xref: /llvm-project/llvm/lib/Bitcode/Reader/BitcodeReader.cpp (revision 091217be6f0fcf3e49def2a3f90e4b75881b764d)
1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This header defines the BitcodeReader class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Bitcode/ReaderWriter.h"
15 #include "BitcodeReader.h"
16 #include "llvm/Constants.h"
17 #include "llvm/DerivedTypes.h"
18 #include "llvm/InlineAsm.h"
19 #include "llvm/IntrinsicInst.h"
20 #include "llvm/Module.h"
21 #include "llvm/Operator.h"
22 #include "llvm/AutoUpgrade.h"
23 #include "llvm/ADT/SmallString.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/Support/MathExtras.h"
26 #include "llvm/Support/MemoryBuffer.h"
27 #include "llvm/OperandTraits.h"
28 using namespace llvm;
29 
30 void BitcodeReader::FreeState() {
31   if (BufferOwned)
32     delete Buffer;
33   Buffer = 0;
34   std::vector<PATypeHolder>().swap(TypeList);
35   ValueList.clear();
36   MDValueList.clear();
37 
38   std::vector<AttrListPtr>().swap(MAttributes);
39   std::vector<BasicBlock*>().swap(FunctionBBs);
40   std::vector<Function*>().swap(FunctionsWithBodies);
41   DeferredFunctionInfo.clear();
42 }
43 
44 //===----------------------------------------------------------------------===//
45 //  Helper functions to implement forward reference resolution, etc.
46 //===----------------------------------------------------------------------===//
47 
48 /// ConvertToString - Convert a string from a record into an std::string, return
49 /// true on failure.
50 template<typename StrTy>
51 static bool ConvertToString(SmallVector<uint64_t, 64> &Record, unsigned Idx,
52                             StrTy &Result) {
53   if (Idx > Record.size())
54     return true;
55 
56   for (unsigned i = Idx, e = Record.size(); i != e; ++i)
57     Result += (char)Record[i];
58   return false;
59 }
60 
61 static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) {
62   switch (Val) {
63   default: // Map unknown/new linkages to external
64   case 0:  return GlobalValue::ExternalLinkage;
65   case 1:  return GlobalValue::WeakAnyLinkage;
66   case 2:  return GlobalValue::AppendingLinkage;
67   case 3:  return GlobalValue::InternalLinkage;
68   case 4:  return GlobalValue::LinkOnceAnyLinkage;
69   case 5:  return GlobalValue::DLLImportLinkage;
70   case 6:  return GlobalValue::DLLExportLinkage;
71   case 7:  return GlobalValue::ExternalWeakLinkage;
72   case 8:  return GlobalValue::CommonLinkage;
73   case 9:  return GlobalValue::PrivateLinkage;
74   case 10: return GlobalValue::WeakODRLinkage;
75   case 11: return GlobalValue::LinkOnceODRLinkage;
76   case 12: return GlobalValue::AvailableExternallyLinkage;
77   case 13: return GlobalValue::LinkerPrivateLinkage;
78   }
79 }
80 
81 static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) {
82   switch (Val) {
83   default: // Map unknown visibilities to default.
84   case 0: return GlobalValue::DefaultVisibility;
85   case 1: return GlobalValue::HiddenVisibility;
86   case 2: return GlobalValue::ProtectedVisibility;
87   }
88 }
89 
90 static int GetDecodedCastOpcode(unsigned Val) {
91   switch (Val) {
92   default: return -1;
93   case bitc::CAST_TRUNC   : return Instruction::Trunc;
94   case bitc::CAST_ZEXT    : return Instruction::ZExt;
95   case bitc::CAST_SEXT    : return Instruction::SExt;
96   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
97   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
98   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
99   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
100   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
101   case bitc::CAST_FPEXT   : return Instruction::FPExt;
102   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
103   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
104   case bitc::CAST_BITCAST : return Instruction::BitCast;
105   }
106 }
107 static int GetDecodedBinaryOpcode(unsigned Val, const Type *Ty) {
108   switch (Val) {
109   default: return -1;
110   case bitc::BINOP_ADD:
111     return Ty->isFPOrFPVector() ? Instruction::FAdd : Instruction::Add;
112   case bitc::BINOP_SUB:
113     return Ty->isFPOrFPVector() ? Instruction::FSub : Instruction::Sub;
114   case bitc::BINOP_MUL:
115     return Ty->isFPOrFPVector() ? Instruction::FMul : Instruction::Mul;
116   case bitc::BINOP_UDIV: return Instruction::UDiv;
117   case bitc::BINOP_SDIV:
118     return Ty->isFPOrFPVector() ? Instruction::FDiv : Instruction::SDiv;
119   case bitc::BINOP_UREM: return Instruction::URem;
120   case bitc::BINOP_SREM:
121     return Ty->isFPOrFPVector() ? Instruction::FRem : Instruction::SRem;
122   case bitc::BINOP_SHL:  return Instruction::Shl;
123   case bitc::BINOP_LSHR: return Instruction::LShr;
124   case bitc::BINOP_ASHR: return Instruction::AShr;
125   case bitc::BINOP_AND:  return Instruction::And;
126   case bitc::BINOP_OR:   return Instruction::Or;
127   case bitc::BINOP_XOR:  return Instruction::Xor;
128   }
129 }
130 
131 namespace llvm {
132 namespace {
133   /// @brief A class for maintaining the slot number definition
134   /// as a placeholder for the actual definition for forward constants defs.
135   class ConstantPlaceHolder : public ConstantExpr {
136     ConstantPlaceHolder();                       // DO NOT IMPLEMENT
137     void operator=(const ConstantPlaceHolder &); // DO NOT IMPLEMENT
138   public:
139     // allocate space for exactly one operand
140     void *operator new(size_t s) {
141       return User::operator new(s, 1);
142     }
143     explicit ConstantPlaceHolder(const Type *Ty, LLVMContext& Context)
144       : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) {
145       Op<0>() = UndefValue::get(Type::getInt32Ty(Context));
146     }
147 
148     /// @brief Methods to support type inquiry through isa, cast, and dyn_cast.
149     static inline bool classof(const ConstantPlaceHolder *) { return true; }
150     static bool classof(const Value *V) {
151       return isa<ConstantExpr>(V) &&
152              cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1;
153     }
154 
155 
156     /// Provide fast operand accessors
157     //DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
158   };
159 }
160 
161 // FIXME: can we inherit this from ConstantExpr?
162 template <>
163 struct OperandTraits<ConstantPlaceHolder> : public FixedNumOperandTraits<1> {
164 };
165 }
166 
167 
168 void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) {
169   if (Idx == size()) {
170     push_back(V);
171     return;
172   }
173 
174   if (Idx >= size())
175     resize(Idx+1);
176 
177   WeakVH &OldV = ValuePtrs[Idx];
178   if (OldV == 0) {
179     OldV = V;
180     return;
181   }
182 
183   // Handle constants and non-constants (e.g. instrs) differently for
184   // efficiency.
185   if (Constant *PHC = dyn_cast<Constant>(&*OldV)) {
186     ResolveConstants.push_back(std::make_pair(PHC, Idx));
187     OldV = V;
188   } else {
189     // If there was a forward reference to this value, replace it.
190     Value *PrevVal = OldV;
191     OldV->replaceAllUsesWith(V);
192     delete PrevVal;
193   }
194 }
195 
196 
197 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
198                                                     const Type *Ty) {
199   if (Idx >= size())
200     resize(Idx + 1);
201 
202   if (Value *V = ValuePtrs[Idx]) {
203     assert(Ty == V->getType() && "Type mismatch in constant table!");
204     return cast<Constant>(V);
205   }
206 
207   // Create and return a placeholder, which will later be RAUW'd.
208   Constant *C = new ConstantPlaceHolder(Ty, Context);
209   ValuePtrs[Idx] = C;
210   return C;
211 }
212 
213 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, const Type *Ty) {
214   if (Idx >= size())
215     resize(Idx + 1);
216 
217   if (Value *V = ValuePtrs[Idx]) {
218     assert((Ty == 0 || Ty == V->getType()) && "Type mismatch in value table!");
219     return V;
220   }
221 
222   // No type specified, must be invalid reference.
223   if (Ty == 0) return 0;
224 
225   // Create and return a placeholder, which will later be RAUW'd.
226   Value *V = new Argument(Ty);
227   ValuePtrs[Idx] = V;
228   return V;
229 }
230 
231 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk
232 /// resolves any forward references.  The idea behind this is that we sometimes
233 /// get constants (such as large arrays) which reference *many* forward ref
234 /// constants.  Replacing each of these causes a lot of thrashing when
235 /// building/reuniquing the constant.  Instead of doing this, we look at all the
236 /// uses and rewrite all the place holders at once for any constant that uses
237 /// a placeholder.
238 void BitcodeReaderValueList::ResolveConstantForwardRefs() {
239   // Sort the values by-pointer so that they are efficient to look up with a
240   // binary search.
241   std::sort(ResolveConstants.begin(), ResolveConstants.end());
242 
243   SmallVector<Constant*, 64> NewOps;
244 
245   while (!ResolveConstants.empty()) {
246     Value *RealVal = operator[](ResolveConstants.back().second);
247     Constant *Placeholder = ResolveConstants.back().first;
248     ResolveConstants.pop_back();
249 
250     // Loop over all users of the placeholder, updating them to reference the
251     // new value.  If they reference more than one placeholder, update them all
252     // at once.
253     while (!Placeholder->use_empty()) {
254       Value::use_iterator UI = Placeholder->use_begin();
255 
256       // If the using object isn't uniqued, just update the operands.  This
257       // handles instructions and initializers for global variables.
258       if (!isa<Constant>(*UI) || isa<GlobalValue>(*UI)) {
259         UI.getUse().set(RealVal);
260         continue;
261       }
262 
263       // Otherwise, we have a constant that uses the placeholder.  Replace that
264       // constant with a new constant that has *all* placeholder uses updated.
265       Constant *UserC = cast<Constant>(*UI);
266       for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end();
267            I != E; ++I) {
268         Value *NewOp;
269         if (!isa<ConstantPlaceHolder>(*I)) {
270           // Not a placeholder reference.
271           NewOp = *I;
272         } else if (*I == Placeholder) {
273           // Common case is that it just references this one placeholder.
274           NewOp = RealVal;
275         } else {
276           // Otherwise, look up the placeholder in ResolveConstants.
277           ResolveConstantsTy::iterator It =
278             std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(),
279                              std::pair<Constant*, unsigned>(cast<Constant>(*I),
280                                                             0));
281           assert(It != ResolveConstants.end() && It->first == *I);
282           NewOp = operator[](It->second);
283         }
284 
285         NewOps.push_back(cast<Constant>(NewOp));
286       }
287 
288       // Make the new constant.
289       Constant *NewC;
290       if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) {
291         NewC = ConstantArray::get(UserCA->getType(), &NewOps[0],
292                                         NewOps.size());
293       } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) {
294         NewC = ConstantStruct::get(Context, &NewOps[0], NewOps.size(),
295                                          UserCS->getType()->isPacked());
296       } else if (isa<ConstantVector>(UserC)) {
297         NewC = ConstantVector::get(&NewOps[0], NewOps.size());
298       } else {
299         assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr.");
300         NewC = cast<ConstantExpr>(UserC)->getWithOperands(&NewOps[0],
301                                                           NewOps.size());
302       }
303 
304       UserC->replaceAllUsesWith(NewC);
305       UserC->destroyConstant();
306       NewOps.clear();
307     }
308 
309     // Update all ValueHandles, they should be the only users at this point.
310     Placeholder->replaceAllUsesWith(RealVal);
311     delete Placeholder;
312   }
313 }
314 
315 void BitcodeReaderMDValueList::AssignValue(Value *V, unsigned Idx) {
316   if (Idx == size()) {
317     push_back(V);
318     return;
319   }
320 
321   if (Idx >= size())
322     resize(Idx+1);
323 
324   WeakVH &OldV = MDValuePtrs[Idx];
325   if (OldV == 0) {
326     OldV = V;
327     return;
328   }
329 
330   // If there was a forward reference to this value, replace it.
331   Value *PrevVal = OldV;
332   OldV->replaceAllUsesWith(V);
333   delete PrevVal;
334   // Deleting PrevVal sets Idx value in MDValuePtrs to null. Set new
335   // value for Idx.
336   MDValuePtrs[Idx] = V;
337 }
338 
339 Value *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) {
340   if (Idx >= size())
341     resize(Idx + 1);
342 
343   if (Value *V = MDValuePtrs[Idx]) {
344     assert(V->getType()->isMetadataTy() && "Type mismatch in value table!");
345     return V;
346   }
347 
348   // Create and return a placeholder, which will later be RAUW'd.
349   Value *V = new Argument(Type::getMetadataTy(Context));
350   MDValuePtrs[Idx] = V;
351   return V;
352 }
353 
354 const Type *BitcodeReader::getTypeByID(unsigned ID, bool isTypeTable) {
355   // If the TypeID is in range, return it.
356   if (ID < TypeList.size())
357     return TypeList[ID].get();
358   if (!isTypeTable) return 0;
359 
360   // The type table allows forward references.  Push as many Opaque types as
361   // needed to get up to ID.
362   while (TypeList.size() <= ID)
363     TypeList.push_back(OpaqueType::get(Context));
364   return TypeList.back().get();
365 }
366 
367 //===----------------------------------------------------------------------===//
368 //  Functions for parsing blocks from the bitcode file
369 //===----------------------------------------------------------------------===//
370 
371 bool BitcodeReader::ParseAttributeBlock() {
372   if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
373     return Error("Malformed block record");
374 
375   if (!MAttributes.empty())
376     return Error("Multiple PARAMATTR blocks found!");
377 
378   SmallVector<uint64_t, 64> Record;
379 
380   SmallVector<AttributeWithIndex, 8> Attrs;
381 
382   // Read all the records.
383   while (1) {
384     unsigned Code = Stream.ReadCode();
385     if (Code == bitc::END_BLOCK) {
386       if (Stream.ReadBlockEnd())
387         return Error("Error at end of PARAMATTR block");
388       return false;
389     }
390 
391     if (Code == bitc::ENTER_SUBBLOCK) {
392       // No known subblocks, always skip them.
393       Stream.ReadSubBlockID();
394       if (Stream.SkipBlock())
395         return Error("Malformed block record");
396       continue;
397     }
398 
399     if (Code == bitc::DEFINE_ABBREV) {
400       Stream.ReadAbbrevRecord();
401       continue;
402     }
403 
404     // Read a record.
405     Record.clear();
406     switch (Stream.ReadRecord(Code, Record)) {
407     default:  // Default behavior: ignore.
408       break;
409     case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [paramidx0, attr0, ...]
410       if (Record.size() & 1)
411         return Error("Invalid ENTRY record");
412 
413       // FIXME : Remove this autoupgrade code in LLVM 3.0.
414       // If Function attributes are using index 0 then transfer them
415       // to index ~0. Index 0 is used for return value attributes but used to be
416       // used for function attributes.
417       Attributes RetAttribute = Attribute::None;
418       Attributes FnAttribute = Attribute::None;
419       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
420         // FIXME: remove in LLVM 3.0
421         // The alignment is stored as a 16-bit raw value from bits 31--16.
422         // We shift the bits above 31 down by 11 bits.
423 
424         unsigned Alignment = (Record[i+1] & (0xffffull << 16)) >> 16;
425         if (Alignment && !isPowerOf2_32(Alignment))
426           return Error("Alignment is not a power of two.");
427 
428         Attributes ReconstitutedAttr = Record[i+1] & 0xffff;
429         if (Alignment)
430           ReconstitutedAttr |= Attribute::constructAlignmentFromInt(Alignment);
431         ReconstitutedAttr |= (Record[i+1] & (0xffffull << 32)) >> 11;
432         Record[i+1] = ReconstitutedAttr;
433 
434         if (Record[i] == 0)
435           RetAttribute = Record[i+1];
436         else if (Record[i] == ~0U)
437           FnAttribute = Record[i+1];
438       }
439 
440       unsigned OldRetAttrs = (Attribute::NoUnwind|Attribute::NoReturn|
441                               Attribute::ReadOnly|Attribute::ReadNone);
442 
443       if (FnAttribute == Attribute::None && RetAttribute != Attribute::None &&
444           (RetAttribute & OldRetAttrs) != 0) {
445         if (FnAttribute == Attribute::None) { // add a slot so they get added.
446           Record.push_back(~0U);
447           Record.push_back(0);
448         }
449 
450         FnAttribute  |= RetAttribute & OldRetAttrs;
451         RetAttribute &= ~OldRetAttrs;
452       }
453 
454       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
455         if (Record[i] == 0) {
456           if (RetAttribute != Attribute::None)
457             Attrs.push_back(AttributeWithIndex::get(0, RetAttribute));
458         } else if (Record[i] == ~0U) {
459           if (FnAttribute != Attribute::None)
460             Attrs.push_back(AttributeWithIndex::get(~0U, FnAttribute));
461         } else if (Record[i+1] != Attribute::None)
462           Attrs.push_back(AttributeWithIndex::get(Record[i], Record[i+1]));
463       }
464 
465       MAttributes.push_back(AttrListPtr::get(Attrs.begin(), Attrs.end()));
466       Attrs.clear();
467       break;
468     }
469     }
470   }
471 }
472 
473 
474 bool BitcodeReader::ParseTypeTable() {
475   if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID))
476     return Error("Malformed block record");
477 
478   if (!TypeList.empty())
479     return Error("Multiple TYPE_BLOCKs found!");
480 
481   SmallVector<uint64_t, 64> Record;
482   unsigned NumRecords = 0;
483 
484   // Read all the records for this type table.
485   while (1) {
486     unsigned Code = Stream.ReadCode();
487     if (Code == bitc::END_BLOCK) {
488       if (NumRecords != TypeList.size())
489         return Error("Invalid type forward reference in TYPE_BLOCK");
490       if (Stream.ReadBlockEnd())
491         return Error("Error at end of type table block");
492       return false;
493     }
494 
495     if (Code == bitc::ENTER_SUBBLOCK) {
496       // No known subblocks, always skip them.
497       Stream.ReadSubBlockID();
498       if (Stream.SkipBlock())
499         return Error("Malformed block record");
500       continue;
501     }
502 
503     if (Code == bitc::DEFINE_ABBREV) {
504       Stream.ReadAbbrevRecord();
505       continue;
506     }
507 
508     // Read a record.
509     Record.clear();
510     const Type *ResultTy = 0;
511     switch (Stream.ReadRecord(Code, Record)) {
512     default:  // Default behavior: unknown type.
513       ResultTy = 0;
514       break;
515     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
516       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
517       // type list.  This allows us to reserve space.
518       if (Record.size() < 1)
519         return Error("Invalid TYPE_CODE_NUMENTRY record");
520       TypeList.reserve(Record[0]);
521       continue;
522     case bitc::TYPE_CODE_VOID:      // VOID
523       ResultTy = Type::getVoidTy(Context);
524       break;
525     case bitc::TYPE_CODE_FLOAT:     // FLOAT
526       ResultTy = Type::getFloatTy(Context);
527       break;
528     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
529       ResultTy = Type::getDoubleTy(Context);
530       break;
531     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
532       ResultTy = Type::getX86_FP80Ty(Context);
533       break;
534     case bitc::TYPE_CODE_FP128:     // FP128
535       ResultTy = Type::getFP128Ty(Context);
536       break;
537     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
538       ResultTy = Type::getPPC_FP128Ty(Context);
539       break;
540     case bitc::TYPE_CODE_LABEL:     // LABEL
541       ResultTy = Type::getLabelTy(Context);
542       break;
543     case bitc::TYPE_CODE_OPAQUE:    // OPAQUE
544       ResultTy = 0;
545       break;
546     case bitc::TYPE_CODE_METADATA:  // METADATA
547       ResultTy = Type::getMetadataTy(Context);
548       break;
549     case bitc::TYPE_CODE_INTEGER:   // INTEGER: [width]
550       if (Record.size() < 1)
551         return Error("Invalid Integer type record");
552 
553       ResultTy = IntegerType::get(Context, Record[0]);
554       break;
555     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
556                                     //          [pointee type, address space]
557       if (Record.size() < 1)
558         return Error("Invalid POINTER type record");
559       unsigned AddressSpace = 0;
560       if (Record.size() == 2)
561         AddressSpace = Record[1];
562       ResultTy = PointerType::get(getTypeByID(Record[0], true),
563                                         AddressSpace);
564       break;
565     }
566     case bitc::TYPE_CODE_FUNCTION: {
567       // FIXME: attrid is dead, remove it in LLVM 3.0
568       // FUNCTION: [vararg, attrid, retty, paramty x N]
569       if (Record.size() < 3)
570         return Error("Invalid FUNCTION type record");
571       std::vector<const Type*> ArgTys;
572       for (unsigned i = 3, e = Record.size(); i != e; ++i)
573         ArgTys.push_back(getTypeByID(Record[i], true));
574 
575       ResultTy = FunctionType::get(getTypeByID(Record[2], true), ArgTys,
576                                    Record[0]);
577       break;
578     }
579     case bitc::TYPE_CODE_STRUCT: {  // STRUCT: [ispacked, eltty x N]
580       if (Record.size() < 1)
581         return Error("Invalid STRUCT type record");
582       std::vector<const Type*> EltTys;
583       for (unsigned i = 1, e = Record.size(); i != e; ++i)
584         EltTys.push_back(getTypeByID(Record[i], true));
585       ResultTy = StructType::get(Context, EltTys, Record[0]);
586       break;
587     }
588     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
589       if (Record.size() < 2)
590         return Error("Invalid ARRAY type record");
591       ResultTy = ArrayType::get(getTypeByID(Record[1], true), Record[0]);
592       break;
593     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
594       if (Record.size() < 2)
595         return Error("Invalid VECTOR type record");
596       ResultTy = VectorType::get(getTypeByID(Record[1], true), Record[0]);
597       break;
598     }
599 
600     if (NumRecords == TypeList.size()) {
601       // If this is a new type slot, just append it.
602       TypeList.push_back(ResultTy ? ResultTy : OpaqueType::get(Context));
603       ++NumRecords;
604     } else if (ResultTy == 0) {
605       // Otherwise, this was forward referenced, so an opaque type was created,
606       // but the result type is actually just an opaque.  Leave the one we
607       // created previously.
608       ++NumRecords;
609     } else {
610       // Otherwise, this was forward referenced, so an opaque type was created.
611       // Resolve the opaque type to the real type now.
612       assert(NumRecords < TypeList.size() && "Typelist imbalance");
613       const OpaqueType *OldTy = cast<OpaqueType>(TypeList[NumRecords++].get());
614 
615       // Don't directly push the new type on the Tab. Instead we want to replace
616       // the opaque type we previously inserted with the new concrete value. The
617       // refinement from the abstract (opaque) type to the new type causes all
618       // uses of the abstract type to use the concrete type (NewTy). This will
619       // also cause the opaque type to be deleted.
620       const_cast<OpaqueType*>(OldTy)->refineAbstractTypeTo(ResultTy);
621 
622       // This should have replaced the old opaque type with the new type in the
623       // value table... or with a preexisting type that was already in the
624       // system.  Let's just make sure it did.
625       assert(TypeList[NumRecords-1].get() != OldTy &&
626              "refineAbstractType didn't work!");
627     }
628   }
629 }
630 
631 
632 bool BitcodeReader::ParseTypeSymbolTable() {
633   if (Stream.EnterSubBlock(bitc::TYPE_SYMTAB_BLOCK_ID))
634     return Error("Malformed block record");
635 
636   SmallVector<uint64_t, 64> Record;
637 
638   // Read all the records for this type table.
639   std::string TypeName;
640   while (1) {
641     unsigned Code = Stream.ReadCode();
642     if (Code == bitc::END_BLOCK) {
643       if (Stream.ReadBlockEnd())
644         return Error("Error at end of type symbol table block");
645       return false;
646     }
647 
648     if (Code == bitc::ENTER_SUBBLOCK) {
649       // No known subblocks, always skip them.
650       Stream.ReadSubBlockID();
651       if (Stream.SkipBlock())
652         return Error("Malformed block record");
653       continue;
654     }
655 
656     if (Code == bitc::DEFINE_ABBREV) {
657       Stream.ReadAbbrevRecord();
658       continue;
659     }
660 
661     // Read a record.
662     Record.clear();
663     switch (Stream.ReadRecord(Code, Record)) {
664     default:  // Default behavior: unknown type.
665       break;
666     case bitc::TST_CODE_ENTRY:    // TST_ENTRY: [typeid, namechar x N]
667       if (ConvertToString(Record, 1, TypeName))
668         return Error("Invalid TST_ENTRY record");
669       unsigned TypeID = Record[0];
670       if (TypeID >= TypeList.size())
671         return Error("Invalid Type ID in TST_ENTRY record");
672 
673       TheModule->addTypeName(TypeName, TypeList[TypeID].get());
674       TypeName.clear();
675       break;
676     }
677   }
678 }
679 
680 bool BitcodeReader::ParseValueSymbolTable() {
681   if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
682     return Error("Malformed block record");
683 
684   SmallVector<uint64_t, 64> Record;
685 
686   // Read all the records for this value table.
687   SmallString<128> ValueName;
688   while (1) {
689     unsigned Code = Stream.ReadCode();
690     if (Code == bitc::END_BLOCK) {
691       if (Stream.ReadBlockEnd())
692         return Error("Error at end of value symbol table block");
693       return false;
694     }
695     if (Code == bitc::ENTER_SUBBLOCK) {
696       // No known subblocks, always skip them.
697       Stream.ReadSubBlockID();
698       if (Stream.SkipBlock())
699         return Error("Malformed block record");
700       continue;
701     }
702 
703     if (Code == bitc::DEFINE_ABBREV) {
704       Stream.ReadAbbrevRecord();
705       continue;
706     }
707 
708     // Read a record.
709     Record.clear();
710     switch (Stream.ReadRecord(Code, Record)) {
711     default:  // Default behavior: unknown type.
712       break;
713     case bitc::VST_CODE_ENTRY: {  // VST_ENTRY: [valueid, namechar x N]
714       if (ConvertToString(Record, 1, ValueName))
715         return Error("Invalid VST_ENTRY record");
716       unsigned ValueID = Record[0];
717       if (ValueID >= ValueList.size())
718         return Error("Invalid Value ID in VST_ENTRY record");
719       Value *V = ValueList[ValueID];
720 
721       V->setName(StringRef(ValueName.data(), ValueName.size()));
722       ValueName.clear();
723       break;
724     }
725     case bitc::VST_CODE_BBENTRY: {
726       if (ConvertToString(Record, 1, ValueName))
727         return Error("Invalid VST_BBENTRY record");
728       BasicBlock *BB = getBasicBlock(Record[0]);
729       if (BB == 0)
730         return Error("Invalid BB ID in VST_BBENTRY record");
731 
732       BB->setName(StringRef(ValueName.data(), ValueName.size()));
733       ValueName.clear();
734       break;
735     }
736     }
737   }
738 }
739 
740 bool BitcodeReader::ParseMetadata() {
741   unsigned NextMDValueNo = MDValueList.size();
742 
743   if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID))
744     return Error("Malformed block record");
745 
746   SmallVector<uint64_t, 64> Record;
747 
748   // Read all the records.
749   while (1) {
750     unsigned Code = Stream.ReadCode();
751     if (Code == bitc::END_BLOCK) {
752       if (Stream.ReadBlockEnd())
753         return Error("Error at end of PARAMATTR block");
754       return false;
755     }
756 
757     if (Code == bitc::ENTER_SUBBLOCK) {
758       // No known subblocks, always skip them.
759       Stream.ReadSubBlockID();
760       if (Stream.SkipBlock())
761         return Error("Malformed block record");
762       continue;
763     }
764 
765     if (Code == bitc::DEFINE_ABBREV) {
766       Stream.ReadAbbrevRecord();
767       continue;
768     }
769 
770     bool IsFunctionLocal = false;
771     // Read a record.
772     Record.clear();
773     switch (Stream.ReadRecord(Code, Record)) {
774     default:  // Default behavior: ignore.
775       break;
776     case bitc::METADATA_NAME: {
777       // Read named of the named metadata.
778       unsigned NameLength = Record.size();
779       SmallString<8> Name;
780       Name.resize(NameLength);
781       for (unsigned i = 0; i != NameLength; ++i)
782         Name[i] = Record[i];
783       Record.clear();
784       Code = Stream.ReadCode();
785 
786       // METADATA_NAME is always followed by METADATA_NAMED_NODE.
787       if (Stream.ReadRecord(Code, Record) != bitc::METADATA_NAMED_NODE)
788         assert ( 0 && "Inavlid Named Metadata record");
789 
790       // Read named metadata elements.
791       unsigned Size = Record.size();
792       SmallVector<MDNode *, 8> Elts;
793       for (unsigned i = 0; i != Size; ++i) {
794         if (Record[i] == ~0U) {
795           Elts.push_back(NULL);
796           continue;
797         }
798         MDNode *MD = dyn_cast<MDNode>(MDValueList.getValueFwdRef(Record[i]));
799         if (MD == 0)
800           return Error("Malformed metadata record");
801         Elts.push_back(MD);
802       }
803       Value *V = NamedMDNode::Create(Context, Name.str(), Elts.data(),
804                                      Elts.size(), TheModule);
805       MDValueList.AssignValue(V, NextMDValueNo++);
806       break;
807     }
808     case bitc::METADATA_FN_NODE:
809       IsFunctionLocal = true;
810       // fall-through
811     case bitc::METADATA_NODE: {
812       if (Record.empty() || Record.size() % 2 == 1)
813         return Error("Invalid METADATA_NODE record");
814 
815       unsigned Size = Record.size();
816       SmallVector<Value*, 8> Elts;
817       for (unsigned i = 0; i != Size; i += 2) {
818         const Type *Ty = getTypeByID(Record[i], false);
819         if (Ty->isMetadataTy())
820           Elts.push_back(MDValueList.getValueFwdRef(Record[i+1]));
821         else if (!Ty->isVoidTy())
822           Elts.push_back(ValueList.getValueFwdRef(Record[i+1], Ty));
823         else
824           Elts.push_back(NULL);
825       }
826       Value *V = MDNode::getWhenValsUnresolved(Context, &Elts[0], Elts.size(),
827                                                IsFunctionLocal);
828       IsFunctionLocal = false;
829       MDValueList.AssignValue(V, NextMDValueNo++);
830       break;
831     }
832     case bitc::METADATA_STRING: {
833       unsigned MDStringLength = Record.size();
834       SmallString<8> String;
835       String.resize(MDStringLength);
836       for (unsigned i = 0; i != MDStringLength; ++i)
837         String[i] = Record[i];
838       Value *V = MDString::get(Context,
839                                StringRef(String.data(), String.size()));
840       MDValueList.AssignValue(V, NextMDValueNo++);
841       break;
842     }
843     case bitc::METADATA_KIND: {
844       unsigned RecordLength = Record.size();
845       if (Record.empty() || RecordLength < 2)
846         return Error("Invalid METADATA_KIND record");
847       SmallString<8> Name;
848       Name.resize(RecordLength-1);
849       unsigned Kind = Record[0];
850       (void) Kind;
851       for (unsigned i = 1; i != RecordLength; ++i)
852         Name[i-1] = Record[i];
853 
854       unsigned NewKind = TheModule->getMDKindID(Name.str());
855       assert(Kind == NewKind &&
856              "FIXME: Unable to handle custom metadata mismatch!");(void)NewKind;
857       break;
858     }
859     }
860   }
861 }
862 
863 /// DecodeSignRotatedValue - Decode a signed value stored with the sign bit in
864 /// the LSB for dense VBR encoding.
865 static uint64_t DecodeSignRotatedValue(uint64_t V) {
866   if ((V & 1) == 0)
867     return V >> 1;
868   if (V != 1)
869     return -(V >> 1);
870   // There is no such thing as -0 with integers.  "-0" really means MININT.
871   return 1ULL << 63;
872 }
873 
874 /// ResolveGlobalAndAliasInits - Resolve all of the initializers for global
875 /// values and aliases that we can.
876 bool BitcodeReader::ResolveGlobalAndAliasInits() {
877   std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
878   std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist;
879 
880   GlobalInitWorklist.swap(GlobalInits);
881   AliasInitWorklist.swap(AliasInits);
882 
883   while (!GlobalInitWorklist.empty()) {
884     unsigned ValID = GlobalInitWorklist.back().second;
885     if (ValID >= ValueList.size()) {
886       // Not ready to resolve this yet, it requires something later in the file.
887       GlobalInits.push_back(GlobalInitWorklist.back());
888     } else {
889       if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
890         GlobalInitWorklist.back().first->setInitializer(C);
891       else
892         return Error("Global variable initializer is not a constant!");
893     }
894     GlobalInitWorklist.pop_back();
895   }
896 
897   while (!AliasInitWorklist.empty()) {
898     unsigned ValID = AliasInitWorklist.back().second;
899     if (ValID >= ValueList.size()) {
900       AliasInits.push_back(AliasInitWorklist.back());
901     } else {
902       if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
903         AliasInitWorklist.back().first->setAliasee(C);
904       else
905         return Error("Alias initializer is not a constant!");
906     }
907     AliasInitWorklist.pop_back();
908   }
909   return false;
910 }
911 
912 bool BitcodeReader::ParseConstants() {
913   if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
914     return Error("Malformed block record");
915 
916   SmallVector<uint64_t, 64> Record;
917 
918   // Read all the records for this value table.
919   const Type *CurTy = Type::getInt32Ty(Context);
920   unsigned NextCstNo = ValueList.size();
921   while (1) {
922     unsigned Code = Stream.ReadCode();
923     if (Code == bitc::END_BLOCK)
924       break;
925 
926     if (Code == bitc::ENTER_SUBBLOCK) {
927       // No known subblocks, always skip them.
928       Stream.ReadSubBlockID();
929       if (Stream.SkipBlock())
930         return Error("Malformed block record");
931       continue;
932     }
933 
934     if (Code == bitc::DEFINE_ABBREV) {
935       Stream.ReadAbbrevRecord();
936       continue;
937     }
938 
939     // Read a record.
940     Record.clear();
941     Value *V = 0;
942     unsigned BitCode = Stream.ReadRecord(Code, Record);
943     switch (BitCode) {
944     default:  // Default behavior: unknown constant
945     case bitc::CST_CODE_UNDEF:     // UNDEF
946       V = UndefValue::get(CurTy);
947       break;
948     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
949       if (Record.empty())
950         return Error("Malformed CST_SETTYPE record");
951       if (Record[0] >= TypeList.size())
952         return Error("Invalid Type ID in CST_SETTYPE record");
953       CurTy = TypeList[Record[0]];
954       continue;  // Skip the ValueList manipulation.
955     case bitc::CST_CODE_NULL:      // NULL
956       V = Constant::getNullValue(CurTy);
957       break;
958     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
959       if (!isa<IntegerType>(CurTy) || Record.empty())
960         return Error("Invalid CST_INTEGER record");
961       V = ConstantInt::get(CurTy, DecodeSignRotatedValue(Record[0]));
962       break;
963     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
964       if (!isa<IntegerType>(CurTy) || Record.empty())
965         return Error("Invalid WIDE_INTEGER record");
966 
967       unsigned NumWords = Record.size();
968       SmallVector<uint64_t, 8> Words;
969       Words.resize(NumWords);
970       for (unsigned i = 0; i != NumWords; ++i)
971         Words[i] = DecodeSignRotatedValue(Record[i]);
972       V = ConstantInt::get(Context,
973                            APInt(cast<IntegerType>(CurTy)->getBitWidth(),
974                            NumWords, &Words[0]));
975       break;
976     }
977     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
978       if (Record.empty())
979         return Error("Invalid FLOAT record");
980       if (CurTy->isFloatTy())
981         V = ConstantFP::get(Context, APFloat(APInt(32, (uint32_t)Record[0])));
982       else if (CurTy->isDoubleTy())
983         V = ConstantFP::get(Context, APFloat(APInt(64, Record[0])));
984       else if (CurTy->isX86_FP80Ty()) {
985         // Bits are not stored the same way as a normal i80 APInt, compensate.
986         uint64_t Rearrange[2];
987         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
988         Rearrange[1] = Record[0] >> 48;
989         V = ConstantFP::get(Context, APFloat(APInt(80, 2, Rearrange)));
990       } else if (CurTy->isFP128Ty())
991         V = ConstantFP::get(Context, APFloat(APInt(128, 2, &Record[0]), true));
992       else if (CurTy->isPPC_FP128Ty())
993         V = ConstantFP::get(Context, APFloat(APInt(128, 2, &Record[0])));
994       else
995         V = UndefValue::get(CurTy);
996       break;
997     }
998 
999     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
1000       if (Record.empty())
1001         return Error("Invalid CST_AGGREGATE record");
1002 
1003       unsigned Size = Record.size();
1004       std::vector<Constant*> Elts;
1005 
1006       if (const StructType *STy = dyn_cast<StructType>(CurTy)) {
1007         for (unsigned i = 0; i != Size; ++i)
1008           Elts.push_back(ValueList.getConstantFwdRef(Record[i],
1009                                                      STy->getElementType(i)));
1010         V = ConstantStruct::get(STy, Elts);
1011       } else if (const ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
1012         const Type *EltTy = ATy->getElementType();
1013         for (unsigned i = 0; i != Size; ++i)
1014           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
1015         V = ConstantArray::get(ATy, Elts);
1016       } else if (const VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
1017         const Type *EltTy = VTy->getElementType();
1018         for (unsigned i = 0; i != Size; ++i)
1019           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
1020         V = ConstantVector::get(Elts);
1021       } else {
1022         V = UndefValue::get(CurTy);
1023       }
1024       break;
1025     }
1026     case bitc::CST_CODE_STRING: { // STRING: [values]
1027       if (Record.empty())
1028         return Error("Invalid CST_AGGREGATE record");
1029 
1030       const ArrayType *ATy = cast<ArrayType>(CurTy);
1031       const Type *EltTy = ATy->getElementType();
1032 
1033       unsigned Size = Record.size();
1034       std::vector<Constant*> Elts;
1035       for (unsigned i = 0; i != Size; ++i)
1036         Elts.push_back(ConstantInt::get(EltTy, Record[i]));
1037       V = ConstantArray::get(ATy, Elts);
1038       break;
1039     }
1040     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
1041       if (Record.empty())
1042         return Error("Invalid CST_AGGREGATE record");
1043 
1044       const ArrayType *ATy = cast<ArrayType>(CurTy);
1045       const Type *EltTy = ATy->getElementType();
1046 
1047       unsigned Size = Record.size();
1048       std::vector<Constant*> Elts;
1049       for (unsigned i = 0; i != Size; ++i)
1050         Elts.push_back(ConstantInt::get(EltTy, Record[i]));
1051       Elts.push_back(Constant::getNullValue(EltTy));
1052       V = ConstantArray::get(ATy, Elts);
1053       break;
1054     }
1055     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
1056       if (Record.size() < 3) return Error("Invalid CE_BINOP record");
1057       int Opc = GetDecodedBinaryOpcode(Record[0], CurTy);
1058       if (Opc < 0) {
1059         V = UndefValue::get(CurTy);  // Unknown binop.
1060       } else {
1061         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
1062         Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
1063         unsigned Flags = 0;
1064         if (Record.size() >= 4) {
1065           if (Opc == Instruction::Add ||
1066               Opc == Instruction::Sub ||
1067               Opc == Instruction::Mul) {
1068             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
1069               Flags |= OverflowingBinaryOperator::NoSignedWrap;
1070             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
1071               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
1072           } else if (Opc == Instruction::SDiv) {
1073             if (Record[3] & (1 << bitc::SDIV_EXACT))
1074               Flags |= SDivOperator::IsExact;
1075           }
1076         }
1077         V = ConstantExpr::get(Opc, LHS, RHS, Flags);
1078       }
1079       break;
1080     }
1081     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
1082       if (Record.size() < 3) return Error("Invalid CE_CAST record");
1083       int Opc = GetDecodedCastOpcode(Record[0]);
1084       if (Opc < 0) {
1085         V = UndefValue::get(CurTy);  // Unknown cast.
1086       } else {
1087         const Type *OpTy = getTypeByID(Record[1]);
1088         if (!OpTy) return Error("Invalid CE_CAST record");
1089         Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
1090         V = ConstantExpr::getCast(Opc, Op, CurTy);
1091       }
1092       break;
1093     }
1094     case bitc::CST_CODE_CE_INBOUNDS_GEP:
1095     case bitc::CST_CODE_CE_GEP: {  // CE_GEP:        [n x operands]
1096       if (Record.size() & 1) return Error("Invalid CE_GEP record");
1097       SmallVector<Constant*, 16> Elts;
1098       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1099         const Type *ElTy = getTypeByID(Record[i]);
1100         if (!ElTy) return Error("Invalid CE_GEP record");
1101         Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy));
1102       }
1103       if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
1104         V = ConstantExpr::getInBoundsGetElementPtr(Elts[0], &Elts[1],
1105                                                    Elts.size()-1);
1106       else
1107         V = ConstantExpr::getGetElementPtr(Elts[0], &Elts[1],
1108                                            Elts.size()-1);
1109       break;
1110     }
1111     case bitc::CST_CODE_CE_SELECT:  // CE_SELECT: [opval#, opval#, opval#]
1112       if (Record.size() < 3) return Error("Invalid CE_SELECT record");
1113       V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
1114                                                               Type::getInt1Ty(Context)),
1115                                   ValueList.getConstantFwdRef(Record[1],CurTy),
1116                                   ValueList.getConstantFwdRef(Record[2],CurTy));
1117       break;
1118     case bitc::CST_CODE_CE_EXTRACTELT: { // CE_EXTRACTELT: [opty, opval, opval]
1119       if (Record.size() < 3) return Error("Invalid CE_EXTRACTELT record");
1120       const VectorType *OpTy =
1121         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
1122       if (OpTy == 0) return Error("Invalid CE_EXTRACTELT record");
1123       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1124       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
1125       V = ConstantExpr::getExtractElement(Op0, Op1);
1126       break;
1127     }
1128     case bitc::CST_CODE_CE_INSERTELT: { // CE_INSERTELT: [opval, opval, opval]
1129       const VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1130       if (Record.size() < 3 || OpTy == 0)
1131         return Error("Invalid CE_INSERTELT record");
1132       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1133       Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
1134                                                   OpTy->getElementType());
1135       Constant *Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
1136       V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
1137       break;
1138     }
1139     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
1140       const VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1141       if (Record.size() < 3 || OpTy == 0)
1142         return Error("Invalid CE_SHUFFLEVEC record");
1143       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1144       Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
1145       const Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
1146                                                  OpTy->getNumElements());
1147       Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
1148       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
1149       break;
1150     }
1151     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
1152       const VectorType *RTy = dyn_cast<VectorType>(CurTy);
1153       const VectorType *OpTy = dyn_cast<VectorType>(getTypeByID(Record[0]));
1154       if (Record.size() < 4 || RTy == 0 || OpTy == 0)
1155         return Error("Invalid CE_SHUFVEC_EX record");
1156       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1157       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1158       const Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
1159                                                  RTy->getNumElements());
1160       Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
1161       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
1162       break;
1163     }
1164     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
1165       if (Record.size() < 4) return Error("Invalid CE_CMP record");
1166       const Type *OpTy = getTypeByID(Record[0]);
1167       if (OpTy == 0) return Error("Invalid CE_CMP record");
1168       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1169       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1170 
1171       if (OpTy->isFPOrFPVector())
1172         V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
1173       else
1174         V = ConstantExpr::getICmp(Record[3], Op0, Op1);
1175       break;
1176     }
1177     case bitc::CST_CODE_INLINEASM: {
1178       if (Record.size() < 2) return Error("Invalid INLINEASM record");
1179       std::string AsmStr, ConstrStr;
1180       bool HasSideEffects = Record[0] & 1;
1181       bool IsAlignStack = Record[0] >> 1;
1182       unsigned AsmStrSize = Record[1];
1183       if (2+AsmStrSize >= Record.size())
1184         return Error("Invalid INLINEASM record");
1185       unsigned ConstStrSize = Record[2+AsmStrSize];
1186       if (3+AsmStrSize+ConstStrSize > Record.size())
1187         return Error("Invalid INLINEASM record");
1188 
1189       for (unsigned i = 0; i != AsmStrSize; ++i)
1190         AsmStr += (char)Record[2+i];
1191       for (unsigned i = 0; i != ConstStrSize; ++i)
1192         ConstrStr += (char)Record[3+AsmStrSize+i];
1193       const PointerType *PTy = cast<PointerType>(CurTy);
1194       V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
1195                          AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
1196       break;
1197     }
1198     case bitc::CST_CODE_BLOCKADDRESS:{
1199       if (Record.size() < 3) return Error("Invalid CE_BLOCKADDRESS record");
1200       const Type *FnTy = getTypeByID(Record[0]);
1201       if (FnTy == 0) return Error("Invalid CE_BLOCKADDRESS record");
1202       Function *Fn =
1203         dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
1204       if (Fn == 0) return Error("Invalid CE_BLOCKADDRESS record");
1205 
1206       GlobalVariable *FwdRef = new GlobalVariable(*Fn->getParent(),
1207                                                   Type::getInt8Ty(Context),
1208                                             false, GlobalValue::InternalLinkage,
1209                                                   0, "");
1210       BlockAddrFwdRefs[Fn].push_back(std::make_pair(Record[2], FwdRef));
1211       V = FwdRef;
1212       break;
1213     }
1214     }
1215 
1216     ValueList.AssignValue(V, NextCstNo);
1217     ++NextCstNo;
1218   }
1219 
1220   if (NextCstNo != ValueList.size())
1221     return Error("Invalid constant reference!");
1222 
1223   if (Stream.ReadBlockEnd())
1224     return Error("Error at end of constants block");
1225 
1226   // Once all the constants have been read, go through and resolve forward
1227   // references.
1228   ValueList.ResolveConstantForwardRefs();
1229   return false;
1230 }
1231 
1232 /// RememberAndSkipFunctionBody - When we see the block for a function body,
1233 /// remember where it is and then skip it.  This lets us lazily deserialize the
1234 /// functions.
1235 bool BitcodeReader::RememberAndSkipFunctionBody() {
1236   // Get the function we are talking about.
1237   if (FunctionsWithBodies.empty())
1238     return Error("Insufficient function protos");
1239 
1240   Function *Fn = FunctionsWithBodies.back();
1241   FunctionsWithBodies.pop_back();
1242 
1243   // Save the current stream state.
1244   uint64_t CurBit = Stream.GetCurrentBitNo();
1245   DeferredFunctionInfo[Fn] = CurBit;
1246 
1247   // Skip over the function block for now.
1248   if (Stream.SkipBlock())
1249     return Error("Malformed block record");
1250   return false;
1251 }
1252 
1253 bool BitcodeReader::ParseModule() {
1254   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
1255     return Error("Malformed block record");
1256 
1257   SmallVector<uint64_t, 64> Record;
1258   std::vector<std::string> SectionTable;
1259   std::vector<std::string> GCTable;
1260 
1261   // Read all the records for this module.
1262   while (!Stream.AtEndOfStream()) {
1263     unsigned Code = Stream.ReadCode();
1264     if (Code == bitc::END_BLOCK) {
1265       if (Stream.ReadBlockEnd())
1266         return Error("Error at end of module block");
1267 
1268       // Patch the initializers for globals and aliases up.
1269       ResolveGlobalAndAliasInits();
1270       if (!GlobalInits.empty() || !AliasInits.empty())
1271         return Error("Malformed global initializer set");
1272       if (!FunctionsWithBodies.empty())
1273         return Error("Too few function bodies found");
1274 
1275       // Look for intrinsic functions which need to be upgraded at some point
1276       for (Module::iterator FI = TheModule->begin(), FE = TheModule->end();
1277            FI != FE; ++FI) {
1278         Function* NewFn;
1279         if (UpgradeIntrinsicFunction(FI, NewFn))
1280           UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn));
1281       }
1282 
1283       // Force deallocation of memory for these vectors to favor the client that
1284       // want lazy deserialization.
1285       std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
1286       std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits);
1287       std::vector<Function*>().swap(FunctionsWithBodies);
1288       return false;
1289     }
1290 
1291     if (Code == bitc::ENTER_SUBBLOCK) {
1292       switch (Stream.ReadSubBlockID()) {
1293       default:  // Skip unknown content.
1294         if (Stream.SkipBlock())
1295           return Error("Malformed block record");
1296         break;
1297       case bitc::BLOCKINFO_BLOCK_ID:
1298         if (Stream.ReadBlockInfoBlock())
1299           return Error("Malformed BlockInfoBlock");
1300         break;
1301       case bitc::PARAMATTR_BLOCK_ID:
1302         if (ParseAttributeBlock())
1303           return true;
1304         break;
1305       case bitc::TYPE_BLOCK_ID:
1306         if (ParseTypeTable())
1307           return true;
1308         break;
1309       case bitc::TYPE_SYMTAB_BLOCK_ID:
1310         if (ParseTypeSymbolTable())
1311           return true;
1312         break;
1313       case bitc::VALUE_SYMTAB_BLOCK_ID:
1314         if (ParseValueSymbolTable())
1315           return true;
1316         break;
1317       case bitc::CONSTANTS_BLOCK_ID:
1318         if (ParseConstants() || ResolveGlobalAndAliasInits())
1319           return true;
1320         break;
1321       case bitc::METADATA_BLOCK_ID:
1322         if (ParseMetadata())
1323           return true;
1324         break;
1325       case bitc::FUNCTION_BLOCK_ID:
1326         // If this is the first function body we've seen, reverse the
1327         // FunctionsWithBodies list.
1328         if (!HasReversedFunctionsWithBodies) {
1329           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
1330           HasReversedFunctionsWithBodies = true;
1331         }
1332 
1333         if (RememberAndSkipFunctionBody())
1334           return true;
1335         break;
1336       }
1337       continue;
1338     }
1339 
1340     if (Code == bitc::DEFINE_ABBREV) {
1341       Stream.ReadAbbrevRecord();
1342       continue;
1343     }
1344 
1345     // Read a record.
1346     switch (Stream.ReadRecord(Code, Record)) {
1347     default: break;  // Default behavior, ignore unknown content.
1348     case bitc::MODULE_CODE_VERSION:  // VERSION: [version#]
1349       if (Record.size() < 1)
1350         return Error("Malformed MODULE_CODE_VERSION");
1351       // Only version #0 is supported so far.
1352       if (Record[0] != 0)
1353         return Error("Unknown bitstream version!");
1354       break;
1355     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
1356       std::string S;
1357       if (ConvertToString(Record, 0, S))
1358         return Error("Invalid MODULE_CODE_TRIPLE record");
1359       TheModule->setTargetTriple(S);
1360       break;
1361     }
1362     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
1363       std::string S;
1364       if (ConvertToString(Record, 0, S))
1365         return Error("Invalid MODULE_CODE_DATALAYOUT record");
1366       TheModule->setDataLayout(S);
1367       break;
1368     }
1369     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
1370       std::string S;
1371       if (ConvertToString(Record, 0, S))
1372         return Error("Invalid MODULE_CODE_ASM record");
1373       TheModule->setModuleInlineAsm(S);
1374       break;
1375     }
1376     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
1377       std::string S;
1378       if (ConvertToString(Record, 0, S))
1379         return Error("Invalid MODULE_CODE_DEPLIB record");
1380       TheModule->addLibrary(S);
1381       break;
1382     }
1383     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
1384       std::string S;
1385       if (ConvertToString(Record, 0, S))
1386         return Error("Invalid MODULE_CODE_SECTIONNAME record");
1387       SectionTable.push_back(S);
1388       break;
1389     }
1390     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
1391       std::string S;
1392       if (ConvertToString(Record, 0, S))
1393         return Error("Invalid MODULE_CODE_GCNAME record");
1394       GCTable.push_back(S);
1395       break;
1396     }
1397     // GLOBALVAR: [pointer type, isconst, initid,
1398     //             linkage, alignment, section, visibility, threadlocal]
1399     case bitc::MODULE_CODE_GLOBALVAR: {
1400       if (Record.size() < 6)
1401         return Error("Invalid MODULE_CODE_GLOBALVAR record");
1402       const Type *Ty = getTypeByID(Record[0]);
1403       if (!isa<PointerType>(Ty))
1404         return Error("Global not a pointer type!");
1405       unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
1406       Ty = cast<PointerType>(Ty)->getElementType();
1407 
1408       bool isConstant = Record[1];
1409       GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]);
1410       unsigned Alignment = (1 << Record[4]) >> 1;
1411       std::string Section;
1412       if (Record[5]) {
1413         if (Record[5]-1 >= SectionTable.size())
1414           return Error("Invalid section ID");
1415         Section = SectionTable[Record[5]-1];
1416       }
1417       GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
1418       if (Record.size() > 6)
1419         Visibility = GetDecodedVisibility(Record[6]);
1420       bool isThreadLocal = false;
1421       if (Record.size() > 7)
1422         isThreadLocal = Record[7];
1423 
1424       GlobalVariable *NewGV =
1425         new GlobalVariable(*TheModule, Ty, isConstant, Linkage, 0, "", 0,
1426                            isThreadLocal, AddressSpace);
1427       NewGV->setAlignment(Alignment);
1428       if (!Section.empty())
1429         NewGV->setSection(Section);
1430       NewGV->setVisibility(Visibility);
1431       NewGV->setThreadLocal(isThreadLocal);
1432 
1433       ValueList.push_back(NewGV);
1434 
1435       // Remember which value to use for the global initializer.
1436       if (unsigned InitID = Record[2])
1437         GlobalInits.push_back(std::make_pair(NewGV, InitID-1));
1438       break;
1439     }
1440     // FUNCTION:  [type, callingconv, isproto, linkage, paramattr,
1441     //             alignment, section, visibility, gc]
1442     case bitc::MODULE_CODE_FUNCTION: {
1443       if (Record.size() < 8)
1444         return Error("Invalid MODULE_CODE_FUNCTION record");
1445       const Type *Ty = getTypeByID(Record[0]);
1446       if (!isa<PointerType>(Ty))
1447         return Error("Function not a pointer type!");
1448       const FunctionType *FTy =
1449         dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType());
1450       if (!FTy)
1451         return Error("Function not a pointer to function type!");
1452 
1453       Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
1454                                         "", TheModule);
1455 
1456       Func->setCallingConv(static_cast<CallingConv::ID>(Record[1]));
1457       bool isProto = Record[2];
1458       Func->setLinkage(GetDecodedLinkage(Record[3]));
1459       Func->setAttributes(getAttributes(Record[4]));
1460 
1461       Func->setAlignment((1 << Record[5]) >> 1);
1462       if (Record[6]) {
1463         if (Record[6]-1 >= SectionTable.size())
1464           return Error("Invalid section ID");
1465         Func->setSection(SectionTable[Record[6]-1]);
1466       }
1467       Func->setVisibility(GetDecodedVisibility(Record[7]));
1468       if (Record.size() > 8 && Record[8]) {
1469         if (Record[8]-1 > GCTable.size())
1470           return Error("Invalid GC ID");
1471         Func->setGC(GCTable[Record[8]-1].c_str());
1472       }
1473       ValueList.push_back(Func);
1474 
1475       // If this is a function with a body, remember the prototype we are
1476       // creating now, so that we can match up the body with them later.
1477       if (!isProto)
1478         FunctionsWithBodies.push_back(Func);
1479       break;
1480     }
1481     // ALIAS: [alias type, aliasee val#, linkage]
1482     // ALIAS: [alias type, aliasee val#, linkage, visibility]
1483     case bitc::MODULE_CODE_ALIAS: {
1484       if (Record.size() < 3)
1485         return Error("Invalid MODULE_ALIAS record");
1486       const Type *Ty = getTypeByID(Record[0]);
1487       if (!isa<PointerType>(Ty))
1488         return Error("Function not a pointer type!");
1489 
1490       GlobalAlias *NewGA = new GlobalAlias(Ty, GetDecodedLinkage(Record[2]),
1491                                            "", 0, TheModule);
1492       // Old bitcode files didn't have visibility field.
1493       if (Record.size() > 3)
1494         NewGA->setVisibility(GetDecodedVisibility(Record[3]));
1495       ValueList.push_back(NewGA);
1496       AliasInits.push_back(std::make_pair(NewGA, Record[1]));
1497       break;
1498     }
1499     /// MODULE_CODE_PURGEVALS: [numvals]
1500     case bitc::MODULE_CODE_PURGEVALS:
1501       // Trim down the value list to the specified size.
1502       if (Record.size() < 1 || Record[0] > ValueList.size())
1503         return Error("Invalid MODULE_PURGEVALS record");
1504       ValueList.shrinkTo(Record[0]);
1505       break;
1506     }
1507     Record.clear();
1508   }
1509 
1510   return Error("Premature end of bitstream");
1511 }
1512 
1513 bool BitcodeReader::ParseBitcodeInto(Module *M) {
1514   TheModule = 0;
1515 
1516   if (Buffer->getBufferSize() & 3)
1517     return Error("Bitcode stream should be a multiple of 4 bytes in length");
1518 
1519   unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart();
1520   unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
1521 
1522   // If we have a wrapper header, parse it and ignore the non-bc file contents.
1523   // The magic number is 0x0B17C0DE stored in little endian.
1524   if (isBitcodeWrapper(BufPtr, BufEnd))
1525     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd))
1526       return Error("Invalid bitcode wrapper header");
1527 
1528   StreamFile.init(BufPtr, BufEnd);
1529   Stream.init(StreamFile);
1530 
1531   // Sniff for the signature.
1532   if (Stream.Read(8) != 'B' ||
1533       Stream.Read(8) != 'C' ||
1534       Stream.Read(4) != 0x0 ||
1535       Stream.Read(4) != 0xC ||
1536       Stream.Read(4) != 0xE ||
1537       Stream.Read(4) != 0xD)
1538     return Error("Invalid bitcode signature");
1539 
1540   // We expect a number of well-defined blocks, though we don't necessarily
1541   // need to understand them all.
1542   while (!Stream.AtEndOfStream()) {
1543     unsigned Code = Stream.ReadCode();
1544 
1545     if (Code != bitc::ENTER_SUBBLOCK)
1546       return Error("Invalid record at top-level");
1547 
1548     unsigned BlockID = Stream.ReadSubBlockID();
1549 
1550     // We only know the MODULE subblock ID.
1551     switch (BlockID) {
1552     case bitc::BLOCKINFO_BLOCK_ID:
1553       if (Stream.ReadBlockInfoBlock())
1554         return Error("Malformed BlockInfoBlock");
1555       break;
1556     case bitc::MODULE_BLOCK_ID:
1557       // Reject multiple MODULE_BLOCK's in a single bitstream.
1558       if (TheModule)
1559         return Error("Multiple MODULE_BLOCKs in same stream");
1560       TheModule = M;
1561       if (ParseModule())
1562         return true;
1563       break;
1564     default:
1565       if (Stream.SkipBlock())
1566         return Error("Malformed block record");
1567       break;
1568     }
1569   }
1570 
1571   return false;
1572 }
1573 
1574 /// ParseMetadataAttachment - Parse metadata attachments.
1575 bool BitcodeReader::ParseMetadataAttachment() {
1576   if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID))
1577     return Error("Malformed block record");
1578 
1579   SmallVector<uint64_t, 64> Record;
1580   while(1) {
1581     unsigned Code = Stream.ReadCode();
1582     if (Code == bitc::END_BLOCK) {
1583       if (Stream.ReadBlockEnd())
1584         return Error("Error at end of PARAMATTR block");
1585       break;
1586     }
1587     if (Code == bitc::DEFINE_ABBREV) {
1588       Stream.ReadAbbrevRecord();
1589       continue;
1590     }
1591     // Read a metadata attachment record.
1592     Record.clear();
1593     switch (Stream.ReadRecord(Code, Record)) {
1594     default:  // Default behavior: ignore.
1595       break;
1596     case bitc::METADATA_ATTACHMENT: {
1597       unsigned RecordLength = Record.size();
1598       if (Record.empty() || (RecordLength - 1) % 2 == 1)
1599         return Error ("Invalid METADATA_ATTACHMENT reader!");
1600       Instruction *Inst = InstructionList[Record[0]];
1601       for (unsigned i = 1; i != RecordLength; i = i+2) {
1602         unsigned Kind = Record[i];
1603         Value *Node = MDValueList.getValueFwdRef(Record[i+1]);
1604         Inst->setMetadata(Kind, cast<MDNode>(Node));
1605       }
1606       break;
1607     }
1608     }
1609   }
1610   return false;
1611 }
1612 
1613 /// ParseFunctionBody - Lazily parse the specified function body block.
1614 bool BitcodeReader::ParseFunctionBody(Function *F) {
1615   if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
1616     return Error("Malformed block record");
1617 
1618   unsigned ModuleValueListSize = ValueList.size();
1619 
1620   // Add all the function arguments to the value table.
1621   for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
1622     ValueList.push_back(I);
1623 
1624   unsigned NextValueNo = ValueList.size();
1625   BasicBlock *CurBB = 0;
1626   unsigned CurBBNo = 0;
1627 
1628   // Read all the records.
1629   SmallVector<uint64_t, 64> Record;
1630   while (1) {
1631     unsigned Code = Stream.ReadCode();
1632     if (Code == bitc::END_BLOCK) {
1633       if (Stream.ReadBlockEnd())
1634         return Error("Error at end of function block");
1635       break;
1636     }
1637 
1638     if (Code == bitc::ENTER_SUBBLOCK) {
1639       switch (Stream.ReadSubBlockID()) {
1640       default:  // Skip unknown content.
1641         if (Stream.SkipBlock())
1642           return Error("Malformed block record");
1643         break;
1644       case bitc::CONSTANTS_BLOCK_ID:
1645         if (ParseConstants()) return true;
1646         NextValueNo = ValueList.size();
1647         break;
1648       case bitc::VALUE_SYMTAB_BLOCK_ID:
1649         if (ParseValueSymbolTable()) return true;
1650         break;
1651       case bitc::METADATA_ATTACHMENT_ID:
1652         if (ParseMetadataAttachment()) return true;
1653         break;
1654       case bitc::METADATA_BLOCK_ID:
1655         if (ParseMetadata()) return true;
1656         break;
1657       }
1658       continue;
1659     }
1660 
1661     if (Code == bitc::DEFINE_ABBREV) {
1662       Stream.ReadAbbrevRecord();
1663       continue;
1664     }
1665 
1666     // Read a record.
1667     Record.clear();
1668     Instruction *I = 0;
1669     unsigned BitCode = Stream.ReadRecord(Code, Record);
1670     switch (BitCode) {
1671     default: // Default behavior: reject
1672       return Error("Unknown instruction");
1673     case bitc::FUNC_CODE_DECLAREBLOCKS:     // DECLAREBLOCKS: [nblocks]
1674       if (Record.size() < 1 || Record[0] == 0)
1675         return Error("Invalid DECLAREBLOCKS record");
1676       // Create all the basic blocks for the function.
1677       FunctionBBs.resize(Record[0]);
1678       for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
1679         FunctionBBs[i] = BasicBlock::Create(Context, "", F);
1680       CurBB = FunctionBBs[0];
1681       continue;
1682 
1683     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
1684       unsigned OpNum = 0;
1685       Value *LHS, *RHS;
1686       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
1687           getValue(Record, OpNum, LHS->getType(), RHS) ||
1688           OpNum+1 > Record.size())
1689         return Error("Invalid BINOP record");
1690 
1691       int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
1692       if (Opc == -1) return Error("Invalid BINOP record");
1693       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
1694       InstructionList.push_back(I);
1695       if (OpNum < Record.size()) {
1696         if (Opc == Instruction::Add ||
1697             Opc == Instruction::Sub ||
1698             Opc == Instruction::Mul) {
1699           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
1700             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
1701           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
1702             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
1703         } else if (Opc == Instruction::SDiv) {
1704           if (Record[OpNum] & (1 << bitc::SDIV_EXACT))
1705             cast<BinaryOperator>(I)->setIsExact(true);
1706         }
1707       }
1708       break;
1709     }
1710     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
1711       unsigned OpNum = 0;
1712       Value *Op;
1713       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
1714           OpNum+2 != Record.size())
1715         return Error("Invalid CAST record");
1716 
1717       const Type *ResTy = getTypeByID(Record[OpNum]);
1718       int Opc = GetDecodedCastOpcode(Record[OpNum+1]);
1719       if (Opc == -1 || ResTy == 0)
1720         return Error("Invalid CAST record");
1721       I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy);
1722       InstructionList.push_back(I);
1723       break;
1724     }
1725     case bitc::FUNC_CODE_INST_INBOUNDS_GEP:
1726     case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands]
1727       unsigned OpNum = 0;
1728       Value *BasePtr;
1729       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
1730         return Error("Invalid GEP record");
1731 
1732       SmallVector<Value*, 16> GEPIdx;
1733       while (OpNum != Record.size()) {
1734         Value *Op;
1735         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
1736           return Error("Invalid GEP record");
1737         GEPIdx.push_back(Op);
1738       }
1739 
1740       I = GetElementPtrInst::Create(BasePtr, GEPIdx.begin(), GEPIdx.end());
1741       InstructionList.push_back(I);
1742       if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP)
1743         cast<GetElementPtrInst>(I)->setIsInBounds(true);
1744       break;
1745     }
1746 
1747     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
1748                                        // EXTRACTVAL: [opty, opval, n x indices]
1749       unsigned OpNum = 0;
1750       Value *Agg;
1751       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
1752         return Error("Invalid EXTRACTVAL record");
1753 
1754       SmallVector<unsigned, 4> EXTRACTVALIdx;
1755       for (unsigned RecSize = Record.size();
1756            OpNum != RecSize; ++OpNum) {
1757         uint64_t Index = Record[OpNum];
1758         if ((unsigned)Index != Index)
1759           return Error("Invalid EXTRACTVAL index");
1760         EXTRACTVALIdx.push_back((unsigned)Index);
1761       }
1762 
1763       I = ExtractValueInst::Create(Agg,
1764                                    EXTRACTVALIdx.begin(), EXTRACTVALIdx.end());
1765       InstructionList.push_back(I);
1766       break;
1767     }
1768 
1769     case bitc::FUNC_CODE_INST_INSERTVAL: {
1770                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
1771       unsigned OpNum = 0;
1772       Value *Agg;
1773       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
1774         return Error("Invalid INSERTVAL record");
1775       Value *Val;
1776       if (getValueTypePair(Record, OpNum, NextValueNo, Val))
1777         return Error("Invalid INSERTVAL record");
1778 
1779       SmallVector<unsigned, 4> INSERTVALIdx;
1780       for (unsigned RecSize = Record.size();
1781            OpNum != RecSize; ++OpNum) {
1782         uint64_t Index = Record[OpNum];
1783         if ((unsigned)Index != Index)
1784           return Error("Invalid INSERTVAL index");
1785         INSERTVALIdx.push_back((unsigned)Index);
1786       }
1787 
1788       I = InsertValueInst::Create(Agg, Val,
1789                                   INSERTVALIdx.begin(), INSERTVALIdx.end());
1790       InstructionList.push_back(I);
1791       break;
1792     }
1793 
1794     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
1795       // obsolete form of select
1796       // handles select i1 ... in old bitcode
1797       unsigned OpNum = 0;
1798       Value *TrueVal, *FalseVal, *Cond;
1799       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
1800           getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
1801           getValue(Record, OpNum, Type::getInt1Ty(Context), Cond))
1802         return Error("Invalid SELECT record");
1803 
1804       I = SelectInst::Create(Cond, TrueVal, FalseVal);
1805       InstructionList.push_back(I);
1806       break;
1807     }
1808 
1809     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
1810       // new form of select
1811       // handles select i1 or select [N x i1]
1812       unsigned OpNum = 0;
1813       Value *TrueVal, *FalseVal, *Cond;
1814       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
1815           getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
1816           getValueTypePair(Record, OpNum, NextValueNo, Cond))
1817         return Error("Invalid SELECT record");
1818 
1819       // select condition can be either i1 or [N x i1]
1820       if (const VectorType* vector_type =
1821           dyn_cast<const VectorType>(Cond->getType())) {
1822         // expect <n x i1>
1823         if (vector_type->getElementType() != Type::getInt1Ty(Context))
1824           return Error("Invalid SELECT condition type");
1825       } else {
1826         // expect i1
1827         if (Cond->getType() != Type::getInt1Ty(Context))
1828           return Error("Invalid SELECT condition type");
1829       }
1830 
1831       I = SelectInst::Create(Cond, TrueVal, FalseVal);
1832       InstructionList.push_back(I);
1833       break;
1834     }
1835 
1836     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
1837       unsigned OpNum = 0;
1838       Value *Vec, *Idx;
1839       if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
1840           getValue(Record, OpNum, Type::getInt32Ty(Context), Idx))
1841         return Error("Invalid EXTRACTELT record");
1842       I = ExtractElementInst::Create(Vec, Idx);
1843       InstructionList.push_back(I);
1844       break;
1845     }
1846 
1847     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
1848       unsigned OpNum = 0;
1849       Value *Vec, *Elt, *Idx;
1850       if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
1851           getValue(Record, OpNum,
1852                    cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
1853           getValue(Record, OpNum, Type::getInt32Ty(Context), Idx))
1854         return Error("Invalid INSERTELT record");
1855       I = InsertElementInst::Create(Vec, Elt, Idx);
1856       InstructionList.push_back(I);
1857       break;
1858     }
1859 
1860     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
1861       unsigned OpNum = 0;
1862       Value *Vec1, *Vec2, *Mask;
1863       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
1864           getValue(Record, OpNum, Vec1->getType(), Vec2))
1865         return Error("Invalid SHUFFLEVEC record");
1866 
1867       if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
1868         return Error("Invalid SHUFFLEVEC record");
1869       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
1870       InstructionList.push_back(I);
1871       break;
1872     }
1873 
1874     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
1875       // Old form of ICmp/FCmp returning bool
1876       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
1877       // both legal on vectors but had different behaviour.
1878     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
1879       // FCmp/ICmp returning bool or vector of bool
1880 
1881       unsigned OpNum = 0;
1882       Value *LHS, *RHS;
1883       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
1884           getValue(Record, OpNum, LHS->getType(), RHS) ||
1885           OpNum+1 != Record.size())
1886         return Error("Invalid CMP record");
1887 
1888       if (LHS->getType()->isFPOrFPVector())
1889         I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS);
1890       else
1891         I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS);
1892       InstructionList.push_back(I);
1893       break;
1894     }
1895 
1896     case bitc::FUNC_CODE_INST_GETRESULT: { // GETRESULT: [ty, val, n]
1897       if (Record.size() != 2)
1898         return Error("Invalid GETRESULT record");
1899       unsigned OpNum = 0;
1900       Value *Op;
1901       getValueTypePair(Record, OpNum, NextValueNo, Op);
1902       unsigned Index = Record[1];
1903       I = ExtractValueInst::Create(Op, Index);
1904       InstructionList.push_back(I);
1905       break;
1906     }
1907 
1908     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
1909       {
1910         unsigned Size = Record.size();
1911         if (Size == 0) {
1912           I = ReturnInst::Create(Context);
1913           InstructionList.push_back(I);
1914           break;
1915         }
1916 
1917         unsigned OpNum = 0;
1918         SmallVector<Value *,4> Vs;
1919         do {
1920           Value *Op = NULL;
1921           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
1922             return Error("Invalid RET record");
1923           Vs.push_back(Op);
1924         } while(OpNum != Record.size());
1925 
1926         const Type *ReturnType = F->getReturnType();
1927         if (Vs.size() > 1 ||
1928             (isa<StructType>(ReturnType) &&
1929              (Vs.empty() || Vs[0]->getType() != ReturnType))) {
1930           Value *RV = UndefValue::get(ReturnType);
1931           for (unsigned i = 0, e = Vs.size(); i != e; ++i) {
1932             I = InsertValueInst::Create(RV, Vs[i], i, "mrv");
1933             InstructionList.push_back(I);
1934             CurBB->getInstList().push_back(I);
1935             ValueList.AssignValue(I, NextValueNo++);
1936             RV = I;
1937           }
1938           I = ReturnInst::Create(Context, RV);
1939           InstructionList.push_back(I);
1940           break;
1941         }
1942 
1943         I = ReturnInst::Create(Context, Vs[0]);
1944         InstructionList.push_back(I);
1945         break;
1946       }
1947     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
1948       if (Record.size() != 1 && Record.size() != 3)
1949         return Error("Invalid BR record");
1950       BasicBlock *TrueDest = getBasicBlock(Record[0]);
1951       if (TrueDest == 0)
1952         return Error("Invalid BR record");
1953 
1954       if (Record.size() == 1) {
1955         I = BranchInst::Create(TrueDest);
1956         InstructionList.push_back(I);
1957       }
1958       else {
1959         BasicBlock *FalseDest = getBasicBlock(Record[1]);
1960         Value *Cond = getFnValueByID(Record[2], Type::getInt1Ty(Context));
1961         if (FalseDest == 0 || Cond == 0)
1962           return Error("Invalid BR record");
1963         I = BranchInst::Create(TrueDest, FalseDest, Cond);
1964         InstructionList.push_back(I);
1965       }
1966       break;
1967     }
1968     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
1969       if (Record.size() < 3 || (Record.size() & 1) == 0)
1970         return Error("Invalid SWITCH record");
1971       const Type *OpTy = getTypeByID(Record[0]);
1972       Value *Cond = getFnValueByID(Record[1], OpTy);
1973       BasicBlock *Default = getBasicBlock(Record[2]);
1974       if (OpTy == 0 || Cond == 0 || Default == 0)
1975         return Error("Invalid SWITCH record");
1976       unsigned NumCases = (Record.size()-3)/2;
1977       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
1978       InstructionList.push_back(SI);
1979       for (unsigned i = 0, e = NumCases; i != e; ++i) {
1980         ConstantInt *CaseVal =
1981           dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
1982         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
1983         if (CaseVal == 0 || DestBB == 0) {
1984           delete SI;
1985           return Error("Invalid SWITCH record!");
1986         }
1987         SI->addCase(CaseVal, DestBB);
1988       }
1989       I = SI;
1990       break;
1991     }
1992     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
1993       if (Record.size() < 2)
1994         return Error("Invalid INDIRECTBR record");
1995       const Type *OpTy = getTypeByID(Record[0]);
1996       Value *Address = getFnValueByID(Record[1], OpTy);
1997       if (OpTy == 0 || Address == 0)
1998         return Error("Invalid INDIRECTBR record");
1999       unsigned NumDests = Record.size()-2;
2000       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
2001       InstructionList.push_back(IBI);
2002       for (unsigned i = 0, e = NumDests; i != e; ++i) {
2003         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
2004           IBI->addDestination(DestBB);
2005         } else {
2006           delete IBI;
2007           return Error("Invalid INDIRECTBR record!");
2008         }
2009       }
2010       I = IBI;
2011       break;
2012     }
2013 
2014     case bitc::FUNC_CODE_INST_INVOKE: {
2015       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
2016       if (Record.size() < 4) return Error("Invalid INVOKE record");
2017       AttrListPtr PAL = getAttributes(Record[0]);
2018       unsigned CCInfo = Record[1];
2019       BasicBlock *NormalBB = getBasicBlock(Record[2]);
2020       BasicBlock *UnwindBB = getBasicBlock(Record[3]);
2021 
2022       unsigned OpNum = 4;
2023       Value *Callee;
2024       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
2025         return Error("Invalid INVOKE record");
2026 
2027       const PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
2028       const FunctionType *FTy = !CalleeTy ? 0 :
2029         dyn_cast<FunctionType>(CalleeTy->getElementType());
2030 
2031       // Check that the right number of fixed parameters are here.
2032       if (FTy == 0 || NormalBB == 0 || UnwindBB == 0 ||
2033           Record.size() < OpNum+FTy->getNumParams())
2034         return Error("Invalid INVOKE record");
2035 
2036       SmallVector<Value*, 16> Ops;
2037       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
2038         Ops.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
2039         if (Ops.back() == 0) return Error("Invalid INVOKE record");
2040       }
2041 
2042       if (!FTy->isVarArg()) {
2043         if (Record.size() != OpNum)
2044           return Error("Invalid INVOKE record");
2045       } else {
2046         // Read type/value pairs for varargs params.
2047         while (OpNum != Record.size()) {
2048           Value *Op;
2049           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2050             return Error("Invalid INVOKE record");
2051           Ops.push_back(Op);
2052         }
2053       }
2054 
2055       I = InvokeInst::Create(Callee, NormalBB, UnwindBB,
2056                              Ops.begin(), Ops.end());
2057       InstructionList.push_back(I);
2058       cast<InvokeInst>(I)->setCallingConv(
2059         static_cast<CallingConv::ID>(CCInfo));
2060       cast<InvokeInst>(I)->setAttributes(PAL);
2061       break;
2062     }
2063     case bitc::FUNC_CODE_INST_UNWIND: // UNWIND
2064       I = new UnwindInst(Context);
2065       InstructionList.push_back(I);
2066       break;
2067     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
2068       I = new UnreachableInst(Context);
2069       InstructionList.push_back(I);
2070       break;
2071     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
2072       if (Record.size() < 1 || ((Record.size()-1)&1))
2073         return Error("Invalid PHI record");
2074       const Type *Ty = getTypeByID(Record[0]);
2075       if (!Ty) return Error("Invalid PHI record");
2076 
2077       PHINode *PN = PHINode::Create(Ty);
2078       InstructionList.push_back(PN);
2079       PN->reserveOperandSpace((Record.size()-1)/2);
2080 
2081       for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
2082         Value *V = getFnValueByID(Record[1+i], Ty);
2083         BasicBlock *BB = getBasicBlock(Record[2+i]);
2084         if (!V || !BB) return Error("Invalid PHI record");
2085         PN->addIncoming(V, BB);
2086       }
2087       I = PN;
2088       break;
2089     }
2090 
2091     case bitc::FUNC_CODE_INST_MALLOC: { // MALLOC: [instty, op, align]
2092       // Autoupgrade malloc instruction to malloc call.
2093       // FIXME: Remove in LLVM 3.0.
2094       if (Record.size() < 3)
2095         return Error("Invalid MALLOC record");
2096       const PointerType *Ty =
2097         dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
2098       Value *Size = getFnValueByID(Record[1], Type::getInt32Ty(Context));
2099       if (!Ty || !Size) return Error("Invalid MALLOC record");
2100       if (!CurBB) return Error("Invalid malloc instruction with no BB");
2101       const Type *Int32Ty = IntegerType::getInt32Ty(CurBB->getContext());
2102       Constant *AllocSize = ConstantExpr::getSizeOf(Ty->getElementType());
2103       AllocSize = ConstantExpr::getTruncOrBitCast(AllocSize, Int32Ty);
2104       I = CallInst::CreateMalloc(CurBB, Int32Ty, Ty->getElementType(),
2105                                  AllocSize, Size, NULL);
2106       InstructionList.push_back(I);
2107       break;
2108     }
2109     case bitc::FUNC_CODE_INST_FREE: { // FREE: [op, opty]
2110       unsigned OpNum = 0;
2111       Value *Op;
2112       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2113           OpNum != Record.size())
2114         return Error("Invalid FREE record");
2115       if (!CurBB) return Error("Invalid free instruction with no BB");
2116       I = CallInst::CreateFree(Op, CurBB);
2117       InstructionList.push_back(I);
2118       break;
2119     }
2120     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, op, align]
2121       if (Record.size() < 3)
2122         return Error("Invalid ALLOCA record");
2123       const PointerType *Ty =
2124         dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
2125       Value *Size = getFnValueByID(Record[1], Type::getInt32Ty(Context));
2126       unsigned Align = Record[2];
2127       if (!Ty || !Size) return Error("Invalid ALLOCA record");
2128       I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1);
2129       InstructionList.push_back(I);
2130       break;
2131     }
2132     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
2133       unsigned OpNum = 0;
2134       Value *Op;
2135       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2136           OpNum+2 != Record.size())
2137         return Error("Invalid LOAD record");
2138 
2139       I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2140       InstructionList.push_back(I);
2141       break;
2142     }
2143     case bitc::FUNC_CODE_INST_STORE2: { // STORE2:[ptrty, ptr, val, align, vol]
2144       unsigned OpNum = 0;
2145       Value *Val, *Ptr;
2146       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
2147           getValue(Record, OpNum,
2148                     cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
2149           OpNum+2 != Record.size())
2150         return Error("Invalid STORE record");
2151 
2152       I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2153       InstructionList.push_back(I);
2154       break;
2155     }
2156     case bitc::FUNC_CODE_INST_STORE: { // STORE:[val, valty, ptr, align, vol]
2157       // FIXME: Legacy form of store instruction. Should be removed in LLVM 3.0.
2158       unsigned OpNum = 0;
2159       Value *Val, *Ptr;
2160       if (getValueTypePair(Record, OpNum, NextValueNo, Val) ||
2161           getValue(Record, OpNum,
2162                    PointerType::getUnqual(Val->getType()), Ptr)||
2163           OpNum+2 != Record.size())
2164         return Error("Invalid STORE record");
2165 
2166       I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2167       InstructionList.push_back(I);
2168       break;
2169     }
2170     case bitc::FUNC_CODE_INST_CALL: {
2171       // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...]
2172       if (Record.size() < 3)
2173         return Error("Invalid CALL record");
2174 
2175       AttrListPtr PAL = getAttributes(Record[0]);
2176       unsigned CCInfo = Record[1];
2177 
2178       unsigned OpNum = 2;
2179       Value *Callee;
2180       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
2181         return Error("Invalid CALL record");
2182 
2183       const PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
2184       const FunctionType *FTy = 0;
2185       if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType());
2186       if (!FTy || Record.size() < FTy->getNumParams()+OpNum)
2187         return Error("Invalid CALL record");
2188 
2189       SmallVector<Value*, 16> Args;
2190       // Read the fixed params.
2191       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
2192         if (FTy->getParamType(i)->getTypeID()==Type::LabelTyID)
2193           Args.push_back(getBasicBlock(Record[OpNum]));
2194         else
2195           Args.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
2196         if (Args.back() == 0) return Error("Invalid CALL record");
2197       }
2198 
2199       // Read type/value pairs for varargs params.
2200       if (!FTy->isVarArg()) {
2201         if (OpNum != Record.size())
2202           return Error("Invalid CALL record");
2203       } else {
2204         while (OpNum != Record.size()) {
2205           Value *Op;
2206           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2207             return Error("Invalid CALL record");
2208           Args.push_back(Op);
2209         }
2210       }
2211 
2212       I = CallInst::Create(Callee, Args.begin(), Args.end());
2213       InstructionList.push_back(I);
2214       cast<CallInst>(I)->setCallingConv(
2215         static_cast<CallingConv::ID>(CCInfo>>1));
2216       cast<CallInst>(I)->setTailCall(CCInfo & 1);
2217       cast<CallInst>(I)->setAttributes(PAL);
2218       break;
2219     }
2220     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
2221       if (Record.size() < 3)
2222         return Error("Invalid VAARG record");
2223       const Type *OpTy = getTypeByID(Record[0]);
2224       Value *Op = getFnValueByID(Record[1], OpTy);
2225       const Type *ResTy = getTypeByID(Record[2]);
2226       if (!OpTy || !Op || !ResTy)
2227         return Error("Invalid VAARG record");
2228       I = new VAArgInst(Op, ResTy);
2229       InstructionList.push_back(I);
2230       break;
2231     }
2232     }
2233 
2234     // Add instruction to end of current BB.  If there is no current BB, reject
2235     // this file.
2236     if (CurBB == 0) {
2237       delete I;
2238       return Error("Invalid instruction with no BB");
2239     }
2240     CurBB->getInstList().push_back(I);
2241 
2242     // If this was a terminator instruction, move to the next block.
2243     if (isa<TerminatorInst>(I)) {
2244       ++CurBBNo;
2245       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : 0;
2246     }
2247 
2248     // Non-void values get registered in the value table for future use.
2249     if (I && !I->getType()->isVoidTy())
2250       ValueList.AssignValue(I, NextValueNo++);
2251   }
2252 
2253   // Check the function list for unresolved values.
2254   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
2255     if (A->getParent() == 0) {
2256       // We found at least one unresolved value.  Nuke them all to avoid leaks.
2257       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
2258         if ((A = dyn_cast<Argument>(ValueList.back())) && A->getParent() == 0) {
2259           A->replaceAllUsesWith(UndefValue::get(A->getType()));
2260           delete A;
2261         }
2262       }
2263       return Error("Never resolved value found in function!");
2264     }
2265   }
2266 
2267   // See if anything took the address of blocks in this function.  If so,
2268   // resolve them now.
2269   /// BlockAddrFwdRefs - These are blockaddr references to basic blocks.  These
2270   /// are resolved lazily when functions are loaded.
2271   DenseMap<Function*, std::vector<BlockAddrRefTy> >::iterator BAFRI =
2272     BlockAddrFwdRefs.find(F);
2273   if (BAFRI != BlockAddrFwdRefs.end()) {
2274     std::vector<BlockAddrRefTy> &RefList = BAFRI->second;
2275     for (unsigned i = 0, e = RefList.size(); i != e; ++i) {
2276       unsigned BlockIdx = RefList[i].first;
2277       if (BlockIdx >= FunctionBBs.size())
2278         return Error("Invalid blockaddress block #");
2279 
2280       GlobalVariable *FwdRef = RefList[i].second;
2281       FwdRef->replaceAllUsesWith(BlockAddress::get(F, FunctionBBs[BlockIdx]));
2282       FwdRef->eraseFromParent();
2283     }
2284 
2285     BlockAddrFwdRefs.erase(BAFRI);
2286   }
2287 
2288   // Trim the value list down to the size it was before we parsed this function.
2289   ValueList.shrinkTo(ModuleValueListSize);
2290   std::vector<BasicBlock*>().swap(FunctionBBs);
2291 
2292   return false;
2293 }
2294 
2295 //===----------------------------------------------------------------------===//
2296 // GVMaterializer implementation
2297 //===----------------------------------------------------------------------===//
2298 
2299 
2300 bool BitcodeReader::isMaterializable(const GlobalValue *GV) const {
2301   if (const Function *F = dyn_cast<Function>(GV)) {
2302     return F->isDeclaration() &&
2303       DeferredFunctionInfo.count(const_cast<Function*>(F));
2304   }
2305   return false;
2306 }
2307 
2308 bool BitcodeReader::Materialize(GlobalValue *GV, std::string *ErrInfo) {
2309   Function *F = dyn_cast<Function>(GV);
2310   // If it's not a function or is already material, ignore the request.
2311   if (!F || !F->isMaterializable()) return false;
2312 
2313   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
2314   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
2315 
2316   // Move the bit stream to the saved position of the deferred function body.
2317   Stream.JumpToBit(DFII->second);
2318 
2319   if (ParseFunctionBody(F)) {
2320     if (ErrInfo) *ErrInfo = ErrorString;
2321     return true;
2322   }
2323 
2324   // Upgrade any old intrinsic calls in the function.
2325   for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(),
2326        E = UpgradedIntrinsics.end(); I != E; ++I) {
2327     if (I->first != I->second) {
2328       for (Value::use_iterator UI = I->first->use_begin(),
2329            UE = I->first->use_end(); UI != UE; ) {
2330         if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2331           UpgradeIntrinsicCall(CI, I->second);
2332       }
2333     }
2334   }
2335 
2336   return false;
2337 }
2338 
2339 bool BitcodeReader::isDematerializable(const GlobalValue *GV) const {
2340   const Function *F = dyn_cast<Function>(GV);
2341   if (!F || F->isDeclaration())
2342     return false;
2343   return DeferredFunctionInfo.count(const_cast<Function*>(F));
2344 }
2345 
2346 void BitcodeReader::Dematerialize(GlobalValue *GV) {
2347   Function *F = dyn_cast<Function>(GV);
2348   // If this function isn't dematerializable, this is a noop.
2349   if (!F || !isDematerializable(F))
2350     return;
2351 
2352   assert(DeferredFunctionInfo.count(F) && "No info to read function later?");
2353 
2354   // Just forget the function body, we can remat it later.
2355   F->deleteBody();
2356 }
2357 
2358 
2359 bool BitcodeReader::MaterializeModule(Module *M, std::string *ErrInfo) {
2360   assert(M == TheModule &&
2361          "Can only Materialize the Module this BitcodeReader is attached to.");
2362   // Iterate over the module, deserializing any functions that are still on
2363   // disk.
2364   for (Module::iterator F = TheModule->begin(), E = TheModule->end();
2365        F != E; ++F)
2366     if (F->isMaterializable() &&
2367         Materialize(F, ErrInfo))
2368       return true;
2369 
2370   // Upgrade any intrinsic calls that slipped through (should not happen!) and
2371   // delete the old functions to clean up. We can't do this unless the entire
2372   // module is materialized because there could always be another function body
2373   // with calls to the old function.
2374   for (std::vector<std::pair<Function*, Function*> >::iterator I =
2375        UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) {
2376     if (I->first != I->second) {
2377       for (Value::use_iterator UI = I->first->use_begin(),
2378            UE = I->first->use_end(); UI != UE; ) {
2379         if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2380           UpgradeIntrinsicCall(CI, I->second);
2381       }
2382       if (!I->first->use_empty())
2383         I->first->replaceAllUsesWith(I->second);
2384       I->first->eraseFromParent();
2385     }
2386   }
2387   std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics);
2388 
2389   // Check debug info intrinsics.
2390   CheckDebugInfoIntrinsics(TheModule);
2391 
2392   return false;
2393 }
2394 
2395 
2396 //===----------------------------------------------------------------------===//
2397 // External interface
2398 //===----------------------------------------------------------------------===//
2399 
2400 /// getLazyBitcodeModule - lazy function-at-a-time loading from a file.
2401 ///
2402 Module *llvm::getLazyBitcodeModule(MemoryBuffer *Buffer,
2403                                    LLVMContext& Context,
2404                                    std::string *ErrMsg) {
2405   Module *M = new Module(Buffer->getBufferIdentifier(), Context);
2406   BitcodeReader *R = new BitcodeReader(Buffer, Context);
2407   M->setMaterializer(R);
2408   if (R->ParseBitcodeInto(M)) {
2409     if (ErrMsg)
2410       *ErrMsg = R->getErrorString();
2411 
2412     delete M;  // Also deletes R.
2413     return 0;
2414   }
2415   // Have the BitcodeReader dtor delete 'Buffer'.
2416   R->setBufferOwned(true);
2417   return M;
2418 }
2419 
2420 /// ParseBitcodeFile - Read the specified bitcode file, returning the module.
2421 /// If an error occurs, return null and fill in *ErrMsg if non-null.
2422 Module *llvm::ParseBitcodeFile(MemoryBuffer *Buffer, LLVMContext& Context,
2423                                std::string *ErrMsg){
2424   Module *M = getLazyBitcodeModule(Buffer, Context, ErrMsg);
2425   if (!M) return 0;
2426 
2427   // Don't let the BitcodeReader dtor delete 'Buffer', regardless of whether
2428   // there was an error.
2429   static_cast<BitcodeReader*>(M->getMaterializer())->setBufferOwned(false);
2430 
2431   // Read in the entire module, and destroy the BitcodeReader.
2432   if (M->MaterializeAllPermanently(ErrMsg)) {
2433     delete M;
2434     return NULL;
2435   }
2436   return M;
2437 }
2438