1 //===- ModuleSummaryAnalysis.cpp - Module summary index builder -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass builds a ModuleSummaryIndex object for the module, to be written 10 // to bitcode or LLVM assembly. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/ModuleSummaryAnalysis.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/MapVector.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SetVector.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/StringRef.h" 23 #include "llvm/Analysis/BlockFrequencyInfo.h" 24 #include "llvm/Analysis/BranchProbabilityInfo.h" 25 #include "llvm/Analysis/ConstantFolding.h" 26 #include "llvm/Analysis/IndirectCallPromotionAnalysis.h" 27 #include "llvm/Analysis/LoopInfo.h" 28 #include "llvm/Analysis/MemoryProfileInfo.h" 29 #include "llvm/Analysis/ProfileSummaryInfo.h" 30 #include "llvm/Analysis/StackSafetyAnalysis.h" 31 #include "llvm/Analysis/TypeMetadataUtils.h" 32 #include "llvm/IR/Attributes.h" 33 #include "llvm/IR/BasicBlock.h" 34 #include "llvm/IR/Constant.h" 35 #include "llvm/IR/Constants.h" 36 #include "llvm/IR/Dominators.h" 37 #include "llvm/IR/Function.h" 38 #include "llvm/IR/GlobalAlias.h" 39 #include "llvm/IR/GlobalValue.h" 40 #include "llvm/IR/GlobalVariable.h" 41 #include "llvm/IR/Instructions.h" 42 #include "llvm/IR/IntrinsicInst.h" 43 #include "llvm/IR/Metadata.h" 44 #include "llvm/IR/Module.h" 45 #include "llvm/IR/ModuleSummaryIndex.h" 46 #include "llvm/IR/Use.h" 47 #include "llvm/IR/User.h" 48 #include "llvm/InitializePasses.h" 49 #include "llvm/Object/ModuleSymbolTable.h" 50 #include "llvm/Object/SymbolicFile.h" 51 #include "llvm/Pass.h" 52 #include "llvm/Support/Casting.h" 53 #include "llvm/Support/CommandLine.h" 54 #include "llvm/Support/FileSystem.h" 55 #include <algorithm> 56 #include <cassert> 57 #include <cstdint> 58 #include <vector> 59 60 using namespace llvm; 61 using namespace llvm::memprof; 62 63 #define DEBUG_TYPE "module-summary-analysis" 64 65 // Option to force edges cold which will block importing when the 66 // -import-cold-multiplier is set to 0. Useful for debugging. 67 namespace llvm { 68 FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold = 69 FunctionSummary::FSHT_None; 70 } // namespace llvm 71 72 static cl::opt<FunctionSummary::ForceSummaryHotnessType, true> FSEC( 73 "force-summary-edges-cold", cl::Hidden, cl::location(ForceSummaryEdgesCold), 74 cl::desc("Force all edges in the function summary to cold"), 75 cl::values(clEnumValN(FunctionSummary::FSHT_None, "none", "None."), 76 clEnumValN(FunctionSummary::FSHT_AllNonCritical, 77 "all-non-critical", "All non-critical edges."), 78 clEnumValN(FunctionSummary::FSHT_All, "all", "All edges."))); 79 80 static cl::opt<std::string> ModuleSummaryDotFile( 81 "module-summary-dot-file", cl::Hidden, cl::value_desc("filename"), 82 cl::desc("File to emit dot graph of new summary into")); 83 84 extern cl::opt<bool> ScalePartialSampleProfileWorkingSetSize; 85 86 extern cl::opt<unsigned> MaxNumVTableAnnotations; 87 88 // Walk through the operands of a given User via worklist iteration and populate 89 // the set of GlobalValue references encountered. Invoked either on an 90 // Instruction or a GlobalVariable (which walks its initializer). 91 // Return true if any of the operands contains blockaddress. This is important 92 // to know when computing summary for global var, because if global variable 93 // references basic block address we can't import it separately from function 94 // containing that basic block. For simplicity we currently don't import such 95 // global vars at all. When importing function we aren't interested if any 96 // instruction in it takes an address of any basic block, because instruction 97 // can only take an address of basic block located in the same function. 98 static bool findRefEdges(ModuleSummaryIndex &Index, const User *CurUser, 99 SetVector<ValueInfo, std::vector<ValueInfo>> &RefEdges, 100 SmallPtrSet<const User *, 8> &Visited) { 101 bool HasBlockAddress = false; 102 SmallVector<const User *, 32> Worklist; 103 if (Visited.insert(CurUser).second) 104 Worklist.push_back(CurUser); 105 106 while (!Worklist.empty()) { 107 const User *U = Worklist.pop_back_val(); 108 const auto *CB = dyn_cast<CallBase>(U); 109 110 for (const auto &OI : U->operands()) { 111 const User *Operand = dyn_cast<User>(OI); 112 if (!Operand) 113 continue; 114 if (isa<BlockAddress>(Operand)) { 115 HasBlockAddress = true; 116 continue; 117 } 118 if (auto *GV = dyn_cast<GlobalValue>(Operand)) { 119 // We have a reference to a global value. This should be added to 120 // the reference set unless it is a callee. Callees are handled 121 // specially by WriteFunction and are added to a separate list. 122 if (!(CB && CB->isCallee(&OI))) 123 RefEdges.insert(Index.getOrInsertValueInfo(GV)); 124 continue; 125 } 126 if (Visited.insert(Operand).second) 127 Worklist.push_back(Operand); 128 } 129 } 130 131 const Instruction *I = dyn_cast<Instruction>(CurUser); 132 if (I) { 133 uint32_t ActualNumValueData = 0; 134 uint64_t TotalCount = 0; 135 // MaxNumVTableAnnotations is the maximum number of vtables annotated on 136 // the instruction. 137 auto ValueDataArray = 138 getValueProfDataFromInst(*I, IPVK_VTableTarget, MaxNumVTableAnnotations, 139 ActualNumValueData, TotalCount); 140 141 if (ValueDataArray.get()) { 142 for (uint32_t j = 0; j < ActualNumValueData; j++) { 143 RefEdges.insert(Index.getOrInsertValueInfo(/* VTableGUID = */ 144 ValueDataArray[j].Value)); 145 } 146 } 147 } 148 return HasBlockAddress; 149 } 150 151 static CalleeInfo::HotnessType getHotness(uint64_t ProfileCount, 152 ProfileSummaryInfo *PSI) { 153 if (!PSI) 154 return CalleeInfo::HotnessType::Unknown; 155 if (PSI->isHotCount(ProfileCount)) 156 return CalleeInfo::HotnessType::Hot; 157 if (PSI->isColdCount(ProfileCount)) 158 return CalleeInfo::HotnessType::Cold; 159 return CalleeInfo::HotnessType::None; 160 } 161 162 static bool isNonRenamableLocal(const GlobalValue &GV) { 163 return GV.hasSection() && GV.hasLocalLinkage(); 164 } 165 166 /// Determine whether this call has all constant integer arguments (excluding 167 /// "this") and summarize it to VCalls or ConstVCalls as appropriate. 168 static void addVCallToSet( 169 DevirtCallSite Call, GlobalValue::GUID Guid, 170 SetVector<FunctionSummary::VFuncId, std::vector<FunctionSummary::VFuncId>> 171 &VCalls, 172 SetVector<FunctionSummary::ConstVCall, 173 std::vector<FunctionSummary::ConstVCall>> &ConstVCalls) { 174 std::vector<uint64_t> Args; 175 // Start from the second argument to skip the "this" pointer. 176 for (auto &Arg : drop_begin(Call.CB.args())) { 177 auto *CI = dyn_cast<ConstantInt>(Arg); 178 if (!CI || CI->getBitWidth() > 64) { 179 VCalls.insert({Guid, Call.Offset}); 180 return; 181 } 182 Args.push_back(CI->getZExtValue()); 183 } 184 ConstVCalls.insert({{Guid, Call.Offset}, std::move(Args)}); 185 } 186 187 /// If this intrinsic call requires that we add information to the function 188 /// summary, do so via the non-constant reference arguments. 189 static void addIntrinsicToSummary( 190 const CallInst *CI, 191 SetVector<GlobalValue::GUID, std::vector<GlobalValue::GUID>> &TypeTests, 192 SetVector<FunctionSummary::VFuncId, std::vector<FunctionSummary::VFuncId>> 193 &TypeTestAssumeVCalls, 194 SetVector<FunctionSummary::VFuncId, std::vector<FunctionSummary::VFuncId>> 195 &TypeCheckedLoadVCalls, 196 SetVector<FunctionSummary::ConstVCall, 197 std::vector<FunctionSummary::ConstVCall>> 198 &TypeTestAssumeConstVCalls, 199 SetVector<FunctionSummary::ConstVCall, 200 std::vector<FunctionSummary::ConstVCall>> 201 &TypeCheckedLoadConstVCalls, 202 DominatorTree &DT) { 203 switch (CI->getCalledFunction()->getIntrinsicID()) { 204 case Intrinsic::type_test: 205 case Intrinsic::public_type_test: { 206 auto *TypeMDVal = cast<MetadataAsValue>(CI->getArgOperand(1)); 207 auto *TypeId = dyn_cast<MDString>(TypeMDVal->getMetadata()); 208 if (!TypeId) 209 break; 210 GlobalValue::GUID Guid = GlobalValue::getGUID(TypeId->getString()); 211 212 // Produce a summary from type.test intrinsics. We only summarize type.test 213 // intrinsics that are used other than by an llvm.assume intrinsic. 214 // Intrinsics that are assumed are relevant only to the devirtualization 215 // pass, not the type test lowering pass. 216 bool HasNonAssumeUses = llvm::any_of(CI->uses(), [](const Use &CIU) { 217 return !isa<AssumeInst>(CIU.getUser()); 218 }); 219 if (HasNonAssumeUses) 220 TypeTests.insert(Guid); 221 222 SmallVector<DevirtCallSite, 4> DevirtCalls; 223 SmallVector<CallInst *, 4> Assumes; 224 findDevirtualizableCallsForTypeTest(DevirtCalls, Assumes, CI, DT); 225 for (auto &Call : DevirtCalls) 226 addVCallToSet(Call, Guid, TypeTestAssumeVCalls, 227 TypeTestAssumeConstVCalls); 228 229 break; 230 } 231 232 case Intrinsic::type_checked_load_relative: 233 case Intrinsic::type_checked_load: { 234 auto *TypeMDVal = cast<MetadataAsValue>(CI->getArgOperand(2)); 235 auto *TypeId = dyn_cast<MDString>(TypeMDVal->getMetadata()); 236 if (!TypeId) 237 break; 238 GlobalValue::GUID Guid = GlobalValue::getGUID(TypeId->getString()); 239 240 SmallVector<DevirtCallSite, 4> DevirtCalls; 241 SmallVector<Instruction *, 4> LoadedPtrs; 242 SmallVector<Instruction *, 4> Preds; 243 bool HasNonCallUses = false; 244 findDevirtualizableCallsForTypeCheckedLoad(DevirtCalls, LoadedPtrs, Preds, 245 HasNonCallUses, CI, DT); 246 // Any non-call uses of the result of llvm.type.checked.load will 247 // prevent us from optimizing away the llvm.type.test. 248 if (HasNonCallUses) 249 TypeTests.insert(Guid); 250 for (auto &Call : DevirtCalls) 251 addVCallToSet(Call, Guid, TypeCheckedLoadVCalls, 252 TypeCheckedLoadConstVCalls); 253 254 break; 255 } 256 default: 257 break; 258 } 259 } 260 261 static bool isNonVolatileLoad(const Instruction *I) { 262 if (const auto *LI = dyn_cast<LoadInst>(I)) 263 return !LI->isVolatile(); 264 265 return false; 266 } 267 268 static bool isNonVolatileStore(const Instruction *I) { 269 if (const auto *SI = dyn_cast<StoreInst>(I)) 270 return !SI->isVolatile(); 271 272 return false; 273 } 274 275 // Returns true if the function definition must be unreachable. 276 // 277 // Note if this helper function returns true, `F` is guaranteed 278 // to be unreachable; if it returns false, `F` might still 279 // be unreachable but not covered by this helper function. 280 static bool mustBeUnreachableFunction(const Function &F) { 281 // A function must be unreachable if its entry block ends with an 282 // 'unreachable'. 283 assert(!F.isDeclaration()); 284 return isa<UnreachableInst>(F.getEntryBlock().getTerminator()); 285 } 286 287 static void computeFunctionSummary( 288 ModuleSummaryIndex &Index, const Module &M, const Function &F, 289 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, DominatorTree &DT, 290 bool HasLocalsInUsedOrAsm, DenseSet<GlobalValue::GUID> &CantBePromoted, 291 bool IsThinLTO, 292 std::function<const StackSafetyInfo *(const Function &F)> GetSSICallback) { 293 // Summary not currently supported for anonymous functions, they should 294 // have been named. 295 assert(F.hasName()); 296 297 unsigned NumInsts = 0; 298 // Map from callee ValueId to profile count. Used to accumulate profile 299 // counts for all static calls to a given callee. 300 MapVector<ValueInfo, CalleeInfo, DenseMap<ValueInfo, unsigned>, 301 std::vector<std::pair<ValueInfo, CalleeInfo>>> 302 CallGraphEdges; 303 SetVector<ValueInfo, std::vector<ValueInfo>> RefEdges, LoadRefEdges, 304 StoreRefEdges; 305 SetVector<GlobalValue::GUID, std::vector<GlobalValue::GUID>> TypeTests; 306 SetVector<FunctionSummary::VFuncId, std::vector<FunctionSummary::VFuncId>> 307 TypeTestAssumeVCalls, TypeCheckedLoadVCalls; 308 SetVector<FunctionSummary::ConstVCall, 309 std::vector<FunctionSummary::ConstVCall>> 310 TypeTestAssumeConstVCalls, TypeCheckedLoadConstVCalls; 311 ICallPromotionAnalysis ICallAnalysis; 312 SmallPtrSet<const User *, 8> Visited; 313 314 // Add personality function, prefix data and prologue data to function's ref 315 // list. 316 findRefEdges(Index, &F, RefEdges, Visited); 317 std::vector<const Instruction *> NonVolatileLoads; 318 std::vector<const Instruction *> NonVolatileStores; 319 320 std::vector<CallsiteInfo> Callsites; 321 std::vector<AllocInfo> Allocs; 322 323 #ifndef NDEBUG 324 DenseSet<const CallBase *> CallsThatMayHaveMemprofSummary; 325 #endif 326 327 bool HasInlineAsmMaybeReferencingInternal = false; 328 bool HasIndirBranchToBlockAddress = false; 329 bool HasIFuncCall = false; 330 bool HasUnknownCall = false; 331 bool MayThrow = false; 332 for (const BasicBlock &BB : F) { 333 // We don't allow inlining of function with indirect branch to blockaddress. 334 // If the blockaddress escapes the function, e.g., via a global variable, 335 // inlining may lead to an invalid cross-function reference. So we shouldn't 336 // import such function either. 337 if (BB.hasAddressTaken()) { 338 for (User *U : BlockAddress::get(const_cast<BasicBlock *>(&BB))->users()) 339 if (!isa<CallBrInst>(*U)) { 340 HasIndirBranchToBlockAddress = true; 341 break; 342 } 343 } 344 345 for (const Instruction &I : BB) { 346 if (I.isDebugOrPseudoInst()) 347 continue; 348 ++NumInsts; 349 350 // Regular LTO module doesn't participate in ThinLTO import, 351 // so no reference from it can be read/writeonly, since this 352 // would require importing variable as local copy 353 if (IsThinLTO) { 354 if (isNonVolatileLoad(&I)) { 355 // Postpone processing of non-volatile load instructions 356 // See comments below 357 Visited.insert(&I); 358 NonVolatileLoads.push_back(&I); 359 continue; 360 } else if (isNonVolatileStore(&I)) { 361 Visited.insert(&I); 362 NonVolatileStores.push_back(&I); 363 // All references from second operand of store (destination address) 364 // can be considered write-only if they're not referenced by any 365 // non-store instruction. References from first operand of store 366 // (stored value) can't be treated either as read- or as write-only 367 // so we add them to RefEdges as we do with all other instructions 368 // except non-volatile load. 369 Value *Stored = I.getOperand(0); 370 if (auto *GV = dyn_cast<GlobalValue>(Stored)) 371 // findRefEdges will try to examine GV operands, so instead 372 // of calling it we should add GV to RefEdges directly. 373 RefEdges.insert(Index.getOrInsertValueInfo(GV)); 374 else if (auto *U = dyn_cast<User>(Stored)) 375 findRefEdges(Index, U, RefEdges, Visited); 376 continue; 377 } 378 } 379 findRefEdges(Index, &I, RefEdges, Visited); 380 const auto *CB = dyn_cast<CallBase>(&I); 381 if (!CB) { 382 if (I.mayThrow()) 383 MayThrow = true; 384 continue; 385 } 386 387 const auto *CI = dyn_cast<CallInst>(&I); 388 // Since we don't know exactly which local values are referenced in inline 389 // assembly, conservatively mark the function as possibly referencing 390 // a local value from inline assembly to ensure we don't export a 391 // reference (which would require renaming and promotion of the 392 // referenced value). 393 if (HasLocalsInUsedOrAsm && CI && CI->isInlineAsm()) 394 HasInlineAsmMaybeReferencingInternal = true; 395 396 auto *CalledValue = CB->getCalledOperand(); 397 auto *CalledFunction = CB->getCalledFunction(); 398 if (CalledValue && !CalledFunction) { 399 CalledValue = CalledValue->stripPointerCasts(); 400 // Stripping pointer casts can reveal a called function. 401 CalledFunction = dyn_cast<Function>(CalledValue); 402 } 403 // Check if this is an alias to a function. If so, get the 404 // called aliasee for the checks below. 405 if (auto *GA = dyn_cast<GlobalAlias>(CalledValue)) { 406 assert(!CalledFunction && "Expected null called function in callsite for alias"); 407 CalledFunction = dyn_cast<Function>(GA->getAliaseeObject()); 408 } 409 // Check if this is a direct call to a known function or a known 410 // intrinsic, or an indirect call with profile data. 411 if (CalledFunction) { 412 if (CI && CalledFunction->isIntrinsic()) { 413 addIntrinsicToSummary( 414 CI, TypeTests, TypeTestAssumeVCalls, TypeCheckedLoadVCalls, 415 TypeTestAssumeConstVCalls, TypeCheckedLoadConstVCalls, DT); 416 continue; 417 } 418 // We should have named any anonymous globals 419 assert(CalledFunction->hasName()); 420 auto ScaledCount = PSI->getProfileCount(*CB, BFI); 421 auto Hotness = ScaledCount ? getHotness(*ScaledCount, PSI) 422 : CalleeInfo::HotnessType::Unknown; 423 if (ForceSummaryEdgesCold != FunctionSummary::FSHT_None) 424 Hotness = CalleeInfo::HotnessType::Cold; 425 426 // Use the original CalledValue, in case it was an alias. We want 427 // to record the call edge to the alias in that case. Eventually 428 // an alias summary will be created to associate the alias and 429 // aliasee. 430 auto &ValueInfo = CallGraphEdges[Index.getOrInsertValueInfo( 431 cast<GlobalValue>(CalledValue))]; 432 ValueInfo.updateHotness(Hotness); 433 if (CB->isTailCall()) 434 ValueInfo.setHasTailCall(true); 435 // Add the relative block frequency to CalleeInfo if there is no profile 436 // information. 437 if (BFI != nullptr && Hotness == CalleeInfo::HotnessType::Unknown) { 438 uint64_t BBFreq = BFI->getBlockFreq(&BB).getFrequency(); 439 uint64_t EntryFreq = BFI->getEntryFreq().getFrequency(); 440 ValueInfo.updateRelBlockFreq(BBFreq, EntryFreq); 441 } 442 } else { 443 HasUnknownCall = true; 444 // If F is imported, a local linkage ifunc (e.g. target_clones on a 445 // static function) called by F will be cloned. Since summaries don't 446 // track ifunc, we do not know implementation functions referenced by 447 // the ifunc resolver need to be promoted in the exporter, and we will 448 // get linker errors due to cloned declarations for implementation 449 // functions. As a simple fix, just mark F as not eligible for import. 450 // Non-local ifunc is not cloned and does not have the issue. 451 if (auto *GI = dyn_cast_if_present<GlobalIFunc>(CalledValue)) 452 if (GI->hasLocalLinkage()) 453 HasIFuncCall = true; 454 // Skip inline assembly calls. 455 if (CI && CI->isInlineAsm()) 456 continue; 457 // Skip direct calls. 458 if (!CalledValue || isa<Constant>(CalledValue)) 459 continue; 460 461 // Check if the instruction has a callees metadata. If so, add callees 462 // to CallGraphEdges to reflect the references from the metadata, and 463 // to enable importing for subsequent indirect call promotion and 464 // inlining. 465 if (auto *MD = I.getMetadata(LLVMContext::MD_callees)) { 466 for (const auto &Op : MD->operands()) { 467 Function *Callee = mdconst::extract_or_null<Function>(Op); 468 if (Callee) 469 CallGraphEdges[Index.getOrInsertValueInfo(Callee)]; 470 } 471 } 472 473 uint32_t NumVals, NumCandidates; 474 uint64_t TotalCount; 475 auto CandidateProfileData = 476 ICallAnalysis.getPromotionCandidatesForInstruction( 477 &I, NumVals, TotalCount, NumCandidates); 478 for (const auto &Candidate : CandidateProfileData) 479 CallGraphEdges[Index.getOrInsertValueInfo(Candidate.Value)] 480 .updateHotness(getHotness(Candidate.Count, PSI)); 481 } 482 483 // Summarize memprof related metadata. This is only needed for ThinLTO. 484 if (!IsThinLTO) 485 continue; 486 487 // TODO: Skip indirect calls for now. Need to handle these better, likely 488 // by creating multiple Callsites, one per target, then speculatively 489 // devirtualize while applying clone info in the ThinLTO backends. This 490 // will also be important because we will have a different set of clone 491 // versions per target. This handling needs to match that in the ThinLTO 492 // backend so we handle things consistently for matching of callsite 493 // summaries to instructions. 494 if (!CalledFunction) 495 continue; 496 497 // Ensure we keep this analysis in sync with the handling in the ThinLTO 498 // backend (see MemProfContextDisambiguation::applyImport). Save this call 499 // so that we can skip it in checking the reverse case later. 500 assert(mayHaveMemprofSummary(CB)); 501 #ifndef NDEBUG 502 CallsThatMayHaveMemprofSummary.insert(CB); 503 #endif 504 505 // Compute the list of stack ids first (so we can trim them from the stack 506 // ids on any MIBs). 507 CallStack<MDNode, MDNode::op_iterator> InstCallsite( 508 I.getMetadata(LLVMContext::MD_callsite)); 509 auto *MemProfMD = I.getMetadata(LLVMContext::MD_memprof); 510 if (MemProfMD) { 511 std::vector<MIBInfo> MIBs; 512 for (auto &MDOp : MemProfMD->operands()) { 513 auto *MIBMD = cast<const MDNode>(MDOp); 514 MDNode *StackNode = getMIBStackNode(MIBMD); 515 assert(StackNode); 516 SmallVector<unsigned> StackIdIndices; 517 CallStack<MDNode, MDNode::op_iterator> StackContext(StackNode); 518 // Collapse out any on the allocation call (inlining). 519 for (auto ContextIter = 520 StackContext.beginAfterSharedPrefix(InstCallsite); 521 ContextIter != StackContext.end(); ++ContextIter) { 522 unsigned StackIdIdx = Index.addOrGetStackIdIndex(*ContextIter); 523 // If this is a direct recursion, simply skip the duplicate 524 // entries. If this is mutual recursion, handling is left to 525 // the LTO link analysis client. 526 if (StackIdIndices.empty() || StackIdIndices.back() != StackIdIdx) 527 StackIdIndices.push_back(StackIdIdx); 528 } 529 MIBs.push_back( 530 MIBInfo(getMIBAllocType(MIBMD), std::move(StackIdIndices))); 531 } 532 Allocs.push_back(AllocInfo(std::move(MIBs))); 533 } else if (!InstCallsite.empty()) { 534 SmallVector<unsigned> StackIdIndices; 535 for (auto StackId : InstCallsite) 536 StackIdIndices.push_back(Index.addOrGetStackIdIndex(StackId)); 537 // Use the original CalledValue, in case it was an alias. We want 538 // to record the call edge to the alias in that case. Eventually 539 // an alias summary will be created to associate the alias and 540 // aliasee. 541 auto CalleeValueInfo = 542 Index.getOrInsertValueInfo(cast<GlobalValue>(CalledValue)); 543 Callsites.push_back({CalleeValueInfo, StackIdIndices}); 544 } 545 } 546 } 547 548 if (PSI->hasPartialSampleProfile() && ScalePartialSampleProfileWorkingSetSize) 549 Index.addBlockCount(F.size()); 550 551 std::vector<ValueInfo> Refs; 552 if (IsThinLTO) { 553 auto AddRefEdges = [&](const std::vector<const Instruction *> &Instrs, 554 SetVector<ValueInfo, std::vector<ValueInfo>> &Edges, 555 SmallPtrSet<const User *, 8> &Cache) { 556 for (const auto *I : Instrs) { 557 Cache.erase(I); 558 findRefEdges(Index, I, Edges, Cache); 559 } 560 }; 561 562 // By now we processed all instructions in a function, except 563 // non-volatile loads and non-volatile value stores. Let's find 564 // ref edges for both of instruction sets 565 AddRefEdges(NonVolatileLoads, LoadRefEdges, Visited); 566 // We can add some values to the Visited set when processing load 567 // instructions which are also used by stores in NonVolatileStores. 568 // For example this can happen if we have following code: 569 // 570 // store %Derived* @foo, %Derived** bitcast (%Base** @bar to %Derived**) 571 // %42 = load %Derived*, %Derived** bitcast (%Base** @bar to %Derived**) 572 // 573 // After processing loads we'll add bitcast to the Visited set, and if 574 // we use the same set while processing stores, we'll never see store 575 // to @bar and @bar will be mistakenly treated as readonly. 576 SmallPtrSet<const llvm::User *, 8> StoreCache; 577 AddRefEdges(NonVolatileStores, StoreRefEdges, StoreCache); 578 579 // If both load and store instruction reference the same variable 580 // we won't be able to optimize it. Add all such reference edges 581 // to RefEdges set. 582 for (const auto &VI : StoreRefEdges) 583 if (LoadRefEdges.remove(VI)) 584 RefEdges.insert(VI); 585 586 unsigned RefCnt = RefEdges.size(); 587 // All new reference edges inserted in two loops below are either 588 // read or write only. They will be grouped in the end of RefEdges 589 // vector, so we can use a single integer value to identify them. 590 for (const auto &VI : LoadRefEdges) 591 RefEdges.insert(VI); 592 593 unsigned FirstWORef = RefEdges.size(); 594 for (const auto &VI : StoreRefEdges) 595 RefEdges.insert(VI); 596 597 Refs = RefEdges.takeVector(); 598 for (; RefCnt < FirstWORef; ++RefCnt) 599 Refs[RefCnt].setReadOnly(); 600 601 for (; RefCnt < Refs.size(); ++RefCnt) 602 Refs[RefCnt].setWriteOnly(); 603 } else { 604 Refs = RefEdges.takeVector(); 605 } 606 // Explicit add hot edges to enforce importing for designated GUIDs for 607 // sample PGO, to enable the same inlines as the profiled optimized binary. 608 for (auto &I : F.getImportGUIDs()) 609 CallGraphEdges[Index.getOrInsertValueInfo(I)].updateHotness( 610 ForceSummaryEdgesCold == FunctionSummary::FSHT_All 611 ? CalleeInfo::HotnessType::Cold 612 : CalleeInfo::HotnessType::Critical); 613 614 #ifndef NDEBUG 615 // Make sure that all calls we decided could not have memprof summaries get a 616 // false value for mayHaveMemprofSummary, to ensure that this handling remains 617 // in sync with the ThinLTO backend handling. 618 if (IsThinLTO) { 619 for (const BasicBlock &BB : F) { 620 for (const Instruction &I : BB) { 621 const auto *CB = dyn_cast<CallBase>(&I); 622 if (!CB) 623 continue; 624 // We already checked these above. 625 if (CallsThatMayHaveMemprofSummary.count(CB)) 626 continue; 627 assert(!mayHaveMemprofSummary(CB)); 628 } 629 } 630 } 631 #endif 632 633 bool NonRenamableLocal = isNonRenamableLocal(F); 634 bool NotEligibleForImport = NonRenamableLocal || 635 HasInlineAsmMaybeReferencingInternal || 636 HasIndirBranchToBlockAddress || HasIFuncCall; 637 GlobalValueSummary::GVFlags Flags( 638 F.getLinkage(), F.getVisibility(), NotEligibleForImport, 639 /* Live = */ false, F.isDSOLocal(), F.canBeOmittedFromSymbolTable(), 640 GlobalValueSummary::ImportKind::Definition); 641 FunctionSummary::FFlags FunFlags{ 642 F.doesNotAccessMemory(), F.onlyReadsMemory() && !F.doesNotAccessMemory(), 643 F.hasFnAttribute(Attribute::NoRecurse), F.returnDoesNotAlias(), 644 // FIXME: refactor this to use the same code that inliner is using. 645 // Don't try to import functions with noinline attribute. 646 F.getAttributes().hasFnAttr(Attribute::NoInline), 647 F.hasFnAttribute(Attribute::AlwaysInline), 648 F.hasFnAttribute(Attribute::NoUnwind), MayThrow, HasUnknownCall, 649 mustBeUnreachableFunction(F)}; 650 std::vector<FunctionSummary::ParamAccess> ParamAccesses; 651 if (auto *SSI = GetSSICallback(F)) 652 ParamAccesses = SSI->getParamAccesses(Index); 653 auto FuncSummary = std::make_unique<FunctionSummary>( 654 Flags, NumInsts, FunFlags, /*EntryCount=*/0, std::move(Refs), 655 CallGraphEdges.takeVector(), TypeTests.takeVector(), 656 TypeTestAssumeVCalls.takeVector(), TypeCheckedLoadVCalls.takeVector(), 657 TypeTestAssumeConstVCalls.takeVector(), 658 TypeCheckedLoadConstVCalls.takeVector(), std::move(ParamAccesses), 659 std::move(Callsites), std::move(Allocs)); 660 if (NonRenamableLocal) 661 CantBePromoted.insert(F.getGUID()); 662 Index.addGlobalValueSummary(F, std::move(FuncSummary)); 663 } 664 665 /// Find function pointers referenced within the given vtable initializer 666 /// (or subset of an initializer) \p I. The starting offset of \p I within 667 /// the vtable initializer is \p StartingOffset. Any discovered function 668 /// pointers are added to \p VTableFuncs along with their cumulative offset 669 /// within the initializer. 670 static void findFuncPointers(const Constant *I, uint64_t StartingOffset, 671 const Module &M, ModuleSummaryIndex &Index, 672 VTableFuncList &VTableFuncs, 673 const GlobalVariable &OrigGV) { 674 // First check if this is a function pointer. 675 if (I->getType()->isPointerTy()) { 676 auto C = I->stripPointerCasts(); 677 auto A = dyn_cast<GlobalAlias>(C); 678 if (isa<Function>(C) || (A && isa<Function>(A->getAliasee()))) { 679 auto GV = dyn_cast<GlobalValue>(C); 680 assert(GV); 681 // We can disregard __cxa_pure_virtual as a possible call target, as 682 // calls to pure virtuals are UB. 683 if (GV && GV->getName() != "__cxa_pure_virtual") 684 VTableFuncs.push_back({Index.getOrInsertValueInfo(GV), StartingOffset}); 685 return; 686 } 687 } 688 689 // Walk through the elements in the constant struct or array and recursively 690 // look for virtual function pointers. 691 const DataLayout &DL = M.getDataLayout(); 692 if (auto *C = dyn_cast<ConstantStruct>(I)) { 693 StructType *STy = dyn_cast<StructType>(C->getType()); 694 assert(STy); 695 const StructLayout *SL = DL.getStructLayout(C->getType()); 696 697 for (auto EI : llvm::enumerate(STy->elements())) { 698 auto Offset = SL->getElementOffset(EI.index()); 699 unsigned Op = SL->getElementContainingOffset(Offset); 700 findFuncPointers(cast<Constant>(I->getOperand(Op)), 701 StartingOffset + Offset, M, Index, VTableFuncs, OrigGV); 702 } 703 } else if (auto *C = dyn_cast<ConstantArray>(I)) { 704 ArrayType *ATy = C->getType(); 705 Type *EltTy = ATy->getElementType(); 706 uint64_t EltSize = DL.getTypeAllocSize(EltTy); 707 for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) { 708 findFuncPointers(cast<Constant>(I->getOperand(i)), 709 StartingOffset + i * EltSize, M, Index, VTableFuncs, 710 OrigGV); 711 } 712 } else if (const auto *CE = dyn_cast<ConstantExpr>(I)) { 713 // For relative vtables, the next sub-component should be a trunc. 714 if (CE->getOpcode() != Instruction::Trunc || 715 !(CE = dyn_cast<ConstantExpr>(CE->getOperand(0)))) 716 return; 717 718 // If this constant can be reduced to the offset between a function and a 719 // global, then we know this is a valid virtual function if the RHS is the 720 // original vtable we're scanning through. 721 if (CE->getOpcode() == Instruction::Sub) { 722 GlobalValue *LHS, *RHS; 723 APSInt LHSOffset, RHSOffset; 724 if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHS, LHSOffset, DL) && 725 IsConstantOffsetFromGlobal(CE->getOperand(1), RHS, RHSOffset, DL) && 726 RHS == &OrigGV && 727 728 // For relative vtables, this component should point to the callable 729 // function without any offsets. 730 LHSOffset == 0 && 731 732 // Also, the RHS should always point to somewhere within the vtable. 733 RHSOffset <= 734 static_cast<uint64_t>(DL.getTypeAllocSize(OrigGV.getInitializer()->getType()))) { 735 findFuncPointers(LHS, StartingOffset, M, Index, VTableFuncs, OrigGV); 736 } 737 } 738 } 739 } 740 741 // Identify the function pointers referenced by vtable definition \p V. 742 static void computeVTableFuncs(ModuleSummaryIndex &Index, 743 const GlobalVariable &V, const Module &M, 744 VTableFuncList &VTableFuncs) { 745 if (!V.isConstant()) 746 return; 747 748 findFuncPointers(V.getInitializer(), /*StartingOffset=*/0, M, Index, 749 VTableFuncs, V); 750 751 #ifndef NDEBUG 752 // Validate that the VTableFuncs list is ordered by offset. 753 uint64_t PrevOffset = 0; 754 for (auto &P : VTableFuncs) { 755 // The findVFuncPointers traversal should have encountered the 756 // functions in offset order. We need to use ">=" since PrevOffset 757 // starts at 0. 758 assert(P.VTableOffset >= PrevOffset); 759 PrevOffset = P.VTableOffset; 760 } 761 #endif 762 } 763 764 /// Record vtable definition \p V for each type metadata it references. 765 static void 766 recordTypeIdCompatibleVtableReferences(ModuleSummaryIndex &Index, 767 const GlobalVariable &V, 768 SmallVectorImpl<MDNode *> &Types) { 769 for (MDNode *Type : Types) { 770 auto TypeID = Type->getOperand(1).get(); 771 772 uint64_t Offset = 773 cast<ConstantInt>( 774 cast<ConstantAsMetadata>(Type->getOperand(0))->getValue()) 775 ->getZExtValue(); 776 777 if (auto *TypeId = dyn_cast<MDString>(TypeID)) 778 Index.getOrInsertTypeIdCompatibleVtableSummary(TypeId->getString()) 779 .push_back({Offset, Index.getOrInsertValueInfo(&V)}); 780 } 781 } 782 783 static void computeVariableSummary(ModuleSummaryIndex &Index, 784 const GlobalVariable &V, 785 DenseSet<GlobalValue::GUID> &CantBePromoted, 786 const Module &M, 787 SmallVectorImpl<MDNode *> &Types) { 788 SetVector<ValueInfo, std::vector<ValueInfo>> RefEdges; 789 SmallPtrSet<const User *, 8> Visited; 790 bool HasBlockAddress = findRefEdges(Index, &V, RefEdges, Visited); 791 bool NonRenamableLocal = isNonRenamableLocal(V); 792 GlobalValueSummary::GVFlags Flags( 793 V.getLinkage(), V.getVisibility(), NonRenamableLocal, 794 /* Live = */ false, V.isDSOLocal(), V.canBeOmittedFromSymbolTable(), 795 GlobalValueSummary::Definition); 796 797 VTableFuncList VTableFuncs; 798 // If splitting is not enabled, then we compute the summary information 799 // necessary for index-based whole program devirtualization. 800 if (!Index.enableSplitLTOUnit()) { 801 Types.clear(); 802 V.getMetadata(LLVMContext::MD_type, Types); 803 if (!Types.empty()) { 804 // Identify the function pointers referenced by this vtable definition. 805 computeVTableFuncs(Index, V, M, VTableFuncs); 806 807 // Record this vtable definition for each type metadata it references. 808 recordTypeIdCompatibleVtableReferences(Index, V, Types); 809 } 810 } 811 812 // Don't mark variables we won't be able to internalize as read/write-only. 813 bool CanBeInternalized = 814 !V.hasComdat() && !V.hasAppendingLinkage() && !V.isInterposable() && 815 !V.hasAvailableExternallyLinkage() && !V.hasDLLExportStorageClass(); 816 bool Constant = V.isConstant(); 817 GlobalVarSummary::GVarFlags VarFlags(CanBeInternalized, 818 Constant ? false : CanBeInternalized, 819 Constant, V.getVCallVisibility()); 820 auto GVarSummary = std::make_unique<GlobalVarSummary>(Flags, VarFlags, 821 RefEdges.takeVector()); 822 if (NonRenamableLocal) 823 CantBePromoted.insert(V.getGUID()); 824 if (HasBlockAddress) 825 GVarSummary->setNotEligibleToImport(); 826 if (!VTableFuncs.empty()) 827 GVarSummary->setVTableFuncs(VTableFuncs); 828 Index.addGlobalValueSummary(V, std::move(GVarSummary)); 829 } 830 831 static void computeAliasSummary(ModuleSummaryIndex &Index, const GlobalAlias &A, 832 DenseSet<GlobalValue::GUID> &CantBePromoted) { 833 // Skip summary for indirect function aliases as summary for aliasee will not 834 // be emitted. 835 const GlobalObject *Aliasee = A.getAliaseeObject(); 836 if (isa<GlobalIFunc>(Aliasee)) 837 return; 838 bool NonRenamableLocal = isNonRenamableLocal(A); 839 GlobalValueSummary::GVFlags Flags( 840 A.getLinkage(), A.getVisibility(), NonRenamableLocal, 841 /* Live = */ false, A.isDSOLocal(), A.canBeOmittedFromSymbolTable(), 842 GlobalValueSummary::Definition); 843 auto AS = std::make_unique<AliasSummary>(Flags); 844 auto AliaseeVI = Index.getValueInfo(Aliasee->getGUID()); 845 assert(AliaseeVI && "Alias expects aliasee summary to be available"); 846 assert(AliaseeVI.getSummaryList().size() == 1 && 847 "Expected a single entry per aliasee in per-module index"); 848 AS->setAliasee(AliaseeVI, AliaseeVI.getSummaryList()[0].get()); 849 if (NonRenamableLocal) 850 CantBePromoted.insert(A.getGUID()); 851 Index.addGlobalValueSummary(A, std::move(AS)); 852 } 853 854 // Set LiveRoot flag on entries matching the given value name. 855 static void setLiveRoot(ModuleSummaryIndex &Index, StringRef Name) { 856 if (ValueInfo VI = Index.getValueInfo(GlobalValue::getGUID(Name))) 857 for (const auto &Summary : VI.getSummaryList()) 858 Summary->setLive(true); 859 } 860 861 ModuleSummaryIndex llvm::buildModuleSummaryIndex( 862 const Module &M, 863 std::function<BlockFrequencyInfo *(const Function &F)> GetBFICallback, 864 ProfileSummaryInfo *PSI, 865 std::function<const StackSafetyInfo *(const Function &F)> GetSSICallback) { 866 assert(PSI); 867 bool EnableSplitLTOUnit = false; 868 bool UnifiedLTO = false; 869 if (auto *MD = mdconst::extract_or_null<ConstantInt>( 870 M.getModuleFlag("EnableSplitLTOUnit"))) 871 EnableSplitLTOUnit = MD->getZExtValue(); 872 if (auto *MD = 873 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("UnifiedLTO"))) 874 UnifiedLTO = MD->getZExtValue(); 875 ModuleSummaryIndex Index(/*HaveGVs=*/true, EnableSplitLTOUnit, UnifiedLTO); 876 877 // Identify the local values in the llvm.used and llvm.compiler.used sets, 878 // which should not be exported as they would then require renaming and 879 // promotion, but we may have opaque uses e.g. in inline asm. We collect them 880 // here because we use this information to mark functions containing inline 881 // assembly calls as not importable. 882 SmallPtrSet<GlobalValue *, 4> LocalsUsed; 883 SmallVector<GlobalValue *, 4> Used; 884 // First collect those in the llvm.used set. 885 collectUsedGlobalVariables(M, Used, /*CompilerUsed=*/false); 886 // Next collect those in the llvm.compiler.used set. 887 collectUsedGlobalVariables(M, Used, /*CompilerUsed=*/true); 888 DenseSet<GlobalValue::GUID> CantBePromoted; 889 for (auto *V : Used) { 890 if (V->hasLocalLinkage()) { 891 LocalsUsed.insert(V); 892 CantBePromoted.insert(V->getGUID()); 893 } 894 } 895 896 bool HasLocalInlineAsmSymbol = false; 897 if (!M.getModuleInlineAsm().empty()) { 898 // Collect the local values defined by module level asm, and set up 899 // summaries for these symbols so that they can be marked as NoRename, 900 // to prevent export of any use of them in regular IR that would require 901 // renaming within the module level asm. Note we don't need to create a 902 // summary for weak or global defs, as they don't need to be flagged as 903 // NoRename, and defs in module level asm can't be imported anyway. 904 // Also, any values used but not defined within module level asm should 905 // be listed on the llvm.used or llvm.compiler.used global and marked as 906 // referenced from there. 907 ModuleSymbolTable::CollectAsmSymbols( 908 M, [&](StringRef Name, object::BasicSymbolRef::Flags Flags) { 909 // Symbols not marked as Weak or Global are local definitions. 910 if (Flags & (object::BasicSymbolRef::SF_Weak | 911 object::BasicSymbolRef::SF_Global)) 912 return; 913 HasLocalInlineAsmSymbol = true; 914 GlobalValue *GV = M.getNamedValue(Name); 915 if (!GV) 916 return; 917 assert(GV->isDeclaration() && "Def in module asm already has definition"); 918 GlobalValueSummary::GVFlags GVFlags( 919 GlobalValue::InternalLinkage, GlobalValue::DefaultVisibility, 920 /* NotEligibleToImport = */ true, 921 /* Live = */ true, 922 /* Local */ GV->isDSOLocal(), GV->canBeOmittedFromSymbolTable(), 923 GlobalValueSummary::Definition); 924 CantBePromoted.insert(GV->getGUID()); 925 // Create the appropriate summary type. 926 if (Function *F = dyn_cast<Function>(GV)) { 927 std::unique_ptr<FunctionSummary> Summary = 928 std::make_unique<FunctionSummary>( 929 GVFlags, /*InstCount=*/0, 930 FunctionSummary::FFlags{ 931 F->hasFnAttribute(Attribute::ReadNone), 932 F->hasFnAttribute(Attribute::ReadOnly), 933 F->hasFnAttribute(Attribute::NoRecurse), 934 F->returnDoesNotAlias(), 935 /* NoInline = */ false, 936 F->hasFnAttribute(Attribute::AlwaysInline), 937 F->hasFnAttribute(Attribute::NoUnwind), 938 /* MayThrow */ true, 939 /* HasUnknownCall */ true, 940 /* MustBeUnreachable */ false}, 941 /*EntryCount=*/0, ArrayRef<ValueInfo>{}, 942 ArrayRef<FunctionSummary::EdgeTy>{}, 943 ArrayRef<GlobalValue::GUID>{}, 944 ArrayRef<FunctionSummary::VFuncId>{}, 945 ArrayRef<FunctionSummary::VFuncId>{}, 946 ArrayRef<FunctionSummary::ConstVCall>{}, 947 ArrayRef<FunctionSummary::ConstVCall>{}, 948 ArrayRef<FunctionSummary::ParamAccess>{}, 949 ArrayRef<CallsiteInfo>{}, ArrayRef<AllocInfo>{}); 950 Index.addGlobalValueSummary(*GV, std::move(Summary)); 951 } else { 952 std::unique_ptr<GlobalVarSummary> Summary = 953 std::make_unique<GlobalVarSummary>( 954 GVFlags, 955 GlobalVarSummary::GVarFlags( 956 false, false, cast<GlobalVariable>(GV)->isConstant(), 957 GlobalObject::VCallVisibilityPublic), 958 ArrayRef<ValueInfo>{}); 959 Index.addGlobalValueSummary(*GV, std::move(Summary)); 960 } 961 }); 962 } 963 964 bool IsThinLTO = true; 965 if (auto *MD = 966 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO"))) 967 IsThinLTO = MD->getZExtValue(); 968 969 // Compute summaries for all functions defined in module, and save in the 970 // index. 971 for (const auto &F : M) { 972 if (F.isDeclaration()) 973 continue; 974 975 DominatorTree DT(const_cast<Function &>(F)); 976 BlockFrequencyInfo *BFI = nullptr; 977 std::unique_ptr<BlockFrequencyInfo> BFIPtr; 978 if (GetBFICallback) 979 BFI = GetBFICallback(F); 980 else if (F.hasProfileData()) { 981 LoopInfo LI{DT}; 982 BranchProbabilityInfo BPI{F, LI}; 983 BFIPtr = std::make_unique<BlockFrequencyInfo>(F, BPI, LI); 984 BFI = BFIPtr.get(); 985 } 986 987 computeFunctionSummary(Index, M, F, BFI, PSI, DT, 988 !LocalsUsed.empty() || HasLocalInlineAsmSymbol, 989 CantBePromoted, IsThinLTO, GetSSICallback); 990 } 991 992 // Compute summaries for all variables defined in module, and save in the 993 // index. 994 SmallVector<MDNode *, 2> Types; 995 for (const GlobalVariable &G : M.globals()) { 996 if (G.isDeclaration()) 997 continue; 998 computeVariableSummary(Index, G, CantBePromoted, M, Types); 999 } 1000 1001 // Compute summaries for all aliases defined in module, and save in the 1002 // index. 1003 for (const GlobalAlias &A : M.aliases()) 1004 computeAliasSummary(Index, A, CantBePromoted); 1005 1006 // Iterate through ifuncs, set their resolvers all alive. 1007 for (const GlobalIFunc &I : M.ifuncs()) { 1008 I.applyAlongResolverPath([&Index](const GlobalValue &GV) { 1009 Index.getGlobalValueSummary(GV)->setLive(true); 1010 }); 1011 } 1012 1013 for (auto *V : LocalsUsed) { 1014 auto *Summary = Index.getGlobalValueSummary(*V); 1015 assert(Summary && "Missing summary for global value"); 1016 Summary->setNotEligibleToImport(); 1017 } 1018 1019 // The linker doesn't know about these LLVM produced values, so we need 1020 // to flag them as live in the index to ensure index-based dead value 1021 // analysis treats them as live roots of the analysis. 1022 setLiveRoot(Index, "llvm.used"); 1023 setLiveRoot(Index, "llvm.compiler.used"); 1024 setLiveRoot(Index, "llvm.global_ctors"); 1025 setLiveRoot(Index, "llvm.global_dtors"); 1026 setLiveRoot(Index, "llvm.global.annotations"); 1027 1028 for (auto &GlobalList : Index) { 1029 // Ignore entries for references that are undefined in the current module. 1030 if (GlobalList.second.SummaryList.empty()) 1031 continue; 1032 1033 assert(GlobalList.second.SummaryList.size() == 1 && 1034 "Expected module's index to have one summary per GUID"); 1035 auto &Summary = GlobalList.second.SummaryList[0]; 1036 if (!IsThinLTO) { 1037 Summary->setNotEligibleToImport(); 1038 continue; 1039 } 1040 1041 bool AllRefsCanBeExternallyReferenced = 1042 llvm::all_of(Summary->refs(), [&](const ValueInfo &VI) { 1043 return !CantBePromoted.count(VI.getGUID()); 1044 }); 1045 if (!AllRefsCanBeExternallyReferenced) { 1046 Summary->setNotEligibleToImport(); 1047 continue; 1048 } 1049 1050 if (auto *FuncSummary = dyn_cast<FunctionSummary>(Summary.get())) { 1051 bool AllCallsCanBeExternallyReferenced = llvm::all_of( 1052 FuncSummary->calls(), [&](const FunctionSummary::EdgeTy &Edge) { 1053 return !CantBePromoted.count(Edge.first.getGUID()); 1054 }); 1055 if (!AllCallsCanBeExternallyReferenced) 1056 Summary->setNotEligibleToImport(); 1057 } 1058 } 1059 1060 if (!ModuleSummaryDotFile.empty()) { 1061 std::error_code EC; 1062 raw_fd_ostream OSDot(ModuleSummaryDotFile, EC, sys::fs::OpenFlags::OF_None); 1063 if (EC) 1064 report_fatal_error(Twine("Failed to open dot file ") + 1065 ModuleSummaryDotFile + ": " + EC.message() + "\n"); 1066 Index.exportToDot(OSDot, {}); 1067 } 1068 1069 return Index; 1070 } 1071 1072 AnalysisKey ModuleSummaryIndexAnalysis::Key; 1073 1074 ModuleSummaryIndex 1075 ModuleSummaryIndexAnalysis::run(Module &M, ModuleAnalysisManager &AM) { 1076 ProfileSummaryInfo &PSI = AM.getResult<ProfileSummaryAnalysis>(M); 1077 auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 1078 bool NeedSSI = needsParamAccessSummary(M); 1079 return buildModuleSummaryIndex( 1080 M, 1081 [&FAM](const Function &F) { 1082 return &FAM.getResult<BlockFrequencyAnalysis>( 1083 *const_cast<Function *>(&F)); 1084 }, 1085 &PSI, 1086 [&FAM, NeedSSI](const Function &F) -> const StackSafetyInfo * { 1087 return NeedSSI ? &FAM.getResult<StackSafetyAnalysis>( 1088 const_cast<Function &>(F)) 1089 : nullptr; 1090 }); 1091 } 1092 1093 char ModuleSummaryIndexWrapperPass::ID = 0; 1094 1095 INITIALIZE_PASS_BEGIN(ModuleSummaryIndexWrapperPass, "module-summary-analysis", 1096 "Module Summary Analysis", false, true) 1097 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 1098 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 1099 INITIALIZE_PASS_DEPENDENCY(StackSafetyInfoWrapperPass) 1100 INITIALIZE_PASS_END(ModuleSummaryIndexWrapperPass, "module-summary-analysis", 1101 "Module Summary Analysis", false, true) 1102 1103 ModulePass *llvm::createModuleSummaryIndexWrapperPass() { 1104 return new ModuleSummaryIndexWrapperPass(); 1105 } 1106 1107 ModuleSummaryIndexWrapperPass::ModuleSummaryIndexWrapperPass() 1108 : ModulePass(ID) { 1109 initializeModuleSummaryIndexWrapperPassPass(*PassRegistry::getPassRegistry()); 1110 } 1111 1112 bool ModuleSummaryIndexWrapperPass::runOnModule(Module &M) { 1113 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 1114 bool NeedSSI = needsParamAccessSummary(M); 1115 Index.emplace(buildModuleSummaryIndex( 1116 M, 1117 [this](const Function &F) { 1118 return &(this->getAnalysis<BlockFrequencyInfoWrapperPass>( 1119 *const_cast<Function *>(&F)) 1120 .getBFI()); 1121 }, 1122 PSI, 1123 [&](const Function &F) -> const StackSafetyInfo * { 1124 return NeedSSI ? &getAnalysis<StackSafetyInfoWrapperPass>( 1125 const_cast<Function &>(F)) 1126 .getResult() 1127 : nullptr; 1128 })); 1129 return false; 1130 } 1131 1132 bool ModuleSummaryIndexWrapperPass::doFinalization(Module &M) { 1133 Index.reset(); 1134 return false; 1135 } 1136 1137 void ModuleSummaryIndexWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 1138 AU.setPreservesAll(); 1139 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 1140 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 1141 AU.addRequired<StackSafetyInfoWrapperPass>(); 1142 } 1143 1144 char ImmutableModuleSummaryIndexWrapperPass::ID = 0; 1145 1146 ImmutableModuleSummaryIndexWrapperPass::ImmutableModuleSummaryIndexWrapperPass( 1147 const ModuleSummaryIndex *Index) 1148 : ImmutablePass(ID), Index(Index) { 1149 initializeImmutableModuleSummaryIndexWrapperPassPass( 1150 *PassRegistry::getPassRegistry()); 1151 } 1152 1153 void ImmutableModuleSummaryIndexWrapperPass::getAnalysisUsage( 1154 AnalysisUsage &AU) const { 1155 AU.setPreservesAll(); 1156 } 1157 1158 ImmutablePass *llvm::createImmutableModuleSummaryIndexWrapperPass( 1159 const ModuleSummaryIndex *Index) { 1160 return new ImmutableModuleSummaryIndexWrapperPass(Index); 1161 } 1162 1163 INITIALIZE_PASS(ImmutableModuleSummaryIndexWrapperPass, "module-summary-info", 1164 "Module summary info", false, true) 1165 1166 bool llvm::mayHaveMemprofSummary(const CallBase *CB) { 1167 if (!CB) 1168 return false; 1169 if (CB->isDebugOrPseudoInst()) 1170 return false; 1171 auto *CI = dyn_cast<CallInst>(CB); 1172 auto *CalledValue = CB->getCalledOperand(); 1173 auto *CalledFunction = CB->getCalledFunction(); 1174 if (CalledValue && !CalledFunction) { 1175 CalledValue = CalledValue->stripPointerCasts(); 1176 // Stripping pointer casts can reveal a called function. 1177 CalledFunction = dyn_cast<Function>(CalledValue); 1178 } 1179 // Check if this is an alias to a function. If so, get the 1180 // called aliasee for the checks below. 1181 if (auto *GA = dyn_cast<GlobalAlias>(CalledValue)) { 1182 assert(!CalledFunction && 1183 "Expected null called function in callsite for alias"); 1184 CalledFunction = dyn_cast<Function>(GA->getAliaseeObject()); 1185 } 1186 // Check if this is a direct call to a known function or a known 1187 // intrinsic, or an indirect call with profile data. 1188 if (CalledFunction) { 1189 if (CI && CalledFunction->isIntrinsic()) 1190 return false; 1191 } else { 1192 // TODO: For now skip indirect calls. See comments in 1193 // computeFunctionSummary for what is needed to handle this. 1194 return false; 1195 } 1196 return true; 1197 } 1198