1 //===- StackSafetyAnalysis.cpp - Stack memory safety analysis -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 //===----------------------------------------------------------------------===// 10 11 #include "llvm/Analysis/StackSafetyAnalysis.h" 12 #include "llvm/ADT/APInt.h" 13 #include "llvm/ADT/SmallPtrSet.h" 14 #include "llvm/ADT/SmallVector.h" 15 #include "llvm/ADT/Statistic.h" 16 #include "llvm/Analysis/ModuleSummaryAnalysis.h" 17 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 18 #include "llvm/Analysis/StackLifetime.h" 19 #include "llvm/IR/ConstantRange.h" 20 #include "llvm/IR/DerivedTypes.h" 21 #include "llvm/IR/GlobalValue.h" 22 #include "llvm/IR/InstIterator.h" 23 #include "llvm/IR/Instructions.h" 24 #include "llvm/IR/IntrinsicInst.h" 25 #include "llvm/IR/ModuleSummaryIndex.h" 26 #include "llvm/InitializePasses.h" 27 #include "llvm/Support/Casting.h" 28 #include "llvm/Support/CommandLine.h" 29 #include "llvm/Support/FormatVariadic.h" 30 #include "llvm/Support/raw_ostream.h" 31 #include <algorithm> 32 #include <memory> 33 34 using namespace llvm; 35 36 #define DEBUG_TYPE "stack-safety" 37 38 STATISTIC(NumAllocaStackSafe, "Number of safe allocas"); 39 STATISTIC(NumAllocaTotal, "Number of total allocas"); 40 41 STATISTIC(NumCombinedCalleeLookupTotal, 42 "Number of total callee lookups on combined index."); 43 STATISTIC(NumCombinedCalleeLookupFailed, 44 "Number of failed callee lookups on combined index."); 45 STATISTIC(NumModuleCalleeLookupTotal, 46 "Number of total callee lookups on module index."); 47 STATISTIC(NumModuleCalleeLookupFailed, 48 "Number of failed callee lookups on module index."); 49 STATISTIC(NumCombinedParamAccessesBefore, 50 "Number of total param accesses before generateParamAccessSummary."); 51 STATISTIC(NumCombinedParamAccessesAfter, 52 "Number of total param accesses after generateParamAccessSummary."); 53 STATISTIC(NumCombinedDataFlowNodes, 54 "Number of total nodes in combined index for dataflow processing."); 55 STATISTIC(NumIndexCalleeUnhandled, "Number of index callee which are unhandled."); 56 STATISTIC(NumIndexCalleeMultipleWeak, "Number of index callee non-unique weak."); 57 STATISTIC(NumIndexCalleeMultipleExternal, "Number of index callee non-unique external."); 58 59 60 static cl::opt<int> StackSafetyMaxIterations("stack-safety-max-iterations", 61 cl::init(20), cl::Hidden); 62 63 static cl::opt<bool> StackSafetyPrint("stack-safety-print", cl::init(false), 64 cl::Hidden); 65 66 static cl::opt<bool> StackSafetyRun("stack-safety-run", cl::init(false), 67 cl::Hidden); 68 69 namespace { 70 71 // Check if we should bailout for such ranges. 72 bool isUnsafe(const ConstantRange &R) { 73 return R.isEmptySet() || R.isFullSet() || R.isUpperSignWrapped(); 74 } 75 76 ConstantRange addOverflowNever(const ConstantRange &L, const ConstantRange &R) { 77 assert(!L.isSignWrappedSet()); 78 assert(!R.isSignWrappedSet()); 79 if (L.signedAddMayOverflow(R) != 80 ConstantRange::OverflowResult::NeverOverflows) 81 return ConstantRange::getFull(L.getBitWidth()); 82 ConstantRange Result = L.add(R); 83 assert(!Result.isSignWrappedSet()); 84 return Result; 85 } 86 87 ConstantRange unionNoWrap(const ConstantRange &L, const ConstantRange &R) { 88 assert(!L.isSignWrappedSet()); 89 assert(!R.isSignWrappedSet()); 90 auto Result = L.unionWith(R); 91 // Two non-wrapped sets can produce wrapped. 92 if (Result.isSignWrappedSet()) 93 Result = ConstantRange::getFull(Result.getBitWidth()); 94 return Result; 95 } 96 97 /// Describes use of address in as a function call argument. 98 template <typename CalleeTy> struct CallInfo { 99 /// Function being called. 100 const CalleeTy *Callee = nullptr; 101 /// Index of argument which pass address. 102 size_t ParamNo = 0; 103 104 CallInfo(const CalleeTy *Callee, size_t ParamNo) 105 : Callee(Callee), ParamNo(ParamNo) {} 106 107 struct Less { 108 bool operator()(const CallInfo &L, const CallInfo &R) const { 109 return std::tie(L.ParamNo, L.Callee) < std::tie(R.ParamNo, R.Callee); 110 } 111 }; 112 }; 113 114 /// Describe uses of address (alloca or parameter) inside of the function. 115 template <typename CalleeTy> struct UseInfo { 116 // Access range if the address (alloca or parameters). 117 // It is allowed to be empty-set when there are no known accesses. 118 ConstantRange Range; 119 120 // List of calls which pass address as an argument. 121 // Value is offset range of address from base address (alloca or calling 122 // function argument). Range should never set to empty-set, that is an invalid 123 // access range that can cause empty-set to be propagated with 124 // ConstantRange::add 125 using CallsTy = std::map<CallInfo<CalleeTy>, ConstantRange, 126 typename CallInfo<CalleeTy>::Less>; 127 CallsTy Calls; 128 129 UseInfo(unsigned PointerSize) : Range{PointerSize, false} {} 130 131 void updateRange(const ConstantRange &R) { Range = unionNoWrap(Range, R); } 132 }; 133 134 template <typename CalleeTy> 135 raw_ostream &operator<<(raw_ostream &OS, const UseInfo<CalleeTy> &U) { 136 OS << U.Range; 137 for (auto &Call : U.Calls) 138 OS << ", " 139 << "@" << Call.first.Callee->getName() << "(arg" << Call.first.ParamNo 140 << ", " << Call.second << ")"; 141 return OS; 142 } 143 144 /// Calculate the allocation size of a given alloca. Returns empty range 145 // in case of confution. 146 ConstantRange getStaticAllocaSizeRange(const AllocaInst &AI) { 147 const DataLayout &DL = AI.getModule()->getDataLayout(); 148 TypeSize TS = DL.getTypeAllocSize(AI.getAllocatedType()); 149 unsigned PointerSize = DL.getMaxPointerSizeInBits(); 150 // Fallback to empty range for alloca size. 151 ConstantRange R = ConstantRange::getEmpty(PointerSize); 152 if (TS.isScalable()) 153 return R; 154 APInt APSize(PointerSize, TS.getFixedSize(), true); 155 if (APSize.isNonPositive()) 156 return R; 157 if (AI.isArrayAllocation()) { 158 const auto *C = dyn_cast<ConstantInt>(AI.getArraySize()); 159 if (!C) 160 return R; 161 bool Overflow = false; 162 APInt Mul = C->getValue(); 163 if (Mul.isNonPositive()) 164 return R; 165 Mul = Mul.sextOrTrunc(PointerSize); 166 APSize = APSize.smul_ov(Mul, Overflow); 167 if (Overflow) 168 return R; 169 } 170 R = ConstantRange(APInt::getNullValue(PointerSize), APSize); 171 assert(!isUnsafe(R)); 172 return R; 173 } 174 175 template <typename CalleeTy> struct FunctionInfo { 176 std::map<const AllocaInst *, UseInfo<CalleeTy>> Allocas; 177 std::map<uint32_t, UseInfo<CalleeTy>> Params; 178 // TODO: describe return value as depending on one or more of its arguments. 179 180 // StackSafetyDataFlowAnalysis counter stored here for faster access. 181 int UpdateCount = 0; 182 183 void print(raw_ostream &O, StringRef Name, const Function *F) const { 184 // TODO: Consider different printout format after 185 // StackSafetyDataFlowAnalysis. Calls and parameters are irrelevant then. 186 O << " @" << Name << ((F && F->isDSOLocal()) ? "" : " dso_preemptable") 187 << ((F && F->isInterposable()) ? " interposable" : "") << "\n"; 188 189 O << " args uses:\n"; 190 for (auto &KV : Params) { 191 O << " "; 192 if (F) 193 O << F->getArg(KV.first)->getName(); 194 else 195 O << formatv("arg{0}", KV.first); 196 O << "[]: " << KV.second << "\n"; 197 } 198 199 O << " allocas uses:\n"; 200 if (F) { 201 for (auto &I : instructions(F)) { 202 if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) { 203 auto &AS = Allocas.find(AI)->second; 204 O << " " << AI->getName() << "[" 205 << getStaticAllocaSizeRange(*AI).getUpper() << "]: " << AS << "\n"; 206 } 207 } 208 } else { 209 assert(Allocas.empty()); 210 } 211 } 212 }; 213 214 using GVToSSI = std::map<const GlobalValue *, FunctionInfo<GlobalValue>>; 215 216 } // namespace 217 218 struct StackSafetyInfo::InfoTy { 219 FunctionInfo<GlobalValue> Info; 220 }; 221 222 struct StackSafetyGlobalInfo::InfoTy { 223 GVToSSI Info; 224 SmallPtrSet<const AllocaInst *, 8> SafeAllocas; 225 }; 226 227 namespace { 228 229 class StackSafetyLocalAnalysis { 230 Function &F; 231 const DataLayout &DL; 232 ScalarEvolution &SE; 233 unsigned PointerSize = 0; 234 235 const ConstantRange UnknownRange; 236 237 ConstantRange offsetFrom(Value *Addr, Value *Base); 238 ConstantRange getAccessRange(Value *Addr, Value *Base, 239 const ConstantRange &SizeRange); 240 ConstantRange getAccessRange(Value *Addr, Value *Base, TypeSize Size); 241 ConstantRange getMemIntrinsicAccessRange(const MemIntrinsic *MI, const Use &U, 242 Value *Base); 243 244 void analyzeAllUses(Value *Ptr, UseInfo<GlobalValue> &AS, 245 const StackLifetime &SL); 246 247 public: 248 StackSafetyLocalAnalysis(Function &F, ScalarEvolution &SE) 249 : F(F), DL(F.getParent()->getDataLayout()), SE(SE), 250 PointerSize(DL.getPointerSizeInBits()), 251 UnknownRange(PointerSize, true) {} 252 253 // Run the transformation on the associated function. 254 FunctionInfo<GlobalValue> run(); 255 }; 256 257 ConstantRange StackSafetyLocalAnalysis::offsetFrom(Value *Addr, Value *Base) { 258 if (!SE.isSCEVable(Addr->getType()) || !SE.isSCEVable(Base->getType())) 259 return UnknownRange; 260 261 auto *PtrTy = IntegerType::getInt8PtrTy(SE.getContext()); 262 const SCEV *AddrExp = SE.getTruncateOrZeroExtend(SE.getSCEV(Addr), PtrTy); 263 const SCEV *BaseExp = SE.getTruncateOrZeroExtend(SE.getSCEV(Base), PtrTy); 264 const SCEV *Diff = SE.getMinusSCEV(AddrExp, BaseExp); 265 if (isa<SCEVCouldNotCompute>(Diff)) 266 return UnknownRange; 267 268 ConstantRange Offset = SE.getSignedRange(Diff); 269 if (isUnsafe(Offset)) 270 return UnknownRange; 271 return Offset.sextOrTrunc(PointerSize); 272 } 273 274 ConstantRange 275 StackSafetyLocalAnalysis::getAccessRange(Value *Addr, Value *Base, 276 const ConstantRange &SizeRange) { 277 // Zero-size loads and stores do not access memory. 278 if (SizeRange.isEmptySet()) 279 return ConstantRange::getEmpty(PointerSize); 280 assert(!isUnsafe(SizeRange)); 281 282 ConstantRange Offsets = offsetFrom(Addr, Base); 283 if (isUnsafe(Offsets)) 284 return UnknownRange; 285 286 Offsets = addOverflowNever(Offsets, SizeRange); 287 if (isUnsafe(Offsets)) 288 return UnknownRange; 289 return Offsets; 290 } 291 292 ConstantRange StackSafetyLocalAnalysis::getAccessRange(Value *Addr, Value *Base, 293 TypeSize Size) { 294 if (Size.isScalable()) 295 return UnknownRange; 296 APInt APSize(PointerSize, Size.getFixedSize(), true); 297 if (APSize.isNegative()) 298 return UnknownRange; 299 return getAccessRange( 300 Addr, Base, ConstantRange(APInt::getNullValue(PointerSize), APSize)); 301 } 302 303 ConstantRange StackSafetyLocalAnalysis::getMemIntrinsicAccessRange( 304 const MemIntrinsic *MI, const Use &U, Value *Base) { 305 if (const auto *MTI = dyn_cast<MemTransferInst>(MI)) { 306 if (MTI->getRawSource() != U && MTI->getRawDest() != U) 307 return ConstantRange::getEmpty(PointerSize); 308 } else { 309 if (MI->getRawDest() != U) 310 return ConstantRange::getEmpty(PointerSize); 311 } 312 313 auto *CalculationTy = IntegerType::getIntNTy(SE.getContext(), PointerSize); 314 if (!SE.isSCEVable(MI->getLength()->getType())) 315 return UnknownRange; 316 317 const SCEV *Expr = 318 SE.getTruncateOrZeroExtend(SE.getSCEV(MI->getLength()), CalculationTy); 319 ConstantRange Sizes = SE.getSignedRange(Expr); 320 if (Sizes.getUpper().isNegative() || isUnsafe(Sizes)) 321 return UnknownRange; 322 Sizes = Sizes.sextOrTrunc(PointerSize); 323 ConstantRange SizeRange(APInt::getNullValue(PointerSize), 324 Sizes.getUpper() - 1); 325 return getAccessRange(U, Base, SizeRange); 326 } 327 328 /// The function analyzes all local uses of Ptr (alloca or argument) and 329 /// calculates local access range and all function calls where it was used. 330 void StackSafetyLocalAnalysis::analyzeAllUses(Value *Ptr, 331 UseInfo<GlobalValue> &US, 332 const StackLifetime &SL) { 333 SmallPtrSet<const Value *, 16> Visited; 334 SmallVector<const Value *, 8> WorkList; 335 WorkList.push_back(Ptr); 336 const AllocaInst *AI = dyn_cast<AllocaInst>(Ptr); 337 338 // A DFS search through all uses of the alloca in bitcasts/PHI/GEPs/etc. 339 while (!WorkList.empty()) { 340 const Value *V = WorkList.pop_back_val(); 341 for (const Use &UI : V->uses()) { 342 const auto *I = cast<Instruction>(UI.getUser()); 343 if (!SL.isReachable(I)) 344 continue; 345 346 assert(V == UI.get()); 347 348 switch (I->getOpcode()) { 349 case Instruction::Load: { 350 if (AI && !SL.isAliveAfter(AI, I)) { 351 US.updateRange(UnknownRange); 352 return; 353 } 354 US.updateRange( 355 getAccessRange(UI, Ptr, DL.getTypeStoreSize(I->getType()))); 356 break; 357 } 358 359 case Instruction::VAArg: 360 // "va-arg" from a pointer is safe. 361 break; 362 case Instruction::Store: { 363 if (V == I->getOperand(0)) { 364 // Stored the pointer - conservatively assume it may be unsafe. 365 US.updateRange(UnknownRange); 366 return; 367 } 368 if (AI && !SL.isAliveAfter(AI, I)) { 369 US.updateRange(UnknownRange); 370 return; 371 } 372 US.updateRange(getAccessRange( 373 UI, Ptr, DL.getTypeStoreSize(I->getOperand(0)->getType()))); 374 break; 375 } 376 377 case Instruction::Ret: 378 // Information leak. 379 // FIXME: Process parameters correctly. This is a leak only if we return 380 // alloca. 381 US.updateRange(UnknownRange); 382 return; 383 384 case Instruction::Call: 385 case Instruction::Invoke: { 386 if (I->isLifetimeStartOrEnd()) 387 break; 388 389 if (AI && !SL.isAliveAfter(AI, I)) { 390 US.updateRange(UnknownRange); 391 return; 392 } 393 394 if (const MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) { 395 US.updateRange(getMemIntrinsicAccessRange(MI, UI, Ptr)); 396 break; 397 } 398 399 const auto &CB = cast<CallBase>(*I); 400 if (!CB.isArgOperand(&UI)) { 401 US.updateRange(UnknownRange); 402 return; 403 } 404 405 unsigned ArgNo = CB.getArgOperandNo(&UI); 406 if (CB.isByValArgument(ArgNo)) { 407 US.updateRange(getAccessRange( 408 UI, Ptr, DL.getTypeStoreSize(CB.getParamByValType(ArgNo)))); 409 break; 410 } 411 412 // FIXME: consult devirt? 413 // Do not follow aliases, otherwise we could inadvertently follow 414 // dso_preemptable aliases or aliases with interposable linkage. 415 const GlobalValue *Callee = 416 dyn_cast<GlobalValue>(CB.getCalledOperand()->stripPointerCasts()); 417 if (!Callee) { 418 US.updateRange(UnknownRange); 419 return; 420 } 421 422 assert(isa<Function>(Callee) || isa<GlobalAlias>(Callee)); 423 ConstantRange Offsets = offsetFrom(UI, Ptr); 424 auto Insert = 425 US.Calls.emplace(CallInfo<GlobalValue>(Callee, ArgNo), Offsets); 426 if (!Insert.second) 427 Insert.first->second = Insert.first->second.unionWith(Offsets); 428 break; 429 } 430 431 default: 432 if (Visited.insert(I).second) 433 WorkList.push_back(cast<const Instruction>(I)); 434 } 435 } 436 } 437 } 438 439 FunctionInfo<GlobalValue> StackSafetyLocalAnalysis::run() { 440 FunctionInfo<GlobalValue> Info; 441 assert(!F.isDeclaration() && 442 "Can't run StackSafety on a function declaration"); 443 444 LLVM_DEBUG(dbgs() << "[StackSafety] " << F.getName() << "\n"); 445 446 SmallVector<AllocaInst *, 64> Allocas; 447 for (auto &I : instructions(F)) 448 if (auto *AI = dyn_cast<AllocaInst>(&I)) 449 Allocas.push_back(AI); 450 StackLifetime SL(F, Allocas, StackLifetime::LivenessType::Must); 451 SL.run(); 452 453 for (auto *AI : Allocas) { 454 auto &UI = Info.Allocas.emplace(AI, PointerSize).first->second; 455 analyzeAllUses(AI, UI, SL); 456 } 457 458 for (Argument &A : F.args()) { 459 // Non pointers and bypass arguments are not going to be used in any global 460 // processing. 461 if (A.getType()->isPointerTy() && !A.hasByValAttr()) { 462 auto &UI = Info.Params.emplace(A.getArgNo(), PointerSize).first->second; 463 analyzeAllUses(&A, UI, SL); 464 } 465 } 466 467 LLVM_DEBUG(Info.print(dbgs(), F.getName(), &F)); 468 LLVM_DEBUG(dbgs() << "\n[StackSafety] done\n"); 469 return Info; 470 } 471 472 template <typename CalleeTy> class StackSafetyDataFlowAnalysis { 473 using FunctionMap = std::map<const CalleeTy *, FunctionInfo<CalleeTy>>; 474 475 FunctionMap Functions; 476 const ConstantRange UnknownRange; 477 478 // Callee-to-Caller multimap. 479 DenseMap<const CalleeTy *, SmallVector<const CalleeTy *, 4>> Callers; 480 SetVector<const CalleeTy *> WorkList; 481 482 bool updateOneUse(UseInfo<CalleeTy> &US, bool UpdateToFullSet); 483 void updateOneNode(const CalleeTy *Callee, FunctionInfo<CalleeTy> &FS); 484 void updateOneNode(const CalleeTy *Callee) { 485 updateOneNode(Callee, Functions.find(Callee)->second); 486 } 487 void updateAllNodes() { 488 for (auto &F : Functions) 489 updateOneNode(F.first, F.second); 490 } 491 void runDataFlow(); 492 #ifndef NDEBUG 493 void verifyFixedPoint(); 494 #endif 495 496 public: 497 StackSafetyDataFlowAnalysis(uint32_t PointerBitWidth, FunctionMap Functions) 498 : Functions(std::move(Functions)), 499 UnknownRange(ConstantRange::getFull(PointerBitWidth)) {} 500 501 const FunctionMap &run(); 502 503 ConstantRange getArgumentAccessRange(const CalleeTy *Callee, unsigned ParamNo, 504 const ConstantRange &Offsets) const; 505 }; 506 507 template <typename CalleeTy> 508 ConstantRange StackSafetyDataFlowAnalysis<CalleeTy>::getArgumentAccessRange( 509 const CalleeTy *Callee, unsigned ParamNo, 510 const ConstantRange &Offsets) const { 511 auto FnIt = Functions.find(Callee); 512 // Unknown callee (outside of LTO domain or an indirect call). 513 if (FnIt == Functions.end()) 514 return UnknownRange; 515 auto &FS = FnIt->second; 516 auto ParamIt = FS.Params.find(ParamNo); 517 if (ParamIt == FS.Params.end()) 518 return UnknownRange; 519 auto &Access = ParamIt->second.Range; 520 if (Access.isEmptySet()) 521 return Access; 522 if (Access.isFullSet()) 523 return UnknownRange; 524 return addOverflowNever(Access, Offsets); 525 } 526 527 template <typename CalleeTy> 528 bool StackSafetyDataFlowAnalysis<CalleeTy>::updateOneUse(UseInfo<CalleeTy> &US, 529 bool UpdateToFullSet) { 530 bool Changed = false; 531 for (auto &KV : US.Calls) { 532 assert(!KV.second.isEmptySet() && 533 "Param range can't be empty-set, invalid offset range"); 534 535 ConstantRange CalleeRange = 536 getArgumentAccessRange(KV.first.Callee, KV.first.ParamNo, KV.second); 537 if (!US.Range.contains(CalleeRange)) { 538 Changed = true; 539 if (UpdateToFullSet) 540 US.Range = UnknownRange; 541 else 542 US.updateRange(CalleeRange); 543 } 544 } 545 return Changed; 546 } 547 548 template <typename CalleeTy> 549 void StackSafetyDataFlowAnalysis<CalleeTy>::updateOneNode( 550 const CalleeTy *Callee, FunctionInfo<CalleeTy> &FS) { 551 bool UpdateToFullSet = FS.UpdateCount > StackSafetyMaxIterations; 552 bool Changed = false; 553 for (auto &KV : FS.Params) 554 Changed |= updateOneUse(KV.second, UpdateToFullSet); 555 556 if (Changed) { 557 LLVM_DEBUG(dbgs() << "=== update [" << FS.UpdateCount 558 << (UpdateToFullSet ? ", full-set" : "") << "] " << &FS 559 << "\n"); 560 // Callers of this function may need updating. 561 for (auto &CallerID : Callers[Callee]) 562 WorkList.insert(CallerID); 563 564 ++FS.UpdateCount; 565 } 566 } 567 568 template <typename CalleeTy> 569 void StackSafetyDataFlowAnalysis<CalleeTy>::runDataFlow() { 570 SmallVector<const CalleeTy *, 16> Callees; 571 for (auto &F : Functions) { 572 Callees.clear(); 573 auto &FS = F.second; 574 for (auto &KV : FS.Params) 575 for (auto &CS : KV.second.Calls) 576 Callees.push_back(CS.first.Callee); 577 578 llvm::sort(Callees); 579 Callees.erase(std::unique(Callees.begin(), Callees.end()), Callees.end()); 580 581 for (auto &Callee : Callees) 582 Callers[Callee].push_back(F.first); 583 } 584 585 updateAllNodes(); 586 587 while (!WorkList.empty()) { 588 const CalleeTy *Callee = WorkList.back(); 589 WorkList.pop_back(); 590 updateOneNode(Callee); 591 } 592 } 593 594 #ifndef NDEBUG 595 template <typename CalleeTy> 596 void StackSafetyDataFlowAnalysis<CalleeTy>::verifyFixedPoint() { 597 WorkList.clear(); 598 updateAllNodes(); 599 assert(WorkList.empty()); 600 } 601 #endif 602 603 template <typename CalleeTy> 604 const typename StackSafetyDataFlowAnalysis<CalleeTy>::FunctionMap & 605 StackSafetyDataFlowAnalysis<CalleeTy>::run() { 606 runDataFlow(); 607 LLVM_DEBUG(verifyFixedPoint()); 608 return Functions; 609 } 610 611 FunctionSummary *findCalleeFunctionSummary(ValueInfo VI, StringRef ModuleId) { 612 if (!VI) 613 return nullptr; 614 auto SummaryList = VI.getSummaryList(); 615 GlobalValueSummary* S = nullptr; 616 for (const auto& GVS : SummaryList) { 617 if (!GVS->isLive()) 618 continue; 619 if (const AliasSummary *AS = dyn_cast<AliasSummary>(GVS.get())) 620 if (!AS->hasAliasee()) 621 continue; 622 if (!isa<FunctionSummary>(GVS->getBaseObject())) 623 continue; 624 if (GlobalValue::isLocalLinkage(GVS->linkage())) { 625 if (GVS->modulePath() == ModuleId) { 626 S = GVS.get(); 627 break; 628 } 629 } else if (GlobalValue::isExternalLinkage(GVS->linkage())) { 630 if (S) { 631 ++NumIndexCalleeMultipleExternal; 632 return nullptr; 633 } 634 S = GVS.get(); 635 } else if (GlobalValue::isWeakLinkage(GVS->linkage())) { 636 if (S) { 637 ++NumIndexCalleeMultipleWeak; 638 return nullptr; 639 } 640 S = GVS.get(); 641 } else if (GlobalValue::isAvailableExternallyLinkage(GVS->linkage()) || 642 GlobalValue::isLinkOnceLinkage(GVS->linkage())) { 643 if (SummaryList.size() == 1) 644 S = GVS.get(); 645 // According thinLTOResolvePrevailingGUID these are unlikely prevailing. 646 } else { 647 ++NumIndexCalleeUnhandled; 648 } 649 }; 650 while (S) { 651 if (!S->isLive() || !S->isDSOLocal()) 652 return nullptr; 653 if (FunctionSummary *FS = dyn_cast<FunctionSummary>(S)) 654 return FS; 655 AliasSummary *AS = dyn_cast<AliasSummary>(S); 656 if (!AS || !AS->hasAliasee()) 657 return nullptr; 658 S = AS->getBaseObject(); 659 if (S == AS) 660 return nullptr; 661 } 662 return nullptr; 663 } 664 665 const Function *findCalleeInModule(const GlobalValue *GV) { 666 while (GV) { 667 if (GV->isDeclaration() || GV->isInterposable() || !GV->isDSOLocal()) 668 return nullptr; 669 if (const Function *F = dyn_cast<Function>(GV)) 670 return F; 671 const GlobalAlias *A = dyn_cast<GlobalAlias>(GV); 672 if (!A) 673 return nullptr; 674 GV = A->getBaseObject(); 675 if (GV == A) 676 return nullptr; 677 } 678 return nullptr; 679 } 680 681 const ConstantRange *findParamAccess(const FunctionSummary &FS, 682 uint32_t ParamNo) { 683 assert(FS.isLive()); 684 assert(FS.isDSOLocal()); 685 for (auto &PS : FS.paramAccesses()) 686 if (ParamNo == PS.ParamNo) 687 return &PS.Use; 688 return nullptr; 689 } 690 691 void resolveAllCalls(UseInfo<GlobalValue> &Use, 692 const ModuleSummaryIndex *Index) { 693 ConstantRange FullSet(Use.Range.getBitWidth(), true); 694 // Move Use.Calls to a temp storage and repopulate - don't use std::move as it 695 // leaves Use.Calls in an undefined state. 696 UseInfo<GlobalValue>::CallsTy TmpCalls; 697 std::swap(TmpCalls, Use.Calls); 698 for (const auto &C : TmpCalls) { 699 const Function *F = findCalleeInModule(C.first.Callee); 700 if (F) { 701 Use.Calls.emplace(CallInfo<GlobalValue>(F, C.first.ParamNo), C.second); 702 continue; 703 } 704 705 if (!Index) 706 return Use.updateRange(FullSet); 707 FunctionSummary *FS = 708 findCalleeFunctionSummary(Index->getValueInfo(C.first.Callee->getGUID()), 709 C.first.Callee->getParent()->getModuleIdentifier()); 710 ++NumModuleCalleeLookupTotal; 711 if (!FS) { 712 ++NumModuleCalleeLookupFailed; 713 return Use.updateRange(FullSet); 714 } 715 const ConstantRange *Found = findParamAccess(*FS, C.first.ParamNo); 716 if (!Found || Found->isFullSet()) 717 return Use.updateRange(FullSet); 718 ConstantRange Access = Found->sextOrTrunc(Use.Range.getBitWidth()); 719 if (!Access.isEmptySet()) 720 Use.updateRange(addOverflowNever(Access, C.second)); 721 } 722 } 723 724 GVToSSI createGlobalStackSafetyInfo( 725 std::map<const GlobalValue *, FunctionInfo<GlobalValue>> Functions, 726 const ModuleSummaryIndex *Index) { 727 GVToSSI SSI; 728 if (Functions.empty()) 729 return SSI; 730 731 // FIXME: Simplify printing and remove copying here. 732 auto Copy = Functions; 733 734 for (auto &FnKV : Copy) 735 for (auto &KV : FnKV.second.Params) { 736 resolveAllCalls(KV.second, Index); 737 if (KV.second.Range.isFullSet()) 738 KV.second.Calls.clear(); 739 } 740 741 uint32_t PointerSize = Copy.begin() 742 ->first->getParent() 743 ->getDataLayout() 744 .getMaxPointerSizeInBits(); 745 StackSafetyDataFlowAnalysis<GlobalValue> SSDFA(PointerSize, std::move(Copy)); 746 747 for (auto &F : SSDFA.run()) { 748 auto FI = F.second; 749 auto &SrcF = Functions[F.first]; 750 for (auto &KV : FI.Allocas) { 751 auto &A = KV.second; 752 resolveAllCalls(A, Index); 753 for (auto &C : A.Calls) { 754 A.updateRange(SSDFA.getArgumentAccessRange(C.first.Callee, 755 C.first.ParamNo, C.second)); 756 } 757 // FIXME: This is needed only to preserve calls in print() results. 758 A.Calls = SrcF.Allocas.find(KV.first)->second.Calls; 759 } 760 for (auto &KV : FI.Params) { 761 auto &P = KV.second; 762 P.Calls = SrcF.Params.find(KV.first)->second.Calls; 763 } 764 SSI[F.first] = std::move(FI); 765 } 766 767 return SSI; 768 } 769 770 } // end anonymous namespace 771 772 StackSafetyInfo::StackSafetyInfo() = default; 773 774 StackSafetyInfo::StackSafetyInfo(Function *F, 775 std::function<ScalarEvolution &()> GetSE) 776 : F(F), GetSE(GetSE) {} 777 778 StackSafetyInfo::StackSafetyInfo(StackSafetyInfo &&) = default; 779 780 StackSafetyInfo &StackSafetyInfo::operator=(StackSafetyInfo &&) = default; 781 782 StackSafetyInfo::~StackSafetyInfo() = default; 783 784 const StackSafetyInfo::InfoTy &StackSafetyInfo::getInfo() const { 785 if (!Info) { 786 StackSafetyLocalAnalysis SSLA(*F, GetSE()); 787 Info.reset(new InfoTy{SSLA.run()}); 788 } 789 return *Info; 790 } 791 792 void StackSafetyInfo::print(raw_ostream &O) const { 793 getInfo().Info.print(O, F->getName(), dyn_cast<Function>(F)); 794 O << "\n"; 795 } 796 797 const StackSafetyGlobalInfo::InfoTy &StackSafetyGlobalInfo::getInfo() const { 798 if (!Info) { 799 std::map<const GlobalValue *, FunctionInfo<GlobalValue>> Functions; 800 for (auto &F : M->functions()) { 801 if (!F.isDeclaration()) { 802 auto FI = GetSSI(F).getInfo().Info; 803 Functions.emplace(&F, std::move(FI)); 804 } 805 } 806 Info.reset(new InfoTy{ 807 createGlobalStackSafetyInfo(std::move(Functions), Index), {}}); 808 for (auto &FnKV : Info->Info) { 809 for (auto &KV : FnKV.second.Allocas) { 810 ++NumAllocaTotal; 811 const AllocaInst *AI = KV.first; 812 if (getStaticAllocaSizeRange(*AI).contains(KV.second.Range)) { 813 Info->SafeAllocas.insert(AI); 814 ++NumAllocaStackSafe; 815 } 816 } 817 } 818 if (StackSafetyPrint) 819 print(errs()); 820 } 821 return *Info; 822 } 823 824 std::vector<FunctionSummary::ParamAccess> 825 StackSafetyInfo::getParamAccesses(ModuleSummaryIndex &Index) const { 826 // Implementation transforms internal representation of parameter information 827 // into FunctionSummary format. 828 std::vector<FunctionSummary::ParamAccess> ParamAccesses; 829 for (const auto &KV : getInfo().Info.Params) { 830 auto &PS = KV.second; 831 // Parameter accessed by any or unknown offset, represented as FullSet by 832 // StackSafety, is handled as the parameter for which we have no 833 // StackSafety info at all. So drop it to reduce summary size. 834 if (PS.Range.isFullSet()) 835 continue; 836 837 ParamAccesses.emplace_back(KV.first, PS.Range); 838 FunctionSummary::ParamAccess &Param = ParamAccesses.back(); 839 840 Param.Calls.reserve(PS.Calls.size()); 841 for (auto &C : PS.Calls) { 842 // Parameter forwarded into another function by any or unknown offset 843 // will make ParamAccess::Range as FullSet anyway. So we can drop the 844 // entire parameter like we did above. 845 // TODO(vitalybuka): Return already filtered parameters from getInfo(). 846 if (C.second.isFullSet()) { 847 ParamAccesses.pop_back(); 848 break; 849 } 850 Param.Calls.emplace_back(C.first.ParamNo, 851 Index.getOrInsertValueInfo(C.first.Callee), 852 C.second); 853 } 854 } 855 for (FunctionSummary::ParamAccess &Param : ParamAccesses) { 856 sort(Param.Calls, [](const FunctionSummary::ParamAccess::Call &L, 857 const FunctionSummary::ParamAccess::Call &R) { 858 return std::tie(L.ParamNo, L.Callee) < std::tie(R.ParamNo, R.Callee); 859 }); 860 } 861 return ParamAccesses; 862 } 863 864 StackSafetyGlobalInfo::StackSafetyGlobalInfo() = default; 865 866 StackSafetyGlobalInfo::StackSafetyGlobalInfo( 867 Module *M, std::function<const StackSafetyInfo &(Function &F)> GetSSI, 868 const ModuleSummaryIndex *Index) 869 : M(M), GetSSI(GetSSI), Index(Index) { 870 if (StackSafetyRun) 871 getInfo(); 872 } 873 874 StackSafetyGlobalInfo::StackSafetyGlobalInfo(StackSafetyGlobalInfo &&) = 875 default; 876 877 StackSafetyGlobalInfo & 878 StackSafetyGlobalInfo::operator=(StackSafetyGlobalInfo &&) = default; 879 880 StackSafetyGlobalInfo::~StackSafetyGlobalInfo() = default; 881 882 bool StackSafetyGlobalInfo::isSafe(const AllocaInst &AI) const { 883 const auto &Info = getInfo(); 884 return Info.SafeAllocas.count(&AI); 885 } 886 887 void StackSafetyGlobalInfo::print(raw_ostream &O) const { 888 auto &SSI = getInfo().Info; 889 if (SSI.empty()) 890 return; 891 const Module &M = *SSI.begin()->first->getParent(); 892 for (auto &F : M.functions()) { 893 if (!F.isDeclaration()) { 894 SSI.find(&F)->second.print(O, F.getName(), &F); 895 O << "\n"; 896 O << "\n"; 897 } 898 } 899 } 900 901 LLVM_DUMP_METHOD void StackSafetyGlobalInfo::dump() const { print(dbgs()); } 902 903 AnalysisKey StackSafetyAnalysis::Key; 904 905 StackSafetyInfo StackSafetyAnalysis::run(Function &F, 906 FunctionAnalysisManager &AM) { 907 return StackSafetyInfo(&F, [&AM, &F]() -> ScalarEvolution & { 908 return AM.getResult<ScalarEvolutionAnalysis>(F); 909 }); 910 } 911 912 PreservedAnalyses StackSafetyPrinterPass::run(Function &F, 913 FunctionAnalysisManager &AM) { 914 OS << "'Stack Safety Local Analysis' for function '" << F.getName() << "'\n"; 915 AM.getResult<StackSafetyAnalysis>(F).print(OS); 916 return PreservedAnalyses::all(); 917 } 918 919 char StackSafetyInfoWrapperPass::ID = 0; 920 921 StackSafetyInfoWrapperPass::StackSafetyInfoWrapperPass() : FunctionPass(ID) { 922 initializeStackSafetyInfoWrapperPassPass(*PassRegistry::getPassRegistry()); 923 } 924 925 void StackSafetyInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 926 AU.addRequiredTransitive<ScalarEvolutionWrapperPass>(); 927 AU.setPreservesAll(); 928 } 929 930 void StackSafetyInfoWrapperPass::print(raw_ostream &O, const Module *M) const { 931 SSI.print(O); 932 } 933 934 bool StackSafetyInfoWrapperPass::runOnFunction(Function &F) { 935 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 936 SSI = {&F, [SE]() -> ScalarEvolution & { return *SE; }}; 937 return false; 938 } 939 940 AnalysisKey StackSafetyGlobalAnalysis::Key; 941 942 StackSafetyGlobalInfo 943 StackSafetyGlobalAnalysis::run(Module &M, ModuleAnalysisManager &AM) { 944 // FIXME: Lookup Module Summary. 945 FunctionAnalysisManager &FAM = 946 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 947 return {&M, 948 [&FAM](Function &F) -> const StackSafetyInfo & { 949 return FAM.getResult<StackSafetyAnalysis>(F); 950 }, 951 nullptr}; 952 } 953 954 PreservedAnalyses StackSafetyGlobalPrinterPass::run(Module &M, 955 ModuleAnalysisManager &AM) { 956 OS << "'Stack Safety Analysis' for module '" << M.getName() << "'\n"; 957 AM.getResult<StackSafetyGlobalAnalysis>(M).print(OS); 958 return PreservedAnalyses::all(); 959 } 960 961 char StackSafetyGlobalInfoWrapperPass::ID = 0; 962 963 StackSafetyGlobalInfoWrapperPass::StackSafetyGlobalInfoWrapperPass() 964 : ModulePass(ID) { 965 initializeStackSafetyGlobalInfoWrapperPassPass( 966 *PassRegistry::getPassRegistry()); 967 } 968 969 StackSafetyGlobalInfoWrapperPass::~StackSafetyGlobalInfoWrapperPass() = default; 970 971 void StackSafetyGlobalInfoWrapperPass::print(raw_ostream &O, 972 const Module *M) const { 973 SSGI.print(O); 974 } 975 976 void StackSafetyGlobalInfoWrapperPass::getAnalysisUsage( 977 AnalysisUsage &AU) const { 978 AU.setPreservesAll(); 979 AU.addRequired<StackSafetyInfoWrapperPass>(); 980 } 981 982 bool StackSafetyGlobalInfoWrapperPass::runOnModule(Module &M) { 983 const ModuleSummaryIndex *ImportSummary = nullptr; 984 if (auto *IndexWrapperPass = 985 getAnalysisIfAvailable<ImmutableModuleSummaryIndexWrapperPass>()) 986 ImportSummary = IndexWrapperPass->getIndex(); 987 988 SSGI = {&M, 989 [this](Function &F) -> const StackSafetyInfo & { 990 return getAnalysis<StackSafetyInfoWrapperPass>(F).getResult(); 991 }, 992 ImportSummary}; 993 return false; 994 } 995 996 bool llvm::needsParamAccessSummary(const Module &M) { 997 if (StackSafetyRun) 998 return true; 999 for (auto &F : M.functions()) 1000 if (F.hasFnAttribute(Attribute::SanitizeMemTag)) 1001 return true; 1002 return false; 1003 } 1004 1005 void llvm::generateParamAccessSummary(ModuleSummaryIndex &Index) { 1006 if (!Index.hasParamAccess()) 1007 return; 1008 const ConstantRange FullSet(FunctionSummary::ParamAccess::RangeWidth, true); 1009 1010 auto CountParamAccesses = [&](auto &Stat) { 1011 if (!AreStatisticsEnabled()) 1012 return; 1013 for (auto &GVS : Index) 1014 for (auto &GV : GVS.second.SummaryList) 1015 if (FunctionSummary *FS = dyn_cast<FunctionSummary>(GV.get())) 1016 Stat += FS->paramAccesses().size(); 1017 }; 1018 1019 CountParamAccesses(NumCombinedParamAccessesBefore); 1020 1021 std::map<const FunctionSummary *, FunctionInfo<FunctionSummary>> Functions; 1022 1023 // Convert the ModuleSummaryIndex to a FunctionMap 1024 for (auto &GVS : Index) { 1025 for (auto &GV : GVS.second.SummaryList) { 1026 FunctionSummary *FS = dyn_cast<FunctionSummary>(GV.get()); 1027 if (!FS || FS->paramAccesses().empty()) 1028 continue; 1029 if (FS->isLive() && FS->isDSOLocal()) { 1030 FunctionInfo<FunctionSummary> FI; 1031 for (auto &PS : FS->paramAccesses()) { 1032 auto &US = 1033 FI.Params 1034 .emplace(PS.ParamNo, FunctionSummary::ParamAccess::RangeWidth) 1035 .first->second; 1036 US.Range = PS.Use; 1037 for (auto &Call : PS.Calls) { 1038 assert(!Call.Offsets.isFullSet()); 1039 FunctionSummary *S = 1040 findCalleeFunctionSummary(Call.Callee, FS->modulePath()); 1041 ++NumCombinedCalleeLookupTotal; 1042 if (!S) { 1043 ++NumCombinedCalleeLookupFailed; 1044 US.Range = FullSet; 1045 US.Calls.clear(); 1046 break; 1047 } 1048 US.Calls.emplace(CallInfo<FunctionSummary>(S, Call.ParamNo), 1049 Call.Offsets); 1050 } 1051 } 1052 Functions.emplace(FS, std::move(FI)); 1053 } 1054 // Reset data for all summaries. Alive and DSO local will be set back from 1055 // of data flow results below. Anything else will not be accessed 1056 // by ThinLTO backend, so we can save on bitcode size. 1057 FS->setParamAccesses({}); 1058 } 1059 } 1060 NumCombinedDataFlowNodes += Functions.size(); 1061 StackSafetyDataFlowAnalysis<FunctionSummary> SSDFA( 1062 FunctionSummary::ParamAccess::RangeWidth, std::move(Functions)); 1063 for (auto &KV : SSDFA.run()) { 1064 std::vector<FunctionSummary::ParamAccess> NewParams; 1065 NewParams.reserve(KV.second.Params.size()); 1066 for (auto &Param : KV.second.Params) { 1067 // It's not needed as FullSet is processed the same as a missing value. 1068 if (Param.second.Range.isFullSet()) 1069 continue; 1070 NewParams.emplace_back(); 1071 FunctionSummary::ParamAccess &New = NewParams.back(); 1072 New.ParamNo = Param.first; 1073 New.Use = Param.second.Range; // Only range is needed. 1074 } 1075 const_cast<FunctionSummary *>(KV.first)->setParamAccesses( 1076 std::move(NewParams)); 1077 } 1078 1079 CountParamAccesses(NumCombinedParamAccessesAfter); 1080 } 1081 1082 static const char LocalPassArg[] = "stack-safety-local"; 1083 static const char LocalPassName[] = "Stack Safety Local Analysis"; 1084 INITIALIZE_PASS_BEGIN(StackSafetyInfoWrapperPass, LocalPassArg, LocalPassName, 1085 false, true) 1086 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 1087 INITIALIZE_PASS_END(StackSafetyInfoWrapperPass, LocalPassArg, LocalPassName, 1088 false, true) 1089 1090 static const char GlobalPassName[] = "Stack Safety Analysis"; 1091 INITIALIZE_PASS_BEGIN(StackSafetyGlobalInfoWrapperPass, DEBUG_TYPE, 1092 GlobalPassName, false, true) 1093 INITIALIZE_PASS_DEPENDENCY(StackSafetyInfoWrapperPass) 1094 INITIALIZE_PASS_DEPENDENCY(ImmutableModuleSummaryIndexWrapperPass) 1095 INITIALIZE_PASS_END(StackSafetyGlobalInfoWrapperPass, DEBUG_TYPE, 1096 GlobalPassName, false, true) 1097