1 //===- MemoryBuiltins.cpp - Identify calls to memory builtins -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This family of functions identifies calls to builtin functions that allocate 10 // or free memory. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/MemoryBuiltins.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/Statistic.h" 18 #include "llvm/Analysis/AliasAnalysis.h" 19 #include "llvm/Analysis/TargetFolder.h" 20 #include "llvm/Analysis/TargetLibraryInfo.h" 21 #include "llvm/Analysis/Utils/Local.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/IR/Argument.h" 24 #include "llvm/IR/Attributes.h" 25 #include "llvm/IR/Constants.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/DerivedTypes.h" 28 #include "llvm/IR/Function.h" 29 #include "llvm/IR/GlobalAlias.h" 30 #include "llvm/IR/GlobalVariable.h" 31 #include "llvm/IR/Instruction.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/IntrinsicInst.h" 34 #include "llvm/IR/Operator.h" 35 #include "llvm/IR/Type.h" 36 #include "llvm/IR/Value.h" 37 #include "llvm/Support/Casting.h" 38 #include "llvm/Support/CommandLine.h" 39 #include "llvm/Support/Debug.h" 40 #include "llvm/Support/MathExtras.h" 41 #include "llvm/Support/raw_ostream.h" 42 #include <cassert> 43 #include <cstdint> 44 #include <iterator> 45 #include <numeric> 46 #include <optional> 47 #include <utility> 48 49 using namespace llvm; 50 51 #define DEBUG_TYPE "memory-builtins" 52 53 static cl::opt<unsigned> ObjectSizeOffsetVisitorMaxVisitInstructions( 54 "object-size-offset-visitor-max-visit-instructions", 55 cl::desc("Maximum number of instructions for ObjectSizeOffsetVisitor to " 56 "look at"), 57 cl::init(100)); 58 59 enum AllocType : uint8_t { 60 OpNewLike = 1<<0, // allocates; never returns null 61 MallocLike = 1<<1, // allocates; may return null 62 StrDupLike = 1<<2, 63 MallocOrOpNewLike = MallocLike | OpNewLike, 64 AllocLike = MallocOrOpNewLike | StrDupLike, 65 AnyAlloc = AllocLike 66 }; 67 68 enum class MallocFamily { 69 Malloc, 70 CPPNew, // new(unsigned int) 71 CPPNewAligned, // new(unsigned int, align_val_t) 72 CPPNewArray, // new[](unsigned int) 73 CPPNewArrayAligned, // new[](unsigned long, align_val_t) 74 MSVCNew, // new(unsigned int) 75 MSVCArrayNew, // new[](unsigned int) 76 VecMalloc, 77 KmpcAllocShared, 78 }; 79 80 StringRef mangledNameForMallocFamily(const MallocFamily &Family) { 81 switch (Family) { 82 case MallocFamily::Malloc: 83 return "malloc"; 84 case MallocFamily::CPPNew: 85 return "_Znwm"; 86 case MallocFamily::CPPNewAligned: 87 return "_ZnwmSt11align_val_t"; 88 case MallocFamily::CPPNewArray: 89 return "_Znam"; 90 case MallocFamily::CPPNewArrayAligned: 91 return "_ZnamSt11align_val_t"; 92 case MallocFamily::MSVCNew: 93 return "??2@YAPAXI@Z"; 94 case MallocFamily::MSVCArrayNew: 95 return "??_U@YAPAXI@Z"; 96 case MallocFamily::VecMalloc: 97 return "vec_malloc"; 98 case MallocFamily::KmpcAllocShared: 99 return "__kmpc_alloc_shared"; 100 } 101 llvm_unreachable("missing an alloc family"); 102 } 103 104 struct AllocFnsTy { 105 AllocType AllocTy; 106 unsigned NumParams; 107 // First and Second size parameters (or -1 if unused) 108 int FstParam, SndParam; 109 // Alignment parameter for aligned_alloc and aligned new 110 int AlignParam; 111 // Name of default allocator function to group malloc/free calls by family 112 MallocFamily Family; 113 }; 114 115 // clang-format off 116 // FIXME: certain users need more information. E.g., SimplifyLibCalls needs to 117 // know which functions are nounwind, noalias, nocapture parameters, etc. 118 static const std::pair<LibFunc, AllocFnsTy> AllocationFnData[] = { 119 {LibFunc_Znwj, {OpNewLike, 1, 0, -1, -1, MallocFamily::CPPNew}}, // new(unsigned int) 120 {LibFunc_ZnwjRKSt9nothrow_t, {MallocLike, 2, 0, -1, -1, MallocFamily::CPPNew}}, // new(unsigned int, nothrow) 121 {LibFunc_ZnwjSt11align_val_t, {OpNewLike, 2, 0, -1, 1, MallocFamily::CPPNewAligned}}, // new(unsigned int, align_val_t) 122 {LibFunc_ZnwjSt11align_val_tRKSt9nothrow_t, {MallocLike, 3, 0, -1, 1, MallocFamily::CPPNewAligned}}, // new(unsigned int, align_val_t, nothrow) 123 {LibFunc_Znwm, {OpNewLike, 1, 0, -1, -1, MallocFamily::CPPNew}}, // new(unsigned long) 124 {LibFunc_Znwm12__hot_cold_t, {OpNewLike, 2, 0, -1, -1, MallocFamily::CPPNew}}, // new(unsigned long, __hot_cold_t) 125 {LibFunc_ZnwmRKSt9nothrow_t, {MallocLike, 2, 0, -1, -1, MallocFamily::CPPNew}}, // new(unsigned long, nothrow) 126 {LibFunc_ZnwmRKSt9nothrow_t12__hot_cold_t, {MallocLike, 3, 0, -1, -1, MallocFamily::CPPNew}}, // new(unsigned long, nothrow, __hot_cold_t) 127 {LibFunc_ZnwmSt11align_val_t, {OpNewLike, 2, 0, -1, 1, MallocFamily::CPPNewAligned}}, // new(unsigned long, align_val_t) 128 {LibFunc_ZnwmSt11align_val_t12__hot_cold_t, {OpNewLike, 3, 0, -1, 1, MallocFamily::CPPNewAligned}}, // new(unsigned long, align_val_t, __hot_cold_t) 129 {LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t, {MallocLike, 3, 0, -1, 1, MallocFamily::CPPNewAligned}}, // new(unsigned long, align_val_t, nothrow) 130 {LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t12__hot_cold_t, {MallocLike, 4, 0, -1, 1, MallocFamily::CPPNewAligned}}, // new(unsigned long, align_val_t, nothrow, __hot_cold_t) 131 {LibFunc_Znaj, {OpNewLike, 1, 0, -1, -1, MallocFamily::CPPNewArray}}, // new[](unsigned int) 132 {LibFunc_ZnajRKSt9nothrow_t, {MallocLike, 2, 0, -1, -1, MallocFamily::CPPNewArray}}, // new[](unsigned int, nothrow) 133 {LibFunc_ZnajSt11align_val_t, {OpNewLike, 2, 0, -1, 1, MallocFamily::CPPNewArrayAligned}}, // new[](unsigned int, align_val_t) 134 {LibFunc_ZnajSt11align_val_tRKSt9nothrow_t, {MallocLike, 3, 0, -1, 1, MallocFamily::CPPNewArrayAligned}}, // new[](unsigned int, align_val_t, nothrow) 135 {LibFunc_Znam, {OpNewLike, 1, 0, -1, -1, MallocFamily::CPPNewArray}}, // new[](unsigned long) 136 {LibFunc_Znam12__hot_cold_t, {OpNewLike, 2, 0, -1, -1, MallocFamily::CPPNew}}, // new[](unsigned long, __hot_cold_t) 137 {LibFunc_ZnamRKSt9nothrow_t, {MallocLike, 2, 0, -1, -1, MallocFamily::CPPNewArray}}, // new[](unsigned long, nothrow) 138 {LibFunc_ZnamRKSt9nothrow_t12__hot_cold_t, {MallocLike, 3, 0, -1, -1, MallocFamily::CPPNew}}, // new[](unsigned long, nothrow, __hot_cold_t) 139 {LibFunc_ZnamSt11align_val_t, {OpNewLike, 2, 0, -1, 1, MallocFamily::CPPNewArrayAligned}}, // new[](unsigned long, align_val_t) 140 {LibFunc_ZnamSt11align_val_t12__hot_cold_t, {OpNewLike, 3, 0, -1, 1, MallocFamily::CPPNewAligned}}, // new[](unsigned long, align_val_t, __hot_cold_t) 141 {LibFunc_ZnamSt11align_val_tRKSt9nothrow_t, {MallocLike, 3, 0, -1, 1, MallocFamily::CPPNewArrayAligned}}, // new[](unsigned long, align_val_t, nothrow) 142 {LibFunc_ZnamSt11align_val_tRKSt9nothrow_t12__hot_cold_t, {MallocLike, 4, 0, -1, 1, MallocFamily::CPPNewAligned}}, // new[](unsigned long, align_val_t, nothrow, __hot_cold_t) 143 {LibFunc_msvc_new_int, {OpNewLike, 1, 0, -1, -1, MallocFamily::MSVCNew}}, // new(unsigned int) 144 {LibFunc_msvc_new_int_nothrow, {MallocLike, 2, 0, -1, -1, MallocFamily::MSVCNew}}, // new(unsigned int, nothrow) 145 {LibFunc_msvc_new_longlong, {OpNewLike, 1, 0, -1, -1, MallocFamily::MSVCNew}}, // new(unsigned long long) 146 {LibFunc_msvc_new_longlong_nothrow, {MallocLike, 2, 0, -1, -1, MallocFamily::MSVCNew}}, // new(unsigned long long, nothrow) 147 {LibFunc_msvc_new_array_int, {OpNewLike, 1, 0, -1, -1, MallocFamily::MSVCArrayNew}}, // new[](unsigned int) 148 {LibFunc_msvc_new_array_int_nothrow, {MallocLike, 2, 0, -1, -1, MallocFamily::MSVCArrayNew}}, // new[](unsigned int, nothrow) 149 {LibFunc_msvc_new_array_longlong, {OpNewLike, 1, 0, -1, -1, MallocFamily::MSVCArrayNew}}, // new[](unsigned long long) 150 {LibFunc_msvc_new_array_longlong_nothrow, {MallocLike, 2, 0, -1, -1, MallocFamily::MSVCArrayNew}}, // new[](unsigned long long, nothrow) 151 {LibFunc_strdup, {StrDupLike, 1, -1, -1, -1, MallocFamily::Malloc}}, 152 {LibFunc_dunder_strdup, {StrDupLike, 1, -1, -1, -1, MallocFamily::Malloc}}, 153 {LibFunc_strndup, {StrDupLike, 2, 1, -1, -1, MallocFamily::Malloc}}, 154 {LibFunc_dunder_strndup, {StrDupLike, 2, 1, -1, -1, MallocFamily::Malloc}}, 155 {LibFunc___kmpc_alloc_shared, {MallocLike, 1, 0, -1, -1, MallocFamily::KmpcAllocShared}}, 156 }; 157 // clang-format on 158 159 static const Function *getCalledFunction(const Value *V) { 160 // Don't care about intrinsics in this case. 161 if (isa<IntrinsicInst>(V)) 162 return nullptr; 163 164 const auto *CB = dyn_cast<CallBase>(V); 165 if (!CB) 166 return nullptr; 167 168 if (CB->isNoBuiltin()) 169 return nullptr; 170 171 return CB->getCalledFunction(); 172 } 173 174 /// Returns the allocation data for the given value if it's a call to a known 175 /// allocation function. 176 static std::optional<AllocFnsTy> 177 getAllocationDataForFunction(const Function *Callee, AllocType AllocTy, 178 const TargetLibraryInfo *TLI) { 179 // Don't perform a slow TLI lookup, if this function doesn't return a pointer 180 // and thus can't be an allocation function. 181 if (!Callee->getReturnType()->isPointerTy()) 182 return std::nullopt; 183 184 // Make sure that the function is available. 185 LibFunc TLIFn; 186 if (!TLI || !TLI->getLibFunc(*Callee, TLIFn) || !TLI->has(TLIFn)) 187 return std::nullopt; 188 189 const auto *Iter = find_if( 190 AllocationFnData, [TLIFn](const std::pair<LibFunc, AllocFnsTy> &P) { 191 return P.first == TLIFn; 192 }); 193 194 if (Iter == std::end(AllocationFnData)) 195 return std::nullopt; 196 197 const AllocFnsTy *FnData = &Iter->second; 198 if ((FnData->AllocTy & AllocTy) != FnData->AllocTy) 199 return std::nullopt; 200 201 // Check function prototype. 202 int FstParam = FnData->FstParam; 203 int SndParam = FnData->SndParam; 204 FunctionType *FTy = Callee->getFunctionType(); 205 206 if (FTy->getReturnType()->isPointerTy() && 207 FTy->getNumParams() == FnData->NumParams && 208 (FstParam < 0 || 209 (FTy->getParamType(FstParam)->isIntegerTy(32) || 210 FTy->getParamType(FstParam)->isIntegerTy(64))) && 211 (SndParam < 0 || 212 FTy->getParamType(SndParam)->isIntegerTy(32) || 213 FTy->getParamType(SndParam)->isIntegerTy(64))) 214 return *FnData; 215 return std::nullopt; 216 } 217 218 static std::optional<AllocFnsTy> 219 getAllocationData(const Value *V, AllocType AllocTy, 220 const TargetLibraryInfo *TLI) { 221 if (const Function *Callee = getCalledFunction(V)) 222 return getAllocationDataForFunction(Callee, AllocTy, TLI); 223 return std::nullopt; 224 } 225 226 static std::optional<AllocFnsTy> 227 getAllocationData(const Value *V, AllocType AllocTy, 228 function_ref<const TargetLibraryInfo &(Function &)> GetTLI) { 229 if (const Function *Callee = getCalledFunction(V)) 230 return getAllocationDataForFunction( 231 Callee, AllocTy, &GetTLI(const_cast<Function &>(*Callee))); 232 return std::nullopt; 233 } 234 235 static std::optional<AllocFnsTy> 236 getAllocationSize(const CallBase *CB, const TargetLibraryInfo *TLI) { 237 if (const Function *Callee = getCalledFunction(CB)) { 238 // Prefer to use existing information over allocsize. This will give us an 239 // accurate AllocTy. 240 if (std::optional<AllocFnsTy> Data = 241 getAllocationDataForFunction(Callee, AnyAlloc, TLI)) 242 return Data; 243 } 244 245 Attribute Attr = CB->getFnAttr(Attribute::AllocSize); 246 if (Attr == Attribute()) 247 return std::nullopt; 248 249 std::pair<unsigned, std::optional<unsigned>> Args = Attr.getAllocSizeArgs(); 250 251 AllocFnsTy Result; 252 // Because allocsize only tells us how many bytes are allocated, we're not 253 // really allowed to assume anything, so we use MallocLike. 254 Result.AllocTy = MallocLike; 255 Result.NumParams = CB->arg_size(); 256 Result.FstParam = Args.first; 257 Result.SndParam = Args.second.value_or(-1); 258 // Allocsize has no way to specify an alignment argument 259 Result.AlignParam = -1; 260 return Result; 261 } 262 263 static AllocFnKind getAllocFnKind(const Value *V) { 264 if (const auto *CB = dyn_cast<CallBase>(V)) { 265 Attribute Attr = CB->getFnAttr(Attribute::AllocKind); 266 if (Attr.isValid()) 267 return AllocFnKind(Attr.getValueAsInt()); 268 } 269 return AllocFnKind::Unknown; 270 } 271 272 static AllocFnKind getAllocFnKind(const Function *F) { 273 return F->getAttributes().getAllocKind(); 274 } 275 276 static bool checkFnAllocKind(const Value *V, AllocFnKind Wanted) { 277 return (getAllocFnKind(V) & Wanted) != AllocFnKind::Unknown; 278 } 279 280 static bool checkFnAllocKind(const Function *F, AllocFnKind Wanted) { 281 return (getAllocFnKind(F) & Wanted) != AllocFnKind::Unknown; 282 } 283 284 /// Tests if a value is a call or invoke to a library function that 285 /// allocates or reallocates memory (either malloc, calloc, realloc, or strdup 286 /// like). 287 bool llvm::isAllocationFn(const Value *V, const TargetLibraryInfo *TLI) { 288 return getAllocationData(V, AnyAlloc, TLI).has_value() || 289 checkFnAllocKind(V, AllocFnKind::Alloc | AllocFnKind::Realloc); 290 } 291 bool llvm::isAllocationFn( 292 const Value *V, 293 function_ref<const TargetLibraryInfo &(Function &)> GetTLI) { 294 return getAllocationData(V, AnyAlloc, GetTLI).has_value() || 295 checkFnAllocKind(V, AllocFnKind::Alloc | AllocFnKind::Realloc); 296 } 297 298 /// Tests if a value is a call or invoke to a library function that 299 /// allocates memory via new. 300 bool llvm::isNewLikeFn(const Value *V, const TargetLibraryInfo *TLI) { 301 return getAllocationData(V, OpNewLike, TLI).has_value(); 302 } 303 304 /// Tests if a value is a call or invoke to a library function that 305 /// allocates memory similar to malloc or calloc. 306 bool llvm::isMallocOrCallocLikeFn(const Value *V, const TargetLibraryInfo *TLI) { 307 // TODO: Function behavior does not match name. 308 return getAllocationData(V, MallocOrOpNewLike, TLI).has_value(); 309 } 310 311 /// Tests if a value is a call or invoke to a library function that 312 /// allocates memory (either malloc, calloc, or strdup like). 313 bool llvm::isAllocLikeFn(const Value *V, const TargetLibraryInfo *TLI) { 314 return getAllocationData(V, AllocLike, TLI).has_value() || 315 checkFnAllocKind(V, AllocFnKind::Alloc); 316 } 317 318 /// Tests if a functions is a call or invoke to a library function that 319 /// reallocates memory (e.g., realloc). 320 bool llvm::isReallocLikeFn(const Function *F) { 321 return checkFnAllocKind(F, AllocFnKind::Realloc); 322 } 323 324 Value *llvm::getReallocatedOperand(const CallBase *CB) { 325 if (checkFnAllocKind(CB, AllocFnKind::Realloc)) 326 return CB->getArgOperandWithAttribute(Attribute::AllocatedPointer); 327 return nullptr; 328 } 329 330 bool llvm::isRemovableAlloc(const CallBase *CB, const TargetLibraryInfo *TLI) { 331 // Note: Removability is highly dependent on the source language. For 332 // example, recent C++ requires direct calls to the global allocation 333 // [basic.stc.dynamic.allocation] to be observable unless part of a new 334 // expression [expr.new paragraph 13]. 335 336 // Historically we've treated the C family allocation routines and operator 337 // new as removable 338 return isAllocLikeFn(CB, TLI); 339 } 340 341 Value *llvm::getAllocAlignment(const CallBase *V, 342 const TargetLibraryInfo *TLI) { 343 const std::optional<AllocFnsTy> FnData = getAllocationData(V, AnyAlloc, TLI); 344 if (FnData && FnData->AlignParam >= 0) { 345 return V->getOperand(FnData->AlignParam); 346 } 347 return V->getArgOperandWithAttribute(Attribute::AllocAlign); 348 } 349 350 /// When we're compiling N-bit code, and the user uses parameters that are 351 /// greater than N bits (e.g. uint64_t on a 32-bit build), we can run into 352 /// trouble with APInt size issues. This function handles resizing + overflow 353 /// checks for us. Check and zext or trunc \p I depending on IntTyBits and 354 /// I's value. 355 static bool CheckedZextOrTrunc(APInt &I, unsigned IntTyBits) { 356 // More bits than we can handle. Checking the bit width isn't necessary, but 357 // it's faster than checking active bits, and should give `false` in the 358 // vast majority of cases. 359 if (I.getBitWidth() > IntTyBits && I.getActiveBits() > IntTyBits) 360 return false; 361 if (I.getBitWidth() != IntTyBits) 362 I = I.zextOrTrunc(IntTyBits); 363 return true; 364 } 365 366 std::optional<APInt> 367 llvm::getAllocSize(const CallBase *CB, const TargetLibraryInfo *TLI, 368 function_ref<const Value *(const Value *)> Mapper) { 369 // Note: This handles both explicitly listed allocation functions and 370 // allocsize. The code structure could stand to be cleaned up a bit. 371 std::optional<AllocFnsTy> FnData = getAllocationSize(CB, TLI); 372 if (!FnData) 373 return std::nullopt; 374 375 // Get the index type for this address space, results and intermediate 376 // computations are performed at that width. 377 auto &DL = CB->getDataLayout(); 378 const unsigned IntTyBits = DL.getIndexTypeSizeInBits(CB->getType()); 379 380 // Handle strdup-like functions separately. 381 if (FnData->AllocTy == StrDupLike) { 382 APInt Size(IntTyBits, GetStringLength(Mapper(CB->getArgOperand(0)))); 383 if (!Size) 384 return std::nullopt; 385 386 // Strndup limits strlen. 387 if (FnData->FstParam > 0) { 388 const ConstantInt *Arg = 389 dyn_cast<ConstantInt>(Mapper(CB->getArgOperand(FnData->FstParam))); 390 if (!Arg) 391 return std::nullopt; 392 393 APInt MaxSize = Arg->getValue().zext(IntTyBits); 394 if (Size.ugt(MaxSize)) 395 Size = MaxSize + 1; 396 } 397 return Size; 398 } 399 400 const ConstantInt *Arg = 401 dyn_cast<ConstantInt>(Mapper(CB->getArgOperand(FnData->FstParam))); 402 if (!Arg) 403 return std::nullopt; 404 405 APInt Size = Arg->getValue(); 406 if (!CheckedZextOrTrunc(Size, IntTyBits)) 407 return std::nullopt; 408 409 // Size is determined by just 1 parameter. 410 if (FnData->SndParam < 0) 411 return Size; 412 413 Arg = dyn_cast<ConstantInt>(Mapper(CB->getArgOperand(FnData->SndParam))); 414 if (!Arg) 415 return std::nullopt; 416 417 APInt NumElems = Arg->getValue(); 418 if (!CheckedZextOrTrunc(NumElems, IntTyBits)) 419 return std::nullopt; 420 421 bool Overflow; 422 Size = Size.umul_ov(NumElems, Overflow); 423 if (Overflow) 424 return std::nullopt; 425 return Size; 426 } 427 428 Constant *llvm::getInitialValueOfAllocation(const Value *V, 429 const TargetLibraryInfo *TLI, 430 Type *Ty) { 431 auto *Alloc = dyn_cast<CallBase>(V); 432 if (!Alloc) 433 return nullptr; 434 435 // malloc are uninitialized (undef) 436 if (getAllocationData(Alloc, MallocOrOpNewLike, TLI).has_value()) 437 return UndefValue::get(Ty); 438 439 AllocFnKind AK = getAllocFnKind(Alloc); 440 if ((AK & AllocFnKind::Uninitialized) != AllocFnKind::Unknown) 441 return UndefValue::get(Ty); 442 if ((AK & AllocFnKind::Zeroed) != AllocFnKind::Unknown) 443 return Constant::getNullValue(Ty); 444 445 return nullptr; 446 } 447 448 struct FreeFnsTy { 449 unsigned NumParams; 450 // Name of default allocator function to group malloc/free calls by family 451 MallocFamily Family; 452 }; 453 454 // clang-format off 455 static const std::pair<LibFunc, FreeFnsTy> FreeFnData[] = { 456 {LibFunc_ZdlPv, {1, MallocFamily::CPPNew}}, // operator delete(void*) 457 {LibFunc_ZdaPv, {1, MallocFamily::CPPNewArray}}, // operator delete[](void*) 458 {LibFunc_msvc_delete_ptr32, {1, MallocFamily::MSVCNew}}, // operator delete(void*) 459 {LibFunc_msvc_delete_ptr64, {1, MallocFamily::MSVCNew}}, // operator delete(void*) 460 {LibFunc_msvc_delete_array_ptr32, {1, MallocFamily::MSVCArrayNew}}, // operator delete[](void*) 461 {LibFunc_msvc_delete_array_ptr64, {1, MallocFamily::MSVCArrayNew}}, // operator delete[](void*) 462 {LibFunc_ZdlPvj, {2, MallocFamily::CPPNew}}, // delete(void*, uint) 463 {LibFunc_ZdlPvm, {2, MallocFamily::CPPNew}}, // delete(void*, ulong) 464 {LibFunc_ZdlPvRKSt9nothrow_t, {2, MallocFamily::CPPNew}}, // delete(void*, nothrow) 465 {LibFunc_ZdlPvSt11align_val_t, {2, MallocFamily::CPPNewAligned}}, // delete(void*, align_val_t) 466 {LibFunc_ZdaPvj, {2, MallocFamily::CPPNewArray}}, // delete[](void*, uint) 467 {LibFunc_ZdaPvm, {2, MallocFamily::CPPNewArray}}, // delete[](void*, ulong) 468 {LibFunc_ZdaPvRKSt9nothrow_t, {2, MallocFamily::CPPNewArray}}, // delete[](void*, nothrow) 469 {LibFunc_ZdaPvSt11align_val_t, {2, MallocFamily::CPPNewArrayAligned}}, // delete[](void*, align_val_t) 470 {LibFunc_msvc_delete_ptr32_int, {2, MallocFamily::MSVCNew}}, // delete(void*, uint) 471 {LibFunc_msvc_delete_ptr64_longlong, {2, MallocFamily::MSVCNew}}, // delete(void*, ulonglong) 472 {LibFunc_msvc_delete_ptr32_nothrow, {2, MallocFamily::MSVCNew}}, // delete(void*, nothrow) 473 {LibFunc_msvc_delete_ptr64_nothrow, {2, MallocFamily::MSVCNew}}, // delete(void*, nothrow) 474 {LibFunc_msvc_delete_array_ptr32_int, {2, MallocFamily::MSVCArrayNew}}, // delete[](void*, uint) 475 {LibFunc_msvc_delete_array_ptr64_longlong, {2, MallocFamily::MSVCArrayNew}}, // delete[](void*, ulonglong) 476 {LibFunc_msvc_delete_array_ptr32_nothrow, {2, MallocFamily::MSVCArrayNew}}, // delete[](void*, nothrow) 477 {LibFunc_msvc_delete_array_ptr64_nothrow, {2, MallocFamily::MSVCArrayNew}}, // delete[](void*, nothrow) 478 {LibFunc___kmpc_free_shared, {2, MallocFamily::KmpcAllocShared}}, // OpenMP Offloading RTL free 479 {LibFunc_ZdlPvSt11align_val_tRKSt9nothrow_t, {3, MallocFamily::CPPNewAligned}}, // delete(void*, align_val_t, nothrow) 480 {LibFunc_ZdaPvSt11align_val_tRKSt9nothrow_t, {3, MallocFamily::CPPNewArrayAligned}}, // delete[](void*, align_val_t, nothrow) 481 {LibFunc_ZdlPvjSt11align_val_t, {3, MallocFamily::CPPNewAligned}}, // delete(void*, unsigned int, align_val_t) 482 {LibFunc_ZdlPvmSt11align_val_t, {3, MallocFamily::CPPNewAligned}}, // delete(void*, unsigned long, align_val_t) 483 {LibFunc_ZdaPvjSt11align_val_t, {3, MallocFamily::CPPNewArrayAligned}}, // delete[](void*, unsigned int, align_val_t) 484 {LibFunc_ZdaPvmSt11align_val_t, {3, MallocFamily::CPPNewArrayAligned}}, // delete[](void*, unsigned long, align_val_t) 485 }; 486 // clang-format on 487 488 std::optional<FreeFnsTy> getFreeFunctionDataForFunction(const Function *Callee, 489 const LibFunc TLIFn) { 490 const auto *Iter = 491 find_if(FreeFnData, [TLIFn](const std::pair<LibFunc, FreeFnsTy> &P) { 492 return P.first == TLIFn; 493 }); 494 if (Iter == std::end(FreeFnData)) 495 return std::nullopt; 496 return Iter->second; 497 } 498 499 std::optional<StringRef> 500 llvm::getAllocationFamily(const Value *I, const TargetLibraryInfo *TLI) { 501 if (const Function *Callee = getCalledFunction(I)) { 502 LibFunc TLIFn; 503 if (TLI && TLI->getLibFunc(*Callee, TLIFn) && TLI->has(TLIFn)) { 504 // Callee is some known library function. 505 const auto AllocData = 506 getAllocationDataForFunction(Callee, AnyAlloc, TLI); 507 if (AllocData) 508 return mangledNameForMallocFamily(AllocData->Family); 509 const auto FreeData = getFreeFunctionDataForFunction(Callee, TLIFn); 510 if (FreeData) 511 return mangledNameForMallocFamily(FreeData->Family); 512 } 513 } 514 515 // Callee isn't a known library function, still check attributes. 516 if (checkFnAllocKind(I, AllocFnKind::Free | AllocFnKind::Alloc | 517 AllocFnKind::Realloc)) { 518 Attribute Attr = cast<CallBase>(I)->getFnAttr("alloc-family"); 519 if (Attr.isValid()) 520 return Attr.getValueAsString(); 521 } 522 return std::nullopt; 523 } 524 525 /// isLibFreeFunction - Returns true if the function is a builtin free() 526 bool llvm::isLibFreeFunction(const Function *F, const LibFunc TLIFn) { 527 std::optional<FreeFnsTy> FnData = getFreeFunctionDataForFunction(F, TLIFn); 528 if (!FnData) 529 return checkFnAllocKind(F, AllocFnKind::Free); 530 531 // Check free prototype. 532 // FIXME: workaround for PR5130, this will be obsolete when a nobuiltin 533 // attribute will exist. 534 FunctionType *FTy = F->getFunctionType(); 535 if (!FTy->getReturnType()->isVoidTy()) 536 return false; 537 if (FTy->getNumParams() != FnData->NumParams) 538 return false; 539 if (!FTy->getParamType(0)->isPointerTy()) 540 return false; 541 542 return true; 543 } 544 545 Value *llvm::getFreedOperand(const CallBase *CB, const TargetLibraryInfo *TLI) { 546 if (const Function *Callee = getCalledFunction(CB)) { 547 LibFunc TLIFn; 548 if (TLI && TLI->getLibFunc(*Callee, TLIFn) && TLI->has(TLIFn) && 549 isLibFreeFunction(Callee, TLIFn)) { 550 // All currently supported free functions free the first argument. 551 return CB->getArgOperand(0); 552 } 553 } 554 555 if (checkFnAllocKind(CB, AllocFnKind::Free)) 556 return CB->getArgOperandWithAttribute(Attribute::AllocatedPointer); 557 558 return nullptr; 559 } 560 561 //===----------------------------------------------------------------------===// 562 // Utility functions to compute size of objects. 563 // 564 static APInt getSizeWithOverflow(const SizeOffsetAPInt &Data) { 565 APInt Size = Data.Size; 566 APInt Offset = Data.Offset; 567 568 assert(!Offset.isNegative() && 569 "size for a pointer before the allocated object is ambiguous"); 570 571 if (Size.ult(Offset)) 572 return APInt::getZero(Size.getBitWidth()); 573 574 return Size - Offset; 575 } 576 577 /// Compute the size of the object pointed by Ptr. Returns true and the 578 /// object size in Size if successful, and false otherwise. 579 /// If RoundToAlign is true, then Size is rounded up to the alignment of 580 /// allocas, byval arguments, and global variables. 581 bool llvm::getObjectSize(const Value *Ptr, uint64_t &Size, const DataLayout &DL, 582 const TargetLibraryInfo *TLI, ObjectSizeOpts Opts) { 583 ObjectSizeOffsetVisitor Visitor(DL, TLI, Ptr->getContext(), Opts); 584 SizeOffsetAPInt Data = Visitor.compute(const_cast<Value *>(Ptr)); 585 if (!Data.bothKnown()) 586 return false; 587 588 Size = getSizeWithOverflow(Data).getZExtValue(); 589 return true; 590 } 591 592 Value *llvm::lowerObjectSizeCall(IntrinsicInst *ObjectSize, 593 const DataLayout &DL, 594 const TargetLibraryInfo *TLI, 595 bool MustSucceed) { 596 return lowerObjectSizeCall(ObjectSize, DL, TLI, /*AAResults=*/nullptr, 597 MustSucceed); 598 } 599 600 Value *llvm::lowerObjectSizeCall( 601 IntrinsicInst *ObjectSize, const DataLayout &DL, 602 const TargetLibraryInfo *TLI, AAResults *AA, bool MustSucceed, 603 SmallVectorImpl<Instruction *> *InsertedInstructions) { 604 assert(ObjectSize->getIntrinsicID() == Intrinsic::objectsize && 605 "ObjectSize must be a call to llvm.objectsize!"); 606 607 bool MaxVal = cast<ConstantInt>(ObjectSize->getArgOperand(1))->isZero(); 608 ObjectSizeOpts EvalOptions; 609 EvalOptions.AA = AA; 610 611 // Unless we have to fold this to something, try to be as accurate as 612 // possible. 613 if (MustSucceed) 614 EvalOptions.EvalMode = 615 MaxVal ? ObjectSizeOpts::Mode::Max : ObjectSizeOpts::Mode::Min; 616 else 617 EvalOptions.EvalMode = ObjectSizeOpts::Mode::ExactSizeFromOffset; 618 619 EvalOptions.NullIsUnknownSize = 620 cast<ConstantInt>(ObjectSize->getArgOperand(2))->isOne(); 621 622 auto *ResultType = cast<IntegerType>(ObjectSize->getType()); 623 bool StaticOnly = cast<ConstantInt>(ObjectSize->getArgOperand(3))->isZero(); 624 if (StaticOnly) { 625 // FIXME: Does it make sense to just return a failure value if the size won't 626 // fit in the output and `!MustSucceed`? 627 uint64_t Size; 628 if (getObjectSize(ObjectSize->getArgOperand(0), Size, DL, TLI, EvalOptions) && 629 isUIntN(ResultType->getBitWidth(), Size)) 630 return ConstantInt::get(ResultType, Size); 631 } else { 632 LLVMContext &Ctx = ObjectSize->getFunction()->getContext(); 633 ObjectSizeOffsetEvaluator Eval(DL, TLI, Ctx, EvalOptions); 634 SizeOffsetValue SizeOffsetPair = Eval.compute(ObjectSize->getArgOperand(0)); 635 636 if (SizeOffsetPair != ObjectSizeOffsetEvaluator::unknown()) { 637 IRBuilder<TargetFolder, IRBuilderCallbackInserter> Builder( 638 Ctx, TargetFolder(DL), IRBuilderCallbackInserter([&](Instruction *I) { 639 if (InsertedInstructions) 640 InsertedInstructions->push_back(I); 641 })); 642 Builder.SetInsertPoint(ObjectSize); 643 644 Value *Size = SizeOffsetPair.Size; 645 Value *Offset = SizeOffsetPair.Offset; 646 647 // If we've outside the end of the object, then we can always access 648 // exactly 0 bytes. 649 Value *ResultSize = Builder.CreateSub(Size, Offset); 650 Value *UseZero = Builder.CreateICmpULT(Size, Offset); 651 ResultSize = Builder.CreateZExtOrTrunc(ResultSize, ResultType); 652 Value *Ret = Builder.CreateSelect( 653 UseZero, ConstantInt::get(ResultType, 0), ResultSize); 654 655 // The non-constant size expression cannot evaluate to -1. 656 if (!isa<Constant>(Size) || !isa<Constant>(Offset)) 657 Builder.CreateAssumption( 658 Builder.CreateICmpNE(Ret, ConstantInt::get(ResultType, -1))); 659 660 return Ret; 661 } 662 } 663 664 if (!MustSucceed) 665 return nullptr; 666 667 return MaxVal ? Constant::getAllOnesValue(ResultType) 668 : Constant::getNullValue(ResultType); 669 } 670 671 STATISTIC(ObjectVisitorArgument, 672 "Number of arguments with unsolved size and offset"); 673 STATISTIC(ObjectVisitorLoad, 674 "Number of load instructions with unsolved size and offset"); 675 676 /// Align \p Size according to \p Alignment. If \p Size is greater than 677 /// getSignedMaxValue(), set it as unknown as we can only represent signed value 678 /// in OffsetSpan. 679 APInt ObjectSizeOffsetVisitor::align(APInt Size, MaybeAlign Alignment) { 680 if (Options.RoundToAlign && Alignment) 681 Size = APInt(IntTyBits, alignTo(Size.getZExtValue(), *Alignment)); 682 683 return Size.isNegative() ? APInt() : Size; 684 } 685 686 ObjectSizeOffsetVisitor::ObjectSizeOffsetVisitor(const DataLayout &DL, 687 const TargetLibraryInfo *TLI, 688 LLVMContext &Context, 689 ObjectSizeOpts Options) 690 : DL(DL), TLI(TLI), Options(Options) { 691 // Pointer size must be rechecked for each object visited since it could have 692 // a different address space. 693 } 694 695 SizeOffsetAPInt ObjectSizeOffsetVisitor::compute(Value *V) { 696 InstructionsVisited = 0; 697 OffsetSpan Span = computeImpl(V); 698 699 // In ExactSizeFromOffset mode, we don't care about the Before Field, so allow 700 // us to overwrite it if needs be. 701 if (Span.knownAfter() && !Span.knownBefore() && 702 Options.EvalMode == ObjectSizeOpts::Mode::ExactSizeFromOffset) 703 Span.Before = APInt::getZero(Span.After.getBitWidth()); 704 705 if (!Span.bothKnown()) 706 return {}; 707 708 return {Span.Before + Span.After, Span.Before}; 709 } 710 711 OffsetSpan ObjectSizeOffsetVisitor::computeImpl(Value *V) { 712 unsigned InitialIntTyBits = DL.getIndexTypeSizeInBits(V->getType()); 713 714 // Stripping pointer casts can strip address space casts which can change the 715 // index type size. The invariant is that we use the value type to determine 716 // the index type size and if we stripped address space casts we have to 717 // readjust the APInt as we pass it upwards in order for the APInt to match 718 // the type the caller passed in. 719 APInt Offset(InitialIntTyBits, 0); 720 V = V->stripAndAccumulateConstantOffsets( 721 DL, Offset, /* AllowNonInbounds */ true, /* AllowInvariantGroup */ true); 722 723 // Later we use the index type size and zero but it will match the type of the 724 // value that is passed to computeImpl. 725 IntTyBits = DL.getIndexTypeSizeInBits(V->getType()); 726 Zero = APInt::getZero(IntTyBits); 727 728 OffsetSpan ORT = computeValue(V); 729 730 bool IndexTypeSizeChanged = InitialIntTyBits != IntTyBits; 731 if (!IndexTypeSizeChanged && Offset.isZero()) 732 return ORT; 733 734 // We stripped an address space cast that changed the index type size or we 735 // accumulated some constant offset (or both). Readjust the bit width to match 736 // the argument index type size and apply the offset, as required. 737 if (IndexTypeSizeChanged) { 738 if (ORT.knownBefore() && 739 !::CheckedZextOrTrunc(ORT.Before, InitialIntTyBits)) 740 ORT.Before = APInt(); 741 if (ORT.knownAfter() && !::CheckedZextOrTrunc(ORT.After, InitialIntTyBits)) 742 ORT.After = APInt(); 743 } 744 // If the computed bound is "unknown" we cannot add the stripped offset. 745 if (ORT.knownBefore()) { 746 bool Overflow; 747 ORT.Before = ORT.Before.sadd_ov(Offset, Overflow); 748 if (Overflow) 749 ORT.Before = APInt(); 750 } 751 if (ORT.knownAfter()) { 752 bool Overflow; 753 ORT.After = ORT.After.ssub_ov(Offset, Overflow); 754 if (Overflow) 755 ORT.After = APInt(); 756 } 757 758 // We end up pointing on a location that's outside of the original object. 759 // This is UB, and we'd rather return an empty location then. 760 if (ORT.knownBefore() && ORT.Before.isNegative()) { 761 ORT.Before = APInt::getZero(ORT.Before.getBitWidth()); 762 ORT.After = APInt::getZero(ORT.Before.getBitWidth()); 763 } 764 return ORT; 765 } 766 767 OffsetSpan ObjectSizeOffsetVisitor::computeValue(Value *V) { 768 if (Instruction *I = dyn_cast<Instruction>(V)) { 769 // If we have already seen this instruction, bail out. Cycles can happen in 770 // unreachable code after constant propagation. 771 auto P = SeenInsts.try_emplace(I, ObjectSizeOffsetVisitor::unknown()); 772 if (!P.second) 773 return P.first->second; 774 ++InstructionsVisited; 775 if (InstructionsVisited > ObjectSizeOffsetVisitorMaxVisitInstructions) 776 return ObjectSizeOffsetVisitor::unknown(); 777 OffsetSpan Res = visit(*I); 778 // Cache the result for later visits. If we happened to visit this during 779 // the above recursion, we would consider it unknown until now. 780 SeenInsts[I] = Res; 781 return Res; 782 } 783 if (Argument *A = dyn_cast<Argument>(V)) 784 return visitArgument(*A); 785 if (ConstantPointerNull *P = dyn_cast<ConstantPointerNull>(V)) 786 return visitConstantPointerNull(*P); 787 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 788 return visitGlobalAlias(*GA); 789 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) 790 return visitGlobalVariable(*GV); 791 if (UndefValue *UV = dyn_cast<UndefValue>(V)) 792 return visitUndefValue(*UV); 793 794 LLVM_DEBUG(dbgs() << "ObjectSizeOffsetVisitor::compute() unhandled value: " 795 << *V << '\n'); 796 return ObjectSizeOffsetVisitor::unknown(); 797 } 798 799 bool ObjectSizeOffsetVisitor::CheckedZextOrTrunc(APInt &I) { 800 return ::CheckedZextOrTrunc(I, IntTyBits); 801 } 802 803 OffsetSpan ObjectSizeOffsetVisitor::visitAllocaInst(AllocaInst &I) { 804 TypeSize ElemSize = DL.getTypeAllocSize(I.getAllocatedType()); 805 if (ElemSize.isScalable() && Options.EvalMode != ObjectSizeOpts::Mode::Min) 806 return ObjectSizeOffsetVisitor::unknown(); 807 if (!isUIntN(IntTyBits, ElemSize.getKnownMinValue())) 808 return ObjectSizeOffsetVisitor::unknown(); 809 APInt Size(IntTyBits, ElemSize.getKnownMinValue()); 810 811 if (!I.isArrayAllocation()) 812 return OffsetSpan(Zero, align(Size, I.getAlign())); 813 814 Value *ArraySize = I.getArraySize(); 815 if (const ConstantInt *C = dyn_cast<ConstantInt>(ArraySize)) { 816 APInt NumElems = C->getValue(); 817 if (!CheckedZextOrTrunc(NumElems)) 818 return ObjectSizeOffsetVisitor::unknown(); 819 820 bool Overflow; 821 Size = Size.umul_ov(NumElems, Overflow); 822 823 return Overflow ? ObjectSizeOffsetVisitor::unknown() 824 : OffsetSpan(Zero, align(Size, I.getAlign())); 825 } 826 return ObjectSizeOffsetVisitor::unknown(); 827 } 828 829 OffsetSpan ObjectSizeOffsetVisitor::visitArgument(Argument &A) { 830 Type *MemoryTy = A.getPointeeInMemoryValueType(); 831 // No interprocedural analysis is done at the moment. 832 if (!MemoryTy|| !MemoryTy->isSized()) { 833 ++ObjectVisitorArgument; 834 return ObjectSizeOffsetVisitor::unknown(); 835 } 836 837 APInt Size(IntTyBits, DL.getTypeAllocSize(MemoryTy)); 838 return OffsetSpan(Zero, align(Size, A.getParamAlign())); 839 } 840 841 OffsetSpan ObjectSizeOffsetVisitor::visitCallBase(CallBase &CB) { 842 if (std::optional<APInt> Size = getAllocSize(&CB, TLI)) { 843 // Very large unsigned value cannot be represented as OffsetSpan. 844 if (Size->isNegative()) 845 return ObjectSizeOffsetVisitor::unknown(); 846 return OffsetSpan(Zero, *Size); 847 } 848 return ObjectSizeOffsetVisitor::unknown(); 849 } 850 851 OffsetSpan 852 ObjectSizeOffsetVisitor::visitConstantPointerNull(ConstantPointerNull &CPN) { 853 // If null is unknown, there's nothing we can do. Additionally, non-zero 854 // address spaces can make use of null, so we don't presume to know anything 855 // about that. 856 // 857 // TODO: How should this work with address space casts? We currently just drop 858 // them on the floor, but it's unclear what we should do when a NULL from 859 // addrspace(1) gets casted to addrspace(0) (or vice-versa). 860 if (Options.NullIsUnknownSize || CPN.getType()->getAddressSpace()) 861 return ObjectSizeOffsetVisitor::unknown(); 862 return OffsetSpan(Zero, Zero); 863 } 864 865 OffsetSpan 866 ObjectSizeOffsetVisitor::visitExtractElementInst(ExtractElementInst &) { 867 return ObjectSizeOffsetVisitor::unknown(); 868 } 869 870 OffsetSpan ObjectSizeOffsetVisitor::visitExtractValueInst(ExtractValueInst &) { 871 // Easy cases were already folded by previous passes. 872 return ObjectSizeOffsetVisitor::unknown(); 873 } 874 875 OffsetSpan ObjectSizeOffsetVisitor::visitGlobalAlias(GlobalAlias &GA) { 876 if (GA.isInterposable()) 877 return ObjectSizeOffsetVisitor::unknown(); 878 return computeImpl(GA.getAliasee()); 879 } 880 881 OffsetSpan ObjectSizeOffsetVisitor::visitGlobalVariable(GlobalVariable &GV) { 882 if (!GV.getValueType()->isSized() || GV.hasExternalWeakLinkage() || 883 ((!GV.hasInitializer() || GV.isInterposable()) && 884 Options.EvalMode != ObjectSizeOpts::Mode::Min)) 885 return ObjectSizeOffsetVisitor::unknown(); 886 887 APInt Size(IntTyBits, DL.getTypeAllocSize(GV.getValueType())); 888 return OffsetSpan(Zero, align(Size, GV.getAlign())); 889 } 890 891 OffsetSpan ObjectSizeOffsetVisitor::visitIntToPtrInst(IntToPtrInst &) { 892 // clueless 893 return ObjectSizeOffsetVisitor::unknown(); 894 } 895 896 OffsetSpan ObjectSizeOffsetVisitor::findLoadOffsetRange( 897 LoadInst &Load, BasicBlock &BB, BasicBlock::iterator From, 898 SmallDenseMap<BasicBlock *, OffsetSpan, 8> &VisitedBlocks, 899 unsigned &ScannedInstCount) { 900 constexpr unsigned MaxInstsToScan = 128; 901 902 auto Where = VisitedBlocks.find(&BB); 903 if (Where != VisitedBlocks.end()) 904 return Where->second; 905 906 auto Unknown = [&BB, &VisitedBlocks]() { 907 return VisitedBlocks[&BB] = ObjectSizeOffsetVisitor::unknown(); 908 }; 909 auto Known = [&BB, &VisitedBlocks](OffsetSpan SO) { 910 return VisitedBlocks[&BB] = SO; 911 }; 912 913 do { 914 Instruction &I = *From; 915 916 if (I.isDebugOrPseudoInst()) 917 continue; 918 919 if (++ScannedInstCount > MaxInstsToScan) 920 return Unknown(); 921 922 if (!I.mayWriteToMemory()) 923 continue; 924 925 if (auto *SI = dyn_cast<StoreInst>(&I)) { 926 AliasResult AR = 927 Options.AA->alias(SI->getPointerOperand(), Load.getPointerOperand()); 928 switch ((AliasResult::Kind)AR) { 929 case AliasResult::NoAlias: 930 continue; 931 case AliasResult::MustAlias: 932 if (SI->getValueOperand()->getType()->isPointerTy()) 933 return Known(computeImpl(SI->getValueOperand())); 934 else 935 return Unknown(); // No handling of non-pointer values by `compute`. 936 default: 937 return Unknown(); 938 } 939 } 940 941 if (auto *CB = dyn_cast<CallBase>(&I)) { 942 Function *Callee = CB->getCalledFunction(); 943 // Bail out on indirect call. 944 if (!Callee) 945 return Unknown(); 946 947 LibFunc TLIFn; 948 if (!TLI || !TLI->getLibFunc(*CB->getCalledFunction(), TLIFn) || 949 !TLI->has(TLIFn)) 950 return Unknown(); 951 952 // TODO: There's probably more interesting case to support here. 953 if (TLIFn != LibFunc_posix_memalign) 954 return Unknown(); 955 956 AliasResult AR = 957 Options.AA->alias(CB->getOperand(0), Load.getPointerOperand()); 958 switch ((AliasResult::Kind)AR) { 959 case AliasResult::NoAlias: 960 continue; 961 case AliasResult::MustAlias: 962 break; 963 default: 964 return Unknown(); 965 } 966 967 // Is the error status of posix_memalign correctly checked? If not it 968 // would be incorrect to assume it succeeds and load doesn't see the 969 // previous value. 970 std::optional<bool> Checked = isImpliedByDomCondition( 971 ICmpInst::ICMP_EQ, CB, ConstantInt::get(CB->getType(), 0), &Load, DL); 972 if (!Checked || !*Checked) 973 return Unknown(); 974 975 Value *Size = CB->getOperand(2); 976 auto *C = dyn_cast<ConstantInt>(Size); 977 if (!C) 978 return Unknown(); 979 980 APInt CSize = C->getValue(); 981 if (CSize.isNegative()) 982 return Unknown(); 983 984 return Known({APInt(CSize.getBitWidth(), 0), CSize}); 985 } 986 987 return Unknown(); 988 } while (From-- != BB.begin()); 989 990 SmallVector<OffsetSpan> PredecessorSizeOffsets; 991 for (auto *PredBB : predecessors(&BB)) { 992 PredecessorSizeOffsets.push_back(findLoadOffsetRange( 993 Load, *PredBB, BasicBlock::iterator(PredBB->getTerminator()), 994 VisitedBlocks, ScannedInstCount)); 995 if (!PredecessorSizeOffsets.back().bothKnown()) 996 return Unknown(); 997 } 998 999 if (PredecessorSizeOffsets.empty()) 1000 return Unknown(); 1001 1002 return Known(std::accumulate( 1003 PredecessorSizeOffsets.begin() + 1, PredecessorSizeOffsets.end(), 1004 PredecessorSizeOffsets.front(), [this](OffsetSpan LHS, OffsetSpan RHS) { 1005 return combineOffsetRange(LHS, RHS); 1006 })); 1007 } 1008 1009 OffsetSpan ObjectSizeOffsetVisitor::visitLoadInst(LoadInst &LI) { 1010 if (!Options.AA) { 1011 ++ObjectVisitorLoad; 1012 return ObjectSizeOffsetVisitor::unknown(); 1013 } 1014 1015 SmallDenseMap<BasicBlock *, OffsetSpan, 8> VisitedBlocks; 1016 unsigned ScannedInstCount = 0; 1017 OffsetSpan SO = 1018 findLoadOffsetRange(LI, *LI.getParent(), BasicBlock::iterator(LI), 1019 VisitedBlocks, ScannedInstCount); 1020 if (!SO.bothKnown()) 1021 ++ObjectVisitorLoad; 1022 return SO; 1023 } 1024 1025 OffsetSpan ObjectSizeOffsetVisitor::combineOffsetRange(OffsetSpan LHS, 1026 OffsetSpan RHS) { 1027 if (!LHS.bothKnown() || !RHS.bothKnown()) 1028 return ObjectSizeOffsetVisitor::unknown(); 1029 1030 switch (Options.EvalMode) { 1031 case ObjectSizeOpts::Mode::Min: 1032 return {LHS.Before.slt(RHS.Before) ? LHS.Before : RHS.Before, 1033 LHS.After.slt(RHS.After) ? LHS.After : RHS.After}; 1034 case ObjectSizeOpts::Mode::Max: { 1035 return {LHS.Before.sgt(RHS.Before) ? LHS.Before : RHS.Before, 1036 LHS.After.sgt(RHS.After) ? LHS.After : RHS.After}; 1037 } 1038 case ObjectSizeOpts::Mode::ExactSizeFromOffset: 1039 return {LHS.Before.eq(RHS.Before) ? LHS.Before : APInt(), 1040 LHS.After.eq(RHS.After) ? LHS.After : APInt()}; 1041 case ObjectSizeOpts::Mode::ExactUnderlyingSizeAndOffset: 1042 return (LHS == RHS) ? LHS : ObjectSizeOffsetVisitor::unknown(); 1043 } 1044 llvm_unreachable("missing an eval mode"); 1045 } 1046 1047 OffsetSpan ObjectSizeOffsetVisitor::visitPHINode(PHINode &PN) { 1048 if (PN.getNumIncomingValues() == 0) 1049 return ObjectSizeOffsetVisitor::unknown(); 1050 auto IncomingValues = PN.incoming_values(); 1051 return std::accumulate(IncomingValues.begin() + 1, IncomingValues.end(), 1052 computeImpl(*IncomingValues.begin()), 1053 [this](OffsetSpan LHS, Value *VRHS) { 1054 return combineOffsetRange(LHS, computeImpl(VRHS)); 1055 }); 1056 } 1057 1058 OffsetSpan ObjectSizeOffsetVisitor::visitSelectInst(SelectInst &I) { 1059 return combineOffsetRange(computeImpl(I.getTrueValue()), 1060 computeImpl(I.getFalseValue())); 1061 } 1062 1063 OffsetSpan ObjectSizeOffsetVisitor::visitUndefValue(UndefValue &) { 1064 return OffsetSpan(Zero, Zero); 1065 } 1066 1067 OffsetSpan ObjectSizeOffsetVisitor::visitInstruction(Instruction &I) { 1068 LLVM_DEBUG(dbgs() << "ObjectSizeOffsetVisitor unknown instruction:" << I 1069 << '\n'); 1070 return ObjectSizeOffsetVisitor::unknown(); 1071 } 1072 1073 // Just set these right here... 1074 SizeOffsetValue::SizeOffsetValue(const SizeOffsetWeakTrackingVH &SOT) 1075 : SizeOffsetType(SOT.Size, SOT.Offset) {} 1076 1077 ObjectSizeOffsetEvaluator::ObjectSizeOffsetEvaluator( 1078 const DataLayout &DL, const TargetLibraryInfo *TLI, LLVMContext &Context, 1079 ObjectSizeOpts EvalOpts) 1080 : DL(DL), TLI(TLI), Context(Context), 1081 Builder(Context, TargetFolder(DL), 1082 IRBuilderCallbackInserter( 1083 [&](Instruction *I) { InsertedInstructions.insert(I); })), 1084 EvalOpts(EvalOpts) { 1085 // IntTy and Zero must be set for each compute() since the address space may 1086 // be different for later objects. 1087 } 1088 1089 SizeOffsetValue ObjectSizeOffsetEvaluator::compute(Value *V) { 1090 // XXX - Are vectors of pointers possible here? 1091 IntTy = cast<IntegerType>(DL.getIndexType(V->getType())); 1092 Zero = ConstantInt::get(IntTy, 0); 1093 1094 SizeOffsetValue Result = compute_(V); 1095 1096 if (!Result.bothKnown()) { 1097 // Erase everything that was computed in this iteration from the cache, so 1098 // that no dangling references are left behind. We could be a bit smarter if 1099 // we kept a dependency graph. It's probably not worth the complexity. 1100 for (const Value *SeenVal : SeenVals) { 1101 CacheMapTy::iterator CacheIt = CacheMap.find(SeenVal); 1102 // non-computable results can be safely cached 1103 if (CacheIt != CacheMap.end() && CacheIt->second.anyKnown()) 1104 CacheMap.erase(CacheIt); 1105 } 1106 1107 // Erase any instructions we inserted as part of the traversal. 1108 for (Instruction *I : InsertedInstructions) { 1109 I->replaceAllUsesWith(PoisonValue::get(I->getType())); 1110 I->eraseFromParent(); 1111 } 1112 } 1113 1114 SeenVals.clear(); 1115 InsertedInstructions.clear(); 1116 return Result; 1117 } 1118 1119 SizeOffsetValue ObjectSizeOffsetEvaluator::compute_(Value *V) { 1120 1121 // Only trust ObjectSizeOffsetVisitor in exact mode, otherwise fallback on 1122 // dynamic computation. 1123 ObjectSizeOpts VisitorEvalOpts(EvalOpts); 1124 VisitorEvalOpts.EvalMode = ObjectSizeOpts::Mode::ExactUnderlyingSizeAndOffset; 1125 ObjectSizeOffsetVisitor Visitor(DL, TLI, Context, VisitorEvalOpts); 1126 1127 SizeOffsetAPInt Const = Visitor.compute(V); 1128 if (Const.bothKnown()) 1129 return SizeOffsetValue(ConstantInt::get(Context, Const.Size), 1130 ConstantInt::get(Context, Const.Offset)); 1131 1132 V = V->stripPointerCasts(); 1133 1134 // Check cache. 1135 CacheMapTy::iterator CacheIt = CacheMap.find(V); 1136 if (CacheIt != CacheMap.end()) 1137 return CacheIt->second; 1138 1139 // Always generate code immediately before the instruction being 1140 // processed, so that the generated code dominates the same BBs. 1141 BuilderTy::InsertPointGuard Guard(Builder); 1142 if (Instruction *I = dyn_cast<Instruction>(V)) 1143 Builder.SetInsertPoint(I); 1144 1145 // Now compute the size and offset. 1146 SizeOffsetValue Result; 1147 1148 // Record the pointers that were handled in this run, so that they can be 1149 // cleaned later if something fails. We also use this set to break cycles that 1150 // can occur in dead code. 1151 if (!SeenVals.insert(V).second) { 1152 Result = ObjectSizeOffsetEvaluator::unknown(); 1153 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 1154 Result = visitGEPOperator(*GEP); 1155 } else if (Instruction *I = dyn_cast<Instruction>(V)) { 1156 Result = visit(*I); 1157 } else if (isa<Argument>(V) || 1158 (isa<ConstantExpr>(V) && 1159 cast<ConstantExpr>(V)->getOpcode() == Instruction::IntToPtr) || 1160 isa<GlobalAlias>(V) || 1161 isa<GlobalVariable>(V)) { 1162 // Ignore values where we cannot do more than ObjectSizeVisitor. 1163 Result = ObjectSizeOffsetEvaluator::unknown(); 1164 } else { 1165 LLVM_DEBUG( 1166 dbgs() << "ObjectSizeOffsetEvaluator::compute() unhandled value: " << *V 1167 << '\n'); 1168 Result = ObjectSizeOffsetEvaluator::unknown(); 1169 } 1170 1171 // Don't reuse CacheIt since it may be invalid at this point. 1172 CacheMap[V] = SizeOffsetWeakTrackingVH(Result); 1173 return Result; 1174 } 1175 1176 SizeOffsetValue ObjectSizeOffsetEvaluator::visitAllocaInst(AllocaInst &I) { 1177 if (!I.getAllocatedType()->isSized()) 1178 return ObjectSizeOffsetEvaluator::unknown(); 1179 1180 // must be a VLA or vscale. 1181 assert(I.isArrayAllocation() || I.getAllocatedType()->isScalableTy()); 1182 1183 // If needed, adjust the alloca's operand size to match the pointer indexing 1184 // size. Subsequent math operations expect the types to match. 1185 Value *ArraySize = Builder.CreateZExtOrTrunc( 1186 I.getArraySize(), 1187 DL.getIndexType(I.getContext(), DL.getAllocaAddrSpace())); 1188 assert(ArraySize->getType() == Zero->getType() && 1189 "Expected zero constant to have pointer index type"); 1190 1191 Value *Size = Builder.CreateTypeSize( 1192 ArraySize->getType(), DL.getTypeAllocSize(I.getAllocatedType())); 1193 Size = Builder.CreateMul(Size, ArraySize); 1194 return SizeOffsetValue(Size, Zero); 1195 } 1196 1197 SizeOffsetValue ObjectSizeOffsetEvaluator::visitCallBase(CallBase &CB) { 1198 std::optional<AllocFnsTy> FnData = getAllocationSize(&CB, TLI); 1199 if (!FnData) 1200 return ObjectSizeOffsetEvaluator::unknown(); 1201 1202 // Handle strdup-like functions separately. 1203 if (FnData->AllocTy == StrDupLike) { 1204 // TODO: implement evaluation of strdup/strndup 1205 return ObjectSizeOffsetEvaluator::unknown(); 1206 } 1207 1208 Value *FirstArg = CB.getArgOperand(FnData->FstParam); 1209 FirstArg = Builder.CreateZExtOrTrunc(FirstArg, IntTy); 1210 if (FnData->SndParam < 0) 1211 return SizeOffsetValue(FirstArg, Zero); 1212 1213 Value *SecondArg = CB.getArgOperand(FnData->SndParam); 1214 SecondArg = Builder.CreateZExtOrTrunc(SecondArg, IntTy); 1215 Value *Size = Builder.CreateMul(FirstArg, SecondArg); 1216 return SizeOffsetValue(Size, Zero); 1217 } 1218 1219 SizeOffsetValue 1220 ObjectSizeOffsetEvaluator::visitExtractElementInst(ExtractElementInst &) { 1221 return ObjectSizeOffsetEvaluator::unknown(); 1222 } 1223 1224 SizeOffsetValue 1225 ObjectSizeOffsetEvaluator::visitExtractValueInst(ExtractValueInst &) { 1226 return ObjectSizeOffsetEvaluator::unknown(); 1227 } 1228 1229 SizeOffsetValue ObjectSizeOffsetEvaluator::visitGEPOperator(GEPOperator &GEP) { 1230 SizeOffsetValue PtrData = compute_(GEP.getPointerOperand()); 1231 if (!PtrData.bothKnown()) 1232 return ObjectSizeOffsetEvaluator::unknown(); 1233 1234 Value *Offset = emitGEPOffset(&Builder, DL, &GEP, /*NoAssumptions=*/true); 1235 Offset = Builder.CreateAdd(PtrData.Offset, Offset); 1236 return SizeOffsetValue(PtrData.Size, Offset); 1237 } 1238 1239 SizeOffsetValue ObjectSizeOffsetEvaluator::visitIntToPtrInst(IntToPtrInst &) { 1240 // clueless 1241 return ObjectSizeOffsetEvaluator::unknown(); 1242 } 1243 1244 SizeOffsetValue ObjectSizeOffsetEvaluator::visitLoadInst(LoadInst &LI) { 1245 return ObjectSizeOffsetEvaluator::unknown(); 1246 } 1247 1248 SizeOffsetValue ObjectSizeOffsetEvaluator::visitPHINode(PHINode &PHI) { 1249 // Create 2 PHIs: one for size and another for offset. 1250 PHINode *SizePHI = Builder.CreatePHI(IntTy, PHI.getNumIncomingValues()); 1251 PHINode *OffsetPHI = Builder.CreatePHI(IntTy, PHI.getNumIncomingValues()); 1252 1253 // Insert right away in the cache to handle recursive PHIs. 1254 CacheMap[&PHI] = SizeOffsetWeakTrackingVH(SizePHI, OffsetPHI); 1255 1256 // Compute offset/size for each PHI incoming pointer. 1257 for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i) { 1258 BasicBlock *IncomingBlock = PHI.getIncomingBlock(i); 1259 Builder.SetInsertPoint(IncomingBlock, IncomingBlock->getFirstInsertionPt()); 1260 SizeOffsetValue EdgeData = compute_(PHI.getIncomingValue(i)); 1261 1262 if (!EdgeData.bothKnown()) { 1263 OffsetPHI->replaceAllUsesWith(PoisonValue::get(IntTy)); 1264 OffsetPHI->eraseFromParent(); 1265 InsertedInstructions.erase(OffsetPHI); 1266 SizePHI->replaceAllUsesWith(PoisonValue::get(IntTy)); 1267 SizePHI->eraseFromParent(); 1268 InsertedInstructions.erase(SizePHI); 1269 return ObjectSizeOffsetEvaluator::unknown(); 1270 } 1271 SizePHI->addIncoming(EdgeData.Size, IncomingBlock); 1272 OffsetPHI->addIncoming(EdgeData.Offset, IncomingBlock); 1273 } 1274 1275 Value *Size = SizePHI, *Offset = OffsetPHI; 1276 if (Value *Tmp = SizePHI->hasConstantValue()) { 1277 Size = Tmp; 1278 SizePHI->replaceAllUsesWith(Size); 1279 SizePHI->eraseFromParent(); 1280 InsertedInstructions.erase(SizePHI); 1281 } 1282 if (Value *Tmp = OffsetPHI->hasConstantValue()) { 1283 Offset = Tmp; 1284 OffsetPHI->replaceAllUsesWith(Offset); 1285 OffsetPHI->eraseFromParent(); 1286 InsertedInstructions.erase(OffsetPHI); 1287 } 1288 return SizeOffsetValue(Size, Offset); 1289 } 1290 1291 SizeOffsetValue ObjectSizeOffsetEvaluator::visitSelectInst(SelectInst &I) { 1292 SizeOffsetValue TrueSide = compute_(I.getTrueValue()); 1293 SizeOffsetValue FalseSide = compute_(I.getFalseValue()); 1294 1295 if (!TrueSide.bothKnown() || !FalseSide.bothKnown()) 1296 return ObjectSizeOffsetEvaluator::unknown(); 1297 if (TrueSide == FalseSide) 1298 return TrueSide; 1299 1300 Value *Size = 1301 Builder.CreateSelect(I.getCondition(), TrueSide.Size, FalseSide.Size); 1302 Value *Offset = 1303 Builder.CreateSelect(I.getCondition(), TrueSide.Offset, FalseSide.Offset); 1304 return SizeOffsetValue(Size, Offset); 1305 } 1306 1307 SizeOffsetValue ObjectSizeOffsetEvaluator::visitInstruction(Instruction &I) { 1308 LLVM_DEBUG(dbgs() << "ObjectSizeOffsetEvaluator unknown instruction:" << I 1309 << '\n'); 1310 return ObjectSizeOffsetEvaluator::unknown(); 1311 } 1312