1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Bitcode/BitcodeReader.h" 10 #include "MetadataLoader.h" 11 #include "ValueList.h" 12 #include "llvm/ADT/APFloat.h" 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallString.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/ADT/StringRef.h" 20 #include "llvm/ADT/Twine.h" 21 #include "llvm/Bitcode/BitcodeCommon.h" 22 #include "llvm/Bitcode/LLVMBitCodes.h" 23 #include "llvm/Bitstream/BitstreamReader.h" 24 #include "llvm/Config/llvm-config.h" 25 #include "llvm/IR/Argument.h" 26 #include "llvm/IR/AttributeMask.h" 27 #include "llvm/IR/Attributes.h" 28 #include "llvm/IR/AutoUpgrade.h" 29 #include "llvm/IR/BasicBlock.h" 30 #include "llvm/IR/CallingConv.h" 31 #include "llvm/IR/Comdat.h" 32 #include "llvm/IR/Constant.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/DebugInfo.h" 36 #include "llvm/IR/DebugInfoMetadata.h" 37 #include "llvm/IR/DebugLoc.h" 38 #include "llvm/IR/DerivedTypes.h" 39 #include "llvm/IR/Function.h" 40 #include "llvm/IR/GVMaterializer.h" 41 #include "llvm/IR/GetElementPtrTypeIterator.h" 42 #include "llvm/IR/GlobalAlias.h" 43 #include "llvm/IR/GlobalIFunc.h" 44 #include "llvm/IR/GlobalObject.h" 45 #include "llvm/IR/GlobalValue.h" 46 #include "llvm/IR/GlobalVariable.h" 47 #include "llvm/IR/InlineAsm.h" 48 #include "llvm/IR/InstIterator.h" 49 #include "llvm/IR/InstrTypes.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/IntrinsicsAArch64.h" 54 #include "llvm/IR/IntrinsicsARM.h" 55 #include "llvm/IR/LLVMContext.h" 56 #include "llvm/IR/Metadata.h" 57 #include "llvm/IR/Module.h" 58 #include "llvm/IR/ModuleSummaryIndex.h" 59 #include "llvm/IR/Operator.h" 60 #include "llvm/IR/Type.h" 61 #include "llvm/IR/Value.h" 62 #include "llvm/IR/Verifier.h" 63 #include "llvm/Support/AtomicOrdering.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Compiler.h" 67 #include "llvm/Support/Debug.h" 68 #include "llvm/Support/Error.h" 69 #include "llvm/Support/ErrorHandling.h" 70 #include "llvm/Support/ErrorOr.h" 71 #include "llvm/Support/MathExtras.h" 72 #include "llvm/Support/MemoryBuffer.h" 73 #include "llvm/Support/ModRef.h" 74 #include "llvm/Support/raw_ostream.h" 75 #include "llvm/TargetParser/Triple.h" 76 #include <algorithm> 77 #include <cassert> 78 #include <cstddef> 79 #include <cstdint> 80 #include <deque> 81 #include <map> 82 #include <memory> 83 #include <optional> 84 #include <set> 85 #include <string> 86 #include <system_error> 87 #include <tuple> 88 #include <utility> 89 #include <vector> 90 91 using namespace llvm; 92 93 static cl::opt<bool> PrintSummaryGUIDs( 94 "print-summary-global-ids", cl::init(false), cl::Hidden, 95 cl::desc( 96 "Print the global id for each value when reading the module summary")); 97 98 static cl::opt<bool> ExpandConstantExprs( 99 "expand-constant-exprs", cl::Hidden, 100 cl::desc( 101 "Expand constant expressions to instructions for testing purposes")); 102 103 namespace { 104 105 enum { 106 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 107 }; 108 109 } // end anonymous namespace 110 111 static Error error(const Twine &Message) { 112 return make_error<StringError>( 113 Message, make_error_code(BitcodeError::CorruptedBitcode)); 114 } 115 116 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) { 117 if (!Stream.canSkipToPos(4)) 118 return createStringError(std::errc::illegal_byte_sequence, 119 "file too small to contain bitcode header"); 120 for (unsigned C : {'B', 'C'}) 121 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) { 122 if (Res.get() != C) 123 return createStringError(std::errc::illegal_byte_sequence, 124 "file doesn't start with bitcode header"); 125 } else 126 return Res.takeError(); 127 for (unsigned C : {0x0, 0xC, 0xE, 0xD}) 128 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) { 129 if (Res.get() != C) 130 return createStringError(std::errc::illegal_byte_sequence, 131 "file doesn't start with bitcode header"); 132 } else 133 return Res.takeError(); 134 return Error::success(); 135 } 136 137 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) { 138 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart(); 139 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize(); 140 141 if (Buffer.getBufferSize() & 3) 142 return error("Invalid bitcode signature"); 143 144 // If we have a wrapper header, parse it and ignore the non-bc file contents. 145 // The magic number is 0x0B17C0DE stored in little endian. 146 if (isBitcodeWrapper(BufPtr, BufEnd)) 147 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 148 return error("Invalid bitcode wrapper header"); 149 150 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd)); 151 if (Error Err = hasInvalidBitcodeHeader(Stream)) 152 return std::move(Err); 153 154 return std::move(Stream); 155 } 156 157 /// Convert a string from a record into an std::string, return true on failure. 158 template <typename StrTy> 159 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 160 StrTy &Result) { 161 if (Idx > Record.size()) 162 return true; 163 164 Result.append(Record.begin() + Idx, Record.end()); 165 return false; 166 } 167 168 // Strip all the TBAA attachment for the module. 169 static void stripTBAA(Module *M) { 170 for (auto &F : *M) { 171 if (F.isMaterializable()) 172 continue; 173 for (auto &I : instructions(F)) 174 I.setMetadata(LLVMContext::MD_tbaa, nullptr); 175 } 176 } 177 178 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the 179 /// "epoch" encoded in the bitcode, and return the producer name if any. 180 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) { 181 if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 182 return std::move(Err); 183 184 // Read all the records. 185 SmallVector<uint64_t, 64> Record; 186 187 std::string ProducerIdentification; 188 189 while (true) { 190 BitstreamEntry Entry; 191 if (Error E = Stream.advance().moveInto(Entry)) 192 return std::move(E); 193 194 switch (Entry.Kind) { 195 default: 196 case BitstreamEntry::Error: 197 return error("Malformed block"); 198 case BitstreamEntry::EndBlock: 199 return ProducerIdentification; 200 case BitstreamEntry::Record: 201 // The interesting case. 202 break; 203 } 204 205 // Read a record. 206 Record.clear(); 207 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 208 if (!MaybeBitCode) 209 return MaybeBitCode.takeError(); 210 switch (MaybeBitCode.get()) { 211 default: // Default behavior: reject 212 return error("Invalid value"); 213 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N] 214 convertToString(Record, 0, ProducerIdentification); 215 break; 216 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 217 unsigned epoch = (unsigned)Record[0]; 218 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 219 return error( 220 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 221 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 222 } 223 } 224 } 225 } 226 } 227 228 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) { 229 // We expect a number of well-defined blocks, though we don't necessarily 230 // need to understand them all. 231 while (true) { 232 if (Stream.AtEndOfStream()) 233 return ""; 234 235 BitstreamEntry Entry; 236 if (Error E = Stream.advance().moveInto(Entry)) 237 return std::move(E); 238 239 switch (Entry.Kind) { 240 case BitstreamEntry::EndBlock: 241 case BitstreamEntry::Error: 242 return error("Malformed block"); 243 244 case BitstreamEntry::SubBlock: 245 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) 246 return readIdentificationBlock(Stream); 247 248 // Ignore other sub-blocks. 249 if (Error Err = Stream.SkipBlock()) 250 return std::move(Err); 251 continue; 252 case BitstreamEntry::Record: 253 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 254 return std::move(E); 255 continue; 256 } 257 } 258 } 259 260 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) { 261 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 262 return std::move(Err); 263 264 SmallVector<uint64_t, 64> Record; 265 // Read all the records for this module. 266 267 while (true) { 268 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 269 if (!MaybeEntry) 270 return MaybeEntry.takeError(); 271 BitstreamEntry Entry = MaybeEntry.get(); 272 273 switch (Entry.Kind) { 274 case BitstreamEntry::SubBlock: // Handled for us already. 275 case BitstreamEntry::Error: 276 return error("Malformed block"); 277 case BitstreamEntry::EndBlock: 278 return false; 279 case BitstreamEntry::Record: 280 // The interesting case. 281 break; 282 } 283 284 // Read a record. 285 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 286 if (!MaybeRecord) 287 return MaybeRecord.takeError(); 288 switch (MaybeRecord.get()) { 289 default: 290 break; // Default behavior, ignore unknown content. 291 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 292 std::string S; 293 if (convertToString(Record, 0, S)) 294 return error("Invalid section name record"); 295 // Check for the i386 and other (x86_64, ARM) conventions 296 if (S.find("__DATA,__objc_catlist") != std::string::npos || 297 S.find("__OBJC,__category") != std::string::npos) 298 return true; 299 break; 300 } 301 } 302 Record.clear(); 303 } 304 llvm_unreachable("Exit infinite loop"); 305 } 306 307 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) { 308 // We expect a number of well-defined blocks, though we don't necessarily 309 // need to understand them all. 310 while (true) { 311 BitstreamEntry Entry; 312 if (Error E = Stream.advance().moveInto(Entry)) 313 return std::move(E); 314 315 switch (Entry.Kind) { 316 case BitstreamEntry::Error: 317 return error("Malformed block"); 318 case BitstreamEntry::EndBlock: 319 return false; 320 321 case BitstreamEntry::SubBlock: 322 if (Entry.ID == bitc::MODULE_BLOCK_ID) 323 return hasObjCCategoryInModule(Stream); 324 325 // Ignore other sub-blocks. 326 if (Error Err = Stream.SkipBlock()) 327 return std::move(Err); 328 continue; 329 330 case BitstreamEntry::Record: 331 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 332 return std::move(E); 333 continue; 334 } 335 } 336 } 337 338 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) { 339 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 340 return std::move(Err); 341 342 SmallVector<uint64_t, 64> Record; 343 344 std::string Triple; 345 346 // Read all the records for this module. 347 while (true) { 348 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 349 if (!MaybeEntry) 350 return MaybeEntry.takeError(); 351 BitstreamEntry Entry = MaybeEntry.get(); 352 353 switch (Entry.Kind) { 354 case BitstreamEntry::SubBlock: // Handled for us already. 355 case BitstreamEntry::Error: 356 return error("Malformed block"); 357 case BitstreamEntry::EndBlock: 358 return Triple; 359 case BitstreamEntry::Record: 360 // The interesting case. 361 break; 362 } 363 364 // Read a record. 365 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 366 if (!MaybeRecord) 367 return MaybeRecord.takeError(); 368 switch (MaybeRecord.get()) { 369 default: break; // Default behavior, ignore unknown content. 370 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 371 std::string S; 372 if (convertToString(Record, 0, S)) 373 return error("Invalid triple record"); 374 Triple = S; 375 break; 376 } 377 } 378 Record.clear(); 379 } 380 llvm_unreachable("Exit infinite loop"); 381 } 382 383 static Expected<std::string> readTriple(BitstreamCursor &Stream) { 384 // We expect a number of well-defined blocks, though we don't necessarily 385 // need to understand them all. 386 while (true) { 387 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 388 if (!MaybeEntry) 389 return MaybeEntry.takeError(); 390 BitstreamEntry Entry = MaybeEntry.get(); 391 392 switch (Entry.Kind) { 393 case BitstreamEntry::Error: 394 return error("Malformed block"); 395 case BitstreamEntry::EndBlock: 396 return ""; 397 398 case BitstreamEntry::SubBlock: 399 if (Entry.ID == bitc::MODULE_BLOCK_ID) 400 return readModuleTriple(Stream); 401 402 // Ignore other sub-blocks. 403 if (Error Err = Stream.SkipBlock()) 404 return std::move(Err); 405 continue; 406 407 case BitstreamEntry::Record: 408 if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 409 continue; 410 else 411 return Skipped.takeError(); 412 } 413 } 414 } 415 416 namespace { 417 418 class BitcodeReaderBase { 419 protected: 420 BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab) 421 : Stream(std::move(Stream)), Strtab(Strtab) { 422 this->Stream.setBlockInfo(&BlockInfo); 423 } 424 425 BitstreamBlockInfo BlockInfo; 426 BitstreamCursor Stream; 427 StringRef Strtab; 428 429 /// In version 2 of the bitcode we store names of global values and comdats in 430 /// a string table rather than in the VST. 431 bool UseStrtab = false; 432 433 Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record); 434 435 /// If this module uses a string table, pop the reference to the string table 436 /// and return the referenced string and the rest of the record. Otherwise 437 /// just return the record itself. 438 std::pair<StringRef, ArrayRef<uint64_t>> 439 readNameFromStrtab(ArrayRef<uint64_t> Record); 440 441 Error readBlockInfo(); 442 443 // Contains an arbitrary and optional string identifying the bitcode producer 444 std::string ProducerIdentification; 445 446 Error error(const Twine &Message); 447 }; 448 449 } // end anonymous namespace 450 451 Error BitcodeReaderBase::error(const Twine &Message) { 452 std::string FullMsg = Message.str(); 453 if (!ProducerIdentification.empty()) 454 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " + 455 LLVM_VERSION_STRING "')"; 456 return ::error(FullMsg); 457 } 458 459 Expected<unsigned> 460 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) { 461 if (Record.empty()) 462 return error("Invalid version record"); 463 unsigned ModuleVersion = Record[0]; 464 if (ModuleVersion > 2) 465 return error("Invalid value"); 466 UseStrtab = ModuleVersion >= 2; 467 return ModuleVersion; 468 } 469 470 std::pair<StringRef, ArrayRef<uint64_t>> 471 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) { 472 if (!UseStrtab) 473 return {"", Record}; 474 // Invalid reference. Let the caller complain about the record being empty. 475 if (Record[0] + Record[1] > Strtab.size()) 476 return {"", {}}; 477 return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)}; 478 } 479 480 namespace { 481 482 /// This represents a constant expression or constant aggregate using a custom 483 /// structure internal to the bitcode reader. Later, this structure will be 484 /// expanded by materializeValue() either into a constant expression/aggregate, 485 /// or into an instruction sequence at the point of use. This allows us to 486 /// upgrade bitcode using constant expressions even if this kind of constant 487 /// expression is no longer supported. 488 class BitcodeConstant final : public Value, 489 TrailingObjects<BitcodeConstant, unsigned> { 490 friend TrailingObjects; 491 492 // Value subclass ID: Pick largest possible value to avoid any clashes. 493 static constexpr uint8_t SubclassID = 255; 494 495 public: 496 // Opcodes used for non-expressions. This includes constant aggregates 497 // (struct, array, vector) that might need expansion, as well as non-leaf 498 // constants that don't need expansion (no_cfi, dso_local, blockaddress), 499 // but still go through BitcodeConstant to avoid different uselist orders 500 // between the two cases. 501 static constexpr uint8_t ConstantStructOpcode = 255; 502 static constexpr uint8_t ConstantArrayOpcode = 254; 503 static constexpr uint8_t ConstantVectorOpcode = 253; 504 static constexpr uint8_t NoCFIOpcode = 252; 505 static constexpr uint8_t DSOLocalEquivalentOpcode = 251; 506 static constexpr uint8_t BlockAddressOpcode = 250; 507 static constexpr uint8_t FirstSpecialOpcode = BlockAddressOpcode; 508 509 // Separate struct to make passing different number of parameters to 510 // BitcodeConstant::create() more convenient. 511 struct ExtraInfo { 512 uint8_t Opcode; 513 uint8_t Flags; 514 unsigned Extra; 515 Type *SrcElemTy; 516 517 ExtraInfo(uint8_t Opcode, uint8_t Flags = 0, unsigned Extra = 0, 518 Type *SrcElemTy = nullptr) 519 : Opcode(Opcode), Flags(Flags), Extra(Extra), SrcElemTy(SrcElemTy) {} 520 }; 521 522 uint8_t Opcode; 523 uint8_t Flags; 524 unsigned NumOperands; 525 unsigned Extra; // GEP inrange index or blockaddress BB id. 526 Type *SrcElemTy; // GEP source element type. 527 528 private: 529 BitcodeConstant(Type *Ty, const ExtraInfo &Info, ArrayRef<unsigned> OpIDs) 530 : Value(Ty, SubclassID), Opcode(Info.Opcode), Flags(Info.Flags), 531 NumOperands(OpIDs.size()), Extra(Info.Extra), 532 SrcElemTy(Info.SrcElemTy) { 533 std::uninitialized_copy(OpIDs.begin(), OpIDs.end(), 534 getTrailingObjects<unsigned>()); 535 } 536 537 BitcodeConstant &operator=(const BitcodeConstant &) = delete; 538 539 public: 540 static BitcodeConstant *create(BumpPtrAllocator &A, Type *Ty, 541 const ExtraInfo &Info, 542 ArrayRef<unsigned> OpIDs) { 543 void *Mem = A.Allocate(totalSizeToAlloc<unsigned>(OpIDs.size()), 544 alignof(BitcodeConstant)); 545 return new (Mem) BitcodeConstant(Ty, Info, OpIDs); 546 } 547 548 static bool classof(const Value *V) { return V->getValueID() == SubclassID; } 549 550 ArrayRef<unsigned> getOperandIDs() const { 551 return ArrayRef(getTrailingObjects<unsigned>(), NumOperands); 552 } 553 554 std::optional<unsigned> getInRangeIndex() const { 555 assert(Opcode == Instruction::GetElementPtr); 556 if (Extra == (unsigned)-1) 557 return std::nullopt; 558 return Extra; 559 } 560 561 const char *getOpcodeName() const { 562 return Instruction::getOpcodeName(Opcode); 563 } 564 }; 565 566 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer { 567 LLVMContext &Context; 568 Module *TheModule = nullptr; 569 // Next offset to start scanning for lazy parsing of function bodies. 570 uint64_t NextUnreadBit = 0; 571 // Last function offset found in the VST. 572 uint64_t LastFunctionBlockBit = 0; 573 bool SeenValueSymbolTable = false; 574 uint64_t VSTOffset = 0; 575 576 std::vector<std::string> SectionTable; 577 std::vector<std::string> GCTable; 578 579 std::vector<Type *> TypeList; 580 /// Track type IDs of contained types. Order is the same as the contained 581 /// types of a Type*. This is used during upgrades of typed pointer IR in 582 /// opaque pointer mode. 583 DenseMap<unsigned, SmallVector<unsigned, 1>> ContainedTypeIDs; 584 /// In some cases, we need to create a type ID for a type that was not 585 /// explicitly encoded in the bitcode, or we don't know about at the current 586 /// point. For example, a global may explicitly encode the value type ID, but 587 /// not have a type ID for the pointer to value type, for which we create a 588 /// virtual type ID instead. This map stores the new type ID that was created 589 /// for the given pair of Type and contained type ID. 590 DenseMap<std::pair<Type *, unsigned>, unsigned> VirtualTypeIDs; 591 DenseMap<Function *, unsigned> FunctionTypeIDs; 592 /// Allocator for BitcodeConstants. This should come before ValueList, 593 /// because the ValueList might hold ValueHandles to these constants, so 594 /// ValueList must be destroyed before Alloc. 595 BumpPtrAllocator Alloc; 596 BitcodeReaderValueList ValueList; 597 std::optional<MetadataLoader> MDLoader; 598 std::vector<Comdat *> ComdatList; 599 DenseSet<GlobalObject *> ImplicitComdatObjects; 600 SmallVector<Instruction *, 64> InstructionList; 601 602 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits; 603 std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInits; 604 605 struct FunctionOperandInfo { 606 Function *F; 607 unsigned PersonalityFn; 608 unsigned Prefix; 609 unsigned Prologue; 610 }; 611 std::vector<FunctionOperandInfo> FunctionOperands; 612 613 /// The set of attributes by index. Index zero in the file is for null, and 614 /// is thus not represented here. As such all indices are off by one. 615 std::vector<AttributeList> MAttributes; 616 617 /// The set of attribute groups. 618 std::map<unsigned, AttributeList> MAttributeGroups; 619 620 /// While parsing a function body, this is a list of the basic blocks for the 621 /// function. 622 std::vector<BasicBlock*> FunctionBBs; 623 624 // When reading the module header, this list is populated with functions that 625 // have bodies later in the file. 626 std::vector<Function*> FunctionsWithBodies; 627 628 // When intrinsic functions are encountered which require upgrading they are 629 // stored here with their replacement function. 630 using UpdatedIntrinsicMap = DenseMap<Function *, Function *>; 631 UpdatedIntrinsicMap UpgradedIntrinsics; 632 633 // Several operations happen after the module header has been read, but 634 // before function bodies are processed. This keeps track of whether 635 // we've done this yet. 636 bool SeenFirstFunctionBody = false; 637 638 /// When function bodies are initially scanned, this map contains info about 639 /// where to find deferred function body in the stream. 640 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 641 642 /// When Metadata block is initially scanned when parsing the module, we may 643 /// choose to defer parsing of the metadata. This vector contains info about 644 /// which Metadata blocks are deferred. 645 std::vector<uint64_t> DeferredMetadataInfo; 646 647 /// These are basic blocks forward-referenced by block addresses. They are 648 /// inserted lazily into functions when they're loaded. The basic block ID is 649 /// its index into the vector. 650 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 651 std::deque<Function *> BasicBlockFwdRefQueue; 652 653 /// These are Functions that contain BlockAddresses which refer a different 654 /// Function. When parsing the different Function, queue Functions that refer 655 /// to the different Function. Those Functions must be materialized in order 656 /// to resolve their BlockAddress constants before the different Function 657 /// gets moved into another Module. 658 std::vector<Function *> BackwardRefFunctions; 659 660 /// Indicates that we are using a new encoding for instruction operands where 661 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 662 /// instruction number, for a more compact encoding. Some instruction 663 /// operands are not relative to the instruction ID: basic block numbers, and 664 /// types. Once the old style function blocks have been phased out, we would 665 /// not need this flag. 666 bool UseRelativeIDs = false; 667 668 /// True if all functions will be materialized, negating the need to process 669 /// (e.g.) blockaddress forward references. 670 bool WillMaterializeAllForwardRefs = false; 671 672 bool StripDebugInfo = false; 673 TBAAVerifier TBAAVerifyHelper; 674 675 std::vector<std::string> BundleTags; 676 SmallVector<SyncScope::ID, 8> SSIDs; 677 678 std::optional<ValueTypeCallbackTy> ValueTypeCallback; 679 680 public: 681 BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 682 StringRef ProducerIdentification, LLVMContext &Context); 683 684 Error materializeForwardReferencedFunctions(); 685 686 Error materialize(GlobalValue *GV) override; 687 Error materializeModule() override; 688 std::vector<StructType *> getIdentifiedStructTypes() const override; 689 690 /// Main interface to parsing a bitcode buffer. 691 /// \returns true if an error occurred. 692 Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 693 bool IsImporting, ParserCallbacks Callbacks = {}); 694 695 static uint64_t decodeSignRotatedValue(uint64_t V); 696 697 /// Materialize any deferred Metadata block. 698 Error materializeMetadata() override; 699 700 void setStripDebugInfo() override; 701 702 private: 703 std::vector<StructType *> IdentifiedStructTypes; 704 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 705 StructType *createIdentifiedStructType(LLVMContext &Context); 706 707 static constexpr unsigned InvalidTypeID = ~0u; 708 709 Type *getTypeByID(unsigned ID); 710 Type *getPtrElementTypeByID(unsigned ID); 711 unsigned getContainedTypeID(unsigned ID, unsigned Idx = 0); 712 unsigned getVirtualTypeID(Type *Ty, ArrayRef<unsigned> ContainedTypeIDs = {}); 713 714 void callValueTypeCallback(Value *F, unsigned TypeID); 715 Expected<Value *> materializeValue(unsigned ValID, BasicBlock *InsertBB); 716 Expected<Constant *> getValueForInitializer(unsigned ID); 717 718 Value *getFnValueByID(unsigned ID, Type *Ty, unsigned TyID, 719 BasicBlock *ConstExprInsertBB) { 720 if (Ty && Ty->isMetadataTy()) 721 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 722 return ValueList.getValueFwdRef(ID, Ty, TyID, ConstExprInsertBB); 723 } 724 725 Metadata *getFnMetadataByID(unsigned ID) { 726 return MDLoader->getMetadataFwdRefOrLoad(ID); 727 } 728 729 BasicBlock *getBasicBlock(unsigned ID) const { 730 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 731 return FunctionBBs[ID]; 732 } 733 734 AttributeList getAttributes(unsigned i) const { 735 if (i-1 < MAttributes.size()) 736 return MAttributes[i-1]; 737 return AttributeList(); 738 } 739 740 /// Read a value/type pair out of the specified record from slot 'Slot'. 741 /// Increment Slot past the number of slots used in the record. Return true on 742 /// failure. 743 bool getValueTypePair(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 744 unsigned InstNum, Value *&ResVal, unsigned &TypeID, 745 BasicBlock *ConstExprInsertBB) { 746 if (Slot == Record.size()) return true; 747 unsigned ValNo = (unsigned)Record[Slot++]; 748 // Adjust the ValNo, if it was encoded relative to the InstNum. 749 if (UseRelativeIDs) 750 ValNo = InstNum - ValNo; 751 if (ValNo < InstNum) { 752 // If this is not a forward reference, just return the value we already 753 // have. 754 TypeID = ValueList.getTypeID(ValNo); 755 ResVal = getFnValueByID(ValNo, nullptr, TypeID, ConstExprInsertBB); 756 assert((!ResVal || ResVal->getType() == getTypeByID(TypeID)) && 757 "Incorrect type ID stored for value"); 758 return ResVal == nullptr; 759 } 760 if (Slot == Record.size()) 761 return true; 762 763 TypeID = (unsigned)Record[Slot++]; 764 ResVal = getFnValueByID(ValNo, getTypeByID(TypeID), TypeID, 765 ConstExprInsertBB); 766 return ResVal == nullptr; 767 } 768 769 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 770 /// past the number of slots used by the value in the record. Return true if 771 /// there is an error. 772 bool popValue(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 773 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal, 774 BasicBlock *ConstExprInsertBB) { 775 if (getValue(Record, Slot, InstNum, Ty, TyID, ResVal, ConstExprInsertBB)) 776 return true; 777 // All values currently take a single record slot. 778 ++Slot; 779 return false; 780 } 781 782 /// Like popValue, but does not increment the Slot number. 783 bool getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 784 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal, 785 BasicBlock *ConstExprInsertBB) { 786 ResVal = getValue(Record, Slot, InstNum, Ty, TyID, ConstExprInsertBB); 787 return ResVal == nullptr; 788 } 789 790 /// Version of getValue that returns ResVal directly, or 0 if there is an 791 /// error. 792 Value *getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 793 unsigned InstNum, Type *Ty, unsigned TyID, 794 BasicBlock *ConstExprInsertBB) { 795 if (Slot == Record.size()) return nullptr; 796 unsigned ValNo = (unsigned)Record[Slot]; 797 // Adjust the ValNo, if it was encoded relative to the InstNum. 798 if (UseRelativeIDs) 799 ValNo = InstNum - ValNo; 800 return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB); 801 } 802 803 /// Like getValue, but decodes signed VBRs. 804 Value *getValueSigned(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 805 unsigned InstNum, Type *Ty, unsigned TyID, 806 BasicBlock *ConstExprInsertBB) { 807 if (Slot == Record.size()) return nullptr; 808 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 809 // Adjust the ValNo, if it was encoded relative to the InstNum. 810 if (UseRelativeIDs) 811 ValNo = InstNum - ValNo; 812 return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB); 813 } 814 815 /// Upgrades old-style typeless byval/sret/inalloca attributes by adding the 816 /// corresponding argument's pointee type. Also upgrades intrinsics that now 817 /// require an elementtype attribute. 818 Error propagateAttributeTypes(CallBase *CB, ArrayRef<unsigned> ArgsTys); 819 820 /// Converts alignment exponent (i.e. power of two (or zero)) to the 821 /// corresponding alignment to use. If alignment is too large, returns 822 /// a corresponding error code. 823 Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment); 824 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 825 Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false, 826 ParserCallbacks Callbacks = {}); 827 828 Error parseComdatRecord(ArrayRef<uint64_t> Record); 829 Error parseGlobalVarRecord(ArrayRef<uint64_t> Record); 830 Error parseFunctionRecord(ArrayRef<uint64_t> Record); 831 Error parseGlobalIndirectSymbolRecord(unsigned BitCode, 832 ArrayRef<uint64_t> Record); 833 834 Error parseAttributeBlock(); 835 Error parseAttributeGroupBlock(); 836 Error parseTypeTable(); 837 Error parseTypeTableBody(); 838 Error parseOperandBundleTags(); 839 Error parseSyncScopeNames(); 840 841 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 842 unsigned NameIndex, Triple &TT); 843 void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F, 844 ArrayRef<uint64_t> Record); 845 Error parseValueSymbolTable(uint64_t Offset = 0); 846 Error parseGlobalValueSymbolTable(); 847 Error parseConstants(); 848 Error rememberAndSkipFunctionBodies(); 849 Error rememberAndSkipFunctionBody(); 850 /// Save the positions of the Metadata blocks and skip parsing the blocks. 851 Error rememberAndSkipMetadata(); 852 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType); 853 Error parseFunctionBody(Function *F); 854 Error globalCleanup(); 855 Error resolveGlobalAndIndirectSymbolInits(); 856 Error parseUseLists(); 857 Error findFunctionInStream( 858 Function *F, 859 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 860 861 SyncScope::ID getDecodedSyncScopeID(unsigned Val); 862 }; 863 864 /// Class to manage reading and parsing function summary index bitcode 865 /// files/sections. 866 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase { 867 /// The module index built during parsing. 868 ModuleSummaryIndex &TheIndex; 869 870 /// Indicates whether we have encountered a global value summary section 871 /// yet during parsing. 872 bool SeenGlobalValSummary = false; 873 874 /// Indicates whether we have already parsed the VST, used for error checking. 875 bool SeenValueSymbolTable = false; 876 877 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 878 /// Used to enable on-demand parsing of the VST. 879 uint64_t VSTOffset = 0; 880 881 // Map to save ValueId to ValueInfo association that was recorded in the 882 // ValueSymbolTable. It is used after the VST is parsed to convert 883 // call graph edges read from the function summary from referencing 884 // callees by their ValueId to using the ValueInfo instead, which is how 885 // they are recorded in the summary index being built. 886 // We save a GUID which refers to the same global as the ValueInfo, but 887 // ignoring the linkage, i.e. for values other than local linkage they are 888 // identical (this is the second tuple member). 889 // The third tuple member is the real GUID of the ValueInfo. 890 DenseMap<unsigned, 891 std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID>> 892 ValueIdToValueInfoMap; 893 894 /// Map populated during module path string table parsing, from the 895 /// module ID to a string reference owned by the index's module 896 /// path string table, used to correlate with combined index 897 /// summary records. 898 DenseMap<uint64_t, StringRef> ModuleIdMap; 899 900 /// Original source file name recorded in a bitcode record. 901 std::string SourceFileName; 902 903 /// The string identifier given to this module by the client, normally the 904 /// path to the bitcode file. 905 StringRef ModulePath; 906 907 /// Callback to ask whether a symbol is the prevailing copy when invoked 908 /// during combined index building. 909 std::function<bool(GlobalValue::GUID)> IsPrevailing; 910 911 /// Saves the stack ids from the STACK_IDS record to consult when adding stack 912 /// ids from the lists in the callsite and alloc entries to the index. 913 std::vector<uint64_t> StackIds; 914 915 public: 916 ModuleSummaryIndexBitcodeReader( 917 BitstreamCursor Stream, StringRef Strtab, ModuleSummaryIndex &TheIndex, 918 StringRef ModulePath, 919 std::function<bool(GlobalValue::GUID)> IsPrevailing = nullptr); 920 921 Error parseModule(); 922 923 private: 924 void setValueGUID(uint64_t ValueID, StringRef ValueName, 925 GlobalValue::LinkageTypes Linkage, 926 StringRef SourceFileName); 927 Error parseValueSymbolTable( 928 uint64_t Offset, 929 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 930 std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record); 931 std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record, 932 bool IsOldProfileFormat, 933 bool HasProfile, 934 bool HasRelBF); 935 Error parseEntireSummary(unsigned ID); 936 Error parseModuleStringTable(); 937 void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record); 938 void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot, 939 TypeIdCompatibleVtableInfo &TypeId); 940 std::vector<FunctionSummary::ParamAccess> 941 parseParamAccesses(ArrayRef<uint64_t> Record); 942 943 template <bool AllowNullValueInfo = false> 944 std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID> 945 getValueInfoFromValueId(unsigned ValueId); 946 947 void addThisModule(); 948 ModuleSummaryIndex::ModuleInfo *getThisModule(); 949 }; 950 951 } // end anonymous namespace 952 953 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx, 954 Error Err) { 955 if (Err) { 956 std::error_code EC; 957 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) { 958 EC = EIB.convertToErrorCode(); 959 Ctx.emitError(EIB.message()); 960 }); 961 return EC; 962 } 963 return std::error_code(); 964 } 965 966 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 967 StringRef ProducerIdentification, 968 LLVMContext &Context) 969 : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context), 970 ValueList(this->Stream.SizeInBytes(), 971 [this](unsigned ValID, BasicBlock *InsertBB) { 972 return materializeValue(ValID, InsertBB); 973 }) { 974 this->ProducerIdentification = std::string(ProducerIdentification); 975 } 976 977 Error BitcodeReader::materializeForwardReferencedFunctions() { 978 if (WillMaterializeAllForwardRefs) 979 return Error::success(); 980 981 // Prevent recursion. 982 WillMaterializeAllForwardRefs = true; 983 984 while (!BasicBlockFwdRefQueue.empty()) { 985 Function *F = BasicBlockFwdRefQueue.front(); 986 BasicBlockFwdRefQueue.pop_front(); 987 assert(F && "Expected valid function"); 988 if (!BasicBlockFwdRefs.count(F)) 989 // Already materialized. 990 continue; 991 992 // Check for a function that isn't materializable to prevent an infinite 993 // loop. When parsing a blockaddress stored in a global variable, there 994 // isn't a trivial way to check if a function will have a body without a 995 // linear search through FunctionsWithBodies, so just check it here. 996 if (!F->isMaterializable()) 997 return error("Never resolved function from blockaddress"); 998 999 // Try to materialize F. 1000 if (Error Err = materialize(F)) 1001 return Err; 1002 } 1003 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 1004 1005 for (Function *F : BackwardRefFunctions) 1006 if (Error Err = materialize(F)) 1007 return Err; 1008 BackwardRefFunctions.clear(); 1009 1010 // Reset state. 1011 WillMaterializeAllForwardRefs = false; 1012 return Error::success(); 1013 } 1014 1015 //===----------------------------------------------------------------------===// 1016 // Helper functions to implement forward reference resolution, etc. 1017 //===----------------------------------------------------------------------===// 1018 1019 static bool hasImplicitComdat(size_t Val) { 1020 switch (Val) { 1021 default: 1022 return false; 1023 case 1: // Old WeakAnyLinkage 1024 case 4: // Old LinkOnceAnyLinkage 1025 case 10: // Old WeakODRLinkage 1026 case 11: // Old LinkOnceODRLinkage 1027 return true; 1028 } 1029 } 1030 1031 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 1032 switch (Val) { 1033 default: // Map unknown/new linkages to external 1034 case 0: 1035 return GlobalValue::ExternalLinkage; 1036 case 2: 1037 return GlobalValue::AppendingLinkage; 1038 case 3: 1039 return GlobalValue::InternalLinkage; 1040 case 5: 1041 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 1042 case 6: 1043 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 1044 case 7: 1045 return GlobalValue::ExternalWeakLinkage; 1046 case 8: 1047 return GlobalValue::CommonLinkage; 1048 case 9: 1049 return GlobalValue::PrivateLinkage; 1050 case 12: 1051 return GlobalValue::AvailableExternallyLinkage; 1052 case 13: 1053 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 1054 case 14: 1055 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 1056 case 15: 1057 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 1058 case 1: // Old value with implicit comdat. 1059 case 16: 1060 return GlobalValue::WeakAnyLinkage; 1061 case 10: // Old value with implicit comdat. 1062 case 17: 1063 return GlobalValue::WeakODRLinkage; 1064 case 4: // Old value with implicit comdat. 1065 case 18: 1066 return GlobalValue::LinkOnceAnyLinkage; 1067 case 11: // Old value with implicit comdat. 1068 case 19: 1069 return GlobalValue::LinkOnceODRLinkage; 1070 } 1071 } 1072 1073 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) { 1074 FunctionSummary::FFlags Flags; 1075 Flags.ReadNone = RawFlags & 0x1; 1076 Flags.ReadOnly = (RawFlags >> 1) & 0x1; 1077 Flags.NoRecurse = (RawFlags >> 2) & 0x1; 1078 Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1; 1079 Flags.NoInline = (RawFlags >> 4) & 0x1; 1080 Flags.AlwaysInline = (RawFlags >> 5) & 0x1; 1081 Flags.NoUnwind = (RawFlags >> 6) & 0x1; 1082 Flags.MayThrow = (RawFlags >> 7) & 0x1; 1083 Flags.HasUnknownCall = (RawFlags >> 8) & 0x1; 1084 Flags.MustBeUnreachable = (RawFlags >> 9) & 0x1; 1085 return Flags; 1086 } 1087 1088 // Decode the flags for GlobalValue in the summary. The bits for each attribute: 1089 // 1090 // linkage: [0,4), notEligibleToImport: 4, live: 5, local: 6, canAutoHide: 7, 1091 // visibility: [8, 10). 1092 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 1093 uint64_t Version) { 1094 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 1095 // like getDecodedLinkage() above. Any future change to the linkage enum and 1096 // to getDecodedLinkage() will need to be taken into account here as above. 1097 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 1098 auto Visibility = GlobalValue::VisibilityTypes((RawFlags >> 8) & 3); // 2 bits 1099 RawFlags = RawFlags >> 4; 1100 bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3; 1101 // The Live flag wasn't introduced until version 3. For dead stripping 1102 // to work correctly on earlier versions, we must conservatively treat all 1103 // values as live. 1104 bool Live = (RawFlags & 0x2) || Version < 3; 1105 bool Local = (RawFlags & 0x4); 1106 bool AutoHide = (RawFlags & 0x8); 1107 1108 return GlobalValueSummary::GVFlags(Linkage, Visibility, NotEligibleToImport, 1109 Live, Local, AutoHide); 1110 } 1111 1112 // Decode the flags for GlobalVariable in the summary 1113 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) { 1114 return GlobalVarSummary::GVarFlags( 1115 (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false, 1116 (RawFlags & 0x4) ? true : false, 1117 (GlobalObject::VCallVisibility)(RawFlags >> 3)); 1118 } 1119 1120 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 1121 switch (Val) { 1122 default: // Map unknown visibilities to default. 1123 case 0: return GlobalValue::DefaultVisibility; 1124 case 1: return GlobalValue::HiddenVisibility; 1125 case 2: return GlobalValue::ProtectedVisibility; 1126 } 1127 } 1128 1129 static GlobalValue::DLLStorageClassTypes 1130 getDecodedDLLStorageClass(unsigned Val) { 1131 switch (Val) { 1132 default: // Map unknown values to default. 1133 case 0: return GlobalValue::DefaultStorageClass; 1134 case 1: return GlobalValue::DLLImportStorageClass; 1135 case 2: return GlobalValue::DLLExportStorageClass; 1136 } 1137 } 1138 1139 static bool getDecodedDSOLocal(unsigned Val) { 1140 switch(Val) { 1141 default: // Map unknown values to preemptable. 1142 case 0: return false; 1143 case 1: return true; 1144 } 1145 } 1146 1147 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 1148 switch (Val) { 1149 case 0: return GlobalVariable::NotThreadLocal; 1150 default: // Map unknown non-zero value to general dynamic. 1151 case 1: return GlobalVariable::GeneralDynamicTLSModel; 1152 case 2: return GlobalVariable::LocalDynamicTLSModel; 1153 case 3: return GlobalVariable::InitialExecTLSModel; 1154 case 4: return GlobalVariable::LocalExecTLSModel; 1155 } 1156 } 1157 1158 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { 1159 switch (Val) { 1160 default: // Map unknown to UnnamedAddr::None. 1161 case 0: return GlobalVariable::UnnamedAddr::None; 1162 case 1: return GlobalVariable::UnnamedAddr::Global; 1163 case 2: return GlobalVariable::UnnamedAddr::Local; 1164 } 1165 } 1166 1167 static int getDecodedCastOpcode(unsigned Val) { 1168 switch (Val) { 1169 default: return -1; 1170 case bitc::CAST_TRUNC : return Instruction::Trunc; 1171 case bitc::CAST_ZEXT : return Instruction::ZExt; 1172 case bitc::CAST_SEXT : return Instruction::SExt; 1173 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 1174 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 1175 case bitc::CAST_UITOFP : return Instruction::UIToFP; 1176 case bitc::CAST_SITOFP : return Instruction::SIToFP; 1177 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 1178 case bitc::CAST_FPEXT : return Instruction::FPExt; 1179 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 1180 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 1181 case bitc::CAST_BITCAST : return Instruction::BitCast; 1182 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 1183 } 1184 } 1185 1186 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) { 1187 bool IsFP = Ty->isFPOrFPVectorTy(); 1188 // UnOps are only valid for int/fp or vector of int/fp types 1189 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1190 return -1; 1191 1192 switch (Val) { 1193 default: 1194 return -1; 1195 case bitc::UNOP_FNEG: 1196 return IsFP ? Instruction::FNeg : -1; 1197 } 1198 } 1199 1200 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 1201 bool IsFP = Ty->isFPOrFPVectorTy(); 1202 // BinOps are only valid for int/fp or vector of int/fp types 1203 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1204 return -1; 1205 1206 switch (Val) { 1207 default: 1208 return -1; 1209 case bitc::BINOP_ADD: 1210 return IsFP ? Instruction::FAdd : Instruction::Add; 1211 case bitc::BINOP_SUB: 1212 return IsFP ? Instruction::FSub : Instruction::Sub; 1213 case bitc::BINOP_MUL: 1214 return IsFP ? Instruction::FMul : Instruction::Mul; 1215 case bitc::BINOP_UDIV: 1216 return IsFP ? -1 : Instruction::UDiv; 1217 case bitc::BINOP_SDIV: 1218 return IsFP ? Instruction::FDiv : Instruction::SDiv; 1219 case bitc::BINOP_UREM: 1220 return IsFP ? -1 : Instruction::URem; 1221 case bitc::BINOP_SREM: 1222 return IsFP ? Instruction::FRem : Instruction::SRem; 1223 case bitc::BINOP_SHL: 1224 return IsFP ? -1 : Instruction::Shl; 1225 case bitc::BINOP_LSHR: 1226 return IsFP ? -1 : Instruction::LShr; 1227 case bitc::BINOP_ASHR: 1228 return IsFP ? -1 : Instruction::AShr; 1229 case bitc::BINOP_AND: 1230 return IsFP ? -1 : Instruction::And; 1231 case bitc::BINOP_OR: 1232 return IsFP ? -1 : Instruction::Or; 1233 case bitc::BINOP_XOR: 1234 return IsFP ? -1 : Instruction::Xor; 1235 } 1236 } 1237 1238 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 1239 switch (Val) { 1240 default: return AtomicRMWInst::BAD_BINOP; 1241 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 1242 case bitc::RMW_ADD: return AtomicRMWInst::Add; 1243 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 1244 case bitc::RMW_AND: return AtomicRMWInst::And; 1245 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 1246 case bitc::RMW_OR: return AtomicRMWInst::Or; 1247 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 1248 case bitc::RMW_MAX: return AtomicRMWInst::Max; 1249 case bitc::RMW_MIN: return AtomicRMWInst::Min; 1250 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 1251 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 1252 case bitc::RMW_FADD: return AtomicRMWInst::FAdd; 1253 case bitc::RMW_FSUB: return AtomicRMWInst::FSub; 1254 case bitc::RMW_FMAX: return AtomicRMWInst::FMax; 1255 case bitc::RMW_FMIN: return AtomicRMWInst::FMin; 1256 case bitc::RMW_UINC_WRAP: 1257 return AtomicRMWInst::UIncWrap; 1258 case bitc::RMW_UDEC_WRAP: 1259 return AtomicRMWInst::UDecWrap; 1260 } 1261 } 1262 1263 static AtomicOrdering getDecodedOrdering(unsigned Val) { 1264 switch (Val) { 1265 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 1266 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 1267 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 1268 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 1269 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 1270 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 1271 default: // Map unknown orderings to sequentially-consistent. 1272 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 1273 } 1274 } 1275 1276 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 1277 switch (Val) { 1278 default: // Map unknown selection kinds to any. 1279 case bitc::COMDAT_SELECTION_KIND_ANY: 1280 return Comdat::Any; 1281 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 1282 return Comdat::ExactMatch; 1283 case bitc::COMDAT_SELECTION_KIND_LARGEST: 1284 return Comdat::Largest; 1285 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 1286 return Comdat::NoDeduplicate; 1287 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 1288 return Comdat::SameSize; 1289 } 1290 } 1291 1292 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 1293 FastMathFlags FMF; 1294 if (0 != (Val & bitc::UnsafeAlgebra)) 1295 FMF.setFast(); 1296 if (0 != (Val & bitc::AllowReassoc)) 1297 FMF.setAllowReassoc(); 1298 if (0 != (Val & bitc::NoNaNs)) 1299 FMF.setNoNaNs(); 1300 if (0 != (Val & bitc::NoInfs)) 1301 FMF.setNoInfs(); 1302 if (0 != (Val & bitc::NoSignedZeros)) 1303 FMF.setNoSignedZeros(); 1304 if (0 != (Val & bitc::AllowReciprocal)) 1305 FMF.setAllowReciprocal(); 1306 if (0 != (Val & bitc::AllowContract)) 1307 FMF.setAllowContract(true); 1308 if (0 != (Val & bitc::ApproxFunc)) 1309 FMF.setApproxFunc(); 1310 return FMF; 1311 } 1312 1313 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) { 1314 // A GlobalValue with local linkage cannot have a DLL storage class. 1315 if (GV->hasLocalLinkage()) 1316 return; 1317 switch (Val) { 1318 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 1319 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 1320 } 1321 } 1322 1323 Type *BitcodeReader::getTypeByID(unsigned ID) { 1324 // The type table size is always specified correctly. 1325 if (ID >= TypeList.size()) 1326 return nullptr; 1327 1328 if (Type *Ty = TypeList[ID]) 1329 return Ty; 1330 1331 // If we have a forward reference, the only possible case is when it is to a 1332 // named struct. Just create a placeholder for now. 1333 return TypeList[ID] = createIdentifiedStructType(Context); 1334 } 1335 1336 unsigned BitcodeReader::getContainedTypeID(unsigned ID, unsigned Idx) { 1337 auto It = ContainedTypeIDs.find(ID); 1338 if (It == ContainedTypeIDs.end()) 1339 return InvalidTypeID; 1340 1341 if (Idx >= It->second.size()) 1342 return InvalidTypeID; 1343 1344 return It->second[Idx]; 1345 } 1346 1347 Type *BitcodeReader::getPtrElementTypeByID(unsigned ID) { 1348 if (ID >= TypeList.size()) 1349 return nullptr; 1350 1351 Type *Ty = TypeList[ID]; 1352 if (!Ty->isPointerTy()) 1353 return nullptr; 1354 1355 return getTypeByID(getContainedTypeID(ID, 0)); 1356 } 1357 1358 unsigned BitcodeReader::getVirtualTypeID(Type *Ty, 1359 ArrayRef<unsigned> ChildTypeIDs) { 1360 unsigned ChildTypeID = ChildTypeIDs.empty() ? InvalidTypeID : ChildTypeIDs[0]; 1361 auto CacheKey = std::make_pair(Ty, ChildTypeID); 1362 auto It = VirtualTypeIDs.find(CacheKey); 1363 if (It != VirtualTypeIDs.end()) { 1364 // The cmpxchg return value is the only place we need more than one 1365 // contained type ID, however the second one will always be the same (i1), 1366 // so we don't need to include it in the cache key. This asserts that the 1367 // contained types are indeed as expected and there are no collisions. 1368 assert((ChildTypeIDs.empty() || 1369 ContainedTypeIDs[It->second] == ChildTypeIDs) && 1370 "Incorrect cached contained type IDs"); 1371 return It->second; 1372 } 1373 1374 unsigned TypeID = TypeList.size(); 1375 TypeList.push_back(Ty); 1376 if (!ChildTypeIDs.empty()) 1377 append_range(ContainedTypeIDs[TypeID], ChildTypeIDs); 1378 VirtualTypeIDs.insert({CacheKey, TypeID}); 1379 return TypeID; 1380 } 1381 1382 static bool isConstExprSupported(const BitcodeConstant *BC) { 1383 uint8_t Opcode = BC->Opcode; 1384 1385 // These are not real constant expressions, always consider them supported. 1386 if (Opcode >= BitcodeConstant::FirstSpecialOpcode) 1387 return true; 1388 1389 // If -expand-constant-exprs is set, we want to consider all expressions 1390 // as unsupported. 1391 if (ExpandConstantExprs) 1392 return false; 1393 1394 if (Instruction::isBinaryOp(Opcode)) 1395 return ConstantExpr::isSupportedBinOp(Opcode); 1396 1397 if (Opcode == Instruction::GetElementPtr) 1398 return ConstantExpr::isSupportedGetElementPtr(BC->SrcElemTy); 1399 1400 switch (Opcode) { 1401 case Instruction::FNeg: 1402 case Instruction::Select: 1403 return false; 1404 default: 1405 return true; 1406 } 1407 } 1408 1409 Expected<Value *> BitcodeReader::materializeValue(unsigned StartValID, 1410 BasicBlock *InsertBB) { 1411 // Quickly handle the case where there is no BitcodeConstant to resolve. 1412 if (StartValID < ValueList.size() && ValueList[StartValID] && 1413 !isa<BitcodeConstant>(ValueList[StartValID])) 1414 return ValueList[StartValID]; 1415 1416 SmallDenseMap<unsigned, Value *> MaterializedValues; 1417 SmallVector<unsigned> Worklist; 1418 Worklist.push_back(StartValID); 1419 while (!Worklist.empty()) { 1420 unsigned ValID = Worklist.back(); 1421 if (MaterializedValues.count(ValID)) { 1422 // Duplicate expression that was already handled. 1423 Worklist.pop_back(); 1424 continue; 1425 } 1426 1427 if (ValID >= ValueList.size() || !ValueList[ValID]) 1428 return error("Invalid value ID"); 1429 1430 Value *V = ValueList[ValID]; 1431 auto *BC = dyn_cast<BitcodeConstant>(V); 1432 if (!BC) { 1433 MaterializedValues.insert({ValID, V}); 1434 Worklist.pop_back(); 1435 continue; 1436 } 1437 1438 // Iterate in reverse, so values will get popped from the worklist in 1439 // expected order. 1440 SmallVector<Value *> Ops; 1441 for (unsigned OpID : reverse(BC->getOperandIDs())) { 1442 auto It = MaterializedValues.find(OpID); 1443 if (It != MaterializedValues.end()) 1444 Ops.push_back(It->second); 1445 else 1446 Worklist.push_back(OpID); 1447 } 1448 1449 // Some expressions have not been resolved yet, handle them first and then 1450 // revisit this one. 1451 if (Ops.size() != BC->getOperandIDs().size()) 1452 continue; 1453 std::reverse(Ops.begin(), Ops.end()); 1454 1455 SmallVector<Constant *> ConstOps; 1456 for (Value *Op : Ops) 1457 if (auto *C = dyn_cast<Constant>(Op)) 1458 ConstOps.push_back(C); 1459 1460 // Materialize as constant expression if possible. 1461 if (isConstExprSupported(BC) && ConstOps.size() == Ops.size()) { 1462 Constant *C; 1463 if (Instruction::isCast(BC->Opcode)) { 1464 C = UpgradeBitCastExpr(BC->Opcode, ConstOps[0], BC->getType()); 1465 if (!C) 1466 C = ConstantExpr::getCast(BC->Opcode, ConstOps[0], BC->getType()); 1467 } else if (Instruction::isBinaryOp(BC->Opcode)) { 1468 C = ConstantExpr::get(BC->Opcode, ConstOps[0], ConstOps[1], BC->Flags); 1469 } else { 1470 switch (BC->Opcode) { 1471 case BitcodeConstant::NoCFIOpcode: { 1472 auto *GV = dyn_cast<GlobalValue>(ConstOps[0]); 1473 if (!GV) 1474 return error("no_cfi operand must be GlobalValue"); 1475 C = NoCFIValue::get(GV); 1476 break; 1477 } 1478 case BitcodeConstant::DSOLocalEquivalentOpcode: { 1479 auto *GV = dyn_cast<GlobalValue>(ConstOps[0]); 1480 if (!GV) 1481 return error("dso_local operand must be GlobalValue"); 1482 C = DSOLocalEquivalent::get(GV); 1483 break; 1484 } 1485 case BitcodeConstant::BlockAddressOpcode: { 1486 Function *Fn = dyn_cast<Function>(ConstOps[0]); 1487 if (!Fn) 1488 return error("blockaddress operand must be a function"); 1489 1490 // If the function is already parsed we can insert the block address 1491 // right away. 1492 BasicBlock *BB; 1493 unsigned BBID = BC->Extra; 1494 if (!BBID) 1495 // Invalid reference to entry block. 1496 return error("Invalid ID"); 1497 if (!Fn->empty()) { 1498 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 1499 for (size_t I = 0, E = BBID; I != E; ++I) { 1500 if (BBI == BBE) 1501 return error("Invalid ID"); 1502 ++BBI; 1503 } 1504 BB = &*BBI; 1505 } else { 1506 // Otherwise insert a placeholder and remember it so it can be 1507 // inserted when the function is parsed. 1508 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 1509 if (FwdBBs.empty()) 1510 BasicBlockFwdRefQueue.push_back(Fn); 1511 if (FwdBBs.size() < BBID + 1) 1512 FwdBBs.resize(BBID + 1); 1513 if (!FwdBBs[BBID]) 1514 FwdBBs[BBID] = BasicBlock::Create(Context); 1515 BB = FwdBBs[BBID]; 1516 } 1517 C = BlockAddress::get(Fn, BB); 1518 break; 1519 } 1520 case BitcodeConstant::ConstantStructOpcode: 1521 C = ConstantStruct::get(cast<StructType>(BC->getType()), ConstOps); 1522 break; 1523 case BitcodeConstant::ConstantArrayOpcode: 1524 C = ConstantArray::get(cast<ArrayType>(BC->getType()), ConstOps); 1525 break; 1526 case BitcodeConstant::ConstantVectorOpcode: 1527 C = ConstantVector::get(ConstOps); 1528 break; 1529 case Instruction::ICmp: 1530 case Instruction::FCmp: 1531 C = ConstantExpr::getCompare(BC->Flags, ConstOps[0], ConstOps[1]); 1532 break; 1533 case Instruction::GetElementPtr: 1534 C = ConstantExpr::getGetElementPtr(BC->SrcElemTy, ConstOps[0], 1535 ArrayRef(ConstOps).drop_front(), 1536 BC->Flags, BC->getInRangeIndex()); 1537 break; 1538 case Instruction::ExtractElement: 1539 C = ConstantExpr::getExtractElement(ConstOps[0], ConstOps[1]); 1540 break; 1541 case Instruction::InsertElement: 1542 C = ConstantExpr::getInsertElement(ConstOps[0], ConstOps[1], 1543 ConstOps[2]); 1544 break; 1545 case Instruction::ShuffleVector: { 1546 SmallVector<int, 16> Mask; 1547 ShuffleVectorInst::getShuffleMask(ConstOps[2], Mask); 1548 C = ConstantExpr::getShuffleVector(ConstOps[0], ConstOps[1], Mask); 1549 break; 1550 } 1551 default: 1552 llvm_unreachable("Unhandled bitcode constant"); 1553 } 1554 } 1555 1556 // Cache resolved constant. 1557 ValueList.replaceValueWithoutRAUW(ValID, C); 1558 MaterializedValues.insert({ValID, C}); 1559 Worklist.pop_back(); 1560 continue; 1561 } 1562 1563 if (!InsertBB) 1564 return error(Twine("Value referenced by initializer is an unsupported " 1565 "constant expression of type ") + 1566 BC->getOpcodeName()); 1567 1568 // Materialize as instructions if necessary. 1569 Instruction *I; 1570 if (Instruction::isCast(BC->Opcode)) { 1571 I = CastInst::Create((Instruction::CastOps)BC->Opcode, Ops[0], 1572 BC->getType(), "constexpr", InsertBB); 1573 } else if (Instruction::isUnaryOp(BC->Opcode)) { 1574 I = UnaryOperator::Create((Instruction::UnaryOps)BC->Opcode, Ops[0], 1575 "constexpr", InsertBB); 1576 } else if (Instruction::isBinaryOp(BC->Opcode)) { 1577 I = BinaryOperator::Create((Instruction::BinaryOps)BC->Opcode, Ops[0], 1578 Ops[1], "constexpr", InsertBB); 1579 if (isa<OverflowingBinaryOperator>(I)) { 1580 if (BC->Flags & OverflowingBinaryOperator::NoSignedWrap) 1581 I->setHasNoSignedWrap(); 1582 if (BC->Flags & OverflowingBinaryOperator::NoUnsignedWrap) 1583 I->setHasNoUnsignedWrap(); 1584 } 1585 if (isa<PossiblyExactOperator>(I) && 1586 (BC->Flags & PossiblyExactOperator::IsExact)) 1587 I->setIsExact(); 1588 } else { 1589 switch (BC->Opcode) { 1590 case BitcodeConstant::ConstantVectorOpcode: { 1591 Type *IdxTy = Type::getInt32Ty(BC->getContext()); 1592 Value *V = PoisonValue::get(BC->getType()); 1593 for (auto Pair : enumerate(Ops)) { 1594 Value *Idx = ConstantInt::get(IdxTy, Pair.index()); 1595 V = InsertElementInst::Create(V, Pair.value(), Idx, "constexpr.ins", 1596 InsertBB); 1597 } 1598 I = cast<Instruction>(V); 1599 break; 1600 } 1601 case BitcodeConstant::ConstantStructOpcode: 1602 case BitcodeConstant::ConstantArrayOpcode: { 1603 Value *V = PoisonValue::get(BC->getType()); 1604 for (auto Pair : enumerate(Ops)) 1605 V = InsertValueInst::Create(V, Pair.value(), Pair.index(), 1606 "constexpr.ins", InsertBB); 1607 I = cast<Instruction>(V); 1608 break; 1609 } 1610 case Instruction::ICmp: 1611 case Instruction::FCmp: 1612 I = CmpInst::Create((Instruction::OtherOps)BC->Opcode, 1613 (CmpInst::Predicate)BC->Flags, Ops[0], Ops[1], 1614 "constexpr", InsertBB); 1615 break; 1616 case Instruction::GetElementPtr: 1617 I = GetElementPtrInst::Create(BC->SrcElemTy, Ops[0], 1618 ArrayRef(Ops).drop_front(), "constexpr", 1619 InsertBB); 1620 if (BC->Flags) 1621 cast<GetElementPtrInst>(I)->setIsInBounds(); 1622 break; 1623 case Instruction::Select: 1624 I = SelectInst::Create(Ops[0], Ops[1], Ops[2], "constexpr", InsertBB); 1625 break; 1626 case Instruction::ExtractElement: 1627 I = ExtractElementInst::Create(Ops[0], Ops[1], "constexpr", InsertBB); 1628 break; 1629 case Instruction::InsertElement: 1630 I = InsertElementInst::Create(Ops[0], Ops[1], Ops[2], "constexpr", 1631 InsertBB); 1632 break; 1633 case Instruction::ShuffleVector: 1634 I = new ShuffleVectorInst(Ops[0], Ops[1], Ops[2], "constexpr", 1635 InsertBB); 1636 break; 1637 default: 1638 llvm_unreachable("Unhandled bitcode constant"); 1639 } 1640 } 1641 1642 MaterializedValues.insert({ValID, I}); 1643 Worklist.pop_back(); 1644 } 1645 1646 return MaterializedValues[StartValID]; 1647 } 1648 1649 Expected<Constant *> BitcodeReader::getValueForInitializer(unsigned ID) { 1650 Expected<Value *> MaybeV = materializeValue(ID, /* InsertBB */ nullptr); 1651 if (!MaybeV) 1652 return MaybeV.takeError(); 1653 1654 // Result must be Constant if InsertBB is nullptr. 1655 return cast<Constant>(MaybeV.get()); 1656 } 1657 1658 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1659 StringRef Name) { 1660 auto *Ret = StructType::create(Context, Name); 1661 IdentifiedStructTypes.push_back(Ret); 1662 return Ret; 1663 } 1664 1665 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1666 auto *Ret = StructType::create(Context); 1667 IdentifiedStructTypes.push_back(Ret); 1668 return Ret; 1669 } 1670 1671 //===----------------------------------------------------------------------===// 1672 // Functions for parsing blocks from the bitcode file 1673 //===----------------------------------------------------------------------===// 1674 1675 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) { 1676 switch (Val) { 1677 case Attribute::EndAttrKinds: 1678 case Attribute::EmptyKey: 1679 case Attribute::TombstoneKey: 1680 llvm_unreachable("Synthetic enumerators which should never get here"); 1681 1682 case Attribute::None: return 0; 1683 case Attribute::ZExt: return 1 << 0; 1684 case Attribute::SExt: return 1 << 1; 1685 case Attribute::NoReturn: return 1 << 2; 1686 case Attribute::InReg: return 1 << 3; 1687 case Attribute::StructRet: return 1 << 4; 1688 case Attribute::NoUnwind: return 1 << 5; 1689 case Attribute::NoAlias: return 1 << 6; 1690 case Attribute::ByVal: return 1 << 7; 1691 case Attribute::Nest: return 1 << 8; 1692 case Attribute::ReadNone: return 1 << 9; 1693 case Attribute::ReadOnly: return 1 << 10; 1694 case Attribute::NoInline: return 1 << 11; 1695 case Attribute::AlwaysInline: return 1 << 12; 1696 case Attribute::OptimizeForSize: return 1 << 13; 1697 case Attribute::StackProtect: return 1 << 14; 1698 case Attribute::StackProtectReq: return 1 << 15; 1699 case Attribute::Alignment: return 31 << 16; 1700 case Attribute::NoCapture: return 1 << 21; 1701 case Attribute::NoRedZone: return 1 << 22; 1702 case Attribute::NoImplicitFloat: return 1 << 23; 1703 case Attribute::Naked: return 1 << 24; 1704 case Attribute::InlineHint: return 1 << 25; 1705 case Attribute::StackAlignment: return 7 << 26; 1706 case Attribute::ReturnsTwice: return 1 << 29; 1707 case Attribute::UWTable: return 1 << 30; 1708 case Attribute::NonLazyBind: return 1U << 31; 1709 case Attribute::SanitizeAddress: return 1ULL << 32; 1710 case Attribute::MinSize: return 1ULL << 33; 1711 case Attribute::NoDuplicate: return 1ULL << 34; 1712 case Attribute::StackProtectStrong: return 1ULL << 35; 1713 case Attribute::SanitizeThread: return 1ULL << 36; 1714 case Attribute::SanitizeMemory: return 1ULL << 37; 1715 case Attribute::NoBuiltin: return 1ULL << 38; 1716 case Attribute::Returned: return 1ULL << 39; 1717 case Attribute::Cold: return 1ULL << 40; 1718 case Attribute::Builtin: return 1ULL << 41; 1719 case Attribute::OptimizeNone: return 1ULL << 42; 1720 case Attribute::InAlloca: return 1ULL << 43; 1721 case Attribute::NonNull: return 1ULL << 44; 1722 case Attribute::JumpTable: return 1ULL << 45; 1723 case Attribute::Convergent: return 1ULL << 46; 1724 case Attribute::SafeStack: return 1ULL << 47; 1725 case Attribute::NoRecurse: return 1ULL << 48; 1726 // 1ULL << 49 is InaccessibleMemOnly, which is upgraded separately. 1727 // 1ULL << 50 is InaccessibleMemOrArgMemOnly, which is upgraded separately. 1728 case Attribute::SwiftSelf: return 1ULL << 51; 1729 case Attribute::SwiftError: return 1ULL << 52; 1730 case Attribute::WriteOnly: return 1ULL << 53; 1731 case Attribute::Speculatable: return 1ULL << 54; 1732 case Attribute::StrictFP: return 1ULL << 55; 1733 case Attribute::SanitizeHWAddress: return 1ULL << 56; 1734 case Attribute::NoCfCheck: return 1ULL << 57; 1735 case Attribute::OptForFuzzing: return 1ULL << 58; 1736 case Attribute::ShadowCallStack: return 1ULL << 59; 1737 case Attribute::SpeculativeLoadHardening: 1738 return 1ULL << 60; 1739 case Attribute::ImmArg: 1740 return 1ULL << 61; 1741 case Attribute::WillReturn: 1742 return 1ULL << 62; 1743 case Attribute::NoFree: 1744 return 1ULL << 63; 1745 default: 1746 // Other attributes are not supported in the raw format, 1747 // as we ran out of space. 1748 return 0; 1749 } 1750 llvm_unreachable("Unsupported attribute type"); 1751 } 1752 1753 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) { 1754 if (!Val) return; 1755 1756 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; 1757 I = Attribute::AttrKind(I + 1)) { 1758 if (uint64_t A = (Val & getRawAttributeMask(I))) { 1759 if (I == Attribute::Alignment) 1760 B.addAlignmentAttr(1ULL << ((A >> 16) - 1)); 1761 else if (I == Attribute::StackAlignment) 1762 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1)); 1763 else if (Attribute::isTypeAttrKind(I)) 1764 B.addTypeAttr(I, nullptr); // Type will be auto-upgraded. 1765 else 1766 B.addAttribute(I); 1767 } 1768 } 1769 } 1770 1771 /// This fills an AttrBuilder object with the LLVM attributes that have 1772 /// been decoded from the given integer. This function must stay in sync with 1773 /// 'encodeLLVMAttributesForBitcode'. 1774 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1775 uint64_t EncodedAttrs, 1776 uint64_t AttrIdx) { 1777 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1778 // the bits above 31 down by 11 bits. 1779 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1780 assert((!Alignment || isPowerOf2_32(Alignment)) && 1781 "Alignment must be a power of two."); 1782 1783 if (Alignment) 1784 B.addAlignmentAttr(Alignment); 1785 1786 uint64_t Attrs = ((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1787 (EncodedAttrs & 0xffff); 1788 1789 if (AttrIdx == AttributeList::FunctionIndex) { 1790 // Upgrade old memory attributes. 1791 MemoryEffects ME = MemoryEffects::unknown(); 1792 if (Attrs & (1ULL << 9)) { 1793 // ReadNone 1794 Attrs &= ~(1ULL << 9); 1795 ME &= MemoryEffects::none(); 1796 } 1797 if (Attrs & (1ULL << 10)) { 1798 // ReadOnly 1799 Attrs &= ~(1ULL << 10); 1800 ME &= MemoryEffects::readOnly(); 1801 } 1802 if (Attrs & (1ULL << 49)) { 1803 // InaccessibleMemOnly 1804 Attrs &= ~(1ULL << 49); 1805 ME &= MemoryEffects::inaccessibleMemOnly(); 1806 } 1807 if (Attrs & (1ULL << 50)) { 1808 // InaccessibleMemOrArgMemOnly 1809 Attrs &= ~(1ULL << 50); 1810 ME &= MemoryEffects::inaccessibleOrArgMemOnly(); 1811 } 1812 if (Attrs & (1ULL << 53)) { 1813 // WriteOnly 1814 Attrs &= ~(1ULL << 53); 1815 ME &= MemoryEffects::writeOnly(); 1816 } 1817 if (ME != MemoryEffects::unknown()) 1818 B.addMemoryAttr(ME); 1819 } 1820 1821 addRawAttributeValue(B, Attrs); 1822 } 1823 1824 Error BitcodeReader::parseAttributeBlock() { 1825 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1826 return Err; 1827 1828 if (!MAttributes.empty()) 1829 return error("Invalid multiple blocks"); 1830 1831 SmallVector<uint64_t, 64> Record; 1832 1833 SmallVector<AttributeList, 8> Attrs; 1834 1835 // Read all the records. 1836 while (true) { 1837 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1838 if (!MaybeEntry) 1839 return MaybeEntry.takeError(); 1840 BitstreamEntry Entry = MaybeEntry.get(); 1841 1842 switch (Entry.Kind) { 1843 case BitstreamEntry::SubBlock: // Handled for us already. 1844 case BitstreamEntry::Error: 1845 return error("Malformed block"); 1846 case BitstreamEntry::EndBlock: 1847 return Error::success(); 1848 case BitstreamEntry::Record: 1849 // The interesting case. 1850 break; 1851 } 1852 1853 // Read a record. 1854 Record.clear(); 1855 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1856 if (!MaybeRecord) 1857 return MaybeRecord.takeError(); 1858 switch (MaybeRecord.get()) { 1859 default: // Default behavior: ignore. 1860 break; 1861 case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...] 1862 // Deprecated, but still needed to read old bitcode files. 1863 if (Record.size() & 1) 1864 return error("Invalid parameter attribute record"); 1865 1866 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1867 AttrBuilder B(Context); 1868 decodeLLVMAttributesForBitcode(B, Record[i+1], Record[i]); 1869 Attrs.push_back(AttributeList::get(Context, Record[i], B)); 1870 } 1871 1872 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1873 Attrs.clear(); 1874 break; 1875 case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...] 1876 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1877 Attrs.push_back(MAttributeGroups[Record[i]]); 1878 1879 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1880 Attrs.clear(); 1881 break; 1882 } 1883 } 1884 } 1885 1886 // Returns Attribute::None on unrecognized codes. 1887 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1888 switch (Code) { 1889 default: 1890 return Attribute::None; 1891 case bitc::ATTR_KIND_ALIGNMENT: 1892 return Attribute::Alignment; 1893 case bitc::ATTR_KIND_ALWAYS_INLINE: 1894 return Attribute::AlwaysInline; 1895 case bitc::ATTR_KIND_BUILTIN: 1896 return Attribute::Builtin; 1897 case bitc::ATTR_KIND_BY_VAL: 1898 return Attribute::ByVal; 1899 case bitc::ATTR_KIND_IN_ALLOCA: 1900 return Attribute::InAlloca; 1901 case bitc::ATTR_KIND_COLD: 1902 return Attribute::Cold; 1903 case bitc::ATTR_KIND_CONVERGENT: 1904 return Attribute::Convergent; 1905 case bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION: 1906 return Attribute::DisableSanitizerInstrumentation; 1907 case bitc::ATTR_KIND_ELEMENTTYPE: 1908 return Attribute::ElementType; 1909 case bitc::ATTR_KIND_FNRETTHUNK_EXTERN: 1910 return Attribute::FnRetThunkExtern; 1911 case bitc::ATTR_KIND_INLINE_HINT: 1912 return Attribute::InlineHint; 1913 case bitc::ATTR_KIND_IN_REG: 1914 return Attribute::InReg; 1915 case bitc::ATTR_KIND_JUMP_TABLE: 1916 return Attribute::JumpTable; 1917 case bitc::ATTR_KIND_MEMORY: 1918 return Attribute::Memory; 1919 case bitc::ATTR_KIND_NOFPCLASS: 1920 return Attribute::NoFPClass; 1921 case bitc::ATTR_KIND_MIN_SIZE: 1922 return Attribute::MinSize; 1923 case bitc::ATTR_KIND_NAKED: 1924 return Attribute::Naked; 1925 case bitc::ATTR_KIND_NEST: 1926 return Attribute::Nest; 1927 case bitc::ATTR_KIND_NO_ALIAS: 1928 return Attribute::NoAlias; 1929 case bitc::ATTR_KIND_NO_BUILTIN: 1930 return Attribute::NoBuiltin; 1931 case bitc::ATTR_KIND_NO_CALLBACK: 1932 return Attribute::NoCallback; 1933 case bitc::ATTR_KIND_NO_CAPTURE: 1934 return Attribute::NoCapture; 1935 case bitc::ATTR_KIND_NO_DUPLICATE: 1936 return Attribute::NoDuplicate; 1937 case bitc::ATTR_KIND_NOFREE: 1938 return Attribute::NoFree; 1939 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1940 return Attribute::NoImplicitFloat; 1941 case bitc::ATTR_KIND_NO_INLINE: 1942 return Attribute::NoInline; 1943 case bitc::ATTR_KIND_NO_RECURSE: 1944 return Attribute::NoRecurse; 1945 case bitc::ATTR_KIND_NO_MERGE: 1946 return Attribute::NoMerge; 1947 case bitc::ATTR_KIND_NON_LAZY_BIND: 1948 return Attribute::NonLazyBind; 1949 case bitc::ATTR_KIND_NON_NULL: 1950 return Attribute::NonNull; 1951 case bitc::ATTR_KIND_DEREFERENCEABLE: 1952 return Attribute::Dereferenceable; 1953 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1954 return Attribute::DereferenceableOrNull; 1955 case bitc::ATTR_KIND_ALLOC_ALIGN: 1956 return Attribute::AllocAlign; 1957 case bitc::ATTR_KIND_ALLOC_KIND: 1958 return Attribute::AllocKind; 1959 case bitc::ATTR_KIND_ALLOC_SIZE: 1960 return Attribute::AllocSize; 1961 case bitc::ATTR_KIND_ALLOCATED_POINTER: 1962 return Attribute::AllocatedPointer; 1963 case bitc::ATTR_KIND_NO_RED_ZONE: 1964 return Attribute::NoRedZone; 1965 case bitc::ATTR_KIND_NO_RETURN: 1966 return Attribute::NoReturn; 1967 case bitc::ATTR_KIND_NOSYNC: 1968 return Attribute::NoSync; 1969 case bitc::ATTR_KIND_NOCF_CHECK: 1970 return Attribute::NoCfCheck; 1971 case bitc::ATTR_KIND_NO_PROFILE: 1972 return Attribute::NoProfile; 1973 case bitc::ATTR_KIND_SKIP_PROFILE: 1974 return Attribute::SkipProfile; 1975 case bitc::ATTR_KIND_NO_UNWIND: 1976 return Attribute::NoUnwind; 1977 case bitc::ATTR_KIND_NO_SANITIZE_BOUNDS: 1978 return Attribute::NoSanitizeBounds; 1979 case bitc::ATTR_KIND_NO_SANITIZE_COVERAGE: 1980 return Attribute::NoSanitizeCoverage; 1981 case bitc::ATTR_KIND_NULL_POINTER_IS_VALID: 1982 return Attribute::NullPointerIsValid; 1983 case bitc::ATTR_KIND_OPT_FOR_FUZZING: 1984 return Attribute::OptForFuzzing; 1985 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1986 return Attribute::OptimizeForSize; 1987 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1988 return Attribute::OptimizeNone; 1989 case bitc::ATTR_KIND_READ_NONE: 1990 return Attribute::ReadNone; 1991 case bitc::ATTR_KIND_READ_ONLY: 1992 return Attribute::ReadOnly; 1993 case bitc::ATTR_KIND_RETURNED: 1994 return Attribute::Returned; 1995 case bitc::ATTR_KIND_RETURNS_TWICE: 1996 return Attribute::ReturnsTwice; 1997 case bitc::ATTR_KIND_S_EXT: 1998 return Attribute::SExt; 1999 case bitc::ATTR_KIND_SPECULATABLE: 2000 return Attribute::Speculatable; 2001 case bitc::ATTR_KIND_STACK_ALIGNMENT: 2002 return Attribute::StackAlignment; 2003 case bitc::ATTR_KIND_STACK_PROTECT: 2004 return Attribute::StackProtect; 2005 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 2006 return Attribute::StackProtectReq; 2007 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 2008 return Attribute::StackProtectStrong; 2009 case bitc::ATTR_KIND_SAFESTACK: 2010 return Attribute::SafeStack; 2011 case bitc::ATTR_KIND_SHADOWCALLSTACK: 2012 return Attribute::ShadowCallStack; 2013 case bitc::ATTR_KIND_STRICT_FP: 2014 return Attribute::StrictFP; 2015 case bitc::ATTR_KIND_STRUCT_RET: 2016 return Attribute::StructRet; 2017 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 2018 return Attribute::SanitizeAddress; 2019 case bitc::ATTR_KIND_SANITIZE_HWADDRESS: 2020 return Attribute::SanitizeHWAddress; 2021 case bitc::ATTR_KIND_SANITIZE_THREAD: 2022 return Attribute::SanitizeThread; 2023 case bitc::ATTR_KIND_SANITIZE_MEMORY: 2024 return Attribute::SanitizeMemory; 2025 case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING: 2026 return Attribute::SpeculativeLoadHardening; 2027 case bitc::ATTR_KIND_SWIFT_ERROR: 2028 return Attribute::SwiftError; 2029 case bitc::ATTR_KIND_SWIFT_SELF: 2030 return Attribute::SwiftSelf; 2031 case bitc::ATTR_KIND_SWIFT_ASYNC: 2032 return Attribute::SwiftAsync; 2033 case bitc::ATTR_KIND_UW_TABLE: 2034 return Attribute::UWTable; 2035 case bitc::ATTR_KIND_VSCALE_RANGE: 2036 return Attribute::VScaleRange; 2037 case bitc::ATTR_KIND_WILLRETURN: 2038 return Attribute::WillReturn; 2039 case bitc::ATTR_KIND_WRITEONLY: 2040 return Attribute::WriteOnly; 2041 case bitc::ATTR_KIND_Z_EXT: 2042 return Attribute::ZExt; 2043 case bitc::ATTR_KIND_IMMARG: 2044 return Attribute::ImmArg; 2045 case bitc::ATTR_KIND_SANITIZE_MEMTAG: 2046 return Attribute::SanitizeMemTag; 2047 case bitc::ATTR_KIND_PREALLOCATED: 2048 return Attribute::Preallocated; 2049 case bitc::ATTR_KIND_NOUNDEF: 2050 return Attribute::NoUndef; 2051 case bitc::ATTR_KIND_BYREF: 2052 return Attribute::ByRef; 2053 case bitc::ATTR_KIND_MUSTPROGRESS: 2054 return Attribute::MustProgress; 2055 case bitc::ATTR_KIND_HOT: 2056 return Attribute::Hot; 2057 case bitc::ATTR_KIND_PRESPLIT_COROUTINE: 2058 return Attribute::PresplitCoroutine; 2059 } 2060 } 2061 2062 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent, 2063 MaybeAlign &Alignment) { 2064 // Note: Alignment in bitcode files is incremented by 1, so that zero 2065 // can be used for default alignment. 2066 if (Exponent > Value::MaxAlignmentExponent + 1) 2067 return error("Invalid alignment value"); 2068 Alignment = decodeMaybeAlign(Exponent); 2069 return Error::success(); 2070 } 2071 2072 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) { 2073 *Kind = getAttrFromCode(Code); 2074 if (*Kind == Attribute::None) 2075 return error("Unknown attribute kind (" + Twine(Code) + ")"); 2076 return Error::success(); 2077 } 2078 2079 static bool upgradeOldMemoryAttribute(MemoryEffects &ME, uint64_t EncodedKind) { 2080 switch (EncodedKind) { 2081 case bitc::ATTR_KIND_READ_NONE: 2082 ME &= MemoryEffects::none(); 2083 return true; 2084 case bitc::ATTR_KIND_READ_ONLY: 2085 ME &= MemoryEffects::readOnly(); 2086 return true; 2087 case bitc::ATTR_KIND_WRITEONLY: 2088 ME &= MemoryEffects::writeOnly(); 2089 return true; 2090 case bitc::ATTR_KIND_ARGMEMONLY: 2091 ME &= MemoryEffects::argMemOnly(); 2092 return true; 2093 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 2094 ME &= MemoryEffects::inaccessibleMemOnly(); 2095 return true; 2096 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 2097 ME &= MemoryEffects::inaccessibleOrArgMemOnly(); 2098 return true; 2099 default: 2100 return false; 2101 } 2102 } 2103 2104 Error BitcodeReader::parseAttributeGroupBlock() { 2105 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 2106 return Err; 2107 2108 if (!MAttributeGroups.empty()) 2109 return error("Invalid multiple blocks"); 2110 2111 SmallVector<uint64_t, 64> Record; 2112 2113 // Read all the records. 2114 while (true) { 2115 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2116 if (!MaybeEntry) 2117 return MaybeEntry.takeError(); 2118 BitstreamEntry Entry = MaybeEntry.get(); 2119 2120 switch (Entry.Kind) { 2121 case BitstreamEntry::SubBlock: // Handled for us already. 2122 case BitstreamEntry::Error: 2123 return error("Malformed block"); 2124 case BitstreamEntry::EndBlock: 2125 return Error::success(); 2126 case BitstreamEntry::Record: 2127 // The interesting case. 2128 break; 2129 } 2130 2131 // Read a record. 2132 Record.clear(); 2133 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2134 if (!MaybeRecord) 2135 return MaybeRecord.takeError(); 2136 switch (MaybeRecord.get()) { 2137 default: // Default behavior: ignore. 2138 break; 2139 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 2140 if (Record.size() < 3) 2141 return error("Invalid grp record"); 2142 2143 uint64_t GrpID = Record[0]; 2144 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 2145 2146 AttrBuilder B(Context); 2147 MemoryEffects ME = MemoryEffects::unknown(); 2148 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 2149 if (Record[i] == 0) { // Enum attribute 2150 Attribute::AttrKind Kind; 2151 uint64_t EncodedKind = Record[++i]; 2152 if (Idx == AttributeList::FunctionIndex && 2153 upgradeOldMemoryAttribute(ME, EncodedKind)) 2154 continue; 2155 2156 if (Error Err = parseAttrKind(EncodedKind, &Kind)) 2157 return Err; 2158 2159 // Upgrade old-style byval attribute to one with a type, even if it's 2160 // nullptr. We will have to insert the real type when we associate 2161 // this AttributeList with a function. 2162 if (Kind == Attribute::ByVal) 2163 B.addByValAttr(nullptr); 2164 else if (Kind == Attribute::StructRet) 2165 B.addStructRetAttr(nullptr); 2166 else if (Kind == Attribute::InAlloca) 2167 B.addInAllocaAttr(nullptr); 2168 else if (Kind == Attribute::UWTable) 2169 B.addUWTableAttr(UWTableKind::Default); 2170 else if (Attribute::isEnumAttrKind(Kind)) 2171 B.addAttribute(Kind); 2172 else 2173 return error("Not an enum attribute"); 2174 } else if (Record[i] == 1) { // Integer attribute 2175 Attribute::AttrKind Kind; 2176 if (Error Err = parseAttrKind(Record[++i], &Kind)) 2177 return Err; 2178 if (!Attribute::isIntAttrKind(Kind)) 2179 return error("Not an int attribute"); 2180 if (Kind == Attribute::Alignment) 2181 B.addAlignmentAttr(Record[++i]); 2182 else if (Kind == Attribute::StackAlignment) 2183 B.addStackAlignmentAttr(Record[++i]); 2184 else if (Kind == Attribute::Dereferenceable) 2185 B.addDereferenceableAttr(Record[++i]); 2186 else if (Kind == Attribute::DereferenceableOrNull) 2187 B.addDereferenceableOrNullAttr(Record[++i]); 2188 else if (Kind == Attribute::AllocSize) 2189 B.addAllocSizeAttrFromRawRepr(Record[++i]); 2190 else if (Kind == Attribute::VScaleRange) 2191 B.addVScaleRangeAttrFromRawRepr(Record[++i]); 2192 else if (Kind == Attribute::UWTable) 2193 B.addUWTableAttr(UWTableKind(Record[++i])); 2194 else if (Kind == Attribute::AllocKind) 2195 B.addAllocKindAttr(static_cast<AllocFnKind>(Record[++i])); 2196 else if (Kind == Attribute::Memory) 2197 B.addMemoryAttr(MemoryEffects::createFromIntValue(Record[++i])); 2198 else if (Kind == Attribute::NoFPClass) 2199 B.addNoFPClassAttr( 2200 static_cast<FPClassTest>(Record[++i] & fcAllFlags)); 2201 } else if (Record[i] == 3 || Record[i] == 4) { // String attribute 2202 bool HasValue = (Record[i++] == 4); 2203 SmallString<64> KindStr; 2204 SmallString<64> ValStr; 2205 2206 while (Record[i] != 0 && i != e) 2207 KindStr += Record[i++]; 2208 assert(Record[i] == 0 && "Kind string not null terminated"); 2209 2210 if (HasValue) { 2211 // Has a value associated with it. 2212 ++i; // Skip the '0' that terminates the "kind" string. 2213 while (Record[i] != 0 && i != e) 2214 ValStr += Record[i++]; 2215 assert(Record[i] == 0 && "Value string not null terminated"); 2216 } 2217 2218 B.addAttribute(KindStr.str(), ValStr.str()); 2219 } else if (Record[i] == 5 || Record[i] == 6) { 2220 bool HasType = Record[i] == 6; 2221 Attribute::AttrKind Kind; 2222 if (Error Err = parseAttrKind(Record[++i], &Kind)) 2223 return Err; 2224 if (!Attribute::isTypeAttrKind(Kind)) 2225 return error("Not a type attribute"); 2226 2227 B.addTypeAttr(Kind, HasType ? getTypeByID(Record[++i]) : nullptr); 2228 } else { 2229 return error("Invalid attribute group entry"); 2230 } 2231 } 2232 2233 if (ME != MemoryEffects::unknown()) 2234 B.addMemoryAttr(ME); 2235 2236 UpgradeAttributes(B); 2237 MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B); 2238 break; 2239 } 2240 } 2241 } 2242 } 2243 2244 Error BitcodeReader::parseTypeTable() { 2245 if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 2246 return Err; 2247 2248 return parseTypeTableBody(); 2249 } 2250 2251 Error BitcodeReader::parseTypeTableBody() { 2252 if (!TypeList.empty()) 2253 return error("Invalid multiple blocks"); 2254 2255 SmallVector<uint64_t, 64> Record; 2256 unsigned NumRecords = 0; 2257 2258 SmallString<64> TypeName; 2259 2260 // Read all the records for this type table. 2261 while (true) { 2262 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2263 if (!MaybeEntry) 2264 return MaybeEntry.takeError(); 2265 BitstreamEntry Entry = MaybeEntry.get(); 2266 2267 switch (Entry.Kind) { 2268 case BitstreamEntry::SubBlock: // Handled for us already. 2269 case BitstreamEntry::Error: 2270 return error("Malformed block"); 2271 case BitstreamEntry::EndBlock: 2272 if (NumRecords != TypeList.size()) 2273 return error("Malformed block"); 2274 return Error::success(); 2275 case BitstreamEntry::Record: 2276 // The interesting case. 2277 break; 2278 } 2279 2280 // Read a record. 2281 Record.clear(); 2282 Type *ResultTy = nullptr; 2283 SmallVector<unsigned> ContainedIDs; 2284 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2285 if (!MaybeRecord) 2286 return MaybeRecord.takeError(); 2287 switch (MaybeRecord.get()) { 2288 default: 2289 return error("Invalid value"); 2290 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 2291 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 2292 // type list. This allows us to reserve space. 2293 if (Record.empty()) 2294 return error("Invalid numentry record"); 2295 TypeList.resize(Record[0]); 2296 continue; 2297 case bitc::TYPE_CODE_VOID: // VOID 2298 ResultTy = Type::getVoidTy(Context); 2299 break; 2300 case bitc::TYPE_CODE_HALF: // HALF 2301 ResultTy = Type::getHalfTy(Context); 2302 break; 2303 case bitc::TYPE_CODE_BFLOAT: // BFLOAT 2304 ResultTy = Type::getBFloatTy(Context); 2305 break; 2306 case bitc::TYPE_CODE_FLOAT: // FLOAT 2307 ResultTy = Type::getFloatTy(Context); 2308 break; 2309 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 2310 ResultTy = Type::getDoubleTy(Context); 2311 break; 2312 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 2313 ResultTy = Type::getX86_FP80Ty(Context); 2314 break; 2315 case bitc::TYPE_CODE_FP128: // FP128 2316 ResultTy = Type::getFP128Ty(Context); 2317 break; 2318 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 2319 ResultTy = Type::getPPC_FP128Ty(Context); 2320 break; 2321 case bitc::TYPE_CODE_LABEL: // LABEL 2322 ResultTy = Type::getLabelTy(Context); 2323 break; 2324 case bitc::TYPE_CODE_METADATA: // METADATA 2325 ResultTy = Type::getMetadataTy(Context); 2326 break; 2327 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 2328 ResultTy = Type::getX86_MMXTy(Context); 2329 break; 2330 case bitc::TYPE_CODE_X86_AMX: // X86_AMX 2331 ResultTy = Type::getX86_AMXTy(Context); 2332 break; 2333 case bitc::TYPE_CODE_TOKEN: // TOKEN 2334 ResultTy = Type::getTokenTy(Context); 2335 break; 2336 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 2337 if (Record.empty()) 2338 return error("Invalid integer record"); 2339 2340 uint64_t NumBits = Record[0]; 2341 if (NumBits < IntegerType::MIN_INT_BITS || 2342 NumBits > IntegerType::MAX_INT_BITS) 2343 return error("Bitwidth for integer type out of range"); 2344 ResultTy = IntegerType::get(Context, NumBits); 2345 break; 2346 } 2347 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 2348 // [pointee type, address space] 2349 if (Record.empty()) 2350 return error("Invalid pointer record"); 2351 unsigned AddressSpace = 0; 2352 if (Record.size() == 2) 2353 AddressSpace = Record[1]; 2354 ResultTy = getTypeByID(Record[0]); 2355 if (!ResultTy || 2356 !PointerType::isValidElementType(ResultTy)) 2357 return error("Invalid type"); 2358 ContainedIDs.push_back(Record[0]); 2359 ResultTy = PointerType::get(ResultTy, AddressSpace); 2360 break; 2361 } 2362 case bitc::TYPE_CODE_OPAQUE_POINTER: { // OPAQUE_POINTER: [addrspace] 2363 if (Record.size() != 1) 2364 return error("Invalid opaque pointer record"); 2365 unsigned AddressSpace = Record[0]; 2366 ResultTy = PointerType::get(Context, AddressSpace); 2367 break; 2368 } 2369 case bitc::TYPE_CODE_FUNCTION_OLD: { 2370 // Deprecated, but still needed to read old bitcode files. 2371 // FUNCTION: [vararg, attrid, retty, paramty x N] 2372 if (Record.size() < 3) 2373 return error("Invalid function record"); 2374 SmallVector<Type*, 8> ArgTys; 2375 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 2376 if (Type *T = getTypeByID(Record[i])) 2377 ArgTys.push_back(T); 2378 else 2379 break; 2380 } 2381 2382 ResultTy = getTypeByID(Record[2]); 2383 if (!ResultTy || ArgTys.size() < Record.size()-3) 2384 return error("Invalid type"); 2385 2386 ContainedIDs.append(Record.begin() + 2, Record.end()); 2387 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 2388 break; 2389 } 2390 case bitc::TYPE_CODE_FUNCTION: { 2391 // FUNCTION: [vararg, retty, paramty x N] 2392 if (Record.size() < 2) 2393 return error("Invalid function record"); 2394 SmallVector<Type*, 8> ArgTys; 2395 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 2396 if (Type *T = getTypeByID(Record[i])) { 2397 if (!FunctionType::isValidArgumentType(T)) 2398 return error("Invalid function argument type"); 2399 ArgTys.push_back(T); 2400 } 2401 else 2402 break; 2403 } 2404 2405 ResultTy = getTypeByID(Record[1]); 2406 if (!ResultTy || ArgTys.size() < Record.size()-2) 2407 return error("Invalid type"); 2408 2409 ContainedIDs.append(Record.begin() + 1, Record.end()); 2410 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 2411 break; 2412 } 2413 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 2414 if (Record.empty()) 2415 return error("Invalid anon struct record"); 2416 SmallVector<Type*, 8> EltTys; 2417 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 2418 if (Type *T = getTypeByID(Record[i])) 2419 EltTys.push_back(T); 2420 else 2421 break; 2422 } 2423 if (EltTys.size() != Record.size()-1) 2424 return error("Invalid type"); 2425 ContainedIDs.append(Record.begin() + 1, Record.end()); 2426 ResultTy = StructType::get(Context, EltTys, Record[0]); 2427 break; 2428 } 2429 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 2430 if (convertToString(Record, 0, TypeName)) 2431 return error("Invalid struct name record"); 2432 continue; 2433 2434 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 2435 if (Record.empty()) 2436 return error("Invalid named struct record"); 2437 2438 if (NumRecords >= TypeList.size()) 2439 return error("Invalid TYPE table"); 2440 2441 // Check to see if this was forward referenced, if so fill in the temp. 2442 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 2443 if (Res) { 2444 Res->setName(TypeName); 2445 TypeList[NumRecords] = nullptr; 2446 } else // Otherwise, create a new struct. 2447 Res = createIdentifiedStructType(Context, TypeName); 2448 TypeName.clear(); 2449 2450 SmallVector<Type*, 8> EltTys; 2451 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 2452 if (Type *T = getTypeByID(Record[i])) 2453 EltTys.push_back(T); 2454 else 2455 break; 2456 } 2457 if (EltTys.size() != Record.size()-1) 2458 return error("Invalid named struct record"); 2459 Res->setBody(EltTys, Record[0]); 2460 ContainedIDs.append(Record.begin() + 1, Record.end()); 2461 ResultTy = Res; 2462 break; 2463 } 2464 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 2465 if (Record.size() != 1) 2466 return error("Invalid opaque type record"); 2467 2468 if (NumRecords >= TypeList.size()) 2469 return error("Invalid TYPE table"); 2470 2471 // Check to see if this was forward referenced, if so fill in the temp. 2472 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 2473 if (Res) { 2474 Res->setName(TypeName); 2475 TypeList[NumRecords] = nullptr; 2476 } else // Otherwise, create a new struct with no body. 2477 Res = createIdentifiedStructType(Context, TypeName); 2478 TypeName.clear(); 2479 ResultTy = Res; 2480 break; 2481 } 2482 case bitc::TYPE_CODE_TARGET_TYPE: { // TARGET_TYPE: [NumTy, Tys..., Ints...] 2483 if (Record.size() < 1) 2484 return error("Invalid target extension type record"); 2485 2486 if (NumRecords >= TypeList.size()) 2487 return error("Invalid TYPE table"); 2488 2489 if (Record[0] >= Record.size()) 2490 return error("Too many type parameters"); 2491 2492 unsigned NumTys = Record[0]; 2493 SmallVector<Type *, 4> TypeParams; 2494 SmallVector<unsigned, 8> IntParams; 2495 for (unsigned i = 0; i < NumTys; i++) { 2496 if (Type *T = getTypeByID(Record[i + 1])) 2497 TypeParams.push_back(T); 2498 else 2499 return error("Invalid type"); 2500 } 2501 2502 for (unsigned i = NumTys + 1, e = Record.size(); i < e; i++) { 2503 if (Record[i] > UINT_MAX) 2504 return error("Integer parameter too large"); 2505 IntParams.push_back(Record[i]); 2506 } 2507 ResultTy = TargetExtType::get(Context, TypeName, TypeParams, IntParams); 2508 TypeName.clear(); 2509 break; 2510 } 2511 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 2512 if (Record.size() < 2) 2513 return error("Invalid array type record"); 2514 ResultTy = getTypeByID(Record[1]); 2515 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 2516 return error("Invalid type"); 2517 ContainedIDs.push_back(Record[1]); 2518 ResultTy = ArrayType::get(ResultTy, Record[0]); 2519 break; 2520 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] or 2521 // [numelts, eltty, scalable] 2522 if (Record.size() < 2) 2523 return error("Invalid vector type record"); 2524 if (Record[0] == 0) 2525 return error("Invalid vector length"); 2526 ResultTy = getTypeByID(Record[1]); 2527 if (!ResultTy || !VectorType::isValidElementType(ResultTy)) 2528 return error("Invalid type"); 2529 bool Scalable = Record.size() > 2 ? Record[2] : false; 2530 ContainedIDs.push_back(Record[1]); 2531 ResultTy = VectorType::get(ResultTy, Record[0], Scalable); 2532 break; 2533 } 2534 2535 if (NumRecords >= TypeList.size()) 2536 return error("Invalid TYPE table"); 2537 if (TypeList[NumRecords]) 2538 return error( 2539 "Invalid TYPE table: Only named structs can be forward referenced"); 2540 assert(ResultTy && "Didn't read a type?"); 2541 TypeList[NumRecords] = ResultTy; 2542 if (!ContainedIDs.empty()) 2543 ContainedTypeIDs[NumRecords] = std::move(ContainedIDs); 2544 ++NumRecords; 2545 } 2546 } 2547 2548 Error BitcodeReader::parseOperandBundleTags() { 2549 if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 2550 return Err; 2551 2552 if (!BundleTags.empty()) 2553 return error("Invalid multiple blocks"); 2554 2555 SmallVector<uint64_t, 64> Record; 2556 2557 while (true) { 2558 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2559 if (!MaybeEntry) 2560 return MaybeEntry.takeError(); 2561 BitstreamEntry Entry = MaybeEntry.get(); 2562 2563 switch (Entry.Kind) { 2564 case BitstreamEntry::SubBlock: // Handled for us already. 2565 case BitstreamEntry::Error: 2566 return error("Malformed block"); 2567 case BitstreamEntry::EndBlock: 2568 return Error::success(); 2569 case BitstreamEntry::Record: 2570 // The interesting case. 2571 break; 2572 } 2573 2574 // Tags are implicitly mapped to integers by their order. 2575 2576 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2577 if (!MaybeRecord) 2578 return MaybeRecord.takeError(); 2579 if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG) 2580 return error("Invalid operand bundle record"); 2581 2582 // OPERAND_BUNDLE_TAG: [strchr x N] 2583 BundleTags.emplace_back(); 2584 if (convertToString(Record, 0, BundleTags.back())) 2585 return error("Invalid operand bundle record"); 2586 Record.clear(); 2587 } 2588 } 2589 2590 Error BitcodeReader::parseSyncScopeNames() { 2591 if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID)) 2592 return Err; 2593 2594 if (!SSIDs.empty()) 2595 return error("Invalid multiple synchronization scope names blocks"); 2596 2597 SmallVector<uint64_t, 64> Record; 2598 while (true) { 2599 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2600 if (!MaybeEntry) 2601 return MaybeEntry.takeError(); 2602 BitstreamEntry Entry = MaybeEntry.get(); 2603 2604 switch (Entry.Kind) { 2605 case BitstreamEntry::SubBlock: // Handled for us already. 2606 case BitstreamEntry::Error: 2607 return error("Malformed block"); 2608 case BitstreamEntry::EndBlock: 2609 if (SSIDs.empty()) 2610 return error("Invalid empty synchronization scope names block"); 2611 return Error::success(); 2612 case BitstreamEntry::Record: 2613 // The interesting case. 2614 break; 2615 } 2616 2617 // Synchronization scope names are implicitly mapped to synchronization 2618 // scope IDs by their order. 2619 2620 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2621 if (!MaybeRecord) 2622 return MaybeRecord.takeError(); 2623 if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME) 2624 return error("Invalid sync scope record"); 2625 2626 SmallString<16> SSN; 2627 if (convertToString(Record, 0, SSN)) 2628 return error("Invalid sync scope record"); 2629 2630 SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN)); 2631 Record.clear(); 2632 } 2633 } 2634 2635 /// Associate a value with its name from the given index in the provided record. 2636 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 2637 unsigned NameIndex, Triple &TT) { 2638 SmallString<128> ValueName; 2639 if (convertToString(Record, NameIndex, ValueName)) 2640 return error("Invalid record"); 2641 unsigned ValueID = Record[0]; 2642 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 2643 return error("Invalid record"); 2644 Value *V = ValueList[ValueID]; 2645 2646 StringRef NameStr(ValueName.data(), ValueName.size()); 2647 if (NameStr.find_first_of(0) != StringRef::npos) 2648 return error("Invalid value name"); 2649 V->setName(NameStr); 2650 auto *GO = dyn_cast<GlobalObject>(V); 2651 if (GO && ImplicitComdatObjects.contains(GO) && TT.supportsCOMDAT()) 2652 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 2653 return V; 2654 } 2655 2656 /// Helper to note and return the current location, and jump to the given 2657 /// offset. 2658 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset, 2659 BitstreamCursor &Stream) { 2660 // Save the current parsing location so we can jump back at the end 2661 // of the VST read. 2662 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 2663 if (Error JumpFailed = Stream.JumpToBit(Offset * 32)) 2664 return std::move(JumpFailed); 2665 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 2666 if (!MaybeEntry) 2667 return MaybeEntry.takeError(); 2668 if (MaybeEntry.get().Kind != BitstreamEntry::SubBlock || 2669 MaybeEntry.get().ID != bitc::VALUE_SYMTAB_BLOCK_ID) 2670 return error("Expected value symbol table subblock"); 2671 return CurrentBit; 2672 } 2673 2674 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, 2675 Function *F, 2676 ArrayRef<uint64_t> Record) { 2677 // Note that we subtract 1 here because the offset is relative to one word 2678 // before the start of the identification or module block, which was 2679 // historically always the start of the regular bitcode header. 2680 uint64_t FuncWordOffset = Record[1] - 1; 2681 uint64_t FuncBitOffset = FuncWordOffset * 32; 2682 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 2683 // Set the LastFunctionBlockBit to point to the last function block. 2684 // Later when parsing is resumed after function materialization, 2685 // we can simply skip that last function block. 2686 if (FuncBitOffset > LastFunctionBlockBit) 2687 LastFunctionBlockBit = FuncBitOffset; 2688 } 2689 2690 /// Read a new-style GlobalValue symbol table. 2691 Error BitcodeReader::parseGlobalValueSymbolTable() { 2692 unsigned FuncBitcodeOffsetDelta = 2693 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2694 2695 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2696 return Err; 2697 2698 SmallVector<uint64_t, 64> Record; 2699 while (true) { 2700 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2701 if (!MaybeEntry) 2702 return MaybeEntry.takeError(); 2703 BitstreamEntry Entry = MaybeEntry.get(); 2704 2705 switch (Entry.Kind) { 2706 case BitstreamEntry::SubBlock: 2707 case BitstreamEntry::Error: 2708 return error("Malformed block"); 2709 case BitstreamEntry::EndBlock: 2710 return Error::success(); 2711 case BitstreamEntry::Record: 2712 break; 2713 } 2714 2715 Record.clear(); 2716 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2717 if (!MaybeRecord) 2718 return MaybeRecord.takeError(); 2719 switch (MaybeRecord.get()) { 2720 case bitc::VST_CODE_FNENTRY: { // [valueid, offset] 2721 unsigned ValueID = Record[0]; 2722 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 2723 return error("Invalid value reference in symbol table"); 2724 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, 2725 cast<Function>(ValueList[ValueID]), Record); 2726 break; 2727 } 2728 } 2729 } 2730 } 2731 2732 /// Parse the value symbol table at either the current parsing location or 2733 /// at the given bit offset if provided. 2734 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 2735 uint64_t CurrentBit; 2736 // Pass in the Offset to distinguish between calling for the module-level 2737 // VST (where we want to jump to the VST offset) and the function-level 2738 // VST (where we don't). 2739 if (Offset > 0) { 2740 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 2741 if (!MaybeCurrentBit) 2742 return MaybeCurrentBit.takeError(); 2743 CurrentBit = MaybeCurrentBit.get(); 2744 // If this module uses a string table, read this as a module-level VST. 2745 if (UseStrtab) { 2746 if (Error Err = parseGlobalValueSymbolTable()) 2747 return Err; 2748 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2749 return JumpFailed; 2750 return Error::success(); 2751 } 2752 // Otherwise, the VST will be in a similar format to a function-level VST, 2753 // and will contain symbol names. 2754 } 2755 2756 // Compute the delta between the bitcode indices in the VST (the word offset 2757 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 2758 // expected by the lazy reader. The reader's EnterSubBlock expects to have 2759 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 2760 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 2761 // just before entering the VST subblock because: 1) the EnterSubBlock 2762 // changes the AbbrevID width; 2) the VST block is nested within the same 2763 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 2764 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 2765 // jump to the FUNCTION_BLOCK using this offset later, we don't want 2766 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 2767 unsigned FuncBitcodeOffsetDelta = 2768 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2769 2770 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2771 return Err; 2772 2773 SmallVector<uint64_t, 64> Record; 2774 2775 Triple TT(TheModule->getTargetTriple()); 2776 2777 // Read all the records for this value table. 2778 SmallString<128> ValueName; 2779 2780 while (true) { 2781 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2782 if (!MaybeEntry) 2783 return MaybeEntry.takeError(); 2784 BitstreamEntry Entry = MaybeEntry.get(); 2785 2786 switch (Entry.Kind) { 2787 case BitstreamEntry::SubBlock: // Handled for us already. 2788 case BitstreamEntry::Error: 2789 return error("Malformed block"); 2790 case BitstreamEntry::EndBlock: 2791 if (Offset > 0) 2792 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2793 return JumpFailed; 2794 return Error::success(); 2795 case BitstreamEntry::Record: 2796 // The interesting case. 2797 break; 2798 } 2799 2800 // Read a record. 2801 Record.clear(); 2802 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2803 if (!MaybeRecord) 2804 return MaybeRecord.takeError(); 2805 switch (MaybeRecord.get()) { 2806 default: // Default behavior: unknown type. 2807 break; 2808 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 2809 Expected<Value *> ValOrErr = recordValue(Record, 1, TT); 2810 if (Error Err = ValOrErr.takeError()) 2811 return Err; 2812 ValOrErr.get(); 2813 break; 2814 } 2815 case bitc::VST_CODE_FNENTRY: { 2816 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 2817 Expected<Value *> ValOrErr = recordValue(Record, 2, TT); 2818 if (Error Err = ValOrErr.takeError()) 2819 return Err; 2820 Value *V = ValOrErr.get(); 2821 2822 // Ignore function offsets emitted for aliases of functions in older 2823 // versions of LLVM. 2824 if (auto *F = dyn_cast<Function>(V)) 2825 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record); 2826 break; 2827 } 2828 case bitc::VST_CODE_BBENTRY: { 2829 if (convertToString(Record, 1, ValueName)) 2830 return error("Invalid bbentry record"); 2831 BasicBlock *BB = getBasicBlock(Record[0]); 2832 if (!BB) 2833 return error("Invalid bbentry record"); 2834 2835 BB->setName(StringRef(ValueName.data(), ValueName.size())); 2836 ValueName.clear(); 2837 break; 2838 } 2839 } 2840 } 2841 } 2842 2843 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2844 /// encoding. 2845 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2846 if ((V & 1) == 0) 2847 return V >> 1; 2848 if (V != 1) 2849 return -(V >> 1); 2850 // There is no such thing as -0 with integers. "-0" really means MININT. 2851 return 1ULL << 63; 2852 } 2853 2854 /// Resolve all of the initializers for global values and aliases that we can. 2855 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 2856 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist; 2857 std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInitWorklist; 2858 std::vector<FunctionOperandInfo> FunctionOperandWorklist; 2859 2860 GlobalInitWorklist.swap(GlobalInits); 2861 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 2862 FunctionOperandWorklist.swap(FunctionOperands); 2863 2864 while (!GlobalInitWorklist.empty()) { 2865 unsigned ValID = GlobalInitWorklist.back().second; 2866 if (ValID >= ValueList.size()) { 2867 // Not ready to resolve this yet, it requires something later in the file. 2868 GlobalInits.push_back(GlobalInitWorklist.back()); 2869 } else { 2870 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 2871 if (!MaybeC) 2872 return MaybeC.takeError(); 2873 GlobalInitWorklist.back().first->setInitializer(MaybeC.get()); 2874 } 2875 GlobalInitWorklist.pop_back(); 2876 } 2877 2878 while (!IndirectSymbolInitWorklist.empty()) { 2879 unsigned ValID = IndirectSymbolInitWorklist.back().second; 2880 if (ValID >= ValueList.size()) { 2881 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 2882 } else { 2883 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 2884 if (!MaybeC) 2885 return MaybeC.takeError(); 2886 Constant *C = MaybeC.get(); 2887 GlobalValue *GV = IndirectSymbolInitWorklist.back().first; 2888 if (auto *GA = dyn_cast<GlobalAlias>(GV)) { 2889 if (C->getType() != GV->getType()) 2890 return error("Alias and aliasee types don't match"); 2891 GA->setAliasee(C); 2892 } else if (auto *GI = dyn_cast<GlobalIFunc>(GV)) { 2893 Type *ResolverFTy = 2894 GlobalIFunc::getResolverFunctionType(GI->getValueType()); 2895 // Transparently fix up the type for compatibility with older bitcode 2896 GI->setResolver(ConstantExpr::getBitCast( 2897 C, ResolverFTy->getPointerTo(GI->getAddressSpace()))); 2898 } else { 2899 return error("Expected an alias or an ifunc"); 2900 } 2901 } 2902 IndirectSymbolInitWorklist.pop_back(); 2903 } 2904 2905 while (!FunctionOperandWorklist.empty()) { 2906 FunctionOperandInfo &Info = FunctionOperandWorklist.back(); 2907 if (Info.PersonalityFn) { 2908 unsigned ValID = Info.PersonalityFn - 1; 2909 if (ValID < ValueList.size()) { 2910 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 2911 if (!MaybeC) 2912 return MaybeC.takeError(); 2913 Info.F->setPersonalityFn(MaybeC.get()); 2914 Info.PersonalityFn = 0; 2915 } 2916 } 2917 if (Info.Prefix) { 2918 unsigned ValID = Info.Prefix - 1; 2919 if (ValID < ValueList.size()) { 2920 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 2921 if (!MaybeC) 2922 return MaybeC.takeError(); 2923 Info.F->setPrefixData(MaybeC.get()); 2924 Info.Prefix = 0; 2925 } 2926 } 2927 if (Info.Prologue) { 2928 unsigned ValID = Info.Prologue - 1; 2929 if (ValID < ValueList.size()) { 2930 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 2931 if (!MaybeC) 2932 return MaybeC.takeError(); 2933 Info.F->setPrologueData(MaybeC.get()); 2934 Info.Prologue = 0; 2935 } 2936 } 2937 if (Info.PersonalityFn || Info.Prefix || Info.Prologue) 2938 FunctionOperands.push_back(Info); 2939 FunctionOperandWorklist.pop_back(); 2940 } 2941 2942 return Error::success(); 2943 } 2944 2945 APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2946 SmallVector<uint64_t, 8> Words(Vals.size()); 2947 transform(Vals, Words.begin(), 2948 BitcodeReader::decodeSignRotatedValue); 2949 2950 return APInt(TypeBits, Words); 2951 } 2952 2953 Error BitcodeReader::parseConstants() { 2954 if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2955 return Err; 2956 2957 SmallVector<uint64_t, 64> Record; 2958 2959 // Read all the records for this value table. 2960 Type *CurTy = Type::getInt32Ty(Context); 2961 unsigned Int32TyID = getVirtualTypeID(CurTy); 2962 unsigned CurTyID = Int32TyID; 2963 Type *CurElemTy = nullptr; 2964 unsigned NextCstNo = ValueList.size(); 2965 2966 while (true) { 2967 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2968 if (!MaybeEntry) 2969 return MaybeEntry.takeError(); 2970 BitstreamEntry Entry = MaybeEntry.get(); 2971 2972 switch (Entry.Kind) { 2973 case BitstreamEntry::SubBlock: // Handled for us already. 2974 case BitstreamEntry::Error: 2975 return error("Malformed block"); 2976 case BitstreamEntry::EndBlock: 2977 if (NextCstNo != ValueList.size()) 2978 return error("Invalid constant reference"); 2979 return Error::success(); 2980 case BitstreamEntry::Record: 2981 // The interesting case. 2982 break; 2983 } 2984 2985 // Read a record. 2986 Record.clear(); 2987 Type *VoidType = Type::getVoidTy(Context); 2988 Value *V = nullptr; 2989 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 2990 if (!MaybeBitCode) 2991 return MaybeBitCode.takeError(); 2992 switch (unsigned BitCode = MaybeBitCode.get()) { 2993 default: // Default behavior: unknown constant 2994 case bitc::CST_CODE_UNDEF: // UNDEF 2995 V = UndefValue::get(CurTy); 2996 break; 2997 case bitc::CST_CODE_POISON: // POISON 2998 V = PoisonValue::get(CurTy); 2999 break; 3000 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 3001 if (Record.empty()) 3002 return error("Invalid settype record"); 3003 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 3004 return error("Invalid settype record"); 3005 if (TypeList[Record[0]] == VoidType) 3006 return error("Invalid constant type"); 3007 CurTyID = Record[0]; 3008 CurTy = TypeList[CurTyID]; 3009 CurElemTy = getPtrElementTypeByID(CurTyID); 3010 continue; // Skip the ValueList manipulation. 3011 case bitc::CST_CODE_NULL: // NULL 3012 if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy()) 3013 return error("Invalid type for a constant null value"); 3014 if (auto *TETy = dyn_cast<TargetExtType>(CurTy)) 3015 if (!TETy->hasProperty(TargetExtType::HasZeroInit)) 3016 return error("Invalid type for a constant null value"); 3017 V = Constant::getNullValue(CurTy); 3018 break; 3019 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 3020 if (!CurTy->isIntegerTy() || Record.empty()) 3021 return error("Invalid integer const record"); 3022 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 3023 break; 3024 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 3025 if (!CurTy->isIntegerTy() || Record.empty()) 3026 return error("Invalid wide integer const record"); 3027 3028 APInt VInt = 3029 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 3030 V = ConstantInt::get(Context, VInt); 3031 3032 break; 3033 } 3034 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 3035 if (Record.empty()) 3036 return error("Invalid float const record"); 3037 if (CurTy->isHalfTy()) 3038 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(), 3039 APInt(16, (uint16_t)Record[0]))); 3040 else if (CurTy->isBFloatTy()) 3041 V = ConstantFP::get(Context, APFloat(APFloat::BFloat(), 3042 APInt(16, (uint32_t)Record[0]))); 3043 else if (CurTy->isFloatTy()) 3044 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(), 3045 APInt(32, (uint32_t)Record[0]))); 3046 else if (CurTy->isDoubleTy()) 3047 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(), 3048 APInt(64, Record[0]))); 3049 else if (CurTy->isX86_FP80Ty()) { 3050 // Bits are not stored the same way as a normal i80 APInt, compensate. 3051 uint64_t Rearrange[2]; 3052 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 3053 Rearrange[1] = Record[0] >> 48; 3054 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(), 3055 APInt(80, Rearrange))); 3056 } else if (CurTy->isFP128Ty()) 3057 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(), 3058 APInt(128, Record))); 3059 else if (CurTy->isPPC_FP128Ty()) 3060 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(), 3061 APInt(128, Record))); 3062 else 3063 V = UndefValue::get(CurTy); 3064 break; 3065 } 3066 3067 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 3068 if (Record.empty()) 3069 return error("Invalid aggregate record"); 3070 3071 unsigned Size = Record.size(); 3072 SmallVector<unsigned, 16> Elts; 3073 for (unsigned i = 0; i != Size; ++i) 3074 Elts.push_back(Record[i]); 3075 3076 if (isa<StructType>(CurTy)) { 3077 V = BitcodeConstant::create( 3078 Alloc, CurTy, BitcodeConstant::ConstantStructOpcode, Elts); 3079 } else if (isa<ArrayType>(CurTy)) { 3080 V = BitcodeConstant::create(Alloc, CurTy, 3081 BitcodeConstant::ConstantArrayOpcode, Elts); 3082 } else if (isa<VectorType>(CurTy)) { 3083 V = BitcodeConstant::create( 3084 Alloc, CurTy, BitcodeConstant::ConstantVectorOpcode, Elts); 3085 } else { 3086 V = UndefValue::get(CurTy); 3087 } 3088 break; 3089 } 3090 case bitc::CST_CODE_STRING: // STRING: [values] 3091 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 3092 if (Record.empty()) 3093 return error("Invalid string record"); 3094 3095 SmallString<16> Elts(Record.begin(), Record.end()); 3096 V = ConstantDataArray::getString(Context, Elts, 3097 BitCode == bitc::CST_CODE_CSTRING); 3098 break; 3099 } 3100 case bitc::CST_CODE_DATA: {// DATA: [n x value] 3101 if (Record.empty()) 3102 return error("Invalid data record"); 3103 3104 Type *EltTy; 3105 if (auto *Array = dyn_cast<ArrayType>(CurTy)) 3106 EltTy = Array->getElementType(); 3107 else 3108 EltTy = cast<VectorType>(CurTy)->getElementType(); 3109 if (EltTy->isIntegerTy(8)) { 3110 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 3111 if (isa<VectorType>(CurTy)) 3112 V = ConstantDataVector::get(Context, Elts); 3113 else 3114 V = ConstantDataArray::get(Context, Elts); 3115 } else if (EltTy->isIntegerTy(16)) { 3116 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 3117 if (isa<VectorType>(CurTy)) 3118 V = ConstantDataVector::get(Context, Elts); 3119 else 3120 V = ConstantDataArray::get(Context, Elts); 3121 } else if (EltTy->isIntegerTy(32)) { 3122 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 3123 if (isa<VectorType>(CurTy)) 3124 V = ConstantDataVector::get(Context, Elts); 3125 else 3126 V = ConstantDataArray::get(Context, Elts); 3127 } else if (EltTy->isIntegerTy(64)) { 3128 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 3129 if (isa<VectorType>(CurTy)) 3130 V = ConstantDataVector::get(Context, Elts); 3131 else 3132 V = ConstantDataArray::get(Context, Elts); 3133 } else if (EltTy->isHalfTy()) { 3134 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 3135 if (isa<VectorType>(CurTy)) 3136 V = ConstantDataVector::getFP(EltTy, Elts); 3137 else 3138 V = ConstantDataArray::getFP(EltTy, Elts); 3139 } else if (EltTy->isBFloatTy()) { 3140 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 3141 if (isa<VectorType>(CurTy)) 3142 V = ConstantDataVector::getFP(EltTy, Elts); 3143 else 3144 V = ConstantDataArray::getFP(EltTy, Elts); 3145 } else if (EltTy->isFloatTy()) { 3146 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 3147 if (isa<VectorType>(CurTy)) 3148 V = ConstantDataVector::getFP(EltTy, Elts); 3149 else 3150 V = ConstantDataArray::getFP(EltTy, Elts); 3151 } else if (EltTy->isDoubleTy()) { 3152 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 3153 if (isa<VectorType>(CurTy)) 3154 V = ConstantDataVector::getFP(EltTy, Elts); 3155 else 3156 V = ConstantDataArray::getFP(EltTy, Elts); 3157 } else { 3158 return error("Invalid type for value"); 3159 } 3160 break; 3161 } 3162 case bitc::CST_CODE_CE_UNOP: { // CE_UNOP: [opcode, opval] 3163 if (Record.size() < 2) 3164 return error("Invalid unary op constexpr record"); 3165 int Opc = getDecodedUnaryOpcode(Record[0], CurTy); 3166 if (Opc < 0) { 3167 V = UndefValue::get(CurTy); // Unknown unop. 3168 } else { 3169 V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[1]); 3170 } 3171 break; 3172 } 3173 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 3174 if (Record.size() < 3) 3175 return error("Invalid binary op constexpr record"); 3176 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 3177 if (Opc < 0) { 3178 V = UndefValue::get(CurTy); // Unknown binop. 3179 } else { 3180 uint8_t Flags = 0; 3181 if (Record.size() >= 4) { 3182 if (Opc == Instruction::Add || 3183 Opc == Instruction::Sub || 3184 Opc == Instruction::Mul || 3185 Opc == Instruction::Shl) { 3186 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3187 Flags |= OverflowingBinaryOperator::NoSignedWrap; 3188 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3189 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 3190 } else if (Opc == Instruction::SDiv || 3191 Opc == Instruction::UDiv || 3192 Opc == Instruction::LShr || 3193 Opc == Instruction::AShr) { 3194 if (Record[3] & (1 << bitc::PEO_EXACT)) 3195 Flags |= PossiblyExactOperator::IsExact; 3196 } 3197 } 3198 V = BitcodeConstant::create(Alloc, CurTy, {(uint8_t)Opc, Flags}, 3199 {(unsigned)Record[1], (unsigned)Record[2]}); 3200 } 3201 break; 3202 } 3203 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 3204 if (Record.size() < 3) 3205 return error("Invalid cast constexpr record"); 3206 int Opc = getDecodedCastOpcode(Record[0]); 3207 if (Opc < 0) { 3208 V = UndefValue::get(CurTy); // Unknown cast. 3209 } else { 3210 unsigned OpTyID = Record[1]; 3211 Type *OpTy = getTypeByID(OpTyID); 3212 if (!OpTy) 3213 return error("Invalid cast constexpr record"); 3214 V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[2]); 3215 } 3216 break; 3217 } 3218 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands] 3219 case bitc::CST_CODE_CE_GEP: // [ty, n x operands] 3220 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x 3221 // operands] 3222 if (Record.size() < 2) 3223 return error("Constant GEP record must have at least two elements"); 3224 unsigned OpNum = 0; 3225 Type *PointeeType = nullptr; 3226 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX || 3227 Record.size() % 2) 3228 PointeeType = getTypeByID(Record[OpNum++]); 3229 3230 bool InBounds = false; 3231 std::optional<unsigned> InRangeIndex; 3232 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) { 3233 uint64_t Op = Record[OpNum++]; 3234 InBounds = Op & 1; 3235 InRangeIndex = Op >> 1; 3236 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 3237 InBounds = true; 3238 3239 SmallVector<unsigned, 16> Elts; 3240 unsigned BaseTypeID = Record[OpNum]; 3241 while (OpNum != Record.size()) { 3242 unsigned ElTyID = Record[OpNum++]; 3243 Type *ElTy = getTypeByID(ElTyID); 3244 if (!ElTy) 3245 return error("Invalid getelementptr constexpr record"); 3246 Elts.push_back(Record[OpNum++]); 3247 } 3248 3249 if (Elts.size() < 1) 3250 return error("Invalid gep with no operands"); 3251 3252 Type *BaseType = getTypeByID(BaseTypeID); 3253 if (isa<VectorType>(BaseType)) { 3254 BaseTypeID = getContainedTypeID(BaseTypeID, 0); 3255 BaseType = getTypeByID(BaseTypeID); 3256 } 3257 3258 PointerType *OrigPtrTy = dyn_cast_or_null<PointerType>(BaseType); 3259 if (!OrigPtrTy) 3260 return error("GEP base operand must be pointer or vector of pointer"); 3261 3262 if (!PointeeType) { 3263 PointeeType = getPtrElementTypeByID(BaseTypeID); 3264 if (!PointeeType) 3265 return error("Missing element type for old-style constant GEP"); 3266 } 3267 3268 V = BitcodeConstant::create(Alloc, CurTy, 3269 {Instruction::GetElementPtr, InBounds, 3270 InRangeIndex.value_or(-1), PointeeType}, 3271 Elts); 3272 break; 3273 } 3274 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 3275 if (Record.size() < 3) 3276 return error("Invalid select constexpr record"); 3277 3278 V = BitcodeConstant::create( 3279 Alloc, CurTy, Instruction::Select, 3280 {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]}); 3281 break; 3282 } 3283 case bitc::CST_CODE_CE_EXTRACTELT 3284 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 3285 if (Record.size() < 3) 3286 return error("Invalid extractelement constexpr record"); 3287 unsigned OpTyID = Record[0]; 3288 VectorType *OpTy = 3289 dyn_cast_or_null<VectorType>(getTypeByID(OpTyID)); 3290 if (!OpTy) 3291 return error("Invalid extractelement constexpr record"); 3292 unsigned IdxRecord; 3293 if (Record.size() == 4) { 3294 unsigned IdxTyID = Record[2]; 3295 Type *IdxTy = getTypeByID(IdxTyID); 3296 if (!IdxTy) 3297 return error("Invalid extractelement constexpr record"); 3298 IdxRecord = Record[3]; 3299 } else { 3300 // Deprecated, but still needed to read old bitcode files. 3301 IdxRecord = Record[2]; 3302 } 3303 V = BitcodeConstant::create(Alloc, CurTy, Instruction::ExtractElement, 3304 {(unsigned)Record[1], IdxRecord}); 3305 break; 3306 } 3307 case bitc::CST_CODE_CE_INSERTELT 3308 : { // CE_INSERTELT: [opval, opval, opty, opval] 3309 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 3310 if (Record.size() < 3 || !OpTy) 3311 return error("Invalid insertelement constexpr record"); 3312 unsigned IdxRecord; 3313 if (Record.size() == 4) { 3314 unsigned IdxTyID = Record[2]; 3315 Type *IdxTy = getTypeByID(IdxTyID); 3316 if (!IdxTy) 3317 return error("Invalid insertelement constexpr record"); 3318 IdxRecord = Record[3]; 3319 } else { 3320 // Deprecated, but still needed to read old bitcode files. 3321 IdxRecord = Record[2]; 3322 } 3323 V = BitcodeConstant::create( 3324 Alloc, CurTy, Instruction::InsertElement, 3325 {(unsigned)Record[0], (unsigned)Record[1], IdxRecord}); 3326 break; 3327 } 3328 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 3329 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 3330 if (Record.size() < 3 || !OpTy) 3331 return error("Invalid shufflevector constexpr record"); 3332 V = BitcodeConstant::create( 3333 Alloc, CurTy, Instruction::ShuffleVector, 3334 {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]}); 3335 break; 3336 } 3337 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 3338 VectorType *RTy = dyn_cast<VectorType>(CurTy); 3339 VectorType *OpTy = 3340 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 3341 if (Record.size() < 4 || !RTy || !OpTy) 3342 return error("Invalid shufflevector constexpr record"); 3343 V = BitcodeConstant::create( 3344 Alloc, CurTy, Instruction::ShuffleVector, 3345 {(unsigned)Record[1], (unsigned)Record[2], (unsigned)Record[3]}); 3346 break; 3347 } 3348 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 3349 if (Record.size() < 4) 3350 return error("Invalid cmp constexpt record"); 3351 unsigned OpTyID = Record[0]; 3352 Type *OpTy = getTypeByID(OpTyID); 3353 if (!OpTy) 3354 return error("Invalid cmp constexpr record"); 3355 V = BitcodeConstant::create( 3356 Alloc, CurTy, 3357 {(uint8_t)(OpTy->isFPOrFPVectorTy() ? Instruction::FCmp 3358 : Instruction::ICmp), 3359 (uint8_t)Record[3]}, 3360 {(unsigned)Record[1], (unsigned)Record[2]}); 3361 break; 3362 } 3363 // This maintains backward compatibility, pre-asm dialect keywords. 3364 // Deprecated, but still needed to read old bitcode files. 3365 case bitc::CST_CODE_INLINEASM_OLD: { 3366 if (Record.size() < 2) 3367 return error("Invalid inlineasm record"); 3368 std::string AsmStr, ConstrStr; 3369 bool HasSideEffects = Record[0] & 1; 3370 bool IsAlignStack = Record[0] >> 1; 3371 unsigned AsmStrSize = Record[1]; 3372 if (2+AsmStrSize >= Record.size()) 3373 return error("Invalid inlineasm record"); 3374 unsigned ConstStrSize = Record[2+AsmStrSize]; 3375 if (3+AsmStrSize+ConstStrSize > Record.size()) 3376 return error("Invalid inlineasm record"); 3377 3378 for (unsigned i = 0; i != AsmStrSize; ++i) 3379 AsmStr += (char)Record[2+i]; 3380 for (unsigned i = 0; i != ConstStrSize; ++i) 3381 ConstrStr += (char)Record[3+AsmStrSize+i]; 3382 UpgradeInlineAsmString(&AsmStr); 3383 if (!CurElemTy) 3384 return error("Missing element type for old-style inlineasm"); 3385 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr, 3386 HasSideEffects, IsAlignStack); 3387 break; 3388 } 3389 // This version adds support for the asm dialect keywords (e.g., 3390 // inteldialect). 3391 case bitc::CST_CODE_INLINEASM_OLD2: { 3392 if (Record.size() < 2) 3393 return error("Invalid inlineasm record"); 3394 std::string AsmStr, ConstrStr; 3395 bool HasSideEffects = Record[0] & 1; 3396 bool IsAlignStack = (Record[0] >> 1) & 1; 3397 unsigned AsmDialect = Record[0] >> 2; 3398 unsigned AsmStrSize = Record[1]; 3399 if (2+AsmStrSize >= Record.size()) 3400 return error("Invalid inlineasm record"); 3401 unsigned ConstStrSize = Record[2+AsmStrSize]; 3402 if (3+AsmStrSize+ConstStrSize > Record.size()) 3403 return error("Invalid inlineasm record"); 3404 3405 for (unsigned i = 0; i != AsmStrSize; ++i) 3406 AsmStr += (char)Record[2+i]; 3407 for (unsigned i = 0; i != ConstStrSize; ++i) 3408 ConstrStr += (char)Record[3+AsmStrSize+i]; 3409 UpgradeInlineAsmString(&AsmStr); 3410 if (!CurElemTy) 3411 return error("Missing element type for old-style inlineasm"); 3412 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr, 3413 HasSideEffects, IsAlignStack, 3414 InlineAsm::AsmDialect(AsmDialect)); 3415 break; 3416 } 3417 // This version adds support for the unwind keyword. 3418 case bitc::CST_CODE_INLINEASM_OLD3: { 3419 if (Record.size() < 2) 3420 return error("Invalid inlineasm record"); 3421 unsigned OpNum = 0; 3422 std::string AsmStr, ConstrStr; 3423 bool HasSideEffects = Record[OpNum] & 1; 3424 bool IsAlignStack = (Record[OpNum] >> 1) & 1; 3425 unsigned AsmDialect = (Record[OpNum] >> 2) & 1; 3426 bool CanThrow = (Record[OpNum] >> 3) & 1; 3427 ++OpNum; 3428 unsigned AsmStrSize = Record[OpNum]; 3429 ++OpNum; 3430 if (OpNum + AsmStrSize >= Record.size()) 3431 return error("Invalid inlineasm record"); 3432 unsigned ConstStrSize = Record[OpNum + AsmStrSize]; 3433 if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size()) 3434 return error("Invalid inlineasm record"); 3435 3436 for (unsigned i = 0; i != AsmStrSize; ++i) 3437 AsmStr += (char)Record[OpNum + i]; 3438 ++OpNum; 3439 for (unsigned i = 0; i != ConstStrSize; ++i) 3440 ConstrStr += (char)Record[OpNum + AsmStrSize + i]; 3441 UpgradeInlineAsmString(&AsmStr); 3442 if (!CurElemTy) 3443 return error("Missing element type for old-style inlineasm"); 3444 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr, 3445 HasSideEffects, IsAlignStack, 3446 InlineAsm::AsmDialect(AsmDialect), CanThrow); 3447 break; 3448 } 3449 // This version adds explicit function type. 3450 case bitc::CST_CODE_INLINEASM: { 3451 if (Record.size() < 3) 3452 return error("Invalid inlineasm record"); 3453 unsigned OpNum = 0; 3454 auto *FnTy = dyn_cast_or_null<FunctionType>(getTypeByID(Record[OpNum])); 3455 ++OpNum; 3456 if (!FnTy) 3457 return error("Invalid inlineasm record"); 3458 std::string AsmStr, ConstrStr; 3459 bool HasSideEffects = Record[OpNum] & 1; 3460 bool IsAlignStack = (Record[OpNum] >> 1) & 1; 3461 unsigned AsmDialect = (Record[OpNum] >> 2) & 1; 3462 bool CanThrow = (Record[OpNum] >> 3) & 1; 3463 ++OpNum; 3464 unsigned AsmStrSize = Record[OpNum]; 3465 ++OpNum; 3466 if (OpNum + AsmStrSize >= Record.size()) 3467 return error("Invalid inlineasm record"); 3468 unsigned ConstStrSize = Record[OpNum + AsmStrSize]; 3469 if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size()) 3470 return error("Invalid inlineasm record"); 3471 3472 for (unsigned i = 0; i != AsmStrSize; ++i) 3473 AsmStr += (char)Record[OpNum + i]; 3474 ++OpNum; 3475 for (unsigned i = 0; i != ConstStrSize; ++i) 3476 ConstrStr += (char)Record[OpNum + AsmStrSize + i]; 3477 UpgradeInlineAsmString(&AsmStr); 3478 V = InlineAsm::get(FnTy, AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 3479 InlineAsm::AsmDialect(AsmDialect), CanThrow); 3480 break; 3481 } 3482 case bitc::CST_CODE_BLOCKADDRESS:{ 3483 if (Record.size() < 3) 3484 return error("Invalid blockaddress record"); 3485 unsigned FnTyID = Record[0]; 3486 Type *FnTy = getTypeByID(FnTyID); 3487 if (!FnTy) 3488 return error("Invalid blockaddress record"); 3489 V = BitcodeConstant::create( 3490 Alloc, CurTy, 3491 {BitcodeConstant::BlockAddressOpcode, 0, (unsigned)Record[2]}, 3492 Record[1]); 3493 break; 3494 } 3495 case bitc::CST_CODE_DSO_LOCAL_EQUIVALENT: { 3496 if (Record.size() < 2) 3497 return error("Invalid dso_local record"); 3498 unsigned GVTyID = Record[0]; 3499 Type *GVTy = getTypeByID(GVTyID); 3500 if (!GVTy) 3501 return error("Invalid dso_local record"); 3502 V = BitcodeConstant::create( 3503 Alloc, CurTy, BitcodeConstant::DSOLocalEquivalentOpcode, Record[1]); 3504 break; 3505 } 3506 case bitc::CST_CODE_NO_CFI_VALUE: { 3507 if (Record.size() < 2) 3508 return error("Invalid no_cfi record"); 3509 unsigned GVTyID = Record[0]; 3510 Type *GVTy = getTypeByID(GVTyID); 3511 if (!GVTy) 3512 return error("Invalid no_cfi record"); 3513 V = BitcodeConstant::create(Alloc, CurTy, BitcodeConstant::NoCFIOpcode, 3514 Record[1]); 3515 break; 3516 } 3517 } 3518 3519 assert(V->getType() == getTypeByID(CurTyID) && "Incorrect result type ID"); 3520 if (Error Err = ValueList.assignValue(NextCstNo, V, CurTyID)) 3521 return Err; 3522 ++NextCstNo; 3523 } 3524 } 3525 3526 Error BitcodeReader::parseUseLists() { 3527 if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 3528 return Err; 3529 3530 // Read all the records. 3531 SmallVector<uint64_t, 64> Record; 3532 3533 while (true) { 3534 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 3535 if (!MaybeEntry) 3536 return MaybeEntry.takeError(); 3537 BitstreamEntry Entry = MaybeEntry.get(); 3538 3539 switch (Entry.Kind) { 3540 case BitstreamEntry::SubBlock: // Handled for us already. 3541 case BitstreamEntry::Error: 3542 return error("Malformed block"); 3543 case BitstreamEntry::EndBlock: 3544 return Error::success(); 3545 case BitstreamEntry::Record: 3546 // The interesting case. 3547 break; 3548 } 3549 3550 // Read a use list record. 3551 Record.clear(); 3552 bool IsBB = false; 3553 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 3554 if (!MaybeRecord) 3555 return MaybeRecord.takeError(); 3556 switch (MaybeRecord.get()) { 3557 default: // Default behavior: unknown type. 3558 break; 3559 case bitc::USELIST_CODE_BB: 3560 IsBB = true; 3561 [[fallthrough]]; 3562 case bitc::USELIST_CODE_DEFAULT: { 3563 unsigned RecordLength = Record.size(); 3564 if (RecordLength < 3) 3565 // Records should have at least an ID and two indexes. 3566 return error("Invalid record"); 3567 unsigned ID = Record.pop_back_val(); 3568 3569 Value *V; 3570 if (IsBB) { 3571 assert(ID < FunctionBBs.size() && "Basic block not found"); 3572 V = FunctionBBs[ID]; 3573 } else 3574 V = ValueList[ID]; 3575 unsigned NumUses = 0; 3576 SmallDenseMap<const Use *, unsigned, 16> Order; 3577 for (const Use &U : V->materialized_uses()) { 3578 if (++NumUses > Record.size()) 3579 break; 3580 Order[&U] = Record[NumUses - 1]; 3581 } 3582 if (Order.size() != Record.size() || NumUses > Record.size()) 3583 // Mismatches can happen if the functions are being materialized lazily 3584 // (out-of-order), or a value has been upgraded. 3585 break; 3586 3587 V->sortUseList([&](const Use &L, const Use &R) { 3588 return Order.lookup(&L) < Order.lookup(&R); 3589 }); 3590 break; 3591 } 3592 } 3593 } 3594 } 3595 3596 /// When we see the block for metadata, remember where it is and then skip it. 3597 /// This lets us lazily deserialize the metadata. 3598 Error BitcodeReader::rememberAndSkipMetadata() { 3599 // Save the current stream state. 3600 uint64_t CurBit = Stream.GetCurrentBitNo(); 3601 DeferredMetadataInfo.push_back(CurBit); 3602 3603 // Skip over the block for now. 3604 if (Error Err = Stream.SkipBlock()) 3605 return Err; 3606 return Error::success(); 3607 } 3608 3609 Error BitcodeReader::materializeMetadata() { 3610 for (uint64_t BitPos : DeferredMetadataInfo) { 3611 // Move the bit stream to the saved position. 3612 if (Error JumpFailed = Stream.JumpToBit(BitPos)) 3613 return JumpFailed; 3614 if (Error Err = MDLoader->parseModuleMetadata()) 3615 return Err; 3616 } 3617 3618 // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level 3619 // metadata. Only upgrade if the new option doesn't exist to avoid upgrade 3620 // multiple times. 3621 if (!TheModule->getNamedMetadata("llvm.linker.options")) { 3622 if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) { 3623 NamedMDNode *LinkerOpts = 3624 TheModule->getOrInsertNamedMetadata("llvm.linker.options"); 3625 for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands()) 3626 LinkerOpts->addOperand(cast<MDNode>(MDOptions)); 3627 } 3628 } 3629 3630 DeferredMetadataInfo.clear(); 3631 return Error::success(); 3632 } 3633 3634 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 3635 3636 /// When we see the block for a function body, remember where it is and then 3637 /// skip it. This lets us lazily deserialize the functions. 3638 Error BitcodeReader::rememberAndSkipFunctionBody() { 3639 // Get the function we are talking about. 3640 if (FunctionsWithBodies.empty()) 3641 return error("Insufficient function protos"); 3642 3643 Function *Fn = FunctionsWithBodies.back(); 3644 FunctionsWithBodies.pop_back(); 3645 3646 // Save the current stream state. 3647 uint64_t CurBit = Stream.GetCurrentBitNo(); 3648 assert( 3649 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 3650 "Mismatch between VST and scanned function offsets"); 3651 DeferredFunctionInfo[Fn] = CurBit; 3652 3653 // Skip over the function block for now. 3654 if (Error Err = Stream.SkipBlock()) 3655 return Err; 3656 return Error::success(); 3657 } 3658 3659 Error BitcodeReader::globalCleanup() { 3660 // Patch the initializers for globals and aliases up. 3661 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3662 return Err; 3663 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 3664 return error("Malformed global initializer set"); 3665 3666 // Look for intrinsic functions which need to be upgraded at some point 3667 // and functions that need to have their function attributes upgraded. 3668 for (Function &F : *TheModule) { 3669 MDLoader->upgradeDebugIntrinsics(F); 3670 Function *NewFn; 3671 if (UpgradeIntrinsicFunction(&F, NewFn)) 3672 UpgradedIntrinsics[&F] = NewFn; 3673 // Look for functions that rely on old function attribute behavior. 3674 UpgradeFunctionAttributes(F); 3675 } 3676 3677 // Look for global variables which need to be renamed. 3678 std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables; 3679 for (GlobalVariable &GV : TheModule->globals()) 3680 if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV)) 3681 UpgradedVariables.emplace_back(&GV, Upgraded); 3682 for (auto &Pair : UpgradedVariables) { 3683 Pair.first->eraseFromParent(); 3684 TheModule->insertGlobalVariable(Pair.second); 3685 } 3686 3687 // Force deallocation of memory for these vectors to favor the client that 3688 // want lazy deserialization. 3689 std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits); 3690 std::vector<std::pair<GlobalValue *, unsigned>>().swap(IndirectSymbolInits); 3691 return Error::success(); 3692 } 3693 3694 /// Support for lazy parsing of function bodies. This is required if we 3695 /// either have an old bitcode file without a VST forward declaration record, 3696 /// or if we have an anonymous function being materialized, since anonymous 3697 /// functions do not have a name and are therefore not in the VST. 3698 Error BitcodeReader::rememberAndSkipFunctionBodies() { 3699 if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit)) 3700 return JumpFailed; 3701 3702 if (Stream.AtEndOfStream()) 3703 return error("Could not find function in stream"); 3704 3705 if (!SeenFirstFunctionBody) 3706 return error("Trying to materialize functions before seeing function blocks"); 3707 3708 // An old bitcode file with the symbol table at the end would have 3709 // finished the parse greedily. 3710 assert(SeenValueSymbolTable); 3711 3712 SmallVector<uint64_t, 64> Record; 3713 3714 while (true) { 3715 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3716 if (!MaybeEntry) 3717 return MaybeEntry.takeError(); 3718 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3719 3720 switch (Entry.Kind) { 3721 default: 3722 return error("Expect SubBlock"); 3723 case BitstreamEntry::SubBlock: 3724 switch (Entry.ID) { 3725 default: 3726 return error("Expect function block"); 3727 case bitc::FUNCTION_BLOCK_ID: 3728 if (Error Err = rememberAndSkipFunctionBody()) 3729 return Err; 3730 NextUnreadBit = Stream.GetCurrentBitNo(); 3731 return Error::success(); 3732 } 3733 } 3734 } 3735 } 3736 3737 Error BitcodeReaderBase::readBlockInfo() { 3738 Expected<std::optional<BitstreamBlockInfo>> MaybeNewBlockInfo = 3739 Stream.ReadBlockInfoBlock(); 3740 if (!MaybeNewBlockInfo) 3741 return MaybeNewBlockInfo.takeError(); 3742 std::optional<BitstreamBlockInfo> NewBlockInfo = 3743 std::move(MaybeNewBlockInfo.get()); 3744 if (!NewBlockInfo) 3745 return error("Malformed block"); 3746 BlockInfo = std::move(*NewBlockInfo); 3747 return Error::success(); 3748 } 3749 3750 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) { 3751 // v1: [selection_kind, name] 3752 // v2: [strtab_offset, strtab_size, selection_kind] 3753 StringRef Name; 3754 std::tie(Name, Record) = readNameFromStrtab(Record); 3755 3756 if (Record.empty()) 3757 return error("Invalid record"); 3758 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 3759 std::string OldFormatName; 3760 if (!UseStrtab) { 3761 if (Record.size() < 2) 3762 return error("Invalid record"); 3763 unsigned ComdatNameSize = Record[1]; 3764 if (ComdatNameSize > Record.size() - 2) 3765 return error("Comdat name size too large"); 3766 OldFormatName.reserve(ComdatNameSize); 3767 for (unsigned i = 0; i != ComdatNameSize; ++i) 3768 OldFormatName += (char)Record[2 + i]; 3769 Name = OldFormatName; 3770 } 3771 Comdat *C = TheModule->getOrInsertComdat(Name); 3772 C->setSelectionKind(SK); 3773 ComdatList.push_back(C); 3774 return Error::success(); 3775 } 3776 3777 static void inferDSOLocal(GlobalValue *GV) { 3778 // infer dso_local from linkage and visibility if it is not encoded. 3779 if (GV->hasLocalLinkage() || 3780 (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())) 3781 GV->setDSOLocal(true); 3782 } 3783 3784 GlobalValue::SanitizerMetadata deserializeSanitizerMetadata(unsigned V) { 3785 GlobalValue::SanitizerMetadata Meta; 3786 if (V & (1 << 0)) 3787 Meta.NoAddress = true; 3788 if (V & (1 << 1)) 3789 Meta.NoHWAddress = true; 3790 if (V & (1 << 2)) 3791 Meta.Memtag = true; 3792 if (V & (1 << 3)) 3793 Meta.IsDynInit = true; 3794 return Meta; 3795 } 3796 3797 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) { 3798 // v1: [pointer type, isconst, initid, linkage, alignment, section, 3799 // visibility, threadlocal, unnamed_addr, externally_initialized, 3800 // dllstorageclass, comdat, attributes, preemption specifier, 3801 // partition strtab offset, partition strtab size] (name in VST) 3802 // v2: [strtab_offset, strtab_size, v1] 3803 StringRef Name; 3804 std::tie(Name, Record) = readNameFromStrtab(Record); 3805 3806 if (Record.size() < 6) 3807 return error("Invalid record"); 3808 unsigned TyID = Record[0]; 3809 Type *Ty = getTypeByID(TyID); 3810 if (!Ty) 3811 return error("Invalid record"); 3812 bool isConstant = Record[1] & 1; 3813 bool explicitType = Record[1] & 2; 3814 unsigned AddressSpace; 3815 if (explicitType) { 3816 AddressSpace = Record[1] >> 2; 3817 } else { 3818 if (!Ty->isPointerTy()) 3819 return error("Invalid type for value"); 3820 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 3821 TyID = getContainedTypeID(TyID); 3822 Ty = getTypeByID(TyID); 3823 if (!Ty) 3824 return error("Missing element type for old-style global"); 3825 } 3826 3827 uint64_t RawLinkage = Record[3]; 3828 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 3829 MaybeAlign Alignment; 3830 if (Error Err = parseAlignmentValue(Record[4], Alignment)) 3831 return Err; 3832 std::string Section; 3833 if (Record[5]) { 3834 if (Record[5] - 1 >= SectionTable.size()) 3835 return error("Invalid ID"); 3836 Section = SectionTable[Record[5] - 1]; 3837 } 3838 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 3839 // Local linkage must have default visibility. 3840 // auto-upgrade `hidden` and `protected` for old bitcode. 3841 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 3842 Visibility = getDecodedVisibility(Record[6]); 3843 3844 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 3845 if (Record.size() > 7) 3846 TLM = getDecodedThreadLocalMode(Record[7]); 3847 3848 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3849 if (Record.size() > 8) 3850 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); 3851 3852 bool ExternallyInitialized = false; 3853 if (Record.size() > 9) 3854 ExternallyInitialized = Record[9]; 3855 3856 GlobalVariable *NewGV = 3857 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name, 3858 nullptr, TLM, AddressSpace, ExternallyInitialized); 3859 if (Alignment) 3860 NewGV->setAlignment(*Alignment); 3861 if (!Section.empty()) 3862 NewGV->setSection(Section); 3863 NewGV->setVisibility(Visibility); 3864 NewGV->setUnnamedAddr(UnnamedAddr); 3865 3866 if (Record.size() > 10) { 3867 // A GlobalValue with local linkage cannot have a DLL storage class. 3868 if (!NewGV->hasLocalLinkage()) { 3869 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 3870 } 3871 } else { 3872 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 3873 } 3874 3875 ValueList.push_back(NewGV, getVirtualTypeID(NewGV->getType(), TyID)); 3876 3877 // Remember which value to use for the global initializer. 3878 if (unsigned InitID = Record[2]) 3879 GlobalInits.push_back(std::make_pair(NewGV, InitID - 1)); 3880 3881 if (Record.size() > 11) { 3882 if (unsigned ComdatID = Record[11]) { 3883 if (ComdatID > ComdatList.size()) 3884 return error("Invalid global variable comdat ID"); 3885 NewGV->setComdat(ComdatList[ComdatID - 1]); 3886 } 3887 } else if (hasImplicitComdat(RawLinkage)) { 3888 ImplicitComdatObjects.insert(NewGV); 3889 } 3890 3891 if (Record.size() > 12) { 3892 auto AS = getAttributes(Record[12]).getFnAttrs(); 3893 NewGV->setAttributes(AS); 3894 } 3895 3896 if (Record.size() > 13) { 3897 NewGV->setDSOLocal(getDecodedDSOLocal(Record[13])); 3898 } 3899 inferDSOLocal(NewGV); 3900 3901 // Check whether we have enough values to read a partition name. 3902 if (Record.size() > 15) 3903 NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15])); 3904 3905 if (Record.size() > 16 && Record[16]) { 3906 llvm::GlobalValue::SanitizerMetadata Meta = 3907 deserializeSanitizerMetadata(Record[16]); 3908 NewGV->setSanitizerMetadata(Meta); 3909 } 3910 3911 return Error::success(); 3912 } 3913 3914 void BitcodeReader::callValueTypeCallback(Value *F, unsigned TypeID) { 3915 if (ValueTypeCallback) { 3916 (*ValueTypeCallback)( 3917 F, TypeID, [this](unsigned I) { return getTypeByID(I); }, 3918 [this](unsigned I, unsigned J) { return getContainedTypeID(I, J); }); 3919 } 3920 } 3921 3922 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) { 3923 // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section, 3924 // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat, 3925 // prefixdata, personalityfn, preemption specifier, addrspace] (name in VST) 3926 // v2: [strtab_offset, strtab_size, v1] 3927 StringRef Name; 3928 std::tie(Name, Record) = readNameFromStrtab(Record); 3929 3930 if (Record.size() < 8) 3931 return error("Invalid record"); 3932 unsigned FTyID = Record[0]; 3933 Type *FTy = getTypeByID(FTyID); 3934 if (!FTy) 3935 return error("Invalid record"); 3936 if (isa<PointerType>(FTy)) { 3937 FTyID = getContainedTypeID(FTyID, 0); 3938 FTy = getTypeByID(FTyID); 3939 if (!FTy) 3940 return error("Missing element type for old-style function"); 3941 } 3942 3943 if (!isa<FunctionType>(FTy)) 3944 return error("Invalid type for value"); 3945 auto CC = static_cast<CallingConv::ID>(Record[1]); 3946 if (CC & ~CallingConv::MaxID) 3947 return error("Invalid calling convention ID"); 3948 3949 unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace(); 3950 if (Record.size() > 16) 3951 AddrSpace = Record[16]; 3952 3953 Function *Func = 3954 Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage, 3955 AddrSpace, Name, TheModule); 3956 3957 assert(Func->getFunctionType() == FTy && 3958 "Incorrect fully specified type provided for function"); 3959 FunctionTypeIDs[Func] = FTyID; 3960 3961 Func->setCallingConv(CC); 3962 bool isProto = Record[2]; 3963 uint64_t RawLinkage = Record[3]; 3964 Func->setLinkage(getDecodedLinkage(RawLinkage)); 3965 Func->setAttributes(getAttributes(Record[4])); 3966 callValueTypeCallback(Func, FTyID); 3967 3968 // Upgrade any old-style byval or sret without a type by propagating the 3969 // argument's pointee type. There should be no opaque pointers where the byval 3970 // type is implicit. 3971 for (unsigned i = 0; i != Func->arg_size(); ++i) { 3972 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet, 3973 Attribute::InAlloca}) { 3974 if (!Func->hasParamAttribute(i, Kind)) 3975 continue; 3976 3977 if (Func->getParamAttribute(i, Kind).getValueAsType()) 3978 continue; 3979 3980 Func->removeParamAttr(i, Kind); 3981 3982 unsigned ParamTypeID = getContainedTypeID(FTyID, i + 1); 3983 Type *PtrEltTy = getPtrElementTypeByID(ParamTypeID); 3984 if (!PtrEltTy) 3985 return error("Missing param element type for attribute upgrade"); 3986 3987 Attribute NewAttr; 3988 switch (Kind) { 3989 case Attribute::ByVal: 3990 NewAttr = Attribute::getWithByValType(Context, PtrEltTy); 3991 break; 3992 case Attribute::StructRet: 3993 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy); 3994 break; 3995 case Attribute::InAlloca: 3996 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy); 3997 break; 3998 default: 3999 llvm_unreachable("not an upgraded type attribute"); 4000 } 4001 4002 Func->addParamAttr(i, NewAttr); 4003 } 4004 } 4005 4006 if (Func->getCallingConv() == CallingConv::X86_INTR && 4007 !Func->arg_empty() && !Func->hasParamAttribute(0, Attribute::ByVal)) { 4008 unsigned ParamTypeID = getContainedTypeID(FTyID, 1); 4009 Type *ByValTy = getPtrElementTypeByID(ParamTypeID); 4010 if (!ByValTy) 4011 return error("Missing param element type for x86_intrcc upgrade"); 4012 Attribute NewAttr = Attribute::getWithByValType(Context, ByValTy); 4013 Func->addParamAttr(0, NewAttr); 4014 } 4015 4016 MaybeAlign Alignment; 4017 if (Error Err = parseAlignmentValue(Record[5], Alignment)) 4018 return Err; 4019 if (Alignment) 4020 Func->setAlignment(*Alignment); 4021 if (Record[6]) { 4022 if (Record[6] - 1 >= SectionTable.size()) 4023 return error("Invalid ID"); 4024 Func->setSection(SectionTable[Record[6] - 1]); 4025 } 4026 // Local linkage must have default visibility. 4027 // auto-upgrade `hidden` and `protected` for old bitcode. 4028 if (!Func->hasLocalLinkage()) 4029 Func->setVisibility(getDecodedVisibility(Record[7])); 4030 if (Record.size() > 8 && Record[8]) { 4031 if (Record[8] - 1 >= GCTable.size()) 4032 return error("Invalid ID"); 4033 Func->setGC(GCTable[Record[8] - 1]); 4034 } 4035 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 4036 if (Record.size() > 9) 4037 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); 4038 Func->setUnnamedAddr(UnnamedAddr); 4039 4040 FunctionOperandInfo OperandInfo = {Func, 0, 0, 0}; 4041 if (Record.size() > 10) 4042 OperandInfo.Prologue = Record[10]; 4043 4044 if (Record.size() > 11) { 4045 // A GlobalValue with local linkage cannot have a DLL storage class. 4046 if (!Func->hasLocalLinkage()) { 4047 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 4048 } 4049 } else { 4050 upgradeDLLImportExportLinkage(Func, RawLinkage); 4051 } 4052 4053 if (Record.size() > 12) { 4054 if (unsigned ComdatID = Record[12]) { 4055 if (ComdatID > ComdatList.size()) 4056 return error("Invalid function comdat ID"); 4057 Func->setComdat(ComdatList[ComdatID - 1]); 4058 } 4059 } else if (hasImplicitComdat(RawLinkage)) { 4060 ImplicitComdatObjects.insert(Func); 4061 } 4062 4063 if (Record.size() > 13) 4064 OperandInfo.Prefix = Record[13]; 4065 4066 if (Record.size() > 14) 4067 OperandInfo.PersonalityFn = Record[14]; 4068 4069 if (Record.size() > 15) { 4070 Func->setDSOLocal(getDecodedDSOLocal(Record[15])); 4071 } 4072 inferDSOLocal(Func); 4073 4074 // Record[16] is the address space number. 4075 4076 // Check whether we have enough values to read a partition name. Also make 4077 // sure Strtab has enough values. 4078 if (Record.size() > 18 && Strtab.data() && 4079 Record[17] + Record[18] <= Strtab.size()) { 4080 Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18])); 4081 } 4082 4083 ValueList.push_back(Func, getVirtualTypeID(Func->getType(), FTyID)); 4084 4085 if (OperandInfo.PersonalityFn || OperandInfo.Prefix || OperandInfo.Prologue) 4086 FunctionOperands.push_back(OperandInfo); 4087 4088 // If this is a function with a body, remember the prototype we are 4089 // creating now, so that we can match up the body with them later. 4090 if (!isProto) { 4091 Func->setIsMaterializable(true); 4092 FunctionsWithBodies.push_back(Func); 4093 DeferredFunctionInfo[Func] = 0; 4094 } 4095 return Error::success(); 4096 } 4097 4098 Error BitcodeReader::parseGlobalIndirectSymbolRecord( 4099 unsigned BitCode, ArrayRef<uint64_t> Record) { 4100 // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST) 4101 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 4102 // dllstorageclass, threadlocal, unnamed_addr, 4103 // preemption specifier] (name in VST) 4104 // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage, 4105 // visibility, dllstorageclass, threadlocal, unnamed_addr, 4106 // preemption specifier] (name in VST) 4107 // v2: [strtab_offset, strtab_size, v1] 4108 StringRef Name; 4109 std::tie(Name, Record) = readNameFromStrtab(Record); 4110 4111 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 4112 if (Record.size() < (3 + (unsigned)NewRecord)) 4113 return error("Invalid record"); 4114 unsigned OpNum = 0; 4115 unsigned TypeID = Record[OpNum++]; 4116 Type *Ty = getTypeByID(TypeID); 4117 if (!Ty) 4118 return error("Invalid record"); 4119 4120 unsigned AddrSpace; 4121 if (!NewRecord) { 4122 auto *PTy = dyn_cast<PointerType>(Ty); 4123 if (!PTy) 4124 return error("Invalid type for value"); 4125 AddrSpace = PTy->getAddressSpace(); 4126 TypeID = getContainedTypeID(TypeID); 4127 Ty = getTypeByID(TypeID); 4128 if (!Ty) 4129 return error("Missing element type for old-style indirect symbol"); 4130 } else { 4131 AddrSpace = Record[OpNum++]; 4132 } 4133 4134 auto Val = Record[OpNum++]; 4135 auto Linkage = Record[OpNum++]; 4136 GlobalValue *NewGA; 4137 if (BitCode == bitc::MODULE_CODE_ALIAS || 4138 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 4139 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 4140 TheModule); 4141 else 4142 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 4143 nullptr, TheModule); 4144 4145 // Local linkage must have default visibility. 4146 // auto-upgrade `hidden` and `protected` for old bitcode. 4147 if (OpNum != Record.size()) { 4148 auto VisInd = OpNum++; 4149 if (!NewGA->hasLocalLinkage()) 4150 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 4151 } 4152 if (BitCode == bitc::MODULE_CODE_ALIAS || 4153 BitCode == bitc::MODULE_CODE_ALIAS_OLD) { 4154 if (OpNum != Record.size()) { 4155 auto S = Record[OpNum++]; 4156 // A GlobalValue with local linkage cannot have a DLL storage class. 4157 if (!NewGA->hasLocalLinkage()) 4158 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(S)); 4159 } 4160 else 4161 upgradeDLLImportExportLinkage(NewGA, Linkage); 4162 if (OpNum != Record.size()) 4163 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 4164 if (OpNum != Record.size()) 4165 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); 4166 } 4167 if (OpNum != Record.size()) 4168 NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++])); 4169 inferDSOLocal(NewGA); 4170 4171 // Check whether we have enough values to read a partition name. 4172 if (OpNum + 1 < Record.size()) { 4173 NewGA->setPartition( 4174 StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1])); 4175 OpNum += 2; 4176 } 4177 4178 ValueList.push_back(NewGA, getVirtualTypeID(NewGA->getType(), TypeID)); 4179 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 4180 return Error::success(); 4181 } 4182 4183 Error BitcodeReader::parseModule(uint64_t ResumeBit, 4184 bool ShouldLazyLoadMetadata, 4185 ParserCallbacks Callbacks) { 4186 this->ValueTypeCallback = std::move(Callbacks.ValueType); 4187 if (ResumeBit) { 4188 if (Error JumpFailed = Stream.JumpToBit(ResumeBit)) 4189 return JumpFailed; 4190 } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 4191 return Err; 4192 4193 SmallVector<uint64_t, 64> Record; 4194 4195 // Parts of bitcode parsing depend on the datalayout. Make sure we 4196 // finalize the datalayout before we run any of that code. 4197 bool ResolvedDataLayout = false; 4198 // In order to support importing modules with illegal data layout strings, 4199 // delay parsing the data layout string until after upgrades and overrides 4200 // have been applied, allowing to fix illegal data layout strings. 4201 // Initialize to the current module's layout string in case none is specified. 4202 std::string TentativeDataLayoutStr = TheModule->getDataLayoutStr(); 4203 4204 auto ResolveDataLayout = [&]() -> Error { 4205 if (ResolvedDataLayout) 4206 return Error::success(); 4207 4208 // Datalayout and triple can't be parsed after this point. 4209 ResolvedDataLayout = true; 4210 4211 // Auto-upgrade the layout string 4212 TentativeDataLayoutStr = llvm::UpgradeDataLayoutString( 4213 TentativeDataLayoutStr, TheModule->getTargetTriple()); 4214 4215 // Apply override 4216 if (Callbacks.DataLayout) { 4217 if (auto LayoutOverride = (*Callbacks.DataLayout)( 4218 TheModule->getTargetTriple(), TentativeDataLayoutStr)) 4219 TentativeDataLayoutStr = *LayoutOverride; 4220 } 4221 4222 // Now the layout string is finalized in TentativeDataLayoutStr. Parse it. 4223 Expected<DataLayout> MaybeDL = DataLayout::parse(TentativeDataLayoutStr); 4224 if (!MaybeDL) 4225 return MaybeDL.takeError(); 4226 4227 TheModule->setDataLayout(MaybeDL.get()); 4228 return Error::success(); 4229 }; 4230 4231 // Read all the records for this module. 4232 while (true) { 4233 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 4234 if (!MaybeEntry) 4235 return MaybeEntry.takeError(); 4236 llvm::BitstreamEntry Entry = MaybeEntry.get(); 4237 4238 switch (Entry.Kind) { 4239 case BitstreamEntry::Error: 4240 return error("Malformed block"); 4241 case BitstreamEntry::EndBlock: 4242 if (Error Err = ResolveDataLayout()) 4243 return Err; 4244 return globalCleanup(); 4245 4246 case BitstreamEntry::SubBlock: 4247 switch (Entry.ID) { 4248 default: // Skip unknown content. 4249 if (Error Err = Stream.SkipBlock()) 4250 return Err; 4251 break; 4252 case bitc::BLOCKINFO_BLOCK_ID: 4253 if (Error Err = readBlockInfo()) 4254 return Err; 4255 break; 4256 case bitc::PARAMATTR_BLOCK_ID: 4257 if (Error Err = parseAttributeBlock()) 4258 return Err; 4259 break; 4260 case bitc::PARAMATTR_GROUP_BLOCK_ID: 4261 if (Error Err = parseAttributeGroupBlock()) 4262 return Err; 4263 break; 4264 case bitc::TYPE_BLOCK_ID_NEW: 4265 if (Error Err = parseTypeTable()) 4266 return Err; 4267 break; 4268 case bitc::VALUE_SYMTAB_BLOCK_ID: 4269 if (!SeenValueSymbolTable) { 4270 // Either this is an old form VST without function index and an 4271 // associated VST forward declaration record (which would have caused 4272 // the VST to be jumped to and parsed before it was encountered 4273 // normally in the stream), or there were no function blocks to 4274 // trigger an earlier parsing of the VST. 4275 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 4276 if (Error Err = parseValueSymbolTable()) 4277 return Err; 4278 SeenValueSymbolTable = true; 4279 } else { 4280 // We must have had a VST forward declaration record, which caused 4281 // the parser to jump to and parse the VST earlier. 4282 assert(VSTOffset > 0); 4283 if (Error Err = Stream.SkipBlock()) 4284 return Err; 4285 } 4286 break; 4287 case bitc::CONSTANTS_BLOCK_ID: 4288 if (Error Err = parseConstants()) 4289 return Err; 4290 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 4291 return Err; 4292 break; 4293 case bitc::METADATA_BLOCK_ID: 4294 if (ShouldLazyLoadMetadata) { 4295 if (Error Err = rememberAndSkipMetadata()) 4296 return Err; 4297 break; 4298 } 4299 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 4300 if (Error Err = MDLoader->parseModuleMetadata()) 4301 return Err; 4302 break; 4303 case bitc::METADATA_KIND_BLOCK_ID: 4304 if (Error Err = MDLoader->parseMetadataKinds()) 4305 return Err; 4306 break; 4307 case bitc::FUNCTION_BLOCK_ID: 4308 if (Error Err = ResolveDataLayout()) 4309 return Err; 4310 4311 // If this is the first function body we've seen, reverse the 4312 // FunctionsWithBodies list. 4313 if (!SeenFirstFunctionBody) { 4314 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 4315 if (Error Err = globalCleanup()) 4316 return Err; 4317 SeenFirstFunctionBody = true; 4318 } 4319 4320 if (VSTOffset > 0) { 4321 // If we have a VST forward declaration record, make sure we 4322 // parse the VST now if we haven't already. It is needed to 4323 // set up the DeferredFunctionInfo vector for lazy reading. 4324 if (!SeenValueSymbolTable) { 4325 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset)) 4326 return Err; 4327 SeenValueSymbolTable = true; 4328 // Fall through so that we record the NextUnreadBit below. 4329 // This is necessary in case we have an anonymous function that 4330 // is later materialized. Since it will not have a VST entry we 4331 // need to fall back to the lazy parse to find its offset. 4332 } else { 4333 // If we have a VST forward declaration record, but have already 4334 // parsed the VST (just above, when the first function body was 4335 // encountered here), then we are resuming the parse after 4336 // materializing functions. The ResumeBit points to the 4337 // start of the last function block recorded in the 4338 // DeferredFunctionInfo map. Skip it. 4339 if (Error Err = Stream.SkipBlock()) 4340 return Err; 4341 continue; 4342 } 4343 } 4344 4345 // Support older bitcode files that did not have the function 4346 // index in the VST, nor a VST forward declaration record, as 4347 // well as anonymous functions that do not have VST entries. 4348 // Build the DeferredFunctionInfo vector on the fly. 4349 if (Error Err = rememberAndSkipFunctionBody()) 4350 return Err; 4351 4352 // Suspend parsing when we reach the function bodies. Subsequent 4353 // materialization calls will resume it when necessary. If the bitcode 4354 // file is old, the symbol table will be at the end instead and will not 4355 // have been seen yet. In this case, just finish the parse now. 4356 if (SeenValueSymbolTable) { 4357 NextUnreadBit = Stream.GetCurrentBitNo(); 4358 // After the VST has been parsed, we need to make sure intrinsic name 4359 // are auto-upgraded. 4360 return globalCleanup(); 4361 } 4362 break; 4363 case bitc::USELIST_BLOCK_ID: 4364 if (Error Err = parseUseLists()) 4365 return Err; 4366 break; 4367 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 4368 if (Error Err = parseOperandBundleTags()) 4369 return Err; 4370 break; 4371 case bitc::SYNC_SCOPE_NAMES_BLOCK_ID: 4372 if (Error Err = parseSyncScopeNames()) 4373 return Err; 4374 break; 4375 } 4376 continue; 4377 4378 case BitstreamEntry::Record: 4379 // The interesting case. 4380 break; 4381 } 4382 4383 // Read a record. 4384 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 4385 if (!MaybeBitCode) 4386 return MaybeBitCode.takeError(); 4387 switch (unsigned BitCode = MaybeBitCode.get()) { 4388 default: break; // Default behavior, ignore unknown content. 4389 case bitc::MODULE_CODE_VERSION: { 4390 Expected<unsigned> VersionOrErr = parseVersionRecord(Record); 4391 if (!VersionOrErr) 4392 return VersionOrErr.takeError(); 4393 UseRelativeIDs = *VersionOrErr >= 1; 4394 break; 4395 } 4396 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 4397 if (ResolvedDataLayout) 4398 return error("target triple too late in module"); 4399 std::string S; 4400 if (convertToString(Record, 0, S)) 4401 return error("Invalid record"); 4402 TheModule->setTargetTriple(S); 4403 break; 4404 } 4405 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 4406 if (ResolvedDataLayout) 4407 return error("datalayout too late in module"); 4408 if (convertToString(Record, 0, TentativeDataLayoutStr)) 4409 return error("Invalid record"); 4410 break; 4411 } 4412 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 4413 std::string S; 4414 if (convertToString(Record, 0, S)) 4415 return error("Invalid record"); 4416 TheModule->setModuleInlineAsm(S); 4417 break; 4418 } 4419 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 4420 // Deprecated, but still needed to read old bitcode files. 4421 std::string S; 4422 if (convertToString(Record, 0, S)) 4423 return error("Invalid record"); 4424 // Ignore value. 4425 break; 4426 } 4427 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 4428 std::string S; 4429 if (convertToString(Record, 0, S)) 4430 return error("Invalid record"); 4431 SectionTable.push_back(S); 4432 break; 4433 } 4434 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 4435 std::string S; 4436 if (convertToString(Record, 0, S)) 4437 return error("Invalid record"); 4438 GCTable.push_back(S); 4439 break; 4440 } 4441 case bitc::MODULE_CODE_COMDAT: 4442 if (Error Err = parseComdatRecord(Record)) 4443 return Err; 4444 break; 4445 // FIXME: BitcodeReader should handle {GLOBALVAR, FUNCTION, ALIAS, IFUNC} 4446 // written by ThinLinkBitcodeWriter. See 4447 // `ThinLinkBitcodeWriter::writeSimplifiedModuleInfo` for the format of each 4448 // record 4449 // (https://github.com/llvm/llvm-project/blob/b6a93967d9c11e79802b5e75cec1584d6c8aa472/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp#L4714) 4450 case bitc::MODULE_CODE_GLOBALVAR: 4451 if (Error Err = parseGlobalVarRecord(Record)) 4452 return Err; 4453 break; 4454 case bitc::MODULE_CODE_FUNCTION: 4455 if (Error Err = ResolveDataLayout()) 4456 return Err; 4457 if (Error Err = parseFunctionRecord(Record)) 4458 return Err; 4459 break; 4460 case bitc::MODULE_CODE_IFUNC: 4461 case bitc::MODULE_CODE_ALIAS: 4462 case bitc::MODULE_CODE_ALIAS_OLD: 4463 if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record)) 4464 return Err; 4465 break; 4466 /// MODULE_CODE_VSTOFFSET: [offset] 4467 case bitc::MODULE_CODE_VSTOFFSET: 4468 if (Record.empty()) 4469 return error("Invalid record"); 4470 // Note that we subtract 1 here because the offset is relative to one word 4471 // before the start of the identification or module block, which was 4472 // historically always the start of the regular bitcode header. 4473 VSTOffset = Record[0] - 1; 4474 break; 4475 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4476 case bitc::MODULE_CODE_SOURCE_FILENAME: 4477 SmallString<128> ValueName; 4478 if (convertToString(Record, 0, ValueName)) 4479 return error("Invalid record"); 4480 TheModule->setSourceFileName(ValueName); 4481 break; 4482 } 4483 Record.clear(); 4484 } 4485 this->ValueTypeCallback = std::nullopt; 4486 return Error::success(); 4487 } 4488 4489 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 4490 bool IsImporting, 4491 ParserCallbacks Callbacks) { 4492 TheModule = M; 4493 MetadataLoaderCallbacks MDCallbacks; 4494 MDCallbacks.GetTypeByID = [&](unsigned ID) { return getTypeByID(ID); }; 4495 MDCallbacks.GetContainedTypeID = [&](unsigned I, unsigned J) { 4496 return getContainedTypeID(I, J); 4497 }; 4498 MDCallbacks.MDType = Callbacks.MDType; 4499 MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, MDCallbacks); 4500 return parseModule(0, ShouldLazyLoadMetadata, Callbacks); 4501 } 4502 4503 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 4504 if (!isa<PointerType>(PtrType)) 4505 return error("Load/Store operand is not a pointer type"); 4506 if (!PointerType::isLoadableOrStorableType(ValType)) 4507 return error("Cannot load/store from pointer"); 4508 return Error::success(); 4509 } 4510 4511 Error BitcodeReader::propagateAttributeTypes(CallBase *CB, 4512 ArrayRef<unsigned> ArgTyIDs) { 4513 AttributeList Attrs = CB->getAttributes(); 4514 for (unsigned i = 0; i != CB->arg_size(); ++i) { 4515 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet, 4516 Attribute::InAlloca}) { 4517 if (!Attrs.hasParamAttr(i, Kind) || 4518 Attrs.getParamAttr(i, Kind).getValueAsType()) 4519 continue; 4520 4521 Type *PtrEltTy = getPtrElementTypeByID(ArgTyIDs[i]); 4522 if (!PtrEltTy) 4523 return error("Missing element type for typed attribute upgrade"); 4524 4525 Attribute NewAttr; 4526 switch (Kind) { 4527 case Attribute::ByVal: 4528 NewAttr = Attribute::getWithByValType(Context, PtrEltTy); 4529 break; 4530 case Attribute::StructRet: 4531 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy); 4532 break; 4533 case Attribute::InAlloca: 4534 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy); 4535 break; 4536 default: 4537 llvm_unreachable("not an upgraded type attribute"); 4538 } 4539 4540 Attrs = Attrs.addParamAttribute(Context, i, NewAttr); 4541 } 4542 } 4543 4544 if (CB->isInlineAsm()) { 4545 const InlineAsm *IA = cast<InlineAsm>(CB->getCalledOperand()); 4546 unsigned ArgNo = 0; 4547 for (const InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 4548 if (!CI.hasArg()) 4549 continue; 4550 4551 if (CI.isIndirect && !Attrs.getParamElementType(ArgNo)) { 4552 Type *ElemTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]); 4553 if (!ElemTy) 4554 return error("Missing element type for inline asm upgrade"); 4555 Attrs = Attrs.addParamAttribute( 4556 Context, ArgNo, 4557 Attribute::get(Context, Attribute::ElementType, ElemTy)); 4558 } 4559 4560 ArgNo++; 4561 } 4562 } 4563 4564 switch (CB->getIntrinsicID()) { 4565 case Intrinsic::preserve_array_access_index: 4566 case Intrinsic::preserve_struct_access_index: 4567 case Intrinsic::aarch64_ldaxr: 4568 case Intrinsic::aarch64_ldxr: 4569 case Intrinsic::aarch64_stlxr: 4570 case Intrinsic::aarch64_stxr: 4571 case Intrinsic::arm_ldaex: 4572 case Intrinsic::arm_ldrex: 4573 case Intrinsic::arm_stlex: 4574 case Intrinsic::arm_strex: { 4575 unsigned ArgNo; 4576 switch (CB->getIntrinsicID()) { 4577 case Intrinsic::aarch64_stlxr: 4578 case Intrinsic::aarch64_stxr: 4579 case Intrinsic::arm_stlex: 4580 case Intrinsic::arm_strex: 4581 ArgNo = 1; 4582 break; 4583 default: 4584 ArgNo = 0; 4585 break; 4586 } 4587 if (!Attrs.getParamElementType(ArgNo)) { 4588 Type *ElTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]); 4589 if (!ElTy) 4590 return error("Missing element type for elementtype upgrade"); 4591 Attribute NewAttr = Attribute::get(Context, Attribute::ElementType, ElTy); 4592 Attrs = Attrs.addParamAttribute(Context, ArgNo, NewAttr); 4593 } 4594 break; 4595 } 4596 default: 4597 break; 4598 } 4599 4600 CB->setAttributes(Attrs); 4601 return Error::success(); 4602 } 4603 4604 /// Lazily parse the specified function body block. 4605 Error BitcodeReader::parseFunctionBody(Function *F) { 4606 if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 4607 return Err; 4608 4609 // Unexpected unresolved metadata when parsing function. 4610 if (MDLoader->hasFwdRefs()) 4611 return error("Invalid function metadata: incoming forward references"); 4612 4613 InstructionList.clear(); 4614 unsigned ModuleValueListSize = ValueList.size(); 4615 unsigned ModuleMDLoaderSize = MDLoader->size(); 4616 4617 // Add all the function arguments to the value table. 4618 unsigned ArgNo = 0; 4619 unsigned FTyID = FunctionTypeIDs[F]; 4620 for (Argument &I : F->args()) { 4621 unsigned ArgTyID = getContainedTypeID(FTyID, ArgNo + 1); 4622 assert(I.getType() == getTypeByID(ArgTyID) && 4623 "Incorrect fully specified type for Function Argument"); 4624 ValueList.push_back(&I, ArgTyID); 4625 ++ArgNo; 4626 } 4627 unsigned NextValueNo = ValueList.size(); 4628 BasicBlock *CurBB = nullptr; 4629 unsigned CurBBNo = 0; 4630 // Block into which constant expressions from phi nodes are materialized. 4631 BasicBlock *PhiConstExprBB = nullptr; 4632 // Edge blocks for phi nodes into which constant expressions have been 4633 // expanded. 4634 SmallMapVector<std::pair<BasicBlock *, BasicBlock *>, BasicBlock *, 4> 4635 ConstExprEdgeBBs; 4636 4637 DebugLoc LastLoc; 4638 auto getLastInstruction = [&]() -> Instruction * { 4639 if (CurBB && !CurBB->empty()) 4640 return &CurBB->back(); 4641 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 4642 !FunctionBBs[CurBBNo - 1]->empty()) 4643 return &FunctionBBs[CurBBNo - 1]->back(); 4644 return nullptr; 4645 }; 4646 4647 std::vector<OperandBundleDef> OperandBundles; 4648 4649 // Read all the records. 4650 SmallVector<uint64_t, 64> Record; 4651 4652 while (true) { 4653 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 4654 if (!MaybeEntry) 4655 return MaybeEntry.takeError(); 4656 llvm::BitstreamEntry Entry = MaybeEntry.get(); 4657 4658 switch (Entry.Kind) { 4659 case BitstreamEntry::Error: 4660 return error("Malformed block"); 4661 case BitstreamEntry::EndBlock: 4662 goto OutOfRecordLoop; 4663 4664 case BitstreamEntry::SubBlock: 4665 switch (Entry.ID) { 4666 default: // Skip unknown content. 4667 if (Error Err = Stream.SkipBlock()) 4668 return Err; 4669 break; 4670 case bitc::CONSTANTS_BLOCK_ID: 4671 if (Error Err = parseConstants()) 4672 return Err; 4673 NextValueNo = ValueList.size(); 4674 break; 4675 case bitc::VALUE_SYMTAB_BLOCK_ID: 4676 if (Error Err = parseValueSymbolTable()) 4677 return Err; 4678 break; 4679 case bitc::METADATA_ATTACHMENT_ID: 4680 if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList)) 4681 return Err; 4682 break; 4683 case bitc::METADATA_BLOCK_ID: 4684 assert(DeferredMetadataInfo.empty() && 4685 "Must read all module-level metadata before function-level"); 4686 if (Error Err = MDLoader->parseFunctionMetadata(CurBB)) 4687 return Err; 4688 break; 4689 case bitc::USELIST_BLOCK_ID: 4690 if (Error Err = parseUseLists()) 4691 return Err; 4692 break; 4693 } 4694 continue; 4695 4696 case BitstreamEntry::Record: 4697 // The interesting case. 4698 break; 4699 } 4700 4701 // Read a record. 4702 Record.clear(); 4703 Instruction *I = nullptr; 4704 unsigned ResTypeID = InvalidTypeID; 4705 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 4706 if (!MaybeBitCode) 4707 return MaybeBitCode.takeError(); 4708 switch (unsigned BitCode = MaybeBitCode.get()) { 4709 default: // Default behavior: reject 4710 return error("Invalid value"); 4711 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 4712 if (Record.empty() || Record[0] == 0) 4713 return error("Invalid record"); 4714 // Create all the basic blocks for the function. 4715 FunctionBBs.resize(Record[0]); 4716 4717 // See if anything took the address of blocks in this function. 4718 auto BBFRI = BasicBlockFwdRefs.find(F); 4719 if (BBFRI == BasicBlockFwdRefs.end()) { 4720 for (BasicBlock *&BB : FunctionBBs) 4721 BB = BasicBlock::Create(Context, "", F); 4722 } else { 4723 auto &BBRefs = BBFRI->second; 4724 // Check for invalid basic block references. 4725 if (BBRefs.size() > FunctionBBs.size()) 4726 return error("Invalid ID"); 4727 assert(!BBRefs.empty() && "Unexpected empty array"); 4728 assert(!BBRefs.front() && "Invalid reference to entry block"); 4729 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 4730 ++I) 4731 if (I < RE && BBRefs[I]) { 4732 BBRefs[I]->insertInto(F); 4733 FunctionBBs[I] = BBRefs[I]; 4734 } else { 4735 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 4736 } 4737 4738 // Erase from the table. 4739 BasicBlockFwdRefs.erase(BBFRI); 4740 } 4741 4742 CurBB = FunctionBBs[0]; 4743 continue; 4744 } 4745 4746 case bitc::FUNC_CODE_BLOCKADDR_USERS: // BLOCKADDR_USERS: [vals...] 4747 // The record should not be emitted if it's an empty list. 4748 if (Record.empty()) 4749 return error("Invalid record"); 4750 // When we have the RARE case of a BlockAddress Constant that is not 4751 // scoped to the Function it refers to, we need to conservatively 4752 // materialize the referred to Function, regardless of whether or not 4753 // that Function will ultimately be linked, otherwise users of 4754 // BitcodeReader might start splicing out Function bodies such that we 4755 // might no longer be able to materialize the BlockAddress since the 4756 // BasicBlock (and entire body of the Function) the BlockAddress refers 4757 // to may have been moved. In the case that the user of BitcodeReader 4758 // decides ultimately not to link the Function body, materializing here 4759 // could be considered wasteful, but it's better than a deserialization 4760 // failure as described. This keeps BitcodeReader unaware of complex 4761 // linkage policy decisions such as those use by LTO, leaving those 4762 // decisions "one layer up." 4763 for (uint64_t ValID : Record) 4764 if (auto *F = dyn_cast<Function>(ValueList[ValID])) 4765 BackwardRefFunctions.push_back(F); 4766 else 4767 return error("Invalid record"); 4768 4769 continue; 4770 4771 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 4772 // This record indicates that the last instruction is at the same 4773 // location as the previous instruction with a location. 4774 I = getLastInstruction(); 4775 4776 if (!I) 4777 return error("Invalid record"); 4778 I->setDebugLoc(LastLoc); 4779 I = nullptr; 4780 continue; 4781 4782 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 4783 I = getLastInstruction(); 4784 if (!I || Record.size() < 4) 4785 return error("Invalid record"); 4786 4787 unsigned Line = Record[0], Col = Record[1]; 4788 unsigned ScopeID = Record[2], IAID = Record[3]; 4789 bool isImplicitCode = Record.size() == 5 && Record[4]; 4790 4791 MDNode *Scope = nullptr, *IA = nullptr; 4792 if (ScopeID) { 4793 Scope = dyn_cast_or_null<MDNode>( 4794 MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1)); 4795 if (!Scope) 4796 return error("Invalid record"); 4797 } 4798 if (IAID) { 4799 IA = dyn_cast_or_null<MDNode>( 4800 MDLoader->getMetadataFwdRefOrLoad(IAID - 1)); 4801 if (!IA) 4802 return error("Invalid record"); 4803 } 4804 LastLoc = DILocation::get(Scope->getContext(), Line, Col, Scope, IA, 4805 isImplicitCode); 4806 I->setDebugLoc(LastLoc); 4807 I = nullptr; 4808 continue; 4809 } 4810 case bitc::FUNC_CODE_INST_UNOP: { // UNOP: [opval, ty, opcode] 4811 unsigned OpNum = 0; 4812 Value *LHS; 4813 unsigned TypeID; 4814 if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) || 4815 OpNum+1 > Record.size()) 4816 return error("Invalid record"); 4817 4818 int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType()); 4819 if (Opc == -1) 4820 return error("Invalid record"); 4821 I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 4822 ResTypeID = TypeID; 4823 InstructionList.push_back(I); 4824 if (OpNum < Record.size()) { 4825 if (isa<FPMathOperator>(I)) { 4826 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4827 if (FMF.any()) 4828 I->setFastMathFlags(FMF); 4829 } 4830 } 4831 break; 4832 } 4833 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 4834 unsigned OpNum = 0; 4835 Value *LHS, *RHS; 4836 unsigned TypeID; 4837 if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) || 4838 popValue(Record, OpNum, NextValueNo, LHS->getType(), TypeID, RHS, 4839 CurBB) || 4840 OpNum+1 > Record.size()) 4841 return error("Invalid record"); 4842 4843 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 4844 if (Opc == -1) 4845 return error("Invalid record"); 4846 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 4847 ResTypeID = TypeID; 4848 InstructionList.push_back(I); 4849 if (OpNum < Record.size()) { 4850 if (Opc == Instruction::Add || 4851 Opc == Instruction::Sub || 4852 Opc == Instruction::Mul || 4853 Opc == Instruction::Shl) { 4854 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 4855 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 4856 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 4857 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 4858 } else if (Opc == Instruction::SDiv || 4859 Opc == Instruction::UDiv || 4860 Opc == Instruction::LShr || 4861 Opc == Instruction::AShr) { 4862 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 4863 cast<BinaryOperator>(I)->setIsExact(true); 4864 } else if (isa<FPMathOperator>(I)) { 4865 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4866 if (FMF.any()) 4867 I->setFastMathFlags(FMF); 4868 } 4869 4870 } 4871 break; 4872 } 4873 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 4874 unsigned OpNum = 0; 4875 Value *Op; 4876 unsigned OpTypeID; 4877 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) || 4878 OpNum+2 != Record.size()) 4879 return error("Invalid record"); 4880 4881 ResTypeID = Record[OpNum]; 4882 Type *ResTy = getTypeByID(ResTypeID); 4883 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 4884 if (Opc == -1 || !ResTy) 4885 return error("Invalid record"); 4886 Instruction *Temp = nullptr; 4887 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 4888 if (Temp) { 4889 InstructionList.push_back(Temp); 4890 assert(CurBB && "No current BB?"); 4891 Temp->insertInto(CurBB, CurBB->end()); 4892 } 4893 } else { 4894 auto CastOp = (Instruction::CastOps)Opc; 4895 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 4896 return error("Invalid cast"); 4897 I = CastInst::Create(CastOp, Op, ResTy); 4898 } 4899 InstructionList.push_back(I); 4900 break; 4901 } 4902 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 4903 case bitc::FUNC_CODE_INST_GEP_OLD: 4904 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 4905 unsigned OpNum = 0; 4906 4907 unsigned TyID; 4908 Type *Ty; 4909 bool InBounds; 4910 4911 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 4912 InBounds = Record[OpNum++]; 4913 TyID = Record[OpNum++]; 4914 Ty = getTypeByID(TyID); 4915 } else { 4916 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 4917 TyID = InvalidTypeID; 4918 Ty = nullptr; 4919 } 4920 4921 Value *BasePtr; 4922 unsigned BasePtrTypeID; 4923 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr, BasePtrTypeID, 4924 CurBB)) 4925 return error("Invalid record"); 4926 4927 if (!Ty) { 4928 TyID = getContainedTypeID(BasePtrTypeID); 4929 if (BasePtr->getType()->isVectorTy()) 4930 TyID = getContainedTypeID(TyID); 4931 Ty = getTypeByID(TyID); 4932 } 4933 4934 SmallVector<Value*, 16> GEPIdx; 4935 while (OpNum != Record.size()) { 4936 Value *Op; 4937 unsigned OpTypeID; 4938 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 4939 return error("Invalid record"); 4940 GEPIdx.push_back(Op); 4941 } 4942 4943 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 4944 4945 ResTypeID = TyID; 4946 if (cast<GEPOperator>(I)->getNumIndices() != 0) { 4947 auto GTI = std::next(gep_type_begin(I)); 4948 for (Value *Idx : drop_begin(cast<GEPOperator>(I)->indices())) { 4949 unsigned SubType = 0; 4950 if (GTI.isStruct()) { 4951 ConstantInt *IdxC = 4952 Idx->getType()->isVectorTy() 4953 ? cast<ConstantInt>(cast<Constant>(Idx)->getSplatValue()) 4954 : cast<ConstantInt>(Idx); 4955 SubType = IdxC->getZExtValue(); 4956 } 4957 ResTypeID = getContainedTypeID(ResTypeID, SubType); 4958 ++GTI; 4959 } 4960 } 4961 4962 // At this point ResTypeID is the result element type. We need a pointer 4963 // or vector of pointer to it. 4964 ResTypeID = getVirtualTypeID(I->getType()->getScalarType(), ResTypeID); 4965 if (I->getType()->isVectorTy()) 4966 ResTypeID = getVirtualTypeID(I->getType(), ResTypeID); 4967 4968 InstructionList.push_back(I); 4969 if (InBounds) 4970 cast<GetElementPtrInst>(I)->setIsInBounds(true); 4971 break; 4972 } 4973 4974 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 4975 // EXTRACTVAL: [opty, opval, n x indices] 4976 unsigned OpNum = 0; 4977 Value *Agg; 4978 unsigned AggTypeID; 4979 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB)) 4980 return error("Invalid record"); 4981 Type *Ty = Agg->getType(); 4982 4983 unsigned RecSize = Record.size(); 4984 if (OpNum == RecSize) 4985 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 4986 4987 SmallVector<unsigned, 4> EXTRACTVALIdx; 4988 ResTypeID = AggTypeID; 4989 for (; OpNum != RecSize; ++OpNum) { 4990 bool IsArray = Ty->isArrayTy(); 4991 bool IsStruct = Ty->isStructTy(); 4992 uint64_t Index = Record[OpNum]; 4993 4994 if (!IsStruct && !IsArray) 4995 return error("EXTRACTVAL: Invalid type"); 4996 if ((unsigned)Index != Index) 4997 return error("Invalid value"); 4998 if (IsStruct && Index >= Ty->getStructNumElements()) 4999 return error("EXTRACTVAL: Invalid struct index"); 5000 if (IsArray && Index >= Ty->getArrayNumElements()) 5001 return error("EXTRACTVAL: Invalid array index"); 5002 EXTRACTVALIdx.push_back((unsigned)Index); 5003 5004 if (IsStruct) { 5005 Ty = Ty->getStructElementType(Index); 5006 ResTypeID = getContainedTypeID(ResTypeID, Index); 5007 } else { 5008 Ty = Ty->getArrayElementType(); 5009 ResTypeID = getContainedTypeID(ResTypeID); 5010 } 5011 } 5012 5013 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 5014 InstructionList.push_back(I); 5015 break; 5016 } 5017 5018 case bitc::FUNC_CODE_INST_INSERTVAL: { 5019 // INSERTVAL: [opty, opval, opty, opval, n x indices] 5020 unsigned OpNum = 0; 5021 Value *Agg; 5022 unsigned AggTypeID; 5023 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB)) 5024 return error("Invalid record"); 5025 Value *Val; 5026 unsigned ValTypeID; 5027 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 5028 return error("Invalid record"); 5029 5030 unsigned RecSize = Record.size(); 5031 if (OpNum == RecSize) 5032 return error("INSERTVAL: Invalid instruction with 0 indices"); 5033 5034 SmallVector<unsigned, 4> INSERTVALIdx; 5035 Type *CurTy = Agg->getType(); 5036 for (; OpNum != RecSize; ++OpNum) { 5037 bool IsArray = CurTy->isArrayTy(); 5038 bool IsStruct = CurTy->isStructTy(); 5039 uint64_t Index = Record[OpNum]; 5040 5041 if (!IsStruct && !IsArray) 5042 return error("INSERTVAL: Invalid type"); 5043 if ((unsigned)Index != Index) 5044 return error("Invalid value"); 5045 if (IsStruct && Index >= CurTy->getStructNumElements()) 5046 return error("INSERTVAL: Invalid struct index"); 5047 if (IsArray && Index >= CurTy->getArrayNumElements()) 5048 return error("INSERTVAL: Invalid array index"); 5049 5050 INSERTVALIdx.push_back((unsigned)Index); 5051 if (IsStruct) 5052 CurTy = CurTy->getStructElementType(Index); 5053 else 5054 CurTy = CurTy->getArrayElementType(); 5055 } 5056 5057 if (CurTy != Val->getType()) 5058 return error("Inserted value type doesn't match aggregate type"); 5059 5060 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 5061 ResTypeID = AggTypeID; 5062 InstructionList.push_back(I); 5063 break; 5064 } 5065 5066 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 5067 // obsolete form of select 5068 // handles select i1 ... in old bitcode 5069 unsigned OpNum = 0; 5070 Value *TrueVal, *FalseVal, *Cond; 5071 unsigned TypeID; 5072 Type *CondType = Type::getInt1Ty(Context); 5073 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, TypeID, 5074 CurBB) || 5075 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), TypeID, 5076 FalseVal, CurBB) || 5077 popValue(Record, OpNum, NextValueNo, CondType, 5078 getVirtualTypeID(CondType), Cond, CurBB)) 5079 return error("Invalid record"); 5080 5081 I = SelectInst::Create(Cond, TrueVal, FalseVal); 5082 ResTypeID = TypeID; 5083 InstructionList.push_back(I); 5084 break; 5085 } 5086 5087 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 5088 // new form of select 5089 // handles select i1 or select [N x i1] 5090 unsigned OpNum = 0; 5091 Value *TrueVal, *FalseVal, *Cond; 5092 unsigned ValTypeID, CondTypeID; 5093 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, ValTypeID, 5094 CurBB) || 5095 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), ValTypeID, 5096 FalseVal, CurBB) || 5097 getValueTypePair(Record, OpNum, NextValueNo, Cond, CondTypeID, CurBB)) 5098 return error("Invalid record"); 5099 5100 // select condition can be either i1 or [N x i1] 5101 if (VectorType* vector_type = 5102 dyn_cast<VectorType>(Cond->getType())) { 5103 // expect <n x i1> 5104 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 5105 return error("Invalid type for value"); 5106 } else { 5107 // expect i1 5108 if (Cond->getType() != Type::getInt1Ty(Context)) 5109 return error("Invalid type for value"); 5110 } 5111 5112 I = SelectInst::Create(Cond, TrueVal, FalseVal); 5113 ResTypeID = ValTypeID; 5114 InstructionList.push_back(I); 5115 if (OpNum < Record.size() && isa<FPMathOperator>(I)) { 5116 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 5117 if (FMF.any()) 5118 I->setFastMathFlags(FMF); 5119 } 5120 break; 5121 } 5122 5123 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 5124 unsigned OpNum = 0; 5125 Value *Vec, *Idx; 5126 unsigned VecTypeID, IdxTypeID; 5127 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB) || 5128 getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB)) 5129 return error("Invalid record"); 5130 if (!Vec->getType()->isVectorTy()) 5131 return error("Invalid type for value"); 5132 I = ExtractElementInst::Create(Vec, Idx); 5133 ResTypeID = getContainedTypeID(VecTypeID); 5134 InstructionList.push_back(I); 5135 break; 5136 } 5137 5138 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 5139 unsigned OpNum = 0; 5140 Value *Vec, *Elt, *Idx; 5141 unsigned VecTypeID, IdxTypeID; 5142 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB)) 5143 return error("Invalid record"); 5144 if (!Vec->getType()->isVectorTy()) 5145 return error("Invalid type for value"); 5146 if (popValue(Record, OpNum, NextValueNo, 5147 cast<VectorType>(Vec->getType())->getElementType(), 5148 getContainedTypeID(VecTypeID), Elt, CurBB) || 5149 getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB)) 5150 return error("Invalid record"); 5151 I = InsertElementInst::Create(Vec, Elt, Idx); 5152 ResTypeID = VecTypeID; 5153 InstructionList.push_back(I); 5154 break; 5155 } 5156 5157 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 5158 unsigned OpNum = 0; 5159 Value *Vec1, *Vec2, *Mask; 5160 unsigned Vec1TypeID; 5161 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1, Vec1TypeID, 5162 CurBB) || 5163 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec1TypeID, 5164 Vec2, CurBB)) 5165 return error("Invalid record"); 5166 5167 unsigned MaskTypeID; 5168 if (getValueTypePair(Record, OpNum, NextValueNo, Mask, MaskTypeID, CurBB)) 5169 return error("Invalid record"); 5170 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 5171 return error("Invalid type for value"); 5172 5173 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 5174 ResTypeID = 5175 getVirtualTypeID(I->getType(), getContainedTypeID(Vec1TypeID)); 5176 InstructionList.push_back(I); 5177 break; 5178 } 5179 5180 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 5181 // Old form of ICmp/FCmp returning bool 5182 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 5183 // both legal on vectors but had different behaviour. 5184 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 5185 // FCmp/ICmp returning bool or vector of bool 5186 5187 unsigned OpNum = 0; 5188 Value *LHS, *RHS; 5189 unsigned LHSTypeID; 5190 if (getValueTypePair(Record, OpNum, NextValueNo, LHS, LHSTypeID, CurBB) || 5191 popValue(Record, OpNum, NextValueNo, LHS->getType(), LHSTypeID, RHS, 5192 CurBB)) 5193 return error("Invalid record"); 5194 5195 if (OpNum >= Record.size()) 5196 return error( 5197 "Invalid record: operand number exceeded available operands"); 5198 5199 unsigned PredVal = Record[OpNum]; 5200 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 5201 FastMathFlags FMF; 5202 if (IsFP && Record.size() > OpNum+1) 5203 FMF = getDecodedFastMathFlags(Record[++OpNum]); 5204 5205 if (OpNum+1 != Record.size()) 5206 return error("Invalid record"); 5207 5208 if (LHS->getType()->isFPOrFPVectorTy()) 5209 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 5210 else 5211 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 5212 5213 ResTypeID = getVirtualTypeID(I->getType()->getScalarType()); 5214 if (LHS->getType()->isVectorTy()) 5215 ResTypeID = getVirtualTypeID(I->getType(), ResTypeID); 5216 5217 if (FMF.any()) 5218 I->setFastMathFlags(FMF); 5219 InstructionList.push_back(I); 5220 break; 5221 } 5222 5223 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 5224 { 5225 unsigned Size = Record.size(); 5226 if (Size == 0) { 5227 I = ReturnInst::Create(Context); 5228 InstructionList.push_back(I); 5229 break; 5230 } 5231 5232 unsigned OpNum = 0; 5233 Value *Op = nullptr; 5234 unsigned OpTypeID; 5235 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 5236 return error("Invalid record"); 5237 if (OpNum != Record.size()) 5238 return error("Invalid record"); 5239 5240 I = ReturnInst::Create(Context, Op); 5241 InstructionList.push_back(I); 5242 break; 5243 } 5244 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 5245 if (Record.size() != 1 && Record.size() != 3) 5246 return error("Invalid record"); 5247 BasicBlock *TrueDest = getBasicBlock(Record[0]); 5248 if (!TrueDest) 5249 return error("Invalid record"); 5250 5251 if (Record.size() == 1) { 5252 I = BranchInst::Create(TrueDest); 5253 InstructionList.push_back(I); 5254 } 5255 else { 5256 BasicBlock *FalseDest = getBasicBlock(Record[1]); 5257 Type *CondType = Type::getInt1Ty(Context); 5258 Value *Cond = getValue(Record, 2, NextValueNo, CondType, 5259 getVirtualTypeID(CondType), CurBB); 5260 if (!FalseDest || !Cond) 5261 return error("Invalid record"); 5262 I = BranchInst::Create(TrueDest, FalseDest, Cond); 5263 InstructionList.push_back(I); 5264 } 5265 break; 5266 } 5267 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 5268 if (Record.size() != 1 && Record.size() != 2) 5269 return error("Invalid record"); 5270 unsigned Idx = 0; 5271 Type *TokenTy = Type::getTokenTy(Context); 5272 Value *CleanupPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5273 getVirtualTypeID(TokenTy), CurBB); 5274 if (!CleanupPad) 5275 return error("Invalid record"); 5276 BasicBlock *UnwindDest = nullptr; 5277 if (Record.size() == 2) { 5278 UnwindDest = getBasicBlock(Record[Idx++]); 5279 if (!UnwindDest) 5280 return error("Invalid record"); 5281 } 5282 5283 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 5284 InstructionList.push_back(I); 5285 break; 5286 } 5287 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 5288 if (Record.size() != 2) 5289 return error("Invalid record"); 5290 unsigned Idx = 0; 5291 Type *TokenTy = Type::getTokenTy(Context); 5292 Value *CatchPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5293 getVirtualTypeID(TokenTy), CurBB); 5294 if (!CatchPad) 5295 return error("Invalid record"); 5296 BasicBlock *BB = getBasicBlock(Record[Idx++]); 5297 if (!BB) 5298 return error("Invalid record"); 5299 5300 I = CatchReturnInst::Create(CatchPad, BB); 5301 InstructionList.push_back(I); 5302 break; 5303 } 5304 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 5305 // We must have, at minimum, the outer scope and the number of arguments. 5306 if (Record.size() < 2) 5307 return error("Invalid record"); 5308 5309 unsigned Idx = 0; 5310 5311 Type *TokenTy = Type::getTokenTy(Context); 5312 Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5313 getVirtualTypeID(TokenTy), CurBB); 5314 5315 unsigned NumHandlers = Record[Idx++]; 5316 5317 SmallVector<BasicBlock *, 2> Handlers; 5318 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 5319 BasicBlock *BB = getBasicBlock(Record[Idx++]); 5320 if (!BB) 5321 return error("Invalid record"); 5322 Handlers.push_back(BB); 5323 } 5324 5325 BasicBlock *UnwindDest = nullptr; 5326 if (Idx + 1 == Record.size()) { 5327 UnwindDest = getBasicBlock(Record[Idx++]); 5328 if (!UnwindDest) 5329 return error("Invalid record"); 5330 } 5331 5332 if (Record.size() != Idx) 5333 return error("Invalid record"); 5334 5335 auto *CatchSwitch = 5336 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 5337 for (BasicBlock *Handler : Handlers) 5338 CatchSwitch->addHandler(Handler); 5339 I = CatchSwitch; 5340 ResTypeID = getVirtualTypeID(I->getType()); 5341 InstructionList.push_back(I); 5342 break; 5343 } 5344 case bitc::FUNC_CODE_INST_CATCHPAD: 5345 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 5346 // We must have, at minimum, the outer scope and the number of arguments. 5347 if (Record.size() < 2) 5348 return error("Invalid record"); 5349 5350 unsigned Idx = 0; 5351 5352 Type *TokenTy = Type::getTokenTy(Context); 5353 Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5354 getVirtualTypeID(TokenTy), CurBB); 5355 5356 unsigned NumArgOperands = Record[Idx++]; 5357 5358 SmallVector<Value *, 2> Args; 5359 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 5360 Value *Val; 5361 unsigned ValTypeID; 5362 if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, nullptr)) 5363 return error("Invalid record"); 5364 Args.push_back(Val); 5365 } 5366 5367 if (Record.size() != Idx) 5368 return error("Invalid record"); 5369 5370 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 5371 I = CleanupPadInst::Create(ParentPad, Args); 5372 else 5373 I = CatchPadInst::Create(ParentPad, Args); 5374 ResTypeID = getVirtualTypeID(I->getType()); 5375 InstructionList.push_back(I); 5376 break; 5377 } 5378 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 5379 // Check magic 5380 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 5381 // "New" SwitchInst format with case ranges. The changes to write this 5382 // format were reverted but we still recognize bitcode that uses it. 5383 // Hopefully someday we will have support for case ranges and can use 5384 // this format again. 5385 5386 unsigned OpTyID = Record[1]; 5387 Type *OpTy = getTypeByID(OpTyID); 5388 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 5389 5390 Value *Cond = getValue(Record, 2, NextValueNo, OpTy, OpTyID, CurBB); 5391 BasicBlock *Default = getBasicBlock(Record[3]); 5392 if (!OpTy || !Cond || !Default) 5393 return error("Invalid record"); 5394 5395 unsigned NumCases = Record[4]; 5396 5397 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 5398 InstructionList.push_back(SI); 5399 5400 unsigned CurIdx = 5; 5401 for (unsigned i = 0; i != NumCases; ++i) { 5402 SmallVector<ConstantInt*, 1> CaseVals; 5403 unsigned NumItems = Record[CurIdx++]; 5404 for (unsigned ci = 0; ci != NumItems; ++ci) { 5405 bool isSingleNumber = Record[CurIdx++]; 5406 5407 APInt Low; 5408 unsigned ActiveWords = 1; 5409 if (ValueBitWidth > 64) 5410 ActiveWords = Record[CurIdx++]; 5411 Low = readWideAPInt(ArrayRef(&Record[CurIdx], ActiveWords), 5412 ValueBitWidth); 5413 CurIdx += ActiveWords; 5414 5415 if (!isSingleNumber) { 5416 ActiveWords = 1; 5417 if (ValueBitWidth > 64) 5418 ActiveWords = Record[CurIdx++]; 5419 APInt High = readWideAPInt(ArrayRef(&Record[CurIdx], ActiveWords), 5420 ValueBitWidth); 5421 CurIdx += ActiveWords; 5422 5423 // FIXME: It is not clear whether values in the range should be 5424 // compared as signed or unsigned values. The partially 5425 // implemented changes that used this format in the past used 5426 // unsigned comparisons. 5427 for ( ; Low.ule(High); ++Low) 5428 CaseVals.push_back(ConstantInt::get(Context, Low)); 5429 } else 5430 CaseVals.push_back(ConstantInt::get(Context, Low)); 5431 } 5432 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 5433 for (ConstantInt *Cst : CaseVals) 5434 SI->addCase(Cst, DestBB); 5435 } 5436 I = SI; 5437 break; 5438 } 5439 5440 // Old SwitchInst format without case ranges. 5441 5442 if (Record.size() < 3 || (Record.size() & 1) == 0) 5443 return error("Invalid record"); 5444 unsigned OpTyID = Record[0]; 5445 Type *OpTy = getTypeByID(OpTyID); 5446 Value *Cond = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB); 5447 BasicBlock *Default = getBasicBlock(Record[2]); 5448 if (!OpTy || !Cond || !Default) 5449 return error("Invalid record"); 5450 unsigned NumCases = (Record.size()-3)/2; 5451 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 5452 InstructionList.push_back(SI); 5453 for (unsigned i = 0, e = NumCases; i != e; ++i) { 5454 ConstantInt *CaseVal = dyn_cast_or_null<ConstantInt>( 5455 getFnValueByID(Record[3+i*2], OpTy, OpTyID, nullptr)); 5456 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 5457 if (!CaseVal || !DestBB) { 5458 delete SI; 5459 return error("Invalid record"); 5460 } 5461 SI->addCase(CaseVal, DestBB); 5462 } 5463 I = SI; 5464 break; 5465 } 5466 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 5467 if (Record.size() < 2) 5468 return error("Invalid record"); 5469 unsigned OpTyID = Record[0]; 5470 Type *OpTy = getTypeByID(OpTyID); 5471 Value *Address = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB); 5472 if (!OpTy || !Address) 5473 return error("Invalid record"); 5474 unsigned NumDests = Record.size()-2; 5475 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 5476 InstructionList.push_back(IBI); 5477 for (unsigned i = 0, e = NumDests; i != e; ++i) { 5478 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 5479 IBI->addDestination(DestBB); 5480 } else { 5481 delete IBI; 5482 return error("Invalid record"); 5483 } 5484 } 5485 I = IBI; 5486 break; 5487 } 5488 5489 case bitc::FUNC_CODE_INST_INVOKE: { 5490 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 5491 if (Record.size() < 4) 5492 return error("Invalid record"); 5493 unsigned OpNum = 0; 5494 AttributeList PAL = getAttributes(Record[OpNum++]); 5495 unsigned CCInfo = Record[OpNum++]; 5496 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 5497 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 5498 5499 unsigned FTyID = InvalidTypeID; 5500 FunctionType *FTy = nullptr; 5501 if ((CCInfo >> 13) & 1) { 5502 FTyID = Record[OpNum++]; 5503 FTy = dyn_cast<FunctionType>(getTypeByID(FTyID)); 5504 if (!FTy) 5505 return error("Explicit invoke type is not a function type"); 5506 } 5507 5508 Value *Callee; 5509 unsigned CalleeTypeID; 5510 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID, 5511 CurBB)) 5512 return error("Invalid record"); 5513 5514 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 5515 if (!CalleeTy) 5516 return error("Callee is not a pointer"); 5517 if (!FTy) { 5518 FTyID = getContainedTypeID(CalleeTypeID); 5519 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 5520 if (!FTy) 5521 return error("Callee is not of pointer to function type"); 5522 } 5523 if (Record.size() < FTy->getNumParams() + OpNum) 5524 return error("Insufficient operands to call"); 5525 5526 SmallVector<Value*, 16> Ops; 5527 SmallVector<unsigned, 16> ArgTyIDs; 5528 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5529 unsigned ArgTyID = getContainedTypeID(FTyID, i + 1); 5530 Ops.push_back(getValue(Record, OpNum, NextValueNo, FTy->getParamType(i), 5531 ArgTyID, CurBB)); 5532 ArgTyIDs.push_back(ArgTyID); 5533 if (!Ops.back()) 5534 return error("Invalid record"); 5535 } 5536 5537 if (!FTy->isVarArg()) { 5538 if (Record.size() != OpNum) 5539 return error("Invalid record"); 5540 } else { 5541 // Read type/value pairs for varargs params. 5542 while (OpNum != Record.size()) { 5543 Value *Op; 5544 unsigned OpTypeID; 5545 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 5546 return error("Invalid record"); 5547 Ops.push_back(Op); 5548 ArgTyIDs.push_back(OpTypeID); 5549 } 5550 } 5551 5552 // Upgrade the bundles if needed. 5553 if (!OperandBundles.empty()) 5554 UpgradeOperandBundles(OperandBundles); 5555 5556 I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops, 5557 OperandBundles); 5558 ResTypeID = getContainedTypeID(FTyID); 5559 OperandBundles.clear(); 5560 InstructionList.push_back(I); 5561 cast<InvokeInst>(I)->setCallingConv( 5562 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 5563 cast<InvokeInst>(I)->setAttributes(PAL); 5564 if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) { 5565 I->deleteValue(); 5566 return Err; 5567 } 5568 5569 break; 5570 } 5571 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 5572 unsigned Idx = 0; 5573 Value *Val = nullptr; 5574 unsigned ValTypeID; 5575 if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, CurBB)) 5576 return error("Invalid record"); 5577 I = ResumeInst::Create(Val); 5578 InstructionList.push_back(I); 5579 break; 5580 } 5581 case bitc::FUNC_CODE_INST_CALLBR: { 5582 // CALLBR: [attr, cc, norm, transfs, fty, fnid, args] 5583 unsigned OpNum = 0; 5584 AttributeList PAL = getAttributes(Record[OpNum++]); 5585 unsigned CCInfo = Record[OpNum++]; 5586 5587 BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]); 5588 unsigned NumIndirectDests = Record[OpNum++]; 5589 SmallVector<BasicBlock *, 16> IndirectDests; 5590 for (unsigned i = 0, e = NumIndirectDests; i != e; ++i) 5591 IndirectDests.push_back(getBasicBlock(Record[OpNum++])); 5592 5593 unsigned FTyID = InvalidTypeID; 5594 FunctionType *FTy = nullptr; 5595 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 5596 FTyID = Record[OpNum++]; 5597 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 5598 if (!FTy) 5599 return error("Explicit call type is not a function type"); 5600 } 5601 5602 Value *Callee; 5603 unsigned CalleeTypeID; 5604 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID, 5605 CurBB)) 5606 return error("Invalid record"); 5607 5608 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5609 if (!OpTy) 5610 return error("Callee is not a pointer type"); 5611 if (!FTy) { 5612 FTyID = getContainedTypeID(CalleeTypeID); 5613 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 5614 if (!FTy) 5615 return error("Callee is not of pointer to function type"); 5616 } 5617 if (Record.size() < FTy->getNumParams() + OpNum) 5618 return error("Insufficient operands to call"); 5619 5620 SmallVector<Value*, 16> Args; 5621 SmallVector<unsigned, 16> ArgTyIDs; 5622 // Read the fixed params. 5623 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5624 Value *Arg; 5625 unsigned ArgTyID = getContainedTypeID(FTyID, i + 1); 5626 if (FTy->getParamType(i)->isLabelTy()) 5627 Arg = getBasicBlock(Record[OpNum]); 5628 else 5629 Arg = getValue(Record, OpNum, NextValueNo, FTy->getParamType(i), 5630 ArgTyID, CurBB); 5631 if (!Arg) 5632 return error("Invalid record"); 5633 Args.push_back(Arg); 5634 ArgTyIDs.push_back(ArgTyID); 5635 } 5636 5637 // Read type/value pairs for varargs params. 5638 if (!FTy->isVarArg()) { 5639 if (OpNum != Record.size()) 5640 return error("Invalid record"); 5641 } else { 5642 while (OpNum != Record.size()) { 5643 Value *Op; 5644 unsigned OpTypeID; 5645 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 5646 return error("Invalid record"); 5647 Args.push_back(Op); 5648 ArgTyIDs.push_back(OpTypeID); 5649 } 5650 } 5651 5652 // Upgrade the bundles if needed. 5653 if (!OperandBundles.empty()) 5654 UpgradeOperandBundles(OperandBundles); 5655 5656 if (auto *IA = dyn_cast<InlineAsm>(Callee)) { 5657 InlineAsm::ConstraintInfoVector ConstraintInfo = IA->ParseConstraints(); 5658 auto IsLabelConstraint = [](const InlineAsm::ConstraintInfo &CI) { 5659 return CI.Type == InlineAsm::isLabel; 5660 }; 5661 if (none_of(ConstraintInfo, IsLabelConstraint)) { 5662 // Upgrade explicit blockaddress arguments to label constraints. 5663 // Verify that the last arguments are blockaddress arguments that 5664 // match the indirect destinations. Clang always generates callbr 5665 // in this form. We could support reordering with more effort. 5666 unsigned FirstBlockArg = Args.size() - IndirectDests.size(); 5667 for (unsigned ArgNo = FirstBlockArg; ArgNo < Args.size(); ++ArgNo) { 5668 unsigned LabelNo = ArgNo - FirstBlockArg; 5669 auto *BA = dyn_cast<BlockAddress>(Args[ArgNo]); 5670 if (!BA || BA->getFunction() != F || 5671 LabelNo > IndirectDests.size() || 5672 BA->getBasicBlock() != IndirectDests[LabelNo]) 5673 return error("callbr argument does not match indirect dest"); 5674 } 5675 5676 // Remove blockaddress arguments. 5677 Args.erase(Args.begin() + FirstBlockArg, Args.end()); 5678 ArgTyIDs.erase(ArgTyIDs.begin() + FirstBlockArg, ArgTyIDs.end()); 5679 5680 // Recreate the function type with less arguments. 5681 SmallVector<Type *> ArgTys; 5682 for (Value *Arg : Args) 5683 ArgTys.push_back(Arg->getType()); 5684 FTy = 5685 FunctionType::get(FTy->getReturnType(), ArgTys, FTy->isVarArg()); 5686 5687 // Update constraint string to use label constraints. 5688 std::string Constraints = IA->getConstraintString(); 5689 unsigned ArgNo = 0; 5690 size_t Pos = 0; 5691 for (const auto &CI : ConstraintInfo) { 5692 if (CI.hasArg()) { 5693 if (ArgNo >= FirstBlockArg) 5694 Constraints.insert(Pos, "!"); 5695 ++ArgNo; 5696 } 5697 5698 // Go to next constraint in string. 5699 Pos = Constraints.find(',', Pos); 5700 if (Pos == std::string::npos) 5701 break; 5702 ++Pos; 5703 } 5704 5705 Callee = InlineAsm::get(FTy, IA->getAsmString(), Constraints, 5706 IA->hasSideEffects(), IA->isAlignStack(), 5707 IA->getDialect(), IA->canThrow()); 5708 } 5709 } 5710 5711 I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args, 5712 OperandBundles); 5713 ResTypeID = getContainedTypeID(FTyID); 5714 OperandBundles.clear(); 5715 InstructionList.push_back(I); 5716 cast<CallBrInst>(I)->setCallingConv( 5717 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5718 cast<CallBrInst>(I)->setAttributes(PAL); 5719 if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) { 5720 I->deleteValue(); 5721 return Err; 5722 } 5723 break; 5724 } 5725 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 5726 I = new UnreachableInst(Context); 5727 InstructionList.push_back(I); 5728 break; 5729 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 5730 if (Record.empty()) 5731 return error("Invalid phi record"); 5732 // The first record specifies the type. 5733 unsigned TyID = Record[0]; 5734 Type *Ty = getTypeByID(TyID); 5735 if (!Ty) 5736 return error("Invalid phi record"); 5737 5738 // Phi arguments are pairs of records of [value, basic block]. 5739 // There is an optional final record for fast-math-flags if this phi has a 5740 // floating-point type. 5741 size_t NumArgs = (Record.size() - 1) / 2; 5742 PHINode *PN = PHINode::Create(Ty, NumArgs); 5743 if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN)) { 5744 PN->deleteValue(); 5745 return error("Invalid phi record"); 5746 } 5747 InstructionList.push_back(PN); 5748 5749 SmallDenseMap<BasicBlock *, Value *> Args; 5750 for (unsigned i = 0; i != NumArgs; i++) { 5751 BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]); 5752 if (!BB) { 5753 PN->deleteValue(); 5754 return error("Invalid phi BB"); 5755 } 5756 5757 // Phi nodes may contain the same predecessor multiple times, in which 5758 // case the incoming value must be identical. Directly reuse the already 5759 // seen value here, to avoid expanding a constant expression multiple 5760 // times. 5761 auto It = Args.find(BB); 5762 if (It != Args.end()) { 5763 PN->addIncoming(It->second, BB); 5764 continue; 5765 } 5766 5767 // If there already is a block for this edge (from a different phi), 5768 // use it. 5769 BasicBlock *EdgeBB = ConstExprEdgeBBs.lookup({BB, CurBB}); 5770 if (!EdgeBB) { 5771 // Otherwise, use a temporary block (that we will discard if it 5772 // turns out to be unnecessary). 5773 if (!PhiConstExprBB) 5774 PhiConstExprBB = BasicBlock::Create(Context, "phi.constexpr", F); 5775 EdgeBB = PhiConstExprBB; 5776 } 5777 5778 // With the new function encoding, it is possible that operands have 5779 // negative IDs (for forward references). Use a signed VBR 5780 // representation to keep the encoding small. 5781 Value *V; 5782 if (UseRelativeIDs) 5783 V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB); 5784 else 5785 V = getValue(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB); 5786 if (!V) { 5787 PN->deleteValue(); 5788 PhiConstExprBB->eraseFromParent(); 5789 return error("Invalid phi record"); 5790 } 5791 5792 if (EdgeBB == PhiConstExprBB && !EdgeBB->empty()) { 5793 ConstExprEdgeBBs.insert({{BB, CurBB}, EdgeBB}); 5794 PhiConstExprBB = nullptr; 5795 } 5796 PN->addIncoming(V, BB); 5797 Args.insert({BB, V}); 5798 } 5799 I = PN; 5800 ResTypeID = TyID; 5801 5802 // If there are an even number of records, the final record must be FMF. 5803 if (Record.size() % 2 == 0) { 5804 assert(isa<FPMathOperator>(I) && "Unexpected phi type"); 5805 FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]); 5806 if (FMF.any()) 5807 I->setFastMathFlags(FMF); 5808 } 5809 5810 break; 5811 } 5812 5813 case bitc::FUNC_CODE_INST_LANDINGPAD: 5814 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 5815 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 5816 unsigned Idx = 0; 5817 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 5818 if (Record.size() < 3) 5819 return error("Invalid record"); 5820 } else { 5821 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 5822 if (Record.size() < 4) 5823 return error("Invalid record"); 5824 } 5825 ResTypeID = Record[Idx++]; 5826 Type *Ty = getTypeByID(ResTypeID); 5827 if (!Ty) 5828 return error("Invalid record"); 5829 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 5830 Value *PersFn = nullptr; 5831 unsigned PersFnTypeID; 5832 if (getValueTypePair(Record, Idx, NextValueNo, PersFn, PersFnTypeID, 5833 nullptr)) 5834 return error("Invalid record"); 5835 5836 if (!F->hasPersonalityFn()) 5837 F->setPersonalityFn(cast<Constant>(PersFn)); 5838 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 5839 return error("Personality function mismatch"); 5840 } 5841 5842 bool IsCleanup = !!Record[Idx++]; 5843 unsigned NumClauses = Record[Idx++]; 5844 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 5845 LP->setCleanup(IsCleanup); 5846 for (unsigned J = 0; J != NumClauses; ++J) { 5847 LandingPadInst::ClauseType CT = 5848 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 5849 Value *Val; 5850 unsigned ValTypeID; 5851 5852 if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, 5853 nullptr)) { 5854 delete LP; 5855 return error("Invalid record"); 5856 } 5857 5858 assert((CT != LandingPadInst::Catch || 5859 !isa<ArrayType>(Val->getType())) && 5860 "Catch clause has a invalid type!"); 5861 assert((CT != LandingPadInst::Filter || 5862 isa<ArrayType>(Val->getType())) && 5863 "Filter clause has invalid type!"); 5864 LP->addClause(cast<Constant>(Val)); 5865 } 5866 5867 I = LP; 5868 InstructionList.push_back(I); 5869 break; 5870 } 5871 5872 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 5873 if (Record.size() != 4 && Record.size() != 5) 5874 return error("Invalid record"); 5875 using APV = AllocaPackedValues; 5876 const uint64_t Rec = Record[3]; 5877 const bool InAlloca = Bitfield::get<APV::UsedWithInAlloca>(Rec); 5878 const bool SwiftError = Bitfield::get<APV::SwiftError>(Rec); 5879 unsigned TyID = Record[0]; 5880 Type *Ty = getTypeByID(TyID); 5881 if (!Bitfield::get<APV::ExplicitType>(Rec)) { 5882 TyID = getContainedTypeID(TyID); 5883 Ty = getTypeByID(TyID); 5884 if (!Ty) 5885 return error("Missing element type for old-style alloca"); 5886 } 5887 unsigned OpTyID = Record[1]; 5888 Type *OpTy = getTypeByID(OpTyID); 5889 Value *Size = getFnValueByID(Record[2], OpTy, OpTyID, CurBB); 5890 MaybeAlign Align; 5891 uint64_t AlignExp = 5892 Bitfield::get<APV::AlignLower>(Rec) | 5893 (Bitfield::get<APV::AlignUpper>(Rec) << APV::AlignLower::Bits); 5894 if (Error Err = parseAlignmentValue(AlignExp, Align)) { 5895 return Err; 5896 } 5897 if (!Ty || !Size) 5898 return error("Invalid record"); 5899 5900 const DataLayout &DL = TheModule->getDataLayout(); 5901 unsigned AS = Record.size() == 5 ? Record[4] : DL.getAllocaAddrSpace(); 5902 5903 SmallPtrSet<Type *, 4> Visited; 5904 if (!Align && !Ty->isSized(&Visited)) 5905 return error("alloca of unsized type"); 5906 if (!Align) 5907 Align = DL.getPrefTypeAlign(Ty); 5908 5909 AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align); 5910 AI->setUsedWithInAlloca(InAlloca); 5911 AI->setSwiftError(SwiftError); 5912 I = AI; 5913 ResTypeID = getVirtualTypeID(AI->getType(), TyID); 5914 InstructionList.push_back(I); 5915 break; 5916 } 5917 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 5918 unsigned OpNum = 0; 5919 Value *Op; 5920 unsigned OpTypeID; 5921 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) || 5922 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 5923 return error("Invalid record"); 5924 5925 if (!isa<PointerType>(Op->getType())) 5926 return error("Load operand is not a pointer type"); 5927 5928 Type *Ty = nullptr; 5929 if (OpNum + 3 == Record.size()) { 5930 ResTypeID = Record[OpNum++]; 5931 Ty = getTypeByID(ResTypeID); 5932 } else { 5933 ResTypeID = getContainedTypeID(OpTypeID); 5934 Ty = getTypeByID(ResTypeID); 5935 if (!Ty) 5936 return error("Missing element type for old-style load"); 5937 } 5938 5939 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 5940 return Err; 5941 5942 MaybeAlign Align; 5943 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 5944 return Err; 5945 SmallPtrSet<Type *, 4> Visited; 5946 if (!Align && !Ty->isSized(&Visited)) 5947 return error("load of unsized type"); 5948 if (!Align) 5949 Align = TheModule->getDataLayout().getABITypeAlign(Ty); 5950 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align); 5951 InstructionList.push_back(I); 5952 break; 5953 } 5954 case bitc::FUNC_CODE_INST_LOADATOMIC: { 5955 // LOADATOMIC: [opty, op, align, vol, ordering, ssid] 5956 unsigned OpNum = 0; 5957 Value *Op; 5958 unsigned OpTypeID; 5959 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) || 5960 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 5961 return error("Invalid record"); 5962 5963 if (!isa<PointerType>(Op->getType())) 5964 return error("Load operand is not a pointer type"); 5965 5966 Type *Ty = nullptr; 5967 if (OpNum + 5 == Record.size()) { 5968 ResTypeID = Record[OpNum++]; 5969 Ty = getTypeByID(ResTypeID); 5970 } else { 5971 ResTypeID = getContainedTypeID(OpTypeID); 5972 Ty = getTypeByID(ResTypeID); 5973 if (!Ty) 5974 return error("Missing element type for old style atomic load"); 5975 } 5976 5977 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 5978 return Err; 5979 5980 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5981 if (Ordering == AtomicOrdering::NotAtomic || 5982 Ordering == AtomicOrdering::Release || 5983 Ordering == AtomicOrdering::AcquireRelease) 5984 return error("Invalid record"); 5985 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 5986 return error("Invalid record"); 5987 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 5988 5989 MaybeAlign Align; 5990 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 5991 return Err; 5992 if (!Align) 5993 return error("Alignment missing from atomic load"); 5994 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID); 5995 InstructionList.push_back(I); 5996 break; 5997 } 5998 case bitc::FUNC_CODE_INST_STORE: 5999 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 6000 unsigned OpNum = 0; 6001 Value *Val, *Ptr; 6002 unsigned PtrTypeID, ValTypeID; 6003 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 6004 return error("Invalid record"); 6005 6006 if (BitCode == bitc::FUNC_CODE_INST_STORE) { 6007 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 6008 return error("Invalid record"); 6009 } else { 6010 ValTypeID = getContainedTypeID(PtrTypeID); 6011 if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID), 6012 ValTypeID, Val, CurBB)) 6013 return error("Invalid record"); 6014 } 6015 6016 if (OpNum + 2 != Record.size()) 6017 return error("Invalid record"); 6018 6019 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 6020 return Err; 6021 MaybeAlign Align; 6022 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 6023 return Err; 6024 SmallPtrSet<Type *, 4> Visited; 6025 if (!Align && !Val->getType()->isSized(&Visited)) 6026 return error("store of unsized type"); 6027 if (!Align) 6028 Align = TheModule->getDataLayout().getABITypeAlign(Val->getType()); 6029 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align); 6030 InstructionList.push_back(I); 6031 break; 6032 } 6033 case bitc::FUNC_CODE_INST_STOREATOMIC: 6034 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 6035 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid] 6036 unsigned OpNum = 0; 6037 Value *Val, *Ptr; 6038 unsigned PtrTypeID, ValTypeID; 6039 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB) || 6040 !isa<PointerType>(Ptr->getType())) 6041 return error("Invalid record"); 6042 if (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC) { 6043 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 6044 return error("Invalid record"); 6045 } else { 6046 ValTypeID = getContainedTypeID(PtrTypeID); 6047 if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID), 6048 ValTypeID, Val, CurBB)) 6049 return error("Invalid record"); 6050 } 6051 6052 if (OpNum + 4 != Record.size()) 6053 return error("Invalid record"); 6054 6055 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 6056 return Err; 6057 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 6058 if (Ordering == AtomicOrdering::NotAtomic || 6059 Ordering == AtomicOrdering::Acquire || 6060 Ordering == AtomicOrdering::AcquireRelease) 6061 return error("Invalid record"); 6062 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 6063 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 6064 return error("Invalid record"); 6065 6066 MaybeAlign Align; 6067 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 6068 return Err; 6069 if (!Align) 6070 return error("Alignment missing from atomic store"); 6071 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID); 6072 InstructionList.push_back(I); 6073 break; 6074 } 6075 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: { 6076 // CMPXCHG_OLD: [ptrty, ptr, cmp, val, vol, ordering, synchscope, 6077 // failure_ordering?, weak?] 6078 const size_t NumRecords = Record.size(); 6079 unsigned OpNum = 0; 6080 Value *Ptr = nullptr; 6081 unsigned PtrTypeID; 6082 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 6083 return error("Invalid record"); 6084 6085 if (!isa<PointerType>(Ptr->getType())) 6086 return error("Cmpxchg operand is not a pointer type"); 6087 6088 Value *Cmp = nullptr; 6089 unsigned CmpTypeID = getContainedTypeID(PtrTypeID); 6090 if (popValue(Record, OpNum, NextValueNo, getTypeByID(CmpTypeID), 6091 CmpTypeID, Cmp, CurBB)) 6092 return error("Invalid record"); 6093 6094 Value *New = nullptr; 6095 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID, 6096 New, CurBB) || 6097 NumRecords < OpNum + 3 || NumRecords > OpNum + 5) 6098 return error("Invalid record"); 6099 6100 const AtomicOrdering SuccessOrdering = 6101 getDecodedOrdering(Record[OpNum + 1]); 6102 if (SuccessOrdering == AtomicOrdering::NotAtomic || 6103 SuccessOrdering == AtomicOrdering::Unordered) 6104 return error("Invalid record"); 6105 6106 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 6107 6108 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 6109 return Err; 6110 6111 const AtomicOrdering FailureOrdering = 6112 NumRecords < 7 6113 ? AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering) 6114 : getDecodedOrdering(Record[OpNum + 3]); 6115 6116 if (FailureOrdering == AtomicOrdering::NotAtomic || 6117 FailureOrdering == AtomicOrdering::Unordered) 6118 return error("Invalid record"); 6119 6120 const Align Alignment( 6121 TheModule->getDataLayout().getTypeStoreSize(Cmp->getType())); 6122 6123 I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering, 6124 FailureOrdering, SSID); 6125 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 6126 6127 if (NumRecords < 8) { 6128 // Before weak cmpxchgs existed, the instruction simply returned the 6129 // value loaded from memory, so bitcode files from that era will be 6130 // expecting the first component of a modern cmpxchg. 6131 I->insertInto(CurBB, CurBB->end()); 6132 I = ExtractValueInst::Create(I, 0); 6133 ResTypeID = CmpTypeID; 6134 } else { 6135 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]); 6136 unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context)); 6137 ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID}); 6138 } 6139 6140 InstructionList.push_back(I); 6141 break; 6142 } 6143 case bitc::FUNC_CODE_INST_CMPXCHG: { 6144 // CMPXCHG: [ptrty, ptr, cmp, val, vol, success_ordering, synchscope, 6145 // failure_ordering, weak, align?] 6146 const size_t NumRecords = Record.size(); 6147 unsigned OpNum = 0; 6148 Value *Ptr = nullptr; 6149 unsigned PtrTypeID; 6150 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 6151 return error("Invalid record"); 6152 6153 if (!isa<PointerType>(Ptr->getType())) 6154 return error("Cmpxchg operand is not a pointer type"); 6155 6156 Value *Cmp = nullptr; 6157 unsigned CmpTypeID; 6158 if (getValueTypePair(Record, OpNum, NextValueNo, Cmp, CmpTypeID, CurBB)) 6159 return error("Invalid record"); 6160 6161 Value *Val = nullptr; 6162 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID, Val, 6163 CurBB)) 6164 return error("Invalid record"); 6165 6166 if (NumRecords < OpNum + 3 || NumRecords > OpNum + 6) 6167 return error("Invalid record"); 6168 6169 const bool IsVol = Record[OpNum]; 6170 6171 const AtomicOrdering SuccessOrdering = 6172 getDecodedOrdering(Record[OpNum + 1]); 6173 if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering)) 6174 return error("Invalid cmpxchg success ordering"); 6175 6176 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 6177 6178 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 6179 return Err; 6180 6181 const AtomicOrdering FailureOrdering = 6182 getDecodedOrdering(Record[OpNum + 3]); 6183 if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering)) 6184 return error("Invalid cmpxchg failure ordering"); 6185 6186 const bool IsWeak = Record[OpNum + 4]; 6187 6188 MaybeAlign Alignment; 6189 6190 if (NumRecords == (OpNum + 6)) { 6191 if (Error Err = parseAlignmentValue(Record[OpNum + 5], Alignment)) 6192 return Err; 6193 } 6194 if (!Alignment) 6195 Alignment = 6196 Align(TheModule->getDataLayout().getTypeStoreSize(Cmp->getType())); 6197 6198 I = new AtomicCmpXchgInst(Ptr, Cmp, Val, *Alignment, SuccessOrdering, 6199 FailureOrdering, SSID); 6200 cast<AtomicCmpXchgInst>(I)->setVolatile(IsVol); 6201 cast<AtomicCmpXchgInst>(I)->setWeak(IsWeak); 6202 6203 unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context)); 6204 ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID}); 6205 6206 InstructionList.push_back(I); 6207 break; 6208 } 6209 case bitc::FUNC_CODE_INST_ATOMICRMW_OLD: 6210 case bitc::FUNC_CODE_INST_ATOMICRMW: { 6211 // ATOMICRMW_OLD: [ptrty, ptr, val, op, vol, ordering, ssid, align?] 6212 // ATOMICRMW: [ptrty, ptr, valty, val, op, vol, ordering, ssid, align?] 6213 const size_t NumRecords = Record.size(); 6214 unsigned OpNum = 0; 6215 6216 Value *Ptr = nullptr; 6217 unsigned PtrTypeID; 6218 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 6219 return error("Invalid record"); 6220 6221 if (!isa<PointerType>(Ptr->getType())) 6222 return error("Invalid record"); 6223 6224 Value *Val = nullptr; 6225 unsigned ValTypeID = InvalidTypeID; 6226 if (BitCode == bitc::FUNC_CODE_INST_ATOMICRMW_OLD) { 6227 ValTypeID = getContainedTypeID(PtrTypeID); 6228 if (popValue(Record, OpNum, NextValueNo, 6229 getTypeByID(ValTypeID), ValTypeID, Val, CurBB)) 6230 return error("Invalid record"); 6231 } else { 6232 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 6233 return error("Invalid record"); 6234 } 6235 6236 if (!(NumRecords == (OpNum + 4) || NumRecords == (OpNum + 5))) 6237 return error("Invalid record"); 6238 6239 const AtomicRMWInst::BinOp Operation = 6240 getDecodedRMWOperation(Record[OpNum]); 6241 if (Operation < AtomicRMWInst::FIRST_BINOP || 6242 Operation > AtomicRMWInst::LAST_BINOP) 6243 return error("Invalid record"); 6244 6245 const bool IsVol = Record[OpNum + 1]; 6246 6247 const AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 6248 if (Ordering == AtomicOrdering::NotAtomic || 6249 Ordering == AtomicOrdering::Unordered) 6250 return error("Invalid record"); 6251 6252 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 6253 6254 MaybeAlign Alignment; 6255 6256 if (NumRecords == (OpNum + 5)) { 6257 if (Error Err = parseAlignmentValue(Record[OpNum + 4], Alignment)) 6258 return Err; 6259 } 6260 6261 if (!Alignment) 6262 Alignment = 6263 Align(TheModule->getDataLayout().getTypeStoreSize(Val->getType())); 6264 6265 I = new AtomicRMWInst(Operation, Ptr, Val, *Alignment, Ordering, SSID); 6266 ResTypeID = ValTypeID; 6267 cast<AtomicRMWInst>(I)->setVolatile(IsVol); 6268 6269 InstructionList.push_back(I); 6270 break; 6271 } 6272 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid] 6273 if (2 != Record.size()) 6274 return error("Invalid record"); 6275 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 6276 if (Ordering == AtomicOrdering::NotAtomic || 6277 Ordering == AtomicOrdering::Unordered || 6278 Ordering == AtomicOrdering::Monotonic) 6279 return error("Invalid record"); 6280 SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]); 6281 I = new FenceInst(Context, Ordering, SSID); 6282 InstructionList.push_back(I); 6283 break; 6284 } 6285 case bitc::FUNC_CODE_INST_CALL: { 6286 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 6287 if (Record.size() < 3) 6288 return error("Invalid record"); 6289 6290 unsigned OpNum = 0; 6291 AttributeList PAL = getAttributes(Record[OpNum++]); 6292 unsigned CCInfo = Record[OpNum++]; 6293 6294 FastMathFlags FMF; 6295 if ((CCInfo >> bitc::CALL_FMF) & 1) { 6296 FMF = getDecodedFastMathFlags(Record[OpNum++]); 6297 if (!FMF.any()) 6298 return error("Fast math flags indicator set for call with no FMF"); 6299 } 6300 6301 unsigned FTyID = InvalidTypeID; 6302 FunctionType *FTy = nullptr; 6303 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 6304 FTyID = Record[OpNum++]; 6305 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 6306 if (!FTy) 6307 return error("Explicit call type is not a function type"); 6308 } 6309 6310 Value *Callee; 6311 unsigned CalleeTypeID; 6312 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID, 6313 CurBB)) 6314 return error("Invalid record"); 6315 6316 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 6317 if (!OpTy) 6318 return error("Callee is not a pointer type"); 6319 if (!FTy) { 6320 FTyID = getContainedTypeID(CalleeTypeID); 6321 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 6322 if (!FTy) 6323 return error("Callee is not of pointer to function type"); 6324 } 6325 if (Record.size() < FTy->getNumParams() + OpNum) 6326 return error("Insufficient operands to call"); 6327 6328 SmallVector<Value*, 16> Args; 6329 SmallVector<unsigned, 16> ArgTyIDs; 6330 // Read the fixed params. 6331 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 6332 unsigned ArgTyID = getContainedTypeID(FTyID, i + 1); 6333 if (FTy->getParamType(i)->isLabelTy()) 6334 Args.push_back(getBasicBlock(Record[OpNum])); 6335 else 6336 Args.push_back(getValue(Record, OpNum, NextValueNo, 6337 FTy->getParamType(i), ArgTyID, CurBB)); 6338 ArgTyIDs.push_back(ArgTyID); 6339 if (!Args.back()) 6340 return error("Invalid record"); 6341 } 6342 6343 // Read type/value pairs for varargs params. 6344 if (!FTy->isVarArg()) { 6345 if (OpNum != Record.size()) 6346 return error("Invalid record"); 6347 } else { 6348 while (OpNum != Record.size()) { 6349 Value *Op; 6350 unsigned OpTypeID; 6351 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 6352 return error("Invalid record"); 6353 Args.push_back(Op); 6354 ArgTyIDs.push_back(OpTypeID); 6355 } 6356 } 6357 6358 // Upgrade the bundles if needed. 6359 if (!OperandBundles.empty()) 6360 UpgradeOperandBundles(OperandBundles); 6361 6362 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 6363 ResTypeID = getContainedTypeID(FTyID); 6364 OperandBundles.clear(); 6365 InstructionList.push_back(I); 6366 cast<CallInst>(I)->setCallingConv( 6367 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 6368 CallInst::TailCallKind TCK = CallInst::TCK_None; 6369 if (CCInfo & (1 << bitc::CALL_TAIL)) 6370 TCK = CallInst::TCK_Tail; 6371 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 6372 TCK = CallInst::TCK_MustTail; 6373 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 6374 TCK = CallInst::TCK_NoTail; 6375 cast<CallInst>(I)->setTailCallKind(TCK); 6376 cast<CallInst>(I)->setAttributes(PAL); 6377 if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) { 6378 I->deleteValue(); 6379 return Err; 6380 } 6381 if (FMF.any()) { 6382 if (!isa<FPMathOperator>(I)) 6383 return error("Fast-math-flags specified for call without " 6384 "floating-point scalar or vector return type"); 6385 I->setFastMathFlags(FMF); 6386 } 6387 break; 6388 } 6389 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 6390 if (Record.size() < 3) 6391 return error("Invalid record"); 6392 unsigned OpTyID = Record[0]; 6393 Type *OpTy = getTypeByID(OpTyID); 6394 Value *Op = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB); 6395 ResTypeID = Record[2]; 6396 Type *ResTy = getTypeByID(ResTypeID); 6397 if (!OpTy || !Op || !ResTy) 6398 return error("Invalid record"); 6399 I = new VAArgInst(Op, ResTy); 6400 InstructionList.push_back(I); 6401 break; 6402 } 6403 6404 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 6405 // A call or an invoke can be optionally prefixed with some variable 6406 // number of operand bundle blocks. These blocks are read into 6407 // OperandBundles and consumed at the next call or invoke instruction. 6408 6409 if (Record.empty() || Record[0] >= BundleTags.size()) 6410 return error("Invalid record"); 6411 6412 std::vector<Value *> Inputs; 6413 6414 unsigned OpNum = 1; 6415 while (OpNum != Record.size()) { 6416 Value *Op; 6417 unsigned OpTypeID; 6418 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 6419 return error("Invalid record"); 6420 Inputs.push_back(Op); 6421 } 6422 6423 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 6424 continue; 6425 } 6426 6427 case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval] 6428 unsigned OpNum = 0; 6429 Value *Op = nullptr; 6430 unsigned OpTypeID; 6431 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 6432 return error("Invalid record"); 6433 if (OpNum != Record.size()) 6434 return error("Invalid record"); 6435 6436 I = new FreezeInst(Op); 6437 ResTypeID = OpTypeID; 6438 InstructionList.push_back(I); 6439 break; 6440 } 6441 } 6442 6443 // Add instruction to end of current BB. If there is no current BB, reject 6444 // this file. 6445 if (!CurBB) { 6446 I->deleteValue(); 6447 return error("Invalid instruction with no BB"); 6448 } 6449 if (!OperandBundles.empty()) { 6450 I->deleteValue(); 6451 return error("Operand bundles found with no consumer"); 6452 } 6453 I->insertInto(CurBB, CurBB->end()); 6454 6455 // If this was a terminator instruction, move to the next block. 6456 if (I->isTerminator()) { 6457 ++CurBBNo; 6458 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 6459 } 6460 6461 // Non-void values get registered in the value table for future use. 6462 if (!I->getType()->isVoidTy()) { 6463 assert(I->getType() == getTypeByID(ResTypeID) && 6464 "Incorrect result type ID"); 6465 if (Error Err = ValueList.assignValue(NextValueNo++, I, ResTypeID)) 6466 return Err; 6467 } 6468 } 6469 6470 OutOfRecordLoop: 6471 6472 if (!OperandBundles.empty()) 6473 return error("Operand bundles found with no consumer"); 6474 6475 // Check the function list for unresolved values. 6476 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 6477 if (!A->getParent()) { 6478 // We found at least one unresolved value. Nuke them all to avoid leaks. 6479 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 6480 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 6481 A->replaceAllUsesWith(PoisonValue::get(A->getType())); 6482 delete A; 6483 } 6484 } 6485 return error("Never resolved value found in function"); 6486 } 6487 } 6488 6489 // Unexpected unresolved metadata about to be dropped. 6490 if (MDLoader->hasFwdRefs()) 6491 return error("Invalid function metadata: outgoing forward refs"); 6492 6493 if (PhiConstExprBB) 6494 PhiConstExprBB->eraseFromParent(); 6495 6496 for (const auto &Pair : ConstExprEdgeBBs) { 6497 BasicBlock *From = Pair.first.first; 6498 BasicBlock *To = Pair.first.second; 6499 BasicBlock *EdgeBB = Pair.second; 6500 BranchInst::Create(To, EdgeBB); 6501 From->getTerminator()->replaceSuccessorWith(To, EdgeBB); 6502 To->replacePhiUsesWith(From, EdgeBB); 6503 EdgeBB->moveBefore(To); 6504 } 6505 6506 // Trim the value list down to the size it was before we parsed this function. 6507 ValueList.shrinkTo(ModuleValueListSize); 6508 MDLoader->shrinkTo(ModuleMDLoaderSize); 6509 std::vector<BasicBlock*>().swap(FunctionBBs); 6510 return Error::success(); 6511 } 6512 6513 /// Find the function body in the bitcode stream 6514 Error BitcodeReader::findFunctionInStream( 6515 Function *F, 6516 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 6517 while (DeferredFunctionInfoIterator->second == 0) { 6518 // This is the fallback handling for the old format bitcode that 6519 // didn't contain the function index in the VST, or when we have 6520 // an anonymous function which would not have a VST entry. 6521 // Assert that we have one of those two cases. 6522 assert(VSTOffset == 0 || !F->hasName()); 6523 // Parse the next body in the stream and set its position in the 6524 // DeferredFunctionInfo map. 6525 if (Error Err = rememberAndSkipFunctionBodies()) 6526 return Err; 6527 } 6528 return Error::success(); 6529 } 6530 6531 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) { 6532 if (Val == SyncScope::SingleThread || Val == SyncScope::System) 6533 return SyncScope::ID(Val); 6534 if (Val >= SSIDs.size()) 6535 return SyncScope::System; // Map unknown synchronization scopes to system. 6536 return SSIDs[Val]; 6537 } 6538 6539 //===----------------------------------------------------------------------===// 6540 // GVMaterializer implementation 6541 //===----------------------------------------------------------------------===// 6542 6543 Error BitcodeReader::materialize(GlobalValue *GV) { 6544 Function *F = dyn_cast<Function>(GV); 6545 // If it's not a function or is already material, ignore the request. 6546 if (!F || !F->isMaterializable()) 6547 return Error::success(); 6548 6549 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 6550 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 6551 // If its position is recorded as 0, its body is somewhere in the stream 6552 // but we haven't seen it yet. 6553 if (DFII->second == 0) 6554 if (Error Err = findFunctionInStream(F, DFII)) 6555 return Err; 6556 6557 // Materialize metadata before parsing any function bodies. 6558 if (Error Err = materializeMetadata()) 6559 return Err; 6560 6561 // Move the bit stream to the saved position of the deferred function body. 6562 if (Error JumpFailed = Stream.JumpToBit(DFII->second)) 6563 return JumpFailed; 6564 if (Error Err = parseFunctionBody(F)) 6565 return Err; 6566 F->setIsMaterializable(false); 6567 6568 if (StripDebugInfo) 6569 stripDebugInfo(*F); 6570 6571 // Upgrade any old intrinsic calls in the function. 6572 for (auto &I : UpgradedIntrinsics) { 6573 for (User *U : llvm::make_early_inc_range(I.first->materialized_users())) 6574 if (CallInst *CI = dyn_cast<CallInst>(U)) 6575 UpgradeIntrinsicCall(CI, I.second); 6576 } 6577 6578 // Finish fn->subprogram upgrade for materialized functions. 6579 if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F)) 6580 F->setSubprogram(SP); 6581 6582 // Check if the TBAA Metadata are valid, otherwise we will need to strip them. 6583 if (!MDLoader->isStrippingTBAA()) { 6584 for (auto &I : instructions(F)) { 6585 MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa); 6586 if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA)) 6587 continue; 6588 MDLoader->setStripTBAA(true); 6589 stripTBAA(F->getParent()); 6590 } 6591 } 6592 6593 for (auto &I : instructions(F)) { 6594 // "Upgrade" older incorrect branch weights by dropping them. 6595 if (auto *MD = I.getMetadata(LLVMContext::MD_prof)) { 6596 if (MD->getOperand(0) != nullptr && isa<MDString>(MD->getOperand(0))) { 6597 MDString *MDS = cast<MDString>(MD->getOperand(0)); 6598 StringRef ProfName = MDS->getString(); 6599 // Check consistency of !prof branch_weights metadata. 6600 if (!ProfName.equals("branch_weights")) 6601 continue; 6602 unsigned ExpectedNumOperands = 0; 6603 if (BranchInst *BI = dyn_cast<BranchInst>(&I)) 6604 ExpectedNumOperands = BI->getNumSuccessors(); 6605 else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I)) 6606 ExpectedNumOperands = SI->getNumSuccessors(); 6607 else if (isa<CallInst>(&I)) 6608 ExpectedNumOperands = 1; 6609 else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I)) 6610 ExpectedNumOperands = IBI->getNumDestinations(); 6611 else if (isa<SelectInst>(&I)) 6612 ExpectedNumOperands = 2; 6613 else 6614 continue; // ignore and continue. 6615 6616 // If branch weight doesn't match, just strip branch weight. 6617 if (MD->getNumOperands() != 1 + ExpectedNumOperands) 6618 I.setMetadata(LLVMContext::MD_prof, nullptr); 6619 } 6620 } 6621 6622 // Remove incompatible attributes on function calls. 6623 if (auto *CI = dyn_cast<CallBase>(&I)) { 6624 CI->removeRetAttrs(AttributeFuncs::typeIncompatible( 6625 CI->getFunctionType()->getReturnType())); 6626 6627 for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ++ArgNo) 6628 CI->removeParamAttrs(ArgNo, AttributeFuncs::typeIncompatible( 6629 CI->getArgOperand(ArgNo)->getType())); 6630 } 6631 } 6632 6633 // Look for functions that rely on old function attribute behavior. 6634 UpgradeFunctionAttributes(*F); 6635 6636 // Bring in any functions that this function forward-referenced via 6637 // blockaddresses. 6638 return materializeForwardReferencedFunctions(); 6639 } 6640 6641 Error BitcodeReader::materializeModule() { 6642 if (Error Err = materializeMetadata()) 6643 return Err; 6644 6645 // Promise to materialize all forward references. 6646 WillMaterializeAllForwardRefs = true; 6647 6648 // Iterate over the module, deserializing any functions that are still on 6649 // disk. 6650 for (Function &F : *TheModule) { 6651 if (Error Err = materialize(&F)) 6652 return Err; 6653 } 6654 // At this point, if there are any function bodies, parse the rest of 6655 // the bits in the module past the last function block we have recorded 6656 // through either lazy scanning or the VST. 6657 if (LastFunctionBlockBit || NextUnreadBit) 6658 if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit 6659 ? LastFunctionBlockBit 6660 : NextUnreadBit)) 6661 return Err; 6662 6663 // Check that all block address forward references got resolved (as we 6664 // promised above). 6665 if (!BasicBlockFwdRefs.empty()) 6666 return error("Never resolved function from blockaddress"); 6667 6668 // Upgrade any intrinsic calls that slipped through (should not happen!) and 6669 // delete the old functions to clean up. We can't do this unless the entire 6670 // module is materialized because there could always be another function body 6671 // with calls to the old function. 6672 for (auto &I : UpgradedIntrinsics) { 6673 for (auto *U : I.first->users()) { 6674 if (CallInst *CI = dyn_cast<CallInst>(U)) 6675 UpgradeIntrinsicCall(CI, I.second); 6676 } 6677 if (!I.first->use_empty()) 6678 I.first->replaceAllUsesWith(I.second); 6679 I.first->eraseFromParent(); 6680 } 6681 UpgradedIntrinsics.clear(); 6682 6683 UpgradeDebugInfo(*TheModule); 6684 6685 UpgradeModuleFlags(*TheModule); 6686 6687 UpgradeARCRuntime(*TheModule); 6688 6689 return Error::success(); 6690 } 6691 6692 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 6693 return IdentifiedStructTypes; 6694 } 6695 6696 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 6697 BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex, 6698 StringRef ModulePath, std::function<bool(GlobalValue::GUID)> IsPrevailing) 6699 : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex), 6700 ModulePath(ModulePath), IsPrevailing(IsPrevailing) {} 6701 6702 void ModuleSummaryIndexBitcodeReader::addThisModule() { 6703 TheIndex.addModule(ModulePath); 6704 } 6705 6706 ModuleSummaryIndex::ModuleInfo * 6707 ModuleSummaryIndexBitcodeReader::getThisModule() { 6708 return TheIndex.getModule(ModulePath); 6709 } 6710 6711 template <bool AllowNullValueInfo> 6712 std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID> 6713 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) { 6714 auto VGI = ValueIdToValueInfoMap[ValueId]; 6715 // We can have a null value info for memprof callsite info records in 6716 // distributed ThinLTO index files when the callee function summary is not 6717 // included in the index. The bitcode writer records 0 in that case, 6718 // and the caller of this helper will set AllowNullValueInfo to true. 6719 assert(AllowNullValueInfo || std::get<0>(VGI)); 6720 return VGI; 6721 } 6722 6723 void ModuleSummaryIndexBitcodeReader::setValueGUID( 6724 uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage, 6725 StringRef SourceFileName) { 6726 std::string GlobalId = 6727 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 6728 auto ValueGUID = GlobalValue::getGUID(GlobalId); 6729 auto OriginalNameID = ValueGUID; 6730 if (GlobalValue::isLocalLinkage(Linkage)) 6731 OriginalNameID = GlobalValue::getGUID(ValueName); 6732 if (PrintSummaryGUIDs) 6733 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 6734 << ValueName << "\n"; 6735 6736 // UseStrtab is false for legacy summary formats and value names are 6737 // created on stack. In that case we save the name in a string saver in 6738 // the index so that the value name can be recorded. 6739 ValueIdToValueInfoMap[ValueID] = std::make_tuple( 6740 TheIndex.getOrInsertValueInfo( 6741 ValueGUID, UseStrtab ? ValueName : TheIndex.saveString(ValueName)), 6742 OriginalNameID, ValueGUID); 6743 } 6744 6745 // Specialized value symbol table parser used when reading module index 6746 // blocks where we don't actually create global values. The parsed information 6747 // is saved in the bitcode reader for use when later parsing summaries. 6748 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 6749 uint64_t Offset, 6750 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 6751 // With a strtab the VST is not required to parse the summary. 6752 if (UseStrtab) 6753 return Error::success(); 6754 6755 assert(Offset > 0 && "Expected non-zero VST offset"); 6756 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 6757 if (!MaybeCurrentBit) 6758 return MaybeCurrentBit.takeError(); 6759 uint64_t CurrentBit = MaybeCurrentBit.get(); 6760 6761 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 6762 return Err; 6763 6764 SmallVector<uint64_t, 64> Record; 6765 6766 // Read all the records for this value table. 6767 SmallString<128> ValueName; 6768 6769 while (true) { 6770 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6771 if (!MaybeEntry) 6772 return MaybeEntry.takeError(); 6773 BitstreamEntry Entry = MaybeEntry.get(); 6774 6775 switch (Entry.Kind) { 6776 case BitstreamEntry::SubBlock: // Handled for us already. 6777 case BitstreamEntry::Error: 6778 return error("Malformed block"); 6779 case BitstreamEntry::EndBlock: 6780 // Done parsing VST, jump back to wherever we came from. 6781 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 6782 return JumpFailed; 6783 return Error::success(); 6784 case BitstreamEntry::Record: 6785 // The interesting case. 6786 break; 6787 } 6788 6789 // Read a record. 6790 Record.clear(); 6791 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 6792 if (!MaybeRecord) 6793 return MaybeRecord.takeError(); 6794 switch (MaybeRecord.get()) { 6795 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 6796 break; 6797 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 6798 if (convertToString(Record, 1, ValueName)) 6799 return error("Invalid record"); 6800 unsigned ValueID = Record[0]; 6801 assert(!SourceFileName.empty()); 6802 auto VLI = ValueIdToLinkageMap.find(ValueID); 6803 assert(VLI != ValueIdToLinkageMap.end() && 6804 "No linkage found for VST entry?"); 6805 auto Linkage = VLI->second; 6806 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 6807 ValueName.clear(); 6808 break; 6809 } 6810 case bitc::VST_CODE_FNENTRY: { 6811 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 6812 if (convertToString(Record, 2, ValueName)) 6813 return error("Invalid record"); 6814 unsigned ValueID = Record[0]; 6815 assert(!SourceFileName.empty()); 6816 auto VLI = ValueIdToLinkageMap.find(ValueID); 6817 assert(VLI != ValueIdToLinkageMap.end() && 6818 "No linkage found for VST entry?"); 6819 auto Linkage = VLI->second; 6820 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 6821 ValueName.clear(); 6822 break; 6823 } 6824 case bitc::VST_CODE_COMBINED_ENTRY: { 6825 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 6826 unsigned ValueID = Record[0]; 6827 GlobalValue::GUID RefGUID = Record[1]; 6828 // The "original name", which is the second value of the pair will be 6829 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 6830 ValueIdToValueInfoMap[ValueID] = std::make_tuple( 6831 TheIndex.getOrInsertValueInfo(RefGUID), RefGUID, RefGUID); 6832 break; 6833 } 6834 } 6835 } 6836 } 6837 6838 // Parse just the blocks needed for building the index out of the module. 6839 // At the end of this routine the module Index is populated with a map 6840 // from global value id to GlobalValueSummary objects. 6841 Error ModuleSummaryIndexBitcodeReader::parseModule() { 6842 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 6843 return Err; 6844 6845 SmallVector<uint64_t, 64> Record; 6846 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 6847 unsigned ValueId = 0; 6848 6849 // Read the index for this module. 6850 while (true) { 6851 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6852 if (!MaybeEntry) 6853 return MaybeEntry.takeError(); 6854 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6855 6856 switch (Entry.Kind) { 6857 case BitstreamEntry::Error: 6858 return error("Malformed block"); 6859 case BitstreamEntry::EndBlock: 6860 return Error::success(); 6861 6862 case BitstreamEntry::SubBlock: 6863 switch (Entry.ID) { 6864 default: // Skip unknown content. 6865 if (Error Err = Stream.SkipBlock()) 6866 return Err; 6867 break; 6868 case bitc::BLOCKINFO_BLOCK_ID: 6869 // Need to parse these to get abbrev ids (e.g. for VST) 6870 if (Error Err = readBlockInfo()) 6871 return Err; 6872 break; 6873 case bitc::VALUE_SYMTAB_BLOCK_ID: 6874 // Should have been parsed earlier via VSTOffset, unless there 6875 // is no summary section. 6876 assert(((SeenValueSymbolTable && VSTOffset > 0) || 6877 !SeenGlobalValSummary) && 6878 "Expected early VST parse via VSTOffset record"); 6879 if (Error Err = Stream.SkipBlock()) 6880 return Err; 6881 break; 6882 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 6883 case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID: 6884 // Add the module if it is a per-module index (has a source file name). 6885 if (!SourceFileName.empty()) 6886 addThisModule(); 6887 assert(!SeenValueSymbolTable && 6888 "Already read VST when parsing summary block?"); 6889 // We might not have a VST if there were no values in the 6890 // summary. An empty summary block generated when we are 6891 // performing ThinLTO compiles so we don't later invoke 6892 // the regular LTO process on them. 6893 if (VSTOffset > 0) { 6894 if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 6895 return Err; 6896 SeenValueSymbolTable = true; 6897 } 6898 SeenGlobalValSummary = true; 6899 if (Error Err = parseEntireSummary(Entry.ID)) 6900 return Err; 6901 break; 6902 case bitc::MODULE_STRTAB_BLOCK_ID: 6903 if (Error Err = parseModuleStringTable()) 6904 return Err; 6905 break; 6906 } 6907 continue; 6908 6909 case BitstreamEntry::Record: { 6910 Record.clear(); 6911 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 6912 if (!MaybeBitCode) 6913 return MaybeBitCode.takeError(); 6914 switch (MaybeBitCode.get()) { 6915 default: 6916 break; // Default behavior, ignore unknown content. 6917 case bitc::MODULE_CODE_VERSION: { 6918 if (Error Err = parseVersionRecord(Record).takeError()) 6919 return Err; 6920 break; 6921 } 6922 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 6923 case bitc::MODULE_CODE_SOURCE_FILENAME: { 6924 SmallString<128> ValueName; 6925 if (convertToString(Record, 0, ValueName)) 6926 return error("Invalid record"); 6927 SourceFileName = ValueName.c_str(); 6928 break; 6929 } 6930 /// MODULE_CODE_HASH: [5*i32] 6931 case bitc::MODULE_CODE_HASH: { 6932 if (Record.size() != 5) 6933 return error("Invalid hash length " + Twine(Record.size()).str()); 6934 auto &Hash = getThisModule()->second; 6935 int Pos = 0; 6936 for (auto &Val : Record) { 6937 assert(!(Val >> 32) && "Unexpected high bits set"); 6938 Hash[Pos++] = Val; 6939 } 6940 break; 6941 } 6942 /// MODULE_CODE_VSTOFFSET: [offset] 6943 case bitc::MODULE_CODE_VSTOFFSET: 6944 if (Record.empty()) 6945 return error("Invalid record"); 6946 // Note that we subtract 1 here because the offset is relative to one 6947 // word before the start of the identification or module block, which 6948 // was historically always the start of the regular bitcode header. 6949 VSTOffset = Record[0] - 1; 6950 break; 6951 // v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...] 6952 // v1 FUNCTION: [type, callingconv, isproto, linkage, ...] 6953 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...] 6954 // v2: [strtab offset, strtab size, v1] 6955 case bitc::MODULE_CODE_GLOBALVAR: 6956 case bitc::MODULE_CODE_FUNCTION: 6957 case bitc::MODULE_CODE_ALIAS: { 6958 StringRef Name; 6959 ArrayRef<uint64_t> GVRecord; 6960 std::tie(Name, GVRecord) = readNameFromStrtab(Record); 6961 if (GVRecord.size() <= 3) 6962 return error("Invalid record"); 6963 uint64_t RawLinkage = GVRecord[3]; 6964 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 6965 if (!UseStrtab) { 6966 ValueIdToLinkageMap[ValueId++] = Linkage; 6967 break; 6968 } 6969 6970 setValueGUID(ValueId++, Name, Linkage, SourceFileName); 6971 break; 6972 } 6973 } 6974 } 6975 continue; 6976 } 6977 } 6978 } 6979 6980 std::vector<ValueInfo> 6981 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) { 6982 std::vector<ValueInfo> Ret; 6983 Ret.reserve(Record.size()); 6984 for (uint64_t RefValueId : Record) 6985 Ret.push_back(std::get<0>(getValueInfoFromValueId(RefValueId))); 6986 return Ret; 6987 } 6988 6989 std::vector<FunctionSummary::EdgeTy> 6990 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record, 6991 bool IsOldProfileFormat, 6992 bool HasProfile, bool HasRelBF) { 6993 std::vector<FunctionSummary::EdgeTy> Ret; 6994 Ret.reserve(Record.size()); 6995 for (unsigned I = 0, E = Record.size(); I != E; ++I) { 6996 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 6997 uint64_t RelBF = 0; 6998 ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[I])); 6999 if (IsOldProfileFormat) { 7000 I += 1; // Skip old callsitecount field 7001 if (HasProfile) 7002 I += 1; // Skip old profilecount field 7003 } else if (HasProfile) 7004 Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]); 7005 else if (HasRelBF) 7006 RelBF = Record[++I]; 7007 Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)}); 7008 } 7009 return Ret; 7010 } 7011 7012 static void 7013 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot, 7014 WholeProgramDevirtResolution &Wpd) { 7015 uint64_t ArgNum = Record[Slot++]; 7016 WholeProgramDevirtResolution::ByArg &B = 7017 Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}]; 7018 Slot += ArgNum; 7019 7020 B.TheKind = 7021 static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]); 7022 B.Info = Record[Slot++]; 7023 B.Byte = Record[Slot++]; 7024 B.Bit = Record[Slot++]; 7025 } 7026 7027 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record, 7028 StringRef Strtab, size_t &Slot, 7029 TypeIdSummary &TypeId) { 7030 uint64_t Id = Record[Slot++]; 7031 WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id]; 7032 7033 Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]); 7034 Wpd.SingleImplName = {Strtab.data() + Record[Slot], 7035 static_cast<size_t>(Record[Slot + 1])}; 7036 Slot += 2; 7037 7038 uint64_t ResByArgNum = Record[Slot++]; 7039 for (uint64_t I = 0; I != ResByArgNum; ++I) 7040 parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd); 7041 } 7042 7043 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record, 7044 StringRef Strtab, 7045 ModuleSummaryIndex &TheIndex) { 7046 size_t Slot = 0; 7047 TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary( 7048 {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])}); 7049 Slot += 2; 7050 7051 TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]); 7052 TypeId.TTRes.SizeM1BitWidth = Record[Slot++]; 7053 TypeId.TTRes.AlignLog2 = Record[Slot++]; 7054 TypeId.TTRes.SizeM1 = Record[Slot++]; 7055 TypeId.TTRes.BitMask = Record[Slot++]; 7056 TypeId.TTRes.InlineBits = Record[Slot++]; 7057 7058 while (Slot < Record.size()) 7059 parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId); 7060 } 7061 7062 std::vector<FunctionSummary::ParamAccess> 7063 ModuleSummaryIndexBitcodeReader::parseParamAccesses(ArrayRef<uint64_t> Record) { 7064 auto ReadRange = [&]() { 7065 APInt Lower(FunctionSummary::ParamAccess::RangeWidth, 7066 BitcodeReader::decodeSignRotatedValue(Record.front())); 7067 Record = Record.drop_front(); 7068 APInt Upper(FunctionSummary::ParamAccess::RangeWidth, 7069 BitcodeReader::decodeSignRotatedValue(Record.front())); 7070 Record = Record.drop_front(); 7071 ConstantRange Range{Lower, Upper}; 7072 assert(!Range.isFullSet()); 7073 assert(!Range.isUpperSignWrapped()); 7074 return Range; 7075 }; 7076 7077 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; 7078 while (!Record.empty()) { 7079 PendingParamAccesses.emplace_back(); 7080 FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back(); 7081 ParamAccess.ParamNo = Record.front(); 7082 Record = Record.drop_front(); 7083 ParamAccess.Use = ReadRange(); 7084 ParamAccess.Calls.resize(Record.front()); 7085 Record = Record.drop_front(); 7086 for (auto &Call : ParamAccess.Calls) { 7087 Call.ParamNo = Record.front(); 7088 Record = Record.drop_front(); 7089 Call.Callee = std::get<0>(getValueInfoFromValueId(Record.front())); 7090 Record = Record.drop_front(); 7091 Call.Offsets = ReadRange(); 7092 } 7093 } 7094 return PendingParamAccesses; 7095 } 7096 7097 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo( 7098 ArrayRef<uint64_t> Record, size_t &Slot, 7099 TypeIdCompatibleVtableInfo &TypeId) { 7100 uint64_t Offset = Record[Slot++]; 7101 ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[Slot++])); 7102 TypeId.push_back({Offset, Callee}); 7103 } 7104 7105 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord( 7106 ArrayRef<uint64_t> Record) { 7107 size_t Slot = 0; 7108 TypeIdCompatibleVtableInfo &TypeId = 7109 TheIndex.getOrInsertTypeIdCompatibleVtableSummary( 7110 {Strtab.data() + Record[Slot], 7111 static_cast<size_t>(Record[Slot + 1])}); 7112 Slot += 2; 7113 7114 while (Slot < Record.size()) 7115 parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId); 7116 } 7117 7118 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt, 7119 unsigned WOCnt) { 7120 // Readonly and writeonly refs are in the end of the refs list. 7121 assert(ROCnt + WOCnt <= Refs.size()); 7122 unsigned FirstWORef = Refs.size() - WOCnt; 7123 unsigned RefNo = FirstWORef - ROCnt; 7124 for (; RefNo < FirstWORef; ++RefNo) 7125 Refs[RefNo].setReadOnly(); 7126 for (; RefNo < Refs.size(); ++RefNo) 7127 Refs[RefNo].setWriteOnly(); 7128 } 7129 7130 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 7131 // objects in the index. 7132 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) { 7133 if (Error Err = Stream.EnterSubBlock(ID)) 7134 return Err; 7135 SmallVector<uint64_t, 64> Record; 7136 7137 // Parse version 7138 { 7139 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 7140 if (!MaybeEntry) 7141 return MaybeEntry.takeError(); 7142 BitstreamEntry Entry = MaybeEntry.get(); 7143 7144 if (Entry.Kind != BitstreamEntry::Record) 7145 return error("Invalid Summary Block: record for version expected"); 7146 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 7147 if (!MaybeRecord) 7148 return MaybeRecord.takeError(); 7149 if (MaybeRecord.get() != bitc::FS_VERSION) 7150 return error("Invalid Summary Block: version expected"); 7151 } 7152 const uint64_t Version = Record[0]; 7153 const bool IsOldProfileFormat = Version == 1; 7154 if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion) 7155 return error("Invalid summary version " + Twine(Version) + 7156 ". Version should be in the range [1-" + 7157 Twine(ModuleSummaryIndex::BitcodeSummaryVersion) + 7158 "]."); 7159 Record.clear(); 7160 7161 // Keep around the last seen summary to be used when we see an optional 7162 // "OriginalName" attachement. 7163 GlobalValueSummary *LastSeenSummary = nullptr; 7164 GlobalValue::GUID LastSeenGUID = 0; 7165 7166 // We can expect to see any number of type ID information records before 7167 // each function summary records; these variables store the information 7168 // collected so far so that it can be used to create the summary object. 7169 std::vector<GlobalValue::GUID> PendingTypeTests; 7170 std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls, 7171 PendingTypeCheckedLoadVCalls; 7172 std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls, 7173 PendingTypeCheckedLoadConstVCalls; 7174 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; 7175 7176 std::vector<CallsiteInfo> PendingCallsites; 7177 std::vector<AllocInfo> PendingAllocs; 7178 7179 while (true) { 7180 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 7181 if (!MaybeEntry) 7182 return MaybeEntry.takeError(); 7183 BitstreamEntry Entry = MaybeEntry.get(); 7184 7185 switch (Entry.Kind) { 7186 case BitstreamEntry::SubBlock: // Handled for us already. 7187 case BitstreamEntry::Error: 7188 return error("Malformed block"); 7189 case BitstreamEntry::EndBlock: 7190 return Error::success(); 7191 case BitstreamEntry::Record: 7192 // The interesting case. 7193 break; 7194 } 7195 7196 // Read a record. The record format depends on whether this 7197 // is a per-module index or a combined index file. In the per-module 7198 // case the records contain the associated value's ID for correlation 7199 // with VST entries. In the combined index the correlation is done 7200 // via the bitcode offset of the summary records (which were saved 7201 // in the combined index VST entries). The records also contain 7202 // information used for ThinLTO renaming and importing. 7203 Record.clear(); 7204 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 7205 if (!MaybeBitCode) 7206 return MaybeBitCode.takeError(); 7207 switch (unsigned BitCode = MaybeBitCode.get()) { 7208 default: // Default behavior: ignore. 7209 break; 7210 case bitc::FS_FLAGS: { // [flags] 7211 TheIndex.setFlags(Record[0]); 7212 break; 7213 } 7214 case bitc::FS_VALUE_GUID: { // [valueid, refguid] 7215 uint64_t ValueID = Record[0]; 7216 GlobalValue::GUID RefGUID = Record[1]; 7217 ValueIdToValueInfoMap[ValueID] = std::make_tuple( 7218 TheIndex.getOrInsertValueInfo(RefGUID), RefGUID, RefGUID); 7219 break; 7220 } 7221 // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs, 7222 // numrefs x valueid, n x (valueid)] 7223 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs, 7224 // numrefs x valueid, 7225 // n x (valueid, hotness)] 7226 // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs, 7227 // numrefs x valueid, 7228 // n x (valueid, relblockfreq)] 7229 case bitc::FS_PERMODULE: 7230 case bitc::FS_PERMODULE_RELBF: 7231 case bitc::FS_PERMODULE_PROFILE: { 7232 unsigned ValueID = Record[0]; 7233 uint64_t RawFlags = Record[1]; 7234 unsigned InstCount = Record[2]; 7235 uint64_t RawFunFlags = 0; 7236 unsigned NumRefs = Record[3]; 7237 unsigned NumRORefs = 0, NumWORefs = 0; 7238 int RefListStartIndex = 4; 7239 if (Version >= 4) { 7240 RawFunFlags = Record[3]; 7241 NumRefs = Record[4]; 7242 RefListStartIndex = 5; 7243 if (Version >= 5) { 7244 NumRORefs = Record[5]; 7245 RefListStartIndex = 6; 7246 if (Version >= 7) { 7247 NumWORefs = Record[6]; 7248 RefListStartIndex = 7; 7249 } 7250 } 7251 } 7252 7253 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7254 // The module path string ref set in the summary must be owned by the 7255 // index's module string table. Since we don't have a module path 7256 // string table section in the per-module index, we create a single 7257 // module path string table entry with an empty (0) ID to take 7258 // ownership. 7259 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 7260 assert(Record.size() >= RefListStartIndex + NumRefs && 7261 "Record size inconsistent with number of references"); 7262 std::vector<ValueInfo> Refs = makeRefList( 7263 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 7264 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 7265 bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF); 7266 std::vector<FunctionSummary::EdgeTy> Calls = makeCallList( 7267 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 7268 IsOldProfileFormat, HasProfile, HasRelBF); 7269 setSpecialRefs(Refs, NumRORefs, NumWORefs); 7270 auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID); 7271 // In order to save memory, only record the memprof summaries if this is 7272 // the prevailing copy of a symbol. The linker doesn't resolve local 7273 // linkage values so don't check whether those are prevailing. 7274 auto LT = (GlobalValue::LinkageTypes)Flags.Linkage; 7275 if (IsPrevailing && 7276 !GlobalValue::isLocalLinkage(LT) && 7277 !IsPrevailing(std::get<2>(VIAndOriginalGUID))) { 7278 PendingCallsites.clear(); 7279 PendingAllocs.clear(); 7280 } 7281 auto FS = std::make_unique<FunctionSummary>( 7282 Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0, 7283 std::move(Refs), std::move(Calls), std::move(PendingTypeTests), 7284 std::move(PendingTypeTestAssumeVCalls), 7285 std::move(PendingTypeCheckedLoadVCalls), 7286 std::move(PendingTypeTestAssumeConstVCalls), 7287 std::move(PendingTypeCheckedLoadConstVCalls), 7288 std::move(PendingParamAccesses), std::move(PendingCallsites), 7289 std::move(PendingAllocs)); 7290 FS->setModulePath(getThisModule()->first()); 7291 FS->setOriginalName(std::get<1>(VIAndOriginalGUID)); 7292 TheIndex.addGlobalValueSummary(std::get<0>(VIAndOriginalGUID), 7293 std::move(FS)); 7294 break; 7295 } 7296 // FS_ALIAS: [valueid, flags, valueid] 7297 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 7298 // they expect all aliasee summaries to be available. 7299 case bitc::FS_ALIAS: { 7300 unsigned ValueID = Record[0]; 7301 uint64_t RawFlags = Record[1]; 7302 unsigned AliaseeID = Record[2]; 7303 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7304 auto AS = std::make_unique<AliasSummary>(Flags); 7305 // The module path string ref set in the summary must be owned by the 7306 // index's module string table. Since we don't have a module path 7307 // string table section in the per-module index, we create a single 7308 // module path string table entry with an empty (0) ID to take 7309 // ownership. 7310 AS->setModulePath(getThisModule()->first()); 7311 7312 auto AliaseeVI = std::get<0>(getValueInfoFromValueId(AliaseeID)); 7313 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath); 7314 if (!AliaseeInModule) 7315 return error("Alias expects aliasee summary to be parsed"); 7316 AS->setAliasee(AliaseeVI, AliaseeInModule); 7317 7318 auto GUID = getValueInfoFromValueId(ValueID); 7319 AS->setOriginalName(std::get<1>(GUID)); 7320 TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(AS)); 7321 break; 7322 } 7323 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid] 7324 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 7325 unsigned ValueID = Record[0]; 7326 uint64_t RawFlags = Record[1]; 7327 unsigned RefArrayStart = 2; 7328 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 7329 /* WriteOnly */ false, 7330 /* Constant */ false, 7331 GlobalObject::VCallVisibilityPublic); 7332 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7333 if (Version >= 5) { 7334 GVF = getDecodedGVarFlags(Record[2]); 7335 RefArrayStart = 3; 7336 } 7337 std::vector<ValueInfo> Refs = 7338 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 7339 auto FS = 7340 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 7341 FS->setModulePath(getThisModule()->first()); 7342 auto GUID = getValueInfoFromValueId(ValueID); 7343 FS->setOriginalName(std::get<1>(GUID)); 7344 TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(FS)); 7345 break; 7346 } 7347 // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, 7348 // numrefs, numrefs x valueid, 7349 // n x (valueid, offset)] 7350 case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: { 7351 unsigned ValueID = Record[0]; 7352 uint64_t RawFlags = Record[1]; 7353 GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]); 7354 unsigned NumRefs = Record[3]; 7355 unsigned RefListStartIndex = 4; 7356 unsigned VTableListStartIndex = RefListStartIndex + NumRefs; 7357 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7358 std::vector<ValueInfo> Refs = makeRefList( 7359 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 7360 VTableFuncList VTableFuncs; 7361 for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) { 7362 ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[I])); 7363 uint64_t Offset = Record[++I]; 7364 VTableFuncs.push_back({Callee, Offset}); 7365 } 7366 auto VS = 7367 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 7368 VS->setModulePath(getThisModule()->first()); 7369 VS->setVTableFuncs(VTableFuncs); 7370 auto GUID = getValueInfoFromValueId(ValueID); 7371 VS->setOriginalName(std::get<1>(GUID)); 7372 TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(VS)); 7373 break; 7374 } 7375 // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs, 7376 // numrefs x valueid, n x (valueid)] 7377 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs, 7378 // numrefs x valueid, n x (valueid, hotness)] 7379 case bitc::FS_COMBINED: 7380 case bitc::FS_COMBINED_PROFILE: { 7381 unsigned ValueID = Record[0]; 7382 uint64_t ModuleId = Record[1]; 7383 uint64_t RawFlags = Record[2]; 7384 unsigned InstCount = Record[3]; 7385 uint64_t RawFunFlags = 0; 7386 uint64_t EntryCount = 0; 7387 unsigned NumRefs = Record[4]; 7388 unsigned NumRORefs = 0, NumWORefs = 0; 7389 int RefListStartIndex = 5; 7390 7391 if (Version >= 4) { 7392 RawFunFlags = Record[4]; 7393 RefListStartIndex = 6; 7394 size_t NumRefsIndex = 5; 7395 if (Version >= 5) { 7396 unsigned NumRORefsOffset = 1; 7397 RefListStartIndex = 7; 7398 if (Version >= 6) { 7399 NumRefsIndex = 6; 7400 EntryCount = Record[5]; 7401 RefListStartIndex = 8; 7402 if (Version >= 7) { 7403 RefListStartIndex = 9; 7404 NumWORefs = Record[8]; 7405 NumRORefsOffset = 2; 7406 } 7407 } 7408 NumRORefs = Record[RefListStartIndex - NumRORefsOffset]; 7409 } 7410 NumRefs = Record[NumRefsIndex]; 7411 } 7412 7413 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7414 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 7415 assert(Record.size() >= RefListStartIndex + NumRefs && 7416 "Record size inconsistent with number of references"); 7417 std::vector<ValueInfo> Refs = makeRefList( 7418 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 7419 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 7420 std::vector<FunctionSummary::EdgeTy> Edges = makeCallList( 7421 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 7422 IsOldProfileFormat, HasProfile, false); 7423 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID)); 7424 setSpecialRefs(Refs, NumRORefs, NumWORefs); 7425 auto FS = std::make_unique<FunctionSummary>( 7426 Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount, 7427 std::move(Refs), std::move(Edges), std::move(PendingTypeTests), 7428 std::move(PendingTypeTestAssumeVCalls), 7429 std::move(PendingTypeCheckedLoadVCalls), 7430 std::move(PendingTypeTestAssumeConstVCalls), 7431 std::move(PendingTypeCheckedLoadConstVCalls), 7432 std::move(PendingParamAccesses), std::move(PendingCallsites), 7433 std::move(PendingAllocs)); 7434 LastSeenSummary = FS.get(); 7435 LastSeenGUID = VI.getGUID(); 7436 FS->setModulePath(ModuleIdMap[ModuleId]); 7437 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 7438 break; 7439 } 7440 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 7441 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 7442 // they expect all aliasee summaries to be available. 7443 case bitc::FS_COMBINED_ALIAS: { 7444 unsigned ValueID = Record[0]; 7445 uint64_t ModuleId = Record[1]; 7446 uint64_t RawFlags = Record[2]; 7447 unsigned AliaseeValueId = Record[3]; 7448 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7449 auto AS = std::make_unique<AliasSummary>(Flags); 7450 LastSeenSummary = AS.get(); 7451 AS->setModulePath(ModuleIdMap[ModuleId]); 7452 7453 auto AliaseeVI = std::get<0>(getValueInfoFromValueId(AliaseeValueId)); 7454 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath()); 7455 AS->setAliasee(AliaseeVI, AliaseeInModule); 7456 7457 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID)); 7458 LastSeenGUID = VI.getGUID(); 7459 TheIndex.addGlobalValueSummary(VI, std::move(AS)); 7460 break; 7461 } 7462 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 7463 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 7464 unsigned ValueID = Record[0]; 7465 uint64_t ModuleId = Record[1]; 7466 uint64_t RawFlags = Record[2]; 7467 unsigned RefArrayStart = 3; 7468 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 7469 /* WriteOnly */ false, 7470 /* Constant */ false, 7471 GlobalObject::VCallVisibilityPublic); 7472 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7473 if (Version >= 5) { 7474 GVF = getDecodedGVarFlags(Record[3]); 7475 RefArrayStart = 4; 7476 } 7477 std::vector<ValueInfo> Refs = 7478 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 7479 auto FS = 7480 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 7481 LastSeenSummary = FS.get(); 7482 FS->setModulePath(ModuleIdMap[ModuleId]); 7483 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID)); 7484 LastSeenGUID = VI.getGUID(); 7485 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 7486 break; 7487 } 7488 // FS_COMBINED_ORIGINAL_NAME: [original_name] 7489 case bitc::FS_COMBINED_ORIGINAL_NAME: { 7490 uint64_t OriginalName = Record[0]; 7491 if (!LastSeenSummary) 7492 return error("Name attachment that does not follow a combined record"); 7493 LastSeenSummary->setOriginalName(OriginalName); 7494 TheIndex.addOriginalName(LastSeenGUID, OriginalName); 7495 // Reset the LastSeenSummary 7496 LastSeenSummary = nullptr; 7497 LastSeenGUID = 0; 7498 break; 7499 } 7500 case bitc::FS_TYPE_TESTS: 7501 assert(PendingTypeTests.empty()); 7502 llvm::append_range(PendingTypeTests, Record); 7503 break; 7504 7505 case bitc::FS_TYPE_TEST_ASSUME_VCALLS: 7506 assert(PendingTypeTestAssumeVCalls.empty()); 7507 for (unsigned I = 0; I != Record.size(); I += 2) 7508 PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]}); 7509 break; 7510 7511 case bitc::FS_TYPE_CHECKED_LOAD_VCALLS: 7512 assert(PendingTypeCheckedLoadVCalls.empty()); 7513 for (unsigned I = 0; I != Record.size(); I += 2) 7514 PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]}); 7515 break; 7516 7517 case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL: 7518 PendingTypeTestAssumeConstVCalls.push_back( 7519 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 7520 break; 7521 7522 case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL: 7523 PendingTypeCheckedLoadConstVCalls.push_back( 7524 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 7525 break; 7526 7527 case bitc::FS_CFI_FUNCTION_DEFS: { 7528 std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs(); 7529 for (unsigned I = 0; I != Record.size(); I += 2) 7530 CfiFunctionDefs.insert( 7531 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 7532 break; 7533 } 7534 7535 case bitc::FS_CFI_FUNCTION_DECLS: { 7536 std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls(); 7537 for (unsigned I = 0; I != Record.size(); I += 2) 7538 CfiFunctionDecls.insert( 7539 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 7540 break; 7541 } 7542 7543 case bitc::FS_TYPE_ID: 7544 parseTypeIdSummaryRecord(Record, Strtab, TheIndex); 7545 break; 7546 7547 case bitc::FS_TYPE_ID_METADATA: 7548 parseTypeIdCompatibleVtableSummaryRecord(Record); 7549 break; 7550 7551 case bitc::FS_BLOCK_COUNT: 7552 TheIndex.addBlockCount(Record[0]); 7553 break; 7554 7555 case bitc::FS_PARAM_ACCESS: { 7556 PendingParamAccesses = parseParamAccesses(Record); 7557 break; 7558 } 7559 7560 case bitc::FS_STACK_IDS: { // [n x stackid] 7561 // Save stack ids in the reader to consult when adding stack ids from the 7562 // lists in the stack node and alloc node entries. 7563 StackIds = ArrayRef<uint64_t>(Record); 7564 break; 7565 } 7566 7567 case bitc::FS_PERMODULE_CALLSITE_INFO: { 7568 unsigned ValueID = Record[0]; 7569 SmallVector<unsigned> StackIdList; 7570 for (auto R = Record.begin() + 1; R != Record.end(); R++) { 7571 assert(*R < StackIds.size()); 7572 StackIdList.push_back(TheIndex.addOrGetStackIdIndex(StackIds[*R])); 7573 } 7574 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID)); 7575 PendingCallsites.push_back(CallsiteInfo({VI, std::move(StackIdList)})); 7576 break; 7577 } 7578 7579 case bitc::FS_COMBINED_CALLSITE_INFO: { 7580 auto RecordIter = Record.begin(); 7581 unsigned ValueID = *RecordIter++; 7582 unsigned NumStackIds = *RecordIter++; 7583 unsigned NumVersions = *RecordIter++; 7584 assert(Record.size() == 3 + NumStackIds + NumVersions); 7585 SmallVector<unsigned> StackIdList; 7586 for (unsigned J = 0; J < NumStackIds; J++) { 7587 assert(*RecordIter < StackIds.size()); 7588 StackIdList.push_back( 7589 TheIndex.addOrGetStackIdIndex(StackIds[*RecordIter++])); 7590 } 7591 SmallVector<unsigned> Versions; 7592 for (unsigned J = 0; J < NumVersions; J++) 7593 Versions.push_back(*RecordIter++); 7594 ValueInfo VI = std::get<0>( 7595 getValueInfoFromValueId</*AllowNullValueInfo*/ true>(ValueID)); 7596 PendingCallsites.push_back( 7597 CallsiteInfo({VI, std::move(Versions), std::move(StackIdList)})); 7598 break; 7599 } 7600 7601 case bitc::FS_PERMODULE_ALLOC_INFO: { 7602 unsigned I = 0; 7603 std::vector<MIBInfo> MIBs; 7604 while (I < Record.size()) { 7605 assert(Record.size() - I >= 2); 7606 AllocationType AllocType = (AllocationType)Record[I++]; 7607 unsigned NumStackEntries = Record[I++]; 7608 assert(Record.size() - I >= NumStackEntries); 7609 SmallVector<unsigned> StackIdList; 7610 for (unsigned J = 0; J < NumStackEntries; J++) { 7611 assert(Record[I] < StackIds.size()); 7612 StackIdList.push_back( 7613 TheIndex.addOrGetStackIdIndex(StackIds[Record[I++]])); 7614 } 7615 MIBs.push_back(MIBInfo(AllocType, std::move(StackIdList))); 7616 } 7617 PendingAllocs.push_back(AllocInfo(std::move(MIBs))); 7618 break; 7619 } 7620 7621 case bitc::FS_COMBINED_ALLOC_INFO: { 7622 unsigned I = 0; 7623 std::vector<MIBInfo> MIBs; 7624 unsigned NumMIBs = Record[I++]; 7625 unsigned NumVersions = Record[I++]; 7626 unsigned MIBsRead = 0; 7627 while (MIBsRead++ < NumMIBs) { 7628 assert(Record.size() - I >= 2); 7629 AllocationType AllocType = (AllocationType)Record[I++]; 7630 unsigned NumStackEntries = Record[I++]; 7631 assert(Record.size() - I >= NumStackEntries); 7632 SmallVector<unsigned> StackIdList; 7633 for (unsigned J = 0; J < NumStackEntries; J++) { 7634 assert(Record[I] < StackIds.size()); 7635 StackIdList.push_back( 7636 TheIndex.addOrGetStackIdIndex(StackIds[Record[I++]])); 7637 } 7638 MIBs.push_back(MIBInfo(AllocType, std::move(StackIdList))); 7639 } 7640 assert(Record.size() - I >= NumVersions); 7641 SmallVector<uint8_t> Versions; 7642 for (unsigned J = 0; J < NumVersions; J++) 7643 Versions.push_back(Record[I++]); 7644 PendingAllocs.push_back( 7645 AllocInfo(std::move(Versions), std::move(MIBs))); 7646 break; 7647 } 7648 } 7649 } 7650 llvm_unreachable("Exit infinite loop"); 7651 } 7652 7653 // Parse the module string table block into the Index. 7654 // This populates the ModulePathStringTable map in the index. 7655 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 7656 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 7657 return Err; 7658 7659 SmallVector<uint64_t, 64> Record; 7660 7661 SmallString<128> ModulePath; 7662 ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr; 7663 7664 while (true) { 7665 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 7666 if (!MaybeEntry) 7667 return MaybeEntry.takeError(); 7668 BitstreamEntry Entry = MaybeEntry.get(); 7669 7670 switch (Entry.Kind) { 7671 case BitstreamEntry::SubBlock: // Handled for us already. 7672 case BitstreamEntry::Error: 7673 return error("Malformed block"); 7674 case BitstreamEntry::EndBlock: 7675 return Error::success(); 7676 case BitstreamEntry::Record: 7677 // The interesting case. 7678 break; 7679 } 7680 7681 Record.clear(); 7682 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 7683 if (!MaybeRecord) 7684 return MaybeRecord.takeError(); 7685 switch (MaybeRecord.get()) { 7686 default: // Default behavior: ignore. 7687 break; 7688 case bitc::MST_CODE_ENTRY: { 7689 // MST_ENTRY: [modid, namechar x N] 7690 uint64_t ModuleId = Record[0]; 7691 7692 if (convertToString(Record, 1, ModulePath)) 7693 return error("Invalid record"); 7694 7695 LastSeenModule = TheIndex.addModule(ModulePath); 7696 ModuleIdMap[ModuleId] = LastSeenModule->first(); 7697 7698 ModulePath.clear(); 7699 break; 7700 } 7701 /// MST_CODE_HASH: [5*i32] 7702 case bitc::MST_CODE_HASH: { 7703 if (Record.size() != 5) 7704 return error("Invalid hash length " + Twine(Record.size()).str()); 7705 if (!LastSeenModule) 7706 return error("Invalid hash that does not follow a module path"); 7707 int Pos = 0; 7708 for (auto &Val : Record) { 7709 assert(!(Val >> 32) && "Unexpected high bits set"); 7710 LastSeenModule->second[Pos++] = Val; 7711 } 7712 // Reset LastSeenModule to avoid overriding the hash unexpectedly. 7713 LastSeenModule = nullptr; 7714 break; 7715 } 7716 } 7717 } 7718 llvm_unreachable("Exit infinite loop"); 7719 } 7720 7721 namespace { 7722 7723 // FIXME: This class is only here to support the transition to llvm::Error. It 7724 // will be removed once this transition is complete. Clients should prefer to 7725 // deal with the Error value directly, rather than converting to error_code. 7726 class BitcodeErrorCategoryType : public std::error_category { 7727 const char *name() const noexcept override { 7728 return "llvm.bitcode"; 7729 } 7730 7731 std::string message(int IE) const override { 7732 BitcodeError E = static_cast<BitcodeError>(IE); 7733 switch (E) { 7734 case BitcodeError::CorruptedBitcode: 7735 return "Corrupted bitcode"; 7736 } 7737 llvm_unreachable("Unknown error type!"); 7738 } 7739 }; 7740 7741 } // end anonymous namespace 7742 7743 const std::error_category &llvm::BitcodeErrorCategory() { 7744 static BitcodeErrorCategoryType ErrorCategory; 7745 return ErrorCategory; 7746 } 7747 7748 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream, 7749 unsigned Block, unsigned RecordID) { 7750 if (Error Err = Stream.EnterSubBlock(Block)) 7751 return std::move(Err); 7752 7753 StringRef Strtab; 7754 while (true) { 7755 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 7756 if (!MaybeEntry) 7757 return MaybeEntry.takeError(); 7758 llvm::BitstreamEntry Entry = MaybeEntry.get(); 7759 7760 switch (Entry.Kind) { 7761 case BitstreamEntry::EndBlock: 7762 return Strtab; 7763 7764 case BitstreamEntry::Error: 7765 return error("Malformed block"); 7766 7767 case BitstreamEntry::SubBlock: 7768 if (Error Err = Stream.SkipBlock()) 7769 return std::move(Err); 7770 break; 7771 7772 case BitstreamEntry::Record: 7773 StringRef Blob; 7774 SmallVector<uint64_t, 1> Record; 7775 Expected<unsigned> MaybeRecord = 7776 Stream.readRecord(Entry.ID, Record, &Blob); 7777 if (!MaybeRecord) 7778 return MaybeRecord.takeError(); 7779 if (MaybeRecord.get() == RecordID) 7780 Strtab = Blob; 7781 break; 7782 } 7783 } 7784 } 7785 7786 //===----------------------------------------------------------------------===// 7787 // External interface 7788 //===----------------------------------------------------------------------===// 7789 7790 Expected<std::vector<BitcodeModule>> 7791 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) { 7792 auto FOrErr = getBitcodeFileContents(Buffer); 7793 if (!FOrErr) 7794 return FOrErr.takeError(); 7795 return std::move(FOrErr->Mods); 7796 } 7797 7798 Expected<BitcodeFileContents> 7799 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) { 7800 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 7801 if (!StreamOrErr) 7802 return StreamOrErr.takeError(); 7803 BitstreamCursor &Stream = *StreamOrErr; 7804 7805 BitcodeFileContents F; 7806 while (true) { 7807 uint64_t BCBegin = Stream.getCurrentByteNo(); 7808 7809 // We may be consuming bitcode from a client that leaves garbage at the end 7810 // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to 7811 // the end that there cannot possibly be another module, stop looking. 7812 if (BCBegin + 8 >= Stream.getBitcodeBytes().size()) 7813 return F; 7814 7815 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 7816 if (!MaybeEntry) 7817 return MaybeEntry.takeError(); 7818 llvm::BitstreamEntry Entry = MaybeEntry.get(); 7819 7820 switch (Entry.Kind) { 7821 case BitstreamEntry::EndBlock: 7822 case BitstreamEntry::Error: 7823 return error("Malformed block"); 7824 7825 case BitstreamEntry::SubBlock: { 7826 uint64_t IdentificationBit = -1ull; 7827 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 7828 IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8; 7829 if (Error Err = Stream.SkipBlock()) 7830 return std::move(Err); 7831 7832 { 7833 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 7834 if (!MaybeEntry) 7835 return MaybeEntry.takeError(); 7836 Entry = MaybeEntry.get(); 7837 } 7838 7839 if (Entry.Kind != BitstreamEntry::SubBlock || 7840 Entry.ID != bitc::MODULE_BLOCK_ID) 7841 return error("Malformed block"); 7842 } 7843 7844 if (Entry.ID == bitc::MODULE_BLOCK_ID) { 7845 uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8; 7846 if (Error Err = Stream.SkipBlock()) 7847 return std::move(Err); 7848 7849 F.Mods.push_back({Stream.getBitcodeBytes().slice( 7850 BCBegin, Stream.getCurrentByteNo() - BCBegin), 7851 Buffer.getBufferIdentifier(), IdentificationBit, 7852 ModuleBit}); 7853 continue; 7854 } 7855 7856 if (Entry.ID == bitc::STRTAB_BLOCK_ID) { 7857 Expected<StringRef> Strtab = 7858 readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB); 7859 if (!Strtab) 7860 return Strtab.takeError(); 7861 // This string table is used by every preceding bitcode module that does 7862 // not have its own string table. A bitcode file may have multiple 7863 // string tables if it was created by binary concatenation, for example 7864 // with "llvm-cat -b". 7865 for (BitcodeModule &I : llvm::reverse(F.Mods)) { 7866 if (!I.Strtab.empty()) 7867 break; 7868 I.Strtab = *Strtab; 7869 } 7870 // Similarly, the string table is used by every preceding symbol table; 7871 // normally there will be just one unless the bitcode file was created 7872 // by binary concatenation. 7873 if (!F.Symtab.empty() && F.StrtabForSymtab.empty()) 7874 F.StrtabForSymtab = *Strtab; 7875 continue; 7876 } 7877 7878 if (Entry.ID == bitc::SYMTAB_BLOCK_ID) { 7879 Expected<StringRef> SymtabOrErr = 7880 readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB); 7881 if (!SymtabOrErr) 7882 return SymtabOrErr.takeError(); 7883 7884 // We can expect the bitcode file to have multiple symbol tables if it 7885 // was created by binary concatenation. In that case we silently 7886 // ignore any subsequent symbol tables, which is fine because this is a 7887 // low level function. The client is expected to notice that the number 7888 // of modules in the symbol table does not match the number of modules 7889 // in the input file and regenerate the symbol table. 7890 if (F.Symtab.empty()) 7891 F.Symtab = *SymtabOrErr; 7892 continue; 7893 } 7894 7895 if (Error Err = Stream.SkipBlock()) 7896 return std::move(Err); 7897 continue; 7898 } 7899 case BitstreamEntry::Record: 7900 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 7901 return std::move(E); 7902 continue; 7903 } 7904 } 7905 } 7906 7907 /// Get a lazy one-at-time loading module from bitcode. 7908 /// 7909 /// This isn't always used in a lazy context. In particular, it's also used by 7910 /// \a parseModule(). If this is truly lazy, then we need to eagerly pull 7911 /// in forward-referenced functions from block address references. 7912 /// 7913 /// \param[in] MaterializeAll Set to \c true if we should materialize 7914 /// everything. 7915 Expected<std::unique_ptr<Module>> 7916 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll, 7917 bool ShouldLazyLoadMetadata, bool IsImporting, 7918 ParserCallbacks Callbacks) { 7919 BitstreamCursor Stream(Buffer); 7920 7921 std::string ProducerIdentification; 7922 if (IdentificationBit != -1ull) { 7923 if (Error JumpFailed = Stream.JumpToBit(IdentificationBit)) 7924 return std::move(JumpFailed); 7925 if (Error E = 7926 readIdentificationBlock(Stream).moveInto(ProducerIdentification)) 7927 return std::move(E); 7928 } 7929 7930 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 7931 return std::move(JumpFailed); 7932 auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification, 7933 Context); 7934 7935 std::unique_ptr<Module> M = 7936 std::make_unique<Module>(ModuleIdentifier, Context); 7937 M->setMaterializer(R); 7938 7939 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 7940 if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, 7941 IsImporting, Callbacks)) 7942 return std::move(Err); 7943 7944 if (MaterializeAll) { 7945 // Read in the entire module, and destroy the BitcodeReader. 7946 if (Error Err = M->materializeAll()) 7947 return std::move(Err); 7948 } else { 7949 // Resolve forward references from blockaddresses. 7950 if (Error Err = R->materializeForwardReferencedFunctions()) 7951 return std::move(Err); 7952 } 7953 return std::move(M); 7954 } 7955 7956 Expected<std::unique_ptr<Module>> 7957 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata, 7958 bool IsImporting, ParserCallbacks Callbacks) { 7959 return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting, 7960 Callbacks); 7961 } 7962 7963 // Parse the specified bitcode buffer and merge the index into CombinedIndex. 7964 // We don't use ModuleIdentifier here because the client may need to control the 7965 // module path used in the combined summary (e.g. when reading summaries for 7966 // regular LTO modules). 7967 Error BitcodeModule::readSummary( 7968 ModuleSummaryIndex &CombinedIndex, StringRef ModulePath, 7969 std::function<bool(GlobalValue::GUID)> IsPrevailing) { 7970 BitstreamCursor Stream(Buffer); 7971 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 7972 return JumpFailed; 7973 7974 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex, 7975 ModulePath, IsPrevailing); 7976 return R.parseModule(); 7977 } 7978 7979 // Parse the specified bitcode buffer, returning the function info index. 7980 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() { 7981 BitstreamCursor Stream(Buffer); 7982 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 7983 return std::move(JumpFailed); 7984 7985 auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false); 7986 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index, 7987 ModuleIdentifier, 0); 7988 7989 if (Error Err = R.parseModule()) 7990 return std::move(Err); 7991 7992 return std::move(Index); 7993 } 7994 7995 static Expected<std::pair<bool, bool>> 7996 getEnableSplitLTOUnitAndUnifiedFlag(BitstreamCursor &Stream, 7997 unsigned ID, 7998 BitcodeLTOInfo <OInfo) { 7999 if (Error Err = Stream.EnterSubBlock(ID)) 8000 return std::move(Err); 8001 SmallVector<uint64_t, 64> Record; 8002 8003 while (true) { 8004 BitstreamEntry Entry; 8005 std::pair<bool, bool> Result = {false,false}; 8006 if (Error E = Stream.advanceSkippingSubblocks().moveInto(Entry)) 8007 return std::move(E); 8008 8009 switch (Entry.Kind) { 8010 case BitstreamEntry::SubBlock: // Handled for us already. 8011 case BitstreamEntry::Error: 8012 return error("Malformed block"); 8013 case BitstreamEntry::EndBlock: { 8014 // If no flags record found, set both flags to false. 8015 return Result; 8016 } 8017 case BitstreamEntry::Record: 8018 // The interesting case. 8019 break; 8020 } 8021 8022 // Look for the FS_FLAGS record. 8023 Record.clear(); 8024 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 8025 if (!MaybeBitCode) 8026 return MaybeBitCode.takeError(); 8027 switch (MaybeBitCode.get()) { 8028 default: // Default behavior: ignore. 8029 break; 8030 case bitc::FS_FLAGS: { // [flags] 8031 uint64_t Flags = Record[0]; 8032 // Scan flags. 8033 assert(Flags <= 0x2ff && "Unexpected bits in flag"); 8034 8035 bool EnableSplitLTOUnit = Flags & 0x8; 8036 bool UnifiedLTO = Flags & 0x200; 8037 Result = {EnableSplitLTOUnit, UnifiedLTO}; 8038 8039 return Result; 8040 } 8041 } 8042 } 8043 llvm_unreachable("Exit infinite loop"); 8044 } 8045 8046 // Check if the given bitcode buffer contains a global value summary block. 8047 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() { 8048 BitstreamCursor Stream(Buffer); 8049 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 8050 return std::move(JumpFailed); 8051 8052 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 8053 return std::move(Err); 8054 8055 while (true) { 8056 llvm::BitstreamEntry Entry; 8057 if (Error E = Stream.advance().moveInto(Entry)) 8058 return std::move(E); 8059 8060 switch (Entry.Kind) { 8061 case BitstreamEntry::Error: 8062 return error("Malformed block"); 8063 case BitstreamEntry::EndBlock: 8064 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false, 8065 /*EnableSplitLTOUnit=*/false, /*UnifiedLTO=*/false}; 8066 8067 case BitstreamEntry::SubBlock: 8068 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) { 8069 BitcodeLTOInfo LTOInfo; 8070 Expected<std::pair<bool, bool>> Flags = 8071 getEnableSplitLTOUnitAndUnifiedFlag(Stream, Entry.ID, LTOInfo); 8072 if (!Flags) 8073 return Flags.takeError(); 8074 std::tie(LTOInfo.EnableSplitLTOUnit, LTOInfo.UnifiedLTO) = Flags.get(); 8075 LTOInfo.IsThinLTO = true; 8076 LTOInfo.HasSummary = true; 8077 return LTOInfo; 8078 } 8079 8080 if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) { 8081 BitcodeLTOInfo LTOInfo; 8082 Expected<std::pair<bool, bool>> Flags = 8083 getEnableSplitLTOUnitAndUnifiedFlag(Stream, Entry.ID, LTOInfo); 8084 if (!Flags) 8085 return Flags.takeError(); 8086 std::tie(LTOInfo.EnableSplitLTOUnit, LTOInfo.UnifiedLTO) = Flags.get(); 8087 LTOInfo.IsThinLTO = false; 8088 LTOInfo.HasSummary = true; 8089 return LTOInfo; 8090 } 8091 8092 // Ignore other sub-blocks. 8093 if (Error Err = Stream.SkipBlock()) 8094 return std::move(Err); 8095 continue; 8096 8097 case BitstreamEntry::Record: 8098 if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID)) 8099 continue; 8100 else 8101 return StreamFailed.takeError(); 8102 } 8103 } 8104 } 8105 8106 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) { 8107 Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer); 8108 if (!MsOrErr) 8109 return MsOrErr.takeError(); 8110 8111 if (MsOrErr->size() != 1) 8112 return error("Expected a single module"); 8113 8114 return (*MsOrErr)[0]; 8115 } 8116 8117 Expected<std::unique_ptr<Module>> 8118 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context, 8119 bool ShouldLazyLoadMetadata, bool IsImporting, 8120 ParserCallbacks Callbacks) { 8121 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8122 if (!BM) 8123 return BM.takeError(); 8124 8125 return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting, 8126 Callbacks); 8127 } 8128 8129 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule( 8130 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context, 8131 bool ShouldLazyLoadMetadata, bool IsImporting, ParserCallbacks Callbacks) { 8132 auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata, 8133 IsImporting, Callbacks); 8134 if (MOrErr) 8135 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer)); 8136 return MOrErr; 8137 } 8138 8139 Expected<std::unique_ptr<Module>> 8140 BitcodeModule::parseModule(LLVMContext &Context, ParserCallbacks Callbacks) { 8141 return getModuleImpl(Context, true, false, false, Callbacks); 8142 // TODO: Restore the use-lists to the in-memory state when the bitcode was 8143 // written. We must defer until the Module has been fully materialized. 8144 } 8145 8146 Expected<std::unique_ptr<Module>> 8147 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context, 8148 ParserCallbacks Callbacks) { 8149 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8150 if (!BM) 8151 return BM.takeError(); 8152 8153 return BM->parseModule(Context, Callbacks); 8154 } 8155 8156 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) { 8157 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 8158 if (!StreamOrErr) 8159 return StreamOrErr.takeError(); 8160 8161 return readTriple(*StreamOrErr); 8162 } 8163 8164 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) { 8165 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 8166 if (!StreamOrErr) 8167 return StreamOrErr.takeError(); 8168 8169 return hasObjCCategory(*StreamOrErr); 8170 } 8171 8172 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) { 8173 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 8174 if (!StreamOrErr) 8175 return StreamOrErr.takeError(); 8176 8177 return readIdentificationCode(*StreamOrErr); 8178 } 8179 8180 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer, 8181 ModuleSummaryIndex &CombinedIndex) { 8182 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8183 if (!BM) 8184 return BM.takeError(); 8185 8186 return BM->readSummary(CombinedIndex, BM->getModuleIdentifier()); 8187 } 8188 8189 Expected<std::unique_ptr<ModuleSummaryIndex>> 8190 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) { 8191 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8192 if (!BM) 8193 return BM.takeError(); 8194 8195 return BM->getSummary(); 8196 } 8197 8198 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) { 8199 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8200 if (!BM) 8201 return BM.takeError(); 8202 8203 return BM->getLTOInfo(); 8204 } 8205 8206 Expected<std::unique_ptr<ModuleSummaryIndex>> 8207 llvm::getModuleSummaryIndexForFile(StringRef Path, 8208 bool IgnoreEmptyThinLTOIndexFile) { 8209 ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr = 8210 MemoryBuffer::getFileOrSTDIN(Path); 8211 if (!FileOrErr) 8212 return errorCodeToError(FileOrErr.getError()); 8213 if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize()) 8214 return nullptr; 8215 return getModuleSummaryIndex(**FileOrErr); 8216 } 8217