1 //===-- LLParser.cpp - Parser Class ---------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the parser class for .ll files. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/AsmParser/LLParser.h" 14 #include "llvm/ADT/APSInt.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/ScopeExit.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/AsmParser/LLToken.h" 20 #include "llvm/AsmParser/SlotMapping.h" 21 #include "llvm/BinaryFormat/Dwarf.h" 22 #include "llvm/IR/Argument.h" 23 #include "llvm/IR/AutoUpgrade.h" 24 #include "llvm/IR/BasicBlock.h" 25 #include "llvm/IR/CallingConv.h" 26 #include "llvm/IR/Comdat.h" 27 #include "llvm/IR/ConstantRange.h" 28 #include "llvm/IR/ConstantRangeList.h" 29 #include "llvm/IR/Constants.h" 30 #include "llvm/IR/DebugInfoMetadata.h" 31 #include "llvm/IR/DerivedTypes.h" 32 #include "llvm/IR/Function.h" 33 #include "llvm/IR/GlobalIFunc.h" 34 #include "llvm/IR/GlobalObject.h" 35 #include "llvm/IR/InlineAsm.h" 36 #include "llvm/IR/InstIterator.h" 37 #include "llvm/IR/Instructions.h" 38 #include "llvm/IR/IntrinsicInst.h" 39 #include "llvm/IR/Intrinsics.h" 40 #include "llvm/IR/LLVMContext.h" 41 #include "llvm/IR/Metadata.h" 42 #include "llvm/IR/Module.h" 43 #include "llvm/IR/Operator.h" 44 #include "llvm/IR/Value.h" 45 #include "llvm/IR/ValueSymbolTable.h" 46 #include "llvm/Support/Casting.h" 47 #include "llvm/Support/ErrorHandling.h" 48 #include "llvm/Support/MathExtras.h" 49 #include "llvm/Support/ModRef.h" 50 #include "llvm/Support/SaveAndRestore.h" 51 #include "llvm/Support/raw_ostream.h" 52 #include <algorithm> 53 #include <cassert> 54 #include <cstring> 55 #include <optional> 56 #include <vector> 57 58 using namespace llvm; 59 60 static cl::opt<bool> AllowIncompleteIR( 61 "allow-incomplete-ir", cl::init(false), cl::Hidden, 62 cl::desc( 63 "Allow incomplete IR on a best effort basis (references to unknown " 64 "metadata will be dropped)")); 65 66 extern llvm::cl::opt<bool> UseNewDbgInfoFormat; 67 extern cl::opt<cl::boolOrDefault> PreserveInputDbgFormat; 68 extern bool WriteNewDbgInfoFormatToBitcode; 69 extern cl::opt<bool> WriteNewDbgInfoFormat; 70 71 static std::string getTypeString(Type *T) { 72 std::string Result; 73 raw_string_ostream Tmp(Result); 74 Tmp << *T; 75 return Tmp.str(); 76 } 77 78 /// Run: module ::= toplevelentity* 79 bool LLParser::Run(bool UpgradeDebugInfo, 80 DataLayoutCallbackTy DataLayoutCallback) { 81 // Prime the lexer. 82 Lex.Lex(); 83 84 if (Context.shouldDiscardValueNames()) 85 return error( 86 Lex.getLoc(), 87 "Can't read textual IR with a Context that discards named Values"); 88 89 if (M) { 90 if (parseTargetDefinitions(DataLayoutCallback)) 91 return true; 92 } 93 94 return parseTopLevelEntities() || validateEndOfModule(UpgradeDebugInfo) || 95 validateEndOfIndex(); 96 } 97 98 bool LLParser::parseStandaloneConstantValue(Constant *&C, 99 const SlotMapping *Slots) { 100 restoreParsingState(Slots); 101 Lex.Lex(); 102 103 Type *Ty = nullptr; 104 if (parseType(Ty) || parseConstantValue(Ty, C)) 105 return true; 106 if (Lex.getKind() != lltok::Eof) 107 return error(Lex.getLoc(), "expected end of string"); 108 return false; 109 } 110 111 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read, 112 const SlotMapping *Slots) { 113 restoreParsingState(Slots); 114 Lex.Lex(); 115 116 Read = 0; 117 SMLoc Start = Lex.getLoc(); 118 Ty = nullptr; 119 if (parseType(Ty)) 120 return true; 121 SMLoc End = Lex.getLoc(); 122 Read = End.getPointer() - Start.getPointer(); 123 124 return false; 125 } 126 127 bool LLParser::parseDIExpressionBodyAtBeginning(MDNode *&Result, unsigned &Read, 128 const SlotMapping *Slots) { 129 restoreParsingState(Slots); 130 Lex.Lex(); 131 132 Read = 0; 133 SMLoc Start = Lex.getLoc(); 134 Result = nullptr; 135 bool Status = parseDIExpressionBody(Result, /*IsDistinct=*/false); 136 SMLoc End = Lex.getLoc(); 137 Read = End.getPointer() - Start.getPointer(); 138 139 return Status; 140 } 141 142 void LLParser::restoreParsingState(const SlotMapping *Slots) { 143 if (!Slots) 144 return; 145 NumberedVals = Slots->GlobalValues; 146 NumberedMetadata = Slots->MetadataNodes; 147 for (const auto &I : Slots->NamedTypes) 148 NamedTypes.insert( 149 std::make_pair(I.getKey(), std::make_pair(I.second, LocTy()))); 150 for (const auto &I : Slots->Types) 151 NumberedTypes.insert( 152 std::make_pair(I.first, std::make_pair(I.second, LocTy()))); 153 } 154 155 static void dropIntrinsicWithUnknownMetadataArgument(IntrinsicInst *II) { 156 // White-list intrinsics that are safe to drop. 157 if (!isa<DbgInfoIntrinsic>(II) && 158 II->getIntrinsicID() != Intrinsic::experimental_noalias_scope_decl) 159 return; 160 161 SmallVector<MetadataAsValue *> MVs; 162 for (Value *V : II->args()) 163 if (auto *MV = dyn_cast<MetadataAsValue>(V)) 164 if (auto *MD = dyn_cast<MDNode>(MV->getMetadata())) 165 if (MD->isTemporary()) 166 MVs.push_back(MV); 167 168 if (!MVs.empty()) { 169 assert(II->use_empty() && "Cannot have uses"); 170 II->eraseFromParent(); 171 172 // Also remove no longer used MetadataAsValue wrappers. 173 for (MetadataAsValue *MV : MVs) 174 if (MV->use_empty()) 175 delete MV; 176 } 177 } 178 179 void LLParser::dropUnknownMetadataReferences() { 180 auto Pred = [](unsigned MDKind, MDNode *Node) { return Node->isTemporary(); }; 181 for (Function &F : *M) { 182 F.eraseMetadataIf(Pred); 183 for (Instruction &I : make_early_inc_range(instructions(F))) { 184 I.eraseMetadataIf(Pred); 185 186 if (auto *II = dyn_cast<IntrinsicInst>(&I)) 187 dropIntrinsicWithUnknownMetadataArgument(II); 188 } 189 } 190 191 for (GlobalVariable &GV : M->globals()) 192 GV.eraseMetadataIf(Pred); 193 194 for (const auto &[ID, Info] : make_early_inc_range(ForwardRefMDNodes)) { 195 // Check whether there is only a single use left, which would be in our 196 // own NumberedMetadata. 197 if (Info.first->getNumTemporaryUses() == 1) { 198 NumberedMetadata.erase(ID); 199 ForwardRefMDNodes.erase(ID); 200 } 201 } 202 } 203 204 /// validateEndOfModule - Do final validity and basic correctness checks at the 205 /// end of the module. 206 bool LLParser::validateEndOfModule(bool UpgradeDebugInfo) { 207 if (!M) 208 return false; 209 210 // We should have already returned an error if we observed both intrinsics and 211 // records in this IR. 212 assert(!(SeenNewDbgInfoFormat && SeenOldDbgInfoFormat) && 213 "Mixed debug intrinsics/records seen without a parsing error?"); 214 if (PreserveInputDbgFormat == cl::boolOrDefault::BOU_TRUE) { 215 UseNewDbgInfoFormat = SeenNewDbgInfoFormat; 216 WriteNewDbgInfoFormatToBitcode = SeenNewDbgInfoFormat; 217 WriteNewDbgInfoFormat = SeenNewDbgInfoFormat; 218 M->setNewDbgInfoFormatFlag(SeenNewDbgInfoFormat); 219 } 220 221 // Handle any function attribute group forward references. 222 for (const auto &RAG : ForwardRefAttrGroups) { 223 Value *V = RAG.first; 224 const std::vector<unsigned> &Attrs = RAG.second; 225 AttrBuilder B(Context); 226 227 for (const auto &Attr : Attrs) { 228 auto R = NumberedAttrBuilders.find(Attr); 229 if (R != NumberedAttrBuilders.end()) 230 B.merge(R->second); 231 } 232 233 if (Function *Fn = dyn_cast<Function>(V)) { 234 AttributeList AS = Fn->getAttributes(); 235 AttrBuilder FnAttrs(M->getContext(), AS.getFnAttrs()); 236 AS = AS.removeFnAttributes(Context); 237 238 FnAttrs.merge(B); 239 240 // If the alignment was parsed as an attribute, move to the alignment 241 // field. 242 if (MaybeAlign A = FnAttrs.getAlignment()) { 243 Fn->setAlignment(*A); 244 FnAttrs.removeAttribute(Attribute::Alignment); 245 } 246 247 AS = AS.addFnAttributes(Context, FnAttrs); 248 Fn->setAttributes(AS); 249 } else if (CallInst *CI = dyn_cast<CallInst>(V)) { 250 AttributeList AS = CI->getAttributes(); 251 AttrBuilder FnAttrs(M->getContext(), AS.getFnAttrs()); 252 AS = AS.removeFnAttributes(Context); 253 FnAttrs.merge(B); 254 AS = AS.addFnAttributes(Context, FnAttrs); 255 CI->setAttributes(AS); 256 } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) { 257 AttributeList AS = II->getAttributes(); 258 AttrBuilder FnAttrs(M->getContext(), AS.getFnAttrs()); 259 AS = AS.removeFnAttributes(Context); 260 FnAttrs.merge(B); 261 AS = AS.addFnAttributes(Context, FnAttrs); 262 II->setAttributes(AS); 263 } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(V)) { 264 AttributeList AS = CBI->getAttributes(); 265 AttrBuilder FnAttrs(M->getContext(), AS.getFnAttrs()); 266 AS = AS.removeFnAttributes(Context); 267 FnAttrs.merge(B); 268 AS = AS.addFnAttributes(Context, FnAttrs); 269 CBI->setAttributes(AS); 270 } else if (auto *GV = dyn_cast<GlobalVariable>(V)) { 271 AttrBuilder Attrs(M->getContext(), GV->getAttributes()); 272 Attrs.merge(B); 273 GV->setAttributes(AttributeSet::get(Context,Attrs)); 274 } else { 275 llvm_unreachable("invalid object with forward attribute group reference"); 276 } 277 } 278 279 // If there are entries in ForwardRefBlockAddresses at this point, the 280 // function was never defined. 281 if (!ForwardRefBlockAddresses.empty()) 282 return error(ForwardRefBlockAddresses.begin()->first.Loc, 283 "expected function name in blockaddress"); 284 285 auto ResolveForwardRefDSOLocalEquivalents = [&](const ValID &GVRef, 286 GlobalValue *FwdRef) { 287 GlobalValue *GV = nullptr; 288 if (GVRef.Kind == ValID::t_GlobalName) { 289 GV = M->getNamedValue(GVRef.StrVal); 290 } else { 291 GV = NumberedVals.get(GVRef.UIntVal); 292 } 293 294 if (!GV) 295 return error(GVRef.Loc, "unknown function '" + GVRef.StrVal + 296 "' referenced by dso_local_equivalent"); 297 298 if (!GV->getValueType()->isFunctionTy()) 299 return error(GVRef.Loc, 300 "expected a function, alias to function, or ifunc " 301 "in dso_local_equivalent"); 302 303 auto *Equiv = DSOLocalEquivalent::get(GV); 304 FwdRef->replaceAllUsesWith(Equiv); 305 FwdRef->eraseFromParent(); 306 return false; 307 }; 308 309 // If there are entries in ForwardRefDSOLocalEquivalentIDs/Names at this 310 // point, they are references after the function was defined. Resolve those 311 // now. 312 for (auto &Iter : ForwardRefDSOLocalEquivalentIDs) { 313 if (ResolveForwardRefDSOLocalEquivalents(Iter.first, Iter.second)) 314 return true; 315 } 316 for (auto &Iter : ForwardRefDSOLocalEquivalentNames) { 317 if (ResolveForwardRefDSOLocalEquivalents(Iter.first, Iter.second)) 318 return true; 319 } 320 ForwardRefDSOLocalEquivalentIDs.clear(); 321 ForwardRefDSOLocalEquivalentNames.clear(); 322 323 for (const auto &NT : NumberedTypes) 324 if (NT.second.second.isValid()) 325 return error(NT.second.second, 326 "use of undefined type '%" + Twine(NT.first) + "'"); 327 328 for (StringMap<std::pair<Type*, LocTy> >::iterator I = 329 NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) 330 if (I->second.second.isValid()) 331 return error(I->second.second, 332 "use of undefined type named '" + I->getKey() + "'"); 333 334 if (!ForwardRefComdats.empty()) 335 return error(ForwardRefComdats.begin()->second, 336 "use of undefined comdat '$" + 337 ForwardRefComdats.begin()->first + "'"); 338 339 for (const auto &[Name, Info] : make_early_inc_range(ForwardRefVals)) { 340 if (StringRef(Name).starts_with("llvm.")) { 341 Intrinsic::ID IID = Intrinsic::lookupIntrinsicID(Name); 342 if (IID == Intrinsic::not_intrinsic) 343 // Don't do anything for unknown intrinsics. 344 continue; 345 346 // Automatically create declarations for intrinsics. Intrinsics can only 347 // be called directly, so the call function type directly determines the 348 // declaration function type. 349 // 350 // Additionally, automatically add the required mangling suffix to the 351 // intrinsic name. This means that we may replace a single forward 352 // declaration with multiple functions here. 353 for (Use &U : make_early_inc_range(Info.first->uses())) { 354 auto *CB = dyn_cast<CallBase>(U.getUser()); 355 if (!CB || !CB->isCallee(&U)) 356 return error(Info.second, "intrinsic can only be used as callee"); 357 358 SmallVector<Type *> OverloadTys; 359 if (!Intrinsic::getIntrinsicSignature(IID, CB->getFunctionType(), 360 OverloadTys)) 361 return error(Info.second, "invalid intrinsic signature"); 362 363 U.set(Intrinsic::getDeclaration(M, IID, OverloadTys)); 364 } 365 366 Info.first->eraseFromParent(); 367 ForwardRefVals.erase(Name); 368 continue; 369 } 370 371 // If incomplete IR is allowed, also add declarations for 372 // non-intrinsics. 373 if (!AllowIncompleteIR) 374 continue; 375 376 auto GetCommonFunctionType = [](Value *V) -> FunctionType * { 377 FunctionType *FTy = nullptr; 378 for (Use &U : V->uses()) { 379 auto *CB = dyn_cast<CallBase>(U.getUser()); 380 if (!CB || !CB->isCallee(&U) || (FTy && FTy != CB->getFunctionType())) 381 return nullptr; 382 FTy = CB->getFunctionType(); 383 } 384 return FTy; 385 }; 386 387 // First check whether this global is only used in calls with the same 388 // type, in which case we'll insert a function. Otherwise, fall back to 389 // using a dummy i8 type. 390 Type *Ty = GetCommonFunctionType(Info.first); 391 if (!Ty) 392 Ty = Type::getInt8Ty(Context); 393 394 GlobalValue *GV; 395 if (auto *FTy = dyn_cast<FunctionType>(Ty)) 396 GV = Function::Create(FTy, GlobalValue::ExternalLinkage, Name, M); 397 else 398 GV = new GlobalVariable(*M, Ty, /*isConstant*/ false, 399 GlobalValue::ExternalLinkage, 400 /*Initializer*/ nullptr, Name); 401 Info.first->replaceAllUsesWith(GV); 402 Info.first->eraseFromParent(); 403 ForwardRefVals.erase(Name); 404 } 405 406 if (!ForwardRefVals.empty()) 407 return error(ForwardRefVals.begin()->second.second, 408 "use of undefined value '@" + ForwardRefVals.begin()->first + 409 "'"); 410 411 if (!ForwardRefValIDs.empty()) 412 return error(ForwardRefValIDs.begin()->second.second, 413 "use of undefined value '@" + 414 Twine(ForwardRefValIDs.begin()->first) + "'"); 415 416 if (AllowIncompleteIR && !ForwardRefMDNodes.empty()) 417 dropUnknownMetadataReferences(); 418 419 if (!ForwardRefMDNodes.empty()) 420 return error(ForwardRefMDNodes.begin()->second.second, 421 "use of undefined metadata '!" + 422 Twine(ForwardRefMDNodes.begin()->first) + "'"); 423 424 // Resolve metadata cycles. 425 for (auto &N : NumberedMetadata) { 426 if (N.second && !N.second->isResolved()) 427 N.second->resolveCycles(); 428 } 429 430 for (auto *Inst : InstsWithTBAATag) { 431 MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa); 432 // With incomplete IR, the tbaa metadata may have been dropped. 433 if (!AllowIncompleteIR) 434 assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag"); 435 if (MD) { 436 auto *UpgradedMD = UpgradeTBAANode(*MD); 437 if (MD != UpgradedMD) 438 Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD); 439 } 440 } 441 442 // Look for intrinsic functions and CallInst that need to be upgraded. We use 443 // make_early_inc_range here because we may remove some functions. 444 for (Function &F : llvm::make_early_inc_range(*M)) 445 UpgradeCallsToIntrinsic(&F); 446 447 if (UpgradeDebugInfo) 448 llvm::UpgradeDebugInfo(*M); 449 450 UpgradeModuleFlags(*M); 451 UpgradeSectionAttributes(*M); 452 453 if (PreserveInputDbgFormat != cl::boolOrDefault::BOU_TRUE) 454 M->setIsNewDbgInfoFormat(UseNewDbgInfoFormat); 455 456 if (!Slots) 457 return false; 458 // Initialize the slot mapping. 459 // Because by this point we've parsed and validated everything, we can "steal" 460 // the mapping from LLParser as it doesn't need it anymore. 461 Slots->GlobalValues = std::move(NumberedVals); 462 Slots->MetadataNodes = std::move(NumberedMetadata); 463 for (const auto &I : NamedTypes) 464 Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first)); 465 for (const auto &I : NumberedTypes) 466 Slots->Types.insert(std::make_pair(I.first, I.second.first)); 467 468 return false; 469 } 470 471 /// Do final validity and basic correctness checks at the end of the index. 472 bool LLParser::validateEndOfIndex() { 473 if (!Index) 474 return false; 475 476 if (!ForwardRefValueInfos.empty()) 477 return error(ForwardRefValueInfos.begin()->second.front().second, 478 "use of undefined summary '^" + 479 Twine(ForwardRefValueInfos.begin()->first) + "'"); 480 481 if (!ForwardRefAliasees.empty()) 482 return error(ForwardRefAliasees.begin()->second.front().second, 483 "use of undefined summary '^" + 484 Twine(ForwardRefAliasees.begin()->first) + "'"); 485 486 if (!ForwardRefTypeIds.empty()) 487 return error(ForwardRefTypeIds.begin()->second.front().second, 488 "use of undefined type id summary '^" + 489 Twine(ForwardRefTypeIds.begin()->first) + "'"); 490 491 return false; 492 } 493 494 //===----------------------------------------------------------------------===// 495 // Top-Level Entities 496 //===----------------------------------------------------------------------===// 497 498 bool LLParser::parseTargetDefinitions(DataLayoutCallbackTy DataLayoutCallback) { 499 // Delay parsing of the data layout string until the target triple is known. 500 // Then, pass both the the target triple and the tentative data layout string 501 // to DataLayoutCallback, allowing to override the DL string. 502 // This enables importing modules with invalid DL strings. 503 std::string TentativeDLStr = M->getDataLayoutStr(); 504 LocTy DLStrLoc; 505 506 bool Done = false; 507 while (!Done) { 508 switch (Lex.getKind()) { 509 case lltok::kw_target: 510 if (parseTargetDefinition(TentativeDLStr, DLStrLoc)) 511 return true; 512 break; 513 case lltok::kw_source_filename: 514 if (parseSourceFileName()) 515 return true; 516 break; 517 default: 518 Done = true; 519 } 520 } 521 // Run the override callback to potentially change the data layout string, and 522 // parse the data layout string. 523 if (auto LayoutOverride = 524 DataLayoutCallback(M->getTargetTriple(), TentativeDLStr)) { 525 TentativeDLStr = *LayoutOverride; 526 DLStrLoc = {}; 527 } 528 Expected<DataLayout> MaybeDL = DataLayout::parse(TentativeDLStr); 529 if (!MaybeDL) 530 return error(DLStrLoc, toString(MaybeDL.takeError())); 531 M->setDataLayout(MaybeDL.get()); 532 return false; 533 } 534 535 bool LLParser::parseTopLevelEntities() { 536 // If there is no Module, then parse just the summary index entries. 537 if (!M) { 538 while (true) { 539 switch (Lex.getKind()) { 540 case lltok::Eof: 541 return false; 542 case lltok::SummaryID: 543 if (parseSummaryEntry()) 544 return true; 545 break; 546 case lltok::kw_source_filename: 547 if (parseSourceFileName()) 548 return true; 549 break; 550 default: 551 // Skip everything else 552 Lex.Lex(); 553 } 554 } 555 } 556 while (true) { 557 switch (Lex.getKind()) { 558 default: 559 return tokError("expected top-level entity"); 560 case lltok::Eof: return false; 561 case lltok::kw_declare: 562 if (parseDeclare()) 563 return true; 564 break; 565 case lltok::kw_define: 566 if (parseDefine()) 567 return true; 568 break; 569 case lltok::kw_module: 570 if (parseModuleAsm()) 571 return true; 572 break; 573 case lltok::LocalVarID: 574 if (parseUnnamedType()) 575 return true; 576 break; 577 case lltok::LocalVar: 578 if (parseNamedType()) 579 return true; 580 break; 581 case lltok::GlobalID: 582 if (parseUnnamedGlobal()) 583 return true; 584 break; 585 case lltok::GlobalVar: 586 if (parseNamedGlobal()) 587 return true; 588 break; 589 case lltok::ComdatVar: if (parseComdat()) return true; break; 590 case lltok::exclaim: 591 if (parseStandaloneMetadata()) 592 return true; 593 break; 594 case lltok::SummaryID: 595 if (parseSummaryEntry()) 596 return true; 597 break; 598 case lltok::MetadataVar: 599 if (parseNamedMetadata()) 600 return true; 601 break; 602 case lltok::kw_attributes: 603 if (parseUnnamedAttrGrp()) 604 return true; 605 break; 606 case lltok::kw_uselistorder: 607 if (parseUseListOrder()) 608 return true; 609 break; 610 case lltok::kw_uselistorder_bb: 611 if (parseUseListOrderBB()) 612 return true; 613 break; 614 } 615 } 616 } 617 618 /// toplevelentity 619 /// ::= 'module' 'asm' STRINGCONSTANT 620 bool LLParser::parseModuleAsm() { 621 assert(Lex.getKind() == lltok::kw_module); 622 Lex.Lex(); 623 624 std::string AsmStr; 625 if (parseToken(lltok::kw_asm, "expected 'module asm'") || 626 parseStringConstant(AsmStr)) 627 return true; 628 629 M->appendModuleInlineAsm(AsmStr); 630 return false; 631 } 632 633 /// toplevelentity 634 /// ::= 'target' 'triple' '=' STRINGCONSTANT 635 /// ::= 'target' 'datalayout' '=' STRINGCONSTANT 636 bool LLParser::parseTargetDefinition(std::string &TentativeDLStr, 637 LocTy &DLStrLoc) { 638 assert(Lex.getKind() == lltok::kw_target); 639 std::string Str; 640 switch (Lex.Lex()) { 641 default: 642 return tokError("unknown target property"); 643 case lltok::kw_triple: 644 Lex.Lex(); 645 if (parseToken(lltok::equal, "expected '=' after target triple") || 646 parseStringConstant(Str)) 647 return true; 648 M->setTargetTriple(Str); 649 return false; 650 case lltok::kw_datalayout: 651 Lex.Lex(); 652 if (parseToken(lltok::equal, "expected '=' after target datalayout")) 653 return true; 654 DLStrLoc = Lex.getLoc(); 655 if (parseStringConstant(TentativeDLStr)) 656 return true; 657 return false; 658 } 659 } 660 661 /// toplevelentity 662 /// ::= 'source_filename' '=' STRINGCONSTANT 663 bool LLParser::parseSourceFileName() { 664 assert(Lex.getKind() == lltok::kw_source_filename); 665 Lex.Lex(); 666 if (parseToken(lltok::equal, "expected '=' after source_filename") || 667 parseStringConstant(SourceFileName)) 668 return true; 669 if (M) 670 M->setSourceFileName(SourceFileName); 671 return false; 672 } 673 674 /// parseUnnamedType: 675 /// ::= LocalVarID '=' 'type' type 676 bool LLParser::parseUnnamedType() { 677 LocTy TypeLoc = Lex.getLoc(); 678 unsigned TypeID = Lex.getUIntVal(); 679 Lex.Lex(); // eat LocalVarID; 680 681 if (parseToken(lltok::equal, "expected '=' after name") || 682 parseToken(lltok::kw_type, "expected 'type' after '='")) 683 return true; 684 685 Type *Result = nullptr; 686 if (parseStructDefinition(TypeLoc, "", NumberedTypes[TypeID], Result)) 687 return true; 688 689 if (!isa<StructType>(Result)) { 690 std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID]; 691 if (Entry.first) 692 return error(TypeLoc, "non-struct types may not be recursive"); 693 Entry.first = Result; 694 Entry.second = SMLoc(); 695 } 696 697 return false; 698 } 699 700 /// toplevelentity 701 /// ::= LocalVar '=' 'type' type 702 bool LLParser::parseNamedType() { 703 std::string Name = Lex.getStrVal(); 704 LocTy NameLoc = Lex.getLoc(); 705 Lex.Lex(); // eat LocalVar. 706 707 if (parseToken(lltok::equal, "expected '=' after name") || 708 parseToken(lltok::kw_type, "expected 'type' after name")) 709 return true; 710 711 Type *Result = nullptr; 712 if (parseStructDefinition(NameLoc, Name, NamedTypes[Name], Result)) 713 return true; 714 715 if (!isa<StructType>(Result)) { 716 std::pair<Type*, LocTy> &Entry = NamedTypes[Name]; 717 if (Entry.first) 718 return error(NameLoc, "non-struct types may not be recursive"); 719 Entry.first = Result; 720 Entry.second = SMLoc(); 721 } 722 723 return false; 724 } 725 726 /// toplevelentity 727 /// ::= 'declare' FunctionHeader 728 bool LLParser::parseDeclare() { 729 assert(Lex.getKind() == lltok::kw_declare); 730 Lex.Lex(); 731 732 std::vector<std::pair<unsigned, MDNode *>> MDs; 733 while (Lex.getKind() == lltok::MetadataVar) { 734 unsigned MDK; 735 MDNode *N; 736 if (parseMetadataAttachment(MDK, N)) 737 return true; 738 MDs.push_back({MDK, N}); 739 } 740 741 Function *F; 742 unsigned FunctionNumber = -1; 743 SmallVector<unsigned> UnnamedArgNums; 744 if (parseFunctionHeader(F, false, FunctionNumber, UnnamedArgNums)) 745 return true; 746 for (auto &MD : MDs) 747 F->addMetadata(MD.first, *MD.second); 748 return false; 749 } 750 751 /// toplevelentity 752 /// ::= 'define' FunctionHeader (!dbg !56)* '{' ... 753 bool LLParser::parseDefine() { 754 assert(Lex.getKind() == lltok::kw_define); 755 Lex.Lex(); 756 757 Function *F; 758 unsigned FunctionNumber = -1; 759 SmallVector<unsigned> UnnamedArgNums; 760 return parseFunctionHeader(F, true, FunctionNumber, UnnamedArgNums) || 761 parseOptionalFunctionMetadata(*F) || 762 parseFunctionBody(*F, FunctionNumber, UnnamedArgNums); 763 } 764 765 /// parseGlobalType 766 /// ::= 'constant' 767 /// ::= 'global' 768 bool LLParser::parseGlobalType(bool &IsConstant) { 769 if (Lex.getKind() == lltok::kw_constant) 770 IsConstant = true; 771 else if (Lex.getKind() == lltok::kw_global) 772 IsConstant = false; 773 else { 774 IsConstant = false; 775 return tokError("expected 'global' or 'constant'"); 776 } 777 Lex.Lex(); 778 return false; 779 } 780 781 bool LLParser::parseOptionalUnnamedAddr( 782 GlobalVariable::UnnamedAddr &UnnamedAddr) { 783 if (EatIfPresent(lltok::kw_unnamed_addr)) 784 UnnamedAddr = GlobalValue::UnnamedAddr::Global; 785 else if (EatIfPresent(lltok::kw_local_unnamed_addr)) 786 UnnamedAddr = GlobalValue::UnnamedAddr::Local; 787 else 788 UnnamedAddr = GlobalValue::UnnamedAddr::None; 789 return false; 790 } 791 792 /// parseUnnamedGlobal: 793 /// OptionalVisibility (ALIAS | IFUNC) ... 794 /// OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 795 /// OptionalDLLStorageClass 796 /// ... -> global variable 797 /// GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ... 798 /// GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier 799 /// OptionalVisibility 800 /// OptionalDLLStorageClass 801 /// ... -> global variable 802 bool LLParser::parseUnnamedGlobal() { 803 unsigned VarID; 804 std::string Name; 805 LocTy NameLoc = Lex.getLoc(); 806 807 // Handle the GlobalID form. 808 if (Lex.getKind() == lltok::GlobalID) { 809 VarID = Lex.getUIntVal(); 810 if (checkValueID(NameLoc, "global", "@", NumberedVals.getNext(), VarID)) 811 return true; 812 813 Lex.Lex(); // eat GlobalID; 814 if (parseToken(lltok::equal, "expected '=' after name")) 815 return true; 816 } else { 817 VarID = NumberedVals.getNext(); 818 } 819 820 bool HasLinkage; 821 unsigned Linkage, Visibility, DLLStorageClass; 822 bool DSOLocal; 823 GlobalVariable::ThreadLocalMode TLM; 824 GlobalVariable::UnnamedAddr UnnamedAddr; 825 if (parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 826 DSOLocal) || 827 parseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr)) 828 return true; 829 830 switch (Lex.getKind()) { 831 default: 832 return parseGlobal(Name, VarID, NameLoc, Linkage, HasLinkage, Visibility, 833 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 834 case lltok::kw_alias: 835 case lltok::kw_ifunc: 836 return parseAliasOrIFunc(Name, VarID, NameLoc, Linkage, Visibility, 837 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 838 } 839 } 840 841 /// parseNamedGlobal: 842 /// GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ... 843 /// GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 844 /// OptionalVisibility OptionalDLLStorageClass 845 /// ... -> global variable 846 bool LLParser::parseNamedGlobal() { 847 assert(Lex.getKind() == lltok::GlobalVar); 848 LocTy NameLoc = Lex.getLoc(); 849 std::string Name = Lex.getStrVal(); 850 Lex.Lex(); 851 852 bool HasLinkage; 853 unsigned Linkage, Visibility, DLLStorageClass; 854 bool DSOLocal; 855 GlobalVariable::ThreadLocalMode TLM; 856 GlobalVariable::UnnamedAddr UnnamedAddr; 857 if (parseToken(lltok::equal, "expected '=' in global variable") || 858 parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 859 DSOLocal) || 860 parseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr)) 861 return true; 862 863 switch (Lex.getKind()) { 864 default: 865 return parseGlobal(Name, -1, NameLoc, Linkage, HasLinkage, Visibility, 866 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 867 case lltok::kw_alias: 868 case lltok::kw_ifunc: 869 return parseAliasOrIFunc(Name, -1, NameLoc, Linkage, Visibility, 870 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 871 } 872 } 873 874 bool LLParser::parseComdat() { 875 assert(Lex.getKind() == lltok::ComdatVar); 876 std::string Name = Lex.getStrVal(); 877 LocTy NameLoc = Lex.getLoc(); 878 Lex.Lex(); 879 880 if (parseToken(lltok::equal, "expected '=' here")) 881 return true; 882 883 if (parseToken(lltok::kw_comdat, "expected comdat keyword")) 884 return tokError("expected comdat type"); 885 886 Comdat::SelectionKind SK; 887 switch (Lex.getKind()) { 888 default: 889 return tokError("unknown selection kind"); 890 case lltok::kw_any: 891 SK = Comdat::Any; 892 break; 893 case lltok::kw_exactmatch: 894 SK = Comdat::ExactMatch; 895 break; 896 case lltok::kw_largest: 897 SK = Comdat::Largest; 898 break; 899 case lltok::kw_nodeduplicate: 900 SK = Comdat::NoDeduplicate; 901 break; 902 case lltok::kw_samesize: 903 SK = Comdat::SameSize; 904 break; 905 } 906 Lex.Lex(); 907 908 // See if the comdat was forward referenced, if so, use the comdat. 909 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 910 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 911 if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name)) 912 return error(NameLoc, "redefinition of comdat '$" + Name + "'"); 913 914 Comdat *C; 915 if (I != ComdatSymTab.end()) 916 C = &I->second; 917 else 918 C = M->getOrInsertComdat(Name); 919 C->setSelectionKind(SK); 920 921 return false; 922 } 923 924 // MDString: 925 // ::= '!' STRINGCONSTANT 926 bool LLParser::parseMDString(MDString *&Result) { 927 std::string Str; 928 if (parseStringConstant(Str)) 929 return true; 930 Result = MDString::get(Context, Str); 931 return false; 932 } 933 934 // MDNode: 935 // ::= '!' MDNodeNumber 936 bool LLParser::parseMDNodeID(MDNode *&Result) { 937 // !{ ..., !42, ... } 938 LocTy IDLoc = Lex.getLoc(); 939 unsigned MID = 0; 940 if (parseUInt32(MID)) 941 return true; 942 943 // If not a forward reference, just return it now. 944 if (NumberedMetadata.count(MID)) { 945 Result = NumberedMetadata[MID]; 946 return false; 947 } 948 949 // Otherwise, create MDNode forward reference. 950 auto &FwdRef = ForwardRefMDNodes[MID]; 951 FwdRef = std::make_pair(MDTuple::getTemporary(Context, {}), IDLoc); 952 953 Result = FwdRef.first.get(); 954 NumberedMetadata[MID].reset(Result); 955 return false; 956 } 957 958 /// parseNamedMetadata: 959 /// !foo = !{ !1, !2 } 960 bool LLParser::parseNamedMetadata() { 961 assert(Lex.getKind() == lltok::MetadataVar); 962 std::string Name = Lex.getStrVal(); 963 Lex.Lex(); 964 965 if (parseToken(lltok::equal, "expected '=' here") || 966 parseToken(lltok::exclaim, "Expected '!' here") || 967 parseToken(lltok::lbrace, "Expected '{' here")) 968 return true; 969 970 NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name); 971 if (Lex.getKind() != lltok::rbrace) 972 do { 973 MDNode *N = nullptr; 974 // parse DIExpressions inline as a special case. They are still MDNodes, 975 // so they can still appear in named metadata. Remove this logic if they 976 // become plain Metadata. 977 if (Lex.getKind() == lltok::MetadataVar && 978 Lex.getStrVal() == "DIExpression") { 979 if (parseDIExpression(N, /*IsDistinct=*/false)) 980 return true; 981 // DIArgLists should only appear inline in a function, as they may 982 // contain LocalAsMetadata arguments which require a function context. 983 } else if (Lex.getKind() == lltok::MetadataVar && 984 Lex.getStrVal() == "DIArgList") { 985 return tokError("found DIArgList outside of function"); 986 } else if (parseToken(lltok::exclaim, "Expected '!' here") || 987 parseMDNodeID(N)) { 988 return true; 989 } 990 NMD->addOperand(N); 991 } while (EatIfPresent(lltok::comma)); 992 993 return parseToken(lltok::rbrace, "expected end of metadata node"); 994 } 995 996 /// parseStandaloneMetadata: 997 /// !42 = !{...} 998 bool LLParser::parseStandaloneMetadata() { 999 assert(Lex.getKind() == lltok::exclaim); 1000 Lex.Lex(); 1001 unsigned MetadataID = 0; 1002 1003 MDNode *Init; 1004 if (parseUInt32(MetadataID) || parseToken(lltok::equal, "expected '=' here")) 1005 return true; 1006 1007 // Detect common error, from old metadata syntax. 1008 if (Lex.getKind() == lltok::Type) 1009 return tokError("unexpected type in metadata definition"); 1010 1011 bool IsDistinct = EatIfPresent(lltok::kw_distinct); 1012 if (Lex.getKind() == lltok::MetadataVar) { 1013 if (parseSpecializedMDNode(Init, IsDistinct)) 1014 return true; 1015 } else if (parseToken(lltok::exclaim, "Expected '!' here") || 1016 parseMDTuple(Init, IsDistinct)) 1017 return true; 1018 1019 // See if this was forward referenced, if so, handle it. 1020 auto FI = ForwardRefMDNodes.find(MetadataID); 1021 if (FI != ForwardRefMDNodes.end()) { 1022 auto *ToReplace = FI->second.first.get(); 1023 // DIAssignID has its own special forward-reference "replacement" for 1024 // attachments (the temporary attachments are never actually attached). 1025 if (isa<DIAssignID>(Init)) { 1026 for (auto *Inst : TempDIAssignIDAttachments[ToReplace]) { 1027 assert(!Inst->getMetadata(LLVMContext::MD_DIAssignID) && 1028 "Inst unexpectedly already has DIAssignID attachment"); 1029 Inst->setMetadata(LLVMContext::MD_DIAssignID, Init); 1030 } 1031 } 1032 1033 ToReplace->replaceAllUsesWith(Init); 1034 ForwardRefMDNodes.erase(FI); 1035 1036 assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work"); 1037 } else { 1038 if (NumberedMetadata.count(MetadataID)) 1039 return tokError("Metadata id is already used"); 1040 NumberedMetadata[MetadataID].reset(Init); 1041 } 1042 1043 return false; 1044 } 1045 1046 // Skips a single module summary entry. 1047 bool LLParser::skipModuleSummaryEntry() { 1048 // Each module summary entry consists of a tag for the entry 1049 // type, followed by a colon, then the fields which may be surrounded by 1050 // nested sets of parentheses. The "tag:" looks like a Label. Once parsing 1051 // support is in place we will look for the tokens corresponding to the 1052 // expected tags. 1053 if (Lex.getKind() != lltok::kw_gv && Lex.getKind() != lltok::kw_module && 1054 Lex.getKind() != lltok::kw_typeid && Lex.getKind() != lltok::kw_flags && 1055 Lex.getKind() != lltok::kw_blockcount) 1056 return tokError( 1057 "Expected 'gv', 'module', 'typeid', 'flags' or 'blockcount' at the " 1058 "start of summary entry"); 1059 if (Lex.getKind() == lltok::kw_flags) 1060 return parseSummaryIndexFlags(); 1061 if (Lex.getKind() == lltok::kw_blockcount) 1062 return parseBlockCount(); 1063 Lex.Lex(); 1064 if (parseToken(lltok::colon, "expected ':' at start of summary entry") || 1065 parseToken(lltok::lparen, "expected '(' at start of summary entry")) 1066 return true; 1067 // Now walk through the parenthesized entry, until the number of open 1068 // parentheses goes back down to 0 (the first '(' was parsed above). 1069 unsigned NumOpenParen = 1; 1070 do { 1071 switch (Lex.getKind()) { 1072 case lltok::lparen: 1073 NumOpenParen++; 1074 break; 1075 case lltok::rparen: 1076 NumOpenParen--; 1077 break; 1078 case lltok::Eof: 1079 return tokError("found end of file while parsing summary entry"); 1080 default: 1081 // Skip everything in between parentheses. 1082 break; 1083 } 1084 Lex.Lex(); 1085 } while (NumOpenParen > 0); 1086 return false; 1087 } 1088 1089 /// SummaryEntry 1090 /// ::= SummaryID '=' GVEntry | ModuleEntry | TypeIdEntry 1091 bool LLParser::parseSummaryEntry() { 1092 assert(Lex.getKind() == lltok::SummaryID); 1093 unsigned SummaryID = Lex.getUIntVal(); 1094 1095 // For summary entries, colons should be treated as distinct tokens, 1096 // not an indication of the end of a label token. 1097 Lex.setIgnoreColonInIdentifiers(true); 1098 1099 Lex.Lex(); 1100 if (parseToken(lltok::equal, "expected '=' here")) 1101 return true; 1102 1103 // If we don't have an index object, skip the summary entry. 1104 if (!Index) 1105 return skipModuleSummaryEntry(); 1106 1107 bool result = false; 1108 switch (Lex.getKind()) { 1109 case lltok::kw_gv: 1110 result = parseGVEntry(SummaryID); 1111 break; 1112 case lltok::kw_module: 1113 result = parseModuleEntry(SummaryID); 1114 break; 1115 case lltok::kw_typeid: 1116 result = parseTypeIdEntry(SummaryID); 1117 break; 1118 case lltok::kw_typeidCompatibleVTable: 1119 result = parseTypeIdCompatibleVtableEntry(SummaryID); 1120 break; 1121 case lltok::kw_flags: 1122 result = parseSummaryIndexFlags(); 1123 break; 1124 case lltok::kw_blockcount: 1125 result = parseBlockCount(); 1126 break; 1127 default: 1128 result = error(Lex.getLoc(), "unexpected summary kind"); 1129 break; 1130 } 1131 Lex.setIgnoreColonInIdentifiers(false); 1132 return result; 1133 } 1134 1135 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) { 1136 return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) || 1137 (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility; 1138 } 1139 static bool isValidDLLStorageClassForLinkage(unsigned S, unsigned L) { 1140 return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) || 1141 (GlobalValue::DLLStorageClassTypes)S == GlobalValue::DefaultStorageClass; 1142 } 1143 1144 // If there was an explicit dso_local, update GV. In the absence of an explicit 1145 // dso_local we keep the default value. 1146 static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) { 1147 if (DSOLocal) 1148 GV.setDSOLocal(true); 1149 } 1150 1151 /// parseAliasOrIFunc: 1152 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 1153 /// OptionalVisibility OptionalDLLStorageClass 1154 /// OptionalThreadLocal OptionalUnnamedAddr 1155 /// 'alias|ifunc' AliaseeOrResolver SymbolAttrs* 1156 /// 1157 /// AliaseeOrResolver 1158 /// ::= TypeAndValue 1159 /// 1160 /// SymbolAttrs 1161 /// ::= ',' 'partition' StringConstant 1162 /// 1163 /// Everything through OptionalUnnamedAddr has already been parsed. 1164 /// 1165 bool LLParser::parseAliasOrIFunc(const std::string &Name, unsigned NameID, 1166 LocTy NameLoc, unsigned L, unsigned Visibility, 1167 unsigned DLLStorageClass, bool DSOLocal, 1168 GlobalVariable::ThreadLocalMode TLM, 1169 GlobalVariable::UnnamedAddr UnnamedAddr) { 1170 bool IsAlias; 1171 if (Lex.getKind() == lltok::kw_alias) 1172 IsAlias = true; 1173 else if (Lex.getKind() == lltok::kw_ifunc) 1174 IsAlias = false; 1175 else 1176 llvm_unreachable("Not an alias or ifunc!"); 1177 Lex.Lex(); 1178 1179 GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L; 1180 1181 if(IsAlias && !GlobalAlias::isValidLinkage(Linkage)) 1182 return error(NameLoc, "invalid linkage type for alias"); 1183 1184 if (!isValidVisibilityForLinkage(Visibility, L)) 1185 return error(NameLoc, 1186 "symbol with local linkage must have default visibility"); 1187 1188 if (!isValidDLLStorageClassForLinkage(DLLStorageClass, L)) 1189 return error(NameLoc, 1190 "symbol with local linkage cannot have a DLL storage class"); 1191 1192 Type *Ty; 1193 LocTy ExplicitTypeLoc = Lex.getLoc(); 1194 if (parseType(Ty) || 1195 parseToken(lltok::comma, "expected comma after alias or ifunc's type")) 1196 return true; 1197 1198 Constant *Aliasee; 1199 LocTy AliaseeLoc = Lex.getLoc(); 1200 if (Lex.getKind() != lltok::kw_bitcast && 1201 Lex.getKind() != lltok::kw_getelementptr && 1202 Lex.getKind() != lltok::kw_addrspacecast && 1203 Lex.getKind() != lltok::kw_inttoptr) { 1204 if (parseGlobalTypeAndValue(Aliasee)) 1205 return true; 1206 } else { 1207 // The bitcast dest type is not present, it is implied by the dest type. 1208 ValID ID; 1209 if (parseValID(ID, /*PFS=*/nullptr)) 1210 return true; 1211 if (ID.Kind != ValID::t_Constant) 1212 return error(AliaseeLoc, "invalid aliasee"); 1213 Aliasee = ID.ConstantVal; 1214 } 1215 1216 Type *AliaseeType = Aliasee->getType(); 1217 auto *PTy = dyn_cast<PointerType>(AliaseeType); 1218 if (!PTy) 1219 return error(AliaseeLoc, "An alias or ifunc must have pointer type"); 1220 unsigned AddrSpace = PTy->getAddressSpace(); 1221 1222 GlobalValue *GVal = nullptr; 1223 1224 // See if the alias was forward referenced, if so, prepare to replace the 1225 // forward reference. 1226 if (!Name.empty()) { 1227 auto I = ForwardRefVals.find(Name); 1228 if (I != ForwardRefVals.end()) { 1229 GVal = I->second.first; 1230 ForwardRefVals.erase(Name); 1231 } else if (M->getNamedValue(Name)) { 1232 return error(NameLoc, "redefinition of global '@" + Name + "'"); 1233 } 1234 } else { 1235 auto I = ForwardRefValIDs.find(NameID); 1236 if (I != ForwardRefValIDs.end()) { 1237 GVal = I->second.first; 1238 ForwardRefValIDs.erase(I); 1239 } 1240 } 1241 1242 // Okay, create the alias/ifunc but do not insert it into the module yet. 1243 std::unique_ptr<GlobalAlias> GA; 1244 std::unique_ptr<GlobalIFunc> GI; 1245 GlobalValue *GV; 1246 if (IsAlias) { 1247 GA.reset(GlobalAlias::create(Ty, AddrSpace, 1248 (GlobalValue::LinkageTypes)Linkage, Name, 1249 Aliasee, /*Parent*/ nullptr)); 1250 GV = GA.get(); 1251 } else { 1252 GI.reset(GlobalIFunc::create(Ty, AddrSpace, 1253 (GlobalValue::LinkageTypes)Linkage, Name, 1254 Aliasee, /*Parent*/ nullptr)); 1255 GV = GI.get(); 1256 } 1257 GV->setThreadLocalMode(TLM); 1258 GV->setVisibility((GlobalValue::VisibilityTypes)Visibility); 1259 GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 1260 GV->setUnnamedAddr(UnnamedAddr); 1261 maybeSetDSOLocal(DSOLocal, *GV); 1262 1263 // At this point we've parsed everything except for the IndirectSymbolAttrs. 1264 // Now parse them if there are any. 1265 while (Lex.getKind() == lltok::comma) { 1266 Lex.Lex(); 1267 1268 if (Lex.getKind() == lltok::kw_partition) { 1269 Lex.Lex(); 1270 GV->setPartition(Lex.getStrVal()); 1271 if (parseToken(lltok::StringConstant, "expected partition string")) 1272 return true; 1273 } else { 1274 return tokError("unknown alias or ifunc property!"); 1275 } 1276 } 1277 1278 if (Name.empty()) 1279 NumberedVals.add(NameID, GV); 1280 1281 if (GVal) { 1282 // Verify that types agree. 1283 if (GVal->getType() != GV->getType()) 1284 return error( 1285 ExplicitTypeLoc, 1286 "forward reference and definition of alias have different types"); 1287 1288 // If they agree, just RAUW the old value with the alias and remove the 1289 // forward ref info. 1290 GVal->replaceAllUsesWith(GV); 1291 GVal->eraseFromParent(); 1292 } 1293 1294 // Insert into the module, we know its name won't collide now. 1295 if (IsAlias) 1296 M->insertAlias(GA.release()); 1297 else 1298 M->insertIFunc(GI.release()); 1299 assert(GV->getName() == Name && "Should not be a name conflict!"); 1300 1301 return false; 1302 } 1303 1304 static bool isSanitizer(lltok::Kind Kind) { 1305 switch (Kind) { 1306 case lltok::kw_no_sanitize_address: 1307 case lltok::kw_no_sanitize_hwaddress: 1308 case lltok::kw_sanitize_memtag: 1309 case lltok::kw_sanitize_address_dyninit: 1310 return true; 1311 default: 1312 return false; 1313 } 1314 } 1315 1316 bool LLParser::parseSanitizer(GlobalVariable *GV) { 1317 using SanitizerMetadata = GlobalValue::SanitizerMetadata; 1318 SanitizerMetadata Meta; 1319 if (GV->hasSanitizerMetadata()) 1320 Meta = GV->getSanitizerMetadata(); 1321 1322 switch (Lex.getKind()) { 1323 case lltok::kw_no_sanitize_address: 1324 Meta.NoAddress = true; 1325 break; 1326 case lltok::kw_no_sanitize_hwaddress: 1327 Meta.NoHWAddress = true; 1328 break; 1329 case lltok::kw_sanitize_memtag: 1330 Meta.Memtag = true; 1331 break; 1332 case lltok::kw_sanitize_address_dyninit: 1333 Meta.IsDynInit = true; 1334 break; 1335 default: 1336 return tokError("non-sanitizer token passed to LLParser::parseSanitizer()"); 1337 } 1338 GV->setSanitizerMetadata(Meta); 1339 Lex.Lex(); 1340 return false; 1341 } 1342 1343 /// parseGlobal 1344 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 1345 /// OptionalVisibility OptionalDLLStorageClass 1346 /// OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace 1347 /// OptionalExternallyInitialized GlobalType Type Const OptionalAttrs 1348 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 1349 /// OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr 1350 /// OptionalAddrSpace OptionalExternallyInitialized GlobalType Type 1351 /// Const OptionalAttrs 1352 /// 1353 /// Everything up to and including OptionalUnnamedAddr has been parsed 1354 /// already. 1355 /// 1356 bool LLParser::parseGlobal(const std::string &Name, unsigned NameID, 1357 LocTy NameLoc, unsigned Linkage, bool HasLinkage, 1358 unsigned Visibility, unsigned DLLStorageClass, 1359 bool DSOLocal, GlobalVariable::ThreadLocalMode TLM, 1360 GlobalVariable::UnnamedAddr UnnamedAddr) { 1361 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 1362 return error(NameLoc, 1363 "symbol with local linkage must have default visibility"); 1364 1365 if (!isValidDLLStorageClassForLinkage(DLLStorageClass, Linkage)) 1366 return error(NameLoc, 1367 "symbol with local linkage cannot have a DLL storage class"); 1368 1369 unsigned AddrSpace; 1370 bool IsConstant, IsExternallyInitialized; 1371 LocTy IsExternallyInitializedLoc; 1372 LocTy TyLoc; 1373 1374 Type *Ty = nullptr; 1375 if (parseOptionalAddrSpace(AddrSpace) || 1376 parseOptionalToken(lltok::kw_externally_initialized, 1377 IsExternallyInitialized, 1378 &IsExternallyInitializedLoc) || 1379 parseGlobalType(IsConstant) || parseType(Ty, TyLoc)) 1380 return true; 1381 1382 // If the linkage is specified and is external, then no initializer is 1383 // present. 1384 Constant *Init = nullptr; 1385 if (!HasLinkage || 1386 !GlobalValue::isValidDeclarationLinkage( 1387 (GlobalValue::LinkageTypes)Linkage)) { 1388 if (parseGlobalValue(Ty, Init)) 1389 return true; 1390 } 1391 1392 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 1393 return error(TyLoc, "invalid type for global variable"); 1394 1395 GlobalValue *GVal = nullptr; 1396 1397 // See if the global was forward referenced, if so, use the global. 1398 if (!Name.empty()) { 1399 auto I = ForwardRefVals.find(Name); 1400 if (I != ForwardRefVals.end()) { 1401 GVal = I->second.first; 1402 ForwardRefVals.erase(I); 1403 } else if (M->getNamedValue(Name)) { 1404 return error(NameLoc, "redefinition of global '@" + Name + "'"); 1405 } 1406 } else { 1407 // Handle @"", where a name is syntactically specified, but semantically 1408 // missing. 1409 if (NameID == (unsigned)-1) 1410 NameID = NumberedVals.getNext(); 1411 1412 auto I = ForwardRefValIDs.find(NameID); 1413 if (I != ForwardRefValIDs.end()) { 1414 GVal = I->second.first; 1415 ForwardRefValIDs.erase(I); 1416 } 1417 } 1418 1419 GlobalVariable *GV = new GlobalVariable( 1420 *M, Ty, false, GlobalValue::ExternalLinkage, nullptr, Name, nullptr, 1421 GlobalVariable::NotThreadLocal, AddrSpace); 1422 1423 if (Name.empty()) 1424 NumberedVals.add(NameID, GV); 1425 1426 // Set the parsed properties on the global. 1427 if (Init) 1428 GV->setInitializer(Init); 1429 GV->setConstant(IsConstant); 1430 GV->setLinkage((GlobalValue::LinkageTypes)Linkage); 1431 maybeSetDSOLocal(DSOLocal, *GV); 1432 GV->setVisibility((GlobalValue::VisibilityTypes)Visibility); 1433 GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 1434 GV->setExternallyInitialized(IsExternallyInitialized); 1435 GV->setThreadLocalMode(TLM); 1436 GV->setUnnamedAddr(UnnamedAddr); 1437 1438 if (GVal) { 1439 if (GVal->getAddressSpace() != AddrSpace) 1440 return error( 1441 TyLoc, 1442 "forward reference and definition of global have different types"); 1443 1444 GVal->replaceAllUsesWith(GV); 1445 GVal->eraseFromParent(); 1446 } 1447 1448 // parse attributes on the global. 1449 while (Lex.getKind() == lltok::comma) { 1450 Lex.Lex(); 1451 1452 if (Lex.getKind() == lltok::kw_section) { 1453 Lex.Lex(); 1454 GV->setSection(Lex.getStrVal()); 1455 if (parseToken(lltok::StringConstant, "expected global section string")) 1456 return true; 1457 } else if (Lex.getKind() == lltok::kw_partition) { 1458 Lex.Lex(); 1459 GV->setPartition(Lex.getStrVal()); 1460 if (parseToken(lltok::StringConstant, "expected partition string")) 1461 return true; 1462 } else if (Lex.getKind() == lltok::kw_align) { 1463 MaybeAlign Alignment; 1464 if (parseOptionalAlignment(Alignment)) 1465 return true; 1466 if (Alignment) 1467 GV->setAlignment(*Alignment); 1468 } else if (Lex.getKind() == lltok::kw_code_model) { 1469 CodeModel::Model CodeModel; 1470 if (parseOptionalCodeModel(CodeModel)) 1471 return true; 1472 GV->setCodeModel(CodeModel); 1473 } else if (Lex.getKind() == lltok::MetadataVar) { 1474 if (parseGlobalObjectMetadataAttachment(*GV)) 1475 return true; 1476 } else if (isSanitizer(Lex.getKind())) { 1477 if (parseSanitizer(GV)) 1478 return true; 1479 } else { 1480 Comdat *C; 1481 if (parseOptionalComdat(Name, C)) 1482 return true; 1483 if (C) 1484 GV->setComdat(C); 1485 else 1486 return tokError("unknown global variable property!"); 1487 } 1488 } 1489 1490 AttrBuilder Attrs(M->getContext()); 1491 LocTy BuiltinLoc; 1492 std::vector<unsigned> FwdRefAttrGrps; 1493 if (parseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc)) 1494 return true; 1495 if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) { 1496 GV->setAttributes(AttributeSet::get(Context, Attrs)); 1497 ForwardRefAttrGroups[GV] = FwdRefAttrGrps; 1498 } 1499 1500 return false; 1501 } 1502 1503 /// parseUnnamedAttrGrp 1504 /// ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}' 1505 bool LLParser::parseUnnamedAttrGrp() { 1506 assert(Lex.getKind() == lltok::kw_attributes); 1507 LocTy AttrGrpLoc = Lex.getLoc(); 1508 Lex.Lex(); 1509 1510 if (Lex.getKind() != lltok::AttrGrpID) 1511 return tokError("expected attribute group id"); 1512 1513 unsigned VarID = Lex.getUIntVal(); 1514 std::vector<unsigned> unused; 1515 LocTy BuiltinLoc; 1516 Lex.Lex(); 1517 1518 if (parseToken(lltok::equal, "expected '=' here") || 1519 parseToken(lltok::lbrace, "expected '{' here")) 1520 return true; 1521 1522 auto R = NumberedAttrBuilders.find(VarID); 1523 if (R == NumberedAttrBuilders.end()) 1524 R = NumberedAttrBuilders.emplace(VarID, AttrBuilder(M->getContext())).first; 1525 1526 if (parseFnAttributeValuePairs(R->second, unused, true, BuiltinLoc) || 1527 parseToken(lltok::rbrace, "expected end of attribute group")) 1528 return true; 1529 1530 if (!R->second.hasAttributes()) 1531 return error(AttrGrpLoc, "attribute group has no attributes"); 1532 1533 return false; 1534 } 1535 1536 static Attribute::AttrKind tokenToAttribute(lltok::Kind Kind) { 1537 switch (Kind) { 1538 #define GET_ATTR_NAMES 1539 #define ATTRIBUTE_ENUM(ENUM_NAME, DISPLAY_NAME) \ 1540 case lltok::kw_##DISPLAY_NAME: \ 1541 return Attribute::ENUM_NAME; 1542 #include "llvm/IR/Attributes.inc" 1543 default: 1544 return Attribute::None; 1545 } 1546 } 1547 1548 bool LLParser::parseEnumAttribute(Attribute::AttrKind Attr, AttrBuilder &B, 1549 bool InAttrGroup) { 1550 if (Attribute::isTypeAttrKind(Attr)) 1551 return parseRequiredTypeAttr(B, Lex.getKind(), Attr); 1552 1553 switch (Attr) { 1554 case Attribute::Alignment: { 1555 MaybeAlign Alignment; 1556 if (InAttrGroup) { 1557 uint32_t Value = 0; 1558 Lex.Lex(); 1559 if (parseToken(lltok::equal, "expected '=' here") || parseUInt32(Value)) 1560 return true; 1561 Alignment = Align(Value); 1562 } else { 1563 if (parseOptionalAlignment(Alignment, true)) 1564 return true; 1565 } 1566 B.addAlignmentAttr(Alignment); 1567 return false; 1568 } 1569 case Attribute::StackAlignment: { 1570 unsigned Alignment; 1571 if (InAttrGroup) { 1572 Lex.Lex(); 1573 if (parseToken(lltok::equal, "expected '=' here") || 1574 parseUInt32(Alignment)) 1575 return true; 1576 } else { 1577 if (parseOptionalStackAlignment(Alignment)) 1578 return true; 1579 } 1580 B.addStackAlignmentAttr(Alignment); 1581 return false; 1582 } 1583 case Attribute::AllocSize: { 1584 unsigned ElemSizeArg; 1585 std::optional<unsigned> NumElemsArg; 1586 if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg)) 1587 return true; 1588 B.addAllocSizeAttr(ElemSizeArg, NumElemsArg); 1589 return false; 1590 } 1591 case Attribute::VScaleRange: { 1592 unsigned MinValue, MaxValue; 1593 if (parseVScaleRangeArguments(MinValue, MaxValue)) 1594 return true; 1595 B.addVScaleRangeAttr(MinValue, 1596 MaxValue > 0 ? MaxValue : std::optional<unsigned>()); 1597 return false; 1598 } 1599 case Attribute::Dereferenceable: { 1600 uint64_t Bytes; 1601 if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) 1602 return true; 1603 B.addDereferenceableAttr(Bytes); 1604 return false; 1605 } 1606 case Attribute::DereferenceableOrNull: { 1607 uint64_t Bytes; 1608 if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) 1609 return true; 1610 B.addDereferenceableOrNullAttr(Bytes); 1611 return false; 1612 } 1613 case Attribute::UWTable: { 1614 UWTableKind Kind; 1615 if (parseOptionalUWTableKind(Kind)) 1616 return true; 1617 B.addUWTableAttr(Kind); 1618 return false; 1619 } 1620 case Attribute::AllocKind: { 1621 AllocFnKind Kind = AllocFnKind::Unknown; 1622 if (parseAllocKind(Kind)) 1623 return true; 1624 B.addAllocKindAttr(Kind); 1625 return false; 1626 } 1627 case Attribute::Memory: { 1628 std::optional<MemoryEffects> ME = parseMemoryAttr(); 1629 if (!ME) 1630 return true; 1631 B.addMemoryAttr(*ME); 1632 return false; 1633 } 1634 case Attribute::NoFPClass: { 1635 if (FPClassTest NoFPClass = 1636 static_cast<FPClassTest>(parseNoFPClassAttr())) { 1637 B.addNoFPClassAttr(NoFPClass); 1638 return false; 1639 } 1640 1641 return true; 1642 } 1643 case Attribute::Range: 1644 return parseRangeAttr(B); 1645 case Attribute::Initializes: 1646 return parseInitializesAttr(B); 1647 default: 1648 B.addAttribute(Attr); 1649 Lex.Lex(); 1650 return false; 1651 } 1652 } 1653 1654 static bool upgradeMemoryAttr(MemoryEffects &ME, lltok::Kind Kind) { 1655 switch (Kind) { 1656 case lltok::kw_readnone: 1657 ME &= MemoryEffects::none(); 1658 return true; 1659 case lltok::kw_readonly: 1660 ME &= MemoryEffects::readOnly(); 1661 return true; 1662 case lltok::kw_writeonly: 1663 ME &= MemoryEffects::writeOnly(); 1664 return true; 1665 case lltok::kw_argmemonly: 1666 ME &= MemoryEffects::argMemOnly(); 1667 return true; 1668 case lltok::kw_inaccessiblememonly: 1669 ME &= MemoryEffects::inaccessibleMemOnly(); 1670 return true; 1671 case lltok::kw_inaccessiblemem_or_argmemonly: 1672 ME &= MemoryEffects::inaccessibleOrArgMemOnly(); 1673 return true; 1674 default: 1675 return false; 1676 } 1677 } 1678 1679 /// parseFnAttributeValuePairs 1680 /// ::= <attr> | <attr> '=' <value> 1681 bool LLParser::parseFnAttributeValuePairs(AttrBuilder &B, 1682 std::vector<unsigned> &FwdRefAttrGrps, 1683 bool InAttrGrp, LocTy &BuiltinLoc) { 1684 bool HaveError = false; 1685 1686 B.clear(); 1687 1688 MemoryEffects ME = MemoryEffects::unknown(); 1689 while (true) { 1690 lltok::Kind Token = Lex.getKind(); 1691 if (Token == lltok::rbrace) 1692 break; // Finished. 1693 1694 if (Token == lltok::StringConstant) { 1695 if (parseStringAttribute(B)) 1696 return true; 1697 continue; 1698 } 1699 1700 if (Token == lltok::AttrGrpID) { 1701 // Allow a function to reference an attribute group: 1702 // 1703 // define void @foo() #1 { ... } 1704 if (InAttrGrp) { 1705 HaveError |= error( 1706 Lex.getLoc(), 1707 "cannot have an attribute group reference in an attribute group"); 1708 } else { 1709 // Save the reference to the attribute group. We'll fill it in later. 1710 FwdRefAttrGrps.push_back(Lex.getUIntVal()); 1711 } 1712 Lex.Lex(); 1713 continue; 1714 } 1715 1716 SMLoc Loc = Lex.getLoc(); 1717 if (Token == lltok::kw_builtin) 1718 BuiltinLoc = Loc; 1719 1720 if (upgradeMemoryAttr(ME, Token)) { 1721 Lex.Lex(); 1722 continue; 1723 } 1724 1725 Attribute::AttrKind Attr = tokenToAttribute(Token); 1726 if (Attr == Attribute::None) { 1727 if (!InAttrGrp) 1728 break; 1729 return error(Lex.getLoc(), "unterminated attribute group"); 1730 } 1731 1732 if (parseEnumAttribute(Attr, B, InAttrGrp)) 1733 return true; 1734 1735 // As a hack, we allow function alignment to be initially parsed as an 1736 // attribute on a function declaration/definition or added to an attribute 1737 // group and later moved to the alignment field. 1738 if (!Attribute::canUseAsFnAttr(Attr) && Attr != Attribute::Alignment) 1739 HaveError |= error(Loc, "this attribute does not apply to functions"); 1740 } 1741 1742 if (ME != MemoryEffects::unknown()) 1743 B.addMemoryAttr(ME); 1744 return HaveError; 1745 } 1746 1747 //===----------------------------------------------------------------------===// 1748 // GlobalValue Reference/Resolution Routines. 1749 //===----------------------------------------------------------------------===// 1750 1751 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy) { 1752 // The used global type does not matter. We will later RAUW it with a 1753 // global/function of the correct type. 1754 return new GlobalVariable(*M, Type::getInt8Ty(M->getContext()), false, 1755 GlobalValue::ExternalWeakLinkage, nullptr, "", 1756 nullptr, GlobalVariable::NotThreadLocal, 1757 PTy->getAddressSpace()); 1758 } 1759 1760 Value *LLParser::checkValidVariableType(LocTy Loc, const Twine &Name, Type *Ty, 1761 Value *Val) { 1762 Type *ValTy = Val->getType(); 1763 if (ValTy == Ty) 1764 return Val; 1765 if (Ty->isLabelTy()) 1766 error(Loc, "'" + Name + "' is not a basic block"); 1767 else 1768 error(Loc, "'" + Name + "' defined with type '" + 1769 getTypeString(Val->getType()) + "' but expected '" + 1770 getTypeString(Ty) + "'"); 1771 return nullptr; 1772 } 1773 1774 /// getGlobalVal - Get a value with the specified name or ID, creating a 1775 /// forward reference record if needed. This can return null if the value 1776 /// exists but does not have the right type. 1777 GlobalValue *LLParser::getGlobalVal(const std::string &Name, Type *Ty, 1778 LocTy Loc) { 1779 PointerType *PTy = dyn_cast<PointerType>(Ty); 1780 if (!PTy) { 1781 error(Loc, "global variable reference must have pointer type"); 1782 return nullptr; 1783 } 1784 1785 // Look this name up in the normal function symbol table. 1786 GlobalValue *Val = 1787 cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name)); 1788 1789 // If this is a forward reference for the value, see if we already created a 1790 // forward ref record. 1791 if (!Val) { 1792 auto I = ForwardRefVals.find(Name); 1793 if (I != ForwardRefVals.end()) 1794 Val = I->second.first; 1795 } 1796 1797 // If we have the value in the symbol table or fwd-ref table, return it. 1798 if (Val) 1799 return cast_or_null<GlobalValue>( 1800 checkValidVariableType(Loc, "@" + Name, Ty, Val)); 1801 1802 // Otherwise, create a new forward reference for this value and remember it. 1803 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy); 1804 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 1805 return FwdVal; 1806 } 1807 1808 GlobalValue *LLParser::getGlobalVal(unsigned ID, Type *Ty, LocTy Loc) { 1809 PointerType *PTy = dyn_cast<PointerType>(Ty); 1810 if (!PTy) { 1811 error(Loc, "global variable reference must have pointer type"); 1812 return nullptr; 1813 } 1814 1815 GlobalValue *Val = NumberedVals.get(ID); 1816 1817 // If this is a forward reference for the value, see if we already created a 1818 // forward ref record. 1819 if (!Val) { 1820 auto I = ForwardRefValIDs.find(ID); 1821 if (I != ForwardRefValIDs.end()) 1822 Val = I->second.first; 1823 } 1824 1825 // If we have the value in the symbol table or fwd-ref table, return it. 1826 if (Val) 1827 return cast_or_null<GlobalValue>( 1828 checkValidVariableType(Loc, "@" + Twine(ID), Ty, Val)); 1829 1830 // Otherwise, create a new forward reference for this value and remember it. 1831 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy); 1832 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 1833 return FwdVal; 1834 } 1835 1836 //===----------------------------------------------------------------------===// 1837 // Comdat Reference/Resolution Routines. 1838 //===----------------------------------------------------------------------===// 1839 1840 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) { 1841 // Look this name up in the comdat symbol table. 1842 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 1843 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 1844 if (I != ComdatSymTab.end()) 1845 return &I->second; 1846 1847 // Otherwise, create a new forward reference for this value and remember it. 1848 Comdat *C = M->getOrInsertComdat(Name); 1849 ForwardRefComdats[Name] = Loc; 1850 return C; 1851 } 1852 1853 //===----------------------------------------------------------------------===// 1854 // Helper Routines. 1855 //===----------------------------------------------------------------------===// 1856 1857 /// parseToken - If the current token has the specified kind, eat it and return 1858 /// success. Otherwise, emit the specified error and return failure. 1859 bool LLParser::parseToken(lltok::Kind T, const char *ErrMsg) { 1860 if (Lex.getKind() != T) 1861 return tokError(ErrMsg); 1862 Lex.Lex(); 1863 return false; 1864 } 1865 1866 /// parseStringConstant 1867 /// ::= StringConstant 1868 bool LLParser::parseStringConstant(std::string &Result) { 1869 if (Lex.getKind() != lltok::StringConstant) 1870 return tokError("expected string constant"); 1871 Result = Lex.getStrVal(); 1872 Lex.Lex(); 1873 return false; 1874 } 1875 1876 /// parseUInt32 1877 /// ::= uint32 1878 bool LLParser::parseUInt32(uint32_t &Val) { 1879 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1880 return tokError("expected integer"); 1881 uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1); 1882 if (Val64 != unsigned(Val64)) 1883 return tokError("expected 32-bit integer (too large)"); 1884 Val = Val64; 1885 Lex.Lex(); 1886 return false; 1887 } 1888 1889 /// parseUInt64 1890 /// ::= uint64 1891 bool LLParser::parseUInt64(uint64_t &Val) { 1892 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1893 return tokError("expected integer"); 1894 Val = Lex.getAPSIntVal().getLimitedValue(); 1895 Lex.Lex(); 1896 return false; 1897 } 1898 1899 /// parseTLSModel 1900 /// := 'localdynamic' 1901 /// := 'initialexec' 1902 /// := 'localexec' 1903 bool LLParser::parseTLSModel(GlobalVariable::ThreadLocalMode &TLM) { 1904 switch (Lex.getKind()) { 1905 default: 1906 return tokError("expected localdynamic, initialexec or localexec"); 1907 case lltok::kw_localdynamic: 1908 TLM = GlobalVariable::LocalDynamicTLSModel; 1909 break; 1910 case lltok::kw_initialexec: 1911 TLM = GlobalVariable::InitialExecTLSModel; 1912 break; 1913 case lltok::kw_localexec: 1914 TLM = GlobalVariable::LocalExecTLSModel; 1915 break; 1916 } 1917 1918 Lex.Lex(); 1919 return false; 1920 } 1921 1922 /// parseOptionalThreadLocal 1923 /// := /*empty*/ 1924 /// := 'thread_local' 1925 /// := 'thread_local' '(' tlsmodel ')' 1926 bool LLParser::parseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) { 1927 TLM = GlobalVariable::NotThreadLocal; 1928 if (!EatIfPresent(lltok::kw_thread_local)) 1929 return false; 1930 1931 TLM = GlobalVariable::GeneralDynamicTLSModel; 1932 if (Lex.getKind() == lltok::lparen) { 1933 Lex.Lex(); 1934 return parseTLSModel(TLM) || 1935 parseToken(lltok::rparen, "expected ')' after thread local model"); 1936 } 1937 return false; 1938 } 1939 1940 /// parseOptionalAddrSpace 1941 /// := /*empty*/ 1942 /// := 'addrspace' '(' uint32 ')' 1943 bool LLParser::parseOptionalAddrSpace(unsigned &AddrSpace, unsigned DefaultAS) { 1944 AddrSpace = DefaultAS; 1945 if (!EatIfPresent(lltok::kw_addrspace)) 1946 return false; 1947 1948 auto ParseAddrspaceValue = [&](unsigned &AddrSpace) -> bool { 1949 if (Lex.getKind() == lltok::StringConstant) { 1950 auto AddrSpaceStr = Lex.getStrVal(); 1951 if (AddrSpaceStr == "A") { 1952 AddrSpace = M->getDataLayout().getAllocaAddrSpace(); 1953 } else if (AddrSpaceStr == "G") { 1954 AddrSpace = M->getDataLayout().getDefaultGlobalsAddressSpace(); 1955 } else if (AddrSpaceStr == "P") { 1956 AddrSpace = M->getDataLayout().getProgramAddressSpace(); 1957 } else { 1958 return tokError("invalid symbolic addrspace '" + AddrSpaceStr + "'"); 1959 } 1960 Lex.Lex(); 1961 return false; 1962 } 1963 if (Lex.getKind() != lltok::APSInt) 1964 return tokError("expected integer or string constant"); 1965 SMLoc Loc = Lex.getLoc(); 1966 if (parseUInt32(AddrSpace)) 1967 return true; 1968 if (!isUInt<24>(AddrSpace)) 1969 return error(Loc, "invalid address space, must be a 24-bit integer"); 1970 return false; 1971 }; 1972 1973 return parseToken(lltok::lparen, "expected '(' in address space") || 1974 ParseAddrspaceValue(AddrSpace) || 1975 parseToken(lltok::rparen, "expected ')' in address space"); 1976 } 1977 1978 /// parseStringAttribute 1979 /// := StringConstant 1980 /// := StringConstant '=' StringConstant 1981 bool LLParser::parseStringAttribute(AttrBuilder &B) { 1982 std::string Attr = Lex.getStrVal(); 1983 Lex.Lex(); 1984 std::string Val; 1985 if (EatIfPresent(lltok::equal) && parseStringConstant(Val)) 1986 return true; 1987 B.addAttribute(Attr, Val); 1988 return false; 1989 } 1990 1991 /// Parse a potentially empty list of parameter or return attributes. 1992 bool LLParser::parseOptionalParamOrReturnAttrs(AttrBuilder &B, bool IsParam) { 1993 bool HaveError = false; 1994 1995 B.clear(); 1996 1997 while (true) { 1998 lltok::Kind Token = Lex.getKind(); 1999 if (Token == lltok::StringConstant) { 2000 if (parseStringAttribute(B)) 2001 return true; 2002 continue; 2003 } 2004 2005 SMLoc Loc = Lex.getLoc(); 2006 Attribute::AttrKind Attr = tokenToAttribute(Token); 2007 if (Attr == Attribute::None) 2008 return HaveError; 2009 2010 if (parseEnumAttribute(Attr, B, /* InAttrGroup */ false)) 2011 return true; 2012 2013 if (IsParam && !Attribute::canUseAsParamAttr(Attr)) 2014 HaveError |= error(Loc, "this attribute does not apply to parameters"); 2015 if (!IsParam && !Attribute::canUseAsRetAttr(Attr)) 2016 HaveError |= error(Loc, "this attribute does not apply to return values"); 2017 } 2018 } 2019 2020 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) { 2021 HasLinkage = true; 2022 switch (Kind) { 2023 default: 2024 HasLinkage = false; 2025 return GlobalValue::ExternalLinkage; 2026 case lltok::kw_private: 2027 return GlobalValue::PrivateLinkage; 2028 case lltok::kw_internal: 2029 return GlobalValue::InternalLinkage; 2030 case lltok::kw_weak: 2031 return GlobalValue::WeakAnyLinkage; 2032 case lltok::kw_weak_odr: 2033 return GlobalValue::WeakODRLinkage; 2034 case lltok::kw_linkonce: 2035 return GlobalValue::LinkOnceAnyLinkage; 2036 case lltok::kw_linkonce_odr: 2037 return GlobalValue::LinkOnceODRLinkage; 2038 case lltok::kw_available_externally: 2039 return GlobalValue::AvailableExternallyLinkage; 2040 case lltok::kw_appending: 2041 return GlobalValue::AppendingLinkage; 2042 case lltok::kw_common: 2043 return GlobalValue::CommonLinkage; 2044 case lltok::kw_extern_weak: 2045 return GlobalValue::ExternalWeakLinkage; 2046 case lltok::kw_external: 2047 return GlobalValue::ExternalLinkage; 2048 } 2049 } 2050 2051 /// parseOptionalLinkage 2052 /// ::= /*empty*/ 2053 /// ::= 'private' 2054 /// ::= 'internal' 2055 /// ::= 'weak' 2056 /// ::= 'weak_odr' 2057 /// ::= 'linkonce' 2058 /// ::= 'linkonce_odr' 2059 /// ::= 'available_externally' 2060 /// ::= 'appending' 2061 /// ::= 'common' 2062 /// ::= 'extern_weak' 2063 /// ::= 'external' 2064 bool LLParser::parseOptionalLinkage(unsigned &Res, bool &HasLinkage, 2065 unsigned &Visibility, 2066 unsigned &DLLStorageClass, bool &DSOLocal) { 2067 Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage); 2068 if (HasLinkage) 2069 Lex.Lex(); 2070 parseOptionalDSOLocal(DSOLocal); 2071 parseOptionalVisibility(Visibility); 2072 parseOptionalDLLStorageClass(DLLStorageClass); 2073 2074 if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) { 2075 return error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch"); 2076 } 2077 2078 return false; 2079 } 2080 2081 void LLParser::parseOptionalDSOLocal(bool &DSOLocal) { 2082 switch (Lex.getKind()) { 2083 default: 2084 DSOLocal = false; 2085 break; 2086 case lltok::kw_dso_local: 2087 DSOLocal = true; 2088 Lex.Lex(); 2089 break; 2090 case lltok::kw_dso_preemptable: 2091 DSOLocal = false; 2092 Lex.Lex(); 2093 break; 2094 } 2095 } 2096 2097 /// parseOptionalVisibility 2098 /// ::= /*empty*/ 2099 /// ::= 'default' 2100 /// ::= 'hidden' 2101 /// ::= 'protected' 2102 /// 2103 void LLParser::parseOptionalVisibility(unsigned &Res) { 2104 switch (Lex.getKind()) { 2105 default: 2106 Res = GlobalValue::DefaultVisibility; 2107 return; 2108 case lltok::kw_default: 2109 Res = GlobalValue::DefaultVisibility; 2110 break; 2111 case lltok::kw_hidden: 2112 Res = GlobalValue::HiddenVisibility; 2113 break; 2114 case lltok::kw_protected: 2115 Res = GlobalValue::ProtectedVisibility; 2116 break; 2117 } 2118 Lex.Lex(); 2119 } 2120 2121 bool LLParser::parseOptionalImportType(lltok::Kind Kind, 2122 GlobalValueSummary::ImportKind &Res) { 2123 switch (Kind) { 2124 default: 2125 return tokError("unknown import kind. Expect definition or declaration."); 2126 case lltok::kw_definition: 2127 Res = GlobalValueSummary::Definition; 2128 return false; 2129 case lltok::kw_declaration: 2130 Res = GlobalValueSummary::Declaration; 2131 return false; 2132 } 2133 } 2134 2135 /// parseOptionalDLLStorageClass 2136 /// ::= /*empty*/ 2137 /// ::= 'dllimport' 2138 /// ::= 'dllexport' 2139 /// 2140 void LLParser::parseOptionalDLLStorageClass(unsigned &Res) { 2141 switch (Lex.getKind()) { 2142 default: 2143 Res = GlobalValue::DefaultStorageClass; 2144 return; 2145 case lltok::kw_dllimport: 2146 Res = GlobalValue::DLLImportStorageClass; 2147 break; 2148 case lltok::kw_dllexport: 2149 Res = GlobalValue::DLLExportStorageClass; 2150 break; 2151 } 2152 Lex.Lex(); 2153 } 2154 2155 /// parseOptionalCallingConv 2156 /// ::= /*empty*/ 2157 /// ::= 'ccc' 2158 /// ::= 'fastcc' 2159 /// ::= 'intel_ocl_bicc' 2160 /// ::= 'coldcc' 2161 /// ::= 'cfguard_checkcc' 2162 /// ::= 'x86_stdcallcc' 2163 /// ::= 'x86_fastcallcc' 2164 /// ::= 'x86_thiscallcc' 2165 /// ::= 'x86_vectorcallcc' 2166 /// ::= 'arm_apcscc' 2167 /// ::= 'arm_aapcscc' 2168 /// ::= 'arm_aapcs_vfpcc' 2169 /// ::= 'aarch64_vector_pcs' 2170 /// ::= 'aarch64_sve_vector_pcs' 2171 /// ::= 'aarch64_sme_preservemost_from_x0' 2172 /// ::= 'aarch64_sme_preservemost_from_x1' 2173 /// ::= 'aarch64_sme_preservemost_from_x2' 2174 /// ::= 'msp430_intrcc' 2175 /// ::= 'avr_intrcc' 2176 /// ::= 'avr_signalcc' 2177 /// ::= 'ptx_kernel' 2178 /// ::= 'ptx_device' 2179 /// ::= 'spir_func' 2180 /// ::= 'spir_kernel' 2181 /// ::= 'x86_64_sysvcc' 2182 /// ::= 'win64cc' 2183 /// ::= 'anyregcc' 2184 /// ::= 'preserve_mostcc' 2185 /// ::= 'preserve_allcc' 2186 /// ::= 'preserve_nonecc' 2187 /// ::= 'ghccc' 2188 /// ::= 'swiftcc' 2189 /// ::= 'swifttailcc' 2190 /// ::= 'x86_intrcc' 2191 /// ::= 'hhvmcc' 2192 /// ::= 'hhvm_ccc' 2193 /// ::= 'cxx_fast_tlscc' 2194 /// ::= 'amdgpu_vs' 2195 /// ::= 'amdgpu_ls' 2196 /// ::= 'amdgpu_hs' 2197 /// ::= 'amdgpu_es' 2198 /// ::= 'amdgpu_gs' 2199 /// ::= 'amdgpu_ps' 2200 /// ::= 'amdgpu_cs' 2201 /// ::= 'amdgpu_cs_chain' 2202 /// ::= 'amdgpu_cs_chain_preserve' 2203 /// ::= 'amdgpu_kernel' 2204 /// ::= 'tailcc' 2205 /// ::= 'm68k_rtdcc' 2206 /// ::= 'graalcc' 2207 /// ::= 'riscv_vector_cc' 2208 /// ::= 'cc' UINT 2209 /// 2210 bool LLParser::parseOptionalCallingConv(unsigned &CC) { 2211 switch (Lex.getKind()) { 2212 default: CC = CallingConv::C; return false; 2213 case lltok::kw_ccc: CC = CallingConv::C; break; 2214 case lltok::kw_fastcc: CC = CallingConv::Fast; break; 2215 case lltok::kw_coldcc: CC = CallingConv::Cold; break; 2216 case lltok::kw_cfguard_checkcc: CC = CallingConv::CFGuard_Check; break; 2217 case lltok::kw_x86_stdcallcc: CC = CallingConv::X86_StdCall; break; 2218 case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break; 2219 case lltok::kw_x86_regcallcc: CC = CallingConv::X86_RegCall; break; 2220 case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break; 2221 case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break; 2222 case lltok::kw_arm_apcscc: CC = CallingConv::ARM_APCS; break; 2223 case lltok::kw_arm_aapcscc: CC = CallingConv::ARM_AAPCS; break; 2224 case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break; 2225 case lltok::kw_aarch64_vector_pcs:CC = CallingConv::AArch64_VectorCall; break; 2226 case lltok::kw_aarch64_sve_vector_pcs: 2227 CC = CallingConv::AArch64_SVE_VectorCall; 2228 break; 2229 case lltok::kw_aarch64_sme_preservemost_from_x0: 2230 CC = CallingConv::AArch64_SME_ABI_Support_Routines_PreserveMost_From_X0; 2231 break; 2232 case lltok::kw_aarch64_sme_preservemost_from_x1: 2233 CC = CallingConv::AArch64_SME_ABI_Support_Routines_PreserveMost_From_X1; 2234 break; 2235 case lltok::kw_aarch64_sme_preservemost_from_x2: 2236 CC = CallingConv::AArch64_SME_ABI_Support_Routines_PreserveMost_From_X2; 2237 break; 2238 case lltok::kw_msp430_intrcc: CC = CallingConv::MSP430_INTR; break; 2239 case lltok::kw_avr_intrcc: CC = CallingConv::AVR_INTR; break; 2240 case lltok::kw_avr_signalcc: CC = CallingConv::AVR_SIGNAL; break; 2241 case lltok::kw_ptx_kernel: CC = CallingConv::PTX_Kernel; break; 2242 case lltok::kw_ptx_device: CC = CallingConv::PTX_Device; break; 2243 case lltok::kw_spir_kernel: CC = CallingConv::SPIR_KERNEL; break; 2244 case lltok::kw_spir_func: CC = CallingConv::SPIR_FUNC; break; 2245 case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break; 2246 case lltok::kw_x86_64_sysvcc: CC = CallingConv::X86_64_SysV; break; 2247 case lltok::kw_win64cc: CC = CallingConv::Win64; break; 2248 case lltok::kw_anyregcc: CC = CallingConv::AnyReg; break; 2249 case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break; 2250 case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break; 2251 case lltok::kw_preserve_nonecc:CC = CallingConv::PreserveNone; break; 2252 case lltok::kw_ghccc: CC = CallingConv::GHC; break; 2253 case lltok::kw_swiftcc: CC = CallingConv::Swift; break; 2254 case lltok::kw_swifttailcc: CC = CallingConv::SwiftTail; break; 2255 case lltok::kw_x86_intrcc: CC = CallingConv::X86_INTR; break; 2256 case lltok::kw_hhvmcc: 2257 CC = CallingConv::DUMMY_HHVM; 2258 break; 2259 case lltok::kw_hhvm_ccc: 2260 CC = CallingConv::DUMMY_HHVM_C; 2261 break; 2262 case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break; 2263 case lltok::kw_amdgpu_vs: CC = CallingConv::AMDGPU_VS; break; 2264 case lltok::kw_amdgpu_gfx: CC = CallingConv::AMDGPU_Gfx; break; 2265 case lltok::kw_amdgpu_ls: CC = CallingConv::AMDGPU_LS; break; 2266 case lltok::kw_amdgpu_hs: CC = CallingConv::AMDGPU_HS; break; 2267 case lltok::kw_amdgpu_es: CC = CallingConv::AMDGPU_ES; break; 2268 case lltok::kw_amdgpu_gs: CC = CallingConv::AMDGPU_GS; break; 2269 case lltok::kw_amdgpu_ps: CC = CallingConv::AMDGPU_PS; break; 2270 case lltok::kw_amdgpu_cs: CC = CallingConv::AMDGPU_CS; break; 2271 case lltok::kw_amdgpu_cs_chain: 2272 CC = CallingConv::AMDGPU_CS_Chain; 2273 break; 2274 case lltok::kw_amdgpu_cs_chain_preserve: 2275 CC = CallingConv::AMDGPU_CS_ChainPreserve; 2276 break; 2277 case lltok::kw_amdgpu_kernel: CC = CallingConv::AMDGPU_KERNEL; break; 2278 case lltok::kw_tailcc: CC = CallingConv::Tail; break; 2279 case lltok::kw_m68k_rtdcc: CC = CallingConv::M68k_RTD; break; 2280 case lltok::kw_graalcc: CC = CallingConv::GRAAL; break; 2281 case lltok::kw_riscv_vector_cc: 2282 CC = CallingConv::RISCV_VectorCall; 2283 break; 2284 case lltok::kw_cc: { 2285 Lex.Lex(); 2286 return parseUInt32(CC); 2287 } 2288 } 2289 2290 Lex.Lex(); 2291 return false; 2292 } 2293 2294 /// parseMetadataAttachment 2295 /// ::= !dbg !42 2296 bool LLParser::parseMetadataAttachment(unsigned &Kind, MDNode *&MD) { 2297 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment"); 2298 2299 std::string Name = Lex.getStrVal(); 2300 Kind = M->getMDKindID(Name); 2301 Lex.Lex(); 2302 2303 return parseMDNode(MD); 2304 } 2305 2306 /// parseInstructionMetadata 2307 /// ::= !dbg !42 (',' !dbg !57)* 2308 bool LLParser::parseInstructionMetadata(Instruction &Inst) { 2309 do { 2310 if (Lex.getKind() != lltok::MetadataVar) 2311 return tokError("expected metadata after comma"); 2312 2313 unsigned MDK; 2314 MDNode *N; 2315 if (parseMetadataAttachment(MDK, N)) 2316 return true; 2317 2318 if (MDK == LLVMContext::MD_DIAssignID) 2319 TempDIAssignIDAttachments[N].push_back(&Inst); 2320 else 2321 Inst.setMetadata(MDK, N); 2322 2323 if (MDK == LLVMContext::MD_tbaa) 2324 InstsWithTBAATag.push_back(&Inst); 2325 2326 // If this is the end of the list, we're done. 2327 } while (EatIfPresent(lltok::comma)); 2328 return false; 2329 } 2330 2331 /// parseGlobalObjectMetadataAttachment 2332 /// ::= !dbg !57 2333 bool LLParser::parseGlobalObjectMetadataAttachment(GlobalObject &GO) { 2334 unsigned MDK; 2335 MDNode *N; 2336 if (parseMetadataAttachment(MDK, N)) 2337 return true; 2338 2339 GO.addMetadata(MDK, *N); 2340 return false; 2341 } 2342 2343 /// parseOptionalFunctionMetadata 2344 /// ::= (!dbg !57)* 2345 bool LLParser::parseOptionalFunctionMetadata(Function &F) { 2346 while (Lex.getKind() == lltok::MetadataVar) 2347 if (parseGlobalObjectMetadataAttachment(F)) 2348 return true; 2349 return false; 2350 } 2351 2352 /// parseOptionalAlignment 2353 /// ::= /* empty */ 2354 /// ::= 'align' 4 2355 bool LLParser::parseOptionalAlignment(MaybeAlign &Alignment, bool AllowParens) { 2356 Alignment = std::nullopt; 2357 if (!EatIfPresent(lltok::kw_align)) 2358 return false; 2359 LocTy AlignLoc = Lex.getLoc(); 2360 uint64_t Value = 0; 2361 2362 LocTy ParenLoc = Lex.getLoc(); 2363 bool HaveParens = false; 2364 if (AllowParens) { 2365 if (EatIfPresent(lltok::lparen)) 2366 HaveParens = true; 2367 } 2368 2369 if (parseUInt64(Value)) 2370 return true; 2371 2372 if (HaveParens && !EatIfPresent(lltok::rparen)) 2373 return error(ParenLoc, "expected ')'"); 2374 2375 if (!isPowerOf2_64(Value)) 2376 return error(AlignLoc, "alignment is not a power of two"); 2377 if (Value > Value::MaximumAlignment) 2378 return error(AlignLoc, "huge alignments are not supported yet"); 2379 Alignment = Align(Value); 2380 return false; 2381 } 2382 2383 /// parseOptionalCodeModel 2384 /// ::= /* empty */ 2385 /// ::= 'code_model' "large" 2386 bool LLParser::parseOptionalCodeModel(CodeModel::Model &model) { 2387 Lex.Lex(); 2388 auto StrVal = Lex.getStrVal(); 2389 auto ErrMsg = "expected global code model string"; 2390 if (StrVal == "tiny") 2391 model = CodeModel::Tiny; 2392 else if (StrVal == "small") 2393 model = CodeModel::Small; 2394 else if (StrVal == "kernel") 2395 model = CodeModel::Kernel; 2396 else if (StrVal == "medium") 2397 model = CodeModel::Medium; 2398 else if (StrVal == "large") 2399 model = CodeModel::Large; 2400 else 2401 return tokError(ErrMsg); 2402 if (parseToken(lltok::StringConstant, ErrMsg)) 2403 return true; 2404 return false; 2405 } 2406 2407 /// parseOptionalDerefAttrBytes 2408 /// ::= /* empty */ 2409 /// ::= AttrKind '(' 4 ')' 2410 /// 2411 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'. 2412 bool LLParser::parseOptionalDerefAttrBytes(lltok::Kind AttrKind, 2413 uint64_t &Bytes) { 2414 assert((AttrKind == lltok::kw_dereferenceable || 2415 AttrKind == lltok::kw_dereferenceable_or_null) && 2416 "contract!"); 2417 2418 Bytes = 0; 2419 if (!EatIfPresent(AttrKind)) 2420 return false; 2421 LocTy ParenLoc = Lex.getLoc(); 2422 if (!EatIfPresent(lltok::lparen)) 2423 return error(ParenLoc, "expected '('"); 2424 LocTy DerefLoc = Lex.getLoc(); 2425 if (parseUInt64(Bytes)) 2426 return true; 2427 ParenLoc = Lex.getLoc(); 2428 if (!EatIfPresent(lltok::rparen)) 2429 return error(ParenLoc, "expected ')'"); 2430 if (!Bytes) 2431 return error(DerefLoc, "dereferenceable bytes must be non-zero"); 2432 return false; 2433 } 2434 2435 bool LLParser::parseOptionalUWTableKind(UWTableKind &Kind) { 2436 Lex.Lex(); 2437 Kind = UWTableKind::Default; 2438 if (!EatIfPresent(lltok::lparen)) 2439 return false; 2440 LocTy KindLoc = Lex.getLoc(); 2441 if (Lex.getKind() == lltok::kw_sync) 2442 Kind = UWTableKind::Sync; 2443 else if (Lex.getKind() == lltok::kw_async) 2444 Kind = UWTableKind::Async; 2445 else 2446 return error(KindLoc, "expected unwind table kind"); 2447 Lex.Lex(); 2448 return parseToken(lltok::rparen, "expected ')'"); 2449 } 2450 2451 bool LLParser::parseAllocKind(AllocFnKind &Kind) { 2452 Lex.Lex(); 2453 LocTy ParenLoc = Lex.getLoc(); 2454 if (!EatIfPresent(lltok::lparen)) 2455 return error(ParenLoc, "expected '('"); 2456 LocTy KindLoc = Lex.getLoc(); 2457 std::string Arg; 2458 if (parseStringConstant(Arg)) 2459 return error(KindLoc, "expected allockind value"); 2460 for (StringRef A : llvm::split(Arg, ",")) { 2461 if (A == "alloc") { 2462 Kind |= AllocFnKind::Alloc; 2463 } else if (A == "realloc") { 2464 Kind |= AllocFnKind::Realloc; 2465 } else if (A == "free") { 2466 Kind |= AllocFnKind::Free; 2467 } else if (A == "uninitialized") { 2468 Kind |= AllocFnKind::Uninitialized; 2469 } else if (A == "zeroed") { 2470 Kind |= AllocFnKind::Zeroed; 2471 } else if (A == "aligned") { 2472 Kind |= AllocFnKind::Aligned; 2473 } else { 2474 return error(KindLoc, Twine("unknown allockind ") + A); 2475 } 2476 } 2477 ParenLoc = Lex.getLoc(); 2478 if (!EatIfPresent(lltok::rparen)) 2479 return error(ParenLoc, "expected ')'"); 2480 if (Kind == AllocFnKind::Unknown) 2481 return error(KindLoc, "expected allockind value"); 2482 return false; 2483 } 2484 2485 static std::optional<MemoryEffects::Location> keywordToLoc(lltok::Kind Tok) { 2486 switch (Tok) { 2487 case lltok::kw_argmem: 2488 return IRMemLocation::ArgMem; 2489 case lltok::kw_inaccessiblemem: 2490 return IRMemLocation::InaccessibleMem; 2491 default: 2492 return std::nullopt; 2493 } 2494 } 2495 2496 static std::optional<ModRefInfo> keywordToModRef(lltok::Kind Tok) { 2497 switch (Tok) { 2498 case lltok::kw_none: 2499 return ModRefInfo::NoModRef; 2500 case lltok::kw_read: 2501 return ModRefInfo::Ref; 2502 case lltok::kw_write: 2503 return ModRefInfo::Mod; 2504 case lltok::kw_readwrite: 2505 return ModRefInfo::ModRef; 2506 default: 2507 return std::nullopt; 2508 } 2509 } 2510 2511 std::optional<MemoryEffects> LLParser::parseMemoryAttr() { 2512 MemoryEffects ME = MemoryEffects::none(); 2513 2514 // We use syntax like memory(argmem: read), so the colon should not be 2515 // interpreted as a label terminator. 2516 Lex.setIgnoreColonInIdentifiers(true); 2517 auto _ = make_scope_exit([&] { Lex.setIgnoreColonInIdentifiers(false); }); 2518 2519 Lex.Lex(); 2520 if (!EatIfPresent(lltok::lparen)) { 2521 tokError("expected '('"); 2522 return std::nullopt; 2523 } 2524 2525 bool SeenLoc = false; 2526 do { 2527 std::optional<IRMemLocation> Loc = keywordToLoc(Lex.getKind()); 2528 if (Loc) { 2529 Lex.Lex(); 2530 if (!EatIfPresent(lltok::colon)) { 2531 tokError("expected ':' after location"); 2532 return std::nullopt; 2533 } 2534 } 2535 2536 std::optional<ModRefInfo> MR = keywordToModRef(Lex.getKind()); 2537 if (!MR) { 2538 if (!Loc) 2539 tokError("expected memory location (argmem, inaccessiblemem) " 2540 "or access kind (none, read, write, readwrite)"); 2541 else 2542 tokError("expected access kind (none, read, write, readwrite)"); 2543 return std::nullopt; 2544 } 2545 2546 Lex.Lex(); 2547 if (Loc) { 2548 SeenLoc = true; 2549 ME = ME.getWithModRef(*Loc, *MR); 2550 } else { 2551 if (SeenLoc) { 2552 tokError("default access kind must be specified first"); 2553 return std::nullopt; 2554 } 2555 ME = MemoryEffects(*MR); 2556 } 2557 2558 if (EatIfPresent(lltok::rparen)) 2559 return ME; 2560 } while (EatIfPresent(lltok::comma)); 2561 2562 tokError("unterminated memory attribute"); 2563 return std::nullopt; 2564 } 2565 2566 static unsigned keywordToFPClassTest(lltok::Kind Tok) { 2567 switch (Tok) { 2568 case lltok::kw_all: 2569 return fcAllFlags; 2570 case lltok::kw_nan: 2571 return fcNan; 2572 case lltok::kw_snan: 2573 return fcSNan; 2574 case lltok::kw_qnan: 2575 return fcQNan; 2576 case lltok::kw_inf: 2577 return fcInf; 2578 case lltok::kw_ninf: 2579 return fcNegInf; 2580 case lltok::kw_pinf: 2581 return fcPosInf; 2582 case lltok::kw_norm: 2583 return fcNormal; 2584 case lltok::kw_nnorm: 2585 return fcNegNormal; 2586 case lltok::kw_pnorm: 2587 return fcPosNormal; 2588 case lltok::kw_sub: 2589 return fcSubnormal; 2590 case lltok::kw_nsub: 2591 return fcNegSubnormal; 2592 case lltok::kw_psub: 2593 return fcPosSubnormal; 2594 case lltok::kw_zero: 2595 return fcZero; 2596 case lltok::kw_nzero: 2597 return fcNegZero; 2598 case lltok::kw_pzero: 2599 return fcPosZero; 2600 default: 2601 return 0; 2602 } 2603 } 2604 2605 unsigned LLParser::parseNoFPClassAttr() { 2606 unsigned Mask = fcNone; 2607 2608 Lex.Lex(); 2609 if (!EatIfPresent(lltok::lparen)) { 2610 tokError("expected '('"); 2611 return 0; 2612 } 2613 2614 do { 2615 uint64_t Value = 0; 2616 unsigned TestMask = keywordToFPClassTest(Lex.getKind()); 2617 if (TestMask != 0) { 2618 Mask |= TestMask; 2619 // TODO: Disallow overlapping masks to avoid copy paste errors 2620 } else if (Mask == 0 && Lex.getKind() == lltok::APSInt && 2621 !parseUInt64(Value)) { 2622 if (Value == 0 || (Value & ~static_cast<unsigned>(fcAllFlags)) != 0) { 2623 error(Lex.getLoc(), "invalid mask value for 'nofpclass'"); 2624 return 0; 2625 } 2626 2627 if (!EatIfPresent(lltok::rparen)) { 2628 error(Lex.getLoc(), "expected ')'"); 2629 return 0; 2630 } 2631 2632 return Value; 2633 } else { 2634 error(Lex.getLoc(), "expected nofpclass test mask"); 2635 return 0; 2636 } 2637 2638 Lex.Lex(); 2639 if (EatIfPresent(lltok::rparen)) 2640 return Mask; 2641 } while (1); 2642 2643 llvm_unreachable("unterminated nofpclass attribute"); 2644 } 2645 2646 /// parseOptionalCommaAlign 2647 /// ::= 2648 /// ::= ',' align 4 2649 /// 2650 /// This returns with AteExtraComma set to true if it ate an excess comma at the 2651 /// end. 2652 bool LLParser::parseOptionalCommaAlign(MaybeAlign &Alignment, 2653 bool &AteExtraComma) { 2654 AteExtraComma = false; 2655 while (EatIfPresent(lltok::comma)) { 2656 // Metadata at the end is an early exit. 2657 if (Lex.getKind() == lltok::MetadataVar) { 2658 AteExtraComma = true; 2659 return false; 2660 } 2661 2662 if (Lex.getKind() != lltok::kw_align) 2663 return error(Lex.getLoc(), "expected metadata or 'align'"); 2664 2665 if (parseOptionalAlignment(Alignment)) 2666 return true; 2667 } 2668 2669 return false; 2670 } 2671 2672 /// parseOptionalCommaAddrSpace 2673 /// ::= 2674 /// ::= ',' addrspace(1) 2675 /// 2676 /// This returns with AteExtraComma set to true if it ate an excess comma at the 2677 /// end. 2678 bool LLParser::parseOptionalCommaAddrSpace(unsigned &AddrSpace, LocTy &Loc, 2679 bool &AteExtraComma) { 2680 AteExtraComma = false; 2681 while (EatIfPresent(lltok::comma)) { 2682 // Metadata at the end is an early exit. 2683 if (Lex.getKind() == lltok::MetadataVar) { 2684 AteExtraComma = true; 2685 return false; 2686 } 2687 2688 Loc = Lex.getLoc(); 2689 if (Lex.getKind() != lltok::kw_addrspace) 2690 return error(Lex.getLoc(), "expected metadata or 'addrspace'"); 2691 2692 if (parseOptionalAddrSpace(AddrSpace)) 2693 return true; 2694 } 2695 2696 return false; 2697 } 2698 2699 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg, 2700 std::optional<unsigned> &HowManyArg) { 2701 Lex.Lex(); 2702 2703 auto StartParen = Lex.getLoc(); 2704 if (!EatIfPresent(lltok::lparen)) 2705 return error(StartParen, "expected '('"); 2706 2707 if (parseUInt32(BaseSizeArg)) 2708 return true; 2709 2710 if (EatIfPresent(lltok::comma)) { 2711 auto HowManyAt = Lex.getLoc(); 2712 unsigned HowMany; 2713 if (parseUInt32(HowMany)) 2714 return true; 2715 if (HowMany == BaseSizeArg) 2716 return error(HowManyAt, 2717 "'allocsize' indices can't refer to the same parameter"); 2718 HowManyArg = HowMany; 2719 } else 2720 HowManyArg = std::nullopt; 2721 2722 auto EndParen = Lex.getLoc(); 2723 if (!EatIfPresent(lltok::rparen)) 2724 return error(EndParen, "expected ')'"); 2725 return false; 2726 } 2727 2728 bool LLParser::parseVScaleRangeArguments(unsigned &MinValue, 2729 unsigned &MaxValue) { 2730 Lex.Lex(); 2731 2732 auto StartParen = Lex.getLoc(); 2733 if (!EatIfPresent(lltok::lparen)) 2734 return error(StartParen, "expected '('"); 2735 2736 if (parseUInt32(MinValue)) 2737 return true; 2738 2739 if (EatIfPresent(lltok::comma)) { 2740 if (parseUInt32(MaxValue)) 2741 return true; 2742 } else 2743 MaxValue = MinValue; 2744 2745 auto EndParen = Lex.getLoc(); 2746 if (!EatIfPresent(lltok::rparen)) 2747 return error(EndParen, "expected ')'"); 2748 return false; 2749 } 2750 2751 /// parseScopeAndOrdering 2752 /// if isAtomic: ::= SyncScope? AtomicOrdering 2753 /// else: ::= 2754 /// 2755 /// This sets Scope and Ordering to the parsed values. 2756 bool LLParser::parseScopeAndOrdering(bool IsAtomic, SyncScope::ID &SSID, 2757 AtomicOrdering &Ordering) { 2758 if (!IsAtomic) 2759 return false; 2760 2761 return parseScope(SSID) || parseOrdering(Ordering); 2762 } 2763 2764 /// parseScope 2765 /// ::= syncscope("singlethread" | "<target scope>")? 2766 /// 2767 /// This sets synchronization scope ID to the ID of the parsed value. 2768 bool LLParser::parseScope(SyncScope::ID &SSID) { 2769 SSID = SyncScope::System; 2770 if (EatIfPresent(lltok::kw_syncscope)) { 2771 auto StartParenAt = Lex.getLoc(); 2772 if (!EatIfPresent(lltok::lparen)) 2773 return error(StartParenAt, "Expected '(' in syncscope"); 2774 2775 std::string SSN; 2776 auto SSNAt = Lex.getLoc(); 2777 if (parseStringConstant(SSN)) 2778 return error(SSNAt, "Expected synchronization scope name"); 2779 2780 auto EndParenAt = Lex.getLoc(); 2781 if (!EatIfPresent(lltok::rparen)) 2782 return error(EndParenAt, "Expected ')' in syncscope"); 2783 2784 SSID = Context.getOrInsertSyncScopeID(SSN); 2785 } 2786 2787 return false; 2788 } 2789 2790 /// parseOrdering 2791 /// ::= AtomicOrdering 2792 /// 2793 /// This sets Ordering to the parsed value. 2794 bool LLParser::parseOrdering(AtomicOrdering &Ordering) { 2795 switch (Lex.getKind()) { 2796 default: 2797 return tokError("Expected ordering on atomic instruction"); 2798 case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break; 2799 case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break; 2800 // Not specified yet: 2801 // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break; 2802 case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break; 2803 case lltok::kw_release: Ordering = AtomicOrdering::Release; break; 2804 case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break; 2805 case lltok::kw_seq_cst: 2806 Ordering = AtomicOrdering::SequentiallyConsistent; 2807 break; 2808 } 2809 Lex.Lex(); 2810 return false; 2811 } 2812 2813 /// parseOptionalStackAlignment 2814 /// ::= /* empty */ 2815 /// ::= 'alignstack' '(' 4 ')' 2816 bool LLParser::parseOptionalStackAlignment(unsigned &Alignment) { 2817 Alignment = 0; 2818 if (!EatIfPresent(lltok::kw_alignstack)) 2819 return false; 2820 LocTy ParenLoc = Lex.getLoc(); 2821 if (!EatIfPresent(lltok::lparen)) 2822 return error(ParenLoc, "expected '('"); 2823 LocTy AlignLoc = Lex.getLoc(); 2824 if (parseUInt32(Alignment)) 2825 return true; 2826 ParenLoc = Lex.getLoc(); 2827 if (!EatIfPresent(lltok::rparen)) 2828 return error(ParenLoc, "expected ')'"); 2829 if (!isPowerOf2_32(Alignment)) 2830 return error(AlignLoc, "stack alignment is not a power of two"); 2831 return false; 2832 } 2833 2834 /// parseIndexList - This parses the index list for an insert/extractvalue 2835 /// instruction. This sets AteExtraComma in the case where we eat an extra 2836 /// comma at the end of the line and find that it is followed by metadata. 2837 /// Clients that don't allow metadata can call the version of this function that 2838 /// only takes one argument. 2839 /// 2840 /// parseIndexList 2841 /// ::= (',' uint32)+ 2842 /// 2843 bool LLParser::parseIndexList(SmallVectorImpl<unsigned> &Indices, 2844 bool &AteExtraComma) { 2845 AteExtraComma = false; 2846 2847 if (Lex.getKind() != lltok::comma) 2848 return tokError("expected ',' as start of index list"); 2849 2850 while (EatIfPresent(lltok::comma)) { 2851 if (Lex.getKind() == lltok::MetadataVar) { 2852 if (Indices.empty()) 2853 return tokError("expected index"); 2854 AteExtraComma = true; 2855 return false; 2856 } 2857 unsigned Idx = 0; 2858 if (parseUInt32(Idx)) 2859 return true; 2860 Indices.push_back(Idx); 2861 } 2862 2863 return false; 2864 } 2865 2866 //===----------------------------------------------------------------------===// 2867 // Type Parsing. 2868 //===----------------------------------------------------------------------===// 2869 2870 /// parseType - parse a type. 2871 bool LLParser::parseType(Type *&Result, const Twine &Msg, bool AllowVoid) { 2872 SMLoc TypeLoc = Lex.getLoc(); 2873 switch (Lex.getKind()) { 2874 default: 2875 return tokError(Msg); 2876 case lltok::Type: 2877 // Type ::= 'float' | 'void' (etc) 2878 Result = Lex.getTyVal(); 2879 Lex.Lex(); 2880 2881 // Handle "ptr" opaque pointer type. 2882 // 2883 // Type ::= ptr ('addrspace' '(' uint32 ')')? 2884 if (Result->isPointerTy()) { 2885 unsigned AddrSpace; 2886 if (parseOptionalAddrSpace(AddrSpace)) 2887 return true; 2888 Result = PointerType::get(getContext(), AddrSpace); 2889 2890 // Give a nice error for 'ptr*'. 2891 if (Lex.getKind() == lltok::star) 2892 return tokError("ptr* is invalid - use ptr instead"); 2893 2894 // Fall through to parsing the type suffixes only if this 'ptr' is a 2895 // function return. Otherwise, return success, implicitly rejecting other 2896 // suffixes. 2897 if (Lex.getKind() != lltok::lparen) 2898 return false; 2899 } 2900 break; 2901 case lltok::kw_target: { 2902 // Type ::= TargetExtType 2903 if (parseTargetExtType(Result)) 2904 return true; 2905 break; 2906 } 2907 case lltok::lbrace: 2908 // Type ::= StructType 2909 if (parseAnonStructType(Result, false)) 2910 return true; 2911 break; 2912 case lltok::lsquare: 2913 // Type ::= '[' ... ']' 2914 Lex.Lex(); // eat the lsquare. 2915 if (parseArrayVectorType(Result, false)) 2916 return true; 2917 break; 2918 case lltok::less: // Either vector or packed struct. 2919 // Type ::= '<' ... '>' 2920 Lex.Lex(); 2921 if (Lex.getKind() == lltok::lbrace) { 2922 if (parseAnonStructType(Result, true) || 2923 parseToken(lltok::greater, "expected '>' at end of packed struct")) 2924 return true; 2925 } else if (parseArrayVectorType(Result, true)) 2926 return true; 2927 break; 2928 case lltok::LocalVar: { 2929 // Type ::= %foo 2930 std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()]; 2931 2932 // If the type hasn't been defined yet, create a forward definition and 2933 // remember where that forward def'n was seen (in case it never is defined). 2934 if (!Entry.first) { 2935 Entry.first = StructType::create(Context, Lex.getStrVal()); 2936 Entry.second = Lex.getLoc(); 2937 } 2938 Result = Entry.first; 2939 Lex.Lex(); 2940 break; 2941 } 2942 2943 case lltok::LocalVarID: { 2944 // Type ::= %4 2945 std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()]; 2946 2947 // If the type hasn't been defined yet, create a forward definition and 2948 // remember where that forward def'n was seen (in case it never is defined). 2949 if (!Entry.first) { 2950 Entry.first = StructType::create(Context); 2951 Entry.second = Lex.getLoc(); 2952 } 2953 Result = Entry.first; 2954 Lex.Lex(); 2955 break; 2956 } 2957 } 2958 2959 // parse the type suffixes. 2960 while (true) { 2961 switch (Lex.getKind()) { 2962 // End of type. 2963 default: 2964 if (!AllowVoid && Result->isVoidTy()) 2965 return error(TypeLoc, "void type only allowed for function results"); 2966 return false; 2967 2968 // Type ::= Type '*' 2969 case lltok::star: 2970 if (Result->isLabelTy()) 2971 return tokError("basic block pointers are invalid"); 2972 if (Result->isVoidTy()) 2973 return tokError("pointers to void are invalid - use i8* instead"); 2974 if (!PointerType::isValidElementType(Result)) 2975 return tokError("pointer to this type is invalid"); 2976 Result = PointerType::getUnqual(Result); 2977 Lex.Lex(); 2978 break; 2979 2980 // Type ::= Type 'addrspace' '(' uint32 ')' '*' 2981 case lltok::kw_addrspace: { 2982 if (Result->isLabelTy()) 2983 return tokError("basic block pointers are invalid"); 2984 if (Result->isVoidTy()) 2985 return tokError("pointers to void are invalid; use i8* instead"); 2986 if (!PointerType::isValidElementType(Result)) 2987 return tokError("pointer to this type is invalid"); 2988 unsigned AddrSpace; 2989 if (parseOptionalAddrSpace(AddrSpace) || 2990 parseToken(lltok::star, "expected '*' in address space")) 2991 return true; 2992 2993 Result = PointerType::get(Result, AddrSpace); 2994 break; 2995 } 2996 2997 /// Types '(' ArgTypeListI ')' OptFuncAttrs 2998 case lltok::lparen: 2999 if (parseFunctionType(Result)) 3000 return true; 3001 break; 3002 } 3003 } 3004 } 3005 3006 /// parseParameterList 3007 /// ::= '(' ')' 3008 /// ::= '(' Arg (',' Arg)* ')' 3009 /// Arg 3010 /// ::= Type OptionalAttributes Value OptionalAttributes 3011 bool LLParser::parseParameterList(SmallVectorImpl<ParamInfo> &ArgList, 3012 PerFunctionState &PFS, bool IsMustTailCall, 3013 bool InVarArgsFunc) { 3014 if (parseToken(lltok::lparen, "expected '(' in call")) 3015 return true; 3016 3017 while (Lex.getKind() != lltok::rparen) { 3018 // If this isn't the first argument, we need a comma. 3019 if (!ArgList.empty() && 3020 parseToken(lltok::comma, "expected ',' in argument list")) 3021 return true; 3022 3023 // parse an ellipsis if this is a musttail call in a variadic function. 3024 if (Lex.getKind() == lltok::dotdotdot) { 3025 const char *Msg = "unexpected ellipsis in argument list for "; 3026 if (!IsMustTailCall) 3027 return tokError(Twine(Msg) + "non-musttail call"); 3028 if (!InVarArgsFunc) 3029 return tokError(Twine(Msg) + "musttail call in non-varargs function"); 3030 Lex.Lex(); // Lex the '...', it is purely for readability. 3031 return parseToken(lltok::rparen, "expected ')' at end of argument list"); 3032 } 3033 3034 // parse the argument. 3035 LocTy ArgLoc; 3036 Type *ArgTy = nullptr; 3037 Value *V; 3038 if (parseType(ArgTy, ArgLoc)) 3039 return true; 3040 3041 AttrBuilder ArgAttrs(M->getContext()); 3042 3043 if (ArgTy->isMetadataTy()) { 3044 if (parseMetadataAsValue(V, PFS)) 3045 return true; 3046 } else { 3047 // Otherwise, handle normal operands. 3048 if (parseOptionalParamAttrs(ArgAttrs) || parseValue(ArgTy, V, PFS)) 3049 return true; 3050 } 3051 ArgList.push_back(ParamInfo( 3052 ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs))); 3053 } 3054 3055 if (IsMustTailCall && InVarArgsFunc) 3056 return tokError("expected '...' at end of argument list for musttail call " 3057 "in varargs function"); 3058 3059 Lex.Lex(); // Lex the ')'. 3060 return false; 3061 } 3062 3063 /// parseRequiredTypeAttr 3064 /// ::= attrname(<ty>) 3065 bool LLParser::parseRequiredTypeAttr(AttrBuilder &B, lltok::Kind AttrToken, 3066 Attribute::AttrKind AttrKind) { 3067 Type *Ty = nullptr; 3068 if (!EatIfPresent(AttrToken)) 3069 return true; 3070 if (!EatIfPresent(lltok::lparen)) 3071 return error(Lex.getLoc(), "expected '('"); 3072 if (parseType(Ty)) 3073 return true; 3074 if (!EatIfPresent(lltok::rparen)) 3075 return error(Lex.getLoc(), "expected ')'"); 3076 3077 B.addTypeAttr(AttrKind, Ty); 3078 return false; 3079 } 3080 3081 /// parseRangeAttr 3082 /// ::= range(<ty> <n>,<n>) 3083 bool LLParser::parseRangeAttr(AttrBuilder &B) { 3084 Lex.Lex(); 3085 3086 APInt Lower; 3087 APInt Upper; 3088 Type *Ty = nullptr; 3089 LocTy TyLoc; 3090 3091 auto ParseAPSInt = [&](unsigned BitWidth, APInt &Val) { 3092 if (Lex.getKind() != lltok::APSInt) 3093 return tokError("expected integer"); 3094 if (Lex.getAPSIntVal().getBitWidth() > BitWidth) 3095 return tokError( 3096 "integer is too large for the bit width of specified type"); 3097 Val = Lex.getAPSIntVal().extend(BitWidth); 3098 Lex.Lex(); 3099 return false; 3100 }; 3101 3102 if (parseToken(lltok::lparen, "expected '('") || parseType(Ty, TyLoc)) 3103 return true; 3104 if (!Ty->isIntegerTy()) 3105 return error(TyLoc, "the range must have integer type!"); 3106 3107 unsigned BitWidth = Ty->getPrimitiveSizeInBits(); 3108 3109 if (ParseAPSInt(BitWidth, Lower) || 3110 parseToken(lltok::comma, "expected ','") || ParseAPSInt(BitWidth, Upper)) 3111 return true; 3112 if (Lower == Upper && !Lower.isZero()) 3113 return tokError("the range represent the empty set but limits aren't 0!"); 3114 3115 if (parseToken(lltok::rparen, "expected ')'")) 3116 return true; 3117 3118 B.addRangeAttr(ConstantRange(Lower, Upper)); 3119 return false; 3120 } 3121 3122 /// parseInitializesAttr 3123 /// ::= initializes((Lo1,Hi1),(Lo2,Hi2),...) 3124 bool LLParser::parseInitializesAttr(AttrBuilder &B) { 3125 Lex.Lex(); 3126 3127 auto ParseAPSInt = [&](APInt &Val) { 3128 if (Lex.getKind() != lltok::APSInt) 3129 return tokError("expected integer"); 3130 Val = Lex.getAPSIntVal().extend(64); 3131 Lex.Lex(); 3132 return false; 3133 }; 3134 3135 if (parseToken(lltok::lparen, "expected '('")) 3136 return true; 3137 3138 SmallVector<ConstantRange, 2> RangeList; 3139 // Parse each constant range. 3140 do { 3141 APInt Lower, Upper; 3142 if (parseToken(lltok::lparen, "expected '('")) 3143 return true; 3144 3145 if (ParseAPSInt(Lower) || parseToken(lltok::comma, "expected ','") || 3146 ParseAPSInt(Upper)) 3147 return true; 3148 3149 if (Lower == Upper) 3150 return tokError("the range should not represent the full or empty set!"); 3151 3152 if (parseToken(lltok::rparen, "expected ')'")) 3153 return true; 3154 3155 RangeList.push_back(ConstantRange(Lower, Upper)); 3156 } while (EatIfPresent(lltok::comma)); 3157 3158 if (parseToken(lltok::rparen, "expected ')'")) 3159 return true; 3160 3161 auto CRLOrNull = ConstantRangeList::getConstantRangeList(RangeList); 3162 if (!CRLOrNull.has_value()) 3163 return tokError("Invalid (unordered or overlapping) range list"); 3164 B.addInitializesAttr(*CRLOrNull); 3165 return false; 3166 } 3167 3168 /// parseOptionalOperandBundles 3169 /// ::= /*empty*/ 3170 /// ::= '[' OperandBundle [, OperandBundle ]* ']' 3171 /// 3172 /// OperandBundle 3173 /// ::= bundle-tag '(' ')' 3174 /// ::= bundle-tag '(' Type Value [, Type Value ]* ')' 3175 /// 3176 /// bundle-tag ::= String Constant 3177 bool LLParser::parseOptionalOperandBundles( 3178 SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) { 3179 LocTy BeginLoc = Lex.getLoc(); 3180 if (!EatIfPresent(lltok::lsquare)) 3181 return false; 3182 3183 while (Lex.getKind() != lltok::rsquare) { 3184 // If this isn't the first operand bundle, we need a comma. 3185 if (!BundleList.empty() && 3186 parseToken(lltok::comma, "expected ',' in input list")) 3187 return true; 3188 3189 std::string Tag; 3190 if (parseStringConstant(Tag)) 3191 return true; 3192 3193 if (parseToken(lltok::lparen, "expected '(' in operand bundle")) 3194 return true; 3195 3196 std::vector<Value *> Inputs; 3197 while (Lex.getKind() != lltok::rparen) { 3198 // If this isn't the first input, we need a comma. 3199 if (!Inputs.empty() && 3200 parseToken(lltok::comma, "expected ',' in input list")) 3201 return true; 3202 3203 Type *Ty = nullptr; 3204 Value *Input = nullptr; 3205 if (parseType(Ty) || parseValue(Ty, Input, PFS)) 3206 return true; 3207 Inputs.push_back(Input); 3208 } 3209 3210 BundleList.emplace_back(std::move(Tag), std::move(Inputs)); 3211 3212 Lex.Lex(); // Lex the ')'. 3213 } 3214 3215 if (BundleList.empty()) 3216 return error(BeginLoc, "operand bundle set must not be empty"); 3217 3218 Lex.Lex(); // Lex the ']'. 3219 return false; 3220 } 3221 3222 bool LLParser::checkValueID(LocTy Loc, StringRef Kind, StringRef Prefix, 3223 unsigned NextID, unsigned ID) { 3224 if (ID < NextID) 3225 return error(Loc, Kind + " expected to be numbered '" + Prefix + 3226 Twine(NextID) + "' or greater"); 3227 3228 return false; 3229 } 3230 3231 /// parseArgumentList - parse the argument list for a function type or function 3232 /// prototype. 3233 /// ::= '(' ArgTypeListI ')' 3234 /// ArgTypeListI 3235 /// ::= /*empty*/ 3236 /// ::= '...' 3237 /// ::= ArgTypeList ',' '...' 3238 /// ::= ArgType (',' ArgType)* 3239 /// 3240 bool LLParser::parseArgumentList(SmallVectorImpl<ArgInfo> &ArgList, 3241 SmallVectorImpl<unsigned> &UnnamedArgNums, 3242 bool &IsVarArg) { 3243 unsigned CurValID = 0; 3244 IsVarArg = false; 3245 assert(Lex.getKind() == lltok::lparen); 3246 Lex.Lex(); // eat the (. 3247 3248 if (Lex.getKind() != lltok::rparen) { 3249 do { 3250 // Handle ... at end of arg list. 3251 if (EatIfPresent(lltok::dotdotdot)) { 3252 IsVarArg = true; 3253 break; 3254 } 3255 3256 // Otherwise must be an argument type. 3257 LocTy TypeLoc = Lex.getLoc(); 3258 Type *ArgTy = nullptr; 3259 AttrBuilder Attrs(M->getContext()); 3260 if (parseType(ArgTy) || parseOptionalParamAttrs(Attrs)) 3261 return true; 3262 3263 if (ArgTy->isVoidTy()) 3264 return error(TypeLoc, "argument can not have void type"); 3265 3266 std::string Name; 3267 if (Lex.getKind() == lltok::LocalVar) { 3268 Name = Lex.getStrVal(); 3269 Lex.Lex(); 3270 } else { 3271 unsigned ArgID; 3272 if (Lex.getKind() == lltok::LocalVarID) { 3273 ArgID = Lex.getUIntVal(); 3274 if (checkValueID(TypeLoc, "argument", "%", CurValID, ArgID)) 3275 return true; 3276 Lex.Lex(); 3277 } else { 3278 ArgID = CurValID; 3279 } 3280 UnnamedArgNums.push_back(ArgID); 3281 CurValID = ArgID + 1; 3282 } 3283 3284 if (!ArgTy->isFirstClassType()) 3285 return error(TypeLoc, "invalid type for function argument"); 3286 3287 ArgList.emplace_back(TypeLoc, ArgTy, 3288 AttributeSet::get(ArgTy->getContext(), Attrs), 3289 std::move(Name)); 3290 } while (EatIfPresent(lltok::comma)); 3291 } 3292 3293 return parseToken(lltok::rparen, "expected ')' at end of argument list"); 3294 } 3295 3296 /// parseFunctionType 3297 /// ::= Type ArgumentList OptionalAttrs 3298 bool LLParser::parseFunctionType(Type *&Result) { 3299 assert(Lex.getKind() == lltok::lparen); 3300 3301 if (!FunctionType::isValidReturnType(Result)) 3302 return tokError("invalid function return type"); 3303 3304 SmallVector<ArgInfo, 8> ArgList; 3305 bool IsVarArg; 3306 SmallVector<unsigned> UnnamedArgNums; 3307 if (parseArgumentList(ArgList, UnnamedArgNums, IsVarArg)) 3308 return true; 3309 3310 // Reject names on the arguments lists. 3311 for (const ArgInfo &Arg : ArgList) { 3312 if (!Arg.Name.empty()) 3313 return error(Arg.Loc, "argument name invalid in function type"); 3314 if (Arg.Attrs.hasAttributes()) 3315 return error(Arg.Loc, "argument attributes invalid in function type"); 3316 } 3317 3318 SmallVector<Type*, 16> ArgListTy; 3319 for (const ArgInfo &Arg : ArgList) 3320 ArgListTy.push_back(Arg.Ty); 3321 3322 Result = FunctionType::get(Result, ArgListTy, IsVarArg); 3323 return false; 3324 } 3325 3326 /// parseAnonStructType - parse an anonymous struct type, which is inlined into 3327 /// other structs. 3328 bool LLParser::parseAnonStructType(Type *&Result, bool Packed) { 3329 SmallVector<Type*, 8> Elts; 3330 if (parseStructBody(Elts)) 3331 return true; 3332 3333 Result = StructType::get(Context, Elts, Packed); 3334 return false; 3335 } 3336 3337 /// parseStructDefinition - parse a struct in a 'type' definition. 3338 bool LLParser::parseStructDefinition(SMLoc TypeLoc, StringRef Name, 3339 std::pair<Type *, LocTy> &Entry, 3340 Type *&ResultTy) { 3341 // If the type was already defined, diagnose the redefinition. 3342 if (Entry.first && !Entry.second.isValid()) 3343 return error(TypeLoc, "redefinition of type"); 3344 3345 // If we have opaque, just return without filling in the definition for the 3346 // struct. This counts as a definition as far as the .ll file goes. 3347 if (EatIfPresent(lltok::kw_opaque)) { 3348 // This type is being defined, so clear the location to indicate this. 3349 Entry.second = SMLoc(); 3350 3351 // If this type number has never been uttered, create it. 3352 if (!Entry.first) 3353 Entry.first = StructType::create(Context, Name); 3354 ResultTy = Entry.first; 3355 return false; 3356 } 3357 3358 // If the type starts with '<', then it is either a packed struct or a vector. 3359 bool isPacked = EatIfPresent(lltok::less); 3360 3361 // If we don't have a struct, then we have a random type alias, which we 3362 // accept for compatibility with old files. These types are not allowed to be 3363 // forward referenced and not allowed to be recursive. 3364 if (Lex.getKind() != lltok::lbrace) { 3365 if (Entry.first) 3366 return error(TypeLoc, "forward references to non-struct type"); 3367 3368 ResultTy = nullptr; 3369 if (isPacked) 3370 return parseArrayVectorType(ResultTy, true); 3371 return parseType(ResultTy); 3372 } 3373 3374 // This type is being defined, so clear the location to indicate this. 3375 Entry.second = SMLoc(); 3376 3377 // If this type number has never been uttered, create it. 3378 if (!Entry.first) 3379 Entry.first = StructType::create(Context, Name); 3380 3381 StructType *STy = cast<StructType>(Entry.first); 3382 3383 SmallVector<Type*, 8> Body; 3384 if (parseStructBody(Body) || 3385 (isPacked && parseToken(lltok::greater, "expected '>' in packed struct"))) 3386 return true; 3387 3388 STy->setBody(Body, isPacked); 3389 ResultTy = STy; 3390 return false; 3391 } 3392 3393 /// parseStructType: Handles packed and unpacked types. </> parsed elsewhere. 3394 /// StructType 3395 /// ::= '{' '}' 3396 /// ::= '{' Type (',' Type)* '}' 3397 /// ::= '<' '{' '}' '>' 3398 /// ::= '<' '{' Type (',' Type)* '}' '>' 3399 bool LLParser::parseStructBody(SmallVectorImpl<Type *> &Body) { 3400 assert(Lex.getKind() == lltok::lbrace); 3401 Lex.Lex(); // Consume the '{' 3402 3403 // Handle the empty struct. 3404 if (EatIfPresent(lltok::rbrace)) 3405 return false; 3406 3407 LocTy EltTyLoc = Lex.getLoc(); 3408 Type *Ty = nullptr; 3409 if (parseType(Ty)) 3410 return true; 3411 Body.push_back(Ty); 3412 3413 if (!StructType::isValidElementType(Ty)) 3414 return error(EltTyLoc, "invalid element type for struct"); 3415 3416 while (EatIfPresent(lltok::comma)) { 3417 EltTyLoc = Lex.getLoc(); 3418 if (parseType(Ty)) 3419 return true; 3420 3421 if (!StructType::isValidElementType(Ty)) 3422 return error(EltTyLoc, "invalid element type for struct"); 3423 3424 Body.push_back(Ty); 3425 } 3426 3427 return parseToken(lltok::rbrace, "expected '}' at end of struct"); 3428 } 3429 3430 /// parseArrayVectorType - parse an array or vector type, assuming the first 3431 /// token has already been consumed. 3432 /// Type 3433 /// ::= '[' APSINTVAL 'x' Types ']' 3434 /// ::= '<' APSINTVAL 'x' Types '>' 3435 /// ::= '<' 'vscale' 'x' APSINTVAL 'x' Types '>' 3436 bool LLParser::parseArrayVectorType(Type *&Result, bool IsVector) { 3437 bool Scalable = false; 3438 3439 if (IsVector && Lex.getKind() == lltok::kw_vscale) { 3440 Lex.Lex(); // consume the 'vscale' 3441 if (parseToken(lltok::kw_x, "expected 'x' after vscale")) 3442 return true; 3443 3444 Scalable = true; 3445 } 3446 3447 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() || 3448 Lex.getAPSIntVal().getBitWidth() > 64) 3449 return tokError("expected number in address space"); 3450 3451 LocTy SizeLoc = Lex.getLoc(); 3452 uint64_t Size = Lex.getAPSIntVal().getZExtValue(); 3453 Lex.Lex(); 3454 3455 if (parseToken(lltok::kw_x, "expected 'x' after element count")) 3456 return true; 3457 3458 LocTy TypeLoc = Lex.getLoc(); 3459 Type *EltTy = nullptr; 3460 if (parseType(EltTy)) 3461 return true; 3462 3463 if (parseToken(IsVector ? lltok::greater : lltok::rsquare, 3464 "expected end of sequential type")) 3465 return true; 3466 3467 if (IsVector) { 3468 if (Size == 0) 3469 return error(SizeLoc, "zero element vector is illegal"); 3470 if ((unsigned)Size != Size) 3471 return error(SizeLoc, "size too large for vector"); 3472 if (!VectorType::isValidElementType(EltTy)) 3473 return error(TypeLoc, "invalid vector element type"); 3474 Result = VectorType::get(EltTy, unsigned(Size), Scalable); 3475 } else { 3476 if (!ArrayType::isValidElementType(EltTy)) 3477 return error(TypeLoc, "invalid array element type"); 3478 Result = ArrayType::get(EltTy, Size); 3479 } 3480 return false; 3481 } 3482 3483 /// parseTargetExtType - handle target extension type syntax 3484 /// TargetExtType 3485 /// ::= 'target' '(' STRINGCONSTANT TargetExtTypeParams TargetExtIntParams ')' 3486 /// 3487 /// TargetExtTypeParams 3488 /// ::= /*empty*/ 3489 /// ::= ',' Type TargetExtTypeParams 3490 /// 3491 /// TargetExtIntParams 3492 /// ::= /*empty*/ 3493 /// ::= ',' uint32 TargetExtIntParams 3494 bool LLParser::parseTargetExtType(Type *&Result) { 3495 Lex.Lex(); // Eat the 'target' keyword. 3496 3497 // Get the mandatory type name. 3498 std::string TypeName; 3499 if (parseToken(lltok::lparen, "expected '(' in target extension type") || 3500 parseStringConstant(TypeName)) 3501 return true; 3502 3503 // Parse all of the integer and type parameters at the same time; the use of 3504 // SeenInt will allow us to catch cases where type parameters follow integer 3505 // parameters. 3506 SmallVector<Type *> TypeParams; 3507 SmallVector<unsigned> IntParams; 3508 bool SeenInt = false; 3509 while (Lex.getKind() == lltok::comma) { 3510 Lex.Lex(); // Eat the comma. 3511 3512 if (Lex.getKind() == lltok::APSInt) { 3513 SeenInt = true; 3514 unsigned IntVal; 3515 if (parseUInt32(IntVal)) 3516 return true; 3517 IntParams.push_back(IntVal); 3518 } else if (SeenInt) { 3519 // The only other kind of parameter we support is type parameters, which 3520 // must precede the integer parameters. This is therefore an error. 3521 return tokError("expected uint32 param"); 3522 } else { 3523 Type *TypeParam; 3524 if (parseType(TypeParam, /*AllowVoid=*/true)) 3525 return true; 3526 TypeParams.push_back(TypeParam); 3527 } 3528 } 3529 3530 if (parseToken(lltok::rparen, "expected ')' in target extension type")) 3531 return true; 3532 3533 auto TTy = 3534 TargetExtType::getOrError(Context, TypeName, TypeParams, IntParams); 3535 if (auto E = TTy.takeError()) 3536 return tokError(toString(std::move(E))); 3537 3538 Result = *TTy; 3539 return false; 3540 } 3541 3542 //===----------------------------------------------------------------------===// 3543 // Function Semantic Analysis. 3544 //===----------------------------------------------------------------------===// 3545 3546 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f, 3547 int functionNumber, 3548 ArrayRef<unsigned> UnnamedArgNums) 3549 : P(p), F(f), FunctionNumber(functionNumber) { 3550 3551 // Insert unnamed arguments into the NumberedVals list. 3552 auto It = UnnamedArgNums.begin(); 3553 for (Argument &A : F.args()) { 3554 if (!A.hasName()) { 3555 unsigned ArgNum = *It++; 3556 NumberedVals.add(ArgNum, &A); 3557 } 3558 } 3559 } 3560 3561 LLParser::PerFunctionState::~PerFunctionState() { 3562 // If there were any forward referenced non-basicblock values, delete them. 3563 3564 for (const auto &P : ForwardRefVals) { 3565 if (isa<BasicBlock>(P.second.first)) 3566 continue; 3567 P.second.first->replaceAllUsesWith( 3568 PoisonValue::get(P.second.first->getType())); 3569 P.second.first->deleteValue(); 3570 } 3571 3572 for (const auto &P : ForwardRefValIDs) { 3573 if (isa<BasicBlock>(P.second.first)) 3574 continue; 3575 P.second.first->replaceAllUsesWith( 3576 PoisonValue::get(P.second.first->getType())); 3577 P.second.first->deleteValue(); 3578 } 3579 } 3580 3581 bool LLParser::PerFunctionState::finishFunction() { 3582 if (!ForwardRefVals.empty()) 3583 return P.error(ForwardRefVals.begin()->second.second, 3584 "use of undefined value '%" + ForwardRefVals.begin()->first + 3585 "'"); 3586 if (!ForwardRefValIDs.empty()) 3587 return P.error(ForwardRefValIDs.begin()->second.second, 3588 "use of undefined value '%" + 3589 Twine(ForwardRefValIDs.begin()->first) + "'"); 3590 return false; 3591 } 3592 3593 /// getVal - Get a value with the specified name or ID, creating a 3594 /// forward reference record if needed. This can return null if the value 3595 /// exists but does not have the right type. 3596 Value *LLParser::PerFunctionState::getVal(const std::string &Name, Type *Ty, 3597 LocTy Loc) { 3598 // Look this name up in the normal function symbol table. 3599 Value *Val = F.getValueSymbolTable()->lookup(Name); 3600 3601 // If this is a forward reference for the value, see if we already created a 3602 // forward ref record. 3603 if (!Val) { 3604 auto I = ForwardRefVals.find(Name); 3605 if (I != ForwardRefVals.end()) 3606 Val = I->second.first; 3607 } 3608 3609 // If we have the value in the symbol table or fwd-ref table, return it. 3610 if (Val) 3611 return P.checkValidVariableType(Loc, "%" + Name, Ty, Val); 3612 3613 // Don't make placeholders with invalid type. 3614 if (!Ty->isFirstClassType()) { 3615 P.error(Loc, "invalid use of a non-first-class type"); 3616 return nullptr; 3617 } 3618 3619 // Otherwise, create a new forward reference for this value and remember it. 3620 Value *FwdVal; 3621 if (Ty->isLabelTy()) { 3622 FwdVal = BasicBlock::Create(F.getContext(), Name, &F); 3623 } else { 3624 FwdVal = new Argument(Ty, Name); 3625 } 3626 if (FwdVal->getName() != Name) { 3627 P.error(Loc, "name is too long which can result in name collisions, " 3628 "consider making the name shorter or " 3629 "increasing -non-global-value-max-name-size"); 3630 return nullptr; 3631 } 3632 3633 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 3634 return FwdVal; 3635 } 3636 3637 Value *LLParser::PerFunctionState::getVal(unsigned ID, Type *Ty, LocTy Loc) { 3638 // Look this name up in the normal function symbol table. 3639 Value *Val = NumberedVals.get(ID); 3640 3641 // If this is a forward reference for the value, see if we already created a 3642 // forward ref record. 3643 if (!Val) { 3644 auto I = ForwardRefValIDs.find(ID); 3645 if (I != ForwardRefValIDs.end()) 3646 Val = I->second.first; 3647 } 3648 3649 // If we have the value in the symbol table or fwd-ref table, return it. 3650 if (Val) 3651 return P.checkValidVariableType(Loc, "%" + Twine(ID), Ty, Val); 3652 3653 if (!Ty->isFirstClassType()) { 3654 P.error(Loc, "invalid use of a non-first-class type"); 3655 return nullptr; 3656 } 3657 3658 // Otherwise, create a new forward reference for this value and remember it. 3659 Value *FwdVal; 3660 if (Ty->isLabelTy()) { 3661 FwdVal = BasicBlock::Create(F.getContext(), "", &F); 3662 } else { 3663 FwdVal = new Argument(Ty); 3664 } 3665 3666 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 3667 return FwdVal; 3668 } 3669 3670 /// setInstName - After an instruction is parsed and inserted into its 3671 /// basic block, this installs its name. 3672 bool LLParser::PerFunctionState::setInstName(int NameID, 3673 const std::string &NameStr, 3674 LocTy NameLoc, Instruction *Inst) { 3675 // If this instruction has void type, it cannot have a name or ID specified. 3676 if (Inst->getType()->isVoidTy()) { 3677 if (NameID != -1 || !NameStr.empty()) 3678 return P.error(NameLoc, "instructions returning void cannot have a name"); 3679 return false; 3680 } 3681 3682 // If this was a numbered instruction, verify that the instruction is the 3683 // expected value and resolve any forward references. 3684 if (NameStr.empty()) { 3685 // If neither a name nor an ID was specified, just use the next ID. 3686 if (NameID == -1) 3687 NameID = NumberedVals.getNext(); 3688 3689 if (P.checkValueID(NameLoc, "instruction", "%", NumberedVals.getNext(), 3690 NameID)) 3691 return true; 3692 3693 auto FI = ForwardRefValIDs.find(NameID); 3694 if (FI != ForwardRefValIDs.end()) { 3695 Value *Sentinel = FI->second.first; 3696 if (Sentinel->getType() != Inst->getType()) 3697 return P.error(NameLoc, "instruction forward referenced with type '" + 3698 getTypeString(FI->second.first->getType()) + 3699 "'"); 3700 3701 Sentinel->replaceAllUsesWith(Inst); 3702 Sentinel->deleteValue(); 3703 ForwardRefValIDs.erase(FI); 3704 } 3705 3706 NumberedVals.add(NameID, Inst); 3707 return false; 3708 } 3709 3710 // Otherwise, the instruction had a name. Resolve forward refs and set it. 3711 auto FI = ForwardRefVals.find(NameStr); 3712 if (FI != ForwardRefVals.end()) { 3713 Value *Sentinel = FI->second.first; 3714 if (Sentinel->getType() != Inst->getType()) 3715 return P.error(NameLoc, "instruction forward referenced with type '" + 3716 getTypeString(FI->second.first->getType()) + 3717 "'"); 3718 3719 Sentinel->replaceAllUsesWith(Inst); 3720 Sentinel->deleteValue(); 3721 ForwardRefVals.erase(FI); 3722 } 3723 3724 // Set the name on the instruction. 3725 Inst->setName(NameStr); 3726 3727 if (Inst->getName() != NameStr) 3728 return P.error(NameLoc, "multiple definition of local value named '" + 3729 NameStr + "'"); 3730 return false; 3731 } 3732 3733 /// getBB - Get a basic block with the specified name or ID, creating a 3734 /// forward reference record if needed. 3735 BasicBlock *LLParser::PerFunctionState::getBB(const std::string &Name, 3736 LocTy Loc) { 3737 return dyn_cast_or_null<BasicBlock>( 3738 getVal(Name, Type::getLabelTy(F.getContext()), Loc)); 3739 } 3740 3741 BasicBlock *LLParser::PerFunctionState::getBB(unsigned ID, LocTy Loc) { 3742 return dyn_cast_or_null<BasicBlock>( 3743 getVal(ID, Type::getLabelTy(F.getContext()), Loc)); 3744 } 3745 3746 /// defineBB - Define the specified basic block, which is either named or 3747 /// unnamed. If there is an error, this returns null otherwise it returns 3748 /// the block being defined. 3749 BasicBlock *LLParser::PerFunctionState::defineBB(const std::string &Name, 3750 int NameID, LocTy Loc) { 3751 BasicBlock *BB; 3752 if (Name.empty()) { 3753 if (NameID != -1) { 3754 if (P.checkValueID(Loc, "label", "", NumberedVals.getNext(), NameID)) 3755 return nullptr; 3756 } else { 3757 NameID = NumberedVals.getNext(); 3758 } 3759 BB = getBB(NameID, Loc); 3760 if (!BB) { 3761 P.error(Loc, "unable to create block numbered '" + Twine(NameID) + "'"); 3762 return nullptr; 3763 } 3764 } else { 3765 BB = getBB(Name, Loc); 3766 if (!BB) { 3767 P.error(Loc, "unable to create block named '" + Name + "'"); 3768 return nullptr; 3769 } 3770 } 3771 3772 // Move the block to the end of the function. Forward ref'd blocks are 3773 // inserted wherever they happen to be referenced. 3774 F.splice(F.end(), &F, BB->getIterator()); 3775 3776 // Remove the block from forward ref sets. 3777 if (Name.empty()) { 3778 ForwardRefValIDs.erase(NameID); 3779 NumberedVals.add(NameID, BB); 3780 } else { 3781 // BB forward references are already in the function symbol table. 3782 ForwardRefVals.erase(Name); 3783 } 3784 3785 return BB; 3786 } 3787 3788 //===----------------------------------------------------------------------===// 3789 // Constants. 3790 //===----------------------------------------------------------------------===// 3791 3792 /// parseValID - parse an abstract value that doesn't necessarily have a 3793 /// type implied. For example, if we parse "4" we don't know what integer type 3794 /// it has. The value will later be combined with its type and checked for 3795 /// basic correctness. PFS is used to convert function-local operands of 3796 /// metadata (since metadata operands are not just parsed here but also 3797 /// converted to values). PFS can be null when we are not parsing metadata 3798 /// values inside a function. 3799 bool LLParser::parseValID(ValID &ID, PerFunctionState *PFS, Type *ExpectedTy) { 3800 ID.Loc = Lex.getLoc(); 3801 switch (Lex.getKind()) { 3802 default: 3803 return tokError("expected value token"); 3804 case lltok::GlobalID: // @42 3805 ID.UIntVal = Lex.getUIntVal(); 3806 ID.Kind = ValID::t_GlobalID; 3807 break; 3808 case lltok::GlobalVar: // @foo 3809 ID.StrVal = Lex.getStrVal(); 3810 ID.Kind = ValID::t_GlobalName; 3811 break; 3812 case lltok::LocalVarID: // %42 3813 ID.UIntVal = Lex.getUIntVal(); 3814 ID.Kind = ValID::t_LocalID; 3815 break; 3816 case lltok::LocalVar: // %foo 3817 ID.StrVal = Lex.getStrVal(); 3818 ID.Kind = ValID::t_LocalName; 3819 break; 3820 case lltok::APSInt: 3821 ID.APSIntVal = Lex.getAPSIntVal(); 3822 ID.Kind = ValID::t_APSInt; 3823 break; 3824 case lltok::APFloat: 3825 ID.APFloatVal = Lex.getAPFloatVal(); 3826 ID.Kind = ValID::t_APFloat; 3827 break; 3828 case lltok::kw_true: 3829 ID.ConstantVal = ConstantInt::getTrue(Context); 3830 ID.Kind = ValID::t_Constant; 3831 break; 3832 case lltok::kw_false: 3833 ID.ConstantVal = ConstantInt::getFalse(Context); 3834 ID.Kind = ValID::t_Constant; 3835 break; 3836 case lltok::kw_null: ID.Kind = ValID::t_Null; break; 3837 case lltok::kw_undef: ID.Kind = ValID::t_Undef; break; 3838 case lltok::kw_poison: ID.Kind = ValID::t_Poison; break; 3839 case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break; 3840 case lltok::kw_none: ID.Kind = ValID::t_None; break; 3841 3842 case lltok::lbrace: { 3843 // ValID ::= '{' ConstVector '}' 3844 Lex.Lex(); 3845 SmallVector<Constant*, 16> Elts; 3846 if (parseGlobalValueVector(Elts) || 3847 parseToken(lltok::rbrace, "expected end of struct constant")) 3848 return true; 3849 3850 ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size()); 3851 ID.UIntVal = Elts.size(); 3852 memcpy(ID.ConstantStructElts.get(), Elts.data(), 3853 Elts.size() * sizeof(Elts[0])); 3854 ID.Kind = ValID::t_ConstantStruct; 3855 return false; 3856 } 3857 case lltok::less: { 3858 // ValID ::= '<' ConstVector '>' --> Vector. 3859 // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct. 3860 Lex.Lex(); 3861 bool isPackedStruct = EatIfPresent(lltok::lbrace); 3862 3863 SmallVector<Constant*, 16> Elts; 3864 LocTy FirstEltLoc = Lex.getLoc(); 3865 if (parseGlobalValueVector(Elts) || 3866 (isPackedStruct && 3867 parseToken(lltok::rbrace, "expected end of packed struct")) || 3868 parseToken(lltok::greater, "expected end of constant")) 3869 return true; 3870 3871 if (isPackedStruct) { 3872 ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size()); 3873 memcpy(ID.ConstantStructElts.get(), Elts.data(), 3874 Elts.size() * sizeof(Elts[0])); 3875 ID.UIntVal = Elts.size(); 3876 ID.Kind = ValID::t_PackedConstantStruct; 3877 return false; 3878 } 3879 3880 if (Elts.empty()) 3881 return error(ID.Loc, "constant vector must not be empty"); 3882 3883 if (!Elts[0]->getType()->isIntegerTy() && 3884 !Elts[0]->getType()->isFloatingPointTy() && 3885 !Elts[0]->getType()->isPointerTy()) 3886 return error( 3887 FirstEltLoc, 3888 "vector elements must have integer, pointer or floating point type"); 3889 3890 // Verify that all the vector elements have the same type. 3891 for (unsigned i = 1, e = Elts.size(); i != e; ++i) 3892 if (Elts[i]->getType() != Elts[0]->getType()) 3893 return error(FirstEltLoc, "vector element #" + Twine(i) + 3894 " is not of type '" + 3895 getTypeString(Elts[0]->getType())); 3896 3897 ID.ConstantVal = ConstantVector::get(Elts); 3898 ID.Kind = ValID::t_Constant; 3899 return false; 3900 } 3901 case lltok::lsquare: { // Array Constant 3902 Lex.Lex(); 3903 SmallVector<Constant*, 16> Elts; 3904 LocTy FirstEltLoc = Lex.getLoc(); 3905 if (parseGlobalValueVector(Elts) || 3906 parseToken(lltok::rsquare, "expected end of array constant")) 3907 return true; 3908 3909 // Handle empty element. 3910 if (Elts.empty()) { 3911 // Use undef instead of an array because it's inconvenient to determine 3912 // the element type at this point, there being no elements to examine. 3913 ID.Kind = ValID::t_EmptyArray; 3914 return false; 3915 } 3916 3917 if (!Elts[0]->getType()->isFirstClassType()) 3918 return error(FirstEltLoc, "invalid array element type: " + 3919 getTypeString(Elts[0]->getType())); 3920 3921 ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size()); 3922 3923 // Verify all elements are correct type! 3924 for (unsigned i = 0, e = Elts.size(); i != e; ++i) { 3925 if (Elts[i]->getType() != Elts[0]->getType()) 3926 return error(FirstEltLoc, "array element #" + Twine(i) + 3927 " is not of type '" + 3928 getTypeString(Elts[0]->getType())); 3929 } 3930 3931 ID.ConstantVal = ConstantArray::get(ATy, Elts); 3932 ID.Kind = ValID::t_Constant; 3933 return false; 3934 } 3935 case lltok::kw_c: // c "foo" 3936 Lex.Lex(); 3937 ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(), 3938 false); 3939 if (parseToken(lltok::StringConstant, "expected string")) 3940 return true; 3941 ID.Kind = ValID::t_Constant; 3942 return false; 3943 3944 case lltok::kw_asm: { 3945 // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ',' 3946 // STRINGCONSTANT 3947 bool HasSideEffect, AlignStack, AsmDialect, CanThrow; 3948 Lex.Lex(); 3949 if (parseOptionalToken(lltok::kw_sideeffect, HasSideEffect) || 3950 parseOptionalToken(lltok::kw_alignstack, AlignStack) || 3951 parseOptionalToken(lltok::kw_inteldialect, AsmDialect) || 3952 parseOptionalToken(lltok::kw_unwind, CanThrow) || 3953 parseStringConstant(ID.StrVal) || 3954 parseToken(lltok::comma, "expected comma in inline asm expression") || 3955 parseToken(lltok::StringConstant, "expected constraint string")) 3956 return true; 3957 ID.StrVal2 = Lex.getStrVal(); 3958 ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack) << 1) | 3959 (unsigned(AsmDialect) << 2) | (unsigned(CanThrow) << 3); 3960 ID.Kind = ValID::t_InlineAsm; 3961 return false; 3962 } 3963 3964 case lltok::kw_blockaddress: { 3965 // ValID ::= 'blockaddress' '(' @foo ',' %bar ')' 3966 Lex.Lex(); 3967 3968 ValID Fn, Label; 3969 3970 if (parseToken(lltok::lparen, "expected '(' in block address expression") || 3971 parseValID(Fn, PFS) || 3972 parseToken(lltok::comma, 3973 "expected comma in block address expression") || 3974 parseValID(Label, PFS) || 3975 parseToken(lltok::rparen, "expected ')' in block address expression")) 3976 return true; 3977 3978 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName) 3979 return error(Fn.Loc, "expected function name in blockaddress"); 3980 if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName) 3981 return error(Label.Loc, "expected basic block name in blockaddress"); 3982 3983 // Try to find the function (but skip it if it's forward-referenced). 3984 GlobalValue *GV = nullptr; 3985 if (Fn.Kind == ValID::t_GlobalID) { 3986 GV = NumberedVals.get(Fn.UIntVal); 3987 } else if (!ForwardRefVals.count(Fn.StrVal)) { 3988 GV = M->getNamedValue(Fn.StrVal); 3989 } 3990 Function *F = nullptr; 3991 if (GV) { 3992 // Confirm that it's actually a function with a definition. 3993 if (!isa<Function>(GV)) 3994 return error(Fn.Loc, "expected function name in blockaddress"); 3995 F = cast<Function>(GV); 3996 if (F->isDeclaration()) 3997 return error(Fn.Loc, "cannot take blockaddress inside a declaration"); 3998 } 3999 4000 if (!F) { 4001 // Make a global variable as a placeholder for this reference. 4002 GlobalValue *&FwdRef = 4003 ForwardRefBlockAddresses[std::move(Fn)][std::move(Label)]; 4004 if (!FwdRef) { 4005 unsigned FwdDeclAS; 4006 if (ExpectedTy) { 4007 // If we know the type that the blockaddress is being assigned to, 4008 // we can use the address space of that type. 4009 if (!ExpectedTy->isPointerTy()) 4010 return error(ID.Loc, 4011 "type of blockaddress must be a pointer and not '" + 4012 getTypeString(ExpectedTy) + "'"); 4013 FwdDeclAS = ExpectedTy->getPointerAddressSpace(); 4014 } else if (PFS) { 4015 // Otherwise, we default the address space of the current function. 4016 FwdDeclAS = PFS->getFunction().getAddressSpace(); 4017 } else { 4018 llvm_unreachable("Unknown address space for blockaddress"); 4019 } 4020 FwdRef = new GlobalVariable( 4021 *M, Type::getInt8Ty(Context), false, GlobalValue::InternalLinkage, 4022 nullptr, "", nullptr, GlobalValue::NotThreadLocal, FwdDeclAS); 4023 } 4024 4025 ID.ConstantVal = FwdRef; 4026 ID.Kind = ValID::t_Constant; 4027 return false; 4028 } 4029 4030 // We found the function; now find the basic block. Don't use PFS, since we 4031 // might be inside a constant expression. 4032 BasicBlock *BB; 4033 if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) { 4034 if (Label.Kind == ValID::t_LocalID) 4035 BB = BlockAddressPFS->getBB(Label.UIntVal, Label.Loc); 4036 else 4037 BB = BlockAddressPFS->getBB(Label.StrVal, Label.Loc); 4038 if (!BB) 4039 return error(Label.Loc, "referenced value is not a basic block"); 4040 } else { 4041 if (Label.Kind == ValID::t_LocalID) 4042 return error(Label.Loc, "cannot take address of numeric label after " 4043 "the function is defined"); 4044 BB = dyn_cast_or_null<BasicBlock>( 4045 F->getValueSymbolTable()->lookup(Label.StrVal)); 4046 if (!BB) 4047 return error(Label.Loc, "referenced value is not a basic block"); 4048 } 4049 4050 ID.ConstantVal = BlockAddress::get(F, BB); 4051 ID.Kind = ValID::t_Constant; 4052 return false; 4053 } 4054 4055 case lltok::kw_dso_local_equivalent: { 4056 // ValID ::= 'dso_local_equivalent' @foo 4057 Lex.Lex(); 4058 4059 ValID Fn; 4060 4061 if (parseValID(Fn, PFS)) 4062 return true; 4063 4064 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName) 4065 return error(Fn.Loc, 4066 "expected global value name in dso_local_equivalent"); 4067 4068 // Try to find the function (but skip it if it's forward-referenced). 4069 GlobalValue *GV = nullptr; 4070 if (Fn.Kind == ValID::t_GlobalID) { 4071 GV = NumberedVals.get(Fn.UIntVal); 4072 } else if (!ForwardRefVals.count(Fn.StrVal)) { 4073 GV = M->getNamedValue(Fn.StrVal); 4074 } 4075 4076 if (!GV) { 4077 // Make a placeholder global variable as a placeholder for this reference. 4078 auto &FwdRefMap = (Fn.Kind == ValID::t_GlobalID) 4079 ? ForwardRefDSOLocalEquivalentIDs 4080 : ForwardRefDSOLocalEquivalentNames; 4081 GlobalValue *&FwdRef = FwdRefMap[Fn]; 4082 if (!FwdRef) { 4083 FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false, 4084 GlobalValue::InternalLinkage, nullptr, "", 4085 nullptr, GlobalValue::NotThreadLocal); 4086 } 4087 4088 ID.ConstantVal = FwdRef; 4089 ID.Kind = ValID::t_Constant; 4090 return false; 4091 } 4092 4093 if (!GV->getValueType()->isFunctionTy()) 4094 return error(Fn.Loc, "expected a function, alias to function, or ifunc " 4095 "in dso_local_equivalent"); 4096 4097 ID.ConstantVal = DSOLocalEquivalent::get(GV); 4098 ID.Kind = ValID::t_Constant; 4099 return false; 4100 } 4101 4102 case lltok::kw_no_cfi: { 4103 // ValID ::= 'no_cfi' @foo 4104 Lex.Lex(); 4105 4106 if (parseValID(ID, PFS)) 4107 return true; 4108 4109 if (ID.Kind != ValID::t_GlobalID && ID.Kind != ValID::t_GlobalName) 4110 return error(ID.Loc, "expected global value name in no_cfi"); 4111 4112 ID.NoCFI = true; 4113 return false; 4114 } 4115 case lltok::kw_ptrauth: { 4116 // ValID ::= 'ptrauth' '(' ptr @foo ',' i32 <key> 4117 // (',' i64 <disc> (',' ptr addrdisc)? )? ')' 4118 Lex.Lex(); 4119 4120 Constant *Ptr, *Key; 4121 Constant *Disc = nullptr, *AddrDisc = nullptr; 4122 4123 if (parseToken(lltok::lparen, 4124 "expected '(' in constant ptrauth expression") || 4125 parseGlobalTypeAndValue(Ptr) || 4126 parseToken(lltok::comma, 4127 "expected comma in constant ptrauth expression") || 4128 parseGlobalTypeAndValue(Key)) 4129 return true; 4130 // If present, parse the optional disc/addrdisc. 4131 if (EatIfPresent(lltok::comma)) 4132 if (parseGlobalTypeAndValue(Disc) || 4133 (EatIfPresent(lltok::comma) && parseGlobalTypeAndValue(AddrDisc))) 4134 return true; 4135 if (parseToken(lltok::rparen, 4136 "expected ')' in constant ptrauth expression")) 4137 return true; 4138 4139 if (!Ptr->getType()->isPointerTy()) 4140 return error(ID.Loc, "constant ptrauth base pointer must be a pointer"); 4141 4142 auto *KeyC = dyn_cast<ConstantInt>(Key); 4143 if (!KeyC || KeyC->getBitWidth() != 32) 4144 return error(ID.Loc, "constant ptrauth key must be i32 constant"); 4145 4146 ConstantInt *DiscC = nullptr; 4147 if (Disc) { 4148 DiscC = dyn_cast<ConstantInt>(Disc); 4149 if (!DiscC || DiscC->getBitWidth() != 64) 4150 return error( 4151 ID.Loc, 4152 "constant ptrauth integer discriminator must be i64 constant"); 4153 } else { 4154 DiscC = ConstantInt::get(Type::getInt64Ty(Context), 0); 4155 } 4156 4157 if (AddrDisc) { 4158 if (!AddrDisc->getType()->isPointerTy()) 4159 return error( 4160 ID.Loc, "constant ptrauth address discriminator must be a pointer"); 4161 } else { 4162 AddrDisc = ConstantPointerNull::get(PointerType::get(Context, 0)); 4163 } 4164 4165 ID.ConstantVal = ConstantPtrAuth::get(Ptr, KeyC, DiscC, AddrDisc); 4166 ID.Kind = ValID::t_Constant; 4167 return false; 4168 } 4169 4170 case lltok::kw_trunc: 4171 case lltok::kw_bitcast: 4172 case lltok::kw_addrspacecast: 4173 case lltok::kw_inttoptr: 4174 case lltok::kw_ptrtoint: { 4175 unsigned Opc = Lex.getUIntVal(); 4176 Type *DestTy = nullptr; 4177 Constant *SrcVal; 4178 Lex.Lex(); 4179 if (parseToken(lltok::lparen, "expected '(' after constantexpr cast") || 4180 parseGlobalTypeAndValue(SrcVal) || 4181 parseToken(lltok::kw_to, "expected 'to' in constantexpr cast") || 4182 parseType(DestTy) || 4183 parseToken(lltok::rparen, "expected ')' at end of constantexpr cast")) 4184 return true; 4185 if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy)) 4186 return error(ID.Loc, "invalid cast opcode for cast from '" + 4187 getTypeString(SrcVal->getType()) + "' to '" + 4188 getTypeString(DestTy) + "'"); 4189 ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc, 4190 SrcVal, DestTy); 4191 ID.Kind = ValID::t_Constant; 4192 return false; 4193 } 4194 case lltok::kw_extractvalue: 4195 return error(ID.Loc, "extractvalue constexprs are no longer supported"); 4196 case lltok::kw_insertvalue: 4197 return error(ID.Loc, "insertvalue constexprs are no longer supported"); 4198 case lltok::kw_udiv: 4199 return error(ID.Loc, "udiv constexprs are no longer supported"); 4200 case lltok::kw_sdiv: 4201 return error(ID.Loc, "sdiv constexprs are no longer supported"); 4202 case lltok::kw_urem: 4203 return error(ID.Loc, "urem constexprs are no longer supported"); 4204 case lltok::kw_srem: 4205 return error(ID.Loc, "srem constexprs are no longer supported"); 4206 case lltok::kw_fadd: 4207 return error(ID.Loc, "fadd constexprs are no longer supported"); 4208 case lltok::kw_fsub: 4209 return error(ID.Loc, "fsub constexprs are no longer supported"); 4210 case lltok::kw_fmul: 4211 return error(ID.Loc, "fmul constexprs are no longer supported"); 4212 case lltok::kw_fdiv: 4213 return error(ID.Loc, "fdiv constexprs are no longer supported"); 4214 case lltok::kw_frem: 4215 return error(ID.Loc, "frem constexprs are no longer supported"); 4216 case lltok::kw_and: 4217 return error(ID.Loc, "and constexprs are no longer supported"); 4218 case lltok::kw_or: 4219 return error(ID.Loc, "or constexprs are no longer supported"); 4220 case lltok::kw_lshr: 4221 return error(ID.Loc, "lshr constexprs are no longer supported"); 4222 case lltok::kw_ashr: 4223 return error(ID.Loc, "ashr constexprs are no longer supported"); 4224 case lltok::kw_shl: 4225 return error(ID.Loc, "shl constexprs are no longer supported"); 4226 case lltok::kw_fneg: 4227 return error(ID.Loc, "fneg constexprs are no longer supported"); 4228 case lltok::kw_select: 4229 return error(ID.Loc, "select constexprs are no longer supported"); 4230 case lltok::kw_zext: 4231 return error(ID.Loc, "zext constexprs are no longer supported"); 4232 case lltok::kw_sext: 4233 return error(ID.Loc, "sext constexprs are no longer supported"); 4234 case lltok::kw_fptrunc: 4235 return error(ID.Loc, "fptrunc constexprs are no longer supported"); 4236 case lltok::kw_fpext: 4237 return error(ID.Loc, "fpext constexprs are no longer supported"); 4238 case lltok::kw_uitofp: 4239 return error(ID.Loc, "uitofp constexprs are no longer supported"); 4240 case lltok::kw_sitofp: 4241 return error(ID.Loc, "sitofp constexprs are no longer supported"); 4242 case lltok::kw_fptoui: 4243 return error(ID.Loc, "fptoui constexprs are no longer supported"); 4244 case lltok::kw_fptosi: 4245 return error(ID.Loc, "fptosi constexprs are no longer supported"); 4246 case lltok::kw_icmp: 4247 return error(ID.Loc, "icmp constexprs are no longer supported"); 4248 case lltok::kw_fcmp: 4249 return error(ID.Loc, "fcmp constexprs are no longer supported"); 4250 4251 // Binary Operators. 4252 case lltok::kw_add: 4253 case lltok::kw_sub: 4254 case lltok::kw_mul: 4255 case lltok::kw_xor: { 4256 bool NUW = false; 4257 bool NSW = false; 4258 unsigned Opc = Lex.getUIntVal(); 4259 Constant *Val0, *Val1; 4260 Lex.Lex(); 4261 if (Opc == Instruction::Add || Opc == Instruction::Sub || 4262 Opc == Instruction::Mul) { 4263 if (EatIfPresent(lltok::kw_nuw)) 4264 NUW = true; 4265 if (EatIfPresent(lltok::kw_nsw)) { 4266 NSW = true; 4267 if (EatIfPresent(lltok::kw_nuw)) 4268 NUW = true; 4269 } 4270 } 4271 if (parseToken(lltok::lparen, "expected '(' in binary constantexpr") || 4272 parseGlobalTypeAndValue(Val0) || 4273 parseToken(lltok::comma, "expected comma in binary constantexpr") || 4274 parseGlobalTypeAndValue(Val1) || 4275 parseToken(lltok::rparen, "expected ')' in binary constantexpr")) 4276 return true; 4277 if (Val0->getType() != Val1->getType()) 4278 return error(ID.Loc, "operands of constexpr must have same type"); 4279 // Check that the type is valid for the operator. 4280 if (!Val0->getType()->isIntOrIntVectorTy()) 4281 return error(ID.Loc, 4282 "constexpr requires integer or integer vector operands"); 4283 unsigned Flags = 0; 4284 if (NUW) Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 4285 if (NSW) Flags |= OverflowingBinaryOperator::NoSignedWrap; 4286 ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1, Flags); 4287 ID.Kind = ValID::t_Constant; 4288 return false; 4289 } 4290 4291 case lltok::kw_splat: { 4292 Lex.Lex(); 4293 if (parseToken(lltok::lparen, "expected '(' after vector splat")) 4294 return true; 4295 Constant *C; 4296 if (parseGlobalTypeAndValue(C)) 4297 return true; 4298 if (parseToken(lltok::rparen, "expected ')' at end of vector splat")) 4299 return true; 4300 4301 ID.ConstantVal = C; 4302 ID.Kind = ValID::t_ConstantSplat; 4303 return false; 4304 } 4305 4306 case lltok::kw_getelementptr: 4307 case lltok::kw_shufflevector: 4308 case lltok::kw_insertelement: 4309 case lltok::kw_extractelement: { 4310 unsigned Opc = Lex.getUIntVal(); 4311 SmallVector<Constant*, 16> Elts; 4312 GEPNoWrapFlags NW; 4313 bool HasInRange = false; 4314 APSInt InRangeStart; 4315 APSInt InRangeEnd; 4316 Type *Ty; 4317 Lex.Lex(); 4318 4319 if (Opc == Instruction::GetElementPtr) { 4320 while (true) { 4321 if (EatIfPresent(lltok::kw_inbounds)) 4322 NW |= GEPNoWrapFlags::inBounds(); 4323 else if (EatIfPresent(lltok::kw_nusw)) 4324 NW |= GEPNoWrapFlags::noUnsignedSignedWrap(); 4325 else if (EatIfPresent(lltok::kw_nuw)) 4326 NW |= GEPNoWrapFlags::noUnsignedWrap(); 4327 else 4328 break; 4329 } 4330 4331 if (EatIfPresent(lltok::kw_inrange)) { 4332 if (parseToken(lltok::lparen, "expected '('")) 4333 return true; 4334 if (Lex.getKind() != lltok::APSInt) 4335 return tokError("expected integer"); 4336 InRangeStart = Lex.getAPSIntVal(); 4337 Lex.Lex(); 4338 if (parseToken(lltok::comma, "expected ','")) 4339 return true; 4340 if (Lex.getKind() != lltok::APSInt) 4341 return tokError("expected integer"); 4342 InRangeEnd = Lex.getAPSIntVal(); 4343 Lex.Lex(); 4344 if (parseToken(lltok::rparen, "expected ')'")) 4345 return true; 4346 HasInRange = true; 4347 } 4348 } 4349 4350 if (parseToken(lltok::lparen, "expected '(' in constantexpr")) 4351 return true; 4352 4353 if (Opc == Instruction::GetElementPtr) { 4354 if (parseType(Ty) || 4355 parseToken(lltok::comma, "expected comma after getelementptr's type")) 4356 return true; 4357 } 4358 4359 if (parseGlobalValueVector(Elts) || 4360 parseToken(lltok::rparen, "expected ')' in constantexpr")) 4361 return true; 4362 4363 if (Opc == Instruction::GetElementPtr) { 4364 if (Elts.size() == 0 || 4365 !Elts[0]->getType()->isPtrOrPtrVectorTy()) 4366 return error(ID.Loc, "base of getelementptr must be a pointer"); 4367 4368 Type *BaseType = Elts[0]->getType(); 4369 std::optional<ConstantRange> InRange; 4370 if (HasInRange) { 4371 unsigned IndexWidth = 4372 M->getDataLayout().getIndexTypeSizeInBits(BaseType); 4373 InRangeStart = InRangeStart.extOrTrunc(IndexWidth); 4374 InRangeEnd = InRangeEnd.extOrTrunc(IndexWidth); 4375 if (InRangeStart.sge(InRangeEnd)) 4376 return error(ID.Loc, "expected end to be larger than start"); 4377 InRange = ConstantRange::getNonEmpty(InRangeStart, InRangeEnd); 4378 } 4379 4380 unsigned GEPWidth = 4381 BaseType->isVectorTy() 4382 ? cast<FixedVectorType>(BaseType)->getNumElements() 4383 : 0; 4384 4385 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 4386 for (Constant *Val : Indices) { 4387 Type *ValTy = Val->getType(); 4388 if (!ValTy->isIntOrIntVectorTy()) 4389 return error(ID.Loc, "getelementptr index must be an integer"); 4390 if (auto *ValVTy = dyn_cast<VectorType>(ValTy)) { 4391 unsigned ValNumEl = cast<FixedVectorType>(ValVTy)->getNumElements(); 4392 if (GEPWidth && (ValNumEl != GEPWidth)) 4393 return error( 4394 ID.Loc, 4395 "getelementptr vector index has a wrong number of elements"); 4396 // GEPWidth may have been unknown because the base is a scalar, 4397 // but it is known now. 4398 GEPWidth = ValNumEl; 4399 } 4400 } 4401 4402 SmallPtrSet<Type*, 4> Visited; 4403 if (!Indices.empty() && !Ty->isSized(&Visited)) 4404 return error(ID.Loc, "base element of getelementptr must be sized"); 4405 4406 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 4407 return error(ID.Loc, "invalid getelementptr indices"); 4408 4409 ID.ConstantVal = 4410 ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices, NW, InRange); 4411 } else if (Opc == Instruction::ShuffleVector) { 4412 if (Elts.size() != 3) 4413 return error(ID.Loc, "expected three operands to shufflevector"); 4414 if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 4415 return error(ID.Loc, "invalid operands to shufflevector"); 4416 SmallVector<int, 16> Mask; 4417 ShuffleVectorInst::getShuffleMask(cast<Constant>(Elts[2]), Mask); 4418 ID.ConstantVal = ConstantExpr::getShuffleVector(Elts[0], Elts[1], Mask); 4419 } else if (Opc == Instruction::ExtractElement) { 4420 if (Elts.size() != 2) 4421 return error(ID.Loc, "expected two operands to extractelement"); 4422 if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1])) 4423 return error(ID.Loc, "invalid extractelement operands"); 4424 ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]); 4425 } else { 4426 assert(Opc == Instruction::InsertElement && "Unknown opcode"); 4427 if (Elts.size() != 3) 4428 return error(ID.Loc, "expected three operands to insertelement"); 4429 if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 4430 return error(ID.Loc, "invalid insertelement operands"); 4431 ID.ConstantVal = 4432 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]); 4433 } 4434 4435 ID.Kind = ValID::t_Constant; 4436 return false; 4437 } 4438 } 4439 4440 Lex.Lex(); 4441 return false; 4442 } 4443 4444 /// parseGlobalValue - parse a global value with the specified type. 4445 bool LLParser::parseGlobalValue(Type *Ty, Constant *&C) { 4446 C = nullptr; 4447 ValID ID; 4448 Value *V = nullptr; 4449 bool Parsed = parseValID(ID, /*PFS=*/nullptr, Ty) || 4450 convertValIDToValue(Ty, ID, V, nullptr); 4451 if (V && !(C = dyn_cast<Constant>(V))) 4452 return error(ID.Loc, "global values must be constants"); 4453 return Parsed; 4454 } 4455 4456 bool LLParser::parseGlobalTypeAndValue(Constant *&V) { 4457 Type *Ty = nullptr; 4458 return parseType(Ty) || parseGlobalValue(Ty, V); 4459 } 4460 4461 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) { 4462 C = nullptr; 4463 4464 LocTy KwLoc = Lex.getLoc(); 4465 if (!EatIfPresent(lltok::kw_comdat)) 4466 return false; 4467 4468 if (EatIfPresent(lltok::lparen)) { 4469 if (Lex.getKind() != lltok::ComdatVar) 4470 return tokError("expected comdat variable"); 4471 C = getComdat(Lex.getStrVal(), Lex.getLoc()); 4472 Lex.Lex(); 4473 if (parseToken(lltok::rparen, "expected ')' after comdat var")) 4474 return true; 4475 } else { 4476 if (GlobalName.empty()) 4477 return tokError("comdat cannot be unnamed"); 4478 C = getComdat(std::string(GlobalName), KwLoc); 4479 } 4480 4481 return false; 4482 } 4483 4484 /// parseGlobalValueVector 4485 /// ::= /*empty*/ 4486 /// ::= TypeAndValue (',' TypeAndValue)* 4487 bool LLParser::parseGlobalValueVector(SmallVectorImpl<Constant *> &Elts) { 4488 // Empty list. 4489 if (Lex.getKind() == lltok::rbrace || 4490 Lex.getKind() == lltok::rsquare || 4491 Lex.getKind() == lltok::greater || 4492 Lex.getKind() == lltok::rparen) 4493 return false; 4494 4495 do { 4496 // Let the caller deal with inrange. 4497 if (Lex.getKind() == lltok::kw_inrange) 4498 return false; 4499 4500 Constant *C; 4501 if (parseGlobalTypeAndValue(C)) 4502 return true; 4503 Elts.push_back(C); 4504 } while (EatIfPresent(lltok::comma)); 4505 4506 return false; 4507 } 4508 4509 bool LLParser::parseMDTuple(MDNode *&MD, bool IsDistinct) { 4510 SmallVector<Metadata *, 16> Elts; 4511 if (parseMDNodeVector(Elts)) 4512 return true; 4513 4514 MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts); 4515 return false; 4516 } 4517 4518 /// MDNode: 4519 /// ::= !{ ... } 4520 /// ::= !7 4521 /// ::= !DILocation(...) 4522 bool LLParser::parseMDNode(MDNode *&N) { 4523 if (Lex.getKind() == lltok::MetadataVar) 4524 return parseSpecializedMDNode(N); 4525 4526 return parseToken(lltok::exclaim, "expected '!' here") || parseMDNodeTail(N); 4527 } 4528 4529 bool LLParser::parseMDNodeTail(MDNode *&N) { 4530 // !{ ... } 4531 if (Lex.getKind() == lltok::lbrace) 4532 return parseMDTuple(N); 4533 4534 // !42 4535 return parseMDNodeID(N); 4536 } 4537 4538 namespace { 4539 4540 /// Structure to represent an optional metadata field. 4541 template <class FieldTy> struct MDFieldImpl { 4542 typedef MDFieldImpl ImplTy; 4543 FieldTy Val; 4544 bool Seen; 4545 4546 void assign(FieldTy Val) { 4547 Seen = true; 4548 this->Val = std::move(Val); 4549 } 4550 4551 explicit MDFieldImpl(FieldTy Default) 4552 : Val(std::move(Default)), Seen(false) {} 4553 }; 4554 4555 /// Structure to represent an optional metadata field that 4556 /// can be of either type (A or B) and encapsulates the 4557 /// MD<typeofA>Field and MD<typeofB>Field structs, so not 4558 /// to reimplement the specifics for representing each Field. 4559 template <class FieldTypeA, class FieldTypeB> struct MDEitherFieldImpl { 4560 typedef MDEitherFieldImpl<FieldTypeA, FieldTypeB> ImplTy; 4561 FieldTypeA A; 4562 FieldTypeB B; 4563 bool Seen; 4564 4565 enum { 4566 IsInvalid = 0, 4567 IsTypeA = 1, 4568 IsTypeB = 2 4569 } WhatIs; 4570 4571 void assign(FieldTypeA A) { 4572 Seen = true; 4573 this->A = std::move(A); 4574 WhatIs = IsTypeA; 4575 } 4576 4577 void assign(FieldTypeB B) { 4578 Seen = true; 4579 this->B = std::move(B); 4580 WhatIs = IsTypeB; 4581 } 4582 4583 explicit MDEitherFieldImpl(FieldTypeA DefaultA, FieldTypeB DefaultB) 4584 : A(std::move(DefaultA)), B(std::move(DefaultB)), Seen(false), 4585 WhatIs(IsInvalid) {} 4586 }; 4587 4588 struct MDUnsignedField : public MDFieldImpl<uint64_t> { 4589 uint64_t Max; 4590 4591 MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX) 4592 : ImplTy(Default), Max(Max) {} 4593 }; 4594 4595 struct LineField : public MDUnsignedField { 4596 LineField() : MDUnsignedField(0, UINT32_MAX) {} 4597 }; 4598 4599 struct ColumnField : public MDUnsignedField { 4600 ColumnField() : MDUnsignedField(0, UINT16_MAX) {} 4601 }; 4602 4603 struct DwarfTagField : public MDUnsignedField { 4604 DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {} 4605 DwarfTagField(dwarf::Tag DefaultTag) 4606 : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {} 4607 }; 4608 4609 struct DwarfMacinfoTypeField : public MDUnsignedField { 4610 DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {} 4611 DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType) 4612 : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {} 4613 }; 4614 4615 struct DwarfAttEncodingField : public MDUnsignedField { 4616 DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {} 4617 }; 4618 4619 struct DwarfVirtualityField : public MDUnsignedField { 4620 DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {} 4621 }; 4622 4623 struct DwarfLangField : public MDUnsignedField { 4624 DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {} 4625 }; 4626 4627 struct DwarfCCField : public MDUnsignedField { 4628 DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {} 4629 }; 4630 4631 struct EmissionKindField : public MDUnsignedField { 4632 EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {} 4633 }; 4634 4635 struct NameTableKindField : public MDUnsignedField { 4636 NameTableKindField() 4637 : MDUnsignedField( 4638 0, (unsigned) 4639 DICompileUnit::DebugNameTableKind::LastDebugNameTableKind) {} 4640 }; 4641 4642 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> { 4643 DIFlagField() : MDFieldImpl(DINode::FlagZero) {} 4644 }; 4645 4646 struct DISPFlagField : public MDFieldImpl<DISubprogram::DISPFlags> { 4647 DISPFlagField() : MDFieldImpl(DISubprogram::SPFlagZero) {} 4648 }; 4649 4650 struct MDAPSIntField : public MDFieldImpl<APSInt> { 4651 MDAPSIntField() : ImplTy(APSInt()) {} 4652 }; 4653 4654 struct MDSignedField : public MDFieldImpl<int64_t> { 4655 int64_t Min = INT64_MIN; 4656 int64_t Max = INT64_MAX; 4657 4658 MDSignedField(int64_t Default = 0) 4659 : ImplTy(Default) {} 4660 MDSignedField(int64_t Default, int64_t Min, int64_t Max) 4661 : ImplTy(Default), Min(Min), Max(Max) {} 4662 }; 4663 4664 struct MDBoolField : public MDFieldImpl<bool> { 4665 MDBoolField(bool Default = false) : ImplTy(Default) {} 4666 }; 4667 4668 struct MDField : public MDFieldImpl<Metadata *> { 4669 bool AllowNull; 4670 4671 MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {} 4672 }; 4673 4674 struct MDStringField : public MDFieldImpl<MDString *> { 4675 bool AllowEmpty; 4676 MDStringField(bool AllowEmpty = true) 4677 : ImplTy(nullptr), AllowEmpty(AllowEmpty) {} 4678 }; 4679 4680 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> { 4681 MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {} 4682 }; 4683 4684 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> { 4685 ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {} 4686 }; 4687 4688 struct MDSignedOrMDField : MDEitherFieldImpl<MDSignedField, MDField> { 4689 MDSignedOrMDField(int64_t Default = 0, bool AllowNull = true) 4690 : ImplTy(MDSignedField(Default), MDField(AllowNull)) {} 4691 4692 MDSignedOrMDField(int64_t Default, int64_t Min, int64_t Max, 4693 bool AllowNull = true) 4694 : ImplTy(MDSignedField(Default, Min, Max), MDField(AllowNull)) {} 4695 4696 bool isMDSignedField() const { return WhatIs == IsTypeA; } 4697 bool isMDField() const { return WhatIs == IsTypeB; } 4698 int64_t getMDSignedValue() const { 4699 assert(isMDSignedField() && "Wrong field type"); 4700 return A.Val; 4701 } 4702 Metadata *getMDFieldValue() const { 4703 assert(isMDField() && "Wrong field type"); 4704 return B.Val; 4705 } 4706 }; 4707 4708 } // end anonymous namespace 4709 4710 namespace llvm { 4711 4712 template <> 4713 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDAPSIntField &Result) { 4714 if (Lex.getKind() != lltok::APSInt) 4715 return tokError("expected integer"); 4716 4717 Result.assign(Lex.getAPSIntVal()); 4718 Lex.Lex(); 4719 return false; 4720 } 4721 4722 template <> 4723 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4724 MDUnsignedField &Result) { 4725 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 4726 return tokError("expected unsigned integer"); 4727 4728 auto &U = Lex.getAPSIntVal(); 4729 if (U.ugt(Result.Max)) 4730 return tokError("value for '" + Name + "' too large, limit is " + 4731 Twine(Result.Max)); 4732 Result.assign(U.getZExtValue()); 4733 assert(Result.Val <= Result.Max && "Expected value in range"); 4734 Lex.Lex(); 4735 return false; 4736 } 4737 4738 template <> 4739 bool LLParser::parseMDField(LocTy Loc, StringRef Name, LineField &Result) { 4740 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4741 } 4742 template <> 4743 bool LLParser::parseMDField(LocTy Loc, StringRef Name, ColumnField &Result) { 4744 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4745 } 4746 4747 template <> 4748 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) { 4749 if (Lex.getKind() == lltok::APSInt) 4750 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4751 4752 if (Lex.getKind() != lltok::DwarfTag) 4753 return tokError("expected DWARF tag"); 4754 4755 unsigned Tag = dwarf::getTag(Lex.getStrVal()); 4756 if (Tag == dwarf::DW_TAG_invalid) 4757 return tokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'"); 4758 assert(Tag <= Result.Max && "Expected valid DWARF tag"); 4759 4760 Result.assign(Tag); 4761 Lex.Lex(); 4762 return false; 4763 } 4764 4765 template <> 4766 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4767 DwarfMacinfoTypeField &Result) { 4768 if (Lex.getKind() == lltok::APSInt) 4769 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4770 4771 if (Lex.getKind() != lltok::DwarfMacinfo) 4772 return tokError("expected DWARF macinfo type"); 4773 4774 unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal()); 4775 if (Macinfo == dwarf::DW_MACINFO_invalid) 4776 return tokError("invalid DWARF macinfo type" + Twine(" '") + 4777 Lex.getStrVal() + "'"); 4778 assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type"); 4779 4780 Result.assign(Macinfo); 4781 Lex.Lex(); 4782 return false; 4783 } 4784 4785 template <> 4786 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4787 DwarfVirtualityField &Result) { 4788 if (Lex.getKind() == lltok::APSInt) 4789 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4790 4791 if (Lex.getKind() != lltok::DwarfVirtuality) 4792 return tokError("expected DWARF virtuality code"); 4793 4794 unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal()); 4795 if (Virtuality == dwarf::DW_VIRTUALITY_invalid) 4796 return tokError("invalid DWARF virtuality code" + Twine(" '") + 4797 Lex.getStrVal() + "'"); 4798 assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code"); 4799 Result.assign(Virtuality); 4800 Lex.Lex(); 4801 return false; 4802 } 4803 4804 template <> 4805 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) { 4806 if (Lex.getKind() == lltok::APSInt) 4807 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4808 4809 if (Lex.getKind() != lltok::DwarfLang) 4810 return tokError("expected DWARF language"); 4811 4812 unsigned Lang = dwarf::getLanguage(Lex.getStrVal()); 4813 if (!Lang) 4814 return tokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() + 4815 "'"); 4816 assert(Lang <= Result.Max && "Expected valid DWARF language"); 4817 Result.assign(Lang); 4818 Lex.Lex(); 4819 return false; 4820 } 4821 4822 template <> 4823 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) { 4824 if (Lex.getKind() == lltok::APSInt) 4825 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4826 4827 if (Lex.getKind() != lltok::DwarfCC) 4828 return tokError("expected DWARF calling convention"); 4829 4830 unsigned CC = dwarf::getCallingConvention(Lex.getStrVal()); 4831 if (!CC) 4832 return tokError("invalid DWARF calling convention" + Twine(" '") + 4833 Lex.getStrVal() + "'"); 4834 assert(CC <= Result.Max && "Expected valid DWARF calling convention"); 4835 Result.assign(CC); 4836 Lex.Lex(); 4837 return false; 4838 } 4839 4840 template <> 4841 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4842 EmissionKindField &Result) { 4843 if (Lex.getKind() == lltok::APSInt) 4844 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4845 4846 if (Lex.getKind() != lltok::EmissionKind) 4847 return tokError("expected emission kind"); 4848 4849 auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal()); 4850 if (!Kind) 4851 return tokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() + 4852 "'"); 4853 assert(*Kind <= Result.Max && "Expected valid emission kind"); 4854 Result.assign(*Kind); 4855 Lex.Lex(); 4856 return false; 4857 } 4858 4859 template <> 4860 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4861 NameTableKindField &Result) { 4862 if (Lex.getKind() == lltok::APSInt) 4863 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4864 4865 if (Lex.getKind() != lltok::NameTableKind) 4866 return tokError("expected nameTable kind"); 4867 4868 auto Kind = DICompileUnit::getNameTableKind(Lex.getStrVal()); 4869 if (!Kind) 4870 return tokError("invalid nameTable kind" + Twine(" '") + Lex.getStrVal() + 4871 "'"); 4872 assert(((unsigned)*Kind) <= Result.Max && "Expected valid nameTable kind"); 4873 Result.assign((unsigned)*Kind); 4874 Lex.Lex(); 4875 return false; 4876 } 4877 4878 template <> 4879 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4880 DwarfAttEncodingField &Result) { 4881 if (Lex.getKind() == lltok::APSInt) 4882 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4883 4884 if (Lex.getKind() != lltok::DwarfAttEncoding) 4885 return tokError("expected DWARF type attribute encoding"); 4886 4887 unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal()); 4888 if (!Encoding) 4889 return tokError("invalid DWARF type attribute encoding" + Twine(" '") + 4890 Lex.getStrVal() + "'"); 4891 assert(Encoding <= Result.Max && "Expected valid DWARF language"); 4892 Result.assign(Encoding); 4893 Lex.Lex(); 4894 return false; 4895 } 4896 4897 /// DIFlagField 4898 /// ::= uint32 4899 /// ::= DIFlagVector 4900 /// ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic 4901 template <> 4902 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) { 4903 4904 // parser for a single flag. 4905 auto parseFlag = [&](DINode::DIFlags &Val) { 4906 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) { 4907 uint32_t TempVal = static_cast<uint32_t>(Val); 4908 bool Res = parseUInt32(TempVal); 4909 Val = static_cast<DINode::DIFlags>(TempVal); 4910 return Res; 4911 } 4912 4913 if (Lex.getKind() != lltok::DIFlag) 4914 return tokError("expected debug info flag"); 4915 4916 Val = DINode::getFlag(Lex.getStrVal()); 4917 if (!Val) 4918 return tokError(Twine("invalid debug info flag '") + Lex.getStrVal() + 4919 "'"); 4920 Lex.Lex(); 4921 return false; 4922 }; 4923 4924 // parse the flags and combine them together. 4925 DINode::DIFlags Combined = DINode::FlagZero; 4926 do { 4927 DINode::DIFlags Val; 4928 if (parseFlag(Val)) 4929 return true; 4930 Combined |= Val; 4931 } while (EatIfPresent(lltok::bar)); 4932 4933 Result.assign(Combined); 4934 return false; 4935 } 4936 4937 /// DISPFlagField 4938 /// ::= uint32 4939 /// ::= DISPFlagVector 4940 /// ::= DISPFlagVector '|' DISPFlag* '|' uint32 4941 template <> 4942 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DISPFlagField &Result) { 4943 4944 // parser for a single flag. 4945 auto parseFlag = [&](DISubprogram::DISPFlags &Val) { 4946 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) { 4947 uint32_t TempVal = static_cast<uint32_t>(Val); 4948 bool Res = parseUInt32(TempVal); 4949 Val = static_cast<DISubprogram::DISPFlags>(TempVal); 4950 return Res; 4951 } 4952 4953 if (Lex.getKind() != lltok::DISPFlag) 4954 return tokError("expected debug info flag"); 4955 4956 Val = DISubprogram::getFlag(Lex.getStrVal()); 4957 if (!Val) 4958 return tokError(Twine("invalid subprogram debug info flag '") + 4959 Lex.getStrVal() + "'"); 4960 Lex.Lex(); 4961 return false; 4962 }; 4963 4964 // parse the flags and combine them together. 4965 DISubprogram::DISPFlags Combined = DISubprogram::SPFlagZero; 4966 do { 4967 DISubprogram::DISPFlags Val; 4968 if (parseFlag(Val)) 4969 return true; 4970 Combined |= Val; 4971 } while (EatIfPresent(lltok::bar)); 4972 4973 Result.assign(Combined); 4974 return false; 4975 } 4976 4977 template <> 4978 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDSignedField &Result) { 4979 if (Lex.getKind() != lltok::APSInt) 4980 return tokError("expected signed integer"); 4981 4982 auto &S = Lex.getAPSIntVal(); 4983 if (S < Result.Min) 4984 return tokError("value for '" + Name + "' too small, limit is " + 4985 Twine(Result.Min)); 4986 if (S > Result.Max) 4987 return tokError("value for '" + Name + "' too large, limit is " + 4988 Twine(Result.Max)); 4989 Result.assign(S.getExtValue()); 4990 assert(Result.Val >= Result.Min && "Expected value in range"); 4991 assert(Result.Val <= Result.Max && "Expected value in range"); 4992 Lex.Lex(); 4993 return false; 4994 } 4995 4996 template <> 4997 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) { 4998 switch (Lex.getKind()) { 4999 default: 5000 return tokError("expected 'true' or 'false'"); 5001 case lltok::kw_true: 5002 Result.assign(true); 5003 break; 5004 case lltok::kw_false: 5005 Result.assign(false); 5006 break; 5007 } 5008 Lex.Lex(); 5009 return false; 5010 } 5011 5012 template <> 5013 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDField &Result) { 5014 if (Lex.getKind() == lltok::kw_null) { 5015 if (!Result.AllowNull) 5016 return tokError("'" + Name + "' cannot be null"); 5017 Lex.Lex(); 5018 Result.assign(nullptr); 5019 return false; 5020 } 5021 5022 Metadata *MD; 5023 if (parseMetadata(MD, nullptr)) 5024 return true; 5025 5026 Result.assign(MD); 5027 return false; 5028 } 5029 5030 template <> 5031 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 5032 MDSignedOrMDField &Result) { 5033 // Try to parse a signed int. 5034 if (Lex.getKind() == lltok::APSInt) { 5035 MDSignedField Res = Result.A; 5036 if (!parseMDField(Loc, Name, Res)) { 5037 Result.assign(Res); 5038 return false; 5039 } 5040 return true; 5041 } 5042 5043 // Otherwise, try to parse as an MDField. 5044 MDField Res = Result.B; 5045 if (!parseMDField(Loc, Name, Res)) { 5046 Result.assign(Res); 5047 return false; 5048 } 5049 5050 return true; 5051 } 5052 5053 template <> 5054 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDStringField &Result) { 5055 LocTy ValueLoc = Lex.getLoc(); 5056 std::string S; 5057 if (parseStringConstant(S)) 5058 return true; 5059 5060 if (!Result.AllowEmpty && S.empty()) 5061 return error(ValueLoc, "'" + Name + "' cannot be empty"); 5062 5063 Result.assign(S.empty() ? nullptr : MDString::get(Context, S)); 5064 return false; 5065 } 5066 5067 template <> 5068 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) { 5069 SmallVector<Metadata *, 4> MDs; 5070 if (parseMDNodeVector(MDs)) 5071 return true; 5072 5073 Result.assign(std::move(MDs)); 5074 return false; 5075 } 5076 5077 template <> 5078 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 5079 ChecksumKindField &Result) { 5080 std::optional<DIFile::ChecksumKind> CSKind = 5081 DIFile::getChecksumKind(Lex.getStrVal()); 5082 5083 if (Lex.getKind() != lltok::ChecksumKind || !CSKind) 5084 return tokError("invalid checksum kind" + Twine(" '") + Lex.getStrVal() + 5085 "'"); 5086 5087 Result.assign(*CSKind); 5088 Lex.Lex(); 5089 return false; 5090 } 5091 5092 } // end namespace llvm 5093 5094 template <class ParserTy> 5095 bool LLParser::parseMDFieldsImplBody(ParserTy ParseField) { 5096 do { 5097 if (Lex.getKind() != lltok::LabelStr) 5098 return tokError("expected field label here"); 5099 5100 if (ParseField()) 5101 return true; 5102 } while (EatIfPresent(lltok::comma)); 5103 5104 return false; 5105 } 5106 5107 template <class ParserTy> 5108 bool LLParser::parseMDFieldsImpl(ParserTy ParseField, LocTy &ClosingLoc) { 5109 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 5110 Lex.Lex(); 5111 5112 if (parseToken(lltok::lparen, "expected '(' here")) 5113 return true; 5114 if (Lex.getKind() != lltok::rparen) 5115 if (parseMDFieldsImplBody(ParseField)) 5116 return true; 5117 5118 ClosingLoc = Lex.getLoc(); 5119 return parseToken(lltok::rparen, "expected ')' here"); 5120 } 5121 5122 template <class FieldTy> 5123 bool LLParser::parseMDField(StringRef Name, FieldTy &Result) { 5124 if (Result.Seen) 5125 return tokError("field '" + Name + "' cannot be specified more than once"); 5126 5127 LocTy Loc = Lex.getLoc(); 5128 Lex.Lex(); 5129 return parseMDField(Loc, Name, Result); 5130 } 5131 5132 bool LLParser::parseSpecializedMDNode(MDNode *&N, bool IsDistinct) { 5133 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 5134 5135 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \ 5136 if (Lex.getStrVal() == #CLASS) \ 5137 return parse##CLASS(N, IsDistinct); 5138 #include "llvm/IR/Metadata.def" 5139 5140 return tokError("expected metadata type"); 5141 } 5142 5143 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT 5144 #define NOP_FIELD(NAME, TYPE, INIT) 5145 #define REQUIRE_FIELD(NAME, TYPE, INIT) \ 5146 if (!NAME.Seen) \ 5147 return error(ClosingLoc, "missing required field '" #NAME "'"); 5148 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT) \ 5149 if (Lex.getStrVal() == #NAME) \ 5150 return parseMDField(#NAME, NAME); 5151 #define PARSE_MD_FIELDS() \ 5152 VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD) \ 5153 do { \ 5154 LocTy ClosingLoc; \ 5155 if (parseMDFieldsImpl( \ 5156 [&]() -> bool { \ 5157 VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD) \ 5158 return tokError(Twine("invalid field '") + Lex.getStrVal() + \ 5159 "'"); \ 5160 }, \ 5161 ClosingLoc)) \ 5162 return true; \ 5163 VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD) \ 5164 } while (false) 5165 #define GET_OR_DISTINCT(CLASS, ARGS) \ 5166 (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS) 5167 5168 /// parseDILocationFields: 5169 /// ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6, 5170 /// isImplicitCode: true) 5171 bool LLParser::parseDILocation(MDNode *&Result, bool IsDistinct) { 5172 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5173 OPTIONAL(line, LineField, ); \ 5174 OPTIONAL(column, ColumnField, ); \ 5175 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 5176 OPTIONAL(inlinedAt, MDField, ); \ 5177 OPTIONAL(isImplicitCode, MDBoolField, (false)); 5178 PARSE_MD_FIELDS(); 5179 #undef VISIT_MD_FIELDS 5180 5181 Result = 5182 GET_OR_DISTINCT(DILocation, (Context, line.Val, column.Val, scope.Val, 5183 inlinedAt.Val, isImplicitCode.Val)); 5184 return false; 5185 } 5186 5187 /// parseDIAssignID: 5188 /// ::= distinct !DIAssignID() 5189 bool LLParser::parseDIAssignID(MDNode *&Result, bool IsDistinct) { 5190 if (!IsDistinct) 5191 return tokError("missing 'distinct', required for !DIAssignID()"); 5192 5193 Lex.Lex(); 5194 5195 // Now eat the parens. 5196 if (parseToken(lltok::lparen, "expected '(' here")) 5197 return true; 5198 if (parseToken(lltok::rparen, "expected ')' here")) 5199 return true; 5200 5201 Result = DIAssignID::getDistinct(Context); 5202 return false; 5203 } 5204 5205 /// parseGenericDINode: 5206 /// ::= !GenericDINode(tag: 15, header: "...", operands: {...}) 5207 bool LLParser::parseGenericDINode(MDNode *&Result, bool IsDistinct) { 5208 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5209 REQUIRED(tag, DwarfTagField, ); \ 5210 OPTIONAL(header, MDStringField, ); \ 5211 OPTIONAL(operands, MDFieldList, ); 5212 PARSE_MD_FIELDS(); 5213 #undef VISIT_MD_FIELDS 5214 5215 Result = GET_OR_DISTINCT(GenericDINode, 5216 (Context, tag.Val, header.Val, operands.Val)); 5217 return false; 5218 } 5219 5220 /// parseDISubrange: 5221 /// ::= !DISubrange(count: 30, lowerBound: 2) 5222 /// ::= !DISubrange(count: !node, lowerBound: 2) 5223 /// ::= !DISubrange(lowerBound: !node1, upperBound: !node2, stride: !node3) 5224 bool LLParser::parseDISubrange(MDNode *&Result, bool IsDistinct) { 5225 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5226 OPTIONAL(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false)); \ 5227 OPTIONAL(lowerBound, MDSignedOrMDField, ); \ 5228 OPTIONAL(upperBound, MDSignedOrMDField, ); \ 5229 OPTIONAL(stride, MDSignedOrMDField, ); 5230 PARSE_MD_FIELDS(); 5231 #undef VISIT_MD_FIELDS 5232 5233 Metadata *Count = nullptr; 5234 Metadata *LowerBound = nullptr; 5235 Metadata *UpperBound = nullptr; 5236 Metadata *Stride = nullptr; 5237 5238 auto convToMetadata = [&](const MDSignedOrMDField &Bound) -> Metadata * { 5239 if (Bound.isMDSignedField()) 5240 return ConstantAsMetadata::get(ConstantInt::getSigned( 5241 Type::getInt64Ty(Context), Bound.getMDSignedValue())); 5242 if (Bound.isMDField()) 5243 return Bound.getMDFieldValue(); 5244 return nullptr; 5245 }; 5246 5247 Count = convToMetadata(count); 5248 LowerBound = convToMetadata(lowerBound); 5249 UpperBound = convToMetadata(upperBound); 5250 Stride = convToMetadata(stride); 5251 5252 Result = GET_OR_DISTINCT(DISubrange, 5253 (Context, Count, LowerBound, UpperBound, Stride)); 5254 5255 return false; 5256 } 5257 5258 /// parseDIGenericSubrange: 5259 /// ::= !DIGenericSubrange(lowerBound: !node1, upperBound: !node2, stride: 5260 /// !node3) 5261 bool LLParser::parseDIGenericSubrange(MDNode *&Result, bool IsDistinct) { 5262 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5263 OPTIONAL(count, MDSignedOrMDField, ); \ 5264 OPTIONAL(lowerBound, MDSignedOrMDField, ); \ 5265 OPTIONAL(upperBound, MDSignedOrMDField, ); \ 5266 OPTIONAL(stride, MDSignedOrMDField, ); 5267 PARSE_MD_FIELDS(); 5268 #undef VISIT_MD_FIELDS 5269 5270 auto ConvToMetadata = [&](const MDSignedOrMDField &Bound) -> Metadata * { 5271 if (Bound.isMDSignedField()) 5272 return DIExpression::get( 5273 Context, {dwarf::DW_OP_consts, 5274 static_cast<uint64_t>(Bound.getMDSignedValue())}); 5275 if (Bound.isMDField()) 5276 return Bound.getMDFieldValue(); 5277 return nullptr; 5278 }; 5279 5280 Metadata *Count = ConvToMetadata(count); 5281 Metadata *LowerBound = ConvToMetadata(lowerBound); 5282 Metadata *UpperBound = ConvToMetadata(upperBound); 5283 Metadata *Stride = ConvToMetadata(stride); 5284 5285 Result = GET_OR_DISTINCT(DIGenericSubrange, 5286 (Context, Count, LowerBound, UpperBound, Stride)); 5287 5288 return false; 5289 } 5290 5291 /// parseDIEnumerator: 5292 /// ::= !DIEnumerator(value: 30, isUnsigned: true, name: "SomeKind") 5293 bool LLParser::parseDIEnumerator(MDNode *&Result, bool IsDistinct) { 5294 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5295 REQUIRED(name, MDStringField, ); \ 5296 REQUIRED(value, MDAPSIntField, ); \ 5297 OPTIONAL(isUnsigned, MDBoolField, (false)); 5298 PARSE_MD_FIELDS(); 5299 #undef VISIT_MD_FIELDS 5300 5301 if (isUnsigned.Val && value.Val.isNegative()) 5302 return tokError("unsigned enumerator with negative value"); 5303 5304 APSInt Value(value.Val); 5305 // Add a leading zero so that unsigned values with the msb set are not 5306 // mistaken for negative values when used for signed enumerators. 5307 if (!isUnsigned.Val && value.Val.isUnsigned() && value.Val.isSignBitSet()) 5308 Value = Value.zext(Value.getBitWidth() + 1); 5309 5310 Result = 5311 GET_OR_DISTINCT(DIEnumerator, (Context, Value, isUnsigned.Val, name.Val)); 5312 5313 return false; 5314 } 5315 5316 /// parseDIBasicType: 5317 /// ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32, 5318 /// encoding: DW_ATE_encoding, flags: 0) 5319 bool LLParser::parseDIBasicType(MDNode *&Result, bool IsDistinct) { 5320 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5321 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type)); \ 5322 OPTIONAL(name, MDStringField, ); \ 5323 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 5324 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 5325 OPTIONAL(encoding, DwarfAttEncodingField, ); \ 5326 OPTIONAL(flags, DIFlagField, ); 5327 PARSE_MD_FIELDS(); 5328 #undef VISIT_MD_FIELDS 5329 5330 Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val, 5331 align.Val, encoding.Val, flags.Val)); 5332 return false; 5333 } 5334 5335 /// parseDIStringType: 5336 /// ::= !DIStringType(name: "character(4)", size: 32, align: 32) 5337 bool LLParser::parseDIStringType(MDNode *&Result, bool IsDistinct) { 5338 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5339 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_string_type)); \ 5340 OPTIONAL(name, MDStringField, ); \ 5341 OPTIONAL(stringLength, MDField, ); \ 5342 OPTIONAL(stringLengthExpression, MDField, ); \ 5343 OPTIONAL(stringLocationExpression, MDField, ); \ 5344 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 5345 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 5346 OPTIONAL(encoding, DwarfAttEncodingField, ); 5347 PARSE_MD_FIELDS(); 5348 #undef VISIT_MD_FIELDS 5349 5350 Result = GET_OR_DISTINCT( 5351 DIStringType, 5352 (Context, tag.Val, name.Val, stringLength.Val, stringLengthExpression.Val, 5353 stringLocationExpression.Val, size.Val, align.Val, encoding.Val)); 5354 return false; 5355 } 5356 5357 /// parseDIDerivedType: 5358 /// ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0, 5359 /// line: 7, scope: !1, baseType: !2, size: 32, 5360 /// align: 32, offset: 0, flags: 0, extraData: !3, 5361 /// dwarfAddressSpace: 3, ptrAuthKey: 1, 5362 /// ptrAuthIsAddressDiscriminated: true, 5363 /// ptrAuthExtraDiscriminator: 0x1234, 5364 /// ptrAuthIsaPointer: 1, ptrAuthAuthenticatesNullValues:1 5365 /// ) 5366 bool LLParser::parseDIDerivedType(MDNode *&Result, bool IsDistinct) { 5367 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5368 REQUIRED(tag, DwarfTagField, ); \ 5369 OPTIONAL(name, MDStringField, ); \ 5370 OPTIONAL(file, MDField, ); \ 5371 OPTIONAL(line, LineField, ); \ 5372 OPTIONAL(scope, MDField, ); \ 5373 REQUIRED(baseType, MDField, ); \ 5374 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 5375 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 5376 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 5377 OPTIONAL(flags, DIFlagField, ); \ 5378 OPTIONAL(extraData, MDField, ); \ 5379 OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX)); \ 5380 OPTIONAL(annotations, MDField, ); \ 5381 OPTIONAL(ptrAuthKey, MDUnsignedField, (0, 7)); \ 5382 OPTIONAL(ptrAuthIsAddressDiscriminated, MDBoolField, ); \ 5383 OPTIONAL(ptrAuthExtraDiscriminator, MDUnsignedField, (0, 0xffff)); \ 5384 OPTIONAL(ptrAuthIsaPointer, MDBoolField, ); \ 5385 OPTIONAL(ptrAuthAuthenticatesNullValues, MDBoolField, ); 5386 PARSE_MD_FIELDS(); 5387 #undef VISIT_MD_FIELDS 5388 5389 std::optional<unsigned> DWARFAddressSpace; 5390 if (dwarfAddressSpace.Val != UINT32_MAX) 5391 DWARFAddressSpace = dwarfAddressSpace.Val; 5392 std::optional<DIDerivedType::PtrAuthData> PtrAuthData; 5393 if (ptrAuthKey.Val) 5394 PtrAuthData.emplace( 5395 (unsigned)ptrAuthKey.Val, ptrAuthIsAddressDiscriminated.Val, 5396 (unsigned)ptrAuthExtraDiscriminator.Val, ptrAuthIsaPointer.Val, 5397 ptrAuthAuthenticatesNullValues.Val); 5398 5399 Result = GET_OR_DISTINCT(DIDerivedType, 5400 (Context, tag.Val, name.Val, file.Val, line.Val, 5401 scope.Val, baseType.Val, size.Val, align.Val, 5402 offset.Val, DWARFAddressSpace, PtrAuthData, 5403 flags.Val, extraData.Val, annotations.Val)); 5404 return false; 5405 } 5406 5407 bool LLParser::parseDICompositeType(MDNode *&Result, bool IsDistinct) { 5408 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5409 REQUIRED(tag, DwarfTagField, ); \ 5410 OPTIONAL(name, MDStringField, ); \ 5411 OPTIONAL(file, MDField, ); \ 5412 OPTIONAL(line, LineField, ); \ 5413 OPTIONAL(scope, MDField, ); \ 5414 OPTIONAL(baseType, MDField, ); \ 5415 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 5416 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 5417 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 5418 OPTIONAL(flags, DIFlagField, ); \ 5419 OPTIONAL(elements, MDField, ); \ 5420 OPTIONAL(runtimeLang, DwarfLangField, ); \ 5421 OPTIONAL(vtableHolder, MDField, ); \ 5422 OPTIONAL(templateParams, MDField, ); \ 5423 OPTIONAL(identifier, MDStringField, ); \ 5424 OPTIONAL(discriminator, MDField, ); \ 5425 OPTIONAL(dataLocation, MDField, ); \ 5426 OPTIONAL(associated, MDField, ); \ 5427 OPTIONAL(allocated, MDField, ); \ 5428 OPTIONAL(rank, MDSignedOrMDField, ); \ 5429 OPTIONAL(annotations, MDField, ); 5430 PARSE_MD_FIELDS(); 5431 #undef VISIT_MD_FIELDS 5432 5433 Metadata *Rank = nullptr; 5434 if (rank.isMDSignedField()) 5435 Rank = ConstantAsMetadata::get(ConstantInt::getSigned( 5436 Type::getInt64Ty(Context), rank.getMDSignedValue())); 5437 else if (rank.isMDField()) 5438 Rank = rank.getMDFieldValue(); 5439 5440 // If this has an identifier try to build an ODR type. 5441 if (identifier.Val) 5442 if (auto *CT = DICompositeType::buildODRType( 5443 Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val, 5444 scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val, 5445 elements.Val, runtimeLang.Val, vtableHolder.Val, templateParams.Val, 5446 discriminator.Val, dataLocation.Val, associated.Val, allocated.Val, 5447 Rank, annotations.Val)) { 5448 Result = CT; 5449 return false; 5450 } 5451 5452 // Create a new node, and save it in the context if it belongs in the type 5453 // map. 5454 Result = GET_OR_DISTINCT( 5455 DICompositeType, 5456 (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val, 5457 size.Val, align.Val, offset.Val, flags.Val, elements.Val, 5458 runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val, 5459 discriminator.Val, dataLocation.Val, associated.Val, allocated.Val, Rank, 5460 annotations.Val)); 5461 return false; 5462 } 5463 5464 bool LLParser::parseDISubroutineType(MDNode *&Result, bool IsDistinct) { 5465 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5466 OPTIONAL(flags, DIFlagField, ); \ 5467 OPTIONAL(cc, DwarfCCField, ); \ 5468 REQUIRED(types, MDField, ); 5469 PARSE_MD_FIELDS(); 5470 #undef VISIT_MD_FIELDS 5471 5472 Result = GET_OR_DISTINCT(DISubroutineType, 5473 (Context, flags.Val, cc.Val, types.Val)); 5474 return false; 5475 } 5476 5477 /// parseDIFileType: 5478 /// ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir", 5479 /// checksumkind: CSK_MD5, 5480 /// checksum: "000102030405060708090a0b0c0d0e0f", 5481 /// source: "source file contents") 5482 bool LLParser::parseDIFile(MDNode *&Result, bool IsDistinct) { 5483 // The default constructed value for checksumkind is required, but will never 5484 // be used, as the parser checks if the field was actually Seen before using 5485 // the Val. 5486 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5487 REQUIRED(filename, MDStringField, ); \ 5488 REQUIRED(directory, MDStringField, ); \ 5489 OPTIONAL(checksumkind, ChecksumKindField, (DIFile::CSK_MD5)); \ 5490 OPTIONAL(checksum, MDStringField, ); \ 5491 OPTIONAL(source, MDStringField, ); 5492 PARSE_MD_FIELDS(); 5493 #undef VISIT_MD_FIELDS 5494 5495 std::optional<DIFile::ChecksumInfo<MDString *>> OptChecksum; 5496 if (checksumkind.Seen && checksum.Seen) 5497 OptChecksum.emplace(checksumkind.Val, checksum.Val); 5498 else if (checksumkind.Seen || checksum.Seen) 5499 return tokError("'checksumkind' and 'checksum' must be provided together"); 5500 5501 MDString *Source = nullptr; 5502 if (source.Seen) 5503 Source = source.Val; 5504 Result = GET_OR_DISTINCT( 5505 DIFile, (Context, filename.Val, directory.Val, OptChecksum, Source)); 5506 return false; 5507 } 5508 5509 /// parseDICompileUnit: 5510 /// ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang", 5511 /// isOptimized: true, flags: "-O2", runtimeVersion: 1, 5512 /// splitDebugFilename: "abc.debug", 5513 /// emissionKind: FullDebug, enums: !1, retainedTypes: !2, 5514 /// globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd, 5515 /// sysroot: "/", sdk: "MacOSX.sdk") 5516 bool LLParser::parseDICompileUnit(MDNode *&Result, bool IsDistinct) { 5517 if (!IsDistinct) 5518 return tokError("missing 'distinct', required for !DICompileUnit"); 5519 5520 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5521 REQUIRED(language, DwarfLangField, ); \ 5522 REQUIRED(file, MDField, (/* AllowNull */ false)); \ 5523 OPTIONAL(producer, MDStringField, ); \ 5524 OPTIONAL(isOptimized, MDBoolField, ); \ 5525 OPTIONAL(flags, MDStringField, ); \ 5526 OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX)); \ 5527 OPTIONAL(splitDebugFilename, MDStringField, ); \ 5528 OPTIONAL(emissionKind, EmissionKindField, ); \ 5529 OPTIONAL(enums, MDField, ); \ 5530 OPTIONAL(retainedTypes, MDField, ); \ 5531 OPTIONAL(globals, MDField, ); \ 5532 OPTIONAL(imports, MDField, ); \ 5533 OPTIONAL(macros, MDField, ); \ 5534 OPTIONAL(dwoId, MDUnsignedField, ); \ 5535 OPTIONAL(splitDebugInlining, MDBoolField, = true); \ 5536 OPTIONAL(debugInfoForProfiling, MDBoolField, = false); \ 5537 OPTIONAL(nameTableKind, NameTableKindField, ); \ 5538 OPTIONAL(rangesBaseAddress, MDBoolField, = false); \ 5539 OPTIONAL(sysroot, MDStringField, ); \ 5540 OPTIONAL(sdk, MDStringField, ); 5541 PARSE_MD_FIELDS(); 5542 #undef VISIT_MD_FIELDS 5543 5544 Result = DICompileUnit::getDistinct( 5545 Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val, 5546 runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val, 5547 retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val, 5548 splitDebugInlining.Val, debugInfoForProfiling.Val, nameTableKind.Val, 5549 rangesBaseAddress.Val, sysroot.Val, sdk.Val); 5550 return false; 5551 } 5552 5553 /// parseDISubprogram: 5554 /// ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo", 5555 /// file: !1, line: 7, type: !2, isLocal: false, 5556 /// isDefinition: true, scopeLine: 8, containingType: !3, 5557 /// virtuality: DW_VIRTUALTIY_pure_virtual, 5558 /// virtualIndex: 10, thisAdjustment: 4, flags: 11, 5559 /// spFlags: 10, isOptimized: false, templateParams: !4, 5560 /// declaration: !5, retainedNodes: !6, thrownTypes: !7, 5561 /// annotations: !8) 5562 bool LLParser::parseDISubprogram(MDNode *&Result, bool IsDistinct) { 5563 auto Loc = Lex.getLoc(); 5564 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5565 OPTIONAL(scope, MDField, ); \ 5566 OPTIONAL(name, MDStringField, ); \ 5567 OPTIONAL(linkageName, MDStringField, ); \ 5568 OPTIONAL(file, MDField, ); \ 5569 OPTIONAL(line, LineField, ); \ 5570 OPTIONAL(type, MDField, ); \ 5571 OPTIONAL(isLocal, MDBoolField, ); \ 5572 OPTIONAL(isDefinition, MDBoolField, (true)); \ 5573 OPTIONAL(scopeLine, LineField, ); \ 5574 OPTIONAL(containingType, MDField, ); \ 5575 OPTIONAL(virtuality, DwarfVirtualityField, ); \ 5576 OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX)); \ 5577 OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX)); \ 5578 OPTIONAL(flags, DIFlagField, ); \ 5579 OPTIONAL(spFlags, DISPFlagField, ); \ 5580 OPTIONAL(isOptimized, MDBoolField, ); \ 5581 OPTIONAL(unit, MDField, ); \ 5582 OPTIONAL(templateParams, MDField, ); \ 5583 OPTIONAL(declaration, MDField, ); \ 5584 OPTIONAL(retainedNodes, MDField, ); \ 5585 OPTIONAL(thrownTypes, MDField, ); \ 5586 OPTIONAL(annotations, MDField, ); \ 5587 OPTIONAL(targetFuncName, MDStringField, ); 5588 PARSE_MD_FIELDS(); 5589 #undef VISIT_MD_FIELDS 5590 5591 // An explicit spFlags field takes precedence over individual fields in 5592 // older IR versions. 5593 DISubprogram::DISPFlags SPFlags = 5594 spFlags.Seen ? spFlags.Val 5595 : DISubprogram::toSPFlags(isLocal.Val, isDefinition.Val, 5596 isOptimized.Val, virtuality.Val); 5597 if ((SPFlags & DISubprogram::SPFlagDefinition) && !IsDistinct) 5598 return error( 5599 Loc, 5600 "missing 'distinct', required for !DISubprogram that is a Definition"); 5601 Result = GET_OR_DISTINCT( 5602 DISubprogram, 5603 (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val, 5604 type.Val, scopeLine.Val, containingType.Val, virtualIndex.Val, 5605 thisAdjustment.Val, flags.Val, SPFlags, unit.Val, templateParams.Val, 5606 declaration.Val, retainedNodes.Val, thrownTypes.Val, annotations.Val, 5607 targetFuncName.Val)); 5608 return false; 5609 } 5610 5611 /// parseDILexicalBlock: 5612 /// ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9) 5613 bool LLParser::parseDILexicalBlock(MDNode *&Result, bool IsDistinct) { 5614 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5615 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 5616 OPTIONAL(file, MDField, ); \ 5617 OPTIONAL(line, LineField, ); \ 5618 OPTIONAL(column, ColumnField, ); 5619 PARSE_MD_FIELDS(); 5620 #undef VISIT_MD_FIELDS 5621 5622 Result = GET_OR_DISTINCT( 5623 DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val)); 5624 return false; 5625 } 5626 5627 /// parseDILexicalBlockFile: 5628 /// ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9) 5629 bool LLParser::parseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) { 5630 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5631 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 5632 OPTIONAL(file, MDField, ); \ 5633 REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX)); 5634 PARSE_MD_FIELDS(); 5635 #undef VISIT_MD_FIELDS 5636 5637 Result = GET_OR_DISTINCT(DILexicalBlockFile, 5638 (Context, scope.Val, file.Val, discriminator.Val)); 5639 return false; 5640 } 5641 5642 /// parseDICommonBlock: 5643 /// ::= !DICommonBlock(scope: !0, file: !2, name: "COMMON name", line: 9) 5644 bool LLParser::parseDICommonBlock(MDNode *&Result, bool IsDistinct) { 5645 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5646 REQUIRED(scope, MDField, ); \ 5647 OPTIONAL(declaration, MDField, ); \ 5648 OPTIONAL(name, MDStringField, ); \ 5649 OPTIONAL(file, MDField, ); \ 5650 OPTIONAL(line, LineField, ); 5651 PARSE_MD_FIELDS(); 5652 #undef VISIT_MD_FIELDS 5653 5654 Result = GET_OR_DISTINCT(DICommonBlock, 5655 (Context, scope.Val, declaration.Val, name.Val, 5656 file.Val, line.Val)); 5657 return false; 5658 } 5659 5660 /// parseDINamespace: 5661 /// ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9) 5662 bool LLParser::parseDINamespace(MDNode *&Result, bool IsDistinct) { 5663 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5664 REQUIRED(scope, MDField, ); \ 5665 OPTIONAL(name, MDStringField, ); \ 5666 OPTIONAL(exportSymbols, MDBoolField, ); 5667 PARSE_MD_FIELDS(); 5668 #undef VISIT_MD_FIELDS 5669 5670 Result = GET_OR_DISTINCT(DINamespace, 5671 (Context, scope.Val, name.Val, exportSymbols.Val)); 5672 return false; 5673 } 5674 5675 /// parseDIMacro: 5676 /// ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value: 5677 /// "SomeValue") 5678 bool LLParser::parseDIMacro(MDNode *&Result, bool IsDistinct) { 5679 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5680 REQUIRED(type, DwarfMacinfoTypeField, ); \ 5681 OPTIONAL(line, LineField, ); \ 5682 REQUIRED(name, MDStringField, ); \ 5683 OPTIONAL(value, MDStringField, ); 5684 PARSE_MD_FIELDS(); 5685 #undef VISIT_MD_FIELDS 5686 5687 Result = GET_OR_DISTINCT(DIMacro, 5688 (Context, type.Val, line.Val, name.Val, value.Val)); 5689 return false; 5690 } 5691 5692 /// parseDIMacroFile: 5693 /// ::= !DIMacroFile(line: 9, file: !2, nodes: !3) 5694 bool LLParser::parseDIMacroFile(MDNode *&Result, bool IsDistinct) { 5695 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5696 OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file)); \ 5697 OPTIONAL(line, LineField, ); \ 5698 REQUIRED(file, MDField, ); \ 5699 OPTIONAL(nodes, MDField, ); 5700 PARSE_MD_FIELDS(); 5701 #undef VISIT_MD_FIELDS 5702 5703 Result = GET_OR_DISTINCT(DIMacroFile, 5704 (Context, type.Val, line.Val, file.Val, nodes.Val)); 5705 return false; 5706 } 5707 5708 /// parseDIModule: 5709 /// ::= !DIModule(scope: !0, name: "SomeModule", configMacros: 5710 /// "-DNDEBUG", includePath: "/usr/include", apinotes: "module.apinotes", 5711 /// file: !1, line: 4, isDecl: false) 5712 bool LLParser::parseDIModule(MDNode *&Result, bool IsDistinct) { 5713 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5714 REQUIRED(scope, MDField, ); \ 5715 REQUIRED(name, MDStringField, ); \ 5716 OPTIONAL(configMacros, MDStringField, ); \ 5717 OPTIONAL(includePath, MDStringField, ); \ 5718 OPTIONAL(apinotes, MDStringField, ); \ 5719 OPTIONAL(file, MDField, ); \ 5720 OPTIONAL(line, LineField, ); \ 5721 OPTIONAL(isDecl, MDBoolField, ); 5722 PARSE_MD_FIELDS(); 5723 #undef VISIT_MD_FIELDS 5724 5725 Result = GET_OR_DISTINCT(DIModule, (Context, file.Val, scope.Val, name.Val, 5726 configMacros.Val, includePath.Val, 5727 apinotes.Val, line.Val, isDecl.Val)); 5728 return false; 5729 } 5730 5731 /// parseDITemplateTypeParameter: 5732 /// ::= !DITemplateTypeParameter(name: "Ty", type: !1, defaulted: false) 5733 bool LLParser::parseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) { 5734 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5735 OPTIONAL(name, MDStringField, ); \ 5736 REQUIRED(type, MDField, ); \ 5737 OPTIONAL(defaulted, MDBoolField, ); 5738 PARSE_MD_FIELDS(); 5739 #undef VISIT_MD_FIELDS 5740 5741 Result = GET_OR_DISTINCT(DITemplateTypeParameter, 5742 (Context, name.Val, type.Val, defaulted.Val)); 5743 return false; 5744 } 5745 5746 /// parseDITemplateValueParameter: 5747 /// ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter, 5748 /// name: "V", type: !1, defaulted: false, 5749 /// value: i32 7) 5750 bool LLParser::parseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) { 5751 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5752 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter)); \ 5753 OPTIONAL(name, MDStringField, ); \ 5754 OPTIONAL(type, MDField, ); \ 5755 OPTIONAL(defaulted, MDBoolField, ); \ 5756 REQUIRED(value, MDField, ); 5757 5758 PARSE_MD_FIELDS(); 5759 #undef VISIT_MD_FIELDS 5760 5761 Result = GET_OR_DISTINCT( 5762 DITemplateValueParameter, 5763 (Context, tag.Val, name.Val, type.Val, defaulted.Val, value.Val)); 5764 return false; 5765 } 5766 5767 /// parseDIGlobalVariable: 5768 /// ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo", 5769 /// file: !1, line: 7, type: !2, isLocal: false, 5770 /// isDefinition: true, templateParams: !3, 5771 /// declaration: !4, align: 8) 5772 bool LLParser::parseDIGlobalVariable(MDNode *&Result, bool IsDistinct) { 5773 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5774 OPTIONAL(name, MDStringField, (/* AllowEmpty */ false)); \ 5775 OPTIONAL(scope, MDField, ); \ 5776 OPTIONAL(linkageName, MDStringField, ); \ 5777 OPTIONAL(file, MDField, ); \ 5778 OPTIONAL(line, LineField, ); \ 5779 OPTIONAL(type, MDField, ); \ 5780 OPTIONAL(isLocal, MDBoolField, ); \ 5781 OPTIONAL(isDefinition, MDBoolField, (true)); \ 5782 OPTIONAL(templateParams, MDField, ); \ 5783 OPTIONAL(declaration, MDField, ); \ 5784 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 5785 OPTIONAL(annotations, MDField, ); 5786 PARSE_MD_FIELDS(); 5787 #undef VISIT_MD_FIELDS 5788 5789 Result = 5790 GET_OR_DISTINCT(DIGlobalVariable, 5791 (Context, scope.Val, name.Val, linkageName.Val, file.Val, 5792 line.Val, type.Val, isLocal.Val, isDefinition.Val, 5793 declaration.Val, templateParams.Val, align.Val, 5794 annotations.Val)); 5795 return false; 5796 } 5797 5798 /// parseDILocalVariable: 5799 /// ::= !DILocalVariable(arg: 7, scope: !0, name: "foo", 5800 /// file: !1, line: 7, type: !2, arg: 2, flags: 7, 5801 /// align: 8) 5802 /// ::= !DILocalVariable(scope: !0, name: "foo", 5803 /// file: !1, line: 7, type: !2, arg: 2, flags: 7, 5804 /// align: 8) 5805 bool LLParser::parseDILocalVariable(MDNode *&Result, bool IsDistinct) { 5806 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5807 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 5808 OPTIONAL(name, MDStringField, ); \ 5809 OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX)); \ 5810 OPTIONAL(file, MDField, ); \ 5811 OPTIONAL(line, LineField, ); \ 5812 OPTIONAL(type, MDField, ); \ 5813 OPTIONAL(flags, DIFlagField, ); \ 5814 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 5815 OPTIONAL(annotations, MDField, ); 5816 PARSE_MD_FIELDS(); 5817 #undef VISIT_MD_FIELDS 5818 5819 Result = GET_OR_DISTINCT(DILocalVariable, 5820 (Context, scope.Val, name.Val, file.Val, line.Val, 5821 type.Val, arg.Val, flags.Val, align.Val, 5822 annotations.Val)); 5823 return false; 5824 } 5825 5826 /// parseDILabel: 5827 /// ::= !DILabel(scope: !0, name: "foo", file: !1, line: 7) 5828 bool LLParser::parseDILabel(MDNode *&Result, bool IsDistinct) { 5829 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5830 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 5831 REQUIRED(name, MDStringField, ); \ 5832 REQUIRED(file, MDField, ); \ 5833 REQUIRED(line, LineField, ); 5834 PARSE_MD_FIELDS(); 5835 #undef VISIT_MD_FIELDS 5836 5837 Result = GET_OR_DISTINCT(DILabel, 5838 (Context, scope.Val, name.Val, file.Val, line.Val)); 5839 return false; 5840 } 5841 5842 /// parseDIExpressionBody: 5843 /// ::= (0, 7, -1) 5844 bool LLParser::parseDIExpressionBody(MDNode *&Result, bool IsDistinct) { 5845 if (parseToken(lltok::lparen, "expected '(' here")) 5846 return true; 5847 5848 SmallVector<uint64_t, 8> Elements; 5849 if (Lex.getKind() != lltok::rparen) 5850 do { 5851 if (Lex.getKind() == lltok::DwarfOp) { 5852 if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) { 5853 Lex.Lex(); 5854 Elements.push_back(Op); 5855 continue; 5856 } 5857 return tokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'"); 5858 } 5859 5860 if (Lex.getKind() == lltok::DwarfAttEncoding) { 5861 if (unsigned Op = dwarf::getAttributeEncoding(Lex.getStrVal())) { 5862 Lex.Lex(); 5863 Elements.push_back(Op); 5864 continue; 5865 } 5866 return tokError(Twine("invalid DWARF attribute encoding '") + 5867 Lex.getStrVal() + "'"); 5868 } 5869 5870 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 5871 return tokError("expected unsigned integer"); 5872 5873 auto &U = Lex.getAPSIntVal(); 5874 if (U.ugt(UINT64_MAX)) 5875 return tokError("element too large, limit is " + Twine(UINT64_MAX)); 5876 Elements.push_back(U.getZExtValue()); 5877 Lex.Lex(); 5878 } while (EatIfPresent(lltok::comma)); 5879 5880 if (parseToken(lltok::rparen, "expected ')' here")) 5881 return true; 5882 5883 Result = GET_OR_DISTINCT(DIExpression, (Context, Elements)); 5884 return false; 5885 } 5886 5887 /// parseDIExpression: 5888 /// ::= !DIExpression(0, 7, -1) 5889 bool LLParser::parseDIExpression(MDNode *&Result, bool IsDistinct) { 5890 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 5891 assert(Lex.getStrVal() == "DIExpression" && "Expected '!DIExpression'"); 5892 Lex.Lex(); 5893 5894 return parseDIExpressionBody(Result, IsDistinct); 5895 } 5896 5897 /// ParseDIArgList: 5898 /// ::= !DIArgList(i32 7, i64 %0) 5899 bool LLParser::parseDIArgList(Metadata *&MD, PerFunctionState *PFS) { 5900 assert(PFS && "Expected valid function state"); 5901 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 5902 Lex.Lex(); 5903 5904 if (parseToken(lltok::lparen, "expected '(' here")) 5905 return true; 5906 5907 SmallVector<ValueAsMetadata *, 4> Args; 5908 if (Lex.getKind() != lltok::rparen) 5909 do { 5910 Metadata *MD; 5911 if (parseValueAsMetadata(MD, "expected value-as-metadata operand", PFS)) 5912 return true; 5913 Args.push_back(dyn_cast<ValueAsMetadata>(MD)); 5914 } while (EatIfPresent(lltok::comma)); 5915 5916 if (parseToken(lltok::rparen, "expected ')' here")) 5917 return true; 5918 5919 MD = DIArgList::get(Context, Args); 5920 return false; 5921 } 5922 5923 /// parseDIGlobalVariableExpression: 5924 /// ::= !DIGlobalVariableExpression(var: !0, expr: !1) 5925 bool LLParser::parseDIGlobalVariableExpression(MDNode *&Result, 5926 bool IsDistinct) { 5927 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5928 REQUIRED(var, MDField, ); \ 5929 REQUIRED(expr, MDField, ); 5930 PARSE_MD_FIELDS(); 5931 #undef VISIT_MD_FIELDS 5932 5933 Result = 5934 GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val)); 5935 return false; 5936 } 5937 5938 /// parseDIObjCProperty: 5939 /// ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo", 5940 /// getter: "getFoo", attributes: 7, type: !2) 5941 bool LLParser::parseDIObjCProperty(MDNode *&Result, bool IsDistinct) { 5942 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5943 OPTIONAL(name, MDStringField, ); \ 5944 OPTIONAL(file, MDField, ); \ 5945 OPTIONAL(line, LineField, ); \ 5946 OPTIONAL(setter, MDStringField, ); \ 5947 OPTIONAL(getter, MDStringField, ); \ 5948 OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX)); \ 5949 OPTIONAL(type, MDField, ); 5950 PARSE_MD_FIELDS(); 5951 #undef VISIT_MD_FIELDS 5952 5953 Result = GET_OR_DISTINCT(DIObjCProperty, 5954 (Context, name.Val, file.Val, line.Val, setter.Val, 5955 getter.Val, attributes.Val, type.Val)); 5956 return false; 5957 } 5958 5959 /// parseDIImportedEntity: 5960 /// ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1, 5961 /// line: 7, name: "foo", elements: !2) 5962 bool LLParser::parseDIImportedEntity(MDNode *&Result, bool IsDistinct) { 5963 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5964 REQUIRED(tag, DwarfTagField, ); \ 5965 REQUIRED(scope, MDField, ); \ 5966 OPTIONAL(entity, MDField, ); \ 5967 OPTIONAL(file, MDField, ); \ 5968 OPTIONAL(line, LineField, ); \ 5969 OPTIONAL(name, MDStringField, ); \ 5970 OPTIONAL(elements, MDField, ); 5971 PARSE_MD_FIELDS(); 5972 #undef VISIT_MD_FIELDS 5973 5974 Result = GET_OR_DISTINCT(DIImportedEntity, 5975 (Context, tag.Val, scope.Val, entity.Val, file.Val, 5976 line.Val, name.Val, elements.Val)); 5977 return false; 5978 } 5979 5980 #undef PARSE_MD_FIELD 5981 #undef NOP_FIELD 5982 #undef REQUIRE_FIELD 5983 #undef DECLARE_FIELD 5984 5985 /// parseMetadataAsValue 5986 /// ::= metadata i32 %local 5987 /// ::= metadata i32 @global 5988 /// ::= metadata i32 7 5989 /// ::= metadata !0 5990 /// ::= metadata !{...} 5991 /// ::= metadata !"string" 5992 bool LLParser::parseMetadataAsValue(Value *&V, PerFunctionState &PFS) { 5993 // Note: the type 'metadata' has already been parsed. 5994 Metadata *MD; 5995 if (parseMetadata(MD, &PFS)) 5996 return true; 5997 5998 V = MetadataAsValue::get(Context, MD); 5999 return false; 6000 } 6001 6002 /// parseValueAsMetadata 6003 /// ::= i32 %local 6004 /// ::= i32 @global 6005 /// ::= i32 7 6006 bool LLParser::parseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg, 6007 PerFunctionState *PFS) { 6008 Type *Ty; 6009 LocTy Loc; 6010 if (parseType(Ty, TypeMsg, Loc)) 6011 return true; 6012 if (Ty->isMetadataTy()) 6013 return error(Loc, "invalid metadata-value-metadata roundtrip"); 6014 6015 Value *V; 6016 if (parseValue(Ty, V, PFS)) 6017 return true; 6018 6019 MD = ValueAsMetadata::get(V); 6020 return false; 6021 } 6022 6023 /// parseMetadata 6024 /// ::= i32 %local 6025 /// ::= i32 @global 6026 /// ::= i32 7 6027 /// ::= !42 6028 /// ::= !{...} 6029 /// ::= !"string" 6030 /// ::= !DILocation(...) 6031 bool LLParser::parseMetadata(Metadata *&MD, PerFunctionState *PFS) { 6032 if (Lex.getKind() == lltok::MetadataVar) { 6033 // DIArgLists are a special case, as they are a list of ValueAsMetadata and 6034 // so parsing this requires a Function State. 6035 if (Lex.getStrVal() == "DIArgList") { 6036 Metadata *AL; 6037 if (parseDIArgList(AL, PFS)) 6038 return true; 6039 MD = AL; 6040 return false; 6041 } 6042 MDNode *N; 6043 if (parseSpecializedMDNode(N)) { 6044 return true; 6045 } 6046 MD = N; 6047 return false; 6048 } 6049 6050 // ValueAsMetadata: 6051 // <type> <value> 6052 if (Lex.getKind() != lltok::exclaim) 6053 return parseValueAsMetadata(MD, "expected metadata operand", PFS); 6054 6055 // '!'. 6056 assert(Lex.getKind() == lltok::exclaim && "Expected '!' here"); 6057 Lex.Lex(); 6058 6059 // MDString: 6060 // ::= '!' STRINGCONSTANT 6061 if (Lex.getKind() == lltok::StringConstant) { 6062 MDString *S; 6063 if (parseMDString(S)) 6064 return true; 6065 MD = S; 6066 return false; 6067 } 6068 6069 // MDNode: 6070 // !{ ... } 6071 // !7 6072 MDNode *N; 6073 if (parseMDNodeTail(N)) 6074 return true; 6075 MD = N; 6076 return false; 6077 } 6078 6079 //===----------------------------------------------------------------------===// 6080 // Function Parsing. 6081 //===----------------------------------------------------------------------===// 6082 6083 bool LLParser::convertValIDToValue(Type *Ty, ValID &ID, Value *&V, 6084 PerFunctionState *PFS) { 6085 if (Ty->isFunctionTy()) 6086 return error(ID.Loc, "functions are not values, refer to them as pointers"); 6087 6088 switch (ID.Kind) { 6089 case ValID::t_LocalID: 6090 if (!PFS) 6091 return error(ID.Loc, "invalid use of function-local name"); 6092 V = PFS->getVal(ID.UIntVal, Ty, ID.Loc); 6093 return V == nullptr; 6094 case ValID::t_LocalName: 6095 if (!PFS) 6096 return error(ID.Loc, "invalid use of function-local name"); 6097 V = PFS->getVal(ID.StrVal, Ty, ID.Loc); 6098 return V == nullptr; 6099 case ValID::t_InlineAsm: { 6100 if (!ID.FTy) 6101 return error(ID.Loc, "invalid type for inline asm constraint string"); 6102 if (Error Err = InlineAsm::verify(ID.FTy, ID.StrVal2)) 6103 return error(ID.Loc, toString(std::move(Err))); 6104 V = InlineAsm::get( 6105 ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1, (ID.UIntVal >> 1) & 1, 6106 InlineAsm::AsmDialect((ID.UIntVal >> 2) & 1), (ID.UIntVal >> 3) & 1); 6107 return false; 6108 } 6109 case ValID::t_GlobalName: 6110 V = getGlobalVal(ID.StrVal, Ty, ID.Loc); 6111 if (V && ID.NoCFI) 6112 V = NoCFIValue::get(cast<GlobalValue>(V)); 6113 return V == nullptr; 6114 case ValID::t_GlobalID: 6115 V = getGlobalVal(ID.UIntVal, Ty, ID.Loc); 6116 if (V && ID.NoCFI) 6117 V = NoCFIValue::get(cast<GlobalValue>(V)); 6118 return V == nullptr; 6119 case ValID::t_APSInt: 6120 if (!Ty->isIntegerTy()) 6121 return error(ID.Loc, "integer constant must have integer type"); 6122 ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits()); 6123 V = ConstantInt::get(Context, ID.APSIntVal); 6124 return false; 6125 case ValID::t_APFloat: 6126 if (!Ty->isFloatingPointTy() || 6127 !ConstantFP::isValueValidForType(Ty, ID.APFloatVal)) 6128 return error(ID.Loc, "floating point constant invalid for type"); 6129 6130 // The lexer has no type info, so builds all half, bfloat, float, and double 6131 // FP constants as double. Fix this here. Long double does not need this. 6132 if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) { 6133 // Check for signaling before potentially converting and losing that info. 6134 bool IsSNAN = ID.APFloatVal.isSignaling(); 6135 bool Ignored; 6136 if (Ty->isHalfTy()) 6137 ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, 6138 &Ignored); 6139 else if (Ty->isBFloatTy()) 6140 ID.APFloatVal.convert(APFloat::BFloat(), APFloat::rmNearestTiesToEven, 6141 &Ignored); 6142 else if (Ty->isFloatTy()) 6143 ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 6144 &Ignored); 6145 if (IsSNAN) { 6146 // The convert call above may quiet an SNaN, so manufacture another 6147 // SNaN. The bitcast works because the payload (significand) parameter 6148 // is truncated to fit. 6149 APInt Payload = ID.APFloatVal.bitcastToAPInt(); 6150 ID.APFloatVal = APFloat::getSNaN(ID.APFloatVal.getSemantics(), 6151 ID.APFloatVal.isNegative(), &Payload); 6152 } 6153 } 6154 V = ConstantFP::get(Context, ID.APFloatVal); 6155 6156 if (V->getType() != Ty) 6157 return error(ID.Loc, "floating point constant does not have type '" + 6158 getTypeString(Ty) + "'"); 6159 6160 return false; 6161 case ValID::t_Null: 6162 if (!Ty->isPointerTy()) 6163 return error(ID.Loc, "null must be a pointer type"); 6164 V = ConstantPointerNull::get(cast<PointerType>(Ty)); 6165 return false; 6166 case ValID::t_Undef: 6167 // FIXME: LabelTy should not be a first-class type. 6168 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 6169 return error(ID.Loc, "invalid type for undef constant"); 6170 V = UndefValue::get(Ty); 6171 return false; 6172 case ValID::t_EmptyArray: 6173 if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0) 6174 return error(ID.Loc, "invalid empty array initializer"); 6175 V = UndefValue::get(Ty); 6176 return false; 6177 case ValID::t_Zero: 6178 // FIXME: LabelTy should not be a first-class type. 6179 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 6180 return error(ID.Loc, "invalid type for null constant"); 6181 if (auto *TETy = dyn_cast<TargetExtType>(Ty)) 6182 if (!TETy->hasProperty(TargetExtType::HasZeroInit)) 6183 return error(ID.Loc, "invalid type for null constant"); 6184 V = Constant::getNullValue(Ty); 6185 return false; 6186 case ValID::t_None: 6187 if (!Ty->isTokenTy()) 6188 return error(ID.Loc, "invalid type for none constant"); 6189 V = Constant::getNullValue(Ty); 6190 return false; 6191 case ValID::t_Poison: 6192 // FIXME: LabelTy should not be a first-class type. 6193 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 6194 return error(ID.Loc, "invalid type for poison constant"); 6195 V = PoisonValue::get(Ty); 6196 return false; 6197 case ValID::t_Constant: 6198 if (ID.ConstantVal->getType() != Ty) 6199 return error(ID.Loc, "constant expression type mismatch: got type '" + 6200 getTypeString(ID.ConstantVal->getType()) + 6201 "' but expected '" + getTypeString(Ty) + "'"); 6202 V = ID.ConstantVal; 6203 return false; 6204 case ValID::t_ConstantSplat: 6205 if (!Ty->isVectorTy()) 6206 return error(ID.Loc, "vector constant must have vector type"); 6207 if (ID.ConstantVal->getType() != Ty->getScalarType()) 6208 return error(ID.Loc, "constant expression type mismatch: got type '" + 6209 getTypeString(ID.ConstantVal->getType()) + 6210 "' but expected '" + 6211 getTypeString(Ty->getScalarType()) + "'"); 6212 V = ConstantVector::getSplat(cast<VectorType>(Ty)->getElementCount(), 6213 ID.ConstantVal); 6214 return false; 6215 case ValID::t_ConstantStruct: 6216 case ValID::t_PackedConstantStruct: 6217 if (StructType *ST = dyn_cast<StructType>(Ty)) { 6218 if (ST->getNumElements() != ID.UIntVal) 6219 return error(ID.Loc, 6220 "initializer with struct type has wrong # elements"); 6221 if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct)) 6222 return error(ID.Loc, "packed'ness of initializer and type don't match"); 6223 6224 // Verify that the elements are compatible with the structtype. 6225 for (unsigned i = 0, e = ID.UIntVal; i != e; ++i) 6226 if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i)) 6227 return error( 6228 ID.Loc, 6229 "element " + Twine(i) + 6230 " of struct initializer doesn't match struct element type"); 6231 6232 V = ConstantStruct::get( 6233 ST, ArrayRef(ID.ConstantStructElts.get(), ID.UIntVal)); 6234 } else 6235 return error(ID.Loc, "constant expression type mismatch"); 6236 return false; 6237 } 6238 llvm_unreachable("Invalid ValID"); 6239 } 6240 6241 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) { 6242 C = nullptr; 6243 ValID ID; 6244 auto Loc = Lex.getLoc(); 6245 if (parseValID(ID, /*PFS=*/nullptr)) 6246 return true; 6247 switch (ID.Kind) { 6248 case ValID::t_APSInt: 6249 case ValID::t_APFloat: 6250 case ValID::t_Undef: 6251 case ValID::t_Constant: 6252 case ValID::t_ConstantSplat: 6253 case ValID::t_ConstantStruct: 6254 case ValID::t_PackedConstantStruct: { 6255 Value *V; 6256 if (convertValIDToValue(Ty, ID, V, /*PFS=*/nullptr)) 6257 return true; 6258 assert(isa<Constant>(V) && "Expected a constant value"); 6259 C = cast<Constant>(V); 6260 return false; 6261 } 6262 case ValID::t_Null: 6263 C = Constant::getNullValue(Ty); 6264 return false; 6265 default: 6266 return error(Loc, "expected a constant value"); 6267 } 6268 } 6269 6270 bool LLParser::parseValue(Type *Ty, Value *&V, PerFunctionState *PFS) { 6271 V = nullptr; 6272 ValID ID; 6273 return parseValID(ID, PFS, Ty) || 6274 convertValIDToValue(Ty, ID, V, PFS); 6275 } 6276 6277 bool LLParser::parseTypeAndValue(Value *&V, PerFunctionState *PFS) { 6278 Type *Ty = nullptr; 6279 return parseType(Ty) || parseValue(Ty, V, PFS); 6280 } 6281 6282 bool LLParser::parseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc, 6283 PerFunctionState &PFS) { 6284 Value *V; 6285 Loc = Lex.getLoc(); 6286 if (parseTypeAndValue(V, PFS)) 6287 return true; 6288 if (!isa<BasicBlock>(V)) 6289 return error(Loc, "expected a basic block"); 6290 BB = cast<BasicBlock>(V); 6291 return false; 6292 } 6293 6294 bool isOldDbgFormatIntrinsic(StringRef Name) { 6295 // Exit early for the common (non-debug-intrinsic) case. 6296 // We can make this the only check when we begin supporting all "llvm.dbg" 6297 // intrinsics in the new debug info format. 6298 if (!Name.starts_with("llvm.dbg.")) 6299 return false; 6300 Intrinsic::ID FnID = Intrinsic::lookupIntrinsicID(Name); 6301 return FnID == Intrinsic::dbg_declare || FnID == Intrinsic::dbg_value || 6302 FnID == Intrinsic::dbg_assign; 6303 } 6304 6305 /// FunctionHeader 6306 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 6307 /// OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName 6308 /// '(' ArgList ')' OptAddrSpace OptFuncAttrs OptSection OptionalAlign 6309 /// OptGC OptionalPrefix OptionalPrologue OptPersonalityFn 6310 bool LLParser::parseFunctionHeader(Function *&Fn, bool IsDefine, 6311 unsigned &FunctionNumber, 6312 SmallVectorImpl<unsigned> &UnnamedArgNums) { 6313 // parse the linkage. 6314 LocTy LinkageLoc = Lex.getLoc(); 6315 unsigned Linkage; 6316 unsigned Visibility; 6317 unsigned DLLStorageClass; 6318 bool DSOLocal; 6319 AttrBuilder RetAttrs(M->getContext()); 6320 unsigned CC; 6321 bool HasLinkage; 6322 Type *RetType = nullptr; 6323 LocTy RetTypeLoc = Lex.getLoc(); 6324 if (parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 6325 DSOLocal) || 6326 parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) || 6327 parseType(RetType, RetTypeLoc, true /*void allowed*/)) 6328 return true; 6329 6330 // Verify that the linkage is ok. 6331 switch ((GlobalValue::LinkageTypes)Linkage) { 6332 case GlobalValue::ExternalLinkage: 6333 break; // always ok. 6334 case GlobalValue::ExternalWeakLinkage: 6335 if (IsDefine) 6336 return error(LinkageLoc, "invalid linkage for function definition"); 6337 break; 6338 case GlobalValue::PrivateLinkage: 6339 case GlobalValue::InternalLinkage: 6340 case GlobalValue::AvailableExternallyLinkage: 6341 case GlobalValue::LinkOnceAnyLinkage: 6342 case GlobalValue::LinkOnceODRLinkage: 6343 case GlobalValue::WeakAnyLinkage: 6344 case GlobalValue::WeakODRLinkage: 6345 if (!IsDefine) 6346 return error(LinkageLoc, "invalid linkage for function declaration"); 6347 break; 6348 case GlobalValue::AppendingLinkage: 6349 case GlobalValue::CommonLinkage: 6350 return error(LinkageLoc, "invalid function linkage type"); 6351 } 6352 6353 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 6354 return error(LinkageLoc, 6355 "symbol with local linkage must have default visibility"); 6356 6357 if (!isValidDLLStorageClassForLinkage(DLLStorageClass, Linkage)) 6358 return error(LinkageLoc, 6359 "symbol with local linkage cannot have a DLL storage class"); 6360 6361 if (!FunctionType::isValidReturnType(RetType)) 6362 return error(RetTypeLoc, "invalid function return type"); 6363 6364 LocTy NameLoc = Lex.getLoc(); 6365 6366 std::string FunctionName; 6367 if (Lex.getKind() == lltok::GlobalVar) { 6368 FunctionName = Lex.getStrVal(); 6369 } else if (Lex.getKind() == lltok::GlobalID) { // @42 is ok. 6370 FunctionNumber = Lex.getUIntVal(); 6371 if (checkValueID(NameLoc, "function", "@", NumberedVals.getNext(), 6372 FunctionNumber)) 6373 return true; 6374 } else { 6375 return tokError("expected function name"); 6376 } 6377 6378 Lex.Lex(); 6379 6380 if (Lex.getKind() != lltok::lparen) 6381 return tokError("expected '(' in function argument list"); 6382 6383 SmallVector<ArgInfo, 8> ArgList; 6384 bool IsVarArg; 6385 AttrBuilder FuncAttrs(M->getContext()); 6386 std::vector<unsigned> FwdRefAttrGrps; 6387 LocTy BuiltinLoc; 6388 std::string Section; 6389 std::string Partition; 6390 MaybeAlign Alignment; 6391 std::string GC; 6392 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 6393 unsigned AddrSpace = 0; 6394 Constant *Prefix = nullptr; 6395 Constant *Prologue = nullptr; 6396 Constant *PersonalityFn = nullptr; 6397 Comdat *C; 6398 6399 if (parseArgumentList(ArgList, UnnamedArgNums, IsVarArg) || 6400 parseOptionalUnnamedAddr(UnnamedAddr) || 6401 parseOptionalProgramAddrSpace(AddrSpace) || 6402 parseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false, 6403 BuiltinLoc) || 6404 (EatIfPresent(lltok::kw_section) && parseStringConstant(Section)) || 6405 (EatIfPresent(lltok::kw_partition) && parseStringConstant(Partition)) || 6406 parseOptionalComdat(FunctionName, C) || 6407 parseOptionalAlignment(Alignment) || 6408 (EatIfPresent(lltok::kw_gc) && parseStringConstant(GC)) || 6409 (EatIfPresent(lltok::kw_prefix) && parseGlobalTypeAndValue(Prefix)) || 6410 (EatIfPresent(lltok::kw_prologue) && parseGlobalTypeAndValue(Prologue)) || 6411 (EatIfPresent(lltok::kw_personality) && 6412 parseGlobalTypeAndValue(PersonalityFn))) 6413 return true; 6414 6415 if (FuncAttrs.contains(Attribute::Builtin)) 6416 return error(BuiltinLoc, "'builtin' attribute not valid on function"); 6417 6418 // If the alignment was parsed as an attribute, move to the alignment field. 6419 if (MaybeAlign A = FuncAttrs.getAlignment()) { 6420 Alignment = A; 6421 FuncAttrs.removeAttribute(Attribute::Alignment); 6422 } 6423 6424 // Okay, if we got here, the function is syntactically valid. Convert types 6425 // and do semantic checks. 6426 std::vector<Type*> ParamTypeList; 6427 SmallVector<AttributeSet, 8> Attrs; 6428 6429 for (const ArgInfo &Arg : ArgList) { 6430 ParamTypeList.push_back(Arg.Ty); 6431 Attrs.push_back(Arg.Attrs); 6432 } 6433 6434 AttributeList PAL = 6435 AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs), 6436 AttributeSet::get(Context, RetAttrs), Attrs); 6437 6438 if (PAL.hasParamAttr(0, Attribute::StructRet) && !RetType->isVoidTy()) 6439 return error(RetTypeLoc, "functions with 'sret' argument must return void"); 6440 6441 FunctionType *FT = FunctionType::get(RetType, ParamTypeList, IsVarArg); 6442 PointerType *PFT = PointerType::get(FT, AddrSpace); 6443 6444 Fn = nullptr; 6445 GlobalValue *FwdFn = nullptr; 6446 if (!FunctionName.empty()) { 6447 // If this was a definition of a forward reference, remove the definition 6448 // from the forward reference table and fill in the forward ref. 6449 auto FRVI = ForwardRefVals.find(FunctionName); 6450 if (FRVI != ForwardRefVals.end()) { 6451 FwdFn = FRVI->second.first; 6452 if (FwdFn->getType() != PFT) 6453 return error(FRVI->second.second, 6454 "invalid forward reference to " 6455 "function '" + 6456 FunctionName + 6457 "' with wrong type: " 6458 "expected '" + 6459 getTypeString(PFT) + "' but was '" + 6460 getTypeString(FwdFn->getType()) + "'"); 6461 ForwardRefVals.erase(FRVI); 6462 } else if ((Fn = M->getFunction(FunctionName))) { 6463 // Reject redefinitions. 6464 return error(NameLoc, 6465 "invalid redefinition of function '" + FunctionName + "'"); 6466 } else if (M->getNamedValue(FunctionName)) { 6467 return error(NameLoc, "redefinition of function '@" + FunctionName + "'"); 6468 } 6469 6470 } else { 6471 // Handle @"", where a name is syntactically specified, but semantically 6472 // missing. 6473 if (FunctionNumber == (unsigned)-1) 6474 FunctionNumber = NumberedVals.getNext(); 6475 6476 // If this is a definition of a forward referenced function, make sure the 6477 // types agree. 6478 auto I = ForwardRefValIDs.find(FunctionNumber); 6479 if (I != ForwardRefValIDs.end()) { 6480 FwdFn = I->second.first; 6481 if (FwdFn->getType() != PFT) 6482 return error(NameLoc, "type of definition and forward reference of '@" + 6483 Twine(FunctionNumber) + 6484 "' disagree: " 6485 "expected '" + 6486 getTypeString(PFT) + "' but was '" + 6487 getTypeString(FwdFn->getType()) + "'"); 6488 ForwardRefValIDs.erase(I); 6489 } 6490 } 6491 6492 Fn = Function::Create(FT, GlobalValue::ExternalLinkage, AddrSpace, 6493 FunctionName, M); 6494 6495 assert(Fn->getAddressSpace() == AddrSpace && "Created function in wrong AS"); 6496 6497 if (FunctionName.empty()) 6498 NumberedVals.add(FunctionNumber, Fn); 6499 6500 Fn->setLinkage((GlobalValue::LinkageTypes)Linkage); 6501 maybeSetDSOLocal(DSOLocal, *Fn); 6502 Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility); 6503 Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 6504 Fn->setCallingConv(CC); 6505 Fn->setAttributes(PAL); 6506 Fn->setUnnamedAddr(UnnamedAddr); 6507 if (Alignment) 6508 Fn->setAlignment(*Alignment); 6509 Fn->setSection(Section); 6510 Fn->setPartition(Partition); 6511 Fn->setComdat(C); 6512 Fn->setPersonalityFn(PersonalityFn); 6513 if (!GC.empty()) Fn->setGC(GC); 6514 Fn->setPrefixData(Prefix); 6515 Fn->setPrologueData(Prologue); 6516 ForwardRefAttrGroups[Fn] = FwdRefAttrGrps; 6517 6518 // Add all of the arguments we parsed to the function. 6519 Function::arg_iterator ArgIt = Fn->arg_begin(); 6520 for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) { 6521 // If the argument has a name, insert it into the argument symbol table. 6522 if (ArgList[i].Name.empty()) continue; 6523 6524 // Set the name, if it conflicted, it will be auto-renamed. 6525 ArgIt->setName(ArgList[i].Name); 6526 6527 if (ArgIt->getName() != ArgList[i].Name) 6528 return error(ArgList[i].Loc, 6529 "redefinition of argument '%" + ArgList[i].Name + "'"); 6530 } 6531 6532 if (FwdFn) { 6533 FwdFn->replaceAllUsesWith(Fn); 6534 FwdFn->eraseFromParent(); 6535 } 6536 6537 if (IsDefine) 6538 return false; 6539 6540 // Check the declaration has no block address forward references. 6541 ValID ID; 6542 if (FunctionName.empty()) { 6543 ID.Kind = ValID::t_GlobalID; 6544 ID.UIntVal = FunctionNumber; 6545 } else { 6546 ID.Kind = ValID::t_GlobalName; 6547 ID.StrVal = FunctionName; 6548 } 6549 auto Blocks = ForwardRefBlockAddresses.find(ID); 6550 if (Blocks != ForwardRefBlockAddresses.end()) 6551 return error(Blocks->first.Loc, 6552 "cannot take blockaddress inside a declaration"); 6553 return false; 6554 } 6555 6556 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() { 6557 ValID ID; 6558 if (FunctionNumber == -1) { 6559 ID.Kind = ValID::t_GlobalName; 6560 ID.StrVal = std::string(F.getName()); 6561 } else { 6562 ID.Kind = ValID::t_GlobalID; 6563 ID.UIntVal = FunctionNumber; 6564 } 6565 6566 auto Blocks = P.ForwardRefBlockAddresses.find(ID); 6567 if (Blocks == P.ForwardRefBlockAddresses.end()) 6568 return false; 6569 6570 for (const auto &I : Blocks->second) { 6571 const ValID &BBID = I.first; 6572 GlobalValue *GV = I.second; 6573 6574 assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) && 6575 "Expected local id or name"); 6576 BasicBlock *BB; 6577 if (BBID.Kind == ValID::t_LocalName) 6578 BB = getBB(BBID.StrVal, BBID.Loc); 6579 else 6580 BB = getBB(BBID.UIntVal, BBID.Loc); 6581 if (!BB) 6582 return P.error(BBID.Loc, "referenced value is not a basic block"); 6583 6584 Value *ResolvedVal = BlockAddress::get(&F, BB); 6585 ResolvedVal = P.checkValidVariableType(BBID.Loc, BBID.StrVal, GV->getType(), 6586 ResolvedVal); 6587 if (!ResolvedVal) 6588 return true; 6589 GV->replaceAllUsesWith(ResolvedVal); 6590 GV->eraseFromParent(); 6591 } 6592 6593 P.ForwardRefBlockAddresses.erase(Blocks); 6594 return false; 6595 } 6596 6597 /// parseFunctionBody 6598 /// ::= '{' BasicBlock+ UseListOrderDirective* '}' 6599 bool LLParser::parseFunctionBody(Function &Fn, unsigned FunctionNumber, 6600 ArrayRef<unsigned> UnnamedArgNums) { 6601 if (Lex.getKind() != lltok::lbrace) 6602 return tokError("expected '{' in function body"); 6603 Lex.Lex(); // eat the {. 6604 6605 PerFunctionState PFS(*this, Fn, FunctionNumber, UnnamedArgNums); 6606 6607 // Resolve block addresses and allow basic blocks to be forward-declared 6608 // within this function. 6609 if (PFS.resolveForwardRefBlockAddresses()) 6610 return true; 6611 SaveAndRestore ScopeExit(BlockAddressPFS, &PFS); 6612 6613 // We need at least one basic block. 6614 if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder) 6615 return tokError("function body requires at least one basic block"); 6616 6617 while (Lex.getKind() != lltok::rbrace && 6618 Lex.getKind() != lltok::kw_uselistorder) 6619 if (parseBasicBlock(PFS)) 6620 return true; 6621 6622 while (Lex.getKind() != lltok::rbrace) 6623 if (parseUseListOrder(&PFS)) 6624 return true; 6625 6626 // Eat the }. 6627 Lex.Lex(); 6628 6629 // Verify function is ok. 6630 return PFS.finishFunction(); 6631 } 6632 6633 /// parseBasicBlock 6634 /// ::= (LabelStr|LabelID)? Instruction* 6635 bool LLParser::parseBasicBlock(PerFunctionState &PFS) { 6636 // If this basic block starts out with a name, remember it. 6637 std::string Name; 6638 int NameID = -1; 6639 LocTy NameLoc = Lex.getLoc(); 6640 if (Lex.getKind() == lltok::LabelStr) { 6641 Name = Lex.getStrVal(); 6642 Lex.Lex(); 6643 } else if (Lex.getKind() == lltok::LabelID) { 6644 NameID = Lex.getUIntVal(); 6645 Lex.Lex(); 6646 } 6647 6648 BasicBlock *BB = PFS.defineBB(Name, NameID, NameLoc); 6649 if (!BB) 6650 return true; 6651 6652 std::string NameStr; 6653 6654 // Parse the instructions and debug values in this block until we get a 6655 // terminator. 6656 Instruction *Inst; 6657 auto DeleteDbgRecord = [](DbgRecord *DR) { DR->deleteRecord(); }; 6658 using DbgRecordPtr = std::unique_ptr<DbgRecord, decltype(DeleteDbgRecord)>; 6659 SmallVector<DbgRecordPtr> TrailingDbgRecord; 6660 do { 6661 // Handle debug records first - there should always be an instruction 6662 // following the debug records, i.e. they cannot appear after the block 6663 // terminator. 6664 while (Lex.getKind() == lltok::hash) { 6665 if (SeenOldDbgInfoFormat) 6666 return error(Lex.getLoc(), "debug record should not appear in a module " 6667 "containing debug info intrinsics"); 6668 if (!SeenNewDbgInfoFormat) 6669 M->setNewDbgInfoFormatFlag(true); 6670 SeenNewDbgInfoFormat = true; 6671 Lex.Lex(); 6672 6673 DbgRecord *DR; 6674 if (parseDebugRecord(DR, PFS)) 6675 return true; 6676 TrailingDbgRecord.emplace_back(DR, DeleteDbgRecord); 6677 } 6678 6679 // This instruction may have three possibilities for a name: a) none 6680 // specified, b) name specified "%foo =", c) number specified: "%4 =". 6681 LocTy NameLoc = Lex.getLoc(); 6682 int NameID = -1; 6683 NameStr = ""; 6684 6685 if (Lex.getKind() == lltok::LocalVarID) { 6686 NameID = Lex.getUIntVal(); 6687 Lex.Lex(); 6688 if (parseToken(lltok::equal, "expected '=' after instruction id")) 6689 return true; 6690 } else if (Lex.getKind() == lltok::LocalVar) { 6691 NameStr = Lex.getStrVal(); 6692 Lex.Lex(); 6693 if (parseToken(lltok::equal, "expected '=' after instruction name")) 6694 return true; 6695 } 6696 6697 switch (parseInstruction(Inst, BB, PFS)) { 6698 default: 6699 llvm_unreachable("Unknown parseInstruction result!"); 6700 case InstError: return true; 6701 case InstNormal: 6702 Inst->insertInto(BB, BB->end()); 6703 6704 // With a normal result, we check to see if the instruction is followed by 6705 // a comma and metadata. 6706 if (EatIfPresent(lltok::comma)) 6707 if (parseInstructionMetadata(*Inst)) 6708 return true; 6709 break; 6710 case InstExtraComma: 6711 Inst->insertInto(BB, BB->end()); 6712 6713 // If the instruction parser ate an extra comma at the end of it, it 6714 // *must* be followed by metadata. 6715 if (parseInstructionMetadata(*Inst)) 6716 return true; 6717 break; 6718 } 6719 6720 // Set the name on the instruction. 6721 if (PFS.setInstName(NameID, NameStr, NameLoc, Inst)) 6722 return true; 6723 6724 // Attach any preceding debug values to this instruction. 6725 for (DbgRecordPtr &DR : TrailingDbgRecord) 6726 BB->insertDbgRecordBefore(DR.release(), Inst->getIterator()); 6727 TrailingDbgRecord.clear(); 6728 } while (!Inst->isTerminator()); 6729 6730 assert(TrailingDbgRecord.empty() && 6731 "All debug values should have been attached to an instruction."); 6732 6733 return false; 6734 } 6735 6736 /// parseDebugRecord 6737 /// ::= #dbg_label '(' MDNode ')' 6738 /// ::= #dbg_type '(' Metadata ',' MDNode ',' Metadata ',' 6739 /// (MDNode ',' Metadata ',' Metadata ',')? MDNode ')' 6740 bool LLParser::parseDebugRecord(DbgRecord *&DR, PerFunctionState &PFS) { 6741 using RecordKind = DbgRecord::Kind; 6742 using LocType = DbgVariableRecord::LocationType; 6743 LocTy DVRLoc = Lex.getLoc(); 6744 if (Lex.getKind() != lltok::DbgRecordType) 6745 return error(DVRLoc, "expected debug record type here"); 6746 RecordKind RecordType = StringSwitch<RecordKind>(Lex.getStrVal()) 6747 .Case("declare", RecordKind::ValueKind) 6748 .Case("value", RecordKind::ValueKind) 6749 .Case("assign", RecordKind::ValueKind) 6750 .Case("label", RecordKind::LabelKind); 6751 6752 // Parsing labels is trivial; parse here and early exit, otherwise go into the 6753 // full DbgVariableRecord processing stage. 6754 if (RecordType == RecordKind::LabelKind) { 6755 Lex.Lex(); 6756 if (parseToken(lltok::lparen, "Expected '(' here")) 6757 return true; 6758 MDNode *Label; 6759 if (parseMDNode(Label)) 6760 return true; 6761 if (parseToken(lltok::comma, "Expected ',' here")) 6762 return true; 6763 MDNode *DbgLoc; 6764 if (parseMDNode(DbgLoc)) 6765 return true; 6766 if (parseToken(lltok::rparen, "Expected ')' here")) 6767 return true; 6768 DR = DbgLabelRecord::createUnresolvedDbgLabelRecord(Label, DbgLoc); 6769 return false; 6770 } 6771 6772 LocType ValueType = StringSwitch<LocType>(Lex.getStrVal()) 6773 .Case("declare", LocType::Declare) 6774 .Case("value", LocType::Value) 6775 .Case("assign", LocType::Assign); 6776 6777 Lex.Lex(); 6778 if (parseToken(lltok::lparen, "Expected '(' here")) 6779 return true; 6780 6781 // Parse Value field. 6782 Metadata *ValLocMD; 6783 if (parseMetadata(ValLocMD, &PFS)) 6784 return true; 6785 if (parseToken(lltok::comma, "Expected ',' here")) 6786 return true; 6787 6788 // Parse Variable field. 6789 MDNode *Variable; 6790 if (parseMDNode(Variable)) 6791 return true; 6792 if (parseToken(lltok::comma, "Expected ',' here")) 6793 return true; 6794 6795 // Parse Expression field. 6796 MDNode *Expression; 6797 if (parseMDNode(Expression)) 6798 return true; 6799 if (parseToken(lltok::comma, "Expected ',' here")) 6800 return true; 6801 6802 // Parse additional fields for #dbg_assign. 6803 MDNode *AssignID = nullptr; 6804 Metadata *AddressLocation = nullptr; 6805 MDNode *AddressExpression = nullptr; 6806 if (ValueType == LocType::Assign) { 6807 // Parse DIAssignID. 6808 if (parseMDNode(AssignID)) 6809 return true; 6810 if (parseToken(lltok::comma, "Expected ',' here")) 6811 return true; 6812 6813 // Parse address ValueAsMetadata. 6814 if (parseMetadata(AddressLocation, &PFS)) 6815 return true; 6816 if (parseToken(lltok::comma, "Expected ',' here")) 6817 return true; 6818 6819 // Parse address DIExpression. 6820 if (parseMDNode(AddressExpression)) 6821 return true; 6822 if (parseToken(lltok::comma, "Expected ',' here")) 6823 return true; 6824 } 6825 6826 /// Parse DILocation. 6827 MDNode *DebugLoc; 6828 if (parseMDNode(DebugLoc)) 6829 return true; 6830 6831 if (parseToken(lltok::rparen, "Expected ')' here")) 6832 return true; 6833 DR = DbgVariableRecord::createUnresolvedDbgVariableRecord( 6834 ValueType, ValLocMD, Variable, Expression, AssignID, AddressLocation, 6835 AddressExpression, DebugLoc); 6836 return false; 6837 } 6838 //===----------------------------------------------------------------------===// 6839 // Instruction Parsing. 6840 //===----------------------------------------------------------------------===// 6841 6842 /// parseInstruction - parse one of the many different instructions. 6843 /// 6844 int LLParser::parseInstruction(Instruction *&Inst, BasicBlock *BB, 6845 PerFunctionState &PFS) { 6846 lltok::Kind Token = Lex.getKind(); 6847 if (Token == lltok::Eof) 6848 return tokError("found end of file when expecting more instructions"); 6849 LocTy Loc = Lex.getLoc(); 6850 unsigned KeywordVal = Lex.getUIntVal(); 6851 Lex.Lex(); // Eat the keyword. 6852 6853 switch (Token) { 6854 default: 6855 return error(Loc, "expected instruction opcode"); 6856 // Terminator Instructions. 6857 case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false; 6858 case lltok::kw_ret: 6859 return parseRet(Inst, BB, PFS); 6860 case lltok::kw_br: 6861 return parseBr(Inst, PFS); 6862 case lltok::kw_switch: 6863 return parseSwitch(Inst, PFS); 6864 case lltok::kw_indirectbr: 6865 return parseIndirectBr(Inst, PFS); 6866 case lltok::kw_invoke: 6867 return parseInvoke(Inst, PFS); 6868 case lltok::kw_resume: 6869 return parseResume(Inst, PFS); 6870 case lltok::kw_cleanupret: 6871 return parseCleanupRet(Inst, PFS); 6872 case lltok::kw_catchret: 6873 return parseCatchRet(Inst, PFS); 6874 case lltok::kw_catchswitch: 6875 return parseCatchSwitch(Inst, PFS); 6876 case lltok::kw_catchpad: 6877 return parseCatchPad(Inst, PFS); 6878 case lltok::kw_cleanuppad: 6879 return parseCleanupPad(Inst, PFS); 6880 case lltok::kw_callbr: 6881 return parseCallBr(Inst, PFS); 6882 // Unary Operators. 6883 case lltok::kw_fneg: { 6884 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 6885 int Res = parseUnaryOp(Inst, PFS, KeywordVal, /*IsFP*/ true); 6886 if (Res != 0) 6887 return Res; 6888 if (FMF.any()) 6889 Inst->setFastMathFlags(FMF); 6890 return false; 6891 } 6892 // Binary Operators. 6893 case lltok::kw_add: 6894 case lltok::kw_sub: 6895 case lltok::kw_mul: 6896 case lltok::kw_shl: { 6897 bool NUW = EatIfPresent(lltok::kw_nuw); 6898 bool NSW = EatIfPresent(lltok::kw_nsw); 6899 if (!NUW) NUW = EatIfPresent(lltok::kw_nuw); 6900 6901 if (parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ false)) 6902 return true; 6903 6904 if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true); 6905 if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true); 6906 return false; 6907 } 6908 case lltok::kw_fadd: 6909 case lltok::kw_fsub: 6910 case lltok::kw_fmul: 6911 case lltok::kw_fdiv: 6912 case lltok::kw_frem: { 6913 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 6914 int Res = parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ true); 6915 if (Res != 0) 6916 return Res; 6917 if (FMF.any()) 6918 Inst->setFastMathFlags(FMF); 6919 return 0; 6920 } 6921 6922 case lltok::kw_sdiv: 6923 case lltok::kw_udiv: 6924 case lltok::kw_lshr: 6925 case lltok::kw_ashr: { 6926 bool Exact = EatIfPresent(lltok::kw_exact); 6927 6928 if (parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ false)) 6929 return true; 6930 if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true); 6931 return false; 6932 } 6933 6934 case lltok::kw_urem: 6935 case lltok::kw_srem: 6936 return parseArithmetic(Inst, PFS, KeywordVal, 6937 /*IsFP*/ false); 6938 case lltok::kw_or: { 6939 bool Disjoint = EatIfPresent(lltok::kw_disjoint); 6940 if (parseLogical(Inst, PFS, KeywordVal)) 6941 return true; 6942 if (Disjoint) 6943 cast<PossiblyDisjointInst>(Inst)->setIsDisjoint(true); 6944 return false; 6945 } 6946 case lltok::kw_and: 6947 case lltok::kw_xor: 6948 return parseLogical(Inst, PFS, KeywordVal); 6949 case lltok::kw_icmp: 6950 return parseCompare(Inst, PFS, KeywordVal); 6951 case lltok::kw_fcmp: { 6952 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 6953 int Res = parseCompare(Inst, PFS, KeywordVal); 6954 if (Res != 0) 6955 return Res; 6956 if (FMF.any()) 6957 Inst->setFastMathFlags(FMF); 6958 return 0; 6959 } 6960 6961 // Casts. 6962 case lltok::kw_uitofp: 6963 case lltok::kw_zext: { 6964 bool NonNeg = EatIfPresent(lltok::kw_nneg); 6965 bool Res = parseCast(Inst, PFS, KeywordVal); 6966 if (Res != 0) 6967 return Res; 6968 if (NonNeg) 6969 Inst->setNonNeg(); 6970 return 0; 6971 } 6972 case lltok::kw_trunc: { 6973 bool NUW = EatIfPresent(lltok::kw_nuw); 6974 bool NSW = EatIfPresent(lltok::kw_nsw); 6975 if (!NUW) 6976 NUW = EatIfPresent(lltok::kw_nuw); 6977 if (parseCast(Inst, PFS, KeywordVal)) 6978 return true; 6979 if (NUW) 6980 cast<TruncInst>(Inst)->setHasNoUnsignedWrap(true); 6981 if (NSW) 6982 cast<TruncInst>(Inst)->setHasNoSignedWrap(true); 6983 return false; 6984 } 6985 case lltok::kw_sext: 6986 case lltok::kw_fptrunc: 6987 case lltok::kw_fpext: 6988 case lltok::kw_bitcast: 6989 case lltok::kw_addrspacecast: 6990 case lltok::kw_sitofp: 6991 case lltok::kw_fptoui: 6992 case lltok::kw_fptosi: 6993 case lltok::kw_inttoptr: 6994 case lltok::kw_ptrtoint: 6995 return parseCast(Inst, PFS, KeywordVal); 6996 // Other. 6997 case lltok::kw_select: { 6998 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 6999 int Res = parseSelect(Inst, PFS); 7000 if (Res != 0) 7001 return Res; 7002 if (FMF.any()) { 7003 if (!isa<FPMathOperator>(Inst)) 7004 return error(Loc, "fast-math-flags specified for select without " 7005 "floating-point scalar or vector return type"); 7006 Inst->setFastMathFlags(FMF); 7007 } 7008 return 0; 7009 } 7010 case lltok::kw_va_arg: 7011 return parseVAArg(Inst, PFS); 7012 case lltok::kw_extractelement: 7013 return parseExtractElement(Inst, PFS); 7014 case lltok::kw_insertelement: 7015 return parseInsertElement(Inst, PFS); 7016 case lltok::kw_shufflevector: 7017 return parseShuffleVector(Inst, PFS); 7018 case lltok::kw_phi: { 7019 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 7020 int Res = parsePHI(Inst, PFS); 7021 if (Res != 0) 7022 return Res; 7023 if (FMF.any()) { 7024 if (!isa<FPMathOperator>(Inst)) 7025 return error(Loc, "fast-math-flags specified for phi without " 7026 "floating-point scalar or vector return type"); 7027 Inst->setFastMathFlags(FMF); 7028 } 7029 return 0; 7030 } 7031 case lltok::kw_landingpad: 7032 return parseLandingPad(Inst, PFS); 7033 case lltok::kw_freeze: 7034 return parseFreeze(Inst, PFS); 7035 // Call. 7036 case lltok::kw_call: 7037 return parseCall(Inst, PFS, CallInst::TCK_None); 7038 case lltok::kw_tail: 7039 return parseCall(Inst, PFS, CallInst::TCK_Tail); 7040 case lltok::kw_musttail: 7041 return parseCall(Inst, PFS, CallInst::TCK_MustTail); 7042 case lltok::kw_notail: 7043 return parseCall(Inst, PFS, CallInst::TCK_NoTail); 7044 // Memory. 7045 case lltok::kw_alloca: 7046 return parseAlloc(Inst, PFS); 7047 case lltok::kw_load: 7048 return parseLoad(Inst, PFS); 7049 case lltok::kw_store: 7050 return parseStore(Inst, PFS); 7051 case lltok::kw_cmpxchg: 7052 return parseCmpXchg(Inst, PFS); 7053 case lltok::kw_atomicrmw: 7054 return parseAtomicRMW(Inst, PFS); 7055 case lltok::kw_fence: 7056 return parseFence(Inst, PFS); 7057 case lltok::kw_getelementptr: 7058 return parseGetElementPtr(Inst, PFS); 7059 case lltok::kw_extractvalue: 7060 return parseExtractValue(Inst, PFS); 7061 case lltok::kw_insertvalue: 7062 return parseInsertValue(Inst, PFS); 7063 } 7064 } 7065 7066 /// parseCmpPredicate - parse an integer or fp predicate, based on Kind. 7067 bool LLParser::parseCmpPredicate(unsigned &P, unsigned Opc) { 7068 if (Opc == Instruction::FCmp) { 7069 switch (Lex.getKind()) { 7070 default: 7071 return tokError("expected fcmp predicate (e.g. 'oeq')"); 7072 case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break; 7073 case lltok::kw_one: P = CmpInst::FCMP_ONE; break; 7074 case lltok::kw_olt: P = CmpInst::FCMP_OLT; break; 7075 case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break; 7076 case lltok::kw_ole: P = CmpInst::FCMP_OLE; break; 7077 case lltok::kw_oge: P = CmpInst::FCMP_OGE; break; 7078 case lltok::kw_ord: P = CmpInst::FCMP_ORD; break; 7079 case lltok::kw_uno: P = CmpInst::FCMP_UNO; break; 7080 case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break; 7081 case lltok::kw_une: P = CmpInst::FCMP_UNE; break; 7082 case lltok::kw_ult: P = CmpInst::FCMP_ULT; break; 7083 case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break; 7084 case lltok::kw_ule: P = CmpInst::FCMP_ULE; break; 7085 case lltok::kw_uge: P = CmpInst::FCMP_UGE; break; 7086 case lltok::kw_true: P = CmpInst::FCMP_TRUE; break; 7087 case lltok::kw_false: P = CmpInst::FCMP_FALSE; break; 7088 } 7089 } else { 7090 switch (Lex.getKind()) { 7091 default: 7092 return tokError("expected icmp predicate (e.g. 'eq')"); 7093 case lltok::kw_eq: P = CmpInst::ICMP_EQ; break; 7094 case lltok::kw_ne: P = CmpInst::ICMP_NE; break; 7095 case lltok::kw_slt: P = CmpInst::ICMP_SLT; break; 7096 case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break; 7097 case lltok::kw_sle: P = CmpInst::ICMP_SLE; break; 7098 case lltok::kw_sge: P = CmpInst::ICMP_SGE; break; 7099 case lltok::kw_ult: P = CmpInst::ICMP_ULT; break; 7100 case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break; 7101 case lltok::kw_ule: P = CmpInst::ICMP_ULE; break; 7102 case lltok::kw_uge: P = CmpInst::ICMP_UGE; break; 7103 } 7104 } 7105 Lex.Lex(); 7106 return false; 7107 } 7108 7109 //===----------------------------------------------------------------------===// 7110 // Terminator Instructions. 7111 //===----------------------------------------------------------------------===// 7112 7113 /// parseRet - parse a return instruction. 7114 /// ::= 'ret' void (',' !dbg, !1)* 7115 /// ::= 'ret' TypeAndValue (',' !dbg, !1)* 7116 bool LLParser::parseRet(Instruction *&Inst, BasicBlock *BB, 7117 PerFunctionState &PFS) { 7118 SMLoc TypeLoc = Lex.getLoc(); 7119 Type *Ty = nullptr; 7120 if (parseType(Ty, true /*void allowed*/)) 7121 return true; 7122 7123 Type *ResType = PFS.getFunction().getReturnType(); 7124 7125 if (Ty->isVoidTy()) { 7126 if (!ResType->isVoidTy()) 7127 return error(TypeLoc, "value doesn't match function result type '" + 7128 getTypeString(ResType) + "'"); 7129 7130 Inst = ReturnInst::Create(Context); 7131 return false; 7132 } 7133 7134 Value *RV; 7135 if (parseValue(Ty, RV, PFS)) 7136 return true; 7137 7138 if (ResType != RV->getType()) 7139 return error(TypeLoc, "value doesn't match function result type '" + 7140 getTypeString(ResType) + "'"); 7141 7142 Inst = ReturnInst::Create(Context, RV); 7143 return false; 7144 } 7145 7146 /// parseBr 7147 /// ::= 'br' TypeAndValue 7148 /// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue 7149 bool LLParser::parseBr(Instruction *&Inst, PerFunctionState &PFS) { 7150 LocTy Loc, Loc2; 7151 Value *Op0; 7152 BasicBlock *Op1, *Op2; 7153 if (parseTypeAndValue(Op0, Loc, PFS)) 7154 return true; 7155 7156 if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) { 7157 Inst = BranchInst::Create(BB); 7158 return false; 7159 } 7160 7161 if (Op0->getType() != Type::getInt1Ty(Context)) 7162 return error(Loc, "branch condition must have 'i1' type"); 7163 7164 if (parseToken(lltok::comma, "expected ',' after branch condition") || 7165 parseTypeAndBasicBlock(Op1, Loc, PFS) || 7166 parseToken(lltok::comma, "expected ',' after true destination") || 7167 parseTypeAndBasicBlock(Op2, Loc2, PFS)) 7168 return true; 7169 7170 Inst = BranchInst::Create(Op1, Op2, Op0); 7171 return false; 7172 } 7173 7174 /// parseSwitch 7175 /// Instruction 7176 /// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']' 7177 /// JumpTable 7178 /// ::= (TypeAndValue ',' TypeAndValue)* 7179 bool LLParser::parseSwitch(Instruction *&Inst, PerFunctionState &PFS) { 7180 LocTy CondLoc, BBLoc; 7181 Value *Cond; 7182 BasicBlock *DefaultBB; 7183 if (parseTypeAndValue(Cond, CondLoc, PFS) || 7184 parseToken(lltok::comma, "expected ',' after switch condition") || 7185 parseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) || 7186 parseToken(lltok::lsquare, "expected '[' with switch table")) 7187 return true; 7188 7189 if (!Cond->getType()->isIntegerTy()) 7190 return error(CondLoc, "switch condition must have integer type"); 7191 7192 // parse the jump table pairs. 7193 SmallPtrSet<Value*, 32> SeenCases; 7194 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table; 7195 while (Lex.getKind() != lltok::rsquare) { 7196 Value *Constant; 7197 BasicBlock *DestBB; 7198 7199 if (parseTypeAndValue(Constant, CondLoc, PFS) || 7200 parseToken(lltok::comma, "expected ',' after case value") || 7201 parseTypeAndBasicBlock(DestBB, PFS)) 7202 return true; 7203 7204 if (!SeenCases.insert(Constant).second) 7205 return error(CondLoc, "duplicate case value in switch"); 7206 if (!isa<ConstantInt>(Constant)) 7207 return error(CondLoc, "case value is not a constant integer"); 7208 7209 Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB)); 7210 } 7211 7212 Lex.Lex(); // Eat the ']'. 7213 7214 SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size()); 7215 for (unsigned i = 0, e = Table.size(); i != e; ++i) 7216 SI->addCase(Table[i].first, Table[i].second); 7217 Inst = SI; 7218 return false; 7219 } 7220 7221 /// parseIndirectBr 7222 /// Instruction 7223 /// ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']' 7224 bool LLParser::parseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) { 7225 LocTy AddrLoc; 7226 Value *Address; 7227 if (parseTypeAndValue(Address, AddrLoc, PFS) || 7228 parseToken(lltok::comma, "expected ',' after indirectbr address") || 7229 parseToken(lltok::lsquare, "expected '[' with indirectbr")) 7230 return true; 7231 7232 if (!Address->getType()->isPointerTy()) 7233 return error(AddrLoc, "indirectbr address must have pointer type"); 7234 7235 // parse the destination list. 7236 SmallVector<BasicBlock*, 16> DestList; 7237 7238 if (Lex.getKind() != lltok::rsquare) { 7239 BasicBlock *DestBB; 7240 if (parseTypeAndBasicBlock(DestBB, PFS)) 7241 return true; 7242 DestList.push_back(DestBB); 7243 7244 while (EatIfPresent(lltok::comma)) { 7245 if (parseTypeAndBasicBlock(DestBB, PFS)) 7246 return true; 7247 DestList.push_back(DestBB); 7248 } 7249 } 7250 7251 if (parseToken(lltok::rsquare, "expected ']' at end of block list")) 7252 return true; 7253 7254 IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size()); 7255 for (BasicBlock *Dest : DestList) 7256 IBI->addDestination(Dest); 7257 Inst = IBI; 7258 return false; 7259 } 7260 7261 // If RetType is a non-function pointer type, then this is the short syntax 7262 // for the call, which means that RetType is just the return type. Infer the 7263 // rest of the function argument types from the arguments that are present. 7264 bool LLParser::resolveFunctionType(Type *RetType, ArrayRef<ParamInfo> ArgList, 7265 FunctionType *&FuncTy) { 7266 FuncTy = dyn_cast<FunctionType>(RetType); 7267 if (!FuncTy) { 7268 // Pull out the types of all of the arguments... 7269 SmallVector<Type *, 8> ParamTypes; 7270 ParamTypes.reserve(ArgList.size()); 7271 for (const ParamInfo &Arg : ArgList) 7272 ParamTypes.push_back(Arg.V->getType()); 7273 7274 if (!FunctionType::isValidReturnType(RetType)) 7275 return true; 7276 7277 FuncTy = FunctionType::get(RetType, ParamTypes, false); 7278 } 7279 return false; 7280 } 7281 7282 /// parseInvoke 7283 /// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList 7284 /// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue 7285 bool LLParser::parseInvoke(Instruction *&Inst, PerFunctionState &PFS) { 7286 LocTy CallLoc = Lex.getLoc(); 7287 AttrBuilder RetAttrs(M->getContext()), FnAttrs(M->getContext()); 7288 std::vector<unsigned> FwdRefAttrGrps; 7289 LocTy NoBuiltinLoc; 7290 unsigned CC; 7291 unsigned InvokeAddrSpace; 7292 Type *RetType = nullptr; 7293 LocTy RetTypeLoc; 7294 ValID CalleeID; 7295 SmallVector<ParamInfo, 16> ArgList; 7296 SmallVector<OperandBundleDef, 2> BundleList; 7297 7298 BasicBlock *NormalBB, *UnwindBB; 7299 if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) || 7300 parseOptionalProgramAddrSpace(InvokeAddrSpace) || 7301 parseType(RetType, RetTypeLoc, true /*void allowed*/) || 7302 parseValID(CalleeID, &PFS) || parseParameterList(ArgList, PFS) || 7303 parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, 7304 NoBuiltinLoc) || 7305 parseOptionalOperandBundles(BundleList, PFS) || 7306 parseToken(lltok::kw_to, "expected 'to' in invoke") || 7307 parseTypeAndBasicBlock(NormalBB, PFS) || 7308 parseToken(lltok::kw_unwind, "expected 'unwind' in invoke") || 7309 parseTypeAndBasicBlock(UnwindBB, PFS)) 7310 return true; 7311 7312 // If RetType is a non-function pointer type, then this is the short syntax 7313 // for the call, which means that RetType is just the return type. Infer the 7314 // rest of the function argument types from the arguments that are present. 7315 FunctionType *Ty; 7316 if (resolveFunctionType(RetType, ArgList, Ty)) 7317 return error(RetTypeLoc, "Invalid result type for LLVM function"); 7318 7319 CalleeID.FTy = Ty; 7320 7321 // Look up the callee. 7322 Value *Callee; 7323 if (convertValIDToValue(PointerType::get(Ty, InvokeAddrSpace), CalleeID, 7324 Callee, &PFS)) 7325 return true; 7326 7327 // Set up the Attribute for the function. 7328 SmallVector<Value *, 8> Args; 7329 SmallVector<AttributeSet, 8> ArgAttrs; 7330 7331 // Loop through FunctionType's arguments and ensure they are specified 7332 // correctly. Also, gather any parameter attributes. 7333 FunctionType::param_iterator I = Ty->param_begin(); 7334 FunctionType::param_iterator E = Ty->param_end(); 7335 for (const ParamInfo &Arg : ArgList) { 7336 Type *ExpectedTy = nullptr; 7337 if (I != E) { 7338 ExpectedTy = *I++; 7339 } else if (!Ty->isVarArg()) { 7340 return error(Arg.Loc, "too many arguments specified"); 7341 } 7342 7343 if (ExpectedTy && ExpectedTy != Arg.V->getType()) 7344 return error(Arg.Loc, "argument is not of expected type '" + 7345 getTypeString(ExpectedTy) + "'"); 7346 Args.push_back(Arg.V); 7347 ArgAttrs.push_back(Arg.Attrs); 7348 } 7349 7350 if (I != E) 7351 return error(CallLoc, "not enough parameters specified for call"); 7352 7353 // Finish off the Attribute and check them 7354 AttributeList PAL = 7355 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 7356 AttributeSet::get(Context, RetAttrs), ArgAttrs); 7357 7358 InvokeInst *II = 7359 InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList); 7360 II->setCallingConv(CC); 7361 II->setAttributes(PAL); 7362 ForwardRefAttrGroups[II] = FwdRefAttrGrps; 7363 Inst = II; 7364 return false; 7365 } 7366 7367 /// parseResume 7368 /// ::= 'resume' TypeAndValue 7369 bool LLParser::parseResume(Instruction *&Inst, PerFunctionState &PFS) { 7370 Value *Exn; LocTy ExnLoc; 7371 if (parseTypeAndValue(Exn, ExnLoc, PFS)) 7372 return true; 7373 7374 ResumeInst *RI = ResumeInst::Create(Exn); 7375 Inst = RI; 7376 return false; 7377 } 7378 7379 bool LLParser::parseExceptionArgs(SmallVectorImpl<Value *> &Args, 7380 PerFunctionState &PFS) { 7381 if (parseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad")) 7382 return true; 7383 7384 while (Lex.getKind() != lltok::rsquare) { 7385 // If this isn't the first argument, we need a comma. 7386 if (!Args.empty() && 7387 parseToken(lltok::comma, "expected ',' in argument list")) 7388 return true; 7389 7390 // parse the argument. 7391 LocTy ArgLoc; 7392 Type *ArgTy = nullptr; 7393 if (parseType(ArgTy, ArgLoc)) 7394 return true; 7395 7396 Value *V; 7397 if (ArgTy->isMetadataTy()) { 7398 if (parseMetadataAsValue(V, PFS)) 7399 return true; 7400 } else { 7401 if (parseValue(ArgTy, V, PFS)) 7402 return true; 7403 } 7404 Args.push_back(V); 7405 } 7406 7407 Lex.Lex(); // Lex the ']'. 7408 return false; 7409 } 7410 7411 /// parseCleanupRet 7412 /// ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue) 7413 bool LLParser::parseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) { 7414 Value *CleanupPad = nullptr; 7415 7416 if (parseToken(lltok::kw_from, "expected 'from' after cleanupret")) 7417 return true; 7418 7419 if (parseValue(Type::getTokenTy(Context), CleanupPad, PFS)) 7420 return true; 7421 7422 if (parseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret")) 7423 return true; 7424 7425 BasicBlock *UnwindBB = nullptr; 7426 if (Lex.getKind() == lltok::kw_to) { 7427 Lex.Lex(); 7428 if (parseToken(lltok::kw_caller, "expected 'caller' in cleanupret")) 7429 return true; 7430 } else { 7431 if (parseTypeAndBasicBlock(UnwindBB, PFS)) { 7432 return true; 7433 } 7434 } 7435 7436 Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB); 7437 return false; 7438 } 7439 7440 /// parseCatchRet 7441 /// ::= 'catchret' from Parent Value 'to' TypeAndValue 7442 bool LLParser::parseCatchRet(Instruction *&Inst, PerFunctionState &PFS) { 7443 Value *CatchPad = nullptr; 7444 7445 if (parseToken(lltok::kw_from, "expected 'from' after catchret")) 7446 return true; 7447 7448 if (parseValue(Type::getTokenTy(Context), CatchPad, PFS)) 7449 return true; 7450 7451 BasicBlock *BB; 7452 if (parseToken(lltok::kw_to, "expected 'to' in catchret") || 7453 parseTypeAndBasicBlock(BB, PFS)) 7454 return true; 7455 7456 Inst = CatchReturnInst::Create(CatchPad, BB); 7457 return false; 7458 } 7459 7460 /// parseCatchSwitch 7461 /// ::= 'catchswitch' within Parent 7462 bool LLParser::parseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) { 7463 Value *ParentPad; 7464 7465 if (parseToken(lltok::kw_within, "expected 'within' after catchswitch")) 7466 return true; 7467 7468 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 7469 Lex.getKind() != lltok::LocalVarID) 7470 return tokError("expected scope value for catchswitch"); 7471 7472 if (parseValue(Type::getTokenTy(Context), ParentPad, PFS)) 7473 return true; 7474 7475 if (parseToken(lltok::lsquare, "expected '[' with catchswitch labels")) 7476 return true; 7477 7478 SmallVector<BasicBlock *, 32> Table; 7479 do { 7480 BasicBlock *DestBB; 7481 if (parseTypeAndBasicBlock(DestBB, PFS)) 7482 return true; 7483 Table.push_back(DestBB); 7484 } while (EatIfPresent(lltok::comma)); 7485 7486 if (parseToken(lltok::rsquare, "expected ']' after catchswitch labels")) 7487 return true; 7488 7489 if (parseToken(lltok::kw_unwind, "expected 'unwind' after catchswitch scope")) 7490 return true; 7491 7492 BasicBlock *UnwindBB = nullptr; 7493 if (EatIfPresent(lltok::kw_to)) { 7494 if (parseToken(lltok::kw_caller, "expected 'caller' in catchswitch")) 7495 return true; 7496 } else { 7497 if (parseTypeAndBasicBlock(UnwindBB, PFS)) 7498 return true; 7499 } 7500 7501 auto *CatchSwitch = 7502 CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size()); 7503 for (BasicBlock *DestBB : Table) 7504 CatchSwitch->addHandler(DestBB); 7505 Inst = CatchSwitch; 7506 return false; 7507 } 7508 7509 /// parseCatchPad 7510 /// ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue 7511 bool LLParser::parseCatchPad(Instruction *&Inst, PerFunctionState &PFS) { 7512 Value *CatchSwitch = nullptr; 7513 7514 if (parseToken(lltok::kw_within, "expected 'within' after catchpad")) 7515 return true; 7516 7517 if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID) 7518 return tokError("expected scope value for catchpad"); 7519 7520 if (parseValue(Type::getTokenTy(Context), CatchSwitch, PFS)) 7521 return true; 7522 7523 SmallVector<Value *, 8> Args; 7524 if (parseExceptionArgs(Args, PFS)) 7525 return true; 7526 7527 Inst = CatchPadInst::Create(CatchSwitch, Args); 7528 return false; 7529 } 7530 7531 /// parseCleanupPad 7532 /// ::= 'cleanuppad' within Parent ParamList 7533 bool LLParser::parseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) { 7534 Value *ParentPad = nullptr; 7535 7536 if (parseToken(lltok::kw_within, "expected 'within' after cleanuppad")) 7537 return true; 7538 7539 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 7540 Lex.getKind() != lltok::LocalVarID) 7541 return tokError("expected scope value for cleanuppad"); 7542 7543 if (parseValue(Type::getTokenTy(Context), ParentPad, PFS)) 7544 return true; 7545 7546 SmallVector<Value *, 8> Args; 7547 if (parseExceptionArgs(Args, PFS)) 7548 return true; 7549 7550 Inst = CleanupPadInst::Create(ParentPad, Args); 7551 return false; 7552 } 7553 7554 //===----------------------------------------------------------------------===// 7555 // Unary Operators. 7556 //===----------------------------------------------------------------------===// 7557 7558 /// parseUnaryOp 7559 /// ::= UnaryOp TypeAndValue ',' Value 7560 /// 7561 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp 7562 /// operand is allowed. 7563 bool LLParser::parseUnaryOp(Instruction *&Inst, PerFunctionState &PFS, 7564 unsigned Opc, bool IsFP) { 7565 LocTy Loc; Value *LHS; 7566 if (parseTypeAndValue(LHS, Loc, PFS)) 7567 return true; 7568 7569 bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy() 7570 : LHS->getType()->isIntOrIntVectorTy(); 7571 7572 if (!Valid) 7573 return error(Loc, "invalid operand type for instruction"); 7574 7575 Inst = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 7576 return false; 7577 } 7578 7579 /// parseCallBr 7580 /// ::= 'callbr' OptionalCallingConv OptionalAttrs Type Value ParamList 7581 /// OptionalAttrs OptionalOperandBundles 'to' TypeAndValue 7582 /// '[' LabelList ']' 7583 bool LLParser::parseCallBr(Instruction *&Inst, PerFunctionState &PFS) { 7584 LocTy CallLoc = Lex.getLoc(); 7585 AttrBuilder RetAttrs(M->getContext()), FnAttrs(M->getContext()); 7586 std::vector<unsigned> FwdRefAttrGrps; 7587 LocTy NoBuiltinLoc; 7588 unsigned CC; 7589 Type *RetType = nullptr; 7590 LocTy RetTypeLoc; 7591 ValID CalleeID; 7592 SmallVector<ParamInfo, 16> ArgList; 7593 SmallVector<OperandBundleDef, 2> BundleList; 7594 7595 BasicBlock *DefaultDest; 7596 if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) || 7597 parseType(RetType, RetTypeLoc, true /*void allowed*/) || 7598 parseValID(CalleeID, &PFS) || parseParameterList(ArgList, PFS) || 7599 parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, 7600 NoBuiltinLoc) || 7601 parseOptionalOperandBundles(BundleList, PFS) || 7602 parseToken(lltok::kw_to, "expected 'to' in callbr") || 7603 parseTypeAndBasicBlock(DefaultDest, PFS) || 7604 parseToken(lltok::lsquare, "expected '[' in callbr")) 7605 return true; 7606 7607 // parse the destination list. 7608 SmallVector<BasicBlock *, 16> IndirectDests; 7609 7610 if (Lex.getKind() != lltok::rsquare) { 7611 BasicBlock *DestBB; 7612 if (parseTypeAndBasicBlock(DestBB, PFS)) 7613 return true; 7614 IndirectDests.push_back(DestBB); 7615 7616 while (EatIfPresent(lltok::comma)) { 7617 if (parseTypeAndBasicBlock(DestBB, PFS)) 7618 return true; 7619 IndirectDests.push_back(DestBB); 7620 } 7621 } 7622 7623 if (parseToken(lltok::rsquare, "expected ']' at end of block list")) 7624 return true; 7625 7626 // If RetType is a non-function pointer type, then this is the short syntax 7627 // for the call, which means that RetType is just the return type. Infer the 7628 // rest of the function argument types from the arguments that are present. 7629 FunctionType *Ty; 7630 if (resolveFunctionType(RetType, ArgList, Ty)) 7631 return error(RetTypeLoc, "Invalid result type for LLVM function"); 7632 7633 CalleeID.FTy = Ty; 7634 7635 // Look up the callee. 7636 Value *Callee; 7637 if (convertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS)) 7638 return true; 7639 7640 // Set up the Attribute for the function. 7641 SmallVector<Value *, 8> Args; 7642 SmallVector<AttributeSet, 8> ArgAttrs; 7643 7644 // Loop through FunctionType's arguments and ensure they are specified 7645 // correctly. Also, gather any parameter attributes. 7646 FunctionType::param_iterator I = Ty->param_begin(); 7647 FunctionType::param_iterator E = Ty->param_end(); 7648 for (const ParamInfo &Arg : ArgList) { 7649 Type *ExpectedTy = nullptr; 7650 if (I != E) { 7651 ExpectedTy = *I++; 7652 } else if (!Ty->isVarArg()) { 7653 return error(Arg.Loc, "too many arguments specified"); 7654 } 7655 7656 if (ExpectedTy && ExpectedTy != Arg.V->getType()) 7657 return error(Arg.Loc, "argument is not of expected type '" + 7658 getTypeString(ExpectedTy) + "'"); 7659 Args.push_back(Arg.V); 7660 ArgAttrs.push_back(Arg.Attrs); 7661 } 7662 7663 if (I != E) 7664 return error(CallLoc, "not enough parameters specified for call"); 7665 7666 // Finish off the Attribute and check them 7667 AttributeList PAL = 7668 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 7669 AttributeSet::get(Context, RetAttrs), ArgAttrs); 7670 7671 CallBrInst *CBI = 7672 CallBrInst::Create(Ty, Callee, DefaultDest, IndirectDests, Args, 7673 BundleList); 7674 CBI->setCallingConv(CC); 7675 CBI->setAttributes(PAL); 7676 ForwardRefAttrGroups[CBI] = FwdRefAttrGrps; 7677 Inst = CBI; 7678 return false; 7679 } 7680 7681 //===----------------------------------------------------------------------===// 7682 // Binary Operators. 7683 //===----------------------------------------------------------------------===// 7684 7685 /// parseArithmetic 7686 /// ::= ArithmeticOps TypeAndValue ',' Value 7687 /// 7688 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp 7689 /// operand is allowed. 7690 bool LLParser::parseArithmetic(Instruction *&Inst, PerFunctionState &PFS, 7691 unsigned Opc, bool IsFP) { 7692 LocTy Loc; Value *LHS, *RHS; 7693 if (parseTypeAndValue(LHS, Loc, PFS) || 7694 parseToken(lltok::comma, "expected ',' in arithmetic operation") || 7695 parseValue(LHS->getType(), RHS, PFS)) 7696 return true; 7697 7698 bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy() 7699 : LHS->getType()->isIntOrIntVectorTy(); 7700 7701 if (!Valid) 7702 return error(Loc, "invalid operand type for instruction"); 7703 7704 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 7705 return false; 7706 } 7707 7708 /// parseLogical 7709 /// ::= ArithmeticOps TypeAndValue ',' Value { 7710 bool LLParser::parseLogical(Instruction *&Inst, PerFunctionState &PFS, 7711 unsigned Opc) { 7712 LocTy Loc; Value *LHS, *RHS; 7713 if (parseTypeAndValue(LHS, Loc, PFS) || 7714 parseToken(lltok::comma, "expected ',' in logical operation") || 7715 parseValue(LHS->getType(), RHS, PFS)) 7716 return true; 7717 7718 if (!LHS->getType()->isIntOrIntVectorTy()) 7719 return error(Loc, 7720 "instruction requires integer or integer vector operands"); 7721 7722 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 7723 return false; 7724 } 7725 7726 /// parseCompare 7727 /// ::= 'icmp' IPredicates TypeAndValue ',' Value 7728 /// ::= 'fcmp' FPredicates TypeAndValue ',' Value 7729 bool LLParser::parseCompare(Instruction *&Inst, PerFunctionState &PFS, 7730 unsigned Opc) { 7731 // parse the integer/fp comparison predicate. 7732 LocTy Loc; 7733 unsigned Pred; 7734 Value *LHS, *RHS; 7735 if (parseCmpPredicate(Pred, Opc) || parseTypeAndValue(LHS, Loc, PFS) || 7736 parseToken(lltok::comma, "expected ',' after compare value") || 7737 parseValue(LHS->getType(), RHS, PFS)) 7738 return true; 7739 7740 if (Opc == Instruction::FCmp) { 7741 if (!LHS->getType()->isFPOrFPVectorTy()) 7742 return error(Loc, "fcmp requires floating point operands"); 7743 Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS); 7744 } else { 7745 assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!"); 7746 if (!LHS->getType()->isIntOrIntVectorTy() && 7747 !LHS->getType()->isPtrOrPtrVectorTy()) 7748 return error(Loc, "icmp requires integer operands"); 7749 Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS); 7750 } 7751 return false; 7752 } 7753 7754 //===----------------------------------------------------------------------===// 7755 // Other Instructions. 7756 //===----------------------------------------------------------------------===// 7757 7758 /// parseCast 7759 /// ::= CastOpc TypeAndValue 'to' Type 7760 bool LLParser::parseCast(Instruction *&Inst, PerFunctionState &PFS, 7761 unsigned Opc) { 7762 LocTy Loc; 7763 Value *Op; 7764 Type *DestTy = nullptr; 7765 if (parseTypeAndValue(Op, Loc, PFS) || 7766 parseToken(lltok::kw_to, "expected 'to' after cast value") || 7767 parseType(DestTy)) 7768 return true; 7769 7770 if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) { 7771 CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy); 7772 return error(Loc, "invalid cast opcode for cast from '" + 7773 getTypeString(Op->getType()) + "' to '" + 7774 getTypeString(DestTy) + "'"); 7775 } 7776 Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy); 7777 return false; 7778 } 7779 7780 /// parseSelect 7781 /// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue 7782 bool LLParser::parseSelect(Instruction *&Inst, PerFunctionState &PFS) { 7783 LocTy Loc; 7784 Value *Op0, *Op1, *Op2; 7785 if (parseTypeAndValue(Op0, Loc, PFS) || 7786 parseToken(lltok::comma, "expected ',' after select condition") || 7787 parseTypeAndValue(Op1, PFS) || 7788 parseToken(lltok::comma, "expected ',' after select value") || 7789 parseTypeAndValue(Op2, PFS)) 7790 return true; 7791 7792 if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2)) 7793 return error(Loc, Reason); 7794 7795 Inst = SelectInst::Create(Op0, Op1, Op2); 7796 return false; 7797 } 7798 7799 /// parseVAArg 7800 /// ::= 'va_arg' TypeAndValue ',' Type 7801 bool LLParser::parseVAArg(Instruction *&Inst, PerFunctionState &PFS) { 7802 Value *Op; 7803 Type *EltTy = nullptr; 7804 LocTy TypeLoc; 7805 if (parseTypeAndValue(Op, PFS) || 7806 parseToken(lltok::comma, "expected ',' after vaarg operand") || 7807 parseType(EltTy, TypeLoc)) 7808 return true; 7809 7810 if (!EltTy->isFirstClassType()) 7811 return error(TypeLoc, "va_arg requires operand with first class type"); 7812 7813 Inst = new VAArgInst(Op, EltTy); 7814 return false; 7815 } 7816 7817 /// parseExtractElement 7818 /// ::= 'extractelement' TypeAndValue ',' TypeAndValue 7819 bool LLParser::parseExtractElement(Instruction *&Inst, PerFunctionState &PFS) { 7820 LocTy Loc; 7821 Value *Op0, *Op1; 7822 if (parseTypeAndValue(Op0, Loc, PFS) || 7823 parseToken(lltok::comma, "expected ',' after extract value") || 7824 parseTypeAndValue(Op1, PFS)) 7825 return true; 7826 7827 if (!ExtractElementInst::isValidOperands(Op0, Op1)) 7828 return error(Loc, "invalid extractelement operands"); 7829 7830 Inst = ExtractElementInst::Create(Op0, Op1); 7831 return false; 7832 } 7833 7834 /// parseInsertElement 7835 /// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue 7836 bool LLParser::parseInsertElement(Instruction *&Inst, PerFunctionState &PFS) { 7837 LocTy Loc; 7838 Value *Op0, *Op1, *Op2; 7839 if (parseTypeAndValue(Op0, Loc, PFS) || 7840 parseToken(lltok::comma, "expected ',' after insertelement value") || 7841 parseTypeAndValue(Op1, PFS) || 7842 parseToken(lltok::comma, "expected ',' after insertelement value") || 7843 parseTypeAndValue(Op2, PFS)) 7844 return true; 7845 7846 if (!InsertElementInst::isValidOperands(Op0, Op1, Op2)) 7847 return error(Loc, "invalid insertelement operands"); 7848 7849 Inst = InsertElementInst::Create(Op0, Op1, Op2); 7850 return false; 7851 } 7852 7853 /// parseShuffleVector 7854 /// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue 7855 bool LLParser::parseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) { 7856 LocTy Loc; 7857 Value *Op0, *Op1, *Op2; 7858 if (parseTypeAndValue(Op0, Loc, PFS) || 7859 parseToken(lltok::comma, "expected ',' after shuffle mask") || 7860 parseTypeAndValue(Op1, PFS) || 7861 parseToken(lltok::comma, "expected ',' after shuffle value") || 7862 parseTypeAndValue(Op2, PFS)) 7863 return true; 7864 7865 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2)) 7866 return error(Loc, "invalid shufflevector operands"); 7867 7868 Inst = new ShuffleVectorInst(Op0, Op1, Op2); 7869 return false; 7870 } 7871 7872 /// parsePHI 7873 /// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')* 7874 int LLParser::parsePHI(Instruction *&Inst, PerFunctionState &PFS) { 7875 Type *Ty = nullptr; LocTy TypeLoc; 7876 Value *Op0, *Op1; 7877 7878 if (parseType(Ty, TypeLoc)) 7879 return true; 7880 7881 if (!Ty->isFirstClassType()) 7882 return error(TypeLoc, "phi node must have first class type"); 7883 7884 bool First = true; 7885 bool AteExtraComma = false; 7886 SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals; 7887 7888 while (true) { 7889 if (First) { 7890 if (Lex.getKind() != lltok::lsquare) 7891 break; 7892 First = false; 7893 } else if (!EatIfPresent(lltok::comma)) 7894 break; 7895 7896 if (Lex.getKind() == lltok::MetadataVar) { 7897 AteExtraComma = true; 7898 break; 7899 } 7900 7901 if (parseToken(lltok::lsquare, "expected '[' in phi value list") || 7902 parseValue(Ty, Op0, PFS) || 7903 parseToken(lltok::comma, "expected ',' after insertelement value") || 7904 parseValue(Type::getLabelTy(Context), Op1, PFS) || 7905 parseToken(lltok::rsquare, "expected ']' in phi value list")) 7906 return true; 7907 7908 PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1))); 7909 } 7910 7911 PHINode *PN = PHINode::Create(Ty, PHIVals.size()); 7912 for (unsigned i = 0, e = PHIVals.size(); i != e; ++i) 7913 PN->addIncoming(PHIVals[i].first, PHIVals[i].second); 7914 Inst = PN; 7915 return AteExtraComma ? InstExtraComma : InstNormal; 7916 } 7917 7918 /// parseLandingPad 7919 /// ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+ 7920 /// Clause 7921 /// ::= 'catch' TypeAndValue 7922 /// ::= 'filter' 7923 /// ::= 'filter' TypeAndValue ( ',' TypeAndValue )* 7924 bool LLParser::parseLandingPad(Instruction *&Inst, PerFunctionState &PFS) { 7925 Type *Ty = nullptr; LocTy TyLoc; 7926 7927 if (parseType(Ty, TyLoc)) 7928 return true; 7929 7930 std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0)); 7931 LP->setCleanup(EatIfPresent(lltok::kw_cleanup)); 7932 7933 while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){ 7934 LandingPadInst::ClauseType CT; 7935 if (EatIfPresent(lltok::kw_catch)) 7936 CT = LandingPadInst::Catch; 7937 else if (EatIfPresent(lltok::kw_filter)) 7938 CT = LandingPadInst::Filter; 7939 else 7940 return tokError("expected 'catch' or 'filter' clause type"); 7941 7942 Value *V; 7943 LocTy VLoc; 7944 if (parseTypeAndValue(V, VLoc, PFS)) 7945 return true; 7946 7947 // A 'catch' type expects a non-array constant. A filter clause expects an 7948 // array constant. 7949 if (CT == LandingPadInst::Catch) { 7950 if (isa<ArrayType>(V->getType())) 7951 return error(VLoc, "'catch' clause has an invalid type"); 7952 } else { 7953 if (!isa<ArrayType>(V->getType())) 7954 return error(VLoc, "'filter' clause has an invalid type"); 7955 } 7956 7957 Constant *CV = dyn_cast<Constant>(V); 7958 if (!CV) 7959 return error(VLoc, "clause argument must be a constant"); 7960 LP->addClause(CV); 7961 } 7962 7963 Inst = LP.release(); 7964 return false; 7965 } 7966 7967 /// parseFreeze 7968 /// ::= 'freeze' Type Value 7969 bool LLParser::parseFreeze(Instruction *&Inst, PerFunctionState &PFS) { 7970 LocTy Loc; 7971 Value *Op; 7972 if (parseTypeAndValue(Op, Loc, PFS)) 7973 return true; 7974 7975 Inst = new FreezeInst(Op); 7976 return false; 7977 } 7978 7979 /// parseCall 7980 /// ::= 'call' OptionalFastMathFlags OptionalCallingConv 7981 /// OptionalAttrs Type Value ParameterList OptionalAttrs 7982 /// ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv 7983 /// OptionalAttrs Type Value ParameterList OptionalAttrs 7984 /// ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv 7985 /// OptionalAttrs Type Value ParameterList OptionalAttrs 7986 /// ::= 'notail' 'call' OptionalFastMathFlags OptionalCallingConv 7987 /// OptionalAttrs Type Value ParameterList OptionalAttrs 7988 bool LLParser::parseCall(Instruction *&Inst, PerFunctionState &PFS, 7989 CallInst::TailCallKind TCK) { 7990 AttrBuilder RetAttrs(M->getContext()), FnAttrs(M->getContext()); 7991 std::vector<unsigned> FwdRefAttrGrps; 7992 LocTy BuiltinLoc; 7993 unsigned CallAddrSpace; 7994 unsigned CC; 7995 Type *RetType = nullptr; 7996 LocTy RetTypeLoc; 7997 ValID CalleeID; 7998 SmallVector<ParamInfo, 16> ArgList; 7999 SmallVector<OperandBundleDef, 2> BundleList; 8000 LocTy CallLoc = Lex.getLoc(); 8001 8002 if (TCK != CallInst::TCK_None && 8003 parseToken(lltok::kw_call, 8004 "expected 'tail call', 'musttail call', or 'notail call'")) 8005 return true; 8006 8007 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 8008 8009 if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) || 8010 parseOptionalProgramAddrSpace(CallAddrSpace) || 8011 parseType(RetType, RetTypeLoc, true /*void allowed*/) || 8012 parseValID(CalleeID, &PFS) || 8013 parseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail, 8014 PFS.getFunction().isVarArg()) || 8015 parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) || 8016 parseOptionalOperandBundles(BundleList, PFS)) 8017 return true; 8018 8019 // If RetType is a non-function pointer type, then this is the short syntax 8020 // for the call, which means that RetType is just the return type. Infer the 8021 // rest of the function argument types from the arguments that are present. 8022 FunctionType *Ty; 8023 if (resolveFunctionType(RetType, ArgList, Ty)) 8024 return error(RetTypeLoc, "Invalid result type for LLVM function"); 8025 8026 CalleeID.FTy = Ty; 8027 8028 // Look up the callee. 8029 Value *Callee; 8030 if (convertValIDToValue(PointerType::get(Ty, CallAddrSpace), CalleeID, Callee, 8031 &PFS)) 8032 return true; 8033 8034 // Set up the Attribute for the function. 8035 SmallVector<AttributeSet, 8> Attrs; 8036 8037 SmallVector<Value*, 8> Args; 8038 8039 // Loop through FunctionType's arguments and ensure they are specified 8040 // correctly. Also, gather any parameter attributes. 8041 FunctionType::param_iterator I = Ty->param_begin(); 8042 FunctionType::param_iterator E = Ty->param_end(); 8043 for (const ParamInfo &Arg : ArgList) { 8044 Type *ExpectedTy = nullptr; 8045 if (I != E) { 8046 ExpectedTy = *I++; 8047 } else if (!Ty->isVarArg()) { 8048 return error(Arg.Loc, "too many arguments specified"); 8049 } 8050 8051 if (ExpectedTy && ExpectedTy != Arg.V->getType()) 8052 return error(Arg.Loc, "argument is not of expected type '" + 8053 getTypeString(ExpectedTy) + "'"); 8054 Args.push_back(Arg.V); 8055 Attrs.push_back(Arg.Attrs); 8056 } 8057 8058 if (I != E) 8059 return error(CallLoc, "not enough parameters specified for call"); 8060 8061 // Finish off the Attribute and check them 8062 AttributeList PAL = 8063 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 8064 AttributeSet::get(Context, RetAttrs), Attrs); 8065 8066 CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList); 8067 CI->setTailCallKind(TCK); 8068 CI->setCallingConv(CC); 8069 if (FMF.any()) { 8070 if (!isa<FPMathOperator>(CI)) { 8071 CI->deleteValue(); 8072 return error(CallLoc, "fast-math-flags specified for call without " 8073 "floating-point scalar or vector return type"); 8074 } 8075 CI->setFastMathFlags(FMF); 8076 } 8077 8078 if (CalleeID.Kind == ValID::t_GlobalName && 8079 isOldDbgFormatIntrinsic(CalleeID.StrVal)) { 8080 if (SeenNewDbgInfoFormat) { 8081 CI->deleteValue(); 8082 return error(CallLoc, "llvm.dbg intrinsic should not appear in a module " 8083 "using non-intrinsic debug info"); 8084 } 8085 if (!SeenOldDbgInfoFormat) 8086 M->setNewDbgInfoFormatFlag(false); 8087 SeenOldDbgInfoFormat = true; 8088 } 8089 CI->setAttributes(PAL); 8090 ForwardRefAttrGroups[CI] = FwdRefAttrGrps; 8091 Inst = CI; 8092 return false; 8093 } 8094 8095 //===----------------------------------------------------------------------===// 8096 // Memory Instructions. 8097 //===----------------------------------------------------------------------===// 8098 8099 /// parseAlloc 8100 /// ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)? 8101 /// (',' 'align' i32)? (',', 'addrspace(n))? 8102 int LLParser::parseAlloc(Instruction *&Inst, PerFunctionState &PFS) { 8103 Value *Size = nullptr; 8104 LocTy SizeLoc, TyLoc, ASLoc; 8105 MaybeAlign Alignment; 8106 unsigned AddrSpace = 0; 8107 Type *Ty = nullptr; 8108 8109 bool IsInAlloca = EatIfPresent(lltok::kw_inalloca); 8110 bool IsSwiftError = EatIfPresent(lltok::kw_swifterror); 8111 8112 if (parseType(Ty, TyLoc)) 8113 return true; 8114 8115 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 8116 return error(TyLoc, "invalid type for alloca"); 8117 8118 bool AteExtraComma = false; 8119 if (EatIfPresent(lltok::comma)) { 8120 if (Lex.getKind() == lltok::kw_align) { 8121 if (parseOptionalAlignment(Alignment)) 8122 return true; 8123 if (parseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma)) 8124 return true; 8125 } else if (Lex.getKind() == lltok::kw_addrspace) { 8126 ASLoc = Lex.getLoc(); 8127 if (parseOptionalAddrSpace(AddrSpace)) 8128 return true; 8129 } else if (Lex.getKind() == lltok::MetadataVar) { 8130 AteExtraComma = true; 8131 } else { 8132 if (parseTypeAndValue(Size, SizeLoc, PFS)) 8133 return true; 8134 if (EatIfPresent(lltok::comma)) { 8135 if (Lex.getKind() == lltok::kw_align) { 8136 if (parseOptionalAlignment(Alignment)) 8137 return true; 8138 if (parseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma)) 8139 return true; 8140 } else if (Lex.getKind() == lltok::kw_addrspace) { 8141 ASLoc = Lex.getLoc(); 8142 if (parseOptionalAddrSpace(AddrSpace)) 8143 return true; 8144 } else if (Lex.getKind() == lltok::MetadataVar) { 8145 AteExtraComma = true; 8146 } 8147 } 8148 } 8149 } 8150 8151 if (Size && !Size->getType()->isIntegerTy()) 8152 return error(SizeLoc, "element count must have integer type"); 8153 8154 SmallPtrSet<Type *, 4> Visited; 8155 if (!Alignment && !Ty->isSized(&Visited)) 8156 return error(TyLoc, "Cannot allocate unsized type"); 8157 if (!Alignment) 8158 Alignment = M->getDataLayout().getPrefTypeAlign(Ty); 8159 AllocaInst *AI = new AllocaInst(Ty, AddrSpace, Size, *Alignment); 8160 AI->setUsedWithInAlloca(IsInAlloca); 8161 AI->setSwiftError(IsSwiftError); 8162 Inst = AI; 8163 return AteExtraComma ? InstExtraComma : InstNormal; 8164 } 8165 8166 /// parseLoad 8167 /// ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)? 8168 /// ::= 'load' 'atomic' 'volatile'? TypeAndValue 8169 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 8170 int LLParser::parseLoad(Instruction *&Inst, PerFunctionState &PFS) { 8171 Value *Val; LocTy Loc; 8172 MaybeAlign Alignment; 8173 bool AteExtraComma = false; 8174 bool isAtomic = false; 8175 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 8176 SyncScope::ID SSID = SyncScope::System; 8177 8178 if (Lex.getKind() == lltok::kw_atomic) { 8179 isAtomic = true; 8180 Lex.Lex(); 8181 } 8182 8183 bool isVolatile = false; 8184 if (Lex.getKind() == lltok::kw_volatile) { 8185 isVolatile = true; 8186 Lex.Lex(); 8187 } 8188 8189 Type *Ty; 8190 LocTy ExplicitTypeLoc = Lex.getLoc(); 8191 if (parseType(Ty) || 8192 parseToken(lltok::comma, "expected comma after load's type") || 8193 parseTypeAndValue(Val, Loc, PFS) || 8194 parseScopeAndOrdering(isAtomic, SSID, Ordering) || 8195 parseOptionalCommaAlign(Alignment, AteExtraComma)) 8196 return true; 8197 8198 if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType()) 8199 return error(Loc, "load operand must be a pointer to a first class type"); 8200 if (isAtomic && !Alignment) 8201 return error(Loc, "atomic load must have explicit non-zero alignment"); 8202 if (Ordering == AtomicOrdering::Release || 8203 Ordering == AtomicOrdering::AcquireRelease) 8204 return error(Loc, "atomic load cannot use Release ordering"); 8205 8206 SmallPtrSet<Type *, 4> Visited; 8207 if (!Alignment && !Ty->isSized(&Visited)) 8208 return error(ExplicitTypeLoc, "loading unsized types is not allowed"); 8209 if (!Alignment) 8210 Alignment = M->getDataLayout().getABITypeAlign(Ty); 8211 Inst = new LoadInst(Ty, Val, "", isVolatile, *Alignment, Ordering, SSID); 8212 return AteExtraComma ? InstExtraComma : InstNormal; 8213 } 8214 8215 /// parseStore 8216 8217 /// ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)? 8218 /// ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue 8219 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 8220 int LLParser::parseStore(Instruction *&Inst, PerFunctionState &PFS) { 8221 Value *Val, *Ptr; LocTy Loc, PtrLoc; 8222 MaybeAlign Alignment; 8223 bool AteExtraComma = false; 8224 bool isAtomic = false; 8225 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 8226 SyncScope::ID SSID = SyncScope::System; 8227 8228 if (Lex.getKind() == lltok::kw_atomic) { 8229 isAtomic = true; 8230 Lex.Lex(); 8231 } 8232 8233 bool isVolatile = false; 8234 if (Lex.getKind() == lltok::kw_volatile) { 8235 isVolatile = true; 8236 Lex.Lex(); 8237 } 8238 8239 if (parseTypeAndValue(Val, Loc, PFS) || 8240 parseToken(lltok::comma, "expected ',' after store operand") || 8241 parseTypeAndValue(Ptr, PtrLoc, PFS) || 8242 parseScopeAndOrdering(isAtomic, SSID, Ordering) || 8243 parseOptionalCommaAlign(Alignment, AteExtraComma)) 8244 return true; 8245 8246 if (!Ptr->getType()->isPointerTy()) 8247 return error(PtrLoc, "store operand must be a pointer"); 8248 if (!Val->getType()->isFirstClassType()) 8249 return error(Loc, "store operand must be a first class value"); 8250 if (isAtomic && !Alignment) 8251 return error(Loc, "atomic store must have explicit non-zero alignment"); 8252 if (Ordering == AtomicOrdering::Acquire || 8253 Ordering == AtomicOrdering::AcquireRelease) 8254 return error(Loc, "atomic store cannot use Acquire ordering"); 8255 SmallPtrSet<Type *, 4> Visited; 8256 if (!Alignment && !Val->getType()->isSized(&Visited)) 8257 return error(Loc, "storing unsized types is not allowed"); 8258 if (!Alignment) 8259 Alignment = M->getDataLayout().getABITypeAlign(Val->getType()); 8260 8261 Inst = new StoreInst(Val, Ptr, isVolatile, *Alignment, Ordering, SSID); 8262 return AteExtraComma ? InstExtraComma : InstNormal; 8263 } 8264 8265 /// parseCmpXchg 8266 /// ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ',' 8267 /// TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering ',' 8268 /// 'Align'? 8269 int LLParser::parseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) { 8270 Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc; 8271 bool AteExtraComma = false; 8272 AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic; 8273 AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic; 8274 SyncScope::ID SSID = SyncScope::System; 8275 bool isVolatile = false; 8276 bool isWeak = false; 8277 MaybeAlign Alignment; 8278 8279 if (EatIfPresent(lltok::kw_weak)) 8280 isWeak = true; 8281 8282 if (EatIfPresent(lltok::kw_volatile)) 8283 isVolatile = true; 8284 8285 if (parseTypeAndValue(Ptr, PtrLoc, PFS) || 8286 parseToken(lltok::comma, "expected ',' after cmpxchg address") || 8287 parseTypeAndValue(Cmp, CmpLoc, PFS) || 8288 parseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") || 8289 parseTypeAndValue(New, NewLoc, PFS) || 8290 parseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) || 8291 parseOrdering(FailureOrdering) || 8292 parseOptionalCommaAlign(Alignment, AteExtraComma)) 8293 return true; 8294 8295 if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering)) 8296 return tokError("invalid cmpxchg success ordering"); 8297 if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering)) 8298 return tokError("invalid cmpxchg failure ordering"); 8299 if (!Ptr->getType()->isPointerTy()) 8300 return error(PtrLoc, "cmpxchg operand must be a pointer"); 8301 if (Cmp->getType() != New->getType()) 8302 return error(NewLoc, "compare value and new value type do not match"); 8303 if (!New->getType()->isFirstClassType()) 8304 return error(NewLoc, "cmpxchg operand must be a first class value"); 8305 8306 const Align DefaultAlignment( 8307 PFS.getFunction().getDataLayout().getTypeStoreSize( 8308 Cmp->getType())); 8309 8310 AtomicCmpXchgInst *CXI = 8311 new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment.value_or(DefaultAlignment), 8312 SuccessOrdering, FailureOrdering, SSID); 8313 CXI->setVolatile(isVolatile); 8314 CXI->setWeak(isWeak); 8315 8316 Inst = CXI; 8317 return AteExtraComma ? InstExtraComma : InstNormal; 8318 } 8319 8320 /// parseAtomicRMW 8321 /// ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue 8322 /// 'singlethread'? AtomicOrdering 8323 int LLParser::parseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) { 8324 Value *Ptr, *Val; LocTy PtrLoc, ValLoc; 8325 bool AteExtraComma = false; 8326 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 8327 SyncScope::ID SSID = SyncScope::System; 8328 bool isVolatile = false; 8329 bool IsFP = false; 8330 AtomicRMWInst::BinOp Operation; 8331 MaybeAlign Alignment; 8332 8333 if (EatIfPresent(lltok::kw_volatile)) 8334 isVolatile = true; 8335 8336 switch (Lex.getKind()) { 8337 default: 8338 return tokError("expected binary operation in atomicrmw"); 8339 case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break; 8340 case lltok::kw_add: Operation = AtomicRMWInst::Add; break; 8341 case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break; 8342 case lltok::kw_and: Operation = AtomicRMWInst::And; break; 8343 case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break; 8344 case lltok::kw_or: Operation = AtomicRMWInst::Or; break; 8345 case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break; 8346 case lltok::kw_max: Operation = AtomicRMWInst::Max; break; 8347 case lltok::kw_min: Operation = AtomicRMWInst::Min; break; 8348 case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break; 8349 case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break; 8350 case lltok::kw_uinc_wrap: 8351 Operation = AtomicRMWInst::UIncWrap; 8352 break; 8353 case lltok::kw_udec_wrap: 8354 Operation = AtomicRMWInst::UDecWrap; 8355 break; 8356 case lltok::kw_usub_cond: 8357 Operation = AtomicRMWInst::USubCond; 8358 break; 8359 case lltok::kw_usub_sat: 8360 Operation = AtomicRMWInst::USubSat; 8361 break; 8362 case lltok::kw_fadd: 8363 Operation = AtomicRMWInst::FAdd; 8364 IsFP = true; 8365 break; 8366 case lltok::kw_fsub: 8367 Operation = AtomicRMWInst::FSub; 8368 IsFP = true; 8369 break; 8370 case lltok::kw_fmax: 8371 Operation = AtomicRMWInst::FMax; 8372 IsFP = true; 8373 break; 8374 case lltok::kw_fmin: 8375 Operation = AtomicRMWInst::FMin; 8376 IsFP = true; 8377 break; 8378 } 8379 Lex.Lex(); // Eat the operation. 8380 8381 if (parseTypeAndValue(Ptr, PtrLoc, PFS) || 8382 parseToken(lltok::comma, "expected ',' after atomicrmw address") || 8383 parseTypeAndValue(Val, ValLoc, PFS) || 8384 parseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering) || 8385 parseOptionalCommaAlign(Alignment, AteExtraComma)) 8386 return true; 8387 8388 if (Ordering == AtomicOrdering::Unordered) 8389 return tokError("atomicrmw cannot be unordered"); 8390 if (!Ptr->getType()->isPointerTy()) 8391 return error(PtrLoc, "atomicrmw operand must be a pointer"); 8392 if (Val->getType()->isScalableTy()) 8393 return error(ValLoc, "atomicrmw operand may not be scalable"); 8394 8395 if (Operation == AtomicRMWInst::Xchg) { 8396 if (!Val->getType()->isIntegerTy() && 8397 !Val->getType()->isFloatingPointTy() && 8398 !Val->getType()->isPointerTy()) { 8399 return error( 8400 ValLoc, 8401 "atomicrmw " + AtomicRMWInst::getOperationName(Operation) + 8402 " operand must be an integer, floating point, or pointer type"); 8403 } 8404 } else if (IsFP) { 8405 if (!Val->getType()->isFPOrFPVectorTy()) { 8406 return error(ValLoc, "atomicrmw " + 8407 AtomicRMWInst::getOperationName(Operation) + 8408 " operand must be a floating point type"); 8409 } 8410 } else { 8411 if (!Val->getType()->isIntegerTy()) { 8412 return error(ValLoc, "atomicrmw " + 8413 AtomicRMWInst::getOperationName(Operation) + 8414 " operand must be an integer"); 8415 } 8416 } 8417 8418 unsigned Size = 8419 PFS.getFunction().getDataLayout().getTypeStoreSizeInBits( 8420 Val->getType()); 8421 if (Size < 8 || (Size & (Size - 1))) 8422 return error(ValLoc, "atomicrmw operand must be power-of-two byte-sized" 8423 " integer"); 8424 const Align DefaultAlignment( 8425 PFS.getFunction().getDataLayout().getTypeStoreSize( 8426 Val->getType())); 8427 AtomicRMWInst *RMWI = 8428 new AtomicRMWInst(Operation, Ptr, Val, 8429 Alignment.value_or(DefaultAlignment), Ordering, SSID); 8430 RMWI->setVolatile(isVolatile); 8431 Inst = RMWI; 8432 return AteExtraComma ? InstExtraComma : InstNormal; 8433 } 8434 8435 /// parseFence 8436 /// ::= 'fence' 'singlethread'? AtomicOrdering 8437 int LLParser::parseFence(Instruction *&Inst, PerFunctionState &PFS) { 8438 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 8439 SyncScope::ID SSID = SyncScope::System; 8440 if (parseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering)) 8441 return true; 8442 8443 if (Ordering == AtomicOrdering::Unordered) 8444 return tokError("fence cannot be unordered"); 8445 if (Ordering == AtomicOrdering::Monotonic) 8446 return tokError("fence cannot be monotonic"); 8447 8448 Inst = new FenceInst(Context, Ordering, SSID); 8449 return InstNormal; 8450 } 8451 8452 /// parseGetElementPtr 8453 /// ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)* 8454 int LLParser::parseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) { 8455 Value *Ptr = nullptr; 8456 Value *Val = nullptr; 8457 LocTy Loc, EltLoc; 8458 GEPNoWrapFlags NW; 8459 8460 while (true) { 8461 if (EatIfPresent(lltok::kw_inbounds)) 8462 NW |= GEPNoWrapFlags::inBounds(); 8463 else if (EatIfPresent(lltok::kw_nusw)) 8464 NW |= GEPNoWrapFlags::noUnsignedSignedWrap(); 8465 else if (EatIfPresent(lltok::kw_nuw)) 8466 NW |= GEPNoWrapFlags::noUnsignedWrap(); 8467 else 8468 break; 8469 } 8470 8471 Type *Ty = nullptr; 8472 if (parseType(Ty) || 8473 parseToken(lltok::comma, "expected comma after getelementptr's type") || 8474 parseTypeAndValue(Ptr, Loc, PFS)) 8475 return true; 8476 8477 Type *BaseType = Ptr->getType(); 8478 PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType()); 8479 if (!BasePointerType) 8480 return error(Loc, "base of getelementptr must be a pointer"); 8481 8482 SmallVector<Value*, 16> Indices; 8483 bool AteExtraComma = false; 8484 // GEP returns a vector of pointers if at least one of parameters is a vector. 8485 // All vector parameters should have the same vector width. 8486 ElementCount GEPWidth = BaseType->isVectorTy() 8487 ? cast<VectorType>(BaseType)->getElementCount() 8488 : ElementCount::getFixed(0); 8489 8490 while (EatIfPresent(lltok::comma)) { 8491 if (Lex.getKind() == lltok::MetadataVar) { 8492 AteExtraComma = true; 8493 break; 8494 } 8495 if (parseTypeAndValue(Val, EltLoc, PFS)) 8496 return true; 8497 if (!Val->getType()->isIntOrIntVectorTy()) 8498 return error(EltLoc, "getelementptr index must be an integer"); 8499 8500 if (auto *ValVTy = dyn_cast<VectorType>(Val->getType())) { 8501 ElementCount ValNumEl = ValVTy->getElementCount(); 8502 if (GEPWidth != ElementCount::getFixed(0) && GEPWidth != ValNumEl) 8503 return error( 8504 EltLoc, 8505 "getelementptr vector index has a wrong number of elements"); 8506 GEPWidth = ValNumEl; 8507 } 8508 Indices.push_back(Val); 8509 } 8510 8511 SmallPtrSet<Type*, 4> Visited; 8512 if (!Indices.empty() && !Ty->isSized(&Visited)) 8513 return error(Loc, "base element of getelementptr must be sized"); 8514 8515 auto *STy = dyn_cast<StructType>(Ty); 8516 if (STy && STy->containsScalableVectorType()) 8517 return error(Loc, "getelementptr cannot target structure that contains " 8518 "scalable vector type"); 8519 8520 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 8521 return error(Loc, "invalid getelementptr indices"); 8522 GetElementPtrInst *GEP = GetElementPtrInst::Create(Ty, Ptr, Indices); 8523 Inst = GEP; 8524 GEP->setNoWrapFlags(NW); 8525 return AteExtraComma ? InstExtraComma : InstNormal; 8526 } 8527 8528 /// parseExtractValue 8529 /// ::= 'extractvalue' TypeAndValue (',' uint32)+ 8530 int LLParser::parseExtractValue(Instruction *&Inst, PerFunctionState &PFS) { 8531 Value *Val; LocTy Loc; 8532 SmallVector<unsigned, 4> Indices; 8533 bool AteExtraComma; 8534 if (parseTypeAndValue(Val, Loc, PFS) || 8535 parseIndexList(Indices, AteExtraComma)) 8536 return true; 8537 8538 if (!Val->getType()->isAggregateType()) 8539 return error(Loc, "extractvalue operand must be aggregate type"); 8540 8541 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 8542 return error(Loc, "invalid indices for extractvalue"); 8543 Inst = ExtractValueInst::Create(Val, Indices); 8544 return AteExtraComma ? InstExtraComma : InstNormal; 8545 } 8546 8547 /// parseInsertValue 8548 /// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+ 8549 int LLParser::parseInsertValue(Instruction *&Inst, PerFunctionState &PFS) { 8550 Value *Val0, *Val1; LocTy Loc0, Loc1; 8551 SmallVector<unsigned, 4> Indices; 8552 bool AteExtraComma; 8553 if (parseTypeAndValue(Val0, Loc0, PFS) || 8554 parseToken(lltok::comma, "expected comma after insertvalue operand") || 8555 parseTypeAndValue(Val1, Loc1, PFS) || 8556 parseIndexList(Indices, AteExtraComma)) 8557 return true; 8558 8559 if (!Val0->getType()->isAggregateType()) 8560 return error(Loc0, "insertvalue operand must be aggregate type"); 8561 8562 Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices); 8563 if (!IndexedType) 8564 return error(Loc0, "invalid indices for insertvalue"); 8565 if (IndexedType != Val1->getType()) 8566 return error(Loc1, "insertvalue operand and field disagree in type: '" + 8567 getTypeString(Val1->getType()) + "' instead of '" + 8568 getTypeString(IndexedType) + "'"); 8569 Inst = InsertValueInst::Create(Val0, Val1, Indices); 8570 return AteExtraComma ? InstExtraComma : InstNormal; 8571 } 8572 8573 //===----------------------------------------------------------------------===// 8574 // Embedded metadata. 8575 //===----------------------------------------------------------------------===// 8576 8577 /// parseMDNodeVector 8578 /// ::= { Element (',' Element)* } 8579 /// Element 8580 /// ::= 'null' | Metadata 8581 bool LLParser::parseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) { 8582 if (parseToken(lltok::lbrace, "expected '{' here")) 8583 return true; 8584 8585 // Check for an empty list. 8586 if (EatIfPresent(lltok::rbrace)) 8587 return false; 8588 8589 do { 8590 if (EatIfPresent(lltok::kw_null)) { 8591 Elts.push_back(nullptr); 8592 continue; 8593 } 8594 8595 Metadata *MD; 8596 if (parseMetadata(MD, nullptr)) 8597 return true; 8598 Elts.push_back(MD); 8599 } while (EatIfPresent(lltok::comma)); 8600 8601 return parseToken(lltok::rbrace, "expected end of metadata node"); 8602 } 8603 8604 //===----------------------------------------------------------------------===// 8605 // Use-list order directives. 8606 //===----------------------------------------------------------------------===// 8607 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes, 8608 SMLoc Loc) { 8609 if (V->use_empty()) 8610 return error(Loc, "value has no uses"); 8611 8612 unsigned NumUses = 0; 8613 SmallDenseMap<const Use *, unsigned, 16> Order; 8614 for (const Use &U : V->uses()) { 8615 if (++NumUses > Indexes.size()) 8616 break; 8617 Order[&U] = Indexes[NumUses - 1]; 8618 } 8619 if (NumUses < 2) 8620 return error(Loc, "value only has one use"); 8621 if (Order.size() != Indexes.size() || NumUses > Indexes.size()) 8622 return error(Loc, 8623 "wrong number of indexes, expected " + Twine(V->getNumUses())); 8624 8625 V->sortUseList([&](const Use &L, const Use &R) { 8626 return Order.lookup(&L) < Order.lookup(&R); 8627 }); 8628 return false; 8629 } 8630 8631 /// parseUseListOrderIndexes 8632 /// ::= '{' uint32 (',' uint32)+ '}' 8633 bool LLParser::parseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) { 8634 SMLoc Loc = Lex.getLoc(); 8635 if (parseToken(lltok::lbrace, "expected '{' here")) 8636 return true; 8637 if (Lex.getKind() == lltok::rbrace) 8638 return tokError("expected non-empty list of uselistorder indexes"); 8639 8640 // Use Offset, Max, and IsOrdered to check consistency of indexes. The 8641 // indexes should be distinct numbers in the range [0, size-1], and should 8642 // not be in order. 8643 unsigned Offset = 0; 8644 unsigned Max = 0; 8645 bool IsOrdered = true; 8646 assert(Indexes.empty() && "Expected empty order vector"); 8647 do { 8648 unsigned Index; 8649 if (parseUInt32(Index)) 8650 return true; 8651 8652 // Update consistency checks. 8653 Offset += Index - Indexes.size(); 8654 Max = std::max(Max, Index); 8655 IsOrdered &= Index == Indexes.size(); 8656 8657 Indexes.push_back(Index); 8658 } while (EatIfPresent(lltok::comma)); 8659 8660 if (parseToken(lltok::rbrace, "expected '}' here")) 8661 return true; 8662 8663 if (Indexes.size() < 2) 8664 return error(Loc, "expected >= 2 uselistorder indexes"); 8665 if (Offset != 0 || Max >= Indexes.size()) 8666 return error(Loc, 8667 "expected distinct uselistorder indexes in range [0, size)"); 8668 if (IsOrdered) 8669 return error(Loc, "expected uselistorder indexes to change the order"); 8670 8671 return false; 8672 } 8673 8674 /// parseUseListOrder 8675 /// ::= 'uselistorder' Type Value ',' UseListOrderIndexes 8676 bool LLParser::parseUseListOrder(PerFunctionState *PFS) { 8677 SMLoc Loc = Lex.getLoc(); 8678 if (parseToken(lltok::kw_uselistorder, "expected uselistorder directive")) 8679 return true; 8680 8681 Value *V; 8682 SmallVector<unsigned, 16> Indexes; 8683 if (parseTypeAndValue(V, PFS) || 8684 parseToken(lltok::comma, "expected comma in uselistorder directive") || 8685 parseUseListOrderIndexes(Indexes)) 8686 return true; 8687 8688 return sortUseListOrder(V, Indexes, Loc); 8689 } 8690 8691 /// parseUseListOrderBB 8692 /// ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes 8693 bool LLParser::parseUseListOrderBB() { 8694 assert(Lex.getKind() == lltok::kw_uselistorder_bb); 8695 SMLoc Loc = Lex.getLoc(); 8696 Lex.Lex(); 8697 8698 ValID Fn, Label; 8699 SmallVector<unsigned, 16> Indexes; 8700 if (parseValID(Fn, /*PFS=*/nullptr) || 8701 parseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 8702 parseValID(Label, /*PFS=*/nullptr) || 8703 parseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 8704 parseUseListOrderIndexes(Indexes)) 8705 return true; 8706 8707 // Check the function. 8708 GlobalValue *GV; 8709 if (Fn.Kind == ValID::t_GlobalName) 8710 GV = M->getNamedValue(Fn.StrVal); 8711 else if (Fn.Kind == ValID::t_GlobalID) 8712 GV = NumberedVals.get(Fn.UIntVal); 8713 else 8714 return error(Fn.Loc, "expected function name in uselistorder_bb"); 8715 if (!GV) 8716 return error(Fn.Loc, 8717 "invalid function forward reference in uselistorder_bb"); 8718 auto *F = dyn_cast<Function>(GV); 8719 if (!F) 8720 return error(Fn.Loc, "expected function name in uselistorder_bb"); 8721 if (F->isDeclaration()) 8722 return error(Fn.Loc, "invalid declaration in uselistorder_bb"); 8723 8724 // Check the basic block. 8725 if (Label.Kind == ValID::t_LocalID) 8726 return error(Label.Loc, "invalid numeric label in uselistorder_bb"); 8727 if (Label.Kind != ValID::t_LocalName) 8728 return error(Label.Loc, "expected basic block name in uselistorder_bb"); 8729 Value *V = F->getValueSymbolTable()->lookup(Label.StrVal); 8730 if (!V) 8731 return error(Label.Loc, "invalid basic block in uselistorder_bb"); 8732 if (!isa<BasicBlock>(V)) 8733 return error(Label.Loc, "expected basic block in uselistorder_bb"); 8734 8735 return sortUseListOrder(V, Indexes, Loc); 8736 } 8737 8738 /// ModuleEntry 8739 /// ::= 'module' ':' '(' 'path' ':' STRINGCONSTANT ',' 'hash' ':' Hash ')' 8740 /// Hash ::= '(' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ')' 8741 bool LLParser::parseModuleEntry(unsigned ID) { 8742 assert(Lex.getKind() == lltok::kw_module); 8743 Lex.Lex(); 8744 8745 std::string Path; 8746 if (parseToken(lltok::colon, "expected ':' here") || 8747 parseToken(lltok::lparen, "expected '(' here") || 8748 parseToken(lltok::kw_path, "expected 'path' here") || 8749 parseToken(lltok::colon, "expected ':' here") || 8750 parseStringConstant(Path) || 8751 parseToken(lltok::comma, "expected ',' here") || 8752 parseToken(lltok::kw_hash, "expected 'hash' here") || 8753 parseToken(lltok::colon, "expected ':' here") || 8754 parseToken(lltok::lparen, "expected '(' here")) 8755 return true; 8756 8757 ModuleHash Hash; 8758 if (parseUInt32(Hash[0]) || parseToken(lltok::comma, "expected ',' here") || 8759 parseUInt32(Hash[1]) || parseToken(lltok::comma, "expected ',' here") || 8760 parseUInt32(Hash[2]) || parseToken(lltok::comma, "expected ',' here") || 8761 parseUInt32(Hash[3]) || parseToken(lltok::comma, "expected ',' here") || 8762 parseUInt32(Hash[4])) 8763 return true; 8764 8765 if (parseToken(lltok::rparen, "expected ')' here") || 8766 parseToken(lltok::rparen, "expected ')' here")) 8767 return true; 8768 8769 auto ModuleEntry = Index->addModule(Path, Hash); 8770 ModuleIdMap[ID] = ModuleEntry->first(); 8771 8772 return false; 8773 } 8774 8775 /// TypeIdEntry 8776 /// ::= 'typeid' ':' '(' 'name' ':' STRINGCONSTANT ',' TypeIdSummary ')' 8777 bool LLParser::parseTypeIdEntry(unsigned ID) { 8778 assert(Lex.getKind() == lltok::kw_typeid); 8779 Lex.Lex(); 8780 8781 std::string Name; 8782 if (parseToken(lltok::colon, "expected ':' here") || 8783 parseToken(lltok::lparen, "expected '(' here") || 8784 parseToken(lltok::kw_name, "expected 'name' here") || 8785 parseToken(lltok::colon, "expected ':' here") || 8786 parseStringConstant(Name)) 8787 return true; 8788 8789 TypeIdSummary &TIS = Index->getOrInsertTypeIdSummary(Name); 8790 if (parseToken(lltok::comma, "expected ',' here") || 8791 parseTypeIdSummary(TIS) || parseToken(lltok::rparen, "expected ')' here")) 8792 return true; 8793 8794 // Check if this ID was forward referenced, and if so, update the 8795 // corresponding GUIDs. 8796 auto FwdRefTIDs = ForwardRefTypeIds.find(ID); 8797 if (FwdRefTIDs != ForwardRefTypeIds.end()) { 8798 for (auto TIDRef : FwdRefTIDs->second) { 8799 assert(!*TIDRef.first && 8800 "Forward referenced type id GUID expected to be 0"); 8801 *TIDRef.first = GlobalValue::getGUID(Name); 8802 } 8803 ForwardRefTypeIds.erase(FwdRefTIDs); 8804 } 8805 8806 return false; 8807 } 8808 8809 /// TypeIdSummary 8810 /// ::= 'summary' ':' '(' TypeTestResolution [',' OptionalWpdResolutions]? ')' 8811 bool LLParser::parseTypeIdSummary(TypeIdSummary &TIS) { 8812 if (parseToken(lltok::kw_summary, "expected 'summary' here") || 8813 parseToken(lltok::colon, "expected ':' here") || 8814 parseToken(lltok::lparen, "expected '(' here") || 8815 parseTypeTestResolution(TIS.TTRes)) 8816 return true; 8817 8818 if (EatIfPresent(lltok::comma)) { 8819 // Expect optional wpdResolutions field 8820 if (parseOptionalWpdResolutions(TIS.WPDRes)) 8821 return true; 8822 } 8823 8824 if (parseToken(lltok::rparen, "expected ')' here")) 8825 return true; 8826 8827 return false; 8828 } 8829 8830 static ValueInfo EmptyVI = 8831 ValueInfo(false, (GlobalValueSummaryMapTy::value_type *)-8); 8832 8833 /// TypeIdCompatibleVtableEntry 8834 /// ::= 'typeidCompatibleVTable' ':' '(' 'name' ':' STRINGCONSTANT ',' 8835 /// TypeIdCompatibleVtableInfo 8836 /// ')' 8837 bool LLParser::parseTypeIdCompatibleVtableEntry(unsigned ID) { 8838 assert(Lex.getKind() == lltok::kw_typeidCompatibleVTable); 8839 Lex.Lex(); 8840 8841 std::string Name; 8842 if (parseToken(lltok::colon, "expected ':' here") || 8843 parseToken(lltok::lparen, "expected '(' here") || 8844 parseToken(lltok::kw_name, "expected 'name' here") || 8845 parseToken(lltok::colon, "expected ':' here") || 8846 parseStringConstant(Name)) 8847 return true; 8848 8849 TypeIdCompatibleVtableInfo &TI = 8850 Index->getOrInsertTypeIdCompatibleVtableSummary(Name); 8851 if (parseToken(lltok::comma, "expected ',' here") || 8852 parseToken(lltok::kw_summary, "expected 'summary' here") || 8853 parseToken(lltok::colon, "expected ':' here") || 8854 parseToken(lltok::lparen, "expected '(' here")) 8855 return true; 8856 8857 IdToIndexMapType IdToIndexMap; 8858 // parse each call edge 8859 do { 8860 uint64_t Offset; 8861 if (parseToken(lltok::lparen, "expected '(' here") || 8862 parseToken(lltok::kw_offset, "expected 'offset' here") || 8863 parseToken(lltok::colon, "expected ':' here") || parseUInt64(Offset) || 8864 parseToken(lltok::comma, "expected ',' here")) 8865 return true; 8866 8867 LocTy Loc = Lex.getLoc(); 8868 unsigned GVId; 8869 ValueInfo VI; 8870 if (parseGVReference(VI, GVId)) 8871 return true; 8872 8873 // Keep track of the TypeIdCompatibleVtableInfo array index needing a 8874 // forward reference. We will save the location of the ValueInfo needing an 8875 // update, but can only do so once the std::vector is finalized. 8876 if (VI == EmptyVI) 8877 IdToIndexMap[GVId].push_back(std::make_pair(TI.size(), Loc)); 8878 TI.push_back({Offset, VI}); 8879 8880 if (parseToken(lltok::rparen, "expected ')' in call")) 8881 return true; 8882 } while (EatIfPresent(lltok::comma)); 8883 8884 // Now that the TI vector is finalized, it is safe to save the locations 8885 // of any forward GV references that need updating later. 8886 for (auto I : IdToIndexMap) { 8887 auto &Infos = ForwardRefValueInfos[I.first]; 8888 for (auto P : I.second) { 8889 assert(TI[P.first].VTableVI == EmptyVI && 8890 "Forward referenced ValueInfo expected to be empty"); 8891 Infos.emplace_back(&TI[P.first].VTableVI, P.second); 8892 } 8893 } 8894 8895 if (parseToken(lltok::rparen, "expected ')' here") || 8896 parseToken(lltok::rparen, "expected ')' here")) 8897 return true; 8898 8899 // Check if this ID was forward referenced, and if so, update the 8900 // corresponding GUIDs. 8901 auto FwdRefTIDs = ForwardRefTypeIds.find(ID); 8902 if (FwdRefTIDs != ForwardRefTypeIds.end()) { 8903 for (auto TIDRef : FwdRefTIDs->second) { 8904 assert(!*TIDRef.first && 8905 "Forward referenced type id GUID expected to be 0"); 8906 *TIDRef.first = GlobalValue::getGUID(Name); 8907 } 8908 ForwardRefTypeIds.erase(FwdRefTIDs); 8909 } 8910 8911 return false; 8912 } 8913 8914 /// TypeTestResolution 8915 /// ::= 'typeTestRes' ':' '(' 'kind' ':' 8916 /// ( 'unsat' | 'byteArray' | 'inline' | 'single' | 'allOnes' ) ',' 8917 /// 'sizeM1BitWidth' ':' SizeM1BitWidth [',' 'alignLog2' ':' UInt64]? 8918 /// [',' 'sizeM1' ':' UInt64]? [',' 'bitMask' ':' UInt8]? 8919 /// [',' 'inlinesBits' ':' UInt64]? ')' 8920 bool LLParser::parseTypeTestResolution(TypeTestResolution &TTRes) { 8921 if (parseToken(lltok::kw_typeTestRes, "expected 'typeTestRes' here") || 8922 parseToken(lltok::colon, "expected ':' here") || 8923 parseToken(lltok::lparen, "expected '(' here") || 8924 parseToken(lltok::kw_kind, "expected 'kind' here") || 8925 parseToken(lltok::colon, "expected ':' here")) 8926 return true; 8927 8928 switch (Lex.getKind()) { 8929 case lltok::kw_unknown: 8930 TTRes.TheKind = TypeTestResolution::Unknown; 8931 break; 8932 case lltok::kw_unsat: 8933 TTRes.TheKind = TypeTestResolution::Unsat; 8934 break; 8935 case lltok::kw_byteArray: 8936 TTRes.TheKind = TypeTestResolution::ByteArray; 8937 break; 8938 case lltok::kw_inline: 8939 TTRes.TheKind = TypeTestResolution::Inline; 8940 break; 8941 case lltok::kw_single: 8942 TTRes.TheKind = TypeTestResolution::Single; 8943 break; 8944 case lltok::kw_allOnes: 8945 TTRes.TheKind = TypeTestResolution::AllOnes; 8946 break; 8947 default: 8948 return error(Lex.getLoc(), "unexpected TypeTestResolution kind"); 8949 } 8950 Lex.Lex(); 8951 8952 if (parseToken(lltok::comma, "expected ',' here") || 8953 parseToken(lltok::kw_sizeM1BitWidth, "expected 'sizeM1BitWidth' here") || 8954 parseToken(lltok::colon, "expected ':' here") || 8955 parseUInt32(TTRes.SizeM1BitWidth)) 8956 return true; 8957 8958 // parse optional fields 8959 while (EatIfPresent(lltok::comma)) { 8960 switch (Lex.getKind()) { 8961 case lltok::kw_alignLog2: 8962 Lex.Lex(); 8963 if (parseToken(lltok::colon, "expected ':'") || 8964 parseUInt64(TTRes.AlignLog2)) 8965 return true; 8966 break; 8967 case lltok::kw_sizeM1: 8968 Lex.Lex(); 8969 if (parseToken(lltok::colon, "expected ':'") || parseUInt64(TTRes.SizeM1)) 8970 return true; 8971 break; 8972 case lltok::kw_bitMask: { 8973 unsigned Val; 8974 Lex.Lex(); 8975 if (parseToken(lltok::colon, "expected ':'") || parseUInt32(Val)) 8976 return true; 8977 assert(Val <= 0xff); 8978 TTRes.BitMask = (uint8_t)Val; 8979 break; 8980 } 8981 case lltok::kw_inlineBits: 8982 Lex.Lex(); 8983 if (parseToken(lltok::colon, "expected ':'") || 8984 parseUInt64(TTRes.InlineBits)) 8985 return true; 8986 break; 8987 default: 8988 return error(Lex.getLoc(), "expected optional TypeTestResolution field"); 8989 } 8990 } 8991 8992 if (parseToken(lltok::rparen, "expected ')' here")) 8993 return true; 8994 8995 return false; 8996 } 8997 8998 /// OptionalWpdResolutions 8999 /// ::= 'wpsResolutions' ':' '(' WpdResolution [',' WpdResolution]* ')' 9000 /// WpdResolution ::= '(' 'offset' ':' UInt64 ',' WpdRes ')' 9001 bool LLParser::parseOptionalWpdResolutions( 9002 std::map<uint64_t, WholeProgramDevirtResolution> &WPDResMap) { 9003 if (parseToken(lltok::kw_wpdResolutions, "expected 'wpdResolutions' here") || 9004 parseToken(lltok::colon, "expected ':' here") || 9005 parseToken(lltok::lparen, "expected '(' here")) 9006 return true; 9007 9008 do { 9009 uint64_t Offset; 9010 WholeProgramDevirtResolution WPDRes; 9011 if (parseToken(lltok::lparen, "expected '(' here") || 9012 parseToken(lltok::kw_offset, "expected 'offset' here") || 9013 parseToken(lltok::colon, "expected ':' here") || parseUInt64(Offset) || 9014 parseToken(lltok::comma, "expected ',' here") || parseWpdRes(WPDRes) || 9015 parseToken(lltok::rparen, "expected ')' here")) 9016 return true; 9017 WPDResMap[Offset] = WPDRes; 9018 } while (EatIfPresent(lltok::comma)); 9019 9020 if (parseToken(lltok::rparen, "expected ')' here")) 9021 return true; 9022 9023 return false; 9024 } 9025 9026 /// WpdRes 9027 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'indir' 9028 /// [',' OptionalResByArg]? ')' 9029 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'singleImpl' 9030 /// ',' 'singleImplName' ':' STRINGCONSTANT ',' 9031 /// [',' OptionalResByArg]? ')' 9032 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'branchFunnel' 9033 /// [',' OptionalResByArg]? ')' 9034 bool LLParser::parseWpdRes(WholeProgramDevirtResolution &WPDRes) { 9035 if (parseToken(lltok::kw_wpdRes, "expected 'wpdRes' here") || 9036 parseToken(lltok::colon, "expected ':' here") || 9037 parseToken(lltok::lparen, "expected '(' here") || 9038 parseToken(lltok::kw_kind, "expected 'kind' here") || 9039 parseToken(lltok::colon, "expected ':' here")) 9040 return true; 9041 9042 switch (Lex.getKind()) { 9043 case lltok::kw_indir: 9044 WPDRes.TheKind = WholeProgramDevirtResolution::Indir; 9045 break; 9046 case lltok::kw_singleImpl: 9047 WPDRes.TheKind = WholeProgramDevirtResolution::SingleImpl; 9048 break; 9049 case lltok::kw_branchFunnel: 9050 WPDRes.TheKind = WholeProgramDevirtResolution::BranchFunnel; 9051 break; 9052 default: 9053 return error(Lex.getLoc(), "unexpected WholeProgramDevirtResolution kind"); 9054 } 9055 Lex.Lex(); 9056 9057 // parse optional fields 9058 while (EatIfPresent(lltok::comma)) { 9059 switch (Lex.getKind()) { 9060 case lltok::kw_singleImplName: 9061 Lex.Lex(); 9062 if (parseToken(lltok::colon, "expected ':' here") || 9063 parseStringConstant(WPDRes.SingleImplName)) 9064 return true; 9065 break; 9066 case lltok::kw_resByArg: 9067 if (parseOptionalResByArg(WPDRes.ResByArg)) 9068 return true; 9069 break; 9070 default: 9071 return error(Lex.getLoc(), 9072 "expected optional WholeProgramDevirtResolution field"); 9073 } 9074 } 9075 9076 if (parseToken(lltok::rparen, "expected ')' here")) 9077 return true; 9078 9079 return false; 9080 } 9081 9082 /// OptionalResByArg 9083 /// ::= 'wpdRes' ':' '(' ResByArg[, ResByArg]* ')' 9084 /// ResByArg ::= Args ',' 'byArg' ':' '(' 'kind' ':' 9085 /// ( 'indir' | 'uniformRetVal' | 'UniqueRetVal' | 9086 /// 'virtualConstProp' ) 9087 /// [',' 'info' ':' UInt64]? [',' 'byte' ':' UInt32]? 9088 /// [',' 'bit' ':' UInt32]? ')' 9089 bool LLParser::parseOptionalResByArg( 9090 std::map<std::vector<uint64_t>, WholeProgramDevirtResolution::ByArg> 9091 &ResByArg) { 9092 if (parseToken(lltok::kw_resByArg, "expected 'resByArg' here") || 9093 parseToken(lltok::colon, "expected ':' here") || 9094 parseToken(lltok::lparen, "expected '(' here")) 9095 return true; 9096 9097 do { 9098 std::vector<uint64_t> Args; 9099 if (parseArgs(Args) || parseToken(lltok::comma, "expected ',' here") || 9100 parseToken(lltok::kw_byArg, "expected 'byArg here") || 9101 parseToken(lltok::colon, "expected ':' here") || 9102 parseToken(lltok::lparen, "expected '(' here") || 9103 parseToken(lltok::kw_kind, "expected 'kind' here") || 9104 parseToken(lltok::colon, "expected ':' here")) 9105 return true; 9106 9107 WholeProgramDevirtResolution::ByArg ByArg; 9108 switch (Lex.getKind()) { 9109 case lltok::kw_indir: 9110 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::Indir; 9111 break; 9112 case lltok::kw_uniformRetVal: 9113 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal; 9114 break; 9115 case lltok::kw_uniqueRetVal: 9116 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal; 9117 break; 9118 case lltok::kw_virtualConstProp: 9119 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp; 9120 break; 9121 default: 9122 return error(Lex.getLoc(), 9123 "unexpected WholeProgramDevirtResolution::ByArg kind"); 9124 } 9125 Lex.Lex(); 9126 9127 // parse optional fields 9128 while (EatIfPresent(lltok::comma)) { 9129 switch (Lex.getKind()) { 9130 case lltok::kw_info: 9131 Lex.Lex(); 9132 if (parseToken(lltok::colon, "expected ':' here") || 9133 parseUInt64(ByArg.Info)) 9134 return true; 9135 break; 9136 case lltok::kw_byte: 9137 Lex.Lex(); 9138 if (parseToken(lltok::colon, "expected ':' here") || 9139 parseUInt32(ByArg.Byte)) 9140 return true; 9141 break; 9142 case lltok::kw_bit: 9143 Lex.Lex(); 9144 if (parseToken(lltok::colon, "expected ':' here") || 9145 parseUInt32(ByArg.Bit)) 9146 return true; 9147 break; 9148 default: 9149 return error(Lex.getLoc(), 9150 "expected optional whole program devirt field"); 9151 } 9152 } 9153 9154 if (parseToken(lltok::rparen, "expected ')' here")) 9155 return true; 9156 9157 ResByArg[Args] = ByArg; 9158 } while (EatIfPresent(lltok::comma)); 9159 9160 if (parseToken(lltok::rparen, "expected ')' here")) 9161 return true; 9162 9163 return false; 9164 } 9165 9166 /// OptionalResByArg 9167 /// ::= 'args' ':' '(' UInt64[, UInt64]* ')' 9168 bool LLParser::parseArgs(std::vector<uint64_t> &Args) { 9169 if (parseToken(lltok::kw_args, "expected 'args' here") || 9170 parseToken(lltok::colon, "expected ':' here") || 9171 parseToken(lltok::lparen, "expected '(' here")) 9172 return true; 9173 9174 do { 9175 uint64_t Val; 9176 if (parseUInt64(Val)) 9177 return true; 9178 Args.push_back(Val); 9179 } while (EatIfPresent(lltok::comma)); 9180 9181 if (parseToken(lltok::rparen, "expected ')' here")) 9182 return true; 9183 9184 return false; 9185 } 9186 9187 static const auto FwdVIRef = (GlobalValueSummaryMapTy::value_type *)-8; 9188 9189 static void resolveFwdRef(ValueInfo *Fwd, ValueInfo &Resolved) { 9190 bool ReadOnly = Fwd->isReadOnly(); 9191 bool WriteOnly = Fwd->isWriteOnly(); 9192 assert(!(ReadOnly && WriteOnly)); 9193 *Fwd = Resolved; 9194 if (ReadOnly) 9195 Fwd->setReadOnly(); 9196 if (WriteOnly) 9197 Fwd->setWriteOnly(); 9198 } 9199 9200 /// Stores the given Name/GUID and associated summary into the Index. 9201 /// Also updates any forward references to the associated entry ID. 9202 bool LLParser::addGlobalValueToIndex( 9203 std::string Name, GlobalValue::GUID GUID, GlobalValue::LinkageTypes Linkage, 9204 unsigned ID, std::unique_ptr<GlobalValueSummary> Summary, LocTy Loc) { 9205 // First create the ValueInfo utilizing the Name or GUID. 9206 ValueInfo VI; 9207 if (GUID != 0) { 9208 assert(Name.empty()); 9209 VI = Index->getOrInsertValueInfo(GUID); 9210 } else { 9211 assert(!Name.empty()); 9212 if (M) { 9213 auto *GV = M->getNamedValue(Name); 9214 if (!GV) 9215 return error(Loc, "Reference to undefined global \"" + Name + "\""); 9216 9217 VI = Index->getOrInsertValueInfo(GV); 9218 } else { 9219 assert( 9220 (!GlobalValue::isLocalLinkage(Linkage) || !SourceFileName.empty()) && 9221 "Need a source_filename to compute GUID for local"); 9222 GUID = GlobalValue::getGUID( 9223 GlobalValue::getGlobalIdentifier(Name, Linkage, SourceFileName)); 9224 VI = Index->getOrInsertValueInfo(GUID, Index->saveString(Name)); 9225 } 9226 } 9227 9228 // Resolve forward references from calls/refs 9229 auto FwdRefVIs = ForwardRefValueInfos.find(ID); 9230 if (FwdRefVIs != ForwardRefValueInfos.end()) { 9231 for (auto VIRef : FwdRefVIs->second) { 9232 assert(VIRef.first->getRef() == FwdVIRef && 9233 "Forward referenced ValueInfo expected to be empty"); 9234 resolveFwdRef(VIRef.first, VI); 9235 } 9236 ForwardRefValueInfos.erase(FwdRefVIs); 9237 } 9238 9239 // Resolve forward references from aliases 9240 auto FwdRefAliasees = ForwardRefAliasees.find(ID); 9241 if (FwdRefAliasees != ForwardRefAliasees.end()) { 9242 for (auto AliaseeRef : FwdRefAliasees->second) { 9243 assert(!AliaseeRef.first->hasAliasee() && 9244 "Forward referencing alias already has aliasee"); 9245 assert(Summary && "Aliasee must be a definition"); 9246 AliaseeRef.first->setAliasee(VI, Summary.get()); 9247 } 9248 ForwardRefAliasees.erase(FwdRefAliasees); 9249 } 9250 9251 // Add the summary if one was provided. 9252 if (Summary) 9253 Index->addGlobalValueSummary(VI, std::move(Summary)); 9254 9255 // Save the associated ValueInfo for use in later references by ID. 9256 if (ID == NumberedValueInfos.size()) 9257 NumberedValueInfos.push_back(VI); 9258 else { 9259 // Handle non-continuous numbers (to make test simplification easier). 9260 if (ID > NumberedValueInfos.size()) 9261 NumberedValueInfos.resize(ID + 1); 9262 NumberedValueInfos[ID] = VI; 9263 } 9264 9265 return false; 9266 } 9267 9268 /// parseSummaryIndexFlags 9269 /// ::= 'flags' ':' UInt64 9270 bool LLParser::parseSummaryIndexFlags() { 9271 assert(Lex.getKind() == lltok::kw_flags); 9272 Lex.Lex(); 9273 9274 if (parseToken(lltok::colon, "expected ':' here")) 9275 return true; 9276 uint64_t Flags; 9277 if (parseUInt64(Flags)) 9278 return true; 9279 if (Index) 9280 Index->setFlags(Flags); 9281 return false; 9282 } 9283 9284 /// parseBlockCount 9285 /// ::= 'blockcount' ':' UInt64 9286 bool LLParser::parseBlockCount() { 9287 assert(Lex.getKind() == lltok::kw_blockcount); 9288 Lex.Lex(); 9289 9290 if (parseToken(lltok::colon, "expected ':' here")) 9291 return true; 9292 uint64_t BlockCount; 9293 if (parseUInt64(BlockCount)) 9294 return true; 9295 if (Index) 9296 Index->setBlockCount(BlockCount); 9297 return false; 9298 } 9299 9300 /// parseGVEntry 9301 /// ::= 'gv' ':' '(' ('name' ':' STRINGCONSTANT | 'guid' ':' UInt64) 9302 /// [',' 'summaries' ':' Summary[',' Summary]* ]? ')' 9303 /// Summary ::= '(' (FunctionSummary | VariableSummary | AliasSummary) ')' 9304 bool LLParser::parseGVEntry(unsigned ID) { 9305 assert(Lex.getKind() == lltok::kw_gv); 9306 Lex.Lex(); 9307 9308 if (parseToken(lltok::colon, "expected ':' here") || 9309 parseToken(lltok::lparen, "expected '(' here")) 9310 return true; 9311 9312 LocTy Loc = Lex.getLoc(); 9313 std::string Name; 9314 GlobalValue::GUID GUID = 0; 9315 switch (Lex.getKind()) { 9316 case lltok::kw_name: 9317 Lex.Lex(); 9318 if (parseToken(lltok::colon, "expected ':' here") || 9319 parseStringConstant(Name)) 9320 return true; 9321 // Can't create GUID/ValueInfo until we have the linkage. 9322 break; 9323 case lltok::kw_guid: 9324 Lex.Lex(); 9325 if (parseToken(lltok::colon, "expected ':' here") || parseUInt64(GUID)) 9326 return true; 9327 break; 9328 default: 9329 return error(Lex.getLoc(), "expected name or guid tag"); 9330 } 9331 9332 if (!EatIfPresent(lltok::comma)) { 9333 // No summaries. Wrap up. 9334 if (parseToken(lltok::rparen, "expected ')' here")) 9335 return true; 9336 // This was created for a call to an external or indirect target. 9337 // A GUID with no summary came from a VALUE_GUID record, dummy GUID 9338 // created for indirect calls with VP. A Name with no GUID came from 9339 // an external definition. We pass ExternalLinkage since that is only 9340 // used when the GUID must be computed from Name, and in that case 9341 // the symbol must have external linkage. 9342 return addGlobalValueToIndex(Name, GUID, GlobalValue::ExternalLinkage, ID, 9343 nullptr, Loc); 9344 } 9345 9346 // Have a list of summaries 9347 if (parseToken(lltok::kw_summaries, "expected 'summaries' here") || 9348 parseToken(lltok::colon, "expected ':' here") || 9349 parseToken(lltok::lparen, "expected '(' here")) 9350 return true; 9351 do { 9352 switch (Lex.getKind()) { 9353 case lltok::kw_function: 9354 if (parseFunctionSummary(Name, GUID, ID)) 9355 return true; 9356 break; 9357 case lltok::kw_variable: 9358 if (parseVariableSummary(Name, GUID, ID)) 9359 return true; 9360 break; 9361 case lltok::kw_alias: 9362 if (parseAliasSummary(Name, GUID, ID)) 9363 return true; 9364 break; 9365 default: 9366 return error(Lex.getLoc(), "expected summary type"); 9367 } 9368 } while (EatIfPresent(lltok::comma)); 9369 9370 if (parseToken(lltok::rparen, "expected ')' here") || 9371 parseToken(lltok::rparen, "expected ')' here")) 9372 return true; 9373 9374 return false; 9375 } 9376 9377 /// FunctionSummary 9378 /// ::= 'function' ':' '(' 'module' ':' ModuleReference ',' GVFlags 9379 /// ',' 'insts' ':' UInt32 [',' OptionalFFlags]? [',' OptionalCalls]? 9380 /// [',' OptionalTypeIdInfo]? [',' OptionalParamAccesses]? 9381 /// [',' OptionalRefs]? ')' 9382 bool LLParser::parseFunctionSummary(std::string Name, GlobalValue::GUID GUID, 9383 unsigned ID) { 9384 LocTy Loc = Lex.getLoc(); 9385 assert(Lex.getKind() == lltok::kw_function); 9386 Lex.Lex(); 9387 9388 StringRef ModulePath; 9389 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 9390 GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility, 9391 /*NotEligibleToImport=*/false, 9392 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false, 9393 GlobalValueSummary::Definition); 9394 unsigned InstCount; 9395 SmallVector<FunctionSummary::EdgeTy, 0> Calls; 9396 FunctionSummary::TypeIdInfo TypeIdInfo; 9397 std::vector<FunctionSummary::ParamAccess> ParamAccesses; 9398 SmallVector<ValueInfo, 0> Refs; 9399 std::vector<CallsiteInfo> Callsites; 9400 std::vector<AllocInfo> Allocs; 9401 // Default is all-zeros (conservative values). 9402 FunctionSummary::FFlags FFlags = {}; 9403 if (parseToken(lltok::colon, "expected ':' here") || 9404 parseToken(lltok::lparen, "expected '(' here") || 9405 parseModuleReference(ModulePath) || 9406 parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) || 9407 parseToken(lltok::comma, "expected ',' here") || 9408 parseToken(lltok::kw_insts, "expected 'insts' here") || 9409 parseToken(lltok::colon, "expected ':' here") || parseUInt32(InstCount)) 9410 return true; 9411 9412 // parse optional fields 9413 while (EatIfPresent(lltok::comma)) { 9414 switch (Lex.getKind()) { 9415 case lltok::kw_funcFlags: 9416 if (parseOptionalFFlags(FFlags)) 9417 return true; 9418 break; 9419 case lltok::kw_calls: 9420 if (parseOptionalCalls(Calls)) 9421 return true; 9422 break; 9423 case lltok::kw_typeIdInfo: 9424 if (parseOptionalTypeIdInfo(TypeIdInfo)) 9425 return true; 9426 break; 9427 case lltok::kw_refs: 9428 if (parseOptionalRefs(Refs)) 9429 return true; 9430 break; 9431 case lltok::kw_params: 9432 if (parseOptionalParamAccesses(ParamAccesses)) 9433 return true; 9434 break; 9435 case lltok::kw_allocs: 9436 if (parseOptionalAllocs(Allocs)) 9437 return true; 9438 break; 9439 case lltok::kw_callsites: 9440 if (parseOptionalCallsites(Callsites)) 9441 return true; 9442 break; 9443 default: 9444 return error(Lex.getLoc(), "expected optional function summary field"); 9445 } 9446 } 9447 9448 if (parseToken(lltok::rparen, "expected ')' here")) 9449 return true; 9450 9451 auto FS = std::make_unique<FunctionSummary>( 9452 GVFlags, InstCount, FFlags, std::move(Refs), std::move(Calls), 9453 std::move(TypeIdInfo.TypeTests), 9454 std::move(TypeIdInfo.TypeTestAssumeVCalls), 9455 std::move(TypeIdInfo.TypeCheckedLoadVCalls), 9456 std::move(TypeIdInfo.TypeTestAssumeConstVCalls), 9457 std::move(TypeIdInfo.TypeCheckedLoadConstVCalls), 9458 std::move(ParamAccesses), std::move(Callsites), std::move(Allocs)); 9459 9460 FS->setModulePath(ModulePath); 9461 9462 return addGlobalValueToIndex(Name, GUID, 9463 (GlobalValue::LinkageTypes)GVFlags.Linkage, ID, 9464 std::move(FS), Loc); 9465 } 9466 9467 /// VariableSummary 9468 /// ::= 'variable' ':' '(' 'module' ':' ModuleReference ',' GVFlags 9469 /// [',' OptionalRefs]? ')' 9470 bool LLParser::parseVariableSummary(std::string Name, GlobalValue::GUID GUID, 9471 unsigned ID) { 9472 LocTy Loc = Lex.getLoc(); 9473 assert(Lex.getKind() == lltok::kw_variable); 9474 Lex.Lex(); 9475 9476 StringRef ModulePath; 9477 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 9478 GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility, 9479 /*NotEligibleToImport=*/false, 9480 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false, 9481 GlobalValueSummary::Definition); 9482 GlobalVarSummary::GVarFlags GVarFlags(/*ReadOnly*/ false, 9483 /* WriteOnly */ false, 9484 /* Constant */ false, 9485 GlobalObject::VCallVisibilityPublic); 9486 SmallVector<ValueInfo, 0> Refs; 9487 VTableFuncList VTableFuncs; 9488 if (parseToken(lltok::colon, "expected ':' here") || 9489 parseToken(lltok::lparen, "expected '(' here") || 9490 parseModuleReference(ModulePath) || 9491 parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) || 9492 parseToken(lltok::comma, "expected ',' here") || 9493 parseGVarFlags(GVarFlags)) 9494 return true; 9495 9496 // parse optional fields 9497 while (EatIfPresent(lltok::comma)) { 9498 switch (Lex.getKind()) { 9499 case lltok::kw_vTableFuncs: 9500 if (parseOptionalVTableFuncs(VTableFuncs)) 9501 return true; 9502 break; 9503 case lltok::kw_refs: 9504 if (parseOptionalRefs(Refs)) 9505 return true; 9506 break; 9507 default: 9508 return error(Lex.getLoc(), "expected optional variable summary field"); 9509 } 9510 } 9511 9512 if (parseToken(lltok::rparen, "expected ')' here")) 9513 return true; 9514 9515 auto GS = 9516 std::make_unique<GlobalVarSummary>(GVFlags, GVarFlags, std::move(Refs)); 9517 9518 GS->setModulePath(ModulePath); 9519 GS->setVTableFuncs(std::move(VTableFuncs)); 9520 9521 return addGlobalValueToIndex(Name, GUID, 9522 (GlobalValue::LinkageTypes)GVFlags.Linkage, ID, 9523 std::move(GS), Loc); 9524 } 9525 9526 /// AliasSummary 9527 /// ::= 'alias' ':' '(' 'module' ':' ModuleReference ',' GVFlags ',' 9528 /// 'aliasee' ':' GVReference ')' 9529 bool LLParser::parseAliasSummary(std::string Name, GlobalValue::GUID GUID, 9530 unsigned ID) { 9531 assert(Lex.getKind() == lltok::kw_alias); 9532 LocTy Loc = Lex.getLoc(); 9533 Lex.Lex(); 9534 9535 StringRef ModulePath; 9536 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 9537 GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility, 9538 /*NotEligibleToImport=*/false, 9539 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false, 9540 GlobalValueSummary::Definition); 9541 if (parseToken(lltok::colon, "expected ':' here") || 9542 parseToken(lltok::lparen, "expected '(' here") || 9543 parseModuleReference(ModulePath) || 9544 parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) || 9545 parseToken(lltok::comma, "expected ',' here") || 9546 parseToken(lltok::kw_aliasee, "expected 'aliasee' here") || 9547 parseToken(lltok::colon, "expected ':' here")) 9548 return true; 9549 9550 ValueInfo AliaseeVI; 9551 unsigned GVId; 9552 if (parseGVReference(AliaseeVI, GVId)) 9553 return true; 9554 9555 if (parseToken(lltok::rparen, "expected ')' here")) 9556 return true; 9557 9558 auto AS = std::make_unique<AliasSummary>(GVFlags); 9559 9560 AS->setModulePath(ModulePath); 9561 9562 // Record forward reference if the aliasee is not parsed yet. 9563 if (AliaseeVI.getRef() == FwdVIRef) { 9564 ForwardRefAliasees[GVId].emplace_back(AS.get(), Loc); 9565 } else { 9566 auto Summary = Index->findSummaryInModule(AliaseeVI, ModulePath); 9567 assert(Summary && "Aliasee must be a definition"); 9568 AS->setAliasee(AliaseeVI, Summary); 9569 } 9570 9571 return addGlobalValueToIndex(Name, GUID, 9572 (GlobalValue::LinkageTypes)GVFlags.Linkage, ID, 9573 std::move(AS), Loc); 9574 } 9575 9576 /// Flag 9577 /// ::= [0|1] 9578 bool LLParser::parseFlag(unsigned &Val) { 9579 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 9580 return tokError("expected integer"); 9581 Val = (unsigned)Lex.getAPSIntVal().getBoolValue(); 9582 Lex.Lex(); 9583 return false; 9584 } 9585 9586 /// OptionalFFlags 9587 /// := 'funcFlags' ':' '(' ['readNone' ':' Flag]? 9588 /// [',' 'readOnly' ':' Flag]? [',' 'noRecurse' ':' Flag]? 9589 /// [',' 'returnDoesNotAlias' ':' Flag]? ')' 9590 /// [',' 'noInline' ':' Flag]? ')' 9591 /// [',' 'alwaysInline' ':' Flag]? ')' 9592 /// [',' 'noUnwind' ':' Flag]? ')' 9593 /// [',' 'mayThrow' ':' Flag]? ')' 9594 /// [',' 'hasUnknownCall' ':' Flag]? ')' 9595 /// [',' 'mustBeUnreachable' ':' Flag]? ')' 9596 9597 bool LLParser::parseOptionalFFlags(FunctionSummary::FFlags &FFlags) { 9598 assert(Lex.getKind() == lltok::kw_funcFlags); 9599 Lex.Lex(); 9600 9601 if (parseToken(lltok::colon, "expected ':' in funcFlags") || 9602 parseToken(lltok::lparen, "expected '(' in funcFlags")) 9603 return true; 9604 9605 do { 9606 unsigned Val = 0; 9607 switch (Lex.getKind()) { 9608 case lltok::kw_readNone: 9609 Lex.Lex(); 9610 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 9611 return true; 9612 FFlags.ReadNone = Val; 9613 break; 9614 case lltok::kw_readOnly: 9615 Lex.Lex(); 9616 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 9617 return true; 9618 FFlags.ReadOnly = Val; 9619 break; 9620 case lltok::kw_noRecurse: 9621 Lex.Lex(); 9622 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 9623 return true; 9624 FFlags.NoRecurse = Val; 9625 break; 9626 case lltok::kw_returnDoesNotAlias: 9627 Lex.Lex(); 9628 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 9629 return true; 9630 FFlags.ReturnDoesNotAlias = Val; 9631 break; 9632 case lltok::kw_noInline: 9633 Lex.Lex(); 9634 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 9635 return true; 9636 FFlags.NoInline = Val; 9637 break; 9638 case lltok::kw_alwaysInline: 9639 Lex.Lex(); 9640 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 9641 return true; 9642 FFlags.AlwaysInline = Val; 9643 break; 9644 case lltok::kw_noUnwind: 9645 Lex.Lex(); 9646 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 9647 return true; 9648 FFlags.NoUnwind = Val; 9649 break; 9650 case lltok::kw_mayThrow: 9651 Lex.Lex(); 9652 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 9653 return true; 9654 FFlags.MayThrow = Val; 9655 break; 9656 case lltok::kw_hasUnknownCall: 9657 Lex.Lex(); 9658 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 9659 return true; 9660 FFlags.HasUnknownCall = Val; 9661 break; 9662 case lltok::kw_mustBeUnreachable: 9663 Lex.Lex(); 9664 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 9665 return true; 9666 FFlags.MustBeUnreachable = Val; 9667 break; 9668 default: 9669 return error(Lex.getLoc(), "expected function flag type"); 9670 } 9671 } while (EatIfPresent(lltok::comma)); 9672 9673 if (parseToken(lltok::rparen, "expected ')' in funcFlags")) 9674 return true; 9675 9676 return false; 9677 } 9678 9679 /// OptionalCalls 9680 /// := 'calls' ':' '(' Call [',' Call]* ')' 9681 /// Call ::= '(' 'callee' ':' GVReference 9682 /// [( ',' 'hotness' ':' Hotness | ',' 'relbf' ':' UInt32 )]? 9683 /// [ ',' 'tail' ]? ')' 9684 bool LLParser::parseOptionalCalls( 9685 SmallVectorImpl<FunctionSummary::EdgeTy> &Calls) { 9686 assert(Lex.getKind() == lltok::kw_calls); 9687 Lex.Lex(); 9688 9689 if (parseToken(lltok::colon, "expected ':' in calls") || 9690 parseToken(lltok::lparen, "expected '(' in calls")) 9691 return true; 9692 9693 IdToIndexMapType IdToIndexMap; 9694 // parse each call edge 9695 do { 9696 ValueInfo VI; 9697 if (parseToken(lltok::lparen, "expected '(' in call") || 9698 parseToken(lltok::kw_callee, "expected 'callee' in call") || 9699 parseToken(lltok::colon, "expected ':'")) 9700 return true; 9701 9702 LocTy Loc = Lex.getLoc(); 9703 unsigned GVId; 9704 if (parseGVReference(VI, GVId)) 9705 return true; 9706 9707 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 9708 unsigned RelBF = 0; 9709 unsigned HasTailCall = false; 9710 9711 // parse optional fields 9712 while (EatIfPresent(lltok::comma)) { 9713 switch (Lex.getKind()) { 9714 case lltok::kw_hotness: 9715 Lex.Lex(); 9716 if (parseToken(lltok::colon, "expected ':'") || parseHotness(Hotness)) 9717 return true; 9718 break; 9719 case lltok::kw_relbf: 9720 Lex.Lex(); 9721 if (parseToken(lltok::colon, "expected ':'") || parseUInt32(RelBF)) 9722 return true; 9723 break; 9724 case lltok::kw_tail: 9725 Lex.Lex(); 9726 if (parseToken(lltok::colon, "expected ':'") || parseFlag(HasTailCall)) 9727 return true; 9728 break; 9729 default: 9730 return error(Lex.getLoc(), "expected hotness, relbf, or tail"); 9731 } 9732 } 9733 if (Hotness != CalleeInfo::HotnessType::Unknown && RelBF > 0) 9734 return tokError("Expected only one of hotness or relbf"); 9735 // Keep track of the Call array index needing a forward reference. 9736 // We will save the location of the ValueInfo needing an update, but 9737 // can only do so once the std::vector is finalized. 9738 if (VI.getRef() == FwdVIRef) 9739 IdToIndexMap[GVId].push_back(std::make_pair(Calls.size(), Loc)); 9740 Calls.push_back( 9741 FunctionSummary::EdgeTy{VI, CalleeInfo(Hotness, HasTailCall, RelBF)}); 9742 9743 if (parseToken(lltok::rparen, "expected ')' in call")) 9744 return true; 9745 } while (EatIfPresent(lltok::comma)); 9746 9747 // Now that the Calls vector is finalized, it is safe to save the locations 9748 // of any forward GV references that need updating later. 9749 for (auto I : IdToIndexMap) { 9750 auto &Infos = ForwardRefValueInfos[I.first]; 9751 for (auto P : I.second) { 9752 assert(Calls[P.first].first.getRef() == FwdVIRef && 9753 "Forward referenced ValueInfo expected to be empty"); 9754 Infos.emplace_back(&Calls[P.first].first, P.second); 9755 } 9756 } 9757 9758 if (parseToken(lltok::rparen, "expected ')' in calls")) 9759 return true; 9760 9761 return false; 9762 } 9763 9764 /// Hotness 9765 /// := ('unknown'|'cold'|'none'|'hot'|'critical') 9766 bool LLParser::parseHotness(CalleeInfo::HotnessType &Hotness) { 9767 switch (Lex.getKind()) { 9768 case lltok::kw_unknown: 9769 Hotness = CalleeInfo::HotnessType::Unknown; 9770 break; 9771 case lltok::kw_cold: 9772 Hotness = CalleeInfo::HotnessType::Cold; 9773 break; 9774 case lltok::kw_none: 9775 Hotness = CalleeInfo::HotnessType::None; 9776 break; 9777 case lltok::kw_hot: 9778 Hotness = CalleeInfo::HotnessType::Hot; 9779 break; 9780 case lltok::kw_critical: 9781 Hotness = CalleeInfo::HotnessType::Critical; 9782 break; 9783 default: 9784 return error(Lex.getLoc(), "invalid call edge hotness"); 9785 } 9786 Lex.Lex(); 9787 return false; 9788 } 9789 9790 /// OptionalVTableFuncs 9791 /// := 'vTableFuncs' ':' '(' VTableFunc [',' VTableFunc]* ')' 9792 /// VTableFunc ::= '(' 'virtFunc' ':' GVReference ',' 'offset' ':' UInt64 ')' 9793 bool LLParser::parseOptionalVTableFuncs(VTableFuncList &VTableFuncs) { 9794 assert(Lex.getKind() == lltok::kw_vTableFuncs); 9795 Lex.Lex(); 9796 9797 if (parseToken(lltok::colon, "expected ':' in vTableFuncs") || 9798 parseToken(lltok::lparen, "expected '(' in vTableFuncs")) 9799 return true; 9800 9801 IdToIndexMapType IdToIndexMap; 9802 // parse each virtual function pair 9803 do { 9804 ValueInfo VI; 9805 if (parseToken(lltok::lparen, "expected '(' in vTableFunc") || 9806 parseToken(lltok::kw_virtFunc, "expected 'callee' in vTableFunc") || 9807 parseToken(lltok::colon, "expected ':'")) 9808 return true; 9809 9810 LocTy Loc = Lex.getLoc(); 9811 unsigned GVId; 9812 if (parseGVReference(VI, GVId)) 9813 return true; 9814 9815 uint64_t Offset; 9816 if (parseToken(lltok::comma, "expected comma") || 9817 parseToken(lltok::kw_offset, "expected offset") || 9818 parseToken(lltok::colon, "expected ':'") || parseUInt64(Offset)) 9819 return true; 9820 9821 // Keep track of the VTableFuncs array index needing a forward reference. 9822 // We will save the location of the ValueInfo needing an update, but 9823 // can only do so once the std::vector is finalized. 9824 if (VI == EmptyVI) 9825 IdToIndexMap[GVId].push_back(std::make_pair(VTableFuncs.size(), Loc)); 9826 VTableFuncs.push_back({VI, Offset}); 9827 9828 if (parseToken(lltok::rparen, "expected ')' in vTableFunc")) 9829 return true; 9830 } while (EatIfPresent(lltok::comma)); 9831 9832 // Now that the VTableFuncs vector is finalized, it is safe to save the 9833 // locations of any forward GV references that need updating later. 9834 for (auto I : IdToIndexMap) { 9835 auto &Infos = ForwardRefValueInfos[I.first]; 9836 for (auto P : I.second) { 9837 assert(VTableFuncs[P.first].FuncVI == EmptyVI && 9838 "Forward referenced ValueInfo expected to be empty"); 9839 Infos.emplace_back(&VTableFuncs[P.first].FuncVI, P.second); 9840 } 9841 } 9842 9843 if (parseToken(lltok::rparen, "expected ')' in vTableFuncs")) 9844 return true; 9845 9846 return false; 9847 } 9848 9849 /// ParamNo := 'param' ':' UInt64 9850 bool LLParser::parseParamNo(uint64_t &ParamNo) { 9851 if (parseToken(lltok::kw_param, "expected 'param' here") || 9852 parseToken(lltok::colon, "expected ':' here") || parseUInt64(ParamNo)) 9853 return true; 9854 return false; 9855 } 9856 9857 /// ParamAccessOffset := 'offset' ':' '[' APSINTVAL ',' APSINTVAL ']' 9858 bool LLParser::parseParamAccessOffset(ConstantRange &Range) { 9859 APSInt Lower; 9860 APSInt Upper; 9861 auto ParseAPSInt = [&](APSInt &Val) { 9862 if (Lex.getKind() != lltok::APSInt) 9863 return tokError("expected integer"); 9864 Val = Lex.getAPSIntVal(); 9865 Val = Val.extOrTrunc(FunctionSummary::ParamAccess::RangeWidth); 9866 Val.setIsSigned(true); 9867 Lex.Lex(); 9868 return false; 9869 }; 9870 if (parseToken(lltok::kw_offset, "expected 'offset' here") || 9871 parseToken(lltok::colon, "expected ':' here") || 9872 parseToken(lltok::lsquare, "expected '[' here") || ParseAPSInt(Lower) || 9873 parseToken(lltok::comma, "expected ',' here") || ParseAPSInt(Upper) || 9874 parseToken(lltok::rsquare, "expected ']' here")) 9875 return true; 9876 9877 ++Upper; 9878 Range = 9879 (Lower == Upper && !Lower.isMaxValue()) 9880 ? ConstantRange::getEmpty(FunctionSummary::ParamAccess::RangeWidth) 9881 : ConstantRange(Lower, Upper); 9882 9883 return false; 9884 } 9885 9886 /// ParamAccessCall 9887 /// := '(' 'callee' ':' GVReference ',' ParamNo ',' ParamAccessOffset ')' 9888 bool LLParser::parseParamAccessCall(FunctionSummary::ParamAccess::Call &Call, 9889 IdLocListType &IdLocList) { 9890 if (parseToken(lltok::lparen, "expected '(' here") || 9891 parseToken(lltok::kw_callee, "expected 'callee' here") || 9892 parseToken(lltok::colon, "expected ':' here")) 9893 return true; 9894 9895 unsigned GVId; 9896 ValueInfo VI; 9897 LocTy Loc = Lex.getLoc(); 9898 if (parseGVReference(VI, GVId)) 9899 return true; 9900 9901 Call.Callee = VI; 9902 IdLocList.emplace_back(GVId, Loc); 9903 9904 if (parseToken(lltok::comma, "expected ',' here") || 9905 parseParamNo(Call.ParamNo) || 9906 parseToken(lltok::comma, "expected ',' here") || 9907 parseParamAccessOffset(Call.Offsets)) 9908 return true; 9909 9910 if (parseToken(lltok::rparen, "expected ')' here")) 9911 return true; 9912 9913 return false; 9914 } 9915 9916 /// ParamAccess 9917 /// := '(' ParamNo ',' ParamAccessOffset [',' OptionalParamAccessCalls]? ')' 9918 /// OptionalParamAccessCalls := '(' Call [',' Call]* ')' 9919 bool LLParser::parseParamAccess(FunctionSummary::ParamAccess &Param, 9920 IdLocListType &IdLocList) { 9921 if (parseToken(lltok::lparen, "expected '(' here") || 9922 parseParamNo(Param.ParamNo) || 9923 parseToken(lltok::comma, "expected ',' here") || 9924 parseParamAccessOffset(Param.Use)) 9925 return true; 9926 9927 if (EatIfPresent(lltok::comma)) { 9928 if (parseToken(lltok::kw_calls, "expected 'calls' here") || 9929 parseToken(lltok::colon, "expected ':' here") || 9930 parseToken(lltok::lparen, "expected '(' here")) 9931 return true; 9932 do { 9933 FunctionSummary::ParamAccess::Call Call; 9934 if (parseParamAccessCall(Call, IdLocList)) 9935 return true; 9936 Param.Calls.push_back(Call); 9937 } while (EatIfPresent(lltok::comma)); 9938 9939 if (parseToken(lltok::rparen, "expected ')' here")) 9940 return true; 9941 } 9942 9943 if (parseToken(lltok::rparen, "expected ')' here")) 9944 return true; 9945 9946 return false; 9947 } 9948 9949 /// OptionalParamAccesses 9950 /// := 'params' ':' '(' ParamAccess [',' ParamAccess]* ')' 9951 bool LLParser::parseOptionalParamAccesses( 9952 std::vector<FunctionSummary::ParamAccess> &Params) { 9953 assert(Lex.getKind() == lltok::kw_params); 9954 Lex.Lex(); 9955 9956 if (parseToken(lltok::colon, "expected ':' here") || 9957 parseToken(lltok::lparen, "expected '(' here")) 9958 return true; 9959 9960 IdLocListType VContexts; 9961 size_t CallsNum = 0; 9962 do { 9963 FunctionSummary::ParamAccess ParamAccess; 9964 if (parseParamAccess(ParamAccess, VContexts)) 9965 return true; 9966 CallsNum += ParamAccess.Calls.size(); 9967 assert(VContexts.size() == CallsNum); 9968 (void)CallsNum; 9969 Params.emplace_back(std::move(ParamAccess)); 9970 } while (EatIfPresent(lltok::comma)); 9971 9972 if (parseToken(lltok::rparen, "expected ')' here")) 9973 return true; 9974 9975 // Now that the Params is finalized, it is safe to save the locations 9976 // of any forward GV references that need updating later. 9977 IdLocListType::const_iterator ItContext = VContexts.begin(); 9978 for (auto &PA : Params) { 9979 for (auto &C : PA.Calls) { 9980 if (C.Callee.getRef() == FwdVIRef) 9981 ForwardRefValueInfos[ItContext->first].emplace_back(&C.Callee, 9982 ItContext->second); 9983 ++ItContext; 9984 } 9985 } 9986 assert(ItContext == VContexts.end()); 9987 9988 return false; 9989 } 9990 9991 /// OptionalRefs 9992 /// := 'refs' ':' '(' GVReference [',' GVReference]* ')' 9993 bool LLParser::parseOptionalRefs(SmallVectorImpl<ValueInfo> &Refs) { 9994 assert(Lex.getKind() == lltok::kw_refs); 9995 Lex.Lex(); 9996 9997 if (parseToken(lltok::colon, "expected ':' in refs") || 9998 parseToken(lltok::lparen, "expected '(' in refs")) 9999 return true; 10000 10001 struct ValueContext { 10002 ValueInfo VI; 10003 unsigned GVId; 10004 LocTy Loc; 10005 }; 10006 std::vector<ValueContext> VContexts; 10007 // parse each ref edge 10008 do { 10009 ValueContext VC; 10010 VC.Loc = Lex.getLoc(); 10011 if (parseGVReference(VC.VI, VC.GVId)) 10012 return true; 10013 VContexts.push_back(VC); 10014 } while (EatIfPresent(lltok::comma)); 10015 10016 // Sort value contexts so that ones with writeonly 10017 // and readonly ValueInfo are at the end of VContexts vector. 10018 // See FunctionSummary::specialRefCounts() 10019 llvm::sort(VContexts, [](const ValueContext &VC1, const ValueContext &VC2) { 10020 return VC1.VI.getAccessSpecifier() < VC2.VI.getAccessSpecifier(); 10021 }); 10022 10023 IdToIndexMapType IdToIndexMap; 10024 for (auto &VC : VContexts) { 10025 // Keep track of the Refs array index needing a forward reference. 10026 // We will save the location of the ValueInfo needing an update, but 10027 // can only do so once the std::vector is finalized. 10028 if (VC.VI.getRef() == FwdVIRef) 10029 IdToIndexMap[VC.GVId].push_back(std::make_pair(Refs.size(), VC.Loc)); 10030 Refs.push_back(VC.VI); 10031 } 10032 10033 // Now that the Refs vector is finalized, it is safe to save the locations 10034 // of any forward GV references that need updating later. 10035 for (auto I : IdToIndexMap) { 10036 auto &Infos = ForwardRefValueInfos[I.first]; 10037 for (auto P : I.second) { 10038 assert(Refs[P.first].getRef() == FwdVIRef && 10039 "Forward referenced ValueInfo expected to be empty"); 10040 Infos.emplace_back(&Refs[P.first], P.second); 10041 } 10042 } 10043 10044 if (parseToken(lltok::rparen, "expected ')' in refs")) 10045 return true; 10046 10047 return false; 10048 } 10049 10050 /// OptionalTypeIdInfo 10051 /// := 'typeidinfo' ':' '(' [',' TypeTests]? [',' TypeTestAssumeVCalls]? 10052 /// [',' TypeCheckedLoadVCalls]? [',' TypeTestAssumeConstVCalls]? 10053 /// [',' TypeCheckedLoadConstVCalls]? ')' 10054 bool LLParser::parseOptionalTypeIdInfo( 10055 FunctionSummary::TypeIdInfo &TypeIdInfo) { 10056 assert(Lex.getKind() == lltok::kw_typeIdInfo); 10057 Lex.Lex(); 10058 10059 if (parseToken(lltok::colon, "expected ':' here") || 10060 parseToken(lltok::lparen, "expected '(' in typeIdInfo")) 10061 return true; 10062 10063 do { 10064 switch (Lex.getKind()) { 10065 case lltok::kw_typeTests: 10066 if (parseTypeTests(TypeIdInfo.TypeTests)) 10067 return true; 10068 break; 10069 case lltok::kw_typeTestAssumeVCalls: 10070 if (parseVFuncIdList(lltok::kw_typeTestAssumeVCalls, 10071 TypeIdInfo.TypeTestAssumeVCalls)) 10072 return true; 10073 break; 10074 case lltok::kw_typeCheckedLoadVCalls: 10075 if (parseVFuncIdList(lltok::kw_typeCheckedLoadVCalls, 10076 TypeIdInfo.TypeCheckedLoadVCalls)) 10077 return true; 10078 break; 10079 case lltok::kw_typeTestAssumeConstVCalls: 10080 if (parseConstVCallList(lltok::kw_typeTestAssumeConstVCalls, 10081 TypeIdInfo.TypeTestAssumeConstVCalls)) 10082 return true; 10083 break; 10084 case lltok::kw_typeCheckedLoadConstVCalls: 10085 if (parseConstVCallList(lltok::kw_typeCheckedLoadConstVCalls, 10086 TypeIdInfo.TypeCheckedLoadConstVCalls)) 10087 return true; 10088 break; 10089 default: 10090 return error(Lex.getLoc(), "invalid typeIdInfo list type"); 10091 } 10092 } while (EatIfPresent(lltok::comma)); 10093 10094 if (parseToken(lltok::rparen, "expected ')' in typeIdInfo")) 10095 return true; 10096 10097 return false; 10098 } 10099 10100 /// TypeTests 10101 /// ::= 'typeTests' ':' '(' (SummaryID | UInt64) 10102 /// [',' (SummaryID | UInt64)]* ')' 10103 bool LLParser::parseTypeTests(std::vector<GlobalValue::GUID> &TypeTests) { 10104 assert(Lex.getKind() == lltok::kw_typeTests); 10105 Lex.Lex(); 10106 10107 if (parseToken(lltok::colon, "expected ':' here") || 10108 parseToken(lltok::lparen, "expected '(' in typeIdInfo")) 10109 return true; 10110 10111 IdToIndexMapType IdToIndexMap; 10112 do { 10113 GlobalValue::GUID GUID = 0; 10114 if (Lex.getKind() == lltok::SummaryID) { 10115 unsigned ID = Lex.getUIntVal(); 10116 LocTy Loc = Lex.getLoc(); 10117 // Keep track of the TypeTests array index needing a forward reference. 10118 // We will save the location of the GUID needing an update, but 10119 // can only do so once the std::vector is finalized. 10120 IdToIndexMap[ID].push_back(std::make_pair(TypeTests.size(), Loc)); 10121 Lex.Lex(); 10122 } else if (parseUInt64(GUID)) 10123 return true; 10124 TypeTests.push_back(GUID); 10125 } while (EatIfPresent(lltok::comma)); 10126 10127 // Now that the TypeTests vector is finalized, it is safe to save the 10128 // locations of any forward GV references that need updating later. 10129 for (auto I : IdToIndexMap) { 10130 auto &Ids = ForwardRefTypeIds[I.first]; 10131 for (auto P : I.second) { 10132 assert(TypeTests[P.first] == 0 && 10133 "Forward referenced type id GUID expected to be 0"); 10134 Ids.emplace_back(&TypeTests[P.first], P.second); 10135 } 10136 } 10137 10138 if (parseToken(lltok::rparen, "expected ')' in typeIdInfo")) 10139 return true; 10140 10141 return false; 10142 } 10143 10144 /// VFuncIdList 10145 /// ::= Kind ':' '(' VFuncId [',' VFuncId]* ')' 10146 bool LLParser::parseVFuncIdList( 10147 lltok::Kind Kind, std::vector<FunctionSummary::VFuncId> &VFuncIdList) { 10148 assert(Lex.getKind() == Kind); 10149 Lex.Lex(); 10150 10151 if (parseToken(lltok::colon, "expected ':' here") || 10152 parseToken(lltok::lparen, "expected '(' here")) 10153 return true; 10154 10155 IdToIndexMapType IdToIndexMap; 10156 do { 10157 FunctionSummary::VFuncId VFuncId; 10158 if (parseVFuncId(VFuncId, IdToIndexMap, VFuncIdList.size())) 10159 return true; 10160 VFuncIdList.push_back(VFuncId); 10161 } while (EatIfPresent(lltok::comma)); 10162 10163 if (parseToken(lltok::rparen, "expected ')' here")) 10164 return true; 10165 10166 // Now that the VFuncIdList vector is finalized, it is safe to save the 10167 // locations of any forward GV references that need updating later. 10168 for (auto I : IdToIndexMap) { 10169 auto &Ids = ForwardRefTypeIds[I.first]; 10170 for (auto P : I.second) { 10171 assert(VFuncIdList[P.first].GUID == 0 && 10172 "Forward referenced type id GUID expected to be 0"); 10173 Ids.emplace_back(&VFuncIdList[P.first].GUID, P.second); 10174 } 10175 } 10176 10177 return false; 10178 } 10179 10180 /// ConstVCallList 10181 /// ::= Kind ':' '(' ConstVCall [',' ConstVCall]* ')' 10182 bool LLParser::parseConstVCallList( 10183 lltok::Kind Kind, 10184 std::vector<FunctionSummary::ConstVCall> &ConstVCallList) { 10185 assert(Lex.getKind() == Kind); 10186 Lex.Lex(); 10187 10188 if (parseToken(lltok::colon, "expected ':' here") || 10189 parseToken(lltok::lparen, "expected '(' here")) 10190 return true; 10191 10192 IdToIndexMapType IdToIndexMap; 10193 do { 10194 FunctionSummary::ConstVCall ConstVCall; 10195 if (parseConstVCall(ConstVCall, IdToIndexMap, ConstVCallList.size())) 10196 return true; 10197 ConstVCallList.push_back(ConstVCall); 10198 } while (EatIfPresent(lltok::comma)); 10199 10200 if (parseToken(lltok::rparen, "expected ')' here")) 10201 return true; 10202 10203 // Now that the ConstVCallList vector is finalized, it is safe to save the 10204 // locations of any forward GV references that need updating later. 10205 for (auto I : IdToIndexMap) { 10206 auto &Ids = ForwardRefTypeIds[I.first]; 10207 for (auto P : I.second) { 10208 assert(ConstVCallList[P.first].VFunc.GUID == 0 && 10209 "Forward referenced type id GUID expected to be 0"); 10210 Ids.emplace_back(&ConstVCallList[P.first].VFunc.GUID, P.second); 10211 } 10212 } 10213 10214 return false; 10215 } 10216 10217 /// ConstVCall 10218 /// ::= '(' VFuncId ',' Args ')' 10219 bool LLParser::parseConstVCall(FunctionSummary::ConstVCall &ConstVCall, 10220 IdToIndexMapType &IdToIndexMap, unsigned Index) { 10221 if (parseToken(lltok::lparen, "expected '(' here") || 10222 parseVFuncId(ConstVCall.VFunc, IdToIndexMap, Index)) 10223 return true; 10224 10225 if (EatIfPresent(lltok::comma)) 10226 if (parseArgs(ConstVCall.Args)) 10227 return true; 10228 10229 if (parseToken(lltok::rparen, "expected ')' here")) 10230 return true; 10231 10232 return false; 10233 } 10234 10235 /// VFuncId 10236 /// ::= 'vFuncId' ':' '(' (SummaryID | 'guid' ':' UInt64) ',' 10237 /// 'offset' ':' UInt64 ')' 10238 bool LLParser::parseVFuncId(FunctionSummary::VFuncId &VFuncId, 10239 IdToIndexMapType &IdToIndexMap, unsigned Index) { 10240 assert(Lex.getKind() == lltok::kw_vFuncId); 10241 Lex.Lex(); 10242 10243 if (parseToken(lltok::colon, "expected ':' here") || 10244 parseToken(lltok::lparen, "expected '(' here")) 10245 return true; 10246 10247 if (Lex.getKind() == lltok::SummaryID) { 10248 VFuncId.GUID = 0; 10249 unsigned ID = Lex.getUIntVal(); 10250 LocTy Loc = Lex.getLoc(); 10251 // Keep track of the array index needing a forward reference. 10252 // We will save the location of the GUID needing an update, but 10253 // can only do so once the caller's std::vector is finalized. 10254 IdToIndexMap[ID].push_back(std::make_pair(Index, Loc)); 10255 Lex.Lex(); 10256 } else if (parseToken(lltok::kw_guid, "expected 'guid' here") || 10257 parseToken(lltok::colon, "expected ':' here") || 10258 parseUInt64(VFuncId.GUID)) 10259 return true; 10260 10261 if (parseToken(lltok::comma, "expected ',' here") || 10262 parseToken(lltok::kw_offset, "expected 'offset' here") || 10263 parseToken(lltok::colon, "expected ':' here") || 10264 parseUInt64(VFuncId.Offset) || 10265 parseToken(lltok::rparen, "expected ')' here")) 10266 return true; 10267 10268 return false; 10269 } 10270 10271 /// GVFlags 10272 /// ::= 'flags' ':' '(' 'linkage' ':' OptionalLinkageAux ',' 10273 /// 'visibility' ':' Flag 'notEligibleToImport' ':' Flag ',' 10274 /// 'live' ':' Flag ',' 'dsoLocal' ':' Flag ',' 10275 /// 'canAutoHide' ':' Flag ',' ')' 10276 bool LLParser::parseGVFlags(GlobalValueSummary::GVFlags &GVFlags) { 10277 assert(Lex.getKind() == lltok::kw_flags); 10278 Lex.Lex(); 10279 10280 if (parseToken(lltok::colon, "expected ':' here") || 10281 parseToken(lltok::lparen, "expected '(' here")) 10282 return true; 10283 10284 do { 10285 unsigned Flag = 0; 10286 switch (Lex.getKind()) { 10287 case lltok::kw_linkage: 10288 Lex.Lex(); 10289 if (parseToken(lltok::colon, "expected ':'")) 10290 return true; 10291 bool HasLinkage; 10292 GVFlags.Linkage = parseOptionalLinkageAux(Lex.getKind(), HasLinkage); 10293 assert(HasLinkage && "Linkage not optional in summary entry"); 10294 Lex.Lex(); 10295 break; 10296 case lltok::kw_visibility: 10297 Lex.Lex(); 10298 if (parseToken(lltok::colon, "expected ':'")) 10299 return true; 10300 parseOptionalVisibility(Flag); 10301 GVFlags.Visibility = Flag; 10302 break; 10303 case lltok::kw_notEligibleToImport: 10304 Lex.Lex(); 10305 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag)) 10306 return true; 10307 GVFlags.NotEligibleToImport = Flag; 10308 break; 10309 case lltok::kw_live: 10310 Lex.Lex(); 10311 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag)) 10312 return true; 10313 GVFlags.Live = Flag; 10314 break; 10315 case lltok::kw_dsoLocal: 10316 Lex.Lex(); 10317 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag)) 10318 return true; 10319 GVFlags.DSOLocal = Flag; 10320 break; 10321 case lltok::kw_canAutoHide: 10322 Lex.Lex(); 10323 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag)) 10324 return true; 10325 GVFlags.CanAutoHide = Flag; 10326 break; 10327 case lltok::kw_importType: 10328 Lex.Lex(); 10329 if (parseToken(lltok::colon, "expected ':'")) 10330 return true; 10331 GlobalValueSummary::ImportKind IK; 10332 if (parseOptionalImportType(Lex.getKind(), IK)) 10333 return true; 10334 GVFlags.ImportType = static_cast<unsigned>(IK); 10335 Lex.Lex(); 10336 break; 10337 default: 10338 return error(Lex.getLoc(), "expected gv flag type"); 10339 } 10340 } while (EatIfPresent(lltok::comma)); 10341 10342 if (parseToken(lltok::rparen, "expected ')' here")) 10343 return true; 10344 10345 return false; 10346 } 10347 10348 /// GVarFlags 10349 /// ::= 'varFlags' ':' '(' 'readonly' ':' Flag 10350 /// ',' 'writeonly' ':' Flag 10351 /// ',' 'constant' ':' Flag ')' 10352 bool LLParser::parseGVarFlags(GlobalVarSummary::GVarFlags &GVarFlags) { 10353 assert(Lex.getKind() == lltok::kw_varFlags); 10354 Lex.Lex(); 10355 10356 if (parseToken(lltok::colon, "expected ':' here") || 10357 parseToken(lltok::lparen, "expected '(' here")) 10358 return true; 10359 10360 auto ParseRest = [this](unsigned int &Val) { 10361 Lex.Lex(); 10362 if (parseToken(lltok::colon, "expected ':'")) 10363 return true; 10364 return parseFlag(Val); 10365 }; 10366 10367 do { 10368 unsigned Flag = 0; 10369 switch (Lex.getKind()) { 10370 case lltok::kw_readonly: 10371 if (ParseRest(Flag)) 10372 return true; 10373 GVarFlags.MaybeReadOnly = Flag; 10374 break; 10375 case lltok::kw_writeonly: 10376 if (ParseRest(Flag)) 10377 return true; 10378 GVarFlags.MaybeWriteOnly = Flag; 10379 break; 10380 case lltok::kw_constant: 10381 if (ParseRest(Flag)) 10382 return true; 10383 GVarFlags.Constant = Flag; 10384 break; 10385 case lltok::kw_vcall_visibility: 10386 if (ParseRest(Flag)) 10387 return true; 10388 GVarFlags.VCallVisibility = Flag; 10389 break; 10390 default: 10391 return error(Lex.getLoc(), "expected gvar flag type"); 10392 } 10393 } while (EatIfPresent(lltok::comma)); 10394 return parseToken(lltok::rparen, "expected ')' here"); 10395 } 10396 10397 /// ModuleReference 10398 /// ::= 'module' ':' UInt 10399 bool LLParser::parseModuleReference(StringRef &ModulePath) { 10400 // parse module id. 10401 if (parseToken(lltok::kw_module, "expected 'module' here") || 10402 parseToken(lltok::colon, "expected ':' here") || 10403 parseToken(lltok::SummaryID, "expected module ID")) 10404 return true; 10405 10406 unsigned ModuleID = Lex.getUIntVal(); 10407 auto I = ModuleIdMap.find(ModuleID); 10408 // We should have already parsed all module IDs 10409 assert(I != ModuleIdMap.end()); 10410 ModulePath = I->second; 10411 return false; 10412 } 10413 10414 /// GVReference 10415 /// ::= SummaryID 10416 bool LLParser::parseGVReference(ValueInfo &VI, unsigned &GVId) { 10417 bool WriteOnly = false, ReadOnly = EatIfPresent(lltok::kw_readonly); 10418 if (!ReadOnly) 10419 WriteOnly = EatIfPresent(lltok::kw_writeonly); 10420 if (parseToken(lltok::SummaryID, "expected GV ID")) 10421 return true; 10422 10423 GVId = Lex.getUIntVal(); 10424 // Check if we already have a VI for this GV 10425 if (GVId < NumberedValueInfos.size() && NumberedValueInfos[GVId]) { 10426 assert(NumberedValueInfos[GVId].getRef() != FwdVIRef); 10427 VI = NumberedValueInfos[GVId]; 10428 } else 10429 // We will create a forward reference to the stored location. 10430 VI = ValueInfo(false, FwdVIRef); 10431 10432 if (ReadOnly) 10433 VI.setReadOnly(); 10434 if (WriteOnly) 10435 VI.setWriteOnly(); 10436 return false; 10437 } 10438 10439 /// OptionalAllocs 10440 /// := 'allocs' ':' '(' Alloc [',' Alloc]* ')' 10441 /// Alloc ::= '(' 'versions' ':' '(' Version [',' Version]* ')' 10442 /// ',' MemProfs ')' 10443 /// Version ::= UInt32 10444 bool LLParser::parseOptionalAllocs(std::vector<AllocInfo> &Allocs) { 10445 assert(Lex.getKind() == lltok::kw_allocs); 10446 Lex.Lex(); 10447 10448 if (parseToken(lltok::colon, "expected ':' in allocs") || 10449 parseToken(lltok::lparen, "expected '(' in allocs")) 10450 return true; 10451 10452 // parse each alloc 10453 do { 10454 if (parseToken(lltok::lparen, "expected '(' in alloc") || 10455 parseToken(lltok::kw_versions, "expected 'versions' in alloc") || 10456 parseToken(lltok::colon, "expected ':'") || 10457 parseToken(lltok::lparen, "expected '(' in versions")) 10458 return true; 10459 10460 SmallVector<uint8_t> Versions; 10461 do { 10462 uint8_t V = 0; 10463 if (parseAllocType(V)) 10464 return true; 10465 Versions.push_back(V); 10466 } while (EatIfPresent(lltok::comma)); 10467 10468 if (parseToken(lltok::rparen, "expected ')' in versions") || 10469 parseToken(lltok::comma, "expected ',' in alloc")) 10470 return true; 10471 10472 std::vector<MIBInfo> MIBs; 10473 if (parseMemProfs(MIBs)) 10474 return true; 10475 10476 Allocs.push_back({Versions, MIBs}); 10477 10478 if (parseToken(lltok::rparen, "expected ')' in alloc")) 10479 return true; 10480 } while (EatIfPresent(lltok::comma)); 10481 10482 if (parseToken(lltok::rparen, "expected ')' in allocs")) 10483 return true; 10484 10485 return false; 10486 } 10487 10488 /// MemProfs 10489 /// := 'memProf' ':' '(' MemProf [',' MemProf]* ')' 10490 /// MemProf ::= '(' 'type' ':' AllocType 10491 /// ',' 'stackIds' ':' '(' StackId [',' StackId]* ')' ')' 10492 /// StackId ::= UInt64 10493 bool LLParser::parseMemProfs(std::vector<MIBInfo> &MIBs) { 10494 assert(Lex.getKind() == lltok::kw_memProf); 10495 Lex.Lex(); 10496 10497 if (parseToken(lltok::colon, "expected ':' in memprof") || 10498 parseToken(lltok::lparen, "expected '(' in memprof")) 10499 return true; 10500 10501 // parse each MIB 10502 do { 10503 if (parseToken(lltok::lparen, "expected '(' in memprof") || 10504 parseToken(lltok::kw_type, "expected 'type' in memprof") || 10505 parseToken(lltok::colon, "expected ':'")) 10506 return true; 10507 10508 uint8_t AllocType; 10509 if (parseAllocType(AllocType)) 10510 return true; 10511 10512 if (parseToken(lltok::comma, "expected ',' in memprof") || 10513 parseToken(lltok::kw_stackIds, "expected 'stackIds' in memprof") || 10514 parseToken(lltok::colon, "expected ':'") || 10515 parseToken(lltok::lparen, "expected '(' in stackIds")) 10516 return true; 10517 10518 SmallVector<unsigned> StackIdIndices; 10519 do { 10520 uint64_t StackId = 0; 10521 if (parseUInt64(StackId)) 10522 return true; 10523 StackIdIndices.push_back(Index->addOrGetStackIdIndex(StackId)); 10524 } while (EatIfPresent(lltok::comma)); 10525 10526 if (parseToken(lltok::rparen, "expected ')' in stackIds")) 10527 return true; 10528 10529 MIBs.push_back({(AllocationType)AllocType, StackIdIndices}); 10530 10531 if (parseToken(lltok::rparen, "expected ')' in memprof")) 10532 return true; 10533 } while (EatIfPresent(lltok::comma)); 10534 10535 if (parseToken(lltok::rparen, "expected ')' in memprof")) 10536 return true; 10537 10538 return false; 10539 } 10540 10541 /// AllocType 10542 /// := ('none'|'notcold'|'cold'|'hot') 10543 bool LLParser::parseAllocType(uint8_t &AllocType) { 10544 switch (Lex.getKind()) { 10545 case lltok::kw_none: 10546 AllocType = (uint8_t)AllocationType::None; 10547 break; 10548 case lltok::kw_notcold: 10549 AllocType = (uint8_t)AllocationType::NotCold; 10550 break; 10551 case lltok::kw_cold: 10552 AllocType = (uint8_t)AllocationType::Cold; 10553 break; 10554 case lltok::kw_hot: 10555 AllocType = (uint8_t)AllocationType::Hot; 10556 break; 10557 default: 10558 return error(Lex.getLoc(), "invalid alloc type"); 10559 } 10560 Lex.Lex(); 10561 return false; 10562 } 10563 10564 /// OptionalCallsites 10565 /// := 'callsites' ':' '(' Callsite [',' Callsite]* ')' 10566 /// Callsite ::= '(' 'callee' ':' GVReference 10567 /// ',' 'clones' ':' '(' Version [',' Version]* ')' 10568 /// ',' 'stackIds' ':' '(' StackId [',' StackId]* ')' ')' 10569 /// Version ::= UInt32 10570 /// StackId ::= UInt64 10571 bool LLParser::parseOptionalCallsites(std::vector<CallsiteInfo> &Callsites) { 10572 assert(Lex.getKind() == lltok::kw_callsites); 10573 Lex.Lex(); 10574 10575 if (parseToken(lltok::colon, "expected ':' in callsites") || 10576 parseToken(lltok::lparen, "expected '(' in callsites")) 10577 return true; 10578 10579 IdToIndexMapType IdToIndexMap; 10580 // parse each callsite 10581 do { 10582 if (parseToken(lltok::lparen, "expected '(' in callsite") || 10583 parseToken(lltok::kw_callee, "expected 'callee' in callsite") || 10584 parseToken(lltok::colon, "expected ':'")) 10585 return true; 10586 10587 ValueInfo VI; 10588 unsigned GVId = 0; 10589 LocTy Loc = Lex.getLoc(); 10590 if (!EatIfPresent(lltok::kw_null)) { 10591 if (parseGVReference(VI, GVId)) 10592 return true; 10593 } 10594 10595 if (parseToken(lltok::comma, "expected ',' in callsite") || 10596 parseToken(lltok::kw_clones, "expected 'clones' in callsite") || 10597 parseToken(lltok::colon, "expected ':'") || 10598 parseToken(lltok::lparen, "expected '(' in clones")) 10599 return true; 10600 10601 SmallVector<unsigned> Clones; 10602 do { 10603 unsigned V = 0; 10604 if (parseUInt32(V)) 10605 return true; 10606 Clones.push_back(V); 10607 } while (EatIfPresent(lltok::comma)); 10608 10609 if (parseToken(lltok::rparen, "expected ')' in clones") || 10610 parseToken(lltok::comma, "expected ',' in callsite") || 10611 parseToken(lltok::kw_stackIds, "expected 'stackIds' in callsite") || 10612 parseToken(lltok::colon, "expected ':'") || 10613 parseToken(lltok::lparen, "expected '(' in stackIds")) 10614 return true; 10615 10616 SmallVector<unsigned> StackIdIndices; 10617 do { 10618 uint64_t StackId = 0; 10619 if (parseUInt64(StackId)) 10620 return true; 10621 StackIdIndices.push_back(Index->addOrGetStackIdIndex(StackId)); 10622 } while (EatIfPresent(lltok::comma)); 10623 10624 if (parseToken(lltok::rparen, "expected ')' in stackIds")) 10625 return true; 10626 10627 // Keep track of the Callsites array index needing a forward reference. 10628 // We will save the location of the ValueInfo needing an update, but 10629 // can only do so once the SmallVector is finalized. 10630 if (VI.getRef() == FwdVIRef) 10631 IdToIndexMap[GVId].push_back(std::make_pair(Callsites.size(), Loc)); 10632 Callsites.push_back({VI, Clones, StackIdIndices}); 10633 10634 if (parseToken(lltok::rparen, "expected ')' in callsite")) 10635 return true; 10636 } while (EatIfPresent(lltok::comma)); 10637 10638 // Now that the Callsites vector is finalized, it is safe to save the 10639 // locations of any forward GV references that need updating later. 10640 for (auto I : IdToIndexMap) { 10641 auto &Infos = ForwardRefValueInfos[I.first]; 10642 for (auto P : I.second) { 10643 assert(Callsites[P.first].Callee.getRef() == FwdVIRef && 10644 "Forward referenced ValueInfo expected to be empty"); 10645 Infos.emplace_back(&Callsites[P.first].Callee, P.second); 10646 } 10647 } 10648 10649 if (parseToken(lltok::rparen, "expected ')' in callsites")) 10650 return true; 10651 10652 return false; 10653 } 10654