xref: /llvm-project/llvm/lib/Analysis/LoopAccessAnalysis.cpp (revision a80053322b765eec93951e21db490c55521da2d8)
1 //===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // The implementation for the loop memory dependence that was originally
10 // developed for the loop vectorizer.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Analysis/LoopAccessAnalysis.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/EquivalenceClasses.h"
18 #include "llvm/ADT/PointerIntPair.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/Analysis/AliasAnalysis.h"
25 #include "llvm/Analysis/AliasSetTracker.h"
26 #include "llvm/Analysis/LoopAnalysisManager.h"
27 #include "llvm/Analysis/LoopInfo.h"
28 #include "llvm/Analysis/LoopIterator.h"
29 #include "llvm/Analysis/MemoryLocation.h"
30 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
31 #include "llvm/Analysis/ScalarEvolution.h"
32 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
33 #include "llvm/Analysis/TargetLibraryInfo.h"
34 #include "llvm/Analysis/TargetTransformInfo.h"
35 #include "llvm/Analysis/ValueTracking.h"
36 #include "llvm/Analysis/VectorUtils.h"
37 #include "llvm/IR/BasicBlock.h"
38 #include "llvm/IR/Constants.h"
39 #include "llvm/IR/DataLayout.h"
40 #include "llvm/IR/DebugLoc.h"
41 #include "llvm/IR/DerivedTypes.h"
42 #include "llvm/IR/DiagnosticInfo.h"
43 #include "llvm/IR/Dominators.h"
44 #include "llvm/IR/Function.h"
45 #include "llvm/IR/GetElementPtrTypeIterator.h"
46 #include "llvm/IR/InstrTypes.h"
47 #include "llvm/IR/Instruction.h"
48 #include "llvm/IR/Instructions.h"
49 #include "llvm/IR/Operator.h"
50 #include "llvm/IR/PassManager.h"
51 #include "llvm/IR/PatternMatch.h"
52 #include "llvm/IR/Type.h"
53 #include "llvm/IR/Value.h"
54 #include "llvm/IR/ValueHandle.h"
55 #include "llvm/Support/Casting.h"
56 #include "llvm/Support/CommandLine.h"
57 #include "llvm/Support/Debug.h"
58 #include "llvm/Support/ErrorHandling.h"
59 #include "llvm/Support/raw_ostream.h"
60 #include <algorithm>
61 #include <cassert>
62 #include <cstdint>
63 #include <iterator>
64 #include <utility>
65 #include <variant>
66 #include <vector>
67 
68 using namespace llvm;
69 using namespace llvm::PatternMatch;
70 
71 #define DEBUG_TYPE "loop-accesses"
72 
73 static cl::opt<unsigned, true>
74 VectorizationFactor("force-vector-width", cl::Hidden,
75                     cl::desc("Sets the SIMD width. Zero is autoselect."),
76                     cl::location(VectorizerParams::VectorizationFactor));
77 unsigned VectorizerParams::VectorizationFactor;
78 
79 static cl::opt<unsigned, true>
80 VectorizationInterleave("force-vector-interleave", cl::Hidden,
81                         cl::desc("Sets the vectorization interleave count. "
82                                  "Zero is autoselect."),
83                         cl::location(
84                             VectorizerParams::VectorizationInterleave));
85 unsigned VectorizerParams::VectorizationInterleave;
86 
87 static cl::opt<unsigned, true> RuntimeMemoryCheckThreshold(
88     "runtime-memory-check-threshold", cl::Hidden,
89     cl::desc("When performing memory disambiguation checks at runtime do not "
90              "generate more than this number of comparisons (default = 8)."),
91     cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8));
92 unsigned VectorizerParams::RuntimeMemoryCheckThreshold;
93 
94 /// The maximum iterations used to merge memory checks
95 static cl::opt<unsigned> MemoryCheckMergeThreshold(
96     "memory-check-merge-threshold", cl::Hidden,
97     cl::desc("Maximum number of comparisons done when trying to merge "
98              "runtime memory checks. (default = 100)"),
99     cl::init(100));
100 
101 /// Maximum SIMD width.
102 const unsigned VectorizerParams::MaxVectorWidth = 64;
103 
104 /// We collect dependences up to this threshold.
105 static cl::opt<unsigned>
106     MaxDependences("max-dependences", cl::Hidden,
107                    cl::desc("Maximum number of dependences collected by "
108                             "loop-access analysis (default = 100)"),
109                    cl::init(100));
110 
111 /// This enables versioning on the strides of symbolically striding memory
112 /// accesses in code like the following.
113 ///   for (i = 0; i < N; ++i)
114 ///     A[i * Stride1] += B[i * Stride2] ...
115 ///
116 /// Will be roughly translated to
117 ///    if (Stride1 == 1 && Stride2 == 1) {
118 ///      for (i = 0; i < N; i+=4)
119 ///       A[i:i+3] += ...
120 ///    } else
121 ///      ...
122 static cl::opt<bool> EnableMemAccessVersioning(
123     "enable-mem-access-versioning", cl::init(true), cl::Hidden,
124     cl::desc("Enable symbolic stride memory access versioning"));
125 
126 /// Enable store-to-load forwarding conflict detection. This option can
127 /// be disabled for correctness testing.
128 static cl::opt<bool> EnableForwardingConflictDetection(
129     "store-to-load-forwarding-conflict-detection", cl::Hidden,
130     cl::desc("Enable conflict detection in loop-access analysis"),
131     cl::init(true));
132 
133 static cl::opt<unsigned> MaxForkedSCEVDepth(
134     "max-forked-scev-depth", cl::Hidden,
135     cl::desc("Maximum recursion depth when finding forked SCEVs (default = 5)"),
136     cl::init(5));
137 
138 static cl::opt<bool> SpeculateUnitStride(
139     "laa-speculate-unit-stride", cl::Hidden,
140     cl::desc("Speculate that non-constant strides are unit in LAA"),
141     cl::init(true));
142 
143 static cl::opt<bool, true> HoistRuntimeChecks(
144     "hoist-runtime-checks", cl::Hidden,
145     cl::desc(
146         "Hoist inner loop runtime memory checks to outer loop if possible"),
147     cl::location(VectorizerParams::HoistRuntimeChecks), cl::init(true));
148 bool VectorizerParams::HoistRuntimeChecks;
149 
150 bool VectorizerParams::isInterleaveForced() {
151   return ::VectorizationInterleave.getNumOccurrences() > 0;
152 }
153 
154 const SCEV *llvm::replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE,
155                                             const DenseMap<Value *, const SCEV *> &PtrToStride,
156                                             Value *Ptr) {
157   const SCEV *OrigSCEV = PSE.getSCEV(Ptr);
158 
159   // If there is an entry in the map return the SCEV of the pointer with the
160   // symbolic stride replaced by one.
161   DenseMap<Value *, const SCEV *>::const_iterator SI = PtrToStride.find(Ptr);
162   if (SI == PtrToStride.end())
163     // For a non-symbolic stride, just return the original expression.
164     return OrigSCEV;
165 
166   const SCEV *StrideSCEV = SI->second;
167   // Note: This assert is both overly strong and overly weak.  The actual
168   // invariant here is that StrideSCEV should be loop invariant.  The only
169   // such invariant strides we happen to speculate right now are unknowns
170   // and thus this is a reasonable proxy of the actual invariant.
171   assert(isa<SCEVUnknown>(StrideSCEV) && "shouldn't be in map");
172 
173   ScalarEvolution *SE = PSE.getSE();
174   const SCEV *CT = SE->getOne(StrideSCEV->getType());
175   PSE.addPredicate(*SE->getEqualPredicate(StrideSCEV, CT));
176   const SCEV *Expr = PSE.getSCEV(Ptr);
177 
178   LLVM_DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV
179 	     << " by: " << *Expr << "\n");
180   return Expr;
181 }
182 
183 RuntimeCheckingPtrGroup::RuntimeCheckingPtrGroup(
184     unsigned Index, const RuntimePointerChecking &RtCheck)
185     : High(RtCheck.Pointers[Index].End), Low(RtCheck.Pointers[Index].Start),
186       AddressSpace(RtCheck.Pointers[Index]
187                        .PointerValue->getType()
188                        ->getPointerAddressSpace()),
189       NeedsFreeze(RtCheck.Pointers[Index].NeedsFreeze) {
190   Members.push_back(Index);
191 }
192 
193 /// Calculate Start and End points of memory access.
194 /// Let's assume A is the first access and B is a memory access on N-th loop
195 /// iteration. Then B is calculated as:
196 ///   B = A + Step*N .
197 /// Step value may be positive or negative.
198 /// N is a calculated back-edge taken count:
199 ///     N = (TripCount > 0) ? RoundDown(TripCount -1 , VF) : 0
200 /// Start and End points are calculated in the following way:
201 /// Start = UMIN(A, B) ; End = UMAX(A, B) + SizeOfElt,
202 /// where SizeOfElt is the size of single memory access in bytes.
203 ///
204 /// There is no conflict when the intervals are disjoint:
205 /// NoConflict = (P2.Start >= P1.End) || (P1.Start >= P2.End)
206 static std::pair<const SCEV *, const SCEV *> getStartAndEndForAccess(
207     const Loop *Lp, const SCEV *PtrExpr, Type *AccessTy,
208     PredicatedScalarEvolution &PSE,
209     DenseMap<std::pair<const SCEV *, Type *>,
210              std::pair<const SCEV *, const SCEV *>> &PointerBounds) {
211   ScalarEvolution *SE = PSE.getSE();
212 
213   auto [Iter, Ins] = PointerBounds.insert(
214       {{PtrExpr, AccessTy},
215        {SE->getCouldNotCompute(), SE->getCouldNotCompute()}});
216   if (!Ins)
217     return Iter->second;
218 
219   const SCEV *ScStart;
220   const SCEV *ScEnd;
221 
222   if (SE->isLoopInvariant(PtrExpr, Lp)) {
223     ScStart = ScEnd = PtrExpr;
224   } else if (auto *AR = dyn_cast<SCEVAddRecExpr>(PtrExpr)) {
225     const SCEV *Ex = PSE.getSymbolicMaxBackedgeTakenCount();
226 
227     ScStart = AR->getStart();
228     ScEnd = AR->evaluateAtIteration(Ex, *SE);
229     const SCEV *Step = AR->getStepRecurrence(*SE);
230 
231     // For expressions with negative step, the upper bound is ScStart and the
232     // lower bound is ScEnd.
233     if (const auto *CStep = dyn_cast<SCEVConstant>(Step)) {
234       if (CStep->getValue()->isNegative())
235         std::swap(ScStart, ScEnd);
236     } else {
237       // Fallback case: the step is not constant, but we can still
238       // get the upper and lower bounds of the interval by using min/max
239       // expressions.
240       ScStart = SE->getUMinExpr(ScStart, ScEnd);
241       ScEnd = SE->getUMaxExpr(AR->getStart(), ScEnd);
242     }
243   } else
244     return {SE->getCouldNotCompute(), SE->getCouldNotCompute()};
245 
246   assert(SE->isLoopInvariant(ScStart, Lp) && "ScStart needs to be invariant");
247   assert(SE->isLoopInvariant(ScEnd, Lp)&& "ScEnd needs to be invariant");
248 
249   // Add the size of the pointed element to ScEnd.
250   auto &DL = Lp->getHeader()->getDataLayout();
251   Type *IdxTy = DL.getIndexType(PtrExpr->getType());
252   const SCEV *EltSizeSCEV = SE->getStoreSizeOfExpr(IdxTy, AccessTy);
253   ScEnd = SE->getAddExpr(ScEnd, EltSizeSCEV);
254 
255   Iter->second = {ScStart, ScEnd};
256   return Iter->second;
257 }
258 
259 /// Calculate Start and End points of memory access using
260 /// getStartAndEndForAccess.
261 void RuntimePointerChecking::insert(Loop *Lp, Value *Ptr, const SCEV *PtrExpr,
262                                     Type *AccessTy, bool WritePtr,
263                                     unsigned DepSetId, unsigned ASId,
264                                     PredicatedScalarEvolution &PSE,
265                                     bool NeedsFreeze) {
266   const auto &[ScStart, ScEnd] = getStartAndEndForAccess(
267       Lp, PtrExpr, AccessTy, PSE, DC.getPointerBounds());
268   assert(!isa<SCEVCouldNotCompute>(ScStart) &&
269          !isa<SCEVCouldNotCompute>(ScEnd) &&
270          "must be able to compute both start and end expressions");
271   Pointers.emplace_back(Ptr, ScStart, ScEnd, WritePtr, DepSetId, ASId, PtrExpr,
272                         NeedsFreeze);
273 }
274 
275 bool RuntimePointerChecking::tryToCreateDiffCheck(
276     const RuntimeCheckingPtrGroup &CGI, const RuntimeCheckingPtrGroup &CGJ) {
277   // If either group contains multiple different pointers, bail out.
278   // TODO: Support multiple pointers by using the minimum or maximum pointer,
279   // depending on src & sink.
280   if (CGI.Members.size() != 1 || CGJ.Members.size() != 1)
281     return false;
282 
283   const PointerInfo *Src = &Pointers[CGI.Members[0]];
284   const PointerInfo *Sink = &Pointers[CGJ.Members[0]];
285 
286   // If either pointer is read and written, multiple checks may be needed. Bail
287   // out.
288   if (!DC.getOrderForAccess(Src->PointerValue, !Src->IsWritePtr).empty() ||
289       !DC.getOrderForAccess(Sink->PointerValue, !Sink->IsWritePtr).empty())
290     return false;
291 
292   ArrayRef<unsigned> AccSrc =
293       DC.getOrderForAccess(Src->PointerValue, Src->IsWritePtr);
294   ArrayRef<unsigned> AccSink =
295       DC.getOrderForAccess(Sink->PointerValue, Sink->IsWritePtr);
296   // If either pointer is accessed multiple times, there may not be a clear
297   // src/sink relation. Bail out for now.
298   if (AccSrc.size() != 1 || AccSink.size() != 1)
299     return false;
300 
301   // If the sink is accessed before src, swap src/sink.
302   if (AccSink[0] < AccSrc[0])
303     std::swap(Src, Sink);
304 
305   auto *SrcAR = dyn_cast<SCEVAddRecExpr>(Src->Expr);
306   auto *SinkAR = dyn_cast<SCEVAddRecExpr>(Sink->Expr);
307   if (!SrcAR || !SinkAR || SrcAR->getLoop() != DC.getInnermostLoop() ||
308       SinkAR->getLoop() != DC.getInnermostLoop())
309     return false;
310 
311   SmallVector<Instruction *, 4> SrcInsts =
312       DC.getInstructionsForAccess(Src->PointerValue, Src->IsWritePtr);
313   SmallVector<Instruction *, 4> SinkInsts =
314       DC.getInstructionsForAccess(Sink->PointerValue, Sink->IsWritePtr);
315   Type *SrcTy = getLoadStoreType(SrcInsts[0]);
316   Type *DstTy = getLoadStoreType(SinkInsts[0]);
317   if (isa<ScalableVectorType>(SrcTy) || isa<ScalableVectorType>(DstTy))
318     return false;
319 
320   const DataLayout &DL =
321       SinkAR->getLoop()->getHeader()->getDataLayout();
322   unsigned AllocSize =
323       std::max(DL.getTypeAllocSize(SrcTy), DL.getTypeAllocSize(DstTy));
324 
325   // Only matching constant steps matching the AllocSize are supported at the
326   // moment. This simplifies the difference computation. Can be extended in the
327   // future.
328   auto *Step = dyn_cast<SCEVConstant>(SinkAR->getStepRecurrence(*SE));
329   if (!Step || Step != SrcAR->getStepRecurrence(*SE) ||
330       Step->getAPInt().abs() != AllocSize)
331     return false;
332 
333   IntegerType *IntTy =
334       IntegerType::get(Src->PointerValue->getContext(),
335                        DL.getPointerSizeInBits(CGI.AddressSpace));
336 
337   // When counting down, the dependence distance needs to be swapped.
338   if (Step->getValue()->isNegative())
339     std::swap(SinkAR, SrcAR);
340 
341   const SCEV *SinkStartInt = SE->getPtrToIntExpr(SinkAR->getStart(), IntTy);
342   const SCEV *SrcStartInt = SE->getPtrToIntExpr(SrcAR->getStart(), IntTy);
343   if (isa<SCEVCouldNotCompute>(SinkStartInt) ||
344       isa<SCEVCouldNotCompute>(SrcStartInt))
345     return false;
346 
347   const Loop *InnerLoop = SrcAR->getLoop();
348   // If the start values for both Src and Sink also vary according to an outer
349   // loop, then it's probably better to avoid creating diff checks because
350   // they may not be hoisted. We should instead let llvm::addRuntimeChecks
351   // do the expanded full range overlap checks, which can be hoisted.
352   if (HoistRuntimeChecks && InnerLoop->getParentLoop() &&
353       isa<SCEVAddRecExpr>(SinkStartInt) && isa<SCEVAddRecExpr>(SrcStartInt)) {
354     auto *SrcStartAR = cast<SCEVAddRecExpr>(SrcStartInt);
355     auto *SinkStartAR = cast<SCEVAddRecExpr>(SinkStartInt);
356     const Loop *StartARLoop = SrcStartAR->getLoop();
357     if (StartARLoop == SinkStartAR->getLoop() &&
358         StartARLoop == InnerLoop->getParentLoop() &&
359         // If the diff check would already be loop invariant (due to the
360         // recurrences being the same), then we prefer to keep the diff checks
361         // because they are cheaper.
362         SrcStartAR->getStepRecurrence(*SE) !=
363             SinkStartAR->getStepRecurrence(*SE)) {
364       LLVM_DEBUG(dbgs() << "LAA: Not creating diff runtime check, since these "
365                            "cannot be hoisted out of the outer loop\n");
366       return false;
367     }
368   }
369 
370   LLVM_DEBUG(dbgs() << "LAA: Creating diff runtime check for:\n"
371                     << "SrcStart: " << *SrcStartInt << '\n'
372                     << "SinkStartInt: " << *SinkStartInt << '\n');
373   DiffChecks.emplace_back(SrcStartInt, SinkStartInt, AllocSize,
374                           Src->NeedsFreeze || Sink->NeedsFreeze);
375   return true;
376 }
377 
378 SmallVector<RuntimePointerCheck, 4> RuntimePointerChecking::generateChecks() {
379   SmallVector<RuntimePointerCheck, 4> Checks;
380 
381   for (unsigned I = 0; I < CheckingGroups.size(); ++I) {
382     for (unsigned J = I + 1; J < CheckingGroups.size(); ++J) {
383       const RuntimeCheckingPtrGroup &CGI = CheckingGroups[I];
384       const RuntimeCheckingPtrGroup &CGJ = CheckingGroups[J];
385 
386       if (needsChecking(CGI, CGJ)) {
387         CanUseDiffCheck = CanUseDiffCheck && tryToCreateDiffCheck(CGI, CGJ);
388         Checks.emplace_back(&CGI, &CGJ);
389       }
390     }
391   }
392   return Checks;
393 }
394 
395 void RuntimePointerChecking::generateChecks(
396     MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) {
397   assert(Checks.empty() && "Checks is not empty");
398   groupChecks(DepCands, UseDependencies);
399   Checks = generateChecks();
400 }
401 
402 bool RuntimePointerChecking::needsChecking(
403     const RuntimeCheckingPtrGroup &M, const RuntimeCheckingPtrGroup &N) const {
404   for (const auto &I : M.Members)
405     for (const auto &J : N.Members)
406       if (needsChecking(I, J))
407         return true;
408   return false;
409 }
410 
411 /// Compare \p I and \p J and return the minimum.
412 /// Return nullptr in case we couldn't find an answer.
413 static const SCEV *getMinFromExprs(const SCEV *I, const SCEV *J,
414                                    ScalarEvolution *SE) {
415   std::optional<APInt> Diff = SE->computeConstantDifference(J, I);
416   if (!Diff)
417     return nullptr;
418   return Diff->isNegative() ? J : I;
419 }
420 
421 bool RuntimeCheckingPtrGroup::addPointer(
422     unsigned Index, const RuntimePointerChecking &RtCheck) {
423   return addPointer(
424       Index, RtCheck.Pointers[Index].Start, RtCheck.Pointers[Index].End,
425       RtCheck.Pointers[Index].PointerValue->getType()->getPointerAddressSpace(),
426       RtCheck.Pointers[Index].NeedsFreeze, *RtCheck.SE);
427 }
428 
429 bool RuntimeCheckingPtrGroup::addPointer(unsigned Index, const SCEV *Start,
430                                          const SCEV *End, unsigned AS,
431                                          bool NeedsFreeze,
432                                          ScalarEvolution &SE) {
433   assert(AddressSpace == AS &&
434          "all pointers in a checking group must be in the same address space");
435 
436   // Compare the starts and ends with the known minimum and maximum
437   // of this set. We need to know how we compare against the min/max
438   // of the set in order to be able to emit memchecks.
439   const SCEV *Min0 = getMinFromExprs(Start, Low, &SE);
440   if (!Min0)
441     return false;
442 
443   const SCEV *Min1 = getMinFromExprs(End, High, &SE);
444   if (!Min1)
445     return false;
446 
447   // Update the low bound  expression if we've found a new min value.
448   if (Min0 == Start)
449     Low = Start;
450 
451   // Update the high bound expression if we've found a new max value.
452   if (Min1 != End)
453     High = End;
454 
455   Members.push_back(Index);
456   this->NeedsFreeze |= NeedsFreeze;
457   return true;
458 }
459 
460 void RuntimePointerChecking::groupChecks(
461     MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) {
462   // We build the groups from dependency candidates equivalence classes
463   // because:
464   //    - We know that pointers in the same equivalence class share
465   //      the same underlying object and therefore there is a chance
466   //      that we can compare pointers
467   //    - We wouldn't be able to merge two pointers for which we need
468   //      to emit a memcheck. The classes in DepCands are already
469   //      conveniently built such that no two pointers in the same
470   //      class need checking against each other.
471 
472   // We use the following (greedy) algorithm to construct the groups
473   // For every pointer in the equivalence class:
474   //   For each existing group:
475   //   - if the difference between this pointer and the min/max bounds
476   //     of the group is a constant, then make the pointer part of the
477   //     group and update the min/max bounds of that group as required.
478 
479   CheckingGroups.clear();
480 
481   // If we need to check two pointers to the same underlying object
482   // with a non-constant difference, we shouldn't perform any pointer
483   // grouping with those pointers. This is because we can easily get
484   // into cases where the resulting check would return false, even when
485   // the accesses are safe.
486   //
487   // The following example shows this:
488   // for (i = 0; i < 1000; ++i)
489   //   a[5000 + i * m] = a[i] + a[i + 9000]
490   //
491   // Here grouping gives a check of (5000, 5000 + 1000 * m) against
492   // (0, 10000) which is always false. However, if m is 1, there is no
493   // dependence. Not grouping the checks for a[i] and a[i + 9000] allows
494   // us to perform an accurate check in this case.
495   //
496   // The above case requires that we have an UnknownDependence between
497   // accesses to the same underlying object. This cannot happen unless
498   // FoundNonConstantDistanceDependence is set, and therefore UseDependencies
499   // is also false. In this case we will use the fallback path and create
500   // separate checking groups for all pointers.
501 
502   // If we don't have the dependency partitions, construct a new
503   // checking pointer group for each pointer. This is also required
504   // for correctness, because in this case we can have checking between
505   // pointers to the same underlying object.
506   if (!UseDependencies) {
507     for (unsigned I = 0; I < Pointers.size(); ++I)
508       CheckingGroups.emplace_back(I, *this);
509     return;
510   }
511 
512   unsigned TotalComparisons = 0;
513 
514   DenseMap<Value *, SmallVector<unsigned>> PositionMap;
515   for (unsigned Index = 0; Index < Pointers.size(); ++Index) {
516     auto [It, _] = PositionMap.insert({Pointers[Index].PointerValue, {}});
517     It->second.push_back(Index);
518   }
519 
520   // We need to keep track of what pointers we've already seen so we
521   // don't process them twice.
522   SmallSet<unsigned, 2> Seen;
523 
524   // Go through all equivalence classes, get the "pointer check groups"
525   // and add them to the overall solution. We use the order in which accesses
526   // appear in 'Pointers' to enforce determinism.
527   for (unsigned I = 0; I < Pointers.size(); ++I) {
528     // We've seen this pointer before, and therefore already processed
529     // its equivalence class.
530     if (Seen.count(I))
531       continue;
532 
533     MemoryDepChecker::MemAccessInfo Access(Pointers[I].PointerValue,
534                                            Pointers[I].IsWritePtr);
535 
536     SmallVector<RuntimeCheckingPtrGroup, 2> Groups;
537     auto LeaderI = DepCands.findValue(DepCands.getLeaderValue(Access));
538 
539     // Because DepCands is constructed by visiting accesses in the order in
540     // which they appear in alias sets (which is deterministic) and the
541     // iteration order within an equivalence class member is only dependent on
542     // the order in which unions and insertions are performed on the
543     // equivalence class, the iteration order is deterministic.
544     for (auto MI = DepCands.member_begin(LeaderI), ME = DepCands.member_end();
545          MI != ME; ++MI) {
546       auto PointerI = PositionMap.find(MI->getPointer());
547       assert(PointerI != PositionMap.end() &&
548              "pointer in equivalence class not found in PositionMap");
549       for (unsigned Pointer : PointerI->second) {
550         bool Merged = false;
551         // Mark this pointer as seen.
552         Seen.insert(Pointer);
553 
554         // Go through all the existing sets and see if we can find one
555         // which can include this pointer.
556         for (RuntimeCheckingPtrGroup &Group : Groups) {
557           // Don't perform more than a certain amount of comparisons.
558           // This should limit the cost of grouping the pointers to something
559           // reasonable.  If we do end up hitting this threshold, the algorithm
560           // will create separate groups for all remaining pointers.
561           if (TotalComparisons > MemoryCheckMergeThreshold)
562             break;
563 
564           TotalComparisons++;
565 
566           if (Group.addPointer(Pointer, *this)) {
567             Merged = true;
568             break;
569           }
570         }
571 
572         if (!Merged)
573           // We couldn't add this pointer to any existing set or the threshold
574           // for the number of comparisons has been reached. Create a new group
575           // to hold the current pointer.
576           Groups.emplace_back(Pointer, *this);
577       }
578     }
579 
580     // We've computed the grouped checks for this partition.
581     // Save the results and continue with the next one.
582     llvm::copy(Groups, std::back_inserter(CheckingGroups));
583   }
584 }
585 
586 bool RuntimePointerChecking::arePointersInSamePartition(
587     const SmallVectorImpl<int> &PtrToPartition, unsigned PtrIdx1,
588     unsigned PtrIdx2) {
589   return (PtrToPartition[PtrIdx1] != -1 &&
590           PtrToPartition[PtrIdx1] == PtrToPartition[PtrIdx2]);
591 }
592 
593 bool RuntimePointerChecking::needsChecking(unsigned I, unsigned J) const {
594   const PointerInfo &PointerI = Pointers[I];
595   const PointerInfo &PointerJ = Pointers[J];
596 
597   // No need to check if two readonly pointers intersect.
598   if (!PointerI.IsWritePtr && !PointerJ.IsWritePtr)
599     return false;
600 
601   // Only need to check pointers between two different dependency sets.
602   if (PointerI.DependencySetId == PointerJ.DependencySetId)
603     return false;
604 
605   // Only need to check pointers in the same alias set.
606   return PointerI.AliasSetId == PointerJ.AliasSetId;
607 }
608 
609 void RuntimePointerChecking::printChecks(
610     raw_ostream &OS, const SmallVectorImpl<RuntimePointerCheck> &Checks,
611     unsigned Depth) const {
612   unsigned N = 0;
613   for (const auto &[Check1, Check2] : Checks) {
614     const auto &First = Check1->Members, &Second = Check2->Members;
615 
616     OS.indent(Depth) << "Check " << N++ << ":\n";
617 
618     OS.indent(Depth + 2) << "Comparing group (" << Check1 << "):\n";
619     for (unsigned K : First)
620       OS.indent(Depth + 2) << *Pointers[K].PointerValue << "\n";
621 
622     OS.indent(Depth + 2) << "Against group (" << Check2 << "):\n";
623     for (unsigned K : Second)
624       OS.indent(Depth + 2) << *Pointers[K].PointerValue << "\n";
625   }
626 }
627 
628 void RuntimePointerChecking::print(raw_ostream &OS, unsigned Depth) const {
629 
630   OS.indent(Depth) << "Run-time memory checks:\n";
631   printChecks(OS, Checks, Depth);
632 
633   OS.indent(Depth) << "Grouped accesses:\n";
634   for (const auto &CG : CheckingGroups) {
635     OS.indent(Depth + 2) << "Group " << &CG << ":\n";
636     OS.indent(Depth + 4) << "(Low: " << *CG.Low << " High: " << *CG.High
637                          << ")\n";
638     for (unsigned Member : CG.Members) {
639       OS.indent(Depth + 6) << "Member: " << *Pointers[Member].Expr << "\n";
640     }
641   }
642 }
643 
644 namespace {
645 
646 /// Analyses memory accesses in a loop.
647 ///
648 /// Checks whether run time pointer checks are needed and builds sets for data
649 /// dependence checking.
650 class AccessAnalysis {
651 public:
652   /// Read or write access location.
653   typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
654   typedef SmallVector<MemAccessInfo, 8> MemAccessInfoList;
655 
656   AccessAnalysis(const Loop *TheLoop, AAResults *AA, const LoopInfo *LI,
657                  MemoryDepChecker::DepCandidates &DA,
658                  PredicatedScalarEvolution &PSE,
659                  SmallPtrSetImpl<MDNode *> &LoopAliasScopes)
660       : TheLoop(TheLoop), BAA(*AA), AST(BAA), LI(LI), DepCands(DA), PSE(PSE),
661         LoopAliasScopes(LoopAliasScopes) {
662     // We're analyzing dependences across loop iterations.
663     BAA.enableCrossIterationMode();
664   }
665 
666   /// Register a load  and whether it is only read from.
667   void addLoad(const MemoryLocation &Loc, Type *AccessTy, bool IsReadOnly) {
668     Value *Ptr = const_cast<Value *>(Loc.Ptr);
669     AST.add(adjustLoc(Loc));
670     Accesses[MemAccessInfo(Ptr, false)].insert(AccessTy);
671     if (IsReadOnly)
672       ReadOnlyPtr.insert(Ptr);
673   }
674 
675   /// Register a store.
676   void addStore(const MemoryLocation &Loc, Type *AccessTy) {
677     Value *Ptr = const_cast<Value *>(Loc.Ptr);
678     AST.add(adjustLoc(Loc));
679     Accesses[MemAccessInfo(Ptr, true)].insert(AccessTy);
680   }
681 
682   /// Check if we can emit a run-time no-alias check for \p Access.
683   ///
684   /// Returns true if we can emit a run-time no alias check for \p Access.
685   /// If we can check this access, this also adds it to a dependence set and
686   /// adds a run-time to check for it to \p RtCheck. If \p Assume is true,
687   /// we will attempt to use additional run-time checks in order to get
688   /// the bounds of the pointer.
689   bool createCheckForAccess(RuntimePointerChecking &RtCheck,
690                             MemAccessInfo Access, Type *AccessTy,
691                             const DenseMap<Value *, const SCEV *> &Strides,
692                             DenseMap<Value *, unsigned> &DepSetId,
693                             Loop *TheLoop, unsigned &RunningDepId,
694                             unsigned ASId, bool ShouldCheckStride, bool Assume);
695 
696   /// Check whether we can check the pointers at runtime for
697   /// non-intersection.
698   ///
699   /// Returns true if we need no check or if we do and we can generate them
700   /// (i.e. the pointers have computable bounds).
701   bool canCheckPtrAtRT(RuntimePointerChecking &RtCheck, ScalarEvolution *SE,
702                        Loop *TheLoop, const DenseMap<Value *, const SCEV *> &Strides,
703                        Value *&UncomputablePtr, bool ShouldCheckWrap = false);
704 
705   /// Goes over all memory accesses, checks whether a RT check is needed
706   /// and builds sets of dependent accesses.
707   void buildDependenceSets() {
708     processMemAccesses();
709   }
710 
711   /// Initial processing of memory accesses determined that we need to
712   /// perform dependency checking.
713   ///
714   /// Note that this can later be cleared if we retry memcheck analysis without
715   /// dependency checking (i.e. FoundNonConstantDistanceDependence).
716   bool isDependencyCheckNeeded() const { return !CheckDeps.empty(); }
717 
718   /// We decided that no dependence analysis would be used.  Reset the state.
719   void resetDepChecks(MemoryDepChecker &DepChecker) {
720     CheckDeps.clear();
721     DepChecker.clearDependences();
722   }
723 
724   const MemAccessInfoList &getDependenciesToCheck() const { return CheckDeps; }
725 
726 private:
727   typedef MapVector<MemAccessInfo, SmallSetVector<Type *, 1>> PtrAccessMap;
728 
729   /// Adjust the MemoryLocation so that it represents accesses to this
730   /// location across all iterations, rather than a single one.
731   MemoryLocation adjustLoc(MemoryLocation Loc) const {
732     // The accessed location varies within the loop, but remains within the
733     // underlying object.
734     Loc.Size = LocationSize::beforeOrAfterPointer();
735     Loc.AATags.Scope = adjustAliasScopeList(Loc.AATags.Scope);
736     Loc.AATags.NoAlias = adjustAliasScopeList(Loc.AATags.NoAlias);
737     return Loc;
738   }
739 
740   /// Drop alias scopes that are only valid within a single loop iteration.
741   MDNode *adjustAliasScopeList(MDNode *ScopeList) const {
742     if (!ScopeList)
743       return nullptr;
744 
745     // For the sake of simplicity, drop the whole scope list if any scope is
746     // iteration-local.
747     if (any_of(ScopeList->operands(), [&](Metadata *Scope) {
748           return LoopAliasScopes.contains(cast<MDNode>(Scope));
749         }))
750       return nullptr;
751 
752     return ScopeList;
753   }
754 
755   /// Go over all memory access and check whether runtime pointer checks
756   /// are needed and build sets of dependency check candidates.
757   void processMemAccesses();
758 
759   /// Map of all accesses. Values are the types used to access memory pointed to
760   /// by the pointer.
761   PtrAccessMap Accesses;
762 
763   /// The loop being checked.
764   const Loop *TheLoop;
765 
766   /// List of accesses that need a further dependence check.
767   MemAccessInfoList CheckDeps;
768 
769   /// Set of pointers that are read only.
770   SmallPtrSet<Value*, 16> ReadOnlyPtr;
771 
772   /// Batched alias analysis results.
773   BatchAAResults BAA;
774 
775   /// An alias set tracker to partition the access set by underlying object and
776   //intrinsic property (such as TBAA metadata).
777   AliasSetTracker AST;
778 
779   /// The LoopInfo of the loop being checked.
780   const LoopInfo *LI;
781 
782   /// Sets of potentially dependent accesses - members of one set share an
783   /// underlying pointer. The set "CheckDeps" identfies which sets really need a
784   /// dependence check.
785   MemoryDepChecker::DepCandidates &DepCands;
786 
787   /// Initial processing of memory accesses determined that we may need
788   /// to add memchecks.  Perform the analysis to determine the necessary checks.
789   ///
790   /// Note that, this is different from isDependencyCheckNeeded.  When we retry
791   /// memcheck analysis without dependency checking
792   /// (i.e. FoundNonConstantDistanceDependence), isDependencyCheckNeeded is
793   /// cleared while this remains set if we have potentially dependent accesses.
794   bool IsRTCheckAnalysisNeeded = false;
795 
796   /// The SCEV predicate containing all the SCEV-related assumptions.
797   PredicatedScalarEvolution &PSE;
798 
799   DenseMap<Value *, SmallVector<const Value *, 16>> UnderlyingObjects;
800 
801   /// Alias scopes that are declared inside the loop, and as such not valid
802   /// across iterations.
803   SmallPtrSetImpl<MDNode *> &LoopAliasScopes;
804 };
805 
806 } // end anonymous namespace
807 
808 /// Check whether a pointer can participate in a runtime bounds check.
809 /// If \p Assume, try harder to prove that we can compute the bounds of \p Ptr
810 /// by adding run-time checks (overflow checks) if necessary.
811 static bool hasComputableBounds(PredicatedScalarEvolution &PSE, Value *Ptr,
812                                 const SCEV *PtrScev, Loop *L, bool Assume) {
813   // The bounds for loop-invariant pointer is trivial.
814   if (PSE.getSE()->isLoopInvariant(PtrScev, L))
815     return true;
816 
817   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
818 
819   if (!AR && Assume)
820     AR = PSE.getAsAddRec(Ptr);
821 
822   if (!AR)
823     return false;
824 
825   return AR->isAffine();
826 }
827 
828 /// Check whether a pointer address cannot wrap.
829 static bool isNoWrap(PredicatedScalarEvolution &PSE,
830                      const DenseMap<Value *, const SCEV *> &Strides, Value *Ptr, Type *AccessTy,
831                      Loop *L) {
832   const SCEV *PtrScev = PSE.getSCEV(Ptr);
833   if (PSE.getSE()->isLoopInvariant(PtrScev, L))
834     return true;
835 
836   int64_t Stride = getPtrStride(PSE, AccessTy, Ptr, L, Strides).value_or(0);
837   return Stride == 1 ||
838          PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW);
839 }
840 
841 static void visitPointers(Value *StartPtr, const Loop &InnermostLoop,
842                           function_ref<void(Value *)> AddPointer) {
843   SmallPtrSet<Value *, 8> Visited;
844   SmallVector<Value *> WorkList;
845   WorkList.push_back(StartPtr);
846 
847   while (!WorkList.empty()) {
848     Value *Ptr = WorkList.pop_back_val();
849     if (!Visited.insert(Ptr).second)
850       continue;
851     auto *PN = dyn_cast<PHINode>(Ptr);
852     // SCEV does not look through non-header PHIs inside the loop. Such phis
853     // can be analyzed by adding separate accesses for each incoming pointer
854     // value.
855     if (PN && InnermostLoop.contains(PN->getParent()) &&
856         PN->getParent() != InnermostLoop.getHeader()) {
857       for (const Use &Inc : PN->incoming_values())
858         WorkList.push_back(Inc);
859     } else
860       AddPointer(Ptr);
861   }
862 }
863 
864 // Walk back through the IR for a pointer, looking for a select like the
865 // following:
866 //
867 //  %offset = select i1 %cmp, i64 %a, i64 %b
868 //  %addr = getelementptr double, double* %base, i64 %offset
869 //  %ld = load double, double* %addr, align 8
870 //
871 // We won't be able to form a single SCEVAddRecExpr from this since the
872 // address for each loop iteration depends on %cmp. We could potentially
873 // produce multiple valid SCEVAddRecExprs, though, and check all of them for
874 // memory safety/aliasing if needed.
875 //
876 // If we encounter some IR we don't yet handle, or something obviously fine
877 // like a constant, then we just add the SCEV for that term to the list passed
878 // in by the caller. If we have a node that may potentially yield a valid
879 // SCEVAddRecExpr then we decompose it into parts and build the SCEV terms
880 // ourselves before adding to the list.
881 static void findForkedSCEVs(
882     ScalarEvolution *SE, const Loop *L, Value *Ptr,
883     SmallVectorImpl<PointerIntPair<const SCEV *, 1, bool>> &ScevList,
884     unsigned Depth) {
885   // If our Value is a SCEVAddRecExpr, loop invariant, not an instruction, or
886   // we've exceeded our limit on recursion, just return whatever we have
887   // regardless of whether it can be used for a forked pointer or not, along
888   // with an indication of whether it might be a poison or undef value.
889   const SCEV *Scev = SE->getSCEV(Ptr);
890   if (isa<SCEVAddRecExpr>(Scev) || L->isLoopInvariant(Ptr) ||
891       !isa<Instruction>(Ptr) || Depth == 0) {
892     ScevList.emplace_back(Scev, !isGuaranteedNotToBeUndefOrPoison(Ptr));
893     return;
894   }
895 
896   Depth--;
897 
898   auto UndefPoisonCheck = [](PointerIntPair<const SCEV *, 1, bool> S) {
899     return get<1>(S);
900   };
901 
902   auto GetBinOpExpr = [&SE](unsigned Opcode, const SCEV *L, const SCEV *R) {
903     switch (Opcode) {
904     case Instruction::Add:
905       return SE->getAddExpr(L, R);
906     case Instruction::Sub:
907       return SE->getMinusSCEV(L, R);
908     default:
909       llvm_unreachable("Unexpected binary operator when walking ForkedPtrs");
910     }
911   };
912 
913   Instruction *I = cast<Instruction>(Ptr);
914   unsigned Opcode = I->getOpcode();
915   switch (Opcode) {
916   case Instruction::GetElementPtr: {
917     auto *GEP = cast<GetElementPtrInst>(I);
918     Type *SourceTy = GEP->getSourceElementType();
919     // We only handle base + single offset GEPs here for now.
920     // Not dealing with preexisting gathers yet, so no vectors.
921     if (I->getNumOperands() != 2 || SourceTy->isVectorTy()) {
922       ScevList.emplace_back(Scev, !isGuaranteedNotToBeUndefOrPoison(GEP));
923       break;
924     }
925     SmallVector<PointerIntPair<const SCEV *, 1, bool>, 2> BaseScevs;
926     SmallVector<PointerIntPair<const SCEV *, 1, bool>, 2> OffsetScevs;
927     findForkedSCEVs(SE, L, I->getOperand(0), BaseScevs, Depth);
928     findForkedSCEVs(SE, L, I->getOperand(1), OffsetScevs, Depth);
929 
930     // See if we need to freeze our fork...
931     bool NeedsFreeze = any_of(BaseScevs, UndefPoisonCheck) ||
932                        any_of(OffsetScevs, UndefPoisonCheck);
933 
934     // Check that we only have a single fork, on either the base or the offset.
935     // Copy the SCEV across for the one without a fork in order to generate
936     // the full SCEV for both sides of the GEP.
937     if (OffsetScevs.size() == 2 && BaseScevs.size() == 1)
938       BaseScevs.push_back(BaseScevs[0]);
939     else if (BaseScevs.size() == 2 && OffsetScevs.size() == 1)
940       OffsetScevs.push_back(OffsetScevs[0]);
941     else {
942       ScevList.emplace_back(Scev, NeedsFreeze);
943       break;
944     }
945 
946     // Find the pointer type we need to extend to.
947     Type *IntPtrTy = SE->getEffectiveSCEVType(
948         SE->getSCEV(GEP->getPointerOperand())->getType());
949 
950     // Find the size of the type being pointed to. We only have a single
951     // index term (guarded above) so we don't need to index into arrays or
952     // structures, just get the size of the scalar value.
953     const SCEV *Size = SE->getSizeOfExpr(IntPtrTy, SourceTy);
954 
955     // Scale up the offsets by the size of the type, then add to the bases.
956     const SCEV *Scaled1 = SE->getMulExpr(
957         Size, SE->getTruncateOrSignExtend(get<0>(OffsetScevs[0]), IntPtrTy));
958     const SCEV *Scaled2 = SE->getMulExpr(
959         Size, SE->getTruncateOrSignExtend(get<0>(OffsetScevs[1]), IntPtrTy));
960     ScevList.emplace_back(SE->getAddExpr(get<0>(BaseScevs[0]), Scaled1),
961                           NeedsFreeze);
962     ScevList.emplace_back(SE->getAddExpr(get<0>(BaseScevs[1]), Scaled2),
963                           NeedsFreeze);
964     break;
965   }
966   case Instruction::Select: {
967     SmallVector<PointerIntPair<const SCEV *, 1, bool>, 2> ChildScevs;
968     // A select means we've found a forked pointer, but we currently only
969     // support a single select per pointer so if there's another behind this
970     // then we just bail out and return the generic SCEV.
971     findForkedSCEVs(SE, L, I->getOperand(1), ChildScevs, Depth);
972     findForkedSCEVs(SE, L, I->getOperand(2), ChildScevs, Depth);
973     if (ChildScevs.size() == 2) {
974       ScevList.push_back(ChildScevs[0]);
975       ScevList.push_back(ChildScevs[1]);
976     } else
977       ScevList.emplace_back(Scev, !isGuaranteedNotToBeUndefOrPoison(Ptr));
978     break;
979   }
980   case Instruction::PHI: {
981     SmallVector<PointerIntPair<const SCEV *, 1, bool>, 2> ChildScevs;
982     // A phi means we've found a forked pointer, but we currently only
983     // support a single phi per pointer so if there's another behind this
984     // then we just bail out and return the generic SCEV.
985     if (I->getNumOperands() == 2) {
986       findForkedSCEVs(SE, L, I->getOperand(0), ChildScevs, Depth);
987       findForkedSCEVs(SE, L, I->getOperand(1), ChildScevs, Depth);
988     }
989     if (ChildScevs.size() == 2) {
990       ScevList.push_back(ChildScevs[0]);
991       ScevList.push_back(ChildScevs[1]);
992     } else
993       ScevList.emplace_back(Scev, !isGuaranteedNotToBeUndefOrPoison(Ptr));
994     break;
995   }
996   case Instruction::Add:
997   case Instruction::Sub: {
998     SmallVector<PointerIntPair<const SCEV *, 1, bool>> LScevs;
999     SmallVector<PointerIntPair<const SCEV *, 1, bool>> RScevs;
1000     findForkedSCEVs(SE, L, I->getOperand(0), LScevs, Depth);
1001     findForkedSCEVs(SE, L, I->getOperand(1), RScevs, Depth);
1002 
1003     // See if we need to freeze our fork...
1004     bool NeedsFreeze =
1005         any_of(LScevs, UndefPoisonCheck) || any_of(RScevs, UndefPoisonCheck);
1006 
1007     // Check that we only have a single fork, on either the left or right side.
1008     // Copy the SCEV across for the one without a fork in order to generate
1009     // the full SCEV for both sides of the BinOp.
1010     if (LScevs.size() == 2 && RScevs.size() == 1)
1011       RScevs.push_back(RScevs[0]);
1012     else if (RScevs.size() == 2 && LScevs.size() == 1)
1013       LScevs.push_back(LScevs[0]);
1014     else {
1015       ScevList.emplace_back(Scev, NeedsFreeze);
1016       break;
1017     }
1018 
1019     ScevList.emplace_back(
1020         GetBinOpExpr(Opcode, get<0>(LScevs[0]), get<0>(RScevs[0])),
1021         NeedsFreeze);
1022     ScevList.emplace_back(
1023         GetBinOpExpr(Opcode, get<0>(LScevs[1]), get<0>(RScevs[1])),
1024         NeedsFreeze);
1025     break;
1026   }
1027   default:
1028     // Just return the current SCEV if we haven't handled the instruction yet.
1029     LLVM_DEBUG(dbgs() << "ForkedPtr unhandled instruction: " << *I << "\n");
1030     ScevList.emplace_back(Scev, !isGuaranteedNotToBeUndefOrPoison(Ptr));
1031     break;
1032   }
1033 }
1034 
1035 static SmallVector<PointerIntPair<const SCEV *, 1, bool>>
1036 findForkedPointer(PredicatedScalarEvolution &PSE,
1037                   const DenseMap<Value *, const SCEV *> &StridesMap, Value *Ptr,
1038                   const Loop *L) {
1039   ScalarEvolution *SE = PSE.getSE();
1040   assert(SE->isSCEVable(Ptr->getType()) && "Value is not SCEVable!");
1041   SmallVector<PointerIntPair<const SCEV *, 1, bool>> Scevs;
1042   findForkedSCEVs(SE, L, Ptr, Scevs, MaxForkedSCEVDepth);
1043 
1044   // For now, we will only accept a forked pointer with two possible SCEVs
1045   // that are either SCEVAddRecExprs or loop invariant.
1046   if (Scevs.size() == 2 &&
1047       (isa<SCEVAddRecExpr>(get<0>(Scevs[0])) ||
1048        SE->isLoopInvariant(get<0>(Scevs[0]), L)) &&
1049       (isa<SCEVAddRecExpr>(get<0>(Scevs[1])) ||
1050        SE->isLoopInvariant(get<0>(Scevs[1]), L))) {
1051     LLVM_DEBUG(dbgs() << "LAA: Found forked pointer: " << *Ptr << "\n");
1052     LLVM_DEBUG(dbgs() << "\t(1) " << *get<0>(Scevs[0]) << "\n");
1053     LLVM_DEBUG(dbgs() << "\t(2) " << *get<0>(Scevs[1]) << "\n");
1054     return Scevs;
1055   }
1056 
1057   return {{replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr), false}};
1058 }
1059 
1060 bool AccessAnalysis::createCheckForAccess(RuntimePointerChecking &RtCheck,
1061                                           MemAccessInfo Access, Type *AccessTy,
1062                                           const DenseMap<Value *, const SCEV *> &StridesMap,
1063                                           DenseMap<Value *, unsigned> &DepSetId,
1064                                           Loop *TheLoop, unsigned &RunningDepId,
1065                                           unsigned ASId, bool ShouldCheckWrap,
1066                                           bool Assume) {
1067   Value *Ptr = Access.getPointer();
1068 
1069   SmallVector<PointerIntPair<const SCEV *, 1, bool>> TranslatedPtrs =
1070       findForkedPointer(PSE, StridesMap, Ptr, TheLoop);
1071 
1072   for (const auto &P : TranslatedPtrs) {
1073     const SCEV *PtrExpr = get<0>(P);
1074     if (!hasComputableBounds(PSE, Ptr, PtrExpr, TheLoop, Assume))
1075       return false;
1076 
1077     // When we run after a failing dependency check we have to make sure
1078     // we don't have wrapping pointers.
1079     if (ShouldCheckWrap) {
1080       // Skip wrap checking when translating pointers.
1081       if (TranslatedPtrs.size() > 1)
1082         return false;
1083 
1084       if (!isNoWrap(PSE, StridesMap, Ptr, AccessTy, TheLoop)) {
1085         const SCEV *Expr = PSE.getSCEV(Ptr);
1086         if (!Assume || !isa<SCEVAddRecExpr>(Expr))
1087           return false;
1088         PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW);
1089       }
1090     }
1091     // If there's only one option for Ptr, look it up after bounds and wrap
1092     // checking, because assumptions might have been added to PSE.
1093     if (TranslatedPtrs.size() == 1)
1094       TranslatedPtrs[0] = {replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr),
1095                            false};
1096   }
1097 
1098   for (auto [PtrExpr, NeedsFreeze] : TranslatedPtrs) {
1099     // The id of the dependence set.
1100     unsigned DepId;
1101 
1102     if (isDependencyCheckNeeded()) {
1103       Value *Leader = DepCands.getLeaderValue(Access).getPointer();
1104       unsigned &LeaderId = DepSetId[Leader];
1105       if (!LeaderId)
1106         LeaderId = RunningDepId++;
1107       DepId = LeaderId;
1108     } else
1109       // Each access has its own dependence set.
1110       DepId = RunningDepId++;
1111 
1112     bool IsWrite = Access.getInt();
1113     RtCheck.insert(TheLoop, Ptr, PtrExpr, AccessTy, IsWrite, DepId, ASId, PSE,
1114                    NeedsFreeze);
1115     LLVM_DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n');
1116   }
1117 
1118   return true;
1119 }
1120 
1121 bool AccessAnalysis::canCheckPtrAtRT(RuntimePointerChecking &RtCheck,
1122                                      ScalarEvolution *SE, Loop *TheLoop,
1123                                      const DenseMap<Value *, const SCEV *> &StridesMap,
1124                                      Value *&UncomputablePtr, bool ShouldCheckWrap) {
1125   // Find pointers with computable bounds. We are going to use this information
1126   // to place a runtime bound check.
1127   bool CanDoRT = true;
1128 
1129   bool MayNeedRTCheck = false;
1130   if (!IsRTCheckAnalysisNeeded) return true;
1131 
1132   bool IsDepCheckNeeded = isDependencyCheckNeeded();
1133 
1134   // We assign a consecutive id to access from different alias sets.
1135   // Accesses between different groups doesn't need to be checked.
1136   unsigned ASId = 0;
1137   for (const auto &AS : AST) {
1138     int NumReadPtrChecks = 0;
1139     int NumWritePtrChecks = 0;
1140     bool CanDoAliasSetRT = true;
1141     ++ASId;
1142     auto ASPointers = AS.getPointers();
1143 
1144     // We assign consecutive id to access from different dependence sets.
1145     // Accesses within the same set don't need a runtime check.
1146     unsigned RunningDepId = 1;
1147     DenseMap<Value *, unsigned> DepSetId;
1148 
1149     SmallVector<std::pair<MemAccessInfo, Type *>, 4> Retries;
1150 
1151     // First, count how many write and read accesses are in the alias set. Also
1152     // collect MemAccessInfos for later.
1153     SmallVector<MemAccessInfo, 4> AccessInfos;
1154     for (const Value *ConstPtr : ASPointers) {
1155       Value *Ptr = const_cast<Value *>(ConstPtr);
1156       bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true));
1157       if (IsWrite)
1158         ++NumWritePtrChecks;
1159       else
1160         ++NumReadPtrChecks;
1161       AccessInfos.emplace_back(Ptr, IsWrite);
1162     }
1163 
1164     // We do not need runtime checks for this alias set, if there are no writes
1165     // or a single write and no reads.
1166     if (NumWritePtrChecks == 0 ||
1167         (NumWritePtrChecks == 1 && NumReadPtrChecks == 0)) {
1168       assert((ASPointers.size() <= 1 ||
1169               all_of(ASPointers,
1170                      [this](const Value *Ptr) {
1171                        MemAccessInfo AccessWrite(const_cast<Value *>(Ptr),
1172                                                  true);
1173                        return DepCands.findValue(AccessWrite) == DepCands.end();
1174                      })) &&
1175              "Can only skip updating CanDoRT below, if all entries in AS "
1176              "are reads or there is at most 1 entry");
1177       continue;
1178     }
1179 
1180     for (auto &Access : AccessInfos) {
1181       for (const auto &AccessTy : Accesses[Access]) {
1182         if (!createCheckForAccess(RtCheck, Access, AccessTy, StridesMap,
1183                                   DepSetId, TheLoop, RunningDepId, ASId,
1184                                   ShouldCheckWrap, false)) {
1185           LLVM_DEBUG(dbgs() << "LAA: Can't find bounds for ptr:"
1186                             << *Access.getPointer() << '\n');
1187           Retries.emplace_back(Access, AccessTy);
1188           CanDoAliasSetRT = false;
1189         }
1190       }
1191     }
1192 
1193     // Note that this function computes CanDoRT and MayNeedRTCheck
1194     // independently. For example CanDoRT=false, MayNeedRTCheck=false means that
1195     // we have a pointer for which we couldn't find the bounds but we don't
1196     // actually need to emit any checks so it does not matter.
1197     //
1198     // We need runtime checks for this alias set, if there are at least 2
1199     // dependence sets (in which case RunningDepId > 2) or if we need to re-try
1200     // any bound checks (because in that case the number of dependence sets is
1201     // incomplete).
1202     bool NeedsAliasSetRTCheck = RunningDepId > 2 || !Retries.empty();
1203 
1204     // We need to perform run-time alias checks, but some pointers had bounds
1205     // that couldn't be checked.
1206     if (NeedsAliasSetRTCheck && !CanDoAliasSetRT) {
1207       // Reset the CanDoSetRt flag and retry all accesses that have failed.
1208       // We know that we need these checks, so we can now be more aggressive
1209       // and add further checks if required (overflow checks).
1210       CanDoAliasSetRT = true;
1211       for (const auto &[Access, AccessTy] : Retries) {
1212         if (!createCheckForAccess(RtCheck, Access, AccessTy, StridesMap,
1213                                   DepSetId, TheLoop, RunningDepId, ASId,
1214                                   ShouldCheckWrap, /*Assume=*/true)) {
1215           CanDoAliasSetRT = false;
1216           UncomputablePtr = Access.getPointer();
1217           break;
1218         }
1219       }
1220     }
1221 
1222     CanDoRT &= CanDoAliasSetRT;
1223     MayNeedRTCheck |= NeedsAliasSetRTCheck;
1224     ++ASId;
1225   }
1226 
1227   // If the pointers that we would use for the bounds comparison have different
1228   // address spaces, assume the values aren't directly comparable, so we can't
1229   // use them for the runtime check. We also have to assume they could
1230   // overlap. In the future there should be metadata for whether address spaces
1231   // are disjoint.
1232   unsigned NumPointers = RtCheck.Pointers.size();
1233   for (unsigned i = 0; i < NumPointers; ++i) {
1234     for (unsigned j = i + 1; j < NumPointers; ++j) {
1235       // Only need to check pointers between two different dependency sets.
1236       if (RtCheck.Pointers[i].DependencySetId ==
1237           RtCheck.Pointers[j].DependencySetId)
1238        continue;
1239       // Only need to check pointers in the same alias set.
1240       if (RtCheck.Pointers[i].AliasSetId != RtCheck.Pointers[j].AliasSetId)
1241         continue;
1242 
1243       Value *PtrI = RtCheck.Pointers[i].PointerValue;
1244       Value *PtrJ = RtCheck.Pointers[j].PointerValue;
1245 
1246       unsigned ASi = PtrI->getType()->getPointerAddressSpace();
1247       unsigned ASj = PtrJ->getType()->getPointerAddressSpace();
1248       if (ASi != ASj) {
1249         LLVM_DEBUG(
1250             dbgs() << "LAA: Runtime check would require comparison between"
1251                       " different address spaces\n");
1252         return false;
1253       }
1254     }
1255   }
1256 
1257   if (MayNeedRTCheck && CanDoRT)
1258     RtCheck.generateChecks(DepCands, IsDepCheckNeeded);
1259 
1260   LLVM_DEBUG(dbgs() << "LAA: We need to do " << RtCheck.getNumberOfChecks()
1261                     << " pointer comparisons.\n");
1262 
1263   // If we can do run-time checks, but there are no checks, no runtime checks
1264   // are needed. This can happen when all pointers point to the same underlying
1265   // object for example.
1266   RtCheck.Need = CanDoRT ? RtCheck.getNumberOfChecks() != 0 : MayNeedRTCheck;
1267 
1268   bool CanDoRTIfNeeded = !RtCheck.Need || CanDoRT;
1269   if (!CanDoRTIfNeeded)
1270     RtCheck.reset();
1271   return CanDoRTIfNeeded;
1272 }
1273 
1274 void AccessAnalysis::processMemAccesses() {
1275   // We process the set twice: first we process read-write pointers, last we
1276   // process read-only pointers. This allows us to skip dependence tests for
1277   // read-only pointers.
1278 
1279   LLVM_DEBUG(dbgs() << "LAA: Processing memory accesses...\n");
1280   LLVM_DEBUG(dbgs() << "  AST: "; AST.dump());
1281   LLVM_DEBUG(dbgs() << "LAA:   Accesses(" << Accesses.size() << "):\n");
1282   LLVM_DEBUG({
1283     for (const auto &[A, _] : Accesses)
1284       dbgs() << "\t" << *A.getPointer() << " ("
1285              << (A.getInt() ? "write"
1286                             : (ReadOnlyPtr.count(A.getPointer()) ? "read-only"
1287                                                                  : "read"))
1288              << ")\n";
1289   });
1290 
1291   // The AliasSetTracker has nicely partitioned our pointers by metadata
1292   // compatibility and potential for underlying-object overlap. As a result, we
1293   // only need to check for potential pointer dependencies within each alias
1294   // set.
1295   for (const auto &AS : AST) {
1296     // Note that both the alias-set tracker and the alias sets themselves used
1297     // ordered collections internally and so the iteration order here is
1298     // deterministic.
1299     auto ASPointers = AS.getPointers();
1300 
1301     bool SetHasWrite = false;
1302 
1303     // Map of pointers to last access encountered.
1304     typedef DenseMap<const Value*, MemAccessInfo> UnderlyingObjToAccessMap;
1305     UnderlyingObjToAccessMap ObjToLastAccess;
1306 
1307     // Set of access to check after all writes have been processed.
1308     PtrAccessMap DeferredAccesses;
1309 
1310     // Iterate over each alias set twice, once to process read/write pointers,
1311     // and then to process read-only pointers.
1312     for (int SetIteration = 0; SetIteration < 2; ++SetIteration) {
1313       bool UseDeferred = SetIteration > 0;
1314       PtrAccessMap &S = UseDeferred ? DeferredAccesses : Accesses;
1315 
1316       for (const Value *ConstPtr : ASPointers) {
1317         Value *Ptr = const_cast<Value *>(ConstPtr);
1318 
1319         // For a single memory access in AliasSetTracker, Accesses may contain
1320         // both read and write, and they both need to be handled for CheckDeps.
1321         for (const auto &[AC, _] : S) {
1322           if (AC.getPointer() != Ptr)
1323             continue;
1324 
1325           bool IsWrite = AC.getInt();
1326 
1327           // If we're using the deferred access set, then it contains only
1328           // reads.
1329           bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite;
1330           if (UseDeferred && !IsReadOnlyPtr)
1331             continue;
1332           // Otherwise, the pointer must be in the PtrAccessSet, either as a
1333           // read or a write.
1334           assert(((IsReadOnlyPtr && UseDeferred) || IsWrite ||
1335                   S.count(MemAccessInfo(Ptr, false))) &&
1336                  "Alias-set pointer not in the access set?");
1337 
1338           MemAccessInfo Access(Ptr, IsWrite);
1339           DepCands.insert(Access);
1340 
1341           // Memorize read-only pointers for later processing and skip them in
1342           // the first round (they need to be checked after we have seen all
1343           // write pointers). Note: we also mark pointer that are not
1344           // consecutive as "read-only" pointers (so that we check
1345           // "a[b[i]] +="). Hence, we need the second check for "!IsWrite".
1346           if (!UseDeferred && IsReadOnlyPtr) {
1347             // We only use the pointer keys, the types vector values don't
1348             // matter.
1349             DeferredAccesses.insert({Access, {}});
1350             continue;
1351           }
1352 
1353           // If this is a write - check other reads and writes for conflicts. If
1354           // this is a read only check other writes for conflicts (but only if
1355           // there is no other write to the ptr - this is an optimization to
1356           // catch "a[i] = a[i] + " without having to do a dependence check).
1357           if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) {
1358             CheckDeps.push_back(Access);
1359             IsRTCheckAnalysisNeeded = true;
1360           }
1361 
1362           if (IsWrite)
1363             SetHasWrite = true;
1364 
1365           // Create sets of pointers connected by a shared alias set and
1366           // underlying object.
1367           typedef SmallVector<const Value *, 16> ValueVector;
1368           ValueVector TempObjects;
1369 
1370           UnderlyingObjects[Ptr] = {};
1371           SmallVector<const Value *, 16> &UOs = UnderlyingObjects[Ptr];
1372           ::getUnderlyingObjects(Ptr, UOs, LI);
1373           LLVM_DEBUG(dbgs()
1374                      << "Underlying objects for pointer " << *Ptr << "\n");
1375           for (const Value *UnderlyingObj : UOs) {
1376             // nullptr never alias, don't join sets for pointer that have "null"
1377             // in their UnderlyingObjects list.
1378             if (isa<ConstantPointerNull>(UnderlyingObj) &&
1379                 !NullPointerIsDefined(
1380                     TheLoop->getHeader()->getParent(),
1381                     UnderlyingObj->getType()->getPointerAddressSpace()))
1382               continue;
1383 
1384             UnderlyingObjToAccessMap::iterator Prev =
1385                 ObjToLastAccess.find(UnderlyingObj);
1386             if (Prev != ObjToLastAccess.end())
1387               DepCands.unionSets(Access, Prev->second);
1388 
1389             ObjToLastAccess[UnderlyingObj] = Access;
1390             LLVM_DEBUG(dbgs() << "  " << *UnderlyingObj << "\n");
1391           }
1392         }
1393       }
1394     }
1395   }
1396 }
1397 
1398 /// Return true if an AddRec pointer \p Ptr is unsigned non-wrapping,
1399 /// i.e. monotonically increasing/decreasing.
1400 static bool isNoWrapAddRec(Value *Ptr, const SCEVAddRecExpr *AR,
1401                            PredicatedScalarEvolution &PSE, const Loop *L) {
1402 
1403   // FIXME: This should probably only return true for NUW.
1404   if (AR->getNoWrapFlags(SCEV::NoWrapMask))
1405     return true;
1406 
1407   if (PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW))
1408     return true;
1409 
1410   // Scalar evolution does not propagate the non-wrapping flags to values that
1411   // are derived from a non-wrapping induction variable because non-wrapping
1412   // could be flow-sensitive.
1413   //
1414   // Look through the potentially overflowing instruction to try to prove
1415   // non-wrapping for the *specific* value of Ptr.
1416 
1417   // The arithmetic implied by an inbounds GEP can't overflow.
1418   const auto *GEP = dyn_cast<GetElementPtrInst>(Ptr);
1419   if (!GEP || !GEP->isInBounds())
1420     return false;
1421 
1422   // Make sure there is only one non-const index and analyze that.
1423   Value *NonConstIndex = nullptr;
1424   for (Value *Index : GEP->indices())
1425     if (!isa<ConstantInt>(Index)) {
1426       if (NonConstIndex)
1427         return false;
1428       NonConstIndex = Index;
1429     }
1430   if (!NonConstIndex)
1431     // The recurrence is on the pointer, ignore for now.
1432     return false;
1433 
1434   // The index in GEP is signed.  It is non-wrapping if it's derived from a NSW
1435   // AddRec using a NSW operation.
1436   if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(NonConstIndex))
1437     if (OBO->hasNoSignedWrap() &&
1438         // Assume constant for other the operand so that the AddRec can be
1439         // easily found.
1440         isa<ConstantInt>(OBO->getOperand(1))) {
1441       const SCEV *OpScev = PSE.getSCEV(OBO->getOperand(0));
1442 
1443       if (auto *OpAR = dyn_cast<SCEVAddRecExpr>(OpScev))
1444         return OpAR->getLoop() == L && OpAR->getNoWrapFlags(SCEV::FlagNSW);
1445     }
1446 
1447   return false;
1448 }
1449 
1450 /// Check whether the access through \p Ptr has a constant stride.
1451 std::optional<int64_t>
1452 llvm::getPtrStride(PredicatedScalarEvolution &PSE, Type *AccessTy, Value *Ptr,
1453                    const Loop *Lp,
1454                    const DenseMap<Value *, const SCEV *> &StridesMap,
1455                    bool Assume, bool ShouldCheckWrap) {
1456   const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr);
1457   if (PSE.getSE()->isLoopInvariant(PtrScev, Lp))
1458     return {0};
1459 
1460   Type *Ty = Ptr->getType();
1461   assert(Ty->isPointerTy() && "Unexpected non-ptr");
1462   if (isa<ScalableVectorType>(AccessTy)) {
1463     LLVM_DEBUG(dbgs() << "LAA: Bad stride - Scalable object: " << *AccessTy
1464                       << "\n");
1465     return std::nullopt;
1466   }
1467 
1468   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
1469   if (Assume && !AR)
1470     AR = PSE.getAsAddRec(Ptr);
1471 
1472   if (!AR) {
1473     LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer " << *Ptr
1474                       << " SCEV: " << *PtrScev << "\n");
1475     return std::nullopt;
1476   }
1477 
1478   // The access function must stride over the innermost loop.
1479   if (Lp != AR->getLoop()) {
1480     LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop "
1481                       << *Ptr << " SCEV: " << *AR << "\n");
1482     return std::nullopt;
1483   }
1484 
1485   // Check the step is constant.
1486   const SCEV *Step = AR->getStepRecurrence(*PSE.getSE());
1487 
1488   // Calculate the pointer stride and check if it is constant.
1489   const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
1490   if (!C) {
1491     LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr
1492                       << " SCEV: " << *AR << "\n");
1493     return std::nullopt;
1494   }
1495 
1496   const auto &DL = Lp->getHeader()->getDataLayout();
1497   TypeSize AllocSize = DL.getTypeAllocSize(AccessTy);
1498   int64_t Size = AllocSize.getFixedValue();
1499   const APInt &APStepVal = C->getAPInt();
1500 
1501   // Huge step value - give up.
1502   if (APStepVal.getBitWidth() > 64)
1503     return std::nullopt;
1504 
1505   int64_t StepVal = APStepVal.getSExtValue();
1506 
1507   // Strided access.
1508   int64_t Stride = StepVal / Size;
1509   int64_t Rem = StepVal % Size;
1510   if (Rem)
1511     return std::nullopt;
1512 
1513   if (!ShouldCheckWrap)
1514     return Stride;
1515 
1516   // The address calculation must not wrap. Otherwise, a dependence could be
1517   // inverted.
1518   if (isNoWrapAddRec(Ptr, AR, PSE, Lp))
1519     return Stride;
1520 
1521   // An inbounds getelementptr that is a AddRec with a unit stride
1522   // cannot wrap per definition.  If it did, the result would be poison
1523   // and any memory access dependent on it would be immediate UB
1524   // when executed.
1525   if (auto *GEP = dyn_cast<GetElementPtrInst>(Ptr);
1526       GEP && GEP->isInBounds() && (Stride == 1 || Stride == -1))
1527     return Stride;
1528 
1529   // If the null pointer is undefined, then a access sequence which would
1530   // otherwise access it can be assumed not to unsigned wrap.  Note that this
1531   // assumes the object in memory is aligned to the natural alignment.
1532   unsigned AddrSpace = Ty->getPointerAddressSpace();
1533   if (!NullPointerIsDefined(Lp->getHeader()->getParent(), AddrSpace) &&
1534       (Stride == 1 || Stride == -1))
1535     return Stride;
1536 
1537   if (Assume) {
1538     PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW);
1539     LLVM_DEBUG(dbgs() << "LAA: Pointer may wrap:\n"
1540                       << "LAA:   Pointer: " << *Ptr << "\n"
1541                       << "LAA:   SCEV: " << *AR << "\n"
1542                       << "LAA:   Added an overflow assumption\n");
1543     return Stride;
1544   }
1545   LLVM_DEBUG(
1546       dbgs() << "LAA: Bad stride - Pointer may wrap in the address space "
1547              << *Ptr << " SCEV: " << *AR << "\n");
1548   return std::nullopt;
1549 }
1550 
1551 std::optional<int> llvm::getPointersDiff(Type *ElemTyA, Value *PtrA,
1552                                          Type *ElemTyB, Value *PtrB,
1553                                          const DataLayout &DL,
1554                                          ScalarEvolution &SE, bool StrictCheck,
1555                                          bool CheckType) {
1556   assert(PtrA && PtrB && "Expected non-nullptr pointers.");
1557 
1558   // Make sure that A and B are different pointers.
1559   if (PtrA == PtrB)
1560     return 0;
1561 
1562   // Make sure that the element types are the same if required.
1563   if (CheckType && ElemTyA != ElemTyB)
1564     return std::nullopt;
1565 
1566   unsigned ASA = PtrA->getType()->getPointerAddressSpace();
1567   unsigned ASB = PtrB->getType()->getPointerAddressSpace();
1568 
1569   // Check that the address spaces match.
1570   if (ASA != ASB)
1571     return std::nullopt;
1572   unsigned IdxWidth = DL.getIndexSizeInBits(ASA);
1573 
1574   APInt OffsetA(IdxWidth, 0), OffsetB(IdxWidth, 0);
1575   const Value *PtrA1 =
1576       PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA);
1577   const Value *PtrB1 =
1578       PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB);
1579 
1580   int Val;
1581   if (PtrA1 == PtrB1) {
1582     // Retrieve the address space again as pointer stripping now tracks through
1583     // `addrspacecast`.
1584     ASA = cast<PointerType>(PtrA1->getType())->getAddressSpace();
1585     ASB = cast<PointerType>(PtrB1->getType())->getAddressSpace();
1586     // Check that the address spaces match and that the pointers are valid.
1587     if (ASA != ASB)
1588       return std::nullopt;
1589 
1590     IdxWidth = DL.getIndexSizeInBits(ASA);
1591     OffsetA = OffsetA.sextOrTrunc(IdxWidth);
1592     OffsetB = OffsetB.sextOrTrunc(IdxWidth);
1593 
1594     OffsetB -= OffsetA;
1595     Val = OffsetB.getSExtValue();
1596   } else {
1597     // Otherwise compute the distance with SCEV between the base pointers.
1598     const SCEV *PtrSCEVA = SE.getSCEV(PtrA);
1599     const SCEV *PtrSCEVB = SE.getSCEV(PtrB);
1600     std::optional<APInt> Diff =
1601         SE.computeConstantDifference(PtrSCEVB, PtrSCEVA);
1602     if (!Diff)
1603       return std::nullopt;
1604     Val = Diff->getSExtValue();
1605   }
1606   int Size = DL.getTypeStoreSize(ElemTyA);
1607   int Dist = Val / Size;
1608 
1609   // Ensure that the calculated distance matches the type-based one after all
1610   // the bitcasts removal in the provided pointers.
1611   if (!StrictCheck || Dist * Size == Val)
1612     return Dist;
1613   return std::nullopt;
1614 }
1615 
1616 bool llvm::sortPtrAccesses(ArrayRef<Value *> VL, Type *ElemTy,
1617                            const DataLayout &DL, ScalarEvolution &SE,
1618                            SmallVectorImpl<unsigned> &SortedIndices) {
1619   assert(llvm::all_of(
1620              VL, [](const Value *V) { return V->getType()->isPointerTy(); }) &&
1621          "Expected list of pointer operands.");
1622   // Walk over the pointers, and map each of them to an offset relative to
1623   // first pointer in the array.
1624   Value *Ptr0 = VL[0];
1625 
1626   using DistOrdPair = std::pair<int64_t, int>;
1627   auto Compare = llvm::less_first();
1628   std::set<DistOrdPair, decltype(Compare)> Offsets(Compare);
1629   Offsets.emplace(0, 0);
1630   bool IsConsecutive = true;
1631   for (auto [Idx, Ptr] : drop_begin(enumerate(VL))) {
1632     std::optional<int> Diff = getPointersDiff(ElemTy, Ptr0, ElemTy, Ptr, DL, SE,
1633                                               /*StrictCheck=*/true);
1634     if (!Diff)
1635       return false;
1636 
1637     // Check if the pointer with the same offset is found.
1638     int64_t Offset = *Diff;
1639     auto [It, IsInserted] = Offsets.emplace(Offset, Idx);
1640     if (!IsInserted)
1641       return false;
1642     // Consecutive order if the inserted element is the last one.
1643     IsConsecutive &= std::next(It) == Offsets.end();
1644   }
1645   SortedIndices.clear();
1646   if (!IsConsecutive) {
1647     // Fill SortedIndices array only if it is non-consecutive.
1648     SortedIndices.resize(VL.size());
1649     for (auto [Idx, Off] : enumerate(Offsets))
1650       SortedIndices[Idx] = Off.second;
1651   }
1652   return true;
1653 }
1654 
1655 /// Returns true if the memory operations \p A and \p B are consecutive.
1656 bool llvm::isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL,
1657                                ScalarEvolution &SE, bool CheckType) {
1658   Value *PtrA = getLoadStorePointerOperand(A);
1659   Value *PtrB = getLoadStorePointerOperand(B);
1660   if (!PtrA || !PtrB)
1661     return false;
1662   Type *ElemTyA = getLoadStoreType(A);
1663   Type *ElemTyB = getLoadStoreType(B);
1664   std::optional<int> Diff =
1665       getPointersDiff(ElemTyA, PtrA, ElemTyB, PtrB, DL, SE,
1666                       /*StrictCheck=*/true, CheckType);
1667   return Diff && *Diff == 1;
1668 }
1669 
1670 void MemoryDepChecker::addAccess(StoreInst *SI) {
1671   visitPointers(SI->getPointerOperand(), *InnermostLoop,
1672                 [this, SI](Value *Ptr) {
1673                   Accesses[MemAccessInfo(Ptr, true)].push_back(AccessIdx);
1674                   InstMap.push_back(SI);
1675                   ++AccessIdx;
1676                 });
1677 }
1678 
1679 void MemoryDepChecker::addAccess(LoadInst *LI) {
1680   visitPointers(LI->getPointerOperand(), *InnermostLoop,
1681                 [this, LI](Value *Ptr) {
1682                   Accesses[MemAccessInfo(Ptr, false)].push_back(AccessIdx);
1683                   InstMap.push_back(LI);
1684                   ++AccessIdx;
1685                 });
1686 }
1687 
1688 MemoryDepChecker::VectorizationSafetyStatus
1689 MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type) {
1690   switch (Type) {
1691   case NoDep:
1692   case Forward:
1693   case BackwardVectorizable:
1694     return VectorizationSafetyStatus::Safe;
1695 
1696   case Unknown:
1697     return VectorizationSafetyStatus::PossiblySafeWithRtChecks;
1698   case ForwardButPreventsForwarding:
1699   case Backward:
1700   case BackwardVectorizableButPreventsForwarding:
1701   case IndirectUnsafe:
1702     return VectorizationSafetyStatus::Unsafe;
1703   }
1704   llvm_unreachable("unexpected DepType!");
1705 }
1706 
1707 bool MemoryDepChecker::Dependence::isBackward() const {
1708   switch (Type) {
1709   case NoDep:
1710   case Forward:
1711   case ForwardButPreventsForwarding:
1712   case Unknown:
1713   case IndirectUnsafe:
1714     return false;
1715 
1716   case BackwardVectorizable:
1717   case Backward:
1718   case BackwardVectorizableButPreventsForwarding:
1719     return true;
1720   }
1721   llvm_unreachable("unexpected DepType!");
1722 }
1723 
1724 bool MemoryDepChecker::Dependence::isPossiblyBackward() const {
1725   return isBackward() || Type == Unknown || Type == IndirectUnsafe;
1726 }
1727 
1728 bool MemoryDepChecker::Dependence::isForward() const {
1729   switch (Type) {
1730   case Forward:
1731   case ForwardButPreventsForwarding:
1732     return true;
1733 
1734   case NoDep:
1735   case Unknown:
1736   case BackwardVectorizable:
1737   case Backward:
1738   case BackwardVectorizableButPreventsForwarding:
1739   case IndirectUnsafe:
1740     return false;
1741   }
1742   llvm_unreachable("unexpected DepType!");
1743 }
1744 
1745 bool MemoryDepChecker::couldPreventStoreLoadForward(uint64_t Distance,
1746                                                     uint64_t TypeByteSize) {
1747   // If loads occur at a distance that is not a multiple of a feasible vector
1748   // factor store-load forwarding does not take place.
1749   // Positive dependences might cause troubles because vectorizing them might
1750   // prevent store-load forwarding making vectorized code run a lot slower.
1751   //   a[i] = a[i-3] ^ a[i-8];
1752   //   The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and
1753   //   hence on your typical architecture store-load forwarding does not take
1754   //   place. Vectorizing in such cases does not make sense.
1755   // Store-load forwarding distance.
1756 
1757   // After this many iterations store-to-load forwarding conflicts should not
1758   // cause any slowdowns.
1759   const uint64_t NumItersForStoreLoadThroughMemory = 8 * TypeByteSize;
1760   // Maximum vector factor.
1761   uint64_t MaxVFWithoutSLForwardIssues = std::min(
1762       VectorizerParams::MaxVectorWidth * TypeByteSize, MinDepDistBytes);
1763 
1764   // Compute the smallest VF at which the store and load would be misaligned.
1765   for (uint64_t VF = 2 * TypeByteSize; VF <= MaxVFWithoutSLForwardIssues;
1766        VF *= 2) {
1767     // If the number of vector iteration between the store and the load are
1768     // small we could incur conflicts.
1769     if (Distance % VF && Distance / VF < NumItersForStoreLoadThroughMemory) {
1770       MaxVFWithoutSLForwardIssues = (VF >> 1);
1771       break;
1772     }
1773   }
1774 
1775   if (MaxVFWithoutSLForwardIssues < 2 * TypeByteSize) {
1776     LLVM_DEBUG(
1777         dbgs() << "LAA: Distance " << Distance
1778                << " that could cause a store-load forwarding conflict\n");
1779     return true;
1780   }
1781 
1782   if (MaxVFWithoutSLForwardIssues < MinDepDistBytes &&
1783       MaxVFWithoutSLForwardIssues !=
1784           VectorizerParams::MaxVectorWidth * TypeByteSize)
1785     MinDepDistBytes = MaxVFWithoutSLForwardIssues;
1786   return false;
1787 }
1788 
1789 void MemoryDepChecker::mergeInStatus(VectorizationSafetyStatus S) {
1790   if (Status < S)
1791     Status = S;
1792 }
1793 
1794 /// Given a dependence-distance \p Dist between two
1795 /// memory accesses, that have strides in the same direction whose absolute
1796 /// value of the maximum stride is given in \p MaxStride, and that have the same
1797 /// type size \p TypeByteSize, in a loop whose maximum backedge taken count is
1798 /// \p MaxBTC, check if it is possible to prove statically that the dependence
1799 /// distance is larger than the range that the accesses will travel through the
1800 /// execution of the loop. If so, return true; false otherwise. This is useful
1801 /// for example in loops such as the following (PR31098):
1802 ///     for (i = 0; i < D; ++i) {
1803 ///                = out[i];
1804 ///       out[i+D] =
1805 ///     }
1806 static bool isSafeDependenceDistance(const DataLayout &DL, ScalarEvolution &SE,
1807                                      const SCEV &MaxBTC, const SCEV &Dist,
1808                                      uint64_t MaxStride,
1809                                      uint64_t TypeByteSize) {
1810 
1811   // If we can prove that
1812   //      (**) |Dist| > MaxBTC * Step
1813   // where Step is the absolute stride of the memory accesses in bytes,
1814   // then there is no dependence.
1815   //
1816   // Rationale:
1817   // We basically want to check if the absolute distance (|Dist/Step|)
1818   // is >= the loop iteration count (or > MaxBTC).
1819   // This is equivalent to the Strong SIV Test (Practical Dependence Testing,
1820   // Section 4.2.1); Note, that for vectorization it is sufficient to prove
1821   // that the dependence distance is >= VF; This is checked elsewhere.
1822   // But in some cases we can prune dependence distances early, and
1823   // even before selecting the VF, and without a runtime test, by comparing
1824   // the distance against the loop iteration count. Since the vectorized code
1825   // will be executed only if LoopCount >= VF, proving distance >= LoopCount
1826   // also guarantees that distance >= VF.
1827   //
1828   const uint64_t ByteStride = MaxStride * TypeByteSize;
1829   const SCEV *Step = SE.getConstant(MaxBTC.getType(), ByteStride);
1830   const SCEV *Product = SE.getMulExpr(&MaxBTC, Step);
1831 
1832   const SCEV *CastedDist = &Dist;
1833   const SCEV *CastedProduct = Product;
1834   uint64_t DistTypeSizeBits = DL.getTypeSizeInBits(Dist.getType());
1835   uint64_t ProductTypeSizeBits = DL.getTypeSizeInBits(Product->getType());
1836 
1837   // The dependence distance can be positive/negative, so we sign extend Dist;
1838   // The multiplication of the absolute stride in bytes and the
1839   // backedgeTakenCount is non-negative, so we zero extend Product.
1840   if (DistTypeSizeBits > ProductTypeSizeBits)
1841     CastedProduct = SE.getZeroExtendExpr(Product, Dist.getType());
1842   else
1843     CastedDist = SE.getNoopOrSignExtend(&Dist, Product->getType());
1844 
1845   // Is  Dist - (MaxBTC * Step) > 0 ?
1846   // (If so, then we have proven (**) because |Dist| >= Dist)
1847   const SCEV *Minus = SE.getMinusSCEV(CastedDist, CastedProduct);
1848   if (SE.isKnownPositive(Minus))
1849     return true;
1850 
1851   // Second try: Is  -Dist - (MaxBTC * Step) > 0 ?
1852   // (If so, then we have proven (**) because |Dist| >= -1*Dist)
1853   const SCEV *NegDist = SE.getNegativeSCEV(CastedDist);
1854   Minus = SE.getMinusSCEV(NegDist, CastedProduct);
1855   return SE.isKnownPositive(Minus);
1856 }
1857 
1858 /// Check the dependence for two accesses with the same stride \p Stride.
1859 /// \p Distance is the positive distance and \p TypeByteSize is type size in
1860 /// bytes.
1861 ///
1862 /// \returns true if they are independent.
1863 static bool areStridedAccessesIndependent(uint64_t Distance, uint64_t Stride,
1864                                           uint64_t TypeByteSize) {
1865   assert(Stride > 1 && "The stride must be greater than 1");
1866   assert(TypeByteSize > 0 && "The type size in byte must be non-zero");
1867   assert(Distance > 0 && "The distance must be non-zero");
1868 
1869   // Skip if the distance is not multiple of type byte size.
1870   if (Distance % TypeByteSize)
1871     return false;
1872 
1873   uint64_t ScaledDist = Distance / TypeByteSize;
1874 
1875   // No dependence if the scaled distance is not multiple of the stride.
1876   // E.g.
1877   //      for (i = 0; i < 1024 ; i += 4)
1878   //        A[i+2] = A[i] + 1;
1879   //
1880   // Two accesses in memory (scaled distance is 2, stride is 4):
1881   //     | A[0] |      |      |      | A[4] |      |      |      |
1882   //     |      |      | A[2] |      |      |      | A[6] |      |
1883   //
1884   // E.g.
1885   //      for (i = 0; i < 1024 ; i += 3)
1886   //        A[i+4] = A[i] + 1;
1887   //
1888   // Two accesses in memory (scaled distance is 4, stride is 3):
1889   //     | A[0] |      |      | A[3] |      |      | A[6] |      |      |
1890   //     |      |      |      |      | A[4] |      |      | A[7] |      |
1891   return ScaledDist % Stride;
1892 }
1893 
1894 std::variant<MemoryDepChecker::Dependence::DepType,
1895              MemoryDepChecker::DepDistanceStrideAndSizeInfo>
1896 MemoryDepChecker::getDependenceDistanceStrideAndSize(
1897     const AccessAnalysis::MemAccessInfo &A, Instruction *AInst,
1898     const AccessAnalysis::MemAccessInfo &B, Instruction *BInst) {
1899   const auto &DL = InnermostLoop->getHeader()->getDataLayout();
1900   auto &SE = *PSE.getSE();
1901   const auto &[APtr, AIsWrite] = A;
1902   const auto &[BPtr, BIsWrite] = B;
1903 
1904   // Two reads are independent.
1905   if (!AIsWrite && !BIsWrite)
1906     return MemoryDepChecker::Dependence::NoDep;
1907 
1908   Type *ATy = getLoadStoreType(AInst);
1909   Type *BTy = getLoadStoreType(BInst);
1910 
1911   // We cannot check pointers in different address spaces.
1912   if (APtr->getType()->getPointerAddressSpace() !=
1913       BPtr->getType()->getPointerAddressSpace())
1914     return MemoryDepChecker::Dependence::Unknown;
1915 
1916   std::optional<int64_t> StrideAPtr =
1917       getPtrStride(PSE, ATy, APtr, InnermostLoop, SymbolicStrides, true, true);
1918   std::optional<int64_t> StrideBPtr =
1919       getPtrStride(PSE, BTy, BPtr, InnermostLoop, SymbolicStrides, true, true);
1920 
1921   const SCEV *Src = PSE.getSCEV(APtr);
1922   const SCEV *Sink = PSE.getSCEV(BPtr);
1923 
1924   // If the induction step is negative we have to invert source and sink of the
1925   // dependence when measuring the distance between them. We should not swap
1926   // AIsWrite with BIsWrite, as their uses expect them in program order.
1927   if (StrideAPtr && *StrideAPtr < 0) {
1928     std::swap(Src, Sink);
1929     std::swap(AInst, BInst);
1930     std::swap(StrideAPtr, StrideBPtr);
1931   }
1932 
1933   const SCEV *Dist = SE.getMinusSCEV(Sink, Src);
1934 
1935   LLVM_DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink
1936                     << "\n");
1937   LLVM_DEBUG(dbgs() << "LAA: Distance for " << *AInst << " to " << *BInst
1938                     << ": " << *Dist << "\n");
1939 
1940   // Need accesses with constant strides and the same direction for further
1941   // dependence analysis. We don't want to vectorize "A[B[i]] += ..." and
1942   // similar code or pointer arithmetic that could wrap in the address space.
1943 
1944   // If either Src or Sink are not strided (i.e. not a non-wrapping AddRec) and
1945   // not loop-invariant (stride will be 0 in that case), we cannot analyze the
1946   // dependence further and also cannot generate runtime checks.
1947   if (!StrideAPtr || !StrideBPtr) {
1948     LLVM_DEBUG(dbgs() << "Pointer access with non-constant stride\n");
1949     return MemoryDepChecker::Dependence::IndirectUnsafe;
1950   }
1951 
1952   int64_t StrideAPtrInt = *StrideAPtr;
1953   int64_t StrideBPtrInt = *StrideBPtr;
1954   LLVM_DEBUG(dbgs() << "LAA:  Src induction step: " << StrideAPtrInt
1955                     << " Sink induction step: " << StrideBPtrInt << "\n");
1956   // At least Src or Sink are loop invariant and the other is strided or
1957   // invariant. We can generate a runtime check to disambiguate the accesses.
1958   if (StrideAPtrInt == 0 || StrideBPtrInt == 0)
1959     return MemoryDepChecker::Dependence::Unknown;
1960 
1961   // Both Src and Sink have a constant stride, check if they are in the same
1962   // direction.
1963   if ((StrideAPtrInt > 0 && StrideBPtrInt < 0) ||
1964       (StrideAPtrInt < 0 && StrideBPtrInt > 0)) {
1965     LLVM_DEBUG(
1966         dbgs() << "Pointer access with strides in different directions\n");
1967     return MemoryDepChecker::Dependence::Unknown;
1968   }
1969 
1970   uint64_t TypeByteSize = DL.getTypeAllocSize(ATy);
1971   bool HasSameSize =
1972       DL.getTypeStoreSizeInBits(ATy) == DL.getTypeStoreSizeInBits(BTy);
1973   if (!HasSameSize)
1974     TypeByteSize = 0;
1975   return DepDistanceStrideAndSizeInfo(Dist, std::abs(StrideAPtrInt),
1976                                       std::abs(StrideBPtrInt), TypeByteSize,
1977                                       AIsWrite, BIsWrite);
1978 }
1979 
1980 MemoryDepChecker::Dependence::DepType
1981 MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx,
1982                               const MemAccessInfo &B, unsigned BIdx) {
1983   assert(AIdx < BIdx && "Must pass arguments in program order");
1984 
1985   // Check if we can prove that Sink only accesses memory after Src's end or
1986   // vice versa. The helper is used to perform the checks only on the exit paths
1987   // where it helps to improve the analysis result.
1988   auto CheckCompletelyBeforeOrAfter = [&]() {
1989     auto *APtr = A.getPointer();
1990     auto *BPtr = B.getPointer();
1991 
1992     Type *ATy = getLoadStoreType(InstMap[AIdx]);
1993     Type *BTy = getLoadStoreType(InstMap[BIdx]);
1994 
1995     const SCEV *Src = PSE.getSCEV(APtr);
1996     const SCEV *Sink = PSE.getSCEV(BPtr);
1997 
1998     const auto &[SrcStart, SrcEnd] =
1999         getStartAndEndForAccess(InnermostLoop, Src, ATy, PSE, PointerBounds);
2000     if (isa<SCEVCouldNotCompute>(SrcStart) || isa<SCEVCouldNotCompute>(SrcEnd))
2001       return false;
2002 
2003     const auto &[SinkStart, SinkEnd] =
2004         getStartAndEndForAccess(InnermostLoop, Sink, BTy, PSE, PointerBounds);
2005     if (isa<SCEVCouldNotCompute>(SinkStart) ||
2006         isa<SCEVCouldNotCompute>(SinkEnd))
2007       return false;
2008 
2009     auto &SE = *PSE.getSE();
2010     return SE.isKnownPredicate(CmpInst::ICMP_ULE, SrcEnd, SinkStart) ||
2011            SE.isKnownPredicate(CmpInst::ICMP_ULE, SinkEnd, SrcStart);
2012   };
2013 
2014   // Get the dependence distance, stride, type size and what access writes for
2015   // the dependence between A and B.
2016   auto Res =
2017       getDependenceDistanceStrideAndSize(A, InstMap[AIdx], B, InstMap[BIdx]);
2018   if (std::holds_alternative<Dependence::DepType>(Res)) {
2019     if (std::get<Dependence::DepType>(Res) == Dependence::Unknown &&
2020         CheckCompletelyBeforeOrAfter())
2021       return Dependence::NoDep;
2022     return std::get<Dependence::DepType>(Res);
2023   }
2024 
2025   auto &[Dist, StrideA, StrideB, TypeByteSize, AIsWrite, BIsWrite] =
2026       std::get<DepDistanceStrideAndSizeInfo>(Res);
2027   bool HasSameSize = TypeByteSize > 0;
2028 
2029   std::optional<uint64_t> CommonStride =
2030       StrideA == StrideB ? std::make_optional(StrideA) : std::nullopt;
2031   if (isa<SCEVCouldNotCompute>(Dist)) {
2032     if (CheckCompletelyBeforeOrAfter())
2033       return Dependence::NoDep;
2034 
2035     // TODO: Relax requirement that there is a common stride to retry with
2036     // non-constant distance dependencies.
2037     FoundNonConstantDistanceDependence |= CommonStride.has_value();
2038     LLVM_DEBUG(dbgs() << "LAA: Dependence because of uncomputable distance.\n");
2039     return Dependence::Unknown;
2040   }
2041 
2042   ScalarEvolution &SE = *PSE.getSE();
2043   auto &DL = InnermostLoop->getHeader()->getDataLayout();
2044   uint64_t MaxStride = std::max(StrideA, StrideB);
2045 
2046   // If the distance between the acecsses is larger than their maximum absolute
2047   // stride multiplied by the symbolic maximum backedge taken count (which is an
2048   // upper bound of the number of iterations), the accesses are independet, i.e.
2049   // they are far enough appart that accesses won't access the same location
2050   // across all loop ierations.
2051   if (HasSameSize && isSafeDependenceDistance(
2052                          DL, SE, *(PSE.getSymbolicMaxBackedgeTakenCount()),
2053                          *Dist, MaxStride, TypeByteSize))
2054     return Dependence::NoDep;
2055 
2056   const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist);
2057 
2058   // Attempt to prove strided accesses independent.
2059   if (C) {
2060     const APInt &Val = C->getAPInt();
2061     int64_t Distance = Val.getSExtValue();
2062 
2063     // If the distance between accesses and their strides are known constants,
2064     // check whether the accesses interlace each other.
2065     if (std::abs(Distance) > 0 && CommonStride && *CommonStride > 1 &&
2066         HasSameSize &&
2067         areStridedAccessesIndependent(std::abs(Distance), *CommonStride,
2068                                       TypeByteSize)) {
2069       LLVM_DEBUG(dbgs() << "LAA: Strided accesses are independent\n");
2070       return Dependence::NoDep;
2071     }
2072   } else {
2073     if (!LoopGuards)
2074       LoopGuards.emplace(
2075           ScalarEvolution::LoopGuards::collect(InnermostLoop, SE));
2076     Dist = SE.applyLoopGuards(Dist, *LoopGuards);
2077   }
2078 
2079   // Negative distances are not plausible dependencies.
2080   if (SE.isKnownNonPositive(Dist)) {
2081     if (SE.isKnownNonNegative(Dist)) {
2082       if (HasSameSize) {
2083         // Write to the same location with the same size.
2084         return Dependence::Forward;
2085       }
2086       assert(!CheckCompletelyBeforeOrAfter() &&
2087              "unexpectedly proved no dependence");
2088       LLVM_DEBUG(dbgs() << "LAA: possibly zero dependence difference but "
2089                            "different type sizes\n");
2090       return Dependence::Unknown;
2091     }
2092 
2093     bool IsTrueDataDependence = (AIsWrite && !BIsWrite);
2094     // Check if the first access writes to a location that is read in a later
2095     // iteration, where the distance between them is not a multiple of a vector
2096     // factor and relatively small.
2097     //
2098     // NOTE: There is no need to update MaxSafeVectorWidthInBits after call to
2099     // couldPreventStoreLoadForward, even if it changed MinDepDistBytes, since a
2100     // forward dependency will allow vectorization using any width.
2101 
2102     if (IsTrueDataDependence && EnableForwardingConflictDetection) {
2103       if (!C) {
2104         // TODO: FoundNonConstantDistanceDependence is used as a necessary
2105         // condition to consider retrying with runtime checks. Historically, we
2106         // did not set it when strides were different but there is no inherent
2107         // reason to.
2108         FoundNonConstantDistanceDependence |= CommonStride.has_value();
2109         if (CheckCompletelyBeforeOrAfter())
2110           return Dependence::NoDep;
2111         return Dependence::Unknown;
2112       }
2113       if (!HasSameSize ||
2114           couldPreventStoreLoadForward(C->getAPInt().abs().getZExtValue(),
2115                                        TypeByteSize)) {
2116         LLVM_DEBUG(
2117             dbgs() << "LAA: Forward but may prevent st->ld forwarding\n");
2118         return Dependence::ForwardButPreventsForwarding;
2119       }
2120     }
2121 
2122     LLVM_DEBUG(dbgs() << "LAA: Dependence is negative\n");
2123     return Dependence::Forward;
2124   }
2125 
2126   int64_t MinDistance = SE.getSignedRangeMin(Dist).getSExtValue();
2127   // Below we only handle strictly positive distances.
2128   if (MinDistance <= 0) {
2129     FoundNonConstantDistanceDependence |= CommonStride.has_value();
2130     if (CheckCompletelyBeforeOrAfter())
2131       return Dependence::NoDep;
2132 
2133     return Dependence::Unknown;
2134   }
2135 
2136   if (!isa<SCEVConstant>(Dist)) {
2137     // Previously this case would be treated as Unknown, possibly setting
2138     // FoundNonConstantDistanceDependence to force re-trying with runtime
2139     // checks. Until the TODO below is addressed, set it here to preserve
2140     // original behavior w.r.t. re-trying with runtime checks.
2141     // TODO: FoundNonConstantDistanceDependence is used as a necessary
2142     // condition to consider retrying with runtime checks. Historically, we
2143     // did not set it when strides were different but there is no inherent
2144     // reason to.
2145     FoundNonConstantDistanceDependence |= CommonStride.has_value();
2146   }
2147 
2148   if (!HasSameSize) {
2149     if (CheckCompletelyBeforeOrAfter())
2150       return Dependence::NoDep;
2151     LLVM_DEBUG(dbgs() << "LAA: ReadWrite-Write positive dependency with "
2152                          "different type sizes\n");
2153     return Dependence::Unknown;
2154   }
2155 
2156   if (!CommonStride) {
2157     if (CheckCompletelyBeforeOrAfter())
2158       return Dependence::NoDep;
2159     return Dependence::Unknown;
2160   }
2161 
2162   // Bail out early if passed-in parameters make vectorization not feasible.
2163   unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ?
2164                            VectorizerParams::VectorizationFactor : 1);
2165   unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ?
2166                            VectorizerParams::VectorizationInterleave : 1);
2167   // The minimum number of iterations for a vectorized/unrolled version.
2168   unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U);
2169 
2170   // It's not vectorizable if the distance is smaller than the minimum distance
2171   // needed for a vectroized/unrolled version. Vectorizing one iteration in
2172   // front needs TypeByteSize * Stride. Vectorizing the last iteration needs
2173   // TypeByteSize (No need to plus the last gap distance).
2174   //
2175   // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
2176   //      foo(int *A) {
2177   //        int *B = (int *)((char *)A + 14);
2178   //        for (i = 0 ; i < 1024 ; i += 2)
2179   //          B[i] = A[i] + 1;
2180   //      }
2181   //
2182   // Two accesses in memory (stride is 2):
2183   //     | A[0] |      | A[2] |      | A[4] |      | A[6] |      |
2184   //                              | B[0] |      | B[2] |      | B[4] |
2185   //
2186   // MinDistance needs for vectorizing iterations except the last iteration:
2187   // 4 * 2 * (MinNumIter - 1). MinDistance needs for the last iteration: 4.
2188   // So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4.
2189   //
2190   // If MinNumIter is 2, it is vectorizable as the minimum distance needed is
2191   // 12, which is less than distance.
2192   //
2193   // If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4),
2194   // the minimum distance needed is 28, which is greater than distance. It is
2195   // not safe to do vectorization.
2196 
2197   // We know that Dist is positive, but it may not be constant. Use the signed
2198   // minimum for computations below, as this ensures we compute the closest
2199   // possible dependence distance.
2200   uint64_t MinDistanceNeeded =
2201       TypeByteSize * *CommonStride * (MinNumIter - 1) + TypeByteSize;
2202   if (MinDistanceNeeded > static_cast<uint64_t>(MinDistance)) {
2203     if (!isa<SCEVConstant>(Dist)) {
2204       // For non-constant distances, we checked the lower bound of the
2205       // dependence distance and the distance may be larger at runtime (and safe
2206       // for vectorization). Classify it as Unknown, so we re-try with runtime
2207       // checks.
2208       //
2209       if (CheckCompletelyBeforeOrAfter())
2210         return Dependence::NoDep;
2211 
2212       return Dependence::Unknown;
2213     }
2214     LLVM_DEBUG(dbgs() << "LAA: Failure because of positive minimum distance "
2215                       << MinDistance << '\n');
2216     return Dependence::Backward;
2217   }
2218 
2219   // Unsafe if the minimum distance needed is greater than smallest dependence
2220   // distance distance.
2221   if (MinDistanceNeeded > MinDepDistBytes) {
2222     LLVM_DEBUG(dbgs() << "LAA: Failure because it needs at least "
2223                       << MinDistanceNeeded << " size in bytes\n");
2224     assert(!CheckCompletelyBeforeOrAfter() &&
2225            "unexpectedly proved no dependence");
2226     return Dependence::Backward;
2227   }
2228 
2229   // Positive distance bigger than max vectorization factor.
2230   // FIXME: Should use max factor instead of max distance in bytes, which could
2231   // not handle different types.
2232   // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
2233   //      void foo (int *A, char *B) {
2234   //        for (unsigned i = 0; i < 1024; i++) {
2235   //          A[i+2] = A[i] + 1;
2236   //          B[i+2] = B[i] + 1;
2237   //        }
2238   //      }
2239   //
2240   // This case is currently unsafe according to the max safe distance. If we
2241   // analyze the two accesses on array B, the max safe dependence distance
2242   // is 2. Then we analyze the accesses on array A, the minimum distance needed
2243   // is 8, which is less than 2 and forbidden vectorization, But actually
2244   // both A and B could be vectorized by 2 iterations.
2245   MinDepDistBytes =
2246       std::min(static_cast<uint64_t>(MinDistance), MinDepDistBytes);
2247 
2248   bool IsTrueDataDependence = (!AIsWrite && BIsWrite);
2249   uint64_t MinDepDistBytesOld = MinDepDistBytes;
2250   if (IsTrueDataDependence && EnableForwardingConflictDetection &&
2251       isa<SCEVConstant>(Dist) &&
2252       couldPreventStoreLoadForward(MinDistance, TypeByteSize)) {
2253     // Sanity check that we didn't update MinDepDistBytes when calling
2254     // couldPreventStoreLoadForward
2255     assert(MinDepDistBytes == MinDepDistBytesOld &&
2256            "An update to MinDepDistBytes requires an update to "
2257            "MaxSafeVectorWidthInBits");
2258     (void)MinDepDistBytesOld;
2259     return Dependence::BackwardVectorizableButPreventsForwarding;
2260   }
2261 
2262   // An update to MinDepDistBytes requires an update to MaxSafeVectorWidthInBits
2263   // since there is a backwards dependency.
2264   uint64_t MaxVF = MinDepDistBytes / (TypeByteSize * *CommonStride);
2265   LLVM_DEBUG(dbgs() << "LAA: Positive min distance " << MinDistance
2266                     << " with max VF = " << MaxVF << '\n');
2267 
2268   uint64_t MaxVFInBits = MaxVF * TypeByteSize * 8;
2269   if (!isa<SCEVConstant>(Dist) && MaxVFInBits < MaxTargetVectorWidthInBits) {
2270     // For non-constant distances, we checked the lower bound of the dependence
2271     // distance and the distance may be larger at runtime (and safe for
2272     // vectorization). Classify it as Unknown, so we re-try with runtime checks.
2273     assert(!CheckCompletelyBeforeOrAfter() &&
2274            "unexpectedly proved no dependence");
2275     return Dependence::Unknown;
2276   }
2277 
2278   MaxSafeVectorWidthInBits = std::min(MaxSafeVectorWidthInBits, MaxVFInBits);
2279   return Dependence::BackwardVectorizable;
2280 }
2281 
2282 bool MemoryDepChecker::areDepsSafe(const DepCandidates &AccessSets,
2283                                    const MemAccessInfoList &CheckDeps) {
2284 
2285   MinDepDistBytes = -1;
2286   SmallPtrSet<MemAccessInfo, 8> Visited;
2287   for (MemAccessInfo CurAccess : CheckDeps) {
2288     if (Visited.count(CurAccess))
2289       continue;
2290 
2291     // Get the relevant memory access set.
2292     EquivalenceClasses<MemAccessInfo>::iterator I =
2293       AccessSets.findValue(AccessSets.getLeaderValue(CurAccess));
2294 
2295     // Check accesses within this set.
2296     EquivalenceClasses<MemAccessInfo>::member_iterator AI =
2297         AccessSets.member_begin(I);
2298     EquivalenceClasses<MemAccessInfo>::member_iterator AE =
2299         AccessSets.member_end();
2300 
2301     // Check every access pair.
2302     while (AI != AE) {
2303       Visited.insert(*AI);
2304       bool AIIsWrite = AI->getInt();
2305       // Check loads only against next equivalent class, but stores also against
2306       // other stores in the same equivalence class - to the same address.
2307       EquivalenceClasses<MemAccessInfo>::member_iterator OI =
2308           (AIIsWrite ? AI : std::next(AI));
2309       while (OI != AE) {
2310         // Check every accessing instruction pair in program order.
2311         for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(),
2312              I1E = Accesses[*AI].end(); I1 != I1E; ++I1)
2313           // Scan all accesses of another equivalence class, but only the next
2314           // accesses of the same equivalent class.
2315           for (std::vector<unsigned>::iterator
2316                    I2 = (OI == AI ? std::next(I1) : Accesses[*OI].begin()),
2317                    I2E = (OI == AI ? I1E : Accesses[*OI].end());
2318                I2 != I2E; ++I2) {
2319             auto A = std::make_pair(&*AI, *I1);
2320             auto B = std::make_pair(&*OI, *I2);
2321 
2322             assert(*I1 != *I2);
2323             if (*I1 > *I2)
2324               std::swap(A, B);
2325 
2326             Dependence::DepType Type =
2327                 isDependent(*A.first, A.second, *B.first, B.second);
2328             mergeInStatus(Dependence::isSafeForVectorization(Type));
2329 
2330             // Gather dependences unless we accumulated MaxDependences
2331             // dependences.  In that case return as soon as we find the first
2332             // unsafe dependence.  This puts a limit on this quadratic
2333             // algorithm.
2334             if (RecordDependences) {
2335               if (Type != Dependence::NoDep)
2336                 Dependences.emplace_back(A.second, B.second, Type);
2337 
2338               if (Dependences.size() >= MaxDependences) {
2339                 RecordDependences = false;
2340                 Dependences.clear();
2341                 LLVM_DEBUG(dbgs()
2342                            << "Too many dependences, stopped recording\n");
2343               }
2344             }
2345             if (!RecordDependences && !isSafeForVectorization())
2346               return false;
2347           }
2348         ++OI;
2349       }
2350       ++AI;
2351     }
2352   }
2353 
2354   LLVM_DEBUG(dbgs() << "Total Dependences: " << Dependences.size() << "\n");
2355   return isSafeForVectorization();
2356 }
2357 
2358 SmallVector<Instruction *, 4>
2359 MemoryDepChecker::getInstructionsForAccess(Value *Ptr, bool IsWrite) const {
2360   MemAccessInfo Access(Ptr, IsWrite);
2361   auto &IndexVector = Accesses.find(Access)->second;
2362 
2363   SmallVector<Instruction *, 4> Insts;
2364   transform(IndexVector,
2365                  std::back_inserter(Insts),
2366                  [&](unsigned Idx) { return this->InstMap[Idx]; });
2367   return Insts;
2368 }
2369 
2370 const char *MemoryDepChecker::Dependence::DepName[] = {
2371     "NoDep",
2372     "Unknown",
2373     "IndirectUnsafe",
2374     "Forward",
2375     "ForwardButPreventsForwarding",
2376     "Backward",
2377     "BackwardVectorizable",
2378     "BackwardVectorizableButPreventsForwarding"};
2379 
2380 void MemoryDepChecker::Dependence::print(
2381     raw_ostream &OS, unsigned Depth,
2382     const SmallVectorImpl<Instruction *> &Instrs) const {
2383   OS.indent(Depth) << DepName[Type] << ":\n";
2384   OS.indent(Depth + 2) << *Instrs[Source] << " -> \n";
2385   OS.indent(Depth + 2) << *Instrs[Destination] << "\n";
2386 }
2387 
2388 bool LoopAccessInfo::canAnalyzeLoop() {
2389   // We need to have a loop header.
2390   LLVM_DEBUG(dbgs() << "\nLAA: Checking a loop in '"
2391                     << TheLoop->getHeader()->getParent()->getName() << "' from "
2392                     << TheLoop->getLocStr() << "\n");
2393 
2394   // We can only analyze innermost loops.
2395   if (!TheLoop->isInnermost()) {
2396     LLVM_DEBUG(dbgs() << "LAA: loop is not the innermost loop\n");
2397     recordAnalysis("NotInnerMostLoop") << "loop is not the innermost loop";
2398     return false;
2399   }
2400 
2401   // We must have a single backedge.
2402   if (TheLoop->getNumBackEdges() != 1) {
2403     LLVM_DEBUG(
2404         dbgs() << "LAA: loop control flow is not understood by analyzer\n");
2405     recordAnalysis("CFGNotUnderstood")
2406         << "loop control flow is not understood by analyzer";
2407     return false;
2408   }
2409 
2410   // ScalarEvolution needs to be able to find the symbolic max backedge taken
2411   // count, which is an upper bound on the number of loop iterations. The loop
2412   // may execute fewer iterations, if it exits via an uncountable exit.
2413   const SCEV *ExitCount = PSE->getSymbolicMaxBackedgeTakenCount();
2414   if (isa<SCEVCouldNotCompute>(ExitCount)) {
2415     recordAnalysis("CantComputeNumberOfIterations")
2416         << "could not determine number of loop iterations";
2417     LLVM_DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n");
2418     return false;
2419   }
2420 
2421   LLVM_DEBUG(dbgs() << "LAA: Found an analyzable loop: "
2422                     << TheLoop->getHeader()->getName() << "\n");
2423   return true;
2424 }
2425 
2426 bool LoopAccessInfo::analyzeLoop(AAResults *AA, const LoopInfo *LI,
2427                                  const TargetLibraryInfo *TLI,
2428                                  DominatorTree *DT) {
2429   // Holds the Load and Store instructions.
2430   SmallVector<LoadInst *, 16> Loads;
2431   SmallVector<StoreInst *, 16> Stores;
2432   SmallPtrSet<MDNode *, 8> LoopAliasScopes;
2433 
2434   // Holds all the different accesses in the loop.
2435   unsigned NumReads = 0;
2436   unsigned NumReadWrites = 0;
2437 
2438   bool HasComplexMemInst = false;
2439 
2440   // A runtime check is only legal to insert if there are no convergent calls.
2441   HasConvergentOp = false;
2442 
2443   PtrRtChecking->Pointers.clear();
2444   PtrRtChecking->Need = false;
2445 
2446   const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();
2447 
2448   const bool EnableMemAccessVersioningOfLoop =
2449       EnableMemAccessVersioning &&
2450       !TheLoop->getHeader()->getParent()->hasOptSize();
2451 
2452   // Traverse blocks in fixed RPOT order, regardless of their storage in the
2453   // loop info, as it may be arbitrary.
2454   LoopBlocksRPO RPOT(TheLoop);
2455   RPOT.perform(LI);
2456   for (BasicBlock *BB : RPOT) {
2457     // Scan the BB and collect legal loads and stores. Also detect any
2458     // convergent instructions.
2459     for (Instruction &I : *BB) {
2460       if (auto *Call = dyn_cast<CallBase>(&I)) {
2461         if (Call->isConvergent())
2462           HasConvergentOp = true;
2463       }
2464 
2465       // With both a non-vectorizable memory instruction and a convergent
2466       // operation, found in this loop, no reason to continue the search.
2467       if (HasComplexMemInst && HasConvergentOp)
2468         return false;
2469 
2470       // Avoid hitting recordAnalysis multiple times.
2471       if (HasComplexMemInst)
2472         continue;
2473 
2474       // Record alias scopes defined inside the loop.
2475       if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(&I))
2476         for (Metadata *Op : Decl->getScopeList()->operands())
2477           LoopAliasScopes.insert(cast<MDNode>(Op));
2478 
2479       // Many math library functions read the rounding mode. We will only
2480       // vectorize a loop if it contains known function calls that don't set
2481       // the flag. Therefore, it is safe to ignore this read from memory.
2482       auto *Call = dyn_cast<CallInst>(&I);
2483       if (Call && getVectorIntrinsicIDForCall(Call, TLI))
2484         continue;
2485 
2486       // If this is a load, save it. If this instruction can read from memory
2487       // but is not a load, then we quit. Notice that we don't handle function
2488       // calls that read or write.
2489       if (I.mayReadFromMemory()) {
2490         // If the function has an explicit vectorized counterpart, we can safely
2491         // assume that it can be vectorized.
2492         if (Call && !Call->isNoBuiltin() && Call->getCalledFunction() &&
2493             !VFDatabase::getMappings(*Call).empty())
2494           continue;
2495 
2496         auto *Ld = dyn_cast<LoadInst>(&I);
2497         if (!Ld) {
2498           recordAnalysis("CantVectorizeInstruction", Ld)
2499             << "instruction cannot be vectorized";
2500           HasComplexMemInst = true;
2501           continue;
2502         }
2503         if (!Ld->isSimple() && !IsAnnotatedParallel) {
2504           recordAnalysis("NonSimpleLoad", Ld)
2505               << "read with atomic ordering or volatile read";
2506           LLVM_DEBUG(dbgs() << "LAA: Found a non-simple load.\n");
2507           HasComplexMemInst = true;
2508           continue;
2509         }
2510         NumLoads++;
2511         Loads.push_back(Ld);
2512         DepChecker->addAccess(Ld);
2513         if (EnableMemAccessVersioningOfLoop)
2514           collectStridedAccess(Ld);
2515         continue;
2516       }
2517 
2518       // Save 'store' instructions. Abort if other instructions write to memory.
2519       if (I.mayWriteToMemory()) {
2520         auto *St = dyn_cast<StoreInst>(&I);
2521         if (!St) {
2522           recordAnalysis("CantVectorizeInstruction", St)
2523               << "instruction cannot be vectorized";
2524           HasComplexMemInst = true;
2525           continue;
2526         }
2527         if (!St->isSimple() && !IsAnnotatedParallel) {
2528           recordAnalysis("NonSimpleStore", St)
2529               << "write with atomic ordering or volatile write";
2530           LLVM_DEBUG(dbgs() << "LAA: Found a non-simple store.\n");
2531           HasComplexMemInst = true;
2532           continue;
2533         }
2534         NumStores++;
2535         Stores.push_back(St);
2536         DepChecker->addAccess(St);
2537         if (EnableMemAccessVersioningOfLoop)
2538           collectStridedAccess(St);
2539       }
2540     } // Next instr.
2541   } // Next block.
2542 
2543   if (HasComplexMemInst)
2544     return false;
2545 
2546   // Now we have two lists that hold the loads and the stores.
2547   // Next, we find the pointers that they use.
2548 
2549   // Check if we see any stores. If there are no stores, then we don't
2550   // care if the pointers are *restrict*.
2551   if (!Stores.size()) {
2552     LLVM_DEBUG(dbgs() << "LAA: Found a read-only loop!\n");
2553     return true;
2554   }
2555 
2556   MemoryDepChecker::DepCandidates DependentAccesses;
2557   AccessAnalysis Accesses(TheLoop, AA, LI, DependentAccesses, *PSE,
2558                           LoopAliasScopes);
2559 
2560   // Holds the analyzed pointers. We don't want to call getUnderlyingObjects
2561   // multiple times on the same object. If the ptr is accessed twice, once
2562   // for read and once for write, it will only appear once (on the write
2563   // list). This is okay, since we are going to check for conflicts between
2564   // writes and between reads and writes, but not between reads and reads.
2565   SmallSet<std::pair<Value *, Type *>, 16> Seen;
2566 
2567   // Record uniform store addresses to identify if we have multiple stores
2568   // to the same address.
2569   SmallPtrSet<Value *, 16> UniformStores;
2570 
2571   for (StoreInst *ST : Stores) {
2572     Value *Ptr = ST->getPointerOperand();
2573 
2574     if (isInvariant(Ptr)) {
2575       // Record store instructions to loop invariant addresses
2576       StoresToInvariantAddresses.push_back(ST);
2577       HasStoreStoreDependenceInvolvingLoopInvariantAddress |=
2578           !UniformStores.insert(Ptr).second;
2579     }
2580 
2581     // If we did *not* see this pointer before, insert it to  the read-write
2582     // list. At this phase it is only a 'write' list.
2583     Type *AccessTy = getLoadStoreType(ST);
2584     if (Seen.insert({Ptr, AccessTy}).second) {
2585       ++NumReadWrites;
2586 
2587       MemoryLocation Loc = MemoryLocation::get(ST);
2588       // The TBAA metadata could have a control dependency on the predication
2589       // condition, so we cannot rely on it when determining whether or not we
2590       // need runtime pointer checks.
2591       if (blockNeedsPredication(ST->getParent(), TheLoop, DT))
2592         Loc.AATags.TBAA = nullptr;
2593 
2594       visitPointers(const_cast<Value *>(Loc.Ptr), *TheLoop,
2595                     [&Accesses, AccessTy, Loc](Value *Ptr) {
2596                       MemoryLocation NewLoc = Loc.getWithNewPtr(Ptr);
2597                       Accesses.addStore(NewLoc, AccessTy);
2598                     });
2599     }
2600   }
2601 
2602   if (IsAnnotatedParallel) {
2603     LLVM_DEBUG(
2604         dbgs() << "LAA: A loop annotated parallel, ignore memory dependency "
2605                << "checks.\n");
2606     return true;
2607   }
2608 
2609   for (LoadInst *LD : Loads) {
2610     Value *Ptr = LD->getPointerOperand();
2611     // If we did *not* see this pointer before, insert it to the
2612     // read list. If we *did* see it before, then it is already in
2613     // the read-write list. This allows us to vectorize expressions
2614     // such as A[i] += x;  Because the address of A[i] is a read-write
2615     // pointer. This only works if the index of A[i] is consecutive.
2616     // If the address of i is unknown (for example A[B[i]]) then we may
2617     // read a few words, modify, and write a few words, and some of the
2618     // words may be written to the same address.
2619     bool IsReadOnlyPtr = false;
2620     Type *AccessTy = getLoadStoreType(LD);
2621     if (Seen.insert({Ptr, AccessTy}).second ||
2622         !getPtrStride(*PSE, LD->getType(), Ptr, TheLoop, SymbolicStrides).value_or(0)) {
2623       ++NumReads;
2624       IsReadOnlyPtr = true;
2625     }
2626 
2627     // See if there is an unsafe dependency between a load to a uniform address and
2628     // store to the same uniform address.
2629     if (UniformStores.count(Ptr)) {
2630       LLVM_DEBUG(dbgs() << "LAA: Found an unsafe dependency between a uniform "
2631                            "load and uniform store to the same address!\n");
2632       HasLoadStoreDependenceInvolvingLoopInvariantAddress = true;
2633     }
2634 
2635     MemoryLocation Loc = MemoryLocation::get(LD);
2636     // The TBAA metadata could have a control dependency on the predication
2637     // condition, so we cannot rely on it when determining whether or not we
2638     // need runtime pointer checks.
2639     if (blockNeedsPredication(LD->getParent(), TheLoop, DT))
2640       Loc.AATags.TBAA = nullptr;
2641 
2642     visitPointers(const_cast<Value *>(Loc.Ptr), *TheLoop,
2643                   [&Accesses, AccessTy, Loc, IsReadOnlyPtr](Value *Ptr) {
2644                     MemoryLocation NewLoc = Loc.getWithNewPtr(Ptr);
2645                     Accesses.addLoad(NewLoc, AccessTy, IsReadOnlyPtr);
2646                   });
2647   }
2648 
2649   // If we write (or read-write) to a single destination and there are no
2650   // other reads in this loop then is it safe to vectorize.
2651   if (NumReadWrites == 1 && NumReads == 0) {
2652     LLVM_DEBUG(dbgs() << "LAA: Found a write-only loop!\n");
2653     return true;
2654   }
2655 
2656   // Build dependence sets and check whether we need a runtime pointer bounds
2657   // check.
2658   Accesses.buildDependenceSets();
2659 
2660   // Find pointers with computable bounds. We are going to use this information
2661   // to place a runtime bound check.
2662   Value *UncomputablePtr = nullptr;
2663   bool CanDoRTIfNeeded =
2664       Accesses.canCheckPtrAtRT(*PtrRtChecking, PSE->getSE(), TheLoop,
2665                                SymbolicStrides, UncomputablePtr, false);
2666   if (!CanDoRTIfNeeded) {
2667     const auto *I = dyn_cast_or_null<Instruction>(UncomputablePtr);
2668     recordAnalysis("CantIdentifyArrayBounds", I)
2669         << "cannot identify array bounds";
2670     LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because we can't find "
2671                       << "the array bounds.\n");
2672     return false;
2673   }
2674 
2675   LLVM_DEBUG(
2676     dbgs() << "LAA: May be able to perform a memory runtime check if needed.\n");
2677 
2678   bool DepsAreSafe = true;
2679   if (Accesses.isDependencyCheckNeeded()) {
2680     LLVM_DEBUG(dbgs() << "LAA: Checking memory dependencies\n");
2681     DepsAreSafe = DepChecker->areDepsSafe(DependentAccesses,
2682                                           Accesses.getDependenciesToCheck());
2683 
2684     if (!DepsAreSafe && DepChecker->shouldRetryWithRuntimeCheck()) {
2685       LLVM_DEBUG(dbgs() << "LAA: Retrying with memory checks\n");
2686 
2687       // Clear the dependency checks. We assume they are not needed.
2688       Accesses.resetDepChecks(*DepChecker);
2689 
2690       PtrRtChecking->reset();
2691       PtrRtChecking->Need = true;
2692 
2693       auto *SE = PSE->getSE();
2694       UncomputablePtr = nullptr;
2695       CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(
2696           *PtrRtChecking, SE, TheLoop, SymbolicStrides, UncomputablePtr, true);
2697 
2698       // Check that we found the bounds for the pointer.
2699       if (!CanDoRTIfNeeded) {
2700         auto *I = dyn_cast_or_null<Instruction>(UncomputablePtr);
2701         recordAnalysis("CantCheckMemDepsAtRunTime", I)
2702             << "cannot check memory dependencies at runtime";
2703         LLVM_DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n");
2704         return false;
2705       }
2706       DepsAreSafe = true;
2707     }
2708   }
2709 
2710   if (HasConvergentOp) {
2711     recordAnalysis("CantInsertRuntimeCheckWithConvergent")
2712         << "cannot add control dependency to convergent operation";
2713     LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because a runtime check "
2714                          "would be needed with a convergent operation\n");
2715     return false;
2716   }
2717 
2718   if (DepsAreSafe) {
2719     LLVM_DEBUG(
2720         dbgs() << "LAA: No unsafe dependent memory operations in loop.  We"
2721                << (PtrRtChecking->Need ? "" : " don't")
2722                << " need runtime memory checks.\n");
2723     return true;
2724   }
2725 
2726   emitUnsafeDependenceRemark();
2727   return false;
2728 }
2729 
2730 void LoopAccessInfo::emitUnsafeDependenceRemark() {
2731   const auto *Deps = getDepChecker().getDependences();
2732   if (!Deps)
2733     return;
2734   const auto *Found =
2735       llvm::find_if(*Deps, [](const MemoryDepChecker::Dependence &D) {
2736         return MemoryDepChecker::Dependence::isSafeForVectorization(D.Type) !=
2737                MemoryDepChecker::VectorizationSafetyStatus::Safe;
2738       });
2739   if (Found == Deps->end())
2740     return;
2741   MemoryDepChecker::Dependence Dep = *Found;
2742 
2743   LLVM_DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n");
2744 
2745   // Emit remark for first unsafe dependence
2746   bool HasForcedDistribution = false;
2747   std::optional<const MDOperand *> Value =
2748       findStringMetadataForLoop(TheLoop, "llvm.loop.distribute.enable");
2749   if (Value) {
2750     const MDOperand *Op = *Value;
2751     assert(Op && mdconst::hasa<ConstantInt>(*Op) && "invalid metadata");
2752     HasForcedDistribution = mdconst::extract<ConstantInt>(*Op)->getZExtValue();
2753   }
2754 
2755   const std::string Info =
2756       HasForcedDistribution
2757           ? "unsafe dependent memory operations in loop."
2758           : "unsafe dependent memory operations in loop. Use "
2759             "#pragma clang loop distribute(enable) to allow loop distribution "
2760             "to attempt to isolate the offending operations into a separate "
2761             "loop";
2762   OptimizationRemarkAnalysis &R =
2763       recordAnalysis("UnsafeDep", Dep.getDestination(getDepChecker())) << Info;
2764 
2765   switch (Dep.Type) {
2766   case MemoryDepChecker::Dependence::NoDep:
2767   case MemoryDepChecker::Dependence::Forward:
2768   case MemoryDepChecker::Dependence::BackwardVectorizable:
2769     llvm_unreachable("Unexpected dependence");
2770   case MemoryDepChecker::Dependence::Backward:
2771     R << "\nBackward loop carried data dependence.";
2772     break;
2773   case MemoryDepChecker::Dependence::ForwardButPreventsForwarding:
2774     R << "\nForward loop carried data dependence that prevents "
2775          "store-to-load forwarding.";
2776     break;
2777   case MemoryDepChecker::Dependence::BackwardVectorizableButPreventsForwarding:
2778     R << "\nBackward loop carried data dependence that prevents "
2779          "store-to-load forwarding.";
2780     break;
2781   case MemoryDepChecker::Dependence::IndirectUnsafe:
2782     R << "\nUnsafe indirect dependence.";
2783     break;
2784   case MemoryDepChecker::Dependence::Unknown:
2785     R << "\nUnknown data dependence.";
2786     break;
2787   }
2788 
2789   if (Instruction *I = Dep.getSource(getDepChecker())) {
2790     DebugLoc SourceLoc = I->getDebugLoc();
2791     if (auto *DD = dyn_cast_or_null<Instruction>(getPointerOperand(I)))
2792       SourceLoc = DD->getDebugLoc();
2793     if (SourceLoc)
2794       R << " Memory location is the same as accessed at "
2795         << ore::NV("Location", SourceLoc);
2796   }
2797 }
2798 
2799 bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop,
2800                                            DominatorTree *DT)  {
2801   assert(TheLoop->contains(BB) && "Unknown block used");
2802 
2803   // Blocks that do not dominate the latch need predication.
2804   const BasicBlock *Latch = TheLoop->getLoopLatch();
2805   return !DT->dominates(BB, Latch);
2806 }
2807 
2808 OptimizationRemarkAnalysis &
2809 LoopAccessInfo::recordAnalysis(StringRef RemarkName, const Instruction *I) {
2810   assert(!Report && "Multiple reports generated");
2811 
2812   const Value *CodeRegion = TheLoop->getHeader();
2813   DebugLoc DL = TheLoop->getStartLoc();
2814 
2815   if (I) {
2816     CodeRegion = I->getParent();
2817     // If there is no debug location attached to the instruction, revert back to
2818     // using the loop's.
2819     if (I->getDebugLoc())
2820       DL = I->getDebugLoc();
2821   }
2822 
2823   Report = std::make_unique<OptimizationRemarkAnalysis>(DEBUG_TYPE, RemarkName, DL,
2824                                                    CodeRegion);
2825   return *Report;
2826 }
2827 
2828 bool LoopAccessInfo::isInvariant(Value *V) const {
2829   auto *SE = PSE->getSE();
2830   // TODO: Is this really what we want? Even without FP SCEV, we may want some
2831   // trivially loop-invariant FP values to be considered invariant.
2832   if (!SE->isSCEVable(V->getType()))
2833     return false;
2834   const SCEV *S = SE->getSCEV(V);
2835   return SE->isLoopInvariant(S, TheLoop);
2836 }
2837 
2838 /// Find the operand of the GEP that should be checked for consecutive
2839 /// stores. This ignores trailing indices that have no effect on the final
2840 /// pointer.
2841 static unsigned getGEPInductionOperand(const GetElementPtrInst *Gep) {
2842   const DataLayout &DL = Gep->getDataLayout();
2843   unsigned LastOperand = Gep->getNumOperands() - 1;
2844   TypeSize GEPAllocSize = DL.getTypeAllocSize(Gep->getResultElementType());
2845 
2846   // Walk backwards and try to peel off zeros.
2847   while (LastOperand > 1 && match(Gep->getOperand(LastOperand), m_Zero())) {
2848     // Find the type we're currently indexing into.
2849     gep_type_iterator GEPTI = gep_type_begin(Gep);
2850     std::advance(GEPTI, LastOperand - 2);
2851 
2852     // If it's a type with the same allocation size as the result of the GEP we
2853     // can peel off the zero index.
2854     TypeSize ElemSize = GEPTI.isStruct()
2855                             ? DL.getTypeAllocSize(GEPTI.getIndexedType())
2856                             : GEPTI.getSequentialElementStride(DL);
2857     if (ElemSize != GEPAllocSize)
2858       break;
2859     --LastOperand;
2860   }
2861 
2862   return LastOperand;
2863 }
2864 
2865 /// If the argument is a GEP, then returns the operand identified by
2866 /// getGEPInductionOperand. However, if there is some other non-loop-invariant
2867 /// operand, it returns that instead.
2868 static Value *stripGetElementPtr(Value *Ptr, ScalarEvolution *SE, Loop *Lp) {
2869   auto *GEP = dyn_cast<GetElementPtrInst>(Ptr);
2870   if (!GEP)
2871     return Ptr;
2872 
2873   unsigned InductionOperand = getGEPInductionOperand(GEP);
2874 
2875   // Check that all of the gep indices are uniform except for our induction
2876   // operand.
2877   for (unsigned I = 0, E = GEP->getNumOperands(); I != E; ++I)
2878     if (I != InductionOperand &&
2879         !SE->isLoopInvariant(SE->getSCEV(GEP->getOperand(I)), Lp))
2880       return Ptr;
2881   return GEP->getOperand(InductionOperand);
2882 }
2883 
2884 /// Get the stride of a pointer access in a loop. Looks for symbolic
2885 /// strides "a[i*stride]". Returns the symbolic stride, or null otherwise.
2886 static const SCEV *getStrideFromPointer(Value *Ptr, ScalarEvolution *SE, Loop *Lp) {
2887   auto *PtrTy = dyn_cast<PointerType>(Ptr->getType());
2888   if (!PtrTy || PtrTy->isAggregateType())
2889     return nullptr;
2890 
2891   // Try to remove a gep instruction to make the pointer (actually index at this
2892   // point) easier analyzable. If OrigPtr is equal to Ptr we are analyzing the
2893   // pointer, otherwise, we are analyzing the index.
2894   Value *OrigPtr = Ptr;
2895 
2896   // The size of the pointer access.
2897   int64_t PtrAccessSize = 1;
2898 
2899   Ptr = stripGetElementPtr(Ptr, SE, Lp);
2900   const SCEV *V = SE->getSCEV(Ptr);
2901 
2902   if (Ptr != OrigPtr)
2903     // Strip off casts.
2904     while (const SCEVIntegralCastExpr *C = dyn_cast<SCEVIntegralCastExpr>(V))
2905       V = C->getOperand();
2906 
2907   const SCEVAddRecExpr *S = dyn_cast<SCEVAddRecExpr>(V);
2908   if (!S)
2909     return nullptr;
2910 
2911   // If the pointer is invariant then there is no stride and it makes no
2912   // sense to add it here.
2913   if (Lp != S->getLoop())
2914     return nullptr;
2915 
2916   V = S->getStepRecurrence(*SE);
2917   if (!V)
2918     return nullptr;
2919 
2920   // Strip off the size of access multiplication if we are still analyzing the
2921   // pointer.
2922   if (OrigPtr == Ptr) {
2923     if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(V)) {
2924       if (M->getOperand(0)->getSCEVType() != scConstant)
2925         return nullptr;
2926 
2927       const APInt &APStepVal = cast<SCEVConstant>(M->getOperand(0))->getAPInt();
2928 
2929       // Huge step value - give up.
2930       if (APStepVal.getBitWidth() > 64)
2931         return nullptr;
2932 
2933       int64_t StepVal = APStepVal.getSExtValue();
2934       if (PtrAccessSize != StepVal)
2935         return nullptr;
2936       V = M->getOperand(1);
2937     }
2938   }
2939 
2940   // Note that the restriction after this loop invariant check are only
2941   // profitability restrictions.
2942   if (!SE->isLoopInvariant(V, Lp))
2943     return nullptr;
2944 
2945   // Look for the loop invariant symbolic value.
2946   if (isa<SCEVUnknown>(V))
2947     return V;
2948 
2949   if (const auto *C = dyn_cast<SCEVIntegralCastExpr>(V))
2950     if (isa<SCEVUnknown>(C->getOperand()))
2951       return V;
2952 
2953   return nullptr;
2954 }
2955 
2956 void LoopAccessInfo::collectStridedAccess(Value *MemAccess) {
2957   Value *Ptr = getLoadStorePointerOperand(MemAccess);
2958   if (!Ptr)
2959     return;
2960 
2961   // Note: getStrideFromPointer is a *profitability* heuristic.  We
2962   // could broaden the scope of values returned here - to anything
2963   // which happens to be loop invariant and contributes to the
2964   // computation of an interesting IV - but we chose not to as we
2965   // don't have a cost model here, and broadening the scope exposes
2966   // far too many unprofitable cases.
2967   const SCEV *StrideExpr = getStrideFromPointer(Ptr, PSE->getSE(), TheLoop);
2968   if (!StrideExpr)
2969     return;
2970 
2971   LLVM_DEBUG(dbgs() << "LAA: Found a strided access that is a candidate for "
2972                        "versioning:");
2973   LLVM_DEBUG(dbgs() << "  Ptr: " << *Ptr << " Stride: " << *StrideExpr << "\n");
2974 
2975   if (!SpeculateUnitStride) {
2976     LLVM_DEBUG(dbgs() << "  Chose not to due to -laa-speculate-unit-stride\n");
2977     return;
2978   }
2979 
2980   // Avoid adding the "Stride == 1" predicate when we know that
2981   // Stride >= Trip-Count. Such a predicate will effectively optimize a single
2982   // or zero iteration loop, as Trip-Count <= Stride == 1.
2983   //
2984   // TODO: We are currently not making a very informed decision on when it is
2985   // beneficial to apply stride versioning. It might make more sense that the
2986   // users of this analysis (such as the vectorizer) will trigger it, based on
2987   // their specific cost considerations; For example, in cases where stride
2988   // versioning does  not help resolving memory accesses/dependences, the
2989   // vectorizer should evaluate the cost of the runtime test, and the benefit
2990   // of various possible stride specializations, considering the alternatives
2991   // of using gather/scatters (if available).
2992 
2993   const SCEV *MaxBTC = PSE->getSymbolicMaxBackedgeTakenCount();
2994 
2995   // Match the types so we can compare the stride and the MaxBTC.
2996   // The Stride can be positive/negative, so we sign extend Stride;
2997   // The backedgeTakenCount is non-negative, so we zero extend MaxBTC.
2998   const DataLayout &DL = TheLoop->getHeader()->getDataLayout();
2999   uint64_t StrideTypeSizeBits = DL.getTypeSizeInBits(StrideExpr->getType());
3000   uint64_t BETypeSizeBits = DL.getTypeSizeInBits(MaxBTC->getType());
3001   const SCEV *CastedStride = StrideExpr;
3002   const SCEV *CastedBECount = MaxBTC;
3003   ScalarEvolution *SE = PSE->getSE();
3004   if (BETypeSizeBits >= StrideTypeSizeBits)
3005     CastedStride = SE->getNoopOrSignExtend(StrideExpr, MaxBTC->getType());
3006   else
3007     CastedBECount = SE->getZeroExtendExpr(MaxBTC, StrideExpr->getType());
3008   const SCEV *StrideMinusBETaken = SE->getMinusSCEV(CastedStride, CastedBECount);
3009   // Since TripCount == BackEdgeTakenCount + 1, checking:
3010   // "Stride >= TripCount" is equivalent to checking:
3011   // Stride - MaxBTC> 0
3012   if (SE->isKnownPositive(StrideMinusBETaken)) {
3013     LLVM_DEBUG(
3014         dbgs() << "LAA: Stride>=TripCount; No point in versioning as the "
3015                   "Stride==1 predicate will imply that the loop executes "
3016                   "at most once.\n");
3017     return;
3018   }
3019   LLVM_DEBUG(dbgs() << "LAA: Found a strided access that we can version.\n");
3020 
3021   // Strip back off the integer cast, and check that our result is a
3022   // SCEVUnknown as we expect.
3023   const SCEV *StrideBase = StrideExpr;
3024   if (const auto *C = dyn_cast<SCEVIntegralCastExpr>(StrideBase))
3025     StrideBase = C->getOperand();
3026   SymbolicStrides[Ptr] = cast<SCEVUnknown>(StrideBase);
3027 }
3028 
3029 LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE,
3030                                const TargetTransformInfo *TTI,
3031                                const TargetLibraryInfo *TLI, AAResults *AA,
3032                                DominatorTree *DT, LoopInfo *LI)
3033     : PSE(std::make_unique<PredicatedScalarEvolution>(*SE, *L)),
3034       PtrRtChecking(nullptr), TheLoop(L) {
3035   unsigned MaxTargetVectorWidthInBits = std::numeric_limits<unsigned>::max();
3036   if (TTI) {
3037     TypeSize FixedWidth =
3038         TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector);
3039     if (FixedWidth.isNonZero()) {
3040       // Scale the vector width by 2 as rough estimate to also consider
3041       // interleaving.
3042       MaxTargetVectorWidthInBits = FixedWidth.getFixedValue() * 2;
3043     }
3044 
3045     TypeSize ScalableWidth =
3046         TTI->getRegisterBitWidth(TargetTransformInfo::RGK_ScalableVector);
3047     if (ScalableWidth.isNonZero())
3048       MaxTargetVectorWidthInBits = std::numeric_limits<unsigned>::max();
3049   }
3050   DepChecker = std::make_unique<MemoryDepChecker>(*PSE, L, SymbolicStrides,
3051                                                   MaxTargetVectorWidthInBits);
3052   PtrRtChecking = std::make_unique<RuntimePointerChecking>(*DepChecker, SE);
3053   if (canAnalyzeLoop())
3054     CanVecMem = analyzeLoop(AA, LI, TLI, DT);
3055 }
3056 
3057 void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const {
3058   if (CanVecMem) {
3059     OS.indent(Depth) << "Memory dependences are safe";
3060     const MemoryDepChecker &DC = getDepChecker();
3061     if (!DC.isSafeForAnyVectorWidth())
3062       OS << " with a maximum safe vector width of "
3063          << DC.getMaxSafeVectorWidthInBits() << " bits";
3064     if (PtrRtChecking->Need)
3065       OS << " with run-time checks";
3066     OS << "\n";
3067   }
3068 
3069   if (HasConvergentOp)
3070     OS.indent(Depth) << "Has convergent operation in loop\n";
3071 
3072   if (Report)
3073     OS.indent(Depth) << "Report: " << Report->getMsg() << "\n";
3074 
3075   if (auto *Dependences = DepChecker->getDependences()) {
3076     OS.indent(Depth) << "Dependences:\n";
3077     for (const auto &Dep : *Dependences) {
3078       Dep.print(OS, Depth + 2, DepChecker->getMemoryInstructions());
3079       OS << "\n";
3080     }
3081   } else
3082     OS.indent(Depth) << "Too many dependences, not recorded\n";
3083 
3084   // List the pair of accesses need run-time checks to prove independence.
3085   PtrRtChecking->print(OS, Depth);
3086   OS << "\n";
3087 
3088   OS.indent(Depth)
3089       << "Non vectorizable stores to invariant address were "
3090       << (HasStoreStoreDependenceInvolvingLoopInvariantAddress ||
3091                   HasLoadStoreDependenceInvolvingLoopInvariantAddress
3092               ? ""
3093               : "not ")
3094       << "found in loop.\n";
3095 
3096   OS.indent(Depth) << "SCEV assumptions:\n";
3097   PSE->getPredicate().print(OS, Depth);
3098 
3099   OS << "\n";
3100 
3101   OS.indent(Depth) << "Expressions re-written:\n";
3102   PSE->print(OS, Depth);
3103 }
3104 
3105 const LoopAccessInfo &LoopAccessInfoManager::getInfo(Loop &L) {
3106   const auto &[It, Inserted] = LoopAccessInfoMap.insert({&L, nullptr});
3107 
3108   if (Inserted)
3109     It->second =
3110         std::make_unique<LoopAccessInfo>(&L, &SE, TTI, TLI, &AA, &DT, &LI);
3111 
3112   return *It->second;
3113 }
3114 void LoopAccessInfoManager::clear() {
3115   SmallVector<Loop *> ToRemove;
3116   // Collect LoopAccessInfo entries that may keep references to IR outside the
3117   // analyzed loop or SCEVs that may have been modified or invalidated. At the
3118   // moment, that is loops requiring memory or SCEV runtime checks, as those cache
3119   // SCEVs, e.g. for pointer expressions.
3120   for (const auto &[L, LAI] : LoopAccessInfoMap) {
3121     if (LAI->getRuntimePointerChecking()->getChecks().empty() &&
3122         LAI->getPSE().getPredicate().isAlwaysTrue())
3123       continue;
3124     ToRemove.push_back(L);
3125   }
3126 
3127   for (Loop *L : ToRemove)
3128     LoopAccessInfoMap.erase(L);
3129 }
3130 
3131 bool LoopAccessInfoManager::invalidate(
3132     Function &F, const PreservedAnalyses &PA,
3133     FunctionAnalysisManager::Invalidator &Inv) {
3134   // Check whether our analysis is preserved.
3135   auto PAC = PA.getChecker<LoopAccessAnalysis>();
3136   if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<Function>>())
3137     // If not, give up now.
3138     return true;
3139 
3140   // Check whether the analyses we depend on became invalid for any reason.
3141   // Skip checking TargetLibraryAnalysis as it is immutable and can't become
3142   // invalid.
3143   return Inv.invalidate<AAManager>(F, PA) ||
3144          Inv.invalidate<ScalarEvolutionAnalysis>(F, PA) ||
3145          Inv.invalidate<LoopAnalysis>(F, PA) ||
3146          Inv.invalidate<DominatorTreeAnalysis>(F, PA);
3147 }
3148 
3149 LoopAccessInfoManager LoopAccessAnalysis::run(Function &F,
3150                                               FunctionAnalysisManager &FAM) {
3151   auto &SE = FAM.getResult<ScalarEvolutionAnalysis>(F);
3152   auto &AA = FAM.getResult<AAManager>(F);
3153   auto &DT = FAM.getResult<DominatorTreeAnalysis>(F);
3154   auto &LI = FAM.getResult<LoopAnalysis>(F);
3155   auto &TTI = FAM.getResult<TargetIRAnalysis>(F);
3156   auto &TLI = FAM.getResult<TargetLibraryAnalysis>(F);
3157   return LoopAccessInfoManager(SE, AA, DT, LI, &TTI, &TLI);
3158 }
3159 
3160 AnalysisKey LoopAccessAnalysis::Key;
3161