xref: /llvm-project/llvm/lib/Analysis/ModuleSummaryAnalysis.cpp (revision 6276927bf3f6ce4a9ef0b9941b2c6450ae4cd1eb)
1 //===- ModuleSummaryAnalysis.cpp - Module summary index builder -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass builds a ModuleSummaryIndex object for the module, to be written
10 // to bitcode or LLVM assembly.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Analysis/ModuleSummaryAnalysis.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/MapVector.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SetVector.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/Analysis/BlockFrequencyInfo.h"
24 #include "llvm/Analysis/BranchProbabilityInfo.h"
25 #include "llvm/Analysis/IndirectCallPromotionAnalysis.h"
26 #include "llvm/Analysis/LoopInfo.h"
27 #include "llvm/Analysis/MemoryProfileInfo.h"
28 #include "llvm/Analysis/ProfileSummaryInfo.h"
29 #include "llvm/Analysis/StackSafetyAnalysis.h"
30 #include "llvm/Analysis/TypeMetadataUtils.h"
31 #include "llvm/IR/Attributes.h"
32 #include "llvm/IR/BasicBlock.h"
33 #include "llvm/IR/Constant.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/Dominators.h"
36 #include "llvm/IR/Function.h"
37 #include "llvm/IR/GlobalAlias.h"
38 #include "llvm/IR/GlobalValue.h"
39 #include "llvm/IR/GlobalVariable.h"
40 #include "llvm/IR/Instructions.h"
41 #include "llvm/IR/IntrinsicInst.h"
42 #include "llvm/IR/Metadata.h"
43 #include "llvm/IR/Module.h"
44 #include "llvm/IR/ModuleSummaryIndex.h"
45 #include "llvm/IR/Use.h"
46 #include "llvm/IR/User.h"
47 #include "llvm/InitializePasses.h"
48 #include "llvm/Object/ModuleSymbolTable.h"
49 #include "llvm/Object/SymbolicFile.h"
50 #include "llvm/Pass.h"
51 #include "llvm/Support/Casting.h"
52 #include "llvm/Support/CommandLine.h"
53 #include "llvm/Support/FileSystem.h"
54 #include <algorithm>
55 #include <cassert>
56 #include <cstdint>
57 #include <vector>
58 
59 using namespace llvm;
60 using namespace llvm::memprof;
61 
62 #define DEBUG_TYPE "module-summary-analysis"
63 
64 // Option to force edges cold which will block importing when the
65 // -import-cold-multiplier is set to 0. Useful for debugging.
66 namespace llvm {
67 FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold =
68     FunctionSummary::FSHT_None;
69 } // namespace llvm
70 
71 static cl::opt<FunctionSummary::ForceSummaryHotnessType, true> FSEC(
72     "force-summary-edges-cold", cl::Hidden, cl::location(ForceSummaryEdgesCold),
73     cl::desc("Force all edges in the function summary to cold"),
74     cl::values(clEnumValN(FunctionSummary::FSHT_None, "none", "None."),
75                clEnumValN(FunctionSummary::FSHT_AllNonCritical,
76                           "all-non-critical", "All non-critical edges."),
77                clEnumValN(FunctionSummary::FSHT_All, "all", "All edges.")));
78 
79 static cl::opt<std::string> ModuleSummaryDotFile(
80     "module-summary-dot-file", cl::Hidden, cl::value_desc("filename"),
81     cl::desc("File to emit dot graph of new summary into"));
82 
83 extern cl::opt<bool> ScalePartialSampleProfileWorkingSetSize;
84 
85 // Walk through the operands of a given User via worklist iteration and populate
86 // the set of GlobalValue references encountered. Invoked either on an
87 // Instruction or a GlobalVariable (which walks its initializer).
88 // Return true if any of the operands contains blockaddress. This is important
89 // to know when computing summary for global var, because if global variable
90 // references basic block address we can't import it separately from function
91 // containing that basic block. For simplicity we currently don't import such
92 // global vars at all. When importing function we aren't interested if any
93 // instruction in it takes an address of any basic block, because instruction
94 // can only take an address of basic block located in the same function.
95 static bool findRefEdges(ModuleSummaryIndex &Index, const User *CurUser,
96                          SetVector<ValueInfo, std::vector<ValueInfo>> &RefEdges,
97                          SmallPtrSet<const User *, 8> &Visited) {
98   bool HasBlockAddress = false;
99   SmallVector<const User *, 32> Worklist;
100   if (Visited.insert(CurUser).second)
101     Worklist.push_back(CurUser);
102 
103   while (!Worklist.empty()) {
104     const User *U = Worklist.pop_back_val();
105     const auto *CB = dyn_cast<CallBase>(U);
106 
107     for (const auto &OI : U->operands()) {
108       const User *Operand = dyn_cast<User>(OI);
109       if (!Operand)
110         continue;
111       if (isa<BlockAddress>(Operand)) {
112         HasBlockAddress = true;
113         continue;
114       }
115       if (auto *GV = dyn_cast<GlobalValue>(Operand)) {
116         // We have a reference to a global value. This should be added to
117         // the reference set unless it is a callee. Callees are handled
118         // specially by WriteFunction and are added to a separate list.
119         if (!(CB && CB->isCallee(&OI)))
120           RefEdges.insert(Index.getOrInsertValueInfo(GV));
121         continue;
122       }
123       if (Visited.insert(Operand).second)
124         Worklist.push_back(Operand);
125     }
126   }
127   return HasBlockAddress;
128 }
129 
130 static CalleeInfo::HotnessType getHotness(uint64_t ProfileCount,
131                                           ProfileSummaryInfo *PSI) {
132   if (!PSI)
133     return CalleeInfo::HotnessType::Unknown;
134   if (PSI->isHotCount(ProfileCount))
135     return CalleeInfo::HotnessType::Hot;
136   if (PSI->isColdCount(ProfileCount))
137     return CalleeInfo::HotnessType::Cold;
138   return CalleeInfo::HotnessType::None;
139 }
140 
141 static bool isNonRenamableLocal(const GlobalValue &GV) {
142   return GV.hasSection() && GV.hasLocalLinkage();
143 }
144 
145 /// Determine whether this call has all constant integer arguments (excluding
146 /// "this") and summarize it to VCalls or ConstVCalls as appropriate.
147 static void addVCallToSet(
148     DevirtCallSite Call, GlobalValue::GUID Guid,
149     SetVector<FunctionSummary::VFuncId, std::vector<FunctionSummary::VFuncId>>
150         &VCalls,
151     SetVector<FunctionSummary::ConstVCall,
152               std::vector<FunctionSummary::ConstVCall>> &ConstVCalls) {
153   std::vector<uint64_t> Args;
154   // Start from the second argument to skip the "this" pointer.
155   for (auto &Arg : drop_begin(Call.CB.args())) {
156     auto *CI = dyn_cast<ConstantInt>(Arg);
157     if (!CI || CI->getBitWidth() > 64) {
158       VCalls.insert({Guid, Call.Offset});
159       return;
160     }
161     Args.push_back(CI->getZExtValue());
162   }
163   ConstVCalls.insert({{Guid, Call.Offset}, std::move(Args)});
164 }
165 
166 /// If this intrinsic call requires that we add information to the function
167 /// summary, do so via the non-constant reference arguments.
168 static void addIntrinsicToSummary(
169     const CallInst *CI,
170     SetVector<GlobalValue::GUID, std::vector<GlobalValue::GUID>> &TypeTests,
171     SetVector<FunctionSummary::VFuncId, std::vector<FunctionSummary::VFuncId>>
172         &TypeTestAssumeVCalls,
173     SetVector<FunctionSummary::VFuncId, std::vector<FunctionSummary::VFuncId>>
174         &TypeCheckedLoadVCalls,
175     SetVector<FunctionSummary::ConstVCall,
176               std::vector<FunctionSummary::ConstVCall>>
177         &TypeTestAssumeConstVCalls,
178     SetVector<FunctionSummary::ConstVCall,
179               std::vector<FunctionSummary::ConstVCall>>
180         &TypeCheckedLoadConstVCalls,
181     DominatorTree &DT) {
182   switch (CI->getCalledFunction()->getIntrinsicID()) {
183   case Intrinsic::type_test:
184   case Intrinsic::public_type_test: {
185     auto *TypeMDVal = cast<MetadataAsValue>(CI->getArgOperand(1));
186     auto *TypeId = dyn_cast<MDString>(TypeMDVal->getMetadata());
187     if (!TypeId)
188       break;
189     GlobalValue::GUID Guid = GlobalValue::getGUID(TypeId->getString());
190 
191     // Produce a summary from type.test intrinsics. We only summarize type.test
192     // intrinsics that are used other than by an llvm.assume intrinsic.
193     // Intrinsics that are assumed are relevant only to the devirtualization
194     // pass, not the type test lowering pass.
195     bool HasNonAssumeUses = llvm::any_of(CI->uses(), [](const Use &CIU) {
196       return !isa<AssumeInst>(CIU.getUser());
197     });
198     if (HasNonAssumeUses)
199       TypeTests.insert(Guid);
200 
201     SmallVector<DevirtCallSite, 4> DevirtCalls;
202     SmallVector<CallInst *, 4> Assumes;
203     findDevirtualizableCallsForTypeTest(DevirtCalls, Assumes, CI, DT);
204     for (auto &Call : DevirtCalls)
205       addVCallToSet(Call, Guid, TypeTestAssumeVCalls,
206                     TypeTestAssumeConstVCalls);
207 
208     break;
209   }
210 
211   case Intrinsic::type_checked_load_relative:
212   case Intrinsic::type_checked_load: {
213     auto *TypeMDVal = cast<MetadataAsValue>(CI->getArgOperand(2));
214     auto *TypeId = dyn_cast<MDString>(TypeMDVal->getMetadata());
215     if (!TypeId)
216       break;
217     GlobalValue::GUID Guid = GlobalValue::getGUID(TypeId->getString());
218 
219     SmallVector<DevirtCallSite, 4> DevirtCalls;
220     SmallVector<Instruction *, 4> LoadedPtrs;
221     SmallVector<Instruction *, 4> Preds;
222     bool HasNonCallUses = false;
223     findDevirtualizableCallsForTypeCheckedLoad(DevirtCalls, LoadedPtrs, Preds,
224                                                HasNonCallUses, CI, DT);
225     // Any non-call uses of the result of llvm.type.checked.load will
226     // prevent us from optimizing away the llvm.type.test.
227     if (HasNonCallUses)
228       TypeTests.insert(Guid);
229     for (auto &Call : DevirtCalls)
230       addVCallToSet(Call, Guid, TypeCheckedLoadVCalls,
231                     TypeCheckedLoadConstVCalls);
232 
233     break;
234   }
235   default:
236     break;
237   }
238 }
239 
240 static bool isNonVolatileLoad(const Instruction *I) {
241   if (const auto *LI = dyn_cast<LoadInst>(I))
242     return !LI->isVolatile();
243 
244   return false;
245 }
246 
247 static bool isNonVolatileStore(const Instruction *I) {
248   if (const auto *SI = dyn_cast<StoreInst>(I))
249     return !SI->isVolatile();
250 
251   return false;
252 }
253 
254 // Returns true if the function definition must be unreachable.
255 //
256 // Note if this helper function returns true, `F` is guaranteed
257 // to be unreachable; if it returns false, `F` might still
258 // be unreachable but not covered by this helper function.
259 static bool mustBeUnreachableFunction(const Function &F) {
260   // A function must be unreachable if its entry block ends with an
261   // 'unreachable'.
262   assert(!F.isDeclaration());
263   return isa<UnreachableInst>(F.getEntryBlock().getTerminator());
264 }
265 
266 static void computeFunctionSummary(
267     ModuleSummaryIndex &Index, const Module &M, const Function &F,
268     BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, DominatorTree &DT,
269     bool HasLocalsInUsedOrAsm, DenseSet<GlobalValue::GUID> &CantBePromoted,
270     bool IsThinLTO,
271     std::function<const StackSafetyInfo *(const Function &F)> GetSSICallback) {
272   // Summary not currently supported for anonymous functions, they should
273   // have been named.
274   assert(F.hasName());
275 
276   unsigned NumInsts = 0;
277   // Map from callee ValueId to profile count. Used to accumulate profile
278   // counts for all static calls to a given callee.
279   MapVector<ValueInfo, CalleeInfo, DenseMap<ValueInfo, unsigned>,
280             std::vector<std::pair<ValueInfo, CalleeInfo>>>
281       CallGraphEdges;
282   SetVector<ValueInfo, std::vector<ValueInfo>> RefEdges, LoadRefEdges,
283       StoreRefEdges;
284   SetVector<GlobalValue::GUID, std::vector<GlobalValue::GUID>> TypeTests;
285   SetVector<FunctionSummary::VFuncId, std::vector<FunctionSummary::VFuncId>>
286       TypeTestAssumeVCalls, TypeCheckedLoadVCalls;
287   SetVector<FunctionSummary::ConstVCall,
288             std::vector<FunctionSummary::ConstVCall>>
289       TypeTestAssumeConstVCalls, TypeCheckedLoadConstVCalls;
290   ICallPromotionAnalysis ICallAnalysis;
291   SmallPtrSet<const User *, 8> Visited;
292 
293   // Add personality function, prefix data and prologue data to function's ref
294   // list.
295   findRefEdges(Index, &F, RefEdges, Visited);
296   std::vector<const Instruction *> NonVolatileLoads;
297   std::vector<const Instruction *> NonVolatileStores;
298 
299   std::vector<CallsiteInfo> Callsites;
300   std::vector<AllocInfo> Allocs;
301 
302 #ifndef NDEBUG
303   DenseSet<const CallBase *> CallsThatMayHaveMemprofSummary;
304 #endif
305 
306   bool HasInlineAsmMaybeReferencingInternal = false;
307   bool HasIndirBranchToBlockAddress = false;
308   bool HasIFuncCall = false;
309   bool HasUnknownCall = false;
310   bool MayThrow = false;
311   for (const BasicBlock &BB : F) {
312     // We don't allow inlining of function with indirect branch to blockaddress.
313     // If the blockaddress escapes the function, e.g., via a global variable,
314     // inlining may lead to an invalid cross-function reference. So we shouldn't
315     // import such function either.
316     if (BB.hasAddressTaken()) {
317       for (User *U : BlockAddress::get(const_cast<BasicBlock *>(&BB))->users())
318         if (!isa<CallBrInst>(*U)) {
319           HasIndirBranchToBlockAddress = true;
320           break;
321         }
322     }
323 
324     for (const Instruction &I : BB) {
325       if (I.isDebugOrPseudoInst())
326         continue;
327       ++NumInsts;
328 
329       // Regular LTO module doesn't participate in ThinLTO import,
330       // so no reference from it can be read/writeonly, since this
331       // would require importing variable as local copy
332       if (IsThinLTO) {
333         if (isNonVolatileLoad(&I)) {
334           // Postpone processing of non-volatile load instructions
335           // See comments below
336           Visited.insert(&I);
337           NonVolatileLoads.push_back(&I);
338           continue;
339         } else if (isNonVolatileStore(&I)) {
340           Visited.insert(&I);
341           NonVolatileStores.push_back(&I);
342           // All references from second operand of store (destination address)
343           // can be considered write-only if they're not referenced by any
344           // non-store instruction. References from first operand of store
345           // (stored value) can't be treated either as read- or as write-only
346           // so we add them to RefEdges as we do with all other instructions
347           // except non-volatile load.
348           Value *Stored = I.getOperand(0);
349           if (auto *GV = dyn_cast<GlobalValue>(Stored))
350             // findRefEdges will try to examine GV operands, so instead
351             // of calling it we should add GV to RefEdges directly.
352             RefEdges.insert(Index.getOrInsertValueInfo(GV));
353           else if (auto *U = dyn_cast<User>(Stored))
354             findRefEdges(Index, U, RefEdges, Visited);
355           continue;
356         }
357       }
358       findRefEdges(Index, &I, RefEdges, Visited);
359       const auto *CB = dyn_cast<CallBase>(&I);
360       if (!CB) {
361         if (I.mayThrow())
362           MayThrow = true;
363         continue;
364       }
365 
366       const auto *CI = dyn_cast<CallInst>(&I);
367       // Since we don't know exactly which local values are referenced in inline
368       // assembly, conservatively mark the function as possibly referencing
369       // a local value from inline assembly to ensure we don't export a
370       // reference (which would require renaming and promotion of the
371       // referenced value).
372       if (HasLocalsInUsedOrAsm && CI && CI->isInlineAsm())
373         HasInlineAsmMaybeReferencingInternal = true;
374 
375       auto *CalledValue = CB->getCalledOperand();
376       auto *CalledFunction = CB->getCalledFunction();
377       if (CalledValue && !CalledFunction) {
378         CalledValue = CalledValue->stripPointerCasts();
379         // Stripping pointer casts can reveal a called function.
380         CalledFunction = dyn_cast<Function>(CalledValue);
381       }
382       // Check if this is an alias to a function. If so, get the
383       // called aliasee for the checks below.
384       if (auto *GA = dyn_cast<GlobalAlias>(CalledValue)) {
385         assert(!CalledFunction && "Expected null called function in callsite for alias");
386         CalledFunction = dyn_cast<Function>(GA->getAliaseeObject());
387       }
388       // Check if this is a direct call to a known function or a known
389       // intrinsic, or an indirect call with profile data.
390       if (CalledFunction) {
391         if (CI && CalledFunction->isIntrinsic()) {
392           addIntrinsicToSummary(
393               CI, TypeTests, TypeTestAssumeVCalls, TypeCheckedLoadVCalls,
394               TypeTestAssumeConstVCalls, TypeCheckedLoadConstVCalls, DT);
395           continue;
396         }
397         // We should have named any anonymous globals
398         assert(CalledFunction->hasName());
399         auto ScaledCount = PSI->getProfileCount(*CB, BFI);
400         auto Hotness = ScaledCount ? getHotness(*ScaledCount, PSI)
401                                    : CalleeInfo::HotnessType::Unknown;
402         if (ForceSummaryEdgesCold != FunctionSummary::FSHT_None)
403           Hotness = CalleeInfo::HotnessType::Cold;
404 
405         // Use the original CalledValue, in case it was an alias. We want
406         // to record the call edge to the alias in that case. Eventually
407         // an alias summary will be created to associate the alias and
408         // aliasee.
409         auto &ValueInfo = CallGraphEdges[Index.getOrInsertValueInfo(
410             cast<GlobalValue>(CalledValue))];
411         ValueInfo.updateHotness(Hotness);
412         // Add the relative block frequency to CalleeInfo if there is no profile
413         // information.
414         if (BFI != nullptr && Hotness == CalleeInfo::HotnessType::Unknown) {
415           uint64_t BBFreq = BFI->getBlockFreq(&BB).getFrequency();
416           uint64_t EntryFreq = BFI->getEntryFreq();
417           ValueInfo.updateRelBlockFreq(BBFreq, EntryFreq);
418         }
419       } else {
420         HasUnknownCall = true;
421         // If F is imported, a local linkage ifunc (e.g. target_clones on a
422         // static function) called by F will be cloned. Since summaries don't
423         // track ifunc, we do not know implementation functions referenced by
424         // the ifunc resolver need to be promoted in the exporter, and we will
425         // get linker errors due to cloned declarations for implementation
426         // functions. As a simple fix, just mark F as not eligible for import.
427         // Non-local ifunc is not cloned and does not have the issue.
428         if (auto *GI = dyn_cast_if_present<GlobalIFunc>(CalledValue))
429           if (GI->hasLocalLinkage())
430             HasIFuncCall = true;
431         // Skip inline assembly calls.
432         if (CI && CI->isInlineAsm())
433           continue;
434         // Skip direct calls.
435         if (!CalledValue || isa<Constant>(CalledValue))
436           continue;
437 
438         // Check if the instruction has a callees metadata. If so, add callees
439         // to CallGraphEdges to reflect the references from the metadata, and
440         // to enable importing for subsequent indirect call promotion and
441         // inlining.
442         if (auto *MD = I.getMetadata(LLVMContext::MD_callees)) {
443           for (const auto &Op : MD->operands()) {
444             Function *Callee = mdconst::extract_or_null<Function>(Op);
445             if (Callee)
446               CallGraphEdges[Index.getOrInsertValueInfo(Callee)];
447           }
448         }
449 
450         uint32_t NumVals, NumCandidates;
451         uint64_t TotalCount;
452         auto CandidateProfileData =
453             ICallAnalysis.getPromotionCandidatesForInstruction(
454                 &I, NumVals, TotalCount, NumCandidates);
455         for (const auto &Candidate : CandidateProfileData)
456           CallGraphEdges[Index.getOrInsertValueInfo(Candidate.Value)]
457               .updateHotness(getHotness(Candidate.Count, PSI));
458       }
459 
460       // Summarize memprof related metadata. This is only needed for ThinLTO.
461       if (!IsThinLTO)
462         continue;
463 
464       // TODO: Skip indirect calls for now. Need to handle these better, likely
465       // by creating multiple Callsites, one per target, then speculatively
466       // devirtualize while applying clone info in the ThinLTO backends. This
467       // will also be important because we will have a different set of clone
468       // versions per target. This handling needs to match that in the ThinLTO
469       // backend so we handle things consistently for matching of callsite
470       // summaries to instructions.
471       if (!CalledFunction)
472         continue;
473 
474       // Ensure we keep this analysis in sync with the handling in the ThinLTO
475       // backend (see MemProfContextDisambiguation::applyImport). Save this call
476       // so that we can skip it in checking the reverse case later.
477       assert(mayHaveMemprofSummary(CB));
478 #ifndef NDEBUG
479       CallsThatMayHaveMemprofSummary.insert(CB);
480 #endif
481 
482       // Compute the list of stack ids first (so we can trim them from the stack
483       // ids on any MIBs).
484       CallStack<MDNode, MDNode::op_iterator> InstCallsite(
485           I.getMetadata(LLVMContext::MD_callsite));
486       auto *MemProfMD = I.getMetadata(LLVMContext::MD_memprof);
487       if (MemProfMD) {
488         std::vector<MIBInfo> MIBs;
489         for (auto &MDOp : MemProfMD->operands()) {
490           auto *MIBMD = cast<const MDNode>(MDOp);
491           MDNode *StackNode = getMIBStackNode(MIBMD);
492           assert(StackNode);
493           SmallVector<unsigned> StackIdIndices;
494           CallStack<MDNode, MDNode::op_iterator> StackContext(StackNode);
495           // Collapse out any on the allocation call (inlining).
496           for (auto ContextIter =
497                    StackContext.beginAfterSharedPrefix(InstCallsite);
498                ContextIter != StackContext.end(); ++ContextIter) {
499             unsigned StackIdIdx = Index.addOrGetStackIdIndex(*ContextIter);
500             // If this is a direct recursion, simply skip the duplicate
501             // entries. If this is mutual recursion, handling is left to
502             // the LTO link analysis client.
503             if (StackIdIndices.empty() || StackIdIndices.back() != StackIdIdx)
504               StackIdIndices.push_back(StackIdIdx);
505           }
506           MIBs.push_back(
507               MIBInfo(getMIBAllocType(MIBMD), std::move(StackIdIndices)));
508         }
509         Allocs.push_back(AllocInfo(std::move(MIBs)));
510       } else if (!InstCallsite.empty()) {
511         SmallVector<unsigned> StackIdIndices;
512         for (auto StackId : InstCallsite)
513           StackIdIndices.push_back(Index.addOrGetStackIdIndex(StackId));
514         // Use the original CalledValue, in case it was an alias. We want
515         // to record the call edge to the alias in that case. Eventually
516         // an alias summary will be created to associate the alias and
517         // aliasee.
518         auto CalleeValueInfo =
519             Index.getOrInsertValueInfo(cast<GlobalValue>(CalledValue));
520         Callsites.push_back({CalleeValueInfo, StackIdIndices});
521       }
522     }
523   }
524 
525   if (PSI->hasPartialSampleProfile() && ScalePartialSampleProfileWorkingSetSize)
526     Index.addBlockCount(F.size());
527 
528   std::vector<ValueInfo> Refs;
529   if (IsThinLTO) {
530     auto AddRefEdges = [&](const std::vector<const Instruction *> &Instrs,
531                            SetVector<ValueInfo, std::vector<ValueInfo>> &Edges,
532                            SmallPtrSet<const User *, 8> &Cache) {
533       for (const auto *I : Instrs) {
534         Cache.erase(I);
535         findRefEdges(Index, I, Edges, Cache);
536       }
537     };
538 
539     // By now we processed all instructions in a function, except
540     // non-volatile loads and non-volatile value stores. Let's find
541     // ref edges for both of instruction sets
542     AddRefEdges(NonVolatileLoads, LoadRefEdges, Visited);
543     // We can add some values to the Visited set when processing load
544     // instructions which are also used by stores in NonVolatileStores.
545     // For example this can happen if we have following code:
546     //
547     // store %Derived* @foo, %Derived** bitcast (%Base** @bar to %Derived**)
548     // %42 = load %Derived*, %Derived** bitcast (%Base** @bar to %Derived**)
549     //
550     // After processing loads we'll add bitcast to the Visited set, and if
551     // we use the same set while processing stores, we'll never see store
552     // to @bar and @bar will be mistakenly treated as readonly.
553     SmallPtrSet<const llvm::User *, 8> StoreCache;
554     AddRefEdges(NonVolatileStores, StoreRefEdges, StoreCache);
555 
556     // If both load and store instruction reference the same variable
557     // we won't be able to optimize it. Add all such reference edges
558     // to RefEdges set.
559     for (const auto &VI : StoreRefEdges)
560       if (LoadRefEdges.remove(VI))
561         RefEdges.insert(VI);
562 
563     unsigned RefCnt = RefEdges.size();
564     // All new reference edges inserted in two loops below are either
565     // read or write only. They will be grouped in the end of RefEdges
566     // vector, so we can use a single integer value to identify them.
567     for (const auto &VI : LoadRefEdges)
568       RefEdges.insert(VI);
569 
570     unsigned FirstWORef = RefEdges.size();
571     for (const auto &VI : StoreRefEdges)
572       RefEdges.insert(VI);
573 
574     Refs = RefEdges.takeVector();
575     for (; RefCnt < FirstWORef; ++RefCnt)
576       Refs[RefCnt].setReadOnly();
577 
578     for (; RefCnt < Refs.size(); ++RefCnt)
579       Refs[RefCnt].setWriteOnly();
580   } else {
581     Refs = RefEdges.takeVector();
582   }
583   // Explicit add hot edges to enforce importing for designated GUIDs for
584   // sample PGO, to enable the same inlines as the profiled optimized binary.
585   for (auto &I : F.getImportGUIDs())
586     CallGraphEdges[Index.getOrInsertValueInfo(I)].updateHotness(
587         ForceSummaryEdgesCold == FunctionSummary::FSHT_All
588             ? CalleeInfo::HotnessType::Cold
589             : CalleeInfo::HotnessType::Critical);
590 
591 #ifndef NDEBUG
592   // Make sure that all calls we decided could not have memprof summaries get a
593   // false value for mayHaveMemprofSummary, to ensure that this handling remains
594   // in sync with the ThinLTO backend handling.
595   if (IsThinLTO) {
596     for (const BasicBlock &BB : F) {
597       for (const Instruction &I : BB) {
598         const auto *CB = dyn_cast<CallBase>(&I);
599         if (!CB)
600           continue;
601         // We already checked these above.
602         if (CallsThatMayHaveMemprofSummary.count(CB))
603           continue;
604         assert(!mayHaveMemprofSummary(CB));
605       }
606     }
607   }
608 #endif
609 
610   bool NonRenamableLocal = isNonRenamableLocal(F);
611   bool NotEligibleForImport = NonRenamableLocal ||
612                               HasInlineAsmMaybeReferencingInternal ||
613                               HasIndirBranchToBlockAddress || HasIFuncCall;
614   GlobalValueSummary::GVFlags Flags(
615       F.getLinkage(), F.getVisibility(), NotEligibleForImport,
616       /* Live = */ false, F.isDSOLocal(), F.canBeOmittedFromSymbolTable());
617   FunctionSummary::FFlags FunFlags{
618       F.doesNotAccessMemory(), F.onlyReadsMemory() && !F.doesNotAccessMemory(),
619       F.hasFnAttribute(Attribute::NoRecurse), F.returnDoesNotAlias(),
620       // FIXME: refactor this to use the same code that inliner is using.
621       // Don't try to import functions with noinline attribute.
622       F.getAttributes().hasFnAttr(Attribute::NoInline),
623       F.hasFnAttribute(Attribute::AlwaysInline),
624       F.hasFnAttribute(Attribute::NoUnwind), MayThrow, HasUnknownCall,
625       mustBeUnreachableFunction(F)};
626   std::vector<FunctionSummary::ParamAccess> ParamAccesses;
627   if (auto *SSI = GetSSICallback(F))
628     ParamAccesses = SSI->getParamAccesses(Index);
629   auto FuncSummary = std::make_unique<FunctionSummary>(
630       Flags, NumInsts, FunFlags, /*EntryCount=*/0, std::move(Refs),
631       CallGraphEdges.takeVector(), TypeTests.takeVector(),
632       TypeTestAssumeVCalls.takeVector(), TypeCheckedLoadVCalls.takeVector(),
633       TypeTestAssumeConstVCalls.takeVector(),
634       TypeCheckedLoadConstVCalls.takeVector(), std::move(ParamAccesses),
635       std::move(Callsites), std::move(Allocs));
636   if (NonRenamableLocal)
637     CantBePromoted.insert(F.getGUID());
638   Index.addGlobalValueSummary(F, std::move(FuncSummary));
639 }
640 
641 /// Find function pointers referenced within the given vtable initializer
642 /// (or subset of an initializer) \p I. The starting offset of \p I within
643 /// the vtable initializer is \p StartingOffset. Any discovered function
644 /// pointers are added to \p VTableFuncs along with their cumulative offset
645 /// within the initializer.
646 static void findFuncPointers(const Constant *I, uint64_t StartingOffset,
647                              const Module &M, ModuleSummaryIndex &Index,
648                              VTableFuncList &VTableFuncs) {
649   // First check if this is a function pointer.
650   if (I->getType()->isPointerTy()) {
651     auto C = I->stripPointerCasts();
652     auto A = dyn_cast<GlobalAlias>(C);
653     if (isa<Function>(C) || (A && isa<Function>(A->getAliasee()))) {
654       auto GV = dyn_cast<GlobalValue>(C);
655       assert(GV);
656       // We can disregard __cxa_pure_virtual as a possible call target, as
657       // calls to pure virtuals are UB.
658       if (GV && GV->getName() != "__cxa_pure_virtual")
659         VTableFuncs.push_back({Index.getOrInsertValueInfo(GV), StartingOffset});
660       return;
661     }
662   }
663 
664   // Walk through the elements in the constant struct or array and recursively
665   // look for virtual function pointers.
666   const DataLayout &DL = M.getDataLayout();
667   if (auto *C = dyn_cast<ConstantStruct>(I)) {
668     StructType *STy = dyn_cast<StructType>(C->getType());
669     assert(STy);
670     const StructLayout *SL = DL.getStructLayout(C->getType());
671 
672     for (auto EI : llvm::enumerate(STy->elements())) {
673       auto Offset = SL->getElementOffset(EI.index());
674       unsigned Op = SL->getElementContainingOffset(Offset);
675       findFuncPointers(cast<Constant>(I->getOperand(Op)),
676                        StartingOffset + Offset, M, Index, VTableFuncs);
677     }
678   } else if (auto *C = dyn_cast<ConstantArray>(I)) {
679     ArrayType *ATy = C->getType();
680     Type *EltTy = ATy->getElementType();
681     uint64_t EltSize = DL.getTypeAllocSize(EltTy);
682     for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) {
683       findFuncPointers(cast<Constant>(I->getOperand(i)),
684                        StartingOffset + i * EltSize, M, Index, VTableFuncs);
685     }
686   }
687 }
688 
689 // Identify the function pointers referenced by vtable definition \p V.
690 static void computeVTableFuncs(ModuleSummaryIndex &Index,
691                                const GlobalVariable &V, const Module &M,
692                                VTableFuncList &VTableFuncs) {
693   if (!V.isConstant())
694     return;
695 
696   findFuncPointers(V.getInitializer(), /*StartingOffset=*/0, M, Index,
697                    VTableFuncs);
698 
699 #ifndef NDEBUG
700   // Validate that the VTableFuncs list is ordered by offset.
701   uint64_t PrevOffset = 0;
702   for (auto &P : VTableFuncs) {
703     // The findVFuncPointers traversal should have encountered the
704     // functions in offset order. We need to use ">=" since PrevOffset
705     // starts at 0.
706     assert(P.VTableOffset >= PrevOffset);
707     PrevOffset = P.VTableOffset;
708   }
709 #endif
710 }
711 
712 /// Record vtable definition \p V for each type metadata it references.
713 static void
714 recordTypeIdCompatibleVtableReferences(ModuleSummaryIndex &Index,
715                                        const GlobalVariable &V,
716                                        SmallVectorImpl<MDNode *> &Types) {
717   for (MDNode *Type : Types) {
718     auto TypeID = Type->getOperand(1).get();
719 
720     uint64_t Offset =
721         cast<ConstantInt>(
722             cast<ConstantAsMetadata>(Type->getOperand(0))->getValue())
723             ->getZExtValue();
724 
725     if (auto *TypeId = dyn_cast<MDString>(TypeID))
726       Index.getOrInsertTypeIdCompatibleVtableSummary(TypeId->getString())
727           .push_back({Offset, Index.getOrInsertValueInfo(&V)});
728   }
729 }
730 
731 static void computeVariableSummary(ModuleSummaryIndex &Index,
732                                    const GlobalVariable &V,
733                                    DenseSet<GlobalValue::GUID> &CantBePromoted,
734                                    const Module &M,
735                                    SmallVectorImpl<MDNode *> &Types) {
736   SetVector<ValueInfo, std::vector<ValueInfo>> RefEdges;
737   SmallPtrSet<const User *, 8> Visited;
738   bool HasBlockAddress = findRefEdges(Index, &V, RefEdges, Visited);
739   bool NonRenamableLocal = isNonRenamableLocal(V);
740   GlobalValueSummary::GVFlags Flags(
741       V.getLinkage(), V.getVisibility(), NonRenamableLocal,
742       /* Live = */ false, V.isDSOLocal(), V.canBeOmittedFromSymbolTable());
743 
744   VTableFuncList VTableFuncs;
745   // If splitting is not enabled, then we compute the summary information
746   // necessary for index-based whole program devirtualization.
747   if (!Index.enableSplitLTOUnit()) {
748     Types.clear();
749     V.getMetadata(LLVMContext::MD_type, Types);
750     if (!Types.empty()) {
751       // Identify the function pointers referenced by this vtable definition.
752       computeVTableFuncs(Index, V, M, VTableFuncs);
753 
754       // Record this vtable definition for each type metadata it references.
755       recordTypeIdCompatibleVtableReferences(Index, V, Types);
756     }
757   }
758 
759   // Don't mark variables we won't be able to internalize as read/write-only.
760   bool CanBeInternalized =
761       !V.hasComdat() && !V.hasAppendingLinkage() && !V.isInterposable() &&
762       !V.hasAvailableExternallyLinkage() && !V.hasDLLExportStorageClass();
763   bool Constant = V.isConstant();
764   GlobalVarSummary::GVarFlags VarFlags(CanBeInternalized,
765                                        Constant ? false : CanBeInternalized,
766                                        Constant, V.getVCallVisibility());
767   auto GVarSummary = std::make_unique<GlobalVarSummary>(Flags, VarFlags,
768                                                          RefEdges.takeVector());
769   if (NonRenamableLocal)
770     CantBePromoted.insert(V.getGUID());
771   if (HasBlockAddress)
772     GVarSummary->setNotEligibleToImport();
773   if (!VTableFuncs.empty())
774     GVarSummary->setVTableFuncs(VTableFuncs);
775   Index.addGlobalValueSummary(V, std::move(GVarSummary));
776 }
777 
778 static void computeAliasSummary(ModuleSummaryIndex &Index, const GlobalAlias &A,
779                                 DenseSet<GlobalValue::GUID> &CantBePromoted) {
780   // Skip summary for indirect function aliases as summary for aliasee will not
781   // be emitted.
782   const GlobalObject *Aliasee = A.getAliaseeObject();
783   if (isa<GlobalIFunc>(Aliasee))
784     return;
785   bool NonRenamableLocal = isNonRenamableLocal(A);
786   GlobalValueSummary::GVFlags Flags(
787       A.getLinkage(), A.getVisibility(), NonRenamableLocal,
788       /* Live = */ false, A.isDSOLocal(), A.canBeOmittedFromSymbolTable());
789   auto AS = std::make_unique<AliasSummary>(Flags);
790   auto AliaseeVI = Index.getValueInfo(Aliasee->getGUID());
791   assert(AliaseeVI && "Alias expects aliasee summary to be available");
792   assert(AliaseeVI.getSummaryList().size() == 1 &&
793          "Expected a single entry per aliasee in per-module index");
794   AS->setAliasee(AliaseeVI, AliaseeVI.getSummaryList()[0].get());
795   if (NonRenamableLocal)
796     CantBePromoted.insert(A.getGUID());
797   Index.addGlobalValueSummary(A, std::move(AS));
798 }
799 
800 // Set LiveRoot flag on entries matching the given value name.
801 static void setLiveRoot(ModuleSummaryIndex &Index, StringRef Name) {
802   if (ValueInfo VI = Index.getValueInfo(GlobalValue::getGUID(Name)))
803     for (const auto &Summary : VI.getSummaryList())
804       Summary->setLive(true);
805 }
806 
807 ModuleSummaryIndex llvm::buildModuleSummaryIndex(
808     const Module &M,
809     std::function<BlockFrequencyInfo *(const Function &F)> GetBFICallback,
810     ProfileSummaryInfo *PSI,
811     std::function<const StackSafetyInfo *(const Function &F)> GetSSICallback) {
812   assert(PSI);
813   bool EnableSplitLTOUnit = false;
814   bool UnifiedLTO = false;
815   if (auto *MD = mdconst::extract_or_null<ConstantInt>(
816           M.getModuleFlag("EnableSplitLTOUnit")))
817     EnableSplitLTOUnit = MD->getZExtValue();
818   if (auto *MD =
819           mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("UnifiedLTO")))
820     UnifiedLTO = MD->getZExtValue();
821   ModuleSummaryIndex Index(/*HaveGVs=*/true, EnableSplitLTOUnit, UnifiedLTO);
822 
823   // Identify the local values in the llvm.used and llvm.compiler.used sets,
824   // which should not be exported as they would then require renaming and
825   // promotion, but we may have opaque uses e.g. in inline asm. We collect them
826   // here because we use this information to mark functions containing inline
827   // assembly calls as not importable.
828   SmallPtrSet<GlobalValue *, 4> LocalsUsed;
829   SmallVector<GlobalValue *, 4> Used;
830   // First collect those in the llvm.used set.
831   collectUsedGlobalVariables(M, Used, /*CompilerUsed=*/false);
832   // Next collect those in the llvm.compiler.used set.
833   collectUsedGlobalVariables(M, Used, /*CompilerUsed=*/true);
834   DenseSet<GlobalValue::GUID> CantBePromoted;
835   for (auto *V : Used) {
836     if (V->hasLocalLinkage()) {
837       LocalsUsed.insert(V);
838       CantBePromoted.insert(V->getGUID());
839     }
840   }
841 
842   bool HasLocalInlineAsmSymbol = false;
843   if (!M.getModuleInlineAsm().empty()) {
844     // Collect the local values defined by module level asm, and set up
845     // summaries for these symbols so that they can be marked as NoRename,
846     // to prevent export of any use of them in regular IR that would require
847     // renaming within the module level asm. Note we don't need to create a
848     // summary for weak or global defs, as they don't need to be flagged as
849     // NoRename, and defs in module level asm can't be imported anyway.
850     // Also, any values used but not defined within module level asm should
851     // be listed on the llvm.used or llvm.compiler.used global and marked as
852     // referenced from there.
853     ModuleSymbolTable::CollectAsmSymbols(
854         M, [&](StringRef Name, object::BasicSymbolRef::Flags Flags) {
855           // Symbols not marked as Weak or Global are local definitions.
856           if (Flags & (object::BasicSymbolRef::SF_Weak |
857                        object::BasicSymbolRef::SF_Global))
858             return;
859           HasLocalInlineAsmSymbol = true;
860           GlobalValue *GV = M.getNamedValue(Name);
861           if (!GV)
862             return;
863           assert(GV->isDeclaration() && "Def in module asm already has definition");
864           GlobalValueSummary::GVFlags GVFlags(
865               GlobalValue::InternalLinkage, GlobalValue::DefaultVisibility,
866               /* NotEligibleToImport = */ true,
867               /* Live = */ true,
868               /* Local */ GV->isDSOLocal(), GV->canBeOmittedFromSymbolTable());
869           CantBePromoted.insert(GV->getGUID());
870           // Create the appropriate summary type.
871           if (Function *F = dyn_cast<Function>(GV)) {
872             std::unique_ptr<FunctionSummary> Summary =
873                 std::make_unique<FunctionSummary>(
874                     GVFlags, /*InstCount=*/0,
875                     FunctionSummary::FFlags{
876                         F->hasFnAttribute(Attribute::ReadNone),
877                         F->hasFnAttribute(Attribute::ReadOnly),
878                         F->hasFnAttribute(Attribute::NoRecurse),
879                         F->returnDoesNotAlias(),
880                         /* NoInline = */ false,
881                         F->hasFnAttribute(Attribute::AlwaysInline),
882                         F->hasFnAttribute(Attribute::NoUnwind),
883                         /* MayThrow */ true,
884                         /* HasUnknownCall */ true,
885                         /* MustBeUnreachable */ false},
886                     /*EntryCount=*/0, ArrayRef<ValueInfo>{},
887                     ArrayRef<FunctionSummary::EdgeTy>{},
888                     ArrayRef<GlobalValue::GUID>{},
889                     ArrayRef<FunctionSummary::VFuncId>{},
890                     ArrayRef<FunctionSummary::VFuncId>{},
891                     ArrayRef<FunctionSummary::ConstVCall>{},
892                     ArrayRef<FunctionSummary::ConstVCall>{},
893                     ArrayRef<FunctionSummary::ParamAccess>{},
894                     ArrayRef<CallsiteInfo>{}, ArrayRef<AllocInfo>{});
895             Index.addGlobalValueSummary(*GV, std::move(Summary));
896           } else {
897             std::unique_ptr<GlobalVarSummary> Summary =
898                 std::make_unique<GlobalVarSummary>(
899                     GVFlags,
900                     GlobalVarSummary::GVarFlags(
901                         false, false, cast<GlobalVariable>(GV)->isConstant(),
902                         GlobalObject::VCallVisibilityPublic),
903                     ArrayRef<ValueInfo>{});
904             Index.addGlobalValueSummary(*GV, std::move(Summary));
905           }
906         });
907   }
908 
909   bool IsThinLTO = true;
910   if (auto *MD =
911           mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO")))
912     IsThinLTO = MD->getZExtValue();
913 
914   // Compute summaries for all functions defined in module, and save in the
915   // index.
916   for (const auto &F : M) {
917     if (F.isDeclaration())
918       continue;
919 
920     DominatorTree DT(const_cast<Function &>(F));
921     BlockFrequencyInfo *BFI = nullptr;
922     std::unique_ptr<BlockFrequencyInfo> BFIPtr;
923     if (GetBFICallback)
924       BFI = GetBFICallback(F);
925     else if (F.hasProfileData()) {
926       LoopInfo LI{DT};
927       BranchProbabilityInfo BPI{F, LI};
928       BFIPtr = std::make_unique<BlockFrequencyInfo>(F, BPI, LI);
929       BFI = BFIPtr.get();
930     }
931 
932     computeFunctionSummary(Index, M, F, BFI, PSI, DT,
933                            !LocalsUsed.empty() || HasLocalInlineAsmSymbol,
934                            CantBePromoted, IsThinLTO, GetSSICallback);
935   }
936 
937   // Compute summaries for all variables defined in module, and save in the
938   // index.
939   SmallVector<MDNode *, 2> Types;
940   for (const GlobalVariable &G : M.globals()) {
941     if (G.isDeclaration())
942       continue;
943     computeVariableSummary(Index, G, CantBePromoted, M, Types);
944   }
945 
946   // Compute summaries for all aliases defined in module, and save in the
947   // index.
948   for (const GlobalAlias &A : M.aliases())
949     computeAliasSummary(Index, A, CantBePromoted);
950 
951   // Iterate through ifuncs, set their resolvers all alive.
952   for (const GlobalIFunc &I : M.ifuncs()) {
953     I.applyAlongResolverPath([&Index](const GlobalValue &GV) {
954       Index.getGlobalValueSummary(GV)->setLive(true);
955     });
956   }
957 
958   for (auto *V : LocalsUsed) {
959     auto *Summary = Index.getGlobalValueSummary(*V);
960     assert(Summary && "Missing summary for global value");
961     Summary->setNotEligibleToImport();
962   }
963 
964   // The linker doesn't know about these LLVM produced values, so we need
965   // to flag them as live in the index to ensure index-based dead value
966   // analysis treats them as live roots of the analysis.
967   setLiveRoot(Index, "llvm.used");
968   setLiveRoot(Index, "llvm.compiler.used");
969   setLiveRoot(Index, "llvm.global_ctors");
970   setLiveRoot(Index, "llvm.global_dtors");
971   setLiveRoot(Index, "llvm.global.annotations");
972 
973   for (auto &GlobalList : Index) {
974     // Ignore entries for references that are undefined in the current module.
975     if (GlobalList.second.SummaryList.empty())
976       continue;
977 
978     assert(GlobalList.second.SummaryList.size() == 1 &&
979            "Expected module's index to have one summary per GUID");
980     auto &Summary = GlobalList.second.SummaryList[0];
981     if (!IsThinLTO) {
982       Summary->setNotEligibleToImport();
983       continue;
984     }
985 
986     bool AllRefsCanBeExternallyReferenced =
987         llvm::all_of(Summary->refs(), [&](const ValueInfo &VI) {
988           return !CantBePromoted.count(VI.getGUID());
989         });
990     if (!AllRefsCanBeExternallyReferenced) {
991       Summary->setNotEligibleToImport();
992       continue;
993     }
994 
995     if (auto *FuncSummary = dyn_cast<FunctionSummary>(Summary.get())) {
996       bool AllCallsCanBeExternallyReferenced = llvm::all_of(
997           FuncSummary->calls(), [&](const FunctionSummary::EdgeTy &Edge) {
998             return !CantBePromoted.count(Edge.first.getGUID());
999           });
1000       if (!AllCallsCanBeExternallyReferenced)
1001         Summary->setNotEligibleToImport();
1002     }
1003   }
1004 
1005   if (!ModuleSummaryDotFile.empty()) {
1006     std::error_code EC;
1007     raw_fd_ostream OSDot(ModuleSummaryDotFile, EC, sys::fs::OpenFlags::OF_None);
1008     if (EC)
1009       report_fatal_error(Twine("Failed to open dot file ") +
1010                          ModuleSummaryDotFile + ": " + EC.message() + "\n");
1011     Index.exportToDot(OSDot, {});
1012   }
1013 
1014   return Index;
1015 }
1016 
1017 AnalysisKey ModuleSummaryIndexAnalysis::Key;
1018 
1019 ModuleSummaryIndex
1020 ModuleSummaryIndexAnalysis::run(Module &M, ModuleAnalysisManager &AM) {
1021   ProfileSummaryInfo &PSI = AM.getResult<ProfileSummaryAnalysis>(M);
1022   auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
1023   bool NeedSSI = needsParamAccessSummary(M);
1024   return buildModuleSummaryIndex(
1025       M,
1026       [&FAM](const Function &F) {
1027         return &FAM.getResult<BlockFrequencyAnalysis>(
1028             *const_cast<Function *>(&F));
1029       },
1030       &PSI,
1031       [&FAM, NeedSSI](const Function &F) -> const StackSafetyInfo * {
1032         return NeedSSI ? &FAM.getResult<StackSafetyAnalysis>(
1033                              const_cast<Function &>(F))
1034                        : nullptr;
1035       });
1036 }
1037 
1038 char ModuleSummaryIndexWrapperPass::ID = 0;
1039 
1040 INITIALIZE_PASS_BEGIN(ModuleSummaryIndexWrapperPass, "module-summary-analysis",
1041                       "Module Summary Analysis", false, true)
1042 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
1043 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
1044 INITIALIZE_PASS_DEPENDENCY(StackSafetyInfoWrapperPass)
1045 INITIALIZE_PASS_END(ModuleSummaryIndexWrapperPass, "module-summary-analysis",
1046                     "Module Summary Analysis", false, true)
1047 
1048 ModulePass *llvm::createModuleSummaryIndexWrapperPass() {
1049   return new ModuleSummaryIndexWrapperPass();
1050 }
1051 
1052 ModuleSummaryIndexWrapperPass::ModuleSummaryIndexWrapperPass()
1053     : ModulePass(ID) {
1054   initializeModuleSummaryIndexWrapperPassPass(*PassRegistry::getPassRegistry());
1055 }
1056 
1057 bool ModuleSummaryIndexWrapperPass::runOnModule(Module &M) {
1058   auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
1059   bool NeedSSI = needsParamAccessSummary(M);
1060   Index.emplace(buildModuleSummaryIndex(
1061       M,
1062       [this](const Function &F) {
1063         return &(this->getAnalysis<BlockFrequencyInfoWrapperPass>(
1064                          *const_cast<Function *>(&F))
1065                      .getBFI());
1066       },
1067       PSI,
1068       [&](const Function &F) -> const StackSafetyInfo * {
1069         return NeedSSI ? &getAnalysis<StackSafetyInfoWrapperPass>(
1070                               const_cast<Function &>(F))
1071                               .getResult()
1072                        : nullptr;
1073       }));
1074   return false;
1075 }
1076 
1077 bool ModuleSummaryIndexWrapperPass::doFinalization(Module &M) {
1078   Index.reset();
1079   return false;
1080 }
1081 
1082 void ModuleSummaryIndexWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
1083   AU.setPreservesAll();
1084   AU.addRequired<BlockFrequencyInfoWrapperPass>();
1085   AU.addRequired<ProfileSummaryInfoWrapperPass>();
1086   AU.addRequired<StackSafetyInfoWrapperPass>();
1087 }
1088 
1089 char ImmutableModuleSummaryIndexWrapperPass::ID = 0;
1090 
1091 ImmutableModuleSummaryIndexWrapperPass::ImmutableModuleSummaryIndexWrapperPass(
1092     const ModuleSummaryIndex *Index)
1093     : ImmutablePass(ID), Index(Index) {
1094   initializeImmutableModuleSummaryIndexWrapperPassPass(
1095       *PassRegistry::getPassRegistry());
1096 }
1097 
1098 void ImmutableModuleSummaryIndexWrapperPass::getAnalysisUsage(
1099     AnalysisUsage &AU) const {
1100   AU.setPreservesAll();
1101 }
1102 
1103 ImmutablePass *llvm::createImmutableModuleSummaryIndexWrapperPass(
1104     const ModuleSummaryIndex *Index) {
1105   return new ImmutableModuleSummaryIndexWrapperPass(Index);
1106 }
1107 
1108 INITIALIZE_PASS(ImmutableModuleSummaryIndexWrapperPass, "module-summary-info",
1109                 "Module summary info", false, true)
1110 
1111 bool llvm::mayHaveMemprofSummary(const CallBase *CB) {
1112   if (!CB)
1113     return false;
1114   if (CB->isDebugOrPseudoInst())
1115     return false;
1116   auto *CI = dyn_cast<CallInst>(CB);
1117   auto *CalledValue = CB->getCalledOperand();
1118   auto *CalledFunction = CB->getCalledFunction();
1119   if (CalledValue && !CalledFunction) {
1120     CalledValue = CalledValue->stripPointerCasts();
1121     // Stripping pointer casts can reveal a called function.
1122     CalledFunction = dyn_cast<Function>(CalledValue);
1123   }
1124   // Check if this is an alias to a function. If so, get the
1125   // called aliasee for the checks below.
1126   if (auto *GA = dyn_cast<GlobalAlias>(CalledValue)) {
1127     assert(!CalledFunction &&
1128            "Expected null called function in callsite for alias");
1129     CalledFunction = dyn_cast<Function>(GA->getAliaseeObject());
1130   }
1131   // Check if this is a direct call to a known function or a known
1132   // intrinsic, or an indirect call with profile data.
1133   if (CalledFunction) {
1134     if (CI && CalledFunction->isIntrinsic())
1135       return false;
1136   } else {
1137     // TODO: For now skip indirect calls. See comments in
1138     // computeFunctionSummary for what is needed to handle this.
1139     return false;
1140   }
1141   return true;
1142 }
1143