xref: /llvm-project/llvm/lib/Analysis/ModuleSummaryAnalysis.cpp (revision cfad2d3a3d62fee089ad2ac1e87029bb3d00f17f)
1 //===- ModuleSummaryAnalysis.cpp - Module summary index builder -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass builds a ModuleSummaryIndex object for the module, to be written
10 // to bitcode or LLVM assembly.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Analysis/ModuleSummaryAnalysis.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/MapVector.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SetVector.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/Analysis/BlockFrequencyInfo.h"
24 #include "llvm/Analysis/BranchProbabilityInfo.h"
25 #include "llvm/Analysis/IndirectCallPromotionAnalysis.h"
26 #include "llvm/Analysis/LoopInfo.h"
27 #include "llvm/Analysis/MemoryProfileInfo.h"
28 #include "llvm/Analysis/ProfileSummaryInfo.h"
29 #include "llvm/Analysis/StackSafetyAnalysis.h"
30 #include "llvm/Analysis/TypeMetadataUtils.h"
31 #include "llvm/IR/Attributes.h"
32 #include "llvm/IR/BasicBlock.h"
33 #include "llvm/IR/Constant.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/Dominators.h"
36 #include "llvm/IR/Function.h"
37 #include "llvm/IR/GlobalAlias.h"
38 #include "llvm/IR/GlobalValue.h"
39 #include "llvm/IR/GlobalVariable.h"
40 #include "llvm/IR/Instructions.h"
41 #include "llvm/IR/IntrinsicInst.h"
42 #include "llvm/IR/Metadata.h"
43 #include "llvm/IR/Module.h"
44 #include "llvm/IR/ModuleSummaryIndex.h"
45 #include "llvm/IR/Use.h"
46 #include "llvm/IR/User.h"
47 #include "llvm/InitializePasses.h"
48 #include "llvm/Object/ModuleSymbolTable.h"
49 #include "llvm/Object/SymbolicFile.h"
50 #include "llvm/Pass.h"
51 #include "llvm/Support/Casting.h"
52 #include "llvm/Support/CommandLine.h"
53 #include "llvm/Support/FileSystem.h"
54 #include <algorithm>
55 #include <cassert>
56 #include <cstdint>
57 #include <vector>
58 
59 using namespace llvm;
60 using namespace llvm::memprof;
61 
62 #define DEBUG_TYPE "module-summary-analysis"
63 
64 // Option to force edges cold which will block importing when the
65 // -import-cold-multiplier is set to 0. Useful for debugging.
66 namespace llvm {
67 FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold =
68     FunctionSummary::FSHT_None;
69 } // namespace llvm
70 
71 static cl::opt<FunctionSummary::ForceSummaryHotnessType, true> FSEC(
72     "force-summary-edges-cold", cl::Hidden, cl::location(ForceSummaryEdgesCold),
73     cl::desc("Force all edges in the function summary to cold"),
74     cl::values(clEnumValN(FunctionSummary::FSHT_None, "none", "None."),
75                clEnumValN(FunctionSummary::FSHT_AllNonCritical,
76                           "all-non-critical", "All non-critical edges."),
77                clEnumValN(FunctionSummary::FSHT_All, "all", "All edges.")));
78 
79 static cl::opt<std::string> ModuleSummaryDotFile(
80     "module-summary-dot-file", cl::Hidden, cl::value_desc("filename"),
81     cl::desc("File to emit dot graph of new summary into"));
82 
83 extern cl::opt<bool> ScalePartialSampleProfileWorkingSetSize;
84 
85 // Walk through the operands of a given User via worklist iteration and populate
86 // the set of GlobalValue references encountered. Invoked either on an
87 // Instruction or a GlobalVariable (which walks its initializer).
88 // Return true if any of the operands contains blockaddress. This is important
89 // to know when computing summary for global var, because if global variable
90 // references basic block address we can't import it separately from function
91 // containing that basic block. For simplicity we currently don't import such
92 // global vars at all. When importing function we aren't interested if any
93 // instruction in it takes an address of any basic block, because instruction
94 // can only take an address of basic block located in the same function.
95 static bool findRefEdges(ModuleSummaryIndex &Index, const User *CurUser,
96                          SetVector<ValueInfo> &RefEdges,
97                          SmallPtrSet<const User *, 8> &Visited) {
98   bool HasBlockAddress = false;
99   SmallVector<const User *, 32> Worklist;
100   if (Visited.insert(CurUser).second)
101     Worklist.push_back(CurUser);
102 
103   while (!Worklist.empty()) {
104     const User *U = Worklist.pop_back_val();
105     const auto *CB = dyn_cast<CallBase>(U);
106 
107     for (const auto &OI : U->operands()) {
108       const User *Operand = dyn_cast<User>(OI);
109       if (!Operand)
110         continue;
111       if (isa<BlockAddress>(Operand)) {
112         HasBlockAddress = true;
113         continue;
114       }
115       if (auto *GV = dyn_cast<GlobalValue>(Operand)) {
116         // We have a reference to a global value. This should be added to
117         // the reference set unless it is a callee. Callees are handled
118         // specially by WriteFunction and are added to a separate list.
119         if (!(CB && CB->isCallee(&OI)))
120           RefEdges.insert(Index.getOrInsertValueInfo(GV));
121         continue;
122       }
123       if (Visited.insert(Operand).second)
124         Worklist.push_back(Operand);
125     }
126   }
127   return HasBlockAddress;
128 }
129 
130 static CalleeInfo::HotnessType getHotness(uint64_t ProfileCount,
131                                           ProfileSummaryInfo *PSI) {
132   if (!PSI)
133     return CalleeInfo::HotnessType::Unknown;
134   if (PSI->isHotCount(ProfileCount))
135     return CalleeInfo::HotnessType::Hot;
136   if (PSI->isColdCount(ProfileCount))
137     return CalleeInfo::HotnessType::Cold;
138   return CalleeInfo::HotnessType::None;
139 }
140 
141 static bool isNonRenamableLocal(const GlobalValue &GV) {
142   return GV.hasSection() && GV.hasLocalLinkage();
143 }
144 
145 /// Determine whether this call has all constant integer arguments (excluding
146 /// "this") and summarize it to VCalls or ConstVCalls as appropriate.
147 static void addVCallToSet(DevirtCallSite Call, GlobalValue::GUID Guid,
148                           SetVector<FunctionSummary::VFuncId> &VCalls,
149                           SetVector<FunctionSummary::ConstVCall> &ConstVCalls) {
150   std::vector<uint64_t> Args;
151   // Start from the second argument to skip the "this" pointer.
152   for (auto &Arg : drop_begin(Call.CB.args())) {
153     auto *CI = dyn_cast<ConstantInt>(Arg);
154     if (!CI || CI->getBitWidth() > 64) {
155       VCalls.insert({Guid, Call.Offset});
156       return;
157     }
158     Args.push_back(CI->getZExtValue());
159   }
160   ConstVCalls.insert({{Guid, Call.Offset}, std::move(Args)});
161 }
162 
163 /// If this intrinsic call requires that we add information to the function
164 /// summary, do so via the non-constant reference arguments.
165 static void addIntrinsicToSummary(
166     const CallInst *CI, SetVector<GlobalValue::GUID> &TypeTests,
167     SetVector<FunctionSummary::VFuncId> &TypeTestAssumeVCalls,
168     SetVector<FunctionSummary::VFuncId> &TypeCheckedLoadVCalls,
169     SetVector<FunctionSummary::ConstVCall> &TypeTestAssumeConstVCalls,
170     SetVector<FunctionSummary::ConstVCall> &TypeCheckedLoadConstVCalls,
171     DominatorTree &DT) {
172   switch (CI->getCalledFunction()->getIntrinsicID()) {
173   case Intrinsic::type_test:
174   case Intrinsic::public_type_test: {
175     auto *TypeMDVal = cast<MetadataAsValue>(CI->getArgOperand(1));
176     auto *TypeId = dyn_cast<MDString>(TypeMDVal->getMetadata());
177     if (!TypeId)
178       break;
179     GlobalValue::GUID Guid = GlobalValue::getGUID(TypeId->getString());
180 
181     // Produce a summary from type.test intrinsics. We only summarize type.test
182     // intrinsics that are used other than by an llvm.assume intrinsic.
183     // Intrinsics that are assumed are relevant only to the devirtualization
184     // pass, not the type test lowering pass.
185     bool HasNonAssumeUses = llvm::any_of(CI->uses(), [](const Use &CIU) {
186       return !isa<AssumeInst>(CIU.getUser());
187     });
188     if (HasNonAssumeUses)
189       TypeTests.insert(Guid);
190 
191     SmallVector<DevirtCallSite, 4> DevirtCalls;
192     SmallVector<CallInst *, 4> Assumes;
193     findDevirtualizableCallsForTypeTest(DevirtCalls, Assumes, CI, DT);
194     for (auto &Call : DevirtCalls)
195       addVCallToSet(Call, Guid, TypeTestAssumeVCalls,
196                     TypeTestAssumeConstVCalls);
197 
198     break;
199   }
200 
201   case Intrinsic::type_checked_load: {
202     auto *TypeMDVal = cast<MetadataAsValue>(CI->getArgOperand(2));
203     auto *TypeId = dyn_cast<MDString>(TypeMDVal->getMetadata());
204     if (!TypeId)
205       break;
206     GlobalValue::GUID Guid = GlobalValue::getGUID(TypeId->getString());
207 
208     SmallVector<DevirtCallSite, 4> DevirtCalls;
209     SmallVector<Instruction *, 4> LoadedPtrs;
210     SmallVector<Instruction *, 4> Preds;
211     bool HasNonCallUses = false;
212     findDevirtualizableCallsForTypeCheckedLoad(DevirtCalls, LoadedPtrs, Preds,
213                                                HasNonCallUses, CI, DT);
214     // Any non-call uses of the result of llvm.type.checked.load will
215     // prevent us from optimizing away the llvm.type.test.
216     if (HasNonCallUses)
217       TypeTests.insert(Guid);
218     for (auto &Call : DevirtCalls)
219       addVCallToSet(Call, Guid, TypeCheckedLoadVCalls,
220                     TypeCheckedLoadConstVCalls);
221 
222     break;
223   }
224   default:
225     break;
226   }
227 }
228 
229 static bool isNonVolatileLoad(const Instruction *I) {
230   if (const auto *LI = dyn_cast<LoadInst>(I))
231     return !LI->isVolatile();
232 
233   return false;
234 }
235 
236 static bool isNonVolatileStore(const Instruction *I) {
237   if (const auto *SI = dyn_cast<StoreInst>(I))
238     return !SI->isVolatile();
239 
240   return false;
241 }
242 
243 // Returns true if the function definition must be unreachable.
244 //
245 // Note if this helper function returns true, `F` is guaranteed
246 // to be unreachable; if it returns false, `F` might still
247 // be unreachable but not covered by this helper function.
248 static bool mustBeUnreachableFunction(const Function &F) {
249   // A function must be unreachable if its entry block ends with an
250   // 'unreachable'.
251   assert(!F.isDeclaration());
252   return isa<UnreachableInst>(F.getEntryBlock().getTerminator());
253 }
254 
255 static void computeFunctionSummary(
256     ModuleSummaryIndex &Index, const Module &M, const Function &F,
257     BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, DominatorTree &DT,
258     bool HasLocalsInUsedOrAsm, DenseSet<GlobalValue::GUID> &CantBePromoted,
259     bool IsThinLTO,
260     std::function<const StackSafetyInfo *(const Function &F)> GetSSICallback) {
261   // Summary not currently supported for anonymous functions, they should
262   // have been named.
263   assert(F.hasName());
264 
265   unsigned NumInsts = 0;
266   // Map from callee ValueId to profile count. Used to accumulate profile
267   // counts for all static calls to a given callee.
268   MapVector<ValueInfo, CalleeInfo> CallGraphEdges;
269   SetVector<ValueInfo> RefEdges, LoadRefEdges, StoreRefEdges;
270   SetVector<GlobalValue::GUID> TypeTests;
271   SetVector<FunctionSummary::VFuncId> TypeTestAssumeVCalls,
272       TypeCheckedLoadVCalls;
273   SetVector<FunctionSummary::ConstVCall> TypeTestAssumeConstVCalls,
274       TypeCheckedLoadConstVCalls;
275   ICallPromotionAnalysis ICallAnalysis;
276   SmallPtrSet<const User *, 8> Visited;
277 
278   // Add personality function, prefix data and prologue data to function's ref
279   // list.
280   findRefEdges(Index, &F, RefEdges, Visited);
281   std::vector<const Instruction *> NonVolatileLoads;
282   std::vector<const Instruction *> NonVolatileStores;
283 
284   std::vector<CallsiteInfo> Callsites;
285   std::vector<AllocInfo> Allocs;
286 
287 #ifndef NDEBUG
288   DenseSet<const CallBase *> CallsThatMayHaveMemprofSummary;
289 #endif
290 
291   bool HasInlineAsmMaybeReferencingInternal = false;
292   bool HasIndirBranchToBlockAddress = false;
293   bool HasUnknownCall = false;
294   bool MayThrow = false;
295   for (const BasicBlock &BB : F) {
296     // We don't allow inlining of function with indirect branch to blockaddress.
297     // If the blockaddress escapes the function, e.g., via a global variable,
298     // inlining may lead to an invalid cross-function reference. So we shouldn't
299     // import such function either.
300     if (BB.hasAddressTaken()) {
301       for (User *U : BlockAddress::get(const_cast<BasicBlock *>(&BB))->users())
302         if (!isa<CallBrInst>(*U)) {
303           HasIndirBranchToBlockAddress = true;
304           break;
305         }
306     }
307 
308     for (const Instruction &I : BB) {
309       if (I.isDebugOrPseudoInst())
310         continue;
311       ++NumInsts;
312 
313       // Regular LTO module doesn't participate in ThinLTO import,
314       // so no reference from it can be read/writeonly, since this
315       // would require importing variable as local copy
316       if (IsThinLTO) {
317         if (isNonVolatileLoad(&I)) {
318           // Postpone processing of non-volatile load instructions
319           // See comments below
320           Visited.insert(&I);
321           NonVolatileLoads.push_back(&I);
322           continue;
323         } else if (isNonVolatileStore(&I)) {
324           Visited.insert(&I);
325           NonVolatileStores.push_back(&I);
326           // All references from second operand of store (destination address)
327           // can be considered write-only if they're not referenced by any
328           // non-store instruction. References from first operand of store
329           // (stored value) can't be treated either as read- or as write-only
330           // so we add them to RefEdges as we do with all other instructions
331           // except non-volatile load.
332           Value *Stored = I.getOperand(0);
333           if (auto *GV = dyn_cast<GlobalValue>(Stored))
334             // findRefEdges will try to examine GV operands, so instead
335             // of calling it we should add GV to RefEdges directly.
336             RefEdges.insert(Index.getOrInsertValueInfo(GV));
337           else if (auto *U = dyn_cast<User>(Stored))
338             findRefEdges(Index, U, RefEdges, Visited);
339           continue;
340         }
341       }
342       findRefEdges(Index, &I, RefEdges, Visited);
343       const auto *CB = dyn_cast<CallBase>(&I);
344       if (!CB) {
345         if (I.mayThrow())
346           MayThrow = true;
347         continue;
348       }
349 
350       const auto *CI = dyn_cast<CallInst>(&I);
351       // Since we don't know exactly which local values are referenced in inline
352       // assembly, conservatively mark the function as possibly referencing
353       // a local value from inline assembly to ensure we don't export a
354       // reference (which would require renaming and promotion of the
355       // referenced value).
356       if (HasLocalsInUsedOrAsm && CI && CI->isInlineAsm())
357         HasInlineAsmMaybeReferencingInternal = true;
358 
359       auto *CalledValue = CB->getCalledOperand();
360       auto *CalledFunction = CB->getCalledFunction();
361       if (CalledValue && !CalledFunction) {
362         CalledValue = CalledValue->stripPointerCasts();
363         // Stripping pointer casts can reveal a called function.
364         CalledFunction = dyn_cast<Function>(CalledValue);
365       }
366       // Check if this is an alias to a function. If so, get the
367       // called aliasee for the checks below.
368       if (auto *GA = dyn_cast<GlobalAlias>(CalledValue)) {
369         assert(!CalledFunction && "Expected null called function in callsite for alias");
370         CalledFunction = dyn_cast<Function>(GA->getAliaseeObject());
371       }
372       // Check if this is a direct call to a known function or a known
373       // intrinsic, or an indirect call with profile data.
374       if (CalledFunction) {
375         if (CI && CalledFunction->isIntrinsic()) {
376           addIntrinsicToSummary(
377               CI, TypeTests, TypeTestAssumeVCalls, TypeCheckedLoadVCalls,
378               TypeTestAssumeConstVCalls, TypeCheckedLoadConstVCalls, DT);
379           continue;
380         }
381         // We should have named any anonymous globals
382         assert(CalledFunction->hasName());
383         auto ScaledCount = PSI->getProfileCount(*CB, BFI);
384         auto Hotness = ScaledCount ? getHotness(*ScaledCount, PSI)
385                                    : CalleeInfo::HotnessType::Unknown;
386         if (ForceSummaryEdgesCold != FunctionSummary::FSHT_None)
387           Hotness = CalleeInfo::HotnessType::Cold;
388 
389         // Use the original CalledValue, in case it was an alias. We want
390         // to record the call edge to the alias in that case. Eventually
391         // an alias summary will be created to associate the alias and
392         // aliasee.
393         auto &ValueInfo = CallGraphEdges[Index.getOrInsertValueInfo(
394             cast<GlobalValue>(CalledValue))];
395         ValueInfo.updateHotness(Hotness);
396         // Add the relative block frequency to CalleeInfo if there is no profile
397         // information.
398         if (BFI != nullptr && Hotness == CalleeInfo::HotnessType::Unknown) {
399           uint64_t BBFreq = BFI->getBlockFreq(&BB).getFrequency();
400           uint64_t EntryFreq = BFI->getEntryFreq();
401           ValueInfo.updateRelBlockFreq(BBFreq, EntryFreq);
402         }
403       } else {
404         HasUnknownCall = true;
405         // Skip inline assembly calls.
406         if (CI && CI->isInlineAsm())
407           continue;
408         // Skip direct calls.
409         if (!CalledValue || isa<Constant>(CalledValue))
410           continue;
411 
412         // Check if the instruction has a callees metadata. If so, add callees
413         // to CallGraphEdges to reflect the references from the metadata, and
414         // to enable importing for subsequent indirect call promotion and
415         // inlining.
416         if (auto *MD = I.getMetadata(LLVMContext::MD_callees)) {
417           for (const auto &Op : MD->operands()) {
418             Function *Callee = mdconst::extract_or_null<Function>(Op);
419             if (Callee)
420               CallGraphEdges[Index.getOrInsertValueInfo(Callee)];
421           }
422         }
423 
424         uint32_t NumVals, NumCandidates;
425         uint64_t TotalCount;
426         auto CandidateProfileData =
427             ICallAnalysis.getPromotionCandidatesForInstruction(
428                 &I, NumVals, TotalCount, NumCandidates);
429         for (const auto &Candidate : CandidateProfileData)
430           CallGraphEdges[Index.getOrInsertValueInfo(Candidate.Value)]
431               .updateHotness(getHotness(Candidate.Count, PSI));
432       }
433 
434       // Summarize memprof related metadata. This is only needed for ThinLTO.
435       if (!IsThinLTO)
436         continue;
437 
438       // TODO: Skip indirect calls for now. Need to handle these better, likely
439       // by creating multiple Callsites, one per target, then speculatively
440       // devirtualize while applying clone info in the ThinLTO backends. This
441       // will also be important because we will have a different set of clone
442       // versions per target. This handling needs to match that in the ThinLTO
443       // backend so we handle things consistently for matching of callsite
444       // summaries to instructions.
445       if (!CalledFunction)
446         continue;
447 
448       // Ensure we keep this analysis in sync with the handling in the ThinLTO
449       // backend (see MemProfContextDisambiguation::applyImport). Save this call
450       // so that we can skip it in checking the reverse case later.
451       assert(mayHaveMemprofSummary(CB));
452 #ifndef NDEBUG
453       CallsThatMayHaveMemprofSummary.insert(CB);
454 #endif
455 
456       // Compute the list of stack ids first (so we can trim them from the stack
457       // ids on any MIBs).
458       CallStack<MDNode, MDNode::op_iterator> InstCallsite(
459           I.getMetadata(LLVMContext::MD_callsite));
460       auto *MemProfMD = I.getMetadata(LLVMContext::MD_memprof);
461       if (MemProfMD) {
462         std::vector<MIBInfo> MIBs;
463         for (auto &MDOp : MemProfMD->operands()) {
464           auto *MIBMD = cast<const MDNode>(MDOp);
465           MDNode *StackNode = getMIBStackNode(MIBMD);
466           assert(StackNode);
467           SmallVector<unsigned> StackIdIndices;
468           CallStack<MDNode, MDNode::op_iterator> StackContext(StackNode);
469           // Collapse out any on the allocation call (inlining).
470           for (auto ContextIter =
471                    StackContext.beginAfterSharedPrefix(InstCallsite);
472                ContextIter != StackContext.end(); ++ContextIter) {
473             unsigned StackIdIdx = Index.addOrGetStackIdIndex(*ContextIter);
474             // If this is a direct recursion, simply skip the duplicate
475             // entries. If this is mutual recursion, handling is left to
476             // the LTO link analysis client.
477             if (StackIdIndices.empty() || StackIdIndices.back() != StackIdIdx)
478               StackIdIndices.push_back(StackIdIdx);
479           }
480           MIBs.push_back(
481               MIBInfo(getMIBAllocType(MIBMD), std::move(StackIdIndices)));
482         }
483         Allocs.push_back(AllocInfo(std::move(MIBs)));
484       } else if (!InstCallsite.empty()) {
485         SmallVector<unsigned> StackIdIndices;
486         for (auto StackId : InstCallsite)
487           StackIdIndices.push_back(Index.addOrGetStackIdIndex(StackId));
488         // Use the original CalledValue, in case it was an alias. We want
489         // to record the call edge to the alias in that case. Eventually
490         // an alias summary will be created to associate the alias and
491         // aliasee.
492         auto CalleeValueInfo =
493             Index.getOrInsertValueInfo(cast<GlobalValue>(CalledValue));
494         Callsites.push_back({CalleeValueInfo, StackIdIndices});
495       }
496     }
497   }
498 
499   if (PSI->hasPartialSampleProfile() && ScalePartialSampleProfileWorkingSetSize)
500     Index.addBlockCount(F.size());
501 
502   std::vector<ValueInfo> Refs;
503   if (IsThinLTO) {
504     auto AddRefEdges = [&](const std::vector<const Instruction *> &Instrs,
505                            SetVector<ValueInfo> &Edges,
506                            SmallPtrSet<const User *, 8> &Cache) {
507       for (const auto *I : Instrs) {
508         Cache.erase(I);
509         findRefEdges(Index, I, Edges, Cache);
510       }
511     };
512 
513     // By now we processed all instructions in a function, except
514     // non-volatile loads and non-volatile value stores. Let's find
515     // ref edges for both of instruction sets
516     AddRefEdges(NonVolatileLoads, LoadRefEdges, Visited);
517     // We can add some values to the Visited set when processing load
518     // instructions which are also used by stores in NonVolatileStores.
519     // For example this can happen if we have following code:
520     //
521     // store %Derived* @foo, %Derived** bitcast (%Base** @bar to %Derived**)
522     // %42 = load %Derived*, %Derived** bitcast (%Base** @bar to %Derived**)
523     //
524     // After processing loads we'll add bitcast to the Visited set, and if
525     // we use the same set while processing stores, we'll never see store
526     // to @bar and @bar will be mistakenly treated as readonly.
527     SmallPtrSet<const llvm::User *, 8> StoreCache;
528     AddRefEdges(NonVolatileStores, StoreRefEdges, StoreCache);
529 
530     // If both load and store instruction reference the same variable
531     // we won't be able to optimize it. Add all such reference edges
532     // to RefEdges set.
533     for (const auto &VI : StoreRefEdges)
534       if (LoadRefEdges.remove(VI))
535         RefEdges.insert(VI);
536 
537     unsigned RefCnt = RefEdges.size();
538     // All new reference edges inserted in two loops below are either
539     // read or write only. They will be grouped in the end of RefEdges
540     // vector, so we can use a single integer value to identify them.
541     for (const auto &VI : LoadRefEdges)
542       RefEdges.insert(VI);
543 
544     unsigned FirstWORef = RefEdges.size();
545     for (const auto &VI : StoreRefEdges)
546       RefEdges.insert(VI);
547 
548     Refs = RefEdges.takeVector();
549     for (; RefCnt < FirstWORef; ++RefCnt)
550       Refs[RefCnt].setReadOnly();
551 
552     for (; RefCnt < Refs.size(); ++RefCnt)
553       Refs[RefCnt].setWriteOnly();
554   } else {
555     Refs = RefEdges.takeVector();
556   }
557   // Explicit add hot edges to enforce importing for designated GUIDs for
558   // sample PGO, to enable the same inlines as the profiled optimized binary.
559   for (auto &I : F.getImportGUIDs())
560     CallGraphEdges[Index.getOrInsertValueInfo(I)].updateHotness(
561         ForceSummaryEdgesCold == FunctionSummary::FSHT_All
562             ? CalleeInfo::HotnessType::Cold
563             : CalleeInfo::HotnessType::Critical);
564 
565 #ifndef NDEBUG
566   // Make sure that all calls we decided could not have memprof summaries get a
567   // false value for mayHaveMemprofSummary, to ensure that this handling remains
568   // in sync with the ThinLTO backend handling.
569   if (IsThinLTO) {
570     for (const BasicBlock &BB : F) {
571       for (const Instruction &I : BB) {
572         const auto *CB = dyn_cast<CallBase>(&I);
573         if (!CB)
574           continue;
575         // We already checked these above.
576         if (CallsThatMayHaveMemprofSummary.count(CB))
577           continue;
578         assert(!mayHaveMemprofSummary(CB));
579       }
580     }
581   }
582 #endif
583 
584   bool NonRenamableLocal = isNonRenamableLocal(F);
585   bool NotEligibleForImport = NonRenamableLocal ||
586                               HasInlineAsmMaybeReferencingInternal ||
587                               HasIndirBranchToBlockAddress;
588   GlobalValueSummary::GVFlags Flags(
589       F.getLinkage(), F.getVisibility(), NotEligibleForImport,
590       /* Live = */ false, F.isDSOLocal(), F.canBeOmittedFromSymbolTable());
591   FunctionSummary::FFlags FunFlags{
592       F.doesNotAccessMemory(), F.onlyReadsMemory() && !F.doesNotAccessMemory(),
593       F.hasFnAttribute(Attribute::NoRecurse), F.returnDoesNotAlias(),
594       // FIXME: refactor this to use the same code that inliner is using.
595       // Don't try to import functions with noinline attribute.
596       F.getAttributes().hasFnAttr(Attribute::NoInline),
597       F.hasFnAttribute(Attribute::AlwaysInline),
598       F.hasFnAttribute(Attribute::NoUnwind), MayThrow, HasUnknownCall,
599       mustBeUnreachableFunction(F)};
600   std::vector<FunctionSummary::ParamAccess> ParamAccesses;
601   if (auto *SSI = GetSSICallback(F))
602     ParamAccesses = SSI->getParamAccesses(Index);
603   auto FuncSummary = std::make_unique<FunctionSummary>(
604       Flags, NumInsts, FunFlags, /*EntryCount=*/0, std::move(Refs),
605       CallGraphEdges.takeVector(), TypeTests.takeVector(),
606       TypeTestAssumeVCalls.takeVector(), TypeCheckedLoadVCalls.takeVector(),
607       TypeTestAssumeConstVCalls.takeVector(),
608       TypeCheckedLoadConstVCalls.takeVector(), std::move(ParamAccesses),
609       std::move(Callsites), std::move(Allocs));
610   if (NonRenamableLocal)
611     CantBePromoted.insert(F.getGUID());
612   Index.addGlobalValueSummary(F, std::move(FuncSummary));
613 }
614 
615 /// Find function pointers referenced within the given vtable initializer
616 /// (or subset of an initializer) \p I. The starting offset of \p I within
617 /// the vtable initializer is \p StartingOffset. Any discovered function
618 /// pointers are added to \p VTableFuncs along with their cumulative offset
619 /// within the initializer.
620 static void findFuncPointers(const Constant *I, uint64_t StartingOffset,
621                              const Module &M, ModuleSummaryIndex &Index,
622                              VTableFuncList &VTableFuncs) {
623   // First check if this is a function pointer.
624   if (I->getType()->isPointerTy()) {
625     auto C = I->stripPointerCasts();
626     auto A = dyn_cast<GlobalAlias>(C);
627     if (isa<Function>(C) || (A && isa<Function>(A->getAliasee()))) {
628       auto GV = dyn_cast<GlobalValue>(C);
629       assert(GV);
630       // We can disregard __cxa_pure_virtual as a possible call target, as
631       // calls to pure virtuals are UB.
632       if (GV && GV->getName() != "__cxa_pure_virtual")
633         VTableFuncs.push_back({Index.getOrInsertValueInfo(GV), StartingOffset});
634       return;
635     }
636   }
637 
638   // Walk through the elements in the constant struct or array and recursively
639   // look for virtual function pointers.
640   const DataLayout &DL = M.getDataLayout();
641   if (auto *C = dyn_cast<ConstantStruct>(I)) {
642     StructType *STy = dyn_cast<StructType>(C->getType());
643     assert(STy);
644     const StructLayout *SL = DL.getStructLayout(C->getType());
645 
646     for (auto EI : llvm::enumerate(STy->elements())) {
647       auto Offset = SL->getElementOffset(EI.index());
648       unsigned Op = SL->getElementContainingOffset(Offset);
649       findFuncPointers(cast<Constant>(I->getOperand(Op)),
650                        StartingOffset + Offset, M, Index, VTableFuncs);
651     }
652   } else if (auto *C = dyn_cast<ConstantArray>(I)) {
653     ArrayType *ATy = C->getType();
654     Type *EltTy = ATy->getElementType();
655     uint64_t EltSize = DL.getTypeAllocSize(EltTy);
656     for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) {
657       findFuncPointers(cast<Constant>(I->getOperand(i)),
658                        StartingOffset + i * EltSize, M, Index, VTableFuncs);
659     }
660   }
661 }
662 
663 // Identify the function pointers referenced by vtable definition \p V.
664 static void computeVTableFuncs(ModuleSummaryIndex &Index,
665                                const GlobalVariable &V, const Module &M,
666                                VTableFuncList &VTableFuncs) {
667   if (!V.isConstant())
668     return;
669 
670   findFuncPointers(V.getInitializer(), /*StartingOffset=*/0, M, Index,
671                    VTableFuncs);
672 
673 #ifndef NDEBUG
674   // Validate that the VTableFuncs list is ordered by offset.
675   uint64_t PrevOffset = 0;
676   for (auto &P : VTableFuncs) {
677     // The findVFuncPointers traversal should have encountered the
678     // functions in offset order. We need to use ">=" since PrevOffset
679     // starts at 0.
680     assert(P.VTableOffset >= PrevOffset);
681     PrevOffset = P.VTableOffset;
682   }
683 #endif
684 }
685 
686 /// Record vtable definition \p V for each type metadata it references.
687 static void
688 recordTypeIdCompatibleVtableReferences(ModuleSummaryIndex &Index,
689                                        const GlobalVariable &V,
690                                        SmallVectorImpl<MDNode *> &Types) {
691   for (MDNode *Type : Types) {
692     auto TypeID = Type->getOperand(1).get();
693 
694     uint64_t Offset =
695         cast<ConstantInt>(
696             cast<ConstantAsMetadata>(Type->getOperand(0))->getValue())
697             ->getZExtValue();
698 
699     if (auto *TypeId = dyn_cast<MDString>(TypeID))
700       Index.getOrInsertTypeIdCompatibleVtableSummary(TypeId->getString())
701           .push_back({Offset, Index.getOrInsertValueInfo(&V)});
702   }
703 }
704 
705 static void computeVariableSummary(ModuleSummaryIndex &Index,
706                                    const GlobalVariable &V,
707                                    DenseSet<GlobalValue::GUID> &CantBePromoted,
708                                    const Module &M,
709                                    SmallVectorImpl<MDNode *> &Types) {
710   SetVector<ValueInfo> RefEdges;
711   SmallPtrSet<const User *, 8> Visited;
712   bool HasBlockAddress = findRefEdges(Index, &V, RefEdges, Visited);
713   bool NonRenamableLocal = isNonRenamableLocal(V);
714   GlobalValueSummary::GVFlags Flags(
715       V.getLinkage(), V.getVisibility(), NonRenamableLocal,
716       /* Live = */ false, V.isDSOLocal(), V.canBeOmittedFromSymbolTable());
717 
718   VTableFuncList VTableFuncs;
719   // If splitting is not enabled, then we compute the summary information
720   // necessary for index-based whole program devirtualization.
721   if (!Index.enableSplitLTOUnit()) {
722     Types.clear();
723     V.getMetadata(LLVMContext::MD_type, Types);
724     if (!Types.empty()) {
725       // Identify the function pointers referenced by this vtable definition.
726       computeVTableFuncs(Index, V, M, VTableFuncs);
727 
728       // Record this vtable definition for each type metadata it references.
729       recordTypeIdCompatibleVtableReferences(Index, V, Types);
730     }
731   }
732 
733   // Don't mark variables we won't be able to internalize as read/write-only.
734   bool CanBeInternalized =
735       !V.hasComdat() && !V.hasAppendingLinkage() && !V.isInterposable() &&
736       !V.hasAvailableExternallyLinkage() && !V.hasDLLExportStorageClass();
737   bool Constant = V.isConstant();
738   GlobalVarSummary::GVarFlags VarFlags(CanBeInternalized,
739                                        Constant ? false : CanBeInternalized,
740                                        Constant, V.getVCallVisibility());
741   auto GVarSummary = std::make_unique<GlobalVarSummary>(Flags, VarFlags,
742                                                          RefEdges.takeVector());
743   if (NonRenamableLocal)
744     CantBePromoted.insert(V.getGUID());
745   if (HasBlockAddress)
746     GVarSummary->setNotEligibleToImport();
747   if (!VTableFuncs.empty())
748     GVarSummary->setVTableFuncs(VTableFuncs);
749   Index.addGlobalValueSummary(V, std::move(GVarSummary));
750 }
751 
752 static void computeAliasSummary(ModuleSummaryIndex &Index, const GlobalAlias &A,
753                                 DenseSet<GlobalValue::GUID> &CantBePromoted) {
754   // Skip summary for indirect function aliases as summary for aliasee will not
755   // be emitted.
756   const GlobalObject *Aliasee = A.getAliaseeObject();
757   if (isa<GlobalIFunc>(Aliasee))
758     return;
759   bool NonRenamableLocal = isNonRenamableLocal(A);
760   GlobalValueSummary::GVFlags Flags(
761       A.getLinkage(), A.getVisibility(), NonRenamableLocal,
762       /* Live = */ false, A.isDSOLocal(), A.canBeOmittedFromSymbolTable());
763   auto AS = std::make_unique<AliasSummary>(Flags);
764   auto AliaseeVI = Index.getValueInfo(Aliasee->getGUID());
765   assert(AliaseeVI && "Alias expects aliasee summary to be available");
766   assert(AliaseeVI.getSummaryList().size() == 1 &&
767          "Expected a single entry per aliasee in per-module index");
768   AS->setAliasee(AliaseeVI, AliaseeVI.getSummaryList()[0].get());
769   if (NonRenamableLocal)
770     CantBePromoted.insert(A.getGUID());
771   Index.addGlobalValueSummary(A, std::move(AS));
772 }
773 
774 // Set LiveRoot flag on entries matching the given value name.
775 static void setLiveRoot(ModuleSummaryIndex &Index, StringRef Name) {
776   if (ValueInfo VI = Index.getValueInfo(GlobalValue::getGUID(Name)))
777     for (const auto &Summary : VI.getSummaryList())
778       Summary->setLive(true);
779 }
780 
781 ModuleSummaryIndex llvm::buildModuleSummaryIndex(
782     const Module &M,
783     std::function<BlockFrequencyInfo *(const Function &F)> GetBFICallback,
784     ProfileSummaryInfo *PSI,
785     std::function<const StackSafetyInfo *(const Function &F)> GetSSICallback) {
786   assert(PSI);
787   bool EnableSplitLTOUnit = false;
788   if (auto *MD = mdconst::extract_or_null<ConstantInt>(
789           M.getModuleFlag("EnableSplitLTOUnit")))
790     EnableSplitLTOUnit = MD->getZExtValue();
791   ModuleSummaryIndex Index(/*HaveGVs=*/true, EnableSplitLTOUnit);
792 
793   // Identify the local values in the llvm.used and llvm.compiler.used sets,
794   // which should not be exported as they would then require renaming and
795   // promotion, but we may have opaque uses e.g. in inline asm. We collect them
796   // here because we use this information to mark functions containing inline
797   // assembly calls as not importable.
798   SmallPtrSet<GlobalValue *, 4> LocalsUsed;
799   SmallVector<GlobalValue *, 4> Used;
800   // First collect those in the llvm.used set.
801   collectUsedGlobalVariables(M, Used, /*CompilerUsed=*/false);
802   // Next collect those in the llvm.compiler.used set.
803   collectUsedGlobalVariables(M, Used, /*CompilerUsed=*/true);
804   DenseSet<GlobalValue::GUID> CantBePromoted;
805   for (auto *V : Used) {
806     if (V->hasLocalLinkage()) {
807       LocalsUsed.insert(V);
808       CantBePromoted.insert(V->getGUID());
809     }
810   }
811 
812   bool HasLocalInlineAsmSymbol = false;
813   if (!M.getModuleInlineAsm().empty()) {
814     // Collect the local values defined by module level asm, and set up
815     // summaries for these symbols so that they can be marked as NoRename,
816     // to prevent export of any use of them in regular IR that would require
817     // renaming within the module level asm. Note we don't need to create a
818     // summary for weak or global defs, as they don't need to be flagged as
819     // NoRename, and defs in module level asm can't be imported anyway.
820     // Also, any values used but not defined within module level asm should
821     // be listed on the llvm.used or llvm.compiler.used global and marked as
822     // referenced from there.
823     ModuleSymbolTable::CollectAsmSymbols(
824         M, [&](StringRef Name, object::BasicSymbolRef::Flags Flags) {
825           // Symbols not marked as Weak or Global are local definitions.
826           if (Flags & (object::BasicSymbolRef::SF_Weak |
827                        object::BasicSymbolRef::SF_Global))
828             return;
829           HasLocalInlineAsmSymbol = true;
830           GlobalValue *GV = M.getNamedValue(Name);
831           if (!GV)
832             return;
833           assert(GV->isDeclaration() && "Def in module asm already has definition");
834           GlobalValueSummary::GVFlags GVFlags(
835               GlobalValue::InternalLinkage, GlobalValue::DefaultVisibility,
836               /* NotEligibleToImport = */ true,
837               /* Live = */ true,
838               /* Local */ GV->isDSOLocal(), GV->canBeOmittedFromSymbolTable());
839           CantBePromoted.insert(GV->getGUID());
840           // Create the appropriate summary type.
841           if (Function *F = dyn_cast<Function>(GV)) {
842             std::unique_ptr<FunctionSummary> Summary =
843                 std::make_unique<FunctionSummary>(
844                     GVFlags, /*InstCount=*/0,
845                     FunctionSummary::FFlags{
846                         F->hasFnAttribute(Attribute::ReadNone),
847                         F->hasFnAttribute(Attribute::ReadOnly),
848                         F->hasFnAttribute(Attribute::NoRecurse),
849                         F->returnDoesNotAlias(),
850                         /* NoInline = */ false,
851                         F->hasFnAttribute(Attribute::AlwaysInline),
852                         F->hasFnAttribute(Attribute::NoUnwind),
853                         /* MayThrow */ true,
854                         /* HasUnknownCall */ true,
855                         /* MustBeUnreachable */ false},
856                     /*EntryCount=*/0, ArrayRef<ValueInfo>{},
857                     ArrayRef<FunctionSummary::EdgeTy>{},
858                     ArrayRef<GlobalValue::GUID>{},
859                     ArrayRef<FunctionSummary::VFuncId>{},
860                     ArrayRef<FunctionSummary::VFuncId>{},
861                     ArrayRef<FunctionSummary::ConstVCall>{},
862                     ArrayRef<FunctionSummary::ConstVCall>{},
863                     ArrayRef<FunctionSummary::ParamAccess>{},
864                     ArrayRef<CallsiteInfo>{}, ArrayRef<AllocInfo>{});
865             Index.addGlobalValueSummary(*GV, std::move(Summary));
866           } else {
867             std::unique_ptr<GlobalVarSummary> Summary =
868                 std::make_unique<GlobalVarSummary>(
869                     GVFlags,
870                     GlobalVarSummary::GVarFlags(
871                         false, false, cast<GlobalVariable>(GV)->isConstant(),
872                         GlobalObject::VCallVisibilityPublic),
873                     ArrayRef<ValueInfo>{});
874             Index.addGlobalValueSummary(*GV, std::move(Summary));
875           }
876         });
877   }
878 
879   bool IsThinLTO = true;
880   if (auto *MD =
881           mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO")))
882     IsThinLTO = MD->getZExtValue();
883 
884   // Compute summaries for all functions defined in module, and save in the
885   // index.
886   for (const auto &F : M) {
887     if (F.isDeclaration())
888       continue;
889 
890     DominatorTree DT(const_cast<Function &>(F));
891     BlockFrequencyInfo *BFI = nullptr;
892     std::unique_ptr<BlockFrequencyInfo> BFIPtr;
893     if (GetBFICallback)
894       BFI = GetBFICallback(F);
895     else if (F.hasProfileData()) {
896       LoopInfo LI{DT};
897       BranchProbabilityInfo BPI{F, LI};
898       BFIPtr = std::make_unique<BlockFrequencyInfo>(F, BPI, LI);
899       BFI = BFIPtr.get();
900     }
901 
902     computeFunctionSummary(Index, M, F, BFI, PSI, DT,
903                            !LocalsUsed.empty() || HasLocalInlineAsmSymbol,
904                            CantBePromoted, IsThinLTO, GetSSICallback);
905   }
906 
907   // Compute summaries for all variables defined in module, and save in the
908   // index.
909   SmallVector<MDNode *, 2> Types;
910   for (const GlobalVariable &G : M.globals()) {
911     if (G.isDeclaration())
912       continue;
913     computeVariableSummary(Index, G, CantBePromoted, M, Types);
914   }
915 
916   // Compute summaries for all aliases defined in module, and save in the
917   // index.
918   for (const GlobalAlias &A : M.aliases())
919     computeAliasSummary(Index, A, CantBePromoted);
920 
921   // Iterate through ifuncs, set their resolvers all alive.
922   for (const GlobalIFunc &I : M.ifuncs()) {
923     I.applyAlongResolverPath([&Index](const GlobalValue &GV) {
924       Index.getGlobalValueSummary(GV)->setLive(true);
925     });
926   }
927 
928   for (auto *V : LocalsUsed) {
929     auto *Summary = Index.getGlobalValueSummary(*V);
930     assert(Summary && "Missing summary for global value");
931     Summary->setNotEligibleToImport();
932   }
933 
934   // The linker doesn't know about these LLVM produced values, so we need
935   // to flag them as live in the index to ensure index-based dead value
936   // analysis treats them as live roots of the analysis.
937   setLiveRoot(Index, "llvm.used");
938   setLiveRoot(Index, "llvm.compiler.used");
939   setLiveRoot(Index, "llvm.global_ctors");
940   setLiveRoot(Index, "llvm.global_dtors");
941   setLiveRoot(Index, "llvm.global.annotations");
942 
943   for (auto &GlobalList : Index) {
944     // Ignore entries for references that are undefined in the current module.
945     if (GlobalList.second.SummaryList.empty())
946       continue;
947 
948     assert(GlobalList.second.SummaryList.size() == 1 &&
949            "Expected module's index to have one summary per GUID");
950     auto &Summary = GlobalList.second.SummaryList[0];
951     if (!IsThinLTO) {
952       Summary->setNotEligibleToImport();
953       continue;
954     }
955 
956     bool AllRefsCanBeExternallyReferenced =
957         llvm::all_of(Summary->refs(), [&](const ValueInfo &VI) {
958           return !CantBePromoted.count(VI.getGUID());
959         });
960     if (!AllRefsCanBeExternallyReferenced) {
961       Summary->setNotEligibleToImport();
962       continue;
963     }
964 
965     if (auto *FuncSummary = dyn_cast<FunctionSummary>(Summary.get())) {
966       bool AllCallsCanBeExternallyReferenced = llvm::all_of(
967           FuncSummary->calls(), [&](const FunctionSummary::EdgeTy &Edge) {
968             return !CantBePromoted.count(Edge.first.getGUID());
969           });
970       if (!AllCallsCanBeExternallyReferenced)
971         Summary->setNotEligibleToImport();
972     }
973   }
974 
975   if (!ModuleSummaryDotFile.empty()) {
976     std::error_code EC;
977     raw_fd_ostream OSDot(ModuleSummaryDotFile, EC, sys::fs::OpenFlags::OF_None);
978     if (EC)
979       report_fatal_error(Twine("Failed to open dot file ") +
980                          ModuleSummaryDotFile + ": " + EC.message() + "\n");
981     Index.exportToDot(OSDot, {});
982   }
983 
984   return Index;
985 }
986 
987 AnalysisKey ModuleSummaryIndexAnalysis::Key;
988 
989 ModuleSummaryIndex
990 ModuleSummaryIndexAnalysis::run(Module &M, ModuleAnalysisManager &AM) {
991   ProfileSummaryInfo &PSI = AM.getResult<ProfileSummaryAnalysis>(M);
992   auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
993   bool NeedSSI = needsParamAccessSummary(M);
994   return buildModuleSummaryIndex(
995       M,
996       [&FAM](const Function &F) {
997         return &FAM.getResult<BlockFrequencyAnalysis>(
998             *const_cast<Function *>(&F));
999       },
1000       &PSI,
1001       [&FAM, NeedSSI](const Function &F) -> const StackSafetyInfo * {
1002         return NeedSSI ? &FAM.getResult<StackSafetyAnalysis>(
1003                              const_cast<Function &>(F))
1004                        : nullptr;
1005       });
1006 }
1007 
1008 char ModuleSummaryIndexWrapperPass::ID = 0;
1009 
1010 INITIALIZE_PASS_BEGIN(ModuleSummaryIndexWrapperPass, "module-summary-analysis",
1011                       "Module Summary Analysis", false, true)
1012 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
1013 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
1014 INITIALIZE_PASS_DEPENDENCY(StackSafetyInfoWrapperPass)
1015 INITIALIZE_PASS_END(ModuleSummaryIndexWrapperPass, "module-summary-analysis",
1016                     "Module Summary Analysis", false, true)
1017 
1018 ModulePass *llvm::createModuleSummaryIndexWrapperPass() {
1019   return new ModuleSummaryIndexWrapperPass();
1020 }
1021 
1022 ModuleSummaryIndexWrapperPass::ModuleSummaryIndexWrapperPass()
1023     : ModulePass(ID) {
1024   initializeModuleSummaryIndexWrapperPassPass(*PassRegistry::getPassRegistry());
1025 }
1026 
1027 bool ModuleSummaryIndexWrapperPass::runOnModule(Module &M) {
1028   auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
1029   bool NeedSSI = needsParamAccessSummary(M);
1030   Index.emplace(buildModuleSummaryIndex(
1031       M,
1032       [this](const Function &F) {
1033         return &(this->getAnalysis<BlockFrequencyInfoWrapperPass>(
1034                          *const_cast<Function *>(&F))
1035                      .getBFI());
1036       },
1037       PSI,
1038       [&](const Function &F) -> const StackSafetyInfo * {
1039         return NeedSSI ? &getAnalysis<StackSafetyInfoWrapperPass>(
1040                               const_cast<Function &>(F))
1041                               .getResult()
1042                        : nullptr;
1043       }));
1044   return false;
1045 }
1046 
1047 bool ModuleSummaryIndexWrapperPass::doFinalization(Module &M) {
1048   Index.reset();
1049   return false;
1050 }
1051 
1052 void ModuleSummaryIndexWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
1053   AU.setPreservesAll();
1054   AU.addRequired<BlockFrequencyInfoWrapperPass>();
1055   AU.addRequired<ProfileSummaryInfoWrapperPass>();
1056   AU.addRequired<StackSafetyInfoWrapperPass>();
1057 }
1058 
1059 char ImmutableModuleSummaryIndexWrapperPass::ID = 0;
1060 
1061 ImmutableModuleSummaryIndexWrapperPass::ImmutableModuleSummaryIndexWrapperPass(
1062     const ModuleSummaryIndex *Index)
1063     : ImmutablePass(ID), Index(Index) {
1064   initializeImmutableModuleSummaryIndexWrapperPassPass(
1065       *PassRegistry::getPassRegistry());
1066 }
1067 
1068 void ImmutableModuleSummaryIndexWrapperPass::getAnalysisUsage(
1069     AnalysisUsage &AU) const {
1070   AU.setPreservesAll();
1071 }
1072 
1073 ImmutablePass *llvm::createImmutableModuleSummaryIndexWrapperPass(
1074     const ModuleSummaryIndex *Index) {
1075   return new ImmutableModuleSummaryIndexWrapperPass(Index);
1076 }
1077 
1078 INITIALIZE_PASS(ImmutableModuleSummaryIndexWrapperPass, "module-summary-info",
1079                 "Module summary info", false, true)
1080 
1081 bool llvm::mayHaveMemprofSummary(const CallBase *CB) {
1082   if (!CB)
1083     return false;
1084   if (CB->isDebugOrPseudoInst())
1085     return false;
1086   auto *CI = dyn_cast<CallInst>(CB);
1087   auto *CalledValue = CB->getCalledOperand();
1088   auto *CalledFunction = CB->getCalledFunction();
1089   if (CalledValue && !CalledFunction) {
1090     CalledValue = CalledValue->stripPointerCasts();
1091     // Stripping pointer casts can reveal a called function.
1092     CalledFunction = dyn_cast<Function>(CalledValue);
1093   }
1094   // Check if this is an alias to a function. If so, get the
1095   // called aliasee for the checks below.
1096   if (auto *GA = dyn_cast<GlobalAlias>(CalledValue)) {
1097     assert(!CalledFunction &&
1098            "Expected null called function in callsite for alias");
1099     CalledFunction = dyn_cast<Function>(GA->getAliaseeObject());
1100   }
1101   // Check if this is a direct call to a known function or a known
1102   // intrinsic, or an indirect call with profile data.
1103   if (CalledFunction) {
1104     if (CI && CalledFunction->isIntrinsic())
1105       return false;
1106   } else {
1107     // TODO: For now skip indirect calls. See comments in
1108     // computeFunctionSummary for what is needed to handle this.
1109     return false;
1110   }
1111   return true;
1112 }
1113