xref: /llvm-project/llvm/lib/Analysis/ModuleSummaryAnalysis.cpp (revision 09c3bfe9b3eb47a2af0c10531b25f90cfb5fa9f4)
1 //===- ModuleSummaryAnalysis.cpp - Module summary index builder -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass builds a ModuleSummaryIndex object for the module, to be written
10 // to bitcode or LLVM assembly.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Analysis/ModuleSummaryAnalysis.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/MapVector.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SetVector.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/Analysis/BlockFrequencyInfo.h"
24 #include "llvm/Analysis/BranchProbabilityInfo.h"
25 #include "llvm/Analysis/ConstantFolding.h"
26 #include "llvm/Analysis/IndirectCallPromotionAnalysis.h"
27 #include "llvm/Analysis/LoopInfo.h"
28 #include "llvm/Analysis/MemoryProfileInfo.h"
29 #include "llvm/Analysis/ProfileSummaryInfo.h"
30 #include "llvm/Analysis/StackSafetyAnalysis.h"
31 #include "llvm/Analysis/TypeMetadataUtils.h"
32 #include "llvm/IR/Attributes.h"
33 #include "llvm/IR/BasicBlock.h"
34 #include "llvm/IR/Constant.h"
35 #include "llvm/IR/Constants.h"
36 #include "llvm/IR/Dominators.h"
37 #include "llvm/IR/Function.h"
38 #include "llvm/IR/GlobalAlias.h"
39 #include "llvm/IR/GlobalValue.h"
40 #include "llvm/IR/GlobalVariable.h"
41 #include "llvm/IR/Instructions.h"
42 #include "llvm/IR/IntrinsicInst.h"
43 #include "llvm/IR/Metadata.h"
44 #include "llvm/IR/Module.h"
45 #include "llvm/IR/ModuleSummaryIndex.h"
46 #include "llvm/IR/Use.h"
47 #include "llvm/IR/User.h"
48 #include "llvm/InitializePasses.h"
49 #include "llvm/Object/ModuleSymbolTable.h"
50 #include "llvm/Object/SymbolicFile.h"
51 #include "llvm/Pass.h"
52 #include "llvm/Support/Casting.h"
53 #include "llvm/Support/CommandLine.h"
54 #include "llvm/Support/FileSystem.h"
55 #include <algorithm>
56 #include <cassert>
57 #include <cstdint>
58 #include <vector>
59 
60 using namespace llvm;
61 using namespace llvm::memprof;
62 
63 #define DEBUG_TYPE "module-summary-analysis"
64 
65 // Option to force edges cold which will block importing when the
66 // -import-cold-multiplier is set to 0. Useful for debugging.
67 namespace llvm {
68 FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold =
69     FunctionSummary::FSHT_None;
70 } // namespace llvm
71 
72 static cl::opt<FunctionSummary::ForceSummaryHotnessType, true> FSEC(
73     "force-summary-edges-cold", cl::Hidden, cl::location(ForceSummaryEdgesCold),
74     cl::desc("Force all edges in the function summary to cold"),
75     cl::values(clEnumValN(FunctionSummary::FSHT_None, "none", "None."),
76                clEnumValN(FunctionSummary::FSHT_AllNonCritical,
77                           "all-non-critical", "All non-critical edges."),
78                clEnumValN(FunctionSummary::FSHT_All, "all", "All edges.")));
79 
80 static cl::opt<std::string> ModuleSummaryDotFile(
81     "module-summary-dot-file", cl::Hidden, cl::value_desc("filename"),
82     cl::desc("File to emit dot graph of new summary into"));
83 
84 extern cl::opt<bool> ScalePartialSampleProfileWorkingSetSize;
85 
86 extern cl::opt<unsigned> MaxNumVTableAnnotations;
87 
88 // Walk through the operands of a given User via worklist iteration and populate
89 // the set of GlobalValue references encountered. Invoked either on an
90 // Instruction or a GlobalVariable (which walks its initializer).
91 // Return true if any of the operands contains blockaddress. This is important
92 // to know when computing summary for global var, because if global variable
93 // references basic block address we can't import it separately from function
94 // containing that basic block. For simplicity we currently don't import such
95 // global vars at all. When importing function we aren't interested if any
96 // instruction in it takes an address of any basic block, because instruction
97 // can only take an address of basic block located in the same function.
98 static bool findRefEdges(ModuleSummaryIndex &Index, const User *CurUser,
99                          SetVector<ValueInfo, std::vector<ValueInfo>> &RefEdges,
100                          SmallPtrSet<const User *, 8> &Visited) {
101   bool HasBlockAddress = false;
102   SmallVector<const User *, 32> Worklist;
103   if (Visited.insert(CurUser).second)
104     Worklist.push_back(CurUser);
105 
106   while (!Worklist.empty()) {
107     const User *U = Worklist.pop_back_val();
108     const auto *CB = dyn_cast<CallBase>(U);
109 
110     for (const auto &OI : U->operands()) {
111       const User *Operand = dyn_cast<User>(OI);
112       if (!Operand)
113         continue;
114       if (isa<BlockAddress>(Operand)) {
115         HasBlockAddress = true;
116         continue;
117       }
118       if (auto *GV = dyn_cast<GlobalValue>(Operand)) {
119         // We have a reference to a global value. This should be added to
120         // the reference set unless it is a callee. Callees are handled
121         // specially by WriteFunction and are added to a separate list.
122         if (!(CB && CB->isCallee(&OI)))
123           RefEdges.insert(Index.getOrInsertValueInfo(GV));
124         continue;
125       }
126       if (Visited.insert(Operand).second)
127         Worklist.push_back(Operand);
128     }
129   }
130 
131   const Instruction *I = dyn_cast<Instruction>(CurUser);
132   if (I) {
133     uint32_t ActualNumValueData = 0;
134     uint64_t TotalCount = 0;
135     // MaxNumVTableAnnotations is the maximum number of vtables annotated on
136     // the instruction.
137     auto ValueDataArray =
138         getValueProfDataFromInst(*I, IPVK_VTableTarget, MaxNumVTableAnnotations,
139                                  ActualNumValueData, TotalCount);
140 
141     if (ValueDataArray.get()) {
142       for (uint32_t j = 0; j < ActualNumValueData; j++) {
143         RefEdges.insert(Index.getOrInsertValueInfo(/* VTableGUID = */
144                                                    ValueDataArray[j].Value));
145       }
146     }
147   }
148   return HasBlockAddress;
149 }
150 
151 static CalleeInfo::HotnessType getHotness(uint64_t ProfileCount,
152                                           ProfileSummaryInfo *PSI) {
153   if (!PSI)
154     return CalleeInfo::HotnessType::Unknown;
155   if (PSI->isHotCount(ProfileCount))
156     return CalleeInfo::HotnessType::Hot;
157   if (PSI->isColdCount(ProfileCount))
158     return CalleeInfo::HotnessType::Cold;
159   return CalleeInfo::HotnessType::None;
160 }
161 
162 static bool isNonRenamableLocal(const GlobalValue &GV) {
163   return GV.hasSection() && GV.hasLocalLinkage();
164 }
165 
166 /// Determine whether this call has all constant integer arguments (excluding
167 /// "this") and summarize it to VCalls or ConstVCalls as appropriate.
168 static void addVCallToSet(
169     DevirtCallSite Call, GlobalValue::GUID Guid,
170     SetVector<FunctionSummary::VFuncId, std::vector<FunctionSummary::VFuncId>>
171         &VCalls,
172     SetVector<FunctionSummary::ConstVCall,
173               std::vector<FunctionSummary::ConstVCall>> &ConstVCalls) {
174   std::vector<uint64_t> Args;
175   // Start from the second argument to skip the "this" pointer.
176   for (auto &Arg : drop_begin(Call.CB.args())) {
177     auto *CI = dyn_cast<ConstantInt>(Arg);
178     if (!CI || CI->getBitWidth() > 64) {
179       VCalls.insert({Guid, Call.Offset});
180       return;
181     }
182     Args.push_back(CI->getZExtValue());
183   }
184   ConstVCalls.insert({{Guid, Call.Offset}, std::move(Args)});
185 }
186 
187 /// If this intrinsic call requires that we add information to the function
188 /// summary, do so via the non-constant reference arguments.
189 static void addIntrinsicToSummary(
190     const CallInst *CI,
191     SetVector<GlobalValue::GUID, std::vector<GlobalValue::GUID>> &TypeTests,
192     SetVector<FunctionSummary::VFuncId, std::vector<FunctionSummary::VFuncId>>
193         &TypeTestAssumeVCalls,
194     SetVector<FunctionSummary::VFuncId, std::vector<FunctionSummary::VFuncId>>
195         &TypeCheckedLoadVCalls,
196     SetVector<FunctionSummary::ConstVCall,
197               std::vector<FunctionSummary::ConstVCall>>
198         &TypeTestAssumeConstVCalls,
199     SetVector<FunctionSummary::ConstVCall,
200               std::vector<FunctionSummary::ConstVCall>>
201         &TypeCheckedLoadConstVCalls,
202     DominatorTree &DT) {
203   switch (CI->getCalledFunction()->getIntrinsicID()) {
204   case Intrinsic::type_test:
205   case Intrinsic::public_type_test: {
206     auto *TypeMDVal = cast<MetadataAsValue>(CI->getArgOperand(1));
207     auto *TypeId = dyn_cast<MDString>(TypeMDVal->getMetadata());
208     if (!TypeId)
209       break;
210     GlobalValue::GUID Guid = GlobalValue::getGUID(TypeId->getString());
211 
212     // Produce a summary from type.test intrinsics. We only summarize type.test
213     // intrinsics that are used other than by an llvm.assume intrinsic.
214     // Intrinsics that are assumed are relevant only to the devirtualization
215     // pass, not the type test lowering pass.
216     bool HasNonAssumeUses = llvm::any_of(CI->uses(), [](const Use &CIU) {
217       return !isa<AssumeInst>(CIU.getUser());
218     });
219     if (HasNonAssumeUses)
220       TypeTests.insert(Guid);
221 
222     SmallVector<DevirtCallSite, 4> DevirtCalls;
223     SmallVector<CallInst *, 4> Assumes;
224     findDevirtualizableCallsForTypeTest(DevirtCalls, Assumes, CI, DT);
225     for (auto &Call : DevirtCalls)
226       addVCallToSet(Call, Guid, TypeTestAssumeVCalls,
227                     TypeTestAssumeConstVCalls);
228 
229     break;
230   }
231 
232   case Intrinsic::type_checked_load_relative:
233   case Intrinsic::type_checked_load: {
234     auto *TypeMDVal = cast<MetadataAsValue>(CI->getArgOperand(2));
235     auto *TypeId = dyn_cast<MDString>(TypeMDVal->getMetadata());
236     if (!TypeId)
237       break;
238     GlobalValue::GUID Guid = GlobalValue::getGUID(TypeId->getString());
239 
240     SmallVector<DevirtCallSite, 4> DevirtCalls;
241     SmallVector<Instruction *, 4> LoadedPtrs;
242     SmallVector<Instruction *, 4> Preds;
243     bool HasNonCallUses = false;
244     findDevirtualizableCallsForTypeCheckedLoad(DevirtCalls, LoadedPtrs, Preds,
245                                                HasNonCallUses, CI, DT);
246     // Any non-call uses of the result of llvm.type.checked.load will
247     // prevent us from optimizing away the llvm.type.test.
248     if (HasNonCallUses)
249       TypeTests.insert(Guid);
250     for (auto &Call : DevirtCalls)
251       addVCallToSet(Call, Guid, TypeCheckedLoadVCalls,
252                     TypeCheckedLoadConstVCalls);
253 
254     break;
255   }
256   default:
257     break;
258   }
259 }
260 
261 static bool isNonVolatileLoad(const Instruction *I) {
262   if (const auto *LI = dyn_cast<LoadInst>(I))
263     return !LI->isVolatile();
264 
265   return false;
266 }
267 
268 static bool isNonVolatileStore(const Instruction *I) {
269   if (const auto *SI = dyn_cast<StoreInst>(I))
270     return !SI->isVolatile();
271 
272   return false;
273 }
274 
275 // Returns true if the function definition must be unreachable.
276 //
277 // Note if this helper function returns true, `F` is guaranteed
278 // to be unreachable; if it returns false, `F` might still
279 // be unreachable but not covered by this helper function.
280 static bool mustBeUnreachableFunction(const Function &F) {
281   // A function must be unreachable if its entry block ends with an
282   // 'unreachable'.
283   assert(!F.isDeclaration());
284   return isa<UnreachableInst>(F.getEntryBlock().getTerminator());
285 }
286 
287 static void computeFunctionSummary(
288     ModuleSummaryIndex &Index, const Module &M, const Function &F,
289     BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, DominatorTree &DT,
290     bool HasLocalsInUsedOrAsm, DenseSet<GlobalValue::GUID> &CantBePromoted,
291     bool IsThinLTO,
292     std::function<const StackSafetyInfo *(const Function &F)> GetSSICallback) {
293   // Summary not currently supported for anonymous functions, they should
294   // have been named.
295   assert(F.hasName());
296 
297   unsigned NumInsts = 0;
298   // Map from callee ValueId to profile count. Used to accumulate profile
299   // counts for all static calls to a given callee.
300   MapVector<ValueInfo, CalleeInfo, DenseMap<ValueInfo, unsigned>,
301             std::vector<std::pair<ValueInfo, CalleeInfo>>>
302       CallGraphEdges;
303   SetVector<ValueInfo, std::vector<ValueInfo>> RefEdges, LoadRefEdges,
304       StoreRefEdges;
305   SetVector<GlobalValue::GUID, std::vector<GlobalValue::GUID>> TypeTests;
306   SetVector<FunctionSummary::VFuncId, std::vector<FunctionSummary::VFuncId>>
307       TypeTestAssumeVCalls, TypeCheckedLoadVCalls;
308   SetVector<FunctionSummary::ConstVCall,
309             std::vector<FunctionSummary::ConstVCall>>
310       TypeTestAssumeConstVCalls, TypeCheckedLoadConstVCalls;
311   ICallPromotionAnalysis ICallAnalysis;
312   SmallPtrSet<const User *, 8> Visited;
313 
314   // Add personality function, prefix data and prologue data to function's ref
315   // list.
316   findRefEdges(Index, &F, RefEdges, Visited);
317   std::vector<const Instruction *> NonVolatileLoads;
318   std::vector<const Instruction *> NonVolatileStores;
319 
320   std::vector<CallsiteInfo> Callsites;
321   std::vector<AllocInfo> Allocs;
322 
323 #ifndef NDEBUG
324   DenseSet<const CallBase *> CallsThatMayHaveMemprofSummary;
325 #endif
326 
327   bool HasInlineAsmMaybeReferencingInternal = false;
328   bool HasIndirBranchToBlockAddress = false;
329   bool HasIFuncCall = false;
330   bool HasUnknownCall = false;
331   bool MayThrow = false;
332   for (const BasicBlock &BB : F) {
333     // We don't allow inlining of function with indirect branch to blockaddress.
334     // If the blockaddress escapes the function, e.g., via a global variable,
335     // inlining may lead to an invalid cross-function reference. So we shouldn't
336     // import such function either.
337     if (BB.hasAddressTaken()) {
338       for (User *U : BlockAddress::get(const_cast<BasicBlock *>(&BB))->users())
339         if (!isa<CallBrInst>(*U)) {
340           HasIndirBranchToBlockAddress = true;
341           break;
342         }
343     }
344 
345     for (const Instruction &I : BB) {
346       if (I.isDebugOrPseudoInst())
347         continue;
348       ++NumInsts;
349 
350       // Regular LTO module doesn't participate in ThinLTO import,
351       // so no reference from it can be read/writeonly, since this
352       // would require importing variable as local copy
353       if (IsThinLTO) {
354         if (isNonVolatileLoad(&I)) {
355           // Postpone processing of non-volatile load instructions
356           // See comments below
357           Visited.insert(&I);
358           NonVolatileLoads.push_back(&I);
359           continue;
360         } else if (isNonVolatileStore(&I)) {
361           Visited.insert(&I);
362           NonVolatileStores.push_back(&I);
363           // All references from second operand of store (destination address)
364           // can be considered write-only if they're not referenced by any
365           // non-store instruction. References from first operand of store
366           // (stored value) can't be treated either as read- or as write-only
367           // so we add them to RefEdges as we do with all other instructions
368           // except non-volatile load.
369           Value *Stored = I.getOperand(0);
370           if (auto *GV = dyn_cast<GlobalValue>(Stored))
371             // findRefEdges will try to examine GV operands, so instead
372             // of calling it we should add GV to RefEdges directly.
373             RefEdges.insert(Index.getOrInsertValueInfo(GV));
374           else if (auto *U = dyn_cast<User>(Stored))
375             findRefEdges(Index, U, RefEdges, Visited);
376           continue;
377         }
378       }
379       findRefEdges(Index, &I, RefEdges, Visited);
380       const auto *CB = dyn_cast<CallBase>(&I);
381       if (!CB) {
382         if (I.mayThrow())
383           MayThrow = true;
384         continue;
385       }
386 
387       const auto *CI = dyn_cast<CallInst>(&I);
388       // Since we don't know exactly which local values are referenced in inline
389       // assembly, conservatively mark the function as possibly referencing
390       // a local value from inline assembly to ensure we don't export a
391       // reference (which would require renaming and promotion of the
392       // referenced value).
393       if (HasLocalsInUsedOrAsm && CI && CI->isInlineAsm())
394         HasInlineAsmMaybeReferencingInternal = true;
395 
396       auto *CalledValue = CB->getCalledOperand();
397       auto *CalledFunction = CB->getCalledFunction();
398       if (CalledValue && !CalledFunction) {
399         CalledValue = CalledValue->stripPointerCasts();
400         // Stripping pointer casts can reveal a called function.
401         CalledFunction = dyn_cast<Function>(CalledValue);
402       }
403       // Check if this is an alias to a function. If so, get the
404       // called aliasee for the checks below.
405       if (auto *GA = dyn_cast<GlobalAlias>(CalledValue)) {
406         assert(!CalledFunction && "Expected null called function in callsite for alias");
407         CalledFunction = dyn_cast<Function>(GA->getAliaseeObject());
408       }
409       // Check if this is a direct call to a known function or a known
410       // intrinsic, or an indirect call with profile data.
411       if (CalledFunction) {
412         if (CI && CalledFunction->isIntrinsic()) {
413           addIntrinsicToSummary(
414               CI, TypeTests, TypeTestAssumeVCalls, TypeCheckedLoadVCalls,
415               TypeTestAssumeConstVCalls, TypeCheckedLoadConstVCalls, DT);
416           continue;
417         }
418         // We should have named any anonymous globals
419         assert(CalledFunction->hasName());
420         auto ScaledCount = PSI->getProfileCount(*CB, BFI);
421         auto Hotness = ScaledCount ? getHotness(*ScaledCount, PSI)
422                                    : CalleeInfo::HotnessType::Unknown;
423         if (ForceSummaryEdgesCold != FunctionSummary::FSHT_None)
424           Hotness = CalleeInfo::HotnessType::Cold;
425 
426         // Use the original CalledValue, in case it was an alias. We want
427         // to record the call edge to the alias in that case. Eventually
428         // an alias summary will be created to associate the alias and
429         // aliasee.
430         auto &ValueInfo = CallGraphEdges[Index.getOrInsertValueInfo(
431             cast<GlobalValue>(CalledValue))];
432         ValueInfo.updateHotness(Hotness);
433         if (CB->isTailCall())
434           ValueInfo.setHasTailCall(true);
435         // Add the relative block frequency to CalleeInfo if there is no profile
436         // information.
437         if (BFI != nullptr && Hotness == CalleeInfo::HotnessType::Unknown) {
438           uint64_t BBFreq = BFI->getBlockFreq(&BB).getFrequency();
439           uint64_t EntryFreq = BFI->getEntryFreq().getFrequency();
440           ValueInfo.updateRelBlockFreq(BBFreq, EntryFreq);
441         }
442       } else {
443         HasUnknownCall = true;
444         // If F is imported, a local linkage ifunc (e.g. target_clones on a
445         // static function) called by F will be cloned. Since summaries don't
446         // track ifunc, we do not know implementation functions referenced by
447         // the ifunc resolver need to be promoted in the exporter, and we will
448         // get linker errors due to cloned declarations for implementation
449         // functions. As a simple fix, just mark F as not eligible for import.
450         // Non-local ifunc is not cloned and does not have the issue.
451         if (auto *GI = dyn_cast_if_present<GlobalIFunc>(CalledValue))
452           if (GI->hasLocalLinkage())
453             HasIFuncCall = true;
454         // Skip inline assembly calls.
455         if (CI && CI->isInlineAsm())
456           continue;
457         // Skip direct calls.
458         if (!CalledValue || isa<Constant>(CalledValue))
459           continue;
460 
461         // Check if the instruction has a callees metadata. If so, add callees
462         // to CallGraphEdges to reflect the references from the metadata, and
463         // to enable importing for subsequent indirect call promotion and
464         // inlining.
465         if (auto *MD = I.getMetadata(LLVMContext::MD_callees)) {
466           for (const auto &Op : MD->operands()) {
467             Function *Callee = mdconst::extract_or_null<Function>(Op);
468             if (Callee)
469               CallGraphEdges[Index.getOrInsertValueInfo(Callee)];
470           }
471         }
472 
473         uint32_t NumVals, NumCandidates;
474         uint64_t TotalCount;
475         auto CandidateProfileData =
476             ICallAnalysis.getPromotionCandidatesForInstruction(
477                 &I, NumVals, TotalCount, NumCandidates);
478         for (const auto &Candidate : CandidateProfileData)
479           CallGraphEdges[Index.getOrInsertValueInfo(Candidate.Value)]
480               .updateHotness(getHotness(Candidate.Count, PSI));
481       }
482 
483       // Summarize memprof related metadata. This is only needed for ThinLTO.
484       if (!IsThinLTO)
485         continue;
486 
487       // TODO: Skip indirect calls for now. Need to handle these better, likely
488       // by creating multiple Callsites, one per target, then speculatively
489       // devirtualize while applying clone info in the ThinLTO backends. This
490       // will also be important because we will have a different set of clone
491       // versions per target. This handling needs to match that in the ThinLTO
492       // backend so we handle things consistently for matching of callsite
493       // summaries to instructions.
494       if (!CalledFunction)
495         continue;
496 
497       // Ensure we keep this analysis in sync with the handling in the ThinLTO
498       // backend (see MemProfContextDisambiguation::applyImport). Save this call
499       // so that we can skip it in checking the reverse case later.
500       assert(mayHaveMemprofSummary(CB));
501 #ifndef NDEBUG
502       CallsThatMayHaveMemprofSummary.insert(CB);
503 #endif
504 
505       // Compute the list of stack ids first (so we can trim them from the stack
506       // ids on any MIBs).
507       CallStack<MDNode, MDNode::op_iterator> InstCallsite(
508           I.getMetadata(LLVMContext::MD_callsite));
509       auto *MemProfMD = I.getMetadata(LLVMContext::MD_memprof);
510       if (MemProfMD) {
511         std::vector<MIBInfo> MIBs;
512         for (auto &MDOp : MemProfMD->operands()) {
513           auto *MIBMD = cast<const MDNode>(MDOp);
514           MDNode *StackNode = getMIBStackNode(MIBMD);
515           assert(StackNode);
516           SmallVector<unsigned> StackIdIndices;
517           CallStack<MDNode, MDNode::op_iterator> StackContext(StackNode);
518           // Collapse out any on the allocation call (inlining).
519           for (auto ContextIter =
520                    StackContext.beginAfterSharedPrefix(InstCallsite);
521                ContextIter != StackContext.end(); ++ContextIter) {
522             unsigned StackIdIdx = Index.addOrGetStackIdIndex(*ContextIter);
523             // If this is a direct recursion, simply skip the duplicate
524             // entries. If this is mutual recursion, handling is left to
525             // the LTO link analysis client.
526             if (StackIdIndices.empty() || StackIdIndices.back() != StackIdIdx)
527               StackIdIndices.push_back(StackIdIdx);
528           }
529           MIBs.push_back(
530               MIBInfo(getMIBAllocType(MIBMD), std::move(StackIdIndices)));
531         }
532         Allocs.push_back(AllocInfo(std::move(MIBs)));
533       } else if (!InstCallsite.empty()) {
534         SmallVector<unsigned> StackIdIndices;
535         for (auto StackId : InstCallsite)
536           StackIdIndices.push_back(Index.addOrGetStackIdIndex(StackId));
537         // Use the original CalledValue, in case it was an alias. We want
538         // to record the call edge to the alias in that case. Eventually
539         // an alias summary will be created to associate the alias and
540         // aliasee.
541         auto CalleeValueInfo =
542             Index.getOrInsertValueInfo(cast<GlobalValue>(CalledValue));
543         Callsites.push_back({CalleeValueInfo, StackIdIndices});
544       }
545     }
546   }
547 
548   if (PSI->hasPartialSampleProfile() && ScalePartialSampleProfileWorkingSetSize)
549     Index.addBlockCount(F.size());
550 
551   std::vector<ValueInfo> Refs;
552   if (IsThinLTO) {
553     auto AddRefEdges = [&](const std::vector<const Instruction *> &Instrs,
554                            SetVector<ValueInfo, std::vector<ValueInfo>> &Edges,
555                            SmallPtrSet<const User *, 8> &Cache) {
556       for (const auto *I : Instrs) {
557         Cache.erase(I);
558         findRefEdges(Index, I, Edges, Cache);
559       }
560     };
561 
562     // By now we processed all instructions in a function, except
563     // non-volatile loads and non-volatile value stores. Let's find
564     // ref edges for both of instruction sets
565     AddRefEdges(NonVolatileLoads, LoadRefEdges, Visited);
566     // We can add some values to the Visited set when processing load
567     // instructions which are also used by stores in NonVolatileStores.
568     // For example this can happen if we have following code:
569     //
570     // store %Derived* @foo, %Derived** bitcast (%Base** @bar to %Derived**)
571     // %42 = load %Derived*, %Derived** bitcast (%Base** @bar to %Derived**)
572     //
573     // After processing loads we'll add bitcast to the Visited set, and if
574     // we use the same set while processing stores, we'll never see store
575     // to @bar and @bar will be mistakenly treated as readonly.
576     SmallPtrSet<const llvm::User *, 8> StoreCache;
577     AddRefEdges(NonVolatileStores, StoreRefEdges, StoreCache);
578 
579     // If both load and store instruction reference the same variable
580     // we won't be able to optimize it. Add all such reference edges
581     // to RefEdges set.
582     for (const auto &VI : StoreRefEdges)
583       if (LoadRefEdges.remove(VI))
584         RefEdges.insert(VI);
585 
586     unsigned RefCnt = RefEdges.size();
587     // All new reference edges inserted in two loops below are either
588     // read or write only. They will be grouped in the end of RefEdges
589     // vector, so we can use a single integer value to identify them.
590     for (const auto &VI : LoadRefEdges)
591       RefEdges.insert(VI);
592 
593     unsigned FirstWORef = RefEdges.size();
594     for (const auto &VI : StoreRefEdges)
595       RefEdges.insert(VI);
596 
597     Refs = RefEdges.takeVector();
598     for (; RefCnt < FirstWORef; ++RefCnt)
599       Refs[RefCnt].setReadOnly();
600 
601     for (; RefCnt < Refs.size(); ++RefCnt)
602       Refs[RefCnt].setWriteOnly();
603   } else {
604     Refs = RefEdges.takeVector();
605   }
606   // Explicit add hot edges to enforce importing for designated GUIDs for
607   // sample PGO, to enable the same inlines as the profiled optimized binary.
608   for (auto &I : F.getImportGUIDs())
609     CallGraphEdges[Index.getOrInsertValueInfo(I)].updateHotness(
610         ForceSummaryEdgesCold == FunctionSummary::FSHT_All
611             ? CalleeInfo::HotnessType::Cold
612             : CalleeInfo::HotnessType::Critical);
613 
614 #ifndef NDEBUG
615   // Make sure that all calls we decided could not have memprof summaries get a
616   // false value for mayHaveMemprofSummary, to ensure that this handling remains
617   // in sync with the ThinLTO backend handling.
618   if (IsThinLTO) {
619     for (const BasicBlock &BB : F) {
620       for (const Instruction &I : BB) {
621         const auto *CB = dyn_cast<CallBase>(&I);
622         if (!CB)
623           continue;
624         // We already checked these above.
625         if (CallsThatMayHaveMemprofSummary.count(CB))
626           continue;
627         assert(!mayHaveMemprofSummary(CB));
628       }
629     }
630   }
631 #endif
632 
633   bool NonRenamableLocal = isNonRenamableLocal(F);
634   bool NotEligibleForImport = NonRenamableLocal ||
635                               HasInlineAsmMaybeReferencingInternal ||
636                               HasIndirBranchToBlockAddress || HasIFuncCall;
637   GlobalValueSummary::GVFlags Flags(
638       F.getLinkage(), F.getVisibility(), NotEligibleForImport,
639       /* Live = */ false, F.isDSOLocal(), F.canBeOmittedFromSymbolTable(),
640       GlobalValueSummary::ImportKind::Definition);
641   FunctionSummary::FFlags FunFlags{
642       F.doesNotAccessMemory(), F.onlyReadsMemory() && !F.doesNotAccessMemory(),
643       F.hasFnAttribute(Attribute::NoRecurse), F.returnDoesNotAlias(),
644       // FIXME: refactor this to use the same code that inliner is using.
645       // Don't try to import functions with noinline attribute.
646       F.getAttributes().hasFnAttr(Attribute::NoInline),
647       F.hasFnAttribute(Attribute::AlwaysInline),
648       F.hasFnAttribute(Attribute::NoUnwind), MayThrow, HasUnknownCall,
649       mustBeUnreachableFunction(F)};
650   std::vector<FunctionSummary::ParamAccess> ParamAccesses;
651   if (auto *SSI = GetSSICallback(F))
652     ParamAccesses = SSI->getParamAccesses(Index);
653   auto FuncSummary = std::make_unique<FunctionSummary>(
654       Flags, NumInsts, FunFlags, /*EntryCount=*/0, std::move(Refs),
655       CallGraphEdges.takeVector(), TypeTests.takeVector(),
656       TypeTestAssumeVCalls.takeVector(), TypeCheckedLoadVCalls.takeVector(),
657       TypeTestAssumeConstVCalls.takeVector(),
658       TypeCheckedLoadConstVCalls.takeVector(), std::move(ParamAccesses),
659       std::move(Callsites), std::move(Allocs));
660   if (NonRenamableLocal)
661     CantBePromoted.insert(F.getGUID());
662   Index.addGlobalValueSummary(F, std::move(FuncSummary));
663 }
664 
665 /// Find function pointers referenced within the given vtable initializer
666 /// (or subset of an initializer) \p I. The starting offset of \p I within
667 /// the vtable initializer is \p StartingOffset. Any discovered function
668 /// pointers are added to \p VTableFuncs along with their cumulative offset
669 /// within the initializer.
670 static void findFuncPointers(const Constant *I, uint64_t StartingOffset,
671                              const Module &M, ModuleSummaryIndex &Index,
672                              VTableFuncList &VTableFuncs,
673                              const GlobalVariable &OrigGV) {
674   // First check if this is a function pointer.
675   if (I->getType()->isPointerTy()) {
676     auto C = I->stripPointerCasts();
677     auto A = dyn_cast<GlobalAlias>(C);
678     if (isa<Function>(C) || (A && isa<Function>(A->getAliasee()))) {
679       auto GV = dyn_cast<GlobalValue>(C);
680       assert(GV);
681       // We can disregard __cxa_pure_virtual as a possible call target, as
682       // calls to pure virtuals are UB.
683       if (GV && GV->getName() != "__cxa_pure_virtual")
684         VTableFuncs.push_back({Index.getOrInsertValueInfo(GV), StartingOffset});
685       return;
686     }
687   }
688 
689   // Walk through the elements in the constant struct or array and recursively
690   // look for virtual function pointers.
691   const DataLayout &DL = M.getDataLayout();
692   if (auto *C = dyn_cast<ConstantStruct>(I)) {
693     StructType *STy = dyn_cast<StructType>(C->getType());
694     assert(STy);
695     const StructLayout *SL = DL.getStructLayout(C->getType());
696 
697     for (auto EI : llvm::enumerate(STy->elements())) {
698       auto Offset = SL->getElementOffset(EI.index());
699       unsigned Op = SL->getElementContainingOffset(Offset);
700       findFuncPointers(cast<Constant>(I->getOperand(Op)),
701                        StartingOffset + Offset, M, Index, VTableFuncs, OrigGV);
702     }
703   } else if (auto *C = dyn_cast<ConstantArray>(I)) {
704     ArrayType *ATy = C->getType();
705     Type *EltTy = ATy->getElementType();
706     uint64_t EltSize = DL.getTypeAllocSize(EltTy);
707     for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) {
708       findFuncPointers(cast<Constant>(I->getOperand(i)),
709                        StartingOffset + i * EltSize, M, Index, VTableFuncs,
710                        OrigGV);
711     }
712   } else if (const auto *CE = dyn_cast<ConstantExpr>(I)) {
713     // For relative vtables, the next sub-component should be a trunc.
714     if (CE->getOpcode() != Instruction::Trunc ||
715         !(CE = dyn_cast<ConstantExpr>(CE->getOperand(0))))
716       return;
717 
718     // If this constant can be reduced to the offset between a function and a
719     // global, then we know this is a valid virtual function if the RHS is the
720     // original vtable we're scanning through.
721     if (CE->getOpcode() == Instruction::Sub) {
722       GlobalValue *LHS, *RHS;
723       APSInt LHSOffset, RHSOffset;
724       if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHS, LHSOffset, DL) &&
725           IsConstantOffsetFromGlobal(CE->getOperand(1), RHS, RHSOffset, DL) &&
726           RHS == &OrigGV &&
727 
728           // For relative vtables, this component should point to the callable
729           // function without any offsets.
730           LHSOffset == 0 &&
731 
732           // Also, the RHS should always point to somewhere within the vtable.
733           RHSOffset <=
734               static_cast<uint64_t>(DL.getTypeAllocSize(OrigGV.getInitializer()->getType()))) {
735         findFuncPointers(LHS, StartingOffset, M, Index, VTableFuncs, OrigGV);
736       }
737     }
738   }
739 }
740 
741 // Identify the function pointers referenced by vtable definition \p V.
742 static void computeVTableFuncs(ModuleSummaryIndex &Index,
743                                const GlobalVariable &V, const Module &M,
744                                VTableFuncList &VTableFuncs) {
745   if (!V.isConstant())
746     return;
747 
748   findFuncPointers(V.getInitializer(), /*StartingOffset=*/0, M, Index,
749                    VTableFuncs, V);
750 
751 #ifndef NDEBUG
752   // Validate that the VTableFuncs list is ordered by offset.
753   uint64_t PrevOffset = 0;
754   for (auto &P : VTableFuncs) {
755     // The findVFuncPointers traversal should have encountered the
756     // functions in offset order. We need to use ">=" since PrevOffset
757     // starts at 0.
758     assert(P.VTableOffset >= PrevOffset);
759     PrevOffset = P.VTableOffset;
760   }
761 #endif
762 }
763 
764 /// Record vtable definition \p V for each type metadata it references.
765 static void
766 recordTypeIdCompatibleVtableReferences(ModuleSummaryIndex &Index,
767                                        const GlobalVariable &V,
768                                        SmallVectorImpl<MDNode *> &Types) {
769   for (MDNode *Type : Types) {
770     auto TypeID = Type->getOperand(1).get();
771 
772     uint64_t Offset =
773         cast<ConstantInt>(
774             cast<ConstantAsMetadata>(Type->getOperand(0))->getValue())
775             ->getZExtValue();
776 
777     if (auto *TypeId = dyn_cast<MDString>(TypeID))
778       Index.getOrInsertTypeIdCompatibleVtableSummary(TypeId->getString())
779           .push_back({Offset, Index.getOrInsertValueInfo(&V)});
780   }
781 }
782 
783 static void computeVariableSummary(ModuleSummaryIndex &Index,
784                                    const GlobalVariable &V,
785                                    DenseSet<GlobalValue::GUID> &CantBePromoted,
786                                    const Module &M,
787                                    SmallVectorImpl<MDNode *> &Types) {
788   SetVector<ValueInfo, std::vector<ValueInfo>> RefEdges;
789   SmallPtrSet<const User *, 8> Visited;
790   bool HasBlockAddress = findRefEdges(Index, &V, RefEdges, Visited);
791   bool NonRenamableLocal = isNonRenamableLocal(V);
792   GlobalValueSummary::GVFlags Flags(
793       V.getLinkage(), V.getVisibility(), NonRenamableLocal,
794       /* Live = */ false, V.isDSOLocal(), V.canBeOmittedFromSymbolTable(),
795       GlobalValueSummary::Definition);
796 
797   VTableFuncList VTableFuncs;
798   // If splitting is not enabled, then we compute the summary information
799   // necessary for index-based whole program devirtualization.
800   if (!Index.enableSplitLTOUnit()) {
801     Types.clear();
802     V.getMetadata(LLVMContext::MD_type, Types);
803     if (!Types.empty()) {
804       // Identify the function pointers referenced by this vtable definition.
805       computeVTableFuncs(Index, V, M, VTableFuncs);
806 
807       // Record this vtable definition for each type metadata it references.
808       recordTypeIdCompatibleVtableReferences(Index, V, Types);
809     }
810   }
811 
812   // Don't mark variables we won't be able to internalize as read/write-only.
813   bool CanBeInternalized =
814       !V.hasComdat() && !V.hasAppendingLinkage() && !V.isInterposable() &&
815       !V.hasAvailableExternallyLinkage() && !V.hasDLLExportStorageClass();
816   bool Constant = V.isConstant();
817   GlobalVarSummary::GVarFlags VarFlags(CanBeInternalized,
818                                        Constant ? false : CanBeInternalized,
819                                        Constant, V.getVCallVisibility());
820   auto GVarSummary = std::make_unique<GlobalVarSummary>(Flags, VarFlags,
821                                                          RefEdges.takeVector());
822   if (NonRenamableLocal)
823     CantBePromoted.insert(V.getGUID());
824   if (HasBlockAddress)
825     GVarSummary->setNotEligibleToImport();
826   if (!VTableFuncs.empty())
827     GVarSummary->setVTableFuncs(VTableFuncs);
828   Index.addGlobalValueSummary(V, std::move(GVarSummary));
829 }
830 
831 static void computeAliasSummary(ModuleSummaryIndex &Index, const GlobalAlias &A,
832                                 DenseSet<GlobalValue::GUID> &CantBePromoted) {
833   // Skip summary for indirect function aliases as summary for aliasee will not
834   // be emitted.
835   const GlobalObject *Aliasee = A.getAliaseeObject();
836   if (isa<GlobalIFunc>(Aliasee))
837     return;
838   bool NonRenamableLocal = isNonRenamableLocal(A);
839   GlobalValueSummary::GVFlags Flags(
840       A.getLinkage(), A.getVisibility(), NonRenamableLocal,
841       /* Live = */ false, A.isDSOLocal(), A.canBeOmittedFromSymbolTable(),
842       GlobalValueSummary::Definition);
843   auto AS = std::make_unique<AliasSummary>(Flags);
844   auto AliaseeVI = Index.getValueInfo(Aliasee->getGUID());
845   assert(AliaseeVI && "Alias expects aliasee summary to be available");
846   assert(AliaseeVI.getSummaryList().size() == 1 &&
847          "Expected a single entry per aliasee in per-module index");
848   AS->setAliasee(AliaseeVI, AliaseeVI.getSummaryList()[0].get());
849   if (NonRenamableLocal)
850     CantBePromoted.insert(A.getGUID());
851   Index.addGlobalValueSummary(A, std::move(AS));
852 }
853 
854 // Set LiveRoot flag on entries matching the given value name.
855 static void setLiveRoot(ModuleSummaryIndex &Index, StringRef Name) {
856   if (ValueInfo VI = Index.getValueInfo(GlobalValue::getGUID(Name)))
857     for (const auto &Summary : VI.getSummaryList())
858       Summary->setLive(true);
859 }
860 
861 ModuleSummaryIndex llvm::buildModuleSummaryIndex(
862     const Module &M,
863     std::function<BlockFrequencyInfo *(const Function &F)> GetBFICallback,
864     ProfileSummaryInfo *PSI,
865     std::function<const StackSafetyInfo *(const Function &F)> GetSSICallback) {
866   assert(PSI);
867   bool EnableSplitLTOUnit = false;
868   bool UnifiedLTO = false;
869   if (auto *MD = mdconst::extract_or_null<ConstantInt>(
870           M.getModuleFlag("EnableSplitLTOUnit")))
871     EnableSplitLTOUnit = MD->getZExtValue();
872   if (auto *MD =
873           mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("UnifiedLTO")))
874     UnifiedLTO = MD->getZExtValue();
875   ModuleSummaryIndex Index(/*HaveGVs=*/true, EnableSplitLTOUnit, UnifiedLTO);
876 
877   // Identify the local values in the llvm.used and llvm.compiler.used sets,
878   // which should not be exported as they would then require renaming and
879   // promotion, but we may have opaque uses e.g. in inline asm. We collect them
880   // here because we use this information to mark functions containing inline
881   // assembly calls as not importable.
882   SmallPtrSet<GlobalValue *, 4> LocalsUsed;
883   SmallVector<GlobalValue *, 4> Used;
884   // First collect those in the llvm.used set.
885   collectUsedGlobalVariables(M, Used, /*CompilerUsed=*/false);
886   // Next collect those in the llvm.compiler.used set.
887   collectUsedGlobalVariables(M, Used, /*CompilerUsed=*/true);
888   DenseSet<GlobalValue::GUID> CantBePromoted;
889   for (auto *V : Used) {
890     if (V->hasLocalLinkage()) {
891       LocalsUsed.insert(V);
892       CantBePromoted.insert(V->getGUID());
893     }
894   }
895 
896   bool HasLocalInlineAsmSymbol = false;
897   if (!M.getModuleInlineAsm().empty()) {
898     // Collect the local values defined by module level asm, and set up
899     // summaries for these symbols so that they can be marked as NoRename,
900     // to prevent export of any use of them in regular IR that would require
901     // renaming within the module level asm. Note we don't need to create a
902     // summary for weak or global defs, as they don't need to be flagged as
903     // NoRename, and defs in module level asm can't be imported anyway.
904     // Also, any values used but not defined within module level asm should
905     // be listed on the llvm.used or llvm.compiler.used global and marked as
906     // referenced from there.
907     ModuleSymbolTable::CollectAsmSymbols(
908         M, [&](StringRef Name, object::BasicSymbolRef::Flags Flags) {
909           // Symbols not marked as Weak or Global are local definitions.
910           if (Flags & (object::BasicSymbolRef::SF_Weak |
911                        object::BasicSymbolRef::SF_Global))
912             return;
913           HasLocalInlineAsmSymbol = true;
914           GlobalValue *GV = M.getNamedValue(Name);
915           if (!GV)
916             return;
917           assert(GV->isDeclaration() && "Def in module asm already has definition");
918           GlobalValueSummary::GVFlags GVFlags(
919               GlobalValue::InternalLinkage, GlobalValue::DefaultVisibility,
920               /* NotEligibleToImport = */ true,
921               /* Live = */ true,
922               /* Local */ GV->isDSOLocal(), GV->canBeOmittedFromSymbolTable(),
923               GlobalValueSummary::Definition);
924           CantBePromoted.insert(GV->getGUID());
925           // Create the appropriate summary type.
926           if (Function *F = dyn_cast<Function>(GV)) {
927             std::unique_ptr<FunctionSummary> Summary =
928                 std::make_unique<FunctionSummary>(
929                     GVFlags, /*InstCount=*/0,
930                     FunctionSummary::FFlags{
931                         F->hasFnAttribute(Attribute::ReadNone),
932                         F->hasFnAttribute(Attribute::ReadOnly),
933                         F->hasFnAttribute(Attribute::NoRecurse),
934                         F->returnDoesNotAlias(),
935                         /* NoInline = */ false,
936                         F->hasFnAttribute(Attribute::AlwaysInline),
937                         F->hasFnAttribute(Attribute::NoUnwind),
938                         /* MayThrow */ true,
939                         /* HasUnknownCall */ true,
940                         /* MustBeUnreachable */ false},
941                     /*EntryCount=*/0, ArrayRef<ValueInfo>{},
942                     ArrayRef<FunctionSummary::EdgeTy>{},
943                     ArrayRef<GlobalValue::GUID>{},
944                     ArrayRef<FunctionSummary::VFuncId>{},
945                     ArrayRef<FunctionSummary::VFuncId>{},
946                     ArrayRef<FunctionSummary::ConstVCall>{},
947                     ArrayRef<FunctionSummary::ConstVCall>{},
948                     ArrayRef<FunctionSummary::ParamAccess>{},
949                     ArrayRef<CallsiteInfo>{}, ArrayRef<AllocInfo>{});
950             Index.addGlobalValueSummary(*GV, std::move(Summary));
951           } else {
952             std::unique_ptr<GlobalVarSummary> Summary =
953                 std::make_unique<GlobalVarSummary>(
954                     GVFlags,
955                     GlobalVarSummary::GVarFlags(
956                         false, false, cast<GlobalVariable>(GV)->isConstant(),
957                         GlobalObject::VCallVisibilityPublic),
958                     ArrayRef<ValueInfo>{});
959             Index.addGlobalValueSummary(*GV, std::move(Summary));
960           }
961         });
962   }
963 
964   bool IsThinLTO = true;
965   if (auto *MD =
966           mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO")))
967     IsThinLTO = MD->getZExtValue();
968 
969   // Compute summaries for all functions defined in module, and save in the
970   // index.
971   for (const auto &F : M) {
972     if (F.isDeclaration())
973       continue;
974 
975     DominatorTree DT(const_cast<Function &>(F));
976     BlockFrequencyInfo *BFI = nullptr;
977     std::unique_ptr<BlockFrequencyInfo> BFIPtr;
978     if (GetBFICallback)
979       BFI = GetBFICallback(F);
980     else if (F.hasProfileData()) {
981       LoopInfo LI{DT};
982       BranchProbabilityInfo BPI{F, LI};
983       BFIPtr = std::make_unique<BlockFrequencyInfo>(F, BPI, LI);
984       BFI = BFIPtr.get();
985     }
986 
987     computeFunctionSummary(Index, M, F, BFI, PSI, DT,
988                            !LocalsUsed.empty() || HasLocalInlineAsmSymbol,
989                            CantBePromoted, IsThinLTO, GetSSICallback);
990   }
991 
992   // Compute summaries for all variables defined in module, and save in the
993   // index.
994   SmallVector<MDNode *, 2> Types;
995   for (const GlobalVariable &G : M.globals()) {
996     if (G.isDeclaration())
997       continue;
998     computeVariableSummary(Index, G, CantBePromoted, M, Types);
999   }
1000 
1001   // Compute summaries for all aliases defined in module, and save in the
1002   // index.
1003   for (const GlobalAlias &A : M.aliases())
1004     computeAliasSummary(Index, A, CantBePromoted);
1005 
1006   // Iterate through ifuncs, set their resolvers all alive.
1007   for (const GlobalIFunc &I : M.ifuncs()) {
1008     I.applyAlongResolverPath([&Index](const GlobalValue &GV) {
1009       Index.getGlobalValueSummary(GV)->setLive(true);
1010     });
1011   }
1012 
1013   for (auto *V : LocalsUsed) {
1014     auto *Summary = Index.getGlobalValueSummary(*V);
1015     assert(Summary && "Missing summary for global value");
1016     Summary->setNotEligibleToImport();
1017   }
1018 
1019   // The linker doesn't know about these LLVM produced values, so we need
1020   // to flag them as live in the index to ensure index-based dead value
1021   // analysis treats them as live roots of the analysis.
1022   setLiveRoot(Index, "llvm.used");
1023   setLiveRoot(Index, "llvm.compiler.used");
1024   setLiveRoot(Index, "llvm.global_ctors");
1025   setLiveRoot(Index, "llvm.global_dtors");
1026   setLiveRoot(Index, "llvm.global.annotations");
1027 
1028   for (auto &GlobalList : Index) {
1029     // Ignore entries for references that are undefined in the current module.
1030     if (GlobalList.second.SummaryList.empty())
1031       continue;
1032 
1033     assert(GlobalList.second.SummaryList.size() == 1 &&
1034            "Expected module's index to have one summary per GUID");
1035     auto &Summary = GlobalList.second.SummaryList[0];
1036     if (!IsThinLTO) {
1037       Summary->setNotEligibleToImport();
1038       continue;
1039     }
1040 
1041     bool AllRefsCanBeExternallyReferenced =
1042         llvm::all_of(Summary->refs(), [&](const ValueInfo &VI) {
1043           return !CantBePromoted.count(VI.getGUID());
1044         });
1045     if (!AllRefsCanBeExternallyReferenced) {
1046       Summary->setNotEligibleToImport();
1047       continue;
1048     }
1049 
1050     if (auto *FuncSummary = dyn_cast<FunctionSummary>(Summary.get())) {
1051       bool AllCallsCanBeExternallyReferenced = llvm::all_of(
1052           FuncSummary->calls(), [&](const FunctionSummary::EdgeTy &Edge) {
1053             return !CantBePromoted.count(Edge.first.getGUID());
1054           });
1055       if (!AllCallsCanBeExternallyReferenced)
1056         Summary->setNotEligibleToImport();
1057     }
1058   }
1059 
1060   if (!ModuleSummaryDotFile.empty()) {
1061     std::error_code EC;
1062     raw_fd_ostream OSDot(ModuleSummaryDotFile, EC, sys::fs::OpenFlags::OF_None);
1063     if (EC)
1064       report_fatal_error(Twine("Failed to open dot file ") +
1065                          ModuleSummaryDotFile + ": " + EC.message() + "\n");
1066     Index.exportToDot(OSDot, {});
1067   }
1068 
1069   return Index;
1070 }
1071 
1072 AnalysisKey ModuleSummaryIndexAnalysis::Key;
1073 
1074 ModuleSummaryIndex
1075 ModuleSummaryIndexAnalysis::run(Module &M, ModuleAnalysisManager &AM) {
1076   ProfileSummaryInfo &PSI = AM.getResult<ProfileSummaryAnalysis>(M);
1077   auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
1078   bool NeedSSI = needsParamAccessSummary(M);
1079   return buildModuleSummaryIndex(
1080       M,
1081       [&FAM](const Function &F) {
1082         return &FAM.getResult<BlockFrequencyAnalysis>(
1083             *const_cast<Function *>(&F));
1084       },
1085       &PSI,
1086       [&FAM, NeedSSI](const Function &F) -> const StackSafetyInfo * {
1087         return NeedSSI ? &FAM.getResult<StackSafetyAnalysis>(
1088                              const_cast<Function &>(F))
1089                        : nullptr;
1090       });
1091 }
1092 
1093 char ModuleSummaryIndexWrapperPass::ID = 0;
1094 
1095 INITIALIZE_PASS_BEGIN(ModuleSummaryIndexWrapperPass, "module-summary-analysis",
1096                       "Module Summary Analysis", false, true)
1097 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
1098 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
1099 INITIALIZE_PASS_DEPENDENCY(StackSafetyInfoWrapperPass)
1100 INITIALIZE_PASS_END(ModuleSummaryIndexWrapperPass, "module-summary-analysis",
1101                     "Module Summary Analysis", false, true)
1102 
1103 ModulePass *llvm::createModuleSummaryIndexWrapperPass() {
1104   return new ModuleSummaryIndexWrapperPass();
1105 }
1106 
1107 ModuleSummaryIndexWrapperPass::ModuleSummaryIndexWrapperPass()
1108     : ModulePass(ID) {
1109   initializeModuleSummaryIndexWrapperPassPass(*PassRegistry::getPassRegistry());
1110 }
1111 
1112 bool ModuleSummaryIndexWrapperPass::runOnModule(Module &M) {
1113   auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
1114   bool NeedSSI = needsParamAccessSummary(M);
1115   Index.emplace(buildModuleSummaryIndex(
1116       M,
1117       [this](const Function &F) {
1118         return &(this->getAnalysis<BlockFrequencyInfoWrapperPass>(
1119                          *const_cast<Function *>(&F))
1120                      .getBFI());
1121       },
1122       PSI,
1123       [&](const Function &F) -> const StackSafetyInfo * {
1124         return NeedSSI ? &getAnalysis<StackSafetyInfoWrapperPass>(
1125                               const_cast<Function &>(F))
1126                               .getResult()
1127                        : nullptr;
1128       }));
1129   return false;
1130 }
1131 
1132 bool ModuleSummaryIndexWrapperPass::doFinalization(Module &M) {
1133   Index.reset();
1134   return false;
1135 }
1136 
1137 void ModuleSummaryIndexWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
1138   AU.setPreservesAll();
1139   AU.addRequired<BlockFrequencyInfoWrapperPass>();
1140   AU.addRequired<ProfileSummaryInfoWrapperPass>();
1141   AU.addRequired<StackSafetyInfoWrapperPass>();
1142 }
1143 
1144 char ImmutableModuleSummaryIndexWrapperPass::ID = 0;
1145 
1146 ImmutableModuleSummaryIndexWrapperPass::ImmutableModuleSummaryIndexWrapperPass(
1147     const ModuleSummaryIndex *Index)
1148     : ImmutablePass(ID), Index(Index) {
1149   initializeImmutableModuleSummaryIndexWrapperPassPass(
1150       *PassRegistry::getPassRegistry());
1151 }
1152 
1153 void ImmutableModuleSummaryIndexWrapperPass::getAnalysisUsage(
1154     AnalysisUsage &AU) const {
1155   AU.setPreservesAll();
1156 }
1157 
1158 ImmutablePass *llvm::createImmutableModuleSummaryIndexWrapperPass(
1159     const ModuleSummaryIndex *Index) {
1160   return new ImmutableModuleSummaryIndexWrapperPass(Index);
1161 }
1162 
1163 INITIALIZE_PASS(ImmutableModuleSummaryIndexWrapperPass, "module-summary-info",
1164                 "Module summary info", false, true)
1165 
1166 bool llvm::mayHaveMemprofSummary(const CallBase *CB) {
1167   if (!CB)
1168     return false;
1169   if (CB->isDebugOrPseudoInst())
1170     return false;
1171   auto *CI = dyn_cast<CallInst>(CB);
1172   auto *CalledValue = CB->getCalledOperand();
1173   auto *CalledFunction = CB->getCalledFunction();
1174   if (CalledValue && !CalledFunction) {
1175     CalledValue = CalledValue->stripPointerCasts();
1176     // Stripping pointer casts can reveal a called function.
1177     CalledFunction = dyn_cast<Function>(CalledValue);
1178   }
1179   // Check if this is an alias to a function. If so, get the
1180   // called aliasee for the checks below.
1181   if (auto *GA = dyn_cast<GlobalAlias>(CalledValue)) {
1182     assert(!CalledFunction &&
1183            "Expected null called function in callsite for alias");
1184     CalledFunction = dyn_cast<Function>(GA->getAliaseeObject());
1185   }
1186   // Check if this is a direct call to a known function or a known
1187   // intrinsic, or an indirect call with profile data.
1188   if (CalledFunction) {
1189     if (CI && CalledFunction->isIntrinsic())
1190       return false;
1191   } else {
1192     // TODO: For now skip indirect calls. See comments in
1193     // computeFunctionSummary for what is needed to handle this.
1194     return false;
1195   }
1196   return true;
1197 }
1198