1 //===- PhiValues.cpp - Phi Value Analysis ---------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Analysis/PhiValues.h" 11 #include "llvm/ADT/SmallPtrSet.h" 12 #include "llvm/ADT/SmallVector.h" 13 #include "llvm/IR/Instructions.h" 14 15 using namespace llvm; 16 17 bool PhiValues::invalidate(Function &, const PreservedAnalyses &PA, 18 FunctionAnalysisManager::Invalidator &) { 19 // PhiValues is invalidated if it isn't preserved. 20 auto PAC = PA.getChecker<PhiValuesAnalysis>(); 21 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()); 22 } 23 24 // The goal here is to find all of the non-phi values reachable from this phi, 25 // and to do the same for all of the phis reachable from this phi, as doing so 26 // is necessary anyway in order to get the values for this phi. We do this using 27 // Tarjan's algorithm with Nuutila's improvements to find the strongly connected 28 // components of the phi graph rooted in this phi: 29 // * All phis in a strongly connected component will have the same reachable 30 // non-phi values. The SCC may not be the maximal subgraph for that set of 31 // reachable values, but finding out that isn't really necessary (it would 32 // only reduce the amount of memory needed to store the values). 33 // * Tarjan's algorithm completes components in a bottom-up manner, i.e. it 34 // never completes a component before the components reachable from it have 35 // been completed. This means that when we complete a component we have 36 // everything we need to collect the values reachable from that component. 37 // * We collect both the non-phi values reachable from each SCC, as that's what 38 // we're ultimately interested in, and all of the reachable values, i.e. 39 // including phis, as that makes invalidateValue easier. 40 void PhiValues::processPhi(const PHINode *Phi, 41 SmallVector<const PHINode *, 8> &Stack) { 42 // Initialize the phi with the next depth number. 43 assert(DepthMap.lookup(Phi) == 0); 44 assert(NextDepthNumber != UINT_MAX); 45 unsigned int DepthNumber = ++NextDepthNumber; 46 DepthMap[Phi] = DepthNumber; 47 48 // Recursively process the incoming phis of this phi. 49 for (Value *PhiOp : Phi->incoming_values()) { 50 if (PHINode *PhiPhiOp = dyn_cast<PHINode>(PhiOp)) { 51 // Recurse if the phi has not yet been visited. 52 if (DepthMap.lookup(PhiPhiOp) == 0) 53 processPhi(PhiPhiOp, Stack); 54 assert(DepthMap.lookup(PhiPhiOp) != 0); 55 // If the phi did not become part of a component then this phi and that 56 // phi are part of the same component, so adjust the depth number. 57 if (!ReachableMap.count(DepthMap[PhiPhiOp])) 58 DepthMap[Phi] = std::min(DepthMap[Phi], DepthMap[PhiPhiOp]); 59 } 60 } 61 62 // Now that incoming phis have been handled, push this phi to the stack. 63 Stack.push_back(Phi); 64 65 // If the depth number has not changed then we've finished collecting the phis 66 // of a strongly connected component. 67 if (DepthMap[Phi] == DepthNumber) { 68 // Collect the reachable values for this component. The phis of this 69 // component will be those on top of the depth stach with the same or 70 // greater depth number. 71 ConstValueSet Reachable; 72 while (!Stack.empty() && DepthMap[Stack.back()] >= DepthNumber) { 73 const PHINode *ComponentPhi = Stack.pop_back_val(); 74 Reachable.insert(ComponentPhi); 75 DepthMap[ComponentPhi] = DepthNumber; 76 for (Value *Op : ComponentPhi->incoming_values()) { 77 if (PHINode *PhiOp = dyn_cast<PHINode>(Op)) { 78 // If this phi is not part of the same component then that component 79 // is guaranteed to have been completed before this one. Therefore we 80 // can just add its reachable values to the reachable values of this 81 // component. 82 auto It = ReachableMap.find(DepthMap[PhiOp]); 83 if (It != ReachableMap.end()) 84 Reachable.insert(It->second.begin(), It->second.end()); 85 } else { 86 Reachable.insert(Op); 87 } 88 } 89 } 90 ReachableMap.insert({DepthNumber,Reachable}); 91 92 // Filter out phis to get the non-phi reachable values. 93 ValueSet NonPhi; 94 for (const Value *V : Reachable) 95 if (!isa<PHINode>(V)) 96 NonPhi.insert(const_cast<Value*>(V)); 97 NonPhiReachableMap.insert({DepthNumber,NonPhi}); 98 } 99 } 100 101 const PhiValues::ValueSet &PhiValues::getValuesForPhi(const PHINode *PN) { 102 if (DepthMap.count(PN) == 0) { 103 SmallVector<const PHINode *, 8> Stack; 104 processPhi(PN, Stack); 105 assert(Stack.empty()); 106 } 107 assert(DepthMap.lookup(PN) != 0); 108 return NonPhiReachableMap[DepthMap[PN]]; 109 } 110 111 void PhiValues::invalidateValue(const Value *V) { 112 // Components that can reach V are invalid. 113 SmallVector<unsigned int, 8> InvalidComponents; 114 for (auto &Pair : ReachableMap) 115 if (Pair.second.count(V)) 116 InvalidComponents.push_back(Pair.first); 117 118 for (unsigned int N : InvalidComponents) { 119 for (const Value *V : ReachableMap[N]) 120 if (const PHINode *PN = dyn_cast<PHINode>(V)) 121 DepthMap.erase(PN); 122 NonPhiReachableMap.erase(N); 123 ReachableMap.erase(N); 124 } 125 } 126 127 void PhiValues::releaseMemory() { 128 DepthMap.clear(); 129 NonPhiReachableMap.clear(); 130 ReachableMap.clear(); 131 } 132 133 void PhiValues::print(raw_ostream &OS) const { 134 // Iterate through the phi nodes of the function rather than iterating through 135 // DepthMap in order to get predictable ordering. 136 for (const BasicBlock &BB : F) { 137 for (const PHINode &PN : BB.phis()) { 138 OS << "PHI "; 139 PN.printAsOperand(OS, false); 140 OS << " has values:\n"; 141 unsigned int N = DepthMap.lookup(&PN); 142 auto It = NonPhiReachableMap.find(N); 143 if (It == NonPhiReachableMap.end()) 144 OS << " UNKNOWN\n"; 145 else if (It->second.empty()) 146 OS << " NONE\n"; 147 else 148 for (Value *V : It->second) 149 // Printing of an instruction prints two spaces at the start, so 150 // handle instructions and everything else slightly differently in 151 // order to get consistent indenting. 152 if (Instruction *I = dyn_cast<Instruction>(V)) 153 OS << *I << "\n"; 154 else 155 OS << " " << *V << "\n"; 156 } 157 } 158 } 159 160 AnalysisKey PhiValuesAnalysis::Key; 161 PhiValues PhiValuesAnalysis::run(Function &F, FunctionAnalysisManager &) { 162 return PhiValues(F); 163 } 164 165 PreservedAnalyses PhiValuesPrinterPass::run(Function &F, 166 FunctionAnalysisManager &AM) { 167 OS << "PHI Values for function: " << F.getName() << "\n"; 168 PhiValues &PI = AM.getResult<PhiValuesAnalysis>(F); 169 for (const BasicBlock &BB : F) 170 for (const PHINode &PN : BB.phis()) 171 PI.getValuesForPhi(&PN); 172 PI.print(OS); 173 return PreservedAnalyses::all(); 174 } 175 176 PhiValuesWrapperPass::PhiValuesWrapperPass() : FunctionPass(ID) { 177 initializePhiValuesWrapperPassPass(*PassRegistry::getPassRegistry()); 178 } 179 180 bool PhiValuesWrapperPass::runOnFunction(Function &F) { 181 Result.reset(new PhiValues(F)); 182 return false; 183 } 184 185 void PhiValuesWrapperPass::releaseMemory() { 186 Result->releaseMemory(); 187 } 188 189 void PhiValuesWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 190 AU.setPreservesAll(); 191 } 192 193 char PhiValuesWrapperPass::ID = 0; 194 195 INITIALIZE_PASS(PhiValuesWrapperPass, "phi-values", "Phi Values Analysis", false, 196 true) 197