1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Bitcode/BitcodeReader.h" 10 #include "MetadataLoader.h" 11 #include "ValueList.h" 12 #include "llvm/ADT/APFloat.h" 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallString.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/ADT/StringRef.h" 20 #include "llvm/ADT/Twine.h" 21 #include "llvm/Bitcode/BitcodeCommon.h" 22 #include "llvm/Bitcode/LLVMBitCodes.h" 23 #include "llvm/Bitstream/BitstreamReader.h" 24 #include "llvm/Config/llvm-config.h" 25 #include "llvm/IR/Argument.h" 26 #include "llvm/IR/AttributeMask.h" 27 #include "llvm/IR/Attributes.h" 28 #include "llvm/IR/AutoUpgrade.h" 29 #include "llvm/IR/BasicBlock.h" 30 #include "llvm/IR/CallingConv.h" 31 #include "llvm/IR/Comdat.h" 32 #include "llvm/IR/Constant.h" 33 #include "llvm/IR/ConstantRangeList.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/DebugInfo.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GVMaterializer.h" 42 #include "llvm/IR/GetElementPtrTypeIterator.h" 43 #include "llvm/IR/GlobalAlias.h" 44 #include "llvm/IR/GlobalIFunc.h" 45 #include "llvm/IR/GlobalObject.h" 46 #include "llvm/IR/GlobalValue.h" 47 #include "llvm/IR/GlobalVariable.h" 48 #include "llvm/IR/InlineAsm.h" 49 #include "llvm/IR/InstIterator.h" 50 #include "llvm/IR/InstrTypes.h" 51 #include "llvm/IR/Instruction.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/IntrinsicsAArch64.h" 55 #include "llvm/IR/IntrinsicsARM.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/Metadata.h" 58 #include "llvm/IR/Module.h" 59 #include "llvm/IR/ModuleSummaryIndex.h" 60 #include "llvm/IR/Operator.h" 61 #include "llvm/IR/ProfDataUtils.h" 62 #include "llvm/IR/Type.h" 63 #include "llvm/IR/Value.h" 64 #include "llvm/IR/Verifier.h" 65 #include "llvm/Support/AtomicOrdering.h" 66 #include "llvm/Support/Casting.h" 67 #include "llvm/Support/CommandLine.h" 68 #include "llvm/Support/Compiler.h" 69 #include "llvm/Support/Debug.h" 70 #include "llvm/Support/Error.h" 71 #include "llvm/Support/ErrorHandling.h" 72 #include "llvm/Support/ErrorOr.h" 73 #include "llvm/Support/MathExtras.h" 74 #include "llvm/Support/MemoryBuffer.h" 75 #include "llvm/Support/ModRef.h" 76 #include "llvm/Support/raw_ostream.h" 77 #include "llvm/TargetParser/Triple.h" 78 #include <algorithm> 79 #include <cassert> 80 #include <cstddef> 81 #include <cstdint> 82 #include <deque> 83 #include <map> 84 #include <memory> 85 #include <optional> 86 #include <set> 87 #include <string> 88 #include <system_error> 89 #include <tuple> 90 #include <utility> 91 #include <vector> 92 93 using namespace llvm; 94 95 static cl::opt<bool> PrintSummaryGUIDs( 96 "print-summary-global-ids", cl::init(false), cl::Hidden, 97 cl::desc( 98 "Print the global id for each value when reading the module summary")); 99 100 static cl::opt<bool> ExpandConstantExprs( 101 "expand-constant-exprs", cl::Hidden, 102 cl::desc( 103 "Expand constant expressions to instructions for testing purposes")); 104 105 /// Load bitcode directly into RemoveDIs format (use debug records instead 106 /// of debug intrinsics). UNSET is treated as FALSE, so the default action 107 /// is to do nothing. Individual tools can override this to incrementally add 108 /// support for the RemoveDIs format. 109 cl::opt<cl::boolOrDefault> LoadBitcodeIntoNewDbgInfoFormat( 110 "load-bitcode-into-experimental-debuginfo-iterators", cl::Hidden, 111 cl::desc("Load bitcode directly into the new debug info format (regardless " 112 "of input format)")); 113 extern cl::opt<bool> UseNewDbgInfoFormat; 114 extern cl::opt<cl::boolOrDefault> PreserveInputDbgFormat; 115 extern bool WriteNewDbgInfoFormatToBitcode; 116 extern cl::opt<bool> WriteNewDbgInfoFormat; 117 118 namespace { 119 120 enum { 121 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 122 }; 123 124 } // end anonymous namespace 125 126 static Error error(const Twine &Message) { 127 return make_error<StringError>( 128 Message, make_error_code(BitcodeError::CorruptedBitcode)); 129 } 130 131 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) { 132 if (!Stream.canSkipToPos(4)) 133 return createStringError(std::errc::illegal_byte_sequence, 134 "file too small to contain bitcode header"); 135 for (unsigned C : {'B', 'C'}) 136 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) { 137 if (Res.get() != C) 138 return createStringError(std::errc::illegal_byte_sequence, 139 "file doesn't start with bitcode header"); 140 } else 141 return Res.takeError(); 142 for (unsigned C : {0x0, 0xC, 0xE, 0xD}) 143 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) { 144 if (Res.get() != C) 145 return createStringError(std::errc::illegal_byte_sequence, 146 "file doesn't start with bitcode header"); 147 } else 148 return Res.takeError(); 149 return Error::success(); 150 } 151 152 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) { 153 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart(); 154 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize(); 155 156 if (Buffer.getBufferSize() & 3) 157 return error("Invalid bitcode signature"); 158 159 // If we have a wrapper header, parse it and ignore the non-bc file contents. 160 // The magic number is 0x0B17C0DE stored in little endian. 161 if (isBitcodeWrapper(BufPtr, BufEnd)) 162 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 163 return error("Invalid bitcode wrapper header"); 164 165 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd)); 166 if (Error Err = hasInvalidBitcodeHeader(Stream)) 167 return std::move(Err); 168 169 return std::move(Stream); 170 } 171 172 /// Convert a string from a record into an std::string, return true on failure. 173 template <typename StrTy> 174 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 175 StrTy &Result) { 176 if (Idx > Record.size()) 177 return true; 178 179 Result.append(Record.begin() + Idx, Record.end()); 180 return false; 181 } 182 183 // Strip all the TBAA attachment for the module. 184 static void stripTBAA(Module *M) { 185 for (auto &F : *M) { 186 if (F.isMaterializable()) 187 continue; 188 for (auto &I : instructions(F)) 189 I.setMetadata(LLVMContext::MD_tbaa, nullptr); 190 } 191 } 192 193 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the 194 /// "epoch" encoded in the bitcode, and return the producer name if any. 195 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) { 196 if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 197 return std::move(Err); 198 199 // Read all the records. 200 SmallVector<uint64_t, 64> Record; 201 202 std::string ProducerIdentification; 203 204 while (true) { 205 BitstreamEntry Entry; 206 if (Error E = Stream.advance().moveInto(Entry)) 207 return std::move(E); 208 209 switch (Entry.Kind) { 210 default: 211 case BitstreamEntry::Error: 212 return error("Malformed block"); 213 case BitstreamEntry::EndBlock: 214 return ProducerIdentification; 215 case BitstreamEntry::Record: 216 // The interesting case. 217 break; 218 } 219 220 // Read a record. 221 Record.clear(); 222 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 223 if (!MaybeBitCode) 224 return MaybeBitCode.takeError(); 225 switch (MaybeBitCode.get()) { 226 default: // Default behavior: reject 227 return error("Invalid value"); 228 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N] 229 convertToString(Record, 0, ProducerIdentification); 230 break; 231 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 232 unsigned epoch = (unsigned)Record[0]; 233 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 234 return error( 235 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 236 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 237 } 238 } 239 } 240 } 241 } 242 243 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) { 244 // We expect a number of well-defined blocks, though we don't necessarily 245 // need to understand them all. 246 while (true) { 247 if (Stream.AtEndOfStream()) 248 return ""; 249 250 BitstreamEntry Entry; 251 if (Error E = Stream.advance().moveInto(Entry)) 252 return std::move(E); 253 254 switch (Entry.Kind) { 255 case BitstreamEntry::EndBlock: 256 case BitstreamEntry::Error: 257 return error("Malformed block"); 258 259 case BitstreamEntry::SubBlock: 260 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) 261 return readIdentificationBlock(Stream); 262 263 // Ignore other sub-blocks. 264 if (Error Err = Stream.SkipBlock()) 265 return std::move(Err); 266 continue; 267 case BitstreamEntry::Record: 268 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 269 return std::move(E); 270 continue; 271 } 272 } 273 } 274 275 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) { 276 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 277 return std::move(Err); 278 279 SmallVector<uint64_t, 64> Record; 280 // Read all the records for this module. 281 282 while (true) { 283 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 284 if (!MaybeEntry) 285 return MaybeEntry.takeError(); 286 BitstreamEntry Entry = MaybeEntry.get(); 287 288 switch (Entry.Kind) { 289 case BitstreamEntry::SubBlock: // Handled for us already. 290 case BitstreamEntry::Error: 291 return error("Malformed block"); 292 case BitstreamEntry::EndBlock: 293 return false; 294 case BitstreamEntry::Record: 295 // The interesting case. 296 break; 297 } 298 299 // Read a record. 300 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 301 if (!MaybeRecord) 302 return MaybeRecord.takeError(); 303 switch (MaybeRecord.get()) { 304 default: 305 break; // Default behavior, ignore unknown content. 306 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 307 std::string S; 308 if (convertToString(Record, 0, S)) 309 return error("Invalid section name record"); 310 // Check for the i386 and other (x86_64, ARM) conventions 311 if (S.find("__DATA,__objc_catlist") != std::string::npos || 312 S.find("__OBJC,__category") != std::string::npos || 313 S.find("__TEXT,__swift") != std::string::npos) 314 return true; 315 break; 316 } 317 } 318 Record.clear(); 319 } 320 llvm_unreachable("Exit infinite loop"); 321 } 322 323 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) { 324 // We expect a number of well-defined blocks, though we don't necessarily 325 // need to understand them all. 326 while (true) { 327 BitstreamEntry Entry; 328 if (Error E = Stream.advance().moveInto(Entry)) 329 return std::move(E); 330 331 switch (Entry.Kind) { 332 case BitstreamEntry::Error: 333 return error("Malformed block"); 334 case BitstreamEntry::EndBlock: 335 return false; 336 337 case BitstreamEntry::SubBlock: 338 if (Entry.ID == bitc::MODULE_BLOCK_ID) 339 return hasObjCCategoryInModule(Stream); 340 341 // Ignore other sub-blocks. 342 if (Error Err = Stream.SkipBlock()) 343 return std::move(Err); 344 continue; 345 346 case BitstreamEntry::Record: 347 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 348 return std::move(E); 349 continue; 350 } 351 } 352 } 353 354 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) { 355 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 356 return std::move(Err); 357 358 SmallVector<uint64_t, 64> Record; 359 360 std::string Triple; 361 362 // Read all the records for this module. 363 while (true) { 364 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 365 if (!MaybeEntry) 366 return MaybeEntry.takeError(); 367 BitstreamEntry Entry = MaybeEntry.get(); 368 369 switch (Entry.Kind) { 370 case BitstreamEntry::SubBlock: // Handled for us already. 371 case BitstreamEntry::Error: 372 return error("Malformed block"); 373 case BitstreamEntry::EndBlock: 374 return Triple; 375 case BitstreamEntry::Record: 376 // The interesting case. 377 break; 378 } 379 380 // Read a record. 381 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 382 if (!MaybeRecord) 383 return MaybeRecord.takeError(); 384 switch (MaybeRecord.get()) { 385 default: break; // Default behavior, ignore unknown content. 386 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 387 std::string S; 388 if (convertToString(Record, 0, S)) 389 return error("Invalid triple record"); 390 Triple = S; 391 break; 392 } 393 } 394 Record.clear(); 395 } 396 llvm_unreachable("Exit infinite loop"); 397 } 398 399 static Expected<std::string> readTriple(BitstreamCursor &Stream) { 400 // We expect a number of well-defined blocks, though we don't necessarily 401 // need to understand them all. 402 while (true) { 403 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 404 if (!MaybeEntry) 405 return MaybeEntry.takeError(); 406 BitstreamEntry Entry = MaybeEntry.get(); 407 408 switch (Entry.Kind) { 409 case BitstreamEntry::Error: 410 return error("Malformed block"); 411 case BitstreamEntry::EndBlock: 412 return ""; 413 414 case BitstreamEntry::SubBlock: 415 if (Entry.ID == bitc::MODULE_BLOCK_ID) 416 return readModuleTriple(Stream); 417 418 // Ignore other sub-blocks. 419 if (Error Err = Stream.SkipBlock()) 420 return std::move(Err); 421 continue; 422 423 case BitstreamEntry::Record: 424 if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 425 continue; 426 else 427 return Skipped.takeError(); 428 } 429 } 430 } 431 432 namespace { 433 434 class BitcodeReaderBase { 435 protected: 436 BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab) 437 : Stream(std::move(Stream)), Strtab(Strtab) { 438 this->Stream.setBlockInfo(&BlockInfo); 439 } 440 441 BitstreamBlockInfo BlockInfo; 442 BitstreamCursor Stream; 443 StringRef Strtab; 444 445 /// In version 2 of the bitcode we store names of global values and comdats in 446 /// a string table rather than in the VST. 447 bool UseStrtab = false; 448 449 Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record); 450 451 /// If this module uses a string table, pop the reference to the string table 452 /// and return the referenced string and the rest of the record. Otherwise 453 /// just return the record itself. 454 std::pair<StringRef, ArrayRef<uint64_t>> 455 readNameFromStrtab(ArrayRef<uint64_t> Record); 456 457 Error readBlockInfo(); 458 459 // Contains an arbitrary and optional string identifying the bitcode producer 460 std::string ProducerIdentification; 461 462 Error error(const Twine &Message); 463 }; 464 465 } // end anonymous namespace 466 467 Error BitcodeReaderBase::error(const Twine &Message) { 468 std::string FullMsg = Message.str(); 469 if (!ProducerIdentification.empty()) 470 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " + 471 LLVM_VERSION_STRING "')"; 472 return ::error(FullMsg); 473 } 474 475 Expected<unsigned> 476 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) { 477 if (Record.empty()) 478 return error("Invalid version record"); 479 unsigned ModuleVersion = Record[0]; 480 if (ModuleVersion > 2) 481 return error("Invalid value"); 482 UseStrtab = ModuleVersion >= 2; 483 return ModuleVersion; 484 } 485 486 std::pair<StringRef, ArrayRef<uint64_t>> 487 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) { 488 if (!UseStrtab) 489 return {"", Record}; 490 // Invalid reference. Let the caller complain about the record being empty. 491 if (Record[0] + Record[1] > Strtab.size()) 492 return {"", {}}; 493 return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)}; 494 } 495 496 namespace { 497 498 /// This represents a constant expression or constant aggregate using a custom 499 /// structure internal to the bitcode reader. Later, this structure will be 500 /// expanded by materializeValue() either into a constant expression/aggregate, 501 /// or into an instruction sequence at the point of use. This allows us to 502 /// upgrade bitcode using constant expressions even if this kind of constant 503 /// expression is no longer supported. 504 class BitcodeConstant final : public Value, 505 TrailingObjects<BitcodeConstant, unsigned> { 506 friend TrailingObjects; 507 508 // Value subclass ID: Pick largest possible value to avoid any clashes. 509 static constexpr uint8_t SubclassID = 255; 510 511 public: 512 // Opcodes used for non-expressions. This includes constant aggregates 513 // (struct, array, vector) that might need expansion, as well as non-leaf 514 // constants that don't need expansion (no_cfi, dso_local, blockaddress), 515 // but still go through BitcodeConstant to avoid different uselist orders 516 // between the two cases. 517 static constexpr uint8_t ConstantStructOpcode = 255; 518 static constexpr uint8_t ConstantArrayOpcode = 254; 519 static constexpr uint8_t ConstantVectorOpcode = 253; 520 static constexpr uint8_t NoCFIOpcode = 252; 521 static constexpr uint8_t DSOLocalEquivalentOpcode = 251; 522 static constexpr uint8_t BlockAddressOpcode = 250; 523 static constexpr uint8_t ConstantPtrAuthOpcode = 249; 524 static constexpr uint8_t FirstSpecialOpcode = ConstantPtrAuthOpcode; 525 526 // Separate struct to make passing different number of parameters to 527 // BitcodeConstant::create() more convenient. 528 struct ExtraInfo { 529 uint8_t Opcode; 530 uint8_t Flags; 531 unsigned BlockAddressBB = 0; 532 Type *SrcElemTy = nullptr; 533 std::optional<ConstantRange> InRange; 534 535 ExtraInfo(uint8_t Opcode, uint8_t Flags = 0, Type *SrcElemTy = nullptr, 536 std::optional<ConstantRange> InRange = std::nullopt) 537 : Opcode(Opcode), Flags(Flags), SrcElemTy(SrcElemTy), 538 InRange(std::move(InRange)) {} 539 540 ExtraInfo(uint8_t Opcode, uint8_t Flags, unsigned BlockAddressBB) 541 : Opcode(Opcode), Flags(Flags), BlockAddressBB(BlockAddressBB) {} 542 }; 543 544 uint8_t Opcode; 545 uint8_t Flags; 546 unsigned NumOperands; 547 unsigned BlockAddressBB; 548 Type *SrcElemTy; // GEP source element type. 549 std::optional<ConstantRange> InRange; // GEP inrange attribute. 550 551 private: 552 BitcodeConstant(Type *Ty, const ExtraInfo &Info, ArrayRef<unsigned> OpIDs) 553 : Value(Ty, SubclassID), Opcode(Info.Opcode), Flags(Info.Flags), 554 NumOperands(OpIDs.size()), BlockAddressBB(Info.BlockAddressBB), 555 SrcElemTy(Info.SrcElemTy), InRange(Info.InRange) { 556 std::uninitialized_copy(OpIDs.begin(), OpIDs.end(), 557 getTrailingObjects<unsigned>()); 558 } 559 560 BitcodeConstant &operator=(const BitcodeConstant &) = delete; 561 562 public: 563 static BitcodeConstant *create(BumpPtrAllocator &A, Type *Ty, 564 const ExtraInfo &Info, 565 ArrayRef<unsigned> OpIDs) { 566 void *Mem = A.Allocate(totalSizeToAlloc<unsigned>(OpIDs.size()), 567 alignof(BitcodeConstant)); 568 return new (Mem) BitcodeConstant(Ty, Info, OpIDs); 569 } 570 571 static bool classof(const Value *V) { return V->getValueID() == SubclassID; } 572 573 ArrayRef<unsigned> getOperandIDs() const { 574 return ArrayRef(getTrailingObjects<unsigned>(), NumOperands); 575 } 576 577 std::optional<ConstantRange> getInRange() const { 578 assert(Opcode == Instruction::GetElementPtr); 579 return InRange; 580 } 581 582 const char *getOpcodeName() const { 583 return Instruction::getOpcodeName(Opcode); 584 } 585 }; 586 587 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer { 588 LLVMContext &Context; 589 Module *TheModule = nullptr; 590 // Next offset to start scanning for lazy parsing of function bodies. 591 uint64_t NextUnreadBit = 0; 592 // Last function offset found in the VST. 593 uint64_t LastFunctionBlockBit = 0; 594 bool SeenValueSymbolTable = false; 595 uint64_t VSTOffset = 0; 596 597 std::vector<std::string> SectionTable; 598 std::vector<std::string> GCTable; 599 600 std::vector<Type *> TypeList; 601 /// Track type IDs of contained types. Order is the same as the contained 602 /// types of a Type*. This is used during upgrades of typed pointer IR in 603 /// opaque pointer mode. 604 DenseMap<unsigned, SmallVector<unsigned, 1>> ContainedTypeIDs; 605 /// In some cases, we need to create a type ID for a type that was not 606 /// explicitly encoded in the bitcode, or we don't know about at the current 607 /// point. For example, a global may explicitly encode the value type ID, but 608 /// not have a type ID for the pointer to value type, for which we create a 609 /// virtual type ID instead. This map stores the new type ID that was created 610 /// for the given pair of Type and contained type ID. 611 DenseMap<std::pair<Type *, unsigned>, unsigned> VirtualTypeIDs; 612 DenseMap<Function *, unsigned> FunctionTypeIDs; 613 /// Allocator for BitcodeConstants. This should come before ValueList, 614 /// because the ValueList might hold ValueHandles to these constants, so 615 /// ValueList must be destroyed before Alloc. 616 BumpPtrAllocator Alloc; 617 BitcodeReaderValueList ValueList; 618 std::optional<MetadataLoader> MDLoader; 619 std::vector<Comdat *> ComdatList; 620 DenseSet<GlobalObject *> ImplicitComdatObjects; 621 SmallVector<Instruction *, 64> InstructionList; 622 623 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits; 624 std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInits; 625 626 struct FunctionOperandInfo { 627 Function *F; 628 unsigned PersonalityFn; 629 unsigned Prefix; 630 unsigned Prologue; 631 }; 632 std::vector<FunctionOperandInfo> FunctionOperands; 633 634 /// The set of attributes by index. Index zero in the file is for null, and 635 /// is thus not represented here. As such all indices are off by one. 636 std::vector<AttributeList> MAttributes; 637 638 /// The set of attribute groups. 639 std::map<unsigned, AttributeList> MAttributeGroups; 640 641 /// While parsing a function body, this is a list of the basic blocks for the 642 /// function. 643 std::vector<BasicBlock*> FunctionBBs; 644 645 // When reading the module header, this list is populated with functions that 646 // have bodies later in the file. 647 std::vector<Function*> FunctionsWithBodies; 648 649 // When intrinsic functions are encountered which require upgrading they are 650 // stored here with their replacement function. 651 using UpdatedIntrinsicMap = DenseMap<Function *, Function *>; 652 UpdatedIntrinsicMap UpgradedIntrinsics; 653 654 // Several operations happen after the module header has been read, but 655 // before function bodies are processed. This keeps track of whether 656 // we've done this yet. 657 bool SeenFirstFunctionBody = false; 658 659 /// When function bodies are initially scanned, this map contains info about 660 /// where to find deferred function body in the stream. 661 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 662 663 /// When Metadata block is initially scanned when parsing the module, we may 664 /// choose to defer parsing of the metadata. This vector contains info about 665 /// which Metadata blocks are deferred. 666 std::vector<uint64_t> DeferredMetadataInfo; 667 668 /// These are basic blocks forward-referenced by block addresses. They are 669 /// inserted lazily into functions when they're loaded. The basic block ID is 670 /// its index into the vector. 671 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 672 std::deque<Function *> BasicBlockFwdRefQueue; 673 674 /// These are Functions that contain BlockAddresses which refer a different 675 /// Function. When parsing the different Function, queue Functions that refer 676 /// to the different Function. Those Functions must be materialized in order 677 /// to resolve their BlockAddress constants before the different Function 678 /// gets moved into another Module. 679 std::vector<Function *> BackwardRefFunctions; 680 681 /// Indicates that we are using a new encoding for instruction operands where 682 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 683 /// instruction number, for a more compact encoding. Some instruction 684 /// operands are not relative to the instruction ID: basic block numbers, and 685 /// types. Once the old style function blocks have been phased out, we would 686 /// not need this flag. 687 bool UseRelativeIDs = false; 688 689 /// True if all functions will be materialized, negating the need to process 690 /// (e.g.) blockaddress forward references. 691 bool WillMaterializeAllForwardRefs = false; 692 693 /// Tracks whether we have seen debug intrinsics or records in this bitcode; 694 /// seeing both in a single module is currently a fatal error. 695 bool SeenDebugIntrinsic = false; 696 bool SeenDebugRecord = false; 697 698 bool StripDebugInfo = false; 699 TBAAVerifier TBAAVerifyHelper; 700 701 std::vector<std::string> BundleTags; 702 SmallVector<SyncScope::ID, 8> SSIDs; 703 704 std::optional<ValueTypeCallbackTy> ValueTypeCallback; 705 706 public: 707 BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 708 StringRef ProducerIdentification, LLVMContext &Context); 709 710 Error materializeForwardReferencedFunctions(); 711 712 Error materialize(GlobalValue *GV) override; 713 Error materializeModule() override; 714 std::vector<StructType *> getIdentifiedStructTypes() const override; 715 716 /// Main interface to parsing a bitcode buffer. 717 /// \returns true if an error occurred. 718 Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 719 bool IsImporting, ParserCallbacks Callbacks = {}); 720 721 static uint64_t decodeSignRotatedValue(uint64_t V); 722 723 /// Materialize any deferred Metadata block. 724 Error materializeMetadata() override; 725 726 void setStripDebugInfo() override; 727 728 private: 729 std::vector<StructType *> IdentifiedStructTypes; 730 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 731 StructType *createIdentifiedStructType(LLVMContext &Context); 732 733 static constexpr unsigned InvalidTypeID = ~0u; 734 735 Type *getTypeByID(unsigned ID); 736 Type *getPtrElementTypeByID(unsigned ID); 737 unsigned getContainedTypeID(unsigned ID, unsigned Idx = 0); 738 unsigned getVirtualTypeID(Type *Ty, ArrayRef<unsigned> ContainedTypeIDs = {}); 739 740 void callValueTypeCallback(Value *F, unsigned TypeID); 741 Expected<Value *> materializeValue(unsigned ValID, BasicBlock *InsertBB); 742 Expected<Constant *> getValueForInitializer(unsigned ID); 743 744 Value *getFnValueByID(unsigned ID, Type *Ty, unsigned TyID, 745 BasicBlock *ConstExprInsertBB) { 746 if (Ty && Ty->isMetadataTy()) 747 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 748 return ValueList.getValueFwdRef(ID, Ty, TyID, ConstExprInsertBB); 749 } 750 751 Metadata *getFnMetadataByID(unsigned ID) { 752 return MDLoader->getMetadataFwdRefOrLoad(ID); 753 } 754 755 BasicBlock *getBasicBlock(unsigned ID) const { 756 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 757 return FunctionBBs[ID]; 758 } 759 760 AttributeList getAttributes(unsigned i) const { 761 if (i-1 < MAttributes.size()) 762 return MAttributes[i-1]; 763 return AttributeList(); 764 } 765 766 /// Read a value/type pair out of the specified record from slot 'Slot'. 767 /// Increment Slot past the number of slots used in the record. Return true on 768 /// failure. 769 bool getValueTypePair(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 770 unsigned InstNum, Value *&ResVal, unsigned &TypeID, 771 BasicBlock *ConstExprInsertBB) { 772 if (Slot == Record.size()) return true; 773 unsigned ValNo = (unsigned)Record[Slot++]; 774 // Adjust the ValNo, if it was encoded relative to the InstNum. 775 if (UseRelativeIDs) 776 ValNo = InstNum - ValNo; 777 if (ValNo < InstNum) { 778 // If this is not a forward reference, just return the value we already 779 // have. 780 TypeID = ValueList.getTypeID(ValNo); 781 ResVal = getFnValueByID(ValNo, nullptr, TypeID, ConstExprInsertBB); 782 assert((!ResVal || ResVal->getType() == getTypeByID(TypeID)) && 783 "Incorrect type ID stored for value"); 784 return ResVal == nullptr; 785 } 786 if (Slot == Record.size()) 787 return true; 788 789 TypeID = (unsigned)Record[Slot++]; 790 ResVal = getFnValueByID(ValNo, getTypeByID(TypeID), TypeID, 791 ConstExprInsertBB); 792 return ResVal == nullptr; 793 } 794 795 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 796 /// past the number of slots used by the value in the record. Return true if 797 /// there is an error. 798 bool popValue(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 799 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal, 800 BasicBlock *ConstExprInsertBB) { 801 if (getValue(Record, Slot, InstNum, Ty, TyID, ResVal, ConstExprInsertBB)) 802 return true; 803 // All values currently take a single record slot. 804 ++Slot; 805 return false; 806 } 807 808 /// Like popValue, but does not increment the Slot number. 809 bool getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 810 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal, 811 BasicBlock *ConstExprInsertBB) { 812 ResVal = getValue(Record, Slot, InstNum, Ty, TyID, ConstExprInsertBB); 813 return ResVal == nullptr; 814 } 815 816 /// Version of getValue that returns ResVal directly, or 0 if there is an 817 /// error. 818 Value *getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 819 unsigned InstNum, Type *Ty, unsigned TyID, 820 BasicBlock *ConstExprInsertBB) { 821 if (Slot == Record.size()) return nullptr; 822 unsigned ValNo = (unsigned)Record[Slot]; 823 // Adjust the ValNo, if it was encoded relative to the InstNum. 824 if (UseRelativeIDs) 825 ValNo = InstNum - ValNo; 826 return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB); 827 } 828 829 /// Like getValue, but decodes signed VBRs. 830 Value *getValueSigned(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 831 unsigned InstNum, Type *Ty, unsigned TyID, 832 BasicBlock *ConstExprInsertBB) { 833 if (Slot == Record.size()) return nullptr; 834 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 835 // Adjust the ValNo, if it was encoded relative to the InstNum. 836 if (UseRelativeIDs) 837 ValNo = InstNum - ValNo; 838 return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB); 839 } 840 841 Expected<ConstantRange> readConstantRange(ArrayRef<uint64_t> Record, 842 unsigned &OpNum, 843 unsigned BitWidth) { 844 if (Record.size() - OpNum < 2) 845 return error("Too few records for range"); 846 if (BitWidth > 64) { 847 unsigned LowerActiveWords = Record[OpNum]; 848 unsigned UpperActiveWords = Record[OpNum++] >> 32; 849 if (Record.size() - OpNum < LowerActiveWords + UpperActiveWords) 850 return error("Too few records for range"); 851 APInt Lower = 852 readWideAPInt(ArrayRef(&Record[OpNum], LowerActiveWords), BitWidth); 853 OpNum += LowerActiveWords; 854 APInt Upper = 855 readWideAPInt(ArrayRef(&Record[OpNum], UpperActiveWords), BitWidth); 856 OpNum += UpperActiveWords; 857 return ConstantRange(Lower, Upper); 858 } else { 859 int64_t Start = BitcodeReader::decodeSignRotatedValue(Record[OpNum++]); 860 int64_t End = BitcodeReader::decodeSignRotatedValue(Record[OpNum++]); 861 return ConstantRange(APInt(BitWidth, Start), APInt(BitWidth, End)); 862 } 863 } 864 865 Expected<ConstantRange> 866 readBitWidthAndConstantRange(ArrayRef<uint64_t> Record, unsigned &OpNum) { 867 if (Record.size() - OpNum < 1) 868 return error("Too few records for range"); 869 unsigned BitWidth = Record[OpNum++]; 870 return readConstantRange(Record, OpNum, BitWidth); 871 } 872 873 /// Upgrades old-style typeless byval/sret/inalloca attributes by adding the 874 /// corresponding argument's pointee type. Also upgrades intrinsics that now 875 /// require an elementtype attribute. 876 Error propagateAttributeTypes(CallBase *CB, ArrayRef<unsigned> ArgsTys); 877 878 /// Converts alignment exponent (i.e. power of two (or zero)) to the 879 /// corresponding alignment to use. If alignment is too large, returns 880 /// a corresponding error code. 881 Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment); 882 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 883 Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false, 884 ParserCallbacks Callbacks = {}); 885 886 Error parseComdatRecord(ArrayRef<uint64_t> Record); 887 Error parseGlobalVarRecord(ArrayRef<uint64_t> Record); 888 Error parseFunctionRecord(ArrayRef<uint64_t> Record); 889 Error parseGlobalIndirectSymbolRecord(unsigned BitCode, 890 ArrayRef<uint64_t> Record); 891 892 Error parseAttributeBlock(); 893 Error parseAttributeGroupBlock(); 894 Error parseTypeTable(); 895 Error parseTypeTableBody(); 896 Error parseOperandBundleTags(); 897 Error parseSyncScopeNames(); 898 899 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 900 unsigned NameIndex, Triple &TT); 901 void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F, 902 ArrayRef<uint64_t> Record); 903 Error parseValueSymbolTable(uint64_t Offset = 0); 904 Error parseGlobalValueSymbolTable(); 905 Error parseConstants(); 906 Error rememberAndSkipFunctionBodies(); 907 Error rememberAndSkipFunctionBody(); 908 /// Save the positions of the Metadata blocks and skip parsing the blocks. 909 Error rememberAndSkipMetadata(); 910 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType); 911 Error parseFunctionBody(Function *F); 912 Error globalCleanup(); 913 Error resolveGlobalAndIndirectSymbolInits(); 914 Error parseUseLists(); 915 Error findFunctionInStream( 916 Function *F, 917 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 918 919 SyncScope::ID getDecodedSyncScopeID(unsigned Val); 920 }; 921 922 /// Class to manage reading and parsing function summary index bitcode 923 /// files/sections. 924 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase { 925 /// The module index built during parsing. 926 ModuleSummaryIndex &TheIndex; 927 928 /// Indicates whether we have encountered a global value summary section 929 /// yet during parsing. 930 bool SeenGlobalValSummary = false; 931 932 /// Indicates whether we have already parsed the VST, used for error checking. 933 bool SeenValueSymbolTable = false; 934 935 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 936 /// Used to enable on-demand parsing of the VST. 937 uint64_t VSTOffset = 0; 938 939 // Map to save ValueId to ValueInfo association that was recorded in the 940 // ValueSymbolTable. It is used after the VST is parsed to convert 941 // call graph edges read from the function summary from referencing 942 // callees by their ValueId to using the ValueInfo instead, which is how 943 // they are recorded in the summary index being built. 944 // We save a GUID which refers to the same global as the ValueInfo, but 945 // ignoring the linkage, i.e. for values other than local linkage they are 946 // identical (this is the second member). ValueInfo has the real GUID. 947 DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>> 948 ValueIdToValueInfoMap; 949 950 /// Map populated during module path string table parsing, from the 951 /// module ID to a string reference owned by the index's module 952 /// path string table, used to correlate with combined index 953 /// summary records. 954 DenseMap<uint64_t, StringRef> ModuleIdMap; 955 956 /// Original source file name recorded in a bitcode record. 957 std::string SourceFileName; 958 959 /// The string identifier given to this module by the client, normally the 960 /// path to the bitcode file. 961 StringRef ModulePath; 962 963 /// Callback to ask whether a symbol is the prevailing copy when invoked 964 /// during combined index building. 965 std::function<bool(GlobalValue::GUID)> IsPrevailing; 966 967 /// Saves the stack ids from the STACK_IDS record to consult when adding stack 968 /// ids from the lists in the callsite and alloc entries to the index. 969 std::vector<uint64_t> StackIds; 970 971 public: 972 ModuleSummaryIndexBitcodeReader( 973 BitstreamCursor Stream, StringRef Strtab, ModuleSummaryIndex &TheIndex, 974 StringRef ModulePath, 975 std::function<bool(GlobalValue::GUID)> IsPrevailing = nullptr); 976 977 Error parseModule(); 978 979 private: 980 void setValueGUID(uint64_t ValueID, StringRef ValueName, 981 GlobalValue::LinkageTypes Linkage, 982 StringRef SourceFileName); 983 Error parseValueSymbolTable( 984 uint64_t Offset, 985 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 986 SmallVector<ValueInfo, 0> makeRefList(ArrayRef<uint64_t> Record); 987 SmallVector<FunctionSummary::EdgeTy, 0> 988 makeCallList(ArrayRef<uint64_t> Record, bool IsOldProfileFormat, 989 bool HasProfile, bool HasRelBF); 990 Error parseEntireSummary(unsigned ID); 991 Error parseModuleStringTable(); 992 void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record); 993 void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot, 994 TypeIdCompatibleVtableInfo &TypeId); 995 std::vector<FunctionSummary::ParamAccess> 996 parseParamAccesses(ArrayRef<uint64_t> Record); 997 998 template <bool AllowNullValueInfo = false> 999 std::pair<ValueInfo, GlobalValue::GUID> 1000 getValueInfoFromValueId(unsigned ValueId); 1001 1002 void addThisModule(); 1003 ModuleSummaryIndex::ModuleInfo *getThisModule(); 1004 }; 1005 1006 } // end anonymous namespace 1007 1008 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx, 1009 Error Err) { 1010 if (Err) { 1011 std::error_code EC; 1012 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) { 1013 EC = EIB.convertToErrorCode(); 1014 Ctx.emitError(EIB.message()); 1015 }); 1016 return EC; 1017 } 1018 return std::error_code(); 1019 } 1020 1021 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 1022 StringRef ProducerIdentification, 1023 LLVMContext &Context) 1024 : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context), 1025 ValueList(this->Stream.SizeInBytes(), 1026 [this](unsigned ValID, BasicBlock *InsertBB) { 1027 return materializeValue(ValID, InsertBB); 1028 }) { 1029 this->ProducerIdentification = std::string(ProducerIdentification); 1030 } 1031 1032 Error BitcodeReader::materializeForwardReferencedFunctions() { 1033 if (WillMaterializeAllForwardRefs) 1034 return Error::success(); 1035 1036 // Prevent recursion. 1037 WillMaterializeAllForwardRefs = true; 1038 1039 while (!BasicBlockFwdRefQueue.empty()) { 1040 Function *F = BasicBlockFwdRefQueue.front(); 1041 BasicBlockFwdRefQueue.pop_front(); 1042 assert(F && "Expected valid function"); 1043 if (!BasicBlockFwdRefs.count(F)) 1044 // Already materialized. 1045 continue; 1046 1047 // Check for a function that isn't materializable to prevent an infinite 1048 // loop. When parsing a blockaddress stored in a global variable, there 1049 // isn't a trivial way to check if a function will have a body without a 1050 // linear search through FunctionsWithBodies, so just check it here. 1051 if (!F->isMaterializable()) 1052 return error("Never resolved function from blockaddress"); 1053 1054 // Try to materialize F. 1055 if (Error Err = materialize(F)) 1056 return Err; 1057 } 1058 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 1059 1060 for (Function *F : BackwardRefFunctions) 1061 if (Error Err = materialize(F)) 1062 return Err; 1063 BackwardRefFunctions.clear(); 1064 1065 // Reset state. 1066 WillMaterializeAllForwardRefs = false; 1067 return Error::success(); 1068 } 1069 1070 //===----------------------------------------------------------------------===// 1071 // Helper functions to implement forward reference resolution, etc. 1072 //===----------------------------------------------------------------------===// 1073 1074 static bool hasImplicitComdat(size_t Val) { 1075 switch (Val) { 1076 default: 1077 return false; 1078 case 1: // Old WeakAnyLinkage 1079 case 4: // Old LinkOnceAnyLinkage 1080 case 10: // Old WeakODRLinkage 1081 case 11: // Old LinkOnceODRLinkage 1082 return true; 1083 } 1084 } 1085 1086 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 1087 switch (Val) { 1088 default: // Map unknown/new linkages to external 1089 case 0: 1090 return GlobalValue::ExternalLinkage; 1091 case 2: 1092 return GlobalValue::AppendingLinkage; 1093 case 3: 1094 return GlobalValue::InternalLinkage; 1095 case 5: 1096 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 1097 case 6: 1098 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 1099 case 7: 1100 return GlobalValue::ExternalWeakLinkage; 1101 case 8: 1102 return GlobalValue::CommonLinkage; 1103 case 9: 1104 return GlobalValue::PrivateLinkage; 1105 case 12: 1106 return GlobalValue::AvailableExternallyLinkage; 1107 case 13: 1108 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 1109 case 14: 1110 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 1111 case 15: 1112 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 1113 case 1: // Old value with implicit comdat. 1114 case 16: 1115 return GlobalValue::WeakAnyLinkage; 1116 case 10: // Old value with implicit comdat. 1117 case 17: 1118 return GlobalValue::WeakODRLinkage; 1119 case 4: // Old value with implicit comdat. 1120 case 18: 1121 return GlobalValue::LinkOnceAnyLinkage; 1122 case 11: // Old value with implicit comdat. 1123 case 19: 1124 return GlobalValue::LinkOnceODRLinkage; 1125 } 1126 } 1127 1128 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) { 1129 FunctionSummary::FFlags Flags; 1130 Flags.ReadNone = RawFlags & 0x1; 1131 Flags.ReadOnly = (RawFlags >> 1) & 0x1; 1132 Flags.NoRecurse = (RawFlags >> 2) & 0x1; 1133 Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1; 1134 Flags.NoInline = (RawFlags >> 4) & 0x1; 1135 Flags.AlwaysInline = (RawFlags >> 5) & 0x1; 1136 Flags.NoUnwind = (RawFlags >> 6) & 0x1; 1137 Flags.MayThrow = (RawFlags >> 7) & 0x1; 1138 Flags.HasUnknownCall = (RawFlags >> 8) & 0x1; 1139 Flags.MustBeUnreachable = (RawFlags >> 9) & 0x1; 1140 return Flags; 1141 } 1142 1143 // Decode the flags for GlobalValue in the summary. The bits for each attribute: 1144 // 1145 // linkage: [0,4), notEligibleToImport: 4, live: 5, local: 6, canAutoHide: 7, 1146 // visibility: [8, 10). 1147 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 1148 uint64_t Version) { 1149 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 1150 // like getDecodedLinkage() above. Any future change to the linkage enum and 1151 // to getDecodedLinkage() will need to be taken into account here as above. 1152 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 1153 auto Visibility = GlobalValue::VisibilityTypes((RawFlags >> 8) & 3); // 2 bits 1154 auto IK = GlobalValueSummary::ImportKind((RawFlags >> 10) & 1); // 1 bit 1155 RawFlags = RawFlags >> 4; 1156 bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3; 1157 // The Live flag wasn't introduced until version 3. For dead stripping 1158 // to work correctly on earlier versions, we must conservatively treat all 1159 // values as live. 1160 bool Live = (RawFlags & 0x2) || Version < 3; 1161 bool Local = (RawFlags & 0x4); 1162 bool AutoHide = (RawFlags & 0x8); 1163 1164 return GlobalValueSummary::GVFlags(Linkage, Visibility, NotEligibleToImport, 1165 Live, Local, AutoHide, IK); 1166 } 1167 1168 // Decode the flags for GlobalVariable in the summary 1169 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) { 1170 return GlobalVarSummary::GVarFlags( 1171 (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false, 1172 (RawFlags & 0x4) ? true : false, 1173 (GlobalObject::VCallVisibility)(RawFlags >> 3)); 1174 } 1175 1176 static std::pair<CalleeInfo::HotnessType, bool> 1177 getDecodedHotnessCallEdgeInfo(uint64_t RawFlags) { 1178 CalleeInfo::HotnessType Hotness = 1179 static_cast<CalleeInfo::HotnessType>(RawFlags & 0x7); // 3 bits 1180 bool HasTailCall = (RawFlags & 0x8); // 1 bit 1181 return {Hotness, HasTailCall}; 1182 } 1183 1184 static void getDecodedRelBFCallEdgeInfo(uint64_t RawFlags, uint64_t &RelBF, 1185 bool &HasTailCall) { 1186 static constexpr uint64_t RelBlockFreqMask = 1187 (1 << CalleeInfo::RelBlockFreqBits) - 1; 1188 RelBF = RawFlags & RelBlockFreqMask; // RelBlockFreqBits bits 1189 HasTailCall = (RawFlags & (1 << CalleeInfo::RelBlockFreqBits)); // 1 bit 1190 } 1191 1192 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 1193 switch (Val) { 1194 default: // Map unknown visibilities to default. 1195 case 0: return GlobalValue::DefaultVisibility; 1196 case 1: return GlobalValue::HiddenVisibility; 1197 case 2: return GlobalValue::ProtectedVisibility; 1198 } 1199 } 1200 1201 static GlobalValue::DLLStorageClassTypes 1202 getDecodedDLLStorageClass(unsigned Val) { 1203 switch (Val) { 1204 default: // Map unknown values to default. 1205 case 0: return GlobalValue::DefaultStorageClass; 1206 case 1: return GlobalValue::DLLImportStorageClass; 1207 case 2: return GlobalValue::DLLExportStorageClass; 1208 } 1209 } 1210 1211 static bool getDecodedDSOLocal(unsigned Val) { 1212 switch(Val) { 1213 default: // Map unknown values to preemptable. 1214 case 0: return false; 1215 case 1: return true; 1216 } 1217 } 1218 1219 static std::optional<CodeModel::Model> getDecodedCodeModel(unsigned Val) { 1220 switch (Val) { 1221 case 1: 1222 return CodeModel::Tiny; 1223 case 2: 1224 return CodeModel::Small; 1225 case 3: 1226 return CodeModel::Kernel; 1227 case 4: 1228 return CodeModel::Medium; 1229 case 5: 1230 return CodeModel::Large; 1231 } 1232 1233 return {}; 1234 } 1235 1236 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 1237 switch (Val) { 1238 case 0: return GlobalVariable::NotThreadLocal; 1239 default: // Map unknown non-zero value to general dynamic. 1240 case 1: return GlobalVariable::GeneralDynamicTLSModel; 1241 case 2: return GlobalVariable::LocalDynamicTLSModel; 1242 case 3: return GlobalVariable::InitialExecTLSModel; 1243 case 4: return GlobalVariable::LocalExecTLSModel; 1244 } 1245 } 1246 1247 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { 1248 switch (Val) { 1249 default: // Map unknown to UnnamedAddr::None. 1250 case 0: return GlobalVariable::UnnamedAddr::None; 1251 case 1: return GlobalVariable::UnnamedAddr::Global; 1252 case 2: return GlobalVariable::UnnamedAddr::Local; 1253 } 1254 } 1255 1256 static int getDecodedCastOpcode(unsigned Val) { 1257 switch (Val) { 1258 default: return -1; 1259 case bitc::CAST_TRUNC : return Instruction::Trunc; 1260 case bitc::CAST_ZEXT : return Instruction::ZExt; 1261 case bitc::CAST_SEXT : return Instruction::SExt; 1262 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 1263 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 1264 case bitc::CAST_UITOFP : return Instruction::UIToFP; 1265 case bitc::CAST_SITOFP : return Instruction::SIToFP; 1266 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 1267 case bitc::CAST_FPEXT : return Instruction::FPExt; 1268 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 1269 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 1270 case bitc::CAST_BITCAST : return Instruction::BitCast; 1271 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 1272 } 1273 } 1274 1275 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) { 1276 bool IsFP = Ty->isFPOrFPVectorTy(); 1277 // UnOps are only valid for int/fp or vector of int/fp types 1278 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1279 return -1; 1280 1281 switch (Val) { 1282 default: 1283 return -1; 1284 case bitc::UNOP_FNEG: 1285 return IsFP ? Instruction::FNeg : -1; 1286 } 1287 } 1288 1289 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 1290 bool IsFP = Ty->isFPOrFPVectorTy(); 1291 // BinOps are only valid for int/fp or vector of int/fp types 1292 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1293 return -1; 1294 1295 switch (Val) { 1296 default: 1297 return -1; 1298 case bitc::BINOP_ADD: 1299 return IsFP ? Instruction::FAdd : Instruction::Add; 1300 case bitc::BINOP_SUB: 1301 return IsFP ? Instruction::FSub : Instruction::Sub; 1302 case bitc::BINOP_MUL: 1303 return IsFP ? Instruction::FMul : Instruction::Mul; 1304 case bitc::BINOP_UDIV: 1305 return IsFP ? -1 : Instruction::UDiv; 1306 case bitc::BINOP_SDIV: 1307 return IsFP ? Instruction::FDiv : Instruction::SDiv; 1308 case bitc::BINOP_UREM: 1309 return IsFP ? -1 : Instruction::URem; 1310 case bitc::BINOP_SREM: 1311 return IsFP ? Instruction::FRem : Instruction::SRem; 1312 case bitc::BINOP_SHL: 1313 return IsFP ? -1 : Instruction::Shl; 1314 case bitc::BINOP_LSHR: 1315 return IsFP ? -1 : Instruction::LShr; 1316 case bitc::BINOP_ASHR: 1317 return IsFP ? -1 : Instruction::AShr; 1318 case bitc::BINOP_AND: 1319 return IsFP ? -1 : Instruction::And; 1320 case bitc::BINOP_OR: 1321 return IsFP ? -1 : Instruction::Or; 1322 case bitc::BINOP_XOR: 1323 return IsFP ? -1 : Instruction::Xor; 1324 } 1325 } 1326 1327 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 1328 switch (Val) { 1329 default: return AtomicRMWInst::BAD_BINOP; 1330 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 1331 case bitc::RMW_ADD: return AtomicRMWInst::Add; 1332 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 1333 case bitc::RMW_AND: return AtomicRMWInst::And; 1334 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 1335 case bitc::RMW_OR: return AtomicRMWInst::Or; 1336 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 1337 case bitc::RMW_MAX: return AtomicRMWInst::Max; 1338 case bitc::RMW_MIN: return AtomicRMWInst::Min; 1339 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 1340 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 1341 case bitc::RMW_FADD: return AtomicRMWInst::FAdd; 1342 case bitc::RMW_FSUB: return AtomicRMWInst::FSub; 1343 case bitc::RMW_FMAX: return AtomicRMWInst::FMax; 1344 case bitc::RMW_FMIN: return AtomicRMWInst::FMin; 1345 case bitc::RMW_UINC_WRAP: 1346 return AtomicRMWInst::UIncWrap; 1347 case bitc::RMW_UDEC_WRAP: 1348 return AtomicRMWInst::UDecWrap; 1349 case bitc::RMW_USUB_COND: 1350 return AtomicRMWInst::USubCond; 1351 case bitc::RMW_USUB_SAT: 1352 return AtomicRMWInst::USubSat; 1353 } 1354 } 1355 1356 static AtomicOrdering getDecodedOrdering(unsigned Val) { 1357 switch (Val) { 1358 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 1359 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 1360 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 1361 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 1362 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 1363 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 1364 default: // Map unknown orderings to sequentially-consistent. 1365 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 1366 } 1367 } 1368 1369 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 1370 switch (Val) { 1371 default: // Map unknown selection kinds to any. 1372 case bitc::COMDAT_SELECTION_KIND_ANY: 1373 return Comdat::Any; 1374 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 1375 return Comdat::ExactMatch; 1376 case bitc::COMDAT_SELECTION_KIND_LARGEST: 1377 return Comdat::Largest; 1378 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 1379 return Comdat::NoDeduplicate; 1380 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 1381 return Comdat::SameSize; 1382 } 1383 } 1384 1385 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 1386 FastMathFlags FMF; 1387 if (0 != (Val & bitc::UnsafeAlgebra)) 1388 FMF.setFast(); 1389 if (0 != (Val & bitc::AllowReassoc)) 1390 FMF.setAllowReassoc(); 1391 if (0 != (Val & bitc::NoNaNs)) 1392 FMF.setNoNaNs(); 1393 if (0 != (Val & bitc::NoInfs)) 1394 FMF.setNoInfs(); 1395 if (0 != (Val & bitc::NoSignedZeros)) 1396 FMF.setNoSignedZeros(); 1397 if (0 != (Val & bitc::AllowReciprocal)) 1398 FMF.setAllowReciprocal(); 1399 if (0 != (Val & bitc::AllowContract)) 1400 FMF.setAllowContract(true); 1401 if (0 != (Val & bitc::ApproxFunc)) 1402 FMF.setApproxFunc(); 1403 return FMF; 1404 } 1405 1406 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) { 1407 // A GlobalValue with local linkage cannot have a DLL storage class. 1408 if (GV->hasLocalLinkage()) 1409 return; 1410 switch (Val) { 1411 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 1412 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 1413 } 1414 } 1415 1416 Type *BitcodeReader::getTypeByID(unsigned ID) { 1417 // The type table size is always specified correctly. 1418 if (ID >= TypeList.size()) 1419 return nullptr; 1420 1421 if (Type *Ty = TypeList[ID]) 1422 return Ty; 1423 1424 // If we have a forward reference, the only possible case is when it is to a 1425 // named struct. Just create a placeholder for now. 1426 return TypeList[ID] = createIdentifiedStructType(Context); 1427 } 1428 1429 unsigned BitcodeReader::getContainedTypeID(unsigned ID, unsigned Idx) { 1430 auto It = ContainedTypeIDs.find(ID); 1431 if (It == ContainedTypeIDs.end()) 1432 return InvalidTypeID; 1433 1434 if (Idx >= It->second.size()) 1435 return InvalidTypeID; 1436 1437 return It->second[Idx]; 1438 } 1439 1440 Type *BitcodeReader::getPtrElementTypeByID(unsigned ID) { 1441 if (ID >= TypeList.size()) 1442 return nullptr; 1443 1444 Type *Ty = TypeList[ID]; 1445 if (!Ty->isPointerTy()) 1446 return nullptr; 1447 1448 return getTypeByID(getContainedTypeID(ID, 0)); 1449 } 1450 1451 unsigned BitcodeReader::getVirtualTypeID(Type *Ty, 1452 ArrayRef<unsigned> ChildTypeIDs) { 1453 unsigned ChildTypeID = ChildTypeIDs.empty() ? InvalidTypeID : ChildTypeIDs[0]; 1454 auto CacheKey = std::make_pair(Ty, ChildTypeID); 1455 auto It = VirtualTypeIDs.find(CacheKey); 1456 if (It != VirtualTypeIDs.end()) { 1457 // The cmpxchg return value is the only place we need more than one 1458 // contained type ID, however the second one will always be the same (i1), 1459 // so we don't need to include it in the cache key. This asserts that the 1460 // contained types are indeed as expected and there are no collisions. 1461 assert((ChildTypeIDs.empty() || 1462 ContainedTypeIDs[It->second] == ChildTypeIDs) && 1463 "Incorrect cached contained type IDs"); 1464 return It->second; 1465 } 1466 1467 unsigned TypeID = TypeList.size(); 1468 TypeList.push_back(Ty); 1469 if (!ChildTypeIDs.empty()) 1470 append_range(ContainedTypeIDs[TypeID], ChildTypeIDs); 1471 VirtualTypeIDs.insert({CacheKey, TypeID}); 1472 return TypeID; 1473 } 1474 1475 static GEPNoWrapFlags toGEPNoWrapFlags(uint64_t Flags) { 1476 GEPNoWrapFlags NW; 1477 if (Flags & (1 << bitc::GEP_INBOUNDS)) 1478 NW |= GEPNoWrapFlags::inBounds(); 1479 if (Flags & (1 << bitc::GEP_NUSW)) 1480 NW |= GEPNoWrapFlags::noUnsignedSignedWrap(); 1481 if (Flags & (1 << bitc::GEP_NUW)) 1482 NW |= GEPNoWrapFlags::noUnsignedWrap(); 1483 return NW; 1484 } 1485 1486 static bool isConstExprSupported(const BitcodeConstant *BC) { 1487 uint8_t Opcode = BC->Opcode; 1488 1489 // These are not real constant expressions, always consider them supported. 1490 if (Opcode >= BitcodeConstant::FirstSpecialOpcode) 1491 return true; 1492 1493 // If -expand-constant-exprs is set, we want to consider all expressions 1494 // as unsupported. 1495 if (ExpandConstantExprs) 1496 return false; 1497 1498 if (Instruction::isBinaryOp(Opcode)) 1499 return ConstantExpr::isSupportedBinOp(Opcode); 1500 1501 if (Instruction::isCast(Opcode)) 1502 return ConstantExpr::isSupportedCastOp(Opcode); 1503 1504 if (Opcode == Instruction::GetElementPtr) 1505 return ConstantExpr::isSupportedGetElementPtr(BC->SrcElemTy); 1506 1507 switch (Opcode) { 1508 case Instruction::FNeg: 1509 case Instruction::Select: 1510 case Instruction::ICmp: 1511 case Instruction::FCmp: 1512 return false; 1513 default: 1514 return true; 1515 } 1516 } 1517 1518 Expected<Value *> BitcodeReader::materializeValue(unsigned StartValID, 1519 BasicBlock *InsertBB) { 1520 // Quickly handle the case where there is no BitcodeConstant to resolve. 1521 if (StartValID < ValueList.size() && ValueList[StartValID] && 1522 !isa<BitcodeConstant>(ValueList[StartValID])) 1523 return ValueList[StartValID]; 1524 1525 SmallDenseMap<unsigned, Value *> MaterializedValues; 1526 SmallVector<unsigned> Worklist; 1527 Worklist.push_back(StartValID); 1528 while (!Worklist.empty()) { 1529 unsigned ValID = Worklist.back(); 1530 if (MaterializedValues.count(ValID)) { 1531 // Duplicate expression that was already handled. 1532 Worklist.pop_back(); 1533 continue; 1534 } 1535 1536 if (ValID >= ValueList.size() || !ValueList[ValID]) 1537 return error("Invalid value ID"); 1538 1539 Value *V = ValueList[ValID]; 1540 auto *BC = dyn_cast<BitcodeConstant>(V); 1541 if (!BC) { 1542 MaterializedValues.insert({ValID, V}); 1543 Worklist.pop_back(); 1544 continue; 1545 } 1546 1547 // Iterate in reverse, so values will get popped from the worklist in 1548 // expected order. 1549 SmallVector<Value *> Ops; 1550 for (unsigned OpID : reverse(BC->getOperandIDs())) { 1551 auto It = MaterializedValues.find(OpID); 1552 if (It != MaterializedValues.end()) 1553 Ops.push_back(It->second); 1554 else 1555 Worklist.push_back(OpID); 1556 } 1557 1558 // Some expressions have not been resolved yet, handle them first and then 1559 // revisit this one. 1560 if (Ops.size() != BC->getOperandIDs().size()) 1561 continue; 1562 std::reverse(Ops.begin(), Ops.end()); 1563 1564 SmallVector<Constant *> ConstOps; 1565 for (Value *Op : Ops) 1566 if (auto *C = dyn_cast<Constant>(Op)) 1567 ConstOps.push_back(C); 1568 1569 // Materialize as constant expression if possible. 1570 if (isConstExprSupported(BC) && ConstOps.size() == Ops.size()) { 1571 Constant *C; 1572 if (Instruction::isCast(BC->Opcode)) { 1573 C = UpgradeBitCastExpr(BC->Opcode, ConstOps[0], BC->getType()); 1574 if (!C) 1575 C = ConstantExpr::getCast(BC->Opcode, ConstOps[0], BC->getType()); 1576 } else if (Instruction::isBinaryOp(BC->Opcode)) { 1577 C = ConstantExpr::get(BC->Opcode, ConstOps[0], ConstOps[1], BC->Flags); 1578 } else { 1579 switch (BC->Opcode) { 1580 case BitcodeConstant::ConstantPtrAuthOpcode: { 1581 auto *Key = dyn_cast<ConstantInt>(ConstOps[1]); 1582 if (!Key) 1583 return error("ptrauth key operand must be ConstantInt"); 1584 1585 auto *Disc = dyn_cast<ConstantInt>(ConstOps[2]); 1586 if (!Disc) 1587 return error("ptrauth disc operand must be ConstantInt"); 1588 1589 C = ConstantPtrAuth::get(ConstOps[0], Key, Disc, ConstOps[3]); 1590 break; 1591 } 1592 case BitcodeConstant::NoCFIOpcode: { 1593 auto *GV = dyn_cast<GlobalValue>(ConstOps[0]); 1594 if (!GV) 1595 return error("no_cfi operand must be GlobalValue"); 1596 C = NoCFIValue::get(GV); 1597 break; 1598 } 1599 case BitcodeConstant::DSOLocalEquivalentOpcode: { 1600 auto *GV = dyn_cast<GlobalValue>(ConstOps[0]); 1601 if (!GV) 1602 return error("dso_local operand must be GlobalValue"); 1603 C = DSOLocalEquivalent::get(GV); 1604 break; 1605 } 1606 case BitcodeConstant::BlockAddressOpcode: { 1607 Function *Fn = dyn_cast<Function>(ConstOps[0]); 1608 if (!Fn) 1609 return error("blockaddress operand must be a function"); 1610 1611 // If the function is already parsed we can insert the block address 1612 // right away. 1613 BasicBlock *BB; 1614 unsigned BBID = BC->BlockAddressBB; 1615 if (!BBID) 1616 // Invalid reference to entry block. 1617 return error("Invalid ID"); 1618 if (!Fn->empty()) { 1619 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 1620 for (size_t I = 0, E = BBID; I != E; ++I) { 1621 if (BBI == BBE) 1622 return error("Invalid ID"); 1623 ++BBI; 1624 } 1625 BB = &*BBI; 1626 } else { 1627 // Otherwise insert a placeholder and remember it so it can be 1628 // inserted when the function is parsed. 1629 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 1630 if (FwdBBs.empty()) 1631 BasicBlockFwdRefQueue.push_back(Fn); 1632 if (FwdBBs.size() < BBID + 1) 1633 FwdBBs.resize(BBID + 1); 1634 if (!FwdBBs[BBID]) 1635 FwdBBs[BBID] = BasicBlock::Create(Context); 1636 BB = FwdBBs[BBID]; 1637 } 1638 C = BlockAddress::get(Fn, BB); 1639 break; 1640 } 1641 case BitcodeConstant::ConstantStructOpcode: 1642 C = ConstantStruct::get(cast<StructType>(BC->getType()), ConstOps); 1643 break; 1644 case BitcodeConstant::ConstantArrayOpcode: 1645 C = ConstantArray::get(cast<ArrayType>(BC->getType()), ConstOps); 1646 break; 1647 case BitcodeConstant::ConstantVectorOpcode: 1648 C = ConstantVector::get(ConstOps); 1649 break; 1650 case Instruction::GetElementPtr: 1651 C = ConstantExpr::getGetElementPtr( 1652 BC->SrcElemTy, ConstOps[0], ArrayRef(ConstOps).drop_front(), 1653 toGEPNoWrapFlags(BC->Flags), BC->getInRange()); 1654 break; 1655 case Instruction::ExtractElement: 1656 C = ConstantExpr::getExtractElement(ConstOps[0], ConstOps[1]); 1657 break; 1658 case Instruction::InsertElement: 1659 C = ConstantExpr::getInsertElement(ConstOps[0], ConstOps[1], 1660 ConstOps[2]); 1661 break; 1662 case Instruction::ShuffleVector: { 1663 SmallVector<int, 16> Mask; 1664 ShuffleVectorInst::getShuffleMask(ConstOps[2], Mask); 1665 C = ConstantExpr::getShuffleVector(ConstOps[0], ConstOps[1], Mask); 1666 break; 1667 } 1668 default: 1669 llvm_unreachable("Unhandled bitcode constant"); 1670 } 1671 } 1672 1673 // Cache resolved constant. 1674 ValueList.replaceValueWithoutRAUW(ValID, C); 1675 MaterializedValues.insert({ValID, C}); 1676 Worklist.pop_back(); 1677 continue; 1678 } 1679 1680 if (!InsertBB) 1681 return error(Twine("Value referenced by initializer is an unsupported " 1682 "constant expression of type ") + 1683 BC->getOpcodeName()); 1684 1685 // Materialize as instructions if necessary. 1686 Instruction *I; 1687 if (Instruction::isCast(BC->Opcode)) { 1688 I = CastInst::Create((Instruction::CastOps)BC->Opcode, Ops[0], 1689 BC->getType(), "constexpr", InsertBB); 1690 } else if (Instruction::isUnaryOp(BC->Opcode)) { 1691 I = UnaryOperator::Create((Instruction::UnaryOps)BC->Opcode, Ops[0], 1692 "constexpr", InsertBB); 1693 } else if (Instruction::isBinaryOp(BC->Opcode)) { 1694 I = BinaryOperator::Create((Instruction::BinaryOps)BC->Opcode, Ops[0], 1695 Ops[1], "constexpr", InsertBB); 1696 if (isa<OverflowingBinaryOperator>(I)) { 1697 if (BC->Flags & OverflowingBinaryOperator::NoSignedWrap) 1698 I->setHasNoSignedWrap(); 1699 if (BC->Flags & OverflowingBinaryOperator::NoUnsignedWrap) 1700 I->setHasNoUnsignedWrap(); 1701 } 1702 if (isa<PossiblyExactOperator>(I) && 1703 (BC->Flags & PossiblyExactOperator::IsExact)) 1704 I->setIsExact(); 1705 } else { 1706 switch (BC->Opcode) { 1707 case BitcodeConstant::ConstantVectorOpcode: { 1708 Type *IdxTy = Type::getInt32Ty(BC->getContext()); 1709 Value *V = PoisonValue::get(BC->getType()); 1710 for (auto Pair : enumerate(Ops)) { 1711 Value *Idx = ConstantInt::get(IdxTy, Pair.index()); 1712 V = InsertElementInst::Create(V, Pair.value(), Idx, "constexpr.ins", 1713 InsertBB); 1714 } 1715 I = cast<Instruction>(V); 1716 break; 1717 } 1718 case BitcodeConstant::ConstantStructOpcode: 1719 case BitcodeConstant::ConstantArrayOpcode: { 1720 Value *V = PoisonValue::get(BC->getType()); 1721 for (auto Pair : enumerate(Ops)) 1722 V = InsertValueInst::Create(V, Pair.value(), Pair.index(), 1723 "constexpr.ins", InsertBB); 1724 I = cast<Instruction>(V); 1725 break; 1726 } 1727 case Instruction::ICmp: 1728 case Instruction::FCmp: 1729 I = CmpInst::Create((Instruction::OtherOps)BC->Opcode, 1730 (CmpInst::Predicate)BC->Flags, Ops[0], Ops[1], 1731 "constexpr", InsertBB); 1732 break; 1733 case Instruction::GetElementPtr: 1734 I = GetElementPtrInst::Create(BC->SrcElemTy, Ops[0], 1735 ArrayRef(Ops).drop_front(), "constexpr", 1736 InsertBB); 1737 cast<GetElementPtrInst>(I)->setNoWrapFlags(toGEPNoWrapFlags(BC->Flags)); 1738 break; 1739 case Instruction::Select: 1740 I = SelectInst::Create(Ops[0], Ops[1], Ops[2], "constexpr", InsertBB); 1741 break; 1742 case Instruction::ExtractElement: 1743 I = ExtractElementInst::Create(Ops[0], Ops[1], "constexpr", InsertBB); 1744 break; 1745 case Instruction::InsertElement: 1746 I = InsertElementInst::Create(Ops[0], Ops[1], Ops[2], "constexpr", 1747 InsertBB); 1748 break; 1749 case Instruction::ShuffleVector: 1750 I = new ShuffleVectorInst(Ops[0], Ops[1], Ops[2], "constexpr", 1751 InsertBB); 1752 break; 1753 default: 1754 llvm_unreachable("Unhandled bitcode constant"); 1755 } 1756 } 1757 1758 MaterializedValues.insert({ValID, I}); 1759 Worklist.pop_back(); 1760 } 1761 1762 return MaterializedValues[StartValID]; 1763 } 1764 1765 Expected<Constant *> BitcodeReader::getValueForInitializer(unsigned ID) { 1766 Expected<Value *> MaybeV = materializeValue(ID, /* InsertBB */ nullptr); 1767 if (!MaybeV) 1768 return MaybeV.takeError(); 1769 1770 // Result must be Constant if InsertBB is nullptr. 1771 return cast<Constant>(MaybeV.get()); 1772 } 1773 1774 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1775 StringRef Name) { 1776 auto *Ret = StructType::create(Context, Name); 1777 IdentifiedStructTypes.push_back(Ret); 1778 return Ret; 1779 } 1780 1781 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1782 auto *Ret = StructType::create(Context); 1783 IdentifiedStructTypes.push_back(Ret); 1784 return Ret; 1785 } 1786 1787 //===----------------------------------------------------------------------===// 1788 // Functions for parsing blocks from the bitcode file 1789 //===----------------------------------------------------------------------===// 1790 1791 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) { 1792 switch (Val) { 1793 case Attribute::EndAttrKinds: 1794 case Attribute::EmptyKey: 1795 case Attribute::TombstoneKey: 1796 llvm_unreachable("Synthetic enumerators which should never get here"); 1797 1798 case Attribute::None: return 0; 1799 case Attribute::ZExt: return 1 << 0; 1800 case Attribute::SExt: return 1 << 1; 1801 case Attribute::NoReturn: return 1 << 2; 1802 case Attribute::InReg: return 1 << 3; 1803 case Attribute::StructRet: return 1 << 4; 1804 case Attribute::NoUnwind: return 1 << 5; 1805 case Attribute::NoAlias: return 1 << 6; 1806 case Attribute::ByVal: return 1 << 7; 1807 case Attribute::Nest: return 1 << 8; 1808 case Attribute::ReadNone: return 1 << 9; 1809 case Attribute::ReadOnly: return 1 << 10; 1810 case Attribute::NoInline: return 1 << 11; 1811 case Attribute::AlwaysInline: return 1 << 12; 1812 case Attribute::OptimizeForSize: return 1 << 13; 1813 case Attribute::StackProtect: return 1 << 14; 1814 case Attribute::StackProtectReq: return 1 << 15; 1815 case Attribute::Alignment: return 31 << 16; 1816 case Attribute::NoCapture: return 1 << 21; 1817 case Attribute::NoRedZone: return 1 << 22; 1818 case Attribute::NoImplicitFloat: return 1 << 23; 1819 case Attribute::Naked: return 1 << 24; 1820 case Attribute::InlineHint: return 1 << 25; 1821 case Attribute::StackAlignment: return 7 << 26; 1822 case Attribute::ReturnsTwice: return 1 << 29; 1823 case Attribute::UWTable: return 1 << 30; 1824 case Attribute::NonLazyBind: return 1U << 31; 1825 case Attribute::SanitizeAddress: return 1ULL << 32; 1826 case Attribute::MinSize: return 1ULL << 33; 1827 case Attribute::NoDuplicate: return 1ULL << 34; 1828 case Attribute::StackProtectStrong: return 1ULL << 35; 1829 case Attribute::SanitizeThread: return 1ULL << 36; 1830 case Attribute::SanitizeMemory: return 1ULL << 37; 1831 case Attribute::NoBuiltin: return 1ULL << 38; 1832 case Attribute::Returned: return 1ULL << 39; 1833 case Attribute::Cold: return 1ULL << 40; 1834 case Attribute::Builtin: return 1ULL << 41; 1835 case Attribute::OptimizeNone: return 1ULL << 42; 1836 case Attribute::InAlloca: return 1ULL << 43; 1837 case Attribute::NonNull: return 1ULL << 44; 1838 case Attribute::JumpTable: return 1ULL << 45; 1839 case Attribute::Convergent: return 1ULL << 46; 1840 case Attribute::SafeStack: return 1ULL << 47; 1841 case Attribute::NoRecurse: return 1ULL << 48; 1842 // 1ULL << 49 is InaccessibleMemOnly, which is upgraded separately. 1843 // 1ULL << 50 is InaccessibleMemOrArgMemOnly, which is upgraded separately. 1844 case Attribute::SwiftSelf: return 1ULL << 51; 1845 case Attribute::SwiftError: return 1ULL << 52; 1846 case Attribute::WriteOnly: return 1ULL << 53; 1847 case Attribute::Speculatable: return 1ULL << 54; 1848 case Attribute::StrictFP: return 1ULL << 55; 1849 case Attribute::SanitizeHWAddress: return 1ULL << 56; 1850 case Attribute::NoCfCheck: return 1ULL << 57; 1851 case Attribute::OptForFuzzing: return 1ULL << 58; 1852 case Attribute::ShadowCallStack: return 1ULL << 59; 1853 case Attribute::SpeculativeLoadHardening: 1854 return 1ULL << 60; 1855 case Attribute::ImmArg: 1856 return 1ULL << 61; 1857 case Attribute::WillReturn: 1858 return 1ULL << 62; 1859 case Attribute::NoFree: 1860 return 1ULL << 63; 1861 default: 1862 // Other attributes are not supported in the raw format, 1863 // as we ran out of space. 1864 return 0; 1865 } 1866 llvm_unreachable("Unsupported attribute type"); 1867 } 1868 1869 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) { 1870 if (!Val) return; 1871 1872 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; 1873 I = Attribute::AttrKind(I + 1)) { 1874 if (uint64_t A = (Val & getRawAttributeMask(I))) { 1875 if (I == Attribute::Alignment) 1876 B.addAlignmentAttr(1ULL << ((A >> 16) - 1)); 1877 else if (I == Attribute::StackAlignment) 1878 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1)); 1879 else if (Attribute::isTypeAttrKind(I)) 1880 B.addTypeAttr(I, nullptr); // Type will be auto-upgraded. 1881 else 1882 B.addAttribute(I); 1883 } 1884 } 1885 } 1886 1887 /// This fills an AttrBuilder object with the LLVM attributes that have 1888 /// been decoded from the given integer. This function must stay in sync with 1889 /// 'encodeLLVMAttributesForBitcode'. 1890 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1891 uint64_t EncodedAttrs, 1892 uint64_t AttrIdx) { 1893 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1894 // the bits above 31 down by 11 bits. 1895 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1896 assert((!Alignment || isPowerOf2_32(Alignment)) && 1897 "Alignment must be a power of two."); 1898 1899 if (Alignment) 1900 B.addAlignmentAttr(Alignment); 1901 1902 uint64_t Attrs = ((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1903 (EncodedAttrs & 0xffff); 1904 1905 if (AttrIdx == AttributeList::FunctionIndex) { 1906 // Upgrade old memory attributes. 1907 MemoryEffects ME = MemoryEffects::unknown(); 1908 if (Attrs & (1ULL << 9)) { 1909 // ReadNone 1910 Attrs &= ~(1ULL << 9); 1911 ME &= MemoryEffects::none(); 1912 } 1913 if (Attrs & (1ULL << 10)) { 1914 // ReadOnly 1915 Attrs &= ~(1ULL << 10); 1916 ME &= MemoryEffects::readOnly(); 1917 } 1918 if (Attrs & (1ULL << 49)) { 1919 // InaccessibleMemOnly 1920 Attrs &= ~(1ULL << 49); 1921 ME &= MemoryEffects::inaccessibleMemOnly(); 1922 } 1923 if (Attrs & (1ULL << 50)) { 1924 // InaccessibleMemOrArgMemOnly 1925 Attrs &= ~(1ULL << 50); 1926 ME &= MemoryEffects::inaccessibleOrArgMemOnly(); 1927 } 1928 if (Attrs & (1ULL << 53)) { 1929 // WriteOnly 1930 Attrs &= ~(1ULL << 53); 1931 ME &= MemoryEffects::writeOnly(); 1932 } 1933 if (ME != MemoryEffects::unknown()) 1934 B.addMemoryAttr(ME); 1935 } 1936 1937 addRawAttributeValue(B, Attrs); 1938 } 1939 1940 Error BitcodeReader::parseAttributeBlock() { 1941 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1942 return Err; 1943 1944 if (!MAttributes.empty()) 1945 return error("Invalid multiple blocks"); 1946 1947 SmallVector<uint64_t, 64> Record; 1948 1949 SmallVector<AttributeList, 8> Attrs; 1950 1951 // Read all the records. 1952 while (true) { 1953 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1954 if (!MaybeEntry) 1955 return MaybeEntry.takeError(); 1956 BitstreamEntry Entry = MaybeEntry.get(); 1957 1958 switch (Entry.Kind) { 1959 case BitstreamEntry::SubBlock: // Handled for us already. 1960 case BitstreamEntry::Error: 1961 return error("Malformed block"); 1962 case BitstreamEntry::EndBlock: 1963 return Error::success(); 1964 case BitstreamEntry::Record: 1965 // The interesting case. 1966 break; 1967 } 1968 1969 // Read a record. 1970 Record.clear(); 1971 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1972 if (!MaybeRecord) 1973 return MaybeRecord.takeError(); 1974 switch (MaybeRecord.get()) { 1975 default: // Default behavior: ignore. 1976 break; 1977 case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...] 1978 // Deprecated, but still needed to read old bitcode files. 1979 if (Record.size() & 1) 1980 return error("Invalid parameter attribute record"); 1981 1982 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1983 AttrBuilder B(Context); 1984 decodeLLVMAttributesForBitcode(B, Record[i+1], Record[i]); 1985 Attrs.push_back(AttributeList::get(Context, Record[i], B)); 1986 } 1987 1988 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1989 Attrs.clear(); 1990 break; 1991 case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...] 1992 for (uint64_t Val : Record) 1993 Attrs.push_back(MAttributeGroups[Val]); 1994 1995 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1996 Attrs.clear(); 1997 break; 1998 } 1999 } 2000 } 2001 2002 // Returns Attribute::None on unrecognized codes. 2003 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 2004 switch (Code) { 2005 default: 2006 return Attribute::None; 2007 case bitc::ATTR_KIND_ALIGNMENT: 2008 return Attribute::Alignment; 2009 case bitc::ATTR_KIND_ALWAYS_INLINE: 2010 return Attribute::AlwaysInline; 2011 case bitc::ATTR_KIND_BUILTIN: 2012 return Attribute::Builtin; 2013 case bitc::ATTR_KIND_BY_VAL: 2014 return Attribute::ByVal; 2015 case bitc::ATTR_KIND_IN_ALLOCA: 2016 return Attribute::InAlloca; 2017 case bitc::ATTR_KIND_COLD: 2018 return Attribute::Cold; 2019 case bitc::ATTR_KIND_CONVERGENT: 2020 return Attribute::Convergent; 2021 case bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION: 2022 return Attribute::DisableSanitizerInstrumentation; 2023 case bitc::ATTR_KIND_ELEMENTTYPE: 2024 return Attribute::ElementType; 2025 case bitc::ATTR_KIND_FNRETTHUNK_EXTERN: 2026 return Attribute::FnRetThunkExtern; 2027 case bitc::ATTR_KIND_INLINE_HINT: 2028 return Attribute::InlineHint; 2029 case bitc::ATTR_KIND_IN_REG: 2030 return Attribute::InReg; 2031 case bitc::ATTR_KIND_JUMP_TABLE: 2032 return Attribute::JumpTable; 2033 case bitc::ATTR_KIND_MEMORY: 2034 return Attribute::Memory; 2035 case bitc::ATTR_KIND_NOFPCLASS: 2036 return Attribute::NoFPClass; 2037 case bitc::ATTR_KIND_MIN_SIZE: 2038 return Attribute::MinSize; 2039 case bitc::ATTR_KIND_NAKED: 2040 return Attribute::Naked; 2041 case bitc::ATTR_KIND_NEST: 2042 return Attribute::Nest; 2043 case bitc::ATTR_KIND_NO_ALIAS: 2044 return Attribute::NoAlias; 2045 case bitc::ATTR_KIND_NO_BUILTIN: 2046 return Attribute::NoBuiltin; 2047 case bitc::ATTR_KIND_NO_CALLBACK: 2048 return Attribute::NoCallback; 2049 case bitc::ATTR_KIND_NO_CAPTURE: 2050 return Attribute::NoCapture; 2051 case bitc::ATTR_KIND_NO_DUPLICATE: 2052 return Attribute::NoDuplicate; 2053 case bitc::ATTR_KIND_NOFREE: 2054 return Attribute::NoFree; 2055 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 2056 return Attribute::NoImplicitFloat; 2057 case bitc::ATTR_KIND_NO_INLINE: 2058 return Attribute::NoInline; 2059 case bitc::ATTR_KIND_NO_RECURSE: 2060 return Attribute::NoRecurse; 2061 case bitc::ATTR_KIND_NO_MERGE: 2062 return Attribute::NoMerge; 2063 case bitc::ATTR_KIND_NON_LAZY_BIND: 2064 return Attribute::NonLazyBind; 2065 case bitc::ATTR_KIND_NON_NULL: 2066 return Attribute::NonNull; 2067 case bitc::ATTR_KIND_DEREFERENCEABLE: 2068 return Attribute::Dereferenceable; 2069 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 2070 return Attribute::DereferenceableOrNull; 2071 case bitc::ATTR_KIND_ALLOC_ALIGN: 2072 return Attribute::AllocAlign; 2073 case bitc::ATTR_KIND_ALLOC_KIND: 2074 return Attribute::AllocKind; 2075 case bitc::ATTR_KIND_ALLOC_SIZE: 2076 return Attribute::AllocSize; 2077 case bitc::ATTR_KIND_ALLOCATED_POINTER: 2078 return Attribute::AllocatedPointer; 2079 case bitc::ATTR_KIND_NO_RED_ZONE: 2080 return Attribute::NoRedZone; 2081 case bitc::ATTR_KIND_NO_RETURN: 2082 return Attribute::NoReturn; 2083 case bitc::ATTR_KIND_NOSYNC: 2084 return Attribute::NoSync; 2085 case bitc::ATTR_KIND_NOCF_CHECK: 2086 return Attribute::NoCfCheck; 2087 case bitc::ATTR_KIND_NO_PROFILE: 2088 return Attribute::NoProfile; 2089 case bitc::ATTR_KIND_SKIP_PROFILE: 2090 return Attribute::SkipProfile; 2091 case bitc::ATTR_KIND_NO_UNWIND: 2092 return Attribute::NoUnwind; 2093 case bitc::ATTR_KIND_NO_SANITIZE_BOUNDS: 2094 return Attribute::NoSanitizeBounds; 2095 case bitc::ATTR_KIND_NO_SANITIZE_COVERAGE: 2096 return Attribute::NoSanitizeCoverage; 2097 case bitc::ATTR_KIND_NULL_POINTER_IS_VALID: 2098 return Attribute::NullPointerIsValid; 2099 case bitc::ATTR_KIND_OPTIMIZE_FOR_DEBUGGING: 2100 return Attribute::OptimizeForDebugging; 2101 case bitc::ATTR_KIND_OPT_FOR_FUZZING: 2102 return Attribute::OptForFuzzing; 2103 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 2104 return Attribute::OptimizeForSize; 2105 case bitc::ATTR_KIND_OPTIMIZE_NONE: 2106 return Attribute::OptimizeNone; 2107 case bitc::ATTR_KIND_READ_NONE: 2108 return Attribute::ReadNone; 2109 case bitc::ATTR_KIND_READ_ONLY: 2110 return Attribute::ReadOnly; 2111 case bitc::ATTR_KIND_RETURNED: 2112 return Attribute::Returned; 2113 case bitc::ATTR_KIND_RETURNS_TWICE: 2114 return Attribute::ReturnsTwice; 2115 case bitc::ATTR_KIND_S_EXT: 2116 return Attribute::SExt; 2117 case bitc::ATTR_KIND_SPECULATABLE: 2118 return Attribute::Speculatable; 2119 case bitc::ATTR_KIND_STACK_ALIGNMENT: 2120 return Attribute::StackAlignment; 2121 case bitc::ATTR_KIND_STACK_PROTECT: 2122 return Attribute::StackProtect; 2123 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 2124 return Attribute::StackProtectReq; 2125 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 2126 return Attribute::StackProtectStrong; 2127 case bitc::ATTR_KIND_SAFESTACK: 2128 return Attribute::SafeStack; 2129 case bitc::ATTR_KIND_SHADOWCALLSTACK: 2130 return Attribute::ShadowCallStack; 2131 case bitc::ATTR_KIND_STRICT_FP: 2132 return Attribute::StrictFP; 2133 case bitc::ATTR_KIND_STRUCT_RET: 2134 return Attribute::StructRet; 2135 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 2136 return Attribute::SanitizeAddress; 2137 case bitc::ATTR_KIND_SANITIZE_HWADDRESS: 2138 return Attribute::SanitizeHWAddress; 2139 case bitc::ATTR_KIND_SANITIZE_THREAD: 2140 return Attribute::SanitizeThread; 2141 case bitc::ATTR_KIND_SANITIZE_MEMORY: 2142 return Attribute::SanitizeMemory; 2143 case bitc::ATTR_KIND_SANITIZE_NUMERICAL_STABILITY: 2144 return Attribute::SanitizeNumericalStability; 2145 case bitc::ATTR_KIND_SANITIZE_REALTIME: 2146 return Attribute::SanitizeRealtime; 2147 case bitc::ATTR_KIND_SANITIZE_REALTIME_UNSAFE: 2148 return Attribute::SanitizeRealtimeUnsafe; 2149 case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING: 2150 return Attribute::SpeculativeLoadHardening; 2151 case bitc::ATTR_KIND_SWIFT_ERROR: 2152 return Attribute::SwiftError; 2153 case bitc::ATTR_KIND_SWIFT_SELF: 2154 return Attribute::SwiftSelf; 2155 case bitc::ATTR_KIND_SWIFT_ASYNC: 2156 return Attribute::SwiftAsync; 2157 case bitc::ATTR_KIND_UW_TABLE: 2158 return Attribute::UWTable; 2159 case bitc::ATTR_KIND_VSCALE_RANGE: 2160 return Attribute::VScaleRange; 2161 case bitc::ATTR_KIND_WILLRETURN: 2162 return Attribute::WillReturn; 2163 case bitc::ATTR_KIND_WRITEONLY: 2164 return Attribute::WriteOnly; 2165 case bitc::ATTR_KIND_Z_EXT: 2166 return Attribute::ZExt; 2167 case bitc::ATTR_KIND_IMMARG: 2168 return Attribute::ImmArg; 2169 case bitc::ATTR_KIND_SANITIZE_MEMTAG: 2170 return Attribute::SanitizeMemTag; 2171 case bitc::ATTR_KIND_PREALLOCATED: 2172 return Attribute::Preallocated; 2173 case bitc::ATTR_KIND_NOUNDEF: 2174 return Attribute::NoUndef; 2175 case bitc::ATTR_KIND_BYREF: 2176 return Attribute::ByRef; 2177 case bitc::ATTR_KIND_MUSTPROGRESS: 2178 return Attribute::MustProgress; 2179 case bitc::ATTR_KIND_HOT: 2180 return Attribute::Hot; 2181 case bitc::ATTR_KIND_PRESPLIT_COROUTINE: 2182 return Attribute::PresplitCoroutine; 2183 case bitc::ATTR_KIND_WRITABLE: 2184 return Attribute::Writable; 2185 case bitc::ATTR_KIND_CORO_ONLY_DESTROY_WHEN_COMPLETE: 2186 return Attribute::CoroDestroyOnlyWhenComplete; 2187 case bitc::ATTR_KIND_DEAD_ON_UNWIND: 2188 return Attribute::DeadOnUnwind; 2189 case bitc::ATTR_KIND_RANGE: 2190 return Attribute::Range; 2191 case bitc::ATTR_KIND_INITIALIZES: 2192 return Attribute::Initializes; 2193 case bitc::ATTR_KIND_CORO_ELIDE_SAFE: 2194 return Attribute::CoroElideSafe; 2195 case bitc::ATTR_KIND_NO_EXT: 2196 return Attribute::NoExt; 2197 } 2198 } 2199 2200 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent, 2201 MaybeAlign &Alignment) { 2202 // Note: Alignment in bitcode files is incremented by 1, so that zero 2203 // can be used for default alignment. 2204 if (Exponent > Value::MaxAlignmentExponent + 1) 2205 return error("Invalid alignment value"); 2206 Alignment = decodeMaybeAlign(Exponent); 2207 return Error::success(); 2208 } 2209 2210 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) { 2211 *Kind = getAttrFromCode(Code); 2212 if (*Kind == Attribute::None) 2213 return error("Unknown attribute kind (" + Twine(Code) + ")"); 2214 return Error::success(); 2215 } 2216 2217 static bool upgradeOldMemoryAttribute(MemoryEffects &ME, uint64_t EncodedKind) { 2218 switch (EncodedKind) { 2219 case bitc::ATTR_KIND_READ_NONE: 2220 ME &= MemoryEffects::none(); 2221 return true; 2222 case bitc::ATTR_KIND_READ_ONLY: 2223 ME &= MemoryEffects::readOnly(); 2224 return true; 2225 case bitc::ATTR_KIND_WRITEONLY: 2226 ME &= MemoryEffects::writeOnly(); 2227 return true; 2228 case bitc::ATTR_KIND_ARGMEMONLY: 2229 ME &= MemoryEffects::argMemOnly(); 2230 return true; 2231 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 2232 ME &= MemoryEffects::inaccessibleMemOnly(); 2233 return true; 2234 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 2235 ME &= MemoryEffects::inaccessibleOrArgMemOnly(); 2236 return true; 2237 default: 2238 return false; 2239 } 2240 } 2241 2242 Error BitcodeReader::parseAttributeGroupBlock() { 2243 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 2244 return Err; 2245 2246 if (!MAttributeGroups.empty()) 2247 return error("Invalid multiple blocks"); 2248 2249 SmallVector<uint64_t, 64> Record; 2250 2251 // Read all the records. 2252 while (true) { 2253 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2254 if (!MaybeEntry) 2255 return MaybeEntry.takeError(); 2256 BitstreamEntry Entry = MaybeEntry.get(); 2257 2258 switch (Entry.Kind) { 2259 case BitstreamEntry::SubBlock: // Handled for us already. 2260 case BitstreamEntry::Error: 2261 return error("Malformed block"); 2262 case BitstreamEntry::EndBlock: 2263 return Error::success(); 2264 case BitstreamEntry::Record: 2265 // The interesting case. 2266 break; 2267 } 2268 2269 // Read a record. 2270 Record.clear(); 2271 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2272 if (!MaybeRecord) 2273 return MaybeRecord.takeError(); 2274 switch (MaybeRecord.get()) { 2275 default: // Default behavior: ignore. 2276 break; 2277 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 2278 if (Record.size() < 3) 2279 return error("Invalid grp record"); 2280 2281 uint64_t GrpID = Record[0]; 2282 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 2283 2284 AttrBuilder B(Context); 2285 MemoryEffects ME = MemoryEffects::unknown(); 2286 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 2287 if (Record[i] == 0) { // Enum attribute 2288 Attribute::AttrKind Kind; 2289 uint64_t EncodedKind = Record[++i]; 2290 if (Idx == AttributeList::FunctionIndex && 2291 upgradeOldMemoryAttribute(ME, EncodedKind)) 2292 continue; 2293 2294 if (Error Err = parseAttrKind(EncodedKind, &Kind)) 2295 return Err; 2296 2297 // Upgrade old-style byval attribute to one with a type, even if it's 2298 // nullptr. We will have to insert the real type when we associate 2299 // this AttributeList with a function. 2300 if (Kind == Attribute::ByVal) 2301 B.addByValAttr(nullptr); 2302 else if (Kind == Attribute::StructRet) 2303 B.addStructRetAttr(nullptr); 2304 else if (Kind == Attribute::InAlloca) 2305 B.addInAllocaAttr(nullptr); 2306 else if (Kind == Attribute::UWTable) 2307 B.addUWTableAttr(UWTableKind::Default); 2308 else if (Attribute::isEnumAttrKind(Kind)) 2309 B.addAttribute(Kind); 2310 else 2311 return error("Not an enum attribute"); 2312 } else if (Record[i] == 1) { // Integer attribute 2313 Attribute::AttrKind Kind; 2314 if (Error Err = parseAttrKind(Record[++i], &Kind)) 2315 return Err; 2316 if (!Attribute::isIntAttrKind(Kind)) 2317 return error("Not an int attribute"); 2318 if (Kind == Attribute::Alignment) 2319 B.addAlignmentAttr(Record[++i]); 2320 else if (Kind == Attribute::StackAlignment) 2321 B.addStackAlignmentAttr(Record[++i]); 2322 else if (Kind == Attribute::Dereferenceable) 2323 B.addDereferenceableAttr(Record[++i]); 2324 else if (Kind == Attribute::DereferenceableOrNull) 2325 B.addDereferenceableOrNullAttr(Record[++i]); 2326 else if (Kind == Attribute::AllocSize) 2327 B.addAllocSizeAttrFromRawRepr(Record[++i]); 2328 else if (Kind == Attribute::VScaleRange) 2329 B.addVScaleRangeAttrFromRawRepr(Record[++i]); 2330 else if (Kind == Attribute::UWTable) 2331 B.addUWTableAttr(UWTableKind(Record[++i])); 2332 else if (Kind == Attribute::AllocKind) 2333 B.addAllocKindAttr(static_cast<AllocFnKind>(Record[++i])); 2334 else if (Kind == Attribute::Memory) 2335 B.addMemoryAttr(MemoryEffects::createFromIntValue(Record[++i])); 2336 else if (Kind == Attribute::NoFPClass) 2337 B.addNoFPClassAttr( 2338 static_cast<FPClassTest>(Record[++i] & fcAllFlags)); 2339 } else if (Record[i] == 3 || Record[i] == 4) { // String attribute 2340 bool HasValue = (Record[i++] == 4); 2341 SmallString<64> KindStr; 2342 SmallString<64> ValStr; 2343 2344 while (Record[i] != 0 && i != e) 2345 KindStr += Record[i++]; 2346 assert(Record[i] == 0 && "Kind string not null terminated"); 2347 2348 if (HasValue) { 2349 // Has a value associated with it. 2350 ++i; // Skip the '0' that terminates the "kind" string. 2351 while (Record[i] != 0 && i != e) 2352 ValStr += Record[i++]; 2353 assert(Record[i] == 0 && "Value string not null terminated"); 2354 } 2355 2356 B.addAttribute(KindStr.str(), ValStr.str()); 2357 } else if (Record[i] == 5 || Record[i] == 6) { 2358 bool HasType = Record[i] == 6; 2359 Attribute::AttrKind Kind; 2360 if (Error Err = parseAttrKind(Record[++i], &Kind)) 2361 return Err; 2362 if (!Attribute::isTypeAttrKind(Kind)) 2363 return error("Not a type attribute"); 2364 2365 B.addTypeAttr(Kind, HasType ? getTypeByID(Record[++i]) : nullptr); 2366 } else if (Record[i] == 7) { 2367 Attribute::AttrKind Kind; 2368 2369 i++; 2370 if (Error Err = parseAttrKind(Record[i++], &Kind)) 2371 return Err; 2372 if (!Attribute::isConstantRangeAttrKind(Kind)) 2373 return error("Not a ConstantRange attribute"); 2374 2375 Expected<ConstantRange> MaybeCR = 2376 readBitWidthAndConstantRange(Record, i); 2377 if (!MaybeCR) 2378 return MaybeCR.takeError(); 2379 i--; 2380 2381 B.addConstantRangeAttr(Kind, MaybeCR.get()); 2382 } else if (Record[i] == 8) { 2383 Attribute::AttrKind Kind; 2384 2385 i++; 2386 if (Error Err = parseAttrKind(Record[i++], &Kind)) 2387 return Err; 2388 if (!Attribute::isConstantRangeListAttrKind(Kind)) 2389 return error("Not a constant range list attribute"); 2390 2391 SmallVector<ConstantRange, 2> Val; 2392 if (i + 2 > e) 2393 return error("Too few records for constant range list"); 2394 unsigned RangeSize = Record[i++]; 2395 unsigned BitWidth = Record[i++]; 2396 for (unsigned Idx = 0; Idx < RangeSize; ++Idx) { 2397 Expected<ConstantRange> MaybeCR = 2398 readConstantRange(Record, i, BitWidth); 2399 if (!MaybeCR) 2400 return MaybeCR.takeError(); 2401 Val.push_back(MaybeCR.get()); 2402 } 2403 i--; 2404 2405 if (!ConstantRangeList::isOrderedRanges(Val)) 2406 return error("Invalid (unordered or overlapping) range list"); 2407 B.addConstantRangeListAttr(Kind, Val); 2408 } else { 2409 return error("Invalid attribute group entry"); 2410 } 2411 } 2412 2413 if (ME != MemoryEffects::unknown()) 2414 B.addMemoryAttr(ME); 2415 2416 UpgradeAttributes(B); 2417 MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B); 2418 break; 2419 } 2420 } 2421 } 2422 } 2423 2424 Error BitcodeReader::parseTypeTable() { 2425 if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 2426 return Err; 2427 2428 return parseTypeTableBody(); 2429 } 2430 2431 Error BitcodeReader::parseTypeTableBody() { 2432 if (!TypeList.empty()) 2433 return error("Invalid multiple blocks"); 2434 2435 SmallVector<uint64_t, 64> Record; 2436 unsigned NumRecords = 0; 2437 2438 SmallString<64> TypeName; 2439 2440 // Read all the records for this type table. 2441 while (true) { 2442 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2443 if (!MaybeEntry) 2444 return MaybeEntry.takeError(); 2445 BitstreamEntry Entry = MaybeEntry.get(); 2446 2447 switch (Entry.Kind) { 2448 case BitstreamEntry::SubBlock: // Handled for us already. 2449 case BitstreamEntry::Error: 2450 return error("Malformed block"); 2451 case BitstreamEntry::EndBlock: 2452 if (NumRecords != TypeList.size()) 2453 return error("Malformed block"); 2454 return Error::success(); 2455 case BitstreamEntry::Record: 2456 // The interesting case. 2457 break; 2458 } 2459 2460 // Read a record. 2461 Record.clear(); 2462 Type *ResultTy = nullptr; 2463 SmallVector<unsigned> ContainedIDs; 2464 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2465 if (!MaybeRecord) 2466 return MaybeRecord.takeError(); 2467 switch (MaybeRecord.get()) { 2468 default: 2469 return error("Invalid value"); 2470 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 2471 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 2472 // type list. This allows us to reserve space. 2473 if (Record.empty()) 2474 return error("Invalid numentry record"); 2475 TypeList.resize(Record[0]); 2476 continue; 2477 case bitc::TYPE_CODE_VOID: // VOID 2478 ResultTy = Type::getVoidTy(Context); 2479 break; 2480 case bitc::TYPE_CODE_HALF: // HALF 2481 ResultTy = Type::getHalfTy(Context); 2482 break; 2483 case bitc::TYPE_CODE_BFLOAT: // BFLOAT 2484 ResultTy = Type::getBFloatTy(Context); 2485 break; 2486 case bitc::TYPE_CODE_FLOAT: // FLOAT 2487 ResultTy = Type::getFloatTy(Context); 2488 break; 2489 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 2490 ResultTy = Type::getDoubleTy(Context); 2491 break; 2492 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 2493 ResultTy = Type::getX86_FP80Ty(Context); 2494 break; 2495 case bitc::TYPE_CODE_FP128: // FP128 2496 ResultTy = Type::getFP128Ty(Context); 2497 break; 2498 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 2499 ResultTy = Type::getPPC_FP128Ty(Context); 2500 break; 2501 case bitc::TYPE_CODE_LABEL: // LABEL 2502 ResultTy = Type::getLabelTy(Context); 2503 break; 2504 case bitc::TYPE_CODE_METADATA: // METADATA 2505 ResultTy = Type::getMetadataTy(Context); 2506 break; 2507 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 2508 // Deprecated: decodes as <1 x i64> 2509 ResultTy = 2510 llvm::FixedVectorType::get(llvm::IntegerType::get(Context, 64), 1); 2511 break; 2512 case bitc::TYPE_CODE_X86_AMX: // X86_AMX 2513 ResultTy = Type::getX86_AMXTy(Context); 2514 break; 2515 case bitc::TYPE_CODE_TOKEN: // TOKEN 2516 ResultTy = Type::getTokenTy(Context); 2517 break; 2518 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 2519 if (Record.empty()) 2520 return error("Invalid integer record"); 2521 2522 uint64_t NumBits = Record[0]; 2523 if (NumBits < IntegerType::MIN_INT_BITS || 2524 NumBits > IntegerType::MAX_INT_BITS) 2525 return error("Bitwidth for integer type out of range"); 2526 ResultTy = IntegerType::get(Context, NumBits); 2527 break; 2528 } 2529 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 2530 // [pointee type, address space] 2531 if (Record.empty()) 2532 return error("Invalid pointer record"); 2533 unsigned AddressSpace = 0; 2534 if (Record.size() == 2) 2535 AddressSpace = Record[1]; 2536 ResultTy = getTypeByID(Record[0]); 2537 if (!ResultTy || 2538 !PointerType::isValidElementType(ResultTy)) 2539 return error("Invalid type"); 2540 ContainedIDs.push_back(Record[0]); 2541 ResultTy = PointerType::get(ResultTy, AddressSpace); 2542 break; 2543 } 2544 case bitc::TYPE_CODE_OPAQUE_POINTER: { // OPAQUE_POINTER: [addrspace] 2545 if (Record.size() != 1) 2546 return error("Invalid opaque pointer record"); 2547 unsigned AddressSpace = Record[0]; 2548 ResultTy = PointerType::get(Context, AddressSpace); 2549 break; 2550 } 2551 case bitc::TYPE_CODE_FUNCTION_OLD: { 2552 // Deprecated, but still needed to read old bitcode files. 2553 // FUNCTION: [vararg, attrid, retty, paramty x N] 2554 if (Record.size() < 3) 2555 return error("Invalid function record"); 2556 SmallVector<Type*, 8> ArgTys; 2557 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 2558 if (Type *T = getTypeByID(Record[i])) 2559 ArgTys.push_back(T); 2560 else 2561 break; 2562 } 2563 2564 ResultTy = getTypeByID(Record[2]); 2565 if (!ResultTy || ArgTys.size() < Record.size()-3) 2566 return error("Invalid type"); 2567 2568 ContainedIDs.append(Record.begin() + 2, Record.end()); 2569 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 2570 break; 2571 } 2572 case bitc::TYPE_CODE_FUNCTION: { 2573 // FUNCTION: [vararg, retty, paramty x N] 2574 if (Record.size() < 2) 2575 return error("Invalid function record"); 2576 SmallVector<Type*, 8> ArgTys; 2577 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 2578 if (Type *T = getTypeByID(Record[i])) { 2579 if (!FunctionType::isValidArgumentType(T)) 2580 return error("Invalid function argument type"); 2581 ArgTys.push_back(T); 2582 } 2583 else 2584 break; 2585 } 2586 2587 ResultTy = getTypeByID(Record[1]); 2588 if (!ResultTy || ArgTys.size() < Record.size()-2) 2589 return error("Invalid type"); 2590 2591 ContainedIDs.append(Record.begin() + 1, Record.end()); 2592 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 2593 break; 2594 } 2595 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 2596 if (Record.empty()) 2597 return error("Invalid anon struct record"); 2598 SmallVector<Type*, 8> EltTys; 2599 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 2600 if (Type *T = getTypeByID(Record[i])) 2601 EltTys.push_back(T); 2602 else 2603 break; 2604 } 2605 if (EltTys.size() != Record.size()-1) 2606 return error("Invalid type"); 2607 ContainedIDs.append(Record.begin() + 1, Record.end()); 2608 ResultTy = StructType::get(Context, EltTys, Record[0]); 2609 break; 2610 } 2611 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 2612 if (convertToString(Record, 0, TypeName)) 2613 return error("Invalid struct name record"); 2614 continue; 2615 2616 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 2617 if (Record.empty()) 2618 return error("Invalid named struct record"); 2619 2620 if (NumRecords >= TypeList.size()) 2621 return error("Invalid TYPE table"); 2622 2623 // Check to see if this was forward referenced, if so fill in the temp. 2624 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 2625 if (Res) { 2626 Res->setName(TypeName); 2627 TypeList[NumRecords] = nullptr; 2628 } else // Otherwise, create a new struct. 2629 Res = createIdentifiedStructType(Context, TypeName); 2630 TypeName.clear(); 2631 2632 SmallVector<Type*, 8> EltTys; 2633 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 2634 if (Type *T = getTypeByID(Record[i])) 2635 EltTys.push_back(T); 2636 else 2637 break; 2638 } 2639 if (EltTys.size() != Record.size()-1) 2640 return error("Invalid named struct record"); 2641 Res->setBody(EltTys, Record[0]); 2642 ContainedIDs.append(Record.begin() + 1, Record.end()); 2643 ResultTy = Res; 2644 break; 2645 } 2646 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 2647 if (Record.size() != 1) 2648 return error("Invalid opaque type record"); 2649 2650 if (NumRecords >= TypeList.size()) 2651 return error("Invalid TYPE table"); 2652 2653 // Check to see if this was forward referenced, if so fill in the temp. 2654 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 2655 if (Res) { 2656 Res->setName(TypeName); 2657 TypeList[NumRecords] = nullptr; 2658 } else // Otherwise, create a new struct with no body. 2659 Res = createIdentifiedStructType(Context, TypeName); 2660 TypeName.clear(); 2661 ResultTy = Res; 2662 break; 2663 } 2664 case bitc::TYPE_CODE_TARGET_TYPE: { // TARGET_TYPE: [NumTy, Tys..., Ints...] 2665 if (Record.size() < 1) 2666 return error("Invalid target extension type record"); 2667 2668 if (NumRecords >= TypeList.size()) 2669 return error("Invalid TYPE table"); 2670 2671 if (Record[0] >= Record.size()) 2672 return error("Too many type parameters"); 2673 2674 unsigned NumTys = Record[0]; 2675 SmallVector<Type *, 4> TypeParams; 2676 SmallVector<unsigned, 8> IntParams; 2677 for (unsigned i = 0; i < NumTys; i++) { 2678 if (Type *T = getTypeByID(Record[i + 1])) 2679 TypeParams.push_back(T); 2680 else 2681 return error("Invalid type"); 2682 } 2683 2684 for (unsigned i = NumTys + 1, e = Record.size(); i < e; i++) { 2685 if (Record[i] > UINT_MAX) 2686 return error("Integer parameter too large"); 2687 IntParams.push_back(Record[i]); 2688 } 2689 auto TTy = 2690 TargetExtType::getOrError(Context, TypeName, TypeParams, IntParams); 2691 if (auto E = TTy.takeError()) 2692 return E; 2693 ResultTy = *TTy; 2694 TypeName.clear(); 2695 break; 2696 } 2697 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 2698 if (Record.size() < 2) 2699 return error("Invalid array type record"); 2700 ResultTy = getTypeByID(Record[1]); 2701 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 2702 return error("Invalid type"); 2703 ContainedIDs.push_back(Record[1]); 2704 ResultTy = ArrayType::get(ResultTy, Record[0]); 2705 break; 2706 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] or 2707 // [numelts, eltty, scalable] 2708 if (Record.size() < 2) 2709 return error("Invalid vector type record"); 2710 if (Record[0] == 0) 2711 return error("Invalid vector length"); 2712 ResultTy = getTypeByID(Record[1]); 2713 if (!ResultTy || !VectorType::isValidElementType(ResultTy)) 2714 return error("Invalid type"); 2715 bool Scalable = Record.size() > 2 ? Record[2] : false; 2716 ContainedIDs.push_back(Record[1]); 2717 ResultTy = VectorType::get(ResultTy, Record[0], Scalable); 2718 break; 2719 } 2720 2721 if (NumRecords >= TypeList.size()) 2722 return error("Invalid TYPE table"); 2723 if (TypeList[NumRecords]) 2724 return error( 2725 "Invalid TYPE table: Only named structs can be forward referenced"); 2726 assert(ResultTy && "Didn't read a type?"); 2727 TypeList[NumRecords] = ResultTy; 2728 if (!ContainedIDs.empty()) 2729 ContainedTypeIDs[NumRecords] = std::move(ContainedIDs); 2730 ++NumRecords; 2731 } 2732 } 2733 2734 Error BitcodeReader::parseOperandBundleTags() { 2735 if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 2736 return Err; 2737 2738 if (!BundleTags.empty()) 2739 return error("Invalid multiple blocks"); 2740 2741 SmallVector<uint64_t, 64> Record; 2742 2743 while (true) { 2744 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2745 if (!MaybeEntry) 2746 return MaybeEntry.takeError(); 2747 BitstreamEntry Entry = MaybeEntry.get(); 2748 2749 switch (Entry.Kind) { 2750 case BitstreamEntry::SubBlock: // Handled for us already. 2751 case BitstreamEntry::Error: 2752 return error("Malformed block"); 2753 case BitstreamEntry::EndBlock: 2754 return Error::success(); 2755 case BitstreamEntry::Record: 2756 // The interesting case. 2757 break; 2758 } 2759 2760 // Tags are implicitly mapped to integers by their order. 2761 2762 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2763 if (!MaybeRecord) 2764 return MaybeRecord.takeError(); 2765 if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG) 2766 return error("Invalid operand bundle record"); 2767 2768 // OPERAND_BUNDLE_TAG: [strchr x N] 2769 BundleTags.emplace_back(); 2770 if (convertToString(Record, 0, BundleTags.back())) 2771 return error("Invalid operand bundle record"); 2772 Record.clear(); 2773 } 2774 } 2775 2776 Error BitcodeReader::parseSyncScopeNames() { 2777 if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID)) 2778 return Err; 2779 2780 if (!SSIDs.empty()) 2781 return error("Invalid multiple synchronization scope names blocks"); 2782 2783 SmallVector<uint64_t, 64> Record; 2784 while (true) { 2785 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2786 if (!MaybeEntry) 2787 return MaybeEntry.takeError(); 2788 BitstreamEntry Entry = MaybeEntry.get(); 2789 2790 switch (Entry.Kind) { 2791 case BitstreamEntry::SubBlock: // Handled for us already. 2792 case BitstreamEntry::Error: 2793 return error("Malformed block"); 2794 case BitstreamEntry::EndBlock: 2795 if (SSIDs.empty()) 2796 return error("Invalid empty synchronization scope names block"); 2797 return Error::success(); 2798 case BitstreamEntry::Record: 2799 // The interesting case. 2800 break; 2801 } 2802 2803 // Synchronization scope names are implicitly mapped to synchronization 2804 // scope IDs by their order. 2805 2806 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2807 if (!MaybeRecord) 2808 return MaybeRecord.takeError(); 2809 if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME) 2810 return error("Invalid sync scope record"); 2811 2812 SmallString<16> SSN; 2813 if (convertToString(Record, 0, SSN)) 2814 return error("Invalid sync scope record"); 2815 2816 SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN)); 2817 Record.clear(); 2818 } 2819 } 2820 2821 /// Associate a value with its name from the given index in the provided record. 2822 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 2823 unsigned NameIndex, Triple &TT) { 2824 SmallString<128> ValueName; 2825 if (convertToString(Record, NameIndex, ValueName)) 2826 return error("Invalid record"); 2827 unsigned ValueID = Record[0]; 2828 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 2829 return error("Invalid record"); 2830 Value *V = ValueList[ValueID]; 2831 2832 StringRef NameStr(ValueName.data(), ValueName.size()); 2833 if (NameStr.contains(0)) 2834 return error("Invalid value name"); 2835 V->setName(NameStr); 2836 auto *GO = dyn_cast<GlobalObject>(V); 2837 if (GO && ImplicitComdatObjects.contains(GO) && TT.supportsCOMDAT()) 2838 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 2839 return V; 2840 } 2841 2842 /// Helper to note and return the current location, and jump to the given 2843 /// offset. 2844 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset, 2845 BitstreamCursor &Stream) { 2846 // Save the current parsing location so we can jump back at the end 2847 // of the VST read. 2848 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 2849 if (Error JumpFailed = Stream.JumpToBit(Offset * 32)) 2850 return std::move(JumpFailed); 2851 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 2852 if (!MaybeEntry) 2853 return MaybeEntry.takeError(); 2854 if (MaybeEntry.get().Kind != BitstreamEntry::SubBlock || 2855 MaybeEntry.get().ID != bitc::VALUE_SYMTAB_BLOCK_ID) 2856 return error("Expected value symbol table subblock"); 2857 return CurrentBit; 2858 } 2859 2860 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, 2861 Function *F, 2862 ArrayRef<uint64_t> Record) { 2863 // Note that we subtract 1 here because the offset is relative to one word 2864 // before the start of the identification or module block, which was 2865 // historically always the start of the regular bitcode header. 2866 uint64_t FuncWordOffset = Record[1] - 1; 2867 uint64_t FuncBitOffset = FuncWordOffset * 32; 2868 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 2869 // Set the LastFunctionBlockBit to point to the last function block. 2870 // Later when parsing is resumed after function materialization, 2871 // we can simply skip that last function block. 2872 if (FuncBitOffset > LastFunctionBlockBit) 2873 LastFunctionBlockBit = FuncBitOffset; 2874 } 2875 2876 /// Read a new-style GlobalValue symbol table. 2877 Error BitcodeReader::parseGlobalValueSymbolTable() { 2878 unsigned FuncBitcodeOffsetDelta = 2879 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2880 2881 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2882 return Err; 2883 2884 SmallVector<uint64_t, 64> Record; 2885 while (true) { 2886 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2887 if (!MaybeEntry) 2888 return MaybeEntry.takeError(); 2889 BitstreamEntry Entry = MaybeEntry.get(); 2890 2891 switch (Entry.Kind) { 2892 case BitstreamEntry::SubBlock: 2893 case BitstreamEntry::Error: 2894 return error("Malformed block"); 2895 case BitstreamEntry::EndBlock: 2896 return Error::success(); 2897 case BitstreamEntry::Record: 2898 break; 2899 } 2900 2901 Record.clear(); 2902 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2903 if (!MaybeRecord) 2904 return MaybeRecord.takeError(); 2905 switch (MaybeRecord.get()) { 2906 case bitc::VST_CODE_FNENTRY: { // [valueid, offset] 2907 unsigned ValueID = Record[0]; 2908 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 2909 return error("Invalid value reference in symbol table"); 2910 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, 2911 cast<Function>(ValueList[ValueID]), Record); 2912 break; 2913 } 2914 } 2915 } 2916 } 2917 2918 /// Parse the value symbol table at either the current parsing location or 2919 /// at the given bit offset if provided. 2920 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 2921 uint64_t CurrentBit; 2922 // Pass in the Offset to distinguish between calling for the module-level 2923 // VST (where we want to jump to the VST offset) and the function-level 2924 // VST (where we don't). 2925 if (Offset > 0) { 2926 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 2927 if (!MaybeCurrentBit) 2928 return MaybeCurrentBit.takeError(); 2929 CurrentBit = MaybeCurrentBit.get(); 2930 // If this module uses a string table, read this as a module-level VST. 2931 if (UseStrtab) { 2932 if (Error Err = parseGlobalValueSymbolTable()) 2933 return Err; 2934 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2935 return JumpFailed; 2936 return Error::success(); 2937 } 2938 // Otherwise, the VST will be in a similar format to a function-level VST, 2939 // and will contain symbol names. 2940 } 2941 2942 // Compute the delta between the bitcode indices in the VST (the word offset 2943 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 2944 // expected by the lazy reader. The reader's EnterSubBlock expects to have 2945 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 2946 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 2947 // just before entering the VST subblock because: 1) the EnterSubBlock 2948 // changes the AbbrevID width; 2) the VST block is nested within the same 2949 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 2950 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 2951 // jump to the FUNCTION_BLOCK using this offset later, we don't want 2952 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 2953 unsigned FuncBitcodeOffsetDelta = 2954 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2955 2956 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2957 return Err; 2958 2959 SmallVector<uint64_t, 64> Record; 2960 2961 Triple TT(TheModule->getTargetTriple()); 2962 2963 // Read all the records for this value table. 2964 SmallString<128> ValueName; 2965 2966 while (true) { 2967 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2968 if (!MaybeEntry) 2969 return MaybeEntry.takeError(); 2970 BitstreamEntry Entry = MaybeEntry.get(); 2971 2972 switch (Entry.Kind) { 2973 case BitstreamEntry::SubBlock: // Handled for us already. 2974 case BitstreamEntry::Error: 2975 return error("Malformed block"); 2976 case BitstreamEntry::EndBlock: 2977 if (Offset > 0) 2978 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2979 return JumpFailed; 2980 return Error::success(); 2981 case BitstreamEntry::Record: 2982 // The interesting case. 2983 break; 2984 } 2985 2986 // Read a record. 2987 Record.clear(); 2988 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2989 if (!MaybeRecord) 2990 return MaybeRecord.takeError(); 2991 switch (MaybeRecord.get()) { 2992 default: // Default behavior: unknown type. 2993 break; 2994 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 2995 Expected<Value *> ValOrErr = recordValue(Record, 1, TT); 2996 if (Error Err = ValOrErr.takeError()) 2997 return Err; 2998 ValOrErr.get(); 2999 break; 3000 } 3001 case bitc::VST_CODE_FNENTRY: { 3002 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 3003 Expected<Value *> ValOrErr = recordValue(Record, 2, TT); 3004 if (Error Err = ValOrErr.takeError()) 3005 return Err; 3006 Value *V = ValOrErr.get(); 3007 3008 // Ignore function offsets emitted for aliases of functions in older 3009 // versions of LLVM. 3010 if (auto *F = dyn_cast<Function>(V)) 3011 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record); 3012 break; 3013 } 3014 case bitc::VST_CODE_BBENTRY: { 3015 if (convertToString(Record, 1, ValueName)) 3016 return error("Invalid bbentry record"); 3017 BasicBlock *BB = getBasicBlock(Record[0]); 3018 if (!BB) 3019 return error("Invalid bbentry record"); 3020 3021 BB->setName(ValueName.str()); 3022 ValueName.clear(); 3023 break; 3024 } 3025 } 3026 } 3027 } 3028 3029 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 3030 /// encoding. 3031 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 3032 if ((V & 1) == 0) 3033 return V >> 1; 3034 if (V != 1) 3035 return -(V >> 1); 3036 // There is no such thing as -0 with integers. "-0" really means MININT. 3037 return 1ULL << 63; 3038 } 3039 3040 /// Resolve all of the initializers for global values and aliases that we can. 3041 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 3042 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist; 3043 std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInitWorklist; 3044 std::vector<FunctionOperandInfo> FunctionOperandWorklist; 3045 3046 GlobalInitWorklist.swap(GlobalInits); 3047 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 3048 FunctionOperandWorklist.swap(FunctionOperands); 3049 3050 while (!GlobalInitWorklist.empty()) { 3051 unsigned ValID = GlobalInitWorklist.back().second; 3052 if (ValID >= ValueList.size()) { 3053 // Not ready to resolve this yet, it requires something later in the file. 3054 GlobalInits.push_back(GlobalInitWorklist.back()); 3055 } else { 3056 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 3057 if (!MaybeC) 3058 return MaybeC.takeError(); 3059 GlobalInitWorklist.back().first->setInitializer(MaybeC.get()); 3060 } 3061 GlobalInitWorklist.pop_back(); 3062 } 3063 3064 while (!IndirectSymbolInitWorklist.empty()) { 3065 unsigned ValID = IndirectSymbolInitWorklist.back().second; 3066 if (ValID >= ValueList.size()) { 3067 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 3068 } else { 3069 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 3070 if (!MaybeC) 3071 return MaybeC.takeError(); 3072 Constant *C = MaybeC.get(); 3073 GlobalValue *GV = IndirectSymbolInitWorklist.back().first; 3074 if (auto *GA = dyn_cast<GlobalAlias>(GV)) { 3075 if (C->getType() != GV->getType()) 3076 return error("Alias and aliasee types don't match"); 3077 GA->setAliasee(C); 3078 } else if (auto *GI = dyn_cast<GlobalIFunc>(GV)) { 3079 GI->setResolver(C); 3080 } else { 3081 return error("Expected an alias or an ifunc"); 3082 } 3083 } 3084 IndirectSymbolInitWorklist.pop_back(); 3085 } 3086 3087 while (!FunctionOperandWorklist.empty()) { 3088 FunctionOperandInfo &Info = FunctionOperandWorklist.back(); 3089 if (Info.PersonalityFn) { 3090 unsigned ValID = Info.PersonalityFn - 1; 3091 if (ValID < ValueList.size()) { 3092 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 3093 if (!MaybeC) 3094 return MaybeC.takeError(); 3095 Info.F->setPersonalityFn(MaybeC.get()); 3096 Info.PersonalityFn = 0; 3097 } 3098 } 3099 if (Info.Prefix) { 3100 unsigned ValID = Info.Prefix - 1; 3101 if (ValID < ValueList.size()) { 3102 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 3103 if (!MaybeC) 3104 return MaybeC.takeError(); 3105 Info.F->setPrefixData(MaybeC.get()); 3106 Info.Prefix = 0; 3107 } 3108 } 3109 if (Info.Prologue) { 3110 unsigned ValID = Info.Prologue - 1; 3111 if (ValID < ValueList.size()) { 3112 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 3113 if (!MaybeC) 3114 return MaybeC.takeError(); 3115 Info.F->setPrologueData(MaybeC.get()); 3116 Info.Prologue = 0; 3117 } 3118 } 3119 if (Info.PersonalityFn || Info.Prefix || Info.Prologue) 3120 FunctionOperands.push_back(Info); 3121 FunctionOperandWorklist.pop_back(); 3122 } 3123 3124 return Error::success(); 3125 } 3126 3127 APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 3128 SmallVector<uint64_t, 8> Words(Vals.size()); 3129 transform(Vals, Words.begin(), 3130 BitcodeReader::decodeSignRotatedValue); 3131 3132 return APInt(TypeBits, Words); 3133 } 3134 3135 Error BitcodeReader::parseConstants() { 3136 if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 3137 return Err; 3138 3139 SmallVector<uint64_t, 64> Record; 3140 3141 // Read all the records for this value table. 3142 Type *CurTy = Type::getInt32Ty(Context); 3143 unsigned Int32TyID = getVirtualTypeID(CurTy); 3144 unsigned CurTyID = Int32TyID; 3145 Type *CurElemTy = nullptr; 3146 unsigned NextCstNo = ValueList.size(); 3147 3148 while (true) { 3149 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 3150 if (!MaybeEntry) 3151 return MaybeEntry.takeError(); 3152 BitstreamEntry Entry = MaybeEntry.get(); 3153 3154 switch (Entry.Kind) { 3155 case BitstreamEntry::SubBlock: // Handled for us already. 3156 case BitstreamEntry::Error: 3157 return error("Malformed block"); 3158 case BitstreamEntry::EndBlock: 3159 if (NextCstNo != ValueList.size()) 3160 return error("Invalid constant reference"); 3161 return Error::success(); 3162 case BitstreamEntry::Record: 3163 // The interesting case. 3164 break; 3165 } 3166 3167 // Read a record. 3168 Record.clear(); 3169 Type *VoidType = Type::getVoidTy(Context); 3170 Value *V = nullptr; 3171 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 3172 if (!MaybeBitCode) 3173 return MaybeBitCode.takeError(); 3174 switch (unsigned BitCode = MaybeBitCode.get()) { 3175 default: // Default behavior: unknown constant 3176 case bitc::CST_CODE_UNDEF: // UNDEF 3177 V = UndefValue::get(CurTy); 3178 break; 3179 case bitc::CST_CODE_POISON: // POISON 3180 V = PoisonValue::get(CurTy); 3181 break; 3182 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 3183 if (Record.empty()) 3184 return error("Invalid settype record"); 3185 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 3186 return error("Invalid settype record"); 3187 if (TypeList[Record[0]] == VoidType) 3188 return error("Invalid constant type"); 3189 CurTyID = Record[0]; 3190 CurTy = TypeList[CurTyID]; 3191 CurElemTy = getPtrElementTypeByID(CurTyID); 3192 continue; // Skip the ValueList manipulation. 3193 case bitc::CST_CODE_NULL: // NULL 3194 if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy()) 3195 return error("Invalid type for a constant null value"); 3196 if (auto *TETy = dyn_cast<TargetExtType>(CurTy)) 3197 if (!TETy->hasProperty(TargetExtType::HasZeroInit)) 3198 return error("Invalid type for a constant null value"); 3199 V = Constant::getNullValue(CurTy); 3200 break; 3201 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 3202 if (!CurTy->isIntOrIntVectorTy() || Record.empty()) 3203 return error("Invalid integer const record"); 3204 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 3205 break; 3206 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 3207 if (!CurTy->isIntOrIntVectorTy() || Record.empty()) 3208 return error("Invalid wide integer const record"); 3209 3210 auto *ScalarTy = cast<IntegerType>(CurTy->getScalarType()); 3211 APInt VInt = readWideAPInt(Record, ScalarTy->getBitWidth()); 3212 V = ConstantInt::get(CurTy, VInt); 3213 break; 3214 } 3215 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 3216 if (Record.empty()) 3217 return error("Invalid float const record"); 3218 3219 auto *ScalarTy = CurTy->getScalarType(); 3220 if (ScalarTy->isHalfTy()) 3221 V = ConstantFP::get(CurTy, APFloat(APFloat::IEEEhalf(), 3222 APInt(16, (uint16_t)Record[0]))); 3223 else if (ScalarTy->isBFloatTy()) 3224 V = ConstantFP::get( 3225 CurTy, APFloat(APFloat::BFloat(), APInt(16, (uint32_t)Record[0]))); 3226 else if (ScalarTy->isFloatTy()) 3227 V = ConstantFP::get(CurTy, APFloat(APFloat::IEEEsingle(), 3228 APInt(32, (uint32_t)Record[0]))); 3229 else if (ScalarTy->isDoubleTy()) 3230 V = ConstantFP::get( 3231 CurTy, APFloat(APFloat::IEEEdouble(), APInt(64, Record[0]))); 3232 else if (ScalarTy->isX86_FP80Ty()) { 3233 // Bits are not stored the same way as a normal i80 APInt, compensate. 3234 uint64_t Rearrange[2]; 3235 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 3236 Rearrange[1] = Record[0] >> 48; 3237 V = ConstantFP::get( 3238 CurTy, APFloat(APFloat::x87DoubleExtended(), APInt(80, Rearrange))); 3239 } else if (ScalarTy->isFP128Ty()) 3240 V = ConstantFP::get(CurTy, 3241 APFloat(APFloat::IEEEquad(), APInt(128, Record))); 3242 else if (ScalarTy->isPPC_FP128Ty()) 3243 V = ConstantFP::get( 3244 CurTy, APFloat(APFloat::PPCDoubleDouble(), APInt(128, Record))); 3245 else 3246 V = PoisonValue::get(CurTy); 3247 break; 3248 } 3249 3250 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 3251 if (Record.empty()) 3252 return error("Invalid aggregate record"); 3253 3254 unsigned Size = Record.size(); 3255 SmallVector<unsigned, 16> Elts; 3256 for (unsigned i = 0; i != Size; ++i) 3257 Elts.push_back(Record[i]); 3258 3259 if (isa<StructType>(CurTy)) { 3260 V = BitcodeConstant::create( 3261 Alloc, CurTy, BitcodeConstant::ConstantStructOpcode, Elts); 3262 } else if (isa<ArrayType>(CurTy)) { 3263 V = BitcodeConstant::create(Alloc, CurTy, 3264 BitcodeConstant::ConstantArrayOpcode, Elts); 3265 } else if (isa<VectorType>(CurTy)) { 3266 V = BitcodeConstant::create( 3267 Alloc, CurTy, BitcodeConstant::ConstantVectorOpcode, Elts); 3268 } else { 3269 V = PoisonValue::get(CurTy); 3270 } 3271 break; 3272 } 3273 case bitc::CST_CODE_STRING: // STRING: [values] 3274 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 3275 if (Record.empty()) 3276 return error("Invalid string record"); 3277 3278 SmallString<16> Elts(Record.begin(), Record.end()); 3279 V = ConstantDataArray::getString(Context, Elts, 3280 BitCode == bitc::CST_CODE_CSTRING); 3281 break; 3282 } 3283 case bitc::CST_CODE_DATA: {// DATA: [n x value] 3284 if (Record.empty()) 3285 return error("Invalid data record"); 3286 3287 Type *EltTy; 3288 if (auto *Array = dyn_cast<ArrayType>(CurTy)) 3289 EltTy = Array->getElementType(); 3290 else 3291 EltTy = cast<VectorType>(CurTy)->getElementType(); 3292 if (EltTy->isIntegerTy(8)) { 3293 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 3294 if (isa<VectorType>(CurTy)) 3295 V = ConstantDataVector::get(Context, Elts); 3296 else 3297 V = ConstantDataArray::get(Context, Elts); 3298 } else if (EltTy->isIntegerTy(16)) { 3299 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 3300 if (isa<VectorType>(CurTy)) 3301 V = ConstantDataVector::get(Context, Elts); 3302 else 3303 V = ConstantDataArray::get(Context, Elts); 3304 } else if (EltTy->isIntegerTy(32)) { 3305 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 3306 if (isa<VectorType>(CurTy)) 3307 V = ConstantDataVector::get(Context, Elts); 3308 else 3309 V = ConstantDataArray::get(Context, Elts); 3310 } else if (EltTy->isIntegerTy(64)) { 3311 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 3312 if (isa<VectorType>(CurTy)) 3313 V = ConstantDataVector::get(Context, Elts); 3314 else 3315 V = ConstantDataArray::get(Context, Elts); 3316 } else if (EltTy->isHalfTy()) { 3317 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 3318 if (isa<VectorType>(CurTy)) 3319 V = ConstantDataVector::getFP(EltTy, Elts); 3320 else 3321 V = ConstantDataArray::getFP(EltTy, Elts); 3322 } else if (EltTy->isBFloatTy()) { 3323 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 3324 if (isa<VectorType>(CurTy)) 3325 V = ConstantDataVector::getFP(EltTy, Elts); 3326 else 3327 V = ConstantDataArray::getFP(EltTy, Elts); 3328 } else if (EltTy->isFloatTy()) { 3329 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 3330 if (isa<VectorType>(CurTy)) 3331 V = ConstantDataVector::getFP(EltTy, Elts); 3332 else 3333 V = ConstantDataArray::getFP(EltTy, Elts); 3334 } else if (EltTy->isDoubleTy()) { 3335 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 3336 if (isa<VectorType>(CurTy)) 3337 V = ConstantDataVector::getFP(EltTy, Elts); 3338 else 3339 V = ConstantDataArray::getFP(EltTy, Elts); 3340 } else { 3341 return error("Invalid type for value"); 3342 } 3343 break; 3344 } 3345 case bitc::CST_CODE_CE_UNOP: { // CE_UNOP: [opcode, opval] 3346 if (Record.size() < 2) 3347 return error("Invalid unary op constexpr record"); 3348 int Opc = getDecodedUnaryOpcode(Record[0], CurTy); 3349 if (Opc < 0) { 3350 V = PoisonValue::get(CurTy); // Unknown unop. 3351 } else { 3352 V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[1]); 3353 } 3354 break; 3355 } 3356 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 3357 if (Record.size() < 3) 3358 return error("Invalid binary op constexpr record"); 3359 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 3360 if (Opc < 0) { 3361 V = PoisonValue::get(CurTy); // Unknown binop. 3362 } else { 3363 uint8_t Flags = 0; 3364 if (Record.size() >= 4) { 3365 if (Opc == Instruction::Add || 3366 Opc == Instruction::Sub || 3367 Opc == Instruction::Mul || 3368 Opc == Instruction::Shl) { 3369 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3370 Flags |= OverflowingBinaryOperator::NoSignedWrap; 3371 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3372 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 3373 } else if (Opc == Instruction::SDiv || 3374 Opc == Instruction::UDiv || 3375 Opc == Instruction::LShr || 3376 Opc == Instruction::AShr) { 3377 if (Record[3] & (1 << bitc::PEO_EXACT)) 3378 Flags |= PossiblyExactOperator::IsExact; 3379 } 3380 } 3381 V = BitcodeConstant::create(Alloc, CurTy, {(uint8_t)Opc, Flags}, 3382 {(unsigned)Record[1], (unsigned)Record[2]}); 3383 } 3384 break; 3385 } 3386 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 3387 if (Record.size() < 3) 3388 return error("Invalid cast constexpr record"); 3389 int Opc = getDecodedCastOpcode(Record[0]); 3390 if (Opc < 0) { 3391 V = PoisonValue::get(CurTy); // Unknown cast. 3392 } else { 3393 unsigned OpTyID = Record[1]; 3394 Type *OpTy = getTypeByID(OpTyID); 3395 if (!OpTy) 3396 return error("Invalid cast constexpr record"); 3397 V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[2]); 3398 } 3399 break; 3400 } 3401 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands] 3402 case bitc::CST_CODE_CE_GEP_OLD: // [ty, n x operands] 3403 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX_OLD: // [ty, flags, n x 3404 // operands] 3405 case bitc::CST_CODE_CE_GEP: // [ty, flags, n x operands] 3406 case bitc::CST_CODE_CE_GEP_WITH_INRANGE: { // [ty, flags, start, end, n x 3407 // operands] 3408 if (Record.size() < 2) 3409 return error("Constant GEP record must have at least two elements"); 3410 unsigned OpNum = 0; 3411 Type *PointeeType = nullptr; 3412 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX_OLD || 3413 BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE || 3414 BitCode == bitc::CST_CODE_CE_GEP || Record.size() % 2) 3415 PointeeType = getTypeByID(Record[OpNum++]); 3416 3417 uint64_t Flags = 0; 3418 std::optional<ConstantRange> InRange; 3419 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX_OLD) { 3420 uint64_t Op = Record[OpNum++]; 3421 Flags = Op & 1; // inbounds 3422 unsigned InRangeIndex = Op >> 1; 3423 // "Upgrade" inrange by dropping it. The feature is too niche to 3424 // bother. 3425 (void)InRangeIndex; 3426 } else if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE) { 3427 Flags = Record[OpNum++]; 3428 Expected<ConstantRange> MaybeInRange = 3429 readBitWidthAndConstantRange(Record, OpNum); 3430 if (!MaybeInRange) 3431 return MaybeInRange.takeError(); 3432 InRange = MaybeInRange.get(); 3433 } else if (BitCode == bitc::CST_CODE_CE_GEP) { 3434 Flags = Record[OpNum++]; 3435 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 3436 Flags = (1 << bitc::GEP_INBOUNDS); 3437 3438 SmallVector<unsigned, 16> Elts; 3439 unsigned BaseTypeID = Record[OpNum]; 3440 while (OpNum != Record.size()) { 3441 unsigned ElTyID = Record[OpNum++]; 3442 Type *ElTy = getTypeByID(ElTyID); 3443 if (!ElTy) 3444 return error("Invalid getelementptr constexpr record"); 3445 Elts.push_back(Record[OpNum++]); 3446 } 3447 3448 if (Elts.size() < 1) 3449 return error("Invalid gep with no operands"); 3450 3451 Type *BaseType = getTypeByID(BaseTypeID); 3452 if (isa<VectorType>(BaseType)) { 3453 BaseTypeID = getContainedTypeID(BaseTypeID, 0); 3454 BaseType = getTypeByID(BaseTypeID); 3455 } 3456 3457 PointerType *OrigPtrTy = dyn_cast_or_null<PointerType>(BaseType); 3458 if (!OrigPtrTy) 3459 return error("GEP base operand must be pointer or vector of pointer"); 3460 3461 if (!PointeeType) { 3462 PointeeType = getPtrElementTypeByID(BaseTypeID); 3463 if (!PointeeType) 3464 return error("Missing element type for old-style constant GEP"); 3465 } 3466 3467 V = BitcodeConstant::create( 3468 Alloc, CurTy, 3469 {Instruction::GetElementPtr, uint8_t(Flags), PointeeType, InRange}, 3470 Elts); 3471 break; 3472 } 3473 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 3474 if (Record.size() < 3) 3475 return error("Invalid select constexpr record"); 3476 3477 V = BitcodeConstant::create( 3478 Alloc, CurTy, Instruction::Select, 3479 {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]}); 3480 break; 3481 } 3482 case bitc::CST_CODE_CE_EXTRACTELT 3483 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 3484 if (Record.size() < 3) 3485 return error("Invalid extractelement constexpr record"); 3486 unsigned OpTyID = Record[0]; 3487 VectorType *OpTy = 3488 dyn_cast_or_null<VectorType>(getTypeByID(OpTyID)); 3489 if (!OpTy) 3490 return error("Invalid extractelement constexpr record"); 3491 unsigned IdxRecord; 3492 if (Record.size() == 4) { 3493 unsigned IdxTyID = Record[2]; 3494 Type *IdxTy = getTypeByID(IdxTyID); 3495 if (!IdxTy) 3496 return error("Invalid extractelement constexpr record"); 3497 IdxRecord = Record[3]; 3498 } else { 3499 // Deprecated, but still needed to read old bitcode files. 3500 IdxRecord = Record[2]; 3501 } 3502 V = BitcodeConstant::create(Alloc, CurTy, Instruction::ExtractElement, 3503 {(unsigned)Record[1], IdxRecord}); 3504 break; 3505 } 3506 case bitc::CST_CODE_CE_INSERTELT 3507 : { // CE_INSERTELT: [opval, opval, opty, opval] 3508 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 3509 if (Record.size() < 3 || !OpTy) 3510 return error("Invalid insertelement constexpr record"); 3511 unsigned IdxRecord; 3512 if (Record.size() == 4) { 3513 unsigned IdxTyID = Record[2]; 3514 Type *IdxTy = getTypeByID(IdxTyID); 3515 if (!IdxTy) 3516 return error("Invalid insertelement constexpr record"); 3517 IdxRecord = Record[3]; 3518 } else { 3519 // Deprecated, but still needed to read old bitcode files. 3520 IdxRecord = Record[2]; 3521 } 3522 V = BitcodeConstant::create( 3523 Alloc, CurTy, Instruction::InsertElement, 3524 {(unsigned)Record[0], (unsigned)Record[1], IdxRecord}); 3525 break; 3526 } 3527 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 3528 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 3529 if (Record.size() < 3 || !OpTy) 3530 return error("Invalid shufflevector constexpr record"); 3531 V = BitcodeConstant::create( 3532 Alloc, CurTy, Instruction::ShuffleVector, 3533 {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]}); 3534 break; 3535 } 3536 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 3537 VectorType *RTy = dyn_cast<VectorType>(CurTy); 3538 VectorType *OpTy = 3539 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 3540 if (Record.size() < 4 || !RTy || !OpTy) 3541 return error("Invalid shufflevector constexpr record"); 3542 V = BitcodeConstant::create( 3543 Alloc, CurTy, Instruction::ShuffleVector, 3544 {(unsigned)Record[1], (unsigned)Record[2], (unsigned)Record[3]}); 3545 break; 3546 } 3547 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 3548 if (Record.size() < 4) 3549 return error("Invalid cmp constexpt record"); 3550 unsigned OpTyID = Record[0]; 3551 Type *OpTy = getTypeByID(OpTyID); 3552 if (!OpTy) 3553 return error("Invalid cmp constexpr record"); 3554 V = BitcodeConstant::create( 3555 Alloc, CurTy, 3556 {(uint8_t)(OpTy->isFPOrFPVectorTy() ? Instruction::FCmp 3557 : Instruction::ICmp), 3558 (uint8_t)Record[3]}, 3559 {(unsigned)Record[1], (unsigned)Record[2]}); 3560 break; 3561 } 3562 // This maintains backward compatibility, pre-asm dialect keywords. 3563 // Deprecated, but still needed to read old bitcode files. 3564 case bitc::CST_CODE_INLINEASM_OLD: { 3565 if (Record.size() < 2) 3566 return error("Invalid inlineasm record"); 3567 std::string AsmStr, ConstrStr; 3568 bool HasSideEffects = Record[0] & 1; 3569 bool IsAlignStack = Record[0] >> 1; 3570 unsigned AsmStrSize = Record[1]; 3571 if (2+AsmStrSize >= Record.size()) 3572 return error("Invalid inlineasm record"); 3573 unsigned ConstStrSize = Record[2+AsmStrSize]; 3574 if (3+AsmStrSize+ConstStrSize > Record.size()) 3575 return error("Invalid inlineasm record"); 3576 3577 for (unsigned i = 0; i != AsmStrSize; ++i) 3578 AsmStr += (char)Record[2+i]; 3579 for (unsigned i = 0; i != ConstStrSize; ++i) 3580 ConstrStr += (char)Record[3+AsmStrSize+i]; 3581 UpgradeInlineAsmString(&AsmStr); 3582 if (!CurElemTy) 3583 return error("Missing element type for old-style inlineasm"); 3584 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr, 3585 HasSideEffects, IsAlignStack); 3586 break; 3587 } 3588 // This version adds support for the asm dialect keywords (e.g., 3589 // inteldialect). 3590 case bitc::CST_CODE_INLINEASM_OLD2: { 3591 if (Record.size() < 2) 3592 return error("Invalid inlineasm record"); 3593 std::string AsmStr, ConstrStr; 3594 bool HasSideEffects = Record[0] & 1; 3595 bool IsAlignStack = (Record[0] >> 1) & 1; 3596 unsigned AsmDialect = Record[0] >> 2; 3597 unsigned AsmStrSize = Record[1]; 3598 if (2+AsmStrSize >= Record.size()) 3599 return error("Invalid inlineasm record"); 3600 unsigned ConstStrSize = Record[2+AsmStrSize]; 3601 if (3+AsmStrSize+ConstStrSize > Record.size()) 3602 return error("Invalid inlineasm record"); 3603 3604 for (unsigned i = 0; i != AsmStrSize; ++i) 3605 AsmStr += (char)Record[2+i]; 3606 for (unsigned i = 0; i != ConstStrSize; ++i) 3607 ConstrStr += (char)Record[3+AsmStrSize+i]; 3608 UpgradeInlineAsmString(&AsmStr); 3609 if (!CurElemTy) 3610 return error("Missing element type for old-style inlineasm"); 3611 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr, 3612 HasSideEffects, IsAlignStack, 3613 InlineAsm::AsmDialect(AsmDialect)); 3614 break; 3615 } 3616 // This version adds support for the unwind keyword. 3617 case bitc::CST_CODE_INLINEASM_OLD3: { 3618 if (Record.size() < 2) 3619 return error("Invalid inlineasm record"); 3620 unsigned OpNum = 0; 3621 std::string AsmStr, ConstrStr; 3622 bool HasSideEffects = Record[OpNum] & 1; 3623 bool IsAlignStack = (Record[OpNum] >> 1) & 1; 3624 unsigned AsmDialect = (Record[OpNum] >> 2) & 1; 3625 bool CanThrow = (Record[OpNum] >> 3) & 1; 3626 ++OpNum; 3627 unsigned AsmStrSize = Record[OpNum]; 3628 ++OpNum; 3629 if (OpNum + AsmStrSize >= Record.size()) 3630 return error("Invalid inlineasm record"); 3631 unsigned ConstStrSize = Record[OpNum + AsmStrSize]; 3632 if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size()) 3633 return error("Invalid inlineasm record"); 3634 3635 for (unsigned i = 0; i != AsmStrSize; ++i) 3636 AsmStr += (char)Record[OpNum + i]; 3637 ++OpNum; 3638 for (unsigned i = 0; i != ConstStrSize; ++i) 3639 ConstrStr += (char)Record[OpNum + AsmStrSize + i]; 3640 UpgradeInlineAsmString(&AsmStr); 3641 if (!CurElemTy) 3642 return error("Missing element type for old-style inlineasm"); 3643 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr, 3644 HasSideEffects, IsAlignStack, 3645 InlineAsm::AsmDialect(AsmDialect), CanThrow); 3646 break; 3647 } 3648 // This version adds explicit function type. 3649 case bitc::CST_CODE_INLINEASM: { 3650 if (Record.size() < 3) 3651 return error("Invalid inlineasm record"); 3652 unsigned OpNum = 0; 3653 auto *FnTy = dyn_cast_or_null<FunctionType>(getTypeByID(Record[OpNum])); 3654 ++OpNum; 3655 if (!FnTy) 3656 return error("Invalid inlineasm record"); 3657 std::string AsmStr, ConstrStr; 3658 bool HasSideEffects = Record[OpNum] & 1; 3659 bool IsAlignStack = (Record[OpNum] >> 1) & 1; 3660 unsigned AsmDialect = (Record[OpNum] >> 2) & 1; 3661 bool CanThrow = (Record[OpNum] >> 3) & 1; 3662 ++OpNum; 3663 unsigned AsmStrSize = Record[OpNum]; 3664 ++OpNum; 3665 if (OpNum + AsmStrSize >= Record.size()) 3666 return error("Invalid inlineasm record"); 3667 unsigned ConstStrSize = Record[OpNum + AsmStrSize]; 3668 if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size()) 3669 return error("Invalid inlineasm record"); 3670 3671 for (unsigned i = 0; i != AsmStrSize; ++i) 3672 AsmStr += (char)Record[OpNum + i]; 3673 ++OpNum; 3674 for (unsigned i = 0; i != ConstStrSize; ++i) 3675 ConstrStr += (char)Record[OpNum + AsmStrSize + i]; 3676 UpgradeInlineAsmString(&AsmStr); 3677 V = InlineAsm::get(FnTy, AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 3678 InlineAsm::AsmDialect(AsmDialect), CanThrow); 3679 break; 3680 } 3681 case bitc::CST_CODE_BLOCKADDRESS:{ 3682 if (Record.size() < 3) 3683 return error("Invalid blockaddress record"); 3684 unsigned FnTyID = Record[0]; 3685 Type *FnTy = getTypeByID(FnTyID); 3686 if (!FnTy) 3687 return error("Invalid blockaddress record"); 3688 V = BitcodeConstant::create( 3689 Alloc, CurTy, 3690 {BitcodeConstant::BlockAddressOpcode, 0, (unsigned)Record[2]}, 3691 Record[1]); 3692 break; 3693 } 3694 case bitc::CST_CODE_DSO_LOCAL_EQUIVALENT: { 3695 if (Record.size() < 2) 3696 return error("Invalid dso_local record"); 3697 unsigned GVTyID = Record[0]; 3698 Type *GVTy = getTypeByID(GVTyID); 3699 if (!GVTy) 3700 return error("Invalid dso_local record"); 3701 V = BitcodeConstant::create( 3702 Alloc, CurTy, BitcodeConstant::DSOLocalEquivalentOpcode, Record[1]); 3703 break; 3704 } 3705 case bitc::CST_CODE_NO_CFI_VALUE: { 3706 if (Record.size() < 2) 3707 return error("Invalid no_cfi record"); 3708 unsigned GVTyID = Record[0]; 3709 Type *GVTy = getTypeByID(GVTyID); 3710 if (!GVTy) 3711 return error("Invalid no_cfi record"); 3712 V = BitcodeConstant::create(Alloc, CurTy, BitcodeConstant::NoCFIOpcode, 3713 Record[1]); 3714 break; 3715 } 3716 case bitc::CST_CODE_PTRAUTH: { 3717 if (Record.size() < 4) 3718 return error("Invalid ptrauth record"); 3719 // Ptr, Key, Disc, AddrDisc 3720 V = BitcodeConstant::create(Alloc, CurTy, 3721 BitcodeConstant::ConstantPtrAuthOpcode, 3722 {(unsigned)Record[0], (unsigned)Record[1], 3723 (unsigned)Record[2], (unsigned)Record[3]}); 3724 break; 3725 } 3726 } 3727 3728 assert(V->getType() == getTypeByID(CurTyID) && "Incorrect result type ID"); 3729 if (Error Err = ValueList.assignValue(NextCstNo, V, CurTyID)) 3730 return Err; 3731 ++NextCstNo; 3732 } 3733 } 3734 3735 Error BitcodeReader::parseUseLists() { 3736 if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 3737 return Err; 3738 3739 // Read all the records. 3740 SmallVector<uint64_t, 64> Record; 3741 3742 while (true) { 3743 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 3744 if (!MaybeEntry) 3745 return MaybeEntry.takeError(); 3746 BitstreamEntry Entry = MaybeEntry.get(); 3747 3748 switch (Entry.Kind) { 3749 case BitstreamEntry::SubBlock: // Handled for us already. 3750 case BitstreamEntry::Error: 3751 return error("Malformed block"); 3752 case BitstreamEntry::EndBlock: 3753 return Error::success(); 3754 case BitstreamEntry::Record: 3755 // The interesting case. 3756 break; 3757 } 3758 3759 // Read a use list record. 3760 Record.clear(); 3761 bool IsBB = false; 3762 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 3763 if (!MaybeRecord) 3764 return MaybeRecord.takeError(); 3765 switch (MaybeRecord.get()) { 3766 default: // Default behavior: unknown type. 3767 break; 3768 case bitc::USELIST_CODE_BB: 3769 IsBB = true; 3770 [[fallthrough]]; 3771 case bitc::USELIST_CODE_DEFAULT: { 3772 unsigned RecordLength = Record.size(); 3773 if (RecordLength < 3) 3774 // Records should have at least an ID and two indexes. 3775 return error("Invalid record"); 3776 unsigned ID = Record.pop_back_val(); 3777 3778 Value *V; 3779 if (IsBB) { 3780 assert(ID < FunctionBBs.size() && "Basic block not found"); 3781 V = FunctionBBs[ID]; 3782 } else 3783 V = ValueList[ID]; 3784 unsigned NumUses = 0; 3785 SmallDenseMap<const Use *, unsigned, 16> Order; 3786 for (const Use &U : V->materialized_uses()) { 3787 if (++NumUses > Record.size()) 3788 break; 3789 Order[&U] = Record[NumUses - 1]; 3790 } 3791 if (Order.size() != Record.size() || NumUses > Record.size()) 3792 // Mismatches can happen if the functions are being materialized lazily 3793 // (out-of-order), or a value has been upgraded. 3794 break; 3795 3796 V->sortUseList([&](const Use &L, const Use &R) { 3797 return Order.lookup(&L) < Order.lookup(&R); 3798 }); 3799 break; 3800 } 3801 } 3802 } 3803 } 3804 3805 /// When we see the block for metadata, remember where it is and then skip it. 3806 /// This lets us lazily deserialize the metadata. 3807 Error BitcodeReader::rememberAndSkipMetadata() { 3808 // Save the current stream state. 3809 uint64_t CurBit = Stream.GetCurrentBitNo(); 3810 DeferredMetadataInfo.push_back(CurBit); 3811 3812 // Skip over the block for now. 3813 if (Error Err = Stream.SkipBlock()) 3814 return Err; 3815 return Error::success(); 3816 } 3817 3818 Error BitcodeReader::materializeMetadata() { 3819 for (uint64_t BitPos : DeferredMetadataInfo) { 3820 // Move the bit stream to the saved position. 3821 if (Error JumpFailed = Stream.JumpToBit(BitPos)) 3822 return JumpFailed; 3823 if (Error Err = MDLoader->parseModuleMetadata()) 3824 return Err; 3825 } 3826 3827 // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level 3828 // metadata. Only upgrade if the new option doesn't exist to avoid upgrade 3829 // multiple times. 3830 if (!TheModule->getNamedMetadata("llvm.linker.options")) { 3831 if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) { 3832 NamedMDNode *LinkerOpts = 3833 TheModule->getOrInsertNamedMetadata("llvm.linker.options"); 3834 for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands()) 3835 LinkerOpts->addOperand(cast<MDNode>(MDOptions)); 3836 } 3837 } 3838 3839 DeferredMetadataInfo.clear(); 3840 return Error::success(); 3841 } 3842 3843 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 3844 3845 /// When we see the block for a function body, remember where it is and then 3846 /// skip it. This lets us lazily deserialize the functions. 3847 Error BitcodeReader::rememberAndSkipFunctionBody() { 3848 // Get the function we are talking about. 3849 if (FunctionsWithBodies.empty()) 3850 return error("Insufficient function protos"); 3851 3852 Function *Fn = FunctionsWithBodies.back(); 3853 FunctionsWithBodies.pop_back(); 3854 3855 // Save the current stream state. 3856 uint64_t CurBit = Stream.GetCurrentBitNo(); 3857 assert( 3858 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 3859 "Mismatch between VST and scanned function offsets"); 3860 DeferredFunctionInfo[Fn] = CurBit; 3861 3862 // Skip over the function block for now. 3863 if (Error Err = Stream.SkipBlock()) 3864 return Err; 3865 return Error::success(); 3866 } 3867 3868 Error BitcodeReader::globalCleanup() { 3869 // Patch the initializers for globals and aliases up. 3870 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3871 return Err; 3872 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 3873 return error("Malformed global initializer set"); 3874 3875 // Look for intrinsic functions which need to be upgraded at some point 3876 // and functions that need to have their function attributes upgraded. 3877 for (Function &F : *TheModule) { 3878 MDLoader->upgradeDebugIntrinsics(F); 3879 Function *NewFn; 3880 // If PreserveInputDbgFormat=true, then we don't know whether we want 3881 // intrinsics or records, and we won't perform any conversions in either 3882 // case, so don't upgrade intrinsics to records. 3883 if (UpgradeIntrinsicFunction( 3884 &F, NewFn, PreserveInputDbgFormat != cl::boolOrDefault::BOU_TRUE)) 3885 UpgradedIntrinsics[&F] = NewFn; 3886 // Look for functions that rely on old function attribute behavior. 3887 UpgradeFunctionAttributes(F); 3888 } 3889 3890 // Look for global variables which need to be renamed. 3891 std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables; 3892 for (GlobalVariable &GV : TheModule->globals()) 3893 if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV)) 3894 UpgradedVariables.emplace_back(&GV, Upgraded); 3895 for (auto &Pair : UpgradedVariables) { 3896 Pair.first->eraseFromParent(); 3897 TheModule->insertGlobalVariable(Pair.second); 3898 } 3899 3900 // Force deallocation of memory for these vectors to favor the client that 3901 // want lazy deserialization. 3902 std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits); 3903 std::vector<std::pair<GlobalValue *, unsigned>>().swap(IndirectSymbolInits); 3904 return Error::success(); 3905 } 3906 3907 /// Support for lazy parsing of function bodies. This is required if we 3908 /// either have an old bitcode file without a VST forward declaration record, 3909 /// or if we have an anonymous function being materialized, since anonymous 3910 /// functions do not have a name and are therefore not in the VST. 3911 Error BitcodeReader::rememberAndSkipFunctionBodies() { 3912 if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit)) 3913 return JumpFailed; 3914 3915 if (Stream.AtEndOfStream()) 3916 return error("Could not find function in stream"); 3917 3918 if (!SeenFirstFunctionBody) 3919 return error("Trying to materialize functions before seeing function blocks"); 3920 3921 // An old bitcode file with the symbol table at the end would have 3922 // finished the parse greedily. 3923 assert(SeenValueSymbolTable); 3924 3925 SmallVector<uint64_t, 64> Record; 3926 3927 while (true) { 3928 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3929 if (!MaybeEntry) 3930 return MaybeEntry.takeError(); 3931 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3932 3933 switch (Entry.Kind) { 3934 default: 3935 return error("Expect SubBlock"); 3936 case BitstreamEntry::SubBlock: 3937 switch (Entry.ID) { 3938 default: 3939 return error("Expect function block"); 3940 case bitc::FUNCTION_BLOCK_ID: 3941 if (Error Err = rememberAndSkipFunctionBody()) 3942 return Err; 3943 NextUnreadBit = Stream.GetCurrentBitNo(); 3944 return Error::success(); 3945 } 3946 } 3947 } 3948 } 3949 3950 Error BitcodeReaderBase::readBlockInfo() { 3951 Expected<std::optional<BitstreamBlockInfo>> MaybeNewBlockInfo = 3952 Stream.ReadBlockInfoBlock(); 3953 if (!MaybeNewBlockInfo) 3954 return MaybeNewBlockInfo.takeError(); 3955 std::optional<BitstreamBlockInfo> NewBlockInfo = 3956 std::move(MaybeNewBlockInfo.get()); 3957 if (!NewBlockInfo) 3958 return error("Malformed block"); 3959 BlockInfo = std::move(*NewBlockInfo); 3960 return Error::success(); 3961 } 3962 3963 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) { 3964 // v1: [selection_kind, name] 3965 // v2: [strtab_offset, strtab_size, selection_kind] 3966 StringRef Name; 3967 std::tie(Name, Record) = readNameFromStrtab(Record); 3968 3969 if (Record.empty()) 3970 return error("Invalid record"); 3971 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 3972 std::string OldFormatName; 3973 if (!UseStrtab) { 3974 if (Record.size() < 2) 3975 return error("Invalid record"); 3976 unsigned ComdatNameSize = Record[1]; 3977 if (ComdatNameSize > Record.size() - 2) 3978 return error("Comdat name size too large"); 3979 OldFormatName.reserve(ComdatNameSize); 3980 for (unsigned i = 0; i != ComdatNameSize; ++i) 3981 OldFormatName += (char)Record[2 + i]; 3982 Name = OldFormatName; 3983 } 3984 Comdat *C = TheModule->getOrInsertComdat(Name); 3985 C->setSelectionKind(SK); 3986 ComdatList.push_back(C); 3987 return Error::success(); 3988 } 3989 3990 static void inferDSOLocal(GlobalValue *GV) { 3991 // infer dso_local from linkage and visibility if it is not encoded. 3992 if (GV->hasLocalLinkage() || 3993 (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())) 3994 GV->setDSOLocal(true); 3995 } 3996 3997 GlobalValue::SanitizerMetadata deserializeSanitizerMetadata(unsigned V) { 3998 GlobalValue::SanitizerMetadata Meta; 3999 if (V & (1 << 0)) 4000 Meta.NoAddress = true; 4001 if (V & (1 << 1)) 4002 Meta.NoHWAddress = true; 4003 if (V & (1 << 2)) 4004 Meta.Memtag = true; 4005 if (V & (1 << 3)) 4006 Meta.IsDynInit = true; 4007 return Meta; 4008 } 4009 4010 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) { 4011 // v1: [pointer type, isconst, initid, linkage, alignment, section, 4012 // visibility, threadlocal, unnamed_addr, externally_initialized, 4013 // dllstorageclass, comdat, attributes, preemption specifier, 4014 // partition strtab offset, partition strtab size] (name in VST) 4015 // v2: [strtab_offset, strtab_size, v1] 4016 // v3: [v2, code_model] 4017 StringRef Name; 4018 std::tie(Name, Record) = readNameFromStrtab(Record); 4019 4020 if (Record.size() < 6) 4021 return error("Invalid record"); 4022 unsigned TyID = Record[0]; 4023 Type *Ty = getTypeByID(TyID); 4024 if (!Ty) 4025 return error("Invalid record"); 4026 bool isConstant = Record[1] & 1; 4027 bool explicitType = Record[1] & 2; 4028 unsigned AddressSpace; 4029 if (explicitType) { 4030 AddressSpace = Record[1] >> 2; 4031 } else { 4032 if (!Ty->isPointerTy()) 4033 return error("Invalid type for value"); 4034 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 4035 TyID = getContainedTypeID(TyID); 4036 Ty = getTypeByID(TyID); 4037 if (!Ty) 4038 return error("Missing element type for old-style global"); 4039 } 4040 4041 uint64_t RawLinkage = Record[3]; 4042 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 4043 MaybeAlign Alignment; 4044 if (Error Err = parseAlignmentValue(Record[4], Alignment)) 4045 return Err; 4046 std::string Section; 4047 if (Record[5]) { 4048 if (Record[5] - 1 >= SectionTable.size()) 4049 return error("Invalid ID"); 4050 Section = SectionTable[Record[5] - 1]; 4051 } 4052 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 4053 // Local linkage must have default visibility. 4054 // auto-upgrade `hidden` and `protected` for old bitcode. 4055 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 4056 Visibility = getDecodedVisibility(Record[6]); 4057 4058 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 4059 if (Record.size() > 7) 4060 TLM = getDecodedThreadLocalMode(Record[7]); 4061 4062 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 4063 if (Record.size() > 8) 4064 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); 4065 4066 bool ExternallyInitialized = false; 4067 if (Record.size() > 9) 4068 ExternallyInitialized = Record[9]; 4069 4070 GlobalVariable *NewGV = 4071 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name, 4072 nullptr, TLM, AddressSpace, ExternallyInitialized); 4073 if (Alignment) 4074 NewGV->setAlignment(*Alignment); 4075 if (!Section.empty()) 4076 NewGV->setSection(Section); 4077 NewGV->setVisibility(Visibility); 4078 NewGV->setUnnamedAddr(UnnamedAddr); 4079 4080 if (Record.size() > 10) { 4081 // A GlobalValue with local linkage cannot have a DLL storage class. 4082 if (!NewGV->hasLocalLinkage()) { 4083 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 4084 } 4085 } else { 4086 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 4087 } 4088 4089 ValueList.push_back(NewGV, getVirtualTypeID(NewGV->getType(), TyID)); 4090 4091 // Remember which value to use for the global initializer. 4092 if (unsigned InitID = Record[2]) 4093 GlobalInits.push_back(std::make_pair(NewGV, InitID - 1)); 4094 4095 if (Record.size() > 11) { 4096 if (unsigned ComdatID = Record[11]) { 4097 if (ComdatID > ComdatList.size()) 4098 return error("Invalid global variable comdat ID"); 4099 NewGV->setComdat(ComdatList[ComdatID - 1]); 4100 } 4101 } else if (hasImplicitComdat(RawLinkage)) { 4102 ImplicitComdatObjects.insert(NewGV); 4103 } 4104 4105 if (Record.size() > 12) { 4106 auto AS = getAttributes(Record[12]).getFnAttrs(); 4107 NewGV->setAttributes(AS); 4108 } 4109 4110 if (Record.size() > 13) { 4111 NewGV->setDSOLocal(getDecodedDSOLocal(Record[13])); 4112 } 4113 inferDSOLocal(NewGV); 4114 4115 // Check whether we have enough values to read a partition name. 4116 if (Record.size() > 15) 4117 NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15])); 4118 4119 if (Record.size() > 16 && Record[16]) { 4120 llvm::GlobalValue::SanitizerMetadata Meta = 4121 deserializeSanitizerMetadata(Record[16]); 4122 NewGV->setSanitizerMetadata(Meta); 4123 } 4124 4125 if (Record.size() > 17 && Record[17]) { 4126 if (auto CM = getDecodedCodeModel(Record[17])) 4127 NewGV->setCodeModel(*CM); 4128 else 4129 return error("Invalid global variable code model"); 4130 } 4131 4132 return Error::success(); 4133 } 4134 4135 void BitcodeReader::callValueTypeCallback(Value *F, unsigned TypeID) { 4136 if (ValueTypeCallback) { 4137 (*ValueTypeCallback)( 4138 F, TypeID, [this](unsigned I) { return getTypeByID(I); }, 4139 [this](unsigned I, unsigned J) { return getContainedTypeID(I, J); }); 4140 } 4141 } 4142 4143 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) { 4144 // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section, 4145 // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat, 4146 // prefixdata, personalityfn, preemption specifier, addrspace] (name in VST) 4147 // v2: [strtab_offset, strtab_size, v1] 4148 StringRef Name; 4149 std::tie(Name, Record) = readNameFromStrtab(Record); 4150 4151 if (Record.size() < 8) 4152 return error("Invalid record"); 4153 unsigned FTyID = Record[0]; 4154 Type *FTy = getTypeByID(FTyID); 4155 if (!FTy) 4156 return error("Invalid record"); 4157 if (isa<PointerType>(FTy)) { 4158 FTyID = getContainedTypeID(FTyID, 0); 4159 FTy = getTypeByID(FTyID); 4160 if (!FTy) 4161 return error("Missing element type for old-style function"); 4162 } 4163 4164 if (!isa<FunctionType>(FTy)) 4165 return error("Invalid type for value"); 4166 auto CC = static_cast<CallingConv::ID>(Record[1]); 4167 if (CC & ~CallingConv::MaxID) 4168 return error("Invalid calling convention ID"); 4169 4170 unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace(); 4171 if (Record.size() > 16) 4172 AddrSpace = Record[16]; 4173 4174 Function *Func = 4175 Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage, 4176 AddrSpace, Name, TheModule); 4177 4178 assert(Func->getFunctionType() == FTy && 4179 "Incorrect fully specified type provided for function"); 4180 FunctionTypeIDs[Func] = FTyID; 4181 4182 Func->setCallingConv(CC); 4183 bool isProto = Record[2]; 4184 uint64_t RawLinkage = Record[3]; 4185 Func->setLinkage(getDecodedLinkage(RawLinkage)); 4186 Func->setAttributes(getAttributes(Record[4])); 4187 callValueTypeCallback(Func, FTyID); 4188 4189 // Upgrade any old-style byval or sret without a type by propagating the 4190 // argument's pointee type. There should be no opaque pointers where the byval 4191 // type is implicit. 4192 for (unsigned i = 0; i != Func->arg_size(); ++i) { 4193 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet, 4194 Attribute::InAlloca}) { 4195 if (!Func->hasParamAttribute(i, Kind)) 4196 continue; 4197 4198 if (Func->getParamAttribute(i, Kind).getValueAsType()) 4199 continue; 4200 4201 Func->removeParamAttr(i, Kind); 4202 4203 unsigned ParamTypeID = getContainedTypeID(FTyID, i + 1); 4204 Type *PtrEltTy = getPtrElementTypeByID(ParamTypeID); 4205 if (!PtrEltTy) 4206 return error("Missing param element type for attribute upgrade"); 4207 4208 Attribute NewAttr; 4209 switch (Kind) { 4210 case Attribute::ByVal: 4211 NewAttr = Attribute::getWithByValType(Context, PtrEltTy); 4212 break; 4213 case Attribute::StructRet: 4214 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy); 4215 break; 4216 case Attribute::InAlloca: 4217 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy); 4218 break; 4219 default: 4220 llvm_unreachable("not an upgraded type attribute"); 4221 } 4222 4223 Func->addParamAttr(i, NewAttr); 4224 } 4225 } 4226 4227 if (Func->getCallingConv() == CallingConv::X86_INTR && 4228 !Func->arg_empty() && !Func->hasParamAttribute(0, Attribute::ByVal)) { 4229 unsigned ParamTypeID = getContainedTypeID(FTyID, 1); 4230 Type *ByValTy = getPtrElementTypeByID(ParamTypeID); 4231 if (!ByValTy) 4232 return error("Missing param element type for x86_intrcc upgrade"); 4233 Attribute NewAttr = Attribute::getWithByValType(Context, ByValTy); 4234 Func->addParamAttr(0, NewAttr); 4235 } 4236 4237 MaybeAlign Alignment; 4238 if (Error Err = parseAlignmentValue(Record[5], Alignment)) 4239 return Err; 4240 if (Alignment) 4241 Func->setAlignment(*Alignment); 4242 if (Record[6]) { 4243 if (Record[6] - 1 >= SectionTable.size()) 4244 return error("Invalid ID"); 4245 Func->setSection(SectionTable[Record[6] - 1]); 4246 } 4247 // Local linkage must have default visibility. 4248 // auto-upgrade `hidden` and `protected` for old bitcode. 4249 if (!Func->hasLocalLinkage()) 4250 Func->setVisibility(getDecodedVisibility(Record[7])); 4251 if (Record.size() > 8 && Record[8]) { 4252 if (Record[8] - 1 >= GCTable.size()) 4253 return error("Invalid ID"); 4254 Func->setGC(GCTable[Record[8] - 1]); 4255 } 4256 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 4257 if (Record.size() > 9) 4258 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); 4259 Func->setUnnamedAddr(UnnamedAddr); 4260 4261 FunctionOperandInfo OperandInfo = {Func, 0, 0, 0}; 4262 if (Record.size() > 10) 4263 OperandInfo.Prologue = Record[10]; 4264 4265 if (Record.size() > 11) { 4266 // A GlobalValue with local linkage cannot have a DLL storage class. 4267 if (!Func->hasLocalLinkage()) { 4268 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 4269 } 4270 } else { 4271 upgradeDLLImportExportLinkage(Func, RawLinkage); 4272 } 4273 4274 if (Record.size() > 12) { 4275 if (unsigned ComdatID = Record[12]) { 4276 if (ComdatID > ComdatList.size()) 4277 return error("Invalid function comdat ID"); 4278 Func->setComdat(ComdatList[ComdatID - 1]); 4279 } 4280 } else if (hasImplicitComdat(RawLinkage)) { 4281 ImplicitComdatObjects.insert(Func); 4282 } 4283 4284 if (Record.size() > 13) 4285 OperandInfo.Prefix = Record[13]; 4286 4287 if (Record.size() > 14) 4288 OperandInfo.PersonalityFn = Record[14]; 4289 4290 if (Record.size() > 15) { 4291 Func->setDSOLocal(getDecodedDSOLocal(Record[15])); 4292 } 4293 inferDSOLocal(Func); 4294 4295 // Record[16] is the address space number. 4296 4297 // Check whether we have enough values to read a partition name. Also make 4298 // sure Strtab has enough values. 4299 if (Record.size() > 18 && Strtab.data() && 4300 Record[17] + Record[18] <= Strtab.size()) { 4301 Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18])); 4302 } 4303 4304 ValueList.push_back(Func, getVirtualTypeID(Func->getType(), FTyID)); 4305 4306 if (OperandInfo.PersonalityFn || OperandInfo.Prefix || OperandInfo.Prologue) 4307 FunctionOperands.push_back(OperandInfo); 4308 4309 // If this is a function with a body, remember the prototype we are 4310 // creating now, so that we can match up the body with them later. 4311 if (!isProto) { 4312 Func->setIsMaterializable(true); 4313 FunctionsWithBodies.push_back(Func); 4314 DeferredFunctionInfo[Func] = 0; 4315 } 4316 return Error::success(); 4317 } 4318 4319 Error BitcodeReader::parseGlobalIndirectSymbolRecord( 4320 unsigned BitCode, ArrayRef<uint64_t> Record) { 4321 // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST) 4322 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 4323 // dllstorageclass, threadlocal, unnamed_addr, 4324 // preemption specifier] (name in VST) 4325 // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage, 4326 // visibility, dllstorageclass, threadlocal, unnamed_addr, 4327 // preemption specifier] (name in VST) 4328 // v2: [strtab_offset, strtab_size, v1] 4329 StringRef Name; 4330 std::tie(Name, Record) = readNameFromStrtab(Record); 4331 4332 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 4333 if (Record.size() < (3 + (unsigned)NewRecord)) 4334 return error("Invalid record"); 4335 unsigned OpNum = 0; 4336 unsigned TypeID = Record[OpNum++]; 4337 Type *Ty = getTypeByID(TypeID); 4338 if (!Ty) 4339 return error("Invalid record"); 4340 4341 unsigned AddrSpace; 4342 if (!NewRecord) { 4343 auto *PTy = dyn_cast<PointerType>(Ty); 4344 if (!PTy) 4345 return error("Invalid type for value"); 4346 AddrSpace = PTy->getAddressSpace(); 4347 TypeID = getContainedTypeID(TypeID); 4348 Ty = getTypeByID(TypeID); 4349 if (!Ty) 4350 return error("Missing element type for old-style indirect symbol"); 4351 } else { 4352 AddrSpace = Record[OpNum++]; 4353 } 4354 4355 auto Val = Record[OpNum++]; 4356 auto Linkage = Record[OpNum++]; 4357 GlobalValue *NewGA; 4358 if (BitCode == bitc::MODULE_CODE_ALIAS || 4359 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 4360 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 4361 TheModule); 4362 else 4363 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 4364 nullptr, TheModule); 4365 4366 // Local linkage must have default visibility. 4367 // auto-upgrade `hidden` and `protected` for old bitcode. 4368 if (OpNum != Record.size()) { 4369 auto VisInd = OpNum++; 4370 if (!NewGA->hasLocalLinkage()) 4371 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 4372 } 4373 if (BitCode == bitc::MODULE_CODE_ALIAS || 4374 BitCode == bitc::MODULE_CODE_ALIAS_OLD) { 4375 if (OpNum != Record.size()) { 4376 auto S = Record[OpNum++]; 4377 // A GlobalValue with local linkage cannot have a DLL storage class. 4378 if (!NewGA->hasLocalLinkage()) 4379 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(S)); 4380 } 4381 else 4382 upgradeDLLImportExportLinkage(NewGA, Linkage); 4383 if (OpNum != Record.size()) 4384 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 4385 if (OpNum != Record.size()) 4386 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); 4387 } 4388 if (OpNum != Record.size()) 4389 NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++])); 4390 inferDSOLocal(NewGA); 4391 4392 // Check whether we have enough values to read a partition name. 4393 if (OpNum + 1 < Record.size()) { 4394 // Check Strtab has enough values for the partition. 4395 if (Record[OpNum] + Record[OpNum + 1] > Strtab.size()) 4396 return error("Malformed partition, too large."); 4397 NewGA->setPartition( 4398 StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1])); 4399 } 4400 4401 ValueList.push_back(NewGA, getVirtualTypeID(NewGA->getType(), TypeID)); 4402 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 4403 return Error::success(); 4404 } 4405 4406 Error BitcodeReader::parseModule(uint64_t ResumeBit, 4407 bool ShouldLazyLoadMetadata, 4408 ParserCallbacks Callbacks) { 4409 // Load directly into RemoveDIs format if LoadBitcodeIntoNewDbgInfoFormat 4410 // has been set to true and we aren't attempting to preserve the existing 4411 // format in the bitcode (default action: load into the old debug format). 4412 if (PreserveInputDbgFormat != cl::boolOrDefault::BOU_TRUE) { 4413 TheModule->IsNewDbgInfoFormat = 4414 UseNewDbgInfoFormat && 4415 LoadBitcodeIntoNewDbgInfoFormat != cl::boolOrDefault::BOU_FALSE; 4416 } 4417 4418 this->ValueTypeCallback = std::move(Callbacks.ValueType); 4419 if (ResumeBit) { 4420 if (Error JumpFailed = Stream.JumpToBit(ResumeBit)) 4421 return JumpFailed; 4422 } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 4423 return Err; 4424 4425 SmallVector<uint64_t, 64> Record; 4426 4427 // Parts of bitcode parsing depend on the datalayout. Make sure we 4428 // finalize the datalayout before we run any of that code. 4429 bool ResolvedDataLayout = false; 4430 // In order to support importing modules with illegal data layout strings, 4431 // delay parsing the data layout string until after upgrades and overrides 4432 // have been applied, allowing to fix illegal data layout strings. 4433 // Initialize to the current module's layout string in case none is specified. 4434 std::string TentativeDataLayoutStr = TheModule->getDataLayoutStr(); 4435 4436 auto ResolveDataLayout = [&]() -> Error { 4437 if (ResolvedDataLayout) 4438 return Error::success(); 4439 4440 // Datalayout and triple can't be parsed after this point. 4441 ResolvedDataLayout = true; 4442 4443 // Auto-upgrade the layout string 4444 TentativeDataLayoutStr = llvm::UpgradeDataLayoutString( 4445 TentativeDataLayoutStr, TheModule->getTargetTriple()); 4446 4447 // Apply override 4448 if (Callbacks.DataLayout) { 4449 if (auto LayoutOverride = (*Callbacks.DataLayout)( 4450 TheModule->getTargetTriple(), TentativeDataLayoutStr)) 4451 TentativeDataLayoutStr = *LayoutOverride; 4452 } 4453 4454 // Now the layout string is finalized in TentativeDataLayoutStr. Parse it. 4455 Expected<DataLayout> MaybeDL = DataLayout::parse(TentativeDataLayoutStr); 4456 if (!MaybeDL) 4457 return MaybeDL.takeError(); 4458 4459 TheModule->setDataLayout(MaybeDL.get()); 4460 return Error::success(); 4461 }; 4462 4463 // Read all the records for this module. 4464 while (true) { 4465 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 4466 if (!MaybeEntry) 4467 return MaybeEntry.takeError(); 4468 llvm::BitstreamEntry Entry = MaybeEntry.get(); 4469 4470 switch (Entry.Kind) { 4471 case BitstreamEntry::Error: 4472 return error("Malformed block"); 4473 case BitstreamEntry::EndBlock: 4474 if (Error Err = ResolveDataLayout()) 4475 return Err; 4476 return globalCleanup(); 4477 4478 case BitstreamEntry::SubBlock: 4479 switch (Entry.ID) { 4480 default: // Skip unknown content. 4481 if (Error Err = Stream.SkipBlock()) 4482 return Err; 4483 break; 4484 case bitc::BLOCKINFO_BLOCK_ID: 4485 if (Error Err = readBlockInfo()) 4486 return Err; 4487 break; 4488 case bitc::PARAMATTR_BLOCK_ID: 4489 if (Error Err = parseAttributeBlock()) 4490 return Err; 4491 break; 4492 case bitc::PARAMATTR_GROUP_BLOCK_ID: 4493 if (Error Err = parseAttributeGroupBlock()) 4494 return Err; 4495 break; 4496 case bitc::TYPE_BLOCK_ID_NEW: 4497 if (Error Err = parseTypeTable()) 4498 return Err; 4499 break; 4500 case bitc::VALUE_SYMTAB_BLOCK_ID: 4501 if (!SeenValueSymbolTable) { 4502 // Either this is an old form VST without function index and an 4503 // associated VST forward declaration record (which would have caused 4504 // the VST to be jumped to and parsed before it was encountered 4505 // normally in the stream), or there were no function blocks to 4506 // trigger an earlier parsing of the VST. 4507 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 4508 if (Error Err = parseValueSymbolTable()) 4509 return Err; 4510 SeenValueSymbolTable = true; 4511 } else { 4512 // We must have had a VST forward declaration record, which caused 4513 // the parser to jump to and parse the VST earlier. 4514 assert(VSTOffset > 0); 4515 if (Error Err = Stream.SkipBlock()) 4516 return Err; 4517 } 4518 break; 4519 case bitc::CONSTANTS_BLOCK_ID: 4520 if (Error Err = parseConstants()) 4521 return Err; 4522 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 4523 return Err; 4524 break; 4525 case bitc::METADATA_BLOCK_ID: 4526 if (ShouldLazyLoadMetadata) { 4527 if (Error Err = rememberAndSkipMetadata()) 4528 return Err; 4529 break; 4530 } 4531 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 4532 if (Error Err = MDLoader->parseModuleMetadata()) 4533 return Err; 4534 break; 4535 case bitc::METADATA_KIND_BLOCK_ID: 4536 if (Error Err = MDLoader->parseMetadataKinds()) 4537 return Err; 4538 break; 4539 case bitc::FUNCTION_BLOCK_ID: 4540 if (Error Err = ResolveDataLayout()) 4541 return Err; 4542 4543 // If this is the first function body we've seen, reverse the 4544 // FunctionsWithBodies list. 4545 if (!SeenFirstFunctionBody) { 4546 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 4547 if (Error Err = globalCleanup()) 4548 return Err; 4549 SeenFirstFunctionBody = true; 4550 } 4551 4552 if (VSTOffset > 0) { 4553 // If we have a VST forward declaration record, make sure we 4554 // parse the VST now if we haven't already. It is needed to 4555 // set up the DeferredFunctionInfo vector for lazy reading. 4556 if (!SeenValueSymbolTable) { 4557 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset)) 4558 return Err; 4559 SeenValueSymbolTable = true; 4560 // Fall through so that we record the NextUnreadBit below. 4561 // This is necessary in case we have an anonymous function that 4562 // is later materialized. Since it will not have a VST entry we 4563 // need to fall back to the lazy parse to find its offset. 4564 } else { 4565 // If we have a VST forward declaration record, but have already 4566 // parsed the VST (just above, when the first function body was 4567 // encountered here), then we are resuming the parse after 4568 // materializing functions. The ResumeBit points to the 4569 // start of the last function block recorded in the 4570 // DeferredFunctionInfo map. Skip it. 4571 if (Error Err = Stream.SkipBlock()) 4572 return Err; 4573 continue; 4574 } 4575 } 4576 4577 // Support older bitcode files that did not have the function 4578 // index in the VST, nor a VST forward declaration record, as 4579 // well as anonymous functions that do not have VST entries. 4580 // Build the DeferredFunctionInfo vector on the fly. 4581 if (Error Err = rememberAndSkipFunctionBody()) 4582 return Err; 4583 4584 // Suspend parsing when we reach the function bodies. Subsequent 4585 // materialization calls will resume it when necessary. If the bitcode 4586 // file is old, the symbol table will be at the end instead and will not 4587 // have been seen yet. In this case, just finish the parse now. 4588 if (SeenValueSymbolTable) { 4589 NextUnreadBit = Stream.GetCurrentBitNo(); 4590 // After the VST has been parsed, we need to make sure intrinsic name 4591 // are auto-upgraded. 4592 return globalCleanup(); 4593 } 4594 break; 4595 case bitc::USELIST_BLOCK_ID: 4596 if (Error Err = parseUseLists()) 4597 return Err; 4598 break; 4599 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 4600 if (Error Err = parseOperandBundleTags()) 4601 return Err; 4602 break; 4603 case bitc::SYNC_SCOPE_NAMES_BLOCK_ID: 4604 if (Error Err = parseSyncScopeNames()) 4605 return Err; 4606 break; 4607 } 4608 continue; 4609 4610 case BitstreamEntry::Record: 4611 // The interesting case. 4612 break; 4613 } 4614 4615 // Read a record. 4616 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 4617 if (!MaybeBitCode) 4618 return MaybeBitCode.takeError(); 4619 switch (unsigned BitCode = MaybeBitCode.get()) { 4620 default: break; // Default behavior, ignore unknown content. 4621 case bitc::MODULE_CODE_VERSION: { 4622 Expected<unsigned> VersionOrErr = parseVersionRecord(Record); 4623 if (!VersionOrErr) 4624 return VersionOrErr.takeError(); 4625 UseRelativeIDs = *VersionOrErr >= 1; 4626 break; 4627 } 4628 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 4629 if (ResolvedDataLayout) 4630 return error("target triple too late in module"); 4631 std::string S; 4632 if (convertToString(Record, 0, S)) 4633 return error("Invalid record"); 4634 TheModule->setTargetTriple(S); 4635 break; 4636 } 4637 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 4638 if (ResolvedDataLayout) 4639 return error("datalayout too late in module"); 4640 if (convertToString(Record, 0, TentativeDataLayoutStr)) 4641 return error("Invalid record"); 4642 break; 4643 } 4644 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 4645 std::string S; 4646 if (convertToString(Record, 0, S)) 4647 return error("Invalid record"); 4648 TheModule->setModuleInlineAsm(S); 4649 break; 4650 } 4651 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 4652 // Deprecated, but still needed to read old bitcode files. 4653 std::string S; 4654 if (convertToString(Record, 0, S)) 4655 return error("Invalid record"); 4656 // Ignore value. 4657 break; 4658 } 4659 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 4660 std::string S; 4661 if (convertToString(Record, 0, S)) 4662 return error("Invalid record"); 4663 SectionTable.push_back(S); 4664 break; 4665 } 4666 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 4667 std::string S; 4668 if (convertToString(Record, 0, S)) 4669 return error("Invalid record"); 4670 GCTable.push_back(S); 4671 break; 4672 } 4673 case bitc::MODULE_CODE_COMDAT: 4674 if (Error Err = parseComdatRecord(Record)) 4675 return Err; 4676 break; 4677 // FIXME: BitcodeReader should handle {GLOBALVAR, FUNCTION, ALIAS, IFUNC} 4678 // written by ThinLinkBitcodeWriter. See 4679 // `ThinLinkBitcodeWriter::writeSimplifiedModuleInfo` for the format of each 4680 // record 4681 // (https://github.com/llvm/llvm-project/blob/b6a93967d9c11e79802b5e75cec1584d6c8aa472/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp#L4714) 4682 case bitc::MODULE_CODE_GLOBALVAR: 4683 if (Error Err = parseGlobalVarRecord(Record)) 4684 return Err; 4685 break; 4686 case bitc::MODULE_CODE_FUNCTION: 4687 if (Error Err = ResolveDataLayout()) 4688 return Err; 4689 if (Error Err = parseFunctionRecord(Record)) 4690 return Err; 4691 break; 4692 case bitc::MODULE_CODE_IFUNC: 4693 case bitc::MODULE_CODE_ALIAS: 4694 case bitc::MODULE_CODE_ALIAS_OLD: 4695 if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record)) 4696 return Err; 4697 break; 4698 /// MODULE_CODE_VSTOFFSET: [offset] 4699 case bitc::MODULE_CODE_VSTOFFSET: 4700 if (Record.empty()) 4701 return error("Invalid record"); 4702 // Note that we subtract 1 here because the offset is relative to one word 4703 // before the start of the identification or module block, which was 4704 // historically always the start of the regular bitcode header. 4705 VSTOffset = Record[0] - 1; 4706 break; 4707 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4708 case bitc::MODULE_CODE_SOURCE_FILENAME: 4709 SmallString<128> ValueName; 4710 if (convertToString(Record, 0, ValueName)) 4711 return error("Invalid record"); 4712 TheModule->setSourceFileName(ValueName); 4713 break; 4714 } 4715 Record.clear(); 4716 } 4717 this->ValueTypeCallback = std::nullopt; 4718 return Error::success(); 4719 } 4720 4721 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 4722 bool IsImporting, 4723 ParserCallbacks Callbacks) { 4724 TheModule = M; 4725 MetadataLoaderCallbacks MDCallbacks; 4726 MDCallbacks.GetTypeByID = [&](unsigned ID) { return getTypeByID(ID); }; 4727 MDCallbacks.GetContainedTypeID = [&](unsigned I, unsigned J) { 4728 return getContainedTypeID(I, J); 4729 }; 4730 MDCallbacks.MDType = Callbacks.MDType; 4731 MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, MDCallbacks); 4732 return parseModule(0, ShouldLazyLoadMetadata, Callbacks); 4733 } 4734 4735 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 4736 if (!isa<PointerType>(PtrType)) 4737 return error("Load/Store operand is not a pointer type"); 4738 if (!PointerType::isLoadableOrStorableType(ValType)) 4739 return error("Cannot load/store from pointer"); 4740 return Error::success(); 4741 } 4742 4743 Error BitcodeReader::propagateAttributeTypes(CallBase *CB, 4744 ArrayRef<unsigned> ArgTyIDs) { 4745 AttributeList Attrs = CB->getAttributes(); 4746 for (unsigned i = 0; i != CB->arg_size(); ++i) { 4747 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet, 4748 Attribute::InAlloca}) { 4749 if (!Attrs.hasParamAttr(i, Kind) || 4750 Attrs.getParamAttr(i, Kind).getValueAsType()) 4751 continue; 4752 4753 Type *PtrEltTy = getPtrElementTypeByID(ArgTyIDs[i]); 4754 if (!PtrEltTy) 4755 return error("Missing element type for typed attribute upgrade"); 4756 4757 Attribute NewAttr; 4758 switch (Kind) { 4759 case Attribute::ByVal: 4760 NewAttr = Attribute::getWithByValType(Context, PtrEltTy); 4761 break; 4762 case Attribute::StructRet: 4763 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy); 4764 break; 4765 case Attribute::InAlloca: 4766 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy); 4767 break; 4768 default: 4769 llvm_unreachable("not an upgraded type attribute"); 4770 } 4771 4772 Attrs = Attrs.addParamAttribute(Context, i, NewAttr); 4773 } 4774 } 4775 4776 if (CB->isInlineAsm()) { 4777 const InlineAsm *IA = cast<InlineAsm>(CB->getCalledOperand()); 4778 unsigned ArgNo = 0; 4779 for (const InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 4780 if (!CI.hasArg()) 4781 continue; 4782 4783 if (CI.isIndirect && !Attrs.getParamElementType(ArgNo)) { 4784 Type *ElemTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]); 4785 if (!ElemTy) 4786 return error("Missing element type for inline asm upgrade"); 4787 Attrs = Attrs.addParamAttribute( 4788 Context, ArgNo, 4789 Attribute::get(Context, Attribute::ElementType, ElemTy)); 4790 } 4791 4792 ArgNo++; 4793 } 4794 } 4795 4796 switch (CB->getIntrinsicID()) { 4797 case Intrinsic::preserve_array_access_index: 4798 case Intrinsic::preserve_struct_access_index: 4799 case Intrinsic::aarch64_ldaxr: 4800 case Intrinsic::aarch64_ldxr: 4801 case Intrinsic::aarch64_stlxr: 4802 case Intrinsic::aarch64_stxr: 4803 case Intrinsic::arm_ldaex: 4804 case Intrinsic::arm_ldrex: 4805 case Intrinsic::arm_stlex: 4806 case Intrinsic::arm_strex: { 4807 unsigned ArgNo; 4808 switch (CB->getIntrinsicID()) { 4809 case Intrinsic::aarch64_stlxr: 4810 case Intrinsic::aarch64_stxr: 4811 case Intrinsic::arm_stlex: 4812 case Intrinsic::arm_strex: 4813 ArgNo = 1; 4814 break; 4815 default: 4816 ArgNo = 0; 4817 break; 4818 } 4819 if (!Attrs.getParamElementType(ArgNo)) { 4820 Type *ElTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]); 4821 if (!ElTy) 4822 return error("Missing element type for elementtype upgrade"); 4823 Attribute NewAttr = Attribute::get(Context, Attribute::ElementType, ElTy); 4824 Attrs = Attrs.addParamAttribute(Context, ArgNo, NewAttr); 4825 } 4826 break; 4827 } 4828 default: 4829 break; 4830 } 4831 4832 CB->setAttributes(Attrs); 4833 return Error::success(); 4834 } 4835 4836 /// Lazily parse the specified function body block. 4837 Error BitcodeReader::parseFunctionBody(Function *F) { 4838 if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 4839 return Err; 4840 4841 // Unexpected unresolved metadata when parsing function. 4842 if (MDLoader->hasFwdRefs()) 4843 return error("Invalid function metadata: incoming forward references"); 4844 4845 InstructionList.clear(); 4846 unsigned ModuleValueListSize = ValueList.size(); 4847 unsigned ModuleMDLoaderSize = MDLoader->size(); 4848 4849 // Add all the function arguments to the value table. 4850 unsigned ArgNo = 0; 4851 unsigned FTyID = FunctionTypeIDs[F]; 4852 for (Argument &I : F->args()) { 4853 unsigned ArgTyID = getContainedTypeID(FTyID, ArgNo + 1); 4854 assert(I.getType() == getTypeByID(ArgTyID) && 4855 "Incorrect fully specified type for Function Argument"); 4856 ValueList.push_back(&I, ArgTyID); 4857 ++ArgNo; 4858 } 4859 unsigned NextValueNo = ValueList.size(); 4860 BasicBlock *CurBB = nullptr; 4861 unsigned CurBBNo = 0; 4862 // Block into which constant expressions from phi nodes are materialized. 4863 BasicBlock *PhiConstExprBB = nullptr; 4864 // Edge blocks for phi nodes into which constant expressions have been 4865 // expanded. 4866 SmallMapVector<std::pair<BasicBlock *, BasicBlock *>, BasicBlock *, 4> 4867 ConstExprEdgeBBs; 4868 4869 DebugLoc LastLoc; 4870 auto getLastInstruction = [&]() -> Instruction * { 4871 if (CurBB && !CurBB->empty()) 4872 return &CurBB->back(); 4873 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 4874 !FunctionBBs[CurBBNo - 1]->empty()) 4875 return &FunctionBBs[CurBBNo - 1]->back(); 4876 return nullptr; 4877 }; 4878 4879 std::vector<OperandBundleDef> OperandBundles; 4880 4881 // Read all the records. 4882 SmallVector<uint64_t, 64> Record; 4883 4884 while (true) { 4885 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 4886 if (!MaybeEntry) 4887 return MaybeEntry.takeError(); 4888 llvm::BitstreamEntry Entry = MaybeEntry.get(); 4889 4890 switch (Entry.Kind) { 4891 case BitstreamEntry::Error: 4892 return error("Malformed block"); 4893 case BitstreamEntry::EndBlock: 4894 goto OutOfRecordLoop; 4895 4896 case BitstreamEntry::SubBlock: 4897 switch (Entry.ID) { 4898 default: // Skip unknown content. 4899 if (Error Err = Stream.SkipBlock()) 4900 return Err; 4901 break; 4902 case bitc::CONSTANTS_BLOCK_ID: 4903 if (Error Err = parseConstants()) 4904 return Err; 4905 NextValueNo = ValueList.size(); 4906 break; 4907 case bitc::VALUE_SYMTAB_BLOCK_ID: 4908 if (Error Err = parseValueSymbolTable()) 4909 return Err; 4910 break; 4911 case bitc::METADATA_ATTACHMENT_ID: 4912 if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList)) 4913 return Err; 4914 break; 4915 case bitc::METADATA_BLOCK_ID: 4916 assert(DeferredMetadataInfo.empty() && 4917 "Must read all module-level metadata before function-level"); 4918 if (Error Err = MDLoader->parseFunctionMetadata()) 4919 return Err; 4920 break; 4921 case bitc::USELIST_BLOCK_ID: 4922 if (Error Err = parseUseLists()) 4923 return Err; 4924 break; 4925 } 4926 continue; 4927 4928 case BitstreamEntry::Record: 4929 // The interesting case. 4930 break; 4931 } 4932 4933 // Read a record. 4934 Record.clear(); 4935 Instruction *I = nullptr; 4936 unsigned ResTypeID = InvalidTypeID; 4937 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 4938 if (!MaybeBitCode) 4939 return MaybeBitCode.takeError(); 4940 switch (unsigned BitCode = MaybeBitCode.get()) { 4941 default: // Default behavior: reject 4942 return error("Invalid value"); 4943 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 4944 if (Record.empty() || Record[0] == 0) 4945 return error("Invalid record"); 4946 // Create all the basic blocks for the function. 4947 FunctionBBs.resize(Record[0]); 4948 4949 // See if anything took the address of blocks in this function. 4950 auto BBFRI = BasicBlockFwdRefs.find(F); 4951 if (BBFRI == BasicBlockFwdRefs.end()) { 4952 for (BasicBlock *&BB : FunctionBBs) 4953 BB = BasicBlock::Create(Context, "", F); 4954 } else { 4955 auto &BBRefs = BBFRI->second; 4956 // Check for invalid basic block references. 4957 if (BBRefs.size() > FunctionBBs.size()) 4958 return error("Invalid ID"); 4959 assert(!BBRefs.empty() && "Unexpected empty array"); 4960 assert(!BBRefs.front() && "Invalid reference to entry block"); 4961 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 4962 ++I) 4963 if (I < RE && BBRefs[I]) { 4964 BBRefs[I]->insertInto(F); 4965 FunctionBBs[I] = BBRefs[I]; 4966 } else { 4967 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 4968 } 4969 4970 // Erase from the table. 4971 BasicBlockFwdRefs.erase(BBFRI); 4972 } 4973 4974 CurBB = FunctionBBs[0]; 4975 continue; 4976 } 4977 4978 case bitc::FUNC_CODE_BLOCKADDR_USERS: // BLOCKADDR_USERS: [vals...] 4979 // The record should not be emitted if it's an empty list. 4980 if (Record.empty()) 4981 return error("Invalid record"); 4982 // When we have the RARE case of a BlockAddress Constant that is not 4983 // scoped to the Function it refers to, we need to conservatively 4984 // materialize the referred to Function, regardless of whether or not 4985 // that Function will ultimately be linked, otherwise users of 4986 // BitcodeReader might start splicing out Function bodies such that we 4987 // might no longer be able to materialize the BlockAddress since the 4988 // BasicBlock (and entire body of the Function) the BlockAddress refers 4989 // to may have been moved. In the case that the user of BitcodeReader 4990 // decides ultimately not to link the Function body, materializing here 4991 // could be considered wasteful, but it's better than a deserialization 4992 // failure as described. This keeps BitcodeReader unaware of complex 4993 // linkage policy decisions such as those use by LTO, leaving those 4994 // decisions "one layer up." 4995 for (uint64_t ValID : Record) 4996 if (auto *F = dyn_cast<Function>(ValueList[ValID])) 4997 BackwardRefFunctions.push_back(F); 4998 else 4999 return error("Invalid record"); 5000 5001 continue; 5002 5003 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 5004 // This record indicates that the last instruction is at the same 5005 // location as the previous instruction with a location. 5006 I = getLastInstruction(); 5007 5008 if (!I) 5009 return error("Invalid record"); 5010 I->setDebugLoc(LastLoc); 5011 I = nullptr; 5012 continue; 5013 5014 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 5015 I = getLastInstruction(); 5016 if (!I || Record.size() < 4) 5017 return error("Invalid record"); 5018 5019 unsigned Line = Record[0], Col = Record[1]; 5020 unsigned ScopeID = Record[2], IAID = Record[3]; 5021 bool isImplicitCode = Record.size() == 5 && Record[4]; 5022 5023 MDNode *Scope = nullptr, *IA = nullptr; 5024 if (ScopeID) { 5025 Scope = dyn_cast_or_null<MDNode>( 5026 MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1)); 5027 if (!Scope) 5028 return error("Invalid record"); 5029 } 5030 if (IAID) { 5031 IA = dyn_cast_or_null<MDNode>( 5032 MDLoader->getMetadataFwdRefOrLoad(IAID - 1)); 5033 if (!IA) 5034 return error("Invalid record"); 5035 } 5036 LastLoc = DILocation::get(Scope->getContext(), Line, Col, Scope, IA, 5037 isImplicitCode); 5038 I->setDebugLoc(LastLoc); 5039 I = nullptr; 5040 continue; 5041 } 5042 case bitc::FUNC_CODE_INST_UNOP: { // UNOP: [opval, ty, opcode] 5043 unsigned OpNum = 0; 5044 Value *LHS; 5045 unsigned TypeID; 5046 if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) || 5047 OpNum+1 > Record.size()) 5048 return error("Invalid record"); 5049 5050 int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType()); 5051 if (Opc == -1) 5052 return error("Invalid record"); 5053 I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 5054 ResTypeID = TypeID; 5055 InstructionList.push_back(I); 5056 if (OpNum < Record.size()) { 5057 if (isa<FPMathOperator>(I)) { 5058 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 5059 if (FMF.any()) 5060 I->setFastMathFlags(FMF); 5061 } 5062 } 5063 break; 5064 } 5065 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 5066 unsigned OpNum = 0; 5067 Value *LHS, *RHS; 5068 unsigned TypeID; 5069 if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) || 5070 popValue(Record, OpNum, NextValueNo, LHS->getType(), TypeID, RHS, 5071 CurBB) || 5072 OpNum+1 > Record.size()) 5073 return error("Invalid record"); 5074 5075 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 5076 if (Opc == -1) 5077 return error("Invalid record"); 5078 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 5079 ResTypeID = TypeID; 5080 InstructionList.push_back(I); 5081 if (OpNum < Record.size()) { 5082 if (Opc == Instruction::Add || 5083 Opc == Instruction::Sub || 5084 Opc == Instruction::Mul || 5085 Opc == Instruction::Shl) { 5086 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 5087 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 5088 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 5089 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 5090 } else if (Opc == Instruction::SDiv || 5091 Opc == Instruction::UDiv || 5092 Opc == Instruction::LShr || 5093 Opc == Instruction::AShr) { 5094 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 5095 cast<BinaryOperator>(I)->setIsExact(true); 5096 } else if (Opc == Instruction::Or) { 5097 if (Record[OpNum] & (1 << bitc::PDI_DISJOINT)) 5098 cast<PossiblyDisjointInst>(I)->setIsDisjoint(true); 5099 } else if (isa<FPMathOperator>(I)) { 5100 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 5101 if (FMF.any()) 5102 I->setFastMathFlags(FMF); 5103 } 5104 } 5105 break; 5106 } 5107 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 5108 unsigned OpNum = 0; 5109 Value *Op; 5110 unsigned OpTypeID; 5111 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) || 5112 OpNum + 1 > Record.size()) 5113 return error("Invalid record"); 5114 5115 ResTypeID = Record[OpNum++]; 5116 Type *ResTy = getTypeByID(ResTypeID); 5117 int Opc = getDecodedCastOpcode(Record[OpNum++]); 5118 5119 if (Opc == -1 || !ResTy) 5120 return error("Invalid record"); 5121 Instruction *Temp = nullptr; 5122 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 5123 if (Temp) { 5124 InstructionList.push_back(Temp); 5125 assert(CurBB && "No current BB?"); 5126 Temp->insertInto(CurBB, CurBB->end()); 5127 } 5128 } else { 5129 auto CastOp = (Instruction::CastOps)Opc; 5130 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 5131 return error("Invalid cast"); 5132 I = CastInst::Create(CastOp, Op, ResTy); 5133 } 5134 5135 if (OpNum < Record.size()) { 5136 if (Opc == Instruction::ZExt || Opc == Instruction::UIToFP) { 5137 if (Record[OpNum] & (1 << bitc::PNNI_NON_NEG)) 5138 cast<PossiblyNonNegInst>(I)->setNonNeg(true); 5139 } else if (Opc == Instruction::Trunc) { 5140 if (Record[OpNum] & (1 << bitc::TIO_NO_UNSIGNED_WRAP)) 5141 cast<TruncInst>(I)->setHasNoUnsignedWrap(true); 5142 if (Record[OpNum] & (1 << bitc::TIO_NO_SIGNED_WRAP)) 5143 cast<TruncInst>(I)->setHasNoSignedWrap(true); 5144 } 5145 } 5146 5147 InstructionList.push_back(I); 5148 break; 5149 } 5150 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 5151 case bitc::FUNC_CODE_INST_GEP_OLD: 5152 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 5153 unsigned OpNum = 0; 5154 5155 unsigned TyID; 5156 Type *Ty; 5157 GEPNoWrapFlags NW; 5158 5159 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 5160 NW = toGEPNoWrapFlags(Record[OpNum++]); 5161 TyID = Record[OpNum++]; 5162 Ty = getTypeByID(TyID); 5163 } else { 5164 if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD) 5165 NW = GEPNoWrapFlags::inBounds(); 5166 TyID = InvalidTypeID; 5167 Ty = nullptr; 5168 } 5169 5170 Value *BasePtr; 5171 unsigned BasePtrTypeID; 5172 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr, BasePtrTypeID, 5173 CurBB)) 5174 return error("Invalid record"); 5175 5176 if (!Ty) { 5177 TyID = getContainedTypeID(BasePtrTypeID); 5178 if (BasePtr->getType()->isVectorTy()) 5179 TyID = getContainedTypeID(TyID); 5180 Ty = getTypeByID(TyID); 5181 } 5182 5183 SmallVector<Value*, 16> GEPIdx; 5184 while (OpNum != Record.size()) { 5185 Value *Op; 5186 unsigned OpTypeID; 5187 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 5188 return error("Invalid record"); 5189 GEPIdx.push_back(Op); 5190 } 5191 5192 auto *GEP = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 5193 I = GEP; 5194 5195 ResTypeID = TyID; 5196 if (cast<GEPOperator>(I)->getNumIndices() != 0) { 5197 auto GTI = std::next(gep_type_begin(I)); 5198 for (Value *Idx : drop_begin(cast<GEPOperator>(I)->indices())) { 5199 unsigned SubType = 0; 5200 if (GTI.isStruct()) { 5201 ConstantInt *IdxC = 5202 Idx->getType()->isVectorTy() 5203 ? cast<ConstantInt>(cast<Constant>(Idx)->getSplatValue()) 5204 : cast<ConstantInt>(Idx); 5205 SubType = IdxC->getZExtValue(); 5206 } 5207 ResTypeID = getContainedTypeID(ResTypeID, SubType); 5208 ++GTI; 5209 } 5210 } 5211 5212 // At this point ResTypeID is the result element type. We need a pointer 5213 // or vector of pointer to it. 5214 ResTypeID = getVirtualTypeID(I->getType()->getScalarType(), ResTypeID); 5215 if (I->getType()->isVectorTy()) 5216 ResTypeID = getVirtualTypeID(I->getType(), ResTypeID); 5217 5218 InstructionList.push_back(I); 5219 GEP->setNoWrapFlags(NW); 5220 break; 5221 } 5222 5223 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 5224 // EXTRACTVAL: [opty, opval, n x indices] 5225 unsigned OpNum = 0; 5226 Value *Agg; 5227 unsigned AggTypeID; 5228 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB)) 5229 return error("Invalid record"); 5230 Type *Ty = Agg->getType(); 5231 5232 unsigned RecSize = Record.size(); 5233 if (OpNum == RecSize) 5234 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 5235 5236 SmallVector<unsigned, 4> EXTRACTVALIdx; 5237 ResTypeID = AggTypeID; 5238 for (; OpNum != RecSize; ++OpNum) { 5239 bool IsArray = Ty->isArrayTy(); 5240 bool IsStruct = Ty->isStructTy(); 5241 uint64_t Index = Record[OpNum]; 5242 5243 if (!IsStruct && !IsArray) 5244 return error("EXTRACTVAL: Invalid type"); 5245 if ((unsigned)Index != Index) 5246 return error("Invalid value"); 5247 if (IsStruct && Index >= Ty->getStructNumElements()) 5248 return error("EXTRACTVAL: Invalid struct index"); 5249 if (IsArray && Index >= Ty->getArrayNumElements()) 5250 return error("EXTRACTVAL: Invalid array index"); 5251 EXTRACTVALIdx.push_back((unsigned)Index); 5252 5253 if (IsStruct) { 5254 Ty = Ty->getStructElementType(Index); 5255 ResTypeID = getContainedTypeID(ResTypeID, Index); 5256 } else { 5257 Ty = Ty->getArrayElementType(); 5258 ResTypeID = getContainedTypeID(ResTypeID); 5259 } 5260 } 5261 5262 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 5263 InstructionList.push_back(I); 5264 break; 5265 } 5266 5267 case bitc::FUNC_CODE_INST_INSERTVAL: { 5268 // INSERTVAL: [opty, opval, opty, opval, n x indices] 5269 unsigned OpNum = 0; 5270 Value *Agg; 5271 unsigned AggTypeID; 5272 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB)) 5273 return error("Invalid record"); 5274 Value *Val; 5275 unsigned ValTypeID; 5276 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 5277 return error("Invalid record"); 5278 5279 unsigned RecSize = Record.size(); 5280 if (OpNum == RecSize) 5281 return error("INSERTVAL: Invalid instruction with 0 indices"); 5282 5283 SmallVector<unsigned, 4> INSERTVALIdx; 5284 Type *CurTy = Agg->getType(); 5285 for (; OpNum != RecSize; ++OpNum) { 5286 bool IsArray = CurTy->isArrayTy(); 5287 bool IsStruct = CurTy->isStructTy(); 5288 uint64_t Index = Record[OpNum]; 5289 5290 if (!IsStruct && !IsArray) 5291 return error("INSERTVAL: Invalid type"); 5292 if ((unsigned)Index != Index) 5293 return error("Invalid value"); 5294 if (IsStruct && Index >= CurTy->getStructNumElements()) 5295 return error("INSERTVAL: Invalid struct index"); 5296 if (IsArray && Index >= CurTy->getArrayNumElements()) 5297 return error("INSERTVAL: Invalid array index"); 5298 5299 INSERTVALIdx.push_back((unsigned)Index); 5300 if (IsStruct) 5301 CurTy = CurTy->getStructElementType(Index); 5302 else 5303 CurTy = CurTy->getArrayElementType(); 5304 } 5305 5306 if (CurTy != Val->getType()) 5307 return error("Inserted value type doesn't match aggregate type"); 5308 5309 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 5310 ResTypeID = AggTypeID; 5311 InstructionList.push_back(I); 5312 break; 5313 } 5314 5315 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 5316 // obsolete form of select 5317 // handles select i1 ... in old bitcode 5318 unsigned OpNum = 0; 5319 Value *TrueVal, *FalseVal, *Cond; 5320 unsigned TypeID; 5321 Type *CondType = Type::getInt1Ty(Context); 5322 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, TypeID, 5323 CurBB) || 5324 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), TypeID, 5325 FalseVal, CurBB) || 5326 popValue(Record, OpNum, NextValueNo, CondType, 5327 getVirtualTypeID(CondType), Cond, CurBB)) 5328 return error("Invalid record"); 5329 5330 I = SelectInst::Create(Cond, TrueVal, FalseVal); 5331 ResTypeID = TypeID; 5332 InstructionList.push_back(I); 5333 break; 5334 } 5335 5336 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 5337 // new form of select 5338 // handles select i1 or select [N x i1] 5339 unsigned OpNum = 0; 5340 Value *TrueVal, *FalseVal, *Cond; 5341 unsigned ValTypeID, CondTypeID; 5342 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, ValTypeID, 5343 CurBB) || 5344 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), ValTypeID, 5345 FalseVal, CurBB) || 5346 getValueTypePair(Record, OpNum, NextValueNo, Cond, CondTypeID, CurBB)) 5347 return error("Invalid record"); 5348 5349 // select condition can be either i1 or [N x i1] 5350 if (VectorType* vector_type = 5351 dyn_cast<VectorType>(Cond->getType())) { 5352 // expect <n x i1> 5353 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 5354 return error("Invalid type for value"); 5355 } else { 5356 // expect i1 5357 if (Cond->getType() != Type::getInt1Ty(Context)) 5358 return error("Invalid type for value"); 5359 } 5360 5361 I = SelectInst::Create(Cond, TrueVal, FalseVal); 5362 ResTypeID = ValTypeID; 5363 InstructionList.push_back(I); 5364 if (OpNum < Record.size() && isa<FPMathOperator>(I)) { 5365 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 5366 if (FMF.any()) 5367 I->setFastMathFlags(FMF); 5368 } 5369 break; 5370 } 5371 5372 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 5373 unsigned OpNum = 0; 5374 Value *Vec, *Idx; 5375 unsigned VecTypeID, IdxTypeID; 5376 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB) || 5377 getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB)) 5378 return error("Invalid record"); 5379 if (!Vec->getType()->isVectorTy()) 5380 return error("Invalid type for value"); 5381 I = ExtractElementInst::Create(Vec, Idx); 5382 ResTypeID = getContainedTypeID(VecTypeID); 5383 InstructionList.push_back(I); 5384 break; 5385 } 5386 5387 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 5388 unsigned OpNum = 0; 5389 Value *Vec, *Elt, *Idx; 5390 unsigned VecTypeID, IdxTypeID; 5391 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB)) 5392 return error("Invalid record"); 5393 if (!Vec->getType()->isVectorTy()) 5394 return error("Invalid type for value"); 5395 if (popValue(Record, OpNum, NextValueNo, 5396 cast<VectorType>(Vec->getType())->getElementType(), 5397 getContainedTypeID(VecTypeID), Elt, CurBB) || 5398 getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB)) 5399 return error("Invalid record"); 5400 I = InsertElementInst::Create(Vec, Elt, Idx); 5401 ResTypeID = VecTypeID; 5402 InstructionList.push_back(I); 5403 break; 5404 } 5405 5406 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 5407 unsigned OpNum = 0; 5408 Value *Vec1, *Vec2, *Mask; 5409 unsigned Vec1TypeID; 5410 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1, Vec1TypeID, 5411 CurBB) || 5412 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec1TypeID, 5413 Vec2, CurBB)) 5414 return error("Invalid record"); 5415 5416 unsigned MaskTypeID; 5417 if (getValueTypePair(Record, OpNum, NextValueNo, Mask, MaskTypeID, CurBB)) 5418 return error("Invalid record"); 5419 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 5420 return error("Invalid type for value"); 5421 5422 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 5423 ResTypeID = 5424 getVirtualTypeID(I->getType(), getContainedTypeID(Vec1TypeID)); 5425 InstructionList.push_back(I); 5426 break; 5427 } 5428 5429 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 5430 // Old form of ICmp/FCmp returning bool 5431 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 5432 // both legal on vectors but had different behaviour. 5433 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 5434 // FCmp/ICmp returning bool or vector of bool 5435 5436 unsigned OpNum = 0; 5437 Value *LHS, *RHS; 5438 unsigned LHSTypeID; 5439 if (getValueTypePair(Record, OpNum, NextValueNo, LHS, LHSTypeID, CurBB) || 5440 popValue(Record, OpNum, NextValueNo, LHS->getType(), LHSTypeID, RHS, 5441 CurBB)) 5442 return error("Invalid record"); 5443 5444 if (OpNum >= Record.size()) 5445 return error( 5446 "Invalid record: operand number exceeded available operands"); 5447 5448 CmpInst::Predicate PredVal = CmpInst::Predicate(Record[OpNum]); 5449 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 5450 FastMathFlags FMF; 5451 if (IsFP && Record.size() > OpNum+1) 5452 FMF = getDecodedFastMathFlags(Record[++OpNum]); 5453 5454 if (OpNum+1 != Record.size()) 5455 return error("Invalid record"); 5456 5457 if (IsFP) { 5458 if (!CmpInst::isFPPredicate(PredVal)) 5459 return error("Invalid fcmp predicate"); 5460 I = new FCmpInst(PredVal, LHS, RHS); 5461 } else { 5462 if (!CmpInst::isIntPredicate(PredVal)) 5463 return error("Invalid icmp predicate"); 5464 I = new ICmpInst(PredVal, LHS, RHS); 5465 } 5466 5467 ResTypeID = getVirtualTypeID(I->getType()->getScalarType()); 5468 if (LHS->getType()->isVectorTy()) 5469 ResTypeID = getVirtualTypeID(I->getType(), ResTypeID); 5470 5471 if (FMF.any()) 5472 I->setFastMathFlags(FMF); 5473 InstructionList.push_back(I); 5474 break; 5475 } 5476 5477 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 5478 { 5479 unsigned Size = Record.size(); 5480 if (Size == 0) { 5481 I = ReturnInst::Create(Context); 5482 InstructionList.push_back(I); 5483 break; 5484 } 5485 5486 unsigned OpNum = 0; 5487 Value *Op = nullptr; 5488 unsigned OpTypeID; 5489 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 5490 return error("Invalid record"); 5491 if (OpNum != Record.size()) 5492 return error("Invalid record"); 5493 5494 I = ReturnInst::Create(Context, Op); 5495 InstructionList.push_back(I); 5496 break; 5497 } 5498 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 5499 if (Record.size() != 1 && Record.size() != 3) 5500 return error("Invalid record"); 5501 BasicBlock *TrueDest = getBasicBlock(Record[0]); 5502 if (!TrueDest) 5503 return error("Invalid record"); 5504 5505 if (Record.size() == 1) { 5506 I = BranchInst::Create(TrueDest); 5507 InstructionList.push_back(I); 5508 } 5509 else { 5510 BasicBlock *FalseDest = getBasicBlock(Record[1]); 5511 Type *CondType = Type::getInt1Ty(Context); 5512 Value *Cond = getValue(Record, 2, NextValueNo, CondType, 5513 getVirtualTypeID(CondType), CurBB); 5514 if (!FalseDest || !Cond) 5515 return error("Invalid record"); 5516 I = BranchInst::Create(TrueDest, FalseDest, Cond); 5517 InstructionList.push_back(I); 5518 } 5519 break; 5520 } 5521 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 5522 if (Record.size() != 1 && Record.size() != 2) 5523 return error("Invalid record"); 5524 unsigned Idx = 0; 5525 Type *TokenTy = Type::getTokenTy(Context); 5526 Value *CleanupPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5527 getVirtualTypeID(TokenTy), CurBB); 5528 if (!CleanupPad) 5529 return error("Invalid record"); 5530 BasicBlock *UnwindDest = nullptr; 5531 if (Record.size() == 2) { 5532 UnwindDest = getBasicBlock(Record[Idx++]); 5533 if (!UnwindDest) 5534 return error("Invalid record"); 5535 } 5536 5537 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 5538 InstructionList.push_back(I); 5539 break; 5540 } 5541 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 5542 if (Record.size() != 2) 5543 return error("Invalid record"); 5544 unsigned Idx = 0; 5545 Type *TokenTy = Type::getTokenTy(Context); 5546 Value *CatchPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5547 getVirtualTypeID(TokenTy), CurBB); 5548 if (!CatchPad) 5549 return error("Invalid record"); 5550 BasicBlock *BB = getBasicBlock(Record[Idx++]); 5551 if (!BB) 5552 return error("Invalid record"); 5553 5554 I = CatchReturnInst::Create(CatchPad, BB); 5555 InstructionList.push_back(I); 5556 break; 5557 } 5558 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 5559 // We must have, at minimum, the outer scope and the number of arguments. 5560 if (Record.size() < 2) 5561 return error("Invalid record"); 5562 5563 unsigned Idx = 0; 5564 5565 Type *TokenTy = Type::getTokenTy(Context); 5566 Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5567 getVirtualTypeID(TokenTy), CurBB); 5568 if (!ParentPad) 5569 return error("Invalid record"); 5570 5571 unsigned NumHandlers = Record[Idx++]; 5572 5573 SmallVector<BasicBlock *, 2> Handlers; 5574 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 5575 BasicBlock *BB = getBasicBlock(Record[Idx++]); 5576 if (!BB) 5577 return error("Invalid record"); 5578 Handlers.push_back(BB); 5579 } 5580 5581 BasicBlock *UnwindDest = nullptr; 5582 if (Idx + 1 == Record.size()) { 5583 UnwindDest = getBasicBlock(Record[Idx++]); 5584 if (!UnwindDest) 5585 return error("Invalid record"); 5586 } 5587 5588 if (Record.size() != Idx) 5589 return error("Invalid record"); 5590 5591 auto *CatchSwitch = 5592 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 5593 for (BasicBlock *Handler : Handlers) 5594 CatchSwitch->addHandler(Handler); 5595 I = CatchSwitch; 5596 ResTypeID = getVirtualTypeID(I->getType()); 5597 InstructionList.push_back(I); 5598 break; 5599 } 5600 case bitc::FUNC_CODE_INST_CATCHPAD: 5601 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 5602 // We must have, at minimum, the outer scope and the number of arguments. 5603 if (Record.size() < 2) 5604 return error("Invalid record"); 5605 5606 unsigned Idx = 0; 5607 5608 Type *TokenTy = Type::getTokenTy(Context); 5609 Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5610 getVirtualTypeID(TokenTy), CurBB); 5611 if (!ParentPad) 5612 return error("Invald record"); 5613 5614 unsigned NumArgOperands = Record[Idx++]; 5615 5616 SmallVector<Value *, 2> Args; 5617 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 5618 Value *Val; 5619 unsigned ValTypeID; 5620 if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, nullptr)) 5621 return error("Invalid record"); 5622 Args.push_back(Val); 5623 } 5624 5625 if (Record.size() != Idx) 5626 return error("Invalid record"); 5627 5628 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 5629 I = CleanupPadInst::Create(ParentPad, Args); 5630 else 5631 I = CatchPadInst::Create(ParentPad, Args); 5632 ResTypeID = getVirtualTypeID(I->getType()); 5633 InstructionList.push_back(I); 5634 break; 5635 } 5636 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 5637 // Check magic 5638 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 5639 // "New" SwitchInst format with case ranges. The changes to write this 5640 // format were reverted but we still recognize bitcode that uses it. 5641 // Hopefully someday we will have support for case ranges and can use 5642 // this format again. 5643 5644 unsigned OpTyID = Record[1]; 5645 Type *OpTy = getTypeByID(OpTyID); 5646 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 5647 5648 Value *Cond = getValue(Record, 2, NextValueNo, OpTy, OpTyID, CurBB); 5649 BasicBlock *Default = getBasicBlock(Record[3]); 5650 if (!OpTy || !Cond || !Default) 5651 return error("Invalid record"); 5652 5653 unsigned NumCases = Record[4]; 5654 5655 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 5656 InstructionList.push_back(SI); 5657 5658 unsigned CurIdx = 5; 5659 for (unsigned i = 0; i != NumCases; ++i) { 5660 SmallVector<ConstantInt*, 1> CaseVals; 5661 unsigned NumItems = Record[CurIdx++]; 5662 for (unsigned ci = 0; ci != NumItems; ++ci) { 5663 bool isSingleNumber = Record[CurIdx++]; 5664 5665 APInt Low; 5666 unsigned ActiveWords = 1; 5667 if (ValueBitWidth > 64) 5668 ActiveWords = Record[CurIdx++]; 5669 Low = readWideAPInt(ArrayRef(&Record[CurIdx], ActiveWords), 5670 ValueBitWidth); 5671 CurIdx += ActiveWords; 5672 5673 if (!isSingleNumber) { 5674 ActiveWords = 1; 5675 if (ValueBitWidth > 64) 5676 ActiveWords = Record[CurIdx++]; 5677 APInt High = readWideAPInt(ArrayRef(&Record[CurIdx], ActiveWords), 5678 ValueBitWidth); 5679 CurIdx += ActiveWords; 5680 5681 // FIXME: It is not clear whether values in the range should be 5682 // compared as signed or unsigned values. The partially 5683 // implemented changes that used this format in the past used 5684 // unsigned comparisons. 5685 for ( ; Low.ule(High); ++Low) 5686 CaseVals.push_back(ConstantInt::get(Context, Low)); 5687 } else 5688 CaseVals.push_back(ConstantInt::get(Context, Low)); 5689 } 5690 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 5691 for (ConstantInt *Cst : CaseVals) 5692 SI->addCase(Cst, DestBB); 5693 } 5694 I = SI; 5695 break; 5696 } 5697 5698 // Old SwitchInst format without case ranges. 5699 5700 if (Record.size() < 3 || (Record.size() & 1) == 0) 5701 return error("Invalid record"); 5702 unsigned OpTyID = Record[0]; 5703 Type *OpTy = getTypeByID(OpTyID); 5704 Value *Cond = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB); 5705 BasicBlock *Default = getBasicBlock(Record[2]); 5706 if (!OpTy || !Cond || !Default) 5707 return error("Invalid record"); 5708 unsigned NumCases = (Record.size()-3)/2; 5709 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 5710 InstructionList.push_back(SI); 5711 for (unsigned i = 0, e = NumCases; i != e; ++i) { 5712 ConstantInt *CaseVal = dyn_cast_or_null<ConstantInt>( 5713 getFnValueByID(Record[3+i*2], OpTy, OpTyID, nullptr)); 5714 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 5715 if (!CaseVal || !DestBB) { 5716 delete SI; 5717 return error("Invalid record"); 5718 } 5719 SI->addCase(CaseVal, DestBB); 5720 } 5721 I = SI; 5722 break; 5723 } 5724 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 5725 if (Record.size() < 2) 5726 return error("Invalid record"); 5727 unsigned OpTyID = Record[0]; 5728 Type *OpTy = getTypeByID(OpTyID); 5729 Value *Address = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB); 5730 if (!OpTy || !Address) 5731 return error("Invalid record"); 5732 unsigned NumDests = Record.size()-2; 5733 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 5734 InstructionList.push_back(IBI); 5735 for (unsigned i = 0, e = NumDests; i != e; ++i) { 5736 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 5737 IBI->addDestination(DestBB); 5738 } else { 5739 delete IBI; 5740 return error("Invalid record"); 5741 } 5742 } 5743 I = IBI; 5744 break; 5745 } 5746 5747 case bitc::FUNC_CODE_INST_INVOKE: { 5748 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 5749 if (Record.size() < 4) 5750 return error("Invalid record"); 5751 unsigned OpNum = 0; 5752 AttributeList PAL = getAttributes(Record[OpNum++]); 5753 unsigned CCInfo = Record[OpNum++]; 5754 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 5755 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 5756 5757 unsigned FTyID = InvalidTypeID; 5758 FunctionType *FTy = nullptr; 5759 if ((CCInfo >> 13) & 1) { 5760 FTyID = Record[OpNum++]; 5761 FTy = dyn_cast<FunctionType>(getTypeByID(FTyID)); 5762 if (!FTy) 5763 return error("Explicit invoke type is not a function type"); 5764 } 5765 5766 Value *Callee; 5767 unsigned CalleeTypeID; 5768 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID, 5769 CurBB)) 5770 return error("Invalid record"); 5771 5772 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 5773 if (!CalleeTy) 5774 return error("Callee is not a pointer"); 5775 if (!FTy) { 5776 FTyID = getContainedTypeID(CalleeTypeID); 5777 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 5778 if (!FTy) 5779 return error("Callee is not of pointer to function type"); 5780 } 5781 if (Record.size() < FTy->getNumParams() + OpNum) 5782 return error("Insufficient operands to call"); 5783 5784 SmallVector<Value*, 16> Ops; 5785 SmallVector<unsigned, 16> ArgTyIDs; 5786 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5787 unsigned ArgTyID = getContainedTypeID(FTyID, i + 1); 5788 Ops.push_back(getValue(Record, OpNum, NextValueNo, FTy->getParamType(i), 5789 ArgTyID, CurBB)); 5790 ArgTyIDs.push_back(ArgTyID); 5791 if (!Ops.back()) 5792 return error("Invalid record"); 5793 } 5794 5795 if (!FTy->isVarArg()) { 5796 if (Record.size() != OpNum) 5797 return error("Invalid record"); 5798 } else { 5799 // Read type/value pairs for varargs params. 5800 while (OpNum != Record.size()) { 5801 Value *Op; 5802 unsigned OpTypeID; 5803 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 5804 return error("Invalid record"); 5805 Ops.push_back(Op); 5806 ArgTyIDs.push_back(OpTypeID); 5807 } 5808 } 5809 5810 // Upgrade the bundles if needed. 5811 if (!OperandBundles.empty()) 5812 UpgradeOperandBundles(OperandBundles); 5813 5814 I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops, 5815 OperandBundles); 5816 ResTypeID = getContainedTypeID(FTyID); 5817 OperandBundles.clear(); 5818 InstructionList.push_back(I); 5819 cast<InvokeInst>(I)->setCallingConv( 5820 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 5821 cast<InvokeInst>(I)->setAttributes(PAL); 5822 if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) { 5823 I->deleteValue(); 5824 return Err; 5825 } 5826 5827 break; 5828 } 5829 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 5830 unsigned Idx = 0; 5831 Value *Val = nullptr; 5832 unsigned ValTypeID; 5833 if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, CurBB)) 5834 return error("Invalid record"); 5835 I = ResumeInst::Create(Val); 5836 InstructionList.push_back(I); 5837 break; 5838 } 5839 case bitc::FUNC_CODE_INST_CALLBR: { 5840 // CALLBR: [attr, cc, norm, transfs, fty, fnid, args] 5841 unsigned OpNum = 0; 5842 AttributeList PAL = getAttributes(Record[OpNum++]); 5843 unsigned CCInfo = Record[OpNum++]; 5844 5845 BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]); 5846 unsigned NumIndirectDests = Record[OpNum++]; 5847 SmallVector<BasicBlock *, 16> IndirectDests; 5848 for (unsigned i = 0, e = NumIndirectDests; i != e; ++i) 5849 IndirectDests.push_back(getBasicBlock(Record[OpNum++])); 5850 5851 unsigned FTyID = InvalidTypeID; 5852 FunctionType *FTy = nullptr; 5853 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 5854 FTyID = Record[OpNum++]; 5855 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 5856 if (!FTy) 5857 return error("Explicit call type is not a function type"); 5858 } 5859 5860 Value *Callee; 5861 unsigned CalleeTypeID; 5862 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID, 5863 CurBB)) 5864 return error("Invalid record"); 5865 5866 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5867 if (!OpTy) 5868 return error("Callee is not a pointer type"); 5869 if (!FTy) { 5870 FTyID = getContainedTypeID(CalleeTypeID); 5871 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 5872 if (!FTy) 5873 return error("Callee is not of pointer to function type"); 5874 } 5875 if (Record.size() < FTy->getNumParams() + OpNum) 5876 return error("Insufficient operands to call"); 5877 5878 SmallVector<Value*, 16> Args; 5879 SmallVector<unsigned, 16> ArgTyIDs; 5880 // Read the fixed params. 5881 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5882 Value *Arg; 5883 unsigned ArgTyID = getContainedTypeID(FTyID, i + 1); 5884 if (FTy->getParamType(i)->isLabelTy()) 5885 Arg = getBasicBlock(Record[OpNum]); 5886 else 5887 Arg = getValue(Record, OpNum, NextValueNo, FTy->getParamType(i), 5888 ArgTyID, CurBB); 5889 if (!Arg) 5890 return error("Invalid record"); 5891 Args.push_back(Arg); 5892 ArgTyIDs.push_back(ArgTyID); 5893 } 5894 5895 // Read type/value pairs for varargs params. 5896 if (!FTy->isVarArg()) { 5897 if (OpNum != Record.size()) 5898 return error("Invalid record"); 5899 } else { 5900 while (OpNum != Record.size()) { 5901 Value *Op; 5902 unsigned OpTypeID; 5903 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 5904 return error("Invalid record"); 5905 Args.push_back(Op); 5906 ArgTyIDs.push_back(OpTypeID); 5907 } 5908 } 5909 5910 // Upgrade the bundles if needed. 5911 if (!OperandBundles.empty()) 5912 UpgradeOperandBundles(OperandBundles); 5913 5914 if (auto *IA = dyn_cast<InlineAsm>(Callee)) { 5915 InlineAsm::ConstraintInfoVector ConstraintInfo = IA->ParseConstraints(); 5916 auto IsLabelConstraint = [](const InlineAsm::ConstraintInfo &CI) { 5917 return CI.Type == InlineAsm::isLabel; 5918 }; 5919 if (none_of(ConstraintInfo, IsLabelConstraint)) { 5920 // Upgrade explicit blockaddress arguments to label constraints. 5921 // Verify that the last arguments are blockaddress arguments that 5922 // match the indirect destinations. Clang always generates callbr 5923 // in this form. We could support reordering with more effort. 5924 unsigned FirstBlockArg = Args.size() - IndirectDests.size(); 5925 for (unsigned ArgNo = FirstBlockArg; ArgNo < Args.size(); ++ArgNo) { 5926 unsigned LabelNo = ArgNo - FirstBlockArg; 5927 auto *BA = dyn_cast<BlockAddress>(Args[ArgNo]); 5928 if (!BA || BA->getFunction() != F || 5929 LabelNo > IndirectDests.size() || 5930 BA->getBasicBlock() != IndirectDests[LabelNo]) 5931 return error("callbr argument does not match indirect dest"); 5932 } 5933 5934 // Remove blockaddress arguments. 5935 Args.erase(Args.begin() + FirstBlockArg, Args.end()); 5936 ArgTyIDs.erase(ArgTyIDs.begin() + FirstBlockArg, ArgTyIDs.end()); 5937 5938 // Recreate the function type with less arguments. 5939 SmallVector<Type *> ArgTys; 5940 for (Value *Arg : Args) 5941 ArgTys.push_back(Arg->getType()); 5942 FTy = 5943 FunctionType::get(FTy->getReturnType(), ArgTys, FTy->isVarArg()); 5944 5945 // Update constraint string to use label constraints. 5946 std::string Constraints = IA->getConstraintString(); 5947 unsigned ArgNo = 0; 5948 size_t Pos = 0; 5949 for (const auto &CI : ConstraintInfo) { 5950 if (CI.hasArg()) { 5951 if (ArgNo >= FirstBlockArg) 5952 Constraints.insert(Pos, "!"); 5953 ++ArgNo; 5954 } 5955 5956 // Go to next constraint in string. 5957 Pos = Constraints.find(',', Pos); 5958 if (Pos == std::string::npos) 5959 break; 5960 ++Pos; 5961 } 5962 5963 Callee = InlineAsm::get(FTy, IA->getAsmString(), Constraints, 5964 IA->hasSideEffects(), IA->isAlignStack(), 5965 IA->getDialect(), IA->canThrow()); 5966 } 5967 } 5968 5969 I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args, 5970 OperandBundles); 5971 ResTypeID = getContainedTypeID(FTyID); 5972 OperandBundles.clear(); 5973 InstructionList.push_back(I); 5974 cast<CallBrInst>(I)->setCallingConv( 5975 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5976 cast<CallBrInst>(I)->setAttributes(PAL); 5977 if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) { 5978 I->deleteValue(); 5979 return Err; 5980 } 5981 break; 5982 } 5983 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 5984 I = new UnreachableInst(Context); 5985 InstructionList.push_back(I); 5986 break; 5987 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 5988 if (Record.empty()) 5989 return error("Invalid phi record"); 5990 // The first record specifies the type. 5991 unsigned TyID = Record[0]; 5992 Type *Ty = getTypeByID(TyID); 5993 if (!Ty) 5994 return error("Invalid phi record"); 5995 5996 // Phi arguments are pairs of records of [value, basic block]. 5997 // There is an optional final record for fast-math-flags if this phi has a 5998 // floating-point type. 5999 size_t NumArgs = (Record.size() - 1) / 2; 6000 PHINode *PN = PHINode::Create(Ty, NumArgs); 6001 if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN)) { 6002 PN->deleteValue(); 6003 return error("Invalid phi record"); 6004 } 6005 InstructionList.push_back(PN); 6006 6007 SmallDenseMap<BasicBlock *, Value *> Args; 6008 for (unsigned i = 0; i != NumArgs; i++) { 6009 BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]); 6010 if (!BB) { 6011 PN->deleteValue(); 6012 return error("Invalid phi BB"); 6013 } 6014 6015 // Phi nodes may contain the same predecessor multiple times, in which 6016 // case the incoming value must be identical. Directly reuse the already 6017 // seen value here, to avoid expanding a constant expression multiple 6018 // times. 6019 auto It = Args.find(BB); 6020 if (It != Args.end()) { 6021 PN->addIncoming(It->second, BB); 6022 continue; 6023 } 6024 6025 // If there already is a block for this edge (from a different phi), 6026 // use it. 6027 BasicBlock *EdgeBB = ConstExprEdgeBBs.lookup({BB, CurBB}); 6028 if (!EdgeBB) { 6029 // Otherwise, use a temporary block (that we will discard if it 6030 // turns out to be unnecessary). 6031 if (!PhiConstExprBB) 6032 PhiConstExprBB = BasicBlock::Create(Context, "phi.constexpr", F); 6033 EdgeBB = PhiConstExprBB; 6034 } 6035 6036 // With the new function encoding, it is possible that operands have 6037 // negative IDs (for forward references). Use a signed VBR 6038 // representation to keep the encoding small. 6039 Value *V; 6040 if (UseRelativeIDs) 6041 V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB); 6042 else 6043 V = getValue(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB); 6044 if (!V) { 6045 PN->deleteValue(); 6046 PhiConstExprBB->eraseFromParent(); 6047 return error("Invalid phi record"); 6048 } 6049 6050 if (EdgeBB == PhiConstExprBB && !EdgeBB->empty()) { 6051 ConstExprEdgeBBs.insert({{BB, CurBB}, EdgeBB}); 6052 PhiConstExprBB = nullptr; 6053 } 6054 PN->addIncoming(V, BB); 6055 Args.insert({BB, V}); 6056 } 6057 I = PN; 6058 ResTypeID = TyID; 6059 6060 // If there are an even number of records, the final record must be FMF. 6061 if (Record.size() % 2 == 0) { 6062 assert(isa<FPMathOperator>(I) && "Unexpected phi type"); 6063 FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]); 6064 if (FMF.any()) 6065 I->setFastMathFlags(FMF); 6066 } 6067 6068 break; 6069 } 6070 6071 case bitc::FUNC_CODE_INST_LANDINGPAD: 6072 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 6073 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 6074 unsigned Idx = 0; 6075 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 6076 if (Record.size() < 3) 6077 return error("Invalid record"); 6078 } else { 6079 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 6080 if (Record.size() < 4) 6081 return error("Invalid record"); 6082 } 6083 ResTypeID = Record[Idx++]; 6084 Type *Ty = getTypeByID(ResTypeID); 6085 if (!Ty) 6086 return error("Invalid record"); 6087 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 6088 Value *PersFn = nullptr; 6089 unsigned PersFnTypeID; 6090 if (getValueTypePair(Record, Idx, NextValueNo, PersFn, PersFnTypeID, 6091 nullptr)) 6092 return error("Invalid record"); 6093 6094 if (!F->hasPersonalityFn()) 6095 F->setPersonalityFn(cast<Constant>(PersFn)); 6096 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 6097 return error("Personality function mismatch"); 6098 } 6099 6100 bool IsCleanup = !!Record[Idx++]; 6101 unsigned NumClauses = Record[Idx++]; 6102 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 6103 LP->setCleanup(IsCleanup); 6104 for (unsigned J = 0; J != NumClauses; ++J) { 6105 LandingPadInst::ClauseType CT = 6106 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 6107 Value *Val; 6108 unsigned ValTypeID; 6109 6110 if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, 6111 nullptr)) { 6112 delete LP; 6113 return error("Invalid record"); 6114 } 6115 6116 assert((CT != LandingPadInst::Catch || 6117 !isa<ArrayType>(Val->getType())) && 6118 "Catch clause has a invalid type!"); 6119 assert((CT != LandingPadInst::Filter || 6120 isa<ArrayType>(Val->getType())) && 6121 "Filter clause has invalid type!"); 6122 LP->addClause(cast<Constant>(Val)); 6123 } 6124 6125 I = LP; 6126 InstructionList.push_back(I); 6127 break; 6128 } 6129 6130 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 6131 if (Record.size() != 4 && Record.size() != 5) 6132 return error("Invalid record"); 6133 using APV = AllocaPackedValues; 6134 const uint64_t Rec = Record[3]; 6135 const bool InAlloca = Bitfield::get<APV::UsedWithInAlloca>(Rec); 6136 const bool SwiftError = Bitfield::get<APV::SwiftError>(Rec); 6137 unsigned TyID = Record[0]; 6138 Type *Ty = getTypeByID(TyID); 6139 if (!Bitfield::get<APV::ExplicitType>(Rec)) { 6140 TyID = getContainedTypeID(TyID); 6141 Ty = getTypeByID(TyID); 6142 if (!Ty) 6143 return error("Missing element type for old-style alloca"); 6144 } 6145 unsigned OpTyID = Record[1]; 6146 Type *OpTy = getTypeByID(OpTyID); 6147 Value *Size = getFnValueByID(Record[2], OpTy, OpTyID, CurBB); 6148 MaybeAlign Align; 6149 uint64_t AlignExp = 6150 Bitfield::get<APV::AlignLower>(Rec) | 6151 (Bitfield::get<APV::AlignUpper>(Rec) << APV::AlignLower::Bits); 6152 if (Error Err = parseAlignmentValue(AlignExp, Align)) { 6153 return Err; 6154 } 6155 if (!Ty || !Size) 6156 return error("Invalid record"); 6157 6158 const DataLayout &DL = TheModule->getDataLayout(); 6159 unsigned AS = Record.size() == 5 ? Record[4] : DL.getAllocaAddrSpace(); 6160 6161 SmallPtrSet<Type *, 4> Visited; 6162 if (!Align && !Ty->isSized(&Visited)) 6163 return error("alloca of unsized type"); 6164 if (!Align) 6165 Align = DL.getPrefTypeAlign(Ty); 6166 6167 if (!Size->getType()->isIntegerTy()) 6168 return error("alloca element count must have integer type"); 6169 6170 AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align); 6171 AI->setUsedWithInAlloca(InAlloca); 6172 AI->setSwiftError(SwiftError); 6173 I = AI; 6174 ResTypeID = getVirtualTypeID(AI->getType(), TyID); 6175 InstructionList.push_back(I); 6176 break; 6177 } 6178 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 6179 unsigned OpNum = 0; 6180 Value *Op; 6181 unsigned OpTypeID; 6182 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) || 6183 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 6184 return error("Invalid record"); 6185 6186 if (!isa<PointerType>(Op->getType())) 6187 return error("Load operand is not a pointer type"); 6188 6189 Type *Ty = nullptr; 6190 if (OpNum + 3 == Record.size()) { 6191 ResTypeID = Record[OpNum++]; 6192 Ty = getTypeByID(ResTypeID); 6193 } else { 6194 ResTypeID = getContainedTypeID(OpTypeID); 6195 Ty = getTypeByID(ResTypeID); 6196 } 6197 6198 if (!Ty) 6199 return error("Missing load type"); 6200 6201 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 6202 return Err; 6203 6204 MaybeAlign Align; 6205 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 6206 return Err; 6207 SmallPtrSet<Type *, 4> Visited; 6208 if (!Align && !Ty->isSized(&Visited)) 6209 return error("load of unsized type"); 6210 if (!Align) 6211 Align = TheModule->getDataLayout().getABITypeAlign(Ty); 6212 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align); 6213 InstructionList.push_back(I); 6214 break; 6215 } 6216 case bitc::FUNC_CODE_INST_LOADATOMIC: { 6217 // LOADATOMIC: [opty, op, align, vol, ordering, ssid] 6218 unsigned OpNum = 0; 6219 Value *Op; 6220 unsigned OpTypeID; 6221 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) || 6222 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 6223 return error("Invalid record"); 6224 6225 if (!isa<PointerType>(Op->getType())) 6226 return error("Load operand is not a pointer type"); 6227 6228 Type *Ty = nullptr; 6229 if (OpNum + 5 == Record.size()) { 6230 ResTypeID = Record[OpNum++]; 6231 Ty = getTypeByID(ResTypeID); 6232 } else { 6233 ResTypeID = getContainedTypeID(OpTypeID); 6234 Ty = getTypeByID(ResTypeID); 6235 } 6236 6237 if (!Ty) 6238 return error("Missing atomic load type"); 6239 6240 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 6241 return Err; 6242 6243 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 6244 if (Ordering == AtomicOrdering::NotAtomic || 6245 Ordering == AtomicOrdering::Release || 6246 Ordering == AtomicOrdering::AcquireRelease) 6247 return error("Invalid record"); 6248 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 6249 return error("Invalid record"); 6250 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 6251 6252 MaybeAlign Align; 6253 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 6254 return Err; 6255 if (!Align) 6256 return error("Alignment missing from atomic load"); 6257 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID); 6258 InstructionList.push_back(I); 6259 break; 6260 } 6261 case bitc::FUNC_CODE_INST_STORE: 6262 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 6263 unsigned OpNum = 0; 6264 Value *Val, *Ptr; 6265 unsigned PtrTypeID, ValTypeID; 6266 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 6267 return error("Invalid record"); 6268 6269 if (BitCode == bitc::FUNC_CODE_INST_STORE) { 6270 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 6271 return error("Invalid record"); 6272 } else { 6273 ValTypeID = getContainedTypeID(PtrTypeID); 6274 if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID), 6275 ValTypeID, Val, CurBB)) 6276 return error("Invalid record"); 6277 } 6278 6279 if (OpNum + 2 != Record.size()) 6280 return error("Invalid record"); 6281 6282 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 6283 return Err; 6284 MaybeAlign Align; 6285 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 6286 return Err; 6287 SmallPtrSet<Type *, 4> Visited; 6288 if (!Align && !Val->getType()->isSized(&Visited)) 6289 return error("store of unsized type"); 6290 if (!Align) 6291 Align = TheModule->getDataLayout().getABITypeAlign(Val->getType()); 6292 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align); 6293 InstructionList.push_back(I); 6294 break; 6295 } 6296 case bitc::FUNC_CODE_INST_STOREATOMIC: 6297 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 6298 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid] 6299 unsigned OpNum = 0; 6300 Value *Val, *Ptr; 6301 unsigned PtrTypeID, ValTypeID; 6302 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB) || 6303 !isa<PointerType>(Ptr->getType())) 6304 return error("Invalid record"); 6305 if (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC) { 6306 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 6307 return error("Invalid record"); 6308 } else { 6309 ValTypeID = getContainedTypeID(PtrTypeID); 6310 if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID), 6311 ValTypeID, Val, CurBB)) 6312 return error("Invalid record"); 6313 } 6314 6315 if (OpNum + 4 != Record.size()) 6316 return error("Invalid record"); 6317 6318 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 6319 return Err; 6320 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 6321 if (Ordering == AtomicOrdering::NotAtomic || 6322 Ordering == AtomicOrdering::Acquire || 6323 Ordering == AtomicOrdering::AcquireRelease) 6324 return error("Invalid record"); 6325 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 6326 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 6327 return error("Invalid record"); 6328 6329 MaybeAlign Align; 6330 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 6331 return Err; 6332 if (!Align) 6333 return error("Alignment missing from atomic store"); 6334 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID); 6335 InstructionList.push_back(I); 6336 break; 6337 } 6338 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: { 6339 // CMPXCHG_OLD: [ptrty, ptr, cmp, val, vol, ordering, synchscope, 6340 // failure_ordering?, weak?] 6341 const size_t NumRecords = Record.size(); 6342 unsigned OpNum = 0; 6343 Value *Ptr = nullptr; 6344 unsigned PtrTypeID; 6345 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 6346 return error("Invalid record"); 6347 6348 if (!isa<PointerType>(Ptr->getType())) 6349 return error("Cmpxchg operand is not a pointer type"); 6350 6351 Value *Cmp = nullptr; 6352 unsigned CmpTypeID = getContainedTypeID(PtrTypeID); 6353 if (popValue(Record, OpNum, NextValueNo, getTypeByID(CmpTypeID), 6354 CmpTypeID, Cmp, CurBB)) 6355 return error("Invalid record"); 6356 6357 Value *New = nullptr; 6358 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID, 6359 New, CurBB) || 6360 NumRecords < OpNum + 3 || NumRecords > OpNum + 5) 6361 return error("Invalid record"); 6362 6363 const AtomicOrdering SuccessOrdering = 6364 getDecodedOrdering(Record[OpNum + 1]); 6365 if (SuccessOrdering == AtomicOrdering::NotAtomic || 6366 SuccessOrdering == AtomicOrdering::Unordered) 6367 return error("Invalid record"); 6368 6369 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 6370 6371 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 6372 return Err; 6373 6374 const AtomicOrdering FailureOrdering = 6375 NumRecords < 7 6376 ? AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering) 6377 : getDecodedOrdering(Record[OpNum + 3]); 6378 6379 if (FailureOrdering == AtomicOrdering::NotAtomic || 6380 FailureOrdering == AtomicOrdering::Unordered) 6381 return error("Invalid record"); 6382 6383 const Align Alignment( 6384 TheModule->getDataLayout().getTypeStoreSize(Cmp->getType())); 6385 6386 I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering, 6387 FailureOrdering, SSID); 6388 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 6389 6390 if (NumRecords < 8) { 6391 // Before weak cmpxchgs existed, the instruction simply returned the 6392 // value loaded from memory, so bitcode files from that era will be 6393 // expecting the first component of a modern cmpxchg. 6394 I->insertInto(CurBB, CurBB->end()); 6395 I = ExtractValueInst::Create(I, 0); 6396 ResTypeID = CmpTypeID; 6397 } else { 6398 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]); 6399 unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context)); 6400 ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID}); 6401 } 6402 6403 InstructionList.push_back(I); 6404 break; 6405 } 6406 case bitc::FUNC_CODE_INST_CMPXCHG: { 6407 // CMPXCHG: [ptrty, ptr, cmp, val, vol, success_ordering, synchscope, 6408 // failure_ordering, weak, align?] 6409 const size_t NumRecords = Record.size(); 6410 unsigned OpNum = 0; 6411 Value *Ptr = nullptr; 6412 unsigned PtrTypeID; 6413 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 6414 return error("Invalid record"); 6415 6416 if (!isa<PointerType>(Ptr->getType())) 6417 return error("Cmpxchg operand is not a pointer type"); 6418 6419 Value *Cmp = nullptr; 6420 unsigned CmpTypeID; 6421 if (getValueTypePair(Record, OpNum, NextValueNo, Cmp, CmpTypeID, CurBB)) 6422 return error("Invalid record"); 6423 6424 Value *Val = nullptr; 6425 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID, Val, 6426 CurBB)) 6427 return error("Invalid record"); 6428 6429 if (NumRecords < OpNum + 3 || NumRecords > OpNum + 6) 6430 return error("Invalid record"); 6431 6432 const bool IsVol = Record[OpNum]; 6433 6434 const AtomicOrdering SuccessOrdering = 6435 getDecodedOrdering(Record[OpNum + 1]); 6436 if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering)) 6437 return error("Invalid cmpxchg success ordering"); 6438 6439 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 6440 6441 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 6442 return Err; 6443 6444 const AtomicOrdering FailureOrdering = 6445 getDecodedOrdering(Record[OpNum + 3]); 6446 if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering)) 6447 return error("Invalid cmpxchg failure ordering"); 6448 6449 const bool IsWeak = Record[OpNum + 4]; 6450 6451 MaybeAlign Alignment; 6452 6453 if (NumRecords == (OpNum + 6)) { 6454 if (Error Err = parseAlignmentValue(Record[OpNum + 5], Alignment)) 6455 return Err; 6456 } 6457 if (!Alignment) 6458 Alignment = 6459 Align(TheModule->getDataLayout().getTypeStoreSize(Cmp->getType())); 6460 6461 I = new AtomicCmpXchgInst(Ptr, Cmp, Val, *Alignment, SuccessOrdering, 6462 FailureOrdering, SSID); 6463 cast<AtomicCmpXchgInst>(I)->setVolatile(IsVol); 6464 cast<AtomicCmpXchgInst>(I)->setWeak(IsWeak); 6465 6466 unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context)); 6467 ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID}); 6468 6469 InstructionList.push_back(I); 6470 break; 6471 } 6472 case bitc::FUNC_CODE_INST_ATOMICRMW_OLD: 6473 case bitc::FUNC_CODE_INST_ATOMICRMW: { 6474 // ATOMICRMW_OLD: [ptrty, ptr, val, op, vol, ordering, ssid, align?] 6475 // ATOMICRMW: [ptrty, ptr, valty, val, op, vol, ordering, ssid, align?] 6476 const size_t NumRecords = Record.size(); 6477 unsigned OpNum = 0; 6478 6479 Value *Ptr = nullptr; 6480 unsigned PtrTypeID; 6481 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 6482 return error("Invalid record"); 6483 6484 if (!isa<PointerType>(Ptr->getType())) 6485 return error("Invalid record"); 6486 6487 Value *Val = nullptr; 6488 unsigned ValTypeID = InvalidTypeID; 6489 if (BitCode == bitc::FUNC_CODE_INST_ATOMICRMW_OLD) { 6490 ValTypeID = getContainedTypeID(PtrTypeID); 6491 if (popValue(Record, OpNum, NextValueNo, 6492 getTypeByID(ValTypeID), ValTypeID, Val, CurBB)) 6493 return error("Invalid record"); 6494 } else { 6495 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 6496 return error("Invalid record"); 6497 } 6498 6499 if (!(NumRecords == (OpNum + 4) || NumRecords == (OpNum + 5))) 6500 return error("Invalid record"); 6501 6502 const AtomicRMWInst::BinOp Operation = 6503 getDecodedRMWOperation(Record[OpNum]); 6504 if (Operation < AtomicRMWInst::FIRST_BINOP || 6505 Operation > AtomicRMWInst::LAST_BINOP) 6506 return error("Invalid record"); 6507 6508 const bool IsVol = Record[OpNum + 1]; 6509 6510 const AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 6511 if (Ordering == AtomicOrdering::NotAtomic || 6512 Ordering == AtomicOrdering::Unordered) 6513 return error("Invalid record"); 6514 6515 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 6516 6517 MaybeAlign Alignment; 6518 6519 if (NumRecords == (OpNum + 5)) { 6520 if (Error Err = parseAlignmentValue(Record[OpNum + 4], Alignment)) 6521 return Err; 6522 } 6523 6524 if (!Alignment) 6525 Alignment = 6526 Align(TheModule->getDataLayout().getTypeStoreSize(Val->getType())); 6527 6528 I = new AtomicRMWInst(Operation, Ptr, Val, *Alignment, Ordering, SSID); 6529 ResTypeID = ValTypeID; 6530 cast<AtomicRMWInst>(I)->setVolatile(IsVol); 6531 6532 InstructionList.push_back(I); 6533 break; 6534 } 6535 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid] 6536 if (2 != Record.size()) 6537 return error("Invalid record"); 6538 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 6539 if (Ordering == AtomicOrdering::NotAtomic || 6540 Ordering == AtomicOrdering::Unordered || 6541 Ordering == AtomicOrdering::Monotonic) 6542 return error("Invalid record"); 6543 SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]); 6544 I = new FenceInst(Context, Ordering, SSID); 6545 InstructionList.push_back(I); 6546 break; 6547 } 6548 case bitc::FUNC_CODE_DEBUG_RECORD_LABEL: { 6549 // DbgLabelRecords are placed after the Instructions that they are 6550 // attached to. 6551 SeenDebugRecord = true; 6552 Instruction *Inst = getLastInstruction(); 6553 if (!Inst) 6554 return error("Invalid dbg record: missing instruction"); 6555 DILocation *DIL = cast<DILocation>(getFnMetadataByID(Record[0])); 6556 DILabel *Label = cast<DILabel>(getFnMetadataByID(Record[1])); 6557 Inst->getParent()->insertDbgRecordBefore( 6558 new DbgLabelRecord(Label, DebugLoc(DIL)), Inst->getIterator()); 6559 continue; // This isn't an instruction. 6560 } 6561 case bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE: 6562 case bitc::FUNC_CODE_DEBUG_RECORD_VALUE: 6563 case bitc::FUNC_CODE_DEBUG_RECORD_DECLARE: 6564 case bitc::FUNC_CODE_DEBUG_RECORD_ASSIGN: { 6565 // DbgVariableRecords are placed after the Instructions that they are 6566 // attached to. 6567 SeenDebugRecord = true; 6568 Instruction *Inst = getLastInstruction(); 6569 if (!Inst) 6570 return error("Invalid dbg record: missing instruction"); 6571 6572 // First 3 fields are common to all kinds: 6573 // DILocation, DILocalVariable, DIExpression 6574 // dbg_value (FUNC_CODE_DEBUG_RECORD_VALUE) 6575 // ..., LocationMetadata 6576 // dbg_value (FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE - abbrev'd) 6577 // ..., Value 6578 // dbg_declare (FUNC_CODE_DEBUG_RECORD_DECLARE) 6579 // ..., LocationMetadata 6580 // dbg_assign (FUNC_CODE_DEBUG_RECORD_ASSIGN) 6581 // ..., LocationMetadata, DIAssignID, DIExpression, LocationMetadata 6582 unsigned Slot = 0; 6583 // Common fields (0-2). 6584 DILocation *DIL = cast<DILocation>(getFnMetadataByID(Record[Slot++])); 6585 DILocalVariable *Var = 6586 cast<DILocalVariable>(getFnMetadataByID(Record[Slot++])); 6587 DIExpression *Expr = 6588 cast<DIExpression>(getFnMetadataByID(Record[Slot++])); 6589 6590 // Union field (3: LocationMetadata | Value). 6591 Metadata *RawLocation = nullptr; 6592 if (BitCode == bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE) { 6593 Value *V = nullptr; 6594 unsigned TyID = 0; 6595 // We never expect to see a fwd reference value here because 6596 // use-before-defs are encoded with the standard non-abbrev record 6597 // type (they'd require encoding the type too, and they're rare). As a 6598 // result, getValueTypePair only ever increments Slot by one here (once 6599 // for the value, never twice for value and type). 6600 unsigned SlotBefore = Slot; 6601 if (getValueTypePair(Record, Slot, NextValueNo, V, TyID, CurBB)) 6602 return error("Invalid dbg record: invalid value"); 6603 (void)SlotBefore; 6604 assert((SlotBefore == Slot - 1) && "unexpected fwd ref"); 6605 RawLocation = ValueAsMetadata::get(V); 6606 } else { 6607 RawLocation = getFnMetadataByID(Record[Slot++]); 6608 } 6609 6610 DbgVariableRecord *DVR = nullptr; 6611 switch (BitCode) { 6612 case bitc::FUNC_CODE_DEBUG_RECORD_VALUE: 6613 case bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE: 6614 DVR = new DbgVariableRecord(RawLocation, Var, Expr, DIL, 6615 DbgVariableRecord::LocationType::Value); 6616 break; 6617 case bitc::FUNC_CODE_DEBUG_RECORD_DECLARE: 6618 DVR = new DbgVariableRecord(RawLocation, Var, Expr, DIL, 6619 DbgVariableRecord::LocationType::Declare); 6620 break; 6621 case bitc::FUNC_CODE_DEBUG_RECORD_ASSIGN: { 6622 DIAssignID *ID = cast<DIAssignID>(getFnMetadataByID(Record[Slot++])); 6623 DIExpression *AddrExpr = 6624 cast<DIExpression>(getFnMetadataByID(Record[Slot++])); 6625 Metadata *Addr = getFnMetadataByID(Record[Slot++]); 6626 DVR = new DbgVariableRecord(RawLocation, Var, Expr, ID, Addr, AddrExpr, 6627 DIL); 6628 break; 6629 } 6630 default: 6631 llvm_unreachable("Unknown DbgVariableRecord bitcode"); 6632 } 6633 Inst->getParent()->insertDbgRecordBefore(DVR, Inst->getIterator()); 6634 continue; // This isn't an instruction. 6635 } 6636 case bitc::FUNC_CODE_INST_CALL: { 6637 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 6638 if (Record.size() < 3) 6639 return error("Invalid record"); 6640 6641 unsigned OpNum = 0; 6642 AttributeList PAL = getAttributes(Record[OpNum++]); 6643 unsigned CCInfo = Record[OpNum++]; 6644 6645 FastMathFlags FMF; 6646 if ((CCInfo >> bitc::CALL_FMF) & 1) { 6647 FMF = getDecodedFastMathFlags(Record[OpNum++]); 6648 if (!FMF.any()) 6649 return error("Fast math flags indicator set for call with no FMF"); 6650 } 6651 6652 unsigned FTyID = InvalidTypeID; 6653 FunctionType *FTy = nullptr; 6654 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 6655 FTyID = Record[OpNum++]; 6656 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 6657 if (!FTy) 6658 return error("Explicit call type is not a function type"); 6659 } 6660 6661 Value *Callee; 6662 unsigned CalleeTypeID; 6663 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID, 6664 CurBB)) 6665 return error("Invalid record"); 6666 6667 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 6668 if (!OpTy) 6669 return error("Callee is not a pointer type"); 6670 if (!FTy) { 6671 FTyID = getContainedTypeID(CalleeTypeID); 6672 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 6673 if (!FTy) 6674 return error("Callee is not of pointer to function type"); 6675 } 6676 if (Record.size() < FTy->getNumParams() + OpNum) 6677 return error("Insufficient operands to call"); 6678 6679 SmallVector<Value*, 16> Args; 6680 SmallVector<unsigned, 16> ArgTyIDs; 6681 // Read the fixed params. 6682 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 6683 unsigned ArgTyID = getContainedTypeID(FTyID, i + 1); 6684 if (FTy->getParamType(i)->isLabelTy()) 6685 Args.push_back(getBasicBlock(Record[OpNum])); 6686 else 6687 Args.push_back(getValue(Record, OpNum, NextValueNo, 6688 FTy->getParamType(i), ArgTyID, CurBB)); 6689 ArgTyIDs.push_back(ArgTyID); 6690 if (!Args.back()) 6691 return error("Invalid record"); 6692 } 6693 6694 // Read type/value pairs for varargs params. 6695 if (!FTy->isVarArg()) { 6696 if (OpNum != Record.size()) 6697 return error("Invalid record"); 6698 } else { 6699 while (OpNum != Record.size()) { 6700 Value *Op; 6701 unsigned OpTypeID; 6702 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 6703 return error("Invalid record"); 6704 Args.push_back(Op); 6705 ArgTyIDs.push_back(OpTypeID); 6706 } 6707 } 6708 6709 // Upgrade the bundles if needed. 6710 if (!OperandBundles.empty()) 6711 UpgradeOperandBundles(OperandBundles); 6712 6713 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 6714 ResTypeID = getContainedTypeID(FTyID); 6715 OperandBundles.clear(); 6716 InstructionList.push_back(I); 6717 cast<CallInst>(I)->setCallingConv( 6718 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 6719 CallInst::TailCallKind TCK = CallInst::TCK_None; 6720 if (CCInfo & (1 << bitc::CALL_TAIL)) 6721 TCK = CallInst::TCK_Tail; 6722 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 6723 TCK = CallInst::TCK_MustTail; 6724 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 6725 TCK = CallInst::TCK_NoTail; 6726 cast<CallInst>(I)->setTailCallKind(TCK); 6727 cast<CallInst>(I)->setAttributes(PAL); 6728 if (isa<DbgInfoIntrinsic>(I)) 6729 SeenDebugIntrinsic = true; 6730 if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) { 6731 I->deleteValue(); 6732 return Err; 6733 } 6734 if (FMF.any()) { 6735 if (!isa<FPMathOperator>(I)) 6736 return error("Fast-math-flags specified for call without " 6737 "floating-point scalar or vector return type"); 6738 I->setFastMathFlags(FMF); 6739 } 6740 break; 6741 } 6742 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 6743 if (Record.size() < 3) 6744 return error("Invalid record"); 6745 unsigned OpTyID = Record[0]; 6746 Type *OpTy = getTypeByID(OpTyID); 6747 Value *Op = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB); 6748 ResTypeID = Record[2]; 6749 Type *ResTy = getTypeByID(ResTypeID); 6750 if (!OpTy || !Op || !ResTy) 6751 return error("Invalid record"); 6752 I = new VAArgInst(Op, ResTy); 6753 InstructionList.push_back(I); 6754 break; 6755 } 6756 6757 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 6758 // A call or an invoke can be optionally prefixed with some variable 6759 // number of operand bundle blocks. These blocks are read into 6760 // OperandBundles and consumed at the next call or invoke instruction. 6761 6762 if (Record.empty() || Record[0] >= BundleTags.size()) 6763 return error("Invalid record"); 6764 6765 std::vector<Value *> Inputs; 6766 6767 unsigned OpNum = 1; 6768 while (OpNum != Record.size()) { 6769 Value *Op; 6770 unsigned OpTypeID; 6771 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 6772 return error("Invalid record"); 6773 Inputs.push_back(Op); 6774 } 6775 6776 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 6777 continue; 6778 } 6779 6780 case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval] 6781 unsigned OpNum = 0; 6782 Value *Op = nullptr; 6783 unsigned OpTypeID; 6784 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 6785 return error("Invalid record"); 6786 if (OpNum != Record.size()) 6787 return error("Invalid record"); 6788 6789 I = new FreezeInst(Op); 6790 ResTypeID = OpTypeID; 6791 InstructionList.push_back(I); 6792 break; 6793 } 6794 } 6795 6796 // Add instruction to end of current BB. If there is no current BB, reject 6797 // this file. 6798 if (!CurBB) { 6799 I->deleteValue(); 6800 return error("Invalid instruction with no BB"); 6801 } 6802 if (!OperandBundles.empty()) { 6803 I->deleteValue(); 6804 return error("Operand bundles found with no consumer"); 6805 } 6806 I->insertInto(CurBB, CurBB->end()); 6807 6808 // If this was a terminator instruction, move to the next block. 6809 if (I->isTerminator()) { 6810 ++CurBBNo; 6811 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 6812 } 6813 6814 // Non-void values get registered in the value table for future use. 6815 if (!I->getType()->isVoidTy()) { 6816 assert(I->getType() == getTypeByID(ResTypeID) && 6817 "Incorrect result type ID"); 6818 if (Error Err = ValueList.assignValue(NextValueNo++, I, ResTypeID)) 6819 return Err; 6820 } 6821 } 6822 6823 OutOfRecordLoop: 6824 6825 if (!OperandBundles.empty()) 6826 return error("Operand bundles found with no consumer"); 6827 6828 // Check the function list for unresolved values. 6829 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 6830 if (!A->getParent()) { 6831 // We found at least one unresolved value. Nuke them all to avoid leaks. 6832 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 6833 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 6834 A->replaceAllUsesWith(PoisonValue::get(A->getType())); 6835 delete A; 6836 } 6837 } 6838 return error("Never resolved value found in function"); 6839 } 6840 } 6841 6842 // Unexpected unresolved metadata about to be dropped. 6843 if (MDLoader->hasFwdRefs()) 6844 return error("Invalid function metadata: outgoing forward refs"); 6845 6846 if (PhiConstExprBB) 6847 PhiConstExprBB->eraseFromParent(); 6848 6849 for (const auto &Pair : ConstExprEdgeBBs) { 6850 BasicBlock *From = Pair.first.first; 6851 BasicBlock *To = Pair.first.second; 6852 BasicBlock *EdgeBB = Pair.second; 6853 BranchInst::Create(To, EdgeBB); 6854 From->getTerminator()->replaceSuccessorWith(To, EdgeBB); 6855 To->replacePhiUsesWith(From, EdgeBB); 6856 EdgeBB->moveBefore(To); 6857 } 6858 6859 // Trim the value list down to the size it was before we parsed this function. 6860 ValueList.shrinkTo(ModuleValueListSize); 6861 MDLoader->shrinkTo(ModuleMDLoaderSize); 6862 std::vector<BasicBlock*>().swap(FunctionBBs); 6863 return Error::success(); 6864 } 6865 6866 /// Find the function body in the bitcode stream 6867 Error BitcodeReader::findFunctionInStream( 6868 Function *F, 6869 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 6870 while (DeferredFunctionInfoIterator->second == 0) { 6871 // This is the fallback handling for the old format bitcode that 6872 // didn't contain the function index in the VST, or when we have 6873 // an anonymous function which would not have a VST entry. 6874 // Assert that we have one of those two cases. 6875 assert(VSTOffset == 0 || !F->hasName()); 6876 // Parse the next body in the stream and set its position in the 6877 // DeferredFunctionInfo map. 6878 if (Error Err = rememberAndSkipFunctionBodies()) 6879 return Err; 6880 } 6881 return Error::success(); 6882 } 6883 6884 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) { 6885 if (Val == SyncScope::SingleThread || Val == SyncScope::System) 6886 return SyncScope::ID(Val); 6887 if (Val >= SSIDs.size()) 6888 return SyncScope::System; // Map unknown synchronization scopes to system. 6889 return SSIDs[Val]; 6890 } 6891 6892 //===----------------------------------------------------------------------===// 6893 // GVMaterializer implementation 6894 //===----------------------------------------------------------------------===// 6895 6896 Error BitcodeReader::materialize(GlobalValue *GV) { 6897 Function *F = dyn_cast<Function>(GV); 6898 // If it's not a function or is already material, ignore the request. 6899 if (!F || !F->isMaterializable()) 6900 return Error::success(); 6901 6902 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 6903 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 6904 // If its position is recorded as 0, its body is somewhere in the stream 6905 // but we haven't seen it yet. 6906 if (DFII->second == 0) 6907 if (Error Err = findFunctionInStream(F, DFII)) 6908 return Err; 6909 6910 // Materialize metadata before parsing any function bodies. 6911 if (Error Err = materializeMetadata()) 6912 return Err; 6913 6914 // Move the bit stream to the saved position of the deferred function body. 6915 if (Error JumpFailed = Stream.JumpToBit(DFII->second)) 6916 return JumpFailed; 6917 6918 // Regardless of the debug info format we want to end up in, we need 6919 // IsNewDbgInfoFormat=true to construct any debug records seen in the bitcode. 6920 F->IsNewDbgInfoFormat = true; 6921 6922 if (Error Err = parseFunctionBody(F)) 6923 return Err; 6924 F->setIsMaterializable(false); 6925 6926 // All parsed Functions should load into the debug info format dictated by the 6927 // Module, unless we're attempting to preserve the input debug info format. 6928 if (SeenDebugIntrinsic && SeenDebugRecord) 6929 return error("Mixed debug intrinsics and debug records in bitcode module!"); 6930 if (PreserveInputDbgFormat == cl::boolOrDefault::BOU_TRUE) { 6931 bool SeenAnyDebugInfo = SeenDebugIntrinsic || SeenDebugRecord; 6932 bool NewDbgInfoFormatDesired = 6933 SeenAnyDebugInfo ? SeenDebugRecord : F->getParent()->IsNewDbgInfoFormat; 6934 if (SeenAnyDebugInfo) { 6935 UseNewDbgInfoFormat = SeenDebugRecord; 6936 WriteNewDbgInfoFormatToBitcode = SeenDebugRecord; 6937 WriteNewDbgInfoFormat = SeenDebugRecord; 6938 } 6939 // If the module's debug info format doesn't match the observed input 6940 // format, then set its format now; we don't need to call the conversion 6941 // function because there must be no existing intrinsics to convert. 6942 // Otherwise, just set the format on this function now. 6943 if (NewDbgInfoFormatDesired != F->getParent()->IsNewDbgInfoFormat) 6944 F->getParent()->setNewDbgInfoFormatFlag(NewDbgInfoFormatDesired); 6945 else 6946 F->setNewDbgInfoFormatFlag(NewDbgInfoFormatDesired); 6947 } else { 6948 // If we aren't preserving formats, we use the Module flag to get our 6949 // desired format instead of reading flags, in case we are lazy-loading and 6950 // the format of the module has been changed since it was set by the flags. 6951 // We only need to convert debug info here if we have debug records but 6952 // desire the intrinsic format; everything else is a no-op or handled by the 6953 // autoupgrader. 6954 bool ModuleIsNewDbgInfoFormat = F->getParent()->IsNewDbgInfoFormat; 6955 if (ModuleIsNewDbgInfoFormat || !SeenDebugRecord) 6956 F->setNewDbgInfoFormatFlag(ModuleIsNewDbgInfoFormat); 6957 else 6958 F->setIsNewDbgInfoFormat(ModuleIsNewDbgInfoFormat); 6959 } 6960 6961 if (StripDebugInfo) 6962 stripDebugInfo(*F); 6963 6964 // Upgrade any old intrinsic calls in the function. 6965 for (auto &I : UpgradedIntrinsics) { 6966 for (User *U : llvm::make_early_inc_range(I.first->materialized_users())) 6967 if (CallInst *CI = dyn_cast<CallInst>(U)) 6968 UpgradeIntrinsicCall(CI, I.second); 6969 } 6970 6971 // Finish fn->subprogram upgrade for materialized functions. 6972 if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F)) 6973 F->setSubprogram(SP); 6974 6975 // Check if the TBAA Metadata are valid, otherwise we will need to strip them. 6976 if (!MDLoader->isStrippingTBAA()) { 6977 for (auto &I : instructions(F)) { 6978 MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa); 6979 if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA)) 6980 continue; 6981 MDLoader->setStripTBAA(true); 6982 stripTBAA(F->getParent()); 6983 } 6984 } 6985 6986 for (auto &I : instructions(F)) { 6987 // "Upgrade" older incorrect branch weights by dropping them. 6988 if (auto *MD = I.getMetadata(LLVMContext::MD_prof)) { 6989 if (MD->getOperand(0) != nullptr && isa<MDString>(MD->getOperand(0))) { 6990 MDString *MDS = cast<MDString>(MD->getOperand(0)); 6991 StringRef ProfName = MDS->getString(); 6992 // Check consistency of !prof branch_weights metadata. 6993 if (ProfName != "branch_weights") 6994 continue; 6995 unsigned ExpectedNumOperands = 0; 6996 if (BranchInst *BI = dyn_cast<BranchInst>(&I)) 6997 ExpectedNumOperands = BI->getNumSuccessors(); 6998 else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I)) 6999 ExpectedNumOperands = SI->getNumSuccessors(); 7000 else if (isa<CallInst>(&I)) 7001 ExpectedNumOperands = 1; 7002 else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I)) 7003 ExpectedNumOperands = IBI->getNumDestinations(); 7004 else if (isa<SelectInst>(&I)) 7005 ExpectedNumOperands = 2; 7006 else 7007 continue; // ignore and continue. 7008 7009 unsigned Offset = getBranchWeightOffset(MD); 7010 7011 // If branch weight doesn't match, just strip branch weight. 7012 if (MD->getNumOperands() != Offset + ExpectedNumOperands) 7013 I.setMetadata(LLVMContext::MD_prof, nullptr); 7014 } 7015 } 7016 7017 // Remove incompatible attributes on function calls. 7018 if (auto *CI = dyn_cast<CallBase>(&I)) { 7019 CI->removeRetAttrs(AttributeFuncs::typeIncompatible( 7020 CI->getFunctionType()->getReturnType())); 7021 7022 for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ++ArgNo) 7023 CI->removeParamAttrs(ArgNo, AttributeFuncs::typeIncompatible( 7024 CI->getArgOperand(ArgNo)->getType())); 7025 } 7026 } 7027 7028 // Look for functions that rely on old function attribute behavior. 7029 UpgradeFunctionAttributes(*F); 7030 7031 // Bring in any functions that this function forward-referenced via 7032 // blockaddresses. 7033 return materializeForwardReferencedFunctions(); 7034 } 7035 7036 Error BitcodeReader::materializeModule() { 7037 if (Error Err = materializeMetadata()) 7038 return Err; 7039 7040 // Promise to materialize all forward references. 7041 WillMaterializeAllForwardRefs = true; 7042 7043 // Iterate over the module, deserializing any functions that are still on 7044 // disk. 7045 for (Function &F : *TheModule) { 7046 if (Error Err = materialize(&F)) 7047 return Err; 7048 } 7049 // At this point, if there are any function bodies, parse the rest of 7050 // the bits in the module past the last function block we have recorded 7051 // through either lazy scanning or the VST. 7052 if (LastFunctionBlockBit || NextUnreadBit) 7053 if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit 7054 ? LastFunctionBlockBit 7055 : NextUnreadBit)) 7056 return Err; 7057 7058 // Check that all block address forward references got resolved (as we 7059 // promised above). 7060 if (!BasicBlockFwdRefs.empty()) 7061 return error("Never resolved function from blockaddress"); 7062 7063 // Upgrade any intrinsic calls that slipped through (should not happen!) and 7064 // delete the old functions to clean up. We can't do this unless the entire 7065 // module is materialized because there could always be another function body 7066 // with calls to the old function. 7067 for (auto &I : UpgradedIntrinsics) { 7068 for (auto *U : I.first->users()) { 7069 if (CallInst *CI = dyn_cast<CallInst>(U)) 7070 UpgradeIntrinsicCall(CI, I.second); 7071 } 7072 if (!I.first->use_empty()) 7073 I.first->replaceAllUsesWith(I.second); 7074 I.first->eraseFromParent(); 7075 } 7076 UpgradedIntrinsics.clear(); 7077 7078 UpgradeDebugInfo(*TheModule); 7079 7080 UpgradeModuleFlags(*TheModule); 7081 7082 UpgradeARCRuntime(*TheModule); 7083 7084 return Error::success(); 7085 } 7086 7087 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 7088 return IdentifiedStructTypes; 7089 } 7090 7091 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 7092 BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex, 7093 StringRef ModulePath, std::function<bool(GlobalValue::GUID)> IsPrevailing) 7094 : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex), 7095 ModulePath(ModulePath), IsPrevailing(IsPrevailing) {} 7096 7097 void ModuleSummaryIndexBitcodeReader::addThisModule() { 7098 TheIndex.addModule(ModulePath); 7099 } 7100 7101 ModuleSummaryIndex::ModuleInfo * 7102 ModuleSummaryIndexBitcodeReader::getThisModule() { 7103 return TheIndex.getModule(ModulePath); 7104 } 7105 7106 template <bool AllowNullValueInfo> 7107 std::pair<ValueInfo, GlobalValue::GUID> 7108 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) { 7109 auto VGI = ValueIdToValueInfoMap[ValueId]; 7110 // We can have a null value info for memprof callsite info records in 7111 // distributed ThinLTO index files when the callee function summary is not 7112 // included in the index. The bitcode writer records 0 in that case, 7113 // and the caller of this helper will set AllowNullValueInfo to true. 7114 assert(AllowNullValueInfo || std::get<0>(VGI)); 7115 return VGI; 7116 } 7117 7118 void ModuleSummaryIndexBitcodeReader::setValueGUID( 7119 uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage, 7120 StringRef SourceFileName) { 7121 std::string GlobalId = 7122 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 7123 auto ValueGUID = GlobalValue::getGUID(GlobalId); 7124 auto OriginalNameID = ValueGUID; 7125 if (GlobalValue::isLocalLinkage(Linkage)) 7126 OriginalNameID = GlobalValue::getGUID(ValueName); 7127 if (PrintSummaryGUIDs) 7128 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 7129 << ValueName << "\n"; 7130 7131 // UseStrtab is false for legacy summary formats and value names are 7132 // created on stack. In that case we save the name in a string saver in 7133 // the index so that the value name can be recorded. 7134 ValueIdToValueInfoMap[ValueID] = std::make_pair( 7135 TheIndex.getOrInsertValueInfo( 7136 ValueGUID, UseStrtab ? ValueName : TheIndex.saveString(ValueName)), 7137 OriginalNameID); 7138 } 7139 7140 // Specialized value symbol table parser used when reading module index 7141 // blocks where we don't actually create global values. The parsed information 7142 // is saved in the bitcode reader for use when later parsing summaries. 7143 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 7144 uint64_t Offset, 7145 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 7146 // With a strtab the VST is not required to parse the summary. 7147 if (UseStrtab) 7148 return Error::success(); 7149 7150 assert(Offset > 0 && "Expected non-zero VST offset"); 7151 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 7152 if (!MaybeCurrentBit) 7153 return MaybeCurrentBit.takeError(); 7154 uint64_t CurrentBit = MaybeCurrentBit.get(); 7155 7156 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 7157 return Err; 7158 7159 SmallVector<uint64_t, 64> Record; 7160 7161 // Read all the records for this value table. 7162 SmallString<128> ValueName; 7163 7164 while (true) { 7165 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 7166 if (!MaybeEntry) 7167 return MaybeEntry.takeError(); 7168 BitstreamEntry Entry = MaybeEntry.get(); 7169 7170 switch (Entry.Kind) { 7171 case BitstreamEntry::SubBlock: // Handled for us already. 7172 case BitstreamEntry::Error: 7173 return error("Malformed block"); 7174 case BitstreamEntry::EndBlock: 7175 // Done parsing VST, jump back to wherever we came from. 7176 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 7177 return JumpFailed; 7178 return Error::success(); 7179 case BitstreamEntry::Record: 7180 // The interesting case. 7181 break; 7182 } 7183 7184 // Read a record. 7185 Record.clear(); 7186 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 7187 if (!MaybeRecord) 7188 return MaybeRecord.takeError(); 7189 switch (MaybeRecord.get()) { 7190 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 7191 break; 7192 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 7193 if (convertToString(Record, 1, ValueName)) 7194 return error("Invalid record"); 7195 unsigned ValueID = Record[0]; 7196 assert(!SourceFileName.empty()); 7197 auto VLI = ValueIdToLinkageMap.find(ValueID); 7198 assert(VLI != ValueIdToLinkageMap.end() && 7199 "No linkage found for VST entry?"); 7200 auto Linkage = VLI->second; 7201 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 7202 ValueName.clear(); 7203 break; 7204 } 7205 case bitc::VST_CODE_FNENTRY: { 7206 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 7207 if (convertToString(Record, 2, ValueName)) 7208 return error("Invalid record"); 7209 unsigned ValueID = Record[0]; 7210 assert(!SourceFileName.empty()); 7211 auto VLI = ValueIdToLinkageMap.find(ValueID); 7212 assert(VLI != ValueIdToLinkageMap.end() && 7213 "No linkage found for VST entry?"); 7214 auto Linkage = VLI->second; 7215 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 7216 ValueName.clear(); 7217 break; 7218 } 7219 case bitc::VST_CODE_COMBINED_ENTRY: { 7220 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 7221 unsigned ValueID = Record[0]; 7222 GlobalValue::GUID RefGUID = Record[1]; 7223 // The "original name", which is the second value of the pair will be 7224 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 7225 ValueIdToValueInfoMap[ValueID] = 7226 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 7227 break; 7228 } 7229 } 7230 } 7231 } 7232 7233 // Parse just the blocks needed for building the index out of the module. 7234 // At the end of this routine the module Index is populated with a map 7235 // from global value id to GlobalValueSummary objects. 7236 Error ModuleSummaryIndexBitcodeReader::parseModule() { 7237 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 7238 return Err; 7239 7240 SmallVector<uint64_t, 64> Record; 7241 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 7242 unsigned ValueId = 0; 7243 7244 // Read the index for this module. 7245 while (true) { 7246 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 7247 if (!MaybeEntry) 7248 return MaybeEntry.takeError(); 7249 llvm::BitstreamEntry Entry = MaybeEntry.get(); 7250 7251 switch (Entry.Kind) { 7252 case BitstreamEntry::Error: 7253 return error("Malformed block"); 7254 case BitstreamEntry::EndBlock: 7255 return Error::success(); 7256 7257 case BitstreamEntry::SubBlock: 7258 switch (Entry.ID) { 7259 default: // Skip unknown content. 7260 if (Error Err = Stream.SkipBlock()) 7261 return Err; 7262 break; 7263 case bitc::BLOCKINFO_BLOCK_ID: 7264 // Need to parse these to get abbrev ids (e.g. for VST) 7265 if (Error Err = readBlockInfo()) 7266 return Err; 7267 break; 7268 case bitc::VALUE_SYMTAB_BLOCK_ID: 7269 // Should have been parsed earlier via VSTOffset, unless there 7270 // is no summary section. 7271 assert(((SeenValueSymbolTable && VSTOffset > 0) || 7272 !SeenGlobalValSummary) && 7273 "Expected early VST parse via VSTOffset record"); 7274 if (Error Err = Stream.SkipBlock()) 7275 return Err; 7276 break; 7277 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 7278 case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID: 7279 // Add the module if it is a per-module index (has a source file name). 7280 if (!SourceFileName.empty()) 7281 addThisModule(); 7282 assert(!SeenValueSymbolTable && 7283 "Already read VST when parsing summary block?"); 7284 // We might not have a VST if there were no values in the 7285 // summary. An empty summary block generated when we are 7286 // performing ThinLTO compiles so we don't later invoke 7287 // the regular LTO process on them. 7288 if (VSTOffset > 0) { 7289 if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 7290 return Err; 7291 SeenValueSymbolTable = true; 7292 } 7293 SeenGlobalValSummary = true; 7294 if (Error Err = parseEntireSummary(Entry.ID)) 7295 return Err; 7296 break; 7297 case bitc::MODULE_STRTAB_BLOCK_ID: 7298 if (Error Err = parseModuleStringTable()) 7299 return Err; 7300 break; 7301 } 7302 continue; 7303 7304 case BitstreamEntry::Record: { 7305 Record.clear(); 7306 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 7307 if (!MaybeBitCode) 7308 return MaybeBitCode.takeError(); 7309 switch (MaybeBitCode.get()) { 7310 default: 7311 break; // Default behavior, ignore unknown content. 7312 case bitc::MODULE_CODE_VERSION: { 7313 if (Error Err = parseVersionRecord(Record).takeError()) 7314 return Err; 7315 break; 7316 } 7317 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 7318 case bitc::MODULE_CODE_SOURCE_FILENAME: { 7319 SmallString<128> ValueName; 7320 if (convertToString(Record, 0, ValueName)) 7321 return error("Invalid record"); 7322 SourceFileName = ValueName.c_str(); 7323 break; 7324 } 7325 /// MODULE_CODE_HASH: [5*i32] 7326 case bitc::MODULE_CODE_HASH: { 7327 if (Record.size() != 5) 7328 return error("Invalid hash length " + Twine(Record.size()).str()); 7329 auto &Hash = getThisModule()->second; 7330 int Pos = 0; 7331 for (auto &Val : Record) { 7332 assert(!(Val >> 32) && "Unexpected high bits set"); 7333 Hash[Pos++] = Val; 7334 } 7335 break; 7336 } 7337 /// MODULE_CODE_VSTOFFSET: [offset] 7338 case bitc::MODULE_CODE_VSTOFFSET: 7339 if (Record.empty()) 7340 return error("Invalid record"); 7341 // Note that we subtract 1 here because the offset is relative to one 7342 // word before the start of the identification or module block, which 7343 // was historically always the start of the regular bitcode header. 7344 VSTOffset = Record[0] - 1; 7345 break; 7346 // v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...] 7347 // v1 FUNCTION: [type, callingconv, isproto, linkage, ...] 7348 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...] 7349 // v2: [strtab offset, strtab size, v1] 7350 case bitc::MODULE_CODE_GLOBALVAR: 7351 case bitc::MODULE_CODE_FUNCTION: 7352 case bitc::MODULE_CODE_ALIAS: { 7353 StringRef Name; 7354 ArrayRef<uint64_t> GVRecord; 7355 std::tie(Name, GVRecord) = readNameFromStrtab(Record); 7356 if (GVRecord.size() <= 3) 7357 return error("Invalid record"); 7358 uint64_t RawLinkage = GVRecord[3]; 7359 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 7360 if (!UseStrtab) { 7361 ValueIdToLinkageMap[ValueId++] = Linkage; 7362 break; 7363 } 7364 7365 setValueGUID(ValueId++, Name, Linkage, SourceFileName); 7366 break; 7367 } 7368 } 7369 } 7370 continue; 7371 } 7372 } 7373 } 7374 7375 SmallVector<ValueInfo, 0> 7376 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) { 7377 SmallVector<ValueInfo, 0> Ret; 7378 Ret.reserve(Record.size()); 7379 for (uint64_t RefValueId : Record) 7380 Ret.push_back(std::get<0>(getValueInfoFromValueId(RefValueId))); 7381 return Ret; 7382 } 7383 7384 SmallVector<FunctionSummary::EdgeTy, 0> 7385 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record, 7386 bool IsOldProfileFormat, 7387 bool HasProfile, bool HasRelBF) { 7388 SmallVector<FunctionSummary::EdgeTy, 0> Ret; 7389 // In the case of new profile formats, there are two Record entries per 7390 // Edge. Otherwise, conservatively reserve up to Record.size. 7391 if (!IsOldProfileFormat && (HasProfile || HasRelBF)) 7392 Ret.reserve(Record.size() / 2); 7393 else 7394 Ret.reserve(Record.size()); 7395 7396 for (unsigned I = 0, E = Record.size(); I != E; ++I) { 7397 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 7398 bool HasTailCall = false; 7399 uint64_t RelBF = 0; 7400 ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[I])); 7401 if (IsOldProfileFormat) { 7402 I += 1; // Skip old callsitecount field 7403 if (HasProfile) 7404 I += 1; // Skip old profilecount field 7405 } else if (HasProfile) 7406 std::tie(Hotness, HasTailCall) = 7407 getDecodedHotnessCallEdgeInfo(Record[++I]); 7408 else if (HasRelBF) 7409 getDecodedRelBFCallEdgeInfo(Record[++I], RelBF, HasTailCall); 7410 Ret.push_back(FunctionSummary::EdgeTy{ 7411 Callee, CalleeInfo(Hotness, HasTailCall, RelBF)}); 7412 } 7413 return Ret; 7414 } 7415 7416 static void 7417 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot, 7418 WholeProgramDevirtResolution &Wpd) { 7419 uint64_t ArgNum = Record[Slot++]; 7420 WholeProgramDevirtResolution::ByArg &B = 7421 Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}]; 7422 Slot += ArgNum; 7423 7424 B.TheKind = 7425 static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]); 7426 B.Info = Record[Slot++]; 7427 B.Byte = Record[Slot++]; 7428 B.Bit = Record[Slot++]; 7429 } 7430 7431 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record, 7432 StringRef Strtab, size_t &Slot, 7433 TypeIdSummary &TypeId) { 7434 uint64_t Id = Record[Slot++]; 7435 WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id]; 7436 7437 Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]); 7438 Wpd.SingleImplName = {Strtab.data() + Record[Slot], 7439 static_cast<size_t>(Record[Slot + 1])}; 7440 Slot += 2; 7441 7442 uint64_t ResByArgNum = Record[Slot++]; 7443 for (uint64_t I = 0; I != ResByArgNum; ++I) 7444 parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd); 7445 } 7446 7447 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record, 7448 StringRef Strtab, 7449 ModuleSummaryIndex &TheIndex) { 7450 size_t Slot = 0; 7451 TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary( 7452 {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])}); 7453 Slot += 2; 7454 7455 TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]); 7456 TypeId.TTRes.SizeM1BitWidth = Record[Slot++]; 7457 TypeId.TTRes.AlignLog2 = Record[Slot++]; 7458 TypeId.TTRes.SizeM1 = Record[Slot++]; 7459 TypeId.TTRes.BitMask = Record[Slot++]; 7460 TypeId.TTRes.InlineBits = Record[Slot++]; 7461 7462 while (Slot < Record.size()) 7463 parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId); 7464 } 7465 7466 std::vector<FunctionSummary::ParamAccess> 7467 ModuleSummaryIndexBitcodeReader::parseParamAccesses(ArrayRef<uint64_t> Record) { 7468 auto ReadRange = [&]() { 7469 APInt Lower(FunctionSummary::ParamAccess::RangeWidth, 7470 BitcodeReader::decodeSignRotatedValue(Record.front())); 7471 Record = Record.drop_front(); 7472 APInt Upper(FunctionSummary::ParamAccess::RangeWidth, 7473 BitcodeReader::decodeSignRotatedValue(Record.front())); 7474 Record = Record.drop_front(); 7475 ConstantRange Range{Lower, Upper}; 7476 assert(!Range.isFullSet()); 7477 assert(!Range.isUpperSignWrapped()); 7478 return Range; 7479 }; 7480 7481 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; 7482 while (!Record.empty()) { 7483 PendingParamAccesses.emplace_back(); 7484 FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back(); 7485 ParamAccess.ParamNo = Record.front(); 7486 Record = Record.drop_front(); 7487 ParamAccess.Use = ReadRange(); 7488 ParamAccess.Calls.resize(Record.front()); 7489 Record = Record.drop_front(); 7490 for (auto &Call : ParamAccess.Calls) { 7491 Call.ParamNo = Record.front(); 7492 Record = Record.drop_front(); 7493 Call.Callee = std::get<0>(getValueInfoFromValueId(Record.front())); 7494 Record = Record.drop_front(); 7495 Call.Offsets = ReadRange(); 7496 } 7497 } 7498 return PendingParamAccesses; 7499 } 7500 7501 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo( 7502 ArrayRef<uint64_t> Record, size_t &Slot, 7503 TypeIdCompatibleVtableInfo &TypeId) { 7504 uint64_t Offset = Record[Slot++]; 7505 ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[Slot++])); 7506 TypeId.push_back({Offset, Callee}); 7507 } 7508 7509 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord( 7510 ArrayRef<uint64_t> Record) { 7511 size_t Slot = 0; 7512 TypeIdCompatibleVtableInfo &TypeId = 7513 TheIndex.getOrInsertTypeIdCompatibleVtableSummary( 7514 {Strtab.data() + Record[Slot], 7515 static_cast<size_t>(Record[Slot + 1])}); 7516 Slot += 2; 7517 7518 while (Slot < Record.size()) 7519 parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId); 7520 } 7521 7522 static void setSpecialRefs(SmallVectorImpl<ValueInfo> &Refs, unsigned ROCnt, 7523 unsigned WOCnt) { 7524 // Readonly and writeonly refs are in the end of the refs list. 7525 assert(ROCnt + WOCnt <= Refs.size()); 7526 unsigned FirstWORef = Refs.size() - WOCnt; 7527 unsigned RefNo = FirstWORef - ROCnt; 7528 for (; RefNo < FirstWORef; ++RefNo) 7529 Refs[RefNo].setReadOnly(); 7530 for (; RefNo < Refs.size(); ++RefNo) 7531 Refs[RefNo].setWriteOnly(); 7532 } 7533 7534 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 7535 // objects in the index. 7536 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) { 7537 if (Error Err = Stream.EnterSubBlock(ID)) 7538 return Err; 7539 SmallVector<uint64_t, 64> Record; 7540 7541 // Parse version 7542 { 7543 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 7544 if (!MaybeEntry) 7545 return MaybeEntry.takeError(); 7546 BitstreamEntry Entry = MaybeEntry.get(); 7547 7548 if (Entry.Kind != BitstreamEntry::Record) 7549 return error("Invalid Summary Block: record for version expected"); 7550 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 7551 if (!MaybeRecord) 7552 return MaybeRecord.takeError(); 7553 if (MaybeRecord.get() != bitc::FS_VERSION) 7554 return error("Invalid Summary Block: version expected"); 7555 } 7556 const uint64_t Version = Record[0]; 7557 const bool IsOldProfileFormat = Version == 1; 7558 if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion) 7559 return error("Invalid summary version " + Twine(Version) + 7560 ". Version should be in the range [1-" + 7561 Twine(ModuleSummaryIndex::BitcodeSummaryVersion) + 7562 "]."); 7563 Record.clear(); 7564 7565 // Keep around the last seen summary to be used when we see an optional 7566 // "OriginalName" attachement. 7567 GlobalValueSummary *LastSeenSummary = nullptr; 7568 GlobalValue::GUID LastSeenGUID = 0; 7569 7570 // We can expect to see any number of type ID information records before 7571 // each function summary records; these variables store the information 7572 // collected so far so that it can be used to create the summary object. 7573 std::vector<GlobalValue::GUID> PendingTypeTests; 7574 std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls, 7575 PendingTypeCheckedLoadVCalls; 7576 std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls, 7577 PendingTypeCheckedLoadConstVCalls; 7578 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; 7579 7580 std::vector<CallsiteInfo> PendingCallsites; 7581 std::vector<AllocInfo> PendingAllocs; 7582 7583 while (true) { 7584 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 7585 if (!MaybeEntry) 7586 return MaybeEntry.takeError(); 7587 BitstreamEntry Entry = MaybeEntry.get(); 7588 7589 switch (Entry.Kind) { 7590 case BitstreamEntry::SubBlock: // Handled for us already. 7591 case BitstreamEntry::Error: 7592 return error("Malformed block"); 7593 case BitstreamEntry::EndBlock: 7594 return Error::success(); 7595 case BitstreamEntry::Record: 7596 // The interesting case. 7597 break; 7598 } 7599 7600 // Read a record. The record format depends on whether this 7601 // is a per-module index or a combined index file. In the per-module 7602 // case the records contain the associated value's ID for correlation 7603 // with VST entries. In the combined index the correlation is done 7604 // via the bitcode offset of the summary records (which were saved 7605 // in the combined index VST entries). The records also contain 7606 // information used for ThinLTO renaming and importing. 7607 Record.clear(); 7608 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 7609 if (!MaybeBitCode) 7610 return MaybeBitCode.takeError(); 7611 switch (unsigned BitCode = MaybeBitCode.get()) { 7612 default: // Default behavior: ignore. 7613 break; 7614 case bitc::FS_FLAGS: { // [flags] 7615 TheIndex.setFlags(Record[0]); 7616 break; 7617 } 7618 case bitc::FS_VALUE_GUID: { // [valueid, refguid_upper32, refguid_lower32] 7619 uint64_t ValueID = Record[0]; 7620 GlobalValue::GUID RefGUID; 7621 if (Version >= 11) { 7622 RefGUID = Record[1] << 32 | Record[2]; 7623 } else { 7624 RefGUID = Record[1]; 7625 } 7626 ValueIdToValueInfoMap[ValueID] = 7627 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 7628 break; 7629 } 7630 // FS_PERMODULE is legacy and does not have support for the tail call flag. 7631 // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs, 7632 // numrefs x valueid, n x (valueid)] 7633 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs, 7634 // numrefs x valueid, 7635 // n x (valueid, hotness+tailcall flags)] 7636 // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs, 7637 // numrefs x valueid, 7638 // n x (valueid, relblockfreq+tailcall)] 7639 case bitc::FS_PERMODULE: 7640 case bitc::FS_PERMODULE_RELBF: 7641 case bitc::FS_PERMODULE_PROFILE: { 7642 unsigned ValueID = Record[0]; 7643 uint64_t RawFlags = Record[1]; 7644 unsigned InstCount = Record[2]; 7645 uint64_t RawFunFlags = 0; 7646 unsigned NumRefs = Record[3]; 7647 unsigned NumRORefs = 0, NumWORefs = 0; 7648 int RefListStartIndex = 4; 7649 if (Version >= 4) { 7650 RawFunFlags = Record[3]; 7651 NumRefs = Record[4]; 7652 RefListStartIndex = 5; 7653 if (Version >= 5) { 7654 NumRORefs = Record[5]; 7655 RefListStartIndex = 6; 7656 if (Version >= 7) { 7657 NumWORefs = Record[6]; 7658 RefListStartIndex = 7; 7659 } 7660 } 7661 } 7662 7663 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7664 // The module path string ref set in the summary must be owned by the 7665 // index's module string table. Since we don't have a module path 7666 // string table section in the per-module index, we create a single 7667 // module path string table entry with an empty (0) ID to take 7668 // ownership. 7669 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 7670 assert(Record.size() >= RefListStartIndex + NumRefs && 7671 "Record size inconsistent with number of references"); 7672 SmallVector<ValueInfo, 0> Refs = makeRefList( 7673 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 7674 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 7675 bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF); 7676 SmallVector<FunctionSummary::EdgeTy, 0> Calls = makeCallList( 7677 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 7678 IsOldProfileFormat, HasProfile, HasRelBF); 7679 setSpecialRefs(Refs, NumRORefs, NumWORefs); 7680 auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID); 7681 // In order to save memory, only record the memprof summaries if this is 7682 // the prevailing copy of a symbol. The linker doesn't resolve local 7683 // linkage values so don't check whether those are prevailing. 7684 auto LT = (GlobalValue::LinkageTypes)Flags.Linkage; 7685 if (IsPrevailing && !GlobalValue::isLocalLinkage(LT) && 7686 !IsPrevailing(VIAndOriginalGUID.first.getGUID())) { 7687 PendingCallsites.clear(); 7688 PendingAllocs.clear(); 7689 } 7690 auto FS = std::make_unique<FunctionSummary>( 7691 Flags, InstCount, getDecodedFFlags(RawFunFlags), std::move(Refs), 7692 std::move(Calls), std::move(PendingTypeTests), 7693 std::move(PendingTypeTestAssumeVCalls), 7694 std::move(PendingTypeCheckedLoadVCalls), 7695 std::move(PendingTypeTestAssumeConstVCalls), 7696 std::move(PendingTypeCheckedLoadConstVCalls), 7697 std::move(PendingParamAccesses), std::move(PendingCallsites), 7698 std::move(PendingAllocs)); 7699 FS->setModulePath(getThisModule()->first()); 7700 FS->setOriginalName(std::get<1>(VIAndOriginalGUID)); 7701 TheIndex.addGlobalValueSummary(std::get<0>(VIAndOriginalGUID), 7702 std::move(FS)); 7703 break; 7704 } 7705 // FS_ALIAS: [valueid, flags, valueid] 7706 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 7707 // they expect all aliasee summaries to be available. 7708 case bitc::FS_ALIAS: { 7709 unsigned ValueID = Record[0]; 7710 uint64_t RawFlags = Record[1]; 7711 unsigned AliaseeID = Record[2]; 7712 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7713 auto AS = std::make_unique<AliasSummary>(Flags); 7714 // The module path string ref set in the summary must be owned by the 7715 // index's module string table. Since we don't have a module path 7716 // string table section in the per-module index, we create a single 7717 // module path string table entry with an empty (0) ID to take 7718 // ownership. 7719 AS->setModulePath(getThisModule()->first()); 7720 7721 auto AliaseeVI = std::get<0>(getValueInfoFromValueId(AliaseeID)); 7722 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath); 7723 if (!AliaseeInModule) 7724 return error("Alias expects aliasee summary to be parsed"); 7725 AS->setAliasee(AliaseeVI, AliaseeInModule); 7726 7727 auto GUID = getValueInfoFromValueId(ValueID); 7728 AS->setOriginalName(std::get<1>(GUID)); 7729 TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(AS)); 7730 break; 7731 } 7732 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid] 7733 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 7734 unsigned ValueID = Record[0]; 7735 uint64_t RawFlags = Record[1]; 7736 unsigned RefArrayStart = 2; 7737 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 7738 /* WriteOnly */ false, 7739 /* Constant */ false, 7740 GlobalObject::VCallVisibilityPublic); 7741 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7742 if (Version >= 5) { 7743 GVF = getDecodedGVarFlags(Record[2]); 7744 RefArrayStart = 3; 7745 } 7746 SmallVector<ValueInfo, 0> Refs = 7747 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 7748 auto FS = 7749 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 7750 FS->setModulePath(getThisModule()->first()); 7751 auto GUID = getValueInfoFromValueId(ValueID); 7752 FS->setOriginalName(std::get<1>(GUID)); 7753 TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(FS)); 7754 break; 7755 } 7756 // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, 7757 // numrefs, numrefs x valueid, 7758 // n x (valueid, offset)] 7759 case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: { 7760 unsigned ValueID = Record[0]; 7761 uint64_t RawFlags = Record[1]; 7762 GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]); 7763 unsigned NumRefs = Record[3]; 7764 unsigned RefListStartIndex = 4; 7765 unsigned VTableListStartIndex = RefListStartIndex + NumRefs; 7766 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7767 SmallVector<ValueInfo, 0> Refs = makeRefList( 7768 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 7769 VTableFuncList VTableFuncs; 7770 for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) { 7771 ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[I])); 7772 uint64_t Offset = Record[++I]; 7773 VTableFuncs.push_back({Callee, Offset}); 7774 } 7775 auto VS = 7776 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 7777 VS->setModulePath(getThisModule()->first()); 7778 VS->setVTableFuncs(VTableFuncs); 7779 auto GUID = getValueInfoFromValueId(ValueID); 7780 VS->setOriginalName(std::get<1>(GUID)); 7781 TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(VS)); 7782 break; 7783 } 7784 // FS_COMBINED is legacy and does not have support for the tail call flag. 7785 // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs, 7786 // numrefs x valueid, n x (valueid)] 7787 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs, 7788 // numrefs x valueid, 7789 // n x (valueid, hotness+tailcall flags)] 7790 case bitc::FS_COMBINED: 7791 case bitc::FS_COMBINED_PROFILE: { 7792 unsigned ValueID = Record[0]; 7793 uint64_t ModuleId = Record[1]; 7794 uint64_t RawFlags = Record[2]; 7795 unsigned InstCount = Record[3]; 7796 uint64_t RawFunFlags = 0; 7797 unsigned NumRefs = Record[4]; 7798 unsigned NumRORefs = 0, NumWORefs = 0; 7799 int RefListStartIndex = 5; 7800 7801 if (Version >= 4) { 7802 RawFunFlags = Record[4]; 7803 RefListStartIndex = 6; 7804 size_t NumRefsIndex = 5; 7805 if (Version >= 5) { 7806 unsigned NumRORefsOffset = 1; 7807 RefListStartIndex = 7; 7808 if (Version >= 6) { 7809 NumRefsIndex = 6; 7810 RefListStartIndex = 8; 7811 if (Version >= 7) { 7812 RefListStartIndex = 9; 7813 NumWORefs = Record[8]; 7814 NumRORefsOffset = 2; 7815 } 7816 } 7817 NumRORefs = Record[RefListStartIndex - NumRORefsOffset]; 7818 } 7819 NumRefs = Record[NumRefsIndex]; 7820 } 7821 7822 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7823 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 7824 assert(Record.size() >= RefListStartIndex + NumRefs && 7825 "Record size inconsistent with number of references"); 7826 SmallVector<ValueInfo, 0> Refs = makeRefList( 7827 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 7828 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 7829 SmallVector<FunctionSummary::EdgeTy, 0> Edges = makeCallList( 7830 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 7831 IsOldProfileFormat, HasProfile, false); 7832 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID)); 7833 setSpecialRefs(Refs, NumRORefs, NumWORefs); 7834 auto FS = std::make_unique<FunctionSummary>( 7835 Flags, InstCount, getDecodedFFlags(RawFunFlags), std::move(Refs), 7836 std::move(Edges), std::move(PendingTypeTests), 7837 std::move(PendingTypeTestAssumeVCalls), 7838 std::move(PendingTypeCheckedLoadVCalls), 7839 std::move(PendingTypeTestAssumeConstVCalls), 7840 std::move(PendingTypeCheckedLoadConstVCalls), 7841 std::move(PendingParamAccesses), std::move(PendingCallsites), 7842 std::move(PendingAllocs)); 7843 LastSeenSummary = FS.get(); 7844 LastSeenGUID = VI.getGUID(); 7845 FS->setModulePath(ModuleIdMap[ModuleId]); 7846 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 7847 break; 7848 } 7849 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 7850 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 7851 // they expect all aliasee summaries to be available. 7852 case bitc::FS_COMBINED_ALIAS: { 7853 unsigned ValueID = Record[0]; 7854 uint64_t ModuleId = Record[1]; 7855 uint64_t RawFlags = Record[2]; 7856 unsigned AliaseeValueId = Record[3]; 7857 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7858 auto AS = std::make_unique<AliasSummary>(Flags); 7859 LastSeenSummary = AS.get(); 7860 AS->setModulePath(ModuleIdMap[ModuleId]); 7861 7862 auto AliaseeVI = std::get<0>(getValueInfoFromValueId(AliaseeValueId)); 7863 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath()); 7864 AS->setAliasee(AliaseeVI, AliaseeInModule); 7865 7866 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID)); 7867 LastSeenGUID = VI.getGUID(); 7868 TheIndex.addGlobalValueSummary(VI, std::move(AS)); 7869 break; 7870 } 7871 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 7872 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 7873 unsigned ValueID = Record[0]; 7874 uint64_t ModuleId = Record[1]; 7875 uint64_t RawFlags = Record[2]; 7876 unsigned RefArrayStart = 3; 7877 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 7878 /* WriteOnly */ false, 7879 /* Constant */ false, 7880 GlobalObject::VCallVisibilityPublic); 7881 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7882 if (Version >= 5) { 7883 GVF = getDecodedGVarFlags(Record[3]); 7884 RefArrayStart = 4; 7885 } 7886 SmallVector<ValueInfo, 0> Refs = 7887 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 7888 auto FS = 7889 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 7890 LastSeenSummary = FS.get(); 7891 FS->setModulePath(ModuleIdMap[ModuleId]); 7892 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID)); 7893 LastSeenGUID = VI.getGUID(); 7894 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 7895 break; 7896 } 7897 // FS_COMBINED_ORIGINAL_NAME: [original_name] 7898 case bitc::FS_COMBINED_ORIGINAL_NAME: { 7899 uint64_t OriginalName = Record[0]; 7900 if (!LastSeenSummary) 7901 return error("Name attachment that does not follow a combined record"); 7902 LastSeenSummary->setOriginalName(OriginalName); 7903 TheIndex.addOriginalName(LastSeenGUID, OriginalName); 7904 // Reset the LastSeenSummary 7905 LastSeenSummary = nullptr; 7906 LastSeenGUID = 0; 7907 break; 7908 } 7909 case bitc::FS_TYPE_TESTS: 7910 assert(PendingTypeTests.empty()); 7911 llvm::append_range(PendingTypeTests, Record); 7912 break; 7913 7914 case bitc::FS_TYPE_TEST_ASSUME_VCALLS: 7915 assert(PendingTypeTestAssumeVCalls.empty()); 7916 for (unsigned I = 0; I != Record.size(); I += 2) 7917 PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]}); 7918 break; 7919 7920 case bitc::FS_TYPE_CHECKED_LOAD_VCALLS: 7921 assert(PendingTypeCheckedLoadVCalls.empty()); 7922 for (unsigned I = 0; I != Record.size(); I += 2) 7923 PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]}); 7924 break; 7925 7926 case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL: 7927 PendingTypeTestAssumeConstVCalls.push_back( 7928 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 7929 break; 7930 7931 case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL: 7932 PendingTypeCheckedLoadConstVCalls.push_back( 7933 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 7934 break; 7935 7936 case bitc::FS_CFI_FUNCTION_DEFS: { 7937 std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs(); 7938 for (unsigned I = 0; I != Record.size(); I += 2) 7939 CfiFunctionDefs.insert( 7940 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 7941 break; 7942 } 7943 7944 case bitc::FS_CFI_FUNCTION_DECLS: { 7945 std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls(); 7946 for (unsigned I = 0; I != Record.size(); I += 2) 7947 CfiFunctionDecls.insert( 7948 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 7949 break; 7950 } 7951 7952 case bitc::FS_TYPE_ID: 7953 parseTypeIdSummaryRecord(Record, Strtab, TheIndex); 7954 break; 7955 7956 case bitc::FS_TYPE_ID_METADATA: 7957 parseTypeIdCompatibleVtableSummaryRecord(Record); 7958 break; 7959 7960 case bitc::FS_BLOCK_COUNT: 7961 TheIndex.addBlockCount(Record[0]); 7962 break; 7963 7964 case bitc::FS_PARAM_ACCESS: { 7965 PendingParamAccesses = parseParamAccesses(Record); 7966 break; 7967 } 7968 7969 case bitc::FS_STACK_IDS: { // [n x stackid] 7970 // Save stack ids in the reader to consult when adding stack ids from the 7971 // lists in the stack node and alloc node entries. 7972 StackIds = ArrayRef<uint64_t>(Record); 7973 break; 7974 } 7975 7976 case bitc::FS_PERMODULE_CALLSITE_INFO: { 7977 unsigned ValueID = Record[0]; 7978 SmallVector<unsigned> StackIdList; 7979 for (auto R = Record.begin() + 1; R != Record.end(); R++) { 7980 assert(*R < StackIds.size()); 7981 StackIdList.push_back(TheIndex.addOrGetStackIdIndex(StackIds[*R])); 7982 } 7983 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID)); 7984 PendingCallsites.push_back(CallsiteInfo({VI, std::move(StackIdList)})); 7985 break; 7986 } 7987 7988 case bitc::FS_COMBINED_CALLSITE_INFO: { 7989 auto RecordIter = Record.begin(); 7990 unsigned ValueID = *RecordIter++; 7991 unsigned NumStackIds = *RecordIter++; 7992 unsigned NumVersions = *RecordIter++; 7993 assert(Record.size() == 3 + NumStackIds + NumVersions); 7994 SmallVector<unsigned> StackIdList; 7995 for (unsigned J = 0; J < NumStackIds; J++) { 7996 assert(*RecordIter < StackIds.size()); 7997 StackIdList.push_back( 7998 TheIndex.addOrGetStackIdIndex(StackIds[*RecordIter++])); 7999 } 8000 SmallVector<unsigned> Versions; 8001 for (unsigned J = 0; J < NumVersions; J++) 8002 Versions.push_back(*RecordIter++); 8003 ValueInfo VI = std::get<0>( 8004 getValueInfoFromValueId</*AllowNullValueInfo*/ true>(ValueID)); 8005 PendingCallsites.push_back( 8006 CallsiteInfo({VI, std::move(Versions), std::move(StackIdList)})); 8007 break; 8008 } 8009 8010 case bitc::FS_PERMODULE_ALLOC_INFO: { 8011 unsigned I = 0; 8012 std::vector<MIBInfo> MIBs; 8013 unsigned NumMIBs = 0; 8014 if (Version >= 10) 8015 NumMIBs = Record[I++]; 8016 unsigned MIBsRead = 0; 8017 while ((Version >= 10 && MIBsRead++ < NumMIBs) || 8018 (Version < 10 && I < Record.size())) { 8019 assert(Record.size() - I >= 2); 8020 AllocationType AllocType = (AllocationType)Record[I++]; 8021 unsigned NumStackEntries = Record[I++]; 8022 assert(Record.size() - I >= NumStackEntries); 8023 SmallVector<unsigned> StackIdList; 8024 for (unsigned J = 0; J < NumStackEntries; J++) { 8025 assert(Record[I] < StackIds.size()); 8026 StackIdList.push_back( 8027 TheIndex.addOrGetStackIdIndex(StackIds[Record[I++]])); 8028 } 8029 MIBs.push_back(MIBInfo(AllocType, std::move(StackIdList))); 8030 } 8031 std::vector<uint64_t> TotalSizes; 8032 // We either have no sizes or NumMIBs of them. 8033 assert(I == Record.size() || Record.size() - I == NumMIBs); 8034 if (I < Record.size()) { 8035 MIBsRead = 0; 8036 while (MIBsRead++ < NumMIBs) 8037 TotalSizes.push_back(Record[I++]); 8038 } 8039 PendingAllocs.push_back(AllocInfo(std::move(MIBs))); 8040 if (!TotalSizes.empty()) { 8041 assert(PendingAllocs.back().MIBs.size() == TotalSizes.size()); 8042 PendingAllocs.back().TotalSizes = std::move(TotalSizes); 8043 } 8044 break; 8045 } 8046 8047 case bitc::FS_COMBINED_ALLOC_INFO: { 8048 unsigned I = 0; 8049 std::vector<MIBInfo> MIBs; 8050 unsigned NumMIBs = Record[I++]; 8051 unsigned NumVersions = Record[I++]; 8052 unsigned MIBsRead = 0; 8053 while (MIBsRead++ < NumMIBs) { 8054 assert(Record.size() - I >= 2); 8055 AllocationType AllocType = (AllocationType)Record[I++]; 8056 unsigned NumStackEntries = Record[I++]; 8057 assert(Record.size() - I >= NumStackEntries); 8058 SmallVector<unsigned> StackIdList; 8059 for (unsigned J = 0; J < NumStackEntries; J++) { 8060 assert(Record[I] < StackIds.size()); 8061 StackIdList.push_back( 8062 TheIndex.addOrGetStackIdIndex(StackIds[Record[I++]])); 8063 } 8064 MIBs.push_back(MIBInfo(AllocType, std::move(StackIdList))); 8065 } 8066 assert(Record.size() - I >= NumVersions); 8067 SmallVector<uint8_t> Versions; 8068 for (unsigned J = 0; J < NumVersions; J++) 8069 Versions.push_back(Record[I++]); 8070 std::vector<uint64_t> TotalSizes; 8071 // We either have no sizes or NumMIBs of them. 8072 assert(I == Record.size() || Record.size() - I == NumMIBs); 8073 if (I < Record.size()) { 8074 MIBsRead = 0; 8075 while (MIBsRead++ < NumMIBs) { 8076 TotalSizes.push_back(Record[I++]); 8077 } 8078 } 8079 PendingAllocs.push_back( 8080 AllocInfo(std::move(Versions), std::move(MIBs))); 8081 if (!TotalSizes.empty()) { 8082 assert(PendingAllocs.back().MIBs.size() == TotalSizes.size()); 8083 PendingAllocs.back().TotalSizes = std::move(TotalSizes); 8084 } 8085 break; 8086 } 8087 } 8088 } 8089 llvm_unreachable("Exit infinite loop"); 8090 } 8091 8092 // Parse the module string table block into the Index. 8093 // This populates the ModulePathStringTable map in the index. 8094 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 8095 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 8096 return Err; 8097 8098 SmallVector<uint64_t, 64> Record; 8099 8100 SmallString<128> ModulePath; 8101 ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr; 8102 8103 while (true) { 8104 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 8105 if (!MaybeEntry) 8106 return MaybeEntry.takeError(); 8107 BitstreamEntry Entry = MaybeEntry.get(); 8108 8109 switch (Entry.Kind) { 8110 case BitstreamEntry::SubBlock: // Handled for us already. 8111 case BitstreamEntry::Error: 8112 return error("Malformed block"); 8113 case BitstreamEntry::EndBlock: 8114 return Error::success(); 8115 case BitstreamEntry::Record: 8116 // The interesting case. 8117 break; 8118 } 8119 8120 Record.clear(); 8121 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 8122 if (!MaybeRecord) 8123 return MaybeRecord.takeError(); 8124 switch (MaybeRecord.get()) { 8125 default: // Default behavior: ignore. 8126 break; 8127 case bitc::MST_CODE_ENTRY: { 8128 // MST_ENTRY: [modid, namechar x N] 8129 uint64_t ModuleId = Record[0]; 8130 8131 if (convertToString(Record, 1, ModulePath)) 8132 return error("Invalid record"); 8133 8134 LastSeenModule = TheIndex.addModule(ModulePath); 8135 ModuleIdMap[ModuleId] = LastSeenModule->first(); 8136 8137 ModulePath.clear(); 8138 break; 8139 } 8140 /// MST_CODE_HASH: [5*i32] 8141 case bitc::MST_CODE_HASH: { 8142 if (Record.size() != 5) 8143 return error("Invalid hash length " + Twine(Record.size()).str()); 8144 if (!LastSeenModule) 8145 return error("Invalid hash that does not follow a module path"); 8146 int Pos = 0; 8147 for (auto &Val : Record) { 8148 assert(!(Val >> 32) && "Unexpected high bits set"); 8149 LastSeenModule->second[Pos++] = Val; 8150 } 8151 // Reset LastSeenModule to avoid overriding the hash unexpectedly. 8152 LastSeenModule = nullptr; 8153 break; 8154 } 8155 } 8156 } 8157 llvm_unreachable("Exit infinite loop"); 8158 } 8159 8160 namespace { 8161 8162 // FIXME: This class is only here to support the transition to llvm::Error. It 8163 // will be removed once this transition is complete. Clients should prefer to 8164 // deal with the Error value directly, rather than converting to error_code. 8165 class BitcodeErrorCategoryType : public std::error_category { 8166 const char *name() const noexcept override { 8167 return "llvm.bitcode"; 8168 } 8169 8170 std::string message(int IE) const override { 8171 BitcodeError E = static_cast<BitcodeError>(IE); 8172 switch (E) { 8173 case BitcodeError::CorruptedBitcode: 8174 return "Corrupted bitcode"; 8175 } 8176 llvm_unreachable("Unknown error type!"); 8177 } 8178 }; 8179 8180 } // end anonymous namespace 8181 8182 const std::error_category &llvm::BitcodeErrorCategory() { 8183 static BitcodeErrorCategoryType ErrorCategory; 8184 return ErrorCategory; 8185 } 8186 8187 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream, 8188 unsigned Block, unsigned RecordID) { 8189 if (Error Err = Stream.EnterSubBlock(Block)) 8190 return std::move(Err); 8191 8192 StringRef Strtab; 8193 while (true) { 8194 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 8195 if (!MaybeEntry) 8196 return MaybeEntry.takeError(); 8197 llvm::BitstreamEntry Entry = MaybeEntry.get(); 8198 8199 switch (Entry.Kind) { 8200 case BitstreamEntry::EndBlock: 8201 return Strtab; 8202 8203 case BitstreamEntry::Error: 8204 return error("Malformed block"); 8205 8206 case BitstreamEntry::SubBlock: 8207 if (Error Err = Stream.SkipBlock()) 8208 return std::move(Err); 8209 break; 8210 8211 case BitstreamEntry::Record: 8212 StringRef Blob; 8213 SmallVector<uint64_t, 1> Record; 8214 Expected<unsigned> MaybeRecord = 8215 Stream.readRecord(Entry.ID, Record, &Blob); 8216 if (!MaybeRecord) 8217 return MaybeRecord.takeError(); 8218 if (MaybeRecord.get() == RecordID) 8219 Strtab = Blob; 8220 break; 8221 } 8222 } 8223 } 8224 8225 //===----------------------------------------------------------------------===// 8226 // External interface 8227 //===----------------------------------------------------------------------===// 8228 8229 Expected<std::vector<BitcodeModule>> 8230 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) { 8231 auto FOrErr = getBitcodeFileContents(Buffer); 8232 if (!FOrErr) 8233 return FOrErr.takeError(); 8234 return std::move(FOrErr->Mods); 8235 } 8236 8237 Expected<BitcodeFileContents> 8238 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) { 8239 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 8240 if (!StreamOrErr) 8241 return StreamOrErr.takeError(); 8242 BitstreamCursor &Stream = *StreamOrErr; 8243 8244 BitcodeFileContents F; 8245 while (true) { 8246 uint64_t BCBegin = Stream.getCurrentByteNo(); 8247 8248 // We may be consuming bitcode from a client that leaves garbage at the end 8249 // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to 8250 // the end that there cannot possibly be another module, stop looking. 8251 if (BCBegin + 8 >= Stream.getBitcodeBytes().size()) 8252 return F; 8253 8254 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 8255 if (!MaybeEntry) 8256 return MaybeEntry.takeError(); 8257 llvm::BitstreamEntry Entry = MaybeEntry.get(); 8258 8259 switch (Entry.Kind) { 8260 case BitstreamEntry::EndBlock: 8261 case BitstreamEntry::Error: 8262 return error("Malformed block"); 8263 8264 case BitstreamEntry::SubBlock: { 8265 uint64_t IdentificationBit = -1ull; 8266 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 8267 IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8; 8268 if (Error Err = Stream.SkipBlock()) 8269 return std::move(Err); 8270 8271 { 8272 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 8273 if (!MaybeEntry) 8274 return MaybeEntry.takeError(); 8275 Entry = MaybeEntry.get(); 8276 } 8277 8278 if (Entry.Kind != BitstreamEntry::SubBlock || 8279 Entry.ID != bitc::MODULE_BLOCK_ID) 8280 return error("Malformed block"); 8281 } 8282 8283 if (Entry.ID == bitc::MODULE_BLOCK_ID) { 8284 uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8; 8285 if (Error Err = Stream.SkipBlock()) 8286 return std::move(Err); 8287 8288 F.Mods.push_back({Stream.getBitcodeBytes().slice( 8289 BCBegin, Stream.getCurrentByteNo() - BCBegin), 8290 Buffer.getBufferIdentifier(), IdentificationBit, 8291 ModuleBit}); 8292 continue; 8293 } 8294 8295 if (Entry.ID == bitc::STRTAB_BLOCK_ID) { 8296 Expected<StringRef> Strtab = 8297 readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB); 8298 if (!Strtab) 8299 return Strtab.takeError(); 8300 // This string table is used by every preceding bitcode module that does 8301 // not have its own string table. A bitcode file may have multiple 8302 // string tables if it was created by binary concatenation, for example 8303 // with "llvm-cat -b". 8304 for (BitcodeModule &I : llvm::reverse(F.Mods)) { 8305 if (!I.Strtab.empty()) 8306 break; 8307 I.Strtab = *Strtab; 8308 } 8309 // Similarly, the string table is used by every preceding symbol table; 8310 // normally there will be just one unless the bitcode file was created 8311 // by binary concatenation. 8312 if (!F.Symtab.empty() && F.StrtabForSymtab.empty()) 8313 F.StrtabForSymtab = *Strtab; 8314 continue; 8315 } 8316 8317 if (Entry.ID == bitc::SYMTAB_BLOCK_ID) { 8318 Expected<StringRef> SymtabOrErr = 8319 readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB); 8320 if (!SymtabOrErr) 8321 return SymtabOrErr.takeError(); 8322 8323 // We can expect the bitcode file to have multiple symbol tables if it 8324 // was created by binary concatenation. In that case we silently 8325 // ignore any subsequent symbol tables, which is fine because this is a 8326 // low level function. The client is expected to notice that the number 8327 // of modules in the symbol table does not match the number of modules 8328 // in the input file and regenerate the symbol table. 8329 if (F.Symtab.empty()) 8330 F.Symtab = *SymtabOrErr; 8331 continue; 8332 } 8333 8334 if (Error Err = Stream.SkipBlock()) 8335 return std::move(Err); 8336 continue; 8337 } 8338 case BitstreamEntry::Record: 8339 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 8340 return std::move(E); 8341 continue; 8342 } 8343 } 8344 } 8345 8346 /// Get a lazy one-at-time loading module from bitcode. 8347 /// 8348 /// This isn't always used in a lazy context. In particular, it's also used by 8349 /// \a parseModule(). If this is truly lazy, then we need to eagerly pull 8350 /// in forward-referenced functions from block address references. 8351 /// 8352 /// \param[in] MaterializeAll Set to \c true if we should materialize 8353 /// everything. 8354 Expected<std::unique_ptr<Module>> 8355 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll, 8356 bool ShouldLazyLoadMetadata, bool IsImporting, 8357 ParserCallbacks Callbacks) { 8358 BitstreamCursor Stream(Buffer); 8359 8360 std::string ProducerIdentification; 8361 if (IdentificationBit != -1ull) { 8362 if (Error JumpFailed = Stream.JumpToBit(IdentificationBit)) 8363 return std::move(JumpFailed); 8364 if (Error E = 8365 readIdentificationBlock(Stream).moveInto(ProducerIdentification)) 8366 return std::move(E); 8367 } 8368 8369 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 8370 return std::move(JumpFailed); 8371 auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification, 8372 Context); 8373 8374 std::unique_ptr<Module> M = 8375 std::make_unique<Module>(ModuleIdentifier, Context); 8376 M->setMaterializer(R); 8377 8378 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 8379 if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, 8380 IsImporting, Callbacks)) 8381 return std::move(Err); 8382 8383 if (MaterializeAll) { 8384 // Read in the entire module, and destroy the BitcodeReader. 8385 if (Error Err = M->materializeAll()) 8386 return std::move(Err); 8387 } else { 8388 // Resolve forward references from blockaddresses. 8389 if (Error Err = R->materializeForwardReferencedFunctions()) 8390 return std::move(Err); 8391 } 8392 8393 return std::move(M); 8394 } 8395 8396 Expected<std::unique_ptr<Module>> 8397 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata, 8398 bool IsImporting, ParserCallbacks Callbacks) { 8399 return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting, 8400 Callbacks); 8401 } 8402 8403 // Parse the specified bitcode buffer and merge the index into CombinedIndex. 8404 // We don't use ModuleIdentifier here because the client may need to control the 8405 // module path used in the combined summary (e.g. when reading summaries for 8406 // regular LTO modules). 8407 Error BitcodeModule::readSummary( 8408 ModuleSummaryIndex &CombinedIndex, StringRef ModulePath, 8409 std::function<bool(GlobalValue::GUID)> IsPrevailing) { 8410 BitstreamCursor Stream(Buffer); 8411 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 8412 return JumpFailed; 8413 8414 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex, 8415 ModulePath, IsPrevailing); 8416 return R.parseModule(); 8417 } 8418 8419 // Parse the specified bitcode buffer, returning the function info index. 8420 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() { 8421 BitstreamCursor Stream(Buffer); 8422 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 8423 return std::move(JumpFailed); 8424 8425 auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false); 8426 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index, 8427 ModuleIdentifier, 0); 8428 8429 if (Error Err = R.parseModule()) 8430 return std::move(Err); 8431 8432 return std::move(Index); 8433 } 8434 8435 static Expected<std::pair<bool, bool>> 8436 getEnableSplitLTOUnitAndUnifiedFlag(BitstreamCursor &Stream, 8437 unsigned ID, 8438 BitcodeLTOInfo <OInfo) { 8439 if (Error Err = Stream.EnterSubBlock(ID)) 8440 return std::move(Err); 8441 SmallVector<uint64_t, 64> Record; 8442 8443 while (true) { 8444 BitstreamEntry Entry; 8445 std::pair<bool, bool> Result = {false,false}; 8446 if (Error E = Stream.advanceSkippingSubblocks().moveInto(Entry)) 8447 return std::move(E); 8448 8449 switch (Entry.Kind) { 8450 case BitstreamEntry::SubBlock: // Handled for us already. 8451 case BitstreamEntry::Error: 8452 return error("Malformed block"); 8453 case BitstreamEntry::EndBlock: { 8454 // If no flags record found, set both flags to false. 8455 return Result; 8456 } 8457 case BitstreamEntry::Record: 8458 // The interesting case. 8459 break; 8460 } 8461 8462 // Look for the FS_FLAGS record. 8463 Record.clear(); 8464 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 8465 if (!MaybeBitCode) 8466 return MaybeBitCode.takeError(); 8467 switch (MaybeBitCode.get()) { 8468 default: // Default behavior: ignore. 8469 break; 8470 case bitc::FS_FLAGS: { // [flags] 8471 uint64_t Flags = Record[0]; 8472 // Scan flags. 8473 assert(Flags <= 0x2ff && "Unexpected bits in flag"); 8474 8475 bool EnableSplitLTOUnit = Flags & 0x8; 8476 bool UnifiedLTO = Flags & 0x200; 8477 Result = {EnableSplitLTOUnit, UnifiedLTO}; 8478 8479 return Result; 8480 } 8481 } 8482 } 8483 llvm_unreachable("Exit infinite loop"); 8484 } 8485 8486 // Check if the given bitcode buffer contains a global value summary block. 8487 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() { 8488 BitstreamCursor Stream(Buffer); 8489 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 8490 return std::move(JumpFailed); 8491 8492 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 8493 return std::move(Err); 8494 8495 while (true) { 8496 llvm::BitstreamEntry Entry; 8497 if (Error E = Stream.advance().moveInto(Entry)) 8498 return std::move(E); 8499 8500 switch (Entry.Kind) { 8501 case BitstreamEntry::Error: 8502 return error("Malformed block"); 8503 case BitstreamEntry::EndBlock: 8504 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false, 8505 /*EnableSplitLTOUnit=*/false, /*UnifiedLTO=*/false}; 8506 8507 case BitstreamEntry::SubBlock: 8508 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) { 8509 BitcodeLTOInfo LTOInfo; 8510 Expected<std::pair<bool, bool>> Flags = 8511 getEnableSplitLTOUnitAndUnifiedFlag(Stream, Entry.ID, LTOInfo); 8512 if (!Flags) 8513 return Flags.takeError(); 8514 std::tie(LTOInfo.EnableSplitLTOUnit, LTOInfo.UnifiedLTO) = Flags.get(); 8515 LTOInfo.IsThinLTO = true; 8516 LTOInfo.HasSummary = true; 8517 return LTOInfo; 8518 } 8519 8520 if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) { 8521 BitcodeLTOInfo LTOInfo; 8522 Expected<std::pair<bool, bool>> Flags = 8523 getEnableSplitLTOUnitAndUnifiedFlag(Stream, Entry.ID, LTOInfo); 8524 if (!Flags) 8525 return Flags.takeError(); 8526 std::tie(LTOInfo.EnableSplitLTOUnit, LTOInfo.UnifiedLTO) = Flags.get(); 8527 LTOInfo.IsThinLTO = false; 8528 LTOInfo.HasSummary = true; 8529 return LTOInfo; 8530 } 8531 8532 // Ignore other sub-blocks. 8533 if (Error Err = Stream.SkipBlock()) 8534 return std::move(Err); 8535 continue; 8536 8537 case BitstreamEntry::Record: 8538 if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID)) 8539 continue; 8540 else 8541 return StreamFailed.takeError(); 8542 } 8543 } 8544 } 8545 8546 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) { 8547 Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer); 8548 if (!MsOrErr) 8549 return MsOrErr.takeError(); 8550 8551 if (MsOrErr->size() != 1) 8552 return error("Expected a single module"); 8553 8554 return (*MsOrErr)[0]; 8555 } 8556 8557 Expected<std::unique_ptr<Module>> 8558 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context, 8559 bool ShouldLazyLoadMetadata, bool IsImporting, 8560 ParserCallbacks Callbacks) { 8561 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8562 if (!BM) 8563 return BM.takeError(); 8564 8565 return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting, 8566 Callbacks); 8567 } 8568 8569 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule( 8570 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context, 8571 bool ShouldLazyLoadMetadata, bool IsImporting, ParserCallbacks Callbacks) { 8572 auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata, 8573 IsImporting, Callbacks); 8574 if (MOrErr) 8575 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer)); 8576 return MOrErr; 8577 } 8578 8579 Expected<std::unique_ptr<Module>> 8580 BitcodeModule::parseModule(LLVMContext &Context, ParserCallbacks Callbacks) { 8581 return getModuleImpl(Context, true, false, false, Callbacks); 8582 // TODO: Restore the use-lists to the in-memory state when the bitcode was 8583 // written. We must defer until the Module has been fully materialized. 8584 } 8585 8586 Expected<std::unique_ptr<Module>> 8587 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context, 8588 ParserCallbacks Callbacks) { 8589 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8590 if (!BM) 8591 return BM.takeError(); 8592 8593 return BM->parseModule(Context, Callbacks); 8594 } 8595 8596 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) { 8597 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 8598 if (!StreamOrErr) 8599 return StreamOrErr.takeError(); 8600 8601 return readTriple(*StreamOrErr); 8602 } 8603 8604 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) { 8605 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 8606 if (!StreamOrErr) 8607 return StreamOrErr.takeError(); 8608 8609 return hasObjCCategory(*StreamOrErr); 8610 } 8611 8612 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) { 8613 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 8614 if (!StreamOrErr) 8615 return StreamOrErr.takeError(); 8616 8617 return readIdentificationCode(*StreamOrErr); 8618 } 8619 8620 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer, 8621 ModuleSummaryIndex &CombinedIndex) { 8622 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8623 if (!BM) 8624 return BM.takeError(); 8625 8626 return BM->readSummary(CombinedIndex, BM->getModuleIdentifier()); 8627 } 8628 8629 Expected<std::unique_ptr<ModuleSummaryIndex>> 8630 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) { 8631 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8632 if (!BM) 8633 return BM.takeError(); 8634 8635 return BM->getSummary(); 8636 } 8637 8638 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) { 8639 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8640 if (!BM) 8641 return BM.takeError(); 8642 8643 return BM->getLTOInfo(); 8644 } 8645 8646 Expected<std::unique_ptr<ModuleSummaryIndex>> 8647 llvm::getModuleSummaryIndexForFile(StringRef Path, 8648 bool IgnoreEmptyThinLTOIndexFile) { 8649 ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr = 8650 MemoryBuffer::getFileOrSTDIN(Path); 8651 if (!FileOrErr) 8652 return errorCodeToError(FileOrErr.getError()); 8653 if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize()) 8654 return nullptr; 8655 return getModuleSummaryIndex(**FileOrErr); 8656 } 8657