1 //===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // The implementation for the loop memory dependence that was originally 10 // developed for the loop vectorizer. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/LoopAccessAnalysis.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/EquivalenceClasses.h" 18 #include "llvm/ADT/PointerIntPair.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/Analysis/AliasAnalysis.h" 25 #include "llvm/Analysis/AliasSetTracker.h" 26 #include "llvm/Analysis/LoopAnalysisManager.h" 27 #include "llvm/Analysis/LoopInfo.h" 28 #include "llvm/Analysis/LoopIterator.h" 29 #include "llvm/Analysis/MemoryLocation.h" 30 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 31 #include "llvm/Analysis/ScalarEvolution.h" 32 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 33 #include "llvm/Analysis/TargetLibraryInfo.h" 34 #include "llvm/Analysis/TargetTransformInfo.h" 35 #include "llvm/Analysis/ValueTracking.h" 36 #include "llvm/Analysis/VectorUtils.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/Constants.h" 39 #include "llvm/IR/DataLayout.h" 40 #include "llvm/IR/DebugLoc.h" 41 #include "llvm/IR/DerivedTypes.h" 42 #include "llvm/IR/DiagnosticInfo.h" 43 #include "llvm/IR/Dominators.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GetElementPtrTypeIterator.h" 46 #include "llvm/IR/InstrTypes.h" 47 #include "llvm/IR/Instruction.h" 48 #include "llvm/IR/Instructions.h" 49 #include "llvm/IR/Operator.h" 50 #include "llvm/IR/PassManager.h" 51 #include "llvm/IR/PatternMatch.h" 52 #include "llvm/IR/Type.h" 53 #include "llvm/IR/Value.h" 54 #include "llvm/IR/ValueHandle.h" 55 #include "llvm/Support/Casting.h" 56 #include "llvm/Support/CommandLine.h" 57 #include "llvm/Support/Debug.h" 58 #include "llvm/Support/ErrorHandling.h" 59 #include "llvm/Support/raw_ostream.h" 60 #include <algorithm> 61 #include <cassert> 62 #include <cstdint> 63 #include <iterator> 64 #include <utility> 65 #include <variant> 66 #include <vector> 67 68 using namespace llvm; 69 using namespace llvm::PatternMatch; 70 71 #define DEBUG_TYPE "loop-accesses" 72 73 static cl::opt<unsigned, true> 74 VectorizationFactor("force-vector-width", cl::Hidden, 75 cl::desc("Sets the SIMD width. Zero is autoselect."), 76 cl::location(VectorizerParams::VectorizationFactor)); 77 unsigned VectorizerParams::VectorizationFactor; 78 79 static cl::opt<unsigned, true> 80 VectorizationInterleave("force-vector-interleave", cl::Hidden, 81 cl::desc("Sets the vectorization interleave count. " 82 "Zero is autoselect."), 83 cl::location( 84 VectorizerParams::VectorizationInterleave)); 85 unsigned VectorizerParams::VectorizationInterleave; 86 87 static cl::opt<unsigned, true> RuntimeMemoryCheckThreshold( 88 "runtime-memory-check-threshold", cl::Hidden, 89 cl::desc("When performing memory disambiguation checks at runtime do not " 90 "generate more than this number of comparisons (default = 8)."), 91 cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8)); 92 unsigned VectorizerParams::RuntimeMemoryCheckThreshold; 93 94 /// The maximum iterations used to merge memory checks 95 static cl::opt<unsigned> MemoryCheckMergeThreshold( 96 "memory-check-merge-threshold", cl::Hidden, 97 cl::desc("Maximum number of comparisons done when trying to merge " 98 "runtime memory checks. (default = 100)"), 99 cl::init(100)); 100 101 /// Maximum SIMD width. 102 const unsigned VectorizerParams::MaxVectorWidth = 64; 103 104 /// We collect dependences up to this threshold. 105 static cl::opt<unsigned> 106 MaxDependences("max-dependences", cl::Hidden, 107 cl::desc("Maximum number of dependences collected by " 108 "loop-access analysis (default = 100)"), 109 cl::init(100)); 110 111 /// This enables versioning on the strides of symbolically striding memory 112 /// accesses in code like the following. 113 /// for (i = 0; i < N; ++i) 114 /// A[i * Stride1] += B[i * Stride2] ... 115 /// 116 /// Will be roughly translated to 117 /// if (Stride1 == 1 && Stride2 == 1) { 118 /// for (i = 0; i < N; i+=4) 119 /// A[i:i+3] += ... 120 /// } else 121 /// ... 122 static cl::opt<bool> EnableMemAccessVersioning( 123 "enable-mem-access-versioning", cl::init(true), cl::Hidden, 124 cl::desc("Enable symbolic stride memory access versioning")); 125 126 /// Enable store-to-load forwarding conflict detection. This option can 127 /// be disabled for correctness testing. 128 static cl::opt<bool> EnableForwardingConflictDetection( 129 "store-to-load-forwarding-conflict-detection", cl::Hidden, 130 cl::desc("Enable conflict detection in loop-access analysis"), 131 cl::init(true)); 132 133 static cl::opt<unsigned> MaxForkedSCEVDepth( 134 "max-forked-scev-depth", cl::Hidden, 135 cl::desc("Maximum recursion depth when finding forked SCEVs (default = 5)"), 136 cl::init(5)); 137 138 static cl::opt<bool> SpeculateUnitStride( 139 "laa-speculate-unit-stride", cl::Hidden, 140 cl::desc("Speculate that non-constant strides are unit in LAA"), 141 cl::init(true)); 142 143 static cl::opt<bool, true> HoistRuntimeChecks( 144 "hoist-runtime-checks", cl::Hidden, 145 cl::desc( 146 "Hoist inner loop runtime memory checks to outer loop if possible"), 147 cl::location(VectorizerParams::HoistRuntimeChecks), cl::init(true)); 148 bool VectorizerParams::HoistRuntimeChecks; 149 150 bool VectorizerParams::isInterleaveForced() { 151 return ::VectorizationInterleave.getNumOccurrences() > 0; 152 } 153 154 const SCEV *llvm::replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE, 155 const DenseMap<Value *, const SCEV *> &PtrToStride, 156 Value *Ptr) { 157 const SCEV *OrigSCEV = PSE.getSCEV(Ptr); 158 159 // If there is an entry in the map return the SCEV of the pointer with the 160 // symbolic stride replaced by one. 161 DenseMap<Value *, const SCEV *>::const_iterator SI = PtrToStride.find(Ptr); 162 if (SI == PtrToStride.end()) 163 // For a non-symbolic stride, just return the original expression. 164 return OrigSCEV; 165 166 const SCEV *StrideSCEV = SI->second; 167 // Note: This assert is both overly strong and overly weak. The actual 168 // invariant here is that StrideSCEV should be loop invariant. The only 169 // such invariant strides we happen to speculate right now are unknowns 170 // and thus this is a reasonable proxy of the actual invariant. 171 assert(isa<SCEVUnknown>(StrideSCEV) && "shouldn't be in map"); 172 173 ScalarEvolution *SE = PSE.getSE(); 174 const SCEV *CT = SE->getOne(StrideSCEV->getType()); 175 PSE.addPredicate(*SE->getEqualPredicate(StrideSCEV, CT)); 176 const SCEV *Expr = PSE.getSCEV(Ptr); 177 178 LLVM_DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV 179 << " by: " << *Expr << "\n"); 180 return Expr; 181 } 182 183 RuntimeCheckingPtrGroup::RuntimeCheckingPtrGroup( 184 unsigned Index, const RuntimePointerChecking &RtCheck) 185 : High(RtCheck.Pointers[Index].End), Low(RtCheck.Pointers[Index].Start), 186 AddressSpace(RtCheck.Pointers[Index] 187 .PointerValue->getType() 188 ->getPointerAddressSpace()), 189 NeedsFreeze(RtCheck.Pointers[Index].NeedsFreeze) { 190 Members.push_back(Index); 191 } 192 193 /// Calculate Start and End points of memory access. 194 /// Let's assume A is the first access and B is a memory access on N-th loop 195 /// iteration. Then B is calculated as: 196 /// B = A + Step*N . 197 /// Step value may be positive or negative. 198 /// N is a calculated back-edge taken count: 199 /// N = (TripCount > 0) ? RoundDown(TripCount -1 , VF) : 0 200 /// Start and End points are calculated in the following way: 201 /// Start = UMIN(A, B) ; End = UMAX(A, B) + SizeOfElt, 202 /// where SizeOfElt is the size of single memory access in bytes. 203 /// 204 /// There is no conflict when the intervals are disjoint: 205 /// NoConflict = (P2.Start >= P1.End) || (P1.Start >= P2.End) 206 static std::pair<const SCEV *, const SCEV *> getStartAndEndForAccess( 207 const Loop *Lp, const SCEV *PtrExpr, Type *AccessTy, 208 PredicatedScalarEvolution &PSE, 209 DenseMap<std::pair<const SCEV *, Type *>, 210 std::pair<const SCEV *, const SCEV *>> &PointerBounds) { 211 ScalarEvolution *SE = PSE.getSE(); 212 213 auto [Iter, Ins] = PointerBounds.insert( 214 {{PtrExpr, AccessTy}, 215 {SE->getCouldNotCompute(), SE->getCouldNotCompute()}}); 216 if (!Ins) 217 return Iter->second; 218 219 const SCEV *ScStart; 220 const SCEV *ScEnd; 221 222 if (SE->isLoopInvariant(PtrExpr, Lp)) { 223 ScStart = ScEnd = PtrExpr; 224 } else if (auto *AR = dyn_cast<SCEVAddRecExpr>(PtrExpr)) { 225 const SCEV *Ex = PSE.getSymbolicMaxBackedgeTakenCount(); 226 227 ScStart = AR->getStart(); 228 ScEnd = AR->evaluateAtIteration(Ex, *SE); 229 const SCEV *Step = AR->getStepRecurrence(*SE); 230 231 // For expressions with negative step, the upper bound is ScStart and the 232 // lower bound is ScEnd. 233 if (const auto *CStep = dyn_cast<SCEVConstant>(Step)) { 234 if (CStep->getValue()->isNegative()) 235 std::swap(ScStart, ScEnd); 236 } else { 237 // Fallback case: the step is not constant, but we can still 238 // get the upper and lower bounds of the interval by using min/max 239 // expressions. 240 ScStart = SE->getUMinExpr(ScStart, ScEnd); 241 ScEnd = SE->getUMaxExpr(AR->getStart(), ScEnd); 242 } 243 } else 244 return {SE->getCouldNotCompute(), SE->getCouldNotCompute()}; 245 246 assert(SE->isLoopInvariant(ScStart, Lp) && "ScStart needs to be invariant"); 247 assert(SE->isLoopInvariant(ScEnd, Lp)&& "ScEnd needs to be invariant"); 248 249 // Add the size of the pointed element to ScEnd. 250 auto &DL = Lp->getHeader()->getDataLayout(); 251 Type *IdxTy = DL.getIndexType(PtrExpr->getType()); 252 const SCEV *EltSizeSCEV = SE->getStoreSizeOfExpr(IdxTy, AccessTy); 253 ScEnd = SE->getAddExpr(ScEnd, EltSizeSCEV); 254 255 Iter->second = {ScStart, ScEnd}; 256 return Iter->second; 257 } 258 259 /// Calculate Start and End points of memory access using 260 /// getStartAndEndForAccess. 261 void RuntimePointerChecking::insert(Loop *Lp, Value *Ptr, const SCEV *PtrExpr, 262 Type *AccessTy, bool WritePtr, 263 unsigned DepSetId, unsigned ASId, 264 PredicatedScalarEvolution &PSE, 265 bool NeedsFreeze) { 266 const auto &[ScStart, ScEnd] = getStartAndEndForAccess( 267 Lp, PtrExpr, AccessTy, PSE, DC.getPointerBounds()); 268 assert(!isa<SCEVCouldNotCompute>(ScStart) && 269 !isa<SCEVCouldNotCompute>(ScEnd) && 270 "must be able to compute both start and end expressions"); 271 Pointers.emplace_back(Ptr, ScStart, ScEnd, WritePtr, DepSetId, ASId, PtrExpr, 272 NeedsFreeze); 273 } 274 275 bool RuntimePointerChecking::tryToCreateDiffCheck( 276 const RuntimeCheckingPtrGroup &CGI, const RuntimeCheckingPtrGroup &CGJ) { 277 // If either group contains multiple different pointers, bail out. 278 // TODO: Support multiple pointers by using the minimum or maximum pointer, 279 // depending on src & sink. 280 if (CGI.Members.size() != 1 || CGJ.Members.size() != 1) 281 return false; 282 283 const PointerInfo *Src = &Pointers[CGI.Members[0]]; 284 const PointerInfo *Sink = &Pointers[CGJ.Members[0]]; 285 286 // If either pointer is read and written, multiple checks may be needed. Bail 287 // out. 288 if (!DC.getOrderForAccess(Src->PointerValue, !Src->IsWritePtr).empty() || 289 !DC.getOrderForAccess(Sink->PointerValue, !Sink->IsWritePtr).empty()) 290 return false; 291 292 ArrayRef<unsigned> AccSrc = 293 DC.getOrderForAccess(Src->PointerValue, Src->IsWritePtr); 294 ArrayRef<unsigned> AccSink = 295 DC.getOrderForAccess(Sink->PointerValue, Sink->IsWritePtr); 296 // If either pointer is accessed multiple times, there may not be a clear 297 // src/sink relation. Bail out for now. 298 if (AccSrc.size() != 1 || AccSink.size() != 1) 299 return false; 300 301 // If the sink is accessed before src, swap src/sink. 302 if (AccSink[0] < AccSrc[0]) 303 std::swap(Src, Sink); 304 305 auto *SrcAR = dyn_cast<SCEVAddRecExpr>(Src->Expr); 306 auto *SinkAR = dyn_cast<SCEVAddRecExpr>(Sink->Expr); 307 if (!SrcAR || !SinkAR || SrcAR->getLoop() != DC.getInnermostLoop() || 308 SinkAR->getLoop() != DC.getInnermostLoop()) 309 return false; 310 311 SmallVector<Instruction *, 4> SrcInsts = 312 DC.getInstructionsForAccess(Src->PointerValue, Src->IsWritePtr); 313 SmallVector<Instruction *, 4> SinkInsts = 314 DC.getInstructionsForAccess(Sink->PointerValue, Sink->IsWritePtr); 315 Type *SrcTy = getLoadStoreType(SrcInsts[0]); 316 Type *DstTy = getLoadStoreType(SinkInsts[0]); 317 if (isa<ScalableVectorType>(SrcTy) || isa<ScalableVectorType>(DstTy)) 318 return false; 319 320 const DataLayout &DL = 321 SinkAR->getLoop()->getHeader()->getDataLayout(); 322 unsigned AllocSize = 323 std::max(DL.getTypeAllocSize(SrcTy), DL.getTypeAllocSize(DstTy)); 324 325 // Only matching constant steps matching the AllocSize are supported at the 326 // moment. This simplifies the difference computation. Can be extended in the 327 // future. 328 auto *Step = dyn_cast<SCEVConstant>(SinkAR->getStepRecurrence(*SE)); 329 if (!Step || Step != SrcAR->getStepRecurrence(*SE) || 330 Step->getAPInt().abs() != AllocSize) 331 return false; 332 333 IntegerType *IntTy = 334 IntegerType::get(Src->PointerValue->getContext(), 335 DL.getPointerSizeInBits(CGI.AddressSpace)); 336 337 // When counting down, the dependence distance needs to be swapped. 338 if (Step->getValue()->isNegative()) 339 std::swap(SinkAR, SrcAR); 340 341 const SCEV *SinkStartInt = SE->getPtrToIntExpr(SinkAR->getStart(), IntTy); 342 const SCEV *SrcStartInt = SE->getPtrToIntExpr(SrcAR->getStart(), IntTy); 343 if (isa<SCEVCouldNotCompute>(SinkStartInt) || 344 isa<SCEVCouldNotCompute>(SrcStartInt)) 345 return false; 346 347 const Loop *InnerLoop = SrcAR->getLoop(); 348 // If the start values for both Src and Sink also vary according to an outer 349 // loop, then it's probably better to avoid creating diff checks because 350 // they may not be hoisted. We should instead let llvm::addRuntimeChecks 351 // do the expanded full range overlap checks, which can be hoisted. 352 if (HoistRuntimeChecks && InnerLoop->getParentLoop() && 353 isa<SCEVAddRecExpr>(SinkStartInt) && isa<SCEVAddRecExpr>(SrcStartInt)) { 354 auto *SrcStartAR = cast<SCEVAddRecExpr>(SrcStartInt); 355 auto *SinkStartAR = cast<SCEVAddRecExpr>(SinkStartInt); 356 const Loop *StartARLoop = SrcStartAR->getLoop(); 357 if (StartARLoop == SinkStartAR->getLoop() && 358 StartARLoop == InnerLoop->getParentLoop() && 359 // If the diff check would already be loop invariant (due to the 360 // recurrences being the same), then we prefer to keep the diff checks 361 // because they are cheaper. 362 SrcStartAR->getStepRecurrence(*SE) != 363 SinkStartAR->getStepRecurrence(*SE)) { 364 LLVM_DEBUG(dbgs() << "LAA: Not creating diff runtime check, since these " 365 "cannot be hoisted out of the outer loop\n"); 366 return false; 367 } 368 } 369 370 LLVM_DEBUG(dbgs() << "LAA: Creating diff runtime check for:\n" 371 << "SrcStart: " << *SrcStartInt << '\n' 372 << "SinkStartInt: " << *SinkStartInt << '\n'); 373 DiffChecks.emplace_back(SrcStartInt, SinkStartInt, AllocSize, 374 Src->NeedsFreeze || Sink->NeedsFreeze); 375 return true; 376 } 377 378 SmallVector<RuntimePointerCheck, 4> RuntimePointerChecking::generateChecks() { 379 SmallVector<RuntimePointerCheck, 4> Checks; 380 381 for (unsigned I = 0; I < CheckingGroups.size(); ++I) { 382 for (unsigned J = I + 1; J < CheckingGroups.size(); ++J) { 383 const RuntimeCheckingPtrGroup &CGI = CheckingGroups[I]; 384 const RuntimeCheckingPtrGroup &CGJ = CheckingGroups[J]; 385 386 if (needsChecking(CGI, CGJ)) { 387 CanUseDiffCheck = CanUseDiffCheck && tryToCreateDiffCheck(CGI, CGJ); 388 Checks.emplace_back(&CGI, &CGJ); 389 } 390 } 391 } 392 return Checks; 393 } 394 395 void RuntimePointerChecking::generateChecks( 396 MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) { 397 assert(Checks.empty() && "Checks is not empty"); 398 groupChecks(DepCands, UseDependencies); 399 Checks = generateChecks(); 400 } 401 402 bool RuntimePointerChecking::needsChecking( 403 const RuntimeCheckingPtrGroup &M, const RuntimeCheckingPtrGroup &N) const { 404 for (const auto &I : M.Members) 405 for (const auto &J : N.Members) 406 if (needsChecking(I, J)) 407 return true; 408 return false; 409 } 410 411 /// Compare \p I and \p J and return the minimum. 412 /// Return nullptr in case we couldn't find an answer. 413 static const SCEV *getMinFromExprs(const SCEV *I, const SCEV *J, 414 ScalarEvolution *SE) { 415 std::optional<APInt> Diff = SE->computeConstantDifference(J, I); 416 if (!Diff) 417 return nullptr; 418 return Diff->isNegative() ? J : I; 419 } 420 421 bool RuntimeCheckingPtrGroup::addPointer( 422 unsigned Index, const RuntimePointerChecking &RtCheck) { 423 return addPointer( 424 Index, RtCheck.Pointers[Index].Start, RtCheck.Pointers[Index].End, 425 RtCheck.Pointers[Index].PointerValue->getType()->getPointerAddressSpace(), 426 RtCheck.Pointers[Index].NeedsFreeze, *RtCheck.SE); 427 } 428 429 bool RuntimeCheckingPtrGroup::addPointer(unsigned Index, const SCEV *Start, 430 const SCEV *End, unsigned AS, 431 bool NeedsFreeze, 432 ScalarEvolution &SE) { 433 assert(AddressSpace == AS && 434 "all pointers in a checking group must be in the same address space"); 435 436 // Compare the starts and ends with the known minimum and maximum 437 // of this set. We need to know how we compare against the min/max 438 // of the set in order to be able to emit memchecks. 439 const SCEV *Min0 = getMinFromExprs(Start, Low, &SE); 440 if (!Min0) 441 return false; 442 443 const SCEV *Min1 = getMinFromExprs(End, High, &SE); 444 if (!Min1) 445 return false; 446 447 // Update the low bound expression if we've found a new min value. 448 if (Min0 == Start) 449 Low = Start; 450 451 // Update the high bound expression if we've found a new max value. 452 if (Min1 != End) 453 High = End; 454 455 Members.push_back(Index); 456 this->NeedsFreeze |= NeedsFreeze; 457 return true; 458 } 459 460 void RuntimePointerChecking::groupChecks( 461 MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) { 462 // We build the groups from dependency candidates equivalence classes 463 // because: 464 // - We know that pointers in the same equivalence class share 465 // the same underlying object and therefore there is a chance 466 // that we can compare pointers 467 // - We wouldn't be able to merge two pointers for which we need 468 // to emit a memcheck. The classes in DepCands are already 469 // conveniently built such that no two pointers in the same 470 // class need checking against each other. 471 472 // We use the following (greedy) algorithm to construct the groups 473 // For every pointer in the equivalence class: 474 // For each existing group: 475 // - if the difference between this pointer and the min/max bounds 476 // of the group is a constant, then make the pointer part of the 477 // group and update the min/max bounds of that group as required. 478 479 CheckingGroups.clear(); 480 481 // If we need to check two pointers to the same underlying object 482 // with a non-constant difference, we shouldn't perform any pointer 483 // grouping with those pointers. This is because we can easily get 484 // into cases where the resulting check would return false, even when 485 // the accesses are safe. 486 // 487 // The following example shows this: 488 // for (i = 0; i < 1000; ++i) 489 // a[5000 + i * m] = a[i] + a[i + 9000] 490 // 491 // Here grouping gives a check of (5000, 5000 + 1000 * m) against 492 // (0, 10000) which is always false. However, if m is 1, there is no 493 // dependence. Not grouping the checks for a[i] and a[i + 9000] allows 494 // us to perform an accurate check in this case. 495 // 496 // The above case requires that we have an UnknownDependence between 497 // accesses to the same underlying object. This cannot happen unless 498 // FoundNonConstantDistanceDependence is set, and therefore UseDependencies 499 // is also false. In this case we will use the fallback path and create 500 // separate checking groups for all pointers. 501 502 // If we don't have the dependency partitions, construct a new 503 // checking pointer group for each pointer. This is also required 504 // for correctness, because in this case we can have checking between 505 // pointers to the same underlying object. 506 if (!UseDependencies) { 507 for (unsigned I = 0; I < Pointers.size(); ++I) 508 CheckingGroups.emplace_back(I, *this); 509 return; 510 } 511 512 unsigned TotalComparisons = 0; 513 514 DenseMap<Value *, SmallVector<unsigned>> PositionMap; 515 for (unsigned Index = 0; Index < Pointers.size(); ++Index) 516 PositionMap[Pointers[Index].PointerValue].push_back(Index); 517 518 // We need to keep track of what pointers we've already seen so we 519 // don't process them twice. 520 SmallSet<unsigned, 2> Seen; 521 522 // Go through all equivalence classes, get the "pointer check groups" 523 // and add them to the overall solution. We use the order in which accesses 524 // appear in 'Pointers' to enforce determinism. 525 for (unsigned I = 0; I < Pointers.size(); ++I) { 526 // We've seen this pointer before, and therefore already processed 527 // its equivalence class. 528 if (Seen.count(I)) 529 continue; 530 531 MemoryDepChecker::MemAccessInfo Access(Pointers[I].PointerValue, 532 Pointers[I].IsWritePtr); 533 534 SmallVector<RuntimeCheckingPtrGroup, 2> Groups; 535 auto LeaderI = DepCands.findValue(DepCands.getLeaderValue(Access)); 536 537 // Because DepCands is constructed by visiting accesses in the order in 538 // which they appear in alias sets (which is deterministic) and the 539 // iteration order within an equivalence class member is only dependent on 540 // the order in which unions and insertions are performed on the 541 // equivalence class, the iteration order is deterministic. 542 for (auto MI = DepCands.member_begin(LeaderI), ME = DepCands.member_end(); 543 MI != ME; ++MI) { 544 auto PointerI = PositionMap.find(MI->getPointer()); 545 assert(PointerI != PositionMap.end() && 546 "pointer in equivalence class not found in PositionMap"); 547 for (unsigned Pointer : PointerI->second) { 548 bool Merged = false; 549 // Mark this pointer as seen. 550 Seen.insert(Pointer); 551 552 // Go through all the existing sets and see if we can find one 553 // which can include this pointer. 554 for (RuntimeCheckingPtrGroup &Group : Groups) { 555 // Don't perform more than a certain amount of comparisons. 556 // This should limit the cost of grouping the pointers to something 557 // reasonable. If we do end up hitting this threshold, the algorithm 558 // will create separate groups for all remaining pointers. 559 if (TotalComparisons > MemoryCheckMergeThreshold) 560 break; 561 562 TotalComparisons++; 563 564 if (Group.addPointer(Pointer, *this)) { 565 Merged = true; 566 break; 567 } 568 } 569 570 if (!Merged) 571 // We couldn't add this pointer to any existing set or the threshold 572 // for the number of comparisons has been reached. Create a new group 573 // to hold the current pointer. 574 Groups.emplace_back(Pointer, *this); 575 } 576 } 577 578 // We've computed the grouped checks for this partition. 579 // Save the results and continue with the next one. 580 llvm::copy(Groups, std::back_inserter(CheckingGroups)); 581 } 582 } 583 584 bool RuntimePointerChecking::arePointersInSamePartition( 585 const SmallVectorImpl<int> &PtrToPartition, unsigned PtrIdx1, 586 unsigned PtrIdx2) { 587 return (PtrToPartition[PtrIdx1] != -1 && 588 PtrToPartition[PtrIdx1] == PtrToPartition[PtrIdx2]); 589 } 590 591 bool RuntimePointerChecking::needsChecking(unsigned I, unsigned J) const { 592 const PointerInfo &PointerI = Pointers[I]; 593 const PointerInfo &PointerJ = Pointers[J]; 594 595 // No need to check if two readonly pointers intersect. 596 if (!PointerI.IsWritePtr && !PointerJ.IsWritePtr) 597 return false; 598 599 // Only need to check pointers between two different dependency sets. 600 if (PointerI.DependencySetId == PointerJ.DependencySetId) 601 return false; 602 603 // Only need to check pointers in the same alias set. 604 return PointerI.AliasSetId == PointerJ.AliasSetId; 605 } 606 607 void RuntimePointerChecking::printChecks( 608 raw_ostream &OS, const SmallVectorImpl<RuntimePointerCheck> &Checks, 609 unsigned Depth) const { 610 unsigned N = 0; 611 for (const auto &[Check1, Check2] : Checks) { 612 const auto &First = Check1->Members, &Second = Check2->Members; 613 614 OS.indent(Depth) << "Check " << N++ << ":\n"; 615 616 OS.indent(Depth + 2) << "Comparing group (" << Check1 << "):\n"; 617 for (unsigned K : First) 618 OS.indent(Depth + 2) << *Pointers[K].PointerValue << "\n"; 619 620 OS.indent(Depth + 2) << "Against group (" << Check2 << "):\n"; 621 for (unsigned K : Second) 622 OS.indent(Depth + 2) << *Pointers[K].PointerValue << "\n"; 623 } 624 } 625 626 void RuntimePointerChecking::print(raw_ostream &OS, unsigned Depth) const { 627 628 OS.indent(Depth) << "Run-time memory checks:\n"; 629 printChecks(OS, Checks, Depth); 630 631 OS.indent(Depth) << "Grouped accesses:\n"; 632 for (const auto &CG : CheckingGroups) { 633 OS.indent(Depth + 2) << "Group " << &CG << ":\n"; 634 OS.indent(Depth + 4) << "(Low: " << *CG.Low << " High: " << *CG.High 635 << ")\n"; 636 for (unsigned Member : CG.Members) { 637 OS.indent(Depth + 6) << "Member: " << *Pointers[Member].Expr << "\n"; 638 } 639 } 640 } 641 642 namespace { 643 644 /// Analyses memory accesses in a loop. 645 /// 646 /// Checks whether run time pointer checks are needed and builds sets for data 647 /// dependence checking. 648 class AccessAnalysis { 649 public: 650 /// Read or write access location. 651 typedef PointerIntPair<Value *, 1, bool> MemAccessInfo; 652 typedef SmallVector<MemAccessInfo, 8> MemAccessInfoList; 653 654 AccessAnalysis(const Loop *TheLoop, AAResults *AA, const LoopInfo *LI, 655 MemoryDepChecker::DepCandidates &DA, 656 PredicatedScalarEvolution &PSE, 657 SmallPtrSetImpl<MDNode *> &LoopAliasScopes) 658 : TheLoop(TheLoop), BAA(*AA), AST(BAA), LI(LI), DepCands(DA), PSE(PSE), 659 LoopAliasScopes(LoopAliasScopes) { 660 // We're analyzing dependences across loop iterations. 661 BAA.enableCrossIterationMode(); 662 } 663 664 /// Register a load and whether it is only read from. 665 void addLoad(const MemoryLocation &Loc, Type *AccessTy, bool IsReadOnly) { 666 Value *Ptr = const_cast<Value *>(Loc.Ptr); 667 AST.add(adjustLoc(Loc)); 668 Accesses[MemAccessInfo(Ptr, false)].insert(AccessTy); 669 if (IsReadOnly) 670 ReadOnlyPtr.insert(Ptr); 671 } 672 673 /// Register a store. 674 void addStore(const MemoryLocation &Loc, Type *AccessTy) { 675 Value *Ptr = const_cast<Value *>(Loc.Ptr); 676 AST.add(adjustLoc(Loc)); 677 Accesses[MemAccessInfo(Ptr, true)].insert(AccessTy); 678 } 679 680 /// Check if we can emit a run-time no-alias check for \p Access. 681 /// 682 /// Returns true if we can emit a run-time no alias check for \p Access. 683 /// If we can check this access, this also adds it to a dependence set and 684 /// adds a run-time to check for it to \p RtCheck. If \p Assume is true, 685 /// we will attempt to use additional run-time checks in order to get 686 /// the bounds of the pointer. 687 bool createCheckForAccess(RuntimePointerChecking &RtCheck, 688 MemAccessInfo Access, Type *AccessTy, 689 const DenseMap<Value *, const SCEV *> &Strides, 690 DenseMap<Value *, unsigned> &DepSetId, 691 Loop *TheLoop, unsigned &RunningDepId, 692 unsigned ASId, bool ShouldCheckStride, bool Assume); 693 694 /// Check whether we can check the pointers at runtime for 695 /// non-intersection. 696 /// 697 /// Returns true if we need no check or if we do and we can generate them 698 /// (i.e. the pointers have computable bounds). 699 bool canCheckPtrAtRT(RuntimePointerChecking &RtCheck, ScalarEvolution *SE, 700 Loop *TheLoop, const DenseMap<Value *, const SCEV *> &Strides, 701 Value *&UncomputablePtr, bool ShouldCheckWrap = false); 702 703 /// Goes over all memory accesses, checks whether a RT check is needed 704 /// and builds sets of dependent accesses. 705 void buildDependenceSets() { 706 processMemAccesses(); 707 } 708 709 /// Initial processing of memory accesses determined that we need to 710 /// perform dependency checking. 711 /// 712 /// Note that this can later be cleared if we retry memcheck analysis without 713 /// dependency checking (i.e. FoundNonConstantDistanceDependence). 714 bool isDependencyCheckNeeded() const { return !CheckDeps.empty(); } 715 716 /// We decided that no dependence analysis would be used. Reset the state. 717 void resetDepChecks(MemoryDepChecker &DepChecker) { 718 CheckDeps.clear(); 719 DepChecker.clearDependences(); 720 } 721 722 const MemAccessInfoList &getDependenciesToCheck() const { return CheckDeps; } 723 724 private: 725 typedef MapVector<MemAccessInfo, SmallSetVector<Type *, 1>> PtrAccessMap; 726 727 /// Adjust the MemoryLocation so that it represents accesses to this 728 /// location across all iterations, rather than a single one. 729 MemoryLocation adjustLoc(MemoryLocation Loc) const { 730 // The accessed location varies within the loop, but remains within the 731 // underlying object. 732 Loc.Size = LocationSize::beforeOrAfterPointer(); 733 Loc.AATags.Scope = adjustAliasScopeList(Loc.AATags.Scope); 734 Loc.AATags.NoAlias = adjustAliasScopeList(Loc.AATags.NoAlias); 735 return Loc; 736 } 737 738 /// Drop alias scopes that are only valid within a single loop iteration. 739 MDNode *adjustAliasScopeList(MDNode *ScopeList) const { 740 if (!ScopeList) 741 return nullptr; 742 743 // For the sake of simplicity, drop the whole scope list if any scope is 744 // iteration-local. 745 if (any_of(ScopeList->operands(), [&](Metadata *Scope) { 746 return LoopAliasScopes.contains(cast<MDNode>(Scope)); 747 })) 748 return nullptr; 749 750 return ScopeList; 751 } 752 753 /// Go over all memory access and check whether runtime pointer checks 754 /// are needed and build sets of dependency check candidates. 755 void processMemAccesses(); 756 757 /// Map of all accesses. Values are the types used to access memory pointed to 758 /// by the pointer. 759 PtrAccessMap Accesses; 760 761 /// The loop being checked. 762 const Loop *TheLoop; 763 764 /// List of accesses that need a further dependence check. 765 MemAccessInfoList CheckDeps; 766 767 /// Set of pointers that are read only. 768 SmallPtrSet<Value*, 16> ReadOnlyPtr; 769 770 /// Batched alias analysis results. 771 BatchAAResults BAA; 772 773 /// An alias set tracker to partition the access set by underlying object and 774 //intrinsic property (such as TBAA metadata). 775 AliasSetTracker AST; 776 777 /// The LoopInfo of the loop being checked. 778 const LoopInfo *LI; 779 780 /// Sets of potentially dependent accesses - members of one set share an 781 /// underlying pointer. The set "CheckDeps" identfies which sets really need a 782 /// dependence check. 783 MemoryDepChecker::DepCandidates &DepCands; 784 785 /// Initial processing of memory accesses determined that we may need 786 /// to add memchecks. Perform the analysis to determine the necessary checks. 787 /// 788 /// Note that, this is different from isDependencyCheckNeeded. When we retry 789 /// memcheck analysis without dependency checking 790 /// (i.e. FoundNonConstantDistanceDependence), isDependencyCheckNeeded is 791 /// cleared while this remains set if we have potentially dependent accesses. 792 bool IsRTCheckAnalysisNeeded = false; 793 794 /// The SCEV predicate containing all the SCEV-related assumptions. 795 PredicatedScalarEvolution &PSE; 796 797 DenseMap<Value *, SmallVector<const Value *, 16>> UnderlyingObjects; 798 799 /// Alias scopes that are declared inside the loop, and as such not valid 800 /// across iterations. 801 SmallPtrSetImpl<MDNode *> &LoopAliasScopes; 802 }; 803 804 } // end anonymous namespace 805 806 /// Check whether a pointer can participate in a runtime bounds check. 807 /// If \p Assume, try harder to prove that we can compute the bounds of \p Ptr 808 /// by adding run-time checks (overflow checks) if necessary. 809 static bool hasComputableBounds(PredicatedScalarEvolution &PSE, Value *Ptr, 810 const SCEV *PtrScev, Loop *L, bool Assume) { 811 // The bounds for loop-invariant pointer is trivial. 812 if (PSE.getSE()->isLoopInvariant(PtrScev, L)) 813 return true; 814 815 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 816 817 if (!AR && Assume) 818 AR = PSE.getAsAddRec(Ptr); 819 820 if (!AR) 821 return false; 822 823 return AR->isAffine(); 824 } 825 826 /// Check whether a pointer address cannot wrap. 827 static bool isNoWrap(PredicatedScalarEvolution &PSE, 828 const DenseMap<Value *, const SCEV *> &Strides, Value *Ptr, 829 Type *AccessTy, Loop *L, bool Assume) { 830 const SCEV *PtrScev = PSE.getSCEV(Ptr); 831 if (PSE.getSE()->isLoopInvariant(PtrScev, L)) 832 return true; 833 834 return getPtrStride(PSE, AccessTy, Ptr, L, Strides, Assume).has_value() || 835 PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW); 836 } 837 838 static void visitPointers(Value *StartPtr, const Loop &InnermostLoop, 839 function_ref<void(Value *)> AddPointer) { 840 SmallPtrSet<Value *, 8> Visited; 841 SmallVector<Value *> WorkList; 842 WorkList.push_back(StartPtr); 843 844 while (!WorkList.empty()) { 845 Value *Ptr = WorkList.pop_back_val(); 846 if (!Visited.insert(Ptr).second) 847 continue; 848 auto *PN = dyn_cast<PHINode>(Ptr); 849 // SCEV does not look through non-header PHIs inside the loop. Such phis 850 // can be analyzed by adding separate accesses for each incoming pointer 851 // value. 852 if (PN && InnermostLoop.contains(PN->getParent()) && 853 PN->getParent() != InnermostLoop.getHeader()) { 854 for (const Use &Inc : PN->incoming_values()) 855 WorkList.push_back(Inc); 856 } else 857 AddPointer(Ptr); 858 } 859 } 860 861 // Walk back through the IR for a pointer, looking for a select like the 862 // following: 863 // 864 // %offset = select i1 %cmp, i64 %a, i64 %b 865 // %addr = getelementptr double, double* %base, i64 %offset 866 // %ld = load double, double* %addr, align 8 867 // 868 // We won't be able to form a single SCEVAddRecExpr from this since the 869 // address for each loop iteration depends on %cmp. We could potentially 870 // produce multiple valid SCEVAddRecExprs, though, and check all of them for 871 // memory safety/aliasing if needed. 872 // 873 // If we encounter some IR we don't yet handle, or something obviously fine 874 // like a constant, then we just add the SCEV for that term to the list passed 875 // in by the caller. If we have a node that may potentially yield a valid 876 // SCEVAddRecExpr then we decompose it into parts and build the SCEV terms 877 // ourselves before adding to the list. 878 static void findForkedSCEVs( 879 ScalarEvolution *SE, const Loop *L, Value *Ptr, 880 SmallVectorImpl<PointerIntPair<const SCEV *, 1, bool>> &ScevList, 881 unsigned Depth) { 882 // If our Value is a SCEVAddRecExpr, loop invariant, not an instruction, or 883 // we've exceeded our limit on recursion, just return whatever we have 884 // regardless of whether it can be used for a forked pointer or not, along 885 // with an indication of whether it might be a poison or undef value. 886 const SCEV *Scev = SE->getSCEV(Ptr); 887 if (isa<SCEVAddRecExpr>(Scev) || L->isLoopInvariant(Ptr) || 888 !isa<Instruction>(Ptr) || Depth == 0) { 889 ScevList.emplace_back(Scev, !isGuaranteedNotToBeUndefOrPoison(Ptr)); 890 return; 891 } 892 893 Depth--; 894 895 auto UndefPoisonCheck = [](PointerIntPair<const SCEV *, 1, bool> S) { 896 return get<1>(S); 897 }; 898 899 auto GetBinOpExpr = [&SE](unsigned Opcode, const SCEV *L, const SCEV *R) { 900 switch (Opcode) { 901 case Instruction::Add: 902 return SE->getAddExpr(L, R); 903 case Instruction::Sub: 904 return SE->getMinusSCEV(L, R); 905 default: 906 llvm_unreachable("Unexpected binary operator when walking ForkedPtrs"); 907 } 908 }; 909 910 Instruction *I = cast<Instruction>(Ptr); 911 unsigned Opcode = I->getOpcode(); 912 switch (Opcode) { 913 case Instruction::GetElementPtr: { 914 auto *GEP = cast<GetElementPtrInst>(I); 915 Type *SourceTy = GEP->getSourceElementType(); 916 // We only handle base + single offset GEPs here for now. 917 // Not dealing with preexisting gathers yet, so no vectors. 918 if (I->getNumOperands() != 2 || SourceTy->isVectorTy()) { 919 ScevList.emplace_back(Scev, !isGuaranteedNotToBeUndefOrPoison(GEP)); 920 break; 921 } 922 SmallVector<PointerIntPair<const SCEV *, 1, bool>, 2> BaseScevs; 923 SmallVector<PointerIntPair<const SCEV *, 1, bool>, 2> OffsetScevs; 924 findForkedSCEVs(SE, L, I->getOperand(0), BaseScevs, Depth); 925 findForkedSCEVs(SE, L, I->getOperand(1), OffsetScevs, Depth); 926 927 // See if we need to freeze our fork... 928 bool NeedsFreeze = any_of(BaseScevs, UndefPoisonCheck) || 929 any_of(OffsetScevs, UndefPoisonCheck); 930 931 // Check that we only have a single fork, on either the base or the offset. 932 // Copy the SCEV across for the one without a fork in order to generate 933 // the full SCEV for both sides of the GEP. 934 if (OffsetScevs.size() == 2 && BaseScevs.size() == 1) 935 BaseScevs.push_back(BaseScevs[0]); 936 else if (BaseScevs.size() == 2 && OffsetScevs.size() == 1) 937 OffsetScevs.push_back(OffsetScevs[0]); 938 else { 939 ScevList.emplace_back(Scev, NeedsFreeze); 940 break; 941 } 942 943 // Find the pointer type we need to extend to. 944 Type *IntPtrTy = SE->getEffectiveSCEVType( 945 SE->getSCEV(GEP->getPointerOperand())->getType()); 946 947 // Find the size of the type being pointed to. We only have a single 948 // index term (guarded above) so we don't need to index into arrays or 949 // structures, just get the size of the scalar value. 950 const SCEV *Size = SE->getSizeOfExpr(IntPtrTy, SourceTy); 951 952 // Scale up the offsets by the size of the type, then add to the bases. 953 const SCEV *Scaled1 = SE->getMulExpr( 954 Size, SE->getTruncateOrSignExtend(get<0>(OffsetScevs[0]), IntPtrTy)); 955 const SCEV *Scaled2 = SE->getMulExpr( 956 Size, SE->getTruncateOrSignExtend(get<0>(OffsetScevs[1]), IntPtrTy)); 957 ScevList.emplace_back(SE->getAddExpr(get<0>(BaseScevs[0]), Scaled1), 958 NeedsFreeze); 959 ScevList.emplace_back(SE->getAddExpr(get<0>(BaseScevs[1]), Scaled2), 960 NeedsFreeze); 961 break; 962 } 963 case Instruction::Select: { 964 SmallVector<PointerIntPair<const SCEV *, 1, bool>, 2> ChildScevs; 965 // A select means we've found a forked pointer, but we currently only 966 // support a single select per pointer so if there's another behind this 967 // then we just bail out and return the generic SCEV. 968 findForkedSCEVs(SE, L, I->getOperand(1), ChildScevs, Depth); 969 findForkedSCEVs(SE, L, I->getOperand(2), ChildScevs, Depth); 970 if (ChildScevs.size() == 2) { 971 ScevList.push_back(ChildScevs[0]); 972 ScevList.push_back(ChildScevs[1]); 973 } else 974 ScevList.emplace_back(Scev, !isGuaranteedNotToBeUndefOrPoison(Ptr)); 975 break; 976 } 977 case Instruction::PHI: { 978 SmallVector<PointerIntPair<const SCEV *, 1, bool>, 2> ChildScevs; 979 // A phi means we've found a forked pointer, but we currently only 980 // support a single phi per pointer so if there's another behind this 981 // then we just bail out and return the generic SCEV. 982 if (I->getNumOperands() == 2) { 983 findForkedSCEVs(SE, L, I->getOperand(0), ChildScevs, Depth); 984 findForkedSCEVs(SE, L, I->getOperand(1), ChildScevs, Depth); 985 } 986 if (ChildScevs.size() == 2) { 987 ScevList.push_back(ChildScevs[0]); 988 ScevList.push_back(ChildScevs[1]); 989 } else 990 ScevList.emplace_back(Scev, !isGuaranteedNotToBeUndefOrPoison(Ptr)); 991 break; 992 } 993 case Instruction::Add: 994 case Instruction::Sub: { 995 SmallVector<PointerIntPair<const SCEV *, 1, bool>> LScevs; 996 SmallVector<PointerIntPair<const SCEV *, 1, bool>> RScevs; 997 findForkedSCEVs(SE, L, I->getOperand(0), LScevs, Depth); 998 findForkedSCEVs(SE, L, I->getOperand(1), RScevs, Depth); 999 1000 // See if we need to freeze our fork... 1001 bool NeedsFreeze = 1002 any_of(LScevs, UndefPoisonCheck) || any_of(RScevs, UndefPoisonCheck); 1003 1004 // Check that we only have a single fork, on either the left or right side. 1005 // Copy the SCEV across for the one without a fork in order to generate 1006 // the full SCEV for both sides of the BinOp. 1007 if (LScevs.size() == 2 && RScevs.size() == 1) 1008 RScevs.push_back(RScevs[0]); 1009 else if (RScevs.size() == 2 && LScevs.size() == 1) 1010 LScevs.push_back(LScevs[0]); 1011 else { 1012 ScevList.emplace_back(Scev, NeedsFreeze); 1013 break; 1014 } 1015 1016 ScevList.emplace_back( 1017 GetBinOpExpr(Opcode, get<0>(LScevs[0]), get<0>(RScevs[0])), 1018 NeedsFreeze); 1019 ScevList.emplace_back( 1020 GetBinOpExpr(Opcode, get<0>(LScevs[1]), get<0>(RScevs[1])), 1021 NeedsFreeze); 1022 break; 1023 } 1024 default: 1025 // Just return the current SCEV if we haven't handled the instruction yet. 1026 LLVM_DEBUG(dbgs() << "ForkedPtr unhandled instruction: " << *I << "\n"); 1027 ScevList.emplace_back(Scev, !isGuaranteedNotToBeUndefOrPoison(Ptr)); 1028 break; 1029 } 1030 } 1031 1032 static SmallVector<PointerIntPair<const SCEV *, 1, bool>> 1033 findForkedPointer(PredicatedScalarEvolution &PSE, 1034 const DenseMap<Value *, const SCEV *> &StridesMap, Value *Ptr, 1035 const Loop *L) { 1036 ScalarEvolution *SE = PSE.getSE(); 1037 assert(SE->isSCEVable(Ptr->getType()) && "Value is not SCEVable!"); 1038 SmallVector<PointerIntPair<const SCEV *, 1, bool>> Scevs; 1039 findForkedSCEVs(SE, L, Ptr, Scevs, MaxForkedSCEVDepth); 1040 1041 // For now, we will only accept a forked pointer with two possible SCEVs 1042 // that are either SCEVAddRecExprs or loop invariant. 1043 if (Scevs.size() == 2 && 1044 (isa<SCEVAddRecExpr>(get<0>(Scevs[0])) || 1045 SE->isLoopInvariant(get<0>(Scevs[0]), L)) && 1046 (isa<SCEVAddRecExpr>(get<0>(Scevs[1])) || 1047 SE->isLoopInvariant(get<0>(Scevs[1]), L))) { 1048 LLVM_DEBUG(dbgs() << "LAA: Found forked pointer: " << *Ptr << "\n"); 1049 LLVM_DEBUG(dbgs() << "\t(1) " << *get<0>(Scevs[0]) << "\n"); 1050 LLVM_DEBUG(dbgs() << "\t(2) " << *get<0>(Scevs[1]) << "\n"); 1051 return Scevs; 1052 } 1053 1054 return {{replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr), false}}; 1055 } 1056 1057 bool AccessAnalysis::createCheckForAccess(RuntimePointerChecking &RtCheck, 1058 MemAccessInfo Access, Type *AccessTy, 1059 const DenseMap<Value *, const SCEV *> &StridesMap, 1060 DenseMap<Value *, unsigned> &DepSetId, 1061 Loop *TheLoop, unsigned &RunningDepId, 1062 unsigned ASId, bool ShouldCheckWrap, 1063 bool Assume) { 1064 Value *Ptr = Access.getPointer(); 1065 1066 SmallVector<PointerIntPair<const SCEV *, 1, bool>> TranslatedPtrs = 1067 findForkedPointer(PSE, StridesMap, Ptr, TheLoop); 1068 1069 for (const auto &P : TranslatedPtrs) { 1070 const SCEV *PtrExpr = get<0>(P); 1071 if (!hasComputableBounds(PSE, Ptr, PtrExpr, TheLoop, Assume)) 1072 return false; 1073 1074 // When we run after a failing dependency check we have to make sure 1075 // we don't have wrapping pointers. 1076 if (ShouldCheckWrap) { 1077 // Skip wrap checking when translating pointers. 1078 if (TranslatedPtrs.size() > 1) 1079 return false; 1080 1081 if (!isNoWrap(PSE, StridesMap, Ptr, AccessTy, TheLoop, Assume)) 1082 return false; 1083 } 1084 // If there's only one option for Ptr, look it up after bounds and wrap 1085 // checking, because assumptions might have been added to PSE. 1086 if (TranslatedPtrs.size() == 1) 1087 TranslatedPtrs[0] = {replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr), 1088 false}; 1089 } 1090 1091 for (auto [PtrExpr, NeedsFreeze] : TranslatedPtrs) { 1092 // The id of the dependence set. 1093 unsigned DepId; 1094 1095 if (isDependencyCheckNeeded()) { 1096 Value *Leader = DepCands.getLeaderValue(Access).getPointer(); 1097 unsigned &LeaderId = DepSetId[Leader]; 1098 if (!LeaderId) 1099 LeaderId = RunningDepId++; 1100 DepId = LeaderId; 1101 } else 1102 // Each access has its own dependence set. 1103 DepId = RunningDepId++; 1104 1105 bool IsWrite = Access.getInt(); 1106 RtCheck.insert(TheLoop, Ptr, PtrExpr, AccessTy, IsWrite, DepId, ASId, PSE, 1107 NeedsFreeze); 1108 LLVM_DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n'); 1109 } 1110 1111 return true; 1112 } 1113 1114 bool AccessAnalysis::canCheckPtrAtRT(RuntimePointerChecking &RtCheck, 1115 ScalarEvolution *SE, Loop *TheLoop, 1116 const DenseMap<Value *, const SCEV *> &StridesMap, 1117 Value *&UncomputablePtr, bool ShouldCheckWrap) { 1118 // Find pointers with computable bounds. We are going to use this information 1119 // to place a runtime bound check. 1120 bool CanDoRT = true; 1121 1122 bool MayNeedRTCheck = false; 1123 if (!IsRTCheckAnalysisNeeded) return true; 1124 1125 bool IsDepCheckNeeded = isDependencyCheckNeeded(); 1126 1127 // We assign a consecutive id to access from different alias sets. 1128 // Accesses between different groups doesn't need to be checked. 1129 unsigned ASId = 0; 1130 for (const auto &AS : AST) { 1131 int NumReadPtrChecks = 0; 1132 int NumWritePtrChecks = 0; 1133 bool CanDoAliasSetRT = true; 1134 ++ASId; 1135 auto ASPointers = AS.getPointers(); 1136 1137 // We assign consecutive id to access from different dependence sets. 1138 // Accesses within the same set don't need a runtime check. 1139 unsigned RunningDepId = 1; 1140 DenseMap<Value *, unsigned> DepSetId; 1141 1142 SmallVector<std::pair<MemAccessInfo, Type *>, 4> Retries; 1143 1144 // First, count how many write and read accesses are in the alias set. Also 1145 // collect MemAccessInfos for later. 1146 SmallVector<MemAccessInfo, 4> AccessInfos; 1147 for (const Value *ConstPtr : ASPointers) { 1148 Value *Ptr = const_cast<Value *>(ConstPtr); 1149 bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true)); 1150 if (IsWrite) 1151 ++NumWritePtrChecks; 1152 else 1153 ++NumReadPtrChecks; 1154 AccessInfos.emplace_back(Ptr, IsWrite); 1155 } 1156 1157 // We do not need runtime checks for this alias set, if there are no writes 1158 // or a single write and no reads. 1159 if (NumWritePtrChecks == 0 || 1160 (NumWritePtrChecks == 1 && NumReadPtrChecks == 0)) { 1161 assert((ASPointers.size() <= 1 || 1162 all_of(ASPointers, 1163 [this](const Value *Ptr) { 1164 MemAccessInfo AccessWrite(const_cast<Value *>(Ptr), 1165 true); 1166 return DepCands.findValue(AccessWrite) == DepCands.end(); 1167 })) && 1168 "Can only skip updating CanDoRT below, if all entries in AS " 1169 "are reads or there is at most 1 entry"); 1170 continue; 1171 } 1172 1173 for (auto &Access : AccessInfos) { 1174 for (const auto &AccessTy : Accesses[Access]) { 1175 if (!createCheckForAccess(RtCheck, Access, AccessTy, StridesMap, 1176 DepSetId, TheLoop, RunningDepId, ASId, 1177 ShouldCheckWrap, false)) { 1178 LLVM_DEBUG(dbgs() << "LAA: Can't find bounds for ptr:" 1179 << *Access.getPointer() << '\n'); 1180 Retries.emplace_back(Access, AccessTy); 1181 CanDoAliasSetRT = false; 1182 } 1183 } 1184 } 1185 1186 // Note that this function computes CanDoRT and MayNeedRTCheck 1187 // independently. For example CanDoRT=false, MayNeedRTCheck=false means that 1188 // we have a pointer for which we couldn't find the bounds but we don't 1189 // actually need to emit any checks so it does not matter. 1190 // 1191 // We need runtime checks for this alias set, if there are at least 2 1192 // dependence sets (in which case RunningDepId > 2) or if we need to re-try 1193 // any bound checks (because in that case the number of dependence sets is 1194 // incomplete). 1195 bool NeedsAliasSetRTCheck = RunningDepId > 2 || !Retries.empty(); 1196 1197 // We need to perform run-time alias checks, but some pointers had bounds 1198 // that couldn't be checked. 1199 if (NeedsAliasSetRTCheck && !CanDoAliasSetRT) { 1200 // Reset the CanDoSetRt flag and retry all accesses that have failed. 1201 // We know that we need these checks, so we can now be more aggressive 1202 // and add further checks if required (overflow checks). 1203 CanDoAliasSetRT = true; 1204 for (const auto &[Access, AccessTy] : Retries) { 1205 if (!createCheckForAccess(RtCheck, Access, AccessTy, StridesMap, 1206 DepSetId, TheLoop, RunningDepId, ASId, 1207 ShouldCheckWrap, /*Assume=*/true)) { 1208 CanDoAliasSetRT = false; 1209 UncomputablePtr = Access.getPointer(); 1210 break; 1211 } 1212 } 1213 } 1214 1215 CanDoRT &= CanDoAliasSetRT; 1216 MayNeedRTCheck |= NeedsAliasSetRTCheck; 1217 ++ASId; 1218 } 1219 1220 // If the pointers that we would use for the bounds comparison have different 1221 // address spaces, assume the values aren't directly comparable, so we can't 1222 // use them for the runtime check. We also have to assume they could 1223 // overlap. In the future there should be metadata for whether address spaces 1224 // are disjoint. 1225 unsigned NumPointers = RtCheck.Pointers.size(); 1226 for (unsigned i = 0; i < NumPointers; ++i) { 1227 for (unsigned j = i + 1; j < NumPointers; ++j) { 1228 // Only need to check pointers between two different dependency sets. 1229 if (RtCheck.Pointers[i].DependencySetId == 1230 RtCheck.Pointers[j].DependencySetId) 1231 continue; 1232 // Only need to check pointers in the same alias set. 1233 if (RtCheck.Pointers[i].AliasSetId != RtCheck.Pointers[j].AliasSetId) 1234 continue; 1235 1236 Value *PtrI = RtCheck.Pointers[i].PointerValue; 1237 Value *PtrJ = RtCheck.Pointers[j].PointerValue; 1238 1239 unsigned ASi = PtrI->getType()->getPointerAddressSpace(); 1240 unsigned ASj = PtrJ->getType()->getPointerAddressSpace(); 1241 if (ASi != ASj) { 1242 LLVM_DEBUG( 1243 dbgs() << "LAA: Runtime check would require comparison between" 1244 " different address spaces\n"); 1245 return false; 1246 } 1247 } 1248 } 1249 1250 if (MayNeedRTCheck && CanDoRT) 1251 RtCheck.generateChecks(DepCands, IsDepCheckNeeded); 1252 1253 LLVM_DEBUG(dbgs() << "LAA: We need to do " << RtCheck.getNumberOfChecks() 1254 << " pointer comparisons.\n"); 1255 1256 // If we can do run-time checks, but there are no checks, no runtime checks 1257 // are needed. This can happen when all pointers point to the same underlying 1258 // object for example. 1259 RtCheck.Need = CanDoRT ? RtCheck.getNumberOfChecks() != 0 : MayNeedRTCheck; 1260 1261 bool CanDoRTIfNeeded = !RtCheck.Need || CanDoRT; 1262 if (!CanDoRTIfNeeded) 1263 RtCheck.reset(); 1264 return CanDoRTIfNeeded; 1265 } 1266 1267 void AccessAnalysis::processMemAccesses() { 1268 // We process the set twice: first we process read-write pointers, last we 1269 // process read-only pointers. This allows us to skip dependence tests for 1270 // read-only pointers. 1271 1272 LLVM_DEBUG(dbgs() << "LAA: Processing memory accesses...\n"); 1273 LLVM_DEBUG(dbgs() << " AST: "; AST.dump()); 1274 LLVM_DEBUG(dbgs() << "LAA: Accesses(" << Accesses.size() << "):\n"); 1275 LLVM_DEBUG({ 1276 for (const auto &[A, _] : Accesses) 1277 dbgs() << "\t" << *A.getPointer() << " (" 1278 << (A.getInt() ? "write" 1279 : (ReadOnlyPtr.count(A.getPointer()) ? "read-only" 1280 : "read")) 1281 << ")\n"; 1282 }); 1283 1284 // The AliasSetTracker has nicely partitioned our pointers by metadata 1285 // compatibility and potential for underlying-object overlap. As a result, we 1286 // only need to check for potential pointer dependencies within each alias 1287 // set. 1288 for (const auto &AS : AST) { 1289 // Note that both the alias-set tracker and the alias sets themselves used 1290 // ordered collections internally and so the iteration order here is 1291 // deterministic. 1292 auto ASPointers = AS.getPointers(); 1293 1294 bool SetHasWrite = false; 1295 1296 // Map of pointers to last access encountered. 1297 typedef DenseMap<const Value*, MemAccessInfo> UnderlyingObjToAccessMap; 1298 UnderlyingObjToAccessMap ObjToLastAccess; 1299 1300 // Set of access to check after all writes have been processed. 1301 PtrAccessMap DeferredAccesses; 1302 1303 // Iterate over each alias set twice, once to process read/write pointers, 1304 // and then to process read-only pointers. 1305 for (int SetIteration = 0; SetIteration < 2; ++SetIteration) { 1306 bool UseDeferred = SetIteration > 0; 1307 PtrAccessMap &S = UseDeferred ? DeferredAccesses : Accesses; 1308 1309 for (const Value *ConstPtr : ASPointers) { 1310 Value *Ptr = const_cast<Value *>(ConstPtr); 1311 1312 // For a single memory access in AliasSetTracker, Accesses may contain 1313 // both read and write, and they both need to be handled for CheckDeps. 1314 for (const auto &[AC, _] : S) { 1315 if (AC.getPointer() != Ptr) 1316 continue; 1317 1318 bool IsWrite = AC.getInt(); 1319 1320 // If we're using the deferred access set, then it contains only 1321 // reads. 1322 bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite; 1323 if (UseDeferred && !IsReadOnlyPtr) 1324 continue; 1325 // Otherwise, the pointer must be in the PtrAccessSet, either as a 1326 // read or a write. 1327 assert(((IsReadOnlyPtr && UseDeferred) || IsWrite || 1328 S.count(MemAccessInfo(Ptr, false))) && 1329 "Alias-set pointer not in the access set?"); 1330 1331 MemAccessInfo Access(Ptr, IsWrite); 1332 DepCands.insert(Access); 1333 1334 // Memorize read-only pointers for later processing and skip them in 1335 // the first round (they need to be checked after we have seen all 1336 // write pointers). Note: we also mark pointer that are not 1337 // consecutive as "read-only" pointers (so that we check 1338 // "a[b[i]] +="). Hence, we need the second check for "!IsWrite". 1339 if (!UseDeferred && IsReadOnlyPtr) { 1340 // We only use the pointer keys, the types vector values don't 1341 // matter. 1342 DeferredAccesses.insert({Access, {}}); 1343 continue; 1344 } 1345 1346 // If this is a write - check other reads and writes for conflicts. If 1347 // this is a read only check other writes for conflicts (but only if 1348 // there is no other write to the ptr - this is an optimization to 1349 // catch "a[i] = a[i] + " without having to do a dependence check). 1350 if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) { 1351 CheckDeps.push_back(Access); 1352 IsRTCheckAnalysisNeeded = true; 1353 } 1354 1355 if (IsWrite) 1356 SetHasWrite = true; 1357 1358 // Create sets of pointers connected by a shared alias set and 1359 // underlying object. 1360 typedef SmallVector<const Value *, 16> ValueVector; 1361 ValueVector TempObjects; 1362 1363 UnderlyingObjects[Ptr] = {}; 1364 SmallVector<const Value *, 16> &UOs = UnderlyingObjects[Ptr]; 1365 ::getUnderlyingObjects(Ptr, UOs, LI); 1366 LLVM_DEBUG(dbgs() 1367 << "Underlying objects for pointer " << *Ptr << "\n"); 1368 for (const Value *UnderlyingObj : UOs) { 1369 // nullptr never alias, don't join sets for pointer that have "null" 1370 // in their UnderlyingObjects list. 1371 if (isa<ConstantPointerNull>(UnderlyingObj) && 1372 !NullPointerIsDefined( 1373 TheLoop->getHeader()->getParent(), 1374 UnderlyingObj->getType()->getPointerAddressSpace())) 1375 continue; 1376 1377 UnderlyingObjToAccessMap::iterator Prev = 1378 ObjToLastAccess.find(UnderlyingObj); 1379 if (Prev != ObjToLastAccess.end()) 1380 DepCands.unionSets(Access, Prev->second); 1381 1382 ObjToLastAccess[UnderlyingObj] = Access; 1383 LLVM_DEBUG(dbgs() << " " << *UnderlyingObj << "\n"); 1384 } 1385 } 1386 } 1387 } 1388 } 1389 } 1390 1391 /// Return true if an AddRec pointer \p Ptr is unsigned non-wrapping, 1392 /// i.e. monotonically increasing/decreasing. 1393 static bool isNoWrapAddRec(Value *Ptr, const SCEVAddRecExpr *AR, 1394 PredicatedScalarEvolution &PSE, const Loop *L) { 1395 1396 // FIXME: This should probably only return true for NUW. 1397 if (AR->getNoWrapFlags(SCEV::NoWrapMask)) 1398 return true; 1399 1400 if (PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW)) 1401 return true; 1402 1403 // Scalar evolution does not propagate the non-wrapping flags to values that 1404 // are derived from a non-wrapping induction variable because non-wrapping 1405 // could be flow-sensitive. 1406 // 1407 // Look through the potentially overflowing instruction to try to prove 1408 // non-wrapping for the *specific* value of Ptr. 1409 1410 // The arithmetic implied by an nusw GEP can't overflow. 1411 const auto *GEP = dyn_cast<GetElementPtrInst>(Ptr); 1412 if (!GEP || !GEP->hasNoUnsignedSignedWrap()) 1413 return false; 1414 1415 // Make sure there is only one non-const index and analyze that. 1416 Value *NonConstIndex = nullptr; 1417 for (Value *Index : GEP->indices()) 1418 if (!isa<ConstantInt>(Index)) { 1419 if (NonConstIndex) 1420 return false; 1421 NonConstIndex = Index; 1422 } 1423 if (!NonConstIndex) 1424 // The recurrence is on the pointer, ignore for now. 1425 return false; 1426 1427 // The index in GEP is signed. It is non-wrapping if it's derived from a NSW 1428 // AddRec using a NSW operation. 1429 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(NonConstIndex)) 1430 if (OBO->hasNoSignedWrap() && 1431 // Assume constant for other the operand so that the AddRec can be 1432 // easily found. 1433 isa<ConstantInt>(OBO->getOperand(1))) { 1434 const SCEV *OpScev = PSE.getSCEV(OBO->getOperand(0)); 1435 1436 if (auto *OpAR = dyn_cast<SCEVAddRecExpr>(OpScev)) 1437 return OpAR->getLoop() == L && OpAR->getNoWrapFlags(SCEV::FlagNSW); 1438 } 1439 1440 return false; 1441 } 1442 1443 /// Check whether the access through \p Ptr has a constant stride. 1444 std::optional<int64_t> 1445 llvm::getPtrStride(PredicatedScalarEvolution &PSE, Type *AccessTy, Value *Ptr, 1446 const Loop *Lp, 1447 const DenseMap<Value *, const SCEV *> &StridesMap, 1448 bool Assume, bool ShouldCheckWrap) { 1449 const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr); 1450 if (PSE.getSE()->isLoopInvariant(PtrScev, Lp)) 1451 return {0}; 1452 1453 Type *Ty = Ptr->getType(); 1454 assert(Ty->isPointerTy() && "Unexpected non-ptr"); 1455 if (isa<ScalableVectorType>(AccessTy)) { 1456 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Scalable object: " << *AccessTy 1457 << "\n"); 1458 return std::nullopt; 1459 } 1460 1461 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 1462 if (Assume && !AR) 1463 AR = PSE.getAsAddRec(Ptr); 1464 1465 if (!AR) { 1466 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer " << *Ptr 1467 << " SCEV: " << *PtrScev << "\n"); 1468 return std::nullopt; 1469 } 1470 1471 // The access function must stride over the innermost loop. 1472 if (Lp != AR->getLoop()) { 1473 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop " 1474 << *Ptr << " SCEV: " << *AR << "\n"); 1475 return std::nullopt; 1476 } 1477 1478 // Check the step is constant. 1479 const SCEV *Step = AR->getStepRecurrence(*PSE.getSE()); 1480 1481 // Calculate the pointer stride and check if it is constant. 1482 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 1483 if (!C) { 1484 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr 1485 << " SCEV: " << *AR << "\n"); 1486 return std::nullopt; 1487 } 1488 1489 const auto &DL = Lp->getHeader()->getDataLayout(); 1490 TypeSize AllocSize = DL.getTypeAllocSize(AccessTy); 1491 int64_t Size = AllocSize.getFixedValue(); 1492 const APInt &APStepVal = C->getAPInt(); 1493 1494 // Huge step value - give up. 1495 if (APStepVal.getBitWidth() > 64) 1496 return std::nullopt; 1497 1498 int64_t StepVal = APStepVal.getSExtValue(); 1499 1500 // Strided access. 1501 int64_t Stride = StepVal / Size; 1502 int64_t Rem = StepVal % Size; 1503 if (Rem) 1504 return std::nullopt; 1505 1506 if (!ShouldCheckWrap) 1507 return Stride; 1508 1509 // The address calculation must not wrap. Otherwise, a dependence could be 1510 // inverted. 1511 if (isNoWrapAddRec(Ptr, AR, PSE, Lp)) 1512 return Stride; 1513 1514 // An nusw getelementptr that is an AddRec cannot wrap. If it would wrap, 1515 // the distance between the previously accessed location and the wrapped 1516 // location will be larger than half the pointer index type space. In that 1517 // case, the GEP would be poison and any memory access dependent on it would 1518 // be immediate UB when executed. 1519 if (auto *GEP = dyn_cast<GetElementPtrInst>(Ptr); 1520 GEP && GEP->hasNoUnsignedSignedWrap()) 1521 return Stride; 1522 1523 // If the null pointer is undefined, then a access sequence which would 1524 // otherwise access it can be assumed not to unsigned wrap. Note that this 1525 // assumes the object in memory is aligned to the natural alignment. 1526 unsigned AddrSpace = Ty->getPointerAddressSpace(); 1527 if (!NullPointerIsDefined(Lp->getHeader()->getParent(), AddrSpace) && 1528 (Stride == 1 || Stride == -1)) 1529 return Stride; 1530 1531 if (Assume) { 1532 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW); 1533 LLVM_DEBUG(dbgs() << "LAA: Pointer may wrap:\n" 1534 << "LAA: Pointer: " << *Ptr << "\n" 1535 << "LAA: SCEV: " << *AR << "\n" 1536 << "LAA: Added an overflow assumption\n"); 1537 return Stride; 1538 } 1539 LLVM_DEBUG( 1540 dbgs() << "LAA: Bad stride - Pointer may wrap in the address space " 1541 << *Ptr << " SCEV: " << *AR << "\n"); 1542 return std::nullopt; 1543 } 1544 1545 std::optional<int> llvm::getPointersDiff(Type *ElemTyA, Value *PtrA, 1546 Type *ElemTyB, Value *PtrB, 1547 const DataLayout &DL, 1548 ScalarEvolution &SE, bool StrictCheck, 1549 bool CheckType) { 1550 assert(PtrA && PtrB && "Expected non-nullptr pointers."); 1551 1552 // Make sure that A and B are different pointers. 1553 if (PtrA == PtrB) 1554 return 0; 1555 1556 // Make sure that the element types are the same if required. 1557 if (CheckType && ElemTyA != ElemTyB) 1558 return std::nullopt; 1559 1560 unsigned ASA = PtrA->getType()->getPointerAddressSpace(); 1561 unsigned ASB = PtrB->getType()->getPointerAddressSpace(); 1562 1563 // Check that the address spaces match. 1564 if (ASA != ASB) 1565 return std::nullopt; 1566 unsigned IdxWidth = DL.getIndexSizeInBits(ASA); 1567 1568 APInt OffsetA(IdxWidth, 0), OffsetB(IdxWidth, 0); 1569 const Value *PtrA1 = PtrA->stripAndAccumulateConstantOffsets( 1570 DL, OffsetA, /*AllowNonInbounds=*/true); 1571 const Value *PtrB1 = PtrB->stripAndAccumulateConstantOffsets( 1572 DL, OffsetB, /*AllowNonInbounds=*/true); 1573 1574 int Val; 1575 if (PtrA1 == PtrB1) { 1576 // Retrieve the address space again as pointer stripping now tracks through 1577 // `addrspacecast`. 1578 ASA = cast<PointerType>(PtrA1->getType())->getAddressSpace(); 1579 ASB = cast<PointerType>(PtrB1->getType())->getAddressSpace(); 1580 // Check that the address spaces match and that the pointers are valid. 1581 if (ASA != ASB) 1582 return std::nullopt; 1583 1584 IdxWidth = DL.getIndexSizeInBits(ASA); 1585 OffsetA = OffsetA.sextOrTrunc(IdxWidth); 1586 OffsetB = OffsetB.sextOrTrunc(IdxWidth); 1587 1588 OffsetB -= OffsetA; 1589 Val = OffsetB.getSExtValue(); 1590 } else { 1591 // Otherwise compute the distance with SCEV between the base pointers. 1592 const SCEV *PtrSCEVA = SE.getSCEV(PtrA); 1593 const SCEV *PtrSCEVB = SE.getSCEV(PtrB); 1594 std::optional<APInt> Diff = 1595 SE.computeConstantDifference(PtrSCEVB, PtrSCEVA); 1596 if (!Diff) 1597 return std::nullopt; 1598 Val = Diff->getSExtValue(); 1599 } 1600 int Size = DL.getTypeStoreSize(ElemTyA); 1601 int Dist = Val / Size; 1602 1603 // Ensure that the calculated distance matches the type-based one after all 1604 // the bitcasts removal in the provided pointers. 1605 if (!StrictCheck || Dist * Size == Val) 1606 return Dist; 1607 return std::nullopt; 1608 } 1609 1610 bool llvm::sortPtrAccesses(ArrayRef<Value *> VL, Type *ElemTy, 1611 const DataLayout &DL, ScalarEvolution &SE, 1612 SmallVectorImpl<unsigned> &SortedIndices) { 1613 assert(llvm::all_of( 1614 VL, [](const Value *V) { return V->getType()->isPointerTy(); }) && 1615 "Expected list of pointer operands."); 1616 // Walk over the pointers, and map each of them to an offset relative to 1617 // first pointer in the array. 1618 Value *Ptr0 = VL[0]; 1619 1620 using DistOrdPair = std::pair<int64_t, int>; 1621 auto Compare = llvm::less_first(); 1622 std::set<DistOrdPair, decltype(Compare)> Offsets(Compare); 1623 Offsets.emplace(0, 0); 1624 bool IsConsecutive = true; 1625 for (auto [Idx, Ptr] : drop_begin(enumerate(VL))) { 1626 std::optional<int> Diff = getPointersDiff(ElemTy, Ptr0, ElemTy, Ptr, DL, SE, 1627 /*StrictCheck=*/true); 1628 if (!Diff) 1629 return false; 1630 1631 // Check if the pointer with the same offset is found. 1632 int64_t Offset = *Diff; 1633 auto [It, IsInserted] = Offsets.emplace(Offset, Idx); 1634 if (!IsInserted) 1635 return false; 1636 // Consecutive order if the inserted element is the last one. 1637 IsConsecutive &= std::next(It) == Offsets.end(); 1638 } 1639 SortedIndices.clear(); 1640 if (!IsConsecutive) { 1641 // Fill SortedIndices array only if it is non-consecutive. 1642 SortedIndices.resize(VL.size()); 1643 for (auto [Idx, Off] : enumerate(Offsets)) 1644 SortedIndices[Idx] = Off.second; 1645 } 1646 return true; 1647 } 1648 1649 /// Returns true if the memory operations \p A and \p B are consecutive. 1650 bool llvm::isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL, 1651 ScalarEvolution &SE, bool CheckType) { 1652 Value *PtrA = getLoadStorePointerOperand(A); 1653 Value *PtrB = getLoadStorePointerOperand(B); 1654 if (!PtrA || !PtrB) 1655 return false; 1656 Type *ElemTyA = getLoadStoreType(A); 1657 Type *ElemTyB = getLoadStoreType(B); 1658 std::optional<int> Diff = 1659 getPointersDiff(ElemTyA, PtrA, ElemTyB, PtrB, DL, SE, 1660 /*StrictCheck=*/true, CheckType); 1661 return Diff && *Diff == 1; 1662 } 1663 1664 void MemoryDepChecker::addAccess(StoreInst *SI) { 1665 visitPointers(SI->getPointerOperand(), *InnermostLoop, 1666 [this, SI](Value *Ptr) { 1667 Accesses[MemAccessInfo(Ptr, true)].push_back(AccessIdx); 1668 InstMap.push_back(SI); 1669 ++AccessIdx; 1670 }); 1671 } 1672 1673 void MemoryDepChecker::addAccess(LoadInst *LI) { 1674 visitPointers(LI->getPointerOperand(), *InnermostLoop, 1675 [this, LI](Value *Ptr) { 1676 Accesses[MemAccessInfo(Ptr, false)].push_back(AccessIdx); 1677 InstMap.push_back(LI); 1678 ++AccessIdx; 1679 }); 1680 } 1681 1682 MemoryDepChecker::VectorizationSafetyStatus 1683 MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type) { 1684 switch (Type) { 1685 case NoDep: 1686 case Forward: 1687 case BackwardVectorizable: 1688 return VectorizationSafetyStatus::Safe; 1689 1690 case Unknown: 1691 return VectorizationSafetyStatus::PossiblySafeWithRtChecks; 1692 case ForwardButPreventsForwarding: 1693 case Backward: 1694 case BackwardVectorizableButPreventsForwarding: 1695 case IndirectUnsafe: 1696 return VectorizationSafetyStatus::Unsafe; 1697 } 1698 llvm_unreachable("unexpected DepType!"); 1699 } 1700 1701 bool MemoryDepChecker::Dependence::isBackward() const { 1702 switch (Type) { 1703 case NoDep: 1704 case Forward: 1705 case ForwardButPreventsForwarding: 1706 case Unknown: 1707 case IndirectUnsafe: 1708 return false; 1709 1710 case BackwardVectorizable: 1711 case Backward: 1712 case BackwardVectorizableButPreventsForwarding: 1713 return true; 1714 } 1715 llvm_unreachable("unexpected DepType!"); 1716 } 1717 1718 bool MemoryDepChecker::Dependence::isPossiblyBackward() const { 1719 return isBackward() || Type == Unknown || Type == IndirectUnsafe; 1720 } 1721 1722 bool MemoryDepChecker::Dependence::isForward() const { 1723 switch (Type) { 1724 case Forward: 1725 case ForwardButPreventsForwarding: 1726 return true; 1727 1728 case NoDep: 1729 case Unknown: 1730 case BackwardVectorizable: 1731 case Backward: 1732 case BackwardVectorizableButPreventsForwarding: 1733 case IndirectUnsafe: 1734 return false; 1735 } 1736 llvm_unreachable("unexpected DepType!"); 1737 } 1738 1739 bool MemoryDepChecker::couldPreventStoreLoadForward(uint64_t Distance, 1740 uint64_t TypeByteSize) { 1741 // If loads occur at a distance that is not a multiple of a feasible vector 1742 // factor store-load forwarding does not take place. 1743 // Positive dependences might cause troubles because vectorizing them might 1744 // prevent store-load forwarding making vectorized code run a lot slower. 1745 // a[i] = a[i-3] ^ a[i-8]; 1746 // The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and 1747 // hence on your typical architecture store-load forwarding does not take 1748 // place. Vectorizing in such cases does not make sense. 1749 // Store-load forwarding distance. 1750 1751 // After this many iterations store-to-load forwarding conflicts should not 1752 // cause any slowdowns. 1753 const uint64_t NumItersForStoreLoadThroughMemory = 8 * TypeByteSize; 1754 // Maximum vector factor. 1755 uint64_t MaxVFWithoutSLForwardIssues = std::min( 1756 VectorizerParams::MaxVectorWidth * TypeByteSize, MinDepDistBytes); 1757 1758 // Compute the smallest VF at which the store and load would be misaligned. 1759 for (uint64_t VF = 2 * TypeByteSize; VF <= MaxVFWithoutSLForwardIssues; 1760 VF *= 2) { 1761 // If the number of vector iteration between the store and the load are 1762 // small we could incur conflicts. 1763 if (Distance % VF && Distance / VF < NumItersForStoreLoadThroughMemory) { 1764 MaxVFWithoutSLForwardIssues = (VF >> 1); 1765 break; 1766 } 1767 } 1768 1769 if (MaxVFWithoutSLForwardIssues < 2 * TypeByteSize) { 1770 LLVM_DEBUG( 1771 dbgs() << "LAA: Distance " << Distance 1772 << " that could cause a store-load forwarding conflict\n"); 1773 return true; 1774 } 1775 1776 if (MaxVFWithoutSLForwardIssues < MinDepDistBytes && 1777 MaxVFWithoutSLForwardIssues != 1778 VectorizerParams::MaxVectorWidth * TypeByteSize) 1779 MinDepDistBytes = MaxVFWithoutSLForwardIssues; 1780 return false; 1781 } 1782 1783 void MemoryDepChecker::mergeInStatus(VectorizationSafetyStatus S) { 1784 if (Status < S) 1785 Status = S; 1786 } 1787 1788 /// Given a dependence-distance \p Dist between two 1789 /// memory accesses, that have strides in the same direction whose absolute 1790 /// value of the maximum stride is given in \p MaxStride, and that have the same 1791 /// type size \p TypeByteSize, in a loop whose maximum backedge taken count is 1792 /// \p MaxBTC, check if it is possible to prove statically that the dependence 1793 /// distance is larger than the range that the accesses will travel through the 1794 /// execution of the loop. If so, return true; false otherwise. This is useful 1795 /// for example in loops such as the following (PR31098): 1796 /// for (i = 0; i < D; ++i) { 1797 /// = out[i]; 1798 /// out[i+D] = 1799 /// } 1800 static bool isSafeDependenceDistance(const DataLayout &DL, ScalarEvolution &SE, 1801 const SCEV &MaxBTC, const SCEV &Dist, 1802 uint64_t MaxStride, 1803 uint64_t TypeByteSize) { 1804 1805 // If we can prove that 1806 // (**) |Dist| > MaxBTC * Step 1807 // where Step is the absolute stride of the memory accesses in bytes, 1808 // then there is no dependence. 1809 // 1810 // Rationale: 1811 // We basically want to check if the absolute distance (|Dist/Step|) 1812 // is >= the loop iteration count (or > MaxBTC). 1813 // This is equivalent to the Strong SIV Test (Practical Dependence Testing, 1814 // Section 4.2.1); Note, that for vectorization it is sufficient to prove 1815 // that the dependence distance is >= VF; This is checked elsewhere. 1816 // But in some cases we can prune dependence distances early, and 1817 // even before selecting the VF, and without a runtime test, by comparing 1818 // the distance against the loop iteration count. Since the vectorized code 1819 // will be executed only if LoopCount >= VF, proving distance >= LoopCount 1820 // also guarantees that distance >= VF. 1821 // 1822 const uint64_t ByteStride = MaxStride * TypeByteSize; 1823 const SCEV *Step = SE.getConstant(MaxBTC.getType(), ByteStride); 1824 const SCEV *Product = SE.getMulExpr(&MaxBTC, Step); 1825 1826 const SCEV *CastedDist = &Dist; 1827 const SCEV *CastedProduct = Product; 1828 uint64_t DistTypeSizeBits = DL.getTypeSizeInBits(Dist.getType()); 1829 uint64_t ProductTypeSizeBits = DL.getTypeSizeInBits(Product->getType()); 1830 1831 // The dependence distance can be positive/negative, so we sign extend Dist; 1832 // The multiplication of the absolute stride in bytes and the 1833 // backedgeTakenCount is non-negative, so we zero extend Product. 1834 if (DistTypeSizeBits > ProductTypeSizeBits) 1835 CastedProduct = SE.getZeroExtendExpr(Product, Dist.getType()); 1836 else 1837 CastedDist = SE.getNoopOrSignExtend(&Dist, Product->getType()); 1838 1839 // Is Dist - (MaxBTC * Step) > 0 ? 1840 // (If so, then we have proven (**) because |Dist| >= Dist) 1841 const SCEV *Minus = SE.getMinusSCEV(CastedDist, CastedProduct); 1842 if (SE.isKnownPositive(Minus)) 1843 return true; 1844 1845 // Second try: Is -Dist - (MaxBTC * Step) > 0 ? 1846 // (If so, then we have proven (**) because |Dist| >= -1*Dist) 1847 const SCEV *NegDist = SE.getNegativeSCEV(CastedDist); 1848 Minus = SE.getMinusSCEV(NegDist, CastedProduct); 1849 return SE.isKnownPositive(Minus); 1850 } 1851 1852 /// Check the dependence for two accesses with the same stride \p Stride. 1853 /// \p Distance is the positive distance and \p TypeByteSize is type size in 1854 /// bytes. 1855 /// 1856 /// \returns true if they are independent. 1857 static bool areStridedAccessesIndependent(uint64_t Distance, uint64_t Stride, 1858 uint64_t TypeByteSize) { 1859 assert(Stride > 1 && "The stride must be greater than 1"); 1860 assert(TypeByteSize > 0 && "The type size in byte must be non-zero"); 1861 assert(Distance > 0 && "The distance must be non-zero"); 1862 1863 // Skip if the distance is not multiple of type byte size. 1864 if (Distance % TypeByteSize) 1865 return false; 1866 1867 uint64_t ScaledDist = Distance / TypeByteSize; 1868 1869 // No dependence if the scaled distance is not multiple of the stride. 1870 // E.g. 1871 // for (i = 0; i < 1024 ; i += 4) 1872 // A[i+2] = A[i] + 1; 1873 // 1874 // Two accesses in memory (scaled distance is 2, stride is 4): 1875 // | A[0] | | | | A[4] | | | | 1876 // | | | A[2] | | | | A[6] | | 1877 // 1878 // E.g. 1879 // for (i = 0; i < 1024 ; i += 3) 1880 // A[i+4] = A[i] + 1; 1881 // 1882 // Two accesses in memory (scaled distance is 4, stride is 3): 1883 // | A[0] | | | A[3] | | | A[6] | | | 1884 // | | | | | A[4] | | | A[7] | | 1885 return ScaledDist % Stride; 1886 } 1887 1888 std::variant<MemoryDepChecker::Dependence::DepType, 1889 MemoryDepChecker::DepDistanceStrideAndSizeInfo> 1890 MemoryDepChecker::getDependenceDistanceStrideAndSize( 1891 const AccessAnalysis::MemAccessInfo &A, Instruction *AInst, 1892 const AccessAnalysis::MemAccessInfo &B, Instruction *BInst) { 1893 const auto &DL = InnermostLoop->getHeader()->getDataLayout(); 1894 auto &SE = *PSE.getSE(); 1895 const auto &[APtr, AIsWrite] = A; 1896 const auto &[BPtr, BIsWrite] = B; 1897 1898 // Two reads are independent. 1899 if (!AIsWrite && !BIsWrite) 1900 return MemoryDepChecker::Dependence::NoDep; 1901 1902 Type *ATy = getLoadStoreType(AInst); 1903 Type *BTy = getLoadStoreType(BInst); 1904 1905 // We cannot check pointers in different address spaces. 1906 if (APtr->getType()->getPointerAddressSpace() != 1907 BPtr->getType()->getPointerAddressSpace()) 1908 return MemoryDepChecker::Dependence::Unknown; 1909 1910 std::optional<int64_t> StrideAPtr = 1911 getPtrStride(PSE, ATy, APtr, InnermostLoop, SymbolicStrides, true, true); 1912 std::optional<int64_t> StrideBPtr = 1913 getPtrStride(PSE, BTy, BPtr, InnermostLoop, SymbolicStrides, true, true); 1914 1915 const SCEV *Src = PSE.getSCEV(APtr); 1916 const SCEV *Sink = PSE.getSCEV(BPtr); 1917 1918 // If the induction step is negative we have to invert source and sink of the 1919 // dependence when measuring the distance between them. We should not swap 1920 // AIsWrite with BIsWrite, as their uses expect them in program order. 1921 if (StrideAPtr && *StrideAPtr < 0) { 1922 std::swap(Src, Sink); 1923 std::swap(AInst, BInst); 1924 std::swap(StrideAPtr, StrideBPtr); 1925 } 1926 1927 const SCEV *Dist = SE.getMinusSCEV(Sink, Src); 1928 1929 LLVM_DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink 1930 << "\n"); 1931 LLVM_DEBUG(dbgs() << "LAA: Distance for " << *AInst << " to " << *BInst 1932 << ": " << *Dist << "\n"); 1933 1934 // Check if we can prove that Sink only accesses memory after Src's end or 1935 // vice versa. At the moment this is limited to cases where either source or 1936 // sink are loop invariant to avoid compile-time increases. This is not 1937 // required for correctness. 1938 if (SE.isLoopInvariant(Src, InnermostLoop) || 1939 SE.isLoopInvariant(Sink, InnermostLoop)) { 1940 const auto &[SrcStart_, SrcEnd_] = 1941 getStartAndEndForAccess(InnermostLoop, Src, ATy, PSE, PointerBounds); 1942 const auto &[SinkStart_, SinkEnd_] = 1943 getStartAndEndForAccess(InnermostLoop, Sink, BTy, PSE, PointerBounds); 1944 if (!isa<SCEVCouldNotCompute>(SrcStart_) && 1945 !isa<SCEVCouldNotCompute>(SrcEnd_) && 1946 !isa<SCEVCouldNotCompute>(SinkStart_) && 1947 !isa<SCEVCouldNotCompute>(SinkEnd_)) { 1948 if (!LoopGuards) 1949 LoopGuards.emplace( 1950 ScalarEvolution::LoopGuards::collect(InnermostLoop, SE)); 1951 auto SrcEnd = SE.applyLoopGuards(SrcEnd_, *LoopGuards); 1952 auto SinkStart = SE.applyLoopGuards(SinkStart_, *LoopGuards); 1953 if (SE.isKnownPredicate(CmpInst::ICMP_ULE, SrcEnd, SinkStart)) 1954 return MemoryDepChecker::Dependence::NoDep; 1955 1956 auto SinkEnd = SE.applyLoopGuards(SinkEnd_, *LoopGuards); 1957 auto SrcStart = SE.applyLoopGuards(SrcStart_, *LoopGuards); 1958 if (SE.isKnownPredicate(CmpInst::ICMP_ULE, SinkEnd, SrcStart)) 1959 return MemoryDepChecker::Dependence::NoDep; 1960 } 1961 } 1962 1963 // Need accesses with constant strides and the same direction for further 1964 // dependence analysis. We don't want to vectorize "A[B[i]] += ..." and 1965 // similar code or pointer arithmetic that could wrap in the address space. 1966 1967 // If either Src or Sink are not strided (i.e. not a non-wrapping AddRec) and 1968 // not loop-invariant (stride will be 0 in that case), we cannot analyze the 1969 // dependence further and also cannot generate runtime checks. 1970 if (!StrideAPtr || !StrideBPtr) { 1971 LLVM_DEBUG(dbgs() << "Pointer access with non-constant stride\n"); 1972 return MemoryDepChecker::Dependence::IndirectUnsafe; 1973 } 1974 1975 int64_t StrideAPtrInt = *StrideAPtr; 1976 int64_t StrideBPtrInt = *StrideBPtr; 1977 LLVM_DEBUG(dbgs() << "LAA: Src induction step: " << StrideAPtrInt 1978 << " Sink induction step: " << StrideBPtrInt << "\n"); 1979 // At least Src or Sink are loop invariant and the other is strided or 1980 // invariant. We can generate a runtime check to disambiguate the accesses. 1981 if (!StrideAPtrInt || !StrideBPtrInt) 1982 return MemoryDepChecker::Dependence::Unknown; 1983 1984 // Both Src and Sink have a constant stride, check if they are in the same 1985 // direction. 1986 if ((StrideAPtrInt > 0) != (StrideBPtrInt > 0)) { 1987 LLVM_DEBUG( 1988 dbgs() << "Pointer access with strides in different directions\n"); 1989 return MemoryDepChecker::Dependence::Unknown; 1990 } 1991 1992 uint64_t TypeByteSize = DL.getTypeAllocSize(ATy); 1993 bool HasSameSize = 1994 DL.getTypeStoreSizeInBits(ATy) == DL.getTypeStoreSizeInBits(BTy); 1995 if (!HasSameSize) 1996 TypeByteSize = 0; 1997 return DepDistanceStrideAndSizeInfo(Dist, std::abs(StrideAPtrInt), 1998 std::abs(StrideBPtrInt), TypeByteSize, 1999 AIsWrite, BIsWrite); 2000 } 2001 2002 MemoryDepChecker::Dependence::DepType 2003 MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx, 2004 const MemAccessInfo &B, unsigned BIdx) { 2005 assert(AIdx < BIdx && "Must pass arguments in program order"); 2006 2007 // Get the dependence distance, stride, type size and what access writes for 2008 // the dependence between A and B. 2009 auto Res = 2010 getDependenceDistanceStrideAndSize(A, InstMap[AIdx], B, InstMap[BIdx]); 2011 if (std::holds_alternative<Dependence::DepType>(Res)) 2012 return std::get<Dependence::DepType>(Res); 2013 2014 auto &[Dist, StrideA, StrideB, TypeByteSize, AIsWrite, BIsWrite] = 2015 std::get<DepDistanceStrideAndSizeInfo>(Res); 2016 bool HasSameSize = TypeByteSize > 0; 2017 2018 std::optional<uint64_t> CommonStride = 2019 StrideA == StrideB ? std::make_optional(StrideA) : std::nullopt; 2020 if (isa<SCEVCouldNotCompute>(Dist)) { 2021 // TODO: Relax requirement that there is a common stride to retry with 2022 // non-constant distance dependencies. 2023 FoundNonConstantDistanceDependence |= CommonStride.has_value(); 2024 LLVM_DEBUG(dbgs() << "LAA: Dependence because of uncomputable distance.\n"); 2025 return Dependence::Unknown; 2026 } 2027 2028 ScalarEvolution &SE = *PSE.getSE(); 2029 auto &DL = InnermostLoop->getHeader()->getDataLayout(); 2030 uint64_t MaxStride = std::max(StrideA, StrideB); 2031 2032 // If the distance between the acecsses is larger than their maximum absolute 2033 // stride multiplied by the symbolic maximum backedge taken count (which is an 2034 // upper bound of the number of iterations), the accesses are independet, i.e. 2035 // they are far enough appart that accesses won't access the same location 2036 // across all loop ierations. 2037 if (HasSameSize && isSafeDependenceDistance( 2038 DL, SE, *(PSE.getSymbolicMaxBackedgeTakenCount()), 2039 *Dist, MaxStride, TypeByteSize)) 2040 return Dependence::NoDep; 2041 2042 const SCEVConstant *ConstDist = dyn_cast<SCEVConstant>(Dist); 2043 2044 // Attempt to prove strided accesses independent. 2045 if (ConstDist) { 2046 uint64_t Distance = ConstDist->getAPInt().abs().getZExtValue(); 2047 2048 // If the distance between accesses and their strides are known constants, 2049 // check whether the accesses interlace each other. 2050 if (Distance > 0 && CommonStride && CommonStride > 1 && HasSameSize && 2051 areStridedAccessesIndependent(Distance, *CommonStride, TypeByteSize)) { 2052 LLVM_DEBUG(dbgs() << "LAA: Strided accesses are independent\n"); 2053 return Dependence::NoDep; 2054 } 2055 } else { 2056 if (!LoopGuards) 2057 LoopGuards.emplace( 2058 ScalarEvolution::LoopGuards::collect(InnermostLoop, SE)); 2059 Dist = SE.applyLoopGuards(Dist, *LoopGuards); 2060 } 2061 2062 // Negative distances are not plausible dependencies. 2063 if (SE.isKnownNonPositive(Dist)) { 2064 if (SE.isKnownNonNegative(Dist)) { 2065 if (HasSameSize) { 2066 // Write to the same location with the same size. 2067 return Dependence::Forward; 2068 } 2069 LLVM_DEBUG(dbgs() << "LAA: possibly zero dependence difference but " 2070 "different type sizes\n"); 2071 return Dependence::Unknown; 2072 } 2073 2074 bool IsTrueDataDependence = (AIsWrite && !BIsWrite); 2075 // Check if the first access writes to a location that is read in a later 2076 // iteration, where the distance between them is not a multiple of a vector 2077 // factor and relatively small. 2078 // 2079 // NOTE: There is no need to update MaxSafeVectorWidthInBits after call to 2080 // couldPreventStoreLoadForward, even if it changed MinDepDistBytes, since a 2081 // forward dependency will allow vectorization using any width. 2082 2083 if (IsTrueDataDependence && EnableForwardingConflictDetection) { 2084 if (!ConstDist) { 2085 // TODO: FoundNonConstantDistanceDependence is used as a necessary 2086 // condition to consider retrying with runtime checks. Historically, we 2087 // did not set it when strides were different but there is no inherent 2088 // reason to. 2089 FoundNonConstantDistanceDependence |= CommonStride.has_value(); 2090 return Dependence::Unknown; 2091 } 2092 if (!HasSameSize || 2093 couldPreventStoreLoadForward( 2094 ConstDist->getAPInt().abs().getZExtValue(), TypeByteSize)) { 2095 LLVM_DEBUG( 2096 dbgs() << "LAA: Forward but may prevent st->ld forwarding\n"); 2097 return Dependence::ForwardButPreventsForwarding; 2098 } 2099 } 2100 2101 LLVM_DEBUG(dbgs() << "LAA: Dependence is negative\n"); 2102 return Dependence::Forward; 2103 } 2104 2105 int64_t MinDistance = SE.getSignedRangeMin(Dist).getSExtValue(); 2106 // Below we only handle strictly positive distances. 2107 if (MinDistance <= 0) { 2108 FoundNonConstantDistanceDependence |= CommonStride.has_value(); 2109 return Dependence::Unknown; 2110 } 2111 2112 if (!ConstDist) { 2113 // Previously this case would be treated as Unknown, possibly setting 2114 // FoundNonConstantDistanceDependence to force re-trying with runtime 2115 // checks. Until the TODO below is addressed, set it here to preserve 2116 // original behavior w.r.t. re-trying with runtime checks. 2117 // TODO: FoundNonConstantDistanceDependence is used as a necessary 2118 // condition to consider retrying with runtime checks. Historically, we 2119 // did not set it when strides were different but there is no inherent 2120 // reason to. 2121 FoundNonConstantDistanceDependence |= CommonStride.has_value(); 2122 } 2123 2124 if (!HasSameSize) { 2125 LLVM_DEBUG(dbgs() << "LAA: ReadWrite-Write positive dependency with " 2126 "different type sizes\n"); 2127 return Dependence::Unknown; 2128 } 2129 2130 if (!CommonStride) 2131 return Dependence::Unknown; 2132 2133 // Bail out early if passed-in parameters make vectorization not feasible. 2134 unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ? 2135 VectorizerParams::VectorizationFactor : 1); 2136 unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ? 2137 VectorizerParams::VectorizationInterleave : 1); 2138 // The minimum number of iterations for a vectorized/unrolled version. 2139 unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U); 2140 2141 // It's not vectorizable if the distance is smaller than the minimum distance 2142 // needed for a vectroized/unrolled version. Vectorizing one iteration in 2143 // front needs TypeByteSize * Stride. Vectorizing the last iteration needs 2144 // TypeByteSize (No need to plus the last gap distance). 2145 // 2146 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes. 2147 // foo(int *A) { 2148 // int *B = (int *)((char *)A + 14); 2149 // for (i = 0 ; i < 1024 ; i += 2) 2150 // B[i] = A[i] + 1; 2151 // } 2152 // 2153 // Two accesses in memory (stride is 2): 2154 // | A[0] | | A[2] | | A[4] | | A[6] | | 2155 // | B[0] | | B[2] | | B[4] | 2156 // 2157 // MinDistance needs for vectorizing iterations except the last iteration: 2158 // 4 * 2 * (MinNumIter - 1). MinDistance needs for the last iteration: 4. 2159 // So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4. 2160 // 2161 // If MinNumIter is 2, it is vectorizable as the minimum distance needed is 2162 // 12, which is less than distance. 2163 // 2164 // If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4), 2165 // the minimum distance needed is 28, which is greater than distance. It is 2166 // not safe to do vectorization. 2167 2168 // We know that Dist is positive, but it may not be constant. Use the signed 2169 // minimum for computations below, as this ensures we compute the closest 2170 // possible dependence distance. 2171 uint64_t MinDistanceNeeded = 2172 TypeByteSize * *CommonStride * (MinNumIter - 1) + TypeByteSize; 2173 if (MinDistanceNeeded > static_cast<uint64_t>(MinDistance)) { 2174 if (!ConstDist) { 2175 // For non-constant distances, we checked the lower bound of the 2176 // dependence distance and the distance may be larger at runtime (and safe 2177 // for vectorization). Classify it as Unknown, so we re-try with runtime 2178 // checks. 2179 return Dependence::Unknown; 2180 } 2181 LLVM_DEBUG(dbgs() << "LAA: Failure because of positive minimum distance " 2182 << MinDistance << '\n'); 2183 return Dependence::Backward; 2184 } 2185 2186 // Unsafe if the minimum distance needed is greater than smallest dependence 2187 // distance distance. 2188 if (MinDistanceNeeded > MinDepDistBytes) { 2189 LLVM_DEBUG(dbgs() << "LAA: Failure because it needs at least " 2190 << MinDistanceNeeded << " size in bytes\n"); 2191 return Dependence::Backward; 2192 } 2193 2194 // Positive distance bigger than max vectorization factor. 2195 // FIXME: Should use max factor instead of max distance in bytes, which could 2196 // not handle different types. 2197 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes. 2198 // void foo (int *A, char *B) { 2199 // for (unsigned i = 0; i < 1024; i++) { 2200 // A[i+2] = A[i] + 1; 2201 // B[i+2] = B[i] + 1; 2202 // } 2203 // } 2204 // 2205 // This case is currently unsafe according to the max safe distance. If we 2206 // analyze the two accesses on array B, the max safe dependence distance 2207 // is 2. Then we analyze the accesses on array A, the minimum distance needed 2208 // is 8, which is less than 2 and forbidden vectorization, But actually 2209 // both A and B could be vectorized by 2 iterations. 2210 MinDepDistBytes = 2211 std::min(static_cast<uint64_t>(MinDistance), MinDepDistBytes); 2212 2213 bool IsTrueDataDependence = (!AIsWrite && BIsWrite); 2214 uint64_t MinDepDistBytesOld = MinDepDistBytes; 2215 if (IsTrueDataDependence && EnableForwardingConflictDetection && ConstDist && 2216 couldPreventStoreLoadForward(MinDistance, TypeByteSize)) { 2217 // Sanity check that we didn't update MinDepDistBytes when calling 2218 // couldPreventStoreLoadForward 2219 assert(MinDepDistBytes == MinDepDistBytesOld && 2220 "An update to MinDepDistBytes requires an update to " 2221 "MaxSafeVectorWidthInBits"); 2222 (void)MinDepDistBytesOld; 2223 return Dependence::BackwardVectorizableButPreventsForwarding; 2224 } 2225 2226 // An update to MinDepDistBytes requires an update to MaxSafeVectorWidthInBits 2227 // since there is a backwards dependency. 2228 uint64_t MaxVF = MinDepDistBytes / (TypeByteSize * *CommonStride); 2229 LLVM_DEBUG(dbgs() << "LAA: Positive min distance " << MinDistance 2230 << " with max VF = " << MaxVF << '\n'); 2231 2232 uint64_t MaxVFInBits = MaxVF * TypeByteSize * 8; 2233 if (!ConstDist && MaxVFInBits < MaxTargetVectorWidthInBits) { 2234 // For non-constant distances, we checked the lower bound of the dependence 2235 // distance and the distance may be larger at runtime (and safe for 2236 // vectorization). Classify it as Unknown, so we re-try with runtime checks. 2237 return Dependence::Unknown; 2238 } 2239 2240 MaxSafeVectorWidthInBits = std::min(MaxSafeVectorWidthInBits, MaxVFInBits); 2241 return Dependence::BackwardVectorizable; 2242 } 2243 2244 bool MemoryDepChecker::areDepsSafe(const DepCandidates &AccessSets, 2245 const MemAccessInfoList &CheckDeps) { 2246 2247 MinDepDistBytes = -1; 2248 SmallPtrSet<MemAccessInfo, 8> Visited; 2249 for (MemAccessInfo CurAccess : CheckDeps) { 2250 if (Visited.count(CurAccess)) 2251 continue; 2252 2253 // Get the relevant memory access set. 2254 EquivalenceClasses<MemAccessInfo>::iterator I = 2255 AccessSets.findValue(AccessSets.getLeaderValue(CurAccess)); 2256 2257 // Check accesses within this set. 2258 EquivalenceClasses<MemAccessInfo>::member_iterator AI = 2259 AccessSets.member_begin(I); 2260 EquivalenceClasses<MemAccessInfo>::member_iterator AE = 2261 AccessSets.member_end(); 2262 2263 // Check every access pair. 2264 while (AI != AE) { 2265 Visited.insert(*AI); 2266 bool AIIsWrite = AI->getInt(); 2267 // Check loads only against next equivalent class, but stores also against 2268 // other stores in the same equivalence class - to the same address. 2269 EquivalenceClasses<MemAccessInfo>::member_iterator OI = 2270 (AIIsWrite ? AI : std::next(AI)); 2271 while (OI != AE) { 2272 // Check every accessing instruction pair in program order. 2273 for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(), 2274 I1E = Accesses[*AI].end(); I1 != I1E; ++I1) 2275 // Scan all accesses of another equivalence class, but only the next 2276 // accesses of the same equivalent class. 2277 for (std::vector<unsigned>::iterator 2278 I2 = (OI == AI ? std::next(I1) : Accesses[*OI].begin()), 2279 I2E = (OI == AI ? I1E : Accesses[*OI].end()); 2280 I2 != I2E; ++I2) { 2281 auto A = std::make_pair(&*AI, *I1); 2282 auto B = std::make_pair(&*OI, *I2); 2283 2284 assert(*I1 != *I2); 2285 if (*I1 > *I2) 2286 std::swap(A, B); 2287 2288 Dependence::DepType Type = 2289 isDependent(*A.first, A.second, *B.first, B.second); 2290 mergeInStatus(Dependence::isSafeForVectorization(Type)); 2291 2292 // Gather dependences unless we accumulated MaxDependences 2293 // dependences. In that case return as soon as we find the first 2294 // unsafe dependence. This puts a limit on this quadratic 2295 // algorithm. 2296 if (RecordDependences) { 2297 if (Type != Dependence::NoDep) 2298 Dependences.emplace_back(A.second, B.second, Type); 2299 2300 if (Dependences.size() >= MaxDependences) { 2301 RecordDependences = false; 2302 Dependences.clear(); 2303 LLVM_DEBUG(dbgs() 2304 << "Too many dependences, stopped recording\n"); 2305 } 2306 } 2307 if (!RecordDependences && !isSafeForVectorization()) 2308 return false; 2309 } 2310 ++OI; 2311 } 2312 ++AI; 2313 } 2314 } 2315 2316 LLVM_DEBUG(dbgs() << "Total Dependences: " << Dependences.size() << "\n"); 2317 return isSafeForVectorization(); 2318 } 2319 2320 SmallVector<Instruction *, 4> 2321 MemoryDepChecker::getInstructionsForAccess(Value *Ptr, bool IsWrite) const { 2322 MemAccessInfo Access(Ptr, IsWrite); 2323 auto &IndexVector = Accesses.find(Access)->second; 2324 2325 SmallVector<Instruction *, 4> Insts; 2326 transform(IndexVector, 2327 std::back_inserter(Insts), 2328 [&](unsigned Idx) { return this->InstMap[Idx]; }); 2329 return Insts; 2330 } 2331 2332 const char *MemoryDepChecker::Dependence::DepName[] = { 2333 "NoDep", 2334 "Unknown", 2335 "IndirectUnsafe", 2336 "Forward", 2337 "ForwardButPreventsForwarding", 2338 "Backward", 2339 "BackwardVectorizable", 2340 "BackwardVectorizableButPreventsForwarding"}; 2341 2342 void MemoryDepChecker::Dependence::print( 2343 raw_ostream &OS, unsigned Depth, 2344 const SmallVectorImpl<Instruction *> &Instrs) const { 2345 OS.indent(Depth) << DepName[Type] << ":\n"; 2346 OS.indent(Depth + 2) << *Instrs[Source] << " -> \n"; 2347 OS.indent(Depth + 2) << *Instrs[Destination] << "\n"; 2348 } 2349 2350 bool LoopAccessInfo::canAnalyzeLoop() { 2351 // We need to have a loop header. 2352 LLVM_DEBUG(dbgs() << "\nLAA: Checking a loop in '" 2353 << TheLoop->getHeader()->getParent()->getName() << "' from " 2354 << TheLoop->getLocStr() << "\n"); 2355 2356 // We can only analyze innermost loops. 2357 if (!TheLoop->isInnermost()) { 2358 LLVM_DEBUG(dbgs() << "LAA: loop is not the innermost loop\n"); 2359 recordAnalysis("NotInnerMostLoop") << "loop is not the innermost loop"; 2360 return false; 2361 } 2362 2363 // We must have a single backedge. 2364 if (TheLoop->getNumBackEdges() != 1) { 2365 LLVM_DEBUG( 2366 dbgs() << "LAA: loop control flow is not understood by analyzer\n"); 2367 recordAnalysis("CFGNotUnderstood") 2368 << "loop control flow is not understood by analyzer"; 2369 return false; 2370 } 2371 2372 // ScalarEvolution needs to be able to find the symbolic max backedge taken 2373 // count, which is an upper bound on the number of loop iterations. The loop 2374 // may execute fewer iterations, if it exits via an uncountable exit. 2375 const SCEV *ExitCount = PSE->getSymbolicMaxBackedgeTakenCount(); 2376 if (isa<SCEVCouldNotCompute>(ExitCount)) { 2377 recordAnalysis("CantComputeNumberOfIterations") 2378 << "could not determine number of loop iterations"; 2379 LLVM_DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n"); 2380 return false; 2381 } 2382 2383 LLVM_DEBUG(dbgs() << "LAA: Found an analyzable loop: " 2384 << TheLoop->getHeader()->getName() << "\n"); 2385 return true; 2386 } 2387 2388 bool LoopAccessInfo::analyzeLoop(AAResults *AA, const LoopInfo *LI, 2389 const TargetLibraryInfo *TLI, 2390 DominatorTree *DT) { 2391 // Holds the Load and Store instructions. 2392 SmallVector<LoadInst *, 16> Loads; 2393 SmallVector<StoreInst *, 16> Stores; 2394 SmallPtrSet<MDNode *, 8> LoopAliasScopes; 2395 2396 // Holds all the different accesses in the loop. 2397 unsigned NumReads = 0; 2398 unsigned NumReadWrites = 0; 2399 2400 bool HasComplexMemInst = false; 2401 2402 // A runtime check is only legal to insert if there are no convergent calls. 2403 HasConvergentOp = false; 2404 2405 PtrRtChecking->Pointers.clear(); 2406 PtrRtChecking->Need = false; 2407 2408 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 2409 2410 const bool EnableMemAccessVersioningOfLoop = 2411 EnableMemAccessVersioning && 2412 !TheLoop->getHeader()->getParent()->hasOptSize(); 2413 2414 // Traverse blocks in fixed RPOT order, regardless of their storage in the 2415 // loop info, as it may be arbitrary. 2416 LoopBlocksRPO RPOT(TheLoop); 2417 RPOT.perform(LI); 2418 for (BasicBlock *BB : RPOT) { 2419 // Scan the BB and collect legal loads and stores. Also detect any 2420 // convergent instructions. 2421 for (Instruction &I : *BB) { 2422 if (auto *Call = dyn_cast<CallBase>(&I)) { 2423 if (Call->isConvergent()) 2424 HasConvergentOp = true; 2425 } 2426 2427 // With both a non-vectorizable memory instruction and a convergent 2428 // operation, found in this loop, no reason to continue the search. 2429 if (HasComplexMemInst && HasConvergentOp) 2430 return false; 2431 2432 // Avoid hitting recordAnalysis multiple times. 2433 if (HasComplexMemInst) 2434 continue; 2435 2436 // Record alias scopes defined inside the loop. 2437 if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(&I)) 2438 for (Metadata *Op : Decl->getScopeList()->operands()) 2439 LoopAliasScopes.insert(cast<MDNode>(Op)); 2440 2441 // Many math library functions read the rounding mode. We will only 2442 // vectorize a loop if it contains known function calls that don't set 2443 // the flag. Therefore, it is safe to ignore this read from memory. 2444 auto *Call = dyn_cast<CallInst>(&I); 2445 if (Call && getVectorIntrinsicIDForCall(Call, TLI)) 2446 continue; 2447 2448 // If this is a load, save it. If this instruction can read from memory 2449 // but is not a load, we only allow it if it's a call to a function with a 2450 // vector mapping and no pointer arguments. 2451 if (I.mayReadFromMemory()) { 2452 auto hasPointerArgs = [](CallBase *CB) { 2453 return any_of(CB->args(), [](Value const *Arg) { 2454 return Arg->getType()->isPointerTy(); 2455 }); 2456 }; 2457 2458 // If the function has an explicit vectorized counterpart, and does not 2459 // take output/input pointers, we can safely assume that it can be 2460 // vectorized. 2461 if (Call && !Call->isNoBuiltin() && Call->getCalledFunction() && 2462 !hasPointerArgs(Call) && !VFDatabase::getMappings(*Call).empty()) 2463 continue; 2464 2465 auto *Ld = dyn_cast<LoadInst>(&I); 2466 if (!Ld) { 2467 recordAnalysis("CantVectorizeInstruction", Ld) 2468 << "instruction cannot be vectorized"; 2469 HasComplexMemInst = true; 2470 continue; 2471 } 2472 if (!Ld->isSimple() && !IsAnnotatedParallel) { 2473 recordAnalysis("NonSimpleLoad", Ld) 2474 << "read with atomic ordering or volatile read"; 2475 LLVM_DEBUG(dbgs() << "LAA: Found a non-simple load.\n"); 2476 HasComplexMemInst = true; 2477 continue; 2478 } 2479 NumLoads++; 2480 Loads.push_back(Ld); 2481 DepChecker->addAccess(Ld); 2482 if (EnableMemAccessVersioningOfLoop) 2483 collectStridedAccess(Ld); 2484 continue; 2485 } 2486 2487 // Save 'store' instructions. Abort if other instructions write to memory. 2488 if (I.mayWriteToMemory()) { 2489 auto *St = dyn_cast<StoreInst>(&I); 2490 if (!St) { 2491 recordAnalysis("CantVectorizeInstruction", St) 2492 << "instruction cannot be vectorized"; 2493 HasComplexMemInst = true; 2494 continue; 2495 } 2496 if (!St->isSimple() && !IsAnnotatedParallel) { 2497 recordAnalysis("NonSimpleStore", St) 2498 << "write with atomic ordering or volatile write"; 2499 LLVM_DEBUG(dbgs() << "LAA: Found a non-simple store.\n"); 2500 HasComplexMemInst = true; 2501 continue; 2502 } 2503 NumStores++; 2504 Stores.push_back(St); 2505 DepChecker->addAccess(St); 2506 if (EnableMemAccessVersioningOfLoop) 2507 collectStridedAccess(St); 2508 } 2509 } // Next instr. 2510 } // Next block. 2511 2512 if (HasComplexMemInst) 2513 return false; 2514 2515 // Now we have two lists that hold the loads and the stores. 2516 // Next, we find the pointers that they use. 2517 2518 // Check if we see any stores. If there are no stores, then we don't 2519 // care if the pointers are *restrict*. 2520 if (!Stores.size()) { 2521 LLVM_DEBUG(dbgs() << "LAA: Found a read-only loop!\n"); 2522 return true; 2523 } 2524 2525 MemoryDepChecker::DepCandidates DependentAccesses; 2526 AccessAnalysis Accesses(TheLoop, AA, LI, DependentAccesses, *PSE, 2527 LoopAliasScopes); 2528 2529 // Holds the analyzed pointers. We don't want to call getUnderlyingObjects 2530 // multiple times on the same object. If the ptr is accessed twice, once 2531 // for read and once for write, it will only appear once (on the write 2532 // list). This is okay, since we are going to check for conflicts between 2533 // writes and between reads and writes, but not between reads and reads. 2534 SmallSet<std::pair<Value *, Type *>, 16> Seen; 2535 2536 // Record uniform store addresses to identify if we have multiple stores 2537 // to the same address. 2538 SmallPtrSet<Value *, 16> UniformStores; 2539 2540 for (StoreInst *ST : Stores) { 2541 Value *Ptr = ST->getPointerOperand(); 2542 2543 if (isInvariant(Ptr)) { 2544 // Record store instructions to loop invariant addresses 2545 StoresToInvariantAddresses.push_back(ST); 2546 HasStoreStoreDependenceInvolvingLoopInvariantAddress |= 2547 !UniformStores.insert(Ptr).second; 2548 } 2549 2550 // If we did *not* see this pointer before, insert it to the read-write 2551 // list. At this phase it is only a 'write' list. 2552 Type *AccessTy = getLoadStoreType(ST); 2553 if (Seen.insert({Ptr, AccessTy}).second) { 2554 ++NumReadWrites; 2555 2556 MemoryLocation Loc = MemoryLocation::get(ST); 2557 // The TBAA metadata could have a control dependency on the predication 2558 // condition, so we cannot rely on it when determining whether or not we 2559 // need runtime pointer checks. 2560 if (blockNeedsPredication(ST->getParent(), TheLoop, DT)) 2561 Loc.AATags.TBAA = nullptr; 2562 2563 visitPointers(const_cast<Value *>(Loc.Ptr), *TheLoop, 2564 [&Accesses, AccessTy, Loc](Value *Ptr) { 2565 MemoryLocation NewLoc = Loc.getWithNewPtr(Ptr); 2566 Accesses.addStore(NewLoc, AccessTy); 2567 }); 2568 } 2569 } 2570 2571 if (IsAnnotatedParallel) { 2572 LLVM_DEBUG( 2573 dbgs() << "LAA: A loop annotated parallel, ignore memory dependency " 2574 << "checks.\n"); 2575 return true; 2576 } 2577 2578 for (LoadInst *LD : Loads) { 2579 Value *Ptr = LD->getPointerOperand(); 2580 // If we did *not* see this pointer before, insert it to the 2581 // read list. If we *did* see it before, then it is already in 2582 // the read-write list. This allows us to vectorize expressions 2583 // such as A[i] += x; Because the address of A[i] is a read-write 2584 // pointer. This only works if the index of A[i] is consecutive. 2585 // If the address of i is unknown (for example A[B[i]]) then we may 2586 // read a few words, modify, and write a few words, and some of the 2587 // words may be written to the same address. 2588 bool IsReadOnlyPtr = false; 2589 Type *AccessTy = getLoadStoreType(LD); 2590 if (Seen.insert({Ptr, AccessTy}).second || 2591 !getPtrStride(*PSE, LD->getType(), Ptr, TheLoop, SymbolicStrides).value_or(0)) { 2592 ++NumReads; 2593 IsReadOnlyPtr = true; 2594 } 2595 2596 // See if there is an unsafe dependency between a load to a uniform address and 2597 // store to the same uniform address. 2598 if (UniformStores.count(Ptr)) { 2599 LLVM_DEBUG(dbgs() << "LAA: Found an unsafe dependency between a uniform " 2600 "load and uniform store to the same address!\n"); 2601 HasLoadStoreDependenceInvolvingLoopInvariantAddress = true; 2602 } 2603 2604 MemoryLocation Loc = MemoryLocation::get(LD); 2605 // The TBAA metadata could have a control dependency on the predication 2606 // condition, so we cannot rely on it when determining whether or not we 2607 // need runtime pointer checks. 2608 if (blockNeedsPredication(LD->getParent(), TheLoop, DT)) 2609 Loc.AATags.TBAA = nullptr; 2610 2611 visitPointers(const_cast<Value *>(Loc.Ptr), *TheLoop, 2612 [&Accesses, AccessTy, Loc, IsReadOnlyPtr](Value *Ptr) { 2613 MemoryLocation NewLoc = Loc.getWithNewPtr(Ptr); 2614 Accesses.addLoad(NewLoc, AccessTy, IsReadOnlyPtr); 2615 }); 2616 } 2617 2618 // If we write (or read-write) to a single destination and there are no 2619 // other reads in this loop then is it safe to vectorize. 2620 if (NumReadWrites == 1 && NumReads == 0) { 2621 LLVM_DEBUG(dbgs() << "LAA: Found a write-only loop!\n"); 2622 return true; 2623 } 2624 2625 // Build dependence sets and check whether we need a runtime pointer bounds 2626 // check. 2627 Accesses.buildDependenceSets(); 2628 2629 // Find pointers with computable bounds. We are going to use this information 2630 // to place a runtime bound check. 2631 Value *UncomputablePtr = nullptr; 2632 bool CanDoRTIfNeeded = 2633 Accesses.canCheckPtrAtRT(*PtrRtChecking, PSE->getSE(), TheLoop, 2634 SymbolicStrides, UncomputablePtr, false); 2635 if (!CanDoRTIfNeeded) { 2636 const auto *I = dyn_cast_or_null<Instruction>(UncomputablePtr); 2637 recordAnalysis("CantIdentifyArrayBounds", I) 2638 << "cannot identify array bounds"; 2639 LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because we can't find " 2640 << "the array bounds.\n"); 2641 return false; 2642 } 2643 2644 LLVM_DEBUG( 2645 dbgs() << "LAA: May be able to perform a memory runtime check if needed.\n"); 2646 2647 bool DepsAreSafe = true; 2648 if (Accesses.isDependencyCheckNeeded()) { 2649 LLVM_DEBUG(dbgs() << "LAA: Checking memory dependencies\n"); 2650 DepsAreSafe = DepChecker->areDepsSafe(DependentAccesses, 2651 Accesses.getDependenciesToCheck()); 2652 2653 if (!DepsAreSafe && DepChecker->shouldRetryWithRuntimeCheck()) { 2654 LLVM_DEBUG(dbgs() << "LAA: Retrying with memory checks\n"); 2655 2656 // Clear the dependency checks. We assume they are not needed. 2657 Accesses.resetDepChecks(*DepChecker); 2658 2659 PtrRtChecking->reset(); 2660 PtrRtChecking->Need = true; 2661 2662 auto *SE = PSE->getSE(); 2663 UncomputablePtr = nullptr; 2664 CanDoRTIfNeeded = Accesses.canCheckPtrAtRT( 2665 *PtrRtChecking, SE, TheLoop, SymbolicStrides, UncomputablePtr, true); 2666 2667 // Check that we found the bounds for the pointer. 2668 if (!CanDoRTIfNeeded) { 2669 auto *I = dyn_cast_or_null<Instruction>(UncomputablePtr); 2670 recordAnalysis("CantCheckMemDepsAtRunTime", I) 2671 << "cannot check memory dependencies at runtime"; 2672 LLVM_DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n"); 2673 return false; 2674 } 2675 DepsAreSafe = true; 2676 } 2677 } 2678 2679 if (HasConvergentOp) { 2680 recordAnalysis("CantInsertRuntimeCheckWithConvergent") 2681 << "cannot add control dependency to convergent operation"; 2682 LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because a runtime check " 2683 "would be needed with a convergent operation\n"); 2684 return false; 2685 } 2686 2687 if (DepsAreSafe) { 2688 LLVM_DEBUG( 2689 dbgs() << "LAA: No unsafe dependent memory operations in loop. We" 2690 << (PtrRtChecking->Need ? "" : " don't") 2691 << " need runtime memory checks.\n"); 2692 return true; 2693 } 2694 2695 emitUnsafeDependenceRemark(); 2696 return false; 2697 } 2698 2699 void LoopAccessInfo::emitUnsafeDependenceRemark() { 2700 const auto *Deps = getDepChecker().getDependences(); 2701 if (!Deps) 2702 return; 2703 const auto *Found = 2704 llvm::find_if(*Deps, [](const MemoryDepChecker::Dependence &D) { 2705 return MemoryDepChecker::Dependence::isSafeForVectorization(D.Type) != 2706 MemoryDepChecker::VectorizationSafetyStatus::Safe; 2707 }); 2708 if (Found == Deps->end()) 2709 return; 2710 MemoryDepChecker::Dependence Dep = *Found; 2711 2712 LLVM_DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n"); 2713 2714 // Emit remark for first unsafe dependence 2715 bool HasForcedDistribution = false; 2716 std::optional<const MDOperand *> Value = 2717 findStringMetadataForLoop(TheLoop, "llvm.loop.distribute.enable"); 2718 if (Value) { 2719 const MDOperand *Op = *Value; 2720 assert(Op && mdconst::hasa<ConstantInt>(*Op) && "invalid metadata"); 2721 HasForcedDistribution = mdconst::extract<ConstantInt>(*Op)->getZExtValue(); 2722 } 2723 2724 const std::string Info = 2725 HasForcedDistribution 2726 ? "unsafe dependent memory operations in loop." 2727 : "unsafe dependent memory operations in loop. Use " 2728 "#pragma clang loop distribute(enable) to allow loop distribution " 2729 "to attempt to isolate the offending operations into a separate " 2730 "loop"; 2731 OptimizationRemarkAnalysis &R = 2732 recordAnalysis("UnsafeDep", Dep.getDestination(getDepChecker())) << Info; 2733 2734 switch (Dep.Type) { 2735 case MemoryDepChecker::Dependence::NoDep: 2736 case MemoryDepChecker::Dependence::Forward: 2737 case MemoryDepChecker::Dependence::BackwardVectorizable: 2738 llvm_unreachable("Unexpected dependence"); 2739 case MemoryDepChecker::Dependence::Backward: 2740 R << "\nBackward loop carried data dependence."; 2741 break; 2742 case MemoryDepChecker::Dependence::ForwardButPreventsForwarding: 2743 R << "\nForward loop carried data dependence that prevents " 2744 "store-to-load forwarding."; 2745 break; 2746 case MemoryDepChecker::Dependence::BackwardVectorizableButPreventsForwarding: 2747 R << "\nBackward loop carried data dependence that prevents " 2748 "store-to-load forwarding."; 2749 break; 2750 case MemoryDepChecker::Dependence::IndirectUnsafe: 2751 R << "\nUnsafe indirect dependence."; 2752 break; 2753 case MemoryDepChecker::Dependence::Unknown: 2754 R << "\nUnknown data dependence."; 2755 break; 2756 } 2757 2758 if (Instruction *I = Dep.getSource(getDepChecker())) { 2759 DebugLoc SourceLoc = I->getDebugLoc(); 2760 if (auto *DD = dyn_cast_or_null<Instruction>(getPointerOperand(I))) 2761 SourceLoc = DD->getDebugLoc(); 2762 if (SourceLoc) 2763 R << " Memory location is the same as accessed at " 2764 << ore::NV("Location", SourceLoc); 2765 } 2766 } 2767 2768 bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop, 2769 DominatorTree *DT) { 2770 assert(TheLoop->contains(BB) && "Unknown block used"); 2771 2772 // Blocks that do not dominate the latch need predication. 2773 const BasicBlock *Latch = TheLoop->getLoopLatch(); 2774 return !DT->dominates(BB, Latch); 2775 } 2776 2777 OptimizationRemarkAnalysis & 2778 LoopAccessInfo::recordAnalysis(StringRef RemarkName, const Instruction *I) { 2779 assert(!Report && "Multiple reports generated"); 2780 2781 const Value *CodeRegion = TheLoop->getHeader(); 2782 DebugLoc DL = TheLoop->getStartLoc(); 2783 2784 if (I) { 2785 CodeRegion = I->getParent(); 2786 // If there is no debug location attached to the instruction, revert back to 2787 // using the loop's. 2788 if (I->getDebugLoc()) 2789 DL = I->getDebugLoc(); 2790 } 2791 2792 Report = std::make_unique<OptimizationRemarkAnalysis>(DEBUG_TYPE, RemarkName, DL, 2793 CodeRegion); 2794 return *Report; 2795 } 2796 2797 bool LoopAccessInfo::isInvariant(Value *V) const { 2798 auto *SE = PSE->getSE(); 2799 // TODO: Is this really what we want? Even without FP SCEV, we may want some 2800 // trivially loop-invariant FP values to be considered invariant. 2801 if (!SE->isSCEVable(V->getType())) 2802 return false; 2803 const SCEV *S = SE->getSCEV(V); 2804 return SE->isLoopInvariant(S, TheLoop); 2805 } 2806 2807 /// Find the operand of the GEP that should be checked for consecutive 2808 /// stores. This ignores trailing indices that have no effect on the final 2809 /// pointer. 2810 static unsigned getGEPInductionOperand(const GetElementPtrInst *Gep) { 2811 const DataLayout &DL = Gep->getDataLayout(); 2812 unsigned LastOperand = Gep->getNumOperands() - 1; 2813 TypeSize GEPAllocSize = DL.getTypeAllocSize(Gep->getResultElementType()); 2814 2815 // Walk backwards and try to peel off zeros. 2816 while (LastOperand > 1 && match(Gep->getOperand(LastOperand), m_Zero())) { 2817 // Find the type we're currently indexing into. 2818 gep_type_iterator GEPTI = gep_type_begin(Gep); 2819 std::advance(GEPTI, LastOperand - 2); 2820 2821 // If it's a type with the same allocation size as the result of the GEP we 2822 // can peel off the zero index. 2823 TypeSize ElemSize = GEPTI.isStruct() 2824 ? DL.getTypeAllocSize(GEPTI.getIndexedType()) 2825 : GEPTI.getSequentialElementStride(DL); 2826 if (ElemSize != GEPAllocSize) 2827 break; 2828 --LastOperand; 2829 } 2830 2831 return LastOperand; 2832 } 2833 2834 /// If the argument is a GEP, then returns the operand identified by 2835 /// getGEPInductionOperand. However, if there is some other non-loop-invariant 2836 /// operand, it returns that instead. 2837 static Value *stripGetElementPtr(Value *Ptr, ScalarEvolution *SE, Loop *Lp) { 2838 auto *GEP = dyn_cast<GetElementPtrInst>(Ptr); 2839 if (!GEP) 2840 return Ptr; 2841 2842 unsigned InductionOperand = getGEPInductionOperand(GEP); 2843 2844 // Check that all of the gep indices are uniform except for our induction 2845 // operand. 2846 for (unsigned I = 0, E = GEP->getNumOperands(); I != E; ++I) 2847 if (I != InductionOperand && 2848 !SE->isLoopInvariant(SE->getSCEV(GEP->getOperand(I)), Lp)) 2849 return Ptr; 2850 return GEP->getOperand(InductionOperand); 2851 } 2852 2853 /// Get the stride of a pointer access in a loop. Looks for symbolic 2854 /// strides "a[i*stride]". Returns the symbolic stride, or null otherwise. 2855 static const SCEV *getStrideFromPointer(Value *Ptr, ScalarEvolution *SE, Loop *Lp) { 2856 auto *PtrTy = dyn_cast<PointerType>(Ptr->getType()); 2857 if (!PtrTy || PtrTy->isAggregateType()) 2858 return nullptr; 2859 2860 // Try to remove a gep instruction to make the pointer (actually index at this 2861 // point) easier analyzable. If OrigPtr is equal to Ptr we are analyzing the 2862 // pointer, otherwise, we are analyzing the index. 2863 Value *OrigPtr = Ptr; 2864 2865 // The size of the pointer access. 2866 int64_t PtrAccessSize = 1; 2867 2868 Ptr = stripGetElementPtr(Ptr, SE, Lp); 2869 const SCEV *V = SE->getSCEV(Ptr); 2870 2871 if (Ptr != OrigPtr) 2872 // Strip off casts. 2873 while (const SCEVIntegralCastExpr *C = dyn_cast<SCEVIntegralCastExpr>(V)) 2874 V = C->getOperand(); 2875 2876 const SCEVAddRecExpr *S = dyn_cast<SCEVAddRecExpr>(V); 2877 if (!S) 2878 return nullptr; 2879 2880 // If the pointer is invariant then there is no stride and it makes no 2881 // sense to add it here. 2882 if (Lp != S->getLoop()) 2883 return nullptr; 2884 2885 V = S->getStepRecurrence(*SE); 2886 if (!V) 2887 return nullptr; 2888 2889 // Strip off the size of access multiplication if we are still analyzing the 2890 // pointer. 2891 if (OrigPtr == Ptr) { 2892 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(V)) { 2893 if (M->getOperand(0)->getSCEVType() != scConstant) 2894 return nullptr; 2895 2896 const APInt &APStepVal = cast<SCEVConstant>(M->getOperand(0))->getAPInt(); 2897 2898 // Huge step value - give up. 2899 if (APStepVal.getBitWidth() > 64) 2900 return nullptr; 2901 2902 int64_t StepVal = APStepVal.getSExtValue(); 2903 if (PtrAccessSize != StepVal) 2904 return nullptr; 2905 V = M->getOperand(1); 2906 } 2907 } 2908 2909 // Note that the restriction after this loop invariant check are only 2910 // profitability restrictions. 2911 if (!SE->isLoopInvariant(V, Lp)) 2912 return nullptr; 2913 2914 // Look for the loop invariant symbolic value. 2915 if (isa<SCEVUnknown>(V)) 2916 return V; 2917 2918 if (const auto *C = dyn_cast<SCEVIntegralCastExpr>(V)) 2919 if (isa<SCEVUnknown>(C->getOperand())) 2920 return V; 2921 2922 return nullptr; 2923 } 2924 2925 void LoopAccessInfo::collectStridedAccess(Value *MemAccess) { 2926 Value *Ptr = getLoadStorePointerOperand(MemAccess); 2927 if (!Ptr) 2928 return; 2929 2930 // Note: getStrideFromPointer is a *profitability* heuristic. We 2931 // could broaden the scope of values returned here - to anything 2932 // which happens to be loop invariant and contributes to the 2933 // computation of an interesting IV - but we chose not to as we 2934 // don't have a cost model here, and broadening the scope exposes 2935 // far too many unprofitable cases. 2936 const SCEV *StrideExpr = getStrideFromPointer(Ptr, PSE->getSE(), TheLoop); 2937 if (!StrideExpr) 2938 return; 2939 2940 LLVM_DEBUG(dbgs() << "LAA: Found a strided access that is a candidate for " 2941 "versioning:"); 2942 LLVM_DEBUG(dbgs() << " Ptr: " << *Ptr << " Stride: " << *StrideExpr << "\n"); 2943 2944 if (!SpeculateUnitStride) { 2945 LLVM_DEBUG(dbgs() << " Chose not to due to -laa-speculate-unit-stride\n"); 2946 return; 2947 } 2948 2949 // Avoid adding the "Stride == 1" predicate when we know that 2950 // Stride >= Trip-Count. Such a predicate will effectively optimize a single 2951 // or zero iteration loop, as Trip-Count <= Stride == 1. 2952 // 2953 // TODO: We are currently not making a very informed decision on when it is 2954 // beneficial to apply stride versioning. It might make more sense that the 2955 // users of this analysis (such as the vectorizer) will trigger it, based on 2956 // their specific cost considerations; For example, in cases where stride 2957 // versioning does not help resolving memory accesses/dependences, the 2958 // vectorizer should evaluate the cost of the runtime test, and the benefit 2959 // of various possible stride specializations, considering the alternatives 2960 // of using gather/scatters (if available). 2961 2962 const SCEV *MaxBTC = PSE->getSymbolicMaxBackedgeTakenCount(); 2963 2964 // Match the types so we can compare the stride and the MaxBTC. 2965 // The Stride can be positive/negative, so we sign extend Stride; 2966 // The backedgeTakenCount is non-negative, so we zero extend MaxBTC. 2967 const DataLayout &DL = TheLoop->getHeader()->getDataLayout(); 2968 uint64_t StrideTypeSizeBits = DL.getTypeSizeInBits(StrideExpr->getType()); 2969 uint64_t BETypeSizeBits = DL.getTypeSizeInBits(MaxBTC->getType()); 2970 const SCEV *CastedStride = StrideExpr; 2971 const SCEV *CastedBECount = MaxBTC; 2972 ScalarEvolution *SE = PSE->getSE(); 2973 if (BETypeSizeBits >= StrideTypeSizeBits) 2974 CastedStride = SE->getNoopOrSignExtend(StrideExpr, MaxBTC->getType()); 2975 else 2976 CastedBECount = SE->getZeroExtendExpr(MaxBTC, StrideExpr->getType()); 2977 const SCEV *StrideMinusBETaken = SE->getMinusSCEV(CastedStride, CastedBECount); 2978 // Since TripCount == BackEdgeTakenCount + 1, checking: 2979 // "Stride >= TripCount" is equivalent to checking: 2980 // Stride - MaxBTC> 0 2981 if (SE->isKnownPositive(StrideMinusBETaken)) { 2982 LLVM_DEBUG( 2983 dbgs() << "LAA: Stride>=TripCount; No point in versioning as the " 2984 "Stride==1 predicate will imply that the loop executes " 2985 "at most once.\n"); 2986 return; 2987 } 2988 LLVM_DEBUG(dbgs() << "LAA: Found a strided access that we can version.\n"); 2989 2990 // Strip back off the integer cast, and check that our result is a 2991 // SCEVUnknown as we expect. 2992 const SCEV *StrideBase = StrideExpr; 2993 if (const auto *C = dyn_cast<SCEVIntegralCastExpr>(StrideBase)) 2994 StrideBase = C->getOperand(); 2995 SymbolicStrides[Ptr] = cast<SCEVUnknown>(StrideBase); 2996 } 2997 2998 LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE, 2999 const TargetTransformInfo *TTI, 3000 const TargetLibraryInfo *TLI, AAResults *AA, 3001 DominatorTree *DT, LoopInfo *LI) 3002 : PSE(std::make_unique<PredicatedScalarEvolution>(*SE, *L)), 3003 PtrRtChecking(nullptr), TheLoop(L) { 3004 unsigned MaxTargetVectorWidthInBits = std::numeric_limits<unsigned>::max(); 3005 if (TTI) { 3006 TypeSize FixedWidth = 3007 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector); 3008 if (FixedWidth.isNonZero()) { 3009 // Scale the vector width by 2 as rough estimate to also consider 3010 // interleaving. 3011 MaxTargetVectorWidthInBits = FixedWidth.getFixedValue() * 2; 3012 } 3013 3014 TypeSize ScalableWidth = 3015 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_ScalableVector); 3016 if (ScalableWidth.isNonZero()) 3017 MaxTargetVectorWidthInBits = std::numeric_limits<unsigned>::max(); 3018 } 3019 DepChecker = std::make_unique<MemoryDepChecker>(*PSE, L, SymbolicStrides, 3020 MaxTargetVectorWidthInBits); 3021 PtrRtChecking = std::make_unique<RuntimePointerChecking>(*DepChecker, SE); 3022 if (canAnalyzeLoop()) 3023 CanVecMem = analyzeLoop(AA, LI, TLI, DT); 3024 } 3025 3026 void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const { 3027 if (CanVecMem) { 3028 OS.indent(Depth) << "Memory dependences are safe"; 3029 const MemoryDepChecker &DC = getDepChecker(); 3030 if (!DC.isSafeForAnyVectorWidth()) 3031 OS << " with a maximum safe vector width of " 3032 << DC.getMaxSafeVectorWidthInBits() << " bits"; 3033 if (PtrRtChecking->Need) 3034 OS << " with run-time checks"; 3035 OS << "\n"; 3036 } 3037 3038 if (HasConvergentOp) 3039 OS.indent(Depth) << "Has convergent operation in loop\n"; 3040 3041 if (Report) 3042 OS.indent(Depth) << "Report: " << Report->getMsg() << "\n"; 3043 3044 if (auto *Dependences = DepChecker->getDependences()) { 3045 OS.indent(Depth) << "Dependences:\n"; 3046 for (const auto &Dep : *Dependences) { 3047 Dep.print(OS, Depth + 2, DepChecker->getMemoryInstructions()); 3048 OS << "\n"; 3049 } 3050 } else 3051 OS.indent(Depth) << "Too many dependences, not recorded\n"; 3052 3053 // List the pair of accesses need run-time checks to prove independence. 3054 PtrRtChecking->print(OS, Depth); 3055 OS << "\n"; 3056 3057 OS.indent(Depth) 3058 << "Non vectorizable stores to invariant address were " 3059 << (HasStoreStoreDependenceInvolvingLoopInvariantAddress || 3060 HasLoadStoreDependenceInvolvingLoopInvariantAddress 3061 ? "" 3062 : "not ") 3063 << "found in loop.\n"; 3064 3065 OS.indent(Depth) << "SCEV assumptions:\n"; 3066 PSE->getPredicate().print(OS, Depth); 3067 3068 OS << "\n"; 3069 3070 OS.indent(Depth) << "Expressions re-written:\n"; 3071 PSE->print(OS, Depth); 3072 } 3073 3074 const LoopAccessInfo &LoopAccessInfoManager::getInfo(Loop &L) { 3075 const auto &[It, Inserted] = LoopAccessInfoMap.insert({&L, nullptr}); 3076 3077 if (Inserted) 3078 It->second = 3079 std::make_unique<LoopAccessInfo>(&L, &SE, TTI, TLI, &AA, &DT, &LI); 3080 3081 return *It->second; 3082 } 3083 void LoopAccessInfoManager::clear() { 3084 SmallVector<Loop *> ToRemove; 3085 // Collect LoopAccessInfo entries that may keep references to IR outside the 3086 // analyzed loop or SCEVs that may have been modified or invalidated. At the 3087 // moment, that is loops requiring memory or SCEV runtime checks, as those cache 3088 // SCEVs, e.g. for pointer expressions. 3089 for (const auto &[L, LAI] : LoopAccessInfoMap) { 3090 if (LAI->getRuntimePointerChecking()->getChecks().empty() && 3091 LAI->getPSE().getPredicate().isAlwaysTrue()) 3092 continue; 3093 ToRemove.push_back(L); 3094 } 3095 3096 for (Loop *L : ToRemove) 3097 LoopAccessInfoMap.erase(L); 3098 } 3099 3100 bool LoopAccessInfoManager::invalidate( 3101 Function &F, const PreservedAnalyses &PA, 3102 FunctionAnalysisManager::Invalidator &Inv) { 3103 // Check whether our analysis is preserved. 3104 auto PAC = PA.getChecker<LoopAccessAnalysis>(); 3105 if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<Function>>()) 3106 // If not, give up now. 3107 return true; 3108 3109 // Check whether the analyses we depend on became invalid for any reason. 3110 // Skip checking TargetLibraryAnalysis as it is immutable and can't become 3111 // invalid. 3112 return Inv.invalidate<AAManager>(F, PA) || 3113 Inv.invalidate<ScalarEvolutionAnalysis>(F, PA) || 3114 Inv.invalidate<LoopAnalysis>(F, PA) || 3115 Inv.invalidate<DominatorTreeAnalysis>(F, PA); 3116 } 3117 3118 LoopAccessInfoManager LoopAccessAnalysis::run(Function &F, 3119 FunctionAnalysisManager &FAM) { 3120 auto &SE = FAM.getResult<ScalarEvolutionAnalysis>(F); 3121 auto &AA = FAM.getResult<AAManager>(F); 3122 auto &DT = FAM.getResult<DominatorTreeAnalysis>(F); 3123 auto &LI = FAM.getResult<LoopAnalysis>(F); 3124 auto &TTI = FAM.getResult<TargetIRAnalysis>(F); 3125 auto &TLI = FAM.getResult<TargetLibraryAnalysis>(F); 3126 return LoopAccessInfoManager(SE, AA, DT, LI, &TTI, &TLI); 3127 } 3128 3129 AnalysisKey LoopAccessAnalysis::Key; 3130