xref: /llvm-project/llvm/lib/Analysis/ModuleSummaryAnalysis.cpp (revision 6264288d70610c40256f96f003e14ab5e8890fb8)
1 //===- ModuleSummaryAnalysis.cpp - Module summary index builder -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass builds a ModuleSummaryIndex object for the module, to be written
10 // to bitcode or LLVM assembly.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Analysis/ModuleSummaryAnalysis.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/MapVector.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SetVector.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/Analysis/BlockFrequencyInfo.h"
24 #include "llvm/Analysis/BranchProbabilityInfo.h"
25 #include "llvm/Analysis/ConstantFolding.h"
26 #include "llvm/Analysis/IndirectCallPromotionAnalysis.h"
27 #include "llvm/Analysis/LoopInfo.h"
28 #include "llvm/Analysis/MemoryProfileInfo.h"
29 #include "llvm/Analysis/ProfileSummaryInfo.h"
30 #include "llvm/Analysis/StackSafetyAnalysis.h"
31 #include "llvm/Analysis/TypeMetadataUtils.h"
32 #include "llvm/IR/Attributes.h"
33 #include "llvm/IR/BasicBlock.h"
34 #include "llvm/IR/Constant.h"
35 #include "llvm/IR/Constants.h"
36 #include "llvm/IR/Dominators.h"
37 #include "llvm/IR/Function.h"
38 #include "llvm/IR/GlobalAlias.h"
39 #include "llvm/IR/GlobalValue.h"
40 #include "llvm/IR/GlobalVariable.h"
41 #include "llvm/IR/Instructions.h"
42 #include "llvm/IR/IntrinsicInst.h"
43 #include "llvm/IR/Metadata.h"
44 #include "llvm/IR/Module.h"
45 #include "llvm/IR/ModuleSummaryIndex.h"
46 #include "llvm/IR/Use.h"
47 #include "llvm/IR/User.h"
48 #include "llvm/InitializePasses.h"
49 #include "llvm/Object/ModuleSymbolTable.h"
50 #include "llvm/Object/SymbolicFile.h"
51 #include "llvm/Pass.h"
52 #include "llvm/Support/Casting.h"
53 #include "llvm/Support/CommandLine.h"
54 #include "llvm/Support/FileSystem.h"
55 #include <algorithm>
56 #include <cassert>
57 #include <cstdint>
58 #include <vector>
59 
60 using namespace llvm;
61 using namespace llvm::memprof;
62 
63 #define DEBUG_TYPE "module-summary-analysis"
64 
65 // Option to force edges cold which will block importing when the
66 // -import-cold-multiplier is set to 0. Useful for debugging.
67 namespace llvm {
68 FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold =
69     FunctionSummary::FSHT_None;
70 } // namespace llvm
71 
72 static cl::opt<FunctionSummary::ForceSummaryHotnessType, true> FSEC(
73     "force-summary-edges-cold", cl::Hidden, cl::location(ForceSummaryEdgesCold),
74     cl::desc("Force all edges in the function summary to cold"),
75     cl::values(clEnumValN(FunctionSummary::FSHT_None, "none", "None."),
76                clEnumValN(FunctionSummary::FSHT_AllNonCritical,
77                           "all-non-critical", "All non-critical edges."),
78                clEnumValN(FunctionSummary::FSHT_All, "all", "All edges.")));
79 
80 static cl::opt<std::string> ModuleSummaryDotFile(
81     "module-summary-dot-file", cl::Hidden, cl::value_desc("filename"),
82     cl::desc("File to emit dot graph of new summary into"));
83 
84 static cl::opt<bool> EnableMemProfIndirectCallSupport(
85     "enable-memprof-indirect-call-support", cl::init(true), cl::Hidden,
86     cl::desc(
87         "Enable MemProf support for summarizing and cloning indirect calls"));
88 
89 extern cl::opt<bool> ScalePartialSampleProfileWorkingSetSize;
90 
91 extern cl::opt<unsigned> MaxNumVTableAnnotations;
92 
93 extern cl::opt<bool> MemProfReportHintedSizes;
94 
95 // Walk through the operands of a given User via worklist iteration and populate
96 // the set of GlobalValue references encountered. Invoked either on an
97 // Instruction or a GlobalVariable (which walks its initializer).
98 // Return true if any of the operands contains blockaddress. This is important
99 // to know when computing summary for global var, because if global variable
100 // references basic block address we can't import it separately from function
101 // containing that basic block. For simplicity we currently don't import such
102 // global vars at all. When importing function we aren't interested if any
103 // instruction in it takes an address of any basic block, because instruction
104 // can only take an address of basic block located in the same function.
105 // Set `RefLocalLinkageIFunc` to true if the analyzed value references a
106 // local-linkage ifunc.
107 static bool
108 findRefEdges(ModuleSummaryIndex &Index, const User *CurUser,
109              SetVector<ValueInfo, SmallVector<ValueInfo, 0>> &RefEdges,
110              SmallPtrSet<const User *, 8> &Visited,
111              bool &RefLocalLinkageIFunc) {
112   bool HasBlockAddress = false;
113   SmallVector<const User *, 32> Worklist;
114   if (Visited.insert(CurUser).second)
115     Worklist.push_back(CurUser);
116 
117   while (!Worklist.empty()) {
118     const User *U = Worklist.pop_back_val();
119     const auto *CB = dyn_cast<CallBase>(U);
120 
121     for (const auto &OI : U->operands()) {
122       const User *Operand = dyn_cast<User>(OI);
123       if (!Operand)
124         continue;
125       if (isa<BlockAddress>(Operand)) {
126         HasBlockAddress = true;
127         continue;
128       }
129       if (auto *GV = dyn_cast<GlobalValue>(Operand)) {
130         // We have a reference to a global value. This should be added to
131         // the reference set unless it is a callee. Callees are handled
132         // specially by WriteFunction and are added to a separate list.
133         if (!(CB && CB->isCallee(&OI))) {
134           // If an ifunc has local linkage, do not add it into ref edges, and
135           // sets `RefLocalLinkageIFunc` to true. The referencer is not eligible
136           // for import. An ifunc doesn't have summary and ThinLTO cannot
137           // promote it; importing the referencer may cause linkage errors.
138           if (auto *GI = dyn_cast_if_present<GlobalIFunc>(GV);
139               GI && GI->hasLocalLinkage()) {
140             RefLocalLinkageIFunc = true;
141             continue;
142           }
143           RefEdges.insert(Index.getOrInsertValueInfo(GV));
144         }
145         continue;
146       }
147       if (Visited.insert(Operand).second)
148         Worklist.push_back(Operand);
149     }
150   }
151 
152   const Instruction *I = dyn_cast<Instruction>(CurUser);
153   if (I) {
154     uint64_t TotalCount = 0;
155     // MaxNumVTableAnnotations is the maximum number of vtables annotated on
156     // the instruction.
157     auto ValueDataArray = getValueProfDataFromInst(
158         *I, IPVK_VTableTarget, MaxNumVTableAnnotations, TotalCount);
159 
160     for (const auto &V : ValueDataArray)
161       RefEdges.insert(Index.getOrInsertValueInfo(/* VTableGUID = */
162                                                  V.Value));
163   }
164   return HasBlockAddress;
165 }
166 
167 static CalleeInfo::HotnessType getHotness(uint64_t ProfileCount,
168                                           ProfileSummaryInfo *PSI) {
169   if (!PSI)
170     return CalleeInfo::HotnessType::Unknown;
171   if (PSI->isHotCount(ProfileCount))
172     return CalleeInfo::HotnessType::Hot;
173   if (PSI->isColdCount(ProfileCount))
174     return CalleeInfo::HotnessType::Cold;
175   return CalleeInfo::HotnessType::None;
176 }
177 
178 static bool isNonRenamableLocal(const GlobalValue &GV) {
179   return GV.hasSection() && GV.hasLocalLinkage();
180 }
181 
182 /// Determine whether this call has all constant integer arguments (excluding
183 /// "this") and summarize it to VCalls or ConstVCalls as appropriate.
184 static void addVCallToSet(
185     DevirtCallSite Call, GlobalValue::GUID Guid,
186     SetVector<FunctionSummary::VFuncId, std::vector<FunctionSummary::VFuncId>>
187         &VCalls,
188     SetVector<FunctionSummary::ConstVCall,
189               std::vector<FunctionSummary::ConstVCall>> &ConstVCalls) {
190   std::vector<uint64_t> Args;
191   // Start from the second argument to skip the "this" pointer.
192   for (auto &Arg : drop_begin(Call.CB.args())) {
193     auto *CI = dyn_cast<ConstantInt>(Arg);
194     if (!CI || CI->getBitWidth() > 64) {
195       VCalls.insert({Guid, Call.Offset});
196       return;
197     }
198     Args.push_back(CI->getZExtValue());
199   }
200   ConstVCalls.insert({{Guid, Call.Offset}, std::move(Args)});
201 }
202 
203 /// If this intrinsic call requires that we add information to the function
204 /// summary, do so via the non-constant reference arguments.
205 static void addIntrinsicToSummary(
206     const CallInst *CI,
207     SetVector<GlobalValue::GUID, std::vector<GlobalValue::GUID>> &TypeTests,
208     SetVector<FunctionSummary::VFuncId, std::vector<FunctionSummary::VFuncId>>
209         &TypeTestAssumeVCalls,
210     SetVector<FunctionSummary::VFuncId, std::vector<FunctionSummary::VFuncId>>
211         &TypeCheckedLoadVCalls,
212     SetVector<FunctionSummary::ConstVCall,
213               std::vector<FunctionSummary::ConstVCall>>
214         &TypeTestAssumeConstVCalls,
215     SetVector<FunctionSummary::ConstVCall,
216               std::vector<FunctionSummary::ConstVCall>>
217         &TypeCheckedLoadConstVCalls,
218     DominatorTree &DT) {
219   switch (CI->getCalledFunction()->getIntrinsicID()) {
220   case Intrinsic::type_test:
221   case Intrinsic::public_type_test: {
222     auto *TypeMDVal = cast<MetadataAsValue>(CI->getArgOperand(1));
223     auto *TypeId = dyn_cast<MDString>(TypeMDVal->getMetadata());
224     if (!TypeId)
225       break;
226     GlobalValue::GUID Guid = GlobalValue::getGUID(TypeId->getString());
227 
228     // Produce a summary from type.test intrinsics. We only summarize type.test
229     // intrinsics that are used other than by an llvm.assume intrinsic.
230     // Intrinsics that are assumed are relevant only to the devirtualization
231     // pass, not the type test lowering pass.
232     bool HasNonAssumeUses = llvm::any_of(CI->uses(), [](const Use &CIU) {
233       return !isa<AssumeInst>(CIU.getUser());
234     });
235     if (HasNonAssumeUses)
236       TypeTests.insert(Guid);
237 
238     SmallVector<DevirtCallSite, 4> DevirtCalls;
239     SmallVector<CallInst *, 4> Assumes;
240     findDevirtualizableCallsForTypeTest(DevirtCalls, Assumes, CI, DT);
241     for (auto &Call : DevirtCalls)
242       addVCallToSet(Call, Guid, TypeTestAssumeVCalls,
243                     TypeTestAssumeConstVCalls);
244 
245     break;
246   }
247 
248   case Intrinsic::type_checked_load_relative:
249   case Intrinsic::type_checked_load: {
250     auto *TypeMDVal = cast<MetadataAsValue>(CI->getArgOperand(2));
251     auto *TypeId = dyn_cast<MDString>(TypeMDVal->getMetadata());
252     if (!TypeId)
253       break;
254     GlobalValue::GUID Guid = GlobalValue::getGUID(TypeId->getString());
255 
256     SmallVector<DevirtCallSite, 4> DevirtCalls;
257     SmallVector<Instruction *, 4> LoadedPtrs;
258     SmallVector<Instruction *, 4> Preds;
259     bool HasNonCallUses = false;
260     findDevirtualizableCallsForTypeCheckedLoad(DevirtCalls, LoadedPtrs, Preds,
261                                                HasNonCallUses, CI, DT);
262     // Any non-call uses of the result of llvm.type.checked.load will
263     // prevent us from optimizing away the llvm.type.test.
264     if (HasNonCallUses)
265       TypeTests.insert(Guid);
266     for (auto &Call : DevirtCalls)
267       addVCallToSet(Call, Guid, TypeCheckedLoadVCalls,
268                     TypeCheckedLoadConstVCalls);
269 
270     break;
271   }
272   default:
273     break;
274   }
275 }
276 
277 static bool isNonVolatileLoad(const Instruction *I) {
278   if (const auto *LI = dyn_cast<LoadInst>(I))
279     return !LI->isVolatile();
280 
281   return false;
282 }
283 
284 static bool isNonVolatileStore(const Instruction *I) {
285   if (const auto *SI = dyn_cast<StoreInst>(I))
286     return !SI->isVolatile();
287 
288   return false;
289 }
290 
291 // Returns true if the function definition must be unreachable.
292 //
293 // Note if this helper function returns true, `F` is guaranteed
294 // to be unreachable; if it returns false, `F` might still
295 // be unreachable but not covered by this helper function.
296 static bool mustBeUnreachableFunction(const Function &F) {
297   // A function must be unreachable if its entry block ends with an
298   // 'unreachable'.
299   assert(!F.isDeclaration());
300   return isa<UnreachableInst>(F.getEntryBlock().getTerminator());
301 }
302 
303 static void computeFunctionSummary(
304     ModuleSummaryIndex &Index, const Module &M, const Function &F,
305     BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, DominatorTree &DT,
306     bool HasLocalsInUsedOrAsm, DenseSet<GlobalValue::GUID> &CantBePromoted,
307     bool IsThinLTO,
308     std::function<const StackSafetyInfo *(const Function &F)> GetSSICallback) {
309   // Summary not currently supported for anonymous functions, they should
310   // have been named.
311   assert(F.hasName());
312 
313   unsigned NumInsts = 0;
314   // Map from callee ValueId to profile count. Used to accumulate profile
315   // counts for all static calls to a given callee.
316   MapVector<ValueInfo, CalleeInfo, DenseMap<ValueInfo, unsigned>,
317             SmallVector<FunctionSummary::EdgeTy, 0>>
318       CallGraphEdges;
319   SetVector<ValueInfo, SmallVector<ValueInfo, 0>> RefEdges, LoadRefEdges,
320       StoreRefEdges;
321   SetVector<GlobalValue::GUID, std::vector<GlobalValue::GUID>> TypeTests;
322   SetVector<FunctionSummary::VFuncId, std::vector<FunctionSummary::VFuncId>>
323       TypeTestAssumeVCalls, TypeCheckedLoadVCalls;
324   SetVector<FunctionSummary::ConstVCall,
325             std::vector<FunctionSummary::ConstVCall>>
326       TypeTestAssumeConstVCalls, TypeCheckedLoadConstVCalls;
327   ICallPromotionAnalysis ICallAnalysis;
328   SmallPtrSet<const User *, 8> Visited;
329 
330   // Add personality function, prefix data and prologue data to function's ref
331   // list.
332   bool HasLocalIFuncCallOrRef = false;
333   findRefEdges(Index, &F, RefEdges, Visited, HasLocalIFuncCallOrRef);
334   std::vector<const Instruction *> NonVolatileLoads;
335   std::vector<const Instruction *> NonVolatileStores;
336 
337   std::vector<CallsiteInfo> Callsites;
338   std::vector<AllocInfo> Allocs;
339 
340 #ifndef NDEBUG
341   DenseSet<const CallBase *> CallsThatMayHaveMemprofSummary;
342 #endif
343 
344   bool HasInlineAsmMaybeReferencingInternal = false;
345   bool HasIndirBranchToBlockAddress = false;
346   bool HasUnknownCall = false;
347   bool MayThrow = false;
348   for (const BasicBlock &BB : F) {
349     // We don't allow inlining of function with indirect branch to blockaddress.
350     // If the blockaddress escapes the function, e.g., via a global variable,
351     // inlining may lead to an invalid cross-function reference. So we shouldn't
352     // import such function either.
353     if (BB.hasAddressTaken()) {
354       for (User *U : BlockAddress::get(const_cast<BasicBlock *>(&BB))->users())
355         if (!isa<CallBrInst>(*U)) {
356           HasIndirBranchToBlockAddress = true;
357           break;
358         }
359     }
360 
361     for (const Instruction &I : BB) {
362       if (I.isDebugOrPseudoInst())
363         continue;
364       ++NumInsts;
365 
366       // Regular LTO module doesn't participate in ThinLTO import,
367       // so no reference from it can be read/writeonly, since this
368       // would require importing variable as local copy
369       if (IsThinLTO) {
370         if (isNonVolatileLoad(&I)) {
371           // Postpone processing of non-volatile load instructions
372           // See comments below
373           Visited.insert(&I);
374           NonVolatileLoads.push_back(&I);
375           continue;
376         } else if (isNonVolatileStore(&I)) {
377           Visited.insert(&I);
378           NonVolatileStores.push_back(&I);
379           // All references from second operand of store (destination address)
380           // can be considered write-only if they're not referenced by any
381           // non-store instruction. References from first operand of store
382           // (stored value) can't be treated either as read- or as write-only
383           // so we add them to RefEdges as we do with all other instructions
384           // except non-volatile load.
385           Value *Stored = I.getOperand(0);
386           if (auto *GV = dyn_cast<GlobalValue>(Stored))
387             // findRefEdges will try to examine GV operands, so instead
388             // of calling it we should add GV to RefEdges directly.
389             RefEdges.insert(Index.getOrInsertValueInfo(GV));
390           else if (auto *U = dyn_cast<User>(Stored))
391             findRefEdges(Index, U, RefEdges, Visited, HasLocalIFuncCallOrRef);
392           continue;
393         }
394       }
395       findRefEdges(Index, &I, RefEdges, Visited, HasLocalIFuncCallOrRef);
396       const auto *CB = dyn_cast<CallBase>(&I);
397       if (!CB) {
398         if (I.mayThrow())
399           MayThrow = true;
400         continue;
401       }
402 
403       const auto *CI = dyn_cast<CallInst>(&I);
404       // Since we don't know exactly which local values are referenced in inline
405       // assembly, conservatively mark the function as possibly referencing
406       // a local value from inline assembly to ensure we don't export a
407       // reference (which would require renaming and promotion of the
408       // referenced value).
409       if (HasLocalsInUsedOrAsm && CI && CI->isInlineAsm())
410         HasInlineAsmMaybeReferencingInternal = true;
411 
412       // Compute this once per indirect call.
413       uint32_t NumCandidates = 0;
414       uint64_t TotalCount = 0;
415       MutableArrayRef<InstrProfValueData> CandidateProfileData;
416 
417       auto *CalledValue = CB->getCalledOperand();
418       auto *CalledFunction = CB->getCalledFunction();
419       if (CalledValue && !CalledFunction) {
420         CalledValue = CalledValue->stripPointerCasts();
421         // Stripping pointer casts can reveal a called function.
422         CalledFunction = dyn_cast<Function>(CalledValue);
423       }
424       // Check if this is an alias to a function. If so, get the
425       // called aliasee for the checks below.
426       if (auto *GA = dyn_cast<GlobalAlias>(CalledValue)) {
427         assert(!CalledFunction && "Expected null called function in callsite for alias");
428         CalledFunction = dyn_cast<Function>(GA->getAliaseeObject());
429       }
430       // Check if this is a direct call to a known function or a known
431       // intrinsic, or an indirect call with profile data.
432       if (CalledFunction) {
433         if (CI && CalledFunction->isIntrinsic()) {
434           addIntrinsicToSummary(
435               CI, TypeTests, TypeTestAssumeVCalls, TypeCheckedLoadVCalls,
436               TypeTestAssumeConstVCalls, TypeCheckedLoadConstVCalls, DT);
437           continue;
438         }
439         // We should have named any anonymous globals
440         assert(CalledFunction->hasName());
441         auto ScaledCount = PSI->getProfileCount(*CB, BFI);
442         auto Hotness = ScaledCount ? getHotness(*ScaledCount, PSI)
443                                    : CalleeInfo::HotnessType::Unknown;
444         if (ForceSummaryEdgesCold != FunctionSummary::FSHT_None)
445           Hotness = CalleeInfo::HotnessType::Cold;
446 
447         // Use the original CalledValue, in case it was an alias. We want
448         // to record the call edge to the alias in that case. Eventually
449         // an alias summary will be created to associate the alias and
450         // aliasee.
451         auto &ValueInfo = CallGraphEdges[Index.getOrInsertValueInfo(
452             cast<GlobalValue>(CalledValue))];
453         ValueInfo.updateHotness(Hotness);
454         if (CB->isTailCall())
455           ValueInfo.setHasTailCall(true);
456         // Add the relative block frequency to CalleeInfo if there is no profile
457         // information.
458         if (BFI != nullptr && Hotness == CalleeInfo::HotnessType::Unknown) {
459           uint64_t BBFreq = BFI->getBlockFreq(&BB).getFrequency();
460           uint64_t EntryFreq = BFI->getEntryFreq().getFrequency();
461           ValueInfo.updateRelBlockFreq(BBFreq, EntryFreq);
462         }
463       } else {
464         HasUnknownCall = true;
465         // If F is imported, a local linkage ifunc (e.g. target_clones on a
466         // static function) called by F will be cloned. Since summaries don't
467         // track ifunc, we do not know implementation functions referenced by
468         // the ifunc resolver need to be promoted in the exporter, and we will
469         // get linker errors due to cloned declarations for implementation
470         // functions. As a simple fix, just mark F as not eligible for import.
471         // Non-local ifunc is not cloned and does not have the issue.
472         if (auto *GI = dyn_cast_if_present<GlobalIFunc>(CalledValue))
473           if (GI->hasLocalLinkage())
474             HasLocalIFuncCallOrRef = true;
475         // Skip inline assembly calls.
476         if (CI && CI->isInlineAsm())
477           continue;
478         // Skip direct calls.
479         if (!CalledValue || isa<Constant>(CalledValue))
480           continue;
481 
482         // Check if the instruction has a callees metadata. If so, add callees
483         // to CallGraphEdges to reflect the references from the metadata, and
484         // to enable importing for subsequent indirect call promotion and
485         // inlining.
486         if (auto *MD = I.getMetadata(LLVMContext::MD_callees)) {
487           for (const auto &Op : MD->operands()) {
488             Function *Callee = mdconst::extract_or_null<Function>(Op);
489             if (Callee)
490               CallGraphEdges[Index.getOrInsertValueInfo(Callee)];
491           }
492         }
493 
494         CandidateProfileData =
495             ICallAnalysis.getPromotionCandidatesForInstruction(&I, TotalCount,
496                                                                NumCandidates);
497         for (const auto &Candidate : CandidateProfileData)
498           CallGraphEdges[Index.getOrInsertValueInfo(Candidate.Value)]
499               .updateHotness(getHotness(Candidate.Count, PSI));
500       }
501 
502       // Summarize memprof related metadata. This is only needed for ThinLTO.
503       if (!IsThinLTO)
504         continue;
505 
506       // Skip indirect calls if we haven't enabled memprof ICP.
507       if (!CalledFunction && !EnableMemProfIndirectCallSupport)
508         continue;
509 
510       // Ensure we keep this analysis in sync with the handling in the ThinLTO
511       // backend (see MemProfContextDisambiguation::applyImport). Save this call
512       // so that we can skip it in checking the reverse case later.
513       assert(mayHaveMemprofSummary(CB));
514 #ifndef NDEBUG
515       CallsThatMayHaveMemprofSummary.insert(CB);
516 #endif
517 
518       // Compute the list of stack ids first (so we can trim them from the stack
519       // ids on any MIBs).
520       CallStack<MDNode, MDNode::op_iterator> InstCallsite(
521           I.getMetadata(LLVMContext::MD_callsite));
522       auto *MemProfMD = I.getMetadata(LLVMContext::MD_memprof);
523       if (MemProfMD) {
524         std::vector<MIBInfo> MIBs;
525         std::vector<uint64_t> TotalSizes;
526         for (auto &MDOp : MemProfMD->operands()) {
527           auto *MIBMD = cast<const MDNode>(MDOp);
528           MDNode *StackNode = getMIBStackNode(MIBMD);
529           assert(StackNode);
530           SmallVector<unsigned> StackIdIndices;
531           CallStack<MDNode, MDNode::op_iterator> StackContext(StackNode);
532           // Collapse out any on the allocation call (inlining).
533           for (auto ContextIter =
534                    StackContext.beginAfterSharedPrefix(InstCallsite);
535                ContextIter != StackContext.end(); ++ContextIter) {
536             unsigned StackIdIdx = Index.addOrGetStackIdIndex(*ContextIter);
537             // If this is a direct recursion, simply skip the duplicate
538             // entries. If this is mutual recursion, handling is left to
539             // the LTO link analysis client.
540             if (StackIdIndices.empty() || StackIdIndices.back() != StackIdIdx)
541               StackIdIndices.push_back(StackIdIdx);
542           }
543           MIBs.push_back(
544               MIBInfo(getMIBAllocType(MIBMD), std::move(StackIdIndices)));
545           if (MemProfReportHintedSizes) {
546             auto TotalSize = getMIBTotalSize(MIBMD);
547             assert(TotalSize);
548             TotalSizes.push_back(TotalSize);
549           }
550         }
551         Allocs.push_back(AllocInfo(std::move(MIBs)));
552         if (MemProfReportHintedSizes) {
553           assert(Allocs.back().MIBs.size() == TotalSizes.size());
554           Allocs.back().TotalSizes = std::move(TotalSizes);
555         }
556       } else if (!InstCallsite.empty()) {
557         SmallVector<unsigned> StackIdIndices;
558         for (auto StackId : InstCallsite)
559           StackIdIndices.push_back(Index.addOrGetStackIdIndex(StackId));
560         if (CalledFunction) {
561           // Use the original CalledValue, in case it was an alias. We want
562           // to record the call edge to the alias in that case. Eventually
563           // an alias summary will be created to associate the alias and
564           // aliasee.
565           auto CalleeValueInfo =
566               Index.getOrInsertValueInfo(cast<GlobalValue>(CalledValue));
567           Callsites.push_back({CalleeValueInfo, StackIdIndices});
568         } else {
569           assert(EnableMemProfIndirectCallSupport);
570           // For indirect callsites, create multiple Callsites, one per target.
571           // This enables having a different set of clone versions per target,
572           // and we will apply the cloning decisions while speculatively
573           // devirtualizing in the ThinLTO backends.
574           for (const auto &Candidate : CandidateProfileData) {
575             auto CalleeValueInfo = Index.getOrInsertValueInfo(Candidate.Value);
576             Callsites.push_back({CalleeValueInfo, StackIdIndices});
577           }
578         }
579       }
580     }
581   }
582 
583   if (PSI->hasPartialSampleProfile() && ScalePartialSampleProfileWorkingSetSize)
584     Index.addBlockCount(F.size());
585 
586   SmallVector<ValueInfo, 0> Refs;
587   if (IsThinLTO) {
588     auto AddRefEdges =
589         [&](const std::vector<const Instruction *> &Instrs,
590             SetVector<ValueInfo, SmallVector<ValueInfo, 0>> &Edges,
591             SmallPtrSet<const User *, 8> &Cache) {
592           for (const auto *I : Instrs) {
593             Cache.erase(I);
594             findRefEdges(Index, I, Edges, Cache, HasLocalIFuncCallOrRef);
595           }
596         };
597 
598     // By now we processed all instructions in a function, except
599     // non-volatile loads and non-volatile value stores. Let's find
600     // ref edges for both of instruction sets
601     AddRefEdges(NonVolatileLoads, LoadRefEdges, Visited);
602     // We can add some values to the Visited set when processing load
603     // instructions which are also used by stores in NonVolatileStores.
604     // For example this can happen if we have following code:
605     //
606     // store %Derived* @foo, %Derived** bitcast (%Base** @bar to %Derived**)
607     // %42 = load %Derived*, %Derived** bitcast (%Base** @bar to %Derived**)
608     //
609     // After processing loads we'll add bitcast to the Visited set, and if
610     // we use the same set while processing stores, we'll never see store
611     // to @bar and @bar will be mistakenly treated as readonly.
612     SmallPtrSet<const llvm::User *, 8> StoreCache;
613     AddRefEdges(NonVolatileStores, StoreRefEdges, StoreCache);
614 
615     // If both load and store instruction reference the same variable
616     // we won't be able to optimize it. Add all such reference edges
617     // to RefEdges set.
618     for (const auto &VI : StoreRefEdges)
619       if (LoadRefEdges.remove(VI))
620         RefEdges.insert(VI);
621 
622     unsigned RefCnt = RefEdges.size();
623     // All new reference edges inserted in two loops below are either
624     // read or write only. They will be grouped in the end of RefEdges
625     // vector, so we can use a single integer value to identify them.
626     for (const auto &VI : LoadRefEdges)
627       RefEdges.insert(VI);
628 
629     unsigned FirstWORef = RefEdges.size();
630     for (const auto &VI : StoreRefEdges)
631       RefEdges.insert(VI);
632 
633     Refs = RefEdges.takeVector();
634     for (; RefCnt < FirstWORef; ++RefCnt)
635       Refs[RefCnt].setReadOnly();
636 
637     for (; RefCnt < Refs.size(); ++RefCnt)
638       Refs[RefCnt].setWriteOnly();
639   } else {
640     Refs = RefEdges.takeVector();
641   }
642   // Explicit add hot edges to enforce importing for designated GUIDs for
643   // sample PGO, to enable the same inlines as the profiled optimized binary.
644   for (auto &I : F.getImportGUIDs())
645     CallGraphEdges[Index.getOrInsertValueInfo(I)].updateHotness(
646         ForceSummaryEdgesCold == FunctionSummary::FSHT_All
647             ? CalleeInfo::HotnessType::Cold
648             : CalleeInfo::HotnessType::Critical);
649 
650 #ifndef NDEBUG
651   // Make sure that all calls we decided could not have memprof summaries get a
652   // false value for mayHaveMemprofSummary, to ensure that this handling remains
653   // in sync with the ThinLTO backend handling.
654   if (IsThinLTO) {
655     for (const BasicBlock &BB : F) {
656       for (const Instruction &I : BB) {
657         const auto *CB = dyn_cast<CallBase>(&I);
658         if (!CB)
659           continue;
660         // We already checked these above.
661         if (CallsThatMayHaveMemprofSummary.count(CB))
662           continue;
663         assert(!mayHaveMemprofSummary(CB));
664       }
665     }
666   }
667 #endif
668 
669   bool NonRenamableLocal = isNonRenamableLocal(F);
670   bool NotEligibleForImport =
671       NonRenamableLocal || HasInlineAsmMaybeReferencingInternal ||
672       HasIndirBranchToBlockAddress || HasLocalIFuncCallOrRef;
673   GlobalValueSummary::GVFlags Flags(
674       F.getLinkage(), F.getVisibility(), NotEligibleForImport,
675       /* Live = */ false, F.isDSOLocal(), F.canBeOmittedFromSymbolTable(),
676       GlobalValueSummary::ImportKind::Definition);
677   FunctionSummary::FFlags FunFlags{
678       F.doesNotAccessMemory(), F.onlyReadsMemory() && !F.doesNotAccessMemory(),
679       F.hasFnAttribute(Attribute::NoRecurse), F.returnDoesNotAlias(),
680       // FIXME: refactor this to use the same code that inliner is using.
681       // Don't try to import functions with noinline attribute.
682       F.getAttributes().hasFnAttr(Attribute::NoInline),
683       F.hasFnAttribute(Attribute::AlwaysInline),
684       F.hasFnAttribute(Attribute::NoUnwind), MayThrow, HasUnknownCall,
685       mustBeUnreachableFunction(F)};
686   std::vector<FunctionSummary::ParamAccess> ParamAccesses;
687   if (auto *SSI = GetSSICallback(F))
688     ParamAccesses = SSI->getParamAccesses(Index);
689   auto FuncSummary = std::make_unique<FunctionSummary>(
690       Flags, NumInsts, FunFlags, std::move(Refs), CallGraphEdges.takeVector(),
691       TypeTests.takeVector(), TypeTestAssumeVCalls.takeVector(),
692       TypeCheckedLoadVCalls.takeVector(),
693       TypeTestAssumeConstVCalls.takeVector(),
694       TypeCheckedLoadConstVCalls.takeVector(), std::move(ParamAccesses),
695       std::move(Callsites), std::move(Allocs));
696   if (NonRenamableLocal)
697     CantBePromoted.insert(F.getGUID());
698   Index.addGlobalValueSummary(F, std::move(FuncSummary));
699 }
700 
701 /// Find function pointers referenced within the given vtable initializer
702 /// (or subset of an initializer) \p I. The starting offset of \p I within
703 /// the vtable initializer is \p StartingOffset. Any discovered function
704 /// pointers are added to \p VTableFuncs along with their cumulative offset
705 /// within the initializer.
706 static void findFuncPointers(const Constant *I, uint64_t StartingOffset,
707                              const Module &M, ModuleSummaryIndex &Index,
708                              VTableFuncList &VTableFuncs,
709                              const GlobalVariable &OrigGV) {
710   // First check if this is a function pointer.
711   if (I->getType()->isPointerTy()) {
712     auto C = I->stripPointerCasts();
713     auto A = dyn_cast<GlobalAlias>(C);
714     if (isa<Function>(C) || (A && isa<Function>(A->getAliasee()))) {
715       auto GV = dyn_cast<GlobalValue>(C);
716       assert(GV);
717       // We can disregard __cxa_pure_virtual as a possible call target, as
718       // calls to pure virtuals are UB.
719       if (GV && GV->getName() != "__cxa_pure_virtual")
720         VTableFuncs.push_back({Index.getOrInsertValueInfo(GV), StartingOffset});
721       return;
722     }
723   }
724 
725   // Walk through the elements in the constant struct or array and recursively
726   // look for virtual function pointers.
727   const DataLayout &DL = M.getDataLayout();
728   if (auto *C = dyn_cast<ConstantStruct>(I)) {
729     StructType *STy = dyn_cast<StructType>(C->getType());
730     assert(STy);
731     const StructLayout *SL = DL.getStructLayout(C->getType());
732 
733     for (auto EI : llvm::enumerate(STy->elements())) {
734       auto Offset = SL->getElementOffset(EI.index());
735       unsigned Op = SL->getElementContainingOffset(Offset);
736       findFuncPointers(cast<Constant>(I->getOperand(Op)),
737                        StartingOffset + Offset, M, Index, VTableFuncs, OrigGV);
738     }
739   } else if (auto *C = dyn_cast<ConstantArray>(I)) {
740     ArrayType *ATy = C->getType();
741     Type *EltTy = ATy->getElementType();
742     uint64_t EltSize = DL.getTypeAllocSize(EltTy);
743     for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) {
744       findFuncPointers(cast<Constant>(I->getOperand(i)),
745                        StartingOffset + i * EltSize, M, Index, VTableFuncs,
746                        OrigGV);
747     }
748   } else if (const auto *CE = dyn_cast<ConstantExpr>(I)) {
749     // For relative vtables, the next sub-component should be a trunc.
750     if (CE->getOpcode() != Instruction::Trunc ||
751         !(CE = dyn_cast<ConstantExpr>(CE->getOperand(0))))
752       return;
753 
754     // If this constant can be reduced to the offset between a function and a
755     // global, then we know this is a valid virtual function if the RHS is the
756     // original vtable we're scanning through.
757     if (CE->getOpcode() == Instruction::Sub) {
758       GlobalValue *LHS, *RHS;
759       APSInt LHSOffset, RHSOffset;
760       if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHS, LHSOffset, DL) &&
761           IsConstantOffsetFromGlobal(CE->getOperand(1), RHS, RHSOffset, DL) &&
762           RHS == &OrigGV &&
763 
764           // For relative vtables, this component should point to the callable
765           // function without any offsets.
766           LHSOffset == 0 &&
767 
768           // Also, the RHS should always point to somewhere within the vtable.
769           RHSOffset <=
770               static_cast<uint64_t>(DL.getTypeAllocSize(OrigGV.getInitializer()->getType()))) {
771         findFuncPointers(LHS, StartingOffset, M, Index, VTableFuncs, OrigGV);
772       }
773     }
774   }
775 }
776 
777 // Identify the function pointers referenced by vtable definition \p V.
778 static void computeVTableFuncs(ModuleSummaryIndex &Index,
779                                const GlobalVariable &V, const Module &M,
780                                VTableFuncList &VTableFuncs) {
781   if (!V.isConstant())
782     return;
783 
784   findFuncPointers(V.getInitializer(), /*StartingOffset=*/0, M, Index,
785                    VTableFuncs, V);
786 
787 #ifndef NDEBUG
788   // Validate that the VTableFuncs list is ordered by offset.
789   uint64_t PrevOffset = 0;
790   for (auto &P : VTableFuncs) {
791     // The findVFuncPointers traversal should have encountered the
792     // functions in offset order. We need to use ">=" since PrevOffset
793     // starts at 0.
794     assert(P.VTableOffset >= PrevOffset);
795     PrevOffset = P.VTableOffset;
796   }
797 #endif
798 }
799 
800 /// Record vtable definition \p V for each type metadata it references.
801 static void
802 recordTypeIdCompatibleVtableReferences(ModuleSummaryIndex &Index,
803                                        const GlobalVariable &V,
804                                        SmallVectorImpl<MDNode *> &Types) {
805   for (MDNode *Type : Types) {
806     auto TypeID = Type->getOperand(1).get();
807 
808     uint64_t Offset =
809         cast<ConstantInt>(
810             cast<ConstantAsMetadata>(Type->getOperand(0))->getValue())
811             ->getZExtValue();
812 
813     if (auto *TypeId = dyn_cast<MDString>(TypeID))
814       Index.getOrInsertTypeIdCompatibleVtableSummary(TypeId->getString())
815           .push_back({Offset, Index.getOrInsertValueInfo(&V)});
816   }
817 }
818 
819 static void computeVariableSummary(ModuleSummaryIndex &Index,
820                                    const GlobalVariable &V,
821                                    DenseSet<GlobalValue::GUID> &CantBePromoted,
822                                    const Module &M,
823                                    SmallVectorImpl<MDNode *> &Types) {
824   SetVector<ValueInfo, SmallVector<ValueInfo, 0>> RefEdges;
825   SmallPtrSet<const User *, 8> Visited;
826   bool RefLocalIFunc = false;
827   bool HasBlockAddress =
828       findRefEdges(Index, &V, RefEdges, Visited, RefLocalIFunc);
829   const bool NotEligibleForImport = (HasBlockAddress || RefLocalIFunc);
830   bool NonRenamableLocal = isNonRenamableLocal(V);
831   GlobalValueSummary::GVFlags Flags(
832       V.getLinkage(), V.getVisibility(), NonRenamableLocal,
833       /* Live = */ false, V.isDSOLocal(), V.canBeOmittedFromSymbolTable(),
834       GlobalValueSummary::Definition);
835 
836   VTableFuncList VTableFuncs;
837   // If splitting is not enabled, then we compute the summary information
838   // necessary for index-based whole program devirtualization.
839   if (!Index.enableSplitLTOUnit()) {
840     Types.clear();
841     V.getMetadata(LLVMContext::MD_type, Types);
842     if (!Types.empty()) {
843       // Identify the function pointers referenced by this vtable definition.
844       computeVTableFuncs(Index, V, M, VTableFuncs);
845 
846       // Record this vtable definition for each type metadata it references.
847       recordTypeIdCompatibleVtableReferences(Index, V, Types);
848     }
849   }
850 
851   // Don't mark variables we won't be able to internalize as read/write-only.
852   bool CanBeInternalized =
853       !V.hasComdat() && !V.hasAppendingLinkage() && !V.isInterposable() &&
854       !V.hasAvailableExternallyLinkage() && !V.hasDLLExportStorageClass();
855   bool Constant = V.isConstant();
856   GlobalVarSummary::GVarFlags VarFlags(CanBeInternalized,
857                                        Constant ? false : CanBeInternalized,
858                                        Constant, V.getVCallVisibility());
859   auto GVarSummary = std::make_unique<GlobalVarSummary>(Flags, VarFlags,
860                                                          RefEdges.takeVector());
861   if (NonRenamableLocal)
862     CantBePromoted.insert(V.getGUID());
863   if (NotEligibleForImport)
864     GVarSummary->setNotEligibleToImport();
865   if (!VTableFuncs.empty())
866     GVarSummary->setVTableFuncs(VTableFuncs);
867   Index.addGlobalValueSummary(V, std::move(GVarSummary));
868 }
869 
870 static void computeAliasSummary(ModuleSummaryIndex &Index, const GlobalAlias &A,
871                                 DenseSet<GlobalValue::GUID> &CantBePromoted) {
872   // Skip summary for indirect function aliases as summary for aliasee will not
873   // be emitted.
874   const GlobalObject *Aliasee = A.getAliaseeObject();
875   if (isa<GlobalIFunc>(Aliasee))
876     return;
877   bool NonRenamableLocal = isNonRenamableLocal(A);
878   GlobalValueSummary::GVFlags Flags(
879       A.getLinkage(), A.getVisibility(), NonRenamableLocal,
880       /* Live = */ false, A.isDSOLocal(), A.canBeOmittedFromSymbolTable(),
881       GlobalValueSummary::Definition);
882   auto AS = std::make_unique<AliasSummary>(Flags);
883   auto AliaseeVI = Index.getValueInfo(Aliasee->getGUID());
884   assert(AliaseeVI && "Alias expects aliasee summary to be available");
885   assert(AliaseeVI.getSummaryList().size() == 1 &&
886          "Expected a single entry per aliasee in per-module index");
887   AS->setAliasee(AliaseeVI, AliaseeVI.getSummaryList()[0].get());
888   if (NonRenamableLocal)
889     CantBePromoted.insert(A.getGUID());
890   Index.addGlobalValueSummary(A, std::move(AS));
891 }
892 
893 // Set LiveRoot flag on entries matching the given value name.
894 static void setLiveRoot(ModuleSummaryIndex &Index, StringRef Name) {
895   if (ValueInfo VI = Index.getValueInfo(GlobalValue::getGUID(Name)))
896     for (const auto &Summary : VI.getSummaryList())
897       Summary->setLive(true);
898 }
899 
900 ModuleSummaryIndex llvm::buildModuleSummaryIndex(
901     const Module &M,
902     std::function<BlockFrequencyInfo *(const Function &F)> GetBFICallback,
903     ProfileSummaryInfo *PSI,
904     std::function<const StackSafetyInfo *(const Function &F)> GetSSICallback) {
905   assert(PSI);
906   bool EnableSplitLTOUnit = false;
907   bool UnifiedLTO = false;
908   if (auto *MD = mdconst::extract_or_null<ConstantInt>(
909           M.getModuleFlag("EnableSplitLTOUnit")))
910     EnableSplitLTOUnit = MD->getZExtValue();
911   if (auto *MD =
912           mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("UnifiedLTO")))
913     UnifiedLTO = MD->getZExtValue();
914   ModuleSummaryIndex Index(/*HaveGVs=*/true, EnableSplitLTOUnit, UnifiedLTO);
915 
916   // Identify the local values in the llvm.used and llvm.compiler.used sets,
917   // which should not be exported as they would then require renaming and
918   // promotion, but we may have opaque uses e.g. in inline asm. We collect them
919   // here because we use this information to mark functions containing inline
920   // assembly calls as not importable.
921   SmallPtrSet<GlobalValue *, 4> LocalsUsed;
922   SmallVector<GlobalValue *, 4> Used;
923   // First collect those in the llvm.used set.
924   collectUsedGlobalVariables(M, Used, /*CompilerUsed=*/false);
925   // Next collect those in the llvm.compiler.used set.
926   collectUsedGlobalVariables(M, Used, /*CompilerUsed=*/true);
927   DenseSet<GlobalValue::GUID> CantBePromoted;
928   for (auto *V : Used) {
929     if (V->hasLocalLinkage()) {
930       LocalsUsed.insert(V);
931       CantBePromoted.insert(V->getGUID());
932     }
933   }
934 
935   bool HasLocalInlineAsmSymbol = false;
936   if (!M.getModuleInlineAsm().empty()) {
937     // Collect the local values defined by module level asm, and set up
938     // summaries for these symbols so that they can be marked as NoRename,
939     // to prevent export of any use of them in regular IR that would require
940     // renaming within the module level asm. Note we don't need to create a
941     // summary for weak or global defs, as they don't need to be flagged as
942     // NoRename, and defs in module level asm can't be imported anyway.
943     // Also, any values used but not defined within module level asm should
944     // be listed on the llvm.used or llvm.compiler.used global and marked as
945     // referenced from there.
946     ModuleSymbolTable::CollectAsmSymbols(
947         M, [&](StringRef Name, object::BasicSymbolRef::Flags Flags) {
948           // Symbols not marked as Weak or Global are local definitions.
949           if (Flags & (object::BasicSymbolRef::SF_Weak |
950                        object::BasicSymbolRef::SF_Global))
951             return;
952           HasLocalInlineAsmSymbol = true;
953           GlobalValue *GV = M.getNamedValue(Name);
954           if (!GV)
955             return;
956           assert(GV->isDeclaration() && "Def in module asm already has definition");
957           GlobalValueSummary::GVFlags GVFlags(
958               GlobalValue::InternalLinkage, GlobalValue::DefaultVisibility,
959               /* NotEligibleToImport = */ true,
960               /* Live = */ true,
961               /* Local */ GV->isDSOLocal(), GV->canBeOmittedFromSymbolTable(),
962               GlobalValueSummary::Definition);
963           CantBePromoted.insert(GV->getGUID());
964           // Create the appropriate summary type.
965           if (Function *F = dyn_cast<Function>(GV)) {
966             std::unique_ptr<FunctionSummary> Summary =
967                 std::make_unique<FunctionSummary>(
968                     GVFlags, /*InstCount=*/0,
969                     FunctionSummary::FFlags{
970                         F->hasFnAttribute(Attribute::ReadNone),
971                         F->hasFnAttribute(Attribute::ReadOnly),
972                         F->hasFnAttribute(Attribute::NoRecurse),
973                         F->returnDoesNotAlias(),
974                         /* NoInline = */ false,
975                         F->hasFnAttribute(Attribute::AlwaysInline),
976                         F->hasFnAttribute(Attribute::NoUnwind),
977                         /* MayThrow */ true,
978                         /* HasUnknownCall */ true,
979                         /* MustBeUnreachable */ false},
980                     SmallVector<ValueInfo, 0>{},
981                     SmallVector<FunctionSummary::EdgeTy, 0>{},
982                     ArrayRef<GlobalValue::GUID>{},
983                     ArrayRef<FunctionSummary::VFuncId>{},
984                     ArrayRef<FunctionSummary::VFuncId>{},
985                     ArrayRef<FunctionSummary::ConstVCall>{},
986                     ArrayRef<FunctionSummary::ConstVCall>{},
987                     ArrayRef<FunctionSummary::ParamAccess>{},
988                     ArrayRef<CallsiteInfo>{}, ArrayRef<AllocInfo>{});
989             Index.addGlobalValueSummary(*GV, std::move(Summary));
990           } else {
991             std::unique_ptr<GlobalVarSummary> Summary =
992                 std::make_unique<GlobalVarSummary>(
993                     GVFlags,
994                     GlobalVarSummary::GVarFlags(
995                         false, false, cast<GlobalVariable>(GV)->isConstant(),
996                         GlobalObject::VCallVisibilityPublic),
997                     SmallVector<ValueInfo, 0>{});
998             Index.addGlobalValueSummary(*GV, std::move(Summary));
999           }
1000         });
1001   }
1002 
1003   bool IsThinLTO = true;
1004   if (auto *MD =
1005           mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO")))
1006     IsThinLTO = MD->getZExtValue();
1007 
1008   // Compute summaries for all functions defined in module, and save in the
1009   // index.
1010   for (const auto &F : M) {
1011     if (F.isDeclaration())
1012       continue;
1013 
1014     DominatorTree DT(const_cast<Function &>(F));
1015     BlockFrequencyInfo *BFI = nullptr;
1016     std::unique_ptr<BlockFrequencyInfo> BFIPtr;
1017     if (GetBFICallback)
1018       BFI = GetBFICallback(F);
1019     else if (F.hasProfileData()) {
1020       LoopInfo LI{DT};
1021       BranchProbabilityInfo BPI{F, LI};
1022       BFIPtr = std::make_unique<BlockFrequencyInfo>(F, BPI, LI);
1023       BFI = BFIPtr.get();
1024     }
1025 
1026     computeFunctionSummary(Index, M, F, BFI, PSI, DT,
1027                            !LocalsUsed.empty() || HasLocalInlineAsmSymbol,
1028                            CantBePromoted, IsThinLTO, GetSSICallback);
1029   }
1030 
1031   // Compute summaries for all variables defined in module, and save in the
1032   // index.
1033   SmallVector<MDNode *, 2> Types;
1034   for (const GlobalVariable &G : M.globals()) {
1035     if (G.isDeclaration())
1036       continue;
1037     computeVariableSummary(Index, G, CantBePromoted, M, Types);
1038   }
1039 
1040   // Compute summaries for all aliases defined in module, and save in the
1041   // index.
1042   for (const GlobalAlias &A : M.aliases())
1043     computeAliasSummary(Index, A, CantBePromoted);
1044 
1045   // Iterate through ifuncs, set their resolvers all alive.
1046   for (const GlobalIFunc &I : M.ifuncs()) {
1047     I.applyAlongResolverPath([&Index](const GlobalValue &GV) {
1048       Index.getGlobalValueSummary(GV)->setLive(true);
1049     });
1050   }
1051 
1052   for (auto *V : LocalsUsed) {
1053     auto *Summary = Index.getGlobalValueSummary(*V);
1054     assert(Summary && "Missing summary for global value");
1055     Summary->setNotEligibleToImport();
1056   }
1057 
1058   // The linker doesn't know about these LLVM produced values, so we need
1059   // to flag them as live in the index to ensure index-based dead value
1060   // analysis treats them as live roots of the analysis.
1061   setLiveRoot(Index, "llvm.used");
1062   setLiveRoot(Index, "llvm.compiler.used");
1063   setLiveRoot(Index, "llvm.global_ctors");
1064   setLiveRoot(Index, "llvm.global_dtors");
1065   setLiveRoot(Index, "llvm.global.annotations");
1066 
1067   for (auto &GlobalList : Index) {
1068     // Ignore entries for references that are undefined in the current module.
1069     if (GlobalList.second.SummaryList.empty())
1070       continue;
1071 
1072     assert(GlobalList.second.SummaryList.size() == 1 &&
1073            "Expected module's index to have one summary per GUID");
1074     auto &Summary = GlobalList.second.SummaryList[0];
1075     if (!IsThinLTO) {
1076       Summary->setNotEligibleToImport();
1077       continue;
1078     }
1079 
1080     bool AllRefsCanBeExternallyReferenced =
1081         llvm::all_of(Summary->refs(), [&](const ValueInfo &VI) {
1082           return !CantBePromoted.count(VI.getGUID());
1083         });
1084     if (!AllRefsCanBeExternallyReferenced) {
1085       Summary->setNotEligibleToImport();
1086       continue;
1087     }
1088 
1089     if (auto *FuncSummary = dyn_cast<FunctionSummary>(Summary.get())) {
1090       bool AllCallsCanBeExternallyReferenced = llvm::all_of(
1091           FuncSummary->calls(), [&](const FunctionSummary::EdgeTy &Edge) {
1092             return !CantBePromoted.count(Edge.first.getGUID());
1093           });
1094       if (!AllCallsCanBeExternallyReferenced)
1095         Summary->setNotEligibleToImport();
1096     }
1097   }
1098 
1099   if (!ModuleSummaryDotFile.empty()) {
1100     std::error_code EC;
1101     raw_fd_ostream OSDot(ModuleSummaryDotFile, EC, sys::fs::OpenFlags::OF_Text);
1102     if (EC)
1103       report_fatal_error(Twine("Failed to open dot file ") +
1104                          ModuleSummaryDotFile + ": " + EC.message() + "\n");
1105     Index.exportToDot(OSDot, {});
1106   }
1107 
1108   return Index;
1109 }
1110 
1111 AnalysisKey ModuleSummaryIndexAnalysis::Key;
1112 
1113 ModuleSummaryIndex
1114 ModuleSummaryIndexAnalysis::run(Module &M, ModuleAnalysisManager &AM) {
1115   ProfileSummaryInfo &PSI = AM.getResult<ProfileSummaryAnalysis>(M);
1116   auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
1117   bool NeedSSI = needsParamAccessSummary(M);
1118   return buildModuleSummaryIndex(
1119       M,
1120       [&FAM](const Function &F) {
1121         return &FAM.getResult<BlockFrequencyAnalysis>(
1122             *const_cast<Function *>(&F));
1123       },
1124       &PSI,
1125       [&FAM, NeedSSI](const Function &F) -> const StackSafetyInfo * {
1126         return NeedSSI ? &FAM.getResult<StackSafetyAnalysis>(
1127                              const_cast<Function &>(F))
1128                        : nullptr;
1129       });
1130 }
1131 
1132 char ModuleSummaryIndexWrapperPass::ID = 0;
1133 
1134 INITIALIZE_PASS_BEGIN(ModuleSummaryIndexWrapperPass, "module-summary-analysis",
1135                       "Module Summary Analysis", false, true)
1136 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
1137 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
1138 INITIALIZE_PASS_DEPENDENCY(StackSafetyInfoWrapperPass)
1139 INITIALIZE_PASS_END(ModuleSummaryIndexWrapperPass, "module-summary-analysis",
1140                     "Module Summary Analysis", false, true)
1141 
1142 ModulePass *llvm::createModuleSummaryIndexWrapperPass() {
1143   return new ModuleSummaryIndexWrapperPass();
1144 }
1145 
1146 ModuleSummaryIndexWrapperPass::ModuleSummaryIndexWrapperPass()
1147     : ModulePass(ID) {
1148   initializeModuleSummaryIndexWrapperPassPass(*PassRegistry::getPassRegistry());
1149 }
1150 
1151 bool ModuleSummaryIndexWrapperPass::runOnModule(Module &M) {
1152   auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
1153   bool NeedSSI = needsParamAccessSummary(M);
1154   Index.emplace(buildModuleSummaryIndex(
1155       M,
1156       [this](const Function &F) {
1157         return &(this->getAnalysis<BlockFrequencyInfoWrapperPass>(
1158                          *const_cast<Function *>(&F))
1159                      .getBFI());
1160       },
1161       PSI,
1162       [&](const Function &F) -> const StackSafetyInfo * {
1163         return NeedSSI ? &getAnalysis<StackSafetyInfoWrapperPass>(
1164                               const_cast<Function &>(F))
1165                               .getResult()
1166                        : nullptr;
1167       }));
1168   return false;
1169 }
1170 
1171 bool ModuleSummaryIndexWrapperPass::doFinalization(Module &M) {
1172   Index.reset();
1173   return false;
1174 }
1175 
1176 void ModuleSummaryIndexWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
1177   AU.setPreservesAll();
1178   AU.addRequired<BlockFrequencyInfoWrapperPass>();
1179   AU.addRequired<ProfileSummaryInfoWrapperPass>();
1180   AU.addRequired<StackSafetyInfoWrapperPass>();
1181 }
1182 
1183 char ImmutableModuleSummaryIndexWrapperPass::ID = 0;
1184 
1185 ImmutableModuleSummaryIndexWrapperPass::ImmutableModuleSummaryIndexWrapperPass(
1186     const ModuleSummaryIndex *Index)
1187     : ImmutablePass(ID), Index(Index) {
1188   initializeImmutableModuleSummaryIndexWrapperPassPass(
1189       *PassRegistry::getPassRegistry());
1190 }
1191 
1192 void ImmutableModuleSummaryIndexWrapperPass::getAnalysisUsage(
1193     AnalysisUsage &AU) const {
1194   AU.setPreservesAll();
1195 }
1196 
1197 ImmutablePass *llvm::createImmutableModuleSummaryIndexWrapperPass(
1198     const ModuleSummaryIndex *Index) {
1199   return new ImmutableModuleSummaryIndexWrapperPass(Index);
1200 }
1201 
1202 INITIALIZE_PASS(ImmutableModuleSummaryIndexWrapperPass, "module-summary-info",
1203                 "Module summary info", false, true)
1204 
1205 bool llvm::mayHaveMemprofSummary(const CallBase *CB) {
1206   if (!CB)
1207     return false;
1208   if (CB->isDebugOrPseudoInst())
1209     return false;
1210   auto *CI = dyn_cast<CallInst>(CB);
1211   auto *CalledValue = CB->getCalledOperand();
1212   auto *CalledFunction = CB->getCalledFunction();
1213   if (CalledValue && !CalledFunction) {
1214     CalledValue = CalledValue->stripPointerCasts();
1215     // Stripping pointer casts can reveal a called function.
1216     CalledFunction = dyn_cast<Function>(CalledValue);
1217   }
1218   // Check if this is an alias to a function. If so, get the
1219   // called aliasee for the checks below.
1220   if (auto *GA = dyn_cast<GlobalAlias>(CalledValue)) {
1221     assert(!CalledFunction &&
1222            "Expected null called function in callsite for alias");
1223     CalledFunction = dyn_cast<Function>(GA->getAliaseeObject());
1224   }
1225   // Check if this is a direct call to a known function or a known
1226   // intrinsic, or an indirect call with profile data.
1227   if (CalledFunction) {
1228     if (CI && CalledFunction->isIntrinsic())
1229       return false;
1230   } else {
1231     // Skip indirect calls if we haven't enabled memprof ICP.
1232     if (!EnableMemProfIndirectCallSupport)
1233       return false;
1234     // Skip inline assembly calls.
1235     if (CI && CI->isInlineAsm())
1236       return false;
1237     // Skip direct calls via Constant.
1238     if (!CalledValue || isa<Constant>(CalledValue))
1239       return false;
1240     return true;
1241   }
1242   return true;
1243 }
1244