1 //===- ModuleSummaryAnalysis.cpp - Module summary index builder -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass builds a ModuleSummaryIndex object for the module, to be written 11 // to bitcode or LLVM assembly. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Analysis/ModuleSummaryAnalysis.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseSet.h" 18 #include "llvm/ADT/MapVector.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/StringRef.h" 24 #include "llvm/Analysis/BlockFrequencyInfo.h" 25 #include "llvm/Analysis/BranchProbabilityInfo.h" 26 #include "llvm/Analysis/IndirectCallPromotionAnalysis.h" 27 #include "llvm/Analysis/LoopInfo.h" 28 #include "llvm/Analysis/ProfileSummaryInfo.h" 29 #include "llvm/Analysis/TypeMetadataUtils.h" 30 #include "llvm/IR/Attributes.h" 31 #include "llvm/IR/BasicBlock.h" 32 #include "llvm/IR/CallSite.h" 33 #include "llvm/IR/Constant.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/Dominators.h" 36 #include "llvm/IR/Function.h" 37 #include "llvm/IR/GlobalAlias.h" 38 #include "llvm/IR/GlobalValue.h" 39 #include "llvm/IR/GlobalVariable.h" 40 #include "llvm/IR/Instructions.h" 41 #include "llvm/IR/IntrinsicInst.h" 42 #include "llvm/IR/Intrinsics.h" 43 #include "llvm/IR/Metadata.h" 44 #include "llvm/IR/Module.h" 45 #include "llvm/IR/ModuleSummaryIndex.h" 46 #include "llvm/IR/Use.h" 47 #include "llvm/IR/User.h" 48 #include "llvm/Object/ModuleSymbolTable.h" 49 #include "llvm/Object/SymbolicFile.h" 50 #include "llvm/Pass.h" 51 #include "llvm/Support/Casting.h" 52 #include <algorithm> 53 #include <cassert> 54 #include <cstdint> 55 #include <vector> 56 57 using namespace llvm; 58 59 #define DEBUG_TYPE "module-summary-analysis" 60 61 // Walk through the operands of a given User via worklist iteration and populate 62 // the set of GlobalValue references encountered. Invoked either on an 63 // Instruction or a GlobalVariable (which walks its initializer). 64 static void findRefEdges(ModuleSummaryIndex &Index, const User *CurUser, 65 SetVector<ValueInfo> &RefEdges, 66 SmallPtrSet<const User *, 8> &Visited) { 67 SmallVector<const User *, 32> Worklist; 68 Worklist.push_back(CurUser); 69 70 while (!Worklist.empty()) { 71 const User *U = Worklist.pop_back_val(); 72 73 if (!Visited.insert(U).second) 74 continue; 75 76 ImmutableCallSite CS(U); 77 78 for (const auto &OI : U->operands()) { 79 const User *Operand = dyn_cast<User>(OI); 80 if (!Operand) 81 continue; 82 if (isa<BlockAddress>(Operand)) 83 continue; 84 if (auto *GV = dyn_cast<GlobalValue>(Operand)) { 85 // We have a reference to a global value. This should be added to 86 // the reference set unless it is a callee. Callees are handled 87 // specially by WriteFunction and are added to a separate list. 88 if (!(CS && CS.isCallee(&OI))) 89 RefEdges.insert(Index.getOrInsertValueInfo(GV)); 90 continue; 91 } 92 Worklist.push_back(Operand); 93 } 94 } 95 } 96 97 static CalleeInfo::HotnessType getHotness(uint64_t ProfileCount, 98 ProfileSummaryInfo *PSI) { 99 if (!PSI) 100 return CalleeInfo::HotnessType::Unknown; 101 if (PSI->isHotCount(ProfileCount)) 102 return CalleeInfo::HotnessType::Hot; 103 if (PSI->isColdCount(ProfileCount)) 104 return CalleeInfo::HotnessType::Cold; 105 return CalleeInfo::HotnessType::None; 106 } 107 108 static bool isNonRenamableLocal(const GlobalValue &GV) { 109 return GV.hasSection() && GV.hasLocalLinkage(); 110 } 111 112 /// Determine whether this call has all constant integer arguments (excluding 113 /// "this") and summarize it to VCalls or ConstVCalls as appropriate. 114 static void addVCallToSet(DevirtCallSite Call, GlobalValue::GUID Guid, 115 SetVector<FunctionSummary::VFuncId> &VCalls, 116 SetVector<FunctionSummary::ConstVCall> &ConstVCalls) { 117 std::vector<uint64_t> Args; 118 // Start from the second argument to skip the "this" pointer. 119 for (auto &Arg : make_range(Call.CS.arg_begin() + 1, Call.CS.arg_end())) { 120 auto *CI = dyn_cast<ConstantInt>(Arg); 121 if (!CI || CI->getBitWidth() > 64) { 122 VCalls.insert({Guid, Call.Offset}); 123 return; 124 } 125 Args.push_back(CI->getZExtValue()); 126 } 127 ConstVCalls.insert({{Guid, Call.Offset}, std::move(Args)}); 128 } 129 130 /// If this intrinsic call requires that we add information to the function 131 /// summary, do so via the non-constant reference arguments. 132 static void addIntrinsicToSummary( 133 const CallInst *CI, SetVector<GlobalValue::GUID> &TypeTests, 134 SetVector<FunctionSummary::VFuncId> &TypeTestAssumeVCalls, 135 SetVector<FunctionSummary::VFuncId> &TypeCheckedLoadVCalls, 136 SetVector<FunctionSummary::ConstVCall> &TypeTestAssumeConstVCalls, 137 SetVector<FunctionSummary::ConstVCall> &TypeCheckedLoadConstVCalls) { 138 switch (CI->getCalledFunction()->getIntrinsicID()) { 139 case Intrinsic::type_test: { 140 auto *TypeMDVal = cast<MetadataAsValue>(CI->getArgOperand(1)); 141 auto *TypeId = dyn_cast<MDString>(TypeMDVal->getMetadata()); 142 if (!TypeId) 143 break; 144 GlobalValue::GUID Guid = GlobalValue::getGUID(TypeId->getString()); 145 146 // Produce a summary from type.test intrinsics. We only summarize type.test 147 // intrinsics that are used other than by an llvm.assume intrinsic. 148 // Intrinsics that are assumed are relevant only to the devirtualization 149 // pass, not the type test lowering pass. 150 bool HasNonAssumeUses = llvm::any_of(CI->uses(), [](const Use &CIU) { 151 auto *AssumeCI = dyn_cast<CallInst>(CIU.getUser()); 152 if (!AssumeCI) 153 return true; 154 Function *F = AssumeCI->getCalledFunction(); 155 return !F || F->getIntrinsicID() != Intrinsic::assume; 156 }); 157 if (HasNonAssumeUses) 158 TypeTests.insert(Guid); 159 160 SmallVector<DevirtCallSite, 4> DevirtCalls; 161 SmallVector<CallInst *, 4> Assumes; 162 findDevirtualizableCallsForTypeTest(DevirtCalls, Assumes, CI); 163 for (auto &Call : DevirtCalls) 164 addVCallToSet(Call, Guid, TypeTestAssumeVCalls, 165 TypeTestAssumeConstVCalls); 166 167 break; 168 } 169 170 case Intrinsic::type_checked_load: { 171 auto *TypeMDVal = cast<MetadataAsValue>(CI->getArgOperand(2)); 172 auto *TypeId = dyn_cast<MDString>(TypeMDVal->getMetadata()); 173 if (!TypeId) 174 break; 175 GlobalValue::GUID Guid = GlobalValue::getGUID(TypeId->getString()); 176 177 SmallVector<DevirtCallSite, 4> DevirtCalls; 178 SmallVector<Instruction *, 4> LoadedPtrs; 179 SmallVector<Instruction *, 4> Preds; 180 bool HasNonCallUses = false; 181 findDevirtualizableCallsForTypeCheckedLoad(DevirtCalls, LoadedPtrs, Preds, 182 HasNonCallUses, CI); 183 // Any non-call uses of the result of llvm.type.checked.load will 184 // prevent us from optimizing away the llvm.type.test. 185 if (HasNonCallUses) 186 TypeTests.insert(Guid); 187 for (auto &Call : DevirtCalls) 188 addVCallToSet(Call, Guid, TypeCheckedLoadVCalls, 189 TypeCheckedLoadConstVCalls); 190 191 break; 192 } 193 default: 194 break; 195 } 196 } 197 198 static void 199 computeFunctionSummary(ModuleSummaryIndex &Index, const Module &M, 200 const Function &F, BlockFrequencyInfo *BFI, 201 ProfileSummaryInfo *PSI, bool HasLocalsInUsedOrAsm, 202 DenseSet<GlobalValue::GUID> &CantBePromoted) { 203 // Summary not currently supported for anonymous functions, they should 204 // have been named. 205 assert(F.hasName()); 206 207 unsigned NumInsts = 0; 208 // Map from callee ValueId to profile count. Used to accumulate profile 209 // counts for all static calls to a given callee. 210 MapVector<ValueInfo, CalleeInfo> CallGraphEdges; 211 SetVector<ValueInfo> RefEdges; 212 SetVector<GlobalValue::GUID> TypeTests; 213 SetVector<FunctionSummary::VFuncId> TypeTestAssumeVCalls, 214 TypeCheckedLoadVCalls; 215 SetVector<FunctionSummary::ConstVCall> TypeTestAssumeConstVCalls, 216 TypeCheckedLoadConstVCalls; 217 ICallPromotionAnalysis ICallAnalysis; 218 SmallPtrSet<const User *, 8> Visited; 219 220 // Add personality function, prefix data and prologue data to function's ref 221 // list. 222 findRefEdges(Index, &F, RefEdges, Visited); 223 224 bool HasInlineAsmMaybeReferencingInternal = false; 225 for (const BasicBlock &BB : F) 226 for (const Instruction &I : BB) { 227 if (isa<DbgInfoIntrinsic>(I)) 228 continue; 229 ++NumInsts; 230 findRefEdges(Index, &I, RefEdges, Visited); 231 auto CS = ImmutableCallSite(&I); 232 if (!CS) 233 continue; 234 235 const auto *CI = dyn_cast<CallInst>(&I); 236 // Since we don't know exactly which local values are referenced in inline 237 // assembly, conservatively mark the function as possibly referencing 238 // a local value from inline assembly to ensure we don't export a 239 // reference (which would require renaming and promotion of the 240 // referenced value). 241 if (HasLocalsInUsedOrAsm && CI && CI->isInlineAsm()) 242 HasInlineAsmMaybeReferencingInternal = true; 243 244 auto *CalledValue = CS.getCalledValue(); 245 auto *CalledFunction = CS.getCalledFunction(); 246 // Check if this is an alias to a function. If so, get the 247 // called aliasee for the checks below. 248 if (auto *GA = dyn_cast<GlobalAlias>(CalledValue)) { 249 assert(!CalledFunction && "Expected null called function in callsite for alias"); 250 CalledFunction = dyn_cast<Function>(GA->getBaseObject()); 251 } 252 // Check if this is a direct call to a known function or a known 253 // intrinsic, or an indirect call with profile data. 254 if (CalledFunction) { 255 if (CI && CalledFunction->isIntrinsic()) { 256 addIntrinsicToSummary( 257 CI, TypeTests, TypeTestAssumeVCalls, TypeCheckedLoadVCalls, 258 TypeTestAssumeConstVCalls, TypeCheckedLoadConstVCalls); 259 continue; 260 } 261 // We should have named any anonymous globals 262 assert(CalledFunction->hasName()); 263 auto ScaledCount = PSI->getProfileCount(&I, BFI); 264 auto Hotness = ScaledCount ? getHotness(ScaledCount.getValue(), PSI) 265 : CalleeInfo::HotnessType::Unknown; 266 267 // Use the original CalledValue, in case it was an alias. We want 268 // to record the call edge to the alias in that case. Eventually 269 // an alias summary will be created to associate the alias and 270 // aliasee. 271 CallGraphEdges[Index.getOrInsertValueInfo( 272 cast<GlobalValue>(CalledValue))] 273 .updateHotness(Hotness); 274 } else { 275 // Skip inline assembly calls. 276 if (CI && CI->isInlineAsm()) 277 continue; 278 // Skip direct calls. 279 if (!CS.getCalledValue() || isa<Constant>(CS.getCalledValue())) 280 continue; 281 282 uint32_t NumVals, NumCandidates; 283 uint64_t TotalCount; 284 auto CandidateProfileData = 285 ICallAnalysis.getPromotionCandidatesForInstruction( 286 &I, NumVals, TotalCount, NumCandidates); 287 for (auto &Candidate : CandidateProfileData) 288 CallGraphEdges[Index.getOrInsertValueInfo(Candidate.Value)] 289 .updateHotness(getHotness(Candidate.Count, PSI)); 290 } 291 } 292 293 // Explicit add hot edges to enforce importing for designated GUIDs for 294 // sample PGO, to enable the same inlines as the profiled optimized binary. 295 for (auto &I : F.getImportGUIDs()) 296 CallGraphEdges[Index.getOrInsertValueInfo(I)].updateHotness( 297 CalleeInfo::HotnessType::Critical); 298 299 bool NonRenamableLocal = isNonRenamableLocal(F); 300 bool NotEligibleForImport = 301 NonRenamableLocal || HasInlineAsmMaybeReferencingInternal || 302 // Inliner doesn't handle variadic functions. 303 // FIXME: refactor this to use the same code that inliner is using. 304 F.isVarArg(); 305 GlobalValueSummary::GVFlags Flags(F.getLinkage(), NotEligibleForImport, 306 /* Live = */ false); 307 FunctionSummary::FFlags FunFlags{ 308 F.hasFnAttribute(Attribute::ReadNone), 309 F.hasFnAttribute(Attribute::ReadOnly), 310 F.hasFnAttribute(Attribute::NoRecurse), 311 F.returnDoesNotAlias(), 312 }; 313 auto FuncSummary = llvm::make_unique<FunctionSummary>( 314 Flags, NumInsts, FunFlags, RefEdges.takeVector(), 315 CallGraphEdges.takeVector(), TypeTests.takeVector(), 316 TypeTestAssumeVCalls.takeVector(), TypeCheckedLoadVCalls.takeVector(), 317 TypeTestAssumeConstVCalls.takeVector(), 318 TypeCheckedLoadConstVCalls.takeVector()); 319 if (NonRenamableLocal) 320 CantBePromoted.insert(F.getGUID()); 321 Index.addGlobalValueSummary(F.getName(), std::move(FuncSummary)); 322 } 323 324 static void 325 computeVariableSummary(ModuleSummaryIndex &Index, const GlobalVariable &V, 326 DenseSet<GlobalValue::GUID> &CantBePromoted) { 327 SetVector<ValueInfo> RefEdges; 328 SmallPtrSet<const User *, 8> Visited; 329 findRefEdges(Index, &V, RefEdges, Visited); 330 bool NonRenamableLocal = isNonRenamableLocal(V); 331 GlobalValueSummary::GVFlags Flags(V.getLinkage(), NonRenamableLocal, 332 /* Live = */ false); 333 auto GVarSummary = 334 llvm::make_unique<GlobalVarSummary>(Flags, RefEdges.takeVector()); 335 if (NonRenamableLocal) 336 CantBePromoted.insert(V.getGUID()); 337 Index.addGlobalValueSummary(V.getName(), std::move(GVarSummary)); 338 } 339 340 static void 341 computeAliasSummary(ModuleSummaryIndex &Index, const GlobalAlias &A, 342 DenseSet<GlobalValue::GUID> &CantBePromoted) { 343 bool NonRenamableLocal = isNonRenamableLocal(A); 344 GlobalValueSummary::GVFlags Flags(A.getLinkage(), NonRenamableLocal, 345 /* Live = */ false); 346 auto AS = llvm::make_unique<AliasSummary>(Flags); 347 auto *Aliasee = A.getBaseObject(); 348 auto *AliaseeSummary = Index.getGlobalValueSummary(*Aliasee); 349 assert(AliaseeSummary && "Alias expects aliasee summary to be parsed"); 350 AS->setAliasee(AliaseeSummary); 351 if (NonRenamableLocal) 352 CantBePromoted.insert(A.getGUID()); 353 Index.addGlobalValueSummary(A.getName(), std::move(AS)); 354 } 355 356 // Set LiveRoot flag on entries matching the given value name. 357 static void setLiveRoot(ModuleSummaryIndex &Index, StringRef Name) { 358 if (ValueInfo VI = Index.getValueInfo(GlobalValue::getGUID(Name))) 359 for (auto &Summary : VI.getSummaryList()) 360 Summary->setLive(true); 361 } 362 363 ModuleSummaryIndex llvm::buildModuleSummaryIndex( 364 const Module &M, 365 std::function<BlockFrequencyInfo *(const Function &F)> GetBFICallback, 366 ProfileSummaryInfo *PSI) { 367 assert(PSI); 368 ModuleSummaryIndex Index; 369 370 // Identify the local values in the llvm.used and llvm.compiler.used sets, 371 // which should not be exported as they would then require renaming and 372 // promotion, but we may have opaque uses e.g. in inline asm. We collect them 373 // here because we use this information to mark functions containing inline 374 // assembly calls as not importable. 375 SmallPtrSet<GlobalValue *, 8> LocalsUsed; 376 SmallPtrSet<GlobalValue *, 8> Used; 377 // First collect those in the llvm.used set. 378 collectUsedGlobalVariables(M, Used, /*CompilerUsed*/ false); 379 // Next collect those in the llvm.compiler.used set. 380 collectUsedGlobalVariables(M, Used, /*CompilerUsed*/ true); 381 DenseSet<GlobalValue::GUID> CantBePromoted; 382 for (auto *V : Used) { 383 if (V->hasLocalLinkage()) { 384 LocalsUsed.insert(V); 385 CantBePromoted.insert(V->getGUID()); 386 } 387 } 388 389 bool HasLocalInlineAsmSymbol = false; 390 if (!M.getModuleInlineAsm().empty()) { 391 // Collect the local values defined by module level asm, and set up 392 // summaries for these symbols so that they can be marked as NoRename, 393 // to prevent export of any use of them in regular IR that would require 394 // renaming within the module level asm. Note we don't need to create a 395 // summary for weak or global defs, as they don't need to be flagged as 396 // NoRename, and defs in module level asm can't be imported anyway. 397 // Also, any values used but not defined within module level asm should 398 // be listed on the llvm.used or llvm.compiler.used global and marked as 399 // referenced from there. 400 ModuleSymbolTable::CollectAsmSymbols( 401 M, [&](StringRef Name, object::BasicSymbolRef::Flags Flags) { 402 // Symbols not marked as Weak or Global are local definitions. 403 if (Flags & (object::BasicSymbolRef::SF_Weak | 404 object::BasicSymbolRef::SF_Global)) 405 return; 406 HasLocalInlineAsmSymbol = true; 407 GlobalValue *GV = M.getNamedValue(Name); 408 if (!GV) 409 return; 410 assert(GV->isDeclaration() && "Def in module asm already has definition"); 411 GlobalValueSummary::GVFlags GVFlags(GlobalValue::InternalLinkage, 412 /* NotEligibleToImport = */ true, 413 /* Live = */ true); 414 CantBePromoted.insert(GlobalValue::getGUID(Name)); 415 // Create the appropriate summary type. 416 if (Function *F = dyn_cast<Function>(GV)) { 417 std::unique_ptr<FunctionSummary> Summary = 418 llvm::make_unique<FunctionSummary>( 419 GVFlags, 0, 420 FunctionSummary::FFlags{ 421 F->hasFnAttribute(Attribute::ReadNone), 422 F->hasFnAttribute(Attribute::ReadOnly), 423 F->hasFnAttribute(Attribute::NoRecurse), 424 F->returnDoesNotAlias()}, 425 ArrayRef<ValueInfo>{}, ArrayRef<FunctionSummary::EdgeTy>{}, 426 ArrayRef<GlobalValue::GUID>{}, 427 ArrayRef<FunctionSummary::VFuncId>{}, 428 ArrayRef<FunctionSummary::VFuncId>{}, 429 ArrayRef<FunctionSummary::ConstVCall>{}, 430 ArrayRef<FunctionSummary::ConstVCall>{}); 431 Index.addGlobalValueSummary(Name, std::move(Summary)); 432 } else { 433 std::unique_ptr<GlobalVarSummary> Summary = 434 llvm::make_unique<GlobalVarSummary>(GVFlags, 435 ArrayRef<ValueInfo>{}); 436 Index.addGlobalValueSummary(Name, std::move(Summary)); 437 } 438 }); 439 } 440 441 // Compute summaries for all functions defined in module, and save in the 442 // index. 443 for (auto &F : M) { 444 if (F.isDeclaration()) 445 continue; 446 447 BlockFrequencyInfo *BFI = nullptr; 448 std::unique_ptr<BlockFrequencyInfo> BFIPtr; 449 if (GetBFICallback) 450 BFI = GetBFICallback(F); 451 else if (F.getEntryCount().hasValue()) { 452 LoopInfo LI{DominatorTree(const_cast<Function &>(F))}; 453 BranchProbabilityInfo BPI{F, LI}; 454 BFIPtr = llvm::make_unique<BlockFrequencyInfo>(F, BPI, LI); 455 BFI = BFIPtr.get(); 456 } 457 458 computeFunctionSummary(Index, M, F, BFI, PSI, 459 !LocalsUsed.empty() || HasLocalInlineAsmSymbol, 460 CantBePromoted); 461 } 462 463 // Compute summaries for all variables defined in module, and save in the 464 // index. 465 for (const GlobalVariable &G : M.globals()) { 466 if (G.isDeclaration()) 467 continue; 468 computeVariableSummary(Index, G, CantBePromoted); 469 } 470 471 // Compute summaries for all aliases defined in module, and save in the 472 // index. 473 for (const GlobalAlias &A : M.aliases()) 474 computeAliasSummary(Index, A, CantBePromoted); 475 476 for (auto *V : LocalsUsed) { 477 auto *Summary = Index.getGlobalValueSummary(*V); 478 assert(Summary && "Missing summary for global value"); 479 Summary->setNotEligibleToImport(); 480 } 481 482 // The linker doesn't know about these LLVM produced values, so we need 483 // to flag them as live in the index to ensure index-based dead value 484 // analysis treats them as live roots of the analysis. 485 setLiveRoot(Index, "llvm.used"); 486 setLiveRoot(Index, "llvm.compiler.used"); 487 setLiveRoot(Index, "llvm.global_ctors"); 488 setLiveRoot(Index, "llvm.global_dtors"); 489 setLiveRoot(Index, "llvm.global.annotations"); 490 491 bool IsThinLTO = true; 492 if (auto *MD = 493 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO"))) 494 IsThinLTO = MD->getZExtValue(); 495 496 for (auto &GlobalList : Index) { 497 // Ignore entries for references that are undefined in the current module. 498 if (GlobalList.second.SummaryList.empty()) 499 continue; 500 501 assert(GlobalList.second.SummaryList.size() == 1 && 502 "Expected module's index to have one summary per GUID"); 503 auto &Summary = GlobalList.second.SummaryList[0]; 504 if (!IsThinLTO) { 505 Summary->setNotEligibleToImport(); 506 continue; 507 } 508 509 bool AllRefsCanBeExternallyReferenced = 510 llvm::all_of(Summary->refs(), [&](const ValueInfo &VI) { 511 return !CantBePromoted.count(VI.getGUID()); 512 }); 513 if (!AllRefsCanBeExternallyReferenced) { 514 Summary->setNotEligibleToImport(); 515 continue; 516 } 517 518 if (auto *FuncSummary = dyn_cast<FunctionSummary>(Summary.get())) { 519 bool AllCallsCanBeExternallyReferenced = llvm::all_of( 520 FuncSummary->calls(), [&](const FunctionSummary::EdgeTy &Edge) { 521 return !CantBePromoted.count(Edge.first.getGUID()); 522 }); 523 if (!AllCallsCanBeExternallyReferenced) 524 Summary->setNotEligibleToImport(); 525 } 526 } 527 528 return Index; 529 } 530 531 AnalysisKey ModuleSummaryIndexAnalysis::Key; 532 533 ModuleSummaryIndex 534 ModuleSummaryIndexAnalysis::run(Module &M, ModuleAnalysisManager &AM) { 535 ProfileSummaryInfo &PSI = AM.getResult<ProfileSummaryAnalysis>(M); 536 auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 537 return buildModuleSummaryIndex( 538 M, 539 [&FAM](const Function &F) { 540 return &FAM.getResult<BlockFrequencyAnalysis>( 541 *const_cast<Function *>(&F)); 542 }, 543 &PSI); 544 } 545 546 char ModuleSummaryIndexWrapperPass::ID = 0; 547 548 INITIALIZE_PASS_BEGIN(ModuleSummaryIndexWrapperPass, "module-summary-analysis", 549 "Module Summary Analysis", false, true) 550 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 551 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 552 INITIALIZE_PASS_END(ModuleSummaryIndexWrapperPass, "module-summary-analysis", 553 "Module Summary Analysis", false, true) 554 555 ModulePass *llvm::createModuleSummaryIndexWrapperPass() { 556 return new ModuleSummaryIndexWrapperPass(); 557 } 558 559 ModuleSummaryIndexWrapperPass::ModuleSummaryIndexWrapperPass() 560 : ModulePass(ID) { 561 initializeModuleSummaryIndexWrapperPassPass(*PassRegistry::getPassRegistry()); 562 } 563 564 bool ModuleSummaryIndexWrapperPass::runOnModule(Module &M) { 565 auto &PSI = *getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 566 Index = buildModuleSummaryIndex( 567 M, 568 [this](const Function &F) { 569 return &(this->getAnalysis<BlockFrequencyInfoWrapperPass>( 570 *const_cast<Function *>(&F)) 571 .getBFI()); 572 }, 573 &PSI); 574 return false; 575 } 576 577 bool ModuleSummaryIndexWrapperPass::doFinalization(Module &M) { 578 Index.reset(); 579 return false; 580 } 581 582 void ModuleSummaryIndexWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 583 AU.setPreservesAll(); 584 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 585 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 586 } 587