1 //===- ModuleSummaryAnalysis.cpp - Module summary index builder -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass builds a ModuleSummaryIndex object for the module, to be written 10 // to bitcode or LLVM assembly. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/ModuleSummaryAnalysis.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/MapVector.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SetVector.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/StringRef.h" 23 #include "llvm/Analysis/BlockFrequencyInfo.h" 24 #include "llvm/Analysis/BranchProbabilityInfo.h" 25 #include "llvm/Analysis/IndirectCallPromotionAnalysis.h" 26 #include "llvm/Analysis/LoopInfo.h" 27 #include "llvm/Analysis/MemoryProfileInfo.h" 28 #include "llvm/Analysis/ProfileSummaryInfo.h" 29 #include "llvm/Analysis/StackSafetyAnalysis.h" 30 #include "llvm/Analysis/TypeMetadataUtils.h" 31 #include "llvm/IR/Attributes.h" 32 #include "llvm/IR/BasicBlock.h" 33 #include "llvm/IR/Constant.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/Dominators.h" 36 #include "llvm/IR/Function.h" 37 #include "llvm/IR/GlobalAlias.h" 38 #include "llvm/IR/GlobalValue.h" 39 #include "llvm/IR/GlobalVariable.h" 40 #include "llvm/IR/Instructions.h" 41 #include "llvm/IR/IntrinsicInst.h" 42 #include "llvm/IR/Metadata.h" 43 #include "llvm/IR/Module.h" 44 #include "llvm/IR/ModuleSummaryIndex.h" 45 #include "llvm/IR/Use.h" 46 #include "llvm/IR/User.h" 47 #include "llvm/InitializePasses.h" 48 #include "llvm/Object/ModuleSymbolTable.h" 49 #include "llvm/Object/SymbolicFile.h" 50 #include "llvm/Pass.h" 51 #include "llvm/Support/Casting.h" 52 #include "llvm/Support/CommandLine.h" 53 #include "llvm/Support/FileSystem.h" 54 #include <algorithm> 55 #include <cassert> 56 #include <cstdint> 57 #include <vector> 58 59 using namespace llvm; 60 using namespace llvm::memprof; 61 62 #define DEBUG_TYPE "module-summary-analysis" 63 64 // Option to force edges cold which will block importing when the 65 // -import-cold-multiplier is set to 0. Useful for debugging. 66 namespace llvm { 67 FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold = 68 FunctionSummary::FSHT_None; 69 } // namespace llvm 70 71 static cl::opt<FunctionSummary::ForceSummaryHotnessType, true> FSEC( 72 "force-summary-edges-cold", cl::Hidden, cl::location(ForceSummaryEdgesCold), 73 cl::desc("Force all edges in the function summary to cold"), 74 cl::values(clEnumValN(FunctionSummary::FSHT_None, "none", "None."), 75 clEnumValN(FunctionSummary::FSHT_AllNonCritical, 76 "all-non-critical", "All non-critical edges."), 77 clEnumValN(FunctionSummary::FSHT_All, "all", "All edges."))); 78 79 static cl::opt<std::string> ModuleSummaryDotFile( 80 "module-summary-dot-file", cl::Hidden, cl::value_desc("filename"), 81 cl::desc("File to emit dot graph of new summary into")); 82 83 extern cl::opt<bool> ScalePartialSampleProfileWorkingSetSize; 84 85 // Walk through the operands of a given User via worklist iteration and populate 86 // the set of GlobalValue references encountered. Invoked either on an 87 // Instruction or a GlobalVariable (which walks its initializer). 88 // Return true if any of the operands contains blockaddress. This is important 89 // to know when computing summary for global var, because if global variable 90 // references basic block address we can't import it separately from function 91 // containing that basic block. For simplicity we currently don't import such 92 // global vars at all. When importing function we aren't interested if any 93 // instruction in it takes an address of any basic block, because instruction 94 // can only take an address of basic block located in the same function. 95 static bool findRefEdges(ModuleSummaryIndex &Index, const User *CurUser, 96 SetVector<ValueInfo, std::vector<ValueInfo>> &RefEdges, 97 SmallPtrSet<const User *, 8> &Visited) { 98 bool HasBlockAddress = false; 99 SmallVector<const User *, 32> Worklist; 100 if (Visited.insert(CurUser).second) 101 Worklist.push_back(CurUser); 102 103 while (!Worklist.empty()) { 104 const User *U = Worklist.pop_back_val(); 105 const auto *CB = dyn_cast<CallBase>(U); 106 107 for (const auto &OI : U->operands()) { 108 const User *Operand = dyn_cast<User>(OI); 109 if (!Operand) 110 continue; 111 if (isa<BlockAddress>(Operand)) { 112 HasBlockAddress = true; 113 continue; 114 } 115 if (auto *GV = dyn_cast<GlobalValue>(Operand)) { 116 // We have a reference to a global value. This should be added to 117 // the reference set unless it is a callee. Callees are handled 118 // specially by WriteFunction and are added to a separate list. 119 if (!(CB && CB->isCallee(&OI))) 120 RefEdges.insert(Index.getOrInsertValueInfo(GV)); 121 continue; 122 } 123 if (Visited.insert(Operand).second) 124 Worklist.push_back(Operand); 125 } 126 } 127 return HasBlockAddress; 128 } 129 130 static CalleeInfo::HotnessType getHotness(uint64_t ProfileCount, 131 ProfileSummaryInfo *PSI) { 132 if (!PSI) 133 return CalleeInfo::HotnessType::Unknown; 134 if (PSI->isHotCount(ProfileCount)) 135 return CalleeInfo::HotnessType::Hot; 136 if (PSI->isColdCount(ProfileCount)) 137 return CalleeInfo::HotnessType::Cold; 138 return CalleeInfo::HotnessType::None; 139 } 140 141 static bool isNonRenamableLocal(const GlobalValue &GV) { 142 return GV.hasSection() && GV.hasLocalLinkage(); 143 } 144 145 /// Determine whether this call has all constant integer arguments (excluding 146 /// "this") and summarize it to VCalls or ConstVCalls as appropriate. 147 static void addVCallToSet( 148 DevirtCallSite Call, GlobalValue::GUID Guid, 149 SetVector<FunctionSummary::VFuncId, std::vector<FunctionSummary::VFuncId>> 150 &VCalls, 151 SetVector<FunctionSummary::ConstVCall, 152 std::vector<FunctionSummary::ConstVCall>> &ConstVCalls) { 153 std::vector<uint64_t> Args; 154 // Start from the second argument to skip the "this" pointer. 155 for (auto &Arg : drop_begin(Call.CB.args())) { 156 auto *CI = dyn_cast<ConstantInt>(Arg); 157 if (!CI || CI->getBitWidth() > 64) { 158 VCalls.insert({Guid, Call.Offset}); 159 return; 160 } 161 Args.push_back(CI->getZExtValue()); 162 } 163 ConstVCalls.insert({{Guid, Call.Offset}, std::move(Args)}); 164 } 165 166 /// If this intrinsic call requires that we add information to the function 167 /// summary, do so via the non-constant reference arguments. 168 static void addIntrinsicToSummary( 169 const CallInst *CI, 170 SetVector<GlobalValue::GUID, std::vector<GlobalValue::GUID>> &TypeTests, 171 SetVector<FunctionSummary::VFuncId, std::vector<FunctionSummary::VFuncId>> 172 &TypeTestAssumeVCalls, 173 SetVector<FunctionSummary::VFuncId, std::vector<FunctionSummary::VFuncId>> 174 &TypeCheckedLoadVCalls, 175 SetVector<FunctionSummary::ConstVCall, 176 std::vector<FunctionSummary::ConstVCall>> 177 &TypeTestAssumeConstVCalls, 178 SetVector<FunctionSummary::ConstVCall, 179 std::vector<FunctionSummary::ConstVCall>> 180 &TypeCheckedLoadConstVCalls, 181 DominatorTree &DT) { 182 switch (CI->getCalledFunction()->getIntrinsicID()) { 183 case Intrinsic::type_test: 184 case Intrinsic::public_type_test: { 185 auto *TypeMDVal = cast<MetadataAsValue>(CI->getArgOperand(1)); 186 auto *TypeId = dyn_cast<MDString>(TypeMDVal->getMetadata()); 187 if (!TypeId) 188 break; 189 GlobalValue::GUID Guid = GlobalValue::getGUID(TypeId->getString()); 190 191 // Produce a summary from type.test intrinsics. We only summarize type.test 192 // intrinsics that are used other than by an llvm.assume intrinsic. 193 // Intrinsics that are assumed are relevant only to the devirtualization 194 // pass, not the type test lowering pass. 195 bool HasNonAssumeUses = llvm::any_of(CI->uses(), [](const Use &CIU) { 196 return !isa<AssumeInst>(CIU.getUser()); 197 }); 198 if (HasNonAssumeUses) 199 TypeTests.insert(Guid); 200 201 SmallVector<DevirtCallSite, 4> DevirtCalls; 202 SmallVector<CallInst *, 4> Assumes; 203 findDevirtualizableCallsForTypeTest(DevirtCalls, Assumes, CI, DT); 204 for (auto &Call : DevirtCalls) 205 addVCallToSet(Call, Guid, TypeTestAssumeVCalls, 206 TypeTestAssumeConstVCalls); 207 208 break; 209 } 210 211 case Intrinsic::type_checked_load_relative: 212 case Intrinsic::type_checked_load: { 213 auto *TypeMDVal = cast<MetadataAsValue>(CI->getArgOperand(2)); 214 auto *TypeId = dyn_cast<MDString>(TypeMDVal->getMetadata()); 215 if (!TypeId) 216 break; 217 GlobalValue::GUID Guid = GlobalValue::getGUID(TypeId->getString()); 218 219 SmallVector<DevirtCallSite, 4> DevirtCalls; 220 SmallVector<Instruction *, 4> LoadedPtrs; 221 SmallVector<Instruction *, 4> Preds; 222 bool HasNonCallUses = false; 223 findDevirtualizableCallsForTypeCheckedLoad(DevirtCalls, LoadedPtrs, Preds, 224 HasNonCallUses, CI, DT); 225 // Any non-call uses of the result of llvm.type.checked.load will 226 // prevent us from optimizing away the llvm.type.test. 227 if (HasNonCallUses) 228 TypeTests.insert(Guid); 229 for (auto &Call : DevirtCalls) 230 addVCallToSet(Call, Guid, TypeCheckedLoadVCalls, 231 TypeCheckedLoadConstVCalls); 232 233 break; 234 } 235 default: 236 break; 237 } 238 } 239 240 static bool isNonVolatileLoad(const Instruction *I) { 241 if (const auto *LI = dyn_cast<LoadInst>(I)) 242 return !LI->isVolatile(); 243 244 return false; 245 } 246 247 static bool isNonVolatileStore(const Instruction *I) { 248 if (const auto *SI = dyn_cast<StoreInst>(I)) 249 return !SI->isVolatile(); 250 251 return false; 252 } 253 254 // Returns true if the function definition must be unreachable. 255 // 256 // Note if this helper function returns true, `F` is guaranteed 257 // to be unreachable; if it returns false, `F` might still 258 // be unreachable but not covered by this helper function. 259 static bool mustBeUnreachableFunction(const Function &F) { 260 // A function must be unreachable if its entry block ends with an 261 // 'unreachable'. 262 assert(!F.isDeclaration()); 263 return isa<UnreachableInst>(F.getEntryBlock().getTerminator()); 264 } 265 266 static void computeFunctionSummary( 267 ModuleSummaryIndex &Index, const Module &M, const Function &F, 268 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, DominatorTree &DT, 269 bool HasLocalsInUsedOrAsm, DenseSet<GlobalValue::GUID> &CantBePromoted, 270 bool IsThinLTO, 271 std::function<const StackSafetyInfo *(const Function &F)> GetSSICallback) { 272 // Summary not currently supported for anonymous functions, they should 273 // have been named. 274 assert(F.hasName()); 275 276 unsigned NumInsts = 0; 277 // Map from callee ValueId to profile count. Used to accumulate profile 278 // counts for all static calls to a given callee. 279 MapVector<ValueInfo, CalleeInfo, DenseMap<ValueInfo, unsigned>, 280 std::vector<std::pair<ValueInfo, CalleeInfo>>> 281 CallGraphEdges; 282 SetVector<ValueInfo, std::vector<ValueInfo>> RefEdges, LoadRefEdges, 283 StoreRefEdges; 284 SetVector<GlobalValue::GUID, std::vector<GlobalValue::GUID>> TypeTests; 285 SetVector<FunctionSummary::VFuncId, std::vector<FunctionSummary::VFuncId>> 286 TypeTestAssumeVCalls, TypeCheckedLoadVCalls; 287 SetVector<FunctionSummary::ConstVCall, 288 std::vector<FunctionSummary::ConstVCall>> 289 TypeTestAssumeConstVCalls, TypeCheckedLoadConstVCalls; 290 ICallPromotionAnalysis ICallAnalysis; 291 SmallPtrSet<const User *, 8> Visited; 292 293 // Add personality function, prefix data and prologue data to function's ref 294 // list. 295 findRefEdges(Index, &F, RefEdges, Visited); 296 std::vector<const Instruction *> NonVolatileLoads; 297 std::vector<const Instruction *> NonVolatileStores; 298 299 std::vector<CallsiteInfo> Callsites; 300 std::vector<AllocInfo> Allocs; 301 302 #ifndef NDEBUG 303 DenseSet<const CallBase *> CallsThatMayHaveMemprofSummary; 304 #endif 305 306 bool HasInlineAsmMaybeReferencingInternal = false; 307 bool HasIndirBranchToBlockAddress = false; 308 bool HasIFuncCall = false; 309 bool HasUnknownCall = false; 310 bool MayThrow = false; 311 for (const BasicBlock &BB : F) { 312 // We don't allow inlining of function with indirect branch to blockaddress. 313 // If the blockaddress escapes the function, e.g., via a global variable, 314 // inlining may lead to an invalid cross-function reference. So we shouldn't 315 // import such function either. 316 if (BB.hasAddressTaken()) { 317 for (User *U : BlockAddress::get(const_cast<BasicBlock *>(&BB))->users()) 318 if (!isa<CallBrInst>(*U)) { 319 HasIndirBranchToBlockAddress = true; 320 break; 321 } 322 } 323 324 for (const Instruction &I : BB) { 325 if (I.isDebugOrPseudoInst()) 326 continue; 327 ++NumInsts; 328 329 // Regular LTO module doesn't participate in ThinLTO import, 330 // so no reference from it can be read/writeonly, since this 331 // would require importing variable as local copy 332 if (IsThinLTO) { 333 if (isNonVolatileLoad(&I)) { 334 // Postpone processing of non-volatile load instructions 335 // See comments below 336 Visited.insert(&I); 337 NonVolatileLoads.push_back(&I); 338 continue; 339 } else if (isNonVolatileStore(&I)) { 340 Visited.insert(&I); 341 NonVolatileStores.push_back(&I); 342 // All references from second operand of store (destination address) 343 // can be considered write-only if they're not referenced by any 344 // non-store instruction. References from first operand of store 345 // (stored value) can't be treated either as read- or as write-only 346 // so we add them to RefEdges as we do with all other instructions 347 // except non-volatile load. 348 Value *Stored = I.getOperand(0); 349 if (auto *GV = dyn_cast<GlobalValue>(Stored)) 350 // findRefEdges will try to examine GV operands, so instead 351 // of calling it we should add GV to RefEdges directly. 352 RefEdges.insert(Index.getOrInsertValueInfo(GV)); 353 else if (auto *U = dyn_cast<User>(Stored)) 354 findRefEdges(Index, U, RefEdges, Visited); 355 continue; 356 } 357 } 358 findRefEdges(Index, &I, RefEdges, Visited); 359 const auto *CB = dyn_cast<CallBase>(&I); 360 if (!CB) { 361 if (I.mayThrow()) 362 MayThrow = true; 363 continue; 364 } 365 366 const auto *CI = dyn_cast<CallInst>(&I); 367 // Since we don't know exactly which local values are referenced in inline 368 // assembly, conservatively mark the function as possibly referencing 369 // a local value from inline assembly to ensure we don't export a 370 // reference (which would require renaming and promotion of the 371 // referenced value). 372 if (HasLocalsInUsedOrAsm && CI && CI->isInlineAsm()) 373 HasInlineAsmMaybeReferencingInternal = true; 374 375 auto *CalledValue = CB->getCalledOperand(); 376 auto *CalledFunction = CB->getCalledFunction(); 377 if (CalledValue && !CalledFunction) { 378 CalledValue = CalledValue->stripPointerCasts(); 379 // Stripping pointer casts can reveal a called function. 380 CalledFunction = dyn_cast<Function>(CalledValue); 381 } 382 // Check if this is an alias to a function. If so, get the 383 // called aliasee for the checks below. 384 if (auto *GA = dyn_cast<GlobalAlias>(CalledValue)) { 385 assert(!CalledFunction && "Expected null called function in callsite for alias"); 386 CalledFunction = dyn_cast<Function>(GA->getAliaseeObject()); 387 } 388 // Check if this is a direct call to a known function or a known 389 // intrinsic, or an indirect call with profile data. 390 if (CalledFunction) { 391 if (CI && CalledFunction->isIntrinsic()) { 392 addIntrinsicToSummary( 393 CI, TypeTests, TypeTestAssumeVCalls, TypeCheckedLoadVCalls, 394 TypeTestAssumeConstVCalls, TypeCheckedLoadConstVCalls, DT); 395 continue; 396 } 397 // We should have named any anonymous globals 398 assert(CalledFunction->hasName()); 399 auto ScaledCount = PSI->getProfileCount(*CB, BFI); 400 auto Hotness = ScaledCount ? getHotness(*ScaledCount, PSI) 401 : CalleeInfo::HotnessType::Unknown; 402 if (ForceSummaryEdgesCold != FunctionSummary::FSHT_None) 403 Hotness = CalleeInfo::HotnessType::Cold; 404 405 // Use the original CalledValue, in case it was an alias. We want 406 // to record the call edge to the alias in that case. Eventually 407 // an alias summary will be created to associate the alias and 408 // aliasee. 409 auto &ValueInfo = CallGraphEdges[Index.getOrInsertValueInfo( 410 cast<GlobalValue>(CalledValue))]; 411 ValueInfo.updateHotness(Hotness); 412 // Add the relative block frequency to CalleeInfo if there is no profile 413 // information. 414 if (BFI != nullptr && Hotness == CalleeInfo::HotnessType::Unknown) { 415 uint64_t BBFreq = BFI->getBlockFreq(&BB).getFrequency(); 416 uint64_t EntryFreq = BFI->getEntryFreq(); 417 ValueInfo.updateRelBlockFreq(BBFreq, EntryFreq); 418 } 419 } else { 420 HasUnknownCall = true; 421 // If F is imported, a local linkage ifunc (e.g. target_clones on a 422 // static function) called by F will be cloned. Since summaries don't 423 // track ifunc, we do not know implementation functions referenced by 424 // the ifunc resolver need to be promoted in the exporter, and we will 425 // get linker errors due to cloned declarations for implementation 426 // functions. As a simple fix, just mark F as not eligible for import. 427 // Non-local ifunc is not cloned and does not have the issue. 428 if (auto *GI = dyn_cast_if_present<GlobalIFunc>(CalledValue)) 429 if (GI->hasLocalLinkage()) 430 HasIFuncCall = true; 431 // Skip inline assembly calls. 432 if (CI && CI->isInlineAsm()) 433 continue; 434 // Skip direct calls. 435 if (!CalledValue || isa<Constant>(CalledValue)) 436 continue; 437 438 // Check if the instruction has a callees metadata. If so, add callees 439 // to CallGraphEdges to reflect the references from the metadata, and 440 // to enable importing for subsequent indirect call promotion and 441 // inlining. 442 if (auto *MD = I.getMetadata(LLVMContext::MD_callees)) { 443 for (const auto &Op : MD->operands()) { 444 Function *Callee = mdconst::extract_or_null<Function>(Op); 445 if (Callee) 446 CallGraphEdges[Index.getOrInsertValueInfo(Callee)]; 447 } 448 } 449 450 uint32_t NumVals, NumCandidates; 451 uint64_t TotalCount; 452 auto CandidateProfileData = 453 ICallAnalysis.getPromotionCandidatesForInstruction( 454 &I, NumVals, TotalCount, NumCandidates); 455 for (const auto &Candidate : CandidateProfileData) 456 CallGraphEdges[Index.getOrInsertValueInfo(Candidate.Value)] 457 .updateHotness(getHotness(Candidate.Count, PSI)); 458 } 459 460 // Summarize memprof related metadata. This is only needed for ThinLTO. 461 if (!IsThinLTO) 462 continue; 463 464 // TODO: Skip indirect calls for now. Need to handle these better, likely 465 // by creating multiple Callsites, one per target, then speculatively 466 // devirtualize while applying clone info in the ThinLTO backends. This 467 // will also be important because we will have a different set of clone 468 // versions per target. This handling needs to match that in the ThinLTO 469 // backend so we handle things consistently for matching of callsite 470 // summaries to instructions. 471 if (!CalledFunction) 472 continue; 473 474 // Ensure we keep this analysis in sync with the handling in the ThinLTO 475 // backend (see MemProfContextDisambiguation::applyImport). Save this call 476 // so that we can skip it in checking the reverse case later. 477 assert(mayHaveMemprofSummary(CB)); 478 #ifndef NDEBUG 479 CallsThatMayHaveMemprofSummary.insert(CB); 480 #endif 481 482 // Compute the list of stack ids first (so we can trim them from the stack 483 // ids on any MIBs). 484 CallStack<MDNode, MDNode::op_iterator> InstCallsite( 485 I.getMetadata(LLVMContext::MD_callsite)); 486 auto *MemProfMD = I.getMetadata(LLVMContext::MD_memprof); 487 if (MemProfMD) { 488 std::vector<MIBInfo> MIBs; 489 for (auto &MDOp : MemProfMD->operands()) { 490 auto *MIBMD = cast<const MDNode>(MDOp); 491 MDNode *StackNode = getMIBStackNode(MIBMD); 492 assert(StackNode); 493 SmallVector<unsigned> StackIdIndices; 494 CallStack<MDNode, MDNode::op_iterator> StackContext(StackNode); 495 // Collapse out any on the allocation call (inlining). 496 for (auto ContextIter = 497 StackContext.beginAfterSharedPrefix(InstCallsite); 498 ContextIter != StackContext.end(); ++ContextIter) { 499 unsigned StackIdIdx = Index.addOrGetStackIdIndex(*ContextIter); 500 // If this is a direct recursion, simply skip the duplicate 501 // entries. If this is mutual recursion, handling is left to 502 // the LTO link analysis client. 503 if (StackIdIndices.empty() || StackIdIndices.back() != StackIdIdx) 504 StackIdIndices.push_back(StackIdIdx); 505 } 506 MIBs.push_back( 507 MIBInfo(getMIBAllocType(MIBMD), std::move(StackIdIndices))); 508 } 509 Allocs.push_back(AllocInfo(std::move(MIBs))); 510 } else if (!InstCallsite.empty()) { 511 SmallVector<unsigned> StackIdIndices; 512 for (auto StackId : InstCallsite) 513 StackIdIndices.push_back(Index.addOrGetStackIdIndex(StackId)); 514 // Use the original CalledValue, in case it was an alias. We want 515 // to record the call edge to the alias in that case. Eventually 516 // an alias summary will be created to associate the alias and 517 // aliasee. 518 auto CalleeValueInfo = 519 Index.getOrInsertValueInfo(cast<GlobalValue>(CalledValue)); 520 Callsites.push_back({CalleeValueInfo, StackIdIndices}); 521 } 522 } 523 } 524 525 if (PSI->hasPartialSampleProfile() && ScalePartialSampleProfileWorkingSetSize) 526 Index.addBlockCount(F.size()); 527 528 std::vector<ValueInfo> Refs; 529 if (IsThinLTO) { 530 auto AddRefEdges = [&](const std::vector<const Instruction *> &Instrs, 531 SetVector<ValueInfo, std::vector<ValueInfo>> &Edges, 532 SmallPtrSet<const User *, 8> &Cache) { 533 for (const auto *I : Instrs) { 534 Cache.erase(I); 535 findRefEdges(Index, I, Edges, Cache); 536 } 537 }; 538 539 // By now we processed all instructions in a function, except 540 // non-volatile loads and non-volatile value stores. Let's find 541 // ref edges for both of instruction sets 542 AddRefEdges(NonVolatileLoads, LoadRefEdges, Visited); 543 // We can add some values to the Visited set when processing load 544 // instructions which are also used by stores in NonVolatileStores. 545 // For example this can happen if we have following code: 546 // 547 // store %Derived* @foo, %Derived** bitcast (%Base** @bar to %Derived**) 548 // %42 = load %Derived*, %Derived** bitcast (%Base** @bar to %Derived**) 549 // 550 // After processing loads we'll add bitcast to the Visited set, and if 551 // we use the same set while processing stores, we'll never see store 552 // to @bar and @bar will be mistakenly treated as readonly. 553 SmallPtrSet<const llvm::User *, 8> StoreCache; 554 AddRefEdges(NonVolatileStores, StoreRefEdges, StoreCache); 555 556 // If both load and store instruction reference the same variable 557 // we won't be able to optimize it. Add all such reference edges 558 // to RefEdges set. 559 for (const auto &VI : StoreRefEdges) 560 if (LoadRefEdges.remove(VI)) 561 RefEdges.insert(VI); 562 563 unsigned RefCnt = RefEdges.size(); 564 // All new reference edges inserted in two loops below are either 565 // read or write only. They will be grouped in the end of RefEdges 566 // vector, so we can use a single integer value to identify them. 567 for (const auto &VI : LoadRefEdges) 568 RefEdges.insert(VI); 569 570 unsigned FirstWORef = RefEdges.size(); 571 for (const auto &VI : StoreRefEdges) 572 RefEdges.insert(VI); 573 574 Refs = RefEdges.takeVector(); 575 for (; RefCnt < FirstWORef; ++RefCnt) 576 Refs[RefCnt].setReadOnly(); 577 578 for (; RefCnt < Refs.size(); ++RefCnt) 579 Refs[RefCnt].setWriteOnly(); 580 } else { 581 Refs = RefEdges.takeVector(); 582 } 583 // Explicit add hot edges to enforce importing for designated GUIDs for 584 // sample PGO, to enable the same inlines as the profiled optimized binary. 585 for (auto &I : F.getImportGUIDs()) 586 CallGraphEdges[Index.getOrInsertValueInfo(I)].updateHotness( 587 ForceSummaryEdgesCold == FunctionSummary::FSHT_All 588 ? CalleeInfo::HotnessType::Cold 589 : CalleeInfo::HotnessType::Critical); 590 591 #ifndef NDEBUG 592 // Make sure that all calls we decided could not have memprof summaries get a 593 // false value for mayHaveMemprofSummary, to ensure that this handling remains 594 // in sync with the ThinLTO backend handling. 595 if (IsThinLTO) { 596 for (const BasicBlock &BB : F) { 597 for (const Instruction &I : BB) { 598 const auto *CB = dyn_cast<CallBase>(&I); 599 if (!CB) 600 continue; 601 // We already checked these above. 602 if (CallsThatMayHaveMemprofSummary.count(CB)) 603 continue; 604 assert(!mayHaveMemprofSummary(CB)); 605 } 606 } 607 } 608 #endif 609 610 bool NonRenamableLocal = isNonRenamableLocal(F); 611 bool NotEligibleForImport = NonRenamableLocal || 612 HasInlineAsmMaybeReferencingInternal || 613 HasIndirBranchToBlockAddress || HasIFuncCall; 614 GlobalValueSummary::GVFlags Flags( 615 F.getLinkage(), F.getVisibility(), NotEligibleForImport, 616 /* Live = */ false, F.isDSOLocal(), F.canBeOmittedFromSymbolTable()); 617 FunctionSummary::FFlags FunFlags{ 618 F.doesNotAccessMemory(), F.onlyReadsMemory() && !F.doesNotAccessMemory(), 619 F.hasFnAttribute(Attribute::NoRecurse), F.returnDoesNotAlias(), 620 // FIXME: refactor this to use the same code that inliner is using. 621 // Don't try to import functions with noinline attribute. 622 F.getAttributes().hasFnAttr(Attribute::NoInline), 623 F.hasFnAttribute(Attribute::AlwaysInline), 624 F.hasFnAttribute(Attribute::NoUnwind), MayThrow, HasUnknownCall, 625 mustBeUnreachableFunction(F)}; 626 std::vector<FunctionSummary::ParamAccess> ParamAccesses; 627 if (auto *SSI = GetSSICallback(F)) 628 ParamAccesses = SSI->getParamAccesses(Index); 629 auto FuncSummary = std::make_unique<FunctionSummary>( 630 Flags, NumInsts, FunFlags, /*EntryCount=*/0, std::move(Refs), 631 CallGraphEdges.takeVector(), TypeTests.takeVector(), 632 TypeTestAssumeVCalls.takeVector(), TypeCheckedLoadVCalls.takeVector(), 633 TypeTestAssumeConstVCalls.takeVector(), 634 TypeCheckedLoadConstVCalls.takeVector(), std::move(ParamAccesses), 635 std::move(Callsites), std::move(Allocs)); 636 if (NonRenamableLocal) 637 CantBePromoted.insert(F.getGUID()); 638 Index.addGlobalValueSummary(F, std::move(FuncSummary)); 639 } 640 641 /// Find function pointers referenced within the given vtable initializer 642 /// (or subset of an initializer) \p I. The starting offset of \p I within 643 /// the vtable initializer is \p StartingOffset. Any discovered function 644 /// pointers are added to \p VTableFuncs along with their cumulative offset 645 /// within the initializer. 646 static void findFuncPointers(const Constant *I, uint64_t StartingOffset, 647 const Module &M, ModuleSummaryIndex &Index, 648 VTableFuncList &VTableFuncs) { 649 // First check if this is a function pointer. 650 if (I->getType()->isPointerTy()) { 651 auto C = I->stripPointerCasts(); 652 auto A = dyn_cast<GlobalAlias>(C); 653 if (isa<Function>(C) || (A && isa<Function>(A->getAliasee()))) { 654 auto GV = dyn_cast<GlobalValue>(C); 655 assert(GV); 656 // We can disregard __cxa_pure_virtual as a possible call target, as 657 // calls to pure virtuals are UB. 658 if (GV && GV->getName() != "__cxa_pure_virtual") 659 VTableFuncs.push_back({Index.getOrInsertValueInfo(GV), StartingOffset}); 660 return; 661 } 662 } 663 664 // Walk through the elements in the constant struct or array and recursively 665 // look for virtual function pointers. 666 const DataLayout &DL = M.getDataLayout(); 667 if (auto *C = dyn_cast<ConstantStruct>(I)) { 668 StructType *STy = dyn_cast<StructType>(C->getType()); 669 assert(STy); 670 const StructLayout *SL = DL.getStructLayout(C->getType()); 671 672 for (auto EI : llvm::enumerate(STy->elements())) { 673 auto Offset = SL->getElementOffset(EI.index()); 674 unsigned Op = SL->getElementContainingOffset(Offset); 675 findFuncPointers(cast<Constant>(I->getOperand(Op)), 676 StartingOffset + Offset, M, Index, VTableFuncs); 677 } 678 } else if (auto *C = dyn_cast<ConstantArray>(I)) { 679 ArrayType *ATy = C->getType(); 680 Type *EltTy = ATy->getElementType(); 681 uint64_t EltSize = DL.getTypeAllocSize(EltTy); 682 for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) { 683 findFuncPointers(cast<Constant>(I->getOperand(i)), 684 StartingOffset + i * EltSize, M, Index, VTableFuncs); 685 } 686 } 687 } 688 689 // Identify the function pointers referenced by vtable definition \p V. 690 static void computeVTableFuncs(ModuleSummaryIndex &Index, 691 const GlobalVariable &V, const Module &M, 692 VTableFuncList &VTableFuncs) { 693 if (!V.isConstant()) 694 return; 695 696 findFuncPointers(V.getInitializer(), /*StartingOffset=*/0, M, Index, 697 VTableFuncs); 698 699 #ifndef NDEBUG 700 // Validate that the VTableFuncs list is ordered by offset. 701 uint64_t PrevOffset = 0; 702 for (auto &P : VTableFuncs) { 703 // The findVFuncPointers traversal should have encountered the 704 // functions in offset order. We need to use ">=" since PrevOffset 705 // starts at 0. 706 assert(P.VTableOffset >= PrevOffset); 707 PrevOffset = P.VTableOffset; 708 } 709 #endif 710 } 711 712 /// Record vtable definition \p V for each type metadata it references. 713 static void 714 recordTypeIdCompatibleVtableReferences(ModuleSummaryIndex &Index, 715 const GlobalVariable &V, 716 SmallVectorImpl<MDNode *> &Types) { 717 for (MDNode *Type : Types) { 718 auto TypeID = Type->getOperand(1).get(); 719 720 uint64_t Offset = 721 cast<ConstantInt>( 722 cast<ConstantAsMetadata>(Type->getOperand(0))->getValue()) 723 ->getZExtValue(); 724 725 if (auto *TypeId = dyn_cast<MDString>(TypeID)) 726 Index.getOrInsertTypeIdCompatibleVtableSummary(TypeId->getString()) 727 .push_back({Offset, Index.getOrInsertValueInfo(&V)}); 728 } 729 } 730 731 static void computeVariableSummary(ModuleSummaryIndex &Index, 732 const GlobalVariable &V, 733 DenseSet<GlobalValue::GUID> &CantBePromoted, 734 const Module &M, 735 SmallVectorImpl<MDNode *> &Types) { 736 SetVector<ValueInfo, std::vector<ValueInfo>> RefEdges; 737 SmallPtrSet<const User *, 8> Visited; 738 bool HasBlockAddress = findRefEdges(Index, &V, RefEdges, Visited); 739 bool NonRenamableLocal = isNonRenamableLocal(V); 740 GlobalValueSummary::GVFlags Flags( 741 V.getLinkage(), V.getVisibility(), NonRenamableLocal, 742 /* Live = */ false, V.isDSOLocal(), V.canBeOmittedFromSymbolTable()); 743 744 VTableFuncList VTableFuncs; 745 // If splitting is not enabled, then we compute the summary information 746 // necessary for index-based whole program devirtualization. 747 if (!Index.enableSplitLTOUnit()) { 748 Types.clear(); 749 V.getMetadata(LLVMContext::MD_type, Types); 750 if (!Types.empty()) { 751 // Identify the function pointers referenced by this vtable definition. 752 computeVTableFuncs(Index, V, M, VTableFuncs); 753 754 // Record this vtable definition for each type metadata it references. 755 recordTypeIdCompatibleVtableReferences(Index, V, Types); 756 } 757 } 758 759 // Don't mark variables we won't be able to internalize as read/write-only. 760 bool CanBeInternalized = 761 !V.hasComdat() && !V.hasAppendingLinkage() && !V.isInterposable() && 762 !V.hasAvailableExternallyLinkage() && !V.hasDLLExportStorageClass(); 763 bool Constant = V.isConstant(); 764 GlobalVarSummary::GVarFlags VarFlags(CanBeInternalized, 765 Constant ? false : CanBeInternalized, 766 Constant, V.getVCallVisibility()); 767 auto GVarSummary = std::make_unique<GlobalVarSummary>(Flags, VarFlags, 768 RefEdges.takeVector()); 769 if (NonRenamableLocal) 770 CantBePromoted.insert(V.getGUID()); 771 if (HasBlockAddress) 772 GVarSummary->setNotEligibleToImport(); 773 if (!VTableFuncs.empty()) 774 GVarSummary->setVTableFuncs(VTableFuncs); 775 Index.addGlobalValueSummary(V, std::move(GVarSummary)); 776 } 777 778 static void computeAliasSummary(ModuleSummaryIndex &Index, const GlobalAlias &A, 779 DenseSet<GlobalValue::GUID> &CantBePromoted) { 780 // Skip summary for indirect function aliases as summary for aliasee will not 781 // be emitted. 782 const GlobalObject *Aliasee = A.getAliaseeObject(); 783 if (isa<GlobalIFunc>(Aliasee)) 784 return; 785 bool NonRenamableLocal = isNonRenamableLocal(A); 786 GlobalValueSummary::GVFlags Flags( 787 A.getLinkage(), A.getVisibility(), NonRenamableLocal, 788 /* Live = */ false, A.isDSOLocal(), A.canBeOmittedFromSymbolTable()); 789 auto AS = std::make_unique<AliasSummary>(Flags); 790 auto AliaseeVI = Index.getValueInfo(Aliasee->getGUID()); 791 assert(AliaseeVI && "Alias expects aliasee summary to be available"); 792 assert(AliaseeVI.getSummaryList().size() == 1 && 793 "Expected a single entry per aliasee in per-module index"); 794 AS->setAliasee(AliaseeVI, AliaseeVI.getSummaryList()[0].get()); 795 if (NonRenamableLocal) 796 CantBePromoted.insert(A.getGUID()); 797 Index.addGlobalValueSummary(A, std::move(AS)); 798 } 799 800 // Set LiveRoot flag on entries matching the given value name. 801 static void setLiveRoot(ModuleSummaryIndex &Index, StringRef Name) { 802 if (ValueInfo VI = Index.getValueInfo(GlobalValue::getGUID(Name))) 803 for (const auto &Summary : VI.getSummaryList()) 804 Summary->setLive(true); 805 } 806 807 ModuleSummaryIndex llvm::buildModuleSummaryIndex( 808 const Module &M, 809 std::function<BlockFrequencyInfo *(const Function &F)> GetBFICallback, 810 ProfileSummaryInfo *PSI, 811 std::function<const StackSafetyInfo *(const Function &F)> GetSSICallback) { 812 assert(PSI); 813 bool EnableSplitLTOUnit = false; 814 bool UnifiedLTO = false; 815 if (auto *MD = mdconst::extract_or_null<ConstantInt>( 816 M.getModuleFlag("EnableSplitLTOUnit"))) 817 EnableSplitLTOUnit = MD->getZExtValue(); 818 if (auto *MD = 819 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("UnifiedLTO"))) 820 UnifiedLTO = MD->getZExtValue(); 821 ModuleSummaryIndex Index(/*HaveGVs=*/true, EnableSplitLTOUnit, UnifiedLTO); 822 823 // Identify the local values in the llvm.used and llvm.compiler.used sets, 824 // which should not be exported as they would then require renaming and 825 // promotion, but we may have opaque uses e.g. in inline asm. We collect them 826 // here because we use this information to mark functions containing inline 827 // assembly calls as not importable. 828 SmallPtrSet<GlobalValue *, 4> LocalsUsed; 829 SmallVector<GlobalValue *, 4> Used; 830 // First collect those in the llvm.used set. 831 collectUsedGlobalVariables(M, Used, /*CompilerUsed=*/false); 832 // Next collect those in the llvm.compiler.used set. 833 collectUsedGlobalVariables(M, Used, /*CompilerUsed=*/true); 834 DenseSet<GlobalValue::GUID> CantBePromoted; 835 for (auto *V : Used) { 836 if (V->hasLocalLinkage()) { 837 LocalsUsed.insert(V); 838 CantBePromoted.insert(V->getGUID()); 839 } 840 } 841 842 bool HasLocalInlineAsmSymbol = false; 843 if (!M.getModuleInlineAsm().empty()) { 844 // Collect the local values defined by module level asm, and set up 845 // summaries for these symbols so that they can be marked as NoRename, 846 // to prevent export of any use of them in regular IR that would require 847 // renaming within the module level asm. Note we don't need to create a 848 // summary for weak or global defs, as they don't need to be flagged as 849 // NoRename, and defs in module level asm can't be imported anyway. 850 // Also, any values used but not defined within module level asm should 851 // be listed on the llvm.used or llvm.compiler.used global and marked as 852 // referenced from there. 853 ModuleSymbolTable::CollectAsmSymbols( 854 M, [&](StringRef Name, object::BasicSymbolRef::Flags Flags) { 855 // Symbols not marked as Weak or Global are local definitions. 856 if (Flags & (object::BasicSymbolRef::SF_Weak | 857 object::BasicSymbolRef::SF_Global)) 858 return; 859 HasLocalInlineAsmSymbol = true; 860 GlobalValue *GV = M.getNamedValue(Name); 861 if (!GV) 862 return; 863 assert(GV->isDeclaration() && "Def in module asm already has definition"); 864 GlobalValueSummary::GVFlags GVFlags( 865 GlobalValue::InternalLinkage, GlobalValue::DefaultVisibility, 866 /* NotEligibleToImport = */ true, 867 /* Live = */ true, 868 /* Local */ GV->isDSOLocal(), GV->canBeOmittedFromSymbolTable()); 869 CantBePromoted.insert(GV->getGUID()); 870 // Create the appropriate summary type. 871 if (Function *F = dyn_cast<Function>(GV)) { 872 std::unique_ptr<FunctionSummary> Summary = 873 std::make_unique<FunctionSummary>( 874 GVFlags, /*InstCount=*/0, 875 FunctionSummary::FFlags{ 876 F->hasFnAttribute(Attribute::ReadNone), 877 F->hasFnAttribute(Attribute::ReadOnly), 878 F->hasFnAttribute(Attribute::NoRecurse), 879 F->returnDoesNotAlias(), 880 /* NoInline = */ false, 881 F->hasFnAttribute(Attribute::AlwaysInline), 882 F->hasFnAttribute(Attribute::NoUnwind), 883 /* MayThrow */ true, 884 /* HasUnknownCall */ true, 885 /* MustBeUnreachable */ false}, 886 /*EntryCount=*/0, ArrayRef<ValueInfo>{}, 887 ArrayRef<FunctionSummary::EdgeTy>{}, 888 ArrayRef<GlobalValue::GUID>{}, 889 ArrayRef<FunctionSummary::VFuncId>{}, 890 ArrayRef<FunctionSummary::VFuncId>{}, 891 ArrayRef<FunctionSummary::ConstVCall>{}, 892 ArrayRef<FunctionSummary::ConstVCall>{}, 893 ArrayRef<FunctionSummary::ParamAccess>{}, 894 ArrayRef<CallsiteInfo>{}, ArrayRef<AllocInfo>{}); 895 Index.addGlobalValueSummary(*GV, std::move(Summary)); 896 } else { 897 std::unique_ptr<GlobalVarSummary> Summary = 898 std::make_unique<GlobalVarSummary>( 899 GVFlags, 900 GlobalVarSummary::GVarFlags( 901 false, false, cast<GlobalVariable>(GV)->isConstant(), 902 GlobalObject::VCallVisibilityPublic), 903 ArrayRef<ValueInfo>{}); 904 Index.addGlobalValueSummary(*GV, std::move(Summary)); 905 } 906 }); 907 } 908 909 bool IsThinLTO = true; 910 if (auto *MD = 911 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO"))) 912 IsThinLTO = MD->getZExtValue(); 913 914 // Compute summaries for all functions defined in module, and save in the 915 // index. 916 for (const auto &F : M) { 917 if (F.isDeclaration()) 918 continue; 919 920 DominatorTree DT(const_cast<Function &>(F)); 921 BlockFrequencyInfo *BFI = nullptr; 922 std::unique_ptr<BlockFrequencyInfo> BFIPtr; 923 if (GetBFICallback) 924 BFI = GetBFICallback(F); 925 else if (F.hasProfileData()) { 926 LoopInfo LI{DT}; 927 BranchProbabilityInfo BPI{F, LI}; 928 BFIPtr = std::make_unique<BlockFrequencyInfo>(F, BPI, LI); 929 BFI = BFIPtr.get(); 930 } 931 932 computeFunctionSummary(Index, M, F, BFI, PSI, DT, 933 !LocalsUsed.empty() || HasLocalInlineAsmSymbol, 934 CantBePromoted, IsThinLTO, GetSSICallback); 935 } 936 937 // Compute summaries for all variables defined in module, and save in the 938 // index. 939 SmallVector<MDNode *, 2> Types; 940 for (const GlobalVariable &G : M.globals()) { 941 if (G.isDeclaration()) 942 continue; 943 computeVariableSummary(Index, G, CantBePromoted, M, Types); 944 } 945 946 // Compute summaries for all aliases defined in module, and save in the 947 // index. 948 for (const GlobalAlias &A : M.aliases()) 949 computeAliasSummary(Index, A, CantBePromoted); 950 951 // Iterate through ifuncs, set their resolvers all alive. 952 for (const GlobalIFunc &I : M.ifuncs()) { 953 I.applyAlongResolverPath([&Index](const GlobalValue &GV) { 954 Index.getGlobalValueSummary(GV)->setLive(true); 955 }); 956 } 957 958 for (auto *V : LocalsUsed) { 959 auto *Summary = Index.getGlobalValueSummary(*V); 960 assert(Summary && "Missing summary for global value"); 961 Summary->setNotEligibleToImport(); 962 } 963 964 // The linker doesn't know about these LLVM produced values, so we need 965 // to flag them as live in the index to ensure index-based dead value 966 // analysis treats them as live roots of the analysis. 967 setLiveRoot(Index, "llvm.used"); 968 setLiveRoot(Index, "llvm.compiler.used"); 969 setLiveRoot(Index, "llvm.global_ctors"); 970 setLiveRoot(Index, "llvm.global_dtors"); 971 setLiveRoot(Index, "llvm.global.annotations"); 972 973 for (auto &GlobalList : Index) { 974 // Ignore entries for references that are undefined in the current module. 975 if (GlobalList.second.SummaryList.empty()) 976 continue; 977 978 assert(GlobalList.second.SummaryList.size() == 1 && 979 "Expected module's index to have one summary per GUID"); 980 auto &Summary = GlobalList.second.SummaryList[0]; 981 if (!IsThinLTO) { 982 Summary->setNotEligibleToImport(); 983 continue; 984 } 985 986 bool AllRefsCanBeExternallyReferenced = 987 llvm::all_of(Summary->refs(), [&](const ValueInfo &VI) { 988 return !CantBePromoted.count(VI.getGUID()); 989 }); 990 if (!AllRefsCanBeExternallyReferenced) { 991 Summary->setNotEligibleToImport(); 992 continue; 993 } 994 995 if (auto *FuncSummary = dyn_cast<FunctionSummary>(Summary.get())) { 996 bool AllCallsCanBeExternallyReferenced = llvm::all_of( 997 FuncSummary->calls(), [&](const FunctionSummary::EdgeTy &Edge) { 998 return !CantBePromoted.count(Edge.first.getGUID()); 999 }); 1000 if (!AllCallsCanBeExternallyReferenced) 1001 Summary->setNotEligibleToImport(); 1002 } 1003 } 1004 1005 if (!ModuleSummaryDotFile.empty()) { 1006 std::error_code EC; 1007 raw_fd_ostream OSDot(ModuleSummaryDotFile, EC, sys::fs::OpenFlags::OF_None); 1008 if (EC) 1009 report_fatal_error(Twine("Failed to open dot file ") + 1010 ModuleSummaryDotFile + ": " + EC.message() + "\n"); 1011 Index.exportToDot(OSDot, {}); 1012 } 1013 1014 return Index; 1015 } 1016 1017 AnalysisKey ModuleSummaryIndexAnalysis::Key; 1018 1019 ModuleSummaryIndex 1020 ModuleSummaryIndexAnalysis::run(Module &M, ModuleAnalysisManager &AM) { 1021 ProfileSummaryInfo &PSI = AM.getResult<ProfileSummaryAnalysis>(M); 1022 auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 1023 bool NeedSSI = needsParamAccessSummary(M); 1024 return buildModuleSummaryIndex( 1025 M, 1026 [&FAM](const Function &F) { 1027 return &FAM.getResult<BlockFrequencyAnalysis>( 1028 *const_cast<Function *>(&F)); 1029 }, 1030 &PSI, 1031 [&FAM, NeedSSI](const Function &F) -> const StackSafetyInfo * { 1032 return NeedSSI ? &FAM.getResult<StackSafetyAnalysis>( 1033 const_cast<Function &>(F)) 1034 : nullptr; 1035 }); 1036 } 1037 1038 char ModuleSummaryIndexWrapperPass::ID = 0; 1039 1040 INITIALIZE_PASS_BEGIN(ModuleSummaryIndexWrapperPass, "module-summary-analysis", 1041 "Module Summary Analysis", false, true) 1042 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 1043 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 1044 INITIALIZE_PASS_DEPENDENCY(StackSafetyInfoWrapperPass) 1045 INITIALIZE_PASS_END(ModuleSummaryIndexWrapperPass, "module-summary-analysis", 1046 "Module Summary Analysis", false, true) 1047 1048 ModulePass *llvm::createModuleSummaryIndexWrapperPass() { 1049 return new ModuleSummaryIndexWrapperPass(); 1050 } 1051 1052 ModuleSummaryIndexWrapperPass::ModuleSummaryIndexWrapperPass() 1053 : ModulePass(ID) { 1054 initializeModuleSummaryIndexWrapperPassPass(*PassRegistry::getPassRegistry()); 1055 } 1056 1057 bool ModuleSummaryIndexWrapperPass::runOnModule(Module &M) { 1058 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 1059 bool NeedSSI = needsParamAccessSummary(M); 1060 Index.emplace(buildModuleSummaryIndex( 1061 M, 1062 [this](const Function &F) { 1063 return &(this->getAnalysis<BlockFrequencyInfoWrapperPass>( 1064 *const_cast<Function *>(&F)) 1065 .getBFI()); 1066 }, 1067 PSI, 1068 [&](const Function &F) -> const StackSafetyInfo * { 1069 return NeedSSI ? &getAnalysis<StackSafetyInfoWrapperPass>( 1070 const_cast<Function &>(F)) 1071 .getResult() 1072 : nullptr; 1073 })); 1074 return false; 1075 } 1076 1077 bool ModuleSummaryIndexWrapperPass::doFinalization(Module &M) { 1078 Index.reset(); 1079 return false; 1080 } 1081 1082 void ModuleSummaryIndexWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 1083 AU.setPreservesAll(); 1084 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 1085 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 1086 AU.addRequired<StackSafetyInfoWrapperPass>(); 1087 } 1088 1089 char ImmutableModuleSummaryIndexWrapperPass::ID = 0; 1090 1091 ImmutableModuleSummaryIndexWrapperPass::ImmutableModuleSummaryIndexWrapperPass( 1092 const ModuleSummaryIndex *Index) 1093 : ImmutablePass(ID), Index(Index) { 1094 initializeImmutableModuleSummaryIndexWrapperPassPass( 1095 *PassRegistry::getPassRegistry()); 1096 } 1097 1098 void ImmutableModuleSummaryIndexWrapperPass::getAnalysisUsage( 1099 AnalysisUsage &AU) const { 1100 AU.setPreservesAll(); 1101 } 1102 1103 ImmutablePass *llvm::createImmutableModuleSummaryIndexWrapperPass( 1104 const ModuleSummaryIndex *Index) { 1105 return new ImmutableModuleSummaryIndexWrapperPass(Index); 1106 } 1107 1108 INITIALIZE_PASS(ImmutableModuleSummaryIndexWrapperPass, "module-summary-info", 1109 "Module summary info", false, true) 1110 1111 bool llvm::mayHaveMemprofSummary(const CallBase *CB) { 1112 if (!CB) 1113 return false; 1114 if (CB->isDebugOrPseudoInst()) 1115 return false; 1116 auto *CI = dyn_cast<CallInst>(CB); 1117 auto *CalledValue = CB->getCalledOperand(); 1118 auto *CalledFunction = CB->getCalledFunction(); 1119 if (CalledValue && !CalledFunction) { 1120 CalledValue = CalledValue->stripPointerCasts(); 1121 // Stripping pointer casts can reveal a called function. 1122 CalledFunction = dyn_cast<Function>(CalledValue); 1123 } 1124 // Check if this is an alias to a function. If so, get the 1125 // called aliasee for the checks below. 1126 if (auto *GA = dyn_cast<GlobalAlias>(CalledValue)) { 1127 assert(!CalledFunction && 1128 "Expected null called function in callsite for alias"); 1129 CalledFunction = dyn_cast<Function>(GA->getAliaseeObject()); 1130 } 1131 // Check if this is a direct call to a known function or a known 1132 // intrinsic, or an indirect call with profile data. 1133 if (CalledFunction) { 1134 if (CI && CalledFunction->isIntrinsic()) 1135 return false; 1136 } else { 1137 // TODO: For now skip indirect calls. See comments in 1138 // computeFunctionSummary for what is needed to handle this. 1139 return false; 1140 } 1141 return true; 1142 } 1143