xref: /llvm-project/llvm/lib/Analysis/ModuleSummaryAnalysis.cpp (revision 236fda550d36d35a00785938c3e38b0f402aeda6)
1 //===- ModuleSummaryAnalysis.cpp - Module summary index builder -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass builds a ModuleSummaryIndex object for the module, to be written
10 // to bitcode or LLVM assembly.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Analysis/ModuleSummaryAnalysis.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/MapVector.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SetVector.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/Analysis/BlockFrequencyInfo.h"
24 #include "llvm/Analysis/BranchProbabilityInfo.h"
25 #include "llvm/Analysis/ConstantFolding.h"
26 #include "llvm/Analysis/IndirectCallPromotionAnalysis.h"
27 #include "llvm/Analysis/LoopInfo.h"
28 #include "llvm/Analysis/MemoryProfileInfo.h"
29 #include "llvm/Analysis/ProfileSummaryInfo.h"
30 #include "llvm/Analysis/StackSafetyAnalysis.h"
31 #include "llvm/Analysis/TypeMetadataUtils.h"
32 #include "llvm/IR/Attributes.h"
33 #include "llvm/IR/BasicBlock.h"
34 #include "llvm/IR/Constant.h"
35 #include "llvm/IR/Constants.h"
36 #include "llvm/IR/Dominators.h"
37 #include "llvm/IR/Function.h"
38 #include "llvm/IR/GlobalAlias.h"
39 #include "llvm/IR/GlobalValue.h"
40 #include "llvm/IR/GlobalVariable.h"
41 #include "llvm/IR/Instructions.h"
42 #include "llvm/IR/IntrinsicInst.h"
43 #include "llvm/IR/Metadata.h"
44 #include "llvm/IR/Module.h"
45 #include "llvm/IR/ModuleSummaryIndex.h"
46 #include "llvm/IR/Use.h"
47 #include "llvm/IR/User.h"
48 #include "llvm/InitializePasses.h"
49 #include "llvm/Object/ModuleSymbolTable.h"
50 #include "llvm/Object/SymbolicFile.h"
51 #include "llvm/Pass.h"
52 #include "llvm/Support/Casting.h"
53 #include "llvm/Support/CommandLine.h"
54 #include "llvm/Support/FileSystem.h"
55 #include <cassert>
56 #include <cstdint>
57 #include <vector>
58 
59 using namespace llvm;
60 using namespace llvm::memprof;
61 
62 #define DEBUG_TYPE "module-summary-analysis"
63 
64 // Option to force edges cold which will block importing when the
65 // -import-cold-multiplier is set to 0. Useful for debugging.
66 namespace llvm {
67 FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold =
68     FunctionSummary::FSHT_None;
69 } // namespace llvm
70 
71 static cl::opt<FunctionSummary::ForceSummaryHotnessType, true> FSEC(
72     "force-summary-edges-cold", cl::Hidden, cl::location(ForceSummaryEdgesCold),
73     cl::desc("Force all edges in the function summary to cold"),
74     cl::values(clEnumValN(FunctionSummary::FSHT_None, "none", "None."),
75                clEnumValN(FunctionSummary::FSHT_AllNonCritical,
76                           "all-non-critical", "All non-critical edges."),
77                clEnumValN(FunctionSummary::FSHT_All, "all", "All edges.")));
78 
79 static cl::opt<std::string> ModuleSummaryDotFile(
80     "module-summary-dot-file", cl::Hidden, cl::value_desc("filename"),
81     cl::desc("File to emit dot graph of new summary into"));
82 
83 static cl::opt<bool> EnableMemProfIndirectCallSupport(
84     "enable-memprof-indirect-call-support", cl::init(false), cl::Hidden,
85     cl::desc(
86         "Enable MemProf support for summarizing and cloning indirect calls"));
87 
88 extern cl::opt<bool> ScalePartialSampleProfileWorkingSetSize;
89 
90 extern cl::opt<unsigned> MaxNumVTableAnnotations;
91 
92 extern cl::opt<bool> MemProfReportHintedSizes;
93 
94 // Walk through the operands of a given User via worklist iteration and populate
95 // the set of GlobalValue references encountered. Invoked either on an
96 // Instruction or a GlobalVariable (which walks its initializer).
97 // Return true if any of the operands contains blockaddress. This is important
98 // to know when computing summary for global var, because if global variable
99 // references basic block address we can't import it separately from function
100 // containing that basic block. For simplicity we currently don't import such
101 // global vars at all. When importing function we aren't interested if any
102 // instruction in it takes an address of any basic block, because instruction
103 // can only take an address of basic block located in the same function.
104 // Set `RefLocalLinkageIFunc` to true if the analyzed value references a
105 // local-linkage ifunc.
106 static bool
107 findRefEdges(ModuleSummaryIndex &Index, const User *CurUser,
108              SetVector<ValueInfo, SmallVector<ValueInfo, 0>> &RefEdges,
109              SmallPtrSet<const User *, 8> &Visited,
110              bool &RefLocalLinkageIFunc) {
111   bool HasBlockAddress = false;
112   SmallVector<const User *, 32> Worklist;
113   if (Visited.insert(CurUser).second)
114     Worklist.push_back(CurUser);
115 
116   while (!Worklist.empty()) {
117     const User *U = Worklist.pop_back_val();
118     const auto *CB = dyn_cast<CallBase>(U);
119 
120     for (const auto &OI : U->operands()) {
121       const User *Operand = dyn_cast<User>(OI);
122       if (!Operand)
123         continue;
124       if (isa<BlockAddress>(Operand)) {
125         HasBlockAddress = true;
126         continue;
127       }
128       if (auto *GV = dyn_cast<GlobalValue>(Operand)) {
129         // We have a reference to a global value. This should be added to
130         // the reference set unless it is a callee. Callees are handled
131         // specially by WriteFunction and are added to a separate list.
132         if (!(CB && CB->isCallee(&OI))) {
133           // If an ifunc has local linkage, do not add it into ref edges, and
134           // sets `RefLocalLinkageIFunc` to true. The referencer is not eligible
135           // for import. An ifunc doesn't have summary and ThinLTO cannot
136           // promote it; importing the referencer may cause linkage errors.
137           if (auto *GI = dyn_cast_if_present<GlobalIFunc>(GV);
138               GI && GI->hasLocalLinkage()) {
139             RefLocalLinkageIFunc = true;
140             continue;
141           }
142           RefEdges.insert(Index.getOrInsertValueInfo(GV));
143         }
144         continue;
145       }
146       if (Visited.insert(Operand).second)
147         Worklist.push_back(Operand);
148     }
149   }
150 
151   const Instruction *I = dyn_cast<Instruction>(CurUser);
152   if (I) {
153     uint64_t TotalCount = 0;
154     // MaxNumVTableAnnotations is the maximum number of vtables annotated on
155     // the instruction.
156     auto ValueDataArray = getValueProfDataFromInst(
157         *I, IPVK_VTableTarget, MaxNumVTableAnnotations, TotalCount);
158 
159     for (const auto &V : ValueDataArray)
160       RefEdges.insert(Index.getOrInsertValueInfo(/* VTableGUID = */
161                                                  V.Value));
162   }
163   return HasBlockAddress;
164 }
165 
166 static CalleeInfo::HotnessType getHotness(uint64_t ProfileCount,
167                                           ProfileSummaryInfo *PSI) {
168   if (!PSI)
169     return CalleeInfo::HotnessType::Unknown;
170   if (PSI->isHotCount(ProfileCount))
171     return CalleeInfo::HotnessType::Hot;
172   if (PSI->isColdCount(ProfileCount))
173     return CalleeInfo::HotnessType::Cold;
174   return CalleeInfo::HotnessType::None;
175 }
176 
177 static bool isNonRenamableLocal(const GlobalValue &GV) {
178   return GV.hasSection() && GV.hasLocalLinkage();
179 }
180 
181 /// Determine whether this call has all constant integer arguments (excluding
182 /// "this") and summarize it to VCalls or ConstVCalls as appropriate.
183 static void addVCallToSet(
184     DevirtCallSite Call, GlobalValue::GUID Guid,
185     SetVector<FunctionSummary::VFuncId, std::vector<FunctionSummary::VFuncId>>
186         &VCalls,
187     SetVector<FunctionSummary::ConstVCall,
188               std::vector<FunctionSummary::ConstVCall>> &ConstVCalls) {
189   std::vector<uint64_t> Args;
190   // Start from the second argument to skip the "this" pointer.
191   for (auto &Arg : drop_begin(Call.CB.args())) {
192     auto *CI = dyn_cast<ConstantInt>(Arg);
193     if (!CI || CI->getBitWidth() > 64) {
194       VCalls.insert({Guid, Call.Offset});
195       return;
196     }
197     Args.push_back(CI->getZExtValue());
198   }
199   ConstVCalls.insert({{Guid, Call.Offset}, std::move(Args)});
200 }
201 
202 /// If this intrinsic call requires that we add information to the function
203 /// summary, do so via the non-constant reference arguments.
204 static void addIntrinsicToSummary(
205     const CallInst *CI,
206     SetVector<GlobalValue::GUID, std::vector<GlobalValue::GUID>> &TypeTests,
207     SetVector<FunctionSummary::VFuncId, std::vector<FunctionSummary::VFuncId>>
208         &TypeTestAssumeVCalls,
209     SetVector<FunctionSummary::VFuncId, std::vector<FunctionSummary::VFuncId>>
210         &TypeCheckedLoadVCalls,
211     SetVector<FunctionSummary::ConstVCall,
212               std::vector<FunctionSummary::ConstVCall>>
213         &TypeTestAssumeConstVCalls,
214     SetVector<FunctionSummary::ConstVCall,
215               std::vector<FunctionSummary::ConstVCall>>
216         &TypeCheckedLoadConstVCalls,
217     DominatorTree &DT) {
218   switch (CI->getCalledFunction()->getIntrinsicID()) {
219   case Intrinsic::type_test:
220   case Intrinsic::public_type_test: {
221     auto *TypeMDVal = cast<MetadataAsValue>(CI->getArgOperand(1));
222     auto *TypeId = dyn_cast<MDString>(TypeMDVal->getMetadata());
223     if (!TypeId)
224       break;
225     GlobalValue::GUID Guid = GlobalValue::getGUID(TypeId->getString());
226 
227     // Produce a summary from type.test intrinsics. We only summarize type.test
228     // intrinsics that are used other than by an llvm.assume intrinsic.
229     // Intrinsics that are assumed are relevant only to the devirtualization
230     // pass, not the type test lowering pass.
231     bool HasNonAssumeUses = llvm::any_of(CI->uses(), [](const Use &CIU) {
232       return !isa<AssumeInst>(CIU.getUser());
233     });
234     if (HasNonAssumeUses)
235       TypeTests.insert(Guid);
236 
237     SmallVector<DevirtCallSite, 4> DevirtCalls;
238     SmallVector<CallInst *, 4> Assumes;
239     findDevirtualizableCallsForTypeTest(DevirtCalls, Assumes, CI, DT);
240     for (auto &Call : DevirtCalls)
241       addVCallToSet(Call, Guid, TypeTestAssumeVCalls,
242                     TypeTestAssumeConstVCalls);
243 
244     break;
245   }
246 
247   case Intrinsic::type_checked_load_relative:
248   case Intrinsic::type_checked_load: {
249     auto *TypeMDVal = cast<MetadataAsValue>(CI->getArgOperand(2));
250     auto *TypeId = dyn_cast<MDString>(TypeMDVal->getMetadata());
251     if (!TypeId)
252       break;
253     GlobalValue::GUID Guid = GlobalValue::getGUID(TypeId->getString());
254 
255     SmallVector<DevirtCallSite, 4> DevirtCalls;
256     SmallVector<Instruction *, 4> LoadedPtrs;
257     SmallVector<Instruction *, 4> Preds;
258     bool HasNonCallUses = false;
259     findDevirtualizableCallsForTypeCheckedLoad(DevirtCalls, LoadedPtrs, Preds,
260                                                HasNonCallUses, CI, DT);
261     // Any non-call uses of the result of llvm.type.checked.load will
262     // prevent us from optimizing away the llvm.type.test.
263     if (HasNonCallUses)
264       TypeTests.insert(Guid);
265     for (auto &Call : DevirtCalls)
266       addVCallToSet(Call, Guid, TypeCheckedLoadVCalls,
267                     TypeCheckedLoadConstVCalls);
268 
269     break;
270   }
271   default:
272     break;
273   }
274 }
275 
276 static bool isNonVolatileLoad(const Instruction *I) {
277   if (const auto *LI = dyn_cast<LoadInst>(I))
278     return !LI->isVolatile();
279 
280   return false;
281 }
282 
283 static bool isNonVolatileStore(const Instruction *I) {
284   if (const auto *SI = dyn_cast<StoreInst>(I))
285     return !SI->isVolatile();
286 
287   return false;
288 }
289 
290 // Returns true if the function definition must be unreachable.
291 //
292 // Note if this helper function returns true, `F` is guaranteed
293 // to be unreachable; if it returns false, `F` might still
294 // be unreachable but not covered by this helper function.
295 static bool mustBeUnreachableFunction(const Function &F) {
296   // A function must be unreachable if its entry block ends with an
297   // 'unreachable'.
298   assert(!F.isDeclaration());
299   return isa<UnreachableInst>(F.getEntryBlock().getTerminator());
300 }
301 
302 static void computeFunctionSummary(
303     ModuleSummaryIndex &Index, const Module &M, const Function &F,
304     BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, DominatorTree &DT,
305     bool HasLocalsInUsedOrAsm, DenseSet<GlobalValue::GUID> &CantBePromoted,
306     bool IsThinLTO,
307     std::function<const StackSafetyInfo *(const Function &F)> GetSSICallback) {
308   // Summary not currently supported for anonymous functions, they should
309   // have been named.
310   assert(F.hasName());
311 
312   unsigned NumInsts = 0;
313   // Map from callee ValueId to profile count. Used to accumulate profile
314   // counts for all static calls to a given callee.
315   MapVector<ValueInfo, CalleeInfo, DenseMap<ValueInfo, unsigned>,
316             SmallVector<FunctionSummary::EdgeTy, 0>>
317       CallGraphEdges;
318   SetVector<ValueInfo, SmallVector<ValueInfo, 0>> RefEdges, LoadRefEdges,
319       StoreRefEdges;
320   SetVector<GlobalValue::GUID, std::vector<GlobalValue::GUID>> TypeTests;
321   SetVector<FunctionSummary::VFuncId, std::vector<FunctionSummary::VFuncId>>
322       TypeTestAssumeVCalls, TypeCheckedLoadVCalls;
323   SetVector<FunctionSummary::ConstVCall,
324             std::vector<FunctionSummary::ConstVCall>>
325       TypeTestAssumeConstVCalls, TypeCheckedLoadConstVCalls;
326   ICallPromotionAnalysis ICallAnalysis;
327   SmallPtrSet<const User *, 8> Visited;
328 
329   // Add personality function, prefix data and prologue data to function's ref
330   // list.
331   bool HasLocalIFuncCallOrRef = false;
332   findRefEdges(Index, &F, RefEdges, Visited, HasLocalIFuncCallOrRef);
333   std::vector<const Instruction *> NonVolatileLoads;
334   std::vector<const Instruction *> NonVolatileStores;
335 
336   std::vector<CallsiteInfo> Callsites;
337   std::vector<AllocInfo> Allocs;
338 
339 #ifndef NDEBUG
340   DenseSet<const CallBase *> CallsThatMayHaveMemprofSummary;
341 #endif
342 
343   bool HasInlineAsmMaybeReferencingInternal = false;
344   bool HasIndirBranchToBlockAddress = false;
345   bool HasUnknownCall = false;
346   bool MayThrow = false;
347   for (const BasicBlock &BB : F) {
348     // We don't allow inlining of function with indirect branch to blockaddress.
349     // If the blockaddress escapes the function, e.g., via a global variable,
350     // inlining may lead to an invalid cross-function reference. So we shouldn't
351     // import such function either.
352     if (BB.hasAddressTaken()) {
353       for (User *U : BlockAddress::get(const_cast<BasicBlock *>(&BB))->users())
354         if (!isa<CallBrInst>(*U)) {
355           HasIndirBranchToBlockAddress = true;
356           break;
357         }
358     }
359 
360     for (const Instruction &I : BB) {
361       if (I.isDebugOrPseudoInst())
362         continue;
363       ++NumInsts;
364 
365       // Regular LTO module doesn't participate in ThinLTO import,
366       // so no reference from it can be read/writeonly, since this
367       // would require importing variable as local copy
368       if (IsThinLTO) {
369         if (isNonVolatileLoad(&I)) {
370           // Postpone processing of non-volatile load instructions
371           // See comments below
372           Visited.insert(&I);
373           NonVolatileLoads.push_back(&I);
374           continue;
375         } else if (isNonVolatileStore(&I)) {
376           Visited.insert(&I);
377           NonVolatileStores.push_back(&I);
378           // All references from second operand of store (destination address)
379           // can be considered write-only if they're not referenced by any
380           // non-store instruction. References from first operand of store
381           // (stored value) can't be treated either as read- or as write-only
382           // so we add them to RefEdges as we do with all other instructions
383           // except non-volatile load.
384           Value *Stored = I.getOperand(0);
385           if (auto *GV = dyn_cast<GlobalValue>(Stored))
386             // findRefEdges will try to examine GV operands, so instead
387             // of calling it we should add GV to RefEdges directly.
388             RefEdges.insert(Index.getOrInsertValueInfo(GV));
389           else if (auto *U = dyn_cast<User>(Stored))
390             findRefEdges(Index, U, RefEdges, Visited, HasLocalIFuncCallOrRef);
391           continue;
392         }
393       }
394       findRefEdges(Index, &I, RefEdges, Visited, HasLocalIFuncCallOrRef);
395       const auto *CB = dyn_cast<CallBase>(&I);
396       if (!CB) {
397         if (I.mayThrow())
398           MayThrow = true;
399         continue;
400       }
401 
402       const auto *CI = dyn_cast<CallInst>(&I);
403       // Since we don't know exactly which local values are referenced in inline
404       // assembly, conservatively mark the function as possibly referencing
405       // a local value from inline assembly to ensure we don't export a
406       // reference (which would require renaming and promotion of the
407       // referenced value).
408       if (HasLocalsInUsedOrAsm && CI && CI->isInlineAsm())
409         HasInlineAsmMaybeReferencingInternal = true;
410 
411       // Compute this once per indirect call.
412       uint32_t NumCandidates = 0;
413       uint64_t TotalCount = 0;
414       MutableArrayRef<InstrProfValueData> CandidateProfileData;
415 
416       auto *CalledValue = CB->getCalledOperand();
417       auto *CalledFunction = CB->getCalledFunction();
418       if (CalledValue && !CalledFunction) {
419         CalledValue = CalledValue->stripPointerCasts();
420         // Stripping pointer casts can reveal a called function.
421         CalledFunction = dyn_cast<Function>(CalledValue);
422       }
423       // Check if this is an alias to a function. If so, get the
424       // called aliasee for the checks below.
425       if (auto *GA = dyn_cast<GlobalAlias>(CalledValue)) {
426         assert(!CalledFunction && "Expected null called function in callsite for alias");
427         CalledFunction = dyn_cast<Function>(GA->getAliaseeObject());
428       }
429       // Check if this is a direct call to a known function or a known
430       // intrinsic, or an indirect call with profile data.
431       if (CalledFunction) {
432         if (CI && CalledFunction->isIntrinsic()) {
433           addIntrinsicToSummary(
434               CI, TypeTests, TypeTestAssumeVCalls, TypeCheckedLoadVCalls,
435               TypeTestAssumeConstVCalls, TypeCheckedLoadConstVCalls, DT);
436           continue;
437         }
438         // We should have named any anonymous globals
439         assert(CalledFunction->hasName());
440         auto ScaledCount = PSI->getProfileCount(*CB, BFI);
441         auto Hotness = ScaledCount ? getHotness(*ScaledCount, PSI)
442                                    : CalleeInfo::HotnessType::Unknown;
443         if (ForceSummaryEdgesCold != FunctionSummary::FSHT_None)
444           Hotness = CalleeInfo::HotnessType::Cold;
445 
446         // Use the original CalledValue, in case it was an alias. We want
447         // to record the call edge to the alias in that case. Eventually
448         // an alias summary will be created to associate the alias and
449         // aliasee.
450         auto &ValueInfo = CallGraphEdges[Index.getOrInsertValueInfo(
451             cast<GlobalValue>(CalledValue))];
452         ValueInfo.updateHotness(Hotness);
453         if (CB->isTailCall())
454           ValueInfo.setHasTailCall(true);
455         // Add the relative block frequency to CalleeInfo if there is no profile
456         // information.
457         if (BFI != nullptr && Hotness == CalleeInfo::HotnessType::Unknown) {
458           uint64_t BBFreq = BFI->getBlockFreq(&BB).getFrequency();
459           uint64_t EntryFreq = BFI->getEntryFreq().getFrequency();
460           ValueInfo.updateRelBlockFreq(BBFreq, EntryFreq);
461         }
462       } else {
463         HasUnknownCall = true;
464         // If F is imported, a local linkage ifunc (e.g. target_clones on a
465         // static function) called by F will be cloned. Since summaries don't
466         // track ifunc, we do not know implementation functions referenced by
467         // the ifunc resolver need to be promoted in the exporter, and we will
468         // get linker errors due to cloned declarations for implementation
469         // functions. As a simple fix, just mark F as not eligible for import.
470         // Non-local ifunc is not cloned and does not have the issue.
471         if (auto *GI = dyn_cast_if_present<GlobalIFunc>(CalledValue))
472           if (GI->hasLocalLinkage())
473             HasLocalIFuncCallOrRef = true;
474         // Skip inline assembly calls.
475         if (CI && CI->isInlineAsm())
476           continue;
477         // Skip direct calls.
478         if (!CalledValue || isa<Constant>(CalledValue))
479           continue;
480 
481         // Check if the instruction has a callees metadata. If so, add callees
482         // to CallGraphEdges to reflect the references from the metadata, and
483         // to enable importing for subsequent indirect call promotion and
484         // inlining.
485         if (auto *MD = I.getMetadata(LLVMContext::MD_callees)) {
486           for (const auto &Op : MD->operands()) {
487             Function *Callee = mdconst::extract_or_null<Function>(Op);
488             if (Callee)
489               CallGraphEdges[Index.getOrInsertValueInfo(Callee)];
490           }
491         }
492 
493         CandidateProfileData =
494             ICallAnalysis.getPromotionCandidatesForInstruction(&I, TotalCount,
495                                                                NumCandidates);
496         for (const auto &Candidate : CandidateProfileData)
497           CallGraphEdges[Index.getOrInsertValueInfo(Candidate.Value)]
498               .updateHotness(getHotness(Candidate.Count, PSI));
499       }
500 
501       // Summarize memprof related metadata. This is only needed for ThinLTO.
502       if (!IsThinLTO)
503         continue;
504 
505       // Skip indirect calls if we haven't enabled memprof ICP.
506       if (!CalledFunction && !EnableMemProfIndirectCallSupport)
507         continue;
508 
509       // Ensure we keep this analysis in sync with the handling in the ThinLTO
510       // backend (see MemProfContextDisambiguation::applyImport). Save this call
511       // so that we can skip it in checking the reverse case later.
512       assert(mayHaveMemprofSummary(CB));
513 #ifndef NDEBUG
514       CallsThatMayHaveMemprofSummary.insert(CB);
515 #endif
516 
517       // Compute the list of stack ids first (so we can trim them from the stack
518       // ids on any MIBs).
519       CallStack<MDNode, MDNode::op_iterator> InstCallsite(
520           I.getMetadata(LLVMContext::MD_callsite));
521       auto *MemProfMD = I.getMetadata(LLVMContext::MD_memprof);
522       if (MemProfMD) {
523         std::vector<MIBInfo> MIBs;
524         std::vector<uint64_t> TotalSizes;
525         for (auto &MDOp : MemProfMD->operands()) {
526           auto *MIBMD = cast<const MDNode>(MDOp);
527           MDNode *StackNode = getMIBStackNode(MIBMD);
528           assert(StackNode);
529           SmallVector<unsigned> StackIdIndices;
530           CallStack<MDNode, MDNode::op_iterator> StackContext(StackNode);
531           // Collapse out any on the allocation call (inlining).
532           for (auto ContextIter =
533                    StackContext.beginAfterSharedPrefix(InstCallsite);
534                ContextIter != StackContext.end(); ++ContextIter) {
535             unsigned StackIdIdx = Index.addOrGetStackIdIndex(*ContextIter);
536             // If this is a direct recursion, simply skip the duplicate
537             // entries. If this is mutual recursion, handling is left to
538             // the LTO link analysis client.
539             if (StackIdIndices.empty() || StackIdIndices.back() != StackIdIdx)
540               StackIdIndices.push_back(StackIdIdx);
541           }
542           MIBs.push_back(
543               MIBInfo(getMIBAllocType(MIBMD), std::move(StackIdIndices)));
544           if (MemProfReportHintedSizes) {
545             auto TotalSize = getMIBTotalSize(MIBMD);
546             assert(TotalSize);
547             TotalSizes.push_back(TotalSize);
548           }
549         }
550         Allocs.push_back(AllocInfo(std::move(MIBs)));
551         if (MemProfReportHintedSizes) {
552           assert(Allocs.back().MIBs.size() == TotalSizes.size());
553           Allocs.back().TotalSizes = std::move(TotalSizes);
554         }
555       } else if (!InstCallsite.empty()) {
556         SmallVector<unsigned> StackIdIndices;
557         for (auto StackId : InstCallsite)
558           StackIdIndices.push_back(Index.addOrGetStackIdIndex(StackId));
559         if (CalledFunction) {
560           // Use the original CalledValue, in case it was an alias. We want
561           // to record the call edge to the alias in that case. Eventually
562           // an alias summary will be created to associate the alias and
563           // aliasee.
564           auto CalleeValueInfo =
565               Index.getOrInsertValueInfo(cast<GlobalValue>(CalledValue));
566           Callsites.push_back({CalleeValueInfo, StackIdIndices});
567         } else {
568           assert(EnableMemProfIndirectCallSupport);
569           // For indirect callsites, create multiple Callsites, one per target.
570           // This enables having a different set of clone versions per target,
571           // and we will apply the cloning decisions while speculatively
572           // devirtualizing in the ThinLTO backends.
573           for (const auto &Candidate : CandidateProfileData) {
574             auto CalleeValueInfo = Index.getOrInsertValueInfo(Candidate.Value);
575             Callsites.push_back({CalleeValueInfo, StackIdIndices});
576           }
577         }
578       }
579     }
580   }
581 
582   if (PSI->hasPartialSampleProfile() && ScalePartialSampleProfileWorkingSetSize)
583     Index.addBlockCount(F.size());
584 
585   SmallVector<ValueInfo, 0> Refs;
586   if (IsThinLTO) {
587     auto AddRefEdges =
588         [&](const std::vector<const Instruction *> &Instrs,
589             SetVector<ValueInfo, SmallVector<ValueInfo, 0>> &Edges,
590             SmallPtrSet<const User *, 8> &Cache) {
591           for (const auto *I : Instrs) {
592             Cache.erase(I);
593             findRefEdges(Index, I, Edges, Cache, HasLocalIFuncCallOrRef);
594           }
595         };
596 
597     // By now we processed all instructions in a function, except
598     // non-volatile loads and non-volatile value stores. Let's find
599     // ref edges for both of instruction sets
600     AddRefEdges(NonVolatileLoads, LoadRefEdges, Visited);
601     // We can add some values to the Visited set when processing load
602     // instructions which are also used by stores in NonVolatileStores.
603     // For example this can happen if we have following code:
604     //
605     // store %Derived* @foo, %Derived** bitcast (%Base** @bar to %Derived**)
606     // %42 = load %Derived*, %Derived** bitcast (%Base** @bar to %Derived**)
607     //
608     // After processing loads we'll add bitcast to the Visited set, and if
609     // we use the same set while processing stores, we'll never see store
610     // to @bar and @bar will be mistakenly treated as readonly.
611     SmallPtrSet<const llvm::User *, 8> StoreCache;
612     AddRefEdges(NonVolatileStores, StoreRefEdges, StoreCache);
613 
614     // If both load and store instruction reference the same variable
615     // we won't be able to optimize it. Add all such reference edges
616     // to RefEdges set.
617     for (const auto &VI : StoreRefEdges)
618       if (LoadRefEdges.remove(VI))
619         RefEdges.insert(VI);
620 
621     unsigned RefCnt = RefEdges.size();
622     // All new reference edges inserted in two loops below are either
623     // read or write only. They will be grouped in the end of RefEdges
624     // vector, so we can use a single integer value to identify them.
625     for (const auto &VI : LoadRefEdges)
626       RefEdges.insert(VI);
627 
628     unsigned FirstWORef = RefEdges.size();
629     for (const auto &VI : StoreRefEdges)
630       RefEdges.insert(VI);
631 
632     Refs = RefEdges.takeVector();
633     for (; RefCnt < FirstWORef; ++RefCnt)
634       Refs[RefCnt].setReadOnly();
635 
636     for (; RefCnt < Refs.size(); ++RefCnt)
637       Refs[RefCnt].setWriteOnly();
638   } else {
639     Refs = RefEdges.takeVector();
640   }
641   // Explicit add hot edges to enforce importing for designated GUIDs for
642   // sample PGO, to enable the same inlines as the profiled optimized binary.
643   for (auto &I : F.getImportGUIDs())
644     CallGraphEdges[Index.getOrInsertValueInfo(I)].updateHotness(
645         ForceSummaryEdgesCold == FunctionSummary::FSHT_All
646             ? CalleeInfo::HotnessType::Cold
647             : CalleeInfo::HotnessType::Critical);
648 
649 #ifndef NDEBUG
650   // Make sure that all calls we decided could not have memprof summaries get a
651   // false value for mayHaveMemprofSummary, to ensure that this handling remains
652   // in sync with the ThinLTO backend handling.
653   if (IsThinLTO) {
654     for (const BasicBlock &BB : F) {
655       for (const Instruction &I : BB) {
656         const auto *CB = dyn_cast<CallBase>(&I);
657         if (!CB)
658           continue;
659         // We already checked these above.
660         if (CallsThatMayHaveMemprofSummary.count(CB))
661           continue;
662         assert(!mayHaveMemprofSummary(CB));
663       }
664     }
665   }
666 #endif
667 
668   bool NonRenamableLocal = isNonRenamableLocal(F);
669   bool NotEligibleForImport =
670       NonRenamableLocal || HasInlineAsmMaybeReferencingInternal ||
671       HasIndirBranchToBlockAddress || HasLocalIFuncCallOrRef;
672   GlobalValueSummary::GVFlags Flags(
673       F.getLinkage(), F.getVisibility(), NotEligibleForImport,
674       /* Live = */ false, F.isDSOLocal(), F.canBeOmittedFromSymbolTable(),
675       GlobalValueSummary::ImportKind::Definition);
676   FunctionSummary::FFlags FunFlags{
677       F.doesNotAccessMemory(), F.onlyReadsMemory() && !F.doesNotAccessMemory(),
678       F.hasFnAttribute(Attribute::NoRecurse), F.returnDoesNotAlias(),
679       // FIXME: refactor this to use the same code that inliner is using.
680       // Don't try to import functions with noinline attribute.
681       F.getAttributes().hasFnAttr(Attribute::NoInline),
682       F.hasFnAttribute(Attribute::AlwaysInline),
683       F.hasFnAttribute(Attribute::NoUnwind), MayThrow, HasUnknownCall,
684       mustBeUnreachableFunction(F)};
685   std::vector<FunctionSummary::ParamAccess> ParamAccesses;
686   if (auto *SSI = GetSSICallback(F))
687     ParamAccesses = SSI->getParamAccesses(Index);
688   auto FuncSummary = std::make_unique<FunctionSummary>(
689       Flags, NumInsts, FunFlags, std::move(Refs), CallGraphEdges.takeVector(),
690       TypeTests.takeVector(), TypeTestAssumeVCalls.takeVector(),
691       TypeCheckedLoadVCalls.takeVector(),
692       TypeTestAssumeConstVCalls.takeVector(),
693       TypeCheckedLoadConstVCalls.takeVector(), std::move(ParamAccesses),
694       std::move(Callsites), std::move(Allocs));
695   if (NonRenamableLocal)
696     CantBePromoted.insert(F.getGUID());
697   Index.addGlobalValueSummary(F, std::move(FuncSummary));
698 }
699 
700 /// Find function pointers referenced within the given vtable initializer
701 /// (or subset of an initializer) \p I. The starting offset of \p I within
702 /// the vtable initializer is \p StartingOffset. Any discovered function
703 /// pointers are added to \p VTableFuncs along with their cumulative offset
704 /// within the initializer.
705 static void findFuncPointers(const Constant *I, uint64_t StartingOffset,
706                              const Module &M, ModuleSummaryIndex &Index,
707                              VTableFuncList &VTableFuncs,
708                              const GlobalVariable &OrigGV) {
709   // First check if this is a function pointer.
710   if (I->getType()->isPointerTy()) {
711     auto C = I->stripPointerCasts();
712     auto A = dyn_cast<GlobalAlias>(C);
713     if (isa<Function>(C) || (A && isa<Function>(A->getAliasee()))) {
714       auto GV = dyn_cast<GlobalValue>(C);
715       assert(GV);
716       // We can disregard __cxa_pure_virtual as a possible call target, as
717       // calls to pure virtuals are UB.
718       if (GV && GV->getName() != "__cxa_pure_virtual")
719         VTableFuncs.push_back({Index.getOrInsertValueInfo(GV), StartingOffset});
720       return;
721     }
722   }
723 
724   // Walk through the elements in the constant struct or array and recursively
725   // look for virtual function pointers.
726   const DataLayout &DL = M.getDataLayout();
727   if (auto *C = dyn_cast<ConstantStruct>(I)) {
728     StructType *STy = dyn_cast<StructType>(C->getType());
729     assert(STy);
730     const StructLayout *SL = DL.getStructLayout(C->getType());
731 
732     for (auto EI : llvm::enumerate(STy->elements())) {
733       auto Offset = SL->getElementOffset(EI.index());
734       unsigned Op = SL->getElementContainingOffset(Offset);
735       findFuncPointers(cast<Constant>(I->getOperand(Op)),
736                        StartingOffset + Offset, M, Index, VTableFuncs, OrigGV);
737     }
738   } else if (auto *C = dyn_cast<ConstantArray>(I)) {
739     ArrayType *ATy = C->getType();
740     Type *EltTy = ATy->getElementType();
741     uint64_t EltSize = DL.getTypeAllocSize(EltTy);
742     for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) {
743       findFuncPointers(cast<Constant>(I->getOperand(i)),
744                        StartingOffset + i * EltSize, M, Index, VTableFuncs,
745                        OrigGV);
746     }
747   } else if (const auto *CE = dyn_cast<ConstantExpr>(I)) {
748     // For relative vtables, the next sub-component should be a trunc.
749     if (CE->getOpcode() != Instruction::Trunc ||
750         !(CE = dyn_cast<ConstantExpr>(CE->getOperand(0))))
751       return;
752 
753     // If this constant can be reduced to the offset between a function and a
754     // global, then we know this is a valid virtual function if the RHS is the
755     // original vtable we're scanning through.
756     if (CE->getOpcode() == Instruction::Sub) {
757       GlobalValue *LHS, *RHS;
758       APSInt LHSOffset, RHSOffset;
759       if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHS, LHSOffset, DL) &&
760           IsConstantOffsetFromGlobal(CE->getOperand(1), RHS, RHSOffset, DL) &&
761           RHS == &OrigGV &&
762 
763           // For relative vtables, this component should point to the callable
764           // function without any offsets.
765           LHSOffset == 0 &&
766 
767           // Also, the RHS should always point to somewhere within the vtable.
768           RHSOffset <=
769               static_cast<uint64_t>(DL.getTypeAllocSize(OrigGV.getInitializer()->getType()))) {
770         findFuncPointers(LHS, StartingOffset, M, Index, VTableFuncs, OrigGV);
771       }
772     }
773   }
774 }
775 
776 // Identify the function pointers referenced by vtable definition \p V.
777 static void computeVTableFuncs(ModuleSummaryIndex &Index,
778                                const GlobalVariable &V, const Module &M,
779                                VTableFuncList &VTableFuncs) {
780   if (!V.isConstant())
781     return;
782 
783   findFuncPointers(V.getInitializer(), /*StartingOffset=*/0, M, Index,
784                    VTableFuncs, V);
785 
786 #ifndef NDEBUG
787   // Validate that the VTableFuncs list is ordered by offset.
788   uint64_t PrevOffset = 0;
789   for (auto &P : VTableFuncs) {
790     // The findVFuncPointers traversal should have encountered the
791     // functions in offset order. We need to use ">=" since PrevOffset
792     // starts at 0.
793     assert(P.VTableOffset >= PrevOffset);
794     PrevOffset = P.VTableOffset;
795   }
796 #endif
797 }
798 
799 /// Record vtable definition \p V for each type metadata it references.
800 static void
801 recordTypeIdCompatibleVtableReferences(ModuleSummaryIndex &Index,
802                                        const GlobalVariable &V,
803                                        SmallVectorImpl<MDNode *> &Types) {
804   for (MDNode *Type : Types) {
805     auto TypeID = Type->getOperand(1).get();
806 
807     uint64_t Offset =
808         cast<ConstantInt>(
809             cast<ConstantAsMetadata>(Type->getOperand(0))->getValue())
810             ->getZExtValue();
811 
812     if (auto *TypeId = dyn_cast<MDString>(TypeID))
813       Index.getOrInsertTypeIdCompatibleVtableSummary(TypeId->getString())
814           .push_back({Offset, Index.getOrInsertValueInfo(&V)});
815   }
816 }
817 
818 static void computeVariableSummary(ModuleSummaryIndex &Index,
819                                    const GlobalVariable &V,
820                                    DenseSet<GlobalValue::GUID> &CantBePromoted,
821                                    const Module &M,
822                                    SmallVectorImpl<MDNode *> &Types) {
823   SetVector<ValueInfo, SmallVector<ValueInfo, 0>> RefEdges;
824   SmallPtrSet<const User *, 8> Visited;
825   bool RefLocalIFunc = false;
826   bool HasBlockAddress =
827       findRefEdges(Index, &V, RefEdges, Visited, RefLocalIFunc);
828   const bool NotEligibleForImport = (HasBlockAddress || RefLocalIFunc);
829   bool NonRenamableLocal = isNonRenamableLocal(V);
830   GlobalValueSummary::GVFlags Flags(
831       V.getLinkage(), V.getVisibility(), NonRenamableLocal,
832       /* Live = */ false, V.isDSOLocal(), V.canBeOmittedFromSymbolTable(),
833       GlobalValueSummary::Definition);
834 
835   VTableFuncList VTableFuncs;
836   // If splitting is not enabled, then we compute the summary information
837   // necessary for index-based whole program devirtualization.
838   if (!Index.enableSplitLTOUnit()) {
839     Types.clear();
840     V.getMetadata(LLVMContext::MD_type, Types);
841     if (!Types.empty()) {
842       // Identify the function pointers referenced by this vtable definition.
843       computeVTableFuncs(Index, V, M, VTableFuncs);
844 
845       // Record this vtable definition for each type metadata it references.
846       recordTypeIdCompatibleVtableReferences(Index, V, Types);
847     }
848   }
849 
850   // Don't mark variables we won't be able to internalize as read/write-only.
851   bool CanBeInternalized =
852       !V.hasComdat() && !V.hasAppendingLinkage() && !V.isInterposable() &&
853       !V.hasAvailableExternallyLinkage() && !V.hasDLLExportStorageClass();
854   bool Constant = V.isConstant();
855   GlobalVarSummary::GVarFlags VarFlags(CanBeInternalized,
856                                        Constant ? false : CanBeInternalized,
857                                        Constant, V.getVCallVisibility());
858   auto GVarSummary = std::make_unique<GlobalVarSummary>(Flags, VarFlags,
859                                                          RefEdges.takeVector());
860   if (NonRenamableLocal)
861     CantBePromoted.insert(V.getGUID());
862   if (NotEligibleForImport)
863     GVarSummary->setNotEligibleToImport();
864   if (!VTableFuncs.empty())
865     GVarSummary->setVTableFuncs(VTableFuncs);
866   Index.addGlobalValueSummary(V, std::move(GVarSummary));
867 }
868 
869 static void computeAliasSummary(ModuleSummaryIndex &Index, const GlobalAlias &A,
870                                 DenseSet<GlobalValue::GUID> &CantBePromoted) {
871   // Skip summary for indirect function aliases as summary for aliasee will not
872   // be emitted.
873   const GlobalObject *Aliasee = A.getAliaseeObject();
874   if (isa<GlobalIFunc>(Aliasee))
875     return;
876   bool NonRenamableLocal = isNonRenamableLocal(A);
877   GlobalValueSummary::GVFlags Flags(
878       A.getLinkage(), A.getVisibility(), NonRenamableLocal,
879       /* Live = */ false, A.isDSOLocal(), A.canBeOmittedFromSymbolTable(),
880       GlobalValueSummary::Definition);
881   auto AS = std::make_unique<AliasSummary>(Flags);
882   auto AliaseeVI = Index.getValueInfo(Aliasee->getGUID());
883   assert(AliaseeVI && "Alias expects aliasee summary to be available");
884   assert(AliaseeVI.getSummaryList().size() == 1 &&
885          "Expected a single entry per aliasee in per-module index");
886   AS->setAliasee(AliaseeVI, AliaseeVI.getSummaryList()[0].get());
887   if (NonRenamableLocal)
888     CantBePromoted.insert(A.getGUID());
889   Index.addGlobalValueSummary(A, std::move(AS));
890 }
891 
892 // Set LiveRoot flag on entries matching the given value name.
893 static void setLiveRoot(ModuleSummaryIndex &Index, StringRef Name) {
894   if (ValueInfo VI = Index.getValueInfo(GlobalValue::getGUID(Name)))
895     for (const auto &Summary : VI.getSummaryList())
896       Summary->setLive(true);
897 }
898 
899 ModuleSummaryIndex llvm::buildModuleSummaryIndex(
900     const Module &M,
901     std::function<BlockFrequencyInfo *(const Function &F)> GetBFICallback,
902     ProfileSummaryInfo *PSI,
903     std::function<const StackSafetyInfo *(const Function &F)> GetSSICallback) {
904   assert(PSI);
905   bool EnableSplitLTOUnit = false;
906   bool UnifiedLTO = false;
907   if (auto *MD = mdconst::extract_or_null<ConstantInt>(
908           M.getModuleFlag("EnableSplitLTOUnit")))
909     EnableSplitLTOUnit = MD->getZExtValue();
910   if (auto *MD =
911           mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("UnifiedLTO")))
912     UnifiedLTO = MD->getZExtValue();
913   ModuleSummaryIndex Index(/*HaveGVs=*/true, EnableSplitLTOUnit, UnifiedLTO);
914 
915   // Identify the local values in the llvm.used and llvm.compiler.used sets,
916   // which should not be exported as they would then require renaming and
917   // promotion, but we may have opaque uses e.g. in inline asm. We collect them
918   // here because we use this information to mark functions containing inline
919   // assembly calls as not importable.
920   SmallPtrSet<GlobalValue *, 4> LocalsUsed;
921   SmallVector<GlobalValue *, 4> Used;
922   // First collect those in the llvm.used set.
923   collectUsedGlobalVariables(M, Used, /*CompilerUsed=*/false);
924   // Next collect those in the llvm.compiler.used set.
925   collectUsedGlobalVariables(M, Used, /*CompilerUsed=*/true);
926   DenseSet<GlobalValue::GUID> CantBePromoted;
927   for (auto *V : Used) {
928     if (V->hasLocalLinkage()) {
929       LocalsUsed.insert(V);
930       CantBePromoted.insert(V->getGUID());
931     }
932   }
933 
934   bool HasLocalInlineAsmSymbol = false;
935   if (!M.getModuleInlineAsm().empty()) {
936     // Collect the local values defined by module level asm, and set up
937     // summaries for these symbols so that they can be marked as NoRename,
938     // to prevent export of any use of them in regular IR that would require
939     // renaming within the module level asm. Note we don't need to create a
940     // summary for weak or global defs, as they don't need to be flagged as
941     // NoRename, and defs in module level asm can't be imported anyway.
942     // Also, any values used but not defined within module level asm should
943     // be listed on the llvm.used or llvm.compiler.used global and marked as
944     // referenced from there.
945     ModuleSymbolTable::CollectAsmSymbols(
946         M, [&](StringRef Name, object::BasicSymbolRef::Flags Flags) {
947           // Symbols not marked as Weak or Global are local definitions.
948           if (Flags & (object::BasicSymbolRef::SF_Weak |
949                        object::BasicSymbolRef::SF_Global))
950             return;
951           HasLocalInlineAsmSymbol = true;
952           GlobalValue *GV = M.getNamedValue(Name);
953           if (!GV)
954             return;
955           assert(GV->isDeclaration() && "Def in module asm already has definition");
956           GlobalValueSummary::GVFlags GVFlags(
957               GlobalValue::InternalLinkage, GlobalValue::DefaultVisibility,
958               /* NotEligibleToImport = */ true,
959               /* Live = */ true,
960               /* Local */ GV->isDSOLocal(), GV->canBeOmittedFromSymbolTable(),
961               GlobalValueSummary::Definition);
962           CantBePromoted.insert(GV->getGUID());
963           // Create the appropriate summary type.
964           if (Function *F = dyn_cast<Function>(GV)) {
965             std::unique_ptr<FunctionSummary> Summary =
966                 std::make_unique<FunctionSummary>(
967                     GVFlags, /*InstCount=*/0,
968                     FunctionSummary::FFlags{
969                         F->hasFnAttribute(Attribute::ReadNone),
970                         F->hasFnAttribute(Attribute::ReadOnly),
971                         F->hasFnAttribute(Attribute::NoRecurse),
972                         F->returnDoesNotAlias(),
973                         /* NoInline = */ false,
974                         F->hasFnAttribute(Attribute::AlwaysInline),
975                         F->hasFnAttribute(Attribute::NoUnwind),
976                         /* MayThrow */ true,
977                         /* HasUnknownCall */ true,
978                         /* MustBeUnreachable */ false},
979                     SmallVector<ValueInfo, 0>{},
980                     SmallVector<FunctionSummary::EdgeTy, 0>{},
981                     ArrayRef<GlobalValue::GUID>{},
982                     ArrayRef<FunctionSummary::VFuncId>{},
983                     ArrayRef<FunctionSummary::VFuncId>{},
984                     ArrayRef<FunctionSummary::ConstVCall>{},
985                     ArrayRef<FunctionSummary::ConstVCall>{},
986                     ArrayRef<FunctionSummary::ParamAccess>{},
987                     ArrayRef<CallsiteInfo>{}, ArrayRef<AllocInfo>{});
988             Index.addGlobalValueSummary(*GV, std::move(Summary));
989           } else {
990             std::unique_ptr<GlobalVarSummary> Summary =
991                 std::make_unique<GlobalVarSummary>(
992                     GVFlags,
993                     GlobalVarSummary::GVarFlags(
994                         false, false, cast<GlobalVariable>(GV)->isConstant(),
995                         GlobalObject::VCallVisibilityPublic),
996                     SmallVector<ValueInfo, 0>{});
997             Index.addGlobalValueSummary(*GV, std::move(Summary));
998           }
999         });
1000   }
1001 
1002   bool IsThinLTO = true;
1003   if (auto *MD =
1004           mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO")))
1005     IsThinLTO = MD->getZExtValue();
1006 
1007   // Compute summaries for all functions defined in module, and save in the
1008   // index.
1009   for (const auto &F : M) {
1010     if (F.isDeclaration())
1011       continue;
1012 
1013     DominatorTree DT(const_cast<Function &>(F));
1014     BlockFrequencyInfo *BFI = nullptr;
1015     std::unique_ptr<BlockFrequencyInfo> BFIPtr;
1016     if (GetBFICallback)
1017       BFI = GetBFICallback(F);
1018     else if (F.hasProfileData()) {
1019       LoopInfo LI{DT};
1020       BranchProbabilityInfo BPI{F, LI};
1021       BFIPtr = std::make_unique<BlockFrequencyInfo>(F, BPI, LI);
1022       BFI = BFIPtr.get();
1023     }
1024 
1025     computeFunctionSummary(Index, M, F, BFI, PSI, DT,
1026                            !LocalsUsed.empty() || HasLocalInlineAsmSymbol,
1027                            CantBePromoted, IsThinLTO, GetSSICallback);
1028   }
1029 
1030   // Compute summaries for all variables defined in module, and save in the
1031   // index.
1032   SmallVector<MDNode *, 2> Types;
1033   for (const GlobalVariable &G : M.globals()) {
1034     if (G.isDeclaration())
1035       continue;
1036     computeVariableSummary(Index, G, CantBePromoted, M, Types);
1037   }
1038 
1039   // Compute summaries for all aliases defined in module, and save in the
1040   // index.
1041   for (const GlobalAlias &A : M.aliases())
1042     computeAliasSummary(Index, A, CantBePromoted);
1043 
1044   // Iterate through ifuncs, set their resolvers all alive.
1045   for (const GlobalIFunc &I : M.ifuncs()) {
1046     I.applyAlongResolverPath([&Index](const GlobalValue &GV) {
1047       Index.getGlobalValueSummary(GV)->setLive(true);
1048     });
1049   }
1050 
1051   for (auto *V : LocalsUsed) {
1052     auto *Summary = Index.getGlobalValueSummary(*V);
1053     assert(Summary && "Missing summary for global value");
1054     Summary->setNotEligibleToImport();
1055   }
1056 
1057   // The linker doesn't know about these LLVM produced values, so we need
1058   // to flag them as live in the index to ensure index-based dead value
1059   // analysis treats them as live roots of the analysis.
1060   setLiveRoot(Index, "llvm.used");
1061   setLiveRoot(Index, "llvm.compiler.used");
1062   setLiveRoot(Index, "llvm.global_ctors");
1063   setLiveRoot(Index, "llvm.global_dtors");
1064   setLiveRoot(Index, "llvm.global.annotations");
1065 
1066   for (auto &GlobalList : Index) {
1067     // Ignore entries for references that are undefined in the current module.
1068     if (GlobalList.second.SummaryList.empty())
1069       continue;
1070 
1071     assert(GlobalList.second.SummaryList.size() == 1 &&
1072            "Expected module's index to have one summary per GUID");
1073     auto &Summary = GlobalList.second.SummaryList[0];
1074     if (!IsThinLTO) {
1075       Summary->setNotEligibleToImport();
1076       continue;
1077     }
1078 
1079     bool AllRefsCanBeExternallyReferenced =
1080         llvm::all_of(Summary->refs(), [&](const ValueInfo &VI) {
1081           return !CantBePromoted.count(VI.getGUID());
1082         });
1083     if (!AllRefsCanBeExternallyReferenced) {
1084       Summary->setNotEligibleToImport();
1085       continue;
1086     }
1087 
1088     if (auto *FuncSummary = dyn_cast<FunctionSummary>(Summary.get())) {
1089       bool AllCallsCanBeExternallyReferenced = llvm::all_of(
1090           FuncSummary->calls(), [&](const FunctionSummary::EdgeTy &Edge) {
1091             return !CantBePromoted.count(Edge.first.getGUID());
1092           });
1093       if (!AllCallsCanBeExternallyReferenced)
1094         Summary->setNotEligibleToImport();
1095     }
1096   }
1097 
1098   if (!ModuleSummaryDotFile.empty()) {
1099     std::error_code EC;
1100     raw_fd_ostream OSDot(ModuleSummaryDotFile, EC, sys::fs::OpenFlags::OF_Text);
1101     if (EC)
1102       report_fatal_error(Twine("Failed to open dot file ") +
1103                          ModuleSummaryDotFile + ": " + EC.message() + "\n");
1104     Index.exportToDot(OSDot, {});
1105   }
1106 
1107   return Index;
1108 }
1109 
1110 AnalysisKey ModuleSummaryIndexAnalysis::Key;
1111 
1112 ModuleSummaryIndex
1113 ModuleSummaryIndexAnalysis::run(Module &M, ModuleAnalysisManager &AM) {
1114   ProfileSummaryInfo &PSI = AM.getResult<ProfileSummaryAnalysis>(M);
1115   auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
1116   bool NeedSSI = needsParamAccessSummary(M);
1117   return buildModuleSummaryIndex(
1118       M,
1119       [&FAM](const Function &F) {
1120         return &FAM.getResult<BlockFrequencyAnalysis>(
1121             *const_cast<Function *>(&F));
1122       },
1123       &PSI,
1124       [&FAM, NeedSSI](const Function &F) -> const StackSafetyInfo * {
1125         return NeedSSI ? &FAM.getResult<StackSafetyAnalysis>(
1126                              const_cast<Function &>(F))
1127                        : nullptr;
1128       });
1129 }
1130 
1131 char ModuleSummaryIndexWrapperPass::ID = 0;
1132 
1133 INITIALIZE_PASS_BEGIN(ModuleSummaryIndexWrapperPass, "module-summary-analysis",
1134                       "Module Summary Analysis", false, true)
1135 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
1136 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
1137 INITIALIZE_PASS_DEPENDENCY(StackSafetyInfoWrapperPass)
1138 INITIALIZE_PASS_END(ModuleSummaryIndexWrapperPass, "module-summary-analysis",
1139                     "Module Summary Analysis", false, true)
1140 
1141 ModulePass *llvm::createModuleSummaryIndexWrapperPass() {
1142   return new ModuleSummaryIndexWrapperPass();
1143 }
1144 
1145 ModuleSummaryIndexWrapperPass::ModuleSummaryIndexWrapperPass()
1146     : ModulePass(ID) {
1147   initializeModuleSummaryIndexWrapperPassPass(*PassRegistry::getPassRegistry());
1148 }
1149 
1150 bool ModuleSummaryIndexWrapperPass::runOnModule(Module &M) {
1151   auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
1152   bool NeedSSI = needsParamAccessSummary(M);
1153   Index.emplace(buildModuleSummaryIndex(
1154       M,
1155       [this](const Function &F) {
1156         return &(this->getAnalysis<BlockFrequencyInfoWrapperPass>(
1157                          *const_cast<Function *>(&F))
1158                      .getBFI());
1159       },
1160       PSI,
1161       [&](const Function &F) -> const StackSafetyInfo * {
1162         return NeedSSI ? &getAnalysis<StackSafetyInfoWrapperPass>(
1163                               const_cast<Function &>(F))
1164                               .getResult()
1165                        : nullptr;
1166       }));
1167   return false;
1168 }
1169 
1170 bool ModuleSummaryIndexWrapperPass::doFinalization(Module &M) {
1171   Index.reset();
1172   return false;
1173 }
1174 
1175 void ModuleSummaryIndexWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
1176   AU.setPreservesAll();
1177   AU.addRequired<BlockFrequencyInfoWrapperPass>();
1178   AU.addRequired<ProfileSummaryInfoWrapperPass>();
1179   AU.addRequired<StackSafetyInfoWrapperPass>();
1180 }
1181 
1182 char ImmutableModuleSummaryIndexWrapperPass::ID = 0;
1183 
1184 ImmutableModuleSummaryIndexWrapperPass::ImmutableModuleSummaryIndexWrapperPass(
1185     const ModuleSummaryIndex *Index)
1186     : ImmutablePass(ID), Index(Index) {
1187   initializeImmutableModuleSummaryIndexWrapperPassPass(
1188       *PassRegistry::getPassRegistry());
1189 }
1190 
1191 void ImmutableModuleSummaryIndexWrapperPass::getAnalysisUsage(
1192     AnalysisUsage &AU) const {
1193   AU.setPreservesAll();
1194 }
1195 
1196 ImmutablePass *llvm::createImmutableModuleSummaryIndexWrapperPass(
1197     const ModuleSummaryIndex *Index) {
1198   return new ImmutableModuleSummaryIndexWrapperPass(Index);
1199 }
1200 
1201 INITIALIZE_PASS(ImmutableModuleSummaryIndexWrapperPass, "module-summary-info",
1202                 "Module summary info", false, true)
1203 
1204 bool llvm::mayHaveMemprofSummary(const CallBase *CB) {
1205   if (!CB)
1206     return false;
1207   if (CB->isDebugOrPseudoInst())
1208     return false;
1209   auto *CI = dyn_cast<CallInst>(CB);
1210   auto *CalledValue = CB->getCalledOperand();
1211   auto *CalledFunction = CB->getCalledFunction();
1212   if (CalledValue && !CalledFunction) {
1213     CalledValue = CalledValue->stripPointerCasts();
1214     // Stripping pointer casts can reveal a called function.
1215     CalledFunction = dyn_cast<Function>(CalledValue);
1216   }
1217   // Check if this is an alias to a function. If so, get the
1218   // called aliasee for the checks below.
1219   if (auto *GA = dyn_cast<GlobalAlias>(CalledValue)) {
1220     assert(!CalledFunction &&
1221            "Expected null called function in callsite for alias");
1222     CalledFunction = dyn_cast<Function>(GA->getAliaseeObject());
1223   }
1224   // Check if this is a direct call to a known function or a known
1225   // intrinsic, or an indirect call with profile data.
1226   if (CalledFunction) {
1227     if (CI && CalledFunction->isIntrinsic())
1228       return false;
1229   } else {
1230     // Skip indirect calls if we haven't enabled memprof ICP.
1231     if (!EnableMemProfIndirectCallSupport)
1232       return false;
1233     // Skip inline assembly calls.
1234     if (CI && CI->isInlineAsm())
1235       return false;
1236     // Skip direct calls via Constant.
1237     if (!CalledValue || isa<Constant>(CalledValue))
1238       return false;
1239     return true;
1240   }
1241   return true;
1242 }
1243