xref: /llvm-project/llvm/lib/Analysis/LoopAccessAnalysis.cpp (revision a00938eedd4246c4252ce3e69a05c4b6760983a3)
1 //===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // The implementation for the loop memory dependence that was originally
10 // developed for the loop vectorizer.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Analysis/LoopAccessAnalysis.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/EquivalenceClasses.h"
18 #include "llvm/ADT/PointerIntPair.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/Analysis/AliasAnalysis.h"
25 #include "llvm/Analysis/AliasSetTracker.h"
26 #include "llvm/Analysis/LoopAnalysisManager.h"
27 #include "llvm/Analysis/LoopInfo.h"
28 #include "llvm/Analysis/LoopIterator.h"
29 #include "llvm/Analysis/MemoryLocation.h"
30 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
31 #include "llvm/Analysis/ScalarEvolution.h"
32 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
33 #include "llvm/Analysis/TargetLibraryInfo.h"
34 #include "llvm/Analysis/TargetTransformInfo.h"
35 #include "llvm/Analysis/ValueTracking.h"
36 #include "llvm/Analysis/VectorUtils.h"
37 #include "llvm/IR/BasicBlock.h"
38 #include "llvm/IR/Constants.h"
39 #include "llvm/IR/DataLayout.h"
40 #include "llvm/IR/DebugLoc.h"
41 #include "llvm/IR/DerivedTypes.h"
42 #include "llvm/IR/DiagnosticInfo.h"
43 #include "llvm/IR/Dominators.h"
44 #include "llvm/IR/Function.h"
45 #include "llvm/IR/GetElementPtrTypeIterator.h"
46 #include "llvm/IR/InstrTypes.h"
47 #include "llvm/IR/Instruction.h"
48 #include "llvm/IR/Instructions.h"
49 #include "llvm/IR/Operator.h"
50 #include "llvm/IR/PassManager.h"
51 #include "llvm/IR/PatternMatch.h"
52 #include "llvm/IR/Type.h"
53 #include "llvm/IR/Value.h"
54 #include "llvm/IR/ValueHandle.h"
55 #include "llvm/Support/Casting.h"
56 #include "llvm/Support/CommandLine.h"
57 #include "llvm/Support/Debug.h"
58 #include "llvm/Support/ErrorHandling.h"
59 #include "llvm/Support/raw_ostream.h"
60 #include <algorithm>
61 #include <cassert>
62 #include <cstdint>
63 #include <iterator>
64 #include <utility>
65 #include <variant>
66 #include <vector>
67 
68 using namespace llvm;
69 using namespace llvm::PatternMatch;
70 
71 #define DEBUG_TYPE "loop-accesses"
72 
73 static cl::opt<unsigned, true>
74 VectorizationFactor("force-vector-width", cl::Hidden,
75                     cl::desc("Sets the SIMD width. Zero is autoselect."),
76                     cl::location(VectorizerParams::VectorizationFactor));
77 unsigned VectorizerParams::VectorizationFactor;
78 
79 static cl::opt<unsigned, true>
80 VectorizationInterleave("force-vector-interleave", cl::Hidden,
81                         cl::desc("Sets the vectorization interleave count. "
82                                  "Zero is autoselect."),
83                         cl::location(
84                             VectorizerParams::VectorizationInterleave));
85 unsigned VectorizerParams::VectorizationInterleave;
86 
87 static cl::opt<unsigned, true> RuntimeMemoryCheckThreshold(
88     "runtime-memory-check-threshold", cl::Hidden,
89     cl::desc("When performing memory disambiguation checks at runtime do not "
90              "generate more than this number of comparisons (default = 8)."),
91     cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8));
92 unsigned VectorizerParams::RuntimeMemoryCheckThreshold;
93 
94 /// The maximum iterations used to merge memory checks
95 static cl::opt<unsigned> MemoryCheckMergeThreshold(
96     "memory-check-merge-threshold", cl::Hidden,
97     cl::desc("Maximum number of comparisons done when trying to merge "
98              "runtime memory checks. (default = 100)"),
99     cl::init(100));
100 
101 /// Maximum SIMD width.
102 const unsigned VectorizerParams::MaxVectorWidth = 64;
103 
104 /// We collect dependences up to this threshold.
105 static cl::opt<unsigned>
106     MaxDependences("max-dependences", cl::Hidden,
107                    cl::desc("Maximum number of dependences collected by "
108                             "loop-access analysis (default = 100)"),
109                    cl::init(100));
110 
111 /// This enables versioning on the strides of symbolically striding memory
112 /// accesses in code like the following.
113 ///   for (i = 0; i < N; ++i)
114 ///     A[i * Stride1] += B[i * Stride2] ...
115 ///
116 /// Will be roughly translated to
117 ///    if (Stride1 == 1 && Stride2 == 1) {
118 ///      for (i = 0; i < N; i+=4)
119 ///       A[i:i+3] += ...
120 ///    } else
121 ///      ...
122 static cl::opt<bool> EnableMemAccessVersioning(
123     "enable-mem-access-versioning", cl::init(true), cl::Hidden,
124     cl::desc("Enable symbolic stride memory access versioning"));
125 
126 /// Enable store-to-load forwarding conflict detection. This option can
127 /// be disabled for correctness testing.
128 static cl::opt<bool> EnableForwardingConflictDetection(
129     "store-to-load-forwarding-conflict-detection", cl::Hidden,
130     cl::desc("Enable conflict detection in loop-access analysis"),
131     cl::init(true));
132 
133 static cl::opt<unsigned> MaxForkedSCEVDepth(
134     "max-forked-scev-depth", cl::Hidden,
135     cl::desc("Maximum recursion depth when finding forked SCEVs (default = 5)"),
136     cl::init(5));
137 
138 static cl::opt<bool> SpeculateUnitStride(
139     "laa-speculate-unit-stride", cl::Hidden,
140     cl::desc("Speculate that non-constant strides are unit in LAA"),
141     cl::init(true));
142 
143 static cl::opt<bool, true> HoistRuntimeChecks(
144     "hoist-runtime-checks", cl::Hidden,
145     cl::desc(
146         "Hoist inner loop runtime memory checks to outer loop if possible"),
147     cl::location(VectorizerParams::HoistRuntimeChecks), cl::init(true));
148 bool VectorizerParams::HoistRuntimeChecks;
149 
150 bool VectorizerParams::isInterleaveForced() {
151   return ::VectorizationInterleave.getNumOccurrences() > 0;
152 }
153 
154 const SCEV *llvm::replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE,
155                                             const DenseMap<Value *, const SCEV *> &PtrToStride,
156                                             Value *Ptr) {
157   const SCEV *OrigSCEV = PSE.getSCEV(Ptr);
158 
159   // If there is an entry in the map return the SCEV of the pointer with the
160   // symbolic stride replaced by one.
161   DenseMap<Value *, const SCEV *>::const_iterator SI = PtrToStride.find(Ptr);
162   if (SI == PtrToStride.end())
163     // For a non-symbolic stride, just return the original expression.
164     return OrigSCEV;
165 
166   const SCEV *StrideSCEV = SI->second;
167   // Note: This assert is both overly strong and overly weak.  The actual
168   // invariant here is that StrideSCEV should be loop invariant.  The only
169   // such invariant strides we happen to speculate right now are unknowns
170   // and thus this is a reasonable proxy of the actual invariant.
171   assert(isa<SCEVUnknown>(StrideSCEV) && "shouldn't be in map");
172 
173   ScalarEvolution *SE = PSE.getSE();
174   const SCEV *CT = SE->getOne(StrideSCEV->getType());
175   PSE.addPredicate(*SE->getEqualPredicate(StrideSCEV, CT));
176   const SCEV *Expr = PSE.getSCEV(Ptr);
177 
178   LLVM_DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV
179 	     << " by: " << *Expr << "\n");
180   return Expr;
181 }
182 
183 RuntimeCheckingPtrGroup::RuntimeCheckingPtrGroup(
184     unsigned Index, const RuntimePointerChecking &RtCheck)
185     : High(RtCheck.Pointers[Index].End), Low(RtCheck.Pointers[Index].Start),
186       AddressSpace(RtCheck.Pointers[Index]
187                        .PointerValue->getType()
188                        ->getPointerAddressSpace()),
189       NeedsFreeze(RtCheck.Pointers[Index].NeedsFreeze) {
190   Members.push_back(Index);
191 }
192 
193 /// Calculate Start and End points of memory access.
194 /// Let's assume A is the first access and B is a memory access on N-th loop
195 /// iteration. Then B is calculated as:
196 ///   B = A + Step*N .
197 /// Step value may be positive or negative.
198 /// N is a calculated back-edge taken count:
199 ///     N = (TripCount > 0) ? RoundDown(TripCount -1 , VF) : 0
200 /// Start and End points are calculated in the following way:
201 /// Start = UMIN(A, B) ; End = UMAX(A, B) + SizeOfElt,
202 /// where SizeOfElt is the size of single memory access in bytes.
203 ///
204 /// There is no conflict when the intervals are disjoint:
205 /// NoConflict = (P2.Start >= P1.End) || (P1.Start >= P2.End)
206 static std::pair<const SCEV *, const SCEV *> getStartAndEndForAccess(
207     const Loop *Lp, const SCEV *PtrExpr, Type *AccessTy,
208     PredicatedScalarEvolution &PSE,
209     DenseMap<std::pair<const SCEV *, Type *>,
210              std::pair<const SCEV *, const SCEV *>> &PointerBounds) {
211   ScalarEvolution *SE = PSE.getSE();
212 
213   auto [Iter, Ins] = PointerBounds.insert(
214       {{PtrExpr, AccessTy},
215        {SE->getCouldNotCompute(), SE->getCouldNotCompute()}});
216   if (!Ins)
217     return Iter->second;
218 
219   const SCEV *ScStart;
220   const SCEV *ScEnd;
221 
222   if (SE->isLoopInvariant(PtrExpr, Lp)) {
223     ScStart = ScEnd = PtrExpr;
224   } else if (auto *AR = dyn_cast<SCEVAddRecExpr>(PtrExpr)) {
225     const SCEV *Ex = PSE.getSymbolicMaxBackedgeTakenCount();
226 
227     ScStart = AR->getStart();
228     ScEnd = AR->evaluateAtIteration(Ex, *SE);
229     const SCEV *Step = AR->getStepRecurrence(*SE);
230 
231     // For expressions with negative step, the upper bound is ScStart and the
232     // lower bound is ScEnd.
233     if (const auto *CStep = dyn_cast<SCEVConstant>(Step)) {
234       if (CStep->getValue()->isNegative())
235         std::swap(ScStart, ScEnd);
236     } else {
237       // Fallback case: the step is not constant, but we can still
238       // get the upper and lower bounds of the interval by using min/max
239       // expressions.
240       ScStart = SE->getUMinExpr(ScStart, ScEnd);
241       ScEnd = SE->getUMaxExpr(AR->getStart(), ScEnd);
242     }
243   } else
244     return {SE->getCouldNotCompute(), SE->getCouldNotCompute()};
245 
246   assert(SE->isLoopInvariant(ScStart, Lp) && "ScStart needs to be invariant");
247   assert(SE->isLoopInvariant(ScEnd, Lp)&& "ScEnd needs to be invariant");
248 
249   // Add the size of the pointed element to ScEnd.
250   auto &DL = Lp->getHeader()->getDataLayout();
251   Type *IdxTy = DL.getIndexType(PtrExpr->getType());
252   const SCEV *EltSizeSCEV = SE->getStoreSizeOfExpr(IdxTy, AccessTy);
253   ScEnd = SE->getAddExpr(ScEnd, EltSizeSCEV);
254 
255   Iter->second = {ScStart, ScEnd};
256   return Iter->second;
257 }
258 
259 /// Calculate Start and End points of memory access using
260 /// getStartAndEndForAccess.
261 void RuntimePointerChecking::insert(Loop *Lp, Value *Ptr, const SCEV *PtrExpr,
262                                     Type *AccessTy, bool WritePtr,
263                                     unsigned DepSetId, unsigned ASId,
264                                     PredicatedScalarEvolution &PSE,
265                                     bool NeedsFreeze) {
266   const auto &[ScStart, ScEnd] = getStartAndEndForAccess(
267       Lp, PtrExpr, AccessTy, PSE, DC.getPointerBounds());
268   assert(!isa<SCEVCouldNotCompute>(ScStart) &&
269          !isa<SCEVCouldNotCompute>(ScEnd) &&
270          "must be able to compute both start and end expressions");
271   Pointers.emplace_back(Ptr, ScStart, ScEnd, WritePtr, DepSetId, ASId, PtrExpr,
272                         NeedsFreeze);
273 }
274 
275 bool RuntimePointerChecking::tryToCreateDiffCheck(
276     const RuntimeCheckingPtrGroup &CGI, const RuntimeCheckingPtrGroup &CGJ) {
277   // If either group contains multiple different pointers, bail out.
278   // TODO: Support multiple pointers by using the minimum or maximum pointer,
279   // depending on src & sink.
280   if (CGI.Members.size() != 1 || CGJ.Members.size() != 1)
281     return false;
282 
283   const PointerInfo *Src = &Pointers[CGI.Members[0]];
284   const PointerInfo *Sink = &Pointers[CGJ.Members[0]];
285 
286   // If either pointer is read and written, multiple checks may be needed. Bail
287   // out.
288   if (!DC.getOrderForAccess(Src->PointerValue, !Src->IsWritePtr).empty() ||
289       !DC.getOrderForAccess(Sink->PointerValue, !Sink->IsWritePtr).empty())
290     return false;
291 
292   ArrayRef<unsigned> AccSrc =
293       DC.getOrderForAccess(Src->PointerValue, Src->IsWritePtr);
294   ArrayRef<unsigned> AccSink =
295       DC.getOrderForAccess(Sink->PointerValue, Sink->IsWritePtr);
296   // If either pointer is accessed multiple times, there may not be a clear
297   // src/sink relation. Bail out for now.
298   if (AccSrc.size() != 1 || AccSink.size() != 1)
299     return false;
300 
301   // If the sink is accessed before src, swap src/sink.
302   if (AccSink[0] < AccSrc[0])
303     std::swap(Src, Sink);
304 
305   auto *SrcAR = dyn_cast<SCEVAddRecExpr>(Src->Expr);
306   auto *SinkAR = dyn_cast<SCEVAddRecExpr>(Sink->Expr);
307   if (!SrcAR || !SinkAR || SrcAR->getLoop() != DC.getInnermostLoop() ||
308       SinkAR->getLoop() != DC.getInnermostLoop())
309     return false;
310 
311   SmallVector<Instruction *, 4> SrcInsts =
312       DC.getInstructionsForAccess(Src->PointerValue, Src->IsWritePtr);
313   SmallVector<Instruction *, 4> SinkInsts =
314       DC.getInstructionsForAccess(Sink->PointerValue, Sink->IsWritePtr);
315   Type *SrcTy = getLoadStoreType(SrcInsts[0]);
316   Type *DstTy = getLoadStoreType(SinkInsts[0]);
317   if (isa<ScalableVectorType>(SrcTy) || isa<ScalableVectorType>(DstTy))
318     return false;
319 
320   const DataLayout &DL =
321       SinkAR->getLoop()->getHeader()->getDataLayout();
322   unsigned AllocSize =
323       std::max(DL.getTypeAllocSize(SrcTy), DL.getTypeAllocSize(DstTy));
324 
325   // Only matching constant steps matching the AllocSize are supported at the
326   // moment. This simplifies the difference computation. Can be extended in the
327   // future.
328   auto *Step = dyn_cast<SCEVConstant>(SinkAR->getStepRecurrence(*SE));
329   if (!Step || Step != SrcAR->getStepRecurrence(*SE) ||
330       Step->getAPInt().abs() != AllocSize)
331     return false;
332 
333   IntegerType *IntTy =
334       IntegerType::get(Src->PointerValue->getContext(),
335                        DL.getPointerSizeInBits(CGI.AddressSpace));
336 
337   // When counting down, the dependence distance needs to be swapped.
338   if (Step->getValue()->isNegative())
339     std::swap(SinkAR, SrcAR);
340 
341   const SCEV *SinkStartInt = SE->getPtrToIntExpr(SinkAR->getStart(), IntTy);
342   const SCEV *SrcStartInt = SE->getPtrToIntExpr(SrcAR->getStart(), IntTy);
343   if (isa<SCEVCouldNotCompute>(SinkStartInt) ||
344       isa<SCEVCouldNotCompute>(SrcStartInt))
345     return false;
346 
347   const Loop *InnerLoop = SrcAR->getLoop();
348   // If the start values for both Src and Sink also vary according to an outer
349   // loop, then it's probably better to avoid creating diff checks because
350   // they may not be hoisted. We should instead let llvm::addRuntimeChecks
351   // do the expanded full range overlap checks, which can be hoisted.
352   if (HoistRuntimeChecks && InnerLoop->getParentLoop() &&
353       isa<SCEVAddRecExpr>(SinkStartInt) && isa<SCEVAddRecExpr>(SrcStartInt)) {
354     auto *SrcStartAR = cast<SCEVAddRecExpr>(SrcStartInt);
355     auto *SinkStartAR = cast<SCEVAddRecExpr>(SinkStartInt);
356     const Loop *StartARLoop = SrcStartAR->getLoop();
357     if (StartARLoop == SinkStartAR->getLoop() &&
358         StartARLoop == InnerLoop->getParentLoop() &&
359         // If the diff check would already be loop invariant (due to the
360         // recurrences being the same), then we prefer to keep the diff checks
361         // because they are cheaper.
362         SrcStartAR->getStepRecurrence(*SE) !=
363             SinkStartAR->getStepRecurrence(*SE)) {
364       LLVM_DEBUG(dbgs() << "LAA: Not creating diff runtime check, since these "
365                            "cannot be hoisted out of the outer loop\n");
366       return false;
367     }
368   }
369 
370   LLVM_DEBUG(dbgs() << "LAA: Creating diff runtime check for:\n"
371                     << "SrcStart: " << *SrcStartInt << '\n'
372                     << "SinkStartInt: " << *SinkStartInt << '\n');
373   DiffChecks.emplace_back(SrcStartInt, SinkStartInt, AllocSize,
374                           Src->NeedsFreeze || Sink->NeedsFreeze);
375   return true;
376 }
377 
378 SmallVector<RuntimePointerCheck, 4> RuntimePointerChecking::generateChecks() {
379   SmallVector<RuntimePointerCheck, 4> Checks;
380 
381   for (unsigned I = 0; I < CheckingGroups.size(); ++I) {
382     for (unsigned J = I + 1; J < CheckingGroups.size(); ++J) {
383       const RuntimeCheckingPtrGroup &CGI = CheckingGroups[I];
384       const RuntimeCheckingPtrGroup &CGJ = CheckingGroups[J];
385 
386       if (needsChecking(CGI, CGJ)) {
387         CanUseDiffCheck = CanUseDiffCheck && tryToCreateDiffCheck(CGI, CGJ);
388         Checks.emplace_back(&CGI, &CGJ);
389       }
390     }
391   }
392   return Checks;
393 }
394 
395 void RuntimePointerChecking::generateChecks(
396     MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) {
397   assert(Checks.empty() && "Checks is not empty");
398   groupChecks(DepCands, UseDependencies);
399   Checks = generateChecks();
400 }
401 
402 bool RuntimePointerChecking::needsChecking(
403     const RuntimeCheckingPtrGroup &M, const RuntimeCheckingPtrGroup &N) const {
404   for (const auto &I : M.Members)
405     for (const auto &J : N.Members)
406       if (needsChecking(I, J))
407         return true;
408   return false;
409 }
410 
411 /// Compare \p I and \p J and return the minimum.
412 /// Return nullptr in case we couldn't find an answer.
413 static const SCEV *getMinFromExprs(const SCEV *I, const SCEV *J,
414                                    ScalarEvolution *SE) {
415   std::optional<APInt> Diff = SE->computeConstantDifference(J, I);
416   if (!Diff)
417     return nullptr;
418   return Diff->isNegative() ? J : I;
419 }
420 
421 bool RuntimeCheckingPtrGroup::addPointer(
422     unsigned Index, const RuntimePointerChecking &RtCheck) {
423   return addPointer(
424       Index, RtCheck.Pointers[Index].Start, RtCheck.Pointers[Index].End,
425       RtCheck.Pointers[Index].PointerValue->getType()->getPointerAddressSpace(),
426       RtCheck.Pointers[Index].NeedsFreeze, *RtCheck.SE);
427 }
428 
429 bool RuntimeCheckingPtrGroup::addPointer(unsigned Index, const SCEV *Start,
430                                          const SCEV *End, unsigned AS,
431                                          bool NeedsFreeze,
432                                          ScalarEvolution &SE) {
433   assert(AddressSpace == AS &&
434          "all pointers in a checking group must be in the same address space");
435 
436   // Compare the starts and ends with the known minimum and maximum
437   // of this set. We need to know how we compare against the min/max
438   // of the set in order to be able to emit memchecks.
439   const SCEV *Min0 = getMinFromExprs(Start, Low, &SE);
440   if (!Min0)
441     return false;
442 
443   const SCEV *Min1 = getMinFromExprs(End, High, &SE);
444   if (!Min1)
445     return false;
446 
447   // Update the low bound  expression if we've found a new min value.
448   if (Min0 == Start)
449     Low = Start;
450 
451   // Update the high bound expression if we've found a new max value.
452   if (Min1 != End)
453     High = End;
454 
455   Members.push_back(Index);
456   this->NeedsFreeze |= NeedsFreeze;
457   return true;
458 }
459 
460 void RuntimePointerChecking::groupChecks(
461     MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) {
462   // We build the groups from dependency candidates equivalence classes
463   // because:
464   //    - We know that pointers in the same equivalence class share
465   //      the same underlying object and therefore there is a chance
466   //      that we can compare pointers
467   //    - We wouldn't be able to merge two pointers for which we need
468   //      to emit a memcheck. The classes in DepCands are already
469   //      conveniently built such that no two pointers in the same
470   //      class need checking against each other.
471 
472   // We use the following (greedy) algorithm to construct the groups
473   // For every pointer in the equivalence class:
474   //   For each existing group:
475   //   - if the difference between this pointer and the min/max bounds
476   //     of the group is a constant, then make the pointer part of the
477   //     group and update the min/max bounds of that group as required.
478 
479   CheckingGroups.clear();
480 
481   // If we need to check two pointers to the same underlying object
482   // with a non-constant difference, we shouldn't perform any pointer
483   // grouping with those pointers. This is because we can easily get
484   // into cases where the resulting check would return false, even when
485   // the accesses are safe.
486   //
487   // The following example shows this:
488   // for (i = 0; i < 1000; ++i)
489   //   a[5000 + i * m] = a[i] + a[i + 9000]
490   //
491   // Here grouping gives a check of (5000, 5000 + 1000 * m) against
492   // (0, 10000) which is always false. However, if m is 1, there is no
493   // dependence. Not grouping the checks for a[i] and a[i + 9000] allows
494   // us to perform an accurate check in this case.
495   //
496   // The above case requires that we have an UnknownDependence between
497   // accesses to the same underlying object. This cannot happen unless
498   // FoundNonConstantDistanceDependence is set, and therefore UseDependencies
499   // is also false. In this case we will use the fallback path and create
500   // separate checking groups for all pointers.
501 
502   // If we don't have the dependency partitions, construct a new
503   // checking pointer group for each pointer. This is also required
504   // for correctness, because in this case we can have checking between
505   // pointers to the same underlying object.
506   if (!UseDependencies) {
507     for (unsigned I = 0; I < Pointers.size(); ++I)
508       CheckingGroups.emplace_back(I, *this);
509     return;
510   }
511 
512   unsigned TotalComparisons = 0;
513 
514   DenseMap<Value *, SmallVector<unsigned>> PositionMap;
515   for (unsigned Index = 0; Index < Pointers.size(); ++Index)
516     PositionMap[Pointers[Index].PointerValue].push_back(Index);
517 
518   // We need to keep track of what pointers we've already seen so we
519   // don't process them twice.
520   SmallSet<unsigned, 2> Seen;
521 
522   // Go through all equivalence classes, get the "pointer check groups"
523   // and add them to the overall solution. We use the order in which accesses
524   // appear in 'Pointers' to enforce determinism.
525   for (unsigned I = 0; I < Pointers.size(); ++I) {
526     // We've seen this pointer before, and therefore already processed
527     // its equivalence class.
528     if (Seen.count(I))
529       continue;
530 
531     MemoryDepChecker::MemAccessInfo Access(Pointers[I].PointerValue,
532                                            Pointers[I].IsWritePtr);
533 
534     SmallVector<RuntimeCheckingPtrGroup, 2> Groups;
535     auto LeaderI = DepCands.findValue(DepCands.getLeaderValue(Access));
536 
537     // Because DepCands is constructed by visiting accesses in the order in
538     // which they appear in alias sets (which is deterministic) and the
539     // iteration order within an equivalence class member is only dependent on
540     // the order in which unions and insertions are performed on the
541     // equivalence class, the iteration order is deterministic.
542     for (auto MI = DepCands.member_begin(LeaderI), ME = DepCands.member_end();
543          MI != ME; ++MI) {
544       auto PointerI = PositionMap.find(MI->getPointer());
545       assert(PointerI != PositionMap.end() &&
546              "pointer in equivalence class not found in PositionMap");
547       for (unsigned Pointer : PointerI->second) {
548         bool Merged = false;
549         // Mark this pointer as seen.
550         Seen.insert(Pointer);
551 
552         // Go through all the existing sets and see if we can find one
553         // which can include this pointer.
554         for (RuntimeCheckingPtrGroup &Group : Groups) {
555           // Don't perform more than a certain amount of comparisons.
556           // This should limit the cost of grouping the pointers to something
557           // reasonable.  If we do end up hitting this threshold, the algorithm
558           // will create separate groups for all remaining pointers.
559           if (TotalComparisons > MemoryCheckMergeThreshold)
560             break;
561 
562           TotalComparisons++;
563 
564           if (Group.addPointer(Pointer, *this)) {
565             Merged = true;
566             break;
567           }
568         }
569 
570         if (!Merged)
571           // We couldn't add this pointer to any existing set or the threshold
572           // for the number of comparisons has been reached. Create a new group
573           // to hold the current pointer.
574           Groups.emplace_back(Pointer, *this);
575       }
576     }
577 
578     // We've computed the grouped checks for this partition.
579     // Save the results and continue with the next one.
580     llvm::copy(Groups, std::back_inserter(CheckingGroups));
581   }
582 }
583 
584 bool RuntimePointerChecking::arePointersInSamePartition(
585     const SmallVectorImpl<int> &PtrToPartition, unsigned PtrIdx1,
586     unsigned PtrIdx2) {
587   return (PtrToPartition[PtrIdx1] != -1 &&
588           PtrToPartition[PtrIdx1] == PtrToPartition[PtrIdx2]);
589 }
590 
591 bool RuntimePointerChecking::needsChecking(unsigned I, unsigned J) const {
592   const PointerInfo &PointerI = Pointers[I];
593   const PointerInfo &PointerJ = Pointers[J];
594 
595   // No need to check if two readonly pointers intersect.
596   if (!PointerI.IsWritePtr && !PointerJ.IsWritePtr)
597     return false;
598 
599   // Only need to check pointers between two different dependency sets.
600   if (PointerI.DependencySetId == PointerJ.DependencySetId)
601     return false;
602 
603   // Only need to check pointers in the same alias set.
604   return PointerI.AliasSetId == PointerJ.AliasSetId;
605 }
606 
607 void RuntimePointerChecking::printChecks(
608     raw_ostream &OS, const SmallVectorImpl<RuntimePointerCheck> &Checks,
609     unsigned Depth) const {
610   unsigned N = 0;
611   for (const auto &[Check1, Check2] : Checks) {
612     const auto &First = Check1->Members, &Second = Check2->Members;
613 
614     OS.indent(Depth) << "Check " << N++ << ":\n";
615 
616     OS.indent(Depth + 2) << "Comparing group (" << Check1 << "):\n";
617     for (unsigned K : First)
618       OS.indent(Depth + 2) << *Pointers[K].PointerValue << "\n";
619 
620     OS.indent(Depth + 2) << "Against group (" << Check2 << "):\n";
621     for (unsigned K : Second)
622       OS.indent(Depth + 2) << *Pointers[K].PointerValue << "\n";
623   }
624 }
625 
626 void RuntimePointerChecking::print(raw_ostream &OS, unsigned Depth) const {
627 
628   OS.indent(Depth) << "Run-time memory checks:\n";
629   printChecks(OS, Checks, Depth);
630 
631   OS.indent(Depth) << "Grouped accesses:\n";
632   for (const auto &CG : CheckingGroups) {
633     OS.indent(Depth + 2) << "Group " << &CG << ":\n";
634     OS.indent(Depth + 4) << "(Low: " << *CG.Low << " High: " << *CG.High
635                          << ")\n";
636     for (unsigned Member : CG.Members) {
637       OS.indent(Depth + 6) << "Member: " << *Pointers[Member].Expr << "\n";
638     }
639   }
640 }
641 
642 namespace {
643 
644 /// Analyses memory accesses in a loop.
645 ///
646 /// Checks whether run time pointer checks are needed and builds sets for data
647 /// dependence checking.
648 class AccessAnalysis {
649 public:
650   /// Read or write access location.
651   typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
652   typedef SmallVector<MemAccessInfo, 8> MemAccessInfoList;
653 
654   AccessAnalysis(const Loop *TheLoop, AAResults *AA, const LoopInfo *LI,
655                  MemoryDepChecker::DepCandidates &DA,
656                  PredicatedScalarEvolution &PSE,
657                  SmallPtrSetImpl<MDNode *> &LoopAliasScopes)
658       : TheLoop(TheLoop), BAA(*AA), AST(BAA), LI(LI), DepCands(DA), PSE(PSE),
659         LoopAliasScopes(LoopAliasScopes) {
660     // We're analyzing dependences across loop iterations.
661     BAA.enableCrossIterationMode();
662   }
663 
664   /// Register a load  and whether it is only read from.
665   void addLoad(const MemoryLocation &Loc, Type *AccessTy, bool IsReadOnly) {
666     Value *Ptr = const_cast<Value *>(Loc.Ptr);
667     AST.add(adjustLoc(Loc));
668     Accesses[MemAccessInfo(Ptr, false)].insert(AccessTy);
669     if (IsReadOnly)
670       ReadOnlyPtr.insert(Ptr);
671   }
672 
673   /// Register a store.
674   void addStore(const MemoryLocation &Loc, Type *AccessTy) {
675     Value *Ptr = const_cast<Value *>(Loc.Ptr);
676     AST.add(adjustLoc(Loc));
677     Accesses[MemAccessInfo(Ptr, true)].insert(AccessTy);
678   }
679 
680   /// Check if we can emit a run-time no-alias check for \p Access.
681   ///
682   /// Returns true if we can emit a run-time no alias check for \p Access.
683   /// If we can check this access, this also adds it to a dependence set and
684   /// adds a run-time to check for it to \p RtCheck. If \p Assume is true,
685   /// we will attempt to use additional run-time checks in order to get
686   /// the bounds of the pointer.
687   bool createCheckForAccess(RuntimePointerChecking &RtCheck,
688                             MemAccessInfo Access, Type *AccessTy,
689                             const DenseMap<Value *, const SCEV *> &Strides,
690                             DenseMap<Value *, unsigned> &DepSetId,
691                             Loop *TheLoop, unsigned &RunningDepId,
692                             unsigned ASId, bool ShouldCheckStride, bool Assume);
693 
694   /// Check whether we can check the pointers at runtime for
695   /// non-intersection.
696   ///
697   /// Returns true if we need no check or if we do and we can generate them
698   /// (i.e. the pointers have computable bounds).
699   bool canCheckPtrAtRT(RuntimePointerChecking &RtCheck, ScalarEvolution *SE,
700                        Loop *TheLoop, const DenseMap<Value *, const SCEV *> &Strides,
701                        Value *&UncomputablePtr, bool ShouldCheckWrap = false);
702 
703   /// Goes over all memory accesses, checks whether a RT check is needed
704   /// and builds sets of dependent accesses.
705   void buildDependenceSets() {
706     processMemAccesses();
707   }
708 
709   /// Initial processing of memory accesses determined that we need to
710   /// perform dependency checking.
711   ///
712   /// Note that this can later be cleared if we retry memcheck analysis without
713   /// dependency checking (i.e. FoundNonConstantDistanceDependence).
714   bool isDependencyCheckNeeded() const { return !CheckDeps.empty(); }
715 
716   /// We decided that no dependence analysis would be used.  Reset the state.
717   void resetDepChecks(MemoryDepChecker &DepChecker) {
718     CheckDeps.clear();
719     DepChecker.clearDependences();
720   }
721 
722   const MemAccessInfoList &getDependenciesToCheck() const { return CheckDeps; }
723 
724 private:
725   typedef MapVector<MemAccessInfo, SmallSetVector<Type *, 1>> PtrAccessMap;
726 
727   /// Adjust the MemoryLocation so that it represents accesses to this
728   /// location across all iterations, rather than a single one.
729   MemoryLocation adjustLoc(MemoryLocation Loc) const {
730     // The accessed location varies within the loop, but remains within the
731     // underlying object.
732     Loc.Size = LocationSize::beforeOrAfterPointer();
733     Loc.AATags.Scope = adjustAliasScopeList(Loc.AATags.Scope);
734     Loc.AATags.NoAlias = adjustAliasScopeList(Loc.AATags.NoAlias);
735     return Loc;
736   }
737 
738   /// Drop alias scopes that are only valid within a single loop iteration.
739   MDNode *adjustAliasScopeList(MDNode *ScopeList) const {
740     if (!ScopeList)
741       return nullptr;
742 
743     // For the sake of simplicity, drop the whole scope list if any scope is
744     // iteration-local.
745     if (any_of(ScopeList->operands(), [&](Metadata *Scope) {
746           return LoopAliasScopes.contains(cast<MDNode>(Scope));
747         }))
748       return nullptr;
749 
750     return ScopeList;
751   }
752 
753   /// Go over all memory access and check whether runtime pointer checks
754   /// are needed and build sets of dependency check candidates.
755   void processMemAccesses();
756 
757   /// Map of all accesses. Values are the types used to access memory pointed to
758   /// by the pointer.
759   PtrAccessMap Accesses;
760 
761   /// The loop being checked.
762   const Loop *TheLoop;
763 
764   /// List of accesses that need a further dependence check.
765   MemAccessInfoList CheckDeps;
766 
767   /// Set of pointers that are read only.
768   SmallPtrSet<Value*, 16> ReadOnlyPtr;
769 
770   /// Batched alias analysis results.
771   BatchAAResults BAA;
772 
773   /// An alias set tracker to partition the access set by underlying object and
774   //intrinsic property (such as TBAA metadata).
775   AliasSetTracker AST;
776 
777   /// The LoopInfo of the loop being checked.
778   const LoopInfo *LI;
779 
780   /// Sets of potentially dependent accesses - members of one set share an
781   /// underlying pointer. The set "CheckDeps" identfies which sets really need a
782   /// dependence check.
783   MemoryDepChecker::DepCandidates &DepCands;
784 
785   /// Initial processing of memory accesses determined that we may need
786   /// to add memchecks.  Perform the analysis to determine the necessary checks.
787   ///
788   /// Note that, this is different from isDependencyCheckNeeded.  When we retry
789   /// memcheck analysis without dependency checking
790   /// (i.e. FoundNonConstantDistanceDependence), isDependencyCheckNeeded is
791   /// cleared while this remains set if we have potentially dependent accesses.
792   bool IsRTCheckAnalysisNeeded = false;
793 
794   /// The SCEV predicate containing all the SCEV-related assumptions.
795   PredicatedScalarEvolution &PSE;
796 
797   DenseMap<Value *, SmallVector<const Value *, 16>> UnderlyingObjects;
798 
799   /// Alias scopes that are declared inside the loop, and as such not valid
800   /// across iterations.
801   SmallPtrSetImpl<MDNode *> &LoopAliasScopes;
802 };
803 
804 } // end anonymous namespace
805 
806 /// Check whether a pointer can participate in a runtime bounds check.
807 /// If \p Assume, try harder to prove that we can compute the bounds of \p Ptr
808 /// by adding run-time checks (overflow checks) if necessary.
809 static bool hasComputableBounds(PredicatedScalarEvolution &PSE, Value *Ptr,
810                                 const SCEV *PtrScev, Loop *L, bool Assume) {
811   // The bounds for loop-invariant pointer is trivial.
812   if (PSE.getSE()->isLoopInvariant(PtrScev, L))
813     return true;
814 
815   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
816 
817   if (!AR && Assume)
818     AR = PSE.getAsAddRec(Ptr);
819 
820   if (!AR)
821     return false;
822 
823   return AR->isAffine();
824 }
825 
826 /// Check whether a pointer address cannot wrap.
827 static bool isNoWrap(PredicatedScalarEvolution &PSE,
828                      const DenseMap<Value *, const SCEV *> &Strides, Value *Ptr,
829                      Type *AccessTy, Loop *L, bool Assume) {
830   const SCEV *PtrScev = PSE.getSCEV(Ptr);
831   if (PSE.getSE()->isLoopInvariant(PtrScev, L))
832     return true;
833 
834   return getPtrStride(PSE, AccessTy, Ptr, L, Strides, Assume).has_value() ||
835          PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW);
836 }
837 
838 static void visitPointers(Value *StartPtr, const Loop &InnermostLoop,
839                           function_ref<void(Value *)> AddPointer) {
840   SmallPtrSet<Value *, 8> Visited;
841   SmallVector<Value *> WorkList;
842   WorkList.push_back(StartPtr);
843 
844   while (!WorkList.empty()) {
845     Value *Ptr = WorkList.pop_back_val();
846     if (!Visited.insert(Ptr).second)
847       continue;
848     auto *PN = dyn_cast<PHINode>(Ptr);
849     // SCEV does not look through non-header PHIs inside the loop. Such phis
850     // can be analyzed by adding separate accesses for each incoming pointer
851     // value.
852     if (PN && InnermostLoop.contains(PN->getParent()) &&
853         PN->getParent() != InnermostLoop.getHeader()) {
854       for (const Use &Inc : PN->incoming_values())
855         WorkList.push_back(Inc);
856     } else
857       AddPointer(Ptr);
858   }
859 }
860 
861 // Walk back through the IR for a pointer, looking for a select like the
862 // following:
863 //
864 //  %offset = select i1 %cmp, i64 %a, i64 %b
865 //  %addr = getelementptr double, double* %base, i64 %offset
866 //  %ld = load double, double* %addr, align 8
867 //
868 // We won't be able to form a single SCEVAddRecExpr from this since the
869 // address for each loop iteration depends on %cmp. We could potentially
870 // produce multiple valid SCEVAddRecExprs, though, and check all of them for
871 // memory safety/aliasing if needed.
872 //
873 // If we encounter some IR we don't yet handle, or something obviously fine
874 // like a constant, then we just add the SCEV for that term to the list passed
875 // in by the caller. If we have a node that may potentially yield a valid
876 // SCEVAddRecExpr then we decompose it into parts and build the SCEV terms
877 // ourselves before adding to the list.
878 static void findForkedSCEVs(
879     ScalarEvolution *SE, const Loop *L, Value *Ptr,
880     SmallVectorImpl<PointerIntPair<const SCEV *, 1, bool>> &ScevList,
881     unsigned Depth) {
882   // If our Value is a SCEVAddRecExpr, loop invariant, not an instruction, or
883   // we've exceeded our limit on recursion, just return whatever we have
884   // regardless of whether it can be used for a forked pointer or not, along
885   // with an indication of whether it might be a poison or undef value.
886   const SCEV *Scev = SE->getSCEV(Ptr);
887   if (isa<SCEVAddRecExpr>(Scev) || L->isLoopInvariant(Ptr) ||
888       !isa<Instruction>(Ptr) || Depth == 0) {
889     ScevList.emplace_back(Scev, !isGuaranteedNotToBeUndefOrPoison(Ptr));
890     return;
891   }
892 
893   Depth--;
894 
895   auto UndefPoisonCheck = [](PointerIntPair<const SCEV *, 1, bool> S) {
896     return get<1>(S);
897   };
898 
899   auto GetBinOpExpr = [&SE](unsigned Opcode, const SCEV *L, const SCEV *R) {
900     switch (Opcode) {
901     case Instruction::Add:
902       return SE->getAddExpr(L, R);
903     case Instruction::Sub:
904       return SE->getMinusSCEV(L, R);
905     default:
906       llvm_unreachable("Unexpected binary operator when walking ForkedPtrs");
907     }
908   };
909 
910   Instruction *I = cast<Instruction>(Ptr);
911   unsigned Opcode = I->getOpcode();
912   switch (Opcode) {
913   case Instruction::GetElementPtr: {
914     auto *GEP = cast<GetElementPtrInst>(I);
915     Type *SourceTy = GEP->getSourceElementType();
916     // We only handle base + single offset GEPs here for now.
917     // Not dealing with preexisting gathers yet, so no vectors.
918     if (I->getNumOperands() != 2 || SourceTy->isVectorTy()) {
919       ScevList.emplace_back(Scev, !isGuaranteedNotToBeUndefOrPoison(GEP));
920       break;
921     }
922     SmallVector<PointerIntPair<const SCEV *, 1, bool>, 2> BaseScevs;
923     SmallVector<PointerIntPair<const SCEV *, 1, bool>, 2> OffsetScevs;
924     findForkedSCEVs(SE, L, I->getOperand(0), BaseScevs, Depth);
925     findForkedSCEVs(SE, L, I->getOperand(1), OffsetScevs, Depth);
926 
927     // See if we need to freeze our fork...
928     bool NeedsFreeze = any_of(BaseScevs, UndefPoisonCheck) ||
929                        any_of(OffsetScevs, UndefPoisonCheck);
930 
931     // Check that we only have a single fork, on either the base or the offset.
932     // Copy the SCEV across for the one without a fork in order to generate
933     // the full SCEV for both sides of the GEP.
934     if (OffsetScevs.size() == 2 && BaseScevs.size() == 1)
935       BaseScevs.push_back(BaseScevs[0]);
936     else if (BaseScevs.size() == 2 && OffsetScevs.size() == 1)
937       OffsetScevs.push_back(OffsetScevs[0]);
938     else {
939       ScevList.emplace_back(Scev, NeedsFreeze);
940       break;
941     }
942 
943     // Find the pointer type we need to extend to.
944     Type *IntPtrTy = SE->getEffectiveSCEVType(
945         SE->getSCEV(GEP->getPointerOperand())->getType());
946 
947     // Find the size of the type being pointed to. We only have a single
948     // index term (guarded above) so we don't need to index into arrays or
949     // structures, just get the size of the scalar value.
950     const SCEV *Size = SE->getSizeOfExpr(IntPtrTy, SourceTy);
951 
952     // Scale up the offsets by the size of the type, then add to the bases.
953     const SCEV *Scaled1 = SE->getMulExpr(
954         Size, SE->getTruncateOrSignExtend(get<0>(OffsetScevs[0]), IntPtrTy));
955     const SCEV *Scaled2 = SE->getMulExpr(
956         Size, SE->getTruncateOrSignExtend(get<0>(OffsetScevs[1]), IntPtrTy));
957     ScevList.emplace_back(SE->getAddExpr(get<0>(BaseScevs[0]), Scaled1),
958                           NeedsFreeze);
959     ScevList.emplace_back(SE->getAddExpr(get<0>(BaseScevs[1]), Scaled2),
960                           NeedsFreeze);
961     break;
962   }
963   case Instruction::Select: {
964     SmallVector<PointerIntPair<const SCEV *, 1, bool>, 2> ChildScevs;
965     // A select means we've found a forked pointer, but we currently only
966     // support a single select per pointer so if there's another behind this
967     // then we just bail out and return the generic SCEV.
968     findForkedSCEVs(SE, L, I->getOperand(1), ChildScevs, Depth);
969     findForkedSCEVs(SE, L, I->getOperand(2), ChildScevs, Depth);
970     if (ChildScevs.size() == 2) {
971       ScevList.push_back(ChildScevs[0]);
972       ScevList.push_back(ChildScevs[1]);
973     } else
974       ScevList.emplace_back(Scev, !isGuaranteedNotToBeUndefOrPoison(Ptr));
975     break;
976   }
977   case Instruction::PHI: {
978     SmallVector<PointerIntPair<const SCEV *, 1, bool>, 2> ChildScevs;
979     // A phi means we've found a forked pointer, but we currently only
980     // support a single phi per pointer so if there's another behind this
981     // then we just bail out and return the generic SCEV.
982     if (I->getNumOperands() == 2) {
983       findForkedSCEVs(SE, L, I->getOperand(0), ChildScevs, Depth);
984       findForkedSCEVs(SE, L, I->getOperand(1), ChildScevs, Depth);
985     }
986     if (ChildScevs.size() == 2) {
987       ScevList.push_back(ChildScevs[0]);
988       ScevList.push_back(ChildScevs[1]);
989     } else
990       ScevList.emplace_back(Scev, !isGuaranteedNotToBeUndefOrPoison(Ptr));
991     break;
992   }
993   case Instruction::Add:
994   case Instruction::Sub: {
995     SmallVector<PointerIntPair<const SCEV *, 1, bool>> LScevs;
996     SmallVector<PointerIntPair<const SCEV *, 1, bool>> RScevs;
997     findForkedSCEVs(SE, L, I->getOperand(0), LScevs, Depth);
998     findForkedSCEVs(SE, L, I->getOperand(1), RScevs, Depth);
999 
1000     // See if we need to freeze our fork...
1001     bool NeedsFreeze =
1002         any_of(LScevs, UndefPoisonCheck) || any_of(RScevs, UndefPoisonCheck);
1003 
1004     // Check that we only have a single fork, on either the left or right side.
1005     // Copy the SCEV across for the one without a fork in order to generate
1006     // the full SCEV for both sides of the BinOp.
1007     if (LScevs.size() == 2 && RScevs.size() == 1)
1008       RScevs.push_back(RScevs[0]);
1009     else if (RScevs.size() == 2 && LScevs.size() == 1)
1010       LScevs.push_back(LScevs[0]);
1011     else {
1012       ScevList.emplace_back(Scev, NeedsFreeze);
1013       break;
1014     }
1015 
1016     ScevList.emplace_back(
1017         GetBinOpExpr(Opcode, get<0>(LScevs[0]), get<0>(RScevs[0])),
1018         NeedsFreeze);
1019     ScevList.emplace_back(
1020         GetBinOpExpr(Opcode, get<0>(LScevs[1]), get<0>(RScevs[1])),
1021         NeedsFreeze);
1022     break;
1023   }
1024   default:
1025     // Just return the current SCEV if we haven't handled the instruction yet.
1026     LLVM_DEBUG(dbgs() << "ForkedPtr unhandled instruction: " << *I << "\n");
1027     ScevList.emplace_back(Scev, !isGuaranteedNotToBeUndefOrPoison(Ptr));
1028     break;
1029   }
1030 }
1031 
1032 static SmallVector<PointerIntPair<const SCEV *, 1, bool>>
1033 findForkedPointer(PredicatedScalarEvolution &PSE,
1034                   const DenseMap<Value *, const SCEV *> &StridesMap, Value *Ptr,
1035                   const Loop *L) {
1036   ScalarEvolution *SE = PSE.getSE();
1037   assert(SE->isSCEVable(Ptr->getType()) && "Value is not SCEVable!");
1038   SmallVector<PointerIntPair<const SCEV *, 1, bool>> Scevs;
1039   findForkedSCEVs(SE, L, Ptr, Scevs, MaxForkedSCEVDepth);
1040 
1041   // For now, we will only accept a forked pointer with two possible SCEVs
1042   // that are either SCEVAddRecExprs or loop invariant.
1043   if (Scevs.size() == 2 &&
1044       (isa<SCEVAddRecExpr>(get<0>(Scevs[0])) ||
1045        SE->isLoopInvariant(get<0>(Scevs[0]), L)) &&
1046       (isa<SCEVAddRecExpr>(get<0>(Scevs[1])) ||
1047        SE->isLoopInvariant(get<0>(Scevs[1]), L))) {
1048     LLVM_DEBUG(dbgs() << "LAA: Found forked pointer: " << *Ptr << "\n");
1049     LLVM_DEBUG(dbgs() << "\t(1) " << *get<0>(Scevs[0]) << "\n");
1050     LLVM_DEBUG(dbgs() << "\t(2) " << *get<0>(Scevs[1]) << "\n");
1051     return Scevs;
1052   }
1053 
1054   return {{replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr), false}};
1055 }
1056 
1057 bool AccessAnalysis::createCheckForAccess(RuntimePointerChecking &RtCheck,
1058                                           MemAccessInfo Access, Type *AccessTy,
1059                                           const DenseMap<Value *, const SCEV *> &StridesMap,
1060                                           DenseMap<Value *, unsigned> &DepSetId,
1061                                           Loop *TheLoop, unsigned &RunningDepId,
1062                                           unsigned ASId, bool ShouldCheckWrap,
1063                                           bool Assume) {
1064   Value *Ptr = Access.getPointer();
1065 
1066   SmallVector<PointerIntPair<const SCEV *, 1, bool>> TranslatedPtrs =
1067       findForkedPointer(PSE, StridesMap, Ptr, TheLoop);
1068 
1069   for (const auto &P : TranslatedPtrs) {
1070     const SCEV *PtrExpr = get<0>(P);
1071     if (!hasComputableBounds(PSE, Ptr, PtrExpr, TheLoop, Assume))
1072       return false;
1073 
1074     // When we run after a failing dependency check we have to make sure
1075     // we don't have wrapping pointers.
1076     if (ShouldCheckWrap) {
1077       // Skip wrap checking when translating pointers.
1078       if (TranslatedPtrs.size() > 1)
1079         return false;
1080 
1081       if (!isNoWrap(PSE, StridesMap, Ptr, AccessTy, TheLoop, Assume))
1082         return false;
1083     }
1084     // If there's only one option for Ptr, look it up after bounds and wrap
1085     // checking, because assumptions might have been added to PSE.
1086     if (TranslatedPtrs.size() == 1)
1087       TranslatedPtrs[0] = {replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr),
1088                            false};
1089   }
1090 
1091   for (auto [PtrExpr, NeedsFreeze] : TranslatedPtrs) {
1092     // The id of the dependence set.
1093     unsigned DepId;
1094 
1095     if (isDependencyCheckNeeded()) {
1096       Value *Leader = DepCands.getLeaderValue(Access).getPointer();
1097       unsigned &LeaderId = DepSetId[Leader];
1098       if (!LeaderId)
1099         LeaderId = RunningDepId++;
1100       DepId = LeaderId;
1101     } else
1102       // Each access has its own dependence set.
1103       DepId = RunningDepId++;
1104 
1105     bool IsWrite = Access.getInt();
1106     RtCheck.insert(TheLoop, Ptr, PtrExpr, AccessTy, IsWrite, DepId, ASId, PSE,
1107                    NeedsFreeze);
1108     LLVM_DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n');
1109   }
1110 
1111   return true;
1112 }
1113 
1114 bool AccessAnalysis::canCheckPtrAtRT(RuntimePointerChecking &RtCheck,
1115                                      ScalarEvolution *SE, Loop *TheLoop,
1116                                      const DenseMap<Value *, const SCEV *> &StridesMap,
1117                                      Value *&UncomputablePtr, bool ShouldCheckWrap) {
1118   // Find pointers with computable bounds. We are going to use this information
1119   // to place a runtime bound check.
1120   bool CanDoRT = true;
1121 
1122   bool MayNeedRTCheck = false;
1123   if (!IsRTCheckAnalysisNeeded) return true;
1124 
1125   bool IsDepCheckNeeded = isDependencyCheckNeeded();
1126 
1127   // We assign a consecutive id to access from different alias sets.
1128   // Accesses between different groups doesn't need to be checked.
1129   unsigned ASId = 0;
1130   for (const auto &AS : AST) {
1131     int NumReadPtrChecks = 0;
1132     int NumWritePtrChecks = 0;
1133     bool CanDoAliasSetRT = true;
1134     ++ASId;
1135     auto ASPointers = AS.getPointers();
1136 
1137     // We assign consecutive id to access from different dependence sets.
1138     // Accesses within the same set don't need a runtime check.
1139     unsigned RunningDepId = 1;
1140     DenseMap<Value *, unsigned> DepSetId;
1141 
1142     SmallVector<std::pair<MemAccessInfo, Type *>, 4> Retries;
1143 
1144     // First, count how many write and read accesses are in the alias set. Also
1145     // collect MemAccessInfos for later.
1146     SmallVector<MemAccessInfo, 4> AccessInfos;
1147     for (const Value *ConstPtr : ASPointers) {
1148       Value *Ptr = const_cast<Value *>(ConstPtr);
1149       bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true));
1150       if (IsWrite)
1151         ++NumWritePtrChecks;
1152       else
1153         ++NumReadPtrChecks;
1154       AccessInfos.emplace_back(Ptr, IsWrite);
1155     }
1156 
1157     // We do not need runtime checks for this alias set, if there are no writes
1158     // or a single write and no reads.
1159     if (NumWritePtrChecks == 0 ||
1160         (NumWritePtrChecks == 1 && NumReadPtrChecks == 0)) {
1161       assert((ASPointers.size() <= 1 ||
1162               all_of(ASPointers,
1163                      [this](const Value *Ptr) {
1164                        MemAccessInfo AccessWrite(const_cast<Value *>(Ptr),
1165                                                  true);
1166                        return DepCands.findValue(AccessWrite) == DepCands.end();
1167                      })) &&
1168              "Can only skip updating CanDoRT below, if all entries in AS "
1169              "are reads or there is at most 1 entry");
1170       continue;
1171     }
1172 
1173     for (auto &Access : AccessInfos) {
1174       for (const auto &AccessTy : Accesses[Access]) {
1175         if (!createCheckForAccess(RtCheck, Access, AccessTy, StridesMap,
1176                                   DepSetId, TheLoop, RunningDepId, ASId,
1177                                   ShouldCheckWrap, false)) {
1178           LLVM_DEBUG(dbgs() << "LAA: Can't find bounds for ptr:"
1179                             << *Access.getPointer() << '\n');
1180           Retries.emplace_back(Access, AccessTy);
1181           CanDoAliasSetRT = false;
1182         }
1183       }
1184     }
1185 
1186     // Note that this function computes CanDoRT and MayNeedRTCheck
1187     // independently. For example CanDoRT=false, MayNeedRTCheck=false means that
1188     // we have a pointer for which we couldn't find the bounds but we don't
1189     // actually need to emit any checks so it does not matter.
1190     //
1191     // We need runtime checks for this alias set, if there are at least 2
1192     // dependence sets (in which case RunningDepId > 2) or if we need to re-try
1193     // any bound checks (because in that case the number of dependence sets is
1194     // incomplete).
1195     bool NeedsAliasSetRTCheck = RunningDepId > 2 || !Retries.empty();
1196 
1197     // We need to perform run-time alias checks, but some pointers had bounds
1198     // that couldn't be checked.
1199     if (NeedsAliasSetRTCheck && !CanDoAliasSetRT) {
1200       // Reset the CanDoSetRt flag and retry all accesses that have failed.
1201       // We know that we need these checks, so we can now be more aggressive
1202       // and add further checks if required (overflow checks).
1203       CanDoAliasSetRT = true;
1204       for (const auto &[Access, AccessTy] : Retries) {
1205         if (!createCheckForAccess(RtCheck, Access, AccessTy, StridesMap,
1206                                   DepSetId, TheLoop, RunningDepId, ASId,
1207                                   ShouldCheckWrap, /*Assume=*/true)) {
1208           CanDoAliasSetRT = false;
1209           UncomputablePtr = Access.getPointer();
1210           break;
1211         }
1212       }
1213     }
1214 
1215     CanDoRT &= CanDoAliasSetRT;
1216     MayNeedRTCheck |= NeedsAliasSetRTCheck;
1217     ++ASId;
1218   }
1219 
1220   // If the pointers that we would use for the bounds comparison have different
1221   // address spaces, assume the values aren't directly comparable, so we can't
1222   // use them for the runtime check. We also have to assume they could
1223   // overlap. In the future there should be metadata for whether address spaces
1224   // are disjoint.
1225   unsigned NumPointers = RtCheck.Pointers.size();
1226   for (unsigned i = 0; i < NumPointers; ++i) {
1227     for (unsigned j = i + 1; j < NumPointers; ++j) {
1228       // Only need to check pointers between two different dependency sets.
1229       if (RtCheck.Pointers[i].DependencySetId ==
1230           RtCheck.Pointers[j].DependencySetId)
1231        continue;
1232       // Only need to check pointers in the same alias set.
1233       if (RtCheck.Pointers[i].AliasSetId != RtCheck.Pointers[j].AliasSetId)
1234         continue;
1235 
1236       Value *PtrI = RtCheck.Pointers[i].PointerValue;
1237       Value *PtrJ = RtCheck.Pointers[j].PointerValue;
1238 
1239       unsigned ASi = PtrI->getType()->getPointerAddressSpace();
1240       unsigned ASj = PtrJ->getType()->getPointerAddressSpace();
1241       if (ASi != ASj) {
1242         LLVM_DEBUG(
1243             dbgs() << "LAA: Runtime check would require comparison between"
1244                       " different address spaces\n");
1245         return false;
1246       }
1247     }
1248   }
1249 
1250   if (MayNeedRTCheck && CanDoRT)
1251     RtCheck.generateChecks(DepCands, IsDepCheckNeeded);
1252 
1253   LLVM_DEBUG(dbgs() << "LAA: We need to do " << RtCheck.getNumberOfChecks()
1254                     << " pointer comparisons.\n");
1255 
1256   // If we can do run-time checks, but there are no checks, no runtime checks
1257   // are needed. This can happen when all pointers point to the same underlying
1258   // object for example.
1259   RtCheck.Need = CanDoRT ? RtCheck.getNumberOfChecks() != 0 : MayNeedRTCheck;
1260 
1261   bool CanDoRTIfNeeded = !RtCheck.Need || CanDoRT;
1262   if (!CanDoRTIfNeeded)
1263     RtCheck.reset();
1264   return CanDoRTIfNeeded;
1265 }
1266 
1267 void AccessAnalysis::processMemAccesses() {
1268   // We process the set twice: first we process read-write pointers, last we
1269   // process read-only pointers. This allows us to skip dependence tests for
1270   // read-only pointers.
1271 
1272   LLVM_DEBUG(dbgs() << "LAA: Processing memory accesses...\n");
1273   LLVM_DEBUG(dbgs() << "  AST: "; AST.dump());
1274   LLVM_DEBUG(dbgs() << "LAA:   Accesses(" << Accesses.size() << "):\n");
1275   LLVM_DEBUG({
1276     for (const auto &[A, _] : Accesses)
1277       dbgs() << "\t" << *A.getPointer() << " ("
1278              << (A.getInt() ? "write"
1279                             : (ReadOnlyPtr.count(A.getPointer()) ? "read-only"
1280                                                                  : "read"))
1281              << ")\n";
1282   });
1283 
1284   // The AliasSetTracker has nicely partitioned our pointers by metadata
1285   // compatibility and potential for underlying-object overlap. As a result, we
1286   // only need to check for potential pointer dependencies within each alias
1287   // set.
1288   for (const auto &AS : AST) {
1289     // Note that both the alias-set tracker and the alias sets themselves used
1290     // ordered collections internally and so the iteration order here is
1291     // deterministic.
1292     auto ASPointers = AS.getPointers();
1293 
1294     bool SetHasWrite = false;
1295 
1296     // Map of pointers to last access encountered.
1297     typedef DenseMap<const Value*, MemAccessInfo> UnderlyingObjToAccessMap;
1298     UnderlyingObjToAccessMap ObjToLastAccess;
1299 
1300     // Set of access to check after all writes have been processed.
1301     PtrAccessMap DeferredAccesses;
1302 
1303     // Iterate over each alias set twice, once to process read/write pointers,
1304     // and then to process read-only pointers.
1305     for (int SetIteration = 0; SetIteration < 2; ++SetIteration) {
1306       bool UseDeferred = SetIteration > 0;
1307       PtrAccessMap &S = UseDeferred ? DeferredAccesses : Accesses;
1308 
1309       for (const Value *ConstPtr : ASPointers) {
1310         Value *Ptr = const_cast<Value *>(ConstPtr);
1311 
1312         // For a single memory access in AliasSetTracker, Accesses may contain
1313         // both read and write, and they both need to be handled for CheckDeps.
1314         for (const auto &[AC, _] : S) {
1315           if (AC.getPointer() != Ptr)
1316             continue;
1317 
1318           bool IsWrite = AC.getInt();
1319 
1320           // If we're using the deferred access set, then it contains only
1321           // reads.
1322           bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite;
1323           if (UseDeferred && !IsReadOnlyPtr)
1324             continue;
1325           // Otherwise, the pointer must be in the PtrAccessSet, either as a
1326           // read or a write.
1327           assert(((IsReadOnlyPtr && UseDeferred) || IsWrite ||
1328                   S.count(MemAccessInfo(Ptr, false))) &&
1329                  "Alias-set pointer not in the access set?");
1330 
1331           MemAccessInfo Access(Ptr, IsWrite);
1332           DepCands.insert(Access);
1333 
1334           // Memorize read-only pointers for later processing and skip them in
1335           // the first round (they need to be checked after we have seen all
1336           // write pointers). Note: we also mark pointer that are not
1337           // consecutive as "read-only" pointers (so that we check
1338           // "a[b[i]] +="). Hence, we need the second check for "!IsWrite".
1339           if (!UseDeferred && IsReadOnlyPtr) {
1340             // We only use the pointer keys, the types vector values don't
1341             // matter.
1342             DeferredAccesses.insert({Access, {}});
1343             continue;
1344           }
1345 
1346           // If this is a write - check other reads and writes for conflicts. If
1347           // this is a read only check other writes for conflicts (but only if
1348           // there is no other write to the ptr - this is an optimization to
1349           // catch "a[i] = a[i] + " without having to do a dependence check).
1350           if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) {
1351             CheckDeps.push_back(Access);
1352             IsRTCheckAnalysisNeeded = true;
1353           }
1354 
1355           if (IsWrite)
1356             SetHasWrite = true;
1357 
1358           // Create sets of pointers connected by a shared alias set and
1359           // underlying object.
1360           typedef SmallVector<const Value *, 16> ValueVector;
1361           ValueVector TempObjects;
1362 
1363           UnderlyingObjects[Ptr] = {};
1364           SmallVector<const Value *, 16> &UOs = UnderlyingObjects[Ptr];
1365           ::getUnderlyingObjects(Ptr, UOs, LI);
1366           LLVM_DEBUG(dbgs()
1367                      << "Underlying objects for pointer " << *Ptr << "\n");
1368           for (const Value *UnderlyingObj : UOs) {
1369             // nullptr never alias, don't join sets for pointer that have "null"
1370             // in their UnderlyingObjects list.
1371             if (isa<ConstantPointerNull>(UnderlyingObj) &&
1372                 !NullPointerIsDefined(
1373                     TheLoop->getHeader()->getParent(),
1374                     UnderlyingObj->getType()->getPointerAddressSpace()))
1375               continue;
1376 
1377             UnderlyingObjToAccessMap::iterator Prev =
1378                 ObjToLastAccess.find(UnderlyingObj);
1379             if (Prev != ObjToLastAccess.end())
1380               DepCands.unionSets(Access, Prev->second);
1381 
1382             ObjToLastAccess[UnderlyingObj] = Access;
1383             LLVM_DEBUG(dbgs() << "  " << *UnderlyingObj << "\n");
1384           }
1385         }
1386       }
1387     }
1388   }
1389 }
1390 
1391 /// Return true if an AddRec pointer \p Ptr is unsigned non-wrapping,
1392 /// i.e. monotonically increasing/decreasing.
1393 static bool isNoWrapAddRec(Value *Ptr, const SCEVAddRecExpr *AR,
1394                            PredicatedScalarEvolution &PSE, const Loop *L) {
1395 
1396   // FIXME: This should probably only return true for NUW.
1397   if (AR->getNoWrapFlags(SCEV::NoWrapMask))
1398     return true;
1399 
1400   if (PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW))
1401     return true;
1402 
1403   // Scalar evolution does not propagate the non-wrapping flags to values that
1404   // are derived from a non-wrapping induction variable because non-wrapping
1405   // could be flow-sensitive.
1406   //
1407   // Look through the potentially overflowing instruction to try to prove
1408   // non-wrapping for the *specific* value of Ptr.
1409 
1410   // The arithmetic implied by an nusw GEP can't overflow.
1411   const auto *GEP = dyn_cast<GetElementPtrInst>(Ptr);
1412   if (!GEP || !GEP->hasNoUnsignedSignedWrap())
1413     return false;
1414 
1415   // Make sure there is only one non-const index and analyze that.
1416   Value *NonConstIndex = nullptr;
1417   for (Value *Index : GEP->indices())
1418     if (!isa<ConstantInt>(Index)) {
1419       if (NonConstIndex)
1420         return false;
1421       NonConstIndex = Index;
1422     }
1423   if (!NonConstIndex)
1424     // The recurrence is on the pointer, ignore for now.
1425     return false;
1426 
1427   // The index in GEP is signed.  It is non-wrapping if it's derived from a NSW
1428   // AddRec using a NSW operation.
1429   if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(NonConstIndex))
1430     if (OBO->hasNoSignedWrap() &&
1431         // Assume constant for other the operand so that the AddRec can be
1432         // easily found.
1433         isa<ConstantInt>(OBO->getOperand(1))) {
1434       const SCEV *OpScev = PSE.getSCEV(OBO->getOperand(0));
1435 
1436       if (auto *OpAR = dyn_cast<SCEVAddRecExpr>(OpScev))
1437         return OpAR->getLoop() == L && OpAR->getNoWrapFlags(SCEV::FlagNSW);
1438     }
1439 
1440   return false;
1441 }
1442 
1443 /// Check whether the access through \p Ptr has a constant stride.
1444 std::optional<int64_t>
1445 llvm::getPtrStride(PredicatedScalarEvolution &PSE, Type *AccessTy, Value *Ptr,
1446                    const Loop *Lp,
1447                    const DenseMap<Value *, const SCEV *> &StridesMap,
1448                    bool Assume, bool ShouldCheckWrap) {
1449   const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr);
1450   if (PSE.getSE()->isLoopInvariant(PtrScev, Lp))
1451     return {0};
1452 
1453   Type *Ty = Ptr->getType();
1454   assert(Ty->isPointerTy() && "Unexpected non-ptr");
1455   if (isa<ScalableVectorType>(AccessTy)) {
1456     LLVM_DEBUG(dbgs() << "LAA: Bad stride - Scalable object: " << *AccessTy
1457                       << "\n");
1458     return std::nullopt;
1459   }
1460 
1461   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
1462   if (Assume && !AR)
1463     AR = PSE.getAsAddRec(Ptr);
1464 
1465   if (!AR) {
1466     LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer " << *Ptr
1467                       << " SCEV: " << *PtrScev << "\n");
1468     return std::nullopt;
1469   }
1470 
1471   // The access function must stride over the innermost loop.
1472   if (Lp != AR->getLoop()) {
1473     LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop "
1474                       << *Ptr << " SCEV: " << *AR << "\n");
1475     return std::nullopt;
1476   }
1477 
1478   // Check the step is constant.
1479   const SCEV *Step = AR->getStepRecurrence(*PSE.getSE());
1480 
1481   // Calculate the pointer stride and check if it is constant.
1482   const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
1483   if (!C) {
1484     LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr
1485                       << " SCEV: " << *AR << "\n");
1486     return std::nullopt;
1487   }
1488 
1489   const auto &DL = Lp->getHeader()->getDataLayout();
1490   TypeSize AllocSize = DL.getTypeAllocSize(AccessTy);
1491   int64_t Size = AllocSize.getFixedValue();
1492   const APInt &APStepVal = C->getAPInt();
1493 
1494   // Huge step value - give up.
1495   if (APStepVal.getBitWidth() > 64)
1496     return std::nullopt;
1497 
1498   int64_t StepVal = APStepVal.getSExtValue();
1499 
1500   // Strided access.
1501   int64_t Stride = StepVal / Size;
1502   int64_t Rem = StepVal % Size;
1503   if (Rem)
1504     return std::nullopt;
1505 
1506   if (!ShouldCheckWrap)
1507     return Stride;
1508 
1509   // The address calculation must not wrap. Otherwise, a dependence could be
1510   // inverted.
1511   if (isNoWrapAddRec(Ptr, AR, PSE, Lp))
1512     return Stride;
1513 
1514   // An nusw getelementptr that is an AddRec cannot wrap. If it would wrap,
1515   // the distance between the previously accessed location and the wrapped
1516   // location will be larger than half the pointer index type space. In that
1517   // case, the GEP would be  poison and any memory access dependent on it would
1518   // be immediate UB when executed.
1519   if (auto *GEP = dyn_cast<GetElementPtrInst>(Ptr);
1520       GEP && GEP->hasNoUnsignedSignedWrap())
1521     return Stride;
1522 
1523   // If the null pointer is undefined, then a access sequence which would
1524   // otherwise access it can be assumed not to unsigned wrap.  Note that this
1525   // assumes the object in memory is aligned to the natural alignment.
1526   unsigned AddrSpace = Ty->getPointerAddressSpace();
1527   if (!NullPointerIsDefined(Lp->getHeader()->getParent(), AddrSpace) &&
1528       (Stride == 1 || Stride == -1))
1529     return Stride;
1530 
1531   if (Assume) {
1532     PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW);
1533     LLVM_DEBUG(dbgs() << "LAA: Pointer may wrap:\n"
1534                       << "LAA:   Pointer: " << *Ptr << "\n"
1535                       << "LAA:   SCEV: " << *AR << "\n"
1536                       << "LAA:   Added an overflow assumption\n");
1537     return Stride;
1538   }
1539   LLVM_DEBUG(
1540       dbgs() << "LAA: Bad stride - Pointer may wrap in the address space "
1541              << *Ptr << " SCEV: " << *AR << "\n");
1542   return std::nullopt;
1543 }
1544 
1545 std::optional<int> llvm::getPointersDiff(Type *ElemTyA, Value *PtrA,
1546                                          Type *ElemTyB, Value *PtrB,
1547                                          const DataLayout &DL,
1548                                          ScalarEvolution &SE, bool StrictCheck,
1549                                          bool CheckType) {
1550   assert(PtrA && PtrB && "Expected non-nullptr pointers.");
1551 
1552   // Make sure that A and B are different pointers.
1553   if (PtrA == PtrB)
1554     return 0;
1555 
1556   // Make sure that the element types are the same if required.
1557   if (CheckType && ElemTyA != ElemTyB)
1558     return std::nullopt;
1559 
1560   unsigned ASA = PtrA->getType()->getPointerAddressSpace();
1561   unsigned ASB = PtrB->getType()->getPointerAddressSpace();
1562 
1563   // Check that the address spaces match.
1564   if (ASA != ASB)
1565     return std::nullopt;
1566   unsigned IdxWidth = DL.getIndexSizeInBits(ASA);
1567 
1568   APInt OffsetA(IdxWidth, 0), OffsetB(IdxWidth, 0);
1569   const Value *PtrA1 = PtrA->stripAndAccumulateConstantOffsets(
1570       DL, OffsetA, /*AllowNonInbounds=*/true);
1571   const Value *PtrB1 = PtrB->stripAndAccumulateConstantOffsets(
1572       DL, OffsetB, /*AllowNonInbounds=*/true);
1573 
1574   int Val;
1575   if (PtrA1 == PtrB1) {
1576     // Retrieve the address space again as pointer stripping now tracks through
1577     // `addrspacecast`.
1578     ASA = cast<PointerType>(PtrA1->getType())->getAddressSpace();
1579     ASB = cast<PointerType>(PtrB1->getType())->getAddressSpace();
1580     // Check that the address spaces match and that the pointers are valid.
1581     if (ASA != ASB)
1582       return std::nullopt;
1583 
1584     IdxWidth = DL.getIndexSizeInBits(ASA);
1585     OffsetA = OffsetA.sextOrTrunc(IdxWidth);
1586     OffsetB = OffsetB.sextOrTrunc(IdxWidth);
1587 
1588     OffsetB -= OffsetA;
1589     Val = OffsetB.getSExtValue();
1590   } else {
1591     // Otherwise compute the distance with SCEV between the base pointers.
1592     const SCEV *PtrSCEVA = SE.getSCEV(PtrA);
1593     const SCEV *PtrSCEVB = SE.getSCEV(PtrB);
1594     std::optional<APInt> Diff =
1595         SE.computeConstantDifference(PtrSCEVB, PtrSCEVA);
1596     if (!Diff)
1597       return std::nullopt;
1598     Val = Diff->getSExtValue();
1599   }
1600   int Size = DL.getTypeStoreSize(ElemTyA);
1601   int Dist = Val / Size;
1602 
1603   // Ensure that the calculated distance matches the type-based one after all
1604   // the bitcasts removal in the provided pointers.
1605   if (!StrictCheck || Dist * Size == Val)
1606     return Dist;
1607   return std::nullopt;
1608 }
1609 
1610 bool llvm::sortPtrAccesses(ArrayRef<Value *> VL, Type *ElemTy,
1611                            const DataLayout &DL, ScalarEvolution &SE,
1612                            SmallVectorImpl<unsigned> &SortedIndices) {
1613   assert(llvm::all_of(
1614              VL, [](const Value *V) { return V->getType()->isPointerTy(); }) &&
1615          "Expected list of pointer operands.");
1616   // Walk over the pointers, and map each of them to an offset relative to
1617   // first pointer in the array.
1618   Value *Ptr0 = VL[0];
1619 
1620   using DistOrdPair = std::pair<int64_t, int>;
1621   auto Compare = llvm::less_first();
1622   std::set<DistOrdPair, decltype(Compare)> Offsets(Compare);
1623   Offsets.emplace(0, 0);
1624   bool IsConsecutive = true;
1625   for (auto [Idx, Ptr] : drop_begin(enumerate(VL))) {
1626     std::optional<int> Diff = getPointersDiff(ElemTy, Ptr0, ElemTy, Ptr, DL, SE,
1627                                               /*StrictCheck=*/true);
1628     if (!Diff)
1629       return false;
1630 
1631     // Check if the pointer with the same offset is found.
1632     int64_t Offset = *Diff;
1633     auto [It, IsInserted] = Offsets.emplace(Offset, Idx);
1634     if (!IsInserted)
1635       return false;
1636     // Consecutive order if the inserted element is the last one.
1637     IsConsecutive &= std::next(It) == Offsets.end();
1638   }
1639   SortedIndices.clear();
1640   if (!IsConsecutive) {
1641     // Fill SortedIndices array only if it is non-consecutive.
1642     SortedIndices.resize(VL.size());
1643     for (auto [Idx, Off] : enumerate(Offsets))
1644       SortedIndices[Idx] = Off.second;
1645   }
1646   return true;
1647 }
1648 
1649 /// Returns true if the memory operations \p A and \p B are consecutive.
1650 bool llvm::isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL,
1651                                ScalarEvolution &SE, bool CheckType) {
1652   Value *PtrA = getLoadStorePointerOperand(A);
1653   Value *PtrB = getLoadStorePointerOperand(B);
1654   if (!PtrA || !PtrB)
1655     return false;
1656   Type *ElemTyA = getLoadStoreType(A);
1657   Type *ElemTyB = getLoadStoreType(B);
1658   std::optional<int> Diff =
1659       getPointersDiff(ElemTyA, PtrA, ElemTyB, PtrB, DL, SE,
1660                       /*StrictCheck=*/true, CheckType);
1661   return Diff && *Diff == 1;
1662 }
1663 
1664 void MemoryDepChecker::addAccess(StoreInst *SI) {
1665   visitPointers(SI->getPointerOperand(), *InnermostLoop,
1666                 [this, SI](Value *Ptr) {
1667                   Accesses[MemAccessInfo(Ptr, true)].push_back(AccessIdx);
1668                   InstMap.push_back(SI);
1669                   ++AccessIdx;
1670                 });
1671 }
1672 
1673 void MemoryDepChecker::addAccess(LoadInst *LI) {
1674   visitPointers(LI->getPointerOperand(), *InnermostLoop,
1675                 [this, LI](Value *Ptr) {
1676                   Accesses[MemAccessInfo(Ptr, false)].push_back(AccessIdx);
1677                   InstMap.push_back(LI);
1678                   ++AccessIdx;
1679                 });
1680 }
1681 
1682 MemoryDepChecker::VectorizationSafetyStatus
1683 MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type) {
1684   switch (Type) {
1685   case NoDep:
1686   case Forward:
1687   case BackwardVectorizable:
1688     return VectorizationSafetyStatus::Safe;
1689 
1690   case Unknown:
1691     return VectorizationSafetyStatus::PossiblySafeWithRtChecks;
1692   case ForwardButPreventsForwarding:
1693   case Backward:
1694   case BackwardVectorizableButPreventsForwarding:
1695   case IndirectUnsafe:
1696     return VectorizationSafetyStatus::Unsafe;
1697   }
1698   llvm_unreachable("unexpected DepType!");
1699 }
1700 
1701 bool MemoryDepChecker::Dependence::isBackward() const {
1702   switch (Type) {
1703   case NoDep:
1704   case Forward:
1705   case ForwardButPreventsForwarding:
1706   case Unknown:
1707   case IndirectUnsafe:
1708     return false;
1709 
1710   case BackwardVectorizable:
1711   case Backward:
1712   case BackwardVectorizableButPreventsForwarding:
1713     return true;
1714   }
1715   llvm_unreachable("unexpected DepType!");
1716 }
1717 
1718 bool MemoryDepChecker::Dependence::isPossiblyBackward() const {
1719   return isBackward() || Type == Unknown || Type == IndirectUnsafe;
1720 }
1721 
1722 bool MemoryDepChecker::Dependence::isForward() const {
1723   switch (Type) {
1724   case Forward:
1725   case ForwardButPreventsForwarding:
1726     return true;
1727 
1728   case NoDep:
1729   case Unknown:
1730   case BackwardVectorizable:
1731   case Backward:
1732   case BackwardVectorizableButPreventsForwarding:
1733   case IndirectUnsafe:
1734     return false;
1735   }
1736   llvm_unreachable("unexpected DepType!");
1737 }
1738 
1739 bool MemoryDepChecker::couldPreventStoreLoadForward(uint64_t Distance,
1740                                                     uint64_t TypeByteSize) {
1741   // If loads occur at a distance that is not a multiple of a feasible vector
1742   // factor store-load forwarding does not take place.
1743   // Positive dependences might cause troubles because vectorizing them might
1744   // prevent store-load forwarding making vectorized code run a lot slower.
1745   //   a[i] = a[i-3] ^ a[i-8];
1746   //   The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and
1747   //   hence on your typical architecture store-load forwarding does not take
1748   //   place. Vectorizing in such cases does not make sense.
1749   // Store-load forwarding distance.
1750 
1751   // After this many iterations store-to-load forwarding conflicts should not
1752   // cause any slowdowns.
1753   const uint64_t NumItersForStoreLoadThroughMemory = 8 * TypeByteSize;
1754   // Maximum vector factor.
1755   uint64_t MaxVFWithoutSLForwardIssues = std::min(
1756       VectorizerParams::MaxVectorWidth * TypeByteSize, MinDepDistBytes);
1757 
1758   // Compute the smallest VF at which the store and load would be misaligned.
1759   for (uint64_t VF = 2 * TypeByteSize; VF <= MaxVFWithoutSLForwardIssues;
1760        VF *= 2) {
1761     // If the number of vector iteration between the store and the load are
1762     // small we could incur conflicts.
1763     if (Distance % VF && Distance / VF < NumItersForStoreLoadThroughMemory) {
1764       MaxVFWithoutSLForwardIssues = (VF >> 1);
1765       break;
1766     }
1767   }
1768 
1769   if (MaxVFWithoutSLForwardIssues < 2 * TypeByteSize) {
1770     LLVM_DEBUG(
1771         dbgs() << "LAA: Distance " << Distance
1772                << " that could cause a store-load forwarding conflict\n");
1773     return true;
1774   }
1775 
1776   if (MaxVFWithoutSLForwardIssues < MinDepDistBytes &&
1777       MaxVFWithoutSLForwardIssues !=
1778           VectorizerParams::MaxVectorWidth * TypeByteSize)
1779     MinDepDistBytes = MaxVFWithoutSLForwardIssues;
1780   return false;
1781 }
1782 
1783 void MemoryDepChecker::mergeInStatus(VectorizationSafetyStatus S) {
1784   if (Status < S)
1785     Status = S;
1786 }
1787 
1788 /// Given a dependence-distance \p Dist between two
1789 /// memory accesses, that have strides in the same direction whose absolute
1790 /// value of the maximum stride is given in \p MaxStride, and that have the same
1791 /// type size \p TypeByteSize, in a loop whose maximum backedge taken count is
1792 /// \p MaxBTC, check if it is possible to prove statically that the dependence
1793 /// distance is larger than the range that the accesses will travel through the
1794 /// execution of the loop. If so, return true; false otherwise. This is useful
1795 /// for example in loops such as the following (PR31098):
1796 ///     for (i = 0; i < D; ++i) {
1797 ///                = out[i];
1798 ///       out[i+D] =
1799 ///     }
1800 static bool isSafeDependenceDistance(const DataLayout &DL, ScalarEvolution &SE,
1801                                      const SCEV &MaxBTC, const SCEV &Dist,
1802                                      uint64_t MaxStride,
1803                                      uint64_t TypeByteSize) {
1804 
1805   // If we can prove that
1806   //      (**) |Dist| > MaxBTC * Step
1807   // where Step is the absolute stride of the memory accesses in bytes,
1808   // then there is no dependence.
1809   //
1810   // Rationale:
1811   // We basically want to check if the absolute distance (|Dist/Step|)
1812   // is >= the loop iteration count (or > MaxBTC).
1813   // This is equivalent to the Strong SIV Test (Practical Dependence Testing,
1814   // Section 4.2.1); Note, that for vectorization it is sufficient to prove
1815   // that the dependence distance is >= VF; This is checked elsewhere.
1816   // But in some cases we can prune dependence distances early, and
1817   // even before selecting the VF, and without a runtime test, by comparing
1818   // the distance against the loop iteration count. Since the vectorized code
1819   // will be executed only if LoopCount >= VF, proving distance >= LoopCount
1820   // also guarantees that distance >= VF.
1821   //
1822   const uint64_t ByteStride = MaxStride * TypeByteSize;
1823   const SCEV *Step = SE.getConstant(MaxBTC.getType(), ByteStride);
1824   const SCEV *Product = SE.getMulExpr(&MaxBTC, Step);
1825 
1826   const SCEV *CastedDist = &Dist;
1827   const SCEV *CastedProduct = Product;
1828   uint64_t DistTypeSizeBits = DL.getTypeSizeInBits(Dist.getType());
1829   uint64_t ProductTypeSizeBits = DL.getTypeSizeInBits(Product->getType());
1830 
1831   // The dependence distance can be positive/negative, so we sign extend Dist;
1832   // The multiplication of the absolute stride in bytes and the
1833   // backedgeTakenCount is non-negative, so we zero extend Product.
1834   if (DistTypeSizeBits > ProductTypeSizeBits)
1835     CastedProduct = SE.getZeroExtendExpr(Product, Dist.getType());
1836   else
1837     CastedDist = SE.getNoopOrSignExtend(&Dist, Product->getType());
1838 
1839   // Is  Dist - (MaxBTC * Step) > 0 ?
1840   // (If so, then we have proven (**) because |Dist| >= Dist)
1841   const SCEV *Minus = SE.getMinusSCEV(CastedDist, CastedProduct);
1842   if (SE.isKnownPositive(Minus))
1843     return true;
1844 
1845   // Second try: Is  -Dist - (MaxBTC * Step) > 0 ?
1846   // (If so, then we have proven (**) because |Dist| >= -1*Dist)
1847   const SCEV *NegDist = SE.getNegativeSCEV(CastedDist);
1848   Minus = SE.getMinusSCEV(NegDist, CastedProduct);
1849   return SE.isKnownPositive(Minus);
1850 }
1851 
1852 /// Check the dependence for two accesses with the same stride \p Stride.
1853 /// \p Distance is the positive distance and \p TypeByteSize is type size in
1854 /// bytes.
1855 ///
1856 /// \returns true if they are independent.
1857 static bool areStridedAccessesIndependent(uint64_t Distance, uint64_t Stride,
1858                                           uint64_t TypeByteSize) {
1859   assert(Stride > 1 && "The stride must be greater than 1");
1860   assert(TypeByteSize > 0 && "The type size in byte must be non-zero");
1861   assert(Distance > 0 && "The distance must be non-zero");
1862 
1863   // Skip if the distance is not multiple of type byte size.
1864   if (Distance % TypeByteSize)
1865     return false;
1866 
1867   uint64_t ScaledDist = Distance / TypeByteSize;
1868 
1869   // No dependence if the scaled distance is not multiple of the stride.
1870   // E.g.
1871   //      for (i = 0; i < 1024 ; i += 4)
1872   //        A[i+2] = A[i] + 1;
1873   //
1874   // Two accesses in memory (scaled distance is 2, stride is 4):
1875   //     | A[0] |      |      |      | A[4] |      |      |      |
1876   //     |      |      | A[2] |      |      |      | A[6] |      |
1877   //
1878   // E.g.
1879   //      for (i = 0; i < 1024 ; i += 3)
1880   //        A[i+4] = A[i] + 1;
1881   //
1882   // Two accesses in memory (scaled distance is 4, stride is 3):
1883   //     | A[0] |      |      | A[3] |      |      | A[6] |      |      |
1884   //     |      |      |      |      | A[4] |      |      | A[7] |      |
1885   return ScaledDist % Stride;
1886 }
1887 
1888 std::variant<MemoryDepChecker::Dependence::DepType,
1889              MemoryDepChecker::DepDistanceStrideAndSizeInfo>
1890 MemoryDepChecker::getDependenceDistanceStrideAndSize(
1891     const AccessAnalysis::MemAccessInfo &A, Instruction *AInst,
1892     const AccessAnalysis::MemAccessInfo &B, Instruction *BInst) {
1893   const auto &DL = InnermostLoop->getHeader()->getDataLayout();
1894   auto &SE = *PSE.getSE();
1895   const auto &[APtr, AIsWrite] = A;
1896   const auto &[BPtr, BIsWrite] = B;
1897 
1898   // Two reads are independent.
1899   if (!AIsWrite && !BIsWrite)
1900     return MemoryDepChecker::Dependence::NoDep;
1901 
1902   Type *ATy = getLoadStoreType(AInst);
1903   Type *BTy = getLoadStoreType(BInst);
1904 
1905   // We cannot check pointers in different address spaces.
1906   if (APtr->getType()->getPointerAddressSpace() !=
1907       BPtr->getType()->getPointerAddressSpace())
1908     return MemoryDepChecker::Dependence::Unknown;
1909 
1910   std::optional<int64_t> StrideAPtr =
1911       getPtrStride(PSE, ATy, APtr, InnermostLoop, SymbolicStrides, true, true);
1912   std::optional<int64_t> StrideBPtr =
1913       getPtrStride(PSE, BTy, BPtr, InnermostLoop, SymbolicStrides, true, true);
1914 
1915   const SCEV *Src = PSE.getSCEV(APtr);
1916   const SCEV *Sink = PSE.getSCEV(BPtr);
1917 
1918   // If the induction step is negative we have to invert source and sink of the
1919   // dependence when measuring the distance between them. We should not swap
1920   // AIsWrite with BIsWrite, as their uses expect them in program order.
1921   if (StrideAPtr && *StrideAPtr < 0) {
1922     std::swap(Src, Sink);
1923     std::swap(AInst, BInst);
1924     std::swap(ATy, BTy);
1925     std::swap(StrideAPtr, StrideBPtr);
1926   }
1927 
1928   const SCEV *Dist = SE.getMinusSCEV(Sink, Src);
1929 
1930   LLVM_DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink
1931                     << "\n");
1932   LLVM_DEBUG(dbgs() << "LAA: Distance for " << *AInst << " to " << *BInst
1933                     << ": " << *Dist << "\n");
1934 
1935   // Check if we can prove that Sink only accesses memory after Src's end or
1936   // vice versa. At the moment this is limited to cases where either source or
1937   // sink are loop invariant to avoid compile-time increases. This is not
1938   // required for correctness.
1939   if (SE.isLoopInvariant(Src, InnermostLoop) ||
1940       SE.isLoopInvariant(Sink, InnermostLoop)) {
1941     const auto &[SrcStart_, SrcEnd_] =
1942         getStartAndEndForAccess(InnermostLoop, Src, ATy, PSE, PointerBounds);
1943     const auto &[SinkStart_, SinkEnd_] =
1944         getStartAndEndForAccess(InnermostLoop, Sink, BTy, PSE, PointerBounds);
1945     if (!isa<SCEVCouldNotCompute>(SrcStart_) &&
1946         !isa<SCEVCouldNotCompute>(SrcEnd_) &&
1947         !isa<SCEVCouldNotCompute>(SinkStart_) &&
1948         !isa<SCEVCouldNotCompute>(SinkEnd_)) {
1949       if (!LoopGuards)
1950         LoopGuards.emplace(
1951             ScalarEvolution::LoopGuards::collect(InnermostLoop, SE));
1952       auto SrcEnd = SE.applyLoopGuards(SrcEnd_, *LoopGuards);
1953       auto SinkStart = SE.applyLoopGuards(SinkStart_, *LoopGuards);
1954       if (SE.isKnownPredicate(CmpInst::ICMP_ULE, SrcEnd, SinkStart))
1955         return MemoryDepChecker::Dependence::NoDep;
1956 
1957       auto SinkEnd = SE.applyLoopGuards(SinkEnd_, *LoopGuards);
1958       auto SrcStart = SE.applyLoopGuards(SrcStart_, *LoopGuards);
1959       if (SE.isKnownPredicate(CmpInst::ICMP_ULE, SinkEnd, SrcStart))
1960         return MemoryDepChecker::Dependence::NoDep;
1961     }
1962   }
1963 
1964   // Need accesses with constant strides and the same direction for further
1965   // dependence analysis. We don't want to vectorize "A[B[i]] += ..." and
1966   // similar code or pointer arithmetic that could wrap in the address space.
1967 
1968   // If either Src or Sink are not strided (i.e. not a non-wrapping AddRec) and
1969   // not loop-invariant (stride will be 0 in that case), we cannot analyze the
1970   // dependence further and also cannot generate runtime checks.
1971   if (!StrideAPtr || !StrideBPtr) {
1972     LLVM_DEBUG(dbgs() << "Pointer access with non-constant stride\n");
1973     return MemoryDepChecker::Dependence::IndirectUnsafe;
1974   }
1975 
1976   int64_t StrideAPtrInt = *StrideAPtr;
1977   int64_t StrideBPtrInt = *StrideBPtr;
1978   LLVM_DEBUG(dbgs() << "LAA:  Src induction step: " << StrideAPtrInt
1979                     << " Sink induction step: " << StrideBPtrInt << "\n");
1980   // At least Src or Sink are loop invariant and the other is strided or
1981   // invariant. We can generate a runtime check to disambiguate the accesses.
1982   if (!StrideAPtrInt || !StrideBPtrInt)
1983     return MemoryDepChecker::Dependence::Unknown;
1984 
1985   // Both Src and Sink have a constant stride, check if they are in the same
1986   // direction.
1987   if ((StrideAPtrInt > 0) != (StrideBPtrInt > 0)) {
1988     LLVM_DEBUG(
1989         dbgs() << "Pointer access with strides in different directions\n");
1990     return MemoryDepChecker::Dependence::Unknown;
1991   }
1992 
1993   uint64_t TypeByteSize = DL.getTypeAllocSize(ATy);
1994   bool HasSameSize =
1995       DL.getTypeStoreSizeInBits(ATy) == DL.getTypeStoreSizeInBits(BTy);
1996   if (!HasSameSize)
1997     TypeByteSize = 0;
1998 
1999   StrideAPtrInt = std::abs(StrideAPtrInt);
2000   StrideBPtrInt = std::abs(StrideBPtrInt);
2001 
2002   uint64_t MaxStride = std::max(StrideAPtrInt, StrideBPtrInt);
2003 
2004   std::optional<uint64_t> CommonStride;
2005   if (StrideAPtrInt == StrideBPtrInt)
2006     CommonStride = StrideAPtrInt;
2007 
2008   // TODO: Historically, we don't retry with runtime checks unless the
2009   // (unscaled) strides are the same. Fix this once the condition for runtime
2010   // checks in isDependent is fixed.
2011   bool ShouldRetryWithRuntimeCheck = CommonStride.has_value();
2012 
2013   return DepDistanceStrideAndSizeInfo(Dist, MaxStride, CommonStride,
2014                                       ShouldRetryWithRuntimeCheck, TypeByteSize,
2015                                       AIsWrite, BIsWrite);
2016 }
2017 
2018 MemoryDepChecker::Dependence::DepType
2019 MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx,
2020                               const MemAccessInfo &B, unsigned BIdx) {
2021   assert(AIdx < BIdx && "Must pass arguments in program order");
2022 
2023   // Get the dependence distance, stride, type size and what access writes for
2024   // the dependence between A and B.
2025   auto Res =
2026       getDependenceDistanceStrideAndSize(A, InstMap[AIdx], B, InstMap[BIdx]);
2027   if (std::holds_alternative<Dependence::DepType>(Res))
2028     return std::get<Dependence::DepType>(Res);
2029 
2030   auto &[Dist, MaxStride, CommonStride, ShouldRetryWithRuntimeCheck,
2031          TypeByteSize, AIsWrite, BIsWrite] =
2032       std::get<DepDistanceStrideAndSizeInfo>(Res);
2033   bool HasSameSize = TypeByteSize > 0;
2034 
2035   if (isa<SCEVCouldNotCompute>(Dist)) {
2036     // TODO: Relax requirement that there is a common unscaled stride to retry
2037     // with non-constant distance dependencies.
2038     FoundNonConstantDistanceDependence |= ShouldRetryWithRuntimeCheck;
2039     LLVM_DEBUG(dbgs() << "LAA: Dependence because of uncomputable distance.\n");
2040     return Dependence::Unknown;
2041   }
2042 
2043   ScalarEvolution &SE = *PSE.getSE();
2044   auto &DL = InnermostLoop->getHeader()->getDataLayout();
2045 
2046   // If the distance between the acecsses is larger than their maximum absolute
2047   // stride multiplied by the symbolic maximum backedge taken count (which is an
2048   // upper bound of the number of iterations), the accesses are independet, i.e.
2049   // they are far enough appart that accesses won't access the same location
2050   // across all loop ierations.
2051   if (HasSameSize && isSafeDependenceDistance(
2052                          DL, SE, *(PSE.getSymbolicMaxBackedgeTakenCount()),
2053                          *Dist, MaxStride, TypeByteSize))
2054     return Dependence::NoDep;
2055 
2056   const SCEVConstant *ConstDist = dyn_cast<SCEVConstant>(Dist);
2057 
2058   // Attempt to prove strided accesses independent.
2059   if (ConstDist) {
2060     uint64_t Distance = ConstDist->getAPInt().abs().getZExtValue();
2061 
2062     // If the distance between accesses and their strides are known constants,
2063     // check whether the accesses interlace each other.
2064     if (Distance > 0 && CommonStride && CommonStride > 1 && HasSameSize &&
2065         areStridedAccessesIndependent(Distance, *CommonStride, TypeByteSize)) {
2066       LLVM_DEBUG(dbgs() << "LAA: Strided accesses are independent\n");
2067       return Dependence::NoDep;
2068     }
2069   } else {
2070     if (!LoopGuards)
2071       LoopGuards.emplace(
2072           ScalarEvolution::LoopGuards::collect(InnermostLoop, SE));
2073     Dist = SE.applyLoopGuards(Dist, *LoopGuards);
2074   }
2075 
2076   // Negative distances are not plausible dependencies.
2077   if (SE.isKnownNonPositive(Dist)) {
2078     if (SE.isKnownNonNegative(Dist)) {
2079       if (HasSameSize) {
2080         // Write to the same location with the same size.
2081         return Dependence::Forward;
2082       }
2083       LLVM_DEBUG(dbgs() << "LAA: possibly zero dependence difference but "
2084                            "different type sizes\n");
2085       return Dependence::Unknown;
2086     }
2087 
2088     bool IsTrueDataDependence = (AIsWrite && !BIsWrite);
2089     // Check if the first access writes to a location that is read in a later
2090     // iteration, where the distance between them is not a multiple of a vector
2091     // factor and relatively small.
2092     //
2093     // NOTE: There is no need to update MaxSafeVectorWidthInBits after call to
2094     // couldPreventStoreLoadForward, even if it changed MinDepDistBytes, since a
2095     // forward dependency will allow vectorization using any width.
2096 
2097     if (IsTrueDataDependence && EnableForwardingConflictDetection) {
2098       if (!ConstDist) {
2099         // TODO: FoundNonConstantDistanceDependence is used as a necessary
2100         // condition to consider retrying with runtime checks. Historically, we
2101         // did not set it when strides were different but there is no inherent
2102         // reason to.
2103         FoundNonConstantDistanceDependence |= ShouldRetryWithRuntimeCheck;
2104         return Dependence::Unknown;
2105       }
2106       if (!HasSameSize ||
2107           couldPreventStoreLoadForward(
2108               ConstDist->getAPInt().abs().getZExtValue(), TypeByteSize)) {
2109         LLVM_DEBUG(
2110             dbgs() << "LAA: Forward but may prevent st->ld forwarding\n");
2111         return Dependence::ForwardButPreventsForwarding;
2112       }
2113     }
2114 
2115     LLVM_DEBUG(dbgs() << "LAA: Dependence is negative\n");
2116     return Dependence::Forward;
2117   }
2118 
2119   int64_t MinDistance = SE.getSignedRangeMin(Dist).getSExtValue();
2120   // Below we only handle strictly positive distances.
2121   if (MinDistance <= 0) {
2122     FoundNonConstantDistanceDependence |= ShouldRetryWithRuntimeCheck;
2123     return Dependence::Unknown;
2124   }
2125 
2126   if (!ConstDist) {
2127     // Previously this case would be treated as Unknown, possibly setting
2128     // FoundNonConstantDistanceDependence to force re-trying with runtime
2129     // checks. Until the TODO below is addressed, set it here to preserve
2130     // original behavior w.r.t. re-trying with runtime checks.
2131     // TODO: FoundNonConstantDistanceDependence is used as a necessary
2132     // condition to consider retrying with runtime checks. Historically, we
2133     // did not set it when strides were different but there is no inherent
2134     // reason to.
2135     FoundNonConstantDistanceDependence |= ShouldRetryWithRuntimeCheck;
2136   }
2137 
2138   if (!HasSameSize) {
2139     LLVM_DEBUG(dbgs() << "LAA: ReadWrite-Write positive dependency with "
2140                          "different type sizes\n");
2141     return Dependence::Unknown;
2142   }
2143 
2144   if (!CommonStride)
2145     return Dependence::Unknown;
2146 
2147   // Bail out early if passed-in parameters make vectorization not feasible.
2148   unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ?
2149                            VectorizerParams::VectorizationFactor : 1);
2150   unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ?
2151                            VectorizerParams::VectorizationInterleave : 1);
2152   // The minimum number of iterations for a vectorized/unrolled version.
2153   unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U);
2154 
2155   // It's not vectorizable if the distance is smaller than the minimum distance
2156   // needed for a vectroized/unrolled version. Vectorizing one iteration in
2157   // front needs TypeByteSize * Stride. Vectorizing the last iteration needs
2158   // TypeByteSize (No need to plus the last gap distance).
2159   //
2160   // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
2161   //      foo(int *A) {
2162   //        int *B = (int *)((char *)A + 14);
2163   //        for (i = 0 ; i < 1024 ; i += 2)
2164   //          B[i] = A[i] + 1;
2165   //      }
2166   //
2167   // Two accesses in memory (stride is 2):
2168   //     | A[0] |      | A[2] |      | A[4] |      | A[6] |      |
2169   //                              | B[0] |      | B[2] |      | B[4] |
2170   //
2171   // MinDistance needs for vectorizing iterations except the last iteration:
2172   // 4 * 2 * (MinNumIter - 1). MinDistance needs for the last iteration: 4.
2173   // So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4.
2174   //
2175   // If MinNumIter is 2, it is vectorizable as the minimum distance needed is
2176   // 12, which is less than distance.
2177   //
2178   // If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4),
2179   // the minimum distance needed is 28, which is greater than distance. It is
2180   // not safe to do vectorization.
2181 
2182   // We know that Dist is positive, but it may not be constant. Use the signed
2183   // minimum for computations below, as this ensures we compute the closest
2184   // possible dependence distance.
2185   uint64_t MinDistanceNeeded =
2186       TypeByteSize * *CommonStride * (MinNumIter - 1) + TypeByteSize;
2187   if (MinDistanceNeeded > static_cast<uint64_t>(MinDistance)) {
2188     if (!ConstDist) {
2189       // For non-constant distances, we checked the lower bound of the
2190       // dependence distance and the distance may be larger at runtime (and safe
2191       // for vectorization). Classify it as Unknown, so we re-try with runtime
2192       // checks.
2193       return Dependence::Unknown;
2194     }
2195     LLVM_DEBUG(dbgs() << "LAA: Failure because of positive minimum distance "
2196                       << MinDistance << '\n');
2197     return Dependence::Backward;
2198   }
2199 
2200   // Unsafe if the minimum distance needed is greater than smallest dependence
2201   // distance distance.
2202   if (MinDistanceNeeded > MinDepDistBytes) {
2203     LLVM_DEBUG(dbgs() << "LAA: Failure because it needs at least "
2204                       << MinDistanceNeeded << " size in bytes\n");
2205     return Dependence::Backward;
2206   }
2207 
2208   // Positive distance bigger than max vectorization factor.
2209   // FIXME: Should use max factor instead of max distance in bytes, which could
2210   // not handle different types.
2211   // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
2212   //      void foo (int *A, char *B) {
2213   //        for (unsigned i = 0; i < 1024; i++) {
2214   //          A[i+2] = A[i] + 1;
2215   //          B[i+2] = B[i] + 1;
2216   //        }
2217   //      }
2218   //
2219   // This case is currently unsafe according to the max safe distance. If we
2220   // analyze the two accesses on array B, the max safe dependence distance
2221   // is 2. Then we analyze the accesses on array A, the minimum distance needed
2222   // is 8, which is less than 2 and forbidden vectorization, But actually
2223   // both A and B could be vectorized by 2 iterations.
2224   MinDepDistBytes =
2225       std::min(static_cast<uint64_t>(MinDistance), MinDepDistBytes);
2226 
2227   bool IsTrueDataDependence = (!AIsWrite && BIsWrite);
2228   uint64_t MinDepDistBytesOld = MinDepDistBytes;
2229   if (IsTrueDataDependence && EnableForwardingConflictDetection && ConstDist &&
2230       couldPreventStoreLoadForward(MinDistance, TypeByteSize)) {
2231     // Sanity check that we didn't update MinDepDistBytes when calling
2232     // couldPreventStoreLoadForward
2233     assert(MinDepDistBytes == MinDepDistBytesOld &&
2234            "An update to MinDepDistBytes requires an update to "
2235            "MaxSafeVectorWidthInBits");
2236     (void)MinDepDistBytesOld;
2237     return Dependence::BackwardVectorizableButPreventsForwarding;
2238   }
2239 
2240   // An update to MinDepDistBytes requires an update to MaxSafeVectorWidthInBits
2241   // since there is a backwards dependency.
2242   uint64_t MaxVF = MinDepDistBytes / (TypeByteSize * *CommonStride);
2243   LLVM_DEBUG(dbgs() << "LAA: Positive min distance " << MinDistance
2244                     << " with max VF = " << MaxVF << '\n');
2245 
2246   uint64_t MaxVFInBits = MaxVF * TypeByteSize * 8;
2247   if (!ConstDist && MaxVFInBits < MaxTargetVectorWidthInBits) {
2248     // For non-constant distances, we checked the lower bound of the dependence
2249     // distance and the distance may be larger at runtime (and safe for
2250     // vectorization). Classify it as Unknown, so we re-try with runtime checks.
2251     return Dependence::Unknown;
2252   }
2253 
2254   MaxSafeVectorWidthInBits = std::min(MaxSafeVectorWidthInBits, MaxVFInBits);
2255   return Dependence::BackwardVectorizable;
2256 }
2257 
2258 bool MemoryDepChecker::areDepsSafe(const DepCandidates &AccessSets,
2259                                    const MemAccessInfoList &CheckDeps) {
2260 
2261   MinDepDistBytes = -1;
2262   SmallPtrSet<MemAccessInfo, 8> Visited;
2263   for (MemAccessInfo CurAccess : CheckDeps) {
2264     if (Visited.count(CurAccess))
2265       continue;
2266 
2267     // Get the relevant memory access set.
2268     EquivalenceClasses<MemAccessInfo>::iterator I =
2269       AccessSets.findValue(AccessSets.getLeaderValue(CurAccess));
2270 
2271     // Check accesses within this set.
2272     EquivalenceClasses<MemAccessInfo>::member_iterator AI =
2273         AccessSets.member_begin(I);
2274     EquivalenceClasses<MemAccessInfo>::member_iterator AE =
2275         AccessSets.member_end();
2276 
2277     // Check every access pair.
2278     while (AI != AE) {
2279       Visited.insert(*AI);
2280       bool AIIsWrite = AI->getInt();
2281       // Check loads only against next equivalent class, but stores also against
2282       // other stores in the same equivalence class - to the same address.
2283       EquivalenceClasses<MemAccessInfo>::member_iterator OI =
2284           (AIIsWrite ? AI : std::next(AI));
2285       while (OI != AE) {
2286         // Check every accessing instruction pair in program order.
2287         for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(),
2288              I1E = Accesses[*AI].end(); I1 != I1E; ++I1)
2289           // Scan all accesses of another equivalence class, but only the next
2290           // accesses of the same equivalent class.
2291           for (std::vector<unsigned>::iterator
2292                    I2 = (OI == AI ? std::next(I1) : Accesses[*OI].begin()),
2293                    I2E = (OI == AI ? I1E : Accesses[*OI].end());
2294                I2 != I2E; ++I2) {
2295             auto A = std::make_pair(&*AI, *I1);
2296             auto B = std::make_pair(&*OI, *I2);
2297 
2298             assert(*I1 != *I2);
2299             if (*I1 > *I2)
2300               std::swap(A, B);
2301 
2302             Dependence::DepType Type =
2303                 isDependent(*A.first, A.second, *B.first, B.second);
2304             mergeInStatus(Dependence::isSafeForVectorization(Type));
2305 
2306             // Gather dependences unless we accumulated MaxDependences
2307             // dependences.  In that case return as soon as we find the first
2308             // unsafe dependence.  This puts a limit on this quadratic
2309             // algorithm.
2310             if (RecordDependences) {
2311               if (Type != Dependence::NoDep)
2312                 Dependences.emplace_back(A.second, B.second, Type);
2313 
2314               if (Dependences.size() >= MaxDependences) {
2315                 RecordDependences = false;
2316                 Dependences.clear();
2317                 LLVM_DEBUG(dbgs()
2318                            << "Too many dependences, stopped recording\n");
2319               }
2320             }
2321             if (!RecordDependences && !isSafeForVectorization())
2322               return false;
2323           }
2324         ++OI;
2325       }
2326       ++AI;
2327     }
2328   }
2329 
2330   LLVM_DEBUG(dbgs() << "Total Dependences: " << Dependences.size() << "\n");
2331   return isSafeForVectorization();
2332 }
2333 
2334 SmallVector<Instruction *, 4>
2335 MemoryDepChecker::getInstructionsForAccess(Value *Ptr, bool IsWrite) const {
2336   MemAccessInfo Access(Ptr, IsWrite);
2337   auto &IndexVector = Accesses.find(Access)->second;
2338 
2339   SmallVector<Instruction *, 4> Insts;
2340   transform(IndexVector,
2341                  std::back_inserter(Insts),
2342                  [&](unsigned Idx) { return this->InstMap[Idx]; });
2343   return Insts;
2344 }
2345 
2346 const char *MemoryDepChecker::Dependence::DepName[] = {
2347     "NoDep",
2348     "Unknown",
2349     "IndirectUnsafe",
2350     "Forward",
2351     "ForwardButPreventsForwarding",
2352     "Backward",
2353     "BackwardVectorizable",
2354     "BackwardVectorizableButPreventsForwarding"};
2355 
2356 void MemoryDepChecker::Dependence::print(
2357     raw_ostream &OS, unsigned Depth,
2358     const SmallVectorImpl<Instruction *> &Instrs) const {
2359   OS.indent(Depth) << DepName[Type] << ":\n";
2360   OS.indent(Depth + 2) << *Instrs[Source] << " -> \n";
2361   OS.indent(Depth + 2) << *Instrs[Destination] << "\n";
2362 }
2363 
2364 bool LoopAccessInfo::canAnalyzeLoop() {
2365   // We need to have a loop header.
2366   LLVM_DEBUG(dbgs() << "\nLAA: Checking a loop in '"
2367                     << TheLoop->getHeader()->getParent()->getName() << "' from "
2368                     << TheLoop->getLocStr() << "\n");
2369 
2370   // We can only analyze innermost loops.
2371   if (!TheLoop->isInnermost()) {
2372     LLVM_DEBUG(dbgs() << "LAA: loop is not the innermost loop\n");
2373     recordAnalysis("NotInnerMostLoop") << "loop is not the innermost loop";
2374     return false;
2375   }
2376 
2377   // We must have a single backedge.
2378   if (TheLoop->getNumBackEdges() != 1) {
2379     LLVM_DEBUG(
2380         dbgs() << "LAA: loop control flow is not understood by analyzer\n");
2381     recordAnalysis("CFGNotUnderstood")
2382         << "loop control flow is not understood by analyzer";
2383     return false;
2384   }
2385 
2386   // ScalarEvolution needs to be able to find the symbolic max backedge taken
2387   // count, which is an upper bound on the number of loop iterations. The loop
2388   // may execute fewer iterations, if it exits via an uncountable exit.
2389   const SCEV *ExitCount = PSE->getSymbolicMaxBackedgeTakenCount();
2390   if (isa<SCEVCouldNotCompute>(ExitCount)) {
2391     recordAnalysis("CantComputeNumberOfIterations")
2392         << "could not determine number of loop iterations";
2393     LLVM_DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n");
2394     return false;
2395   }
2396 
2397   LLVM_DEBUG(dbgs() << "LAA: Found an analyzable loop: "
2398                     << TheLoop->getHeader()->getName() << "\n");
2399   return true;
2400 }
2401 
2402 bool LoopAccessInfo::analyzeLoop(AAResults *AA, const LoopInfo *LI,
2403                                  const TargetLibraryInfo *TLI,
2404                                  DominatorTree *DT) {
2405   // Holds the Load and Store instructions.
2406   SmallVector<LoadInst *, 16> Loads;
2407   SmallVector<StoreInst *, 16> Stores;
2408   SmallPtrSet<MDNode *, 8> LoopAliasScopes;
2409 
2410   // Holds all the different accesses in the loop.
2411   unsigned NumReads = 0;
2412   unsigned NumReadWrites = 0;
2413 
2414   bool HasComplexMemInst = false;
2415 
2416   // A runtime check is only legal to insert if there are no convergent calls.
2417   HasConvergentOp = false;
2418 
2419   PtrRtChecking->Pointers.clear();
2420   PtrRtChecking->Need = false;
2421 
2422   const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();
2423 
2424   const bool EnableMemAccessVersioningOfLoop =
2425       EnableMemAccessVersioning &&
2426       !TheLoop->getHeader()->getParent()->hasOptSize();
2427 
2428   // Traverse blocks in fixed RPOT order, regardless of their storage in the
2429   // loop info, as it may be arbitrary.
2430   LoopBlocksRPO RPOT(TheLoop);
2431   RPOT.perform(LI);
2432   for (BasicBlock *BB : RPOT) {
2433     // Scan the BB and collect legal loads and stores. Also detect any
2434     // convergent instructions.
2435     for (Instruction &I : *BB) {
2436       if (auto *Call = dyn_cast<CallBase>(&I)) {
2437         if (Call->isConvergent())
2438           HasConvergentOp = true;
2439       }
2440 
2441       // With both a non-vectorizable memory instruction and a convergent
2442       // operation, found in this loop, no reason to continue the search.
2443       if (HasComplexMemInst && HasConvergentOp)
2444         return false;
2445 
2446       // Avoid hitting recordAnalysis multiple times.
2447       if (HasComplexMemInst)
2448         continue;
2449 
2450       // Record alias scopes defined inside the loop.
2451       if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(&I))
2452         for (Metadata *Op : Decl->getScopeList()->operands())
2453           LoopAliasScopes.insert(cast<MDNode>(Op));
2454 
2455       // Many math library functions read the rounding mode. We will only
2456       // vectorize a loop if it contains known function calls that don't set
2457       // the flag. Therefore, it is safe to ignore this read from memory.
2458       auto *Call = dyn_cast<CallInst>(&I);
2459       if (Call && getVectorIntrinsicIDForCall(Call, TLI))
2460         continue;
2461 
2462       // If this is a load, save it. If this instruction can read from memory
2463       // but is not a load, we only allow it if it's a call to a function with a
2464       // vector mapping and no pointer arguments.
2465       if (I.mayReadFromMemory()) {
2466         auto hasPointerArgs = [](CallBase *CB) {
2467           return any_of(CB->args(), [](Value const *Arg) {
2468             return Arg->getType()->isPointerTy();
2469           });
2470         };
2471 
2472         // If the function has an explicit vectorized counterpart, and does not
2473         // take output/input pointers, we can safely assume that it can be
2474         // vectorized.
2475         if (Call && !Call->isNoBuiltin() && Call->getCalledFunction() &&
2476             !hasPointerArgs(Call) && !VFDatabase::getMappings(*Call).empty())
2477           continue;
2478 
2479         auto *Ld = dyn_cast<LoadInst>(&I);
2480         if (!Ld) {
2481           recordAnalysis("CantVectorizeInstruction", Ld)
2482             << "instruction cannot be vectorized";
2483           HasComplexMemInst = true;
2484           continue;
2485         }
2486         if (!Ld->isSimple() && !IsAnnotatedParallel) {
2487           recordAnalysis("NonSimpleLoad", Ld)
2488               << "read with atomic ordering or volatile read";
2489           LLVM_DEBUG(dbgs() << "LAA: Found a non-simple load.\n");
2490           HasComplexMemInst = true;
2491           continue;
2492         }
2493         NumLoads++;
2494         Loads.push_back(Ld);
2495         DepChecker->addAccess(Ld);
2496         if (EnableMemAccessVersioningOfLoop)
2497           collectStridedAccess(Ld);
2498         continue;
2499       }
2500 
2501       // Save 'store' instructions. Abort if other instructions write to memory.
2502       if (I.mayWriteToMemory()) {
2503         auto *St = dyn_cast<StoreInst>(&I);
2504         if (!St) {
2505           recordAnalysis("CantVectorizeInstruction", St)
2506               << "instruction cannot be vectorized";
2507           HasComplexMemInst = true;
2508           continue;
2509         }
2510         if (!St->isSimple() && !IsAnnotatedParallel) {
2511           recordAnalysis("NonSimpleStore", St)
2512               << "write with atomic ordering or volatile write";
2513           LLVM_DEBUG(dbgs() << "LAA: Found a non-simple store.\n");
2514           HasComplexMemInst = true;
2515           continue;
2516         }
2517         NumStores++;
2518         Stores.push_back(St);
2519         DepChecker->addAccess(St);
2520         if (EnableMemAccessVersioningOfLoop)
2521           collectStridedAccess(St);
2522       }
2523     } // Next instr.
2524   } // Next block.
2525 
2526   if (HasComplexMemInst)
2527     return false;
2528 
2529   // Now we have two lists that hold the loads and the stores.
2530   // Next, we find the pointers that they use.
2531 
2532   // Check if we see any stores. If there are no stores, then we don't
2533   // care if the pointers are *restrict*.
2534   if (!Stores.size()) {
2535     LLVM_DEBUG(dbgs() << "LAA: Found a read-only loop!\n");
2536     return true;
2537   }
2538 
2539   MemoryDepChecker::DepCandidates DependentAccesses;
2540   AccessAnalysis Accesses(TheLoop, AA, LI, DependentAccesses, *PSE,
2541                           LoopAliasScopes);
2542 
2543   // Holds the analyzed pointers. We don't want to call getUnderlyingObjects
2544   // multiple times on the same object. If the ptr is accessed twice, once
2545   // for read and once for write, it will only appear once (on the write
2546   // list). This is okay, since we are going to check for conflicts between
2547   // writes and between reads and writes, but not between reads and reads.
2548   SmallSet<std::pair<Value *, Type *>, 16> Seen;
2549 
2550   // Record uniform store addresses to identify if we have multiple stores
2551   // to the same address.
2552   SmallPtrSet<Value *, 16> UniformStores;
2553 
2554   for (StoreInst *ST : Stores) {
2555     Value *Ptr = ST->getPointerOperand();
2556 
2557     if (isInvariant(Ptr)) {
2558       // Record store instructions to loop invariant addresses
2559       StoresToInvariantAddresses.push_back(ST);
2560       HasStoreStoreDependenceInvolvingLoopInvariantAddress |=
2561           !UniformStores.insert(Ptr).second;
2562     }
2563 
2564     // If we did *not* see this pointer before, insert it to  the read-write
2565     // list. At this phase it is only a 'write' list.
2566     Type *AccessTy = getLoadStoreType(ST);
2567     if (Seen.insert({Ptr, AccessTy}).second) {
2568       ++NumReadWrites;
2569 
2570       MemoryLocation Loc = MemoryLocation::get(ST);
2571       // The TBAA metadata could have a control dependency on the predication
2572       // condition, so we cannot rely on it when determining whether or not we
2573       // need runtime pointer checks.
2574       if (blockNeedsPredication(ST->getParent(), TheLoop, DT))
2575         Loc.AATags.TBAA = nullptr;
2576 
2577       visitPointers(const_cast<Value *>(Loc.Ptr), *TheLoop,
2578                     [&Accesses, AccessTy, Loc](Value *Ptr) {
2579                       MemoryLocation NewLoc = Loc.getWithNewPtr(Ptr);
2580                       Accesses.addStore(NewLoc, AccessTy);
2581                     });
2582     }
2583   }
2584 
2585   if (IsAnnotatedParallel) {
2586     LLVM_DEBUG(
2587         dbgs() << "LAA: A loop annotated parallel, ignore memory dependency "
2588                << "checks.\n");
2589     return true;
2590   }
2591 
2592   for (LoadInst *LD : Loads) {
2593     Value *Ptr = LD->getPointerOperand();
2594     // If we did *not* see this pointer before, insert it to the
2595     // read list. If we *did* see it before, then it is already in
2596     // the read-write list. This allows us to vectorize expressions
2597     // such as A[i] += x;  Because the address of A[i] is a read-write
2598     // pointer. This only works if the index of A[i] is consecutive.
2599     // If the address of i is unknown (for example A[B[i]]) then we may
2600     // read a few words, modify, and write a few words, and some of the
2601     // words may be written to the same address.
2602     bool IsReadOnlyPtr = false;
2603     Type *AccessTy = getLoadStoreType(LD);
2604     if (Seen.insert({Ptr, AccessTy}).second ||
2605         !getPtrStride(*PSE, LD->getType(), Ptr, TheLoop, SymbolicStrides).value_or(0)) {
2606       ++NumReads;
2607       IsReadOnlyPtr = true;
2608     }
2609 
2610     // See if there is an unsafe dependency between a load to a uniform address and
2611     // store to the same uniform address.
2612     if (UniformStores.count(Ptr)) {
2613       LLVM_DEBUG(dbgs() << "LAA: Found an unsafe dependency between a uniform "
2614                            "load and uniform store to the same address!\n");
2615       HasLoadStoreDependenceInvolvingLoopInvariantAddress = true;
2616     }
2617 
2618     MemoryLocation Loc = MemoryLocation::get(LD);
2619     // The TBAA metadata could have a control dependency on the predication
2620     // condition, so we cannot rely on it when determining whether or not we
2621     // need runtime pointer checks.
2622     if (blockNeedsPredication(LD->getParent(), TheLoop, DT))
2623       Loc.AATags.TBAA = nullptr;
2624 
2625     visitPointers(const_cast<Value *>(Loc.Ptr), *TheLoop,
2626                   [&Accesses, AccessTy, Loc, IsReadOnlyPtr](Value *Ptr) {
2627                     MemoryLocation NewLoc = Loc.getWithNewPtr(Ptr);
2628                     Accesses.addLoad(NewLoc, AccessTy, IsReadOnlyPtr);
2629                   });
2630   }
2631 
2632   // If we write (or read-write) to a single destination and there are no
2633   // other reads in this loop then is it safe to vectorize.
2634   if (NumReadWrites == 1 && NumReads == 0) {
2635     LLVM_DEBUG(dbgs() << "LAA: Found a write-only loop!\n");
2636     return true;
2637   }
2638 
2639   // Build dependence sets and check whether we need a runtime pointer bounds
2640   // check.
2641   Accesses.buildDependenceSets();
2642 
2643   // Find pointers with computable bounds. We are going to use this information
2644   // to place a runtime bound check.
2645   Value *UncomputablePtr = nullptr;
2646   bool CanDoRTIfNeeded =
2647       Accesses.canCheckPtrAtRT(*PtrRtChecking, PSE->getSE(), TheLoop,
2648                                SymbolicStrides, UncomputablePtr, false);
2649   if (!CanDoRTIfNeeded) {
2650     const auto *I = dyn_cast_or_null<Instruction>(UncomputablePtr);
2651     recordAnalysis("CantIdentifyArrayBounds", I)
2652         << "cannot identify array bounds";
2653     LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because we can't find "
2654                       << "the array bounds.\n");
2655     return false;
2656   }
2657 
2658   LLVM_DEBUG(
2659     dbgs() << "LAA: May be able to perform a memory runtime check if needed.\n");
2660 
2661   bool DepsAreSafe = true;
2662   if (Accesses.isDependencyCheckNeeded()) {
2663     LLVM_DEBUG(dbgs() << "LAA: Checking memory dependencies\n");
2664     DepsAreSafe = DepChecker->areDepsSafe(DependentAccesses,
2665                                           Accesses.getDependenciesToCheck());
2666 
2667     if (!DepsAreSafe && DepChecker->shouldRetryWithRuntimeCheck()) {
2668       LLVM_DEBUG(dbgs() << "LAA: Retrying with memory checks\n");
2669 
2670       // Clear the dependency checks. We assume they are not needed.
2671       Accesses.resetDepChecks(*DepChecker);
2672 
2673       PtrRtChecking->reset();
2674       PtrRtChecking->Need = true;
2675 
2676       auto *SE = PSE->getSE();
2677       UncomputablePtr = nullptr;
2678       CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(
2679           *PtrRtChecking, SE, TheLoop, SymbolicStrides, UncomputablePtr, true);
2680 
2681       // Check that we found the bounds for the pointer.
2682       if (!CanDoRTIfNeeded) {
2683         auto *I = dyn_cast_or_null<Instruction>(UncomputablePtr);
2684         recordAnalysis("CantCheckMemDepsAtRunTime", I)
2685             << "cannot check memory dependencies at runtime";
2686         LLVM_DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n");
2687         return false;
2688       }
2689       DepsAreSafe = true;
2690     }
2691   }
2692 
2693   if (HasConvergentOp) {
2694     recordAnalysis("CantInsertRuntimeCheckWithConvergent")
2695         << "cannot add control dependency to convergent operation";
2696     LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because a runtime check "
2697                          "would be needed with a convergent operation\n");
2698     return false;
2699   }
2700 
2701   if (DepsAreSafe) {
2702     LLVM_DEBUG(
2703         dbgs() << "LAA: No unsafe dependent memory operations in loop.  We"
2704                << (PtrRtChecking->Need ? "" : " don't")
2705                << " need runtime memory checks.\n");
2706     return true;
2707   }
2708 
2709   emitUnsafeDependenceRemark();
2710   return false;
2711 }
2712 
2713 void LoopAccessInfo::emitUnsafeDependenceRemark() {
2714   const auto *Deps = getDepChecker().getDependences();
2715   if (!Deps)
2716     return;
2717   const auto *Found =
2718       llvm::find_if(*Deps, [](const MemoryDepChecker::Dependence &D) {
2719         return MemoryDepChecker::Dependence::isSafeForVectorization(D.Type) !=
2720                MemoryDepChecker::VectorizationSafetyStatus::Safe;
2721       });
2722   if (Found == Deps->end())
2723     return;
2724   MemoryDepChecker::Dependence Dep = *Found;
2725 
2726   LLVM_DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n");
2727 
2728   // Emit remark for first unsafe dependence
2729   bool HasForcedDistribution = false;
2730   std::optional<const MDOperand *> Value =
2731       findStringMetadataForLoop(TheLoop, "llvm.loop.distribute.enable");
2732   if (Value) {
2733     const MDOperand *Op = *Value;
2734     assert(Op && mdconst::hasa<ConstantInt>(*Op) && "invalid metadata");
2735     HasForcedDistribution = mdconst::extract<ConstantInt>(*Op)->getZExtValue();
2736   }
2737 
2738   const std::string Info =
2739       HasForcedDistribution
2740           ? "unsafe dependent memory operations in loop."
2741           : "unsafe dependent memory operations in loop. Use "
2742             "#pragma clang loop distribute(enable) to allow loop distribution "
2743             "to attempt to isolate the offending operations into a separate "
2744             "loop";
2745   OptimizationRemarkAnalysis &R =
2746       recordAnalysis("UnsafeDep", Dep.getDestination(getDepChecker())) << Info;
2747 
2748   switch (Dep.Type) {
2749   case MemoryDepChecker::Dependence::NoDep:
2750   case MemoryDepChecker::Dependence::Forward:
2751   case MemoryDepChecker::Dependence::BackwardVectorizable:
2752     llvm_unreachable("Unexpected dependence");
2753   case MemoryDepChecker::Dependence::Backward:
2754     R << "\nBackward loop carried data dependence.";
2755     break;
2756   case MemoryDepChecker::Dependence::ForwardButPreventsForwarding:
2757     R << "\nForward loop carried data dependence that prevents "
2758          "store-to-load forwarding.";
2759     break;
2760   case MemoryDepChecker::Dependence::BackwardVectorizableButPreventsForwarding:
2761     R << "\nBackward loop carried data dependence that prevents "
2762          "store-to-load forwarding.";
2763     break;
2764   case MemoryDepChecker::Dependence::IndirectUnsafe:
2765     R << "\nUnsafe indirect dependence.";
2766     break;
2767   case MemoryDepChecker::Dependence::Unknown:
2768     R << "\nUnknown data dependence.";
2769     break;
2770   }
2771 
2772   if (Instruction *I = Dep.getSource(getDepChecker())) {
2773     DebugLoc SourceLoc = I->getDebugLoc();
2774     if (auto *DD = dyn_cast_or_null<Instruction>(getPointerOperand(I)))
2775       SourceLoc = DD->getDebugLoc();
2776     if (SourceLoc)
2777       R << " Memory location is the same as accessed at "
2778         << ore::NV("Location", SourceLoc);
2779   }
2780 }
2781 
2782 bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop,
2783                                            DominatorTree *DT)  {
2784   assert(TheLoop->contains(BB) && "Unknown block used");
2785 
2786   // Blocks that do not dominate the latch need predication.
2787   const BasicBlock *Latch = TheLoop->getLoopLatch();
2788   return !DT->dominates(BB, Latch);
2789 }
2790 
2791 OptimizationRemarkAnalysis &
2792 LoopAccessInfo::recordAnalysis(StringRef RemarkName, const Instruction *I) {
2793   assert(!Report && "Multiple reports generated");
2794 
2795   const Value *CodeRegion = TheLoop->getHeader();
2796   DebugLoc DL = TheLoop->getStartLoc();
2797 
2798   if (I) {
2799     CodeRegion = I->getParent();
2800     // If there is no debug location attached to the instruction, revert back to
2801     // using the loop's.
2802     if (I->getDebugLoc())
2803       DL = I->getDebugLoc();
2804   }
2805 
2806   Report = std::make_unique<OptimizationRemarkAnalysis>(DEBUG_TYPE, RemarkName, DL,
2807                                                    CodeRegion);
2808   return *Report;
2809 }
2810 
2811 bool LoopAccessInfo::isInvariant(Value *V) const {
2812   auto *SE = PSE->getSE();
2813   // TODO: Is this really what we want? Even without FP SCEV, we may want some
2814   // trivially loop-invariant FP values to be considered invariant.
2815   if (!SE->isSCEVable(V->getType()))
2816     return false;
2817   const SCEV *S = SE->getSCEV(V);
2818   return SE->isLoopInvariant(S, TheLoop);
2819 }
2820 
2821 /// Find the operand of the GEP that should be checked for consecutive
2822 /// stores. This ignores trailing indices that have no effect on the final
2823 /// pointer.
2824 static unsigned getGEPInductionOperand(const GetElementPtrInst *Gep) {
2825   const DataLayout &DL = Gep->getDataLayout();
2826   unsigned LastOperand = Gep->getNumOperands() - 1;
2827   TypeSize GEPAllocSize = DL.getTypeAllocSize(Gep->getResultElementType());
2828 
2829   // Walk backwards and try to peel off zeros.
2830   while (LastOperand > 1 && match(Gep->getOperand(LastOperand), m_Zero())) {
2831     // Find the type we're currently indexing into.
2832     gep_type_iterator GEPTI = gep_type_begin(Gep);
2833     std::advance(GEPTI, LastOperand - 2);
2834 
2835     // If it's a type with the same allocation size as the result of the GEP we
2836     // can peel off the zero index.
2837     TypeSize ElemSize = GEPTI.isStruct()
2838                             ? DL.getTypeAllocSize(GEPTI.getIndexedType())
2839                             : GEPTI.getSequentialElementStride(DL);
2840     if (ElemSize != GEPAllocSize)
2841       break;
2842     --LastOperand;
2843   }
2844 
2845   return LastOperand;
2846 }
2847 
2848 /// If the argument is a GEP, then returns the operand identified by
2849 /// getGEPInductionOperand. However, if there is some other non-loop-invariant
2850 /// operand, it returns that instead.
2851 static Value *stripGetElementPtr(Value *Ptr, ScalarEvolution *SE, Loop *Lp) {
2852   auto *GEP = dyn_cast<GetElementPtrInst>(Ptr);
2853   if (!GEP)
2854     return Ptr;
2855 
2856   unsigned InductionOperand = getGEPInductionOperand(GEP);
2857 
2858   // Check that all of the gep indices are uniform except for our induction
2859   // operand.
2860   for (unsigned I = 0, E = GEP->getNumOperands(); I != E; ++I)
2861     if (I != InductionOperand &&
2862         !SE->isLoopInvariant(SE->getSCEV(GEP->getOperand(I)), Lp))
2863       return Ptr;
2864   return GEP->getOperand(InductionOperand);
2865 }
2866 
2867 /// Get the stride of a pointer access in a loop. Looks for symbolic
2868 /// strides "a[i*stride]". Returns the symbolic stride, or null otherwise.
2869 static const SCEV *getStrideFromPointer(Value *Ptr, ScalarEvolution *SE, Loop *Lp) {
2870   auto *PtrTy = dyn_cast<PointerType>(Ptr->getType());
2871   if (!PtrTy || PtrTy->isAggregateType())
2872     return nullptr;
2873 
2874   // Try to remove a gep instruction to make the pointer (actually index at this
2875   // point) easier analyzable. If OrigPtr is equal to Ptr we are analyzing the
2876   // pointer, otherwise, we are analyzing the index.
2877   Value *OrigPtr = Ptr;
2878 
2879   // The size of the pointer access.
2880   int64_t PtrAccessSize = 1;
2881 
2882   Ptr = stripGetElementPtr(Ptr, SE, Lp);
2883   const SCEV *V = SE->getSCEV(Ptr);
2884 
2885   if (Ptr != OrigPtr)
2886     // Strip off casts.
2887     while (const SCEVIntegralCastExpr *C = dyn_cast<SCEVIntegralCastExpr>(V))
2888       V = C->getOperand();
2889 
2890   const SCEVAddRecExpr *S = dyn_cast<SCEVAddRecExpr>(V);
2891   if (!S)
2892     return nullptr;
2893 
2894   // If the pointer is invariant then there is no stride and it makes no
2895   // sense to add it here.
2896   if (Lp != S->getLoop())
2897     return nullptr;
2898 
2899   V = S->getStepRecurrence(*SE);
2900   if (!V)
2901     return nullptr;
2902 
2903   // Strip off the size of access multiplication if we are still analyzing the
2904   // pointer.
2905   if (OrigPtr == Ptr) {
2906     if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(V)) {
2907       if (M->getOperand(0)->getSCEVType() != scConstant)
2908         return nullptr;
2909 
2910       const APInt &APStepVal = cast<SCEVConstant>(M->getOperand(0))->getAPInt();
2911 
2912       // Huge step value - give up.
2913       if (APStepVal.getBitWidth() > 64)
2914         return nullptr;
2915 
2916       int64_t StepVal = APStepVal.getSExtValue();
2917       if (PtrAccessSize != StepVal)
2918         return nullptr;
2919       V = M->getOperand(1);
2920     }
2921   }
2922 
2923   // Note that the restriction after this loop invariant check are only
2924   // profitability restrictions.
2925   if (!SE->isLoopInvariant(V, Lp))
2926     return nullptr;
2927 
2928   // Look for the loop invariant symbolic value.
2929   if (isa<SCEVUnknown>(V))
2930     return V;
2931 
2932   if (const auto *C = dyn_cast<SCEVIntegralCastExpr>(V))
2933     if (isa<SCEVUnknown>(C->getOperand()))
2934       return V;
2935 
2936   return nullptr;
2937 }
2938 
2939 void LoopAccessInfo::collectStridedAccess(Value *MemAccess) {
2940   Value *Ptr = getLoadStorePointerOperand(MemAccess);
2941   if (!Ptr)
2942     return;
2943 
2944   // Note: getStrideFromPointer is a *profitability* heuristic.  We
2945   // could broaden the scope of values returned here - to anything
2946   // which happens to be loop invariant and contributes to the
2947   // computation of an interesting IV - but we chose not to as we
2948   // don't have a cost model here, and broadening the scope exposes
2949   // far too many unprofitable cases.
2950   const SCEV *StrideExpr = getStrideFromPointer(Ptr, PSE->getSE(), TheLoop);
2951   if (!StrideExpr)
2952     return;
2953 
2954   LLVM_DEBUG(dbgs() << "LAA: Found a strided access that is a candidate for "
2955                        "versioning:");
2956   LLVM_DEBUG(dbgs() << "  Ptr: " << *Ptr << " Stride: " << *StrideExpr << "\n");
2957 
2958   if (!SpeculateUnitStride) {
2959     LLVM_DEBUG(dbgs() << "  Chose not to due to -laa-speculate-unit-stride\n");
2960     return;
2961   }
2962 
2963   // Avoid adding the "Stride == 1" predicate when we know that
2964   // Stride >= Trip-Count. Such a predicate will effectively optimize a single
2965   // or zero iteration loop, as Trip-Count <= Stride == 1.
2966   //
2967   // TODO: We are currently not making a very informed decision on when it is
2968   // beneficial to apply stride versioning. It might make more sense that the
2969   // users of this analysis (such as the vectorizer) will trigger it, based on
2970   // their specific cost considerations; For example, in cases where stride
2971   // versioning does  not help resolving memory accesses/dependences, the
2972   // vectorizer should evaluate the cost of the runtime test, and the benefit
2973   // of various possible stride specializations, considering the alternatives
2974   // of using gather/scatters (if available).
2975 
2976   const SCEV *MaxBTC = PSE->getSymbolicMaxBackedgeTakenCount();
2977 
2978   // Match the types so we can compare the stride and the MaxBTC.
2979   // The Stride can be positive/negative, so we sign extend Stride;
2980   // The backedgeTakenCount is non-negative, so we zero extend MaxBTC.
2981   const DataLayout &DL = TheLoop->getHeader()->getDataLayout();
2982   uint64_t StrideTypeSizeBits = DL.getTypeSizeInBits(StrideExpr->getType());
2983   uint64_t BETypeSizeBits = DL.getTypeSizeInBits(MaxBTC->getType());
2984   const SCEV *CastedStride = StrideExpr;
2985   const SCEV *CastedBECount = MaxBTC;
2986   ScalarEvolution *SE = PSE->getSE();
2987   if (BETypeSizeBits >= StrideTypeSizeBits)
2988     CastedStride = SE->getNoopOrSignExtend(StrideExpr, MaxBTC->getType());
2989   else
2990     CastedBECount = SE->getZeroExtendExpr(MaxBTC, StrideExpr->getType());
2991   const SCEV *StrideMinusBETaken = SE->getMinusSCEV(CastedStride, CastedBECount);
2992   // Since TripCount == BackEdgeTakenCount + 1, checking:
2993   // "Stride >= TripCount" is equivalent to checking:
2994   // Stride - MaxBTC> 0
2995   if (SE->isKnownPositive(StrideMinusBETaken)) {
2996     LLVM_DEBUG(
2997         dbgs() << "LAA: Stride>=TripCount; No point in versioning as the "
2998                   "Stride==1 predicate will imply that the loop executes "
2999                   "at most once.\n");
3000     return;
3001   }
3002   LLVM_DEBUG(dbgs() << "LAA: Found a strided access that we can version.\n");
3003 
3004   // Strip back off the integer cast, and check that our result is a
3005   // SCEVUnknown as we expect.
3006   const SCEV *StrideBase = StrideExpr;
3007   if (const auto *C = dyn_cast<SCEVIntegralCastExpr>(StrideBase))
3008     StrideBase = C->getOperand();
3009   SymbolicStrides[Ptr] = cast<SCEVUnknown>(StrideBase);
3010 }
3011 
3012 LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE,
3013                                const TargetTransformInfo *TTI,
3014                                const TargetLibraryInfo *TLI, AAResults *AA,
3015                                DominatorTree *DT, LoopInfo *LI)
3016     : PSE(std::make_unique<PredicatedScalarEvolution>(*SE, *L)),
3017       PtrRtChecking(nullptr), TheLoop(L) {
3018   unsigned MaxTargetVectorWidthInBits = std::numeric_limits<unsigned>::max();
3019   if (TTI) {
3020     TypeSize FixedWidth =
3021         TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector);
3022     if (FixedWidth.isNonZero()) {
3023       // Scale the vector width by 2 as rough estimate to also consider
3024       // interleaving.
3025       MaxTargetVectorWidthInBits = FixedWidth.getFixedValue() * 2;
3026     }
3027 
3028     TypeSize ScalableWidth =
3029         TTI->getRegisterBitWidth(TargetTransformInfo::RGK_ScalableVector);
3030     if (ScalableWidth.isNonZero())
3031       MaxTargetVectorWidthInBits = std::numeric_limits<unsigned>::max();
3032   }
3033   DepChecker = std::make_unique<MemoryDepChecker>(*PSE, L, SymbolicStrides,
3034                                                   MaxTargetVectorWidthInBits);
3035   PtrRtChecking = std::make_unique<RuntimePointerChecking>(*DepChecker, SE);
3036   if (canAnalyzeLoop())
3037     CanVecMem = analyzeLoop(AA, LI, TLI, DT);
3038 }
3039 
3040 void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const {
3041   if (CanVecMem) {
3042     OS.indent(Depth) << "Memory dependences are safe";
3043     const MemoryDepChecker &DC = getDepChecker();
3044     if (!DC.isSafeForAnyVectorWidth())
3045       OS << " with a maximum safe vector width of "
3046          << DC.getMaxSafeVectorWidthInBits() << " bits";
3047     if (PtrRtChecking->Need)
3048       OS << " with run-time checks";
3049     OS << "\n";
3050   }
3051 
3052   if (HasConvergentOp)
3053     OS.indent(Depth) << "Has convergent operation in loop\n";
3054 
3055   if (Report)
3056     OS.indent(Depth) << "Report: " << Report->getMsg() << "\n";
3057 
3058   if (auto *Dependences = DepChecker->getDependences()) {
3059     OS.indent(Depth) << "Dependences:\n";
3060     for (const auto &Dep : *Dependences) {
3061       Dep.print(OS, Depth + 2, DepChecker->getMemoryInstructions());
3062       OS << "\n";
3063     }
3064   } else
3065     OS.indent(Depth) << "Too many dependences, not recorded\n";
3066 
3067   // List the pair of accesses need run-time checks to prove independence.
3068   PtrRtChecking->print(OS, Depth);
3069   OS << "\n";
3070 
3071   OS.indent(Depth)
3072       << "Non vectorizable stores to invariant address were "
3073       << (HasStoreStoreDependenceInvolvingLoopInvariantAddress ||
3074                   HasLoadStoreDependenceInvolvingLoopInvariantAddress
3075               ? ""
3076               : "not ")
3077       << "found in loop.\n";
3078 
3079   OS.indent(Depth) << "SCEV assumptions:\n";
3080   PSE->getPredicate().print(OS, Depth);
3081 
3082   OS << "\n";
3083 
3084   OS.indent(Depth) << "Expressions re-written:\n";
3085   PSE->print(OS, Depth);
3086 }
3087 
3088 const LoopAccessInfo &LoopAccessInfoManager::getInfo(Loop &L) {
3089   const auto &[It, Inserted] = LoopAccessInfoMap.insert({&L, nullptr});
3090 
3091   if (Inserted)
3092     It->second =
3093         std::make_unique<LoopAccessInfo>(&L, &SE, TTI, TLI, &AA, &DT, &LI);
3094 
3095   return *It->second;
3096 }
3097 void LoopAccessInfoManager::clear() {
3098   SmallVector<Loop *> ToRemove;
3099   // Collect LoopAccessInfo entries that may keep references to IR outside the
3100   // analyzed loop or SCEVs that may have been modified or invalidated. At the
3101   // moment, that is loops requiring memory or SCEV runtime checks, as those cache
3102   // SCEVs, e.g. for pointer expressions.
3103   for (const auto &[L, LAI] : LoopAccessInfoMap) {
3104     if (LAI->getRuntimePointerChecking()->getChecks().empty() &&
3105         LAI->getPSE().getPredicate().isAlwaysTrue())
3106       continue;
3107     ToRemove.push_back(L);
3108   }
3109 
3110   for (Loop *L : ToRemove)
3111     LoopAccessInfoMap.erase(L);
3112 }
3113 
3114 bool LoopAccessInfoManager::invalidate(
3115     Function &F, const PreservedAnalyses &PA,
3116     FunctionAnalysisManager::Invalidator &Inv) {
3117   // Check whether our analysis is preserved.
3118   auto PAC = PA.getChecker<LoopAccessAnalysis>();
3119   if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<Function>>())
3120     // If not, give up now.
3121     return true;
3122 
3123   // Check whether the analyses we depend on became invalid for any reason.
3124   // Skip checking TargetLibraryAnalysis as it is immutable and can't become
3125   // invalid.
3126   return Inv.invalidate<AAManager>(F, PA) ||
3127          Inv.invalidate<ScalarEvolutionAnalysis>(F, PA) ||
3128          Inv.invalidate<LoopAnalysis>(F, PA) ||
3129          Inv.invalidate<DominatorTreeAnalysis>(F, PA);
3130 }
3131 
3132 LoopAccessInfoManager LoopAccessAnalysis::run(Function &F,
3133                                               FunctionAnalysisManager &FAM) {
3134   auto &SE = FAM.getResult<ScalarEvolutionAnalysis>(F);
3135   auto &AA = FAM.getResult<AAManager>(F);
3136   auto &DT = FAM.getResult<DominatorTreeAnalysis>(F);
3137   auto &LI = FAM.getResult<LoopAnalysis>(F);
3138   auto &TTI = FAM.getResult<TargetIRAnalysis>(F);
3139   auto &TLI = FAM.getResult<TargetLibraryAnalysis>(F);
3140   return LoopAccessInfoManager(SE, AA, DT, LI, &TTI, &TLI);
3141 }
3142 
3143 AnalysisKey LoopAccessAnalysis::Key;
3144