xref: /llvm-project/llvm/lib/Analysis/PHITransAddr.cpp (revision 4e37f068dcf4fb21c5e34581b90ebbf659025020)
1 //===- PHITransAddr.cpp - PHI Translation for Addresses -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the PHITransAddr class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Analysis/PHITransAddr.h"
14 #include "llvm/Analysis/InstructionSimplify.h"
15 #include "llvm/Analysis/ValueTracking.h"
16 #include "llvm/Config/llvm-config.h"
17 #include "llvm/IR/Constants.h"
18 #include "llvm/IR/Dominators.h"
19 #include "llvm/IR/Instructions.h"
20 #include "llvm/Support/ErrorHandling.h"
21 #include "llvm/Support/raw_ostream.h"
22 using namespace llvm;
23 
24 static cl::opt<bool> EnableAddPhiTranslation(
25     "gvn-add-phi-translation", cl::init(false), cl::Hidden,
26     cl::desc("Enable phi-translation of add instructions"));
27 
28 static bool canPHITrans(Instruction *Inst) {
29   if (isa<PHINode>(Inst) || isa<GetElementPtrInst>(Inst) || isa<CastInst>(Inst))
30     return true;
31 
32   if (Inst->getOpcode() == Instruction::Add &&
33       isa<ConstantInt>(Inst->getOperand(1)))
34     return true;
35 
36   return false;
37 }
38 
39 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
40 LLVM_DUMP_METHOD void PHITransAddr::dump() const {
41   if (!Addr) {
42     dbgs() << "PHITransAddr: null\n";
43     return;
44   }
45   dbgs() << "PHITransAddr: " << *Addr << "\n";
46   for (unsigned i = 0, e = InstInputs.size(); i != e; ++i)
47     dbgs() << "  Input #" << i << " is " << *InstInputs[i] << "\n";
48 }
49 #endif
50 
51 static bool verifySubExpr(Value *Expr,
52                           SmallVectorImpl<Instruction *> &InstInputs) {
53   // If this is a non-instruction value, there is nothing to do.
54   Instruction *I = dyn_cast<Instruction>(Expr);
55   if (!I) return true;
56 
57   // If it's an instruction, it is either in Tmp or its operands recursively
58   // are.
59   SmallVectorImpl<Instruction *>::iterator Entry = find(InstInputs, I);
60   if (Entry != InstInputs.end()) {
61     InstInputs.erase(Entry);
62     return true;
63   }
64 
65   // If it isn't in the InstInputs list it is a subexpr incorporated into the
66   // address.  Validate that it is phi translatable.
67   if (!canPHITrans(I)) {
68     errs() << "Instruction in PHITransAddr is not phi-translatable:\n";
69     errs() << *I << '\n';
70     llvm_unreachable("Either something is missing from InstInputs or "
71                      "canPHITrans is wrong.");
72   }
73 
74   // Validate the operands of the instruction.
75   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
76     if (!verifySubExpr(I->getOperand(i), InstInputs))
77       return false;
78 
79   return true;
80 }
81 
82 /// verify - Check internal consistency of this data structure.  If the
83 /// structure is valid, it returns true.  If invalid, it prints errors and
84 /// returns false.
85 bool PHITransAddr::verify() const {
86   if (!Addr) return true;
87 
88   SmallVector<Instruction*, 8> Tmp(InstInputs.begin(), InstInputs.end());
89 
90   if (!verifySubExpr(Addr, Tmp))
91     return false;
92 
93   if (!Tmp.empty()) {
94     errs() << "PHITransAddr contains extra instructions:\n";
95     for (unsigned i = 0, e = InstInputs.size(); i != e; ++i)
96       errs() << "  InstInput #" << i << " is " << *InstInputs[i] << "\n";
97     llvm_unreachable("This is unexpected.");
98   }
99 
100   // a-ok.
101   return true;
102 }
103 
104 /// isPotentiallyPHITranslatable - If this needs PHI translation, return true
105 /// if we have some hope of doing it.  This should be used as a filter to
106 /// avoid calling PHITranslateValue in hopeless situations.
107 bool PHITransAddr::isPotentiallyPHITranslatable() const {
108   // If the input value is not an instruction, or if it is not defined in CurBB,
109   // then we don't need to phi translate it.
110   Instruction *Inst = dyn_cast<Instruction>(Addr);
111   return !Inst || canPHITrans(Inst);
112 }
113 
114 static void RemoveInstInputs(Value *V,
115                              SmallVectorImpl<Instruction*> &InstInputs) {
116   Instruction *I = dyn_cast<Instruction>(V);
117   if (!I) return;
118 
119   // If the instruction is in the InstInputs list, remove it.
120   SmallVectorImpl<Instruction *>::iterator Entry = find(InstInputs, I);
121   if (Entry != InstInputs.end()) {
122     InstInputs.erase(Entry);
123     return;
124   }
125 
126   assert(!isa<PHINode>(I) && "Error, removing something that isn't an input");
127 
128   // Otherwise, it must have instruction inputs itself.  Zap them recursively.
129   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
130     if (Instruction *Op = dyn_cast<Instruction>(I->getOperand(i)))
131       RemoveInstInputs(Op, InstInputs);
132   }
133 }
134 
135 Value *PHITransAddr::translateSubExpr(Value *V, BasicBlock *CurBB,
136                                       BasicBlock *PredBB,
137                                       const DominatorTree *DT) {
138   // If this is a non-instruction value, it can't require PHI translation.
139   Instruction *Inst = dyn_cast<Instruction>(V);
140   if (!Inst) return V;
141 
142   // Determine whether 'Inst' is an input to our PHI translatable expression.
143   bool isInput = is_contained(InstInputs, Inst);
144 
145   // Handle inputs instructions if needed.
146   if (isInput) {
147     if (Inst->getParent() != CurBB) {
148       // If it is an input defined in a different block, then it remains an
149       // input.
150       return Inst;
151     }
152 
153     // If 'Inst' is defined in this block and is an input that needs to be phi
154     // translated, we need to incorporate the value into the expression or fail.
155 
156     // In either case, the instruction itself isn't an input any longer.
157     InstInputs.erase(find(InstInputs, Inst));
158 
159     // If this is a PHI, go ahead and translate it.
160     if (PHINode *PN = dyn_cast<PHINode>(Inst))
161       return addAsInput(PN->getIncomingValueForBlock(PredBB));
162 
163     // If this is a non-phi value, and it is analyzable, we can incorporate it
164     // into the expression by making all instruction operands be inputs.
165     if (!canPHITrans(Inst))
166       return nullptr;
167 
168     // All instruction operands are now inputs (and of course, they may also be
169     // defined in this block, so they may need to be phi translated themselves.
170     for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
171       if (Instruction *Op = dyn_cast<Instruction>(Inst->getOperand(i)))
172         InstInputs.push_back(Op);
173   }
174 
175   // Ok, it must be an intermediate result (either because it started that way
176   // or because we just incorporated it into the expression).  See if its
177   // operands need to be phi translated, and if so, reconstruct it.
178 
179   if (CastInst *Cast = dyn_cast<CastInst>(Inst)) {
180     Value *PHIIn = translateSubExpr(Cast->getOperand(0), CurBB, PredBB, DT);
181     if (!PHIIn) return nullptr;
182     if (PHIIn == Cast->getOperand(0))
183       return Cast;
184 
185     // Find an available version of this cast.
186 
187     // Constants are trivial to find.
188     if (Constant *C = dyn_cast<Constant>(PHIIn))
189       return addAsInput(
190           ConstantExpr::getCast(Cast->getOpcode(), C, Cast->getType()));
191 
192     // Otherwise we have to see if a casted version of the incoming pointer
193     // is available.  If so, we can use it, otherwise we have to fail.
194     for (User *U : PHIIn->users()) {
195       if (CastInst *CastI = dyn_cast<CastInst>(U))
196         if (CastI->getOpcode() == Cast->getOpcode() &&
197             CastI->getType() == Cast->getType() &&
198             (!DT || DT->dominates(CastI->getParent(), PredBB)))
199           return CastI;
200     }
201     return nullptr;
202   }
203 
204   // Handle getelementptr with at least one PHI translatable operand.
205   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Inst)) {
206     SmallVector<Value*, 8> GEPOps;
207     bool AnyChanged = false;
208     for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i) {
209       Value *GEPOp = translateSubExpr(GEP->getOperand(i), CurBB, PredBB, DT);
210       if (!GEPOp) return nullptr;
211 
212       AnyChanged |= GEPOp != GEP->getOperand(i);
213       GEPOps.push_back(GEPOp);
214     }
215 
216     if (!AnyChanged)
217       return GEP;
218 
219     // Simplify the GEP to handle 'gep x, 0' -> x etc.
220     if (Value *V = simplifyGEPInst(GEP->getSourceElementType(), GEPOps[0],
221                                    ArrayRef<Value *>(GEPOps).slice(1),
222                                    GEP->isInBounds(), {DL, TLI, DT, AC})) {
223       for (unsigned i = 0, e = GEPOps.size(); i != e; ++i)
224         RemoveInstInputs(GEPOps[i], InstInputs);
225 
226       return addAsInput(V);
227     }
228 
229     // Scan to see if we have this GEP available.
230     Value *APHIOp = GEPOps[0];
231     for (User *U : APHIOp->users()) {
232       if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U))
233         if (GEPI->getType() == GEP->getType() &&
234             GEPI->getSourceElementType() == GEP->getSourceElementType() &&
235             GEPI->getNumOperands() == GEPOps.size() &&
236             GEPI->getParent()->getParent() == CurBB->getParent() &&
237             (!DT || DT->dominates(GEPI->getParent(), PredBB))) {
238           if (std::equal(GEPOps.begin(), GEPOps.end(), GEPI->op_begin()))
239             return GEPI;
240         }
241     }
242     return nullptr;
243   }
244 
245   // Handle add with a constant RHS.
246   if (Inst->getOpcode() == Instruction::Add &&
247       isa<ConstantInt>(Inst->getOperand(1))) {
248     // PHI translate the LHS.
249     Constant *RHS = cast<ConstantInt>(Inst->getOperand(1));
250     bool isNSW = cast<BinaryOperator>(Inst)->hasNoSignedWrap();
251     bool isNUW = cast<BinaryOperator>(Inst)->hasNoUnsignedWrap();
252 
253     Value *LHS = translateSubExpr(Inst->getOperand(0), CurBB, PredBB, DT);
254     if (!LHS) return nullptr;
255 
256     // If the PHI translated LHS is an add of a constant, fold the immediates.
257     if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(LHS))
258       if (BOp->getOpcode() == Instruction::Add)
259         if (ConstantInt *CI = dyn_cast<ConstantInt>(BOp->getOperand(1))) {
260           LHS = BOp->getOperand(0);
261           RHS = ConstantExpr::getAdd(RHS, CI);
262           isNSW = isNUW = false;
263 
264           // If the old 'LHS' was an input, add the new 'LHS' as an input.
265           if (is_contained(InstInputs, BOp)) {
266             RemoveInstInputs(BOp, InstInputs);
267             addAsInput(LHS);
268           }
269         }
270 
271     // See if the add simplifies away.
272     if (Value *Res = simplifyAddInst(LHS, RHS, isNSW, isNUW, {DL, TLI, DT, AC})) {
273       // If we simplified the operands, the LHS is no longer an input, but Res
274       // is.
275       RemoveInstInputs(LHS, InstInputs);
276       return addAsInput(Res);
277     }
278 
279     // If we didn't modify the add, just return it.
280     if (LHS == Inst->getOperand(0) && RHS == Inst->getOperand(1))
281       return Inst;
282 
283     // Otherwise, see if we have this add available somewhere.
284     for (User *U : LHS->users()) {
285       if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U))
286         if (BO->getOpcode() == Instruction::Add &&
287             BO->getOperand(0) == LHS && BO->getOperand(1) == RHS &&
288             BO->getParent()->getParent() == CurBB->getParent() &&
289             (!DT || DT->dominates(BO->getParent(), PredBB)))
290           return BO;
291     }
292 
293     return nullptr;
294   }
295 
296   // Otherwise, we failed.
297   return nullptr;
298 }
299 
300 /// PHITranslateValue - PHI translate the current address up the CFG from
301 /// CurBB to Pred, updating our state to reflect any needed changes.  If
302 /// 'MustDominate' is true, the translated value must dominate PredBB.
303 Value *PHITransAddr::translateValue(BasicBlock *CurBB, BasicBlock *PredBB,
304                                     const DominatorTree *DT,
305                                     bool MustDominate) {
306   assert(DT || !MustDominate);
307   assert(verify() && "Invalid PHITransAddr!");
308   if (DT && DT->isReachableFromEntry(PredBB))
309     Addr = translateSubExpr(Addr, CurBB, PredBB, DT);
310   else
311     Addr = nullptr;
312   assert(verify() && "Invalid PHITransAddr!");
313 
314   if (MustDominate)
315     // Make sure the value is live in the predecessor.
316     if (Instruction *Inst = dyn_cast_or_null<Instruction>(Addr))
317       if (!DT->dominates(Inst->getParent(), PredBB))
318         Addr = nullptr;
319 
320   return Addr;
321 }
322 
323 /// PHITranslateWithInsertion - PHI translate this value into the specified
324 /// predecessor block, inserting a computation of the value if it is
325 /// unavailable.
326 ///
327 /// All newly created instructions are added to the NewInsts list.  This
328 /// returns null on failure.
329 ///
330 Value *
331 PHITransAddr::translateWithInsertion(BasicBlock *CurBB, BasicBlock *PredBB,
332                                      const DominatorTree &DT,
333                                      SmallVectorImpl<Instruction *> &NewInsts) {
334   unsigned NISize = NewInsts.size();
335 
336   // Attempt to PHI translate with insertion.
337   Addr = insertTranslatedSubExpr(Addr, CurBB, PredBB, DT, NewInsts);
338 
339   // If successful, return the new value.
340   if (Addr) return Addr;
341 
342   // If not, destroy any intermediate instructions inserted.
343   while (NewInsts.size() != NISize)
344     NewInsts.pop_back_val()->eraseFromParent();
345   return nullptr;
346 }
347 
348 /// insertTranslatedSubExpr - Insert a computation of the PHI translated
349 /// version of 'V' for the edge PredBB->CurBB into the end of the PredBB
350 /// block.  All newly created instructions are added to the NewInsts list.
351 /// This returns null on failure.
352 ///
353 Value *PHITransAddr::insertTranslatedSubExpr(
354     Value *InVal, BasicBlock *CurBB, BasicBlock *PredBB,
355     const DominatorTree &DT, SmallVectorImpl<Instruction *> &NewInsts) {
356   // See if we have a version of this value already available and dominating
357   // PredBB.  If so, there is no need to insert a new instance of it.
358   PHITransAddr Tmp(InVal, DL, AC);
359   if (Value *Addr =
360           Tmp.translateValue(CurBB, PredBB, &DT, /*MustDominate=*/true))
361     return Addr;
362 
363   // We don't need to PHI translate values which aren't instructions.
364   auto *Inst = dyn_cast<Instruction>(InVal);
365   if (!Inst)
366     return nullptr;
367 
368   // Handle cast of PHI translatable value.
369   if (CastInst *Cast = dyn_cast<CastInst>(Inst)) {
370     Value *OpVal = insertTranslatedSubExpr(Cast->getOperand(0), CurBB, PredBB,
371                                            DT, NewInsts);
372     if (!OpVal) return nullptr;
373 
374     // Otherwise insert a cast at the end of PredBB.
375     CastInst *New = CastInst::Create(Cast->getOpcode(), OpVal, InVal->getType(),
376                                      InVal->getName() + ".phi.trans.insert",
377                                      PredBB->getTerminator());
378     New->setDebugLoc(Inst->getDebugLoc());
379     NewInsts.push_back(New);
380     return New;
381   }
382 
383   // Handle getelementptr with at least one PHI operand.
384   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Inst)) {
385     SmallVector<Value*, 8> GEPOps;
386     BasicBlock *CurBB = GEP->getParent();
387     for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i) {
388       Value *OpVal = insertTranslatedSubExpr(GEP->getOperand(i), CurBB, PredBB,
389                                              DT, NewInsts);
390       if (!OpVal) return nullptr;
391       GEPOps.push_back(OpVal);
392     }
393 
394     GetElementPtrInst *Result = GetElementPtrInst::Create(
395         GEP->getSourceElementType(), GEPOps[0], ArrayRef(GEPOps).slice(1),
396         InVal->getName() + ".phi.trans.insert", PredBB->getTerminator());
397     Result->setDebugLoc(Inst->getDebugLoc());
398     Result->setIsInBounds(GEP->isInBounds());
399     NewInsts.push_back(Result);
400     return Result;
401   }
402 
403   // Handle add with a constant RHS.
404   if (EnableAddPhiTranslation && Inst->getOpcode() == Instruction::Add &&
405       isa<ConstantInt>(Inst->getOperand(1))) {
406 
407     // FIXME: This code works, but it is unclear that we actually want to insert
408     // a big chain of computation in order to make a value available in a block.
409     // This needs to be evaluated carefully to consider its cost trade offs.
410 
411     // PHI translate the LHS.
412     Value *OpVal = insertTranslatedSubExpr(Inst->getOperand(0), CurBB, PredBB,
413                                            DT, NewInsts);
414     if (OpVal == nullptr)
415       return nullptr;
416 
417     BinaryOperator *Res = BinaryOperator::CreateAdd(OpVal, Inst->getOperand(1),
418                                            InVal->getName()+".phi.trans.insert",
419                                                     PredBB->getTerminator());
420     Res->setHasNoSignedWrap(cast<BinaryOperator>(Inst)->hasNoSignedWrap());
421     Res->setHasNoUnsignedWrap(cast<BinaryOperator>(Inst)->hasNoUnsignedWrap());
422     NewInsts.push_back(Res);
423     return Res;
424   }
425 
426   return nullptr;
427 }
428