1 //===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // The implementation for the loop memory dependence that was originally 10 // developed for the loop vectorizer. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/LoopAccessAnalysis.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/EquivalenceClasses.h" 18 #include "llvm/ADT/PointerIntPair.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/Analysis/AliasAnalysis.h" 25 #include "llvm/Analysis/AliasSetTracker.h" 26 #include "llvm/Analysis/LoopAnalysisManager.h" 27 #include "llvm/Analysis/LoopInfo.h" 28 #include "llvm/Analysis/LoopIterator.h" 29 #include "llvm/Analysis/MemoryLocation.h" 30 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 31 #include "llvm/Analysis/ScalarEvolution.h" 32 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 33 #include "llvm/Analysis/TargetLibraryInfo.h" 34 #include "llvm/Analysis/TargetTransformInfo.h" 35 #include "llvm/Analysis/ValueTracking.h" 36 #include "llvm/Analysis/VectorUtils.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/Constants.h" 39 #include "llvm/IR/DataLayout.h" 40 #include "llvm/IR/DebugLoc.h" 41 #include "llvm/IR/DerivedTypes.h" 42 #include "llvm/IR/DiagnosticInfo.h" 43 #include "llvm/IR/Dominators.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GetElementPtrTypeIterator.h" 46 #include "llvm/IR/InstrTypes.h" 47 #include "llvm/IR/Instruction.h" 48 #include "llvm/IR/Instructions.h" 49 #include "llvm/IR/Operator.h" 50 #include "llvm/IR/PassManager.h" 51 #include "llvm/IR/PatternMatch.h" 52 #include "llvm/IR/Type.h" 53 #include "llvm/IR/Value.h" 54 #include "llvm/IR/ValueHandle.h" 55 #include "llvm/Support/Casting.h" 56 #include "llvm/Support/CommandLine.h" 57 #include "llvm/Support/Debug.h" 58 #include "llvm/Support/ErrorHandling.h" 59 #include "llvm/Support/raw_ostream.h" 60 #include <algorithm> 61 #include <cassert> 62 #include <cstdint> 63 #include <iterator> 64 #include <utility> 65 #include <variant> 66 #include <vector> 67 68 using namespace llvm; 69 using namespace llvm::PatternMatch; 70 71 #define DEBUG_TYPE "loop-accesses" 72 73 static cl::opt<unsigned, true> 74 VectorizationFactor("force-vector-width", cl::Hidden, 75 cl::desc("Sets the SIMD width. Zero is autoselect."), 76 cl::location(VectorizerParams::VectorizationFactor)); 77 unsigned VectorizerParams::VectorizationFactor; 78 79 static cl::opt<unsigned, true> 80 VectorizationInterleave("force-vector-interleave", cl::Hidden, 81 cl::desc("Sets the vectorization interleave count. " 82 "Zero is autoselect."), 83 cl::location( 84 VectorizerParams::VectorizationInterleave)); 85 unsigned VectorizerParams::VectorizationInterleave; 86 87 static cl::opt<unsigned, true> RuntimeMemoryCheckThreshold( 88 "runtime-memory-check-threshold", cl::Hidden, 89 cl::desc("When performing memory disambiguation checks at runtime do not " 90 "generate more than this number of comparisons (default = 8)."), 91 cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8)); 92 unsigned VectorizerParams::RuntimeMemoryCheckThreshold; 93 94 /// The maximum iterations used to merge memory checks 95 static cl::opt<unsigned> MemoryCheckMergeThreshold( 96 "memory-check-merge-threshold", cl::Hidden, 97 cl::desc("Maximum number of comparisons done when trying to merge " 98 "runtime memory checks. (default = 100)"), 99 cl::init(100)); 100 101 /// Maximum SIMD width. 102 const unsigned VectorizerParams::MaxVectorWidth = 64; 103 104 /// We collect dependences up to this threshold. 105 static cl::opt<unsigned> 106 MaxDependences("max-dependences", cl::Hidden, 107 cl::desc("Maximum number of dependences collected by " 108 "loop-access analysis (default = 100)"), 109 cl::init(100)); 110 111 /// This enables versioning on the strides of symbolically striding memory 112 /// accesses in code like the following. 113 /// for (i = 0; i < N; ++i) 114 /// A[i * Stride1] += B[i * Stride2] ... 115 /// 116 /// Will be roughly translated to 117 /// if (Stride1 == 1 && Stride2 == 1) { 118 /// for (i = 0; i < N; i+=4) 119 /// A[i:i+3] += ... 120 /// } else 121 /// ... 122 static cl::opt<bool> EnableMemAccessVersioning( 123 "enable-mem-access-versioning", cl::init(true), cl::Hidden, 124 cl::desc("Enable symbolic stride memory access versioning")); 125 126 /// Enable store-to-load forwarding conflict detection. This option can 127 /// be disabled for correctness testing. 128 static cl::opt<bool> EnableForwardingConflictDetection( 129 "store-to-load-forwarding-conflict-detection", cl::Hidden, 130 cl::desc("Enable conflict detection in loop-access analysis"), 131 cl::init(true)); 132 133 static cl::opt<unsigned> MaxForkedSCEVDepth( 134 "max-forked-scev-depth", cl::Hidden, 135 cl::desc("Maximum recursion depth when finding forked SCEVs (default = 5)"), 136 cl::init(5)); 137 138 static cl::opt<bool> SpeculateUnitStride( 139 "laa-speculate-unit-stride", cl::Hidden, 140 cl::desc("Speculate that non-constant strides are unit in LAA"), 141 cl::init(true)); 142 143 static cl::opt<bool, true> HoistRuntimeChecks( 144 "hoist-runtime-checks", cl::Hidden, 145 cl::desc( 146 "Hoist inner loop runtime memory checks to outer loop if possible"), 147 cl::location(VectorizerParams::HoistRuntimeChecks), cl::init(true)); 148 bool VectorizerParams::HoistRuntimeChecks; 149 150 bool VectorizerParams::isInterleaveForced() { 151 return ::VectorizationInterleave.getNumOccurrences() > 0; 152 } 153 154 const SCEV *llvm::replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE, 155 const DenseMap<Value *, const SCEV *> &PtrToStride, 156 Value *Ptr) { 157 const SCEV *OrigSCEV = PSE.getSCEV(Ptr); 158 159 // If there is an entry in the map return the SCEV of the pointer with the 160 // symbolic stride replaced by one. 161 DenseMap<Value *, const SCEV *>::const_iterator SI = PtrToStride.find(Ptr); 162 if (SI == PtrToStride.end()) 163 // For a non-symbolic stride, just return the original expression. 164 return OrigSCEV; 165 166 const SCEV *StrideSCEV = SI->second; 167 // Note: This assert is both overly strong and overly weak. The actual 168 // invariant here is that StrideSCEV should be loop invariant. The only 169 // such invariant strides we happen to speculate right now are unknowns 170 // and thus this is a reasonable proxy of the actual invariant. 171 assert(isa<SCEVUnknown>(StrideSCEV) && "shouldn't be in map"); 172 173 ScalarEvolution *SE = PSE.getSE(); 174 const auto *CT = SE->getOne(StrideSCEV->getType()); 175 PSE.addPredicate(*SE->getEqualPredicate(StrideSCEV, CT)); 176 auto *Expr = PSE.getSCEV(Ptr); 177 178 LLVM_DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV 179 << " by: " << *Expr << "\n"); 180 return Expr; 181 } 182 183 RuntimeCheckingPtrGroup::RuntimeCheckingPtrGroup( 184 unsigned Index, const RuntimePointerChecking &RtCheck) 185 : High(RtCheck.Pointers[Index].End), Low(RtCheck.Pointers[Index].Start), 186 AddressSpace(RtCheck.Pointers[Index] 187 .PointerValue->getType() 188 ->getPointerAddressSpace()), 189 NeedsFreeze(RtCheck.Pointers[Index].NeedsFreeze) { 190 Members.push_back(Index); 191 } 192 193 /// Calculate Start and End points of memory access. 194 /// Let's assume A is the first access and B is a memory access on N-th loop 195 /// iteration. Then B is calculated as: 196 /// B = A + Step*N . 197 /// Step value may be positive or negative. 198 /// N is a calculated back-edge taken count: 199 /// N = (TripCount > 0) ? RoundDown(TripCount -1 , VF) : 0 200 /// Start and End points are calculated in the following way: 201 /// Start = UMIN(A, B) ; End = UMAX(A, B) + SizeOfElt, 202 /// where SizeOfElt is the size of single memory access in bytes. 203 /// 204 /// There is no conflict when the intervals are disjoint: 205 /// NoConflict = (P2.Start >= P1.End) || (P1.Start >= P2.End) 206 static std::pair<const SCEV *, const SCEV *> getStartAndEndForAccess( 207 const Loop *Lp, const SCEV *PtrExpr, Type *AccessTy, 208 PredicatedScalarEvolution &PSE, 209 DenseMap<std::pair<const SCEV *, Type *>, 210 std::pair<const SCEV *, const SCEV *>> &PointerBounds) { 211 ScalarEvolution *SE = PSE.getSE(); 212 213 auto [Iter, Ins] = PointerBounds.insert( 214 {{PtrExpr, AccessTy}, 215 {SE->getCouldNotCompute(), SE->getCouldNotCompute()}}); 216 if (!Ins) 217 return Iter->second; 218 219 const SCEV *ScStart; 220 const SCEV *ScEnd; 221 222 if (SE->isLoopInvariant(PtrExpr, Lp)) { 223 ScStart = ScEnd = PtrExpr; 224 } else if (auto *AR = dyn_cast<SCEVAddRecExpr>(PtrExpr)) { 225 const SCEV *Ex = PSE.getSymbolicMaxBackedgeTakenCount(); 226 227 ScStart = AR->getStart(); 228 ScEnd = AR->evaluateAtIteration(Ex, *SE); 229 const SCEV *Step = AR->getStepRecurrence(*SE); 230 231 // For expressions with negative step, the upper bound is ScStart and the 232 // lower bound is ScEnd. 233 if (const auto *CStep = dyn_cast<SCEVConstant>(Step)) { 234 if (CStep->getValue()->isNegative()) 235 std::swap(ScStart, ScEnd); 236 } else { 237 // Fallback case: the step is not constant, but we can still 238 // get the upper and lower bounds of the interval by using min/max 239 // expressions. 240 ScStart = SE->getUMinExpr(ScStart, ScEnd); 241 ScEnd = SE->getUMaxExpr(AR->getStart(), ScEnd); 242 } 243 } else 244 return {SE->getCouldNotCompute(), SE->getCouldNotCompute()}; 245 246 assert(SE->isLoopInvariant(ScStart, Lp) && "ScStart needs to be invariant"); 247 assert(SE->isLoopInvariant(ScEnd, Lp)&& "ScEnd needs to be invariant"); 248 249 // Add the size of the pointed element to ScEnd. 250 auto &DL = Lp->getHeader()->getDataLayout(); 251 Type *IdxTy = DL.getIndexType(PtrExpr->getType()); 252 const SCEV *EltSizeSCEV = SE->getStoreSizeOfExpr(IdxTy, AccessTy); 253 ScEnd = SE->getAddExpr(ScEnd, EltSizeSCEV); 254 255 Iter->second = {ScStart, ScEnd}; 256 return Iter->second; 257 } 258 259 /// Calculate Start and End points of memory access using 260 /// getStartAndEndForAccess. 261 void RuntimePointerChecking::insert(Loop *Lp, Value *Ptr, const SCEV *PtrExpr, 262 Type *AccessTy, bool WritePtr, 263 unsigned DepSetId, unsigned ASId, 264 PredicatedScalarEvolution &PSE, 265 bool NeedsFreeze) { 266 const auto &[ScStart, ScEnd] = getStartAndEndForAccess( 267 Lp, PtrExpr, AccessTy, PSE, DC.getPointerBounds()); 268 assert(!isa<SCEVCouldNotCompute>(ScStart) && 269 !isa<SCEVCouldNotCompute>(ScEnd) && 270 "must be able to compute both start and end expressions"); 271 Pointers.emplace_back(Ptr, ScStart, ScEnd, WritePtr, DepSetId, ASId, PtrExpr, 272 NeedsFreeze); 273 } 274 275 bool RuntimePointerChecking::tryToCreateDiffCheck( 276 const RuntimeCheckingPtrGroup &CGI, const RuntimeCheckingPtrGroup &CGJ) { 277 // If either group contains multiple different pointers, bail out. 278 // TODO: Support multiple pointers by using the minimum or maximum pointer, 279 // depending on src & sink. 280 if (CGI.Members.size() != 1 || CGJ.Members.size() != 1) 281 return false; 282 283 const PointerInfo *Src = &Pointers[CGI.Members[0]]; 284 const PointerInfo *Sink = &Pointers[CGJ.Members[0]]; 285 286 // If either pointer is read and written, multiple checks may be needed. Bail 287 // out. 288 if (!DC.getOrderForAccess(Src->PointerValue, !Src->IsWritePtr).empty() || 289 !DC.getOrderForAccess(Sink->PointerValue, !Sink->IsWritePtr).empty()) 290 return false; 291 292 ArrayRef<unsigned> AccSrc = 293 DC.getOrderForAccess(Src->PointerValue, Src->IsWritePtr); 294 ArrayRef<unsigned> AccSink = 295 DC.getOrderForAccess(Sink->PointerValue, Sink->IsWritePtr); 296 // If either pointer is accessed multiple times, there may not be a clear 297 // src/sink relation. Bail out for now. 298 if (AccSrc.size() != 1 || AccSink.size() != 1) 299 return false; 300 301 // If the sink is accessed before src, swap src/sink. 302 if (AccSink[0] < AccSrc[0]) 303 std::swap(Src, Sink); 304 305 auto *SrcAR = dyn_cast<SCEVAddRecExpr>(Src->Expr); 306 auto *SinkAR = dyn_cast<SCEVAddRecExpr>(Sink->Expr); 307 if (!SrcAR || !SinkAR || SrcAR->getLoop() != DC.getInnermostLoop() || 308 SinkAR->getLoop() != DC.getInnermostLoop()) 309 return false; 310 311 SmallVector<Instruction *, 4> SrcInsts = 312 DC.getInstructionsForAccess(Src->PointerValue, Src->IsWritePtr); 313 SmallVector<Instruction *, 4> SinkInsts = 314 DC.getInstructionsForAccess(Sink->PointerValue, Sink->IsWritePtr); 315 Type *SrcTy = getLoadStoreType(SrcInsts[0]); 316 Type *DstTy = getLoadStoreType(SinkInsts[0]); 317 if (isa<ScalableVectorType>(SrcTy) || isa<ScalableVectorType>(DstTy)) 318 return false; 319 320 const DataLayout &DL = 321 SinkAR->getLoop()->getHeader()->getDataLayout(); 322 unsigned AllocSize = 323 std::max(DL.getTypeAllocSize(SrcTy), DL.getTypeAllocSize(DstTy)); 324 325 // Only matching constant steps matching the AllocSize are supported at the 326 // moment. This simplifies the difference computation. Can be extended in the 327 // future. 328 auto *Step = dyn_cast<SCEVConstant>(SinkAR->getStepRecurrence(*SE)); 329 if (!Step || Step != SrcAR->getStepRecurrence(*SE) || 330 Step->getAPInt().abs() != AllocSize) 331 return false; 332 333 IntegerType *IntTy = 334 IntegerType::get(Src->PointerValue->getContext(), 335 DL.getPointerSizeInBits(CGI.AddressSpace)); 336 337 // When counting down, the dependence distance needs to be swapped. 338 if (Step->getValue()->isNegative()) 339 std::swap(SinkAR, SrcAR); 340 341 const SCEV *SinkStartInt = SE->getPtrToIntExpr(SinkAR->getStart(), IntTy); 342 const SCEV *SrcStartInt = SE->getPtrToIntExpr(SrcAR->getStart(), IntTy); 343 if (isa<SCEVCouldNotCompute>(SinkStartInt) || 344 isa<SCEVCouldNotCompute>(SrcStartInt)) 345 return false; 346 347 const Loop *InnerLoop = SrcAR->getLoop(); 348 // If the start values for both Src and Sink also vary according to an outer 349 // loop, then it's probably better to avoid creating diff checks because 350 // they may not be hoisted. We should instead let llvm::addRuntimeChecks 351 // do the expanded full range overlap checks, which can be hoisted. 352 if (HoistRuntimeChecks && InnerLoop->getParentLoop() && 353 isa<SCEVAddRecExpr>(SinkStartInt) && isa<SCEVAddRecExpr>(SrcStartInt)) { 354 auto *SrcStartAR = cast<SCEVAddRecExpr>(SrcStartInt); 355 auto *SinkStartAR = cast<SCEVAddRecExpr>(SinkStartInt); 356 const Loop *StartARLoop = SrcStartAR->getLoop(); 357 if (StartARLoop == SinkStartAR->getLoop() && 358 StartARLoop == InnerLoop->getParentLoop() && 359 // If the diff check would already be loop invariant (due to the 360 // recurrences being the same), then we prefer to keep the diff checks 361 // because they are cheaper. 362 SrcStartAR->getStepRecurrence(*SE) != 363 SinkStartAR->getStepRecurrence(*SE)) { 364 LLVM_DEBUG(dbgs() << "LAA: Not creating diff runtime check, since these " 365 "cannot be hoisted out of the outer loop\n"); 366 return false; 367 } 368 } 369 370 LLVM_DEBUG(dbgs() << "LAA: Creating diff runtime check for:\n" 371 << "SrcStart: " << *SrcStartInt << '\n' 372 << "SinkStartInt: " << *SinkStartInt << '\n'); 373 DiffChecks.emplace_back(SrcStartInt, SinkStartInt, AllocSize, 374 Src->NeedsFreeze || Sink->NeedsFreeze); 375 return true; 376 } 377 378 SmallVector<RuntimePointerCheck, 4> RuntimePointerChecking::generateChecks() { 379 SmallVector<RuntimePointerCheck, 4> Checks; 380 381 for (unsigned I = 0; I < CheckingGroups.size(); ++I) { 382 for (unsigned J = I + 1; J < CheckingGroups.size(); ++J) { 383 const RuntimeCheckingPtrGroup &CGI = CheckingGroups[I]; 384 const RuntimeCheckingPtrGroup &CGJ = CheckingGroups[J]; 385 386 if (needsChecking(CGI, CGJ)) { 387 CanUseDiffCheck = CanUseDiffCheck && tryToCreateDiffCheck(CGI, CGJ); 388 Checks.emplace_back(&CGI, &CGJ); 389 } 390 } 391 } 392 return Checks; 393 } 394 395 void RuntimePointerChecking::generateChecks( 396 MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) { 397 assert(Checks.empty() && "Checks is not empty"); 398 groupChecks(DepCands, UseDependencies); 399 Checks = generateChecks(); 400 } 401 402 bool RuntimePointerChecking::needsChecking( 403 const RuntimeCheckingPtrGroup &M, const RuntimeCheckingPtrGroup &N) const { 404 for (const auto &I : M.Members) 405 for (const auto &J : N.Members) 406 if (needsChecking(I, J)) 407 return true; 408 return false; 409 } 410 411 /// Compare \p I and \p J and return the minimum. 412 /// Return nullptr in case we couldn't find an answer. 413 static const SCEV *getMinFromExprs(const SCEV *I, const SCEV *J, 414 ScalarEvolution *SE) { 415 const SCEV *Diff = SE->getMinusSCEV(J, I); 416 const SCEVConstant *C = dyn_cast<const SCEVConstant>(Diff); 417 418 if (!C) 419 return nullptr; 420 return C->getValue()->isNegative() ? J : I; 421 } 422 423 bool RuntimeCheckingPtrGroup::addPointer( 424 unsigned Index, const RuntimePointerChecking &RtCheck) { 425 return addPointer( 426 Index, RtCheck.Pointers[Index].Start, RtCheck.Pointers[Index].End, 427 RtCheck.Pointers[Index].PointerValue->getType()->getPointerAddressSpace(), 428 RtCheck.Pointers[Index].NeedsFreeze, *RtCheck.SE); 429 } 430 431 bool RuntimeCheckingPtrGroup::addPointer(unsigned Index, const SCEV *Start, 432 const SCEV *End, unsigned AS, 433 bool NeedsFreeze, 434 ScalarEvolution &SE) { 435 assert(AddressSpace == AS && 436 "all pointers in a checking group must be in the same address space"); 437 438 // Compare the starts and ends with the known minimum and maximum 439 // of this set. We need to know how we compare against the min/max 440 // of the set in order to be able to emit memchecks. 441 const SCEV *Min0 = getMinFromExprs(Start, Low, &SE); 442 if (!Min0) 443 return false; 444 445 const SCEV *Min1 = getMinFromExprs(End, High, &SE); 446 if (!Min1) 447 return false; 448 449 // Update the low bound expression if we've found a new min value. 450 if (Min0 == Start) 451 Low = Start; 452 453 // Update the high bound expression if we've found a new max value. 454 if (Min1 != End) 455 High = End; 456 457 Members.push_back(Index); 458 this->NeedsFreeze |= NeedsFreeze; 459 return true; 460 } 461 462 void RuntimePointerChecking::groupChecks( 463 MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) { 464 // We build the groups from dependency candidates equivalence classes 465 // because: 466 // - We know that pointers in the same equivalence class share 467 // the same underlying object and therefore there is a chance 468 // that we can compare pointers 469 // - We wouldn't be able to merge two pointers for which we need 470 // to emit a memcheck. The classes in DepCands are already 471 // conveniently built such that no two pointers in the same 472 // class need checking against each other. 473 474 // We use the following (greedy) algorithm to construct the groups 475 // For every pointer in the equivalence class: 476 // For each existing group: 477 // - if the difference between this pointer and the min/max bounds 478 // of the group is a constant, then make the pointer part of the 479 // group and update the min/max bounds of that group as required. 480 481 CheckingGroups.clear(); 482 483 // If we need to check two pointers to the same underlying object 484 // with a non-constant difference, we shouldn't perform any pointer 485 // grouping with those pointers. This is because we can easily get 486 // into cases where the resulting check would return false, even when 487 // the accesses are safe. 488 // 489 // The following example shows this: 490 // for (i = 0; i < 1000; ++i) 491 // a[5000 + i * m] = a[i] + a[i + 9000] 492 // 493 // Here grouping gives a check of (5000, 5000 + 1000 * m) against 494 // (0, 10000) which is always false. However, if m is 1, there is no 495 // dependence. Not grouping the checks for a[i] and a[i + 9000] allows 496 // us to perform an accurate check in this case. 497 // 498 // The above case requires that we have an UnknownDependence between 499 // accesses to the same underlying object. This cannot happen unless 500 // FoundNonConstantDistanceDependence is set, and therefore UseDependencies 501 // is also false. In this case we will use the fallback path and create 502 // separate checking groups for all pointers. 503 504 // If we don't have the dependency partitions, construct a new 505 // checking pointer group for each pointer. This is also required 506 // for correctness, because in this case we can have checking between 507 // pointers to the same underlying object. 508 if (!UseDependencies) { 509 for (unsigned I = 0; I < Pointers.size(); ++I) 510 CheckingGroups.emplace_back(I, *this); 511 return; 512 } 513 514 unsigned TotalComparisons = 0; 515 516 DenseMap<Value *, SmallVector<unsigned>> PositionMap; 517 for (unsigned Index = 0; Index < Pointers.size(); ++Index) { 518 auto [It, _] = PositionMap.insert({Pointers[Index].PointerValue, {}}); 519 It->second.push_back(Index); 520 } 521 522 // We need to keep track of what pointers we've already seen so we 523 // don't process them twice. 524 SmallSet<unsigned, 2> Seen; 525 526 // Go through all equivalence classes, get the "pointer check groups" 527 // and add them to the overall solution. We use the order in which accesses 528 // appear in 'Pointers' to enforce determinism. 529 for (unsigned I = 0; I < Pointers.size(); ++I) { 530 // We've seen this pointer before, and therefore already processed 531 // its equivalence class. 532 if (Seen.count(I)) 533 continue; 534 535 MemoryDepChecker::MemAccessInfo Access(Pointers[I].PointerValue, 536 Pointers[I].IsWritePtr); 537 538 SmallVector<RuntimeCheckingPtrGroup, 2> Groups; 539 auto LeaderI = DepCands.findValue(DepCands.getLeaderValue(Access)); 540 541 // Because DepCands is constructed by visiting accesses in the order in 542 // which they appear in alias sets (which is deterministic) and the 543 // iteration order within an equivalence class member is only dependent on 544 // the order in which unions and insertions are performed on the 545 // equivalence class, the iteration order is deterministic. 546 for (auto MI = DepCands.member_begin(LeaderI), ME = DepCands.member_end(); 547 MI != ME; ++MI) { 548 auto PointerI = PositionMap.find(MI->getPointer()); 549 assert(PointerI != PositionMap.end() && 550 "pointer in equivalence class not found in PositionMap"); 551 for (unsigned Pointer : PointerI->second) { 552 bool Merged = false; 553 // Mark this pointer as seen. 554 Seen.insert(Pointer); 555 556 // Go through all the existing sets and see if we can find one 557 // which can include this pointer. 558 for (RuntimeCheckingPtrGroup &Group : Groups) { 559 // Don't perform more than a certain amount of comparisons. 560 // This should limit the cost of grouping the pointers to something 561 // reasonable. If we do end up hitting this threshold, the algorithm 562 // will create separate groups for all remaining pointers. 563 if (TotalComparisons > MemoryCheckMergeThreshold) 564 break; 565 566 TotalComparisons++; 567 568 if (Group.addPointer(Pointer, *this)) { 569 Merged = true; 570 break; 571 } 572 } 573 574 if (!Merged) 575 // We couldn't add this pointer to any existing set or the threshold 576 // for the number of comparisons has been reached. Create a new group 577 // to hold the current pointer. 578 Groups.emplace_back(Pointer, *this); 579 } 580 } 581 582 // We've computed the grouped checks for this partition. 583 // Save the results and continue with the next one. 584 llvm::copy(Groups, std::back_inserter(CheckingGroups)); 585 } 586 } 587 588 bool RuntimePointerChecking::arePointersInSamePartition( 589 const SmallVectorImpl<int> &PtrToPartition, unsigned PtrIdx1, 590 unsigned PtrIdx2) { 591 return (PtrToPartition[PtrIdx1] != -1 && 592 PtrToPartition[PtrIdx1] == PtrToPartition[PtrIdx2]); 593 } 594 595 bool RuntimePointerChecking::needsChecking(unsigned I, unsigned J) const { 596 const PointerInfo &PointerI = Pointers[I]; 597 const PointerInfo &PointerJ = Pointers[J]; 598 599 // No need to check if two readonly pointers intersect. 600 if (!PointerI.IsWritePtr && !PointerJ.IsWritePtr) 601 return false; 602 603 // Only need to check pointers between two different dependency sets. 604 if (PointerI.DependencySetId == PointerJ.DependencySetId) 605 return false; 606 607 // Only need to check pointers in the same alias set. 608 return PointerI.AliasSetId == PointerJ.AliasSetId; 609 } 610 611 void RuntimePointerChecking::printChecks( 612 raw_ostream &OS, const SmallVectorImpl<RuntimePointerCheck> &Checks, 613 unsigned Depth) const { 614 unsigned N = 0; 615 for (const auto &[Check1, Check2] : Checks) { 616 const auto &First = Check1->Members, &Second = Check2->Members; 617 618 OS.indent(Depth) << "Check " << N++ << ":\n"; 619 620 OS.indent(Depth + 2) << "Comparing group (" << Check1 << "):\n"; 621 for (unsigned K : First) 622 OS.indent(Depth + 2) << *Pointers[K].PointerValue << "\n"; 623 624 OS.indent(Depth + 2) << "Against group (" << Check2 << "):\n"; 625 for (unsigned K : Second) 626 OS.indent(Depth + 2) << *Pointers[K].PointerValue << "\n"; 627 } 628 } 629 630 void RuntimePointerChecking::print(raw_ostream &OS, unsigned Depth) const { 631 632 OS.indent(Depth) << "Run-time memory checks:\n"; 633 printChecks(OS, Checks, Depth); 634 635 OS.indent(Depth) << "Grouped accesses:\n"; 636 for (const auto &CG : CheckingGroups) { 637 OS.indent(Depth + 2) << "Group " << &CG << ":\n"; 638 OS.indent(Depth + 4) << "(Low: " << *CG.Low << " High: " << *CG.High 639 << ")\n"; 640 for (unsigned Member : CG.Members) { 641 OS.indent(Depth + 6) << "Member: " << *Pointers[Member].Expr << "\n"; 642 } 643 } 644 } 645 646 namespace { 647 648 /// Analyses memory accesses in a loop. 649 /// 650 /// Checks whether run time pointer checks are needed and builds sets for data 651 /// dependence checking. 652 class AccessAnalysis { 653 public: 654 /// Read or write access location. 655 typedef PointerIntPair<Value *, 1, bool> MemAccessInfo; 656 typedef SmallVector<MemAccessInfo, 8> MemAccessInfoList; 657 658 AccessAnalysis(const Loop *TheLoop, AAResults *AA, const LoopInfo *LI, 659 MemoryDepChecker::DepCandidates &DA, 660 PredicatedScalarEvolution &PSE, 661 SmallPtrSetImpl<MDNode *> &LoopAliasScopes) 662 : TheLoop(TheLoop), BAA(*AA), AST(BAA), LI(LI), DepCands(DA), PSE(PSE), 663 LoopAliasScopes(LoopAliasScopes) { 664 // We're analyzing dependences across loop iterations. 665 BAA.enableCrossIterationMode(); 666 } 667 668 /// Register a load and whether it is only read from. 669 void addLoad(const MemoryLocation &Loc, Type *AccessTy, bool IsReadOnly) { 670 Value *Ptr = const_cast<Value *>(Loc.Ptr); 671 AST.add(adjustLoc(Loc)); 672 Accesses[MemAccessInfo(Ptr, false)].insert(AccessTy); 673 if (IsReadOnly) 674 ReadOnlyPtr.insert(Ptr); 675 } 676 677 /// Register a store. 678 void addStore(const MemoryLocation &Loc, Type *AccessTy) { 679 Value *Ptr = const_cast<Value *>(Loc.Ptr); 680 AST.add(adjustLoc(Loc)); 681 Accesses[MemAccessInfo(Ptr, true)].insert(AccessTy); 682 } 683 684 /// Check if we can emit a run-time no-alias check for \p Access. 685 /// 686 /// Returns true if we can emit a run-time no alias check for \p Access. 687 /// If we can check this access, this also adds it to a dependence set and 688 /// adds a run-time to check for it to \p RtCheck. If \p Assume is true, 689 /// we will attempt to use additional run-time checks in order to get 690 /// the bounds of the pointer. 691 bool createCheckForAccess(RuntimePointerChecking &RtCheck, 692 MemAccessInfo Access, Type *AccessTy, 693 const DenseMap<Value *, const SCEV *> &Strides, 694 DenseMap<Value *, unsigned> &DepSetId, 695 Loop *TheLoop, unsigned &RunningDepId, 696 unsigned ASId, bool ShouldCheckStride, bool Assume); 697 698 /// Check whether we can check the pointers at runtime for 699 /// non-intersection. 700 /// 701 /// Returns true if we need no check or if we do and we can generate them 702 /// (i.e. the pointers have computable bounds). 703 bool canCheckPtrAtRT(RuntimePointerChecking &RtCheck, ScalarEvolution *SE, 704 Loop *TheLoop, const DenseMap<Value *, const SCEV *> &Strides, 705 Value *&UncomputablePtr, bool ShouldCheckWrap = false); 706 707 /// Goes over all memory accesses, checks whether a RT check is needed 708 /// and builds sets of dependent accesses. 709 void buildDependenceSets() { 710 processMemAccesses(); 711 } 712 713 /// Initial processing of memory accesses determined that we need to 714 /// perform dependency checking. 715 /// 716 /// Note that this can later be cleared if we retry memcheck analysis without 717 /// dependency checking (i.e. FoundNonConstantDistanceDependence). 718 bool isDependencyCheckNeeded() const { return !CheckDeps.empty(); } 719 720 /// We decided that no dependence analysis would be used. Reset the state. 721 void resetDepChecks(MemoryDepChecker &DepChecker) { 722 CheckDeps.clear(); 723 DepChecker.clearDependences(); 724 } 725 726 const MemAccessInfoList &getDependenciesToCheck() const { return CheckDeps; } 727 728 private: 729 typedef MapVector<MemAccessInfo, SmallSetVector<Type *, 1>> PtrAccessMap; 730 731 /// Adjust the MemoryLocation so that it represents accesses to this 732 /// location across all iterations, rather than a single one. 733 MemoryLocation adjustLoc(MemoryLocation Loc) const { 734 // The accessed location varies within the loop, but remains within the 735 // underlying object. 736 Loc.Size = LocationSize::beforeOrAfterPointer(); 737 Loc.AATags.Scope = adjustAliasScopeList(Loc.AATags.Scope); 738 Loc.AATags.NoAlias = adjustAliasScopeList(Loc.AATags.NoAlias); 739 return Loc; 740 } 741 742 /// Drop alias scopes that are only valid within a single loop iteration. 743 MDNode *adjustAliasScopeList(MDNode *ScopeList) const { 744 if (!ScopeList) 745 return nullptr; 746 747 // For the sake of simplicity, drop the whole scope list if any scope is 748 // iteration-local. 749 if (any_of(ScopeList->operands(), [&](Metadata *Scope) { 750 return LoopAliasScopes.contains(cast<MDNode>(Scope)); 751 })) 752 return nullptr; 753 754 return ScopeList; 755 } 756 757 /// Go over all memory access and check whether runtime pointer checks 758 /// are needed and build sets of dependency check candidates. 759 void processMemAccesses(); 760 761 /// Map of all accesses. Values are the types used to access memory pointed to 762 /// by the pointer. 763 PtrAccessMap Accesses; 764 765 /// The loop being checked. 766 const Loop *TheLoop; 767 768 /// List of accesses that need a further dependence check. 769 MemAccessInfoList CheckDeps; 770 771 /// Set of pointers that are read only. 772 SmallPtrSet<Value*, 16> ReadOnlyPtr; 773 774 /// Batched alias analysis results. 775 BatchAAResults BAA; 776 777 /// An alias set tracker to partition the access set by underlying object and 778 //intrinsic property (such as TBAA metadata). 779 AliasSetTracker AST; 780 781 /// The LoopInfo of the loop being checked. 782 const LoopInfo *LI; 783 784 /// Sets of potentially dependent accesses - members of one set share an 785 /// underlying pointer. The set "CheckDeps" identfies which sets really need a 786 /// dependence check. 787 MemoryDepChecker::DepCandidates &DepCands; 788 789 /// Initial processing of memory accesses determined that we may need 790 /// to add memchecks. Perform the analysis to determine the necessary checks. 791 /// 792 /// Note that, this is different from isDependencyCheckNeeded. When we retry 793 /// memcheck analysis without dependency checking 794 /// (i.e. FoundNonConstantDistanceDependence), isDependencyCheckNeeded is 795 /// cleared while this remains set if we have potentially dependent accesses. 796 bool IsRTCheckAnalysisNeeded = false; 797 798 /// The SCEV predicate containing all the SCEV-related assumptions. 799 PredicatedScalarEvolution &PSE; 800 801 DenseMap<Value *, SmallVector<const Value *, 16>> UnderlyingObjects; 802 803 /// Alias scopes that are declared inside the loop, and as such not valid 804 /// across iterations. 805 SmallPtrSetImpl<MDNode *> &LoopAliasScopes; 806 }; 807 808 } // end anonymous namespace 809 810 /// Check whether a pointer can participate in a runtime bounds check. 811 /// If \p Assume, try harder to prove that we can compute the bounds of \p Ptr 812 /// by adding run-time checks (overflow checks) if necessary. 813 static bool hasComputableBounds(PredicatedScalarEvolution &PSE, Value *Ptr, 814 const SCEV *PtrScev, Loop *L, bool Assume) { 815 // The bounds for loop-invariant pointer is trivial. 816 if (PSE.getSE()->isLoopInvariant(PtrScev, L)) 817 return true; 818 819 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 820 821 if (!AR && Assume) 822 AR = PSE.getAsAddRec(Ptr); 823 824 if (!AR) 825 return false; 826 827 return AR->isAffine(); 828 } 829 830 /// Check whether a pointer address cannot wrap. 831 static bool isNoWrap(PredicatedScalarEvolution &PSE, 832 const DenseMap<Value *, const SCEV *> &Strides, Value *Ptr, Type *AccessTy, 833 Loop *L) { 834 const SCEV *PtrScev = PSE.getSCEV(Ptr); 835 if (PSE.getSE()->isLoopInvariant(PtrScev, L)) 836 return true; 837 838 int64_t Stride = getPtrStride(PSE, AccessTy, Ptr, L, Strides).value_or(0); 839 return Stride == 1 || 840 PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW); 841 } 842 843 static void visitPointers(Value *StartPtr, const Loop &InnermostLoop, 844 function_ref<void(Value *)> AddPointer) { 845 SmallPtrSet<Value *, 8> Visited; 846 SmallVector<Value *> WorkList; 847 WorkList.push_back(StartPtr); 848 849 while (!WorkList.empty()) { 850 Value *Ptr = WorkList.pop_back_val(); 851 if (!Visited.insert(Ptr).second) 852 continue; 853 auto *PN = dyn_cast<PHINode>(Ptr); 854 // SCEV does not look through non-header PHIs inside the loop. Such phis 855 // can be analyzed by adding separate accesses for each incoming pointer 856 // value. 857 if (PN && InnermostLoop.contains(PN->getParent()) && 858 PN->getParent() != InnermostLoop.getHeader()) { 859 for (const Use &Inc : PN->incoming_values()) 860 WorkList.push_back(Inc); 861 } else 862 AddPointer(Ptr); 863 } 864 } 865 866 // Walk back through the IR for a pointer, looking for a select like the 867 // following: 868 // 869 // %offset = select i1 %cmp, i64 %a, i64 %b 870 // %addr = getelementptr double, double* %base, i64 %offset 871 // %ld = load double, double* %addr, align 8 872 // 873 // We won't be able to form a single SCEVAddRecExpr from this since the 874 // address for each loop iteration depends on %cmp. We could potentially 875 // produce multiple valid SCEVAddRecExprs, though, and check all of them for 876 // memory safety/aliasing if needed. 877 // 878 // If we encounter some IR we don't yet handle, or something obviously fine 879 // like a constant, then we just add the SCEV for that term to the list passed 880 // in by the caller. If we have a node that may potentially yield a valid 881 // SCEVAddRecExpr then we decompose it into parts and build the SCEV terms 882 // ourselves before adding to the list. 883 static void findForkedSCEVs( 884 ScalarEvolution *SE, const Loop *L, Value *Ptr, 885 SmallVectorImpl<PointerIntPair<const SCEV *, 1, bool>> &ScevList, 886 unsigned Depth) { 887 // If our Value is a SCEVAddRecExpr, loop invariant, not an instruction, or 888 // we've exceeded our limit on recursion, just return whatever we have 889 // regardless of whether it can be used for a forked pointer or not, along 890 // with an indication of whether it might be a poison or undef value. 891 const SCEV *Scev = SE->getSCEV(Ptr); 892 if (isa<SCEVAddRecExpr>(Scev) || L->isLoopInvariant(Ptr) || 893 !isa<Instruction>(Ptr) || Depth == 0) { 894 ScevList.emplace_back(Scev, !isGuaranteedNotToBeUndefOrPoison(Ptr)); 895 return; 896 } 897 898 Depth--; 899 900 auto UndefPoisonCheck = [](PointerIntPair<const SCEV *, 1, bool> S) { 901 return get<1>(S); 902 }; 903 904 auto GetBinOpExpr = [&SE](unsigned Opcode, const SCEV *L, const SCEV *R) { 905 switch (Opcode) { 906 case Instruction::Add: 907 return SE->getAddExpr(L, R); 908 case Instruction::Sub: 909 return SE->getMinusSCEV(L, R); 910 default: 911 llvm_unreachable("Unexpected binary operator when walking ForkedPtrs"); 912 } 913 }; 914 915 Instruction *I = cast<Instruction>(Ptr); 916 unsigned Opcode = I->getOpcode(); 917 switch (Opcode) { 918 case Instruction::GetElementPtr: { 919 auto *GEP = cast<GetElementPtrInst>(I); 920 Type *SourceTy = GEP->getSourceElementType(); 921 // We only handle base + single offset GEPs here for now. 922 // Not dealing with preexisting gathers yet, so no vectors. 923 if (I->getNumOperands() != 2 || SourceTy->isVectorTy()) { 924 ScevList.emplace_back(Scev, !isGuaranteedNotToBeUndefOrPoison(GEP)); 925 break; 926 } 927 SmallVector<PointerIntPair<const SCEV *, 1, bool>, 2> BaseScevs; 928 SmallVector<PointerIntPair<const SCEV *, 1, bool>, 2> OffsetScevs; 929 findForkedSCEVs(SE, L, I->getOperand(0), BaseScevs, Depth); 930 findForkedSCEVs(SE, L, I->getOperand(1), OffsetScevs, Depth); 931 932 // See if we need to freeze our fork... 933 bool NeedsFreeze = any_of(BaseScevs, UndefPoisonCheck) || 934 any_of(OffsetScevs, UndefPoisonCheck); 935 936 // Check that we only have a single fork, on either the base or the offset. 937 // Copy the SCEV across for the one without a fork in order to generate 938 // the full SCEV for both sides of the GEP. 939 if (OffsetScevs.size() == 2 && BaseScevs.size() == 1) 940 BaseScevs.push_back(BaseScevs[0]); 941 else if (BaseScevs.size() == 2 && OffsetScevs.size() == 1) 942 OffsetScevs.push_back(OffsetScevs[0]); 943 else { 944 ScevList.emplace_back(Scev, NeedsFreeze); 945 break; 946 } 947 948 // Find the pointer type we need to extend to. 949 Type *IntPtrTy = SE->getEffectiveSCEVType( 950 SE->getSCEV(GEP->getPointerOperand())->getType()); 951 952 // Find the size of the type being pointed to. We only have a single 953 // index term (guarded above) so we don't need to index into arrays or 954 // structures, just get the size of the scalar value. 955 const SCEV *Size = SE->getSizeOfExpr(IntPtrTy, SourceTy); 956 957 // Scale up the offsets by the size of the type, then add to the bases. 958 const SCEV *Scaled1 = SE->getMulExpr( 959 Size, SE->getTruncateOrSignExtend(get<0>(OffsetScevs[0]), IntPtrTy)); 960 const SCEV *Scaled2 = SE->getMulExpr( 961 Size, SE->getTruncateOrSignExtend(get<0>(OffsetScevs[1]), IntPtrTy)); 962 ScevList.emplace_back(SE->getAddExpr(get<0>(BaseScevs[0]), Scaled1), 963 NeedsFreeze); 964 ScevList.emplace_back(SE->getAddExpr(get<0>(BaseScevs[1]), Scaled2), 965 NeedsFreeze); 966 break; 967 } 968 case Instruction::Select: { 969 SmallVector<PointerIntPair<const SCEV *, 1, bool>, 2> ChildScevs; 970 // A select means we've found a forked pointer, but we currently only 971 // support a single select per pointer so if there's another behind this 972 // then we just bail out and return the generic SCEV. 973 findForkedSCEVs(SE, L, I->getOperand(1), ChildScevs, Depth); 974 findForkedSCEVs(SE, L, I->getOperand(2), ChildScevs, Depth); 975 if (ChildScevs.size() == 2) { 976 ScevList.push_back(ChildScevs[0]); 977 ScevList.push_back(ChildScevs[1]); 978 } else 979 ScevList.emplace_back(Scev, !isGuaranteedNotToBeUndefOrPoison(Ptr)); 980 break; 981 } 982 case Instruction::PHI: { 983 SmallVector<PointerIntPair<const SCEV *, 1, bool>, 2> ChildScevs; 984 // A phi means we've found a forked pointer, but we currently only 985 // support a single phi per pointer so if there's another behind this 986 // then we just bail out and return the generic SCEV. 987 if (I->getNumOperands() == 2) { 988 findForkedSCEVs(SE, L, I->getOperand(0), ChildScevs, Depth); 989 findForkedSCEVs(SE, L, I->getOperand(1), ChildScevs, Depth); 990 } 991 if (ChildScevs.size() == 2) { 992 ScevList.push_back(ChildScevs[0]); 993 ScevList.push_back(ChildScevs[1]); 994 } else 995 ScevList.emplace_back(Scev, !isGuaranteedNotToBeUndefOrPoison(Ptr)); 996 break; 997 } 998 case Instruction::Add: 999 case Instruction::Sub: { 1000 SmallVector<PointerIntPair<const SCEV *, 1, bool>> LScevs; 1001 SmallVector<PointerIntPair<const SCEV *, 1, bool>> RScevs; 1002 findForkedSCEVs(SE, L, I->getOperand(0), LScevs, Depth); 1003 findForkedSCEVs(SE, L, I->getOperand(1), RScevs, Depth); 1004 1005 // See if we need to freeze our fork... 1006 bool NeedsFreeze = 1007 any_of(LScevs, UndefPoisonCheck) || any_of(RScevs, UndefPoisonCheck); 1008 1009 // Check that we only have a single fork, on either the left or right side. 1010 // Copy the SCEV across for the one without a fork in order to generate 1011 // the full SCEV for both sides of the BinOp. 1012 if (LScevs.size() == 2 && RScevs.size() == 1) 1013 RScevs.push_back(RScevs[0]); 1014 else if (RScevs.size() == 2 && LScevs.size() == 1) 1015 LScevs.push_back(LScevs[0]); 1016 else { 1017 ScevList.emplace_back(Scev, NeedsFreeze); 1018 break; 1019 } 1020 1021 ScevList.emplace_back( 1022 GetBinOpExpr(Opcode, get<0>(LScevs[0]), get<0>(RScevs[0])), 1023 NeedsFreeze); 1024 ScevList.emplace_back( 1025 GetBinOpExpr(Opcode, get<0>(LScevs[1]), get<0>(RScevs[1])), 1026 NeedsFreeze); 1027 break; 1028 } 1029 default: 1030 // Just return the current SCEV if we haven't handled the instruction yet. 1031 LLVM_DEBUG(dbgs() << "ForkedPtr unhandled instruction: " << *I << "\n"); 1032 ScevList.emplace_back(Scev, !isGuaranteedNotToBeUndefOrPoison(Ptr)); 1033 break; 1034 } 1035 } 1036 1037 static SmallVector<PointerIntPair<const SCEV *, 1, bool>> 1038 findForkedPointer(PredicatedScalarEvolution &PSE, 1039 const DenseMap<Value *, const SCEV *> &StridesMap, Value *Ptr, 1040 const Loop *L) { 1041 ScalarEvolution *SE = PSE.getSE(); 1042 assert(SE->isSCEVable(Ptr->getType()) && "Value is not SCEVable!"); 1043 SmallVector<PointerIntPair<const SCEV *, 1, bool>> Scevs; 1044 findForkedSCEVs(SE, L, Ptr, Scevs, MaxForkedSCEVDepth); 1045 1046 // For now, we will only accept a forked pointer with two possible SCEVs 1047 // that are either SCEVAddRecExprs or loop invariant. 1048 if (Scevs.size() == 2 && 1049 (isa<SCEVAddRecExpr>(get<0>(Scevs[0])) || 1050 SE->isLoopInvariant(get<0>(Scevs[0]), L)) && 1051 (isa<SCEVAddRecExpr>(get<0>(Scevs[1])) || 1052 SE->isLoopInvariant(get<0>(Scevs[1]), L))) { 1053 LLVM_DEBUG(dbgs() << "LAA: Found forked pointer: " << *Ptr << "\n"); 1054 LLVM_DEBUG(dbgs() << "\t(1) " << *get<0>(Scevs[0]) << "\n"); 1055 LLVM_DEBUG(dbgs() << "\t(2) " << *get<0>(Scevs[1]) << "\n"); 1056 return Scevs; 1057 } 1058 1059 return {{replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr), false}}; 1060 } 1061 1062 bool AccessAnalysis::createCheckForAccess(RuntimePointerChecking &RtCheck, 1063 MemAccessInfo Access, Type *AccessTy, 1064 const DenseMap<Value *, const SCEV *> &StridesMap, 1065 DenseMap<Value *, unsigned> &DepSetId, 1066 Loop *TheLoop, unsigned &RunningDepId, 1067 unsigned ASId, bool ShouldCheckWrap, 1068 bool Assume) { 1069 Value *Ptr = Access.getPointer(); 1070 1071 SmallVector<PointerIntPair<const SCEV *, 1, bool>> TranslatedPtrs = 1072 findForkedPointer(PSE, StridesMap, Ptr, TheLoop); 1073 1074 for (const auto &P : TranslatedPtrs) { 1075 const SCEV *PtrExpr = get<0>(P); 1076 if (!hasComputableBounds(PSE, Ptr, PtrExpr, TheLoop, Assume)) 1077 return false; 1078 1079 // When we run after a failing dependency check we have to make sure 1080 // we don't have wrapping pointers. 1081 if (ShouldCheckWrap) { 1082 // Skip wrap checking when translating pointers. 1083 if (TranslatedPtrs.size() > 1) 1084 return false; 1085 1086 if (!isNoWrap(PSE, StridesMap, Ptr, AccessTy, TheLoop)) { 1087 auto *Expr = PSE.getSCEV(Ptr); 1088 if (!Assume || !isa<SCEVAddRecExpr>(Expr)) 1089 return false; 1090 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW); 1091 } 1092 } 1093 // If there's only one option for Ptr, look it up after bounds and wrap 1094 // checking, because assumptions might have been added to PSE. 1095 if (TranslatedPtrs.size() == 1) 1096 TranslatedPtrs[0] = {replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr), 1097 false}; 1098 } 1099 1100 for (auto [PtrExpr, NeedsFreeze] : TranslatedPtrs) { 1101 // The id of the dependence set. 1102 unsigned DepId; 1103 1104 if (isDependencyCheckNeeded()) { 1105 Value *Leader = DepCands.getLeaderValue(Access).getPointer(); 1106 unsigned &LeaderId = DepSetId[Leader]; 1107 if (!LeaderId) 1108 LeaderId = RunningDepId++; 1109 DepId = LeaderId; 1110 } else 1111 // Each access has its own dependence set. 1112 DepId = RunningDepId++; 1113 1114 bool IsWrite = Access.getInt(); 1115 RtCheck.insert(TheLoop, Ptr, PtrExpr, AccessTy, IsWrite, DepId, ASId, PSE, 1116 NeedsFreeze); 1117 LLVM_DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n'); 1118 } 1119 1120 return true; 1121 } 1122 1123 bool AccessAnalysis::canCheckPtrAtRT(RuntimePointerChecking &RtCheck, 1124 ScalarEvolution *SE, Loop *TheLoop, 1125 const DenseMap<Value *, const SCEV *> &StridesMap, 1126 Value *&UncomputablePtr, bool ShouldCheckWrap) { 1127 // Find pointers with computable bounds. We are going to use this information 1128 // to place a runtime bound check. 1129 bool CanDoRT = true; 1130 1131 bool MayNeedRTCheck = false; 1132 if (!IsRTCheckAnalysisNeeded) return true; 1133 1134 bool IsDepCheckNeeded = isDependencyCheckNeeded(); 1135 1136 // We assign a consecutive id to access from different alias sets. 1137 // Accesses between different groups doesn't need to be checked. 1138 unsigned ASId = 0; 1139 for (const auto &AS : AST) { 1140 int NumReadPtrChecks = 0; 1141 int NumWritePtrChecks = 0; 1142 bool CanDoAliasSetRT = true; 1143 ++ASId; 1144 auto ASPointers = AS.getPointers(); 1145 1146 // We assign consecutive id to access from different dependence sets. 1147 // Accesses within the same set don't need a runtime check. 1148 unsigned RunningDepId = 1; 1149 DenseMap<Value *, unsigned> DepSetId; 1150 1151 SmallVector<std::pair<MemAccessInfo, Type *>, 4> Retries; 1152 1153 // First, count how many write and read accesses are in the alias set. Also 1154 // collect MemAccessInfos for later. 1155 SmallVector<MemAccessInfo, 4> AccessInfos; 1156 for (const Value *ConstPtr : ASPointers) { 1157 Value *Ptr = const_cast<Value *>(ConstPtr); 1158 bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true)); 1159 if (IsWrite) 1160 ++NumWritePtrChecks; 1161 else 1162 ++NumReadPtrChecks; 1163 AccessInfos.emplace_back(Ptr, IsWrite); 1164 } 1165 1166 // We do not need runtime checks for this alias set, if there are no writes 1167 // or a single write and no reads. 1168 if (NumWritePtrChecks == 0 || 1169 (NumWritePtrChecks == 1 && NumReadPtrChecks == 0)) { 1170 assert((ASPointers.size() <= 1 || 1171 all_of(ASPointers, 1172 [this](const Value *Ptr) { 1173 MemAccessInfo AccessWrite(const_cast<Value *>(Ptr), 1174 true); 1175 return DepCands.findValue(AccessWrite) == DepCands.end(); 1176 })) && 1177 "Can only skip updating CanDoRT below, if all entries in AS " 1178 "are reads or there is at most 1 entry"); 1179 continue; 1180 } 1181 1182 for (auto &Access : AccessInfos) { 1183 for (const auto &AccessTy : Accesses[Access]) { 1184 if (!createCheckForAccess(RtCheck, Access, AccessTy, StridesMap, 1185 DepSetId, TheLoop, RunningDepId, ASId, 1186 ShouldCheckWrap, false)) { 1187 LLVM_DEBUG(dbgs() << "LAA: Can't find bounds for ptr:" 1188 << *Access.getPointer() << '\n'); 1189 Retries.emplace_back(Access, AccessTy); 1190 CanDoAliasSetRT = false; 1191 } 1192 } 1193 } 1194 1195 // Note that this function computes CanDoRT and MayNeedRTCheck 1196 // independently. For example CanDoRT=false, MayNeedRTCheck=false means that 1197 // we have a pointer for which we couldn't find the bounds but we don't 1198 // actually need to emit any checks so it does not matter. 1199 // 1200 // We need runtime checks for this alias set, if there are at least 2 1201 // dependence sets (in which case RunningDepId > 2) or if we need to re-try 1202 // any bound checks (because in that case the number of dependence sets is 1203 // incomplete). 1204 bool NeedsAliasSetRTCheck = RunningDepId > 2 || !Retries.empty(); 1205 1206 // We need to perform run-time alias checks, but some pointers had bounds 1207 // that couldn't be checked. 1208 if (NeedsAliasSetRTCheck && !CanDoAliasSetRT) { 1209 // Reset the CanDoSetRt flag and retry all accesses that have failed. 1210 // We know that we need these checks, so we can now be more aggressive 1211 // and add further checks if required (overflow checks). 1212 CanDoAliasSetRT = true; 1213 for (const auto &[Access, AccessTy] : Retries) { 1214 if (!createCheckForAccess(RtCheck, Access, AccessTy, StridesMap, 1215 DepSetId, TheLoop, RunningDepId, ASId, 1216 ShouldCheckWrap, /*Assume=*/true)) { 1217 CanDoAliasSetRT = false; 1218 UncomputablePtr = Access.getPointer(); 1219 break; 1220 } 1221 } 1222 } 1223 1224 CanDoRT &= CanDoAliasSetRT; 1225 MayNeedRTCheck |= NeedsAliasSetRTCheck; 1226 ++ASId; 1227 } 1228 1229 // If the pointers that we would use for the bounds comparison have different 1230 // address spaces, assume the values aren't directly comparable, so we can't 1231 // use them for the runtime check. We also have to assume they could 1232 // overlap. In the future there should be metadata for whether address spaces 1233 // are disjoint. 1234 unsigned NumPointers = RtCheck.Pointers.size(); 1235 for (unsigned i = 0; i < NumPointers; ++i) { 1236 for (unsigned j = i + 1; j < NumPointers; ++j) { 1237 // Only need to check pointers between two different dependency sets. 1238 if (RtCheck.Pointers[i].DependencySetId == 1239 RtCheck.Pointers[j].DependencySetId) 1240 continue; 1241 // Only need to check pointers in the same alias set. 1242 if (RtCheck.Pointers[i].AliasSetId != RtCheck.Pointers[j].AliasSetId) 1243 continue; 1244 1245 Value *PtrI = RtCheck.Pointers[i].PointerValue; 1246 Value *PtrJ = RtCheck.Pointers[j].PointerValue; 1247 1248 unsigned ASi = PtrI->getType()->getPointerAddressSpace(); 1249 unsigned ASj = PtrJ->getType()->getPointerAddressSpace(); 1250 if (ASi != ASj) { 1251 LLVM_DEBUG( 1252 dbgs() << "LAA: Runtime check would require comparison between" 1253 " different address spaces\n"); 1254 return false; 1255 } 1256 } 1257 } 1258 1259 if (MayNeedRTCheck && CanDoRT) 1260 RtCheck.generateChecks(DepCands, IsDepCheckNeeded); 1261 1262 LLVM_DEBUG(dbgs() << "LAA: We need to do " << RtCheck.getNumberOfChecks() 1263 << " pointer comparisons.\n"); 1264 1265 // If we can do run-time checks, but there are no checks, no runtime checks 1266 // are needed. This can happen when all pointers point to the same underlying 1267 // object for example. 1268 RtCheck.Need = CanDoRT ? RtCheck.getNumberOfChecks() != 0 : MayNeedRTCheck; 1269 1270 bool CanDoRTIfNeeded = !RtCheck.Need || CanDoRT; 1271 if (!CanDoRTIfNeeded) 1272 RtCheck.reset(); 1273 return CanDoRTIfNeeded; 1274 } 1275 1276 void AccessAnalysis::processMemAccesses() { 1277 // We process the set twice: first we process read-write pointers, last we 1278 // process read-only pointers. This allows us to skip dependence tests for 1279 // read-only pointers. 1280 1281 LLVM_DEBUG(dbgs() << "LAA: Processing memory accesses...\n"); 1282 LLVM_DEBUG(dbgs() << " AST: "; AST.dump()); 1283 LLVM_DEBUG(dbgs() << "LAA: Accesses(" << Accesses.size() << "):\n"); 1284 LLVM_DEBUG({ 1285 for (const auto &[A, _] : Accesses) 1286 dbgs() << "\t" << *A.getPointer() << " (" 1287 << (A.getInt() ? "write" 1288 : (ReadOnlyPtr.count(A.getPointer()) ? "read-only" 1289 : "read")) 1290 << ")\n"; 1291 }); 1292 1293 // The AliasSetTracker has nicely partitioned our pointers by metadata 1294 // compatibility and potential for underlying-object overlap. As a result, we 1295 // only need to check for potential pointer dependencies within each alias 1296 // set. 1297 for (const auto &AS : AST) { 1298 // Note that both the alias-set tracker and the alias sets themselves used 1299 // ordered collections internally and so the iteration order here is 1300 // deterministic. 1301 auto ASPointers = AS.getPointers(); 1302 1303 bool SetHasWrite = false; 1304 1305 // Map of pointers to last access encountered. 1306 typedef DenseMap<const Value*, MemAccessInfo> UnderlyingObjToAccessMap; 1307 UnderlyingObjToAccessMap ObjToLastAccess; 1308 1309 // Set of access to check after all writes have been processed. 1310 PtrAccessMap DeferredAccesses; 1311 1312 // Iterate over each alias set twice, once to process read/write pointers, 1313 // and then to process read-only pointers. 1314 for (int SetIteration = 0; SetIteration < 2; ++SetIteration) { 1315 bool UseDeferred = SetIteration > 0; 1316 PtrAccessMap &S = UseDeferred ? DeferredAccesses : Accesses; 1317 1318 for (const Value *ConstPtr : ASPointers) { 1319 Value *Ptr = const_cast<Value *>(ConstPtr); 1320 1321 // For a single memory access in AliasSetTracker, Accesses may contain 1322 // both read and write, and they both need to be handled for CheckDeps. 1323 for (const auto &[AC, _] : S) { 1324 if (AC.getPointer() != Ptr) 1325 continue; 1326 1327 bool IsWrite = AC.getInt(); 1328 1329 // If we're using the deferred access set, then it contains only 1330 // reads. 1331 bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite; 1332 if (UseDeferred && !IsReadOnlyPtr) 1333 continue; 1334 // Otherwise, the pointer must be in the PtrAccessSet, either as a 1335 // read or a write. 1336 assert(((IsReadOnlyPtr && UseDeferred) || IsWrite || 1337 S.count(MemAccessInfo(Ptr, false))) && 1338 "Alias-set pointer not in the access set?"); 1339 1340 MemAccessInfo Access(Ptr, IsWrite); 1341 DepCands.insert(Access); 1342 1343 // Memorize read-only pointers for later processing and skip them in 1344 // the first round (they need to be checked after we have seen all 1345 // write pointers). Note: we also mark pointer that are not 1346 // consecutive as "read-only" pointers (so that we check 1347 // "a[b[i]] +="). Hence, we need the second check for "!IsWrite". 1348 if (!UseDeferred && IsReadOnlyPtr) { 1349 // We only use the pointer keys, the types vector values don't 1350 // matter. 1351 DeferredAccesses.insert({Access, {}}); 1352 continue; 1353 } 1354 1355 // If this is a write - check other reads and writes for conflicts. If 1356 // this is a read only check other writes for conflicts (but only if 1357 // there is no other write to the ptr - this is an optimization to 1358 // catch "a[i] = a[i] + " without having to do a dependence check). 1359 if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) { 1360 CheckDeps.push_back(Access); 1361 IsRTCheckAnalysisNeeded = true; 1362 } 1363 1364 if (IsWrite) 1365 SetHasWrite = true; 1366 1367 // Create sets of pointers connected by a shared alias set and 1368 // underlying object. 1369 typedef SmallVector<const Value *, 16> ValueVector; 1370 ValueVector TempObjects; 1371 1372 UnderlyingObjects[Ptr] = {}; 1373 SmallVector<const Value *, 16> &UOs = UnderlyingObjects[Ptr]; 1374 ::getUnderlyingObjects(Ptr, UOs, LI); 1375 LLVM_DEBUG(dbgs() 1376 << "Underlying objects for pointer " << *Ptr << "\n"); 1377 for (const Value *UnderlyingObj : UOs) { 1378 // nullptr never alias, don't join sets for pointer that have "null" 1379 // in their UnderlyingObjects list. 1380 if (isa<ConstantPointerNull>(UnderlyingObj) && 1381 !NullPointerIsDefined( 1382 TheLoop->getHeader()->getParent(), 1383 UnderlyingObj->getType()->getPointerAddressSpace())) 1384 continue; 1385 1386 UnderlyingObjToAccessMap::iterator Prev = 1387 ObjToLastAccess.find(UnderlyingObj); 1388 if (Prev != ObjToLastAccess.end()) 1389 DepCands.unionSets(Access, Prev->second); 1390 1391 ObjToLastAccess[UnderlyingObj] = Access; 1392 LLVM_DEBUG(dbgs() << " " << *UnderlyingObj << "\n"); 1393 } 1394 } 1395 } 1396 } 1397 } 1398 } 1399 1400 /// Return true if an AddRec pointer \p Ptr is unsigned non-wrapping, 1401 /// i.e. monotonically increasing/decreasing. 1402 static bool isNoWrapAddRec(Value *Ptr, const SCEVAddRecExpr *AR, 1403 PredicatedScalarEvolution &PSE, const Loop *L) { 1404 1405 // FIXME: This should probably only return true for NUW. 1406 if (AR->getNoWrapFlags(SCEV::NoWrapMask)) 1407 return true; 1408 1409 if (PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW)) 1410 return true; 1411 1412 // Scalar evolution does not propagate the non-wrapping flags to values that 1413 // are derived from a non-wrapping induction variable because non-wrapping 1414 // could be flow-sensitive. 1415 // 1416 // Look through the potentially overflowing instruction to try to prove 1417 // non-wrapping for the *specific* value of Ptr. 1418 1419 // The arithmetic implied by an inbounds GEP can't overflow. 1420 const auto *GEP = dyn_cast<GetElementPtrInst>(Ptr); 1421 if (!GEP || !GEP->isInBounds()) 1422 return false; 1423 1424 // Make sure there is only one non-const index and analyze that. 1425 Value *NonConstIndex = nullptr; 1426 for (Value *Index : GEP->indices()) 1427 if (!isa<ConstantInt>(Index)) { 1428 if (NonConstIndex) 1429 return false; 1430 NonConstIndex = Index; 1431 } 1432 if (!NonConstIndex) 1433 // The recurrence is on the pointer, ignore for now. 1434 return false; 1435 1436 // The index in GEP is signed. It is non-wrapping if it's derived from a NSW 1437 // AddRec using a NSW operation. 1438 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(NonConstIndex)) 1439 if (OBO->hasNoSignedWrap() && 1440 // Assume constant for other the operand so that the AddRec can be 1441 // easily found. 1442 isa<ConstantInt>(OBO->getOperand(1))) { 1443 auto *OpScev = PSE.getSCEV(OBO->getOperand(0)); 1444 1445 if (auto *OpAR = dyn_cast<SCEVAddRecExpr>(OpScev)) 1446 return OpAR->getLoop() == L && OpAR->getNoWrapFlags(SCEV::FlagNSW); 1447 } 1448 1449 return false; 1450 } 1451 1452 /// Check whether the access through \p Ptr has a constant stride. 1453 std::optional<int64_t> 1454 llvm::getPtrStride(PredicatedScalarEvolution &PSE, Type *AccessTy, Value *Ptr, 1455 const Loop *Lp, 1456 const DenseMap<Value *, const SCEV *> &StridesMap, 1457 bool Assume, bool ShouldCheckWrap) { 1458 const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr); 1459 if (PSE.getSE()->isLoopInvariant(PtrScev, Lp)) 1460 return {0}; 1461 1462 Type *Ty = Ptr->getType(); 1463 assert(Ty->isPointerTy() && "Unexpected non-ptr"); 1464 if (isa<ScalableVectorType>(AccessTy)) { 1465 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Scalable object: " << *AccessTy 1466 << "\n"); 1467 return std::nullopt; 1468 } 1469 1470 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 1471 if (Assume && !AR) 1472 AR = PSE.getAsAddRec(Ptr); 1473 1474 if (!AR) { 1475 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer " << *Ptr 1476 << " SCEV: " << *PtrScev << "\n"); 1477 return std::nullopt; 1478 } 1479 1480 // The access function must stride over the innermost loop. 1481 if (Lp != AR->getLoop()) { 1482 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop " 1483 << *Ptr << " SCEV: " << *AR << "\n"); 1484 return std::nullopt; 1485 } 1486 1487 // Check the step is constant. 1488 const SCEV *Step = AR->getStepRecurrence(*PSE.getSE()); 1489 1490 // Calculate the pointer stride and check if it is constant. 1491 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 1492 if (!C) { 1493 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr 1494 << " SCEV: " << *AR << "\n"); 1495 return std::nullopt; 1496 } 1497 1498 const auto &DL = Lp->getHeader()->getDataLayout(); 1499 TypeSize AllocSize = DL.getTypeAllocSize(AccessTy); 1500 int64_t Size = AllocSize.getFixedValue(); 1501 const APInt &APStepVal = C->getAPInt(); 1502 1503 // Huge step value - give up. 1504 if (APStepVal.getBitWidth() > 64) 1505 return std::nullopt; 1506 1507 int64_t StepVal = APStepVal.getSExtValue(); 1508 1509 // Strided access. 1510 int64_t Stride = StepVal / Size; 1511 int64_t Rem = StepVal % Size; 1512 if (Rem) 1513 return std::nullopt; 1514 1515 if (!ShouldCheckWrap) 1516 return Stride; 1517 1518 // The address calculation must not wrap. Otherwise, a dependence could be 1519 // inverted. 1520 if (isNoWrapAddRec(Ptr, AR, PSE, Lp)) 1521 return Stride; 1522 1523 // An inbounds getelementptr that is a AddRec with a unit stride 1524 // cannot wrap per definition. If it did, the result would be poison 1525 // and any memory access dependent on it would be immediate UB 1526 // when executed. 1527 if (auto *GEP = dyn_cast<GetElementPtrInst>(Ptr); 1528 GEP && GEP->isInBounds() && (Stride == 1 || Stride == -1)) 1529 return Stride; 1530 1531 // If the null pointer is undefined, then a access sequence which would 1532 // otherwise access it can be assumed not to unsigned wrap. Note that this 1533 // assumes the object in memory is aligned to the natural alignment. 1534 unsigned AddrSpace = Ty->getPointerAddressSpace(); 1535 if (!NullPointerIsDefined(Lp->getHeader()->getParent(), AddrSpace) && 1536 (Stride == 1 || Stride == -1)) 1537 return Stride; 1538 1539 if (Assume) { 1540 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW); 1541 LLVM_DEBUG(dbgs() << "LAA: Pointer may wrap:\n" 1542 << "LAA: Pointer: " << *Ptr << "\n" 1543 << "LAA: SCEV: " << *AR << "\n" 1544 << "LAA: Added an overflow assumption\n"); 1545 return Stride; 1546 } 1547 LLVM_DEBUG( 1548 dbgs() << "LAA: Bad stride - Pointer may wrap in the address space " 1549 << *Ptr << " SCEV: " << *AR << "\n"); 1550 return std::nullopt; 1551 } 1552 1553 std::optional<int> llvm::getPointersDiff(Type *ElemTyA, Value *PtrA, 1554 Type *ElemTyB, Value *PtrB, 1555 const DataLayout &DL, 1556 ScalarEvolution &SE, bool StrictCheck, 1557 bool CheckType) { 1558 assert(PtrA && PtrB && "Expected non-nullptr pointers."); 1559 1560 // Make sure that A and B are different pointers. 1561 if (PtrA == PtrB) 1562 return 0; 1563 1564 // Make sure that the element types are the same if required. 1565 if (CheckType && ElemTyA != ElemTyB) 1566 return std::nullopt; 1567 1568 unsigned ASA = PtrA->getType()->getPointerAddressSpace(); 1569 unsigned ASB = PtrB->getType()->getPointerAddressSpace(); 1570 1571 // Check that the address spaces match. 1572 if (ASA != ASB) 1573 return std::nullopt; 1574 unsigned IdxWidth = DL.getIndexSizeInBits(ASA); 1575 1576 APInt OffsetA(IdxWidth, 0), OffsetB(IdxWidth, 0); 1577 const Value *PtrA1 = 1578 PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA); 1579 const Value *PtrB1 = 1580 PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB); 1581 1582 int Val; 1583 if (PtrA1 == PtrB1) { 1584 // Retrieve the address space again as pointer stripping now tracks through 1585 // `addrspacecast`. 1586 ASA = cast<PointerType>(PtrA1->getType())->getAddressSpace(); 1587 ASB = cast<PointerType>(PtrB1->getType())->getAddressSpace(); 1588 // Check that the address spaces match and that the pointers are valid. 1589 if (ASA != ASB) 1590 return std::nullopt; 1591 1592 IdxWidth = DL.getIndexSizeInBits(ASA); 1593 OffsetA = OffsetA.sextOrTrunc(IdxWidth); 1594 OffsetB = OffsetB.sextOrTrunc(IdxWidth); 1595 1596 OffsetB -= OffsetA; 1597 Val = OffsetB.getSExtValue(); 1598 } else { 1599 // Otherwise compute the distance with SCEV between the base pointers. 1600 const SCEV *PtrSCEVA = SE.getSCEV(PtrA); 1601 const SCEV *PtrSCEVB = SE.getSCEV(PtrB); 1602 const auto *Diff = 1603 dyn_cast<SCEVConstant>(SE.getMinusSCEV(PtrSCEVB, PtrSCEVA)); 1604 if (!Diff) 1605 return std::nullopt; 1606 Val = Diff->getAPInt().getSExtValue(); 1607 } 1608 int Size = DL.getTypeStoreSize(ElemTyA); 1609 int Dist = Val / Size; 1610 1611 // Ensure that the calculated distance matches the type-based one after all 1612 // the bitcasts removal in the provided pointers. 1613 if (!StrictCheck || Dist * Size == Val) 1614 return Dist; 1615 return std::nullopt; 1616 } 1617 1618 bool llvm::sortPtrAccesses(ArrayRef<Value *> VL, Type *ElemTy, 1619 const DataLayout &DL, ScalarEvolution &SE, 1620 SmallVectorImpl<unsigned> &SortedIndices) { 1621 assert(llvm::all_of( 1622 VL, [](const Value *V) { return V->getType()->isPointerTy(); }) && 1623 "Expected list of pointer operands."); 1624 // Walk over the pointers, and map each of them to an offset relative to 1625 // first pointer in the array. 1626 Value *Ptr0 = VL[0]; 1627 1628 using DistOrdPair = std::pair<int64_t, int>; 1629 auto Compare = llvm::less_first(); 1630 std::set<DistOrdPair, decltype(Compare)> Offsets(Compare); 1631 Offsets.emplace(0, 0); 1632 bool IsConsecutive = true; 1633 for (auto [Idx, Ptr] : drop_begin(enumerate(VL))) { 1634 std::optional<int> Diff = getPointersDiff(ElemTy, Ptr0, ElemTy, Ptr, DL, SE, 1635 /*StrictCheck=*/true); 1636 if (!Diff) 1637 return false; 1638 1639 // Check if the pointer with the same offset is found. 1640 int64_t Offset = *Diff; 1641 auto [It, IsInserted] = Offsets.emplace(Offset, Idx); 1642 if (!IsInserted) 1643 return false; 1644 // Consecutive order if the inserted element is the last one. 1645 IsConsecutive &= std::next(It) == Offsets.end(); 1646 } 1647 SortedIndices.clear(); 1648 if (!IsConsecutive) { 1649 // Fill SortedIndices array only if it is non-consecutive. 1650 SortedIndices.resize(VL.size()); 1651 for (auto [Idx, Off] : enumerate(Offsets)) 1652 SortedIndices[Idx] = Off.second; 1653 } 1654 return true; 1655 } 1656 1657 /// Returns true if the memory operations \p A and \p B are consecutive. 1658 bool llvm::isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL, 1659 ScalarEvolution &SE, bool CheckType) { 1660 Value *PtrA = getLoadStorePointerOperand(A); 1661 Value *PtrB = getLoadStorePointerOperand(B); 1662 if (!PtrA || !PtrB) 1663 return false; 1664 Type *ElemTyA = getLoadStoreType(A); 1665 Type *ElemTyB = getLoadStoreType(B); 1666 std::optional<int> Diff = 1667 getPointersDiff(ElemTyA, PtrA, ElemTyB, PtrB, DL, SE, 1668 /*StrictCheck=*/true, CheckType); 1669 return Diff && *Diff == 1; 1670 } 1671 1672 void MemoryDepChecker::addAccess(StoreInst *SI) { 1673 visitPointers(SI->getPointerOperand(), *InnermostLoop, 1674 [this, SI](Value *Ptr) { 1675 Accesses[MemAccessInfo(Ptr, true)].push_back(AccessIdx); 1676 InstMap.push_back(SI); 1677 ++AccessIdx; 1678 }); 1679 } 1680 1681 void MemoryDepChecker::addAccess(LoadInst *LI) { 1682 visitPointers(LI->getPointerOperand(), *InnermostLoop, 1683 [this, LI](Value *Ptr) { 1684 Accesses[MemAccessInfo(Ptr, false)].push_back(AccessIdx); 1685 InstMap.push_back(LI); 1686 ++AccessIdx; 1687 }); 1688 } 1689 1690 MemoryDepChecker::VectorizationSafetyStatus 1691 MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type) { 1692 switch (Type) { 1693 case NoDep: 1694 case Forward: 1695 case BackwardVectorizable: 1696 return VectorizationSafetyStatus::Safe; 1697 1698 case Unknown: 1699 return VectorizationSafetyStatus::PossiblySafeWithRtChecks; 1700 case ForwardButPreventsForwarding: 1701 case Backward: 1702 case BackwardVectorizableButPreventsForwarding: 1703 case IndirectUnsafe: 1704 return VectorizationSafetyStatus::Unsafe; 1705 } 1706 llvm_unreachable("unexpected DepType!"); 1707 } 1708 1709 bool MemoryDepChecker::Dependence::isBackward() const { 1710 switch (Type) { 1711 case NoDep: 1712 case Forward: 1713 case ForwardButPreventsForwarding: 1714 case Unknown: 1715 case IndirectUnsafe: 1716 return false; 1717 1718 case BackwardVectorizable: 1719 case Backward: 1720 case BackwardVectorizableButPreventsForwarding: 1721 return true; 1722 } 1723 llvm_unreachable("unexpected DepType!"); 1724 } 1725 1726 bool MemoryDepChecker::Dependence::isPossiblyBackward() const { 1727 return isBackward() || Type == Unknown || Type == IndirectUnsafe; 1728 } 1729 1730 bool MemoryDepChecker::Dependence::isForward() const { 1731 switch (Type) { 1732 case Forward: 1733 case ForwardButPreventsForwarding: 1734 return true; 1735 1736 case NoDep: 1737 case Unknown: 1738 case BackwardVectorizable: 1739 case Backward: 1740 case BackwardVectorizableButPreventsForwarding: 1741 case IndirectUnsafe: 1742 return false; 1743 } 1744 llvm_unreachable("unexpected DepType!"); 1745 } 1746 1747 bool MemoryDepChecker::couldPreventStoreLoadForward(uint64_t Distance, 1748 uint64_t TypeByteSize) { 1749 // If loads occur at a distance that is not a multiple of a feasible vector 1750 // factor store-load forwarding does not take place. 1751 // Positive dependences might cause troubles because vectorizing them might 1752 // prevent store-load forwarding making vectorized code run a lot slower. 1753 // a[i] = a[i-3] ^ a[i-8]; 1754 // The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and 1755 // hence on your typical architecture store-load forwarding does not take 1756 // place. Vectorizing in such cases does not make sense. 1757 // Store-load forwarding distance. 1758 1759 // After this many iterations store-to-load forwarding conflicts should not 1760 // cause any slowdowns. 1761 const uint64_t NumItersForStoreLoadThroughMemory = 8 * TypeByteSize; 1762 // Maximum vector factor. 1763 uint64_t MaxVFWithoutSLForwardIssues = std::min( 1764 VectorizerParams::MaxVectorWidth * TypeByteSize, MinDepDistBytes); 1765 1766 // Compute the smallest VF at which the store and load would be misaligned. 1767 for (uint64_t VF = 2 * TypeByteSize; VF <= MaxVFWithoutSLForwardIssues; 1768 VF *= 2) { 1769 // If the number of vector iteration between the store and the load are 1770 // small we could incur conflicts. 1771 if (Distance % VF && Distance / VF < NumItersForStoreLoadThroughMemory) { 1772 MaxVFWithoutSLForwardIssues = (VF >> 1); 1773 break; 1774 } 1775 } 1776 1777 if (MaxVFWithoutSLForwardIssues < 2 * TypeByteSize) { 1778 LLVM_DEBUG( 1779 dbgs() << "LAA: Distance " << Distance 1780 << " that could cause a store-load forwarding conflict\n"); 1781 return true; 1782 } 1783 1784 if (MaxVFWithoutSLForwardIssues < MinDepDistBytes && 1785 MaxVFWithoutSLForwardIssues != 1786 VectorizerParams::MaxVectorWidth * TypeByteSize) 1787 MinDepDistBytes = MaxVFWithoutSLForwardIssues; 1788 return false; 1789 } 1790 1791 void MemoryDepChecker::mergeInStatus(VectorizationSafetyStatus S) { 1792 if (Status < S) 1793 Status = S; 1794 } 1795 1796 /// Given a dependence-distance \p Dist between two 1797 /// memory accesses, that have strides in the same direction whose absolute 1798 /// value of the maximum stride is given in \p MaxStride, and that have the same 1799 /// type size \p TypeByteSize, in a loop whose maximum backedge taken count is 1800 /// \p MaxBTC, check if it is possible to prove statically that the dependence 1801 /// distance is larger than the range that the accesses will travel through the 1802 /// execution of the loop. If so, return true; false otherwise. This is useful 1803 /// for example in loops such as the following (PR31098): 1804 /// for (i = 0; i < D; ++i) { 1805 /// = out[i]; 1806 /// out[i+D] = 1807 /// } 1808 static bool isSafeDependenceDistance(const DataLayout &DL, ScalarEvolution &SE, 1809 const SCEV &MaxBTC, const SCEV &Dist, 1810 uint64_t MaxStride, 1811 uint64_t TypeByteSize) { 1812 1813 // If we can prove that 1814 // (**) |Dist| > MaxBTC * Step 1815 // where Step is the absolute stride of the memory accesses in bytes, 1816 // then there is no dependence. 1817 // 1818 // Rationale: 1819 // We basically want to check if the absolute distance (|Dist/Step|) 1820 // is >= the loop iteration count (or > MaxBTC). 1821 // This is equivalent to the Strong SIV Test (Practical Dependence Testing, 1822 // Section 4.2.1); Note, that for vectorization it is sufficient to prove 1823 // that the dependence distance is >= VF; This is checked elsewhere. 1824 // But in some cases we can prune dependence distances early, and 1825 // even before selecting the VF, and without a runtime test, by comparing 1826 // the distance against the loop iteration count. Since the vectorized code 1827 // will be executed only if LoopCount >= VF, proving distance >= LoopCount 1828 // also guarantees that distance >= VF. 1829 // 1830 const uint64_t ByteStride = MaxStride * TypeByteSize; 1831 const SCEV *Step = SE.getConstant(MaxBTC.getType(), ByteStride); 1832 const SCEV *Product = SE.getMulExpr(&MaxBTC, Step); 1833 1834 const SCEV *CastedDist = &Dist; 1835 const SCEV *CastedProduct = Product; 1836 uint64_t DistTypeSizeBits = DL.getTypeSizeInBits(Dist.getType()); 1837 uint64_t ProductTypeSizeBits = DL.getTypeSizeInBits(Product->getType()); 1838 1839 // The dependence distance can be positive/negative, so we sign extend Dist; 1840 // The multiplication of the absolute stride in bytes and the 1841 // backedgeTakenCount is non-negative, so we zero extend Product. 1842 if (DistTypeSizeBits > ProductTypeSizeBits) 1843 CastedProduct = SE.getZeroExtendExpr(Product, Dist.getType()); 1844 else 1845 CastedDist = SE.getNoopOrSignExtend(&Dist, Product->getType()); 1846 1847 // Is Dist - (MaxBTC * Step) > 0 ? 1848 // (If so, then we have proven (**) because |Dist| >= Dist) 1849 const SCEV *Minus = SE.getMinusSCEV(CastedDist, CastedProduct); 1850 if (SE.isKnownPositive(Minus)) 1851 return true; 1852 1853 // Second try: Is -Dist - (MaxBTC * Step) > 0 ? 1854 // (If so, then we have proven (**) because |Dist| >= -1*Dist) 1855 const SCEV *NegDist = SE.getNegativeSCEV(CastedDist); 1856 Minus = SE.getMinusSCEV(NegDist, CastedProduct); 1857 return SE.isKnownPositive(Minus); 1858 } 1859 1860 /// Check the dependence for two accesses with the same stride \p Stride. 1861 /// \p Distance is the positive distance and \p TypeByteSize is type size in 1862 /// bytes. 1863 /// 1864 /// \returns true if they are independent. 1865 static bool areStridedAccessesIndependent(uint64_t Distance, uint64_t Stride, 1866 uint64_t TypeByteSize) { 1867 assert(Stride > 1 && "The stride must be greater than 1"); 1868 assert(TypeByteSize > 0 && "The type size in byte must be non-zero"); 1869 assert(Distance > 0 && "The distance must be non-zero"); 1870 1871 // Skip if the distance is not multiple of type byte size. 1872 if (Distance % TypeByteSize) 1873 return false; 1874 1875 uint64_t ScaledDist = Distance / TypeByteSize; 1876 1877 // No dependence if the scaled distance is not multiple of the stride. 1878 // E.g. 1879 // for (i = 0; i < 1024 ; i += 4) 1880 // A[i+2] = A[i] + 1; 1881 // 1882 // Two accesses in memory (scaled distance is 2, stride is 4): 1883 // | A[0] | | | | A[4] | | | | 1884 // | | | A[2] | | | | A[6] | | 1885 // 1886 // E.g. 1887 // for (i = 0; i < 1024 ; i += 3) 1888 // A[i+4] = A[i] + 1; 1889 // 1890 // Two accesses in memory (scaled distance is 4, stride is 3): 1891 // | A[0] | | | A[3] | | | A[6] | | | 1892 // | | | | | A[4] | | | A[7] | | 1893 return ScaledDist % Stride; 1894 } 1895 1896 std::variant<MemoryDepChecker::Dependence::DepType, 1897 MemoryDepChecker::DepDistanceStrideAndSizeInfo> 1898 MemoryDepChecker::getDependenceDistanceStrideAndSize( 1899 const AccessAnalysis::MemAccessInfo &A, Instruction *AInst, 1900 const AccessAnalysis::MemAccessInfo &B, Instruction *BInst) { 1901 const auto &DL = InnermostLoop->getHeader()->getDataLayout(); 1902 auto &SE = *PSE.getSE(); 1903 const auto &[APtr, AIsWrite] = A; 1904 const auto &[BPtr, BIsWrite] = B; 1905 1906 // Two reads are independent. 1907 if (!AIsWrite && !BIsWrite) 1908 return MemoryDepChecker::Dependence::NoDep; 1909 1910 Type *ATy = getLoadStoreType(AInst); 1911 Type *BTy = getLoadStoreType(BInst); 1912 1913 // We cannot check pointers in different address spaces. 1914 if (APtr->getType()->getPointerAddressSpace() != 1915 BPtr->getType()->getPointerAddressSpace()) 1916 return MemoryDepChecker::Dependence::Unknown; 1917 1918 std::optional<int64_t> StrideAPtr = 1919 getPtrStride(PSE, ATy, APtr, InnermostLoop, SymbolicStrides, true, true); 1920 std::optional<int64_t> StrideBPtr = 1921 getPtrStride(PSE, BTy, BPtr, InnermostLoop, SymbolicStrides, true, true); 1922 1923 const SCEV *Src = PSE.getSCEV(APtr); 1924 const SCEV *Sink = PSE.getSCEV(BPtr); 1925 1926 // If the induction step is negative we have to invert source and sink of the 1927 // dependence when measuring the distance between them. We should not swap 1928 // AIsWrite with BIsWrite, as their uses expect them in program order. 1929 if (StrideAPtr && *StrideAPtr < 0) { 1930 std::swap(Src, Sink); 1931 std::swap(AInst, BInst); 1932 std::swap(StrideAPtr, StrideBPtr); 1933 } 1934 1935 const SCEV *Dist = SE.getMinusSCEV(Sink, Src); 1936 1937 LLVM_DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink 1938 << "\n"); 1939 LLVM_DEBUG(dbgs() << "LAA: Distance for " << *AInst << " to " << *BInst 1940 << ": " << *Dist << "\n"); 1941 1942 // Check if we can prove that Sink only accesses memory after Src's end or 1943 // vice versa. At the moment this is limited to cases where either source or 1944 // sink are loop invariant to avoid compile-time increases. This is not 1945 // required for correctness. 1946 if (SE.isLoopInvariant(Src, InnermostLoop) || 1947 SE.isLoopInvariant(Sink, InnermostLoop)) { 1948 const auto &[SrcStart, SrcEnd] = 1949 getStartAndEndForAccess(InnermostLoop, Src, ATy, PSE, PointerBounds); 1950 const auto &[SinkStart, SinkEnd] = 1951 getStartAndEndForAccess(InnermostLoop, Sink, BTy, PSE, PointerBounds); 1952 if (!isa<SCEVCouldNotCompute>(SrcStart) && 1953 !isa<SCEVCouldNotCompute>(SrcEnd) && 1954 !isa<SCEVCouldNotCompute>(SinkStart) && 1955 !isa<SCEVCouldNotCompute>(SinkEnd)) { 1956 if (SE.isKnownPredicate(CmpInst::ICMP_ULE, SrcEnd, SinkStart)) 1957 return MemoryDepChecker::Dependence::NoDep; 1958 if (SE.isKnownPredicate(CmpInst::ICMP_ULE, SinkEnd, SrcStart)) 1959 return MemoryDepChecker::Dependence::NoDep; 1960 } 1961 } 1962 1963 // Need accesses with constant strides and the same direction for further 1964 // dependence analysis. We don't want to vectorize "A[B[i]] += ..." and 1965 // similar code or pointer arithmetic that could wrap in the address space. 1966 1967 // If either Src or Sink are not strided (i.e. not a non-wrapping AddRec) and 1968 // not loop-invariant (stride will be 0 in that case), we cannot analyze the 1969 // dependence further and also cannot generate runtime checks. 1970 if (!StrideAPtr || !StrideBPtr) { 1971 LLVM_DEBUG(dbgs() << "Pointer access with non-constant stride\n"); 1972 return MemoryDepChecker::Dependence::IndirectUnsafe; 1973 } 1974 1975 int64_t StrideAPtrInt = *StrideAPtr; 1976 int64_t StrideBPtrInt = *StrideBPtr; 1977 LLVM_DEBUG(dbgs() << "LAA: Src induction step: " << StrideAPtrInt 1978 << " Sink induction step: " << StrideBPtrInt << "\n"); 1979 // At least Src or Sink are loop invariant and the other is strided or 1980 // invariant. We can generate a runtime check to disambiguate the accesses. 1981 if (StrideAPtrInt == 0 || StrideBPtrInt == 0) 1982 return MemoryDepChecker::Dependence::Unknown; 1983 1984 // Both Src and Sink have a constant stride, check if they are in the same 1985 // direction. 1986 if ((StrideAPtrInt > 0 && StrideBPtrInt < 0) || 1987 (StrideAPtrInt < 0 && StrideBPtrInt > 0)) { 1988 LLVM_DEBUG( 1989 dbgs() << "Pointer access with strides in different directions\n"); 1990 return MemoryDepChecker::Dependence::Unknown; 1991 } 1992 1993 uint64_t TypeByteSize = DL.getTypeAllocSize(ATy); 1994 bool HasSameSize = 1995 DL.getTypeStoreSizeInBits(ATy) == DL.getTypeStoreSizeInBits(BTy); 1996 if (!HasSameSize) 1997 TypeByteSize = 0; 1998 return DepDistanceStrideAndSizeInfo(Dist, std::abs(StrideAPtrInt), 1999 std::abs(StrideBPtrInt), TypeByteSize, 2000 AIsWrite, BIsWrite); 2001 } 2002 2003 MemoryDepChecker::Dependence::DepType 2004 MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx, 2005 const MemAccessInfo &B, unsigned BIdx) { 2006 assert(AIdx < BIdx && "Must pass arguments in program order"); 2007 2008 // Get the dependence distance, stride, type size and what access writes for 2009 // the dependence between A and B. 2010 auto Res = 2011 getDependenceDistanceStrideAndSize(A, InstMap[AIdx], B, InstMap[BIdx]); 2012 if (std::holds_alternative<Dependence::DepType>(Res)) 2013 return std::get<Dependence::DepType>(Res); 2014 2015 auto &[Dist, StrideA, StrideB, TypeByteSize, AIsWrite, BIsWrite] = 2016 std::get<DepDistanceStrideAndSizeInfo>(Res); 2017 bool HasSameSize = TypeByteSize > 0; 2018 2019 std::optional<uint64_t> CommonStride = 2020 StrideA == StrideB ? std::make_optional(StrideA) : std::nullopt; 2021 if (isa<SCEVCouldNotCompute>(Dist)) { 2022 // TODO: Relax requirement that there is a common stride to retry with 2023 // non-constant distance dependencies. 2024 FoundNonConstantDistanceDependence |= CommonStride.has_value(); 2025 LLVM_DEBUG(dbgs() << "LAA: Dependence because of uncomputable distance.\n"); 2026 return Dependence::Unknown; 2027 } 2028 2029 ScalarEvolution &SE = *PSE.getSE(); 2030 auto &DL = InnermostLoop->getHeader()->getDataLayout(); 2031 uint64_t MaxStride = std::max(StrideA, StrideB); 2032 2033 // If the distance between the acecsses is larger than their maximum absolute 2034 // stride multiplied by the symbolic maximum backedge taken count (which is an 2035 // upper bound of the number of iterations), the accesses are independet, i.e. 2036 // they are far enough appart that accesses won't access the same location 2037 // across all loop ierations. 2038 if (HasSameSize && isSafeDependenceDistance( 2039 DL, SE, *(PSE.getSymbolicMaxBackedgeTakenCount()), 2040 *Dist, MaxStride, TypeByteSize)) 2041 return Dependence::NoDep; 2042 2043 const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist); 2044 2045 // Attempt to prove strided accesses independent. 2046 if (C) { 2047 const APInt &Val = C->getAPInt(); 2048 int64_t Distance = Val.getSExtValue(); 2049 2050 // If the distance between accesses and their strides are known constants, 2051 // check whether the accesses interlace each other. 2052 if (std::abs(Distance) > 0 && CommonStride && *CommonStride > 1 && 2053 HasSameSize && 2054 areStridedAccessesIndependent(std::abs(Distance), *CommonStride, 2055 TypeByteSize)) { 2056 LLVM_DEBUG(dbgs() << "LAA: Strided accesses are independent\n"); 2057 return Dependence::NoDep; 2058 } 2059 } else 2060 Dist = SE.applyLoopGuards(Dist, InnermostLoop); 2061 2062 // Negative distances are not plausible dependencies. 2063 if (SE.isKnownNonPositive(Dist)) { 2064 if (SE.isKnownNonNegative(Dist)) { 2065 if (HasSameSize) { 2066 // Write to the same location with the same size. 2067 return Dependence::Forward; 2068 } 2069 LLVM_DEBUG(dbgs() << "LAA: possibly zero dependence difference but " 2070 "different type sizes\n"); 2071 return Dependence::Unknown; 2072 } 2073 2074 bool IsTrueDataDependence = (AIsWrite && !BIsWrite); 2075 // Check if the first access writes to a location that is read in a later 2076 // iteration, where the distance between them is not a multiple of a vector 2077 // factor and relatively small. 2078 // 2079 // NOTE: There is no need to update MaxSafeVectorWidthInBits after call to 2080 // couldPreventStoreLoadForward, even if it changed MinDepDistBytes, since a 2081 // forward dependency will allow vectorization using any width. 2082 2083 if (IsTrueDataDependence && EnableForwardingConflictDetection) { 2084 if (!C) { 2085 // TODO: FoundNonConstantDistanceDependence is used as a necessary 2086 // condition to consider retrying with runtime checks. Historically, we 2087 // did not set it when strides were different but there is no inherent 2088 // reason to. 2089 FoundNonConstantDistanceDependence |= CommonStride.has_value(); 2090 return Dependence::Unknown; 2091 } 2092 if (!HasSameSize || 2093 couldPreventStoreLoadForward(C->getAPInt().abs().getZExtValue(), 2094 TypeByteSize)) { 2095 LLVM_DEBUG( 2096 dbgs() << "LAA: Forward but may prevent st->ld forwarding\n"); 2097 return Dependence::ForwardButPreventsForwarding; 2098 } 2099 } 2100 2101 LLVM_DEBUG(dbgs() << "LAA: Dependence is negative\n"); 2102 return Dependence::Forward; 2103 } 2104 2105 int64_t MinDistance = SE.getSignedRangeMin(Dist).getSExtValue(); 2106 // Below we only handle strictly positive distances. 2107 if (MinDistance <= 0) { 2108 FoundNonConstantDistanceDependence |= CommonStride.has_value(); 2109 return Dependence::Unknown; 2110 } 2111 2112 if (!isa<SCEVConstant>(Dist)) { 2113 // Previously this case would be treated as Unknown, possibly setting 2114 // FoundNonConstantDistanceDependence to force re-trying with runtime 2115 // checks. Until the TODO below is addressed, set it here to preserve 2116 // original behavior w.r.t. re-trying with runtime checks. 2117 // TODO: FoundNonConstantDistanceDependence is used as a necessary 2118 // condition to consider retrying with runtime checks. Historically, we 2119 // did not set it when strides were different but there is no inherent 2120 // reason to. 2121 FoundNonConstantDistanceDependence |= CommonStride.has_value(); 2122 } 2123 2124 if (!HasSameSize) { 2125 LLVM_DEBUG(dbgs() << "LAA: ReadWrite-Write positive dependency with " 2126 "different type sizes\n"); 2127 return Dependence::Unknown; 2128 } 2129 2130 if (!CommonStride) 2131 return Dependence::Unknown; 2132 2133 // Bail out early if passed-in parameters make vectorization not feasible. 2134 unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ? 2135 VectorizerParams::VectorizationFactor : 1); 2136 unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ? 2137 VectorizerParams::VectorizationInterleave : 1); 2138 // The minimum number of iterations for a vectorized/unrolled version. 2139 unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U); 2140 2141 // It's not vectorizable if the distance is smaller than the minimum distance 2142 // needed for a vectroized/unrolled version. Vectorizing one iteration in 2143 // front needs TypeByteSize * Stride. Vectorizing the last iteration needs 2144 // TypeByteSize (No need to plus the last gap distance). 2145 // 2146 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes. 2147 // foo(int *A) { 2148 // int *B = (int *)((char *)A + 14); 2149 // for (i = 0 ; i < 1024 ; i += 2) 2150 // B[i] = A[i] + 1; 2151 // } 2152 // 2153 // Two accesses in memory (stride is 2): 2154 // | A[0] | | A[2] | | A[4] | | A[6] | | 2155 // | B[0] | | B[2] | | B[4] | 2156 // 2157 // MinDistance needs for vectorizing iterations except the last iteration: 2158 // 4 * 2 * (MinNumIter - 1). MinDistance needs for the last iteration: 4. 2159 // So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4. 2160 // 2161 // If MinNumIter is 2, it is vectorizable as the minimum distance needed is 2162 // 12, which is less than distance. 2163 // 2164 // If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4), 2165 // the minimum distance needed is 28, which is greater than distance. It is 2166 // not safe to do vectorization. 2167 2168 // We know that Dist is positive, but it may not be constant. Use the signed 2169 // minimum for computations below, as this ensures we compute the closest 2170 // possible dependence distance. 2171 uint64_t MinDistanceNeeded = 2172 TypeByteSize * *CommonStride * (MinNumIter - 1) + TypeByteSize; 2173 if (MinDistanceNeeded > static_cast<uint64_t>(MinDistance)) { 2174 if (!isa<SCEVConstant>(Dist)) { 2175 // For non-constant distances, we checked the lower bound of the 2176 // dependence distance and the distance may be larger at runtime (and safe 2177 // for vectorization). Classify it as Unknown, so we re-try with runtime 2178 // checks. 2179 return Dependence::Unknown; 2180 } 2181 LLVM_DEBUG(dbgs() << "LAA: Failure because of positive minimum distance " 2182 << MinDistance << '\n'); 2183 return Dependence::Backward; 2184 } 2185 2186 // Unsafe if the minimum distance needed is greater than smallest dependence 2187 // distance distance. 2188 if (MinDistanceNeeded > MinDepDistBytes) { 2189 LLVM_DEBUG(dbgs() << "LAA: Failure because it needs at least " 2190 << MinDistanceNeeded << " size in bytes\n"); 2191 return Dependence::Backward; 2192 } 2193 2194 // Positive distance bigger than max vectorization factor. 2195 // FIXME: Should use max factor instead of max distance in bytes, which could 2196 // not handle different types. 2197 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes. 2198 // void foo (int *A, char *B) { 2199 // for (unsigned i = 0; i < 1024; i++) { 2200 // A[i+2] = A[i] + 1; 2201 // B[i+2] = B[i] + 1; 2202 // } 2203 // } 2204 // 2205 // This case is currently unsafe according to the max safe distance. If we 2206 // analyze the two accesses on array B, the max safe dependence distance 2207 // is 2. Then we analyze the accesses on array A, the minimum distance needed 2208 // is 8, which is less than 2 and forbidden vectorization, But actually 2209 // both A and B could be vectorized by 2 iterations. 2210 MinDepDistBytes = 2211 std::min(static_cast<uint64_t>(MinDistance), MinDepDistBytes); 2212 2213 bool IsTrueDataDependence = (!AIsWrite && BIsWrite); 2214 uint64_t MinDepDistBytesOld = MinDepDistBytes; 2215 if (IsTrueDataDependence && EnableForwardingConflictDetection && 2216 isa<SCEVConstant>(Dist) && 2217 couldPreventStoreLoadForward(MinDistance, TypeByteSize)) { 2218 // Sanity check that we didn't update MinDepDistBytes when calling 2219 // couldPreventStoreLoadForward 2220 assert(MinDepDistBytes == MinDepDistBytesOld && 2221 "An update to MinDepDistBytes requires an update to " 2222 "MaxSafeVectorWidthInBits"); 2223 (void)MinDepDistBytesOld; 2224 return Dependence::BackwardVectorizableButPreventsForwarding; 2225 } 2226 2227 // An update to MinDepDistBytes requires an update to MaxSafeVectorWidthInBits 2228 // since there is a backwards dependency. 2229 uint64_t MaxVF = MinDepDistBytes / (TypeByteSize * *CommonStride); 2230 LLVM_DEBUG(dbgs() << "LAA: Positive min distance " << MinDistance 2231 << " with max VF = " << MaxVF << '\n'); 2232 2233 uint64_t MaxVFInBits = MaxVF * TypeByteSize * 8; 2234 if (!isa<SCEVConstant>(Dist) && MaxVFInBits < MaxTargetVectorWidthInBits) { 2235 // For non-constant distances, we checked the lower bound of the dependence 2236 // distance and the distance may be larger at runtime (and safe for 2237 // vectorization). Classify it as Unknown, so we re-try with runtime checks. 2238 return Dependence::Unknown; 2239 } 2240 2241 MaxSafeVectorWidthInBits = std::min(MaxSafeVectorWidthInBits, MaxVFInBits); 2242 return Dependence::BackwardVectorizable; 2243 } 2244 2245 bool MemoryDepChecker::areDepsSafe(const DepCandidates &AccessSets, 2246 const MemAccessInfoList &CheckDeps) { 2247 2248 MinDepDistBytes = -1; 2249 SmallPtrSet<MemAccessInfo, 8> Visited; 2250 for (MemAccessInfo CurAccess : CheckDeps) { 2251 if (Visited.count(CurAccess)) 2252 continue; 2253 2254 // Get the relevant memory access set. 2255 EquivalenceClasses<MemAccessInfo>::iterator I = 2256 AccessSets.findValue(AccessSets.getLeaderValue(CurAccess)); 2257 2258 // Check accesses within this set. 2259 EquivalenceClasses<MemAccessInfo>::member_iterator AI = 2260 AccessSets.member_begin(I); 2261 EquivalenceClasses<MemAccessInfo>::member_iterator AE = 2262 AccessSets.member_end(); 2263 2264 // Check every access pair. 2265 while (AI != AE) { 2266 Visited.insert(*AI); 2267 bool AIIsWrite = AI->getInt(); 2268 // Check loads only against next equivalent class, but stores also against 2269 // other stores in the same equivalence class - to the same address. 2270 EquivalenceClasses<MemAccessInfo>::member_iterator OI = 2271 (AIIsWrite ? AI : std::next(AI)); 2272 while (OI != AE) { 2273 // Check every accessing instruction pair in program order. 2274 for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(), 2275 I1E = Accesses[*AI].end(); I1 != I1E; ++I1) 2276 // Scan all accesses of another equivalence class, but only the next 2277 // accesses of the same equivalent class. 2278 for (std::vector<unsigned>::iterator 2279 I2 = (OI == AI ? std::next(I1) : Accesses[*OI].begin()), 2280 I2E = (OI == AI ? I1E : Accesses[*OI].end()); 2281 I2 != I2E; ++I2) { 2282 auto A = std::make_pair(&*AI, *I1); 2283 auto B = std::make_pair(&*OI, *I2); 2284 2285 assert(*I1 != *I2); 2286 if (*I1 > *I2) 2287 std::swap(A, B); 2288 2289 Dependence::DepType Type = 2290 isDependent(*A.first, A.second, *B.first, B.second); 2291 mergeInStatus(Dependence::isSafeForVectorization(Type)); 2292 2293 // Gather dependences unless we accumulated MaxDependences 2294 // dependences. In that case return as soon as we find the first 2295 // unsafe dependence. This puts a limit on this quadratic 2296 // algorithm. 2297 if (RecordDependences) { 2298 if (Type != Dependence::NoDep) 2299 Dependences.emplace_back(A.second, B.second, Type); 2300 2301 if (Dependences.size() >= MaxDependences) { 2302 RecordDependences = false; 2303 Dependences.clear(); 2304 LLVM_DEBUG(dbgs() 2305 << "Too many dependences, stopped recording\n"); 2306 } 2307 } 2308 if (!RecordDependences && !isSafeForVectorization()) 2309 return false; 2310 } 2311 ++OI; 2312 } 2313 ++AI; 2314 } 2315 } 2316 2317 LLVM_DEBUG(dbgs() << "Total Dependences: " << Dependences.size() << "\n"); 2318 return isSafeForVectorization(); 2319 } 2320 2321 SmallVector<Instruction *, 4> 2322 MemoryDepChecker::getInstructionsForAccess(Value *Ptr, bool IsWrite) const { 2323 MemAccessInfo Access(Ptr, IsWrite); 2324 auto &IndexVector = Accesses.find(Access)->second; 2325 2326 SmallVector<Instruction *, 4> Insts; 2327 transform(IndexVector, 2328 std::back_inserter(Insts), 2329 [&](unsigned Idx) { return this->InstMap[Idx]; }); 2330 return Insts; 2331 } 2332 2333 const char *MemoryDepChecker::Dependence::DepName[] = { 2334 "NoDep", 2335 "Unknown", 2336 "IndirectUnsafe", 2337 "Forward", 2338 "ForwardButPreventsForwarding", 2339 "Backward", 2340 "BackwardVectorizable", 2341 "BackwardVectorizableButPreventsForwarding"}; 2342 2343 void MemoryDepChecker::Dependence::print( 2344 raw_ostream &OS, unsigned Depth, 2345 const SmallVectorImpl<Instruction *> &Instrs) const { 2346 OS.indent(Depth) << DepName[Type] << ":\n"; 2347 OS.indent(Depth + 2) << *Instrs[Source] << " -> \n"; 2348 OS.indent(Depth + 2) << *Instrs[Destination] << "\n"; 2349 } 2350 2351 bool LoopAccessInfo::canAnalyzeLoop() { 2352 // We need to have a loop header. 2353 LLVM_DEBUG(dbgs() << "\nLAA: Checking a loop in '" 2354 << TheLoop->getHeader()->getParent()->getName() << "' from " 2355 << TheLoop->getLocStr() << "\n"); 2356 2357 // We can only analyze innermost loops. 2358 if (!TheLoop->isInnermost()) { 2359 LLVM_DEBUG(dbgs() << "LAA: loop is not the innermost loop\n"); 2360 recordAnalysis("NotInnerMostLoop") << "loop is not the innermost loop"; 2361 return false; 2362 } 2363 2364 // We must have a single backedge. 2365 if (TheLoop->getNumBackEdges() != 1) { 2366 LLVM_DEBUG( 2367 dbgs() << "LAA: loop control flow is not understood by analyzer\n"); 2368 recordAnalysis("CFGNotUnderstood") 2369 << "loop control flow is not understood by analyzer"; 2370 return false; 2371 } 2372 2373 // ScalarEvolution needs to be able to find the symbolic max backedge taken 2374 // count, which is an upper bound on the number of loop iterations. The loop 2375 // may execute fewer iterations, if it exits via an uncountable exit. 2376 const SCEV *ExitCount = PSE->getSymbolicMaxBackedgeTakenCount(); 2377 if (isa<SCEVCouldNotCompute>(ExitCount)) { 2378 recordAnalysis("CantComputeNumberOfIterations") 2379 << "could not determine number of loop iterations"; 2380 LLVM_DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n"); 2381 return false; 2382 } 2383 2384 LLVM_DEBUG(dbgs() << "LAA: Found an analyzable loop: " 2385 << TheLoop->getHeader()->getName() << "\n"); 2386 return true; 2387 } 2388 2389 bool LoopAccessInfo::analyzeLoop(AAResults *AA, const LoopInfo *LI, 2390 const TargetLibraryInfo *TLI, 2391 DominatorTree *DT) { 2392 // Holds the Load and Store instructions. 2393 SmallVector<LoadInst *, 16> Loads; 2394 SmallVector<StoreInst *, 16> Stores; 2395 SmallPtrSet<MDNode *, 8> LoopAliasScopes; 2396 2397 // Holds all the different accesses in the loop. 2398 unsigned NumReads = 0; 2399 unsigned NumReadWrites = 0; 2400 2401 bool HasComplexMemInst = false; 2402 2403 // A runtime check is only legal to insert if there are no convergent calls. 2404 HasConvergentOp = false; 2405 2406 PtrRtChecking->Pointers.clear(); 2407 PtrRtChecking->Need = false; 2408 2409 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 2410 2411 const bool EnableMemAccessVersioningOfLoop = 2412 EnableMemAccessVersioning && 2413 !TheLoop->getHeader()->getParent()->hasOptSize(); 2414 2415 // Traverse blocks in fixed RPOT order, regardless of their storage in the 2416 // loop info, as it may be arbitrary. 2417 LoopBlocksRPO RPOT(TheLoop); 2418 RPOT.perform(LI); 2419 for (BasicBlock *BB : RPOT) { 2420 // Scan the BB and collect legal loads and stores. Also detect any 2421 // convergent instructions. 2422 for (Instruction &I : *BB) { 2423 if (auto *Call = dyn_cast<CallBase>(&I)) { 2424 if (Call->isConvergent()) 2425 HasConvergentOp = true; 2426 } 2427 2428 // With both a non-vectorizable memory instruction and a convergent 2429 // operation, found in this loop, no reason to continue the search. 2430 if (HasComplexMemInst && HasConvergentOp) 2431 return false; 2432 2433 // Avoid hitting recordAnalysis multiple times. 2434 if (HasComplexMemInst) 2435 continue; 2436 2437 // Record alias scopes defined inside the loop. 2438 if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(&I)) 2439 for (Metadata *Op : Decl->getScopeList()->operands()) 2440 LoopAliasScopes.insert(cast<MDNode>(Op)); 2441 2442 // Many math library functions read the rounding mode. We will only 2443 // vectorize a loop if it contains known function calls that don't set 2444 // the flag. Therefore, it is safe to ignore this read from memory. 2445 auto *Call = dyn_cast<CallInst>(&I); 2446 if (Call && getVectorIntrinsicIDForCall(Call, TLI)) 2447 continue; 2448 2449 // If this is a load, save it. If this instruction can read from memory 2450 // but is not a load, then we quit. Notice that we don't handle function 2451 // calls that read or write. 2452 if (I.mayReadFromMemory()) { 2453 // If the function has an explicit vectorized counterpart, we can safely 2454 // assume that it can be vectorized. 2455 if (Call && !Call->isNoBuiltin() && Call->getCalledFunction() && 2456 !VFDatabase::getMappings(*Call).empty()) 2457 continue; 2458 2459 auto *Ld = dyn_cast<LoadInst>(&I); 2460 if (!Ld) { 2461 recordAnalysis("CantVectorizeInstruction", Ld) 2462 << "instruction cannot be vectorized"; 2463 HasComplexMemInst = true; 2464 continue; 2465 } 2466 if (!Ld->isSimple() && !IsAnnotatedParallel) { 2467 recordAnalysis("NonSimpleLoad", Ld) 2468 << "read with atomic ordering or volatile read"; 2469 LLVM_DEBUG(dbgs() << "LAA: Found a non-simple load.\n"); 2470 HasComplexMemInst = true; 2471 continue; 2472 } 2473 NumLoads++; 2474 Loads.push_back(Ld); 2475 DepChecker->addAccess(Ld); 2476 if (EnableMemAccessVersioningOfLoop) 2477 collectStridedAccess(Ld); 2478 continue; 2479 } 2480 2481 // Save 'store' instructions. Abort if other instructions write to memory. 2482 if (I.mayWriteToMemory()) { 2483 auto *St = dyn_cast<StoreInst>(&I); 2484 if (!St) { 2485 recordAnalysis("CantVectorizeInstruction", St) 2486 << "instruction cannot be vectorized"; 2487 HasComplexMemInst = true; 2488 continue; 2489 } 2490 if (!St->isSimple() && !IsAnnotatedParallel) { 2491 recordAnalysis("NonSimpleStore", St) 2492 << "write with atomic ordering or volatile write"; 2493 LLVM_DEBUG(dbgs() << "LAA: Found a non-simple store.\n"); 2494 HasComplexMemInst = true; 2495 continue; 2496 } 2497 NumStores++; 2498 Stores.push_back(St); 2499 DepChecker->addAccess(St); 2500 if (EnableMemAccessVersioningOfLoop) 2501 collectStridedAccess(St); 2502 } 2503 } // Next instr. 2504 } // Next block. 2505 2506 if (HasComplexMemInst) 2507 return false; 2508 2509 // Now we have two lists that hold the loads and the stores. 2510 // Next, we find the pointers that they use. 2511 2512 // Check if we see any stores. If there are no stores, then we don't 2513 // care if the pointers are *restrict*. 2514 if (!Stores.size()) { 2515 LLVM_DEBUG(dbgs() << "LAA: Found a read-only loop!\n"); 2516 return true; 2517 } 2518 2519 MemoryDepChecker::DepCandidates DependentAccesses; 2520 AccessAnalysis Accesses(TheLoop, AA, LI, DependentAccesses, *PSE, 2521 LoopAliasScopes); 2522 2523 // Holds the analyzed pointers. We don't want to call getUnderlyingObjects 2524 // multiple times on the same object. If the ptr is accessed twice, once 2525 // for read and once for write, it will only appear once (on the write 2526 // list). This is okay, since we are going to check for conflicts between 2527 // writes and between reads and writes, but not between reads and reads. 2528 SmallSet<std::pair<Value *, Type *>, 16> Seen; 2529 2530 // Record uniform store addresses to identify if we have multiple stores 2531 // to the same address. 2532 SmallPtrSet<Value *, 16> UniformStores; 2533 2534 for (StoreInst *ST : Stores) { 2535 Value *Ptr = ST->getPointerOperand(); 2536 2537 if (isInvariant(Ptr)) { 2538 // Record store instructions to loop invariant addresses 2539 StoresToInvariantAddresses.push_back(ST); 2540 HasStoreStoreDependenceInvolvingLoopInvariantAddress |= 2541 !UniformStores.insert(Ptr).second; 2542 } 2543 2544 // If we did *not* see this pointer before, insert it to the read-write 2545 // list. At this phase it is only a 'write' list. 2546 Type *AccessTy = getLoadStoreType(ST); 2547 if (Seen.insert({Ptr, AccessTy}).second) { 2548 ++NumReadWrites; 2549 2550 MemoryLocation Loc = MemoryLocation::get(ST); 2551 // The TBAA metadata could have a control dependency on the predication 2552 // condition, so we cannot rely on it when determining whether or not we 2553 // need runtime pointer checks. 2554 if (blockNeedsPredication(ST->getParent(), TheLoop, DT)) 2555 Loc.AATags.TBAA = nullptr; 2556 2557 visitPointers(const_cast<Value *>(Loc.Ptr), *TheLoop, 2558 [&Accesses, AccessTy, Loc](Value *Ptr) { 2559 MemoryLocation NewLoc = Loc.getWithNewPtr(Ptr); 2560 Accesses.addStore(NewLoc, AccessTy); 2561 }); 2562 } 2563 } 2564 2565 if (IsAnnotatedParallel) { 2566 LLVM_DEBUG( 2567 dbgs() << "LAA: A loop annotated parallel, ignore memory dependency " 2568 << "checks.\n"); 2569 return true; 2570 } 2571 2572 for (LoadInst *LD : Loads) { 2573 Value *Ptr = LD->getPointerOperand(); 2574 // If we did *not* see this pointer before, insert it to the 2575 // read list. If we *did* see it before, then it is already in 2576 // the read-write list. This allows us to vectorize expressions 2577 // such as A[i] += x; Because the address of A[i] is a read-write 2578 // pointer. This only works if the index of A[i] is consecutive. 2579 // If the address of i is unknown (for example A[B[i]]) then we may 2580 // read a few words, modify, and write a few words, and some of the 2581 // words may be written to the same address. 2582 bool IsReadOnlyPtr = false; 2583 Type *AccessTy = getLoadStoreType(LD); 2584 if (Seen.insert({Ptr, AccessTy}).second || 2585 !getPtrStride(*PSE, LD->getType(), Ptr, TheLoop, SymbolicStrides).value_or(0)) { 2586 ++NumReads; 2587 IsReadOnlyPtr = true; 2588 } 2589 2590 // See if there is an unsafe dependency between a load to a uniform address and 2591 // store to the same uniform address. 2592 if (UniformStores.count(Ptr)) { 2593 LLVM_DEBUG(dbgs() << "LAA: Found an unsafe dependency between a uniform " 2594 "load and uniform store to the same address!\n"); 2595 HasLoadStoreDependenceInvolvingLoopInvariantAddress = true; 2596 } 2597 2598 MemoryLocation Loc = MemoryLocation::get(LD); 2599 // The TBAA metadata could have a control dependency on the predication 2600 // condition, so we cannot rely on it when determining whether or not we 2601 // need runtime pointer checks. 2602 if (blockNeedsPredication(LD->getParent(), TheLoop, DT)) 2603 Loc.AATags.TBAA = nullptr; 2604 2605 visitPointers(const_cast<Value *>(Loc.Ptr), *TheLoop, 2606 [&Accesses, AccessTy, Loc, IsReadOnlyPtr](Value *Ptr) { 2607 MemoryLocation NewLoc = Loc.getWithNewPtr(Ptr); 2608 Accesses.addLoad(NewLoc, AccessTy, IsReadOnlyPtr); 2609 }); 2610 } 2611 2612 // If we write (or read-write) to a single destination and there are no 2613 // other reads in this loop then is it safe to vectorize. 2614 if (NumReadWrites == 1 && NumReads == 0) { 2615 LLVM_DEBUG(dbgs() << "LAA: Found a write-only loop!\n"); 2616 return true; 2617 } 2618 2619 // Build dependence sets and check whether we need a runtime pointer bounds 2620 // check. 2621 Accesses.buildDependenceSets(); 2622 2623 // Find pointers with computable bounds. We are going to use this information 2624 // to place a runtime bound check. 2625 Value *UncomputablePtr = nullptr; 2626 bool CanDoRTIfNeeded = 2627 Accesses.canCheckPtrAtRT(*PtrRtChecking, PSE->getSE(), TheLoop, 2628 SymbolicStrides, UncomputablePtr, false); 2629 if (!CanDoRTIfNeeded) { 2630 const auto *I = dyn_cast_or_null<Instruction>(UncomputablePtr); 2631 recordAnalysis("CantIdentifyArrayBounds", I) 2632 << "cannot identify array bounds"; 2633 LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because we can't find " 2634 << "the array bounds.\n"); 2635 return false; 2636 } 2637 2638 LLVM_DEBUG( 2639 dbgs() << "LAA: May be able to perform a memory runtime check if needed.\n"); 2640 2641 bool DepsAreSafe = true; 2642 if (Accesses.isDependencyCheckNeeded()) { 2643 LLVM_DEBUG(dbgs() << "LAA: Checking memory dependencies\n"); 2644 DepsAreSafe = DepChecker->areDepsSafe(DependentAccesses, 2645 Accesses.getDependenciesToCheck()); 2646 2647 if (!DepsAreSafe && DepChecker->shouldRetryWithRuntimeCheck()) { 2648 LLVM_DEBUG(dbgs() << "LAA: Retrying with memory checks\n"); 2649 2650 // Clear the dependency checks. We assume they are not needed. 2651 Accesses.resetDepChecks(*DepChecker); 2652 2653 PtrRtChecking->reset(); 2654 PtrRtChecking->Need = true; 2655 2656 auto *SE = PSE->getSE(); 2657 UncomputablePtr = nullptr; 2658 CanDoRTIfNeeded = Accesses.canCheckPtrAtRT( 2659 *PtrRtChecking, SE, TheLoop, SymbolicStrides, UncomputablePtr, true); 2660 2661 // Check that we found the bounds for the pointer. 2662 if (!CanDoRTIfNeeded) { 2663 auto *I = dyn_cast_or_null<Instruction>(UncomputablePtr); 2664 recordAnalysis("CantCheckMemDepsAtRunTime", I) 2665 << "cannot check memory dependencies at runtime"; 2666 LLVM_DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n"); 2667 return false; 2668 } 2669 DepsAreSafe = true; 2670 } 2671 } 2672 2673 if (HasConvergentOp) { 2674 recordAnalysis("CantInsertRuntimeCheckWithConvergent") 2675 << "cannot add control dependency to convergent operation"; 2676 LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because a runtime check " 2677 "would be needed with a convergent operation\n"); 2678 return false; 2679 } 2680 2681 if (DepsAreSafe) { 2682 LLVM_DEBUG( 2683 dbgs() << "LAA: No unsafe dependent memory operations in loop. We" 2684 << (PtrRtChecking->Need ? "" : " don't") 2685 << " need runtime memory checks.\n"); 2686 return true; 2687 } 2688 2689 emitUnsafeDependenceRemark(); 2690 return false; 2691 } 2692 2693 void LoopAccessInfo::emitUnsafeDependenceRemark() { 2694 const auto *Deps = getDepChecker().getDependences(); 2695 if (!Deps) 2696 return; 2697 const auto *Found = 2698 llvm::find_if(*Deps, [](const MemoryDepChecker::Dependence &D) { 2699 return MemoryDepChecker::Dependence::isSafeForVectorization(D.Type) != 2700 MemoryDepChecker::VectorizationSafetyStatus::Safe; 2701 }); 2702 if (Found == Deps->end()) 2703 return; 2704 MemoryDepChecker::Dependence Dep = *Found; 2705 2706 LLVM_DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n"); 2707 2708 // Emit remark for first unsafe dependence 2709 bool HasForcedDistribution = false; 2710 std::optional<const MDOperand *> Value = 2711 findStringMetadataForLoop(TheLoop, "llvm.loop.distribute.enable"); 2712 if (Value) { 2713 const MDOperand *Op = *Value; 2714 assert(Op && mdconst::hasa<ConstantInt>(*Op) && "invalid metadata"); 2715 HasForcedDistribution = mdconst::extract<ConstantInt>(*Op)->getZExtValue(); 2716 } 2717 2718 const std::string Info = 2719 HasForcedDistribution 2720 ? "unsafe dependent memory operations in loop." 2721 : "unsafe dependent memory operations in loop. Use " 2722 "#pragma clang loop distribute(enable) to allow loop distribution " 2723 "to attempt to isolate the offending operations into a separate " 2724 "loop"; 2725 OptimizationRemarkAnalysis &R = 2726 recordAnalysis("UnsafeDep", Dep.getDestination(getDepChecker())) << Info; 2727 2728 switch (Dep.Type) { 2729 case MemoryDepChecker::Dependence::NoDep: 2730 case MemoryDepChecker::Dependence::Forward: 2731 case MemoryDepChecker::Dependence::BackwardVectorizable: 2732 llvm_unreachable("Unexpected dependence"); 2733 case MemoryDepChecker::Dependence::Backward: 2734 R << "\nBackward loop carried data dependence."; 2735 break; 2736 case MemoryDepChecker::Dependence::ForwardButPreventsForwarding: 2737 R << "\nForward loop carried data dependence that prevents " 2738 "store-to-load forwarding."; 2739 break; 2740 case MemoryDepChecker::Dependence::BackwardVectorizableButPreventsForwarding: 2741 R << "\nBackward loop carried data dependence that prevents " 2742 "store-to-load forwarding."; 2743 break; 2744 case MemoryDepChecker::Dependence::IndirectUnsafe: 2745 R << "\nUnsafe indirect dependence."; 2746 break; 2747 case MemoryDepChecker::Dependence::Unknown: 2748 R << "\nUnknown data dependence."; 2749 break; 2750 } 2751 2752 if (Instruction *I = Dep.getSource(getDepChecker())) { 2753 DebugLoc SourceLoc = I->getDebugLoc(); 2754 if (auto *DD = dyn_cast_or_null<Instruction>(getPointerOperand(I))) 2755 SourceLoc = DD->getDebugLoc(); 2756 if (SourceLoc) 2757 R << " Memory location is the same as accessed at " 2758 << ore::NV("Location", SourceLoc); 2759 } 2760 } 2761 2762 bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop, 2763 DominatorTree *DT) { 2764 assert(TheLoop->contains(BB) && "Unknown block used"); 2765 2766 // Blocks that do not dominate the latch need predication. 2767 const BasicBlock *Latch = TheLoop->getLoopLatch(); 2768 return !DT->dominates(BB, Latch); 2769 } 2770 2771 OptimizationRemarkAnalysis & 2772 LoopAccessInfo::recordAnalysis(StringRef RemarkName, const Instruction *I) { 2773 assert(!Report && "Multiple reports generated"); 2774 2775 const Value *CodeRegion = TheLoop->getHeader(); 2776 DebugLoc DL = TheLoop->getStartLoc(); 2777 2778 if (I) { 2779 CodeRegion = I->getParent(); 2780 // If there is no debug location attached to the instruction, revert back to 2781 // using the loop's. 2782 if (I->getDebugLoc()) 2783 DL = I->getDebugLoc(); 2784 } 2785 2786 Report = std::make_unique<OptimizationRemarkAnalysis>(DEBUG_TYPE, RemarkName, DL, 2787 CodeRegion); 2788 return *Report; 2789 } 2790 2791 bool LoopAccessInfo::isInvariant(Value *V) const { 2792 auto *SE = PSE->getSE(); 2793 // TODO: Is this really what we want? Even without FP SCEV, we may want some 2794 // trivially loop-invariant FP values to be considered invariant. 2795 if (!SE->isSCEVable(V->getType())) 2796 return false; 2797 const SCEV *S = SE->getSCEV(V); 2798 return SE->isLoopInvariant(S, TheLoop); 2799 } 2800 2801 /// Find the operand of the GEP that should be checked for consecutive 2802 /// stores. This ignores trailing indices that have no effect on the final 2803 /// pointer. 2804 static unsigned getGEPInductionOperand(const GetElementPtrInst *Gep) { 2805 const DataLayout &DL = Gep->getDataLayout(); 2806 unsigned LastOperand = Gep->getNumOperands() - 1; 2807 TypeSize GEPAllocSize = DL.getTypeAllocSize(Gep->getResultElementType()); 2808 2809 // Walk backwards and try to peel off zeros. 2810 while (LastOperand > 1 && match(Gep->getOperand(LastOperand), m_Zero())) { 2811 // Find the type we're currently indexing into. 2812 gep_type_iterator GEPTI = gep_type_begin(Gep); 2813 std::advance(GEPTI, LastOperand - 2); 2814 2815 // If it's a type with the same allocation size as the result of the GEP we 2816 // can peel off the zero index. 2817 TypeSize ElemSize = GEPTI.isStruct() 2818 ? DL.getTypeAllocSize(GEPTI.getIndexedType()) 2819 : GEPTI.getSequentialElementStride(DL); 2820 if (ElemSize != GEPAllocSize) 2821 break; 2822 --LastOperand; 2823 } 2824 2825 return LastOperand; 2826 } 2827 2828 /// If the argument is a GEP, then returns the operand identified by 2829 /// getGEPInductionOperand. However, if there is some other non-loop-invariant 2830 /// operand, it returns that instead. 2831 static Value *stripGetElementPtr(Value *Ptr, ScalarEvolution *SE, Loop *Lp) { 2832 auto *GEP = dyn_cast<GetElementPtrInst>(Ptr); 2833 if (!GEP) 2834 return Ptr; 2835 2836 unsigned InductionOperand = getGEPInductionOperand(GEP); 2837 2838 // Check that all of the gep indices are uniform except for our induction 2839 // operand. 2840 for (unsigned I = 0, E = GEP->getNumOperands(); I != E; ++I) 2841 if (I != InductionOperand && 2842 !SE->isLoopInvariant(SE->getSCEV(GEP->getOperand(I)), Lp)) 2843 return Ptr; 2844 return GEP->getOperand(InductionOperand); 2845 } 2846 2847 /// Get the stride of a pointer access in a loop. Looks for symbolic 2848 /// strides "a[i*stride]". Returns the symbolic stride, or null otherwise. 2849 static const SCEV *getStrideFromPointer(Value *Ptr, ScalarEvolution *SE, Loop *Lp) { 2850 auto *PtrTy = dyn_cast<PointerType>(Ptr->getType()); 2851 if (!PtrTy || PtrTy->isAggregateType()) 2852 return nullptr; 2853 2854 // Try to remove a gep instruction to make the pointer (actually index at this 2855 // point) easier analyzable. If OrigPtr is equal to Ptr we are analyzing the 2856 // pointer, otherwise, we are analyzing the index. 2857 Value *OrigPtr = Ptr; 2858 2859 // The size of the pointer access. 2860 int64_t PtrAccessSize = 1; 2861 2862 Ptr = stripGetElementPtr(Ptr, SE, Lp); 2863 const SCEV *V = SE->getSCEV(Ptr); 2864 2865 if (Ptr != OrigPtr) 2866 // Strip off casts. 2867 while (const SCEVIntegralCastExpr *C = dyn_cast<SCEVIntegralCastExpr>(V)) 2868 V = C->getOperand(); 2869 2870 const SCEVAddRecExpr *S = dyn_cast<SCEVAddRecExpr>(V); 2871 if (!S) 2872 return nullptr; 2873 2874 // If the pointer is invariant then there is no stride and it makes no 2875 // sense to add it here. 2876 if (Lp != S->getLoop()) 2877 return nullptr; 2878 2879 V = S->getStepRecurrence(*SE); 2880 if (!V) 2881 return nullptr; 2882 2883 // Strip off the size of access multiplication if we are still analyzing the 2884 // pointer. 2885 if (OrigPtr == Ptr) { 2886 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(V)) { 2887 if (M->getOperand(0)->getSCEVType() != scConstant) 2888 return nullptr; 2889 2890 const APInt &APStepVal = cast<SCEVConstant>(M->getOperand(0))->getAPInt(); 2891 2892 // Huge step value - give up. 2893 if (APStepVal.getBitWidth() > 64) 2894 return nullptr; 2895 2896 int64_t StepVal = APStepVal.getSExtValue(); 2897 if (PtrAccessSize != StepVal) 2898 return nullptr; 2899 V = M->getOperand(1); 2900 } 2901 } 2902 2903 // Note that the restriction after this loop invariant check are only 2904 // profitability restrictions. 2905 if (!SE->isLoopInvariant(V, Lp)) 2906 return nullptr; 2907 2908 // Look for the loop invariant symbolic value. 2909 if (isa<SCEVUnknown>(V)) 2910 return V; 2911 2912 if (const auto *C = dyn_cast<SCEVIntegralCastExpr>(V)) 2913 if (isa<SCEVUnknown>(C->getOperand())) 2914 return V; 2915 2916 return nullptr; 2917 } 2918 2919 void LoopAccessInfo::collectStridedAccess(Value *MemAccess) { 2920 Value *Ptr = getLoadStorePointerOperand(MemAccess); 2921 if (!Ptr) 2922 return; 2923 2924 // Note: getStrideFromPointer is a *profitability* heuristic. We 2925 // could broaden the scope of values returned here - to anything 2926 // which happens to be loop invariant and contributes to the 2927 // computation of an interesting IV - but we chose not to as we 2928 // don't have a cost model here, and broadening the scope exposes 2929 // far too many unprofitable cases. 2930 const SCEV *StrideExpr = getStrideFromPointer(Ptr, PSE->getSE(), TheLoop); 2931 if (!StrideExpr) 2932 return; 2933 2934 LLVM_DEBUG(dbgs() << "LAA: Found a strided access that is a candidate for " 2935 "versioning:"); 2936 LLVM_DEBUG(dbgs() << " Ptr: " << *Ptr << " Stride: " << *StrideExpr << "\n"); 2937 2938 if (!SpeculateUnitStride) { 2939 LLVM_DEBUG(dbgs() << " Chose not to due to -laa-speculate-unit-stride\n"); 2940 return; 2941 } 2942 2943 // Avoid adding the "Stride == 1" predicate when we know that 2944 // Stride >= Trip-Count. Such a predicate will effectively optimize a single 2945 // or zero iteration loop, as Trip-Count <= Stride == 1. 2946 // 2947 // TODO: We are currently not making a very informed decision on when it is 2948 // beneficial to apply stride versioning. It might make more sense that the 2949 // users of this analysis (such as the vectorizer) will trigger it, based on 2950 // their specific cost considerations; For example, in cases where stride 2951 // versioning does not help resolving memory accesses/dependences, the 2952 // vectorizer should evaluate the cost of the runtime test, and the benefit 2953 // of various possible stride specializations, considering the alternatives 2954 // of using gather/scatters (if available). 2955 2956 const SCEV *MaxBTC = PSE->getSymbolicMaxBackedgeTakenCount(); 2957 2958 // Match the types so we can compare the stride and the MaxBTC. 2959 // The Stride can be positive/negative, so we sign extend Stride; 2960 // The backedgeTakenCount is non-negative, so we zero extend MaxBTC. 2961 const DataLayout &DL = TheLoop->getHeader()->getDataLayout(); 2962 uint64_t StrideTypeSizeBits = DL.getTypeSizeInBits(StrideExpr->getType()); 2963 uint64_t BETypeSizeBits = DL.getTypeSizeInBits(MaxBTC->getType()); 2964 const SCEV *CastedStride = StrideExpr; 2965 const SCEV *CastedBECount = MaxBTC; 2966 ScalarEvolution *SE = PSE->getSE(); 2967 if (BETypeSizeBits >= StrideTypeSizeBits) 2968 CastedStride = SE->getNoopOrSignExtend(StrideExpr, MaxBTC->getType()); 2969 else 2970 CastedBECount = SE->getZeroExtendExpr(MaxBTC, StrideExpr->getType()); 2971 const SCEV *StrideMinusBETaken = SE->getMinusSCEV(CastedStride, CastedBECount); 2972 // Since TripCount == BackEdgeTakenCount + 1, checking: 2973 // "Stride >= TripCount" is equivalent to checking: 2974 // Stride - MaxBTC> 0 2975 if (SE->isKnownPositive(StrideMinusBETaken)) { 2976 LLVM_DEBUG( 2977 dbgs() << "LAA: Stride>=TripCount; No point in versioning as the " 2978 "Stride==1 predicate will imply that the loop executes " 2979 "at most once.\n"); 2980 return; 2981 } 2982 LLVM_DEBUG(dbgs() << "LAA: Found a strided access that we can version.\n"); 2983 2984 // Strip back off the integer cast, and check that our result is a 2985 // SCEVUnknown as we expect. 2986 const SCEV *StrideBase = StrideExpr; 2987 if (const auto *C = dyn_cast<SCEVIntegralCastExpr>(StrideBase)) 2988 StrideBase = C->getOperand(); 2989 SymbolicStrides[Ptr] = cast<SCEVUnknown>(StrideBase); 2990 } 2991 2992 LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE, 2993 const TargetTransformInfo *TTI, 2994 const TargetLibraryInfo *TLI, AAResults *AA, 2995 DominatorTree *DT, LoopInfo *LI) 2996 : PSE(std::make_unique<PredicatedScalarEvolution>(*SE, *L)), 2997 PtrRtChecking(nullptr), TheLoop(L) { 2998 unsigned MaxTargetVectorWidthInBits = std::numeric_limits<unsigned>::max(); 2999 if (TTI) { 3000 TypeSize FixedWidth = 3001 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector); 3002 if (FixedWidth.isNonZero()) { 3003 // Scale the vector width by 2 as rough estimate to also consider 3004 // interleaving. 3005 MaxTargetVectorWidthInBits = FixedWidth.getFixedValue() * 2; 3006 } 3007 3008 TypeSize ScalableWidth = 3009 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_ScalableVector); 3010 if (ScalableWidth.isNonZero()) 3011 MaxTargetVectorWidthInBits = std::numeric_limits<unsigned>::max(); 3012 } 3013 DepChecker = std::make_unique<MemoryDepChecker>(*PSE, L, SymbolicStrides, 3014 MaxTargetVectorWidthInBits); 3015 PtrRtChecking = std::make_unique<RuntimePointerChecking>(*DepChecker, SE); 3016 if (canAnalyzeLoop()) 3017 CanVecMem = analyzeLoop(AA, LI, TLI, DT); 3018 } 3019 3020 void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const { 3021 if (CanVecMem) { 3022 OS.indent(Depth) << "Memory dependences are safe"; 3023 const MemoryDepChecker &DC = getDepChecker(); 3024 if (!DC.isSafeForAnyVectorWidth()) 3025 OS << " with a maximum safe vector width of " 3026 << DC.getMaxSafeVectorWidthInBits() << " bits"; 3027 if (PtrRtChecking->Need) 3028 OS << " with run-time checks"; 3029 OS << "\n"; 3030 } 3031 3032 if (HasConvergentOp) 3033 OS.indent(Depth) << "Has convergent operation in loop\n"; 3034 3035 if (Report) 3036 OS.indent(Depth) << "Report: " << Report->getMsg() << "\n"; 3037 3038 if (auto *Dependences = DepChecker->getDependences()) { 3039 OS.indent(Depth) << "Dependences:\n"; 3040 for (const auto &Dep : *Dependences) { 3041 Dep.print(OS, Depth + 2, DepChecker->getMemoryInstructions()); 3042 OS << "\n"; 3043 } 3044 } else 3045 OS.indent(Depth) << "Too many dependences, not recorded\n"; 3046 3047 // List the pair of accesses need run-time checks to prove independence. 3048 PtrRtChecking->print(OS, Depth); 3049 OS << "\n"; 3050 3051 OS.indent(Depth) 3052 << "Non vectorizable stores to invariant address were " 3053 << (HasStoreStoreDependenceInvolvingLoopInvariantAddress || 3054 HasLoadStoreDependenceInvolvingLoopInvariantAddress 3055 ? "" 3056 : "not ") 3057 << "found in loop.\n"; 3058 3059 OS.indent(Depth) << "SCEV assumptions:\n"; 3060 PSE->getPredicate().print(OS, Depth); 3061 3062 OS << "\n"; 3063 3064 OS.indent(Depth) << "Expressions re-written:\n"; 3065 PSE->print(OS, Depth); 3066 } 3067 3068 const LoopAccessInfo &LoopAccessInfoManager::getInfo(Loop &L) { 3069 const auto &[It, Inserted] = LoopAccessInfoMap.insert({&L, nullptr}); 3070 3071 if (Inserted) 3072 It->second = 3073 std::make_unique<LoopAccessInfo>(&L, &SE, TTI, TLI, &AA, &DT, &LI); 3074 3075 return *It->second; 3076 } 3077 void LoopAccessInfoManager::clear() { 3078 SmallVector<Loop *> ToRemove; 3079 // Collect LoopAccessInfo entries that may keep references to IR outside the 3080 // analyzed loop or SCEVs that may have been modified or invalidated. At the 3081 // moment, that is loops requiring memory or SCEV runtime checks, as those cache 3082 // SCEVs, e.g. for pointer expressions. 3083 for (const auto &[L, LAI] : LoopAccessInfoMap) { 3084 if (LAI->getRuntimePointerChecking()->getChecks().empty() && 3085 LAI->getPSE().getPredicate().isAlwaysTrue()) 3086 continue; 3087 ToRemove.push_back(L); 3088 } 3089 3090 for (Loop *L : ToRemove) 3091 LoopAccessInfoMap.erase(L); 3092 } 3093 3094 bool LoopAccessInfoManager::invalidate( 3095 Function &F, const PreservedAnalyses &PA, 3096 FunctionAnalysisManager::Invalidator &Inv) { 3097 // Check whether our analysis is preserved. 3098 auto PAC = PA.getChecker<LoopAccessAnalysis>(); 3099 if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<Function>>()) 3100 // If not, give up now. 3101 return true; 3102 3103 // Check whether the analyses we depend on became invalid for any reason. 3104 // Skip checking TargetLibraryAnalysis as it is immutable and can't become 3105 // invalid. 3106 return Inv.invalidate<AAManager>(F, PA) || 3107 Inv.invalidate<ScalarEvolutionAnalysis>(F, PA) || 3108 Inv.invalidate<LoopAnalysis>(F, PA) || 3109 Inv.invalidate<DominatorTreeAnalysis>(F, PA); 3110 } 3111 3112 LoopAccessInfoManager LoopAccessAnalysis::run(Function &F, 3113 FunctionAnalysisManager &FAM) { 3114 auto &SE = FAM.getResult<ScalarEvolutionAnalysis>(F); 3115 auto &AA = FAM.getResult<AAManager>(F); 3116 auto &DT = FAM.getResult<DominatorTreeAnalysis>(F); 3117 auto &LI = FAM.getResult<LoopAnalysis>(F); 3118 auto &TTI = FAM.getResult<TargetIRAnalysis>(F); 3119 auto &TLI = FAM.getResult<TargetLibraryAnalysis>(F); 3120 return LoopAccessInfoManager(SE, AA, DT, LI, &TTI, &TLI); 3121 } 3122 3123 AnalysisKey LoopAccessAnalysis::Key; 3124