasSummary>(Flags); 7859 LastSeenSummary = AS.get(); 7860 AS->setModulePath(ModuleIdMap[ModuleId]); 7861 7862 auto AliaseeVI = std::get<0>(getValueInfoFromValueId(AliaseeValueId)); 7863 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath()); 7864 AS->setAliasee(AliaseeVI, AliaseeInModule); 7865 7866 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID)); 7867 LastSeenGUID = VI.getGUID(); 7868 TheIndex.addGlobalValueSummary(VI, std::move(AS)); 7869 break; 7870 } 7871 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 7872 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 7873 unsigned ValueID = Record[0]; 7874 uint64_t ModuleId = Record[1]; 7875 uint64_t RawFlags = Record[2]; 7876 unsigned RefArrayStart = 3; 7877 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 7878 /* WriteOnly */ false, 7879 /* Constant */ false, 7880 GlobalObject::VCallVisibilityPublic); 7881 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7882 if (Version >= 5) { 7883 GVF = getDecodedGVarFlags(Record[3]); 7884 RefArrayStart = 4; 7885 } 7886 SmallVector<ValueInfo, 0> Refs = 7887 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 7888 auto FS = 7889 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 7890 LastSeenSummary = FS.get(); 7891 FS->setModulePath(ModuleIdMap[ModuleId]); 7892 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID)); 7893 LastSeenGUID = VI.getGUID(); 7894 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 7895 break; 7896 } 7897 // FS_COMBINED_ORIGINAL_NAME: [original_name] 7898 case bitc::FS_COMBINED_ORIGINAL_NAME: { 7899 uint64_t OriginalName = Record[0]; 7900 if (!LastSeenSummary) 7901 return error("Name attachment that does not follow a combined record"); 7902 LastSeenSummary->setOriginalName(OriginalName); 7903 TheIndex.addOriginalName(LastSeenGUID, OriginalName); 7904 // Reset the LastSeenSummary 7905 LastSeenSummary = nullptr; 7906 LastSeenGUID = 0; 7907 break; 7908 } 7909 case bitc::FS_TYPE_TESTS: 7910 assert(PendingTypeTests.empty()); 7911 llvm::append_range(PendingTypeTests, Record); 7912 break; 7913 7914 case bitc::FS_TYPE_TEST_ASSUME_VCALLS: 7915 assert(PendingTypeTestAssumeVCalls.empty()); 7916 for (unsigned I = 0; I != Record.size(); I += 2) 7917 PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]}); 7918 break; 7919 7920 case bitc::FS_TYPE_CHECKED_LOAD_VCALLS: 7921 assert(PendingTypeCheckedLoadVCalls.empty()); 7922 for (unsigned I = 0; I != Record.size(); I += 2) 7923 PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]}); 7924 break; 7925 7926 case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL: 7927 PendingTypeTestAssumeConstVCalls.push_back( 7928 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 7929 break; 7930 7931 case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL: 7932 PendingTypeCheckedLoadConstVCalls.push_back( 7933 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 7934 break; 7935 7936 case bitc::FS_CFI_FUNCTION_DEFS: { 7937 std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs(); 7938 for (unsigned I = 0; I != Record.size(); I += 2) 7939 CfiFunctionDefs.insert( 7940 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 7941 break; 7942 } 7943 7944 case bitc::FS_CFI_FUNCTION_DECLS: { 7945 std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls(); 7946 for (unsigned I = 0; I != Record.size(); I += 2) 7947 CfiFunctionDecls.insert( 7948 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 7949 break; 7950 } 7951 7952 case bitc::FS_TYPE_ID: 7953 parseTypeIdSummaryRecord(Record, Strtab, TheIndex); 7954 break; 7955 7956 case bitc::FS_TYPE_ID_METADATA: 7957 parseTypeIdCompatibleVtableSummaryRecord(Record); 7958 break; 7959 7960 case bitc::FS_BLOCK_COUNT: 7961 TheIndex.addBlockCount(Record[0]); 7962 break; 7963 7964 case bitc::FS_PARAM_ACCESS: { 7965 PendingParamAccesses = parseParamAccesses(Record); 7966 break; 7967 } 7968 7969 case bitc::FS_STACK_IDS: { // [n x stackid] 7970 // Save stack ids in the reader to consult when adding stack ids from the 7971 // lists in the stack node and alloc node entries. 7972 StackIds = ArrayRef<uint64_t>(Record); 7973 break; 7974 } 7975 7976 case bitc::FS_PERMODULE_CALLSITE_INFO: { 7977 unsigned ValueID = Record[0]; 7978 SmallVector<unsigned> StackIdList; 7979 for (auto R = Record.begin() + 1; R != Record.end(); R++) { 7980 assert(*R < StackIds.size()); 7981 StackIdList.push_back(TheIndex.addOrGetStackIdIndex(StackIds[*R])); 7982 } 7983 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID)); 7984 PendingCallsites.push_back(CallsiteInfo({VI, std::move(StackIdList)})); 7985 break; 7986 } 7987 7988 case bitc::FS_COMBINED_CALLSITE_INFO: { 7989 auto RecordIter = Record.begin(); 7990 unsigned ValueID = *RecordIter++; 7991 unsigned NumStackIds = *RecordIter++; 7992 unsigned NumVersions = *RecordIter++; 7993 assert(Record.size() == 3 + NumStackIds + NumVersions); 7994 SmallVector<unsigned> StackIdList; 7995 for (unsigned J = 0; J < NumStackIds; J++) { 7996 assert(*RecordIter < StackIds.size()); 7997 StackIdList.push_back( 7998 TheIndex.addOrGetStackIdIndex(StackIds[*RecordIter++])); 7999 } 8000 SmallVector<unsigned> Versions; 8001 for (unsigned J = 0; J < NumVersions; J++) 8002 Versions.push_back(*RecordIter++); 8003 ValueInfo VI = std::get<0>( 8004 getValueInfoFromValueId</*AllowNullValueInfo*/ true>(ValueID)); 8005 PendingCallsites.push_back( 8006 CallsiteInfo({VI, std::move(Versions), std::move(StackIdList)})); 8007 break; 8008 } 8009 8010 case bitc::FS_PERMODULE_ALLOC_INFO: { 8011 unsigned I = 0; 8012 std::vector<MIBInfo> MIBs; 8013 unsigned NumMIBs = 0; 8014 if (Version >= 10) 8015 NumMIBs = Record[I++]; 8016 unsigned MIBsRead = 0; 8017 while ((Version >= 10 && MIBsRead++ < NumMIBs) || 8018 (Version < 10 && I < Record.size())) { 8019 assert(Record.size() - I >= 2); 8020 AllocationType AllocType = (AllocationType)Record[I++]; 8021 unsigned NumStackEntries = Record[I++]; 8022 assert(Record.size() - I >= NumStackEntries); 8023 SmallVector<unsigned> StackIdList; 8024 for (unsigned J = 0; J < NumStackEntries; J++) { 8025 assert(Record[I] < StackIds.size()); 8026 StackIdList.push_back( 8027 TheIndex.addOrGetStackIdIndex(StackIds[Record[I++]])); 8028 } 8029 MIBs.push_back(MIBInfo(AllocType, std::move(StackIdList))); 8030 } 8031 std::vector<uint64_t> TotalSizes; 8032 // We either have no sizes or NumMIBs of them. 8033 assert(I == Record.size() || Record.size() - I == NumMIBs); 8034 if (I < Record.size()) { 8035 MIBsRead = 0; 8036 while (MIBsRead++ < NumMIBs) 8037 TotalSizes.push_back(Record[I++]); 8038 } 8039 PendingAllocs.push_back(AllocInfo(std::move(MIBs))); 8040 if (!TotalSizes.empty()) { 8041 assert(PendingAllocs.back().MIBs.size() == TotalSizes.size()); 8042 PendingAllocs.back().TotalSizes = std::move(TotalSizes); 8043 } 8044 break; 8045 } 8046 8047 case bitc::FS_COMBINED_ALLOC_INFO: { 8048 unsigned I = 0; 8049 std::vector<MIBInfo> MIBs; 8050 unsigned NumMIBs = Record[I++]; 8051 unsigned NumVersions = Record[I++]; 8052 unsigned MIBsRead = 0; 8053 while (MIBsRead++ < NumMIBs) { 8054 assert(Record.size() - I >= 2); 8055 AllocationType AllocType = (AllocationType)Record[I++]; 8056 unsigned NumStackEntries = Record[I++]; 8057 assert(Record.size() - I >= NumStackEntries); 8058 SmallVector<unsigned> StackIdList; 8059 for (unsigned J = 0; J < NumStackEntries; J++) { 8060 assert(Record[I] < StackIds.size()); 8061 StackIdList.push_back( 8062 TheIndex.addOrGetStackIdIndex(StackIds[Record[I++]])); 8063 } 8064 MIBs.push_back(MIBInfo(AllocType, std::move(StackIdList))); 8065 } 8066 assert(Record.size() - I >= NumVersions); 8067 SmallVector<uint8_t> Versions; 8068 for (unsigned J = 0; J < NumVersions; J++) 8069 Versions.push_back(Record[I++]); 8070 std::vector<uint64_t> TotalSizes; 8071 // We either have no sizes or NumMIBs of them. 8072 assert(I == Record.size() || Record.size() - I == NumMIBs); 8073 if (I < Record.size()) { 8074 MIBsRead = 0; 8075 while (MIBsRead++ < NumMIBs) { 8076 TotalSizes.push_back(Record[I++]); 8077 } 8078 } 8079 PendingAllocs.push_back( 8080 AllocInfo(std::move(Versions), std::move(MIBs))); 8081 if (!TotalSizes.empty()) { 8082 assert(PendingAllocs.back().MIBs.size() == TotalSizes.size()); 8083 PendingAllocs.back().TotalSizes = std::move(TotalSizes); 8084 } 8085 break; 8086 } 8087 } 8088 } 8089 llvm_unreachable("Exit infinite loop"); 8090 } 8091 8092 // Parse the module string table block into the Index. 8093 // This populates the ModulePathStringTable map in the index. 8094 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 8095 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 8096 return Err; 8097 8098 SmallVector<uint64_t, 64> Record; 8099 8100 SmallString<128> ModulePath; 8101 ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr; 8102 8103 while (true) { 8104 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 8105 if (!MaybeEntry) 8106 return MaybeEntry.takeError(); 8107 BitstreamEntry Entry = MaybeEntry.get(); 8108 8109 switch (Entry.Kind) { 8110 case BitstreamEntry::SubBlock: // Handled for us already. 8111 case BitstreamEntry::Error: 8112 return error("Malformed block"); 8113 case BitstreamEntry::EndBlock: 8114 return Error::success(); 8115 case BitstreamEntry::Record: 8116 // The interesting case. 8117 break; 8118 } 8119 8120 Record.clear(); 8121 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 8122 if (!MaybeRecord) 8123 return MaybeRecord.takeError(); 8124 switch (MaybeRecord.get()) { 8125 default: // Default behavior: ignore. 8126 break; 8127 case bitc::MST_CODE_ENTRY: { 8128 // MST_ENTRY: [modid, namechar x N] 8129 uint64_t ModuleId = Record[0]; 8130 8131 if (convertToString(Record, 1, ModulePath)) 8132 return error("Invalid record"); 8133 8134 LastSeenModule = TheIndex.addModule(ModulePath); 8135 ModuleIdMap[ModuleId] = LastSeenModule->first(); 8136 8137 ModulePath.clear(); 8138 break; 8139 } 8140 /// MST_CODE_HASH: [5*i32] 8141 case bitc::MST_CODE_HASH: { 8142 if (Record.size() != 5) 8143 return error("Invalid hash length " + Twine(Record.size()).str()); 8144 if (!LastSeenModule) 8145 return error("Invalid hash that does not follow a module path"); 8146 int Pos = 0; 8147 for (auto &Val : Record) { 8148 assert(!(Val >> 32) && "Unexpected high bits set"); 8149 LastSeenModule->second[Pos++] = Val; 8150 } 8151 // Reset LastSeenModule to avoid overriding the hash unexpectedly. 8152 LastSeenModule = nullptr; 8153 break; 8154 } 8155 } 8156 } 8157 llvm_unreachable("Exit infinite loop"); 8158 } 8159 8160 namespace { 8161 8162 // FIXME: This class is only here to support the transition to llvm::Error. It 8163 // will be removed once this transition is complete. Clients should prefer to 8164 // deal with the Error value directly, rather than converting to error_code. 8165 class BitcodeErrorCategoryType : public std::error_category { 8166 const char *name() const noexcept override { 8167 return "llvm.bitcode"; 8168 } 8169 8170 std::string message(int IE) const override { 8171 BitcodeError E = static_cast<BitcodeError>(IE); 8172 switch (E) { 8173 case BitcodeError::CorruptedBitcode: 8174 return "Corrupted bitcode"; 8175 } 8176 llvm_unreachable("Unknown error type!"); 8177 } 8178 }; 8179 8180 } // end anonymous namespace 8181 8182 const std::error_category &llvm::BitcodeErrorCategory() { 8183 static BitcodeErrorCategoryType ErrorCategory; 8184 return ErrorCategory; 8185 } 8186 8187 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream, 8188 unsigned Block, unsigned RecordID) { 8189 if (Error Err = Stream.EnterSubBlock(Block)) 8190 return std::move(Err); 8191 8192 StringRef Strtab; 8193 while (true) { 8194 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 8195 if (!MaybeEntry) 8196 return MaybeEntry.takeError(); 8197 llvm::BitstreamEntry Entry = MaybeEntry.get(); 8198 8199 switch (Entry.Kind) { 8200 case BitstreamEntry::EndBlock: 8201 return Strtab; 8202 8203 case BitstreamEntry::Error: 8204 return error("Malformed block"); 8205 8206 case BitstreamEntry::SubBlock: 8207 if (Error Err = Stream.SkipBlock()) 8208 return std::move(Err); 8209 break; 8210 8211 case BitstreamEntry::Record: 8212 StringRef Blob; 8213 SmallVector<uint64_t, 1> Record; 8214 Expected<unsigned> MaybeRecord = 8215 Stream.readRecord(Entry.ID, Record, &Blob); 8216 if (!MaybeRecord) 8217 return MaybeRecord.takeError(); 8218 if (MaybeRecord.get() == RecordID) 8219 Strtab = Blob; 8220 break; 8221 } 8222 } 8223 } 8224 8225 //===----------------------------------------------------------------------===// 8226 // External interface 8227 //===----------------------------------------------------------------------===// 8228 8229 Expected<std::vector<BitcodeModule>> 8230 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) { 8231 auto FOrErr = getBitcodeFileContents(Buffer); 8232 if (!FOrErr) 8233 return FOrErr.takeError(); 8234 return std::move(FOrErr->Mods); 8235 } 8236 8237 Expected<BitcodeFileContents> 8238 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) { 8239 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 8240 if (!StreamOrErr) 8241 return StreamOrErr.takeError(); 8242 BitstreamCursor &Stream = *StreamOrErr; 8243 8244 BitcodeFileContents F; 8245 while (true) { 8246 uint64_t BCBegin = Stream.getCurrentByteNo(); 8247 8248 // We may be consuming bitcode from a client that leaves garbage at the end 8249 // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to 8250 // the end that there cannot possibly be another module, stop looking. 8251 if (BCBegin + 8 >= Stream.getBitcodeBytes().size()) 8252 return F; 8253 8254 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 8255 if (!MaybeEntry) 8256 return MaybeEntry.takeError(); 8257 llvm::BitstreamEntry Entry = MaybeEntry.get(); 8258 8259 switch (Entry.Kind) { 8260 case BitstreamEntry::EndBlock: 8261 case BitstreamEntry::Error: 8262 return error("Malformed block"); 8263 8264 case BitstreamEntry::SubBlock: { 8265 uint64_t IdentificationBit = -1ull; 8266 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 8267 IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8; 8268 if (Error Err = Stream.SkipBlock()) 8269 return std::move(Err); 8270 8271 { 8272 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 8273 if (!MaybeEntry) 8274 return MaybeEntry.takeError(); 8275 Entry = MaybeEntry.get(); 8276 } 8277 8278 if (Entry.Kind != BitstreamEntry::SubBlock || 8279 Entry.ID != bitc::MODULE_BLOCK_ID) 8280 return error("Malformed block"); 8281 } 8282 8283 if (Entry.ID == bitc::MODULE_BLOCK_ID) { 8284 uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8; 8285 if (Error Err = Stream.SkipBlock()) 8286 return std::move(Err); 8287 8288 F.Mods.push_back({Stream.getBitcodeBytes().slice( 8289 BCBegin, Stream.getCurrentByteNo() - BCBegin), 8290 Buffer.getBufferIdentifier(), IdentificationBit, 8291 ModuleBit}); 8292 continue; 8293 } 8294 8295 if (Entry.ID == bitc::STRTAB_BLOCK_ID) { 8296 Expected<StringRef> Strtab = 8297 readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB); 8298 if (!Strtab) 8299 return Strtab.takeError(); 8300 // This string table is used by every preceding bitcode module that does 8301 // not have its own string table. A bitcode file may have multiple 8302 // string tables if it was created by binary concatenation, for example 8303 // with "llvm-cat -b". 8304 for (BitcodeModule &I : llvm::reverse(F.Mods)) { 8305 if (!I.Strtab.empty()) 8306 break; 8307 I.Strtab = *Strtab; 8308 } 8309 // Similarly, the string table is used by every preceding symbol table; 8310 // normally there will be just one unless the bitcode file was created 8311 // by binary concatenation. 8312 if (!F.Symtab.empty() && F.StrtabForSymtab.empty()) 8313 F.StrtabForSymtab = *Strtab; 8314 continue; 8315 } 8316 8317 if (Entry.ID == bitc::SYMTAB_BLOCK_ID) { 8318 Expected<StringRef> SymtabOrErr = 8319 readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB); 8320 if (!SymtabOrErr) 8321 return SymtabOrErr.takeError(); 8322 8323 // We can expect the bitcode file to have multiple symbol tables if it 8324 // was created by binary concatenation. In that case we silently 8325 // ignore any subsequent symbol tables, which is fine because this is a 8326 // low level function. The client is expected to notice that the number 8327 // of modules in the symbol table does not match the number of modules 8328 // in the input file and regenerate the symbol table. 8329 if (F.Symtab.empty()) 8330 F.Symtab = *SymtabOrErr; 8331 continue; 8332 } 8333 8334 if (Error Err = Stream.SkipBlock()) 8335 return std::move(Err); 8336 continue; 8337 } 8338 case BitstreamEntry::Record: 8339 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 8340 return std::move(E); 8341 continue; 8342 } 8343 } 8344 } 8345 8346 /// Get a lazy one-at-time loading module from bitcode. 8347 /// 8348 /// This isn't always used in a lazy context. In particular, it's also used by 8349 /// \a parseModule(). If this is truly lazy, then we need to eagerly pull 8350 /// in forward-referenced functions from block address references. 8351 /// 8352 /// \param[in] MaterializeAll Set to \c true if we should materialize 8353 /// everything. 8354 Expected<std::unique_ptr<Module>> 8355 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll, 8356 bool ShouldLazyLoadMetadata, bool IsImporting, 8357 ParserCallbacks Callbacks) { 8358 BitstreamCursor Stream(Buffer); 8359 8360 std::string ProducerIdentification; 8361 if (IdentificationBit != -1ull) { 8362 if (Error JumpFailed = Stream.JumpToBit(IdentificationBit)) 8363 return std::move(JumpFailed); 8364 if (Error E = 8365 readIdentificationBlock(Stream).moveInto(ProducerIdentification)) 8366 return std::move(E); 8367 } 8368 8369 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 8370 return std::move(JumpFailed); 8371 auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification, 8372 Context); 8373 8374 std::unique_ptr<Module> M = 8375 std::make_unique<Module>(ModuleIdentifier, Context); 8376 M->setMaterializer(R); 8377 8378 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 8379 if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, 8380 IsImporting, Callbacks)) 8381 return std::move(Err); 8382 8383 if (MaterializeAll) { 8384 // Read in the entire module, and destroy the BitcodeReader. 8385 if (Error Err = M->materializeAll()) 8386 return std::move(Err); 8387 } else { 8388 // Resolve forward references from blockaddresses. 8389 if (Error Err = R->materializeForwardReferencedFunctions()) 8390 return std::move(Err); 8391 } 8392 8393 return std::move(M); 8394 } 8395 8396 Expected<std::unique_ptr<Module>> 8397 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata, 8398 bool IsImporting, ParserCallbacks Callbacks) { 8399 return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting, 8400 Callbacks); 8401 } 8402 8403 // Parse the specified bitcode buffer and merge the index into CombinedIndex. 8404 // We don't use ModuleIdentifier here because the client may need to control the 8405 // module path used in the combined summary (e.g. when reading summaries for 8406 // regular LTO modules). 8407 Error BitcodeModule::readSummary( 8408 ModuleSummaryIndex &CombinedIndex, StringRef ModulePath, 8409 std::function<bool(GlobalValue::GUID)> IsPrevailing) { 8410 BitstreamCursor Stream(Buffer); 8411 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 8412 return JumpFailed; 8413 8414 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex, 8415 ModulePath, IsPrevailing); 8416 return R.parseModule(); 8417 } 8418 8419 // Parse the specified bitcode buffer, returning the function info index. 8420 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() { 8421 BitstreamCursor Stream(Buffer); 8422 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 8423 return std::move(JumpFailed); 8424 8425 auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false); 8426 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index, 8427 ModuleIdentifier, 0); 8428 8429 if (Error Err = R.parseModule()) 8430 return std::move(Err); 8431 8432 return std::move(Index); 8433 } 8434 8435 static Expected<std::pair<bool, bool>> 8436 getEnableSplitLTOUnitAndUnifiedFlag(BitstreamCursor &Stream, 8437 unsigned ID, 8438 BitcodeLTOInfo <OInfo) { 8439 if (Error Err = Stream.EnterSubBlock(ID)) 8440 return std::move(Err); 8441 SmallVector<uint64_t, 64> Record; 8442 8443 while (true) { 8444 BitstreamEntry Entry; 8445 std::pair<bool, bool> Result = {false,false}; 8446 if (Error E = Stream.advanceSkippingSubblocks().moveInto(Entry)) 8447 return std::move(E); 8448 8449 switch (Entry.Kind) { 8450 case BitstreamEntry::SubBlock: // Handled for us already. 8451 case BitstreamEntry::Error: 8452 return error("Malformed block"); 8453 case BitstreamEntry::EndBlock: { 8454 // If no flags record found, set both flags to false. 8455 return Result; 8456 } 8457 case BitstreamEntry::Record: 8458 // The interesting case. 8459 break; 8460 } 8461 8462 // Look for the FS_FLAGS record. 8463 Record.clear(); 8464 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 8465 if (!MaybeBitCode) 8466 return MaybeBitCode.takeError(); 8467 switch (MaybeBitCode.get()) { 8468 default: // Default behavior: ignore. 8469 break; 8470 case bitc::FS_FLAGS: { // [flags] 8471 uint64_t Flags = Record[0]; 8472 // Scan flags. 8473 assert(Flags <= 0x2ff && "Unexpected bits in flag"); 8474 8475 bool EnableSplitLTOUnit = Flags & 0x8; 8476 bool UnifiedLTO = Flags & 0x200; 8477 Result = {EnableSplitLTOUnit, UnifiedLTO}; 8478 8479 return Result; 8480 } 8481 } 8482 } 8483 llvm_unreachable("Exit infinite loop"); 8484 } 8485 8486 // Check if the given bitcode buffer contains a global value summary block. 8487 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() { 8488 BitstreamCursor Stream(Buffer); 8489 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 8490 return std::move(JumpFailed); 8491 8492 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 8493 return std::move(Err); 8494 8495 while (true) { 8496 llvm::BitstreamEntry Entry; 8497 if (Error E = Stream.advance().moveInto(Entry)) 8498 return std::move(E); 8499 8500 switch (Entry.Kind) { 8501 case BitstreamEntry::Error: 8502 return error("Malformed block"); 8503 case BitstreamEntry::EndBlock: 8504 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false, 8505 /*EnableSplitLTOUnit=*/false, /*UnifiedLTO=*/false}; 8506 8507 case BitstreamEntry::SubBlock: 8508 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) { 8509 BitcodeLTOInfo LTOInfo; 8510 Expected<std::pair<bool, bool>> Flags = 8511 getEnableSplitLTOUnitAndUnifiedFlag(Stream, Entry.ID, LTOInfo); 8512 if (!Flags) 8513 return Flags.takeError(); 8514 std::tie(LTOInfo.EnableSplitLTOUnit, LTOInfo.UnifiedLTO) = Flags.get(); 8515 LTOInfo.IsThinLTO = true; 8516 LTOInfo.HasSummary = true; 8517 return LTOInfo; 8518 } 8519 8520 if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) { 8521 BitcodeLTOInfo LTOInfo; 8522 Expected<std::pair<bool, bool>> Flags = 8523 getEnableSplitLTOUnitAndUnifiedFlag(Stream, Entry.ID, LTOInfo); 8524 if (!Flags) 8525 return Flags.takeError(); 8526 std::tie(LTOInfo.EnableSplitLTOUnit, LTOInfo.UnifiedLTO) = Flags.get(); 8527 LTOInfo.IsThinLTO = false; 8528 LTOInfo.HasSummary = true; 8529 return LTOInfo; 8530 } 8531 8532 // Ignore other sub-blocks. 8533 if (Error Err = Stream.SkipBlock()) 8534 return std::move(Err); 8535 continue; 8536 8537 case BitstreamEntry::Record: 8538 if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID)) 8539 continue; 8540 else 8541 return StreamFailed.takeError(); 8542 } 8543 } 8544 } 8545 8546 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) { 8547 Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer); 8548 if (!MsOrErr) 8549 return MsOrErr.takeError(); 8550 8551 if (MsOrErr->size() != 1) 8552 return error("Expected a single module"); 8553 8554 return (*MsOrErr)[0]; 8555 } 8556 8557 Expected<std::unique_ptr<Module>> 8558 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context, 8559 bool ShouldLazyLoadMetadata, bool IsImporting, 8560 ParserCallbacks Callbacks) { 8561 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8562 if (!BM) 8563 return BM.takeError(); 8564 8565 return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting, 8566 Callbacks); 8567 } 8568 8569 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule( 8570 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context, 8571 bool ShouldLazyLoadMetadata, bool IsImporting, ParserCallbacks Callbacks) { 8572 auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata, 8573 IsImporting, Callbacks); 8574 if (MOrErr) 8575 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer)); 8576 return MOrErr; 8577 } 8578 8579 Expected<std::unique_ptr<Module>> 8580 BitcodeModule::parseModule(LLVMContext &Context, ParserCallbacks Callbacks) { 8581 return getModuleImpl(Context, true, false, false, Callbacks); 8582 // TODO: Restore the use-lists to the in-memory state when the bitcode was 8583 // written. We must defer until the Module has been fully materialized. 8584 } 8585 8586 Expected<std::unique_ptr<Module>> 8587 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context, 8588 ParserCallbacks Callbacks) { 8589 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8590 if (!BM) 8591 return BM.takeError(); 8592 8593 return BM->parseModule(Context, Callbacks); 8594 } 8595 8596 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) { 8597 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 8598 if (!StreamOrErr) 8599 return StreamOrErr.takeError(); 8600 8601 return readTriple(*StreamOrErr); 8602 } 8603 8604 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) { 8605 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 8606 if (!StreamOrErr) 8607 return StreamOrErr.takeError(); 8608 8609 return hasObjCCategory(*StreamOrErr); 8610 } 8611 8612 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) { 8613 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 8614 if (!StreamOrErr) 8615 return StreamOrErr.takeError(); 8616 8617 return readIdentificationCode(*StreamOrErr); 8618 } 8619 8620 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer, 8621 ModuleSummaryIndex &CombinedIndex) { 8622 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8623 if (!BM) 8624 return BM.takeError(); 8625 8626 return BM->readSummary(CombinedIndex, BM->getModuleIdentifier()); 8627 } 8628 8629 Expected<std::unique_ptr<ModuleSummaryIndex>> 8630 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) { 8631 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8632 if (!BM) 8633 return BM.takeError(); 8634 8635 return BM->getSummary(); 8636 } 8637 8638 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) { 8639 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8640 if (!BM) 8641 return BM.takeError(); 8642 8643 return BM->getLTOInfo(); 8644 } 8645 8646 Expected<std::unique_ptr<ModuleSummaryIndex>> 8647 llvm::getModuleSummaryIndexForFile(StringRef Path, 8648 bool IgnoreEmptyThinLTOIndexFile) { 8649 ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr = 8650 MemoryBuffer::getFileOrSTDIN(Path); 8651 if (!FileOrErr) 8652 return errorCodeToError(FileOrErr.getError()); 8653 if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize()) 8654 return nullptr; 8655 return getModuleSummaryIndex(**FileOrErr); 8656 } 8657