1 //===- LoopInfo.cpp - Natural Loop Calculator -----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the LoopInfo class that is used to identify natural loops 10 // and determine the loop depth of various nodes of the CFG. Note that the 11 // loops identified may actually be several natural loops that share the same 12 // header node... not just a single natural loop. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Analysis/LoopInfo.h" 17 #include "llvm/ADT/ScopeExit.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/Analysis/IVDescriptors.h" 20 #include "llvm/Analysis/LoopInfoImpl.h" 21 #include "llvm/Analysis/LoopIterator.h" 22 #include "llvm/Analysis/LoopNestAnalysis.h" 23 #include "llvm/Analysis/MemorySSA.h" 24 #include "llvm/Analysis/MemorySSAUpdater.h" 25 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 26 #include "llvm/Analysis/ValueTracking.h" 27 #include "llvm/Config/llvm-config.h" 28 #include "llvm/IR/CFG.h" 29 #include "llvm/IR/Constants.h" 30 #include "llvm/IR/DebugLoc.h" 31 #include "llvm/IR/Dominators.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/LLVMContext.h" 34 #include "llvm/IR/Metadata.h" 35 #include "llvm/IR/PassManager.h" 36 #include "llvm/IR/PrintPasses.h" 37 #include "llvm/InitializePasses.h" 38 #include "llvm/Support/CommandLine.h" 39 #include "llvm/Support/raw_ostream.h" 40 using namespace llvm; 41 42 // Explicitly instantiate methods in LoopInfoImpl.h for IR-level Loops. 43 template class llvm::LoopBase<BasicBlock, Loop>; 44 template class llvm::LoopInfoBase<BasicBlock, Loop>; 45 46 // Always verify loopinfo if expensive checking is enabled. 47 #ifdef EXPENSIVE_CHECKS 48 bool llvm::VerifyLoopInfo = true; 49 #else 50 bool llvm::VerifyLoopInfo = false; 51 #endif 52 static cl::opt<bool, true> 53 VerifyLoopInfoX("verify-loop-info", cl::location(VerifyLoopInfo), 54 cl::Hidden, cl::desc("Verify loop info (time consuming)")); 55 56 //===----------------------------------------------------------------------===// 57 // Loop implementation 58 // 59 60 bool Loop::isLoopInvariant(const Value *V) const { 61 if (const Instruction *I = dyn_cast<Instruction>(V)) 62 return !contains(I); 63 return true; // All non-instructions are loop invariant 64 } 65 66 bool Loop::hasLoopInvariantOperands(const Instruction *I) const { 67 return all_of(I->operands(), [this](Value *V) { return isLoopInvariant(V); }); 68 } 69 70 bool Loop::makeLoopInvariant(Value *V, bool &Changed, Instruction *InsertPt, 71 MemorySSAUpdater *MSSAU) const { 72 if (Instruction *I = dyn_cast<Instruction>(V)) 73 return makeLoopInvariant(I, Changed, InsertPt, MSSAU); 74 return true; // All non-instructions are loop-invariant. 75 } 76 77 bool Loop::makeLoopInvariant(Instruction *I, bool &Changed, 78 Instruction *InsertPt, 79 MemorySSAUpdater *MSSAU) const { 80 // Test if the value is already loop-invariant. 81 if (isLoopInvariant(I)) 82 return true; 83 if (!isSafeToSpeculativelyExecute(I)) 84 return false; 85 if (I->mayReadFromMemory()) 86 return false; 87 // EH block instructions are immobile. 88 if (I->isEHPad()) 89 return false; 90 // Determine the insertion point, unless one was given. 91 if (!InsertPt) { 92 BasicBlock *Preheader = getLoopPreheader(); 93 // Without a preheader, hoisting is not feasible. 94 if (!Preheader) 95 return false; 96 InsertPt = Preheader->getTerminator(); 97 } 98 // Don't hoist instructions with loop-variant operands. 99 for (Value *Operand : I->operands()) 100 if (!makeLoopInvariant(Operand, Changed, InsertPt, MSSAU)) 101 return false; 102 103 // Hoist. 104 I->moveBefore(InsertPt); 105 if (MSSAU) 106 if (auto *MUD = MSSAU->getMemorySSA()->getMemoryAccess(I)) 107 MSSAU->moveToPlace(MUD, InsertPt->getParent(), 108 MemorySSA::BeforeTerminator); 109 110 // There is possibility of hoisting this instruction above some arbitrary 111 // condition. Any metadata defined on it can be control dependent on this 112 // condition. Conservatively strip it here so that we don't give any wrong 113 // information to the optimizer. 114 I->dropUnknownNonDebugMetadata(); 115 116 Changed = true; 117 return true; 118 } 119 120 bool Loop::getIncomingAndBackEdge(BasicBlock *&Incoming, 121 BasicBlock *&Backedge) const { 122 BasicBlock *H = getHeader(); 123 124 Incoming = nullptr; 125 Backedge = nullptr; 126 pred_iterator PI = pred_begin(H); 127 assert(PI != pred_end(H) && "Loop must have at least one backedge!"); 128 Backedge = *PI++; 129 if (PI == pred_end(H)) 130 return false; // dead loop 131 Incoming = *PI++; 132 if (PI != pred_end(H)) 133 return false; // multiple backedges? 134 135 if (contains(Incoming)) { 136 if (contains(Backedge)) 137 return false; 138 std::swap(Incoming, Backedge); 139 } else if (!contains(Backedge)) 140 return false; 141 142 assert(Incoming && Backedge && "expected non-null incoming and backedges"); 143 return true; 144 } 145 146 PHINode *Loop::getCanonicalInductionVariable() const { 147 BasicBlock *H = getHeader(); 148 149 BasicBlock *Incoming = nullptr, *Backedge = nullptr; 150 if (!getIncomingAndBackEdge(Incoming, Backedge)) 151 return nullptr; 152 153 // Loop over all of the PHI nodes, looking for a canonical indvar. 154 for (BasicBlock::iterator I = H->begin(); isa<PHINode>(I); ++I) { 155 PHINode *PN = cast<PHINode>(I); 156 if (ConstantInt *CI = 157 dyn_cast<ConstantInt>(PN->getIncomingValueForBlock(Incoming))) 158 if (CI->isZero()) 159 if (Instruction *Inc = 160 dyn_cast<Instruction>(PN->getIncomingValueForBlock(Backedge))) 161 if (Inc->getOpcode() == Instruction::Add && Inc->getOperand(0) == PN) 162 if (ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(1))) 163 if (CI->isOne()) 164 return PN; 165 } 166 return nullptr; 167 } 168 169 /// Get the latch condition instruction. 170 ICmpInst *Loop::getLatchCmpInst() const { 171 if (BasicBlock *Latch = getLoopLatch()) 172 if (BranchInst *BI = dyn_cast_or_null<BranchInst>(Latch->getTerminator())) 173 if (BI->isConditional()) 174 return dyn_cast<ICmpInst>(BI->getCondition()); 175 176 return nullptr; 177 } 178 179 /// Return the final value of the loop induction variable if found. 180 static Value *findFinalIVValue(const Loop &L, const PHINode &IndVar, 181 const Instruction &StepInst) { 182 ICmpInst *LatchCmpInst = L.getLatchCmpInst(); 183 if (!LatchCmpInst) 184 return nullptr; 185 186 Value *Op0 = LatchCmpInst->getOperand(0); 187 Value *Op1 = LatchCmpInst->getOperand(1); 188 if (Op0 == &IndVar || Op0 == &StepInst) 189 return Op1; 190 191 if (Op1 == &IndVar || Op1 == &StepInst) 192 return Op0; 193 194 return nullptr; 195 } 196 197 Optional<Loop::LoopBounds> Loop::LoopBounds::getBounds(const Loop &L, 198 PHINode &IndVar, 199 ScalarEvolution &SE) { 200 InductionDescriptor IndDesc; 201 if (!InductionDescriptor::isInductionPHI(&IndVar, &L, &SE, IndDesc)) 202 return None; 203 204 Value *InitialIVValue = IndDesc.getStartValue(); 205 Instruction *StepInst = IndDesc.getInductionBinOp(); 206 if (!InitialIVValue || !StepInst) 207 return None; 208 209 const SCEV *Step = IndDesc.getStep(); 210 Value *StepInstOp1 = StepInst->getOperand(1); 211 Value *StepInstOp0 = StepInst->getOperand(0); 212 Value *StepValue = nullptr; 213 if (SE.getSCEV(StepInstOp1) == Step) 214 StepValue = StepInstOp1; 215 else if (SE.getSCEV(StepInstOp0) == Step) 216 StepValue = StepInstOp0; 217 218 Value *FinalIVValue = findFinalIVValue(L, IndVar, *StepInst); 219 if (!FinalIVValue) 220 return None; 221 222 return LoopBounds(L, *InitialIVValue, *StepInst, StepValue, *FinalIVValue, 223 SE); 224 } 225 226 using Direction = Loop::LoopBounds::Direction; 227 228 ICmpInst::Predicate Loop::LoopBounds::getCanonicalPredicate() const { 229 BasicBlock *Latch = L.getLoopLatch(); 230 assert(Latch && "Expecting valid latch"); 231 232 BranchInst *BI = dyn_cast_or_null<BranchInst>(Latch->getTerminator()); 233 assert(BI && BI->isConditional() && "Expecting conditional latch branch"); 234 235 ICmpInst *LatchCmpInst = dyn_cast<ICmpInst>(BI->getCondition()); 236 assert(LatchCmpInst && 237 "Expecting the latch compare instruction to be a CmpInst"); 238 239 // Need to inverse the predicate when first successor is not the loop 240 // header 241 ICmpInst::Predicate Pred = (BI->getSuccessor(0) == L.getHeader()) 242 ? LatchCmpInst->getPredicate() 243 : LatchCmpInst->getInversePredicate(); 244 245 if (LatchCmpInst->getOperand(0) == &getFinalIVValue()) 246 Pred = ICmpInst::getSwappedPredicate(Pred); 247 248 // Need to flip strictness of the predicate when the latch compare instruction 249 // is not using StepInst 250 if (LatchCmpInst->getOperand(0) == &getStepInst() || 251 LatchCmpInst->getOperand(1) == &getStepInst()) 252 return Pred; 253 254 // Cannot flip strictness of NE and EQ 255 if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ) 256 return ICmpInst::getFlippedStrictnessPredicate(Pred); 257 258 Direction D = getDirection(); 259 if (D == Direction::Increasing) 260 return ICmpInst::ICMP_SLT; 261 262 if (D == Direction::Decreasing) 263 return ICmpInst::ICMP_SGT; 264 265 // If cannot determine the direction, then unable to find the canonical 266 // predicate 267 return ICmpInst::BAD_ICMP_PREDICATE; 268 } 269 270 Direction Loop::LoopBounds::getDirection() const { 271 if (const SCEVAddRecExpr *StepAddRecExpr = 272 dyn_cast<SCEVAddRecExpr>(SE.getSCEV(&getStepInst()))) 273 if (const SCEV *StepRecur = StepAddRecExpr->getStepRecurrence(SE)) { 274 if (SE.isKnownPositive(StepRecur)) 275 return Direction::Increasing; 276 if (SE.isKnownNegative(StepRecur)) 277 return Direction::Decreasing; 278 } 279 280 return Direction::Unknown; 281 } 282 283 Optional<Loop::LoopBounds> Loop::getBounds(ScalarEvolution &SE) const { 284 if (PHINode *IndVar = getInductionVariable(SE)) 285 return LoopBounds::getBounds(*this, *IndVar, SE); 286 287 return None; 288 } 289 290 PHINode *Loop::getInductionVariable(ScalarEvolution &SE) const { 291 if (!isLoopSimplifyForm()) 292 return nullptr; 293 294 BasicBlock *Header = getHeader(); 295 assert(Header && "Expected a valid loop header"); 296 ICmpInst *CmpInst = getLatchCmpInst(); 297 if (!CmpInst) 298 return nullptr; 299 300 Value *LatchCmpOp0 = CmpInst->getOperand(0); 301 Value *LatchCmpOp1 = CmpInst->getOperand(1); 302 303 for (PHINode &IndVar : Header->phis()) { 304 InductionDescriptor IndDesc; 305 if (!InductionDescriptor::isInductionPHI(&IndVar, this, &SE, IndDesc)) 306 continue; 307 308 BasicBlock *Latch = getLoopLatch(); 309 Value *StepInst = IndVar.getIncomingValueForBlock(Latch); 310 311 // case 1: 312 // IndVar = phi[{InitialValue, preheader}, {StepInst, latch}] 313 // StepInst = IndVar + step 314 // cmp = StepInst < FinalValue 315 if (StepInst == LatchCmpOp0 || StepInst == LatchCmpOp1) 316 return &IndVar; 317 318 // case 2: 319 // IndVar = phi[{InitialValue, preheader}, {StepInst, latch}] 320 // StepInst = IndVar + step 321 // cmp = IndVar < FinalValue 322 if (&IndVar == LatchCmpOp0 || &IndVar == LatchCmpOp1) 323 return &IndVar; 324 } 325 326 return nullptr; 327 } 328 329 bool Loop::getInductionDescriptor(ScalarEvolution &SE, 330 InductionDescriptor &IndDesc) const { 331 if (PHINode *IndVar = getInductionVariable(SE)) 332 return InductionDescriptor::isInductionPHI(IndVar, this, &SE, IndDesc); 333 334 return false; 335 } 336 337 bool Loop::isAuxiliaryInductionVariable(PHINode &AuxIndVar, 338 ScalarEvolution &SE) const { 339 // Located in the loop header 340 BasicBlock *Header = getHeader(); 341 if (AuxIndVar.getParent() != Header) 342 return false; 343 344 // No uses outside of the loop 345 for (User *U : AuxIndVar.users()) 346 if (const Instruction *I = dyn_cast<Instruction>(U)) 347 if (!contains(I)) 348 return false; 349 350 InductionDescriptor IndDesc; 351 if (!InductionDescriptor::isInductionPHI(&AuxIndVar, this, &SE, IndDesc)) 352 return false; 353 354 // The step instruction opcode should be add or sub. 355 if (IndDesc.getInductionOpcode() != Instruction::Add && 356 IndDesc.getInductionOpcode() != Instruction::Sub) 357 return false; 358 359 // Incremented by a loop invariant step for each loop iteration 360 return SE.isLoopInvariant(IndDesc.getStep(), this); 361 } 362 363 BranchInst *Loop::getLoopGuardBranch() const { 364 if (!isLoopSimplifyForm()) 365 return nullptr; 366 367 BasicBlock *Preheader = getLoopPreheader(); 368 assert(Preheader && getLoopLatch() && 369 "Expecting a loop with valid preheader and latch"); 370 371 // Loop should be in rotate form. 372 if (!isRotatedForm()) 373 return nullptr; 374 375 // Disallow loops with more than one unique exit block, as we do not verify 376 // that GuardOtherSucc post dominates all exit blocks. 377 BasicBlock *ExitFromLatch = getUniqueExitBlock(); 378 if (!ExitFromLatch) 379 return nullptr; 380 381 BasicBlock *GuardBB = Preheader->getUniquePredecessor(); 382 if (!GuardBB) 383 return nullptr; 384 385 assert(GuardBB->getTerminator() && "Expecting valid guard terminator"); 386 387 BranchInst *GuardBI = dyn_cast<BranchInst>(GuardBB->getTerminator()); 388 if (!GuardBI || GuardBI->isUnconditional()) 389 return nullptr; 390 391 BasicBlock *GuardOtherSucc = (GuardBI->getSuccessor(0) == Preheader) 392 ? GuardBI->getSuccessor(1) 393 : GuardBI->getSuccessor(0); 394 395 // Check if ExitFromLatch (or any BasicBlock which is an empty unique 396 // successor of ExitFromLatch) is equal to GuardOtherSucc. If 397 // skipEmptyBlockUntil returns GuardOtherSucc, then the guard branch for the 398 // loop is GuardBI (return GuardBI), otherwise return nullptr. 399 if (&LoopNest::skipEmptyBlockUntil(ExitFromLatch, GuardOtherSucc, 400 /*CheckUniquePred=*/true) == 401 GuardOtherSucc) 402 return GuardBI; 403 else 404 return nullptr; 405 } 406 407 bool Loop::isCanonical(ScalarEvolution &SE) const { 408 InductionDescriptor IndDesc; 409 if (!getInductionDescriptor(SE, IndDesc)) 410 return false; 411 412 ConstantInt *Init = dyn_cast_or_null<ConstantInt>(IndDesc.getStartValue()); 413 if (!Init || !Init->isZero()) 414 return false; 415 416 if (IndDesc.getInductionOpcode() != Instruction::Add) 417 return false; 418 419 ConstantInt *Step = IndDesc.getConstIntStepValue(); 420 if (!Step || !Step->isOne()) 421 return false; 422 423 return true; 424 } 425 426 // Check that 'BB' doesn't have any uses outside of the 'L' 427 static bool isBlockInLCSSAForm(const Loop &L, const BasicBlock &BB, 428 const DominatorTree &DT, bool IgnoreTokens) { 429 for (const Instruction &I : BB) { 430 // Tokens can't be used in PHI nodes and live-out tokens prevent loop 431 // optimizations, so for the purposes of considered LCSSA form, we 432 // can ignore them. 433 if (IgnoreTokens && I.getType()->isTokenTy()) 434 continue; 435 436 for (const Use &U : I.uses()) { 437 const Instruction *UI = cast<Instruction>(U.getUser()); 438 const BasicBlock *UserBB = UI->getParent(); 439 440 // For practical purposes, we consider that the use in a PHI 441 // occurs in the respective predecessor block. For more info, 442 // see the `phi` doc in LangRef and the LCSSA doc. 443 if (const PHINode *P = dyn_cast<PHINode>(UI)) 444 UserBB = P->getIncomingBlock(U); 445 446 // Check the current block, as a fast-path, before checking whether 447 // the use is anywhere in the loop. Most values are used in the same 448 // block they are defined in. Also, blocks not reachable from the 449 // entry are special; uses in them don't need to go through PHIs. 450 if (UserBB != &BB && !L.contains(UserBB) && 451 DT.isReachableFromEntry(UserBB)) 452 return false; 453 } 454 } 455 return true; 456 } 457 458 bool Loop::isLCSSAForm(const DominatorTree &DT, bool IgnoreTokens) const { 459 // For each block we check that it doesn't have any uses outside of this loop. 460 return all_of(this->blocks(), [&](const BasicBlock *BB) { 461 return isBlockInLCSSAForm(*this, *BB, DT, IgnoreTokens); 462 }); 463 } 464 465 bool Loop::isRecursivelyLCSSAForm(const DominatorTree &DT, const LoopInfo &LI, 466 bool IgnoreTokens) const { 467 // For each block we check that it doesn't have any uses outside of its 468 // innermost loop. This process will transitively guarantee that the current 469 // loop and all of the nested loops are in LCSSA form. 470 return all_of(this->blocks(), [&](const BasicBlock *BB) { 471 return isBlockInLCSSAForm(*LI.getLoopFor(BB), *BB, DT, IgnoreTokens); 472 }); 473 } 474 475 bool Loop::isLoopSimplifyForm() const { 476 // Normal-form loops have a preheader, a single backedge, and all of their 477 // exits have all their predecessors inside the loop. 478 return getLoopPreheader() && getLoopLatch() && hasDedicatedExits(); 479 } 480 481 // Routines that reform the loop CFG and split edges often fail on indirectbr. 482 bool Loop::isSafeToClone() const { 483 // Return false if any loop blocks contain indirectbrs, or there are any calls 484 // to noduplicate functions. 485 // FIXME: it should be ok to clone CallBrInst's if we correctly update the 486 // operand list to reflect the newly cloned labels. 487 for (BasicBlock *BB : this->blocks()) { 488 if (isa<IndirectBrInst>(BB->getTerminator()) || 489 isa<CallBrInst>(BB->getTerminator())) 490 return false; 491 492 for (Instruction &I : *BB) 493 if (auto *CB = dyn_cast<CallBase>(&I)) 494 if (CB->cannotDuplicate()) 495 return false; 496 } 497 return true; 498 } 499 500 MDNode *Loop::getLoopID() const { 501 MDNode *LoopID = nullptr; 502 503 // Go through the latch blocks and check the terminator for the metadata. 504 SmallVector<BasicBlock *, 4> LatchesBlocks; 505 getLoopLatches(LatchesBlocks); 506 for (BasicBlock *BB : LatchesBlocks) { 507 Instruction *TI = BB->getTerminator(); 508 MDNode *MD = TI->getMetadata(LLVMContext::MD_loop); 509 510 if (!MD) 511 return nullptr; 512 513 if (!LoopID) 514 LoopID = MD; 515 else if (MD != LoopID) 516 return nullptr; 517 } 518 if (!LoopID || LoopID->getNumOperands() == 0 || 519 LoopID->getOperand(0) != LoopID) 520 return nullptr; 521 return LoopID; 522 } 523 524 void Loop::setLoopID(MDNode *LoopID) const { 525 assert((!LoopID || LoopID->getNumOperands() > 0) && 526 "Loop ID needs at least one operand"); 527 assert((!LoopID || LoopID->getOperand(0) == LoopID) && 528 "Loop ID should refer to itself"); 529 530 SmallVector<BasicBlock *, 4> LoopLatches; 531 getLoopLatches(LoopLatches); 532 for (BasicBlock *BB : LoopLatches) 533 BB->getTerminator()->setMetadata(LLVMContext::MD_loop, LoopID); 534 } 535 536 void Loop::setLoopAlreadyUnrolled() { 537 LLVMContext &Context = getHeader()->getContext(); 538 539 MDNode *DisableUnrollMD = 540 MDNode::get(Context, MDString::get(Context, "llvm.loop.unroll.disable")); 541 MDNode *LoopID = getLoopID(); 542 MDNode *NewLoopID = makePostTransformationMetadata( 543 Context, LoopID, {"llvm.loop.unroll."}, {DisableUnrollMD}); 544 setLoopID(NewLoopID); 545 } 546 547 void Loop::setLoopMustProgress() { 548 LLVMContext &Context = getHeader()->getContext(); 549 550 MDNode *MustProgress = findOptionMDForLoop(this, "llvm.loop.mustprogress"); 551 552 if (MustProgress) 553 return; 554 555 MDNode *MustProgressMD = 556 MDNode::get(Context, MDString::get(Context, "llvm.loop.mustprogress")); 557 MDNode *LoopID = getLoopID(); 558 MDNode *NewLoopID = 559 makePostTransformationMetadata(Context, LoopID, {}, {MustProgressMD}); 560 setLoopID(NewLoopID); 561 } 562 563 bool Loop::isAnnotatedParallel() const { 564 MDNode *DesiredLoopIdMetadata = getLoopID(); 565 566 if (!DesiredLoopIdMetadata) 567 return false; 568 569 MDNode *ParallelAccesses = 570 findOptionMDForLoop(this, "llvm.loop.parallel_accesses"); 571 SmallPtrSet<MDNode *, 4> 572 ParallelAccessGroups; // For scalable 'contains' check. 573 if (ParallelAccesses) { 574 for (const MDOperand &MD : drop_begin(ParallelAccesses->operands())) { 575 MDNode *AccGroup = cast<MDNode>(MD.get()); 576 assert(isValidAsAccessGroup(AccGroup) && 577 "List item must be an access group"); 578 ParallelAccessGroups.insert(AccGroup); 579 } 580 } 581 582 // The loop branch contains the parallel loop metadata. In order to ensure 583 // that any parallel-loop-unaware optimization pass hasn't added loop-carried 584 // dependencies (thus converted the loop back to a sequential loop), check 585 // that all the memory instructions in the loop belong to an access group that 586 // is parallel to this loop. 587 for (BasicBlock *BB : this->blocks()) { 588 for (Instruction &I : *BB) { 589 if (!I.mayReadOrWriteMemory()) 590 continue; 591 592 if (MDNode *AccessGroup = I.getMetadata(LLVMContext::MD_access_group)) { 593 auto ContainsAccessGroup = [&ParallelAccessGroups](MDNode *AG) -> bool { 594 if (AG->getNumOperands() == 0) { 595 assert(isValidAsAccessGroup(AG) && "Item must be an access group"); 596 return ParallelAccessGroups.count(AG); 597 } 598 599 for (const MDOperand &AccessListItem : AG->operands()) { 600 MDNode *AccGroup = cast<MDNode>(AccessListItem.get()); 601 assert(isValidAsAccessGroup(AccGroup) && 602 "List item must be an access group"); 603 if (ParallelAccessGroups.count(AccGroup)) 604 return true; 605 } 606 return false; 607 }; 608 609 if (ContainsAccessGroup(AccessGroup)) 610 continue; 611 } 612 613 // The memory instruction can refer to the loop identifier metadata 614 // directly or indirectly through another list metadata (in case of 615 // nested parallel loops). The loop identifier metadata refers to 616 // itself so we can check both cases with the same routine. 617 MDNode *LoopIdMD = 618 I.getMetadata(LLVMContext::MD_mem_parallel_loop_access); 619 620 if (!LoopIdMD) 621 return false; 622 623 if (!llvm::is_contained(LoopIdMD->operands(), DesiredLoopIdMetadata)) 624 return false; 625 } 626 } 627 return true; 628 } 629 630 DebugLoc Loop::getStartLoc() const { return getLocRange().getStart(); } 631 632 Loop::LocRange Loop::getLocRange() const { 633 // If we have a debug location in the loop ID, then use it. 634 if (MDNode *LoopID = getLoopID()) { 635 DebugLoc Start; 636 // We use the first DebugLoc in the header as the start location of the loop 637 // and if there is a second DebugLoc in the header we use it as end location 638 // of the loop. 639 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 640 if (DILocation *L = dyn_cast<DILocation>(LoopID->getOperand(i))) { 641 if (!Start) 642 Start = DebugLoc(L); 643 else 644 return LocRange(Start, DebugLoc(L)); 645 } 646 } 647 648 if (Start) 649 return LocRange(Start); 650 } 651 652 // Try the pre-header first. 653 if (BasicBlock *PHeadBB = getLoopPreheader()) 654 if (DebugLoc DL = PHeadBB->getTerminator()->getDebugLoc()) 655 return LocRange(DL); 656 657 // If we have no pre-header or there are no instructions with debug 658 // info in it, try the header. 659 if (BasicBlock *HeadBB = getHeader()) 660 return LocRange(HeadBB->getTerminator()->getDebugLoc()); 661 662 return LocRange(); 663 } 664 665 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 666 LLVM_DUMP_METHOD void Loop::dump() const { print(dbgs()); } 667 668 LLVM_DUMP_METHOD void Loop::dumpVerbose() const { 669 print(dbgs(), /*Verbose=*/true); 670 } 671 #endif 672 673 //===----------------------------------------------------------------------===// 674 // UnloopUpdater implementation 675 // 676 677 namespace { 678 /// Find the new parent loop for all blocks within the "unloop" whose last 679 /// backedges has just been removed. 680 class UnloopUpdater { 681 Loop &Unloop; 682 LoopInfo *LI; 683 684 LoopBlocksDFS DFS; 685 686 // Map unloop's immediate subloops to their nearest reachable parents. Nested 687 // loops within these subloops will not change parents. However, an immediate 688 // subloop's new parent will be the nearest loop reachable from either its own 689 // exits *or* any of its nested loop's exits. 690 DenseMap<Loop *, Loop *> SubloopParents; 691 692 // Flag the presence of an irreducible backedge whose destination is a block 693 // directly contained by the original unloop. 694 bool FoundIB = false; 695 696 public: 697 UnloopUpdater(Loop *UL, LoopInfo *LInfo) : Unloop(*UL), LI(LInfo), DFS(UL) {} 698 699 void updateBlockParents(); 700 701 void removeBlocksFromAncestors(); 702 703 void updateSubloopParents(); 704 705 protected: 706 Loop *getNearestLoop(BasicBlock *BB, Loop *BBLoop); 707 }; 708 } // end anonymous namespace 709 710 /// Update the parent loop for all blocks that are directly contained within the 711 /// original "unloop". 712 void UnloopUpdater::updateBlockParents() { 713 if (Unloop.getNumBlocks()) { 714 // Perform a post order CFG traversal of all blocks within this loop, 715 // propagating the nearest loop from successors to predecessors. 716 LoopBlocksTraversal Traversal(DFS, LI); 717 for (BasicBlock *POI : Traversal) { 718 719 Loop *L = LI->getLoopFor(POI); 720 Loop *NL = getNearestLoop(POI, L); 721 722 if (NL != L) { 723 // For reducible loops, NL is now an ancestor of Unloop. 724 assert((NL != &Unloop && (!NL || NL->contains(&Unloop))) && 725 "uninitialized successor"); 726 LI->changeLoopFor(POI, NL); 727 } else { 728 // Or the current block is part of a subloop, in which case its parent 729 // is unchanged. 730 assert((FoundIB || Unloop.contains(L)) && "uninitialized successor"); 731 } 732 } 733 } 734 // Each irreducible loop within the unloop induces a round of iteration using 735 // the DFS result cached by Traversal. 736 bool Changed = FoundIB; 737 for (unsigned NIters = 0; Changed; ++NIters) { 738 assert(NIters < Unloop.getNumBlocks() && "runaway iterative algorithm"); 739 (void) NIters; 740 741 // Iterate over the postorder list of blocks, propagating the nearest loop 742 // from successors to predecessors as before. 743 Changed = false; 744 for (LoopBlocksDFS::POIterator POI = DFS.beginPostorder(), 745 POE = DFS.endPostorder(); 746 POI != POE; ++POI) { 747 748 Loop *L = LI->getLoopFor(*POI); 749 Loop *NL = getNearestLoop(*POI, L); 750 if (NL != L) { 751 assert(NL != &Unloop && (!NL || NL->contains(&Unloop)) && 752 "uninitialized successor"); 753 LI->changeLoopFor(*POI, NL); 754 Changed = true; 755 } 756 } 757 } 758 } 759 760 /// Remove unloop's blocks from all ancestors below their new parents. 761 void UnloopUpdater::removeBlocksFromAncestors() { 762 // Remove all unloop's blocks (including those in nested subloops) from 763 // ancestors below the new parent loop. 764 for (BasicBlock *BB : Unloop.blocks()) { 765 Loop *OuterParent = LI->getLoopFor(BB); 766 if (Unloop.contains(OuterParent)) { 767 while (OuterParent->getParentLoop() != &Unloop) 768 OuterParent = OuterParent->getParentLoop(); 769 OuterParent = SubloopParents[OuterParent]; 770 } 771 // Remove blocks from former Ancestors except Unloop itself which will be 772 // deleted. 773 for (Loop *OldParent = Unloop.getParentLoop(); OldParent != OuterParent; 774 OldParent = OldParent->getParentLoop()) { 775 assert(OldParent && "new loop is not an ancestor of the original"); 776 OldParent->removeBlockFromLoop(BB); 777 } 778 } 779 } 780 781 /// Update the parent loop for all subloops directly nested within unloop. 782 void UnloopUpdater::updateSubloopParents() { 783 while (!Unloop.isInnermost()) { 784 Loop *Subloop = *std::prev(Unloop.end()); 785 Unloop.removeChildLoop(std::prev(Unloop.end())); 786 787 assert(SubloopParents.count(Subloop) && "DFS failed to visit subloop"); 788 if (Loop *Parent = SubloopParents[Subloop]) 789 Parent->addChildLoop(Subloop); 790 else 791 LI->addTopLevelLoop(Subloop); 792 } 793 } 794 795 /// Return the nearest parent loop among this block's successors. If a successor 796 /// is a subloop header, consider its parent to be the nearest parent of the 797 /// subloop's exits. 798 /// 799 /// For subloop blocks, simply update SubloopParents and return NULL. 800 Loop *UnloopUpdater::getNearestLoop(BasicBlock *BB, Loop *BBLoop) { 801 802 // Initially for blocks directly contained by Unloop, NearLoop == Unloop and 803 // is considered uninitialized. 804 Loop *NearLoop = BBLoop; 805 806 Loop *Subloop = nullptr; 807 if (NearLoop != &Unloop && Unloop.contains(NearLoop)) { 808 Subloop = NearLoop; 809 // Find the subloop ancestor that is directly contained within Unloop. 810 while (Subloop->getParentLoop() != &Unloop) { 811 Subloop = Subloop->getParentLoop(); 812 assert(Subloop && "subloop is not an ancestor of the original loop"); 813 } 814 // Get the current nearest parent of the Subloop exits, initially Unloop. 815 NearLoop = SubloopParents.insert({Subloop, &Unloop}).first->second; 816 } 817 818 succ_iterator I = succ_begin(BB), E = succ_end(BB); 819 if (I == E) { 820 assert(!Subloop && "subloop blocks must have a successor"); 821 NearLoop = nullptr; // unloop blocks may now exit the function. 822 } 823 for (; I != E; ++I) { 824 if (*I == BB) 825 continue; // self loops are uninteresting 826 827 Loop *L = LI->getLoopFor(*I); 828 if (L == &Unloop) { 829 // This successor has not been processed. This path must lead to an 830 // irreducible backedge. 831 assert((FoundIB || !DFS.hasPostorder(*I)) && "should have seen IB"); 832 FoundIB = true; 833 } 834 if (L != &Unloop && Unloop.contains(L)) { 835 // Successor is in a subloop. 836 if (Subloop) 837 continue; // Branching within subloops. Ignore it. 838 839 // BB branches from the original into a subloop header. 840 assert(L->getParentLoop() == &Unloop && "cannot skip into nested loops"); 841 842 // Get the current nearest parent of the Subloop's exits. 843 L = SubloopParents[L]; 844 // L could be Unloop if the only exit was an irreducible backedge. 845 } 846 if (L == &Unloop) { 847 continue; 848 } 849 // Handle critical edges from Unloop into a sibling loop. 850 if (L && !L->contains(&Unloop)) { 851 L = L->getParentLoop(); 852 } 853 // Remember the nearest parent loop among successors or subloop exits. 854 if (NearLoop == &Unloop || !NearLoop || NearLoop->contains(L)) 855 NearLoop = L; 856 } 857 if (Subloop) { 858 SubloopParents[Subloop] = NearLoop; 859 return BBLoop; 860 } 861 return NearLoop; 862 } 863 864 LoopInfo::LoopInfo(const DomTreeBase<BasicBlock> &DomTree) { analyze(DomTree); } 865 866 bool LoopInfo::invalidate(Function &F, const PreservedAnalyses &PA, 867 FunctionAnalysisManager::Invalidator &) { 868 // Check whether the analysis, all analyses on functions, or the function's 869 // CFG have been preserved. 870 auto PAC = PA.getChecker<LoopAnalysis>(); 871 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>() || 872 PAC.preservedSet<CFGAnalyses>()); 873 } 874 875 void LoopInfo::erase(Loop *Unloop) { 876 assert(!Unloop->isInvalid() && "Loop has already been erased!"); 877 878 auto InvalidateOnExit = make_scope_exit([&]() { destroy(Unloop); }); 879 880 // First handle the special case of no parent loop to simplify the algorithm. 881 if (Unloop->isOutermost()) { 882 // Since BBLoop had no parent, Unloop blocks are no longer in a loop. 883 for (BasicBlock *BB : Unloop->blocks()) { 884 // Don't reparent blocks in subloops. 885 if (getLoopFor(BB) != Unloop) 886 continue; 887 888 // Blocks no longer have a parent but are still referenced by Unloop until 889 // the Unloop object is deleted. 890 changeLoopFor(BB, nullptr); 891 } 892 893 // Remove the loop from the top-level LoopInfo object. 894 for (iterator I = begin();; ++I) { 895 assert(I != end() && "Couldn't find loop"); 896 if (*I == Unloop) { 897 removeLoop(I); 898 break; 899 } 900 } 901 902 // Move all of the subloops to the top-level. 903 while (!Unloop->isInnermost()) 904 addTopLevelLoop(Unloop->removeChildLoop(std::prev(Unloop->end()))); 905 906 return; 907 } 908 909 // Update the parent loop for all blocks within the loop. Blocks within 910 // subloops will not change parents. 911 UnloopUpdater Updater(Unloop, this); 912 Updater.updateBlockParents(); 913 914 // Remove blocks from former ancestor loops. 915 Updater.removeBlocksFromAncestors(); 916 917 // Add direct subloops as children in their new parent loop. 918 Updater.updateSubloopParents(); 919 920 // Remove unloop from its parent loop. 921 Loop *ParentLoop = Unloop->getParentLoop(); 922 for (Loop::iterator I = ParentLoop->begin();; ++I) { 923 assert(I != ParentLoop->end() && "Couldn't find loop"); 924 if (*I == Unloop) { 925 ParentLoop->removeChildLoop(I); 926 break; 927 } 928 } 929 } 930 931 bool 932 LoopInfo::wouldBeOutOfLoopUseRequiringLCSSA(const Value *V, 933 const BasicBlock *ExitBB) const { 934 if (V->getType()->isTokenTy()) 935 // We can't form PHIs of token type, so the definition of LCSSA excludes 936 // values of that type. 937 return false; 938 939 const Instruction *I = dyn_cast<Instruction>(V); 940 if (!I) 941 return false; 942 const Loop *L = getLoopFor(I->getParent()); 943 if (!L) 944 return false; 945 if (L->contains(ExitBB)) 946 // Could be an exit bb of a subloop and contained in defining loop 947 return false; 948 949 // We found a (new) out-of-loop use location, for a value defined in-loop. 950 // (Note that because of LCSSA, we don't have to account for values defined 951 // in sibling loops. Such values will have LCSSA phis of their own in the 952 // common parent loop.) 953 return true; 954 } 955 956 AnalysisKey LoopAnalysis::Key; 957 958 LoopInfo LoopAnalysis::run(Function &F, FunctionAnalysisManager &AM) { 959 // FIXME: Currently we create a LoopInfo from scratch for every function. 960 // This may prove to be too wasteful due to deallocating and re-allocating 961 // memory each time for the underlying map and vector datastructures. At some 962 // point it may prove worthwhile to use a freelist and recycle LoopInfo 963 // objects. I don't want to add that kind of complexity until the scope of 964 // the problem is better understood. 965 LoopInfo LI; 966 LI.analyze(AM.getResult<DominatorTreeAnalysis>(F)); 967 return LI; 968 } 969 970 PreservedAnalyses LoopPrinterPass::run(Function &F, 971 FunctionAnalysisManager &AM) { 972 AM.getResult<LoopAnalysis>(F).print(OS); 973 return PreservedAnalyses::all(); 974 } 975 976 void llvm::printLoop(Loop &L, raw_ostream &OS, const std::string &Banner) { 977 978 if (forcePrintModuleIR()) { 979 // handling -print-module-scope 980 OS << Banner << " (loop: "; 981 L.getHeader()->printAsOperand(OS, false); 982 OS << ")\n"; 983 984 // printing whole module 985 OS << *L.getHeader()->getModule(); 986 return; 987 } 988 989 OS << Banner; 990 991 auto *PreHeader = L.getLoopPreheader(); 992 if (PreHeader) { 993 OS << "\n; Preheader:"; 994 PreHeader->print(OS); 995 OS << "\n; Loop:"; 996 } 997 998 for (auto *Block : L.blocks()) 999 if (Block) 1000 Block->print(OS); 1001 else 1002 OS << "Printing <null> block"; 1003 1004 SmallVector<BasicBlock *, 8> ExitBlocks; 1005 L.getExitBlocks(ExitBlocks); 1006 if (!ExitBlocks.empty()) { 1007 OS << "\n; Exit blocks"; 1008 for (auto *Block : ExitBlocks) 1009 if (Block) 1010 Block->print(OS); 1011 else 1012 OS << "Printing <null> block"; 1013 } 1014 } 1015 1016 MDNode *llvm::findOptionMDForLoopID(MDNode *LoopID, StringRef Name) { 1017 // No loop metadata node, no loop properties. 1018 if (!LoopID) 1019 return nullptr; 1020 1021 // First operand should refer to the metadata node itself, for legacy reasons. 1022 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 1023 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 1024 1025 // Iterate over the metdata node operands and look for MDString metadata. 1026 for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) { 1027 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 1028 if (!MD || MD->getNumOperands() < 1) 1029 continue; 1030 MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 1031 if (!S) 1032 continue; 1033 // Return the operand node if MDString holds expected metadata. 1034 if (Name.equals(S->getString())) 1035 return MD; 1036 } 1037 1038 // Loop property not found. 1039 return nullptr; 1040 } 1041 1042 MDNode *llvm::findOptionMDForLoop(const Loop *TheLoop, StringRef Name) { 1043 return findOptionMDForLoopID(TheLoop->getLoopID(), Name); 1044 } 1045 1046 /// Find string metadata for loop 1047 /// 1048 /// If it has a value (e.g. {"llvm.distribute", 1} return the value as an 1049 /// operand or null otherwise. If the string metadata is not found return 1050 /// Optional's not-a-value. 1051 Optional<const MDOperand *> llvm::findStringMetadataForLoop(const Loop *TheLoop, 1052 StringRef Name) { 1053 MDNode *MD = findOptionMDForLoop(TheLoop, Name); 1054 if (!MD) 1055 return None; 1056 switch (MD->getNumOperands()) { 1057 case 1: 1058 return nullptr; 1059 case 2: 1060 return &MD->getOperand(1); 1061 default: 1062 llvm_unreachable("loop metadata has 0 or 1 operand"); 1063 } 1064 } 1065 1066 Optional<bool> llvm::getOptionalBoolLoopAttribute(const Loop *TheLoop, 1067 StringRef Name) { 1068 MDNode *MD = findOptionMDForLoop(TheLoop, Name); 1069 if (!MD) 1070 return None; 1071 switch (MD->getNumOperands()) { 1072 case 1: 1073 // When the value is absent it is interpreted as 'attribute set'. 1074 return true; 1075 case 2: 1076 if (ConstantInt *IntMD = 1077 mdconst::extract_or_null<ConstantInt>(MD->getOperand(1).get())) 1078 return IntMD->getZExtValue(); 1079 return true; 1080 } 1081 llvm_unreachable("unexpected number of options"); 1082 } 1083 1084 bool llvm::getBooleanLoopAttribute(const Loop *TheLoop, StringRef Name) { 1085 return getOptionalBoolLoopAttribute(TheLoop, Name).value_or(false); 1086 } 1087 1088 llvm::Optional<int> llvm::getOptionalIntLoopAttribute(const Loop *TheLoop, 1089 StringRef Name) { 1090 const MDOperand *AttrMD = 1091 findStringMetadataForLoop(TheLoop, Name).value_or(nullptr); 1092 if (!AttrMD) 1093 return None; 1094 1095 ConstantInt *IntMD = mdconst::extract_or_null<ConstantInt>(AttrMD->get()); 1096 if (!IntMD) 1097 return None; 1098 1099 return IntMD->getSExtValue(); 1100 } 1101 1102 int llvm::getIntLoopAttribute(const Loop *TheLoop, StringRef Name, 1103 int Default) { 1104 return getOptionalIntLoopAttribute(TheLoop, Name).value_or(Default); 1105 } 1106 1107 bool llvm::isFinite(const Loop *L) { 1108 return L->getHeader()->getParent()->willReturn(); 1109 } 1110 1111 static const char *LLVMLoopMustProgress = "llvm.loop.mustprogress"; 1112 1113 bool llvm::hasMustProgress(const Loop *L) { 1114 return getBooleanLoopAttribute(L, LLVMLoopMustProgress); 1115 } 1116 1117 bool llvm::isMustProgress(const Loop *L) { 1118 return L->getHeader()->getParent()->mustProgress() || hasMustProgress(L); 1119 } 1120 1121 bool llvm::isValidAsAccessGroup(MDNode *Node) { 1122 return Node->getNumOperands() == 0 && Node->isDistinct(); 1123 } 1124 1125 MDNode *llvm::makePostTransformationMetadata(LLVMContext &Context, 1126 MDNode *OrigLoopID, 1127 ArrayRef<StringRef> RemovePrefixes, 1128 ArrayRef<MDNode *> AddAttrs) { 1129 // First remove any existing loop metadata related to this transformation. 1130 SmallVector<Metadata *, 4> MDs; 1131 1132 // Reserve first location for self reference to the LoopID metadata node. 1133 MDs.push_back(nullptr); 1134 1135 // Remove metadata for the transformation that has been applied or that became 1136 // outdated. 1137 if (OrigLoopID) { 1138 for (unsigned i = 1, ie = OrigLoopID->getNumOperands(); i < ie; ++i) { 1139 bool IsVectorMetadata = false; 1140 Metadata *Op = OrigLoopID->getOperand(i); 1141 if (MDNode *MD = dyn_cast<MDNode>(Op)) { 1142 const MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 1143 if (S) 1144 IsVectorMetadata = 1145 llvm::any_of(RemovePrefixes, [S](StringRef Prefix) -> bool { 1146 return S->getString().startswith(Prefix); 1147 }); 1148 } 1149 if (!IsVectorMetadata) 1150 MDs.push_back(Op); 1151 } 1152 } 1153 1154 // Add metadata to avoid reapplying a transformation, such as 1155 // llvm.loop.unroll.disable and llvm.loop.isvectorized. 1156 MDs.append(AddAttrs.begin(), AddAttrs.end()); 1157 1158 MDNode *NewLoopID = MDNode::getDistinct(Context, MDs); 1159 // Replace the temporary node with a self-reference. 1160 NewLoopID->replaceOperandWith(0, NewLoopID); 1161 return NewLoopID; 1162 } 1163 1164 //===----------------------------------------------------------------------===// 1165 // LoopInfo implementation 1166 // 1167 1168 LoopInfoWrapperPass::LoopInfoWrapperPass() : FunctionPass(ID) { 1169 initializeLoopInfoWrapperPassPass(*PassRegistry::getPassRegistry()); 1170 } 1171 1172 char LoopInfoWrapperPass::ID = 0; 1173 INITIALIZE_PASS_BEGIN(LoopInfoWrapperPass, "loops", "Natural Loop Information", 1174 true, true) 1175 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1176 INITIALIZE_PASS_END(LoopInfoWrapperPass, "loops", "Natural Loop Information", 1177 true, true) 1178 1179 bool LoopInfoWrapperPass::runOnFunction(Function &) { 1180 releaseMemory(); 1181 LI.analyze(getAnalysis<DominatorTreeWrapperPass>().getDomTree()); 1182 return false; 1183 } 1184 1185 void LoopInfoWrapperPass::verifyAnalysis() const { 1186 // LoopInfoWrapperPass is a FunctionPass, but verifying every loop in the 1187 // function each time verifyAnalysis is called is very expensive. The 1188 // -verify-loop-info option can enable this. In order to perform some 1189 // checking by default, LoopPass has been taught to call verifyLoop manually 1190 // during loop pass sequences. 1191 if (VerifyLoopInfo) { 1192 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1193 LI.verify(DT); 1194 } 1195 } 1196 1197 void LoopInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 1198 AU.setPreservesAll(); 1199 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 1200 } 1201 1202 void LoopInfoWrapperPass::print(raw_ostream &OS, const Module *) const { 1203 LI.print(OS); 1204 } 1205 1206 PreservedAnalyses LoopVerifierPass::run(Function &F, 1207 FunctionAnalysisManager &AM) { 1208 LoopInfo &LI = AM.getResult<LoopAnalysis>(F); 1209 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 1210 LI.verify(DT); 1211 return PreservedAnalyses::all(); 1212 } 1213 1214 //===----------------------------------------------------------------------===// 1215 // LoopBlocksDFS implementation 1216 // 1217 1218 /// Traverse the loop blocks and store the DFS result. 1219 /// Useful for clients that just want the final DFS result and don't need to 1220 /// visit blocks during the initial traversal. 1221 void LoopBlocksDFS::perform(LoopInfo *LI) { 1222 LoopBlocksTraversal Traversal(*this, LI); 1223 for (LoopBlocksTraversal::POTIterator POI = Traversal.begin(), 1224 POE = Traversal.end(); 1225 POI != POE; ++POI) 1226 ; 1227 } 1228