1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Bitcode/BitcodeReader.h" 10 #include "MetadataLoader.h" 11 #include "ValueList.h" 12 #include "llvm/ADT/APFloat.h" 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallString.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/ADT/StringRef.h" 20 #include "llvm/ADT/Twine.h" 21 #include "llvm/Bitcode/BitcodeCommon.h" 22 #include "llvm/Bitcode/LLVMBitCodes.h" 23 #include "llvm/Bitstream/BitstreamReader.h" 24 #include "llvm/Config/llvm-config.h" 25 #include "llvm/IR/Argument.h" 26 #include "llvm/IR/AttributeMask.h" 27 #include "llvm/IR/Attributes.h" 28 #include "llvm/IR/AutoUpgrade.h" 29 #include "llvm/IR/BasicBlock.h" 30 #include "llvm/IR/CallingConv.h" 31 #include "llvm/IR/Comdat.h" 32 #include "llvm/IR/Constant.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/DebugInfo.h" 36 #include "llvm/IR/DebugInfoMetadata.h" 37 #include "llvm/IR/DebugLoc.h" 38 #include "llvm/IR/DerivedTypes.h" 39 #include "llvm/IR/Function.h" 40 #include "llvm/IR/GVMaterializer.h" 41 #include "llvm/IR/GetElementPtrTypeIterator.h" 42 #include "llvm/IR/GlobalAlias.h" 43 #include "llvm/IR/GlobalIFunc.h" 44 #include "llvm/IR/GlobalObject.h" 45 #include "llvm/IR/GlobalValue.h" 46 #include "llvm/IR/GlobalVariable.h" 47 #include "llvm/IR/InlineAsm.h" 48 #include "llvm/IR/InstIterator.h" 49 #include "llvm/IR/InstrTypes.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/IntrinsicsAArch64.h" 54 #include "llvm/IR/IntrinsicsARM.h" 55 #include "llvm/IR/LLVMContext.h" 56 #include "llvm/IR/Metadata.h" 57 #include "llvm/IR/Module.h" 58 #include "llvm/IR/ModuleSummaryIndex.h" 59 #include "llvm/IR/Operator.h" 60 #include "llvm/IR/Type.h" 61 #include "llvm/IR/Value.h" 62 #include "llvm/IR/Verifier.h" 63 #include "llvm/Support/AtomicOrdering.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Compiler.h" 67 #include "llvm/Support/Debug.h" 68 #include "llvm/Support/Error.h" 69 #include "llvm/Support/ErrorHandling.h" 70 #include "llvm/Support/ErrorOr.h" 71 #include "llvm/Support/MathExtras.h" 72 #include "llvm/Support/MemoryBuffer.h" 73 #include "llvm/Support/ModRef.h" 74 #include "llvm/Support/raw_ostream.h" 75 #include "llvm/TargetParser/Triple.h" 76 #include <algorithm> 77 #include <cassert> 78 #include <cstddef> 79 #include <cstdint> 80 #include <deque> 81 #include <map> 82 #include <memory> 83 #include <optional> 84 #include <set> 85 #include <string> 86 #include <system_error> 87 #include <tuple> 88 #include <utility> 89 #include <vector> 90 91 using namespace llvm; 92 93 static cl::opt<bool> PrintSummaryGUIDs( 94 "print-summary-global-ids", cl::init(false), cl::Hidden, 95 cl::desc( 96 "Print the global id for each value when reading the module summary")); 97 98 static cl::opt<bool> ExpandConstantExprs( 99 "expand-constant-exprs", cl::Hidden, 100 cl::desc( 101 "Expand constant expressions to instructions for testing purposes")); 102 103 namespace { 104 105 enum { 106 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 107 }; 108 109 } // end anonymous namespace 110 111 static Error error(const Twine &Message) { 112 return make_error<StringError>( 113 Message, make_error_code(BitcodeError::CorruptedBitcode)); 114 } 115 116 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) { 117 if (!Stream.canSkipToPos(4)) 118 return createStringError(std::errc::illegal_byte_sequence, 119 "file too small to contain bitcode header"); 120 for (unsigned C : {'B', 'C'}) 121 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) { 122 if (Res.get() != C) 123 return createStringError(std::errc::illegal_byte_sequence, 124 "file doesn't start with bitcode header"); 125 } else 126 return Res.takeError(); 127 for (unsigned C : {0x0, 0xC, 0xE, 0xD}) 128 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) { 129 if (Res.get() != C) 130 return createStringError(std::errc::illegal_byte_sequence, 131 "file doesn't start with bitcode header"); 132 } else 133 return Res.takeError(); 134 return Error::success(); 135 } 136 137 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) { 138 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart(); 139 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize(); 140 141 if (Buffer.getBufferSize() & 3) 142 return error("Invalid bitcode signature"); 143 144 // If we have a wrapper header, parse it and ignore the non-bc file contents. 145 // The magic number is 0x0B17C0DE stored in little endian. 146 if (isBitcodeWrapper(BufPtr, BufEnd)) 147 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 148 return error("Invalid bitcode wrapper header"); 149 150 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd)); 151 if (Error Err = hasInvalidBitcodeHeader(Stream)) 152 return std::move(Err); 153 154 return std::move(Stream); 155 } 156 157 /// Convert a string from a record into an std::string, return true on failure. 158 template <typename StrTy> 159 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 160 StrTy &Result) { 161 if (Idx > Record.size()) 162 return true; 163 164 Result.append(Record.begin() + Idx, Record.end()); 165 return false; 166 } 167 168 // Strip all the TBAA attachment for the module. 169 static void stripTBAA(Module *M) { 170 for (auto &F : *M) { 171 if (F.isMaterializable()) 172 continue; 173 for (auto &I : instructions(F)) 174 I.setMetadata(LLVMContext::MD_tbaa, nullptr); 175 } 176 } 177 178 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the 179 /// "epoch" encoded in the bitcode, and return the producer name if any. 180 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) { 181 if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 182 return std::move(Err); 183 184 // Read all the records. 185 SmallVector<uint64_t, 64> Record; 186 187 std::string ProducerIdentification; 188 189 while (true) { 190 BitstreamEntry Entry; 191 if (Error E = Stream.advance().moveInto(Entry)) 192 return std::move(E); 193 194 switch (Entry.Kind) { 195 default: 196 case BitstreamEntry::Error: 197 return error("Malformed block"); 198 case BitstreamEntry::EndBlock: 199 return ProducerIdentification; 200 case BitstreamEntry::Record: 201 // The interesting case. 202 break; 203 } 204 205 // Read a record. 206 Record.clear(); 207 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 208 if (!MaybeBitCode) 209 return MaybeBitCode.takeError(); 210 switch (MaybeBitCode.get()) { 211 default: // Default behavior: reject 212 return error("Invalid value"); 213 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N] 214 convertToString(Record, 0, ProducerIdentification); 215 break; 216 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 217 unsigned epoch = (unsigned)Record[0]; 218 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 219 return error( 220 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 221 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 222 } 223 } 224 } 225 } 226 } 227 228 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) { 229 // We expect a number of well-defined blocks, though we don't necessarily 230 // need to understand them all. 231 while (true) { 232 if (Stream.AtEndOfStream()) 233 return ""; 234 235 BitstreamEntry Entry; 236 if (Error E = Stream.advance().moveInto(Entry)) 237 return std::move(E); 238 239 switch (Entry.Kind) { 240 case BitstreamEntry::EndBlock: 241 case BitstreamEntry::Error: 242 return error("Malformed block"); 243 244 case BitstreamEntry::SubBlock: 245 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) 246 return readIdentificationBlock(Stream); 247 248 // Ignore other sub-blocks. 249 if (Error Err = Stream.SkipBlock()) 250 return std::move(Err); 251 continue; 252 case BitstreamEntry::Record: 253 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 254 return std::move(E); 255 continue; 256 } 257 } 258 } 259 260 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) { 261 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 262 return std::move(Err); 263 264 SmallVector<uint64_t, 64> Record; 265 // Read all the records for this module. 266 267 while (true) { 268 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 269 if (!MaybeEntry) 270 return MaybeEntry.takeError(); 271 BitstreamEntry Entry = MaybeEntry.get(); 272 273 switch (Entry.Kind) { 274 case BitstreamEntry::SubBlock: // Handled for us already. 275 case BitstreamEntry::Error: 276 return error("Malformed block"); 277 case BitstreamEntry::EndBlock: 278 return false; 279 case BitstreamEntry::Record: 280 // The interesting case. 281 break; 282 } 283 284 // Read a record. 285 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 286 if (!MaybeRecord) 287 return MaybeRecord.takeError(); 288 switch (MaybeRecord.get()) { 289 default: 290 break; // Default behavior, ignore unknown content. 291 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 292 std::string S; 293 if (convertToString(Record, 0, S)) 294 return error("Invalid section name record"); 295 // Check for the i386 and other (x86_64, ARM) conventions 296 if (S.find("__DATA,__objc_catlist") != std::string::npos || 297 S.find("__OBJC,__category") != std::string::npos) 298 return true; 299 break; 300 } 301 } 302 Record.clear(); 303 } 304 llvm_unreachable("Exit infinite loop"); 305 } 306 307 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) { 308 // We expect a number of well-defined blocks, though we don't necessarily 309 // need to understand them all. 310 while (true) { 311 BitstreamEntry Entry; 312 if (Error E = Stream.advance().moveInto(Entry)) 313 return std::move(E); 314 315 switch (Entry.Kind) { 316 case BitstreamEntry::Error: 317 return error("Malformed block"); 318 case BitstreamEntry::EndBlock: 319 return false; 320 321 case BitstreamEntry::SubBlock: 322 if (Entry.ID == bitc::MODULE_BLOCK_ID) 323 return hasObjCCategoryInModule(Stream); 324 325 // Ignore other sub-blocks. 326 if (Error Err = Stream.SkipBlock()) 327 return std::move(Err); 328 continue; 329 330 case BitstreamEntry::Record: 331 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 332 return std::move(E); 333 continue; 334 } 335 } 336 } 337 338 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) { 339 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 340 return std::move(Err); 341 342 SmallVector<uint64_t, 64> Record; 343 344 std::string Triple; 345 346 // Read all the records for this module. 347 while (true) { 348 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 349 if (!MaybeEntry) 350 return MaybeEntry.takeError(); 351 BitstreamEntry Entry = MaybeEntry.get(); 352 353 switch (Entry.Kind) { 354 case BitstreamEntry::SubBlock: // Handled for us already. 355 case BitstreamEntry::Error: 356 return error("Malformed block"); 357 case BitstreamEntry::EndBlock: 358 return Triple; 359 case BitstreamEntry::Record: 360 // The interesting case. 361 break; 362 } 363 364 // Read a record. 365 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 366 if (!MaybeRecord) 367 return MaybeRecord.takeError(); 368 switch (MaybeRecord.get()) { 369 default: break; // Default behavior, ignore unknown content. 370 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 371 std::string S; 372 if (convertToString(Record, 0, S)) 373 return error("Invalid triple record"); 374 Triple = S; 375 break; 376 } 377 } 378 Record.clear(); 379 } 380 llvm_unreachable("Exit infinite loop"); 381 } 382 383 static Expected<std::string> readTriple(BitstreamCursor &Stream) { 384 // We expect a number of well-defined blocks, though we don't necessarily 385 // need to understand them all. 386 while (true) { 387 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 388 if (!MaybeEntry) 389 return MaybeEntry.takeError(); 390 BitstreamEntry Entry = MaybeEntry.get(); 391 392 switch (Entry.Kind) { 393 case BitstreamEntry::Error: 394 return error("Malformed block"); 395 case BitstreamEntry::EndBlock: 396 return ""; 397 398 case BitstreamEntry::SubBlock: 399 if (Entry.ID == bitc::MODULE_BLOCK_ID) 400 return readModuleTriple(Stream); 401 402 // Ignore other sub-blocks. 403 if (Error Err = Stream.SkipBlock()) 404 return std::move(Err); 405 continue; 406 407 case BitstreamEntry::Record: 408 if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 409 continue; 410 else 411 return Skipped.takeError(); 412 } 413 } 414 } 415 416 namespace { 417 418 class BitcodeReaderBase { 419 protected: 420 BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab) 421 : Stream(std::move(Stream)), Strtab(Strtab) { 422 this->Stream.setBlockInfo(&BlockInfo); 423 } 424 425 BitstreamBlockInfo BlockInfo; 426 BitstreamCursor Stream; 427 StringRef Strtab; 428 429 /// In version 2 of the bitcode we store names of global values and comdats in 430 /// a string table rather than in the VST. 431 bool UseStrtab = false; 432 433 Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record); 434 435 /// If this module uses a string table, pop the reference to the string table 436 /// and return the referenced string and the rest of the record. Otherwise 437 /// just return the record itself. 438 std::pair<StringRef, ArrayRef<uint64_t>> 439 readNameFromStrtab(ArrayRef<uint64_t> Record); 440 441 Error readBlockInfo(); 442 443 // Contains an arbitrary and optional string identifying the bitcode producer 444 std::string ProducerIdentification; 445 446 Error error(const Twine &Message); 447 }; 448 449 } // end anonymous namespace 450 451 Error BitcodeReaderBase::error(const Twine &Message) { 452 std::string FullMsg = Message.str(); 453 if (!ProducerIdentification.empty()) 454 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " + 455 LLVM_VERSION_STRING "')"; 456 return ::error(FullMsg); 457 } 458 459 Expected<unsigned> 460 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) { 461 if (Record.empty()) 462 return error("Invalid version record"); 463 unsigned ModuleVersion = Record[0]; 464 if (ModuleVersion > 2) 465 return error("Invalid value"); 466 UseStrtab = ModuleVersion >= 2; 467 return ModuleVersion; 468 } 469 470 std::pair<StringRef, ArrayRef<uint64_t>> 471 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) { 472 if (!UseStrtab) 473 return {"", Record}; 474 // Invalid reference. Let the caller complain about the record being empty. 475 if (Record[0] + Record[1] > Strtab.size()) 476 return {"", {}}; 477 return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)}; 478 } 479 480 namespace { 481 482 /// This represents a constant expression or constant aggregate using a custom 483 /// structure internal to the bitcode reader. Later, this structure will be 484 /// expanded by materializeValue() either into a constant expression/aggregate, 485 /// or into an instruction sequence at the point of use. This allows us to 486 /// upgrade bitcode using constant expressions even if this kind of constant 487 /// expression is no longer supported. 488 class BitcodeConstant final : public Value, 489 TrailingObjects<BitcodeConstant, unsigned> { 490 friend TrailingObjects; 491 492 // Value subclass ID: Pick largest possible value to avoid any clashes. 493 static constexpr uint8_t SubclassID = 255; 494 495 public: 496 // Opcodes used for non-expressions. This includes constant aggregates 497 // (struct, array, vector) that might need expansion, as well as non-leaf 498 // constants that don't need expansion (no_cfi, dso_local, blockaddress), 499 // but still go through BitcodeConstant to avoid different uselist orders 500 // between the two cases. 501 static constexpr uint8_t ConstantStructOpcode = 255; 502 static constexpr uint8_t ConstantArrayOpcode = 254; 503 static constexpr uint8_t ConstantVectorOpcode = 253; 504 static constexpr uint8_t NoCFIOpcode = 252; 505 static constexpr uint8_t DSOLocalEquivalentOpcode = 251; 506 static constexpr uint8_t BlockAddressOpcode = 250; 507 static constexpr uint8_t FirstSpecialOpcode = BlockAddressOpcode; 508 509 // Separate struct to make passing different number of parameters to 510 // BitcodeConstant::create() more convenient. 511 struct ExtraInfo { 512 uint8_t Opcode; 513 uint8_t Flags; 514 unsigned Extra; 515 Type *SrcElemTy; 516 517 ExtraInfo(uint8_t Opcode, uint8_t Flags = 0, unsigned Extra = 0, 518 Type *SrcElemTy = nullptr) 519 : Opcode(Opcode), Flags(Flags), Extra(Extra), SrcElemTy(SrcElemTy) {} 520 }; 521 522 uint8_t Opcode; 523 uint8_t Flags; 524 unsigned NumOperands; 525 unsigned Extra; // GEP inrange index or blockaddress BB id. 526 Type *SrcElemTy; // GEP source element type. 527 528 private: 529 BitcodeConstant(Type *Ty, const ExtraInfo &Info, ArrayRef<unsigned> OpIDs) 530 : Value(Ty, SubclassID), Opcode(Info.Opcode), Flags(Info.Flags), 531 NumOperands(OpIDs.size()), Extra(Info.Extra), 532 SrcElemTy(Info.SrcElemTy) { 533 std::uninitialized_copy(OpIDs.begin(), OpIDs.end(), 534 getTrailingObjects<unsigned>()); 535 } 536 537 BitcodeConstant &operator=(const BitcodeConstant &) = delete; 538 539 public: 540 static BitcodeConstant *create(BumpPtrAllocator &A, Type *Ty, 541 const ExtraInfo &Info, 542 ArrayRef<unsigned> OpIDs) { 543 void *Mem = A.Allocate(totalSizeToAlloc<unsigned>(OpIDs.size()), 544 alignof(BitcodeConstant)); 545 return new (Mem) BitcodeConstant(Ty, Info, OpIDs); 546 } 547 548 static bool classof(const Value *V) { return V->getValueID() == SubclassID; } 549 550 ArrayRef<unsigned> getOperandIDs() const { 551 return ArrayRef(getTrailingObjects<unsigned>(), NumOperands); 552 } 553 554 std::optional<unsigned> getInRangeIndex() const { 555 assert(Opcode == Instruction::GetElementPtr); 556 if (Extra == (unsigned)-1) 557 return std::nullopt; 558 return Extra; 559 } 560 561 const char *getOpcodeName() const { 562 return Instruction::getOpcodeName(Opcode); 563 } 564 }; 565 566 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer { 567 LLVMContext &Context; 568 Module *TheModule = nullptr; 569 // Next offset to start scanning for lazy parsing of function bodies. 570 uint64_t NextUnreadBit = 0; 571 // Last function offset found in the VST. 572 uint64_t LastFunctionBlockBit = 0; 573 bool SeenValueSymbolTable = false; 574 uint64_t VSTOffset = 0; 575 576 std::vector<std::string> SectionTable; 577 std::vector<std::string> GCTable; 578 579 std::vector<Type *> TypeList; 580 /// Track type IDs of contained types. Order is the same as the contained 581 /// types of a Type*. This is used during upgrades of typed pointer IR in 582 /// opaque pointer mode. 583 DenseMap<unsigned, SmallVector<unsigned, 1>> ContainedTypeIDs; 584 /// In some cases, we need to create a type ID for a type that was not 585 /// explicitly encoded in the bitcode, or we don't know about at the current 586 /// point. For example, a global may explicitly encode the value type ID, but 587 /// not have a type ID for the pointer to value type, for which we create a 588 /// virtual type ID instead. This map stores the new type ID that was created 589 /// for the given pair of Type and contained type ID. 590 DenseMap<std::pair<Type *, unsigned>, unsigned> VirtualTypeIDs; 591 DenseMap<Function *, unsigned> FunctionTypeIDs; 592 /// Allocator for BitcodeConstants. This should come before ValueList, 593 /// because the ValueList might hold ValueHandles to these constants, so 594 /// ValueList must be destroyed before Alloc. 595 BumpPtrAllocator Alloc; 596 BitcodeReaderValueList ValueList; 597 std::optional<MetadataLoader> MDLoader; 598 std::vector<Comdat *> ComdatList; 599 DenseSet<GlobalObject *> ImplicitComdatObjects; 600 SmallVector<Instruction *, 64> InstructionList; 601 602 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits; 603 std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInits; 604 605 struct FunctionOperandInfo { 606 Function *F; 607 unsigned PersonalityFn; 608 unsigned Prefix; 609 unsigned Prologue; 610 }; 611 std::vector<FunctionOperandInfo> FunctionOperands; 612 613 /// The set of attributes by index. Index zero in the file is for null, and 614 /// is thus not represented here. As such all indices are off by one. 615 std::vector<AttributeList> MAttributes; 616 617 /// The set of attribute groups. 618 std::map<unsigned, AttributeList> MAttributeGroups; 619 620 /// While parsing a function body, this is a list of the basic blocks for the 621 /// function. 622 std::vector<BasicBlock*> FunctionBBs; 623 624 // When reading the module header, this list is populated with functions that 625 // have bodies later in the file. 626 std::vector<Function*> FunctionsWithBodies; 627 628 // When intrinsic functions are encountered which require upgrading they are 629 // stored here with their replacement function. 630 using UpdatedIntrinsicMap = DenseMap<Function *, Function *>; 631 UpdatedIntrinsicMap UpgradedIntrinsics; 632 633 // Several operations happen after the module header has been read, but 634 // before function bodies are processed. This keeps track of whether 635 // we've done this yet. 636 bool SeenFirstFunctionBody = false; 637 638 /// When function bodies are initially scanned, this map contains info about 639 /// where to find deferred function body in the stream. 640 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 641 642 /// When Metadata block is initially scanned when parsing the module, we may 643 /// choose to defer parsing of the metadata. This vector contains info about 644 /// which Metadata blocks are deferred. 645 std::vector<uint64_t> DeferredMetadataInfo; 646 647 /// These are basic blocks forward-referenced by block addresses. They are 648 /// inserted lazily into functions when they're loaded. The basic block ID is 649 /// its index into the vector. 650 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 651 std::deque<Function *> BasicBlockFwdRefQueue; 652 653 /// These are Functions that contain BlockAddresses which refer a different 654 /// Function. When parsing the different Function, queue Functions that refer 655 /// to the different Function. Those Functions must be materialized in order 656 /// to resolve their BlockAddress constants before the different Function 657 /// gets moved into another Module. 658 std::vector<Function *> BackwardRefFunctions; 659 660 /// Indicates that we are using a new encoding for instruction operands where 661 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 662 /// instruction number, for a more compact encoding. Some instruction 663 /// operands are not relative to the instruction ID: basic block numbers, and 664 /// types. Once the old style function blocks have been phased out, we would 665 /// not need this flag. 666 bool UseRelativeIDs = false; 667 668 /// True if all functions will be materialized, negating the need to process 669 /// (e.g.) blockaddress forward references. 670 bool WillMaterializeAllForwardRefs = false; 671 672 bool StripDebugInfo = false; 673 TBAAVerifier TBAAVerifyHelper; 674 675 std::vector<std::string> BundleTags; 676 SmallVector<SyncScope::ID, 8> SSIDs; 677 678 std::optional<ValueTypeCallbackTy> ValueTypeCallback; 679 680 public: 681 BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 682 StringRef ProducerIdentification, LLVMContext &Context); 683 684 Error materializeForwardReferencedFunctions(); 685 686 Error materialize(GlobalValue *GV) override; 687 Error materializeModule() override; 688 std::vector<StructType *> getIdentifiedStructTypes() const override; 689 690 /// Main interface to parsing a bitcode buffer. 691 /// \returns true if an error occurred. 692 Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 693 bool IsImporting, ParserCallbacks Callbacks = {}); 694 695 static uint64_t decodeSignRotatedValue(uint64_t V); 696 697 /// Materialize any deferred Metadata block. 698 Error materializeMetadata() override; 699 700 void setStripDebugInfo() override; 701 702 private: 703 std::vector<StructType *> IdentifiedStructTypes; 704 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 705 StructType *createIdentifiedStructType(LLVMContext &Context); 706 707 static constexpr unsigned InvalidTypeID = ~0u; 708 709 Type *getTypeByID(unsigned ID); 710 Type *getPtrElementTypeByID(unsigned ID); 711 unsigned getContainedTypeID(unsigned ID, unsigned Idx = 0); 712 unsigned getVirtualTypeID(Type *Ty, ArrayRef<unsigned> ContainedTypeIDs = {}); 713 714 void callValueTypeCallback(Value *F, unsigned TypeID); 715 Expected<Value *> materializeValue(unsigned ValID, BasicBlock *InsertBB); 716 Expected<Constant *> getValueForInitializer(unsigned ID); 717 718 Value *getFnValueByID(unsigned ID, Type *Ty, unsigned TyID, 719 BasicBlock *ConstExprInsertBB) { 720 if (Ty && Ty->isMetadataTy()) 721 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 722 return ValueList.getValueFwdRef(ID, Ty, TyID, ConstExprInsertBB); 723 } 724 725 Metadata *getFnMetadataByID(unsigned ID) { 726 return MDLoader->getMetadataFwdRefOrLoad(ID); 727 } 728 729 BasicBlock *getBasicBlock(unsigned ID) const { 730 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 731 return FunctionBBs[ID]; 732 } 733 734 AttributeList getAttributes(unsigned i) const { 735 if (i-1 < MAttributes.size()) 736 return MAttributes[i-1]; 737 return AttributeList(); 738 } 739 740 /// Read a value/type pair out of the specified record from slot 'Slot'. 741 /// Increment Slot past the number of slots used in the record. Return true on 742 /// failure. 743 bool getValueTypePair(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 744 unsigned InstNum, Value *&ResVal, unsigned &TypeID, 745 BasicBlock *ConstExprInsertBB) { 746 if (Slot == Record.size()) return true; 747 unsigned ValNo = (unsigned)Record[Slot++]; 748 // Adjust the ValNo, if it was encoded relative to the InstNum. 749 if (UseRelativeIDs) 750 ValNo = InstNum - ValNo; 751 if (ValNo < InstNum) { 752 // If this is not a forward reference, just return the value we already 753 // have. 754 TypeID = ValueList.getTypeID(ValNo); 755 ResVal = getFnValueByID(ValNo, nullptr, TypeID, ConstExprInsertBB); 756 assert((!ResVal || ResVal->getType() == getTypeByID(TypeID)) && 757 "Incorrect type ID stored for value"); 758 return ResVal == nullptr; 759 } 760 if (Slot == Record.size()) 761 return true; 762 763 TypeID = (unsigned)Record[Slot++]; 764 ResVal = getFnValueByID(ValNo, getTypeByID(TypeID), TypeID, 765 ConstExprInsertBB); 766 return ResVal == nullptr; 767 } 768 769 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 770 /// past the number of slots used by the value in the record. Return true if 771 /// there is an error. 772 bool popValue(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 773 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal, 774 BasicBlock *ConstExprInsertBB) { 775 if (getValue(Record, Slot, InstNum, Ty, TyID, ResVal, ConstExprInsertBB)) 776 return true; 777 // All values currently take a single record slot. 778 ++Slot; 779 return false; 780 } 781 782 /// Like popValue, but does not increment the Slot number. 783 bool getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 784 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal, 785 BasicBlock *ConstExprInsertBB) { 786 ResVal = getValue(Record, Slot, InstNum, Ty, TyID, ConstExprInsertBB); 787 return ResVal == nullptr; 788 } 789 790 /// Version of getValue that returns ResVal directly, or 0 if there is an 791 /// error. 792 Value *getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 793 unsigned InstNum, Type *Ty, unsigned TyID, 794 BasicBlock *ConstExprInsertBB) { 795 if (Slot == Record.size()) return nullptr; 796 unsigned ValNo = (unsigned)Record[Slot]; 797 // Adjust the ValNo, if it was encoded relative to the InstNum. 798 if (UseRelativeIDs) 799 ValNo = InstNum - ValNo; 800 return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB); 801 } 802 803 /// Like getValue, but decodes signed VBRs. 804 Value *getValueSigned(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 805 unsigned InstNum, Type *Ty, unsigned TyID, 806 BasicBlock *ConstExprInsertBB) { 807 if (Slot == Record.size()) return nullptr; 808 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 809 // Adjust the ValNo, if it was encoded relative to the InstNum. 810 if (UseRelativeIDs) 811 ValNo = InstNum - ValNo; 812 return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB); 813 } 814 815 /// Upgrades old-style typeless byval/sret/inalloca attributes by adding the 816 /// corresponding argument's pointee type. Also upgrades intrinsics that now 817 /// require an elementtype attribute. 818 Error propagateAttributeTypes(CallBase *CB, ArrayRef<unsigned> ArgsTys); 819 820 /// Converts alignment exponent (i.e. power of two (or zero)) to the 821 /// corresponding alignment to use. If alignment is too large, returns 822 /// a corresponding error code. 823 Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment); 824 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 825 Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false, 826 ParserCallbacks Callbacks = {}); 827 828 Error parseComdatRecord(ArrayRef<uint64_t> Record); 829 Error parseGlobalVarRecord(ArrayRef<uint64_t> Record); 830 Error parseFunctionRecord(ArrayRef<uint64_t> Record); 831 Error parseGlobalIndirectSymbolRecord(unsigned BitCode, 832 ArrayRef<uint64_t> Record); 833 834 Error parseAttributeBlock(); 835 Error parseAttributeGroupBlock(); 836 Error parseTypeTable(); 837 Error parseTypeTableBody(); 838 Error parseOperandBundleTags(); 839 Error parseSyncScopeNames(); 840 841 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 842 unsigned NameIndex, Triple &TT); 843 void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F, 844 ArrayRef<uint64_t> Record); 845 Error parseValueSymbolTable(uint64_t Offset = 0); 846 Error parseGlobalValueSymbolTable(); 847 Error parseConstants(); 848 Error rememberAndSkipFunctionBodies(); 849 Error rememberAndSkipFunctionBody(); 850 /// Save the positions of the Metadata blocks and skip parsing the blocks. 851 Error rememberAndSkipMetadata(); 852 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType); 853 Error parseFunctionBody(Function *F); 854 Error globalCleanup(); 855 Error resolveGlobalAndIndirectSymbolInits(); 856 Error parseUseLists(); 857 Error findFunctionInStream( 858 Function *F, 859 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 860 861 SyncScope::ID getDecodedSyncScopeID(unsigned Val); 862 }; 863 864 /// Class to manage reading and parsing function summary index bitcode 865 /// files/sections. 866 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase { 867 /// The module index built during parsing. 868 ModuleSummaryIndex &TheIndex; 869 870 /// Indicates whether we have encountered a global value summary section 871 /// yet during parsing. 872 bool SeenGlobalValSummary = false; 873 874 /// Indicates whether we have already parsed the VST, used for error checking. 875 bool SeenValueSymbolTable = false; 876 877 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 878 /// Used to enable on-demand parsing of the VST. 879 uint64_t VSTOffset = 0; 880 881 // Map to save ValueId to ValueInfo association that was recorded in the 882 // ValueSymbolTable. It is used after the VST is parsed to convert 883 // call graph edges read from the function summary from referencing 884 // callees by their ValueId to using the ValueInfo instead, which is how 885 // they are recorded in the summary index being built. 886 // We save a GUID which refers to the same global as the ValueInfo, but 887 // ignoring the linkage, i.e. for values other than local linkage they are 888 // identical (this is the second tuple member). 889 // The third tuple member is the real GUID of the ValueInfo. 890 DenseMap<unsigned, 891 std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID>> 892 ValueIdToValueInfoMap; 893 894 /// Map populated during module path string table parsing, from the 895 /// module ID to a string reference owned by the index's module 896 /// path string table, used to correlate with combined index 897 /// summary records. 898 DenseMap<uint64_t, StringRef> ModuleIdMap; 899 900 /// Original source file name recorded in a bitcode record. 901 std::string SourceFileName; 902 903 /// The string identifier given to this module by the client, normally the 904 /// path to the bitcode file. 905 StringRef ModulePath; 906 907 /// For per-module summary indexes, the unique numerical identifier given to 908 /// this module by the client. 909 unsigned ModuleId; 910 911 /// Callback to ask whether a symbol is the prevailing copy when invoked 912 /// during combined index building. 913 std::function<bool(GlobalValue::GUID)> IsPrevailing; 914 915 /// Saves the stack ids from the STACK_IDS record to consult when adding stack 916 /// ids from the lists in the callsite and alloc entries to the index. 917 std::vector<uint64_t> StackIds; 918 919 public: 920 ModuleSummaryIndexBitcodeReader( 921 BitstreamCursor Stream, StringRef Strtab, ModuleSummaryIndex &TheIndex, 922 StringRef ModulePath, unsigned ModuleId, 923 std::function<bool(GlobalValue::GUID)> IsPrevailing = nullptr); 924 925 Error parseModule(); 926 927 private: 928 void setValueGUID(uint64_t ValueID, StringRef ValueName, 929 GlobalValue::LinkageTypes Linkage, 930 StringRef SourceFileName); 931 Error parseValueSymbolTable( 932 uint64_t Offset, 933 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 934 std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record); 935 std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record, 936 bool IsOldProfileFormat, 937 bool HasProfile, 938 bool HasRelBF); 939 Error parseEntireSummary(unsigned ID); 940 Error parseModuleStringTable(); 941 void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record); 942 void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot, 943 TypeIdCompatibleVtableInfo &TypeId); 944 std::vector<FunctionSummary::ParamAccess> 945 parseParamAccesses(ArrayRef<uint64_t> Record); 946 947 template <bool AllowNullValueInfo = false> 948 std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID> 949 getValueInfoFromValueId(unsigned ValueId); 950 951 void addThisModule(); 952 ModuleSummaryIndex::ModuleInfo *getThisModule(); 953 }; 954 955 } // end anonymous namespace 956 957 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx, 958 Error Err) { 959 if (Err) { 960 std::error_code EC; 961 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) { 962 EC = EIB.convertToErrorCode(); 963 Ctx.emitError(EIB.message()); 964 }); 965 return EC; 966 } 967 return std::error_code(); 968 } 969 970 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 971 StringRef ProducerIdentification, 972 LLVMContext &Context) 973 : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context), 974 ValueList(this->Stream.SizeInBytes(), 975 [this](unsigned ValID, BasicBlock *InsertBB) { 976 return materializeValue(ValID, InsertBB); 977 }) { 978 this->ProducerIdentification = std::string(ProducerIdentification); 979 } 980 981 Error BitcodeReader::materializeForwardReferencedFunctions() { 982 if (WillMaterializeAllForwardRefs) 983 return Error::success(); 984 985 // Prevent recursion. 986 WillMaterializeAllForwardRefs = true; 987 988 while (!BasicBlockFwdRefQueue.empty()) { 989 Function *F = BasicBlockFwdRefQueue.front(); 990 BasicBlockFwdRefQueue.pop_front(); 991 assert(F && "Expected valid function"); 992 if (!BasicBlockFwdRefs.count(F)) 993 // Already materialized. 994 continue; 995 996 // Check for a function that isn't materializable to prevent an infinite 997 // loop. When parsing a blockaddress stored in a global variable, there 998 // isn't a trivial way to check if a function will have a body without a 999 // linear search through FunctionsWithBodies, so just check it here. 1000 if (!F->isMaterializable()) 1001 return error("Never resolved function from blockaddress"); 1002 1003 // Try to materialize F. 1004 if (Error Err = materialize(F)) 1005 return Err; 1006 } 1007 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 1008 1009 for (Function *F : BackwardRefFunctions) 1010 if (Error Err = materialize(F)) 1011 return Err; 1012 BackwardRefFunctions.clear(); 1013 1014 // Reset state. 1015 WillMaterializeAllForwardRefs = false; 1016 return Error::success(); 1017 } 1018 1019 //===----------------------------------------------------------------------===// 1020 // Helper functions to implement forward reference resolution, etc. 1021 //===----------------------------------------------------------------------===// 1022 1023 static bool hasImplicitComdat(size_t Val) { 1024 switch (Val) { 1025 default: 1026 return false; 1027 case 1: // Old WeakAnyLinkage 1028 case 4: // Old LinkOnceAnyLinkage 1029 case 10: // Old WeakODRLinkage 1030 case 11: // Old LinkOnceODRLinkage 1031 return true; 1032 } 1033 } 1034 1035 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 1036 switch (Val) { 1037 default: // Map unknown/new linkages to external 1038 case 0: 1039 return GlobalValue::ExternalLinkage; 1040 case 2: 1041 return GlobalValue::AppendingLinkage; 1042 case 3: 1043 return GlobalValue::InternalLinkage; 1044 case 5: 1045 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 1046 case 6: 1047 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 1048 case 7: 1049 return GlobalValue::ExternalWeakLinkage; 1050 case 8: 1051 return GlobalValue::CommonLinkage; 1052 case 9: 1053 return GlobalValue::PrivateLinkage; 1054 case 12: 1055 return GlobalValue::AvailableExternallyLinkage; 1056 case 13: 1057 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 1058 case 14: 1059 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 1060 case 15: 1061 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 1062 case 1: // Old value with implicit comdat. 1063 case 16: 1064 return GlobalValue::WeakAnyLinkage; 1065 case 10: // Old value with implicit comdat. 1066 case 17: 1067 return GlobalValue::WeakODRLinkage; 1068 case 4: // Old value with implicit comdat. 1069 case 18: 1070 return GlobalValue::LinkOnceAnyLinkage; 1071 case 11: // Old value with implicit comdat. 1072 case 19: 1073 return GlobalValue::LinkOnceODRLinkage; 1074 } 1075 } 1076 1077 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) { 1078 FunctionSummary::FFlags Flags; 1079 Flags.ReadNone = RawFlags & 0x1; 1080 Flags.ReadOnly = (RawFlags >> 1) & 0x1; 1081 Flags.NoRecurse = (RawFlags >> 2) & 0x1; 1082 Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1; 1083 Flags.NoInline = (RawFlags >> 4) & 0x1; 1084 Flags.AlwaysInline = (RawFlags >> 5) & 0x1; 1085 Flags.NoUnwind = (RawFlags >> 6) & 0x1; 1086 Flags.MayThrow = (RawFlags >> 7) & 0x1; 1087 Flags.HasUnknownCall = (RawFlags >> 8) & 0x1; 1088 Flags.MustBeUnreachable = (RawFlags >> 9) & 0x1; 1089 return Flags; 1090 } 1091 1092 // Decode the flags for GlobalValue in the summary. The bits for each attribute: 1093 // 1094 // linkage: [0,4), notEligibleToImport: 4, live: 5, local: 6, canAutoHide: 7, 1095 // visibility: [8, 10). 1096 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 1097 uint64_t Version) { 1098 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 1099 // like getDecodedLinkage() above. Any future change to the linkage enum and 1100 // to getDecodedLinkage() will need to be taken into account here as above. 1101 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 1102 auto Visibility = GlobalValue::VisibilityTypes((RawFlags >> 8) & 3); // 2 bits 1103 RawFlags = RawFlags >> 4; 1104 bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3; 1105 // The Live flag wasn't introduced until version 3. For dead stripping 1106 // to work correctly on earlier versions, we must conservatively treat all 1107 // values as live. 1108 bool Live = (RawFlags & 0x2) || Version < 3; 1109 bool Local = (RawFlags & 0x4); 1110 bool AutoHide = (RawFlags & 0x8); 1111 1112 return GlobalValueSummary::GVFlags(Linkage, Visibility, NotEligibleToImport, 1113 Live, Local, AutoHide); 1114 } 1115 1116 // Decode the flags for GlobalVariable in the summary 1117 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) { 1118 return GlobalVarSummary::GVarFlags( 1119 (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false, 1120 (RawFlags & 0x4) ? true : false, 1121 (GlobalObject::VCallVisibility)(RawFlags >> 3)); 1122 } 1123 1124 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 1125 switch (Val) { 1126 default: // Map unknown visibilities to default. 1127 case 0: return GlobalValue::DefaultVisibility; 1128 case 1: return GlobalValue::HiddenVisibility; 1129 case 2: return GlobalValue::ProtectedVisibility; 1130 } 1131 } 1132 1133 static GlobalValue::DLLStorageClassTypes 1134 getDecodedDLLStorageClass(unsigned Val) { 1135 switch (Val) { 1136 default: // Map unknown values to default. 1137 case 0: return GlobalValue::DefaultStorageClass; 1138 case 1: return GlobalValue::DLLImportStorageClass; 1139 case 2: return GlobalValue::DLLExportStorageClass; 1140 } 1141 } 1142 1143 static bool getDecodedDSOLocal(unsigned Val) { 1144 switch(Val) { 1145 default: // Map unknown values to preemptable. 1146 case 0: return false; 1147 case 1: return true; 1148 } 1149 } 1150 1151 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 1152 switch (Val) { 1153 case 0: return GlobalVariable::NotThreadLocal; 1154 default: // Map unknown non-zero value to general dynamic. 1155 case 1: return GlobalVariable::GeneralDynamicTLSModel; 1156 case 2: return GlobalVariable::LocalDynamicTLSModel; 1157 case 3: return GlobalVariable::InitialExecTLSModel; 1158 case 4: return GlobalVariable::LocalExecTLSModel; 1159 } 1160 } 1161 1162 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { 1163 switch (Val) { 1164 default: // Map unknown to UnnamedAddr::None. 1165 case 0: return GlobalVariable::UnnamedAddr::None; 1166 case 1: return GlobalVariable::UnnamedAddr::Global; 1167 case 2: return GlobalVariable::UnnamedAddr::Local; 1168 } 1169 } 1170 1171 static int getDecodedCastOpcode(unsigned Val) { 1172 switch (Val) { 1173 default: return -1; 1174 case bitc::CAST_TRUNC : return Instruction::Trunc; 1175 case bitc::CAST_ZEXT : return Instruction::ZExt; 1176 case bitc::CAST_SEXT : return Instruction::SExt; 1177 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 1178 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 1179 case bitc::CAST_UITOFP : return Instruction::UIToFP; 1180 case bitc::CAST_SITOFP : return Instruction::SIToFP; 1181 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 1182 case bitc::CAST_FPEXT : return Instruction::FPExt; 1183 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 1184 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 1185 case bitc::CAST_BITCAST : return Instruction::BitCast; 1186 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 1187 } 1188 } 1189 1190 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) { 1191 bool IsFP = Ty->isFPOrFPVectorTy(); 1192 // UnOps are only valid for int/fp or vector of int/fp types 1193 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1194 return -1; 1195 1196 switch (Val) { 1197 default: 1198 return -1; 1199 case bitc::UNOP_FNEG: 1200 return IsFP ? Instruction::FNeg : -1; 1201 } 1202 } 1203 1204 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 1205 bool IsFP = Ty->isFPOrFPVectorTy(); 1206 // BinOps are only valid for int/fp or vector of int/fp types 1207 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1208 return -1; 1209 1210 switch (Val) { 1211 default: 1212 return -1; 1213 case bitc::BINOP_ADD: 1214 return IsFP ? Instruction::FAdd : Instruction::Add; 1215 case bitc::BINOP_SUB: 1216 return IsFP ? Instruction::FSub : Instruction::Sub; 1217 case bitc::BINOP_MUL: 1218 return IsFP ? Instruction::FMul : Instruction::Mul; 1219 case bitc::BINOP_UDIV: 1220 return IsFP ? -1 : Instruction::UDiv; 1221 case bitc::BINOP_SDIV: 1222 return IsFP ? Instruction::FDiv : Instruction::SDiv; 1223 case bitc::BINOP_UREM: 1224 return IsFP ? -1 : Instruction::URem; 1225 case bitc::BINOP_SREM: 1226 return IsFP ? Instruction::FRem : Instruction::SRem; 1227 case bitc::BINOP_SHL: 1228 return IsFP ? -1 : Instruction::Shl; 1229 case bitc::BINOP_LSHR: 1230 return IsFP ? -1 : Instruction::LShr; 1231 case bitc::BINOP_ASHR: 1232 return IsFP ? -1 : Instruction::AShr; 1233 case bitc::BINOP_AND: 1234 return IsFP ? -1 : Instruction::And; 1235 case bitc::BINOP_OR: 1236 return IsFP ? -1 : Instruction::Or; 1237 case bitc::BINOP_XOR: 1238 return IsFP ? -1 : Instruction::Xor; 1239 } 1240 } 1241 1242 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 1243 switch (Val) { 1244 default: return AtomicRMWInst::BAD_BINOP; 1245 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 1246 case bitc::RMW_ADD: return AtomicRMWInst::Add; 1247 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 1248 case bitc::RMW_AND: return AtomicRMWInst::And; 1249 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 1250 case bitc::RMW_OR: return AtomicRMWInst::Or; 1251 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 1252 case bitc::RMW_MAX: return AtomicRMWInst::Max; 1253 case bitc::RMW_MIN: return AtomicRMWInst::Min; 1254 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 1255 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 1256 case bitc::RMW_FADD: return AtomicRMWInst::FAdd; 1257 case bitc::RMW_FSUB: return AtomicRMWInst::FSub; 1258 case bitc::RMW_FMAX: return AtomicRMWInst::FMax; 1259 case bitc::RMW_FMIN: return AtomicRMWInst::FMin; 1260 case bitc::RMW_UINC_WRAP: 1261 return AtomicRMWInst::UIncWrap; 1262 case bitc::RMW_UDEC_WRAP: 1263 return AtomicRMWInst::UDecWrap; 1264 } 1265 } 1266 1267 static AtomicOrdering getDecodedOrdering(unsigned Val) { 1268 switch (Val) { 1269 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 1270 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 1271 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 1272 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 1273 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 1274 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 1275 default: // Map unknown orderings to sequentially-consistent. 1276 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 1277 } 1278 } 1279 1280 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 1281 switch (Val) { 1282 default: // Map unknown selection kinds to any. 1283 case bitc::COMDAT_SELECTION_KIND_ANY: 1284 return Comdat::Any; 1285 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 1286 return Comdat::ExactMatch; 1287 case bitc::COMDAT_SELECTION_KIND_LARGEST: 1288 return Comdat::Largest; 1289 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 1290 return Comdat::NoDeduplicate; 1291 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 1292 return Comdat::SameSize; 1293 } 1294 } 1295 1296 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 1297 FastMathFlags FMF; 1298 if (0 != (Val & bitc::UnsafeAlgebra)) 1299 FMF.setFast(); 1300 if (0 != (Val & bitc::AllowReassoc)) 1301 FMF.setAllowReassoc(); 1302 if (0 != (Val & bitc::NoNaNs)) 1303 FMF.setNoNaNs(); 1304 if (0 != (Val & bitc::NoInfs)) 1305 FMF.setNoInfs(); 1306 if (0 != (Val & bitc::NoSignedZeros)) 1307 FMF.setNoSignedZeros(); 1308 if (0 != (Val & bitc::AllowReciprocal)) 1309 FMF.setAllowReciprocal(); 1310 if (0 != (Val & bitc::AllowContract)) 1311 FMF.setAllowContract(true); 1312 if (0 != (Val & bitc::ApproxFunc)) 1313 FMF.setApproxFunc(); 1314 return FMF; 1315 } 1316 1317 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) { 1318 // A GlobalValue with local linkage cannot have a DLL storage class. 1319 if (GV->hasLocalLinkage()) 1320 return; 1321 switch (Val) { 1322 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 1323 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 1324 } 1325 } 1326 1327 Type *BitcodeReader::getTypeByID(unsigned ID) { 1328 // The type table size is always specified correctly. 1329 if (ID >= TypeList.size()) 1330 return nullptr; 1331 1332 if (Type *Ty = TypeList[ID]) 1333 return Ty; 1334 1335 // If we have a forward reference, the only possible case is when it is to a 1336 // named struct. Just create a placeholder for now. 1337 return TypeList[ID] = createIdentifiedStructType(Context); 1338 } 1339 1340 unsigned BitcodeReader::getContainedTypeID(unsigned ID, unsigned Idx) { 1341 auto It = ContainedTypeIDs.find(ID); 1342 if (It == ContainedTypeIDs.end()) 1343 return InvalidTypeID; 1344 1345 if (Idx >= It->second.size()) 1346 return InvalidTypeID; 1347 1348 return It->second[Idx]; 1349 } 1350 1351 Type *BitcodeReader::getPtrElementTypeByID(unsigned ID) { 1352 if (ID >= TypeList.size()) 1353 return nullptr; 1354 1355 Type *Ty = TypeList[ID]; 1356 if (!Ty->isPointerTy()) 1357 return nullptr; 1358 1359 Type *ElemTy = getTypeByID(getContainedTypeID(ID, 0)); 1360 if (!ElemTy) 1361 return nullptr; 1362 1363 assert(cast<PointerType>(Ty)->isOpaqueOrPointeeTypeMatches(ElemTy) && 1364 "Incorrect element type"); 1365 return ElemTy; 1366 } 1367 1368 unsigned BitcodeReader::getVirtualTypeID(Type *Ty, 1369 ArrayRef<unsigned> ChildTypeIDs) { 1370 unsigned ChildTypeID = ChildTypeIDs.empty() ? InvalidTypeID : ChildTypeIDs[0]; 1371 auto CacheKey = std::make_pair(Ty, ChildTypeID); 1372 auto It = VirtualTypeIDs.find(CacheKey); 1373 if (It != VirtualTypeIDs.end()) { 1374 // The cmpxchg return value is the only place we need more than one 1375 // contained type ID, however the second one will always be the same (i1), 1376 // so we don't need to include it in the cache key. This asserts that the 1377 // contained types are indeed as expected and there are no collisions. 1378 assert((ChildTypeIDs.empty() || 1379 ContainedTypeIDs[It->second] == ChildTypeIDs) && 1380 "Incorrect cached contained type IDs"); 1381 return It->second; 1382 } 1383 1384 #ifndef NDEBUG 1385 if (!Ty->isOpaquePointerTy()) { 1386 assert(Ty->getNumContainedTypes() == ChildTypeIDs.size() && 1387 "Wrong number of contained types"); 1388 for (auto Pair : zip(Ty->subtypes(), ChildTypeIDs)) { 1389 assert(std::get<0>(Pair) == getTypeByID(std::get<1>(Pair)) && 1390 "Incorrect contained type ID"); 1391 } 1392 } 1393 #endif 1394 1395 unsigned TypeID = TypeList.size(); 1396 TypeList.push_back(Ty); 1397 if (!ChildTypeIDs.empty()) 1398 append_range(ContainedTypeIDs[TypeID], ChildTypeIDs); 1399 VirtualTypeIDs.insert({CacheKey, TypeID}); 1400 return TypeID; 1401 } 1402 1403 static bool isConstExprSupported(const BitcodeConstant *BC) { 1404 uint8_t Opcode = BC->Opcode; 1405 1406 // These are not real constant expressions, always consider them supported. 1407 if (Opcode >= BitcodeConstant::FirstSpecialOpcode) 1408 return true; 1409 1410 // If -expand-constant-exprs is set, we want to consider all expressions 1411 // as unsupported. 1412 if (ExpandConstantExprs) 1413 return false; 1414 1415 if (Instruction::isBinaryOp(Opcode)) 1416 return ConstantExpr::isSupportedBinOp(Opcode); 1417 1418 if (Opcode == Instruction::GetElementPtr) 1419 return ConstantExpr::isSupportedGetElementPtr(BC->SrcElemTy); 1420 1421 switch (Opcode) { 1422 case Instruction::FNeg: 1423 case Instruction::Select: 1424 return false; 1425 default: 1426 return true; 1427 } 1428 } 1429 1430 Expected<Value *> BitcodeReader::materializeValue(unsigned StartValID, 1431 BasicBlock *InsertBB) { 1432 // Quickly handle the case where there is no BitcodeConstant to resolve. 1433 if (StartValID < ValueList.size() && ValueList[StartValID] && 1434 !isa<BitcodeConstant>(ValueList[StartValID])) 1435 return ValueList[StartValID]; 1436 1437 SmallDenseMap<unsigned, Value *> MaterializedValues; 1438 SmallVector<unsigned> Worklist; 1439 Worklist.push_back(StartValID); 1440 while (!Worklist.empty()) { 1441 unsigned ValID = Worklist.back(); 1442 if (MaterializedValues.count(ValID)) { 1443 // Duplicate expression that was already handled. 1444 Worklist.pop_back(); 1445 continue; 1446 } 1447 1448 if (ValID >= ValueList.size() || !ValueList[ValID]) 1449 return error("Invalid value ID"); 1450 1451 Value *V = ValueList[ValID]; 1452 auto *BC = dyn_cast<BitcodeConstant>(V); 1453 if (!BC) { 1454 MaterializedValues.insert({ValID, V}); 1455 Worklist.pop_back(); 1456 continue; 1457 } 1458 1459 // Iterate in reverse, so values will get popped from the worklist in 1460 // expected order. 1461 SmallVector<Value *> Ops; 1462 for (unsigned OpID : reverse(BC->getOperandIDs())) { 1463 auto It = MaterializedValues.find(OpID); 1464 if (It != MaterializedValues.end()) 1465 Ops.push_back(It->second); 1466 else 1467 Worklist.push_back(OpID); 1468 } 1469 1470 // Some expressions have not been resolved yet, handle them first and then 1471 // revisit this one. 1472 if (Ops.size() != BC->getOperandIDs().size()) 1473 continue; 1474 std::reverse(Ops.begin(), Ops.end()); 1475 1476 SmallVector<Constant *> ConstOps; 1477 for (Value *Op : Ops) 1478 if (auto *C = dyn_cast<Constant>(Op)) 1479 ConstOps.push_back(C); 1480 1481 // Materialize as constant expression if possible. 1482 if (isConstExprSupported(BC) && ConstOps.size() == Ops.size()) { 1483 Constant *C; 1484 if (Instruction::isCast(BC->Opcode)) { 1485 C = UpgradeBitCastExpr(BC->Opcode, ConstOps[0], BC->getType()); 1486 if (!C) 1487 C = ConstantExpr::getCast(BC->Opcode, ConstOps[0], BC->getType()); 1488 } else if (Instruction::isBinaryOp(BC->Opcode)) { 1489 C = ConstantExpr::get(BC->Opcode, ConstOps[0], ConstOps[1], BC->Flags); 1490 } else { 1491 switch (BC->Opcode) { 1492 case BitcodeConstant::NoCFIOpcode: { 1493 auto *GV = dyn_cast<GlobalValue>(ConstOps[0]); 1494 if (!GV) 1495 return error("no_cfi operand must be GlobalValue"); 1496 C = NoCFIValue::get(GV); 1497 break; 1498 } 1499 case BitcodeConstant::DSOLocalEquivalentOpcode: { 1500 auto *GV = dyn_cast<GlobalValue>(ConstOps[0]); 1501 if (!GV) 1502 return error("dso_local operand must be GlobalValue"); 1503 C = DSOLocalEquivalent::get(GV); 1504 break; 1505 } 1506 case BitcodeConstant::BlockAddressOpcode: { 1507 Function *Fn = dyn_cast<Function>(ConstOps[0]); 1508 if (!Fn) 1509 return error("blockaddress operand must be a function"); 1510 1511 // If the function is already parsed we can insert the block address 1512 // right away. 1513 BasicBlock *BB; 1514 unsigned BBID = BC->Extra; 1515 if (!BBID) 1516 // Invalid reference to entry block. 1517 return error("Invalid ID"); 1518 if (!Fn->empty()) { 1519 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 1520 for (size_t I = 0, E = BBID; I != E; ++I) { 1521 if (BBI == BBE) 1522 return error("Invalid ID"); 1523 ++BBI; 1524 } 1525 BB = &*BBI; 1526 } else { 1527 // Otherwise insert a placeholder and remember it so it can be 1528 // inserted when the function is parsed. 1529 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 1530 if (FwdBBs.empty()) 1531 BasicBlockFwdRefQueue.push_back(Fn); 1532 if (FwdBBs.size() < BBID + 1) 1533 FwdBBs.resize(BBID + 1); 1534 if (!FwdBBs[BBID]) 1535 FwdBBs[BBID] = BasicBlock::Create(Context); 1536 BB = FwdBBs[BBID]; 1537 } 1538 C = BlockAddress::get(Fn, BB); 1539 break; 1540 } 1541 case BitcodeConstant::ConstantStructOpcode: 1542 C = ConstantStruct::get(cast<StructType>(BC->getType()), ConstOps); 1543 break; 1544 case BitcodeConstant::ConstantArrayOpcode: 1545 C = ConstantArray::get(cast<ArrayType>(BC->getType()), ConstOps); 1546 break; 1547 case BitcodeConstant::ConstantVectorOpcode: 1548 C = ConstantVector::get(ConstOps); 1549 break; 1550 case Instruction::ICmp: 1551 case Instruction::FCmp: 1552 C = ConstantExpr::getCompare(BC->Flags, ConstOps[0], ConstOps[1]); 1553 break; 1554 case Instruction::GetElementPtr: 1555 C = ConstantExpr::getGetElementPtr(BC->SrcElemTy, ConstOps[0], 1556 ArrayRef(ConstOps).drop_front(), 1557 BC->Flags, BC->getInRangeIndex()); 1558 break; 1559 case Instruction::ExtractElement: 1560 C = ConstantExpr::getExtractElement(ConstOps[0], ConstOps[1]); 1561 break; 1562 case Instruction::InsertElement: 1563 C = ConstantExpr::getInsertElement(ConstOps[0], ConstOps[1], 1564 ConstOps[2]); 1565 break; 1566 case Instruction::ShuffleVector: { 1567 SmallVector<int, 16> Mask; 1568 ShuffleVectorInst::getShuffleMask(ConstOps[2], Mask); 1569 C = ConstantExpr::getShuffleVector(ConstOps[0], ConstOps[1], Mask); 1570 break; 1571 } 1572 default: 1573 llvm_unreachable("Unhandled bitcode constant"); 1574 } 1575 } 1576 1577 // Cache resolved constant. 1578 ValueList.replaceValueWithoutRAUW(ValID, C); 1579 MaterializedValues.insert({ValID, C}); 1580 Worklist.pop_back(); 1581 continue; 1582 } 1583 1584 if (!InsertBB) 1585 return error(Twine("Value referenced by initializer is an unsupported " 1586 "constant expression of type ") + 1587 BC->getOpcodeName()); 1588 1589 // Materialize as instructions if necessary. 1590 Instruction *I; 1591 if (Instruction::isCast(BC->Opcode)) { 1592 I = CastInst::Create((Instruction::CastOps)BC->Opcode, Ops[0], 1593 BC->getType(), "constexpr", InsertBB); 1594 } else if (Instruction::isUnaryOp(BC->Opcode)) { 1595 I = UnaryOperator::Create((Instruction::UnaryOps)BC->Opcode, Ops[0], 1596 "constexpr", InsertBB); 1597 } else if (Instruction::isBinaryOp(BC->Opcode)) { 1598 I = BinaryOperator::Create((Instruction::BinaryOps)BC->Opcode, Ops[0], 1599 Ops[1], "constexpr", InsertBB); 1600 if (isa<OverflowingBinaryOperator>(I)) { 1601 if (BC->Flags & OverflowingBinaryOperator::NoSignedWrap) 1602 I->setHasNoSignedWrap(); 1603 if (BC->Flags & OverflowingBinaryOperator::NoUnsignedWrap) 1604 I->setHasNoUnsignedWrap(); 1605 } 1606 if (isa<PossiblyExactOperator>(I) && 1607 (BC->Flags & PossiblyExactOperator::IsExact)) 1608 I->setIsExact(); 1609 } else { 1610 switch (BC->Opcode) { 1611 case BitcodeConstant::ConstantVectorOpcode: { 1612 Type *IdxTy = Type::getInt32Ty(BC->getContext()); 1613 Value *V = PoisonValue::get(BC->getType()); 1614 for (auto Pair : enumerate(Ops)) { 1615 Value *Idx = ConstantInt::get(IdxTy, Pair.index()); 1616 V = InsertElementInst::Create(V, Pair.value(), Idx, "constexpr.ins", 1617 InsertBB); 1618 } 1619 I = cast<Instruction>(V); 1620 break; 1621 } 1622 case BitcodeConstant::ConstantStructOpcode: 1623 case BitcodeConstant::ConstantArrayOpcode: { 1624 Value *V = PoisonValue::get(BC->getType()); 1625 for (auto Pair : enumerate(Ops)) 1626 V = InsertValueInst::Create(V, Pair.value(), Pair.index(), 1627 "constexpr.ins", InsertBB); 1628 I = cast<Instruction>(V); 1629 break; 1630 } 1631 case Instruction::ICmp: 1632 case Instruction::FCmp: 1633 I = CmpInst::Create((Instruction::OtherOps)BC->Opcode, 1634 (CmpInst::Predicate)BC->Flags, Ops[0], Ops[1], 1635 "constexpr", InsertBB); 1636 break; 1637 case Instruction::GetElementPtr: 1638 I = GetElementPtrInst::Create(BC->SrcElemTy, Ops[0], 1639 ArrayRef(Ops).drop_front(), "constexpr", 1640 InsertBB); 1641 if (BC->Flags) 1642 cast<GetElementPtrInst>(I)->setIsInBounds(); 1643 break; 1644 case Instruction::Select: 1645 I = SelectInst::Create(Ops[0], Ops[1], Ops[2], "constexpr", InsertBB); 1646 break; 1647 case Instruction::ExtractElement: 1648 I = ExtractElementInst::Create(Ops[0], Ops[1], "constexpr", InsertBB); 1649 break; 1650 case Instruction::InsertElement: 1651 I = InsertElementInst::Create(Ops[0], Ops[1], Ops[2], "constexpr", 1652 InsertBB); 1653 break; 1654 case Instruction::ShuffleVector: 1655 I = new ShuffleVectorInst(Ops[0], Ops[1], Ops[2], "constexpr", 1656 InsertBB); 1657 break; 1658 default: 1659 llvm_unreachable("Unhandled bitcode constant"); 1660 } 1661 } 1662 1663 MaterializedValues.insert({ValID, I}); 1664 Worklist.pop_back(); 1665 } 1666 1667 return MaterializedValues[StartValID]; 1668 } 1669 1670 Expected<Constant *> BitcodeReader::getValueForInitializer(unsigned ID) { 1671 Expected<Value *> MaybeV = materializeValue(ID, /* InsertBB */ nullptr); 1672 if (!MaybeV) 1673 return MaybeV.takeError(); 1674 1675 // Result must be Constant if InsertBB is nullptr. 1676 return cast<Constant>(MaybeV.get()); 1677 } 1678 1679 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1680 StringRef Name) { 1681 auto *Ret = StructType::create(Context, Name); 1682 IdentifiedStructTypes.push_back(Ret); 1683 return Ret; 1684 } 1685 1686 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1687 auto *Ret = StructType::create(Context); 1688 IdentifiedStructTypes.push_back(Ret); 1689 return Ret; 1690 } 1691 1692 //===----------------------------------------------------------------------===// 1693 // Functions for parsing blocks from the bitcode file 1694 //===----------------------------------------------------------------------===// 1695 1696 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) { 1697 switch (Val) { 1698 case Attribute::EndAttrKinds: 1699 case Attribute::EmptyKey: 1700 case Attribute::TombstoneKey: 1701 llvm_unreachable("Synthetic enumerators which should never get here"); 1702 1703 case Attribute::None: return 0; 1704 case Attribute::ZExt: return 1 << 0; 1705 case Attribute::SExt: return 1 << 1; 1706 case Attribute::NoReturn: return 1 << 2; 1707 case Attribute::InReg: return 1 << 3; 1708 case Attribute::StructRet: return 1 << 4; 1709 case Attribute::NoUnwind: return 1 << 5; 1710 case Attribute::NoAlias: return 1 << 6; 1711 case Attribute::ByVal: return 1 << 7; 1712 case Attribute::Nest: return 1 << 8; 1713 case Attribute::ReadNone: return 1 << 9; 1714 case Attribute::ReadOnly: return 1 << 10; 1715 case Attribute::NoInline: return 1 << 11; 1716 case Attribute::AlwaysInline: return 1 << 12; 1717 case Attribute::OptimizeForSize: return 1 << 13; 1718 case Attribute::StackProtect: return 1 << 14; 1719 case Attribute::StackProtectReq: return 1 << 15; 1720 case Attribute::Alignment: return 31 << 16; 1721 case Attribute::NoCapture: return 1 << 21; 1722 case Attribute::NoRedZone: return 1 << 22; 1723 case Attribute::NoImplicitFloat: return 1 << 23; 1724 case Attribute::Naked: return 1 << 24; 1725 case Attribute::InlineHint: return 1 << 25; 1726 case Attribute::StackAlignment: return 7 << 26; 1727 case Attribute::ReturnsTwice: return 1 << 29; 1728 case Attribute::UWTable: return 1 << 30; 1729 case Attribute::NonLazyBind: return 1U << 31; 1730 case Attribute::SanitizeAddress: return 1ULL << 32; 1731 case Attribute::MinSize: return 1ULL << 33; 1732 case Attribute::NoDuplicate: return 1ULL << 34; 1733 case Attribute::StackProtectStrong: return 1ULL << 35; 1734 case Attribute::SanitizeThread: return 1ULL << 36; 1735 case Attribute::SanitizeMemory: return 1ULL << 37; 1736 case Attribute::NoBuiltin: return 1ULL << 38; 1737 case Attribute::Returned: return 1ULL << 39; 1738 case Attribute::Cold: return 1ULL << 40; 1739 case Attribute::Builtin: return 1ULL << 41; 1740 case Attribute::OptimizeNone: return 1ULL << 42; 1741 case Attribute::InAlloca: return 1ULL << 43; 1742 case Attribute::NonNull: return 1ULL << 44; 1743 case Attribute::JumpTable: return 1ULL << 45; 1744 case Attribute::Convergent: return 1ULL << 46; 1745 case Attribute::SafeStack: return 1ULL << 47; 1746 case Attribute::NoRecurse: return 1ULL << 48; 1747 // 1ULL << 49 is InaccessibleMemOnly, which is upgraded separately. 1748 // 1ULL << 50 is InaccessibleMemOrArgMemOnly, which is upgraded separately. 1749 case Attribute::SwiftSelf: return 1ULL << 51; 1750 case Attribute::SwiftError: return 1ULL << 52; 1751 case Attribute::WriteOnly: return 1ULL << 53; 1752 case Attribute::Speculatable: return 1ULL << 54; 1753 case Attribute::StrictFP: return 1ULL << 55; 1754 case Attribute::SanitizeHWAddress: return 1ULL << 56; 1755 case Attribute::NoCfCheck: return 1ULL << 57; 1756 case Attribute::OptForFuzzing: return 1ULL << 58; 1757 case Attribute::ShadowCallStack: return 1ULL << 59; 1758 case Attribute::SpeculativeLoadHardening: 1759 return 1ULL << 60; 1760 case Attribute::ImmArg: 1761 return 1ULL << 61; 1762 case Attribute::WillReturn: 1763 return 1ULL << 62; 1764 case Attribute::NoFree: 1765 return 1ULL << 63; 1766 default: 1767 // Other attributes are not supported in the raw format, 1768 // as we ran out of space. 1769 return 0; 1770 } 1771 llvm_unreachable("Unsupported attribute type"); 1772 } 1773 1774 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) { 1775 if (!Val) return; 1776 1777 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; 1778 I = Attribute::AttrKind(I + 1)) { 1779 if (uint64_t A = (Val & getRawAttributeMask(I))) { 1780 if (I == Attribute::Alignment) 1781 B.addAlignmentAttr(1ULL << ((A >> 16) - 1)); 1782 else if (I == Attribute::StackAlignment) 1783 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1)); 1784 else if (Attribute::isTypeAttrKind(I)) 1785 B.addTypeAttr(I, nullptr); // Type will be auto-upgraded. 1786 else 1787 B.addAttribute(I); 1788 } 1789 } 1790 } 1791 1792 /// This fills an AttrBuilder object with the LLVM attributes that have 1793 /// been decoded from the given integer. This function must stay in sync with 1794 /// 'encodeLLVMAttributesForBitcode'. 1795 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1796 uint64_t EncodedAttrs, 1797 uint64_t AttrIdx) { 1798 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1799 // the bits above 31 down by 11 bits. 1800 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1801 assert((!Alignment || isPowerOf2_32(Alignment)) && 1802 "Alignment must be a power of two."); 1803 1804 if (Alignment) 1805 B.addAlignmentAttr(Alignment); 1806 1807 uint64_t Attrs = ((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1808 (EncodedAttrs & 0xffff); 1809 1810 if (AttrIdx == AttributeList::FunctionIndex) { 1811 // Upgrade old memory attributes. 1812 MemoryEffects ME = MemoryEffects::unknown(); 1813 if (Attrs & (1ULL << 9)) { 1814 // ReadNone 1815 Attrs &= ~(1ULL << 9); 1816 ME &= MemoryEffects::none(); 1817 } 1818 if (Attrs & (1ULL << 10)) { 1819 // ReadOnly 1820 Attrs &= ~(1ULL << 10); 1821 ME &= MemoryEffects::readOnly(); 1822 } 1823 if (Attrs & (1ULL << 49)) { 1824 // InaccessibleMemOnly 1825 Attrs &= ~(1ULL << 49); 1826 ME &= MemoryEffects::inaccessibleMemOnly(); 1827 } 1828 if (Attrs & (1ULL << 50)) { 1829 // InaccessibleMemOrArgMemOnly 1830 Attrs &= ~(1ULL << 50); 1831 ME &= MemoryEffects::inaccessibleOrArgMemOnly(); 1832 } 1833 if (Attrs & (1ULL << 53)) { 1834 // WriteOnly 1835 Attrs &= ~(1ULL << 53); 1836 ME &= MemoryEffects::writeOnly(); 1837 } 1838 if (ME != MemoryEffects::unknown()) 1839 B.addMemoryAttr(ME); 1840 } 1841 1842 addRawAttributeValue(B, Attrs); 1843 } 1844 1845 Error BitcodeReader::parseAttributeBlock() { 1846 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1847 return Err; 1848 1849 if (!MAttributes.empty()) 1850 return error("Invalid multiple blocks"); 1851 1852 SmallVector<uint64_t, 64> Record; 1853 1854 SmallVector<AttributeList, 8> Attrs; 1855 1856 // Read all the records. 1857 while (true) { 1858 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1859 if (!MaybeEntry) 1860 return MaybeEntry.takeError(); 1861 BitstreamEntry Entry = MaybeEntry.get(); 1862 1863 switch (Entry.Kind) { 1864 case BitstreamEntry::SubBlock: // Handled for us already. 1865 case BitstreamEntry::Error: 1866 return error("Malformed block"); 1867 case BitstreamEntry::EndBlock: 1868 return Error::success(); 1869 case BitstreamEntry::Record: 1870 // The interesting case. 1871 break; 1872 } 1873 1874 // Read a record. 1875 Record.clear(); 1876 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1877 if (!MaybeRecord) 1878 return MaybeRecord.takeError(); 1879 switch (MaybeRecord.get()) { 1880 default: // Default behavior: ignore. 1881 break; 1882 case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...] 1883 // Deprecated, but still needed to read old bitcode files. 1884 if (Record.size() & 1) 1885 return error("Invalid parameter attribute record"); 1886 1887 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1888 AttrBuilder B(Context); 1889 decodeLLVMAttributesForBitcode(B, Record[i+1], Record[i]); 1890 Attrs.push_back(AttributeList::get(Context, Record[i], B)); 1891 } 1892 1893 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1894 Attrs.clear(); 1895 break; 1896 case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...] 1897 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1898 Attrs.push_back(MAttributeGroups[Record[i]]); 1899 1900 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1901 Attrs.clear(); 1902 break; 1903 } 1904 } 1905 } 1906 1907 // Returns Attribute::None on unrecognized codes. 1908 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1909 switch (Code) { 1910 default: 1911 return Attribute::None; 1912 case bitc::ATTR_KIND_ALIGNMENT: 1913 return Attribute::Alignment; 1914 case bitc::ATTR_KIND_ALWAYS_INLINE: 1915 return Attribute::AlwaysInline; 1916 case bitc::ATTR_KIND_BUILTIN: 1917 return Attribute::Builtin; 1918 case bitc::ATTR_KIND_BY_VAL: 1919 return Attribute::ByVal; 1920 case bitc::ATTR_KIND_IN_ALLOCA: 1921 return Attribute::InAlloca; 1922 case bitc::ATTR_KIND_COLD: 1923 return Attribute::Cold; 1924 case bitc::ATTR_KIND_CONVERGENT: 1925 return Attribute::Convergent; 1926 case bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION: 1927 return Attribute::DisableSanitizerInstrumentation; 1928 case bitc::ATTR_KIND_ELEMENTTYPE: 1929 return Attribute::ElementType; 1930 case bitc::ATTR_KIND_FNRETTHUNK_EXTERN: 1931 return Attribute::FnRetThunkExtern; 1932 case bitc::ATTR_KIND_INLINE_HINT: 1933 return Attribute::InlineHint; 1934 case bitc::ATTR_KIND_IN_REG: 1935 return Attribute::InReg; 1936 case bitc::ATTR_KIND_JUMP_TABLE: 1937 return Attribute::JumpTable; 1938 case bitc::ATTR_KIND_MEMORY: 1939 return Attribute::Memory; 1940 case bitc::ATTR_KIND_NOFPCLASS: 1941 return Attribute::NoFPClass; 1942 case bitc::ATTR_KIND_MIN_SIZE: 1943 return Attribute::MinSize; 1944 case bitc::ATTR_KIND_NAKED: 1945 return Attribute::Naked; 1946 case bitc::ATTR_KIND_NEST: 1947 return Attribute::Nest; 1948 case bitc::ATTR_KIND_NO_ALIAS: 1949 return Attribute::NoAlias; 1950 case bitc::ATTR_KIND_NO_BUILTIN: 1951 return Attribute::NoBuiltin; 1952 case bitc::ATTR_KIND_NO_CALLBACK: 1953 return Attribute::NoCallback; 1954 case bitc::ATTR_KIND_NO_CAPTURE: 1955 return Attribute::NoCapture; 1956 case bitc::ATTR_KIND_NO_DUPLICATE: 1957 return Attribute::NoDuplicate; 1958 case bitc::ATTR_KIND_NOFREE: 1959 return Attribute::NoFree; 1960 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1961 return Attribute::NoImplicitFloat; 1962 case bitc::ATTR_KIND_NO_INLINE: 1963 return Attribute::NoInline; 1964 case bitc::ATTR_KIND_NO_RECURSE: 1965 return Attribute::NoRecurse; 1966 case bitc::ATTR_KIND_NO_MERGE: 1967 return Attribute::NoMerge; 1968 case bitc::ATTR_KIND_NON_LAZY_BIND: 1969 return Attribute::NonLazyBind; 1970 case bitc::ATTR_KIND_NON_NULL: 1971 return Attribute::NonNull; 1972 case bitc::ATTR_KIND_DEREFERENCEABLE: 1973 return Attribute::Dereferenceable; 1974 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1975 return Attribute::DereferenceableOrNull; 1976 case bitc::ATTR_KIND_ALLOC_ALIGN: 1977 return Attribute::AllocAlign; 1978 case bitc::ATTR_KIND_ALLOC_KIND: 1979 return Attribute::AllocKind; 1980 case bitc::ATTR_KIND_ALLOC_SIZE: 1981 return Attribute::AllocSize; 1982 case bitc::ATTR_KIND_ALLOCATED_POINTER: 1983 return Attribute::AllocatedPointer; 1984 case bitc::ATTR_KIND_NO_RED_ZONE: 1985 return Attribute::NoRedZone; 1986 case bitc::ATTR_KIND_NO_RETURN: 1987 return Attribute::NoReturn; 1988 case bitc::ATTR_KIND_NOSYNC: 1989 return Attribute::NoSync; 1990 case bitc::ATTR_KIND_NOCF_CHECK: 1991 return Attribute::NoCfCheck; 1992 case bitc::ATTR_KIND_NO_PROFILE: 1993 return Attribute::NoProfile; 1994 case bitc::ATTR_KIND_SKIP_PROFILE: 1995 return Attribute::SkipProfile; 1996 case bitc::ATTR_KIND_NO_UNWIND: 1997 return Attribute::NoUnwind; 1998 case bitc::ATTR_KIND_NO_SANITIZE_BOUNDS: 1999 return Attribute::NoSanitizeBounds; 2000 case bitc::ATTR_KIND_NO_SANITIZE_COVERAGE: 2001 return Attribute::NoSanitizeCoverage; 2002 case bitc::ATTR_KIND_NULL_POINTER_IS_VALID: 2003 return Attribute::NullPointerIsValid; 2004 case bitc::ATTR_KIND_OPT_FOR_FUZZING: 2005 return Attribute::OptForFuzzing; 2006 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 2007 return Attribute::OptimizeForSize; 2008 case bitc::ATTR_KIND_OPTIMIZE_NONE: 2009 return Attribute::OptimizeNone; 2010 case bitc::ATTR_KIND_READ_NONE: 2011 return Attribute::ReadNone; 2012 case bitc::ATTR_KIND_READ_ONLY: 2013 return Attribute::ReadOnly; 2014 case bitc::ATTR_KIND_RETURNED: 2015 return Attribute::Returned; 2016 case bitc::ATTR_KIND_RETURNS_TWICE: 2017 return Attribute::ReturnsTwice; 2018 case bitc::ATTR_KIND_S_EXT: 2019 return Attribute::SExt; 2020 case bitc::ATTR_KIND_SPECULATABLE: 2021 return Attribute::Speculatable; 2022 case bitc::ATTR_KIND_STACK_ALIGNMENT: 2023 return Attribute::StackAlignment; 2024 case bitc::ATTR_KIND_STACK_PROTECT: 2025 return Attribute::StackProtect; 2026 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 2027 return Attribute::StackProtectReq; 2028 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 2029 return Attribute::StackProtectStrong; 2030 case bitc::ATTR_KIND_SAFESTACK: 2031 return Attribute::SafeStack; 2032 case bitc::ATTR_KIND_SHADOWCALLSTACK: 2033 return Attribute::ShadowCallStack; 2034 case bitc::ATTR_KIND_STRICT_FP: 2035 return Attribute::StrictFP; 2036 case bitc::ATTR_KIND_STRUCT_RET: 2037 return Attribute::StructRet; 2038 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 2039 return Attribute::SanitizeAddress; 2040 case bitc::ATTR_KIND_SANITIZE_HWADDRESS: 2041 return Attribute::SanitizeHWAddress; 2042 case bitc::ATTR_KIND_SANITIZE_THREAD: 2043 return Attribute::SanitizeThread; 2044 case bitc::ATTR_KIND_SANITIZE_MEMORY: 2045 return Attribute::SanitizeMemory; 2046 case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING: 2047 return Attribute::SpeculativeLoadHardening; 2048 case bitc::ATTR_KIND_SWIFT_ERROR: 2049 return Attribute::SwiftError; 2050 case bitc::ATTR_KIND_SWIFT_SELF: 2051 return Attribute::SwiftSelf; 2052 case bitc::ATTR_KIND_SWIFT_ASYNC: 2053 return Attribute::SwiftAsync; 2054 case bitc::ATTR_KIND_UW_TABLE: 2055 return Attribute::UWTable; 2056 case bitc::ATTR_KIND_VSCALE_RANGE: 2057 return Attribute::VScaleRange; 2058 case bitc::ATTR_KIND_WILLRETURN: 2059 return Attribute::WillReturn; 2060 case bitc::ATTR_KIND_WRITEONLY: 2061 return Attribute::WriteOnly; 2062 case bitc::ATTR_KIND_Z_EXT: 2063 return Attribute::ZExt; 2064 case bitc::ATTR_KIND_IMMARG: 2065 return Attribute::ImmArg; 2066 case bitc::ATTR_KIND_SANITIZE_MEMTAG: 2067 return Attribute::SanitizeMemTag; 2068 case bitc::ATTR_KIND_PREALLOCATED: 2069 return Attribute::Preallocated; 2070 case bitc::ATTR_KIND_NOUNDEF: 2071 return Attribute::NoUndef; 2072 case bitc::ATTR_KIND_BYREF: 2073 return Attribute::ByRef; 2074 case bitc::ATTR_KIND_MUSTPROGRESS: 2075 return Attribute::MustProgress; 2076 case bitc::ATTR_KIND_HOT: 2077 return Attribute::Hot; 2078 case bitc::ATTR_KIND_PRESPLIT_COROUTINE: 2079 return Attribute::PresplitCoroutine; 2080 } 2081 } 2082 2083 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent, 2084 MaybeAlign &Alignment) { 2085 // Note: Alignment in bitcode files is incremented by 1, so that zero 2086 // can be used for default alignment. 2087 if (Exponent > Value::MaxAlignmentExponent + 1) 2088 return error("Invalid alignment value"); 2089 Alignment = decodeMaybeAlign(Exponent); 2090 return Error::success(); 2091 } 2092 2093 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) { 2094 *Kind = getAttrFromCode(Code); 2095 if (*Kind == Attribute::None) 2096 return error("Unknown attribute kind (" + Twine(Code) + ")"); 2097 return Error::success(); 2098 } 2099 2100 static bool upgradeOldMemoryAttribute(MemoryEffects &ME, uint64_t EncodedKind) { 2101 switch (EncodedKind) { 2102 case bitc::ATTR_KIND_READ_NONE: 2103 ME &= MemoryEffects::none(); 2104 return true; 2105 case bitc::ATTR_KIND_READ_ONLY: 2106 ME &= MemoryEffects::readOnly(); 2107 return true; 2108 case bitc::ATTR_KIND_WRITEONLY: 2109 ME &= MemoryEffects::writeOnly(); 2110 return true; 2111 case bitc::ATTR_KIND_ARGMEMONLY: 2112 ME &= MemoryEffects::argMemOnly(); 2113 return true; 2114 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 2115 ME &= MemoryEffects::inaccessibleMemOnly(); 2116 return true; 2117 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 2118 ME &= MemoryEffects::inaccessibleOrArgMemOnly(); 2119 return true; 2120 default: 2121 return false; 2122 } 2123 } 2124 2125 Error BitcodeReader::parseAttributeGroupBlock() { 2126 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 2127 return Err; 2128 2129 if (!MAttributeGroups.empty()) 2130 return error("Invalid multiple blocks"); 2131 2132 SmallVector<uint64_t, 64> Record; 2133 2134 // Read all the records. 2135 while (true) { 2136 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2137 if (!MaybeEntry) 2138 return MaybeEntry.takeError(); 2139 BitstreamEntry Entry = MaybeEntry.get(); 2140 2141 switch (Entry.Kind) { 2142 case BitstreamEntry::SubBlock: // Handled for us already. 2143 case BitstreamEntry::Error: 2144 return error("Malformed block"); 2145 case BitstreamEntry::EndBlock: 2146 return Error::success(); 2147 case BitstreamEntry::Record: 2148 // The interesting case. 2149 break; 2150 } 2151 2152 // Read a record. 2153 Record.clear(); 2154 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2155 if (!MaybeRecord) 2156 return MaybeRecord.takeError(); 2157 switch (MaybeRecord.get()) { 2158 default: // Default behavior: ignore. 2159 break; 2160 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 2161 if (Record.size() < 3) 2162 return error("Invalid grp record"); 2163 2164 uint64_t GrpID = Record[0]; 2165 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 2166 2167 AttrBuilder B(Context); 2168 MemoryEffects ME = MemoryEffects::unknown(); 2169 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 2170 if (Record[i] == 0) { // Enum attribute 2171 Attribute::AttrKind Kind; 2172 uint64_t EncodedKind = Record[++i]; 2173 if (Idx == AttributeList::FunctionIndex && 2174 upgradeOldMemoryAttribute(ME, EncodedKind)) 2175 continue; 2176 2177 if (Error Err = parseAttrKind(EncodedKind, &Kind)) 2178 return Err; 2179 2180 // Upgrade old-style byval attribute to one with a type, even if it's 2181 // nullptr. We will have to insert the real type when we associate 2182 // this AttributeList with a function. 2183 if (Kind == Attribute::ByVal) 2184 B.addByValAttr(nullptr); 2185 else if (Kind == Attribute::StructRet) 2186 B.addStructRetAttr(nullptr); 2187 else if (Kind == Attribute::InAlloca) 2188 B.addInAllocaAttr(nullptr); 2189 else if (Kind == Attribute::UWTable) 2190 B.addUWTableAttr(UWTableKind::Default); 2191 else if (Attribute::isEnumAttrKind(Kind)) 2192 B.addAttribute(Kind); 2193 else 2194 return error("Not an enum attribute"); 2195 } else if (Record[i] == 1) { // Integer attribute 2196 Attribute::AttrKind Kind; 2197 if (Error Err = parseAttrKind(Record[++i], &Kind)) 2198 return Err; 2199 if (!Attribute::isIntAttrKind(Kind)) 2200 return error("Not an int attribute"); 2201 if (Kind == Attribute::Alignment) 2202 B.addAlignmentAttr(Record[++i]); 2203 else if (Kind == Attribute::StackAlignment) 2204 B.addStackAlignmentAttr(Record[++i]); 2205 else if (Kind == Attribute::Dereferenceable) 2206 B.addDereferenceableAttr(Record[++i]); 2207 else if (Kind == Attribute::DereferenceableOrNull) 2208 B.addDereferenceableOrNullAttr(Record[++i]); 2209 else if (Kind == Attribute::AllocSize) 2210 B.addAllocSizeAttrFromRawRepr(Record[++i]); 2211 else if (Kind == Attribute::VScaleRange) 2212 B.addVScaleRangeAttrFromRawRepr(Record[++i]); 2213 else if (Kind == Attribute::UWTable) 2214 B.addUWTableAttr(UWTableKind(Record[++i])); 2215 else if (Kind == Attribute::AllocKind) 2216 B.addAllocKindAttr(static_cast<AllocFnKind>(Record[++i])); 2217 else if (Kind == Attribute::Memory) 2218 B.addMemoryAttr(MemoryEffects::createFromIntValue(Record[++i])); 2219 else if (Kind == Attribute::NoFPClass) 2220 B.addNoFPClassAttr( 2221 static_cast<FPClassTest>(Record[++i] & fcAllFlags)); 2222 } else if (Record[i] == 3 || Record[i] == 4) { // String attribute 2223 bool HasValue = (Record[i++] == 4); 2224 SmallString<64> KindStr; 2225 SmallString<64> ValStr; 2226 2227 while (Record[i] != 0 && i != e) 2228 KindStr += Record[i++]; 2229 assert(Record[i] == 0 && "Kind string not null terminated"); 2230 2231 if (HasValue) { 2232 // Has a value associated with it. 2233 ++i; // Skip the '0' that terminates the "kind" string. 2234 while (Record[i] != 0 && i != e) 2235 ValStr += Record[i++]; 2236 assert(Record[i] == 0 && "Value string not null terminated"); 2237 } 2238 2239 B.addAttribute(KindStr.str(), ValStr.str()); 2240 } else if (Record[i] == 5 || Record[i] == 6) { 2241 bool HasType = Record[i] == 6; 2242 Attribute::AttrKind Kind; 2243 if (Error Err = parseAttrKind(Record[++i], &Kind)) 2244 return Err; 2245 if (!Attribute::isTypeAttrKind(Kind)) 2246 return error("Not a type attribute"); 2247 2248 B.addTypeAttr(Kind, HasType ? getTypeByID(Record[++i]) : nullptr); 2249 } else { 2250 return error("Invalid attribute group entry"); 2251 } 2252 } 2253 2254 if (ME != MemoryEffects::unknown()) 2255 B.addMemoryAttr(ME); 2256 2257 UpgradeAttributes(B); 2258 MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B); 2259 break; 2260 } 2261 } 2262 } 2263 } 2264 2265 Error BitcodeReader::parseTypeTable() { 2266 if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 2267 return Err; 2268 2269 return parseTypeTableBody(); 2270 } 2271 2272 Error BitcodeReader::parseTypeTableBody() { 2273 if (!TypeList.empty()) 2274 return error("Invalid multiple blocks"); 2275 2276 SmallVector<uint64_t, 64> Record; 2277 unsigned NumRecords = 0; 2278 2279 SmallString<64> TypeName; 2280 2281 // Read all the records for this type table. 2282 while (true) { 2283 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2284 if (!MaybeEntry) 2285 return MaybeEntry.takeError(); 2286 BitstreamEntry Entry = MaybeEntry.get(); 2287 2288 switch (Entry.Kind) { 2289 case BitstreamEntry::SubBlock: // Handled for us already. 2290 case BitstreamEntry::Error: 2291 return error("Malformed block"); 2292 case BitstreamEntry::EndBlock: 2293 if (NumRecords != TypeList.size()) 2294 return error("Malformed block"); 2295 return Error::success(); 2296 case BitstreamEntry::Record: 2297 // The interesting case. 2298 break; 2299 } 2300 2301 // Read a record. 2302 Record.clear(); 2303 Type *ResultTy = nullptr; 2304 SmallVector<unsigned> ContainedIDs; 2305 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2306 if (!MaybeRecord) 2307 return MaybeRecord.takeError(); 2308 switch (MaybeRecord.get()) { 2309 default: 2310 return error("Invalid value"); 2311 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 2312 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 2313 // type list. This allows us to reserve space. 2314 if (Record.empty()) 2315 return error("Invalid numentry record"); 2316 TypeList.resize(Record[0]); 2317 continue; 2318 case bitc::TYPE_CODE_VOID: // VOID 2319 ResultTy = Type::getVoidTy(Context); 2320 break; 2321 case bitc::TYPE_CODE_HALF: // HALF 2322 ResultTy = Type::getHalfTy(Context); 2323 break; 2324 case bitc::TYPE_CODE_BFLOAT: // BFLOAT 2325 ResultTy = Type::getBFloatTy(Context); 2326 break; 2327 case bitc::TYPE_CODE_FLOAT: // FLOAT 2328 ResultTy = Type::getFloatTy(Context); 2329 break; 2330 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 2331 ResultTy = Type::getDoubleTy(Context); 2332 break; 2333 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 2334 ResultTy = Type::getX86_FP80Ty(Context); 2335 break; 2336 case bitc::TYPE_CODE_FP128: // FP128 2337 ResultTy = Type::getFP128Ty(Context); 2338 break; 2339 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 2340 ResultTy = Type::getPPC_FP128Ty(Context); 2341 break; 2342 case bitc::TYPE_CODE_LABEL: // LABEL 2343 ResultTy = Type::getLabelTy(Context); 2344 break; 2345 case bitc::TYPE_CODE_METADATA: // METADATA 2346 ResultTy = Type::getMetadataTy(Context); 2347 break; 2348 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 2349 ResultTy = Type::getX86_MMXTy(Context); 2350 break; 2351 case bitc::TYPE_CODE_X86_AMX: // X86_AMX 2352 ResultTy = Type::getX86_AMXTy(Context); 2353 break; 2354 case bitc::TYPE_CODE_TOKEN: // TOKEN 2355 ResultTy = Type::getTokenTy(Context); 2356 break; 2357 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 2358 if (Record.empty()) 2359 return error("Invalid integer record"); 2360 2361 uint64_t NumBits = Record[0]; 2362 if (NumBits < IntegerType::MIN_INT_BITS || 2363 NumBits > IntegerType::MAX_INT_BITS) 2364 return error("Bitwidth for integer type out of range"); 2365 ResultTy = IntegerType::get(Context, NumBits); 2366 break; 2367 } 2368 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 2369 // [pointee type, address space] 2370 if (Record.empty()) 2371 return error("Invalid pointer record"); 2372 unsigned AddressSpace = 0; 2373 if (Record.size() == 2) 2374 AddressSpace = Record[1]; 2375 ResultTy = getTypeByID(Record[0]); 2376 if (!ResultTy || 2377 !PointerType::isValidElementType(ResultTy)) 2378 return error("Invalid type"); 2379 ContainedIDs.push_back(Record[0]); 2380 ResultTy = PointerType::get(ResultTy, AddressSpace); 2381 break; 2382 } 2383 case bitc::TYPE_CODE_OPAQUE_POINTER: { // OPAQUE_POINTER: [addrspace] 2384 if (Record.size() != 1) 2385 return error("Invalid opaque pointer record"); 2386 unsigned AddressSpace = Record[0]; 2387 ResultTy = PointerType::get(Context, AddressSpace); 2388 break; 2389 } 2390 case bitc::TYPE_CODE_FUNCTION_OLD: { 2391 // Deprecated, but still needed to read old bitcode files. 2392 // FUNCTION: [vararg, attrid, retty, paramty x N] 2393 if (Record.size() < 3) 2394 return error("Invalid function record"); 2395 SmallVector<Type*, 8> ArgTys; 2396 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 2397 if (Type *T = getTypeByID(Record[i])) 2398 ArgTys.push_back(T); 2399 else 2400 break; 2401 } 2402 2403 ResultTy = getTypeByID(Record[2]); 2404 if (!ResultTy || ArgTys.size() < Record.size()-3) 2405 return error("Invalid type"); 2406 2407 ContainedIDs.append(Record.begin() + 2, Record.end()); 2408 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 2409 break; 2410 } 2411 case bitc::TYPE_CODE_FUNCTION: { 2412 // FUNCTION: [vararg, retty, paramty x N] 2413 if (Record.size() < 2) 2414 return error("Invalid function record"); 2415 SmallVector<Type*, 8> ArgTys; 2416 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 2417 if (Type *T = getTypeByID(Record[i])) { 2418 if (!FunctionType::isValidArgumentType(T)) 2419 return error("Invalid function argument type"); 2420 ArgTys.push_back(T); 2421 } 2422 else 2423 break; 2424 } 2425 2426 ResultTy = getTypeByID(Record[1]); 2427 if (!ResultTy || ArgTys.size() < Record.size()-2) 2428 return error("Invalid type"); 2429 2430 ContainedIDs.append(Record.begin() + 1, Record.end()); 2431 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 2432 break; 2433 } 2434 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 2435 if (Record.empty()) 2436 return error("Invalid anon struct record"); 2437 SmallVector<Type*, 8> EltTys; 2438 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 2439 if (Type *T = getTypeByID(Record[i])) 2440 EltTys.push_back(T); 2441 else 2442 break; 2443 } 2444 if (EltTys.size() != Record.size()-1) 2445 return error("Invalid type"); 2446 ContainedIDs.append(Record.begin() + 1, Record.end()); 2447 ResultTy = StructType::get(Context, EltTys, Record[0]); 2448 break; 2449 } 2450 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 2451 if (convertToString(Record, 0, TypeName)) 2452 return error("Invalid struct name record"); 2453 continue; 2454 2455 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 2456 if (Record.empty()) 2457 return error("Invalid named struct record"); 2458 2459 if (NumRecords >= TypeList.size()) 2460 return error("Invalid TYPE table"); 2461 2462 // Check to see if this was forward referenced, if so fill in the temp. 2463 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 2464 if (Res) { 2465 Res->setName(TypeName); 2466 TypeList[NumRecords] = nullptr; 2467 } else // Otherwise, create a new struct. 2468 Res = createIdentifiedStructType(Context, TypeName); 2469 TypeName.clear(); 2470 2471 SmallVector<Type*, 8> EltTys; 2472 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 2473 if (Type *T = getTypeByID(Record[i])) 2474 EltTys.push_back(T); 2475 else 2476 break; 2477 } 2478 if (EltTys.size() != Record.size()-1) 2479 return error("Invalid named struct record"); 2480 Res->setBody(EltTys, Record[0]); 2481 ContainedIDs.append(Record.begin() + 1, Record.end()); 2482 ResultTy = Res; 2483 break; 2484 } 2485 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 2486 if (Record.size() != 1) 2487 return error("Invalid opaque type record"); 2488 2489 if (NumRecords >= TypeList.size()) 2490 return error("Invalid TYPE table"); 2491 2492 // Check to see if this was forward referenced, if so fill in the temp. 2493 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 2494 if (Res) { 2495 Res->setName(TypeName); 2496 TypeList[NumRecords] = nullptr; 2497 } else // Otherwise, create a new struct with no body. 2498 Res = createIdentifiedStructType(Context, TypeName); 2499 TypeName.clear(); 2500 ResultTy = Res; 2501 break; 2502 } 2503 case bitc::TYPE_CODE_TARGET_TYPE: { // TARGET_TYPE: [NumTy, Tys..., Ints...] 2504 if (Record.size() < 1) 2505 return error("Invalid target extension type record"); 2506 2507 if (NumRecords >= TypeList.size()) 2508 return error("Invalid TYPE table"); 2509 2510 if (Record[0] >= Record.size()) 2511 return error("Too many type parameters"); 2512 2513 unsigned NumTys = Record[0]; 2514 SmallVector<Type *, 4> TypeParams; 2515 SmallVector<unsigned, 8> IntParams; 2516 for (unsigned i = 0; i < NumTys; i++) { 2517 if (Type *T = getTypeByID(Record[i + 1])) 2518 TypeParams.push_back(T); 2519 else 2520 return error("Invalid type"); 2521 } 2522 2523 for (unsigned i = NumTys + 1, e = Record.size(); i < e; i++) { 2524 if (Record[i] > UINT_MAX) 2525 return error("Integer parameter too large"); 2526 IntParams.push_back(Record[i]); 2527 } 2528 ResultTy = TargetExtType::get(Context, TypeName, TypeParams, IntParams); 2529 TypeName.clear(); 2530 break; 2531 } 2532 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 2533 if (Record.size() < 2) 2534 return error("Invalid array type record"); 2535 ResultTy = getTypeByID(Record[1]); 2536 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 2537 return error("Invalid type"); 2538 ContainedIDs.push_back(Record[1]); 2539 ResultTy = ArrayType::get(ResultTy, Record[0]); 2540 break; 2541 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] or 2542 // [numelts, eltty, scalable] 2543 if (Record.size() < 2) 2544 return error("Invalid vector type record"); 2545 if (Record[0] == 0) 2546 return error("Invalid vector length"); 2547 ResultTy = getTypeByID(Record[1]); 2548 if (!ResultTy || !VectorType::isValidElementType(ResultTy)) 2549 return error("Invalid type"); 2550 bool Scalable = Record.size() > 2 ? Record[2] : false; 2551 ContainedIDs.push_back(Record[1]); 2552 ResultTy = VectorType::get(ResultTy, Record[0], Scalable); 2553 break; 2554 } 2555 2556 if (NumRecords >= TypeList.size()) 2557 return error("Invalid TYPE table"); 2558 if (TypeList[NumRecords]) 2559 return error( 2560 "Invalid TYPE table: Only named structs can be forward referenced"); 2561 assert(ResultTy && "Didn't read a type?"); 2562 TypeList[NumRecords] = ResultTy; 2563 if (!ContainedIDs.empty()) 2564 ContainedTypeIDs[NumRecords] = std::move(ContainedIDs); 2565 ++NumRecords; 2566 } 2567 } 2568 2569 Error BitcodeReader::parseOperandBundleTags() { 2570 if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 2571 return Err; 2572 2573 if (!BundleTags.empty()) 2574 return error("Invalid multiple blocks"); 2575 2576 SmallVector<uint64_t, 64> Record; 2577 2578 while (true) { 2579 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2580 if (!MaybeEntry) 2581 return MaybeEntry.takeError(); 2582 BitstreamEntry Entry = MaybeEntry.get(); 2583 2584 switch (Entry.Kind) { 2585 case BitstreamEntry::SubBlock: // Handled for us already. 2586 case BitstreamEntry::Error: 2587 return error("Malformed block"); 2588 case BitstreamEntry::EndBlock: 2589 return Error::success(); 2590 case BitstreamEntry::Record: 2591 // The interesting case. 2592 break; 2593 } 2594 2595 // Tags are implicitly mapped to integers by their order. 2596 2597 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2598 if (!MaybeRecord) 2599 return MaybeRecord.takeError(); 2600 if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG) 2601 return error("Invalid operand bundle record"); 2602 2603 // OPERAND_BUNDLE_TAG: [strchr x N] 2604 BundleTags.emplace_back(); 2605 if (convertToString(Record, 0, BundleTags.back())) 2606 return error("Invalid operand bundle record"); 2607 Record.clear(); 2608 } 2609 } 2610 2611 Error BitcodeReader::parseSyncScopeNames() { 2612 if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID)) 2613 return Err; 2614 2615 if (!SSIDs.empty()) 2616 return error("Invalid multiple synchronization scope names blocks"); 2617 2618 SmallVector<uint64_t, 64> Record; 2619 while (true) { 2620 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2621 if (!MaybeEntry) 2622 return MaybeEntry.takeError(); 2623 BitstreamEntry Entry = MaybeEntry.get(); 2624 2625 switch (Entry.Kind) { 2626 case BitstreamEntry::SubBlock: // Handled for us already. 2627 case BitstreamEntry::Error: 2628 return error("Malformed block"); 2629 case BitstreamEntry::EndBlock: 2630 if (SSIDs.empty()) 2631 return error("Invalid empty synchronization scope names block"); 2632 return Error::success(); 2633 case BitstreamEntry::Record: 2634 // The interesting case. 2635 break; 2636 } 2637 2638 // Synchronization scope names are implicitly mapped to synchronization 2639 // scope IDs by their order. 2640 2641 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2642 if (!MaybeRecord) 2643 return MaybeRecord.takeError(); 2644 if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME) 2645 return error("Invalid sync scope record"); 2646 2647 SmallString<16> SSN; 2648 if (convertToString(Record, 0, SSN)) 2649 return error("Invalid sync scope record"); 2650 2651 SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN)); 2652 Record.clear(); 2653 } 2654 } 2655 2656 /// Associate a value with its name from the given index in the provided record. 2657 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 2658 unsigned NameIndex, Triple &TT) { 2659 SmallString<128> ValueName; 2660 if (convertToString(Record, NameIndex, ValueName)) 2661 return error("Invalid record"); 2662 unsigned ValueID = Record[0]; 2663 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 2664 return error("Invalid record"); 2665 Value *V = ValueList[ValueID]; 2666 2667 StringRef NameStr(ValueName.data(), ValueName.size()); 2668 if (NameStr.find_first_of(0) != StringRef::npos) 2669 return error("Invalid value name"); 2670 V->setName(NameStr); 2671 auto *GO = dyn_cast<GlobalObject>(V); 2672 if (GO && ImplicitComdatObjects.contains(GO) && TT.supportsCOMDAT()) 2673 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 2674 return V; 2675 } 2676 2677 /// Helper to note and return the current location, and jump to the given 2678 /// offset. 2679 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset, 2680 BitstreamCursor &Stream) { 2681 // Save the current parsing location so we can jump back at the end 2682 // of the VST read. 2683 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 2684 if (Error JumpFailed = Stream.JumpToBit(Offset * 32)) 2685 return std::move(JumpFailed); 2686 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 2687 if (!MaybeEntry) 2688 return MaybeEntry.takeError(); 2689 if (MaybeEntry.get().Kind != BitstreamEntry::SubBlock || 2690 MaybeEntry.get().ID != bitc::VALUE_SYMTAB_BLOCK_ID) 2691 return error("Expected value symbol table subblock"); 2692 return CurrentBit; 2693 } 2694 2695 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, 2696 Function *F, 2697 ArrayRef<uint64_t> Record) { 2698 // Note that we subtract 1 here because the offset is relative to one word 2699 // before the start of the identification or module block, which was 2700 // historically always the start of the regular bitcode header. 2701 uint64_t FuncWordOffset = Record[1] - 1; 2702 uint64_t FuncBitOffset = FuncWordOffset * 32; 2703 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 2704 // Set the LastFunctionBlockBit to point to the last function block. 2705 // Later when parsing is resumed after function materialization, 2706 // we can simply skip that last function block. 2707 if (FuncBitOffset > LastFunctionBlockBit) 2708 LastFunctionBlockBit = FuncBitOffset; 2709 } 2710 2711 /// Read a new-style GlobalValue symbol table. 2712 Error BitcodeReader::parseGlobalValueSymbolTable() { 2713 unsigned FuncBitcodeOffsetDelta = 2714 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2715 2716 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2717 return Err; 2718 2719 SmallVector<uint64_t, 64> Record; 2720 while (true) { 2721 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2722 if (!MaybeEntry) 2723 return MaybeEntry.takeError(); 2724 BitstreamEntry Entry = MaybeEntry.get(); 2725 2726 switch (Entry.Kind) { 2727 case BitstreamEntry::SubBlock: 2728 case BitstreamEntry::Error: 2729 return error("Malformed block"); 2730 case BitstreamEntry::EndBlock: 2731 return Error::success(); 2732 case BitstreamEntry::Record: 2733 break; 2734 } 2735 2736 Record.clear(); 2737 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2738 if (!MaybeRecord) 2739 return MaybeRecord.takeError(); 2740 switch (MaybeRecord.get()) { 2741 case bitc::VST_CODE_FNENTRY: { // [valueid, offset] 2742 unsigned ValueID = Record[0]; 2743 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 2744 return error("Invalid value reference in symbol table"); 2745 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, 2746 cast<Function>(ValueList[ValueID]), Record); 2747 break; 2748 } 2749 } 2750 } 2751 } 2752 2753 /// Parse the value symbol table at either the current parsing location or 2754 /// at the given bit offset if provided. 2755 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 2756 uint64_t CurrentBit; 2757 // Pass in the Offset to distinguish between calling for the module-level 2758 // VST (where we want to jump to the VST offset) and the function-level 2759 // VST (where we don't). 2760 if (Offset > 0) { 2761 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 2762 if (!MaybeCurrentBit) 2763 return MaybeCurrentBit.takeError(); 2764 CurrentBit = MaybeCurrentBit.get(); 2765 // If this module uses a string table, read this as a module-level VST. 2766 if (UseStrtab) { 2767 if (Error Err = parseGlobalValueSymbolTable()) 2768 return Err; 2769 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2770 return JumpFailed; 2771 return Error::success(); 2772 } 2773 // Otherwise, the VST will be in a similar format to a function-level VST, 2774 // and will contain symbol names. 2775 } 2776 2777 // Compute the delta between the bitcode indices in the VST (the word offset 2778 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 2779 // expected by the lazy reader. The reader's EnterSubBlock expects to have 2780 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 2781 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 2782 // just before entering the VST subblock because: 1) the EnterSubBlock 2783 // changes the AbbrevID width; 2) the VST block is nested within the same 2784 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 2785 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 2786 // jump to the FUNCTION_BLOCK using this offset later, we don't want 2787 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 2788 unsigned FuncBitcodeOffsetDelta = 2789 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2790 2791 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2792 return Err; 2793 2794 SmallVector<uint64_t, 64> Record; 2795 2796 Triple TT(TheModule->getTargetTriple()); 2797 2798 // Read all the records for this value table. 2799 SmallString<128> ValueName; 2800 2801 while (true) { 2802 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2803 if (!MaybeEntry) 2804 return MaybeEntry.takeError(); 2805 BitstreamEntry Entry = MaybeEntry.get(); 2806 2807 switch (Entry.Kind) { 2808 case BitstreamEntry::SubBlock: // Handled for us already. 2809 case BitstreamEntry::Error: 2810 return error("Malformed block"); 2811 case BitstreamEntry::EndBlock: 2812 if (Offset > 0) 2813 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2814 return JumpFailed; 2815 return Error::success(); 2816 case BitstreamEntry::Record: 2817 // The interesting case. 2818 break; 2819 } 2820 2821 // Read a record. 2822 Record.clear(); 2823 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2824 if (!MaybeRecord) 2825 return MaybeRecord.takeError(); 2826 switch (MaybeRecord.get()) { 2827 default: // Default behavior: unknown type. 2828 break; 2829 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 2830 Expected<Value *> ValOrErr = recordValue(Record, 1, TT); 2831 if (Error Err = ValOrErr.takeError()) 2832 return Err; 2833 ValOrErr.get(); 2834 break; 2835 } 2836 case bitc::VST_CODE_FNENTRY: { 2837 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 2838 Expected<Value *> ValOrErr = recordValue(Record, 2, TT); 2839 if (Error Err = ValOrErr.takeError()) 2840 return Err; 2841 Value *V = ValOrErr.get(); 2842 2843 // Ignore function offsets emitted for aliases of functions in older 2844 // versions of LLVM. 2845 if (auto *F = dyn_cast<Function>(V)) 2846 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record); 2847 break; 2848 } 2849 case bitc::VST_CODE_BBENTRY: { 2850 if (convertToString(Record, 1, ValueName)) 2851 return error("Invalid bbentry record"); 2852 BasicBlock *BB = getBasicBlock(Record[0]); 2853 if (!BB) 2854 return error("Invalid bbentry record"); 2855 2856 BB->setName(StringRef(ValueName.data(), ValueName.size())); 2857 ValueName.clear(); 2858 break; 2859 } 2860 } 2861 } 2862 } 2863 2864 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2865 /// encoding. 2866 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2867 if ((V & 1) == 0) 2868 return V >> 1; 2869 if (V != 1) 2870 return -(V >> 1); 2871 // There is no such thing as -0 with integers. "-0" really means MININT. 2872 return 1ULL << 63; 2873 } 2874 2875 /// Resolve all of the initializers for global values and aliases that we can. 2876 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 2877 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist; 2878 std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInitWorklist; 2879 std::vector<FunctionOperandInfo> FunctionOperandWorklist; 2880 2881 GlobalInitWorklist.swap(GlobalInits); 2882 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 2883 FunctionOperandWorklist.swap(FunctionOperands); 2884 2885 while (!GlobalInitWorklist.empty()) { 2886 unsigned ValID = GlobalInitWorklist.back().second; 2887 if (ValID >= ValueList.size()) { 2888 // Not ready to resolve this yet, it requires something later in the file. 2889 GlobalInits.push_back(GlobalInitWorklist.back()); 2890 } else { 2891 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 2892 if (!MaybeC) 2893 return MaybeC.takeError(); 2894 GlobalInitWorklist.back().first->setInitializer(MaybeC.get()); 2895 } 2896 GlobalInitWorklist.pop_back(); 2897 } 2898 2899 while (!IndirectSymbolInitWorklist.empty()) { 2900 unsigned ValID = IndirectSymbolInitWorklist.back().second; 2901 if (ValID >= ValueList.size()) { 2902 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 2903 } else { 2904 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 2905 if (!MaybeC) 2906 return MaybeC.takeError(); 2907 Constant *C = MaybeC.get(); 2908 GlobalValue *GV = IndirectSymbolInitWorklist.back().first; 2909 if (auto *GA = dyn_cast<GlobalAlias>(GV)) { 2910 if (C->getType() != GV->getType()) 2911 return error("Alias and aliasee types don't match"); 2912 GA->setAliasee(C); 2913 } else if (auto *GI = dyn_cast<GlobalIFunc>(GV)) { 2914 Type *ResolverFTy = 2915 GlobalIFunc::getResolverFunctionType(GI->getValueType()); 2916 // Transparently fix up the type for compatibility with older bitcode 2917 GI->setResolver(ConstantExpr::getBitCast( 2918 C, ResolverFTy->getPointerTo(GI->getAddressSpace()))); 2919 } else { 2920 return error("Expected an alias or an ifunc"); 2921 } 2922 } 2923 IndirectSymbolInitWorklist.pop_back(); 2924 } 2925 2926 while (!FunctionOperandWorklist.empty()) { 2927 FunctionOperandInfo &Info = FunctionOperandWorklist.back(); 2928 if (Info.PersonalityFn) { 2929 unsigned ValID = Info.PersonalityFn - 1; 2930 if (ValID < ValueList.size()) { 2931 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 2932 if (!MaybeC) 2933 return MaybeC.takeError(); 2934 Info.F->setPersonalityFn(MaybeC.get()); 2935 Info.PersonalityFn = 0; 2936 } 2937 } 2938 if (Info.Prefix) { 2939 unsigned ValID = Info.Prefix - 1; 2940 if (ValID < ValueList.size()) { 2941 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 2942 if (!MaybeC) 2943 return MaybeC.takeError(); 2944 Info.F->setPrefixData(MaybeC.get()); 2945 Info.Prefix = 0; 2946 } 2947 } 2948 if (Info.Prologue) { 2949 unsigned ValID = Info.Prologue - 1; 2950 if (ValID < ValueList.size()) { 2951 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 2952 if (!MaybeC) 2953 return MaybeC.takeError(); 2954 Info.F->setPrologueData(MaybeC.get()); 2955 Info.Prologue = 0; 2956 } 2957 } 2958 if (Info.PersonalityFn || Info.Prefix || Info.Prologue) 2959 FunctionOperands.push_back(Info); 2960 FunctionOperandWorklist.pop_back(); 2961 } 2962 2963 return Error::success(); 2964 } 2965 2966 APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2967 SmallVector<uint64_t, 8> Words(Vals.size()); 2968 transform(Vals, Words.begin(), 2969 BitcodeReader::decodeSignRotatedValue); 2970 2971 return APInt(TypeBits, Words); 2972 } 2973 2974 Error BitcodeReader::parseConstants() { 2975 if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2976 return Err; 2977 2978 SmallVector<uint64_t, 64> Record; 2979 2980 // Read all the records for this value table. 2981 Type *CurTy = Type::getInt32Ty(Context); 2982 unsigned Int32TyID = getVirtualTypeID(CurTy); 2983 unsigned CurTyID = Int32TyID; 2984 Type *CurElemTy = nullptr; 2985 unsigned NextCstNo = ValueList.size(); 2986 2987 while (true) { 2988 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2989 if (!MaybeEntry) 2990 return MaybeEntry.takeError(); 2991 BitstreamEntry Entry = MaybeEntry.get(); 2992 2993 switch (Entry.Kind) { 2994 case BitstreamEntry::SubBlock: // Handled for us already. 2995 case BitstreamEntry::Error: 2996 return error("Malformed block"); 2997 case BitstreamEntry::EndBlock: 2998 if (NextCstNo != ValueList.size()) 2999 return error("Invalid constant reference"); 3000 return Error::success(); 3001 case BitstreamEntry::Record: 3002 // The interesting case. 3003 break; 3004 } 3005 3006 // Read a record. 3007 Record.clear(); 3008 Type *VoidType = Type::getVoidTy(Context); 3009 Value *V = nullptr; 3010 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 3011 if (!MaybeBitCode) 3012 return MaybeBitCode.takeError(); 3013 switch (unsigned BitCode = MaybeBitCode.get()) { 3014 default: // Default behavior: unknown constant 3015 case bitc::CST_CODE_UNDEF: // UNDEF 3016 V = UndefValue::get(CurTy); 3017 break; 3018 case bitc::CST_CODE_POISON: // POISON 3019 V = PoisonValue::get(CurTy); 3020 break; 3021 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 3022 if (Record.empty()) 3023 return error("Invalid settype record"); 3024 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 3025 return error("Invalid settype record"); 3026 if (TypeList[Record[0]] == VoidType) 3027 return error("Invalid constant type"); 3028 CurTyID = Record[0]; 3029 CurTy = TypeList[CurTyID]; 3030 CurElemTy = getPtrElementTypeByID(CurTyID); 3031 continue; // Skip the ValueList manipulation. 3032 case bitc::CST_CODE_NULL: // NULL 3033 if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy()) 3034 return error("Invalid type for a constant null value"); 3035 if (auto *TETy = dyn_cast<TargetExtType>(CurTy)) 3036 if (!TETy->hasProperty(TargetExtType::HasZeroInit)) 3037 return error("Invalid type for a constant null value"); 3038 V = Constant::getNullValue(CurTy); 3039 break; 3040 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 3041 if (!CurTy->isIntegerTy() || Record.empty()) 3042 return error("Invalid integer const record"); 3043 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 3044 break; 3045 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 3046 if (!CurTy->isIntegerTy() || Record.empty()) 3047 return error("Invalid wide integer const record"); 3048 3049 APInt VInt = 3050 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 3051 V = ConstantInt::get(Context, VInt); 3052 3053 break; 3054 } 3055 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 3056 if (Record.empty()) 3057 return error("Invalid float const record"); 3058 if (CurTy->isHalfTy()) 3059 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(), 3060 APInt(16, (uint16_t)Record[0]))); 3061 else if (CurTy->isBFloatTy()) 3062 V = ConstantFP::get(Context, APFloat(APFloat::BFloat(), 3063 APInt(16, (uint32_t)Record[0]))); 3064 else if (CurTy->isFloatTy()) 3065 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(), 3066 APInt(32, (uint32_t)Record[0]))); 3067 else if (CurTy->isDoubleTy()) 3068 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(), 3069 APInt(64, Record[0]))); 3070 else if (CurTy->isX86_FP80Ty()) { 3071 // Bits are not stored the same way as a normal i80 APInt, compensate. 3072 uint64_t Rearrange[2]; 3073 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 3074 Rearrange[1] = Record[0] >> 48; 3075 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(), 3076 APInt(80, Rearrange))); 3077 } else if (CurTy->isFP128Ty()) 3078 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(), 3079 APInt(128, Record))); 3080 else if (CurTy->isPPC_FP128Ty()) 3081 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(), 3082 APInt(128, Record))); 3083 else 3084 V = UndefValue::get(CurTy); 3085 break; 3086 } 3087 3088 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 3089 if (Record.empty()) 3090 return error("Invalid aggregate record"); 3091 3092 unsigned Size = Record.size(); 3093 SmallVector<unsigned, 16> Elts; 3094 for (unsigned i = 0; i != Size; ++i) 3095 Elts.push_back(Record[i]); 3096 3097 if (isa<StructType>(CurTy)) { 3098 V = BitcodeConstant::create( 3099 Alloc, CurTy, BitcodeConstant::ConstantStructOpcode, Elts); 3100 } else if (isa<ArrayType>(CurTy)) { 3101 V = BitcodeConstant::create(Alloc, CurTy, 3102 BitcodeConstant::ConstantArrayOpcode, Elts); 3103 } else if (isa<VectorType>(CurTy)) { 3104 V = BitcodeConstant::create( 3105 Alloc, CurTy, BitcodeConstant::ConstantVectorOpcode, Elts); 3106 } else { 3107 V = UndefValue::get(CurTy); 3108 } 3109 break; 3110 } 3111 case bitc::CST_CODE_STRING: // STRING: [values] 3112 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 3113 if (Record.empty()) 3114 return error("Invalid string record"); 3115 3116 SmallString<16> Elts(Record.begin(), Record.end()); 3117 V = ConstantDataArray::getString(Context, Elts, 3118 BitCode == bitc::CST_CODE_CSTRING); 3119 break; 3120 } 3121 case bitc::CST_CODE_DATA: {// DATA: [n x value] 3122 if (Record.empty()) 3123 return error("Invalid data record"); 3124 3125 Type *EltTy; 3126 if (auto *Array = dyn_cast<ArrayType>(CurTy)) 3127 EltTy = Array->getElementType(); 3128 else 3129 EltTy = cast<VectorType>(CurTy)->getElementType(); 3130 if (EltTy->isIntegerTy(8)) { 3131 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 3132 if (isa<VectorType>(CurTy)) 3133 V = ConstantDataVector::get(Context, Elts); 3134 else 3135 V = ConstantDataArray::get(Context, Elts); 3136 } else if (EltTy->isIntegerTy(16)) { 3137 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 3138 if (isa<VectorType>(CurTy)) 3139 V = ConstantDataVector::get(Context, Elts); 3140 else 3141 V = ConstantDataArray::get(Context, Elts); 3142 } else if (EltTy->isIntegerTy(32)) { 3143 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 3144 if (isa<VectorType>(CurTy)) 3145 V = ConstantDataVector::get(Context, Elts); 3146 else 3147 V = ConstantDataArray::get(Context, Elts); 3148 } else if (EltTy->isIntegerTy(64)) { 3149 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 3150 if (isa<VectorType>(CurTy)) 3151 V = ConstantDataVector::get(Context, Elts); 3152 else 3153 V = ConstantDataArray::get(Context, Elts); 3154 } else if (EltTy->isHalfTy()) { 3155 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 3156 if (isa<VectorType>(CurTy)) 3157 V = ConstantDataVector::getFP(EltTy, Elts); 3158 else 3159 V = ConstantDataArray::getFP(EltTy, Elts); 3160 } else if (EltTy->isBFloatTy()) { 3161 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 3162 if (isa<VectorType>(CurTy)) 3163 V = ConstantDataVector::getFP(EltTy, Elts); 3164 else 3165 V = ConstantDataArray::getFP(EltTy, Elts); 3166 } else if (EltTy->isFloatTy()) { 3167 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 3168 if (isa<VectorType>(CurTy)) 3169 V = ConstantDataVector::getFP(EltTy, Elts); 3170 else 3171 V = ConstantDataArray::getFP(EltTy, Elts); 3172 } else if (EltTy->isDoubleTy()) { 3173 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 3174 if (isa<VectorType>(CurTy)) 3175 V = ConstantDataVector::getFP(EltTy, Elts); 3176 else 3177 V = ConstantDataArray::getFP(EltTy, Elts); 3178 } else { 3179 return error("Invalid type for value"); 3180 } 3181 break; 3182 } 3183 case bitc::CST_CODE_CE_UNOP: { // CE_UNOP: [opcode, opval] 3184 if (Record.size() < 2) 3185 return error("Invalid unary op constexpr record"); 3186 int Opc = getDecodedUnaryOpcode(Record[0], CurTy); 3187 if (Opc < 0) { 3188 V = UndefValue::get(CurTy); // Unknown unop. 3189 } else { 3190 V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[1]); 3191 } 3192 break; 3193 } 3194 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 3195 if (Record.size() < 3) 3196 return error("Invalid binary op constexpr record"); 3197 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 3198 if (Opc < 0) { 3199 V = UndefValue::get(CurTy); // Unknown binop. 3200 } else { 3201 uint8_t Flags = 0; 3202 if (Record.size() >= 4) { 3203 if (Opc == Instruction::Add || 3204 Opc == Instruction::Sub || 3205 Opc == Instruction::Mul || 3206 Opc == Instruction::Shl) { 3207 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3208 Flags |= OverflowingBinaryOperator::NoSignedWrap; 3209 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3210 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 3211 } else if (Opc == Instruction::SDiv || 3212 Opc == Instruction::UDiv || 3213 Opc == Instruction::LShr || 3214 Opc == Instruction::AShr) { 3215 if (Record[3] & (1 << bitc::PEO_EXACT)) 3216 Flags |= SDivOperator::IsExact; 3217 } 3218 } 3219 V = BitcodeConstant::create(Alloc, CurTy, {(uint8_t)Opc, Flags}, 3220 {(unsigned)Record[1], (unsigned)Record[2]}); 3221 } 3222 break; 3223 } 3224 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 3225 if (Record.size() < 3) 3226 return error("Invalid cast constexpr record"); 3227 int Opc = getDecodedCastOpcode(Record[0]); 3228 if (Opc < 0) { 3229 V = UndefValue::get(CurTy); // Unknown cast. 3230 } else { 3231 unsigned OpTyID = Record[1]; 3232 Type *OpTy = getTypeByID(OpTyID); 3233 if (!OpTy) 3234 return error("Invalid cast constexpr record"); 3235 V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[2]); 3236 } 3237 break; 3238 } 3239 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands] 3240 case bitc::CST_CODE_CE_GEP: // [ty, n x operands] 3241 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x 3242 // operands] 3243 if (Record.size() < 2) 3244 return error("Constant GEP record must have at least two elements"); 3245 unsigned OpNum = 0; 3246 Type *PointeeType = nullptr; 3247 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX || 3248 Record.size() % 2) 3249 PointeeType = getTypeByID(Record[OpNum++]); 3250 3251 bool InBounds = false; 3252 std::optional<unsigned> InRangeIndex; 3253 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) { 3254 uint64_t Op = Record[OpNum++]; 3255 InBounds = Op & 1; 3256 InRangeIndex = Op >> 1; 3257 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 3258 InBounds = true; 3259 3260 SmallVector<unsigned, 16> Elts; 3261 unsigned BaseTypeID = Record[OpNum]; 3262 while (OpNum != Record.size()) { 3263 unsigned ElTyID = Record[OpNum++]; 3264 Type *ElTy = getTypeByID(ElTyID); 3265 if (!ElTy) 3266 return error("Invalid getelementptr constexpr record"); 3267 Elts.push_back(Record[OpNum++]); 3268 } 3269 3270 if (Elts.size() < 1) 3271 return error("Invalid gep with no operands"); 3272 3273 Type *BaseType = getTypeByID(BaseTypeID); 3274 if (isa<VectorType>(BaseType)) { 3275 BaseTypeID = getContainedTypeID(BaseTypeID, 0); 3276 BaseType = getTypeByID(BaseTypeID); 3277 } 3278 3279 PointerType *OrigPtrTy = dyn_cast_or_null<PointerType>(BaseType); 3280 if (!OrigPtrTy) 3281 return error("GEP base operand must be pointer or vector of pointer"); 3282 3283 if (!PointeeType) { 3284 PointeeType = getPtrElementTypeByID(BaseTypeID); 3285 if (!PointeeType) 3286 return error("Missing element type for old-style constant GEP"); 3287 } else if (!OrigPtrTy->isOpaqueOrPointeeTypeMatches(PointeeType)) 3288 return error("Explicit gep operator type does not match pointee type " 3289 "of pointer operand"); 3290 3291 V = BitcodeConstant::create(Alloc, CurTy, 3292 {Instruction::GetElementPtr, InBounds, 3293 InRangeIndex.value_or(-1), PointeeType}, 3294 Elts); 3295 break; 3296 } 3297 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 3298 if (Record.size() < 3) 3299 return error("Invalid select constexpr record"); 3300 3301 V = BitcodeConstant::create( 3302 Alloc, CurTy, Instruction::Select, 3303 {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]}); 3304 break; 3305 } 3306 case bitc::CST_CODE_CE_EXTRACTELT 3307 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 3308 if (Record.size() < 3) 3309 return error("Invalid extractelement constexpr record"); 3310 unsigned OpTyID = Record[0]; 3311 VectorType *OpTy = 3312 dyn_cast_or_null<VectorType>(getTypeByID(OpTyID)); 3313 if (!OpTy) 3314 return error("Invalid extractelement constexpr record"); 3315 unsigned IdxRecord; 3316 if (Record.size() == 4) { 3317 unsigned IdxTyID = Record[2]; 3318 Type *IdxTy = getTypeByID(IdxTyID); 3319 if (!IdxTy) 3320 return error("Invalid extractelement constexpr record"); 3321 IdxRecord = Record[3]; 3322 } else { 3323 // Deprecated, but still needed to read old bitcode files. 3324 IdxRecord = Record[2]; 3325 } 3326 V = BitcodeConstant::create(Alloc, CurTy, Instruction::ExtractElement, 3327 {(unsigned)Record[1], IdxRecord}); 3328 break; 3329 } 3330 case bitc::CST_CODE_CE_INSERTELT 3331 : { // CE_INSERTELT: [opval, opval, opty, opval] 3332 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 3333 if (Record.size() < 3 || !OpTy) 3334 return error("Invalid insertelement constexpr record"); 3335 unsigned IdxRecord; 3336 if (Record.size() == 4) { 3337 unsigned IdxTyID = Record[2]; 3338 Type *IdxTy = getTypeByID(IdxTyID); 3339 if (!IdxTy) 3340 return error("Invalid insertelement constexpr record"); 3341 IdxRecord = Record[3]; 3342 } else { 3343 // Deprecated, but still needed to read old bitcode files. 3344 IdxRecord = Record[2]; 3345 } 3346 V = BitcodeConstant::create( 3347 Alloc, CurTy, Instruction::InsertElement, 3348 {(unsigned)Record[0], (unsigned)Record[1], IdxRecord}); 3349 break; 3350 } 3351 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 3352 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 3353 if (Record.size() < 3 || !OpTy) 3354 return error("Invalid shufflevector constexpr record"); 3355 V = BitcodeConstant::create( 3356 Alloc, CurTy, Instruction::ShuffleVector, 3357 {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]}); 3358 break; 3359 } 3360 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 3361 VectorType *RTy = dyn_cast<VectorType>(CurTy); 3362 VectorType *OpTy = 3363 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 3364 if (Record.size() < 4 || !RTy || !OpTy) 3365 return error("Invalid shufflevector constexpr record"); 3366 V = BitcodeConstant::create( 3367 Alloc, CurTy, Instruction::ShuffleVector, 3368 {(unsigned)Record[1], (unsigned)Record[2], (unsigned)Record[3]}); 3369 break; 3370 } 3371 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 3372 if (Record.size() < 4) 3373 return error("Invalid cmp constexpt record"); 3374 unsigned OpTyID = Record[0]; 3375 Type *OpTy = getTypeByID(OpTyID); 3376 if (!OpTy) 3377 return error("Invalid cmp constexpr record"); 3378 V = BitcodeConstant::create( 3379 Alloc, CurTy, 3380 {(uint8_t)(OpTy->isFPOrFPVectorTy() ? Instruction::FCmp 3381 : Instruction::ICmp), 3382 (uint8_t)Record[3]}, 3383 {(unsigned)Record[1], (unsigned)Record[2]}); 3384 break; 3385 } 3386 // This maintains backward compatibility, pre-asm dialect keywords. 3387 // Deprecated, but still needed to read old bitcode files. 3388 case bitc::CST_CODE_INLINEASM_OLD: { 3389 if (Record.size() < 2) 3390 return error("Invalid inlineasm record"); 3391 std::string AsmStr, ConstrStr; 3392 bool HasSideEffects = Record[0] & 1; 3393 bool IsAlignStack = Record[0] >> 1; 3394 unsigned AsmStrSize = Record[1]; 3395 if (2+AsmStrSize >= Record.size()) 3396 return error("Invalid inlineasm record"); 3397 unsigned ConstStrSize = Record[2+AsmStrSize]; 3398 if (3+AsmStrSize+ConstStrSize > Record.size()) 3399 return error("Invalid inlineasm record"); 3400 3401 for (unsigned i = 0; i != AsmStrSize; ++i) 3402 AsmStr += (char)Record[2+i]; 3403 for (unsigned i = 0; i != ConstStrSize; ++i) 3404 ConstrStr += (char)Record[3+AsmStrSize+i]; 3405 UpgradeInlineAsmString(&AsmStr); 3406 if (!CurElemTy) 3407 return error("Missing element type for old-style inlineasm"); 3408 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr, 3409 HasSideEffects, IsAlignStack); 3410 break; 3411 } 3412 // This version adds support for the asm dialect keywords (e.g., 3413 // inteldialect). 3414 case bitc::CST_CODE_INLINEASM_OLD2: { 3415 if (Record.size() < 2) 3416 return error("Invalid inlineasm record"); 3417 std::string AsmStr, ConstrStr; 3418 bool HasSideEffects = Record[0] & 1; 3419 bool IsAlignStack = (Record[0] >> 1) & 1; 3420 unsigned AsmDialect = Record[0] >> 2; 3421 unsigned AsmStrSize = Record[1]; 3422 if (2+AsmStrSize >= Record.size()) 3423 return error("Invalid inlineasm record"); 3424 unsigned ConstStrSize = Record[2+AsmStrSize]; 3425 if (3+AsmStrSize+ConstStrSize > Record.size()) 3426 return error("Invalid inlineasm record"); 3427 3428 for (unsigned i = 0; i != AsmStrSize; ++i) 3429 AsmStr += (char)Record[2+i]; 3430 for (unsigned i = 0; i != ConstStrSize; ++i) 3431 ConstrStr += (char)Record[3+AsmStrSize+i]; 3432 UpgradeInlineAsmString(&AsmStr); 3433 if (!CurElemTy) 3434 return error("Missing element type for old-style inlineasm"); 3435 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr, 3436 HasSideEffects, IsAlignStack, 3437 InlineAsm::AsmDialect(AsmDialect)); 3438 break; 3439 } 3440 // This version adds support for the unwind keyword. 3441 case bitc::CST_CODE_INLINEASM_OLD3: { 3442 if (Record.size() < 2) 3443 return error("Invalid inlineasm record"); 3444 unsigned OpNum = 0; 3445 std::string AsmStr, ConstrStr; 3446 bool HasSideEffects = Record[OpNum] & 1; 3447 bool IsAlignStack = (Record[OpNum] >> 1) & 1; 3448 unsigned AsmDialect = (Record[OpNum] >> 2) & 1; 3449 bool CanThrow = (Record[OpNum] >> 3) & 1; 3450 ++OpNum; 3451 unsigned AsmStrSize = Record[OpNum]; 3452 ++OpNum; 3453 if (OpNum + AsmStrSize >= Record.size()) 3454 return error("Invalid inlineasm record"); 3455 unsigned ConstStrSize = Record[OpNum + AsmStrSize]; 3456 if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size()) 3457 return error("Invalid inlineasm record"); 3458 3459 for (unsigned i = 0; i != AsmStrSize; ++i) 3460 AsmStr += (char)Record[OpNum + i]; 3461 ++OpNum; 3462 for (unsigned i = 0; i != ConstStrSize; ++i) 3463 ConstrStr += (char)Record[OpNum + AsmStrSize + i]; 3464 UpgradeInlineAsmString(&AsmStr); 3465 if (!CurElemTy) 3466 return error("Missing element type for old-style inlineasm"); 3467 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr, 3468 HasSideEffects, IsAlignStack, 3469 InlineAsm::AsmDialect(AsmDialect), CanThrow); 3470 break; 3471 } 3472 // This version adds explicit function type. 3473 case bitc::CST_CODE_INLINEASM: { 3474 if (Record.size() < 3) 3475 return error("Invalid inlineasm record"); 3476 unsigned OpNum = 0; 3477 auto *FnTy = dyn_cast_or_null<FunctionType>(getTypeByID(Record[OpNum])); 3478 ++OpNum; 3479 if (!FnTy) 3480 return error("Invalid inlineasm record"); 3481 std::string AsmStr, ConstrStr; 3482 bool HasSideEffects = Record[OpNum] & 1; 3483 bool IsAlignStack = (Record[OpNum] >> 1) & 1; 3484 unsigned AsmDialect = (Record[OpNum] >> 2) & 1; 3485 bool CanThrow = (Record[OpNum] >> 3) & 1; 3486 ++OpNum; 3487 unsigned AsmStrSize = Record[OpNum]; 3488 ++OpNum; 3489 if (OpNum + AsmStrSize >= Record.size()) 3490 return error("Invalid inlineasm record"); 3491 unsigned ConstStrSize = Record[OpNum + AsmStrSize]; 3492 if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size()) 3493 return error("Invalid inlineasm record"); 3494 3495 for (unsigned i = 0; i != AsmStrSize; ++i) 3496 AsmStr += (char)Record[OpNum + i]; 3497 ++OpNum; 3498 for (unsigned i = 0; i != ConstStrSize; ++i) 3499 ConstrStr += (char)Record[OpNum + AsmStrSize + i]; 3500 UpgradeInlineAsmString(&AsmStr); 3501 V = InlineAsm::get(FnTy, AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 3502 InlineAsm::AsmDialect(AsmDialect), CanThrow); 3503 break; 3504 } 3505 case bitc::CST_CODE_BLOCKADDRESS:{ 3506 if (Record.size() < 3) 3507 return error("Invalid blockaddress record"); 3508 unsigned FnTyID = Record[0]; 3509 Type *FnTy = getTypeByID(FnTyID); 3510 if (!FnTy) 3511 return error("Invalid blockaddress record"); 3512 V = BitcodeConstant::create( 3513 Alloc, CurTy, 3514 {BitcodeConstant::BlockAddressOpcode, 0, (unsigned)Record[2]}, 3515 Record[1]); 3516 break; 3517 } 3518 case bitc::CST_CODE_DSO_LOCAL_EQUIVALENT: { 3519 if (Record.size() < 2) 3520 return error("Invalid dso_local record"); 3521 unsigned GVTyID = Record[0]; 3522 Type *GVTy = getTypeByID(GVTyID); 3523 if (!GVTy) 3524 return error("Invalid dso_local record"); 3525 V = BitcodeConstant::create( 3526 Alloc, CurTy, BitcodeConstant::DSOLocalEquivalentOpcode, Record[1]); 3527 break; 3528 } 3529 case bitc::CST_CODE_NO_CFI_VALUE: { 3530 if (Record.size() < 2) 3531 return error("Invalid no_cfi record"); 3532 unsigned GVTyID = Record[0]; 3533 Type *GVTy = getTypeByID(GVTyID); 3534 if (!GVTy) 3535 return error("Invalid no_cfi record"); 3536 V = BitcodeConstant::create(Alloc, CurTy, BitcodeConstant::NoCFIOpcode, 3537 Record[1]); 3538 break; 3539 } 3540 } 3541 3542 assert(V->getType() == getTypeByID(CurTyID) && "Incorrect result type ID"); 3543 if (Error Err = ValueList.assignValue(NextCstNo, V, CurTyID)) 3544 return Err; 3545 ++NextCstNo; 3546 } 3547 } 3548 3549 Error BitcodeReader::parseUseLists() { 3550 if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 3551 return Err; 3552 3553 // Read all the records. 3554 SmallVector<uint64_t, 64> Record; 3555 3556 while (true) { 3557 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 3558 if (!MaybeEntry) 3559 return MaybeEntry.takeError(); 3560 BitstreamEntry Entry = MaybeEntry.get(); 3561 3562 switch (Entry.Kind) { 3563 case BitstreamEntry::SubBlock: // Handled for us already. 3564 case BitstreamEntry::Error: 3565 return error("Malformed block"); 3566 case BitstreamEntry::EndBlock: 3567 return Error::success(); 3568 case BitstreamEntry::Record: 3569 // The interesting case. 3570 break; 3571 } 3572 3573 // Read a use list record. 3574 Record.clear(); 3575 bool IsBB = false; 3576 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 3577 if (!MaybeRecord) 3578 return MaybeRecord.takeError(); 3579 switch (MaybeRecord.get()) { 3580 default: // Default behavior: unknown type. 3581 break; 3582 case bitc::USELIST_CODE_BB: 3583 IsBB = true; 3584 [[fallthrough]]; 3585 case bitc::USELIST_CODE_DEFAULT: { 3586 unsigned RecordLength = Record.size(); 3587 if (RecordLength < 3) 3588 // Records should have at least an ID and two indexes. 3589 return error("Invalid record"); 3590 unsigned ID = Record.pop_back_val(); 3591 3592 Value *V; 3593 if (IsBB) { 3594 assert(ID < FunctionBBs.size() && "Basic block not found"); 3595 V = FunctionBBs[ID]; 3596 } else 3597 V = ValueList[ID]; 3598 unsigned NumUses = 0; 3599 SmallDenseMap<const Use *, unsigned, 16> Order; 3600 for (const Use &U : V->materialized_uses()) { 3601 if (++NumUses > Record.size()) 3602 break; 3603 Order[&U] = Record[NumUses - 1]; 3604 } 3605 if (Order.size() != Record.size() || NumUses > Record.size()) 3606 // Mismatches can happen if the functions are being materialized lazily 3607 // (out-of-order), or a value has been upgraded. 3608 break; 3609 3610 V->sortUseList([&](const Use &L, const Use &R) { 3611 return Order.lookup(&L) < Order.lookup(&R); 3612 }); 3613 break; 3614 } 3615 } 3616 } 3617 } 3618 3619 /// When we see the block for metadata, remember where it is and then skip it. 3620 /// This lets us lazily deserialize the metadata. 3621 Error BitcodeReader::rememberAndSkipMetadata() { 3622 // Save the current stream state. 3623 uint64_t CurBit = Stream.GetCurrentBitNo(); 3624 DeferredMetadataInfo.push_back(CurBit); 3625 3626 // Skip over the block for now. 3627 if (Error Err = Stream.SkipBlock()) 3628 return Err; 3629 return Error::success(); 3630 } 3631 3632 Error BitcodeReader::materializeMetadata() { 3633 for (uint64_t BitPos : DeferredMetadataInfo) { 3634 // Move the bit stream to the saved position. 3635 if (Error JumpFailed = Stream.JumpToBit(BitPos)) 3636 return JumpFailed; 3637 if (Error Err = MDLoader->parseModuleMetadata()) 3638 return Err; 3639 } 3640 3641 // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level 3642 // metadata. Only upgrade if the new option doesn't exist to avoid upgrade 3643 // multiple times. 3644 if (!TheModule->getNamedMetadata("llvm.linker.options")) { 3645 if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) { 3646 NamedMDNode *LinkerOpts = 3647 TheModule->getOrInsertNamedMetadata("llvm.linker.options"); 3648 for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands()) 3649 LinkerOpts->addOperand(cast<MDNode>(MDOptions)); 3650 } 3651 } 3652 3653 DeferredMetadataInfo.clear(); 3654 return Error::success(); 3655 } 3656 3657 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 3658 3659 /// When we see the block for a function body, remember where it is and then 3660 /// skip it. This lets us lazily deserialize the functions. 3661 Error BitcodeReader::rememberAndSkipFunctionBody() { 3662 // Get the function we are talking about. 3663 if (FunctionsWithBodies.empty()) 3664 return error("Insufficient function protos"); 3665 3666 Function *Fn = FunctionsWithBodies.back(); 3667 FunctionsWithBodies.pop_back(); 3668 3669 // Save the current stream state. 3670 uint64_t CurBit = Stream.GetCurrentBitNo(); 3671 assert( 3672 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 3673 "Mismatch between VST and scanned function offsets"); 3674 DeferredFunctionInfo[Fn] = CurBit; 3675 3676 // Skip over the function block for now. 3677 if (Error Err = Stream.SkipBlock()) 3678 return Err; 3679 return Error::success(); 3680 } 3681 3682 Error BitcodeReader::globalCleanup() { 3683 // Patch the initializers for globals and aliases up. 3684 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3685 return Err; 3686 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 3687 return error("Malformed global initializer set"); 3688 3689 // Look for intrinsic functions which need to be upgraded at some point 3690 // and functions that need to have their function attributes upgraded. 3691 for (Function &F : *TheModule) { 3692 MDLoader->upgradeDebugIntrinsics(F); 3693 Function *NewFn; 3694 if (UpgradeIntrinsicFunction(&F, NewFn)) 3695 UpgradedIntrinsics[&F] = NewFn; 3696 // Look for functions that rely on old function attribute behavior. 3697 UpgradeFunctionAttributes(F); 3698 } 3699 3700 // Look for global variables which need to be renamed. 3701 std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables; 3702 for (GlobalVariable &GV : TheModule->globals()) 3703 if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV)) 3704 UpgradedVariables.emplace_back(&GV, Upgraded); 3705 for (auto &Pair : UpgradedVariables) { 3706 Pair.first->eraseFromParent(); 3707 TheModule->insertGlobalVariable(Pair.second); 3708 } 3709 3710 // Force deallocation of memory for these vectors to favor the client that 3711 // want lazy deserialization. 3712 std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits); 3713 std::vector<std::pair<GlobalValue *, unsigned>>().swap(IndirectSymbolInits); 3714 return Error::success(); 3715 } 3716 3717 /// Support for lazy parsing of function bodies. This is required if we 3718 /// either have an old bitcode file without a VST forward declaration record, 3719 /// or if we have an anonymous function being materialized, since anonymous 3720 /// functions do not have a name and are therefore not in the VST. 3721 Error BitcodeReader::rememberAndSkipFunctionBodies() { 3722 if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit)) 3723 return JumpFailed; 3724 3725 if (Stream.AtEndOfStream()) 3726 return error("Could not find function in stream"); 3727 3728 if (!SeenFirstFunctionBody) 3729 return error("Trying to materialize functions before seeing function blocks"); 3730 3731 // An old bitcode file with the symbol table at the end would have 3732 // finished the parse greedily. 3733 assert(SeenValueSymbolTable); 3734 3735 SmallVector<uint64_t, 64> Record; 3736 3737 while (true) { 3738 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3739 if (!MaybeEntry) 3740 return MaybeEntry.takeError(); 3741 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3742 3743 switch (Entry.Kind) { 3744 default: 3745 return error("Expect SubBlock"); 3746 case BitstreamEntry::SubBlock: 3747 switch (Entry.ID) { 3748 default: 3749 return error("Expect function block"); 3750 case bitc::FUNCTION_BLOCK_ID: 3751 if (Error Err = rememberAndSkipFunctionBody()) 3752 return Err; 3753 NextUnreadBit = Stream.GetCurrentBitNo(); 3754 return Error::success(); 3755 } 3756 } 3757 } 3758 } 3759 3760 Error BitcodeReaderBase::readBlockInfo() { 3761 Expected<std::optional<BitstreamBlockInfo>> MaybeNewBlockInfo = 3762 Stream.ReadBlockInfoBlock(); 3763 if (!MaybeNewBlockInfo) 3764 return MaybeNewBlockInfo.takeError(); 3765 std::optional<BitstreamBlockInfo> NewBlockInfo = 3766 std::move(MaybeNewBlockInfo.get()); 3767 if (!NewBlockInfo) 3768 return error("Malformed block"); 3769 BlockInfo = std::move(*NewBlockInfo); 3770 return Error::success(); 3771 } 3772 3773 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) { 3774 // v1: [selection_kind, name] 3775 // v2: [strtab_offset, strtab_size, selection_kind] 3776 StringRef Name; 3777 std::tie(Name, Record) = readNameFromStrtab(Record); 3778 3779 if (Record.empty()) 3780 return error("Invalid record"); 3781 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 3782 std::string OldFormatName; 3783 if (!UseStrtab) { 3784 if (Record.size() < 2) 3785 return error("Invalid record"); 3786 unsigned ComdatNameSize = Record[1]; 3787 if (ComdatNameSize > Record.size() - 2) 3788 return error("Comdat name size too large"); 3789 OldFormatName.reserve(ComdatNameSize); 3790 for (unsigned i = 0; i != ComdatNameSize; ++i) 3791 OldFormatName += (char)Record[2 + i]; 3792 Name = OldFormatName; 3793 } 3794 Comdat *C = TheModule->getOrInsertComdat(Name); 3795 C->setSelectionKind(SK); 3796 ComdatList.push_back(C); 3797 return Error::success(); 3798 } 3799 3800 static void inferDSOLocal(GlobalValue *GV) { 3801 // infer dso_local from linkage and visibility if it is not encoded. 3802 if (GV->hasLocalLinkage() || 3803 (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())) 3804 GV->setDSOLocal(true); 3805 } 3806 3807 GlobalValue::SanitizerMetadata deserializeSanitizerMetadata(unsigned V) { 3808 GlobalValue::SanitizerMetadata Meta; 3809 if (V & (1 << 0)) 3810 Meta.NoAddress = true; 3811 if (V & (1 << 1)) 3812 Meta.NoHWAddress = true; 3813 if (V & (1 << 2)) 3814 Meta.Memtag = true; 3815 if (V & (1 << 3)) 3816 Meta.IsDynInit = true; 3817 return Meta; 3818 } 3819 3820 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) { 3821 // v1: [pointer type, isconst, initid, linkage, alignment, section, 3822 // visibility, threadlocal, unnamed_addr, externally_initialized, 3823 // dllstorageclass, comdat, attributes, preemption specifier, 3824 // partition strtab offset, partition strtab size] (name in VST) 3825 // v2: [strtab_offset, strtab_size, v1] 3826 StringRef Name; 3827 std::tie(Name, Record) = readNameFromStrtab(Record); 3828 3829 if (Record.size() < 6) 3830 return error("Invalid record"); 3831 unsigned TyID = Record[0]; 3832 Type *Ty = getTypeByID(TyID); 3833 if (!Ty) 3834 return error("Invalid record"); 3835 bool isConstant = Record[1] & 1; 3836 bool explicitType = Record[1] & 2; 3837 unsigned AddressSpace; 3838 if (explicitType) { 3839 AddressSpace = Record[1] >> 2; 3840 } else { 3841 if (!Ty->isPointerTy()) 3842 return error("Invalid type for value"); 3843 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 3844 TyID = getContainedTypeID(TyID); 3845 Ty = getTypeByID(TyID); 3846 if (!Ty) 3847 return error("Missing element type for old-style global"); 3848 } 3849 3850 uint64_t RawLinkage = Record[3]; 3851 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 3852 MaybeAlign Alignment; 3853 if (Error Err = parseAlignmentValue(Record[4], Alignment)) 3854 return Err; 3855 std::string Section; 3856 if (Record[5]) { 3857 if (Record[5] - 1 >= SectionTable.size()) 3858 return error("Invalid ID"); 3859 Section = SectionTable[Record[5] - 1]; 3860 } 3861 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 3862 // Local linkage must have default visibility. 3863 // auto-upgrade `hidden` and `protected` for old bitcode. 3864 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 3865 Visibility = getDecodedVisibility(Record[6]); 3866 3867 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 3868 if (Record.size() > 7) 3869 TLM = getDecodedThreadLocalMode(Record[7]); 3870 3871 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3872 if (Record.size() > 8) 3873 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); 3874 3875 bool ExternallyInitialized = false; 3876 if (Record.size() > 9) 3877 ExternallyInitialized = Record[9]; 3878 3879 GlobalVariable *NewGV = 3880 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name, 3881 nullptr, TLM, AddressSpace, ExternallyInitialized); 3882 if (Alignment) 3883 NewGV->setAlignment(*Alignment); 3884 if (!Section.empty()) 3885 NewGV->setSection(Section); 3886 NewGV->setVisibility(Visibility); 3887 NewGV->setUnnamedAddr(UnnamedAddr); 3888 3889 if (Record.size() > 10) { 3890 // A GlobalValue with local linkage cannot have a DLL storage class. 3891 if (!NewGV->hasLocalLinkage()) { 3892 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 3893 } 3894 } else { 3895 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 3896 } 3897 3898 ValueList.push_back(NewGV, getVirtualTypeID(NewGV->getType(), TyID)); 3899 3900 // Remember which value to use for the global initializer. 3901 if (unsigned InitID = Record[2]) 3902 GlobalInits.push_back(std::make_pair(NewGV, InitID - 1)); 3903 3904 if (Record.size() > 11) { 3905 if (unsigned ComdatID = Record[11]) { 3906 if (ComdatID > ComdatList.size()) 3907 return error("Invalid global variable comdat ID"); 3908 NewGV->setComdat(ComdatList[ComdatID - 1]); 3909 } 3910 } else if (hasImplicitComdat(RawLinkage)) { 3911 ImplicitComdatObjects.insert(NewGV); 3912 } 3913 3914 if (Record.size() > 12) { 3915 auto AS = getAttributes(Record[12]).getFnAttrs(); 3916 NewGV->setAttributes(AS); 3917 } 3918 3919 if (Record.size() > 13) { 3920 NewGV->setDSOLocal(getDecodedDSOLocal(Record[13])); 3921 } 3922 inferDSOLocal(NewGV); 3923 3924 // Check whether we have enough values to read a partition name. 3925 if (Record.size() > 15) 3926 NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15])); 3927 3928 if (Record.size() > 16 && Record[16]) { 3929 llvm::GlobalValue::SanitizerMetadata Meta = 3930 deserializeSanitizerMetadata(Record[16]); 3931 NewGV->setSanitizerMetadata(Meta); 3932 } 3933 3934 return Error::success(); 3935 } 3936 3937 void BitcodeReader::callValueTypeCallback(Value *F, unsigned TypeID) { 3938 if (ValueTypeCallback) { 3939 (*ValueTypeCallback)( 3940 F, TypeID, [this](unsigned I) { return getTypeByID(I); }, 3941 [this](unsigned I, unsigned J) { return getContainedTypeID(I, J); }); 3942 } 3943 } 3944 3945 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) { 3946 // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section, 3947 // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat, 3948 // prefixdata, personalityfn, preemption specifier, addrspace] (name in VST) 3949 // v2: [strtab_offset, strtab_size, v1] 3950 StringRef Name; 3951 std::tie(Name, Record) = readNameFromStrtab(Record); 3952 3953 if (Record.size() < 8) 3954 return error("Invalid record"); 3955 unsigned FTyID = Record[0]; 3956 Type *FTy = getTypeByID(FTyID); 3957 if (!FTy) 3958 return error("Invalid record"); 3959 if (isa<PointerType>(FTy)) { 3960 FTyID = getContainedTypeID(FTyID, 0); 3961 FTy = getTypeByID(FTyID); 3962 if (!FTy) 3963 return error("Missing element type for old-style function"); 3964 } 3965 3966 if (!isa<FunctionType>(FTy)) 3967 return error("Invalid type for value"); 3968 auto CC = static_cast<CallingConv::ID>(Record[1]); 3969 if (CC & ~CallingConv::MaxID) 3970 return error("Invalid calling convention ID"); 3971 3972 unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace(); 3973 if (Record.size() > 16) 3974 AddrSpace = Record[16]; 3975 3976 Function *Func = 3977 Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage, 3978 AddrSpace, Name, TheModule); 3979 3980 assert(Func->getFunctionType() == FTy && 3981 "Incorrect fully specified type provided for function"); 3982 FunctionTypeIDs[Func] = FTyID; 3983 3984 Func->setCallingConv(CC); 3985 bool isProto = Record[2]; 3986 uint64_t RawLinkage = Record[3]; 3987 Func->setLinkage(getDecodedLinkage(RawLinkage)); 3988 Func->setAttributes(getAttributes(Record[4])); 3989 callValueTypeCallback(Func, FTyID); 3990 3991 // Upgrade any old-style byval or sret without a type by propagating the 3992 // argument's pointee type. There should be no opaque pointers where the byval 3993 // type is implicit. 3994 for (unsigned i = 0; i != Func->arg_size(); ++i) { 3995 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet, 3996 Attribute::InAlloca}) { 3997 if (!Func->hasParamAttribute(i, Kind)) 3998 continue; 3999 4000 if (Func->getParamAttribute(i, Kind).getValueAsType()) 4001 continue; 4002 4003 Func->removeParamAttr(i, Kind); 4004 4005 unsigned ParamTypeID = getContainedTypeID(FTyID, i + 1); 4006 Type *PtrEltTy = getPtrElementTypeByID(ParamTypeID); 4007 if (!PtrEltTy) 4008 return error("Missing param element type for attribute upgrade"); 4009 4010 Attribute NewAttr; 4011 switch (Kind) { 4012 case Attribute::ByVal: 4013 NewAttr = Attribute::getWithByValType(Context, PtrEltTy); 4014 break; 4015 case Attribute::StructRet: 4016 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy); 4017 break; 4018 case Attribute::InAlloca: 4019 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy); 4020 break; 4021 default: 4022 llvm_unreachable("not an upgraded type attribute"); 4023 } 4024 4025 Func->addParamAttr(i, NewAttr); 4026 } 4027 } 4028 4029 if (Func->getCallingConv() == CallingConv::X86_INTR && 4030 !Func->arg_empty() && !Func->hasParamAttribute(0, Attribute::ByVal)) { 4031 unsigned ParamTypeID = getContainedTypeID(FTyID, 1); 4032 Type *ByValTy = getPtrElementTypeByID(ParamTypeID); 4033 if (!ByValTy) 4034 return error("Missing param element type for x86_intrcc upgrade"); 4035 Attribute NewAttr = Attribute::getWithByValType(Context, ByValTy); 4036 Func->addParamAttr(0, NewAttr); 4037 } 4038 4039 MaybeAlign Alignment; 4040 if (Error Err = parseAlignmentValue(Record[5], Alignment)) 4041 return Err; 4042 if (Alignment) 4043 Func->setAlignment(*Alignment); 4044 if (Record[6]) { 4045 if (Record[6] - 1 >= SectionTable.size()) 4046 return error("Invalid ID"); 4047 Func->setSection(SectionTable[Record[6] - 1]); 4048 } 4049 // Local linkage must have default visibility. 4050 // auto-upgrade `hidden` and `protected` for old bitcode. 4051 if (!Func->hasLocalLinkage()) 4052 Func->setVisibility(getDecodedVisibility(Record[7])); 4053 if (Record.size() > 8 && Record[8]) { 4054 if (Record[8] - 1 >= GCTable.size()) 4055 return error("Invalid ID"); 4056 Func->setGC(GCTable[Record[8] - 1]); 4057 } 4058 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 4059 if (Record.size() > 9) 4060 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); 4061 Func->setUnnamedAddr(UnnamedAddr); 4062 4063 FunctionOperandInfo OperandInfo = {Func, 0, 0, 0}; 4064 if (Record.size() > 10) 4065 OperandInfo.Prologue = Record[10]; 4066 4067 if (Record.size() > 11) { 4068 // A GlobalValue with local linkage cannot have a DLL storage class. 4069 if (!Func->hasLocalLinkage()) { 4070 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 4071 } 4072 } else { 4073 upgradeDLLImportExportLinkage(Func, RawLinkage); 4074 } 4075 4076 if (Record.size() > 12) { 4077 if (unsigned ComdatID = Record[12]) { 4078 if (ComdatID > ComdatList.size()) 4079 return error("Invalid function comdat ID"); 4080 Func->setComdat(ComdatList[ComdatID - 1]); 4081 } 4082 } else if (hasImplicitComdat(RawLinkage)) { 4083 ImplicitComdatObjects.insert(Func); 4084 } 4085 4086 if (Record.size() > 13) 4087 OperandInfo.Prefix = Record[13]; 4088 4089 if (Record.size() > 14) 4090 OperandInfo.PersonalityFn = Record[14]; 4091 4092 if (Record.size() > 15) { 4093 Func->setDSOLocal(getDecodedDSOLocal(Record[15])); 4094 } 4095 inferDSOLocal(Func); 4096 4097 // Record[16] is the address space number. 4098 4099 // Check whether we have enough values to read a partition name. Also make 4100 // sure Strtab has enough values. 4101 if (Record.size() > 18 && Strtab.data() && 4102 Record[17] + Record[18] <= Strtab.size()) { 4103 Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18])); 4104 } 4105 4106 ValueList.push_back(Func, getVirtualTypeID(Func->getType(), FTyID)); 4107 4108 if (OperandInfo.PersonalityFn || OperandInfo.Prefix || OperandInfo.Prologue) 4109 FunctionOperands.push_back(OperandInfo); 4110 4111 // If this is a function with a body, remember the prototype we are 4112 // creating now, so that we can match up the body with them later. 4113 if (!isProto) { 4114 Func->setIsMaterializable(true); 4115 FunctionsWithBodies.push_back(Func); 4116 DeferredFunctionInfo[Func] = 0; 4117 } 4118 return Error::success(); 4119 } 4120 4121 Error BitcodeReader::parseGlobalIndirectSymbolRecord( 4122 unsigned BitCode, ArrayRef<uint64_t> Record) { 4123 // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST) 4124 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 4125 // dllstorageclass, threadlocal, unnamed_addr, 4126 // preemption specifier] (name in VST) 4127 // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage, 4128 // visibility, dllstorageclass, threadlocal, unnamed_addr, 4129 // preemption specifier] (name in VST) 4130 // v2: [strtab_offset, strtab_size, v1] 4131 StringRef Name; 4132 std::tie(Name, Record) = readNameFromStrtab(Record); 4133 4134 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 4135 if (Record.size() < (3 + (unsigned)NewRecord)) 4136 return error("Invalid record"); 4137 unsigned OpNum = 0; 4138 unsigned TypeID = Record[OpNum++]; 4139 Type *Ty = getTypeByID(TypeID); 4140 if (!Ty) 4141 return error("Invalid record"); 4142 4143 unsigned AddrSpace; 4144 if (!NewRecord) { 4145 auto *PTy = dyn_cast<PointerType>(Ty); 4146 if (!PTy) 4147 return error("Invalid type for value"); 4148 AddrSpace = PTy->getAddressSpace(); 4149 TypeID = getContainedTypeID(TypeID); 4150 Ty = getTypeByID(TypeID); 4151 if (!Ty) 4152 return error("Missing element type for old-style indirect symbol"); 4153 } else { 4154 AddrSpace = Record[OpNum++]; 4155 } 4156 4157 auto Val = Record[OpNum++]; 4158 auto Linkage = Record[OpNum++]; 4159 GlobalValue *NewGA; 4160 if (BitCode == bitc::MODULE_CODE_ALIAS || 4161 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 4162 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 4163 TheModule); 4164 else 4165 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 4166 nullptr, TheModule); 4167 4168 // Local linkage must have default visibility. 4169 // auto-upgrade `hidden` and `protected` for old bitcode. 4170 if (OpNum != Record.size()) { 4171 auto VisInd = OpNum++; 4172 if (!NewGA->hasLocalLinkage()) 4173 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 4174 } 4175 if (BitCode == bitc::MODULE_CODE_ALIAS || 4176 BitCode == bitc::MODULE_CODE_ALIAS_OLD) { 4177 if (OpNum != Record.size()) { 4178 auto S = Record[OpNum++]; 4179 // A GlobalValue with local linkage cannot have a DLL storage class. 4180 if (!NewGA->hasLocalLinkage()) 4181 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(S)); 4182 } 4183 else 4184 upgradeDLLImportExportLinkage(NewGA, Linkage); 4185 if (OpNum != Record.size()) 4186 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 4187 if (OpNum != Record.size()) 4188 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); 4189 } 4190 if (OpNum != Record.size()) 4191 NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++])); 4192 inferDSOLocal(NewGA); 4193 4194 // Check whether we have enough values to read a partition name. 4195 if (OpNum + 1 < Record.size()) { 4196 NewGA->setPartition( 4197 StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1])); 4198 OpNum += 2; 4199 } 4200 4201 ValueList.push_back(NewGA, getVirtualTypeID(NewGA->getType(), TypeID)); 4202 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 4203 return Error::success(); 4204 } 4205 4206 Error BitcodeReader::parseModule(uint64_t ResumeBit, 4207 bool ShouldLazyLoadMetadata, 4208 ParserCallbacks Callbacks) { 4209 this->ValueTypeCallback = std::move(Callbacks.ValueType); 4210 if (ResumeBit) { 4211 if (Error JumpFailed = Stream.JumpToBit(ResumeBit)) 4212 return JumpFailed; 4213 } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 4214 return Err; 4215 4216 SmallVector<uint64_t, 64> Record; 4217 4218 // Parts of bitcode parsing depend on the datalayout. Make sure we 4219 // finalize the datalayout before we run any of that code. 4220 bool ResolvedDataLayout = false; 4221 // In order to support importing modules with illegal data layout strings, 4222 // delay parsing the data layout string until after upgrades and overrides 4223 // have been applied, allowing to fix illegal data layout strings. 4224 // Initialize to the current module's layout string in case none is specified. 4225 std::string TentativeDataLayoutStr = TheModule->getDataLayoutStr(); 4226 4227 auto ResolveDataLayout = [&]() -> Error { 4228 if (ResolvedDataLayout) 4229 return Error::success(); 4230 4231 // Datalayout and triple can't be parsed after this point. 4232 ResolvedDataLayout = true; 4233 4234 // Auto-upgrade the layout string 4235 TentativeDataLayoutStr = llvm::UpgradeDataLayoutString( 4236 TentativeDataLayoutStr, TheModule->getTargetTriple()); 4237 4238 // Apply override 4239 if (Callbacks.DataLayout) { 4240 if (auto LayoutOverride = (*Callbacks.DataLayout)( 4241 TheModule->getTargetTriple(), TentativeDataLayoutStr)) 4242 TentativeDataLayoutStr = *LayoutOverride; 4243 } 4244 4245 // Now the layout string is finalized in TentativeDataLayoutStr. Parse it. 4246 Expected<DataLayout> MaybeDL = DataLayout::parse(TentativeDataLayoutStr); 4247 if (!MaybeDL) 4248 return MaybeDL.takeError(); 4249 4250 TheModule->setDataLayout(MaybeDL.get()); 4251 return Error::success(); 4252 }; 4253 4254 // Read all the records for this module. 4255 while (true) { 4256 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 4257 if (!MaybeEntry) 4258 return MaybeEntry.takeError(); 4259 llvm::BitstreamEntry Entry = MaybeEntry.get(); 4260 4261 switch (Entry.Kind) { 4262 case BitstreamEntry::Error: 4263 return error("Malformed block"); 4264 case BitstreamEntry::EndBlock: 4265 if (Error Err = ResolveDataLayout()) 4266 return Err; 4267 return globalCleanup(); 4268 4269 case BitstreamEntry::SubBlock: 4270 switch (Entry.ID) { 4271 default: // Skip unknown content. 4272 if (Error Err = Stream.SkipBlock()) 4273 return Err; 4274 break; 4275 case bitc::BLOCKINFO_BLOCK_ID: 4276 if (Error Err = readBlockInfo()) 4277 return Err; 4278 break; 4279 case bitc::PARAMATTR_BLOCK_ID: 4280 if (Error Err = parseAttributeBlock()) 4281 return Err; 4282 break; 4283 case bitc::PARAMATTR_GROUP_BLOCK_ID: 4284 if (Error Err = parseAttributeGroupBlock()) 4285 return Err; 4286 break; 4287 case bitc::TYPE_BLOCK_ID_NEW: 4288 if (Error Err = parseTypeTable()) 4289 return Err; 4290 break; 4291 case bitc::VALUE_SYMTAB_BLOCK_ID: 4292 if (!SeenValueSymbolTable) { 4293 // Either this is an old form VST without function index and an 4294 // associated VST forward declaration record (which would have caused 4295 // the VST to be jumped to and parsed before it was encountered 4296 // normally in the stream), or there were no function blocks to 4297 // trigger an earlier parsing of the VST. 4298 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 4299 if (Error Err = parseValueSymbolTable()) 4300 return Err; 4301 SeenValueSymbolTable = true; 4302 } else { 4303 // We must have had a VST forward declaration record, which caused 4304 // the parser to jump to and parse the VST earlier. 4305 assert(VSTOffset > 0); 4306 if (Error Err = Stream.SkipBlock()) 4307 return Err; 4308 } 4309 break; 4310 case bitc::CONSTANTS_BLOCK_ID: 4311 if (Error Err = parseConstants()) 4312 return Err; 4313 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 4314 return Err; 4315 break; 4316 case bitc::METADATA_BLOCK_ID: 4317 if (ShouldLazyLoadMetadata) { 4318 if (Error Err = rememberAndSkipMetadata()) 4319 return Err; 4320 break; 4321 } 4322 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 4323 if (Error Err = MDLoader->parseModuleMetadata()) 4324 return Err; 4325 break; 4326 case bitc::METADATA_KIND_BLOCK_ID: 4327 if (Error Err = MDLoader->parseMetadataKinds()) 4328 return Err; 4329 break; 4330 case bitc::FUNCTION_BLOCK_ID: 4331 if (Error Err = ResolveDataLayout()) 4332 return Err; 4333 4334 // If this is the first function body we've seen, reverse the 4335 // FunctionsWithBodies list. 4336 if (!SeenFirstFunctionBody) { 4337 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 4338 if (Error Err = globalCleanup()) 4339 return Err; 4340 SeenFirstFunctionBody = true; 4341 } 4342 4343 if (VSTOffset > 0) { 4344 // If we have a VST forward declaration record, make sure we 4345 // parse the VST now if we haven't already. It is needed to 4346 // set up the DeferredFunctionInfo vector for lazy reading. 4347 if (!SeenValueSymbolTable) { 4348 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset)) 4349 return Err; 4350 SeenValueSymbolTable = true; 4351 // Fall through so that we record the NextUnreadBit below. 4352 // This is necessary in case we have an anonymous function that 4353 // is later materialized. Since it will not have a VST entry we 4354 // need to fall back to the lazy parse to find its offset. 4355 } else { 4356 // If we have a VST forward declaration record, but have already 4357 // parsed the VST (just above, when the first function body was 4358 // encountered here), then we are resuming the parse after 4359 // materializing functions. The ResumeBit points to the 4360 // start of the last function block recorded in the 4361 // DeferredFunctionInfo map. Skip it. 4362 if (Error Err = Stream.SkipBlock()) 4363 return Err; 4364 continue; 4365 } 4366 } 4367 4368 // Support older bitcode files that did not have the function 4369 // index in the VST, nor a VST forward declaration record, as 4370 // well as anonymous functions that do not have VST entries. 4371 // Build the DeferredFunctionInfo vector on the fly. 4372 if (Error Err = rememberAndSkipFunctionBody()) 4373 return Err; 4374 4375 // Suspend parsing when we reach the function bodies. Subsequent 4376 // materialization calls will resume it when necessary. If the bitcode 4377 // file is old, the symbol table will be at the end instead and will not 4378 // have been seen yet. In this case, just finish the parse now. 4379 if (SeenValueSymbolTable) { 4380 NextUnreadBit = Stream.GetCurrentBitNo(); 4381 // After the VST has been parsed, we need to make sure intrinsic name 4382 // are auto-upgraded. 4383 return globalCleanup(); 4384 } 4385 break; 4386 case bitc::USELIST_BLOCK_ID: 4387 if (Error Err = parseUseLists()) 4388 return Err; 4389 break; 4390 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 4391 if (Error Err = parseOperandBundleTags()) 4392 return Err; 4393 break; 4394 case bitc::SYNC_SCOPE_NAMES_BLOCK_ID: 4395 if (Error Err = parseSyncScopeNames()) 4396 return Err; 4397 break; 4398 } 4399 continue; 4400 4401 case BitstreamEntry::Record: 4402 // The interesting case. 4403 break; 4404 } 4405 4406 // Read a record. 4407 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 4408 if (!MaybeBitCode) 4409 return MaybeBitCode.takeError(); 4410 switch (unsigned BitCode = MaybeBitCode.get()) { 4411 default: break; // Default behavior, ignore unknown content. 4412 case bitc::MODULE_CODE_VERSION: { 4413 Expected<unsigned> VersionOrErr = parseVersionRecord(Record); 4414 if (!VersionOrErr) 4415 return VersionOrErr.takeError(); 4416 UseRelativeIDs = *VersionOrErr >= 1; 4417 break; 4418 } 4419 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 4420 if (ResolvedDataLayout) 4421 return error("target triple too late in module"); 4422 std::string S; 4423 if (convertToString(Record, 0, S)) 4424 return error("Invalid record"); 4425 TheModule->setTargetTriple(S); 4426 break; 4427 } 4428 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 4429 if (ResolvedDataLayout) 4430 return error("datalayout too late in module"); 4431 if (convertToString(Record, 0, TentativeDataLayoutStr)) 4432 return error("Invalid record"); 4433 break; 4434 } 4435 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 4436 std::string S; 4437 if (convertToString(Record, 0, S)) 4438 return error("Invalid record"); 4439 TheModule->setModuleInlineAsm(S); 4440 break; 4441 } 4442 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 4443 // Deprecated, but still needed to read old bitcode files. 4444 std::string S; 4445 if (convertToString(Record, 0, S)) 4446 return error("Invalid record"); 4447 // Ignore value. 4448 break; 4449 } 4450 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 4451 std::string S; 4452 if (convertToString(Record, 0, S)) 4453 return error("Invalid record"); 4454 SectionTable.push_back(S); 4455 break; 4456 } 4457 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 4458 std::string S; 4459 if (convertToString(Record, 0, S)) 4460 return error("Invalid record"); 4461 GCTable.push_back(S); 4462 break; 4463 } 4464 case bitc::MODULE_CODE_COMDAT: 4465 if (Error Err = parseComdatRecord(Record)) 4466 return Err; 4467 break; 4468 // FIXME: BitcodeReader should handle {GLOBALVAR, FUNCTION, ALIAS, IFUNC} 4469 // written by ThinLinkBitcodeWriter. See 4470 // `ThinLinkBitcodeWriter::writeSimplifiedModuleInfo` for the format of each 4471 // record 4472 // (https://github.com/llvm/llvm-project/blob/b6a93967d9c11e79802b5e75cec1584d6c8aa472/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp#L4714) 4473 case bitc::MODULE_CODE_GLOBALVAR: 4474 if (Error Err = parseGlobalVarRecord(Record)) 4475 return Err; 4476 break; 4477 case bitc::MODULE_CODE_FUNCTION: 4478 if (Error Err = ResolveDataLayout()) 4479 return Err; 4480 if (Error Err = parseFunctionRecord(Record)) 4481 return Err; 4482 break; 4483 case bitc::MODULE_CODE_IFUNC: 4484 case bitc::MODULE_CODE_ALIAS: 4485 case bitc::MODULE_CODE_ALIAS_OLD: 4486 if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record)) 4487 return Err; 4488 break; 4489 /// MODULE_CODE_VSTOFFSET: [offset] 4490 case bitc::MODULE_CODE_VSTOFFSET: 4491 if (Record.empty()) 4492 return error("Invalid record"); 4493 // Note that we subtract 1 here because the offset is relative to one word 4494 // before the start of the identification or module block, which was 4495 // historically always the start of the regular bitcode header. 4496 VSTOffset = Record[0] - 1; 4497 break; 4498 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4499 case bitc::MODULE_CODE_SOURCE_FILENAME: 4500 SmallString<128> ValueName; 4501 if (convertToString(Record, 0, ValueName)) 4502 return error("Invalid record"); 4503 TheModule->setSourceFileName(ValueName); 4504 break; 4505 } 4506 Record.clear(); 4507 } 4508 this->ValueTypeCallback = std::nullopt; 4509 return Error::success(); 4510 } 4511 4512 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 4513 bool IsImporting, 4514 ParserCallbacks Callbacks) { 4515 TheModule = M; 4516 MetadataLoaderCallbacks MDCallbacks; 4517 MDCallbacks.GetTypeByID = [&](unsigned ID) { return getTypeByID(ID); }; 4518 MDCallbacks.GetContainedTypeID = [&](unsigned I, unsigned J) { 4519 return getContainedTypeID(I, J); 4520 }; 4521 MDCallbacks.MDType = Callbacks.MDType; 4522 MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, MDCallbacks); 4523 return parseModule(0, ShouldLazyLoadMetadata, Callbacks); 4524 } 4525 4526 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 4527 if (!isa<PointerType>(PtrType)) 4528 return error("Load/Store operand is not a pointer type"); 4529 4530 if (!cast<PointerType>(PtrType)->isOpaqueOrPointeeTypeMatches(ValType)) 4531 return error("Explicit load/store type does not match pointee " 4532 "type of pointer operand"); 4533 if (!PointerType::isLoadableOrStorableType(ValType)) 4534 return error("Cannot load/store from pointer"); 4535 return Error::success(); 4536 } 4537 4538 Error BitcodeReader::propagateAttributeTypes(CallBase *CB, 4539 ArrayRef<unsigned> ArgTyIDs) { 4540 AttributeList Attrs = CB->getAttributes(); 4541 for (unsigned i = 0; i != CB->arg_size(); ++i) { 4542 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet, 4543 Attribute::InAlloca}) { 4544 if (!Attrs.hasParamAttr(i, Kind) || 4545 Attrs.getParamAttr(i, Kind).getValueAsType()) 4546 continue; 4547 4548 Type *PtrEltTy = getPtrElementTypeByID(ArgTyIDs[i]); 4549 if (!PtrEltTy) 4550 return error("Missing element type for typed attribute upgrade"); 4551 4552 Attribute NewAttr; 4553 switch (Kind) { 4554 case Attribute::ByVal: 4555 NewAttr = Attribute::getWithByValType(Context, PtrEltTy); 4556 break; 4557 case Attribute::StructRet: 4558 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy); 4559 break; 4560 case Attribute::InAlloca: 4561 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy); 4562 break; 4563 default: 4564 llvm_unreachable("not an upgraded type attribute"); 4565 } 4566 4567 Attrs = Attrs.addParamAttribute(Context, i, NewAttr); 4568 } 4569 } 4570 4571 if (CB->isInlineAsm()) { 4572 const InlineAsm *IA = cast<InlineAsm>(CB->getCalledOperand()); 4573 unsigned ArgNo = 0; 4574 for (const InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 4575 if (!CI.hasArg()) 4576 continue; 4577 4578 if (CI.isIndirect && !Attrs.getParamElementType(ArgNo)) { 4579 Type *ElemTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]); 4580 if (!ElemTy) 4581 return error("Missing element type for inline asm upgrade"); 4582 Attrs = Attrs.addParamAttribute( 4583 Context, ArgNo, 4584 Attribute::get(Context, Attribute::ElementType, ElemTy)); 4585 } 4586 4587 ArgNo++; 4588 } 4589 } 4590 4591 switch (CB->getIntrinsicID()) { 4592 case Intrinsic::preserve_array_access_index: 4593 case Intrinsic::preserve_struct_access_index: 4594 case Intrinsic::aarch64_ldaxr: 4595 case Intrinsic::aarch64_ldxr: 4596 case Intrinsic::aarch64_stlxr: 4597 case Intrinsic::aarch64_stxr: 4598 case Intrinsic::arm_ldaex: 4599 case Intrinsic::arm_ldrex: 4600 case Intrinsic::arm_stlex: 4601 case Intrinsic::arm_strex: { 4602 unsigned ArgNo; 4603 switch (CB->getIntrinsicID()) { 4604 case Intrinsic::aarch64_stlxr: 4605 case Intrinsic::aarch64_stxr: 4606 case Intrinsic::arm_stlex: 4607 case Intrinsic::arm_strex: 4608 ArgNo = 1; 4609 break; 4610 default: 4611 ArgNo = 0; 4612 break; 4613 } 4614 if (!Attrs.getParamElementType(ArgNo)) { 4615 Type *ElTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]); 4616 if (!ElTy) 4617 return error("Missing element type for elementtype upgrade"); 4618 Attribute NewAttr = Attribute::get(Context, Attribute::ElementType, ElTy); 4619 Attrs = Attrs.addParamAttribute(Context, ArgNo, NewAttr); 4620 } 4621 break; 4622 } 4623 default: 4624 break; 4625 } 4626 4627 CB->setAttributes(Attrs); 4628 return Error::success(); 4629 } 4630 4631 /// Lazily parse the specified function body block. 4632 Error BitcodeReader::parseFunctionBody(Function *F) { 4633 if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 4634 return Err; 4635 4636 // Unexpected unresolved metadata when parsing function. 4637 if (MDLoader->hasFwdRefs()) 4638 return error("Invalid function metadata: incoming forward references"); 4639 4640 InstructionList.clear(); 4641 unsigned ModuleValueListSize = ValueList.size(); 4642 unsigned ModuleMDLoaderSize = MDLoader->size(); 4643 4644 // Add all the function arguments to the value table. 4645 unsigned ArgNo = 0; 4646 unsigned FTyID = FunctionTypeIDs[F]; 4647 for (Argument &I : F->args()) { 4648 unsigned ArgTyID = getContainedTypeID(FTyID, ArgNo + 1); 4649 assert(I.getType() == getTypeByID(ArgTyID) && 4650 "Incorrect fully specified type for Function Argument"); 4651 ValueList.push_back(&I, ArgTyID); 4652 ++ArgNo; 4653 } 4654 unsigned NextValueNo = ValueList.size(); 4655 BasicBlock *CurBB = nullptr; 4656 unsigned CurBBNo = 0; 4657 // Block into which constant expressions from phi nodes are materialized. 4658 BasicBlock *PhiConstExprBB = nullptr; 4659 // Edge blocks for phi nodes into which constant expressions have been 4660 // expanded. 4661 SmallMapVector<std::pair<BasicBlock *, BasicBlock *>, BasicBlock *, 4> 4662 ConstExprEdgeBBs; 4663 4664 DebugLoc LastLoc; 4665 auto getLastInstruction = [&]() -> Instruction * { 4666 if (CurBB && !CurBB->empty()) 4667 return &CurBB->back(); 4668 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 4669 !FunctionBBs[CurBBNo - 1]->empty()) 4670 return &FunctionBBs[CurBBNo - 1]->back(); 4671 return nullptr; 4672 }; 4673 4674 std::vector<OperandBundleDef> OperandBundles; 4675 4676 // Read all the records. 4677 SmallVector<uint64_t, 64> Record; 4678 4679 while (true) { 4680 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 4681 if (!MaybeEntry) 4682 return MaybeEntry.takeError(); 4683 llvm::BitstreamEntry Entry = MaybeEntry.get(); 4684 4685 switch (Entry.Kind) { 4686 case BitstreamEntry::Error: 4687 return error("Malformed block"); 4688 case BitstreamEntry::EndBlock: 4689 goto OutOfRecordLoop; 4690 4691 case BitstreamEntry::SubBlock: 4692 switch (Entry.ID) { 4693 default: // Skip unknown content. 4694 if (Error Err = Stream.SkipBlock()) 4695 return Err; 4696 break; 4697 case bitc::CONSTANTS_BLOCK_ID: 4698 if (Error Err = parseConstants()) 4699 return Err; 4700 NextValueNo = ValueList.size(); 4701 break; 4702 case bitc::VALUE_SYMTAB_BLOCK_ID: 4703 if (Error Err = parseValueSymbolTable()) 4704 return Err; 4705 break; 4706 case bitc::METADATA_ATTACHMENT_ID: 4707 if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList)) 4708 return Err; 4709 break; 4710 case bitc::METADATA_BLOCK_ID: 4711 assert(DeferredMetadataInfo.empty() && 4712 "Must read all module-level metadata before function-level"); 4713 if (Error Err = MDLoader->parseFunctionMetadata()) 4714 return Err; 4715 break; 4716 case bitc::USELIST_BLOCK_ID: 4717 if (Error Err = parseUseLists()) 4718 return Err; 4719 break; 4720 } 4721 continue; 4722 4723 case BitstreamEntry::Record: 4724 // The interesting case. 4725 break; 4726 } 4727 4728 // Read a record. 4729 Record.clear(); 4730 Instruction *I = nullptr; 4731 unsigned ResTypeID = InvalidTypeID; 4732 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 4733 if (!MaybeBitCode) 4734 return MaybeBitCode.takeError(); 4735 switch (unsigned BitCode = MaybeBitCode.get()) { 4736 default: // Default behavior: reject 4737 return error("Invalid value"); 4738 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 4739 if (Record.empty() || Record[0] == 0) 4740 return error("Invalid record"); 4741 // Create all the basic blocks for the function. 4742 FunctionBBs.resize(Record[0]); 4743 4744 // See if anything took the address of blocks in this function. 4745 auto BBFRI = BasicBlockFwdRefs.find(F); 4746 if (BBFRI == BasicBlockFwdRefs.end()) { 4747 for (BasicBlock *&BB : FunctionBBs) 4748 BB = BasicBlock::Create(Context, "", F); 4749 } else { 4750 auto &BBRefs = BBFRI->second; 4751 // Check for invalid basic block references. 4752 if (BBRefs.size() > FunctionBBs.size()) 4753 return error("Invalid ID"); 4754 assert(!BBRefs.empty() && "Unexpected empty array"); 4755 assert(!BBRefs.front() && "Invalid reference to entry block"); 4756 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 4757 ++I) 4758 if (I < RE && BBRefs[I]) { 4759 BBRefs[I]->insertInto(F); 4760 FunctionBBs[I] = BBRefs[I]; 4761 } else { 4762 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 4763 } 4764 4765 // Erase from the table. 4766 BasicBlockFwdRefs.erase(BBFRI); 4767 } 4768 4769 CurBB = FunctionBBs[0]; 4770 continue; 4771 } 4772 4773 case bitc::FUNC_CODE_BLOCKADDR_USERS: // BLOCKADDR_USERS: [vals...] 4774 // The record should not be emitted if it's an empty list. 4775 if (Record.empty()) 4776 return error("Invalid record"); 4777 // When we have the RARE case of a BlockAddress Constant that is not 4778 // scoped to the Function it refers to, we need to conservatively 4779 // materialize the referred to Function, regardless of whether or not 4780 // that Function will ultimately be linked, otherwise users of 4781 // BitcodeReader might start splicing out Function bodies such that we 4782 // might no longer be able to materialize the BlockAddress since the 4783 // BasicBlock (and entire body of the Function) the BlockAddress refers 4784 // to may have been moved. In the case that the user of BitcodeReader 4785 // decides ultimately not to link the Function body, materializing here 4786 // could be considered wasteful, but it's better than a deserialization 4787 // failure as described. This keeps BitcodeReader unaware of complex 4788 // linkage policy decisions such as those use by LTO, leaving those 4789 // decisions "one layer up." 4790 for (uint64_t ValID : Record) 4791 if (auto *F = dyn_cast<Function>(ValueList[ValID])) 4792 BackwardRefFunctions.push_back(F); 4793 else 4794 return error("Invalid record"); 4795 4796 continue; 4797 4798 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 4799 // This record indicates that the last instruction is at the same 4800 // location as the previous instruction with a location. 4801 I = getLastInstruction(); 4802 4803 if (!I) 4804 return error("Invalid record"); 4805 I->setDebugLoc(LastLoc); 4806 I = nullptr; 4807 continue; 4808 4809 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 4810 I = getLastInstruction(); 4811 if (!I || Record.size() < 4) 4812 return error("Invalid record"); 4813 4814 unsigned Line = Record[0], Col = Record[1]; 4815 unsigned ScopeID = Record[2], IAID = Record[3]; 4816 bool isImplicitCode = Record.size() == 5 && Record[4]; 4817 4818 MDNode *Scope = nullptr, *IA = nullptr; 4819 if (ScopeID) { 4820 Scope = dyn_cast_or_null<MDNode>( 4821 MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1)); 4822 if (!Scope) 4823 return error("Invalid record"); 4824 } 4825 if (IAID) { 4826 IA = dyn_cast_or_null<MDNode>( 4827 MDLoader->getMetadataFwdRefOrLoad(IAID - 1)); 4828 if (!IA) 4829 return error("Invalid record"); 4830 } 4831 LastLoc = DILocation::get(Scope->getContext(), Line, Col, Scope, IA, 4832 isImplicitCode); 4833 I->setDebugLoc(LastLoc); 4834 I = nullptr; 4835 continue; 4836 } 4837 case bitc::FUNC_CODE_INST_UNOP: { // UNOP: [opval, ty, opcode] 4838 unsigned OpNum = 0; 4839 Value *LHS; 4840 unsigned TypeID; 4841 if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) || 4842 OpNum+1 > Record.size()) 4843 return error("Invalid record"); 4844 4845 int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType()); 4846 if (Opc == -1) 4847 return error("Invalid record"); 4848 I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 4849 ResTypeID = TypeID; 4850 InstructionList.push_back(I); 4851 if (OpNum < Record.size()) { 4852 if (isa<FPMathOperator>(I)) { 4853 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4854 if (FMF.any()) 4855 I->setFastMathFlags(FMF); 4856 } 4857 } 4858 break; 4859 } 4860 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 4861 unsigned OpNum = 0; 4862 Value *LHS, *RHS; 4863 unsigned TypeID; 4864 if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) || 4865 popValue(Record, OpNum, NextValueNo, LHS->getType(), TypeID, RHS, 4866 CurBB) || 4867 OpNum+1 > Record.size()) 4868 return error("Invalid record"); 4869 4870 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 4871 if (Opc == -1) 4872 return error("Invalid record"); 4873 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 4874 ResTypeID = TypeID; 4875 InstructionList.push_back(I); 4876 if (OpNum < Record.size()) { 4877 if (Opc == Instruction::Add || 4878 Opc == Instruction::Sub || 4879 Opc == Instruction::Mul || 4880 Opc == Instruction::Shl) { 4881 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 4882 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 4883 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 4884 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 4885 } else if (Opc == Instruction::SDiv || 4886 Opc == Instruction::UDiv || 4887 Opc == Instruction::LShr || 4888 Opc == Instruction::AShr) { 4889 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 4890 cast<BinaryOperator>(I)->setIsExact(true); 4891 } else if (isa<FPMathOperator>(I)) { 4892 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4893 if (FMF.any()) 4894 I->setFastMathFlags(FMF); 4895 } 4896 4897 } 4898 break; 4899 } 4900 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 4901 unsigned OpNum = 0; 4902 Value *Op; 4903 unsigned OpTypeID; 4904 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) || 4905 OpNum+2 != Record.size()) 4906 return error("Invalid record"); 4907 4908 ResTypeID = Record[OpNum]; 4909 Type *ResTy = getTypeByID(ResTypeID); 4910 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 4911 if (Opc == -1 || !ResTy) 4912 return error("Invalid record"); 4913 Instruction *Temp = nullptr; 4914 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 4915 if (Temp) { 4916 InstructionList.push_back(Temp); 4917 assert(CurBB && "No current BB?"); 4918 Temp->insertInto(CurBB, CurBB->end()); 4919 } 4920 } else { 4921 auto CastOp = (Instruction::CastOps)Opc; 4922 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 4923 return error("Invalid cast"); 4924 I = CastInst::Create(CastOp, Op, ResTy); 4925 } 4926 InstructionList.push_back(I); 4927 break; 4928 } 4929 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 4930 case bitc::FUNC_CODE_INST_GEP_OLD: 4931 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 4932 unsigned OpNum = 0; 4933 4934 unsigned TyID; 4935 Type *Ty; 4936 bool InBounds; 4937 4938 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 4939 InBounds = Record[OpNum++]; 4940 TyID = Record[OpNum++]; 4941 Ty = getTypeByID(TyID); 4942 } else { 4943 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 4944 TyID = InvalidTypeID; 4945 Ty = nullptr; 4946 } 4947 4948 Value *BasePtr; 4949 unsigned BasePtrTypeID; 4950 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr, BasePtrTypeID, 4951 CurBB)) 4952 return error("Invalid record"); 4953 4954 if (!Ty) { 4955 TyID = getContainedTypeID(BasePtrTypeID); 4956 if (BasePtr->getType()->isVectorTy()) 4957 TyID = getContainedTypeID(TyID); 4958 Ty = getTypeByID(TyID); 4959 } else if (!cast<PointerType>(BasePtr->getType()->getScalarType()) 4960 ->isOpaqueOrPointeeTypeMatches(Ty)) { 4961 return error( 4962 "Explicit gep type does not match pointee type of pointer operand"); 4963 } 4964 4965 SmallVector<Value*, 16> GEPIdx; 4966 while (OpNum != Record.size()) { 4967 Value *Op; 4968 unsigned OpTypeID; 4969 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 4970 return error("Invalid record"); 4971 GEPIdx.push_back(Op); 4972 } 4973 4974 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 4975 4976 ResTypeID = TyID; 4977 if (cast<GEPOperator>(I)->getNumIndices() != 0) { 4978 auto GTI = std::next(gep_type_begin(I)); 4979 for (Value *Idx : drop_begin(cast<GEPOperator>(I)->indices())) { 4980 unsigned SubType = 0; 4981 if (GTI.isStruct()) { 4982 ConstantInt *IdxC = 4983 Idx->getType()->isVectorTy() 4984 ? cast<ConstantInt>(cast<Constant>(Idx)->getSplatValue()) 4985 : cast<ConstantInt>(Idx); 4986 SubType = IdxC->getZExtValue(); 4987 } 4988 ResTypeID = getContainedTypeID(ResTypeID, SubType); 4989 ++GTI; 4990 } 4991 } 4992 4993 // At this point ResTypeID is the result element type. We need a pointer 4994 // or vector of pointer to it. 4995 ResTypeID = getVirtualTypeID(I->getType()->getScalarType(), ResTypeID); 4996 if (I->getType()->isVectorTy()) 4997 ResTypeID = getVirtualTypeID(I->getType(), ResTypeID); 4998 4999 InstructionList.push_back(I); 5000 if (InBounds) 5001 cast<GetElementPtrInst>(I)->setIsInBounds(true); 5002 break; 5003 } 5004 5005 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 5006 // EXTRACTVAL: [opty, opval, n x indices] 5007 unsigned OpNum = 0; 5008 Value *Agg; 5009 unsigned AggTypeID; 5010 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB)) 5011 return error("Invalid record"); 5012 Type *Ty = Agg->getType(); 5013 5014 unsigned RecSize = Record.size(); 5015 if (OpNum == RecSize) 5016 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 5017 5018 SmallVector<unsigned, 4> EXTRACTVALIdx; 5019 ResTypeID = AggTypeID; 5020 for (; OpNum != RecSize; ++OpNum) { 5021 bool IsArray = Ty->isArrayTy(); 5022 bool IsStruct = Ty->isStructTy(); 5023 uint64_t Index = Record[OpNum]; 5024 5025 if (!IsStruct && !IsArray) 5026 return error("EXTRACTVAL: Invalid type"); 5027 if ((unsigned)Index != Index) 5028 return error("Invalid value"); 5029 if (IsStruct && Index >= Ty->getStructNumElements()) 5030 return error("EXTRACTVAL: Invalid struct index"); 5031 if (IsArray && Index >= Ty->getArrayNumElements()) 5032 return error("EXTRACTVAL: Invalid array index"); 5033 EXTRACTVALIdx.push_back((unsigned)Index); 5034 5035 if (IsStruct) { 5036 Ty = Ty->getStructElementType(Index); 5037 ResTypeID = getContainedTypeID(ResTypeID, Index); 5038 } else { 5039 Ty = Ty->getArrayElementType(); 5040 ResTypeID = getContainedTypeID(ResTypeID); 5041 } 5042 } 5043 5044 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 5045 InstructionList.push_back(I); 5046 break; 5047 } 5048 5049 case bitc::FUNC_CODE_INST_INSERTVAL: { 5050 // INSERTVAL: [opty, opval, opty, opval, n x indices] 5051 unsigned OpNum = 0; 5052 Value *Agg; 5053 unsigned AggTypeID; 5054 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB)) 5055 return error("Invalid record"); 5056 Value *Val; 5057 unsigned ValTypeID; 5058 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 5059 return error("Invalid record"); 5060 5061 unsigned RecSize = Record.size(); 5062 if (OpNum == RecSize) 5063 return error("INSERTVAL: Invalid instruction with 0 indices"); 5064 5065 SmallVector<unsigned, 4> INSERTVALIdx; 5066 Type *CurTy = Agg->getType(); 5067 for (; OpNum != RecSize; ++OpNum) { 5068 bool IsArray = CurTy->isArrayTy(); 5069 bool IsStruct = CurTy->isStructTy(); 5070 uint64_t Index = Record[OpNum]; 5071 5072 if (!IsStruct && !IsArray) 5073 return error("INSERTVAL: Invalid type"); 5074 if ((unsigned)Index != Index) 5075 return error("Invalid value"); 5076 if (IsStruct && Index >= CurTy->getStructNumElements()) 5077 return error("INSERTVAL: Invalid struct index"); 5078 if (IsArray && Index >= CurTy->getArrayNumElements()) 5079 return error("INSERTVAL: Invalid array index"); 5080 5081 INSERTVALIdx.push_back((unsigned)Index); 5082 if (IsStruct) 5083 CurTy = CurTy->getStructElementType(Index); 5084 else 5085 CurTy = CurTy->getArrayElementType(); 5086 } 5087 5088 if (CurTy != Val->getType()) 5089 return error("Inserted value type doesn't match aggregate type"); 5090 5091 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 5092 ResTypeID = AggTypeID; 5093 InstructionList.push_back(I); 5094 break; 5095 } 5096 5097 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 5098 // obsolete form of select 5099 // handles select i1 ... in old bitcode 5100 unsigned OpNum = 0; 5101 Value *TrueVal, *FalseVal, *Cond; 5102 unsigned TypeID; 5103 Type *CondType = Type::getInt1Ty(Context); 5104 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, TypeID, 5105 CurBB) || 5106 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), TypeID, 5107 FalseVal, CurBB) || 5108 popValue(Record, OpNum, NextValueNo, CondType, 5109 getVirtualTypeID(CondType), Cond, CurBB)) 5110 return error("Invalid record"); 5111 5112 I = SelectInst::Create(Cond, TrueVal, FalseVal); 5113 ResTypeID = TypeID; 5114 InstructionList.push_back(I); 5115 break; 5116 } 5117 5118 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 5119 // new form of select 5120 // handles select i1 or select [N x i1] 5121 unsigned OpNum = 0; 5122 Value *TrueVal, *FalseVal, *Cond; 5123 unsigned ValTypeID, CondTypeID; 5124 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, ValTypeID, 5125 CurBB) || 5126 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), ValTypeID, 5127 FalseVal, CurBB) || 5128 getValueTypePair(Record, OpNum, NextValueNo, Cond, CondTypeID, CurBB)) 5129 return error("Invalid record"); 5130 5131 // select condition can be either i1 or [N x i1] 5132 if (VectorType* vector_type = 5133 dyn_cast<VectorType>(Cond->getType())) { 5134 // expect <n x i1> 5135 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 5136 return error("Invalid type for value"); 5137 } else { 5138 // expect i1 5139 if (Cond->getType() != Type::getInt1Ty(Context)) 5140 return error("Invalid type for value"); 5141 } 5142 5143 I = SelectInst::Create(Cond, TrueVal, FalseVal); 5144 ResTypeID = ValTypeID; 5145 InstructionList.push_back(I); 5146 if (OpNum < Record.size() && isa<FPMathOperator>(I)) { 5147 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 5148 if (FMF.any()) 5149 I->setFastMathFlags(FMF); 5150 } 5151 break; 5152 } 5153 5154 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 5155 unsigned OpNum = 0; 5156 Value *Vec, *Idx; 5157 unsigned VecTypeID, IdxTypeID; 5158 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB) || 5159 getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB)) 5160 return error("Invalid record"); 5161 if (!Vec->getType()->isVectorTy()) 5162 return error("Invalid type for value"); 5163 I = ExtractElementInst::Create(Vec, Idx); 5164 ResTypeID = getContainedTypeID(VecTypeID); 5165 InstructionList.push_back(I); 5166 break; 5167 } 5168 5169 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 5170 unsigned OpNum = 0; 5171 Value *Vec, *Elt, *Idx; 5172 unsigned VecTypeID, IdxTypeID; 5173 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB)) 5174 return error("Invalid record"); 5175 if (!Vec->getType()->isVectorTy()) 5176 return error("Invalid type for value"); 5177 if (popValue(Record, OpNum, NextValueNo, 5178 cast<VectorType>(Vec->getType())->getElementType(), 5179 getContainedTypeID(VecTypeID), Elt, CurBB) || 5180 getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB)) 5181 return error("Invalid record"); 5182 I = InsertElementInst::Create(Vec, Elt, Idx); 5183 ResTypeID = VecTypeID; 5184 InstructionList.push_back(I); 5185 break; 5186 } 5187 5188 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 5189 unsigned OpNum = 0; 5190 Value *Vec1, *Vec2, *Mask; 5191 unsigned Vec1TypeID; 5192 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1, Vec1TypeID, 5193 CurBB) || 5194 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec1TypeID, 5195 Vec2, CurBB)) 5196 return error("Invalid record"); 5197 5198 unsigned MaskTypeID; 5199 if (getValueTypePair(Record, OpNum, NextValueNo, Mask, MaskTypeID, CurBB)) 5200 return error("Invalid record"); 5201 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 5202 return error("Invalid type for value"); 5203 5204 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 5205 ResTypeID = 5206 getVirtualTypeID(I->getType(), getContainedTypeID(Vec1TypeID)); 5207 InstructionList.push_back(I); 5208 break; 5209 } 5210 5211 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 5212 // Old form of ICmp/FCmp returning bool 5213 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 5214 // both legal on vectors but had different behaviour. 5215 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 5216 // FCmp/ICmp returning bool or vector of bool 5217 5218 unsigned OpNum = 0; 5219 Value *LHS, *RHS; 5220 unsigned LHSTypeID; 5221 if (getValueTypePair(Record, OpNum, NextValueNo, LHS, LHSTypeID, CurBB) || 5222 popValue(Record, OpNum, NextValueNo, LHS->getType(), LHSTypeID, RHS, 5223 CurBB)) 5224 return error("Invalid record"); 5225 5226 if (OpNum >= Record.size()) 5227 return error( 5228 "Invalid record: operand number exceeded available operands"); 5229 5230 unsigned PredVal = Record[OpNum]; 5231 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 5232 FastMathFlags FMF; 5233 if (IsFP && Record.size() > OpNum+1) 5234 FMF = getDecodedFastMathFlags(Record[++OpNum]); 5235 5236 if (OpNum+1 != Record.size()) 5237 return error("Invalid record"); 5238 5239 if (LHS->getType()->isFPOrFPVectorTy()) 5240 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 5241 else 5242 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 5243 5244 ResTypeID = getVirtualTypeID(I->getType()->getScalarType()); 5245 if (LHS->getType()->isVectorTy()) 5246 ResTypeID = getVirtualTypeID(I->getType(), ResTypeID); 5247 5248 if (FMF.any()) 5249 I->setFastMathFlags(FMF); 5250 InstructionList.push_back(I); 5251 break; 5252 } 5253 5254 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 5255 { 5256 unsigned Size = Record.size(); 5257 if (Size == 0) { 5258 I = ReturnInst::Create(Context); 5259 InstructionList.push_back(I); 5260 break; 5261 } 5262 5263 unsigned OpNum = 0; 5264 Value *Op = nullptr; 5265 unsigned OpTypeID; 5266 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 5267 return error("Invalid record"); 5268 if (OpNum != Record.size()) 5269 return error("Invalid record"); 5270 5271 I = ReturnInst::Create(Context, Op); 5272 InstructionList.push_back(I); 5273 break; 5274 } 5275 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 5276 if (Record.size() != 1 && Record.size() != 3) 5277 return error("Invalid record"); 5278 BasicBlock *TrueDest = getBasicBlock(Record[0]); 5279 if (!TrueDest) 5280 return error("Invalid record"); 5281 5282 if (Record.size() == 1) { 5283 I = BranchInst::Create(TrueDest); 5284 InstructionList.push_back(I); 5285 } 5286 else { 5287 BasicBlock *FalseDest = getBasicBlock(Record[1]); 5288 Type *CondType = Type::getInt1Ty(Context); 5289 Value *Cond = getValue(Record, 2, NextValueNo, CondType, 5290 getVirtualTypeID(CondType), CurBB); 5291 if (!FalseDest || !Cond) 5292 return error("Invalid record"); 5293 I = BranchInst::Create(TrueDest, FalseDest, Cond); 5294 InstructionList.push_back(I); 5295 } 5296 break; 5297 } 5298 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 5299 if (Record.size() != 1 && Record.size() != 2) 5300 return error("Invalid record"); 5301 unsigned Idx = 0; 5302 Type *TokenTy = Type::getTokenTy(Context); 5303 Value *CleanupPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5304 getVirtualTypeID(TokenTy), CurBB); 5305 if (!CleanupPad) 5306 return error("Invalid record"); 5307 BasicBlock *UnwindDest = nullptr; 5308 if (Record.size() == 2) { 5309 UnwindDest = getBasicBlock(Record[Idx++]); 5310 if (!UnwindDest) 5311 return error("Invalid record"); 5312 } 5313 5314 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 5315 InstructionList.push_back(I); 5316 break; 5317 } 5318 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 5319 if (Record.size() != 2) 5320 return error("Invalid record"); 5321 unsigned Idx = 0; 5322 Type *TokenTy = Type::getTokenTy(Context); 5323 Value *CatchPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5324 getVirtualTypeID(TokenTy), CurBB); 5325 if (!CatchPad) 5326 return error("Invalid record"); 5327 BasicBlock *BB = getBasicBlock(Record[Idx++]); 5328 if (!BB) 5329 return error("Invalid record"); 5330 5331 I = CatchReturnInst::Create(CatchPad, BB); 5332 InstructionList.push_back(I); 5333 break; 5334 } 5335 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 5336 // We must have, at minimum, the outer scope and the number of arguments. 5337 if (Record.size() < 2) 5338 return error("Invalid record"); 5339 5340 unsigned Idx = 0; 5341 5342 Type *TokenTy = Type::getTokenTy(Context); 5343 Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5344 getVirtualTypeID(TokenTy), CurBB); 5345 5346 unsigned NumHandlers = Record[Idx++]; 5347 5348 SmallVector<BasicBlock *, 2> Handlers; 5349 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 5350 BasicBlock *BB = getBasicBlock(Record[Idx++]); 5351 if (!BB) 5352 return error("Invalid record"); 5353 Handlers.push_back(BB); 5354 } 5355 5356 BasicBlock *UnwindDest = nullptr; 5357 if (Idx + 1 == Record.size()) { 5358 UnwindDest = getBasicBlock(Record[Idx++]); 5359 if (!UnwindDest) 5360 return error("Invalid record"); 5361 } 5362 5363 if (Record.size() != Idx) 5364 return error("Invalid record"); 5365 5366 auto *CatchSwitch = 5367 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 5368 for (BasicBlock *Handler : Handlers) 5369 CatchSwitch->addHandler(Handler); 5370 I = CatchSwitch; 5371 ResTypeID = getVirtualTypeID(I->getType()); 5372 InstructionList.push_back(I); 5373 break; 5374 } 5375 case bitc::FUNC_CODE_INST_CATCHPAD: 5376 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 5377 // We must have, at minimum, the outer scope and the number of arguments. 5378 if (Record.size() < 2) 5379 return error("Invalid record"); 5380 5381 unsigned Idx = 0; 5382 5383 Type *TokenTy = Type::getTokenTy(Context); 5384 Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5385 getVirtualTypeID(TokenTy), CurBB); 5386 5387 unsigned NumArgOperands = Record[Idx++]; 5388 5389 SmallVector<Value *, 2> Args; 5390 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 5391 Value *Val; 5392 unsigned ValTypeID; 5393 if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, nullptr)) 5394 return error("Invalid record"); 5395 Args.push_back(Val); 5396 } 5397 5398 if (Record.size() != Idx) 5399 return error("Invalid record"); 5400 5401 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 5402 I = CleanupPadInst::Create(ParentPad, Args); 5403 else 5404 I = CatchPadInst::Create(ParentPad, Args); 5405 ResTypeID = getVirtualTypeID(I->getType()); 5406 InstructionList.push_back(I); 5407 break; 5408 } 5409 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 5410 // Check magic 5411 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 5412 // "New" SwitchInst format with case ranges. The changes to write this 5413 // format were reverted but we still recognize bitcode that uses it. 5414 // Hopefully someday we will have support for case ranges and can use 5415 // this format again. 5416 5417 unsigned OpTyID = Record[1]; 5418 Type *OpTy = getTypeByID(OpTyID); 5419 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 5420 5421 Value *Cond = getValue(Record, 2, NextValueNo, OpTy, OpTyID, CurBB); 5422 BasicBlock *Default = getBasicBlock(Record[3]); 5423 if (!OpTy || !Cond || !Default) 5424 return error("Invalid record"); 5425 5426 unsigned NumCases = Record[4]; 5427 5428 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 5429 InstructionList.push_back(SI); 5430 5431 unsigned CurIdx = 5; 5432 for (unsigned i = 0; i != NumCases; ++i) { 5433 SmallVector<ConstantInt*, 1> CaseVals; 5434 unsigned NumItems = Record[CurIdx++]; 5435 for (unsigned ci = 0; ci != NumItems; ++ci) { 5436 bool isSingleNumber = Record[CurIdx++]; 5437 5438 APInt Low; 5439 unsigned ActiveWords = 1; 5440 if (ValueBitWidth > 64) 5441 ActiveWords = Record[CurIdx++]; 5442 Low = readWideAPInt(ArrayRef(&Record[CurIdx], ActiveWords), 5443 ValueBitWidth); 5444 CurIdx += ActiveWords; 5445 5446 if (!isSingleNumber) { 5447 ActiveWords = 1; 5448 if (ValueBitWidth > 64) 5449 ActiveWords = Record[CurIdx++]; 5450 APInt High = readWideAPInt(ArrayRef(&Record[CurIdx], ActiveWords), 5451 ValueBitWidth); 5452 CurIdx += ActiveWords; 5453 5454 // FIXME: It is not clear whether values in the range should be 5455 // compared as signed or unsigned values. The partially 5456 // implemented changes that used this format in the past used 5457 // unsigned comparisons. 5458 for ( ; Low.ule(High); ++Low) 5459 CaseVals.push_back(ConstantInt::get(Context, Low)); 5460 } else 5461 CaseVals.push_back(ConstantInt::get(Context, Low)); 5462 } 5463 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 5464 for (ConstantInt *Cst : CaseVals) 5465 SI->addCase(Cst, DestBB); 5466 } 5467 I = SI; 5468 break; 5469 } 5470 5471 // Old SwitchInst format without case ranges. 5472 5473 if (Record.size() < 3 || (Record.size() & 1) == 0) 5474 return error("Invalid record"); 5475 unsigned OpTyID = Record[0]; 5476 Type *OpTy = getTypeByID(OpTyID); 5477 Value *Cond = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB); 5478 BasicBlock *Default = getBasicBlock(Record[2]); 5479 if (!OpTy || !Cond || !Default) 5480 return error("Invalid record"); 5481 unsigned NumCases = (Record.size()-3)/2; 5482 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 5483 InstructionList.push_back(SI); 5484 for (unsigned i = 0, e = NumCases; i != e; ++i) { 5485 ConstantInt *CaseVal = dyn_cast_or_null<ConstantInt>( 5486 getFnValueByID(Record[3+i*2], OpTy, OpTyID, nullptr)); 5487 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 5488 if (!CaseVal || !DestBB) { 5489 delete SI; 5490 return error("Invalid record"); 5491 } 5492 SI->addCase(CaseVal, DestBB); 5493 } 5494 I = SI; 5495 break; 5496 } 5497 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 5498 if (Record.size() < 2) 5499 return error("Invalid record"); 5500 unsigned OpTyID = Record[0]; 5501 Type *OpTy = getTypeByID(OpTyID); 5502 Value *Address = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB); 5503 if (!OpTy || !Address) 5504 return error("Invalid record"); 5505 unsigned NumDests = Record.size()-2; 5506 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 5507 InstructionList.push_back(IBI); 5508 for (unsigned i = 0, e = NumDests; i != e; ++i) { 5509 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 5510 IBI->addDestination(DestBB); 5511 } else { 5512 delete IBI; 5513 return error("Invalid record"); 5514 } 5515 } 5516 I = IBI; 5517 break; 5518 } 5519 5520 case bitc::FUNC_CODE_INST_INVOKE: { 5521 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 5522 if (Record.size() < 4) 5523 return error("Invalid record"); 5524 unsigned OpNum = 0; 5525 AttributeList PAL = getAttributes(Record[OpNum++]); 5526 unsigned CCInfo = Record[OpNum++]; 5527 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 5528 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 5529 5530 unsigned FTyID = InvalidTypeID; 5531 FunctionType *FTy = nullptr; 5532 if ((CCInfo >> 13) & 1) { 5533 FTyID = Record[OpNum++]; 5534 FTy = dyn_cast<FunctionType>(getTypeByID(FTyID)); 5535 if (!FTy) 5536 return error("Explicit invoke type is not a function type"); 5537 } 5538 5539 Value *Callee; 5540 unsigned CalleeTypeID; 5541 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID, 5542 CurBB)) 5543 return error("Invalid record"); 5544 5545 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 5546 if (!CalleeTy) 5547 return error("Callee is not a pointer"); 5548 if (!FTy) { 5549 FTyID = getContainedTypeID(CalleeTypeID); 5550 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 5551 if (!FTy) 5552 return error("Callee is not of pointer to function type"); 5553 } else if (!CalleeTy->isOpaqueOrPointeeTypeMatches(FTy)) 5554 return error("Explicit invoke type does not match pointee type of " 5555 "callee operand"); 5556 if (Record.size() < FTy->getNumParams() + OpNum) 5557 return error("Insufficient operands to call"); 5558 5559 SmallVector<Value*, 16> Ops; 5560 SmallVector<unsigned, 16> ArgTyIDs; 5561 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5562 unsigned ArgTyID = getContainedTypeID(FTyID, i + 1); 5563 Ops.push_back(getValue(Record, OpNum, NextValueNo, FTy->getParamType(i), 5564 ArgTyID, CurBB)); 5565 ArgTyIDs.push_back(ArgTyID); 5566 if (!Ops.back()) 5567 return error("Invalid record"); 5568 } 5569 5570 if (!FTy->isVarArg()) { 5571 if (Record.size() != OpNum) 5572 return error("Invalid record"); 5573 } else { 5574 // Read type/value pairs for varargs params. 5575 while (OpNum != Record.size()) { 5576 Value *Op; 5577 unsigned OpTypeID; 5578 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 5579 return error("Invalid record"); 5580 Ops.push_back(Op); 5581 ArgTyIDs.push_back(OpTypeID); 5582 } 5583 } 5584 5585 // Upgrade the bundles if needed. 5586 if (!OperandBundles.empty()) 5587 UpgradeOperandBundles(OperandBundles); 5588 5589 I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops, 5590 OperandBundles); 5591 ResTypeID = getContainedTypeID(FTyID); 5592 OperandBundles.clear(); 5593 InstructionList.push_back(I); 5594 cast<InvokeInst>(I)->setCallingConv( 5595 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 5596 cast<InvokeInst>(I)->setAttributes(PAL); 5597 if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) { 5598 I->deleteValue(); 5599 return Err; 5600 } 5601 5602 break; 5603 } 5604 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 5605 unsigned Idx = 0; 5606 Value *Val = nullptr; 5607 unsigned ValTypeID; 5608 if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, CurBB)) 5609 return error("Invalid record"); 5610 I = ResumeInst::Create(Val); 5611 InstructionList.push_back(I); 5612 break; 5613 } 5614 case bitc::FUNC_CODE_INST_CALLBR: { 5615 // CALLBR: [attr, cc, norm, transfs, fty, fnid, args] 5616 unsigned OpNum = 0; 5617 AttributeList PAL = getAttributes(Record[OpNum++]); 5618 unsigned CCInfo = Record[OpNum++]; 5619 5620 BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]); 5621 unsigned NumIndirectDests = Record[OpNum++]; 5622 SmallVector<BasicBlock *, 16> IndirectDests; 5623 for (unsigned i = 0, e = NumIndirectDests; i != e; ++i) 5624 IndirectDests.push_back(getBasicBlock(Record[OpNum++])); 5625 5626 unsigned FTyID = InvalidTypeID; 5627 FunctionType *FTy = nullptr; 5628 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 5629 FTyID = Record[OpNum++]; 5630 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 5631 if (!FTy) 5632 return error("Explicit call type is not a function type"); 5633 } 5634 5635 Value *Callee; 5636 unsigned CalleeTypeID; 5637 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID, 5638 CurBB)) 5639 return error("Invalid record"); 5640 5641 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5642 if (!OpTy) 5643 return error("Callee is not a pointer type"); 5644 if (!FTy) { 5645 FTyID = getContainedTypeID(CalleeTypeID); 5646 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 5647 if (!FTy) 5648 return error("Callee is not of pointer to function type"); 5649 } else if (!OpTy->isOpaqueOrPointeeTypeMatches(FTy)) 5650 return error("Explicit call type does not match pointee type of " 5651 "callee operand"); 5652 if (Record.size() < FTy->getNumParams() + OpNum) 5653 return error("Insufficient operands to call"); 5654 5655 SmallVector<Value*, 16> Args; 5656 SmallVector<unsigned, 16> ArgTyIDs; 5657 // Read the fixed params. 5658 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5659 Value *Arg; 5660 unsigned ArgTyID = getContainedTypeID(FTyID, i + 1); 5661 if (FTy->getParamType(i)->isLabelTy()) 5662 Arg = getBasicBlock(Record[OpNum]); 5663 else 5664 Arg = getValue(Record, OpNum, NextValueNo, FTy->getParamType(i), 5665 ArgTyID, CurBB); 5666 if (!Arg) 5667 return error("Invalid record"); 5668 Args.push_back(Arg); 5669 ArgTyIDs.push_back(ArgTyID); 5670 } 5671 5672 // Read type/value pairs for varargs params. 5673 if (!FTy->isVarArg()) { 5674 if (OpNum != Record.size()) 5675 return error("Invalid record"); 5676 } else { 5677 while (OpNum != Record.size()) { 5678 Value *Op; 5679 unsigned OpTypeID; 5680 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 5681 return error("Invalid record"); 5682 Args.push_back(Op); 5683 ArgTyIDs.push_back(OpTypeID); 5684 } 5685 } 5686 5687 // Upgrade the bundles if needed. 5688 if (!OperandBundles.empty()) 5689 UpgradeOperandBundles(OperandBundles); 5690 5691 if (auto *IA = dyn_cast<InlineAsm>(Callee)) { 5692 InlineAsm::ConstraintInfoVector ConstraintInfo = IA->ParseConstraints(); 5693 auto IsLabelConstraint = [](const InlineAsm::ConstraintInfo &CI) { 5694 return CI.Type == InlineAsm::isLabel; 5695 }; 5696 if (none_of(ConstraintInfo, IsLabelConstraint)) { 5697 // Upgrade explicit blockaddress arguments to label constraints. 5698 // Verify that the last arguments are blockaddress arguments that 5699 // match the indirect destinations. Clang always generates callbr 5700 // in this form. We could support reordering with more effort. 5701 unsigned FirstBlockArg = Args.size() - IndirectDests.size(); 5702 for (unsigned ArgNo = FirstBlockArg; ArgNo < Args.size(); ++ArgNo) { 5703 unsigned LabelNo = ArgNo - FirstBlockArg; 5704 auto *BA = dyn_cast<BlockAddress>(Args[ArgNo]); 5705 if (!BA || BA->getFunction() != F || 5706 LabelNo > IndirectDests.size() || 5707 BA->getBasicBlock() != IndirectDests[LabelNo]) 5708 return error("callbr argument does not match indirect dest"); 5709 } 5710 5711 // Remove blockaddress arguments. 5712 Args.erase(Args.begin() + FirstBlockArg, Args.end()); 5713 ArgTyIDs.erase(ArgTyIDs.begin() + FirstBlockArg, ArgTyIDs.end()); 5714 5715 // Recreate the function type with less arguments. 5716 SmallVector<Type *> ArgTys; 5717 for (Value *Arg : Args) 5718 ArgTys.push_back(Arg->getType()); 5719 FTy = 5720 FunctionType::get(FTy->getReturnType(), ArgTys, FTy->isVarArg()); 5721 5722 // Update constraint string to use label constraints. 5723 std::string Constraints = IA->getConstraintString(); 5724 unsigned ArgNo = 0; 5725 size_t Pos = 0; 5726 for (const auto &CI : ConstraintInfo) { 5727 if (CI.hasArg()) { 5728 if (ArgNo >= FirstBlockArg) 5729 Constraints.insert(Pos, "!"); 5730 ++ArgNo; 5731 } 5732 5733 // Go to next constraint in string. 5734 Pos = Constraints.find(',', Pos); 5735 if (Pos == std::string::npos) 5736 break; 5737 ++Pos; 5738 } 5739 5740 Callee = InlineAsm::get(FTy, IA->getAsmString(), Constraints, 5741 IA->hasSideEffects(), IA->isAlignStack(), 5742 IA->getDialect(), IA->canThrow()); 5743 } 5744 } 5745 5746 I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args, 5747 OperandBundles); 5748 ResTypeID = getContainedTypeID(FTyID); 5749 OperandBundles.clear(); 5750 InstructionList.push_back(I); 5751 cast<CallBrInst>(I)->setCallingConv( 5752 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5753 cast<CallBrInst>(I)->setAttributes(PAL); 5754 if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) { 5755 I->deleteValue(); 5756 return Err; 5757 } 5758 break; 5759 } 5760 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 5761 I = new UnreachableInst(Context); 5762 InstructionList.push_back(I); 5763 break; 5764 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 5765 if (Record.empty()) 5766 return error("Invalid phi record"); 5767 // The first record specifies the type. 5768 unsigned TyID = Record[0]; 5769 Type *Ty = getTypeByID(TyID); 5770 if (!Ty) 5771 return error("Invalid phi record"); 5772 5773 // Phi arguments are pairs of records of [value, basic block]. 5774 // There is an optional final record for fast-math-flags if this phi has a 5775 // floating-point type. 5776 size_t NumArgs = (Record.size() - 1) / 2; 5777 PHINode *PN = PHINode::Create(Ty, NumArgs); 5778 if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN)) { 5779 PN->deleteValue(); 5780 return error("Invalid phi record"); 5781 } 5782 InstructionList.push_back(PN); 5783 5784 SmallDenseMap<BasicBlock *, Value *> Args; 5785 for (unsigned i = 0; i != NumArgs; i++) { 5786 BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]); 5787 if (!BB) { 5788 PN->deleteValue(); 5789 return error("Invalid phi BB"); 5790 } 5791 5792 // Phi nodes may contain the same predecessor multiple times, in which 5793 // case the incoming value must be identical. Directly reuse the already 5794 // seen value here, to avoid expanding a constant expression multiple 5795 // times. 5796 auto It = Args.find(BB); 5797 if (It != Args.end()) { 5798 PN->addIncoming(It->second, BB); 5799 continue; 5800 } 5801 5802 // If there already is a block for this edge (from a different phi), 5803 // use it. 5804 BasicBlock *EdgeBB = ConstExprEdgeBBs.lookup({BB, CurBB}); 5805 if (!EdgeBB) { 5806 // Otherwise, use a temporary block (that we will discard if it 5807 // turns out to be unnecessary). 5808 if (!PhiConstExprBB) 5809 PhiConstExprBB = BasicBlock::Create(Context, "phi.constexpr", F); 5810 EdgeBB = PhiConstExprBB; 5811 } 5812 5813 // With the new function encoding, it is possible that operands have 5814 // negative IDs (for forward references). Use a signed VBR 5815 // representation to keep the encoding small. 5816 Value *V; 5817 if (UseRelativeIDs) 5818 V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB); 5819 else 5820 V = getValue(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB); 5821 if (!V) { 5822 PN->deleteValue(); 5823 PhiConstExprBB->eraseFromParent(); 5824 return error("Invalid phi record"); 5825 } 5826 5827 if (EdgeBB == PhiConstExprBB && !EdgeBB->empty()) { 5828 ConstExprEdgeBBs.insert({{BB, CurBB}, EdgeBB}); 5829 PhiConstExprBB = nullptr; 5830 } 5831 PN->addIncoming(V, BB); 5832 Args.insert({BB, V}); 5833 } 5834 I = PN; 5835 ResTypeID = TyID; 5836 5837 // If there are an even number of records, the final record must be FMF. 5838 if (Record.size() % 2 == 0) { 5839 assert(isa<FPMathOperator>(I) && "Unexpected phi type"); 5840 FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]); 5841 if (FMF.any()) 5842 I->setFastMathFlags(FMF); 5843 } 5844 5845 break; 5846 } 5847 5848 case bitc::FUNC_CODE_INST_LANDINGPAD: 5849 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 5850 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 5851 unsigned Idx = 0; 5852 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 5853 if (Record.size() < 3) 5854 return error("Invalid record"); 5855 } else { 5856 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 5857 if (Record.size() < 4) 5858 return error("Invalid record"); 5859 } 5860 ResTypeID = Record[Idx++]; 5861 Type *Ty = getTypeByID(ResTypeID); 5862 if (!Ty) 5863 return error("Invalid record"); 5864 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 5865 Value *PersFn = nullptr; 5866 unsigned PersFnTypeID; 5867 if (getValueTypePair(Record, Idx, NextValueNo, PersFn, PersFnTypeID, 5868 nullptr)) 5869 return error("Invalid record"); 5870 5871 if (!F->hasPersonalityFn()) 5872 F->setPersonalityFn(cast<Constant>(PersFn)); 5873 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 5874 return error("Personality function mismatch"); 5875 } 5876 5877 bool IsCleanup = !!Record[Idx++]; 5878 unsigned NumClauses = Record[Idx++]; 5879 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 5880 LP->setCleanup(IsCleanup); 5881 for (unsigned J = 0; J != NumClauses; ++J) { 5882 LandingPadInst::ClauseType CT = 5883 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 5884 Value *Val; 5885 unsigned ValTypeID; 5886 5887 if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, 5888 nullptr)) { 5889 delete LP; 5890 return error("Invalid record"); 5891 } 5892 5893 assert((CT != LandingPadInst::Catch || 5894 !isa<ArrayType>(Val->getType())) && 5895 "Catch clause has a invalid type!"); 5896 assert((CT != LandingPadInst::Filter || 5897 isa<ArrayType>(Val->getType())) && 5898 "Filter clause has invalid type!"); 5899 LP->addClause(cast<Constant>(Val)); 5900 } 5901 5902 I = LP; 5903 InstructionList.push_back(I); 5904 break; 5905 } 5906 5907 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 5908 if (Record.size() != 4 && Record.size() != 5) 5909 return error("Invalid record"); 5910 using APV = AllocaPackedValues; 5911 const uint64_t Rec = Record[3]; 5912 const bool InAlloca = Bitfield::get<APV::UsedWithInAlloca>(Rec); 5913 const bool SwiftError = Bitfield::get<APV::SwiftError>(Rec); 5914 unsigned TyID = Record[0]; 5915 Type *Ty = getTypeByID(TyID); 5916 if (!Bitfield::get<APV::ExplicitType>(Rec)) { 5917 TyID = getContainedTypeID(TyID); 5918 Ty = getTypeByID(TyID); 5919 if (!Ty) 5920 return error("Missing element type for old-style alloca"); 5921 } 5922 unsigned OpTyID = Record[1]; 5923 Type *OpTy = getTypeByID(OpTyID); 5924 Value *Size = getFnValueByID(Record[2], OpTy, OpTyID, CurBB); 5925 MaybeAlign Align; 5926 uint64_t AlignExp = 5927 Bitfield::get<APV::AlignLower>(Rec) | 5928 (Bitfield::get<APV::AlignUpper>(Rec) << APV::AlignLower::Bits); 5929 if (Error Err = parseAlignmentValue(AlignExp, Align)) { 5930 return Err; 5931 } 5932 if (!Ty || !Size) 5933 return error("Invalid record"); 5934 5935 const DataLayout &DL = TheModule->getDataLayout(); 5936 unsigned AS = Record.size() == 5 ? Record[4] : DL.getAllocaAddrSpace(); 5937 5938 SmallPtrSet<Type *, 4> Visited; 5939 if (!Align && !Ty->isSized(&Visited)) 5940 return error("alloca of unsized type"); 5941 if (!Align) 5942 Align = DL.getPrefTypeAlign(Ty); 5943 5944 AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align); 5945 AI->setUsedWithInAlloca(InAlloca); 5946 AI->setSwiftError(SwiftError); 5947 I = AI; 5948 ResTypeID = getVirtualTypeID(AI->getType(), TyID); 5949 InstructionList.push_back(I); 5950 break; 5951 } 5952 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 5953 unsigned OpNum = 0; 5954 Value *Op; 5955 unsigned OpTypeID; 5956 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) || 5957 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 5958 return error("Invalid record"); 5959 5960 if (!isa<PointerType>(Op->getType())) 5961 return error("Load operand is not a pointer type"); 5962 5963 Type *Ty = nullptr; 5964 if (OpNum + 3 == Record.size()) { 5965 ResTypeID = Record[OpNum++]; 5966 Ty = getTypeByID(ResTypeID); 5967 } else { 5968 ResTypeID = getContainedTypeID(OpTypeID); 5969 Ty = getTypeByID(ResTypeID); 5970 if (!Ty) 5971 return error("Missing element type for old-style load"); 5972 } 5973 5974 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 5975 return Err; 5976 5977 MaybeAlign Align; 5978 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 5979 return Err; 5980 SmallPtrSet<Type *, 4> Visited; 5981 if (!Align && !Ty->isSized(&Visited)) 5982 return error("load of unsized type"); 5983 if (!Align) 5984 Align = TheModule->getDataLayout().getABITypeAlign(Ty); 5985 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align); 5986 InstructionList.push_back(I); 5987 break; 5988 } 5989 case bitc::FUNC_CODE_INST_LOADATOMIC: { 5990 // LOADATOMIC: [opty, op, align, vol, ordering, ssid] 5991 unsigned OpNum = 0; 5992 Value *Op; 5993 unsigned OpTypeID; 5994 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) || 5995 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 5996 return error("Invalid record"); 5997 5998 if (!isa<PointerType>(Op->getType())) 5999 return error("Load operand is not a pointer type"); 6000 6001 Type *Ty = nullptr; 6002 if (OpNum + 5 == Record.size()) { 6003 ResTypeID = Record[OpNum++]; 6004 Ty = getTypeByID(ResTypeID); 6005 } else { 6006 ResTypeID = getContainedTypeID(OpTypeID); 6007 Ty = getTypeByID(ResTypeID); 6008 if (!Ty) 6009 return error("Missing element type for old style atomic load"); 6010 } 6011 6012 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 6013 return Err; 6014 6015 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 6016 if (Ordering == AtomicOrdering::NotAtomic || 6017 Ordering == AtomicOrdering::Release || 6018 Ordering == AtomicOrdering::AcquireRelease) 6019 return error("Invalid record"); 6020 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 6021 return error("Invalid record"); 6022 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 6023 6024 MaybeAlign Align; 6025 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 6026 return Err; 6027 if (!Align) 6028 return error("Alignment missing from atomic load"); 6029 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID); 6030 InstructionList.push_back(I); 6031 break; 6032 } 6033 case bitc::FUNC_CODE_INST_STORE: 6034 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 6035 unsigned OpNum = 0; 6036 Value *Val, *Ptr; 6037 unsigned PtrTypeID, ValTypeID; 6038 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 6039 return error("Invalid record"); 6040 6041 if (BitCode == bitc::FUNC_CODE_INST_STORE) { 6042 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 6043 return error("Invalid record"); 6044 } else { 6045 ValTypeID = getContainedTypeID(PtrTypeID); 6046 if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID), 6047 ValTypeID, Val, CurBB)) 6048 return error("Invalid record"); 6049 } 6050 6051 if (OpNum + 2 != Record.size()) 6052 return error("Invalid record"); 6053 6054 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 6055 return Err; 6056 MaybeAlign Align; 6057 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 6058 return Err; 6059 SmallPtrSet<Type *, 4> Visited; 6060 if (!Align && !Val->getType()->isSized(&Visited)) 6061 return error("store of unsized type"); 6062 if (!Align) 6063 Align = TheModule->getDataLayout().getABITypeAlign(Val->getType()); 6064 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align); 6065 InstructionList.push_back(I); 6066 break; 6067 } 6068 case bitc::FUNC_CODE_INST_STOREATOMIC: 6069 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 6070 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid] 6071 unsigned OpNum = 0; 6072 Value *Val, *Ptr; 6073 unsigned PtrTypeID, ValTypeID; 6074 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB) || 6075 !isa<PointerType>(Ptr->getType())) 6076 return error("Invalid record"); 6077 if (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC) { 6078 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 6079 return error("Invalid record"); 6080 } else { 6081 ValTypeID = getContainedTypeID(PtrTypeID); 6082 if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID), 6083 ValTypeID, Val, CurBB)) 6084 return error("Invalid record"); 6085 } 6086 6087 if (OpNum + 4 != Record.size()) 6088 return error("Invalid record"); 6089 6090 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 6091 return Err; 6092 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 6093 if (Ordering == AtomicOrdering::NotAtomic || 6094 Ordering == AtomicOrdering::Acquire || 6095 Ordering == AtomicOrdering::AcquireRelease) 6096 return error("Invalid record"); 6097 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 6098 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 6099 return error("Invalid record"); 6100 6101 MaybeAlign Align; 6102 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 6103 return Err; 6104 if (!Align) 6105 return error("Alignment missing from atomic store"); 6106 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID); 6107 InstructionList.push_back(I); 6108 break; 6109 } 6110 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: { 6111 // CMPXCHG_OLD: [ptrty, ptr, cmp, val, vol, ordering, synchscope, 6112 // failure_ordering?, weak?] 6113 const size_t NumRecords = Record.size(); 6114 unsigned OpNum = 0; 6115 Value *Ptr = nullptr; 6116 unsigned PtrTypeID; 6117 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 6118 return error("Invalid record"); 6119 6120 if (!isa<PointerType>(Ptr->getType())) 6121 return error("Cmpxchg operand is not a pointer type"); 6122 6123 Value *Cmp = nullptr; 6124 unsigned CmpTypeID = getContainedTypeID(PtrTypeID); 6125 if (popValue(Record, OpNum, NextValueNo, getTypeByID(CmpTypeID), 6126 CmpTypeID, Cmp, CurBB)) 6127 return error("Invalid record"); 6128 6129 Value *New = nullptr; 6130 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID, 6131 New, CurBB) || 6132 NumRecords < OpNum + 3 || NumRecords > OpNum + 5) 6133 return error("Invalid record"); 6134 6135 const AtomicOrdering SuccessOrdering = 6136 getDecodedOrdering(Record[OpNum + 1]); 6137 if (SuccessOrdering == AtomicOrdering::NotAtomic || 6138 SuccessOrdering == AtomicOrdering::Unordered) 6139 return error("Invalid record"); 6140 6141 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 6142 6143 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 6144 return Err; 6145 6146 const AtomicOrdering FailureOrdering = 6147 NumRecords < 7 6148 ? AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering) 6149 : getDecodedOrdering(Record[OpNum + 3]); 6150 6151 if (FailureOrdering == AtomicOrdering::NotAtomic || 6152 FailureOrdering == AtomicOrdering::Unordered) 6153 return error("Invalid record"); 6154 6155 const Align Alignment( 6156 TheModule->getDataLayout().getTypeStoreSize(Cmp->getType())); 6157 6158 I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering, 6159 FailureOrdering, SSID); 6160 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 6161 6162 if (NumRecords < 8) { 6163 // Before weak cmpxchgs existed, the instruction simply returned the 6164 // value loaded from memory, so bitcode files from that era will be 6165 // expecting the first component of a modern cmpxchg. 6166 I->insertInto(CurBB, CurBB->end()); 6167 I = ExtractValueInst::Create(I, 0); 6168 ResTypeID = CmpTypeID; 6169 } else { 6170 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]); 6171 unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context)); 6172 ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID}); 6173 } 6174 6175 InstructionList.push_back(I); 6176 break; 6177 } 6178 case bitc::FUNC_CODE_INST_CMPXCHG: { 6179 // CMPXCHG: [ptrty, ptr, cmp, val, vol, success_ordering, synchscope, 6180 // failure_ordering, weak, align?] 6181 const size_t NumRecords = Record.size(); 6182 unsigned OpNum = 0; 6183 Value *Ptr = nullptr; 6184 unsigned PtrTypeID; 6185 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 6186 return error("Invalid record"); 6187 6188 if (!isa<PointerType>(Ptr->getType())) 6189 return error("Cmpxchg operand is not a pointer type"); 6190 6191 Value *Cmp = nullptr; 6192 unsigned CmpTypeID; 6193 if (getValueTypePair(Record, OpNum, NextValueNo, Cmp, CmpTypeID, CurBB)) 6194 return error("Invalid record"); 6195 6196 Value *Val = nullptr; 6197 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID, Val, 6198 CurBB)) 6199 return error("Invalid record"); 6200 6201 if (NumRecords < OpNum + 3 || NumRecords > OpNum + 6) 6202 return error("Invalid record"); 6203 6204 const bool IsVol = Record[OpNum]; 6205 6206 const AtomicOrdering SuccessOrdering = 6207 getDecodedOrdering(Record[OpNum + 1]); 6208 if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering)) 6209 return error("Invalid cmpxchg success ordering"); 6210 6211 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 6212 6213 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 6214 return Err; 6215 6216 const AtomicOrdering FailureOrdering = 6217 getDecodedOrdering(Record[OpNum + 3]); 6218 if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering)) 6219 return error("Invalid cmpxchg failure ordering"); 6220 6221 const bool IsWeak = Record[OpNum + 4]; 6222 6223 MaybeAlign Alignment; 6224 6225 if (NumRecords == (OpNum + 6)) { 6226 if (Error Err = parseAlignmentValue(Record[OpNum + 5], Alignment)) 6227 return Err; 6228 } 6229 if (!Alignment) 6230 Alignment = 6231 Align(TheModule->getDataLayout().getTypeStoreSize(Cmp->getType())); 6232 6233 I = new AtomicCmpXchgInst(Ptr, Cmp, Val, *Alignment, SuccessOrdering, 6234 FailureOrdering, SSID); 6235 cast<AtomicCmpXchgInst>(I)->setVolatile(IsVol); 6236 cast<AtomicCmpXchgInst>(I)->setWeak(IsWeak); 6237 6238 unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context)); 6239 ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID}); 6240 6241 InstructionList.push_back(I); 6242 break; 6243 } 6244 case bitc::FUNC_CODE_INST_ATOMICRMW_OLD: 6245 case bitc::FUNC_CODE_INST_ATOMICRMW: { 6246 // ATOMICRMW_OLD: [ptrty, ptr, val, op, vol, ordering, ssid, align?] 6247 // ATOMICRMW: [ptrty, ptr, valty, val, op, vol, ordering, ssid, align?] 6248 const size_t NumRecords = Record.size(); 6249 unsigned OpNum = 0; 6250 6251 Value *Ptr = nullptr; 6252 unsigned PtrTypeID; 6253 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 6254 return error("Invalid record"); 6255 6256 if (!isa<PointerType>(Ptr->getType())) 6257 return error("Invalid record"); 6258 6259 Value *Val = nullptr; 6260 unsigned ValTypeID = InvalidTypeID; 6261 if (BitCode == bitc::FUNC_CODE_INST_ATOMICRMW_OLD) { 6262 ValTypeID = getContainedTypeID(PtrTypeID); 6263 if (popValue(Record, OpNum, NextValueNo, 6264 getTypeByID(ValTypeID), ValTypeID, Val, CurBB)) 6265 return error("Invalid record"); 6266 } else { 6267 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 6268 return error("Invalid record"); 6269 } 6270 6271 if (!(NumRecords == (OpNum + 4) || NumRecords == (OpNum + 5))) 6272 return error("Invalid record"); 6273 6274 const AtomicRMWInst::BinOp Operation = 6275 getDecodedRMWOperation(Record[OpNum]); 6276 if (Operation < AtomicRMWInst::FIRST_BINOP || 6277 Operation > AtomicRMWInst::LAST_BINOP) 6278 return error("Invalid record"); 6279 6280 const bool IsVol = Record[OpNum + 1]; 6281 6282 const AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 6283 if (Ordering == AtomicOrdering::NotAtomic || 6284 Ordering == AtomicOrdering::Unordered) 6285 return error("Invalid record"); 6286 6287 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 6288 6289 MaybeAlign Alignment; 6290 6291 if (NumRecords == (OpNum + 5)) { 6292 if (Error Err = parseAlignmentValue(Record[OpNum + 4], Alignment)) 6293 return Err; 6294 } 6295 6296 if (!Alignment) 6297 Alignment = 6298 Align(TheModule->getDataLayout().getTypeStoreSize(Val->getType())); 6299 6300 I = new AtomicRMWInst(Operation, Ptr, Val, *Alignment, Ordering, SSID); 6301 ResTypeID = ValTypeID; 6302 cast<AtomicRMWInst>(I)->setVolatile(IsVol); 6303 6304 InstructionList.push_back(I); 6305 break; 6306 } 6307 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid] 6308 if (2 != Record.size()) 6309 return error("Invalid record"); 6310 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 6311 if (Ordering == AtomicOrdering::NotAtomic || 6312 Ordering == AtomicOrdering::Unordered || 6313 Ordering == AtomicOrdering::Monotonic) 6314 return error("Invalid record"); 6315 SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]); 6316 I = new FenceInst(Context, Ordering, SSID); 6317 InstructionList.push_back(I); 6318 break; 6319 } 6320 case bitc::FUNC_CODE_INST_CALL: { 6321 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 6322 if (Record.size() < 3) 6323 return error("Invalid record"); 6324 6325 unsigned OpNum = 0; 6326 AttributeList PAL = getAttributes(Record[OpNum++]); 6327 unsigned CCInfo = Record[OpNum++]; 6328 6329 FastMathFlags FMF; 6330 if ((CCInfo >> bitc::CALL_FMF) & 1) { 6331 FMF = getDecodedFastMathFlags(Record[OpNum++]); 6332 if (!FMF.any()) 6333 return error("Fast math flags indicator set for call with no FMF"); 6334 } 6335 6336 unsigned FTyID = InvalidTypeID; 6337 FunctionType *FTy = nullptr; 6338 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 6339 FTyID = Record[OpNum++]; 6340 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 6341 if (!FTy) 6342 return error("Explicit call type is not a function type"); 6343 } 6344 6345 Value *Callee; 6346 unsigned CalleeTypeID; 6347 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID, 6348 CurBB)) 6349 return error("Invalid record"); 6350 6351 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 6352 if (!OpTy) 6353 return error("Callee is not a pointer type"); 6354 if (!FTy) { 6355 FTyID = getContainedTypeID(CalleeTypeID); 6356 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 6357 if (!FTy) 6358 return error("Callee is not of pointer to function type"); 6359 } else if (!OpTy->isOpaqueOrPointeeTypeMatches(FTy)) 6360 return error("Explicit call type does not match pointee type of " 6361 "callee operand"); 6362 if (Record.size() < FTy->getNumParams() + OpNum) 6363 return error("Insufficient operands to call"); 6364 6365 SmallVector<Value*, 16> Args; 6366 SmallVector<unsigned, 16> ArgTyIDs; 6367 // Read the fixed params. 6368 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 6369 unsigned ArgTyID = getContainedTypeID(FTyID, i + 1); 6370 if (FTy->getParamType(i)->isLabelTy()) 6371 Args.push_back(getBasicBlock(Record[OpNum])); 6372 else 6373 Args.push_back(getValue(Record, OpNum, NextValueNo, 6374 FTy->getParamType(i), ArgTyID, CurBB)); 6375 ArgTyIDs.push_back(ArgTyID); 6376 if (!Args.back()) 6377 return error("Invalid record"); 6378 } 6379 6380 // Read type/value pairs for varargs params. 6381 if (!FTy->isVarArg()) { 6382 if (OpNum != Record.size()) 6383 return error("Invalid record"); 6384 } else { 6385 while (OpNum != Record.size()) { 6386 Value *Op; 6387 unsigned OpTypeID; 6388 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 6389 return error("Invalid record"); 6390 Args.push_back(Op); 6391 ArgTyIDs.push_back(OpTypeID); 6392 } 6393 } 6394 6395 // Upgrade the bundles if needed. 6396 if (!OperandBundles.empty()) 6397 UpgradeOperandBundles(OperandBundles); 6398 6399 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 6400 ResTypeID = getContainedTypeID(FTyID); 6401 OperandBundles.clear(); 6402 InstructionList.push_back(I); 6403 cast<CallInst>(I)->setCallingConv( 6404 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 6405 CallInst::TailCallKind TCK = CallInst::TCK_None; 6406 if (CCInfo & 1 << bitc::CALL_TAIL) 6407 TCK = CallInst::TCK_Tail; 6408 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 6409 TCK = CallInst::TCK_MustTail; 6410 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 6411 TCK = CallInst::TCK_NoTail; 6412 cast<CallInst>(I)->setTailCallKind(TCK); 6413 cast<CallInst>(I)->setAttributes(PAL); 6414 if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) { 6415 I->deleteValue(); 6416 return Err; 6417 } 6418 if (FMF.any()) { 6419 if (!isa<FPMathOperator>(I)) 6420 return error("Fast-math-flags specified for call without " 6421 "floating-point scalar or vector return type"); 6422 I->setFastMathFlags(FMF); 6423 } 6424 break; 6425 } 6426 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 6427 if (Record.size() < 3) 6428 return error("Invalid record"); 6429 unsigned OpTyID = Record[0]; 6430 Type *OpTy = getTypeByID(OpTyID); 6431 Value *Op = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB); 6432 ResTypeID = Record[2]; 6433 Type *ResTy = getTypeByID(ResTypeID); 6434 if (!OpTy || !Op || !ResTy) 6435 return error("Invalid record"); 6436 I = new VAArgInst(Op, ResTy); 6437 InstructionList.push_back(I); 6438 break; 6439 } 6440 6441 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 6442 // A call or an invoke can be optionally prefixed with some variable 6443 // number of operand bundle blocks. These blocks are read into 6444 // OperandBundles and consumed at the next call or invoke instruction. 6445 6446 if (Record.empty() || Record[0] >= BundleTags.size()) 6447 return error("Invalid record"); 6448 6449 std::vector<Value *> Inputs; 6450 6451 unsigned OpNum = 1; 6452 while (OpNum != Record.size()) { 6453 Value *Op; 6454 unsigned OpTypeID; 6455 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 6456 return error("Invalid record"); 6457 Inputs.push_back(Op); 6458 } 6459 6460 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 6461 continue; 6462 } 6463 6464 case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval] 6465 unsigned OpNum = 0; 6466 Value *Op = nullptr; 6467 unsigned OpTypeID; 6468 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 6469 return error("Invalid record"); 6470 if (OpNum != Record.size()) 6471 return error("Invalid record"); 6472 6473 I = new FreezeInst(Op); 6474 ResTypeID = OpTypeID; 6475 InstructionList.push_back(I); 6476 break; 6477 } 6478 } 6479 6480 // Add instruction to end of current BB. If there is no current BB, reject 6481 // this file. 6482 if (!CurBB) { 6483 I->deleteValue(); 6484 return error("Invalid instruction with no BB"); 6485 } 6486 if (!OperandBundles.empty()) { 6487 I->deleteValue(); 6488 return error("Operand bundles found with no consumer"); 6489 } 6490 I->insertInto(CurBB, CurBB->end()); 6491 6492 // If this was a terminator instruction, move to the next block. 6493 if (I->isTerminator()) { 6494 ++CurBBNo; 6495 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 6496 } 6497 6498 // Non-void values get registered in the value table for future use. 6499 if (!I->getType()->isVoidTy()) { 6500 assert(I->getType() == getTypeByID(ResTypeID) && 6501 "Incorrect result type ID"); 6502 if (Error Err = ValueList.assignValue(NextValueNo++, I, ResTypeID)) 6503 return Err; 6504 } 6505 } 6506 6507 OutOfRecordLoop: 6508 6509 if (!OperandBundles.empty()) 6510 return error("Operand bundles found with no consumer"); 6511 6512 // Check the function list for unresolved values. 6513 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 6514 if (!A->getParent()) { 6515 // We found at least one unresolved value. Nuke them all to avoid leaks. 6516 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 6517 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 6518 A->replaceAllUsesWith(PoisonValue::get(A->getType())); 6519 delete A; 6520 } 6521 } 6522 return error("Never resolved value found in function"); 6523 } 6524 } 6525 6526 // Unexpected unresolved metadata about to be dropped. 6527 if (MDLoader->hasFwdRefs()) 6528 return error("Invalid function metadata: outgoing forward refs"); 6529 6530 if (PhiConstExprBB) 6531 PhiConstExprBB->eraseFromParent(); 6532 6533 for (const auto &Pair : ConstExprEdgeBBs) { 6534 BasicBlock *From = Pair.first.first; 6535 BasicBlock *To = Pair.first.second; 6536 BasicBlock *EdgeBB = Pair.second; 6537 BranchInst::Create(To, EdgeBB); 6538 From->getTerminator()->replaceSuccessorWith(To, EdgeBB); 6539 To->replacePhiUsesWith(From, EdgeBB); 6540 EdgeBB->moveBefore(To); 6541 } 6542 6543 // Trim the value list down to the size it was before we parsed this function. 6544 ValueList.shrinkTo(ModuleValueListSize); 6545 MDLoader->shrinkTo(ModuleMDLoaderSize); 6546 std::vector<BasicBlock*>().swap(FunctionBBs); 6547 return Error::success(); 6548 } 6549 6550 /// Find the function body in the bitcode stream 6551 Error BitcodeReader::findFunctionInStream( 6552 Function *F, 6553 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 6554 while (DeferredFunctionInfoIterator->second == 0) { 6555 // This is the fallback handling for the old format bitcode that 6556 // didn't contain the function index in the VST, or when we have 6557 // an anonymous function which would not have a VST entry. 6558 // Assert that we have one of those two cases. 6559 assert(VSTOffset == 0 || !F->hasName()); 6560 // Parse the next body in the stream and set its position in the 6561 // DeferredFunctionInfo map. 6562 if (Error Err = rememberAndSkipFunctionBodies()) 6563 return Err; 6564 } 6565 return Error::success(); 6566 } 6567 6568 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) { 6569 if (Val == SyncScope::SingleThread || Val == SyncScope::System) 6570 return SyncScope::ID(Val); 6571 if (Val >= SSIDs.size()) 6572 return SyncScope::System; // Map unknown synchronization scopes to system. 6573 return SSIDs[Val]; 6574 } 6575 6576 //===----------------------------------------------------------------------===// 6577 // GVMaterializer implementation 6578 //===----------------------------------------------------------------------===// 6579 6580 Error BitcodeReader::materialize(GlobalValue *GV) { 6581 Function *F = dyn_cast<Function>(GV); 6582 // If it's not a function or is already material, ignore the request. 6583 if (!F || !F->isMaterializable()) 6584 return Error::success(); 6585 6586 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 6587 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 6588 // If its position is recorded as 0, its body is somewhere in the stream 6589 // but we haven't seen it yet. 6590 if (DFII->second == 0) 6591 if (Error Err = findFunctionInStream(F, DFII)) 6592 return Err; 6593 6594 // Materialize metadata before parsing any function bodies. 6595 if (Error Err = materializeMetadata()) 6596 return Err; 6597 6598 // Move the bit stream to the saved position of the deferred function body. 6599 if (Error JumpFailed = Stream.JumpToBit(DFII->second)) 6600 return JumpFailed; 6601 if (Error Err = parseFunctionBody(F)) 6602 return Err; 6603 F->setIsMaterializable(false); 6604 6605 if (StripDebugInfo) 6606 stripDebugInfo(*F); 6607 6608 // Upgrade any old intrinsic calls in the function. 6609 for (auto &I : UpgradedIntrinsics) { 6610 for (User *U : llvm::make_early_inc_range(I.first->materialized_users())) 6611 if (CallInst *CI = dyn_cast<CallInst>(U)) 6612 UpgradeIntrinsicCall(CI, I.second); 6613 } 6614 6615 // Finish fn->subprogram upgrade for materialized functions. 6616 if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F)) 6617 F->setSubprogram(SP); 6618 6619 // Check if the TBAA Metadata are valid, otherwise we will need to strip them. 6620 if (!MDLoader->isStrippingTBAA()) { 6621 for (auto &I : instructions(F)) { 6622 MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa); 6623 if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA)) 6624 continue; 6625 MDLoader->setStripTBAA(true); 6626 stripTBAA(F->getParent()); 6627 } 6628 } 6629 6630 for (auto &I : instructions(F)) { 6631 // "Upgrade" older incorrect branch weights by dropping them. 6632 if (auto *MD = I.getMetadata(LLVMContext::MD_prof)) { 6633 if (MD->getOperand(0) != nullptr && isa<MDString>(MD->getOperand(0))) { 6634 MDString *MDS = cast<MDString>(MD->getOperand(0)); 6635 StringRef ProfName = MDS->getString(); 6636 // Check consistency of !prof branch_weights metadata. 6637 if (!ProfName.equals("branch_weights")) 6638 continue; 6639 unsigned ExpectedNumOperands = 0; 6640 if (BranchInst *BI = dyn_cast<BranchInst>(&I)) 6641 ExpectedNumOperands = BI->getNumSuccessors(); 6642 else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I)) 6643 ExpectedNumOperands = SI->getNumSuccessors(); 6644 else if (isa<CallInst>(&I)) 6645 ExpectedNumOperands = 1; 6646 else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I)) 6647 ExpectedNumOperands = IBI->getNumDestinations(); 6648 else if (isa<SelectInst>(&I)) 6649 ExpectedNumOperands = 2; 6650 else 6651 continue; // ignore and continue. 6652 6653 // If branch weight doesn't match, just strip branch weight. 6654 if (MD->getNumOperands() != 1 + ExpectedNumOperands) 6655 I.setMetadata(LLVMContext::MD_prof, nullptr); 6656 } 6657 } 6658 6659 // Remove incompatible attributes on function calls. 6660 if (auto *CI = dyn_cast<CallBase>(&I)) { 6661 CI->removeRetAttrs(AttributeFuncs::typeIncompatible( 6662 CI->getFunctionType()->getReturnType())); 6663 6664 for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ++ArgNo) 6665 CI->removeParamAttrs(ArgNo, AttributeFuncs::typeIncompatible( 6666 CI->getArgOperand(ArgNo)->getType())); 6667 } 6668 } 6669 6670 // Look for functions that rely on old function attribute behavior. 6671 UpgradeFunctionAttributes(*F); 6672 6673 // Bring in any functions that this function forward-referenced via 6674 // blockaddresses. 6675 return materializeForwardReferencedFunctions(); 6676 } 6677 6678 Error BitcodeReader::materializeModule() { 6679 if (Error Err = materializeMetadata()) 6680 return Err; 6681 6682 // Promise to materialize all forward references. 6683 WillMaterializeAllForwardRefs = true; 6684 6685 // Iterate over the module, deserializing any functions that are still on 6686 // disk. 6687 for (Function &F : *TheModule) { 6688 if (Error Err = materialize(&F)) 6689 return Err; 6690 } 6691 // At this point, if there are any function bodies, parse the rest of 6692 // the bits in the module past the last function block we have recorded 6693 // through either lazy scanning or the VST. 6694 if (LastFunctionBlockBit || NextUnreadBit) 6695 if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit 6696 ? LastFunctionBlockBit 6697 : NextUnreadBit)) 6698 return Err; 6699 6700 // Check that all block address forward references got resolved (as we 6701 // promised above). 6702 if (!BasicBlockFwdRefs.empty()) 6703 return error("Never resolved function from blockaddress"); 6704 6705 // Upgrade any intrinsic calls that slipped through (should not happen!) and 6706 // delete the old functions to clean up. We can't do this unless the entire 6707 // module is materialized because there could always be another function body 6708 // with calls to the old function. 6709 for (auto &I : UpgradedIntrinsics) { 6710 for (auto *U : I.first->users()) { 6711 if (CallInst *CI = dyn_cast<CallInst>(U)) 6712 UpgradeIntrinsicCall(CI, I.second); 6713 } 6714 if (!I.first->use_empty()) 6715 I.first->replaceAllUsesWith(I.second); 6716 I.first->eraseFromParent(); 6717 } 6718 UpgradedIntrinsics.clear(); 6719 6720 UpgradeDebugInfo(*TheModule); 6721 6722 UpgradeModuleFlags(*TheModule); 6723 6724 UpgradeARCRuntime(*TheModule); 6725 6726 return Error::success(); 6727 } 6728 6729 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 6730 return IdentifiedStructTypes; 6731 } 6732 6733 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 6734 BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex, 6735 StringRef ModulePath, unsigned ModuleId, 6736 std::function<bool(GlobalValue::GUID)> IsPrevailing) 6737 : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex), 6738 ModulePath(ModulePath), ModuleId(ModuleId), IsPrevailing(IsPrevailing) {} 6739 6740 void ModuleSummaryIndexBitcodeReader::addThisModule() { 6741 TheIndex.addModule(ModulePath, ModuleId); 6742 } 6743 6744 ModuleSummaryIndex::ModuleInfo * 6745 ModuleSummaryIndexBitcodeReader::getThisModule() { 6746 return TheIndex.getModule(ModulePath); 6747 } 6748 6749 template <bool AllowNullValueInfo> 6750 std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID> 6751 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) { 6752 auto VGI = ValueIdToValueInfoMap[ValueId]; 6753 // We can have a null value info for memprof callsite info records in 6754 // distributed ThinLTO index files when the callee function summary is not 6755 // included in the index. The bitcode writer records 0 in that case, 6756 // and the caller of this helper will set AllowNullValueInfo to true. 6757 assert(AllowNullValueInfo || std::get<0>(VGI)); 6758 return VGI; 6759 } 6760 6761 void ModuleSummaryIndexBitcodeReader::setValueGUID( 6762 uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage, 6763 StringRef SourceFileName) { 6764 std::string GlobalId = 6765 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 6766 auto ValueGUID = GlobalValue::getGUID(GlobalId); 6767 auto OriginalNameID = ValueGUID; 6768 if (GlobalValue::isLocalLinkage(Linkage)) 6769 OriginalNameID = GlobalValue::getGUID(ValueName); 6770 if (PrintSummaryGUIDs) 6771 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 6772 << ValueName << "\n"; 6773 6774 // UseStrtab is false for legacy summary formats and value names are 6775 // created on stack. In that case we save the name in a string saver in 6776 // the index so that the value name can be recorded. 6777 ValueIdToValueInfoMap[ValueID] = std::make_tuple( 6778 TheIndex.getOrInsertValueInfo( 6779 ValueGUID, UseStrtab ? ValueName : TheIndex.saveString(ValueName)), 6780 OriginalNameID, ValueGUID); 6781 } 6782 6783 // Specialized value symbol table parser used when reading module index 6784 // blocks where we don't actually create global values. The parsed information 6785 // is saved in the bitcode reader for use when later parsing summaries. 6786 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 6787 uint64_t Offset, 6788 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 6789 // With a strtab the VST is not required to parse the summary. 6790 if (UseStrtab) 6791 return Error::success(); 6792 6793 assert(Offset > 0 && "Expected non-zero VST offset"); 6794 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 6795 if (!MaybeCurrentBit) 6796 return MaybeCurrentBit.takeError(); 6797 uint64_t CurrentBit = MaybeCurrentBit.get(); 6798 6799 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 6800 return Err; 6801 6802 SmallVector<uint64_t, 64> Record; 6803 6804 // Read all the records for this value table. 6805 SmallString<128> ValueName; 6806 6807 while (true) { 6808 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6809 if (!MaybeEntry) 6810 return MaybeEntry.takeError(); 6811 BitstreamEntry Entry = MaybeEntry.get(); 6812 6813 switch (Entry.Kind) { 6814 case BitstreamEntry::SubBlock: // Handled for us already. 6815 case BitstreamEntry::Error: 6816 return error("Malformed block"); 6817 case BitstreamEntry::EndBlock: 6818 // Done parsing VST, jump back to wherever we came from. 6819 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 6820 return JumpFailed; 6821 return Error::success(); 6822 case BitstreamEntry::Record: 6823 // The interesting case. 6824 break; 6825 } 6826 6827 // Read a record. 6828 Record.clear(); 6829 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 6830 if (!MaybeRecord) 6831 return MaybeRecord.takeError(); 6832 switch (MaybeRecord.get()) { 6833 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 6834 break; 6835 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 6836 if (convertToString(Record, 1, ValueName)) 6837 return error("Invalid record"); 6838 unsigned ValueID = Record[0]; 6839 assert(!SourceFileName.empty()); 6840 auto VLI = ValueIdToLinkageMap.find(ValueID); 6841 assert(VLI != ValueIdToLinkageMap.end() && 6842 "No linkage found for VST entry?"); 6843 auto Linkage = VLI->second; 6844 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 6845 ValueName.clear(); 6846 break; 6847 } 6848 case bitc::VST_CODE_FNENTRY: { 6849 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 6850 if (convertToString(Record, 2, ValueName)) 6851 return error("Invalid record"); 6852 unsigned ValueID = Record[0]; 6853 assert(!SourceFileName.empty()); 6854 auto VLI = ValueIdToLinkageMap.find(ValueID); 6855 assert(VLI != ValueIdToLinkageMap.end() && 6856 "No linkage found for VST entry?"); 6857 auto Linkage = VLI->second; 6858 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 6859 ValueName.clear(); 6860 break; 6861 } 6862 case bitc::VST_CODE_COMBINED_ENTRY: { 6863 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 6864 unsigned ValueID = Record[0]; 6865 GlobalValue::GUID RefGUID = Record[1]; 6866 // The "original name", which is the second value of the pair will be 6867 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 6868 ValueIdToValueInfoMap[ValueID] = std::make_tuple( 6869 TheIndex.getOrInsertValueInfo(RefGUID), RefGUID, RefGUID); 6870 break; 6871 } 6872 } 6873 } 6874 } 6875 6876 // Parse just the blocks needed for building the index out of the module. 6877 // At the end of this routine the module Index is populated with a map 6878 // from global value id to GlobalValueSummary objects. 6879 Error ModuleSummaryIndexBitcodeReader::parseModule() { 6880 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 6881 return Err; 6882 6883 SmallVector<uint64_t, 64> Record; 6884 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 6885 unsigned ValueId = 0; 6886 6887 // Read the index for this module. 6888 while (true) { 6889 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6890 if (!MaybeEntry) 6891 return MaybeEntry.takeError(); 6892 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6893 6894 switch (Entry.Kind) { 6895 case BitstreamEntry::Error: 6896 return error("Malformed block"); 6897 case BitstreamEntry::EndBlock: 6898 return Error::success(); 6899 6900 case BitstreamEntry::SubBlock: 6901 switch (Entry.ID) { 6902 default: // Skip unknown content. 6903 if (Error Err = Stream.SkipBlock()) 6904 return Err; 6905 break; 6906 case bitc::BLOCKINFO_BLOCK_ID: 6907 // Need to parse these to get abbrev ids (e.g. for VST) 6908 if (Error Err = readBlockInfo()) 6909 return Err; 6910 break; 6911 case bitc::VALUE_SYMTAB_BLOCK_ID: 6912 // Should have been parsed earlier via VSTOffset, unless there 6913 // is no summary section. 6914 assert(((SeenValueSymbolTable && VSTOffset > 0) || 6915 !SeenGlobalValSummary) && 6916 "Expected early VST parse via VSTOffset record"); 6917 if (Error Err = Stream.SkipBlock()) 6918 return Err; 6919 break; 6920 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 6921 case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID: 6922 // Add the module if it is a per-module index (has a source file name). 6923 if (!SourceFileName.empty()) 6924 addThisModule(); 6925 assert(!SeenValueSymbolTable && 6926 "Already read VST when parsing summary block?"); 6927 // We might not have a VST if there were no values in the 6928 // summary. An empty summary block generated when we are 6929 // performing ThinLTO compiles so we don't later invoke 6930 // the regular LTO process on them. 6931 if (VSTOffset > 0) { 6932 if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 6933 return Err; 6934 SeenValueSymbolTable = true; 6935 } 6936 SeenGlobalValSummary = true; 6937 if (Error Err = parseEntireSummary(Entry.ID)) 6938 return Err; 6939 break; 6940 case bitc::MODULE_STRTAB_BLOCK_ID: 6941 if (Error Err = parseModuleStringTable()) 6942 return Err; 6943 break; 6944 } 6945 continue; 6946 6947 case BitstreamEntry::Record: { 6948 Record.clear(); 6949 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 6950 if (!MaybeBitCode) 6951 return MaybeBitCode.takeError(); 6952 switch (MaybeBitCode.get()) { 6953 default: 6954 break; // Default behavior, ignore unknown content. 6955 case bitc::MODULE_CODE_VERSION: { 6956 if (Error Err = parseVersionRecord(Record).takeError()) 6957 return Err; 6958 break; 6959 } 6960 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 6961 case bitc::MODULE_CODE_SOURCE_FILENAME: { 6962 SmallString<128> ValueName; 6963 if (convertToString(Record, 0, ValueName)) 6964 return error("Invalid record"); 6965 SourceFileName = ValueName.c_str(); 6966 break; 6967 } 6968 /// MODULE_CODE_HASH: [5*i32] 6969 case bitc::MODULE_CODE_HASH: { 6970 if (Record.size() != 5) 6971 return error("Invalid hash length " + Twine(Record.size()).str()); 6972 auto &Hash = getThisModule()->second.second; 6973 int Pos = 0; 6974 for (auto &Val : Record) { 6975 assert(!(Val >> 32) && "Unexpected high bits set"); 6976 Hash[Pos++] = Val; 6977 } 6978 break; 6979 } 6980 /// MODULE_CODE_VSTOFFSET: [offset] 6981 case bitc::MODULE_CODE_VSTOFFSET: 6982 if (Record.empty()) 6983 return error("Invalid record"); 6984 // Note that we subtract 1 here because the offset is relative to one 6985 // word before the start of the identification or module block, which 6986 // was historically always the start of the regular bitcode header. 6987 VSTOffset = Record[0] - 1; 6988 break; 6989 // v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...] 6990 // v1 FUNCTION: [type, callingconv, isproto, linkage, ...] 6991 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...] 6992 // v2: [strtab offset, strtab size, v1] 6993 case bitc::MODULE_CODE_GLOBALVAR: 6994 case bitc::MODULE_CODE_FUNCTION: 6995 case bitc::MODULE_CODE_ALIAS: { 6996 StringRef Name; 6997 ArrayRef<uint64_t> GVRecord; 6998 std::tie(Name, GVRecord) = readNameFromStrtab(Record); 6999 if (GVRecord.size() <= 3) 7000 return error("Invalid record"); 7001 uint64_t RawLinkage = GVRecord[3]; 7002 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 7003 if (!UseStrtab) { 7004 ValueIdToLinkageMap[ValueId++] = Linkage; 7005 break; 7006 } 7007 7008 setValueGUID(ValueId++, Name, Linkage, SourceFileName); 7009 break; 7010 } 7011 } 7012 } 7013 continue; 7014 } 7015 } 7016 } 7017 7018 std::vector<ValueInfo> 7019 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) { 7020 std::vector<ValueInfo> Ret; 7021 Ret.reserve(Record.size()); 7022 for (uint64_t RefValueId : Record) 7023 Ret.push_back(std::get<0>(getValueInfoFromValueId(RefValueId))); 7024 return Ret; 7025 } 7026 7027 std::vector<FunctionSummary::EdgeTy> 7028 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record, 7029 bool IsOldProfileFormat, 7030 bool HasProfile, bool HasRelBF) { 7031 std::vector<FunctionSummary::EdgeTy> Ret; 7032 Ret.reserve(Record.size()); 7033 for (unsigned I = 0, E = Record.size(); I != E; ++I) { 7034 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 7035 uint64_t RelBF = 0; 7036 ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[I])); 7037 if (IsOldProfileFormat) { 7038 I += 1; // Skip old callsitecount field 7039 if (HasProfile) 7040 I += 1; // Skip old profilecount field 7041 } else if (HasProfile) 7042 Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]); 7043 else if (HasRelBF) 7044 RelBF = Record[++I]; 7045 Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)}); 7046 } 7047 return Ret; 7048 } 7049 7050 static void 7051 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot, 7052 WholeProgramDevirtResolution &Wpd) { 7053 uint64_t ArgNum = Record[Slot++]; 7054 WholeProgramDevirtResolution::ByArg &B = 7055 Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}]; 7056 Slot += ArgNum; 7057 7058 B.TheKind = 7059 static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]); 7060 B.Info = Record[Slot++]; 7061 B.Byte = Record[Slot++]; 7062 B.Bit = Record[Slot++]; 7063 } 7064 7065 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record, 7066 StringRef Strtab, size_t &Slot, 7067 TypeIdSummary &TypeId) { 7068 uint64_t Id = Record[Slot++]; 7069 WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id]; 7070 7071 Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]); 7072 Wpd.SingleImplName = {Strtab.data() + Record[Slot], 7073 static_cast<size_t>(Record[Slot + 1])}; 7074 Slot += 2; 7075 7076 uint64_t ResByArgNum = Record[Slot++]; 7077 for (uint64_t I = 0; I != ResByArgNum; ++I) 7078 parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd); 7079 } 7080 7081 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record, 7082 StringRef Strtab, 7083 ModuleSummaryIndex &TheIndex) { 7084 size_t Slot = 0; 7085 TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary( 7086 {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])}); 7087 Slot += 2; 7088 7089 TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]); 7090 TypeId.TTRes.SizeM1BitWidth = Record[Slot++]; 7091 TypeId.TTRes.AlignLog2 = Record[Slot++]; 7092 TypeId.TTRes.SizeM1 = Record[Slot++]; 7093 TypeId.TTRes.BitMask = Record[Slot++]; 7094 TypeId.TTRes.InlineBits = Record[Slot++]; 7095 7096 while (Slot < Record.size()) 7097 parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId); 7098 } 7099 7100 std::vector<FunctionSummary::ParamAccess> 7101 ModuleSummaryIndexBitcodeReader::parseParamAccesses(ArrayRef<uint64_t> Record) { 7102 auto ReadRange = [&]() { 7103 APInt Lower(FunctionSummary::ParamAccess::RangeWidth, 7104 BitcodeReader::decodeSignRotatedValue(Record.front())); 7105 Record = Record.drop_front(); 7106 APInt Upper(FunctionSummary::ParamAccess::RangeWidth, 7107 BitcodeReader::decodeSignRotatedValue(Record.front())); 7108 Record = Record.drop_front(); 7109 ConstantRange Range{Lower, Upper}; 7110 assert(!Range.isFullSet()); 7111 assert(!Range.isUpperSignWrapped()); 7112 return Range; 7113 }; 7114 7115 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; 7116 while (!Record.empty()) { 7117 PendingParamAccesses.emplace_back(); 7118 FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back(); 7119 ParamAccess.ParamNo = Record.front(); 7120 Record = Record.drop_front(); 7121 ParamAccess.Use = ReadRange(); 7122 ParamAccess.Calls.resize(Record.front()); 7123 Record = Record.drop_front(); 7124 for (auto &Call : ParamAccess.Calls) { 7125 Call.ParamNo = Record.front(); 7126 Record = Record.drop_front(); 7127 Call.Callee = std::get<0>(getValueInfoFromValueId(Record.front())); 7128 Record = Record.drop_front(); 7129 Call.Offsets = ReadRange(); 7130 } 7131 } 7132 return PendingParamAccesses; 7133 } 7134 7135 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo( 7136 ArrayRef<uint64_t> Record, size_t &Slot, 7137 TypeIdCompatibleVtableInfo &TypeId) { 7138 uint64_t Offset = Record[Slot++]; 7139 ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[Slot++])); 7140 TypeId.push_back({Offset, Callee}); 7141 } 7142 7143 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord( 7144 ArrayRef<uint64_t> Record) { 7145 size_t Slot = 0; 7146 TypeIdCompatibleVtableInfo &TypeId = 7147 TheIndex.getOrInsertTypeIdCompatibleVtableSummary( 7148 {Strtab.data() + Record[Slot], 7149 static_cast<size_t>(Record[Slot + 1])}); 7150 Slot += 2; 7151 7152 while (Slot < Record.size()) 7153 parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId); 7154 } 7155 7156 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt, 7157 unsigned WOCnt) { 7158 // Readonly and writeonly refs are in the end of the refs list. 7159 assert(ROCnt + WOCnt <= Refs.size()); 7160 unsigned FirstWORef = Refs.size() - WOCnt; 7161 unsigned RefNo = FirstWORef - ROCnt; 7162 for (; RefNo < FirstWORef; ++RefNo) 7163 Refs[RefNo].setReadOnly(); 7164 for (; RefNo < Refs.size(); ++RefNo) 7165 Refs[RefNo].setWriteOnly(); 7166 } 7167 7168 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 7169 // objects in the index. 7170 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) { 7171 if (Error Err = Stream.EnterSubBlock(ID)) 7172 return Err; 7173 SmallVector<uint64_t, 64> Record; 7174 7175 // Parse version 7176 { 7177 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 7178 if (!MaybeEntry) 7179 return MaybeEntry.takeError(); 7180 BitstreamEntry Entry = MaybeEntry.get(); 7181 7182 if (Entry.Kind != BitstreamEntry::Record) 7183 return error("Invalid Summary Block: record for version expected"); 7184 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 7185 if (!MaybeRecord) 7186 return MaybeRecord.takeError(); 7187 if (MaybeRecord.get() != bitc::FS_VERSION) 7188 return error("Invalid Summary Block: version expected"); 7189 } 7190 const uint64_t Version = Record[0]; 7191 const bool IsOldProfileFormat = Version == 1; 7192 if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion) 7193 return error("Invalid summary version " + Twine(Version) + 7194 ". Version should be in the range [1-" + 7195 Twine(ModuleSummaryIndex::BitcodeSummaryVersion) + 7196 "]."); 7197 Record.clear(); 7198 7199 // Keep around the last seen summary to be used when we see an optional 7200 // "OriginalName" attachement. 7201 GlobalValueSummary *LastSeenSummary = nullptr; 7202 GlobalValue::GUID LastSeenGUID = 0; 7203 7204 // We can expect to see any number of type ID information records before 7205 // each function summary records; these variables store the information 7206 // collected so far so that it can be used to create the summary object. 7207 std::vector<GlobalValue::GUID> PendingTypeTests; 7208 std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls, 7209 PendingTypeCheckedLoadVCalls; 7210 std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls, 7211 PendingTypeCheckedLoadConstVCalls; 7212 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; 7213 7214 std::vector<CallsiteInfo> PendingCallsites; 7215 std::vector<AllocInfo> PendingAllocs; 7216 7217 while (true) { 7218 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 7219 if (!MaybeEntry) 7220 return MaybeEntry.takeError(); 7221 BitstreamEntry Entry = MaybeEntry.get(); 7222 7223 switch (Entry.Kind) { 7224 case BitstreamEntry::SubBlock: // Handled for us already. 7225 case BitstreamEntry::Error: 7226 return error("Malformed block"); 7227 case BitstreamEntry::EndBlock: 7228 return Error::success(); 7229 case BitstreamEntry::Record: 7230 // The interesting case. 7231 break; 7232 } 7233 7234 // Read a record. The record format depends on whether this 7235 // is a per-module index or a combined index file. In the per-module 7236 // case the records contain the associated value's ID for correlation 7237 // with VST entries. In the combined index the correlation is done 7238 // via the bitcode offset of the summary records (which were saved 7239 // in the combined index VST entries). The records also contain 7240 // information used for ThinLTO renaming and importing. 7241 Record.clear(); 7242 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 7243 if (!MaybeBitCode) 7244 return MaybeBitCode.takeError(); 7245 switch (unsigned BitCode = MaybeBitCode.get()) { 7246 default: // Default behavior: ignore. 7247 break; 7248 case bitc::FS_FLAGS: { // [flags] 7249 TheIndex.setFlags(Record[0]); 7250 break; 7251 } 7252 case bitc::FS_VALUE_GUID: { // [valueid, refguid] 7253 uint64_t ValueID = Record[0]; 7254 GlobalValue::GUID RefGUID = Record[1]; 7255 ValueIdToValueInfoMap[ValueID] = std::make_tuple( 7256 TheIndex.getOrInsertValueInfo(RefGUID), RefGUID, RefGUID); 7257 break; 7258 } 7259 // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs, 7260 // numrefs x valueid, n x (valueid)] 7261 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs, 7262 // numrefs x valueid, 7263 // n x (valueid, hotness)] 7264 // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs, 7265 // numrefs x valueid, 7266 // n x (valueid, relblockfreq)] 7267 case bitc::FS_PERMODULE: 7268 case bitc::FS_PERMODULE_RELBF: 7269 case bitc::FS_PERMODULE_PROFILE: { 7270 unsigned ValueID = Record[0]; 7271 uint64_t RawFlags = Record[1]; 7272 unsigned InstCount = Record[2]; 7273 uint64_t RawFunFlags = 0; 7274 unsigned NumRefs = Record[3]; 7275 unsigned NumRORefs = 0, NumWORefs = 0; 7276 int RefListStartIndex = 4; 7277 if (Version >= 4) { 7278 RawFunFlags = Record[3]; 7279 NumRefs = Record[4]; 7280 RefListStartIndex = 5; 7281 if (Version >= 5) { 7282 NumRORefs = Record[5]; 7283 RefListStartIndex = 6; 7284 if (Version >= 7) { 7285 NumWORefs = Record[6]; 7286 RefListStartIndex = 7; 7287 } 7288 } 7289 } 7290 7291 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7292 // The module path string ref set in the summary must be owned by the 7293 // index's module string table. Since we don't have a module path 7294 // string table section in the per-module index, we create a single 7295 // module path string table entry with an empty (0) ID to take 7296 // ownership. 7297 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 7298 assert(Record.size() >= RefListStartIndex + NumRefs && 7299 "Record size inconsistent with number of references"); 7300 std::vector<ValueInfo> Refs = makeRefList( 7301 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 7302 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 7303 bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF); 7304 std::vector<FunctionSummary::EdgeTy> Calls = makeCallList( 7305 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 7306 IsOldProfileFormat, HasProfile, HasRelBF); 7307 setSpecialRefs(Refs, NumRORefs, NumWORefs); 7308 auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID); 7309 // In order to save memory, only record the memprof summaries if this is 7310 // the prevailing copy of a symbol. The linker doesn't resolve local 7311 // linkage values so don't check whether those are prevailing. 7312 auto LT = (GlobalValue::LinkageTypes)Flags.Linkage; 7313 if (IsPrevailing && 7314 !GlobalValue::isLocalLinkage(LT) && 7315 !IsPrevailing(std::get<2>(VIAndOriginalGUID))) { 7316 PendingCallsites.clear(); 7317 PendingAllocs.clear(); 7318 } 7319 auto FS = std::make_unique<FunctionSummary>( 7320 Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0, 7321 std::move(Refs), std::move(Calls), std::move(PendingTypeTests), 7322 std::move(PendingTypeTestAssumeVCalls), 7323 std::move(PendingTypeCheckedLoadVCalls), 7324 std::move(PendingTypeTestAssumeConstVCalls), 7325 std::move(PendingTypeCheckedLoadConstVCalls), 7326 std::move(PendingParamAccesses), std::move(PendingCallsites), 7327 std::move(PendingAllocs)); 7328 FS->setModulePath(getThisModule()->first()); 7329 FS->setOriginalName(std::get<1>(VIAndOriginalGUID)); 7330 TheIndex.addGlobalValueSummary(std::get<0>(VIAndOriginalGUID), 7331 std::move(FS)); 7332 break; 7333 } 7334 // FS_ALIAS: [valueid, flags, valueid] 7335 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 7336 // they expect all aliasee summaries to be available. 7337 case bitc::FS_ALIAS: { 7338 unsigned ValueID = Record[0]; 7339 uint64_t RawFlags = Record[1]; 7340 unsigned AliaseeID = Record[2]; 7341 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7342 auto AS = std::make_unique<AliasSummary>(Flags); 7343 // The module path string ref set in the summary must be owned by the 7344 // index's module string table. Since we don't have a module path 7345 // string table section in the per-module index, we create a single 7346 // module path string table entry with an empty (0) ID to take 7347 // ownership. 7348 AS->setModulePath(getThisModule()->first()); 7349 7350 auto AliaseeVI = std::get<0>(getValueInfoFromValueId(AliaseeID)); 7351 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath); 7352 if (!AliaseeInModule) 7353 return error("Alias expects aliasee summary to be parsed"); 7354 AS->setAliasee(AliaseeVI, AliaseeInModule); 7355 7356 auto GUID = getValueInfoFromValueId(ValueID); 7357 AS->setOriginalName(std::get<1>(GUID)); 7358 TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(AS)); 7359 break; 7360 } 7361 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid] 7362 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 7363 unsigned ValueID = Record[0]; 7364 uint64_t RawFlags = Record[1]; 7365 unsigned RefArrayStart = 2; 7366 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 7367 /* WriteOnly */ false, 7368 /* Constant */ false, 7369 GlobalObject::VCallVisibilityPublic); 7370 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7371 if (Version >= 5) { 7372 GVF = getDecodedGVarFlags(Record[2]); 7373 RefArrayStart = 3; 7374 } 7375 std::vector<ValueInfo> Refs = 7376 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 7377 auto FS = 7378 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 7379 FS->setModulePath(getThisModule()->first()); 7380 auto GUID = getValueInfoFromValueId(ValueID); 7381 FS->setOriginalName(std::get<1>(GUID)); 7382 TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(FS)); 7383 break; 7384 } 7385 // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, 7386 // numrefs, numrefs x valueid, 7387 // n x (valueid, offset)] 7388 case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: { 7389 unsigned ValueID = Record[0]; 7390 uint64_t RawFlags = Record[1]; 7391 GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]); 7392 unsigned NumRefs = Record[3]; 7393 unsigned RefListStartIndex = 4; 7394 unsigned VTableListStartIndex = RefListStartIndex + NumRefs; 7395 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7396 std::vector<ValueInfo> Refs = makeRefList( 7397 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 7398 VTableFuncList VTableFuncs; 7399 for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) { 7400 ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[I])); 7401 uint64_t Offset = Record[++I]; 7402 VTableFuncs.push_back({Callee, Offset}); 7403 } 7404 auto VS = 7405 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 7406 VS->setModulePath(getThisModule()->first()); 7407 VS->setVTableFuncs(VTableFuncs); 7408 auto GUID = getValueInfoFromValueId(ValueID); 7409 VS->setOriginalName(std::get<1>(GUID)); 7410 TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(VS)); 7411 break; 7412 } 7413 // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs, 7414 // numrefs x valueid, n x (valueid)] 7415 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs, 7416 // numrefs x valueid, n x (valueid, hotness)] 7417 case bitc::FS_COMBINED: 7418 case bitc::FS_COMBINED_PROFILE: { 7419 unsigned ValueID = Record[0]; 7420 uint64_t ModuleId = Record[1]; 7421 uint64_t RawFlags = Record[2]; 7422 unsigned InstCount = Record[3]; 7423 uint64_t RawFunFlags = 0; 7424 uint64_t EntryCount = 0; 7425 unsigned NumRefs = Record[4]; 7426 unsigned NumRORefs = 0, NumWORefs = 0; 7427 int RefListStartIndex = 5; 7428 7429 if (Version >= 4) { 7430 RawFunFlags = Record[4]; 7431 RefListStartIndex = 6; 7432 size_t NumRefsIndex = 5; 7433 if (Version >= 5) { 7434 unsigned NumRORefsOffset = 1; 7435 RefListStartIndex = 7; 7436 if (Version >= 6) { 7437 NumRefsIndex = 6; 7438 EntryCount = Record[5]; 7439 RefListStartIndex = 8; 7440 if (Version >= 7) { 7441 RefListStartIndex = 9; 7442 NumWORefs = Record[8]; 7443 NumRORefsOffset = 2; 7444 } 7445 } 7446 NumRORefs = Record[RefListStartIndex - NumRORefsOffset]; 7447 } 7448 NumRefs = Record[NumRefsIndex]; 7449 } 7450 7451 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7452 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 7453 assert(Record.size() >= RefListStartIndex + NumRefs && 7454 "Record size inconsistent with number of references"); 7455 std::vector<ValueInfo> Refs = makeRefList( 7456 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 7457 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 7458 std::vector<FunctionSummary::EdgeTy> Edges = makeCallList( 7459 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 7460 IsOldProfileFormat, HasProfile, false); 7461 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID)); 7462 setSpecialRefs(Refs, NumRORefs, NumWORefs); 7463 auto FS = std::make_unique<FunctionSummary>( 7464 Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount, 7465 std::move(Refs), std::move(Edges), std::move(PendingTypeTests), 7466 std::move(PendingTypeTestAssumeVCalls), 7467 std::move(PendingTypeCheckedLoadVCalls), 7468 std::move(PendingTypeTestAssumeConstVCalls), 7469 std::move(PendingTypeCheckedLoadConstVCalls), 7470 std::move(PendingParamAccesses), std::move(PendingCallsites), 7471 std::move(PendingAllocs)); 7472 LastSeenSummary = FS.get(); 7473 LastSeenGUID = VI.getGUID(); 7474 FS->setModulePath(ModuleIdMap[ModuleId]); 7475 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 7476 break; 7477 } 7478 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 7479 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 7480 // they expect all aliasee summaries to be available. 7481 case bitc::FS_COMBINED_ALIAS: { 7482 unsigned ValueID = Record[0]; 7483 uint64_t ModuleId = Record[1]; 7484 uint64_t RawFlags = Record[2]; 7485 unsigned AliaseeValueId = Record[3]; 7486 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7487 auto AS = std::make_unique<AliasSummary>(Flags); 7488 LastSeenSummary = AS.get(); 7489 AS->setModulePath(ModuleIdMap[ModuleId]); 7490 7491 auto AliaseeVI = std::get<0>(getValueInfoFromValueId(AliaseeValueId)); 7492 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath()); 7493 AS->setAliasee(AliaseeVI, AliaseeInModule); 7494 7495 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID)); 7496 LastSeenGUID = VI.getGUID(); 7497 TheIndex.addGlobalValueSummary(VI, std::move(AS)); 7498 break; 7499 } 7500 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 7501 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 7502 unsigned ValueID = Record[0]; 7503 uint64_t ModuleId = Record[1]; 7504 uint64_t RawFlags = Record[2]; 7505 unsigned RefArrayStart = 3; 7506 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 7507 /* WriteOnly */ false, 7508 /* Constant */ false, 7509 GlobalObject::VCallVisibilityPublic); 7510 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7511 if (Version >= 5) { 7512 GVF = getDecodedGVarFlags(Record[3]); 7513 RefArrayStart = 4; 7514 } 7515 std::vector<ValueInfo> Refs = 7516 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 7517 auto FS = 7518 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 7519 LastSeenSummary = FS.get(); 7520 FS->setModulePath(ModuleIdMap[ModuleId]); 7521 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID)); 7522 LastSeenGUID = VI.getGUID(); 7523 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 7524 break; 7525 } 7526 // FS_COMBINED_ORIGINAL_NAME: [original_name] 7527 case bitc::FS_COMBINED_ORIGINAL_NAME: { 7528 uint64_t OriginalName = Record[0]; 7529 if (!LastSeenSummary) 7530 return error("Name attachment that does not follow a combined record"); 7531 LastSeenSummary->setOriginalName(OriginalName); 7532 TheIndex.addOriginalName(LastSeenGUID, OriginalName); 7533 // Reset the LastSeenSummary 7534 LastSeenSummary = nullptr; 7535 LastSeenGUID = 0; 7536 break; 7537 } 7538 case bitc::FS_TYPE_TESTS: 7539 assert(PendingTypeTests.empty()); 7540 llvm::append_range(PendingTypeTests, Record); 7541 break; 7542 7543 case bitc::FS_TYPE_TEST_ASSUME_VCALLS: 7544 assert(PendingTypeTestAssumeVCalls.empty()); 7545 for (unsigned I = 0; I != Record.size(); I += 2) 7546 PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]}); 7547 break; 7548 7549 case bitc::FS_TYPE_CHECKED_LOAD_VCALLS: 7550 assert(PendingTypeCheckedLoadVCalls.empty()); 7551 for (unsigned I = 0; I != Record.size(); I += 2) 7552 PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]}); 7553 break; 7554 7555 case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL: 7556 PendingTypeTestAssumeConstVCalls.push_back( 7557 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 7558 break; 7559 7560 case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL: 7561 PendingTypeCheckedLoadConstVCalls.push_back( 7562 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 7563 break; 7564 7565 case bitc::FS_CFI_FUNCTION_DEFS: { 7566 std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs(); 7567 for (unsigned I = 0; I != Record.size(); I += 2) 7568 CfiFunctionDefs.insert( 7569 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 7570 break; 7571 } 7572 7573 case bitc::FS_CFI_FUNCTION_DECLS: { 7574 std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls(); 7575 for (unsigned I = 0; I != Record.size(); I += 2) 7576 CfiFunctionDecls.insert( 7577 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 7578 break; 7579 } 7580 7581 case bitc::FS_TYPE_ID: 7582 parseTypeIdSummaryRecord(Record, Strtab, TheIndex); 7583 break; 7584 7585 case bitc::FS_TYPE_ID_METADATA: 7586 parseTypeIdCompatibleVtableSummaryRecord(Record); 7587 break; 7588 7589 case bitc::FS_BLOCK_COUNT: 7590 TheIndex.addBlockCount(Record[0]); 7591 break; 7592 7593 case bitc::FS_PARAM_ACCESS: { 7594 PendingParamAccesses = parseParamAccesses(Record); 7595 break; 7596 } 7597 7598 case bitc::FS_STACK_IDS: { // [n x stackid] 7599 // Save stack ids in the reader to consult when adding stack ids from the 7600 // lists in the stack node and alloc node entries. 7601 StackIds = ArrayRef<uint64_t>(Record); 7602 break; 7603 } 7604 7605 case bitc::FS_PERMODULE_CALLSITE_INFO: { 7606 unsigned ValueID = Record[0]; 7607 SmallVector<unsigned> StackIdList; 7608 for (auto R = Record.begin() + 1; R != Record.end(); R++) { 7609 assert(*R < StackIds.size()); 7610 StackIdList.push_back(TheIndex.addOrGetStackIdIndex(StackIds[*R])); 7611 } 7612 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID)); 7613 PendingCallsites.push_back(CallsiteInfo({VI, std::move(StackIdList)})); 7614 break; 7615 } 7616 7617 case bitc::FS_COMBINED_CALLSITE_INFO: { 7618 auto RecordIter = Record.begin(); 7619 unsigned ValueID = *RecordIter++; 7620 unsigned NumStackIds = *RecordIter++; 7621 unsigned NumVersions = *RecordIter++; 7622 assert(Record.size() == 3 + NumStackIds + NumVersions); 7623 SmallVector<unsigned> StackIdList; 7624 for (unsigned J = 0; J < NumStackIds; J++) { 7625 assert(*RecordIter < StackIds.size()); 7626 StackIdList.push_back( 7627 TheIndex.addOrGetStackIdIndex(StackIds[*RecordIter++])); 7628 } 7629 SmallVector<unsigned> Versions; 7630 for (unsigned J = 0; J < NumVersions; J++) 7631 Versions.push_back(*RecordIter++); 7632 ValueInfo VI = std::get<0>( 7633 getValueInfoFromValueId</*AllowNullValueInfo*/ true>(ValueID)); 7634 PendingCallsites.push_back( 7635 CallsiteInfo({VI, std::move(Versions), std::move(StackIdList)})); 7636 break; 7637 } 7638 7639 case bitc::FS_PERMODULE_ALLOC_INFO: { 7640 unsigned I = 0; 7641 std::vector<MIBInfo> MIBs; 7642 while (I < Record.size()) { 7643 assert(Record.size() - I >= 2); 7644 AllocationType AllocType = (AllocationType)Record[I++]; 7645 unsigned NumStackEntries = Record[I++]; 7646 assert(Record.size() - I >= NumStackEntries); 7647 SmallVector<unsigned> StackIdList; 7648 for (unsigned J = 0; J < NumStackEntries; J++) { 7649 assert(Record[I] < StackIds.size()); 7650 StackIdList.push_back( 7651 TheIndex.addOrGetStackIdIndex(StackIds[Record[I++]])); 7652 } 7653 MIBs.push_back(MIBInfo(AllocType, std::move(StackIdList))); 7654 } 7655 PendingAllocs.push_back(AllocInfo(std::move(MIBs))); 7656 break; 7657 } 7658 7659 case bitc::FS_COMBINED_ALLOC_INFO: { 7660 unsigned I = 0; 7661 std::vector<MIBInfo> MIBs; 7662 unsigned NumMIBs = Record[I++]; 7663 unsigned NumVersions = Record[I++]; 7664 unsigned MIBsRead = 0; 7665 while (MIBsRead++ < NumMIBs) { 7666 assert(Record.size() - I >= 2); 7667 AllocationType AllocType = (AllocationType)Record[I++]; 7668 unsigned NumStackEntries = Record[I++]; 7669 assert(Record.size() - I >= NumStackEntries); 7670 SmallVector<unsigned> StackIdList; 7671 for (unsigned J = 0; J < NumStackEntries; J++) { 7672 assert(Record[I] < StackIds.size()); 7673 StackIdList.push_back( 7674 TheIndex.addOrGetStackIdIndex(StackIds[Record[I++]])); 7675 } 7676 MIBs.push_back(MIBInfo(AllocType, std::move(StackIdList))); 7677 } 7678 assert(Record.size() - I >= NumVersions); 7679 SmallVector<uint8_t> Versions; 7680 for (unsigned J = 0; J < NumVersions; J++) 7681 Versions.push_back(Record[I++]); 7682 PendingAllocs.push_back( 7683 AllocInfo(std::move(Versions), std::move(MIBs))); 7684 break; 7685 } 7686 } 7687 } 7688 llvm_unreachable("Exit infinite loop"); 7689 } 7690 7691 // Parse the module string table block into the Index. 7692 // This populates the ModulePathStringTable map in the index. 7693 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 7694 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 7695 return Err; 7696 7697 SmallVector<uint64_t, 64> Record; 7698 7699 SmallString<128> ModulePath; 7700 ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr; 7701 7702 while (true) { 7703 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 7704 if (!MaybeEntry) 7705 return MaybeEntry.takeError(); 7706 BitstreamEntry Entry = MaybeEntry.get(); 7707 7708 switch (Entry.Kind) { 7709 case BitstreamEntry::SubBlock: // Handled for us already. 7710 case BitstreamEntry::Error: 7711 return error("Malformed block"); 7712 case BitstreamEntry::EndBlock: 7713 return Error::success(); 7714 case BitstreamEntry::Record: 7715 // The interesting case. 7716 break; 7717 } 7718 7719 Record.clear(); 7720 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 7721 if (!MaybeRecord) 7722 return MaybeRecord.takeError(); 7723 switch (MaybeRecord.get()) { 7724 default: // Default behavior: ignore. 7725 break; 7726 case bitc::MST_CODE_ENTRY: { 7727 // MST_ENTRY: [modid, namechar x N] 7728 uint64_t ModuleId = Record[0]; 7729 7730 if (convertToString(Record, 1, ModulePath)) 7731 return error("Invalid record"); 7732 7733 LastSeenModule = TheIndex.addModule(ModulePath, ModuleId); 7734 ModuleIdMap[ModuleId] = LastSeenModule->first(); 7735 7736 ModulePath.clear(); 7737 break; 7738 } 7739 /// MST_CODE_HASH: [5*i32] 7740 case bitc::MST_CODE_HASH: { 7741 if (Record.size() != 5) 7742 return error("Invalid hash length " + Twine(Record.size()).str()); 7743 if (!LastSeenModule) 7744 return error("Invalid hash that does not follow a module path"); 7745 int Pos = 0; 7746 for (auto &Val : Record) { 7747 assert(!(Val >> 32) && "Unexpected high bits set"); 7748 LastSeenModule->second.second[Pos++] = Val; 7749 } 7750 // Reset LastSeenModule to avoid overriding the hash unexpectedly. 7751 LastSeenModule = nullptr; 7752 break; 7753 } 7754 } 7755 } 7756 llvm_unreachable("Exit infinite loop"); 7757 } 7758 7759 namespace { 7760 7761 // FIXME: This class is only here to support the transition to llvm::Error. It 7762 // will be removed once this transition is complete. Clients should prefer to 7763 // deal with the Error value directly, rather than converting to error_code. 7764 class BitcodeErrorCategoryType : public std::error_category { 7765 const char *name() const noexcept override { 7766 return "llvm.bitcode"; 7767 } 7768 7769 std::string message(int IE) const override { 7770 BitcodeError E = static_cast<BitcodeError>(IE); 7771 switch (E) { 7772 case BitcodeError::CorruptedBitcode: 7773 return "Corrupted bitcode"; 7774 } 7775 llvm_unreachable("Unknown error type!"); 7776 } 7777 }; 7778 7779 } // end anonymous namespace 7780 7781 const std::error_category &llvm::BitcodeErrorCategory() { 7782 static BitcodeErrorCategoryType ErrorCategory; 7783 return ErrorCategory; 7784 } 7785 7786 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream, 7787 unsigned Block, unsigned RecordID) { 7788 if (Error Err = Stream.EnterSubBlock(Block)) 7789 return std::move(Err); 7790 7791 StringRef Strtab; 7792 while (true) { 7793 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 7794 if (!MaybeEntry) 7795 return MaybeEntry.takeError(); 7796 llvm::BitstreamEntry Entry = MaybeEntry.get(); 7797 7798 switch (Entry.Kind) { 7799 case BitstreamEntry::EndBlock: 7800 return Strtab; 7801 7802 case BitstreamEntry::Error: 7803 return error("Malformed block"); 7804 7805 case BitstreamEntry::SubBlock: 7806 if (Error Err = Stream.SkipBlock()) 7807 return std::move(Err); 7808 break; 7809 7810 case BitstreamEntry::Record: 7811 StringRef Blob; 7812 SmallVector<uint64_t, 1> Record; 7813 Expected<unsigned> MaybeRecord = 7814 Stream.readRecord(Entry.ID, Record, &Blob); 7815 if (!MaybeRecord) 7816 return MaybeRecord.takeError(); 7817 if (MaybeRecord.get() == RecordID) 7818 Strtab = Blob; 7819 break; 7820 } 7821 } 7822 } 7823 7824 //===----------------------------------------------------------------------===// 7825 // External interface 7826 //===----------------------------------------------------------------------===// 7827 7828 Expected<std::vector<BitcodeModule>> 7829 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) { 7830 auto FOrErr = getBitcodeFileContents(Buffer); 7831 if (!FOrErr) 7832 return FOrErr.takeError(); 7833 return std::move(FOrErr->Mods); 7834 } 7835 7836 Expected<BitcodeFileContents> 7837 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) { 7838 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 7839 if (!StreamOrErr) 7840 return StreamOrErr.takeError(); 7841 BitstreamCursor &Stream = *StreamOrErr; 7842 7843 BitcodeFileContents F; 7844 while (true) { 7845 uint64_t BCBegin = Stream.getCurrentByteNo(); 7846 7847 // We may be consuming bitcode from a client that leaves garbage at the end 7848 // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to 7849 // the end that there cannot possibly be another module, stop looking. 7850 if (BCBegin + 8 >= Stream.getBitcodeBytes().size()) 7851 return F; 7852 7853 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 7854 if (!MaybeEntry) 7855 return MaybeEntry.takeError(); 7856 llvm::BitstreamEntry Entry = MaybeEntry.get(); 7857 7858 switch (Entry.Kind) { 7859 case BitstreamEntry::EndBlock: 7860 case BitstreamEntry::Error: 7861 return error("Malformed block"); 7862 7863 case BitstreamEntry::SubBlock: { 7864 uint64_t IdentificationBit = -1ull; 7865 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 7866 IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8; 7867 if (Error Err = Stream.SkipBlock()) 7868 return std::move(Err); 7869 7870 { 7871 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 7872 if (!MaybeEntry) 7873 return MaybeEntry.takeError(); 7874 Entry = MaybeEntry.get(); 7875 } 7876 7877 if (Entry.Kind != BitstreamEntry::SubBlock || 7878 Entry.ID != bitc::MODULE_BLOCK_ID) 7879 return error("Malformed block"); 7880 } 7881 7882 if (Entry.ID == bitc::MODULE_BLOCK_ID) { 7883 uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8; 7884 if (Error Err = Stream.SkipBlock()) 7885 return std::move(Err); 7886 7887 F.Mods.push_back({Stream.getBitcodeBytes().slice( 7888 BCBegin, Stream.getCurrentByteNo() - BCBegin), 7889 Buffer.getBufferIdentifier(), IdentificationBit, 7890 ModuleBit}); 7891 continue; 7892 } 7893 7894 if (Entry.ID == bitc::STRTAB_BLOCK_ID) { 7895 Expected<StringRef> Strtab = 7896 readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB); 7897 if (!Strtab) 7898 return Strtab.takeError(); 7899 // This string table is used by every preceding bitcode module that does 7900 // not have its own string table. A bitcode file may have multiple 7901 // string tables if it was created by binary concatenation, for example 7902 // with "llvm-cat -b". 7903 for (BitcodeModule &I : llvm::reverse(F.Mods)) { 7904 if (!I.Strtab.empty()) 7905 break; 7906 I.Strtab = *Strtab; 7907 } 7908 // Similarly, the string table is used by every preceding symbol table; 7909 // normally there will be just one unless the bitcode file was created 7910 // by binary concatenation. 7911 if (!F.Symtab.empty() && F.StrtabForSymtab.empty()) 7912 F.StrtabForSymtab = *Strtab; 7913 continue; 7914 } 7915 7916 if (Entry.ID == bitc::SYMTAB_BLOCK_ID) { 7917 Expected<StringRef> SymtabOrErr = 7918 readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB); 7919 if (!SymtabOrErr) 7920 return SymtabOrErr.takeError(); 7921 7922 // We can expect the bitcode file to have multiple symbol tables if it 7923 // was created by binary concatenation. In that case we silently 7924 // ignore any subsequent symbol tables, which is fine because this is a 7925 // low level function. The client is expected to notice that the number 7926 // of modules in the symbol table does not match the number of modules 7927 // in the input file and regenerate the symbol table. 7928 if (F.Symtab.empty()) 7929 F.Symtab = *SymtabOrErr; 7930 continue; 7931 } 7932 7933 if (Error Err = Stream.SkipBlock()) 7934 return std::move(Err); 7935 continue; 7936 } 7937 case BitstreamEntry::Record: 7938 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 7939 return std::move(E); 7940 continue; 7941 } 7942 } 7943 } 7944 7945 /// Get a lazy one-at-time loading module from bitcode. 7946 /// 7947 /// This isn't always used in a lazy context. In particular, it's also used by 7948 /// \a parseModule(). If this is truly lazy, then we need to eagerly pull 7949 /// in forward-referenced functions from block address references. 7950 /// 7951 /// \param[in] MaterializeAll Set to \c true if we should materialize 7952 /// everything. 7953 Expected<std::unique_ptr<Module>> 7954 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll, 7955 bool ShouldLazyLoadMetadata, bool IsImporting, 7956 ParserCallbacks Callbacks) { 7957 BitstreamCursor Stream(Buffer); 7958 7959 std::string ProducerIdentification; 7960 if (IdentificationBit != -1ull) { 7961 if (Error JumpFailed = Stream.JumpToBit(IdentificationBit)) 7962 return std::move(JumpFailed); 7963 if (Error E = 7964 readIdentificationBlock(Stream).moveInto(ProducerIdentification)) 7965 return std::move(E); 7966 } 7967 7968 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 7969 return std::move(JumpFailed); 7970 auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification, 7971 Context); 7972 7973 std::unique_ptr<Module> M = 7974 std::make_unique<Module>(ModuleIdentifier, Context); 7975 M->setMaterializer(R); 7976 7977 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 7978 if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, 7979 IsImporting, Callbacks)) 7980 return std::move(Err); 7981 7982 if (MaterializeAll) { 7983 // Read in the entire module, and destroy the BitcodeReader. 7984 if (Error Err = M->materializeAll()) 7985 return std::move(Err); 7986 } else { 7987 // Resolve forward references from blockaddresses. 7988 if (Error Err = R->materializeForwardReferencedFunctions()) 7989 return std::move(Err); 7990 } 7991 return std::move(M); 7992 } 7993 7994 Expected<std::unique_ptr<Module>> 7995 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata, 7996 bool IsImporting, ParserCallbacks Callbacks) { 7997 return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting, 7998 Callbacks); 7999 } 8000 8001 // Parse the specified bitcode buffer and merge the index into CombinedIndex. 8002 // We don't use ModuleIdentifier here because the client may need to control the 8003 // module path used in the combined summary (e.g. when reading summaries for 8004 // regular LTO modules). 8005 Error BitcodeModule::readSummary( 8006 ModuleSummaryIndex &CombinedIndex, StringRef ModulePath, uint64_t ModuleId, 8007 std::function<bool(GlobalValue::GUID)> IsPrevailing) { 8008 BitstreamCursor Stream(Buffer); 8009 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 8010 return JumpFailed; 8011 8012 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex, 8013 ModulePath, ModuleId, IsPrevailing); 8014 return R.parseModule(); 8015 } 8016 8017 // Parse the specified bitcode buffer, returning the function info index. 8018 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() { 8019 BitstreamCursor Stream(Buffer); 8020 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 8021 return std::move(JumpFailed); 8022 8023 auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false); 8024 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index, 8025 ModuleIdentifier, 0); 8026 8027 if (Error Err = R.parseModule()) 8028 return std::move(Err); 8029 8030 return std::move(Index); 8031 } 8032 8033 static Expected<std::pair<bool, bool>> 8034 getEnableSplitLTOUnitAndUnifiedFlag(BitstreamCursor &Stream, 8035 unsigned ID, 8036 BitcodeLTOInfo <OInfo) { 8037 if (Error Err = Stream.EnterSubBlock(ID)) 8038 return std::move(Err); 8039 SmallVector<uint64_t, 64> Record; 8040 8041 while (true) { 8042 BitstreamEntry Entry; 8043 std::pair<bool, bool> Result = {false,false}; 8044 if (Error E = Stream.advanceSkippingSubblocks().moveInto(Entry)) 8045 return std::move(E); 8046 8047 switch (Entry.Kind) { 8048 case BitstreamEntry::SubBlock: // Handled for us already. 8049 case BitstreamEntry::Error: 8050 return error("Malformed block"); 8051 case BitstreamEntry::EndBlock: { 8052 // If no flags record found, set both flags to false. 8053 return Result; 8054 } 8055 case BitstreamEntry::Record: 8056 // The interesting case. 8057 break; 8058 } 8059 8060 // Look for the FS_FLAGS record. 8061 Record.clear(); 8062 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 8063 if (!MaybeBitCode) 8064 return MaybeBitCode.takeError(); 8065 switch (MaybeBitCode.get()) { 8066 default: // Default behavior: ignore. 8067 break; 8068 case bitc::FS_FLAGS: { // [flags] 8069 uint64_t Flags = Record[0]; 8070 // Scan flags. 8071 assert(Flags <= 0x2ff && "Unexpected bits in flag"); 8072 8073 bool EnableSplitLTOUnit = Flags & 0x8; 8074 bool UnifiedLTO = Flags & 0x200; 8075 Result = {EnableSplitLTOUnit, UnifiedLTO}; 8076 8077 return Result; 8078 } 8079 } 8080 } 8081 llvm_unreachable("Exit infinite loop"); 8082 } 8083 8084 // Check if the given bitcode buffer contains a global value summary block. 8085 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() { 8086 BitstreamCursor Stream(Buffer); 8087 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 8088 return std::move(JumpFailed); 8089 8090 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 8091 return std::move(Err); 8092 8093 while (true) { 8094 llvm::BitstreamEntry Entry; 8095 if (Error E = Stream.advance().moveInto(Entry)) 8096 return std::move(E); 8097 8098 switch (Entry.Kind) { 8099 case BitstreamEntry::Error: 8100 return error("Malformed block"); 8101 case BitstreamEntry::EndBlock: 8102 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false, 8103 /*EnableSplitLTOUnit=*/false, /*UnifiedLTO=*/false}; 8104 8105 case BitstreamEntry::SubBlock: 8106 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) { 8107 BitcodeLTOInfo LTOInfo; 8108 Expected<std::pair<bool, bool>> Flags = 8109 getEnableSplitLTOUnitAndUnifiedFlag(Stream, Entry.ID, LTOInfo); 8110 if (!Flags) 8111 return Flags.takeError(); 8112 std::tie(LTOInfo.EnableSplitLTOUnit, LTOInfo.UnifiedLTO) = Flags.get(); 8113 LTOInfo.IsThinLTO = true; 8114 LTOInfo.HasSummary = true; 8115 return LTOInfo; 8116 } 8117 8118 if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) { 8119 BitcodeLTOInfo LTOInfo; 8120 Expected<std::pair<bool, bool>> Flags = 8121 getEnableSplitLTOUnitAndUnifiedFlag(Stream, Entry.ID, LTOInfo); 8122 if (!Flags) 8123 return Flags.takeError(); 8124 std::tie(LTOInfo.EnableSplitLTOUnit, LTOInfo.UnifiedLTO) = Flags.get(); 8125 LTOInfo.IsThinLTO = false; 8126 LTOInfo.HasSummary = true; 8127 return LTOInfo; 8128 } 8129 8130 // Ignore other sub-blocks. 8131 if (Error Err = Stream.SkipBlock()) 8132 return std::move(Err); 8133 continue; 8134 8135 case BitstreamEntry::Record: 8136 if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID)) 8137 continue; 8138 else 8139 return StreamFailed.takeError(); 8140 } 8141 } 8142 } 8143 8144 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) { 8145 Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer); 8146 if (!MsOrErr) 8147 return MsOrErr.takeError(); 8148 8149 if (MsOrErr->size() != 1) 8150 return error("Expected a single module"); 8151 8152 return (*MsOrErr)[0]; 8153 } 8154 8155 Expected<std::unique_ptr<Module>> 8156 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context, 8157 bool ShouldLazyLoadMetadata, bool IsImporting, 8158 ParserCallbacks Callbacks) { 8159 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8160 if (!BM) 8161 return BM.takeError(); 8162 8163 return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting, 8164 Callbacks); 8165 } 8166 8167 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule( 8168 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context, 8169 bool ShouldLazyLoadMetadata, bool IsImporting, ParserCallbacks Callbacks) { 8170 auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata, 8171 IsImporting, Callbacks); 8172 if (MOrErr) 8173 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer)); 8174 return MOrErr; 8175 } 8176 8177 Expected<std::unique_ptr<Module>> 8178 BitcodeModule::parseModule(LLVMContext &Context, ParserCallbacks Callbacks) { 8179 return getModuleImpl(Context, true, false, false, Callbacks); 8180 // TODO: Restore the use-lists to the in-memory state when the bitcode was 8181 // written. We must defer until the Module has been fully materialized. 8182 } 8183 8184 Expected<std::unique_ptr<Module>> 8185 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context, 8186 ParserCallbacks Callbacks) { 8187 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8188 if (!BM) 8189 return BM.takeError(); 8190 8191 return BM->parseModule(Context, Callbacks); 8192 } 8193 8194 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) { 8195 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 8196 if (!StreamOrErr) 8197 return StreamOrErr.takeError(); 8198 8199 return readTriple(*StreamOrErr); 8200 } 8201 8202 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) { 8203 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 8204 if (!StreamOrErr) 8205 return StreamOrErr.takeError(); 8206 8207 return hasObjCCategory(*StreamOrErr); 8208 } 8209 8210 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) { 8211 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 8212 if (!StreamOrErr) 8213 return StreamOrErr.takeError(); 8214 8215 return readIdentificationCode(*StreamOrErr); 8216 } 8217 8218 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer, 8219 ModuleSummaryIndex &CombinedIndex, 8220 uint64_t ModuleId) { 8221 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8222 if (!BM) 8223 return BM.takeError(); 8224 8225 return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId); 8226 } 8227 8228 Expected<std::unique_ptr<ModuleSummaryIndex>> 8229 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) { 8230 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8231 if (!BM) 8232 return BM.takeError(); 8233 8234 return BM->getSummary(); 8235 } 8236 8237 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) { 8238 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8239 if (!BM) 8240 return BM.takeError(); 8241 8242 return BM->getLTOInfo(); 8243 } 8244 8245 Expected<std::unique_ptr<ModuleSummaryIndex>> 8246 llvm::getModuleSummaryIndexForFile(StringRef Path, 8247 bool IgnoreEmptyThinLTOIndexFile) { 8248 ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr = 8249 MemoryBuffer::getFileOrSTDIN(Path); 8250 if (!FileOrErr) 8251 return errorCodeToError(FileOrErr.getError()); 8252 if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize()) 8253 return nullptr; 8254 return getModuleSummaryIndex(**FileOrErr); 8255 } 8256