xref: /llvm-project/llvm/lib/Bitcode/Reader/BitcodeReader.cpp (revision 0edc97f119f3ac3ff96b11183fe5c001a48a9a8d)
1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Bitcode/BitcodeReader.h"
10 #include "MetadataLoader.h"
11 #include "ValueList.h"
12 #include "llvm/ADT/APFloat.h"
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallString.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/StringRef.h"
20 #include "llvm/ADT/Twine.h"
21 #include "llvm/Bitcode/BitcodeCommon.h"
22 #include "llvm/Bitcode/LLVMBitCodes.h"
23 #include "llvm/Bitstream/BitstreamReader.h"
24 #include "llvm/Config/llvm-config.h"
25 #include "llvm/IR/Argument.h"
26 #include "llvm/IR/AttributeMask.h"
27 #include "llvm/IR/Attributes.h"
28 #include "llvm/IR/AutoUpgrade.h"
29 #include "llvm/IR/BasicBlock.h"
30 #include "llvm/IR/CallingConv.h"
31 #include "llvm/IR/Comdat.h"
32 #include "llvm/IR/Constant.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/DebugInfo.h"
36 #include "llvm/IR/DebugInfoMetadata.h"
37 #include "llvm/IR/DebugLoc.h"
38 #include "llvm/IR/DerivedTypes.h"
39 #include "llvm/IR/Function.h"
40 #include "llvm/IR/GVMaterializer.h"
41 #include "llvm/IR/GetElementPtrTypeIterator.h"
42 #include "llvm/IR/GlobalAlias.h"
43 #include "llvm/IR/GlobalIFunc.h"
44 #include "llvm/IR/GlobalObject.h"
45 #include "llvm/IR/GlobalValue.h"
46 #include "llvm/IR/GlobalVariable.h"
47 #include "llvm/IR/InlineAsm.h"
48 #include "llvm/IR/InstIterator.h"
49 #include "llvm/IR/InstrTypes.h"
50 #include "llvm/IR/Instruction.h"
51 #include "llvm/IR/Instructions.h"
52 #include "llvm/IR/Intrinsics.h"
53 #include "llvm/IR/IntrinsicsAArch64.h"
54 #include "llvm/IR/IntrinsicsARM.h"
55 #include "llvm/IR/LLVMContext.h"
56 #include "llvm/IR/Metadata.h"
57 #include "llvm/IR/Module.h"
58 #include "llvm/IR/ModuleSummaryIndex.h"
59 #include "llvm/IR/Operator.h"
60 #include "llvm/IR/Type.h"
61 #include "llvm/IR/Value.h"
62 #include "llvm/IR/Verifier.h"
63 #include "llvm/Support/AtomicOrdering.h"
64 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/CommandLine.h"
66 #include "llvm/Support/Compiler.h"
67 #include "llvm/Support/Debug.h"
68 #include "llvm/Support/Error.h"
69 #include "llvm/Support/ErrorHandling.h"
70 #include "llvm/Support/ErrorOr.h"
71 #include "llvm/Support/MathExtras.h"
72 #include "llvm/Support/MemoryBuffer.h"
73 #include "llvm/Support/ModRef.h"
74 #include "llvm/Support/raw_ostream.h"
75 #include "llvm/TargetParser/Triple.h"
76 #include <algorithm>
77 #include <cassert>
78 #include <cstddef>
79 #include <cstdint>
80 #include <deque>
81 #include <map>
82 #include <memory>
83 #include <optional>
84 #include <set>
85 #include <string>
86 #include <system_error>
87 #include <tuple>
88 #include <utility>
89 #include <vector>
90 
91 using namespace llvm;
92 
93 static cl::opt<bool> PrintSummaryGUIDs(
94     "print-summary-global-ids", cl::init(false), cl::Hidden,
95     cl::desc(
96         "Print the global id for each value when reading the module summary"));
97 
98 static cl::opt<bool> ExpandConstantExprs(
99     "expand-constant-exprs", cl::Hidden,
100     cl::desc(
101         "Expand constant expressions to instructions for testing purposes"));
102 
103 /// Load bitcode directly into RemoveDIs format (use debug records instead
104 /// of debug intrinsics). UNSET is treated as FALSE, so the default action
105 /// is to do nothing. Individual tools can override this to incrementally add
106 /// support for the RemoveDIs format.
107 cl::opt<cl::boolOrDefault> LoadBitcodeIntoNewDbgInfoFormat(
108     "load-bitcode-into-experimental-debuginfo-iterators", cl::Hidden,
109     cl::desc("Load bitcode directly into the new debug info format (regardless "
110              "of input format)"));
111 extern cl::opt<cl::boolOrDefault> PreserveInputDbgFormat;
112 extern bool WriteNewDbgInfoFormatToBitcode;
113 extern cl::opt<bool> WriteNewDbgInfoFormat;
114 
115 namespace {
116 
117 enum {
118   SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
119 };
120 
121 } // end anonymous namespace
122 
123 static Error error(const Twine &Message) {
124   return make_error<StringError>(
125       Message, make_error_code(BitcodeError::CorruptedBitcode));
126 }
127 
128 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) {
129   if (!Stream.canSkipToPos(4))
130     return createStringError(std::errc::illegal_byte_sequence,
131                              "file too small to contain bitcode header");
132   for (unsigned C : {'B', 'C'})
133     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) {
134       if (Res.get() != C)
135         return createStringError(std::errc::illegal_byte_sequence,
136                                  "file doesn't start with bitcode header");
137     } else
138       return Res.takeError();
139   for (unsigned C : {0x0, 0xC, 0xE, 0xD})
140     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) {
141       if (Res.get() != C)
142         return createStringError(std::errc::illegal_byte_sequence,
143                                  "file doesn't start with bitcode header");
144     } else
145       return Res.takeError();
146   return Error::success();
147 }
148 
149 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) {
150   const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart();
151   const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize();
152 
153   if (Buffer.getBufferSize() & 3)
154     return error("Invalid bitcode signature");
155 
156   // If we have a wrapper header, parse it and ignore the non-bc file contents.
157   // The magic number is 0x0B17C0DE stored in little endian.
158   if (isBitcodeWrapper(BufPtr, BufEnd))
159     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
160       return error("Invalid bitcode wrapper header");
161 
162   BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd));
163   if (Error Err = hasInvalidBitcodeHeader(Stream))
164     return std::move(Err);
165 
166   return std::move(Stream);
167 }
168 
169 /// Convert a string from a record into an std::string, return true on failure.
170 template <typename StrTy>
171 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
172                             StrTy &Result) {
173   if (Idx > Record.size())
174     return true;
175 
176   Result.append(Record.begin() + Idx, Record.end());
177   return false;
178 }
179 
180 // Strip all the TBAA attachment for the module.
181 static void stripTBAA(Module *M) {
182   for (auto &F : *M) {
183     if (F.isMaterializable())
184       continue;
185     for (auto &I : instructions(F))
186       I.setMetadata(LLVMContext::MD_tbaa, nullptr);
187   }
188 }
189 
190 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the
191 /// "epoch" encoded in the bitcode, and return the producer name if any.
192 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) {
193   if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID))
194     return std::move(Err);
195 
196   // Read all the records.
197   SmallVector<uint64_t, 64> Record;
198 
199   std::string ProducerIdentification;
200 
201   while (true) {
202     BitstreamEntry Entry;
203     if (Error E = Stream.advance().moveInto(Entry))
204       return std::move(E);
205 
206     switch (Entry.Kind) {
207     default:
208     case BitstreamEntry::Error:
209       return error("Malformed block");
210     case BitstreamEntry::EndBlock:
211       return ProducerIdentification;
212     case BitstreamEntry::Record:
213       // The interesting case.
214       break;
215     }
216 
217     // Read a record.
218     Record.clear();
219     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
220     if (!MaybeBitCode)
221       return MaybeBitCode.takeError();
222     switch (MaybeBitCode.get()) {
223     default: // Default behavior: reject
224       return error("Invalid value");
225     case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N]
226       convertToString(Record, 0, ProducerIdentification);
227       break;
228     case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#]
229       unsigned epoch = (unsigned)Record[0];
230       if (epoch != bitc::BITCODE_CURRENT_EPOCH) {
231         return error(
232           Twine("Incompatible epoch: Bitcode '") + Twine(epoch) +
233           "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'");
234       }
235     }
236     }
237   }
238 }
239 
240 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) {
241   // We expect a number of well-defined blocks, though we don't necessarily
242   // need to understand them all.
243   while (true) {
244     if (Stream.AtEndOfStream())
245       return "";
246 
247     BitstreamEntry Entry;
248     if (Error E = Stream.advance().moveInto(Entry))
249       return std::move(E);
250 
251     switch (Entry.Kind) {
252     case BitstreamEntry::EndBlock:
253     case BitstreamEntry::Error:
254       return error("Malformed block");
255 
256     case BitstreamEntry::SubBlock:
257       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID)
258         return readIdentificationBlock(Stream);
259 
260       // Ignore other sub-blocks.
261       if (Error Err = Stream.SkipBlock())
262         return std::move(Err);
263       continue;
264     case BitstreamEntry::Record:
265       if (Error E = Stream.skipRecord(Entry.ID).takeError())
266         return std::move(E);
267       continue;
268     }
269   }
270 }
271 
272 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) {
273   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
274     return std::move(Err);
275 
276   SmallVector<uint64_t, 64> Record;
277   // Read all the records for this module.
278 
279   while (true) {
280     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
281     if (!MaybeEntry)
282       return MaybeEntry.takeError();
283     BitstreamEntry Entry = MaybeEntry.get();
284 
285     switch (Entry.Kind) {
286     case BitstreamEntry::SubBlock: // Handled for us already.
287     case BitstreamEntry::Error:
288       return error("Malformed block");
289     case BitstreamEntry::EndBlock:
290       return false;
291     case BitstreamEntry::Record:
292       // The interesting case.
293       break;
294     }
295 
296     // Read a record.
297     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
298     if (!MaybeRecord)
299       return MaybeRecord.takeError();
300     switch (MaybeRecord.get()) {
301     default:
302       break; // Default behavior, ignore unknown content.
303     case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
304       std::string S;
305       if (convertToString(Record, 0, S))
306         return error("Invalid section name record");
307       // Check for the i386 and other (x86_64, ARM) conventions
308       if (S.find("__DATA,__objc_catlist") != std::string::npos ||
309           S.find("__OBJC,__category") != std::string::npos ||
310           S.find("__TEXT,__swift") != std::string::npos)
311         return true;
312       break;
313     }
314     }
315     Record.clear();
316   }
317   llvm_unreachable("Exit infinite loop");
318 }
319 
320 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) {
321   // We expect a number of well-defined blocks, though we don't necessarily
322   // need to understand them all.
323   while (true) {
324     BitstreamEntry Entry;
325     if (Error E = Stream.advance().moveInto(Entry))
326       return std::move(E);
327 
328     switch (Entry.Kind) {
329     case BitstreamEntry::Error:
330       return error("Malformed block");
331     case BitstreamEntry::EndBlock:
332       return false;
333 
334     case BitstreamEntry::SubBlock:
335       if (Entry.ID == bitc::MODULE_BLOCK_ID)
336         return hasObjCCategoryInModule(Stream);
337 
338       // Ignore other sub-blocks.
339       if (Error Err = Stream.SkipBlock())
340         return std::move(Err);
341       continue;
342 
343     case BitstreamEntry::Record:
344       if (Error E = Stream.skipRecord(Entry.ID).takeError())
345         return std::move(E);
346       continue;
347     }
348   }
349 }
350 
351 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) {
352   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
353     return std::move(Err);
354 
355   SmallVector<uint64_t, 64> Record;
356 
357   std::string Triple;
358 
359   // Read all the records for this module.
360   while (true) {
361     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
362     if (!MaybeEntry)
363       return MaybeEntry.takeError();
364     BitstreamEntry Entry = MaybeEntry.get();
365 
366     switch (Entry.Kind) {
367     case BitstreamEntry::SubBlock: // Handled for us already.
368     case BitstreamEntry::Error:
369       return error("Malformed block");
370     case BitstreamEntry::EndBlock:
371       return Triple;
372     case BitstreamEntry::Record:
373       // The interesting case.
374       break;
375     }
376 
377     // Read a record.
378     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
379     if (!MaybeRecord)
380       return MaybeRecord.takeError();
381     switch (MaybeRecord.get()) {
382     default: break;  // Default behavior, ignore unknown content.
383     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
384       std::string S;
385       if (convertToString(Record, 0, S))
386         return error("Invalid triple record");
387       Triple = S;
388       break;
389     }
390     }
391     Record.clear();
392   }
393   llvm_unreachable("Exit infinite loop");
394 }
395 
396 static Expected<std::string> readTriple(BitstreamCursor &Stream) {
397   // We expect a number of well-defined blocks, though we don't necessarily
398   // need to understand them all.
399   while (true) {
400     Expected<BitstreamEntry> MaybeEntry = Stream.advance();
401     if (!MaybeEntry)
402       return MaybeEntry.takeError();
403     BitstreamEntry Entry = MaybeEntry.get();
404 
405     switch (Entry.Kind) {
406     case BitstreamEntry::Error:
407       return error("Malformed block");
408     case BitstreamEntry::EndBlock:
409       return "";
410 
411     case BitstreamEntry::SubBlock:
412       if (Entry.ID == bitc::MODULE_BLOCK_ID)
413         return readModuleTriple(Stream);
414 
415       // Ignore other sub-blocks.
416       if (Error Err = Stream.SkipBlock())
417         return std::move(Err);
418       continue;
419 
420     case BitstreamEntry::Record:
421       if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
422         continue;
423       else
424         return Skipped.takeError();
425     }
426   }
427 }
428 
429 namespace {
430 
431 class BitcodeReaderBase {
432 protected:
433   BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab)
434       : Stream(std::move(Stream)), Strtab(Strtab) {
435     this->Stream.setBlockInfo(&BlockInfo);
436   }
437 
438   BitstreamBlockInfo BlockInfo;
439   BitstreamCursor Stream;
440   StringRef Strtab;
441 
442   /// In version 2 of the bitcode we store names of global values and comdats in
443   /// a string table rather than in the VST.
444   bool UseStrtab = false;
445 
446   Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record);
447 
448   /// If this module uses a string table, pop the reference to the string table
449   /// and return the referenced string and the rest of the record. Otherwise
450   /// just return the record itself.
451   std::pair<StringRef, ArrayRef<uint64_t>>
452   readNameFromStrtab(ArrayRef<uint64_t> Record);
453 
454   Error readBlockInfo();
455 
456   // Contains an arbitrary and optional string identifying the bitcode producer
457   std::string ProducerIdentification;
458 
459   Error error(const Twine &Message);
460 };
461 
462 } // end anonymous namespace
463 
464 Error BitcodeReaderBase::error(const Twine &Message) {
465   std::string FullMsg = Message.str();
466   if (!ProducerIdentification.empty())
467     FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " +
468                LLVM_VERSION_STRING "')";
469   return ::error(FullMsg);
470 }
471 
472 Expected<unsigned>
473 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) {
474   if (Record.empty())
475     return error("Invalid version record");
476   unsigned ModuleVersion = Record[0];
477   if (ModuleVersion > 2)
478     return error("Invalid value");
479   UseStrtab = ModuleVersion >= 2;
480   return ModuleVersion;
481 }
482 
483 std::pair<StringRef, ArrayRef<uint64_t>>
484 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) {
485   if (!UseStrtab)
486     return {"", Record};
487   // Invalid reference. Let the caller complain about the record being empty.
488   if (Record[0] + Record[1] > Strtab.size())
489     return {"", {}};
490   return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)};
491 }
492 
493 namespace {
494 
495 /// This represents a constant expression or constant aggregate using a custom
496 /// structure internal to the bitcode reader. Later, this structure will be
497 /// expanded by materializeValue() either into a constant expression/aggregate,
498 /// or into an instruction sequence at the point of use. This allows us to
499 /// upgrade bitcode using constant expressions even if this kind of constant
500 /// expression is no longer supported.
501 class BitcodeConstant final : public Value,
502                               TrailingObjects<BitcodeConstant, unsigned> {
503   friend TrailingObjects;
504 
505   // Value subclass ID: Pick largest possible value to avoid any clashes.
506   static constexpr uint8_t SubclassID = 255;
507 
508 public:
509   // Opcodes used for non-expressions. This includes constant aggregates
510   // (struct, array, vector) that might need expansion, as well as non-leaf
511   // constants that don't need expansion (no_cfi, dso_local, blockaddress),
512   // but still go through BitcodeConstant to avoid different uselist orders
513   // between the two cases.
514   static constexpr uint8_t ConstantStructOpcode = 255;
515   static constexpr uint8_t ConstantArrayOpcode = 254;
516   static constexpr uint8_t ConstantVectorOpcode = 253;
517   static constexpr uint8_t NoCFIOpcode = 252;
518   static constexpr uint8_t DSOLocalEquivalentOpcode = 251;
519   static constexpr uint8_t BlockAddressOpcode = 250;
520   static constexpr uint8_t ConstantPtrAuthOpcode = 249;
521   static constexpr uint8_t FirstSpecialOpcode = ConstantPtrAuthOpcode;
522 
523   // Separate struct to make passing different number of parameters to
524   // BitcodeConstant::create() more convenient.
525   struct ExtraInfo {
526     uint8_t Opcode;
527     uint8_t Flags;
528     unsigned BlockAddressBB = 0;
529     Type *SrcElemTy = nullptr;
530     std::optional<ConstantRange> InRange;
531 
532     ExtraInfo(uint8_t Opcode, uint8_t Flags = 0, Type *SrcElemTy = nullptr,
533               std::optional<ConstantRange> InRange = std::nullopt)
534         : Opcode(Opcode), Flags(Flags), SrcElemTy(SrcElemTy),
535           InRange(std::move(InRange)) {}
536 
537     ExtraInfo(uint8_t Opcode, uint8_t Flags, unsigned BlockAddressBB)
538         : Opcode(Opcode), Flags(Flags), BlockAddressBB(BlockAddressBB) {}
539   };
540 
541   uint8_t Opcode;
542   uint8_t Flags;
543   unsigned NumOperands;
544   unsigned BlockAddressBB;
545   Type *SrcElemTy; // GEP source element type.
546   std::optional<ConstantRange> InRange; // GEP inrange attribute.
547 
548 private:
549   BitcodeConstant(Type *Ty, const ExtraInfo &Info, ArrayRef<unsigned> OpIDs)
550       : Value(Ty, SubclassID), Opcode(Info.Opcode), Flags(Info.Flags),
551         NumOperands(OpIDs.size()), BlockAddressBB(Info.BlockAddressBB),
552         SrcElemTy(Info.SrcElemTy), InRange(Info.InRange) {
553     std::uninitialized_copy(OpIDs.begin(), OpIDs.end(),
554                             getTrailingObjects<unsigned>());
555   }
556 
557   BitcodeConstant &operator=(const BitcodeConstant &) = delete;
558 
559 public:
560   static BitcodeConstant *create(BumpPtrAllocator &A, Type *Ty,
561                                  const ExtraInfo &Info,
562                                  ArrayRef<unsigned> OpIDs) {
563     void *Mem = A.Allocate(totalSizeToAlloc<unsigned>(OpIDs.size()),
564                            alignof(BitcodeConstant));
565     return new (Mem) BitcodeConstant(Ty, Info, OpIDs);
566   }
567 
568   static bool classof(const Value *V) { return V->getValueID() == SubclassID; }
569 
570   ArrayRef<unsigned> getOperandIDs() const {
571     return ArrayRef(getTrailingObjects<unsigned>(), NumOperands);
572   }
573 
574   std::optional<ConstantRange> getInRange() const {
575     assert(Opcode == Instruction::GetElementPtr);
576     return InRange;
577   }
578 
579   const char *getOpcodeName() const {
580     return Instruction::getOpcodeName(Opcode);
581   }
582 };
583 
584 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer {
585   LLVMContext &Context;
586   Module *TheModule = nullptr;
587   // Next offset to start scanning for lazy parsing of function bodies.
588   uint64_t NextUnreadBit = 0;
589   // Last function offset found in the VST.
590   uint64_t LastFunctionBlockBit = 0;
591   bool SeenValueSymbolTable = false;
592   uint64_t VSTOffset = 0;
593 
594   std::vector<std::string> SectionTable;
595   std::vector<std::string> GCTable;
596 
597   std::vector<Type *> TypeList;
598   /// Track type IDs of contained types. Order is the same as the contained
599   /// types of a Type*. This is used during upgrades of typed pointer IR in
600   /// opaque pointer mode.
601   DenseMap<unsigned, SmallVector<unsigned, 1>> ContainedTypeIDs;
602   /// In some cases, we need to create a type ID for a type that was not
603   /// explicitly encoded in the bitcode, or we don't know about at the current
604   /// point. For example, a global may explicitly encode the value type ID, but
605   /// not have a type ID for the pointer to value type, for which we create a
606   /// virtual type ID instead. This map stores the new type ID that was created
607   /// for the given pair of Type and contained type ID.
608   DenseMap<std::pair<Type *, unsigned>, unsigned> VirtualTypeIDs;
609   DenseMap<Function *, unsigned> FunctionTypeIDs;
610   /// Allocator for BitcodeConstants. This should come before ValueList,
611   /// because the ValueList might hold ValueHandles to these constants, so
612   /// ValueList must be destroyed before Alloc.
613   BumpPtrAllocator Alloc;
614   BitcodeReaderValueList ValueList;
615   std::optional<MetadataLoader> MDLoader;
616   std::vector<Comdat *> ComdatList;
617   DenseSet<GlobalObject *> ImplicitComdatObjects;
618   SmallVector<Instruction *, 64> InstructionList;
619 
620   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits;
621   std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInits;
622 
623   struct FunctionOperandInfo {
624     Function *F;
625     unsigned PersonalityFn;
626     unsigned Prefix;
627     unsigned Prologue;
628   };
629   std::vector<FunctionOperandInfo> FunctionOperands;
630 
631   /// The set of attributes by index.  Index zero in the file is for null, and
632   /// is thus not represented here.  As such all indices are off by one.
633   std::vector<AttributeList> MAttributes;
634 
635   /// The set of attribute groups.
636   std::map<unsigned, AttributeList> MAttributeGroups;
637 
638   /// While parsing a function body, this is a list of the basic blocks for the
639   /// function.
640   std::vector<BasicBlock*> FunctionBBs;
641 
642   // When reading the module header, this list is populated with functions that
643   // have bodies later in the file.
644   std::vector<Function*> FunctionsWithBodies;
645 
646   // When intrinsic functions are encountered which require upgrading they are
647   // stored here with their replacement function.
648   using UpdatedIntrinsicMap = DenseMap<Function *, Function *>;
649   UpdatedIntrinsicMap UpgradedIntrinsics;
650 
651   // Several operations happen after the module header has been read, but
652   // before function bodies are processed. This keeps track of whether
653   // we've done this yet.
654   bool SeenFirstFunctionBody = false;
655 
656   /// When function bodies are initially scanned, this map contains info about
657   /// where to find deferred function body in the stream.
658   DenseMap<Function*, uint64_t> DeferredFunctionInfo;
659 
660   /// When Metadata block is initially scanned when parsing the module, we may
661   /// choose to defer parsing of the metadata. This vector contains info about
662   /// which Metadata blocks are deferred.
663   std::vector<uint64_t> DeferredMetadataInfo;
664 
665   /// These are basic blocks forward-referenced by block addresses.  They are
666   /// inserted lazily into functions when they're loaded.  The basic block ID is
667   /// its index into the vector.
668   DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs;
669   std::deque<Function *> BasicBlockFwdRefQueue;
670 
671   /// These are Functions that contain BlockAddresses which refer a different
672   /// Function. When parsing the different Function, queue Functions that refer
673   /// to the different Function. Those Functions must be materialized in order
674   /// to resolve their BlockAddress constants before the different Function
675   /// gets moved into another Module.
676   std::vector<Function *> BackwardRefFunctions;
677 
678   /// Indicates that we are using a new encoding for instruction operands where
679   /// most operands in the current FUNCTION_BLOCK are encoded relative to the
680   /// instruction number, for a more compact encoding.  Some instruction
681   /// operands are not relative to the instruction ID: basic block numbers, and
682   /// types. Once the old style function blocks have been phased out, we would
683   /// not need this flag.
684   bool UseRelativeIDs = false;
685 
686   /// True if all functions will be materialized, negating the need to process
687   /// (e.g.) blockaddress forward references.
688   bool WillMaterializeAllForwardRefs = false;
689 
690   /// Tracks whether we have seen debug intrinsics or records in this bitcode;
691   /// seeing both in a single module is currently a fatal error.
692   bool SeenDebugIntrinsic = false;
693   bool SeenDebugRecord = false;
694 
695   bool StripDebugInfo = false;
696   TBAAVerifier TBAAVerifyHelper;
697 
698   std::vector<std::string> BundleTags;
699   SmallVector<SyncScope::ID, 8> SSIDs;
700 
701   std::optional<ValueTypeCallbackTy> ValueTypeCallback;
702 
703 public:
704   BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
705                 StringRef ProducerIdentification, LLVMContext &Context);
706 
707   Error materializeForwardReferencedFunctions();
708 
709   Error materialize(GlobalValue *GV) override;
710   Error materializeModule() override;
711   std::vector<StructType *> getIdentifiedStructTypes() const override;
712 
713   /// Main interface to parsing a bitcode buffer.
714   /// \returns true if an error occurred.
715   Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
716                          bool IsImporting, ParserCallbacks Callbacks = {});
717 
718   static uint64_t decodeSignRotatedValue(uint64_t V);
719 
720   /// Materialize any deferred Metadata block.
721   Error materializeMetadata() override;
722 
723   void setStripDebugInfo() override;
724 
725 private:
726   std::vector<StructType *> IdentifiedStructTypes;
727   StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
728   StructType *createIdentifiedStructType(LLVMContext &Context);
729 
730   static constexpr unsigned InvalidTypeID = ~0u;
731 
732   Type *getTypeByID(unsigned ID);
733   Type *getPtrElementTypeByID(unsigned ID);
734   unsigned getContainedTypeID(unsigned ID, unsigned Idx = 0);
735   unsigned getVirtualTypeID(Type *Ty, ArrayRef<unsigned> ContainedTypeIDs = {});
736 
737   void callValueTypeCallback(Value *F, unsigned TypeID);
738   Expected<Value *> materializeValue(unsigned ValID, BasicBlock *InsertBB);
739   Expected<Constant *> getValueForInitializer(unsigned ID);
740 
741   Value *getFnValueByID(unsigned ID, Type *Ty, unsigned TyID,
742                         BasicBlock *ConstExprInsertBB) {
743     if (Ty && Ty->isMetadataTy())
744       return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
745     return ValueList.getValueFwdRef(ID, Ty, TyID, ConstExprInsertBB);
746   }
747 
748   Metadata *getFnMetadataByID(unsigned ID) {
749     return MDLoader->getMetadataFwdRefOrLoad(ID);
750   }
751 
752   BasicBlock *getBasicBlock(unsigned ID) const {
753     if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
754     return FunctionBBs[ID];
755   }
756 
757   AttributeList getAttributes(unsigned i) const {
758     if (i-1 < MAttributes.size())
759       return MAttributes[i-1];
760     return AttributeList();
761   }
762 
763   /// Read a value/type pair out of the specified record from slot 'Slot'.
764   /// Increment Slot past the number of slots used in the record. Return true on
765   /// failure.
766   bool getValueTypePair(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
767                         unsigned InstNum, Value *&ResVal, unsigned &TypeID,
768                         BasicBlock *ConstExprInsertBB) {
769     if (Slot == Record.size()) return true;
770     unsigned ValNo = (unsigned)Record[Slot++];
771     // Adjust the ValNo, if it was encoded relative to the InstNum.
772     if (UseRelativeIDs)
773       ValNo = InstNum - ValNo;
774     if (ValNo < InstNum) {
775       // If this is not a forward reference, just return the value we already
776       // have.
777       TypeID = ValueList.getTypeID(ValNo);
778       ResVal = getFnValueByID(ValNo, nullptr, TypeID, ConstExprInsertBB);
779       assert((!ResVal || ResVal->getType() == getTypeByID(TypeID)) &&
780              "Incorrect type ID stored for value");
781       return ResVal == nullptr;
782     }
783     if (Slot == Record.size())
784       return true;
785 
786     TypeID = (unsigned)Record[Slot++];
787     ResVal = getFnValueByID(ValNo, getTypeByID(TypeID), TypeID,
788                             ConstExprInsertBB);
789     return ResVal == nullptr;
790   }
791 
792   /// Read a value out of the specified record from slot 'Slot'. Increment Slot
793   /// past the number of slots used by the value in the record. Return true if
794   /// there is an error.
795   bool popValue(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
796                 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal,
797                 BasicBlock *ConstExprInsertBB) {
798     if (getValue(Record, Slot, InstNum, Ty, TyID, ResVal, ConstExprInsertBB))
799       return true;
800     // All values currently take a single record slot.
801     ++Slot;
802     return false;
803   }
804 
805   /// Like popValue, but does not increment the Slot number.
806   bool getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
807                 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal,
808                 BasicBlock *ConstExprInsertBB) {
809     ResVal = getValue(Record, Slot, InstNum, Ty, TyID, ConstExprInsertBB);
810     return ResVal == nullptr;
811   }
812 
813   /// Version of getValue that returns ResVal directly, or 0 if there is an
814   /// error.
815   Value *getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
816                   unsigned InstNum, Type *Ty, unsigned TyID,
817                   BasicBlock *ConstExprInsertBB) {
818     if (Slot == Record.size()) return nullptr;
819     unsigned ValNo = (unsigned)Record[Slot];
820     // Adjust the ValNo, if it was encoded relative to the InstNum.
821     if (UseRelativeIDs)
822       ValNo = InstNum - ValNo;
823     return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB);
824   }
825 
826   /// Like getValue, but decodes signed VBRs.
827   Value *getValueSigned(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
828                         unsigned InstNum, Type *Ty, unsigned TyID,
829                         BasicBlock *ConstExprInsertBB) {
830     if (Slot == Record.size()) return nullptr;
831     unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
832     // Adjust the ValNo, if it was encoded relative to the InstNum.
833     if (UseRelativeIDs)
834       ValNo = InstNum - ValNo;
835     return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB);
836   }
837 
838   Expected<ConstantRange> readConstantRange(ArrayRef<uint64_t> Record,
839                                             unsigned &OpNum) {
840     if (Record.size() - OpNum < 3)
841       return error("Too few records for range");
842     unsigned BitWidth = Record[OpNum++];
843     if (BitWidth > 64) {
844       unsigned LowerActiveWords = Record[OpNum];
845       unsigned UpperActiveWords = Record[OpNum++] >> 32;
846       if (Record.size() - OpNum < LowerActiveWords + UpperActiveWords)
847         return error("Too few records for range");
848       APInt Lower =
849           readWideAPInt(ArrayRef(&Record[OpNum], LowerActiveWords), BitWidth);
850       OpNum += LowerActiveWords;
851       APInt Upper =
852           readWideAPInt(ArrayRef(&Record[OpNum], UpperActiveWords), BitWidth);
853       OpNum += UpperActiveWords;
854       return ConstantRange(Lower, Upper);
855     } else {
856       int64_t Start = BitcodeReader::decodeSignRotatedValue(Record[OpNum++]);
857       int64_t End = BitcodeReader::decodeSignRotatedValue(Record[OpNum++]);
858       return ConstantRange(APInt(BitWidth, Start), APInt(BitWidth, End));
859     }
860   }
861 
862   /// Upgrades old-style typeless byval/sret/inalloca attributes by adding the
863   /// corresponding argument's pointee type. Also upgrades intrinsics that now
864   /// require an elementtype attribute.
865   Error propagateAttributeTypes(CallBase *CB, ArrayRef<unsigned> ArgsTys);
866 
867   /// Converts alignment exponent (i.e. power of two (or zero)) to the
868   /// corresponding alignment to use. If alignment is too large, returns
869   /// a corresponding error code.
870   Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment);
871   Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
872   Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false,
873                     ParserCallbacks Callbacks = {});
874 
875   Error parseComdatRecord(ArrayRef<uint64_t> Record);
876   Error parseGlobalVarRecord(ArrayRef<uint64_t> Record);
877   Error parseFunctionRecord(ArrayRef<uint64_t> Record);
878   Error parseGlobalIndirectSymbolRecord(unsigned BitCode,
879                                         ArrayRef<uint64_t> Record);
880 
881   Error parseAttributeBlock();
882   Error parseAttributeGroupBlock();
883   Error parseTypeTable();
884   Error parseTypeTableBody();
885   Error parseOperandBundleTags();
886   Error parseSyncScopeNames();
887 
888   Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record,
889                                 unsigned NameIndex, Triple &TT);
890   void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F,
891                                ArrayRef<uint64_t> Record);
892   Error parseValueSymbolTable(uint64_t Offset = 0);
893   Error parseGlobalValueSymbolTable();
894   Error parseConstants();
895   Error rememberAndSkipFunctionBodies();
896   Error rememberAndSkipFunctionBody();
897   /// Save the positions of the Metadata blocks and skip parsing the blocks.
898   Error rememberAndSkipMetadata();
899   Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType);
900   Error parseFunctionBody(Function *F);
901   Error globalCleanup();
902   Error resolveGlobalAndIndirectSymbolInits();
903   Error parseUseLists();
904   Error findFunctionInStream(
905       Function *F,
906       DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
907 
908   SyncScope::ID getDecodedSyncScopeID(unsigned Val);
909 };
910 
911 /// Class to manage reading and parsing function summary index bitcode
912 /// files/sections.
913 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase {
914   /// The module index built during parsing.
915   ModuleSummaryIndex &TheIndex;
916 
917   /// Indicates whether we have encountered a global value summary section
918   /// yet during parsing.
919   bool SeenGlobalValSummary = false;
920 
921   /// Indicates whether we have already parsed the VST, used for error checking.
922   bool SeenValueSymbolTable = false;
923 
924   /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record.
925   /// Used to enable on-demand parsing of the VST.
926   uint64_t VSTOffset = 0;
927 
928   // Map to save ValueId to ValueInfo association that was recorded in the
929   // ValueSymbolTable. It is used after the VST is parsed to convert
930   // call graph edges read from the function summary from referencing
931   // callees by their ValueId to using the ValueInfo instead, which is how
932   // they are recorded in the summary index being built.
933   // We save a GUID which refers to the same global as the ValueInfo, but
934   // ignoring the linkage, i.e. for values other than local linkage they are
935   // identical (this is the second tuple member).
936   // The third tuple member is the real GUID of the ValueInfo.
937   DenseMap<unsigned,
938            std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID>>
939       ValueIdToValueInfoMap;
940 
941   /// Map populated during module path string table parsing, from the
942   /// module ID to a string reference owned by the index's module
943   /// path string table, used to correlate with combined index
944   /// summary records.
945   DenseMap<uint64_t, StringRef> ModuleIdMap;
946 
947   /// Original source file name recorded in a bitcode record.
948   std::string SourceFileName;
949 
950   /// The string identifier given to this module by the client, normally the
951   /// path to the bitcode file.
952   StringRef ModulePath;
953 
954   /// Callback to ask whether a symbol is the prevailing copy when invoked
955   /// during combined index building.
956   std::function<bool(GlobalValue::GUID)> IsPrevailing;
957 
958   /// Saves the stack ids from the STACK_IDS record to consult when adding stack
959   /// ids from the lists in the callsite and alloc entries to the index.
960   std::vector<uint64_t> StackIds;
961 
962 public:
963   ModuleSummaryIndexBitcodeReader(
964       BitstreamCursor Stream, StringRef Strtab, ModuleSummaryIndex &TheIndex,
965       StringRef ModulePath,
966       std::function<bool(GlobalValue::GUID)> IsPrevailing = nullptr);
967 
968   Error parseModule();
969 
970 private:
971   void setValueGUID(uint64_t ValueID, StringRef ValueName,
972                     GlobalValue::LinkageTypes Linkage,
973                     StringRef SourceFileName);
974   Error parseValueSymbolTable(
975       uint64_t Offset,
976       DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap);
977   std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record);
978   std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record,
979                                                     bool IsOldProfileFormat,
980                                                     bool HasProfile,
981                                                     bool HasRelBF);
982   Error parseEntireSummary(unsigned ID);
983   Error parseModuleStringTable();
984   void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record);
985   void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot,
986                                        TypeIdCompatibleVtableInfo &TypeId);
987   std::vector<FunctionSummary::ParamAccess>
988   parseParamAccesses(ArrayRef<uint64_t> Record);
989 
990   template <bool AllowNullValueInfo = false>
991   std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID>
992   getValueInfoFromValueId(unsigned ValueId);
993 
994   void addThisModule();
995   ModuleSummaryIndex::ModuleInfo *getThisModule();
996 };
997 
998 } // end anonymous namespace
999 
1000 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx,
1001                                                     Error Err) {
1002   if (Err) {
1003     std::error_code EC;
1004     handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) {
1005       EC = EIB.convertToErrorCode();
1006       Ctx.emitError(EIB.message());
1007     });
1008     return EC;
1009   }
1010   return std::error_code();
1011 }
1012 
1013 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
1014                              StringRef ProducerIdentification,
1015                              LLVMContext &Context)
1016     : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context),
1017       ValueList(this->Stream.SizeInBytes(),
1018                 [this](unsigned ValID, BasicBlock *InsertBB) {
1019                   return materializeValue(ValID, InsertBB);
1020                 }) {
1021   this->ProducerIdentification = std::string(ProducerIdentification);
1022 }
1023 
1024 Error BitcodeReader::materializeForwardReferencedFunctions() {
1025   if (WillMaterializeAllForwardRefs)
1026     return Error::success();
1027 
1028   // Prevent recursion.
1029   WillMaterializeAllForwardRefs = true;
1030 
1031   while (!BasicBlockFwdRefQueue.empty()) {
1032     Function *F = BasicBlockFwdRefQueue.front();
1033     BasicBlockFwdRefQueue.pop_front();
1034     assert(F && "Expected valid function");
1035     if (!BasicBlockFwdRefs.count(F))
1036       // Already materialized.
1037       continue;
1038 
1039     // Check for a function that isn't materializable to prevent an infinite
1040     // loop.  When parsing a blockaddress stored in a global variable, there
1041     // isn't a trivial way to check if a function will have a body without a
1042     // linear search through FunctionsWithBodies, so just check it here.
1043     if (!F->isMaterializable())
1044       return error("Never resolved function from blockaddress");
1045 
1046     // Try to materialize F.
1047     if (Error Err = materialize(F))
1048       return Err;
1049   }
1050   assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
1051 
1052   for (Function *F : BackwardRefFunctions)
1053     if (Error Err = materialize(F))
1054       return Err;
1055   BackwardRefFunctions.clear();
1056 
1057   // Reset state.
1058   WillMaterializeAllForwardRefs = false;
1059   return Error::success();
1060 }
1061 
1062 //===----------------------------------------------------------------------===//
1063 //  Helper functions to implement forward reference resolution, etc.
1064 //===----------------------------------------------------------------------===//
1065 
1066 static bool hasImplicitComdat(size_t Val) {
1067   switch (Val) {
1068   default:
1069     return false;
1070   case 1:  // Old WeakAnyLinkage
1071   case 4:  // Old LinkOnceAnyLinkage
1072   case 10: // Old WeakODRLinkage
1073   case 11: // Old LinkOnceODRLinkage
1074     return true;
1075   }
1076 }
1077 
1078 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
1079   switch (Val) {
1080   default: // Map unknown/new linkages to external
1081   case 0:
1082     return GlobalValue::ExternalLinkage;
1083   case 2:
1084     return GlobalValue::AppendingLinkage;
1085   case 3:
1086     return GlobalValue::InternalLinkage;
1087   case 5:
1088     return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
1089   case 6:
1090     return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
1091   case 7:
1092     return GlobalValue::ExternalWeakLinkage;
1093   case 8:
1094     return GlobalValue::CommonLinkage;
1095   case 9:
1096     return GlobalValue::PrivateLinkage;
1097   case 12:
1098     return GlobalValue::AvailableExternallyLinkage;
1099   case 13:
1100     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
1101   case 14:
1102     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
1103   case 15:
1104     return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
1105   case 1: // Old value with implicit comdat.
1106   case 16:
1107     return GlobalValue::WeakAnyLinkage;
1108   case 10: // Old value with implicit comdat.
1109   case 17:
1110     return GlobalValue::WeakODRLinkage;
1111   case 4: // Old value with implicit comdat.
1112   case 18:
1113     return GlobalValue::LinkOnceAnyLinkage;
1114   case 11: // Old value with implicit comdat.
1115   case 19:
1116     return GlobalValue::LinkOnceODRLinkage;
1117   }
1118 }
1119 
1120 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) {
1121   FunctionSummary::FFlags Flags;
1122   Flags.ReadNone = RawFlags & 0x1;
1123   Flags.ReadOnly = (RawFlags >> 1) & 0x1;
1124   Flags.NoRecurse = (RawFlags >> 2) & 0x1;
1125   Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1;
1126   Flags.NoInline = (RawFlags >> 4) & 0x1;
1127   Flags.AlwaysInline = (RawFlags >> 5) & 0x1;
1128   Flags.NoUnwind = (RawFlags >> 6) & 0x1;
1129   Flags.MayThrow = (RawFlags >> 7) & 0x1;
1130   Flags.HasUnknownCall = (RawFlags >> 8) & 0x1;
1131   Flags.MustBeUnreachable = (RawFlags >> 9) & 0x1;
1132   return Flags;
1133 }
1134 
1135 // Decode the flags for GlobalValue in the summary. The bits for each attribute:
1136 //
1137 // linkage: [0,4), notEligibleToImport: 4, live: 5, local: 6, canAutoHide: 7,
1138 // visibility: [8, 10).
1139 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags,
1140                                                             uint64_t Version) {
1141   // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage
1142   // like getDecodedLinkage() above. Any future change to the linkage enum and
1143   // to getDecodedLinkage() will need to be taken into account here as above.
1144   auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits
1145   auto Visibility = GlobalValue::VisibilityTypes((RawFlags >> 8) & 3); // 2 bits
1146   auto IK = GlobalValueSummary::ImportKind((RawFlags >> 10) & 1);      // 1 bit
1147   RawFlags = RawFlags >> 4;
1148   bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3;
1149   // The Live flag wasn't introduced until version 3. For dead stripping
1150   // to work correctly on earlier versions, we must conservatively treat all
1151   // values as live.
1152   bool Live = (RawFlags & 0x2) || Version < 3;
1153   bool Local = (RawFlags & 0x4);
1154   bool AutoHide = (RawFlags & 0x8);
1155 
1156   return GlobalValueSummary::GVFlags(Linkage, Visibility, NotEligibleToImport,
1157                                      Live, Local, AutoHide, IK);
1158 }
1159 
1160 // Decode the flags for GlobalVariable in the summary
1161 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) {
1162   return GlobalVarSummary::GVarFlags(
1163       (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false,
1164       (RawFlags & 0x4) ? true : false,
1165       (GlobalObject::VCallVisibility)(RawFlags >> 3));
1166 }
1167 
1168 static std::pair<CalleeInfo::HotnessType, bool>
1169 getDecodedHotnessCallEdgeInfo(uint64_t RawFlags) {
1170   CalleeInfo::HotnessType Hotness =
1171       static_cast<CalleeInfo::HotnessType>(RawFlags & 0x7); // 3 bits
1172   bool HasTailCall = (RawFlags & 0x8);                      // 1 bit
1173   return {Hotness, HasTailCall};
1174 }
1175 
1176 static void getDecodedRelBFCallEdgeInfo(uint64_t RawFlags, uint64_t &RelBF,
1177                                         bool &HasTailCall) {
1178   static constexpr uint64_t RelBlockFreqMask =
1179       (1 << CalleeInfo::RelBlockFreqBits) - 1;
1180   RelBF = RawFlags & RelBlockFreqMask; // RelBlockFreqBits bits
1181   HasTailCall = (RawFlags & (1 << CalleeInfo::RelBlockFreqBits)); // 1 bit
1182 }
1183 
1184 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) {
1185   switch (Val) {
1186   default: // Map unknown visibilities to default.
1187   case 0: return GlobalValue::DefaultVisibility;
1188   case 1: return GlobalValue::HiddenVisibility;
1189   case 2: return GlobalValue::ProtectedVisibility;
1190   }
1191 }
1192 
1193 static GlobalValue::DLLStorageClassTypes
1194 getDecodedDLLStorageClass(unsigned Val) {
1195   switch (Val) {
1196   default: // Map unknown values to default.
1197   case 0: return GlobalValue::DefaultStorageClass;
1198   case 1: return GlobalValue::DLLImportStorageClass;
1199   case 2: return GlobalValue::DLLExportStorageClass;
1200   }
1201 }
1202 
1203 static bool getDecodedDSOLocal(unsigned Val) {
1204   switch(Val) {
1205   default: // Map unknown values to preemptable.
1206   case 0:  return false;
1207   case 1:  return true;
1208   }
1209 }
1210 
1211 static std::optional<CodeModel::Model> getDecodedCodeModel(unsigned Val) {
1212   switch (Val) {
1213   case 1:
1214     return CodeModel::Tiny;
1215   case 2:
1216     return CodeModel::Small;
1217   case 3:
1218     return CodeModel::Kernel;
1219   case 4:
1220     return CodeModel::Medium;
1221   case 5:
1222     return CodeModel::Large;
1223   }
1224 
1225   return {};
1226 }
1227 
1228 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) {
1229   switch (Val) {
1230     case 0: return GlobalVariable::NotThreadLocal;
1231     default: // Map unknown non-zero value to general dynamic.
1232     case 1: return GlobalVariable::GeneralDynamicTLSModel;
1233     case 2: return GlobalVariable::LocalDynamicTLSModel;
1234     case 3: return GlobalVariable::InitialExecTLSModel;
1235     case 4: return GlobalVariable::LocalExecTLSModel;
1236   }
1237 }
1238 
1239 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) {
1240   switch (Val) {
1241     default: // Map unknown to UnnamedAddr::None.
1242     case 0: return GlobalVariable::UnnamedAddr::None;
1243     case 1: return GlobalVariable::UnnamedAddr::Global;
1244     case 2: return GlobalVariable::UnnamedAddr::Local;
1245   }
1246 }
1247 
1248 static int getDecodedCastOpcode(unsigned Val) {
1249   switch (Val) {
1250   default: return -1;
1251   case bitc::CAST_TRUNC   : return Instruction::Trunc;
1252   case bitc::CAST_ZEXT    : return Instruction::ZExt;
1253   case bitc::CAST_SEXT    : return Instruction::SExt;
1254   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
1255   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
1256   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
1257   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
1258   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
1259   case bitc::CAST_FPEXT   : return Instruction::FPExt;
1260   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
1261   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
1262   case bitc::CAST_BITCAST : return Instruction::BitCast;
1263   case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
1264   }
1265 }
1266 
1267 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) {
1268   bool IsFP = Ty->isFPOrFPVectorTy();
1269   // UnOps are only valid for int/fp or vector of int/fp types
1270   if (!IsFP && !Ty->isIntOrIntVectorTy())
1271     return -1;
1272 
1273   switch (Val) {
1274   default:
1275     return -1;
1276   case bitc::UNOP_FNEG:
1277     return IsFP ? Instruction::FNeg : -1;
1278   }
1279 }
1280 
1281 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
1282   bool IsFP = Ty->isFPOrFPVectorTy();
1283   // BinOps are only valid for int/fp or vector of int/fp types
1284   if (!IsFP && !Ty->isIntOrIntVectorTy())
1285     return -1;
1286 
1287   switch (Val) {
1288   default:
1289     return -1;
1290   case bitc::BINOP_ADD:
1291     return IsFP ? Instruction::FAdd : Instruction::Add;
1292   case bitc::BINOP_SUB:
1293     return IsFP ? Instruction::FSub : Instruction::Sub;
1294   case bitc::BINOP_MUL:
1295     return IsFP ? Instruction::FMul : Instruction::Mul;
1296   case bitc::BINOP_UDIV:
1297     return IsFP ? -1 : Instruction::UDiv;
1298   case bitc::BINOP_SDIV:
1299     return IsFP ? Instruction::FDiv : Instruction::SDiv;
1300   case bitc::BINOP_UREM:
1301     return IsFP ? -1 : Instruction::URem;
1302   case bitc::BINOP_SREM:
1303     return IsFP ? Instruction::FRem : Instruction::SRem;
1304   case bitc::BINOP_SHL:
1305     return IsFP ? -1 : Instruction::Shl;
1306   case bitc::BINOP_LSHR:
1307     return IsFP ? -1 : Instruction::LShr;
1308   case bitc::BINOP_ASHR:
1309     return IsFP ? -1 : Instruction::AShr;
1310   case bitc::BINOP_AND:
1311     return IsFP ? -1 : Instruction::And;
1312   case bitc::BINOP_OR:
1313     return IsFP ? -1 : Instruction::Or;
1314   case bitc::BINOP_XOR:
1315     return IsFP ? -1 : Instruction::Xor;
1316   }
1317 }
1318 
1319 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) {
1320   switch (Val) {
1321   default: return AtomicRMWInst::BAD_BINOP;
1322   case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
1323   case bitc::RMW_ADD: return AtomicRMWInst::Add;
1324   case bitc::RMW_SUB: return AtomicRMWInst::Sub;
1325   case bitc::RMW_AND: return AtomicRMWInst::And;
1326   case bitc::RMW_NAND: return AtomicRMWInst::Nand;
1327   case bitc::RMW_OR: return AtomicRMWInst::Or;
1328   case bitc::RMW_XOR: return AtomicRMWInst::Xor;
1329   case bitc::RMW_MAX: return AtomicRMWInst::Max;
1330   case bitc::RMW_MIN: return AtomicRMWInst::Min;
1331   case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
1332   case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
1333   case bitc::RMW_FADD: return AtomicRMWInst::FAdd;
1334   case bitc::RMW_FSUB: return AtomicRMWInst::FSub;
1335   case bitc::RMW_FMAX: return AtomicRMWInst::FMax;
1336   case bitc::RMW_FMIN: return AtomicRMWInst::FMin;
1337   case bitc::RMW_UINC_WRAP:
1338     return AtomicRMWInst::UIncWrap;
1339   case bitc::RMW_UDEC_WRAP:
1340     return AtomicRMWInst::UDecWrap;
1341   }
1342 }
1343 
1344 static AtomicOrdering getDecodedOrdering(unsigned Val) {
1345   switch (Val) {
1346   case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic;
1347   case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered;
1348   case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic;
1349   case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire;
1350   case bitc::ORDERING_RELEASE: return AtomicOrdering::Release;
1351   case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease;
1352   default: // Map unknown orderings to sequentially-consistent.
1353   case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent;
1354   }
1355 }
1356 
1357 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
1358   switch (Val) {
1359   default: // Map unknown selection kinds to any.
1360   case bitc::COMDAT_SELECTION_KIND_ANY:
1361     return Comdat::Any;
1362   case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
1363     return Comdat::ExactMatch;
1364   case bitc::COMDAT_SELECTION_KIND_LARGEST:
1365     return Comdat::Largest;
1366   case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
1367     return Comdat::NoDeduplicate;
1368   case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
1369     return Comdat::SameSize;
1370   }
1371 }
1372 
1373 static FastMathFlags getDecodedFastMathFlags(unsigned Val) {
1374   FastMathFlags FMF;
1375   if (0 != (Val & bitc::UnsafeAlgebra))
1376     FMF.setFast();
1377   if (0 != (Val & bitc::AllowReassoc))
1378     FMF.setAllowReassoc();
1379   if (0 != (Val & bitc::NoNaNs))
1380     FMF.setNoNaNs();
1381   if (0 != (Val & bitc::NoInfs))
1382     FMF.setNoInfs();
1383   if (0 != (Val & bitc::NoSignedZeros))
1384     FMF.setNoSignedZeros();
1385   if (0 != (Val & bitc::AllowReciprocal))
1386     FMF.setAllowReciprocal();
1387   if (0 != (Val & bitc::AllowContract))
1388     FMF.setAllowContract(true);
1389   if (0 != (Val & bitc::ApproxFunc))
1390     FMF.setApproxFunc();
1391   return FMF;
1392 }
1393 
1394 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) {
1395   // A GlobalValue with local linkage cannot have a DLL storage class.
1396   if (GV->hasLocalLinkage())
1397     return;
1398   switch (Val) {
1399   case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
1400   case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
1401   }
1402 }
1403 
1404 Type *BitcodeReader::getTypeByID(unsigned ID) {
1405   // The type table size is always specified correctly.
1406   if (ID >= TypeList.size())
1407     return nullptr;
1408 
1409   if (Type *Ty = TypeList[ID])
1410     return Ty;
1411 
1412   // If we have a forward reference, the only possible case is when it is to a
1413   // named struct.  Just create a placeholder for now.
1414   return TypeList[ID] = createIdentifiedStructType(Context);
1415 }
1416 
1417 unsigned BitcodeReader::getContainedTypeID(unsigned ID, unsigned Idx) {
1418   auto It = ContainedTypeIDs.find(ID);
1419   if (It == ContainedTypeIDs.end())
1420     return InvalidTypeID;
1421 
1422   if (Idx >= It->second.size())
1423     return InvalidTypeID;
1424 
1425   return It->second[Idx];
1426 }
1427 
1428 Type *BitcodeReader::getPtrElementTypeByID(unsigned ID) {
1429   if (ID >= TypeList.size())
1430     return nullptr;
1431 
1432   Type *Ty = TypeList[ID];
1433   if (!Ty->isPointerTy())
1434     return nullptr;
1435 
1436   return getTypeByID(getContainedTypeID(ID, 0));
1437 }
1438 
1439 unsigned BitcodeReader::getVirtualTypeID(Type *Ty,
1440                                          ArrayRef<unsigned> ChildTypeIDs) {
1441   unsigned ChildTypeID = ChildTypeIDs.empty() ? InvalidTypeID : ChildTypeIDs[0];
1442   auto CacheKey = std::make_pair(Ty, ChildTypeID);
1443   auto It = VirtualTypeIDs.find(CacheKey);
1444   if (It != VirtualTypeIDs.end()) {
1445     // The cmpxchg return value is the only place we need more than one
1446     // contained type ID, however the second one will always be the same (i1),
1447     // so we don't need to include it in the cache key. This asserts that the
1448     // contained types are indeed as expected and there are no collisions.
1449     assert((ChildTypeIDs.empty() ||
1450             ContainedTypeIDs[It->second] == ChildTypeIDs) &&
1451            "Incorrect cached contained type IDs");
1452     return It->second;
1453   }
1454 
1455   unsigned TypeID = TypeList.size();
1456   TypeList.push_back(Ty);
1457   if (!ChildTypeIDs.empty())
1458     append_range(ContainedTypeIDs[TypeID], ChildTypeIDs);
1459   VirtualTypeIDs.insert({CacheKey, TypeID});
1460   return TypeID;
1461 }
1462 
1463 static GEPNoWrapFlags toGEPNoWrapFlags(uint64_t Flags) {
1464   GEPNoWrapFlags NW;
1465   if (Flags & (1 << bitc::GEP_INBOUNDS))
1466     NW |= GEPNoWrapFlags::inBounds();
1467   if (Flags & (1 << bitc::GEP_NUSW))
1468     NW |= GEPNoWrapFlags::noUnsignedSignedWrap();
1469   if (Flags & (1 << bitc::GEP_NUW))
1470     NW |= GEPNoWrapFlags::noUnsignedWrap();
1471   return NW;
1472 }
1473 
1474 static bool isConstExprSupported(const BitcodeConstant *BC) {
1475   uint8_t Opcode = BC->Opcode;
1476 
1477   // These are not real constant expressions, always consider them supported.
1478   if (Opcode >= BitcodeConstant::FirstSpecialOpcode)
1479     return true;
1480 
1481   // If -expand-constant-exprs is set, we want to consider all expressions
1482   // as unsupported.
1483   if (ExpandConstantExprs)
1484     return false;
1485 
1486   if (Instruction::isBinaryOp(Opcode))
1487     return ConstantExpr::isSupportedBinOp(Opcode);
1488 
1489   if (Instruction::isCast(Opcode))
1490     return ConstantExpr::isSupportedCastOp(Opcode);
1491 
1492   if (Opcode == Instruction::GetElementPtr)
1493     return ConstantExpr::isSupportedGetElementPtr(BC->SrcElemTy);
1494 
1495   switch (Opcode) {
1496   case Instruction::FNeg:
1497   case Instruction::Select:
1498     return false;
1499   default:
1500     return true;
1501   }
1502 }
1503 
1504 Expected<Value *> BitcodeReader::materializeValue(unsigned StartValID,
1505                                                   BasicBlock *InsertBB) {
1506   // Quickly handle the case where there is no BitcodeConstant to resolve.
1507   if (StartValID < ValueList.size() && ValueList[StartValID] &&
1508       !isa<BitcodeConstant>(ValueList[StartValID]))
1509     return ValueList[StartValID];
1510 
1511   SmallDenseMap<unsigned, Value *> MaterializedValues;
1512   SmallVector<unsigned> Worklist;
1513   Worklist.push_back(StartValID);
1514   while (!Worklist.empty()) {
1515     unsigned ValID = Worklist.back();
1516     if (MaterializedValues.count(ValID)) {
1517       // Duplicate expression that was already handled.
1518       Worklist.pop_back();
1519       continue;
1520     }
1521 
1522     if (ValID >= ValueList.size() || !ValueList[ValID])
1523       return error("Invalid value ID");
1524 
1525     Value *V = ValueList[ValID];
1526     auto *BC = dyn_cast<BitcodeConstant>(V);
1527     if (!BC) {
1528       MaterializedValues.insert({ValID, V});
1529       Worklist.pop_back();
1530       continue;
1531     }
1532 
1533     // Iterate in reverse, so values will get popped from the worklist in
1534     // expected order.
1535     SmallVector<Value *> Ops;
1536     for (unsigned OpID : reverse(BC->getOperandIDs())) {
1537       auto It = MaterializedValues.find(OpID);
1538       if (It != MaterializedValues.end())
1539         Ops.push_back(It->second);
1540       else
1541         Worklist.push_back(OpID);
1542     }
1543 
1544     // Some expressions have not been resolved yet, handle them first and then
1545     // revisit this one.
1546     if (Ops.size() != BC->getOperandIDs().size())
1547       continue;
1548     std::reverse(Ops.begin(), Ops.end());
1549 
1550     SmallVector<Constant *> ConstOps;
1551     for (Value *Op : Ops)
1552       if (auto *C = dyn_cast<Constant>(Op))
1553         ConstOps.push_back(C);
1554 
1555     // Materialize as constant expression if possible.
1556     if (isConstExprSupported(BC) && ConstOps.size() == Ops.size()) {
1557       Constant *C;
1558       if (Instruction::isCast(BC->Opcode)) {
1559         C = UpgradeBitCastExpr(BC->Opcode, ConstOps[0], BC->getType());
1560         if (!C)
1561           C = ConstantExpr::getCast(BC->Opcode, ConstOps[0], BC->getType());
1562       } else if (Instruction::isBinaryOp(BC->Opcode)) {
1563         C = ConstantExpr::get(BC->Opcode, ConstOps[0], ConstOps[1], BC->Flags);
1564       } else {
1565         switch (BC->Opcode) {
1566         case BitcodeConstant::ConstantPtrAuthOpcode: {
1567           auto *Key = dyn_cast<ConstantInt>(ConstOps[1]);
1568           if (!Key)
1569             return error("ptrauth key operand must be ConstantInt");
1570 
1571           auto *Disc = dyn_cast<ConstantInt>(ConstOps[2]);
1572           if (!Disc)
1573             return error("ptrauth disc operand must be ConstantInt");
1574 
1575           C = ConstantPtrAuth::get(ConstOps[0], Key, Disc, ConstOps[3]);
1576           break;
1577         }
1578         case BitcodeConstant::NoCFIOpcode: {
1579           auto *GV = dyn_cast<GlobalValue>(ConstOps[0]);
1580           if (!GV)
1581             return error("no_cfi operand must be GlobalValue");
1582           C = NoCFIValue::get(GV);
1583           break;
1584         }
1585         case BitcodeConstant::DSOLocalEquivalentOpcode: {
1586           auto *GV = dyn_cast<GlobalValue>(ConstOps[0]);
1587           if (!GV)
1588             return error("dso_local operand must be GlobalValue");
1589           C = DSOLocalEquivalent::get(GV);
1590           break;
1591         }
1592         case BitcodeConstant::BlockAddressOpcode: {
1593           Function *Fn = dyn_cast<Function>(ConstOps[0]);
1594           if (!Fn)
1595             return error("blockaddress operand must be a function");
1596 
1597           // If the function is already parsed we can insert the block address
1598           // right away.
1599           BasicBlock *BB;
1600           unsigned BBID = BC->BlockAddressBB;
1601           if (!BBID)
1602             // Invalid reference to entry block.
1603             return error("Invalid ID");
1604           if (!Fn->empty()) {
1605             Function::iterator BBI = Fn->begin(), BBE = Fn->end();
1606             for (size_t I = 0, E = BBID; I != E; ++I) {
1607               if (BBI == BBE)
1608                 return error("Invalid ID");
1609               ++BBI;
1610             }
1611             BB = &*BBI;
1612           } else {
1613             // Otherwise insert a placeholder and remember it so it can be
1614             // inserted when the function is parsed.
1615             auto &FwdBBs = BasicBlockFwdRefs[Fn];
1616             if (FwdBBs.empty())
1617               BasicBlockFwdRefQueue.push_back(Fn);
1618             if (FwdBBs.size() < BBID + 1)
1619               FwdBBs.resize(BBID + 1);
1620             if (!FwdBBs[BBID])
1621               FwdBBs[BBID] = BasicBlock::Create(Context);
1622             BB = FwdBBs[BBID];
1623           }
1624           C = BlockAddress::get(Fn, BB);
1625           break;
1626         }
1627         case BitcodeConstant::ConstantStructOpcode:
1628           C = ConstantStruct::get(cast<StructType>(BC->getType()), ConstOps);
1629           break;
1630         case BitcodeConstant::ConstantArrayOpcode:
1631           C = ConstantArray::get(cast<ArrayType>(BC->getType()), ConstOps);
1632           break;
1633         case BitcodeConstant::ConstantVectorOpcode:
1634           C = ConstantVector::get(ConstOps);
1635           break;
1636         case Instruction::ICmp:
1637         case Instruction::FCmp:
1638           C = ConstantExpr::getCompare(BC->Flags, ConstOps[0], ConstOps[1]);
1639           break;
1640         case Instruction::GetElementPtr:
1641           C = ConstantExpr::getGetElementPtr(
1642               BC->SrcElemTy, ConstOps[0], ArrayRef(ConstOps).drop_front(),
1643               toGEPNoWrapFlags(BC->Flags), BC->getInRange());
1644           break;
1645         case Instruction::ExtractElement:
1646           C = ConstantExpr::getExtractElement(ConstOps[0], ConstOps[1]);
1647           break;
1648         case Instruction::InsertElement:
1649           C = ConstantExpr::getInsertElement(ConstOps[0], ConstOps[1],
1650                                              ConstOps[2]);
1651           break;
1652         case Instruction::ShuffleVector: {
1653           SmallVector<int, 16> Mask;
1654           ShuffleVectorInst::getShuffleMask(ConstOps[2], Mask);
1655           C = ConstantExpr::getShuffleVector(ConstOps[0], ConstOps[1], Mask);
1656           break;
1657         }
1658         default:
1659           llvm_unreachable("Unhandled bitcode constant");
1660         }
1661       }
1662 
1663       // Cache resolved constant.
1664       ValueList.replaceValueWithoutRAUW(ValID, C);
1665       MaterializedValues.insert({ValID, C});
1666       Worklist.pop_back();
1667       continue;
1668     }
1669 
1670     if (!InsertBB)
1671       return error(Twine("Value referenced by initializer is an unsupported "
1672                          "constant expression of type ") +
1673                    BC->getOpcodeName());
1674 
1675     // Materialize as instructions if necessary.
1676     Instruction *I;
1677     if (Instruction::isCast(BC->Opcode)) {
1678       I = CastInst::Create((Instruction::CastOps)BC->Opcode, Ops[0],
1679                            BC->getType(), "constexpr", InsertBB);
1680     } else if (Instruction::isUnaryOp(BC->Opcode)) {
1681       I = UnaryOperator::Create((Instruction::UnaryOps)BC->Opcode, Ops[0],
1682                                 "constexpr", InsertBB);
1683     } else if (Instruction::isBinaryOp(BC->Opcode)) {
1684       I = BinaryOperator::Create((Instruction::BinaryOps)BC->Opcode, Ops[0],
1685                                  Ops[1], "constexpr", InsertBB);
1686       if (isa<OverflowingBinaryOperator>(I)) {
1687         if (BC->Flags & OverflowingBinaryOperator::NoSignedWrap)
1688           I->setHasNoSignedWrap();
1689         if (BC->Flags & OverflowingBinaryOperator::NoUnsignedWrap)
1690           I->setHasNoUnsignedWrap();
1691       }
1692       if (isa<PossiblyExactOperator>(I) &&
1693           (BC->Flags & PossiblyExactOperator::IsExact))
1694         I->setIsExact();
1695     } else {
1696       switch (BC->Opcode) {
1697       case BitcodeConstant::ConstantVectorOpcode: {
1698         Type *IdxTy = Type::getInt32Ty(BC->getContext());
1699         Value *V = PoisonValue::get(BC->getType());
1700         for (auto Pair : enumerate(Ops)) {
1701           Value *Idx = ConstantInt::get(IdxTy, Pair.index());
1702           V = InsertElementInst::Create(V, Pair.value(), Idx, "constexpr.ins",
1703                                         InsertBB);
1704         }
1705         I = cast<Instruction>(V);
1706         break;
1707       }
1708       case BitcodeConstant::ConstantStructOpcode:
1709       case BitcodeConstant::ConstantArrayOpcode: {
1710         Value *V = PoisonValue::get(BC->getType());
1711         for (auto Pair : enumerate(Ops))
1712           V = InsertValueInst::Create(V, Pair.value(), Pair.index(),
1713                                       "constexpr.ins", InsertBB);
1714         I = cast<Instruction>(V);
1715         break;
1716       }
1717       case Instruction::ICmp:
1718       case Instruction::FCmp:
1719         I = CmpInst::Create((Instruction::OtherOps)BC->Opcode,
1720                             (CmpInst::Predicate)BC->Flags, Ops[0], Ops[1],
1721                             "constexpr", InsertBB);
1722         break;
1723       case Instruction::GetElementPtr:
1724         I = GetElementPtrInst::Create(BC->SrcElemTy, Ops[0],
1725                                       ArrayRef(Ops).drop_front(), "constexpr",
1726                                       InsertBB);
1727         cast<GetElementPtrInst>(I)->setNoWrapFlags(toGEPNoWrapFlags(BC->Flags));
1728         break;
1729       case Instruction::Select:
1730         I = SelectInst::Create(Ops[0], Ops[1], Ops[2], "constexpr", InsertBB);
1731         break;
1732       case Instruction::ExtractElement:
1733         I = ExtractElementInst::Create(Ops[0], Ops[1], "constexpr", InsertBB);
1734         break;
1735       case Instruction::InsertElement:
1736         I = InsertElementInst::Create(Ops[0], Ops[1], Ops[2], "constexpr",
1737                                       InsertBB);
1738         break;
1739       case Instruction::ShuffleVector:
1740         I = new ShuffleVectorInst(Ops[0], Ops[1], Ops[2], "constexpr",
1741                                   InsertBB);
1742         break;
1743       default:
1744         llvm_unreachable("Unhandled bitcode constant");
1745       }
1746     }
1747 
1748     MaterializedValues.insert({ValID, I});
1749     Worklist.pop_back();
1750   }
1751 
1752   return MaterializedValues[StartValID];
1753 }
1754 
1755 Expected<Constant *> BitcodeReader::getValueForInitializer(unsigned ID) {
1756   Expected<Value *> MaybeV = materializeValue(ID, /* InsertBB */ nullptr);
1757   if (!MaybeV)
1758     return MaybeV.takeError();
1759 
1760   // Result must be Constant if InsertBB is nullptr.
1761   return cast<Constant>(MaybeV.get());
1762 }
1763 
1764 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
1765                                                       StringRef Name) {
1766   auto *Ret = StructType::create(Context, Name);
1767   IdentifiedStructTypes.push_back(Ret);
1768   return Ret;
1769 }
1770 
1771 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
1772   auto *Ret = StructType::create(Context);
1773   IdentifiedStructTypes.push_back(Ret);
1774   return Ret;
1775 }
1776 
1777 //===----------------------------------------------------------------------===//
1778 //  Functions for parsing blocks from the bitcode file
1779 //===----------------------------------------------------------------------===//
1780 
1781 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) {
1782   switch (Val) {
1783   case Attribute::EndAttrKinds:
1784   case Attribute::EmptyKey:
1785   case Attribute::TombstoneKey:
1786     llvm_unreachable("Synthetic enumerators which should never get here");
1787 
1788   case Attribute::None:            return 0;
1789   case Attribute::ZExt:            return 1 << 0;
1790   case Attribute::SExt:            return 1 << 1;
1791   case Attribute::NoReturn:        return 1 << 2;
1792   case Attribute::InReg:           return 1 << 3;
1793   case Attribute::StructRet:       return 1 << 4;
1794   case Attribute::NoUnwind:        return 1 << 5;
1795   case Attribute::NoAlias:         return 1 << 6;
1796   case Attribute::ByVal:           return 1 << 7;
1797   case Attribute::Nest:            return 1 << 8;
1798   case Attribute::ReadNone:        return 1 << 9;
1799   case Attribute::ReadOnly:        return 1 << 10;
1800   case Attribute::NoInline:        return 1 << 11;
1801   case Attribute::AlwaysInline:    return 1 << 12;
1802   case Attribute::OptimizeForSize: return 1 << 13;
1803   case Attribute::StackProtect:    return 1 << 14;
1804   case Attribute::StackProtectReq: return 1 << 15;
1805   case Attribute::Alignment:       return 31 << 16;
1806   case Attribute::NoCapture:       return 1 << 21;
1807   case Attribute::NoRedZone:       return 1 << 22;
1808   case Attribute::NoImplicitFloat: return 1 << 23;
1809   case Attribute::Naked:           return 1 << 24;
1810   case Attribute::InlineHint:      return 1 << 25;
1811   case Attribute::StackAlignment:  return 7 << 26;
1812   case Attribute::ReturnsTwice:    return 1 << 29;
1813   case Attribute::UWTable:         return 1 << 30;
1814   case Attribute::NonLazyBind:     return 1U << 31;
1815   case Attribute::SanitizeAddress: return 1ULL << 32;
1816   case Attribute::MinSize:         return 1ULL << 33;
1817   case Attribute::NoDuplicate:     return 1ULL << 34;
1818   case Attribute::StackProtectStrong: return 1ULL << 35;
1819   case Attribute::SanitizeThread:  return 1ULL << 36;
1820   case Attribute::SanitizeMemory:  return 1ULL << 37;
1821   case Attribute::NoBuiltin:       return 1ULL << 38;
1822   case Attribute::Returned:        return 1ULL << 39;
1823   case Attribute::Cold:            return 1ULL << 40;
1824   case Attribute::Builtin:         return 1ULL << 41;
1825   case Attribute::OptimizeNone:    return 1ULL << 42;
1826   case Attribute::InAlloca:        return 1ULL << 43;
1827   case Attribute::NonNull:         return 1ULL << 44;
1828   case Attribute::JumpTable:       return 1ULL << 45;
1829   case Attribute::Convergent:      return 1ULL << 46;
1830   case Attribute::SafeStack:       return 1ULL << 47;
1831   case Attribute::NoRecurse:       return 1ULL << 48;
1832   // 1ULL << 49 is InaccessibleMemOnly, which is upgraded separately.
1833   // 1ULL << 50 is InaccessibleMemOrArgMemOnly, which is upgraded separately.
1834   case Attribute::SwiftSelf:       return 1ULL << 51;
1835   case Attribute::SwiftError:      return 1ULL << 52;
1836   case Attribute::WriteOnly:       return 1ULL << 53;
1837   case Attribute::Speculatable:    return 1ULL << 54;
1838   case Attribute::StrictFP:        return 1ULL << 55;
1839   case Attribute::SanitizeHWAddress: return 1ULL << 56;
1840   case Attribute::NoCfCheck:       return 1ULL << 57;
1841   case Attribute::OptForFuzzing:   return 1ULL << 58;
1842   case Attribute::ShadowCallStack: return 1ULL << 59;
1843   case Attribute::SpeculativeLoadHardening:
1844     return 1ULL << 60;
1845   case Attribute::ImmArg:
1846     return 1ULL << 61;
1847   case Attribute::WillReturn:
1848     return 1ULL << 62;
1849   case Attribute::NoFree:
1850     return 1ULL << 63;
1851   default:
1852     // Other attributes are not supported in the raw format,
1853     // as we ran out of space.
1854     return 0;
1855   }
1856   llvm_unreachable("Unsupported attribute type");
1857 }
1858 
1859 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) {
1860   if (!Val) return;
1861 
1862   for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds;
1863        I = Attribute::AttrKind(I + 1)) {
1864     if (uint64_t A = (Val & getRawAttributeMask(I))) {
1865       if (I == Attribute::Alignment)
1866         B.addAlignmentAttr(1ULL << ((A >> 16) - 1));
1867       else if (I == Attribute::StackAlignment)
1868         B.addStackAlignmentAttr(1ULL << ((A >> 26)-1));
1869       else if (Attribute::isTypeAttrKind(I))
1870         B.addTypeAttr(I, nullptr); // Type will be auto-upgraded.
1871       else
1872         B.addAttribute(I);
1873     }
1874   }
1875 }
1876 
1877 /// This fills an AttrBuilder object with the LLVM attributes that have
1878 /// been decoded from the given integer. This function must stay in sync with
1879 /// 'encodeLLVMAttributesForBitcode'.
1880 static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
1881                                            uint64_t EncodedAttrs,
1882                                            uint64_t AttrIdx) {
1883   // The alignment is stored as a 16-bit raw value from bits 31--16.  We shift
1884   // the bits above 31 down by 11 bits.
1885   unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
1886   assert((!Alignment || isPowerOf2_32(Alignment)) &&
1887          "Alignment must be a power of two.");
1888 
1889   if (Alignment)
1890     B.addAlignmentAttr(Alignment);
1891 
1892   uint64_t Attrs = ((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
1893                    (EncodedAttrs & 0xffff);
1894 
1895   if (AttrIdx == AttributeList::FunctionIndex) {
1896     // Upgrade old memory attributes.
1897     MemoryEffects ME = MemoryEffects::unknown();
1898     if (Attrs & (1ULL << 9)) {
1899       // ReadNone
1900       Attrs &= ~(1ULL << 9);
1901       ME &= MemoryEffects::none();
1902     }
1903     if (Attrs & (1ULL << 10)) {
1904       // ReadOnly
1905       Attrs &= ~(1ULL << 10);
1906       ME &= MemoryEffects::readOnly();
1907     }
1908     if (Attrs & (1ULL << 49)) {
1909       // InaccessibleMemOnly
1910       Attrs &= ~(1ULL << 49);
1911       ME &= MemoryEffects::inaccessibleMemOnly();
1912     }
1913     if (Attrs & (1ULL << 50)) {
1914       // InaccessibleMemOrArgMemOnly
1915       Attrs &= ~(1ULL << 50);
1916       ME &= MemoryEffects::inaccessibleOrArgMemOnly();
1917     }
1918     if (Attrs & (1ULL << 53)) {
1919       // WriteOnly
1920       Attrs &= ~(1ULL << 53);
1921       ME &= MemoryEffects::writeOnly();
1922     }
1923     if (ME != MemoryEffects::unknown())
1924       B.addMemoryAttr(ME);
1925   }
1926 
1927   addRawAttributeValue(B, Attrs);
1928 }
1929 
1930 Error BitcodeReader::parseAttributeBlock() {
1931   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
1932     return Err;
1933 
1934   if (!MAttributes.empty())
1935     return error("Invalid multiple blocks");
1936 
1937   SmallVector<uint64_t, 64> Record;
1938 
1939   SmallVector<AttributeList, 8> Attrs;
1940 
1941   // Read all the records.
1942   while (true) {
1943     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1944     if (!MaybeEntry)
1945       return MaybeEntry.takeError();
1946     BitstreamEntry Entry = MaybeEntry.get();
1947 
1948     switch (Entry.Kind) {
1949     case BitstreamEntry::SubBlock: // Handled for us already.
1950     case BitstreamEntry::Error:
1951       return error("Malformed block");
1952     case BitstreamEntry::EndBlock:
1953       return Error::success();
1954     case BitstreamEntry::Record:
1955       // The interesting case.
1956       break;
1957     }
1958 
1959     // Read a record.
1960     Record.clear();
1961     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1962     if (!MaybeRecord)
1963       return MaybeRecord.takeError();
1964     switch (MaybeRecord.get()) {
1965     default:  // Default behavior: ignore.
1966       break;
1967     case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...]
1968       // Deprecated, but still needed to read old bitcode files.
1969       if (Record.size() & 1)
1970         return error("Invalid parameter attribute record");
1971 
1972       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1973         AttrBuilder B(Context);
1974         decodeLLVMAttributesForBitcode(B, Record[i+1], Record[i]);
1975         Attrs.push_back(AttributeList::get(Context, Record[i], B));
1976       }
1977 
1978       MAttributes.push_back(AttributeList::get(Context, Attrs));
1979       Attrs.clear();
1980       break;
1981     case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...]
1982       for (unsigned i = 0, e = Record.size(); i != e; ++i)
1983         Attrs.push_back(MAttributeGroups[Record[i]]);
1984 
1985       MAttributes.push_back(AttributeList::get(Context, Attrs));
1986       Attrs.clear();
1987       break;
1988     }
1989   }
1990 }
1991 
1992 // Returns Attribute::None on unrecognized codes.
1993 static Attribute::AttrKind getAttrFromCode(uint64_t Code) {
1994   switch (Code) {
1995   default:
1996     return Attribute::None;
1997   case bitc::ATTR_KIND_ALIGNMENT:
1998     return Attribute::Alignment;
1999   case bitc::ATTR_KIND_ALWAYS_INLINE:
2000     return Attribute::AlwaysInline;
2001   case bitc::ATTR_KIND_BUILTIN:
2002     return Attribute::Builtin;
2003   case bitc::ATTR_KIND_BY_VAL:
2004     return Attribute::ByVal;
2005   case bitc::ATTR_KIND_IN_ALLOCA:
2006     return Attribute::InAlloca;
2007   case bitc::ATTR_KIND_COLD:
2008     return Attribute::Cold;
2009   case bitc::ATTR_KIND_CONVERGENT:
2010     return Attribute::Convergent;
2011   case bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION:
2012     return Attribute::DisableSanitizerInstrumentation;
2013   case bitc::ATTR_KIND_ELEMENTTYPE:
2014     return Attribute::ElementType;
2015   case bitc::ATTR_KIND_FNRETTHUNK_EXTERN:
2016     return Attribute::FnRetThunkExtern;
2017   case bitc::ATTR_KIND_INLINE_HINT:
2018     return Attribute::InlineHint;
2019   case bitc::ATTR_KIND_IN_REG:
2020     return Attribute::InReg;
2021   case bitc::ATTR_KIND_JUMP_TABLE:
2022     return Attribute::JumpTable;
2023   case bitc::ATTR_KIND_MEMORY:
2024     return Attribute::Memory;
2025   case bitc::ATTR_KIND_NOFPCLASS:
2026     return Attribute::NoFPClass;
2027   case bitc::ATTR_KIND_MIN_SIZE:
2028     return Attribute::MinSize;
2029   case bitc::ATTR_KIND_NAKED:
2030     return Attribute::Naked;
2031   case bitc::ATTR_KIND_NEST:
2032     return Attribute::Nest;
2033   case bitc::ATTR_KIND_NO_ALIAS:
2034     return Attribute::NoAlias;
2035   case bitc::ATTR_KIND_NO_BUILTIN:
2036     return Attribute::NoBuiltin;
2037   case bitc::ATTR_KIND_NO_CALLBACK:
2038     return Attribute::NoCallback;
2039   case bitc::ATTR_KIND_NO_CAPTURE:
2040     return Attribute::NoCapture;
2041   case bitc::ATTR_KIND_NO_DUPLICATE:
2042     return Attribute::NoDuplicate;
2043   case bitc::ATTR_KIND_NOFREE:
2044     return Attribute::NoFree;
2045   case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
2046     return Attribute::NoImplicitFloat;
2047   case bitc::ATTR_KIND_NO_INLINE:
2048     return Attribute::NoInline;
2049   case bitc::ATTR_KIND_NO_RECURSE:
2050     return Attribute::NoRecurse;
2051   case bitc::ATTR_KIND_NO_MERGE:
2052     return Attribute::NoMerge;
2053   case bitc::ATTR_KIND_NON_LAZY_BIND:
2054     return Attribute::NonLazyBind;
2055   case bitc::ATTR_KIND_NON_NULL:
2056     return Attribute::NonNull;
2057   case bitc::ATTR_KIND_DEREFERENCEABLE:
2058     return Attribute::Dereferenceable;
2059   case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL:
2060     return Attribute::DereferenceableOrNull;
2061   case bitc::ATTR_KIND_ALLOC_ALIGN:
2062     return Attribute::AllocAlign;
2063   case bitc::ATTR_KIND_ALLOC_KIND:
2064     return Attribute::AllocKind;
2065   case bitc::ATTR_KIND_ALLOC_SIZE:
2066     return Attribute::AllocSize;
2067   case bitc::ATTR_KIND_ALLOCATED_POINTER:
2068     return Attribute::AllocatedPointer;
2069   case bitc::ATTR_KIND_NO_RED_ZONE:
2070     return Attribute::NoRedZone;
2071   case bitc::ATTR_KIND_NO_RETURN:
2072     return Attribute::NoReturn;
2073   case bitc::ATTR_KIND_NOSYNC:
2074     return Attribute::NoSync;
2075   case bitc::ATTR_KIND_NOCF_CHECK:
2076     return Attribute::NoCfCheck;
2077   case bitc::ATTR_KIND_NO_PROFILE:
2078     return Attribute::NoProfile;
2079   case bitc::ATTR_KIND_SKIP_PROFILE:
2080     return Attribute::SkipProfile;
2081   case bitc::ATTR_KIND_NO_UNWIND:
2082     return Attribute::NoUnwind;
2083   case bitc::ATTR_KIND_NO_SANITIZE_BOUNDS:
2084     return Attribute::NoSanitizeBounds;
2085   case bitc::ATTR_KIND_NO_SANITIZE_COVERAGE:
2086     return Attribute::NoSanitizeCoverage;
2087   case bitc::ATTR_KIND_NULL_POINTER_IS_VALID:
2088     return Attribute::NullPointerIsValid;
2089   case bitc::ATTR_KIND_OPTIMIZE_FOR_DEBUGGING:
2090     return Attribute::OptimizeForDebugging;
2091   case bitc::ATTR_KIND_OPT_FOR_FUZZING:
2092     return Attribute::OptForFuzzing;
2093   case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
2094     return Attribute::OptimizeForSize;
2095   case bitc::ATTR_KIND_OPTIMIZE_NONE:
2096     return Attribute::OptimizeNone;
2097   case bitc::ATTR_KIND_READ_NONE:
2098     return Attribute::ReadNone;
2099   case bitc::ATTR_KIND_READ_ONLY:
2100     return Attribute::ReadOnly;
2101   case bitc::ATTR_KIND_RETURNED:
2102     return Attribute::Returned;
2103   case bitc::ATTR_KIND_RETURNS_TWICE:
2104     return Attribute::ReturnsTwice;
2105   case bitc::ATTR_KIND_S_EXT:
2106     return Attribute::SExt;
2107   case bitc::ATTR_KIND_SPECULATABLE:
2108     return Attribute::Speculatable;
2109   case bitc::ATTR_KIND_STACK_ALIGNMENT:
2110     return Attribute::StackAlignment;
2111   case bitc::ATTR_KIND_STACK_PROTECT:
2112     return Attribute::StackProtect;
2113   case bitc::ATTR_KIND_STACK_PROTECT_REQ:
2114     return Attribute::StackProtectReq;
2115   case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
2116     return Attribute::StackProtectStrong;
2117   case bitc::ATTR_KIND_SAFESTACK:
2118     return Attribute::SafeStack;
2119   case bitc::ATTR_KIND_SHADOWCALLSTACK:
2120     return Attribute::ShadowCallStack;
2121   case bitc::ATTR_KIND_STRICT_FP:
2122     return Attribute::StrictFP;
2123   case bitc::ATTR_KIND_STRUCT_RET:
2124     return Attribute::StructRet;
2125   case bitc::ATTR_KIND_SANITIZE_ADDRESS:
2126     return Attribute::SanitizeAddress;
2127   case bitc::ATTR_KIND_SANITIZE_HWADDRESS:
2128     return Attribute::SanitizeHWAddress;
2129   case bitc::ATTR_KIND_SANITIZE_THREAD:
2130     return Attribute::SanitizeThread;
2131   case bitc::ATTR_KIND_SANITIZE_MEMORY:
2132     return Attribute::SanitizeMemory;
2133   case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING:
2134     return Attribute::SpeculativeLoadHardening;
2135   case bitc::ATTR_KIND_SWIFT_ERROR:
2136     return Attribute::SwiftError;
2137   case bitc::ATTR_KIND_SWIFT_SELF:
2138     return Attribute::SwiftSelf;
2139   case bitc::ATTR_KIND_SWIFT_ASYNC:
2140     return Attribute::SwiftAsync;
2141   case bitc::ATTR_KIND_UW_TABLE:
2142     return Attribute::UWTable;
2143   case bitc::ATTR_KIND_VSCALE_RANGE:
2144     return Attribute::VScaleRange;
2145   case bitc::ATTR_KIND_WILLRETURN:
2146     return Attribute::WillReturn;
2147   case bitc::ATTR_KIND_WRITEONLY:
2148     return Attribute::WriteOnly;
2149   case bitc::ATTR_KIND_Z_EXT:
2150     return Attribute::ZExt;
2151   case bitc::ATTR_KIND_IMMARG:
2152     return Attribute::ImmArg;
2153   case bitc::ATTR_KIND_SANITIZE_MEMTAG:
2154     return Attribute::SanitizeMemTag;
2155   case bitc::ATTR_KIND_PREALLOCATED:
2156     return Attribute::Preallocated;
2157   case bitc::ATTR_KIND_NOUNDEF:
2158     return Attribute::NoUndef;
2159   case bitc::ATTR_KIND_BYREF:
2160     return Attribute::ByRef;
2161   case bitc::ATTR_KIND_MUSTPROGRESS:
2162     return Attribute::MustProgress;
2163   case bitc::ATTR_KIND_HOT:
2164     return Attribute::Hot;
2165   case bitc::ATTR_KIND_PRESPLIT_COROUTINE:
2166     return Attribute::PresplitCoroutine;
2167   case bitc::ATTR_KIND_WRITABLE:
2168     return Attribute::Writable;
2169   case bitc::ATTR_KIND_CORO_ONLY_DESTROY_WHEN_COMPLETE:
2170     return Attribute::CoroDestroyOnlyWhenComplete;
2171   case bitc::ATTR_KIND_DEAD_ON_UNWIND:
2172     return Attribute::DeadOnUnwind;
2173   case bitc::ATTR_KIND_RANGE:
2174     return Attribute::Range;
2175   }
2176 }
2177 
2178 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent,
2179                                          MaybeAlign &Alignment) {
2180   // Note: Alignment in bitcode files is incremented by 1, so that zero
2181   // can be used for default alignment.
2182   if (Exponent > Value::MaxAlignmentExponent + 1)
2183     return error("Invalid alignment value");
2184   Alignment = decodeMaybeAlign(Exponent);
2185   return Error::success();
2186 }
2187 
2188 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) {
2189   *Kind = getAttrFromCode(Code);
2190   if (*Kind == Attribute::None)
2191     return error("Unknown attribute kind (" + Twine(Code) + ")");
2192   return Error::success();
2193 }
2194 
2195 static bool upgradeOldMemoryAttribute(MemoryEffects &ME, uint64_t EncodedKind) {
2196   switch (EncodedKind) {
2197   case bitc::ATTR_KIND_READ_NONE:
2198     ME &= MemoryEffects::none();
2199     return true;
2200   case bitc::ATTR_KIND_READ_ONLY:
2201     ME &= MemoryEffects::readOnly();
2202     return true;
2203   case bitc::ATTR_KIND_WRITEONLY:
2204     ME &= MemoryEffects::writeOnly();
2205     return true;
2206   case bitc::ATTR_KIND_ARGMEMONLY:
2207     ME &= MemoryEffects::argMemOnly();
2208     return true;
2209   case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY:
2210     ME &= MemoryEffects::inaccessibleMemOnly();
2211     return true;
2212   case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY:
2213     ME &= MemoryEffects::inaccessibleOrArgMemOnly();
2214     return true;
2215   default:
2216     return false;
2217   }
2218 }
2219 
2220 Error BitcodeReader::parseAttributeGroupBlock() {
2221   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
2222     return Err;
2223 
2224   if (!MAttributeGroups.empty())
2225     return error("Invalid multiple blocks");
2226 
2227   SmallVector<uint64_t, 64> Record;
2228 
2229   // Read all the records.
2230   while (true) {
2231     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2232     if (!MaybeEntry)
2233       return MaybeEntry.takeError();
2234     BitstreamEntry Entry = MaybeEntry.get();
2235 
2236     switch (Entry.Kind) {
2237     case BitstreamEntry::SubBlock: // Handled for us already.
2238     case BitstreamEntry::Error:
2239       return error("Malformed block");
2240     case BitstreamEntry::EndBlock:
2241       return Error::success();
2242     case BitstreamEntry::Record:
2243       // The interesting case.
2244       break;
2245     }
2246 
2247     // Read a record.
2248     Record.clear();
2249     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2250     if (!MaybeRecord)
2251       return MaybeRecord.takeError();
2252     switch (MaybeRecord.get()) {
2253     default:  // Default behavior: ignore.
2254       break;
2255     case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
2256       if (Record.size() < 3)
2257         return error("Invalid grp record");
2258 
2259       uint64_t GrpID = Record[0];
2260       uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
2261 
2262       AttrBuilder B(Context);
2263       MemoryEffects ME = MemoryEffects::unknown();
2264       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
2265         if (Record[i] == 0) {        // Enum attribute
2266           Attribute::AttrKind Kind;
2267           uint64_t EncodedKind = Record[++i];
2268           if (Idx == AttributeList::FunctionIndex &&
2269               upgradeOldMemoryAttribute(ME, EncodedKind))
2270             continue;
2271 
2272           if (Error Err = parseAttrKind(EncodedKind, &Kind))
2273             return Err;
2274 
2275           // Upgrade old-style byval attribute to one with a type, even if it's
2276           // nullptr. We will have to insert the real type when we associate
2277           // this AttributeList with a function.
2278           if (Kind == Attribute::ByVal)
2279             B.addByValAttr(nullptr);
2280           else if (Kind == Attribute::StructRet)
2281             B.addStructRetAttr(nullptr);
2282           else if (Kind == Attribute::InAlloca)
2283             B.addInAllocaAttr(nullptr);
2284           else if (Kind == Attribute::UWTable)
2285             B.addUWTableAttr(UWTableKind::Default);
2286           else if (Attribute::isEnumAttrKind(Kind))
2287             B.addAttribute(Kind);
2288           else
2289             return error("Not an enum attribute");
2290         } else if (Record[i] == 1) { // Integer attribute
2291           Attribute::AttrKind Kind;
2292           if (Error Err = parseAttrKind(Record[++i], &Kind))
2293             return Err;
2294           if (!Attribute::isIntAttrKind(Kind))
2295             return error("Not an int attribute");
2296           if (Kind == Attribute::Alignment)
2297             B.addAlignmentAttr(Record[++i]);
2298           else if (Kind == Attribute::StackAlignment)
2299             B.addStackAlignmentAttr(Record[++i]);
2300           else if (Kind == Attribute::Dereferenceable)
2301             B.addDereferenceableAttr(Record[++i]);
2302           else if (Kind == Attribute::DereferenceableOrNull)
2303             B.addDereferenceableOrNullAttr(Record[++i]);
2304           else if (Kind == Attribute::AllocSize)
2305             B.addAllocSizeAttrFromRawRepr(Record[++i]);
2306           else if (Kind == Attribute::VScaleRange)
2307             B.addVScaleRangeAttrFromRawRepr(Record[++i]);
2308           else if (Kind == Attribute::UWTable)
2309             B.addUWTableAttr(UWTableKind(Record[++i]));
2310           else if (Kind == Attribute::AllocKind)
2311             B.addAllocKindAttr(static_cast<AllocFnKind>(Record[++i]));
2312           else if (Kind == Attribute::Memory)
2313             B.addMemoryAttr(MemoryEffects::createFromIntValue(Record[++i]));
2314           else if (Kind == Attribute::NoFPClass)
2315             B.addNoFPClassAttr(
2316                 static_cast<FPClassTest>(Record[++i] & fcAllFlags));
2317         } else if (Record[i] == 3 || Record[i] == 4) { // String attribute
2318           bool HasValue = (Record[i++] == 4);
2319           SmallString<64> KindStr;
2320           SmallString<64> ValStr;
2321 
2322           while (Record[i] != 0 && i != e)
2323             KindStr += Record[i++];
2324           assert(Record[i] == 0 && "Kind string not null terminated");
2325 
2326           if (HasValue) {
2327             // Has a value associated with it.
2328             ++i; // Skip the '0' that terminates the "kind" string.
2329             while (Record[i] != 0 && i != e)
2330               ValStr += Record[i++];
2331             assert(Record[i] == 0 && "Value string not null terminated");
2332           }
2333 
2334           B.addAttribute(KindStr.str(), ValStr.str());
2335         } else if (Record[i] == 5 || Record[i] == 6) {
2336           bool HasType = Record[i] == 6;
2337           Attribute::AttrKind Kind;
2338           if (Error Err = parseAttrKind(Record[++i], &Kind))
2339             return Err;
2340           if (!Attribute::isTypeAttrKind(Kind))
2341             return error("Not a type attribute");
2342 
2343           B.addTypeAttr(Kind, HasType ? getTypeByID(Record[++i]) : nullptr);
2344         } else if (Record[i] == 7) {
2345           Attribute::AttrKind Kind;
2346 
2347           i++;
2348           if (Error Err = parseAttrKind(Record[i++], &Kind))
2349             return Err;
2350           if (!Attribute::isConstantRangeAttrKind(Kind))
2351             return error("Not a ConstantRange attribute");
2352 
2353           Expected<ConstantRange> MaybeCR = readConstantRange(Record, i);
2354           if (!MaybeCR)
2355             return MaybeCR.takeError();
2356           i--;
2357 
2358           B.addConstantRangeAttr(Kind, MaybeCR.get());
2359         } else {
2360           return error("Invalid attribute group entry");
2361         }
2362       }
2363 
2364       if (ME != MemoryEffects::unknown())
2365         B.addMemoryAttr(ME);
2366 
2367       UpgradeAttributes(B);
2368       MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B);
2369       break;
2370     }
2371     }
2372   }
2373 }
2374 
2375 Error BitcodeReader::parseTypeTable() {
2376   if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
2377     return Err;
2378 
2379   return parseTypeTableBody();
2380 }
2381 
2382 Error BitcodeReader::parseTypeTableBody() {
2383   if (!TypeList.empty())
2384     return error("Invalid multiple blocks");
2385 
2386   SmallVector<uint64_t, 64> Record;
2387   unsigned NumRecords = 0;
2388 
2389   SmallString<64> TypeName;
2390 
2391   // Read all the records for this type table.
2392   while (true) {
2393     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2394     if (!MaybeEntry)
2395       return MaybeEntry.takeError();
2396     BitstreamEntry Entry = MaybeEntry.get();
2397 
2398     switch (Entry.Kind) {
2399     case BitstreamEntry::SubBlock: // Handled for us already.
2400     case BitstreamEntry::Error:
2401       return error("Malformed block");
2402     case BitstreamEntry::EndBlock:
2403       if (NumRecords != TypeList.size())
2404         return error("Malformed block");
2405       return Error::success();
2406     case BitstreamEntry::Record:
2407       // The interesting case.
2408       break;
2409     }
2410 
2411     // Read a record.
2412     Record.clear();
2413     Type *ResultTy = nullptr;
2414     SmallVector<unsigned> ContainedIDs;
2415     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2416     if (!MaybeRecord)
2417       return MaybeRecord.takeError();
2418     switch (MaybeRecord.get()) {
2419     default:
2420       return error("Invalid value");
2421     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
2422       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
2423       // type list.  This allows us to reserve space.
2424       if (Record.empty())
2425         return error("Invalid numentry record");
2426       TypeList.resize(Record[0]);
2427       continue;
2428     case bitc::TYPE_CODE_VOID:      // VOID
2429       ResultTy = Type::getVoidTy(Context);
2430       break;
2431     case bitc::TYPE_CODE_HALF:     // HALF
2432       ResultTy = Type::getHalfTy(Context);
2433       break;
2434     case bitc::TYPE_CODE_BFLOAT:    // BFLOAT
2435       ResultTy = Type::getBFloatTy(Context);
2436       break;
2437     case bitc::TYPE_CODE_FLOAT:     // FLOAT
2438       ResultTy = Type::getFloatTy(Context);
2439       break;
2440     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
2441       ResultTy = Type::getDoubleTy(Context);
2442       break;
2443     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
2444       ResultTy = Type::getX86_FP80Ty(Context);
2445       break;
2446     case bitc::TYPE_CODE_FP128:     // FP128
2447       ResultTy = Type::getFP128Ty(Context);
2448       break;
2449     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
2450       ResultTy = Type::getPPC_FP128Ty(Context);
2451       break;
2452     case bitc::TYPE_CODE_LABEL:     // LABEL
2453       ResultTy = Type::getLabelTy(Context);
2454       break;
2455     case bitc::TYPE_CODE_METADATA:  // METADATA
2456       ResultTy = Type::getMetadataTy(Context);
2457       break;
2458     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
2459       ResultTy = Type::getX86_MMXTy(Context);
2460       break;
2461     case bitc::TYPE_CODE_X86_AMX:   // X86_AMX
2462       ResultTy = Type::getX86_AMXTy(Context);
2463       break;
2464     case bitc::TYPE_CODE_TOKEN:     // TOKEN
2465       ResultTy = Type::getTokenTy(Context);
2466       break;
2467     case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
2468       if (Record.empty())
2469         return error("Invalid integer record");
2470 
2471       uint64_t NumBits = Record[0];
2472       if (NumBits < IntegerType::MIN_INT_BITS ||
2473           NumBits > IntegerType::MAX_INT_BITS)
2474         return error("Bitwidth for integer type out of range");
2475       ResultTy = IntegerType::get(Context, NumBits);
2476       break;
2477     }
2478     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
2479                                     //          [pointee type, address space]
2480       if (Record.empty())
2481         return error("Invalid pointer record");
2482       unsigned AddressSpace = 0;
2483       if (Record.size() == 2)
2484         AddressSpace = Record[1];
2485       ResultTy = getTypeByID(Record[0]);
2486       if (!ResultTy ||
2487           !PointerType::isValidElementType(ResultTy))
2488         return error("Invalid type");
2489       ContainedIDs.push_back(Record[0]);
2490       ResultTy = PointerType::get(ResultTy, AddressSpace);
2491       break;
2492     }
2493     case bitc::TYPE_CODE_OPAQUE_POINTER: { // OPAQUE_POINTER: [addrspace]
2494       if (Record.size() != 1)
2495         return error("Invalid opaque pointer record");
2496       unsigned AddressSpace = Record[0];
2497       ResultTy = PointerType::get(Context, AddressSpace);
2498       break;
2499     }
2500     case bitc::TYPE_CODE_FUNCTION_OLD: {
2501       // Deprecated, but still needed to read old bitcode files.
2502       // FUNCTION: [vararg, attrid, retty, paramty x N]
2503       if (Record.size() < 3)
2504         return error("Invalid function record");
2505       SmallVector<Type*, 8> ArgTys;
2506       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
2507         if (Type *T = getTypeByID(Record[i]))
2508           ArgTys.push_back(T);
2509         else
2510           break;
2511       }
2512 
2513       ResultTy = getTypeByID(Record[2]);
2514       if (!ResultTy || ArgTys.size() < Record.size()-3)
2515         return error("Invalid type");
2516 
2517       ContainedIDs.append(Record.begin() + 2, Record.end());
2518       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
2519       break;
2520     }
2521     case bitc::TYPE_CODE_FUNCTION: {
2522       // FUNCTION: [vararg, retty, paramty x N]
2523       if (Record.size() < 2)
2524         return error("Invalid function record");
2525       SmallVector<Type*, 8> ArgTys;
2526       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
2527         if (Type *T = getTypeByID(Record[i])) {
2528           if (!FunctionType::isValidArgumentType(T))
2529             return error("Invalid function argument type");
2530           ArgTys.push_back(T);
2531         }
2532         else
2533           break;
2534       }
2535 
2536       ResultTy = getTypeByID(Record[1]);
2537       if (!ResultTy || ArgTys.size() < Record.size()-2)
2538         return error("Invalid type");
2539 
2540       ContainedIDs.append(Record.begin() + 1, Record.end());
2541       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
2542       break;
2543     }
2544     case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
2545       if (Record.empty())
2546         return error("Invalid anon struct record");
2547       SmallVector<Type*, 8> EltTys;
2548       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
2549         if (Type *T = getTypeByID(Record[i]))
2550           EltTys.push_back(T);
2551         else
2552           break;
2553       }
2554       if (EltTys.size() != Record.size()-1)
2555         return error("Invalid type");
2556       ContainedIDs.append(Record.begin() + 1, Record.end());
2557       ResultTy = StructType::get(Context, EltTys, Record[0]);
2558       break;
2559     }
2560     case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
2561       if (convertToString(Record, 0, TypeName))
2562         return error("Invalid struct name record");
2563       continue;
2564 
2565     case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
2566       if (Record.empty())
2567         return error("Invalid named struct record");
2568 
2569       if (NumRecords >= TypeList.size())
2570         return error("Invalid TYPE table");
2571 
2572       // Check to see if this was forward referenced, if so fill in the temp.
2573       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
2574       if (Res) {
2575         Res->setName(TypeName);
2576         TypeList[NumRecords] = nullptr;
2577       } else  // Otherwise, create a new struct.
2578         Res = createIdentifiedStructType(Context, TypeName);
2579       TypeName.clear();
2580 
2581       SmallVector<Type*, 8> EltTys;
2582       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
2583         if (Type *T = getTypeByID(Record[i]))
2584           EltTys.push_back(T);
2585         else
2586           break;
2587       }
2588       if (EltTys.size() != Record.size()-1)
2589         return error("Invalid named struct record");
2590       Res->setBody(EltTys, Record[0]);
2591       ContainedIDs.append(Record.begin() + 1, Record.end());
2592       ResultTy = Res;
2593       break;
2594     }
2595     case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
2596       if (Record.size() != 1)
2597         return error("Invalid opaque type record");
2598 
2599       if (NumRecords >= TypeList.size())
2600         return error("Invalid TYPE table");
2601 
2602       // Check to see if this was forward referenced, if so fill in the temp.
2603       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
2604       if (Res) {
2605         Res->setName(TypeName);
2606         TypeList[NumRecords] = nullptr;
2607       } else  // Otherwise, create a new struct with no body.
2608         Res = createIdentifiedStructType(Context, TypeName);
2609       TypeName.clear();
2610       ResultTy = Res;
2611       break;
2612     }
2613     case bitc::TYPE_CODE_TARGET_TYPE: { // TARGET_TYPE: [NumTy, Tys..., Ints...]
2614       if (Record.size() < 1)
2615         return error("Invalid target extension type record");
2616 
2617       if (NumRecords >= TypeList.size())
2618         return error("Invalid TYPE table");
2619 
2620       if (Record[0] >= Record.size())
2621         return error("Too many type parameters");
2622 
2623       unsigned NumTys = Record[0];
2624       SmallVector<Type *, 4> TypeParams;
2625       SmallVector<unsigned, 8> IntParams;
2626       for (unsigned i = 0; i < NumTys; i++) {
2627         if (Type *T = getTypeByID(Record[i + 1]))
2628           TypeParams.push_back(T);
2629         else
2630           return error("Invalid type");
2631       }
2632 
2633       for (unsigned i = NumTys + 1, e = Record.size(); i < e; i++) {
2634         if (Record[i] > UINT_MAX)
2635           return error("Integer parameter too large");
2636         IntParams.push_back(Record[i]);
2637       }
2638       ResultTy = TargetExtType::get(Context, TypeName, TypeParams, IntParams);
2639       TypeName.clear();
2640       break;
2641     }
2642     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
2643       if (Record.size() < 2)
2644         return error("Invalid array type record");
2645       ResultTy = getTypeByID(Record[1]);
2646       if (!ResultTy || !ArrayType::isValidElementType(ResultTy))
2647         return error("Invalid type");
2648       ContainedIDs.push_back(Record[1]);
2649       ResultTy = ArrayType::get(ResultTy, Record[0]);
2650       break;
2651     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty] or
2652                                     //         [numelts, eltty, scalable]
2653       if (Record.size() < 2)
2654         return error("Invalid vector type record");
2655       if (Record[0] == 0)
2656         return error("Invalid vector length");
2657       ResultTy = getTypeByID(Record[1]);
2658       if (!ResultTy || !VectorType::isValidElementType(ResultTy))
2659         return error("Invalid type");
2660       bool Scalable = Record.size() > 2 ? Record[2] : false;
2661       ContainedIDs.push_back(Record[1]);
2662       ResultTy = VectorType::get(ResultTy, Record[0], Scalable);
2663       break;
2664     }
2665 
2666     if (NumRecords >= TypeList.size())
2667       return error("Invalid TYPE table");
2668     if (TypeList[NumRecords])
2669       return error(
2670           "Invalid TYPE table: Only named structs can be forward referenced");
2671     assert(ResultTy && "Didn't read a type?");
2672     TypeList[NumRecords] = ResultTy;
2673     if (!ContainedIDs.empty())
2674       ContainedTypeIDs[NumRecords] = std::move(ContainedIDs);
2675     ++NumRecords;
2676   }
2677 }
2678 
2679 Error BitcodeReader::parseOperandBundleTags() {
2680   if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID))
2681     return Err;
2682 
2683   if (!BundleTags.empty())
2684     return error("Invalid multiple blocks");
2685 
2686   SmallVector<uint64_t, 64> Record;
2687 
2688   while (true) {
2689     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2690     if (!MaybeEntry)
2691       return MaybeEntry.takeError();
2692     BitstreamEntry Entry = MaybeEntry.get();
2693 
2694     switch (Entry.Kind) {
2695     case BitstreamEntry::SubBlock: // Handled for us already.
2696     case BitstreamEntry::Error:
2697       return error("Malformed block");
2698     case BitstreamEntry::EndBlock:
2699       return Error::success();
2700     case BitstreamEntry::Record:
2701       // The interesting case.
2702       break;
2703     }
2704 
2705     // Tags are implicitly mapped to integers by their order.
2706 
2707     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2708     if (!MaybeRecord)
2709       return MaybeRecord.takeError();
2710     if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG)
2711       return error("Invalid operand bundle record");
2712 
2713     // OPERAND_BUNDLE_TAG: [strchr x N]
2714     BundleTags.emplace_back();
2715     if (convertToString(Record, 0, BundleTags.back()))
2716       return error("Invalid operand bundle record");
2717     Record.clear();
2718   }
2719 }
2720 
2721 Error BitcodeReader::parseSyncScopeNames() {
2722   if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID))
2723     return Err;
2724 
2725   if (!SSIDs.empty())
2726     return error("Invalid multiple synchronization scope names blocks");
2727 
2728   SmallVector<uint64_t, 64> Record;
2729   while (true) {
2730     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2731     if (!MaybeEntry)
2732       return MaybeEntry.takeError();
2733     BitstreamEntry Entry = MaybeEntry.get();
2734 
2735     switch (Entry.Kind) {
2736     case BitstreamEntry::SubBlock: // Handled for us already.
2737     case BitstreamEntry::Error:
2738       return error("Malformed block");
2739     case BitstreamEntry::EndBlock:
2740       if (SSIDs.empty())
2741         return error("Invalid empty synchronization scope names block");
2742       return Error::success();
2743     case BitstreamEntry::Record:
2744       // The interesting case.
2745       break;
2746     }
2747 
2748     // Synchronization scope names are implicitly mapped to synchronization
2749     // scope IDs by their order.
2750 
2751     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2752     if (!MaybeRecord)
2753       return MaybeRecord.takeError();
2754     if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME)
2755       return error("Invalid sync scope record");
2756 
2757     SmallString<16> SSN;
2758     if (convertToString(Record, 0, SSN))
2759       return error("Invalid sync scope record");
2760 
2761     SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN));
2762     Record.clear();
2763   }
2764 }
2765 
2766 /// Associate a value with its name from the given index in the provided record.
2767 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
2768                                              unsigned NameIndex, Triple &TT) {
2769   SmallString<128> ValueName;
2770   if (convertToString(Record, NameIndex, ValueName))
2771     return error("Invalid record");
2772   unsigned ValueID = Record[0];
2773   if (ValueID >= ValueList.size() || !ValueList[ValueID])
2774     return error("Invalid record");
2775   Value *V = ValueList[ValueID];
2776 
2777   StringRef NameStr(ValueName.data(), ValueName.size());
2778   if (NameStr.contains(0))
2779     return error("Invalid value name");
2780   V->setName(NameStr);
2781   auto *GO = dyn_cast<GlobalObject>(V);
2782   if (GO && ImplicitComdatObjects.contains(GO) && TT.supportsCOMDAT())
2783     GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
2784   return V;
2785 }
2786 
2787 /// Helper to note and return the current location, and jump to the given
2788 /// offset.
2789 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset,
2790                                                  BitstreamCursor &Stream) {
2791   // Save the current parsing location so we can jump back at the end
2792   // of the VST read.
2793   uint64_t CurrentBit = Stream.GetCurrentBitNo();
2794   if (Error JumpFailed = Stream.JumpToBit(Offset * 32))
2795     return std::move(JumpFailed);
2796   Expected<BitstreamEntry> MaybeEntry = Stream.advance();
2797   if (!MaybeEntry)
2798     return MaybeEntry.takeError();
2799   if (MaybeEntry.get().Kind != BitstreamEntry::SubBlock ||
2800       MaybeEntry.get().ID != bitc::VALUE_SYMTAB_BLOCK_ID)
2801     return error("Expected value symbol table subblock");
2802   return CurrentBit;
2803 }
2804 
2805 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta,
2806                                             Function *F,
2807                                             ArrayRef<uint64_t> Record) {
2808   // Note that we subtract 1 here because the offset is relative to one word
2809   // before the start of the identification or module block, which was
2810   // historically always the start of the regular bitcode header.
2811   uint64_t FuncWordOffset = Record[1] - 1;
2812   uint64_t FuncBitOffset = FuncWordOffset * 32;
2813   DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
2814   // Set the LastFunctionBlockBit to point to the last function block.
2815   // Later when parsing is resumed after function materialization,
2816   // we can simply skip that last function block.
2817   if (FuncBitOffset > LastFunctionBlockBit)
2818     LastFunctionBlockBit = FuncBitOffset;
2819 }
2820 
2821 /// Read a new-style GlobalValue symbol table.
2822 Error BitcodeReader::parseGlobalValueSymbolTable() {
2823   unsigned FuncBitcodeOffsetDelta =
2824       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2825 
2826   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2827     return Err;
2828 
2829   SmallVector<uint64_t, 64> Record;
2830   while (true) {
2831     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2832     if (!MaybeEntry)
2833       return MaybeEntry.takeError();
2834     BitstreamEntry Entry = MaybeEntry.get();
2835 
2836     switch (Entry.Kind) {
2837     case BitstreamEntry::SubBlock:
2838     case BitstreamEntry::Error:
2839       return error("Malformed block");
2840     case BitstreamEntry::EndBlock:
2841       return Error::success();
2842     case BitstreamEntry::Record:
2843       break;
2844     }
2845 
2846     Record.clear();
2847     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2848     if (!MaybeRecord)
2849       return MaybeRecord.takeError();
2850     switch (MaybeRecord.get()) {
2851     case bitc::VST_CODE_FNENTRY: { // [valueid, offset]
2852       unsigned ValueID = Record[0];
2853       if (ValueID >= ValueList.size() || !ValueList[ValueID])
2854         return error("Invalid value reference in symbol table");
2855       setDeferredFunctionInfo(FuncBitcodeOffsetDelta,
2856                               cast<Function>(ValueList[ValueID]), Record);
2857       break;
2858     }
2859     }
2860   }
2861 }
2862 
2863 /// Parse the value symbol table at either the current parsing location or
2864 /// at the given bit offset if provided.
2865 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) {
2866   uint64_t CurrentBit;
2867   // Pass in the Offset to distinguish between calling for the module-level
2868   // VST (where we want to jump to the VST offset) and the function-level
2869   // VST (where we don't).
2870   if (Offset > 0) {
2871     Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
2872     if (!MaybeCurrentBit)
2873       return MaybeCurrentBit.takeError();
2874     CurrentBit = MaybeCurrentBit.get();
2875     // If this module uses a string table, read this as a module-level VST.
2876     if (UseStrtab) {
2877       if (Error Err = parseGlobalValueSymbolTable())
2878         return Err;
2879       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2880         return JumpFailed;
2881       return Error::success();
2882     }
2883     // Otherwise, the VST will be in a similar format to a function-level VST,
2884     // and will contain symbol names.
2885   }
2886 
2887   // Compute the delta between the bitcode indices in the VST (the word offset
2888   // to the word-aligned ENTER_SUBBLOCK for the function block, and that
2889   // expected by the lazy reader. The reader's EnterSubBlock expects to have
2890   // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
2891   // (size BlockIDWidth). Note that we access the stream's AbbrevID width here
2892   // just before entering the VST subblock because: 1) the EnterSubBlock
2893   // changes the AbbrevID width; 2) the VST block is nested within the same
2894   // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
2895   // AbbrevID width before calling EnterSubBlock; and 3) when we want to
2896   // jump to the FUNCTION_BLOCK using this offset later, we don't want
2897   // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
2898   unsigned FuncBitcodeOffsetDelta =
2899       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2900 
2901   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2902     return Err;
2903 
2904   SmallVector<uint64_t, 64> Record;
2905 
2906   Triple TT(TheModule->getTargetTriple());
2907 
2908   // Read all the records for this value table.
2909   SmallString<128> ValueName;
2910 
2911   while (true) {
2912     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2913     if (!MaybeEntry)
2914       return MaybeEntry.takeError();
2915     BitstreamEntry Entry = MaybeEntry.get();
2916 
2917     switch (Entry.Kind) {
2918     case BitstreamEntry::SubBlock: // Handled for us already.
2919     case BitstreamEntry::Error:
2920       return error("Malformed block");
2921     case BitstreamEntry::EndBlock:
2922       if (Offset > 0)
2923         if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2924           return JumpFailed;
2925       return Error::success();
2926     case BitstreamEntry::Record:
2927       // The interesting case.
2928       break;
2929     }
2930 
2931     // Read a record.
2932     Record.clear();
2933     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2934     if (!MaybeRecord)
2935       return MaybeRecord.takeError();
2936     switch (MaybeRecord.get()) {
2937     default:  // Default behavior: unknown type.
2938       break;
2939     case bitc::VST_CODE_ENTRY: {  // VST_CODE_ENTRY: [valueid, namechar x N]
2940       Expected<Value *> ValOrErr = recordValue(Record, 1, TT);
2941       if (Error Err = ValOrErr.takeError())
2942         return Err;
2943       ValOrErr.get();
2944       break;
2945     }
2946     case bitc::VST_CODE_FNENTRY: {
2947       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
2948       Expected<Value *> ValOrErr = recordValue(Record, 2, TT);
2949       if (Error Err = ValOrErr.takeError())
2950         return Err;
2951       Value *V = ValOrErr.get();
2952 
2953       // Ignore function offsets emitted for aliases of functions in older
2954       // versions of LLVM.
2955       if (auto *F = dyn_cast<Function>(V))
2956         setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record);
2957       break;
2958     }
2959     case bitc::VST_CODE_BBENTRY: {
2960       if (convertToString(Record, 1, ValueName))
2961         return error("Invalid bbentry record");
2962       BasicBlock *BB = getBasicBlock(Record[0]);
2963       if (!BB)
2964         return error("Invalid bbentry record");
2965 
2966       BB->setName(ValueName.str());
2967       ValueName.clear();
2968       break;
2969     }
2970     }
2971   }
2972 }
2973 
2974 /// Decode a signed value stored with the sign bit in the LSB for dense VBR
2975 /// encoding.
2976 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
2977   if ((V & 1) == 0)
2978     return V >> 1;
2979   if (V != 1)
2980     return -(V >> 1);
2981   // There is no such thing as -0 with integers.  "-0" really means MININT.
2982   return 1ULL << 63;
2983 }
2984 
2985 /// Resolve all of the initializers for global values and aliases that we can.
2986 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() {
2987   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist;
2988   std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInitWorklist;
2989   std::vector<FunctionOperandInfo> FunctionOperandWorklist;
2990 
2991   GlobalInitWorklist.swap(GlobalInits);
2992   IndirectSymbolInitWorklist.swap(IndirectSymbolInits);
2993   FunctionOperandWorklist.swap(FunctionOperands);
2994 
2995   while (!GlobalInitWorklist.empty()) {
2996     unsigned ValID = GlobalInitWorklist.back().second;
2997     if (ValID >= ValueList.size()) {
2998       // Not ready to resolve this yet, it requires something later in the file.
2999       GlobalInits.push_back(GlobalInitWorklist.back());
3000     } else {
3001       Expected<Constant *> MaybeC = getValueForInitializer(ValID);
3002       if (!MaybeC)
3003         return MaybeC.takeError();
3004       GlobalInitWorklist.back().first->setInitializer(MaybeC.get());
3005     }
3006     GlobalInitWorklist.pop_back();
3007   }
3008 
3009   while (!IndirectSymbolInitWorklist.empty()) {
3010     unsigned ValID = IndirectSymbolInitWorklist.back().second;
3011     if (ValID >= ValueList.size()) {
3012       IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back());
3013     } else {
3014       Expected<Constant *> MaybeC = getValueForInitializer(ValID);
3015       if (!MaybeC)
3016         return MaybeC.takeError();
3017       Constant *C = MaybeC.get();
3018       GlobalValue *GV = IndirectSymbolInitWorklist.back().first;
3019       if (auto *GA = dyn_cast<GlobalAlias>(GV)) {
3020         if (C->getType() != GV->getType())
3021           return error("Alias and aliasee types don't match");
3022         GA->setAliasee(C);
3023       } else if (auto *GI = dyn_cast<GlobalIFunc>(GV)) {
3024         GI->setResolver(C);
3025       } else {
3026         return error("Expected an alias or an ifunc");
3027       }
3028     }
3029     IndirectSymbolInitWorklist.pop_back();
3030   }
3031 
3032   while (!FunctionOperandWorklist.empty()) {
3033     FunctionOperandInfo &Info = FunctionOperandWorklist.back();
3034     if (Info.PersonalityFn) {
3035       unsigned ValID = Info.PersonalityFn - 1;
3036       if (ValID < ValueList.size()) {
3037         Expected<Constant *> MaybeC = getValueForInitializer(ValID);
3038         if (!MaybeC)
3039           return MaybeC.takeError();
3040         Info.F->setPersonalityFn(MaybeC.get());
3041         Info.PersonalityFn = 0;
3042       }
3043     }
3044     if (Info.Prefix) {
3045       unsigned ValID = Info.Prefix - 1;
3046       if (ValID < ValueList.size()) {
3047         Expected<Constant *> MaybeC = getValueForInitializer(ValID);
3048         if (!MaybeC)
3049           return MaybeC.takeError();
3050         Info.F->setPrefixData(MaybeC.get());
3051         Info.Prefix = 0;
3052       }
3053     }
3054     if (Info.Prologue) {
3055       unsigned ValID = Info.Prologue - 1;
3056       if (ValID < ValueList.size()) {
3057         Expected<Constant *> MaybeC = getValueForInitializer(ValID);
3058         if (!MaybeC)
3059           return MaybeC.takeError();
3060         Info.F->setPrologueData(MaybeC.get());
3061         Info.Prologue = 0;
3062       }
3063     }
3064     if (Info.PersonalityFn || Info.Prefix || Info.Prologue)
3065       FunctionOperands.push_back(Info);
3066     FunctionOperandWorklist.pop_back();
3067   }
3068 
3069   return Error::success();
3070 }
3071 
3072 APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
3073   SmallVector<uint64_t, 8> Words(Vals.size());
3074   transform(Vals, Words.begin(),
3075                  BitcodeReader::decodeSignRotatedValue);
3076 
3077   return APInt(TypeBits, Words);
3078 }
3079 
3080 Error BitcodeReader::parseConstants() {
3081   if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
3082     return Err;
3083 
3084   SmallVector<uint64_t, 64> Record;
3085 
3086   // Read all the records for this value table.
3087   Type *CurTy = Type::getInt32Ty(Context);
3088   unsigned Int32TyID = getVirtualTypeID(CurTy);
3089   unsigned CurTyID = Int32TyID;
3090   Type *CurElemTy = nullptr;
3091   unsigned NextCstNo = ValueList.size();
3092 
3093   while (true) {
3094     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
3095     if (!MaybeEntry)
3096       return MaybeEntry.takeError();
3097     BitstreamEntry Entry = MaybeEntry.get();
3098 
3099     switch (Entry.Kind) {
3100     case BitstreamEntry::SubBlock: // Handled for us already.
3101     case BitstreamEntry::Error:
3102       return error("Malformed block");
3103     case BitstreamEntry::EndBlock:
3104       if (NextCstNo != ValueList.size())
3105         return error("Invalid constant reference");
3106       return Error::success();
3107     case BitstreamEntry::Record:
3108       // The interesting case.
3109       break;
3110     }
3111 
3112     // Read a record.
3113     Record.clear();
3114     Type *VoidType = Type::getVoidTy(Context);
3115     Value *V = nullptr;
3116     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
3117     if (!MaybeBitCode)
3118       return MaybeBitCode.takeError();
3119     switch (unsigned BitCode = MaybeBitCode.get()) {
3120     default:  // Default behavior: unknown constant
3121     case bitc::CST_CODE_UNDEF:     // UNDEF
3122       V = UndefValue::get(CurTy);
3123       break;
3124     case bitc::CST_CODE_POISON:    // POISON
3125       V = PoisonValue::get(CurTy);
3126       break;
3127     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
3128       if (Record.empty())
3129         return error("Invalid settype record");
3130       if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
3131         return error("Invalid settype record");
3132       if (TypeList[Record[0]] == VoidType)
3133         return error("Invalid constant type");
3134       CurTyID = Record[0];
3135       CurTy = TypeList[CurTyID];
3136       CurElemTy = getPtrElementTypeByID(CurTyID);
3137       continue;  // Skip the ValueList manipulation.
3138     case bitc::CST_CODE_NULL:      // NULL
3139       if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy())
3140         return error("Invalid type for a constant null value");
3141       if (auto *TETy = dyn_cast<TargetExtType>(CurTy))
3142         if (!TETy->hasProperty(TargetExtType::HasZeroInit))
3143           return error("Invalid type for a constant null value");
3144       V = Constant::getNullValue(CurTy);
3145       break;
3146     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
3147       if (!CurTy->isIntOrIntVectorTy() || Record.empty())
3148         return error("Invalid integer const record");
3149       V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
3150       break;
3151     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
3152       if (!CurTy->isIntOrIntVectorTy() || Record.empty())
3153         return error("Invalid wide integer const record");
3154 
3155       auto *ScalarTy = cast<IntegerType>(CurTy->getScalarType());
3156       APInt VInt = readWideAPInt(Record, ScalarTy->getBitWidth());
3157       V = ConstantInt::get(CurTy, VInt);
3158       break;
3159     }
3160     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
3161       if (Record.empty())
3162         return error("Invalid float const record");
3163 
3164       auto *ScalarTy = CurTy->getScalarType();
3165       if (ScalarTy->isHalfTy())
3166         V = ConstantFP::get(CurTy, APFloat(APFloat::IEEEhalf(),
3167                                            APInt(16, (uint16_t)Record[0])));
3168       else if (ScalarTy->isBFloatTy())
3169         V = ConstantFP::get(
3170             CurTy, APFloat(APFloat::BFloat(), APInt(16, (uint32_t)Record[0])));
3171       else if (ScalarTy->isFloatTy())
3172         V = ConstantFP::get(CurTy, APFloat(APFloat::IEEEsingle(),
3173                                            APInt(32, (uint32_t)Record[0])));
3174       else if (ScalarTy->isDoubleTy())
3175         V = ConstantFP::get(
3176             CurTy, APFloat(APFloat::IEEEdouble(), APInt(64, Record[0])));
3177       else if (ScalarTy->isX86_FP80Ty()) {
3178         // Bits are not stored the same way as a normal i80 APInt, compensate.
3179         uint64_t Rearrange[2];
3180         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
3181         Rearrange[1] = Record[0] >> 48;
3182         V = ConstantFP::get(
3183             CurTy, APFloat(APFloat::x87DoubleExtended(), APInt(80, Rearrange)));
3184       } else if (ScalarTy->isFP128Ty())
3185         V = ConstantFP::get(CurTy,
3186                             APFloat(APFloat::IEEEquad(), APInt(128, Record)));
3187       else if (ScalarTy->isPPC_FP128Ty())
3188         V = ConstantFP::get(
3189             CurTy, APFloat(APFloat::PPCDoubleDouble(), APInt(128, Record)));
3190       else
3191         V = UndefValue::get(CurTy);
3192       break;
3193     }
3194 
3195     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
3196       if (Record.empty())
3197         return error("Invalid aggregate record");
3198 
3199       unsigned Size = Record.size();
3200       SmallVector<unsigned, 16> Elts;
3201       for (unsigned i = 0; i != Size; ++i)
3202         Elts.push_back(Record[i]);
3203 
3204       if (isa<StructType>(CurTy)) {
3205         V = BitcodeConstant::create(
3206             Alloc, CurTy, BitcodeConstant::ConstantStructOpcode, Elts);
3207       } else if (isa<ArrayType>(CurTy)) {
3208         V = BitcodeConstant::create(Alloc, CurTy,
3209                                     BitcodeConstant::ConstantArrayOpcode, Elts);
3210       } else if (isa<VectorType>(CurTy)) {
3211         V = BitcodeConstant::create(
3212             Alloc, CurTy, BitcodeConstant::ConstantVectorOpcode, Elts);
3213       } else {
3214         V = UndefValue::get(CurTy);
3215       }
3216       break;
3217     }
3218     case bitc::CST_CODE_STRING:    // STRING: [values]
3219     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
3220       if (Record.empty())
3221         return error("Invalid string record");
3222 
3223       SmallString<16> Elts(Record.begin(), Record.end());
3224       V = ConstantDataArray::getString(Context, Elts,
3225                                        BitCode == bitc::CST_CODE_CSTRING);
3226       break;
3227     }
3228     case bitc::CST_CODE_DATA: {// DATA: [n x value]
3229       if (Record.empty())
3230         return error("Invalid data record");
3231 
3232       Type *EltTy;
3233       if (auto *Array = dyn_cast<ArrayType>(CurTy))
3234         EltTy = Array->getElementType();
3235       else
3236         EltTy = cast<VectorType>(CurTy)->getElementType();
3237       if (EltTy->isIntegerTy(8)) {
3238         SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
3239         if (isa<VectorType>(CurTy))
3240           V = ConstantDataVector::get(Context, Elts);
3241         else
3242           V = ConstantDataArray::get(Context, Elts);
3243       } else if (EltTy->isIntegerTy(16)) {
3244         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
3245         if (isa<VectorType>(CurTy))
3246           V = ConstantDataVector::get(Context, Elts);
3247         else
3248           V = ConstantDataArray::get(Context, Elts);
3249       } else if (EltTy->isIntegerTy(32)) {
3250         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
3251         if (isa<VectorType>(CurTy))
3252           V = ConstantDataVector::get(Context, Elts);
3253         else
3254           V = ConstantDataArray::get(Context, Elts);
3255       } else if (EltTy->isIntegerTy(64)) {
3256         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
3257         if (isa<VectorType>(CurTy))
3258           V = ConstantDataVector::get(Context, Elts);
3259         else
3260           V = ConstantDataArray::get(Context, Elts);
3261       } else if (EltTy->isHalfTy()) {
3262         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
3263         if (isa<VectorType>(CurTy))
3264           V = ConstantDataVector::getFP(EltTy, Elts);
3265         else
3266           V = ConstantDataArray::getFP(EltTy, Elts);
3267       } else if (EltTy->isBFloatTy()) {
3268         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
3269         if (isa<VectorType>(CurTy))
3270           V = ConstantDataVector::getFP(EltTy, Elts);
3271         else
3272           V = ConstantDataArray::getFP(EltTy, Elts);
3273       } else if (EltTy->isFloatTy()) {
3274         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
3275         if (isa<VectorType>(CurTy))
3276           V = ConstantDataVector::getFP(EltTy, Elts);
3277         else
3278           V = ConstantDataArray::getFP(EltTy, Elts);
3279       } else if (EltTy->isDoubleTy()) {
3280         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
3281         if (isa<VectorType>(CurTy))
3282           V = ConstantDataVector::getFP(EltTy, Elts);
3283         else
3284           V = ConstantDataArray::getFP(EltTy, Elts);
3285       } else {
3286         return error("Invalid type for value");
3287       }
3288       break;
3289     }
3290     case bitc::CST_CODE_CE_UNOP: {  // CE_UNOP: [opcode, opval]
3291       if (Record.size() < 2)
3292         return error("Invalid unary op constexpr record");
3293       int Opc = getDecodedUnaryOpcode(Record[0], CurTy);
3294       if (Opc < 0) {
3295         V = UndefValue::get(CurTy);  // Unknown unop.
3296       } else {
3297         V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[1]);
3298       }
3299       break;
3300     }
3301     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
3302       if (Record.size() < 3)
3303         return error("Invalid binary op constexpr record");
3304       int Opc = getDecodedBinaryOpcode(Record[0], CurTy);
3305       if (Opc < 0) {
3306         V = UndefValue::get(CurTy);  // Unknown binop.
3307       } else {
3308         uint8_t Flags = 0;
3309         if (Record.size() >= 4) {
3310           if (Opc == Instruction::Add ||
3311               Opc == Instruction::Sub ||
3312               Opc == Instruction::Mul ||
3313               Opc == Instruction::Shl) {
3314             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
3315               Flags |= OverflowingBinaryOperator::NoSignedWrap;
3316             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
3317               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
3318           } else if (Opc == Instruction::SDiv ||
3319                      Opc == Instruction::UDiv ||
3320                      Opc == Instruction::LShr ||
3321                      Opc == Instruction::AShr) {
3322             if (Record[3] & (1 << bitc::PEO_EXACT))
3323               Flags |= PossiblyExactOperator::IsExact;
3324           }
3325         }
3326         V = BitcodeConstant::create(Alloc, CurTy, {(uint8_t)Opc, Flags},
3327                                     {(unsigned)Record[1], (unsigned)Record[2]});
3328       }
3329       break;
3330     }
3331     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
3332       if (Record.size() < 3)
3333         return error("Invalid cast constexpr record");
3334       int Opc = getDecodedCastOpcode(Record[0]);
3335       if (Opc < 0) {
3336         V = UndefValue::get(CurTy);  // Unknown cast.
3337       } else {
3338         unsigned OpTyID = Record[1];
3339         Type *OpTy = getTypeByID(OpTyID);
3340         if (!OpTy)
3341           return error("Invalid cast constexpr record");
3342         V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[2]);
3343       }
3344       break;
3345     }
3346     case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands]
3347     case bitc::CST_CODE_CE_GEP_OLD:      // [ty, n x operands]
3348     case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX_OLD: // [ty, flags, n x
3349                                                        // operands]
3350     case bitc::CST_CODE_CE_GEP:                // [ty, flags, n x operands]
3351     case bitc::CST_CODE_CE_GEP_WITH_INRANGE: { // [ty, flags, start, end, n x
3352                                                // operands]
3353       if (Record.size() < 2)
3354         return error("Constant GEP record must have at least two elements");
3355       unsigned OpNum = 0;
3356       Type *PointeeType = nullptr;
3357       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX_OLD ||
3358           BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE ||
3359           BitCode == bitc::CST_CODE_CE_GEP || Record.size() % 2)
3360         PointeeType = getTypeByID(Record[OpNum++]);
3361 
3362       uint64_t Flags = 0;
3363       std::optional<ConstantRange> InRange;
3364       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX_OLD) {
3365         uint64_t Op = Record[OpNum++];
3366         Flags = Op & 1; // inbounds
3367         unsigned InRangeIndex = Op >> 1;
3368         // "Upgrade" inrange by dropping it. The feature is too niche to
3369         // bother.
3370         (void)InRangeIndex;
3371       } else if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE) {
3372         Flags = Record[OpNum++];
3373         Expected<ConstantRange> MaybeInRange = readConstantRange(Record, OpNum);
3374         if (!MaybeInRange)
3375           return MaybeInRange.takeError();
3376         InRange = MaybeInRange.get();
3377       } else if (BitCode == bitc::CST_CODE_CE_GEP) {
3378         Flags = Record[OpNum++];
3379       } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
3380         Flags = (1 << bitc::GEP_INBOUNDS);
3381 
3382       SmallVector<unsigned, 16> Elts;
3383       unsigned BaseTypeID = Record[OpNum];
3384       while (OpNum != Record.size()) {
3385         unsigned ElTyID = Record[OpNum++];
3386         Type *ElTy = getTypeByID(ElTyID);
3387         if (!ElTy)
3388           return error("Invalid getelementptr constexpr record");
3389         Elts.push_back(Record[OpNum++]);
3390       }
3391 
3392       if (Elts.size() < 1)
3393         return error("Invalid gep with no operands");
3394 
3395       Type *BaseType = getTypeByID(BaseTypeID);
3396       if (isa<VectorType>(BaseType)) {
3397         BaseTypeID = getContainedTypeID(BaseTypeID, 0);
3398         BaseType = getTypeByID(BaseTypeID);
3399       }
3400 
3401       PointerType *OrigPtrTy = dyn_cast_or_null<PointerType>(BaseType);
3402       if (!OrigPtrTy)
3403         return error("GEP base operand must be pointer or vector of pointer");
3404 
3405       if (!PointeeType) {
3406         PointeeType = getPtrElementTypeByID(BaseTypeID);
3407         if (!PointeeType)
3408           return error("Missing element type for old-style constant GEP");
3409       }
3410 
3411       V = BitcodeConstant::create(
3412           Alloc, CurTy,
3413           {Instruction::GetElementPtr, uint8_t(Flags), PointeeType, InRange},
3414           Elts);
3415       break;
3416     }
3417     case bitc::CST_CODE_CE_SELECT: {  // CE_SELECT: [opval#, opval#, opval#]
3418       if (Record.size() < 3)
3419         return error("Invalid select constexpr record");
3420 
3421       V = BitcodeConstant::create(
3422           Alloc, CurTy, Instruction::Select,
3423           {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]});
3424       break;
3425     }
3426     case bitc::CST_CODE_CE_EXTRACTELT
3427         : { // CE_EXTRACTELT: [opty, opval, opty, opval]
3428       if (Record.size() < 3)
3429         return error("Invalid extractelement constexpr record");
3430       unsigned OpTyID = Record[0];
3431       VectorType *OpTy =
3432         dyn_cast_or_null<VectorType>(getTypeByID(OpTyID));
3433       if (!OpTy)
3434         return error("Invalid extractelement constexpr record");
3435       unsigned IdxRecord;
3436       if (Record.size() == 4) {
3437         unsigned IdxTyID = Record[2];
3438         Type *IdxTy = getTypeByID(IdxTyID);
3439         if (!IdxTy)
3440           return error("Invalid extractelement constexpr record");
3441         IdxRecord = Record[3];
3442       } else {
3443         // Deprecated, but still needed to read old bitcode files.
3444         IdxRecord = Record[2];
3445       }
3446       V = BitcodeConstant::create(Alloc, CurTy, Instruction::ExtractElement,
3447                                   {(unsigned)Record[1], IdxRecord});
3448       break;
3449     }
3450     case bitc::CST_CODE_CE_INSERTELT
3451         : { // CE_INSERTELT: [opval, opval, opty, opval]
3452       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
3453       if (Record.size() < 3 || !OpTy)
3454         return error("Invalid insertelement constexpr record");
3455       unsigned IdxRecord;
3456       if (Record.size() == 4) {
3457         unsigned IdxTyID = Record[2];
3458         Type *IdxTy = getTypeByID(IdxTyID);
3459         if (!IdxTy)
3460           return error("Invalid insertelement constexpr record");
3461         IdxRecord = Record[3];
3462       } else {
3463         // Deprecated, but still needed to read old bitcode files.
3464         IdxRecord = Record[2];
3465       }
3466       V = BitcodeConstant::create(
3467           Alloc, CurTy, Instruction::InsertElement,
3468           {(unsigned)Record[0], (unsigned)Record[1], IdxRecord});
3469       break;
3470     }
3471     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
3472       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
3473       if (Record.size() < 3 || !OpTy)
3474         return error("Invalid shufflevector constexpr record");
3475       V = BitcodeConstant::create(
3476           Alloc, CurTy, Instruction::ShuffleVector,
3477           {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]});
3478       break;
3479     }
3480     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
3481       VectorType *RTy = dyn_cast<VectorType>(CurTy);
3482       VectorType *OpTy =
3483         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
3484       if (Record.size() < 4 || !RTy || !OpTy)
3485         return error("Invalid shufflevector constexpr record");
3486       V = BitcodeConstant::create(
3487           Alloc, CurTy, Instruction::ShuffleVector,
3488           {(unsigned)Record[1], (unsigned)Record[2], (unsigned)Record[3]});
3489       break;
3490     }
3491     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
3492       if (Record.size() < 4)
3493         return error("Invalid cmp constexpt record");
3494       unsigned OpTyID = Record[0];
3495       Type *OpTy = getTypeByID(OpTyID);
3496       if (!OpTy)
3497         return error("Invalid cmp constexpr record");
3498       V = BitcodeConstant::create(
3499           Alloc, CurTy,
3500           {(uint8_t)(OpTy->isFPOrFPVectorTy() ? Instruction::FCmp
3501                                               : Instruction::ICmp),
3502            (uint8_t)Record[3]},
3503           {(unsigned)Record[1], (unsigned)Record[2]});
3504       break;
3505     }
3506     // This maintains backward compatibility, pre-asm dialect keywords.
3507     // Deprecated, but still needed to read old bitcode files.
3508     case bitc::CST_CODE_INLINEASM_OLD: {
3509       if (Record.size() < 2)
3510         return error("Invalid inlineasm record");
3511       std::string AsmStr, ConstrStr;
3512       bool HasSideEffects = Record[0] & 1;
3513       bool IsAlignStack = Record[0] >> 1;
3514       unsigned AsmStrSize = Record[1];
3515       if (2+AsmStrSize >= Record.size())
3516         return error("Invalid inlineasm record");
3517       unsigned ConstStrSize = Record[2+AsmStrSize];
3518       if (3+AsmStrSize+ConstStrSize > Record.size())
3519         return error("Invalid inlineasm record");
3520 
3521       for (unsigned i = 0; i != AsmStrSize; ++i)
3522         AsmStr += (char)Record[2+i];
3523       for (unsigned i = 0; i != ConstStrSize; ++i)
3524         ConstrStr += (char)Record[3+AsmStrSize+i];
3525       UpgradeInlineAsmString(&AsmStr);
3526       if (!CurElemTy)
3527         return error("Missing element type for old-style inlineasm");
3528       V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr,
3529                          HasSideEffects, IsAlignStack);
3530       break;
3531     }
3532     // This version adds support for the asm dialect keywords (e.g.,
3533     // inteldialect).
3534     case bitc::CST_CODE_INLINEASM_OLD2: {
3535       if (Record.size() < 2)
3536         return error("Invalid inlineasm record");
3537       std::string AsmStr, ConstrStr;
3538       bool HasSideEffects = Record[0] & 1;
3539       bool IsAlignStack = (Record[0] >> 1) & 1;
3540       unsigned AsmDialect = Record[0] >> 2;
3541       unsigned AsmStrSize = Record[1];
3542       if (2+AsmStrSize >= Record.size())
3543         return error("Invalid inlineasm record");
3544       unsigned ConstStrSize = Record[2+AsmStrSize];
3545       if (3+AsmStrSize+ConstStrSize > Record.size())
3546         return error("Invalid inlineasm record");
3547 
3548       for (unsigned i = 0; i != AsmStrSize; ++i)
3549         AsmStr += (char)Record[2+i];
3550       for (unsigned i = 0; i != ConstStrSize; ++i)
3551         ConstrStr += (char)Record[3+AsmStrSize+i];
3552       UpgradeInlineAsmString(&AsmStr);
3553       if (!CurElemTy)
3554         return error("Missing element type for old-style inlineasm");
3555       V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr,
3556                          HasSideEffects, IsAlignStack,
3557                          InlineAsm::AsmDialect(AsmDialect));
3558       break;
3559     }
3560     // This version adds support for the unwind keyword.
3561     case bitc::CST_CODE_INLINEASM_OLD3: {
3562       if (Record.size() < 2)
3563         return error("Invalid inlineasm record");
3564       unsigned OpNum = 0;
3565       std::string AsmStr, ConstrStr;
3566       bool HasSideEffects = Record[OpNum] & 1;
3567       bool IsAlignStack = (Record[OpNum] >> 1) & 1;
3568       unsigned AsmDialect = (Record[OpNum] >> 2) & 1;
3569       bool CanThrow = (Record[OpNum] >> 3) & 1;
3570       ++OpNum;
3571       unsigned AsmStrSize = Record[OpNum];
3572       ++OpNum;
3573       if (OpNum + AsmStrSize >= Record.size())
3574         return error("Invalid inlineasm record");
3575       unsigned ConstStrSize = Record[OpNum + AsmStrSize];
3576       if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size())
3577         return error("Invalid inlineasm record");
3578 
3579       for (unsigned i = 0; i != AsmStrSize; ++i)
3580         AsmStr += (char)Record[OpNum + i];
3581       ++OpNum;
3582       for (unsigned i = 0; i != ConstStrSize; ++i)
3583         ConstrStr += (char)Record[OpNum + AsmStrSize + i];
3584       UpgradeInlineAsmString(&AsmStr);
3585       if (!CurElemTy)
3586         return error("Missing element type for old-style inlineasm");
3587       V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr,
3588                          HasSideEffects, IsAlignStack,
3589                          InlineAsm::AsmDialect(AsmDialect), CanThrow);
3590       break;
3591     }
3592     // This version adds explicit function type.
3593     case bitc::CST_CODE_INLINEASM: {
3594       if (Record.size() < 3)
3595         return error("Invalid inlineasm record");
3596       unsigned OpNum = 0;
3597       auto *FnTy = dyn_cast_or_null<FunctionType>(getTypeByID(Record[OpNum]));
3598       ++OpNum;
3599       if (!FnTy)
3600         return error("Invalid inlineasm record");
3601       std::string AsmStr, ConstrStr;
3602       bool HasSideEffects = Record[OpNum] & 1;
3603       bool IsAlignStack = (Record[OpNum] >> 1) & 1;
3604       unsigned AsmDialect = (Record[OpNum] >> 2) & 1;
3605       bool CanThrow = (Record[OpNum] >> 3) & 1;
3606       ++OpNum;
3607       unsigned AsmStrSize = Record[OpNum];
3608       ++OpNum;
3609       if (OpNum + AsmStrSize >= Record.size())
3610         return error("Invalid inlineasm record");
3611       unsigned ConstStrSize = Record[OpNum + AsmStrSize];
3612       if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size())
3613         return error("Invalid inlineasm record");
3614 
3615       for (unsigned i = 0; i != AsmStrSize; ++i)
3616         AsmStr += (char)Record[OpNum + i];
3617       ++OpNum;
3618       for (unsigned i = 0; i != ConstStrSize; ++i)
3619         ConstrStr += (char)Record[OpNum + AsmStrSize + i];
3620       UpgradeInlineAsmString(&AsmStr);
3621       V = InlineAsm::get(FnTy, AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
3622                          InlineAsm::AsmDialect(AsmDialect), CanThrow);
3623       break;
3624     }
3625     case bitc::CST_CODE_BLOCKADDRESS:{
3626       if (Record.size() < 3)
3627         return error("Invalid blockaddress record");
3628       unsigned FnTyID = Record[0];
3629       Type *FnTy = getTypeByID(FnTyID);
3630       if (!FnTy)
3631         return error("Invalid blockaddress record");
3632       V = BitcodeConstant::create(
3633           Alloc, CurTy,
3634           {BitcodeConstant::BlockAddressOpcode, 0, (unsigned)Record[2]},
3635           Record[1]);
3636       break;
3637     }
3638     case bitc::CST_CODE_DSO_LOCAL_EQUIVALENT: {
3639       if (Record.size() < 2)
3640         return error("Invalid dso_local record");
3641       unsigned GVTyID = Record[0];
3642       Type *GVTy = getTypeByID(GVTyID);
3643       if (!GVTy)
3644         return error("Invalid dso_local record");
3645       V = BitcodeConstant::create(
3646           Alloc, CurTy, BitcodeConstant::DSOLocalEquivalentOpcode, Record[1]);
3647       break;
3648     }
3649     case bitc::CST_CODE_NO_CFI_VALUE: {
3650       if (Record.size() < 2)
3651         return error("Invalid no_cfi record");
3652       unsigned GVTyID = Record[0];
3653       Type *GVTy = getTypeByID(GVTyID);
3654       if (!GVTy)
3655         return error("Invalid no_cfi record");
3656       V = BitcodeConstant::create(Alloc, CurTy, BitcodeConstant::NoCFIOpcode,
3657                                   Record[1]);
3658       break;
3659     }
3660     case bitc::CST_CODE_PTRAUTH: {
3661       if (Record.size() < 4)
3662         return error("Invalid ptrauth record");
3663       // Ptr, Key, Disc, AddrDisc
3664       V = BitcodeConstant::create(Alloc, CurTy,
3665                                   BitcodeConstant::ConstantPtrAuthOpcode,
3666                                   {(unsigned)Record[0], (unsigned)Record[1],
3667                                    (unsigned)Record[2], (unsigned)Record[3]});
3668       break;
3669     }
3670     }
3671 
3672     assert(V->getType() == getTypeByID(CurTyID) && "Incorrect result type ID");
3673     if (Error Err = ValueList.assignValue(NextCstNo, V, CurTyID))
3674       return Err;
3675     ++NextCstNo;
3676   }
3677 }
3678 
3679 Error BitcodeReader::parseUseLists() {
3680   if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
3681     return Err;
3682 
3683   // Read all the records.
3684   SmallVector<uint64_t, 64> Record;
3685 
3686   while (true) {
3687     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
3688     if (!MaybeEntry)
3689       return MaybeEntry.takeError();
3690     BitstreamEntry Entry = MaybeEntry.get();
3691 
3692     switch (Entry.Kind) {
3693     case BitstreamEntry::SubBlock: // Handled for us already.
3694     case BitstreamEntry::Error:
3695       return error("Malformed block");
3696     case BitstreamEntry::EndBlock:
3697       return Error::success();
3698     case BitstreamEntry::Record:
3699       // The interesting case.
3700       break;
3701     }
3702 
3703     // Read a use list record.
3704     Record.clear();
3705     bool IsBB = false;
3706     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
3707     if (!MaybeRecord)
3708       return MaybeRecord.takeError();
3709     switch (MaybeRecord.get()) {
3710     default:  // Default behavior: unknown type.
3711       break;
3712     case bitc::USELIST_CODE_BB:
3713       IsBB = true;
3714       [[fallthrough]];
3715     case bitc::USELIST_CODE_DEFAULT: {
3716       unsigned RecordLength = Record.size();
3717       if (RecordLength < 3)
3718         // Records should have at least an ID and two indexes.
3719         return error("Invalid record");
3720       unsigned ID = Record.pop_back_val();
3721 
3722       Value *V;
3723       if (IsBB) {
3724         assert(ID < FunctionBBs.size() && "Basic block not found");
3725         V = FunctionBBs[ID];
3726       } else
3727         V = ValueList[ID];
3728       unsigned NumUses = 0;
3729       SmallDenseMap<const Use *, unsigned, 16> Order;
3730       for (const Use &U : V->materialized_uses()) {
3731         if (++NumUses > Record.size())
3732           break;
3733         Order[&U] = Record[NumUses - 1];
3734       }
3735       if (Order.size() != Record.size() || NumUses > Record.size())
3736         // Mismatches can happen if the functions are being materialized lazily
3737         // (out-of-order), or a value has been upgraded.
3738         break;
3739 
3740       V->sortUseList([&](const Use &L, const Use &R) {
3741         return Order.lookup(&L) < Order.lookup(&R);
3742       });
3743       break;
3744     }
3745     }
3746   }
3747 }
3748 
3749 /// When we see the block for metadata, remember where it is and then skip it.
3750 /// This lets us lazily deserialize the metadata.
3751 Error BitcodeReader::rememberAndSkipMetadata() {
3752   // Save the current stream state.
3753   uint64_t CurBit = Stream.GetCurrentBitNo();
3754   DeferredMetadataInfo.push_back(CurBit);
3755 
3756   // Skip over the block for now.
3757   if (Error Err = Stream.SkipBlock())
3758     return Err;
3759   return Error::success();
3760 }
3761 
3762 Error BitcodeReader::materializeMetadata() {
3763   for (uint64_t BitPos : DeferredMetadataInfo) {
3764     // Move the bit stream to the saved position.
3765     if (Error JumpFailed = Stream.JumpToBit(BitPos))
3766       return JumpFailed;
3767     if (Error Err = MDLoader->parseModuleMetadata())
3768       return Err;
3769   }
3770 
3771   // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level
3772   // metadata. Only upgrade if the new option doesn't exist to avoid upgrade
3773   // multiple times.
3774   if (!TheModule->getNamedMetadata("llvm.linker.options")) {
3775     if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) {
3776       NamedMDNode *LinkerOpts =
3777           TheModule->getOrInsertNamedMetadata("llvm.linker.options");
3778       for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands())
3779         LinkerOpts->addOperand(cast<MDNode>(MDOptions));
3780     }
3781   }
3782 
3783   DeferredMetadataInfo.clear();
3784   return Error::success();
3785 }
3786 
3787 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
3788 
3789 /// When we see the block for a function body, remember where it is and then
3790 /// skip it.  This lets us lazily deserialize the functions.
3791 Error BitcodeReader::rememberAndSkipFunctionBody() {
3792   // Get the function we are talking about.
3793   if (FunctionsWithBodies.empty())
3794     return error("Insufficient function protos");
3795 
3796   Function *Fn = FunctionsWithBodies.back();
3797   FunctionsWithBodies.pop_back();
3798 
3799   // Save the current stream state.
3800   uint64_t CurBit = Stream.GetCurrentBitNo();
3801   assert(
3802       (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) &&
3803       "Mismatch between VST and scanned function offsets");
3804   DeferredFunctionInfo[Fn] = CurBit;
3805 
3806   // Skip over the function block for now.
3807   if (Error Err = Stream.SkipBlock())
3808     return Err;
3809   return Error::success();
3810 }
3811 
3812 Error BitcodeReader::globalCleanup() {
3813   // Patch the initializers for globals and aliases up.
3814   if (Error Err = resolveGlobalAndIndirectSymbolInits())
3815     return Err;
3816   if (!GlobalInits.empty() || !IndirectSymbolInits.empty())
3817     return error("Malformed global initializer set");
3818 
3819   // Look for intrinsic functions which need to be upgraded at some point
3820   // and functions that need to have their function attributes upgraded.
3821   for (Function &F : *TheModule) {
3822     MDLoader->upgradeDebugIntrinsics(F);
3823     Function *NewFn;
3824     // If PreserveInputDbgFormat=true, then we don't know whether we want
3825     // intrinsics or records, and we won't perform any conversions in either
3826     // case, so don't upgrade intrinsics to records.
3827     if (UpgradeIntrinsicFunction(
3828             &F, NewFn, PreserveInputDbgFormat != cl::boolOrDefault::BOU_TRUE))
3829       UpgradedIntrinsics[&F] = NewFn;
3830     // Look for functions that rely on old function attribute behavior.
3831     UpgradeFunctionAttributes(F);
3832   }
3833 
3834   // Look for global variables which need to be renamed.
3835   std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables;
3836   for (GlobalVariable &GV : TheModule->globals())
3837     if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV))
3838       UpgradedVariables.emplace_back(&GV, Upgraded);
3839   for (auto &Pair : UpgradedVariables) {
3840     Pair.first->eraseFromParent();
3841     TheModule->insertGlobalVariable(Pair.second);
3842   }
3843 
3844   // Force deallocation of memory for these vectors to favor the client that
3845   // want lazy deserialization.
3846   std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits);
3847   std::vector<std::pair<GlobalValue *, unsigned>>().swap(IndirectSymbolInits);
3848   return Error::success();
3849 }
3850 
3851 /// Support for lazy parsing of function bodies. This is required if we
3852 /// either have an old bitcode file without a VST forward declaration record,
3853 /// or if we have an anonymous function being materialized, since anonymous
3854 /// functions do not have a name and are therefore not in the VST.
3855 Error BitcodeReader::rememberAndSkipFunctionBodies() {
3856   if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit))
3857     return JumpFailed;
3858 
3859   if (Stream.AtEndOfStream())
3860     return error("Could not find function in stream");
3861 
3862   if (!SeenFirstFunctionBody)
3863     return error("Trying to materialize functions before seeing function blocks");
3864 
3865   // An old bitcode file with the symbol table at the end would have
3866   // finished the parse greedily.
3867   assert(SeenValueSymbolTable);
3868 
3869   SmallVector<uint64_t, 64> Record;
3870 
3871   while (true) {
3872     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3873     if (!MaybeEntry)
3874       return MaybeEntry.takeError();
3875     llvm::BitstreamEntry Entry = MaybeEntry.get();
3876 
3877     switch (Entry.Kind) {
3878     default:
3879       return error("Expect SubBlock");
3880     case BitstreamEntry::SubBlock:
3881       switch (Entry.ID) {
3882       default:
3883         return error("Expect function block");
3884       case bitc::FUNCTION_BLOCK_ID:
3885         if (Error Err = rememberAndSkipFunctionBody())
3886           return Err;
3887         NextUnreadBit = Stream.GetCurrentBitNo();
3888         return Error::success();
3889       }
3890     }
3891   }
3892 }
3893 
3894 Error BitcodeReaderBase::readBlockInfo() {
3895   Expected<std::optional<BitstreamBlockInfo>> MaybeNewBlockInfo =
3896       Stream.ReadBlockInfoBlock();
3897   if (!MaybeNewBlockInfo)
3898     return MaybeNewBlockInfo.takeError();
3899   std::optional<BitstreamBlockInfo> NewBlockInfo =
3900       std::move(MaybeNewBlockInfo.get());
3901   if (!NewBlockInfo)
3902     return error("Malformed block");
3903   BlockInfo = std::move(*NewBlockInfo);
3904   return Error::success();
3905 }
3906 
3907 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) {
3908   // v1: [selection_kind, name]
3909   // v2: [strtab_offset, strtab_size, selection_kind]
3910   StringRef Name;
3911   std::tie(Name, Record) = readNameFromStrtab(Record);
3912 
3913   if (Record.empty())
3914     return error("Invalid record");
3915   Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
3916   std::string OldFormatName;
3917   if (!UseStrtab) {
3918     if (Record.size() < 2)
3919       return error("Invalid record");
3920     unsigned ComdatNameSize = Record[1];
3921     if (ComdatNameSize > Record.size() - 2)
3922       return error("Comdat name size too large");
3923     OldFormatName.reserve(ComdatNameSize);
3924     for (unsigned i = 0; i != ComdatNameSize; ++i)
3925       OldFormatName += (char)Record[2 + i];
3926     Name = OldFormatName;
3927   }
3928   Comdat *C = TheModule->getOrInsertComdat(Name);
3929   C->setSelectionKind(SK);
3930   ComdatList.push_back(C);
3931   return Error::success();
3932 }
3933 
3934 static void inferDSOLocal(GlobalValue *GV) {
3935   // infer dso_local from linkage and visibility if it is not encoded.
3936   if (GV->hasLocalLinkage() ||
3937       (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()))
3938     GV->setDSOLocal(true);
3939 }
3940 
3941 GlobalValue::SanitizerMetadata deserializeSanitizerMetadata(unsigned V) {
3942   GlobalValue::SanitizerMetadata Meta;
3943   if (V & (1 << 0))
3944     Meta.NoAddress = true;
3945   if (V & (1 << 1))
3946     Meta.NoHWAddress = true;
3947   if (V & (1 << 2))
3948     Meta.Memtag = true;
3949   if (V & (1 << 3))
3950     Meta.IsDynInit = true;
3951   return Meta;
3952 }
3953 
3954 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) {
3955   // v1: [pointer type, isconst, initid, linkage, alignment, section,
3956   // visibility, threadlocal, unnamed_addr, externally_initialized,
3957   // dllstorageclass, comdat, attributes, preemption specifier,
3958   // partition strtab offset, partition strtab size] (name in VST)
3959   // v2: [strtab_offset, strtab_size, v1]
3960   // v3: [v2, code_model]
3961   StringRef Name;
3962   std::tie(Name, Record) = readNameFromStrtab(Record);
3963 
3964   if (Record.size() < 6)
3965     return error("Invalid record");
3966   unsigned TyID = Record[0];
3967   Type *Ty = getTypeByID(TyID);
3968   if (!Ty)
3969     return error("Invalid record");
3970   bool isConstant = Record[1] & 1;
3971   bool explicitType = Record[1] & 2;
3972   unsigned AddressSpace;
3973   if (explicitType) {
3974     AddressSpace = Record[1] >> 2;
3975   } else {
3976     if (!Ty->isPointerTy())
3977       return error("Invalid type for value");
3978     AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
3979     TyID = getContainedTypeID(TyID);
3980     Ty = getTypeByID(TyID);
3981     if (!Ty)
3982       return error("Missing element type for old-style global");
3983   }
3984 
3985   uint64_t RawLinkage = Record[3];
3986   GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
3987   MaybeAlign Alignment;
3988   if (Error Err = parseAlignmentValue(Record[4], Alignment))
3989     return Err;
3990   std::string Section;
3991   if (Record[5]) {
3992     if (Record[5] - 1 >= SectionTable.size())
3993       return error("Invalid ID");
3994     Section = SectionTable[Record[5] - 1];
3995   }
3996   GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
3997   // Local linkage must have default visibility.
3998   // auto-upgrade `hidden` and `protected` for old bitcode.
3999   if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
4000     Visibility = getDecodedVisibility(Record[6]);
4001 
4002   GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
4003   if (Record.size() > 7)
4004     TLM = getDecodedThreadLocalMode(Record[7]);
4005 
4006   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
4007   if (Record.size() > 8)
4008     UnnamedAddr = getDecodedUnnamedAddrType(Record[8]);
4009 
4010   bool ExternallyInitialized = false;
4011   if (Record.size() > 9)
4012     ExternallyInitialized = Record[9];
4013 
4014   GlobalVariable *NewGV =
4015       new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name,
4016                          nullptr, TLM, AddressSpace, ExternallyInitialized);
4017   if (Alignment)
4018     NewGV->setAlignment(*Alignment);
4019   if (!Section.empty())
4020     NewGV->setSection(Section);
4021   NewGV->setVisibility(Visibility);
4022   NewGV->setUnnamedAddr(UnnamedAddr);
4023 
4024   if (Record.size() > 10) {
4025     // A GlobalValue with local linkage cannot have a DLL storage class.
4026     if (!NewGV->hasLocalLinkage()) {
4027       NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10]));
4028     }
4029   } else {
4030     upgradeDLLImportExportLinkage(NewGV, RawLinkage);
4031   }
4032 
4033   ValueList.push_back(NewGV, getVirtualTypeID(NewGV->getType(), TyID));
4034 
4035   // Remember which value to use for the global initializer.
4036   if (unsigned InitID = Record[2])
4037     GlobalInits.push_back(std::make_pair(NewGV, InitID - 1));
4038 
4039   if (Record.size() > 11) {
4040     if (unsigned ComdatID = Record[11]) {
4041       if (ComdatID > ComdatList.size())
4042         return error("Invalid global variable comdat ID");
4043       NewGV->setComdat(ComdatList[ComdatID - 1]);
4044     }
4045   } else if (hasImplicitComdat(RawLinkage)) {
4046     ImplicitComdatObjects.insert(NewGV);
4047   }
4048 
4049   if (Record.size() > 12) {
4050     auto AS = getAttributes(Record[12]).getFnAttrs();
4051     NewGV->setAttributes(AS);
4052   }
4053 
4054   if (Record.size() > 13) {
4055     NewGV->setDSOLocal(getDecodedDSOLocal(Record[13]));
4056   }
4057   inferDSOLocal(NewGV);
4058 
4059   // Check whether we have enough values to read a partition name.
4060   if (Record.size() > 15)
4061     NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15]));
4062 
4063   if (Record.size() > 16 && Record[16]) {
4064     llvm::GlobalValue::SanitizerMetadata Meta =
4065         deserializeSanitizerMetadata(Record[16]);
4066     NewGV->setSanitizerMetadata(Meta);
4067   }
4068 
4069   if (Record.size() > 17 && Record[17]) {
4070     if (auto CM = getDecodedCodeModel(Record[17]))
4071       NewGV->setCodeModel(*CM);
4072     else
4073       return error("Invalid global variable code model");
4074   }
4075 
4076   return Error::success();
4077 }
4078 
4079 void BitcodeReader::callValueTypeCallback(Value *F, unsigned TypeID) {
4080   if (ValueTypeCallback) {
4081     (*ValueTypeCallback)(
4082         F, TypeID, [this](unsigned I) { return getTypeByID(I); },
4083         [this](unsigned I, unsigned J) { return getContainedTypeID(I, J); });
4084   }
4085 }
4086 
4087 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) {
4088   // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section,
4089   // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat,
4090   // prefixdata,  personalityfn, preemption specifier, addrspace] (name in VST)
4091   // v2: [strtab_offset, strtab_size, v1]
4092   StringRef Name;
4093   std::tie(Name, Record) = readNameFromStrtab(Record);
4094 
4095   if (Record.size() < 8)
4096     return error("Invalid record");
4097   unsigned FTyID = Record[0];
4098   Type *FTy = getTypeByID(FTyID);
4099   if (!FTy)
4100     return error("Invalid record");
4101   if (isa<PointerType>(FTy)) {
4102     FTyID = getContainedTypeID(FTyID, 0);
4103     FTy = getTypeByID(FTyID);
4104     if (!FTy)
4105       return error("Missing element type for old-style function");
4106   }
4107 
4108   if (!isa<FunctionType>(FTy))
4109     return error("Invalid type for value");
4110   auto CC = static_cast<CallingConv::ID>(Record[1]);
4111   if (CC & ~CallingConv::MaxID)
4112     return error("Invalid calling convention ID");
4113 
4114   unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace();
4115   if (Record.size() > 16)
4116     AddrSpace = Record[16];
4117 
4118   Function *Func =
4119       Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage,
4120                        AddrSpace, Name, TheModule);
4121 
4122   assert(Func->getFunctionType() == FTy &&
4123          "Incorrect fully specified type provided for function");
4124   FunctionTypeIDs[Func] = FTyID;
4125 
4126   Func->setCallingConv(CC);
4127   bool isProto = Record[2];
4128   uint64_t RawLinkage = Record[3];
4129   Func->setLinkage(getDecodedLinkage(RawLinkage));
4130   Func->setAttributes(getAttributes(Record[4]));
4131   callValueTypeCallback(Func, FTyID);
4132 
4133   // Upgrade any old-style byval or sret without a type by propagating the
4134   // argument's pointee type. There should be no opaque pointers where the byval
4135   // type is implicit.
4136   for (unsigned i = 0; i != Func->arg_size(); ++i) {
4137     for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet,
4138                                      Attribute::InAlloca}) {
4139       if (!Func->hasParamAttribute(i, Kind))
4140         continue;
4141 
4142       if (Func->getParamAttribute(i, Kind).getValueAsType())
4143         continue;
4144 
4145       Func->removeParamAttr(i, Kind);
4146 
4147       unsigned ParamTypeID = getContainedTypeID(FTyID, i + 1);
4148       Type *PtrEltTy = getPtrElementTypeByID(ParamTypeID);
4149       if (!PtrEltTy)
4150         return error("Missing param element type for attribute upgrade");
4151 
4152       Attribute NewAttr;
4153       switch (Kind) {
4154       case Attribute::ByVal:
4155         NewAttr = Attribute::getWithByValType(Context, PtrEltTy);
4156         break;
4157       case Attribute::StructRet:
4158         NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy);
4159         break;
4160       case Attribute::InAlloca:
4161         NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy);
4162         break;
4163       default:
4164         llvm_unreachable("not an upgraded type attribute");
4165       }
4166 
4167       Func->addParamAttr(i, NewAttr);
4168     }
4169   }
4170 
4171   if (Func->getCallingConv() == CallingConv::X86_INTR &&
4172       !Func->arg_empty() && !Func->hasParamAttribute(0, Attribute::ByVal)) {
4173     unsigned ParamTypeID = getContainedTypeID(FTyID, 1);
4174     Type *ByValTy = getPtrElementTypeByID(ParamTypeID);
4175     if (!ByValTy)
4176       return error("Missing param element type for x86_intrcc upgrade");
4177     Attribute NewAttr = Attribute::getWithByValType(Context, ByValTy);
4178     Func->addParamAttr(0, NewAttr);
4179   }
4180 
4181   MaybeAlign Alignment;
4182   if (Error Err = parseAlignmentValue(Record[5], Alignment))
4183     return Err;
4184   if (Alignment)
4185     Func->setAlignment(*Alignment);
4186   if (Record[6]) {
4187     if (Record[6] - 1 >= SectionTable.size())
4188       return error("Invalid ID");
4189     Func->setSection(SectionTable[Record[6] - 1]);
4190   }
4191   // Local linkage must have default visibility.
4192   // auto-upgrade `hidden` and `protected` for old bitcode.
4193   if (!Func->hasLocalLinkage())
4194     Func->setVisibility(getDecodedVisibility(Record[7]));
4195   if (Record.size() > 8 && Record[8]) {
4196     if (Record[8] - 1 >= GCTable.size())
4197       return error("Invalid ID");
4198     Func->setGC(GCTable[Record[8] - 1]);
4199   }
4200   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
4201   if (Record.size() > 9)
4202     UnnamedAddr = getDecodedUnnamedAddrType(Record[9]);
4203   Func->setUnnamedAddr(UnnamedAddr);
4204 
4205   FunctionOperandInfo OperandInfo = {Func, 0, 0, 0};
4206   if (Record.size() > 10)
4207     OperandInfo.Prologue = Record[10];
4208 
4209   if (Record.size() > 11) {
4210     // A GlobalValue with local linkage cannot have a DLL storage class.
4211     if (!Func->hasLocalLinkage()) {
4212       Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11]));
4213     }
4214   } else {
4215     upgradeDLLImportExportLinkage(Func, RawLinkage);
4216   }
4217 
4218   if (Record.size() > 12) {
4219     if (unsigned ComdatID = Record[12]) {
4220       if (ComdatID > ComdatList.size())
4221         return error("Invalid function comdat ID");
4222       Func->setComdat(ComdatList[ComdatID - 1]);
4223     }
4224   } else if (hasImplicitComdat(RawLinkage)) {
4225     ImplicitComdatObjects.insert(Func);
4226   }
4227 
4228   if (Record.size() > 13)
4229     OperandInfo.Prefix = Record[13];
4230 
4231   if (Record.size() > 14)
4232     OperandInfo.PersonalityFn = Record[14];
4233 
4234   if (Record.size() > 15) {
4235     Func->setDSOLocal(getDecodedDSOLocal(Record[15]));
4236   }
4237   inferDSOLocal(Func);
4238 
4239   // Record[16] is the address space number.
4240 
4241   // Check whether we have enough values to read a partition name. Also make
4242   // sure Strtab has enough values.
4243   if (Record.size() > 18 && Strtab.data() &&
4244       Record[17] + Record[18] <= Strtab.size()) {
4245     Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18]));
4246   }
4247 
4248   ValueList.push_back(Func, getVirtualTypeID(Func->getType(), FTyID));
4249 
4250   if (OperandInfo.PersonalityFn || OperandInfo.Prefix || OperandInfo.Prologue)
4251     FunctionOperands.push_back(OperandInfo);
4252 
4253   // If this is a function with a body, remember the prototype we are
4254   // creating now, so that we can match up the body with them later.
4255   if (!isProto) {
4256     Func->setIsMaterializable(true);
4257     FunctionsWithBodies.push_back(Func);
4258     DeferredFunctionInfo[Func] = 0;
4259   }
4260   return Error::success();
4261 }
4262 
4263 Error BitcodeReader::parseGlobalIndirectSymbolRecord(
4264     unsigned BitCode, ArrayRef<uint64_t> Record) {
4265   // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST)
4266   // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility,
4267   // dllstorageclass, threadlocal, unnamed_addr,
4268   // preemption specifier] (name in VST)
4269   // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage,
4270   // visibility, dllstorageclass, threadlocal, unnamed_addr,
4271   // preemption specifier] (name in VST)
4272   // v2: [strtab_offset, strtab_size, v1]
4273   StringRef Name;
4274   std::tie(Name, Record) = readNameFromStrtab(Record);
4275 
4276   bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD;
4277   if (Record.size() < (3 + (unsigned)NewRecord))
4278     return error("Invalid record");
4279   unsigned OpNum = 0;
4280   unsigned TypeID = Record[OpNum++];
4281   Type *Ty = getTypeByID(TypeID);
4282   if (!Ty)
4283     return error("Invalid record");
4284 
4285   unsigned AddrSpace;
4286   if (!NewRecord) {
4287     auto *PTy = dyn_cast<PointerType>(Ty);
4288     if (!PTy)
4289       return error("Invalid type for value");
4290     AddrSpace = PTy->getAddressSpace();
4291     TypeID = getContainedTypeID(TypeID);
4292     Ty = getTypeByID(TypeID);
4293     if (!Ty)
4294       return error("Missing element type for old-style indirect symbol");
4295   } else {
4296     AddrSpace = Record[OpNum++];
4297   }
4298 
4299   auto Val = Record[OpNum++];
4300   auto Linkage = Record[OpNum++];
4301   GlobalValue *NewGA;
4302   if (BitCode == bitc::MODULE_CODE_ALIAS ||
4303       BitCode == bitc::MODULE_CODE_ALIAS_OLD)
4304     NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
4305                                 TheModule);
4306   else
4307     NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
4308                                 nullptr, TheModule);
4309 
4310   // Local linkage must have default visibility.
4311   // auto-upgrade `hidden` and `protected` for old bitcode.
4312   if (OpNum != Record.size()) {
4313     auto VisInd = OpNum++;
4314     if (!NewGA->hasLocalLinkage())
4315       NewGA->setVisibility(getDecodedVisibility(Record[VisInd]));
4316   }
4317   if (BitCode == bitc::MODULE_CODE_ALIAS ||
4318       BitCode == bitc::MODULE_CODE_ALIAS_OLD) {
4319     if (OpNum != Record.size()) {
4320       auto S = Record[OpNum++];
4321       // A GlobalValue with local linkage cannot have a DLL storage class.
4322       if (!NewGA->hasLocalLinkage())
4323         NewGA->setDLLStorageClass(getDecodedDLLStorageClass(S));
4324     }
4325     else
4326       upgradeDLLImportExportLinkage(NewGA, Linkage);
4327     if (OpNum != Record.size())
4328       NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++]));
4329     if (OpNum != Record.size())
4330       NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++]));
4331   }
4332   if (OpNum != Record.size())
4333     NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++]));
4334   inferDSOLocal(NewGA);
4335 
4336   // Check whether we have enough values to read a partition name.
4337   if (OpNum + 1 < Record.size()) {
4338     // Check Strtab has enough values for the partition.
4339     if (Record[OpNum] + Record[OpNum + 1] > Strtab.size())
4340       return error("Malformed partition, too large.");
4341     NewGA->setPartition(
4342         StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1]));
4343     OpNum += 2;
4344   }
4345 
4346   ValueList.push_back(NewGA, getVirtualTypeID(NewGA->getType(), TypeID));
4347   IndirectSymbolInits.push_back(std::make_pair(NewGA, Val));
4348   return Error::success();
4349 }
4350 
4351 Error BitcodeReader::parseModule(uint64_t ResumeBit,
4352                                  bool ShouldLazyLoadMetadata,
4353                                  ParserCallbacks Callbacks) {
4354   // Load directly into RemoveDIs format if LoadBitcodeIntoNewDbgInfoFormat
4355   // has been set to true and we aren't attempting to preserve the existing
4356   // format in the bitcode (default action: load into the old debug format).
4357   if (PreserveInputDbgFormat != cl::boolOrDefault::BOU_TRUE) {
4358     TheModule->IsNewDbgInfoFormat =
4359         UseNewDbgInfoFormat &&
4360         LoadBitcodeIntoNewDbgInfoFormat == cl::boolOrDefault::BOU_TRUE;
4361   }
4362 
4363   this->ValueTypeCallback = std::move(Callbacks.ValueType);
4364   if (ResumeBit) {
4365     if (Error JumpFailed = Stream.JumpToBit(ResumeBit))
4366       return JumpFailed;
4367   } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
4368     return Err;
4369 
4370   SmallVector<uint64_t, 64> Record;
4371 
4372   // Parts of bitcode parsing depend on the datalayout.  Make sure we
4373   // finalize the datalayout before we run any of that code.
4374   bool ResolvedDataLayout = false;
4375   // In order to support importing modules with illegal data layout strings,
4376   // delay parsing the data layout string until after upgrades and overrides
4377   // have been applied, allowing to fix illegal data layout strings.
4378   // Initialize to the current module's layout string in case none is specified.
4379   std::string TentativeDataLayoutStr = TheModule->getDataLayoutStr();
4380 
4381   auto ResolveDataLayout = [&]() -> Error {
4382     if (ResolvedDataLayout)
4383       return Error::success();
4384 
4385     // Datalayout and triple can't be parsed after this point.
4386     ResolvedDataLayout = true;
4387 
4388     // Auto-upgrade the layout string
4389     TentativeDataLayoutStr = llvm::UpgradeDataLayoutString(
4390         TentativeDataLayoutStr, TheModule->getTargetTriple());
4391 
4392     // Apply override
4393     if (Callbacks.DataLayout) {
4394       if (auto LayoutOverride = (*Callbacks.DataLayout)(
4395               TheModule->getTargetTriple(), TentativeDataLayoutStr))
4396         TentativeDataLayoutStr = *LayoutOverride;
4397     }
4398 
4399     // Now the layout string is finalized in TentativeDataLayoutStr. Parse it.
4400     Expected<DataLayout> MaybeDL = DataLayout::parse(TentativeDataLayoutStr);
4401     if (!MaybeDL)
4402       return MaybeDL.takeError();
4403 
4404     TheModule->setDataLayout(MaybeDL.get());
4405     return Error::success();
4406   };
4407 
4408   // Read all the records for this module.
4409   while (true) {
4410     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
4411     if (!MaybeEntry)
4412       return MaybeEntry.takeError();
4413     llvm::BitstreamEntry Entry = MaybeEntry.get();
4414 
4415     switch (Entry.Kind) {
4416     case BitstreamEntry::Error:
4417       return error("Malformed block");
4418     case BitstreamEntry::EndBlock:
4419       if (Error Err = ResolveDataLayout())
4420         return Err;
4421       return globalCleanup();
4422 
4423     case BitstreamEntry::SubBlock:
4424       switch (Entry.ID) {
4425       default:  // Skip unknown content.
4426         if (Error Err = Stream.SkipBlock())
4427           return Err;
4428         break;
4429       case bitc::BLOCKINFO_BLOCK_ID:
4430         if (Error Err = readBlockInfo())
4431           return Err;
4432         break;
4433       case bitc::PARAMATTR_BLOCK_ID:
4434         if (Error Err = parseAttributeBlock())
4435           return Err;
4436         break;
4437       case bitc::PARAMATTR_GROUP_BLOCK_ID:
4438         if (Error Err = parseAttributeGroupBlock())
4439           return Err;
4440         break;
4441       case bitc::TYPE_BLOCK_ID_NEW:
4442         if (Error Err = parseTypeTable())
4443           return Err;
4444         break;
4445       case bitc::VALUE_SYMTAB_BLOCK_ID:
4446         if (!SeenValueSymbolTable) {
4447           // Either this is an old form VST without function index and an
4448           // associated VST forward declaration record (which would have caused
4449           // the VST to be jumped to and parsed before it was encountered
4450           // normally in the stream), or there were no function blocks to
4451           // trigger an earlier parsing of the VST.
4452           assert(VSTOffset == 0 || FunctionsWithBodies.empty());
4453           if (Error Err = parseValueSymbolTable())
4454             return Err;
4455           SeenValueSymbolTable = true;
4456         } else {
4457           // We must have had a VST forward declaration record, which caused
4458           // the parser to jump to and parse the VST earlier.
4459           assert(VSTOffset > 0);
4460           if (Error Err = Stream.SkipBlock())
4461             return Err;
4462         }
4463         break;
4464       case bitc::CONSTANTS_BLOCK_ID:
4465         if (Error Err = parseConstants())
4466           return Err;
4467         if (Error Err = resolveGlobalAndIndirectSymbolInits())
4468           return Err;
4469         break;
4470       case bitc::METADATA_BLOCK_ID:
4471         if (ShouldLazyLoadMetadata) {
4472           if (Error Err = rememberAndSkipMetadata())
4473             return Err;
4474           break;
4475         }
4476         assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata");
4477         if (Error Err = MDLoader->parseModuleMetadata())
4478           return Err;
4479         break;
4480       case bitc::METADATA_KIND_BLOCK_ID:
4481         if (Error Err = MDLoader->parseMetadataKinds())
4482           return Err;
4483         break;
4484       case bitc::FUNCTION_BLOCK_ID:
4485         if (Error Err = ResolveDataLayout())
4486           return Err;
4487 
4488         // If this is the first function body we've seen, reverse the
4489         // FunctionsWithBodies list.
4490         if (!SeenFirstFunctionBody) {
4491           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
4492           if (Error Err = globalCleanup())
4493             return Err;
4494           SeenFirstFunctionBody = true;
4495         }
4496 
4497         if (VSTOffset > 0) {
4498           // If we have a VST forward declaration record, make sure we
4499           // parse the VST now if we haven't already. It is needed to
4500           // set up the DeferredFunctionInfo vector for lazy reading.
4501           if (!SeenValueSymbolTable) {
4502             if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset))
4503               return Err;
4504             SeenValueSymbolTable = true;
4505             // Fall through so that we record the NextUnreadBit below.
4506             // This is necessary in case we have an anonymous function that
4507             // is later materialized. Since it will not have a VST entry we
4508             // need to fall back to the lazy parse to find its offset.
4509           } else {
4510             // If we have a VST forward declaration record, but have already
4511             // parsed the VST (just above, when the first function body was
4512             // encountered here), then we are resuming the parse after
4513             // materializing functions. The ResumeBit points to the
4514             // start of the last function block recorded in the
4515             // DeferredFunctionInfo map. Skip it.
4516             if (Error Err = Stream.SkipBlock())
4517               return Err;
4518             continue;
4519           }
4520         }
4521 
4522         // Support older bitcode files that did not have the function
4523         // index in the VST, nor a VST forward declaration record, as
4524         // well as anonymous functions that do not have VST entries.
4525         // Build the DeferredFunctionInfo vector on the fly.
4526         if (Error Err = rememberAndSkipFunctionBody())
4527           return Err;
4528 
4529         // Suspend parsing when we reach the function bodies. Subsequent
4530         // materialization calls will resume it when necessary. If the bitcode
4531         // file is old, the symbol table will be at the end instead and will not
4532         // have been seen yet. In this case, just finish the parse now.
4533         if (SeenValueSymbolTable) {
4534           NextUnreadBit = Stream.GetCurrentBitNo();
4535           // After the VST has been parsed, we need to make sure intrinsic name
4536           // are auto-upgraded.
4537           return globalCleanup();
4538         }
4539         break;
4540       case bitc::USELIST_BLOCK_ID:
4541         if (Error Err = parseUseLists())
4542           return Err;
4543         break;
4544       case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID:
4545         if (Error Err = parseOperandBundleTags())
4546           return Err;
4547         break;
4548       case bitc::SYNC_SCOPE_NAMES_BLOCK_ID:
4549         if (Error Err = parseSyncScopeNames())
4550           return Err;
4551         break;
4552       }
4553       continue;
4554 
4555     case BitstreamEntry::Record:
4556       // The interesting case.
4557       break;
4558     }
4559 
4560     // Read a record.
4561     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
4562     if (!MaybeBitCode)
4563       return MaybeBitCode.takeError();
4564     switch (unsigned BitCode = MaybeBitCode.get()) {
4565     default: break;  // Default behavior, ignore unknown content.
4566     case bitc::MODULE_CODE_VERSION: {
4567       Expected<unsigned> VersionOrErr = parseVersionRecord(Record);
4568       if (!VersionOrErr)
4569         return VersionOrErr.takeError();
4570       UseRelativeIDs = *VersionOrErr >= 1;
4571       break;
4572     }
4573     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
4574       if (ResolvedDataLayout)
4575         return error("target triple too late in module");
4576       std::string S;
4577       if (convertToString(Record, 0, S))
4578         return error("Invalid record");
4579       TheModule->setTargetTriple(S);
4580       break;
4581     }
4582     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
4583       if (ResolvedDataLayout)
4584         return error("datalayout too late in module");
4585       if (convertToString(Record, 0, TentativeDataLayoutStr))
4586         return error("Invalid record");
4587       break;
4588     }
4589     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
4590       std::string S;
4591       if (convertToString(Record, 0, S))
4592         return error("Invalid record");
4593       TheModule->setModuleInlineAsm(S);
4594       break;
4595     }
4596     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
4597       // Deprecated, but still needed to read old bitcode files.
4598       std::string S;
4599       if (convertToString(Record, 0, S))
4600         return error("Invalid record");
4601       // Ignore value.
4602       break;
4603     }
4604     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
4605       std::string S;
4606       if (convertToString(Record, 0, S))
4607         return error("Invalid record");
4608       SectionTable.push_back(S);
4609       break;
4610     }
4611     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
4612       std::string S;
4613       if (convertToString(Record, 0, S))
4614         return error("Invalid record");
4615       GCTable.push_back(S);
4616       break;
4617     }
4618     case bitc::MODULE_CODE_COMDAT:
4619       if (Error Err = parseComdatRecord(Record))
4620         return Err;
4621       break;
4622     // FIXME: BitcodeReader should handle {GLOBALVAR, FUNCTION, ALIAS, IFUNC}
4623     // written by ThinLinkBitcodeWriter. See
4624     // `ThinLinkBitcodeWriter::writeSimplifiedModuleInfo` for the format of each
4625     // record
4626     // (https://github.com/llvm/llvm-project/blob/b6a93967d9c11e79802b5e75cec1584d6c8aa472/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp#L4714)
4627     case bitc::MODULE_CODE_GLOBALVAR:
4628       if (Error Err = parseGlobalVarRecord(Record))
4629         return Err;
4630       break;
4631     case bitc::MODULE_CODE_FUNCTION:
4632       if (Error Err = ResolveDataLayout())
4633         return Err;
4634       if (Error Err = parseFunctionRecord(Record))
4635         return Err;
4636       break;
4637     case bitc::MODULE_CODE_IFUNC:
4638     case bitc::MODULE_CODE_ALIAS:
4639     case bitc::MODULE_CODE_ALIAS_OLD:
4640       if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record))
4641         return Err;
4642       break;
4643     /// MODULE_CODE_VSTOFFSET: [offset]
4644     case bitc::MODULE_CODE_VSTOFFSET:
4645       if (Record.empty())
4646         return error("Invalid record");
4647       // Note that we subtract 1 here because the offset is relative to one word
4648       // before the start of the identification or module block, which was
4649       // historically always the start of the regular bitcode header.
4650       VSTOffset = Record[0] - 1;
4651       break;
4652     /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
4653     case bitc::MODULE_CODE_SOURCE_FILENAME:
4654       SmallString<128> ValueName;
4655       if (convertToString(Record, 0, ValueName))
4656         return error("Invalid record");
4657       TheModule->setSourceFileName(ValueName);
4658       break;
4659     }
4660     Record.clear();
4661   }
4662   this->ValueTypeCallback = std::nullopt;
4663   return Error::success();
4664 }
4665 
4666 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
4667                                       bool IsImporting,
4668                                       ParserCallbacks Callbacks) {
4669   TheModule = M;
4670   MetadataLoaderCallbacks MDCallbacks;
4671   MDCallbacks.GetTypeByID = [&](unsigned ID) { return getTypeByID(ID); };
4672   MDCallbacks.GetContainedTypeID = [&](unsigned I, unsigned J) {
4673     return getContainedTypeID(I, J);
4674   };
4675   MDCallbacks.MDType = Callbacks.MDType;
4676   MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, MDCallbacks);
4677   return parseModule(0, ShouldLazyLoadMetadata, Callbacks);
4678 }
4679 
4680 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) {
4681   if (!isa<PointerType>(PtrType))
4682     return error("Load/Store operand is not a pointer type");
4683   if (!PointerType::isLoadableOrStorableType(ValType))
4684     return error("Cannot load/store from pointer");
4685   return Error::success();
4686 }
4687 
4688 Error BitcodeReader::propagateAttributeTypes(CallBase *CB,
4689                                              ArrayRef<unsigned> ArgTyIDs) {
4690   AttributeList Attrs = CB->getAttributes();
4691   for (unsigned i = 0; i != CB->arg_size(); ++i) {
4692     for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet,
4693                                      Attribute::InAlloca}) {
4694       if (!Attrs.hasParamAttr(i, Kind) ||
4695           Attrs.getParamAttr(i, Kind).getValueAsType())
4696         continue;
4697 
4698       Type *PtrEltTy = getPtrElementTypeByID(ArgTyIDs[i]);
4699       if (!PtrEltTy)
4700         return error("Missing element type for typed attribute upgrade");
4701 
4702       Attribute NewAttr;
4703       switch (Kind) {
4704       case Attribute::ByVal:
4705         NewAttr = Attribute::getWithByValType(Context, PtrEltTy);
4706         break;
4707       case Attribute::StructRet:
4708         NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy);
4709         break;
4710       case Attribute::InAlloca:
4711         NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy);
4712         break;
4713       default:
4714         llvm_unreachable("not an upgraded type attribute");
4715       }
4716 
4717       Attrs = Attrs.addParamAttribute(Context, i, NewAttr);
4718     }
4719   }
4720 
4721   if (CB->isInlineAsm()) {
4722     const InlineAsm *IA = cast<InlineAsm>(CB->getCalledOperand());
4723     unsigned ArgNo = 0;
4724     for (const InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
4725       if (!CI.hasArg())
4726         continue;
4727 
4728       if (CI.isIndirect && !Attrs.getParamElementType(ArgNo)) {
4729         Type *ElemTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]);
4730         if (!ElemTy)
4731           return error("Missing element type for inline asm upgrade");
4732         Attrs = Attrs.addParamAttribute(
4733             Context, ArgNo,
4734             Attribute::get(Context, Attribute::ElementType, ElemTy));
4735       }
4736 
4737       ArgNo++;
4738     }
4739   }
4740 
4741   switch (CB->getIntrinsicID()) {
4742   case Intrinsic::preserve_array_access_index:
4743   case Intrinsic::preserve_struct_access_index:
4744   case Intrinsic::aarch64_ldaxr:
4745   case Intrinsic::aarch64_ldxr:
4746   case Intrinsic::aarch64_stlxr:
4747   case Intrinsic::aarch64_stxr:
4748   case Intrinsic::arm_ldaex:
4749   case Intrinsic::arm_ldrex:
4750   case Intrinsic::arm_stlex:
4751   case Intrinsic::arm_strex: {
4752     unsigned ArgNo;
4753     switch (CB->getIntrinsicID()) {
4754     case Intrinsic::aarch64_stlxr:
4755     case Intrinsic::aarch64_stxr:
4756     case Intrinsic::arm_stlex:
4757     case Intrinsic::arm_strex:
4758       ArgNo = 1;
4759       break;
4760     default:
4761       ArgNo = 0;
4762       break;
4763     }
4764     if (!Attrs.getParamElementType(ArgNo)) {
4765       Type *ElTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]);
4766       if (!ElTy)
4767         return error("Missing element type for elementtype upgrade");
4768       Attribute NewAttr = Attribute::get(Context, Attribute::ElementType, ElTy);
4769       Attrs = Attrs.addParamAttribute(Context, ArgNo, NewAttr);
4770     }
4771     break;
4772   }
4773   default:
4774     break;
4775   }
4776 
4777   CB->setAttributes(Attrs);
4778   return Error::success();
4779 }
4780 
4781 /// Lazily parse the specified function body block.
4782 Error BitcodeReader::parseFunctionBody(Function *F) {
4783   if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
4784     return Err;
4785 
4786   // Unexpected unresolved metadata when parsing function.
4787   if (MDLoader->hasFwdRefs())
4788     return error("Invalid function metadata: incoming forward references");
4789 
4790   InstructionList.clear();
4791   unsigned ModuleValueListSize = ValueList.size();
4792   unsigned ModuleMDLoaderSize = MDLoader->size();
4793 
4794   // Add all the function arguments to the value table.
4795   unsigned ArgNo = 0;
4796   unsigned FTyID = FunctionTypeIDs[F];
4797   for (Argument &I : F->args()) {
4798     unsigned ArgTyID = getContainedTypeID(FTyID, ArgNo + 1);
4799     assert(I.getType() == getTypeByID(ArgTyID) &&
4800            "Incorrect fully specified type for Function Argument");
4801     ValueList.push_back(&I, ArgTyID);
4802     ++ArgNo;
4803   }
4804   unsigned NextValueNo = ValueList.size();
4805   BasicBlock *CurBB = nullptr;
4806   unsigned CurBBNo = 0;
4807   // Block into which constant expressions from phi nodes are materialized.
4808   BasicBlock *PhiConstExprBB = nullptr;
4809   // Edge blocks for phi nodes into which constant expressions have been
4810   // expanded.
4811   SmallMapVector<std::pair<BasicBlock *, BasicBlock *>, BasicBlock *, 4>
4812     ConstExprEdgeBBs;
4813 
4814   DebugLoc LastLoc;
4815   auto getLastInstruction = [&]() -> Instruction * {
4816     if (CurBB && !CurBB->empty())
4817       return &CurBB->back();
4818     else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
4819              !FunctionBBs[CurBBNo - 1]->empty())
4820       return &FunctionBBs[CurBBNo - 1]->back();
4821     return nullptr;
4822   };
4823 
4824   std::vector<OperandBundleDef> OperandBundles;
4825 
4826   // Read all the records.
4827   SmallVector<uint64_t, 64> Record;
4828 
4829   while (true) {
4830     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
4831     if (!MaybeEntry)
4832       return MaybeEntry.takeError();
4833     llvm::BitstreamEntry Entry = MaybeEntry.get();
4834 
4835     switch (Entry.Kind) {
4836     case BitstreamEntry::Error:
4837       return error("Malformed block");
4838     case BitstreamEntry::EndBlock:
4839       goto OutOfRecordLoop;
4840 
4841     case BitstreamEntry::SubBlock:
4842       switch (Entry.ID) {
4843       default:  // Skip unknown content.
4844         if (Error Err = Stream.SkipBlock())
4845           return Err;
4846         break;
4847       case bitc::CONSTANTS_BLOCK_ID:
4848         if (Error Err = parseConstants())
4849           return Err;
4850         NextValueNo = ValueList.size();
4851         break;
4852       case bitc::VALUE_SYMTAB_BLOCK_ID:
4853         if (Error Err = parseValueSymbolTable())
4854           return Err;
4855         break;
4856       case bitc::METADATA_ATTACHMENT_ID:
4857         if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList))
4858           return Err;
4859         break;
4860       case bitc::METADATA_BLOCK_ID:
4861         assert(DeferredMetadataInfo.empty() &&
4862                "Must read all module-level metadata before function-level");
4863         if (Error Err = MDLoader->parseFunctionMetadata())
4864           return Err;
4865         break;
4866       case bitc::USELIST_BLOCK_ID:
4867         if (Error Err = parseUseLists())
4868           return Err;
4869         break;
4870       }
4871       continue;
4872 
4873     case BitstreamEntry::Record:
4874       // The interesting case.
4875       break;
4876     }
4877 
4878     // Read a record.
4879     Record.clear();
4880     Instruction *I = nullptr;
4881     unsigned ResTypeID = InvalidTypeID;
4882     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
4883     if (!MaybeBitCode)
4884       return MaybeBitCode.takeError();
4885     switch (unsigned BitCode = MaybeBitCode.get()) {
4886     default: // Default behavior: reject
4887       return error("Invalid value");
4888     case bitc::FUNC_CODE_DECLAREBLOCKS: {   // DECLAREBLOCKS: [nblocks]
4889       if (Record.empty() || Record[0] == 0)
4890         return error("Invalid record");
4891       // Create all the basic blocks for the function.
4892       FunctionBBs.resize(Record[0]);
4893 
4894       // See if anything took the address of blocks in this function.
4895       auto BBFRI = BasicBlockFwdRefs.find(F);
4896       if (BBFRI == BasicBlockFwdRefs.end()) {
4897         for (BasicBlock *&BB : FunctionBBs)
4898           BB = BasicBlock::Create(Context, "", F);
4899       } else {
4900         auto &BBRefs = BBFRI->second;
4901         // Check for invalid basic block references.
4902         if (BBRefs.size() > FunctionBBs.size())
4903           return error("Invalid ID");
4904         assert(!BBRefs.empty() && "Unexpected empty array");
4905         assert(!BBRefs.front() && "Invalid reference to entry block");
4906         for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
4907              ++I)
4908           if (I < RE && BBRefs[I]) {
4909             BBRefs[I]->insertInto(F);
4910             FunctionBBs[I] = BBRefs[I];
4911           } else {
4912             FunctionBBs[I] = BasicBlock::Create(Context, "", F);
4913           }
4914 
4915         // Erase from the table.
4916         BasicBlockFwdRefs.erase(BBFRI);
4917       }
4918 
4919       CurBB = FunctionBBs[0];
4920       continue;
4921     }
4922 
4923     case bitc::FUNC_CODE_BLOCKADDR_USERS: // BLOCKADDR_USERS: [vals...]
4924       // The record should not be emitted if it's an empty list.
4925       if (Record.empty())
4926         return error("Invalid record");
4927       // When we have the RARE case of a BlockAddress Constant that is not
4928       // scoped to the Function it refers to, we need to conservatively
4929       // materialize the referred to Function, regardless of whether or not
4930       // that Function will ultimately be linked, otherwise users of
4931       // BitcodeReader might start splicing out Function bodies such that we
4932       // might no longer be able to materialize the BlockAddress since the
4933       // BasicBlock (and entire body of the Function) the BlockAddress refers
4934       // to may have been moved. In the case that the user of BitcodeReader
4935       // decides ultimately not to link the Function body, materializing here
4936       // could be considered wasteful, but it's better than a deserialization
4937       // failure as described. This keeps BitcodeReader unaware of complex
4938       // linkage policy decisions such as those use by LTO, leaving those
4939       // decisions "one layer up."
4940       for (uint64_t ValID : Record)
4941         if (auto *F = dyn_cast<Function>(ValueList[ValID]))
4942           BackwardRefFunctions.push_back(F);
4943         else
4944           return error("Invalid record");
4945 
4946       continue;
4947 
4948     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
4949       // This record indicates that the last instruction is at the same
4950       // location as the previous instruction with a location.
4951       I = getLastInstruction();
4952 
4953       if (!I)
4954         return error("Invalid record");
4955       I->setDebugLoc(LastLoc);
4956       I = nullptr;
4957       continue;
4958 
4959     case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
4960       I = getLastInstruction();
4961       if (!I || Record.size() < 4)
4962         return error("Invalid record");
4963 
4964       unsigned Line = Record[0], Col = Record[1];
4965       unsigned ScopeID = Record[2], IAID = Record[3];
4966       bool isImplicitCode = Record.size() == 5 && Record[4];
4967 
4968       MDNode *Scope = nullptr, *IA = nullptr;
4969       if (ScopeID) {
4970         Scope = dyn_cast_or_null<MDNode>(
4971             MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1));
4972         if (!Scope)
4973           return error("Invalid record");
4974       }
4975       if (IAID) {
4976         IA = dyn_cast_or_null<MDNode>(
4977             MDLoader->getMetadataFwdRefOrLoad(IAID - 1));
4978         if (!IA)
4979           return error("Invalid record");
4980       }
4981       LastLoc = DILocation::get(Scope->getContext(), Line, Col, Scope, IA,
4982                                 isImplicitCode);
4983       I->setDebugLoc(LastLoc);
4984       I = nullptr;
4985       continue;
4986     }
4987     case bitc::FUNC_CODE_INST_UNOP: {    // UNOP: [opval, ty, opcode]
4988       unsigned OpNum = 0;
4989       Value *LHS;
4990       unsigned TypeID;
4991       if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) ||
4992           OpNum+1 > Record.size())
4993         return error("Invalid record");
4994 
4995       int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType());
4996       if (Opc == -1)
4997         return error("Invalid record");
4998       I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
4999       ResTypeID = TypeID;
5000       InstructionList.push_back(I);
5001       if (OpNum < Record.size()) {
5002         if (isa<FPMathOperator>(I)) {
5003           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
5004           if (FMF.any())
5005             I->setFastMathFlags(FMF);
5006         }
5007       }
5008       break;
5009     }
5010     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
5011       unsigned OpNum = 0;
5012       Value *LHS, *RHS;
5013       unsigned TypeID;
5014       if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) ||
5015           popValue(Record, OpNum, NextValueNo, LHS->getType(), TypeID, RHS,
5016                    CurBB) ||
5017           OpNum+1 > Record.size())
5018         return error("Invalid record");
5019 
5020       int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
5021       if (Opc == -1)
5022         return error("Invalid record");
5023       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
5024       ResTypeID = TypeID;
5025       InstructionList.push_back(I);
5026       if (OpNum < Record.size()) {
5027         if (Opc == Instruction::Add ||
5028             Opc == Instruction::Sub ||
5029             Opc == Instruction::Mul ||
5030             Opc == Instruction::Shl) {
5031           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
5032             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
5033           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
5034             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
5035         } else if (Opc == Instruction::SDiv ||
5036                    Opc == Instruction::UDiv ||
5037                    Opc == Instruction::LShr ||
5038                    Opc == Instruction::AShr) {
5039           if (Record[OpNum] & (1 << bitc::PEO_EXACT))
5040             cast<BinaryOperator>(I)->setIsExact(true);
5041         } else if (Opc == Instruction::Or) {
5042           if (Record[OpNum] & (1 << bitc::PDI_DISJOINT))
5043             cast<PossiblyDisjointInst>(I)->setIsDisjoint(true);
5044         } else if (isa<FPMathOperator>(I)) {
5045           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
5046           if (FMF.any())
5047             I->setFastMathFlags(FMF);
5048         }
5049       }
5050       break;
5051     }
5052     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
5053       unsigned OpNum = 0;
5054       Value *Op;
5055       unsigned OpTypeID;
5056       if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) ||
5057           OpNum + 1 > Record.size())
5058         return error("Invalid record");
5059 
5060       ResTypeID = Record[OpNum++];
5061       Type *ResTy = getTypeByID(ResTypeID);
5062       int Opc = getDecodedCastOpcode(Record[OpNum++]);
5063 
5064       if (Opc == -1 || !ResTy)
5065         return error("Invalid record");
5066       Instruction *Temp = nullptr;
5067       if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
5068         if (Temp) {
5069           InstructionList.push_back(Temp);
5070           assert(CurBB && "No current BB?");
5071           Temp->insertInto(CurBB, CurBB->end());
5072         }
5073       } else {
5074         auto CastOp = (Instruction::CastOps)Opc;
5075         if (!CastInst::castIsValid(CastOp, Op, ResTy))
5076           return error("Invalid cast");
5077         I = CastInst::Create(CastOp, Op, ResTy);
5078       }
5079 
5080       if (OpNum < Record.size()) {
5081         if (Opc == Instruction::ZExt || Opc == Instruction::UIToFP) {
5082           if (Record[OpNum] & (1 << bitc::PNNI_NON_NEG))
5083             cast<PossiblyNonNegInst>(I)->setNonNeg(true);
5084         } else if (Opc == Instruction::Trunc) {
5085           if (Record[OpNum] & (1 << bitc::TIO_NO_UNSIGNED_WRAP))
5086             cast<TruncInst>(I)->setHasNoUnsignedWrap(true);
5087           if (Record[OpNum] & (1 << bitc::TIO_NO_SIGNED_WRAP))
5088             cast<TruncInst>(I)->setHasNoSignedWrap(true);
5089         }
5090       }
5091 
5092       InstructionList.push_back(I);
5093       break;
5094     }
5095     case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
5096     case bitc::FUNC_CODE_INST_GEP_OLD:
5097     case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
5098       unsigned OpNum = 0;
5099 
5100       unsigned TyID;
5101       Type *Ty;
5102       GEPNoWrapFlags NW;
5103 
5104       if (BitCode == bitc::FUNC_CODE_INST_GEP) {
5105         NW = toGEPNoWrapFlags(Record[OpNum++]);
5106         TyID = Record[OpNum++];
5107         Ty = getTypeByID(TyID);
5108       } else {
5109         if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD)
5110           NW = GEPNoWrapFlags::inBounds();
5111         TyID = InvalidTypeID;
5112         Ty = nullptr;
5113       }
5114 
5115       Value *BasePtr;
5116       unsigned BasePtrTypeID;
5117       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr, BasePtrTypeID,
5118                            CurBB))
5119         return error("Invalid record");
5120 
5121       if (!Ty) {
5122         TyID = getContainedTypeID(BasePtrTypeID);
5123         if (BasePtr->getType()->isVectorTy())
5124           TyID = getContainedTypeID(TyID);
5125         Ty = getTypeByID(TyID);
5126       }
5127 
5128       SmallVector<Value*, 16> GEPIdx;
5129       while (OpNum != Record.size()) {
5130         Value *Op;
5131         unsigned OpTypeID;
5132         if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
5133           return error("Invalid record");
5134         GEPIdx.push_back(Op);
5135       }
5136 
5137       auto *GEP = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
5138       I = GEP;
5139 
5140       ResTypeID = TyID;
5141       if (cast<GEPOperator>(I)->getNumIndices() != 0) {
5142         auto GTI = std::next(gep_type_begin(I));
5143         for (Value *Idx : drop_begin(cast<GEPOperator>(I)->indices())) {
5144           unsigned SubType = 0;
5145           if (GTI.isStruct()) {
5146             ConstantInt *IdxC =
5147                 Idx->getType()->isVectorTy()
5148                     ? cast<ConstantInt>(cast<Constant>(Idx)->getSplatValue())
5149                     : cast<ConstantInt>(Idx);
5150             SubType = IdxC->getZExtValue();
5151           }
5152           ResTypeID = getContainedTypeID(ResTypeID, SubType);
5153           ++GTI;
5154         }
5155       }
5156 
5157       // At this point ResTypeID is the result element type. We need a pointer
5158       // or vector of pointer to it.
5159       ResTypeID = getVirtualTypeID(I->getType()->getScalarType(), ResTypeID);
5160       if (I->getType()->isVectorTy())
5161         ResTypeID = getVirtualTypeID(I->getType(), ResTypeID);
5162 
5163       InstructionList.push_back(I);
5164       GEP->setNoWrapFlags(NW);
5165       break;
5166     }
5167 
5168     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
5169                                        // EXTRACTVAL: [opty, opval, n x indices]
5170       unsigned OpNum = 0;
5171       Value *Agg;
5172       unsigned AggTypeID;
5173       if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB))
5174         return error("Invalid record");
5175       Type *Ty = Agg->getType();
5176 
5177       unsigned RecSize = Record.size();
5178       if (OpNum == RecSize)
5179         return error("EXTRACTVAL: Invalid instruction with 0 indices");
5180 
5181       SmallVector<unsigned, 4> EXTRACTVALIdx;
5182       ResTypeID = AggTypeID;
5183       for (; OpNum != RecSize; ++OpNum) {
5184         bool IsArray = Ty->isArrayTy();
5185         bool IsStruct = Ty->isStructTy();
5186         uint64_t Index = Record[OpNum];
5187 
5188         if (!IsStruct && !IsArray)
5189           return error("EXTRACTVAL: Invalid type");
5190         if ((unsigned)Index != Index)
5191           return error("Invalid value");
5192         if (IsStruct && Index >= Ty->getStructNumElements())
5193           return error("EXTRACTVAL: Invalid struct index");
5194         if (IsArray && Index >= Ty->getArrayNumElements())
5195           return error("EXTRACTVAL: Invalid array index");
5196         EXTRACTVALIdx.push_back((unsigned)Index);
5197 
5198         if (IsStruct) {
5199           Ty = Ty->getStructElementType(Index);
5200           ResTypeID = getContainedTypeID(ResTypeID, Index);
5201         } else {
5202           Ty = Ty->getArrayElementType();
5203           ResTypeID = getContainedTypeID(ResTypeID);
5204         }
5205       }
5206 
5207       I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
5208       InstructionList.push_back(I);
5209       break;
5210     }
5211 
5212     case bitc::FUNC_CODE_INST_INSERTVAL: {
5213                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
5214       unsigned OpNum = 0;
5215       Value *Agg;
5216       unsigned AggTypeID;
5217       if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB))
5218         return error("Invalid record");
5219       Value *Val;
5220       unsigned ValTypeID;
5221       if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB))
5222         return error("Invalid record");
5223 
5224       unsigned RecSize = Record.size();
5225       if (OpNum == RecSize)
5226         return error("INSERTVAL: Invalid instruction with 0 indices");
5227 
5228       SmallVector<unsigned, 4> INSERTVALIdx;
5229       Type *CurTy = Agg->getType();
5230       for (; OpNum != RecSize; ++OpNum) {
5231         bool IsArray = CurTy->isArrayTy();
5232         bool IsStruct = CurTy->isStructTy();
5233         uint64_t Index = Record[OpNum];
5234 
5235         if (!IsStruct && !IsArray)
5236           return error("INSERTVAL: Invalid type");
5237         if ((unsigned)Index != Index)
5238           return error("Invalid value");
5239         if (IsStruct && Index >= CurTy->getStructNumElements())
5240           return error("INSERTVAL: Invalid struct index");
5241         if (IsArray && Index >= CurTy->getArrayNumElements())
5242           return error("INSERTVAL: Invalid array index");
5243 
5244         INSERTVALIdx.push_back((unsigned)Index);
5245         if (IsStruct)
5246           CurTy = CurTy->getStructElementType(Index);
5247         else
5248           CurTy = CurTy->getArrayElementType();
5249       }
5250 
5251       if (CurTy != Val->getType())
5252         return error("Inserted value type doesn't match aggregate type");
5253 
5254       I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
5255       ResTypeID = AggTypeID;
5256       InstructionList.push_back(I);
5257       break;
5258     }
5259 
5260     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
5261       // obsolete form of select
5262       // handles select i1 ... in old bitcode
5263       unsigned OpNum = 0;
5264       Value *TrueVal, *FalseVal, *Cond;
5265       unsigned TypeID;
5266       Type *CondType = Type::getInt1Ty(Context);
5267       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, TypeID,
5268                            CurBB) ||
5269           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), TypeID,
5270                    FalseVal, CurBB) ||
5271           popValue(Record, OpNum, NextValueNo, CondType,
5272                    getVirtualTypeID(CondType), Cond, CurBB))
5273         return error("Invalid record");
5274 
5275       I = SelectInst::Create(Cond, TrueVal, FalseVal);
5276       ResTypeID = TypeID;
5277       InstructionList.push_back(I);
5278       break;
5279     }
5280 
5281     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
5282       // new form of select
5283       // handles select i1 or select [N x i1]
5284       unsigned OpNum = 0;
5285       Value *TrueVal, *FalseVal, *Cond;
5286       unsigned ValTypeID, CondTypeID;
5287       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, ValTypeID,
5288                            CurBB) ||
5289           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), ValTypeID,
5290                    FalseVal, CurBB) ||
5291           getValueTypePair(Record, OpNum, NextValueNo, Cond, CondTypeID, CurBB))
5292         return error("Invalid record");
5293 
5294       // select condition can be either i1 or [N x i1]
5295       if (VectorType* vector_type =
5296           dyn_cast<VectorType>(Cond->getType())) {
5297         // expect <n x i1>
5298         if (vector_type->getElementType() != Type::getInt1Ty(Context))
5299           return error("Invalid type for value");
5300       } else {
5301         // expect i1
5302         if (Cond->getType() != Type::getInt1Ty(Context))
5303           return error("Invalid type for value");
5304       }
5305 
5306       I = SelectInst::Create(Cond, TrueVal, FalseVal);
5307       ResTypeID = ValTypeID;
5308       InstructionList.push_back(I);
5309       if (OpNum < Record.size() && isa<FPMathOperator>(I)) {
5310         FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
5311         if (FMF.any())
5312           I->setFastMathFlags(FMF);
5313       }
5314       break;
5315     }
5316 
5317     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
5318       unsigned OpNum = 0;
5319       Value *Vec, *Idx;
5320       unsigned VecTypeID, IdxTypeID;
5321       if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB) ||
5322           getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB))
5323         return error("Invalid record");
5324       if (!Vec->getType()->isVectorTy())
5325         return error("Invalid type for value");
5326       I = ExtractElementInst::Create(Vec, Idx);
5327       ResTypeID = getContainedTypeID(VecTypeID);
5328       InstructionList.push_back(I);
5329       break;
5330     }
5331 
5332     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
5333       unsigned OpNum = 0;
5334       Value *Vec, *Elt, *Idx;
5335       unsigned VecTypeID, IdxTypeID;
5336       if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB))
5337         return error("Invalid record");
5338       if (!Vec->getType()->isVectorTy())
5339         return error("Invalid type for value");
5340       if (popValue(Record, OpNum, NextValueNo,
5341                    cast<VectorType>(Vec->getType())->getElementType(),
5342                    getContainedTypeID(VecTypeID), Elt, CurBB) ||
5343           getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB))
5344         return error("Invalid record");
5345       I = InsertElementInst::Create(Vec, Elt, Idx);
5346       ResTypeID = VecTypeID;
5347       InstructionList.push_back(I);
5348       break;
5349     }
5350 
5351     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
5352       unsigned OpNum = 0;
5353       Value *Vec1, *Vec2, *Mask;
5354       unsigned Vec1TypeID;
5355       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1, Vec1TypeID,
5356                            CurBB) ||
5357           popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec1TypeID,
5358                    Vec2, CurBB))
5359         return error("Invalid record");
5360 
5361       unsigned MaskTypeID;
5362       if (getValueTypePair(Record, OpNum, NextValueNo, Mask, MaskTypeID, CurBB))
5363         return error("Invalid record");
5364       if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
5365         return error("Invalid type for value");
5366 
5367       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
5368       ResTypeID =
5369           getVirtualTypeID(I->getType(), getContainedTypeID(Vec1TypeID));
5370       InstructionList.push_back(I);
5371       break;
5372     }
5373 
5374     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
5375       // Old form of ICmp/FCmp returning bool
5376       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
5377       // both legal on vectors but had different behaviour.
5378     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
5379       // FCmp/ICmp returning bool or vector of bool
5380 
5381       unsigned OpNum = 0;
5382       Value *LHS, *RHS;
5383       unsigned LHSTypeID;
5384       if (getValueTypePair(Record, OpNum, NextValueNo, LHS, LHSTypeID, CurBB) ||
5385           popValue(Record, OpNum, NextValueNo, LHS->getType(), LHSTypeID, RHS,
5386                    CurBB))
5387         return error("Invalid record");
5388 
5389       if (OpNum >= Record.size())
5390         return error(
5391             "Invalid record: operand number exceeded available operands");
5392 
5393       CmpInst::Predicate PredVal = CmpInst::Predicate(Record[OpNum]);
5394       bool IsFP = LHS->getType()->isFPOrFPVectorTy();
5395       FastMathFlags FMF;
5396       if (IsFP && Record.size() > OpNum+1)
5397         FMF = getDecodedFastMathFlags(Record[++OpNum]);
5398 
5399       if (OpNum+1 != Record.size())
5400         return error("Invalid record");
5401 
5402       if (IsFP) {
5403         if (!CmpInst::isFPPredicate(PredVal))
5404           return error("Invalid fcmp predicate");
5405         I = new FCmpInst(PredVal, LHS, RHS);
5406       } else {
5407         if (!CmpInst::isIntPredicate(PredVal))
5408           return error("Invalid icmp predicate");
5409         I = new ICmpInst(PredVal, LHS, RHS);
5410       }
5411 
5412       ResTypeID = getVirtualTypeID(I->getType()->getScalarType());
5413       if (LHS->getType()->isVectorTy())
5414         ResTypeID = getVirtualTypeID(I->getType(), ResTypeID);
5415 
5416       if (FMF.any())
5417         I->setFastMathFlags(FMF);
5418       InstructionList.push_back(I);
5419       break;
5420     }
5421 
5422     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
5423       {
5424         unsigned Size = Record.size();
5425         if (Size == 0) {
5426           I = ReturnInst::Create(Context);
5427           InstructionList.push_back(I);
5428           break;
5429         }
5430 
5431         unsigned OpNum = 0;
5432         Value *Op = nullptr;
5433         unsigned OpTypeID;
5434         if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
5435           return error("Invalid record");
5436         if (OpNum != Record.size())
5437           return error("Invalid record");
5438 
5439         I = ReturnInst::Create(Context, Op);
5440         InstructionList.push_back(I);
5441         break;
5442       }
5443     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
5444       if (Record.size() != 1 && Record.size() != 3)
5445         return error("Invalid record");
5446       BasicBlock *TrueDest = getBasicBlock(Record[0]);
5447       if (!TrueDest)
5448         return error("Invalid record");
5449 
5450       if (Record.size() == 1) {
5451         I = BranchInst::Create(TrueDest);
5452         InstructionList.push_back(I);
5453       }
5454       else {
5455         BasicBlock *FalseDest = getBasicBlock(Record[1]);
5456         Type *CondType = Type::getInt1Ty(Context);
5457         Value *Cond = getValue(Record, 2, NextValueNo, CondType,
5458                                getVirtualTypeID(CondType), CurBB);
5459         if (!FalseDest || !Cond)
5460           return error("Invalid record");
5461         I = BranchInst::Create(TrueDest, FalseDest, Cond);
5462         InstructionList.push_back(I);
5463       }
5464       break;
5465     }
5466     case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#]
5467       if (Record.size() != 1 && Record.size() != 2)
5468         return error("Invalid record");
5469       unsigned Idx = 0;
5470       Type *TokenTy = Type::getTokenTy(Context);
5471       Value *CleanupPad = getValue(Record, Idx++, NextValueNo, TokenTy,
5472                                    getVirtualTypeID(TokenTy), CurBB);
5473       if (!CleanupPad)
5474         return error("Invalid record");
5475       BasicBlock *UnwindDest = nullptr;
5476       if (Record.size() == 2) {
5477         UnwindDest = getBasicBlock(Record[Idx++]);
5478         if (!UnwindDest)
5479           return error("Invalid record");
5480       }
5481 
5482       I = CleanupReturnInst::Create(CleanupPad, UnwindDest);
5483       InstructionList.push_back(I);
5484       break;
5485     }
5486     case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#]
5487       if (Record.size() != 2)
5488         return error("Invalid record");
5489       unsigned Idx = 0;
5490       Type *TokenTy = Type::getTokenTy(Context);
5491       Value *CatchPad = getValue(Record, Idx++, NextValueNo, TokenTy,
5492                                  getVirtualTypeID(TokenTy), CurBB);
5493       if (!CatchPad)
5494         return error("Invalid record");
5495       BasicBlock *BB = getBasicBlock(Record[Idx++]);
5496       if (!BB)
5497         return error("Invalid record");
5498 
5499       I = CatchReturnInst::Create(CatchPad, BB);
5500       InstructionList.push_back(I);
5501       break;
5502     }
5503     case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?]
5504       // We must have, at minimum, the outer scope and the number of arguments.
5505       if (Record.size() < 2)
5506         return error("Invalid record");
5507 
5508       unsigned Idx = 0;
5509 
5510       Type *TokenTy = Type::getTokenTy(Context);
5511       Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy,
5512                                   getVirtualTypeID(TokenTy), CurBB);
5513       if (!ParentPad)
5514         return error("Invalid record");
5515 
5516       unsigned NumHandlers = Record[Idx++];
5517 
5518       SmallVector<BasicBlock *, 2> Handlers;
5519       for (unsigned Op = 0; Op != NumHandlers; ++Op) {
5520         BasicBlock *BB = getBasicBlock(Record[Idx++]);
5521         if (!BB)
5522           return error("Invalid record");
5523         Handlers.push_back(BB);
5524       }
5525 
5526       BasicBlock *UnwindDest = nullptr;
5527       if (Idx + 1 == Record.size()) {
5528         UnwindDest = getBasicBlock(Record[Idx++]);
5529         if (!UnwindDest)
5530           return error("Invalid record");
5531       }
5532 
5533       if (Record.size() != Idx)
5534         return error("Invalid record");
5535 
5536       auto *CatchSwitch =
5537           CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers);
5538       for (BasicBlock *Handler : Handlers)
5539         CatchSwitch->addHandler(Handler);
5540       I = CatchSwitch;
5541       ResTypeID = getVirtualTypeID(I->getType());
5542       InstructionList.push_back(I);
5543       break;
5544     }
5545     case bitc::FUNC_CODE_INST_CATCHPAD:
5546     case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*]
5547       // We must have, at minimum, the outer scope and the number of arguments.
5548       if (Record.size() < 2)
5549         return error("Invalid record");
5550 
5551       unsigned Idx = 0;
5552 
5553       Type *TokenTy = Type::getTokenTy(Context);
5554       Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy,
5555                                   getVirtualTypeID(TokenTy), CurBB);
5556       if (!ParentPad)
5557         return error("Invald record");
5558 
5559       unsigned NumArgOperands = Record[Idx++];
5560 
5561       SmallVector<Value *, 2> Args;
5562       for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
5563         Value *Val;
5564         unsigned ValTypeID;
5565         if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, nullptr))
5566           return error("Invalid record");
5567         Args.push_back(Val);
5568       }
5569 
5570       if (Record.size() != Idx)
5571         return error("Invalid record");
5572 
5573       if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD)
5574         I = CleanupPadInst::Create(ParentPad, Args);
5575       else
5576         I = CatchPadInst::Create(ParentPad, Args);
5577       ResTypeID = getVirtualTypeID(I->getType());
5578       InstructionList.push_back(I);
5579       break;
5580     }
5581     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
5582       // Check magic
5583       if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
5584         // "New" SwitchInst format with case ranges. The changes to write this
5585         // format were reverted but we still recognize bitcode that uses it.
5586         // Hopefully someday we will have support for case ranges and can use
5587         // this format again.
5588 
5589         unsigned OpTyID = Record[1];
5590         Type *OpTy = getTypeByID(OpTyID);
5591         unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
5592 
5593         Value *Cond = getValue(Record, 2, NextValueNo, OpTy, OpTyID, CurBB);
5594         BasicBlock *Default = getBasicBlock(Record[3]);
5595         if (!OpTy || !Cond || !Default)
5596           return error("Invalid record");
5597 
5598         unsigned NumCases = Record[4];
5599 
5600         SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
5601         InstructionList.push_back(SI);
5602 
5603         unsigned CurIdx = 5;
5604         for (unsigned i = 0; i != NumCases; ++i) {
5605           SmallVector<ConstantInt*, 1> CaseVals;
5606           unsigned NumItems = Record[CurIdx++];
5607           for (unsigned ci = 0; ci != NumItems; ++ci) {
5608             bool isSingleNumber = Record[CurIdx++];
5609 
5610             APInt Low;
5611             unsigned ActiveWords = 1;
5612             if (ValueBitWidth > 64)
5613               ActiveWords = Record[CurIdx++];
5614             Low = readWideAPInt(ArrayRef(&Record[CurIdx], ActiveWords),
5615                                 ValueBitWidth);
5616             CurIdx += ActiveWords;
5617 
5618             if (!isSingleNumber) {
5619               ActiveWords = 1;
5620               if (ValueBitWidth > 64)
5621                 ActiveWords = Record[CurIdx++];
5622               APInt High = readWideAPInt(ArrayRef(&Record[CurIdx], ActiveWords),
5623                                          ValueBitWidth);
5624               CurIdx += ActiveWords;
5625 
5626               // FIXME: It is not clear whether values in the range should be
5627               // compared as signed or unsigned values. The partially
5628               // implemented changes that used this format in the past used
5629               // unsigned comparisons.
5630               for ( ; Low.ule(High); ++Low)
5631                 CaseVals.push_back(ConstantInt::get(Context, Low));
5632             } else
5633               CaseVals.push_back(ConstantInt::get(Context, Low));
5634           }
5635           BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
5636           for (ConstantInt *Cst : CaseVals)
5637             SI->addCase(Cst, DestBB);
5638         }
5639         I = SI;
5640         break;
5641       }
5642 
5643       // Old SwitchInst format without case ranges.
5644 
5645       if (Record.size() < 3 || (Record.size() & 1) == 0)
5646         return error("Invalid record");
5647       unsigned OpTyID = Record[0];
5648       Type *OpTy = getTypeByID(OpTyID);
5649       Value *Cond = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB);
5650       BasicBlock *Default = getBasicBlock(Record[2]);
5651       if (!OpTy || !Cond || !Default)
5652         return error("Invalid record");
5653       unsigned NumCases = (Record.size()-3)/2;
5654       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
5655       InstructionList.push_back(SI);
5656       for (unsigned i = 0, e = NumCases; i != e; ++i) {
5657         ConstantInt *CaseVal = dyn_cast_or_null<ConstantInt>(
5658             getFnValueByID(Record[3+i*2], OpTy, OpTyID, nullptr));
5659         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
5660         if (!CaseVal || !DestBB) {
5661           delete SI;
5662           return error("Invalid record");
5663         }
5664         SI->addCase(CaseVal, DestBB);
5665       }
5666       I = SI;
5667       break;
5668     }
5669     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
5670       if (Record.size() < 2)
5671         return error("Invalid record");
5672       unsigned OpTyID = Record[0];
5673       Type *OpTy = getTypeByID(OpTyID);
5674       Value *Address = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB);
5675       if (!OpTy || !Address)
5676         return error("Invalid record");
5677       unsigned NumDests = Record.size()-2;
5678       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
5679       InstructionList.push_back(IBI);
5680       for (unsigned i = 0, e = NumDests; i != e; ++i) {
5681         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
5682           IBI->addDestination(DestBB);
5683         } else {
5684           delete IBI;
5685           return error("Invalid record");
5686         }
5687       }
5688       I = IBI;
5689       break;
5690     }
5691 
5692     case bitc::FUNC_CODE_INST_INVOKE: {
5693       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
5694       if (Record.size() < 4)
5695         return error("Invalid record");
5696       unsigned OpNum = 0;
5697       AttributeList PAL = getAttributes(Record[OpNum++]);
5698       unsigned CCInfo = Record[OpNum++];
5699       BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]);
5700       BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]);
5701 
5702       unsigned FTyID = InvalidTypeID;
5703       FunctionType *FTy = nullptr;
5704       if ((CCInfo >> 13) & 1) {
5705         FTyID = Record[OpNum++];
5706         FTy = dyn_cast<FunctionType>(getTypeByID(FTyID));
5707         if (!FTy)
5708           return error("Explicit invoke type is not a function type");
5709       }
5710 
5711       Value *Callee;
5712       unsigned CalleeTypeID;
5713       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID,
5714                            CurBB))
5715         return error("Invalid record");
5716 
5717       PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
5718       if (!CalleeTy)
5719         return error("Callee is not a pointer");
5720       if (!FTy) {
5721         FTyID = getContainedTypeID(CalleeTypeID);
5722         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
5723         if (!FTy)
5724           return error("Callee is not of pointer to function type");
5725       }
5726       if (Record.size() < FTy->getNumParams() + OpNum)
5727         return error("Insufficient operands to call");
5728 
5729       SmallVector<Value*, 16> Ops;
5730       SmallVector<unsigned, 16> ArgTyIDs;
5731       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5732         unsigned ArgTyID = getContainedTypeID(FTyID, i + 1);
5733         Ops.push_back(getValue(Record, OpNum, NextValueNo, FTy->getParamType(i),
5734                                ArgTyID, CurBB));
5735         ArgTyIDs.push_back(ArgTyID);
5736         if (!Ops.back())
5737           return error("Invalid record");
5738       }
5739 
5740       if (!FTy->isVarArg()) {
5741         if (Record.size() != OpNum)
5742           return error("Invalid record");
5743       } else {
5744         // Read type/value pairs for varargs params.
5745         while (OpNum != Record.size()) {
5746           Value *Op;
5747           unsigned OpTypeID;
5748           if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
5749             return error("Invalid record");
5750           Ops.push_back(Op);
5751           ArgTyIDs.push_back(OpTypeID);
5752         }
5753       }
5754 
5755       // Upgrade the bundles if needed.
5756       if (!OperandBundles.empty())
5757         UpgradeOperandBundles(OperandBundles);
5758 
5759       I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops,
5760                              OperandBundles);
5761       ResTypeID = getContainedTypeID(FTyID);
5762       OperandBundles.clear();
5763       InstructionList.push_back(I);
5764       cast<InvokeInst>(I)->setCallingConv(
5765           static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo));
5766       cast<InvokeInst>(I)->setAttributes(PAL);
5767       if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) {
5768         I->deleteValue();
5769         return Err;
5770       }
5771 
5772       break;
5773     }
5774     case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
5775       unsigned Idx = 0;
5776       Value *Val = nullptr;
5777       unsigned ValTypeID;
5778       if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, CurBB))
5779         return error("Invalid record");
5780       I = ResumeInst::Create(Val);
5781       InstructionList.push_back(I);
5782       break;
5783     }
5784     case bitc::FUNC_CODE_INST_CALLBR: {
5785       // CALLBR: [attr, cc, norm, transfs, fty, fnid, args]
5786       unsigned OpNum = 0;
5787       AttributeList PAL = getAttributes(Record[OpNum++]);
5788       unsigned CCInfo = Record[OpNum++];
5789 
5790       BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]);
5791       unsigned NumIndirectDests = Record[OpNum++];
5792       SmallVector<BasicBlock *, 16> IndirectDests;
5793       for (unsigned i = 0, e = NumIndirectDests; i != e; ++i)
5794         IndirectDests.push_back(getBasicBlock(Record[OpNum++]));
5795 
5796       unsigned FTyID = InvalidTypeID;
5797       FunctionType *FTy = nullptr;
5798       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
5799         FTyID = Record[OpNum++];
5800         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
5801         if (!FTy)
5802           return error("Explicit call type is not a function type");
5803       }
5804 
5805       Value *Callee;
5806       unsigned CalleeTypeID;
5807       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID,
5808                            CurBB))
5809         return error("Invalid record");
5810 
5811       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
5812       if (!OpTy)
5813         return error("Callee is not a pointer type");
5814       if (!FTy) {
5815         FTyID = getContainedTypeID(CalleeTypeID);
5816         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
5817         if (!FTy)
5818           return error("Callee is not of pointer to function type");
5819       }
5820       if (Record.size() < FTy->getNumParams() + OpNum)
5821         return error("Insufficient operands to call");
5822 
5823       SmallVector<Value*, 16> Args;
5824       SmallVector<unsigned, 16> ArgTyIDs;
5825       // Read the fixed params.
5826       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5827         Value *Arg;
5828         unsigned ArgTyID = getContainedTypeID(FTyID, i + 1);
5829         if (FTy->getParamType(i)->isLabelTy())
5830           Arg = getBasicBlock(Record[OpNum]);
5831         else
5832           Arg = getValue(Record, OpNum, NextValueNo, FTy->getParamType(i),
5833                          ArgTyID, CurBB);
5834         if (!Arg)
5835           return error("Invalid record");
5836         Args.push_back(Arg);
5837         ArgTyIDs.push_back(ArgTyID);
5838       }
5839 
5840       // Read type/value pairs for varargs params.
5841       if (!FTy->isVarArg()) {
5842         if (OpNum != Record.size())
5843           return error("Invalid record");
5844       } else {
5845         while (OpNum != Record.size()) {
5846           Value *Op;
5847           unsigned OpTypeID;
5848           if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
5849             return error("Invalid record");
5850           Args.push_back(Op);
5851           ArgTyIDs.push_back(OpTypeID);
5852         }
5853       }
5854 
5855       // Upgrade the bundles if needed.
5856       if (!OperandBundles.empty())
5857         UpgradeOperandBundles(OperandBundles);
5858 
5859       if (auto *IA = dyn_cast<InlineAsm>(Callee)) {
5860         InlineAsm::ConstraintInfoVector ConstraintInfo = IA->ParseConstraints();
5861         auto IsLabelConstraint = [](const InlineAsm::ConstraintInfo &CI) {
5862           return CI.Type == InlineAsm::isLabel;
5863         };
5864         if (none_of(ConstraintInfo, IsLabelConstraint)) {
5865           // Upgrade explicit blockaddress arguments to label constraints.
5866           // Verify that the last arguments are blockaddress arguments that
5867           // match the indirect destinations. Clang always generates callbr
5868           // in this form. We could support reordering with more effort.
5869           unsigned FirstBlockArg = Args.size() - IndirectDests.size();
5870           for (unsigned ArgNo = FirstBlockArg; ArgNo < Args.size(); ++ArgNo) {
5871             unsigned LabelNo = ArgNo - FirstBlockArg;
5872             auto *BA = dyn_cast<BlockAddress>(Args[ArgNo]);
5873             if (!BA || BA->getFunction() != F ||
5874                 LabelNo > IndirectDests.size() ||
5875                 BA->getBasicBlock() != IndirectDests[LabelNo])
5876               return error("callbr argument does not match indirect dest");
5877           }
5878 
5879           // Remove blockaddress arguments.
5880           Args.erase(Args.begin() + FirstBlockArg, Args.end());
5881           ArgTyIDs.erase(ArgTyIDs.begin() + FirstBlockArg, ArgTyIDs.end());
5882 
5883           // Recreate the function type with less arguments.
5884           SmallVector<Type *> ArgTys;
5885           for (Value *Arg : Args)
5886             ArgTys.push_back(Arg->getType());
5887           FTy =
5888               FunctionType::get(FTy->getReturnType(), ArgTys, FTy->isVarArg());
5889 
5890           // Update constraint string to use label constraints.
5891           std::string Constraints = IA->getConstraintString();
5892           unsigned ArgNo = 0;
5893           size_t Pos = 0;
5894           for (const auto &CI : ConstraintInfo) {
5895             if (CI.hasArg()) {
5896               if (ArgNo >= FirstBlockArg)
5897                 Constraints.insert(Pos, "!");
5898               ++ArgNo;
5899             }
5900 
5901             // Go to next constraint in string.
5902             Pos = Constraints.find(',', Pos);
5903             if (Pos == std::string::npos)
5904               break;
5905             ++Pos;
5906           }
5907 
5908           Callee = InlineAsm::get(FTy, IA->getAsmString(), Constraints,
5909                                   IA->hasSideEffects(), IA->isAlignStack(),
5910                                   IA->getDialect(), IA->canThrow());
5911         }
5912       }
5913 
5914       I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args,
5915                              OperandBundles);
5916       ResTypeID = getContainedTypeID(FTyID);
5917       OperandBundles.clear();
5918       InstructionList.push_back(I);
5919       cast<CallBrInst>(I)->setCallingConv(
5920           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
5921       cast<CallBrInst>(I)->setAttributes(PAL);
5922       if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) {
5923         I->deleteValue();
5924         return Err;
5925       }
5926       break;
5927     }
5928     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
5929       I = new UnreachableInst(Context);
5930       InstructionList.push_back(I);
5931       break;
5932     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
5933       if (Record.empty())
5934         return error("Invalid phi record");
5935       // The first record specifies the type.
5936       unsigned TyID = Record[0];
5937       Type *Ty = getTypeByID(TyID);
5938       if (!Ty)
5939         return error("Invalid phi record");
5940 
5941       // Phi arguments are pairs of records of [value, basic block].
5942       // There is an optional final record for fast-math-flags if this phi has a
5943       // floating-point type.
5944       size_t NumArgs = (Record.size() - 1) / 2;
5945       PHINode *PN = PHINode::Create(Ty, NumArgs);
5946       if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN)) {
5947         PN->deleteValue();
5948         return error("Invalid phi record");
5949       }
5950       InstructionList.push_back(PN);
5951 
5952       SmallDenseMap<BasicBlock *, Value *> Args;
5953       for (unsigned i = 0; i != NumArgs; i++) {
5954         BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]);
5955         if (!BB) {
5956           PN->deleteValue();
5957           return error("Invalid phi BB");
5958         }
5959 
5960         // Phi nodes may contain the same predecessor multiple times, in which
5961         // case the incoming value must be identical. Directly reuse the already
5962         // seen value here, to avoid expanding a constant expression multiple
5963         // times.
5964         auto It = Args.find(BB);
5965         if (It != Args.end()) {
5966           PN->addIncoming(It->second, BB);
5967           continue;
5968         }
5969 
5970         // If there already is a block for this edge (from a different phi),
5971         // use it.
5972         BasicBlock *EdgeBB = ConstExprEdgeBBs.lookup({BB, CurBB});
5973         if (!EdgeBB) {
5974           // Otherwise, use a temporary block (that we will discard if it
5975           // turns out to be unnecessary).
5976           if (!PhiConstExprBB)
5977             PhiConstExprBB = BasicBlock::Create(Context, "phi.constexpr", F);
5978           EdgeBB = PhiConstExprBB;
5979         }
5980 
5981         // With the new function encoding, it is possible that operands have
5982         // negative IDs (for forward references).  Use a signed VBR
5983         // representation to keep the encoding small.
5984         Value *V;
5985         if (UseRelativeIDs)
5986           V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB);
5987         else
5988           V = getValue(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB);
5989         if (!V) {
5990           PN->deleteValue();
5991           PhiConstExprBB->eraseFromParent();
5992           return error("Invalid phi record");
5993         }
5994 
5995         if (EdgeBB == PhiConstExprBB && !EdgeBB->empty()) {
5996           ConstExprEdgeBBs.insert({{BB, CurBB}, EdgeBB});
5997           PhiConstExprBB = nullptr;
5998         }
5999         PN->addIncoming(V, BB);
6000         Args.insert({BB, V});
6001       }
6002       I = PN;
6003       ResTypeID = TyID;
6004 
6005       // If there are an even number of records, the final record must be FMF.
6006       if (Record.size() % 2 == 0) {
6007         assert(isa<FPMathOperator>(I) && "Unexpected phi type");
6008         FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]);
6009         if (FMF.any())
6010           I->setFastMathFlags(FMF);
6011       }
6012 
6013       break;
6014     }
6015 
6016     case bitc::FUNC_CODE_INST_LANDINGPAD:
6017     case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: {
6018       // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
6019       unsigned Idx = 0;
6020       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) {
6021         if (Record.size() < 3)
6022           return error("Invalid record");
6023       } else {
6024         assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD);
6025         if (Record.size() < 4)
6026           return error("Invalid record");
6027       }
6028       ResTypeID = Record[Idx++];
6029       Type *Ty = getTypeByID(ResTypeID);
6030       if (!Ty)
6031         return error("Invalid record");
6032       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) {
6033         Value *PersFn = nullptr;
6034         unsigned PersFnTypeID;
6035         if (getValueTypePair(Record, Idx, NextValueNo, PersFn, PersFnTypeID,
6036                              nullptr))
6037           return error("Invalid record");
6038 
6039         if (!F->hasPersonalityFn())
6040           F->setPersonalityFn(cast<Constant>(PersFn));
6041         else if (F->getPersonalityFn() != cast<Constant>(PersFn))
6042           return error("Personality function mismatch");
6043       }
6044 
6045       bool IsCleanup = !!Record[Idx++];
6046       unsigned NumClauses = Record[Idx++];
6047       LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses);
6048       LP->setCleanup(IsCleanup);
6049       for (unsigned J = 0; J != NumClauses; ++J) {
6050         LandingPadInst::ClauseType CT =
6051           LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
6052         Value *Val;
6053         unsigned ValTypeID;
6054 
6055         if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID,
6056                              nullptr)) {
6057           delete LP;
6058           return error("Invalid record");
6059         }
6060 
6061         assert((CT != LandingPadInst::Catch ||
6062                 !isa<ArrayType>(Val->getType())) &&
6063                "Catch clause has a invalid type!");
6064         assert((CT != LandingPadInst::Filter ||
6065                 isa<ArrayType>(Val->getType())) &&
6066                "Filter clause has invalid type!");
6067         LP->addClause(cast<Constant>(Val));
6068       }
6069 
6070       I = LP;
6071       InstructionList.push_back(I);
6072       break;
6073     }
6074 
6075     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
6076       if (Record.size() != 4 && Record.size() != 5)
6077         return error("Invalid record");
6078       using APV = AllocaPackedValues;
6079       const uint64_t Rec = Record[3];
6080       const bool InAlloca = Bitfield::get<APV::UsedWithInAlloca>(Rec);
6081       const bool SwiftError = Bitfield::get<APV::SwiftError>(Rec);
6082       unsigned TyID = Record[0];
6083       Type *Ty = getTypeByID(TyID);
6084       if (!Bitfield::get<APV::ExplicitType>(Rec)) {
6085         TyID = getContainedTypeID(TyID);
6086         Ty = getTypeByID(TyID);
6087         if (!Ty)
6088           return error("Missing element type for old-style alloca");
6089       }
6090       unsigned OpTyID = Record[1];
6091       Type *OpTy = getTypeByID(OpTyID);
6092       Value *Size = getFnValueByID(Record[2], OpTy, OpTyID, CurBB);
6093       MaybeAlign Align;
6094       uint64_t AlignExp =
6095           Bitfield::get<APV::AlignLower>(Rec) |
6096           (Bitfield::get<APV::AlignUpper>(Rec) << APV::AlignLower::Bits);
6097       if (Error Err = parseAlignmentValue(AlignExp, Align)) {
6098         return Err;
6099       }
6100       if (!Ty || !Size)
6101         return error("Invalid record");
6102 
6103       const DataLayout &DL = TheModule->getDataLayout();
6104       unsigned AS = Record.size() == 5 ? Record[4] : DL.getAllocaAddrSpace();
6105 
6106       SmallPtrSet<Type *, 4> Visited;
6107       if (!Align && !Ty->isSized(&Visited))
6108         return error("alloca of unsized type");
6109       if (!Align)
6110         Align = DL.getPrefTypeAlign(Ty);
6111 
6112       if (!Size->getType()->isIntegerTy())
6113         return error("alloca element count must have integer type");
6114 
6115       AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align);
6116       AI->setUsedWithInAlloca(InAlloca);
6117       AI->setSwiftError(SwiftError);
6118       I = AI;
6119       ResTypeID = getVirtualTypeID(AI->getType(), TyID);
6120       InstructionList.push_back(I);
6121       break;
6122     }
6123     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
6124       unsigned OpNum = 0;
6125       Value *Op;
6126       unsigned OpTypeID;
6127       if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) ||
6128           (OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
6129         return error("Invalid record");
6130 
6131       if (!isa<PointerType>(Op->getType()))
6132         return error("Load operand is not a pointer type");
6133 
6134       Type *Ty = nullptr;
6135       if (OpNum + 3 == Record.size()) {
6136         ResTypeID = Record[OpNum++];
6137         Ty = getTypeByID(ResTypeID);
6138       } else {
6139         ResTypeID = getContainedTypeID(OpTypeID);
6140         Ty = getTypeByID(ResTypeID);
6141       }
6142 
6143       if (!Ty)
6144         return error("Missing load type");
6145 
6146       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
6147         return Err;
6148 
6149       MaybeAlign Align;
6150       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
6151         return Err;
6152       SmallPtrSet<Type *, 4> Visited;
6153       if (!Align && !Ty->isSized(&Visited))
6154         return error("load of unsized type");
6155       if (!Align)
6156         Align = TheModule->getDataLayout().getABITypeAlign(Ty);
6157       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align);
6158       InstructionList.push_back(I);
6159       break;
6160     }
6161     case bitc::FUNC_CODE_INST_LOADATOMIC: {
6162        // LOADATOMIC: [opty, op, align, vol, ordering, ssid]
6163       unsigned OpNum = 0;
6164       Value *Op;
6165       unsigned OpTypeID;
6166       if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) ||
6167           (OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
6168         return error("Invalid record");
6169 
6170       if (!isa<PointerType>(Op->getType()))
6171         return error("Load operand is not a pointer type");
6172 
6173       Type *Ty = nullptr;
6174       if (OpNum + 5 == Record.size()) {
6175         ResTypeID = Record[OpNum++];
6176         Ty = getTypeByID(ResTypeID);
6177       } else {
6178         ResTypeID = getContainedTypeID(OpTypeID);
6179         Ty = getTypeByID(ResTypeID);
6180       }
6181 
6182       if (!Ty)
6183         return error("Missing atomic load type");
6184 
6185       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
6186         return Err;
6187 
6188       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
6189       if (Ordering == AtomicOrdering::NotAtomic ||
6190           Ordering == AtomicOrdering::Release ||
6191           Ordering == AtomicOrdering::AcquireRelease)
6192         return error("Invalid record");
6193       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
6194         return error("Invalid record");
6195       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
6196 
6197       MaybeAlign Align;
6198       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
6199         return Err;
6200       if (!Align)
6201         return error("Alignment missing from atomic load");
6202       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID);
6203       InstructionList.push_back(I);
6204       break;
6205     }
6206     case bitc::FUNC_CODE_INST_STORE:
6207     case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
6208       unsigned OpNum = 0;
6209       Value *Val, *Ptr;
6210       unsigned PtrTypeID, ValTypeID;
6211       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB))
6212         return error("Invalid record");
6213 
6214       if (BitCode == bitc::FUNC_CODE_INST_STORE) {
6215         if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB))
6216           return error("Invalid record");
6217       } else {
6218         ValTypeID = getContainedTypeID(PtrTypeID);
6219         if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID),
6220                      ValTypeID, Val, CurBB))
6221           return error("Invalid record");
6222       }
6223 
6224       if (OpNum + 2 != Record.size())
6225         return error("Invalid record");
6226 
6227       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
6228         return Err;
6229       MaybeAlign Align;
6230       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
6231         return Err;
6232       SmallPtrSet<Type *, 4> Visited;
6233       if (!Align && !Val->getType()->isSized(&Visited))
6234         return error("store of unsized type");
6235       if (!Align)
6236         Align = TheModule->getDataLayout().getABITypeAlign(Val->getType());
6237       I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align);
6238       InstructionList.push_back(I);
6239       break;
6240     }
6241     case bitc::FUNC_CODE_INST_STOREATOMIC:
6242     case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: {
6243       // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid]
6244       unsigned OpNum = 0;
6245       Value *Val, *Ptr;
6246       unsigned PtrTypeID, ValTypeID;
6247       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB) ||
6248           !isa<PointerType>(Ptr->getType()))
6249         return error("Invalid record");
6250       if (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC) {
6251         if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB))
6252           return error("Invalid record");
6253       } else {
6254         ValTypeID = getContainedTypeID(PtrTypeID);
6255         if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID),
6256                      ValTypeID, Val, CurBB))
6257           return error("Invalid record");
6258       }
6259 
6260       if (OpNum + 4 != Record.size())
6261         return error("Invalid record");
6262 
6263       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
6264         return Err;
6265       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
6266       if (Ordering == AtomicOrdering::NotAtomic ||
6267           Ordering == AtomicOrdering::Acquire ||
6268           Ordering == AtomicOrdering::AcquireRelease)
6269         return error("Invalid record");
6270       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
6271       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
6272         return error("Invalid record");
6273 
6274       MaybeAlign Align;
6275       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
6276         return Err;
6277       if (!Align)
6278         return error("Alignment missing from atomic store");
6279       I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID);
6280       InstructionList.push_back(I);
6281       break;
6282     }
6283     case bitc::FUNC_CODE_INST_CMPXCHG_OLD: {
6284       // CMPXCHG_OLD: [ptrty, ptr, cmp, val, vol, ordering, synchscope,
6285       // failure_ordering?, weak?]
6286       const size_t NumRecords = Record.size();
6287       unsigned OpNum = 0;
6288       Value *Ptr = nullptr;
6289       unsigned PtrTypeID;
6290       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB))
6291         return error("Invalid record");
6292 
6293       if (!isa<PointerType>(Ptr->getType()))
6294         return error("Cmpxchg operand is not a pointer type");
6295 
6296       Value *Cmp = nullptr;
6297       unsigned CmpTypeID = getContainedTypeID(PtrTypeID);
6298       if (popValue(Record, OpNum, NextValueNo, getTypeByID(CmpTypeID),
6299                    CmpTypeID, Cmp, CurBB))
6300         return error("Invalid record");
6301 
6302       Value *New = nullptr;
6303       if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID,
6304                    New, CurBB) ||
6305           NumRecords < OpNum + 3 || NumRecords > OpNum + 5)
6306         return error("Invalid record");
6307 
6308       const AtomicOrdering SuccessOrdering =
6309           getDecodedOrdering(Record[OpNum + 1]);
6310       if (SuccessOrdering == AtomicOrdering::NotAtomic ||
6311           SuccessOrdering == AtomicOrdering::Unordered)
6312         return error("Invalid record");
6313 
6314       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
6315 
6316       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
6317         return Err;
6318 
6319       const AtomicOrdering FailureOrdering =
6320           NumRecords < 7
6321               ? AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering)
6322               : getDecodedOrdering(Record[OpNum + 3]);
6323 
6324       if (FailureOrdering == AtomicOrdering::NotAtomic ||
6325           FailureOrdering == AtomicOrdering::Unordered)
6326         return error("Invalid record");
6327 
6328       const Align Alignment(
6329           TheModule->getDataLayout().getTypeStoreSize(Cmp->getType()));
6330 
6331       I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering,
6332                                 FailureOrdering, SSID);
6333       cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
6334 
6335       if (NumRecords < 8) {
6336         // Before weak cmpxchgs existed, the instruction simply returned the
6337         // value loaded from memory, so bitcode files from that era will be
6338         // expecting the first component of a modern cmpxchg.
6339         I->insertInto(CurBB, CurBB->end());
6340         I = ExtractValueInst::Create(I, 0);
6341         ResTypeID = CmpTypeID;
6342       } else {
6343         cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]);
6344         unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context));
6345         ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID});
6346       }
6347 
6348       InstructionList.push_back(I);
6349       break;
6350     }
6351     case bitc::FUNC_CODE_INST_CMPXCHG: {
6352       // CMPXCHG: [ptrty, ptr, cmp, val, vol, success_ordering, synchscope,
6353       // failure_ordering, weak, align?]
6354       const size_t NumRecords = Record.size();
6355       unsigned OpNum = 0;
6356       Value *Ptr = nullptr;
6357       unsigned PtrTypeID;
6358       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB))
6359         return error("Invalid record");
6360 
6361       if (!isa<PointerType>(Ptr->getType()))
6362         return error("Cmpxchg operand is not a pointer type");
6363 
6364       Value *Cmp = nullptr;
6365       unsigned CmpTypeID;
6366       if (getValueTypePair(Record, OpNum, NextValueNo, Cmp, CmpTypeID, CurBB))
6367         return error("Invalid record");
6368 
6369       Value *Val = nullptr;
6370       if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID, Val,
6371                    CurBB))
6372         return error("Invalid record");
6373 
6374       if (NumRecords < OpNum + 3 || NumRecords > OpNum + 6)
6375         return error("Invalid record");
6376 
6377       const bool IsVol = Record[OpNum];
6378 
6379       const AtomicOrdering SuccessOrdering =
6380           getDecodedOrdering(Record[OpNum + 1]);
6381       if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering))
6382         return error("Invalid cmpxchg success ordering");
6383 
6384       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
6385 
6386       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
6387         return Err;
6388 
6389       const AtomicOrdering FailureOrdering =
6390           getDecodedOrdering(Record[OpNum + 3]);
6391       if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering))
6392         return error("Invalid cmpxchg failure ordering");
6393 
6394       const bool IsWeak = Record[OpNum + 4];
6395 
6396       MaybeAlign Alignment;
6397 
6398       if (NumRecords == (OpNum + 6)) {
6399         if (Error Err = parseAlignmentValue(Record[OpNum + 5], Alignment))
6400           return Err;
6401       }
6402       if (!Alignment)
6403         Alignment =
6404             Align(TheModule->getDataLayout().getTypeStoreSize(Cmp->getType()));
6405 
6406       I = new AtomicCmpXchgInst(Ptr, Cmp, Val, *Alignment, SuccessOrdering,
6407                                 FailureOrdering, SSID);
6408       cast<AtomicCmpXchgInst>(I)->setVolatile(IsVol);
6409       cast<AtomicCmpXchgInst>(I)->setWeak(IsWeak);
6410 
6411       unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context));
6412       ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID});
6413 
6414       InstructionList.push_back(I);
6415       break;
6416     }
6417     case bitc::FUNC_CODE_INST_ATOMICRMW_OLD:
6418     case bitc::FUNC_CODE_INST_ATOMICRMW: {
6419       // ATOMICRMW_OLD: [ptrty, ptr, val, op, vol, ordering, ssid, align?]
6420       // ATOMICRMW: [ptrty, ptr, valty, val, op, vol, ordering, ssid, align?]
6421       const size_t NumRecords = Record.size();
6422       unsigned OpNum = 0;
6423 
6424       Value *Ptr = nullptr;
6425       unsigned PtrTypeID;
6426       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB))
6427         return error("Invalid record");
6428 
6429       if (!isa<PointerType>(Ptr->getType()))
6430         return error("Invalid record");
6431 
6432       Value *Val = nullptr;
6433       unsigned ValTypeID = InvalidTypeID;
6434       if (BitCode == bitc::FUNC_CODE_INST_ATOMICRMW_OLD) {
6435         ValTypeID = getContainedTypeID(PtrTypeID);
6436         if (popValue(Record, OpNum, NextValueNo,
6437                      getTypeByID(ValTypeID), ValTypeID, Val, CurBB))
6438           return error("Invalid record");
6439       } else {
6440         if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB))
6441           return error("Invalid record");
6442       }
6443 
6444       if (!(NumRecords == (OpNum + 4) || NumRecords == (OpNum + 5)))
6445         return error("Invalid record");
6446 
6447       const AtomicRMWInst::BinOp Operation =
6448           getDecodedRMWOperation(Record[OpNum]);
6449       if (Operation < AtomicRMWInst::FIRST_BINOP ||
6450           Operation > AtomicRMWInst::LAST_BINOP)
6451         return error("Invalid record");
6452 
6453       const bool IsVol = Record[OpNum + 1];
6454 
6455       const AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
6456       if (Ordering == AtomicOrdering::NotAtomic ||
6457           Ordering == AtomicOrdering::Unordered)
6458         return error("Invalid record");
6459 
6460       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
6461 
6462       MaybeAlign Alignment;
6463 
6464       if (NumRecords == (OpNum + 5)) {
6465         if (Error Err = parseAlignmentValue(Record[OpNum + 4], Alignment))
6466           return Err;
6467       }
6468 
6469       if (!Alignment)
6470         Alignment =
6471             Align(TheModule->getDataLayout().getTypeStoreSize(Val->getType()));
6472 
6473       I = new AtomicRMWInst(Operation, Ptr, Val, *Alignment, Ordering, SSID);
6474       ResTypeID = ValTypeID;
6475       cast<AtomicRMWInst>(I)->setVolatile(IsVol);
6476 
6477       InstructionList.push_back(I);
6478       break;
6479     }
6480     case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid]
6481       if (2 != Record.size())
6482         return error("Invalid record");
6483       AtomicOrdering Ordering = getDecodedOrdering(Record[0]);
6484       if (Ordering == AtomicOrdering::NotAtomic ||
6485           Ordering == AtomicOrdering::Unordered ||
6486           Ordering == AtomicOrdering::Monotonic)
6487         return error("Invalid record");
6488       SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]);
6489       I = new FenceInst(Context, Ordering, SSID);
6490       InstructionList.push_back(I);
6491       break;
6492     }
6493     case bitc::FUNC_CODE_DEBUG_RECORD_LABEL: {
6494       // DbgLabelRecords are placed after the Instructions that they are
6495       // attached to.
6496       SeenDebugRecord = true;
6497       Instruction *Inst = getLastInstruction();
6498       if (!Inst)
6499         return error("Invalid dbg record: missing instruction");
6500       DILocation *DIL = cast<DILocation>(getFnMetadataByID(Record[0]));
6501       DILabel *Label = cast<DILabel>(getFnMetadataByID(Record[1]));
6502       Inst->getParent()->insertDbgRecordBefore(
6503           new DbgLabelRecord(Label, DebugLoc(DIL)), Inst->getIterator());
6504       continue; // This isn't an instruction.
6505     }
6506     case bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE:
6507     case bitc::FUNC_CODE_DEBUG_RECORD_VALUE:
6508     case bitc::FUNC_CODE_DEBUG_RECORD_DECLARE:
6509     case bitc::FUNC_CODE_DEBUG_RECORD_ASSIGN: {
6510       // DbgVariableRecords are placed after the Instructions that they are
6511       // attached to.
6512       SeenDebugRecord = true;
6513       Instruction *Inst = getLastInstruction();
6514       if (!Inst)
6515         return error("Invalid dbg record: missing instruction");
6516 
6517       // First 3 fields are common to all kinds:
6518       //   DILocation, DILocalVariable, DIExpression
6519       // dbg_value (FUNC_CODE_DEBUG_RECORD_VALUE)
6520       //   ..., LocationMetadata
6521       // dbg_value (FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE - abbrev'd)
6522       //   ..., Value
6523       // dbg_declare (FUNC_CODE_DEBUG_RECORD_DECLARE)
6524       //   ..., LocationMetadata
6525       // dbg_assign (FUNC_CODE_DEBUG_RECORD_ASSIGN)
6526       //   ..., LocationMetadata, DIAssignID, DIExpression, LocationMetadata
6527       unsigned Slot = 0;
6528       // Common fields (0-2).
6529       DILocation *DIL = cast<DILocation>(getFnMetadataByID(Record[Slot++]));
6530       DILocalVariable *Var =
6531           cast<DILocalVariable>(getFnMetadataByID(Record[Slot++]));
6532       DIExpression *Expr =
6533           cast<DIExpression>(getFnMetadataByID(Record[Slot++]));
6534 
6535       // Union field (3: LocationMetadata | Value).
6536       Metadata *RawLocation = nullptr;
6537       if (BitCode == bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE) {
6538         Value *V = nullptr;
6539         unsigned TyID = 0;
6540         // We never expect to see a fwd reference value here because
6541         // use-before-defs are encoded with the standard non-abbrev record
6542         // type (they'd require encoding the type too, and they're rare). As a
6543         // result, getValueTypePair only ever increments Slot by one here (once
6544         // for the value, never twice for value and type).
6545         unsigned SlotBefore = Slot;
6546         if (getValueTypePair(Record, Slot, NextValueNo, V, TyID, CurBB))
6547           return error("Invalid dbg record: invalid value");
6548         (void)SlotBefore;
6549         assert((SlotBefore == Slot - 1) && "unexpected fwd ref");
6550         RawLocation = ValueAsMetadata::get(V);
6551       } else {
6552         RawLocation = getFnMetadataByID(Record[Slot++]);
6553       }
6554 
6555       DbgVariableRecord *DVR = nullptr;
6556       switch (BitCode) {
6557       case bitc::FUNC_CODE_DEBUG_RECORD_VALUE:
6558       case bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE:
6559         DVR = new DbgVariableRecord(RawLocation, Var, Expr, DIL,
6560                                     DbgVariableRecord::LocationType::Value);
6561         break;
6562       case bitc::FUNC_CODE_DEBUG_RECORD_DECLARE:
6563         DVR = new DbgVariableRecord(RawLocation, Var, Expr, DIL,
6564                                     DbgVariableRecord::LocationType::Declare);
6565         break;
6566       case bitc::FUNC_CODE_DEBUG_RECORD_ASSIGN: {
6567         DIAssignID *ID = cast<DIAssignID>(getFnMetadataByID(Record[Slot++]));
6568         DIExpression *AddrExpr =
6569             cast<DIExpression>(getFnMetadataByID(Record[Slot++]));
6570         Metadata *Addr = getFnMetadataByID(Record[Slot++]);
6571         DVR = new DbgVariableRecord(RawLocation, Var, Expr, ID, Addr, AddrExpr,
6572                                     DIL);
6573         break;
6574       }
6575       default:
6576         llvm_unreachable("Unknown DbgVariableRecord bitcode");
6577       }
6578       Inst->getParent()->insertDbgRecordBefore(DVR, Inst->getIterator());
6579       continue; // This isn't an instruction.
6580     }
6581     case bitc::FUNC_CODE_INST_CALL: {
6582       // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...]
6583       if (Record.size() < 3)
6584         return error("Invalid record");
6585 
6586       unsigned OpNum = 0;
6587       AttributeList PAL = getAttributes(Record[OpNum++]);
6588       unsigned CCInfo = Record[OpNum++];
6589 
6590       FastMathFlags FMF;
6591       if ((CCInfo >> bitc::CALL_FMF) & 1) {
6592         FMF = getDecodedFastMathFlags(Record[OpNum++]);
6593         if (!FMF.any())
6594           return error("Fast math flags indicator set for call with no FMF");
6595       }
6596 
6597       unsigned FTyID = InvalidTypeID;
6598       FunctionType *FTy = nullptr;
6599       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
6600         FTyID = Record[OpNum++];
6601         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
6602         if (!FTy)
6603           return error("Explicit call type is not a function type");
6604       }
6605 
6606       Value *Callee;
6607       unsigned CalleeTypeID;
6608       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID,
6609                            CurBB))
6610         return error("Invalid record");
6611 
6612       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
6613       if (!OpTy)
6614         return error("Callee is not a pointer type");
6615       if (!FTy) {
6616         FTyID = getContainedTypeID(CalleeTypeID);
6617         FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
6618         if (!FTy)
6619           return error("Callee is not of pointer to function type");
6620       }
6621       if (Record.size() < FTy->getNumParams() + OpNum)
6622         return error("Insufficient operands to call");
6623 
6624       SmallVector<Value*, 16> Args;
6625       SmallVector<unsigned, 16> ArgTyIDs;
6626       // Read the fixed params.
6627       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
6628         unsigned ArgTyID = getContainedTypeID(FTyID, i + 1);
6629         if (FTy->getParamType(i)->isLabelTy())
6630           Args.push_back(getBasicBlock(Record[OpNum]));
6631         else
6632           Args.push_back(getValue(Record, OpNum, NextValueNo,
6633                                   FTy->getParamType(i), ArgTyID, CurBB));
6634         ArgTyIDs.push_back(ArgTyID);
6635         if (!Args.back())
6636           return error("Invalid record");
6637       }
6638 
6639       // Read type/value pairs for varargs params.
6640       if (!FTy->isVarArg()) {
6641         if (OpNum != Record.size())
6642           return error("Invalid record");
6643       } else {
6644         while (OpNum != Record.size()) {
6645           Value *Op;
6646           unsigned OpTypeID;
6647           if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
6648             return error("Invalid record");
6649           Args.push_back(Op);
6650           ArgTyIDs.push_back(OpTypeID);
6651         }
6652       }
6653 
6654       // Upgrade the bundles if needed.
6655       if (!OperandBundles.empty())
6656         UpgradeOperandBundles(OperandBundles);
6657 
6658       I = CallInst::Create(FTy, Callee, Args, OperandBundles);
6659       ResTypeID = getContainedTypeID(FTyID);
6660       OperandBundles.clear();
6661       InstructionList.push_back(I);
6662       cast<CallInst>(I)->setCallingConv(
6663           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
6664       CallInst::TailCallKind TCK = CallInst::TCK_None;
6665       if (CCInfo & (1 << bitc::CALL_TAIL))
6666         TCK = CallInst::TCK_Tail;
6667       if (CCInfo & (1 << bitc::CALL_MUSTTAIL))
6668         TCK = CallInst::TCK_MustTail;
6669       if (CCInfo & (1 << bitc::CALL_NOTAIL))
6670         TCK = CallInst::TCK_NoTail;
6671       cast<CallInst>(I)->setTailCallKind(TCK);
6672       cast<CallInst>(I)->setAttributes(PAL);
6673       if (isa<DbgInfoIntrinsic>(I))
6674         SeenDebugIntrinsic = true;
6675       if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) {
6676         I->deleteValue();
6677         return Err;
6678       }
6679       if (FMF.any()) {
6680         if (!isa<FPMathOperator>(I))
6681           return error("Fast-math-flags specified for call without "
6682                        "floating-point scalar or vector return type");
6683         I->setFastMathFlags(FMF);
6684       }
6685       break;
6686     }
6687     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
6688       if (Record.size() < 3)
6689         return error("Invalid record");
6690       unsigned OpTyID = Record[0];
6691       Type *OpTy = getTypeByID(OpTyID);
6692       Value *Op = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB);
6693       ResTypeID = Record[2];
6694       Type *ResTy = getTypeByID(ResTypeID);
6695       if (!OpTy || !Op || !ResTy)
6696         return error("Invalid record");
6697       I = new VAArgInst(Op, ResTy);
6698       InstructionList.push_back(I);
6699       break;
6700     }
6701 
6702     case bitc::FUNC_CODE_OPERAND_BUNDLE: {
6703       // A call or an invoke can be optionally prefixed with some variable
6704       // number of operand bundle blocks.  These blocks are read into
6705       // OperandBundles and consumed at the next call or invoke instruction.
6706 
6707       if (Record.empty() || Record[0] >= BundleTags.size())
6708         return error("Invalid record");
6709 
6710       std::vector<Value *> Inputs;
6711 
6712       unsigned OpNum = 1;
6713       while (OpNum != Record.size()) {
6714         Value *Op;
6715         unsigned OpTypeID;
6716         if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
6717           return error("Invalid record");
6718         Inputs.push_back(Op);
6719       }
6720 
6721       OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs));
6722       continue;
6723     }
6724 
6725     case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval]
6726       unsigned OpNum = 0;
6727       Value *Op = nullptr;
6728       unsigned OpTypeID;
6729       if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
6730         return error("Invalid record");
6731       if (OpNum != Record.size())
6732         return error("Invalid record");
6733 
6734       I = new FreezeInst(Op);
6735       ResTypeID = OpTypeID;
6736       InstructionList.push_back(I);
6737       break;
6738     }
6739     }
6740 
6741     // Add instruction to end of current BB.  If there is no current BB, reject
6742     // this file.
6743     if (!CurBB) {
6744       I->deleteValue();
6745       return error("Invalid instruction with no BB");
6746     }
6747     if (!OperandBundles.empty()) {
6748       I->deleteValue();
6749       return error("Operand bundles found with no consumer");
6750     }
6751     I->insertInto(CurBB, CurBB->end());
6752 
6753     // If this was a terminator instruction, move to the next block.
6754     if (I->isTerminator()) {
6755       ++CurBBNo;
6756       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
6757     }
6758 
6759     // Non-void values get registered in the value table for future use.
6760     if (!I->getType()->isVoidTy()) {
6761       assert(I->getType() == getTypeByID(ResTypeID) &&
6762              "Incorrect result type ID");
6763       if (Error Err = ValueList.assignValue(NextValueNo++, I, ResTypeID))
6764         return Err;
6765     }
6766   }
6767 
6768 OutOfRecordLoop:
6769 
6770   if (!OperandBundles.empty())
6771     return error("Operand bundles found with no consumer");
6772 
6773   // Check the function list for unresolved values.
6774   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
6775     if (!A->getParent()) {
6776       // We found at least one unresolved value.  Nuke them all to avoid leaks.
6777       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
6778         if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
6779           A->replaceAllUsesWith(PoisonValue::get(A->getType()));
6780           delete A;
6781         }
6782       }
6783       return error("Never resolved value found in function");
6784     }
6785   }
6786 
6787   // Unexpected unresolved metadata about to be dropped.
6788   if (MDLoader->hasFwdRefs())
6789     return error("Invalid function metadata: outgoing forward refs");
6790 
6791   if (PhiConstExprBB)
6792     PhiConstExprBB->eraseFromParent();
6793 
6794   for (const auto &Pair : ConstExprEdgeBBs) {
6795     BasicBlock *From = Pair.first.first;
6796     BasicBlock *To = Pair.first.second;
6797     BasicBlock *EdgeBB = Pair.second;
6798     BranchInst::Create(To, EdgeBB);
6799     From->getTerminator()->replaceSuccessorWith(To, EdgeBB);
6800     To->replacePhiUsesWith(From, EdgeBB);
6801     EdgeBB->moveBefore(To);
6802   }
6803 
6804   // Trim the value list down to the size it was before we parsed this function.
6805   ValueList.shrinkTo(ModuleValueListSize);
6806   MDLoader->shrinkTo(ModuleMDLoaderSize);
6807   std::vector<BasicBlock*>().swap(FunctionBBs);
6808   return Error::success();
6809 }
6810 
6811 /// Find the function body in the bitcode stream
6812 Error BitcodeReader::findFunctionInStream(
6813     Function *F,
6814     DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
6815   while (DeferredFunctionInfoIterator->second == 0) {
6816     // This is the fallback handling for the old format bitcode that
6817     // didn't contain the function index in the VST, or when we have
6818     // an anonymous function which would not have a VST entry.
6819     // Assert that we have one of those two cases.
6820     assert(VSTOffset == 0 || !F->hasName());
6821     // Parse the next body in the stream and set its position in the
6822     // DeferredFunctionInfo map.
6823     if (Error Err = rememberAndSkipFunctionBodies())
6824       return Err;
6825   }
6826   return Error::success();
6827 }
6828 
6829 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) {
6830   if (Val == SyncScope::SingleThread || Val == SyncScope::System)
6831     return SyncScope::ID(Val);
6832   if (Val >= SSIDs.size())
6833     return SyncScope::System; // Map unknown synchronization scopes to system.
6834   return SSIDs[Val];
6835 }
6836 
6837 //===----------------------------------------------------------------------===//
6838 // GVMaterializer implementation
6839 //===----------------------------------------------------------------------===//
6840 
6841 Error BitcodeReader::materialize(GlobalValue *GV) {
6842   Function *F = dyn_cast<Function>(GV);
6843   // If it's not a function or is already material, ignore the request.
6844   if (!F || !F->isMaterializable())
6845     return Error::success();
6846 
6847   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
6848   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
6849   // If its position is recorded as 0, its body is somewhere in the stream
6850   // but we haven't seen it yet.
6851   if (DFII->second == 0)
6852     if (Error Err = findFunctionInStream(F, DFII))
6853       return Err;
6854 
6855   // Materialize metadata before parsing any function bodies.
6856   if (Error Err = materializeMetadata())
6857     return Err;
6858 
6859   // Move the bit stream to the saved position of the deferred function body.
6860   if (Error JumpFailed = Stream.JumpToBit(DFII->second))
6861     return JumpFailed;
6862 
6863   // Regardless of the debug info format we want to end up in, we need
6864   // IsNewDbgInfoFormat=true to construct any debug records seen in the bitcode.
6865   F->IsNewDbgInfoFormat = true;
6866 
6867   if (Error Err = parseFunctionBody(F))
6868     return Err;
6869   F->setIsMaterializable(false);
6870 
6871   // All parsed Functions should load into the debug info format dictated by the
6872   // Module, unless we're attempting to preserve the input debug info format.
6873   if (SeenDebugIntrinsic && SeenDebugRecord)
6874     return error("Mixed debug intrinsics and debug records in bitcode module!");
6875   if (PreserveInputDbgFormat == cl::boolOrDefault::BOU_TRUE) {
6876     bool SeenAnyDebugInfo = SeenDebugIntrinsic || SeenDebugRecord;
6877     bool NewDbgInfoFormatDesired =
6878         SeenAnyDebugInfo ? SeenDebugRecord : F->getParent()->IsNewDbgInfoFormat;
6879     if (SeenAnyDebugInfo) {
6880       UseNewDbgInfoFormat = SeenDebugRecord;
6881       WriteNewDbgInfoFormatToBitcode = SeenDebugRecord;
6882       WriteNewDbgInfoFormat = SeenDebugRecord;
6883     }
6884     // If the module's debug info format doesn't match the observed input
6885     // format, then set its format now; we don't need to call the conversion
6886     // function because there must be no existing intrinsics to convert.
6887     // Otherwise, just set the format on this function now.
6888     if (NewDbgInfoFormatDesired != F->getParent()->IsNewDbgInfoFormat)
6889       F->getParent()->setNewDbgInfoFormatFlag(NewDbgInfoFormatDesired);
6890     else
6891       F->setNewDbgInfoFormatFlag(NewDbgInfoFormatDesired);
6892   } else {
6893     // If we aren't preserving formats, we use the Module flag to get our
6894     // desired format instead of reading flags, in case we are lazy-loading and
6895     // the format of the module has been changed since it was set by the flags.
6896     // We only need to convert debug info here if we have debug records but
6897     // desire the intrinsic format; everything else is a no-op or handled by the
6898     // autoupgrader.
6899     bool ModuleIsNewDbgInfoFormat = F->getParent()->IsNewDbgInfoFormat;
6900     if (ModuleIsNewDbgInfoFormat || !SeenDebugRecord)
6901       F->setNewDbgInfoFormatFlag(ModuleIsNewDbgInfoFormat);
6902     else
6903       F->setIsNewDbgInfoFormat(ModuleIsNewDbgInfoFormat);
6904   }
6905 
6906   if (StripDebugInfo)
6907     stripDebugInfo(*F);
6908 
6909   // Upgrade any old intrinsic calls in the function.
6910   for (auto &I : UpgradedIntrinsics) {
6911     for (User *U : llvm::make_early_inc_range(I.first->materialized_users()))
6912       if (CallInst *CI = dyn_cast<CallInst>(U))
6913         UpgradeIntrinsicCall(CI, I.second);
6914   }
6915 
6916   // Finish fn->subprogram upgrade for materialized functions.
6917   if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F))
6918     F->setSubprogram(SP);
6919 
6920   // Check if the TBAA Metadata are valid, otherwise we will need to strip them.
6921   if (!MDLoader->isStrippingTBAA()) {
6922     for (auto &I : instructions(F)) {
6923       MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa);
6924       if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA))
6925         continue;
6926       MDLoader->setStripTBAA(true);
6927       stripTBAA(F->getParent());
6928     }
6929   }
6930 
6931   for (auto &I : instructions(F)) {
6932     // "Upgrade" older incorrect branch weights by dropping them.
6933     if (auto *MD = I.getMetadata(LLVMContext::MD_prof)) {
6934       if (MD->getOperand(0) != nullptr && isa<MDString>(MD->getOperand(0))) {
6935         MDString *MDS = cast<MDString>(MD->getOperand(0));
6936         StringRef ProfName = MDS->getString();
6937         // Check consistency of !prof branch_weights metadata.
6938         if (ProfName != "branch_weights")
6939           continue;
6940         unsigned ExpectedNumOperands = 0;
6941         if (BranchInst *BI = dyn_cast<BranchInst>(&I))
6942           ExpectedNumOperands = BI->getNumSuccessors();
6943         else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I))
6944           ExpectedNumOperands = SI->getNumSuccessors();
6945         else if (isa<CallInst>(&I))
6946           ExpectedNumOperands = 1;
6947         else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I))
6948           ExpectedNumOperands = IBI->getNumDestinations();
6949         else if (isa<SelectInst>(&I))
6950           ExpectedNumOperands = 2;
6951         else
6952           continue; // ignore and continue.
6953 
6954         // If branch weight doesn't match, just strip branch weight.
6955         if (MD->getNumOperands() != 1 + ExpectedNumOperands)
6956           I.setMetadata(LLVMContext::MD_prof, nullptr);
6957       }
6958     }
6959 
6960     // Remove incompatible attributes on function calls.
6961     if (auto *CI = dyn_cast<CallBase>(&I)) {
6962       CI->removeRetAttrs(AttributeFuncs::typeIncompatible(
6963           CI->getFunctionType()->getReturnType()));
6964 
6965       for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ++ArgNo)
6966         CI->removeParamAttrs(ArgNo, AttributeFuncs::typeIncompatible(
6967                                         CI->getArgOperand(ArgNo)->getType()));
6968     }
6969   }
6970 
6971   // Look for functions that rely on old function attribute behavior.
6972   UpgradeFunctionAttributes(*F);
6973 
6974   // Bring in any functions that this function forward-referenced via
6975   // blockaddresses.
6976   return materializeForwardReferencedFunctions();
6977 }
6978 
6979 Error BitcodeReader::materializeModule() {
6980   if (Error Err = materializeMetadata())
6981     return Err;
6982 
6983   // Promise to materialize all forward references.
6984   WillMaterializeAllForwardRefs = true;
6985 
6986   // Iterate over the module, deserializing any functions that are still on
6987   // disk.
6988   for (Function &F : *TheModule) {
6989     if (Error Err = materialize(&F))
6990       return Err;
6991   }
6992   // At this point, if there are any function bodies, parse the rest of
6993   // the bits in the module past the last function block we have recorded
6994   // through either lazy scanning or the VST.
6995   if (LastFunctionBlockBit || NextUnreadBit)
6996     if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit
6997                                     ? LastFunctionBlockBit
6998                                     : NextUnreadBit))
6999       return Err;
7000 
7001   // Check that all block address forward references got resolved (as we
7002   // promised above).
7003   if (!BasicBlockFwdRefs.empty())
7004     return error("Never resolved function from blockaddress");
7005 
7006   // Upgrade any intrinsic calls that slipped through (should not happen!) and
7007   // delete the old functions to clean up. We can't do this unless the entire
7008   // module is materialized because there could always be another function body
7009   // with calls to the old function.
7010   for (auto &I : UpgradedIntrinsics) {
7011     for (auto *U : I.first->users()) {
7012       if (CallInst *CI = dyn_cast<CallInst>(U))
7013         UpgradeIntrinsicCall(CI, I.second);
7014     }
7015     if (!I.first->use_empty())
7016       I.first->replaceAllUsesWith(I.second);
7017     I.first->eraseFromParent();
7018   }
7019   UpgradedIntrinsics.clear();
7020 
7021   UpgradeDebugInfo(*TheModule);
7022 
7023   UpgradeModuleFlags(*TheModule);
7024 
7025   UpgradeARCRuntime(*TheModule);
7026 
7027   return Error::success();
7028 }
7029 
7030 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
7031   return IdentifiedStructTypes;
7032 }
7033 
7034 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
7035     BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex,
7036     StringRef ModulePath, std::function<bool(GlobalValue::GUID)> IsPrevailing)
7037     : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex),
7038       ModulePath(ModulePath), IsPrevailing(IsPrevailing) {}
7039 
7040 void ModuleSummaryIndexBitcodeReader::addThisModule() {
7041   TheIndex.addModule(ModulePath);
7042 }
7043 
7044 ModuleSummaryIndex::ModuleInfo *
7045 ModuleSummaryIndexBitcodeReader::getThisModule() {
7046   return TheIndex.getModule(ModulePath);
7047 }
7048 
7049 template <bool AllowNullValueInfo>
7050 std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID>
7051 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) {
7052   auto VGI = ValueIdToValueInfoMap[ValueId];
7053   // We can have a null value info for memprof callsite info records in
7054   // distributed ThinLTO index files when the callee function summary is not
7055   // included in the index. The bitcode writer records 0 in that case,
7056   // and the caller of this helper will set AllowNullValueInfo to true.
7057   assert(AllowNullValueInfo || std::get<0>(VGI));
7058   return VGI;
7059 }
7060 
7061 void ModuleSummaryIndexBitcodeReader::setValueGUID(
7062     uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage,
7063     StringRef SourceFileName) {
7064   std::string GlobalId =
7065       GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName);
7066   auto ValueGUID = GlobalValue::getGUID(GlobalId);
7067   auto OriginalNameID = ValueGUID;
7068   if (GlobalValue::isLocalLinkage(Linkage))
7069     OriginalNameID = GlobalValue::getGUID(ValueName);
7070   if (PrintSummaryGUIDs)
7071     dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is "
7072            << ValueName << "\n";
7073 
7074   // UseStrtab is false for legacy summary formats and value names are
7075   // created on stack. In that case we save the name in a string saver in
7076   // the index so that the value name can be recorded.
7077   ValueIdToValueInfoMap[ValueID] = std::make_tuple(
7078       TheIndex.getOrInsertValueInfo(
7079           ValueGUID, UseStrtab ? ValueName : TheIndex.saveString(ValueName)),
7080       OriginalNameID, ValueGUID);
7081 }
7082 
7083 // Specialized value symbol table parser used when reading module index
7084 // blocks where we don't actually create global values. The parsed information
7085 // is saved in the bitcode reader for use when later parsing summaries.
7086 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable(
7087     uint64_t Offset,
7088     DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) {
7089   // With a strtab the VST is not required to parse the summary.
7090   if (UseStrtab)
7091     return Error::success();
7092 
7093   assert(Offset > 0 && "Expected non-zero VST offset");
7094   Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
7095   if (!MaybeCurrentBit)
7096     return MaybeCurrentBit.takeError();
7097   uint64_t CurrentBit = MaybeCurrentBit.get();
7098 
7099   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
7100     return Err;
7101 
7102   SmallVector<uint64_t, 64> Record;
7103 
7104   // Read all the records for this value table.
7105   SmallString<128> ValueName;
7106 
7107   while (true) {
7108     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
7109     if (!MaybeEntry)
7110       return MaybeEntry.takeError();
7111     BitstreamEntry Entry = MaybeEntry.get();
7112 
7113     switch (Entry.Kind) {
7114     case BitstreamEntry::SubBlock: // Handled for us already.
7115     case BitstreamEntry::Error:
7116       return error("Malformed block");
7117     case BitstreamEntry::EndBlock:
7118       // Done parsing VST, jump back to wherever we came from.
7119       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
7120         return JumpFailed;
7121       return Error::success();
7122     case BitstreamEntry::Record:
7123       // The interesting case.
7124       break;
7125     }
7126 
7127     // Read a record.
7128     Record.clear();
7129     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
7130     if (!MaybeRecord)
7131       return MaybeRecord.takeError();
7132     switch (MaybeRecord.get()) {
7133     default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records).
7134       break;
7135     case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
7136       if (convertToString(Record, 1, ValueName))
7137         return error("Invalid record");
7138       unsigned ValueID = Record[0];
7139       assert(!SourceFileName.empty());
7140       auto VLI = ValueIdToLinkageMap.find(ValueID);
7141       assert(VLI != ValueIdToLinkageMap.end() &&
7142              "No linkage found for VST entry?");
7143       auto Linkage = VLI->second;
7144       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
7145       ValueName.clear();
7146       break;
7147     }
7148     case bitc::VST_CODE_FNENTRY: {
7149       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
7150       if (convertToString(Record, 2, ValueName))
7151         return error("Invalid record");
7152       unsigned ValueID = Record[0];
7153       assert(!SourceFileName.empty());
7154       auto VLI = ValueIdToLinkageMap.find(ValueID);
7155       assert(VLI != ValueIdToLinkageMap.end() &&
7156              "No linkage found for VST entry?");
7157       auto Linkage = VLI->second;
7158       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
7159       ValueName.clear();
7160       break;
7161     }
7162     case bitc::VST_CODE_COMBINED_ENTRY: {
7163       // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
7164       unsigned ValueID = Record[0];
7165       GlobalValue::GUID RefGUID = Record[1];
7166       // The "original name", which is the second value of the pair will be
7167       // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index.
7168       ValueIdToValueInfoMap[ValueID] = std::make_tuple(
7169           TheIndex.getOrInsertValueInfo(RefGUID), RefGUID, RefGUID);
7170       break;
7171     }
7172     }
7173   }
7174 }
7175 
7176 // Parse just the blocks needed for building the index out of the module.
7177 // At the end of this routine the module Index is populated with a map
7178 // from global value id to GlobalValueSummary objects.
7179 Error ModuleSummaryIndexBitcodeReader::parseModule() {
7180   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
7181     return Err;
7182 
7183   SmallVector<uint64_t, 64> Record;
7184   DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap;
7185   unsigned ValueId = 0;
7186 
7187   // Read the index for this module.
7188   while (true) {
7189     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
7190     if (!MaybeEntry)
7191       return MaybeEntry.takeError();
7192     llvm::BitstreamEntry Entry = MaybeEntry.get();
7193 
7194     switch (Entry.Kind) {
7195     case BitstreamEntry::Error:
7196       return error("Malformed block");
7197     case BitstreamEntry::EndBlock:
7198       return Error::success();
7199 
7200     case BitstreamEntry::SubBlock:
7201       switch (Entry.ID) {
7202       default: // Skip unknown content.
7203         if (Error Err = Stream.SkipBlock())
7204           return Err;
7205         break;
7206       case bitc::BLOCKINFO_BLOCK_ID:
7207         // Need to parse these to get abbrev ids (e.g. for VST)
7208         if (Error Err = readBlockInfo())
7209           return Err;
7210         break;
7211       case bitc::VALUE_SYMTAB_BLOCK_ID:
7212         // Should have been parsed earlier via VSTOffset, unless there
7213         // is no summary section.
7214         assert(((SeenValueSymbolTable && VSTOffset > 0) ||
7215                 !SeenGlobalValSummary) &&
7216                "Expected early VST parse via VSTOffset record");
7217         if (Error Err = Stream.SkipBlock())
7218           return Err;
7219         break;
7220       case bitc::GLOBALVAL_SUMMARY_BLOCK_ID:
7221       case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID:
7222         // Add the module if it is a per-module index (has a source file name).
7223         if (!SourceFileName.empty())
7224           addThisModule();
7225         assert(!SeenValueSymbolTable &&
7226                "Already read VST when parsing summary block?");
7227         // We might not have a VST if there were no values in the
7228         // summary. An empty summary block generated when we are
7229         // performing ThinLTO compiles so we don't later invoke
7230         // the regular LTO process on them.
7231         if (VSTOffset > 0) {
7232           if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap))
7233             return Err;
7234           SeenValueSymbolTable = true;
7235         }
7236         SeenGlobalValSummary = true;
7237         if (Error Err = parseEntireSummary(Entry.ID))
7238           return Err;
7239         break;
7240       case bitc::MODULE_STRTAB_BLOCK_ID:
7241         if (Error Err = parseModuleStringTable())
7242           return Err;
7243         break;
7244       }
7245       continue;
7246 
7247     case BitstreamEntry::Record: {
7248         Record.clear();
7249         Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
7250         if (!MaybeBitCode)
7251           return MaybeBitCode.takeError();
7252         switch (MaybeBitCode.get()) {
7253         default:
7254           break; // Default behavior, ignore unknown content.
7255         case bitc::MODULE_CODE_VERSION: {
7256           if (Error Err = parseVersionRecord(Record).takeError())
7257             return Err;
7258           break;
7259         }
7260         /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
7261         case bitc::MODULE_CODE_SOURCE_FILENAME: {
7262           SmallString<128> ValueName;
7263           if (convertToString(Record, 0, ValueName))
7264             return error("Invalid record");
7265           SourceFileName = ValueName.c_str();
7266           break;
7267         }
7268         /// MODULE_CODE_HASH: [5*i32]
7269         case bitc::MODULE_CODE_HASH: {
7270           if (Record.size() != 5)
7271             return error("Invalid hash length " + Twine(Record.size()).str());
7272           auto &Hash = getThisModule()->second;
7273           int Pos = 0;
7274           for (auto &Val : Record) {
7275             assert(!(Val >> 32) && "Unexpected high bits set");
7276             Hash[Pos++] = Val;
7277           }
7278           break;
7279         }
7280         /// MODULE_CODE_VSTOFFSET: [offset]
7281         case bitc::MODULE_CODE_VSTOFFSET:
7282           if (Record.empty())
7283             return error("Invalid record");
7284           // Note that we subtract 1 here because the offset is relative to one
7285           // word before the start of the identification or module block, which
7286           // was historically always the start of the regular bitcode header.
7287           VSTOffset = Record[0] - 1;
7288           break;
7289         // v1 GLOBALVAR: [pointer type, isconst,     initid,       linkage, ...]
7290         // v1 FUNCTION:  [type,         callingconv, isproto,      linkage, ...]
7291         // v1 ALIAS:     [alias type,   addrspace,   aliasee val#, linkage, ...]
7292         // v2: [strtab offset, strtab size, v1]
7293         case bitc::MODULE_CODE_GLOBALVAR:
7294         case bitc::MODULE_CODE_FUNCTION:
7295         case bitc::MODULE_CODE_ALIAS: {
7296           StringRef Name;
7297           ArrayRef<uint64_t> GVRecord;
7298           std::tie(Name, GVRecord) = readNameFromStrtab(Record);
7299           if (GVRecord.size() <= 3)
7300             return error("Invalid record");
7301           uint64_t RawLinkage = GVRecord[3];
7302           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
7303           if (!UseStrtab) {
7304             ValueIdToLinkageMap[ValueId++] = Linkage;
7305             break;
7306           }
7307 
7308           setValueGUID(ValueId++, Name, Linkage, SourceFileName);
7309           break;
7310         }
7311         }
7312       }
7313       continue;
7314     }
7315   }
7316 }
7317 
7318 std::vector<ValueInfo>
7319 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) {
7320   std::vector<ValueInfo> Ret;
7321   Ret.reserve(Record.size());
7322   for (uint64_t RefValueId : Record)
7323     Ret.push_back(std::get<0>(getValueInfoFromValueId(RefValueId)));
7324   return Ret;
7325 }
7326 
7327 std::vector<FunctionSummary::EdgeTy>
7328 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record,
7329                                               bool IsOldProfileFormat,
7330                                               bool HasProfile, bool HasRelBF) {
7331   std::vector<FunctionSummary::EdgeTy> Ret;
7332   Ret.reserve(Record.size());
7333   for (unsigned I = 0, E = Record.size(); I != E; ++I) {
7334     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
7335     bool HasTailCall = false;
7336     uint64_t RelBF = 0;
7337     ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[I]));
7338     if (IsOldProfileFormat) {
7339       I += 1; // Skip old callsitecount field
7340       if (HasProfile)
7341         I += 1; // Skip old profilecount field
7342     } else if (HasProfile)
7343       std::tie(Hotness, HasTailCall) =
7344           getDecodedHotnessCallEdgeInfo(Record[++I]);
7345     else if (HasRelBF)
7346       getDecodedRelBFCallEdgeInfo(Record[++I], RelBF, HasTailCall);
7347     Ret.push_back(FunctionSummary::EdgeTy{
7348         Callee, CalleeInfo(Hotness, HasTailCall, RelBF)});
7349   }
7350   return Ret;
7351 }
7352 
7353 static void
7354 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot,
7355                                        WholeProgramDevirtResolution &Wpd) {
7356   uint64_t ArgNum = Record[Slot++];
7357   WholeProgramDevirtResolution::ByArg &B =
7358       Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}];
7359   Slot += ArgNum;
7360 
7361   B.TheKind =
7362       static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]);
7363   B.Info = Record[Slot++];
7364   B.Byte = Record[Slot++];
7365   B.Bit = Record[Slot++];
7366 }
7367 
7368 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record,
7369                                               StringRef Strtab, size_t &Slot,
7370                                               TypeIdSummary &TypeId) {
7371   uint64_t Id = Record[Slot++];
7372   WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id];
7373 
7374   Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]);
7375   Wpd.SingleImplName = {Strtab.data() + Record[Slot],
7376                         static_cast<size_t>(Record[Slot + 1])};
7377   Slot += 2;
7378 
7379   uint64_t ResByArgNum = Record[Slot++];
7380   for (uint64_t I = 0; I != ResByArgNum; ++I)
7381     parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd);
7382 }
7383 
7384 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record,
7385                                      StringRef Strtab,
7386                                      ModuleSummaryIndex &TheIndex) {
7387   size_t Slot = 0;
7388   TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary(
7389       {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])});
7390   Slot += 2;
7391 
7392   TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]);
7393   TypeId.TTRes.SizeM1BitWidth = Record[Slot++];
7394   TypeId.TTRes.AlignLog2 = Record[Slot++];
7395   TypeId.TTRes.SizeM1 = Record[Slot++];
7396   TypeId.TTRes.BitMask = Record[Slot++];
7397   TypeId.TTRes.InlineBits = Record[Slot++];
7398 
7399   while (Slot < Record.size())
7400     parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId);
7401 }
7402 
7403 std::vector<FunctionSummary::ParamAccess>
7404 ModuleSummaryIndexBitcodeReader::parseParamAccesses(ArrayRef<uint64_t> Record) {
7405   auto ReadRange = [&]() {
7406     APInt Lower(FunctionSummary::ParamAccess::RangeWidth,
7407                 BitcodeReader::decodeSignRotatedValue(Record.front()));
7408     Record = Record.drop_front();
7409     APInt Upper(FunctionSummary::ParamAccess::RangeWidth,
7410                 BitcodeReader::decodeSignRotatedValue(Record.front()));
7411     Record = Record.drop_front();
7412     ConstantRange Range{Lower, Upper};
7413     assert(!Range.isFullSet());
7414     assert(!Range.isUpperSignWrapped());
7415     return Range;
7416   };
7417 
7418   std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
7419   while (!Record.empty()) {
7420     PendingParamAccesses.emplace_back();
7421     FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back();
7422     ParamAccess.ParamNo = Record.front();
7423     Record = Record.drop_front();
7424     ParamAccess.Use = ReadRange();
7425     ParamAccess.Calls.resize(Record.front());
7426     Record = Record.drop_front();
7427     for (auto &Call : ParamAccess.Calls) {
7428       Call.ParamNo = Record.front();
7429       Record = Record.drop_front();
7430       Call.Callee = std::get<0>(getValueInfoFromValueId(Record.front()));
7431       Record = Record.drop_front();
7432       Call.Offsets = ReadRange();
7433     }
7434   }
7435   return PendingParamAccesses;
7436 }
7437 
7438 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo(
7439     ArrayRef<uint64_t> Record, size_t &Slot,
7440     TypeIdCompatibleVtableInfo &TypeId) {
7441   uint64_t Offset = Record[Slot++];
7442   ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[Slot++]));
7443   TypeId.push_back({Offset, Callee});
7444 }
7445 
7446 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord(
7447     ArrayRef<uint64_t> Record) {
7448   size_t Slot = 0;
7449   TypeIdCompatibleVtableInfo &TypeId =
7450       TheIndex.getOrInsertTypeIdCompatibleVtableSummary(
7451           {Strtab.data() + Record[Slot],
7452            static_cast<size_t>(Record[Slot + 1])});
7453   Slot += 2;
7454 
7455   while (Slot < Record.size())
7456     parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId);
7457 }
7458 
7459 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt,
7460                            unsigned WOCnt) {
7461   // Readonly and writeonly refs are in the end of the refs list.
7462   assert(ROCnt + WOCnt <= Refs.size());
7463   unsigned FirstWORef = Refs.size() - WOCnt;
7464   unsigned RefNo = FirstWORef - ROCnt;
7465   for (; RefNo < FirstWORef; ++RefNo)
7466     Refs[RefNo].setReadOnly();
7467   for (; RefNo < Refs.size(); ++RefNo)
7468     Refs[RefNo].setWriteOnly();
7469 }
7470 
7471 // Eagerly parse the entire summary block. This populates the GlobalValueSummary
7472 // objects in the index.
7473 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) {
7474   if (Error Err = Stream.EnterSubBlock(ID))
7475     return Err;
7476   SmallVector<uint64_t, 64> Record;
7477 
7478   // Parse version
7479   {
7480     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
7481     if (!MaybeEntry)
7482       return MaybeEntry.takeError();
7483     BitstreamEntry Entry = MaybeEntry.get();
7484 
7485     if (Entry.Kind != BitstreamEntry::Record)
7486       return error("Invalid Summary Block: record for version expected");
7487     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
7488     if (!MaybeRecord)
7489       return MaybeRecord.takeError();
7490     if (MaybeRecord.get() != bitc::FS_VERSION)
7491       return error("Invalid Summary Block: version expected");
7492   }
7493   const uint64_t Version = Record[0];
7494   const bool IsOldProfileFormat = Version == 1;
7495   if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion)
7496     return error("Invalid summary version " + Twine(Version) +
7497                  ". Version should be in the range [1-" +
7498                  Twine(ModuleSummaryIndex::BitcodeSummaryVersion) +
7499                  "].");
7500   Record.clear();
7501 
7502   // Keep around the last seen summary to be used when we see an optional
7503   // "OriginalName" attachement.
7504   GlobalValueSummary *LastSeenSummary = nullptr;
7505   GlobalValue::GUID LastSeenGUID = 0;
7506 
7507   // We can expect to see any number of type ID information records before
7508   // each function summary records; these variables store the information
7509   // collected so far so that it can be used to create the summary object.
7510   std::vector<GlobalValue::GUID> PendingTypeTests;
7511   std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls,
7512       PendingTypeCheckedLoadVCalls;
7513   std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls,
7514       PendingTypeCheckedLoadConstVCalls;
7515   std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
7516 
7517   std::vector<CallsiteInfo> PendingCallsites;
7518   std::vector<AllocInfo> PendingAllocs;
7519 
7520   while (true) {
7521     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
7522     if (!MaybeEntry)
7523       return MaybeEntry.takeError();
7524     BitstreamEntry Entry = MaybeEntry.get();
7525 
7526     switch (Entry.Kind) {
7527     case BitstreamEntry::SubBlock: // Handled for us already.
7528     case BitstreamEntry::Error:
7529       return error("Malformed block");
7530     case BitstreamEntry::EndBlock:
7531       return Error::success();
7532     case BitstreamEntry::Record:
7533       // The interesting case.
7534       break;
7535     }
7536 
7537     // Read a record. The record format depends on whether this
7538     // is a per-module index or a combined index file. In the per-module
7539     // case the records contain the associated value's ID for correlation
7540     // with VST entries. In the combined index the correlation is done
7541     // via the bitcode offset of the summary records (which were saved
7542     // in the combined index VST entries). The records also contain
7543     // information used for ThinLTO renaming and importing.
7544     Record.clear();
7545     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
7546     if (!MaybeBitCode)
7547       return MaybeBitCode.takeError();
7548     switch (unsigned BitCode = MaybeBitCode.get()) {
7549     default: // Default behavior: ignore.
7550       break;
7551     case bitc::FS_FLAGS: {  // [flags]
7552       TheIndex.setFlags(Record[0]);
7553       break;
7554     }
7555     case bitc::FS_VALUE_GUID: { // [valueid, refguid]
7556       uint64_t ValueID = Record[0];
7557       GlobalValue::GUID RefGUID = Record[1];
7558       ValueIdToValueInfoMap[ValueID] = std::make_tuple(
7559           TheIndex.getOrInsertValueInfo(RefGUID), RefGUID, RefGUID);
7560       break;
7561     }
7562     // FS_PERMODULE is legacy and does not have support for the tail call flag.
7563     // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs,
7564     //                numrefs x valueid, n x (valueid)]
7565     // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs,
7566     //                        numrefs x valueid,
7567     //                        n x (valueid, hotness+tailcall flags)]
7568     // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs,
7569     //                      numrefs x valueid,
7570     //                      n x (valueid, relblockfreq+tailcall)]
7571     case bitc::FS_PERMODULE:
7572     case bitc::FS_PERMODULE_RELBF:
7573     case bitc::FS_PERMODULE_PROFILE: {
7574       unsigned ValueID = Record[0];
7575       uint64_t RawFlags = Record[1];
7576       unsigned InstCount = Record[2];
7577       uint64_t RawFunFlags = 0;
7578       unsigned NumRefs = Record[3];
7579       unsigned NumRORefs = 0, NumWORefs = 0;
7580       int RefListStartIndex = 4;
7581       if (Version >= 4) {
7582         RawFunFlags = Record[3];
7583         NumRefs = Record[4];
7584         RefListStartIndex = 5;
7585         if (Version >= 5) {
7586           NumRORefs = Record[5];
7587           RefListStartIndex = 6;
7588           if (Version >= 7) {
7589             NumWORefs = Record[6];
7590             RefListStartIndex = 7;
7591           }
7592         }
7593       }
7594 
7595       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7596       // The module path string ref set in the summary must be owned by the
7597       // index's module string table. Since we don't have a module path
7598       // string table section in the per-module index, we create a single
7599       // module path string table entry with an empty (0) ID to take
7600       // ownership.
7601       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
7602       assert(Record.size() >= RefListStartIndex + NumRefs &&
7603              "Record size inconsistent with number of references");
7604       std::vector<ValueInfo> Refs = makeRefList(
7605           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
7606       bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE);
7607       bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF);
7608       std::vector<FunctionSummary::EdgeTy> Calls = makeCallList(
7609           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
7610           IsOldProfileFormat, HasProfile, HasRelBF);
7611       setSpecialRefs(Refs, NumRORefs, NumWORefs);
7612       auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID);
7613       // In order to save memory, only record the memprof summaries if this is
7614       // the prevailing copy of a symbol. The linker doesn't resolve local
7615       // linkage values so don't check whether those are prevailing.
7616       auto LT = (GlobalValue::LinkageTypes)Flags.Linkage;
7617       if (IsPrevailing &&
7618           !GlobalValue::isLocalLinkage(LT) &&
7619           !IsPrevailing(std::get<2>(VIAndOriginalGUID))) {
7620         PendingCallsites.clear();
7621         PendingAllocs.clear();
7622       }
7623       auto FS = std::make_unique<FunctionSummary>(
7624           Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0,
7625           std::move(Refs), std::move(Calls), std::move(PendingTypeTests),
7626           std::move(PendingTypeTestAssumeVCalls),
7627           std::move(PendingTypeCheckedLoadVCalls),
7628           std::move(PendingTypeTestAssumeConstVCalls),
7629           std::move(PendingTypeCheckedLoadConstVCalls),
7630           std::move(PendingParamAccesses), std::move(PendingCallsites),
7631           std::move(PendingAllocs));
7632       FS->setModulePath(getThisModule()->first());
7633       FS->setOriginalName(std::get<1>(VIAndOriginalGUID));
7634       TheIndex.addGlobalValueSummary(std::get<0>(VIAndOriginalGUID),
7635                                      std::move(FS));
7636       break;
7637     }
7638     // FS_ALIAS: [valueid, flags, valueid]
7639     // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as
7640     // they expect all aliasee summaries to be available.
7641     case bitc::FS_ALIAS: {
7642       unsigned ValueID = Record[0];
7643       uint64_t RawFlags = Record[1];
7644       unsigned AliaseeID = Record[2];
7645       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7646       auto AS = std::make_unique<AliasSummary>(Flags);
7647       // The module path string ref set in the summary must be owned by the
7648       // index's module string table. Since we don't have a module path
7649       // string table section in the per-module index, we create a single
7650       // module path string table entry with an empty (0) ID to take
7651       // ownership.
7652       AS->setModulePath(getThisModule()->first());
7653 
7654       auto AliaseeVI = std::get<0>(getValueInfoFromValueId(AliaseeID));
7655       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath);
7656       if (!AliaseeInModule)
7657         return error("Alias expects aliasee summary to be parsed");
7658       AS->setAliasee(AliaseeVI, AliaseeInModule);
7659 
7660       auto GUID = getValueInfoFromValueId(ValueID);
7661       AS->setOriginalName(std::get<1>(GUID));
7662       TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(AS));
7663       break;
7664     }
7665     // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid]
7666     case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: {
7667       unsigned ValueID = Record[0];
7668       uint64_t RawFlags = Record[1];
7669       unsigned RefArrayStart = 2;
7670       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
7671                                       /* WriteOnly */ false,
7672                                       /* Constant */ false,
7673                                       GlobalObject::VCallVisibilityPublic);
7674       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7675       if (Version >= 5) {
7676         GVF = getDecodedGVarFlags(Record[2]);
7677         RefArrayStart = 3;
7678       }
7679       std::vector<ValueInfo> Refs =
7680           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
7681       auto FS =
7682           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
7683       FS->setModulePath(getThisModule()->first());
7684       auto GUID = getValueInfoFromValueId(ValueID);
7685       FS->setOriginalName(std::get<1>(GUID));
7686       TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(FS));
7687       break;
7688     }
7689     // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags,
7690     //                        numrefs, numrefs x valueid,
7691     //                        n x (valueid, offset)]
7692     case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: {
7693       unsigned ValueID = Record[0];
7694       uint64_t RawFlags = Record[1];
7695       GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]);
7696       unsigned NumRefs = Record[3];
7697       unsigned RefListStartIndex = 4;
7698       unsigned VTableListStartIndex = RefListStartIndex + NumRefs;
7699       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7700       std::vector<ValueInfo> Refs = makeRefList(
7701           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
7702       VTableFuncList VTableFuncs;
7703       for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) {
7704         ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[I]));
7705         uint64_t Offset = Record[++I];
7706         VTableFuncs.push_back({Callee, Offset});
7707       }
7708       auto VS =
7709           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
7710       VS->setModulePath(getThisModule()->first());
7711       VS->setVTableFuncs(VTableFuncs);
7712       auto GUID = getValueInfoFromValueId(ValueID);
7713       VS->setOriginalName(std::get<1>(GUID));
7714       TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(VS));
7715       break;
7716     }
7717     // FS_COMBINED is legacy and does not have support for the tail call flag.
7718     // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs,
7719     //               numrefs x valueid, n x (valueid)]
7720     // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs,
7721     //                       numrefs x valueid,
7722     //                       n x (valueid, hotness+tailcall flags)]
7723     case bitc::FS_COMBINED:
7724     case bitc::FS_COMBINED_PROFILE: {
7725       unsigned ValueID = Record[0];
7726       uint64_t ModuleId = Record[1];
7727       uint64_t RawFlags = Record[2];
7728       unsigned InstCount = Record[3];
7729       uint64_t RawFunFlags = 0;
7730       uint64_t EntryCount = 0;
7731       unsigned NumRefs = Record[4];
7732       unsigned NumRORefs = 0, NumWORefs = 0;
7733       int RefListStartIndex = 5;
7734 
7735       if (Version >= 4) {
7736         RawFunFlags = Record[4];
7737         RefListStartIndex = 6;
7738         size_t NumRefsIndex = 5;
7739         if (Version >= 5) {
7740           unsigned NumRORefsOffset = 1;
7741           RefListStartIndex = 7;
7742           if (Version >= 6) {
7743             NumRefsIndex = 6;
7744             EntryCount = Record[5];
7745             RefListStartIndex = 8;
7746             if (Version >= 7) {
7747               RefListStartIndex = 9;
7748               NumWORefs = Record[8];
7749               NumRORefsOffset = 2;
7750             }
7751           }
7752           NumRORefs = Record[RefListStartIndex - NumRORefsOffset];
7753         }
7754         NumRefs = Record[NumRefsIndex];
7755       }
7756 
7757       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7758       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
7759       assert(Record.size() >= RefListStartIndex + NumRefs &&
7760              "Record size inconsistent with number of references");
7761       std::vector<ValueInfo> Refs = makeRefList(
7762           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
7763       bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE);
7764       std::vector<FunctionSummary::EdgeTy> Edges = makeCallList(
7765           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
7766           IsOldProfileFormat, HasProfile, false);
7767       ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID));
7768       setSpecialRefs(Refs, NumRORefs, NumWORefs);
7769       auto FS = std::make_unique<FunctionSummary>(
7770           Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount,
7771           std::move(Refs), std::move(Edges), std::move(PendingTypeTests),
7772           std::move(PendingTypeTestAssumeVCalls),
7773           std::move(PendingTypeCheckedLoadVCalls),
7774           std::move(PendingTypeTestAssumeConstVCalls),
7775           std::move(PendingTypeCheckedLoadConstVCalls),
7776           std::move(PendingParamAccesses), std::move(PendingCallsites),
7777           std::move(PendingAllocs));
7778       LastSeenSummary = FS.get();
7779       LastSeenGUID = VI.getGUID();
7780       FS->setModulePath(ModuleIdMap[ModuleId]);
7781       TheIndex.addGlobalValueSummary(VI, std::move(FS));
7782       break;
7783     }
7784     // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid]
7785     // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as
7786     // they expect all aliasee summaries to be available.
7787     case bitc::FS_COMBINED_ALIAS: {
7788       unsigned ValueID = Record[0];
7789       uint64_t ModuleId = Record[1];
7790       uint64_t RawFlags = Record[2];
7791       unsigned AliaseeValueId = Record[3];
7792       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7793       auto AS = std::make_unique<AliasSummary>(Flags);
7794       LastSeenSummary = AS.get();
7795       AS->setModulePath(ModuleIdMap[ModuleId]);
7796 
7797       auto AliaseeVI = std::get<0>(getValueInfoFromValueId(AliaseeValueId));
7798       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath());
7799       AS->setAliasee(AliaseeVI, AliaseeInModule);
7800 
7801       ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID));
7802       LastSeenGUID = VI.getGUID();
7803       TheIndex.addGlobalValueSummary(VI, std::move(AS));
7804       break;
7805     }
7806     // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid]
7807     case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: {
7808       unsigned ValueID = Record[0];
7809       uint64_t ModuleId = Record[1];
7810       uint64_t RawFlags = Record[2];
7811       unsigned RefArrayStart = 3;
7812       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
7813                                       /* WriteOnly */ false,
7814                                       /* Constant */ false,
7815                                       GlobalObject::VCallVisibilityPublic);
7816       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7817       if (Version >= 5) {
7818         GVF = getDecodedGVarFlags(Record[3]);
7819         RefArrayStart = 4;
7820       }
7821       std::vector<ValueInfo> Refs =
7822           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
7823       auto FS =
7824           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
7825       LastSeenSummary = FS.get();
7826       FS->setModulePath(ModuleIdMap[ModuleId]);
7827       ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID));
7828       LastSeenGUID = VI.getGUID();
7829       TheIndex.addGlobalValueSummary(VI, std::move(FS));
7830       break;
7831     }
7832     // FS_COMBINED_ORIGINAL_NAME: [original_name]
7833     case bitc::FS_COMBINED_ORIGINAL_NAME: {
7834       uint64_t OriginalName = Record[0];
7835       if (!LastSeenSummary)
7836         return error("Name attachment that does not follow a combined record");
7837       LastSeenSummary->setOriginalName(OriginalName);
7838       TheIndex.addOriginalName(LastSeenGUID, OriginalName);
7839       // Reset the LastSeenSummary
7840       LastSeenSummary = nullptr;
7841       LastSeenGUID = 0;
7842       break;
7843     }
7844     case bitc::FS_TYPE_TESTS:
7845       assert(PendingTypeTests.empty());
7846       llvm::append_range(PendingTypeTests, Record);
7847       break;
7848 
7849     case bitc::FS_TYPE_TEST_ASSUME_VCALLS:
7850       assert(PendingTypeTestAssumeVCalls.empty());
7851       for (unsigned I = 0; I != Record.size(); I += 2)
7852         PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]});
7853       break;
7854 
7855     case bitc::FS_TYPE_CHECKED_LOAD_VCALLS:
7856       assert(PendingTypeCheckedLoadVCalls.empty());
7857       for (unsigned I = 0; I != Record.size(); I += 2)
7858         PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]});
7859       break;
7860 
7861     case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL:
7862       PendingTypeTestAssumeConstVCalls.push_back(
7863           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
7864       break;
7865 
7866     case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL:
7867       PendingTypeCheckedLoadConstVCalls.push_back(
7868           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
7869       break;
7870 
7871     case bitc::FS_CFI_FUNCTION_DEFS: {
7872       std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs();
7873       for (unsigned I = 0; I != Record.size(); I += 2)
7874         CfiFunctionDefs.insert(
7875             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
7876       break;
7877     }
7878 
7879     case bitc::FS_CFI_FUNCTION_DECLS: {
7880       std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls();
7881       for (unsigned I = 0; I != Record.size(); I += 2)
7882         CfiFunctionDecls.insert(
7883             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
7884       break;
7885     }
7886 
7887     case bitc::FS_TYPE_ID:
7888       parseTypeIdSummaryRecord(Record, Strtab, TheIndex);
7889       break;
7890 
7891     case bitc::FS_TYPE_ID_METADATA:
7892       parseTypeIdCompatibleVtableSummaryRecord(Record);
7893       break;
7894 
7895     case bitc::FS_BLOCK_COUNT:
7896       TheIndex.addBlockCount(Record[0]);
7897       break;
7898 
7899     case bitc::FS_PARAM_ACCESS: {
7900       PendingParamAccesses = parseParamAccesses(Record);
7901       break;
7902     }
7903 
7904     case bitc::FS_STACK_IDS: { // [n x stackid]
7905       // Save stack ids in the reader to consult when adding stack ids from the
7906       // lists in the stack node and alloc node entries.
7907       StackIds = ArrayRef<uint64_t>(Record);
7908       break;
7909     }
7910 
7911     case bitc::FS_PERMODULE_CALLSITE_INFO: {
7912       unsigned ValueID = Record[0];
7913       SmallVector<unsigned> StackIdList;
7914       for (auto R = Record.begin() + 1; R != Record.end(); R++) {
7915         assert(*R < StackIds.size());
7916         StackIdList.push_back(TheIndex.addOrGetStackIdIndex(StackIds[*R]));
7917       }
7918       ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID));
7919       PendingCallsites.push_back(CallsiteInfo({VI, std::move(StackIdList)}));
7920       break;
7921     }
7922 
7923     case bitc::FS_COMBINED_CALLSITE_INFO: {
7924       auto RecordIter = Record.begin();
7925       unsigned ValueID = *RecordIter++;
7926       unsigned NumStackIds = *RecordIter++;
7927       unsigned NumVersions = *RecordIter++;
7928       assert(Record.size() == 3 + NumStackIds + NumVersions);
7929       SmallVector<unsigned> StackIdList;
7930       for (unsigned J = 0; J < NumStackIds; J++) {
7931         assert(*RecordIter < StackIds.size());
7932         StackIdList.push_back(
7933             TheIndex.addOrGetStackIdIndex(StackIds[*RecordIter++]));
7934       }
7935       SmallVector<unsigned> Versions;
7936       for (unsigned J = 0; J < NumVersions; J++)
7937         Versions.push_back(*RecordIter++);
7938       ValueInfo VI = std::get<0>(
7939           getValueInfoFromValueId</*AllowNullValueInfo*/ true>(ValueID));
7940       PendingCallsites.push_back(
7941           CallsiteInfo({VI, std::move(Versions), std::move(StackIdList)}));
7942       break;
7943     }
7944 
7945     case bitc::FS_PERMODULE_ALLOC_INFO: {
7946       unsigned I = 0;
7947       std::vector<MIBInfo> MIBs;
7948       while (I < Record.size()) {
7949         assert(Record.size() - I >= 2);
7950         AllocationType AllocType = (AllocationType)Record[I++];
7951         unsigned NumStackEntries = Record[I++];
7952         assert(Record.size() - I >= NumStackEntries);
7953         SmallVector<unsigned> StackIdList;
7954         for (unsigned J = 0; J < NumStackEntries; J++) {
7955           assert(Record[I] < StackIds.size());
7956           StackIdList.push_back(
7957               TheIndex.addOrGetStackIdIndex(StackIds[Record[I++]]));
7958         }
7959         MIBs.push_back(MIBInfo(AllocType, std::move(StackIdList)));
7960       }
7961       PendingAllocs.push_back(AllocInfo(std::move(MIBs)));
7962       break;
7963     }
7964 
7965     case bitc::FS_COMBINED_ALLOC_INFO: {
7966       unsigned I = 0;
7967       std::vector<MIBInfo> MIBs;
7968       unsigned NumMIBs = Record[I++];
7969       unsigned NumVersions = Record[I++];
7970       unsigned MIBsRead = 0;
7971       while (MIBsRead++ < NumMIBs) {
7972         assert(Record.size() - I >= 2);
7973         AllocationType AllocType = (AllocationType)Record[I++];
7974         unsigned NumStackEntries = Record[I++];
7975         assert(Record.size() - I >= NumStackEntries);
7976         SmallVector<unsigned> StackIdList;
7977         for (unsigned J = 0; J < NumStackEntries; J++) {
7978           assert(Record[I] < StackIds.size());
7979           StackIdList.push_back(
7980               TheIndex.addOrGetStackIdIndex(StackIds[Record[I++]]));
7981         }
7982         MIBs.push_back(MIBInfo(AllocType, std::move(StackIdList)));
7983       }
7984       assert(Record.size() - I >= NumVersions);
7985       SmallVector<uint8_t> Versions;
7986       for (unsigned J = 0; J < NumVersions; J++)
7987         Versions.push_back(Record[I++]);
7988       PendingAllocs.push_back(
7989           AllocInfo(std::move(Versions), std::move(MIBs)));
7990       break;
7991     }
7992     }
7993   }
7994   llvm_unreachable("Exit infinite loop");
7995 }
7996 
7997 // Parse the  module string table block into the Index.
7998 // This populates the ModulePathStringTable map in the index.
7999 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() {
8000   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID))
8001     return Err;
8002 
8003   SmallVector<uint64_t, 64> Record;
8004 
8005   SmallString<128> ModulePath;
8006   ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr;
8007 
8008   while (true) {
8009     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
8010     if (!MaybeEntry)
8011       return MaybeEntry.takeError();
8012     BitstreamEntry Entry = MaybeEntry.get();
8013 
8014     switch (Entry.Kind) {
8015     case BitstreamEntry::SubBlock: // Handled for us already.
8016     case BitstreamEntry::Error:
8017       return error("Malformed block");
8018     case BitstreamEntry::EndBlock:
8019       return Error::success();
8020     case BitstreamEntry::Record:
8021       // The interesting case.
8022       break;
8023     }
8024 
8025     Record.clear();
8026     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
8027     if (!MaybeRecord)
8028       return MaybeRecord.takeError();
8029     switch (MaybeRecord.get()) {
8030     default: // Default behavior: ignore.
8031       break;
8032     case bitc::MST_CODE_ENTRY: {
8033       // MST_ENTRY: [modid, namechar x N]
8034       uint64_t ModuleId = Record[0];
8035 
8036       if (convertToString(Record, 1, ModulePath))
8037         return error("Invalid record");
8038 
8039       LastSeenModule = TheIndex.addModule(ModulePath);
8040       ModuleIdMap[ModuleId] = LastSeenModule->first();
8041 
8042       ModulePath.clear();
8043       break;
8044     }
8045     /// MST_CODE_HASH: [5*i32]
8046     case bitc::MST_CODE_HASH: {
8047       if (Record.size() != 5)
8048         return error("Invalid hash length " + Twine(Record.size()).str());
8049       if (!LastSeenModule)
8050         return error("Invalid hash that does not follow a module path");
8051       int Pos = 0;
8052       for (auto &Val : Record) {
8053         assert(!(Val >> 32) && "Unexpected high bits set");
8054         LastSeenModule->second[Pos++] = Val;
8055       }
8056       // Reset LastSeenModule to avoid overriding the hash unexpectedly.
8057       LastSeenModule = nullptr;
8058       break;
8059     }
8060     }
8061   }
8062   llvm_unreachable("Exit infinite loop");
8063 }
8064 
8065 namespace {
8066 
8067 // FIXME: This class is only here to support the transition to llvm::Error. It
8068 // will be removed once this transition is complete. Clients should prefer to
8069 // deal with the Error value directly, rather than converting to error_code.
8070 class BitcodeErrorCategoryType : public std::error_category {
8071   const char *name() const noexcept override {
8072     return "llvm.bitcode";
8073   }
8074 
8075   std::string message(int IE) const override {
8076     BitcodeError E = static_cast<BitcodeError>(IE);
8077     switch (E) {
8078     case BitcodeError::CorruptedBitcode:
8079       return "Corrupted bitcode";
8080     }
8081     llvm_unreachable("Unknown error type!");
8082   }
8083 };
8084 
8085 } // end anonymous namespace
8086 
8087 const std::error_category &llvm::BitcodeErrorCategory() {
8088   static BitcodeErrorCategoryType ErrorCategory;
8089   return ErrorCategory;
8090 }
8091 
8092 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream,
8093                                             unsigned Block, unsigned RecordID) {
8094   if (Error Err = Stream.EnterSubBlock(Block))
8095     return std::move(Err);
8096 
8097   StringRef Strtab;
8098   while (true) {
8099     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
8100     if (!MaybeEntry)
8101       return MaybeEntry.takeError();
8102     llvm::BitstreamEntry Entry = MaybeEntry.get();
8103 
8104     switch (Entry.Kind) {
8105     case BitstreamEntry::EndBlock:
8106       return Strtab;
8107 
8108     case BitstreamEntry::Error:
8109       return error("Malformed block");
8110 
8111     case BitstreamEntry::SubBlock:
8112       if (Error Err = Stream.SkipBlock())
8113         return std::move(Err);
8114       break;
8115 
8116     case BitstreamEntry::Record:
8117       StringRef Blob;
8118       SmallVector<uint64_t, 1> Record;
8119       Expected<unsigned> MaybeRecord =
8120           Stream.readRecord(Entry.ID, Record, &Blob);
8121       if (!MaybeRecord)
8122         return MaybeRecord.takeError();
8123       if (MaybeRecord.get() == RecordID)
8124         Strtab = Blob;
8125       break;
8126     }
8127   }
8128 }
8129 
8130 //===----------------------------------------------------------------------===//
8131 // External interface
8132 //===----------------------------------------------------------------------===//
8133 
8134 Expected<std::vector<BitcodeModule>>
8135 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) {
8136   auto FOrErr = getBitcodeFileContents(Buffer);
8137   if (!FOrErr)
8138     return FOrErr.takeError();
8139   return std::move(FOrErr->Mods);
8140 }
8141 
8142 Expected<BitcodeFileContents>
8143 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) {
8144   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
8145   if (!StreamOrErr)
8146     return StreamOrErr.takeError();
8147   BitstreamCursor &Stream = *StreamOrErr;
8148 
8149   BitcodeFileContents F;
8150   while (true) {
8151     uint64_t BCBegin = Stream.getCurrentByteNo();
8152 
8153     // We may be consuming bitcode from a client that leaves garbage at the end
8154     // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to
8155     // the end that there cannot possibly be another module, stop looking.
8156     if (BCBegin + 8 >= Stream.getBitcodeBytes().size())
8157       return F;
8158 
8159     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
8160     if (!MaybeEntry)
8161       return MaybeEntry.takeError();
8162     llvm::BitstreamEntry Entry = MaybeEntry.get();
8163 
8164     switch (Entry.Kind) {
8165     case BitstreamEntry::EndBlock:
8166     case BitstreamEntry::Error:
8167       return error("Malformed block");
8168 
8169     case BitstreamEntry::SubBlock: {
8170       uint64_t IdentificationBit = -1ull;
8171       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
8172         IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8;
8173         if (Error Err = Stream.SkipBlock())
8174           return std::move(Err);
8175 
8176         {
8177           Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
8178           if (!MaybeEntry)
8179             return MaybeEntry.takeError();
8180           Entry = MaybeEntry.get();
8181         }
8182 
8183         if (Entry.Kind != BitstreamEntry::SubBlock ||
8184             Entry.ID != bitc::MODULE_BLOCK_ID)
8185           return error("Malformed block");
8186       }
8187 
8188       if (Entry.ID == bitc::MODULE_BLOCK_ID) {
8189         uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8;
8190         if (Error Err = Stream.SkipBlock())
8191           return std::move(Err);
8192 
8193         F.Mods.push_back({Stream.getBitcodeBytes().slice(
8194                               BCBegin, Stream.getCurrentByteNo() - BCBegin),
8195                           Buffer.getBufferIdentifier(), IdentificationBit,
8196                           ModuleBit});
8197         continue;
8198       }
8199 
8200       if (Entry.ID == bitc::STRTAB_BLOCK_ID) {
8201         Expected<StringRef> Strtab =
8202             readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB);
8203         if (!Strtab)
8204           return Strtab.takeError();
8205         // This string table is used by every preceding bitcode module that does
8206         // not have its own string table. A bitcode file may have multiple
8207         // string tables if it was created by binary concatenation, for example
8208         // with "llvm-cat -b".
8209         for (BitcodeModule &I : llvm::reverse(F.Mods)) {
8210           if (!I.Strtab.empty())
8211             break;
8212           I.Strtab = *Strtab;
8213         }
8214         // Similarly, the string table is used by every preceding symbol table;
8215         // normally there will be just one unless the bitcode file was created
8216         // by binary concatenation.
8217         if (!F.Symtab.empty() && F.StrtabForSymtab.empty())
8218           F.StrtabForSymtab = *Strtab;
8219         continue;
8220       }
8221 
8222       if (Entry.ID == bitc::SYMTAB_BLOCK_ID) {
8223         Expected<StringRef> SymtabOrErr =
8224             readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB);
8225         if (!SymtabOrErr)
8226           return SymtabOrErr.takeError();
8227 
8228         // We can expect the bitcode file to have multiple symbol tables if it
8229         // was created by binary concatenation. In that case we silently
8230         // ignore any subsequent symbol tables, which is fine because this is a
8231         // low level function. The client is expected to notice that the number
8232         // of modules in the symbol table does not match the number of modules
8233         // in the input file and regenerate the symbol table.
8234         if (F.Symtab.empty())
8235           F.Symtab = *SymtabOrErr;
8236         continue;
8237       }
8238 
8239       if (Error Err = Stream.SkipBlock())
8240         return std::move(Err);
8241       continue;
8242     }
8243     case BitstreamEntry::Record:
8244       if (Error E = Stream.skipRecord(Entry.ID).takeError())
8245         return std::move(E);
8246       continue;
8247     }
8248   }
8249 }
8250 
8251 /// Get a lazy one-at-time loading module from bitcode.
8252 ///
8253 /// This isn't always used in a lazy context.  In particular, it's also used by
8254 /// \a parseModule().  If this is truly lazy, then we need to eagerly pull
8255 /// in forward-referenced functions from block address references.
8256 ///
8257 /// \param[in] MaterializeAll Set to \c true if we should materialize
8258 /// everything.
8259 Expected<std::unique_ptr<Module>>
8260 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll,
8261                              bool ShouldLazyLoadMetadata, bool IsImporting,
8262                              ParserCallbacks Callbacks) {
8263   BitstreamCursor Stream(Buffer);
8264 
8265   std::string ProducerIdentification;
8266   if (IdentificationBit != -1ull) {
8267     if (Error JumpFailed = Stream.JumpToBit(IdentificationBit))
8268       return std::move(JumpFailed);
8269     if (Error E =
8270             readIdentificationBlock(Stream).moveInto(ProducerIdentification))
8271       return std::move(E);
8272   }
8273 
8274   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
8275     return std::move(JumpFailed);
8276   auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification,
8277                               Context);
8278 
8279   std::unique_ptr<Module> M =
8280       std::make_unique<Module>(ModuleIdentifier, Context);
8281   M->setMaterializer(R);
8282 
8283   // Delay parsing Metadata if ShouldLazyLoadMetadata is true.
8284   if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata,
8285                                       IsImporting, Callbacks))
8286     return std::move(Err);
8287 
8288   if (MaterializeAll) {
8289     // Read in the entire module, and destroy the BitcodeReader.
8290     if (Error Err = M->materializeAll())
8291       return std::move(Err);
8292   } else {
8293     // Resolve forward references from blockaddresses.
8294     if (Error Err = R->materializeForwardReferencedFunctions())
8295       return std::move(Err);
8296   }
8297 
8298   return std::move(M);
8299 }
8300 
8301 Expected<std::unique_ptr<Module>>
8302 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata,
8303                              bool IsImporting, ParserCallbacks Callbacks) {
8304   return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting,
8305                        Callbacks);
8306 }
8307 
8308 // Parse the specified bitcode buffer and merge the index into CombinedIndex.
8309 // We don't use ModuleIdentifier here because the client may need to control the
8310 // module path used in the combined summary (e.g. when reading summaries for
8311 // regular LTO modules).
8312 Error BitcodeModule::readSummary(
8313     ModuleSummaryIndex &CombinedIndex, StringRef ModulePath,
8314     std::function<bool(GlobalValue::GUID)> IsPrevailing) {
8315   BitstreamCursor Stream(Buffer);
8316   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
8317     return JumpFailed;
8318 
8319   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex,
8320                                     ModulePath, IsPrevailing);
8321   return R.parseModule();
8322 }
8323 
8324 // Parse the specified bitcode buffer, returning the function info index.
8325 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() {
8326   BitstreamCursor Stream(Buffer);
8327   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
8328     return std::move(JumpFailed);
8329 
8330   auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false);
8331   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index,
8332                                     ModuleIdentifier, 0);
8333 
8334   if (Error Err = R.parseModule())
8335     return std::move(Err);
8336 
8337   return std::move(Index);
8338 }
8339 
8340 static Expected<std::pair<bool, bool>>
8341 getEnableSplitLTOUnitAndUnifiedFlag(BitstreamCursor &Stream,
8342                                                  unsigned ID,
8343                                                  BitcodeLTOInfo &LTOInfo) {
8344   if (Error Err = Stream.EnterSubBlock(ID))
8345     return std::move(Err);
8346   SmallVector<uint64_t, 64> Record;
8347 
8348   while (true) {
8349     BitstreamEntry Entry;
8350     std::pair<bool, bool> Result = {false,false};
8351     if (Error E = Stream.advanceSkippingSubblocks().moveInto(Entry))
8352       return std::move(E);
8353 
8354     switch (Entry.Kind) {
8355     case BitstreamEntry::SubBlock: // Handled for us already.
8356     case BitstreamEntry::Error:
8357       return error("Malformed block");
8358     case BitstreamEntry::EndBlock: {
8359       // If no flags record found, set both flags to false.
8360       return Result;
8361     }
8362     case BitstreamEntry::Record:
8363       // The interesting case.
8364       break;
8365     }
8366 
8367     // Look for the FS_FLAGS record.
8368     Record.clear();
8369     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
8370     if (!MaybeBitCode)
8371       return MaybeBitCode.takeError();
8372     switch (MaybeBitCode.get()) {
8373     default: // Default behavior: ignore.
8374       break;
8375     case bitc::FS_FLAGS: { // [flags]
8376       uint64_t Flags = Record[0];
8377       // Scan flags.
8378       assert(Flags <= 0x2ff && "Unexpected bits in flag");
8379 
8380       bool EnableSplitLTOUnit = Flags & 0x8;
8381       bool UnifiedLTO = Flags & 0x200;
8382       Result = {EnableSplitLTOUnit, UnifiedLTO};
8383 
8384       return Result;
8385     }
8386     }
8387   }
8388   llvm_unreachable("Exit infinite loop");
8389 }
8390 
8391 // Check if the given bitcode buffer contains a global value summary block.
8392 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() {
8393   BitstreamCursor Stream(Buffer);
8394   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
8395     return std::move(JumpFailed);
8396 
8397   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
8398     return std::move(Err);
8399 
8400   while (true) {
8401     llvm::BitstreamEntry Entry;
8402     if (Error E = Stream.advance().moveInto(Entry))
8403       return std::move(E);
8404 
8405     switch (Entry.Kind) {
8406     case BitstreamEntry::Error:
8407       return error("Malformed block");
8408     case BitstreamEntry::EndBlock:
8409       return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false,
8410                             /*EnableSplitLTOUnit=*/false, /*UnifiedLTO=*/false};
8411 
8412     case BitstreamEntry::SubBlock:
8413       if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) {
8414         BitcodeLTOInfo LTOInfo;
8415         Expected<std::pair<bool, bool>> Flags =
8416             getEnableSplitLTOUnitAndUnifiedFlag(Stream, Entry.ID, LTOInfo);
8417         if (!Flags)
8418           return Flags.takeError();
8419         std::tie(LTOInfo.EnableSplitLTOUnit, LTOInfo.UnifiedLTO) = Flags.get();
8420         LTOInfo.IsThinLTO = true;
8421         LTOInfo.HasSummary = true;
8422         return LTOInfo;
8423       }
8424 
8425       if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) {
8426         BitcodeLTOInfo LTOInfo;
8427         Expected<std::pair<bool, bool>> Flags =
8428             getEnableSplitLTOUnitAndUnifiedFlag(Stream, Entry.ID, LTOInfo);
8429         if (!Flags)
8430           return Flags.takeError();
8431         std::tie(LTOInfo.EnableSplitLTOUnit, LTOInfo.UnifiedLTO) = Flags.get();
8432         LTOInfo.IsThinLTO = false;
8433         LTOInfo.HasSummary = true;
8434         return LTOInfo;
8435       }
8436 
8437       // Ignore other sub-blocks.
8438       if (Error Err = Stream.SkipBlock())
8439         return std::move(Err);
8440       continue;
8441 
8442     case BitstreamEntry::Record:
8443       if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID))
8444         continue;
8445       else
8446         return StreamFailed.takeError();
8447     }
8448   }
8449 }
8450 
8451 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) {
8452   Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer);
8453   if (!MsOrErr)
8454     return MsOrErr.takeError();
8455 
8456   if (MsOrErr->size() != 1)
8457     return error("Expected a single module");
8458 
8459   return (*MsOrErr)[0];
8460 }
8461 
8462 Expected<std::unique_ptr<Module>>
8463 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context,
8464                            bool ShouldLazyLoadMetadata, bool IsImporting,
8465                            ParserCallbacks Callbacks) {
8466   Expected<BitcodeModule> BM = getSingleModule(Buffer);
8467   if (!BM)
8468     return BM.takeError();
8469 
8470   return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting,
8471                            Callbacks);
8472 }
8473 
8474 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule(
8475     std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context,
8476     bool ShouldLazyLoadMetadata, bool IsImporting, ParserCallbacks Callbacks) {
8477   auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata,
8478                                      IsImporting, Callbacks);
8479   if (MOrErr)
8480     (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer));
8481   return MOrErr;
8482 }
8483 
8484 Expected<std::unique_ptr<Module>>
8485 BitcodeModule::parseModule(LLVMContext &Context, ParserCallbacks Callbacks) {
8486   return getModuleImpl(Context, true, false, false, Callbacks);
8487   // TODO: Restore the use-lists to the in-memory state when the bitcode was
8488   // written.  We must defer until the Module has been fully materialized.
8489 }
8490 
8491 Expected<std::unique_ptr<Module>>
8492 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context,
8493                        ParserCallbacks Callbacks) {
8494   Expected<BitcodeModule> BM = getSingleModule(Buffer);
8495   if (!BM)
8496     return BM.takeError();
8497 
8498   return BM->parseModule(Context, Callbacks);
8499 }
8500 
8501 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) {
8502   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
8503   if (!StreamOrErr)
8504     return StreamOrErr.takeError();
8505 
8506   return readTriple(*StreamOrErr);
8507 }
8508 
8509 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) {
8510   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
8511   if (!StreamOrErr)
8512     return StreamOrErr.takeError();
8513 
8514   return hasObjCCategory(*StreamOrErr);
8515 }
8516 
8517 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) {
8518   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
8519   if (!StreamOrErr)
8520     return StreamOrErr.takeError();
8521 
8522   return readIdentificationCode(*StreamOrErr);
8523 }
8524 
8525 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer,
8526                                    ModuleSummaryIndex &CombinedIndex) {
8527   Expected<BitcodeModule> BM = getSingleModule(Buffer);
8528   if (!BM)
8529     return BM.takeError();
8530 
8531   return BM->readSummary(CombinedIndex, BM->getModuleIdentifier());
8532 }
8533 
8534 Expected<std::unique_ptr<ModuleSummaryIndex>>
8535 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) {
8536   Expected<BitcodeModule> BM = getSingleModule(Buffer);
8537   if (!BM)
8538     return BM.takeError();
8539 
8540   return BM->getSummary();
8541 }
8542 
8543 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) {
8544   Expected<BitcodeModule> BM = getSingleModule(Buffer);
8545   if (!BM)
8546     return BM.takeError();
8547 
8548   return BM->getLTOInfo();
8549 }
8550 
8551 Expected<std::unique_ptr<ModuleSummaryIndex>>
8552 llvm::getModuleSummaryIndexForFile(StringRef Path,
8553                                    bool IgnoreEmptyThinLTOIndexFile) {
8554   ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr =
8555       MemoryBuffer::getFileOrSTDIN(Path);
8556   if (!FileOrErr)
8557     return errorCodeToError(FileOrErr.getError());
8558   if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize())
8559     return nullptr;
8560   return getModuleSummaryIndex(**FileOrErr);
8561 }
8562