1 //===- MemoryBuiltins.cpp - Identify calls to memory builtins -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This family of functions identifies calls to builtin functions that allocate 10 // or free memory. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/MemoryBuiltins.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/Statistic.h" 18 #include "llvm/Analysis/AliasAnalysis.h" 19 #include "llvm/Analysis/TargetFolder.h" 20 #include "llvm/Analysis/TargetLibraryInfo.h" 21 #include "llvm/Analysis/Utils/Local.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/IR/Argument.h" 24 #include "llvm/IR/Attributes.h" 25 #include "llvm/IR/Constants.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/DerivedTypes.h" 28 #include "llvm/IR/Function.h" 29 #include "llvm/IR/GlobalAlias.h" 30 #include "llvm/IR/GlobalVariable.h" 31 #include "llvm/IR/Instruction.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/IntrinsicInst.h" 34 #include "llvm/IR/Operator.h" 35 #include "llvm/IR/Type.h" 36 #include "llvm/IR/Value.h" 37 #include "llvm/Support/Casting.h" 38 #include "llvm/Support/CommandLine.h" 39 #include "llvm/Support/Debug.h" 40 #include "llvm/Support/MathExtras.h" 41 #include "llvm/Support/raw_ostream.h" 42 #include <cassert> 43 #include <cstdint> 44 #include <iterator> 45 #include <numeric> 46 #include <optional> 47 #include <utility> 48 49 using namespace llvm; 50 51 #define DEBUG_TYPE "memory-builtins" 52 53 static cl::opt<unsigned> ObjectSizeOffsetVisitorMaxVisitInstructions( 54 "object-size-offset-visitor-max-visit-instructions", 55 cl::desc("Maximum number of instructions for ObjectSizeOffsetVisitor to " 56 "look at"), 57 cl::init(100)); 58 59 enum AllocType : uint8_t { 60 OpNewLike = 1<<0, // allocates; never returns null 61 MallocLike = 1<<1, // allocates; may return null 62 StrDupLike = 1<<2, 63 MallocOrOpNewLike = MallocLike | OpNewLike, 64 AllocLike = MallocOrOpNewLike | StrDupLike, 65 AnyAlloc = AllocLike 66 }; 67 68 enum class MallocFamily { 69 Malloc, 70 CPPNew, // new(unsigned int) 71 CPPNewAligned, // new(unsigned int, align_val_t) 72 CPPNewArray, // new[](unsigned int) 73 CPPNewArrayAligned, // new[](unsigned long, align_val_t) 74 MSVCNew, // new(unsigned int) 75 MSVCArrayNew, // new[](unsigned int) 76 VecMalloc, 77 KmpcAllocShared, 78 }; 79 80 StringRef mangledNameForMallocFamily(const MallocFamily &Family) { 81 switch (Family) { 82 case MallocFamily::Malloc: 83 return "malloc"; 84 case MallocFamily::CPPNew: 85 return "_Znwm"; 86 case MallocFamily::CPPNewAligned: 87 return "_ZnwmSt11align_val_t"; 88 case MallocFamily::CPPNewArray: 89 return "_Znam"; 90 case MallocFamily::CPPNewArrayAligned: 91 return "_ZnamSt11align_val_t"; 92 case MallocFamily::MSVCNew: 93 return "??2@YAPAXI@Z"; 94 case MallocFamily::MSVCArrayNew: 95 return "??_U@YAPAXI@Z"; 96 case MallocFamily::VecMalloc: 97 return "vec_malloc"; 98 case MallocFamily::KmpcAllocShared: 99 return "__kmpc_alloc_shared"; 100 } 101 llvm_unreachable("missing an alloc family"); 102 } 103 104 struct AllocFnsTy { 105 AllocType AllocTy; 106 unsigned NumParams; 107 // First and Second size parameters (or -1 if unused) 108 int FstParam, SndParam; 109 // Alignment parameter for aligned_alloc and aligned new 110 int AlignParam; 111 // Name of default allocator function to group malloc/free calls by family 112 MallocFamily Family; 113 }; 114 115 // clang-format off 116 // FIXME: certain users need more information. E.g., SimplifyLibCalls needs to 117 // know which functions are nounwind, noalias, nocapture parameters, etc. 118 static const std::pair<LibFunc, AllocFnsTy> AllocationFnData[] = { 119 {LibFunc_Znwj, {OpNewLike, 1, 0, -1, -1, MallocFamily::CPPNew}}, // new(unsigned int) 120 {LibFunc_ZnwjRKSt9nothrow_t, {MallocLike, 2, 0, -1, -1, MallocFamily::CPPNew}}, // new(unsigned int, nothrow) 121 {LibFunc_ZnwjSt11align_val_t, {OpNewLike, 2, 0, -1, 1, MallocFamily::CPPNewAligned}}, // new(unsigned int, align_val_t) 122 {LibFunc_ZnwjSt11align_val_tRKSt9nothrow_t, {MallocLike, 3, 0, -1, 1, MallocFamily::CPPNewAligned}}, // new(unsigned int, align_val_t, nothrow) 123 {LibFunc_Znwm, {OpNewLike, 1, 0, -1, -1, MallocFamily::CPPNew}}, // new(unsigned long) 124 {LibFunc_Znwm12__hot_cold_t, {OpNewLike, 2, 0, -1, -1, MallocFamily::CPPNew}}, // new(unsigned long, __hot_cold_t) 125 {LibFunc_ZnwmRKSt9nothrow_t, {MallocLike, 2, 0, -1, -1, MallocFamily::CPPNew}}, // new(unsigned long, nothrow) 126 {LibFunc_ZnwmRKSt9nothrow_t12__hot_cold_t, {MallocLike, 3, 0, -1, -1, MallocFamily::CPPNew}}, // new(unsigned long, nothrow, __hot_cold_t) 127 {LibFunc_ZnwmSt11align_val_t, {OpNewLike, 2, 0, -1, 1, MallocFamily::CPPNewAligned}}, // new(unsigned long, align_val_t) 128 {LibFunc_ZnwmSt11align_val_t12__hot_cold_t, {OpNewLike, 3, 0, -1, 1, MallocFamily::CPPNewAligned}}, // new(unsigned long, align_val_t, __hot_cold_t) 129 {LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t, {MallocLike, 3, 0, -1, 1, MallocFamily::CPPNewAligned}}, // new(unsigned long, align_val_t, nothrow) 130 {LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t12__hot_cold_t, {MallocLike, 4, 0, -1, 1, MallocFamily::CPPNewAligned}}, // new(unsigned long, align_val_t, nothrow, __hot_cold_t) 131 {LibFunc_Znaj, {OpNewLike, 1, 0, -1, -1, MallocFamily::CPPNewArray}}, // new[](unsigned int) 132 {LibFunc_ZnajRKSt9nothrow_t, {MallocLike, 2, 0, -1, -1, MallocFamily::CPPNewArray}}, // new[](unsigned int, nothrow) 133 {LibFunc_ZnajSt11align_val_t, {OpNewLike, 2, 0, -1, 1, MallocFamily::CPPNewArrayAligned}}, // new[](unsigned int, align_val_t) 134 {LibFunc_ZnajSt11align_val_tRKSt9nothrow_t, {MallocLike, 3, 0, -1, 1, MallocFamily::CPPNewArrayAligned}}, // new[](unsigned int, align_val_t, nothrow) 135 {LibFunc_Znam, {OpNewLike, 1, 0, -1, -1, MallocFamily::CPPNewArray}}, // new[](unsigned long) 136 {LibFunc_Znam12__hot_cold_t, {OpNewLike, 2, 0, -1, -1, MallocFamily::CPPNew}}, // new[](unsigned long, __hot_cold_t) 137 {LibFunc_ZnamRKSt9nothrow_t, {MallocLike, 2, 0, -1, -1, MallocFamily::CPPNewArray}}, // new[](unsigned long, nothrow) 138 {LibFunc_ZnamRKSt9nothrow_t12__hot_cold_t, {MallocLike, 3, 0, -1, -1, MallocFamily::CPPNew}}, // new[](unsigned long, nothrow, __hot_cold_t) 139 {LibFunc_ZnamSt11align_val_t, {OpNewLike, 2, 0, -1, 1, MallocFamily::CPPNewArrayAligned}}, // new[](unsigned long, align_val_t) 140 {LibFunc_ZnamSt11align_val_t12__hot_cold_t, {OpNewLike, 3, 0, -1, 1, MallocFamily::CPPNewAligned}}, // new[](unsigned long, align_val_t, __hot_cold_t) 141 {LibFunc_ZnamSt11align_val_tRKSt9nothrow_t, {MallocLike, 3, 0, -1, 1, MallocFamily::CPPNewArrayAligned}}, // new[](unsigned long, align_val_t, nothrow) 142 {LibFunc_ZnamSt11align_val_tRKSt9nothrow_t12__hot_cold_t, {MallocLike, 4, 0, -1, 1, MallocFamily::CPPNewAligned}}, // new[](unsigned long, align_val_t, nothrow, __hot_cold_t) 143 {LibFunc_msvc_new_int, {OpNewLike, 1, 0, -1, -1, MallocFamily::MSVCNew}}, // new(unsigned int) 144 {LibFunc_msvc_new_int_nothrow, {MallocLike, 2, 0, -1, -1, MallocFamily::MSVCNew}}, // new(unsigned int, nothrow) 145 {LibFunc_msvc_new_longlong, {OpNewLike, 1, 0, -1, -1, MallocFamily::MSVCNew}}, // new(unsigned long long) 146 {LibFunc_msvc_new_longlong_nothrow, {MallocLike, 2, 0, -1, -1, MallocFamily::MSVCNew}}, // new(unsigned long long, nothrow) 147 {LibFunc_msvc_new_array_int, {OpNewLike, 1, 0, -1, -1, MallocFamily::MSVCArrayNew}}, // new[](unsigned int) 148 {LibFunc_msvc_new_array_int_nothrow, {MallocLike, 2, 0, -1, -1, MallocFamily::MSVCArrayNew}}, // new[](unsigned int, nothrow) 149 {LibFunc_msvc_new_array_longlong, {OpNewLike, 1, 0, -1, -1, MallocFamily::MSVCArrayNew}}, // new[](unsigned long long) 150 {LibFunc_msvc_new_array_longlong_nothrow, {MallocLike, 2, 0, -1, -1, MallocFamily::MSVCArrayNew}}, // new[](unsigned long long, nothrow) 151 {LibFunc_strdup, {StrDupLike, 1, -1, -1, -1, MallocFamily::Malloc}}, 152 {LibFunc_dunder_strdup, {StrDupLike, 1, -1, -1, -1, MallocFamily::Malloc}}, 153 {LibFunc_strndup, {StrDupLike, 2, 1, -1, -1, MallocFamily::Malloc}}, 154 {LibFunc_dunder_strndup, {StrDupLike, 2, 1, -1, -1, MallocFamily::Malloc}}, 155 {LibFunc___kmpc_alloc_shared, {MallocLike, 1, 0, -1, -1, MallocFamily::KmpcAllocShared}}, 156 }; 157 // clang-format on 158 159 static const Function *getCalledFunction(const Value *V) { 160 // Don't care about intrinsics in this case. 161 if (isa<IntrinsicInst>(V)) 162 return nullptr; 163 164 const auto *CB = dyn_cast<CallBase>(V); 165 if (!CB) 166 return nullptr; 167 168 if (CB->isNoBuiltin()) 169 return nullptr; 170 171 return CB->getCalledFunction(); 172 } 173 174 /// Returns the allocation data for the given value if it's a call to a known 175 /// allocation function. 176 static std::optional<AllocFnsTy> 177 getAllocationDataForFunction(const Function *Callee, AllocType AllocTy, 178 const TargetLibraryInfo *TLI) { 179 // Don't perform a slow TLI lookup, if this function doesn't return a pointer 180 // and thus can't be an allocation function. 181 if (!Callee->getReturnType()->isPointerTy()) 182 return std::nullopt; 183 184 // Make sure that the function is available. 185 LibFunc TLIFn; 186 if (!TLI || !TLI->getLibFunc(*Callee, TLIFn) || !TLI->has(TLIFn)) 187 return std::nullopt; 188 189 const auto *Iter = find_if( 190 AllocationFnData, [TLIFn](const std::pair<LibFunc, AllocFnsTy> &P) { 191 return P.first == TLIFn; 192 }); 193 194 if (Iter == std::end(AllocationFnData)) 195 return std::nullopt; 196 197 const AllocFnsTy *FnData = &Iter->second; 198 if ((FnData->AllocTy & AllocTy) != FnData->AllocTy) 199 return std::nullopt; 200 201 // Check function prototype. 202 int FstParam = FnData->FstParam; 203 int SndParam = FnData->SndParam; 204 FunctionType *FTy = Callee->getFunctionType(); 205 206 if (FTy->getReturnType()->isPointerTy() && 207 FTy->getNumParams() == FnData->NumParams && 208 (FstParam < 0 || 209 (FTy->getParamType(FstParam)->isIntegerTy(32) || 210 FTy->getParamType(FstParam)->isIntegerTy(64))) && 211 (SndParam < 0 || 212 FTy->getParamType(SndParam)->isIntegerTy(32) || 213 FTy->getParamType(SndParam)->isIntegerTy(64))) 214 return *FnData; 215 return std::nullopt; 216 } 217 218 static std::optional<AllocFnsTy> 219 getAllocationData(const Value *V, AllocType AllocTy, 220 const TargetLibraryInfo *TLI) { 221 if (const Function *Callee = getCalledFunction(V)) 222 return getAllocationDataForFunction(Callee, AllocTy, TLI); 223 return std::nullopt; 224 } 225 226 static std::optional<AllocFnsTy> 227 getAllocationData(const Value *V, AllocType AllocTy, 228 function_ref<const TargetLibraryInfo &(Function &)> GetTLI) { 229 if (const Function *Callee = getCalledFunction(V)) 230 return getAllocationDataForFunction( 231 Callee, AllocTy, &GetTLI(const_cast<Function &>(*Callee))); 232 return std::nullopt; 233 } 234 235 static std::optional<AllocFnsTy> 236 getAllocationSize(const CallBase *CB, const TargetLibraryInfo *TLI) { 237 if (const Function *Callee = getCalledFunction(CB)) { 238 // Prefer to use existing information over allocsize. This will give us an 239 // accurate AllocTy. 240 if (std::optional<AllocFnsTy> Data = 241 getAllocationDataForFunction(Callee, AnyAlloc, TLI)) 242 return Data; 243 } 244 245 Attribute Attr = CB->getFnAttr(Attribute::AllocSize); 246 if (Attr == Attribute()) 247 return std::nullopt; 248 249 std::pair<unsigned, std::optional<unsigned>> Args = Attr.getAllocSizeArgs(); 250 251 AllocFnsTy Result; 252 // Because allocsize only tells us how many bytes are allocated, we're not 253 // really allowed to assume anything, so we use MallocLike. 254 Result.AllocTy = MallocLike; 255 Result.NumParams = CB->arg_size(); 256 Result.FstParam = Args.first; 257 Result.SndParam = Args.second.value_or(-1); 258 // Allocsize has no way to specify an alignment argument 259 Result.AlignParam = -1; 260 return Result; 261 } 262 263 static AllocFnKind getAllocFnKind(const Value *V) { 264 if (const auto *CB = dyn_cast<CallBase>(V)) { 265 Attribute Attr = CB->getFnAttr(Attribute::AllocKind); 266 if (Attr.isValid()) 267 return AllocFnKind(Attr.getValueAsInt()); 268 } 269 return AllocFnKind::Unknown; 270 } 271 272 static AllocFnKind getAllocFnKind(const Function *F) { 273 return F->getAttributes().getAllocKind(); 274 } 275 276 static bool checkFnAllocKind(const Value *V, AllocFnKind Wanted) { 277 return (getAllocFnKind(V) & Wanted) != AllocFnKind::Unknown; 278 } 279 280 static bool checkFnAllocKind(const Function *F, AllocFnKind Wanted) { 281 return (getAllocFnKind(F) & Wanted) != AllocFnKind::Unknown; 282 } 283 284 /// Tests if a value is a call or invoke to a library function that 285 /// allocates or reallocates memory (either malloc, calloc, realloc, or strdup 286 /// like). 287 bool llvm::isAllocationFn(const Value *V, const TargetLibraryInfo *TLI) { 288 return getAllocationData(V, AnyAlloc, TLI).has_value() || 289 checkFnAllocKind(V, AllocFnKind::Alloc | AllocFnKind::Realloc); 290 } 291 bool llvm::isAllocationFn( 292 const Value *V, 293 function_ref<const TargetLibraryInfo &(Function &)> GetTLI) { 294 return getAllocationData(V, AnyAlloc, GetTLI).has_value() || 295 checkFnAllocKind(V, AllocFnKind::Alloc | AllocFnKind::Realloc); 296 } 297 298 /// Tests if a value is a call or invoke to a library function that 299 /// allocates memory via new. 300 bool llvm::isNewLikeFn(const Value *V, const TargetLibraryInfo *TLI) { 301 return getAllocationData(V, OpNewLike, TLI).has_value(); 302 } 303 304 /// Tests if a value is a call or invoke to a library function that 305 /// allocates memory similar to malloc or calloc. 306 bool llvm::isMallocOrCallocLikeFn(const Value *V, const TargetLibraryInfo *TLI) { 307 // TODO: Function behavior does not match name. 308 return getAllocationData(V, MallocOrOpNewLike, TLI).has_value(); 309 } 310 311 /// Tests if a value is a call or invoke to a library function that 312 /// allocates memory (either malloc, calloc, or strdup like). 313 bool llvm::isAllocLikeFn(const Value *V, const TargetLibraryInfo *TLI) { 314 return getAllocationData(V, AllocLike, TLI).has_value() || 315 checkFnAllocKind(V, AllocFnKind::Alloc); 316 } 317 318 /// Tests if a functions is a call or invoke to a library function that 319 /// reallocates memory (e.g., realloc). 320 bool llvm::isReallocLikeFn(const Function *F) { 321 return checkFnAllocKind(F, AllocFnKind::Realloc); 322 } 323 324 Value *llvm::getReallocatedOperand(const CallBase *CB) { 325 if (checkFnAllocKind(CB, AllocFnKind::Realloc)) 326 return CB->getArgOperandWithAttribute(Attribute::AllocatedPointer); 327 return nullptr; 328 } 329 330 bool llvm::isRemovableAlloc(const CallBase *CB, const TargetLibraryInfo *TLI) { 331 // Note: Removability is highly dependent on the source language. For 332 // example, recent C++ requires direct calls to the global allocation 333 // [basic.stc.dynamic.allocation] to be observable unless part of a new 334 // expression [expr.new paragraph 13]. 335 336 // Historically we've treated the C family allocation routines and operator 337 // new as removable 338 return isAllocLikeFn(CB, TLI); 339 } 340 341 Value *llvm::getAllocAlignment(const CallBase *V, 342 const TargetLibraryInfo *TLI) { 343 const std::optional<AllocFnsTy> FnData = getAllocationData(V, AnyAlloc, TLI); 344 if (FnData && FnData->AlignParam >= 0) { 345 return V->getOperand(FnData->AlignParam); 346 } 347 return V->getArgOperandWithAttribute(Attribute::AllocAlign); 348 } 349 350 /// When we're compiling N-bit code, and the user uses parameters that are 351 /// greater than N bits (e.g. uint64_t on a 32-bit build), we can run into 352 /// trouble with APInt size issues. This function handles resizing + overflow 353 /// checks for us. Check and zext or trunc \p I depending on IntTyBits and 354 /// I's value. 355 static bool CheckedZextOrTrunc(APInt &I, unsigned IntTyBits) { 356 // More bits than we can handle. Checking the bit width isn't necessary, but 357 // it's faster than checking active bits, and should give `false` in the 358 // vast majority of cases. 359 if (I.getBitWidth() > IntTyBits && I.getActiveBits() > IntTyBits) 360 return false; 361 if (I.getBitWidth() != IntTyBits) 362 I = I.zextOrTrunc(IntTyBits); 363 return true; 364 } 365 366 std::optional<APInt> 367 llvm::getAllocSize(const CallBase *CB, const TargetLibraryInfo *TLI, 368 function_ref<const Value *(const Value *)> Mapper) { 369 // Note: This handles both explicitly listed allocation functions and 370 // allocsize. The code structure could stand to be cleaned up a bit. 371 std::optional<AllocFnsTy> FnData = getAllocationSize(CB, TLI); 372 if (!FnData) 373 return std::nullopt; 374 375 // Get the index type for this address space, results and intermediate 376 // computations are performed at that width. 377 auto &DL = CB->getDataLayout(); 378 const unsigned IntTyBits = DL.getIndexTypeSizeInBits(CB->getType()); 379 380 // Handle strdup-like functions separately. 381 if (FnData->AllocTy == StrDupLike) { 382 APInt Size(IntTyBits, GetStringLength(Mapper(CB->getArgOperand(0)))); 383 if (!Size) 384 return std::nullopt; 385 386 // Strndup limits strlen. 387 if (FnData->FstParam > 0) { 388 const ConstantInt *Arg = 389 dyn_cast<ConstantInt>(Mapper(CB->getArgOperand(FnData->FstParam))); 390 if (!Arg) 391 return std::nullopt; 392 393 APInt MaxSize = Arg->getValue().zext(IntTyBits); 394 if (Size.ugt(MaxSize)) 395 Size = MaxSize + 1; 396 } 397 return Size; 398 } 399 400 const ConstantInt *Arg = 401 dyn_cast<ConstantInt>(Mapper(CB->getArgOperand(FnData->FstParam))); 402 if (!Arg) 403 return std::nullopt; 404 405 APInt Size = Arg->getValue(); 406 if (!CheckedZextOrTrunc(Size, IntTyBits)) 407 return std::nullopt; 408 409 // Size is determined by just 1 parameter. 410 if (FnData->SndParam < 0) 411 return Size; 412 413 Arg = dyn_cast<ConstantInt>(Mapper(CB->getArgOperand(FnData->SndParam))); 414 if (!Arg) 415 return std::nullopt; 416 417 APInt NumElems = Arg->getValue(); 418 if (!CheckedZextOrTrunc(NumElems, IntTyBits)) 419 return std::nullopt; 420 421 bool Overflow; 422 Size = Size.umul_ov(NumElems, Overflow); 423 if (Overflow) 424 return std::nullopt; 425 return Size; 426 } 427 428 Constant *llvm::getInitialValueOfAllocation(const Value *V, 429 const TargetLibraryInfo *TLI, 430 Type *Ty) { 431 auto *Alloc = dyn_cast<CallBase>(V); 432 if (!Alloc) 433 return nullptr; 434 435 // malloc are uninitialized (undef) 436 if (getAllocationData(Alloc, MallocOrOpNewLike, TLI).has_value()) 437 return UndefValue::get(Ty); 438 439 AllocFnKind AK = getAllocFnKind(Alloc); 440 if ((AK & AllocFnKind::Uninitialized) != AllocFnKind::Unknown) 441 return UndefValue::get(Ty); 442 if ((AK & AllocFnKind::Zeroed) != AllocFnKind::Unknown) 443 return Constant::getNullValue(Ty); 444 445 return nullptr; 446 } 447 448 struct FreeFnsTy { 449 unsigned NumParams; 450 // Name of default allocator function to group malloc/free calls by family 451 MallocFamily Family; 452 }; 453 454 // clang-format off 455 static const std::pair<LibFunc, FreeFnsTy> FreeFnData[] = { 456 {LibFunc_ZdlPv, {1, MallocFamily::CPPNew}}, // operator delete(void*) 457 {LibFunc_ZdaPv, {1, MallocFamily::CPPNewArray}}, // operator delete[](void*) 458 {LibFunc_msvc_delete_ptr32, {1, MallocFamily::MSVCNew}}, // operator delete(void*) 459 {LibFunc_msvc_delete_ptr64, {1, MallocFamily::MSVCNew}}, // operator delete(void*) 460 {LibFunc_msvc_delete_array_ptr32, {1, MallocFamily::MSVCArrayNew}}, // operator delete[](void*) 461 {LibFunc_msvc_delete_array_ptr64, {1, MallocFamily::MSVCArrayNew}}, // operator delete[](void*) 462 {LibFunc_ZdlPvj, {2, MallocFamily::CPPNew}}, // delete(void*, uint) 463 {LibFunc_ZdlPvm, {2, MallocFamily::CPPNew}}, // delete(void*, ulong) 464 {LibFunc_ZdlPvRKSt9nothrow_t, {2, MallocFamily::CPPNew}}, // delete(void*, nothrow) 465 {LibFunc_ZdlPvSt11align_val_t, {2, MallocFamily::CPPNewAligned}}, // delete(void*, align_val_t) 466 {LibFunc_ZdaPvj, {2, MallocFamily::CPPNewArray}}, // delete[](void*, uint) 467 {LibFunc_ZdaPvm, {2, MallocFamily::CPPNewArray}}, // delete[](void*, ulong) 468 {LibFunc_ZdaPvRKSt9nothrow_t, {2, MallocFamily::CPPNewArray}}, // delete[](void*, nothrow) 469 {LibFunc_ZdaPvSt11align_val_t, {2, MallocFamily::CPPNewArrayAligned}}, // delete[](void*, align_val_t) 470 {LibFunc_msvc_delete_ptr32_int, {2, MallocFamily::MSVCNew}}, // delete(void*, uint) 471 {LibFunc_msvc_delete_ptr64_longlong, {2, MallocFamily::MSVCNew}}, // delete(void*, ulonglong) 472 {LibFunc_msvc_delete_ptr32_nothrow, {2, MallocFamily::MSVCNew}}, // delete(void*, nothrow) 473 {LibFunc_msvc_delete_ptr64_nothrow, {2, MallocFamily::MSVCNew}}, // delete(void*, nothrow) 474 {LibFunc_msvc_delete_array_ptr32_int, {2, MallocFamily::MSVCArrayNew}}, // delete[](void*, uint) 475 {LibFunc_msvc_delete_array_ptr64_longlong, {2, MallocFamily::MSVCArrayNew}}, // delete[](void*, ulonglong) 476 {LibFunc_msvc_delete_array_ptr32_nothrow, {2, MallocFamily::MSVCArrayNew}}, // delete[](void*, nothrow) 477 {LibFunc_msvc_delete_array_ptr64_nothrow, {2, MallocFamily::MSVCArrayNew}}, // delete[](void*, nothrow) 478 {LibFunc___kmpc_free_shared, {2, MallocFamily::KmpcAllocShared}}, // OpenMP Offloading RTL free 479 {LibFunc_ZdlPvSt11align_val_tRKSt9nothrow_t, {3, MallocFamily::CPPNewAligned}}, // delete(void*, align_val_t, nothrow) 480 {LibFunc_ZdaPvSt11align_val_tRKSt9nothrow_t, {3, MallocFamily::CPPNewArrayAligned}}, // delete[](void*, align_val_t, nothrow) 481 {LibFunc_ZdlPvjSt11align_val_t, {3, MallocFamily::CPPNewAligned}}, // delete(void*, unsigned int, align_val_t) 482 {LibFunc_ZdlPvmSt11align_val_t, {3, MallocFamily::CPPNewAligned}}, // delete(void*, unsigned long, align_val_t) 483 {LibFunc_ZdaPvjSt11align_val_t, {3, MallocFamily::CPPNewArrayAligned}}, // delete[](void*, unsigned int, align_val_t) 484 {LibFunc_ZdaPvmSt11align_val_t, {3, MallocFamily::CPPNewArrayAligned}}, // delete[](void*, unsigned long, align_val_t) 485 }; 486 // clang-format on 487 488 std::optional<FreeFnsTy> getFreeFunctionDataForFunction(const Function *Callee, 489 const LibFunc TLIFn) { 490 const auto *Iter = 491 find_if(FreeFnData, [TLIFn](const std::pair<LibFunc, FreeFnsTy> &P) { 492 return P.first == TLIFn; 493 }); 494 if (Iter == std::end(FreeFnData)) 495 return std::nullopt; 496 return Iter->second; 497 } 498 499 std::optional<StringRef> 500 llvm::getAllocationFamily(const Value *I, const TargetLibraryInfo *TLI) { 501 if (const Function *Callee = getCalledFunction(I)) { 502 LibFunc TLIFn; 503 if (TLI && TLI->getLibFunc(*Callee, TLIFn) && TLI->has(TLIFn)) { 504 // Callee is some known library function. 505 const auto AllocData = 506 getAllocationDataForFunction(Callee, AnyAlloc, TLI); 507 if (AllocData) 508 return mangledNameForMallocFamily(AllocData->Family); 509 const auto FreeData = getFreeFunctionDataForFunction(Callee, TLIFn); 510 if (FreeData) 511 return mangledNameForMallocFamily(FreeData->Family); 512 } 513 } 514 515 // Callee isn't a known library function, still check attributes. 516 if (checkFnAllocKind(I, AllocFnKind::Free | AllocFnKind::Alloc | 517 AllocFnKind::Realloc)) { 518 Attribute Attr = cast<CallBase>(I)->getFnAttr("alloc-family"); 519 if (Attr.isValid()) 520 return Attr.getValueAsString(); 521 } 522 return std::nullopt; 523 } 524 525 /// isLibFreeFunction - Returns true if the function is a builtin free() 526 bool llvm::isLibFreeFunction(const Function *F, const LibFunc TLIFn) { 527 std::optional<FreeFnsTy> FnData = getFreeFunctionDataForFunction(F, TLIFn); 528 if (!FnData) 529 return checkFnAllocKind(F, AllocFnKind::Free); 530 531 // Check free prototype. 532 // FIXME: workaround for PR5130, this will be obsolete when a nobuiltin 533 // attribute will exist. 534 FunctionType *FTy = F->getFunctionType(); 535 if (!FTy->getReturnType()->isVoidTy()) 536 return false; 537 if (FTy->getNumParams() != FnData->NumParams) 538 return false; 539 if (!FTy->getParamType(0)->isPointerTy()) 540 return false; 541 542 return true; 543 } 544 545 Value *llvm::getFreedOperand(const CallBase *CB, const TargetLibraryInfo *TLI) { 546 if (const Function *Callee = getCalledFunction(CB)) { 547 LibFunc TLIFn; 548 if (TLI && TLI->getLibFunc(*Callee, TLIFn) && TLI->has(TLIFn) && 549 isLibFreeFunction(Callee, TLIFn)) { 550 // All currently supported free functions free the first argument. 551 return CB->getArgOperand(0); 552 } 553 } 554 555 if (checkFnAllocKind(CB, AllocFnKind::Free)) 556 return CB->getArgOperandWithAttribute(Attribute::AllocatedPointer); 557 558 return nullptr; 559 } 560 561 //===----------------------------------------------------------------------===// 562 // Utility functions to compute size of objects. 563 // 564 static APInt getSizeWithOverflow(const SizeOffsetAPInt &Data) { 565 APInt Size = Data.Size; 566 APInt Offset = Data.Offset; 567 568 if (Offset.isNegative() || Size.ult(Offset)) 569 return APInt::getZero(Size.getBitWidth()); 570 571 return Size - Offset; 572 } 573 574 /// Compute the size of the object pointed by Ptr. Returns true and the 575 /// object size in Size if successful, and false otherwise. 576 /// If RoundToAlign is true, then Size is rounded up to the alignment of 577 /// allocas, byval arguments, and global variables. 578 bool llvm::getObjectSize(const Value *Ptr, uint64_t &Size, const DataLayout &DL, 579 const TargetLibraryInfo *TLI, ObjectSizeOpts Opts) { 580 ObjectSizeOffsetVisitor Visitor(DL, TLI, Ptr->getContext(), Opts); 581 SizeOffsetAPInt Data = Visitor.compute(const_cast<Value *>(Ptr)); 582 if (!Data.bothKnown()) 583 return false; 584 585 Size = getSizeWithOverflow(Data).getZExtValue(); 586 return true; 587 } 588 589 Value *llvm::lowerObjectSizeCall(IntrinsicInst *ObjectSize, 590 const DataLayout &DL, 591 const TargetLibraryInfo *TLI, 592 bool MustSucceed) { 593 return lowerObjectSizeCall(ObjectSize, DL, TLI, /*AAResults=*/nullptr, 594 MustSucceed); 595 } 596 597 Value *llvm::lowerObjectSizeCall( 598 IntrinsicInst *ObjectSize, const DataLayout &DL, 599 const TargetLibraryInfo *TLI, AAResults *AA, bool MustSucceed, 600 SmallVectorImpl<Instruction *> *InsertedInstructions) { 601 assert(ObjectSize->getIntrinsicID() == Intrinsic::objectsize && 602 "ObjectSize must be a call to llvm.objectsize!"); 603 604 bool MaxVal = cast<ConstantInt>(ObjectSize->getArgOperand(1))->isZero(); 605 ObjectSizeOpts EvalOptions; 606 EvalOptions.AA = AA; 607 608 // Unless we have to fold this to something, try to be as accurate as 609 // possible. 610 if (MustSucceed) 611 EvalOptions.EvalMode = 612 MaxVal ? ObjectSizeOpts::Mode::Max : ObjectSizeOpts::Mode::Min; 613 else 614 EvalOptions.EvalMode = ObjectSizeOpts::Mode::ExactSizeFromOffset; 615 616 EvalOptions.NullIsUnknownSize = 617 cast<ConstantInt>(ObjectSize->getArgOperand(2))->isOne(); 618 619 auto *ResultType = cast<IntegerType>(ObjectSize->getType()); 620 bool StaticOnly = cast<ConstantInt>(ObjectSize->getArgOperand(3))->isZero(); 621 if (StaticOnly) { 622 // FIXME: Does it make sense to just return a failure value if the size won't 623 // fit in the output and `!MustSucceed`? 624 uint64_t Size; 625 if (getObjectSize(ObjectSize->getArgOperand(0), Size, DL, TLI, EvalOptions) && 626 isUIntN(ResultType->getBitWidth(), Size)) 627 return ConstantInt::get(ResultType, Size); 628 } else { 629 LLVMContext &Ctx = ObjectSize->getFunction()->getContext(); 630 ObjectSizeOffsetEvaluator Eval(DL, TLI, Ctx, EvalOptions); 631 SizeOffsetValue SizeOffsetPair = Eval.compute(ObjectSize->getArgOperand(0)); 632 633 if (SizeOffsetPair != ObjectSizeOffsetEvaluator::unknown()) { 634 IRBuilder<TargetFolder, IRBuilderCallbackInserter> Builder( 635 Ctx, TargetFolder(DL), IRBuilderCallbackInserter([&](Instruction *I) { 636 if (InsertedInstructions) 637 InsertedInstructions->push_back(I); 638 })); 639 Builder.SetInsertPoint(ObjectSize); 640 641 Value *Size = SizeOffsetPair.Size; 642 Value *Offset = SizeOffsetPair.Offset; 643 644 // If we've outside the end of the object, then we can always access 645 // exactly 0 bytes. 646 Value *ResultSize = Builder.CreateSub(Size, Offset); 647 Value *UseZero = Builder.CreateICmpULT(Size, Offset); 648 ResultSize = Builder.CreateZExtOrTrunc(ResultSize, ResultType); 649 Value *Ret = Builder.CreateSelect( 650 UseZero, ConstantInt::get(ResultType, 0), ResultSize); 651 652 // The non-constant size expression cannot evaluate to -1. 653 if (!isa<Constant>(Size) || !isa<Constant>(Offset)) 654 Builder.CreateAssumption( 655 Builder.CreateICmpNE(Ret, ConstantInt::get(ResultType, -1))); 656 657 return Ret; 658 } 659 } 660 661 if (!MustSucceed) 662 return nullptr; 663 664 return MaxVal ? Constant::getAllOnesValue(ResultType) 665 : Constant::getNullValue(ResultType); 666 } 667 668 STATISTIC(ObjectVisitorArgument, 669 "Number of arguments with unsolved size and offset"); 670 STATISTIC(ObjectVisitorLoad, 671 "Number of load instructions with unsolved size and offset"); 672 673 /// Align \p Size according to \p Alignment. If \p Size is greater than 674 /// getSignedMaxValue(), set it as unknown as we can only represent signed value 675 /// in OffsetSpan. 676 APInt ObjectSizeOffsetVisitor::align(APInt Size, MaybeAlign Alignment) { 677 if (Options.RoundToAlign && Alignment) 678 Size = APInt(IntTyBits, alignTo(Size.getZExtValue(), *Alignment)); 679 680 return Size.isNegative() ? APInt() : Size; 681 } 682 683 ObjectSizeOffsetVisitor::ObjectSizeOffsetVisitor(const DataLayout &DL, 684 const TargetLibraryInfo *TLI, 685 LLVMContext &Context, 686 ObjectSizeOpts Options) 687 : DL(DL), TLI(TLI), Options(Options) { 688 // Pointer size must be rechecked for each object visited since it could have 689 // a different address space. 690 } 691 692 SizeOffsetAPInt ObjectSizeOffsetVisitor::compute(Value *V) { 693 InstructionsVisited = 0; 694 OffsetSpan Span = computeImpl(V); 695 696 // In ExactSizeFromOffset mode, we don't care about the Before Field, so allow 697 // us to overwrite it if needs be. 698 if (Span.knownAfter() && !Span.knownBefore() && 699 Options.EvalMode == ObjectSizeOpts::Mode::ExactSizeFromOffset) 700 Span.Before = APInt::getZero(Span.After.getBitWidth()); 701 702 if (!Span.bothKnown()) 703 return {}; 704 705 return {Span.Before + Span.After, Span.Before}; 706 } 707 708 OffsetSpan ObjectSizeOffsetVisitor::computeImpl(Value *V) { 709 unsigned InitialIntTyBits = DL.getIndexTypeSizeInBits(V->getType()); 710 711 // Stripping pointer casts can strip address space casts which can change the 712 // index type size. The invariant is that we use the value type to determine 713 // the index type size and if we stripped address space casts we have to 714 // readjust the APInt as we pass it upwards in order for the APInt to match 715 // the type the caller passed in. 716 APInt Offset(InitialIntTyBits, 0); 717 V = V->stripAndAccumulateConstantOffsets( 718 DL, Offset, /* AllowNonInbounds */ true, /* AllowInvariantGroup */ true); 719 720 // Later we use the index type size and zero but it will match the type of the 721 // value that is passed to computeImpl. 722 IntTyBits = DL.getIndexTypeSizeInBits(V->getType()); 723 Zero = APInt::getZero(IntTyBits); 724 725 OffsetSpan ORT = computeValue(V); 726 727 bool IndexTypeSizeChanged = InitialIntTyBits != IntTyBits; 728 if (!IndexTypeSizeChanged && Offset.isZero()) 729 return ORT; 730 731 // We stripped an address space cast that changed the index type size or we 732 // accumulated some constant offset (or both). Readjust the bit width to match 733 // the argument index type size and apply the offset, as required. 734 if (IndexTypeSizeChanged) { 735 if (ORT.knownBefore() && 736 !::CheckedZextOrTrunc(ORT.Before, InitialIntTyBits)) 737 ORT.Before = APInt(); 738 if (ORT.knownAfter() && !::CheckedZextOrTrunc(ORT.After, InitialIntTyBits)) 739 ORT.After = APInt(); 740 } 741 // If the computed bound is "unknown" we cannot add the stripped offset. 742 if (ORT.knownBefore()) { 743 bool Overflow; 744 ORT.Before = ORT.Before.sadd_ov(Offset, Overflow); 745 if (Overflow) 746 ORT.Before = APInt(); 747 } 748 if (ORT.knownAfter()) { 749 bool Overflow; 750 ORT.After = ORT.After.ssub_ov(Offset, Overflow); 751 if (Overflow) 752 ORT.After = APInt(); 753 } 754 755 // We end up pointing on a location that's outside of the original object. 756 if (ORT.knownBefore() && ORT.Before.isNegative()) { 757 // This is UB, and we'd rather return an empty location then. 758 if (Options.EvalMode == ObjectSizeOpts::Mode::Min || 759 Options.EvalMode == ObjectSizeOpts::Mode::Max) { 760 ORT.Before = APInt::getZero(ORT.Before.getBitWidth()); 761 ORT.After = APInt::getZero(ORT.Before.getBitWidth()); 762 } 763 // Otherwise it's fine, caller can handle negative offset. 764 } 765 return ORT; 766 } 767 768 OffsetSpan ObjectSizeOffsetVisitor::computeValue(Value *V) { 769 if (Instruction *I = dyn_cast<Instruction>(V)) { 770 // If we have already seen this instruction, bail out. Cycles can happen in 771 // unreachable code after constant propagation. 772 auto P = SeenInsts.try_emplace(I, ObjectSizeOffsetVisitor::unknown()); 773 if (!P.second) 774 return P.first->second; 775 ++InstructionsVisited; 776 if (InstructionsVisited > ObjectSizeOffsetVisitorMaxVisitInstructions) 777 return ObjectSizeOffsetVisitor::unknown(); 778 OffsetSpan Res = visit(*I); 779 // Cache the result for later visits. If we happened to visit this during 780 // the above recursion, we would consider it unknown until now. 781 SeenInsts[I] = Res; 782 return Res; 783 } 784 if (Argument *A = dyn_cast<Argument>(V)) 785 return visitArgument(*A); 786 if (ConstantPointerNull *P = dyn_cast<ConstantPointerNull>(V)) 787 return visitConstantPointerNull(*P); 788 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 789 return visitGlobalAlias(*GA); 790 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) 791 return visitGlobalVariable(*GV); 792 if (UndefValue *UV = dyn_cast<UndefValue>(V)) 793 return visitUndefValue(*UV); 794 795 LLVM_DEBUG(dbgs() << "ObjectSizeOffsetVisitor::compute() unhandled value: " 796 << *V << '\n'); 797 return ObjectSizeOffsetVisitor::unknown(); 798 } 799 800 bool ObjectSizeOffsetVisitor::CheckedZextOrTrunc(APInt &I) { 801 return ::CheckedZextOrTrunc(I, IntTyBits); 802 } 803 804 OffsetSpan ObjectSizeOffsetVisitor::visitAllocaInst(AllocaInst &I) { 805 TypeSize ElemSize = DL.getTypeAllocSize(I.getAllocatedType()); 806 if (ElemSize.isScalable() && Options.EvalMode != ObjectSizeOpts::Mode::Min) 807 return ObjectSizeOffsetVisitor::unknown(); 808 if (!isUIntN(IntTyBits, ElemSize.getKnownMinValue())) 809 return ObjectSizeOffsetVisitor::unknown(); 810 APInt Size(IntTyBits, ElemSize.getKnownMinValue()); 811 812 if (!I.isArrayAllocation()) 813 return OffsetSpan(Zero, align(Size, I.getAlign())); 814 815 Value *ArraySize = I.getArraySize(); 816 if (const ConstantInt *C = dyn_cast<ConstantInt>(ArraySize)) { 817 APInt NumElems = C->getValue(); 818 if (!CheckedZextOrTrunc(NumElems)) 819 return ObjectSizeOffsetVisitor::unknown(); 820 821 bool Overflow; 822 Size = Size.umul_ov(NumElems, Overflow); 823 824 return Overflow ? ObjectSizeOffsetVisitor::unknown() 825 : OffsetSpan(Zero, align(Size, I.getAlign())); 826 } 827 return ObjectSizeOffsetVisitor::unknown(); 828 } 829 830 OffsetSpan ObjectSizeOffsetVisitor::visitArgument(Argument &A) { 831 Type *MemoryTy = A.getPointeeInMemoryValueType(); 832 // No interprocedural analysis is done at the moment. 833 if (!MemoryTy|| !MemoryTy->isSized()) { 834 ++ObjectVisitorArgument; 835 return ObjectSizeOffsetVisitor::unknown(); 836 } 837 838 APInt Size(IntTyBits, DL.getTypeAllocSize(MemoryTy)); 839 return OffsetSpan(Zero, align(Size, A.getParamAlign())); 840 } 841 842 OffsetSpan ObjectSizeOffsetVisitor::visitCallBase(CallBase &CB) { 843 if (std::optional<APInt> Size = getAllocSize(&CB, TLI)) { 844 // Very large unsigned value cannot be represented as OffsetSpan. 845 if (Size->isNegative()) 846 return ObjectSizeOffsetVisitor::unknown(); 847 return OffsetSpan(Zero, *Size); 848 } 849 return ObjectSizeOffsetVisitor::unknown(); 850 } 851 852 OffsetSpan 853 ObjectSizeOffsetVisitor::visitConstantPointerNull(ConstantPointerNull &CPN) { 854 // If null is unknown, there's nothing we can do. Additionally, non-zero 855 // address spaces can make use of null, so we don't presume to know anything 856 // about that. 857 // 858 // TODO: How should this work with address space casts? We currently just drop 859 // them on the floor, but it's unclear what we should do when a NULL from 860 // addrspace(1) gets casted to addrspace(0) (or vice-versa). 861 if (Options.NullIsUnknownSize || CPN.getType()->getAddressSpace()) 862 return ObjectSizeOffsetVisitor::unknown(); 863 return OffsetSpan(Zero, Zero); 864 } 865 866 OffsetSpan 867 ObjectSizeOffsetVisitor::visitExtractElementInst(ExtractElementInst &) { 868 return ObjectSizeOffsetVisitor::unknown(); 869 } 870 871 OffsetSpan ObjectSizeOffsetVisitor::visitExtractValueInst(ExtractValueInst &) { 872 // Easy cases were already folded by previous passes. 873 return ObjectSizeOffsetVisitor::unknown(); 874 } 875 876 OffsetSpan ObjectSizeOffsetVisitor::visitGlobalAlias(GlobalAlias &GA) { 877 if (GA.isInterposable()) 878 return ObjectSizeOffsetVisitor::unknown(); 879 return computeImpl(GA.getAliasee()); 880 } 881 882 OffsetSpan ObjectSizeOffsetVisitor::visitGlobalVariable(GlobalVariable &GV) { 883 if (!GV.getValueType()->isSized() || GV.hasExternalWeakLinkage() || 884 ((!GV.hasInitializer() || GV.isInterposable()) && 885 Options.EvalMode != ObjectSizeOpts::Mode::Min)) 886 return ObjectSizeOffsetVisitor::unknown(); 887 888 APInt Size(IntTyBits, DL.getTypeAllocSize(GV.getValueType())); 889 return OffsetSpan(Zero, align(Size, GV.getAlign())); 890 } 891 892 OffsetSpan ObjectSizeOffsetVisitor::visitIntToPtrInst(IntToPtrInst &) { 893 // clueless 894 return ObjectSizeOffsetVisitor::unknown(); 895 } 896 897 OffsetSpan ObjectSizeOffsetVisitor::findLoadOffsetRange( 898 LoadInst &Load, BasicBlock &BB, BasicBlock::iterator From, 899 SmallDenseMap<BasicBlock *, OffsetSpan, 8> &VisitedBlocks, 900 unsigned &ScannedInstCount) { 901 constexpr unsigned MaxInstsToScan = 128; 902 903 auto Where = VisitedBlocks.find(&BB); 904 if (Where != VisitedBlocks.end()) 905 return Where->second; 906 907 auto Unknown = [&BB, &VisitedBlocks]() { 908 return VisitedBlocks[&BB] = ObjectSizeOffsetVisitor::unknown(); 909 }; 910 auto Known = [&BB, &VisitedBlocks](OffsetSpan SO) { 911 return VisitedBlocks[&BB] = SO; 912 }; 913 914 do { 915 Instruction &I = *From; 916 917 if (I.isDebugOrPseudoInst()) 918 continue; 919 920 if (++ScannedInstCount > MaxInstsToScan) 921 return Unknown(); 922 923 if (!I.mayWriteToMemory()) 924 continue; 925 926 if (auto *SI = dyn_cast<StoreInst>(&I)) { 927 AliasResult AR = 928 Options.AA->alias(SI->getPointerOperand(), Load.getPointerOperand()); 929 switch ((AliasResult::Kind)AR) { 930 case AliasResult::NoAlias: 931 continue; 932 case AliasResult::MustAlias: 933 if (SI->getValueOperand()->getType()->isPointerTy()) 934 return Known(computeImpl(SI->getValueOperand())); 935 else 936 return Unknown(); // No handling of non-pointer values by `compute`. 937 default: 938 return Unknown(); 939 } 940 } 941 942 if (auto *CB = dyn_cast<CallBase>(&I)) { 943 Function *Callee = CB->getCalledFunction(); 944 // Bail out on indirect call. 945 if (!Callee) 946 return Unknown(); 947 948 LibFunc TLIFn; 949 if (!TLI || !TLI->getLibFunc(*CB->getCalledFunction(), TLIFn) || 950 !TLI->has(TLIFn)) 951 return Unknown(); 952 953 // TODO: There's probably more interesting case to support here. 954 if (TLIFn != LibFunc_posix_memalign) 955 return Unknown(); 956 957 AliasResult AR = 958 Options.AA->alias(CB->getOperand(0), Load.getPointerOperand()); 959 switch ((AliasResult::Kind)AR) { 960 case AliasResult::NoAlias: 961 continue; 962 case AliasResult::MustAlias: 963 break; 964 default: 965 return Unknown(); 966 } 967 968 // Is the error status of posix_memalign correctly checked? If not it 969 // would be incorrect to assume it succeeds and load doesn't see the 970 // previous value. 971 std::optional<bool> Checked = isImpliedByDomCondition( 972 ICmpInst::ICMP_EQ, CB, ConstantInt::get(CB->getType(), 0), &Load, DL); 973 if (!Checked || !*Checked) 974 return Unknown(); 975 976 Value *Size = CB->getOperand(2); 977 auto *C = dyn_cast<ConstantInt>(Size); 978 if (!C) 979 return Unknown(); 980 981 APInt CSize = C->getValue(); 982 if (CSize.isNegative()) 983 return Unknown(); 984 985 return Known({APInt(CSize.getBitWidth(), 0), CSize}); 986 } 987 988 return Unknown(); 989 } while (From-- != BB.begin()); 990 991 SmallVector<OffsetSpan> PredecessorSizeOffsets; 992 for (auto *PredBB : predecessors(&BB)) { 993 PredecessorSizeOffsets.push_back(findLoadOffsetRange( 994 Load, *PredBB, BasicBlock::iterator(PredBB->getTerminator()), 995 VisitedBlocks, ScannedInstCount)); 996 if (!PredecessorSizeOffsets.back().bothKnown()) 997 return Unknown(); 998 } 999 1000 if (PredecessorSizeOffsets.empty()) 1001 return Unknown(); 1002 1003 return Known(std::accumulate( 1004 PredecessorSizeOffsets.begin() + 1, PredecessorSizeOffsets.end(), 1005 PredecessorSizeOffsets.front(), [this](OffsetSpan LHS, OffsetSpan RHS) { 1006 return combineOffsetRange(LHS, RHS); 1007 })); 1008 } 1009 1010 OffsetSpan ObjectSizeOffsetVisitor::visitLoadInst(LoadInst &LI) { 1011 if (!Options.AA) { 1012 ++ObjectVisitorLoad; 1013 return ObjectSizeOffsetVisitor::unknown(); 1014 } 1015 1016 SmallDenseMap<BasicBlock *, OffsetSpan, 8> VisitedBlocks; 1017 unsigned ScannedInstCount = 0; 1018 OffsetSpan SO = 1019 findLoadOffsetRange(LI, *LI.getParent(), BasicBlock::iterator(LI), 1020 VisitedBlocks, ScannedInstCount); 1021 if (!SO.bothKnown()) 1022 ++ObjectVisitorLoad; 1023 return SO; 1024 } 1025 1026 OffsetSpan ObjectSizeOffsetVisitor::combineOffsetRange(OffsetSpan LHS, 1027 OffsetSpan RHS) { 1028 if (!LHS.bothKnown() || !RHS.bothKnown()) 1029 return ObjectSizeOffsetVisitor::unknown(); 1030 1031 switch (Options.EvalMode) { 1032 case ObjectSizeOpts::Mode::Min: 1033 return {LHS.Before.slt(RHS.Before) ? LHS.Before : RHS.Before, 1034 LHS.After.slt(RHS.After) ? LHS.After : RHS.After}; 1035 case ObjectSizeOpts::Mode::Max: { 1036 return {LHS.Before.sgt(RHS.Before) ? LHS.Before : RHS.Before, 1037 LHS.After.sgt(RHS.After) ? LHS.After : RHS.After}; 1038 } 1039 case ObjectSizeOpts::Mode::ExactSizeFromOffset: 1040 return {LHS.Before.eq(RHS.Before) ? LHS.Before : APInt(), 1041 LHS.After.eq(RHS.After) ? LHS.After : APInt()}; 1042 case ObjectSizeOpts::Mode::ExactUnderlyingSizeAndOffset: 1043 return (LHS == RHS) ? LHS : ObjectSizeOffsetVisitor::unknown(); 1044 } 1045 llvm_unreachable("missing an eval mode"); 1046 } 1047 1048 OffsetSpan ObjectSizeOffsetVisitor::visitPHINode(PHINode &PN) { 1049 if (PN.getNumIncomingValues() == 0) 1050 return ObjectSizeOffsetVisitor::unknown(); 1051 auto IncomingValues = PN.incoming_values(); 1052 return std::accumulate(IncomingValues.begin() + 1, IncomingValues.end(), 1053 computeImpl(*IncomingValues.begin()), 1054 [this](OffsetSpan LHS, Value *VRHS) { 1055 return combineOffsetRange(LHS, computeImpl(VRHS)); 1056 }); 1057 } 1058 1059 OffsetSpan ObjectSizeOffsetVisitor::visitSelectInst(SelectInst &I) { 1060 return combineOffsetRange(computeImpl(I.getTrueValue()), 1061 computeImpl(I.getFalseValue())); 1062 } 1063 1064 OffsetSpan ObjectSizeOffsetVisitor::visitUndefValue(UndefValue &) { 1065 return OffsetSpan(Zero, Zero); 1066 } 1067 1068 OffsetSpan ObjectSizeOffsetVisitor::visitInstruction(Instruction &I) { 1069 LLVM_DEBUG(dbgs() << "ObjectSizeOffsetVisitor unknown instruction:" << I 1070 << '\n'); 1071 return ObjectSizeOffsetVisitor::unknown(); 1072 } 1073 1074 // Just set these right here... 1075 SizeOffsetValue::SizeOffsetValue(const SizeOffsetWeakTrackingVH &SOT) 1076 : SizeOffsetType(SOT.Size, SOT.Offset) {} 1077 1078 ObjectSizeOffsetEvaluator::ObjectSizeOffsetEvaluator( 1079 const DataLayout &DL, const TargetLibraryInfo *TLI, LLVMContext &Context, 1080 ObjectSizeOpts EvalOpts) 1081 : DL(DL), TLI(TLI), Context(Context), 1082 Builder(Context, TargetFolder(DL), 1083 IRBuilderCallbackInserter( 1084 [&](Instruction *I) { InsertedInstructions.insert(I); })), 1085 EvalOpts(EvalOpts) { 1086 // IntTy and Zero must be set for each compute() since the address space may 1087 // be different for later objects. 1088 } 1089 1090 SizeOffsetValue ObjectSizeOffsetEvaluator::compute(Value *V) { 1091 // XXX - Are vectors of pointers possible here? 1092 IntTy = cast<IntegerType>(DL.getIndexType(V->getType())); 1093 Zero = ConstantInt::get(IntTy, 0); 1094 1095 SizeOffsetValue Result = compute_(V); 1096 1097 if (!Result.bothKnown()) { 1098 // Erase everything that was computed in this iteration from the cache, so 1099 // that no dangling references are left behind. We could be a bit smarter if 1100 // we kept a dependency graph. It's probably not worth the complexity. 1101 for (const Value *SeenVal : SeenVals) { 1102 CacheMapTy::iterator CacheIt = CacheMap.find(SeenVal); 1103 // non-computable results can be safely cached 1104 if (CacheIt != CacheMap.end() && CacheIt->second.anyKnown()) 1105 CacheMap.erase(CacheIt); 1106 } 1107 1108 // Erase any instructions we inserted as part of the traversal. 1109 for (Instruction *I : InsertedInstructions) { 1110 I->replaceAllUsesWith(PoisonValue::get(I->getType())); 1111 I->eraseFromParent(); 1112 } 1113 } 1114 1115 SeenVals.clear(); 1116 InsertedInstructions.clear(); 1117 return Result; 1118 } 1119 1120 SizeOffsetValue ObjectSizeOffsetEvaluator::compute_(Value *V) { 1121 1122 // Only trust ObjectSizeOffsetVisitor in exact mode, otherwise fallback on 1123 // dynamic computation. 1124 ObjectSizeOpts VisitorEvalOpts(EvalOpts); 1125 VisitorEvalOpts.EvalMode = ObjectSizeOpts::Mode::ExactUnderlyingSizeAndOffset; 1126 ObjectSizeOffsetVisitor Visitor(DL, TLI, Context, VisitorEvalOpts); 1127 1128 SizeOffsetAPInt Const = Visitor.compute(V); 1129 if (Const.bothKnown()) 1130 return SizeOffsetValue(ConstantInt::get(Context, Const.Size), 1131 ConstantInt::get(Context, Const.Offset)); 1132 1133 V = V->stripPointerCasts(); 1134 1135 // Check cache. 1136 CacheMapTy::iterator CacheIt = CacheMap.find(V); 1137 if (CacheIt != CacheMap.end()) 1138 return CacheIt->second; 1139 1140 // Always generate code immediately before the instruction being 1141 // processed, so that the generated code dominates the same BBs. 1142 BuilderTy::InsertPointGuard Guard(Builder); 1143 if (Instruction *I = dyn_cast<Instruction>(V)) 1144 Builder.SetInsertPoint(I); 1145 1146 // Now compute the size and offset. 1147 SizeOffsetValue Result; 1148 1149 // Record the pointers that were handled in this run, so that they can be 1150 // cleaned later if something fails. We also use this set to break cycles that 1151 // can occur in dead code. 1152 if (!SeenVals.insert(V).second) { 1153 Result = ObjectSizeOffsetEvaluator::unknown(); 1154 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 1155 Result = visitGEPOperator(*GEP); 1156 } else if (Instruction *I = dyn_cast<Instruction>(V)) { 1157 Result = visit(*I); 1158 } else if (isa<Argument>(V) || 1159 (isa<ConstantExpr>(V) && 1160 cast<ConstantExpr>(V)->getOpcode() == Instruction::IntToPtr) || 1161 isa<GlobalAlias>(V) || 1162 isa<GlobalVariable>(V)) { 1163 // Ignore values where we cannot do more than ObjectSizeVisitor. 1164 Result = ObjectSizeOffsetEvaluator::unknown(); 1165 } else { 1166 LLVM_DEBUG( 1167 dbgs() << "ObjectSizeOffsetEvaluator::compute() unhandled value: " << *V 1168 << '\n'); 1169 Result = ObjectSizeOffsetEvaluator::unknown(); 1170 } 1171 1172 // Don't reuse CacheIt since it may be invalid at this point. 1173 CacheMap[V] = SizeOffsetWeakTrackingVH(Result); 1174 return Result; 1175 } 1176 1177 SizeOffsetValue ObjectSizeOffsetEvaluator::visitAllocaInst(AllocaInst &I) { 1178 if (!I.getAllocatedType()->isSized()) 1179 return ObjectSizeOffsetEvaluator::unknown(); 1180 1181 // must be a VLA or vscale. 1182 assert(I.isArrayAllocation() || I.getAllocatedType()->isScalableTy()); 1183 1184 // If needed, adjust the alloca's operand size to match the pointer indexing 1185 // size. Subsequent math operations expect the types to match. 1186 Value *ArraySize = Builder.CreateZExtOrTrunc( 1187 I.getArraySize(), 1188 DL.getIndexType(I.getContext(), DL.getAllocaAddrSpace())); 1189 assert(ArraySize->getType() == Zero->getType() && 1190 "Expected zero constant to have pointer index type"); 1191 1192 Value *Size = Builder.CreateTypeSize( 1193 ArraySize->getType(), DL.getTypeAllocSize(I.getAllocatedType())); 1194 Size = Builder.CreateMul(Size, ArraySize); 1195 return SizeOffsetValue(Size, Zero); 1196 } 1197 1198 SizeOffsetValue ObjectSizeOffsetEvaluator::visitCallBase(CallBase &CB) { 1199 std::optional<AllocFnsTy> FnData = getAllocationSize(&CB, TLI); 1200 if (!FnData) 1201 return ObjectSizeOffsetEvaluator::unknown(); 1202 1203 // Handle strdup-like functions separately. 1204 if (FnData->AllocTy == StrDupLike) { 1205 // TODO: implement evaluation of strdup/strndup 1206 return ObjectSizeOffsetEvaluator::unknown(); 1207 } 1208 1209 Value *FirstArg = CB.getArgOperand(FnData->FstParam); 1210 FirstArg = Builder.CreateZExtOrTrunc(FirstArg, IntTy); 1211 if (FnData->SndParam < 0) 1212 return SizeOffsetValue(FirstArg, Zero); 1213 1214 Value *SecondArg = CB.getArgOperand(FnData->SndParam); 1215 SecondArg = Builder.CreateZExtOrTrunc(SecondArg, IntTy); 1216 Value *Size = Builder.CreateMul(FirstArg, SecondArg); 1217 return SizeOffsetValue(Size, Zero); 1218 } 1219 1220 SizeOffsetValue 1221 ObjectSizeOffsetEvaluator::visitExtractElementInst(ExtractElementInst &) { 1222 return ObjectSizeOffsetEvaluator::unknown(); 1223 } 1224 1225 SizeOffsetValue 1226 ObjectSizeOffsetEvaluator::visitExtractValueInst(ExtractValueInst &) { 1227 return ObjectSizeOffsetEvaluator::unknown(); 1228 } 1229 1230 SizeOffsetValue ObjectSizeOffsetEvaluator::visitGEPOperator(GEPOperator &GEP) { 1231 SizeOffsetValue PtrData = compute_(GEP.getPointerOperand()); 1232 if (!PtrData.bothKnown()) 1233 return ObjectSizeOffsetEvaluator::unknown(); 1234 1235 Value *Offset = emitGEPOffset(&Builder, DL, &GEP, /*NoAssumptions=*/true); 1236 Offset = Builder.CreateAdd(PtrData.Offset, Offset); 1237 return SizeOffsetValue(PtrData.Size, Offset); 1238 } 1239 1240 SizeOffsetValue ObjectSizeOffsetEvaluator::visitIntToPtrInst(IntToPtrInst &) { 1241 // clueless 1242 return ObjectSizeOffsetEvaluator::unknown(); 1243 } 1244 1245 SizeOffsetValue ObjectSizeOffsetEvaluator::visitLoadInst(LoadInst &LI) { 1246 return ObjectSizeOffsetEvaluator::unknown(); 1247 } 1248 1249 SizeOffsetValue ObjectSizeOffsetEvaluator::visitPHINode(PHINode &PHI) { 1250 // Create 2 PHIs: one for size and another for offset. 1251 PHINode *SizePHI = Builder.CreatePHI(IntTy, PHI.getNumIncomingValues()); 1252 PHINode *OffsetPHI = Builder.CreatePHI(IntTy, PHI.getNumIncomingValues()); 1253 1254 // Insert right away in the cache to handle recursive PHIs. 1255 CacheMap[&PHI] = SizeOffsetWeakTrackingVH(SizePHI, OffsetPHI); 1256 1257 // Compute offset/size for each PHI incoming pointer. 1258 for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i) { 1259 BasicBlock *IncomingBlock = PHI.getIncomingBlock(i); 1260 Builder.SetInsertPoint(IncomingBlock, IncomingBlock->getFirstInsertionPt()); 1261 SizeOffsetValue EdgeData = compute_(PHI.getIncomingValue(i)); 1262 1263 if (!EdgeData.bothKnown()) { 1264 OffsetPHI->replaceAllUsesWith(PoisonValue::get(IntTy)); 1265 OffsetPHI->eraseFromParent(); 1266 InsertedInstructions.erase(OffsetPHI); 1267 SizePHI->replaceAllUsesWith(PoisonValue::get(IntTy)); 1268 SizePHI->eraseFromParent(); 1269 InsertedInstructions.erase(SizePHI); 1270 return ObjectSizeOffsetEvaluator::unknown(); 1271 } 1272 SizePHI->addIncoming(EdgeData.Size, IncomingBlock); 1273 OffsetPHI->addIncoming(EdgeData.Offset, IncomingBlock); 1274 } 1275 1276 Value *Size = SizePHI, *Offset = OffsetPHI; 1277 if (Value *Tmp = SizePHI->hasConstantValue()) { 1278 Size = Tmp; 1279 SizePHI->replaceAllUsesWith(Size); 1280 SizePHI->eraseFromParent(); 1281 InsertedInstructions.erase(SizePHI); 1282 } 1283 if (Value *Tmp = OffsetPHI->hasConstantValue()) { 1284 Offset = Tmp; 1285 OffsetPHI->replaceAllUsesWith(Offset); 1286 OffsetPHI->eraseFromParent(); 1287 InsertedInstructions.erase(OffsetPHI); 1288 } 1289 return SizeOffsetValue(Size, Offset); 1290 } 1291 1292 SizeOffsetValue ObjectSizeOffsetEvaluator::visitSelectInst(SelectInst &I) { 1293 SizeOffsetValue TrueSide = compute_(I.getTrueValue()); 1294 SizeOffsetValue FalseSide = compute_(I.getFalseValue()); 1295 1296 if (!TrueSide.bothKnown() || !FalseSide.bothKnown()) 1297 return ObjectSizeOffsetEvaluator::unknown(); 1298 if (TrueSide == FalseSide) 1299 return TrueSide; 1300 1301 Value *Size = 1302 Builder.CreateSelect(I.getCondition(), TrueSide.Size, FalseSide.Size); 1303 Value *Offset = 1304 Builder.CreateSelect(I.getCondition(), TrueSide.Offset, FalseSide.Offset); 1305 return SizeOffsetValue(Size, Offset); 1306 } 1307 1308 SizeOffsetValue ObjectSizeOffsetEvaluator::visitInstruction(Instruction &I) { 1309 LLVM_DEBUG(dbgs() << "ObjectSizeOffsetEvaluator unknown instruction:" << I 1310 << '\n'); 1311 return ObjectSizeOffsetEvaluator::unknown(); 1312 } 1313