1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This header defines the BitcodeReader class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/ReaderWriter.h" 15 #include "BitcodeReader.h" 16 #include "llvm/Constants.h" 17 #include "llvm/DerivedTypes.h" 18 #include "llvm/InlineAsm.h" 19 #include "llvm/IntrinsicInst.h" 20 #include "llvm/Module.h" 21 #include "llvm/Operator.h" 22 #include "llvm/AutoUpgrade.h" 23 #include "llvm/ADT/SmallString.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/Support/MathExtras.h" 26 #include "llvm/Support/MemoryBuffer.h" 27 #include "llvm/OperandTraits.h" 28 using namespace llvm; 29 30 void BitcodeReader::FreeState() { 31 if (BufferOwned) 32 delete Buffer; 33 Buffer = 0; 34 std::vector<PATypeHolder>().swap(TypeList); 35 ValueList.clear(); 36 MDValueList.clear(); 37 38 std::vector<AttrListPtr>().swap(MAttributes); 39 std::vector<BasicBlock*>().swap(FunctionBBs); 40 std::vector<Function*>().swap(FunctionsWithBodies); 41 DeferredFunctionInfo.clear(); 42 MDKindMap.clear(); 43 } 44 45 //===----------------------------------------------------------------------===// 46 // Helper functions to implement forward reference resolution, etc. 47 //===----------------------------------------------------------------------===// 48 49 /// ConvertToString - Convert a string from a record into an std::string, return 50 /// true on failure. 51 template<typename StrTy> 52 static bool ConvertToString(SmallVector<uint64_t, 64> &Record, unsigned Idx, 53 StrTy &Result) { 54 if (Idx > Record.size()) 55 return true; 56 57 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 58 Result += (char)Record[i]; 59 return false; 60 } 61 62 static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) { 63 switch (Val) { 64 default: // Map unknown/new linkages to external 65 case 0: return GlobalValue::ExternalLinkage; 66 case 1: return GlobalValue::WeakAnyLinkage; 67 case 2: return GlobalValue::AppendingLinkage; 68 case 3: return GlobalValue::InternalLinkage; 69 case 4: return GlobalValue::LinkOnceAnyLinkage; 70 case 5: return GlobalValue::DLLImportLinkage; 71 case 6: return GlobalValue::DLLExportLinkage; 72 case 7: return GlobalValue::ExternalWeakLinkage; 73 case 8: return GlobalValue::CommonLinkage; 74 case 9: return GlobalValue::PrivateLinkage; 75 case 10: return GlobalValue::WeakODRLinkage; 76 case 11: return GlobalValue::LinkOnceODRLinkage; 77 case 12: return GlobalValue::AvailableExternallyLinkage; 78 case 13: return GlobalValue::LinkerPrivateLinkage; 79 case 14: return GlobalValue::LinkerPrivateWeakLinkage; 80 } 81 } 82 83 static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) { 84 switch (Val) { 85 default: // Map unknown visibilities to default. 86 case 0: return GlobalValue::DefaultVisibility; 87 case 1: return GlobalValue::HiddenVisibility; 88 case 2: return GlobalValue::ProtectedVisibility; 89 } 90 } 91 92 static int GetDecodedCastOpcode(unsigned Val) { 93 switch (Val) { 94 default: return -1; 95 case bitc::CAST_TRUNC : return Instruction::Trunc; 96 case bitc::CAST_ZEXT : return Instruction::ZExt; 97 case bitc::CAST_SEXT : return Instruction::SExt; 98 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 99 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 100 case bitc::CAST_UITOFP : return Instruction::UIToFP; 101 case bitc::CAST_SITOFP : return Instruction::SIToFP; 102 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 103 case bitc::CAST_FPEXT : return Instruction::FPExt; 104 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 105 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 106 case bitc::CAST_BITCAST : return Instruction::BitCast; 107 } 108 } 109 static int GetDecodedBinaryOpcode(unsigned Val, const Type *Ty) { 110 switch (Val) { 111 default: return -1; 112 case bitc::BINOP_ADD: 113 return Ty->isFPOrFPVectorTy() ? Instruction::FAdd : Instruction::Add; 114 case bitc::BINOP_SUB: 115 return Ty->isFPOrFPVectorTy() ? Instruction::FSub : Instruction::Sub; 116 case bitc::BINOP_MUL: 117 return Ty->isFPOrFPVectorTy() ? Instruction::FMul : Instruction::Mul; 118 case bitc::BINOP_UDIV: return Instruction::UDiv; 119 case bitc::BINOP_SDIV: 120 return Ty->isFPOrFPVectorTy() ? Instruction::FDiv : Instruction::SDiv; 121 case bitc::BINOP_UREM: return Instruction::URem; 122 case bitc::BINOP_SREM: 123 return Ty->isFPOrFPVectorTy() ? Instruction::FRem : Instruction::SRem; 124 case bitc::BINOP_SHL: return Instruction::Shl; 125 case bitc::BINOP_LSHR: return Instruction::LShr; 126 case bitc::BINOP_ASHR: return Instruction::AShr; 127 case bitc::BINOP_AND: return Instruction::And; 128 case bitc::BINOP_OR: return Instruction::Or; 129 case bitc::BINOP_XOR: return Instruction::Xor; 130 } 131 } 132 133 namespace llvm { 134 namespace { 135 /// @brief A class for maintaining the slot number definition 136 /// as a placeholder for the actual definition for forward constants defs. 137 class ConstantPlaceHolder : public ConstantExpr { 138 ConstantPlaceHolder(); // DO NOT IMPLEMENT 139 void operator=(const ConstantPlaceHolder &); // DO NOT IMPLEMENT 140 public: 141 // allocate space for exactly one operand 142 void *operator new(size_t s) { 143 return User::operator new(s, 1); 144 } 145 explicit ConstantPlaceHolder(const Type *Ty, LLVMContext& Context) 146 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 147 Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); 148 } 149 150 /// @brief Methods to support type inquiry through isa, cast, and dyn_cast. 151 static inline bool classof(const ConstantPlaceHolder *) { return true; } 152 static bool classof(const Value *V) { 153 return isa<ConstantExpr>(V) && 154 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 155 } 156 157 158 /// Provide fast operand accessors 159 //DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 160 }; 161 } 162 163 // FIXME: can we inherit this from ConstantExpr? 164 template <> 165 struct OperandTraits<ConstantPlaceHolder> : public FixedNumOperandTraits<1> { 166 }; 167 } 168 169 170 void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) { 171 if (Idx == size()) { 172 push_back(V); 173 return; 174 } 175 176 if (Idx >= size()) 177 resize(Idx+1); 178 179 WeakVH &OldV = ValuePtrs[Idx]; 180 if (OldV == 0) { 181 OldV = V; 182 return; 183 } 184 185 // Handle constants and non-constants (e.g. instrs) differently for 186 // efficiency. 187 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 188 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 189 OldV = V; 190 } else { 191 // If there was a forward reference to this value, replace it. 192 Value *PrevVal = OldV; 193 OldV->replaceAllUsesWith(V); 194 delete PrevVal; 195 } 196 } 197 198 199 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 200 const Type *Ty) { 201 if (Idx >= size()) 202 resize(Idx + 1); 203 204 if (Value *V = ValuePtrs[Idx]) { 205 assert(Ty == V->getType() && "Type mismatch in constant table!"); 206 return cast<Constant>(V); 207 } 208 209 // Create and return a placeholder, which will later be RAUW'd. 210 Constant *C = new ConstantPlaceHolder(Ty, Context); 211 ValuePtrs[Idx] = C; 212 return C; 213 } 214 215 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, const Type *Ty) { 216 if (Idx >= size()) 217 resize(Idx + 1); 218 219 if (Value *V = ValuePtrs[Idx]) { 220 assert((Ty == 0 || Ty == V->getType()) && "Type mismatch in value table!"); 221 return V; 222 } 223 224 // No type specified, must be invalid reference. 225 if (Ty == 0) return 0; 226 227 // Create and return a placeholder, which will later be RAUW'd. 228 Value *V = new Argument(Ty); 229 ValuePtrs[Idx] = V; 230 return V; 231 } 232 233 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk 234 /// resolves any forward references. The idea behind this is that we sometimes 235 /// get constants (such as large arrays) which reference *many* forward ref 236 /// constants. Replacing each of these causes a lot of thrashing when 237 /// building/reuniquing the constant. Instead of doing this, we look at all the 238 /// uses and rewrite all the place holders at once for any constant that uses 239 /// a placeholder. 240 void BitcodeReaderValueList::ResolveConstantForwardRefs() { 241 // Sort the values by-pointer so that they are efficient to look up with a 242 // binary search. 243 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 244 245 SmallVector<Constant*, 64> NewOps; 246 247 while (!ResolveConstants.empty()) { 248 Value *RealVal = operator[](ResolveConstants.back().second); 249 Constant *Placeholder = ResolveConstants.back().first; 250 ResolveConstants.pop_back(); 251 252 // Loop over all users of the placeholder, updating them to reference the 253 // new value. If they reference more than one placeholder, update them all 254 // at once. 255 while (!Placeholder->use_empty()) { 256 Value::use_iterator UI = Placeholder->use_begin(); 257 User *U = *UI; 258 259 // If the using object isn't uniqued, just update the operands. This 260 // handles instructions and initializers for global variables. 261 if (!isa<Constant>(U) || isa<GlobalValue>(U)) { 262 UI.getUse().set(RealVal); 263 continue; 264 } 265 266 // Otherwise, we have a constant that uses the placeholder. Replace that 267 // constant with a new constant that has *all* placeholder uses updated. 268 Constant *UserC = cast<Constant>(U); 269 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 270 I != E; ++I) { 271 Value *NewOp; 272 if (!isa<ConstantPlaceHolder>(*I)) { 273 // Not a placeholder reference. 274 NewOp = *I; 275 } else if (*I == Placeholder) { 276 // Common case is that it just references this one placeholder. 277 NewOp = RealVal; 278 } else { 279 // Otherwise, look up the placeholder in ResolveConstants. 280 ResolveConstantsTy::iterator It = 281 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 282 std::pair<Constant*, unsigned>(cast<Constant>(*I), 283 0)); 284 assert(It != ResolveConstants.end() && It->first == *I); 285 NewOp = operator[](It->second); 286 } 287 288 NewOps.push_back(cast<Constant>(NewOp)); 289 } 290 291 // Make the new constant. 292 Constant *NewC; 293 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 294 NewC = ConstantArray::get(UserCA->getType(), &NewOps[0], 295 NewOps.size()); 296 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 297 NewC = ConstantStruct::get(Context, &NewOps[0], NewOps.size(), 298 UserCS->getType()->isPacked()); 299 } else if (ConstantUnion *UserCU = dyn_cast<ConstantUnion>(UserC)) { 300 NewC = ConstantUnion::get(UserCU->getType(), NewOps[0]); 301 } else if (isa<ConstantVector>(UserC)) { 302 NewC = ConstantVector::get(&NewOps[0], NewOps.size()); 303 } else { 304 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 305 NewC = cast<ConstantExpr>(UserC)->getWithOperands(&NewOps[0], 306 NewOps.size()); 307 } 308 309 UserC->replaceAllUsesWith(NewC); 310 UserC->destroyConstant(); 311 NewOps.clear(); 312 } 313 314 // Update all ValueHandles, they should be the only users at this point. 315 Placeholder->replaceAllUsesWith(RealVal); 316 delete Placeholder; 317 } 318 } 319 320 void BitcodeReaderMDValueList::AssignValue(Value *V, unsigned Idx) { 321 if (Idx == size()) { 322 push_back(V); 323 return; 324 } 325 326 if (Idx >= size()) 327 resize(Idx+1); 328 329 WeakVH &OldV = MDValuePtrs[Idx]; 330 if (OldV == 0) { 331 OldV = V; 332 return; 333 } 334 335 // If there was a forward reference to this value, replace it. 336 Value *PrevVal = OldV; 337 OldV->replaceAllUsesWith(V); 338 delete PrevVal; 339 // Deleting PrevVal sets Idx value in MDValuePtrs to null. Set new 340 // value for Idx. 341 MDValuePtrs[Idx] = V; 342 } 343 344 Value *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) { 345 if (Idx >= size()) 346 resize(Idx + 1); 347 348 if (Value *V = MDValuePtrs[Idx]) { 349 assert(V->getType()->isMetadataTy() && "Type mismatch in value table!"); 350 return V; 351 } 352 353 // Create and return a placeholder, which will later be RAUW'd. 354 Value *V = new Argument(Type::getMetadataTy(Context)); 355 MDValuePtrs[Idx] = V; 356 return V; 357 } 358 359 const Type *BitcodeReader::getTypeByID(unsigned ID, bool isTypeTable) { 360 // If the TypeID is in range, return it. 361 if (ID < TypeList.size()) 362 return TypeList[ID].get(); 363 if (!isTypeTable) return 0; 364 365 // The type table allows forward references. Push as many Opaque types as 366 // needed to get up to ID. 367 while (TypeList.size() <= ID) 368 TypeList.push_back(OpaqueType::get(Context)); 369 return TypeList.back().get(); 370 } 371 372 //===----------------------------------------------------------------------===// 373 // Functions for parsing blocks from the bitcode file 374 //===----------------------------------------------------------------------===// 375 376 bool BitcodeReader::ParseAttributeBlock() { 377 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 378 return Error("Malformed block record"); 379 380 if (!MAttributes.empty()) 381 return Error("Multiple PARAMATTR blocks found!"); 382 383 SmallVector<uint64_t, 64> Record; 384 385 SmallVector<AttributeWithIndex, 8> Attrs; 386 387 // Read all the records. 388 while (1) { 389 unsigned Code = Stream.ReadCode(); 390 if (Code == bitc::END_BLOCK) { 391 if (Stream.ReadBlockEnd()) 392 return Error("Error at end of PARAMATTR block"); 393 return false; 394 } 395 396 if (Code == bitc::ENTER_SUBBLOCK) { 397 // No known subblocks, always skip them. 398 Stream.ReadSubBlockID(); 399 if (Stream.SkipBlock()) 400 return Error("Malformed block record"); 401 continue; 402 } 403 404 if (Code == bitc::DEFINE_ABBREV) { 405 Stream.ReadAbbrevRecord(); 406 continue; 407 } 408 409 // Read a record. 410 Record.clear(); 411 switch (Stream.ReadRecord(Code, Record)) { 412 default: // Default behavior: ignore. 413 break; 414 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [paramidx0, attr0, ...] 415 if (Record.size() & 1) 416 return Error("Invalid ENTRY record"); 417 418 // FIXME : Remove this autoupgrade code in LLVM 3.0. 419 // If Function attributes are using index 0 then transfer them 420 // to index ~0. Index 0 is used for return value attributes but used to be 421 // used for function attributes. 422 Attributes RetAttribute = Attribute::None; 423 Attributes FnAttribute = Attribute::None; 424 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 425 // FIXME: remove in LLVM 3.0 426 // The alignment is stored as a 16-bit raw value from bits 31--16. 427 // We shift the bits above 31 down by 11 bits. 428 429 unsigned Alignment = (Record[i+1] & (0xffffull << 16)) >> 16; 430 if (Alignment && !isPowerOf2_32(Alignment)) 431 return Error("Alignment is not a power of two."); 432 433 Attributes ReconstitutedAttr = Record[i+1] & 0xffff; 434 if (Alignment) 435 ReconstitutedAttr |= Attribute::constructAlignmentFromInt(Alignment); 436 ReconstitutedAttr |= (Record[i+1] & (0xffffull << 32)) >> 11; 437 Record[i+1] = ReconstitutedAttr; 438 439 if (Record[i] == 0) 440 RetAttribute = Record[i+1]; 441 else if (Record[i] == ~0U) 442 FnAttribute = Record[i+1]; 443 } 444 445 unsigned OldRetAttrs = (Attribute::NoUnwind|Attribute::NoReturn| 446 Attribute::ReadOnly|Attribute::ReadNone); 447 448 if (FnAttribute == Attribute::None && RetAttribute != Attribute::None && 449 (RetAttribute & OldRetAttrs) != 0) { 450 if (FnAttribute == Attribute::None) { // add a slot so they get added. 451 Record.push_back(~0U); 452 Record.push_back(0); 453 } 454 455 FnAttribute |= RetAttribute & OldRetAttrs; 456 RetAttribute &= ~OldRetAttrs; 457 } 458 459 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 460 if (Record[i] == 0) { 461 if (RetAttribute != Attribute::None) 462 Attrs.push_back(AttributeWithIndex::get(0, RetAttribute)); 463 } else if (Record[i] == ~0U) { 464 if (FnAttribute != Attribute::None) 465 Attrs.push_back(AttributeWithIndex::get(~0U, FnAttribute)); 466 } else if (Record[i+1] != Attribute::None) 467 Attrs.push_back(AttributeWithIndex::get(Record[i], Record[i+1])); 468 } 469 470 MAttributes.push_back(AttrListPtr::get(Attrs.begin(), Attrs.end())); 471 Attrs.clear(); 472 break; 473 } 474 } 475 } 476 } 477 478 479 bool BitcodeReader::ParseTypeTable() { 480 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID)) 481 return Error("Malformed block record"); 482 483 if (!TypeList.empty()) 484 return Error("Multiple TYPE_BLOCKs found!"); 485 486 SmallVector<uint64_t, 64> Record; 487 unsigned NumRecords = 0; 488 489 // Read all the records for this type table. 490 while (1) { 491 unsigned Code = Stream.ReadCode(); 492 if (Code == bitc::END_BLOCK) { 493 if (NumRecords != TypeList.size()) 494 return Error("Invalid type forward reference in TYPE_BLOCK"); 495 if (Stream.ReadBlockEnd()) 496 return Error("Error at end of type table block"); 497 return false; 498 } 499 500 if (Code == bitc::ENTER_SUBBLOCK) { 501 // No known subblocks, always skip them. 502 Stream.ReadSubBlockID(); 503 if (Stream.SkipBlock()) 504 return Error("Malformed block record"); 505 continue; 506 } 507 508 if (Code == bitc::DEFINE_ABBREV) { 509 Stream.ReadAbbrevRecord(); 510 continue; 511 } 512 513 // Read a record. 514 Record.clear(); 515 const Type *ResultTy = 0; 516 switch (Stream.ReadRecord(Code, Record)) { 517 default: // Default behavior: unknown type. 518 ResultTy = 0; 519 break; 520 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 521 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 522 // type list. This allows us to reserve space. 523 if (Record.size() < 1) 524 return Error("Invalid TYPE_CODE_NUMENTRY record"); 525 TypeList.reserve(Record[0]); 526 continue; 527 case bitc::TYPE_CODE_VOID: // VOID 528 ResultTy = Type::getVoidTy(Context); 529 break; 530 case bitc::TYPE_CODE_FLOAT: // FLOAT 531 ResultTy = Type::getFloatTy(Context); 532 break; 533 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 534 ResultTy = Type::getDoubleTy(Context); 535 break; 536 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 537 ResultTy = Type::getX86_FP80Ty(Context); 538 break; 539 case bitc::TYPE_CODE_FP128: // FP128 540 ResultTy = Type::getFP128Ty(Context); 541 break; 542 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 543 ResultTy = Type::getPPC_FP128Ty(Context); 544 break; 545 case bitc::TYPE_CODE_LABEL: // LABEL 546 ResultTy = Type::getLabelTy(Context); 547 break; 548 case bitc::TYPE_CODE_OPAQUE: // OPAQUE 549 ResultTy = 0; 550 break; 551 case bitc::TYPE_CODE_METADATA: // METADATA 552 ResultTy = Type::getMetadataTy(Context); 553 break; 554 case bitc::TYPE_CODE_INTEGER: // INTEGER: [width] 555 if (Record.size() < 1) 556 return Error("Invalid Integer type record"); 557 558 ResultTy = IntegerType::get(Context, Record[0]); 559 break; 560 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 561 // [pointee type, address space] 562 if (Record.size() < 1) 563 return Error("Invalid POINTER type record"); 564 unsigned AddressSpace = 0; 565 if (Record.size() == 2) 566 AddressSpace = Record[1]; 567 ResultTy = PointerType::get(getTypeByID(Record[0], true), 568 AddressSpace); 569 break; 570 } 571 case bitc::TYPE_CODE_FUNCTION: { 572 // FIXME: attrid is dead, remove it in LLVM 3.0 573 // FUNCTION: [vararg, attrid, retty, paramty x N] 574 if (Record.size() < 3) 575 return Error("Invalid FUNCTION type record"); 576 std::vector<const Type*> ArgTys; 577 for (unsigned i = 3, e = Record.size(); i != e; ++i) 578 ArgTys.push_back(getTypeByID(Record[i], true)); 579 580 ResultTy = FunctionType::get(getTypeByID(Record[2], true), ArgTys, 581 Record[0]); 582 break; 583 } 584 case bitc::TYPE_CODE_STRUCT: { // STRUCT: [ispacked, eltty x N] 585 if (Record.size() < 1) 586 return Error("Invalid STRUCT type record"); 587 std::vector<const Type*> EltTys; 588 for (unsigned i = 1, e = Record.size(); i != e; ++i) 589 EltTys.push_back(getTypeByID(Record[i], true)); 590 ResultTy = StructType::get(Context, EltTys, Record[0]); 591 break; 592 } 593 case bitc::TYPE_CODE_UNION: { // UNION: [eltty x N] 594 SmallVector<const Type*, 8> EltTys; 595 for (unsigned i = 0, e = Record.size(); i != e; ++i) 596 EltTys.push_back(getTypeByID(Record[i], true)); 597 ResultTy = UnionType::get(&EltTys[0], EltTys.size()); 598 break; 599 } 600 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 601 if (Record.size() < 2) 602 return Error("Invalid ARRAY type record"); 603 ResultTy = ArrayType::get(getTypeByID(Record[1], true), Record[0]); 604 break; 605 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 606 if (Record.size() < 2) 607 return Error("Invalid VECTOR type record"); 608 ResultTy = VectorType::get(getTypeByID(Record[1], true), Record[0]); 609 break; 610 } 611 612 if (NumRecords == TypeList.size()) { 613 // If this is a new type slot, just append it. 614 TypeList.push_back(ResultTy ? ResultTy : OpaqueType::get(Context)); 615 ++NumRecords; 616 } else if (ResultTy == 0) { 617 // Otherwise, this was forward referenced, so an opaque type was created, 618 // but the result type is actually just an opaque. Leave the one we 619 // created previously. 620 ++NumRecords; 621 } else { 622 // Otherwise, this was forward referenced, so an opaque type was created. 623 // Resolve the opaque type to the real type now. 624 assert(NumRecords < TypeList.size() && "Typelist imbalance"); 625 const OpaqueType *OldTy = cast<OpaqueType>(TypeList[NumRecords++].get()); 626 627 // Don't directly push the new type on the Tab. Instead we want to replace 628 // the opaque type we previously inserted with the new concrete value. The 629 // refinement from the abstract (opaque) type to the new type causes all 630 // uses of the abstract type to use the concrete type (NewTy). This will 631 // also cause the opaque type to be deleted. 632 const_cast<OpaqueType*>(OldTy)->refineAbstractTypeTo(ResultTy); 633 634 // This should have replaced the old opaque type with the new type in the 635 // value table... or with a preexisting type that was already in the 636 // system. Let's just make sure it did. 637 assert(TypeList[NumRecords-1].get() != OldTy && 638 "refineAbstractType didn't work!"); 639 } 640 } 641 } 642 643 644 bool BitcodeReader::ParseTypeSymbolTable() { 645 if (Stream.EnterSubBlock(bitc::TYPE_SYMTAB_BLOCK_ID)) 646 return Error("Malformed block record"); 647 648 SmallVector<uint64_t, 64> Record; 649 650 // Read all the records for this type table. 651 std::string TypeName; 652 while (1) { 653 unsigned Code = Stream.ReadCode(); 654 if (Code == bitc::END_BLOCK) { 655 if (Stream.ReadBlockEnd()) 656 return Error("Error at end of type symbol table block"); 657 return false; 658 } 659 660 if (Code == bitc::ENTER_SUBBLOCK) { 661 // No known subblocks, always skip them. 662 Stream.ReadSubBlockID(); 663 if (Stream.SkipBlock()) 664 return Error("Malformed block record"); 665 continue; 666 } 667 668 if (Code == bitc::DEFINE_ABBREV) { 669 Stream.ReadAbbrevRecord(); 670 continue; 671 } 672 673 // Read a record. 674 Record.clear(); 675 switch (Stream.ReadRecord(Code, Record)) { 676 default: // Default behavior: unknown type. 677 break; 678 case bitc::TST_CODE_ENTRY: // TST_ENTRY: [typeid, namechar x N] 679 if (ConvertToString(Record, 1, TypeName)) 680 return Error("Invalid TST_ENTRY record"); 681 unsigned TypeID = Record[0]; 682 if (TypeID >= TypeList.size()) 683 return Error("Invalid Type ID in TST_ENTRY record"); 684 685 TheModule->addTypeName(TypeName, TypeList[TypeID].get()); 686 TypeName.clear(); 687 break; 688 } 689 } 690 } 691 692 bool BitcodeReader::ParseValueSymbolTable() { 693 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 694 return Error("Malformed block record"); 695 696 SmallVector<uint64_t, 64> Record; 697 698 // Read all the records for this value table. 699 SmallString<128> ValueName; 700 while (1) { 701 unsigned Code = Stream.ReadCode(); 702 if (Code == bitc::END_BLOCK) { 703 if (Stream.ReadBlockEnd()) 704 return Error("Error at end of value symbol table block"); 705 return false; 706 } 707 if (Code == bitc::ENTER_SUBBLOCK) { 708 // No known subblocks, always skip them. 709 Stream.ReadSubBlockID(); 710 if (Stream.SkipBlock()) 711 return Error("Malformed block record"); 712 continue; 713 } 714 715 if (Code == bitc::DEFINE_ABBREV) { 716 Stream.ReadAbbrevRecord(); 717 continue; 718 } 719 720 // Read a record. 721 Record.clear(); 722 switch (Stream.ReadRecord(Code, Record)) { 723 default: // Default behavior: unknown type. 724 break; 725 case bitc::VST_CODE_ENTRY: { // VST_ENTRY: [valueid, namechar x N] 726 if (ConvertToString(Record, 1, ValueName)) 727 return Error("Invalid VST_ENTRY record"); 728 unsigned ValueID = Record[0]; 729 if (ValueID >= ValueList.size()) 730 return Error("Invalid Value ID in VST_ENTRY record"); 731 Value *V = ValueList[ValueID]; 732 733 V->setName(StringRef(ValueName.data(), ValueName.size())); 734 ValueName.clear(); 735 break; 736 } 737 case bitc::VST_CODE_BBENTRY: { 738 if (ConvertToString(Record, 1, ValueName)) 739 return Error("Invalid VST_BBENTRY record"); 740 BasicBlock *BB = getBasicBlock(Record[0]); 741 if (BB == 0) 742 return Error("Invalid BB ID in VST_BBENTRY record"); 743 744 BB->setName(StringRef(ValueName.data(), ValueName.size())); 745 ValueName.clear(); 746 break; 747 } 748 } 749 } 750 } 751 752 bool BitcodeReader::ParseMetadata() { 753 unsigned NextMDValueNo = MDValueList.size(); 754 755 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) 756 return Error("Malformed block record"); 757 758 SmallVector<uint64_t, 64> Record; 759 760 // Read all the records. 761 while (1) { 762 unsigned Code = Stream.ReadCode(); 763 if (Code == bitc::END_BLOCK) { 764 if (Stream.ReadBlockEnd()) 765 return Error("Error at end of PARAMATTR block"); 766 return false; 767 } 768 769 if (Code == bitc::ENTER_SUBBLOCK) { 770 // No known subblocks, always skip them. 771 Stream.ReadSubBlockID(); 772 if (Stream.SkipBlock()) 773 return Error("Malformed block record"); 774 continue; 775 } 776 777 if (Code == bitc::DEFINE_ABBREV) { 778 Stream.ReadAbbrevRecord(); 779 continue; 780 } 781 782 bool IsFunctionLocal = false; 783 // Read a record. 784 Record.clear(); 785 switch (Stream.ReadRecord(Code, Record)) { 786 default: // Default behavior: ignore. 787 break; 788 case bitc::METADATA_NAME: { 789 // Read named of the named metadata. 790 unsigned NameLength = Record.size(); 791 SmallString<8> Name; 792 Name.resize(NameLength); 793 for (unsigned i = 0; i != NameLength; ++i) 794 Name[i] = Record[i]; 795 Record.clear(); 796 Code = Stream.ReadCode(); 797 798 // METADATA_NAME is always followed by METADATA_NAMED_NODE. 799 if (Stream.ReadRecord(Code, Record) != bitc::METADATA_NAMED_NODE) 800 assert ( 0 && "Inavlid Named Metadata record"); 801 802 // Read named metadata elements. 803 unsigned Size = Record.size(); 804 SmallVector<MDNode *, 8> Elts; 805 for (unsigned i = 0; i != Size; ++i) { 806 MDNode *MD = dyn_cast<MDNode>(MDValueList.getValueFwdRef(Record[i])); 807 if (MD == 0) 808 return Error("Malformed metadata record"); 809 Elts.push_back(MD); 810 } 811 Value *V = NamedMDNode::Create(Context, Name.str(), Elts.data(), 812 Elts.size(), TheModule); 813 MDValueList.AssignValue(V, NextMDValueNo++); 814 break; 815 } 816 case bitc::METADATA_FN_NODE: 817 IsFunctionLocal = true; 818 // fall-through 819 case bitc::METADATA_NODE: { 820 if (Record.size() % 2 == 1) 821 return Error("Invalid METADATA_NODE record"); 822 823 unsigned Size = Record.size(); 824 SmallVector<Value*, 8> Elts; 825 for (unsigned i = 0; i != Size; i += 2) { 826 const Type *Ty = getTypeByID(Record[i], false); 827 if (Ty->isMetadataTy()) 828 Elts.push_back(MDValueList.getValueFwdRef(Record[i+1])); 829 else if (!Ty->isVoidTy()) 830 Elts.push_back(ValueList.getValueFwdRef(Record[i+1], Ty)); 831 else 832 Elts.push_back(NULL); 833 } 834 Value *V = MDNode::getWhenValsUnresolved(Context, 835 Elts.data(), Elts.size(), 836 IsFunctionLocal); 837 IsFunctionLocal = false; 838 MDValueList.AssignValue(V, NextMDValueNo++); 839 break; 840 } 841 case bitc::METADATA_STRING: { 842 unsigned MDStringLength = Record.size(); 843 SmallString<8> String; 844 String.resize(MDStringLength); 845 for (unsigned i = 0; i != MDStringLength; ++i) 846 String[i] = Record[i]; 847 Value *V = MDString::get(Context, 848 StringRef(String.data(), String.size())); 849 MDValueList.AssignValue(V, NextMDValueNo++); 850 break; 851 } 852 case bitc::METADATA_KIND: { 853 unsigned RecordLength = Record.size(); 854 if (Record.empty() || RecordLength < 2) 855 return Error("Invalid METADATA_KIND record"); 856 SmallString<8> Name; 857 Name.resize(RecordLength-1); 858 unsigned Kind = Record[0]; 859 for (unsigned i = 1; i != RecordLength; ++i) 860 Name[i-1] = Record[i]; 861 862 unsigned NewKind = TheModule->getMDKindID(Name.str()); 863 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second) 864 return Error("Conflicting METADATA_KIND records"); 865 break; 866 } 867 } 868 } 869 } 870 871 /// DecodeSignRotatedValue - Decode a signed value stored with the sign bit in 872 /// the LSB for dense VBR encoding. 873 static uint64_t DecodeSignRotatedValue(uint64_t V) { 874 if ((V & 1) == 0) 875 return V >> 1; 876 if (V != 1) 877 return -(V >> 1); 878 // There is no such thing as -0 with integers. "-0" really means MININT. 879 return 1ULL << 63; 880 } 881 882 /// ResolveGlobalAndAliasInits - Resolve all of the initializers for global 883 /// values and aliases that we can. 884 bool BitcodeReader::ResolveGlobalAndAliasInits() { 885 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 886 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist; 887 888 GlobalInitWorklist.swap(GlobalInits); 889 AliasInitWorklist.swap(AliasInits); 890 891 while (!GlobalInitWorklist.empty()) { 892 unsigned ValID = GlobalInitWorklist.back().second; 893 if (ValID >= ValueList.size()) { 894 // Not ready to resolve this yet, it requires something later in the file. 895 GlobalInits.push_back(GlobalInitWorklist.back()); 896 } else { 897 if (Constant *C = dyn_cast<Constant>(ValueList[ValID])) 898 GlobalInitWorklist.back().first->setInitializer(C); 899 else 900 return Error("Global variable initializer is not a constant!"); 901 } 902 GlobalInitWorklist.pop_back(); 903 } 904 905 while (!AliasInitWorklist.empty()) { 906 unsigned ValID = AliasInitWorklist.back().second; 907 if (ValID >= ValueList.size()) { 908 AliasInits.push_back(AliasInitWorklist.back()); 909 } else { 910 if (Constant *C = dyn_cast<Constant>(ValueList[ValID])) 911 AliasInitWorklist.back().first->setAliasee(C); 912 else 913 return Error("Alias initializer is not a constant!"); 914 } 915 AliasInitWorklist.pop_back(); 916 } 917 return false; 918 } 919 920 bool BitcodeReader::ParseConstants() { 921 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 922 return Error("Malformed block record"); 923 924 SmallVector<uint64_t, 64> Record; 925 926 // Read all the records for this value table. 927 const Type *CurTy = Type::getInt32Ty(Context); 928 unsigned NextCstNo = ValueList.size(); 929 while (1) { 930 unsigned Code = Stream.ReadCode(); 931 if (Code == bitc::END_BLOCK) 932 break; 933 934 if (Code == bitc::ENTER_SUBBLOCK) { 935 // No known subblocks, always skip them. 936 Stream.ReadSubBlockID(); 937 if (Stream.SkipBlock()) 938 return Error("Malformed block record"); 939 continue; 940 } 941 942 if (Code == bitc::DEFINE_ABBREV) { 943 Stream.ReadAbbrevRecord(); 944 continue; 945 } 946 947 // Read a record. 948 Record.clear(); 949 Value *V = 0; 950 unsigned BitCode = Stream.ReadRecord(Code, Record); 951 switch (BitCode) { 952 default: // Default behavior: unknown constant 953 case bitc::CST_CODE_UNDEF: // UNDEF 954 V = UndefValue::get(CurTy); 955 break; 956 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 957 if (Record.empty()) 958 return Error("Malformed CST_SETTYPE record"); 959 if (Record[0] >= TypeList.size()) 960 return Error("Invalid Type ID in CST_SETTYPE record"); 961 CurTy = TypeList[Record[0]]; 962 continue; // Skip the ValueList manipulation. 963 case bitc::CST_CODE_NULL: // NULL 964 V = Constant::getNullValue(CurTy); 965 break; 966 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 967 if (!CurTy->isIntegerTy() || Record.empty()) 968 return Error("Invalid CST_INTEGER record"); 969 V = ConstantInt::get(CurTy, DecodeSignRotatedValue(Record[0])); 970 break; 971 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 972 if (!CurTy->isIntegerTy() || Record.empty()) 973 return Error("Invalid WIDE_INTEGER record"); 974 975 unsigned NumWords = Record.size(); 976 SmallVector<uint64_t, 8> Words; 977 Words.resize(NumWords); 978 for (unsigned i = 0; i != NumWords; ++i) 979 Words[i] = DecodeSignRotatedValue(Record[i]); 980 V = ConstantInt::get(Context, 981 APInt(cast<IntegerType>(CurTy)->getBitWidth(), 982 NumWords, &Words[0])); 983 break; 984 } 985 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 986 if (Record.empty()) 987 return Error("Invalid FLOAT record"); 988 if (CurTy->isFloatTy()) 989 V = ConstantFP::get(Context, APFloat(APInt(32, (uint32_t)Record[0]))); 990 else if (CurTy->isDoubleTy()) 991 V = ConstantFP::get(Context, APFloat(APInt(64, Record[0]))); 992 else if (CurTy->isX86_FP80Ty()) { 993 // Bits are not stored the same way as a normal i80 APInt, compensate. 994 uint64_t Rearrange[2]; 995 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 996 Rearrange[1] = Record[0] >> 48; 997 V = ConstantFP::get(Context, APFloat(APInt(80, 2, Rearrange))); 998 } else if (CurTy->isFP128Ty()) 999 V = ConstantFP::get(Context, APFloat(APInt(128, 2, &Record[0]), true)); 1000 else if (CurTy->isPPC_FP128Ty()) 1001 V = ConstantFP::get(Context, APFloat(APInt(128, 2, &Record[0]))); 1002 else 1003 V = UndefValue::get(CurTy); 1004 break; 1005 } 1006 1007 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 1008 if (Record.empty()) 1009 return Error("Invalid CST_AGGREGATE record"); 1010 1011 unsigned Size = Record.size(); 1012 std::vector<Constant*> Elts; 1013 1014 if (const StructType *STy = dyn_cast<StructType>(CurTy)) { 1015 for (unsigned i = 0; i != Size; ++i) 1016 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 1017 STy->getElementType(i))); 1018 V = ConstantStruct::get(STy, Elts); 1019 } else if (const UnionType *UnTy = dyn_cast<UnionType>(CurTy)) { 1020 uint64_t Index = Record[0]; 1021 Constant *Val = ValueList.getConstantFwdRef(Record[1], 1022 UnTy->getElementType(Index)); 1023 V = ConstantUnion::get(UnTy, Val); 1024 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 1025 const Type *EltTy = ATy->getElementType(); 1026 for (unsigned i = 0; i != Size; ++i) 1027 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 1028 V = ConstantArray::get(ATy, Elts); 1029 } else if (const VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 1030 const Type *EltTy = VTy->getElementType(); 1031 for (unsigned i = 0; i != Size; ++i) 1032 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 1033 V = ConstantVector::get(Elts); 1034 } else { 1035 V = UndefValue::get(CurTy); 1036 } 1037 break; 1038 } 1039 case bitc::CST_CODE_STRING: { // STRING: [values] 1040 if (Record.empty()) 1041 return Error("Invalid CST_AGGREGATE record"); 1042 1043 const ArrayType *ATy = cast<ArrayType>(CurTy); 1044 const Type *EltTy = ATy->getElementType(); 1045 1046 unsigned Size = Record.size(); 1047 std::vector<Constant*> Elts; 1048 for (unsigned i = 0; i != Size; ++i) 1049 Elts.push_back(ConstantInt::get(EltTy, Record[i])); 1050 V = ConstantArray::get(ATy, Elts); 1051 break; 1052 } 1053 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 1054 if (Record.empty()) 1055 return Error("Invalid CST_AGGREGATE record"); 1056 1057 const ArrayType *ATy = cast<ArrayType>(CurTy); 1058 const Type *EltTy = ATy->getElementType(); 1059 1060 unsigned Size = Record.size(); 1061 std::vector<Constant*> Elts; 1062 for (unsigned i = 0; i != Size; ++i) 1063 Elts.push_back(ConstantInt::get(EltTy, Record[i])); 1064 Elts.push_back(Constant::getNullValue(EltTy)); 1065 V = ConstantArray::get(ATy, Elts); 1066 break; 1067 } 1068 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 1069 if (Record.size() < 3) return Error("Invalid CE_BINOP record"); 1070 int Opc = GetDecodedBinaryOpcode(Record[0], CurTy); 1071 if (Opc < 0) { 1072 V = UndefValue::get(CurTy); // Unknown binop. 1073 } else { 1074 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 1075 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 1076 unsigned Flags = 0; 1077 if (Record.size() >= 4) { 1078 if (Opc == Instruction::Add || 1079 Opc == Instruction::Sub || 1080 Opc == Instruction::Mul) { 1081 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 1082 Flags |= OverflowingBinaryOperator::NoSignedWrap; 1083 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 1084 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 1085 } else if (Opc == Instruction::SDiv) { 1086 if (Record[3] & (1 << bitc::SDIV_EXACT)) 1087 Flags |= SDivOperator::IsExact; 1088 } 1089 } 1090 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 1091 } 1092 break; 1093 } 1094 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 1095 if (Record.size() < 3) return Error("Invalid CE_CAST record"); 1096 int Opc = GetDecodedCastOpcode(Record[0]); 1097 if (Opc < 0) { 1098 V = UndefValue::get(CurTy); // Unknown cast. 1099 } else { 1100 const Type *OpTy = getTypeByID(Record[1]); 1101 if (!OpTy) return Error("Invalid CE_CAST record"); 1102 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 1103 V = ConstantExpr::getCast(Opc, Op, CurTy); 1104 } 1105 break; 1106 } 1107 case bitc::CST_CODE_CE_INBOUNDS_GEP: 1108 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 1109 if (Record.size() & 1) return Error("Invalid CE_GEP record"); 1110 SmallVector<Constant*, 16> Elts; 1111 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1112 const Type *ElTy = getTypeByID(Record[i]); 1113 if (!ElTy) return Error("Invalid CE_GEP record"); 1114 Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy)); 1115 } 1116 if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 1117 V = ConstantExpr::getInBoundsGetElementPtr(Elts[0], &Elts[1], 1118 Elts.size()-1); 1119 else 1120 V = ConstantExpr::getGetElementPtr(Elts[0], &Elts[1], 1121 Elts.size()-1); 1122 break; 1123 } 1124 case bitc::CST_CODE_CE_SELECT: // CE_SELECT: [opval#, opval#, opval#] 1125 if (Record.size() < 3) return Error("Invalid CE_SELECT record"); 1126 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 1127 Type::getInt1Ty(Context)), 1128 ValueList.getConstantFwdRef(Record[1],CurTy), 1129 ValueList.getConstantFwdRef(Record[2],CurTy)); 1130 break; 1131 case bitc::CST_CODE_CE_EXTRACTELT: { // CE_EXTRACTELT: [opty, opval, opval] 1132 if (Record.size() < 3) return Error("Invalid CE_EXTRACTELT record"); 1133 const VectorType *OpTy = 1134 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 1135 if (OpTy == 0) return Error("Invalid CE_EXTRACTELT record"); 1136 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1137 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 1138 V = ConstantExpr::getExtractElement(Op0, Op1); 1139 break; 1140 } 1141 case bitc::CST_CODE_CE_INSERTELT: { // CE_INSERTELT: [opval, opval, opval] 1142 const VectorType *OpTy = dyn_cast<VectorType>(CurTy); 1143 if (Record.size() < 3 || OpTy == 0) 1144 return Error("Invalid CE_INSERTELT record"); 1145 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 1146 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 1147 OpTy->getElementType()); 1148 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 1149 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 1150 break; 1151 } 1152 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 1153 const VectorType *OpTy = dyn_cast<VectorType>(CurTy); 1154 if (Record.size() < 3 || OpTy == 0) 1155 return Error("Invalid CE_SHUFFLEVEC record"); 1156 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 1157 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 1158 const Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 1159 OpTy->getNumElements()); 1160 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 1161 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 1162 break; 1163 } 1164 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 1165 const VectorType *RTy = dyn_cast<VectorType>(CurTy); 1166 const VectorType *OpTy = dyn_cast<VectorType>(getTypeByID(Record[0])); 1167 if (Record.size() < 4 || RTy == 0 || OpTy == 0) 1168 return Error("Invalid CE_SHUFVEC_EX record"); 1169 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1170 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 1171 const Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 1172 RTy->getNumElements()); 1173 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 1174 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 1175 break; 1176 } 1177 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 1178 if (Record.size() < 4) return Error("Invalid CE_CMP record"); 1179 const Type *OpTy = getTypeByID(Record[0]); 1180 if (OpTy == 0) return Error("Invalid CE_CMP record"); 1181 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1182 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 1183 1184 if (OpTy->isFPOrFPVectorTy()) 1185 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 1186 else 1187 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 1188 break; 1189 } 1190 case bitc::CST_CODE_INLINEASM: { 1191 if (Record.size() < 2) return Error("Invalid INLINEASM record"); 1192 std::string AsmStr, ConstrStr; 1193 bool HasSideEffects = Record[0] & 1; 1194 bool IsAlignStack = Record[0] >> 1; 1195 unsigned AsmStrSize = Record[1]; 1196 if (2+AsmStrSize >= Record.size()) 1197 return Error("Invalid INLINEASM record"); 1198 unsigned ConstStrSize = Record[2+AsmStrSize]; 1199 if (3+AsmStrSize+ConstStrSize > Record.size()) 1200 return Error("Invalid INLINEASM record"); 1201 1202 for (unsigned i = 0; i != AsmStrSize; ++i) 1203 AsmStr += (char)Record[2+i]; 1204 for (unsigned i = 0; i != ConstStrSize; ++i) 1205 ConstrStr += (char)Record[3+AsmStrSize+i]; 1206 const PointerType *PTy = cast<PointerType>(CurTy); 1207 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 1208 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 1209 break; 1210 } 1211 case bitc::CST_CODE_BLOCKADDRESS:{ 1212 if (Record.size() < 3) return Error("Invalid CE_BLOCKADDRESS record"); 1213 const Type *FnTy = getTypeByID(Record[0]); 1214 if (FnTy == 0) return Error("Invalid CE_BLOCKADDRESS record"); 1215 Function *Fn = 1216 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 1217 if (Fn == 0) return Error("Invalid CE_BLOCKADDRESS record"); 1218 1219 GlobalVariable *FwdRef = new GlobalVariable(*Fn->getParent(), 1220 Type::getInt8Ty(Context), 1221 false, GlobalValue::InternalLinkage, 1222 0, ""); 1223 BlockAddrFwdRefs[Fn].push_back(std::make_pair(Record[2], FwdRef)); 1224 V = FwdRef; 1225 break; 1226 } 1227 } 1228 1229 ValueList.AssignValue(V, NextCstNo); 1230 ++NextCstNo; 1231 } 1232 1233 if (NextCstNo != ValueList.size()) 1234 return Error("Invalid constant reference!"); 1235 1236 if (Stream.ReadBlockEnd()) 1237 return Error("Error at end of constants block"); 1238 1239 // Once all the constants have been read, go through and resolve forward 1240 // references. 1241 ValueList.ResolveConstantForwardRefs(); 1242 return false; 1243 } 1244 1245 /// RememberAndSkipFunctionBody - When we see the block for a function body, 1246 /// remember where it is and then skip it. This lets us lazily deserialize the 1247 /// functions. 1248 bool BitcodeReader::RememberAndSkipFunctionBody() { 1249 // Get the function we are talking about. 1250 if (FunctionsWithBodies.empty()) 1251 return Error("Insufficient function protos"); 1252 1253 Function *Fn = FunctionsWithBodies.back(); 1254 FunctionsWithBodies.pop_back(); 1255 1256 // Save the current stream state. 1257 uint64_t CurBit = Stream.GetCurrentBitNo(); 1258 DeferredFunctionInfo[Fn] = CurBit; 1259 1260 // Skip over the function block for now. 1261 if (Stream.SkipBlock()) 1262 return Error("Malformed block record"); 1263 return false; 1264 } 1265 1266 bool BitcodeReader::ParseModule() { 1267 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 1268 return Error("Malformed block record"); 1269 1270 SmallVector<uint64_t, 64> Record; 1271 std::vector<std::string> SectionTable; 1272 std::vector<std::string> GCTable; 1273 1274 // Read all the records for this module. 1275 while (!Stream.AtEndOfStream()) { 1276 unsigned Code = Stream.ReadCode(); 1277 if (Code == bitc::END_BLOCK) { 1278 if (Stream.ReadBlockEnd()) 1279 return Error("Error at end of module block"); 1280 1281 // Patch the initializers for globals and aliases up. 1282 ResolveGlobalAndAliasInits(); 1283 if (!GlobalInits.empty() || !AliasInits.empty()) 1284 return Error("Malformed global initializer set"); 1285 if (!FunctionsWithBodies.empty()) 1286 return Error("Too few function bodies found"); 1287 1288 // Look for intrinsic functions which need to be upgraded at some point 1289 for (Module::iterator FI = TheModule->begin(), FE = TheModule->end(); 1290 FI != FE; ++FI) { 1291 Function* NewFn; 1292 if (UpgradeIntrinsicFunction(FI, NewFn)) 1293 UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn)); 1294 } 1295 1296 // Force deallocation of memory for these vectors to favor the client that 1297 // want lazy deserialization. 1298 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 1299 std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits); 1300 std::vector<Function*>().swap(FunctionsWithBodies); 1301 return false; 1302 } 1303 1304 if (Code == bitc::ENTER_SUBBLOCK) { 1305 switch (Stream.ReadSubBlockID()) { 1306 default: // Skip unknown content. 1307 if (Stream.SkipBlock()) 1308 return Error("Malformed block record"); 1309 break; 1310 case bitc::BLOCKINFO_BLOCK_ID: 1311 if (Stream.ReadBlockInfoBlock()) 1312 return Error("Malformed BlockInfoBlock"); 1313 break; 1314 case bitc::PARAMATTR_BLOCK_ID: 1315 if (ParseAttributeBlock()) 1316 return true; 1317 break; 1318 case bitc::TYPE_BLOCK_ID: 1319 if (ParseTypeTable()) 1320 return true; 1321 break; 1322 case bitc::TYPE_SYMTAB_BLOCK_ID: 1323 if (ParseTypeSymbolTable()) 1324 return true; 1325 break; 1326 case bitc::VALUE_SYMTAB_BLOCK_ID: 1327 if (ParseValueSymbolTable()) 1328 return true; 1329 break; 1330 case bitc::CONSTANTS_BLOCK_ID: 1331 if (ParseConstants() || ResolveGlobalAndAliasInits()) 1332 return true; 1333 break; 1334 case bitc::METADATA_BLOCK_ID: 1335 if (ParseMetadata()) 1336 return true; 1337 break; 1338 case bitc::FUNCTION_BLOCK_ID: 1339 // If this is the first function body we've seen, reverse the 1340 // FunctionsWithBodies list. 1341 if (!HasReversedFunctionsWithBodies) { 1342 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 1343 HasReversedFunctionsWithBodies = true; 1344 } 1345 1346 if (RememberAndSkipFunctionBody()) 1347 return true; 1348 break; 1349 } 1350 continue; 1351 } 1352 1353 if (Code == bitc::DEFINE_ABBREV) { 1354 Stream.ReadAbbrevRecord(); 1355 continue; 1356 } 1357 1358 // Read a record. 1359 switch (Stream.ReadRecord(Code, Record)) { 1360 default: break; // Default behavior, ignore unknown content. 1361 case bitc::MODULE_CODE_VERSION: // VERSION: [version#] 1362 if (Record.size() < 1) 1363 return Error("Malformed MODULE_CODE_VERSION"); 1364 // Only version #0 is supported so far. 1365 if (Record[0] != 0) 1366 return Error("Unknown bitstream version!"); 1367 break; 1368 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 1369 std::string S; 1370 if (ConvertToString(Record, 0, S)) 1371 return Error("Invalid MODULE_CODE_TRIPLE record"); 1372 TheModule->setTargetTriple(S); 1373 break; 1374 } 1375 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 1376 std::string S; 1377 if (ConvertToString(Record, 0, S)) 1378 return Error("Invalid MODULE_CODE_DATALAYOUT record"); 1379 TheModule->setDataLayout(S); 1380 break; 1381 } 1382 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 1383 std::string S; 1384 if (ConvertToString(Record, 0, S)) 1385 return Error("Invalid MODULE_CODE_ASM record"); 1386 TheModule->setModuleInlineAsm(S); 1387 break; 1388 } 1389 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 1390 std::string S; 1391 if (ConvertToString(Record, 0, S)) 1392 return Error("Invalid MODULE_CODE_DEPLIB record"); 1393 TheModule->addLibrary(S); 1394 break; 1395 } 1396 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 1397 std::string S; 1398 if (ConvertToString(Record, 0, S)) 1399 return Error("Invalid MODULE_CODE_SECTIONNAME record"); 1400 SectionTable.push_back(S); 1401 break; 1402 } 1403 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 1404 std::string S; 1405 if (ConvertToString(Record, 0, S)) 1406 return Error("Invalid MODULE_CODE_GCNAME record"); 1407 GCTable.push_back(S); 1408 break; 1409 } 1410 // GLOBALVAR: [pointer type, isconst, initid, 1411 // linkage, alignment, section, visibility, threadlocal] 1412 case bitc::MODULE_CODE_GLOBALVAR: { 1413 if (Record.size() < 6) 1414 return Error("Invalid MODULE_CODE_GLOBALVAR record"); 1415 const Type *Ty = getTypeByID(Record[0]); 1416 if (!Ty->isPointerTy()) 1417 return Error("Global not a pointer type!"); 1418 unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 1419 Ty = cast<PointerType>(Ty)->getElementType(); 1420 1421 bool isConstant = Record[1]; 1422 GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]); 1423 unsigned Alignment = (1 << Record[4]) >> 1; 1424 std::string Section; 1425 if (Record[5]) { 1426 if (Record[5]-1 >= SectionTable.size()) 1427 return Error("Invalid section ID"); 1428 Section = SectionTable[Record[5]-1]; 1429 } 1430 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 1431 if (Record.size() > 6) 1432 Visibility = GetDecodedVisibility(Record[6]); 1433 bool isThreadLocal = false; 1434 if (Record.size() > 7) 1435 isThreadLocal = Record[7]; 1436 1437 GlobalVariable *NewGV = 1438 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, 0, "", 0, 1439 isThreadLocal, AddressSpace); 1440 NewGV->setAlignment(Alignment); 1441 if (!Section.empty()) 1442 NewGV->setSection(Section); 1443 NewGV->setVisibility(Visibility); 1444 NewGV->setThreadLocal(isThreadLocal); 1445 1446 ValueList.push_back(NewGV); 1447 1448 // Remember which value to use for the global initializer. 1449 if (unsigned InitID = Record[2]) 1450 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 1451 break; 1452 } 1453 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 1454 // alignment, section, visibility, gc] 1455 case bitc::MODULE_CODE_FUNCTION: { 1456 if (Record.size() < 8) 1457 return Error("Invalid MODULE_CODE_FUNCTION record"); 1458 const Type *Ty = getTypeByID(Record[0]); 1459 if (!Ty->isPointerTy()) 1460 return Error("Function not a pointer type!"); 1461 const FunctionType *FTy = 1462 dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType()); 1463 if (!FTy) 1464 return Error("Function not a pointer to function type!"); 1465 1466 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 1467 "", TheModule); 1468 1469 Func->setCallingConv(static_cast<CallingConv::ID>(Record[1])); 1470 bool isProto = Record[2]; 1471 Func->setLinkage(GetDecodedLinkage(Record[3])); 1472 Func->setAttributes(getAttributes(Record[4])); 1473 1474 Func->setAlignment((1 << Record[5]) >> 1); 1475 if (Record[6]) { 1476 if (Record[6]-1 >= SectionTable.size()) 1477 return Error("Invalid section ID"); 1478 Func->setSection(SectionTable[Record[6]-1]); 1479 } 1480 Func->setVisibility(GetDecodedVisibility(Record[7])); 1481 if (Record.size() > 8 && Record[8]) { 1482 if (Record[8]-1 > GCTable.size()) 1483 return Error("Invalid GC ID"); 1484 Func->setGC(GCTable[Record[8]-1].c_str()); 1485 } 1486 ValueList.push_back(Func); 1487 1488 // If this is a function with a body, remember the prototype we are 1489 // creating now, so that we can match up the body with them later. 1490 if (!isProto) 1491 FunctionsWithBodies.push_back(Func); 1492 break; 1493 } 1494 // ALIAS: [alias type, aliasee val#, linkage] 1495 // ALIAS: [alias type, aliasee val#, linkage, visibility] 1496 case bitc::MODULE_CODE_ALIAS: { 1497 if (Record.size() < 3) 1498 return Error("Invalid MODULE_ALIAS record"); 1499 const Type *Ty = getTypeByID(Record[0]); 1500 if (!Ty->isPointerTy()) 1501 return Error("Function not a pointer type!"); 1502 1503 GlobalAlias *NewGA = new GlobalAlias(Ty, GetDecodedLinkage(Record[2]), 1504 "", 0, TheModule); 1505 // Old bitcode files didn't have visibility field. 1506 if (Record.size() > 3) 1507 NewGA->setVisibility(GetDecodedVisibility(Record[3])); 1508 ValueList.push_back(NewGA); 1509 AliasInits.push_back(std::make_pair(NewGA, Record[1])); 1510 break; 1511 } 1512 /// MODULE_CODE_PURGEVALS: [numvals] 1513 case bitc::MODULE_CODE_PURGEVALS: 1514 // Trim down the value list to the specified size. 1515 if (Record.size() < 1 || Record[0] > ValueList.size()) 1516 return Error("Invalid MODULE_PURGEVALS record"); 1517 ValueList.shrinkTo(Record[0]); 1518 break; 1519 } 1520 Record.clear(); 1521 } 1522 1523 return Error("Premature end of bitstream"); 1524 } 1525 1526 bool BitcodeReader::ParseBitcodeInto(Module *M) { 1527 TheModule = 0; 1528 1529 unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart(); 1530 unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 1531 1532 if (Buffer->getBufferSize() & 3) { 1533 if (!isRawBitcode(BufPtr, BufEnd) && !isBitcodeWrapper(BufPtr, BufEnd)) 1534 return Error("Invalid bitcode signature"); 1535 else 1536 return Error("Bitcode stream should be a multiple of 4 bytes in length"); 1537 } 1538 1539 // If we have a wrapper header, parse it and ignore the non-bc file contents. 1540 // The magic number is 0x0B17C0DE stored in little endian. 1541 if (isBitcodeWrapper(BufPtr, BufEnd)) 1542 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd)) 1543 return Error("Invalid bitcode wrapper header"); 1544 1545 StreamFile.init(BufPtr, BufEnd); 1546 Stream.init(StreamFile); 1547 1548 // Sniff for the signature. 1549 if (Stream.Read(8) != 'B' || 1550 Stream.Read(8) != 'C' || 1551 Stream.Read(4) != 0x0 || 1552 Stream.Read(4) != 0xC || 1553 Stream.Read(4) != 0xE || 1554 Stream.Read(4) != 0xD) 1555 return Error("Invalid bitcode signature"); 1556 1557 // We expect a number of well-defined blocks, though we don't necessarily 1558 // need to understand them all. 1559 while (!Stream.AtEndOfStream()) { 1560 unsigned Code = Stream.ReadCode(); 1561 1562 if (Code != bitc::ENTER_SUBBLOCK) 1563 return Error("Invalid record at top-level"); 1564 1565 unsigned BlockID = Stream.ReadSubBlockID(); 1566 1567 // We only know the MODULE subblock ID. 1568 switch (BlockID) { 1569 case bitc::BLOCKINFO_BLOCK_ID: 1570 if (Stream.ReadBlockInfoBlock()) 1571 return Error("Malformed BlockInfoBlock"); 1572 break; 1573 case bitc::MODULE_BLOCK_ID: 1574 // Reject multiple MODULE_BLOCK's in a single bitstream. 1575 if (TheModule) 1576 return Error("Multiple MODULE_BLOCKs in same stream"); 1577 TheModule = M; 1578 if (ParseModule()) 1579 return true; 1580 break; 1581 default: 1582 if (Stream.SkipBlock()) 1583 return Error("Malformed block record"); 1584 break; 1585 } 1586 } 1587 1588 return false; 1589 } 1590 1591 /// ParseMetadataAttachment - Parse metadata attachments. 1592 bool BitcodeReader::ParseMetadataAttachment() { 1593 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) 1594 return Error("Malformed block record"); 1595 1596 SmallVector<uint64_t, 64> Record; 1597 while(1) { 1598 unsigned Code = Stream.ReadCode(); 1599 if (Code == bitc::END_BLOCK) { 1600 if (Stream.ReadBlockEnd()) 1601 return Error("Error at end of PARAMATTR block"); 1602 break; 1603 } 1604 if (Code == bitc::DEFINE_ABBREV) { 1605 Stream.ReadAbbrevRecord(); 1606 continue; 1607 } 1608 // Read a metadata attachment record. 1609 Record.clear(); 1610 switch (Stream.ReadRecord(Code, Record)) { 1611 default: // Default behavior: ignore. 1612 break; 1613 case bitc::METADATA_ATTACHMENT: { 1614 unsigned RecordLength = Record.size(); 1615 if (Record.empty() || (RecordLength - 1) % 2 == 1) 1616 return Error ("Invalid METADATA_ATTACHMENT reader!"); 1617 Instruction *Inst = InstructionList[Record[0]]; 1618 for (unsigned i = 1; i != RecordLength; i = i+2) { 1619 unsigned Kind = Record[i]; 1620 DenseMap<unsigned, unsigned>::iterator I = 1621 MDKindMap.find(Kind); 1622 if (I == MDKindMap.end()) 1623 return Error("Invalid metadata kind ID"); 1624 Value *Node = MDValueList.getValueFwdRef(Record[i+1]); 1625 Inst->setMetadata(I->second, cast<MDNode>(Node)); 1626 } 1627 break; 1628 } 1629 } 1630 } 1631 return false; 1632 } 1633 1634 /// ParseFunctionBody - Lazily parse the specified function body block. 1635 bool BitcodeReader::ParseFunctionBody(Function *F) { 1636 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 1637 return Error("Malformed block record"); 1638 1639 InstructionList.clear(); 1640 unsigned ModuleValueListSize = ValueList.size(); 1641 1642 // Add all the function arguments to the value table. 1643 for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) 1644 ValueList.push_back(I); 1645 1646 unsigned NextValueNo = ValueList.size(); 1647 BasicBlock *CurBB = 0; 1648 unsigned CurBBNo = 0; 1649 1650 DebugLoc LastLoc; 1651 1652 // Read all the records. 1653 SmallVector<uint64_t, 64> Record; 1654 while (1) { 1655 unsigned Code = Stream.ReadCode(); 1656 if (Code == bitc::END_BLOCK) { 1657 if (Stream.ReadBlockEnd()) 1658 return Error("Error at end of function block"); 1659 break; 1660 } 1661 1662 if (Code == bitc::ENTER_SUBBLOCK) { 1663 switch (Stream.ReadSubBlockID()) { 1664 default: // Skip unknown content. 1665 if (Stream.SkipBlock()) 1666 return Error("Malformed block record"); 1667 break; 1668 case bitc::CONSTANTS_BLOCK_ID: 1669 if (ParseConstants()) return true; 1670 NextValueNo = ValueList.size(); 1671 break; 1672 case bitc::VALUE_SYMTAB_BLOCK_ID: 1673 if (ParseValueSymbolTable()) return true; 1674 break; 1675 case bitc::METADATA_ATTACHMENT_ID: 1676 if (ParseMetadataAttachment()) return true; 1677 break; 1678 case bitc::METADATA_BLOCK_ID: 1679 if (ParseMetadata()) return true; 1680 break; 1681 } 1682 continue; 1683 } 1684 1685 if (Code == bitc::DEFINE_ABBREV) { 1686 Stream.ReadAbbrevRecord(); 1687 continue; 1688 } 1689 1690 // Read a record. 1691 Record.clear(); 1692 Instruction *I = 0; 1693 unsigned BitCode = Stream.ReadRecord(Code, Record); 1694 switch (BitCode) { 1695 default: // Default behavior: reject 1696 return Error("Unknown instruction"); 1697 case bitc::FUNC_CODE_DECLAREBLOCKS: // DECLAREBLOCKS: [nblocks] 1698 if (Record.size() < 1 || Record[0] == 0) 1699 return Error("Invalid DECLAREBLOCKS record"); 1700 // Create all the basic blocks for the function. 1701 FunctionBBs.resize(Record[0]); 1702 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 1703 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 1704 CurBB = FunctionBBs[0]; 1705 continue; 1706 1707 1708 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 1709 // This record indicates that the last instruction is at the same 1710 // location as the previous instruction with a location. 1711 I = 0; 1712 1713 // Get the last instruction emitted. 1714 if (CurBB && !CurBB->empty()) 1715 I = &CurBB->back(); 1716 else if (CurBBNo && FunctionBBs[CurBBNo-1] && 1717 !FunctionBBs[CurBBNo-1]->empty()) 1718 I = &FunctionBBs[CurBBNo-1]->back(); 1719 1720 if (I == 0) return Error("Invalid DEBUG_LOC_AGAIN record"); 1721 I->setDebugLoc(LastLoc); 1722 I = 0; 1723 continue; 1724 1725 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 1726 I = 0; // Get the last instruction emitted. 1727 if (CurBB && !CurBB->empty()) 1728 I = &CurBB->back(); 1729 else if (CurBBNo && FunctionBBs[CurBBNo-1] && 1730 !FunctionBBs[CurBBNo-1]->empty()) 1731 I = &FunctionBBs[CurBBNo-1]->back(); 1732 if (I == 0 || Record.size() < 4) 1733 return Error("Invalid FUNC_CODE_DEBUG_LOC record"); 1734 1735 unsigned Line = Record[0], Col = Record[1]; 1736 unsigned ScopeID = Record[2], IAID = Record[3]; 1737 1738 MDNode *Scope = 0, *IA = 0; 1739 if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1)); 1740 if (IAID) IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1)); 1741 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 1742 I->setDebugLoc(LastLoc); 1743 I = 0; 1744 continue; 1745 } 1746 1747 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 1748 unsigned OpNum = 0; 1749 Value *LHS, *RHS; 1750 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 1751 getValue(Record, OpNum, LHS->getType(), RHS) || 1752 OpNum+1 > Record.size()) 1753 return Error("Invalid BINOP record"); 1754 1755 int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 1756 if (Opc == -1) return Error("Invalid BINOP record"); 1757 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 1758 InstructionList.push_back(I); 1759 if (OpNum < Record.size()) { 1760 if (Opc == Instruction::Add || 1761 Opc == Instruction::Sub || 1762 Opc == Instruction::Mul) { 1763 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 1764 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 1765 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 1766 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 1767 } else if (Opc == Instruction::SDiv) { 1768 if (Record[OpNum] & (1 << bitc::SDIV_EXACT)) 1769 cast<BinaryOperator>(I)->setIsExact(true); 1770 } 1771 } 1772 break; 1773 } 1774 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 1775 unsigned OpNum = 0; 1776 Value *Op; 1777 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 1778 OpNum+2 != Record.size()) 1779 return Error("Invalid CAST record"); 1780 1781 const Type *ResTy = getTypeByID(Record[OpNum]); 1782 int Opc = GetDecodedCastOpcode(Record[OpNum+1]); 1783 if (Opc == -1 || ResTy == 0) 1784 return Error("Invalid CAST record"); 1785 I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy); 1786 InstructionList.push_back(I); 1787 break; 1788 } 1789 case bitc::FUNC_CODE_INST_INBOUNDS_GEP: 1790 case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands] 1791 unsigned OpNum = 0; 1792 Value *BasePtr; 1793 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 1794 return Error("Invalid GEP record"); 1795 1796 SmallVector<Value*, 16> GEPIdx; 1797 while (OpNum != Record.size()) { 1798 Value *Op; 1799 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 1800 return Error("Invalid GEP record"); 1801 GEPIdx.push_back(Op); 1802 } 1803 1804 I = GetElementPtrInst::Create(BasePtr, GEPIdx.begin(), GEPIdx.end()); 1805 InstructionList.push_back(I); 1806 if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP) 1807 cast<GetElementPtrInst>(I)->setIsInBounds(true); 1808 break; 1809 } 1810 1811 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 1812 // EXTRACTVAL: [opty, opval, n x indices] 1813 unsigned OpNum = 0; 1814 Value *Agg; 1815 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 1816 return Error("Invalid EXTRACTVAL record"); 1817 1818 SmallVector<unsigned, 4> EXTRACTVALIdx; 1819 for (unsigned RecSize = Record.size(); 1820 OpNum != RecSize; ++OpNum) { 1821 uint64_t Index = Record[OpNum]; 1822 if ((unsigned)Index != Index) 1823 return Error("Invalid EXTRACTVAL index"); 1824 EXTRACTVALIdx.push_back((unsigned)Index); 1825 } 1826 1827 I = ExtractValueInst::Create(Agg, 1828 EXTRACTVALIdx.begin(), EXTRACTVALIdx.end()); 1829 InstructionList.push_back(I); 1830 break; 1831 } 1832 1833 case bitc::FUNC_CODE_INST_INSERTVAL: { 1834 // INSERTVAL: [opty, opval, opty, opval, n x indices] 1835 unsigned OpNum = 0; 1836 Value *Agg; 1837 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 1838 return Error("Invalid INSERTVAL record"); 1839 Value *Val; 1840 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 1841 return Error("Invalid INSERTVAL record"); 1842 1843 SmallVector<unsigned, 4> INSERTVALIdx; 1844 for (unsigned RecSize = Record.size(); 1845 OpNum != RecSize; ++OpNum) { 1846 uint64_t Index = Record[OpNum]; 1847 if ((unsigned)Index != Index) 1848 return Error("Invalid INSERTVAL index"); 1849 INSERTVALIdx.push_back((unsigned)Index); 1850 } 1851 1852 I = InsertValueInst::Create(Agg, Val, 1853 INSERTVALIdx.begin(), INSERTVALIdx.end()); 1854 InstructionList.push_back(I); 1855 break; 1856 } 1857 1858 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 1859 // obsolete form of select 1860 // handles select i1 ... in old bitcode 1861 unsigned OpNum = 0; 1862 Value *TrueVal, *FalseVal, *Cond; 1863 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 1864 getValue(Record, OpNum, TrueVal->getType(), FalseVal) || 1865 getValue(Record, OpNum, Type::getInt1Ty(Context), Cond)) 1866 return Error("Invalid SELECT record"); 1867 1868 I = SelectInst::Create(Cond, TrueVal, FalseVal); 1869 InstructionList.push_back(I); 1870 break; 1871 } 1872 1873 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 1874 // new form of select 1875 // handles select i1 or select [N x i1] 1876 unsigned OpNum = 0; 1877 Value *TrueVal, *FalseVal, *Cond; 1878 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 1879 getValue(Record, OpNum, TrueVal->getType(), FalseVal) || 1880 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 1881 return Error("Invalid SELECT record"); 1882 1883 // select condition can be either i1 or [N x i1] 1884 if (const VectorType* vector_type = 1885 dyn_cast<const VectorType>(Cond->getType())) { 1886 // expect <n x i1> 1887 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 1888 return Error("Invalid SELECT condition type"); 1889 } else { 1890 // expect i1 1891 if (Cond->getType() != Type::getInt1Ty(Context)) 1892 return Error("Invalid SELECT condition type"); 1893 } 1894 1895 I = SelectInst::Create(Cond, TrueVal, FalseVal); 1896 InstructionList.push_back(I); 1897 break; 1898 } 1899 1900 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 1901 unsigned OpNum = 0; 1902 Value *Vec, *Idx; 1903 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 1904 getValue(Record, OpNum, Type::getInt32Ty(Context), Idx)) 1905 return Error("Invalid EXTRACTELT record"); 1906 I = ExtractElementInst::Create(Vec, Idx); 1907 InstructionList.push_back(I); 1908 break; 1909 } 1910 1911 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 1912 unsigned OpNum = 0; 1913 Value *Vec, *Elt, *Idx; 1914 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 1915 getValue(Record, OpNum, 1916 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 1917 getValue(Record, OpNum, Type::getInt32Ty(Context), Idx)) 1918 return Error("Invalid INSERTELT record"); 1919 I = InsertElementInst::Create(Vec, Elt, Idx); 1920 InstructionList.push_back(I); 1921 break; 1922 } 1923 1924 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 1925 unsigned OpNum = 0; 1926 Value *Vec1, *Vec2, *Mask; 1927 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 1928 getValue(Record, OpNum, Vec1->getType(), Vec2)) 1929 return Error("Invalid SHUFFLEVEC record"); 1930 1931 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 1932 return Error("Invalid SHUFFLEVEC record"); 1933 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 1934 InstructionList.push_back(I); 1935 break; 1936 } 1937 1938 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 1939 // Old form of ICmp/FCmp returning bool 1940 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 1941 // both legal on vectors but had different behaviour. 1942 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 1943 // FCmp/ICmp returning bool or vector of bool 1944 1945 unsigned OpNum = 0; 1946 Value *LHS, *RHS; 1947 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 1948 getValue(Record, OpNum, LHS->getType(), RHS) || 1949 OpNum+1 != Record.size()) 1950 return Error("Invalid CMP record"); 1951 1952 if (LHS->getType()->isFPOrFPVectorTy()) 1953 I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS); 1954 else 1955 I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS); 1956 InstructionList.push_back(I); 1957 break; 1958 } 1959 1960 case bitc::FUNC_CODE_INST_GETRESULT: { // GETRESULT: [ty, val, n] 1961 if (Record.size() != 2) 1962 return Error("Invalid GETRESULT record"); 1963 unsigned OpNum = 0; 1964 Value *Op; 1965 getValueTypePair(Record, OpNum, NextValueNo, Op); 1966 unsigned Index = Record[1]; 1967 I = ExtractValueInst::Create(Op, Index); 1968 InstructionList.push_back(I); 1969 break; 1970 } 1971 1972 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 1973 { 1974 unsigned Size = Record.size(); 1975 if (Size == 0) { 1976 I = ReturnInst::Create(Context); 1977 InstructionList.push_back(I); 1978 break; 1979 } 1980 1981 unsigned OpNum = 0; 1982 SmallVector<Value *,4> Vs; 1983 do { 1984 Value *Op = NULL; 1985 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 1986 return Error("Invalid RET record"); 1987 Vs.push_back(Op); 1988 } while(OpNum != Record.size()); 1989 1990 const Type *ReturnType = F->getReturnType(); 1991 if (Vs.size() > 1 || 1992 (ReturnType->isStructTy() && 1993 (Vs.empty() || Vs[0]->getType() != ReturnType))) { 1994 Value *RV = UndefValue::get(ReturnType); 1995 for (unsigned i = 0, e = Vs.size(); i != e; ++i) { 1996 I = InsertValueInst::Create(RV, Vs[i], i, "mrv"); 1997 InstructionList.push_back(I); 1998 CurBB->getInstList().push_back(I); 1999 ValueList.AssignValue(I, NextValueNo++); 2000 RV = I; 2001 } 2002 I = ReturnInst::Create(Context, RV); 2003 InstructionList.push_back(I); 2004 break; 2005 } 2006 2007 I = ReturnInst::Create(Context, Vs[0]); 2008 InstructionList.push_back(I); 2009 break; 2010 } 2011 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 2012 if (Record.size() != 1 && Record.size() != 3) 2013 return Error("Invalid BR record"); 2014 BasicBlock *TrueDest = getBasicBlock(Record[0]); 2015 if (TrueDest == 0) 2016 return Error("Invalid BR record"); 2017 2018 if (Record.size() == 1) { 2019 I = BranchInst::Create(TrueDest); 2020 InstructionList.push_back(I); 2021 } 2022 else { 2023 BasicBlock *FalseDest = getBasicBlock(Record[1]); 2024 Value *Cond = getFnValueByID(Record[2], Type::getInt1Ty(Context)); 2025 if (FalseDest == 0 || Cond == 0) 2026 return Error("Invalid BR record"); 2027 I = BranchInst::Create(TrueDest, FalseDest, Cond); 2028 InstructionList.push_back(I); 2029 } 2030 break; 2031 } 2032 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 2033 if (Record.size() < 3 || (Record.size() & 1) == 0) 2034 return Error("Invalid SWITCH record"); 2035 const Type *OpTy = getTypeByID(Record[0]); 2036 Value *Cond = getFnValueByID(Record[1], OpTy); 2037 BasicBlock *Default = getBasicBlock(Record[2]); 2038 if (OpTy == 0 || Cond == 0 || Default == 0) 2039 return Error("Invalid SWITCH record"); 2040 unsigned NumCases = (Record.size()-3)/2; 2041 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 2042 InstructionList.push_back(SI); 2043 for (unsigned i = 0, e = NumCases; i != e; ++i) { 2044 ConstantInt *CaseVal = 2045 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 2046 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 2047 if (CaseVal == 0 || DestBB == 0) { 2048 delete SI; 2049 return Error("Invalid SWITCH record!"); 2050 } 2051 SI->addCase(CaseVal, DestBB); 2052 } 2053 I = SI; 2054 break; 2055 } 2056 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 2057 if (Record.size() < 2) 2058 return Error("Invalid INDIRECTBR record"); 2059 const Type *OpTy = getTypeByID(Record[0]); 2060 Value *Address = getFnValueByID(Record[1], OpTy); 2061 if (OpTy == 0 || Address == 0) 2062 return Error("Invalid INDIRECTBR record"); 2063 unsigned NumDests = Record.size()-2; 2064 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 2065 InstructionList.push_back(IBI); 2066 for (unsigned i = 0, e = NumDests; i != e; ++i) { 2067 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 2068 IBI->addDestination(DestBB); 2069 } else { 2070 delete IBI; 2071 return Error("Invalid INDIRECTBR record!"); 2072 } 2073 } 2074 I = IBI; 2075 break; 2076 } 2077 2078 case bitc::FUNC_CODE_INST_INVOKE: { 2079 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 2080 if (Record.size() < 4) return Error("Invalid INVOKE record"); 2081 AttrListPtr PAL = getAttributes(Record[0]); 2082 unsigned CCInfo = Record[1]; 2083 BasicBlock *NormalBB = getBasicBlock(Record[2]); 2084 BasicBlock *UnwindBB = getBasicBlock(Record[3]); 2085 2086 unsigned OpNum = 4; 2087 Value *Callee; 2088 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 2089 return Error("Invalid INVOKE record"); 2090 2091 const PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 2092 const FunctionType *FTy = !CalleeTy ? 0 : 2093 dyn_cast<FunctionType>(CalleeTy->getElementType()); 2094 2095 // Check that the right number of fixed parameters are here. 2096 if (FTy == 0 || NormalBB == 0 || UnwindBB == 0 || 2097 Record.size() < OpNum+FTy->getNumParams()) 2098 return Error("Invalid INVOKE record"); 2099 2100 SmallVector<Value*, 16> Ops; 2101 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 2102 Ops.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i))); 2103 if (Ops.back() == 0) return Error("Invalid INVOKE record"); 2104 } 2105 2106 if (!FTy->isVarArg()) { 2107 if (Record.size() != OpNum) 2108 return Error("Invalid INVOKE record"); 2109 } else { 2110 // Read type/value pairs for varargs params. 2111 while (OpNum != Record.size()) { 2112 Value *Op; 2113 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 2114 return Error("Invalid INVOKE record"); 2115 Ops.push_back(Op); 2116 } 2117 } 2118 2119 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, 2120 Ops.begin(), Ops.end()); 2121 InstructionList.push_back(I); 2122 cast<InvokeInst>(I)->setCallingConv( 2123 static_cast<CallingConv::ID>(CCInfo)); 2124 cast<InvokeInst>(I)->setAttributes(PAL); 2125 break; 2126 } 2127 case bitc::FUNC_CODE_INST_UNWIND: // UNWIND 2128 I = new UnwindInst(Context); 2129 InstructionList.push_back(I); 2130 break; 2131 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 2132 I = new UnreachableInst(Context); 2133 InstructionList.push_back(I); 2134 break; 2135 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 2136 if (Record.size() < 1 || ((Record.size()-1)&1)) 2137 return Error("Invalid PHI record"); 2138 const Type *Ty = getTypeByID(Record[0]); 2139 if (!Ty) return Error("Invalid PHI record"); 2140 2141 PHINode *PN = PHINode::Create(Ty); 2142 InstructionList.push_back(PN); 2143 PN->reserveOperandSpace((Record.size()-1)/2); 2144 2145 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 2146 Value *V = getFnValueByID(Record[1+i], Ty); 2147 BasicBlock *BB = getBasicBlock(Record[2+i]); 2148 if (!V || !BB) return Error("Invalid PHI record"); 2149 PN->addIncoming(V, BB); 2150 } 2151 I = PN; 2152 break; 2153 } 2154 2155 case bitc::FUNC_CODE_INST_MALLOC: { // MALLOC: [instty, op, align] 2156 // Autoupgrade malloc instruction to malloc call. 2157 // FIXME: Remove in LLVM 3.0. 2158 if (Record.size() < 3) 2159 return Error("Invalid MALLOC record"); 2160 const PointerType *Ty = 2161 dyn_cast_or_null<PointerType>(getTypeByID(Record[0])); 2162 Value *Size = getFnValueByID(Record[1], Type::getInt32Ty(Context)); 2163 if (!Ty || !Size) return Error("Invalid MALLOC record"); 2164 if (!CurBB) return Error("Invalid malloc instruction with no BB"); 2165 const Type *Int32Ty = IntegerType::getInt32Ty(CurBB->getContext()); 2166 Constant *AllocSize = ConstantExpr::getSizeOf(Ty->getElementType()); 2167 AllocSize = ConstantExpr::getTruncOrBitCast(AllocSize, Int32Ty); 2168 I = CallInst::CreateMalloc(CurBB, Int32Ty, Ty->getElementType(), 2169 AllocSize, Size, NULL); 2170 InstructionList.push_back(I); 2171 break; 2172 } 2173 case bitc::FUNC_CODE_INST_FREE: { // FREE: [op, opty] 2174 unsigned OpNum = 0; 2175 Value *Op; 2176 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 2177 OpNum != Record.size()) 2178 return Error("Invalid FREE record"); 2179 if (!CurBB) return Error("Invalid free instruction with no BB"); 2180 I = CallInst::CreateFree(Op, CurBB); 2181 InstructionList.push_back(I); 2182 break; 2183 } 2184 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 2185 // For backward compatibility, tolerate a lack of an opty, and use i32. 2186 // LLVM 3.0: Remove this. 2187 if (Record.size() < 3 || Record.size() > 4) 2188 return Error("Invalid ALLOCA record"); 2189 unsigned OpNum = 0; 2190 const PointerType *Ty = 2191 dyn_cast_or_null<PointerType>(getTypeByID(Record[OpNum++])); 2192 const Type *OpTy = Record.size() == 4 ? getTypeByID(Record[OpNum++]) : 2193 Type::getInt32Ty(Context); 2194 Value *Size = getFnValueByID(Record[OpNum++], OpTy); 2195 unsigned Align = Record[OpNum++]; 2196 if (!Ty || !Size) return Error("Invalid ALLOCA record"); 2197 I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1); 2198 InstructionList.push_back(I); 2199 break; 2200 } 2201 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 2202 unsigned OpNum = 0; 2203 Value *Op; 2204 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 2205 OpNum+2 != Record.size()) 2206 return Error("Invalid LOAD record"); 2207 2208 I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1); 2209 InstructionList.push_back(I); 2210 break; 2211 } 2212 case bitc::FUNC_CODE_INST_STORE2: { // STORE2:[ptrty, ptr, val, align, vol] 2213 unsigned OpNum = 0; 2214 Value *Val, *Ptr; 2215 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 2216 getValue(Record, OpNum, 2217 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 2218 OpNum+2 != Record.size()) 2219 return Error("Invalid STORE record"); 2220 2221 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1); 2222 InstructionList.push_back(I); 2223 break; 2224 } 2225 case bitc::FUNC_CODE_INST_STORE: { // STORE:[val, valty, ptr, align, vol] 2226 // FIXME: Legacy form of store instruction. Should be removed in LLVM 3.0. 2227 unsigned OpNum = 0; 2228 Value *Val, *Ptr; 2229 if (getValueTypePair(Record, OpNum, NextValueNo, Val) || 2230 getValue(Record, OpNum, 2231 PointerType::getUnqual(Val->getType()), Ptr)|| 2232 OpNum+2 != Record.size()) 2233 return Error("Invalid STORE record"); 2234 2235 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1); 2236 InstructionList.push_back(I); 2237 break; 2238 } 2239 case bitc::FUNC_CODE_INST_CALL: { 2240 // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...] 2241 if (Record.size() < 3) 2242 return Error("Invalid CALL record"); 2243 2244 AttrListPtr PAL = getAttributes(Record[0]); 2245 unsigned CCInfo = Record[1]; 2246 2247 unsigned OpNum = 2; 2248 Value *Callee; 2249 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 2250 return Error("Invalid CALL record"); 2251 2252 const PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 2253 const FunctionType *FTy = 0; 2254 if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 2255 if (!FTy || Record.size() < FTy->getNumParams()+OpNum) 2256 return Error("Invalid CALL record"); 2257 2258 SmallVector<Value*, 16> Args; 2259 // Read the fixed params. 2260 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 2261 if (FTy->getParamType(i)->getTypeID()==Type::LabelTyID) 2262 Args.push_back(getBasicBlock(Record[OpNum])); 2263 else 2264 Args.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i))); 2265 if (Args.back() == 0) return Error("Invalid CALL record"); 2266 } 2267 2268 // Read type/value pairs for varargs params. 2269 if (!FTy->isVarArg()) { 2270 if (OpNum != Record.size()) 2271 return Error("Invalid CALL record"); 2272 } else { 2273 while (OpNum != Record.size()) { 2274 Value *Op; 2275 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 2276 return Error("Invalid CALL record"); 2277 Args.push_back(Op); 2278 } 2279 } 2280 2281 I = CallInst::Create(Callee, Args.begin(), Args.end()); 2282 InstructionList.push_back(I); 2283 cast<CallInst>(I)->setCallingConv( 2284 static_cast<CallingConv::ID>(CCInfo>>1)); 2285 cast<CallInst>(I)->setTailCall(CCInfo & 1); 2286 cast<CallInst>(I)->setAttributes(PAL); 2287 break; 2288 } 2289 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 2290 if (Record.size() < 3) 2291 return Error("Invalid VAARG record"); 2292 const Type *OpTy = getTypeByID(Record[0]); 2293 Value *Op = getFnValueByID(Record[1], OpTy); 2294 const Type *ResTy = getTypeByID(Record[2]); 2295 if (!OpTy || !Op || !ResTy) 2296 return Error("Invalid VAARG record"); 2297 I = new VAArgInst(Op, ResTy); 2298 InstructionList.push_back(I); 2299 break; 2300 } 2301 } 2302 2303 // Add instruction to end of current BB. If there is no current BB, reject 2304 // this file. 2305 if (CurBB == 0) { 2306 delete I; 2307 return Error("Invalid instruction with no BB"); 2308 } 2309 CurBB->getInstList().push_back(I); 2310 2311 // If this was a terminator instruction, move to the next block. 2312 if (isa<TerminatorInst>(I)) { 2313 ++CurBBNo; 2314 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : 0; 2315 } 2316 2317 // Non-void values get registered in the value table for future use. 2318 if (I && !I->getType()->isVoidTy()) 2319 ValueList.AssignValue(I, NextValueNo++); 2320 } 2321 2322 // Check the function list for unresolved values. 2323 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 2324 if (A->getParent() == 0) { 2325 // We found at least one unresolved value. Nuke them all to avoid leaks. 2326 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 2327 if ((A = dyn_cast<Argument>(ValueList.back())) && A->getParent() == 0) { 2328 A->replaceAllUsesWith(UndefValue::get(A->getType())); 2329 delete A; 2330 } 2331 } 2332 return Error("Never resolved value found in function!"); 2333 } 2334 } 2335 2336 // See if anything took the address of blocks in this function. If so, 2337 // resolve them now. 2338 DenseMap<Function*, std::vector<BlockAddrRefTy> >::iterator BAFRI = 2339 BlockAddrFwdRefs.find(F); 2340 if (BAFRI != BlockAddrFwdRefs.end()) { 2341 std::vector<BlockAddrRefTy> &RefList = BAFRI->second; 2342 for (unsigned i = 0, e = RefList.size(); i != e; ++i) { 2343 unsigned BlockIdx = RefList[i].first; 2344 if (BlockIdx >= FunctionBBs.size()) 2345 return Error("Invalid blockaddress block #"); 2346 2347 GlobalVariable *FwdRef = RefList[i].second; 2348 FwdRef->replaceAllUsesWith(BlockAddress::get(F, FunctionBBs[BlockIdx])); 2349 FwdRef->eraseFromParent(); 2350 } 2351 2352 BlockAddrFwdRefs.erase(BAFRI); 2353 } 2354 2355 // Trim the value list down to the size it was before we parsed this function. 2356 ValueList.shrinkTo(ModuleValueListSize); 2357 std::vector<BasicBlock*>().swap(FunctionBBs); 2358 2359 return false; 2360 } 2361 2362 //===----------------------------------------------------------------------===// 2363 // GVMaterializer implementation 2364 //===----------------------------------------------------------------------===// 2365 2366 2367 bool BitcodeReader::isMaterializable(const GlobalValue *GV) const { 2368 if (const Function *F = dyn_cast<Function>(GV)) { 2369 return F->isDeclaration() && 2370 DeferredFunctionInfo.count(const_cast<Function*>(F)); 2371 } 2372 return false; 2373 } 2374 2375 bool BitcodeReader::Materialize(GlobalValue *GV, std::string *ErrInfo) { 2376 Function *F = dyn_cast<Function>(GV); 2377 // If it's not a function or is already material, ignore the request. 2378 if (!F || !F->isMaterializable()) return false; 2379 2380 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 2381 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 2382 2383 // Move the bit stream to the saved position of the deferred function body. 2384 Stream.JumpToBit(DFII->second); 2385 2386 if (ParseFunctionBody(F)) { 2387 if (ErrInfo) *ErrInfo = ErrorString; 2388 return true; 2389 } 2390 2391 // Upgrade any old intrinsic calls in the function. 2392 for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(), 2393 E = UpgradedIntrinsics.end(); I != E; ++I) { 2394 if (I->first != I->second) { 2395 for (Value::use_iterator UI = I->first->use_begin(), 2396 UE = I->first->use_end(); UI != UE; ) { 2397 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 2398 UpgradeIntrinsicCall(CI, I->second); 2399 } 2400 } 2401 } 2402 2403 return false; 2404 } 2405 2406 bool BitcodeReader::isDematerializable(const GlobalValue *GV) const { 2407 const Function *F = dyn_cast<Function>(GV); 2408 if (!F || F->isDeclaration()) 2409 return false; 2410 return DeferredFunctionInfo.count(const_cast<Function*>(F)); 2411 } 2412 2413 void BitcodeReader::Dematerialize(GlobalValue *GV) { 2414 Function *F = dyn_cast<Function>(GV); 2415 // If this function isn't dematerializable, this is a noop. 2416 if (!F || !isDematerializable(F)) 2417 return; 2418 2419 assert(DeferredFunctionInfo.count(F) && "No info to read function later?"); 2420 2421 // Just forget the function body, we can remat it later. 2422 F->deleteBody(); 2423 } 2424 2425 2426 bool BitcodeReader::MaterializeModule(Module *M, std::string *ErrInfo) { 2427 assert(M == TheModule && 2428 "Can only Materialize the Module this BitcodeReader is attached to."); 2429 // Iterate over the module, deserializing any functions that are still on 2430 // disk. 2431 for (Module::iterator F = TheModule->begin(), E = TheModule->end(); 2432 F != E; ++F) 2433 if (F->isMaterializable() && 2434 Materialize(F, ErrInfo)) 2435 return true; 2436 2437 // Upgrade any intrinsic calls that slipped through (should not happen!) and 2438 // delete the old functions to clean up. We can't do this unless the entire 2439 // module is materialized because there could always be another function body 2440 // with calls to the old function. 2441 for (std::vector<std::pair<Function*, Function*> >::iterator I = 2442 UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) { 2443 if (I->first != I->second) { 2444 for (Value::use_iterator UI = I->first->use_begin(), 2445 UE = I->first->use_end(); UI != UE; ) { 2446 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 2447 UpgradeIntrinsicCall(CI, I->second); 2448 } 2449 if (!I->first->use_empty()) 2450 I->first->replaceAllUsesWith(I->second); 2451 I->first->eraseFromParent(); 2452 } 2453 } 2454 std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics); 2455 2456 // Check debug info intrinsics. 2457 CheckDebugInfoIntrinsics(TheModule); 2458 2459 return false; 2460 } 2461 2462 2463 //===----------------------------------------------------------------------===// 2464 // External interface 2465 //===----------------------------------------------------------------------===// 2466 2467 /// getLazyBitcodeModule - lazy function-at-a-time loading from a file. 2468 /// 2469 Module *llvm::getLazyBitcodeModule(MemoryBuffer *Buffer, 2470 LLVMContext& Context, 2471 std::string *ErrMsg) { 2472 Module *M = new Module(Buffer->getBufferIdentifier(), Context); 2473 BitcodeReader *R = new BitcodeReader(Buffer, Context); 2474 M->setMaterializer(R); 2475 if (R->ParseBitcodeInto(M)) { 2476 if (ErrMsg) 2477 *ErrMsg = R->getErrorString(); 2478 2479 delete M; // Also deletes R. 2480 return 0; 2481 } 2482 // Have the BitcodeReader dtor delete 'Buffer'. 2483 R->setBufferOwned(true); 2484 return M; 2485 } 2486 2487 /// ParseBitcodeFile - Read the specified bitcode file, returning the module. 2488 /// If an error occurs, return null and fill in *ErrMsg if non-null. 2489 Module *llvm::ParseBitcodeFile(MemoryBuffer *Buffer, LLVMContext& Context, 2490 std::string *ErrMsg){ 2491 Module *M = getLazyBitcodeModule(Buffer, Context, ErrMsg); 2492 if (!M) return 0; 2493 2494 // Don't let the BitcodeReader dtor delete 'Buffer', regardless of whether 2495 // there was an error. 2496 static_cast<BitcodeReader*>(M->getMaterializer())->setBufferOwned(false); 2497 2498 // Read in the entire module, and destroy the BitcodeReader. 2499 if (M->MaterializeAllPermanently(ErrMsg)) { 2500 delete M; 2501 return NULL; 2502 } 2503 return M; 2504 } 2505