xref: /llvm-project/llvm/lib/Analysis/StackSafetyAnalysis.cpp (revision 57335b6e2eaddfbef5d68b022fb1a65199c1cd86)
1 //===- StackSafetyAnalysis.cpp - Stack memory safety analysis -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //===----------------------------------------------------------------------===//
10 
11 #include "llvm/Analysis/StackSafetyAnalysis.h"
12 #include "llvm/ADT/APInt.h"
13 #include "llvm/ADT/SmallPtrSet.h"
14 #include "llvm/ADT/SmallVector.h"
15 #include "llvm/ADT/Statistic.h"
16 #include "llvm/Analysis/ModuleSummaryAnalysis.h"
17 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
18 #include "llvm/Analysis/StackLifetime.h"
19 #include "llvm/IR/ConstantRange.h"
20 #include "llvm/IR/DerivedTypes.h"
21 #include "llvm/IR/GlobalValue.h"
22 #include "llvm/IR/InstIterator.h"
23 #include "llvm/IR/Instructions.h"
24 #include "llvm/IR/IntrinsicInst.h"
25 #include "llvm/IR/ModuleSummaryIndex.h"
26 #include "llvm/InitializePasses.h"
27 #include "llvm/Support/Casting.h"
28 #include "llvm/Support/CommandLine.h"
29 #include "llvm/Support/FormatVariadic.h"
30 #include "llvm/Support/raw_ostream.h"
31 #include <algorithm>
32 #include <memory>
33 #include <tuple>
34 
35 using namespace llvm;
36 
37 #define DEBUG_TYPE "stack-safety"
38 
39 STATISTIC(NumAllocaStackSafe, "Number of safe allocas");
40 STATISTIC(NumAllocaTotal, "Number of total allocas");
41 
42 STATISTIC(NumCombinedCalleeLookupTotal,
43           "Number of total callee lookups on combined index.");
44 STATISTIC(NumCombinedCalleeLookupFailed,
45           "Number of failed callee lookups on combined index.");
46 STATISTIC(NumModuleCalleeLookupTotal,
47           "Number of total callee lookups on module index.");
48 STATISTIC(NumModuleCalleeLookupFailed,
49           "Number of failed callee lookups on module index.");
50 STATISTIC(NumCombinedParamAccessesBefore,
51           "Number of total param accesses before generateParamAccessSummary.");
52 STATISTIC(NumCombinedParamAccessesAfter,
53           "Number of total param accesses after generateParamAccessSummary.");
54 STATISTIC(NumCombinedDataFlowNodes,
55           "Number of total nodes in combined index for dataflow processing.");
56 STATISTIC(NumIndexCalleeUnhandled, "Number of index callee which are unhandled.");
57 STATISTIC(NumIndexCalleeMultipleWeak, "Number of index callee non-unique weak.");
58 STATISTIC(NumIndexCalleeMultipleExternal, "Number of index callee non-unique external.");
59 
60 
61 static cl::opt<int> StackSafetyMaxIterations("stack-safety-max-iterations",
62                                              cl::init(20), cl::Hidden);
63 
64 static cl::opt<bool> StackSafetyPrint("stack-safety-print", cl::init(false),
65                                       cl::Hidden);
66 
67 static cl::opt<bool> StackSafetyRun("stack-safety-run", cl::init(false),
68                                     cl::Hidden);
69 
70 namespace {
71 
72 // Check if we should bailout for such ranges.
73 bool isUnsafe(const ConstantRange &R) {
74   return R.isEmptySet() || R.isFullSet() || R.isUpperSignWrapped();
75 }
76 
77 ConstantRange addOverflowNever(const ConstantRange &L, const ConstantRange &R) {
78   assert(!L.isSignWrappedSet());
79   assert(!R.isSignWrappedSet());
80   if (L.signedAddMayOverflow(R) !=
81       ConstantRange::OverflowResult::NeverOverflows)
82     return ConstantRange::getFull(L.getBitWidth());
83   ConstantRange Result = L.add(R);
84   assert(!Result.isSignWrappedSet());
85   return Result;
86 }
87 
88 ConstantRange unionNoWrap(const ConstantRange &L, const ConstantRange &R) {
89   assert(!L.isSignWrappedSet());
90   assert(!R.isSignWrappedSet());
91   auto Result = L.unionWith(R);
92   // Two non-wrapped sets can produce wrapped.
93   if (Result.isSignWrappedSet())
94     Result = ConstantRange::getFull(Result.getBitWidth());
95   return Result;
96 }
97 
98 /// Describes use of address in as a function call argument.
99 template <typename CalleeTy> struct CallInfo {
100   /// Function being called.
101   const CalleeTy *Callee = nullptr;
102   /// Index of argument which pass address.
103   size_t ParamNo = 0;
104 
105   CallInfo(const CalleeTy *Callee, size_t ParamNo)
106       : Callee(Callee), ParamNo(ParamNo) {}
107 
108   struct Less {
109     bool operator()(const CallInfo &L, const CallInfo &R) const {
110       return std::tie(L.ParamNo, L.Callee) < std::tie(R.ParamNo, R.Callee);
111     }
112   };
113 };
114 
115 /// Describe uses of address (alloca or parameter) inside of the function.
116 template <typename CalleeTy> struct UseInfo {
117   // Access range if the address (alloca or parameters).
118   // It is allowed to be empty-set when there are no known accesses.
119   ConstantRange Range;
120   std::map<const Instruction *, ConstantRange> Accesses;
121 
122   // List of calls which pass address as an argument.
123   // Value is offset range of address from base address (alloca or calling
124   // function argument). Range should never set to empty-set, that is an invalid
125   // access range that can cause empty-set to be propagated with
126   // ConstantRange::add
127   using CallsTy = std::map<CallInfo<CalleeTy>, ConstantRange,
128                            typename CallInfo<CalleeTy>::Less>;
129   CallsTy Calls;
130 
131   UseInfo(unsigned PointerSize) : Range{PointerSize, false} {}
132 
133   void updateRange(const ConstantRange &R) { Range = unionNoWrap(Range, R); }
134   void addRange(const Instruction *I, const ConstantRange &R) {
135     auto Ins = Accesses.emplace(I, R);
136     if (!Ins.second)
137       Ins.first->second = unionNoWrap(Ins.first->second, R);
138     updateRange(R);
139   }
140 };
141 
142 template <typename CalleeTy>
143 raw_ostream &operator<<(raw_ostream &OS, const UseInfo<CalleeTy> &U) {
144   OS << U.Range;
145   for (auto &Call : U.Calls)
146     OS << ", "
147        << "@" << Call.first.Callee->getName() << "(arg" << Call.first.ParamNo
148        << ", " << Call.second << ")";
149   return OS;
150 }
151 
152 /// Calculate the allocation size of a given alloca. Returns empty range
153 // in case of confution.
154 ConstantRange getStaticAllocaSizeRange(const AllocaInst &AI) {
155   const DataLayout &DL = AI.getModule()->getDataLayout();
156   TypeSize TS = DL.getTypeAllocSize(AI.getAllocatedType());
157   unsigned PointerSize = DL.getMaxPointerSizeInBits();
158   // Fallback to empty range for alloca size.
159   ConstantRange R = ConstantRange::getEmpty(PointerSize);
160   if (TS.isScalable())
161     return R;
162   APInt APSize(PointerSize, TS.getFixedSize(), true);
163   if (APSize.isNonPositive())
164     return R;
165   if (AI.isArrayAllocation()) {
166     const auto *C = dyn_cast<ConstantInt>(AI.getArraySize());
167     if (!C)
168       return R;
169     bool Overflow = false;
170     APInt Mul = C->getValue();
171     if (Mul.isNonPositive())
172       return R;
173     Mul = Mul.sextOrTrunc(PointerSize);
174     APSize = APSize.smul_ov(Mul, Overflow);
175     if (Overflow)
176       return R;
177   }
178   R = ConstantRange(APInt::getZero(PointerSize), APSize);
179   assert(!isUnsafe(R));
180   return R;
181 }
182 
183 template <typename CalleeTy> struct FunctionInfo {
184   std::map<const AllocaInst *, UseInfo<CalleeTy>> Allocas;
185   std::map<uint32_t, UseInfo<CalleeTy>> Params;
186   // TODO: describe return value as depending on one or more of its arguments.
187 
188   // StackSafetyDataFlowAnalysis counter stored here for faster access.
189   int UpdateCount = 0;
190 
191   void print(raw_ostream &O, StringRef Name, const Function *F) const {
192     // TODO: Consider different printout format after
193     // StackSafetyDataFlowAnalysis. Calls and parameters are irrelevant then.
194     O << "  @" << Name << ((F && F->isDSOLocal()) ? "" : " dso_preemptable")
195       << ((F && F->isInterposable()) ? " interposable" : "") << "\n";
196 
197     O << "    args uses:\n";
198     for (auto &KV : Params) {
199       O << "      ";
200       if (F)
201         O << F->getArg(KV.first)->getName();
202       else
203         O << formatv("arg{0}", KV.first);
204       O << "[]: " << KV.second << "\n";
205     }
206 
207     O << "    allocas uses:\n";
208     if (F) {
209       for (auto &I : instructions(F)) {
210         if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
211           auto &AS = Allocas.find(AI)->second;
212           O << "      " << AI->getName() << "["
213             << getStaticAllocaSizeRange(*AI).getUpper() << "]: " << AS << "\n";
214         }
215       }
216     } else {
217       assert(Allocas.empty());
218     }
219   }
220 };
221 
222 using GVToSSI = std::map<const GlobalValue *, FunctionInfo<GlobalValue>>;
223 
224 } // namespace
225 
226 struct StackSafetyInfo::InfoTy {
227   FunctionInfo<GlobalValue> Info;
228 };
229 
230 struct StackSafetyGlobalInfo::InfoTy {
231   GVToSSI Info;
232   SmallPtrSet<const AllocaInst *, 8> SafeAllocas;
233   SmallPtrSet<const Instruction *, 8> SafeAccesses;
234 };
235 
236 namespace {
237 
238 class StackSafetyLocalAnalysis {
239   Function &F;
240   const DataLayout &DL;
241   ScalarEvolution &SE;
242   unsigned PointerSize = 0;
243 
244   const ConstantRange UnknownRange;
245 
246   ConstantRange offsetFrom(Value *Addr, Value *Base);
247   ConstantRange getAccessRange(Value *Addr, Value *Base,
248                                const ConstantRange &SizeRange);
249   ConstantRange getAccessRange(Value *Addr, Value *Base, TypeSize Size);
250   ConstantRange getMemIntrinsicAccessRange(const MemIntrinsic *MI, const Use &U,
251                                            Value *Base);
252 
253   void analyzeAllUses(Value *Ptr, UseInfo<GlobalValue> &AS,
254                       const StackLifetime &SL);
255 
256 public:
257   StackSafetyLocalAnalysis(Function &F, ScalarEvolution &SE)
258       : F(F), DL(F.getParent()->getDataLayout()), SE(SE),
259         PointerSize(DL.getPointerSizeInBits()),
260         UnknownRange(PointerSize, true) {}
261 
262   // Run the transformation on the associated function.
263   FunctionInfo<GlobalValue> run();
264 };
265 
266 ConstantRange StackSafetyLocalAnalysis::offsetFrom(Value *Addr, Value *Base) {
267   if (!SE.isSCEVable(Addr->getType()) || !SE.isSCEVable(Base->getType()))
268     return UnknownRange;
269 
270   auto *PtrTy = IntegerType::getInt8PtrTy(SE.getContext());
271   const SCEV *AddrExp = SE.getTruncateOrZeroExtend(SE.getSCEV(Addr), PtrTy);
272   const SCEV *BaseExp = SE.getTruncateOrZeroExtend(SE.getSCEV(Base), PtrTy);
273   const SCEV *Diff = SE.getMinusSCEV(AddrExp, BaseExp);
274   if (isa<SCEVCouldNotCompute>(Diff))
275     return UnknownRange;
276 
277   ConstantRange Offset = SE.getSignedRange(Diff);
278   if (isUnsafe(Offset))
279     return UnknownRange;
280   return Offset.sextOrTrunc(PointerSize);
281 }
282 
283 ConstantRange
284 StackSafetyLocalAnalysis::getAccessRange(Value *Addr, Value *Base,
285                                          const ConstantRange &SizeRange) {
286   // Zero-size loads and stores do not access memory.
287   if (SizeRange.isEmptySet())
288     return ConstantRange::getEmpty(PointerSize);
289   assert(!isUnsafe(SizeRange));
290 
291   ConstantRange Offsets = offsetFrom(Addr, Base);
292   if (isUnsafe(Offsets))
293     return UnknownRange;
294 
295   Offsets = addOverflowNever(Offsets, SizeRange);
296   if (isUnsafe(Offsets))
297     return UnknownRange;
298   return Offsets;
299 }
300 
301 ConstantRange StackSafetyLocalAnalysis::getAccessRange(Value *Addr, Value *Base,
302                                                        TypeSize Size) {
303   if (Size.isScalable())
304     return UnknownRange;
305   APInt APSize(PointerSize, Size.getFixedSize(), true);
306   if (APSize.isNegative())
307     return UnknownRange;
308   return getAccessRange(Addr, Base,
309                         ConstantRange(APInt::getZero(PointerSize), APSize));
310 }
311 
312 ConstantRange StackSafetyLocalAnalysis::getMemIntrinsicAccessRange(
313     const MemIntrinsic *MI, const Use &U, Value *Base) {
314   if (const auto *MTI = dyn_cast<MemTransferInst>(MI)) {
315     if (MTI->getRawSource() != U && MTI->getRawDest() != U)
316       return ConstantRange::getEmpty(PointerSize);
317   } else {
318     if (MI->getRawDest() != U)
319       return ConstantRange::getEmpty(PointerSize);
320   }
321 
322   auto *CalculationTy = IntegerType::getIntNTy(SE.getContext(), PointerSize);
323   if (!SE.isSCEVable(MI->getLength()->getType()))
324     return UnknownRange;
325 
326   const SCEV *Expr =
327       SE.getTruncateOrZeroExtend(SE.getSCEV(MI->getLength()), CalculationTy);
328   ConstantRange Sizes = SE.getSignedRange(Expr);
329   if (Sizes.getUpper().isNegative() || isUnsafe(Sizes))
330     return UnknownRange;
331   Sizes = Sizes.sextOrTrunc(PointerSize);
332   ConstantRange SizeRange(APInt::getZero(PointerSize), Sizes.getUpper() - 1);
333   return getAccessRange(U, Base, SizeRange);
334 }
335 
336 /// The function analyzes all local uses of Ptr (alloca or argument) and
337 /// calculates local access range and all function calls where it was used.
338 void StackSafetyLocalAnalysis::analyzeAllUses(Value *Ptr,
339                                               UseInfo<GlobalValue> &US,
340                                               const StackLifetime &SL) {
341   SmallPtrSet<const Value *, 16> Visited;
342   SmallVector<const Value *, 8> WorkList;
343   WorkList.push_back(Ptr);
344   const AllocaInst *AI = dyn_cast<AllocaInst>(Ptr);
345 
346   // A DFS search through all uses of the alloca in bitcasts/PHI/GEPs/etc.
347   while (!WorkList.empty()) {
348     const Value *V = WorkList.pop_back_val();
349     for (const Use &UI : V->uses()) {
350       const auto *I = cast<Instruction>(UI.getUser());
351       if (!SL.isReachable(I))
352         continue;
353 
354       assert(V == UI.get());
355 
356       switch (I->getOpcode()) {
357       case Instruction::Load: {
358         if (AI && !SL.isAliveAfter(AI, I)) {
359           US.addRange(I, UnknownRange);
360           break;
361         }
362         US.addRange(I,
363                     getAccessRange(UI, Ptr, DL.getTypeStoreSize(I->getType())));
364         break;
365       }
366 
367       case Instruction::VAArg:
368         // "va-arg" from a pointer is safe.
369         break;
370       case Instruction::Store: {
371         if (V == I->getOperand(0)) {
372           // Stored the pointer - conservatively assume it may be unsafe.
373           US.addRange(I, UnknownRange);
374           break;
375         }
376         if (AI && !SL.isAliveAfter(AI, I)) {
377           US.addRange(I, UnknownRange);
378           break;
379         }
380         US.addRange(
381             I, getAccessRange(
382                    UI, Ptr, DL.getTypeStoreSize(I->getOperand(0)->getType())));
383         break;
384       }
385 
386       case Instruction::Ret:
387         // Information leak.
388         // FIXME: Process parameters correctly. This is a leak only if we return
389         // alloca.
390         US.addRange(I, UnknownRange);
391         break;
392 
393       case Instruction::Call:
394       case Instruction::Invoke: {
395         if (I->isLifetimeStartOrEnd())
396           break;
397 
398         if (AI && !SL.isAliveAfter(AI, I)) {
399           US.addRange(I, UnknownRange);
400           break;
401         }
402 
403         if (const MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) {
404           US.addRange(I, getMemIntrinsicAccessRange(MI, UI, Ptr));
405           break;
406         }
407 
408         const auto &CB = cast<CallBase>(*I);
409         if (!CB.isArgOperand(&UI)) {
410           US.addRange(I, UnknownRange);
411           break;
412         }
413 
414         unsigned ArgNo = CB.getArgOperandNo(&UI);
415         if (CB.isByValArgument(ArgNo)) {
416           US.addRange(I, getAccessRange(
417                              UI, Ptr,
418                              DL.getTypeStoreSize(CB.getParamByValType(ArgNo))));
419           break;
420         }
421 
422         // FIXME: consult devirt?
423         // Do not follow aliases, otherwise we could inadvertently follow
424         // dso_preemptable aliases or aliases with interposable linkage.
425         const GlobalValue *Callee =
426             dyn_cast<GlobalValue>(CB.getCalledOperand()->stripPointerCasts());
427         if (!Callee) {
428           US.addRange(I, UnknownRange);
429           break;
430         }
431 
432         assert(isa<Function>(Callee) || isa<GlobalAlias>(Callee));
433         ConstantRange Offsets = offsetFrom(UI, Ptr);
434         auto Insert =
435             US.Calls.emplace(CallInfo<GlobalValue>(Callee, ArgNo), Offsets);
436         if (!Insert.second)
437           Insert.first->second = Insert.first->second.unionWith(Offsets);
438         break;
439       }
440 
441       default:
442         if (Visited.insert(I).second)
443           WorkList.push_back(cast<const Instruction>(I));
444       }
445     }
446   }
447 }
448 
449 FunctionInfo<GlobalValue> StackSafetyLocalAnalysis::run() {
450   FunctionInfo<GlobalValue> Info;
451   assert(!F.isDeclaration() &&
452          "Can't run StackSafety on a function declaration");
453 
454   LLVM_DEBUG(dbgs() << "[StackSafety] " << F.getName() << "\n");
455 
456   SmallVector<AllocaInst *, 64> Allocas;
457   for (auto &I : instructions(F))
458     if (auto *AI = dyn_cast<AllocaInst>(&I))
459       Allocas.push_back(AI);
460   StackLifetime SL(F, Allocas, StackLifetime::LivenessType::Must);
461   SL.run();
462 
463   for (auto *AI : Allocas) {
464     auto &UI = Info.Allocas.emplace(AI, PointerSize).first->second;
465     analyzeAllUses(AI, UI, SL);
466   }
467 
468   for (Argument &A : F.args()) {
469     // Non pointers and bypass arguments are not going to be used in any global
470     // processing.
471     if (A.getType()->isPointerTy() && !A.hasByValAttr()) {
472       auto &UI = Info.Params.emplace(A.getArgNo(), PointerSize).first->second;
473       analyzeAllUses(&A, UI, SL);
474     }
475   }
476 
477   LLVM_DEBUG(Info.print(dbgs(), F.getName(), &F));
478   LLVM_DEBUG(dbgs() << "\n[StackSafety] done\n");
479   return Info;
480 }
481 
482 template <typename CalleeTy> class StackSafetyDataFlowAnalysis {
483   using FunctionMap = std::map<const CalleeTy *, FunctionInfo<CalleeTy>>;
484 
485   FunctionMap Functions;
486   const ConstantRange UnknownRange;
487 
488   // Callee-to-Caller multimap.
489   DenseMap<const CalleeTy *, SmallVector<const CalleeTy *, 4>> Callers;
490   SetVector<const CalleeTy *> WorkList;
491 
492   bool updateOneUse(UseInfo<CalleeTy> &US, bool UpdateToFullSet);
493   void updateOneNode(const CalleeTy *Callee, FunctionInfo<CalleeTy> &FS);
494   void updateOneNode(const CalleeTy *Callee) {
495     updateOneNode(Callee, Functions.find(Callee)->second);
496   }
497   void updateAllNodes() {
498     for (auto &F : Functions)
499       updateOneNode(F.first, F.second);
500   }
501   void runDataFlow();
502 #ifndef NDEBUG
503   void verifyFixedPoint();
504 #endif
505 
506 public:
507   StackSafetyDataFlowAnalysis(uint32_t PointerBitWidth, FunctionMap Functions)
508       : Functions(std::move(Functions)),
509         UnknownRange(ConstantRange::getFull(PointerBitWidth)) {}
510 
511   const FunctionMap &run();
512 
513   ConstantRange getArgumentAccessRange(const CalleeTy *Callee, unsigned ParamNo,
514                                        const ConstantRange &Offsets) const;
515 };
516 
517 template <typename CalleeTy>
518 ConstantRange StackSafetyDataFlowAnalysis<CalleeTy>::getArgumentAccessRange(
519     const CalleeTy *Callee, unsigned ParamNo,
520     const ConstantRange &Offsets) const {
521   auto FnIt = Functions.find(Callee);
522   // Unknown callee (outside of LTO domain or an indirect call).
523   if (FnIt == Functions.end())
524     return UnknownRange;
525   auto &FS = FnIt->second;
526   auto ParamIt = FS.Params.find(ParamNo);
527   if (ParamIt == FS.Params.end())
528     return UnknownRange;
529   auto &Access = ParamIt->second.Range;
530   if (Access.isEmptySet())
531     return Access;
532   if (Access.isFullSet())
533     return UnknownRange;
534   return addOverflowNever(Access, Offsets);
535 }
536 
537 template <typename CalleeTy>
538 bool StackSafetyDataFlowAnalysis<CalleeTy>::updateOneUse(UseInfo<CalleeTy> &US,
539                                                          bool UpdateToFullSet) {
540   bool Changed = false;
541   for (auto &KV : US.Calls) {
542     assert(!KV.second.isEmptySet() &&
543            "Param range can't be empty-set, invalid offset range");
544 
545     ConstantRange CalleeRange =
546         getArgumentAccessRange(KV.first.Callee, KV.first.ParamNo, KV.second);
547     if (!US.Range.contains(CalleeRange)) {
548       Changed = true;
549       if (UpdateToFullSet)
550         US.Range = UnknownRange;
551       else
552         US.updateRange(CalleeRange);
553     }
554   }
555   return Changed;
556 }
557 
558 template <typename CalleeTy>
559 void StackSafetyDataFlowAnalysis<CalleeTy>::updateOneNode(
560     const CalleeTy *Callee, FunctionInfo<CalleeTy> &FS) {
561   bool UpdateToFullSet = FS.UpdateCount > StackSafetyMaxIterations;
562   bool Changed = false;
563   for (auto &KV : FS.Params)
564     Changed |= updateOneUse(KV.second, UpdateToFullSet);
565 
566   if (Changed) {
567     LLVM_DEBUG(dbgs() << "=== update [" << FS.UpdateCount
568                       << (UpdateToFullSet ? ", full-set" : "") << "] " << &FS
569                       << "\n");
570     // Callers of this function may need updating.
571     for (auto &CallerID : Callers[Callee])
572       WorkList.insert(CallerID);
573 
574     ++FS.UpdateCount;
575   }
576 }
577 
578 template <typename CalleeTy>
579 void StackSafetyDataFlowAnalysis<CalleeTy>::runDataFlow() {
580   SmallVector<const CalleeTy *, 16> Callees;
581   for (auto &F : Functions) {
582     Callees.clear();
583     auto &FS = F.second;
584     for (auto &KV : FS.Params)
585       for (auto &CS : KV.second.Calls)
586         Callees.push_back(CS.first.Callee);
587 
588     llvm::sort(Callees);
589     Callees.erase(std::unique(Callees.begin(), Callees.end()), Callees.end());
590 
591     for (auto &Callee : Callees)
592       Callers[Callee].push_back(F.first);
593   }
594 
595   updateAllNodes();
596 
597   while (!WorkList.empty()) {
598     const CalleeTy *Callee = WorkList.back();
599     WorkList.pop_back();
600     updateOneNode(Callee);
601   }
602 }
603 
604 #ifndef NDEBUG
605 template <typename CalleeTy>
606 void StackSafetyDataFlowAnalysis<CalleeTy>::verifyFixedPoint() {
607   WorkList.clear();
608   updateAllNodes();
609   assert(WorkList.empty());
610 }
611 #endif
612 
613 template <typename CalleeTy>
614 const typename StackSafetyDataFlowAnalysis<CalleeTy>::FunctionMap &
615 StackSafetyDataFlowAnalysis<CalleeTy>::run() {
616   runDataFlow();
617   LLVM_DEBUG(verifyFixedPoint());
618   return Functions;
619 }
620 
621 FunctionSummary *findCalleeFunctionSummary(ValueInfo VI, StringRef ModuleId) {
622   if (!VI)
623     return nullptr;
624   auto SummaryList = VI.getSummaryList();
625   GlobalValueSummary* S = nullptr;
626   for (const auto& GVS : SummaryList) {
627     if (!GVS->isLive())
628       continue;
629     if (const AliasSummary *AS = dyn_cast<AliasSummary>(GVS.get()))
630       if (!AS->hasAliasee())
631         continue;
632     if (!isa<FunctionSummary>(GVS->getBaseObject()))
633       continue;
634     if (GlobalValue::isLocalLinkage(GVS->linkage())) {
635       if (GVS->modulePath() == ModuleId) {
636         S = GVS.get();
637         break;
638       }
639     } else if (GlobalValue::isExternalLinkage(GVS->linkage())) {
640       if (S) {
641         ++NumIndexCalleeMultipleExternal;
642         return nullptr;
643       }
644       S = GVS.get();
645     } else if (GlobalValue::isWeakLinkage(GVS->linkage())) {
646       if (S) {
647         ++NumIndexCalleeMultipleWeak;
648         return nullptr;
649       }
650       S = GVS.get();
651     } else if (GlobalValue::isAvailableExternallyLinkage(GVS->linkage()) ||
652                GlobalValue::isLinkOnceLinkage(GVS->linkage())) {
653       if (SummaryList.size() == 1)
654         S = GVS.get();
655       // According thinLTOResolvePrevailingGUID these are unlikely prevailing.
656     } else {
657       ++NumIndexCalleeUnhandled;
658     }
659   };
660   while (S) {
661     if (!S->isLive() || !S->isDSOLocal())
662       return nullptr;
663     if (FunctionSummary *FS = dyn_cast<FunctionSummary>(S))
664       return FS;
665     AliasSummary *AS = dyn_cast<AliasSummary>(S);
666     if (!AS || !AS->hasAliasee())
667       return nullptr;
668     S = AS->getBaseObject();
669     if (S == AS)
670       return nullptr;
671   }
672   return nullptr;
673 }
674 
675 const Function *findCalleeInModule(const GlobalValue *GV) {
676   while (GV) {
677     if (GV->isDeclaration() || GV->isInterposable() || !GV->isDSOLocal())
678       return nullptr;
679     if (const Function *F = dyn_cast<Function>(GV))
680       return F;
681     const GlobalAlias *A = dyn_cast<GlobalAlias>(GV);
682     if (!A)
683       return nullptr;
684     GV = A->getBaseObject();
685     if (GV == A)
686       return nullptr;
687   }
688   return nullptr;
689 }
690 
691 const ConstantRange *findParamAccess(const FunctionSummary &FS,
692                                      uint32_t ParamNo) {
693   assert(FS.isLive());
694   assert(FS.isDSOLocal());
695   for (auto &PS : FS.paramAccesses())
696     if (ParamNo == PS.ParamNo)
697       return &PS.Use;
698   return nullptr;
699 }
700 
701 void resolveAllCalls(UseInfo<GlobalValue> &Use,
702                      const ModuleSummaryIndex *Index) {
703   ConstantRange FullSet(Use.Range.getBitWidth(), true);
704   // Move Use.Calls to a temp storage and repopulate - don't use std::move as it
705   // leaves Use.Calls in an undefined state.
706   UseInfo<GlobalValue>::CallsTy TmpCalls;
707   std::swap(TmpCalls, Use.Calls);
708   for (const auto &C : TmpCalls) {
709     const Function *F = findCalleeInModule(C.first.Callee);
710     if (F) {
711       Use.Calls.emplace(CallInfo<GlobalValue>(F, C.first.ParamNo), C.second);
712       continue;
713     }
714 
715     if (!Index)
716       return Use.updateRange(FullSet);
717     FunctionSummary *FS =
718         findCalleeFunctionSummary(Index->getValueInfo(C.first.Callee->getGUID()),
719                                   C.first.Callee->getParent()->getModuleIdentifier());
720     ++NumModuleCalleeLookupTotal;
721     if (!FS) {
722       ++NumModuleCalleeLookupFailed;
723       return Use.updateRange(FullSet);
724     }
725     const ConstantRange *Found = findParamAccess(*FS, C.first.ParamNo);
726     if (!Found || Found->isFullSet())
727       return Use.updateRange(FullSet);
728     ConstantRange Access = Found->sextOrTrunc(Use.Range.getBitWidth());
729     if (!Access.isEmptySet())
730       Use.updateRange(addOverflowNever(Access, C.second));
731   }
732 }
733 
734 GVToSSI createGlobalStackSafetyInfo(
735     std::map<const GlobalValue *, FunctionInfo<GlobalValue>> Functions,
736     const ModuleSummaryIndex *Index) {
737   GVToSSI SSI;
738   if (Functions.empty())
739     return SSI;
740 
741   // FIXME: Simplify printing and remove copying here.
742   auto Copy = Functions;
743 
744   for (auto &FnKV : Copy)
745     for (auto &KV : FnKV.second.Params) {
746       resolveAllCalls(KV.second, Index);
747       if (KV.second.Range.isFullSet())
748         KV.second.Calls.clear();
749     }
750 
751   uint32_t PointerSize = Copy.begin()
752                              ->first->getParent()
753                              ->getDataLayout()
754                              .getMaxPointerSizeInBits();
755   StackSafetyDataFlowAnalysis<GlobalValue> SSDFA(PointerSize, std::move(Copy));
756 
757   for (auto &F : SSDFA.run()) {
758     auto FI = F.second;
759     auto &SrcF = Functions[F.first];
760     for (auto &KV : FI.Allocas) {
761       auto &A = KV.second;
762       resolveAllCalls(A, Index);
763       for (auto &C : A.Calls) {
764         A.updateRange(SSDFA.getArgumentAccessRange(C.first.Callee,
765                                                    C.first.ParamNo, C.second));
766       }
767       // FIXME: This is needed only to preserve calls in print() results.
768       A.Calls = SrcF.Allocas.find(KV.first)->second.Calls;
769     }
770     for (auto &KV : FI.Params) {
771       auto &P = KV.second;
772       P.Calls = SrcF.Params.find(KV.first)->second.Calls;
773     }
774     SSI[F.first] = std::move(FI);
775   }
776 
777   return SSI;
778 }
779 
780 } // end anonymous namespace
781 
782 StackSafetyInfo::StackSafetyInfo() = default;
783 
784 StackSafetyInfo::StackSafetyInfo(Function *F,
785                                  std::function<ScalarEvolution &()> GetSE)
786     : F(F), GetSE(GetSE) {}
787 
788 StackSafetyInfo::StackSafetyInfo(StackSafetyInfo &&) = default;
789 
790 StackSafetyInfo &StackSafetyInfo::operator=(StackSafetyInfo &&) = default;
791 
792 StackSafetyInfo::~StackSafetyInfo() = default;
793 
794 const StackSafetyInfo::InfoTy &StackSafetyInfo::getInfo() const {
795   if (!Info) {
796     StackSafetyLocalAnalysis SSLA(*F, GetSE());
797     Info.reset(new InfoTy{SSLA.run()});
798   }
799   return *Info;
800 }
801 
802 void StackSafetyInfo::print(raw_ostream &O) const {
803   getInfo().Info.print(O, F->getName(), dyn_cast<Function>(F));
804   O << "\n";
805 }
806 
807 const StackSafetyGlobalInfo::InfoTy &StackSafetyGlobalInfo::getInfo() const {
808   if (!Info) {
809     std::map<const GlobalValue *, FunctionInfo<GlobalValue>> Functions;
810     for (auto &F : M->functions()) {
811       if (!F.isDeclaration()) {
812         auto FI = GetSSI(F).getInfo().Info;
813         Functions.emplace(&F, std::move(FI));
814       }
815     }
816     Info.reset(new InfoTy{
817         createGlobalStackSafetyInfo(std::move(Functions), Index), {}, {}});
818 
819     std::map<const Instruction *, bool> AccessIsUnsafe;
820     for (auto &FnKV : Info->Info) {
821       for (auto &KV : FnKV.second.Allocas) {
822         ++NumAllocaTotal;
823         const AllocaInst *AI = KV.first;
824         auto AIRange = getStaticAllocaSizeRange(*AI);
825         if (AIRange.contains(KV.second.Range)) {
826           Info->SafeAllocas.insert(AI);
827           ++NumAllocaStackSafe;
828         }
829         for (const auto &A : KV.second.Accesses)
830           AccessIsUnsafe[A.first] |= !AIRange.contains(A.second);
831       }
832     }
833 
834     for (const auto &KV : AccessIsUnsafe)
835       if (!KV.second)
836         Info->SafeAccesses.insert(KV.first);
837 
838     if (StackSafetyPrint)
839       print(errs());
840   }
841   return *Info;
842 }
843 
844 std::vector<FunctionSummary::ParamAccess>
845 StackSafetyInfo::getParamAccesses(ModuleSummaryIndex &Index) const {
846   // Implementation transforms internal representation of parameter information
847   // into FunctionSummary format.
848   std::vector<FunctionSummary::ParamAccess> ParamAccesses;
849   for (const auto &KV : getInfo().Info.Params) {
850     auto &PS = KV.second;
851     // Parameter accessed by any or unknown offset, represented as FullSet by
852     // StackSafety, is handled as the parameter for which we have no
853     // StackSafety info at all. So drop it to reduce summary size.
854     if (PS.Range.isFullSet())
855       continue;
856 
857     ParamAccesses.emplace_back(KV.first, PS.Range);
858     FunctionSummary::ParamAccess &Param = ParamAccesses.back();
859 
860     Param.Calls.reserve(PS.Calls.size());
861     for (auto &C : PS.Calls) {
862       // Parameter forwarded into another function by any or unknown offset
863       // will make ParamAccess::Range as FullSet anyway. So we can drop the
864       // entire parameter like we did above.
865       // TODO(vitalybuka): Return already filtered parameters from getInfo().
866       if (C.second.isFullSet()) {
867         ParamAccesses.pop_back();
868         break;
869       }
870       Param.Calls.emplace_back(C.first.ParamNo,
871                                Index.getOrInsertValueInfo(C.first.Callee),
872                                C.second);
873     }
874   }
875   for (FunctionSummary::ParamAccess &Param : ParamAccesses) {
876     sort(Param.Calls, [](const FunctionSummary::ParamAccess::Call &L,
877                          const FunctionSummary::ParamAccess::Call &R) {
878       return std::tie(L.ParamNo, L.Callee) < std::tie(R.ParamNo, R.Callee);
879     });
880   }
881   return ParamAccesses;
882 }
883 
884 StackSafetyGlobalInfo::StackSafetyGlobalInfo() = default;
885 
886 StackSafetyGlobalInfo::StackSafetyGlobalInfo(
887     Module *M, std::function<const StackSafetyInfo &(Function &F)> GetSSI,
888     const ModuleSummaryIndex *Index)
889     : M(M), GetSSI(GetSSI), Index(Index) {
890   if (StackSafetyRun)
891     getInfo();
892 }
893 
894 StackSafetyGlobalInfo::StackSafetyGlobalInfo(StackSafetyGlobalInfo &&) =
895     default;
896 
897 StackSafetyGlobalInfo &
898 StackSafetyGlobalInfo::operator=(StackSafetyGlobalInfo &&) = default;
899 
900 StackSafetyGlobalInfo::~StackSafetyGlobalInfo() = default;
901 
902 bool StackSafetyGlobalInfo::isSafe(const AllocaInst &AI) const {
903   const auto &Info = getInfo();
904   return Info.SafeAllocas.count(&AI);
905 }
906 
907 bool StackSafetyGlobalInfo::accessIsSafe(const Instruction &I) const {
908   const auto &Info = getInfo();
909   return Info.SafeAccesses.count(&I);
910 }
911 
912 void StackSafetyGlobalInfo::print(raw_ostream &O) const {
913   auto &SSI = getInfo().Info;
914   if (SSI.empty())
915     return;
916   const Module &M = *SSI.begin()->first->getParent();
917   for (auto &F : M.functions()) {
918     if (!F.isDeclaration()) {
919       SSI.find(&F)->second.print(O, F.getName(), &F);
920       O << "    safe accesses:"
921         << "\n";
922       for (const auto &I : instructions(F)) {
923         if (accessIsSafe(I)) {
924           O << "     " << I << "\n";
925         }
926       }
927       O << "\n";
928     }
929   }
930 }
931 
932 LLVM_DUMP_METHOD void StackSafetyGlobalInfo::dump() const { print(dbgs()); }
933 
934 AnalysisKey StackSafetyAnalysis::Key;
935 
936 StackSafetyInfo StackSafetyAnalysis::run(Function &F,
937                                          FunctionAnalysisManager &AM) {
938   return StackSafetyInfo(&F, [&AM, &F]() -> ScalarEvolution & {
939     return AM.getResult<ScalarEvolutionAnalysis>(F);
940   });
941 }
942 
943 PreservedAnalyses StackSafetyPrinterPass::run(Function &F,
944                                               FunctionAnalysisManager &AM) {
945   OS << "'Stack Safety Local Analysis' for function '" << F.getName() << "'\n";
946   AM.getResult<StackSafetyAnalysis>(F).print(OS);
947   return PreservedAnalyses::all();
948 }
949 
950 char StackSafetyInfoWrapperPass::ID = 0;
951 
952 StackSafetyInfoWrapperPass::StackSafetyInfoWrapperPass() : FunctionPass(ID) {
953   initializeStackSafetyInfoWrapperPassPass(*PassRegistry::getPassRegistry());
954 }
955 
956 void StackSafetyInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
957   AU.addRequiredTransitive<ScalarEvolutionWrapperPass>();
958   AU.setPreservesAll();
959 }
960 
961 void StackSafetyInfoWrapperPass::print(raw_ostream &O, const Module *M) const {
962   SSI.print(O);
963 }
964 
965 bool StackSafetyInfoWrapperPass::runOnFunction(Function &F) {
966   auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
967   SSI = {&F, [SE]() -> ScalarEvolution & { return *SE; }};
968   return false;
969 }
970 
971 AnalysisKey StackSafetyGlobalAnalysis::Key;
972 
973 StackSafetyGlobalInfo
974 StackSafetyGlobalAnalysis::run(Module &M, ModuleAnalysisManager &AM) {
975   // FIXME: Lookup Module Summary.
976   FunctionAnalysisManager &FAM =
977       AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
978   return {&M,
979           [&FAM](Function &F) -> const StackSafetyInfo & {
980             return FAM.getResult<StackSafetyAnalysis>(F);
981           },
982           nullptr};
983 }
984 
985 PreservedAnalyses StackSafetyGlobalPrinterPass::run(Module &M,
986                                                     ModuleAnalysisManager &AM) {
987   OS << "'Stack Safety Analysis' for module '" << M.getName() << "'\n";
988   AM.getResult<StackSafetyGlobalAnalysis>(M).print(OS);
989   return PreservedAnalyses::all();
990 }
991 
992 char StackSafetyGlobalInfoWrapperPass::ID = 0;
993 
994 StackSafetyGlobalInfoWrapperPass::StackSafetyGlobalInfoWrapperPass()
995     : ModulePass(ID) {
996   initializeStackSafetyGlobalInfoWrapperPassPass(
997       *PassRegistry::getPassRegistry());
998 }
999 
1000 StackSafetyGlobalInfoWrapperPass::~StackSafetyGlobalInfoWrapperPass() = default;
1001 
1002 void StackSafetyGlobalInfoWrapperPass::print(raw_ostream &O,
1003                                              const Module *M) const {
1004   SSGI.print(O);
1005 }
1006 
1007 void StackSafetyGlobalInfoWrapperPass::getAnalysisUsage(
1008     AnalysisUsage &AU) const {
1009   AU.setPreservesAll();
1010   AU.addRequired<StackSafetyInfoWrapperPass>();
1011 }
1012 
1013 bool StackSafetyGlobalInfoWrapperPass::runOnModule(Module &M) {
1014   const ModuleSummaryIndex *ImportSummary = nullptr;
1015   if (auto *IndexWrapperPass =
1016           getAnalysisIfAvailable<ImmutableModuleSummaryIndexWrapperPass>())
1017     ImportSummary = IndexWrapperPass->getIndex();
1018 
1019   SSGI = {&M,
1020           [this](Function &F) -> const StackSafetyInfo & {
1021             return getAnalysis<StackSafetyInfoWrapperPass>(F).getResult();
1022           },
1023           ImportSummary};
1024   return false;
1025 }
1026 
1027 bool llvm::needsParamAccessSummary(const Module &M) {
1028   if (StackSafetyRun)
1029     return true;
1030   for (auto &F : M.functions())
1031     if (F.hasFnAttribute(Attribute::SanitizeMemTag))
1032       return true;
1033   return false;
1034 }
1035 
1036 void llvm::generateParamAccessSummary(ModuleSummaryIndex &Index) {
1037   if (!Index.hasParamAccess())
1038     return;
1039   const ConstantRange FullSet(FunctionSummary::ParamAccess::RangeWidth, true);
1040 
1041   auto CountParamAccesses = [&](auto &Stat) {
1042     if (!AreStatisticsEnabled())
1043       return;
1044     for (auto &GVS : Index)
1045       for (auto &GV : GVS.second.SummaryList)
1046         if (FunctionSummary *FS = dyn_cast<FunctionSummary>(GV.get()))
1047           Stat += FS->paramAccesses().size();
1048   };
1049 
1050   CountParamAccesses(NumCombinedParamAccessesBefore);
1051 
1052   std::map<const FunctionSummary *, FunctionInfo<FunctionSummary>> Functions;
1053 
1054   // Convert the ModuleSummaryIndex to a FunctionMap
1055   for (auto &GVS : Index) {
1056     for (auto &GV : GVS.second.SummaryList) {
1057       FunctionSummary *FS = dyn_cast<FunctionSummary>(GV.get());
1058       if (!FS || FS->paramAccesses().empty())
1059         continue;
1060       if (FS->isLive() && FS->isDSOLocal()) {
1061         FunctionInfo<FunctionSummary> FI;
1062         for (auto &PS : FS->paramAccesses()) {
1063           auto &US =
1064               FI.Params
1065                   .emplace(PS.ParamNo, FunctionSummary::ParamAccess::RangeWidth)
1066                   .first->second;
1067           US.Range = PS.Use;
1068           for (auto &Call : PS.Calls) {
1069             assert(!Call.Offsets.isFullSet());
1070             FunctionSummary *S =
1071                 findCalleeFunctionSummary(Call.Callee, FS->modulePath());
1072             ++NumCombinedCalleeLookupTotal;
1073             if (!S) {
1074               ++NumCombinedCalleeLookupFailed;
1075               US.Range = FullSet;
1076               US.Calls.clear();
1077               break;
1078             }
1079             US.Calls.emplace(CallInfo<FunctionSummary>(S, Call.ParamNo),
1080                              Call.Offsets);
1081           }
1082         }
1083         Functions.emplace(FS, std::move(FI));
1084       }
1085       // Reset data for all summaries. Alive and DSO local will be set back from
1086       // of data flow results below. Anything else will not be accessed
1087       // by ThinLTO backend, so we can save on bitcode size.
1088       FS->setParamAccesses({});
1089     }
1090   }
1091   NumCombinedDataFlowNodes += Functions.size();
1092   StackSafetyDataFlowAnalysis<FunctionSummary> SSDFA(
1093       FunctionSummary::ParamAccess::RangeWidth, std::move(Functions));
1094   for (auto &KV : SSDFA.run()) {
1095     std::vector<FunctionSummary::ParamAccess> NewParams;
1096     NewParams.reserve(KV.second.Params.size());
1097     for (auto &Param : KV.second.Params) {
1098       // It's not needed as FullSet is processed the same as a missing value.
1099       if (Param.second.Range.isFullSet())
1100         continue;
1101       NewParams.emplace_back();
1102       FunctionSummary::ParamAccess &New = NewParams.back();
1103       New.ParamNo = Param.first;
1104       New.Use = Param.second.Range; // Only range is needed.
1105     }
1106     const_cast<FunctionSummary *>(KV.first)->setParamAccesses(
1107         std::move(NewParams));
1108   }
1109 
1110   CountParamAccesses(NumCombinedParamAccessesAfter);
1111 }
1112 
1113 static const char LocalPassArg[] = "stack-safety-local";
1114 static const char LocalPassName[] = "Stack Safety Local Analysis";
1115 INITIALIZE_PASS_BEGIN(StackSafetyInfoWrapperPass, LocalPassArg, LocalPassName,
1116                       false, true)
1117 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
1118 INITIALIZE_PASS_END(StackSafetyInfoWrapperPass, LocalPassArg, LocalPassName,
1119                     false, true)
1120 
1121 static const char GlobalPassName[] = "Stack Safety Analysis";
1122 INITIALIZE_PASS_BEGIN(StackSafetyGlobalInfoWrapperPass, DEBUG_TYPE,
1123                       GlobalPassName, false, true)
1124 INITIALIZE_PASS_DEPENDENCY(StackSafetyInfoWrapperPass)
1125 INITIALIZE_PASS_DEPENDENCY(ImmutableModuleSummaryIndexWrapperPass)
1126 INITIALIZE_PASS_END(StackSafetyGlobalInfoWrapperPass, DEBUG_TYPE,
1127                     GlobalPassName, false, true)
1128