xref: /llvm-project/llvm/lib/Analysis/ModuleSummaryAnalysis.cpp (revision d3342e5b922209e471b610ca1e254d9481b65319)
1 //===- ModuleSummaryAnalysis.cpp - Module summary index builder -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass builds a ModuleSummaryIndex object for the module, to be written
10 // to bitcode or LLVM assembly.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Analysis/ModuleSummaryAnalysis.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/MapVector.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SetVector.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/Analysis/BlockFrequencyInfo.h"
24 #include "llvm/Analysis/BranchProbabilityInfo.h"
25 #include "llvm/Analysis/ConstantFolding.h"
26 #include "llvm/Analysis/IndirectCallPromotionAnalysis.h"
27 #include "llvm/Analysis/LoopInfo.h"
28 #include "llvm/Analysis/MemoryProfileInfo.h"
29 #include "llvm/Analysis/ProfileSummaryInfo.h"
30 #include "llvm/Analysis/StackSafetyAnalysis.h"
31 #include "llvm/Analysis/TypeMetadataUtils.h"
32 #include "llvm/IR/Attributes.h"
33 #include "llvm/IR/BasicBlock.h"
34 #include "llvm/IR/Constant.h"
35 #include "llvm/IR/Constants.h"
36 #include "llvm/IR/Dominators.h"
37 #include "llvm/IR/Function.h"
38 #include "llvm/IR/GlobalAlias.h"
39 #include "llvm/IR/GlobalValue.h"
40 #include "llvm/IR/GlobalVariable.h"
41 #include "llvm/IR/Instructions.h"
42 #include "llvm/IR/IntrinsicInst.h"
43 #include "llvm/IR/Metadata.h"
44 #include "llvm/IR/Module.h"
45 #include "llvm/IR/ModuleSummaryIndex.h"
46 #include "llvm/IR/Use.h"
47 #include "llvm/IR/User.h"
48 #include "llvm/InitializePasses.h"
49 #include "llvm/Object/ModuleSymbolTable.h"
50 #include "llvm/Object/SymbolicFile.h"
51 #include "llvm/Pass.h"
52 #include "llvm/Support/Casting.h"
53 #include "llvm/Support/CommandLine.h"
54 #include "llvm/Support/FileSystem.h"
55 #include <algorithm>
56 #include <cassert>
57 #include <cstdint>
58 #include <vector>
59 
60 using namespace llvm;
61 using namespace llvm::memprof;
62 
63 #define DEBUG_TYPE "module-summary-analysis"
64 
65 // Option to force edges cold which will block importing when the
66 // -import-cold-multiplier is set to 0. Useful for debugging.
67 namespace llvm {
68 FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold =
69     FunctionSummary::FSHT_None;
70 } // namespace llvm
71 
72 static cl::opt<FunctionSummary::ForceSummaryHotnessType, true> FSEC(
73     "force-summary-edges-cold", cl::Hidden, cl::location(ForceSummaryEdgesCold),
74     cl::desc("Force all edges in the function summary to cold"),
75     cl::values(clEnumValN(FunctionSummary::FSHT_None, "none", "None."),
76                clEnumValN(FunctionSummary::FSHT_AllNonCritical,
77                           "all-non-critical", "All non-critical edges."),
78                clEnumValN(FunctionSummary::FSHT_All, "all", "All edges.")));
79 
80 static cl::opt<std::string> ModuleSummaryDotFile(
81     "module-summary-dot-file", cl::Hidden, cl::value_desc("filename"),
82     cl::desc("File to emit dot graph of new summary into"));
83 
84 extern cl::opt<bool> ScalePartialSampleProfileWorkingSetSize;
85 
86 extern cl::opt<unsigned> MaxNumVTableAnnotations;
87 
88 // Walk through the operands of a given User via worklist iteration and populate
89 // the set of GlobalValue references encountered. Invoked either on an
90 // Instruction or a GlobalVariable (which walks its initializer).
91 // Return true if any of the operands contains blockaddress. This is important
92 // to know when computing summary for global var, because if global variable
93 // references basic block address we can't import it separately from function
94 // containing that basic block. For simplicity we currently don't import such
95 // global vars at all. When importing function we aren't interested if any
96 // instruction in it takes an address of any basic block, because instruction
97 // can only take an address of basic block located in the same function.
98 // Set `RefLocalLinkageIFunc` to true if the analyzed value references a
99 // local-linkage ifunc.
100 static bool findRefEdges(ModuleSummaryIndex &Index, const User *CurUser,
101                          SetVector<ValueInfo, std::vector<ValueInfo>> &RefEdges,
102                          SmallPtrSet<const User *, 8> &Visited,
103                          bool &RefLocalLinkageIFunc) {
104   bool HasBlockAddress = false;
105   SmallVector<const User *, 32> Worklist;
106   if (Visited.insert(CurUser).second)
107     Worklist.push_back(CurUser);
108 
109   while (!Worklist.empty()) {
110     const User *U = Worklist.pop_back_val();
111     const auto *CB = dyn_cast<CallBase>(U);
112 
113     for (const auto &OI : U->operands()) {
114       const User *Operand = dyn_cast<User>(OI);
115       if (!Operand)
116         continue;
117       if (isa<BlockAddress>(Operand)) {
118         HasBlockAddress = true;
119         continue;
120       }
121       if (auto *GV = dyn_cast<GlobalValue>(Operand)) {
122         // We have a reference to a global value. This should be added to
123         // the reference set unless it is a callee. Callees are handled
124         // specially by WriteFunction and are added to a separate list.
125         if (!(CB && CB->isCallee(&OI))) {
126           // If an ifunc has local linkage, do not add it into ref edges, and
127           // sets `RefLocalLinkageIFunc` to true. The referencer is not eligible
128           // for import. An ifunc doesn't have summary and ThinLTO cannot
129           // promote it; importing the referencer may cause linkage errors.
130           if (auto *GI = dyn_cast_if_present<GlobalIFunc>(GV);
131               GI && GI->hasLocalLinkage()) {
132             RefLocalLinkageIFunc = true;
133             continue;
134           }
135           RefEdges.insert(Index.getOrInsertValueInfo(GV));
136         }
137         continue;
138       }
139       if (Visited.insert(Operand).second)
140         Worklist.push_back(Operand);
141     }
142   }
143 
144   const Instruction *I = dyn_cast<Instruction>(CurUser);
145   if (I) {
146     uint32_t ActualNumValueData = 0;
147     uint64_t TotalCount = 0;
148     // MaxNumVTableAnnotations is the maximum number of vtables annotated on
149     // the instruction.
150     auto ValueDataArray =
151         getValueProfDataFromInst(*I, IPVK_VTableTarget, MaxNumVTableAnnotations,
152                                  ActualNumValueData, TotalCount);
153 
154     if (ValueDataArray.get()) {
155       for (uint32_t j = 0; j < ActualNumValueData; j++) {
156         RefEdges.insert(Index.getOrInsertValueInfo(/* VTableGUID = */
157                                                    ValueDataArray[j].Value));
158       }
159     }
160   }
161   return HasBlockAddress;
162 }
163 
164 static CalleeInfo::HotnessType getHotness(uint64_t ProfileCount,
165                                           ProfileSummaryInfo *PSI) {
166   if (!PSI)
167     return CalleeInfo::HotnessType::Unknown;
168   if (PSI->isHotCount(ProfileCount))
169     return CalleeInfo::HotnessType::Hot;
170   if (PSI->isColdCount(ProfileCount))
171     return CalleeInfo::HotnessType::Cold;
172   return CalleeInfo::HotnessType::None;
173 }
174 
175 static bool isNonRenamableLocal(const GlobalValue &GV) {
176   return GV.hasSection() && GV.hasLocalLinkage();
177 }
178 
179 /// Determine whether this call has all constant integer arguments (excluding
180 /// "this") and summarize it to VCalls or ConstVCalls as appropriate.
181 static void addVCallToSet(
182     DevirtCallSite Call, GlobalValue::GUID Guid,
183     SetVector<FunctionSummary::VFuncId, std::vector<FunctionSummary::VFuncId>>
184         &VCalls,
185     SetVector<FunctionSummary::ConstVCall,
186               std::vector<FunctionSummary::ConstVCall>> &ConstVCalls) {
187   std::vector<uint64_t> Args;
188   // Start from the second argument to skip the "this" pointer.
189   for (auto &Arg : drop_begin(Call.CB.args())) {
190     auto *CI = dyn_cast<ConstantInt>(Arg);
191     if (!CI || CI->getBitWidth() > 64) {
192       VCalls.insert({Guid, Call.Offset});
193       return;
194     }
195     Args.push_back(CI->getZExtValue());
196   }
197   ConstVCalls.insert({{Guid, Call.Offset}, std::move(Args)});
198 }
199 
200 /// If this intrinsic call requires that we add information to the function
201 /// summary, do so via the non-constant reference arguments.
202 static void addIntrinsicToSummary(
203     const CallInst *CI,
204     SetVector<GlobalValue::GUID, std::vector<GlobalValue::GUID>> &TypeTests,
205     SetVector<FunctionSummary::VFuncId, std::vector<FunctionSummary::VFuncId>>
206         &TypeTestAssumeVCalls,
207     SetVector<FunctionSummary::VFuncId, std::vector<FunctionSummary::VFuncId>>
208         &TypeCheckedLoadVCalls,
209     SetVector<FunctionSummary::ConstVCall,
210               std::vector<FunctionSummary::ConstVCall>>
211         &TypeTestAssumeConstVCalls,
212     SetVector<FunctionSummary::ConstVCall,
213               std::vector<FunctionSummary::ConstVCall>>
214         &TypeCheckedLoadConstVCalls,
215     DominatorTree &DT) {
216   switch (CI->getCalledFunction()->getIntrinsicID()) {
217   case Intrinsic::type_test:
218   case Intrinsic::public_type_test: {
219     auto *TypeMDVal = cast<MetadataAsValue>(CI->getArgOperand(1));
220     auto *TypeId = dyn_cast<MDString>(TypeMDVal->getMetadata());
221     if (!TypeId)
222       break;
223     GlobalValue::GUID Guid = GlobalValue::getGUID(TypeId->getString());
224 
225     // Produce a summary from type.test intrinsics. We only summarize type.test
226     // intrinsics that are used other than by an llvm.assume intrinsic.
227     // Intrinsics that are assumed are relevant only to the devirtualization
228     // pass, not the type test lowering pass.
229     bool HasNonAssumeUses = llvm::any_of(CI->uses(), [](const Use &CIU) {
230       return !isa<AssumeInst>(CIU.getUser());
231     });
232     if (HasNonAssumeUses)
233       TypeTests.insert(Guid);
234 
235     SmallVector<DevirtCallSite, 4> DevirtCalls;
236     SmallVector<CallInst *, 4> Assumes;
237     findDevirtualizableCallsForTypeTest(DevirtCalls, Assumes, CI, DT);
238     for (auto &Call : DevirtCalls)
239       addVCallToSet(Call, Guid, TypeTestAssumeVCalls,
240                     TypeTestAssumeConstVCalls);
241 
242     break;
243   }
244 
245   case Intrinsic::type_checked_load_relative:
246   case Intrinsic::type_checked_load: {
247     auto *TypeMDVal = cast<MetadataAsValue>(CI->getArgOperand(2));
248     auto *TypeId = dyn_cast<MDString>(TypeMDVal->getMetadata());
249     if (!TypeId)
250       break;
251     GlobalValue::GUID Guid = GlobalValue::getGUID(TypeId->getString());
252 
253     SmallVector<DevirtCallSite, 4> DevirtCalls;
254     SmallVector<Instruction *, 4> LoadedPtrs;
255     SmallVector<Instruction *, 4> Preds;
256     bool HasNonCallUses = false;
257     findDevirtualizableCallsForTypeCheckedLoad(DevirtCalls, LoadedPtrs, Preds,
258                                                HasNonCallUses, CI, DT);
259     // Any non-call uses of the result of llvm.type.checked.load will
260     // prevent us from optimizing away the llvm.type.test.
261     if (HasNonCallUses)
262       TypeTests.insert(Guid);
263     for (auto &Call : DevirtCalls)
264       addVCallToSet(Call, Guid, TypeCheckedLoadVCalls,
265                     TypeCheckedLoadConstVCalls);
266 
267     break;
268   }
269   default:
270     break;
271   }
272 }
273 
274 static bool isNonVolatileLoad(const Instruction *I) {
275   if (const auto *LI = dyn_cast<LoadInst>(I))
276     return !LI->isVolatile();
277 
278   return false;
279 }
280 
281 static bool isNonVolatileStore(const Instruction *I) {
282   if (const auto *SI = dyn_cast<StoreInst>(I))
283     return !SI->isVolatile();
284 
285   return false;
286 }
287 
288 // Returns true if the function definition must be unreachable.
289 //
290 // Note if this helper function returns true, `F` is guaranteed
291 // to be unreachable; if it returns false, `F` might still
292 // be unreachable but not covered by this helper function.
293 static bool mustBeUnreachableFunction(const Function &F) {
294   // A function must be unreachable if its entry block ends with an
295   // 'unreachable'.
296   assert(!F.isDeclaration());
297   return isa<UnreachableInst>(F.getEntryBlock().getTerminator());
298 }
299 
300 static void computeFunctionSummary(
301     ModuleSummaryIndex &Index, const Module &M, const Function &F,
302     BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, DominatorTree &DT,
303     bool HasLocalsInUsedOrAsm, DenseSet<GlobalValue::GUID> &CantBePromoted,
304     bool IsThinLTO,
305     std::function<const StackSafetyInfo *(const Function &F)> GetSSICallback) {
306   // Summary not currently supported for anonymous functions, they should
307   // have been named.
308   assert(F.hasName());
309 
310   unsigned NumInsts = 0;
311   // Map from callee ValueId to profile count. Used to accumulate profile
312   // counts for all static calls to a given callee.
313   MapVector<ValueInfo, CalleeInfo, DenseMap<ValueInfo, unsigned>,
314             std::vector<std::pair<ValueInfo, CalleeInfo>>>
315       CallGraphEdges;
316   SetVector<ValueInfo, std::vector<ValueInfo>> RefEdges, LoadRefEdges,
317       StoreRefEdges;
318   SetVector<GlobalValue::GUID, std::vector<GlobalValue::GUID>> TypeTests;
319   SetVector<FunctionSummary::VFuncId, std::vector<FunctionSummary::VFuncId>>
320       TypeTestAssumeVCalls, TypeCheckedLoadVCalls;
321   SetVector<FunctionSummary::ConstVCall,
322             std::vector<FunctionSummary::ConstVCall>>
323       TypeTestAssumeConstVCalls, TypeCheckedLoadConstVCalls;
324   ICallPromotionAnalysis ICallAnalysis;
325   SmallPtrSet<const User *, 8> Visited;
326 
327   // Add personality function, prefix data and prologue data to function's ref
328   // list.
329   bool HasLocalIFuncCallOrRef = false;
330   findRefEdges(Index, &F, RefEdges, Visited, HasLocalIFuncCallOrRef);
331   std::vector<const Instruction *> NonVolatileLoads;
332   std::vector<const Instruction *> NonVolatileStores;
333 
334   std::vector<CallsiteInfo> Callsites;
335   std::vector<AllocInfo> Allocs;
336 
337 #ifndef NDEBUG
338   DenseSet<const CallBase *> CallsThatMayHaveMemprofSummary;
339 #endif
340 
341   bool HasInlineAsmMaybeReferencingInternal = false;
342   bool HasIndirBranchToBlockAddress = false;
343   bool HasUnknownCall = false;
344   bool MayThrow = false;
345   for (const BasicBlock &BB : F) {
346     // We don't allow inlining of function with indirect branch to blockaddress.
347     // If the blockaddress escapes the function, e.g., via a global variable,
348     // inlining may lead to an invalid cross-function reference. So we shouldn't
349     // import such function either.
350     if (BB.hasAddressTaken()) {
351       for (User *U : BlockAddress::get(const_cast<BasicBlock *>(&BB))->users())
352         if (!isa<CallBrInst>(*U)) {
353           HasIndirBranchToBlockAddress = true;
354           break;
355         }
356     }
357 
358     for (const Instruction &I : BB) {
359       if (I.isDebugOrPseudoInst())
360         continue;
361       ++NumInsts;
362 
363       // Regular LTO module doesn't participate in ThinLTO import,
364       // so no reference from it can be read/writeonly, since this
365       // would require importing variable as local copy
366       if (IsThinLTO) {
367         if (isNonVolatileLoad(&I)) {
368           // Postpone processing of non-volatile load instructions
369           // See comments below
370           Visited.insert(&I);
371           NonVolatileLoads.push_back(&I);
372           continue;
373         } else if (isNonVolatileStore(&I)) {
374           Visited.insert(&I);
375           NonVolatileStores.push_back(&I);
376           // All references from second operand of store (destination address)
377           // can be considered write-only if they're not referenced by any
378           // non-store instruction. References from first operand of store
379           // (stored value) can't be treated either as read- or as write-only
380           // so we add them to RefEdges as we do with all other instructions
381           // except non-volatile load.
382           Value *Stored = I.getOperand(0);
383           if (auto *GV = dyn_cast<GlobalValue>(Stored))
384             // findRefEdges will try to examine GV operands, so instead
385             // of calling it we should add GV to RefEdges directly.
386             RefEdges.insert(Index.getOrInsertValueInfo(GV));
387           else if (auto *U = dyn_cast<User>(Stored))
388             findRefEdges(Index, U, RefEdges, Visited, HasLocalIFuncCallOrRef);
389           continue;
390         }
391       }
392       findRefEdges(Index, &I, RefEdges, Visited, HasLocalIFuncCallOrRef);
393       const auto *CB = dyn_cast<CallBase>(&I);
394       if (!CB) {
395         if (I.mayThrow())
396           MayThrow = true;
397         continue;
398       }
399 
400       const auto *CI = dyn_cast<CallInst>(&I);
401       // Since we don't know exactly which local values are referenced in inline
402       // assembly, conservatively mark the function as possibly referencing
403       // a local value from inline assembly to ensure we don't export a
404       // reference (which would require renaming and promotion of the
405       // referenced value).
406       if (HasLocalsInUsedOrAsm && CI && CI->isInlineAsm())
407         HasInlineAsmMaybeReferencingInternal = true;
408 
409       auto *CalledValue = CB->getCalledOperand();
410       auto *CalledFunction = CB->getCalledFunction();
411       if (CalledValue && !CalledFunction) {
412         CalledValue = CalledValue->stripPointerCasts();
413         // Stripping pointer casts can reveal a called function.
414         CalledFunction = dyn_cast<Function>(CalledValue);
415       }
416       // Check if this is an alias to a function. If so, get the
417       // called aliasee for the checks below.
418       if (auto *GA = dyn_cast<GlobalAlias>(CalledValue)) {
419         assert(!CalledFunction && "Expected null called function in callsite for alias");
420         CalledFunction = dyn_cast<Function>(GA->getAliaseeObject());
421       }
422       // Check if this is a direct call to a known function or a known
423       // intrinsic, or an indirect call with profile data.
424       if (CalledFunction) {
425         if (CI && CalledFunction->isIntrinsic()) {
426           addIntrinsicToSummary(
427               CI, TypeTests, TypeTestAssumeVCalls, TypeCheckedLoadVCalls,
428               TypeTestAssumeConstVCalls, TypeCheckedLoadConstVCalls, DT);
429           continue;
430         }
431         // We should have named any anonymous globals
432         assert(CalledFunction->hasName());
433         auto ScaledCount = PSI->getProfileCount(*CB, BFI);
434         auto Hotness = ScaledCount ? getHotness(*ScaledCount, PSI)
435                                    : CalleeInfo::HotnessType::Unknown;
436         if (ForceSummaryEdgesCold != FunctionSummary::FSHT_None)
437           Hotness = CalleeInfo::HotnessType::Cold;
438 
439         // Use the original CalledValue, in case it was an alias. We want
440         // to record the call edge to the alias in that case. Eventually
441         // an alias summary will be created to associate the alias and
442         // aliasee.
443         auto &ValueInfo = CallGraphEdges[Index.getOrInsertValueInfo(
444             cast<GlobalValue>(CalledValue))];
445         ValueInfo.updateHotness(Hotness);
446         if (CB->isTailCall())
447           ValueInfo.setHasTailCall(true);
448         // Add the relative block frequency to CalleeInfo if there is no profile
449         // information.
450         if (BFI != nullptr && Hotness == CalleeInfo::HotnessType::Unknown) {
451           uint64_t BBFreq = BFI->getBlockFreq(&BB).getFrequency();
452           uint64_t EntryFreq = BFI->getEntryFreq().getFrequency();
453           ValueInfo.updateRelBlockFreq(BBFreq, EntryFreq);
454         }
455       } else {
456         HasUnknownCall = true;
457         // If F is imported, a local linkage ifunc (e.g. target_clones on a
458         // static function) called by F will be cloned. Since summaries don't
459         // track ifunc, we do not know implementation functions referenced by
460         // the ifunc resolver need to be promoted in the exporter, and we will
461         // get linker errors due to cloned declarations for implementation
462         // functions. As a simple fix, just mark F as not eligible for import.
463         // Non-local ifunc is not cloned and does not have the issue.
464         if (auto *GI = dyn_cast_if_present<GlobalIFunc>(CalledValue))
465           if (GI->hasLocalLinkage())
466             HasLocalIFuncCallOrRef = true;
467         // Skip inline assembly calls.
468         if (CI && CI->isInlineAsm())
469           continue;
470         // Skip direct calls.
471         if (!CalledValue || isa<Constant>(CalledValue))
472           continue;
473 
474         // Check if the instruction has a callees metadata. If so, add callees
475         // to CallGraphEdges to reflect the references from the metadata, and
476         // to enable importing for subsequent indirect call promotion and
477         // inlining.
478         if (auto *MD = I.getMetadata(LLVMContext::MD_callees)) {
479           for (const auto &Op : MD->operands()) {
480             Function *Callee = mdconst::extract_or_null<Function>(Op);
481             if (Callee)
482               CallGraphEdges[Index.getOrInsertValueInfo(Callee)];
483           }
484         }
485 
486         uint32_t NumVals, NumCandidates;
487         uint64_t TotalCount;
488         auto CandidateProfileData =
489             ICallAnalysis.getPromotionCandidatesForInstruction(
490                 &I, NumVals, TotalCount, NumCandidates);
491         for (const auto &Candidate : CandidateProfileData)
492           CallGraphEdges[Index.getOrInsertValueInfo(Candidate.Value)]
493               .updateHotness(getHotness(Candidate.Count, PSI));
494       }
495 
496       // Summarize memprof related metadata. This is only needed for ThinLTO.
497       if (!IsThinLTO)
498         continue;
499 
500       // TODO: Skip indirect calls for now. Need to handle these better, likely
501       // by creating multiple Callsites, one per target, then speculatively
502       // devirtualize while applying clone info in the ThinLTO backends. This
503       // will also be important because we will have a different set of clone
504       // versions per target. This handling needs to match that in the ThinLTO
505       // backend so we handle things consistently for matching of callsite
506       // summaries to instructions.
507       if (!CalledFunction)
508         continue;
509 
510       // Ensure we keep this analysis in sync with the handling in the ThinLTO
511       // backend (see MemProfContextDisambiguation::applyImport). Save this call
512       // so that we can skip it in checking the reverse case later.
513       assert(mayHaveMemprofSummary(CB));
514 #ifndef NDEBUG
515       CallsThatMayHaveMemprofSummary.insert(CB);
516 #endif
517 
518       // Compute the list of stack ids first (so we can trim them from the stack
519       // ids on any MIBs).
520       CallStack<MDNode, MDNode::op_iterator> InstCallsite(
521           I.getMetadata(LLVMContext::MD_callsite));
522       auto *MemProfMD = I.getMetadata(LLVMContext::MD_memprof);
523       if (MemProfMD) {
524         std::vector<MIBInfo> MIBs;
525         for (auto &MDOp : MemProfMD->operands()) {
526           auto *MIBMD = cast<const MDNode>(MDOp);
527           MDNode *StackNode = getMIBStackNode(MIBMD);
528           assert(StackNode);
529           SmallVector<unsigned> StackIdIndices;
530           CallStack<MDNode, MDNode::op_iterator> StackContext(StackNode);
531           // Collapse out any on the allocation call (inlining).
532           for (auto ContextIter =
533                    StackContext.beginAfterSharedPrefix(InstCallsite);
534                ContextIter != StackContext.end(); ++ContextIter) {
535             unsigned StackIdIdx = Index.addOrGetStackIdIndex(*ContextIter);
536             // If this is a direct recursion, simply skip the duplicate
537             // entries. If this is mutual recursion, handling is left to
538             // the LTO link analysis client.
539             if (StackIdIndices.empty() || StackIdIndices.back() != StackIdIdx)
540               StackIdIndices.push_back(StackIdIdx);
541           }
542           MIBs.push_back(
543               MIBInfo(getMIBAllocType(MIBMD), std::move(StackIdIndices)));
544         }
545         Allocs.push_back(AllocInfo(std::move(MIBs)));
546       } else if (!InstCallsite.empty()) {
547         SmallVector<unsigned> StackIdIndices;
548         for (auto StackId : InstCallsite)
549           StackIdIndices.push_back(Index.addOrGetStackIdIndex(StackId));
550         // Use the original CalledValue, in case it was an alias. We want
551         // to record the call edge to the alias in that case. Eventually
552         // an alias summary will be created to associate the alias and
553         // aliasee.
554         auto CalleeValueInfo =
555             Index.getOrInsertValueInfo(cast<GlobalValue>(CalledValue));
556         Callsites.push_back({CalleeValueInfo, StackIdIndices});
557       }
558     }
559   }
560 
561   if (PSI->hasPartialSampleProfile() && ScalePartialSampleProfileWorkingSetSize)
562     Index.addBlockCount(F.size());
563 
564   std::vector<ValueInfo> Refs;
565   if (IsThinLTO) {
566     auto AddRefEdges = [&](const std::vector<const Instruction *> &Instrs,
567                            SetVector<ValueInfo, std::vector<ValueInfo>> &Edges,
568                            SmallPtrSet<const User *, 8> &Cache) {
569       for (const auto *I : Instrs) {
570         Cache.erase(I);
571         findRefEdges(Index, I, Edges, Cache, HasLocalIFuncCallOrRef);
572       }
573     };
574 
575     // By now we processed all instructions in a function, except
576     // non-volatile loads and non-volatile value stores. Let's find
577     // ref edges for both of instruction sets
578     AddRefEdges(NonVolatileLoads, LoadRefEdges, Visited);
579     // We can add some values to the Visited set when processing load
580     // instructions which are also used by stores in NonVolatileStores.
581     // For example this can happen if we have following code:
582     //
583     // store %Derived* @foo, %Derived** bitcast (%Base** @bar to %Derived**)
584     // %42 = load %Derived*, %Derived** bitcast (%Base** @bar to %Derived**)
585     //
586     // After processing loads we'll add bitcast to the Visited set, and if
587     // we use the same set while processing stores, we'll never see store
588     // to @bar and @bar will be mistakenly treated as readonly.
589     SmallPtrSet<const llvm::User *, 8> StoreCache;
590     AddRefEdges(NonVolatileStores, StoreRefEdges, StoreCache);
591 
592     // If both load and store instruction reference the same variable
593     // we won't be able to optimize it. Add all such reference edges
594     // to RefEdges set.
595     for (const auto &VI : StoreRefEdges)
596       if (LoadRefEdges.remove(VI))
597         RefEdges.insert(VI);
598 
599     unsigned RefCnt = RefEdges.size();
600     // All new reference edges inserted in two loops below are either
601     // read or write only. They will be grouped in the end of RefEdges
602     // vector, so we can use a single integer value to identify them.
603     for (const auto &VI : LoadRefEdges)
604       RefEdges.insert(VI);
605 
606     unsigned FirstWORef = RefEdges.size();
607     for (const auto &VI : StoreRefEdges)
608       RefEdges.insert(VI);
609 
610     Refs = RefEdges.takeVector();
611     for (; RefCnt < FirstWORef; ++RefCnt)
612       Refs[RefCnt].setReadOnly();
613 
614     for (; RefCnt < Refs.size(); ++RefCnt)
615       Refs[RefCnt].setWriteOnly();
616   } else {
617     Refs = RefEdges.takeVector();
618   }
619   // Explicit add hot edges to enforce importing for designated GUIDs for
620   // sample PGO, to enable the same inlines as the profiled optimized binary.
621   for (auto &I : F.getImportGUIDs())
622     CallGraphEdges[Index.getOrInsertValueInfo(I)].updateHotness(
623         ForceSummaryEdgesCold == FunctionSummary::FSHT_All
624             ? CalleeInfo::HotnessType::Cold
625             : CalleeInfo::HotnessType::Critical);
626 
627 #ifndef NDEBUG
628   // Make sure that all calls we decided could not have memprof summaries get a
629   // false value for mayHaveMemprofSummary, to ensure that this handling remains
630   // in sync with the ThinLTO backend handling.
631   if (IsThinLTO) {
632     for (const BasicBlock &BB : F) {
633       for (const Instruction &I : BB) {
634         const auto *CB = dyn_cast<CallBase>(&I);
635         if (!CB)
636           continue;
637         // We already checked these above.
638         if (CallsThatMayHaveMemprofSummary.count(CB))
639           continue;
640         assert(!mayHaveMemprofSummary(CB));
641       }
642     }
643   }
644 #endif
645 
646   bool NonRenamableLocal = isNonRenamableLocal(F);
647   bool NotEligibleForImport =
648       NonRenamableLocal || HasInlineAsmMaybeReferencingInternal ||
649       HasIndirBranchToBlockAddress || HasLocalIFuncCallOrRef;
650   GlobalValueSummary::GVFlags Flags(
651       F.getLinkage(), F.getVisibility(), NotEligibleForImport,
652       /* Live = */ false, F.isDSOLocal(), F.canBeOmittedFromSymbolTable(),
653       GlobalValueSummary::ImportKind::Definition);
654   FunctionSummary::FFlags FunFlags{
655       F.doesNotAccessMemory(), F.onlyReadsMemory() && !F.doesNotAccessMemory(),
656       F.hasFnAttribute(Attribute::NoRecurse), F.returnDoesNotAlias(),
657       // FIXME: refactor this to use the same code that inliner is using.
658       // Don't try to import functions with noinline attribute.
659       F.getAttributes().hasFnAttr(Attribute::NoInline),
660       F.hasFnAttribute(Attribute::AlwaysInline),
661       F.hasFnAttribute(Attribute::NoUnwind), MayThrow, HasUnknownCall,
662       mustBeUnreachableFunction(F)};
663   std::vector<FunctionSummary::ParamAccess> ParamAccesses;
664   if (auto *SSI = GetSSICallback(F))
665     ParamAccesses = SSI->getParamAccesses(Index);
666   auto FuncSummary = std::make_unique<FunctionSummary>(
667       Flags, NumInsts, FunFlags, /*EntryCount=*/0, std::move(Refs),
668       CallGraphEdges.takeVector(), TypeTests.takeVector(),
669       TypeTestAssumeVCalls.takeVector(), TypeCheckedLoadVCalls.takeVector(),
670       TypeTestAssumeConstVCalls.takeVector(),
671       TypeCheckedLoadConstVCalls.takeVector(), std::move(ParamAccesses),
672       std::move(Callsites), std::move(Allocs));
673   if (NonRenamableLocal)
674     CantBePromoted.insert(F.getGUID());
675   Index.addGlobalValueSummary(F, std::move(FuncSummary));
676 }
677 
678 /// Find function pointers referenced within the given vtable initializer
679 /// (or subset of an initializer) \p I. The starting offset of \p I within
680 /// the vtable initializer is \p StartingOffset. Any discovered function
681 /// pointers are added to \p VTableFuncs along with their cumulative offset
682 /// within the initializer.
683 static void findFuncPointers(const Constant *I, uint64_t StartingOffset,
684                              const Module &M, ModuleSummaryIndex &Index,
685                              VTableFuncList &VTableFuncs,
686                              const GlobalVariable &OrigGV) {
687   // First check if this is a function pointer.
688   if (I->getType()->isPointerTy()) {
689     auto C = I->stripPointerCasts();
690     auto A = dyn_cast<GlobalAlias>(C);
691     if (isa<Function>(C) || (A && isa<Function>(A->getAliasee()))) {
692       auto GV = dyn_cast<GlobalValue>(C);
693       assert(GV);
694       // We can disregard __cxa_pure_virtual as a possible call target, as
695       // calls to pure virtuals are UB.
696       if (GV && GV->getName() != "__cxa_pure_virtual")
697         VTableFuncs.push_back({Index.getOrInsertValueInfo(GV), StartingOffset});
698       return;
699     }
700   }
701 
702   // Walk through the elements in the constant struct or array and recursively
703   // look for virtual function pointers.
704   const DataLayout &DL = M.getDataLayout();
705   if (auto *C = dyn_cast<ConstantStruct>(I)) {
706     StructType *STy = dyn_cast<StructType>(C->getType());
707     assert(STy);
708     const StructLayout *SL = DL.getStructLayout(C->getType());
709 
710     for (auto EI : llvm::enumerate(STy->elements())) {
711       auto Offset = SL->getElementOffset(EI.index());
712       unsigned Op = SL->getElementContainingOffset(Offset);
713       findFuncPointers(cast<Constant>(I->getOperand(Op)),
714                        StartingOffset + Offset, M, Index, VTableFuncs, OrigGV);
715     }
716   } else if (auto *C = dyn_cast<ConstantArray>(I)) {
717     ArrayType *ATy = C->getType();
718     Type *EltTy = ATy->getElementType();
719     uint64_t EltSize = DL.getTypeAllocSize(EltTy);
720     for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) {
721       findFuncPointers(cast<Constant>(I->getOperand(i)),
722                        StartingOffset + i * EltSize, M, Index, VTableFuncs,
723                        OrigGV);
724     }
725   } else if (const auto *CE = dyn_cast<ConstantExpr>(I)) {
726     // For relative vtables, the next sub-component should be a trunc.
727     if (CE->getOpcode() != Instruction::Trunc ||
728         !(CE = dyn_cast<ConstantExpr>(CE->getOperand(0))))
729       return;
730 
731     // If this constant can be reduced to the offset between a function and a
732     // global, then we know this is a valid virtual function if the RHS is the
733     // original vtable we're scanning through.
734     if (CE->getOpcode() == Instruction::Sub) {
735       GlobalValue *LHS, *RHS;
736       APSInt LHSOffset, RHSOffset;
737       if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHS, LHSOffset, DL) &&
738           IsConstantOffsetFromGlobal(CE->getOperand(1), RHS, RHSOffset, DL) &&
739           RHS == &OrigGV &&
740 
741           // For relative vtables, this component should point to the callable
742           // function without any offsets.
743           LHSOffset == 0 &&
744 
745           // Also, the RHS should always point to somewhere within the vtable.
746           RHSOffset <=
747               static_cast<uint64_t>(DL.getTypeAllocSize(OrigGV.getInitializer()->getType()))) {
748         findFuncPointers(LHS, StartingOffset, M, Index, VTableFuncs, OrigGV);
749       }
750     }
751   }
752 }
753 
754 // Identify the function pointers referenced by vtable definition \p V.
755 static void computeVTableFuncs(ModuleSummaryIndex &Index,
756                                const GlobalVariable &V, const Module &M,
757                                VTableFuncList &VTableFuncs) {
758   if (!V.isConstant())
759     return;
760 
761   findFuncPointers(V.getInitializer(), /*StartingOffset=*/0, M, Index,
762                    VTableFuncs, V);
763 
764 #ifndef NDEBUG
765   // Validate that the VTableFuncs list is ordered by offset.
766   uint64_t PrevOffset = 0;
767   for (auto &P : VTableFuncs) {
768     // The findVFuncPointers traversal should have encountered the
769     // functions in offset order. We need to use ">=" since PrevOffset
770     // starts at 0.
771     assert(P.VTableOffset >= PrevOffset);
772     PrevOffset = P.VTableOffset;
773   }
774 #endif
775 }
776 
777 /// Record vtable definition \p V for each type metadata it references.
778 static void
779 recordTypeIdCompatibleVtableReferences(ModuleSummaryIndex &Index,
780                                        const GlobalVariable &V,
781                                        SmallVectorImpl<MDNode *> &Types) {
782   for (MDNode *Type : Types) {
783     auto TypeID = Type->getOperand(1).get();
784 
785     uint64_t Offset =
786         cast<ConstantInt>(
787             cast<ConstantAsMetadata>(Type->getOperand(0))->getValue())
788             ->getZExtValue();
789 
790     if (auto *TypeId = dyn_cast<MDString>(TypeID))
791       Index.getOrInsertTypeIdCompatibleVtableSummary(TypeId->getString())
792           .push_back({Offset, Index.getOrInsertValueInfo(&V)});
793   }
794 }
795 
796 static void computeVariableSummary(ModuleSummaryIndex &Index,
797                                    const GlobalVariable &V,
798                                    DenseSet<GlobalValue::GUID> &CantBePromoted,
799                                    const Module &M,
800                                    SmallVectorImpl<MDNode *> &Types) {
801   SetVector<ValueInfo, std::vector<ValueInfo>> RefEdges;
802   SmallPtrSet<const User *, 8> Visited;
803   bool RefLocalIFunc = false;
804   bool HasBlockAddress =
805       findRefEdges(Index, &V, RefEdges, Visited, RefLocalIFunc);
806   const bool NotEligibleForImport = (HasBlockAddress || RefLocalIFunc);
807   bool NonRenamableLocal = isNonRenamableLocal(V);
808   GlobalValueSummary::GVFlags Flags(
809       V.getLinkage(), V.getVisibility(), NonRenamableLocal,
810       /* Live = */ false, V.isDSOLocal(), V.canBeOmittedFromSymbolTable(),
811       GlobalValueSummary::Definition);
812 
813   VTableFuncList VTableFuncs;
814   // If splitting is not enabled, then we compute the summary information
815   // necessary for index-based whole program devirtualization.
816   if (!Index.enableSplitLTOUnit()) {
817     Types.clear();
818     V.getMetadata(LLVMContext::MD_type, Types);
819     if (!Types.empty()) {
820       // Identify the function pointers referenced by this vtable definition.
821       computeVTableFuncs(Index, V, M, VTableFuncs);
822 
823       // Record this vtable definition for each type metadata it references.
824       recordTypeIdCompatibleVtableReferences(Index, V, Types);
825     }
826   }
827 
828   // Don't mark variables we won't be able to internalize as read/write-only.
829   bool CanBeInternalized =
830       !V.hasComdat() && !V.hasAppendingLinkage() && !V.isInterposable() &&
831       !V.hasAvailableExternallyLinkage() && !V.hasDLLExportStorageClass();
832   bool Constant = V.isConstant();
833   GlobalVarSummary::GVarFlags VarFlags(CanBeInternalized,
834                                        Constant ? false : CanBeInternalized,
835                                        Constant, V.getVCallVisibility());
836   auto GVarSummary = std::make_unique<GlobalVarSummary>(Flags, VarFlags,
837                                                          RefEdges.takeVector());
838   if (NonRenamableLocal)
839     CantBePromoted.insert(V.getGUID());
840   if (NotEligibleForImport)
841     GVarSummary->setNotEligibleToImport();
842   if (!VTableFuncs.empty())
843     GVarSummary->setVTableFuncs(VTableFuncs);
844   Index.addGlobalValueSummary(V, std::move(GVarSummary));
845 }
846 
847 static void computeAliasSummary(ModuleSummaryIndex &Index, const GlobalAlias &A,
848                                 DenseSet<GlobalValue::GUID> &CantBePromoted) {
849   // Skip summary for indirect function aliases as summary for aliasee will not
850   // be emitted.
851   const GlobalObject *Aliasee = A.getAliaseeObject();
852   if (isa<GlobalIFunc>(Aliasee))
853     return;
854   bool NonRenamableLocal = isNonRenamableLocal(A);
855   GlobalValueSummary::GVFlags Flags(
856       A.getLinkage(), A.getVisibility(), NonRenamableLocal,
857       /* Live = */ false, A.isDSOLocal(), A.canBeOmittedFromSymbolTable(),
858       GlobalValueSummary::Definition);
859   auto AS = std::make_unique<AliasSummary>(Flags);
860   auto AliaseeVI = Index.getValueInfo(Aliasee->getGUID());
861   assert(AliaseeVI && "Alias expects aliasee summary to be available");
862   assert(AliaseeVI.getSummaryList().size() == 1 &&
863          "Expected a single entry per aliasee in per-module index");
864   AS->setAliasee(AliaseeVI, AliaseeVI.getSummaryList()[0].get());
865   if (NonRenamableLocal)
866     CantBePromoted.insert(A.getGUID());
867   Index.addGlobalValueSummary(A, std::move(AS));
868 }
869 
870 // Set LiveRoot flag on entries matching the given value name.
871 static void setLiveRoot(ModuleSummaryIndex &Index, StringRef Name) {
872   if (ValueInfo VI = Index.getValueInfo(GlobalValue::getGUID(Name)))
873     for (const auto &Summary : VI.getSummaryList())
874       Summary->setLive(true);
875 }
876 
877 ModuleSummaryIndex llvm::buildModuleSummaryIndex(
878     const Module &M,
879     std::function<BlockFrequencyInfo *(const Function &F)> GetBFICallback,
880     ProfileSummaryInfo *PSI,
881     std::function<const StackSafetyInfo *(const Function &F)> GetSSICallback) {
882   assert(PSI);
883   bool EnableSplitLTOUnit = false;
884   bool UnifiedLTO = false;
885   if (auto *MD = mdconst::extract_or_null<ConstantInt>(
886           M.getModuleFlag("EnableSplitLTOUnit")))
887     EnableSplitLTOUnit = MD->getZExtValue();
888   if (auto *MD =
889           mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("UnifiedLTO")))
890     UnifiedLTO = MD->getZExtValue();
891   ModuleSummaryIndex Index(/*HaveGVs=*/true, EnableSplitLTOUnit, UnifiedLTO);
892 
893   // Identify the local values in the llvm.used and llvm.compiler.used sets,
894   // which should not be exported as they would then require renaming and
895   // promotion, but we may have opaque uses e.g. in inline asm. We collect them
896   // here because we use this information to mark functions containing inline
897   // assembly calls as not importable.
898   SmallPtrSet<GlobalValue *, 4> LocalsUsed;
899   SmallVector<GlobalValue *, 4> Used;
900   // First collect those in the llvm.used set.
901   collectUsedGlobalVariables(M, Used, /*CompilerUsed=*/false);
902   // Next collect those in the llvm.compiler.used set.
903   collectUsedGlobalVariables(M, Used, /*CompilerUsed=*/true);
904   DenseSet<GlobalValue::GUID> CantBePromoted;
905   for (auto *V : Used) {
906     if (V->hasLocalLinkage()) {
907       LocalsUsed.insert(V);
908       CantBePromoted.insert(V->getGUID());
909     }
910   }
911 
912   bool HasLocalInlineAsmSymbol = false;
913   if (!M.getModuleInlineAsm().empty()) {
914     // Collect the local values defined by module level asm, and set up
915     // summaries for these symbols so that they can be marked as NoRename,
916     // to prevent export of any use of them in regular IR that would require
917     // renaming within the module level asm. Note we don't need to create a
918     // summary for weak or global defs, as they don't need to be flagged as
919     // NoRename, and defs in module level asm can't be imported anyway.
920     // Also, any values used but not defined within module level asm should
921     // be listed on the llvm.used or llvm.compiler.used global and marked as
922     // referenced from there.
923     ModuleSymbolTable::CollectAsmSymbols(
924         M, [&](StringRef Name, object::BasicSymbolRef::Flags Flags) {
925           // Symbols not marked as Weak or Global are local definitions.
926           if (Flags & (object::BasicSymbolRef::SF_Weak |
927                        object::BasicSymbolRef::SF_Global))
928             return;
929           HasLocalInlineAsmSymbol = true;
930           GlobalValue *GV = M.getNamedValue(Name);
931           if (!GV)
932             return;
933           assert(GV->isDeclaration() && "Def in module asm already has definition");
934           GlobalValueSummary::GVFlags GVFlags(
935               GlobalValue::InternalLinkage, GlobalValue::DefaultVisibility,
936               /* NotEligibleToImport = */ true,
937               /* Live = */ true,
938               /* Local */ GV->isDSOLocal(), GV->canBeOmittedFromSymbolTable(),
939               GlobalValueSummary::Definition);
940           CantBePromoted.insert(GV->getGUID());
941           // Create the appropriate summary type.
942           if (Function *F = dyn_cast<Function>(GV)) {
943             std::unique_ptr<FunctionSummary> Summary =
944                 std::make_unique<FunctionSummary>(
945                     GVFlags, /*InstCount=*/0,
946                     FunctionSummary::FFlags{
947                         F->hasFnAttribute(Attribute::ReadNone),
948                         F->hasFnAttribute(Attribute::ReadOnly),
949                         F->hasFnAttribute(Attribute::NoRecurse),
950                         F->returnDoesNotAlias(),
951                         /* NoInline = */ false,
952                         F->hasFnAttribute(Attribute::AlwaysInline),
953                         F->hasFnAttribute(Attribute::NoUnwind),
954                         /* MayThrow */ true,
955                         /* HasUnknownCall */ true,
956                         /* MustBeUnreachable */ false},
957                     /*EntryCount=*/0, ArrayRef<ValueInfo>{},
958                     ArrayRef<FunctionSummary::EdgeTy>{},
959                     ArrayRef<GlobalValue::GUID>{},
960                     ArrayRef<FunctionSummary::VFuncId>{},
961                     ArrayRef<FunctionSummary::VFuncId>{},
962                     ArrayRef<FunctionSummary::ConstVCall>{},
963                     ArrayRef<FunctionSummary::ConstVCall>{},
964                     ArrayRef<FunctionSummary::ParamAccess>{},
965                     ArrayRef<CallsiteInfo>{}, ArrayRef<AllocInfo>{});
966             Index.addGlobalValueSummary(*GV, std::move(Summary));
967           } else {
968             std::unique_ptr<GlobalVarSummary> Summary =
969                 std::make_unique<GlobalVarSummary>(
970                     GVFlags,
971                     GlobalVarSummary::GVarFlags(
972                         false, false, cast<GlobalVariable>(GV)->isConstant(),
973                         GlobalObject::VCallVisibilityPublic),
974                     ArrayRef<ValueInfo>{});
975             Index.addGlobalValueSummary(*GV, std::move(Summary));
976           }
977         });
978   }
979 
980   bool IsThinLTO = true;
981   if (auto *MD =
982           mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO")))
983     IsThinLTO = MD->getZExtValue();
984 
985   // Compute summaries for all functions defined in module, and save in the
986   // index.
987   for (const auto &F : M) {
988     if (F.isDeclaration())
989       continue;
990 
991     DominatorTree DT(const_cast<Function &>(F));
992     BlockFrequencyInfo *BFI = nullptr;
993     std::unique_ptr<BlockFrequencyInfo> BFIPtr;
994     if (GetBFICallback)
995       BFI = GetBFICallback(F);
996     else if (F.hasProfileData()) {
997       LoopInfo LI{DT};
998       BranchProbabilityInfo BPI{F, LI};
999       BFIPtr = std::make_unique<BlockFrequencyInfo>(F, BPI, LI);
1000       BFI = BFIPtr.get();
1001     }
1002 
1003     computeFunctionSummary(Index, M, F, BFI, PSI, DT,
1004                            !LocalsUsed.empty() || HasLocalInlineAsmSymbol,
1005                            CantBePromoted, IsThinLTO, GetSSICallback);
1006   }
1007 
1008   // Compute summaries for all variables defined in module, and save in the
1009   // index.
1010   SmallVector<MDNode *, 2> Types;
1011   for (const GlobalVariable &G : M.globals()) {
1012     if (G.isDeclaration())
1013       continue;
1014     computeVariableSummary(Index, G, CantBePromoted, M, Types);
1015   }
1016 
1017   // Compute summaries for all aliases defined in module, and save in the
1018   // index.
1019   for (const GlobalAlias &A : M.aliases())
1020     computeAliasSummary(Index, A, CantBePromoted);
1021 
1022   // Iterate through ifuncs, set their resolvers all alive.
1023   for (const GlobalIFunc &I : M.ifuncs()) {
1024     I.applyAlongResolverPath([&Index](const GlobalValue &GV) {
1025       Index.getGlobalValueSummary(GV)->setLive(true);
1026     });
1027   }
1028 
1029   for (auto *V : LocalsUsed) {
1030     auto *Summary = Index.getGlobalValueSummary(*V);
1031     assert(Summary && "Missing summary for global value");
1032     Summary->setNotEligibleToImport();
1033   }
1034 
1035   // The linker doesn't know about these LLVM produced values, so we need
1036   // to flag them as live in the index to ensure index-based dead value
1037   // analysis treats them as live roots of the analysis.
1038   setLiveRoot(Index, "llvm.used");
1039   setLiveRoot(Index, "llvm.compiler.used");
1040   setLiveRoot(Index, "llvm.global_ctors");
1041   setLiveRoot(Index, "llvm.global_dtors");
1042   setLiveRoot(Index, "llvm.global.annotations");
1043 
1044   for (auto &GlobalList : Index) {
1045     // Ignore entries for references that are undefined in the current module.
1046     if (GlobalList.second.SummaryList.empty())
1047       continue;
1048 
1049     assert(GlobalList.second.SummaryList.size() == 1 &&
1050            "Expected module's index to have one summary per GUID");
1051     auto &Summary = GlobalList.second.SummaryList[0];
1052     if (!IsThinLTO) {
1053       Summary->setNotEligibleToImport();
1054       continue;
1055     }
1056 
1057     bool AllRefsCanBeExternallyReferenced =
1058         llvm::all_of(Summary->refs(), [&](const ValueInfo &VI) {
1059           return !CantBePromoted.count(VI.getGUID());
1060         });
1061     if (!AllRefsCanBeExternallyReferenced) {
1062       Summary->setNotEligibleToImport();
1063       continue;
1064     }
1065 
1066     if (auto *FuncSummary = dyn_cast<FunctionSummary>(Summary.get())) {
1067       bool AllCallsCanBeExternallyReferenced = llvm::all_of(
1068           FuncSummary->calls(), [&](const FunctionSummary::EdgeTy &Edge) {
1069             return !CantBePromoted.count(Edge.first.getGUID());
1070           });
1071       if (!AllCallsCanBeExternallyReferenced)
1072         Summary->setNotEligibleToImport();
1073     }
1074   }
1075 
1076   if (!ModuleSummaryDotFile.empty()) {
1077     std::error_code EC;
1078     raw_fd_ostream OSDot(ModuleSummaryDotFile, EC, sys::fs::OpenFlags::OF_Text);
1079     if (EC)
1080       report_fatal_error(Twine("Failed to open dot file ") +
1081                          ModuleSummaryDotFile + ": " + EC.message() + "\n");
1082     Index.exportToDot(OSDot, {});
1083   }
1084 
1085   return Index;
1086 }
1087 
1088 AnalysisKey ModuleSummaryIndexAnalysis::Key;
1089 
1090 ModuleSummaryIndex
1091 ModuleSummaryIndexAnalysis::run(Module &M, ModuleAnalysisManager &AM) {
1092   ProfileSummaryInfo &PSI = AM.getResult<ProfileSummaryAnalysis>(M);
1093   auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
1094   bool NeedSSI = needsParamAccessSummary(M);
1095   return buildModuleSummaryIndex(
1096       M,
1097       [&FAM](const Function &F) {
1098         return &FAM.getResult<BlockFrequencyAnalysis>(
1099             *const_cast<Function *>(&F));
1100       },
1101       &PSI,
1102       [&FAM, NeedSSI](const Function &F) -> const StackSafetyInfo * {
1103         return NeedSSI ? &FAM.getResult<StackSafetyAnalysis>(
1104                              const_cast<Function &>(F))
1105                        : nullptr;
1106       });
1107 }
1108 
1109 char ModuleSummaryIndexWrapperPass::ID = 0;
1110 
1111 INITIALIZE_PASS_BEGIN(ModuleSummaryIndexWrapperPass, "module-summary-analysis",
1112                       "Module Summary Analysis", false, true)
1113 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
1114 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
1115 INITIALIZE_PASS_DEPENDENCY(StackSafetyInfoWrapperPass)
1116 INITIALIZE_PASS_END(ModuleSummaryIndexWrapperPass, "module-summary-analysis",
1117                     "Module Summary Analysis", false, true)
1118 
1119 ModulePass *llvm::createModuleSummaryIndexWrapperPass() {
1120   return new ModuleSummaryIndexWrapperPass();
1121 }
1122 
1123 ModuleSummaryIndexWrapperPass::ModuleSummaryIndexWrapperPass()
1124     : ModulePass(ID) {
1125   initializeModuleSummaryIndexWrapperPassPass(*PassRegistry::getPassRegistry());
1126 }
1127 
1128 bool ModuleSummaryIndexWrapperPass::runOnModule(Module &M) {
1129   auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
1130   bool NeedSSI = needsParamAccessSummary(M);
1131   Index.emplace(buildModuleSummaryIndex(
1132       M,
1133       [this](const Function &F) {
1134         return &(this->getAnalysis<BlockFrequencyInfoWrapperPass>(
1135                          *const_cast<Function *>(&F))
1136                      .getBFI());
1137       },
1138       PSI,
1139       [&](const Function &F) -> const StackSafetyInfo * {
1140         return NeedSSI ? &getAnalysis<StackSafetyInfoWrapperPass>(
1141                               const_cast<Function &>(F))
1142                               .getResult()
1143                        : nullptr;
1144       }));
1145   return false;
1146 }
1147 
1148 bool ModuleSummaryIndexWrapperPass::doFinalization(Module &M) {
1149   Index.reset();
1150   return false;
1151 }
1152 
1153 void ModuleSummaryIndexWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
1154   AU.setPreservesAll();
1155   AU.addRequired<BlockFrequencyInfoWrapperPass>();
1156   AU.addRequired<ProfileSummaryInfoWrapperPass>();
1157   AU.addRequired<StackSafetyInfoWrapperPass>();
1158 }
1159 
1160 char ImmutableModuleSummaryIndexWrapperPass::ID = 0;
1161 
1162 ImmutableModuleSummaryIndexWrapperPass::ImmutableModuleSummaryIndexWrapperPass(
1163     const ModuleSummaryIndex *Index)
1164     : ImmutablePass(ID), Index(Index) {
1165   initializeImmutableModuleSummaryIndexWrapperPassPass(
1166       *PassRegistry::getPassRegistry());
1167 }
1168 
1169 void ImmutableModuleSummaryIndexWrapperPass::getAnalysisUsage(
1170     AnalysisUsage &AU) const {
1171   AU.setPreservesAll();
1172 }
1173 
1174 ImmutablePass *llvm::createImmutableModuleSummaryIndexWrapperPass(
1175     const ModuleSummaryIndex *Index) {
1176   return new ImmutableModuleSummaryIndexWrapperPass(Index);
1177 }
1178 
1179 INITIALIZE_PASS(ImmutableModuleSummaryIndexWrapperPass, "module-summary-info",
1180                 "Module summary info", false, true)
1181 
1182 bool llvm::mayHaveMemprofSummary(const CallBase *CB) {
1183   if (!CB)
1184     return false;
1185   if (CB->isDebugOrPseudoInst())
1186     return false;
1187   auto *CI = dyn_cast<CallInst>(CB);
1188   auto *CalledValue = CB->getCalledOperand();
1189   auto *CalledFunction = CB->getCalledFunction();
1190   if (CalledValue && !CalledFunction) {
1191     CalledValue = CalledValue->stripPointerCasts();
1192     // Stripping pointer casts can reveal a called function.
1193     CalledFunction = dyn_cast<Function>(CalledValue);
1194   }
1195   // Check if this is an alias to a function. If so, get the
1196   // called aliasee for the checks below.
1197   if (auto *GA = dyn_cast<GlobalAlias>(CalledValue)) {
1198     assert(!CalledFunction &&
1199            "Expected null called function in callsite for alias");
1200     CalledFunction = dyn_cast<Function>(GA->getAliaseeObject());
1201   }
1202   // Check if this is a direct call to a known function or a known
1203   // intrinsic, or an indirect call with profile data.
1204   if (CalledFunction) {
1205     if (CI && CalledFunction->isIntrinsic())
1206       return false;
1207   } else {
1208     // TODO: For now skip indirect calls. See comments in
1209     // computeFunctionSummary for what is needed to handle this.
1210     return false;
1211   }
1212   return true;
1213 }
1214