1 //===- ModuleSummaryAnalysis.cpp - Module summary index builder -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass builds a ModuleSummaryIndex object for the module, to be written 10 // to bitcode or LLVM assembly. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/ModuleSummaryAnalysis.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/MapVector.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SetVector.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/StringRef.h" 23 #include "llvm/Analysis/BlockFrequencyInfo.h" 24 #include "llvm/Analysis/BranchProbabilityInfo.h" 25 #include "llvm/Analysis/ConstantFolding.h" 26 #include "llvm/Analysis/IndirectCallPromotionAnalysis.h" 27 #include "llvm/Analysis/LoopInfo.h" 28 #include "llvm/Analysis/MemoryProfileInfo.h" 29 #include "llvm/Analysis/ProfileSummaryInfo.h" 30 #include "llvm/Analysis/StackSafetyAnalysis.h" 31 #include "llvm/Analysis/TypeMetadataUtils.h" 32 #include "llvm/IR/Attributes.h" 33 #include "llvm/IR/BasicBlock.h" 34 #include "llvm/IR/Constant.h" 35 #include "llvm/IR/Constants.h" 36 #include "llvm/IR/Dominators.h" 37 #include "llvm/IR/Function.h" 38 #include "llvm/IR/GlobalAlias.h" 39 #include "llvm/IR/GlobalValue.h" 40 #include "llvm/IR/GlobalVariable.h" 41 #include "llvm/IR/Instructions.h" 42 #include "llvm/IR/IntrinsicInst.h" 43 #include "llvm/IR/Metadata.h" 44 #include "llvm/IR/Module.h" 45 #include "llvm/IR/ModuleSummaryIndex.h" 46 #include "llvm/IR/Use.h" 47 #include "llvm/IR/User.h" 48 #include "llvm/InitializePasses.h" 49 #include "llvm/Object/ModuleSymbolTable.h" 50 #include "llvm/Object/SymbolicFile.h" 51 #include "llvm/Pass.h" 52 #include "llvm/Support/Casting.h" 53 #include "llvm/Support/CommandLine.h" 54 #include "llvm/Support/FileSystem.h" 55 #include <algorithm> 56 #include <cassert> 57 #include <cstdint> 58 #include <vector> 59 60 using namespace llvm; 61 using namespace llvm::memprof; 62 63 #define DEBUG_TYPE "module-summary-analysis" 64 65 // Option to force edges cold which will block importing when the 66 // -import-cold-multiplier is set to 0. Useful for debugging. 67 namespace llvm { 68 FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold = 69 FunctionSummary::FSHT_None; 70 } // namespace llvm 71 72 static cl::opt<FunctionSummary::ForceSummaryHotnessType, true> FSEC( 73 "force-summary-edges-cold", cl::Hidden, cl::location(ForceSummaryEdgesCold), 74 cl::desc("Force all edges in the function summary to cold"), 75 cl::values(clEnumValN(FunctionSummary::FSHT_None, "none", "None."), 76 clEnumValN(FunctionSummary::FSHT_AllNonCritical, 77 "all-non-critical", "All non-critical edges."), 78 clEnumValN(FunctionSummary::FSHT_All, "all", "All edges."))); 79 80 static cl::opt<std::string> ModuleSummaryDotFile( 81 "module-summary-dot-file", cl::Hidden, cl::value_desc("filename"), 82 cl::desc("File to emit dot graph of new summary into")); 83 84 extern cl::opt<bool> ScalePartialSampleProfileWorkingSetSize; 85 86 extern cl::opt<unsigned> MaxNumVTableAnnotations; 87 88 extern cl::opt<bool> MemProfReportHintedSizes; 89 90 // Walk through the operands of a given User via worklist iteration and populate 91 // the set of GlobalValue references encountered. Invoked either on an 92 // Instruction or a GlobalVariable (which walks its initializer). 93 // Return true if any of the operands contains blockaddress. This is important 94 // to know when computing summary for global var, because if global variable 95 // references basic block address we can't import it separately from function 96 // containing that basic block. For simplicity we currently don't import such 97 // global vars at all. When importing function we aren't interested if any 98 // instruction in it takes an address of any basic block, because instruction 99 // can only take an address of basic block located in the same function. 100 // Set `RefLocalLinkageIFunc` to true if the analyzed value references a 101 // local-linkage ifunc. 102 static bool 103 findRefEdges(ModuleSummaryIndex &Index, const User *CurUser, 104 SetVector<ValueInfo, SmallVector<ValueInfo, 0>> &RefEdges, 105 SmallPtrSet<const User *, 8> &Visited, 106 bool &RefLocalLinkageIFunc) { 107 bool HasBlockAddress = false; 108 SmallVector<const User *, 32> Worklist; 109 if (Visited.insert(CurUser).second) 110 Worklist.push_back(CurUser); 111 112 while (!Worklist.empty()) { 113 const User *U = Worklist.pop_back_val(); 114 const auto *CB = dyn_cast<CallBase>(U); 115 116 for (const auto &OI : U->operands()) { 117 const User *Operand = dyn_cast<User>(OI); 118 if (!Operand) 119 continue; 120 if (isa<BlockAddress>(Operand)) { 121 HasBlockAddress = true; 122 continue; 123 } 124 if (auto *GV = dyn_cast<GlobalValue>(Operand)) { 125 // We have a reference to a global value. This should be added to 126 // the reference set unless it is a callee. Callees are handled 127 // specially by WriteFunction and are added to a separate list. 128 if (!(CB && CB->isCallee(&OI))) { 129 // If an ifunc has local linkage, do not add it into ref edges, and 130 // sets `RefLocalLinkageIFunc` to true. The referencer is not eligible 131 // for import. An ifunc doesn't have summary and ThinLTO cannot 132 // promote it; importing the referencer may cause linkage errors. 133 if (auto *GI = dyn_cast_if_present<GlobalIFunc>(GV); 134 GI && GI->hasLocalLinkage()) { 135 RefLocalLinkageIFunc = true; 136 continue; 137 } 138 RefEdges.insert(Index.getOrInsertValueInfo(GV)); 139 } 140 continue; 141 } 142 if (Visited.insert(Operand).second) 143 Worklist.push_back(Operand); 144 } 145 } 146 147 const Instruction *I = dyn_cast<Instruction>(CurUser); 148 if (I) { 149 uint64_t TotalCount = 0; 150 // MaxNumVTableAnnotations is the maximum number of vtables annotated on 151 // the instruction. 152 auto ValueDataArray = getValueProfDataFromInst( 153 *I, IPVK_VTableTarget, MaxNumVTableAnnotations, TotalCount); 154 155 for (const auto &V : ValueDataArray) 156 RefEdges.insert(Index.getOrInsertValueInfo(/* VTableGUID = */ 157 V.Value)); 158 } 159 return HasBlockAddress; 160 } 161 162 static CalleeInfo::HotnessType getHotness(uint64_t ProfileCount, 163 ProfileSummaryInfo *PSI) { 164 if (!PSI) 165 return CalleeInfo::HotnessType::Unknown; 166 if (PSI->isHotCount(ProfileCount)) 167 return CalleeInfo::HotnessType::Hot; 168 if (PSI->isColdCount(ProfileCount)) 169 return CalleeInfo::HotnessType::Cold; 170 return CalleeInfo::HotnessType::None; 171 } 172 173 static bool isNonRenamableLocal(const GlobalValue &GV) { 174 return GV.hasSection() && GV.hasLocalLinkage(); 175 } 176 177 /// Determine whether this call has all constant integer arguments (excluding 178 /// "this") and summarize it to VCalls or ConstVCalls as appropriate. 179 static void addVCallToSet( 180 DevirtCallSite Call, GlobalValue::GUID Guid, 181 SetVector<FunctionSummary::VFuncId, std::vector<FunctionSummary::VFuncId>> 182 &VCalls, 183 SetVector<FunctionSummary::ConstVCall, 184 std::vector<FunctionSummary::ConstVCall>> &ConstVCalls) { 185 std::vector<uint64_t> Args; 186 // Start from the second argument to skip the "this" pointer. 187 for (auto &Arg : drop_begin(Call.CB.args())) { 188 auto *CI = dyn_cast<ConstantInt>(Arg); 189 if (!CI || CI->getBitWidth() > 64) { 190 VCalls.insert({Guid, Call.Offset}); 191 return; 192 } 193 Args.push_back(CI->getZExtValue()); 194 } 195 ConstVCalls.insert({{Guid, Call.Offset}, std::move(Args)}); 196 } 197 198 /// If this intrinsic call requires that we add information to the function 199 /// summary, do so via the non-constant reference arguments. 200 static void addIntrinsicToSummary( 201 const CallInst *CI, 202 SetVector<GlobalValue::GUID, std::vector<GlobalValue::GUID>> &TypeTests, 203 SetVector<FunctionSummary::VFuncId, std::vector<FunctionSummary::VFuncId>> 204 &TypeTestAssumeVCalls, 205 SetVector<FunctionSummary::VFuncId, std::vector<FunctionSummary::VFuncId>> 206 &TypeCheckedLoadVCalls, 207 SetVector<FunctionSummary::ConstVCall, 208 std::vector<FunctionSummary::ConstVCall>> 209 &TypeTestAssumeConstVCalls, 210 SetVector<FunctionSummary::ConstVCall, 211 std::vector<FunctionSummary::ConstVCall>> 212 &TypeCheckedLoadConstVCalls, 213 DominatorTree &DT) { 214 switch (CI->getCalledFunction()->getIntrinsicID()) { 215 case Intrinsic::type_test: 216 case Intrinsic::public_type_test: { 217 auto *TypeMDVal = cast<MetadataAsValue>(CI->getArgOperand(1)); 218 auto *TypeId = dyn_cast<MDString>(TypeMDVal->getMetadata()); 219 if (!TypeId) 220 break; 221 GlobalValue::GUID Guid = GlobalValue::getGUID(TypeId->getString()); 222 223 // Produce a summary from type.test intrinsics. We only summarize type.test 224 // intrinsics that are used other than by an llvm.assume intrinsic. 225 // Intrinsics that are assumed are relevant only to the devirtualization 226 // pass, not the type test lowering pass. 227 bool HasNonAssumeUses = llvm::any_of(CI->uses(), [](const Use &CIU) { 228 return !isa<AssumeInst>(CIU.getUser()); 229 }); 230 if (HasNonAssumeUses) 231 TypeTests.insert(Guid); 232 233 SmallVector<DevirtCallSite, 4> DevirtCalls; 234 SmallVector<CallInst *, 4> Assumes; 235 findDevirtualizableCallsForTypeTest(DevirtCalls, Assumes, CI, DT); 236 for (auto &Call : DevirtCalls) 237 addVCallToSet(Call, Guid, TypeTestAssumeVCalls, 238 TypeTestAssumeConstVCalls); 239 240 break; 241 } 242 243 case Intrinsic::type_checked_load_relative: 244 case Intrinsic::type_checked_load: { 245 auto *TypeMDVal = cast<MetadataAsValue>(CI->getArgOperand(2)); 246 auto *TypeId = dyn_cast<MDString>(TypeMDVal->getMetadata()); 247 if (!TypeId) 248 break; 249 GlobalValue::GUID Guid = GlobalValue::getGUID(TypeId->getString()); 250 251 SmallVector<DevirtCallSite, 4> DevirtCalls; 252 SmallVector<Instruction *, 4> LoadedPtrs; 253 SmallVector<Instruction *, 4> Preds; 254 bool HasNonCallUses = false; 255 findDevirtualizableCallsForTypeCheckedLoad(DevirtCalls, LoadedPtrs, Preds, 256 HasNonCallUses, CI, DT); 257 // Any non-call uses of the result of llvm.type.checked.load will 258 // prevent us from optimizing away the llvm.type.test. 259 if (HasNonCallUses) 260 TypeTests.insert(Guid); 261 for (auto &Call : DevirtCalls) 262 addVCallToSet(Call, Guid, TypeCheckedLoadVCalls, 263 TypeCheckedLoadConstVCalls); 264 265 break; 266 } 267 default: 268 break; 269 } 270 } 271 272 static bool isNonVolatileLoad(const Instruction *I) { 273 if (const auto *LI = dyn_cast<LoadInst>(I)) 274 return !LI->isVolatile(); 275 276 return false; 277 } 278 279 static bool isNonVolatileStore(const Instruction *I) { 280 if (const auto *SI = dyn_cast<StoreInst>(I)) 281 return !SI->isVolatile(); 282 283 return false; 284 } 285 286 // Returns true if the function definition must be unreachable. 287 // 288 // Note if this helper function returns true, `F` is guaranteed 289 // to be unreachable; if it returns false, `F` might still 290 // be unreachable but not covered by this helper function. 291 static bool mustBeUnreachableFunction(const Function &F) { 292 // A function must be unreachable if its entry block ends with an 293 // 'unreachable'. 294 assert(!F.isDeclaration()); 295 return isa<UnreachableInst>(F.getEntryBlock().getTerminator()); 296 } 297 298 static void computeFunctionSummary( 299 ModuleSummaryIndex &Index, const Module &M, const Function &F, 300 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, DominatorTree &DT, 301 bool HasLocalsInUsedOrAsm, DenseSet<GlobalValue::GUID> &CantBePromoted, 302 bool IsThinLTO, 303 std::function<const StackSafetyInfo *(const Function &F)> GetSSICallback) { 304 // Summary not currently supported for anonymous functions, they should 305 // have been named. 306 assert(F.hasName()); 307 308 unsigned NumInsts = 0; 309 // Map from callee ValueId to profile count. Used to accumulate profile 310 // counts for all static calls to a given callee. 311 MapVector<ValueInfo, CalleeInfo, DenseMap<ValueInfo, unsigned>, 312 SmallVector<FunctionSummary::EdgeTy, 0>> 313 CallGraphEdges; 314 SetVector<ValueInfo, SmallVector<ValueInfo, 0>> RefEdges, LoadRefEdges, 315 StoreRefEdges; 316 SetVector<GlobalValue::GUID, std::vector<GlobalValue::GUID>> TypeTests; 317 SetVector<FunctionSummary::VFuncId, std::vector<FunctionSummary::VFuncId>> 318 TypeTestAssumeVCalls, TypeCheckedLoadVCalls; 319 SetVector<FunctionSummary::ConstVCall, 320 std::vector<FunctionSummary::ConstVCall>> 321 TypeTestAssumeConstVCalls, TypeCheckedLoadConstVCalls; 322 ICallPromotionAnalysis ICallAnalysis; 323 SmallPtrSet<const User *, 8> Visited; 324 325 // Add personality function, prefix data and prologue data to function's ref 326 // list. 327 bool HasLocalIFuncCallOrRef = false; 328 findRefEdges(Index, &F, RefEdges, Visited, HasLocalIFuncCallOrRef); 329 std::vector<const Instruction *> NonVolatileLoads; 330 std::vector<const Instruction *> NonVolatileStores; 331 332 std::vector<CallsiteInfo> Callsites; 333 std::vector<AllocInfo> Allocs; 334 335 #ifndef NDEBUG 336 DenseSet<const CallBase *> CallsThatMayHaveMemprofSummary; 337 #endif 338 339 bool HasInlineAsmMaybeReferencingInternal = false; 340 bool HasIndirBranchToBlockAddress = false; 341 bool HasUnknownCall = false; 342 bool MayThrow = false; 343 for (const BasicBlock &BB : F) { 344 // We don't allow inlining of function with indirect branch to blockaddress. 345 // If the blockaddress escapes the function, e.g., via a global variable, 346 // inlining may lead to an invalid cross-function reference. So we shouldn't 347 // import such function either. 348 if (BB.hasAddressTaken()) { 349 for (User *U : BlockAddress::get(const_cast<BasicBlock *>(&BB))->users()) 350 if (!isa<CallBrInst>(*U)) { 351 HasIndirBranchToBlockAddress = true; 352 break; 353 } 354 } 355 356 for (const Instruction &I : BB) { 357 if (I.isDebugOrPseudoInst()) 358 continue; 359 ++NumInsts; 360 361 // Regular LTO module doesn't participate in ThinLTO import, 362 // so no reference from it can be read/writeonly, since this 363 // would require importing variable as local copy 364 if (IsThinLTO) { 365 if (isNonVolatileLoad(&I)) { 366 // Postpone processing of non-volatile load instructions 367 // See comments below 368 Visited.insert(&I); 369 NonVolatileLoads.push_back(&I); 370 continue; 371 } else if (isNonVolatileStore(&I)) { 372 Visited.insert(&I); 373 NonVolatileStores.push_back(&I); 374 // All references from second operand of store (destination address) 375 // can be considered write-only if they're not referenced by any 376 // non-store instruction. References from first operand of store 377 // (stored value) can't be treated either as read- or as write-only 378 // so we add them to RefEdges as we do with all other instructions 379 // except non-volatile load. 380 Value *Stored = I.getOperand(0); 381 if (auto *GV = dyn_cast<GlobalValue>(Stored)) 382 // findRefEdges will try to examine GV operands, so instead 383 // of calling it we should add GV to RefEdges directly. 384 RefEdges.insert(Index.getOrInsertValueInfo(GV)); 385 else if (auto *U = dyn_cast<User>(Stored)) 386 findRefEdges(Index, U, RefEdges, Visited, HasLocalIFuncCallOrRef); 387 continue; 388 } 389 } 390 findRefEdges(Index, &I, RefEdges, Visited, HasLocalIFuncCallOrRef); 391 const auto *CB = dyn_cast<CallBase>(&I); 392 if (!CB) { 393 if (I.mayThrow()) 394 MayThrow = true; 395 continue; 396 } 397 398 const auto *CI = dyn_cast<CallInst>(&I); 399 // Since we don't know exactly which local values are referenced in inline 400 // assembly, conservatively mark the function as possibly referencing 401 // a local value from inline assembly to ensure we don't export a 402 // reference (which would require renaming and promotion of the 403 // referenced value). 404 if (HasLocalsInUsedOrAsm && CI && CI->isInlineAsm()) 405 HasInlineAsmMaybeReferencingInternal = true; 406 407 auto *CalledValue = CB->getCalledOperand(); 408 auto *CalledFunction = CB->getCalledFunction(); 409 if (CalledValue && !CalledFunction) { 410 CalledValue = CalledValue->stripPointerCasts(); 411 // Stripping pointer casts can reveal a called function. 412 CalledFunction = dyn_cast<Function>(CalledValue); 413 } 414 // Check if this is an alias to a function. If so, get the 415 // called aliasee for the checks below. 416 if (auto *GA = dyn_cast<GlobalAlias>(CalledValue)) { 417 assert(!CalledFunction && "Expected null called function in callsite for alias"); 418 CalledFunction = dyn_cast<Function>(GA->getAliaseeObject()); 419 } 420 // Check if this is a direct call to a known function or a known 421 // intrinsic, or an indirect call with profile data. 422 if (CalledFunction) { 423 if (CI && CalledFunction->isIntrinsic()) { 424 addIntrinsicToSummary( 425 CI, TypeTests, TypeTestAssumeVCalls, TypeCheckedLoadVCalls, 426 TypeTestAssumeConstVCalls, TypeCheckedLoadConstVCalls, DT); 427 continue; 428 } 429 // We should have named any anonymous globals 430 assert(CalledFunction->hasName()); 431 auto ScaledCount = PSI->getProfileCount(*CB, BFI); 432 auto Hotness = ScaledCount ? getHotness(*ScaledCount, PSI) 433 : CalleeInfo::HotnessType::Unknown; 434 if (ForceSummaryEdgesCold != FunctionSummary::FSHT_None) 435 Hotness = CalleeInfo::HotnessType::Cold; 436 437 // Use the original CalledValue, in case it was an alias. We want 438 // to record the call edge to the alias in that case. Eventually 439 // an alias summary will be created to associate the alias and 440 // aliasee. 441 auto &ValueInfo = CallGraphEdges[Index.getOrInsertValueInfo( 442 cast<GlobalValue>(CalledValue))]; 443 ValueInfo.updateHotness(Hotness); 444 if (CB->isTailCall()) 445 ValueInfo.setHasTailCall(true); 446 // Add the relative block frequency to CalleeInfo if there is no profile 447 // information. 448 if (BFI != nullptr && Hotness == CalleeInfo::HotnessType::Unknown) { 449 uint64_t BBFreq = BFI->getBlockFreq(&BB).getFrequency(); 450 uint64_t EntryFreq = BFI->getEntryFreq().getFrequency(); 451 ValueInfo.updateRelBlockFreq(BBFreq, EntryFreq); 452 } 453 } else { 454 HasUnknownCall = true; 455 // If F is imported, a local linkage ifunc (e.g. target_clones on a 456 // static function) called by F will be cloned. Since summaries don't 457 // track ifunc, we do not know implementation functions referenced by 458 // the ifunc resolver need to be promoted in the exporter, and we will 459 // get linker errors due to cloned declarations for implementation 460 // functions. As a simple fix, just mark F as not eligible for import. 461 // Non-local ifunc is not cloned and does not have the issue. 462 if (auto *GI = dyn_cast_if_present<GlobalIFunc>(CalledValue)) 463 if (GI->hasLocalLinkage()) 464 HasLocalIFuncCallOrRef = true; 465 // Skip inline assembly calls. 466 if (CI && CI->isInlineAsm()) 467 continue; 468 // Skip direct calls. 469 if (!CalledValue || isa<Constant>(CalledValue)) 470 continue; 471 472 // Check if the instruction has a callees metadata. If so, add callees 473 // to CallGraphEdges to reflect the references from the metadata, and 474 // to enable importing for subsequent indirect call promotion and 475 // inlining. 476 if (auto *MD = I.getMetadata(LLVMContext::MD_callees)) { 477 for (const auto &Op : MD->operands()) { 478 Function *Callee = mdconst::extract_or_null<Function>(Op); 479 if (Callee) 480 CallGraphEdges[Index.getOrInsertValueInfo(Callee)]; 481 } 482 } 483 484 uint32_t NumCandidates; 485 uint64_t TotalCount; 486 auto CandidateProfileData = 487 ICallAnalysis.getPromotionCandidatesForInstruction(&I, TotalCount, 488 NumCandidates); 489 for (const auto &Candidate : CandidateProfileData) 490 CallGraphEdges[Index.getOrInsertValueInfo(Candidate.Value)] 491 .updateHotness(getHotness(Candidate.Count, PSI)); 492 } 493 494 // Summarize memprof related metadata. This is only needed for ThinLTO. 495 if (!IsThinLTO) 496 continue; 497 498 // TODO: Skip indirect calls for now. Need to handle these better, likely 499 // by creating multiple Callsites, one per target, then speculatively 500 // devirtualize while applying clone info in the ThinLTO backends. This 501 // will also be important because we will have a different set of clone 502 // versions per target. This handling needs to match that in the ThinLTO 503 // backend so we handle things consistently for matching of callsite 504 // summaries to instructions. 505 if (!CalledFunction) 506 continue; 507 508 // Ensure we keep this analysis in sync with the handling in the ThinLTO 509 // backend (see MemProfContextDisambiguation::applyImport). Save this call 510 // so that we can skip it in checking the reverse case later. 511 assert(mayHaveMemprofSummary(CB)); 512 #ifndef NDEBUG 513 CallsThatMayHaveMemprofSummary.insert(CB); 514 #endif 515 516 // Compute the list of stack ids first (so we can trim them from the stack 517 // ids on any MIBs). 518 CallStack<MDNode, MDNode::op_iterator> InstCallsite( 519 I.getMetadata(LLVMContext::MD_callsite)); 520 auto *MemProfMD = I.getMetadata(LLVMContext::MD_memprof); 521 if (MemProfMD) { 522 std::vector<MIBInfo> MIBs; 523 std::vector<uint64_t> TotalSizes; 524 for (auto &MDOp : MemProfMD->operands()) { 525 auto *MIBMD = cast<const MDNode>(MDOp); 526 MDNode *StackNode = getMIBStackNode(MIBMD); 527 assert(StackNode); 528 SmallVector<unsigned> StackIdIndices; 529 CallStack<MDNode, MDNode::op_iterator> StackContext(StackNode); 530 // Collapse out any on the allocation call (inlining). 531 for (auto ContextIter = 532 StackContext.beginAfterSharedPrefix(InstCallsite); 533 ContextIter != StackContext.end(); ++ContextIter) { 534 unsigned StackIdIdx = Index.addOrGetStackIdIndex(*ContextIter); 535 // If this is a direct recursion, simply skip the duplicate 536 // entries. If this is mutual recursion, handling is left to 537 // the LTO link analysis client. 538 if (StackIdIndices.empty() || StackIdIndices.back() != StackIdIdx) 539 StackIdIndices.push_back(StackIdIdx); 540 } 541 MIBs.push_back( 542 MIBInfo(getMIBAllocType(MIBMD), std::move(StackIdIndices))); 543 if (MemProfReportHintedSizes) { 544 auto TotalSize = getMIBTotalSize(MIBMD); 545 assert(TotalSize); 546 TotalSizes.push_back(TotalSize); 547 } 548 } 549 Allocs.push_back(AllocInfo(std::move(MIBs))); 550 if (MemProfReportHintedSizes) { 551 assert(Allocs.back().MIBs.size() == TotalSizes.size()); 552 Allocs.back().TotalSizes = std::move(TotalSizes); 553 } 554 } else if (!InstCallsite.empty()) { 555 SmallVector<unsigned> StackIdIndices; 556 for (auto StackId : InstCallsite) 557 StackIdIndices.push_back(Index.addOrGetStackIdIndex(StackId)); 558 // Use the original CalledValue, in case it was an alias. We want 559 // to record the call edge to the alias in that case. Eventually 560 // an alias summary will be created to associate the alias and 561 // aliasee. 562 auto CalleeValueInfo = 563 Index.getOrInsertValueInfo(cast<GlobalValue>(CalledValue)); 564 Callsites.push_back({CalleeValueInfo, StackIdIndices}); 565 } 566 } 567 } 568 569 if (PSI->hasPartialSampleProfile() && ScalePartialSampleProfileWorkingSetSize) 570 Index.addBlockCount(F.size()); 571 572 SmallVector<ValueInfo, 0> Refs; 573 if (IsThinLTO) { 574 auto AddRefEdges = 575 [&](const std::vector<const Instruction *> &Instrs, 576 SetVector<ValueInfo, SmallVector<ValueInfo, 0>> &Edges, 577 SmallPtrSet<const User *, 8> &Cache) { 578 for (const auto *I : Instrs) { 579 Cache.erase(I); 580 findRefEdges(Index, I, Edges, Cache, HasLocalIFuncCallOrRef); 581 } 582 }; 583 584 // By now we processed all instructions in a function, except 585 // non-volatile loads and non-volatile value stores. Let's find 586 // ref edges for both of instruction sets 587 AddRefEdges(NonVolatileLoads, LoadRefEdges, Visited); 588 // We can add some values to the Visited set when processing load 589 // instructions which are also used by stores in NonVolatileStores. 590 // For example this can happen if we have following code: 591 // 592 // store %Derived* @foo, %Derived** bitcast (%Base** @bar to %Derived**) 593 // %42 = load %Derived*, %Derived** bitcast (%Base** @bar to %Derived**) 594 // 595 // After processing loads we'll add bitcast to the Visited set, and if 596 // we use the same set while processing stores, we'll never see store 597 // to @bar and @bar will be mistakenly treated as readonly. 598 SmallPtrSet<const llvm::User *, 8> StoreCache; 599 AddRefEdges(NonVolatileStores, StoreRefEdges, StoreCache); 600 601 // If both load and store instruction reference the same variable 602 // we won't be able to optimize it. Add all such reference edges 603 // to RefEdges set. 604 for (const auto &VI : StoreRefEdges) 605 if (LoadRefEdges.remove(VI)) 606 RefEdges.insert(VI); 607 608 unsigned RefCnt = RefEdges.size(); 609 // All new reference edges inserted in two loops below are either 610 // read or write only. They will be grouped in the end of RefEdges 611 // vector, so we can use a single integer value to identify them. 612 for (const auto &VI : LoadRefEdges) 613 RefEdges.insert(VI); 614 615 unsigned FirstWORef = RefEdges.size(); 616 for (const auto &VI : StoreRefEdges) 617 RefEdges.insert(VI); 618 619 Refs = RefEdges.takeVector(); 620 for (; RefCnt < FirstWORef; ++RefCnt) 621 Refs[RefCnt].setReadOnly(); 622 623 for (; RefCnt < Refs.size(); ++RefCnt) 624 Refs[RefCnt].setWriteOnly(); 625 } else { 626 Refs = RefEdges.takeVector(); 627 } 628 // Explicit add hot edges to enforce importing for designated GUIDs for 629 // sample PGO, to enable the same inlines as the profiled optimized binary. 630 for (auto &I : F.getImportGUIDs()) 631 CallGraphEdges[Index.getOrInsertValueInfo(I)].updateHotness( 632 ForceSummaryEdgesCold == FunctionSummary::FSHT_All 633 ? CalleeInfo::HotnessType::Cold 634 : CalleeInfo::HotnessType::Critical); 635 636 #ifndef NDEBUG 637 // Make sure that all calls we decided could not have memprof summaries get a 638 // false value for mayHaveMemprofSummary, to ensure that this handling remains 639 // in sync with the ThinLTO backend handling. 640 if (IsThinLTO) { 641 for (const BasicBlock &BB : F) { 642 for (const Instruction &I : BB) { 643 const auto *CB = dyn_cast<CallBase>(&I); 644 if (!CB) 645 continue; 646 // We already checked these above. 647 if (CallsThatMayHaveMemprofSummary.count(CB)) 648 continue; 649 assert(!mayHaveMemprofSummary(CB)); 650 } 651 } 652 } 653 #endif 654 655 bool NonRenamableLocal = isNonRenamableLocal(F); 656 bool NotEligibleForImport = 657 NonRenamableLocal || HasInlineAsmMaybeReferencingInternal || 658 HasIndirBranchToBlockAddress || HasLocalIFuncCallOrRef; 659 GlobalValueSummary::GVFlags Flags( 660 F.getLinkage(), F.getVisibility(), NotEligibleForImport, 661 /* Live = */ false, F.isDSOLocal(), F.canBeOmittedFromSymbolTable(), 662 GlobalValueSummary::ImportKind::Definition); 663 FunctionSummary::FFlags FunFlags{ 664 F.doesNotAccessMemory(), F.onlyReadsMemory() && !F.doesNotAccessMemory(), 665 F.hasFnAttribute(Attribute::NoRecurse), F.returnDoesNotAlias(), 666 // FIXME: refactor this to use the same code that inliner is using. 667 // Don't try to import functions with noinline attribute. 668 F.getAttributes().hasFnAttr(Attribute::NoInline), 669 F.hasFnAttribute(Attribute::AlwaysInline), 670 F.hasFnAttribute(Attribute::NoUnwind), MayThrow, HasUnknownCall, 671 mustBeUnreachableFunction(F)}; 672 std::vector<FunctionSummary::ParamAccess> ParamAccesses; 673 if (auto *SSI = GetSSICallback(F)) 674 ParamAccesses = SSI->getParamAccesses(Index); 675 auto FuncSummary = std::make_unique<FunctionSummary>( 676 Flags, NumInsts, FunFlags, std::move(Refs), CallGraphEdges.takeVector(), 677 TypeTests.takeVector(), TypeTestAssumeVCalls.takeVector(), 678 TypeCheckedLoadVCalls.takeVector(), 679 TypeTestAssumeConstVCalls.takeVector(), 680 TypeCheckedLoadConstVCalls.takeVector(), std::move(ParamAccesses), 681 std::move(Callsites), std::move(Allocs)); 682 if (NonRenamableLocal) 683 CantBePromoted.insert(F.getGUID()); 684 Index.addGlobalValueSummary(F, std::move(FuncSummary)); 685 } 686 687 /// Find function pointers referenced within the given vtable initializer 688 /// (or subset of an initializer) \p I. The starting offset of \p I within 689 /// the vtable initializer is \p StartingOffset. Any discovered function 690 /// pointers are added to \p VTableFuncs along with their cumulative offset 691 /// within the initializer. 692 static void findFuncPointers(const Constant *I, uint64_t StartingOffset, 693 const Module &M, ModuleSummaryIndex &Index, 694 VTableFuncList &VTableFuncs, 695 const GlobalVariable &OrigGV) { 696 // First check if this is a function pointer. 697 if (I->getType()->isPointerTy()) { 698 auto C = I->stripPointerCasts(); 699 auto A = dyn_cast<GlobalAlias>(C); 700 if (isa<Function>(C) || (A && isa<Function>(A->getAliasee()))) { 701 auto GV = dyn_cast<GlobalValue>(C); 702 assert(GV); 703 // We can disregard __cxa_pure_virtual as a possible call target, as 704 // calls to pure virtuals are UB. 705 if (GV && GV->getName() != "__cxa_pure_virtual") 706 VTableFuncs.push_back({Index.getOrInsertValueInfo(GV), StartingOffset}); 707 return; 708 } 709 } 710 711 // Walk through the elements in the constant struct or array and recursively 712 // look for virtual function pointers. 713 const DataLayout &DL = M.getDataLayout(); 714 if (auto *C = dyn_cast<ConstantStruct>(I)) { 715 StructType *STy = dyn_cast<StructType>(C->getType()); 716 assert(STy); 717 const StructLayout *SL = DL.getStructLayout(C->getType()); 718 719 for (auto EI : llvm::enumerate(STy->elements())) { 720 auto Offset = SL->getElementOffset(EI.index()); 721 unsigned Op = SL->getElementContainingOffset(Offset); 722 findFuncPointers(cast<Constant>(I->getOperand(Op)), 723 StartingOffset + Offset, M, Index, VTableFuncs, OrigGV); 724 } 725 } else if (auto *C = dyn_cast<ConstantArray>(I)) { 726 ArrayType *ATy = C->getType(); 727 Type *EltTy = ATy->getElementType(); 728 uint64_t EltSize = DL.getTypeAllocSize(EltTy); 729 for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) { 730 findFuncPointers(cast<Constant>(I->getOperand(i)), 731 StartingOffset + i * EltSize, M, Index, VTableFuncs, 732 OrigGV); 733 } 734 } else if (const auto *CE = dyn_cast<ConstantExpr>(I)) { 735 // For relative vtables, the next sub-component should be a trunc. 736 if (CE->getOpcode() != Instruction::Trunc || 737 !(CE = dyn_cast<ConstantExpr>(CE->getOperand(0)))) 738 return; 739 740 // If this constant can be reduced to the offset between a function and a 741 // global, then we know this is a valid virtual function if the RHS is the 742 // original vtable we're scanning through. 743 if (CE->getOpcode() == Instruction::Sub) { 744 GlobalValue *LHS, *RHS; 745 APSInt LHSOffset, RHSOffset; 746 if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHS, LHSOffset, DL) && 747 IsConstantOffsetFromGlobal(CE->getOperand(1), RHS, RHSOffset, DL) && 748 RHS == &OrigGV && 749 750 // For relative vtables, this component should point to the callable 751 // function without any offsets. 752 LHSOffset == 0 && 753 754 // Also, the RHS should always point to somewhere within the vtable. 755 RHSOffset <= 756 static_cast<uint64_t>(DL.getTypeAllocSize(OrigGV.getInitializer()->getType()))) { 757 findFuncPointers(LHS, StartingOffset, M, Index, VTableFuncs, OrigGV); 758 } 759 } 760 } 761 } 762 763 // Identify the function pointers referenced by vtable definition \p V. 764 static void computeVTableFuncs(ModuleSummaryIndex &Index, 765 const GlobalVariable &V, const Module &M, 766 VTableFuncList &VTableFuncs) { 767 if (!V.isConstant()) 768 return; 769 770 findFuncPointers(V.getInitializer(), /*StartingOffset=*/0, M, Index, 771 VTableFuncs, V); 772 773 #ifndef NDEBUG 774 // Validate that the VTableFuncs list is ordered by offset. 775 uint64_t PrevOffset = 0; 776 for (auto &P : VTableFuncs) { 777 // The findVFuncPointers traversal should have encountered the 778 // functions in offset order. We need to use ">=" since PrevOffset 779 // starts at 0. 780 assert(P.VTableOffset >= PrevOffset); 781 PrevOffset = P.VTableOffset; 782 } 783 #endif 784 } 785 786 /// Record vtable definition \p V for each type metadata it references. 787 static void 788 recordTypeIdCompatibleVtableReferences(ModuleSummaryIndex &Index, 789 const GlobalVariable &V, 790 SmallVectorImpl<MDNode *> &Types) { 791 for (MDNode *Type : Types) { 792 auto TypeID = Type->getOperand(1).get(); 793 794 uint64_t Offset = 795 cast<ConstantInt>( 796 cast<ConstantAsMetadata>(Type->getOperand(0))->getValue()) 797 ->getZExtValue(); 798 799 if (auto *TypeId = dyn_cast<MDString>(TypeID)) 800 Index.getOrInsertTypeIdCompatibleVtableSummary(TypeId->getString()) 801 .push_back({Offset, Index.getOrInsertValueInfo(&V)}); 802 } 803 } 804 805 static void computeVariableSummary(ModuleSummaryIndex &Index, 806 const GlobalVariable &V, 807 DenseSet<GlobalValue::GUID> &CantBePromoted, 808 const Module &M, 809 SmallVectorImpl<MDNode *> &Types) { 810 SetVector<ValueInfo, SmallVector<ValueInfo, 0>> RefEdges; 811 SmallPtrSet<const User *, 8> Visited; 812 bool RefLocalIFunc = false; 813 bool HasBlockAddress = 814 findRefEdges(Index, &V, RefEdges, Visited, RefLocalIFunc); 815 const bool NotEligibleForImport = (HasBlockAddress || RefLocalIFunc); 816 bool NonRenamableLocal = isNonRenamableLocal(V); 817 GlobalValueSummary::GVFlags Flags( 818 V.getLinkage(), V.getVisibility(), NonRenamableLocal, 819 /* Live = */ false, V.isDSOLocal(), V.canBeOmittedFromSymbolTable(), 820 GlobalValueSummary::Definition); 821 822 VTableFuncList VTableFuncs; 823 // If splitting is not enabled, then we compute the summary information 824 // necessary for index-based whole program devirtualization. 825 if (!Index.enableSplitLTOUnit()) { 826 Types.clear(); 827 V.getMetadata(LLVMContext::MD_type, Types); 828 if (!Types.empty()) { 829 // Identify the function pointers referenced by this vtable definition. 830 computeVTableFuncs(Index, V, M, VTableFuncs); 831 832 // Record this vtable definition for each type metadata it references. 833 recordTypeIdCompatibleVtableReferences(Index, V, Types); 834 } 835 } 836 837 // Don't mark variables we won't be able to internalize as read/write-only. 838 bool CanBeInternalized = 839 !V.hasComdat() && !V.hasAppendingLinkage() && !V.isInterposable() && 840 !V.hasAvailableExternallyLinkage() && !V.hasDLLExportStorageClass(); 841 bool Constant = V.isConstant(); 842 GlobalVarSummary::GVarFlags VarFlags(CanBeInternalized, 843 Constant ? false : CanBeInternalized, 844 Constant, V.getVCallVisibility()); 845 auto GVarSummary = std::make_unique<GlobalVarSummary>(Flags, VarFlags, 846 RefEdges.takeVector()); 847 if (NonRenamableLocal) 848 CantBePromoted.insert(V.getGUID()); 849 if (NotEligibleForImport) 850 GVarSummary->setNotEligibleToImport(); 851 if (!VTableFuncs.empty()) 852 GVarSummary->setVTableFuncs(VTableFuncs); 853 Index.addGlobalValueSummary(V, std::move(GVarSummary)); 854 } 855 856 static void computeAliasSummary(ModuleSummaryIndex &Index, const GlobalAlias &A, 857 DenseSet<GlobalValue::GUID> &CantBePromoted) { 858 // Skip summary for indirect function aliases as summary for aliasee will not 859 // be emitted. 860 const GlobalObject *Aliasee = A.getAliaseeObject(); 861 if (isa<GlobalIFunc>(Aliasee)) 862 return; 863 bool NonRenamableLocal = isNonRenamableLocal(A); 864 GlobalValueSummary::GVFlags Flags( 865 A.getLinkage(), A.getVisibility(), NonRenamableLocal, 866 /* Live = */ false, A.isDSOLocal(), A.canBeOmittedFromSymbolTable(), 867 GlobalValueSummary::Definition); 868 auto AS = std::make_unique<AliasSummary>(Flags); 869 auto AliaseeVI = Index.getValueInfo(Aliasee->getGUID()); 870 assert(AliaseeVI && "Alias expects aliasee summary to be available"); 871 assert(AliaseeVI.getSummaryList().size() == 1 && 872 "Expected a single entry per aliasee in per-module index"); 873 AS->setAliasee(AliaseeVI, AliaseeVI.getSummaryList()[0].get()); 874 if (NonRenamableLocal) 875 CantBePromoted.insert(A.getGUID()); 876 Index.addGlobalValueSummary(A, std::move(AS)); 877 } 878 879 // Set LiveRoot flag on entries matching the given value name. 880 static void setLiveRoot(ModuleSummaryIndex &Index, StringRef Name) { 881 if (ValueInfo VI = Index.getValueInfo(GlobalValue::getGUID(Name))) 882 for (const auto &Summary : VI.getSummaryList()) 883 Summary->setLive(true); 884 } 885 886 ModuleSummaryIndex llvm::buildModuleSummaryIndex( 887 const Module &M, 888 std::function<BlockFrequencyInfo *(const Function &F)> GetBFICallback, 889 ProfileSummaryInfo *PSI, 890 std::function<const StackSafetyInfo *(const Function &F)> GetSSICallback) { 891 assert(PSI); 892 bool EnableSplitLTOUnit = false; 893 bool UnifiedLTO = false; 894 if (auto *MD = mdconst::extract_or_null<ConstantInt>( 895 M.getModuleFlag("EnableSplitLTOUnit"))) 896 EnableSplitLTOUnit = MD->getZExtValue(); 897 if (auto *MD = 898 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("UnifiedLTO"))) 899 UnifiedLTO = MD->getZExtValue(); 900 ModuleSummaryIndex Index(/*HaveGVs=*/true, EnableSplitLTOUnit, UnifiedLTO); 901 902 // Identify the local values in the llvm.used and llvm.compiler.used sets, 903 // which should not be exported as they would then require renaming and 904 // promotion, but we may have opaque uses e.g. in inline asm. We collect them 905 // here because we use this information to mark functions containing inline 906 // assembly calls as not importable. 907 SmallPtrSet<GlobalValue *, 4> LocalsUsed; 908 SmallVector<GlobalValue *, 4> Used; 909 // First collect those in the llvm.used set. 910 collectUsedGlobalVariables(M, Used, /*CompilerUsed=*/false); 911 // Next collect those in the llvm.compiler.used set. 912 collectUsedGlobalVariables(M, Used, /*CompilerUsed=*/true); 913 DenseSet<GlobalValue::GUID> CantBePromoted; 914 for (auto *V : Used) { 915 if (V->hasLocalLinkage()) { 916 LocalsUsed.insert(V); 917 CantBePromoted.insert(V->getGUID()); 918 } 919 } 920 921 bool HasLocalInlineAsmSymbol = false; 922 if (!M.getModuleInlineAsm().empty()) { 923 // Collect the local values defined by module level asm, and set up 924 // summaries for these symbols so that they can be marked as NoRename, 925 // to prevent export of any use of them in regular IR that would require 926 // renaming within the module level asm. Note we don't need to create a 927 // summary for weak or global defs, as they don't need to be flagged as 928 // NoRename, and defs in module level asm can't be imported anyway. 929 // Also, any values used but not defined within module level asm should 930 // be listed on the llvm.used or llvm.compiler.used global and marked as 931 // referenced from there. 932 ModuleSymbolTable::CollectAsmSymbols( 933 M, [&](StringRef Name, object::BasicSymbolRef::Flags Flags) { 934 // Symbols not marked as Weak or Global are local definitions. 935 if (Flags & (object::BasicSymbolRef::SF_Weak | 936 object::BasicSymbolRef::SF_Global)) 937 return; 938 HasLocalInlineAsmSymbol = true; 939 GlobalValue *GV = M.getNamedValue(Name); 940 if (!GV) 941 return; 942 assert(GV->isDeclaration() && "Def in module asm already has definition"); 943 GlobalValueSummary::GVFlags GVFlags( 944 GlobalValue::InternalLinkage, GlobalValue::DefaultVisibility, 945 /* NotEligibleToImport = */ true, 946 /* Live = */ true, 947 /* Local */ GV->isDSOLocal(), GV->canBeOmittedFromSymbolTable(), 948 GlobalValueSummary::Definition); 949 CantBePromoted.insert(GV->getGUID()); 950 // Create the appropriate summary type. 951 if (Function *F = dyn_cast<Function>(GV)) { 952 std::unique_ptr<FunctionSummary> Summary = 953 std::make_unique<FunctionSummary>( 954 GVFlags, /*InstCount=*/0, 955 FunctionSummary::FFlags{ 956 F->hasFnAttribute(Attribute::ReadNone), 957 F->hasFnAttribute(Attribute::ReadOnly), 958 F->hasFnAttribute(Attribute::NoRecurse), 959 F->returnDoesNotAlias(), 960 /* NoInline = */ false, 961 F->hasFnAttribute(Attribute::AlwaysInline), 962 F->hasFnAttribute(Attribute::NoUnwind), 963 /* MayThrow */ true, 964 /* HasUnknownCall */ true, 965 /* MustBeUnreachable */ false}, 966 SmallVector<ValueInfo, 0>{}, 967 SmallVector<FunctionSummary::EdgeTy, 0>{}, 968 ArrayRef<GlobalValue::GUID>{}, 969 ArrayRef<FunctionSummary::VFuncId>{}, 970 ArrayRef<FunctionSummary::VFuncId>{}, 971 ArrayRef<FunctionSummary::ConstVCall>{}, 972 ArrayRef<FunctionSummary::ConstVCall>{}, 973 ArrayRef<FunctionSummary::ParamAccess>{}, 974 ArrayRef<CallsiteInfo>{}, ArrayRef<AllocInfo>{}); 975 Index.addGlobalValueSummary(*GV, std::move(Summary)); 976 } else { 977 std::unique_ptr<GlobalVarSummary> Summary = 978 std::make_unique<GlobalVarSummary>( 979 GVFlags, 980 GlobalVarSummary::GVarFlags( 981 false, false, cast<GlobalVariable>(GV)->isConstant(), 982 GlobalObject::VCallVisibilityPublic), 983 SmallVector<ValueInfo, 0>{}); 984 Index.addGlobalValueSummary(*GV, std::move(Summary)); 985 } 986 }); 987 } 988 989 bool IsThinLTO = true; 990 if (auto *MD = 991 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO"))) 992 IsThinLTO = MD->getZExtValue(); 993 994 // Compute summaries for all functions defined in module, and save in the 995 // index. 996 for (const auto &F : M) { 997 if (F.isDeclaration()) 998 continue; 999 1000 DominatorTree DT(const_cast<Function &>(F)); 1001 BlockFrequencyInfo *BFI = nullptr; 1002 std::unique_ptr<BlockFrequencyInfo> BFIPtr; 1003 if (GetBFICallback) 1004 BFI = GetBFICallback(F); 1005 else if (F.hasProfileData()) { 1006 LoopInfo LI{DT}; 1007 BranchProbabilityInfo BPI{F, LI}; 1008 BFIPtr = std::make_unique<BlockFrequencyInfo>(F, BPI, LI); 1009 BFI = BFIPtr.get(); 1010 } 1011 1012 computeFunctionSummary(Index, M, F, BFI, PSI, DT, 1013 !LocalsUsed.empty() || HasLocalInlineAsmSymbol, 1014 CantBePromoted, IsThinLTO, GetSSICallback); 1015 } 1016 1017 // Compute summaries for all variables defined in module, and save in the 1018 // index. 1019 SmallVector<MDNode *, 2> Types; 1020 for (const GlobalVariable &G : M.globals()) { 1021 if (G.isDeclaration()) 1022 continue; 1023 computeVariableSummary(Index, G, CantBePromoted, M, Types); 1024 } 1025 1026 // Compute summaries for all aliases defined in module, and save in the 1027 // index. 1028 for (const GlobalAlias &A : M.aliases()) 1029 computeAliasSummary(Index, A, CantBePromoted); 1030 1031 // Iterate through ifuncs, set their resolvers all alive. 1032 for (const GlobalIFunc &I : M.ifuncs()) { 1033 I.applyAlongResolverPath([&Index](const GlobalValue &GV) { 1034 Index.getGlobalValueSummary(GV)->setLive(true); 1035 }); 1036 } 1037 1038 for (auto *V : LocalsUsed) { 1039 auto *Summary = Index.getGlobalValueSummary(*V); 1040 assert(Summary && "Missing summary for global value"); 1041 Summary->setNotEligibleToImport(); 1042 } 1043 1044 // The linker doesn't know about these LLVM produced values, so we need 1045 // to flag them as live in the index to ensure index-based dead value 1046 // analysis treats them as live roots of the analysis. 1047 setLiveRoot(Index, "llvm.used"); 1048 setLiveRoot(Index, "llvm.compiler.used"); 1049 setLiveRoot(Index, "llvm.global_ctors"); 1050 setLiveRoot(Index, "llvm.global_dtors"); 1051 setLiveRoot(Index, "llvm.global.annotations"); 1052 1053 for (auto &GlobalList : Index) { 1054 // Ignore entries for references that are undefined in the current module. 1055 if (GlobalList.second.SummaryList.empty()) 1056 continue; 1057 1058 assert(GlobalList.second.SummaryList.size() == 1 && 1059 "Expected module's index to have one summary per GUID"); 1060 auto &Summary = GlobalList.second.SummaryList[0]; 1061 if (!IsThinLTO) { 1062 Summary->setNotEligibleToImport(); 1063 continue; 1064 } 1065 1066 bool AllRefsCanBeExternallyReferenced = 1067 llvm::all_of(Summary->refs(), [&](const ValueInfo &VI) { 1068 return !CantBePromoted.count(VI.getGUID()); 1069 }); 1070 if (!AllRefsCanBeExternallyReferenced) { 1071 Summary->setNotEligibleToImport(); 1072 continue; 1073 } 1074 1075 if (auto *FuncSummary = dyn_cast<FunctionSummary>(Summary.get())) { 1076 bool AllCallsCanBeExternallyReferenced = llvm::all_of( 1077 FuncSummary->calls(), [&](const FunctionSummary::EdgeTy &Edge) { 1078 return !CantBePromoted.count(Edge.first.getGUID()); 1079 }); 1080 if (!AllCallsCanBeExternallyReferenced) 1081 Summary->setNotEligibleToImport(); 1082 } 1083 } 1084 1085 if (!ModuleSummaryDotFile.empty()) { 1086 std::error_code EC; 1087 raw_fd_ostream OSDot(ModuleSummaryDotFile, EC, sys::fs::OpenFlags::OF_Text); 1088 if (EC) 1089 report_fatal_error(Twine("Failed to open dot file ") + 1090 ModuleSummaryDotFile + ": " + EC.message() + "\n"); 1091 Index.exportToDot(OSDot, {}); 1092 } 1093 1094 return Index; 1095 } 1096 1097 AnalysisKey ModuleSummaryIndexAnalysis::Key; 1098 1099 ModuleSummaryIndex 1100 ModuleSummaryIndexAnalysis::run(Module &M, ModuleAnalysisManager &AM) { 1101 ProfileSummaryInfo &PSI = AM.getResult<ProfileSummaryAnalysis>(M); 1102 auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 1103 bool NeedSSI = needsParamAccessSummary(M); 1104 return buildModuleSummaryIndex( 1105 M, 1106 [&FAM](const Function &F) { 1107 return &FAM.getResult<BlockFrequencyAnalysis>( 1108 *const_cast<Function *>(&F)); 1109 }, 1110 &PSI, 1111 [&FAM, NeedSSI](const Function &F) -> const StackSafetyInfo * { 1112 return NeedSSI ? &FAM.getResult<StackSafetyAnalysis>( 1113 const_cast<Function &>(F)) 1114 : nullptr; 1115 }); 1116 } 1117 1118 char ModuleSummaryIndexWrapperPass::ID = 0; 1119 1120 INITIALIZE_PASS_BEGIN(ModuleSummaryIndexWrapperPass, "module-summary-analysis", 1121 "Module Summary Analysis", false, true) 1122 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 1123 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 1124 INITIALIZE_PASS_DEPENDENCY(StackSafetyInfoWrapperPass) 1125 INITIALIZE_PASS_END(ModuleSummaryIndexWrapperPass, "module-summary-analysis", 1126 "Module Summary Analysis", false, true) 1127 1128 ModulePass *llvm::createModuleSummaryIndexWrapperPass() { 1129 return new ModuleSummaryIndexWrapperPass(); 1130 } 1131 1132 ModuleSummaryIndexWrapperPass::ModuleSummaryIndexWrapperPass() 1133 : ModulePass(ID) { 1134 initializeModuleSummaryIndexWrapperPassPass(*PassRegistry::getPassRegistry()); 1135 } 1136 1137 bool ModuleSummaryIndexWrapperPass::runOnModule(Module &M) { 1138 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 1139 bool NeedSSI = needsParamAccessSummary(M); 1140 Index.emplace(buildModuleSummaryIndex( 1141 M, 1142 [this](const Function &F) { 1143 return &(this->getAnalysis<BlockFrequencyInfoWrapperPass>( 1144 *const_cast<Function *>(&F)) 1145 .getBFI()); 1146 }, 1147 PSI, 1148 [&](const Function &F) -> const StackSafetyInfo * { 1149 return NeedSSI ? &getAnalysis<StackSafetyInfoWrapperPass>( 1150 const_cast<Function &>(F)) 1151 .getResult() 1152 : nullptr; 1153 })); 1154 return false; 1155 } 1156 1157 bool ModuleSummaryIndexWrapperPass::doFinalization(Module &M) { 1158 Index.reset(); 1159 return false; 1160 } 1161 1162 void ModuleSummaryIndexWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 1163 AU.setPreservesAll(); 1164 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 1165 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 1166 AU.addRequired<StackSafetyInfoWrapperPass>(); 1167 } 1168 1169 char ImmutableModuleSummaryIndexWrapperPass::ID = 0; 1170 1171 ImmutableModuleSummaryIndexWrapperPass::ImmutableModuleSummaryIndexWrapperPass( 1172 const ModuleSummaryIndex *Index) 1173 : ImmutablePass(ID), Index(Index) { 1174 initializeImmutableModuleSummaryIndexWrapperPassPass( 1175 *PassRegistry::getPassRegistry()); 1176 } 1177 1178 void ImmutableModuleSummaryIndexWrapperPass::getAnalysisUsage( 1179 AnalysisUsage &AU) const { 1180 AU.setPreservesAll(); 1181 } 1182 1183 ImmutablePass *llvm::createImmutableModuleSummaryIndexWrapperPass( 1184 const ModuleSummaryIndex *Index) { 1185 return new ImmutableModuleSummaryIndexWrapperPass(Index); 1186 } 1187 1188 INITIALIZE_PASS(ImmutableModuleSummaryIndexWrapperPass, "module-summary-info", 1189 "Module summary info", false, true) 1190 1191 bool llvm::mayHaveMemprofSummary(const CallBase *CB) { 1192 if (!CB) 1193 return false; 1194 if (CB->isDebugOrPseudoInst()) 1195 return false; 1196 auto *CI = dyn_cast<CallInst>(CB); 1197 auto *CalledValue = CB->getCalledOperand(); 1198 auto *CalledFunction = CB->getCalledFunction(); 1199 if (CalledValue && !CalledFunction) { 1200 CalledValue = CalledValue->stripPointerCasts(); 1201 // Stripping pointer casts can reveal a called function. 1202 CalledFunction = dyn_cast<Function>(CalledValue); 1203 } 1204 // Check if this is an alias to a function. If so, get the 1205 // called aliasee for the checks below. 1206 if (auto *GA = dyn_cast<GlobalAlias>(CalledValue)) { 1207 assert(!CalledFunction && 1208 "Expected null called function in callsite for alias"); 1209 CalledFunction = dyn_cast<Function>(GA->getAliaseeObject()); 1210 } 1211 // Check if this is a direct call to a known function or a known 1212 // intrinsic, or an indirect call with profile data. 1213 if (CalledFunction) { 1214 if (CI && CalledFunction->isIntrinsic()) 1215 return false; 1216 } else { 1217 // TODO: For now skip indirect calls. See comments in 1218 // computeFunctionSummary for what is needed to handle this. 1219 return false; 1220 } 1221 return true; 1222 } 1223